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Abstract

In this work we develop and examine two novel first-order splitting algorithms for solving large-scale com-

posite optimization problems in infinite-dimensional spaces. Such problems are ubiquitous in many areas of

science and engineering, particularly in data science and imaging sciences. Our work is focused on relaxing

the Lipschitz-smoothness assumptions generally required by first-order splitting algorithms by replacing the

Euclidean energy with a Bregman divergence. These developments allow one to solve problems having more

exotic geometry than that of the usual Euclidean setting. One algorithm is hybridization of the conditional gra-

dient algorithm, making use of a linear minimization oracle at each iteration, with an augmented Lagrangian

algorithm, allowing for affine constraints. The other algorithm is a primal-dual splitting algorithm incorporating

Bregman divergences for computing the associated proximal operators. For both of these algorithms, our anal-

ysis shows convergence of the Lagrangian values, subsequential weak convergence of the iterates to solutions,

and rates of convergence. In addition to these novel deterministic algorithms, we introduce and study also the

stochastic extensions of these algorithms through a perturbation perspective. Our results in this part include

almost sure convergence results for all the same quantities as in the deterministic setting, with rates as well.

Finally, we tackle new problems that are only accessible through the relaxed assumptions our algorithms allow.

We demonstrate numerical efficiency and verify our theoretical results on problems like low rank, sparse matrix

completion, inverse problems on the simplex, and entropically regularized Wasserstein inverse problems.

Keywords: nonsmooth optimization, first-order optimization, primal-dual splitting, conditional gradient,

frank-wolfe, chambolle-pock, Bregman divergence, mirror descent, Moreau envelope, relative smoothness,

Kullback-Leibler divergence, Wasserstein barycenter, Wasserstein inverse problem.

Résumé

Dans ce travail, nous développons et examinons deux nouveaux algorithmes d’éclatement du premier ordre pour

résoudre des problèmes d’optimisation composites à grande échelle dans des espaces à dimensions infinies. Ces

problèmes sont au coeur de nombres de domaines scientifiques et d’ingénierie, en particulier la science des

données et l’imagerie. Notre travail est axé sur l’assouplissement des hypothèses de régularité de Lipschitz

généralement requises par les algorithmes de fractionnement du premier ordre en remplaçant l’énergie eucli-

dienne par une divergence de Bregman. Ces développements permettent de résoudre des problèmes ayant une

géométrie plus exotique que celle du cadre euclidien habituel. Un des algorithmes développés est l’hybridation

de l’algorithme de gradient conditionnel, utilisant un oracle de minimisation linéaire à chaque itération, avec

méthode du Lagrangien augmenté, permettant ainsi la prise en compte de contraintes affines. L’autre algorithme

est un schéma d’éclatement primal-dual incorporant les divergences de Bregman pour le calcul des opérateurs

proximaux associés. Pour ces deux algorithmes, nous montrons la convergence des valeurs Lagrangiennes, la

convergence faible des itérés vers les solutions ainsi que les taux de convergence. En plus de ces nouveaux

algorithmes déterministes, nous introduisons et étudions également leurs extensions stochastiques au travers

d’un point de vue d’analyse de stablité aux perturbations. Nos résultats dans cette partie comprennent des ré-

sultats de convergence presque sûre pour les mêmes quantités que dans le cadre déterministe, avec des taux

de convergence également. Enfin, nous abordons de nouveaux problèmes qui ne sont accessibles qu’à travers

les hypothèses relâchées que nos algorithmes permettent. Nous démontrons l’efficacité numérique et illustrons

nos résultats théoriques sur des problèmes comme la complétion de matrice parcimonieuse de rang faible, les

problèmes inverses sur le simplexe, ou encore les problèmes inverses impliquant la distance de Wasserstein

régularisée.
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Mots-clés: optimisation non-lisse, optimisation du premier ordre, dédoublement primal-dual, gradient con-

ditionnel, divergence de Bregman, descente en miroir, enveloppe de Moreau, lisse relative, divergence Kullback-
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1.1 Context

The field of convex optimization is ubiquitous in science and applied mathematics. From signal processing to

machine learning to operations research, the flexibility and utility offered through casting problems as convex

optimization problems is well established. While many methods exist to solve convex optimization problems,

first-order methods stand out when the problems at hand are extremely large and require only moderately precise

solutions; often the case in imaging sciences like computer vision or machine learning where data is collected,

and expected to be processed, at a huge scale. First-order methods generally scale well with the problem di-

mension, in contrast to second (or higher) order methods in which not even a single iteration can be performed

because of storage constraints.

In practice, it is common to run into composite problems in which the objective function to be minimized is

a sum of two or more functions, perhaps also composed with a linear operator. These problems usually admit

some structure than can be exploited, e.g., differentiability, strong convexity, prox-friendliness1, etc, but often

the usefulness of this structure is impeded by the lack of separability in the objective. By this we mean that,

even if f is differentiable, it’s not necessarily true that f + g is differentiable. Similarly, the proximal operator

1By prox-friendly, we mean a function whose proximal operator is computable in closed form or in another computationally accessible

way.
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of g, denoted proxg and defined formally for some real Hilbert spaceH,

proxg (x)
def
= argmin

y∈H

{
g (y) +

1

2
‖x− y‖2

}

may be accessible but not necessarily proxf+g or proxg◦T for a bounded linear operator T . To really reap the

benefits of this structure, it is essential to develop algorithms which separate or split the composite problem in

a way that utilizes individually the structures present.

We describe in the following sections some prototypical first-order algorithms for solving different convex

optimization problems with composite structure. We examine the ideas that lead one to these algorithms and

give some history as well. Then we discuss briefly the concept of relative smoothness and stochastic algorithms.

The purpose of this exposition is to set the stage for describing how the work in this thesis extends the landscape

of problems solvable by first-order convex optimization methods. Throughout the rest of the section, we letH be

a real Hilbert space and assume that f and g belong to the space Γ0 (H) of convex, proper, lower semicontinuous

functions fromH to the extended real numbers R ∪ {+∞} (sometimes takingH = R
n).

1.1.1 Forward-Backward Splitting

A well-known example of a splitting algorithm is the forward-backward algorithm for solving problems of the

form

min
x∈H

f (x) + g (x) (1.1.1)

where f is Lipschitz smooth,2 and g is prox-friendly.

Algorithm 1: Forward-Backward Splitting

Input: x0, γ

k = 0

repeat

xk+1 = argmin
x∈H

{
g (x) + 〈∇f (xk) , x〉 + 1

2γ ‖x− xk‖
2
}

k ← k + 1
until convergence;

Output: xk+1.

The updates of the algorithm allow one to split the forward (gradient) step, involving γ∇f , from the backward

(proximal) step, involving proxγg. A particular case of (1.1.1) is constrained optimization over some convex

closed set C
min
x∈C

f (x) .

This is (1.1.1) with the particular choice

g (x) = ιC (x)
def
=

{
0 x ∈ C,
+∞ x 6∈ C.

In this case, the proximal operator associated to g is the projection operator onto the set C,

proxg (x) = argmin
y∈C

{
1

2
‖x− y‖2

}
. (1.1.2)

The convergence properties of Algorithm 1 have been the subject of numerous research works, starting in [76]

and [91], and we avoid giving a complete history here; we refer the interested reader to [38].

2We call a function f Lipschitz-smooth if its gradient, ∇f , is Lipschitz-continuous.
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1.1.2 Primal-Dual Splitting

Many convex optimization problems admit a dual problem, to be made more precise in what follows, which

can be exploited to improve the efficiency or accessibility of a problem. Some problems, in their original form

(henceforth referred to as the primal problem), are not practically accessible in the sense that applying first-order

methods to the primal problem alone is considered practically impossible. A common issue in this setting is

when one has a nonsmooth, prox-friendly function g which has been composed with a linear operator T : Rn →
R
m, for which the composition g◦T is not prox-friendly. By Moreau’s decomposition (see [10, Theorem 14.3]),

g being prox-friendly means that the Legendre-Fenchel conjugate, denoted g∗ and to be defined more precisely

later, is also prox-friendly. By considering a primal-dual formulation of the problem we are able to untangle

g ◦T and handle each separately. We demonstrate what we mean by primal-dual formulation with the following

example. Consider the problem

min
x∈Rn

f (x) + g(Tx)

where f is Lipschitz-smooth and g is prox-friendly. This problem is no longer solvable by the forward-backward

algorithm in general because of the linear operator T , which complicates things even if the proximal operator

associated to g is accessible. We can associate a primal-dual problem (through Lagrangian duality)

min
x∈Rn

max
µ∈Rm

f (x)− g∗ (µ) + 〈Tx, µ〉 .

In this form, with the linear operator T now separated from the function g, we can utilize the prox-friendliness

of g regardless of whether g ◦T has an accessible proximal operator or not. Furthermore, if strong duality holds

and we exchange the min and max operators, we arrive at the Fenchel-Rockafellar dual problem

max
µ∈Rm

− (f∗ (−T ∗µ)− g∗ (µ))

which can be much more computationally tractable if m≪ n.

Such primal-dual problems are interesting in their own right and first-order algorithms have been developed

to solve them. A well-known example of the aforementioned primal-dual algorithms is the Chambolle-Pock

algorithm of [29], whose main steps are outlined in Algorithm 2. Other variations of this algorithm, designed to

tackle even more general primal-dual problem formulations than that of [29] or its followup [31], were proposed,

for instance in [112], [36], and [35].

Algorithm 2: Primal-Dual Splitting

Input: x0, µ0, λ, ν

k = 0

repeat

xk+1 = argmin
x

{
f (x) + 〈x, T ∗µk〉 + 1

2λ ‖x− xk‖
2
}

µk+1 = argmin
µ

{
g∗ (µ)− 〈T (2xk+1 − xk) , µ〉 + 1

2ν ‖µ− µk‖
2
}

k ← k + 1
until convergence;

Output: xk+1, µk+1.

1.1.3 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers algorithm, or ADMM for short, is a splitting algorithm most

commonly used for composite optimization problems over a real Hilbert spaceH of the form

min
x∈H

f (x) + g (Tx)

– 3 –
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where f and g are possibly nonsmooth but both are prox-friendly. We can rewrite the problem using Lagrangian

duality as

min
x∈H,y∈H

max
µ∈H

f (x) + g (y) + 〈µ, Tx− y〉

Algorithm 3: Alternating Direction Method of Multipliers

Input: x0, y0, z0, γ

k = 0

repeat

xk+1 ∈ argmin
x

{
f (x) + g (yk) + 〈Tx− yk, zk〉 + γ

2 ‖Tx− yk‖
2
}

yk+1 = argmin
y

{
f (xk+1) + g (y) + 〈Txk+1 − y, zk〉 + γ

2 ‖Txk+1 − y‖2
}

zk+1 = zk + γ (Txk+1 − yk+1)

k ← k + 1
until convergence;

Output: xk+1.

Originally studied in the context of partial differential equations in [57], its usefulness as a splitting algorithm

in optimization was later realized and applied to solve problems in various fields. The key to the algorithm is

the additional quadratic term in the updates of xk+1 and yk+1; such additions constitute an augmentation to the

Lagrangian

L (x, y, z) def
= f (x) + g (y) + 〈Tx− y, z〉

and thus algorithms making use of this idea are often categorized as augmented Lagrangian methods.

The advantage of ADMM is the splitting it provides by minimizing the augmented Lagrangian

Lγ (x, y, z)
def
= f (x) + g (y) + 〈Tx− y, z〉 + γ

2
‖Tx− y‖2

separately over both x and y which allows one to avoid computing the, often inaccessible, proximal operator

associated to f + g. After this alternating minimization, the dual variable z is updated by gradient ascent on the

augmented Lagrangian Lγ .

The convergence guarantees of ADMM have been widely studied in the literature under various assumptions,

see [50], [51], [34], [90], [20], [64], [107], [105] and the references therein.

1.1.4 Conditional Gradient Algorithm

In the 1950’s Frank and Wolfe developed the so-called Frank-Wolfe algorithm in [53], also commonly referred

to as the conditional gradient algorithm [75, 44, 49], for solving problems of the form

min
x∈C⊂Rn

f (x) . (1.1.3)

where f ∈ Γ0 (R
n), the set of convex, proper, lower semicontinuous, extended real-valued functions on R

n,

is a Lipschitz-smooth function and C is a compact convex set. At that time in history, the distinction between

linear and nonlinear problems was felt to be very strong, although now the community focuses more on the

distinction between convex and nonconvex. Because of the perspective of the time, an algorithm was sought to

solve the assumed nonlinear (1.1.3) by means of linear subproblems. Thus the main idea of the Frank-Wolfe

algorithm is to replace the objective function f with a linear model at each iteration and solve the resulting

linear optimization problem; the solution to the linear model is used as a step direction and the next iterate is

computed as a convex combination of the current iterate and the step direction. Notice that the problem (1.1.3)

– 4 –
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Algorithm 4: Conditional Gradient Algorithm

Input: x0 ∈ C.
k = 0

repeat

sk ∈ argmin
s∈C

{〈∇f (xk) , s〉}

xk+1 = xk − 2
k+1 (xk − sk)

k ← k + 1

until convergence;

Output: xk+1.

can be solved by the forward-backward algorithm in principle, and often in practice, by choosing g (x) = ιC
where ιC (x) is the indicator function, enforcing that x ∈ C.

At each iteration k, the conditional gradient algorithm requires the solution to the problem

sk ∈ argmin
s∈Rn

{〈∇f (xk) , s〉 + ιC (s)} . (1.1.4)

While proximal methods utilize a quadratic term γ
2 ‖xk − x‖

2
in their updates (similarly to (1.1.2)), the condi-

tional gradient requires only access to a linear minimization oracle. This difference can be very important in

practice where computing projections and computing linear minimization oracles can have very different com-

putational complexities, e.g., when the set C is the nuclear norm ball for matrix problems. In other words, there

are problems where the C is more amenable to proximal operator type oracles and other problems where the set

C is more amenable to linear minimization type oracles.

It’s also worth mentioning that the conditional gradient framework, in contrast to classical proximal methods,

doesn’t depend on the Hilbertian inner product structure. It is possible to define linear minimization oracles,

and by extension conditional gradient algorithms, in nonreflexive Banach spaces. The key ingredient is the

directional derivative, which allows one to properly define a linear minimization oracle. However, we do not

explore conditional gradient algorithms beyond Hilbert spaces in this work.

When this algorithm was first studied in [53], a Lipschitz-smoothness assumption was made in the argument

to prove convergence of the gap f (xk) − f⋆. It was not until much later in the thesis [68] where it was made

more precise what was required of the function f to guarantee convergence; a so-called curvature constant was

introduced,

Kf
def
= sup

x,s∈C;
γ∈[0,1];

y=x+γ(s−x)

{
2

γ2
(f (y)− f (x)− 〈∇f (x) , y − x〉)

}
.

The curvature constant being bounded was deemed to be at least as important as Lipschitz-smoothness of the

function f to the convergence of the conditional gradient algorithm; Lipschitz-smoothness of f implies that the

curvature constant is bounded and this is sufficient to show convergence [66].

1.2 Motivation

1.2.1 Hybridizing Conditional Gradient Algorithms with Proximal Algorithms

Conditional gradient algorithms have received a lot of attention in the modern era due to their effectiveness in

fields with high-dimensional problems like machine learning and signal processing (without being exhaustive,

see, e.g., [66, 15, 72, 60, 118, 85, 27]). Consider the following problem over a real Hilbert spaceH,

min
Ax=b

f (x) + g (Tx) + h (x) (1.2.1)

– 5 –



Chapter 1 1.2. Motivation

where f is differentiable but not necessarily Lipschitz-smooth, g is prox-friendly, h admits an accessible linear

minimization oracle (usually h (x) = ιC (x))

lmo
h

(z)
def
= argmin

x∈H
{〈z, x〉 + h (x)} ,

and T and A are bounded linear operators. Our aim is to solve (1.2.1) by hybrizing an ADMM style update for

with a conditional gradient update, splitting and using the individual structures present as efficiently as possible.

In the past, composite constrained problems like (1.2.1) have primarily been approached using proximal split-

ting methods, e.g., generalized forward-backward as developed in [98] or forward-Douglas-Rachford [83]. As

was touched on before, such approaches require one to compute the proximal mapping associated to the func-

tion h. Alternatively, when the objective function satisfies some regularity conditions and when the constraint

set is well behaved, one can forgo computing a proximal mapping, instead computing a linear minimization

oracle. The computation of the proximal step can be prohibitively expensive; for example, when h is the in-

dicator function of the nuclear norm ball, computing the proximal operator of h requires a full singular value

decomposition while the linear minimization oracle over the nuclear norm ball requires only the leading sin-

gular vector to be computed ([67], [117]). Unfortunately, the regularity assumptions required by generalized

conditional gradient style algorithms are too restrictive to apply to general problems like (1.2.1) due to the lack

of Lipschitz-smoothness, the affine constraint Ax = b and the nonsmooth function g.

The linear minimization oracle used in the conditional gradient algorithm requires that the objective function

is differentiable. Many problems in practice are convex but nonsmooth; is it possible to reconcile this with the

differentiability requirement in the conditional gradient algorithm? Indeed, the answer is yes as was shown in [5]

by using the Moreau envelope. While this is an appealing solution to the issue of nonsmoothness, the arguments

they present require domain qualification conditions that preclude their use when the domain of the nonsmooth

function is poorly behaved in the sense that it does not contain the set C. So, one cannot use this method to

include, for instance, an affine constraint of the form Ax = b unless it is trivially satisfied for all x ∈ C. A

parallel work to ours, [116] developed a method that uses the Moreau envelope for such affine constraints in a

conditional gradient framework but their work is only for finite-dimensional spaces; we will compare our work

with theirs in Chapter 3.

We have seen how augmented Lagrangian methods like ADMM are able to handle these sorts of affine con-

straints by introducing a quadratic penalty at each iteration. However, applying such methods with a function

like h = ιC will rely on projection onto the set C. The question, then, is if it is possible to combine such aug-

mented Lagrangian methods with generalized conditional gradient methods to take advantage of the efficiency

each method offers for each piece of the problem. This is the motivation for the development of the Conditional

Gradient with Augmeneted Lagrangian and Proximal step; a desire to unify the augmented Lagrangian method

and the conditional gradient method in such a way that both the linear minimization oracle and the quadratic

penalties can be utilized to their fullest.

1.2.2 Generalizing to Relatively Smooth Functions

The notion of relative smoothness is key to the analysis of differentiable but not Lipschitz-smooth optimization

problems. The earliest reference to this notion can be found in an economics paper [17] where it is used to

address a problem in game theory involving fisher markets. Later on it was developed in [13] and then in

[80], although first coined relative smoothness in [80]. This idea allows one to apply arguments involving

descent lemmas which are normally relegated to Lipschitz-smooth problems. The concept has been extended,

for instance to define relative Lipschitz-continuity in [78], in [79] for the stochastic generalized conditional

gradient, and to define a generalized curvature constant for the generalized conditional gradient algorithm in

[108]. The analogous idea of relative strong convexity, while noted before in [31], was not explored in detail.

Given the recent advances in relative smoothness in papers like [13] and [80], it is natural to wonder if it is

possible to extend the primal-dual splitting or conditional gradient algorithm and prove convergence for more
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general functions than the class of Lipschitz-smooth functions. There have been small steps in this direction,

for instance in the conditional gradient case in the work [116] where it was remarked that their analysis could be

carried out for Hölder-smooth functions but even there the analysis was not actually carried out and presented

beyond the remark.

To this end, we consider the following problem

min
x∈Cp⊂Xp

max
µ∈Cd⊂Xd

{
L (x, µ) def

= f(x) + g(x) + 〈Tx, µ〉 − h∗(µ)− l∗(µ)
}

(1.2.2)

with real reflexive Banach spaces Xp and Xd, f ∈ Γ0 (Xp) and h∗ ∈ Γ0 (Xd) relatively smooth, T : Xp → Xd
a bounded linear operator, and with the prox of g ∈ Γ0 (Xp) and l∗ ∈ Γ0 (Xd) computable with respect to

the Bregman divergences induced by the entropies3 which f and h∗ are relatively smooth with respect to. We

handle the constraints Cp and Cd implicitly by choice of the entropy we consider in the updates we outline later

in Chapter 5.

The relative smoothness does present challenges for the analysis of a primal-dual splitting type of algorithm;

which is, roughly speaking, forward-backward on both the primal and the dual in some sense. D-prox map-

pings were utilized successfully in [31] which developed a primal-dual algorithm for composite minimization,

but relative smoothness was not used. There are many technical obstacles that appear when one begins to re-

place Lipschitz-smoothness assumptions with relative smoothness and Euclidean prox mappings with D-prox

mappings, for instance lack of an Opial-esque lemma for Bregman divergences. Of note is the inability to con-

solidate duality pairing terms with Bregman divergences into a single term. Such a consolidation is possible

with a norm due to tools relating duality pairings to norms like the Cauchy-Schwarz inequality and Young’s

inequality.

The authors of [31] were able to evade this obstacle by assuming that the entropies were strongly convex.

When the entropy φ is strongly convex with respect to some norm, one can estimate the Bregman divergence

Dφ with the norm thatφ is strongly convex with respect to. Once we are back to estimations involving only norms

and duality pairings, the usual tricks can be applied. Thus we seek to develop, without assuming strong convexity

of the entropies, an assumption that attempts to quantify the relationship between the Bregman divergence and

the duality pairing which appears in the analysis of our algorithm.

1.2.3 Allowing for Stochasticity

Up to this point, our discussion of convex optimization has been relegated to deterministic problems and algo-

rithms. The incorporation of probabilistic uncertainty into convex optimization is known as stochastic convex

optimization. The study of stochastic convex optimization has its roots in [101].

As has been touched on, large-scale problems are very common in imaging sciences. The scale can be so large

that deterministic methods are no longer practically feasible; storing a single gradient can be too computationally

expensive. It is necessary, then, to develop stochastic algorithms which require only practically feasible amounts

of data at each iteration. For all of the algorithms we have discussed thus far, we have also developed and

analyzed stochastic extensions which allow for inexact computations of the gradients (or sometimes the proximal

operators) involved at each iteration. Our study of these algorithms is through a perturbation perspective; we

consider at each iteration some noise which corrupts the computation of gradients or proximal operators in an

additive sense.

Through this perspective, we are able to propose several different methods for approximating the gradient

inexactly, either stochastically or deterministically, which ensure convergence of the algorithm. These methods

allow different practical sampling routines depending on the problem and its regularity, making them efficient

in practice.

3We abuse the term entropy here, and throughout the thesis, to mean the function φ which induces the Bregman divergence Dφ that

we are considering.
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1.3 Contribution

1.3.1 Generalized Conditional Gradient with Augmented Lagrangian and Proximal Step

Results Recall the setting of (1.1.3); we generalize the conditional gradient algorithm to handle problems

fitting (1.2.1). This is general enough to include various composite optimization problems involving both smooth

and nonsmooth terms, intersection of multiple constraint sets, and also affine constraints.

We develop and analyze a novel algorithm, which we call Conditional Gradient with Augmented Lagrangian

and Proximal step, to solve (1.2.1) which combines penalization for the nonsmooth function g (essentially the

Moreau envelope) with the augmented Lagrangian method for the affine constraintAx = b. In turn, this achieves

full splitting of all the parts in the composite problem (1.2.1) by using the proximal mapping of g (assumed

prox-friendly) and a linear oracle for h. We can recognize in Algorithm 5 (γk)k∈N as the sequence of step sizes,

(βk)k∈N a sequence of smoothing parameters, (θk)k∈N the sequence of dual step sizes, and (ρk)k∈N a sequence

of augmented Lagrangian parameters.

Algorithm 5: Conditional Gradient with Augmented Lagrangian and Proximal-step (CGALP )

Input: x0 ∈ C = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N, (θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0

repeat

yk = proxβkg (Txk)

zk = ∇f(xk) + T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ argmins∈H {h (s) + 〈zk, s〉}
xk+1 = xk − γk (xk − sk)
µk+1 = µk + θk (Axk+1 − b)
k ← k + 1

until convergence;

Output: xk+1.

Our analysis shows:

• The sequence of iterates is asymptotically feasible for the affine constraint.

• The sequence of dual variables is strongly convergent to a solution of the dual problem.

• The associated Lagrangian converges to optimality.

• Convergence rates for a family of sequences of step sizes and sequences of smoothing/penalization pa-

rameters which satisfy so-called "open loop" rules in the sense of [96] and [49]. This means that the

allowable sequences of parameters do not depend on the iterates, in contrast to a "closed loop" rule, e.g.

line search or other adaptive step sizes.

• (In the case where (1.2.1) admits a unique minimizer) Weak convergence of the whole sequence of primal

iterates to the solution with a rate of convergence on ‖xk − x‖2.
The type of theorem one can find in Chapter 3 takes the following form:

Theorem 1.3.1. Suppose that [mild assumptions on the functions and parameters] hold. Let (xk)k∈N be the

sequence of primal iterates generated by CGALP and (x⋆, µ⋆) a saddle-point pair for the Lagrangian. Then,

the following holds

(i) Asymptotic feasibility:

lim
k→∞

‖Axk − b‖ = 0.
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(ii) Convergence of the Lagrangian:

lim
k→∞

L (xk, µ⋆) = L (x⋆, µ⋆) .

(iii) Every weak cluster point x̄ of (xk)k∈N is a solution of the primal problem, and (µk)k∈N converges strongly

to µ̄ a solution of the dual problem, i.e., (x̄, µ̄) is a saddle point of the Lagrangian L.

(iv) Ergodic rate: for each k ∈ N, let x̄k
def
=
∑k

i=0 γixi+1/Γk where γi is the stepsize of the CGALP algorithm

at iteration i. Then

‖Ax̄k − b‖2 = O

(
1

Γk

)
,

L (x̄k, µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
.

The structure of (1.2.1) generalizes (1.1.3) in several ways. First, we allow for a possibly nonsmooth term g.

Second, we consider h beyond the case of an indicator function where the linear oracle of the form

lmo
h

def
= argmin

s∈H
h (s) + 〈x, s〉 (1.3.1)

can be easily solved. This oracle is reminiscent of that in the generalized conditional gradient method [21, 22,

14, 8]. Third, the regularity assumptions on f are also greatly weakened to go far beyond the standard Lipschitz

gradient case. Finally, handling an affine constraint in our problem means that our framework can be applied to

the splitting of a wide range of composite optimization problems, through a product space technique, including

those involving finitely many functions hi and gi, and, in particular, intersection of finitely many nonempty

bounded closed convex sets; see Section 3.5.

Practical Applications The general form of (1.2.1) allows to solve many practical problems efficiently. As

will be demonstrated in Chapter 3, one can apply CGALP to matrix completion problems involving a nuclear

norm constraint. This constraint is typically used as the convex relaxation of a low rank constraint. Solving such

problems with nuclear norm constraints using proximal methods requires one to project onto the nuclear norm

ball. Such a projection requires a full singular value decomposition of the matrix and this is computationally

infeasible for very large matrices. However, in contrast, CGALP requires only a linear minimization oracle over

the nuclear norm ball and this can be computed in reasonable time.

For problems involving multiple constraint sets Ci, CGALP only requires access each linear minimization

oracle lmoCi individually with requiring lmo∩iCi . This is also demonstrated in the matrix completion problem,

in which there is an ℓ1 norm constraint in addition to the nuclear norm ball constraint.

Prior Work A similar algorithm to CGALP was studied, unknown to the present authors, in [5] but it does not

allow for an affine constraint Ax = b. While finalizing this work, we became aware of the recent work of [116],

who independently developed a conditional gradient-based framework which allows one to solve composite

optimization problems involving a Lipschitz-smooth function f and a nonsmooth function g,

min
x∈C
{f(x) + g (Tx)} . (1.3.2)

The main idea is to replace g with its Moreau envelope of index βk at each iteration k, with the index parameter

βk going to 0. This is equivalent to partial minimization with a quadratic penalization term, as in our algorithm.

Like our algorithm, that of [116] is able to handle problems involving both smooth and nonsmooth terms, inter-

section of multiple constraint sets and affine constraints, however their algorithms employ different methods for

these situations. Our algorithm uses an augmented Lagrangian to handle the affine constraint while the condi-

tional gradient framework treats the affine constraint as a nonsmooth term g and uses penalization to smooth the

indicator function corresponding to the affine constraint. In particular circumstances, outlined in more detail in

Section 3.4, our algorithms agree completely.
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Another recent and parallel work to ours is that of [56], where the Frank-Wolfe via Augmented Lagrangian

(FW-AL) is developed to approach the problem of minimizing a Lipschitz-smooth function over a convex, com-

pact set with a linear constraint,

min
x∈C
{f(x) : Ax = 0} . (1.3.3)

The main idea of FW-AL is to use the augmented Lagrangian to handle the linear constraint and then apply the

classical augmented Lagrangian algorithm, except that the marginal minimization on the primal variable that is

usually performed is replaced by an inner loop of Frank-Wolfe. It turns out that the problem they consider is a

particular case of (1.2.1), discussed in Section 3.4.

We summarize the place of our work among contemporary works with the following table. By arbitrary h,

we mean an arbitrary h ∈ Γ0 (H) which has a compact domain and admits an accessible linear minimization

oracle.

Smoothness of f? Nonsmooth g ◦ T ? Arbitrary h? R
n orH? Ax = b?

Yurtsever et. al. [116] Lipschitz-smooth Moreau envelope h ≡ ιC R
n Moreau envelope

Argyriou et. al. [5] Lipschitz-smooth Moreau envelope h arbitrary H X

Gidel et. al. [56] Lipschitz-smooth X h ≡ ιC R
n augm. Lagrangian

This work Relatively smooth Moreau envelope h arbitrary H augm. Lagrangian

1.3.2 Inexact and Stochastic Generalized Conditional Gradient with Augmented Lagrangian

and Proximal Step

Results The primary contribution of this work is to analyze inexact and stochastic variants of the CGALP algorithm

presented in [108] to address (1.2.1). We coin this algorithm Inexact Conditional Gradient with Augemented

Lagrangian and Proximal-step (ICGALP ). We now have two error terms in Algorithm 6: (λk)k∈N representing

error in the computation of the grad terms and (λsk)k∈N representing error in the linear minimization oracle

itself.

Algorithm 6: Inexact Conditional Gradient with Augmented Lagrangian and Proximal-step (IC-

GALP )

Input: x0 ∈ C def
= dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N, (θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0

repeat

yk = proxβkg (Txk)

zk = ∇f(xk) + T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b) + λk

sk ∈ Argmins∈Hp
{h (s) + 〈zk, s〉}

ŝk ∈ {s ∈ Hp : h (s) + 〈zk, s〉 ≤ h (sk) + 〈zk, sk〉 + λsk}
xk+1 = xk − γk (xk − ŝk)
µk+1 = µk + θk (Axk+1 − b)
k ← k + 1

until convergence;

Output: xk+1.

We show:

• Asymptotic feasibility of the primal iterates for the affine constraint (P-a.s.).

• Convergence of the Lagrangian values at each iteration to an optimal value (P-a.s.).
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• Strong convergence of the sequence of dual iterates (P-a.s.).

• Worst-case rates of convergence for the feasibility gap and the Lagrangian values in a (P-a.s.) sense and

also in expectation.

The rates of convergence for both the Lagrangian and the feasibility gap are given globally, i.e., for the entire

sequence of iterates, in the ergodic sense where the Cesáro means are taken with respect to the primal step

size, in an almost sure sense. We also show rates in expectation which hold pointwise but subsequentially.

In the case where (1.2.1) admits a unique solution, we furthermore have that the sequence of primal iterates

converges weakly to the solution almost surely. These results are established for a family of parameters satisfying

abstract open loop conditions, i.e. sequences of parameters which do not depend on the iterates themselves. We

exemplify the framework on problem instances involving a smooth risk minimization where the gradient is

computed inexactly either with stochastic noise or a deterministic error. In the stochastic case, we show that our

conditions outlined in Section 4.1.2 for convergence are satisfied via increasing batch size or variance reduction.

In the deterministic setting for minimizing an empirical risk, a sweeping approach is described.

The type of theorem one can find in Chapter 4 takes the following form:

Theorem 1.3.2. Suppose that [mild assumptions on parameters and functions] all hold and recall Γk
def
=

k∑
i=0

γi.

For a sequence (xk)k∈N generated by ICGALP we have:

(i) Asymptotic feasibility (P-a.s.):

lim
k→∞

‖Axk − b‖ = 0 (P-a.s.) .

(ii) Convergence of the Lagrangian (P-a.s.):

lim
k→∞

L (xk, µ⋆) = L (x⋆, µ⋆) (P-a.s.) .

(iii) The set of (P-a.s.) weak cluster points of (xk)k∈N is contained in the set of solutions to the primal problem

(P-a.s.) and the sequence (µk)k∈N converges (P-a.s.) strongly to a solution of the dual problem.

(iv) Ergodic rate: let x̄k
def
=
∑k

i=0 γixi/Γk. Then

‖Ax̄k − b‖2 = O

(
1

Γk

)
(P-a.s.) ,

L (x̄k, µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
(P-a.s.) .

Practical Applications We introduce three different methods for computing the gradient inexactly which

are compatible with the assumptions made in our convergence analysis for ICGALP. The first is for empirical

risk minimization, in which we take an increasing batch size of samples at each iteration. The second is a vari-

ance reduction method which allows for as little as a single sample at each iteration. Last is a deterministic

sweeping method which takes a single sample at each iteration in a predetermined way. The variance reduction

and sweeping methods are demonstrated on a model problem with an affine constraint in addition to an ℓ1 ball

constraint. This problem, while simple, is not solvable by stochastic Frank-Wolfe methods due to the affine

constraint. Besides the work [77], which uses the Moreau envelope instead of an augmented Lagrangian to han-

dle the affine constraint, our algorithm is the only stochastic Frank-Wolfe algorithm which can solve the model

problem presented. In contrast to [77], we are able to inexactly compute the terms related to our penalization of

the affine constraint.

Prior Work Although there has been a great deal of work on developing and analyzing Frank-Wolfe or

conditional gradient style algorithms, in both the stochastic and deterministic case, e.g. [62, 63, 100, 58, 46,

115, 82, 61], or [80], little to no work has been done to analyze the generalized version of these algorithms

for nonsmooth problems or problems involving an affine constraint, as we consider here. To the best of our
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knowledge, the only such work is [77], where the authors consider a stochastic conditional gradient algorithm

applied to a composite problem of the form

min
x∈X⊂Rn

E [f (x, η)] + g (Ax)

where the expectation is over the random variable η and with g possibly nonsmooth. The nonsmooth term

is possibly an affine constraint but, in such cases, it is addressed through smoothing rather than through an

augmented Lagrangian with a dual variable, in contrast to our work. They consider only finite-dimensional

problems and their problem formulation doesn’t allow for inexactness with respect to g.

1.3.3 Stochastic Bregman Primal-Dual Splitting

Results We introduce and analyze the Stochastic Bregman Primal-Dual (SBPD) algorithm to solve (1.2.2).

To our knowledge, our work is the first to analyze solving (1.2.2) under a relative smoothness condition with

D-prox mappings, even in the deterministic setting. Additionally, we are the first to include stochastic error,

denoted δpk and δdk in Algorithm 7, in the computation of the gradient terms for (1.2.2) under these assumptions.

Algorithm 7: Stochastic Bregman Primal-Dual Splitting (SBPD)

for k = 0, 1, . . . do

xk+1 = argmin
x∈Cp

{
g(x) + 〈∇f(xk) + δpk, x〉+ 〈Tx, µ̄k〉+

1

λk
Dp (x, xk)

}

µk+1 = argmin
µ∈Cd

{
l∗(µ) + 〈∇h∗(µk) + δdk, µ〉 − 〈T x̄k, µ〉+

1

νk
Dd (µ, µk)

}

where µ̄k = µk and x̄k = 2xk+1 − xk.

We are able to show:

• Convergence of the Lagrangian gap E [L (x̄k, µ⋆)− L (x⋆, µ̄k)] for the ergodic sequence of iterates with

a O (1/k) rate of convergence.

• Every (P-a.s.) weak sequential cluster point of the ergodic sequence is optimal in expectation.

• (P-a.s.) weak convergence of the pointwise sequence of iterates to a solution.

• (P-a.s.) strong convergence of the pointwise sequence of iterates to a solution if the entropies are totally

convex and the objective is relatively strongly convex (to be made more precise in Chapter 5).

The type of theorem one can find in Chapter 5 takes the following form:

Theorem 1.3.3. Let [mild assumptions on the parameters and functions] hold. Then we have the following

convergence rate: for each k ∈ N, for every (x, µ) ∈ Cp × Cd,
E [L (x̄k, µ)− L (x, µ̄k)] = O (1/k) . (1.3.4)

Furthermore, under additional mild assumptions on the entropies, we have (P-a.s.) weak convergence of the

pointwise sequence of iterates ((xk, µk))k∈N to a saddle point (x⋆, µ⋆).

Practical Applications The generality afforded by relative smoothness allows us to solve problems involv-

ing the Kullback-Liebler divergence on the simplex with total variation regularization. Such problems were

previously inaccessible due to the lack of Lipschitz-smoothness and the lack of prox-friendliness of the total

variation regularizer. We solve two of these problems in Chapter 5, giving explicit step size calculations and

showing the assumptions are satisfied. In addition to these problems, we demonstrate the effectiveness of the

algorithm on entropically regularized Wasserstein inverse problems. Although it was technically possible to

solve this problem using the algorithm of [31], it was not done until now. Our reformulation as a saddle-point

problem allows us to dramatically reduce the dimensionality.
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Prior Work As has been discussed, the idea of using primal-dual methods to solve convex-concave saddle-

point problems has been around since the 1960s, e.g., [84], [102], [74], and [81]. For an introduction into the

use of primal-dual methods in convex optimization, we refer the reader to [71]. More recently, without being

exhaustive, there were the notbale works [36], [29], [39], [112], and [31] which examined problems quite similar

to the one posed here using first order primal-dual methods.

In particular, [31] studied (1.2.2) using D-prox mappings, i.e., proximal mappings where the euclidean en-

ergy has been replaced by a suitable Bregman divergence, under the assumption that f and h∗ are Lipschitz-

smooth Γ0 functions. They show ergodic convergence of the Lagrangian optimality gap with a rate of O (1/k)

under mild assumptions and also faster rates, e.g., O
(
1/k2

)
and linear convergence, under stricter assumptions

involving strong convexity. We generalize their results by relaxing the Lipschitz-smoothness assumption to a

relative smoothness assumption, by analyzing the totally convex and relatively strongly convex case, by intro-

ducing stochastic error to the algorithm, and by showing almost sure weak convergence of the pointwise iterates

themselves.

Generalizations of [31] involving inexactness already exist in the form of [99] and [30], however, [99] only

considers determinstic inexactness and proximal operators computed in the euclidean sense, i.e., with entropy

equal to the euclidean energy, and requires Lipschitz-smoothness, although it’s worth noting that inexactness in

their paper is extended to the computation of the proximal operators in contrast to our work which allows for

inexactness, in the form of stochastic error, only in the computation of gradient terms. The paper [30] allows

for a very particular kind of stochastic error in which one randomly samples a set of indices at each iteration in

an arbitrary but fixed way, i.e., according to some fixed distribution. However, the stochastic error we consider

here is more general while encompassing the previous cases.

Another related work is that of [59] which generalizes the problem considered [31] by allowing for a non-

linear coupling Φ (x, µ) in (1.2.2) instead of 〈Tx, µ〉, although they maintain essentially the same Lipschitz-

smoothness assumptions as in [31] translated to Φ (x, µ). They are able to show a O (1/k) convergence rate

for the ergodic Lagrangian optimality gap under mild assumptions and an accelerated rate O
(
1/k2

)
when g in

(1.2.2) is strongly convex with another assumption on the coupling Φ (x, µ).

1.4 Outline

The remainder of the thesis, with the exception of the mathematical background chapter, Chapter 2, and the

final conclusion chapter, Chapter 6, is divided into three chapters, each corresponding to an individual research

work. Chapter 2 gathers the basic notation and terminology that will be used throughout. It is divided into two

sections; one dealing primarily with convex analysis and one dealing with probability theory. Chapter 6 sums

up the main ideas and contributions of the thesis. In general, we structure each of the three main chapters,

Chapter 3, Chapter 4, and Chapter 5, in the same way, although some chapters have extra sections in addition to

these core sections.

Introduction: states the problem under consideration, the proposed algorithm to solve it, the main assump-

tions on the problem and the parameters involved in the algorithm, and the organization of the chapter.

Estimations: prepares the basic inequalities and estimations from convex analysis and probability theory

that will be used in the arguments of the convergence analysis section.

Convergence: develops the main theorems and their proofs; typically convergence of some measure of op-

timality with rates of convergence as well.

Applications: details how to apply the algorithm and problem formulation to different contexts, practical

implementations of the algorithm are developed and the proposed theoretical claims of the previous section are

verified numerically.
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Background
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We assemble in this chapter the relevant background material and some notations that will be used throughout

the following chapters. There are four lemmas in this chapter which are new: Lemma 2.1.16, Lemma 2.1.17,

Lemma 2.1.18, Lemma 2.2.5. We roughly divide the chapter into results from convex analysis, results from real

analysis, and results from probability theory, first stating some common notation below.

Given a reflexive Banach space X with norm ‖·‖X , we denote by X ∗ is topological dual, the space of all

continuous linear functionals, and by 〈u, x〉X the duality pairing for x ∈ X and u ∈ X ∗. In general, we will

not write the subscript X for the norm or duality pairing of X , relying on context to convey which space the

norm comes from. We will also letH denote an arbitrary real Hilbert space with norm ‖·‖H and inner product

〈x, y〉H for x, y ∈ H. When referring to the differentiability or the gradient of a function f : X → R we mean

in the sense of the Gâteaux derivative. We say a sequence (xk)k∈N with xk ∈ X for each k ∈ N converges

strongly to some x ∈ X , denoted xk → x, iff

‖xk − x‖X → 0.

On the other hand, we say a sequence (xk)k∈N with xk ∈ X for each k ∈ N converges weakly to some x ∈ X ,

denoted xn ⇀ x, iff, for every u ∈ X ∗,

〈u, xk〉X → 〈u, x〉X .

Finally, when referring the interior of a set U , denoted intU , the boundary, denoted bd (U), or the closure,

denoted U , we mean with respect to the norm topology (also referred to as the strong topology) on X .

2.1 Convex Analysis

We recall some important definitions and results from convex analysis. For a more comprehensive coverage

we refer the interested reader to [10, 92] and [103] in the finite dimensional case. Throughout, we let g be

an arbitrary function from X to the real extended line, namely g : X → R ∪ {+∞}. The function g is

said to belong to Γ0 (X ) if it is proper, convex, and lower semicontinuous. The domain of g is defined to be

dom (g)
def
= {x ∈ X : g (x) < +∞}. The Legendre-Fenchel conjugate of g is the function g∗ : X ∗ → R∪{+∞}

such that, for every u ∈ X ∗,

g∗ (u)
def
= sup

x∈X
{〈u, x〉 − g (x)} .
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Notice that

g1 ≤ g2 =⇒ g∗2 ≤ g∗1. (2.1.1)

Moreau proximal mapping and envelope We discuss a construction for a function g : H → R ∪ {+∞}.
The proximal operator for the function g is defined to be

proxg (x)
def
= argmin

y∈H

{
g(y) +

1

2
‖x− y‖2

}

and its Moreau envelope with parameter β as

gβ (x)
def
= inf

y∈H

{
g(y) +

1

2β
‖x− y‖2

}
. (2.1.2)

Proposition 2.1.1. Let g ∈ Γ0 (H) and denote x+ = proxg (x). Then, for all y ∈ H,

2
(
g
(
x+
)
− g (x)

)
+
∥∥x+ − y

∥∥2 − ‖x− y‖2 +
∥∥x+ − x

∥∥2 ≤ 0. (2.1.3)

Proof. The result is well-known and the proof is readily available, e.g. in [92, Chapter 6.2.1]. Indeed, to show

this result we simply apply strong convexity to the function g(·) + 1
2 ‖· − x‖

2
and note that the proxg (x) is the

minimizer of this function.

We recall that the subdifferential of the function g is defined as the set-valued operator ∂g : H → 2H such

that, for every x inH,

∂g(x)
def
=
{
u ∈ H : g(y) ≥ g(x) + 〈u, y − x〉 ∀y ∈ H

}
. (2.1.4)

We denote dom(∂g)
def
=
{
x ∈ H : ∂g(x) 6= ∅

}
. When g belongs to Γ0 (H), it is well-known that the

subdifferential is a maximal monotone operator. If, moreover, the function is Gâteaux differentiable at x ∈ H,

then ∂g(x) = {∇g(x)}. For x ∈ dom(∂g), the minimal norm selection of ∂g(x) is defined to be the unique

element
{
[∂g (x)]0

}
def
= Argmin

y∈∂g(x)
‖y‖. Then we have the following fundamental result about Moreau envelopes.

Proposition 2.1.2. Given a function g ∈ Γ0 (H), we have the following:

(i) The Moreau envelope is convex, real-valued, and continuous.

(ii) Lax-Hopf formula: the Moreau envelope is the viscosity solution to the following Hamilton Jacobi equa-

tion: {
∂
∂β g

β (x) = −1
2

∥∥∇xgβ (x)
∥∥2 (x, β) ∈ H × (0,+∞)

g0 (x) = g (x) x ∈ H.
(2.1.5)

(iii) The gradient of the Moreau envelope is 1
β -Lipschitz continuous and is given by the expression

∇xgβ (x) =
x− proxβg (x)

β
.

(iv) ∀x ∈ dom(∂g),
∥∥∇gβ (x)

∥∥ ր
∥∥∥[∂g (x)]0

∥∥∥ as β ց 0.

(v) ∀x ∈ H, gβ(x)ր g(x) as β ց 0. In addition, given two positive real numbers β′ < β, for all x ∈ H we

have

0 ≤ gβ′
(x)− gβ (x) ≤ β − β′

2

∥∥∥∇xgβ
′
(x)
∥∥∥
2
;

0 ≤ g (x)− gβ (x) ≤ β

2

∥∥∥[∂g (x)]0
∥∥∥
2
.

Proof. (i): see [10, Proposition 12.15]. The proof for (ii) can be found in [6, Lemma 3.27 and Remark 3.32]

(see also [65] or [4, Section 3.1]). The proof for claim (iii) can be found in [10, Proposition 12.29] and the proof

for claim (iv) can be found in [10, Corollary 23.46]. For the first part in (v), see [10, Proposition 12.32(i)]. To

show the first inequality in (v), combine (ii) and convexity of the function β 7→ gβ (x) for every x ∈ H. The

second inequality follows from the first one and (iv), taking the limit as β′ → 0.
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Remark 2.1.3.

(i) While the regularity claim in Proposition 2.1.2(iii) of the Moreau envelope gβ (x)with respect to x is well-

known, a less known result is the C1-regularity with respect to β for any x ∈ H (Proposition 2.1.2(ii)).

To our knowledge, the proof goes back, at least, to the book of [6]. Though it has been rediscovered in

the recent literature in less general settings.

(ii) For given functions H : H → R and g0 : H → R, a natural generalization of the Hamilton-Jacobi

equation in (2.1.5) is
{

∂
∂β g (x, β) +H (∇xg (x, β)) = 0 (x, β) ∈ H × (0,+∞),

g (x, 0) = g0 (x) x ∈ H.
Supposing thatH is convex and that lim

‖p‖→+∞
H(p)/ ‖p‖ = +∞, the solution of the above system is given

by the Lax-Hopf formula (see [52, Theorem 5, Section 3.3.2]1):

g (x, t)
def
= inf

y∈H

{
g0(y) + tH∗

(
y − x
t

)}
.

If H(p) = 1
2 ‖p‖

2
, then H∗(p) = 1

2 ‖p‖
2

and we recover the result in Proposition 2.1.2.

Regularity of differentiable functions In what follows, we introduce some definitions related with regularity

of differentiable functions. They will provide useful upper-bounds and descent properties. Notice that, besides

Lemma 2.1.17 and Lemma 2.1.18, the notions and results of this part are independent from convexity. The

lemmas in this section are new results, although quite similar to the results cited in the proofs.

Definition 2.1.4 (ω-smoothness). Consider a function ω : R+ → R+ such that ω(0) = 0 and

ξ (s)
def
=

∫ 1

0
ω (st) dt (2.1.6)

is nondecreasing. A differentiable function g : H → R is said to belong to C1,ω (H) or to be ω-smooth if the

following inequality is satisfied for every x, y ∈ H:

‖∇g (x)−∇g (y)‖ ≤ ω (‖x− y‖) .

Lemma 2.1.5 (ω-smooth Descent Lemma). Given a function g ∈ C1,ω (H) we have the following inequality:

for every x and y inH,

g (y)− g (x) ≤ 〈∇g (x) , y − x〉 + ‖y − x‖ ξ (‖y − x‖) ,

where ξ is defined in (2.1.6).

Proof. We recall here the simple proof for completeness:

g (y)− g (x) =
∫ 1

0

d

dt
g (x+ t (y − x)) dt

=

∫ 1

0
〈∇g (x) , y − x〉 dt+

∫ 1

0
〈∇g (x+ t (y − x))−∇g (x) , y − x〉 dt

≤ 〈∇g (x) , y − x〉 + ‖y − x‖
∫ 1

0
‖∇g (x+ t (y − x))−∇g (x)‖ dt

≤ 〈∇g (x) , y − x〉 + ‖y − x‖
∫ 1

0
ω (t ‖y − x‖) dt,

where, in the first inequality, we used Cauchy-Schwarz and, in the second, Definition 2.1.4. We conclude using

the definition of ξ (see (2.1.6)).

1The proof in [52] is given in the finite-dimensional case but it extends readily to any real Hilbert space.
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Remark 2.1.6. For L > 0 and ω (t) = Ltν , ν ∈]0, 1], C1,ω (H) is the space of differentiable functions with

Hölder continuous gradients, in which case ξ (s) = Lsν/(1 + ν) and the Descent Lemma reads

g (y)− g (x) ≤ 〈∇g (x) , y − x〉 + L

1 + ν
‖y − x‖1+ν , (2.1.7)

see e.g., [86, 87]. When ν = 1, we have that C1,ω (H) is the class of differentiable functions with L-Lipschitz

continuous gradient, and one recovers the classical Descent Lemma.

Now, following [13], we introduce some notions that allow one to further generalize (2.1.7). We state a subset

of these results only for Banach spaces.

Definition 2.1.7 (Bregman divergence). Given a Banach space X with duality pairing 〈·, ·〉 and a function,

often referred to as the entropy, φ : X → R differentiable on its domain, its Bregman divergence is defined by

Dφ(x, y)
def
=

{
φ(x)− φ(y)− 〈∇φ(y), x− y〉 if x ∈ dom (φ) and y ∈ intdom (φ) ,

+∞ else.
(2.1.8)

Notice that, if φ belongs to Γ0 (X ), then the Bregman divergence associated to φ is always nonnegative by

the subdifferential inequality. A function F is said to be essentially smooth if it is differentiable on the interior

of its domain and if it satisfies, for each sequence (xk)k∈N in intdom (F ) such that xk → x ∈ bd (dom (F )),

‖∇f (xk)‖ → +∞
Definition 2.1.8 (Legendre function). The function φ is called a Legendre function if ∂φ is both locally

bounded and single-valued on its domain, (∂φ)−1
is locally bounded on its domain, and φ is strictly convex

on every convex subset of dom∂φ.

Definition 2.1.9 (Relative smoothness). Given a differentiable function φ : X → R, we say that the function

f : X → R is L-smooth with respect to φ if it is differentiable and Lφ − f is convex; namely, if for every

x, y ∈ X
Df (x, y) ≤ LDφ(x, y).

Remark 2.1.10. The relative smoothness property, used notably in [13], implies the following fact which can

be interpreted as a "generalized descent lemma"; for every x, y ∈ X ,

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ LDφ (x, y) . (2.1.9)

When φ is the Euclidean square norm, or energy, relative smoothness is equivalent to Lipschitz-smoothness,

i.e., Lipschitz-continuity of the gradient of f .

Definition 2.1.11 (Relative strong convexity). Given a differentiable function φ : X → R, we say that f is

m-strongly convex with respect to φ if f −mφ is convex.

Note that the idea of relative strong convexity can be found in a footnote of [31] but it was not explored as it

was not clear if there are any interesting examples for which it is true. For our purposes, we slightly changed

the definition in [13, Definition 1] in a weaker sense, and we have the following result.

Lemma 2.1.12 (Generalized Descent Lemma, [13]). Let F and f be differentiable on C0, where C0 is an open

subset of int (dom (F )). Assume that F − f is convex on C0. Then, for every x and y in C0,
f(y) ≤ f(x) + 〈∇f(x), y − x〉+DF (y, x).

Proof. For our purpose, we intentionally weakened the hypothesis needed in the original result of [13, Lemma

1]. We repeat their argument but show the result is still valid under our weaker assumption. Let x and y be in

C0, where, by hypothesis, C0 is open and contained in int (dom (F )). As F − f is convex and differentiable on

C0, from the gradient inequality (2.1.4) we have, for all y ∈ C0,
(F − f) (y) ≥ (F − f) (x) + 〈∇ (F − f) (x), y − x〉.

Rearranging the terms and using the definition of DF in (2.1.8), we obtain the claim.
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The previous lemma suggests the introduction of the following definition, which extends Definition 2.1.4 and

2.1.9 by incorporating the idea of a curvature constant of F with respect to the set C.

Definition 2.1.13 ((F, ζ)-smoothness). Let F : H → R ∪ {+∞} and ζ :]0, 1] → R+. The pair (f, C), where

f : H → R ∪ {+∞} and C ⊂ dom(f), is said to be (F, ζ)-smooth if there exists an open set C0 such that

C ⊂ C0 ⊂ int (dom (f)) and

(i) F and f are differentiable on C0;
(ii) F − f is convex on C0;
(iii) it holds

K(F,ζ,C)
def
= sup

x,s∈C; γ∈]0,1]
z=x+γ(s−x)

DF (z, x)

ζ (γ)
< +∞. (2.1.10)

K(F,ζ,C) is a generalization of the standard curvature constant widely used in the literature of conditional

gradient. The curvature constant was first studied in the context of conditional gradient algorithms in [66].

Remark 2.1.14. Assume that (f, C) is (F, ζ)-smooth. Using first Lemma 2.1.12 and then the definition in

(2.1.10), we have the following descent property: for every x, s ∈ C and for every γ ∈]0, 1],

f (x+ γ (s− x)) ≤ f(x) + γ〈∇f(x), s− x〉+DF (x+ γ (s− x) , x)
≤ f(x) + γ〈∇f(x), s− x〉+K(F,ζ,C)ζ (γ) .

Notice that, as in the previous definition, we do not require C to be convex. So, in general, the point z =

x+ γ (s− x) may not lie in C.

Remark 2.1.15. Note that being ω-smooth is a stronger condition than being (F, ζ)-smooth since every ω-

smooth function f is also (F, ζ)-smooth with F = f , ζ (t) = dCtξ (dCt) and K(F,ζ,C) ≤ 1. Additionally, the

assumptions on ξ being nondecreasing can be replaced by the sufficient condition

lim
t→0+

ω (t) = ω (0) = 0.

We will denot the diameter of a set C by the following,

dC
def
= sup

x,y∈C
‖x− y‖

Lemma 2.1.16. Suppose that the set C is bounded with diameter dC . Moreover, assume that the function f is

ω-smooth on some open and convex subset C0 containing C. Set ζ(γ)
def
= ξ(dCγ), where ξ is given in (2.1.6).

Then the pair (f, C) is (f, ζ)-smooth with K(f,ζ,C) ≤ dC .

Proof. With F = f and f being ω-smooth on C0, both F and f are differentiable on C0 and F−f ≡ 0 is convex

on C0. Thus, all conditions required in Definition 2.1.13 hold true. It then remains to show (2.1.10) with the

bound K(f,ζ,C) ≤ dC . First notice that, for every x, s ∈ C and for every γ ∈]0, 1], the point z = x + γ (s− x)
belongs to C0. Indeed, C ⊂ C0 and C0 is convex by hypothesis. In particular, as f is ω-smooth on C0, the Descent
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Lemma, Lemma 2.1.5, holds between the points x and z. Then

K(f,ζ,C) = sup
x,s∈C; γ∈]0,1]
z=x+γ(s−x)

Df (z, x)

ζ (γ)

= sup
x,s∈C; γ∈]0,1]
z=x+γ(s−x)

f(z)− f(x)− 〈∇f(x), z − x〉
ξ(dCγ)

≤ sup
x,s∈C; γ∈]0,1]
z=x+γ(s−x)

‖z − x‖ ξ (‖z − x‖)
ξ(dCγ)

= sup
x,s∈C; γ∈]0,1]

γ ‖s− x‖ ξ (γ ‖s− x‖)
ξ(dCγ)

≤ sup
γ∈]0,1]

γdCξ (dCγ)
ξ(dCγ)

= dC .

In the first inequality we used Lemma 2.1.5, while in the second we used that ‖s− x‖ ≤ dC (both x and s

belong to C, that is bounded by hypothesis) and the monotonicity of the function ξ (see Definition 2.1.4).

The following lemma gives several sufficient conditions to ensure that the minimal norm selection of the

subdifferential of a convex function is bounded over some set C.

Lemma 2.1.17. Let T : Hp → Hv be a bounded linear operator. Assume that one of the following holds:

(i) g ∈ Γ0 (Hv), TC ⊂ int (dom (g)) and C is a nonempty compact subset ofHp.
(ii) g : Hv → R is continuous, convex and bounded on bounded sets of Hv, and C is a nonempty bounded

subset ofHp.
(iii) Hv and Hp are finite dimensional, and either g ∈ Γ0 (Hv), TC ⊂ int (dom (g)) and C is closed and

bounded, or g : Hv → R is continuous and convex and C is a nonempty bounded subset ofHp.
Then TC ⊂ dom(∂g) and sup

x∈C

∥∥∥[∂g (Tx)]0
∥∥∥ ≤M <∞, where M is a positive constant.

Proof. (i) Since g ∈ Γ0 (Hp), it follows from [10, Proposition 16.21] that

TC ⊂ int (dom (g)) ⊂ dom(∂g).

Moreover, by [10, Corollary 8.30(ii) and Proposition 16.14], we have that ∂g is locally bounded on int (dom (g)).

In particular, as we assume that C is bounded, so is TC, and since TC ⊂ int (dom (g)), it means that for

each z ∈ TC there exists an open neighborhood of z, denoted by Uz , such that ∂g (Uz) is bounded. Since

(Uz)z∈C is an open cover of TC and TC is compact, there exists a finite subcover (Uzk)
n
k=1. Then,

⋃

x∈C
∂g (Tx) ⊂

n⋃

k=1

∂g (Uzk) .

Since the right-hand-side is bounded (as it is a finite union of bounded sets),

sup
x∈C, u∈∂g(Tx)

‖u‖ < +∞,

whence the desired conclusion trivially follows.

(ii) From the equivalence [10, Proposition 16.17(i)⇐⇒ (iii)], it follows that dom(∂g) = Hv and thus TC ⊂
dom(∂g) trivially holds. Moreover, ∂g is bounded on every bounded set ofHv, and in particular on C.

(iii) In finite dimension, the claim follows trivially from (i) for the first case by a simple compactness argument,

and from (ii) in the second case since a continuous and convex is bounded on bounded sets in finite

dimension; see [10, Proposition 16.17].
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Similarly, we show in the following lemma that (F, ζ)-smoothness is sufficient to ensure that a function

f ∈ Γ0 (H) has uniformly bounded gradient.

Lemma 2.1.18. Assume that f ∈ Γ0 (H) and is (F, ζ)-smooth for some F and ζ over the set C. Then

sup
x∈C
‖∇f(x)‖ ≤ D < +∞

for some positive constant D.

Proof. Fix s ∈ C and let x ∈ C. We have

f∗ (∇f (x)) + f (s)− 〈∇f (x) , s〉 = f (s)− f (x)− 〈∇f (x) , s− x〉 = Df (s, x) ≤ DF (s, x)

≤ K(F,ζ,C)ζ (1) ,

where we used the Fenchel identity ([10, Proposition 17.27]) in the first equality, Lemma 2.1.12 in the first

inequality and Definition 2.1.13 in the second one. By [10, Corollary 9.20], f is bounded from below on C
which entails

f∗ (∇f (x))− 〈∇f (x) , s〉 ≤ DF (s, x) ≤ K(F,ζ,C)ζ (1) + c,

for some real constant c. Now, since

s ∈ C ⊂ dom∇f ⊂ int (domf)

by Definition 2.1.13 and [10, Proposition 17.41], we infer from [10, Theorem 14.17 and Proposition 14.16] (re-

call that s is fixed), that there exists a1 > 0 and a2 ∈ R such that, for all x ∈ C,

a1 ‖∇f (x)‖ + a2 ≤ K(F,ζ,C)ζ (1) + c.

Taking the supremum over x ∈ C entails the desired claim with D = a−1
1

(
K(F,ζ,C)ζ (1) + c− a2

)
.

Indicator and support functions Given a subset C ⊂ X , we define its indicator function as

ιC(x)
def
=

{
0 x ∈ C
+∞ x 6∈ C.

Recall that, if C is nonempty, closed, and convex, then ιC belongs to Γ0 (X ). Remember also the definition of the

support function of C, σC def
= ι∗C . Equivalently, σC (x)

def
= sup {〈z, x〉 : z ∈ C}. We denote by ri (C) the relative

interior of the set C (in finite dimension, it is the interior for the topology relative to its affine full). We denote

par(C) as the subspace parallel to C which, in finite dimension, takes the form R(C − C).
We have the following characterization of the support function from the relative interior in finite dimension.

Proposition 2.1.19 ([111]). Let H be finite-dimensional and C ⊂ H a nonempty, closed bounded and convex

subset. If 0 ∈ ri(C), then σC ∈ Γ0(R
n) is sublinear, nonnegative and finite-valued, and

σC(x) = 0 ⇐⇒ x ∈ (par(C))⊥.

Proof. The proof can be found in [111, Lemma 1].

Coercivity We recall that a function g is coercive if lim
‖x‖→+∞

g (x) = +∞ and that coercivity is equivalent to

the boundedness of the sublevel-sets [10, Proposition 11.11]. We have the following result, that relates coercivity

to properties of the Fenchel conjugate.

Proposition 2.1.20 ([10]). Given g in Γ0 (H), g∗ is coercive if and only if 0 ∈ int (dom(g)).

Proof. The proof can be found in [10, Theorem 14.17].
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The recession function (sometimes referred to as the horizon function) of g at a given point d ∈ R
n is defined

to be the function gd,∞ : Rn → R ∪ {+∞} such that, for every x ∈ R
n,

gd,∞ (x)
def
= lim

α→∞
g (d+ αx)− g (d)

α
.

Recall that, if g is convex, the recession function is independent from the selection of the point d ∈ R
n and can

be then simply denoted as g∞. In finite dimension, the following result relates coercivity to properties of the

recession function.

Proposition 2.1.21. Let g ∈ Γ0 (R
n) and A : Rm → R

n be a linear operator. Then,

(i) g coercive ⇐⇒ g∞ (x) > 0 ∀x 6= 0.

(ii) g∞ ≡ σdom(g∗).

(iii) (g ◦A)∞ ≡ g∞ ◦A.

In particular, we deduce that g ◦A is coercive if and only if σdom(g∗)(Ax) > 0 for every x 6= 0.

Proof. The proofs can be found in [104, Theorem 3.26], [104, Theorem 11.5] and [73, Corollary 3.2] respec-

tively.

2.2 Real Analysis

We list in this section some definitions and lemmas for real sequences that will be used to prove the convergence

properties of the algorithms in later chapters. We denote ℓ+ as the set of all sequences taking values in [0,+∞[.

Given p ∈ [1,+∞[, ℓp is the space of real sequences (rk)k∈N such that

( ∞∑

k=1

|rk|p
)1/p

< +∞.

For p = +∞, we denote by ℓ∞ the space of bounded sequences. Furthermore, we will use the notation ℓp+
def
=

ℓp ∩ ℓ+. In the next, we recall some key results about real sequences.

Lemma 2.2.1 ([33, 97]). Consider three sequences (rk)k∈N ∈ ℓ+, (ak)k∈N ∈ ℓ+, and (zk)k∈N ∈ ℓ1+, such that

rk+1 ≤ rk − ak + zk, ∀k ∈ N.

Then (rk)k∈N is convergent and (ak)k∈N ∈ ℓ1+.

Proof. This result is found more recently in [33, Lemma 3.1] or [97, Lemma 2, page 44].

Lemma 2.2.2 ([2]). Consider two sequences (pk)k∈N ∈ ℓ+ and (wk)k∈N ∈ ℓ+ such that (pkwk)k∈N ∈ ℓ1+ and

(pk)k∈N /∈ ℓ1. Then the following holds:

(i) There exists a subsequence
(
wkj
)
j∈N such that, for all j ∈ N,

wkj ≤ P−1
kj
,

where Pn
def
=
∑n

k=1 pk. In particular, lim inf
k

wk = 0.

(ii) If moreover there exists a constant α > 0 such that

wk − wk+1 ≤ αpk
for every k ∈ N, then

lim
k
wk = 0.

Proof. The proofs can be found in [2, Theorem 2] and [2, Proposition 2(ii)].
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Lemma 2.2.3. Consider the sequences (rk)k∈N ∈ ℓ+, (pk)k∈N ∈ ℓ+, (wk)k∈N ∈ ℓ+, and (zk)k∈N ∈ ℓ+.

Suppose that (zk)k∈N ∈ ℓ1+, (pk)k∈N /∈ ℓ1, and that, for some α > 0, the following inequalities are satisfied for

every k ∈ N:

rk+1 ≤ rk − pkwk + zk;

wk − wk+1 ≤ αpk.
(2.2.1)

Then,

(i) (rk)k∈N is convergent and (pkwk)k∈N ∈ ℓ1+.

(ii) lim
k
wk = 0.

(iii) For every k ∈ N, inf
1≤i≤k

wi ≤ (r0 + Z∞)/Pk, where, again, Pn
def
=
∑n

k=1 pk and Z∞
def
=
∑+∞

k=1 zk.

(iv) There exists a subsequence
(
wkj
)
j∈N such that, for all j ∈ N, wkj ≤ P−1

kj
.

Proof. (i) See Lemma 2.2.1.

(ii) Claim (ii) follows by combining (i) and Lemma 2.2.2(ii).

(iii) Sum (2.2.1) using a telescoping property and summability of (zk)k∈N.

(iv) Claim (iv) follows by combining (i) and Lemma 2.2.2(i).

Remark 2.2.4. Notice that the conclusions of Lemma 2.2.3 remain true if nonnegativity of the sequence (rk)k∈N
is replaced with the assumption that it is bounded from below by a trivial translation argument. Observe also

that Lemma 2.2.3 guarantees the convergence of the whole sequence to zero, but it gives a convergence rate only

on a subsequence.

Lemma 2.2.5. Consider two positive sequences (uk)k∈N and (γk)k∈N which satisfy, for some c, d > 0, for each

k ∈ N,

uk+1 ≤ (1− cγsk)uk + dγtk, (2.2.2)

for some real numbers s and t satisfying 0 < s < min {1, t}. If, in addition, the sequence (γk)k∈N satisfies, for

each k ∈ N,

γk
γk+1

≤ 1 + o (γsk) , (2.2.3)

then, for k sufficiently large, it holds,

uk ≤
d

c
γt−sk + o

(
γt−sk

)

Proof. For each k ∈ N, we denote νk
def
= γs−tk uk − d

c such that uk = γt−sk

(
νk +

d
c

)
. Then, by (2.2.2),

νk+1 = γs−tk+1uk+1 −
d

c
≤ γs−tk+1

(
(1− cγsk)uk + dγtk

)
− d

c
= γs−tk

(
γk
γk+1

)t−s (
(1− cγsk)uk + dγtk

)
− d

c
.

By (2.2.3), we then have, for each k ∈ N,

νk+1 ≤ γs−tk (1 + o (γsk))
t−s ((1− cγsk)uk + dγtk

)
− d

c
.

Substituting for uk using the definition of νk we find, for each k ∈ N,

νk+1 ≤ γs−tk (1 + o (γsk))
t−s
(
(1− cγsk)

(
νk +

d

c

)
γt−sk + dγtk

)
− d

c
.

Now, we take a Taylor expansion for the term (1 + o (γk)
s)t−s ≈ (1 + o (γsk)) to get, for k sufficiently large,

νk+1 ≤ γs−tk (1 + o (γsk))

(
(1− cγsk)

(
νk +

d

c

)
γt−sk + dγtk

)
− d

c
.
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We distribute the γs−tk and then expand parentheses,

νk+1 ≤ (1 + o (γsk))

(
(1− cγsk)

(
νk +

d

c

)
+ dγsk

)
− d

c

= (1− cγsk) νk + (1− cγsk)
d

c
+ dγsk + o (γsk)

(
(1− cγsk)

(
νk +

d

c

)
+ dγsk

)
− d

c

= (1− cγsk) νk + (1− cγsk)
d

c
+ dγsk + o (γsk) (1− cγsk) νk + o (γsk) (1− cγsk)

d

c
+ o (γsk) dγ

s
k −

d

c

= (1− cγsk + o (γsk)) νk + o (γsk) .

Fix 0 < c̃ < c. Then, by definition of o (γsk), ∃k0 ∈ N such that, ∀k > k0, o (γ
s
k) ≤ (c− c̃)γsk. Then,

(1− cγsk + o (γsk)) νk ≤ (1− c̃γsk) νk.

From this we conclude, by [97, Ch.2, Lemma 3], that lim sup
k

νk ≤ 0. Thus, by definition of νk,

uk+1 ≤
d

c
γt−sk + o

(
γt−sk

)
.

Finally, we state a well-known result, Pinsker’s inequality, which lower bounds the Kullback-Leibler diver-

gence on the simplex by the total variation norm.

Lemma 2.2.6 (Pinsker’s Inequality [95]). Let x, y ∈ Σn
def
=
{
u ∈ R

n : u ≥ 0, uT1 = 1
}

and let K be the

Shannon-Boltzmann entropy; K (x) =
n∑
i=1

xi log (xi). Then it holds

1

2
‖x− y‖21 ≤ DK (x, y) .

2.3 Probability and Random Variables

Many of the following notations for probabilistic concepts are adopted directly from [37]. We denote by

(Ω,F ,P) a probability space with a set of events Ω, a σ-algebra F , and a probability measure P. When dis-

cussing random variables we will assume that any Hilbert space H or Banach space X is endowed with the

Borel σ-algebra, B (H), induced by the strong topology. We denote a filtration by F = (Fk)k∈N, i.e. a sequence

of sub-σ-algebras which satisfies Fk ⊂ Fk+1 ∈ F for all k ∈ N. Given a set of random variables {a0, . . . , an},
we denote by σ (a0, . . . , an) the σ-algebra generated by a0, . . . , an. An expression (P ) is said to hold (P-almost

surely) (denoted (P-a.s.)) if

P ({ω ∈ Ω : (P ) holds}) = 1.

Throughout the manuscript, both equalities and inequalities involving random quantities should be understood

as holding (P-almost surely), whether or not it is explicitly written.

Definition 2.3.1. Given a filtration F, we denote by ℓ+ (F) the set of sequences of [0,+∞[-valued random

variables (ak)k∈N such that, for each k ∈ N, ak is Fk measurable. Then, we also define the following set,

ℓ1+ (F)
def
=

{
(ak)k∈N ∈ ℓ+ (F) :

∑

k∈N
ak < +∞ (P-a.s.)

}
.

Lemma 2.3.2 ([101]). Given a filtration F and the sequences of random variables (rk)k∈N ∈ ℓ+ (F), (ak)k∈N ∈
ℓ+ (F), and (zk)k∈N ∈ ℓ1+ (F) satisfying,

E [rk+1 | Fk]− rk ≤ −ak + zk (P-a.s.)

then (ak)k∈N ∈ ℓ1+ (F) and (rk)k∈N converges (P-a.s.) to a random variable with value in [0,+∞[.
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Proof. See [101, Theorem 1].

Lemma 2.3.3. Given a filtration F and a sequence of random variables (wk)k∈N ∈ ℓ+ (F) and a sequence of

real numbers (γk)k∈N ∈ ℓ+ such that (γkwk)k∈N ∈ ℓ1+ (F) and (γk)k∈N 6∈ ℓ1, then:

(i) There exists a subsequence
(
wkj
)
j∈N such that lim inf

k
wk = 0 (P-a.s.),

(ii) Furthermore, if there exists a constant α > 0 such that wk − E [wk+1 | Fk] ≤ αγk (P-a.s.) for every

k ∈ N, then

lim
k
wk = 0 (P-a.s.) .

Proof. The second result is directly from [9, Lemma 2.2] and the first follows from [2] trivially extended to the

stochastic setting.

Lemma 2.3.4. If (xn)k∈N is a sequence of random variables such that (E (‖xk‖q))k∈N ∈ ℓ1+ for some q ∈
]0,+∞[, then xk → 0 (P-a.s.).

Proof. For every ε > 0, by Markov inequality,

N∑

n=0

P (‖xn‖q ≥ ε) ≤
1

ε

N∑

n=0

E (‖xn‖q) . (2.3.1)

Taking the limit for N → +∞ and using the assumption (E (‖xk‖q))k∈N ∈ ℓ1+, we get that, for every ε > 0,

also P (‖xn‖q ≥ ε) belongs to ℓ1+. As a consequence of the Borel-Cantelli Lemma, ‖xn‖q → 0 (P-a.s.) and

thus xn → 0 almost surely.
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Generalized Conditional Gradient with

Augmented Lagrangian and Proximal Step

In this chapter we propose a novel splitting scheme which hybridizes generalized conditional gradient with the

augmented Lagrangian method, which we call CGALP algorithm, for minimizing

min
x∈H
{f (x) + g (Tx) + h (x) : Ax = b}

where f ∈ Γ0 (H) satisfies a relaxed differentiability condition, g◦T ∈ Γ0 (H)with g prox-friendly, h ∈ Γ0 (H)
has a weakly compact domain and admits an accessible linear minimization oracle, and T and A are bounded

linear operators. While classical conditional gradient methods require Lipschitz-continuity of the gradient of

the differentiable part of the objective, CGALP needs only differentiability (on an appropriate subset), hence

circumventing the intricate question of Lipschitz continuity of gradients. For the functions f and g in the ob-

jective, we do not require any additional regularity assumption. g possibly nonsmooth, is assumed simple, i.e.,

the associated proximal mapping is easily computable. The affine constraint is addressed by the augmented

Lagrangian approach. Our problem formulation is novel in several ways, starting with the posing of the problem

over a general Hilbert space H. We are also the first to consider a relative smoothness condition for f with

a generalized curvature constant, which allows for a wider class of functions than contemporary works. Our

generalized curvature constant also gives insight into how certain parameters, e.g., step sizes, should be chosen

according to the regularity of f to maintain convergence guarantees. Furthermore, with such wide choice of

algorithm parameters satisfying so called "open loop" rules, we are the first to rigorously prove convergence

guarantees for the Lagrangian values, the feasibility gap, and for the sequence of dual variables for a conditional

gradient algorithm with an affine constraint and augmented Lagrangian. Our main contributions and findings

can be summarized as follows:

Main contributions of this chapter

◮ Convergence guarantees and rates for both the feasibility (‖Axk − b‖)k∈N and the optimality

(L (xk, µ⋆)− L (x⋆, µ⋆))k∈N.

◮ Strong convergence of the sequence of dual variables (µk)k∈N to a solution µ⋆ of the dual problem.

◮ A detailed outline of how to use our algorithm to solve problems as general as

min
x∈

n⋂

i=1
Ci
{f (x) + g (Tx)} and min

x∈H

{
f (x) +

n∑

i=1

gi (Tix) + h (x)

}

in a separable way, i.e., utilizing individually the linear minimization oracle over each compact convex

set Ci or utilizing individually the proximal operators proxgi . This outline makes important use of

a product space technique which induces an affine constraint Ax = b, highlighting the importance
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of its inclusion in our problem. Our algorithm is the only provably convergent conditional gradient

algorithm which handles the affine constraint without smoothing it using the Moreau envelope.

◮ A practical demonstration of the aforementioned outline implemented to solve a matrix completion

problem involving both nuclear norm and ℓ1 norm ball constraints with a nonsmooth data fidelity

term. Such nuclear norm ball constraints are challenging for ordinary proximal algorithms, which we

implement and compare to our algorithm, because projecting on the nuclear norm ball is much more

computationally intense than the corresponding linear minimization oracle. Our practical findings

match the rates of convergence predicted by the theorems.

The content of this chapter appeared in [108].
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3.1 Introduction

3.1.1 Problem Statement

In this chapter, we consider the composite optimization problem,

min
x∈Hp

{f(x) + g(Tx) + h(x) : Ax = b} , (P)

where Hp,Hd,Hv are real Hilbert spaces (the subscripts p, d, and v denoting the “primal”, the “dual” and

an auxiliary space, respectively), endowed with the associated scalar products, 〈·, ·〉, and norms, ‖·‖ (to be

understood from the context), A : Hp → Hd and T : Hp → Hv are bounded linear operators, b ∈ Hd and f , g,

h are proper, convex, and lower semi-continuous functions with C def
= dom (h) being a weakly compact subset

of Hp. We allow for some asymmetry in regularity between the functions involved in the objective. While g is

assumed to be prox-friendly, for h we assume that it is easy to compute a linearly-perturbed oracle (see (1.3.1)).

On the other hand, f is assumed to be differentiable and satisfies a condition that generalizes Lipschitz-continuity

of the gradient (see Definition 2.1.13).

Problem (P) can be seen as a generalization of the classical Frank-Wolfe problem in [53] of minimizing a

Lipschitz-smooth function f on a convex closed bounded subset C ⊂ Hp,
min
x∈Hp

{f(x) : x ∈ C} (3.1.1)

In fact, if A ≡ 0, b ≡ 0, g ≡ 0, and h ≡ ιC is the indicator function of C then we recover exactly (3.1.1) from

(P).
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3.1.2 Algorithm

As described in the previous section, we combine penalization with the augmented Lagrangian approach to form

the following functional

Jk (x, y, µ) = f (x) + g (y) + h (x) + 〈µ,Ax− b〉 + ρk
2
‖Ax− b‖2 + 1

2βk
‖y − Tx‖2 , (3.1.2)

where µ is the dual multiplier, and ρk and βk are non-negative parameters. The steps of our scheme, then, are

summarized in Algorithm 8.

Algorithm 8: Conditional Gradient with Augmented Lagrangian and Proximal-step (CGALP )

Input: x0 ∈ C = dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N, (θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0

repeat

yk = proxβkg (Txk)

zk = ∇f(xk) + T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b)

sk ∈ Argmins∈Hp
{h (s) + 〈zk, s〉}

xk+1 = xk − γk (xk − sk)
µk+1 = µk + θk (Axk+1 − b)
k ← k + 1

until convergence;

Output: xk+1.

For the interpretation of the algorithm, notice that the first step is equivalent to

{yk} = Argmin
y∈Hv

Jk (xk, y, µk) .

Now define the functional Ek (x, µ) def
= f (x)+gβk (Tx)+〈µ,Ax− b〉+ ρk

2 ‖Ax− b‖
2 . By convexity of the set

C and the definition of xk+1 as a convex combination of xk and sk, the sequence (xk)k∈N remains in C for all k,

although the affine constraint Axk = b might only be satisfied asymptotically. It is an augmented Lagrangian,

where we do not consider the non-differentiable function h and we replace g by its Moreau envelope. Notice

that

∇xEk (x, µk) = ∇f(x) + T ∗[∇gβk ](Tx) +A∗µk + ρkA
∗ (Ax− b)

= ∇f(x) + 1

βk
T ∗ (Tx− proxβkg (Tx)

)
+A∗µk + ρkA

∗ (Ax− b)
(3.1.3)

where in the second equality we used 2.1.2(iii). Then zk is just ∇xEk (xk, µk) and the first three steps of the

algorithm can be condensed in

sk ∈ Argmin
s∈Hp

{h (s) + 〈∇xEk (xk, µk) , s〉} . (3.1.4)

Thus the primal variable update of each step of our algorithm boils down to conditional gradient applied to

the function Ek (·, µk), where the next iterate is a convex combination between the previous one and the new

direction sk. A standard update of the Lagrange multiplier µk follows.
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3.1.3 Assumptions

3.1.3.1 Assumptions on the functions

In order to help the reading, we recall in a compact form the following notation that we will use to refer to

various functionals throughout the chapter:

Φ (x)
def
= f (x) + g (Tx) + h (x) ;

φk (x)
def
= f (x) + gβk (Tx) + h (x) ;

Φk (x)
def
= f (x) + gβk (Tx) + h (x) +

ρk
2
‖Ax− b‖2 ;

Φ̄ (x)
def
= Φ(x) + (ρ/2) ‖Ax− b‖2 ;

ϕ̄(µ)
def
= Φ̄∗ (−A∗µ) + 〈b, µ〉;

L (x, µ) def
= f (x) + g (Tx) + h (x) + 〈µ,Ax− b〉 ;

Lk (x, µ) def
= f (x) + gβk (Tx) + h (x) + 〈µ,Ax− b〉 + ρk

2
‖Ax− b‖2 ;

Ek (x, µ) def
= f (x) + gβk (Tx) + 〈µ,Ax− b〉 + ρk

2
‖Ax− b‖2 ,

(3.1.5)

where ρ is defined in Assumption (P4) to be ρ = sup
k
ρk.

In the list (3.1.5), we can recognize Φ as the objective, φk as the objective with smoothed g, Φk as the

smoothed objective augmented with a quadratic penalization of the constraint, and Lk as a smoothed aug-

mented Lagrangian. L denotes the classical Lagrangian. Recall that (x⋆, µ⋆) ∈ Hp × Hd is a saddle-point

for the Lagrangian L if for every (x, µ) ∈ Hp ×Hd,
L (x⋆, µ) ≤ L (x⋆, µ⋆) ≤ L (x, µ⋆) . (3.1.6)

It is well-known from standard Lagrange duality, see e.g. [10, Proposition 19.19] or [92, Theorem 3.68], that the

existence of a saddle point (x⋆, µ⋆) ensures strong duality, that x⋆ solves (P) and µ⋆ solves the dual problem,

min
µ∈Hd

(f + g ◦ T + h)∗(−A∗µ) + 〈µ, b〉 . (D)

The following assumptions on the problem will be used throughout the convergence analysis (for some results

only a subset of these assumptions will be needed):

(A1) f, g ◦ T , and h belong to Γ0 (Hp).
(A2) The pair (f, C) is (F, ζ)-smooth (see Definition 2.1.13), where we recall C def

= dom (h).

(A3) C is weakly compact (and thus contained in a ball of radius R > 0).

(A4) TC ⊂ dom(∂g) and sup
x∈C

∥∥∥[∂g (Tx)]0
∥∥∥ ≤M <∞, where M is a positive constant.

(A5) h is Lipschitz continuous relative to its domain C with constantLh ≥ 0, i.e., ∀(x, z) ∈ C2, |h(x)−h(z)| ≤
Lh ‖x− z‖.

(A6) There exists a saddle-point (x⋆, µ⋆) ∈ Hp ×Hd for the Lagrangian L.

(A7) ran(A) is closed.

(A8) One of the following holds:

(I) A−1 (b) ∩ int (dom (g ◦ T )) ∩ int (C) 6= ∅, where A−1 (b) is the pre-image of b under A.

(II) Hp andHd are finite dimensional and




A−1 (b) ∩ ri (dom (g ◦ T )) ∩ ri (C) 6= ∅
and

ran (A∗) ∩ par (dom (g ◦ T ) ∩ C)⊥ = {0} .
(3.1.7)
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(A9) The set-valued mappings (∂ (φ∗k ◦ (−A∗)))k∈N satisfy the following property: for any sequence ((pk, qk))k∈N
satisfying, for each k ∈ N,

pk ∈ ∂ (φ∗k ◦ (−A∗)) (qk) ,

with pk → p and qk ⇀ q, the sequence (qk)k∈N admits a strong cluster point.

At this stage, a few remarks are in order.

Remark 3.1.1.

(i) By Assumption (A1), C is also closed and convex. This together with Assumption (A3) entail, upon using

[10, Lemma 3.29 and Theorem 3.32], that C is weakly compact.

(ii) Since the sequence of iterates (xk)k∈N generated by Algorithm 8 is guaranteed to belong to C under (P1),

we have from (A4)

sup
k

∥∥∥[∂g (Txk)]0
∥∥∥ ≤M (3.1.8)

where M is a positive constant.

(iii) Assumption (A5) will only be needed in the proof of convergence to optimality (Theorem 3.3.3). It is not

needed to show asymptotic feasibility (Theorem 3.3.2).

(iv) Assume thatA−1(b)∩dom(g◦T )∩C 6= ∅, which entails that the set of minimizers of (P) is a non-empty

convex closed bounded set under (A1)-(A3). Then there are various domain qualification conditions, e.g.,

one of the conditions in [10, Proposition 15.24 and Fact 15.25], that ensure the existence of a saddle-point

for the Lagrangian L (see [10, Theorem 19.1 and Proposition 9.19(v)]).

(v) Observe that under the inclusion assumption of Lemma 2.1.17, (A8)(I) is equivalent toA−1 (b)∩int (C) 6=
∅.

(vi) Assumption (A8) will be crucial to show that ϕ̄ is coercive on ker(A∗)⊥ = ran(A) (the last equality

follows from (A7)), and hence boundedness of the dual multiplier sequence (µk)k∈N provided by Algo-

rithm 8 (see Lemma 3.2.6 and Lemma 3.2.7).

(vii) If the dimension of Hd is finite, then (A9) is satisfied because weakly compact sets are compact in such

spaces. Alternatively, another sufficient condition is to impose that the sublevel sets of the functions

(Φ∗
k ◦ (−A∗))k∈N are compact, for instance if the functions are uniformly convex, unfiormly in k.

The uniform boundedness of the minimal norm selection of ∂g on C, as required in Assumption (A4), is

important when we will invoke Proposition 2.1.2(v) in our proofs to get meaningful estimates. We recall that

Lemma 2.1.17 gives some sufficient conditions under which (A4) holds (in fact even stronger claims) for g. An

immediate consequence of assuming (A1) and (A2) due to Lemma 2.1.18 is that

sup
k
‖∇f(xk)‖ ≤ D < +∞ (3.1.9)

for (xk)k∈N generated by Algorithm 8.

3.1.3.2 Assumptions on the parameters

We also use the following assumptions on the parameters of Algorithm 8 (recall the function ζ in Defini-

tion 2.1.13):

(P1) (γk)k∈N ⊂]0, 1] and the sequences (ζ (γk))k∈N ,
(
γ2k/βk

)
k∈N and (γkβk)k∈N belong to ℓ1+.

(P2) (γk)k∈N /∈ ℓ1.
(P3) (βk)k∈N ∈ ℓ+ is non-increasing and converges to 0.

(P4) (ρk)k∈N ∈ ℓ+ is non-decreasing with 0 < ρ = infk ρk ≤ supk ρk = ρ < +∞.

– 32 –



Chapter 3 3.1. Introduction

(P5) For some positive constants M and M , M ≤ infk (γk/γk+1) ≤ supk (γk/γk+1) ≤M .

(P6) (θk)k∈N satisfies θk =
γk
c for all k ∈ N for some c > 0 such that Mc −

ρ

2 < 0.

(P7) (γk)k∈N and (ρk)k∈N satisfy ρk+1 − ρk − γk+1ρk+1 +
2
cγk −

γ2k
c ≤ γk+1 for all k ∈ N and for c in (P6).

Remark 3.1.2.

(i) One can recognize that the update of the dual multiplier µk in Algorithm 8 has a flavour of gradient ascent

applied to the augmented dual with step-size θk. However, unlike the standard method of multipliers

with the augmented Lagrangian, Assumption (P6) requires θk to vanish in our setting. The underlying

reason is that our update can be seen as an inexact dual ascent (i.e., exactness stems from the conditional

gradient-based update on xk which is not a minimization of over x of the augmented Lagrangian Lk).
Thus θk must annihilate this error asymptotically.

(ii) A sufficient condition for (P7) to hold consists of taking ρk ≡ ρ > 0 and γk+1 ≥ 2
c(1+ρ)γk. In particular,

if (γk)k∈N satisfies (P5), then, for (P7) to hold, it is sufficient to take ρk ≡ ρ > 2M/c as supposed in

(P6).

(iii) The relevance of having ρk vary is that it allows for more general and less stringent choice of the step-size

γk. It is, however, possible (and easier in practice), to simply pick ρk ≡ ρ for all k ∈ N as described

above.

There is a large class of sequences that fulfill the requirements (P1)-(P7). A typical one is as follows.

Example 3.1.3. Take1, for k ∈ N,

ρk ≡ ρ > 0, γk =
(log(k + 2))a

(k + 1)1−b
, βk =

1

(k + 1)1−δ
, with

a ≥ 0, 0 ≤ 2b < δ < 1, δ < 1− b, ρ > 22−b/c, c > 0.

In this case, one can take the crude bounds M = (log(2)/ log(3))a and M = 21−b, and choose ρ > 2M/c

as devised in Remark 3.1.2(ii). In turn, (P4)-(P7) hold. In addition, suppose that f has a ν-Hölder continuous

gradient (see (2.1.7)). Thus for (P1)-(P2) to hold, simple algebra shows that the allowable choice of b is in[
0,min

(
1/3, ν

1+ν

)[
.

3.1.4 Organization of the Chapter

In Section 3.2 we present the preliminary estimations that will be used to prove the main convergence results

that are given in Section 3.3. Section 3.2 is divided in three main parts, the feasibility, the boundedness of

(µk)k∈N, and then finally the optimality. In Section 3.3 we show the asymptotic feasibility, i.e., the limit

lim
k
‖Axk − b‖ = 0, and finally the optimality guarantees, i.e., strong convergence of the sequence (µk)k∈N

to a solution of the dual problem, weak subsequential convergence of the sequence (xk)k∈N to a solution of the

primal problem, and convergence of the Lagrangian values, and with convergence rates. In Section 3.4 we pro-

vide a more detailed discussion comparing CGALP to contemporary work on similar algorithms. Meanwhile,

in Section 3.5 we describe how our algorithm can be instantiated to solve a variety of composite optimization

problems, demonstrating how the inclusion of an affine constraintAx = b in the problem formulation allows one

to lift otherwise unwieldy problems to a tractable form. Finally, in Section 3.6, numerical results are reported

on two different problem, utilizing the aforementioned lifting scheme in the matrix completion problem.

1Of course, one can add a scaling factor in the choice of the parameters which would allow for more practical flexibility. But this

does not change anything to our discussion nor to the bahviour of the CGALP algorithm for k large enough.
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3.2 Preliminary Estimations

3.2.1 Preparatory Results

The next result is a direct application of the Descent Lemma 2.1.7 and the generalized one in Lemma 2.1.12 to

the specific case of Algorithm 8. It allows to obtain a descent property for the function Ek (·, µk) between the

previous iterate xk and next one xk+1.

Lemma 3.2.1. Suppose Assumptions (A1), (A2) and (P1) hold. For each k ∈ N, define the quantity

Lk
def
=
‖T‖2
βk

+ ‖A‖2ρk. (3.2.1)

Then, for each k ∈ N, we have the following inequality:

Ek (xk+1, µk) ≤ Ek (xk, µk) + 〈∇xEk (xk, µk) , xk+1 − xk〉+K(F,ζ,C)ζ (γk)

+
Lk
2
‖xk+1 − xk‖2.

Proof. Define for each k ∈ N,

Ẽk (x, µ) def
= gβk (Tx) + 〈µ,Ax− b〉 + ρk

2
‖Ax− b‖2 ,

so that Ek (x, µ) = f(x) + Ẽk (x, µ). Compute

∇xẼk (x, µ) = T ∗∇gβk(Tx) +A∗µ+ ρkA
∗ (Ax− b) ,

which is Lipschitz-continuous with constant Lk =
‖T‖2
βk

+ ‖A‖2ρk by virtue of (A1) and Proposition 2.1.2(iii).

Then we can use the Descent Lemma (2.1.7) with ν = 1 on Ẽk (·, µk) between the points xk and xk+1, to obtain,

for each k ∈ N,

Ẽk (xk+1, µk) ≤ Ẽk (xk, µk) + 〈∇Ẽk (xk, µk) , xk+1 − xk〉+
Lk
2
‖xk+1 − xk‖2 . (3.2.2)

From Assumption (A2), Lemma 2.1.12 and Remark 2.1.14, we have, for each k ∈ N,

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+DF (xk+1, xk)

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+K(F,ζ,C)ζ (γk) ,

where we used that both xk and sk lie in C, that γk belongs to ]0, 1] by (P1) and thus xk+1 = xk+γk (sk − xk) ∈
C. Summing (3.2.2) with the latter and recalling that Ek (x, µk) = f(x) + Ẽk (x, µk), we obtain the claim.

Again for the function Ek (·, µk), we also have a lower-bound, presented in the next lemma.

Lemma 3.2.2. Suppose Assumptions (A1) and (A2) hold. Then, for all k ∈ N, for all x, x′ ∈ Hp and for all

µ ∈ Hd,
Ek (x, µ) ≥ Ek

(
x′, µ

)
+ 〈∇xEk

(
x′, µ

)
, x− x′〉+ ρk

2
‖A(x− x′)‖2.

Proof. First, split the function Ek (·, µ) as Ek (x, µ) = E0k (x, µ) + ρk
2 ‖Ax− b‖2 for an opportune definition of

E0k (·, µ). For the first term, simply by convexity, we have

E0k (x, µ) ≥ E0k
(
x′, µ

)
+ 〈∇xE0k

(
x′, µ

)
, x− x′〉. (3.2.3)

Now use the strong convexity of the term (ρk/2) ‖ · −b‖2 between points Ax and Ax′, to affirm that

ρk
2
‖Ax− b‖2 ≥ ρk

2
‖Ax′ − b‖2 + 〈∇

(ρk
2
‖ · −b‖2

) (
Ax′
)
, Ax−Ax′〉+ ρk

2
‖A(x− x′)‖2. (3.2.4)

Compute

〈∇
(ρk
2
‖ · −b‖2

) (
Ax′
)
, Ax−Ax′〉 = ρk〈A∗ (Ax′ − b

)
, x− x′〉

= 〈∇
(ρk
2
‖A · −b‖2

) (
x′
)
, x− x′〉.

Summing (3.2.3) and (3.2.4) and invoking the gradient computation above, we obtain the claim.
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Lemma 3.2.3. Suppose that assumptions (A1)-(A8) and (P1)-(P7) hold, with M ≥ 1. Let (xk)k∈N be the

sequence of primal iterates generated by Algorithm 8 and µ⋆ a solution of the dual problem (D). Then we have

the following estimate,

L (xk, µ⋆)− L (xk+1, µ
⋆) ≤ γkdC (M ‖T‖ +D + Lh + ‖A‖ ‖µ⋆‖) .

Proof. First define uk
def
= [∂g(Txk)]

0
and recall that, by (A2) and (A4) and there consequences in (3.1.8) and

(3.1.9), ‖uk‖ ≤M and ‖∇f (xk)‖ ≤ D for every k ∈ N. Then,

L (xk, µ⋆)− L (xk+1, µ
⋆) = Φ(xk)− Φ(xk+1) + 〈µ⋆, A (xk − xk+1)〉
≤ 〈uk, T (xk − xk+1)〉+ 〈∇f(xk), xk − xk+1〉
+ Lh‖xk − xk+1‖+ ‖µ⋆‖ ‖A‖ ‖xk − xk+1‖,

where we used the subdifferential inequality (2.1.4) on g, the gradient inequality on f , the Lh-Lipschitz con-

tinuity of h relative to C (see (A5)), and the Cauchy-Schwartz inequality on the scalar product. Since xk+1 =

xk + γk (xk − sk), we obtain

L (xk, µ⋆)− L (xk+1, µ
⋆) ≤ γk

(
〈uk, T (xk − sk)〉+ 〈∇f(xk), xk − sk〉+ Lh‖xk − sk‖

+ ‖µ⋆‖ ‖A‖ ‖xk − sk‖
)

≤ γkdC (M‖T‖+D + Lh + ‖µ⋆‖ ‖A‖) .

Lemma 3.2.4. Suppose that assumptions (A3) and (P4) hold. Let (xk)k∈N be the sequence of primal iterates

generated by Algorithm 8. Then we have the following estimate,

ρk
2
‖Axk − b‖2 −

ρk+1

2
‖Axk+1 − b‖2 ≤ ρdC‖A‖ (‖A‖R+ ‖b‖) γk,

where R is the radius of the ball containing C and ρ = sup
k
ρk.

Proof. By (P4) and convexity of the function
ρk+1

2 ‖A · −b‖2, we have

ρk
2
‖Axk − b‖2 −

ρk+1

2
‖Axk+1 − b‖2 ≤

ρk+1

2
‖Axk − b‖2 −

ρk+1

2
‖Axk+1 − b‖2

≤ 〈∇
(ρk+1

2
‖A · −b‖2

)
(xk), xk − xk+1〉.

Now compute the gradient and use the definition of xk+1, to obtain

ρk
2
‖Axk − b‖2 −

ρk+1

2
‖Axk+1 − b‖2 ≤ ρk+1γk〈Axk − b, A (xk − sk)〉

≤ ρdC‖A‖ (‖A‖R+ ‖b‖) γk.
In the last inequality, we used Cauchy-Schwartz inequality, triangle inequality, the fact that

‖xk − sk‖ ≤ dC , and assumptions (A3) and (P4) (respectively, sup
x∈C
‖x‖ ≤ R and ρk+1 ≤ ρ).

3.2.2 Feasibility Esimation

We proceed with an intermediary lemma establishing the main feasibility estimation and some summability

results that will also be used in the main energy estimation used in the proof of optimality.

Lemma 3.2.5. Suppose that Assumptions (A1)-(A4) and (A6) hold. Consider the sequence of iterates (xk)k∈N
from Algorithm 8 with parameters satisfying Assumptions (P1)-(P6). Define the two quantities ∆p

k and ∆d
k in

the following way,

∆p
k

def
= Lk (xk+1, µk)− L̃k (µk) , ∆d

k
def
= L̃ − L̃k (µk) ,
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where we have denoted L̃k (µk) def
= minx Lk (x, µk) and L̃ def

= L (x⋆, µ⋆). Denote the sum ∆k
def
= ∆p

k+∆d
k. Then

we have the following estimation,

∆k+1 ≤ ∆k − γk+1

(
M

c
‖Ax̃k+1 − b‖2 + δ ‖A (xk+1 − x̃k+1)‖2

)
+
Lk+1

2
γ2k+1d

2
C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M +

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2 ,

and, moreover,
(
γk ‖Ax̃k − b‖2

)
k∈N
∈ ℓ1+,

(
γk ‖A (xk − x̃k)‖2

)
k∈N
∈ ℓ1+, and

(
γk ‖Axk − b‖2

)
k∈N
∈ ℓ1+.

Proof. First notice that the quantity ∆p
k ≥ 0 and can be seen as a primal gap at iteration k while ∆d

k may be

negative but is bounded from below by our assumptions. Indeed, in view of (A1), (A6) and Remark 3.1.1(iv),

L̃k (µk) is bounded from above since

L̃k (µk) ≤ Lk (x⋆, µk)
= f (x⋆) + gβk (Tx⋆) + h (x⋆) + 〈µk, Ax⋆ − b〉 +

ρk
2
‖Ax⋆ − b‖2

= f (x⋆) + gβk (Tx⋆) + h (x⋆)

≤ f (x⋆) + g (Tx⋆) + h (x⋆) < +∞,
where we used Proposition 2.1.2(v) in the last inequality.

We denote a minimizer of Lk (x, µk) by x̃k ∈ Argmin
x∈Hp

Lk (x, µk), which exists and belongs to C by (A1)-

(A3). Then, we have, for each k ∈ N,

∆d
k+1 −∆d

k = Lk (x̃k, µk)− Lk+1 (x̃k+1, µk+1) . (3.2.5)

Since x̃k is a minimizer of Lk (x, µk) we have that Lk (x̃k, µk) ≤ Lk (x̃k+1, µk) which leads to

Lk (x̃k+1, µk) = Lk+1 (x̃k+1, µk) + gβk (T x̃k+1)− gβk+1 (T x̃k+1) +
ρk−ρk+1

2 ‖Ax̃k+1 − b‖2

≤ Lk+1 (x̃k+1, µk) ,

where the last inequality comes from Proposition 2.1.2(v) and the assumptions (P3) and (P4). Combining this

with (3.2.5), for each k ∈ N,

∆d
k+1 −∆d

k ≤ Lk+1 (x̃k+1, µk)− Lk+1 (x̃k+1, µk+1)

= 〈µk − µk+1, Ax̃k+1 − b〉
= −θk 〈Axk+1 − b, Ax̃k+1 − b〉 ,

(3.2.6)

where in the last equality we used the definition of µk+1. Meanwhile, for the primal gap we have, for each

k ∈ N,

∆p
k+1 −∆p

k = (Lk+1 (xk+2, µk+1)− Lk (xk+1, µk)) + (Lk (x̃k, µk)− Lk+1 (x̃k+1, µk+1)) .

Note that, for each k ∈ N,

Lk (xk+1, µk) = Lk (xk+1, µk+1)− θk ‖Axk+1 − b‖2

and estimate Lk (x̃k, µk)− Lk+1 (x̃k+1, µk+1) as in (3.2.6), to get

∆p
k+1 −∆p

k ≤ Lk+1 (xk+2, µk+1)− Lk (xk+1, µk+1) + θk ‖Axk+1 − b‖2

− θk 〈Axk+1 − b, Ax̃k+1 − b〉 . (3.2.7)

Using (3.2.6) and (3.2.7), we then have, for each k ∈ N,

∆k+1 −∆k ≤ Lk+1 (xk+2, µk+1)− Lk (xk+1, µk+1) + θk ‖Axk+1 − b‖2

− 2θk 〈Axk+1 − b, Ax̃k+1 − b〉 .
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Note that, for each k ∈ N,

Lk (xk+1, µk+1) = Lk+1 (xk+1, µk+1)−
[
gβk+1 − gβk

]
(Txk+1)−

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2 .

Then, for each k ∈ N,

∆k+1 −∆k ≤ Lk+1 (xk+2, µk+1)− Lk+1 (xk+1, µk+1) + gβk+1 (Txk+1)− gβk (Txk+1)

+

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2 + θk ‖Axk+1 − b‖2 − 2θk 〈Axk+1 − b, Ax̃k+1 − b〉 .

We denote by T1 = Lk+1 (xk+2, µk+1) − Lk+1 (xk+1, µk+1) and the remaining part of the right-hand side

by T2. For the moment, we focus our attention on T1. Recall that Lk (x, µk) = Ek (x, µk) + h (x) and apply

Lemma 3.2.1 between points xk+2 and xk+1, to get

T1 ≤ h (xk+2)− h (xk+1) + 〈∇xEk+1 (xk+1, µk+1) , xk+2 − xk+1〉

+K(F,ζ,C)ζ (γk+1) +
Lk+1

2
‖xk+2 − xk+1‖2 .

By (A1) we have that h is convex and thus, since xk+2 is a convex combination of xk+1 and sk+1, we get

T1 ≤ −γk+1 (h (xk+1)− h (sk+1) + 〈∇xEk+1 (xk+1, µk+1) , xk+1 − sk+1〉)

+
Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1) .

Applying the definition of sk as the minimizer of the linear minimization oracle and Lemma 3.2.2 at the points

x̃k+1, xk+1, and µk+1 gives,

T1 ≤ −γk+1 (h (xk+1)− h (x̃k+1) + 〈∇xEk+1 (xk+1, µk+1) , xk+1 − x̃k+1〉)

+
Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1)

≤ −γk+1

(
h (xk+1)− h (x̃k+1) + Ek+1 (xk+1, µk+1)− Ek+1 (x̃k+1, µk+1)

+
ρk+1

2
‖A (xk+1 − x̃k+1)‖2

)
+
Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1)

= −γk+1

(
Lk+1 (xk+1, µk+1)− Lk+1 (x̃k+1, µk+1) +

ρk+1

2
‖A (xk+1 − x̃k+1)‖2

)

+
Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1)

≤ −γk+1ρk+1

2
‖A (xk+1 − x̃k+1)‖2 +

Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1) ,

where we used that x̃k+1 is a minimizer of Lk+1 (·, µk+1) in the last inequality. Now, combining T1 and T2

and using the Pythagoras identity we have, for each k ∈ N,

∆k+1 −∆k ≤ −θk ‖Ax̃k+1 − b‖2 +
(
θk − γk+1

ρk+1

2

)
‖A (xk+1 − x̃k+1)‖2

+
Lk+1

2
‖xk+2 − xk+1‖2 +K(F,ζ,C)ζ (γk+1) +

[
gβk+1 − gβk

]
(Txk+1)

+
ρk+1 − ρk

2
‖Axk+1 − b‖2 . (3.2.8)

Under (P6) we have θk =
γk
c for some c > 0 such that

∃δ > 0,
M

c
−
ρ

2
= −δ < 0,

where M is the constant such that γk ≤ Mγk+1 (see Assumption (P5)). Then, using (P5) and the above

inequality, for each k ∈ N,

θk − γk+1
ρk+1

2
≤
(
M

c
− ρk+1

2

)
γk+1 ≤

(
M

c
−
ρ

2

)
γk+1 = −δγk+1 and θk ≥ Mγk+1

c . (3.2.9)
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Now use the fact that, for each k ∈ N, xk+2 = xk+1 + γk+1 (sk+1 − xk+1) to estimate

‖xk+2 − xk+1‖2 ≤ γ2k+1d
2
C . (3.2.10)

Moreover, by the two assumptions (P3), (A4) and Proposition 2.1.2(v), (3.1.8) holds with a constant M > 0 ,

and thus with Proposition 2.1.2(iv) we obtain, for each k ∈ N,

[
gβk+1 − gβk

]
(Txk+1) ≤

βk − βk+1

2

∥∥∥∥
[
∂g (Txk+1)

]0∥∥∥∥
2

≤ βk − βk+1

2
M. (3.2.11)

Plugging (3.2.9), (3.2.10) and (3.2.11) into (3.2.8), we get, for each k ∈ N,

∆k+1 −∆k ≤ −
M

c
γk+1 ‖Ax̃k+1 − b‖2 − δγk+1 ‖A (xk+1 − x̃k+1)‖2 +

Lk+1

2
γ2k+1d

2
C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M +

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2 .

(3.2.12)

Because of the assumptions (P1) and (P4), and in view of the definition of Lk in (3.2.1), we have the following,

Lk
2
γ2kd

2
C =

1

2

(
‖T‖2
βk

+ ‖A‖2 ρk
)
γ2kd

2
C ∈ ℓ1+.

For the telescopic terms from the right hand side of (3.2.12) we have

βk − βk+1

2
∈ ℓ1+ and

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2 ≤ (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)
∈ ℓ1+,

where R is the constant arising from (A3). Under (P1) we also have that

K(F,ζ,C)ζ (γk+1) ∈ ℓ1+.

Using the notation of Lemma 2.2.3, we set, for each k ∈ N,

rk = ∆k, pk = γk+1, wk =

(
M

c
‖Ax̃k+1 − b‖2 + δ ‖A (xk+1 − x̃k+1)‖2

)
,

zk =
Lk+1

2
γ2k+1d

2
C +K(F,ζ,C)ζ (γk+1) +

βk − βk+1

2
M +

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2 .

We have shown above that

rk+1 ≤ rk − pkwk + zk,

where (zk)k∈N ∈ ℓ1+, and rk is bounded from below. We then deduce using Lemma 2.2.3(i) that (rk)k∈N is

convergent and
(
γk ‖Ax̃k − b‖2

)
k∈N
∈ ℓ1+,

(
γk ‖A (xk − x̃k)‖2

)
k∈N
∈ ℓ1+. (3.2.13)

Consequently,
(
γk ‖Axk − b‖2

)
k∈N
∈ ℓ1+, (3.2.14)

since, by Jensen’s inequality,

∞∑

k=1

γk ‖Axk − b‖2 ≤ 2
∞∑

k=1

γk

(
‖A (xk − x̃k)‖2 + ‖Ax̃k − b‖2

)
< +∞.

3.2.3 Boundedness of (µk)k∈N

In the following two lemmas, we provide an argument that shows the sequence of dual variables (µk)k∈N gen-

erated by Algorithm 8 is bounded. We start by studying coercivity of ϕ̄.

Lemma 3.2.6. Suppose that Assumptions (A1)-(A3) and (A6)-(A8) hold. Then ϕ̄ is coercive on ran (A).
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Proof. From (3.1.5), we have, for any c ∈ A−1(b), that

ϕ̄(µ) =
(
Φ̄∗ + 〈−c, ·〉

)
(−A∗µ) .

Moreover, Assumptions (A1) and (A7) entail that Φ̄ ∈ Γ0(Hp). We now consider separately the two assump-

tions.

(a) Case of (A8)(I): If follows from the Fenchel-Moreau theorem ([10, Theorem 13.32]) that
(
Φ̄∗ − 〈c, ·〉

)∗
= Φ̄∗∗ (·+ c) = Φ̄ (·+ c) .

Using this, together with Proposition 2.1.20 and (A2), we can assert that Φ̄∗−〈c, ·〉 is coercive if and only

if

0 ∈ int
(
dom

(
Φ̄ (·+ c)

))
= int (dom (Φ))− c = int (dom (g ◦ T ) ∩ C)− c

= int (dom (g ◦ T )) ∩ int (C)− c.
But this is precisely what (A8)(I) guarantees. In turn, using [10, Proposition 14.15], (A8)(I) is equivalent

to

∃(a > 0, β ∈ R), Φ̄∗ − 〈c, ·〉 ≥ a ‖·‖ + β.

Using standard results on linear operators in Hilbert spaces [10, Facts 2.18 and 2.19], we have

(A7) ⇐⇒ (∃α > 0), (∀µ ∈ ran(A)), ‖A∗µ‖ ≥ α ‖µ‖.
Combining the last two inequalities, we deduce that under (A8)(I),

∃(a > 0, α > 0, β ∈ R), (∀µ ∈ ran(A)), ϕ̄(µ) ≥ a ‖A∗µ‖ + β ≥ aα ‖µ‖ + β,

which in turn is equivalent to coercivity of ϕ̄ on ran(A) by [10, Proposition 14.15].

(b) Case of (A8)(II): SinceHd is finite dimensional, We have, ∀u ∈ Hd,
ϕ̄∞ (u) =

((
Φ̄∗ + 〈−c, ·〉

)
◦ (−A∗)

)∞
(u)

(Proposition 2.1.21(iii)) =
(
Φ̄∗ + 〈−c, ·〉

)∞
(−A∗u)

(Proposition 2.1.21(ii)) = σ
dom(Φ̄∗+〈−c,·〉)∗ (−A

∗u)

= σdom(Φ̄(·+c)) (−A
∗u)

= σdom(Φ̄)−c (−A
∗u)

(by (A2)) = σdom(g◦T )∩C−c (−A∗u) .

Notice that, by Assumption (A4), we have dom (g ◦ T ) ∩ C = C. Thus, using Proposition 2.1.21(i), we

have the following chain of equivalences

ϕ̄ is coercive on ran (A) ⇐⇒ ϕ̄∞ (u) > 0, ∀u ∈ ran (A) \ {0}
⇐⇒ σC−c(−A∗u) > 0, ∀u ∈ ran (A) \ {0} .

For this to hold, and since ran (A) = ker (A∗)⊥, a sufficient condition is that

σC−c(x) > 0, ∀x ∈ ran (A∗) \ {0} . (3.2.15)

It remains to check that the latter condition holds under (A8)(II). First, observe that C is a nonempty

bounded convex set thanks to (A1) and (A3). The first condition in (A8)(II) is equivalent to 0 ∈ ri(C−c)
for some c ∈ A−1(b). It then follows from Proposition 2.1.19 that

σC−c(x) > 0, ∀x 6∈ par(C − c)⊥ = par(C)⊥,

which then implies (3.2.15) thanks to the second condition in (A8)(II).

Lemma 3.2.7. Suppose that assumptions (A1)-(A3) and (A6)-(A8) and (P1)-(P6) hold. Then the sequence of

dual iterates (µk)k∈N generated by Algorithm 8 is bounded.
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Proof. Using the notation in (3.1.5), the primal problem:

min
x∈Hp

{Φ(x) : Ax = b} = min
x∈Hp

sup
µ∈Hd

L (x, µ) ,

is obviously equivalent to

min
x∈Hp

{
Φ(x) +

ρk
2
‖Ax− b‖2 : Ax = b

}
= min

x∈Hp

sup
µ∈Hd

{
L (x, µ) + ρk

2
‖Ax− b‖2

}
.

We associate to the previous the following regularized primal problem:

min
x∈Hp

{Φk(x) : Ax = b} = min
x∈Hp

sup
µ∈Hd

Lk (x, µ)

and its Lagrangian dual, namely:

sup
µ∈Hd

inf
x∈Hp

Lk (x, µ) = − inf
µ∈Hd

sup
x∈Hp

−Lk (x, µ) .

Now consider the dual function in the latter, namely ϕk(µ)
def
= − inf

x∈Hp

Lk (x, µ). Observe that the minimum

is actually attained owing to (A1) and (A3). Now we claim that ϕk is continuously differentiable with L∇ϕk
-

Lipschitz gradient, and 1/ρ (see (P4)) is an upper-bound for (L∇ϕk
)k∈N. In order to show it, introduce the

notation

φk(x)
def
= f(x) + gβk(Tx) + h(x);

ψk(v)
def
=

ρk
2
‖v − b‖2.

By definition, we have

ϕk(µ) = − min
x∈Hp

{
f(x) + gβk(Tx) + h(x) + 〈µ, Ax− b〉+ ρk

2
‖Ax− b‖2

}

= − min
x∈Hp

{φk(x) + 〈A∗µ, x〉+ ψk(Ax)}+ 〈µ, b〉.
(3.2.16)

Using Fenchel-Rockafellar duality and strong duality, which holds by (P4) and continuity of ψk (see, for in-

stance, [92, Theorem 3.51]), we have the following equality,

min
x∈Hp

{φk (x) + 〈A∗µ, x〉 + ψk (Ax)} = − min
v∈Hd

{(φk (·) + 〈A∗µ, ·〉)∗ (−A∗v) + ψ∗
k (v)}

= − min
v∈Hd

{φ∗k (−A∗v −A∗µ) + ψ∗
k (v)}

where we have used the fact that the conjugate of a linear perturbation is the translation of the conjugate in the

last line. Substituting the above into (3.2.16) we find

ϕk(µ) = min
v∈Hd

{
φ∗k(−A∗(v + µ)) +

1

2ρk
‖v‖2 + 〈v, b〉

}
+ 〈µ, b〉

= min
v∈Hd

{
φ∗k(−A∗(v + µ)) +

1

2ρk
‖v + ρkb‖2

}
+ 〈µ, b〉 − ρk

2
‖b‖2

Moreover, from the primal-dual extremality relationships [92, Theorem 3.51(i)], we have

− ṽ = ∇ψk(Ax̃) = ρk (Ax̃− b) , (3.2.17)

where x̃ is a minimizer (which exists and belongs to C) of the primal objective Lk (·, µ) and ṽ is the unique

minimizer to the associated dual objective. Now, using the change of variable u = v + µ, we get

ϕk(µ) = inf
u∈Hd

{
φ∗k(−A∗u) +

1

2ρk
‖u− µ+ ρkb‖2

}
+ 〈µ, b〉 − ρk

2
‖b‖2

= [φ∗k ◦ (−A∗)]ρk (µ− ρkb) + 〈µ, b〉 −
ρk
2
‖b‖2,

where the notation [·]ρk denotes the Moreau envelope with parameter ρk as defined in (2.1.2). It follows from

Proposition 2.1.2(i) and (iii), that ϕk is convex, real-valued and its gradient, given by

∇ϕk(µ) = ρ−1
k (µ− ρkb− ũ) + b = ρ−1

k (µ− ũ) , where ũ = proxρkφ∗k◦(−A∗)(µ− ρkb), (3.2.18)
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is 1/ρk-Lipschitz continuous since the gradient of a Moreau envelope with parameter ρk is 1/ρk-Lipschitz

continuous (see Proposition 2.1.2(iii)). As ρk is non-decreasing, 1/ρk ≤ 1/ρ and the sequence of functions

(∇ϕk)k∈N is uniformly Lipschitz-continuous with constant 1/ρ. In addition, combining (3.2.17) and (3.2.18),

and recalling the change of variable ũ = ṽ + µ, we get that

∇ϕk(µ) = ρ−1
k (µ− ũ) = −ρ−1

k ṽ = Ax̃− b. (3.2.19)

As in Lemma 3.2.5, we are going to denote x̃k a minimizer of Lk (x, µk). Then, from the Descent Lemma (see

Proposition 2.1.5 and inequality (2.1.7)), we have

ϕk(µk+1) ≤ ϕk(µk) + 〈∇ϕk(µk), µk+1 − µk〉+
1

2ρ
‖µk+1 − µk‖2.

Now substitute in the right-hand-side the expression ∇ϕk(µk) = Ax̃k − b in (3.2.19) and the update µk+1 =

µk + θk (Axk+1 − b) from the algorithm, to obtain

ϕk(µk+1) ≤ ϕk(µk) + θk〈Ax̃k − b, Axk+1 − b〉+
θ2k
2ρ
‖Axk+1 − b‖2

≤ ϕk(µk) +
θk
2
‖Ax̃k − b‖2 +

θk
2

(
θk
ρ

+ 1

)
‖Axk+1 − b‖2,

(3.2.20)

where we estimated the scalar product by Cauchy-Schwartz and Young inequality. Moreover, by definition,

ϕk+1(µk+1) = − inf
x∈Hp

{
f(x) + gβk+1(Tx) + h(x) + 〈µk+1, Ax− b〉+

ρk+1

2
‖Ax− b‖2

}

= sup
x∈Hp

{
−Lk (x, µk+1) +

[
gβk − gβk+1

]
(Tx) +

1

2
(ρk − ρk+1) ‖Ax− b‖2

}
.

(3.2.21)

Now recall assumptions (P3) and (P4): for βk non-increasing,
[
gβk − gβk+1

]
(Tx) ≤ 0 for every x ∈ Hp by

Proposition 2.1.2(v) and, for ρk non-decreasing, ρk − ρk+1 ≤ 0. Then we can estimate the right-hand-side of

(3.2.21) to obtain

ϕk+1(µk+1) ≤ sup
x∈Hp

−Lk (x, µk+1) = ϕk(µk+1).

Sum (3.2.20) with the latter, to obtain

ϕk+1 (µk+1)− ϕk (µk) ≤
θk
2
‖Ax̃k − b‖2 +

θk
2

(
θk
ρ

+ 1

)
‖Axk+1 − b‖2.

By Assumption (P6), θk = γk/c where γk ≤ 1. Moreover, by assumption (P5), γk ≤Mγk+1. Then,

ϕk+1 (µk+1)− ϕk (µk) ≤
γk
2c
‖Ax̃k − b‖2 +

M

2c

(
1

ρc
+ 1

)
γk+1‖Axk+1 − b‖2. (3.2.22)

Notice that the right-hand-side is in ℓ1+, because both
(
γk ‖Axk − b‖2

)
k∈N

and
(
γk ‖Ax̃k − b‖2

)
k∈N

are in ℓ1+ by Lemma 3.2.5. Additionally, (ϕk(µk))k∈N is bounded from below. Indeed,

by virtue of (A6) and Remark 3.1.1(iv), we have

ϕk(µk) ≥ −Lk (x⋆, µk)
≥ − [f(x⋆) + g(Tx⋆) + h(x⋆)] > −∞.

Then we can use Lemma 2.2.3(i) on inequality (3.2.22) to conclude that (ϕk (µk))k∈N is convergent and, in

particular, bounded. Now recall Φk, Φ̄ and ϕ̄ from (3.1.5). Notice that

ϕk(µ) = sup
x∈Hp

{〈µ, b−Ax〉 − Φk(x)}

= sup
x∈Hp

{〈−A∗µ, x〉 − Φk(x)}+ 〈b, µ〉

= Φ∗
k (−A∗µ) + 〈b, µ〉.
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It then follows that

gβk ≤ g =⇒ Φk ≤ Φ̄ ⇐⇒ Φ̄∗ ≤ Φ∗
k =⇒ ϕ̄ ≤ ϕk, (3.2.23)

where we used Proposition 2.1.2(v) and the fact in (2.1.1). We are now in position to invoke Lemma 3.2.6 which

shows that ϕ̄ is coercive on ran(A), and thus, by (3.2.23), (ϕk)k∈N is equi-coercive on ran(A). In turn, since

ran(A) is closed and (µk)k∈N ⊂ ran(A) = ker(A∗)⊥, we have from (3.2.23) and the proof of Lemma 3.2.6

that

∃(a > 0, α > 0, β ∈ R), (∀k ∈ N), ϕk(µk) ≥ ϕ̄(µk) ≥ a ‖A∗µk‖ + β ≥ aα ‖µk‖ + β,

which shows that (µk)k∈N is indeed bounded by boundedness of (ϕk (µk))k∈N.

Lemma 3.2.8. Under assumptions (A1)-(A8) and (P1)-(P6), the objective Φ is bounded on C, and thus

M̃
def
= sup

x∈C
|Φ(x)|+ sup

k∈N
‖µk‖ (‖A‖ R+ ‖b‖) < +∞, (3.2.24)

where we recall the radius R from assumption (A3).

Proof. By assumption (A4), g is subdifferentiable at Tx for any x ∈ C. Thus convexity of g implies that for

any x ∈ C

g(Tx) ≤ g(Tx⋆) +
〈
[∂g (Tx)]0 , Tx− Tx⋆

〉
≤ g(Tx⋆) +

∥∥∥[∂g (Tx)]0
∥∥∥ ‖T‖dC

g(Tx) ≥ g(Tx⋆) +
〈
[∂g (Tx⋆)]0 , Tx− Tx⋆

〉
≥ g(Tx⋆)−

∥∥∥[∂g (Tx⋆)]0
∥∥∥ ‖T‖dC .

(3.2.25)

By assumption (A4), ‖∇f‖ is uniformly bounded on C and we have

sup
x∈C
‖∇f (x)‖ < +∞. (3.2.26)

In turn, convexity entails that for any x ∈ C
f(x) ≤ f(x⋆) + 〈∇f (x) , x− x⋆〉 ≤ f(x⋆) + ‖∇f (x)‖ dC ,
f(x) ≥ f(x⋆) + 〈∇f (x⋆) , x− x⋆〉 ≥ f(x⋆)− ‖∇f (x⋆)‖ dC .

(3.2.27)

From assumption (A5), we also have for any x ∈ C

h(x⋆)− LhdC ≤ h(x) ≤ h(x⋆) + LhdC . (3.2.28)

Summing (3.2.25), (3.2.27) and (3.2.28), using (3.2.26) and assumption (A4), we get

|Φ(x)| ≤ |Φ(x⋆)|+
(
Lh + ‖T‖ sup

x∈C

∥∥∥[∂g (Tx)]0
∥∥∥ + sup

x∈C
‖∇f (x)‖

)
.

From Lemma 3.2.7, we know that the sequence of dual variables (µk)k∈N is bounded which concludes the

proof.

3.2.4 Optimality Estimation

With the boundedness results of Section 3.2.3, we can prove the main energy estimation; a key inequality used to

show that the Lagrangian values converge to the optimum. DefineCk
def
= Lk

2 d
2
C+dC (D +M‖T‖+ Lh + ‖A‖ ‖µ⋆‖),

where Lk is given in (3.2.1) and the constantsD,M , and Lh are as in Lemma 3.2.3. We then have the following

lemma, in which we state the main energy estimation.

Lemma 3.2.9. Suppose that assumptions (A1)-(A8) and (P1)-(P6) hold, with M ≥ 1. Consider the sequence

of primal-dual iterates ((xk, µk))k∈N generated by Algorithm 8 and (x⋆, µ⋆) a saddle-point point of the La-

grangian as in (3.1.6). Let

rk
def
= (1− γk)Lk (xk, µk) +

c

2
‖µk − µ⋆‖2 +

βk
2
M2 + γkM̃. (3.2.29)
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Then, we have the following energy estimate

rk+1 − rk + γk

[
L (xk, µ⋆)− L (x⋆, µ⋆) +

ρk
2
‖Axk − b‖2

]
≤

1

2

[
ρk+1 − ρk − γk+1ρk+1 +

2

c
γk −

γ2k
c

]
‖Axk+1 − b‖2 +

γkβk
2

M2 +K(F,ζ,C)ζ (γk) + Ckγ
2
k .

(3.2.30)

Proof. Notice that the dual update µk+1 = µk + θk (Axk+1 − b) can be re-written as

{µk+1} = Argmin
µ∈Hd

{
−Lk (xk+1, µ) +

1

2θk
‖µ− µk‖2

}
.

Then, from firm nonexpansiveness of the proximal mapping (see (2.1.3)),

0 ≥ θk [Lk (xk+1, µ
⋆)− Lk (xk+1, µk+1)] +

1

2

[
‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2

+ ‖µk+1 − µk‖2
]

= θk [Lk (xk+1, µ
⋆)− Lk (xk+1, µk+1)] +

1

2

[
‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2

]

+
θ2k
2
‖Axk+1 − b‖2.

(3.2.31)

Notice that

Lk (xk+1, µk)− Lk (xk, µk) = [Ek (xk+1, µk) + h(xk+1)]− [Ek (xk, µk) + h(xk)]

and that, by the definition of xk+1 in the algorithm and by convexity of function h,

h(xk+1)− h(xk) = h((1− γk)xk + γksk)− h(xk)
≤ γk (h(sk)− h(xk)) .

Then,

Lk (xk+1, µk)− Lk (xk, µk) ≤ Ek (xk+1, µk)− Ek (xk, µk) + γk (h(sk)− h(xk)) . (3.2.32)

Now apply Lemma 3.2.2 at the points x⋆, xk, and µk to affirm that

Ek (x⋆, µk) ≥ Ek (xk, µk) + 〈∇xEk (xk, µk) , x⋆ − xk〉+
ρk
2
‖A(x⋆ − xk)‖2.

From the latter, by the alternative definition of sk in the algorithm (see (3.1.4)), we obtain

Ek (x⋆, µk) ≥ Ek (xk, µk)− h(x⋆) + h(sk) + 〈∇xEk (xk, µk) , sk − xk〉+
ρk
2
‖Axk − b‖2. (3.2.33)

From Lemma 3.2.1, we have also that

Ek (xk+1, µk) ≤ Ek (xk, µk) + 〈∇xEk (xk, µk) , xk+1 − xk〉+K(F,ζ,C)ζ (γk) +
Lk
2
‖xk+1 − xk‖2.

Recall that, from the algorithm, xk+1 = xk + γk (sk − xk). Then,

Ek (xk+1, µk) ≤ Ek (xk, µk) + γk〈∇xEk (xk, µk) , sk − xk〉+K(F,ζ,C)ζ (γk) +
Lkγ

2
k

2
‖sk − xk‖2

≤ Ek (xk, µk) + γk

[
Ek (x⋆, µk) + h(x⋆)− Ek (xk, µk)− h(sk)−

ρk
2
‖Axk − b‖2

]

+K(F,ζ,C)ζ (γk) +
Lk
2
d2Cγ

2
k ,

where in the last inequality we used (3.2.33). Using the latter in (3.2.32), we obtain

Lk (xk+1, µk)− Lk (xk, µk) ≤γk
[
Lk (x⋆, µk)− Lk (xk, µk)−

ρk
2
‖Axk − b‖2

]

+K(F,ζ,C)ζ (γk) +
Lk
2
d2Cγ

2
k .

(3.2.34)

Notice also that, from the definitions of Lk (xk+1, ·) and µk+1 as µk+1 = µk + θk (Axk+1 − b),
Lk (xk+1, µk+1)− Lk (xk+1, µk) = 〈µk+1 − µk, Axk+1 − b〉 = θk‖Axk+1 − b‖2.
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So, from the latter and (3.2.34),

Lk (xk+1, µk+1)− Lk (xk, µk) ≤ θk‖Axk+1 − b‖2 + γk [Lk (x⋆, µk)− Lk (xk, µk)]

− ρkγk
2
‖Axk − b‖2 +K(F,ζ,C)ζ (γk) +

Lk
2
d2Cγ

2
k .

Now recall that, by assumption (P6), θk = γk/c. Multiply (3.2.31) by c and sum with the latter, to obtain

(1− cθk)Lk (xk+1, µk+1)− (1− cθk)Lk (xk, µk) + c
2

[
‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2

]

≤
(
θk − cθ2k

2

)
‖Axk+1 − b‖2 + γk [Lk (x⋆, µk)− Lk (xk, µk)]− cθk [Lk (xk+1, µ

⋆)− Lk (xk, µk)]

−ρkγk
2 ‖Axk − b‖2 +K(F,ζ,C)ζ (γk) +

Lk
2 d

2
Cγ

2
k .

The previous inequality can be re-written, by trivial manipulations, as

(1− cθk+1)Lk+1 (xk+1, µk+1)− (1− cθk)Lk (xk, µk) +
c

2

[
‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2

]

≤ (1− cθk+1)Lk+1 (xk+1, µk+1)− (1− cθk)Lk (xk+1, µk+1) +

(
θk −

cθ2k
2

)
‖Axk+1 − b‖2

+ γk [Lk (x⋆, µk)− Lk (xk, µk)]− cθk [Lk (xk+1, µ
⋆)− Lk (xk, µk)]−

ρkγk
2
‖Axk − b‖2

+K(F,ζ,C)ζ (γk) +
Lk
2
d2Cγ

2
k

= c (θk − θk+1) [f + h+ 〈µk+1, A · −b〉] (xk+1) +
[
(1− cθk+1) g

βk+1 − (1− cθk) gβk
]
(Txk+1)

+
1

2

[
(1− cθk+1) ρk+1 − (1− cθk) ρk + 2θk − cθ2k

]
‖Axk+1 − b‖2

+ γk [Lk (x⋆, µk)− Lk (xk, µk)]− cθk [Lk (xk+1, µ
⋆)− Lk (xk, µk)]−

ρkγk
2
‖Axk − b‖2

+K(F,ζ,C)ζ (γk) +
Lk
2
d2Cγ

2
k .

(3.2.35)

By (P5) and (P6), and the assumption that M ≥ 1, we have θk+1 ≤ M−1θk ≤ θk. In view of (P3), we also

have βk+1 ≤ βk by (P3). In particular, gβk ≤ gβk+1 ≤ g. Now, by Proposition 2.1.2(iv) and the definition of

the constant M in (3.1.8), we are able to estimate the quantity
[
(1− cθk+1) g

βk+1 − (1− cθk) gβk
]
(Txk+1)

=
[
gβk+1 − gβk

]
(Txk+1) + c

[
θkg

βk − θk+1g
βk+1

]
(Txk+1)

≤ 1

2
(βk − βk+1) ‖ [∂g(Txk+1)]

0 ‖2 + c
[
θkg

βk − θk+1g
βk
]
(Txk+1)

≤ 1

2
(βk − βk+1)M

2 + c (θk − θk+1) g(Txk+1).

Then,

c (θk − θk+1) [f + h+ 〈µk+1, A · −b〉] (xk+1) +
[
(1− cθk+1) g

βk+1 − (1− cθk) gβk
]
(Txk+1)

≤ c (θk − θk+1)L (xk+1, µk+1) +
1

2
(βk − βk+1)M

2.

(3.2.36)

Recall that, by assumption (A3), C is convex and bounded and that, by the update xk+1 = xk+ γk (sk − xk)
with sk ∈ C and γk ∈]0, 1] by (P1), xk always belongs to C. From the assumptions, the functions f, h and g ◦T
are bounded on C and, from the algorithm and convexity, (xk)k∈N ⊂ C. By Lemma 3.2.7, also the sequence

(µk)k∈N is bounded. Then, recalling M̃ from Lemma 3.2.8, we can use the Cauchy-Schwartz and the triangular

inequality to affirm that

L (xk, µk) = Φ(xk) + 〈µk, Axk − b〉 ≤ M̃. (3.2.37)
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Recall the definition of rk in (3.2.29). Coming back to (3.2.35) and using both (3.2.36) and (3.2.37), we obtain

rk+1 − rk ≤
1

2

[
(1− γk+1) ρk+1 − (1− γk) ρk +

2

c
γk −

γ2k
c

]
‖Axk+1 − b‖2

+ γk [Lk (x⋆, µk)− Lk (xk+1, µ
⋆)]− ρkγk

2
‖Axk − b‖2 +K(F,ζ,C)ζ (γk) +

Lk
2
d2Cγ

2
k .

(3.2.38)

Recall that, by feasibility of x⋆, L (x⋆, µk) = L (x⋆, µ⋆). Now compute

Lk (x⋆, µk)− Lk (xk+1, µ
⋆) = L (x⋆, µk)− L (xk+1, µ

⋆) +
[
gβk − g

]
(Tx⋆) +

[
g − gβk

]
(Txk+1)

− ρk
2
‖Axk+1 − b‖2

≤ L (x⋆, µ⋆)− L (xk+1, µ
⋆) +

βk
2
M2 − ρk

2
‖Axk+1 − b‖2,

where in the inequality we used the facts that gβk ≤ g and that, by Proposition 2.1.2(v) and (3.1.8),

[
g − gβk

]
(Txk+1) ≤

βk
2
‖ [∂g(Txk+1)]

0 ‖2 ≤ βk
2
M2.

Then, using the latter in (3.2.38), we obtain

rk+1 − rk ≤
1

2

[
ρk+1 − ρk − γk+1ρk+1 +

2

c
γk −

γ2k
c

]
‖Axk+1 − b‖2 + γk [L (x⋆, µ⋆)− L (xk+1, µ

⋆)]

+
γkβk
2

M2 − ρkγk
2
‖Axk − b‖2 +K(F,ζ,C)ζ (γk) +

Lk
2
d2Cγ

2
k .

We replace the term [L (x⋆, µ⋆)− L (xk+1, µ
⋆)] with [L (x⋆, µ⋆)− L (xk, µ⋆)] + [L (xk, µ⋆)− L (xk+1, µ

⋆)]

and estimate using Lemma 3.2.3 to get the following,

rk+1 − rk ≤
1

2

[
ρk+1 − ρk − γk+1ρk+1 +

2

c
γk −

γ2k
c

]
‖Axk+1 − b‖2 + γk [L (x⋆, µ⋆)− L (xk, µ⋆)]

+
γkβk
2

M2 − ρkγk
2
‖Axk − b‖2 +K(F,ζ,C)ζ (γk) + Ckγ

2
k .

We conclude by trivial manipulations.

3.3 Convergence Analysis

Throughout this section, when rates of convergence are given they will be given in terms of the quantity Γk
def
=

k∑
i=0

γi. Because our analysis is carried out for open loop step sizes, the rates must necessarily be stated in terms

of this quantity. To give a clearer picture of what rates one can expect, e.g. in practice, we provide the following

example.

Example 3.3.1. Suppose that the sequences of parameters are chosen according to Example 3.1.3. Let the

function σ : t ∈ R
+ 7→ (log(t + 2))a/(t + 1)1−b. We obviously have σ(k) = γk for k ∈ N. Moreover, it is

easy to see that ∃k′ ≥ 0 (depending on a and b), such that σ is decreasing for t ≥ k′. Thus, ∀k ≥ k′, we have

Γk ≥
k∑

i=k′

γi ≥
∫ k+1

k′
σ(t)dt ≥

∫ k+2

k′+1
(log(t))atb−1dt =

∫ log(k+2)

log(k′+1)
taebtdt.

It is easy to show, using integration by parts for the first case, that

Γ−1
k =





o
(

1
(k+2)b

)
a = 1, b > 0,

O
(

1
(k+2)b

)
a = 0, b > 0,

O
(

1
log(k+2)

)
a = 0, b = 0.
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This result reveals that picking a and b as large as possible results in a faster convergence rate, with the proviso

that b satisfy some conditions for (P1)-(P7) to hold, see the discussion in Example 3.1.3 for the largest possible

choice of b. In the case of Lipschitz-smooth functions, the largest possible choice of b is 1/3 − ǫ for arbitrary

ǫ > 0 which gives Γ−1
k = O

(
1

(k+2)1/3−ǫ

)
.

3.3.1 Asymptotic Feasibility

We are now prove Theorem 3.3.2, i.e., we show that the sequence of iterates (xk)k∈N is asymptotically feasible.

Theorem 3.3.2 (Asymptotic feasibility). Suppose that Assumptions (A1)-(A4) and (A6) hold. Consider the

sequence of iterates (xk)k∈N from Algorithm 8 with parameters satisfying Assumptions (P1)-(P6). Then,

(i) Axk converges strongly to b as k → ∞, i.e., the sequence (xk)k∈N is asymptotically feasible for (P) in

the strong topology.

(ii) Pointwise rate:

inf
0≤i≤k

‖Axi − b‖ = O

(
1√
Γk

)
and ∃ a subsequence

(
xkj
)
j∈N s.t. for all j ∈ N,‖Axkj − b‖ ≤

1√
Γkj

,

(3.3.1)

where, for all k ∈ N, Γk
def
=
∑k

i=0 γi.

(iii) Ergodic rate: for each k ∈ N, let x̄k
def
=
∑k

i=0 γixi/Γk. Then

‖Ax̄k − b‖ = O

(
1√
Γk

)
. (3.3.2)

Proof. (i) By Lemma 3.2.4 with ρk ≡ ρk+1 ≡ 2, we have

‖Axk − b‖2 − ‖Axk+1 − b‖2 ≤ 2γkdC ‖A‖ (‖A‖R+ ‖b‖) .
Using this together with Lemma 3.2.5 and Assumption (P2), we are in position to apply Lemma 2.2.3(ii)

to conclude that limk→∞ ‖Axk − b‖ = 0.

(ii) The rates in (3.3.1) follow respectively from Lemma 2.2.3(iii) and Lemma 2.2.3(iv).

(iii) We have, by Jensen’s inequality and Lemma 3.2.5, that

‖Ax̄k − b‖2 ≤
1

Γk

k∑

i=0

γi ‖Axi − b‖2 ≤
1

Γk

+∞∑

i=0

γi ‖Axi − b‖2 = O

(
1

Γk

)
.

3.3.2 Optimality

In this section we prove Theorem 3.3.3 by establishing convergence of the Lagrangian values to the optimum

(i.e., the value at the saddle-point). The convergence and rates of the Lagrangian values will be shown in terms

L (xk, µ⋆)−L (x⋆, µ⋆), which is non-negative since (x⋆, µ⋆) is a saddle point. This is however not a primal-dual

gap, in the strictest interpretation. Nevertheless, observe that in view of [10, Proposition 19.21(v)], we have, for

each k ∈ N,

L (xk, µ⋆)− L (x⋆, µ⋆) = Φ(x)− Φ(x⋆) + 〈A∗µ⋆, xk − x⋆〉,
which is nothing but the Bregman divergence ofΦwith the subgradient−A∗µ between xk and x⋆. This Bregman

divergence appears then as a good candidate to quantify the convergence rate of Algorithm 8 given that it captures

both the discrepancy of the primal objective to the optimal value and violation of the affine constraint.

Theorem 3.3.3 (Convergence to optimality). Suppose that assumptions (A1)-(A8) and (P1)-(P7) hold, with

M ≥ 1. Let (xk)k∈N be the sequence of primal iterates generated by Algorithm 8 and (x⋆, µ⋆) a saddle-point

pair for the Lagrangian. Then, in addition to the results of Theorem 3.3.2, the following holds
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(i) Convergence of the Lagrangian:

lim
k→∞

L (xk, µ⋆) = L (x⋆, µ⋆) . (3.3.3)

(ii) Every weak cluster point x̄ of (xk)k∈N is a solution of the primal problem (P), and (µk)k∈N converges

strongly to µ̄ a solution of the dual problem, (D), i.e., (x̄, µ̄) is a saddle point of L.

(iii) Pointwise rate:

inf
0≤i≤k

L (xi, µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
and

∃ a subsequence
(
xkj
)
j∈N s.t. for each j ∈ N,L

(
xkj+1, µ

⋆
)
− L (x⋆, µ⋆) ≤ 1

Γkj
.

(3.3.4)

(iv) Ergodic rate: for each k ∈ N, let x̄k
def
=
∑k

i=0 γixi+1/Γk. Then

L (x̄k, µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
. (3.3.5)

Proof. Our starting point is the main energy estimate (3.2.30). Let us focus on its right-hand-side. Under

assumption (P7),

1

2

[
ρk+1 − ρk − γk+1ρk+1 +

2

c
γk −

γ2k
c

]
‖Axk+1 − b‖2 ≤ γk+1‖Axk+1 − b‖2,

where the right hand side is in ℓ1+ by Lemma 3.2.5. Now remember thatCk =
Lk
2 d

2
C+dC (D +M‖T‖+ Lh + ‖A‖ ‖µ⋆‖),

where Lk = ‖T‖2/βk + ‖A‖2ρk. Then we have

γkβkM
2/2 +K(F,ζ,C)ζ (γk) +Ckγ

2
k = γkβkM

2/2 +K(F,ζ,C)ζ (γk) + ‖T‖2γ2kdC/ (2βk) + ‖A‖2ρkγ2kdC/2
+ dC (D +M‖T‖+ Lh + ‖A‖ ‖µ⋆‖) γ2k ∈ ℓ1+.

Indeed, under assumption (P1), the sequences (γkβk)k∈N , (ζ (γk))k∈N, and
(
γ2k/βk

)
k∈N belong to ℓ1+. More-

over, we have by assumptions (P3) and (P4) that ργ2k ≤ ρkγ2k ≤ β0ργ2k/βk, whence we get that
(
ρkγ

2
k

)
k∈N ∈ ℓ1+

and
(
γ2k
)
k∈N ∈ ℓ1+ after invoking assumption (P1). Thus all terms on the right hand side are summable. Let

wk
def
= [L (xk, µ⋆)− L (x⋆, µ⋆)] +

ρk
2
‖Axk − b‖2

zk
def
= γk+1‖Axk+1 − b‖2 + γkβkM

2/2 +K(F,ζ,C)ζ (γk) + Ckγ
2
k .

So far, we have shown that

rk+1 ≤ rk − γkwk + zk, (3.3.6)

where rk is bounded from below, and (zk)k∈N ∈ ℓ1+. The rest of the proof consists of invoking properly

Lemma 2.2.3.

(i) In order to use Lemma 2.2.3(ii), we need to show that for some positive constant α,

wk − wk+1 ≤ αγk.

Notice that the term L (xk, µ⋆) − L (x⋆, µ⋆) is proportional to γk by Lemma 3.2.3. For the second term

of wk, we have by Lemma 3.2.4 that ρk
2 ‖Axk − b‖

2 − ρk+1

2 ‖Axk+1 − b‖2 is proportional to γk. The

desired claim then follows from Lemma 2.2.3(ii).

(ii) By [10, Lemma 2.37], we can assert that (xk)k∈N possesses a weakly convergent subsequence, say
(
xkj
)
j∈N,

with cluster point x̄ ∈ C. Since ‖A · −b‖ ∈ Γ0(Hp) and in view of [10, Theorem 9.1], we have

‖Ax̄− b‖ ≤ lim inf
j

∥∥Axkj − b
∥∥ = lim

k
‖Axk − b‖ = 0,

where we used lower semicontinuity of the norm and Theorem 3.3.3. Thus Ax̄ = 0, meaning that x̄ is a

feasible point of (P). In turn, L (x̄, µ⋆) = Φ(x̄). The function L (·, µ⋆) is lower semicontinuous by (A1)
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and (A6). Thus, using [10, Theorem 9.1] and by virtue of claim (i), we have

Φ(x̄) = L (x̄, µ⋆) ≤ lim inf
j
L
(
xkj , µ

⋆
)
= lim

k
L (xk, µ⋆) = L (x⋆, µ⋆) ≤ L (x, µ⋆)

for all x ∈ Hp, and in particular for all x ∈ A−1(b). Thus, for every x ∈ A−1(b), we deduce that

Φ(x̄) ≤ L (x, µ⋆) = Φ(x),

meaning that x̄ is a solution for problem (P).

Recall rk from (3.2.29) which verifies (3.3.6). From Lemma 2.2.3(i), (rk)k∈N is convergent. By (P1) and

(P3), (γk)k∈N and (βk)k∈N both converge to 0. We also have that, for each solution to (D), µ⋆, for each

k ∈ N,

−Lk (xk, µk) = (L(xk, µ⋆)− Lk (xk, µk))− L(xk, µ⋆)
= g(Txk)− gβk(Txk) + 〈µ⋆ − µk, Axk − b〉 −

ρk
2
‖Axk − b‖2

− L(xk, µ⋆).

We have from Theorem 3.3.2(i) that ρk2 ‖Axk − b‖
2 → 0. In turn, for each dual solutionµ⋆, 〈µ⋆ − µk, Axk − b〉 →

0 since (µk)k∈N is bounded (Lemma 3.2.7). We also have, for each dual solution µ⋆, L(xk, µ⋆) →
L(x⋆, µ⋆) by claim (i) above. By Proposition 2.1.2(v) and (3.1.8), we get that

0 ≤
(
g(Txk)− gβk(Txk)

)
≤ βk

2
M2.

Passing to the limit and in view of (P3), we conclude that g(Txk) − gβk(Txk) → 0. Altogether, this

shows that Lk (xk, µk)→ L(x⋆, µ⋆). In turn, we conclude that the limit

lim
k→∞

‖µk − µ⋆‖2 = 2/c

(
lim
k→∞

rk − L(x⋆, µ⋆)
)

exists for each solution to the dual problem (D), µ⋆.

By Lemma 3.2.5 we have
(
γk ‖Ax̃k − b‖2

)
k∈N
∈ ℓ1+ which, by Lemma 2.2.2, implies that there exists a

subsequence
(
Ax̃kj

)
j∈N with

∥∥Ax̃kj − b
∥∥ → 0. Since the sequence (µk)k∈N is bounded by Lemma 3.2.7,

the subsequence
(
µkj
)
j∈N induced by the above is also bounded and thus admits a weakly convergent

subsequence
(
µkji

)
i∈N

with µkji ⇀ µ̄ for some µ̄ ∈ Hd. Then, by Fermat’s rule ([10, Theorem 16.2]),

the weak sequential cluster point µ̄ is a solution to (D) if and only if

0 ∈ ∂ (Φ∗ ◦ (−A∗)) (µ̄) + b.

Since the proximal operator is the resolvent of the subdifferential, it follows that (3.2.18) is equivalent, for

each i ∈ N, to

∇ϕkji
(
µkji

)
− b ∈ ∂

(
φ∗kji ◦ (−A

∗)
)(

µkji − ρkji∇ϕkji
(
µkji

))
. (3.3.7)

Since
(
Ax̃kj

)
j∈N converges strongly to b, and combined with (3.2.19), it holds that∇ϕkj

(
µkj
)

converges

strongly to 0. On the other hand, µkji − ρkji∇ϕkji
(
µkji

)
converges weakly to µ̄. We now argue that we

can pass to the limit in (3.3.7) by showing sequential closedness.

When g ≡ 0, we have, for all i ∈ N, φkji ≡ f + h and the rest of the argument relies on sequential

closedness of the graph of the subdifferential of Φ∗ ◦ (−A∗) ∈ Γ0(Hd) in the weak-strong topology. For

the general case, our argument will rely on the fundamental concept of Mosco convergence of functions,

which is epigraphical convergence for both the weak and strong topology (see [24] and [6, Definition 3.7]).

By Proposition 2.1.2(v) and assumptions (A1)-(A2),
(
φkji

)
j∈N

is an increasing sequence of functions in

Γ0 (Hd). It follows from [6, Theorem 3.20(i)] that φkji Mosco-converges to supi∈N φkji = supi∈N f +
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g
βkji ◦ T + h = f + g ◦ T + h = Φ since βkji → 0 by (P3). Bicontinuity of the Legendre-Fenchel

conjugation for the Mosco convergence (see [6, Theorem 3.18]) entails that φ∗kji
◦−(A∗)Mosco-converges

to (f + g ◦ T + h)∗ ◦ (−A∗) = φ∗ ◦ (−A∗). This implies, via [6, Theorem 3.66], that ∂φ∗kji
◦ (−A∗)

graph-converges to ∂Φ∗◦(−A∗), and [6, Proposition 3.59] shows that
(
∂φkji ◦ (−A

∗)
)
i∈N

is sequentially

closed for graph-convergence in the weak-strong topology on Hd, i.e., for any sequence
(
vkji , ηkji

)
i∈N

in the graph of ∂φ∗kji
◦ (−A∗) such that vkji converges weakly to v̄ and ηkji converges strongly to η̄, we

have η̄ ∈ ∂Φ∗ ◦ (−A∗)(v̄). Taking vkji = ∇ϕkji
(
µkji

)
− b and ηkji = µkji − ρkji∇ϕkji

(
µkji

)
, we

conclude that

0 ∈ ∂ (Φ∗ ◦ (−A∗)) (µ̄) + b,

i.e., µ̄ is a solution of the dual problem (D).

We now invoke (A9), for which we denote

(pi)i∈N =
(
∇ϕkji

(
µkji

)
− b
)
i∈N

and (qi)i∈N =
(
µkji − ρkji∇ϕkji

(
µkji

))
i∈N

.

We’ve shown that (pi)i∈N converges strongly to 0 and that (qi)i∈N converges weakly to µ̄. Due to (3.3.7),

we furthermore have, for each ω ∈ Ω̃, for each i ∈ N,

pi ∈ ∂
(
Φ∗
kji
◦ (−A∗)

)
(qi) ,

and thus by (A9), (qi)i∈N admits a subsequence (qil)l∈N such that qil → q̄, i.e., the sequence
(
µkjil

− ρkjil∇ϕkjil
(
µkjil

))
l∈N

is strongly convergent. Thus, the subsequence
(
µkjil

)
l∈N

is strongly convergent to µ̄. Since µ̄ is a solution

to (D), it holds that lim
k
‖µk − µ̄‖ exists. At the same time, we have shown that lim

l

∥∥∥µkjil − µ̄
∥∥∥ = 0 and

so the whole sequence (µk)k∈N converges strongly to µ̄.

(iii) Recalling that (γk)k∈N 6∈ ℓ1+ (see assumption (P2)), the rates in (3.3.4) follow by applying Lemma 2.2.3(iii)-

(iv) to (3.3.6). Notice that both terms inwk are positive and that ρk ≥ ρ > 0 (see again assumption (P4)).

Therefore we have that, for the same subsequence
(
xkj
)
j∈N, (3.3.8) holds.

(iv) The ergodic rate (3.3.2) follows by applying the Jensen’s inequality to the convex function L (·, µ⋆).

An important observation is that Theorem 3.3.3, which will be proved in Section 3.3.2, actually shows that

lim
k→∞

[
L (xk, µ⋆)− L (x⋆, µ⋆) +

ρk
2
‖Axk − b‖2

]
= 0,

and subsequentially, for each j ∈ N,

L
(
xkj , µ

⋆
)
− L (x⋆, µ⋆) + ρkj

2
‖Axkj − b‖2 ≤

1

Γkj
. (3.3.8)

This means, in particular, that the pointwise rate for feasibility and optimality hold simulatenously for the same

subsequence.

The following corollary is immediate.

Corollary 3.3.4. Under the assumptions of Theorem 3.3.3, if the problem (P) admits a unique solution x⋆,

then the primal sequence (xk)k∈N converges weakly to a solution of the primal problem, (P). Moreover, if Φ is

uniformly convex on C with modulus ψ : R+ → [0,+∞], then (xk)k∈N converges strongly to x⋆ at the ergodic

rate

ψ (‖x̄k − x⋆‖) = O

(
1

Γk

)
.
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Proof. By uniqueness, it follows from Theorem 3.3.3(ii) that (xk)k∈N has exactly one weak sequential clus-

ter point which is the solution to (P). Weak convergence of the sequence (xk)k∈N then follows from [10,

Lemma 2.38].

From [10, Proposition 19.21(v)], we know that −A∗µ⋆ ∈ ∂Φ(x⋆). This together with ψ-uniform convexity

of Φ imply that

Φ(x) ≥ Φ(x⋆) + 〈−A∗µ⋆, x− x⋆〉+ ψ (‖x− x⋆‖) , ∀x ∈ C,

where ψ is a an increasing non-negative funtion that vanishes only at 0. This is equivalent to

ψ (‖x− x⋆‖) ≤ L (x, µ⋆)− L (x⋆, µ⋆) , ∀x ∈ C.

Applying this inequality to x = xk, passing to the limit and using (3.3.3), we get ψ (‖xk − x⋆‖) → 0 which

forces strong convergence of xk by assumption on ψ. The ergodic rate follows from the same above inequality

applied to x = x̄k.

3.4 Comparison

In this section we compare and contrast CGALP with some other contemporary works which studied algorithms

sharing elements with CGALP . We have deferred this comparison to now to make use of the previous section

to concretely highlight the differences in the algorithms and approaches.

3.4.1 Conditional Gradient Framework

In [116] the following problem was analyzed in the finite-dimensional setting,

min
x∈C
{f (x) + g (Tx)} (3.4.1)

where f ∈ Γ0 (R
n) is Lipschitz-smooth, T ∈ R

d×n is a linear operator, g ◦ T ∈ Γ0 (R
n), and C is a compact,

convex subset of Rn. They develop an algorithm which avoids projecting onto the set C, instead utilizing a linear

minimization oracle lmoC (v) = Argmin
x∈C

〈x, v〉, and replaces the function g◦T with the smooth function gβk ◦T .

They consider only functions f which are Lipschitz-smooth and finite dimensional spaces, i.e. Rn, compared

to CGALP which weakens the assumptions on f to be differentiable and (F, ζ)-smooth (see Definition 2.1.13)

with an arbitrary real Hilbert space Hp (possibly infinite dimensional). Furthermore, the analysis in [116] is

restricted to the parameter choices γk = 2
k+1 and βk = β0√

k+1
exclusively, although they do include a section

in which they consider two variants of an inexact linear minimization oracle: one with additive noise and one

with multiplicative noise. In contrast, the results we present in Section 3.3 show optimality and feasibility for

a wider choice for both the sequence of stepsizes (γk)k∈N and the sequence of smoothing parameters (βk)k∈N,

although we only consider exact linear perturbation oracles of the form Argmin
s∈Hp

{h (s) + 〈x, s〉}. Finally, for

solving (3.4.1) with an exact linear minimization oracle, our algorithm encompasses the algorithm in [116] by

choosing h (x) = ιC (x), A ≡ 0, and restricting f to be in C1,1 (H) withH = R
n.

In [116, Section 5] there is a discussion on splitting and affine constraints using the conditonal gradient

framework presented. In this setting, i.e. assuming exact oracles, the primary difference between CGALP and

the conditional gradient framework is the approach each algorithm takes to handle affine constraints. In CGALP ,

the augmented Lagrangian formulation is used to account for the affine constraints, introducing a dual variable

µ and both a linear and quadratic term for the constraint Ax− b = 0. In contrast, in [116] the affine constraint

is treated the same as the nonsmooth term g ◦ T and thus handled by quadratic penalization/smoothing alone.

The consequence of smoothing for the affine constraint Ax = b comes from calculating the gradient of the

squared-distance to the constraint. This will involve solving a least squares problem at each iteration which can

be computationally expensive. Our algorithm does not need to solve such a linear system.
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The difference in the approaches is highlighted when both methods are applied to problem presented in

Section 3.5.3 with n = 2 since this problem necessitates an affine constraint ΠV⊥x = 0 for splitting. According

to [116, Section 5], we reformulate the problem to be

min
x(1)∈C1
x(2)∈C2

{
1

2

(
f
(
x(1)

)
+ f

(
x(2)

))
+ ι{x(1)}

(
x(2)

)}
.

Note that the inclusion of the function ι{x(1)}
(
x(2)

)
in the objective is equivalent to the affine constraint

ΠV⊥x = 0 in the n = 2 case. Apply the conditional gradient framework on the variable
(
x(1), x(2)

)
to get

sk ∈ Argmin
s(1)∈C1
s(2)∈C2





〈
s

(1)

s(2)


 ,



∇x(1)

[
1
2f
(
x
(1)
k

)
+ ιβk

x
(2)
k

(
x
(1)
k

)]

∇x(2)
[
1
2f
(
x
(2)
k

)
+ ιβk

x
(1)
k

(
x
(2)
k

)]




〉



,

which leads to a separable scheme that can be computed component-wise,

s
(1)
k ∈ Argmin

s∈C1

〈
s,

1

2
∇f

(
x
(1)
k

)
+
x
(1)
k − x

(2)
k

βk

〉

s
(2)
k ∈ Argmin

s∈C2

〈
s,

1

2
∇f

(
x
(2)
k

)
+
x
(2)
k − x

(1)
k

βk

〉
.

(3.4.2)

Compare the direction obtained in (3.4.2) to the one obtained in (3.5.4), the components of which we rewrite

below for n = 2,

s
(1)
k ∈ Argmin

s∈C1

〈
s,

1

2
∇f

(
x
(1)
k

)
+

1

2

(
µ
(1)
k − µ

(2)
k

)
+
ρk
2

(
x
(1)
k − x

(2)
k

)〉

s
(2)
k ∈ Argmin

s∈C2

〈
s,

1

2
∇f

(
x
(2)
k

)
+

1

2

(
µ
(2)
k − µ

(1)
k

)
+
ρk
2

(
x
(2)
k − x

(1)
k

)〉
.

(3.4.3)

Due to affine constraint, the computation of the direction in (3.4.2) necessitates smoothing and, as a consequence,

the parameter βk, which is necessarily going to 0. In CGALP , the introduction of the dual variable µk in place

of smoothing the affine constraint avoids the parameter βk. Instead, we have the parameter ρk but ρk can be

picked to be constant without issue.

3.4.2 FW-AL Algorithm

In [56] the following problem was analyzed,

min
x∈

n⋂

i=1
Ci

Ax=0

f (x)

using a combination of the Frank-Wolfe algorithm with the augmented Lagrangian to account for the constraint

Ax = 0. The function f is assumed to be Lipschitz-smooth, in contrast to our approach. The perspective used in

their paper is to modify the classic ADMM algorithm, replacing the marginal minimization with respect to the

primal variable by a Frank-Wolfe step instead, although their analysis is not restricted only to Frank-Wolfe steps.

Indeed, in all the scenarios where one can apply FW-AL using a Frank-Wolfe step our algorithm encompasses

FW-AL as a special case, discussed in Section 3.5.3. The primary differences between CGALP and FW-AL are

in the convergence results and the generality of CGALP . The results in [56] prove convergence of the objective in

the case where the sets Ci are polytopes and convergence of the iterates in the case where the sets Ci are polytopes

and f is a generalized strongly convex function,2 but they do not prove convergence of the objective, convergence

2A function f : Rn → R is said to be generalized strongly convex if it can be written f (x) = g (Ax)+ 〈b, x〉 for all x ∈ R
n where

b ∈ R
n, A ∈ R

n×m is a linear operator, and g : Rm → R is strongly convex with respect to the euclidean norm.
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(or even boundedness) of the dual variable, or asymptotic feasibility of the iterates in the general case where

each Ci is a compact, convex set. Instead, they prove two theorems which imply subsequential convergence

of the objective and subsequential asymptotic feasibility in the general case and subsequential convergence of

the iterates to the optimum in the generalized strongly convex case in [56, Theorem 2] and [56, Corollary 2]

respectively. Unfortunately, each of these results is obtained separately and so the subsequences that produce

each result are not guaranteed to coincide with one another.

Interestingly, the results they obtain are not unique to Frank-Wolfe style algorithms as their analysis is from the

perspective of a modified ADMM algorithm; they only require that the algorithm used to replace the marginal

minimization on the primal variable in ADMM produces sublinear decrease in the objective. Finally, they do

not provide conditions for the dual multiplier sequence, µk in our notation, to be bounded as they discuss in their

analysis of issues with similar proofs, e.g. in GDMM. This is a crucial issue as the constants in their bounds

depend on the norm of these dual multipliers.

3.5 Applications

3.5.1 Sum of Several Nonsmooth Functions

In this section we explore the applications of Algorithm 8 to splitting in composite optimization problems, where

we allow the presence of more than one nonsmooth function g or h in the objective:

min
x∈Hp

{
f (x) +

n∑

i=1

gi (Tix) +
n∑

i=1

hi (x)

}
. (3.5.1)

First, we denote the product space by Hp
def
= Hnp endowed with the scalar product 〈〈x,y〉〉 = 1

n

∑n
i=1

〈
x(i), y(i)

〉
,

where x and y are vectors in Hp with x
def
=
(
x(1), . . . , x(n)

)⊤
. We define also V as the diagonal subspace of

Hp, i.e. V def
= {x ∈ Hp : x(1) = . . . = x(n)}, V⊥ the orthogonal subspace to V , and ΠV ,ΠV⊥ the orthogonal

projections onto V , V⊥ - respectively. We finally introduce the (diagonal) linear operator T : Hp →Hp defined

by

[T (x)](i) = Tix
(i)

and the functions

F (x)
def
=

1

n

n∑

i=1

f
(
x(i)
)
; G (Tx)

def
=

n∑

i=1

gi

(
Tix

(i)
)
; H (x)

def
=

n∑

i=1

hi

(
x(i)
)
.

Then problem (3.5.1) is obviously equivalent to

min
x∈Hp

{F (x) +G(Tx) +H (x) : ΠV⊥x = 0} , (3.5.2)

which fits in the setting of our main problem (P). In order to the presentation clearer, we separate the two cases

of multiple g and multiple h, that can be trivially combined. Moreover, we focus on the main case involving

indicator functions, e.g., hi = ιCi .

3.5.2 Sum of Several Simple Functions Over a Compact Set

Consider the following composite minimization problem,

min
x∈C

{
f (x) +

n∑

i=1

gi (Tix)

}
. (3.5.3)

We can reformulate the problem in the product space Hp using the above notation to get,

min
x∈Cn∩V

{F (x) +G (Tx)} .
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Applying Algorithm 8 to this problem gives a completely separable scheme; we first compute the direction,

sk ∈ Argmin
s∈Cn∩V

〈〈∇
(
F (xk) +Gβk (Txk)

)
, s〉〉,

which reduces to the following computation since sk =




sk
...

sk


 has identical components,

sk ∈ Argmin
s∈C

〈
n∑

i=1

(
1

n
∇f

(
x
(i)
k

)
+∇gβki

(
Tix

(i)
k

))
, s

〉
.

The term∇gβki has a closed form given in Proposition 2.1.2 which can be used to get the following formula for

the direction,

sk ∈ Argmin
s∈C

〈
n∑

i=1

(
1

n
∇f

(
x
(i)
k

)
+

1

βk
T ∗
i

(
Tix

(i)
k − proxβg

(
Tix

(i)
k

)))
, s

〉
.

3.5.3 Minimizing Over Intersection of Compact Sets

A classical problem found in machine learning is to minimize a Lipschitz-smooth function f over the intersection

of convex, compact sets Ci in some real Hilbert spaceH,

min
x∈

n⋂

i=1
Ci
f (x) = min

x∈H

{
f (x) +

n∑

i=1

hi (x)

}
,

where hi ≡ ιCi . Reformulating the problem in the product space Hp gives,

min
x∈Hp

Π
V⊥x=0

{F (x) +H (x)} .

Then, we can apply Algorithm 8 and compute the step direction

sk ∈ Argmin
s∈C1×...×Cn

〈〈s,∇
[
F (x) + 〈µk,ΠV⊥xk〉+

ρk
2
‖ΠV⊥xk‖2

]
〉〉

which gives a separable scheme for each component of sk =




s
(1)
k
...

s
(n)
k


,

s
(i)
k ∈ Argmin

s∈Ci

〈
s,

1

n
∇f

(
x
(i)
k

)
+ (ΠV⊥µk)

(i) + ρk (ΠV⊥xk)
(i)

〉

= Argmin
s∈Ci

〈
s,

1

n
∇f

(
x
(i)
k

)
+ µ

(i)
k −

1

n

n∑

j=1

µ
(j)
k + ρk


x(i)k −

1

n

n∑

j=1

x
(j)
k



〉
.

(3.5.4)

3.6 Numerical Experiments

In this section we present some numerical experiments comparing the performance of Algorithm 8 and a prox-

imal algorithm applied to splitting in composite optimization problems.

3.6.1 Projection Problem

First, we consider a simple projection problem,

min
x∈R2

{
1

2
‖x− y‖22 : ‖x‖1 ≤ 1, Ax = 0

}
, (3.6.1)
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where y ∈ R
2 is the vector to be projected andA : R2 → R

2 is a rank-one matrix. To exclude trivial projections,

we choose randomly y /∈ B
1
1 ∩ ker(A), where B1

1 is the unit ℓ1 ball centered at the origin. Then Problem (3.6.1)

is nothing but Problem (P) with f (x) = 1
2 ‖x− y‖

2
2, g ≡ 0, h ≡ ι

B1
1

and C = B
1
1.

100 101 102 103 104
k

10−3

10−2

10−1

100


(
̄x k
,μ

* )
−

(x

* ,
μ
* )

O( 1
log(k+2))

O( 1
(k+2)b)

a= b=0
a=0, b=0.32333
a=1, b=0.32333

Figure 3.1: Ergodic convergence profiles for CGALP applied to the simple projection problem.

The assumptions mentioned previously, i.e. (A1)-(A8), all hold in this finite-dimensional case as f , g, and

h are all in Γ0

(
R
2
)
, f is Lipschitz-smooth, h is the indicator function for a compact convex set, g has full

domain and 0 ∈ ker(A) ∩ int(C). Regarding the parameters and the associated assumptions, we choose γk
according to Example 3.1.3 with (a, b) ∈ {(0, 0), (0, 1/3−0.01), (1, 1/3−0.01)}, θk = γk, and ρ = 22−b+1.

The ergodic convergence profiles of the Lagrangian are displayed in Figure 3.1 along with the theoretical rates

(see Theorem 3.3.3 and Example 3.3.1). The observed rates agree with the predicted ones of O
(

1
log(k+2)

)
,

O
(

1
(k+2)b

)
and o

(
1

(k+2)b

)
for the respective choices of (a, b).

3.6.2 Matrix Completion Problem

We also consider the following, more complicated matrix completion problem,

min
X∈RN×N

{
‖ΩX − y‖1 : ‖X‖∗ ≤ δ1, ‖X‖1 ≤ δ2

}
, (3.6.2)

where δ1 and δ2 are positive constants, Ω : RN×N → R
p is a masking operator, y ∈ R

p is a vector of observa-

tions, and ‖·‖∗ and ‖·‖1 are respectively the nuclear and ℓ1 norms. The mask operator Ω is generated randomly

by specifying a sampling density, in our case 0.8. We generate the vector y randomly in the following way. We

first generate a sparse vector ỹ ∈ R
N withN/5 non-zero entries independently uniformly distributed in [−1, 1].

We take the exterior product ỹỹ⊤ = X0 to get a rank-1 sparse matrix which we then mask to get ΩX0. The

radii of the contraints in (3.6.2) are chosen according to the nuclear norm and ℓ1 norm of X0, δ1 =
‖X0‖∗

2 and

δ2 =
‖X0‖1

2 .
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3.6.2.1 CGALP

Problem (3.6.2) is a special instance of (3.5.1) with n = 2, f ≡ 0, gi = ‖· − y‖1 /2, Ti = Ω, h1 = ι
B
δ1
∗

,

h2 = ι
B
δ2
1

, where B
δ1∗ and B

δ2
1 are the nuclear and ℓ1 balls of radii δ1 and δ2. We then follow the same

steps as in Section 3.5.1. Let Hp = R
N×N , Hp = H2

p, X =


X

(1)

X(2)


 ∈ Hp. We then have G (ΩX) =

1
2

(∥∥ΩX(1) − y
∥∥
1
+
∥∥ΩX(2) − y

∥∥
1

)
, and H(X) = ι

B
δ1
∗
(X(1)) + ι

B
δ2
1

(X(2)). Then problem (3.6.2) is obvi-

ously equivalent to

min
X∈Hp

{
G (ΩX) +H(X) : ΠV⊥X = 0

}
, (3.6.3)

which is a special case of (3.5.2) with F ≡ 0. It is immediate to check that our assumptions (A1)-(A8) hold.

Indeed, all functions are in Γ0(Hp) and F ≡ 0, and thus (A1) and (A2) are verified. C = B
δ1∗ × B

δ2
1 which

is a non-mepty convex compact set. We also have ΩC ⊂ dom(∂G) = R
p × R

p, and for any z ∈ R
p × R

p,

∂G(z) ⊂ B
1/2
∞ × B

1/2
∞ and thus (A4) is verified. (A5) also holds with Lh = 0. V is closed as we are in finite

dimension, and thus (A7) is fulfilled. We also have, since dom(G ◦ Ω) = Hp,

0 ∈ V ∩ int (dom(G ◦ Ω)) ∩ int (C) = V ∩ int(Bδ1∗ )× int(Bδ21 ),

which shows that (A8) is verified. The latter is nothing but the condition in [10, Fact 15.25(i)]. It then follows

from the discussion in Remark 3.1.1(iv) that (A6) holds true.

We use Algorithm 8 by choosing the sequence of parameters γk =
1

k+1 , βk =
1√
k+1

, θk = γk, and ρk ≡ 15,

which verify all our assumptions (P1)-(P7) in view of Example 3.1.3. Our choice of γk is the most common in

the literature, and it can be improved according to our discussion in the previous section.

Finding the direction Sk by solving the linear minimization oracle is a separable problem, and thus each

component is given by,

S
(1)
k ∈ Argmin

S(1)∈B
δ1
‖·‖∗

〈
Ω∗
(
ΩX

(1)
k − y − prox βk

2 ‖·‖1

(
ΩX

(1)
k − y

))

βk

+
1

2

(
µ
(1)
k − µ

(2)
k + ρk

(
X

(1)
k −X(2)

k

))
, S(1)

〉
,

S
(2)
k ∈ Argmin

S(2)∈B
δ2
‖·‖1

〈
Ω∗
(
ΩX

(2)
k − y − prox βk

2 ‖·‖1

(
ΩX

(2)
k − y

))

βk

+
1

2

(
µ
(2)
k − µ

(1)
k + ρk

(
X

(2)
k −X(1)

k

))
, S(2)

〉
.

(3.6.4)

Because of the structure of the sets Bδ1‖·‖∗
and B

δ2
‖·‖1

, finding the first component of Sk reduces to computing the

leading right and left singular vectors of

Ω∗
(
ΩX

(1)
k − y − proxβk

2
‖·‖1

(
ΩX

(1)
k − y

))

βk
+

1

2

(
µ
(1)
k − µ

(2)
k + ρk

(
X

(1)
k −X

(2)
k

))

while finding the second component reduces to computing the largest entry of
∣∣∣∣∣∣∣



Ω∗
(
ΩX

(2)
k − y − prox βk

2 ‖·‖1

(
ΩX

(2)
k − y

))

βk
+

1

2

(
µ
(2)
k − µ

(1)
k + ρk

(
X

(2)
k −X(1)

k

))



(i,j)

∣∣∣∣∣∣∣

over all the entries (i, j). The dual variable update is given by,

µk+1
def
=


µ

(1)
k+1

µ
(2)
k+1


 =


µ

(1)
k

µ
(2)
k


+

γk
2


X

(1)
k+1 −X

(2)
k+1

X
(2)
k+1 −X

(1)
k+1


 .
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3.6.2.2 GFB

Let Hp = R
N×N , Hp = H3

p, W =




W (1)

W (2)

W (3)


 ∈ Hp, Q (W ) =

∥∥ΩW (1) − y
∥∥
1
+ ι

B
δ1
‖·‖∗

(
W (2)

)
+

ι
B
δ2
‖·‖1

(
W (3)

)
. Then we reformulate problem (3.6.2) as

min
W∈Hp

{
Q (W ) : W ∈ V

}
, (3.6.5)

which fits the framework to apply the GFB algorithm proposed in [98] (in fact Douglas-Rachford since the

smooth part vanishes).

The algorithm has three steps, each of which is separable in the components. We choose the step sizes

λk = γ = 1 in the GFB to get,





Uk+1 =




2W
(1)
k − Z(1)

k +Ω∗
(
y − Ω

(
2W

(1)
k − Z(1)

k

)
+ prox‖·‖1

(
Ω
(
2W

(1)
k − Z(1)

k

)
− y
))

Π
B
δ1
‖·‖∗

(
2W

(2)
k − Z(2)

k

)

Π
B
δ2
‖·‖1

(
2W

(3)
k − Z(3)

k

)




Zk+1 = Zk +Uk+1 −W k

W k+1 =




∑3
i=1 Z

(i)
k+1/3∑3

i=1 Z
(i)
k+1/3∑3

i=1 Z
(i)
k+1/3




(3.6.6)

We know from [98] that Zk converges to Z⋆, and W k and Uk both converge to W ⋆ = ΠV(Z
⋆) =

(X⋆, X⋆, X⋆), where X⋆ is a minimizer of (3.6.2).

3.6.2.3 Results

We compare the performance of CGALP with GFB for varying dimension, N , using their respective ergodic

convergence criteria. For CGALP this is the quantity L
(
X̄k, µ

∗) − L (X⋆,µ⋆) where X̄k =
k∑
i=0

γiXi/Γk.

Meanwhile, for GFB, we know from [83] that the Bregman divergence Dv
⋆

Q

(
Ūk

)
= Q(Ūk) − Q(W ⋆) −

〈
v⋆, Ūk −W ⋆

〉
, with Ūk =

k∑
i=0

U i/(k + 1) and v⋆ = (W ⋆ − Z⋆)/γ, converges at the rate O(1/(k + 1)).

To compute the convergence criteria, we first run each algorithm for 105 iterations to approximate the optimal

variables (X⋆ and µ⋆ for CGALP , and Z⋆ and W ⋆ for GFB). Then, we run each algorithm again for 105

iterations, this time recording the convergence criteria at each iteration. The results are displayed in Figure 3.2.

It can be observed that our theoretically predicted rate (which is O (1/ log(k + 2)) for CGALP according to

Theorem 3.3.3 and Example 3.3.1) is in close agreement with the observed one. On the other hand, as is very

well-known, employing a proximal step for the nuclear ball constraint will necessitate to compute an SVD which

is much more time consuming than computing the linear minimization oracle for largeN . For this reason, even

though the rates of convergence guaranteed for CGALP are slower than for GFB, one can expect CGALP to be

a more time computationally efficient algorithm for large N .

Visualizing the resulting matrices, we can see that both have correctly identified the support. Similarly, both

have identified the correct sign; for visualization purpose we have thus taken the absolute values of the entries

of the solutions to assist the visualization.
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Figure 3.2: Convergence profiles for CGALP (left) and GFB (right) for N = 32, N = 64, and N = 128.
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Figure 3.3: Completed matrices for the n = 32 matrix completion problem, with ground truth and masking

matrix shown as well.
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Chapter 4

Inexact and Stochastic Generalized

Conditional Gradient with Augmented

Lagrangian and Proximal Step

In this chapter, we propose and analyze inexact and stochastic versions of the CGALP algorithm developed in

Chapter 3, which we denote ICGALP , that allow for solving problems of the form

min
x∈H
{f (x) + g (Tx) + h (x) : Ax = b} (4.0.1)

where f ∈ Γ0 (H) satisfies a relative smoothness condition, g◦T ∈ Γ0 (H)with g prox-friendly, h ∈ Γ0 (H) has

compact domain and admits an accessible linear minimization oracle, and T andA are bounded linear operators.

Inexactness pertains to errors in the computation of several important quantities. In particular, we propose

three different inexact and stochastic methods of computing the gradient ∇f in a practically implementable

way. We detail how to show that the practical sampling routines induced by these methods are compatible with

ICGALP by analyzing the summability of the induced errors. The first is a stochastic method of approximating

the gradient ∇f using a necessarily increasing batch size for risk minimization problems. The second is a

variance reduction method which allows us to take as little as a single sample at each iteration, greatly reducing

the computational load and storage requirements. Finally, we propose a deterministic sweeping method which

samples in a predetermined way. All of these methods allow to approximate not only ∇f but also the gradient

of ‖A · −b‖2 in the augmented Lagrangian coming from the affine constraint, or when computing the proximal

mapping of g. Our main contributions and findings can be summarized as follows:

Main contributions of this chapter

◮ Convergence guarantees and rates for both the feasibility (‖Axk − b‖)k∈N and the optimality

(L (xk, µ⋆)− L (x⋆, µ⋆))k∈N in a P-almost sure sense.

◮ Convergence rates for the feasibility and optimality in terms of their expectation.

◮ P-almost sure strong convergence of the sequence of dual variables (µk)k∈N.

◮ A numerical verification of the theorems proposed for the variance reduction and sweeping methods.

Our algorithm is the only conditional gradient algorithm, i.e., using the linear minimization oracle

over C, which can solve this problem with stochastic approximations of both ∇f and the augmented

Lagrangian penalty term, in contrast to contemporary work like [77]. We compare the variance re-

duction and sweeping methods for various different batch sizes and step sizes, with plots validating

our claimed convergence results.

The content of this chapter appeared in [109].
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4.1 Introduction

4.1.1 Problem Statement

We consider the following composite minimization problem,

min
x∈Hp

{f (x) + g (Tx) + h (x) : Ax = b} , (P)

and its associated dual problem,

min
µ∈Hd

(f + g ◦ T + h)∗ (−A∗µ) + 〈µ, b〉 , (D)

where we have denoted by ∗ both the Legendre-Fenchel conjugate and the adjoint operator, to be understood

from context. We consider Hp, Hd, and Hv to be arbitrary real Hilbert spaces, possibly infinite-dimensional,

whose indices correspond to a primal, dual, and auxilliary space, respectively;A : Hp → Hd and T : Hp → Hv
to be bounded linear operators with b ∈ ran(A); functions f , g, and h to all be convex, closed, and proper real-

valued functions. Additionally, we will assume that the function f satisfies a certain differentiability condition

generalizing Lipschitz-smoothness, Hölder-smoothness, etc (see Definition 2.1.13), that the function g has a

proximal mapping which is accessible, and that the function h admits an accessible linearly-perturbed mini-

mization oracle with C
def
= dom (h) a weakly compact subset ofHp.

In fact, the problem under consideration here is exactly the same as that of Chapter 3 (and by extension, [108]),

however, in this chapter, we consider an inexact extension of the algorithm presented and analyzed in Chapter 3

to solve (P). The extension amounts to allowing either deterministic or stochastic errors in the computation of

several quantities, including the gradient or prox terms, e.g. ∇f , proxβg, and the linear minimization oracle

itself.

4.1.2 Algorithm

For each k ∈ N, we denote by λk and λsk random variables, i.e., measurable mappings from (Ω,F ,P) to Hp
and R+ respectively. In this context, λk will represent the error in the gradient or proximal terms and λsk will

– 60 –



Chapter 4 4.1. Introduction

represent the error in the linear minimization oracle itself.

Algorithm 9: Inexact Conditional Gradient with Augmented Lagrangian and Proximal-step (IC-

GALP )

Input: x0 ∈ C def
= dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N, (θk)k∈N , (ρk)k∈N ∈ ℓ+.

k = 0

repeat

yk = proxβkg (Txk)

zk = ∇f(xk) + T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b) + λk

sk ∈ Argmins∈Hp
{h (s) + 〈zk, s〉}

ŝk ∈ {s ∈ Hp : h (s) + 〈zk, s〉 ≤ h (sk) + 〈zk, sk〉 + λsk}
xk+1 = xk − γk (xk − ŝk)
µk+1 = µk + θk (Axk+1 − b)
k ← k + 1

until convergence;

Output: xk+1.

To improve readability, we list some notation for the functionals we will employ throughout the analysis of

the algorithm (similarly to Chapter 3),

Φ (x)
def
= f (x) + g (Tx) + h (x) ;

L (x, µ) def
= f (x) + g (Tx) + h (x) + 〈µ,Ax− b〉 ;

Lk (x, µ) def
= f (x) + gβk (Tx) + h (x) + 〈µ,Ax− b〉 + ρk

2
‖Ax− b‖2 ;

Ek (x, µ) def
= f (x) + gβk (Tx) + 〈µ,Ax− b〉 + ρk

2
‖Ax− b‖2 ;

φk (x)
def
= f (x) + gβk (Tx) + h (x) .

(4.1.1)

We can recognize L (x, µ) as the classical Lagrangian, Lk (x, µ) as the augmented Lagrangian with smoothed

g, Ek (x, µ) as the smooth part of Lk (x, µ), and φk (x) as the primal objective with smoothed g. With this

notation in mind, we can see zk as ∇xEk (xk, µk) and λk as the error in the computation of ∇xEk (xk, µk).
We define the filtration S

def
= (Sk)k∈N where Sk

def
= σ (x0, µ0, ŝ0, . . . , ŝk) is the σ-algebra generated by the

random variables x0, µ0, ŝ0, . . . , ŝk (see Section 2.3). Furthermore, due to the error terms being contained in

the direction finding step, we have that xk+1 and µk+1 are completely determined by Sk. Another noteworthy

consequence of the error terms being contained in the direction finding step is that the primal iterates (xk)k∈N
remain in C, as in the classical Frank-Wolfe algorithm, while the dual iterates (µk)k∈N remain in ran (A).

Finally, we define the notation for the set of solutions for (P) and (D) to be

SP

def
= Argmin

x∈Hp

{f (x) + g (x) + h (x) : Ax = b} and SD

def
= Argmin

µ∈Hd

{(f + g + h)∗ (−A∗µ) + 〈µ, b〉}

(4.1.2)

and the notation for P-a.s. weak cluster points of a sequence ofHp-valued random variables (xk)k∈N to be

W
[
(xk)k∈N

] def
=
{
x ∈ Hp : ∃

(
xkj
)
j∈N , xkj ⇀ x

}
. (4.1.3)
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4.1.3 Assumptions

4.1.3.1 Assumptions on the functions

We impose the following assumptions on the problem we consider; for some results, only a subset of them will

be necessary:

(A1) The functions f, g ◦ T , and h belong to Γ0 (Hp).
(A2) The pair (f, C) is (F, ζ)-smooth (see Definition 2.1.13), where we recall C def

= dom (h).

(A3) The set C is weakly compact (and thus contained in a ball of radius R > 0).

(A4) It holds TC ⊂ dom(∂g) and sup
x∈C

∥∥∥[∂g (Tx)]0
∥∥∥ =M < +∞.

(A5) The function h is Lipschitz continuous relative to its domain C with constant Lh ≥ 0, i.e., ∀(x, z) ∈ C2,
|h(x)− h(z)| ≤ Lh ‖x− z‖.

(A6) There exists a saddle-point (x⋆, µ⋆) ∈ Hp ×Hd for the Lagrangian L.

(A7) The set ran(A) is closed.

(A8) One of the following holds:

(I) A−1 (b) ∩ int (dom (g ◦ T )) ∩ int (C) 6= ∅, where A−1 (b) is the pre-image of b under A.

(II) Hp andHd are finite-dimensional and




A−1 (b) ∩ ri (dom (g ◦ T )) ∩ ri (C) 6= ∅
and

ran (A∗) ∩ par (dom (g ◦ T ) ∩ C)⊥ = {0} .
(4.1.4)

(A9) The spaceHd is separable.

(A10) The set-valued mappings (∂ (φ∗k ◦ (−A∗)))k∈N satisfy the following property: for any sequence ((pk, qk))k∈N
satisfying, for each k ∈ N,

pk ∈ ∂ (φ∗k ◦ (−A∗)) (qk) ,

with pk → p and qk ⇀ q, the sequence (qk)k∈N admits a strong cluster point.

We recall that the lemmas Lemma 2.1.17 and Lemma 2.1.18 outline sufficient conditions which ensure that

assumption (A4) holds for g and show why it’s unnecessary to make a similar assumption for f in light of (A1)

and (A2).

Remark 4.1.1. If the dimension ofHd is finite, then (A10) is satisfied because weakly compact sets are compact

in such spaces. Alternatively, another sufficient condition is to impose that the sublevel sets of the functions

(φ∗k ◦ (−A∗))k∈N are compact, for instance if the functions are uniformly convex, unfiormly in k.

4.1.3.2 Assumptions on the parameters and error terms

We impose the following assumptions on the parameters and error terms and, as with the assumptions above,

for some results only a subset will be necessary:

(P1) (γk)k∈N ⊂]0, 1] and the sequences (ζ (γk))k∈N ,
(
γ2k/βk

)
k∈N and (γkβk)k∈N belong to ℓ1+.

(P2) (γk)k∈N /∈ ℓ1.
(P3) (βk)k∈N ∈ ℓ+ is nonincreasing and converges to 0.

(P4) (ρk)k∈N ∈ ℓ+ is nondecreasing with 0 < ρ ≤ ρk ≤ ρ < +∞.

(P5) For some positive constants M and M , M ≤ (γk/γk+1) ≤M .

(P6) (θk)k∈N satisfies θk =
γk
c for some c > 0 such that Mc −

ρ

2 < 0.
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(P7) (γk)k∈N and (ρk)k∈N satisfy ρk+1 − ρk − γk+1ρk+1 +
2
cγk −

γ2k
c ≤ 0 for c in (P6).

(P8) (γk+1E [‖λk+1‖ | Sk])k∈N ∈ ℓ1+ (S) and
(
γk+1E

[
λsk+1 | Sk

])
k∈N ∈ ℓ

1
+ (S).

(P9) (γk+1E [‖λk+1‖])k∈N ∈ ℓ1+ and
(
γk+1E

[
λsk+1

])
k∈N ∈ ℓ

1
+.

Remark 4.1.2. To satisfy (P7), it suffices to take (ρk)k∈N to be a constant sequence, i.e. ρk ≡ ρ, with ρ

sufficiently large to satisfy 2Mc < ρ, a similar requirement as in (P6). The condition (P7) would then be

satisfied as follows,

(1− γk+1) ρ− ρ+
2

c
γk −

γ2k
c

= −γk+1ρ+
γk
c
(2− γk)

≤ −γk+1ρ+
2γk
c

≤ γk+1

(
2
M

c
− ρ
)

< 0.

Remark 4.1.3. We will also denote the gradient of Ek with errors as

∇̂xEk (x, µ) def
= ∇xEk (x, µ) + λk.

It is possible to further decompose the error term λk, for instance, into λfk − T ∗λgk/βk where λfk is the error in

computing ∇f (xk) and λgk is the error in evaluating proxβkg (Txk). In this case, the condition

(γk+1E [‖λk+1‖ | Sk])k∈N ∈ ℓ1+ (S)

in (P8) is sufficiently satisfied by demanding that

(
γk+1E

[∥∥∥λfk+1

∥∥∥ | Sk
])

k∈N
∈ ℓ1+ (S) and

(
γk+1

βk+1
E

[∥∥λgk+1

∥∥ | Sk
])

k∈N
∈ ℓ1+ (S) .

4.1.4 Organization of the Chapter

The remainder of the chapter is divided into four sections. In Section 4.2, the main estimations, e.g. for the fea-

sibility and Lagrangian convergence, are established and then used in the proceeding Section 4.3. The analysis

and results extend those of Chapter 3 to the inexact and stochastic setting. In Section 4.4, we consider differ-

ent problem instances where inexact deterministic or stochastic computations are involved. Finally, numerical

results are reported in Section 4.5 to support our theoretical findings.

4.2 Preliminary Estimations

4.2.1 Preparatory Results

The following two lemmas come directly from Chapter 3, we include their statement for convenience.

Lemma 4.2.1. Suppose (A1), (A2) and (P1) hold. For each k ∈ N, define the quantity

Lk
def
=
‖T‖2
βk

+ ‖A‖2ρk. (4.2.1)

Then, for each k ∈ N, we have the following inequality,

Ek (xk+1, µk) ≤ Ek (xk, µk) + 〈∇xEk (xk, µk) , xk+1 − xk〉+DF (xk+1, xk)

+
Lk
2
‖xk+1 − xk‖2.

Proof. See Lemma 3.2.1
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Lemma 4.2.2. Suppose (A1) and (A2) hold. Then, for each k ∈ N and for every x ∈ Hp,

Ek (x, µk) ≥ Ek (xk, µk) + 〈∇xEk (xk, µk) , x− xk〉+
ρk
2
‖A(x− xk)‖2.

Proof. See Lemma 3.2.2.

Lemma 4.2.3. Assume that (A3) and (P4) hold. Let (xk)k∈N be the sequence of primal iterates generated by

Algorithm 9 with Sk
def
= σ (x0, µ0, ŝ0, . . . , ŝk) as before. Then, for each k ∈ N, we have the following estimate,

ρk
2
‖Axk − b‖2 −

ρk+1

2
E

[
‖Axk+1 − b‖2 | Sk−1

]
≤ ρdC ‖A‖ (‖A‖R+ ‖b‖) γk (P-a.s.) .

Proof. For each k ∈ N, by convexity of the function
ρk+1

2 ‖A · −b‖
2

and the assumption (P4) that (ρk)k∈N is

nondecreasing, we have,

ρk
2
‖Axk − b‖2 −

ρk+1

2
‖Axk+1 − b‖2 ≤

ρk+1

2
‖Axk − b‖2 −

ρk+1

2
‖Axk+1 − b‖2

≤
〈
∇
(ρk+1

2
‖A · −b‖2 (xk) , xk − xk+1

)〉

= ρk+1 〈Axk − b, A (xk − xk+1)〉 .

Recall that, for each k ∈ N, xk+1 = xk − γk (xk − ŝk) and take the expectation to find,

ρk
2
‖Axk − b‖2 − E

[ρk+1

2
‖Axk+1 − b‖2 | Sk−1

]
≤ ργkE [〈Axk − b, A (xk − ŝk)〉 | Sk−1]

≤ ργkdC ‖A‖ (‖A‖R+ ‖b‖) ,
where we have used the Cauchy-Schwarz inequality and the boundedness of C, assumed in (A3), in the last

inequality.

Remark 4.2.4. The above result still holds if we replace both ρk and ρk+1 by the constant 2 and shift the index

by 1, i.e., for each k ∈ N,

‖Axk+1 − b‖2 − E

[
‖Axk+2 − b‖2 | Sk

]
≤ 2dC ‖A‖ (‖A‖R+ ‖b‖) γk+1 (P-a.s.) .

Lemma 4.2.5. Suppose that (A1)-(A6) hold. Let (xk)k∈N be the sequence of primal iterates generated by

Algorithm 9 and µ⋆ a solution, which exists by (A6), of the dual problem, and recall the constant D from

Lemma 2.1.18. Then, for each k ∈ N, we have the following estimate,

L (xk, µ⋆)− E [L (xk+1, µ
⋆) | Sk−1] ≤ γkdC (M ‖T‖ +D + Lh + ‖µ⋆‖ ‖A‖) (P-a.s.) .

Proof. We recall the proof from Lemma 3.2.3 with a slight modification to account for the inexactness of the

algorithm. Define uk
def
= [∂g(Txk)]

0
and recall that, by (A4) and the fact that for all k ∈ N, xk ∈ C, we have

‖uk‖ ≤M . By (A1), the function Φ (x)
def
= f (x) + g (Tx) + h (x) is convex. Then, for each k ∈ N, ,

L (xk, µ⋆)− L (xk+1, µ
⋆) = Φ(xk)− Φ(xk+1) + 〈µ⋆, A (xk − xk+1)〉
≤ 〈uk, T (xk − xk+1)〉+ 〈∇f(xk), xk − xk+1〉
+ Lh‖xk − xk+1‖+ ‖µ⋆‖ ‖A‖ ‖xk − xk+1‖,

where we used the subdifferential inequality (2.1.4) on g and f , the Lh-Lipschitz continuity of h relative to C
(see (A5)), and the Cauchy-Schwarz inequality on the inner product. Since, for each k ∈ N, xk+1 = xk +

γk (ŝk − xk), we obtain, for each k ∈ N,

L (xk, µ⋆)− L (xk+1, µ
⋆) ≤ γk

(
〈uk, T (xk − ŝk)〉+ 〈∇f(xk), xk − ŝk〉+ Lh‖xk − ŝk‖

+ ‖µ⋆‖ ‖A‖ ‖xk − ŝk‖
)
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Now take the expectation with respect to the filtration Sk−1, such that xk is completely determined, to get, for

each k ∈ N,

L (xk, µ⋆)− E [L (xk+1, µ
⋆) | Sk−1] ≤ γk

(
E [〈uk, T (xk − ŝk)〉 | Sk−1] + E [〈∇f(xk), xk − ŝk〉 | Sk−1]

+ LhE [‖xk − ŝk‖ | Sk−1] + ‖µ⋆‖ ‖A‖ E [‖xk − ŝk‖ | Sk−1]
)

≤ γkdC (M‖T‖+D + Lh + ‖µ⋆‖ ‖A‖) ,
where we have used the Cauchy-Schwarz inequality, the boundedness of the set C by (A3), the boundedness of

uk by M by (A4), and the boundedness of ‖∇f (x)‖ by D, the constant in Lemma 2.1.18.

4.2.2 Feasibility Estimation

Lemma 4.2.6 (Feasibility estimate). Suppose that (A1) - (A4) and (A6) all hold. Consider the sequence of

iterates (xk)k∈N generated by Algorithm 9 with parameters satisfying (P1) and (P3)-(P6). For each k ∈ N,

define the two quantities, ∆p
k and ∆d

k in the following way,

∆p
k

def
= Lk (xk+1, µk)− L̃k (µk) , ∆d

k
def
= L̃ − L̃k (µk) ,

where we have denoted L̃k (µk) def
= minx Lk (x, µk) and L̃ def

= L (x⋆, µ⋆). Furthermore, for each k ∈ N, denote

the sum ∆k
def
= ∆p

k +∆d
k. We then have, for each k ∈ N,

E [∆k+1 | Sk]−∆k ≤ −γk+1

(
M

c
‖Ax̃k+1 − b‖2 + δ ‖A (xk+1 − x̃k+1)‖2

)
+ γ2k+1

Lk+1

2
d2C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M2 + (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)

+ γk+1E
[
λsk+1 | Sk

]
+ dCγk+1E [‖λk+1‖ | Sk] .

(4.2.2)

Additionally, if the assumptions are strengthened to include (P1)-(P6) and (P8), then it holds
(
γk+1 ‖Ax̃k+1 − b‖2

)
k∈N
∈ ℓ1+ (S) and

(
γk+1 ‖Axk+1 − b‖2

)
k∈N
∈ ℓ1+ (S) , (4.2.3)

where S
def
= (Sk)k∈N.

Proof. The proof here is adapted from the analogous result found in Lemma 3.2.5. As before, the quantity

∆p
k ≥ 0 and can be seen as a primal gap at iteration k while ∆d

k may be negative but is uniformly bounded from

below by our assumptions (see Lemma 3.2.5). We denote a minimizer ofLk (x, µk) by x̃k ∈ Argmin
x∈Hp

Lk (x, µk),

which exists and belongs to C by (A1)-(A3). We have, for each k ∈ N,

∆k+1 −∆k = Lk+1 (xk+2, µk+1)− Lk (xk+1, µk+1) + θk ‖Axk+1 − b‖2

+ 2 [Lk (x̃k, µk)− Lk+1 (x̃k+1, µk+1)] .

Recall that x̃k ∈ Argmin
x∈Hp

Lk (x, µk), that gβk ≤ gβk+1 due to (P3) and Proposition 2.1.2(v), and that ρk ≤ ρk+1

by (P4). Then, for each k ∈ N,

Lk (x̃k, µk)− Lk+1 (x̃k+1, µk+1) ≤ Lk (x̃k+1, µk)− Lk+1 (x̃k+1, µk+1)

=
[
gβk − gβk+1

]
(T x̃k+1) +

1

2
[ρk − ρk+1] ‖Ax̃k+1 − b‖2

+ 〈µk − µk+1, Ax̃k+1 − b〉
≤ −θk 〈Axk+1 − b, Ax̃k+1 − b〉 ,

where we have used the fact that µk+1 = µk + θk (Axk+1 − b) coming from Algorithm 9. So we get, for each

k ∈ N,

∆k+1 −∆k ≤ Lk+1 (xk+2, µk+1)− Lk (xk+1, µk+1) + θk ‖Axk+1 − b‖2

− 2θk 〈Axk+1 − b, Ax̃k+1 − b〉 .
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Note that, for each k ∈ N,

Lk (xk+1, µk+1) = Lk+1 (xk+1, µk+1)−
[
gβk+1 − gβk

]
(Txk+1)−

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2 .

Then, for each k ∈ N,

∆k+1 −∆k ≤ Lk+1 (xk+2, µk+1)− Lk+1 (xk+1, µk+1) + gβk+1 (Txk+1)− gβk (Txk+1)

+

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2 + θk ‖Axk+1 − b‖2 − 2θk 〈Axk+1 − b, Ax̃k+1 − b〉 .

We denote by T1
def
= Lk+1 (xk+2, µk+1) − Lk+1 (xk+1, µk+1) and the remaining part of the right-hand side

by T2. For the moment, we focus our attention on T1. Recall that Lk (x, µk) = Ek (x, µk) + h (x) and apply

Lemma 4.2.1 between points xk+2 and xk+1, to get, for each k ∈ N,

T1 ≤ h (xk+2)− h (xk+1) + 〈∇xEk+1 (xk+1, µk+1) , xk+2 − xk+1〉

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1) .

By (A1) we have that h is convex and thus, since xk+2 is a convex combination of xk+1 and ŝk+1, we get, for

each k ∈ N,

T1 ≤ γk+1 (h (ŝk+1)− h (xk+1) + 〈∇xEk+1 (xk+1, µk+1) , ŝk+1 − xk+1〉)

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

= γk+1

(
h (ŝk+1)− h (xk+1) +

〈
∇̂xEk+1 (xk+1, µk+1) , ŝk+1 − xk+1

〉

+
〈
∇xEk+1 (xk+1, µk+1)− ∇̂xEk+1 (xk+1, µk+1) , ŝk+1 − xk+1

〉 )

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

= γk+1

(
h (ŝk+1)− h (xk+1) +

〈
∇̂xEk+1 (xk+1, µk+1) , ŝk+1 − xk+1

〉

− 〈λk+1, ŝk+1 − xk+1〉
)
+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

Applying the definition of ŝk as the approximate minimizer of the linear minimization oracle gives, for each

k ∈ N,

T1 ≤ γk+1

(
h (sk+1)− h (xk+1) +

〈
∇̂xEk+1 (xk+1, µk+1) , sk+1 − xk+1

〉
+ λsk+1

− 〈λk+1, ŝk+1 − xk+1〉
)
+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1) .

We can apply the definition of sk+1 as the minimizer of the linear minimization oracle and Lemma 4.2.2 to get,
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for each k ∈ N,

T1 ≤ γk+1

(
h (x̃k+1)− h (xk+1) +

〈
∇̂xEk+1 (xk+1, µk+1) , x̃k+1 − xk+1

〉
+ λsk+1

− 〈λk+1, ŝk+1 − xk+1〉
)
+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

= γk+1

(
h (x̃k+1)− h (xk+1) + 〈∇xEk+1 (xk+1, µk+1) , xk+1 − x̃k+1〉 + λsk+1

− 〈λk+1, ŝk+1 − x̃k+1〉
)
+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

≤ γk+1

(
h (x̃k+1)− h (xk+1) + Ek+1 (x̃k+1, µk+1)− Ek+1 (xk+1, µk+1)−

ρk+1

2
‖A (xk+1 − x̃k+1)‖2

+ λsk+1 − 〈λk+1, ŝk+1 − x̃k+1〉
)
+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

= γk+1

(
Lk+1 (x̃k+1, µk+1)− Lk+1 (xk+1, µk+1)−

ρk+1

2
‖A (xk+1 − x̃k+1)‖2 + λsk+1

− 〈λk+1, ŝk+1 − x̃k+1〉
)
+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

≤ −γk+1ρk+1

2
‖A (xk+1 − x̃k+1)‖2 + γk+1

(
λsk+1 + 〈λk+1, x̃k+1 − ŝk+1〉

)

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1) ,

where we used that x̃k+1 is a minimizer of Lk+1 (·, µk+1) in the last inequality. Combining T1 and T2 and

using the Pythagoras identity we have, for each k ∈ N,

∆k+1 −∆k ≤ −θk ‖Ax̃k+1 − b‖2 +
(
θk − γk+1

ρk+1

2

)
‖A (xk+1 − x̃k+1)‖2

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1) +

[
gβk+1 − gβk

]
(Txk+1)

+
ρk+1 − ρk

2
‖Axk+1 − b‖2 + γk+1

(
λsk+1 + 〈λk+1, x̃k+1 − ŝk+1〉

)
.

(4.2.4)

Now take the expectation with respect to Sk = σ (x0, µ0, ŝ0, . . . , ŝk), which completely determines xk+1, x̃k+1,

and µk+1. We are also going to perform the following estimations.

• Under (P5) and (P6), we have that, for each k ∈ N, θk = γk/c with Mγk+1 ≤ γk and so that

−θk ≤ −M
c γk+1.

• Again by (P6), we have, for each k ∈ N, θk = γk/c for some c > 0 such that

∃δ > 0,
M

c
−
ρ

2
= −δ < 0,

where M is the constant such that, for each k ∈ N, γk ≤Mγk+1 (see (P5)). Then, using again (P5) and

the above inequality, for each k ∈ N,

θk − γk+1
ρk+1

2
≤
(
M

c
− ρk+1

2

)
γk+1 ≤

(
M

c
−
ρ

2

)
γk+1 = −δγk+1. (4.2.5)

• By Algorithm 9, for each k ∈ N, xk+2 − xk+1 = γk+1 (ŝk+1 − xk+1). Since ŝk+1 and xk+1 are both in

C and C is bounded due to (A3), for each k ∈ N,

Lk+1

2
E

[
‖xk+2 − xk+1‖2 | Sk

]
=
Lk+1

2
γ2k+1E

[
‖ŝk+1 − xk+1‖2 | Sk

]
≤ Lk+1

2
γ2k+1d

2
C .

• Recall that, by (A2), f is (F, ζ)-smooth and invoke Remark 2.1.14, to get

E [DF (xk+2, xk+1) | Sk] ≤ K(F,ζ,C)ζ (γk+1) .

• By Proposition 2.1.2(v) and assumption (A4),

E

[[
gβk+1 − gβk

]
(Txk+1) | Sk

]
≤ βk − βk+1

2
E

[∥∥∥[∂g (Txk+1)]
0
∥∥∥
2
| Sk
]
≤ βk − βk+1

2
M2.

– 67 –



Chapter 4 4.2. Preliminary Estimations

• We also have, using Jensen’s inequality and (A3), for each k ∈ N,
(
ρk+1 − ρk

2

)
E

[
‖Axk+1 − b‖2 | Sk

]
≤ (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)
.

In total, for each k ∈ N,

E [∆k+1 | Sk]−∆k ≤ −M
c γk+1 ‖Ax̃k+1 − b‖2 − δγk+1 ‖A (xk+1 − x̃k+1)‖2

+
Lk+1

2
γ2k+1d

2
C +K(F,ζ,C)ζ (γk+1)

+
βk − βk+1

2
M2 + (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)

+ γk+1

(
E
[
λsk+1 | Sk

]
+ E [〈λk+1, x̃k+1 − ŝk+1〉 | Sk]

)
.

Using Cauchy-Schwarz together with the fact that x̃k+1 and ŝk+1 are in C, which is bounded by (A3), we also

have, for each k ∈ N,

γk+1E [〈λk+1, x̃k+1 − ŝk+1〉 | Sk] ≤ γk+1dCE [‖λk+1‖ | Sk] , (4.2.6)

which gives, for each k ∈ N,

E [∆k+1 | Sk]−∆k ≤ −
M

c
γk+1 ‖Ax̃k+1 − b‖2 − δγk+1 ‖A (xk+1 − x̃k+1)‖2 + γ2k+1

Lk+1

2
d2C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M2 + (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)

+ γk+1E
[
λsk+1 | Sk

]
+ γk+1dCE [‖λk+1‖ | Sk] ,

(4.2.7)

and (4.2.2) follows by rearranging terms, giving, for each k ∈ N,

E [∆k+1 | Sk]−∆k ≤ −γk+1

(
M

c
‖Ax̃k+1 − b‖2 + δ ‖A (xk+1 − x̃k+1)‖2

)
+ γ2k+1

Lk+1

2
d2C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M2 + (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)

+ γk+1E
[
λsk+1 | Sk

]
+ dCγk+1E [‖λk+1‖ | Sk] .

(4.2.8)

Because of (P1) and (P4), and in view of the definition of Lk+1 in (4.2.1), we have the following,

(
Lk+1

2
γ2k+1d

2
C

)

k∈N
=

(
1

2

(
‖T‖2
βk+1

+ ‖A‖2 ρk+1

)
γ2k+1d

2
C

)

k∈N
∈ ℓ1+.

For the telescopic terms from the right hand side of (4.2.8) we have
(
βk − βk+1

2
M2

)

k∈N
∈ ℓ1+ and

(
(ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

))
k∈N
∈ ℓ1+,

where R is the constant arising from (A3). Under (P1) we also have that

(
K(F,ζ,C)ζ (γk+1)

)
k∈N ∈ ℓ

1
+.

Finally, due to (P8), we also have

(
γk+1E

[
λsk+1 | Sk

])
k∈N ∈ ℓ

1
+ (S) and (dCγk+1E [‖λk+1‖ | Sk])k∈N ∈ ℓ1+ (S) .

Using the notation of Lemma 2.3.2, we set, for each k ∈ N,

rk = ∆k, ak = γk+1

(
M

c
‖Ax̃k+1 − b‖2 + δ ‖A (xk+1 − x̃k+1)‖2

)
, and

zk =
Lk+1

2
γ2k+1d

2
C +K(F,ζ,C)ζ (γk+1) +

βk − βk+1

2
M2 +

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2

+ γk+1E
[
λsk+1 | Sk

]
+ dCγk+1E [‖λk+1‖ | Sk] .
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We have shown above that , for each k ∈ N,

E [rk+1 | Sk]− rk ≤ −ak + zk,

where (zk)k∈N ∈ ℓ1+ (S), and rk is bounded from below. We then deduce using Lemma 2.3.2 that (rk)k∈N is

convergent (P-a.s.) and
(
γk+1 ‖Ax̃k+1 − b‖2

)
k∈N
∈ ℓ1+ (S) and

(
γk+1 ‖A (xk+1 − x̃k+1)‖2

)
k∈N
∈ ℓ1+ (S) (4.2.9)

satisfying 4.2.3. Consequently,
(
γk ‖Axk − b‖2

)
k∈N
∈ ℓ1+ (S) , (4.2.10)

since by the Cauchy-Schwarz inequality,

∞∑

k=1

γk ‖Axk − b‖2 ≤ 2

∞∑

k=1

γk

(
‖A (xk − x̃k)‖2 + ‖Ax̃k − b‖2

)
< +∞.

4.2.3 (P-a.s.) Boundedness of (µk)k∈N

The following lemmas regard the boundedness of the sequence of dual iterates (µk)k∈N and the uniform bound-

edness of the Lagrangian. They were shown in the deterministic setting in Section 3.2.3 and trivially extend to

the stochastic case in light of the previous section.

Lemma 4.2.7. Suppose that (A1)-(A3), (A6)-(A8), and (P1)-(P6) all hold and define, for each k ∈ N,

ϕk (µ)
def
= − inf

x∈Hp

Lk (x, µ) and ϕ̄
def
= f (x) + g (Tx) + h (x) +

ρ

2
‖Ax− b‖2 . (4.2.11)

Then the sequence of dual iterates (µk)k∈N generated by Algorithm 9 is bounded (P-a.s.), for each k ∈ N the

function ϕk (µ) is convex and differentiable with gradient

∇ϕk (µ) = ρ−1
k

(
µ− proxρkΦ∗

k◦(−A∗) (µ− ρkb)
)
, (4.2.12)

and it holds, for each k ∈ N,

∇ϕk (µk) = Ax̃k − b. (4.2.13)

Proof. Note that here we have denoted, for each k ∈ N, φk (x) = f (x) + gβk (x) + h (x) as in Chapter 3.

For brevity, we defer to the proof of Lemma 3.2.7 in Section 3.2.3, noting that since
(
γk+1 ‖x̃k+1 − b‖2

)
k∈N
∈

ℓ1+ (S) and
(
γk+1 ‖xk+1 − b‖2

)
k∈N
∈ ℓ1+ (S), there exists Ω̃ ⊂ F with P

(
Ω̃
)
= 1 such that (ϕk (µk (ω)))k∈N

is convergent and thus bounded, and the uniform coercivity of (ϕk)k∈N is unaffected by the inexactness, i.e.,

(µk (ω))k∈N is bounded.

Lemma 4.2.8. Under (A1)-(A8) and (P1)-(P6), the composite function f + g ◦ T + h is uniformly bounded

on C and we have

M̃
def
= sup

x∈C
|f (x) + g (Tx) + h (x)|+ sup

k∈N
‖µk‖ (‖A‖R+ b) < +∞ (P-a.s.) , (4.2.14)

where R is the radius from (A3).

Proof. The proof follows in a (P-a.s.) sense from Lemma 3.2.8 with the addition of the previous section.
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4.2.4 Optimality Estimation

We now begin with the main energy estimate needed to show the convergence of the Lagrangian values to

optimality.

Lemma 4.2.9 (Optimality estimate). Recall the constants c, Lk,M ,D, andLh from (P6), Lemma 4.2.1, (A4),

Lemma 4.2.3, and (A5), respectively. Define, for each k ∈ N,

rk
def
= (1− γk)Lk (xx, µk) +

c

2
‖µk − µ⋆‖2

and

Ck
def
=
Lk
2
d2C + dC (M‖T‖+D + Lh + ‖µ⋆‖ ‖A‖) .

Then, under (A1)-(A8) and (P1)-(P8) with M ≥ 1, for the sequences (xk)k∈N and (µk)k∈N generated by

Algorithm 9, using the filtration S′ = (Sk−1)k∈N, the following inequality holds, for each k ∈ N with k > 0,

E [rk+1 | Sk−1]− rk ≤ −γk
(
L (xk, µ⋆)− L (x⋆, µ⋆) +

ρk
2
‖Axk − b‖2

)
+
γk+1

2
E

[
‖Axk+1 − b‖2 | Sk−1

]

+ (βk − βk+1)
M2

2
+ (γk − γk+1) M̃ + γkβk

M2

2
+K(F,ζ,C)ζ (γk) + γ2kCk

+ dCγkE [‖λk‖ | Sk−1] + γkE [λsk | Sk−1] (P-a.s.) .

(4.2.15)

Proof. Applying Lemma 4.2.2 to the points x⋆ and xk we have, for each k ∈ N,

Ek (x⋆, µk) ≥ Ek (xk, µk) + 〈∇xEk (xk, µk) , x⋆ − xk〉+
ρk
2
‖A(x⋆ − xk)‖2

= Ek (xk, µk) +
〈
∇̂xEk (xk, µk) , x⋆ − xk

〉
+ 〈λk, xk − x⋆〉 +

ρk
2
‖A(x⋆ − xk)‖2

= Ek (xk, µk) +
〈
∇̂xEk (xk, µk) , x⋆ − xk

〉
+ h (x⋆)− h (x⋆) + 〈λk, xk − x⋆〉

+
ρk
2
‖A(x⋆ − xk)‖2 .

By the definition of sk as a minimizer and the definition of ŝk we further have, for each k ∈ N,

Ek (x⋆, µk) ≥ Ek (xk, µk) +
〈
∇̂xEk (xk, µk) , sk − xk

〉
+ h (sk)− h (x⋆) + 〈λk, xk − x⋆〉

+
ρk
2
‖A(x⋆ − xk)‖2

≥ Ek (xk, µk) +
〈
∇̂xEk (xk, µk) , ŝk − xk

〉
+ h (ŝk)− λsk − h (x⋆) + 〈λk, xk − x⋆〉

+
ρk
2
‖A(x⋆ − xk)‖2 .

(4.2.16)

From Lemma 4.2.1 applied to the points xk+1 and xk and by definition of xk+1
def
= xk + γk (ŝk − xk) in Algo-

rithm 9, we also have, for each k ∈ N,

Ek (xk+1, µk) ≤ Ek (xk, µk) + 〈∇xEk (xk, µk) , xk+1 − xk〉+DF (xk+1, xk) +
Lk
2
‖xk+1 − xk‖2

= Ek (xk, µk) + γk〈∇xEk (xk, µk) , ŝk − xk〉+DF (xk+1, xk) + γ2k
Lk
2
‖ŝk − xk‖2

= Ek (xk, µk) + γk〈∇̂xEk (xk, µk) , ŝk − xk〉+ γk 〈λk, xk − ŝk〉 +DF (xk+1, xk)

+ γ2k
Lk
2
‖ŝk − xk‖2 .

We combine the latter with (4.2.16), to get, for each k ∈ N,

Ek (xk+1, µk) ≤ Ek (xk, µk) + γk 〈λk, x⋆ − ŝk〉 +DF (xk+1, xk) + γ2k
Lk
2
‖ŝk − xk‖2

+ γk

(
Ek (x⋆, µk) + h(x⋆)− Ek (xk, µk)− h(ŝk)−

ρk
2
‖Axk − b‖2 + λsk

)
.

(4.2.17)
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By convexity of h from (A1) and the definition of xk+1, we have, for each k ∈ N,

Lk (xk+1, µk)− Lk (xk, µk) = Ek (xk+1, µk)− Ek (xk, µk) + h (xk+1)− h (xk)
≤ Ek (xk+1, µk)− Ek (xk, µk) + γk (h (ŝk)− h (xk))

(4.2.18)

Combining (4.2.17) and (4.2.18), we obtain, for each k ∈ N,

Lk (xk+1, µk)− Lk (xk, µk) ≤ γk (Ek (x⋆, µk) + h(x⋆)− Ek (xk, µk)− h (xk)) +DF (xk+1, xk)+

γ2k
Lk
2
‖ŝk − xk‖2 + γk

(
〈λk, x⋆ − ŝk〉 −

ρk
2
‖Axk − b‖2 + λsk

)

= γk (Lk (x⋆, µk)− Lk (xk, µk)) +DF (xk+1, xk) + γ2k
Lk
2
‖ŝk − xk‖2

+ γk

(
〈λk, x⋆ − ŝk〉 −

ρk
2
‖Axk − b‖2 + λsk

)

(4.2.19)

Recalling the definition of µk+1
def
= µk +A (xk+1 − b) in Algorithm 9, we have, for each k ∈ N,

Lk (xk+1, µk+1)− Lk (xk+1, µk) = 〈µk+1 − µk, Axk+1〉 = θk ‖Axk+1 − b‖2 .

We combine the above and (4.2.19) to get, for each k ∈ N,

Lk (xk+1, µk+1)− Lk (xk, µk) ≤ θk ‖Axk+1 − b‖2 + γk (Lk (x⋆, µk)− Lk (xk, µk)) +DF (xk+1, xk)

+ γ2k
Lk
2
‖ŝk − xk‖2 + γk

(
〈λk, x⋆ − ŝk〉 −

ρk
2
‖Axk − b‖2 + λsk

)
.

(4.2.20)

Notice that the update of the dual variable µ can be interpreted as a prox operator in the following way,

µk+1 = argmin
µ∈Hd

{
−Lk (xk+1, µ) +

1

2θk
‖µ− µk‖2

}
.

Then, using Lemma 2.1.1, we get, for each k ∈ N,

0 ≥ θk (Lk (xk+1, µ
⋆)− Lk (xk+1, µk+1)) +

1

2

(
‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2 + ‖µk+1 − µk‖2

)

= θk (Lk (xk+1, µ
⋆)− Lk (xk+1, µk+1)) +

1

2

(
‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2 + θ2k ‖Axk+1 − b‖2

)
.

(4.2.21)

Recall that, by (P6), θk = γk/c. Multiply (4.2.21) by c and sum with (4.2.20), to obtain, for each k ∈ N,

(1− cθk)Lk (xk+1, µk+1)− (1− cθk)Lk (xk, µk) + c
2

(
‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2

)

≤
(
θk − cθ2k

2

)
‖Axk+1 − b‖2 + γk (Lk (x⋆, µk)− Lk (xk, µk))− cθk (Lk (xk+1, µ)− Lk (xk, µk))

−ρkγk
2 ‖Axk − b‖

2 +DF (xk+1, xk) + γ2k
Lk
2 ‖ŝk − xk‖

2 + γk (〈λk, x⋆ − ŝk〉 + λsk) .
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The previous inequality can be re-written, by trivial manipulations, as, for each k ∈ N,

(1− cθk+1)Lk+1 (xk+1, µk+1)− (1− cθk)Lk (xk, µk) +
c

2

(
‖µk+1 − µ⋆‖2 − ‖µk − µ⋆‖2

)

≤ (1− cθk+1)Lk+1 (xk+1, µk+1)− (1− cθk)Lk (xk+1, µk+1) +

(
θk −

cθ2k
2

)
‖Axk+1 − b‖2

+ γk (Lk (x⋆, µk)− Lk (xk, µk))− cθk (Lk (xk+1, µ
⋆)− Lk (xk, µk))−

ρkγk
2
‖Axk − b‖2

+DF (xk+1, xk) + γ2k
Lk
2
‖ŝk − xk‖2 + γk (〈λk, x⋆ − ŝk〉 + λsk)

= c (θk − θk+1) (f + h+ 〈µk+1, A · −b〉) (xk+1) +
(
(1− cθk+1) g

βk+1 − (1− cθk) gβk
)
(Txk+1)

+
1

2

(
(1− cθk+1) ρk+1 − (1− cθk) ρk + 2θk − cθ2k

)
‖Axk+1 − b‖2 + γk (Lk (x⋆, µk)− Lk (xk, µk))

− cθk (Lk (xk+1, µ
⋆)− Lk (xk, µk))−

ρkγk
2
‖Axk − b‖2 +DF (xk+1, xk) + γ2k

Lk
2
‖ŝk − xk‖2

+ γk (〈λk, x⋆ − ŝk〉 + λsk) .

(4.2.22)

By (P5), (P6) and the assumption that M ≥ 1, we have θk+1 ≤ M−1θk ≤ θk. In view of (P3), we also have

βk+1 ≤ βk. In particular, gβk ≤ gβk+1 ≤ g pointwise. By Proposition 2.1.2(iv) and assumption (A4), we are

able to, for each k ∈ N, estimate the quantity

(
(1− cθk+1) g

βk+1 − (1− cθk) gβk
)
(Txk+1)

=
(
gβk+1 − gβk

)
(Txk+1) + c

(
θkg

βk − θk+1g
βk+1

)
(Txk+1)

≤ 1

2
(βk − βk+1)

∥∥∥(∂g(Txk+1))
0
∥∥∥
2
+ c

(
θkg

βk − θk+1g
βk
)
(Txk+1)

≤ 1

2
(βk − βk+1)

∥∥∥(∂g(Txk+1))
0
∥∥∥
2
+ c (θk − θk+1) g(Txk+1).

Then, for each k ∈ N,

c (θk − θk+1) (f + h+ 〈µk+1, A · −b〉) (xk+1) +
(
(1− cθk+1) g

βk+1 − (1− cθk) gβk
)
(Txk+1)

≤ c (θk − θk+1)L (xk+1, µk+1) +
1

2
(βk − βk+1)

∥∥∥(∂g(Txk+1))
0
∥∥∥
2
.

(4.2.23)

Recall the definition of rk in (4.2.9). Coming back to (4.2.22) and using (4.2.23), we obtain, for each k ∈ N,

rk+1 − rk ≤
1

2

(
(1− γk+1) ρk+1 − (1− γk) ρk +

2

c
γk −

γ2k
c

)
‖Axk+1 − b‖2 + γk (Lk (x⋆, µk)− Lk (xk+1, µ

⋆))

− ρkγk
2
‖Axk − b‖2 +

βk − βk+1

2

∥∥∥(∂g(Txk+1))
0
∥∥∥
2
+ (γk − γk+1)L (xk+1, µk+1)

+DF (xk+1, xk) + γ2k
Lk
2
‖ŝk − xk‖2 + γk (〈λk, x⋆ − ŝk〉 + λsk) .

(4.2.24)
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Recall that, by feasibility of x⋆ for the affine constraint, L (x⋆, µk) = L (x⋆, µ⋆) and thus, for each k ∈ N,

Lk (x⋆, µk)− Lk (xk+1, µ
⋆) = L (x⋆, µ⋆)− L (xk+1, µ

⋆) +
(
gβk − g

)
(Tx⋆) +

(
g − gβk

)
(Txk+1)

− ρk
2
‖Axk+1 − b‖2

= L (x⋆, µ⋆)− L (xk, µ⋆) + L (xk, µ⋆)− L (xk+1, µ
⋆)

(
gβk − g

)
(Tx⋆) +

(
g − gβk

)
(Txk+1)−

ρk
2
‖Axk+1 − b‖2

≤ L (x⋆, µ⋆)− L (xk, µ⋆) + L (xk, µ⋆)− L (xk+1, µ
⋆) +

βk
2

∥∥∥(∂g(Txk+1))
0
∥∥∥
2

− ρk
2
‖Axk+1 − b‖2 ,

where in the inequality we have used the fact that gβk ≤ g pointwise and that, by Proposition 2.1.2(v), for each

k ∈ N, (
g − gβk

)
(Txk+1) ≤

βk
2

∥∥∥(∂g(Txk+1))
0
∥∥∥
2
.

Substituting the above into (4.2.24) we have, for each k ∈ N,

rk+1 − rk ≤
1

2

(
(1− γk+1) ρk+1 − ρk +

2

c
γk −

γ2k
c

)
‖Axk+1 − b‖2

+ γk (L (x⋆, µ⋆)− L (xk, µ⋆)) + γk (L (xk, µ⋆)− L (xk+1, µ
⋆))

− ρkγk
2
‖Axk − b‖2 +

βk − βk+1

2

∥∥∥(∂g(Txk+1))
0
∥∥∥
2
+ (γk − γk+1)L (xk+1, µk+1)

+ γk
βk
2

∥∥∥(∂g(Txk+1))
0
∥∥∥
2
+DF (xk+1, xk) + γ2k

Lk
2
‖ŝk − xk‖2

+ γk (〈λk, x⋆ − ŝk〉 + λsk) .

(4.2.25)

Take the expectation with respect to Sk−1
def
= σ (x0, µ0, ŝ0, . . . , ŝk−1), which will completely determine xk and

µk, and we perform the following estimations.

• From (P7), we have, for each k ∈ N,

(1− γk+1) ρk+1 − ρk +
2

c
γk −

γ2k
c
≤ 0.

• By assumption (A4), for each k ∈ N,

E

[∥∥∥(∂g(Txk+1))
0
∥∥∥
2
| Sk−1

]
≤M2.

• By Lemma 4.2.8, for each k ∈ N,

E [L (xk+1, µk+1) | Sk−1] ≤ M̃.

• Recall that, by (A2), f is (F, ζ)-smooth and invoke Remark 2.1.14, to get, for each k ∈ N,

E [DF (xk+1, xk) | Sk−1] ≤ K(F,ζ,C)ζ (γk) .

• Since, for each k ∈ N, ŝk and xk are both in C, we have

E [‖ŝk − xk‖ | Sk−1] ≤ dC .
We have, for each k ∈ N,

E [rk+1 | Sk−1]− rk ≤ +γk (L (x⋆, µ⋆)− L (xk, µ⋆)) + γk (L (xk, µ⋆)− E [L (xk+1, µ
⋆) | Sk−1])

− ρkγk
2
‖Axk − b‖2 +

βk − βk+1

2
M2 + (γk − γk+1) M̃ + γk

βk
2
M2

+K(F,ζ,C)ζ (γk) + γ2k
Lk
2
d2C + γkE [〈λk, x⋆ − ŝk〉 + λsk | Sk−1] .
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We can bound the inner product involving the error terms using the Cauchy-Schwarz inequality and the bound-

edness of C. Applying Lemma 4.2.5 and regrouping terms with γ2k we get, for each k ∈ N,

E [rk+1 | Sk−1]− rk ≤ γk (L (x⋆, µ⋆)− L (xk, µ⋆))−
ρkγk
2
‖Axk − b‖2 + (βk − βk+1)

M2

2
+ (γk − γk+1) M̃

+ γkβk
M2

2
+K(F,ζ,C)ζ (γk) + γ2kCk + γkE [dC ‖λk‖ + λsk | Sk−1] .

We conclude by trivial manipulations.

4.3 Convergence Analysis

As in Section 3.3 in the previous chapter, when rates of convergence are given they will be given in terms of the

quantity Γk
def
=

k∑
i=0

γi. The same example, Example 3.3.1, is relevant for its bounds on Γk, although the largest

choice of b in this chapter will be more restrictive to satisfy the error summability conditions.

4.3.1 Asymptotic Feasibility

Theorem 4.3.1 (Feasibility). Suppose that (A1)-(A4) and (A6) all hold and recall Γk
def
=

k∑
i=0

γi. For a sequence

(xk)k∈N generated by Algorithm 9 using parameters satisfying (P1) - (P6) and (P8) we have,

(i) Asymptotic feasbility: lim
k→∞

‖Axk − b‖ = 0 (P-a.s.),

(ii) Ergodic rate: let x̄k
def
=
∑k

i=0 γixi/Γk. Then

‖Ax̄k − b‖ = O

(
1√
Γk

)
(P-a.s.) . (4.3.1)

Additionally, if (P9) also holds then we have the following pointwise rates in expectation,

(iii) It holds inf
0≤i≤k

E [‖Axi − b‖] ∈ O
(

1√
Γk

)
.

(iv) There exists a subsequence
(
xkj
)
j∈N such that E

[∥∥Axkj − b
∥∥
]
≤ 1√

Γkj

.

(v) It holds
(
γkE

[
‖Ax̃k − b‖2

])
k∈N
∈ ℓ1+ and

(
γkE

[
‖Axk − b‖2

])
k∈N
∈ ℓ1+.

Proof. Our goal is to first apply Lemma 2.3.2 and then apply Lemma 2.3.3. To finish proving (i) we simply apply

Lemma 4.2.3 (with Remark 4.2.4) and the conditions of Lemma 2.3.3 are satisfied. Then, (ii) follows directly

from the application of Jensen’s inequality as in the results of Theorem 3.3.2.

We now assume that (P9) holds. By Lemma 4.2.6, we can take the total expectation and use the law of total

expectation to have, for each k ∈ N,

E [∆k+1]− E [∆k] ≤ −γk+1

(
M

c
E

[
‖Ax̃k+1 − b‖2

]
+ δE

[
‖A (xk+1 − x̃k+1)‖2

])
+ γ2k+1

Lk+1

2
d2C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M2 + (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)

+ γk+1E
[
λsk+1

]
+ dCγk+1E [‖λk+1‖] .

Define the following, for each k ∈ N,

r̃k = E [∆k] , p̃k = γk+1, w̃k =

(
M

c
E

[
‖Ax̃k+1 − b‖2

]
+ δE

[
‖A (xk+1 − x̃k+1)‖2

])
, and

z̃k =
Lk+1

2
γ2k+1d

2
C +K(F,ζ,C)ζ (γk+1) +

βk − βk+1

2
M2 +

(
ρk+1 − ρk

2

)
E

[
‖Axk+1 − b‖2

]

+ γk+1E
[
λsk+1

]
+ dCγk+1E [‖λk+1‖] .
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By the argument of the analogous claim for the conditional expectations in 4.2.6, in conjunction with (P9) in

place of (P8), we have that (z̃k)k∈N ∈ ℓ1+. We can apply the total expectation to the results of both Lemma 4.2.3

and Lemma 4.2.5 and then the claims of interest follow from Lemma 2.2.3 applied with (r̃k)k∈N, (p̃k)k∈N,

(w̃k)k∈N, and (z̃k)k∈N defined as above.

4.3.2 Optimality

We now proceed to prove the main theorem regarding optimality, recalling the notation of (4.1.2) for the terms

SP and SD and (4.1.3) for W
[
(xk)k∈N

]
.

Theorem 4.3.2 (Optimality). Suppose that (A1)-(A10) and (P1)-(P8) hold, with M ≥ 1. Let (xk)k∈N be the

sequence of primal iterates generated by Algorithm 9 and (x⋆, µ⋆) a saddle-point pair for the Lagrangian. Then,

in addition to the results of Theorem 4.3.1, the following holds

(i) Convergence of the Lagrangian:

lim
k→∞

L (xk, µ⋆) = L (x⋆, µ⋆) (P-a.s.) . (4.3.2)

(ii) The sequence (xk)k∈N satisfies W
[
(xk)k∈N

]
⊂ SP (P-a.s.) and there exists µ̄, an SD-valued random

variable, such that µk → µ̄ (P-a.s.).

(iii) Ergodic rate: for each k ∈ N, let x̄k
def
=
∑k

i=0 γixi+1/Γk. Then, for each k ∈ N,

L (x̄k, µ⋆)− L (x⋆, µ⋆) ∈ O
(

1

Γk

)
(P-a.s.) . (4.3.3)

(iv) If the problem (P) admits a unique solution x⋆, then (xk)k∈N converges weakly (P-a.s.) to x⋆ a solution

of (P). Moreover, if Φ is uniformly convex on C with modulus of convexity ψ : R+ → [0,∞], then

(xk)k∈N converges strongly (P-a.s.) to x⋆ at the ergodic rate, for each k ∈ N,

ψ (‖x̄k − x⋆‖) ∈ O
(

1

Γk

)
(P-a.s.) .

Furthermore, if (P9) holds then we have the following pointwise rates in expectation, for any (x⋆, µ⋆) ∈ SP ×
SD,

(v) It holds inf
0≤i≤k

E [L (xk, µ⋆)]− L (x⋆, µ⋆) ∈ O
(

1
Γk

)
.

(vi) There exists a subsequence
(
xkj
)
j∈N such that E

[
L
(
xkj , µ

⋆
)]
− L (x⋆, µ⋆) ≤ 1

Γkj
.

Proof. As in the proof of Theorem 4.3.1, our goal is to first apply Lemma 2.3.2 and then apply Lemma 2.3.3.

By (4.2.15) in Lemma 4.2.9 we have, using the same notation, for each k ∈ N,

E [rk+1 | Sk−1]− rk ≤ −γk
(
L (xk, µ⋆)− L (x⋆, µ⋆) +

ρk
2
‖Axk − b‖2

)
+ (βk − βk+1)

M2

2

+ (γk − γk+1) M̃ + γkβk
M2

2
+K(F,ζ,C)ζ (γk) + γ2kCk

+ dCγkE [‖λk‖ | Sk−1] + γkE [λsk | Sk−1] .

Let, for each k ∈ N, ak = γk

(
L (xk, µ⋆)− L (x⋆, µ⋆) + ρk

2 ‖Axk − b‖
2
)

and denote what remains on the

r.h.s. by zk. Then, to apply Lemma 2.3.2, we must show (zk)k∈N ∈ ℓ1+ (S′) where S′ def
= (Sk−1)k∈N as before.

The terms (βk − βk+1)
M2

2 and (γk − γk+1) M̃ are bounded and telescopic, hence in ℓ1+. The terms γkβk
M2

2
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and K(F,ζ,C)ζ (γk) are in ℓ1+ by (P1). Recalling the definition of Ck, we have, for each k ∈ N,

γ2kCk = γ2k

(
Lk
2
d2C + dC (M‖T‖+D + Lh + ‖µ⋆‖ ‖A‖)

)

=

(
d2C ‖T‖2

2

)
γ2k
βk

+

(
d2C ‖A‖2 ρk

2
+ dC (M‖T‖+D + Lh + ‖µ⋆‖ ‖A‖)

)
γ2k

≤
(
d2C ‖T‖2

2

)
γ2k
βk

+

(
d2C ‖A‖2 ρ

2
+ dC (M‖T‖+D + Lh + ‖µ⋆‖ ‖A‖)

)
γ2k

which is in ℓ1+ by (P1) and (P3). The remaining terms,

dCγkE [‖λk‖ | Sk−1] + γkE [λsk | Sk−1] ,

coming from the inexactness of the algorithm, are in ℓ1+ (S′) by (P8). Thus, the r.h.s. belongs to ℓ1+ (S′) and

so by Lemma 2.3.2 we have,

ak = γk

(
L (xk, µ⋆)− L (x⋆, µ⋆) +

ρk
2
‖Axk − b‖2

)
∈ ℓ1+

(
S′) (P-a.s.) ,

and also that (rk)k∈N converges (P-a.s.).

The first claim (i) follows by applying Lemma 2.3.3, the conditions of which are satisfied directly from

Lemma 4.2.3 and Lemma 4.2.5.

The second claim, (ii), follows from the same arguments as in Theorem 3.3.3 but adapted to the stochastic

case. For the claims about (xk)k∈N, the proof is trivially extended to the stochastic setting (P-a.s.). However,

the claims about (µk)k∈N are more delicate to adapt so we write explicitly the arguments below.

By Theorem 4.3.14.2.3 we have
(
γk ‖Ax̃k − b‖2

)
k∈N
∈ ℓ1+ (S′) which, by Lemma 2.2.3 implies that there

exists a subsequence
(
Ax̃kj

)
j∈N with

∥∥Ax̃kj − b
∥∥ → 0 (P-a.s.). Since the sequence (µk)k∈N is bounded (P-

a.s.) by Lemma 4.2.7, the subsequence
(
µkj
)
j∈N is bounded (P-a.s.) as well and thus admits a weakly (P-a.s.)

convergent subsequence
(
µkji

)
i∈N

with µkji ⇀ µ̄ for some Hd-valued random variable µ̄. By Fermat’s rule

([10, Theorem 16.2]), the weak (P-a.s.) sequential cluster point µ̄ is a solution to (D) iff

0 ∈ ∂ (Φ∗ ◦ (−A∗)) (µ̄) + b (P-a.s.) .

The proximal operator is the resolvent of the subdifferential and so it follows that (4.2.12) is equivalent, for each

i ∈ N, to

∇ϕkji
(
µkji

)
− b ∈ ∂

(
φ∗kji ◦ (−A

∗)
)(

µkji − ρkji∇ϕkji
(
µkji

))
(P-a.s.) . (4.3.4)

Since
(
Ax̃kj

)
j∈N converges strongly to b (P-a.s.), and in view of (4.2.13), it holds that ∇ϕkj

(
µkj
)

converges

strongly to 0 (P-a.s.). However, µkji − ρkji∇ϕkji
(
µkji

)
converges weakly to µ̄ (P-a.s.). We henceforth ar-

gue that we can pass to the limit in (4.3.4) by sequential closedness using a Mosco convergence (weak-strong

epigraphical convergence) argument (see [24] and [6, Definition 3.7]). Indeed, it was shown in the proof of The-

orem 3.3.3 thatΦ∗
kji
◦−(A∗)Mosco-converges to (Φ)∗◦(−A∗). This implies, via [6, Theorem 3.66], that ∂Φ∗

kji
◦

(−A∗) graph-converges to ∂Φ∗ ◦ (−A∗), and [6, Proposition 3.59] shows that
(
∂Φkji ◦ (−A

∗)
)
i∈N

is sequen-

tially closed for graph-convergence in the weak-strong topology onHd, i.e., for any sequence
((
vkji , ηkji

))
i∈N

in the graph of ∂
(
Φ∗
kji
◦ (−A∗)

)
i∈N

such that vkji converges weakly to v̄ and ηkji converges strongly to η̄, we

have η̄ ∈ ∂Φ∗ ◦ (−A∗)(v̄). Let, for each i ∈ N, vkji = ∇ϕkji
(
µkji

)
− b and ηkji = µkji − ρkji∇ϕkji

(
µkji

)
,

which converge strongly (P-a.s.) and weakly (P-a.s.) respectively, and let Ω̃ ⊂ F such that P
(
Ω̃
)
= 1 and, for

all ω ∈ Ω̃, vkji (ω)→ b and ηkji (ω)⇀ µ̄ (ω). We conclude that, for each ω ∈ Ω̃,

0 ∈ ∂ (Φ∗ ◦ (−A∗)) (µ̄ (ω)) + b (P-a.s.) ,
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i.e., µ̄ is a solution of the dual problem (D) (P-a.s.).

We now prove the existence of a set Ω̃ ⊂ F such that P
(
Ω̃
)
= 1 and, for all ω ∈ Ω̃, for any µ⋆ ∈ SD,

Θ(µ⋆, ω)
def
= lim

k
‖µk (ω)− µ⋆‖2

exists. This does indeed hold (P-a.s.) for each fixed µ⋆ ∈ SD by the argument in the proof of Theorem 3.3.3

but SD may be uncountable and so the entire statement for any µ⋆ ∈ SD may not necessarily hold (P-a.s.) . To

rectify this situation, we make the assumption (A9) and argue as in [37, Proposition 2.3(iii)].

First repeat the argument made in the proof of Theorem 3.3.3 to show that, for each fixed µ⋆ ∈ SD, there

exists Ωµ⋆ ⊂ F with P (Ωµ⋆) = 1 such that, for any ω ∈ Ωµ⋆ , Θ(µ⋆, ω) exists. Let µ⋆ ∈ SD and recall (rk)k∈N
in (4.2.9), for each k ∈ N,

rk
def
= (1− γk)Lk (xk, µk) +

c

2
‖µk − µ⋆‖2 .

We have already shown that (rk)k∈N is convergent (P-a.s.). We also have, for each k ∈ N,

−Lk (xk, µk) = (L(xk, µ⋆)− Lk (xk, µk))− L(xk, µ⋆)
= g(Txk)− gβk(Txk) + 〈µ⋆ − µk, Axk − b〉 −

ρk
2
‖Axk − b‖2

− L(xk, µ⋆).

We have from Theorem 4.3.1 that ρk2 ‖Axk − b‖
2 → 0 (P-a.s.). Therefore,

〈µ⋆ − µk, Axk − b〉 → 0

since (µk)k∈N is bounded (P-a.s.). We also have, by claim (i) of this theorem, that L (xkµ⋆) → L (x⋆, µ⋆)
(P-a.s.). By Lemma 2.1.2 and (A4), we get

0 ≤
(
g (Txk)− gβk (Txk)

)
≤ βk

2
M2 (P-a.s.)

which implies, in light of (P3), that g (Txk)− gβk (Txk)→ 0 (P-a.s.). Altogether, it holds that Lk (xk, µk)→
L (x⋆, µ⋆) (P-a.s.) and thus the limit

lim
k
‖µk − µ⋆‖2 = 2/c

(
lim
k
rk − L (x⋆, µ⋆)

)

exists (P-a.s.) for each µ⋆ ∈ SD.

SinceHd is separable by (A9), there exists a countable set S such that S̄ = SD. The previous paragraph has

shown that, for every µ⋆ ∈ SD, there exists Ωµ⋆ ⊂ F such that P (Ωµ⋆) = 1 and, for any ω ∈ Ωµ⋆ , Θ(µ⋆, ω)

exists. Set Ω̃ =
⋂

µ⋆∈S
Ωµ⋆ and let Ω̃c be its set-theoretic complement. By the countability of S,

P

(
Ω̃
)
= 1− P

(
Ω̃c
)
= 1− P


 ⋃

µ⋆∈S
Ωcµ⋆


 ≥ 1−

∑

µ⋆∈S
P
(
Ωcµ⋆

)
= 1,

i.e., P
(
Ω̃
)

= 1. Fix µ⋆ ∈ SD; since S̄ = SD, there exists a sequence (µ⋆n)n∈N such that, for each n ∈ N,

µ⋆n ∈ S and µ⋆n → µ⋆. As was already shown, for each n ∈ N, for any ω ∈ Ωµ⋆n , Θ(µ⋆n, ω) exists. Let ω ∈ Ω̃,

then we have, for each n ∈ N, for each k ∈ N,

−‖µ⋆n − µ⋆‖ ≤ ‖µk (ω)− µ⋆‖ − ‖µk (ω)− µ⋆n‖ ≤ ‖µ⋆n − µ⋆‖
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and thus, for each n ∈ N,

−‖µ⋆n − µ⋆‖ ≤ lim inf
k
‖µk (ω)− µ⋆‖ − lim

k
‖µk (ω)− µ⋆n‖

= lim inf
k
‖µk (ω)− µ⋆‖ −Θ(µ⋆n, ω)

≤ lim sup
k
‖µk (ω)− µ⋆‖ −Θ(µ⋆n, ω)

= lim sup
k
‖µk (ω)− µ⋆‖ − lim

k
‖µk (ω)− µ⋆n‖

≤ ‖µ⋆n − µ⋆‖ .

Taking the limit as n→∞ then gives that the sequence (Θ (µ⋆n, ω))n∈N converges to Θ(µ⋆, ω) for any ω ∈ Ω̃

where Ω̃ does not depend on µ⋆.

We now aim to use (A10), for which we denote

(pi)i∈N =
(
∇ϕkji

(
µkji

)
− b
)
i∈N

and (qi)i∈N =
(
µkji − ρkji∇ϕkji

(
µkji

))
i∈N

.

We’ve shown that (pi)i∈N converges strongly to 0 (P-a.s.) and that (qi)i∈N converges weakly to µ̄ (P-a.s.) and

so there exists Ω̃ ⊂ F with P

(
Ω̃
)
= 1 such that, for any ω ∈ Ω̃, pi (ω) → p (ω) and qi (ω) ⇀ q (ω). Due to

(4.3.4), we furthermore have, for each ω ∈ Ω̃, for each i ∈ N,

pi (ω) ∈ ∂
(
φ∗kji ◦ (−A

∗)
)
(qi (ω)) (P-a.s.) ,

and thus by (A10), for each ω ∈ Ω̃, (qi (ω))i∈N admits a subsequence (qil (ω))l∈N such that qil (ω) → q̄ (ω),

i.e., the sequence
(
µkjil

− ρkjil∇ϕkjil
(
µkjil

))
l∈N

is strongly convergent (P-a.s.). Thus, the subsequence
(
µkjil

)
l∈N

is strongly convergent to µ̄ (P-a.s.). Since µ̄ is a solution to (D), it holds that lim
k
‖µk − µ̄‖ ex-

ists (P-a.s.). At the same time, we have shown that lim
l

∥∥∥µkjil − µ̄
∥∥∥ = 0 (P-a.s.) and so the whole sequence

(µk)k∈N converges strongly to µ̄ ∈ SD (P-a.s.).

Meanwhile the third claim, (iii), follows from the argument of Theorem 3.3.3(3.3.5) directly applied to the

(P-a.s.) setting and similarly for (iv) following from the argument of the proof of Corollary 3.3.4.

Finally, assume that (P9) holds. By taking the total expectation of (4.2.15) in Lemma 4.2.9 and using the law

of total expectation we have, for each k ∈ N,

E [rk+1]− E [rk] ≤ −γk
(
E [L (xk, µ⋆)]− L (x⋆, µ⋆) +

ρk
2
E

[
‖Axk − b‖2

])
+
γk+1

2
E

[
‖Axk+1 − b‖2

]

+ (βk − βk+1)
M2

2
+ (γk − γk+1) M̃ + γkβk

M2

2
+K(F,ζ,C)ζ (γk) + γ2kCk

+ dCγkE [‖λk‖] + γkE [λsk] (P-a.s.) .

Define the following, for each k ∈ N,

r̃k = E [rk] and p̃k = γk and w̃k = E [L (xk, µ⋆)]− L (x⋆, µ⋆) +
ρk
2
E

[
‖Axk − b‖2

]

and denote what remains, for each k ∈ N,

z̃k =
γk+1

2
E

[
‖Axk+1 − b‖2

]
+ (βk − βk+1)

M2

2
+ (γk − γk+1) M̃

+ γkβk
M2

2
+K(F,ζ,C)ζ (γk) + γ2kCk + dCγkE [‖λk‖] + γkE [λsk] .

By repeating the arguments of the previous paragraph, we have that (z̃k)k∈N ∈ ℓ1+ (recall that
(
γkE

[
‖Axk − b‖2

])
k∈N
∈

ℓ1+ by Theorem 4.3.1). Invoking Lemma 2.2.3, again noting Lemma 4.2.3 and Lemma 4.2.5 hold with the total

expectation as well, with (r̃k)k∈N, (p̃k)k∈N, (w̃k)k∈N, and (z̃k)k∈N defined as above, we obtain the remaining

claims.
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Remark 4.3.3. The assumption (A9) is only necessary for showing that the sequence of dual variables (µk)k∈N
admits an optimal weak cluster point. The other results, e.g., convergence of the Lagrangian values, the contain-

ment W
[
(xk)k∈N

]
⊂ SP (P-a.s.), etc, do not require the separability imposed by (A9). Likewise, something

similar can be said for (A10), which is only necessary for ensuring the strong convergence of the sequence of

dual variables (µk)k∈N and can otherwise be omitted.

4.4 Applications

4.4.1 Stochastic Applications

We examine the problem of risk minimization using two different ways to inexactly calculate the gradient with

stochastic noise to demonstrate that the assumptions on the error can be satisfied in order to apply ICGALP .

Consider the following,

min
x∈C⊂H
Ax=b

f (x)
[

def
= E [L (x, η)]

]
(P1)

where L (·, η) is differentiable for every η, and η is a random variable.

We will impose the following assumptions, or a subset of them depending on the context. Indeed, only (E.1)

and (E.2) will be used for risk minimizaiton with increasing batch size while (E.3) and (E.4) will be needed for

the results on risk minimization with variance reduction.

(E.1) It holds, for all x ∈ Hp, ∇f (x) = E [∇xL (x, η)].

(E.2) For all η, the function L (·, η) is ω-smooth (see Definition 2.1.4) with ω nondecreasing.

(E.3) The function f is ω-smooth with ω nondecreasing.

(E.4) The function f is Hölder-smooth with constant Cf and exponent τ .

Remark 4.4.1. In practical contexts, it’s unrealistic that one will have access to the function f or knowledge of its

regularity. To this end, we note that the assumptions (E.1) and (E.2), which depend only on the functionL (x, η),

are sufficient to ensure that (E.3) holds and similarly for (E.4) if one adjusts (E.2) for Hölder-smoothness. More-

over, since Hölder-smoothness is a special case of ω-smoothness, (E.4) =⇒ (E.3).

Remark 4.4.2. With the above choice for λk, the terms in ∇xEk (xk, µk) coming from the augmented La-

grangian are computed exactly, however our analysis extends to the case where∇x
(
ρk
2 ‖Axk − b‖

2
)
= ρkA

∗ (Axk − b)
is computed inexactly as well, as this function is always Lipschitz-continuous. We demonstrate this alternative

choice in Section 4.5 by sampling the components ρkA
∗ (Axk − b)(i) in the numerical experiments.

For the sake of clarity, we demonstrate only the case where, for each k ∈ N, λk ≡ λfk with λfk = ∇̂fk −
∇f (xk) and ∇̂fk is our inexact computation of ∇f (xk), to be defined in the following sections. As in the

previous sections, all equalities/inequalities involving random variables should be understood to hold (P-a.s.)

even when it is not explicitly written for the sake of brevity.

4.4.1.1 Risk minimization with increasing batch size

Consider (P1) and define, for each k ∈ N,

∇̂fk
def
=

1

n (k)

n(k)∑

i=1

∇xL (xk, ηi)

where n (k) is the number of samples to be taken at iteration k. We assume that each ηi is i.i.d., according to

some fixed distribution, and that n is a function of k, i.e., the number of samples taken to estimate the expectation

is dependent on the iteration number itself.
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Lemma 4.4.3. Under assumptions (E.1) and (E.2), denote

C = 2
(
ω (dC)

2 + E

[
‖∇L (x⋆, η)‖2 | Sk

])

where x⋆ is a solution to (P1) and, for each k ∈ N, Sk = σ (x0, µ0, ŝ0, . . . , ŝk) as before. Then, for each k ∈ N,

the following holds,

E

[∥∥∥λfk+1

∥∥∥ | Sk
]
≤
√

C

n (k + 1)
.

Proof. By Jensen’s inequality, for each k ∈ N,

E

[∥∥∥λfk+1

∥∥∥ | Sk
]2
≤ E

[∥∥∥λfk+1

∥∥∥
2
| Sk
]
= E

[∥∥∥∇f (xk+1)− ∇̂fk+1

∥∥∥
2
| Sk
]
.

Then, since ∇̂fk+1 is an unbiased estimator for ∇f (xk+1), we have, for each k ∈ N,

E

[∥∥∥∇f (xk+1)− ∇̂fk+1

∥∥∥
2
| Sk
]
= E

[∥∥∥E
[
∇̂fk+1

]
− ∇̂fk+1

∥∥∥
2
| Sk
]

= Var
[
∇̂fk+1 | Sk

]

= Var


 1

n (k + 1)

n(k+1)∑

i=1

∇L (xk+1, ηi) | Sk




=
1

n (k + 1)
Var [∇L (xk+1, η) | Sk] ,

where the last equality follows from the independence and identical distribution of ηi. Applying the definition

of conditional variance yields, for each k ∈ N,

1

n (k + 1)
Var [∇L (xk+1, η) | Sk] =

1

n (k + 1)

(
E

[
‖∇L (xk+1, η)‖2 | Sk

]
− ‖E [∇L (xk+1, η) | Sk]‖2

)

≤ 1

n (k + 1)
E

[
‖∇L (xk+1, η)‖2 | Sk

]
.

We again use Jensen’s inequality, then ω-smoothness, and finally the fact that ω is nondecreasing together with

the fact that xk+1 and x⋆ are both in C to find, for each k ∈ N,

1

n (k + 1)
E

[
‖∇L (xk+1, η)‖2 | Sk

]
≤ 2

n (k + 1)

(
E

[
‖∇L (xk+1, η)−∇L (x⋆, η)‖2 | Sk

]

+E

[
‖∇L (x⋆, η)‖2 | Sk

])

≤ 2

n (k + 1)

(
E

[
ω (‖xk+1 − x⋆‖)2 | Sk

]
+ E

[
‖∇L (x⋆, η)‖2 | Sk

])

≤ 2

n (k + 1)

(
ω (dC)

2 + E

[
‖∇L (x⋆, η)‖2 | Sk

])

=
C

n (k + 1)
.

The above shows that, for each k ∈ N, E
[∥∥∥λfk+1

∥∥∥ | Sk
]2
≤ C

n(k+1) and so E

[∥∥∥λfk+1

∥∥∥ | Sk
]
≤
√

C
n(k+1) as

desired.

Proposition 4.4.4. Under (E.1) and (E.2), assume that the number of samples n (k) at iteration k is lower

bounded by
(

γk
ζ(γk)

)2
, i.e. for some α > 0, n (k) ≥ α

(
γk
ζ(γk)

)2
. Then, the summability of the error in (P8) is

satisfied; namely,

γk+1E

[∥∥∥λfk+1

∥∥∥ | Sk
]
∈ ℓ1 (S) .
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Proof. By Lemma 4.4.3 we have, for each k ∈ N,

γk+1E

[∥∥∥λfk+1

∥∥∥ | Sk
]
≤ γk+1

√
C

n (k + 1)
≤
√
C

α
ζ (γk+1) .

The summability of ζ (γk+1) is given by (P1) and thus γk=1E

[∥∥∥λfk+1

∥∥∥ | Sk
]
∈ ℓ1 (S)

Remark 4.4.5. The lower boundn (k) ≥ α
(

γk
ζ(γk)

)2
is sufficient but not necessary; one can alternatively choose

n (k) to be lower bounded by α
(
βk
γk

)2
or α

(
1
βk

)2
and, due to (P1), the result will still hold.

4.4.1.2 Risk minimization with variance reduction

We reconsider (P1) as before but now with a different ∇̂f . We define a stochastic-averaged gradient, which will

serve as a form of variance reduction, such that the number of samples at each iteration need not increase as in

the previous section. For each k ∈ N, let νk ∈ [0, 1] and define

∇̂fk
def
= (1− νk) ∇̂fk−1 + νk∇xL (xk, ηk) (4.4.1)

with ∇̂f−1 = 0 and with each ηi i.i.d.. We call ∇̂fk the stochastic average of sampled gradients with weight

νk.

In the previous section, we have used the number of batches n(k) to ensure the error summability condition.

This in turn means that the number of gradient evaluations increases with k (in particular, for finite-sum obe-

jctives, one has to evaluate all gradients after finitely many iterations). This is in stark contrast with variance

reduction proposed in this section where we are able to take a single (or a larger but fixed batch size) gradient

sample at each iteration, while taking full advantage of the flexibility offered by the choice of νk to reduce the

stocastic error variance as we now show.

Lemma 4.4.6. Under (E.1) and (E.3), denote, for each k ∈ N,

σ2k
def
= E

[
‖∇xL (xk, ηk)−∇f (xk)‖2 | Sk−1

]
(4.4.2)

and assume that ∃σ > 0 such that supk σ
2
k = σ2 <∞. Then, for each k ∈ N, the following inequality holds,

E

[∥∥∥λfk+1

∥∥∥
2
| Sk
]
≤
(
1− νk+1

2

)∥∥∥λfk
∥∥∥
2
+ ν2k+1σ

2 + 2
ω (dCγk)

2

νk+1
.

Proof. The proof of this theorem is inspired by a similar construction found in [88, Lemma 2]. By definition of

λfk+1 and ∇̂fk+1, we have, for all k ∈ N,

∥∥∥λfk+1

∥∥∥
2
=
∥∥∥∇̂fk+1 −∇f (xk+1)

∥∥∥
2
=
∥∥∥(1− νk+1) ∇̂fk + νk+1∇xL (xk+1, ηk+1)−∇f (xk+1)

∥∥∥
2
.

We add and subtract (1− νk+1)∇f (xk) to get,

∥∥∥λfk+1

∥∥∥
2
=
∥∥∥(1− νk+1)λ

f
k + νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1)) + (1− νk+1) (∇f (xk)−∇f (xk+1))

∥∥∥
2
.

Applying the pythagoreas identity then gives,

∥∥∥λfk+1

∥∥∥
2
= (1− νk+1)

2
∥∥∥λfk

∥∥∥
2
+ ν2k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2

+ (1− νk+1)
2 ‖∇f (xk)−∇f (xk+1)‖2

+ 2
〈
(1− νk+1)

(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉

+ 2
〈
(1− νk+1)λ

f
k , (1− νk+1) (∇f (xk)−∇f (xk+1))

〉
.
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Using Young’s inequality on the last inner product, we find,
∥∥∥λfk+1

∥∥∥
2
≤ (1− νk+1)

2
∥∥∥λfk

∥∥∥
2
+ ν2k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2

+ (1− νk+1)
2 ‖∇f (xk)−∇f (xk+1)‖2

+ 2
〈
(1− νk+1)

(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉

+
νk+1

2

∥∥∥λfk
∥∥∥
2
+

2

νk+1

∥∥∥(1− νk+1)
2 (∇f (xk)−∇f (xk+1))

∥∥∥
2
.

Notice that 1− νk+1 ≤ 1 and thus (1− νk+1)
2 ≤ 1− νk+1 for all k ∈ N. This leads to

∥∥∥λfk+1

∥∥∥
2
≤
(
1− νk+1

2

)∥∥∥λfk
∥∥∥
2
+ ν2k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2 + ‖∇f (xk)−∇f (xk+1)‖2

+ 2
〈
(1− νk+1)

(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉

+
2 (1− νk+1)

νk+1
‖(∇f (xk)−∇f (xk+1))‖2

≤
(
1− νk+1

2

)∥∥∥λfk
∥∥∥
2
+ ν2k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2 +

(
2

νk+1

)
‖∇f (xk)−∇f (xk+1)‖2

+ 2
〈
(1− νk+1)

(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉
.

Recall that, by (E.3), f is ω-smooth with ω is nondecreasing. Furthermore, using the fact that xk+1 = xk −
γk (xk − ŝk), we find

∥∥∥λfk+1

∥∥∥
2
≤
(
1− νk+1

2

)∥∥∥λfk
∥∥∥
2
+ ν2k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2 +

(
2

νk+1

)
ω (‖xk − xk+1‖)2

+ 2
〈
(1− νk+1)

(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉

≤
(
1− νk+1

2

)∥∥∥λfk
∥∥∥
2
+ ν2k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2 +

(
2

νk+1

)
ω (dCγk)

2

+ 2
〈
(1− νk+1)

(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉

We take the expectation on both sides, recalling the definition of σk (see (4.4.2)), σ, and that

E [∇xL (xk, ηk) | Sk−1] = ∇f (xk) ,

to find,

E

[∥∥∥λfk+1

∥∥∥
2
| Sk
]
≤
(
1− νk+1

2

)∥∥∥λfk
∥∥∥
2
+ ν2k+1σ

2 +

(
2

νk+1

)
ω (dCγk)

2 .

In the following proposition, we analyze a particular case of parameter choices under the assumption (E.4)

of Hölder smoothness of f , i.e. ∃Cf , τ > 0 such that ω : t→ Cf t
τ .

Proposition 4.4.7. Under (E.1) and (E.4), for each k ∈ N, let ∇̂fk be defined as in (4.4.1) with weight νk = γαk
for some α ∈]0, τ [. If the following conditions on the sequence (γk)k∈N hold,

(
γ
1+min{α

2
,τ−α}

k

)

k∈N
∈ ℓ1, (4.4.3)

and, for k sufficiently large,

γk
γk+1

≤ 1 + o (γαk ) , (4.4.4)

then the summability condition in (P8) is satisfied; namely,

γk+1E

[∥∥∥λfk+1

∥∥∥ | Sk
]
∈ ℓ1 (S) .
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Proof. Since (E.4) =⇒ (E.3), the assumptions (E.1) and (E.3) are satisfied and Lemma 4.4.6 gives, for all

k ∈ N,

E

[∥∥∥λfk+1

∥∥∥
2
| Sk
]
≤
(
1− γαk+1

2

)∥∥∥λfk
∥∥∥
2
+ σ2γ2αk+1 +

2C2
fd

2τ
C γ

2τ
k

γαk+1

.

By (P5) we have, for all k ∈ N, γk ≤Mγk+1. It follows that, for each k ∈ N,

E

[∥∥∥λfk+1

∥∥∥
2
| Sk
]
≤
(
1− γαk+1

2

)∥∥∥λfk
∥∥∥
2
+ σ2γ2αk+1 + 2M

2τ
C2
fd

2τ
C γ

2τ−α
k+1 .

Consolidating higher order terms gives, for each k ∈ N,

E

[∥∥∥λfk+1

∥∥∥
2
| Sk
]
≤
(
1− γαk+1

2

)∥∥∥λfk
∥∥∥
2
+
(
σ2 + 2M

2τ
C2
fd

2τ
C
)
γ
min{2α,2τ−α}
k+1 .

Since α < τ ≤ 1 by 4.4.3, it holds that α < min {1, 2τ − α}, and the first condition of Lemma 2.2.5 is satisfied.

Additionally, by (4.4.4), we have that the second condition, (2.2.3), of Lemma 2.2.5 is satisfied as well and we

can apply Lemma 2.2.5 with

uk =
∥∥∥λfk

∥∥∥
2
, c =

1

2
, s = α, d =

(
σ2 + 2M

2τ
C2
fd

2τ
C
)
, and t = min {2α, 2τ − α} ,

to find, for k sufficiently large,

E

[∥∥∥λfk+1

∥∥∥
2
| Sk
]
≤ 2C̃γ

min{α,2(τ−α)}
k+1 + o

(
γ
min{α,2(τ−α)}
k+1

)

and, by extension, for k sufficiently large,

E

[∥∥∥λfk+1

∥∥∥ | Sk
]
≤
√
2C̃γ

min{α
2
,τ−α}

k+1 + o

(
γ
min{α

2
,τ−α}

k+1

)
.

Then, for k sufficiently large,

γk+1E

[∥∥∥λfk+1

∥∥∥ | Sk
]
≤ γk+1

(√
2C̃γ

min{α
2
,τ−α}

k+1 + o

(
γ
min{α

2
,τ−α}

k+1

))

≤
√

2C̃γ
1+min{α

2
,τ−α}

k+1 + o

(
γ
1+min{α

2
,τ−α}

k+1

)
.

Under the assumptions 4.4.3 we have γ
1+min{α

2
,τ−α}

k ∈ ℓ1 and thus the summability condition of (P8) is

satisfied.

Example 4.4.8. The condition (4.4.3) in Proposition 4.4.7 can be satisfied, for example, by taking γk =
1

(k+1)1−b .

In this case, the condition (4.4.3) reduces to picking b such that the following holds,

(1− b)
(
1 + min

{α
2
, τ − α

})
> 1.

Rearranging, we find that this is equivalent to,

b < 1−
(
1 + min

{α
2
, τ − α

})−1
. (4.4.5)

The condition (4.4.4) in Proposition 4.4.7 can be satisfied under this choice of γk as well. We have,

γk
γk+1

=

(
k + 2

k + 1

)1−b
=

(
1 +

1

k + 1

)1−b
≈ 1 +

1− b
k + 1

= 1 + o (γǫk)

for any 0 < ǫ < 1, for k sufficiently large.

Recall that the predicted convergence rates for the ergodic iterates x̄k given by Theorem 4.3.1 and Theo-

rem 4.3.2 under this choice of step size are,

‖Ax̄k − b‖ = O

(
1√
Γk

)
(P-a.s.) and L (x̄k, µ⋆)− L (x⋆, µ⋆) = O

(
1

Γk

)
(P-a.s.) ,
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where Γk =
k∑
i=0

γi =
k∑
i=0

1
(i+1)1−b . Thus, choosing b to be as large as possible is desired. For a given value of τ

corresponding to the Hölder exponent of the gradient, the best choice for α is 2
3τ . If the problem is Lipschitz-

smooth, then τ = 1 and we get α = 2
3 .

Notice that the choice of α does not directly affect the predicted rates of convergence, which now depend only

on the constant b. However, the choice of α dictates the possible choices for b which satisfy the assumptions

and thus, indirectly, the rates of convergence as well. In the Lipschitz-smooth case, choosing α = 2
3 leads one

to pick b < 1− (4/3)−1 = 1
4

4.4.2 Sweeping

We now consider an example in which the errors in the computation of ∇f are deterministic; a finite sum

minimization problem,

min
x∈C⊂H
Ax=b

1

n

n∑

i=1

fi (x) (P2)

where n > 1 is fixed. We assume that:

(F.1) fi is ω-smooth (see Definition 2.1.4) for 1 ≤ i ≤ n with ω nondecreasing.

(F.2) (γk)k∈N a nonincreasing sequence.

As in the previous section, Section 4.4.1, we examine only the case where, for each k ∈ N, λk ≡ λfk =

∇f (xk) − ∇̂fk, with ∇̂fk to be defined below, although our analysis is straightforward to adapt to the more

general case where one computes ρkA
∗ (Axk − b) inexactly as well, at the expense of brevity (see Remark 4.4.2).

We will sweep, or cycle, through the functions fi, taking the gradient of a single one at each iteration and

recursively averaging with the past gradients. For notation, fixed n, we take mod (k)
def
= (k mod n) with the

convention that mod (n)
def
= n. We define the inexact gradient in the following way,

∇̂fk
def
=

1

n

k∑

i=1

∇fi (xi) (∀k ≤ n)

and

∇̂fk
def
= ∇̂fk−1 +

1

n

(
∇fmod(k) (xk)−∇fmod(k) (xk−n)

)
(∀k ≥ n+ 1) .

For k ≥ n+ 1 it can also be written in closed form as,

∇̂fk =
1

n



mod(k)∑

i=1

∇fi
(
xi+k−mod(k)

)
−

n∑

i=mod(k)+1

∇fi
(
xi+k−n−mod(k)

)

 .

Lemma 4.4.9. Let C = 1
n (n (n− 1) + (n− 1) (2n− 1)). Under (F.1) and (F.2), we then have, for all k ≥

2n− 1, the following,
∥∥∥λfk+1

∥∥∥ ≤ Cω (γk+2−2ndC) .

Proof. Using the definition of λfk+1 for k ≥ 2n− 1 ≥ n+ 1, we have
∥∥∥λfk+1

∥∥∥ =
∥∥∥∇f (xk+1)− ∇̂fk+1

∥∥∥

=
1

n

∥∥∥∥∥∥



mod(k+1)∑

i=1

∇fi (xk+1)−∇fi
(
xi+k+1−mod(k+1)

)



+




n∑

i=mod(k+1)+1

∇fi (xk+1)−∇fi
(
xi+k+1−n−mod(k+1)

)


∥∥∥∥∥∥
.
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Then, we apply the triangle inequality and ω-smoothness of fi assumed in (F.1),

∥∥∥λfk+1

∥∥∥ ≤ 1

n



mod(k+1)∑

i=1

∥∥∇fi (xk+1)−∇fi
(
xi+k+1−mod(k+1)

)∥∥

+
n∑

i=mod(k+1)+1

∥∥∇fi (xk+1)−∇fi
(
xi+k+1−n−mod(k+1)

)∥∥



≤ 1

n



mod(k+1)∑

i=1

ω
(∥∥xk+1 − xi+k+1−mod(k+1)

∥∥
)

+

n∑

i=mod(k+1)+1

ω
(∥∥xk+1 − xi+k+1−n−mod(k+1)

∥∥
)

 .

Now we add and subtract the iterates in between xk+1 and xi+k+1−mod(k+1) then use the definition xk+1 =

xk + γk (ŝk − xk) and the fact that, for all k ∈ N, ŝk and xk are in C,

∥∥∥λfk+1

∥∥∥ ≤ 1

n



mod(k+1)∑

i=1

mod(k+1)−i∑

j=1

ω
(
‖xk+2−j − xk+1−j‖

)

+

n∑

i=mod(k+1)+1

mod(k+1)−i+n∑

j=1

ω
(
‖xk+2−j − xk+1−j‖

)



≤ 1

n



mod(k+1)∑

i=1

mod(k+1)−i∑

j=1

ω (γk+1−jdC)

+

n∑

i=mod(k+1)+1

mod(k+1)−i+n∑

j=1

ω (γk+1−jdC)


 .

Recall that, by (F.2), (γk)k∈N is nonincreasing, by (F.1), ω is a nondecreasing function, and, for each k ∈ N,

mod (k) ≤ n. Then,

∥∥∥λfk+1

∥∥∥ ≤ 1

n



mod(k+1)∑

i=1

(−i+mod (k + 1))ω
(
γk+1+i−mod(k+1)dC

)

+
n∑

i=mod(k+1)+1

(−i+ n+mod (k + 1))ω
(
γk+1+i−n−mod(k+1)dC

)



≤ 1

n

(
mod (k + 1) (−1 +mod (k + 1))ω

(
γk+2−mod(k+1)dC

)

+(n−mod (k + 1)) (−1 + n+mod (k + 1))ω
(
γk+2−n−mod(k+1)dC

))

≤ 1

n
(n (n− 1)ω (γk+2−ndC) + (n− 1) (2n− 1)ω (γk+2−2ndC))

≤ 1

n
(n (n− 1) + (n− 1) (2n− 1))ω (γk+2−2ndC) .

Proposition 4.4.10. Under (F.1) and (F.2), and assuming that (γkω (dCγk))k∈N ∈ ℓ1, the summability condition

of (P8) holds; namely,

γk+1

∥∥∥λfk+1

∥∥∥ ∈ ℓ1.
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Proof. By Lemma 4.4.9, we have, for all k ≥ 2n− 1,

γk+1

∥∥∥λfk+1

∥∥∥ ≤ Cγk+1ω (dCγk+2−2n) ≤ Cγk+2−2nω (dCγk+2−2n)

where we have used the fact that (γk)k∈N is a nonincreasing sequence by (F.2). Since (γkω (dCγk))k∈N ∈ ℓ1,
the desired claim follows.

4.5 Numerical Experiments

We apply the sweeping method and the variance reduction method to solve the following projection problem,

min
‖x‖1≤1
Ax=0

1

2n
‖x− y‖2 , (4.5.1)

where x and y are in R
n. Notice that this problem fits both the risk minimization and the sweeping problem

structures. By choosing fi (x) = 1
2 (xi − yi)

2
we can rewrite the problem to apply the sweeping method of

Section 4.4.2. Alternatively, we can let η be a random variable taking values in the set {1, . . . , n} and write

L(x, η) = 1
2 (xη − yη)

2
to cast the problem as risk minimization as in Section 4.4.1. In both of these cases,

it is possible by our analysis to consider also sampling components of the components of the gradient term

∇x ρk2 ‖Axk‖
2 = ρkA

∗Axk.

The assumptions (E.1) - (E.4) and (F.1) all hold as the function f is Lipschitz-smooth and the functionsL (·, η)
are all Lipschitz-smooth for every η as well. The assumptions (A1) to (A8)(I) all hold as f is Lipschitz-smooth

and has full domain.

For parameters, we take γk = 1/ (k + 1)1−b, ρk ≡ ρ = 22−b + 1, θk = γk. If we take b < 1
2 then all the

assumptions (P1) to (P7) are satisfied, as well as (F.2). In particular, to satisfy (P8) in the variance reduction

case, we will take b ∈
{
1
4 − 0.15, 13 − 0.01

}
. The weight νk in the variance reduction is chosen to be νk = γαk

with α = 2/3 since the problem is Lipschitz-smooth, i.e. the Hölder exponent is τ = 1. With this choice, the

condition (4.4.3) in Proposition 4.4.7 is satisfied as was discussed in Example 4.4.8.

Since the problem (4.5.1) is strongly convex, we show ‖x̄k − x⋆‖2 in addition to the feasibility gap, ‖Ax̄k‖2
where x̄k is the ergodic variable, for each k ∈ N,

x̄k
def
=

k∑

i=0

γixi+1/Γk.

We initialize y ∈ R
n and A ∈ R

2×n randomly. To find the solution x⋆ to high precision, we use generalized

forward-backward before running the experiments. As a baseline, we run CGALP, the exact counterpart to

ICGALP , and display the results. We run the sweeping method on ∇f (xk) for two different step size choices,

displayed in Figures 4.1 and 4.2. For the variance reduction, we examine both the case where ∇L (xk, ηk) is

sampled and the case including the gradient of the quadratic term is sampled (see Remark 4.4.2), for two different

step size and weight choices as well as different batch sizes (1, 64, or 256), displayed in Figures 4.1 and 4.2.
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102 103 104 105

k

10−2

|
̄x k
−
x

⋆
|2

Optimality
CGALP
Sweep ∇xfi(xk)
VR single ∇xfi(xk)
VR small batch ∇xfi(xk)
VR big batch ∇xfi(xk)
VR small batch ∇xfi(xk) + ρk(A *Axk)(i)

VR big batch ∇xfi(xk) + ρk(A *Axk)(i)

O( 1
(k+ 1)0.24)

102 103 104 105

k

10−5

10−4

|A
̄x k
|2

Feasibility
CGALP
Sweep ∇xfi(xk)
VR single ∇xfi(xk)
VR 64 batch ∇xfi(xk)
VR 256 batch ∇xfi(xk)
VR 64 batch ∇xfi(xk) + ρk(A *Axk)(i)

VR 256 batch ∇xfi(xk) + ρk(A *Axk)(i)

O( 1
(k+ 1)0.24)

Figure 4.1: Ergodic convergence profiles for ICGALP applied to the projection problem (4.5.1) with n = 1024.

The step size is, for each k ∈ N, γk = (k + 1)−(1−
1
4
+0.01) and the weight for variance reduction is, for each

k ∈ N, νk = γ
2/3
k .
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102 103 104 105

k

10−2|
̄x k
−
x

⋆
|2

Optimality
CGALP
Sweep ∇xfi(xk)
VR single ∇xfi(xk)
VR small batch ∇xfi(xk)
VR big batch ∇xfi(xk)
VR small batch ∇xfi(xk) + ρk(A *Axk)(i)

VR big batch ∇xfi(xk) + ρk(A *Axk)(i)

O( 1
(k+ 1)0.1)

102 103 104 105

k

10−4

10−3

|A
̄x k
|2

Feasibility
CGALP
Sweep ∇xfi(xk)
VR single ∇xfi(xk)
VR 64 batch ∇xfi(xk)
VR 256 batch ∇xfi(xk)
VR 64 batch ∇xfi(xk) + ρk(A *Axk)(i)

VR 256 batch ∇xfi(xk) + ρk(A *Axk)(i)

O( 1
(k+ 1)0.1)

Figure 4.2: Ergodic convergence profiles for ICGALP applied to the projection problem (4.5.1) with n = 1024.

The step size is, for each k ∈ N, γk = (k + 1)−(1−
1
4
+0.15) and the weight for variance reduction is, for each

k ∈ N, νk = γ
2/3
k .
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Chapter 5

Stochastic Bregman Primal-Dual Splitting

In this chapter, we propose and study a novel deterministic Bregman primal-dual algorithm and its inexact/stochastic

extension, applicable to relatively smooth, saddle-point problems over reflexive Banach spaces Xp and Xd of

the form

min
x∈Cp⊂Xp

max
µ∈Cd⊂Xd

f (x) + g (x)− h∗ (µ)− l∗ (µ) + 〈Tx, µ〉

with f ∈ Γ0 (Xp) relatively smooth over the non-empty convex set Cp, g ∈ Γ0 (Xp) prox-friendly with respect

to a certain Bregman divergence, h∗ ∈ Γ0 (Xd) relatively smooth over the non-empty convex set Cd, l∗ ∈
Γ0 (Xd) prox-friendly with respect to a certain Bregman divergence, and T a linear continuous operator. Such a

structured problem allows one to consider many practically relevant problems that were previously inaccessible.

By introducing a new condition that quantifies the relationship between the Bregman divergence and the duality

pairing, we are able to carry out a general analysis that doesn’t require strong convexity of the entropies with

respect to some norm. Our main contributions and findings can be summarized as follows:

Main contributions of this chapter

◮ Ergodic convergence in expectation of the Lagrangian optimality gap with a rate of O (1/k) and

that every almost sure weak cluster point of the ergodic sequence is a primal-dual optimal pair in

expectation.

◮ Weak P-almost sure convergence of the pointwise iterates to a primal-dual optimal pair under slightly

stricter assumptions.

◮ Strong P-almost sure convergence of the pointwise iterates to a primal-dual optimal pair under a

relative strong convexity assumption on the objective functions and a total convexity assumption on

the entropies.

◮ Applications: by requiring only relative smoothness over the sets Cp and Cd, we are able to apply our

algorithm to solve inverse problems, inspired by practical applications in data science, which use the

Kullback-Leibler divergence as a data fidelity term over the simplex. The Kullback-Leibler divergence

is not Lipschitz-smooth and so methods like [31] cannot be applied. We apply this novelty in the

deterministic case to solve the trend filtering problem, verifying numerically our claimed convergence

rates. We are also able to solve entropically regularized Wasserstein inverse problems, which we

implement in the deterministic case numerically. Our new assumptions allow us to drastically reduce

the dimensionality of the problem, allowing for compositions of the Wasserstein distance with linear

operators and total variation constraints that were, previously, not practically solvable by methods

like [41], [28], or [16]. These breakthroughs carry over to the Wasserstein barycenter case as well,

which we outline in the applications section.

A paper with the content of this chapter is under preparation for submission to a journal.
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5.1 Introduction

5.1.1 Problem Statement

The goal is to solve the following primal-dual, or saddle-point, problem over the real and reflexive Banach spaces

Xp and Xd:

min
x∈Xp

max
µ∈Xd

L (x, µ) . (P.D.)

where

L (x, µ) def
= f(x) + g(x) + ιp(x) + 〈Tx, µ〉 − h∗(µ)− l∗(µ)− ιd(µ)

and ιp and ιd are the indicator functions of Cp and Cd, respectively. We denote the primal and dual problems as

min
x∈Cp

{
f(x) + g(x) +

[(
h�
Cd
l

)
◦ T
]
(x)

}
(P)

min
µ∈Cd

{
h∗(µ) + l∗(µ) +

[(
f∗�

Cp
g∗
)
◦ (−T ∗)

]
(µ)

}
, (D)

where f∗�
Cp
g∗ (v)

def
=
(
f + g + ιCp

)∗
(v) and similarly for�

Cd
. In the case in which Cp and Cd are trivial constraints,

i.e., the entire spaces Xp and Xd, the corresponding primal and dual problems related to (P.D.) are

min
x∈Xp

{f(x) + g(x) + [(h�l) ◦ T ] (x)}

min
µ∈Xd

{h∗(µ) + l∗(µ) + [(f∗�g∗) ◦ (−T ∗)] (µ)} ,

where � denotes the classical inf-convolution defined by (f�g)∗
def
= f∗ + g∗.
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We again denote by Γ0 (X ) the space of proper, convex, and lower semicontinuous functions from X to

R∪{+∞}. We suppose the following general hypothesis on the problem, which we collectively denote by (H)




(H1) The Banach spaces Xp and Xd are real and reflexive, while Cp ⊂ Xp and Cd ⊂ Xd are

non-empty, convex, and closed subsets.

(H2) The functions f and g belong toΓ0 (Xp), while l andh belong toΓ0 (Xd); the functions

f and h∗ are differentiable.

(H3) The operator T : Xp → Xd is linear and continuous.

(H)

We introduce two functions, φp and φd, and, for simplicity, we denote byDp andDd their Bregman divergences

(see 2.1.7), respectively. We denote by D the Bregman divergence associated to φ(x, µ)
def
= φp(x) + φd(µ);

namely, given wi
def
= (xi, µi) with (xi, µi) ∈ Xp ×Xd for i ∈ {1, 2},

D (w1, w2)
def
= Dp (x1, x2) +Dd (µ1, µ2) .

For brevity throughout the remainder of the chapter we employ the following notation

Up def
= intdom (φp) ∩ dom (∂g) , Ud def

= intdom (φd) ∩ dom (∂l∗) ;

Ũp def
= dom (φp) ∩ dom (∂g) , Ũd def

= dom (φd) ∩ dom (∂l∗) .

5.1.2 Algorithm

As before, we denote by (Ω,F ,P) a probability space with set of eventsΩ, σ-algebraF , and probability measure

P. Throughout, we assume that a Banach space X is endowed with its Borel σ-algebra, B (X ).
We consider the possibility of some stochastic error in the computation of the gradients1 ∇f and∇h∗ which

we will denote for∇f (xk) as δpk and for∇h∗ (µk) as δdk , i.e., δpk and δdk are measurable functions from Ω to X ∗
p

and X ∗
d with their respective Borel σ-algebras. When it makes sense, we will also denote the combined error

as ∆k in the same way that we use wk, e.g. 〈∆k, w − wk〉 def
=
〈
δpk, x− xk

〉
+
〈
δdk, µ− µk

〉
. The stochastic

algorithm is given in Algorithm 10.

Algorithm 10: Stochastic Bregman Primal-Dual Splitting.

for k = 0, 1, . . . do

xk+1 = argmin
x∈Cp

{
g(x) + 〈∇f(xk) + δpk, x〉+ 〈Tx, µ̄k〉+

1

λk
Dp (x, xk)

}

µk+1 = argmin
µ∈Cd

{
l∗(µ) + 〈∇h∗(µk) + δdk, µ〉 − 〈T x̄k, µ〉+

1

νk
Dd (µ, µk)

}

where µ̄k = µk and x̄k = 2xk+1 − xk.

Notice that, setting δpk = 0 for each k ∈ N, the first step of the algorithm can be re-written in the following

way:

xk+1 = argmin
x∈Cp

{
g(x) + f(xk) + 〈∇f(xk), x− xk〉+ 〈Tx, µ̄k〉+

1

λk
Dp (x, xk)

}

= [∇φp + λk∂g]
−1 [∇φp − λk∇ (f(·) + 〈T ·, µ̄k〉)] (xk)

= [∇φp + λk∂g]
−1 (∇φp (xk)− λk∇f (xk)− λkT ∗µ̄k) .

1The addition of stochastic error in the computation of D-prox operators associated to g or l∗, while interesting, is problematic for

the algorithm in the sense that the monotone inclusions may no longer hold and the iterates themselves might not remain in Up ×Ud as

desired.
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Analogously, if δdk = 0 for all k ∈ N,

µk+1 = [∇φd + νk∂l
∗]−1 (∇φd (µk)− νk∇h∗ (µk) + νkT x̄k) .

A priori, the mappings [∇φp + λk∂g]
−1

and [∇φd + νk∂l
∗]−1

, sometimes referred to as D-prox mappings,

may be empty, may not be single-valued, or may not map intdom (φp) (resp. intdom (φd)) to intdom (φp)

(resp. intdom (φd)). In light of this, we will only consider φp and φd for which these mappings are well-defined

and map from intdom (φp) to intdom (φp) and the analog for φd (See (A1)). In Section 5.1.3, we will elaborate

on the class of Legendre functions in a reflexive Banach space given in [12][Definition 2.2] (see 2.1.8) which

will help us to ensure that the D-prox mappings are well-defined.

5.1.3 Assumptions

For the remainder of the chapter, all equalities and inequalities involving random quantities should be understood

as holding (P-a.s.) unless explicitly written otherwise. Using the notation of Section 2.3, we denote the canonical

filtration as S
def
= (Sk)k∈N with Sk

def
= σ {(x0, µ0) , (x1, µ1) , . . . , (xk, µk)} such that all iterates up to (xk, µk)

are completely determined by Sk.

Before the introduction of the main assumptions considered along the chapter, we define the following nota-

tion: (
1

Λk
− L

)
D (w1, w2)

def
=

(
1

λk
− Lp

)
Dp (x1, x2) +

(
1

νk
− Ld

)
Dd (µ1, µ2) ;

(
1

Λ∞
− L

)
D (w1, w2)

def
=

(
1

λ∞
− Lp

)
Dp (x1, x2) +

(
1

ν∞
− Ld

)
Dd (µ1, µ2) ;

M(w1, w2)
def
= 〈T (x1 − x2), µ1 − µ2〉,

(5.1.1)

where λk, νk are the step-sizes and Lp, Ld are the constants introduced in (A1). Analogously to (5.1.1), we

define also the following notation using the relative strong convexity constants from (A11):(
1

Λk
−m(f,h∗)

)
D (w1, w2)

def
=

(
1

λk
−mf

)
Dp (x1, x2) +

(
1

νk
−mh∗

)
Dd (µ1, µ2) ;

(
1

Λk
−m(g,l∗)

)
D (w1, w2)

def
=

(
1

λk
−mg

)
Dp (x1, x2) +

(
1

νk
−ml∗

)
Dd (µ1, µ2) .

(5.1.2)

Finally, we define the notation for the set of solutions for (P) and (D) to be

SP

def
= argmin

x∈Cp

{
max
µ∈Cd
{f (x) + g (x) + 〈Tx, µ〉 − h∗ (µ)− l∗ (µ)}

}

SD

def
= argmax

µ∈Cd

{
min
x∈Cp
{f (x) + g (x) + 〈Tx, µ〉 − h∗ (µ)− l∗ (µ)}

} (5.1.3)

and the notation for the weak cluster points of an arbitrary sequence (xk)k∈N in some Banach space X to be

W
[
(xk)k∈N

] def
=
{
x ∈ X : ∃

(
xkj
)
j∈N , xkj ⇀ x

}
. (5.1.4)

We first state our assumptions and then remark on their motivations and common situations where they hold.

(A1) The two functionsφp andφd are Legendre functions belonging toΓ0 (Xp) andΓ0 (Xd)with dom (φp + φd) =

Cp × Cd and with f and h∗ being Lp and Ld - smooth w.r.t. φp and φd, respectively (see Definition

2.1.9). The D-prox mappings [∇φp + λk∂g]
−1

and [∇φd + νk∂l
∗]−1

are well-defined (i.e., nonempty

and single-valued) maps from intdom (φp) and intdom (φd) to intdom (φp) and intdom (φd), respec-

tively.

(A2) The step size sequences (λk)k∈N and (νk)k∈N are positive, nondecreasing, and bounded above with their

limits denoted lim
k→∞

λk = λ∞ and lim
k→∞

νk = ν∞.

(A3) The step sizes satisfy (A2) and one of the following holds:

– 92 –



Chapter 5 5.1. Introduction

(I) there is a function d : (Xp ×Xd)2 → R+ and ε ≥ 0 such that

inf
w1∈Ũp×Ũd, w2∈Up×Ud;

w1 6=w2

(
1

Λ∞
− L

)
D(w1, w2)−M(w1, w2)

d(w1, w2)
≥ ε; (5.1.5)

(II) the above holds with ε > 0.

(A4) The error (∆k)k∈N is unbiased conditioned on the filtration S, i.e., for each k ∈ N,

E
[
δpk | Sk

]
= E

[
δdk | Sk

]
= 0,

and one of the following holds (and analogously, although not necessarily the same case, for the dual):

(I) for each k ∈ N, the stochastic error δpk is zero almost surely;

(II) The following sequences satisfy,

(
E
[∥∥δpk

∥∥ | Sk
])
k∈N ∈ ℓ

1
+ (S) and

(
E
[∥∥δpk

∥∥])
k∈N ∈ ℓ

1
+,

and the set Cp is bounded, i.e., 0 < diamCp < +∞;

(III) The entropies φp and φd are strongly convex with respect to ‖·‖2p and ‖·‖2d with modulus mp md,

respectively, the step sizes (λk)k∈N and (νk)k∈N satisfy (A2) and

ν∞λ∞ <
mpmd

‖T‖2p→d∗
,

where ‖·‖p→d∗ is a standard operator norm between Xp and X ∗
d , and the following sequences satisfy

E

[∥∥δpk
∥∥2 | Sk

]
∈ ℓ1+ (S) and E

[∥∥δpk
∥∥2
]
∈ ℓ1+.

(A5) For all sequences (vk)k∈N and (zk)k∈N in intdom (φ)

d(vk, zk)→ 0 ⇒ vk − zk → 0. (5.1.6)

(A6) For every w
def
= (x, µ) ∈ intdom (φ), at least one of D(w, ·) or d(w, ·) is coercive.

(A7) The set-valued operator ∂g +∇f + T ∗ is maximal monotone and similarly for ∂l∗ +∇h∗ − T .

(A8) For any sequence (wk)k∈N with wk ∈ intdomφ for each k ∈ N, if wk+1 − wk → 0, then

∇φp(xk+1)−∇φp(xk)→ 0 and ∇f(xk+1)−∇f(xk)→ 0;

∇φd(µk+1)−∇φd(µk)→ 0 and ∇h∗(µk+1)−∇h∗(µk)→ 0.

(A9) For any sequence (wk)k∈N with wk ∈ intdomφ, for each k ∈ N, if wk ⇀ w∞, then

∇φ(wk)⇀ ∇φ(w∞).

(A10) If wk ⇀ 0, then

〈Txk, µk〉 → 0.

(A11) One of the functions f , g, or both are relatively strongly convex w.r.t. φp with constant mf , mg, or

mf +mg, respectively (see Definition 2.1.11).

Remark 5.1.1. There are several, technical characterizations of sufficient conditions that ensure the latter half

of (A1) holds. They can be found, for instance, in [12][Theorem 3.18] for the reflexive Banach space case or in

[13][Lemma 2] for the Euclidean case. In practice, these conditions are seldom violated and otherwise not used

in the analysis of the algorithm. For (A2), it is sufficient to take the sequences (λk)k∈N and (νk)k∈N to simply

be constant.

Remark 5.1.2. The infimum in (A3) is taken with w1 ∈ Ũp × Ũd and w2 ∈ Up × Ud because, a priori, a

solution w∗ may lie in the boundary of Ũp × Ũd even if the iterates (wk)k∈N themselves remain in Up × Ud.
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Since the Bregman divergence is still well defined when the first argument (but not necessarily the second) is

in dom (φ) \ intdom (φ), there is no issue with taking the infimum over this set. Observe that (A3) also entails

that, for every w1 ∈ Ũp × Ũd and w2 ∈ Up × Ud, for each k ∈ N,

1

Λk
D (w1, w2)−M (w1, w2) ≥ LD (w1, w2) + εd (w1, w2) ≥ 0. (5.1.7)

Remark 5.1.3 (Example). Suppose that ϕ : R+ → R+ is a convex, nondecreasing function with ϕ∗ its positive

conjugate and γ a finite, coercive gauge with domain R+ (Up − Up) ⊂ Xd (in the Minkowski sense) and polar

γ◦. Assume that the quantities defined by

‖T‖Dp

def
= sup

x1,x2∈Up; x1 6=x2

ϕ(γ (T (x2 − x1)))
Dp (x1, x2)

;

‖I‖Dd

def
= sup

µ1,µ2∈Ud; µ1 6=µ2

ϕ∗(γ◦ (µ2 − µ1))
Dd (µ1, µ2)

are finite. We use the notation ‖·‖Dp
and ‖·‖Dp

, but notice that they may not be norms. If, moreover, we suppose

that the step sizes verify, for each k ∈ N, for some εk ≥ 0,
(

1

λk
− Lp

)
≥ ‖T‖Dp

+ εk and

(
1

νk
− Ld

)
≥ ‖I‖Dd

+ εk, (5.1.8)

then (A3) is satisfied with d (w1, w2) = D (w1, w2). Indeed, for any pair w1, w2 ∈ Up × Ud, we have, for each

k ∈ N,
(

1

Λk
− L

)
D (w1, w2)−M (w1, w2)

=

(
1

λk
− Lp

)
Dp (x1, x2) +

(
1

νk
− Ld

)
Dd (µ1, µ2)− 〈T (x1 − x2), µ1 − µ2〉

≥ ‖T‖Dp
Dp (x1, x2) + ‖I‖Dd

Dd (µ1, µ2)− γ (T (x1 − x2)) γ◦ (µ1 − µ2) + εkD (w1, w2)

≥ ϕ(γ (T (x1 − x2))) + ϕ∗(γ◦ (µ1 − µ2))− ϕ(γ (T (x1 − x2)))− ϕ∗(γ◦ (µ1 − µ2)) + εkD (w1, w2)

= εkD (w1, w2) .

(5.1.9)

Note that in the above example we have taken the action of T on the primal variables into the definition

of ‖·‖Dp
. It is equally possible, and sometimes desirable, to the define things such that the action of the ad-

joint T ∗ on the dual variables is incorporated into ‖·‖Dd
instead, which can drastically change the values (and

consequently step sizes) in a non-Hilbertian setting.

Remark 5.1.4. Notice that, using Lemma 2.3.4, (A4) (in any case) implies that
(
δpk
)
k∈N and

(
δdk
)
k∈N converge

strongly (with respect to ‖·‖p∗ and ‖·‖d∗ respectively) to zero a.s. and, furthermore, for any fixed w ∈ Cp × Cd,
(E [〈∆k, w − wk+1〉])k∈N ∈ ℓ1+ and (E [〈∆k, w − wk+1〉 | Sk])k∈N ∈ ℓ1+ (S) (see Lemma 5.2.5 for details). In

(A4)(III), the norm ‖·‖p can be arbitrary as long as φp is strongly convex with respect to its square.

Remark 5.1.5. In the case where d (x, y) is the Bregman divergence induced by the Shannon-Boltzman entropy,

the Hellinger, entropy, the fractional-power entropy, the Fermi-Dirac entropy, or the energy/euclidean entropy,

(A5) holds (see [13, Remark 4].

More generally, when d = Dψ for some entropy ψ, we have from [12][Example 4.10] that (A5) is satisfied

whenever one of the following holds
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• ψ is uniformly convex on bounded sets;

• Xp ×Xd is finite dimensional, dom (ψ) is closed, and ψ |dom(ψ) is strictly convex and continuous.

Thus, if ψ = φ, since φ is assumed to be Legendre by (H), we require only dom (φ) closed if Xp ×Xd is finite

dimensional.

Remark 5.1.6. Sufficient conditions for (A6) to hold for Legendre functions in reflexive Banach spaces are

given in [11][Lemma 7.3(viii) & (ix)]. For example, if φp is supercoercive and x ∈ intdom (φp) then Dp (x, ·)
is coercive or if Xp is finite-dimensional, dom

(
φ∗p
)

is open, and x ∈ intdom (φp) then Dp (x, ·) is coercive

(and similar conditions for φd).

Remark 5.1.7. There are numerous sufficient conditions for (A7) to hold. In reflexive Banach spaces, we can

impose one of the following (see [19])

• intdom (∂g) ∩ intdom (∇f) 6= ∅ and its analog for the dual.

• dom (∇f) ∩ intdom (∂g) 6= ∅ while dom (∇f) is closed and convex.

• dom (∇f) and dom (∂g) are closed and convex and 0 ∈ core (conv (dom (∇f)− dom (∂g))).

Relaxed conditions exist for finite dimension (see [32]).

Remark 5.1.8. Note that (A8), (A9), and (A10) all hold in the case where Xp × Xd is finite dimensional.

Indeed, in finite dimension not only do strong and weak convergence coincide but also ∇φp, ∇φd, ∇f , and

∇h∗ are all continuous on the interior of their domains by [104][Corollary 9.20] since φp, f ∈ Γ0 (Xp) and

φd, h
∗ ∈ Γ0 (Xd).

5.1.4 Organization of the Chapter

The rest of the chapter is divided into four sections.

In Section 5.2, we establish the main estimation of Lemma 5.2.1 under (H) and (A1)-(A3) that will be used

in the convergence analysis of the ergodic, pointwise, and relatively strongly convex cases. The key idea is

to utilize the descent lemma given by relative smoothness along with the usual inequalities for Γ0 (X ) func-

tions to estimate the optimality gap L (xk+1, µ) − L (x, µk+1) in terms of the Bregman divergences induced

by the entropies φp and φd. The proof of the estimation here is similar in spirit to the proof of the main es-

timation in [29], with the main difference being that we are unable to use Young’s inequality to deal with the

M terms, which we handle using (A3). There are also some lemmas involving (H) and (A1)-(A4) regard-

ing the stochastic error, culminating in a summability result for the sequences (E [〈∆k, w − wk+1〉])k∈N and

(E [〈∆k, w − wk+1〉 | Sk])k∈N.

In Section 5.3, we use the estimation developed in Section 5.2 along with (H) and (A1)-(A11) regarding

the entropies φp and φd and the regularity of their induced Bregman divergences to show convergence of the

algorithm; first convergence of the expectation of the Lagrangian optimality gap in the ergodic sense under

(H) and (A1)-(A4), then almost sure weak convergence of the iterates in the pointwise sense under (H) and

(A1)-(A10), and finally we examine the case where (A11) holds, i.e., there is relative strong covexity of the

objective functions with respect to the entropies, and total conexity of the entropies themselves. For the ergodic

analysis, we show that every almost sure weak sequential cluster point of the ergodic primal-dual sequence

((x̄k, µ̄k))k∈N is a primal-dual optimal pair in expectation, E [(x∞, µ∞)] = (x⋆, µ⋆), and also convergence of

the expectation of the Lagrangian optimality gap E [L (x̄k+1, µ)− L (x, µ̄k+1)] with a rate of O (1/k). For the

pointwise analysis, we begin by showing an almost sure asymptotic regularity result for the primal-dual sequence

(wk). With this, we are then able to adapt the well known Opial’s lemma (see [89]) to the Bregman primal-dual

setting to establish almost sure weak convergence of the primal-dual sequence (wk)k∈N to a primal-dual optimal

pairw⋆. In the final part of this section, we establish almost sure strong convergence of the primal-dual sequence

(wk)k∈N to a primal-dual optimal pair w⋆ under (A11) and total convexity of the entropies.
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Finally, in Section 5.4, we explore potential applications of the algorithm and demonstrate numerically its ef-

fectiveness when applied to three different problems. The first is a simple linear inverse problem on the simplex.

The second is a type of simplex regression with so-called trend filtering using the Kullback-Leibler divergence.

The last problem is an application optimal transport involving the entropically regularized Wasserstein distance

and inverse problems. There is also a discussion of other possible applications of the algorithm to entropic

Wasserstein barycenter problems.

5.2 Preliminary Estimations

The following results provide the main estimations that will be instrumental in the convergence analysis of

Algorithm 10. We start with an energy estimation of in the first section and then move on to estimating the error,

∆k, in the second section.

5.2.1 Main Energy Estimation

Lemma 5.2.1. Recall the notation of (5.1.1) and (5.1.2). Assume that (H), (A1), (A2), and (A3) hold, then we

have the following energy estimation. For every w
def
= (x, µ) ∈ Cp × Cd, for each k ∈ N,

L (xk+1, µ)− L (x, µk+1) +

[
1

Λk+1
D (w,wk+1)−M (w,wk+1)

]
+ 〈wk+1 − w,∆k〉

+ εd (wk+1, wk) ≤
[
1

Λk
D (w,wk)−M (w,wk)

]
.

(5.2.1)

If, moreover, (A11) holds for the primal and the dual, we have (using the notation of (5.1.2)) for every w
def
=

(x, µ) ∈ Cp × Cd, for each k ∈ N,

L (xk+1, µ)− L (x, µk+1) +

[(
1

Λk+1
+m(g,l∗)

)
D (w,wk+1)−M (w,wk+1)

]
+ 〈wk+1 − w,∆k〉

+ εd (wk+1, wk) ≤
[(

1

Λk
−m(f,h∗)

)
D (w,wk)−M (w,wk)

]
.

(5.2.2)

Proof. For any (x, µ) ∈ Cp × Cd, the following holds by the definitions of xk+1 and µk+1 in Algorithm 10 and

the relative strong convexity of g and l∗ with respect to Dp and Dd with constants mg and ml∗ , respectively:

Dp (x, xk) ≥ λk
[
g(xk+1)− g(x) + 〈∇f(xk) + δpk, xk+1 − x〉+ 〈T (xk+1 − x) , µ̄k〉

]

+(1 +mgλk)Dp (x, xk+1) +Dp (xk+1, xk) ;

Dd (µ, µk) ≥ νk
[
l∗(µk+1)− l∗(µ) + 〈∇h∗(µk) + δdk, µk+1 − µ〉 − 〈T x̄k, µk+1 − µ〉

]

+(1 +ml∗νk)Dd (µ, µk+1) +Dd (µk+1, µk) .

(5.2.3)

Moreover, from the relative smoothness asumed in (A1) and the consequent generalized descent lemma (2.1.9),

we have, for each k ∈ N,

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ LpDp (xk+1, xk) ;

h∗(µk+1) ≤ h∗(µk) + 〈∇h∗(µk), µk+1 − µk〉+ LdDd (µk+1, µk) .
(5.2.4)

By convexity (or relative strong-convexity in the case mf > 0 or mh∗ > 0) of f and h⋆ (see Definition 2.1.11),

we have, for each (x, µ) ∈ Cp × Cd, for each k ∈ N,

f(x) ≥ f(xk) + 〈∇f(xk), x− xk〉+mfDp (x, xk) ;

h∗(µ) ≥ h∗(µk) + 〈∇h∗(µk), µ− µk〉+mh∗Dd (µ, xk) .
(5.2.5)

Summing (5.2.4) and (5.2.5), we obtain, for each (x, µ) ∈ Cp × Cd, for each k ∈ N,

f(xk+1) ≤ f(x) + 〈∇f(xk), xk+1 − x〉+ LpDp (xk+1, xk)−mfDp (x, xk) ;

h∗(µk+1) ≤ h∗(µ) + 〈∇h∗(µk), µk+1 − µ〉+ LdDd (µk+1, µk)−mh∗Dd (µ, µk) .

– 96 –



Chapter 5 5.2. Preliminary Estimations

Summing the latter with (5.2.3), we have, for each (x, µ) ∈ Cp × Cd, for each k ∈ N,

λk
[
f(xk+1) + g(xk+1)− f(x)− g(x) + 〈T (xk+1 − x) , µ̄k〉+

〈
xk+1 − x, δpk

〉]
+ (1 +mgλk)Dp (x, xk+1)

+(1− Lpλk)Dp (xk+1, xk) ≤ (1−mfλk)Dp (x, xk) ;

νk

[
h∗(µk+1) + l∗(µk+1)− h∗(µ)− l∗(µ)− 〈T x̄k, µk+1 − µ〉+

〈
µk+1 − µ, δdk

〉]
+ (1 +ml∗νk)Dd (µ, µk+1)

+(1− Ldνk)Dd (µk+1, µk) ≤ (1−mh∗νk)Dd (µ, µk) .

Recall the notations of (5.1.1), (5.1.2), and that

〈w1 − w2,∆k〉 def
=
〈
x1 − x2, δpk

〉
+
〈
µ1 − µ2, δdk

〉
.

Then, for each (x, µ) ∈ Cp × Cd, for each k ∈ N,

L (xk+1, µ)− L (x, µk+1) + 〈T (xk+1 − x) , µ̄k〉 − 〈T x̄k, µk+1 − µ〉+ 〈wk+1 − w,∆k〉

+

(
1

Λk
+m(g,l∗)

)
D (w,wk+1)−

(
1

Λk
−m(f,h∗)

)
D (w,wk) +

(
1

Λk
− L

)
D (wk+1, wk)

≤ 〈Txk+1, µ〉 − 〈Tx, µk+1〉.

Rearranging the terms, we have, for each (x, µ) ∈ Cp × Cd, for each k ∈ N,

L (xk+1, µ)− L (x, µk+1) +

(
1

Λk
+m(g,l∗)

)
D (w,wk+1)−

(
1

Λk
−m(f,h∗)

)
D (w,wk)

+

(
1

Λk
− L

)
D (wk+1, wk) + 〈wk+1 − w,∆k〉

≤ 〈Txk+1, µ− µ̄k〉+ 〈T (x̄k − x), µk+1〉+ 〈Tx, µ̄k〉 − 〈T x̄k, µ〉
= 〈T (xk+1 − x), µ− µ̄k〉+ 〈T (x̄k − x), µk+1 − µ〉.

Finally, for each (x, µ) ∈ Cp × Cd, for each k ∈ N,

L (xk+1, µ)− L (x, µk+1) +

(
1

Λk
+m(g,l∗)

)
D (w,wk+1)−

(
1

Λk
−m(f,h∗)

)
D (w,wk)

+

(
1

Λk
− L

)
D (wk+1, wk) + 〈wk+1 − w,∆k〉

≤ 〈T (xk+1 − x), µ− µ̄k〉+ 〈T (x̄k − x), µk+1 − µ〉.

Now we use the choice of x̄k = 2xk+1− xk and µ̄k = µk, to obtain, for each (x, µ) ∈ Cp×Cd, for each k ∈ N,

L (xk+1, µ)− L (x, µk+1) +

(
1

Λk
+m(g,l∗)

)
D (w,wk+1)−

(
1

Λk
−m(f,h∗)

)
D (w,wk)

+

(
1

Λk
− L

)
D (wk+1, wk) + 〈wk+1 − w,∆k〉

≤ 〈T (xk+1 − x), µ− µk〉+ 〈T (xk+1 − x), µk+1 − µ〉+ 〈T (xk+1 − xk), µk+1 − µ〉
= [〈T (xk+1 − xk), µk+1 − µk〉+ 〈T (x− xk+1), µ− µk+1〉 − 〈T (x− xk), µ− µk〉] .

Equivalently, recalling that M(w1, w2)
def
= 〈T (x1 − x2), µ1 − µ2〉, we have for each (x, µ) ∈ Cp × Cd, for each

k ∈ N,

L (xk+1, µ)− L (x, µk+1) + 〈wk+1 − w,∆k〉 +
[(

1

Λk
+m(g,l∗)

)
D (w,wk+1)−M (w,wk+1)

]

−
[(

1

Λk
−m(f,h∗)

)
D (w,wk)−M (w,wk)

]
+

[(
1

Λk
− L

)
D (wk+1, wk)−M (wk+1, wk)

]
≤ 0.

(5.2.6)
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Recall that, by (A2), (λk)k∈N and (νk)k∈N are nondecreasing sequences. Then, for each k ∈ N, for any fixed

w ∈ Cp × Cd,
1

Λk+1
D (w,wk+1) ≤

1

Λk
D (w,wk+1) . (5.2.7)

Finally, combining (5.2.6) with (5.2.7) and (A3)(5.1.5) applied at the points wk+1 and wk, we get (5.2.1).

5.2.2 Estimations of the Error ∆k

Lemma 5.2.2. Assume (H), (A1), (A2), and (A3) hold and, for each k ∈ N, denote by ŵk+1 the exact update

of the algorithm, i.e.

ŵk+1 =


x̂k+1

µ̂k+1


 =


 [∇φp + λk∂g]

−1 (∇φp (xk)− λk (∇f (xk))− λkT ∗µk)

[∇φd + νk∂l
∗]−1 (∇φd (µk)− νk (∇h∗ (µk)) + νkT (2x̂k+1 − xk))


 . (5.2.8)

Then, the following holds, for each k ∈ N,

〈∆k, ŵk+1 − wk+1〉 ≥
1

Λk
(D (ŵk+1, wk+1) +D (wk+1, ŵk+1))− 2M (ŵk+1, wk+1) ≥ 0. (5.2.9)

Proof. By design of the algorithm, the following monotone inclusions hold, for each k ∈ N,

∇φp (xk)− λk (∇f (xk)− T ∗µk)−∇φp (x̂k+1) ∈ λk∂g (x̂k+1) ;

∇φp (xk)− λk
(
∇f (xk) + δpk − T ∗µk

)
−∇φp (xk+1) ∈ λk∂g (xk+1) .

(5.2.10)

and similarly for the dual

∇φd (µk)− νk (∇h∗ (µk) + T (2x̂k+1 − xk))−∇φd (µ̂k+1) ∈ νk∂l∗ (µ̂k+1) ;

∇φd (µk)− νk
(
∇h∗ (µk) + δdk + T (2xk+1 − xk)

)
−∇φd (µk+1) ∈ νk∂l∗ (µk+1) .

(5.2.11)

By monotonicity of the operators ∂l∗ and ∂g combined with (5.2.11) and (5.2.10), we then have, for each k ∈ N,
〈
x̂k+1 − xk+1, δ

p
kλk −∇φp (x̂k+1) +∇φp (xk+1)

〉
≥ 0;

〈
µ̂k+1 − µk+1, δ

d
kνk −∇φd (µ̂k+1) +∇φd (µk+1) + 2νkT (x̂k+1 − xk+1)

〉
≥ 0.

(5.2.12)

We can rewrite the above using Definition 2.1.7 to have, for each k ∈ N,

〈
x̂k+1 − xk+1, δ

p
k

〉
≥ 1

λk
(Dp (x̂k+1, xk+1) +Dp (xk+1, x̂k+1)) ;

〈
µ̂k+1 − µk+1, δ

d
k

〉
≥ 1

νk
(Dd (µ̂k+1, µk+1) +Dd (µk+1, µ̂k+1))− 2 〈T (x̂k+1 − xk+1) , µ̂k+1 − µk+1〉 .

(5.2.13)

Adding the above inequalities together gives, for each k ∈ N,

〈∆k, ŵk+1 − wk+1〉 ≥
1

Λk
(D (ŵk+1, wk+1) +D (wk+1, ŵk+1))− 2M (ŵk+1, wk+1) . (5.2.14)

Using (A3) and (5.1.7), and the fact that M is symmetric w.r.t. its arguments, for each k ∈ N,

1

Λk
(D (ŵk+1, wk+1) +D (wk+1, ŵk+1))− 2M (ŵk+1, wk+1) ≥ 0.

Lemma 5.2.3. Assume (H), (A1), (A2), (A3), that the entropies φp and φd are strongly convex with respect to

‖·‖2p and ‖·‖2d with modulus mp and md, respectively, and that the step size limits λ∞ and ν∞ satisfy

ν∞λ∞ <
mpmd

‖T‖2p→d∗
.
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One can choose a > 0 so that, for each k ∈ N,

mp

λk
−
‖T‖2p→d∗

a
> 0 and

md

νk
− a > 0

and the following holds, for each k ∈ N,

〈∆k, ŵk+1 − wk+1〉 ≤
(
mp

λk
−
‖T‖2p→d∗

a

)−1 ∥∥δpk
∥∥2
p∗

+

(
md

νk
− a
)−1 ∥∥∥δdk

∥∥∥
2

d∗
.

Proof. It follows from the strong convexity of φp and φd that, for each k ∈ N,

1

Λk
(D (wk+1, ŵk+1) +D (ŵk+1, wk+1)) =

1

Λk
〈∇φ (wk+1)−∇φ (ŵk+1) , wk+1 − ŵk+1〉

≥ mp

λk
‖x̂k+1 − xk+1‖2p +

md

νk
‖µ̂k+1 − µk+1‖2d .

(5.2.15)

Substituting this result into Lemma 5.2.2 (5.2.9) and applying Young’s inequality with a > 0 we get, for each

k ∈ N,

〈∆k, ŵk+1 − wk+1〉 ≥
mp

λk
‖x̂k+1 − xk+1‖2p +

md

νk
‖µ̂k+1 − µk+1‖2d − 2M (ŵk+1, wk+1)

=
mp

λk
‖x̂k+1 − xk+1‖2p +

md

νk
‖µ̂k+1 − µk+1‖2d − 2 (〈T (x̂k+1 − xk+1) , µ̂k+1 − µk+1〉)

≥ mp

λk
‖x̂k+1 − xk+1‖2p +

md

νk
‖µ̂k+1 − µk+1‖2d −

‖T‖2p→d∗

a
‖x̂k+1 − xk+1‖2p − a ‖µ̂k+1 − µk+1‖2d

=

(
mp

λk
−
‖T‖2p→d∗

a

)
‖x̂k+1 − xk+1‖2p +

(
md

νk
− a
)
‖µ̂k+1 − µk+1‖2d .

(5.2.16)

Then, since the step size sequences (λk)k∈N and (νk)k∈N are bounded and nondecreasing by (A2), and furthe-

more chosen small enough to satisfy

ν∞λ∞ <
mpmd

‖T‖2p→d∗
,

one can choose a > 0 so that

mp

λ∞
−
‖T‖2p→d∗

a
> 0 and

md

ν∞
− a > 0

and, by extension under (A2), for each k ∈ N,

mp

λk
−
‖T‖2p→d∗

a
> 0 and

md

νk
− a > 0

Finally, we apply Young’s inequality twice to the following to find, for each k ∈ N,

〈∆k, ŵk+1 − wk+1〉 =
〈
δpk, x̂k+1 − xk+1

〉
+
〈
δdk, µ̂k+1 − µk+1

〉

≤ 1

2

(
mp

λk
−
‖T‖2p→d∗

a

)−1 ∥∥δpk
∥∥2
p∗

+
1

2

(
mp

λk
−
‖T‖2p→d∗

a

)
‖x̂k+1 − xk+1‖2p

+
1

2

(
md

νk
− a
)−1 ∥∥∥δdk

∥∥∥
2

d∗
+

1

2

(
md

νk
− a
)
‖µ̂k+1 − µk+1‖2d

≤ 1

2

(
mp

λk
−
‖T‖2p→d∗

a

)−1 ∥∥δpk
∥∥2
p∗

+
1

2

(
md

νk
− a
)−1 ∥∥∥δdk

∥∥∥
2

d∗

+
1

2
〈∆k, ŵk+1 − wk+1〉

and the desired claim follows.
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Remark 5.2.4. In Lemma 5.2.3, one can instead choose to use ‖T ∗‖2d→p∗ to have, for each k ∈ N,

〈∆k, ŵk+1 − wk+1〉 ≤
(
mp

λk
− 1

a

)∥∥δpk
∥∥2
p∗

+

(
md

νk
− a ‖T ∗‖2d→p∗

)∥∥∥δdk
∥∥∥
2

d∗

which could be useful if there is asymmtery in the size of mp and md.

In the event that just φp is strongly convex with respect to ‖·‖2p but the analog doesn’t hold for φd, we can

make the following argument. Take (5.2.13) from Lemma 5.2.2 and use strong convexity,

〈
x̂k+1 − xk+1, δ

p
k

〉
≥ 1

λk
(Dp (x̂k+1, xk+1) +Dp (xk+1, x̂k+1)) ≥

mp

λk
‖x̂k+1 − xk+1‖2p

to get, for each k ∈ N,

〈
δpk, x̂k+1 − xk+1

〉
≤ λk
mp

∥∥δpk
∥∥2
p∗

without the restriction on λ∞ and ν∞ imposed in Lemma 5.2.3 because we no longer to need control the term

2M (ŵk+1, wk+1). This term, 2M (ŵk + 1, wk+1), is a result of the way we have defined µ̂k+1 to depend on

x̂k+1, which is necessary to keep ŵk+1 deterministic conditioned on the filtration Sk. Thus, if only one of the

entropies can be chosen to be strongly convex, one is inclined to formulate the problem in such a way that the

primal problem has the strongly convex entropy, and to deal with the dual problem using (A4)(I) or (A4)(II).

Lemma 5.2.5. Under (H), (A1), (A2), (A3), and (A4), the following sequences satisfy, for any fixed w ∈
Cp × Cd,

(E [〈∆k, w − wk+1〉 | Sk])k∈N ∈ ℓ1+ (S) and (E [〈∆k, w − wk+1〉])k∈N ∈ ℓ1+.

Proof. The assumption (A4) has three cases with the first, (A4)(I), corresponding to the deterministic setting,

i.e., there is nothing to show. For the following two cases, we note that, by Lemma 5.2.2, for each k ∈ N, for

any fixed w ∈ Cp × Cd,

E [〈∆k, w − wk+1〉 | Sk] = E [〈∆k, w − ŵk+1〉 + 〈∆k, ŵk+1 − wk+1〉 | Sk] = E [〈∆k, ŵk+1 − wk+1〉 | Sk] ≥ 0

(5.2.17)

since, due to (A4), ∆k is unbiased conditioned on the filtration Sk. By the law of total expectation applied to

the above, it follows that, for each k ∈ N, for any fixed w ∈ Cp × Cd,

E [〈∆k, w − wk+1〉] = E [〈∆k, ŵk+1 − wk+1〉] ≥ 0

and thus the following sequences satisfy, for any fixed w ∈ Cp × Cd,

(E [〈∆k, w − wk+1〉 | Sk])k∈N ∈ ℓ+ (S) and (E [〈∆k, w − wk+1〉])k∈N ∈ ℓ+.

For the second case, (A4)(II), recall that, for each k ∈ N,

〈∆k, ŵk+1 − wk+1〉
def
=
〈
δpk, x̂k+1 − xk+1

〉
+
〈
δdk, µ̂k+1 − µk+1

〉
.

By (A4)(II), the sets Cp and Cd are bounded and thus have finite diameters, diamCp and diamCd respectively.

Then, for each k ∈ N,

E
[〈
δpk, x̂k+1 − xk+1

〉
| Sk
]
≤ E

[∥∥δpk
∥∥
p∗
‖x̂k+1 − xk+1‖p | Sk

]
≤ diamCpE

[∥∥δpk
∥∥
p∗
| Sk
]
;

E

[〈
δdk, µ̂k+1 − µk+1

〉
| Sk
]
≤ E

[∥∥∥δdk
∥∥∥
d∗
‖µ̂k+1 − µk+1‖d | Sk

]
≤ diamCdE

[∥∥∥δdk
∥∥∥
d∗
| Sk
]
.

Since
(
E

[∥∥δpk
∥∥
p∗
| Sk
])

k∈N
∈ ℓ1+ (S) and

(
E
[∥∥δdk

∥∥
d∗
| Sk
])
k∈N ∈ ℓ

1
+ (S) by (A4)(II), and noting (5.2.17),

it holds that, for any fixed w ∈ Cp × Cd,

(E [〈∆k, w − wk+1〉 | Sk])k∈N ∈ ℓ1+ (S) .
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Using the same argument with the law of total expectation together with the fact that
(
E

[∥∥δpk
∥∥
p∗

])
k∈N
∈ ℓ1+

and
(
E
[∥∥δdk

∥∥
d∗

])
k∈N by (A4)(II), it then follows that, for any fixed w ∈ Cp × Cd,

(E [〈∆k, w − wk+1〉])k∈N ∈ ℓ1+.

Finally, in the case of (A4)(III), we assume that the entropies φp and φd are strongly convex with respect

to ‖·‖p and ‖·‖d respectively. Using Lemma 5.2.3 and taking expectation conditioned on Sk, we have, for each

k ∈ N,

E [〈∆k, ŵk+1 − wk+1〉 | Sk] ≤
(
mp

λk
−
‖T‖2p→d∗

a

)−1

E

[∥∥δpk
∥∥2
p∗
| Sk
]
+

(
md

νk
− a
)−1

E

[∥∥∥δdk
∥∥∥
2

d∗
| Sk
]

≤
(
mp

λ∞
−
‖T‖2p→d∗

a

)−1

E

[∥∥δpk
∥∥2
p∗
| Sk
]
+

(
md

ν∞
− a
)−1

E

[∥∥∥δdk
∥∥∥
2

d∗
| Sk
]

and thus by the summability assumption of (A4)(III), we have
(
E

[∥∥δpk
∥∥2
p∗
| Sk
])

k∈N
∈ ℓ1+ (S) and

(
E

[∥∥∥δdk
∥∥∥
2

d∗
| Sk
])

k∈N
∈ ℓ1+ (S)

and so, for any fixed w ∈ Cp × Cd,
(E [〈∆k, w − wk+1〉 | Sk])k∈N ∈ ℓ1+ (S) .

Similarly, taking Lemma 5.2.3 with total expectation and the summability assumption of (A4)(III) yields, for

any fixed w ∈ Cp × Cd,
(E [〈∆k, w − wk+1〉])k∈N ∈ ℓ1+.

5.3 Convergence Analysis

5.3.1 Ergodic Convergence

Define, for each k ∈ N, the ergodic iterates x̄k
def
= 1

k

k∑
i=1

xi and µ̄k
def
= 1

k

k∑
i=1

µi.

Theorem 5.3.1. Let (H), (A1), (A2), (A3), and (A4) hold. Then we have the following convergence rate: for

each k ∈ N, for every (x, µ) ∈ Cp × Cd,

E [L (x̄k, µ)− L (x, µ̄k)] ≤
1
Λ0
D (w,w0)−M (w,w0) +

∑+∞
i=0 E [〈∆i, w − wi+1〉]

k
. (5.3.1)

In particular, every almost sure weak sequential cluster point of (w̄k)k∈N is optimal in mean; if w̄kj ⇀ w∞
almost surely, then E(w∞) is a primal-dual optimal pair.

Proof. Beginning with Lemma 5.2.1, we have for every (x, µ) ∈ Cp × Cd, for each k ∈ N,

L (xk+1, µ)− L (x, µk+1) +

[
1

Λk+1
D (w,wk+1)−M (w,wk+1)

]

+ εd (wk+1, wk) ≤
[
1

Λk
D (w,wk)−M (w,wk)

]
+ 〈∆k, w − wk+1〉 .

(5.3.2)

Taking the the total expectation and summing up from 0 to k−1, discarding positive terms on the left hand side,

we have, for every (x, µ) ∈ Cp × Cd, for each k ∈ N,

k−1∑

i=0

E [L (xi+1, µ)− L (x, µi+1)] ≤
1

Λ0
D (w,w0)−M (w,w0) +

k−1∑

i=0

E [〈∆i, w − wi+1〉]

≤ 1

Λ0
D (w,w0)−M (w,w0) +

∞∑

i=0

E [〈∆i, w − wi+1〉] .
(5.3.3)
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Using Jensen’s inequality with the convex-concave function L, we have (5.3.1), noting that

∞∑

i=0

E [〈∆i, w − wi+1〉] < +∞

by (A4) and Lemma 5.2.5.

Now let (x̄kj , µ̄kj )⇀ (x∞, µ∞) almost surely. Then, for every (x, µ) ∈ Cp × Cd,

L (E (x∞) , µ)− L (x,E (µ∞)) ≤ E [L (x∞, µ)− L (x, µ∞)]

≤ E

[
lim inf
j→∞

[
L
(
x̄kj , µ

)
− L

(
x, µ̄kj

)]]

≤ lim inf
j→∞

E
[
L
(
x̄kj , µ

)
− L

(
x, µ̄kj

)]

≤ 0,

(5.3.4)

where we used Jensen’s inequality, weak lower semicontinuity of L, Fatou’s Lemma and (5.3.1) with (A4) and

Lemma 5.2.5. So (E (x∞) ,E (µ∞)) is a primal-dual optimal pair for L.

5.3.2 Asymptotic Regularity

Theorem 5.3.2. Let (H), (A1), (A3)(II), (A4) and (A5) hold. Then the primal-dual sequence (xk, µk)k∈N is

almost surely asymptotically regular, meaning that xk+1 − xk → 0 and µk+1 − µk → 0 almost surely.

Proof. Use again Lemma 5.2.1 with w equal to a primal-dual optimal pair w⋆ and take the total expectation:

for each k ∈ N,

E [L (xk+1, µ
⋆)− L (x⋆, µk+1)] + E

[
1

Λk+1
D (w⋆, wk+1)−M (w⋆, wk+1)

]

+ εE [d (wk+1, wk)] ≤ E

[
1

Λk
D (w⋆, wk)−M (w⋆, wk)

]
+ E [〈∆k, w

⋆ − wk+1〉] .
(5.3.5)

By the definition of primal-dual optimal pair, we know that, for each k ∈ N,

L (xk, µ⋆)− L (x⋆, µk) ≥ 0

and so, from Lemma 2.2.1 with (A4), Lemma 5.2.5, and (A3)(II),

E [d (wk+1, wk)] ∈ ℓ1+.

So, by Lemma 2.3.4, d (wk+1, wk)→ 0 almost surely. In view of (A5), we get that, almost surely,

wk+1 − wk → 0, (5.3.6)

i.e., the primal-dual sequence (wk)k∈N is almost surely asymptotically regular.

5.3.3 Pointwise Convergence

The main result of this section is the pointwise convergence of the primal-dual sequence (xk, µk)k∈N to a primal-

dual optimal pair. Note that in the case of finite-dimensional spaces Xp and Xd, the assumptions (A8), (A9),

(A10) can be removed as they are trivially satisfied. We will also impose the following conditions, which are

only necessary for this particular section in the stochastic case and can be dropped for the deterministic case or

the other sections.

(PW1) The spaces Xp and Xd are separable.

(PW2) The Bregman divergence D satisfies the following property: if there exists Ω̃ ∈ F such that, for any

ω ∈ Ω̃, for any w⋆ ∈ SP × SD with a sequence (sn)n∈N in SP × SD such that sn → w⋆ and satisfying

lim
k→∞

Λ−1
k D (sn, wk (ω))−M (sn, wk (ω)) = rsn (ω) ∈ [0,+∞[,
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then there exists a [0,+∞[-valued random variable rw⋆ such that, for any ω ∈ Ω̃,

lim
k→∞

Λ−1
k D (w⋆, wk (ω))−M (w⋆, wk (ω)) = rw⋆ (ω) .

Proposition 5.3.3. Let (H), (A1), (A2), (A3)(II), (A4), (A5), (A6), (A7), and (A8) hold. Then ((xk, µk))k∈N
is almost surely bounded and, recalling the notation of (5.1.4) and (5.1.3), W

[
(wk)k∈N

]
⊂ SP×SD (P-a.s.) .

Proof. Evaluating Lemma 5.2.1 at a primal-dual optimal pair w = w⋆ and taking expectation conditioned on

the filtration Sk, we get, for each k ∈ N,

E [L (xk+1, µ̄)− L (x̄, µk+1) | Sk] + E

[
1

Λk+1
D (w⋆, wk+1)−M (w⋆, wk+1) | Sk

]

+ εE [d (wk+1, wk) | Sk] ≤
[
1

Λk
D (w⋆, wk)−M (w⋆, wk)

]
+ E [〈∆k, w

⋆ − wk+1〉 | Sk] .

Then, by (A4), Lemma 5.2.5, and Lemma 2.3.2,
(
Λ−1
k D (w⋆, wk)−M (w⋆, wk)

)
k∈N is almost surely conver-

gent to some r ∈ [0,+∞[. In particular, from (A3) and (5.1.7), both (D (w⋆, wk))k∈N and (d (w⋆, wk))k∈N
are almost surely bounded and the coercivity condition (A6) entails that the sequence (wk)k∈N is almost surely

bounded in int(dom(φ)). Letw∞ = (x∞, µ∞) be an almost sure weak sequential cluster point of (wk)k∈N, i.e.,

there is a subsequence (wki)i∈N such thatwki ⇀ w∞ almost surely. The updates of Algorithm 10 are equivalent

to the following monotone inclusions,

(
∇φp(xki

)−∇φp(xki+1)

λk
+ (∇f(xki+1)−∇f(xki

)− δpki
) + T ∗(µki+1 − µki

)
∇φd(µki

)−∇φd(µki+1)

νk
+ (∇h∗(µki+1)−∇h∗(µki

)− δdki
) + T (xki+1 − xki

)

)

∈
(
∂g +∇f 0

0 ∂l∗ +∇h∗

)(
xki+1

µki+1

)
+

(
0 T ∗

−T 0

)(
xki+1

µki+1

)
.

The operator on the right hand side is maximally monotone (hence weak-strong sequentially closed) by (A7).

Recall that, by (A4) and Remark 5.1.4,
(
δpk
)
k∈N and

(
δdk
)
k∈N converge to zero almost surely. From Theo-

rem 5.3.2 and the fact that wki ⇀ w∞, we have also that ((xki+1, µki+1))i∈N converges weakly to (x∞, µ∞)

almost surely. In addition, by (H), T is linear (and bounded) which, combined with Theorem 5.3.2, yields

T (xki+1 − xki)→ 0 and T ∗(µki+1 − µki)→ 0

almost surely. From (A8) combined with Theorem 5.3.2, we deduce that, almost surely,

∇φp(xki+1)−∇φp(xki)→ 0 and ∇f(xki+1)−∇f(xki)→ 0

∇φd(µki+1)−∇φd(µki)→ 0 and ∇h∗(µki+1)−∇h∗(µki)→ 0.

Altogether, recalling that, by (A2), both (λk)k∈N and (νk)k∈N are bounded, we conclude that, almost surely,

0

0


 ∈


∂g +∇f T ∗

−T ∂l∗ +∇h∗




x∞
µ∞


 ,

whence it follows that each weak sequential cluster point of (wk)k∈N is a primal-dual optimal pair almost surely.

Proposition 5.3.4. Let (H), (A1), (A2), (A3)(II), (A4), (A5), (A6), (A7), (A8), (A9), and (A10) hold as well

as (PW1) and (PW2). Then, there exists Ω̃ ∈ F such that P
(
Ω̃
)

= 1 and, for every ω ∈ Ω̃, for every

w⋆ ∈ SP × SD, the sequence (D (w⋆, wk (ω))−M (w⋆, wk (ω)))k∈N converges with limit in [0,+∞[.

Proof. By (PW1), there exists a countable set S such that S̄ = SP × SD. Once again, as in the proof of

Proposition 5.3.3, for everyw⋆ ∈ SP×SD there exist Ωw⋆ ∈ F such that P (Ωw⋆) = 1 and, for every ω ∈ Ωw⋆ ,

it holds

lim
k→∞

Λ−1
k D (w⋆, wk (ω))−M (w⋆, wk (ω)) = r⋆ (ω) ∈ [0,+∞[.
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Let Ω̃ =
⋂
s∈S

Ωs and notice that P
(
Ω̃
)
= 1 since, by countability of S we have,

P

(
Ω̃
)
= 1− P

(
Ω̃c
)
= 1− P

(⋃

s∈S
Ωcs

)
≥ 1−

∑

s∈S
P (Ωcs) = 1.

Fix a particular w⋆ ∈ SP×SD; since S̄ = SP×SD, there exists a sequence (sn)n∈N in S such that sn → w⋆.

At the same time, for each n ∈ N, there exists rn, a [0,+∞[-valued random variable such that, for each ω ∈ Ω̃,

lim
k→∞

Λ−1
k D (sn, wk (ω))−M (sn, wk (ω)) = rn (ω) ∈ [0,+∞[.

Applying now (PW2), we find that, for any ω ∈ Ω̃, for any w⋆ ∈ SP × SD,

lim
k→∞

Λ−1
k D (w⋆, wk (ω))−M (w⋆, wk (ω)) = rw⋆ (ω) ∈ [0,∞[.

Theorem 5.3.5. Let (H), (A1), (A2), (A3)(II), (A4), (A5), (A6), (A7), (A8), (A9), and (A10) hold as well

as (PW1) and (PW2). Then, there exists w̄, a SP × SD-valued random variable, such that (wk)k∈N ⇀

w̄ (P-a.s.) .

Proof. To show global convergence, we use a reasoning similar to Opial’s lemma (see [89], [37]). We recall the

notation of (5.1.4) for the set of weak cluster points of a sequence. By the assumptions and Proposition 5.3.3,

there exists Ω′ ∈ F with P (Ω′) = 1 such that, for any ω ∈ Ω′, the following holds

W [(wk (ω))] ⊂ SP × SD

and the sequence (wk (ω))k∈N is bounded. Furthermore, by Proposition 5.3.4, there exists Ω′′ ∈ F with

P (Ω′′) = 1 such that, for any ω ∈ Ω′′, for any w⋆ ∈ SP × SD, it holds

lim
k→∞

Λ−1
k D (w⋆, wk (ω))−M (w⋆, wk (ω)) = rw⋆ (ω) ∈ [0,+∞[

Let Ω̃ = Ω′∩Ω′′, for anyω ∈ Ω̃we letw1 (ω) ∈W
[
(wk (ω))k∈N

]
andw2 (ω) ∈W

[
(wk (ω))k∈N

]
be two weak

sequential cluster points of (wk (ω))k∈N, i.e., there exists two subsequences (wki (ω))i∈N and
(
wkj (ω)

)
j∈N such

that wki (ω)⇀ w1 (ω) and wkj (ω)⇀ w2 (ω) almost surely. Since W
[
(wk (ω))k∈N

]
⊂ SP×SD, w1 (ω) and

w2 (ω) are primal-dual optimal pairs.Thus, there exist rw1 (ω) , rw2 (ω) ∈ [0,+∞[ such that,

lim
k→∞

(
Λ−1
k D(w1 (ω) , wk (ω))−M(w1 (ω) , wk (ω))

)
= rw1 (ω)

and

lim
k→∞

(
Λ−1
k D(w2 (ω) , wk (ω))−M(w2 (ω) , wk (ω))

)
= rw2 (ω) .

Using the three point identity, we have, for each i ∈ N,

Λ−1
ki
D(w1 (ω) , wki (ω))−M(w1 (ω) , wki (ω))− Λ−1

ki
D(w2 (ω) , wki (ω)) +M(w2 (ω) , wki (ω))

= Λ−1
ki

(
D(w1 (ω) , wki (ω))−D(w2 (ω) , wki (ω))

)
−
(
M(w1 (ω) , wki (ω))−M(w2 (ω) , wki (ω))

)

= Λ−1
ki

(
D(w1 (ω) , w2 (ω))−

〈
∇φ(wki (ω))−∇φ(w2 (ω)), w1 (ω)− w2 (ω)

〉)

−
(
M(w1 (ω) , wki (ω))−M(w2 (ω) , wki (ω))

)
.

(5.3.7)

Recall that, by (A2), both (λk)k∈N and (νk)k∈N are nondecreasing and bounded above with limits λ∞ and ν∞,

respectively. We denote Λ∞
def
= (λ∞, ν∞). Then, recalling (A9) and (A10) and passing to the limit in (5.3.7)
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we get

rw1 (ω)− rw2 (ω) = Λ−1
∞
(
D(w1 (ω) , w2 (ω))−

〈
∇φ(w1 (ω))−∇φ(w2 (ω)), w1 (ω)− w2 (ω)

〉)

+M(w2 (ω) , w1 (ω))

= Λ−1
∞
(
D(w1 (ω) , w2 (ω))−D(w1 (ω) , w2 (ω))−D(w2 (ω) , w1 (ω))

)

+M(w2 (ω) , w1 (ω))

= −Λ−1
∞ D(w2 (ω) , w1 (ω)) +M(w2 (ω) , w1 (ω)).

Repeating this argument, replacing wki (ω) by wkj (ω) above, we furthermore have

rw1 (ω)− rw2 (ω) = Λ−1
∞ D(w1 (ω) , w2 (ω))−M(w1 (ω) , w2 (ω)),

which shows that
[
Λ−1
∞ D(w1 (ω) , w2 (ω))−M(w1 (ω) , w2 (ω))

]
+
[
Λ−1
∞ D(w2 (ω) , w1 (ω))−M(w2 (ω) , w1 (ω))

]
= 0.

By (A3)(II) and (5.1.7), we get that

L [D (w1 (ω) , w2 (ω)) +D (w2 (ω) , w1 (ω))] + ε [d (w1 (ω) , w2 (ω)) + d (w2 (ω) , w1 (ω))] = 0

and finally

D (w1 (ω) , w2 (ω)) = D (w2 (ω) , w1 (ω)) = 0.

Then, as φp and φd are Legendre by (H), w1 (ω) = w2 (ω) as claimed. Thus the sequence (wk (ω))k∈N con-

verges to some w̄ (ω) ∈W
[
(wk (ω))k∈N

]
⊂ SP×SD. Since this holds for all ω ∈ Ω̃ with P

(
Ω̃
)
= 1, we are

done.

5.3.4 Relatively Strongly Convex Case

We assume that either f , g, or both are relatively strongly convex (see Definition 2.1.11) with respect to φp with

constant mf , mg, or mf +mg, respectively, as in (A11). For brevity, we analyze only the primal case but all of

the analogous convergence results will hold for the dual case by making the corresponding assumptions on h∗,
l∗, and φd, as in (A11). In addition, if the assumptions made here on the primal functions and entropies hold for

the corresponding dual functions and entropies, we will have convergence results for the primal-dual sequence

(wk)k∈N. We also assume that φp is sequentially consistent and totally convex, which we now go on to define.

The following definitions come from [25] although earlier notions of total convexity and its modulus exist.

Definition 5.3.6. Define, for all x ∈ intdomφp and t ∈ [0,∞[,

Θφp (x, t)
def
= inf

{
Dp

(
x′, x

)
:
∥∥x− x′

∥∥ = t
}
.

The function Θ is called the modulus of total convexity and it is clearly nondecreasing in t (see [25][Page 18]).

We call a function φp totally convex at a point x iff Θφp (x, t) > 0 for any t > 0. We say the function φp is

totally convex on a set X iff it is totally convex for each x ∈ X .

Total convexity is a sort of generalization of strict convexity to functions defined on Banach spaces. Indeed, for

finite-dimensional spaces, a function φ is strictly convex at every point x ∈ intdom (φ) iff it is totally convex at

each x ∈ intdom (φ) (see [26]). Examples of totally convex functions include the Shannon-Boltzmann entropy,

the Hellinger entropy, the Fermi-Dirac entropy, the Helinger entropy, the energy/euclidean entropy, and any

strongly convex function as well. We point out that (A11) ensures that there is a unique solution x⋆ to (P) (and

similarly if we have (A11) on the dual).

Definition 5.3.7. A function φp is called sequentially consistent on a set X iff for any bounded subset V ⊆ X ,

for any t > 0, we have

inf
x∈V

Θφp (w, t) > 0.
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Lemma 5.3.8. Assume (H), (A1), (A2), (A3), (A4), and (A11). Then, for the solution x⋆, Dp (x
⋆, xk) → 0

(P-a.s.). Similarly, if we have (A11) and the corresponding assumptions for φd, it holds for the solution µ⋆,

Dd (µ
⋆, µk)→ 0 (P-a.s.).

Proof. By Lemma 5.2.1 evaluated at w = w⋆ we have, for each k ∈ N,
(

1

Λk
−m(f,h∗)

)
D (w⋆, wk)−M (w⋆, wk) + 〈∆k, w

⋆ − wk+1〉 ≥
(

1

Λk+1
+m(g,l∗)

)
D (w⋆, wk+1)

−M (w⋆, wk+1)

which we rewrite as, for each k ∈ N,

1

Λk
D (w⋆, wk)−

1

Λk+1
D (w⋆, wk+1)−M (w⋆, wk) +M (w⋆, wk+1) + 〈∆k, w

⋆ − wk+1〉 ≥ mgDp (x
⋆, xk+1)

+mfDp (x
⋆, xk) .

We now break the proof into two cases based on whethermg > 0 ormf > 0, starting withmf > 0. Taking the

expectation conditioned on the filtration, we have, for each k ∈ N,

mfDp (x
⋆, xk) ≤

1

Λk
D (w⋆, wk)−

1

Λk+1
E [D (w⋆, wk+1) | Sk]−M (w⋆, wk)

+ E [M (w⋆, wk+1) | Sk] + E [〈∆k, w
⋆ − wk+1〉 | Sk]

(5.3.8)

Applying Remark 2.3.2 to (5.3.8) along with the assumption that mf > 0 and (A4) with 5.2.5, we find that

(D (x⋆, xk))k∈N ∈ ℓ1+ (S) and, in particular, D (x⋆, xk)→ 0 almost surely.

Now, assuming mg > 0 gives, for each k ∈ N,

mgDp (x
⋆, xk+1) ≤

1

Λk
D (w⋆, wk)−

1

Λk+1
D (w⋆, wk+1)−M (w⋆, wk) +M (w⋆, wk+1) + 〈∆k, w

⋆ − wk+1〉 .

Taking the expectation then leads to, for each k ∈ N,

mgE [Dp (x
⋆, xk+1)] ≤

1

Λk
E [D (w⋆, wk)]−

1

Λk+1
E [D (w⋆, wk+1)]− E [M (w⋆, wk)] + E [M (w⋆, wk+1)]

+E [〈∆k, w
⋆ − wk+1〉] .

Then, by Lemma 2.2.1 with the assumptionmg > 0, (A4) and Lemma 5.2.5, we have that (E [Dp (x
⋆, xk)])k∈N ∈

ℓ1+ and so, by Lemma 2.3.4, we have that Dp (x
⋆, xk)→ 0 almost surely.

Theorem 5.3.9. Assume (H), (A1), (A2), (A3), (A4), and (A11) hold, that φp is totally convex and sequentially

consistent, and let x⋆ be the solution to the primal problem. Then, if the sublevel sets ofDp (x
⋆, ·) are bounded,

the sequence (xk)k∈N converges strongly to the solution x⋆ almost surely. Furthermore, if additionally the

analog of (A11) holds for the dual, φd is totally convex and sequentially consistent, and the sublevel sets of

Dd (µ
⋆, ·) are bounded, then the sequence (wk)k∈N converges strongly to the primal-dual optimal pairw⋆ almost

surely.

Proof. Under these assumptions, Lemma 5.3.8 ensures Dp (x
⋆, xk)→ 0 almost surely. By the boundedness of

the sublevel sets of D (w⋆, ·), we have that the sublevel sets of Dp (x
⋆, ·) are bounded and thus the sequence

(xk)k∈N is bounded, i.e., there exists Up ⊆ Up a bounded set such that, for each k ∈ N, xk ∈ Up. Since φp is

totally convex and sequentially consistent on Up, we have, for any t > 0,

inf
x∈Up

Θφp (x, t) > 0.

Assume now that (xk)k∈N does not converge to x⋆. Then there exists a subsequence
(
xkj
)
j∈N, ǫ > 0, and

K ∈ N such that for all j > K it holds,

∥∥xkj − x⋆
∥∥ > ǫ.
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Since
(
xkj
)
j∈N is a subsequence of (xk)k∈N,

(
Dp

(
x⋆, xkj

))
j∈N is a subsequence of (Dp (x

⋆, xk))k∈N and so

its limit is 0. Since φp is both totally convex and sequentially consistent, and
∥∥xkj − x⋆

∥∥ > ǫ, the following is

true, for any j > K,

Dp

(
x⋆, xkj

)
≥ Θφp

(
xkj ,

∥∥xkj − x⋆
∥∥
)
> Θφp

(
xkj , ǫ

)
≥ inf

x∈Up

Θφp (x, ǫ) > 0, (5.3.9)

which contradicts the fact that lim
j→∞

Dp

(
x⋆, xkj

)
= 0 since the positive lower bound inf

x∈Up

Θφp (x, ǫ) does not

depend on j. Thus such a subsequence
(
xkj
)
j∈N cannot exist and the desired claim follows.

Repeating this argument for the dual gives convergence of (µk)k∈N to the solution of the dual problem µ⋆

and thus, if (A11) holds for the primal and the dual, we have that (wk)k∈N converges to a primal-dual optimal

pair w⋆.

Remark 5.3.10. The assumption that the sublevel sets of the the Bregman divergence be bounded, used in

Theorem 5.3.9, holds for a wide class of entropies which includes the Shannon-Boltzmann entropy, the Hellinger

entropy, the Fermi-Dirac entropy, the fractional power entropy, and energy/euclidean entropy (see [13, Remark

4]).

5.4 Applications and Numerical Experiments

The following results will be useful throughout the applications section, particularly when it comes to satisfying

(A3).

Lemma 5.4.1. Assume that γ > 0, (H) holds, φp (x) =
n∑
i=1

xi log (xi), and φd (µ) =
1
2 ‖µ‖

2
2. If (A1) and (A2)

hold with g (x) = ι{1}
(
xT1

)
and

λ∞ ≤
1

Lp + γ ‖T‖22
and ν∞ ≤

1

Ld + γ−1

then (A3) is satisfied with ǫ = 1
2 and

d (w1, w2) =

(
1

λ∞
− Lp − γ ‖T‖22

)
‖x1 − x2‖21 +

(
1

ν∞
− Ld −

1

γ

)
‖µ1 − µ2‖22 .

Proof. By definition (see (5.1.1)), for any w ∈ Ũp × Ũd and w′ ∈ Up × Ud, for each k ∈ N,
(

1

Λ∞
− L

)
D
(
w,w′)−M

(
w,w′) =

(
1

λ∞
− Lp

)
Dp

(
x, x′

)
+

(
1

ν∞
− Ld

)
1

2

∥∥µ− µ′
∥∥2
2
−
〈
T
(
x− x′

)
, µ− µ′

〉
.

Using Lemma 2.2.6, it holds for any x ∈ Ũp and x′ ∈ Up,

Dp

(
x, x′

)
≥ 1

2

∥∥x− x′
∥∥2
1
.

By Young’s inequality, for any γ > 0, we also have, for any x and µ,

−
〈
T
(
x− x′

)
, µ− µ′

〉
≥ −γ

2

∥∥T
(
x− x′

)∥∥2
2
− 1

2γ

∥∥µ− µ′
∥∥2
2

Combining the two and using the fact that ‖·‖22 ≤ ‖·‖21, we find, for any w ∈ Ũp × Ũd and w′ ∈ Up × Ud, for

each k ∈ N,
(

1

Λ∞
− L

)
D
(
w,w′)−M

(
w,w′) ≥ 1

2

[(
1

λ∞
− Lp − γ ‖T‖22

)∥∥x− x′
∥∥2
2
+

(
1

ν∞
− Ld −

1

γ

)∥∥µ− µ′
∥∥2
2

]

≥ 1

2

[(
1

λ∞
− Lp − γ ‖T‖22

)∥∥x− x′
∥∥2
1
+

(
1

ν∞
− Ld −

1

γ

)∥∥µ− µ′
∥∥2
2

]
,

where ‖T‖22 is the square of the classical operator norm and the desired claim follows.
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5.4.1 Linear Inverse Problems on the Simplex

In [31], the problem of least squares regression on the simplex was considered as an application of the Chambolle-

Pock algorithm. A natural extension for Algorithm 10 is to replace the euclidean norm with the Kullback-Leibler

divergence. The Kullback-Leibler divergence is not Lipschitz-smooth and so the Chambolle-Pock algorithm of

[29] and [31] cannot be applied, although [31] does allow one to use an entropy in computing the D-proximal

mapping associated to g.

Consider the problem,

min
x∈Rn

+

xT1=1

DK (Ax, b) + β ‖∇x‖1 (5.4.1)

where A : Rn → R
m is a linear operator, b ∈ R

m
++, K is the Shannon-Boltzmann entropy,

K (x) =
n∑

i=1

xi log (xi) ,

and ∇ : Rn → R
n−1 is the linear operator given by

∇x =




x2 − x1
...

xn − xn−1


 .

Rewriting (5.4.1), the associated saddle-point problem is given by,

min
x∈Rn

+

max
µ∈Rn−1

DK (Ax, y) + ι{1}
(
xT1

)
+ 〈∇x, µ〉 − ιB∞

β
(µ) .

We can apply Algorithm 10 with the following choices,

f (x) = DK (Ax, y) , g (x) = ι{1}
(
xT1

)
, T = ∇, h∗ ≡ 0, l∗ (µ) = ιB∞

β
(µ) ,

Cp = R
n
+, and Cd = R

n−1.

We choose φp and φd to be

φp (x) =
n∑

i=1

xi log (xi) and φd (µ) =
1

2
‖µ‖22

which induces the divergences Dp and Dd

Dp

(
x, x′

)
=

n∑

i=1

xi log

(
xi
x′i

)
− xi + x′i and Dd

(
µ, µ′

)
=

1

2

∥∥µ− µ′
∥∥2
2
.

This gives us the following D-prox operator for our problem,

prox
Dp

λkg
(x)

def
= argmin

u∈Cp
{λkg (u) +Dp (u, x)} = argmin

u∈Rn
+

uT1=1

{Dp (u, x)} =




exp (xi)
n∑
j=1

exp (xj)




n

i=1

.

The main hypothesis (H) is clearly satisfied in this problem. In order to satisfy (A1), we must find a constant

Lp > 0 such that Lpφp (x)− f (x) is convex for all x ∈ int (domφp) = R
n
++. This is precisely what is shown

in [13][Lemma 8], which we include here for clarity.

Lemma 5.4.2. Let φp (x) =
n∑
i=1

xi log (xi), f (x) = DK (Ax, y), andA ∈ R
m×n
+ such that none of the columns

or rows of A are completely 0. Then, for any Lp such that

Lp ≥ max
1≤j≤m

(
n∑

i=1

Ai,j

)
,

Lpφp − f is convex on R
n
++.
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Proof. See [13][Lemma 8]

It remains to choose step sizes (λk)k∈N and (νk)k∈N such that (A2) and (A3) are satisfied, for which we refer

to Lemma 5.4.1.

Remark 5.4.3. Notice that the constant γ > 0 in Lemma 5.4.1 is arbitrary. For the experiments, we took

γ = ‖∇‖−1
2 to have symmetric step sizes,

λk =
1

Lp + ‖∇‖2
and νk =

1

Ld + ‖∇‖2
since Ld = 0 in this problem.

We now apply Algorithm 10 to solve (5.4.1) using the step size and entropy choices discussed above. We take

n = 100, m = 100, generate A with random i.i.d. uniformly distributed entries in [0.01, 1.01], and generate b

with random i.i.d. uniformly distributed entries in [0, 1]. We initialize with x0 =
(
1
n , . . . ,

1
n

)
and µ0 = 0. We

take the constant step sizes λk = 1
Lp+‖∇‖2

and νk = 1
‖∇‖2

. The lagrangian optimality gap is presented, for the

ergodic and pointwise iterates, in Figure 5.1. To plot this gap, we first run the algorithm for a high number of

iterations (1 million) to find the (approximate) primal-dual optimal pair (x⋆, µ⋆) and then rerun the algorithm

for 80% of the number of inital iterations, computing the gap at each iteration.

101 102 103 104 105

10−13

10−10

10−7

10−4

10−1

102

Linear Inverse Problem on Simplex - Lagrangian Optimality Gap
L( ̄xk, μ ⋆ )− L(x ⋆ , ̄μk)
L(xk, μ ⋆ ) − L(x ⋆ , μk)
( 1
Λ0
D(w ⋆ ,w0) −M(w ⋆ ,w0))/k

Figure 5.1: Ergodic and pointwise convergence profiles for Algorithm 10 applied to the linear inverse problem

on the simplex, n = 100 and β = 1.

5.4.2 Trend Filtering on the Simplex

In the following we consider a variant of the so-called ℓ1 trend filtering problem, introduced in [70] as a way

to analyze time series data, applied to a new setting with simplex constraints. Let Y ∈ R
n×l
++ , X ∈ R

n×m
+ , and

define

D (X,Y )
def
=

n∑

i=1

DK

(
Aixi, yi

)

whereK, as in the previous section, is the Shannon-Boltzmann entropy and, for each i ∈ {1, . . . , n},Ai ∈ R
l×m
+

is a linear operator, and xi ∈ R
m and yi ∈ R

l are the ith rows of X and Y respectively. We assume that the

matrices Ai do not contain any rows which are completely zero. Next, define the following linear operator

∇ : Rn×m → R
m(n−1) to be

∇X def
= (x2 − x1, . . . , xn − xn−1)

such that we have

‖∇X‖1 =
n−1∑

i=1

m∑

j=1

|Xi+1,j −Xi,j | .
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The idea behind this choice of regularizer is to enforce a piecewise-constant structure on the columns of X .

Meanwhile, we will constrain the rows of X to lie in the simplex. We formulate the problem as

min
X∈Rn×m

+
X1m=1n

D (X,Y ) + β ‖∇X‖1
(5.4.2)

where 1n is the length n column vector of all 1s, and its associated saddle-point problem,

min
X∈Rn×m

+

max
µ∈Rm(n−1)

D (X,Y ) + ι1n (X1m) + 〈∇X,µ〉 − ιB∞
β
(µ) .

Thus, it is possible to apply the algorithm with the following choices,

f (X) = D (X,Y ) , g (X) = ι1n (X1m) , T = ∇, h∗ ≡ 0, l∗ (µ) = ιB∞
β
(µ) ,

Cp = R
n×m
+ , and Cd = R

m(n−1).

We take the entropies

φp (X) =
n∑

i=1

m∑

j=1

Xi,j log (Xi,j) and φd (µ) =
1

2
‖µ‖22

which induce the divergences

Dp

(
X,X ′) =

n∑

i=1

m∑

j=1

Xi,j log

(
Xi,j

X ′
i,j

)
−Xi,j +X ′

i,j and Dd

(
µ, µ′

)
=

1

2

∥∥µ− µ′
∥∥2
2
.

It is clear that (H) holds here. Once again we must find a constant Lp > 0 such that Lpφp (x)− f (x) is convex

for all x ∈ int (domφp) to satisfy (A1).

Lemma 5.4.4. For each i ∈ {1, . . . , n}, let Li ≥ max
1≤q≤m

l∑
p=1

Aip,q and let Lp = max
1≤i≤n

Li. Then Lpφp (X) −

f(X) is convex for all X ∈ int (domφp).

Proof. Recall from [13][Lemma 8] that, for each i ∈ {1, . . . , n}, taking Li ≥ max
1≤q≤m

l∑
p=1

Aip,q implies that the

function ψi (X,L) defined by

ψi (X,L)
def
= L

m∑

j=1

Xi,j log (Xi,j)−DK

(
Aixi, yi

)

is convex for all X ∈ int (domφp) when L ≥ Li. We can write Lpφp (X)− f (X) as

Lpφp (X)− f (X) =
n∑

i=1

ψi (X,Lp)

and thus taking taking Lp = max
1≤i≤n

Li ensures the desired result.

As before, it remains to choose step sizes (λk)k∈N and (νk)k∈N such that (A2) and (A3) are satisfied. We

refer again to Lemma 5.4.1, since the choice of entropy here is essentially the same as before due to separability

with respect to the components of X .

We display below the results of applying Algorithm 10 to solve (5.4.2) using the step size and entropy choices

from above. We take n = 100, m = 3, and Ai to be the identity for all i ∈ {1, . . . , n}. The rows of Y are

generated with random i.i.d. Dirichlet distributed entries lying in the simplex. We initialize X0 with each row

xi =
(
1
m , . . . ,

1
m

)
and µ0 = 0. We take the constant step sizes, as in the previous problem, for each k ∈ N,

λk =
1

Lp+‖∇‖2
and νk =

1
‖∇‖2

. The Lagrangian optimality gap is shown, for the ergodic and pointwise iterates,

in Figure 5.2. As before, we run the algorithm for a high number of iterations to find the (approximate) primal-

dual optimal pair (x⋆, µ⋆) and then rerun the algorithm for 80% of the number of initial iterations, computing

the gap at each iteration. We also show the recovered trends or columns of X in Figure 5.3 and observe the

effect of penalty parameter β on the recovered trends in Figure 5.4.
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Figure 5.2: Ergodic and pointwise convergence profiles for Algorithm 10 applied to the trend filtering problem

with n = 100, m = 3, and β = 1.
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Figure 5.3: The recovered trends, i.e., columns of X from the trend filtering problem with β = 1.
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Figure 5.4: The recovered trends for different values of β; β = 3, 4, 5 and 6 starting at the top left.
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5.4.3 Variational Problems with the Entropic Wasserstein Distance

Consider the optimal transport problem between two discrete measures, ρ and θ, defined on two metric spacesX
and Y . LetC ∈ R

n×m be the ground cost onX ×Y . The costC is typically application-dependent, and reflects

some prior knowledge on the data to be processed. We regularize the optimal transport problem by subtracting

in the objective the entropy of the transport plan π,

E (π) = −
n∑

i=1

m∑

j=1

πi,j log (πi,j)

The idea of regularizing the optimal transport problem by including the entropy of the transport plan π is not

new, popularized by [40] and then explored, for example, in [41] for computing entropic Wasserstein barycenters,

in [93] for approximating entropic Wasserstein gradient flows, in [42] for variational Wasserstein problems, in

[43], etc. For γ > 0, the entropic regularization of the Kantorovich formulation of optimal transport can be

written as the convex optimization problem

Wγ (ρ, θ)
def
= inf

π∈Π(ρ,θ)



〈C, π〉 + γ

n∑

i=1

m∑

j=1

πi,j log (πi,j) = γ
n∑

i=1

m∑

j=1

πi,j log

(
πi,j
ξi,j

)
 , (5.4.3)

whereΠ(ρ, θ)
def
=
{
π ∈ R

n×m
+ : π1 = ρ, πT1 = θ

}
is the so-called transportation polytope and ξi,j

def
= exp(

−Ci,j

γ )

is the Gibbs Kernel. WhenX = Y , γ = 0 andC = dp, where d is a distance onX , thenW
1/p
0 is the well-known

p-Wasserstein distance.

We consider solving the following variational problem over discrete measures, i.e. vectors in the simplex

Σn
def
=
{
x : x ≥ 0, xT1 = 1

}
,

min
ρ∈Σn

Wγ(Fρ, θ) + J ◦A(ρ), (5.4.4)

where J ∈ Γ0(R
p), F : Σn → Σm and A : Rn → R

p are both linear operators. Seen as a matrix, F is typically

column-stochastic while ρ ∈ Σn is a discrete measure over the metric spaceX and θ ∈ Σm is the fixed, observed

discrete measure over the metric space Y .

Problem (5.4.4) is a natural way to solve inverse problems on discrete measures where one assumes that

θ ≈ Fρ0,

where ρ0 is an unknown discrete measure over Y to recover from the observed θ. When F = Id and γ = 0,

(5.4.4) is closely related to computing the Wasserstein gradient (aka JKO [69]) flow of J ◦ A. The JKO flow

was first studied in [69] as it relates to the Fokker-Planck equation before being generalized (cf. [4], [106]).

Entropic regularization, i.e., with γ > 0, was studied in [93] to compute Wasserstein gradient flows over spaces

of probability distributions with the topology induced by the Wasserstein metric.

Applying Fenchel-Rockafellar duality to (5.4.3) (see [94][Proposition 2.4] for the unregularized case and

[41][Section 5.1] for the entropic case), it is straightforward to see that problem (5.4.4) reads also

min
ρ∈Σn

sup
τ∈Rm,η∈Rm

〈τ, Fρ〉 + 〈η, θ〉 − γ
m∑

j=1

m∑

i=1

exp

(
τi + ηj − Ci,j

γ

)
+ J ◦A(ρ). (5.4.5)

Taking the supremum over η, one can easily show that (see also [55, Proposition 2.1]),

min
ρ∈Σn

sup
τ∈Rm

〈τ, Fρ〉 − γ
m∑

j=1

θj log

(
m∑

i=1

exp

(
τi − Ci,j

γ

))
+ J ◦A(ρ). (5.4.6)

Remark 5.4.5. Observe in (5.4.6) that the smooth term in τ (excluding the inner product 〈τ, Fρ〉) is actually

a log-sum-exp smooth approximation of the max function, which would appear naturally when marginalizing

with respect to η in the case γ = 0.
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Now, dualizing on J , we finally get that (5.4.4) is equivalent to

min
ρ∈Rn

+

sup
τ∈Rm,ζ∈Rp

ι{1}(ρ
T
1) + 〈(τ, ζ) , (Fρ,Aρ)〉 − γ

m∑

j=1

θj log

(
m∑

i=1

exp

(
τi − Ci,j

γ

))
− J∗(ζ). (5.4.7)

Remark 5.4.6. A chief advantage of (5.4.7), in contrast to optimizing with respect to the transport plan π, is

the significant difference in computational complexity, since the former is operating over n +m + p variables

only rather than nm.

The problem in (5.4.7) is a saddle-point problem which can be solved with Algorithm 10 by taking

Cp = R
n
+, Cd = R

m+p, T (ρ) = (Fρ,Aρ) , f (ρ) = 0, g (ρ) = ι{1}
(
ρT1

)
,

l∗ (µ) = l∗ (ζ) = J∗ (ζ) , and h∗ (µ) = h∗ (τ) = γ
m∑

j=1

θj log

(
m∑

i=1

exp

(
τi − Ci,j

γ

))
.

The natural choice for the entropies is, again,

φp (x) =
n∑

i=1

xi log (xi) and φd (µ) =
1

2
‖µ‖22 .

Lemma 5.4.7. The function h∗ (µ) is Ld Lipschitz-smooth for Ld ≥ γ−1
m∑
j=1

θj = γ−1.

Proof. The log-sum-exp function (with temperature constant γ),

lseγ (x)
def
= γ log

(
n∑

i=1

exp

(
xi
γ

))
,

is C2 and convex on R
n (See [54][Lemma 4], [104][Example 2.16, page 48]) and thus so is h∗ (τ, ζ). The

gradient, ∇xlseγ (x), is given, component-wise, for each k ∈ {1, . . . , n} by

(σγ (x))
(k) =

exp (xk/γ)
n∑
i=1

exp (xi/γ)

.

The function σγ (x) is called the softmax function with temperature constant γ and is Lipschitz-continuous in

the euclidean norm with Lipschitz constant γ−1 (see [54][Proposition 4]). Thus, to see that the function h∗ is

Lipschitz-smooth, denote the jth column of C as C·,j and notice

h∗ (µ) = h∗ (τ) =
m∑

j=1

θjlseγ (τ − C·,j) =⇒ ∇h∗ (µ) = ∇h∗ (τ) =
m∑

j=1

θjσγ (τ − C·,j) .

With this we write,

∥∥∇h∗ (µ)−∇h∗
(
µ′
)∥∥

2
=

∥∥∥∥∥∥

m∑

j=1

θj
(
σγ (τ − C·,j)− σγ

(
τ ′ − C·,j

))
∥∥∥∥∥∥
2

≤




m∑

j=1

θj


∥∥σγ (τ − C·,j)− σγ

(
τ ′ − C·,j

)∥∥
2

≤ γ−1




m∑

j=1

θj


∥∥τ − τ ′

∥∥
2

and the desired claim follows.

It is clear that (H) holds in this setting. It remains to find suitable step sizes (λk)k∈N and (νk)k∈N to satisfy

(A2) and (A3). Since the entropies here are exactly the same as in the linear inverse problem on the simplex, we
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refer again to Lemma 5.4.1. With these step sizes, we consider a one-dimensional instance of the problem with

n = 108, Ci,j =
1
2 ‖i− j‖

2
2, F a convolution operator with kernel K (x) = exp

(
− 1

1−x2
)

for x ∈]−, 1, 1[ and

0 otherwise, J ◦ A the total variation, and F (ρ0) corrupted by Dirichlet distributed noise, which we denote as

F̃ (ρ0). We take x0 =
(
1
n , . . . ,

1
n

)
and µ0 = 0. The results are displayed in Figure 5.5.
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Figure 5.5: (Left) Ergodic and pointwise convergence profiles for Algorithm 10 applied to the Wasserstein in-

verse problem with entropic regularization parameter γ = 1, total variation regularization parameter β = 1,

and n = 108. (Right) The ground truth measure ρ0, the recovered measure x, the corrupted observation θ, and

the image of the recovered measure F (x).

Remark 5.4.8. Note that, although we considered here only a simple Wasserstein inverse problem involving a

single observed measure, Algorithm 10 and our problem framework readily extend to more complicated regu-

larized Wasserstein barycenter problems. Wasserstein barycenter problems were first introduced in [1] without

entropic regularization of the Wasserstein distance. Later, the use of entropic regularization of the Wasserstein

distance to speed up computation of barycenters was put forth in [41], however the barycenter itself was not

regularized; such developments would come later, e.g., [28], [16], etc, and even then the problems considered

did not include the possibility of observing the image of the measure θ under a linear operator F rather than

observing the measure θ itself.

Let q ∈ N and consider q reference measures θi ∈ R
ni with ni ∈ N for each 1 ≤ i ≤ q, each having been

observed through some linear operator F i : Rn → R
ni applied to an unknown discrete measure ρi ∈ Σn, i.e.

θi ≈ F iρi. Then we can write the regularized Wasserstein barycenter problem as,

min
ρ∈Σn

q∑

k=1

αqWγk

(
F kρ, θk

)
+

q′∑

r=1

Jr ◦Ar (ρ)

which is equivalent to the following,

min
ρ∈Σn

sup
τ1∈Rn1 ,...,τq∈Rnq

ζ1∈Rm1 ,...,ζq
′∈Rmq′

q∑

k=1


〈αkτk, Fkρ〉 − αkγk

nk∑

j=1

θkj log

(
nk∑

i=1

exp

(
τki − Cki,j

γk

))


+

q′∑

r=1

[〈ζr, Arρ〉 − (Jr)∗ (ζr)] .
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This formulation of the problem can be solved with with Algorithm 10 by taking

Cp = R
n
+, Cd = R

n1 × · · · × R
nq × R

m1 × · · · × R
mq′ , f (ρ) = 0, g (ρ) = ι

{
n∑

i=1
ρi=1}

(ρ) ,

l∗ (µ) = l∗
(
ζ1, . . . , ζq′

)
=

q′∑

l=1

J∗
l (ζl) , and

h∗ (µ) = h∗
(
τ1, . . . , τ q

)
=

q∑

k=1

αkγk

nk∑

j=1

θkj log

(
nk∑

i=1

exp

(
τki − Cki,j

γk

))
,

with the same entropy choices as we took for (5.4.7).

Remark 5.4.9. Consider the same setup as in the previous remark with
(
θ1, . . . , θq

)
and let β ∈ R+. Another

interesting formulation of the regularized Wasserstein barycenter problem that can be solved using Algorithm 10

is the following.

min
ρ

min
ρ1,...,ρq

q∑

i=1

[
Wγi

(
θi, F iρi

)
+ J ◦A

(
ρi
)]

+ β

q∑

i=1

αiWγi (ρi, ρ) .

This problem is simultaneously solving the Wasserstein inverse problem for each observed measure θi while

also finding a barycenter ρ among the proposed solutions ρi of the Wasserstein inverse problems.
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Conclusion

6.1 Summary

We have proposed two novel first-order algorithms for large-scale optimization. These algorithms will allow a

new class of problems, previously inaccessible to the existing algorithms in the literature, to be solved efficiently.

We have achieved this by analyzing our algorithms under very general assumptions that don’t exclude key cases

that arise in practice, such as in matrix completion or problems on the simplex. We have provided a rigorous

treatment of the convergence properties of these algorithms, their associated convergence rates, and numerical

experiments which demonstrate their validity. We have made these arguments with a high level of generality

such that they apply even to infinite-dimensional problems. Our assumptions have been outlined in such a way

that future researchers can easily understand in which way they contribute to the arguments we make.

In addition to this, we have also extended both of these algorithms to the stochastic setting where we have

retained essentially all of the results from before in a (P-a.s.) sense, with a few only carrying over in expectation.

Such extensions allow for the practical utilization of these algorithms in large-scale settings, for example in

machine learning, computer vision, inverse problems, signal processing, econometrics, operations research,

etc.

We summarize the main conclusions to be drawn from our work:

(i) It is possible to show convergence of the Lagrangian and asymptotic feasibility of the iterates for gener-

alized conditional gradient algorithms combined with an augmented Lagrangian type of penalization on

the affine constraint under general smoothness conditions that broadly extend the class of Hölder smooth

functions. Thus it is possible to have the best of all worlds; we can use the gradient, the proximal operator,

or the linear minimization oracle depending on whichever is most accessible to us to maximize efficiency

in practice, as was shown in the numerics of Chapter 3. There were two keys to allowing such a general

problem formulation. The first was our fusion of relative smoothness with the curvature constant of [68].

This inspired a type of generalized curvature constant and smoothness, yielding a new descent lemma.

The second key was the use of the augmented Lagrangian to handle the affine constraint. Having an affine

constraint in the problem formulation allows one to solve problems involving multiple constraint sets and

multiple nonsmooth functions g simultaneously, as was outlined in Chapter 3.

(ii) Similarly, it is possible to extend the primal-dual splitting framework, in a way which allows one to show

convergence, to allow for highly composite saddle-point problems which are only relatively smooth and

for which the proximal operators are calculated with respect to a Bregman divergence. This analysis does

not require strong convexity of the objective or the entropies themselves in the general case but still guar-

antees convergence of the Lagrangian gap, with a O (1/k) convergence rate for the ergodic iterates, and

weak convergence of the pointwise iterates. The key to the analysis of this algorithm is the assumption we

make which quantifies the relationship between the Bregman divergence D (w,w′) and the linear term

M (w,w′). This assumption acts as a replacement for how one would use Young’s inequality in typical

primal-dual estimations found in, e.g., [31]. These results open the door to studying very challenging
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composite structured optimization problems such as those appearing when solving entropically regular-

ized Wasserstein inverse problems as well as a host of inverse problems involving the Kullback-Liebler

divergence as a fidelity term, as shown in the applications of Chapter 5. These problems were previously

inaccessible by first-order methods due to the lack of Lipschitz-smoothness.

(iii) Extension of algorithms which have been analyzed using arguments centered around quasi-Féjer mono-

tonicity can be successfully performed through a stochastic perturbation analysis. Showing convergence

results from such arguments boils down to showing that some summability condition involving the con-

ditional expectation (or sometimes the total expectation) of the norm of the error is satisfied, as was done

in Chapter 4. A model problem, previously inaccessible1 to traditional stochastic conditional gradient

methods, was solved numerically with the several different methods proposed, under varying batch sizes,

and shown to agree with the proposed convergence analysis.

All the algorithms proposed here, and their theoretical results, have been verified numerically, in NumPy.

6.2 Future Work

Several paths appear to go further with the analysis of the algorithms proposed here.

Acceleration for Bregman Primal-Dual Splitting In the deterministic case, it would be interesting to further

explore the effects that total convexity or strong convexity can have on the convergence rates of the algorithm.

Is it possible to have some form of acceleration even with relative smoothness in place of Lipschitz-smoothness

and without the entropies being strongly convex? For the closely related NoLips algorithm it’s been shown that

acceleration is not possible [47] in the general case without strong convexity, leading one to believe that a similar

result is probably true for the SBPD algorithm. The answer to such a question, in the positive or the negative as

we describe in the next paragraph, is not only enticing for theory reasons but also for practical purposes.

Optimal Complexity Analysis Analyzing the optimal complexity of the algorithms is another interesting

path to be explored in the future. The idea, from [48], is to produce a lower bound for the convergence rate of

the algorithm using semidefinite programming methods. This type of analysis was carried out for the NoLips

algorithm utilizing relative smoothness assumptions in [47]. One can imagine that a similar analysis is possible,

at least in principle, for both the CGALP and SBPD (in the deterministic case) algorithms.

Dynamical Systems Perspective Analyzing optimization algorithms as discretizations of continuous-time

dynamical systems can yield fruitful results about the convergence and behavior of the optimization algorithm.

This has been done, in Bregman settings in [18], in Riemannian settings in [3], and others like [7] and [110].

This perspective allows one access to all the tools of ordinary differential equation theory to answer questions

regarding convergence to optimality and rates of convergence as well. Tying into the previous paragraph, analyz-

ing the SBPD algorithm, in the deterministic case, using these methods will shed light on the how acceleration

is possible, if at all.

CGALP for Banach Spaces Allowing one to solve problems over a real reflexive Banach space (and ulti-

mately, if possible, a nonreflexive Banach space as motivated by problems involving Radon measures) would

be useful for nonsmooth versions of the Beurling LASSO problem (see [23], [45] for generalized conditional

gradient algorithms applied to the Beurling LASSO problem).

CGALP Beyond Bounded Sets Recently, it’s been shown that, by imposing certain coercivity conditions

on the differentiable function f to be minimized, one can construct a conditional gradient type algorithm which

does not require the boundedness of the underlying constraint set C. It is an open problem whether one can

incorporate into CGALP these ideas for optimization over cones or other unbounded sets.

1Besides the contemporary work, [77], which handles the nonsmooth affine constraint through the Moreau envelope rather than an

augmented Lagrangian approach.
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Chapter 6 6.2. Future Work

Nonconvex CGALP Extending CGALP to nonconvex settings is an obvious path to follow. Some work has

been done regarding general conditional gradient algorithms for nonconvex problems but, as far as we know,

nothing has been said about CGALP type algorithms that invoke an augmented Lagrangian to handle the affine

constraint (or even using the Moreau envelope, for that matter). Usually, to prove convergence under such

assumptions one must choose the step-size carefully to ensure that the objective is decreasing sufficiently at

each iteration; the current arguments used in the CGALP analysis do not allow one to specify a step-size in this

way so new arguments would have to be presented.

Riemannian CGALP Similarly the previous paragraph, extending CGALP to allow for Riemannian opti-

mization, i.e., optimization on a Riemannian manifold, is an obvious and practically useful path to follow. There

has been work on extending classical conditional gradient methods in this direction, for instance in [113] and

[114].

Stochastic Methods of Computing proxg and∇f Finally, for the ICGALP algorithm, the method approx-

imating the gradient or proximal operator tends to restrict the parameters choices which, in turn, reduces the

convergence rates for the feasibility and optimality. Developing a scheme which uses only one sample of the

gradient at each iteration without imposing additional restrictions on the step sizes would be useful for practi-

cal purposes. It seems possible to extend the deterministic sweeping scheme presented here to allow for any

sequence of random permutations of a finite sum of functions. The key to the analysis there is to have a lower

bound on how frequently we sample each gradient, i.e., we must ensure a full pass of the data continues to

happen regularly but we don’t care in which order the pass is made. However, such an extension is limited to

the finite sum minimization setting and cannot be applied to a true empirical risk minimization.
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List of Notations

General definitions

R: the set of real numbers

R+: nonnegative real numbers

R++: positive real numbers

R̄: ]−∞,+∞[∪{+∞}, the extended real values

ℓ1+: nonnegative summable sequence

N: set of nonnegative integers

N+: set of positive integers

R
n,Rm: finite dimensional real Euclidean spaces

H,Hp, . . .: real Hilbert spaces

X ,Xp, . . .: real reflexive Banach spaces

Id: identity operator onH or Rn

T,A: bounded linear operators

x
(i): ith component of the vector x

1: vector of all 1s

Set related

C: a convex (often compact) set

ιC(·): indicator function for the set C
dC: diameter of a convex set C

σC(·): support function of the set C
PC(·): projection operator onto C
intC: interior of C
C̄: closure of C

ri(C): relative interior of C
aff(C): smallest affine subspace that contains C, a.k.a. affine hull of C
par(C): the subspace parallel to C
A−1: inverse of A

dom(A): domain of A

ran(A): range of A

argmin: the set of minimizing arguments

B
r: a ball centered at the origin with radius r > 0

B (H): the Borel σ-algebra onH

Function related

Γ0 (X ) ,Γ0 (H): the set of proper convex and lower semi-continuous functions on a Banach spaceX , a Hilbert

spaceH, etc, respectively.

f, g, h, l: functions of Γ0 (X ), Γ0 (H) or Γ0 (R
n)

f⋆: the minimum value of the function f .
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lmoh (z): the linear minimization oracle associated to h, argmin
x
{〈z, x〉 + h (x)}

L: the Lagrangian function

dom(J): domain of J

J∗: Fenchel conjugate of J

∇F : gradient of F

proxγJ : proximal operator of J with γ > 0

Jγ(x): Moreau envelope of J parameterised by γ > 0

∂J: subdifferential of function J

[∂J (x)]0: minimal norm selection of ∂J at x

(γk)k∈N: a sequence indexed by k

Dφ: Bregman divergence associated to φ

K(F,ζ,C): generalized curvature constant associated to (F, ζ) smoothness

E [x]: total expectation of the random variable x

E [x | F]: expectation of the random variable x conditioned on the σ-algebra F

P: a probability measure

σ (x1, . . . , xn): the σ-algebra generated by x1, . . . , xn.
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