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A B S T R AC T

There exist a lot of biological phenomena which are difficult to observe and explain. For example,

the generation and processing of the information in our brains, the immune response of our bodies

to different diseases, the reaction of living cells to different stimuli and so on. Thanks to the recent

advances in biology, medicine and computer science those processes can be observed and recorded (at

least partly) with a high level of precision. Consequently, there is an increasing demand in translating

the data, gathered by biologists and neuroscientists, into interpretable mathematical models. The aim

of this thesis is to contribute to the study of stochastic mathematical models of real-world phenomena,

and analyze these models both numerically and theoretically.

In the first part of this thesis we are studying the link between individual-based stochastic mod-

els (birth-and-death processes, Hawkes processes) and their respective continuous approximations

(stochastic diffusions, partial differential equations), obtained at a larger scale. In particular, we

are tackling the question of the numerical simulation of stochastic and deterministic processes with

the help of splitting and implicit numerical schemes, which preserve the asymptotic behavior of the

process. On the applied level, we consider mathematical models of interacting networks of biological

neurons, as well as bacteria populations.

In the second part of the manuscript we are dealing with statistics for stochastic differential

equations, such as parametric inference for diffusions with degenerate noise, and hypothesis testing

for the covariance matrix rank from discrete observations. For the parametric estimation we use

quasi-maximum likelihood estimators (also known as contrast estimators), where the contrast is built

on the density approximated with the local linearization scheme. For the second problem, we study a

non-asymptotic regime (i.e., the case when the observations are available with a fixed time step). We

consider the case when the distribution of the test statistics can be written explicitly (for example,

when the drift is known and the dimension is 1 or 2). Then, we use concentration inequalities to derive

the tail properties and use them to obtain a non-asymptotic control of the Type I and Type II errors.

Keywords. Statistics: parametric inference, maximum likelihood estimators, concentration in-

equalities, statistical tests. Probability: stochastic diffusions, hypoellipticity, Hawkes processes, birth-

and-death processes. Numerics: splitting schemes, high-order approximation schemes, asymptotic-

preserving schemes for PDEs, thinning algorithms.

v





R É S U M É

Beaucoup de phénomènes biologiques sont difficiles à observer et à expliquer. Par exemple, la

génération et le traitement des informations dans notre cerveau, la réponse immunitaire de notre corps

à différentes maladies, la réaction des cellules vivantes à différents stimuli, etc. Grâce aux progrès

récents de la biologie, de la médecine et de l’informatique, ces processus peuvent être observés et

enregistrés (au moins en partie) avec un haut niveau de précision. Par conséquence, il existe une

demande croissante pour traduire les données recueillies par les biologistes et les neuroscientifiques en

modèles mathématiques interprétables. Le but de cette thèse est de contribuer à l’étude des modèles

mathématiques stochastiques des phénomènes du monde réel, et d’analyser ces modèles à la fois

numériquement et théoriquement.

Dans la première partie de cette thèse, nous étudions le lien entre les modèles stochastiques indivu-

centrés (processus de naissance et de mort, processus de Hawkes) et leurs approximations continues

respectives (diffusions stochastiques, l’équations aux dérivées partielles), obtenues à plus grande échelle.

En particulier, nous abordons la question de la simulation numérique des processus stochastiques

et déterministes à l’aide de schémas par fractionnement (splitting) et numériques implicites, qui

préservent le comportement asymptotique du processus. Au niveau appliqué, nous considérons des

modèles mathématiques d’interaction de réseaux de neurones biologiques, ainsi que des populations de

bactéries.

Dans la deuxième partie du manuscrit, nous traitons de statistique pour les équations différentielles

stochastiques, telles que l’inférence paramétrique pour les diffusions avec bruit dégénéré, et le test

d’hypothèses pour le rang de la matrice de covariance à partir d’observations discrètes. Pour l’estimation

paramétrique, nous utilisons des estimateurs de quasi-maximum de vraisemblance (également appelés

estimateurs de contraste), où le contraste est construit sur la densité approchée avec le schéma

de linéarisation locale. Pour le deuxième problème, nous étudions un régime non asymptotique

(c’est-à-dire le cas où les observations sont disponibles avec un pas de temps fixe). On considère le cas

où la distribution des statistiques de test peut être écrite explicitement (par exemple, lorsque la dérive

est connue et que la dimension est 1 ou 2). Ensuite, nous utilisons des inégalités de concentration

pour évaluer les erreurs du 1ère et 2ème espèces du test.

Mots clés. Statistiques: inférence paramétrique, estimateurs du maximum de vraisemblance,

inegalités de concentration, tests statistiques. Probabilité: diffusions stochastiques, hypoellipticité,

processus de Hawkes, processus de naissance et mort. Numérique: schémas de division, schémas

d’approximation d’ordre élevé, schémas consistentes pour l’EDP, algorithmes de thinning.
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S U M M A RY

This PhD thesis is devoted to stochastic models in biology, with a primal focus being neuronal models.

First, we treat some questions related to the simulation of stochastic processes which describe the

biological phenomena (neuronal activity, bacterial populations and so on). Second, we contribute

to some statistical problems (parametric inference, hypothesis testing) which are often faced by

statisticians and biologists who work with neuronal data.

The manuscript consists of 8 chapters, which are divided in 4 parts. Part i is an Introduction,

which is devoted to the biological motivation behind the problems, treated in the other parts, the state

of the art and the overview of the thesis’s contributions. It contains 3 Chapters: Existing models and

probabilistic preliminaries, Objectives, methods and related works and the Outline of the contributions.

In this part a short summary of the results presented in Parts ii-iii is made, and their relevance to the

recent advances in adjacent fields, as well as possible extensions are discussed.

Chapter 1 (Existing models and probabilistic preliminaries) is organized as follows: first, we give a

very brief introduction to the biological problems which have (partly) motivated this thesis. Then, we

present necessary mathematical tools which are used to model the described phenomena. We group

the models by three categories: deterministic, stochastic diffusions and point processes. This division

should be considered as a mere convenience for the author and the reader. It will be shown in the

next chapters that those three families of models can be used interchangeably depending on the exact

problem and the level of abstraction one is working on.

Chapter 2 (Objectives, methods and related works) aims to give an overview of the recent advances

in numerical analysis and statistics for the deterministic and stochastic models described in the

previous chapter. Of course, it is not possible to give an exhaustive picture within the page limits

of PhD Thesis’ Introduction, thus some important statistical issues are deliberately omitted. Our

primary goal is not to cover all important subjects, but rather to place our contributions in a suitable

context and explain how they are related to other published works. It is what Chapter 3 (Outline of

the contributions) is devoted to. In this chapter we give a short overview of models we were working

on, the ultimate goal of the work and the results we have achieved.

Part ii (Numerical analysis) and Part iii (Statistics) contain two chapters each. They present the

author’s own contribution to the field and are primarily based on published or submitted articles,

except for Chapter 7 which presents work in progress. Thematically, Part ii investigates the links

between counting processes and processes with a smooth dynamics (like partial differential equations

and stochastic differential equations), while Part iii is focused on stochastic diffusions.

More precisely, Chapter 4 is devoted to the numerical and theoretical study of Hawkes processes

with Erlang memory kernel and their diffusion aproximation. These processes are used to describe

an activity of a system of interacting neurons, structured by several populations according to their
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functionality. It is shown in Ditlevsen and Löcherbach (2017) that in a mean-field limit the piece-wise

deterministic Markov process (PDMP), associated with the Hawkes process, is approximated by

a hypoelliptic diffusion. In this Chapter we prove a strong error bound between the PDMP and

the diffusion, develop a numerical splitting scheme for the diffusion and prove that it preserves its

properties (ergodicity and moment bounds), and propose an efficient algorithm for simulating the

PDMPs, based on the thinning procedure.

Chapter 5 studies mathematical models which describe the Horizontal Gene Transfer in bacteria

population on different scales. We start with the macroscopic scale, where the dynamics of the

population is described by a classical death-and-birth process. We simulate this process and study its

behaviour in a cyclic regime, which is ensured by the evolutionary rescue phenomena. This phenomena

means that under certain conditions, the vast majority of the population is driven by extinction, but

in the absence of the competition between the individuals, the few remaining organisms manage to

repopulate the environment. On the next step, we consider the case when the size of the population

increases, and it becomes too difficult (and computationally costly) to consider the individual-based

model. We thus pass to a density-based model based on partial differential equations (PDE), first

considered in Billiard et al. (2015, 2016a). In order to go even further, to an evolutionary time scale,

one needs to consider a special, Hamilton-Jacobi type PDE. This model is more convenient to analyze

with mathematical tools, but is more difficult to simulate. We thus propose an asymptotic-preserving

simulation scheme which allows to empirically investigate the difference of the observed dynamics on

a different level of abstraction.

Chapter 6 is devoted to the parameter estimation for hypoelliptic diffusions with full observations.

We consider a two-dimensional diffusion, where one coordinate is driven by the Brownian motion,

and the other one is not. The diffusion coefficient is thus degenerate, and it makes the application of

standard statistical procedures more complicated. We show under which conditions this diffusion is

hypoelliptic, which ensures the existence of smooth transition density. For the parameter estimation

we adopt a classical approach, based on the pseudo-maximum likelihood. As a first step, we develop

an approximation scheme, based on the Local Linearization method (Ozaki, 1989, Biscay et al., 1996,

Jimenez and Carbonell, 2015), and write its discrete transition density. On the second step, we propose

a maximum likelihood estimator based on the obtained expression and propose a single criteria for

estimating the parameters of the drift and the variance coefficient. We prove that this estimator is

consistent and asymptotically normal. Finally, we illustrate our results on the hypoelliptic neuronal

FitzHugh-Nagumo model.

Chapter 7 treats the estimation of the covariance matrix rank in diffusion models from discretely

observed data. Estimating the rank of the matrix helps to differentiate between elliptic and hypoelliptic

models. On an applied level, this information sheds some light upon the nature of the noise in neuronal

models. We work in a non-asymptotic setting, meaning that the observations of the processes are

only available at fixed time steps. The main difficulty imposed in this case consists in choosing a

meaningful hypothesis: indeed, when the observation time step is fixed, we cannot really infer the

information about strictly degenerate (i.e., identically equal to zero) diffusion coefficients. Instead, we



xi

are focusing on estimating if a given diffusion coefficient is smaller than a given threshold or not, thus

complementing the results of Jacod et al. (2008). We start with simple examples of systems where the

distribution of the test statistics can be found explicitly. In more general cases, when the probabilistic

law cannot be written explicitly, we use concentration inequalities to evaluate the distribution of the

test statistics.

The manuscript is concluded with Part iv which is an Afterword. It contains the only Chapter 8,

where we discuss possible expansions of the results obtained in previous two Parts.
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I N T RO D U C T I O N





1

E X I S T I N G M O D E L S A N D P RO B A B I L I S T I C P R E L I M I N A R I E S

Ce qui est simple est toujours faux. Ce qui ne l’est pas

est inutilisable.
Paul Valéry

Mathematics is used for modeling a vast amount of real-world phenomena. The main objective of

this thesis is to tackle some of the existing mathematical challenges, related to biology. Biological

phenomena are described by different classes of models: deterministic (given by differential equations)

and stochastic (stochastic differential equations and piece-wise deterministic Markov processes).

Despite the fact that this manuscript is mostly focused on processes described by stochastic differential

equations (more precisely, stochastic diffusions), it is sometimes indispensable to work with other

classes.

Why different types of models are needed? Consider a dozen of hares feeding on a vast field of

grass next to a small village. If we decide to predict the dynamics of population of this (or equivalent)

dozen of hares living next to this (or equivalent) small village, the most natural approach to adopt

would be to consider a birth-and-death process. The data gathered by generations of villagers would

permit to estimate the birth and the death rates from natural causes, hungry wolves (or villagers)

or global warming. In turn, it would allow to give a fairly accurate estimate of the hare population

in the coming years. If we decide to consider the same task, but for the hare population in whole

Europe, the birth-and-death approach would touch its limits. On this scale, the density-based models

(given as a differential or partial differential equation) could be more suitable and easy to treat.

Thus, the primary goal of the first chapter of this introduction is to give an overview of biological

phenomena which give rise to yet unsolved mathematical problems. Our aim is to give examples of

biological systems and provide a necessary statistical and probabilistic background without limiting

to a specific class of mathematical models. Questions we are going to consider include, but are not

limited to, an activity of the human brain, antibiotic resistance in bacteria, cancer tumor growth

etc. Later, in Chapter 2 we will rely on the presented notions to introduce a set of numerical and

statistical tools, on which the contributions of the thesis are primarily based.

We start with deterministic models (Section 1.1), as the most classical and well-studied framework.

Within this manuscript we focus on ordinary and partial differential equations (ODEs and PDEs).

The advantage of the deterministic models is that they are versatile, relatively easy to analyze and

fast to simulate. However, the use of purely deterministic models is often limited to studying the

3



4 existing models and probabilistic preliminaries

”average” behavior, or to the settings where the stochasticity plays little to no role (for example,

in a large population limit in certain biological networks), since they cannot take into account the

random nature of inputs which often shape the biological processes. In the setting when the influence

of random force is not negligible, it is more common to work with the stochastic models.

Most of the stochastic biological models can be divided in two large classes: diffusion processes

and point processes. By diffusion processes we mean the solutions of stochastic differential equations

(SDEs). They are a natural extension of deterministic models (usually presented by ordinary- or

partial differential equations). We devote Section 1.2 of this chapter to the diffusion processes. We

present some concepts from probability theory which will be used throughout this thesis. Among

other things, we give a formal definition of a hypoelliptic class of diffusions. They are in the focus

of Chapters 4 and 6 of this thesis. We also show how the hypoellipticity can be verified on concrete

examples, and briefly discuss the influence of noise in stochastic systems. Finally, we complete the

picture by talking about the point processes belonging to a family of piecewise deterministic Markov

processes (PDMP). They are defined by a sequence of jumps, occurring with a certain intensity, and

the deterministic flow, given by a solution of an ordinary differential equation. Section 1.3 briefly

present simple birth-and death processes, Poisson processes and Hawkes processes.

Let us now give a brief description of the real-world motivation behind the numerical and statistical

problems we consider. An important field, which has gained a lot of attention in recent years is

neuroscience. Cheap and almost unlimited computational power, which is shaping the science of the

XXI century, has allowed to record, process and analyze the brain activity with high precision. More

precisely, it is possible to record the spikes emitted by a neuronal cell or a group of cells (extracellular

recording), or to place an electrode into a cell body (see the right panel of Figure 1.1) and record the

changes of the membrane potential (intracellular recording). The latter process (see plot on the left

panel of Figure 1.1) allows to observe how the neuron reacts to the change of the external stimuli (for

example, the electric current run through the cell).

We start the brief excursion into the mathematical neuroscience with the building block of our

neural circuits: neurons. Neurons are excitable cells which are the main information transmitters

in the brain. The body of a neuron consists of a cell body (soma), an axon and an axon terminal

(illustrated on the left panel of Figure 1.1). The cell body receives the stimuli from the environment

via dendrites. Then, under the influence of the stimuli, the concentration of sodium and potassium

inside the cell changes and under certain circumstances the neuron emits a spike (also called an action

potential), which then travels through the axon body to the axon terminal, emitting a signal to the

other neurons in a network through synapses.

Similarly to the example with hares in the beginning of this section, there exist different approaches

to describe a neuronal activity. If we are interested primarily in the firing pattern of an individual

neuron, or a small group of neurons, the most natural approach would be to use the framework of

point processes (Poisson, Hawkes, etc.). If we decide to focus on how the firing activity of a neuron

depends on the biochemical processes inside the body of neuron, it is more accurate to use models,

described by differential or stochastic differential equations (see Examples 1.1, 1.2 and 1.8).
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Figure 1.1: The structure of a biological neuron and the action potential. Source: https://en.wikipedia.

org/wiki/Neuron, https://en.wikipedia.org/wiki/Action_potential

Often, the choice of the suitable model is dictated by a practical convenience rather than strict

mathematical arguments. For example, it is rather bold to assume that the action potential corresponds

to a completely deterministic process. But how strong is the influence of the stochasticity? Is it

even important to take it into account, or a deterministic model is precise enough? The answer to

these questions lies in treating the neuronal data. For that, a solid statistical tool set at hand is

indispensable. Contributing to such a tool set is one of the goals of this thesis.

Another important field where the mathematical expertise is required is evolutionary biology.

This field covers a lot of important medical applications: for example, the problem of development of

antibiotic resistance in bacteria, evolutionary and spatial dynamics of cancer cell populations and

their resistance to treatment, and many others. The following problems are often faced by biologists:

how to find the ideal trade-off between the toxicity and the efficiency of a certain drug treatment?

What would be the optimal dose of antibiotics which would kill the malicious bacteria with a minimal

impact on a natural flora of human guts? Is it possible to predict the growth rate of a cancerous

tumor in different environments? Those and other questions can be answered, at least partly, with

the help of numerical analysis of mathematical models, which is is another motivation of this thesis.

The aim of this chapter is to give a short overview of the existing models, addressing of the issues

described above. Section 1.1 is devoted to the deterministic models, described by Ordinary or Partial

Differential Equations (ODE and PDE respectively), as the most common and well-studied class.

On the next step, we consider a family of diffusions, described by Stochastic Differential Equations

(SDEs), which is the subject of Section 1.2. Finally, we briefly discuss the class of counting processes

(or point processes) in Section 1.3.

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Action_potential
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1.1 deterministic models

We start the excursion into the existing models from the simplest deterministic case, an ordinary

differential equation (ODE), written as

dXt = b(t,Xt)dt, X0 = x0, (1.1)

where b ∈ Rd+1 → Rd. We refer the reader to textbooks like Chicone (2006), Evans (2010) for the

conditions of existence of solutions of ODEs and PDEs, presented further in this section. ODEs

(1.1) are widely used in neuronal modeling. There exist several models which aim to describe the

process of firing in neurons with a different level of abstraction. One of the most famous examples is

the Hodgkin-Huxley synaptic-based model (see Example 1.1). It was awarded a Nobel prize in 1968

and since then has served as a starting point for developing more sophisticated (or, on the contrary,

simplified) models.

Example 1.1 (Hodgkin-Huxley neuronal model (Hodgkin and Huxley, 1952)). The dynamics of the

membrane potential and the synapses is described by the following system:

I = Cm
dVm
dt + ḡKn

4(Vm − VK) + ḡNam
3h(Vm − VNa) + ḡl(Vm − Vl),

dn
dt = αn(Vm)(1− n)− βn(Vm)n,
dm
dt = αm(Vm)(1−m)− βm(Vm)m,
dh
dt = αh(Vm)(1− h)− βh(Vm)h,

where I is the input current (stimulation of the other neurons or the current controlled by the

experimenter), Vm is the voltage of the membrane, and αi and βi are rate constants for the i-th ion

channel, which depend on voltage but not time. ḡn is the maximal value of the conductance. n, m, and

h are dimensionless quantities between 0 and 1 that are associated with potassium channel activation,

sodium channel activation, and sodium channel inactivation, respectively. For p = (n,m,h), αp and

βp take the form

αp(Vm) = p∞(Vm)/τp

βp(Vm) = (1− p∞(Vm))/τp.

p∞ and (1− p∞) are the steady state values for activation and inactivation, respectively, and are

usually represented by Boltzmann equations as functions of Vm.

The Hodgkin-Huxley equations model with a very high precision the potassium channel activation

and sodium channel activation and deactivation. Once the voltage (or the action potential), given by

the variable Vm, exceeds a certain threshold, the Hodgkin-Huxley model undergoes a bifurcation. It

results in a sudden jump in an action potential, which is interpreted as a ”firing” of a neuron (see the

right panel of Figure 1.1). After the firing, the neuron goes into a refractory period, during which

another spike is not possible.
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The price to pay for the biological precision is that the Hodgkin-Huxley model is very difficult

to study from a mathematical point of view. The first reason is that it is highly non-linear and its

solution cannot be written explicitly. The second reason is that it is high-dimensional. For modeling

purposes it is often more convenient to work with other self-exciting models which mimic the neuronal

activity in a simplified way.

Indeed, there exist numerous models based on the Hodgkin-Huxley. The aim of some of them is to

achieve a higher precision (adding more information to the system), while others try to simplify the

model, making it easier to analyze from a mathematical point of view. The most common simplification

is to replace the three last equations in Hodgkin-Huxley equation by an abstract variable, summarizing

dynamics of all ion channels. The closest to the original model is the Morris-Lecar system (Morris

and Lecar, 1981), where the dynamics of the recovery variable is approximated by a first-order linear

differential equation for the probability of channel opening:

Example 1.2 (Morris-Lecar neuronal model (Morris and Lecar, 1981)). The oscillatory activity of a

neuron is described by the following 2-dimensional ODE:C
dV
dt = I − gL(V − VL)− gCaMss(V − VCa)− gKN(V − VK),

dN
dt = Nss−N

τN
,

where V is the membrane potential, N is the recovery variable, which can be regarded as the probability

that the K+ channel is conducting, and

Mss =
1
2 ·
(

1 + tanh
[
V − V1
V2

])
,

Nss =
1
2 ·
(

1 + tanh
[
V − V3
V4

])
,

τN = 1/
(
ϕ cosh

[
V − V3

2V4

])
.

Even further, the model can be simplified by replacing the hyperbolic functions by polynomials.

It gives one of the most widely used simple self-exciting models, namely a 2-dimensional FitzHugh-

Nagumo model (Fitzhugh, 1961, Nagumo et al., 1962):

Example 1.3 (Deterministic FitzHugh-Nagumo model (Fitzhugh, 1961, Nagumo et al., 1962)). The

spiking activity of a neuron is described by the following equation:dVt =
1
ε

(
Vt − V 3

t −Ut − s
)
dt

dUt = (γVt −Ut + β) dt,

where Vt is the membrane potential, and Ut summarizes the input of ion channels. The parameters

of the systems do not have the same explicit biological meaning as in the Hodgkin-Huxley model (see

Example 1.1). In particular, ε is a scaling parameter, which regulates the time difference between the

membrane voltage Vt, which changes at a faster scale than the recovery variable Ut, s describes the

stimuli current, γ and β are abstract variables determining the spiking or oscillatory behaviour of a

neuron.
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Figure 1.2: Cancer cell growth in oxygenated and hypoxic environment. Source: Zhang et al. (2015).

The same model will be presented in the next Section in its stochastic version (see Example 1.8).

Since the examples presented in this manuscript are by no mean exhaustive, we refer to the books

Gerstner and Kistler (2002), Tuckwell (2005), Izhikevich (2007) for a more complete overview of the

existing neuronal models.

Another important class of deterministic models are PDE models. They are heavily used in the

evolutionary biology and cancer research for studying the drug resistance in bacteria, viruses, tumors,

as well as natural selection, mutation and other phenomena. PDE-based model are usually focused on

the dynamics of a population of biological cells or individuals, structured by phenotypic traits, in time

and/or space. Most of them can be viewed as an ”averaged” version of a birth-and-death process for

large populations (see Example 1.9 in Section 1.3). While in a classical birth-and-death process the

number of individuals in a population is countable and finite, the PDE approach assumes an infinite

number of cells. These models study the evolution of the density of a certain type of cells rather than

the dynamics of separate individuals. There exist numerous works which prove the link between the

stochastic individual based models and density-based PDE models, applied to bacteria or cancer cell

evolution, see, in particular, Billiard et al. (2016a, 2015), Champagnat et al. (2008).

The following example provides a density-based model of the evolution of the cancer cells in hypoxic

and oxygenated environment (see Figure 1.2 for an illustration). It is used for studying the influence

of certain types of treatment on the proliferation rate of the cancer cells:

Example 1.4 (Cancer cell dynamics (Lorz et al., 2015, Lorenzi et al., 2018)). Denote a state space

Ω ∈ R3, where Ω represents a solid tumor, and by x ∈ Ω — a position in this tumor. Further,

y ∈ [0, 1] denotes a hypoxia responsive gene and s(t,x) the concentration of oxygen at time t. We

denote the population density at time t and position x by n(t,x, y). Then, the dynamic of the system

is described by the following PDE:
∂n(t,x,y)

∂t = (f(y) + r(y, s(t,x))− dρ(t,x, y))n(t,x, y)

ρ(t,x, y) =
∫ 1

0 n(t,x,u)du.

Here f(y) and r(y, s(t,x)) are deterministic functions which represent the proliferation rate (i.e. the

speed of reproduction) in hypoxic and oxygenated environments respectively, y encodes the genetic
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information, which controls cell proliferation and drug resistance, and d is a death rate from the

competition between individuals. The mean phenotype at position x can be computed as follows:

µ(t,x) = 1
ρ(t,x)

∫ 1

0
y n(t,x, y)dy.

Deterministic models are not in the main focus of the thesis, but they often serve as a basis for

more sophisticated models. For example, if our goal is to see how the dynamics of a particular system

can be influenced by some unknown (considered random) inputs of the outer world, we are naturally

lead to stochastic models of diffusion type, presented in the following section.

1.2 stochastic differential equations

Not all real-world forces are of deterministic nature or, to be more precise, it is not always convenient

to encipher all possible influences in a form of deterministic parameters. For example, consider a

single neuronal cell, whose activity is described with the Hodgkin-Huxley model (see Example 1.1).

This model (despite being very precise!) does not take into account, for example, the signals coming

from the other cells, the temperature of the environment etc., which can slightly modify the voltage

dynamics. If we are interested in studying the influence of these unknown phenomena, we can upgrade

the ODE by adding a random process with a volatility (or diffusion) parameter, which would mimic

the influence of the other, ”less important”, forces.

The most widely used approach is to add a Wiener Process (also called a Brownian motion), thus

transforming a system of ODEs (or PDEs) into a Stochastic Differential Equation (SDEs) (or SPDEs,

respectively). Consider a probability space (Ω,F ,P). By stochastic diffusion we mean a solution of

the autonomous d-dimensional stochastic differential equation (SDE) in Itô sense, written as follows:

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0, (1.2)

where b ∈ Rd → Rd is a drift term, σ ∈ Rd → Rd ×Rq, Wt ∈ Rq is a standard Brownian motion, x0

is a random variable such that E[x2
0] <∞. By ”autonomous” we mean that the drift and the variance

coefficients do not depend on time. We refer to classical textbooks like Karatzas and Shreve (1987),

Oksendal (2003) for conditions of existence of solutions and other properties of (1.2).

To give an example of a SDE having an explicit solution, let us consider a linear homogeneous

system of equations. The solution of this equation is called an Ornstein-Uhlenbeck process, which

is studied by numerous authors (Gikhman and Skhorokhod (1968) being one of the most classical

references).

Example 1.5 (Linear Homogeneous system). Consider the following d-dimensional SDE:

dXt = (AXt + a)dt+ σdWt, X0 = x0 ≡ const



10 existing models and probabilistic preliminaries

where A is a square d× d constant matrix of full rank, a ∈ Rd is a constant vector, σ is a constant

d× q matrix with at least one non-zero entry, Wt ∈ Rq is a standard Brownian motion. This system

can be solved explicitly and its solution at time t > 0 is given by

Xt = eAt
(
x0 +

∫ t

0
e−Asads+

∫ t

0
e−AsσdWs

)
.

The process (Xt)t≥0 is Gaussian and has the following expectation and variance:

E [Xt] = eAt
(
x0 +

∫ t

0
e−Asads

)
,

V ar [Xt] = E

[(∫ t

0
eA(t−s)σdWs

)(∫ t

0
eA(t−s)σdWs

)T]
.

Example 1.5 is interesting, because the process described by the solution of a linear homogeneous

SDE has a smooth Gaussian transition density even when σσT is not of full rank. In general, the case

when rank(σσT ) < d is much more difficult to study, since the solution of (1.2) cannot be analyzed

by standard tools, requiring a non-degenerate covariance matrix. Depending on the rank of the matrix

σσT , this process has different properties, because it belongs to different classes of processes: elliptic

and hypoelliptic. More precisely,

• when rank(σσT ) = d, the system is said to be elliptic;

• when rank(σσT ) < d, the elliptic assumption does not hold. However, under special conditions,

the usual properties of the system (such as existence of transition density), can be proven under

milder conditions, known as hypoellipticity.

The main focus of this thesis is made on the diffusions satisfying the hypoelliptic assumption. However,

in order to keep a consistent narrative, we will first shortly discuss the ”classical” diffusions, satisfying

the elliptic condition.

Most of the first stochastic models applied in neuroscience belong to the class of elliptic diffusions.

We refer, for example, to Gerstein and Mandelbrot (1964) for a firing model based on Wiener process,

or Stevens and Zador (1998) for a simple model of a firing neuron, given by a particular case of the

linear homogeneous equation (see Example 1.5), to the elliptic Morris-Lecar model (as in Example

1.2) studied by Ditlevsen and Samson (2012), Ditlevsen and Greenwood (2013) and many others.

Example 1.6 (Stochastic Leaky Integrate-and-fire model (Stevens and Zador, 1998)). In this model

the membrane potential is associated with a continuous stochastic process, where spikes occur when

the membrane potential crosses a certain (deterministic threshold). The dynamics of the membrane

potential under the threshold is described by Ornstein-Uhlenbeck process:

dVt =

(
−Vt − V0

τ
+ I

)
dt+ σdWt, V0 = v0.

In this example the neuron fires at time s = mins {Vs > v}, and then the membrane takes its initial

value v.

Before focusing on hypoelliptic diffusions, let us formally define what hypoellipticity refers to.

In the sense of stochastic calculus of variations (Malliavin and Thalmaier, 2006, Nualart, 2006) the

definition is the following:
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Definition 1.1 (Hypoellipticity). The Lie bracket [A1,A2] of the two vectors Am =
∑d
i=1A

i
me

i, m =

1, 2, is given by

[A1,A2] := JA2A1 − JA1A2 =
d∑
i=1

 d∑
j=1

(Aj1∂jA
i
2 −A

j
2∂jA

i
1)

 ei,

where JAm denotes the Jacobian of matrix Am. The Lie algebra A generated by the d vector fields

A1, . . . ,Ad is defined as the vector space of all fields obtained as linear combinations with constant

coefficients of the

Ak, [Ak,Al], [[Ak,Al],As], etc.

Given r ∈ Rd, let A(r) , {ζ ∈ Rd|ζ = Z(r) for some Z ∈ A}. We say that vector fields A1, . . . ,Ad
satisfy the Hörmander criterion for hypoellipticity if A1, . . . ,Ad are infinitely often differentiable

and if

A(r) = Rd ∀r ∈ Rd.

Let us explain how Definition 1.1 can be verified in practice and give an intuition of it. First, the

coefficients of (1.2) must be written the Stratonovich form, which is the following:

dXt =

(
b(Xt)−

1
2∂xσ(Xt)σ(Xt)

)
dt+ σ(Xt) ◦ dWt, (1.3)

where the notation σ(Xt) ◦ dWt is commonly used to distinguish the stochastic integrals defined in

Stratonovich sense from the analogous Itô form (typically denoted as σ(Xt)dWt). Both equations

(1.3) and (1.2) refer to the same process, but the rules of integration slightly differ.

The goal is to compute the Lie bracket of the following two vectors:

A1 = b(Xt)−
1
2∂xσ(Xt)σ(Xt), A2 = σ(Xt).

The hypoellipticity is implied by the fact that A2 and [A1,A2] span the space Rd.

Informally speaking, hypoellipticity holds when some of the coordinates in system (1.2) are not

perturbed by noise directly (they are often called ”smooth”), but they depend at least on one of the

”rough” variables. In two-dimensional systems it implies that the derivative of the drift coefficient

of the smooth variable with respect to the rough one should be non-zero. Then, as illustrated in

Examples 1.7-1.8, the respective Lie brackets of the process span the whole state space and the

Hörmander condition holds.

Hypoellipticity also implies that all the coordinates are perturbed by a Brownian motion, but at

different rate. This means, in particular, that the degenerate diffusion coefficient may be ”comple-

mented” by higher-order terms, obtained as an integrated Brownian motion from noisy coordinates.

A formal derivation of an ”extended” diffusion term for a multidimensional hypoelliptic diffusion is

presented in a recent preprint Pigato (2020).

Now let us give some examples of 2-dimensional hypoelliptic systems and illustrate how the definition

1.1 can be verified in practice. We start with the following important class of stochastic diffusions:
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Figure 1.3: Phase portrait of a Van Der Pol oscillator (Example 2.1) under different random perturbation

forces.

Example 1.7 (Stochastic Damping Hamiltonian system). Consider the process X = (V ,U), given

as a solution of the following SDE:dVt = Utdt

dUt = (C(Vt,Ut)Ut +G′(Vt)) dt+ σ(Vt,Ut)dWt,
(1.4)

where (V0,U0) ∈ R2, the potential G(Vt) is lower bounded and continuously differentiable over R,

the damping coefficient C(Vt,Ut) ∈ R2 → R is continuous, the diffusion coefficient σ ∈ R2 → R is

positive and infinitely differentiable. System (1.4) is defined by the following vectors, which correspond

to its drift and diffusion coefficients written in form (1.3):

A1(Vt,Ut) =

 Ut

C(Vt,Ut)Ut +G′(Vt)− 1
2∂uσ(Vt,Ut)σ(Vt,Ut)

 , A2(Vt,Ut) =

 0

σ(Vt,Ut)

 .

Their respective Lie bracket is computed as follows:

[A1,A2] =

A1
1∂vA

1
2 −A1

2∂vA
1
1 +A2

1∂uA
1
2 −A2

2∂uA
1
1

A1
1∂vA

2
2 −A1

2∂vA
2
1 +A2

1∂uA
2
2 −A2

2∂uA
2
1

 =

−σ(Vt,Ut)
g(Vt,Ut)

 ,

where g(Vt,Ut) = Ut∂vσ+
(
CUt +G′ − 1

2∂uσσ
)
∂uσ− σ∂u

(
CUt +G′ − 1

2∂uσσ
)
. Note that the vector

fields A2 and [A1,A2] generate R2 when σ 6= 0. Thus, the system is hypoelliptic if σ(v,u) 6= 0 ∀v,u ∈

R2. In this case the covariance matrix of the process may be then written as follows:

Σ(Vt,Ut) = σ2(Vt,Ut)

 t3
3

t2
2

t2
2 t

 .

The class of Stochastic Damping Hamiltonian systems includes, in particular, a stochastic version

of the Van der Pol oscillator (Van der Pol, 1920) (with C(Vt,Ut) = V 2
t − 1 and G(Vt) =

1
2V

2
t ), or

Duffing oscillator (with C(Vt,Ut) ≡ C > 0 and G(Vt) being a lower bounded polynomial). On Figure

1.3 we plot a phase portrait of the Van de Pol oscillator in order to illustrate the influence of the noise.

As we can see, even though only one coordinate is perturbed by the Brownian motion, it propagates

in both directions. Some important properties of Stochastic Damping Hamiltonian diffusions, such as

existence of the invariant measure, Feller property and ergodicity are proven in Wu (2001).
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Figure 1.4: Membrane potential Vt of a neuron in a FitzHugh-Nagumo neuronal model in the deterministic,

hypoelliptic and elliptic cases.

To give an example of a neuronal model, we consider a hypoelliptic FitzHugh-Nagumo model (a

deterministic version of it is presented in Example 1.3 from the previous Section). It can be viewed

as a simplification of a neuronal Hodgkin-Huxley model (see Example 1.1), which is widely used

in neuronal modeling. Due to the fact that FitzHugh-Nagumo model is 2-dimensional and has a

polynomial drift, it is much easier to analyze from a mathematical point of view.

Example 1.8 (Hypoelliptic FitzHugh-Nagumo model (Fitzhugh, 1961, Nagumo et al., 1962)). The

spiking activity of a neuron is described by the following equation:dVt =
1
ε

(
Vt − V 3

t −Ut − s
)
dt

dUt = (γVt −Ut + β) dt+ σdWt,

where Vt is the membrane potential, and Ut summarizes the input of ion channels. Note that this

system does not satisfy Lipschitz assumptions. The solution, however, exists, has an invariant measure

and is ergodic. These and other properties are proven in works Leon and Samson (2018), Uda (2019).

An interesting observation is that the FitzHugh-Nagumo can be regarded as a particular case of a

Stochastic Damping Hamiltonian System (see Leon and Samson (2018)).

The hypoellipticity of FitzHugh-Nagumo model can be proven by definition (1.1), as in the previous

example. Note that the Itô (1.2) and Stratonovich (1.3) forms of SDE coincide, since the diffusion

coefficient σ is constant. The system is hypoelliptic if the following vector fields generate R2:

A2 =

0

σ

 [A1,A2] =

−σε
−σ


As we see, this condition holds everywhere if σ 6= 0, thus the Hörmander criterion for the hypoellipticity

holds. The covariance matrix of X can be written as follows (see Ditlevsen and Samson (2017),

Melnykova (2020)):

Σ(Vt,Ut) = σ2

 1
ε2
t3
3

1
ε
t2
2

1
ε
t2
2 t

 .

Figure 1.4 illustrates the difference between the elliptic, hypoelliptic and deterministic approaches on

example of FitzHugh-Nagumo model. The left panel depicts the oscillatory dynamics of a membrane
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potential in a deterministic case, when its diffusion coefficient is equal to 0. The middle panel is a

hypoelliptic case (as in Example 1.8), with σ = 0.6. We see that even though the variable Vt is not

influenced by the Brownian motion directly, its trajectory is more chaotic than the one on the left.

Finally, in the elliptic case (right panel), we add another source of independent Brownian motion with

both diffusion coefficients being equal to 0.6. An interesting observation is that it is rather difficult

to distinguish between the two last types of models by examining the trajectories. A more detailed

study on the effects of noise in FitzHugh-Nagumo models is done in Lindner and Schimansky-Geier

(1999), Lindner et al. (2004). In Chapter 6 of this thesis we study the parameter estimation in the

hypoelliptic FitzHugh-Nagumo model.

Other examples of hypoelliptic models used in neuroscience would be the hypoelliptic Hodgkin-

Huxley model (as studied in Höpfner et al. (2016b,a, 2017)), the Jensen-Rit neuronal mass model

(Ableidinger et al., 2017), the cascade diffusion which approximates the integrated intensity of the

interacting network of neurons (Ditlevsen and Löcherbach, 2017, Löcherbach, 2019, Duarte et al.,

2019, Chevallier et al., 2020) and many others.

1.3 point processes

In this section we give a very brief overview of point processes or, more precisely, Piece-Wise

Deterministic Markov Process (PDMP). Very roughly speaking, this family of processes is characterized

by a sequence of jumps (or rather jump times), which happen with a certain intensity. The dynamics

of the process between jumps is determined by a deterministic process, often ODE.

We start this introduction with the class of Poisson processes. They are widely used in mathe-

matical modeling for biology, in particular in genetics, oncology and neuroscience (see Moran (1958),

Rudnicki and Tyran-Kamińska (2017) and many others). A homogeneous Poisson point process can

be viewed as a counting process (Nt)t≥0, which counts the number of events, happened before time t.

The Poisson process is a process possessing no memory. It means that a future event will happen with

the same probability disregarding of how many events have already happened before. The increments

of a Poisson process follow the Poisson distribution. This means, in particular, that the waiting times

between the successive events are exponentially distributed and that the expected number of events

on each fixed time interval of size t is equal to λt. The probability of having a given number of events

up to time t is computed as follows:

P (Nt = n) =
(λt)n

n!
e−λt.

An important class of Poisson processes is a birth-and-death process (see Feller (1939), Kendall

et al. (1948)). In its simplest form it can be defined like follows:

Example 1.9. Consider a population of biological cells (for example: cancerous cells, bacterial cells

etc.). Denote by νt a point measure, which counts the number of cells in the environment at time t.
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Figure 1.5: Transition between the states in birth and death process

During time interval ∆, each cell can either give birth to another cell with probability br∆, either die

with probability dr∆. Then, for ∆ sufficiently small, the following holds:

P (νt+∆ = j|νt = i) =



ibr∆, if j = i+ 1,

idr∆, if j = i− 1,

1− (br + dr)i∆ if j = i,

0 otherwise.

The transition between the states is summarized on Figure 1.5.

As its name presumes, birth-and-death processes are often used to model dynamics of biological

systems: bacterias, cancer cells, but also larger organisms (animals, humans etc.). Of course, the

model presented in Example 1.9 is too simple to be applied directly to any real-life phenomenon.

Often, birth-and-death processes include other types of transition between the states: for example,

the individuals can mutate, compete with the others for the resources (the amount of which is often

limited), and the birth/death rate usually depends on the fitness of the individual and/or the current

state of the system. We refer the reader to Baar et al. (2016), Costa et al. (2016), West et al. (2016)

as examples. A birth-and-death process which models the evolution of a bacterial population is the

subject of Chapter 5 of this thesis (see also the related paper Calvez, Vincent et al. (2020)).

Note that because of their memory-less nature, the Poisson processes are not capable of reflecting

the dependency between the current state of the real-world process and its previous states. The

need of introducing a ”memory” has spawned another family of point processes: Hawkes processes

(Hawkes, 1971, Hawkes and Oakes, 1974). They are called self-exciting, because the occurrence of

one event triggers the occurrence of even more future events. In other words, while the ”jumps” in a

Poisson process appear with some deterministic rate (intensity), which does not depend on the state

of the process, in a Hawkes process the intensity is determined by the previous states of the process.

The intensity of the Hawkes process (Nt)t≥0 is usually defined as follows:

λt = µt +

∫ t

0
h(t− s)dNs,

where µt is a deterministic function, which expresses the autonomous part of the intensity, and

h : R+ → R+ is a memory kernel, which encodes the influence of all the past events on the current

state.
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Being endowed with memory, Hawkes processes allow to model phenomena where one event can

cause the occurrence of other stereotypical events. This approach was initially applied to the study of

earthquakes (Ogata, 1988), but has found applications in various other fields. For example, it was

observed that a confrontation between criminal gangs which happened at some point of time can

cause a significant increase in criminal fights shortly afterwards (Mohler et al., 2011). Also the spread

of a new coronavirus, paralyzing the world at the time of writing this manuscript, can be described as

a self-exciting process (Juditsky et al., 2020).

The motivation for studying Hawkes processes in this manuscript mainly comes from neuroscience.

Hawkes processes permit to model with a very high precision the dynamics of an interacting network

of neurons. By ”interacting” we mean that the occurrence of spikes in one part of the system can

trigger the neurons in the ”connected” part to spike as well. A particular case of Hawkes processes is

studied in Chapter 4 of this thesis.
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O B J E C T I V E S , M E T H O D S A N D R E L AT E D WO R K S

The models described in Chapter 1 provide a set of tools which allow to analyze the intrinsic biological

problems from a purely mathematical point of view. However, in order to use the full force of the

models presented in the previous chapter and draw meaningful conclusions from the data gathered by

scientists from the other fields, numerical and statistical expertise is required. Otherwise, how can we

be sure that the mathematical abstractions are able to capture and describe the properties of the

phenomena of interest?

In this Chapter we present the main challenges associated with mathematical models in biology

and provide a brief overview of the existing literature. Section 2.1 is devoted to the simulation

methods, which can be considered as a prerequisite to the Part ii of this thesis. There are two main

reasons why the numerical simulation is important. First of all, the inference from the real-world

biological data often means that the observations are not complete or not precise enough: that is,

some of the variables are physically inobservable (ion concentration in neurons), or only one small

part of the biological system is recorded (few hundred bacterias from a population of few millions).

As a consequence, the application of any statistical method may require the simulation of the missing

parts, or the data augmentation. Moreover, some inference procedures heavily rely on a simulated

data (for instance, Bayesian simulation-based statistics).

Second, the efficiency of any statistical procedure must be measured first on a ”good” data set,

where the ground truth is available. This means, for example, that in order to estimate the firing

rate of biological neurons, we must be able to estimate it from artificial spikes, simulated with a

known intensity. Finally, the numerical analysis can be used as an empirical evidence in favor of

one or another mathematical model. For example, in Chapter 4 we use the simulation methods in

order to illustrate that the SDE-based model of the interacting populations of neurons shares the

properties of the point process, describing the same phenomena. Furthermore, in Chapter 5 we use

the numerical simulation in order to highlight the differences and similarities between individual-based

and density-based approach when studying the bacteria population.

Section 2.2 is focused on statistical inference, i.e. estimation of the parameters of the system

from discretely or continuously observed data. The focus is made on diffusion-type models. More

precisely, in Chapter 6 of this thesis we treat the parameter estimation in diffusions of the hypoelliptic

type (as Example 1.8). The real-world application of the parametric inference is, for example, the

estimation of the concentration of potassium and sodium inside a cell during the firing activity of a

17
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neuron, or its firing rate. In this thesis we work primarily with simplified models, whose parameters

do not necessarily have an explicit biological meaning (see, for instance, FitzHugh-Nagumo model

in Example 1.8). The reason is that complex models (as Hodgkin-Huxley in Example 1.1) are much

more difficult to treat, especially in hypoelliptic case.

Further, in Section 2.2.2 we discuss some questions related to the hypothesis testing in stochastic

diffusions. We are interested in the following question: how strong is the influence of the Brownian

motion in the stochastic processes? In neuronal models of Hodgkin-Huxley type (Example 1.1), for

example, this hypothesis corresponds to determining the number of stochastic imputs, which can come

either from inside the cell, or from the environment. This question is often discussed in literature

(see Goldwyn and Shea-Brown (2011) for details). The mathematical formulation of the problem is

tightly related to the question of the random matrix rank estimation, with the principal object of

study being the covariance matrix of the process. The principal statistical tool consists in testing

a null hypothesis (covariance matrix of noise being of a certain rank) against the alternative (rank

being smaller or bigger than the reference value). We present the main statistics of test, used by

Jacod et al. (2008), Jacod and Podolskij (2013), explain the idea of the testing procedure and the

limitations which are imposed by different settings.

Before we proceed, let us fix the following notations, which will be used throughout this Chapter:

• (Xt)t≥0 denotes the continuous process, usually the solution of (1.2) (unless otherwise stated)

• (Xti)i∈N+ denotes the discrete sampling of the process defined above. Unless otherwise stated,

the sampling is assumed to be equidistant, that is, ∀i ∈ N+ : ti+1 − ti = ∆, where ∆ is a

strictly positive fixed time step.

• (X̃ti)i∈N+ denotes the numerical approximation of the process (Xt)t≥0. Unless otherwise

stated, the process is simulated on the equidistantly partitioned fixed time interval [0 =

t0, . . . , ti, . . . , tn = T ],T ≥ 0, that is, ∀i ∈ N+ : ti+1 − ti = ∆, where ∆ is a strictly positive

fixed time step.

2.1 simulation methods

The first question related to the study of dynamical systems (either of deterministic or stochastic

type) is how to reproduce it numerically? Unfortunately, in a vast majority of cases the systems of

equations described in the previous chapter, cannot be solved explicitly. In the case of point processes

with a random intensity, the problem of numerical simulations is linked to the problem of evaluating

this intensity. In this section we aim to provide an overview (by no means exhaustive) of the typical

strategies used for the simulation of deterministic or stochastic processes. Note also that the content

of this section is limited to a very few examples and methods which are used later in Chapters 4, 5 and

6 of this manuscript. For a more complete picture the readers are referred to the following classical

books on simulation methods: Smith et al. (1985), Lapidus and Pinder (2011) for deterministic models,

Kloeden et al. (2003) for stochastic differential equations and Moller and Waagepetersen (2003) for
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point processes. This section presents the most common simulation techniques for the processes

described in Chapter 1: deterministic processes, stochastic diffusions and, finally, point processes.

2.1.1 Simulation of ODEs

Consider an equidistant partition [0 = t0, . . . , ti, . . . , tn = T ],T ≥ 0 with a time step ∆. The

most classical first-order methods to approximate the solution of (1.2) are based on the following

approximations, when ∆ is small:

dXti+1 ≈
Xti+1 −Xti

∆
, (2.1)∫ ti+1

ti

b(s,Xs)ds ≈ ∆b(ti,Xti). (2.2)

By this rule the solution of (1.1) can be recursively approximated by a process X̃ as follows:

X̃ti+1 = X̃ti + ∆(ti, X̃ti).

This method is called a first-order Euler scheme. There exist other schemes, which improve approxima-

tions (2.1)-(2.2), using the finite element and finite difference methods (Smith et al., 1985, Lapidus and

Pinder, 2011). In Chapter 5 of this manuscript we show the limitations of the explicit Euler scheme

when applied to a PDE of Hamilton-Jacobi type and propose an asymptotic-preserving simulation

scheme in the spirit of Klar (1998, 1999).

Another popular approach consists in simulating an ODE as a convolution of its subparts which

can be explicitly solved (Strang, 1968, Mclachlan and Quispel, 2002). This method is proven to be

especially advantageous when applied to models with an oscillatory dynamics, such as Hodgkin-Huxley

as in Example 1.1 (see Chen et al. (2020)). The idea of the splitting can be summarized as follows.

Consider ODE (1.1). Let the function b do not depend on time t and assume that it can be written as

follows:

b(x) =
m∑
j=1

b[j](x).

The goal is to find a combination of functions b[j], such that the resulting sub-equations

dx[j] = b[j](x[j]), j ∈ {1, ...,m} (2.3)

are explicitly solvable. The next step is to find a proper composition of the resulting solutions. Two

standard procedures are the so-called Lie-Trotter splitting and the Strang splitting. Let ϕ[j]
t (x) denote

the exact flows of the sub-equations in (2.3) at time t and starting from x. Then, the Lie-Trotter

composition is given by (
ϕ
[1]
∆ ◦ ... ◦ϕ[m]

∆

)
(x), (2.4)

and the Strang composition is given by(
ϕ
[1]
∆/2 ◦ ... ◦ϕ[d−1]

∆/2 ◦ϕ
[m]
∆ ◦ϕ[m−1]

∆/2 ◦ ... ◦ϕ[1]
∆/2

)
(x). (2.5)
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The discrete process obtained recursively by compositions (2.4)-(2.5) is proven to approximate the

solution of ODE (1.1) (Mclachlan and Quispel, 2002, Blanes et al., 2009). Such splitting methods can

be also extended to stochastic equations (Petersen, 1998, Shardlow, 2003). Differently from commonly

used schemes, they allow to prove the preservation of the underlying model properties even when

the time step is relatively big. We note that usually the splitting schemes perform better than the

analogous approximations, since they usually exploit a structure of the system instead of breaking

it down into piece-wise constant equations (like in the case of Euler scheme). The price to pay is

that the splitting schemes are usually more difficult to develop. The first reason is that finding a

good scheme requires some insight about the theoretical properties of the considered system, while

the application of schemes of Euler type is straightforward for any system. Second, the choice of the

subsystems is usually not unique and choosing the best splitting is not a trivial question. That is why

this choice is often backed up solely by empirical evidence of the performance of the scheme, since the

theoretical justifications are not always possible to obtain.

2.1.2 Simulation of SDEs

The simulation of SDEs does not significantly differ from that of ODEs. The only new step is the

simulation of a stochastic integral, which is easily done by following the definition of an Itô integral

and choosing some equidistant partition of the time interval [0,T ]:∫ T

0
YtdWt = lim

n→∞

n∑
i=0

Yti−1(Wti −Wti−1) ≈
√

∆
n∑
i=0

Yti−1ξi,

where ξi ∼ N (0, 1), i.i.d. To illustrate how it is used in practice, we provide the most classical

simulation scheme, based on a modified Euler method for simulating ODEs (see the previous subsection).

This scheme often serves as a benchmark for the new methods. Consider an equidistant partition

[0, t1, . . . , ti, . . . ,T ], where T = imax∆. The numerical solution of (1.2) is then given recursively by

X̃ti+1 = X̃ti + ∆b(X̃ti) +
√

∆σ(X̃ti)ξi+1,

where ξi, i = 1, . . . ,n are i.i.d. standard normal d-dimensional vectors. Note that

X̃ti+1 |X̃ti ∼ N
(
∆b(X̃ti), ∆Σ(X̃ti)

)
,

where Σ(X̃ti) = σ(X̃ti)σ
T (X̃ti). Even if the Euler-Maruyama scheme is popular and widely used due

to its simplicity, it has a number of limitations when applied to certain models. To begin with, the

fixed-step Euler-Maruyama method may fail to converge to the true solution when (1.2) does not

satisfy Lipschitz conditions (see Hutzenthaler and Jentzen (2015), Beyn et al. (2016)). A non-Lipschitz

drift is often encountered among the systems describing oscillatory dynamics (recall, for example, the

FitzHugh-Nagumo model from Example 1.8).

The second problem is that even in the case when the underlying diffusion process X, defined as a

solution of (1.2), is ergodic, its discrete approximation X̃, obtained with the Euler-Maruyama schemes,

does not necessarily preserve this property (see Mattingly et al. (2002)). It means that even if the



2.1 simulation methods 21

scheme converges asymptotically, i.e. when ∆ → 0, in practice the dynamics of the approximated

process does not necessarily correspond to that of the true process when ∆ ≡ const > 0. Finally, in

the hypoelliptic case the application of the Euler-Maruyama method leads to a (piece-wise) degenerate

density of the approximated process. It does not always cause the convergence issues, but poses

a problem if the approximation is coupled with a method of statistical inference. It is crucial, for

example, if the classical maximum likelihood or Bayesian methods are applied, where an explicit

expression for an (approximate) non-degenerate density is required.

Sometimes these issues can be overcome by using the approximations based on the Euler-Maruyama

scheme with a varying time step (see, for example Lamba et al. (2007)), or an Itô-Taylor expansion of

the generator of the solution of (1.2). An exhaustive reference for the schemes based on the Itô-Taylor

expansion are the books Milstein (1994), Kloeden et al. (2003).

Another idea, which gained attention in recent years in application to neuronal models, is to use a

splitting approach. Splitting methods for SDEs follow the same principle as a splitting for ODEs (see

Section 2.1.1) and become popular in recent years, especially when applied to neuronal models (see

Mattingly et al. (2002), Ableidinger et al. (2017), Tubikanec et al. (2020)). The limitations of the

Euler-Maruyama scheme for non-linear models can be illustrated on the Van der Pol oscillator. It is

a particular case of a Stochastic Damping Hamiltonian System (see Example 1.7). In the following

example we propose a splitting scheme and compare its performance to the classical Euler-Maruyama

method:

Example 2.1 (Stochastic Van der Pol oscillator). Consider the following two-dimensional equation:dVt = Utdt

dUt = (µ(1− V 2
t )Ut − Vt)dt+ σdWt

(2.6)

with V0 = v0,U0 = u0. We can rewrite (2.6) as follows:

dXt = b(Xt)dt+ σ∗dWt,

where σ∗ = (0,σ)T and

b(Xt) =

 Ut

(µ(1− V 2
t )Ut − Vt)

 =

 Ut

−Vt

+

 0

(µ(1− V 2
t )Ut

 =: b[1](Xt) + b[2](Xt).

Thus, system (2.6) can be splitted into two subsystems:

dX
[1]
t = b[1](X

[1]
t ) + σ∗dWt

dX
[2]
t = b[2](X

[2]
t ).

Note that both equations can be solved explicitly. The first one is a linear homogeneous equation (see

Example (1.5)), and one of the coordinates in the second equation is constant. The respective solutions

at time t are thus given as follows:

ϕ
[1]
t (x0) = eA

[1]tx0

ϕ
[2]
t (x0) = A[2]x0 + σ∗

∫ t

0
dWs,
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Figure 2.1: Comparison of the performance of the Euler-Maruyama and Strang splitting schemes, applied to the

stochastic Van der Pol oscillator (Example 2.1). Parameters used for simulation: µ = 1,σ = 0.5.

Top row: phase portrait of the process, simulated with the Euler-Maruyama approximation,

bottom row: phase portrait of the process, simulated with the Strang splitting. Step size

∆ = 0.01, 0.1, 0.25, 0.5 respectively, time interval is [0, 250], initial values (0.1, 0.1).

where A[1] =

 0 1

−1 0

 and A[2] =

1 0

0 eµt(1−v
2
0)s

. The solution of (2.6) can be obtained recursively

using Lie-Trotter or Strang composition, that is:

XLT
ti+1 = (ϕ

[1]
∆ ◦ϕ

[2]
∆ )
(
XLT
ti

)
= eA

[1]∆
(
A[2]XLT

ti
+
√

∆σ∗ξi+1
)

XS
ti+1 = (ϕ

[1]
∆
2
◦ϕ[2]

∆ ◦ϕ
[1]
∆
2
)
(
XS
ti

)
= eA

[1] ∆
2
(
A[2]eA

[1] ∆
2XS

ti
+
√

∆σ∗ξi+1
)

,

where ξi ∼ N (0, 1), independently in i.

Sample trajectories of the stochastic Van der Pol oscillator, simulated with the Strang splitting

and Euler-Maruyama scheme, are given on Figure 2.1. We see that the phase portrait starts to look

distorted for ∆ = 0.25, if the Euler-Maruyama scheme is used. For ∆ = 0.5 the simulated process

blows up. It is not the case with the Strang splitting: even if the shape of the attractor is slightly

distorted, the trajectory stays within its usual limits. Further practical and theoretical advantages

of using splitting schemes over the standard simulation methods are discussed in Chapter 4 of this

thesis, where we apply splitting to a high-dimensional hypoelliptic diffusion, describing the dynamics

of interacting populations of neurons (see Ditlevsen and Löcherbach (2017)).

2.1.3 Simulation of point processes

A simulation of any point process boils down to computing the arrival times of events of interest. In

the case of homogeneous Poisson process with a constant rate λ, the arrival times can be simulated

straightforwardly, since they follow the exponential distribution. As an example, let us consider a
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simple birth-and-death process (see Example 1.9), where each individual in a community can either

proliferate or die with a rate br and dr respectively. A waiting time till the next event is an exponential

random variable with the rate brNt and drNt for birth and death respectively, where Nt is the number

of individuals in a population at time t. Then, the dynamics of the population of cells on an interval

[0,T ] is described by the Markov jump process (Nt)t∈[0,T ], and it can be numerically simulated as

summarized in Algorithm 1.

A simulation of more complicated birth-and-death processes follows essentially the same principle.

The difference lays usually in additional dependencies: for example, competition terms, dependency

on the state of the environment etc. In Chapter 5 we use a similar algorithm for a simulation of a

bacterial population, structured by phenotypic traits.

Algorithm 1: Simulation of a birth-and-death process
Input: Birth and death rate br and dr

Output: Point process (Nti)ti∈[0,T ]

Initialization: t0 = 0,N0 = n0;

while ti ≤ T do

∆b ∼ E(brNti); ∆d ∼ E(drNti);

if ∆b < ∆d then

ti+1 = ti + ∆b;

Nti+1 = Nti + 1;

else

ti+1 = ti + ∆d;

Nti+1 = Nti − 1;
i = i+ 1

For the inhomogeneous Poisson process, the standard (but not unique) procedure is thinning. It is

a sampling-rejection method. The main idea of the thinning is the following. The counting process

(Nt)t≥0 with a time-dependent rate λt cannot be simulated directly, since the rate depends on yet

unknown moment of the future. However, it is usually possible to simulate a dominating process

(Ñt)t≥0 with a dominating (constant) rate λ̃ ≥ λt ∀t, and then determine the points which belong

to (Ñt)t≥0, but not to (Nt)t≥0. The procedure is schematically described in Algorithm 2. Given

a ”possible” inter-arrival time t∗, which follows law E(λ̃), we check if this is also an arrival time

of the process (Ñt)t≥0. For that, we draw a uniform random variable U ∼ U([0, 1]) and see if the

condition λt∗
λ̃
< U holds. Points of time where this condition is satisfied are accepted. Graphically,

the acceptance-rejection procedure is illustrated on Figure 2.2. From this plot one can deduce that

the efficiency of the procedure would depend on the sharpness of the computed domination bound:

the less points are rejected, the faster is the simulation.

Simulation of Hawkes processes via thinning shares the same principle, with the difference that the

dominating intensity λ̃ is (in general) more difficult to compute. Note that on the contrary to the

simulation of the diffusion or deterministic processes, the generation of the point processes is ”perfect”.
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Figure 2.2: Illustration of the acceptance-rejection method: spiking times ti are generated by law E(λ̃) and

accepted, if Uλ̃ < λti , where U ∼ U([0, 1]). Plotted points are values of Uλ̃ at times ti.

By that we mean that there is no discretization error present, and the number of simulated events

correspond, in average, to the expected number of events on a given interval. It also implies that it

takes a longer time to simulate the high-intensity process than the process with a lower intensity on

the same time interval. Note that in addition to the ”true” intensity λ, the efficiency of simulation

algorithm heavily depends on the sharpness of the ”dominating” intensity λ̃. Thus, the most delicate

part of developing a simulation algorithm for inhomogeneous Poisson or Hawkess process consists in

proposing a sharp domination bound.

For example, it is common to compute the dominating intensity not on the whole time interval

[0,T ], but on some limited time interval of a fixed time step. The interest of this approach can be

intuitively explained with the help of Figure 2.2. Note that the proposed constant bound λ̃ is rather

sharp when λt is close to its maximal value. But when λt approaches its minimum, the bound is not

sharp at all and a lot of simulated points are rejected (as on time interval [4, 6] on the plot). Choosing

a piece-wise constant dominating intensity λ̃ computed on a partitioned time horizon, can give sharper

bounds and thus increase the efficiency of the simulation procedure, especially when the intensity is

given by a highly non-linear function.

For a further discussion of the utility of the local bounds the reader is referred to Chapter 4 of

this manuscript, where an adapted thinning algorithm for the Hawkes processes with Erlang memory

kernels is proposed.
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Algorithm 2: Simulation of a inhomogeneous Poisson process
Input: Time-changing rate λt, dominating intensity λ̃ ≥ λt ∀t ∈ [0,T ]

Output: Spiking times (ti)i∈N

Initialization: t0 = 0;

while t ≤ T do

t∗ ∼ E(λ̃);

t = t+ t∗;

U ∼ U([0, 1]);

if λt
λ̃
< U and t < T then

ti = t;

i = i+ 1;

2.2 statistical inference

In this Section we address a number of statistical challenges associated with biological data, focusing

on a parametric inference and statistical tests for SDEs. To assess a more complete picture of existing

problems and methods the interested reader is referred to some classical textbooks, like Rao (1973) for

a basic overview of statistics for stochastic processes, Jacod and Protter (2011) for the discretization of

processes, Rao (1999) for the inference of diffusion-type processes, Ibragimov and Khasminskii (2013),

Kutoyants (2013) for statistical inference in ergodic diffusions, Rao (2014) for non-parametric inference,

Ozaki (2012) for some discretization, inference and filtering problems for neuroscience models.

This Section is organized as follows: in Subsection 2.2.1, we present the state-of-the-art of the

parametric inference for diffusion-type models, first elliptic and then hypoelliptic. We explain the

challenges, associated with the parameter estimation for hypoelliptic models, which are addressed in

Chapter 6. Then, in Subsection 2.2.2 we discuss the problem of determining the class of diffusions

(elliptic or hypoelliptic) the discretely observed process belongs to. As we have previously mentioned

in Section 1.2, the principal difference between two classes of models lies in the rank of the diffusion

matrix. We first present the available methods of estimating the rank of the covariance matrix of the

process, and then discuss the limitations, which motivate Chapter 7 of this thesis.

2.2.1 Parametric inference in diffusion-type models

There are several methods of parameter estimation. Chapter 6 of this manuscript is devoted to the

estimation by means of a so-called contrast function, which is widely used in a frequentist approach.

In this subsection we recall the most influential works devoted to the parametric estimation by the

means of the contrast functions and explain the motivation behind the contribution of this thesis.

We start with a simple illustration of a drift and diffusion term estimator in the case of an explicitly

solvable system.
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Example 2.2 (Parameter estimation for the linear SDE (Le-Breton and Musiela, 1985)). Consider a

particular case of a linear system as in Example 1.5:

dXt = AtXtdt+ σdWt,

where A is a d× d stable constant matrix, and σ ∈ Rd×q a constant matrix, and Wt ∈ Rq is a

q-dimensional Brownian motion. Under these conditions (we refer to Le-Breton and Musiela (1985)

for details), the process (Xt)t≥0 satisfies (at least) the Hörmander condition and is thus hypoelliptic.

In particular, it means that its covariance matrix is non-singular and is given by

Σt =
∫ t

0
eAsσσT

(
eAs
)T

ds.

Σt can be estimated as follows:

Σ̂t =
1
t

∫ t

0
XsX

T
s ds.

Asymptotically, limt→∞ Σ̂t = Σ∞ almost surely. The drift matrix A can be, in turn, estimated by the

maximum likelihood estimator, defined as follows:

Ât =

[
1
t

∫ t

0
dXsX

T
s

] [
1
t

∫ t

0
XsX

T
s ds

]T
.

This estimator is also strongly consistent in asymptotic sense, limt→∞ Ât = A almost surely.

The above approach is not easy to apply to a general class of models. First, it assumes that the

continuous data are available, which is not realistic in practice. Second, the consistent estimators

presented in Example 2.2 are based on the fact that the transition density is explicitly known. Of

course, it is not the case in the majority of settings.

In the case when the density of the process (Xt)t≥0 is not known explicitly, pseudo-likelihood

(also known as contrast estimators) comes to the rescue. The idea of quasi-maximum likelihood

based methods is the following: first, the density of the process (Xt)t≥0 is replaced by its discrete

approximation with the help of an appropriate approximation scheme. Denote the transition density

of X by p(Xt; θ), where θ is an unknown vector of parameters. Recall that the likelihood (or

”pseudo-likelihood” if the approximated density is used) is written as:

Ln(θ) =
n∏
i=1

p(Xti ; θ|Xti−1)pθ(X0).

The parameters are typically estimated by minimizing a so-called ”contrast function”, which is defined

as L((θ; (Xti)i∈1,n)) := −
∑n
i=1 logLn(θ). We show how the contrast function can be written when

the density is approximated by the Euler-Maruyama scheme (see Section 2.1.2):

Example 2.3 (Contrast estimator based on the Euler-Maruyama scheme (Kessler, 1997)). Consider

a discrete approximation of the solution of (1.2), obtained with the Euler-Maruyama scheme. Assume

that SDE (1.2) is elliptic. The pseudo log-likelihood of the discrete process (Xti)i∈1,n can be written
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as follows, where we stress the dependency of the drift and the variance coefficients on some vector of

parameters θ:

L (θ; (Xti)i∈1,n) =
n∑
i=1

(
Xti+1 −Xti − ∆b(Xti ; θ)

)
Σ−1(Xti ; θ)

(
Xti+1 −Xti − ∆b(X̃ti ; θ)

)T
+

1
2

n∑
i=1

log det Σ(Xti ; θ)

where Σ(Xti ; θ) = σ(Xti ; θ)σT (Xti ; θ). The parameters of the equation (1.2) can be then estimated as

follows:

θ̂ = arg min
θ

L (θ; (Xti)i∈1,n)

Contrast-type estimators are very well studied and have been applied to a wide range of elliptic

models. To name few, let us mention Genon-Catalot and Jacod (1993), Kessler (1997), Genon-Catalot

et al. (1999), Gloter (2001), Aı̈t-Sahalia (2002), Gloter (2006), Gloter and Sørensen (2009). The

advantage of these methods is that they usually possess good theoretical properties, and are not costly

to apply from a computational point of view.

Note however that when rank(Σ) < d, then the estimator from Example 2.3 is not applicable, since

Σ is not invertible. Thus, the Euler-Maruyama approximation cannot be used for statistical inference

based on the discretized maximum likelihood when the system (1.2) is hypoelliptic. Thus, the usual

approach is to use higher-order schemes. They give a tractable discrete density, but are, in general,

more difficult to analyze from a theoretical point of view.

In the hypoelliptic setting, there are numerous works devoted to the parametric inference based on

the maximum likelihood-based methods for Stochastic Damping Hamiltonian Systems (Gloter, 2000,

Pokern et al., 2007, Samson and Thieullen, 2012), and also to linear homogeneous SDEs (Le-Breton

and Musiela, 1985, Ozaki, 1989, León et al., 2018). However, not all of the methods adapted for

Hamiltonian or linear systems can be adapted for a wider class. For general systems the first reference

to give is Ditlevsen and Samson (2017), where the maximum likelihood estimators are constructed on

marginal densities of ”rough” and ”smooth” variables of the SDE (1.2). This method performs good

in practice, but the work does not explore the properties of the estimator when the minimization is

performed with respect to the parameters of all the variables with different variances at the same

time, without fixing the parameters partially to their true value. Recently, Gloter and Yoshida (2020)

proposed an adaptive estimator for hypoelliptic diffusions in higher dimension.

Chapter 6 of this manuscript contributes to the study of contrast estimators for the hypoelliptic

systems, where we propose a single estimation criterion for a two-dimensional hypoelliptic SDE. The

estimator based on this criteria is shown to be consistent and asymptotically normal. In practice this

estimator performs similarly to Ditlevsen and Samson (2017), with the difference that the minimization

is performed on a single estimation criteria, without using the marginal densities.
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2.2.2 Hypothesis testing in stochastic diffusions

The inference methods described above are taking for granted that the type of the system (elliptic

or hypoelliptic) is known. In most of the cases, however, there is no reason to assume that this

information is available in advance. Thus, it is of utmost interest to derive the information about

the dimensionality of noise in a given process, from its discrete observations. Ideally, one needs a

statistical test which could assign a certain level of confidence to the claim that the given system is

elliptic or hypoelliptic. There are very few works which are devoted to the covariance matrix rank

estimators and matrix rank tests for the diffusions.

Given discrete observations of a d-dimensional process (Xt)t≥0, defined as a solution of a d-

dimensional SDE (1.2), the following matrices of increments are considered:

Φi :=



X
(1)
tid+1

−X(1)
tid√

∆

X
(1)
tid+2

−X(1)
tid+1√

∆
. . .

X
(1)
tid+d

−X(1)
tid+d−1√

∆
X

(2)
tid+1

−X(2)
tid√

∆

X
(2)
tid+2

−X(2)
tid+1√

∆
. . .

X
(2)
tid+d

−X(2)
tid+d−1√

∆

· · · · · · · · · · · ·
X

(d)
tid+1

−X(d)
tid√

∆

X
(d)
tid+2

−X(d)
tid+1√

∆
. . .

X
(d)
tid+d

−X(d)
tid+d−1√

∆


, (2.7)

where X(i) denotes i−th variable of the process X. It may be not clear from the first glance why this

representation (and not the empirical covariance matrix) is chosen for study. But in fact studying the

matrix (2.7) has several statistical advantages. First, its entries are normally distributed and, under

certain conditions on the process (Xt)t≥0, are independent. Second, the order of the discriminant

and the minors of matrix (2.7) corresponds to that of the sample covariance matrix. In particular, if

the sample covariance matrix is not of full rank, then Φ2
i is also not of full rank. Finally, the law of

matrices (2.7), as well as the law of their determinant, is relatively well studied (Girko, 1990, Nguyen

and Vu, 2014).

Let us denote by r0 the Brownian dimension of the process (Xt)t≥0, which is a number of

independent sources of a Brownian motion, influencing the process. r0 also equals to the rank of the

covariance matrix of this process. The ultimate objective is to propose the following statistical test:

H0 : r0 = r

H1 : r0 6= r.
(2.8)

The very first method of determining the rank of Φ2
i is proposed by Jacod et al. (2008). It can be

roughly described as follows: it is known that if the matrix Φi defined in (2.7) is of rank r0 < d, then

all the minors (submatrices) of Φ2
i of dimension d× d, d− 1× d− 1, . . . , r0 + 1× r0 + 1 are zero. A

natural idea is to check if the minors of a certain dimension r are smaller than a some given threshold

δ (or a sequence of thresholds {δi}i≥0). If the minors are ”too small”, then the true dimension r0 is

smaller than r. Ultimately, r0 is estimated as a first dimension trespassing a threshold.

Let us explain where this idea comes from. Note that the approximation of a solution of SDE

(1.2) can be written, for example, with the Euler-Maruyama scheme (see Section 2.1.2). With the
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approximated process it is easy to see that the diffusion part of the process is of order
√

∆, and the

drift part is of order ∆. As a consequence, the matrix Φi can be expressed as a sum of its diffusion

part σ(Φi) ∈ Rd×d (which is a random matrix with the Gaussian entries) and a non-random drift part
√

∆b(Φi) ∈ Rd×d. Then, one can use the fact (see Jacod and Podolskij (2013)) that the determinant

of Φi can be expressed as follows:

det Φi = det
(
σ(Φi) +

√
∆b(Φi)

)
=

detσ(Φi) +
√

∆γd−1(σ(Φi), b(Φi)) + · · ·+ ∆(d−r)/2γr(σ(Φi), b(Φi)) + · · ·+ ∆d/2 det b(Φi), (2.9)

where

γr(σ(Φi), b(Φi)) =
∑

G∈Mr
σ(Φi),b(Φi)

det(G).

Here Mr
A,B denotes the class of d× d matrices, created as a combination of r columns from A and

d− r columns of B (without shifts). Its formal definition reads as follows:

Mr
A,B = {G ∈M : Gi = Ai or Gi = Bi, #{i : Gi = Ai} = r} ,

where Ai denotes the i-th columns of matrix A. In other words, the function γr(A,B) is a sum of

determinants of all possible combinations of matrices containing r columns from matrix A and d− r

of matrix B. An important message to take from this decomposition is that the order of det Φ2
i

directly depends on the rank of σ(Φi): if the Brownian dimension of the process X is equal to r0,

then det Φ2
i = O(∆d−r0). Then, the testing procedure is based on ”extracting” the value of r0 from

the test statistics, which is defined in Jacod et al. (2008) as

S =
1
n

n∑
i=1

det Φi. (2.10)

This statistics has the same order of magnitude with respect to ∆ as the covariance matrix of the

process X, thanks to the property of the determinant expansion (2.9). The main drawback of the

method is that the sequence of thresholds must be chosen very carefully: the accuracy of the estimation

depends on the chosen values.

A bit different approach, employing no thresholds, is proposed in Jacod and Podolskij (2013). They

propose to estimate r0 by constructing the statistics (2.10) with a different discretization step (for

example, ∆ and 2∆) and taking the log-ratio of the obtained determinants. The log-ratio of statistics

sampled with a different time step provides, at least asymptotically, the value of r0. A central limit

theorem proved in Jacod and Podolskij (2013) allows then to construct an asymptotic test (2.8).

Both methods (threshold-based and ratio-based) provide a good estimate of the matrix rank in

an asymptotic regime (when the discretization step ∆→ 0), i.e. when the observations are available

in a continuous time. However, they are not very well adapted to the case when the observations

are available at discrete times with a fixed time step ∆. Indeed, when the time step is fixed, the

higher-order term in (2.9) does not necessarily correspond to the one giving the ”true” value of the

matrix rank. Thus, in the non-asymptotic setting, it is more correct to consider the hypothesis that

certain diffusion coefficients are negligible at a given step size.
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In Chapter 7 of this manuscript we explore the probabilistic properties of statistics (2.10) in non-

asymptotic setting, assuming ∆ fixed. In particular, we propose a test based on the exact distribution

in the one- and two-dimensional cases with constant drift and diffusion, assuming the drift is known.

We demonstrate under which conditions the Type I and Type II error can be controlled. Then, we

consider a general case and study the distribution of statistics (2.10). In particular, we study the tail

distribution of S with the help of concentration inequalities. We conclude with a discussion and open

questions.



3

O U T L I N E O F T H E C O N T R I B U T I O N S

The contributions of this thesis are essentially divided in two parts. Part ii is devoted to the Numerical

Analysis and contains Chapters 4 (Numerical analysis of the PDMP and their diffusion approximation)

and 5 (Numerical analysis of the birth-and-death process and their PDE approximation). Both

chapters presented in Part ii are thought to complement the results discussed in Section 2.1 and, on a

more general level, to investigate the link between the jump processes and the diffusion-type models

with the help of numerical experiments.

Part iii (Statistics) is devoted to some statistical problems, discussed in Section 2.2 of the previous

chapter. It is focused exclusively on stochastic diffusions. More precisely, in Chapter 6 we treat the

parameter estimation problem for SDEs (1.2) of hypoelliptic type, using a contrast function (see

Section 2.2.1 for reference). In Chapter 7 we propose a statistical test which helps to determine if the

observations of a multidimensional diffusion process come from an elliptic or hypoelliptic model. The

key object of our study is the rank of the covariance matrice of the stochastic process (also called a

Brownian dimension by some authors).

Note that this Chapter can be in parts redundant with the introduction of the respective chapters.

Also note that the meaning of some numerical parameters designated by the same letter in different

chapters may not coincide.

3.1 part ii: numerical analysis

3.1.1 Numerical analysis of the PDMPs and their diffusion approximation

This chapter is based on the article Chevallier et al. (2020), written in collaboration with Julien

Chevallier (Université Grenoble Alpes, France) and Irene Tubikanec (JKU Linz, Austria). It is

currently under review in ”Journal of Applied Probability”. Me and Irene Tubikanec have enjoyed the

support of Mathematisches Forschungsinstitut Oberwolfach, where we have stayed in January 2020

within the scope of Research in Pairs program.

Chapter 4 is treating a specific type of hypoelliptic diffusions arising as an approximation of

multivariate Hawkes processes with Erlang memory kernels. These processes model the interaction

between several neuronal populations. The spiking activity of each population is described by the

intensity functions and the associated Piece-wise Deterministic Markov Process (PDMP). More

31
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precisely, we consider a network of K large populations of neurons, where the number of neurons in the

k-th population is denoted by Nk and the total number of neurons in the network is N = N1 + · · ·+NK .

Let Zk,n
t represent the number of spikes of the n-th neuron belonging to the k-th population during

the time interval [0, t]. The sequence of counting processes {(Zk,n
t )t≥0, 1 ≤ k ≤ K, 1 ≤ n ≤ Nk} is

characterized by the intensity processes (λk,n(t))t≥0, which are formally defined through the relation

P(Zk,n
t has a jump in (t, t+ dt]|Ft) = λk,n(t)dt,

where Ft contains the information about the processes (Zk,n
t )t≥0 up to time t. The mean-field

framework considered here corresponds to intensities λk,n(t) given by

λk,n(t) = fk

 K∑
l=1

1
Nl

∑
1≤m≤Nl

∫ t

0
hkl(t− s)dZl,ms

 , (3.1)

where {hkl : R+ → R} is a family of synaptic weight functions (also called memory kernels), which

model the influence of population l on population k. The function fk : R→ R+ is the spiking rate

function of population k. The expression “mean-field framework” refers to the fact that the intensity

λk,n(t) depends on the whole system only through the “mean-field” behaviour of each population,

namely 1
Nl

∑
1≤m≤Nl dZ

l,m
s . Also, it implies that the proportion of neurons of different types is

constant, so that Nk
N =: pk. Here, we consider Erlang-type memory kernels and a cyclic feedback

system of interactions, which was first considered in Ditlevsen and Löcherbach (2017). This means

that for each k, population k is only influenced by population k+ 1, where we identify K + 1 with 1.

In this case, all the memory kernels are null except the ones given by

hkk+1(t) = cke
−νkt t

ηk

ηk!
, (3.2)

where ck = ±1. This constant determines whether the population has an inhibitory (ck = −1) or

excitatory (ck = +1) effect. The parameter ηk ≥ 1 is an integer number, determining the memory

order for the interaction function from population k+ 1 to population k.

We are interested in the processes {(X̄k,1
t )t≥0, 1 ≤ k ≤ K}, which are the arguments of the function

fk in Equation (3.1) and are defined by

X̄k,1
t =

1
Nk+1

∑
1≤m≤Nk+1

∫ t

0
hkk+1(t− s)dZk+1,m

s . (3.3)

When the memory kernels are given in form (3.2), the processes defined in (3.3) can be obtained as

marginals of the process (X̄t)t≥0 = {(X̄k,j
t )t≥0, 1 ≤ k ≤ K, 1 ≤ j ≤ ηk + 1} which solves the following

system of dimension κ =
∑K
k=1(ηk + 1):

dX̄k,j
t =

[
−νkX̄k,j

t + X̄k,j+1
t

]
dt, for j = 1, . . . , ηk,

dX̄k,ηk+1
t = −νkX̄k,ηk+1

t dt+ ckdZ̄
k+1
t ,

X̄0 = x0 ∈ Rκ,

(3.4)

where Z̄k+1
t = 1

Nk+1

∑Nk+1
n=1 Zk+1,n

t , each Zk+1,n
t jumping at rate f(X̄k+1,1

t− ). This type of equation

is called a Markovian cascade in the literature. The process (X̄t)t≥0 summarizes and averages the
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influence of the past events. This process, along with the firing rate functions fk, determines the

dynamics of (Zk,n
t )t≥0, described by its intensity (3.1). In Ditlevsen and Löcherbach (2017) it is

proven that (3.4) converges weakly to a stochastic diffusion of the following form:
dXk,j

t =
(
−νkXk,j

t +Xk,j+1
t

)
dt, for j = 1, . . . , ηk,

dXk,ηk+1
t =

(
−νkX̄k,ηk+1

t + ckfk+1(X
k+1,1)

)
dt+ ck√

pk+1

√
fk+1(Xk+1,1)dW k+1

t ,

X0 = x0 ∈ Rκ.

(3.5)

More precisely, the following bound holds:

Theorem 3.1 (Ditlevsen and Löcherbach (2017)). Suppose that all spiking rate functions fk belong

to the space C5
b of bounded functions having bounded derivatives up to order 5. Then there exists a

constant C depending only on f1, . . . , fn and the bounds on its derivatives such that ∀ϕ ∈ C4
b (R

κ;R),∥∥∥P X̄t ϕ− PXt ϕ∥∥∥∞ ≤ Ct‖ϕ‖4,∞
N2 ,

where P X̄t and PXt are the Markovian semigroups, associated with the respective processes.

This result states that the diffusion (3.5) approximates the PDMP process (3.4) with a high precision

when the number of neurons N is large, but this approximation becomes worse as time t increases.

This means that it must be possible to rely on the numerical simulation of (3.5) (which is, in general,

less costly to compute) to study the behaviour of (3.4). In order to do that, it is important to find a

”good” simulation scheme, which would replicate the highly non-linear dynamics.

Chapter 4 aims to answer those questions. To answer the first one, we prove a strong error bound

between the PDMP and the stochastic diffusion process. It complements the result of a weak error

bound, obtained in Theorem 3.1. In particular, we show that in comparison to Theorem 3.1 PDMP

(3.4) converges strongly to (3.5) at a slower rate with respect to N , and diverges faster with respect

to t. Then, we prove that the diffusion (3.5) is ergodic and find its moment bounds. These results

complement the ones presented in Ditlevsen and Löcherbach (2017), Löcherbach (2019). The ergodicity

and the moment bounds are needed to verify the properties of the future approximation scheme.

On the next step, our interest is to illustrate the obtained theoretical properties with a numerical

study. For this purpose, we need to simulate both the PDMP (3.4) and the stochastic diffusion (3.5).

For the diffusion, we propose an approximation scheme, based on the numerical splitting. We show

that our scheme outperforms the classical Euler-Maruyama scheme (see Section 2.1.1 for reference),

even though they are proven to converge with the same mean square rate 1. More precisely, we

demonstrate that the splitting scheme is more stable when the discretization time step ∆ is large.

It is due to the fact that the splitting preserves the most important properties of the diffusion: in

particular, the first and the second moment bounds, as well as the ergodicity, obtained on the previous

step.

Another interesting part of developing a splitting scheme for this cascade diffusion is that the

dimension of the system depends on the parameters ηk. The numerical splitting scheme allows to

simulate the process in any dimension. It is a prominent advantage over schemes based on high-order
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Itô-Taylor expansion since in the latter case one would be forced to increase the order of the scheme

when the dimension grows, otherwise the vital properties (as, for example, hypoellipticity), would not

be preserved.

For the PDMP, we adapt a classical thinning algorithm (as in Algorithm 2) to the case of multiple

neuronal populations. At the moment of writing this manuscript, there is no available analogous

simulation technique for Hawkes processes with Erlang kernel and arbitrary intensity function. The only

reference, which treats a particular case of linear intensity, is Duarte et al. (2019). The performance of

our algorithm (which we measure by a computational speed) only slightly outperforms their method

in the case of linear kernel. It is due to the fact that in the case of a linear kernel, the absolute

dominating bound, as used in Duarte et al. (2019), is sharp. However, when tested on the exponential

intensity function, we observe a 2 times decreased computational time in comparison to their method.

It demonstrates the advantage of using a localized upper bound on the intensity function over the often

used ”näıve” uniform upper bound. Note, however, that due to the acceptance-rejection procedure,

the simulation of the PDMP usually takes a much longer time than the simulation of the diffusion

process even when a sharp bound is used.

The general aim of this work was to show that the stochastic diffusions can be used for studying the

properties of the PDMP at a negligible computational cost. In particular, our numerical experiments

show that the empirical densities of both processes coincide.

3.1.2 Numerical analysis of the birth-and-death processes and their PDE approximation

The works presented in Chapter 5 are based on the article Calvez, Vincent et al. (2020), written in

a collaboration with Vincent Calvez, Susely Figueroa Iglesias, Hélène Hivert, Sylvie Méléard and

Samuel Nordmann during the CEMRACS research session in July-August 2018, and published in

SIAM: Proceedings and Surveys.

We start with considering a birth-and-death process (see Example 1.9), which models the bacteria

population. This population is structured by so-called traits, which are in fact some numerical

parameters encoding the genetic information. On the contrary to the classical birth-and-death model

(as in Example 1.9), each cell can not only reproduce and die, but also transmit its genetic information

to other individuals. This phenomenon is called horizontal gene transfer (HT) in literature. In this

work we consider unilateral gene transfer, which means that after the exchange of genetic information

the ”recipient” cell becomes genetically identical to the ”donor” (see Figure 3.1 for an illustration).

Horizontal transfer of genes is believed to be the principal mechanism of developing the antibiotic

resistance in bacteria. Further, each time the cell gives birth to another, there is a certain probability

that the new cell will not inherit the trait of its ”parent”, but will develop a mutation. If it is the case,

the new trait is picked up from a normal distribution, centered around the ”old” trait. Finally, we

assume the birth and death rate are depending on the trait of the individual. That means that certain

groups are more ”fit” than the others and thus have more chances to survive on a long time scale.
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Figure 3.1: Unilateral horizontal gene transfer. Picture from Raz and Tannenbaum (2010).

Formally, we consider a stochastic model describing the evolution of a population structured by

phenotype. In the general case it is described at each time t by the point measure

νKt (dx) =
1
K

NKt∑
i=1

δXi(t)(dx),

where the parameter K is a scaling parameter, referred to as the carrying capacity. It stands for the

maximal number of individuals that the underlying environment is able to host (K can represent,

for example, the amount of available resources). NK
t = K

∫
νKt (dx) is the size of the population at

time t, and Xi(t) ∈ Rn is the trait of the i-th individual living at t, which summarizes the phenotype

information. In this work we assume n = 1, that is, the trait is given by a point on a real line.

The demography of the population is regulated, first of all, by its birth and death rates. An

individual with a trait x gives birth to a new individual with rate b(x). The trait y of the offspring is

chosen from a probability distribution m(x− y)dy (by that we mean that
∫
R
m(x− y)dy = 1). We

will refer to it as the mutation kernel. An individual with a trait x dies according to an intrinsic death

rate d(x) plus an additional death rate CN
K
t

K
(independent of x) which stands for the competition

between individuals.

Finally, an individual with a trait x can induce a unilateral HT to an individual with trait y at

rate hK(x, y, ν), such that the pair (x, y) becomes (x,x). In the literature this kind of transfer is

sometimes referred to as a conjugation. For simplicity, we assume hK(x, y, ν) to be in the particular

form

hK(x, y, ν) = hK(x− y,N) = τ0
α(x− y)
N/K

,

where N = K
∫
R
ν(dx) is the number of individuals, τ0 > 0 is a constant and α is the Heaviside

function.
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For a population ν = 1
K

∑N
i=1 δxi and a generic measurable bounded function F , the generator of

the process is then given by:

LKF (ν) =
N∑
i=1

b(xi)

∫
R

(
F

(
ν +

1
K
δy

)
− F (ν)

)
m(xi, dy)

+
N∑
i=1

(
d(xi) +C

N

K

)(
F

(
ν − 1

K
δxi

)
− F (ν)

)

+
N∑

i,j=1
hK(xi,xj , ν)

(
F

(
ν +

1
K
δxi −

1
K
δxj

)
− F (ν)

)
.

It is standard to construct the measure-valued process νK as the solution of a stochastic differential

equation driven by Poisson point measures and to derive moment and martingale properties (see for

instance Fournier and Méléard (2004)).

In this work we are interested to see what happens in a large time scale, when the size of the

population grows and the occurring mutations are almost negligible (but are instead observed on a

very long period of time). We conduct a numerical study of the behaviour of the birth-and-death

process which undergoes two limiting procedures: first, the individual-based jump process is replaced

by a PDE (or, more precisely, by an integro-differential equation in partial derivatives), which models

the density of the population, structured by traits. This PDE has first been considered in Billiard et al.

(2016a, 2015). Second, we rescale the mutation kernel: if before the mutation of each new individual

in the population was obeying a normal law, in the evolutionary time scale (i.e., when the mutations

are infinitely small, but happen infinitely often) its density kernel transforms into a Dirac mass. The

PDE then transforms (by applying a Hopf-Cole transformation) into a Hamilton-Jacobi PDE, which

provides a convenient framework for studying the dynamics of the system.

To be more precise, it is proven (Billiard et al., 2016b) that for K → +∞ the stochastic process

defined by the sequence of point measures given by (5.1) converges in probability to the unique solution

of a non-linear integro-differential equation. This equation is given by:

∂tf(t,x) = −(d(x) +Cρ1(t))f(t,x) +
∫

Rn
m(x− y)b(y)f(t, y)dy+

f(t,x)
∫

Rn
τ (x− y)f(t, y)

ρ1(t)
dy, in R+ ×Rn, (3.6)

where ρ1(t) =

∫
R

f(t,x)dx, f(0,x) = f0(x) > 0 and f(t,x) is the macroscopic density of the

population with trait x at time t, b(x), d(x) and C are the birth, death and competition rate

respectively, m is the mutation kernel, and

τ (y− x) := τ0 [α(x− y)− α(y− x)]

is the horizontal transfer flux. This result describes the dynamics of the system in the case of an

infinite population. In our work we are interested in what happens in infinite time. In order to

expand the horizon of events, we rescale the mutation kernel by introducing a scaling parameter ε.

This rescaling is introduced as follows: m(y − y′) ←→ 1
εm
(
y−y′
ε

)
. Note that the parameter ε

entering in the mutation kernel is responsible for reducing the variance of the mutation, and 1
ε used
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←→

Figure 3.2: Shape of feρe under the time rescaling

as a multiplicative factor which increases the time horizon. Informally speaking, we assume that on

each infinitely small interval of time an infinitely small mutation is happening. The rescaled version

of (3.6) is written as follows:

∂tuε = −(d(x) +Cρε(t)) +

∫
Rn

m(z)b(x+ εz) exp
{
uε(t,x+ εz)− uε(t,x)

ε

}
dz+∫

Rn
τ (x− y)f(t, y)

ρε(t)
dy, (3.7)

where uε(t,x) := ε ln(f(t,x)), ρε =
∫
R
f(t,x)dx. When ε converges to 0, the density of a population

ρ1 in (3.6) coverges to a Dirac mass centered around a dominating trait, as graphically shown on

Figure 3.2. The equation (3.6) itself converges in asymptotics to a Hamilton-Jacobi equation, given by

∂tuε = −(d(x) +Cρε(t)) + b(x)

∫
Rn

m(z) expz·∇xu dz + τ (x− x̄(t)), (3.8)

where ρ(t) ≥ 0 is the weak limit of ρε(t) and x̄(t) = arg max u(t, ·). The resulting limit equation is

new in the literature, and constitutes the first important contribution of the chapter. We note however

that a description of a concentration phenomenon by the means of Hamilton-Jacobi PDE is often

applied to other biological models which describe the evolution of a population. The reader is referred

to the recent thesis Figueroa Iglesias (2019) for applied examples and a bibliographic overview.

What are we especially interested in is the phenomenon of the ”evolutionary rescue”, which appears

when the majority of the population is killed because of unfavourable mutations and/or limited

amount of resources in the hosting system, but the remaining few individuals manage to repopulate

the environment. The question we were trying to answer is the following: will this phenomena be still

observable after the two limiting procedures?

To answer this question, we conduct a numerical analysis. First, we simulate the birth-and-death

process and try to determine (numerically) the parameters under which the extinction and the

evolutionary rescue phenomena occur. Note that finding those parameters theoretically is a highly

complicated subject in a stochastic setting. However, once we have passed to a Hamilton-Jacobi type

equation (3.8), we can give an estimate of thresholds for the occurrence of extinction, or cycles of

evolutionary rescue and extinction, or the convergence to a stable state around an optimal phenotypic

trait. Such thresholds and their comparison to the behaviour of the individual-based system are

the first result of this chapter. Thus, we are interested to see if the simulation of a stochastic

individual-based system corresponds to the thresholds computed with the Hamilton-Jacobi approach.

Second, we are interested to see how the system behaves in a small mutation limit, that is, what

happens when the equation (3.6) transforms into (3.8) as ε→ 0. To be able to track this transformation
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numerically, the use of an asymptotic-preserving scheme is required. By an ”asymptotic-preserving”

we mean a scheme which does not blow up when ε→ 0 in (3.7). Also, it is important to preserve the

accuracy when ρε → 0, that is, when the population is driven to the extinction. The development of

this scheme is another important result of this chapter.

In the concluding part of the chapter, devoted to the numerical experiments, we illustrate that the

threshold values for the death, birth and HT rate, computed from the Hamilton-Jacobi equation (3.8),

coincide with the threshold values observed empirically for the individual-based system.

3.2 part ii i: statistical inference

In this part we focus on the statistical inference for stochastic diffusions. In Chapter 6 we construct

a contrast estimator for a 2-dimensional hypoelliptic ergodic diffusion and prove its asymptotic

properties. Chapter 7 is devoted to the estimation of the covariance matrix rank in non-asymptotic

setting.

3.2.1 Parametric inference for hypoelliptic ergodic diffusions

Chapter 6 is addressing problems of parametric inference in SDEs (1.2) of hypoelliptic type (see

Definition 1.1). It is based on the article Melnykova (2020), which is published in Statistical Inference

for Stochastic Processes.

We consider a two-dimensional SDE, where only one variable is driven by a Brownian motion,

namely: dVt = b1(Vt,Ut; θ1)dt

dUt = b2(Vt,Ut; θ2)dt+ σ(Vt,Ut;σ0)dWt,
(3.9)

where θ = (θ1, θ2,σ0) is the vector of unknown parameters, W is a Brownian motion. This diffusion

is hypoelliptic when ∂ub1 6= 0 ∀v,u ∈ R2. The interest of these diffusions is that they are often used

for modeling neuronal activity (see, in particular, Section 1.2 of this thesis). Our aim is to provide a

tool which allows to estimate the parameters of the model from discrete observation of the process.

The difficulty of the hypoelliptic setting is that, first of all, standard approximation methods (like the

Euler-Maruyama scheme, see Section 2.1.2 for reference) lead to a degenerate transition density, which

does not permit to use classical maximum likelihood methods. Second, each variable has a variance of

different order, which needs to be taken into account when constructing an estimation criteria.

The first problem is usually solved by using a method of density approximation which gives a non-

degenerate diffusion matrix. It is always possible when the diffusion is hypoelliptic (see Section 1.2).

There are numerous works which treat the parameter estimation problem in the case b1(Vt,Ut; θ1) ≡ Ut,

for example the contrast estimation of the diffusion coefficient in Gloter (2000), Pokern et al. (2007),

where a Bayesian approach is applied for estimating both drift and diffusion parameters. However, the

results in Pokern et al. (2007) are not very encouraging for the drift parameters. The papers Ozaki
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(1989), León et al. (2018) use the idea of constructing a 2-dimensional contrast estimator with the help

of a discretization scheme. The scheme is based on Local Linearization, meaning that the solution of

(3.9) on small ∆-intervals is approximated recursively by a solution of a Linear Homogeneous equation

(see Example (1.5)).

Another idea was proposed by Samson and Thieullen (2012), where a one-dimensional estimator

is constructed based on a marginal density of the second variable, approximated with the Euler-

Maruyama scheme. Finally, in Ditlevsen and Samson (2017) the general case (3.9) is treated, where

they propose two separate estimators for the rough and the smooth variables.

Our aim is to adapt the idea of using the linearization scheme to the general SDE case and propose

a two-dimensional criteria for the parameter estimation. Thus, the contribution of Chapter 6 can be

logically splitted in two steps. First, we provide an approximation scheme in order to get a tractable

discrete density, using an adapted version of a Local Linearization scheme (see in particular Ozaki

(1989), Biscay et al. (1996), Jimenez and Carbonell (2015)). In other words, we assume the solution of

(1.2) to be piece-wise linear.

Thanks to this approach we can obtain an invertible covariance matrix, given as follows:

Σ∆(Ṽti+1 , Ũti+1 ; θ) := σ2(Ṽti , Ũti)

(∂ya1)
2 ∆3

3 ∂ya1
∆2
2

∂ya1
∆2
2 ∆

 , (3.10)

where all derivatives are computed at time i∆. Note that here and in the following we drop the

dependency on the parameters for readability. The component-wise approximation for (3.9) is given

recursively by the following formulas:

Ṽti+1 = Ṽti + B̄1(Ṽti , Ũti ; θ) + ξ1,i+1

Ũti+1 = Ũti + B̄2(Ṽti , Ũti ; θ) + ξ2,i+1

where (ξ1,i) and (ξ2,i) are normal random sequences with zero means, independent in i, such that the

covariance matrix of vector (ξ1,i, ξ2,i) is given by (3.10), and B̄1, B̄2 are given as follows:

B̄1(Ṽti , Ũti ; θ) := Ṽti + ∆b1(Ṽti , Ũti)+

∆2

2

(
∂b1(Ṽti , Ũti)

∂v
b1(Ṽti , Ũti) +

∂b1(Ṽti , Ũti)
∂u

b2(Ṽti , Ũti)
)
+

∆2

4 σ2(Ṽti , Ũti)∂2
uub1(Ṽti , Ũti)

B̄2(Ṽti , Ũti ; θ) := Ũti + ∆b2(Ṽti , Ũti)+

∆2

2

(
∂b2(Ṽti , Ũti)

∂v
b1(Ṽti , Ũti) +

∂b2(Ṽti , Ũti)
∂u

b2(Ṽti , Ũti)
)
+

∆2

4 σ2(Ṽti , Ũti)∂2
uub2(Ṽti , Ũti).

As a result, on small intervals of time the transition density of the original process can be replaced by

the transition density of a solution of a linear SDE which is non-degenerate Gaussian.
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On the second step, we closely follow the classical maximum-likelihood based approach, constructing

a contrast estimator for estimating the parameters of the drift and diffusion coefficients. First, we

write the pseudo-likelihood of the 2-dimensional process X = (V ,U):

Ln,∆n(θ;Xt0:n) =
1
2

n−1∑
i=0

(Xti+1 − B̄(Xti ; θ))TΣ−1
∆ (Xti ; θ)(Xti+1 − B̄(Xti ; θ))

+
n−1∑
i=0

log det(Σ∆(Xti ; θ)),

where B̄ = (B̄1, B̄2), the inverse matrix Σ−1
∆ is computed as the inverse of (3.10). Then the Local

Linearization (LL) estimator is defined as:

(θ̂n,∆, σ̂2
n,∆) = arg min

θ,σ2
Ln,∆(θ,σ2;Z0:n), (3.11)

where θ̂n,∆ = (θ̂1)n,∆, (θ̂2)n,∆. We prove that the proposed estimator is consistent and asymptotically

normal as T∆ →∞,T∆2 → 0 while ∆ → 0. More precisely, (θ̂1)n,∆ converges to θ0
1 with the speed√

∆
n , (θ̂2)n,∆ converges to θ0

2 at rate
√

1
n∆ , and the diffusion coefficient σ̂2 → (σ0)2 at rate

√
1
n . In

addition to the contrast esimator, defined by (3.11), we consider also the Conditional Least Squares

Estimator (CLSE) for estimating the parameters of the drift as follows:

(θ̂1)
LSE
n,∆ = arg min

θ1

n−1∑
i=0

(
Vti+1 − B̄1(Xti ; θ)

)
∆3

(θ̂2)
LSE
n,∆ = arg min

θ2

n−1∑
i=0

(
Uti+1 − B̄2(Xti ; θ)

)
∆

In the numerical study, we test all the estimators on the hypoelliptic FitzHugh-Nagumo model (see

Example 1.8).

3.2.2 Non-asymptotic test and concentration inequalities for the covariance matrix rank estimator

In Chapter 7 we explore non-asymptotic statistical properties of the discriminant of a random matrix.

Our aim is to construct a non-asymptotic statistical test of a matrix rank from discrete observations

of a d-dimensional stochastic diffusion, following Jacod et al. (2008), Jacod and Podolskij (2013) (see

Section 2.2.2 of the previous Chapter). The content of this chapter is based on the ongoing work in

collaboration with Adeline Samson and Patricia Reynaud-Bouret.

Here by a ”non-asymptotic” setting we mean two features. First, we assume that the discrete

observations of the process are available with a fixed time step ∆. Our aim is to propose a meaningful

test procedure when ∆ does not tend to 0. The second point, we assume the process — and, respectively,

its covariance matrix — being of a fixed dimension d. The main setback is that non-asymptotic

results in a random matrix theory are surprisingly scarce. The law of the determinant of a random

matrix and its logarithm are well studied when the dimension of the matrix is relatively large (see,

for example, Nguyen and Vu (2014)), or when the entries of the matrix follow some specific law or

a centered around zero (see Nyquist et al. (1954), Girko (1990)). However, it is not the case in our
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setting: typically, the dimension of a neuronal model is between 2 and 6 variables, so the asymptotic

theory cannot be applied, and the entries of the matrix in consideration are not necessarily centered

and not necessarily identically distributed.

Even to state a test hypothesis is a more challenging task: as discussed in Section 2.2.2, the order

of magnitude of the test statistics in non-asymptotic case does not necessarily give the information

about the covariance matrix rank. But in order to be able to construct the test, we need to study

the behaviour of the test statistics in a non-asymptotic setting. We do it in several steps: first, we

reduce the problem to the evaluation of the norms of the corresponding vector-columns. It allows

us to use a powerful theory of quadratic forms of random variables (see a book Mathai and Provost

(1992)). Using this trick, we obtain upper and lower concentration bounds on the test statistics. This

approach gives the concentration bounds, which can be used for constructing a test.

To be more precise, the random matrices of interest are constructed as follows. We denote by

mat(a1, a2, . . . , ad) a matrix which is defined by its vector-columns a1, a2, . . . , ad. The, we consider a

sequence of d× d-dimensional matrices (Ξi)i≥1, where each entry is given by

Ξi = mat(ξ1
i , ξ2

i , . . . , ξdi ), (3.12)

and ξji are given by the increments of the process X, defined in (7.1) as follows:

ξji :=
X(di+j)∆ −X(di+j−1)∆√

∆
∀j, i.

In other words, to construct the first matrix Ξ1 we take first d increments of the process and write

them column-wise (thus, obtaining a aquare d× d matrix), for the next matrix we start with the

d+ 1-th increment and so on. Note that matrix (3.12) is analogous to a random matrix defined

in (2.7). Then, the principal statistics (first introduced in Jacod et al. (2008), Jacod and Podolskij

(2013)) is written as follows:

S =
1
n

n∑
i=1

det
(
Ξ2
i

)
. (3.13)

The statistical properties of (3.13) are linked to the properties of the determinants of matrices (3.12).

A lot of results about the distribution and statistical properties of the random matrix determinants

exists when the entries follow some specific probabilistic law. For example, they are Rademacher

or standard normal variables . In particular, it is known that when the entries of the matrix are

standard normal and independently distributed, then the determinant can be seen as a product

of independent chi-squared variables. But any relaxation of those assumptions (non-unit variance,

dependency between the variables or the non-zero expectation) is much harder to analyze.

In Chapter 7 the tail distribution of S is evaluated with the help of concentration inequalities, for

the case when the entries of Ξi are independent in j. More precisely, we obtain the following upper

and lower bound. In particular, the following inequality holds:

P (S −E[S] ≤ −ε) ≤ exp
(

−ε2n2

4
∑n
i=1E[det Ξ4

i ]

)
.
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In other words, the lower tail of S is sub-Gaussian. For the upper tail, the expression is more

complicated, since the statistics are not bounded from above. The following bound holds:

P (S −E[S] ≥ ε) ≤ exp

− 2ε2n2∑n
i=1
∏d
j=1

(
tr
(

Σji
)
+ ‖µji‖2 + cji

)
+ dne−c, (3.14)

where cji and c are constants, which will be further specified in Chapter 7, µji and Σji being the

expectation and the covariance matrix of vector column ξji respectively. These bounds is a preliminary

step toward constructing a non-asymptotic test. Before doing so, we need an accurate estimate or

an explicit expression for the first and the second moments of S. They are difficult to obtain in the

case of non-centered entries. Also, Hadamard inequality which is used to obtain (3.14), is not sharp

in general and a lot of information about the distribution of S is lost. Thus, in order to build an

accurate test, the bound (3.14) needs to be improved.

In order to better understand the behaviour of the statistics, in Chapter 7 we also consider two

special cases, when the law of S can be written explicitly. More precisely, we study the case of one-

and two-dimensional systems with constant drift and diffusion coefficients. It allows us to write the

explicit probabilistic law of the test statistics (2.10) (first introduced in Jacod et al. (2008), Jacod

and Podolskij (2013)), and write the test based on the explicitly known distribution. We give the

conditions when the Type I and Type II error can be controlled.

For a 2-dimensional system we consider the following toy model. It is a two-dimensional process

defined by the solution of:

dXt = bdt+ σdWt,

where b = (b1, b2)T is a drift vector and σ is a diagonal diffusion matrix with constant coefficients σ1

and σ2 on the main diagonal, W is a 2-dimensional Brownian motion. The goal is to construct the

test of the following hypothesis:

H0 : σ2
1σ

2
2 = δ

H1 : σ2
1σ

2
2 ≥ δ,

where δ is some chosen ”sensitivity” threshold. H0 and H1 correspond roughly to the case of the

covariance matrix being of a full rank or not, as δ can be arbitrarily close to 0. Then, if we modify

the statistics defined in (3.13) by centering each column around its expectation
√

∆b, the following

bound holds under H0:

P0
(
Ṡ ≥ qα

)
≤ α,

where qα is a quantile defined as follows:

qα = δ

(
1 +W

(
−α

1/n

e

))2

,
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and W is the Lambert W -function (see Appendix of Chapter 7 for its definition and basic properties).

It gives a control over the Type I error of the test (fixed to α). The Type II error is bounded by β

under the following conditions:

σ2
1σ

2
2 ≥ δ

 1 +W
(
−α1/n

e

)
1 +W

(
− (1−β)1/n

e

)
2

.





Part II

N U M E R I C A L A N A LY S I S





4

T H E O R E T I C A L A N A LY S I S A N D S I M U L AT I O N M E T H O D S FO R

H AW K E S P RO C E S S E S A N D T H E I R D I F F U S I O N A P P ROX I M AT I O N

This chapter is based on the article Chevallier et al. (2020), which is written in collaboration with

Julien Chevallier (Université Grenoble Alpes) and Irene Tubikanec (JKU Linz, Austria).

Abstract. Oscillatory systems of interacting Hawkes processes with Erlang memory kernels were

introduced in Ditlevsen and Löcherbach (2017). They are piecewise deterministic Markov processes

(PDMP) and can be approximated by a stochastic diffusion in the large population limit. First, a

strong error bound between the PDMP and the diffusion is proved. Second, moment bounds for the

resulting diffusion are derived. Third, approximation schemes for the diffusion, based on the numerical

splitting approach, are proposed. These schemes are proved to converge with mean-square order 1

and to preserve the properties of the diffusion, in particular the hypoellipticity, the ergodicity and the

moment bounds. Finally, the PDMP and the diffusion are compared through numerical experiments,

where the PDMP is simulated with an adapted thinning procedure.

Résumé: Les systèmes oscillatoires des processus Hawkes en interaction avec les noyaux de mémoire

Erlang ont été introduits dans Ditlevsen and Löcherbach (2017). Ce sont des processus de Markov

déterministes par morceaux (PMDM) qui peuvent être approximés par une diffusion stochastique

dans une limite de grande population. Tout d’abord, un contrôle de l’erreur forte liée entre le PMDM

et la diffusion est prouvée. Deuxièmement, des bornes de moment pour la diffusion résultante sont

dérivées. Troisièmement, des schémas d’approximation pour la diffusion, basés sur l’approche de

splitting numérique, sont proposés. Il est prouvé que ces schémas convergent avec un de moyenne

quadratique 1 et préservent les propriétés de la diffusion, en particulier l’hypoellipticité, l’ergodicité

et les bornes de moment. Enfin, le PMDM et la diffusion sont comparés à travers d’expériences

numériques, où le PMDM est simulé avec une procédure d’amincissement adaptée.

Keywords: Piecewise deterministic Markov processes, Hawkes processes, stochastic differential

equations, diffusion processes, neuronal models, numerical splitting schemes

4.1 introduction

Fast and accurate simulation of a biological neuronal network is one of the most extensively studied

problems in computational neuroscience. The general goal is to understand how information is

processed and transmitted in the brain. One of the widely used approaches is to assume that the

47
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spike occurrences in a network are described by a point process. Poisson processes, as “memory

less” Markovian processes, can neither take into account a refractory period between two consecutive

spikes nor the interaction between neurons, and are thus no proper candidates. Therefore, it is

common to model the neuronal activity with Hawkes processes, which are self-exciting point processes

with a memory (Chevallier et al., 2015, Chornoboy et al., 1988, Johnson, 1996, Pernice et al., 2011,

Reynaud-Bouret et al., 2014). The price to pay for using Hawkes processes to model spiking activity

is that their investigation is more difficult, since the Markovian theory cannot be directly applied.

However, for a certain type of memory kernels, so-called Erlang kernels, the dynamics of the point

process can be described by a piece-wise deterministic Markov process (PDMP), whose dimension is

determined by the “memory length” of the underlying Hawkes process (Ditlevsen and Löcherbach,

2017). This PDMP, also called “Markovian cascade of successive memory terms” in the literature, is a

convenient framework to study the long-time behaviour of the particle system. In particular, it is

proved that it is positive Harris recurrent and converges to its unique invariant measure exponentially

fast in Wasserstein distance (Duarte et al., 2019, Theorems 1 and 2).

This Markovian cascade and its associated point process can be simulated thanks to the thinning

procedure (Ogata, 1981), which is a common way to simulate general point processes even without any

Markovian assumption. The only requirement in order to apply this method is to provide an upper-

bound for the spiking rate of the neurons, which is highly related to the model under consideration

(Dassios et al., 2013, Duarte et al., 2019). This procedure yields an exact simulation algorithm but is

costly to compute, especially when the number of neurons is large. This results from the fact that the

computation time scales linearly with the number of neurons.

In the brain, neurons are clustered in populations with similar behaviours (excitatory, inhibitory,

etc). When the network size grows, but the proportion of neurons in each population remains constant,

the Markovian cascade can be approximated by a stochastic differential equation (SDE) of the same

dimension. In other words, the diffusion approximation theory allows to replace the stochastic

term, described by jumps in the PDMP, by a multi-dimensional Brownian motion. Passing from a

Hawkes process to a diffusion process substantially simplifies the analysis of the system behaviour. In

particular, the simulation of the diffusion process is much less computationally expensive than that of

the Markovian cascade, especially when the number of neurons is large. This results from the fact that

the computational time for the SDE does not depend on the number of neurons. However, the SDE

cannot be solved explicitly, and thus the construction of a reliable approximation scheme is required.

Note that the main difficulty does not lie in the construction of convergent numerical schemes.

For example, standard methods such as the Euler-Maruyama or Milstein schemes converge in the

mean-square sense when the time discretization step tends to zero. In practice, however, the solution

is approximated with a strictly positive time step. As a consequence, even if the discrete solution is

known to converge to the continuous process as the time step tends to zero, it does not imply that

both processes share the same properties for a fixed discretization step. Thus, the approximation

scheme should not be used to study the behaviour of the original model without further analysis of its
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qualitative properties. Constructing approximation schemes, which are not only convergent, but also

preserve the properties of the model, constitutes the main difficulty.

In our case, the first challenge is that the diffusion term of the SDE is highly degenerate and that

frequently applied numerical schemes, such as the Euler-Maruyama method, do not preserve the

“propagation of noise property” (formally known as hypoellipticity). Second, standard integrators

may also fail in preserving second moment properties (see Mattingly et al. (2002)), especially when

the equation describes oscillatory dynamics, which is the case here. For example, Higham and

Strømenn Melbø (2004) prove that the Euler-Maruyama method does not preserve the second moment

of linear stochastic oscillators. It is expected that this and similar negative results also extend to

higher-dimensional and non-linear stochastic oscillators, see, e.g., Ableidinger et al. (2017). Even if

higher-order Taylor approximation schemes may solve the problem of degenerate noise structure, they

got two major drawbacks. They highly depend on the dimension of the system (which is determined

by a parameter in our model) and they commonly fail in preserving ergodic properties.

To overcome these problems, we construct numerical schemes based on the so-called splitting

approach. This approach was first developed for ordinary differential equations (ODEs). We refer to

Blanes et al. (2009) and Mclachlan and Quispel (2002) for an exhaustive discussion. For an extension

to SDEs, see, e.g., Ableidinger and Buckwar (2016), Ableidinger et al. (2017), Bréhier and Goudenège

(2019), Leimkuhler and Matthews (2015), Leimkuhler et al. (2016), Milstein and Tretyakov (2004),

Misawa (2001), Petersen (1998), Shardlow (2003). The main idea of the numerical splitting approach

is to decompose the system into explicitly solvable subequations and to find a proper composition of

the derived explicit solutions. Such methods usually preserve the properties of the underlying model

through the explicitly solved subparts.

The main contributions of this work can be divided into three steps. First, a strong error bound

between the Markovian cascade and the stochastic diffusion is proved. This complements the results

presented in Ditlevsen and Löcherbach (2017), Löcherbach (2019). Second, moment bounds of order

one and two for the stochastic diffusion are derived. Third, simulation algorithms for the diffusion and

the PDMP are provided. For the diffusion, two splitting schemes, based on the Lie-Trotter and the

Strang approach (Mclachlan and Quispel (2002), Strang (1968)), are proposed. They are proved to

converge with order one in the mean-square sense. Moreover, they are proved to preserve the ergodic

property of the continuous process and to accurately reconstruct the moment bounds obtained in the

second step. The simulation method for the PDMP is exact and based on the thinning procedure.

In order to apply this method, an explicit upper-bound and a sharper one, involving the numerical

computation of polynomial roots, are obtained. Their performances, with respect to the parameters

of the model, are discussed.

This Chapter is organized as follows. In Section 4.2, the finite particle system, the corresponding

piece-wise deterministic Markov process and the main notations are introduced. Section 4.3 is devoted

to the stochastic diffusion and to its properties. Section 4.4 presents the approximation schemes for

the stochastic diffusion. Section 4.5 describes the simulation algorithm for the PDMP. Finally, Section

4.6 provides a numerical study, illustrating the theoretical results.
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4.2 model and notations

The system considered in this chapter consists of several populations of neurons, each of them

representing a different functional group of neurons (layers in the visual cortex, pools of excitatory and

inhibitory neurons in a network, etc.). This system is described by a multivariate counting process,

which counts the spike occurrences. In a certain setting, it can be approximated by a stochastic

diffusion in the large population limit (Ditlevsen and Löcherbach, 2017). The resulting diffusion is the

subject of study in Section 4.3.

4.2.1 Finite particle system

Let us consider a network, consisting of K large populations of neurons, where the number of

neurons in the k-th population is denoted by Nk and the total number of neurons in the network is

N = N1 + · · ·+NK . Let Zk,n
t represent the number of spikes of the n-th neuron belonging to the k-th

population during the time interval [0, t]. The sequence of counting processes {(Zk,n
t )t≥0, 1 ≤ k ≤

K, 1 ≤ n ≤ Nk} is characterized by the intensity processes (λk,n(t))t≥0, which are formally defined

through the relation

P(Zk,n
t has a jump in (t, t+ dt]|Ft) = λk,n(t)dt,

where Ft contains the information about the processes (Zk,n
t )t≥0 up to time t. The mean-field

framework considered here corresponds to intensities λk,n(t) given by

λk,n(t) = fk

 K∑
l=1

1
Nl

∑
1≤m≤Nl

∫
(0,t)

hkl(t− s)dZl,ms

 , (4.1)

where {hkl : R+ → R} is a family of synaptic weight functions (also called memory kernels), which

model the influence of population l on population k. The function fk : R→ R+ is the spiking rate

function of population k. The expression “mean-field framework” refers to the fact that the intensity

λk,n(t) depends on the whole system only through the “mean-field” behaviour of each population,

namely 1
Nl

∑
1≤m≤Nl dZ

l,m
s . Furthermore, as N →∞ we assume that Nk/N → pk > 0 for all k.

Throughout the chapter we assume that the functions fk satisfy the following conditions:

(A) The spiking rate functions fk are positive, Lipschitz-continuous, non-decreasing and such that

0 < fk ≤ fmax
k for k = 1, . . . ,K.

In this chapter, Erlang-type memory kernels and a cyclic feedback system of interactions are

considered. This means that for each k, population k is only influenced by population k+ 1, where

we identify K + 1 with 1. In this case, all the memory kernels are null except the ones given by

hkk+1(t) = cke
−νkt t

ηk

ηk!
, (4.2)

where ck = ±1. This constant determines whether the population has an inhibitory (ck = −1) or

excitatory (ck = +1) effect. The parameter ηk ≥ 1 is an integer number, determining the memory

order for the interaction function from population k+ 1 to population k.
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The parameters ηk and νk determine, intuitively, the typical delay of interaction and its time width.

The delay of the influence of the population k+ 1 on population k attains its maximum ηk+1/νk+1

units back in time, and its mean is (ηk+1 + 1)/νk+1. The larger is this ratio, the more “old” events

are important. When the ratio is fixed (equal to τ), but both ηk and νk tend to infinity, then hkk+1

tends to a Dirac mass in τ . This means that only one specific moment in time is important. The

interested reader is referred to Ditlevsen and Löcherbach (2017) and Löcherbach (2019) for more

details.

In this chapter we are interested in the processes {(X̄k,1
t )t≥0, 1 ≤ k ≤ K}, which are the arguments

of the function fk in Equation (4.1) and are defined by

X̄k,1
t =

1
Nk+1

∑
1≤m≤Nk+1

∫
(0,t)

hkk+1(t− s)dZk+1,m
s . (4.3)

When the memory kernels are given in form (4.2), the processes defined in (4.3) can be obtained as

marginals of the process (X̄t)t≥0 = {(X̄k,j
t )t≥0, 1 ≤ k ≤ K, 1 ≤ j ≤ ηk + 1} which solves the following

system of dimension κ =
∑K
k=1(ηk + 1):

dX̄k,j
t =

[
−νkX̄k,j

t + X̄k,j+1
t

]
dt, for j = 1, . . . , ηk,

dX̄k,ηk+1
t = −νkX̄k,ηk+1

t dt+ ckdZ̄
k+1
t ,

X̄0 = x0 ∈ Rκ,

(4.4)

where Z̄k+1
t = 1

Nk+1

∑Nk+1
n=1 Zk+1,n

t , each Zk+1,n
t jumping at rate f(X̄k+1,1

t− ), see Ditlevsen and

Löcherbach (2017) for more insight. This type of equation is called a Markovian cascade in the

literature.

The process (X̄t)t≥0 summarizes and averages the influence of the past events. This process, along

with the firing rate functions fk, determine the dynamics of (Zk,n
t )t≥0, described by its intensity (4.1).

From a modelling point of view, the process (X̄k,1
t )t≥0 can be roughly regarded as the voltage

membrane potential of any neuron in population k. Then, the probability of a neuron to emit a spike

is given as a function of its membrane potential. To summarize, the processes, with coordinates (k, 1),

defined by (4.3), describe the membrane potential in each population, whereas the other coordinates

represent higher levels of memory for the process.

Note that the model presented so far starts with empty memory. The right-hand side of (4.1) is

equal to fk(0) at time t = 0 or equivalently x0 = 0. However, one could easily generalize this to any

initial condition x0 in Rκ as it is done in the rest of the chapter. Moreover, the interested reader is

referred to Duarte et al. (2019), where a more general model is studied numerically and theoretically

for K = 1 population.

4.2.2 Notations

Now we focus on the case of two interacting populations of neurons (K = 2), consisting of N1 and

N2 neurons, respectively. Taking K = 2 allows for an investigation of the interactions between the
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populations of different sizes while avoiding heavy notations. Throughout the chapter the following

notation is used: On×m denotes a n×m-dimensional zero matrix and 0n denotes a n-dimensional

zero vector. Then, it is convenient to rewrite system (4.4) in the matrix-vector form

dX̄t = AX̄tdt+ Γ dZ̄t, X̄0 = x0 ∈ Rκ, (4.5)

with

• A ∈ Rκ×κ defined as

A =

 Aν1 O(η1+1)×(η2+1)

O(η2+1)×(η1+1) Aν2

 , (4.6)

where Aνk is a (ηk + 1)× (ηk + 1) tri-diagonal matrix with lower-diagonal equal to 0ηk , diagonal

equal to (−νk, . . . ,−νk) and upper-diagonal equal to (1, . . . , 1),

• Γ ∈ Rκ×2 having zero coefficients everywhere, except for Γη1+1,2 = c1 and Γκ,1 = c2,

• and Z̄t =
(
Z̄1
t , Z̄2

t

)T .

Throughout the chapter the following convention is made. The coordinates of a generic vector x in

Rκ are either denoted as (xi)i=1,...,κ or (xk,j)k=1,2; j=1,...,ηk+1 with the relation i = j if k = 1 and

i = η1 + 1 + j if k = 2. The second notation is usually preferred since each population is easily

identified by the index k. For some generic function g : Rκ → Rκ, the upper indexes are used

as follows: (g(x))k,j . Moreover, it is sometimes more natural to consider some generic Rκ-valued

process xt population-wise. Thus, it is split into two components x1
t = (x1,1

t , . . . ,x1,η1+1
t ) ∈ Rη1+1

and x2
t = (x2,1

t , . . . ,x2,η2+1
t ) ∈ Rη2+1, such that xt = (x1

t ,x2
t )
T ∈ Rκ.

4.3 the limiting stochastic diffusion

In Ditlevsen and Löcherbach (2017) it is proved that the limit behaviour of (4.5) can be approximated

by the diffusion process X = (X1,X2)T ∈ Rκ, which is obtained as the the unique strong solution of

the SDE

dXt = (AXt +B(Xt))dt+
1√
N
σ(Xt)dWt, X0 = x0, (4.7)

where W = (W 1,W 2)T is a 2-dimensional Brownian motion, and x0 ∈ Rκ is a deterministic initial

condition. The non-linear part of the drift term B : Rκ → Rκ is given by

B(X) = (B1(X2),B2(X1))T , (4.8)

where B1 : Rη2+1 → Rη1+1 and B2 : Rη1+1 → Rη2+1 read as B1(X2) = (0, . . . , 0, c1f2(X2,1)) and

B2(X1) = (0, . . . , 0, c2f1(X1,1)). The diffusion component σ : Rκ → Rκ×2 is given by

σ(X) =

σ1(X2)

σ2(X1)

 , (4.9)
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where σ1 : Rη2+1 → R(η1+1)×2 and σ2 : Rη1+1 → R(η2+1)×2 read as

σ1(X2) =


0 0
...

...

0 c1√
p2

√
f2(X2,1)

 , σ2(X1) =


0 0
...

...
c2√
p1

√
f1(X1,1) 0

 .

In other words, the jump term Γ dZ̄, determining the dynamics of the Markovian cascade given in

(4.5), is replaced by the sum of a non-linear drift and a diffusion term.

As N goes to infinity, the diffusion term in (4.7) vanishes and the SDE transforms into an ODE of

the form

dUt = (AUt +B(Ut))dt, U0 = x0. (4.10)

The focus of this chapter lies in the theoretical and numerical relations between the PDMP and its

stochastic diffusion approximation. Thus, we do not address the properties of ODE (4.10) in this work

and refer to Ditlevsen and Löcherbach (2017) for related qualitative features and convergence results.

The rest of this section is organized as follows. First, we investigate how accurately the stochastic

diffusion approximates the dynamics of the point process, proving a strong error bound between

PDMP (4.5) and SDE (4.7). Then, we study the properties of SDE (4.7), focusing on moment bounds.

4.3.1 Strong error bound between the limiting diffusion and the piece-wise deterministic Markov

process

Any error bound of the diffusion approximation is determined by two facts, namely the approximation

of a compensated Poisson process by a Brownian motion and the approximation of Nk by pkN . We get

rid of the second approximation by considering SDE (4.7) with pk = Nk/N and denote the solution

of this equation by Y . By choosing a different notation we stress the fact that, on the contrary to X,

it depends on the exact number of neurons Nk and not on its proportion, obtained in the mean-field

limit. The same convention is used in Ditlevsen and Löcherbach (2017), where the following weak

error bound is proved.

Theorem 4.1 (Ditlevsen and Löcherbach (2017)). Grant assumption (A) and suppose that all spiking

functions fk belong to the space C5
b of bounded functions having bounded derivatives up to order 5.

Then there exists a constant C depending only on f1, f2 and the bounds on their derivatives such that

for all ϕ ∈ C4
b (R

κ,R) and ∀x0 ∈ Rκ,

sup
x∈Rk

|Eϕ(X̄t)−Eϕ(Yt)| ≤ Ct
‖ϕ‖4,∞
N2 . (4.11)

In the following, we strengthen the above result, allowing for a comparison of trajectories of the

PDMP and the diffusion.

Theorem 4.2 (Strong error bound). Grant assumption (A) and let || · ||∞ denote the sup norm

on Rκ. For all N > 0, a solution X̄ of (4.5) and a solution Y of (4.7) (with pk = Nk/N) can be
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constructed on the same probability space such that there exists a constant C > 0 such that, for all

T > 0,

sup
t≤T
‖X̄t − Yt‖∞ ≤ ΘNe

CT log(N)

N
(4.12)

almost surely, where ΘN is a random variable with exponential moments whose distribution does not

depend on N . In particular,

E

[
sup
t≤T
‖X̄t − Yt‖∞

]
≤ CeCT log(N)

N
. (4.13)

The proof of Theorem 4.2 is mainly inspired by Kurtz et al. (1978) and relies on two main ingredients,

a strong coupling between the standard Poisson process and the Brownian motion and a sharp result

on the modulus of continuity for the Brownian motion. All the material is postponed to Appendix.

When comparing (4.11) and (4.13), one notices that there is an exchange between the expectation

sign and the absolute value. There are two prices to pay for such an exchange. First, a slower

convergence rate with respect to N . Second, a faster divergence rate with respect to t (the exponential

term is coming from a Grönwall type argument). In the following remark we precise the bound on the

error which is caused by using directly the parameter pk instead of Nk/N .

Remark 4.1. Let Y denote a solution of (4.7) (with parameter pk equal to Nk/N) and X denote a

solution of (4.7) with fixed values pk. Following the proof of Theorem 4.2, one can show that

sup
t≤T
‖Xt − Yt‖ ≤ ΘNe

CT

(
log(N)

N
+ max

k

{
1√
pkN

(
1−

√
pkN/Nk

)})

so that the strong error bound stated in the theorem also holds for the non-modified SDE if
√
pkN/Nk−

1 is of order N−1/2 or of faster order.

Fortunately, for any fixed N , setting N1 = bp1Nc and N2 = dp2Ne ensures that
√
pkN/Nk − 1 is

of order N−1 < N−1/2, which grants that Theorem 4.2 holds for SDE (4.7).

Since SDE (4.7) transforms into ODE (4.10) as N goes to infinity, the strong error bound can be

used to prove the convergence of the PDMP to the solution of the ODE. However, this is beyond the

scope of this chapter.

4.3.2 Properties of the stochastic diffusion

The solution process (Xt)t≥0 of SDE (4.7) is positive Harris recurrent with invariant measure π which

is of full support (see Löcherbach (2019)). It means that the trajectories visit all sets in the support

of the invariant measure infinitely often almost surely. More precisely, for any initial condition x0 and

measurable set A such that π(A) > 0, lim supt→+∞ 1A(Xt) = 1 almost surely. Besides, by following

the arguments in Mattingly et al. (2002), the technical results proven in Löcherbach (2019) can be

used to prove geometric ergodicity of (Xt)t≥0 as stated in Proposition 4.1 below.
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In order to state the geometric ergodicity of (Xt)t≥0, let us first specify the Lyapunov function

G : Rκ → R introduced in Ditlevsen and Löcherbach (2017):

G(x) =
K∑
k=1

ηk+1∑
j=1

j

νj−1
k

J(xk,j), (4.14)

where J is some smooth approximation of the absolute value. In particular, J(x) = |x| for all |x| ≥ 1

and max{|J ′(x)|, |J ′′(x)|} ≤ Jc for all x, for some finite constant Jc.

Proposition 4.1 (Geometric ergodicity). Grant assumption (A). Then the solution of SDE (4.7)

has a unique invariant measure π on Rκ. For all initial conditions x0 and all m ≥ 1, there exist

C = C(m) > 0 and λ = λ(m) > 0 such that, for all measurable functions g : Rκ → R such that

|g| ≤ Gm,

∀t ≥ 0, |Eg(Xt)− π(g)| ≤ CG(x0)
me−λt.

Proof. The proof closely follows that of Theorem 3.2 in Mattingly et al. (2002) and is based on

Lyapunov and minorization conditions (the latter is implied by the existence of a smooth transition

density and the irreducibility of the space).

(i) First, we use the fact that G is a Lyapunov function for X (Ditlevsen and Löcherbach, 2017,

Proposition 5), i.e., ∃α,β > 0, s.t.

AXG(x) ≤ −αG(x) + β,

where AXG(x) is the infinitesimal generator of (4.7).

(ii) Then, we note that, from any initial condition x0, for any time T > 0 and any open set O, the

probability that XT belongs to O is positive. It is ensured by the controllability of system (4.7) (see

Theorem 4 in Löcherbach (2019)).

(iii) Finally, we note that the process (Xt)t≥0 possesses a smooth transition density. Its existence

is ensured by verifying the Hörmander condition, which is done in Proposition 7 of Ditlevsen and

Löcherbach (2017).

The rest of the proof follows as in the proof of (Mattingly et al., 2002, Theorem 3.2.): apply

(Mattingly et al., 2002, Theorem 2.5.) to some discrete-time sampling of the process and conclude by

interpolation.

Also note that the rank of the diffusion matrix σσT is smaller than the dimension of system (4.7).

This means that the system is not elliptic. However, the specific cascade structure of the drift ensures

that the noise is propagated through the whole system via the drift term, such that the diffusion is

hypoelliptic in the sense of stochastic calculus of variations (Delarue and Menozzi, 2010, Malliavin

and Thalmaier, 2006). We also note that SDE (4.7) is semi-linear, with a linear term given by matrix

(4.6). Thus, its solution can be written in the form of a convolution equation (see, among others, Mao

(2007, Section 3)).

Proposition 4.2. The unique solution of (4.7) satisfies

Xt = eAtx0 +

∫ t

0
eA(t−s)B(Xs)ds+

1√
N

∫ t

0
eA(t−s)σ(Xs)dWs. (4.15)
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Proof. Consider the process Yt = e−AtXt. By Itô’s formula one obtains

d
(
e−AtXt

)
=

(
−Ae−AtXt + e−At (AXt +B(Xt))

)
dt+

e−At√
N
σ(Xt)dWt

= e−AtB(Xt)dt+
e−At√
N
σ(Xt)dWt.

Integrating both parts yields

e−AtXt = x0 +

∫ t

0
e−AsB(Xs)ds+

1√
N

∫ t

0
e−Asσ(Xs)dWs.

Multiplying the expression by eAt gives the result.

Note that from this form, it is straightforward to see that the diffusion term is of full rank. Intuitively,

this ensures the hypoellipticity. Further, systems of type (4.15) are called stochastic Volterra equations

(Jaber et al., 2019).

Now we focus on first and second moment bounds. The following results are needed, in particular,

to ensure the accuracy of the approximation scheme in Section 4.4. In the following remark we provide

some purely computational results in order to ease the further analysis.

Remark 4.2. Due to the block-structure of the matrix A introduced in (4.6), its matrix exponential

eAt can be computed as

eAt =

 eAν1 t O(η1+1)×(η2+1)

O(η2+1)×(η1+1) eAν2 t

 ,

where eAνk t, k = 1, 2, is a (ηk + 1)× (ηk + 1) upper-triangular matrix given by

eAνk t = e−νkt



1 t t2
2 . . . tηk

ηk !

0 1 t . . . tηk−1

(ηk−1)!
... . . . . . . . . . ...
...

... . . . . . . ...

0 0 0 . . . 1


. (4.16)

In further computations we will often use the vectors eAtXs. The elements of eAtXs are given by the

formula (
eAtXs

)k,j
= e−νkt

ηk+1∑
m=j

tm−j

(m− j)!
Xk,m
s . (4.17)

Theorem 4.3 (First moment bounds of the diffusion process). Grant assumption (A). The following

bounds hold for the components of E[Xt]:

Ik,j
min ≤ E[X

k,j
t ] ≤ Ik,j

max,

where

Ik,j
min =

(
eAtx0

)k,j
+

1− e−tνk
ηk+1−j∑
l=0

(tνk)
l

l!

min
{

0,
ckf

max
k+1

ν
(ηk+2−j)
k

}
,

Ik,j
max =

(
eAtx0

)k,j
+

1− e−tνk
ηk+1−j∑
l=0

(tνk)
l

l!

max
{

0,
ckf

max
k+1

ν
(ηk+2−j)
k

}
.
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Proof of Theorem 4.3. From Proposition 4.2 and Remark 4.2, it follows that the convolution-based

representation of the k-th population is given by

Xk
t = (eAtx0)

k +

∫ t

0
eAνk (t−s)Bk(Xk+1

s )ds+
1√
N

∫ t

0
eAνk (t−s)σk(Xk+1

s )dWs.

Consequently, the j-th components are given by

Xk,j
t =

(
eAtx0

)k,j

︸ ︷︷ ︸
:=T1(t)

+

∫ t

0
ckfk+1(X

k+1,1
s )

e−νk(t−s)

(ηk + 1− j)! (t− s)
ηk+1−jds︸ ︷︷ ︸

:=T2(t)

+
1√
N

∫ t

0

ck√
pk+1

√
fk+1(X

k+1,1
s )

e−νk(t−s)

(ηk + 1− j)! (t− s)
ηk+1−jdW k+1

s︸ ︷︷ ︸
:=T3(t)

.

Note that, E[T1(t)] = T1(t) and E[T3(t)] = 0. It remains to consider T2(t). The fact that the

intensity function is bounded by 0 < fk+1 ≤ fmax
k+1 implies that

min{0, ck}
fmax
k+1

(ηk + 1− j)! I
k,j ≤ E[T 2(t)] ≤ max{0, ck}

fmax
k+1

(ηk + 1− j)! I
k,j ,

where

Ik,j =

∫ t

0
e−νk(t−s)(t− s)ηk+1−jds.

Now, let us consider the integral Ik,j :∫ t

0
e−νk(t−s)(t− s)ηk+1−jds = tηk+1−j

∫ t

0
e−νkt

t−s
t

(
t− s
t

)ηk+1−j
ds.

Setting z = t−s
t yields

tηk+2−j
∫ 1

0
e−νktzzηk+1−jdz =

(ηk + 1− j)!
ν
(ηk+2−j)
k

1− e−νkt
ηk+1−j∑
l=0

(νkt)
l

l!

 .

This gives the result.

Remark 4.3. Recalling (4.17) and using that lim
t→∞

e−νkt
∑ηk+1−j
l=0

(tνk)
l

l! = 0, it follows from Theorem

4.3 that

min
{

0,
ckf

max
k+1

ν
(ηk+2−j)
k

}
≤ lim
t→∞

E[Xk,j
t ] ≤ max

{
0,

ckf
max
k+1

ν
(ηk+2−j)
k

}
.

The derived moment bounds give some intuition on how the system behaves in the long run.

Remarkably, depending on whether ck is positive or negative, the trajectories of (Xk
t )t≥0 are on

average bounded by 0 from below or above, respectively. This is in agreement with the fact that the

sign of ck defines whether the corresponding neural population is excitatory (ck = +1) or inhibitory

(ck = −1). Moreover, we may immediately see the effect of increasing the memory order ηk, depending

on the constant νk. When νk = 1, the bounds for all j components are determined entirely by ck

and the bounds of the intensity functions. When νk < 1 and ηk → ∞, then the first components,

presenting the current state of the process, tend to infinity. Similarly, for νk > 1, the trajectories are

attracted to 0. Finally, note that the first moment bounds do not depend on the number of neurons

in the system.
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Figure 4.1: First (left panel) and second (right panel) moment bounds with respective trajectories of the

inhibitory population k = 1. The rate function f2 is given in Section 4.6. The parameters are

η1 = 3, ν1 = 2, N = 20 and p2 = 1/2.

Theorem 4.4 (Second moment bounds of the diffusion process). Grant assumption (A). The following

bounds hold for E[(Xk,j
t )2]:

E[(Xk,j
t )2] ≤

((
eAtx0

)k,j
)2

+ 2
(
eAtx0

)k,j
max

{
0,

ckf
max
k+1

(ηk + 1− j)! I
k,j
1 (t)

}

+ fmax
k+1

(
ck

(ηk + 1− j)!

)2
√fmax

k+1 I
k,j
1 (t) +

√
Ik,j
2 (t)

N · pk+1

2

,

where Ik,j
u (t), u = 1, 2, are defined as

Ik,j
u (t) :=

∫ t

0
e−uνk(t−s)(t− s)u(ηk+1−j)ds

=
(u(ηk + 1− j))!
(uνk)u(ηk+1−j)+1

1− e−utνk
u(ηk+1−j)∑

l=0

(utνk)
l

l!

 .

The proof of Theorem 4.4 is similar to the one of Theorem 4.3 and is postponed to Appendix.

Remark 4.4. Theorem 4.4 gives the following asymptotic bounds:

lim
t→∞

E[(Xk,j
t )2] ≤ fmax

k+1

(
ck

(ηk + 1− j)!

)2
√fmax

k+1C
k,j
1 +

√
Ck,j

2
N · pk+1

2

,

where

Ck,j
u := lim

t→∞
Ik,j
u (t) =

(u(ηk + 1− j))!
(uνk)u(ηk+1−j)+1 .

Note that for N →∞, the bound obtained in Theorem 4.4 equals the square of the bound for the

first moment, derived in Theorem 4.3. This is in agreement with the fact that the stochastic system

(4.7) transforms into an ODE as N increases (Ditlevsen and Löcherbach, 2017). In other words, its

diffusion coefficient tends to 0 as N tends to infinity.

In Figure 4.1, the first and second moment bounds, derived in Theorem 4.3 and Theorem 4.4,

respectively, are illustrated. In the left panel, we plot 4 sample trajectories (solid lines) of an inhibitory
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population and their lower first moment bounds (dashed lines). The main variable Xk,1 and its lower

moment bound are depicted in black. The remaining 3 trajectories are auxiliary variables. They (and

their corresponding bounds) are depicted in different shades of grey. We see that the trajectories can

exceed the theoretical bounds, especially when the effect of noise is large. On average, the trajectories

stay within the bounds. In the right panel, we plot the square of the first 3 components of Xk (and

their second moment bounds), omitting the 4-th one in order to stay within an easily interpretative

scale. We conclude that the bounds are rather precise for the parameter setting under consideration.

4.4 numerical splitting schemes for the stochastic diffusion

The solution of system (4.7) cannot be written in an explicit form, and thus a numerical approximation

is required. Let [0,T ] with T > 0 be the time interval of interest and consider the discretization

(ti)i=0,...,imax given by ti = i∆, where ∆ = T/imax. In the following, X̃ti denotes a numerical

realisation of the diffusion process, evaluated at the discrete time points.

We derive and investigate two numerical schemes based on the splitting approach. The goal of this

method is to divide the equation into explicitly solvable subequations and to compose the obtained

explicit solutions in a proper way. Usually, the choice of the subsystems is not unique. Here, because

of the specific structure of SDE (4.7), we split it into the subsystems

dX
[1]
t = AX

[1]
t dt,

dX
[2]
t = B(X

[2]
t )dt+

1√
N
σ(X

[2]
t )dWt.

Both subsystems are explicitly solvable. The first one is a linear ODE whose flow is given by

ψ
[1]
t : x 7→ eAtx. For the second one, recall that B and σ are given by (4.8) and (4.9), respectively.

It is easy to see that all components of X [2], except for two (X [2],1,η1+1 and X [2],2,η2+1) have null

derivative. Moreover, the drift and diffusion coefficients of X [2],1,η1+1 only depend on X [2],2,1 and

vice versa. Hence, the respective explicit (stochastic) flows are given by

ψ
[1]
t (x) := eAtx,

ψ
[2]
t (x) := x+ tB(x) +

√
t√
N
σ(x)ξ,

where ξ = (ξ1, ξ2)T is a 2-dimensional standard normal vector. Then, the Lie-Trotter and the Strang

compositions of flows (Mclachlan and Quispel, 2002, Strang, 1968) are given as follows

X̃LT
ti+1 =

(
ψ
[1]
∆ ◦ψ

[2]
∆

)(
X̃LT
ti

)
= eA∆

(
X̃LT
ti

+ ∆B(X̃LT
ti

) +

√
∆√
N
σ(X̃LT

ti
)ξi

)
, (4.18)

X̃ST
ti+1 =

(
ψ
[1]
∆
2
◦ψ[2]

∆ ◦ψ
[1]
∆
2

)(
X̃ST
ti

)
(4.19)

= eA∆X̃ST
ti

+ ∆eA
∆
2B(eA

∆
2 X̃ST

ti
) +

√
∆√
N
eA

∆
2 σ(eA

∆
2 X̃ST

ti
)ξi,
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respectively, with X̃LT
0 = X̃ST

0 = x0 and (ξi)i=1,...,imax i.i.d. The two splitting schemes (4.18) and

(4.19) define numerical solutions of SDE (4.7). Note that by setting σ(x) ≡ 0, both schemes can be

used for simulating ODE (4.10).

For the sake of simplicity, we focus on the Lie-Trotter splitting (4.18) in the subsequent analysis,

since its representation is more intuitive. Thus, throughout Section 4.4 we set X̃ ≡ X̃LT . However,

similar results can be obtained also for the more evolved Strang approach (4.19).

Remark 4.5. Note that thanks to the matrix exponential entering the diffusion terms in (4.18) and

(4.19), the noise propagates through all components of the system at each time step. In other words,

the conditional variance matrix Σ is of full rank and is given by

Σ
[
X̃ti+1 |X̃ti

]
:=

∆
N
eA∆σ(X̃ti)σ

T (X̃ti)
(
eA∆

)T
.

This can be regarded as a discrete analogue of the hypoellipticity of the continuous process, a property

that the approximation methods based on the Itô-Taylor expansion of the infinitesimal generator of

(4.7) (see Kloeden et al. (2003)) do not preserve.

4.4.1 Strong convergence in the mean square sense

Now we focus on the convergence in the mean-square sense and show that the numerical solutions

obtained via the splitting approach converge to the process as the time step ∆ → 0 with order 1.

The frequently applied Euler-Maruyama scheme usually converges with mean-square order 1/2 if

the noise is multiplicative (Kloeden et al., 2003, Milstein and Tretyakov, 2004), as it is the case for

system (4.7). In the following result, thanks to the specific structure of the noise component, we show

that the Euler-Maruyama scheme coincides with the Milstein scheme, which is known to converge

with mean-square order 1. This result is then used to establish the convergence order of the splitting

scheme.

Theorem 4.5 (Mean-square convergence of the splitting scheme). Grant assumption (A). Let X̃ti

denote the numerical method defined by (4.18) at time point ti and starting from x0. Then X̃ti is

mean-square convergent with order 1, i.e., there exists a constant C > 0 such that(
E
[∥∥Xti − X̃ti

∥∥2
]) 1

2 ≤ C∆,

for all time points ti, i = 1, . . . , imax, where ‖ · ‖ denotes the Euclidean norm.

Proof of Theorem 4.5. Let us denote by X̃EM a numerical solution of SDE (4.7) obtained via the

Euler-Maruyama method, that is

X̃EM
ti+1 = X̃EM

ti
+ ∆

(
AX̃EM

ti
+B(X̃EM

ti
)
)
+

√
∆√
N
σ(X̃EM

ti
)ξi. (4.20)

First, we show that the Euler-Maruyama method, when applied to system (4.7), coincides with the

Milstein scheme, which is known to converge with mean-square order 1. To do so, we denote the

vector x by x = (x1, . . . ,xκ), where κ = η1 + η2 + 2. Further, we recall that the j-th component,
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j = 1, . . . ,κ, of the Milstein scheme only differs from the j-th component of the Euler-Maruyama

scheme (4.20) by the following additional term
2∑

m1,m2=1

κ∑
l=1

σl,m1 ∂σ
j,m2

∂xl
I(m1,m2),

where σj,m denotes the value of the element at the j-th row and the m-th column of the diffusion

matrix σ at time ti and

I(m1,m2) :=
∫ ti+1

ti

∫ s2

ti

dWm1
s1 dWm2

s2 .

Now note that the term ∂σj,m2 /∂xl is only different from 0 for j = η1 + 1, m2 = 1, l = η1 + 2 and for

j = η1 + η2 + 2, m1 = 2, l = 1. However, σl,m1 equals 0 for those values of l. Thus, the above double

sum equals 0 and the Euler-Maruyama method coincides with the Milstein scheme. This implies that

‖Xti − X̃
EM
ti
‖L2 ≤ C∆, (4.21)

where ‖ · ‖L2 :=
(
E[‖ · ‖2]

)1/2 denotes the L2-norm and C is some generic constant. For the second

part, we provide a proof similar to the one presented in Milstein and Tretyakov (2003). Applying the

triangle inequality yields that

‖Xti − X̃ti‖L2 ≤ ‖Xti − X̃
EM
ti
‖L2 + ‖X̃EM

ti
− X̃ti‖L2 .

Given Xti := x, let us denote with X̃EM
ti+1 (x, ti) and X̃ti+1(x, ti) the one-step approximation of the

Euler-Maruyama and splitting scheme, respectively. For instance, X̃EM
ti+1 (x, ti) is given by Equation

(4.20) with X̃EM
ti

replaced by x. By the definition of the matrix exponent, i.e., eA∆ := I + ∆A+

∆2
2 A

2 +O(∆3), and by recalling (4.18), we obtain that

X̃EM
ti+1 (x, ti)− X̃ti+1(x, ti) = x+ ∆Ax+ ∆B(x) +

√
∆√
N
σ(x)ξi

− eA∆

(
x+ ∆B(x) +

√
∆√
N
σ(x)ξi

)

= x+ ∆Ax+ ∆B(x) +

√
∆√
N
σ(x)ξi

− x− ∆B(x)−
√

∆√
N
σ(x)ξi

− ∆Ax− ∆2AB(x)− ∆
3
2

√
N
σ(x)ξi +O(∆3)

= −∆2AB(x)− ∆
3
2

√
N
σ(x)ξi +O(∆3)

Consequently, we get that ∥∥∥E [X̃EM
ti+1 (x, ti)− X̃ti+1(x, ti)

]∥∥∥ = O(∆2),∥∥∥X̃EM
ti+1 (x, ti)− X̃ti+1(x, ti)

∥∥∥
L2

= O(∆
3
2 ).

Let us mention that the two bounds above do not depend on x because B and σ are uniformly

bounded. Recalling (4.21), the result follows from the fundamental theorem on the mean-square order

of convergence, see Theorem 1.1. in Milstein and Tretyakov (2004).
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Theorem 4.5 states that as ∆ → 0, the approximated solution (X̃ti)i=0,...,imax converges to the

true process (Xt)t≥0 in the mean-square sense. In practice, however, fixed time steps ∆ > 0 are

required. Thus, there is not yet any guarantee that the constructed numerical solutions share the

same properties as the true solution of (4.7). For these reasons, in addition, we study the ability of

(X̃ti)i=0,...,imax to preserve the properties of SDE (4.7).

Note also that, different to ODE systems (Hairer et al., 2006), for stochastic equations the theoretical

order of convergence usually cannot be increased by using the Strang composition instead of the

Lie-Trotter approach. In practice, however, the Strang splitting often performs better than the

Lie-Trotter method, see, e.g., Ableidinger et al. (2017), Buckwar et al. (2019). This is also confirmed

by our numerical experiments in Section 4.6.

4.4.2 Moment bounds of the approximated process

We are now interested in studying the qualitative properties of the splitting schemes for fixed time steps

∆ > 0. We start by illustrating that the constructed splitting schemes preserve the convolution-based

structure of the model derived in Proposition 4.2. Using the one-step approximation (4.18) and

performing back iteration yields

X̃ti = eAtix0 + ∆
i∑
l=1

eAtlB(X̃ti−l) +

√
∆√
N

i∑
l=1

eAtlσ(X̃ti−l)ξi−l. (4.22)

Note that the first term on the right side of (4.15) is preserved exactly. Moreover, the sums in (4.22)

correspond to approximations of the integrals in (4.15) using the left point rectangle rule. Expression

(4.22) allows to derive moment bounds for the numerical process in a similar fashion as presented for

the continuous process in the previous section.

Theorem 4.6 (First moment bounds of the approximated process). Grant assumption (A). The

following bounds hold for the components of E[X̃ti ]:

Ĩk,j
min ≤ E[X̃

k,j
ti

] ≤ Ĩk,j
max,

where

Ĩk,j
min =

(
eAtix0

)k,j
+ ∆

i∑
l=0

e−νktltηk+1−j
l min

{
0,

ckf
max
k+1

(ηk + 1− j)!

}

Ĩk,j
max =

(
eAtix0

)k,j
+ ∆

i∑
l=0

e−νktltηk+1−j
l max

{
0,

ckf
max
k+1

(ηk + 1− j)!

}
.

Proof of Theorem 4.6. From Remark 4.2 and (4.22), it follows that

X̃k
ti
= (eAtix0)

k + ∆
i∑
l=1

eAνk tlBk(X̃k+1
ti−l

) +

√
∆√
N

i∑
l=1

eAνk tlσk(X̃k+1
ti−l

)ξi−l.
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Consequently, the j-th components are given by

X̃k,j
ti

= (eAtix0)
k,j︸ ︷︷ ︸

=T1(ti)

+
1

(ηk + 1− j)! ∆
i∑
l=1

ckfk+1(X̃
k+1,1
ti−l

)e−νktltηk+1−j
l︸ ︷︷ ︸

:=T̃2(t)

+
1

(ηk + 1− j)!

√
∆√
N

i∑
l=1

ck√
pk+1

√
fk+1(X̃

k+1,1
ti−l

)e−νktltηk+1−j
l ξk+1

i−l︸ ︷︷ ︸
:=T̃3(ti)

.

Note that, E[T1(ti)] = T1(ti), and E[T̃3(t)] = 0. The fact that the intensity function is bounded by

0 < fk+1 ≤ fmax
k+1 implies the result.

Note that the bounds obtained in Theorem 4.6 equal those derived in Theorem 4.3, up to replacing

the integrals (calculated in the proof of Theorem 4.3) by left Riemann sums. The accuracy of this

approximation depends on the step size ∆. Under reasonably small choices of ∆, the bounds are

preserved accurately for all ti. This is illustrated in the left panel of Figure 4.2, where we plot the

first moment bound of the process (main variable of an excitatory population) and the one of the

approximated process, derived in Theorem 4.3 and Theorem 4.6, respectively. Different choices of νk
are compared and for the bound of the approximated process ∆ = 0.1 is used.

The following Corollary gives an intuition of the long-time behaviour of the bounds.

Corollary 4.1. (i) The following bounds hold for the components of E[X̃ti ] as i→∞ (and ∆ fixed):

∆κ
k,j+1Li−κk,j

(
e−νk∆

)
min

{
0,
fmaxk+1 ck
κk,j !

}
≤ lim
i→∞

E[X̃k,j
ti

]

≤ ∆κ
k,j+1Li−κk,j

(
e−νk∆

)
max

{
0,
fmaxk+1 ck
κk,j !

}
,

where κk,j := ηk + 1− j and Li−κk,j
(
e−νk∆) is a polylogarithm function, which can be written as

Li−κk,j

(
e−νk∆

)
= (−1)κ

k,j+1
κk,j∑
l=0

l! S(κk,j + 1, l+ 1)
(

−1
1− e−νk∆

)l+1
,

where S(κk,j + 1, l+ 1) denotes the Stirling numbers of second kind (Rennie and Dobson (1969)).

(ii) The following bounds hold for the components of E[X̃ti ] as i→∞ and ∆→ 0:

min
{

0,
ckf

max
k+1

νκ
k,j+1

k

}
≤ lim

∆→0
lim
i→∞

E[X̃k,j
ti

] ≤ max
{

0,
ckf

max
k+1

νκ
k,j+1

k

}
.

Proof. (i) The zero bound is trivial. Considering

lim
i→∞

i∑
l=0

e−νktltκ
k,j
l = lim

i→∞

i∑
l=0

e−νkl∆(l∆)κ
k,j

= lim
i→∞

∆κ
k,j

i∑
l=0

e−νkl∆lκ
k,j

= ∆κ
k,j
Li−κk,j

(
e−νk∆

)
gives the result. The explicit form of the function is given in Wood (1992).



64 hawkes processes and their diffusion approximation

0 5 10 15

0.
0

0.
5

1.
0

1.
5

2.
0

t

F
irs

t m
om

en
t b

ou
nd

s

νk=0.85
νk=1
νk=1.15
splitting

0 5 10 15

0
1

2
3

4

t

S
ec

on
d 

m
om

en
t b

ou
nd

s

νk=0.85
νk=1
νk=1.15
splitting

0 5 10 15

0.
0

0.
5

1.
0

1.
5

2.
0

t

F
irs

t m
om

en
t b

ou
nd

s

νk=0.85
νk=1
νk=1.15
splitting

0 5 10 15

0
1

2
3

4

t

S
ec

on
d 

m
om

en
t b

ou
nd

s

νk=0.85
νk=1
νk=1.15
splitting

Figure 4.2: First (left panel) and second (right panel) moment bounds of the excitatory population k = 2 for

different values of ν2. The moment bounds for the diffusion are in solid lines and the moment

bounds for the splitting scheme are in dashed lines. The bound of the rate function is fixed to

fmax
1 = 1. The parameters are η2 = 3, N = 100, p1 = 1/2 and the time step ∆ = 0.1 is used.

(ii) Let us rewrite once again the expression included in the limit:

(−1)κ
k,j+1 lim

∆→0

(νk∆)κ
k,j+1

νκ
k,j+1

k κk,j !

κk,j∑
m=0

m! S(κk,j + 1,m+ 1)
(

−1
1− e−νk∆

)m+1

= lim
∆→0

[
S(κk,j + 1,κk,j + 1)κk,j !

νκ
k,j+1

k κk,j !

(
νk∆

1− e−νk∆

)κk,j+1

− ∆
S(κk,j + 1,κk,j)(κk,j − 1)!

νκ
k,j

k κk,j !

(
νk∆

1− e−νk∆

)κk,j

+O(∆2)

]
.

Note that lim∆→0
(

νk∆
1−e−νk∆

)
= 1. This implies that in the limit 1/νκ

k,j+1
k is the only remaining term,

since the rest converges to 0 as ∆→ 0. This gives the result.

In the first part of Corollary 4.1, the sums in Theorem 4.6 are calculated explicitly as i→∞. This

limit is described by polylogarithm functions. Note that the zero bounds derived in Remark 4.3, i.e.,

the upper bounds for the inhibitory population (ck = −1) and the lower bounds for the excitatory

population (ck = +1) are preserved exactly by the splitting scheme for all times ti and for all choices

of ∆ > 0. Moreover, the lower bounds for the inhibitory population and the upper bounds for the

excitatory population are preserved accurately as i→∞, provided that ∆ is reasonably small. Indeed,

as i→∞ and ∆→ 0 (second part of Corollary 4.1), the bounds coincide with the ones obtained in

Remark 4.3.

Theorem 4.7 (Second moment bounds of the approximated process). Grant assumption (A). Each

component of E[(X̃k
t )

2] is bounded by

E[(X̃k,j
t )2] ≤

((
eAt x0

)k,j
)2

+ 2
(
eAtx0

)k,j
max

{
0,

ckf
max
k+1

(ηk + 1− j)! Ĩ
k,j
1 (t)

}

+ fmax
k+1

(
ck

(ηk + 1− j)!

)2
√fmax

k+1 Ĩ
k,j
1 (t) +

√
Ĩk,j
2 (t)

N · pk+1

2

,
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where Ĩk,j
u (t), u = 1, 2, are defined as

Ĩk,j
u (t) := ∆

i∑
l=0

e−uνktlt
u(ηk+1−j)
l .

Proof of Theorem 4.7. The proof repeats the proof of Theorem 4.4, up to replacing integrals Ik,j
u (t)

by sums Ĩk,j
u (t).

Similar to before, the second moment bounds obtained for the splitting scheme equal those derived

for the true process in Theorem 4.4, except that the integrals are replaced by corresponding Riemann

sums. Using the same arguments as in the proof of Corollary 4.1, we conclude that also the second

moment bounds are preserved accurately by the splitting scheme for reasonable choices of the time

step ∆. A comparison of the theoretical and discrete second moment bounds is provided in the right

panel of Figure 4.2.

4.4.3 Geometric ergodicity of the approximated process

Finally, our aim is to prove that the splitting scheme preserves the ergodic property of the underlying

process in the spirit of Mattingly et al. (2002), Ableidinger et al. (2017), providing a discrete analogue

of Proposition 4.1. The main step is to establish a discrete Lyapunov condition for the approximated

solution (X̃ti)i=0,...,imax . It is granted by the following lemma.

Lemma 4.1 (Lyapunov condition for the approximated process). Grant assumption (A). The

functional G̃, given by

G̃(x) =
2∑

k=1

ηk+1∑
j=1

j

νj−1
k

∣∣∣xk,j
∣∣∣ ,

is a Lyapunov function for X̃, i.e., there exist constants α ∈ [0, 1) and β ≥ 0, such that

E
[
G̃(X̃ti+1)|X̃ti

]
≤ αG̃(X̃ti) + β.

Proof. We bound the approximated solution obtained via (4.18) from above by a sum of three terms,

thanks to the triangle inequality:

G̃(X̃ti+1) = G̃

(
eA∆X̃ti + ∆eA∆B(X̃ti) +

√
∆√
N
eA∆σ(X̃ti)ξi

)

≤ G̃
(
eA∆X̃ti

)
︸ ︷︷ ︸

T1

+∆G̃
(
eA∆B(X̃ti)

)
︸ ︷︷ ︸

T2

+

√
∆√
N
G̃
(
eA∆σ(X̃ti)ξi

)
︸ ︷︷ ︸

T3

.
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Note that the term T2, as well as the expectation of T3 is bounded by a constant depending on fmax
k ,

so that E[T2|X̃ti ] +E[T3|X̃ti ] ≤ β, and β > 0 since we consider the absolute value. Further, using

the formulas (4.16)-(4.17), we can expand T1 as follows.

G̃
(
eA∆X̃ti

)
=

2∑
k=1

e−νk∆
ηk+1∑
j=1

j

νj−1
k

∣∣∣∣∣∣
ηk+1∑
m=j

∆m−j

(m− j)!
X̃k,m
ti

∣∣∣∣∣∣
≤

2∑
k=1

e−νk∆
ηk+1∑
j=1

j

νj−1
k

ηk+1∑
m=j

∆m−j

(m− j)!

∣∣∣X̃k,m
ti

∣∣∣
=

2∑
k=1

e−νk∆

ηk+1∑
j=1

j

νj−1
k

∣∣∣X̃k,j
ti

∣∣∣+ ∆
ηk+1∑
j=2

j − 1
νj−2
k

∣∣∣X̃k,j
ti

∣∣∣+ · · ·+ ∆ηk

ηk!

∣∣∣X̃k,ηk+1
ti

∣∣∣


=
2∑

k=1
e−νk∆

ηk+1∑
j=1

j

νj−1
k

∣∣∣X̃k,j
ti

∣∣∣+ ∆νk
ηk+1∑
j=2

j − 1
νj−1
k

∣∣∣X̃k,j
ti

∣∣∣+ · · ·+ (νk∆)ηk

ηk!
1
νηkk

∣∣∣X̃k,ηk+1
ti

∣∣∣
 .

Note that, since νk > 0, for all m ≥ 1 it holds that
ηk+1∑
j=m

(j −m+ 1)
νjk

∣∣∣X̃k,j
ti

∣∣∣ ≤ ηk+1∑
j=1

j

νjk

∣∣∣X̃k,j
ti

∣∣∣ = G̃
(
X̃k
ti

)
.

Thus, we have

G̃
(
eA∆X̃ti

)
≤

2∑
k=1

e−νk∆
ηk∑
j=0

(νk∆)j

j!

 G̃
(
X̃k
ti

)
.

Denote α = maxk
(
e−νk∆∑ηk

j=0
(νk∆)j
j!

)
. Since ηk is finite, we get α < 1, which implies the result.

Note that the statement of Lemma 4.1 holds without any assumption on the time step ∆. Also,

the Lyapunov function is the same as for the continuous process up to smoothing the absolute value

(see (4.14)). Having established a discrete Lyapunov condition, the ergodicity is conditioned on two

further technical steps. First, the transition probability of two (or more) consecutive steps, given

by the recursive relation (4.18), must have a smooth transition density. This fact is granted by the

hypoellipticity of the scheme (see Remark 4.5).

Second, the irreducibility condition must hold. It means that any point y ∈ Rκ could be reached

from any starting point x ∈ Rκ in a fixed number of steps. In other words, we need a discrete-time

analogue of Theorem 4 in Löcherbach (2019), granting the controllability of SDE (4.7). It is the

following Lemma, which is proved in Appendix.

Lemma 4.2 (Irreducibility condition). Grant assumption (A). Denote η∗ = maxk{ηk}. Then, for

all x, y ∈ Rκ there exists some sequence of 2-dimensional vectors (ξi)i=1,...,η∗+1 such that

y = (ψ∆[ξη∗+1] ◦ · · · ◦ψ∆[ξ1])︸ ︷︷ ︸
η∗+1

(x),

where ψ∆ denotes one step of the scheme defined by (4.18), where the notation [·] is introduced to

stress the dependency on the vectors (ξi)i=1,...,η∗+1.

Lemmas 4.1 and 4.2, combined with the hypoellipticity of the scheme gives the following result,

which is analogous to Theorem 7.3 in Mattingly et al. (2002).
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Theorem 4.8 (Geometric ergodicity). Grant Assumption (A). Then the process (X̃ti)i=0,...,imax

has a unique invariant measure π∆ on Rκ. For all initial conditions x0 and all m ≥ 1, there exist

C̃ = C(m, ∆) > 0 and λ̃ = λ̃(m, ∆) > 0 such that, for all measurable functions g : Rκ → R such that

|g| ≤ G̃m,

∀i = 0, . . . , imax,
∣∣∣Eg(X̃ti)− π

∆(g)
∣∣∣ ≤ C̃G̃(x0)

me−λ̃ti .

4.5 thinning procedure for the simulation of pdmp

In this section we explain the simulation method for the multidimensional point process characterized

by the intensities (4.1). This part is motivated by the fact that, on the contrary to the diffusion,

the simulation of the PDMP can be exact. By that, we mean that the result of the simulation is

a realization of (X̄t)t≥0. In comparison, the result of the simulation of the diffusion (Xt)t≥0 is in

fact the discrete time process (X̃ti)i=0,...,imax . This allows us to compare the PDMP (4.5) with the

stochastic diffusion defined through (4.7), which we treat via the property-preserving splitting scheme,

We choose the thinning procedure which dates back to Lewis and Shedler (1979) and Ogata (1981).

It is based on the rejection principle and relies on the following fact. In order to simulate a point

process Z according to the stochastic intensity λt, it is sufficient to simulate some (dominating) point

process Z̃ with (dominating) predictable piece-wise constant intensity λ̃ such that λt ≤ λ̃t. During

the simulation of Z̃, each new simulated spiking time T̃ for Z̃ is kept as a point of Z with probability

λT̃/λ̃T̃ (independently from every other point). Otherwise, T̃ is discarded. The efficiency of the

thinning procedure is highly related to the sharpness of the upper-bound λ̃. The sharper the bound,

the less rejections are made and the more efficient is the procedure.

Note that the case ηk = 0 corresponds to the exponential kernel. The simulation of Hawkes processes

with an exponential kernel is widely studied and there exist several implemented packages, e.g., for

the software R. Moreover, apart from the thinning procedure, other exact simulation algorithms are

available, see, in particular, Dassios et al. (2013). To the best of our knowledge, the only reference

for the case when ηk ≥ 1 is Duarte et al. (2019). The aim of the current section is to generalize the

algorithm presented in the above mentioned work to the case of multiple populations and to provide a

more efficient upper bound λ̃. In particular, our approach allows for an efficient handling of rapidly

increasing intensity functions.

4.5.1 Choice of an upper bound for the intensity

If Z̄t = 0, i.e., in absence of any spike, it follows from (4.5) that X̄ evolves as a linear ODE with

matrix A so that X̄t = eAtx0. In particular, for all neurons n = 1, . . . ,Nk, it follows that

λk,n
t = fk((e

Atx0)
k,1). (4.23)
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One possible choice for the dominating intensity λ̃ in the thinning procedure is to provide an upper-

bound of (4.23) which holds for all t ≥ 0. A straightforward candidate for such a bound is provided in

the following lemma.

Lemma 4.3. For any x ∈ Rκ, let Φk(x) = supt≥0(e
Atx)k,1. Then,

Φk(x) ≤ Φ̃k(x) = max
j=1,...,ηk+1

{
0, x

k,j

νj−1
k

}
.

Proof. The explicit expression of (eAtx)k,1 is given in (4.17), that is:

(eAtx)k,1 = e−νkt
(
xk,1 + txk,2 + · · ·+ tηk

ηk!
xk,ηk+1

)
.

Setting yj = xk,j/(νk)j−1, one gets

(eAtx)k,1 = e−νkt
(
y1 + tνky2 + · · ·+

(tνk)
ηk

ηk!
yηk+1

)
≤ max

k
{0, yk}e−νktg(t).

The result follows from the fact that g(t) = 1 + tνk + · · ·+ (tνk)
ηk/ηk! ≤ eνkt.

Remark 4.6. Another possible choice of a uniform bound, similar to the one given in Lemma 4.3, is

provided in Duarte et al. (2019). Their method, adapted to our case, gives

Φk(x) ≤ emax
{

1,
(
ηk
eνk

)ηk}
max
j
{xk,j},

which is larger, and thus less efficient than the bound proposed in Lemma 4.3.

Since the functions fk are non-decreasing, the upper-bound of (eAtx)k,1 given in Lemma 4.3 provides

the bound f̃k(x) = fk(Φ̃k(x)) on the intensity. However, there is no guarantee that this bound is sharp.

In most practical cases (especially when the functions fk are increasing fast), the procedure rejects a

vast majority of the simulated points. Hence, a more efficient approach, based on the computation of

the critical points of the function (eAtx)k,1, is proposed. Further, instead of considering a bound for

any t > 0 we choose a fixed time step ∆̃ > 0 (such that one spike is likely to occur in the interval

[0, ∆̃]) and compute Φ∆̃
k (x) = sup0≤t≤∆̃(e

Atx)k,1 instead of Φk(x). This choice has no impact on the

precision of the simulation. It only influences the sharpness of the bound used in the method and

thus its computational efficiency.

Lemma 4.4. For any x ∈ Rκ, it holds that

Φ∆̃
k (x) = max

0<tc<∆̃
{xk,1, (eAtcx)k,1, (eA∆̃x)k,1},

where the maximum is taken over the critical points tc of t 7→ (eAtx)k,1, that are the solutions of the

equation

(−νkxk,1 + xk,2) + · · ·+ (−νkxk,ηk + xk,ηk+1)
(tc)ηk−1

(ηk − 1)! + (−νkxk,ηk+1)
(tc)ηk

(ηk)!
= 0.

Proof. The result follows from the computation of the time derivative of (eAtx)k,1.
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The critical points in Lemma 4.4 are given by polynomial roots, which can be accurately computed

numerically. In most practical cases, the computational cost of the polynomial roots is compensated

by the efficiency gained in the rejection method. Finally, let us define the upper-bound intensity

function by

f̃ ∆̃
k (x) = fk(Φ∆̃

k (x)).

Note that when the population is inhibitory (ck = −1), the naive upper-bound f̃k is constant with

respect to time because all the coordinates of X̄1 are always negative and the bound given by Lemma

4.3 is 0. Thus, f̃k ≡ fk(0). Of course, such a bound is not sharp in general. However, it is interesting

to see how the two upper-bounds f̃k and f̃ ∆̃
k behave for a particular realisation of the intensity process

for excitatory populations. Figure 4.3 gives a comparison of the paths of f̃2 and f̃ ∆̃
2 for the excitatory

population (with ∆̃ ≡ 1). We observe that both bounds are rather precise when the potential X̄2
t

(and, respectively, the intensity process) is decreasing. On these intervals the differences between the

three trajectories are negligible. However, the accuracy of f̃2 drops drastically on the intervals where

the intensity grows. In general, the higher is the amplitude of the oscillations, the less performing is

the naive bound. This is particularly visible when illustrated on systems with high memory order

(ηk = 3 or 6). For ηk = 1 both bounds perform good, however, f̃ ∆̃
k is clearly closer to the true process.

The influence of the bound (f̃2 or f̃ ∆̃
2 ) on the execution time is discussed in Section 4.6.
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4.5.2 Simulation algorithm

Now let us detail the recursive procedure, which is summarized in Algorithm 3. We choose a discrete

time step ∆̃, a stopping time tmax and fix the initial values t0 = 0 and X̄0 = x0 ∈ Rκ. Let us assume

that the procedure’s current step is i with current time ti and potential value X̄i. Let us explain how

ti+1 and X̄i+1 are obtained. One simulates two independent exponential variables τ1 and τ2 with

respective parameters Nkf̃ ∆̃
k (x) (one for each population). They represent the waiting times to the

next spikes of the dominant process Z̃ for each respective population. Then, two cases may occur.

1. If min{τ1, τ2} > ∆̃, no spike occurs in the interval [ti, ti + ∆̃]. We update ti+1 = ti + ∆̃ and

X̄i+1 = eA∆̃X̄i.

2. If τ = min{τ1, τ2} ≤ ∆̃, then the dominating point process Z̃ emits a spike at time t∗ = ti + τ .

Let us denote by k∗ the population with the smallest waiting time, that is τ = τk∗ . It remains

to decide whether t∗ is also a spiking time for the process Z. If not, this point is discarded. We

draw a uniform variable U on [0, 1] and define the threshold R:

R :=
fk∗
(
eAτ X̄i

)
f̃ ∆̃
k∗(X̄i)

, R ∈ [0, 1] by the definition of f̃ ∆̃
k (x).

• If U ≥ R, then t∗ is discarded, i.e., no spike occurs in the interval [ti, t∗]. We update

ti+1 = t∗ and X̄i+1 = eAτ X̄i.

• If U < R, then t∗ is kept, i.e., we add t∗ to the list of one neuron of population k∗

chosen uniformly at random. We update ti+1 = t∗ and X̄i+1 = eAτ X̄i + Γ1(k∗), where

1(k∗) = (1k∗=1,1k∗=2)
T .

Finally, the execution is stopped once ti ≥ tmax, i.e., once the time horizon of interest is reached. As

output the algorithm returns a list of the spiking times of each neuron and the values of the processes

X̄ and λ at the spiking times. On this stage it is clear why it is important to have a sharp upper

bound. The closer the threshold R is to 1, the less points are rejected.

Algorithm 3 is most efficient when every iteration of the while loop enters condition (2). Of course,

that ideal case does not occur in practice. When lowering the value of ∆̃, the number of loops satisfying

condition (3) decreases because the dominating intensity λ̃ is getting smaller. On the other hand,

the number of loops fulfilling condition (1) increases because the exponentially distributed times

have greater chances of being larger than ∆̃. The calibration of ∆̃ is a difficult problem which is not

addressed here. In practice, it is observed that the execution time is not very sensitive to the value of

∆̃. The main bottleneck of the thinning algorithm is the sharpness of the intensity bound. When the

intensity functions are exponential, the computational time is more than halved with the bound of

Lemma 4.4 compared to the bound of Lemma 4.3. This is illustrated in the right panel of Figure 4.8.



4.5 thinning procedure for the simulation of pdmp 71

Algorithm 3: Simulation of model (4.1) with K = 2 populations.
Input: intensity functions f1 and f2; integers N1, N2, η1 and η2; real numbers c1, c2, ν1, ν2,

∆̃ and tmax; real vector x0 ∈ Rκ.

Output: point processes (Zk,n)k=1,2;n=1,...,Nk , Markovian cascade process X̄ and intensity

processes (λk)k=1,2.

Initialization: t← 0, x← x0;

while t < tmax do

λ̃k ← f̃ ∆̃
k (x) for k = 1, 2;

draw τk ∼ E(Nkλ̃k) for k = 1, 2;

τ ← mink τk and k∗ ← arg mink τk;

if τ > ∆̃ then

(1) t← t+ ∆̃ and x← eA∆̃x;

else

t← t+ τ , x← eAτx, λk∗ ← fk∗(x);

draw U ∼ U([0, 1]);

if U < λk∗/λ̃k∗ then

(2) draw n ∼ U({1, . . . ,Nk∗}) and add t to the list Zk∗,n;

x← x+ Γ1(k∗);

add x to the list X̄ and λk = fk(x) to the list λk for k = 1, 2;

else

(3) do nothing;



72 hawkes processes and their diffusion approximation

4.6 numerical experiments

A simulation study, illustrating the theoretical results discussed in the previous sections, is now

provided. It consists in two steps. First, we study the performance of the proposed splitting schemes.

More precisely, we compare the Lie-Trotter (4.18) and Strang (4.19) splitting schemes with the

Euler-Maruyama approximation. We report sample paths, empirical densities and comment also on

the first and second moments. This step follows the numerical study in Ableidinger et al. (2017), and

shows that the Strang splitting performs best. Second, we compare the diffusion process (simulated

with the property-preserving Strang splitting scheme) to the PDMP, varying the number of neurons

N . In particular, when comparing the long-time behaviour of the processes (see Figure 4.9), we show

that the diffusion approximation is less and less accurate as t→ +∞. It confirms the results obtained

in Theorems 4.1 and 4.2.

Following the work of Ditlevsen and Löcherbach (2017), throughout this section we use the following

intensity functions

f1(x) =

10ex if x < log(20)
400

1+400e−2x if x ≥ log(20)
, f2(x) =

e
x if x < log(20)

40
1+400e−2x if x ≥ log(20)

. (4.24)

Further, we fix the parameters c1 = −1, c2 = 1 and consider N1 = N2. Unless stated differently,

throughout this section the initial condition is fixed to x0 = 0κ. The parameter pk is then defined as

Nk/N . The fact that c1c2 < 0 ensures that the population shows an oscillatory behaviour, for certain

parameters νk and ηk (see Ditlevsen and Löcherbach (2017) for further details).

4.6.1 Comparison of the Euler-Maruyama method and the splitting schemes

In this section we are interested in comparing the performance of the splitting schemes with that

of the frequently applied Euler-Maruyama method (EM), for varying time steps ∆. The parameter

values ν1 = ν2 = 1, η1 = 3, η2 = 2, N1 = N2 = 50 are used and the dimension of the system is

thus κ = 7. Except for the density and mean-square convergence plots, we consider the time interval

[0, 100]. Unless stated otherwise, we plot the variables Xk,1
t for k = 1, 2 in black and the remaining

η1 + η2 auxiliary memory variables in grey.

4.6.1.1 Illustration of the mean-square convergence order

We start our study by comparing the convergence rates of the EM method and the Lie-Trotter (4.18)

and Strang (4.19) splitting schemes. The root mean-square error, approximating the left side of the

equation in Theorem 4.5, is defined as

RMSE(∆) :=

(
1
M

M∑
l=1
‖X(l)

t∗ − X̃
(l)
t∗ ‖

2
)1/2

,

where X(l)
t∗ and X̃

(l)
t∗ denote the values at a fixed time t∗ of the l-th simulated trajectory of the true

process and its numerical approximation, respectively. The integer M is the total number of simulated



4.6 numerical experiments 73

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

●

●

●

●

●

EM
LT
ST
Order 1

log(∆)

lo
g(

R
M

S
E

(∆
))

Figure 4.4: Mean-square order of convergence. The reference solution is obtained with the Euler-Maruyama

method and the small time step ∆ = 10−4. The numerical solutions are calculated for ∆ =

10−3, 10−2, 10−1, 100. The log is with base 10, t∗ = 1 and M = 103.

differences. The value of the true process X(l)
t∗ is obtained from the EM scheme, using the small time

step ∆ = 10−4. The number of simulations is fixed to M = 103 and t∗ = 1.

We report the RMSE in Figure 4.4, where the x-axis corresponds to the logarithm (base 10) of the

time step ∆ and the y-axis corresponds to the logarithm (base 10) of the RMSE. The theoretical rate

of convergence obtained in Theorem 4.5 (all considered schemes converge with order 1) is confirmed

empirically. While the Lie-Trotter splitting and the EM scheme show a similar RMSE for varying ∆, the

RMSE obtained for the Strang splitting method is significantly smaller for all ∆ under consideration,

implying a higher efficiency of that scheme. We stress, however, that from the fact that the rate of

convergence is the same, it does not follow that they share the same qualitative properties when the

step size ∆ is fixed.

4.6.1.2 Illustration of the qualitative properties of the splitting schemes

Now we illustrate how the proposed splitting schemes preserve the structure (e.g., the moments and

the underlying invariant distribution) of the process, even for large values of ∆, while the EM method

may fail in doing so. We start with studying sample trajectories (see Figure 4.5). All three methods

yield a comparable performance when ∆ = 0.01. For ∆ = 0.5, the EM scheme preserves the oscillations,

but does not preserve the amplitude. The behaviour of the inhibitory population is less accurately

approximated than the excitatory one. This problem aggravates as ∆ increases further to 0.7. An

interesting observation is that, for time steps ∆ not “small enough”, the Euler-Maruyama scheme

may not preserve the mean of the process (see also Figure 4.7). Indeed, it has been observed that

the Euler-Maruyama method preserves the first, but not the second moments (see, e.g., Ableidinger

et al. (2017), Higham and Strømenn Melbø (2004)). In other words, the amplitude of the oscillations

grows, but the main is unchanged. In our case, however, since the trajectories are bounded by 0

from below or above (depending on the sign of ck), the increased amplitude introduces also a bias in
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Figure 4.5: Sample trajectories of the system, simulated with the Euler-Maruyama scheme (top), the Lie-

Trotter (middle) and the Strang (bottom) splitting scheme for varying ∆.

the first moment. Thus, the Euler-Maruyama approximation of system (4.7) does neither preserve

the first nor the second moments. In contrast, the Lie-Trotter and Strang splitting schemes show a

comparably good performance. However, the Lie-Trotter splitting is less accurate in reproducing the

delay between the current state of the process (black line) and the memory variables (grey lines) in

the beginning of the interval, where the amplitude of the oscillations is large (see also Figure 4.7). The

difference between the schemes becomes clearer as we look at the phase portrait of the system (Figure

4.6). We observe again that both splitting schemes yield satisfactory approximations (for all ∆ under

consideration), the Strang approach slighly outperforming the Lie-Trotter method. In contrast, the

phase portrait obtained with the EM approximation fails to reproduce the behaviour of the process

for ∆ = 0.5 or 0.7. Similar conclusions can be drawn from Figure 4.7, where we visualize the marginal

densities of the process. Each visualized density is estimated with a standard kernel density estimator,

based on a simulated long-time trajectory (T = 105) of each variable of the process. We observe again

that the EM method may not preserve the mean of the process (red dashed vertical lines). Moreover,

the EM scheme may even suggest a transition from a unimodal to a bimodal density as ∆ increases.

4.6.2 Comparison of the PDMP and the diffusion

Now we are interested in comparing the PDMP process X̄, simulated with the thinning algorithm

detailed in Section 4.5, with the diffusion X, simulated with the property-preserving Strang splitting



4.6 numerical experiments 75

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

X
2,

1 (t
)

EM
∆ = 0.01

EM
∆ = 0.5

EM
∆ = 0.7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

X
2,

1 (t
)

LT
∆ = 0.01

LT
∆ = 0.5

LT
∆ = 0.7

−10 −8 −6 −4 −2 0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

X1,1(t)

X
2,

1 (t
)

ST
∆ = 0.01

−10 −8 −6 −4 −2 0

X1,1(t)

ST
∆ = 0.5

−10 −8 −6 −4 −2 0

X1,1(t)

ST
∆ = 0.7

Figure 4.6: Phase portrait of the main variables, simulated with the Euler-Maruyama scheme (top), the

Lie-Trotter (middle) and the Strang (bottom) splitting scheme for varying ∆ and x0 =

(0, 0,−3.5,−4, 0, 1.3, 1.1).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

π X
(x

)

EM
∆ = 0.01

EM
∆ = 0.5

EM
∆ = 0.7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

π X
(x

)

LT
∆ = 0.01

LT
∆ = 0.5

y

LT
∆ = 0.7

−8 −6 −4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

π X
(x

)

ST
∆ = 0.01

−8 −6 −4 −2 0 2 4

x

ST
∆ = 0.5

−8 −6 −4 −2 0 2 4

x

ST
∆ = 0.7

Figure 4.7: Empirical density of the system, simulated with the Euler-Maruyama scheme (top), the Lie-Trotter

(middle) and the Strang (bottom) splitting scheme for varying ∆ and T = 105.



76 hawkes processes and their diffusion approximation

50 100 150 200

0
1

2
3

4

Linear intensity

N

s

f
~∆(x)
f
~

(x)
X
~

50 100 150 200

0
10

0
20

0
30

0
40

0

Exponential intensity

N

s

f
~∆(x)
f
~

(x)
X
~
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scheme introduced in Section 4.4. We simulate the trajectories of the diffusion process with the Strang

splitting scheme, since it has shown the best performance in the previous section.

4.6.2.1 Execution time

As a first step we are interested in the execution time. We compare the numerical cost of the simulation

of the process X̄ with two different intensity bounds (based on Lemmas 4.3 and 4.4) to the simulation

of the diffusion X with the Strang splitting scheme.

We set tmax = 100 and vary the total number of neurons, taking N = 20, 50, 100, 150, 200 and

N1 = N2. In the case of the diffusion simulation, the parameter N does not influence the computational

cost. Thus, we report the execution time for the diffusion simulation only for N = 200, taking ∆ = 0.1

and report it as a reference value. The time step ∆̃ for the thinning procedure is defined in an

adaptive way within the while loop of Algorithm 3. In each step we use the last computed value of

the intensities λk and set ∆̃ equal to (N1λ1 +N2λ2)−1. This choice takes into account the scaling

with respect to the number of neurons and the dynamics of the intensities. For instance, X̄2,1 roughly

belongs to [0, 2] (see Figure 4.9) such that the intensity of population roughly belongs to [1, 7] (with

the intensity functions defined in (4.24)).

In Figure 4.8, two different sets of intensity functions, linear ones and exponential ones, are studied.

The mean execution time (over 100 realizations) in seconds required to simulate the process on interval

[0, tmax], using the bounds f̃(x) and f̃∆(x) are plotted.

Note that there is almost no difference in the performance of the algorithm with different bounds in

the linear case (left panel of Figure 4.8). That means that the bound obtained in Lemma 4.3 is sharp

enough. Note also that since fmax
k = 10, there occur only a few spikes and the process is simulated

very fast. However, in the case of an exponential intensity (right panel of Figure 4.8), the execution
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time drastically increases. The process is simulated at least twice faster with the local bound. The

main reason is that the local bound f̃∆
k (x) rejects around 2% of points, while the f̃k(x) rejects around

90%. In general, we can conclude that the execution time depends linearly on the number of neurons

for both the local and the general bound. Disregarding the bound chosen, both algorithms cannot

compete with the time required for simulating the diffusion. For ∆ = 0.1 and T = 100 the average

running time with the exponential firing rate function is equal to 0.598s (with standard deviation

0.12s). For the linear one it is 0.597s (with standard deviation 0.15s). Thus, the execution time for

the diffusion approximation does not depend on the firing rates.

Finally, a summary of the performances of both frameworks (diffusion and PDMP), with respect to

the parameters of the model, is given below.

• In both cases, the execution time increases as the dimension of the system grows, i.e., as ηk
increases.

• For the diffusion, the execution time depends, in a linear manner, on the step size ∆.

• For the PDMP, the execution time mainly depends, in a linear manner, on the number N of

neurons. To be precise, it also depends on the temporal mean value of the intensities of the two

populations, which in turn depends, in a complex non-linear manner, on the parameters νk, ηk
and fk.

• Unless N very small, the simulation of the diffusion requires much less computational cost than

that of the PDMP.

4.6.2.2 Qualitative properties

It remains to determine if the stochastic diffusion can really catch the behaviour of the underlying

PDMP. To get an intuitive idea of how different processes behave when the number of neurons changes

we look at some sample trajectories. We take one realisation of the PDMP and the diffusion process

on a time interval of length T = 300 and plot them on Figure 4.9, cutting the initial part in order to

observe the process in its oscillatory regime. For simplicity, we focus only on the second (excitatory)

population. The trajectories in the top panel are simulated with N2 = 10, those in the middle panel

with N2 = 50 and those in the bottom panel with N2 = 100.

Let us mention that Figure 4.9 is not an illustration of Theorem 4.2. Indeed, the trajectories are

not coupled in such a way that (4.12) is satisfied. Up to our knowledge, there is no such result in

the literature and the coupling involved in the proof of Theorem 4.2 is not explicit. However, the

figure illustrates the fact that the fluctuations of both trajectories vanish as N goes to infinity and

that both converge to the solution of the ODE (4.10).

As a final step, we are interested in the long-time behaviour of the processes. We simulate both

processes (X̄ and X) on a long-time interval, taking T = 105 and report the respective marginal

empirical densities in Figure 4.10. The densities of the PDMP are plotted with solid lines and those

of the diffusion with dashed lines. Even for small N , the difference between the densities is negligible
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and their means are almost overlapping. As the number of neurons N increases, we observe that the

empirical densities converge to some compactly supported distribution. Note that the mean-field limit

is given by the ODE (4.10) as illustrated in Figure 4.9. Thus we expect that the support of the limit

distribution is given by the amplitude of the solution of the ODE.

conclusions

This work is thought to complement the papers by Ditlevsen and Löcherbach (2017) and Duarte et al.

(2019). First, we bridge the gap between the piece-wise deterministic Markov process (4.5) and the

solution of SDE (4.7) by proving a strong error bound on the distance between the two. Second,

moment bounds of the diffusion process are derived.

Further, since SDE (4.7) cannot be solved explicitly, two approximation schemes, based on the

Lie-Trotter and the Strang splitting approaches, are proposed. They are proved to converge with

mean-square order 1 and to preserve the properties of the model. In particular, the advantage of the

proposed approximation methods is that they make a full use of the matrix exponential eAt, which

describes the flow of the Markovian cascade (4.5). Thanks to this we are able to propagate the noise

through all components of the system, thus preserving its hypoellipticity. Moreover, we show that the

splitting schemes accurately reproduce the derived first and second moment bounds and that they

preserve the ergodicity of the continuous process, even for large values of the discretization step ∆.

These properties are particularly important when embedding the numerical scheme, for instance,

into a statistical inference procedure. For example, maximum likelihood estimation techniques require

the existence of a non-degenerate covariance matrix of the discretized process. For simulation-based

inference methods (see Buckwar et al. (2019)), the performance of the Euler-Maruyama method may be
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acceptable for “small enough” time steps. However, the use of smaller time steps drastically increases

the computational cost, making the inference based on the Euler-Maruyama method computationally

infeasible. Moreover, even for arbitrary small time steps there is no guarantee that the Euler-Maruyama

scheme preserves the model properties.

In addition, an exact simulation procedure of the Markovian cascade is proposed. A sharp upper

bound, in order to get an efficient procedure, is provided and its performance is compared to the one

given in Duarte et al. (2019). When the number of neurons increases, the computational cost required

for the PDMP simulation rises rapidly and cannot compete with the simulation of the diffusion via

the splitting scheme.

The Markovian cascade and the diffusion process show a similar behaviour. In particular, they

possess matching empirical densities. Thus, we conclude that the diffusion process describes the

behaviour of the original neuronal model at a very good precision and at negligible computational

cost, compared to the PDMP.

4.7 proofs

4.7.1 Proof of Theorem 4.2

The proof of Theorem 4.2 is mainly based on two lemmas which are stated before the proof. The first

lemma concerns the coupling between a Poisson process and a Brownian motion. Its proof can be

found in Ethier and Kurtz (2009, Section 5.5) (the exponential moments can be deduced from the

proof of Corollary 5.5.5).

Lemma 4.5. A standard Poisson process (Πt)t≥0 and a standard one-dimensional Brownian motion

(Bt)t≥0 can be constructed on the same probability space such that

sup
t≥0

|Πt − t−Bt|
log(2∨ t) ≤ Ξ <∞

almost surely, where Ξ is a random variable having exponential moments.

The second lemma concerns the modulus of continuity for the Brownian motion. It is stated in

Kurtz et al. (1978) without a proof. Hence, for the sake of completeness, we provide a proof which is

an adaptation of the arguments presented in the appendix of Fischer and Nappo (2009).

Lemma 4.6. Let B be a standard Brownian motion and T a positive time. Then,

M := sup
t,s≤T

|Bt −Bs|√
|t− s|(1 + log(T/|t− s|))

,

is a finite random variable such that M2 has finite exponential moments.

Proof. Thanks to the scaling properties of Brownian motion, it is sufficient to prove the statement for

T = 1. According to Fischer and Nappo (2009), let c > 1 and define two increasing functions Ψ and µ

by

Ψ(x) = ex
2/2 − 1 and µ(x) =

√
cx,
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for all x ≥ 0. Let now ξ be the random variable defined by

ξ =

∫ 1

0

∫ 1

0
Ψ
(
|Bt −Bs|
µ(|t− s|)

)
dtds.

The Garsia–Rodemich–Rumsey inequality (Stroock and Varadhan, 2007, Theorem 2.1.3.) implies that

|Bt −Bs| ≤ 8
∫ |t−s|

0
Ψ−1

(
4ξ
x2

)
µ′(x)dx,

with Ψ−1(y) =
√

2 log(1 + y) and µ′(x) = (
√
c/2)x−1/2. Yet, for 0 < x < 1,

Ψ−1
(

4ξ
x2

)
=
√

2
√

log(4ξ + x2) + 2 log(1/x) ≤
√

2
√

log(4ξ + 1) + 2
√

log(1/x).

Combining the last two equations, one gets for all h,

sup
|t−s|≤h

|Bt −Bs| ≤ 4
√

2c
√

log(4ξ + 1)
∫ h

0

dx√
x
+ 8
√
c

∫ h

0

√
log(1/x)

dx√
x

. (4.25)

The second term can be bounded thanks to∫ h

0

√
log(1/x)

dx√
x
=

∫ h

0

(√
log(1/x)− 1√

log(1/x)

)
+

1√
log(1/x)

dx√
x

≤ 2
√
h log(1/h) + 4

√
h,

using (when h > e−1) the fact that∫ h

e−1

1√
x log(1/x)

dx =

∫ h

e−1
2
√
x

1
x
√

log(1/x)
dx ≤ 2

√
h(1−

√
log(1/h)).

Going back to Equation (4.25), for some constant C which does not depend on c, one has that

sup
|t−s|≤h

|Bt −Bs| ≤ C
√
c

(√
log(4ξ + 1) + 1

)√
h(1 + log(1/h)).

Note that the random variable M defined in the statement of the lemma satisfies

M = sup
0<h<1

sup|t−s|≤h |Bt −Bs|√
h(1 + log(1/h))

≤ C
√
c

(√
log(4ξ + 1) + 1

)
,

so that

E
[
eαM

2
]
≤ E

[
e2αcC2(log(4ξ+1)+1)

]
≤ e2αcC2

E
[
(4ξ + 1)2αcC2

]
.

To conclude, we refer to the control of the moments of ξ given in the appendix of Fischer and Nappo

(2009). It states in particular that E[(4ξ + 1)2αcC2
] is finite as soon as 2αcC2 < c which is granted if

we take α small enough.

Before going through the proof of the Theorem, let us give some alternative representation of

Equation (4.5) and some sketch of the proof. Thanks to the time change property of point processes

(see Brémaud (1981, Section II.6.) for instance), there exists two independent standard (i.e., with

rate equal to one) Poisson processes Π1 and Π2 such that Z̄kt = N−1
k Πk

Λ̄kt
where Λ̄k

t is the integrated

intensity of Z̄kt , that is

Λ̄k
t = Nk

∫ t

0
fk(X̄

k+1,1
s )ds.
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This time-change property is an analogous martingale property to the time-change property for

diffusions. Then, the integrated form of (4.5) is given by

X̄t = x0 +

∫ t

0
AX̄sds+ c Z̄t =

∫ t

0
AX̄sds+ c

N−1
1 Π1

Λ̄1
t

N−1
2 Π2

Λ̄2
t

 . (4.26)

In a similar way, the SDE can be written with respect to two time-changed Brownian motions and

the general idea of the proof is then to couple the standard Poisson processes Πk with the Brownian

motions.

Proof of Theorem 4.2. It is more convenient to first prescribe the Brownian motions and then couple

them with Poisson processes. That is exactly how we proceed below. Let Y be the solution of (4.7)

with respect to some two dimensional Brownian motion W = (W 1,W 2)T . Thanks to the time change

property of the Brownian motion (see Ethier and Kurtz (2009, Theorem 2.12.) for instance), let Bk

be the Brownian motion defined by

Bkt =

∫ τk(t)

0

√
Nkfk(Y

k,1
s )dW k

s ,

where τk(t) is the stopping time satisfying

t = Nk

∫ τk(t)

0
fk(Y

k,1
s )ds.

Then, Y can be written as follows

Yt = x0 +

∫ t

0
AYsds+

∫ t

0
Γ

f2(Y
2,1
s )

f1(Y
1,1
s )

 ds+ Γ

N−1
1 B1

Λ1
t

N−1
2 B2

Λ2
t

 , (4.27)

where

Λk
t = Nk

∫ t

0
fk(Y

k,1
s )ds.

We are now in the position to use the coupling with Poisson processes. Let Πk be the Poisson

process given by Lemma 4.5 with associated random variable Ξk. Now, let X̄ be defined as in (4.26).

Then,

X̄t = x0 +

∫ t

0
AX̄sds+

∫ t

0
Γ

f2(X̄
2,1
s )

f1(X̄
1,1
s )

 ds+ Γ

N−1
1 B1

Λ̄1
t
+R1

t

N−1
2 B2

Λ̄2
t
+R2

t

 , (4.28)

where

Rkt =
1
Nk

(
Πk

Λ̄kt
− Λ̄k

t −BkΛ̄kt

)
.

Thanks to Lemma 4.5,

|Rkt | ≤
1
Nk

Ξk log(2∨ Λ̄k
t ) ≤ Ξk

(
logNk
Nk

+
log t
Nk

+
1
Nk

)
,

≤ C Ξk

(
logN
N

+
log t
N

+
1
N

)
, (4.29)

for some constant C, where we used that Λ̄k
t ≤ Nktfmaxk and N/Nk is bounded for N and Nk large

enough.
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Let us denote GN (t) = sups≤tN‖X̄s − Ys‖ where ‖ · ‖ denotes the sup norm on Rκ here and below.

Combining (4.27) and (4.28) as well as using the Lipschitz continuity of fk (with respect to constant

Lk) give

‖X̄t − Yt‖ ≤
∫ t

0
‖A(X̄s − Ys)‖ds+ max{|c1|L2, |c2|L1}

∫ t

0
‖X̄s − Ys‖ds

+ max
k

{
|ck−1|

(
N−1
k

∣∣∣BkΛ̄kt −BkΛkt ∣∣∣+ |Rkt |)} .

Then, since the operator norm ||A|| corresponding to the sup norm is finite, Grönwall’s lemma yields

GN (T ) ≤ C1 max
k

{
sup
t≤T

∣∣∣BkΛ̄kt −BkΛkt ∣∣∣+N |Rkt |

}
eC2T (4.30)

for two deterministic constants C1 and C2 which do neither depend on N nor on T . Hence, it only

remains to estimate the Brownian increments. This can be done via the modulus of continuity of

Brownian motion. Indeed, for t ≤ T , Λ̄k
t and Λk

t are bounded by NTfmaxk so Lemma 4.6 gives

∣∣∣BkΛ̄kt −BkΛkt ∣∣∣ ≤Mk

√∣∣Λ̄k
t −Λk

t

∣∣ (1 + log(Nfmaxk T/|Λ̄k
t −Λk

t |)),

where Mk is some random variable defined in the lemma. For all a > 0, the function x 7→√
x(1 + log(a/x)) is increasing for 0 < x ≤ a and Lipschitz continuity of fk gives

|Λ̄k
t −Λk

t | = N

∣∣∣∣∫ t

0
fk(X̄

k,1
s )− fk(Y k,1

s )ds

∣∣∣∣ ≤ C ∫ t

0
GN (s)ds ≤ CTGN (T )

so that ∣∣∣BkΛ̄kt −BkΛkt ∣∣∣ ≤Mk

√
CTGN (T )(1 + log(Nfmaxk /CGN (T ))).

On the event where GN (T ) < 1, (4.12) holds. If GN (T ) ≥ 1 then the equation above implies

∣∣∣BkΛ̄kt −BkΛkt ∣∣∣ ≤Mk

√
CTGN (T )(1 + log(Nfmaxk /C))

and so coming back to (4.30) one has

GN (T ) ≤ C1

(
M
√
CT (1 + log(Nfmax/C))

√
GN (T )

+ N max
k

sup
t≤T
|Rkt |

)
eC2T ,

with fmax = max{fmax1 , fmax2 } and M = max{M1,M2}. The inequality above is of order 2 with

respect to x =
√
GN (T ). Yet, the positive values of x such that p(x) = x2 + bx+ c is negative are

such that x2 ≤ b2 − c. Hence,

GN (T ) ≤ C

(
M2T (1 + log(Nfmax/C)) +N max

k
sup
t≤T
|Rkt |

)
e2C2T .

Finally, (4.12) follows from the control of |Rkt | given by (4.29).
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4.7.2 Proof of Theorem 4.4

Recall that the components of the process Xk are given by

Xk,j
t =

(
eAtX0

)k,j
+

∫ t

0
ckfk+1(X

k+1,1
s )

e−νk(t−s)

(ηk + 1− j)! (t− s)
ηk+1−jds

+
1√
N

∫ t

0

ck√
pk+1

√
fk+1(X

k+1,1
s )

e−νk(t−s)

(ηk + 1− j)! (t− s)
ηk+1−jdW k+1

s .

Squaring the above expression yields

(Xk,j
t )2 = T1(t) + T2(t) + T3(t) + T4(t) + T5(t) + T6(t),

where

T1 =
(
(eAtx0)

k,j
)2

,

T2 =

(∫ t

0
ckfk+1(X

k+1,1
s )

e−νk(t−s)

(ηk + 1− j)! (t− s)
ηk+1−jds

)2

,

T3 =

(
1√
N

∫ t

0

ck√
pk+1

√
fk+1(X

k+1,1
s )

e−νk(t−s)

(ηk + 1− j)! (t− s)
ηk+1−jdW k+1

s

)2

,

T4 = 2(eAtx0)
k,j
∫ t

0
ckfk+1(X

k+1,1
s )

e−νk(t−s)

(ηk + 1− j)! (t− s)
ηk+1−jds,

T5 = 2
∫ t

0
ckfk+1(X

k+1,1
s )

e−νk(t−s)

(ηk + 1− j)! (t− s)
ηk+1−jds

· 1√
N

∫ t

0

ck√
pk+1

√
fk+1(X

k+1,1
s )

e−νk(t−s)

(ηk + 1− j)! (t− s)
ηk+1−jdW k+1

s ,

T6 = 2(eAtx0)
k,j 1√

N

∫ t

0

ck√
pk+1

√
fk+1(X

k+1,1
s )

e−νk(t−s)

(ηk + 1− j)! (t− s)
ηk+1−jdW k+1

s .

First, we note that E[T6(t)] = 0 and that E[T1(t)] = T1(t). Since the intensity function is bounded

by 0 < fk+1 ≤ fmax
k+1 , we have that

E[T4(t)] ≤ max
{

0,
ckf

max
k+1

(ηk + 1− j)!

}
2(eAtx0)

k,j
∫ t

0
e−νk(t−s)(t− s)ηk+1−jds.

Further, applying Itô’s isometry gives

E[T3(t)] =
c2k

Npk+1((ηk + 1− j)!)2

∫ t

0
E[fk+1(X

k+1,1
s )]e−2νk(t−s)(t− s)2(ηk+1−j)ds.

Using again the fact that fk+1 < fmax
k+1 results in

E[T3(t)] ≤
1
N

c2k
pk+1

fmax
k+1

((ηk + 1− j)!)2

∫ t

0
e−2νk(t−s)(t− s)2(ηk+1−j)ds.

Moreover, since fk+1 is bounded, also (T2(t))2 is bounded, and thus it follows from the proof of

Theorem 4.3 that

E[T2(t)] ≤
(

ckf
max
k+1

(ηk + 1− j)!

)2(∫ t

0
e−νk(t−s)(t− s)(ηk+1−j)ds

)2
.
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Applying the Cauchy-Schwarz inequality gives that

E[T6(t)] ≤ 2 (E[T2(t)]E[T3(t)])
1/2 .

Combining the above results and using that∫ t

0
e−2νk(t−s)(t− s)2(ηk+1−j)ds =

(2(ηk + 1− j))!
(2νk)2(ηk+1−j)+1

1− e−2νkt
2(ηk+1−j)∑

l=0

(2νkt)l
l!


proves the statement.

4.7.3 Proof of Lemma 4.2

In order to rely on a linear control problem, we decouple the two populations and treat the non-linear

interactions in a second step as it is done in Löcherbach (2019) for the continuous-time framework.

Let us rewrite the numerical scheme (4.18) as given by the one-step mapping ψ∆ defined by

ψ∆[ξ](x) = eA∆

(
x+ ∆B(x) +

√
∆√
N
σ(x)ξ

)
=

ψ∆[ξ](x)1

ψ∆[ξ](x)2

 ,

where

ψ∆[ξ](x)k = eAνk∆xk +

(
∆ckfk+1(x

k+1,1) +

√
∆√
N

ck√
pk+1

√
fk+1(xk+1,1)ξk+1

)
bk,

with bk = eAνk∆(0, . . . , 0, 1)T =
(

∆ηk
ηk ! , ∆ηk−1

(ηk−1)! , . . . , 1
)T
∈ Rηk+1. Now let us study the following

discrete dynamical systems: xk(0) = xk and for all t ∈ N,

xk(t+ 1) = eAνk∆xk(t) + bku
k(t+ 1), (4.31)

where (uk(t))t∈N∗ is a sequence of real numbers that will be specified below. This system is controllable

as soon as bk, eAνk∆bk, . . . , eηkAνk∆bk are linearly independent (see Theorem 6.D1 in Chen (1998)).

For all j = 0, . . . , ηk, we have

ejAνk∆bk =

(
((j + 1)∆)ηk

ηk!
, ((j + 1)∆)ηk−1

(ηk − 1)! , . . . , 1
)T

.

Yet, {1,X, . . . ,Xηk/ηk!} is a basis of the vector space of polynomials with degree at most ηk which

ensures linear independence. The controllability of the system means that for all xk, yk ∈ Rηk+1,

there exists some sequence of real numbers (uk(t))t=1,...,η∗+1 such that xk(η∗ + 1) = yk where xk is

inductively defined by (4.31). In the following, we use the notation x(t) = (x1(t),x2(t))T .

Now, let x and y be as in the statement of Lemma 4.2 and denote x = (x1,x2)T and y = (y1, y2)T .

According to the first step of the proof, let (uk(t))t=1,...,η∗+1 be such that xk(η∗ + 1) = yk and define,

for all t = 1, . . . , η∗ + 1,

ξk(t) =
uk(t)− ∆ck+1fk(x

k,1(t))
√

∆√
N

ck√
pk+1

√
fk(xk,1(t))

,

in such a way that

uk(t) = ∆ck+1fk(x
k,1(t)) +

√
∆√
N

ck√
pk+1

√
fk(xk,1(t))ξk(t).
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Substituting uk(t+ 1) in (4.25) and denoting ξt = ξ(t), yields xk(t+ 1) = ψ∆[ξt+1](x(t))k and thus

y = x(η̄+ 1) = (ψ∆[ξη̄+1] ◦ · · · ◦ψ∆[ξ1])︸ ︷︷ ︸
η∗+1

(x),

which proves the result.
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H O R I Z O N TA L G E N E T R A N S F E R : S T O C H A S T I C A N D

D E T E R M I N I S T I C A P P ROAC H E S . N U M E R I C A L S T U DY .

This chapter is based on the article Calvez, Vincent et al. (2020), written in collaboration with Vincent

Calvez, Hélène Hivert, Sylvie Méléard, Susely Figueroa Iglesias and Samuel Nordmann.

Abstract. Horizontal gene Transfer (HT) denotes the transmission of genetic material between

two living organisms, while the vertical transmission refers to a DNA transfer from parents to their

offspring. Consistent experimental evidence report that this phenomenon plays an essential role in the

evolution of certain bacterias. In particular, HT is believed to be the main instrument of developing

the antibiotic resistance. In this work, we consider several models which describe this phenomenon: a

stochastic jump process (individual-based) and the deterministic nonlinear integrodifferential equation

obtained as a limit for large populations. We also consider a Hamilton-Jacobi equation, obtained as a

limit of the deterministic model under the assumption of small mutations. The goal of this paper

is to compare these models with the help of numerical simulations. More specifically, our goal is to

understand to which extent the Hamilton-Jacobi model reproduces the qualitative behavior of the

stochastic model and the phenomenon of evolutionary rescue in particular.

Résumé: Le transfert horizontal de gènes (HT) est la transmission de matériel génétique entre

deux organismes vivants, contrairement à la transmission verticale qui désigne le transfert d’ADN

d’un parent à sa progéniture. Il est prouvé que ce phénomène joue un rôle important dans l’évolution

de certaines bactéries, notamment pour le développement d’une résistance aux antibiotiques. Nous

considérons ici un processus stochastique à saut individu-centré, et l’équation intégro-differentielle

non linéaire obtenue comme limite pour une population de grande taille. En supposant que les

mutations sont petites, après un changement de variable et un passage à la limite, nous obtenons une

équation d’Hamilton Jacobi. L’objectif de ce travail est de comparer ces differents modèles à l’aide

de simulations numériques, et de déterminer si l’équation d’Hamilton-Jacobi parvient à capturer les

phénomènes qualitatifs du modèle stochastique, notamment le sauvetage évolutif.

Keywords: Horizontal gene transfer, stochastic individual-based models, integro-differential equa-

tions, Hamilton-Jacobi equation, evolution dynamics, resistance to antibiotics.
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5.1 introduction

Accurate mathematical description of the evolutionary mechanism is an open question in biology,

medicine, and industry. In particular, transmission of pathogens, or antibiotic resistance of bacteria

is directly linked to the ability of the bacteria population to mutate and exchange genetic material

either vertically (from parents to offspring), or horizontally (from the interaction between non-parental

individuals).

Horizontal Gene Transfer was first described in bacteria when the antibiotic resistance was discovered.

This resistance occurs when one bacterial cell becomes resistant to an antibiotic due to mutation, and

then transfers resistance genes to other species of bacteria. However the Horizontal Transfer of biologic

information is not restricted to genes, it also describes the transfer of plasmids and endosymbionts,

see for example M Henry et al. (2013), Lili et al. (2007). Some artificial applications of horizontal

transfer include forms of genetic engineering (Gene Delivery) that result in an organism with its genes

changed in some way, and, consequently, possessing new properties or functions (see for instance

Kamimura et al. (2011)). These applications are particularly useful for ”Gene Therapy”, which is an

experimental procedure that may help treat or prevent genetic disorders and some types of cancer.

The primary goal of our work is to describe the mechanism of the transfer itself and explain how it

affects the population dynamics. Throughout the paper we abbreviate the Horizontal Transfer to HT.

Our study starts with finding a good model of a bacteria population. Several mathematical models

for describing a population dynamics were proposed in literature. The first model we consider is a

stochastic birth and death process (see, for reference, Billiard et al. (2015), Fournier and Méléard

(2004)), which describes the dynamics of reproduction, competition, and exchange of genetic material

between individuals in a population. The phenotype of each individual is described by a numerical

parameter, called trait. Numerical experiments show that the effect of a unilateral horizontal gene

transfer may lead to a cyclic behavior of the population. Roughly speaking, while HT drives individuals

towards a non-fit phenotype — and, consequently, to extinction, very few not affected by transfer

fit individuals may eventually repopulate the environment, before being driven again to deleterious

phenotypes. This phenomenon is called an evolutionary rescue of a small population.

However, within a framework of stochastic jump processes, it is hard to define and study the observed

cycling phenomena accurately. The second drawback of the stochastic system is that it is costly to

compute, especially for a large time scale and population size. Thus, in the case of a large population,

it is more convenient to work with a deterministic PDE model, describing the limiting behaviour of

a stochastic system when the population size goes to infinity Billiard et al. (2016b,a), Ferrière and

Tran (2009). In certain settings, the population dynamics involve concentration phenomena (i.e., the

convergence of the population density to singular solutions, such as Dirac masses). In that case, the

PDE formulation is not suitable. Thus, applying a limiting procedure for small mutations and time

rescaling to the PDE model, we pass to a Hamilton-Jacobi type equation.

The primary goal of our work is thus to conduct a numerical analysis of the population dynamics

on a macroscopic individual-based model and to compare it with the deterministic system which is
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obtained as a limit for a large population. We are especially interested in determining to which extent

the limiting Hamilton-Jacobi equation can grasp qualitative properties of the stochastic model. This

framework has already been successfully used to understand the concentration phenomena, and the

location of the dominant trait (see for instance Lorz et al. (2011), Perthame and Barles (2008)). We

aim to understand if the Hamilton-Jacobi approach is also well suited to describe the evolutionary

rescue phenomena which crucially rely on an accurate description of the small populations.

On this step, the choice of an approximation scheme for simulating solutions of the PDE model

is of tremendous importance. As we further explain in Section 5.3, classical explicit schemes do not

preserve the asymptotic behavior of the solution if the time rescaling step goes to 0. From a numerical

point of view, it involves operations with exponentially big values, which lead to non-negligible errors

for explicit numerical schemes. We address this question by proposing an asymptotic preserving

scheme for a Hamilton-Jacobi equation, adapting an approach proposed in Crandall and Lions (1984).

More generally, the numerical approximation problem for solutions of Hamilton-Jacobi equations is

treated in Achdou et al. (2013).

This chapter is structured as follows: in Section 5.2 we introduce the model both in a stochastic and

deterministic setting, and formally derive the limiting Hamilton-Jacobi equation. Then, we simulate

a jump process, describing the bacteria population, and study its properties for different values of

parameters. Numerical experiments are gathered in Section 5.3. We aim to numerically determine

the critical HT rate, which leads to an almost sure extinction of the whole population. On the next

step, we conduct the same analysis for a Hamilton-Jacobi equation with the help of an asymptotic

preserving scheme and compare it with the stochastic model on an appropriate timescale, and explain

why the classical scheme fails to work. We end our study with conclusions and discussion of yet

unsolved numerical and theoretical questions.

5.2 model

5.2.1 Stochastic model

We consider a stochastic model describing the evolution of a population structured by phenotype. In

a general case it is described at each time t by the point measure

νKt (dx) =
1
K

NKt∑
i=1

δXi(t)(dx), (5.1)

where the parameter K is a scaling parameter, referred to as the carrying capacity. It stands for the

maximal number of individuals that the underlying environment is able to host (K can represent,

for example, the amount of available resources). NK
t = K

∫
νKt (dx) is the size of the population at

time t, and Xi(t) ∈ Rn is the trait of i-th individual living at t, which summarizes the phenotype

information. In this work we assume n = 1, that is, the trait is given by a point on a real line.

The demography of the population is regulated, first of all, by its birth and death rates. An

individual with a trait x gives birth to a new individual with rate b(x). The trait y of the offspring is
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chosen from a probability distribution m(x− y)dy (by that we mean that
∫
R
m(x− y)dy = 1). We

will refer to it as the mutation kernel. An individual with a trait x dies according to an intrinsic death

rate d(x) plus an additional death rate CN
K
t

K
(independent of x) which stands for the competition

between individuals.

Finally, an individual with a trait x can induce a unilateral HT to an individual with trait y at rate

hK(x, y, ν), such that the pair (x, y) becomes (x,x). In literature this kind of transfer is sometimes

referred to as a conjugation. For simplicity, we assume hK(x, y, ν) to be in the particular form

hK(x, y, ν) = hK(x− y,N) = τ0
α(x− y)
N/K

, (5.2)

where N = K
∫
R
ν(dx) is the number of individuals, τ0 > 0 is a constant and α is either a Heaviside,

or a smooth bounded function, such that for a small δ > 0:

α(z) =

0 if z < −δ

1 if z > +δ
, α′(0) = 1

2δ , (5.3)

where δ is the stiffness parameter. We introduce δ to have the advantage of working with a smooth

function (which will be useful in the following parts), while mimicking the binary nature of the

Heaviside function.

For a population ν = 1
K

∑N
i=1 δxi and a generic measurable bounded function F , the generator of

the process is then given by:

LKF (ν) =
N∑
i=1

b(xi)

∫
R

(
F

(
ν +

1
K
δy

)
− F (ν)

)
m(xi, dy)

+
N∑
i=1

(
d(xi) +C

N

K

)(
F

(
ν − 1

K
δxi

)
− F (ν)

)

+
N∑

i,j=1
hK(xi,xj , ν)

(
F

(
ν +

1
K
δxi −

1
K
δxj

)
− F (ν)

)
.

It is standard to construct the measure-valued process νK as the solution of a stochastic differential

equation driven by Poisson point measures and to derive moment and martingale properties (see for

instance Fournier and Méléard (2004)).

5.2.2 The PDE model

It is proven (see in particular Billiard et al. (2016b), Champagnat et al. (2008)) that for K → +∞

the stochastic process defined by a sequence of point measures given by (5.1) converges in probability

to the unique solution of a non-linear integro-differential equation. This equation is given by:

∂tf(t,x) = −(d(x) +Cρ1(t))f(t,x) +
∫

Rn
m(x− y)b(y)f(t, y)dy+

f(t,x)
∫

Rn
τ (x− y)f(t, y)

ρ1(t)
dy, in R+ ×Rn,

ρ1(t) =

∫
R

f(t,x)dx,

f(0,x) = f0(x) > 0,
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where f(t,x) is the macroscopic density of the population with trait x at time t and, accordingly to

the previous section, b(x), d(x) and C are the birth, death and competition rate respectively, m is

the mutation kernel, and

τ (y− x) := τ0 [α(x− y)− α(y− x)] (5.4)

is the horizontal transfer flux.

Now our goal is to pass from a micro- to a macroscopic scale with the help of a rescaling. On the

one hand, we consider the case of small mutations: for a small parameter ε > 0 we define

mε(x− y) =
1
εn
m

(
x− y
ε

)
.

With a change of variable z = x−y
ε we can rewrite the mutation term at (t,x) as

∫
Rn

mε(x− y)b(y)f(t, y)dy =

∫
Rn

m(z)b(x+ εz)f(t,x+ εz)dz.

On the other hand, when ε is small, the effect of mutations can only be observed in a larger time

scale. Thus, we rescale time with t 7→ t
ε .

We end up with the following system, for ε > 0, and (t,x) ∈ R+ ×Rn:



ε∂tfε(t,x) = −(d(x) +Cρε(t))fε(t,x) +
∫

Rn
m(z)b(x+ εz)fε(t,x+ εz)dz+

fε(t,x)
∫

Rn
τ (x− y)fε(t, y)

ρε(t)
dy,

ρε(t) =

∫
R

fε(t,x)dx,

fε(0,x) = f0
ε (x) > 0.

(5.5)

5.2.3 The Hamilton-Jacobi limit

We now derive the limiting problem (5.5) when ε→ 0. As we will see, the limiting problem allows us

to give a rigorous mathematical framework and to perform useful formal calculations.

Equations in the form of (5.5) often give rise to a concentration phenomenon, i.e the convergence of

fε towards a Dirac mass when ε→ 0 (see Perthame and Barles (2008), Diekmann et al. (2005)). The

usual way to deal with these asymptotics is to perform a Hopf-Cole transformation (or WKB ansatz),

i.e to consider

uε(t,x) := ε ln(fε(t,x)). (5.6)

This change of variable comes from the intuition that a Dirac mass is no more than a narrow Gaussian,

and more precisely that fε should behave like a Gaussian of variance ε when ε→ 0. Accordingly, we

expect uε to have a non singular limit when ε→ 0. Incidentally, this substitution also gives insights

on the convenient scheme to use for numerical simulations, as we will see in the following section.
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Now our goal is to identify and derive the asymptotic properties of uε when ε→ 0, which will be

used for discussions in the sequel. The following computations are only formal, since rigorous proofs

are often intricate in this context. Substituting (5.6) into (5.5) we deduce that uε satisfies

∂tuε = −(d(x) +Cρε(t)) +

∫
Rn

m(z)b(x+ εz) exp
{
uε(t,x+ εz)− uε(t,x)

ε

}
dz+∫

Rn
τ (x− y)fε(t, y)

ρε(t)
dy. (5.7)

Formally, at the limit ε→ 0, uε converges to a continuous function u which satisfies the following

Hamilton-Jacobi equation in the ”viscosity” sense:

∂tu = −(d(x) +Cρ(t)) + b(x)

∫
Rn

m(z)ez·∇xudz + τ (x− x(t)), (5.8)

where ρ(t) ≥ 0 is the weak limit of ρε(t) and

x̄(t) = argmax u(t, ·). (5.9)

We formally assume here and in the following that the definition of x̄(t) is unambiguous, i.e that u

reaches its maximum in a single point. Note that the limiting function u is not expected to be C1 for

all time. We thus need to deal with a generalized notion of solutions, namely viscosity solution (see

Barles (1994)).

This framework is convenient because most of the information is contained in the dynamics of x̄(t).

See the next section for further analysis.

5.2.4 Formal analysis on the Hamilton-Jacobi equation

Hamilton-Jacobi equations are particularly known in mathematical biology to be a good model to

describe how a population concentrates around the dominant trait(s) when the mutations are small.

However, here we are interested to use this model to describe a phenomenon of evolutionary rescue.

In this subsection we attempt an analysis of the equation (5.8). We point out that the calculations

are only formal, since rigorous proofs are intricate and beyond the scope of this paper.

5.2.4.1 Generality

From an integration of (5.5) with respect to x and classical computations (under the assumptions

of bounded functions for the birth, death and transfer rates), we deduce that our model satisfies a

saturation property, i.e. ρε(t) is bounded from above, uniformly in t ≥ 0 and ε > 0. From this and

ρε(t) =
∫

Rn
e
uε(t,x)
ε dx, we deduce that ∀t > 0, sup

x∈Rn
u(t,x) ≤ 0 and the following constraint holds:

sup
x∈Rn

u(t,x) = 0 when ρ(t) > 0. (5.10)

Note that our model allows the population to get extinct, thus we cannot expect ρ to be always

positive. As a byproduct, we derive the concentration property, i.e the formal weak convergence of

measures

fε(t,x)⇀ ρ(t)δx̄(t)(dx), when ε→ 0,
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where δx̄(t) denotes, as usually, the Dirac measure centered in x̄(t). From (5.10) it is possible to

formally derive a formula for ρ. Indeed, either ρ(t) = 0 or ρ(t) > 0 and

∂tu(t, x̄(t)) = 0,

which implies

ρ(t) =
b(x̄(t))− d(x̄(t)) + τ (0)

C
=
b(x̄(t))− d(x̄(t))

C
, (5.11)

for τ defined in (5.4).

Having the above definitions in hand, we can now perform a formal analysis on the dynamics of

x̄(t), defined below in (5.15). Our aim is to show how the behaviour of the system can be analyzed

within the framework of a Hamilton-Jacobi equation (5.8). To fix ideas, we fix all constants but τ0
and we assume (5.12)-(5.14) as follows:

b(x) = br > 0, (5.12)

d(x) = drx
2, dr > 0, (5.13)

m(z) =
1√
2πσ

e
− z2

2σ2 , (5.14)

and the transfer function hK(x, y, ν) is defined in (5.2). Moreover we work under the following

assumptions:
u(t, ·) reaches its maximum on a single point x̄(t),

x̄(t) is a non-degenerate maximum, i.e ∇2
xu(t,x) < 0,

x̄(t) is smooth with respect to t.

(5.15)

Finally we assume that the initial condition f0 is a given function of x which reads:

f0
ε (x) =

1√
ε
e−

x2
2ε . (5.16)

5.2.4.2 Smooth dynamics x̄(t).

The following statement deals with the smooth dynamics of x̄(t), i.e in the regime where no jump

occurs in the dynamics of x̄(t).

Statement 5.1. Under assumptions (5.12)-(5.15), the function t 7→ x̄(t) is an increasing function

which satisfies the following inequality ∀t ≥ 0:

0 ≤ x̄(t) ≤ τ0
2dδ .

More precisely, x̄(t) satisfies the canonical equation

d
dt x̄(t) =

[
−∇2

xu(t, x̄(t))
]−1 · (∇xr(x̄(t)) +∇xτ (0)) , (5.17)

where

r(x) := b(x)− d(x), (5.18)

and ∇2
xu denotes the Hessian of u with respect to the x variable.
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Proof. Under the above assumptions we can derive the dynamics of x̄(t), referred to as the canonical

equation in the literature (see for instance Mirrahimi and Roquejoffre (2016)). Indeed, starting from

∇xu(t, x̄(t)) = 0,

a differentiation with respect to t gives (5.17). Equation (5.17) has a unique singular point x?, which

satisfies r′(x?) + τ ′(0) = 0, with τ defined in (5.2) and r in (5.18). We find

x? =
τ0

2drδ
. (5.19)

Note that t 7→ x̄(t) is increasing when x̄(t) < x? and decreasing when x̄(t) > x?. Besides, from the

initial condition (5.16), we have x̄(0) = 0, and consequently 0 ≤ x̄(t) ≤ x? ∀t.

5.2.4.3 Evolutionary rescue.

In general, the canonical equation (5.17) does not hold in every point of time. Indeed, a new maximum

of u can arise in a finite time, which would cause a ”jump” in the dynamics of x̄(t): this is what we

call an evolutionary rescue. Formally, this is what happens (periodically in time) in the case of cycles,

see Figure 5.5b. We thus expect x̄(t) to possibly jump periodically, and to follow (5.17) between two

jumps. We now try to characterize the possible jumps. For T > 0, we denote

x̄(T−) := lim
t→T
t<T

x̄(t), x̄(T+) := lim
t→T
t>T

x̄(t).

Statement 5.2. We assume that (5.12)-(5.15) hold until a time T > 0, such that u(T , ·) reaches its

maximum on x̄(T−) and on another point x̃. Then x̃ = 0 and x̄(t) will jump towards 0 at time T , i.e

x̄(T+) = 0.

Proof. From assumption (5.15), we have ∀t ∈ [0,T ] that u(t, ·) is concave non-degenerate on [x̄(t)± θ],

with θ > 0. For simplicity, we further assume δ ≤ θ, where δ is defined in (5.3).

First, let us show that x̃ = 0. We define the fitness function of trait x in a population concentrated

in x̄:

Fx̄(x) := r(x) + τ (x− x̄),

where r and τ are respectively defined in (5.18) and (5.4). Note that we have ∂tu(t,x) = Fx̄(t)(x)−

Cρ(t), for t < T . But x̃ 6∈ [x̄(t)± δ] and the choice of parameters (5.12)-(5.13)-(5.3) implies x̃ must

maximize Fx̄(T−)(·), hence x̃ = 0.

The second step is to prove that there will be an actual jump towards 0, i.e x̄(T+) = 0. First, note

that there exists a small η > 0 such that ∀t ∈ (T − η,T ), u(t, x̄(t)) = 0 and u(t, 0) < 0. Let us fix

t ∈ (T − η,T ). We have Fx̄(t)(0) ≥ Fx̄(t)(x̄(t)), and we claim that the inequality is strict. Indeed,

since t 7→ x(t) is increasing, Fx̄(t)(x̄(t)) is decreasing, whereas Fx̄(t)(0) is constant (as long as η is

small enough such that x̄(T − η) > δ). We end up with

Fx̄(t)(0) > Fx̄(t)(x̄(t)).

The above inequality expresses the fact that 0 is fitter than x̄(t) in a population with trait x̄(t). In

general, this does not allow to conclude that 0 will invade and become the new dominant trait (i.e.,
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that the jump will occur) because it does not imply that 0 will remain fitter during all the process of

invasion. But the particular form of our problem, especially the fact that τ is an odd function, implies

F0(0) > F0(x̄(t)).

Indeed we have from the definition of Fx̄(x) that

F0(0)− F0(x̄(t)) = r(0)− r(x̄(t)) + τ (x̄− x̄)− τ (0) = drx̄(t)
2 > 0.

Consequently that for all λ ∈ [0, 1]

λF0(0) + (1− λ)Fx̄(t)(0) > λF0(x̄(t)) + (1− λ)Fx̄(t)(x̄(t)).

It shows that 0 remains the fittest trait during all the process of invasion, and therefore that 0 will

actually invade, i.e that x̄(t) will actually jump towards 0 at time T+.

5.2.4.4 Threshold for cycles

In the previous section, we described the possible evolutionary rescue, i.e the possible jumps in the

dynamics of x̄(t) towards x = 0. When a jump occurs, a new cycle begins: it leads to a periodical

behavior of x̄(t), hence the cycling phenomenon.

We recall that a jump corresponds to a rescue of the population concentrated at x̄(t) by the small

population with trait x = 0. It is possible only if x̄(t) > δ and if 0 is fitter than x̄(t) during a

sufficiently large interval of time (which is the time needed for the small population at x = 0 to

regrow). Note that 0 is fitter than x̄(t) if and only if

Fx̄(t)(0) ≥ Fx̄(t)(x̄(t)) iff br − τ0 ≥ br − drx̄(t)2, (5.20)

iff x̄(t) ≥ xresc :=
√
τ0
dr

.

But if no jump occurs, x̄(t) formally follows (5.17), thus x̄(t) < x? and x̄(t) converges to x? when

t→ +∞ (with x? is defined in (5.19)).

Statement 5.3. Under assumptions (5.12)-(5.15), the evolutionary rescue phenomena occurs if and

only if

τ0 > τcyc := 4drδ2. (5.21)

Note that the condition τ0 > τcyc is equivalent to xresc < x? , which are defined respectively in

(5.19) and (5.20).

5.2.4.5 Threshold for extinction.

The population is said to be ”extinct” at time t if ρ(t) = 0. According to (5.11), we define xext as to

solve r(xext) = 0, i.e

xext :=
√
br
dr

, (5.22)

that is, a population concentrated at trait x̄ is extinct iff x̄ ≥ xext.
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The picture is simple in the case of stabilization without cycles, i.e when τ0 ≤ τcyc (see (5.21)). In

this case, we recall that x̄(t) formally follows (5.17) for all t > 0, thus x̄(t) < x? and x̄(t) converges to

x? when t→ +∞ (where x? is defined in (5.19)). Thus, if x? ≤ xext, we have ρ(t) > 0 for all t > 0;

on the contrary, if x? > xext, there exists a time text > 0 for which ρ(t) = 0 for all t ≥ text. It gives a

sharp threshold for extinction of the population: indeed, the population eventually gets extinct if and

only if x? > xext, which naturally leads us to the following statement.

Statement 5.4. Under assumptions (5.12)-(5.15), if τ0 ≤ τcyc, then the population eventually gets

extinct if and only if

τ0 > τext := 2
√
brdrδ.

We point out that, surprisingly enough, τext is an increasing function of the death rate dr, meaning

that under a higher death rate, the population can survive to a higher HT rate. The interpretation

we propose is that if dr is high, the population driven outward x = 0 dies rapidly, thus the population

that remained closer to 0 undergoes a milder HT, which makes the overall population more resistant

to a high HT rate.

Let us now focus on the case where the cycling phenomenon occurs, i.e when τ0 > τcyc. In this case,

x̄(t) will follow (5.17) and will periodically jump to x = 0. First, note that if x? < xext, x̄(t) remains

below xext for all t and the population does not get extinct:

if τ ≤ τext, then ρ(t) > 0, ∀t > 0.

The most intricate case is when x? > xext, which contains cases of extinction and non-extinction,

depending on whether the jump of x̄(t) towards 0 happens before or after x̄(t) has passed beyond xext.

In other words, extinction can be avoided if the evolutionary rescue happens before the dominant

trait is led to extinction, i.e if x̄(T−) ≤ xext, where T is the time where the jump of x̄(t) towards 0

occurs. However, we are not able to give a satisfactory formula or estimate on T .

Besides, when the jump of x̄(t) occurs, it can happen that the trait x = 0 is not fit enough to

avoid extinction: in this case the evolutionary rescue does not manage to sustain the population. It

corresponds to the case xresc > xext. We have the following threshold: the evolutionary rescue is able

to sustain the population iff r(0) + τ0 > 0, which is equivalent to

τ0 < τsus := br.

If τ ≥ τsus, the population eventually gets extinct. If τ < τsus, the population is effectively rescued

by the evolutionary rescue, even in the case where it passed through an episode of extinction during

the previous cycle: in some cases the population is able to regrow after being extinct, which can be

seen on Figure 5.5c. We think this is an interesting feature that the Hamilton-Jacobi approach is able

to grasp. Regarding the stochastic model, an episode of extinction on Hamilton-Jacobi corresponds to

an interval of time where the population reaches extremely small values (of order e−
1
ε , with ε the

variance of the mutation kernel), and the probability that every individual dies is bigger than the

survival of the population.
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Statement 5.5. Assume (5.12)-(5.15) and τ0 > τcyc.

• if τ0 ≤ τext, the population never gets extinct.

• the evolutionary rescue effectively manages to sustain the population if and only if τ0 < τsus := br.

5.2.4.6 Characteristics of a Hamilton-Jacobi equation

Denoting

−H(t,x, p) := −(d(x) +Cρ(t)) + b(x)

∫
R

m(z)epzdz + τ (x− x̄(t)),

from (5.8) we have ∂tu(t,x) +H(t,x,∇xu(t,x)) = 0. Since H is convex in the p variable, we have

the following representation formula (see Lions (1982)).

u(t,x) = inf
γ∈C0(R+,R)

γ(t)=x

[∫ t

0
L (s, γ(s), γ̇(s)) ds+ u0(γ(0))

]
, (5.23)

where L(t,x, v) is the Lagrangian of the equation, obtained through a Legendre transform (or a convex

conjugate) of H.

Every γ which is admissible as a minimizer in (5.23) is called a characteristic of the Hamilton-Jacobi

equation (5.8). Note that every characteristic γ formally satisfies the condition

d
ds [∂vL (s, γ, γ̇(s))] = ∂xL (s, γ(s), γ̇(s)) . (5.24)

(5.24) holds because γ is a critical point of the functional defined in (5.23). Note that if we replace H

by H̃(x, p) = −x2
2 + p2

2 + 1, the Legendre transform of H̃ can be computed explicitly:

L̃(x, v) = x2

2 +
v2

2 − 1.

Then (5.24) becomes

γ̈(s) = γ(s).

5.3 numerical study

In this section we perform several numerical tests for the presented models considering different

values of parameters, replicating different scenarios: stabilization around an optimal value, cycles

(occurring through the evolutionary rescue phenomena) and the extinction.We then compare the

numerical results obtained for the stochastic and deterministic approaches, using in particular an

asymptotic-preserving scheme which allows us to observe the population dynamics on the passage from

the integro-differential equation (5.5) to a limit (5.7). Throughout this section we define the birth,

death rates and the mutation kernel to those given in (5.12)-(5.14) respectively, with the parameters

fixed throughout all the experiments to b ≡ 1, dr ≡ 1, C ≡ 0.5 respectively (unless otherwise stated).
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5.3.1 Stochastic model

5.3.1.1 The scheme

Our aim is to simulate the population dynamics over a fixed interval [0,T ]. We begin by simulating

an initial population of size N0. We assume that the population is normally distributed around the

mean trait x0
mean with a standard deviation σ0 so that the resulting vector X0 ∈ RN0 . We know

that in a time step ∆, an individual can die, give birth, or be a subject to HT. Each event happens

according to a certain probability that we compute from the rates. A more detailed description of the

simulations is provided in Algorithm 1.

Note that in our setting it is possible that 1, 2 or 3 events happen within the same time step.

Keeping a discretization time step small helps us to keep a biological sense in our simulation: even

if the event of horizontal transfer with an ”already dead” individual is possible in our setting (if

Td ≤ THT ≤ ∆), this event is extremely rare.

Algorithm 4: Population dynamics on time interval [0,T ]

Random initialization of a population X0 := N (x0
mean,σ0)×N0 ;

while i∆ ≤ T do

Xi = Xi−1, N i−1 = size(Xi−1);

for ∀x ∈ Xi do

Rb := b(x), Rd := d(x)+CN i−1, RHT :=
∑
y∈Xi hK(x− y,N i−1);

Tb := λ(Rb), Td := λ(Rd), THT := λ(RHT ), where λ denotes an exponential random

law;

if Tb ≤ ∆ then

pick up a new trait z from N (x,σ);

add a new individual with trait z to Xi;

end

if THT ≤ ∆ then

pick a trait y ∈ Xi−1 according to the law hK (x−y,N i−1)∑
y∈Xi hK (x−y,N i−1)

;

remove individual with trait x and add individual with trait y;
end

if Td ≤ ∆ then
remove the individual with trait x from Xi

end

end

return Xi

end

We simulate the population of initial size N0 = 10000 up to time T = 1000 with ∆ = 0.01, with

the parameters being defined at the beginning of the section, and α is a Heaviside function. Even if
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a Heaviside function is not the most easy to analyze when we pass to the deterministic limit of the

system (see Subsections 5.2.2 and 5.2.3), we use it for the stochastic simulation, since it is the most

straightforward model for HT in biological context, and is much faster to compute than a smooth

function. We fix all constants but τ0, which regulates the Horizontal Transfer, and study how it affects

the dynamics. Then we plot the density of the population at each moment of time (left side of each

Figure): brighter colors on plot mean that there is a big amount of individuals with very similar traits.

On the right top and right bottom we plot the normalized population size (ratio between the actual

size and the carrying capacity of the system), and the mean trait.

Depending on the parameters we may observe three types of behavior (see Figure 5.1). A first

possibility, for small values of τ0, is stabilization (Figure 5.1a). In this case the population rapidly

reaches the equilibrium and concentrates around the optimal trait, which is close to 0.1 (with stochastic

fluctuations). Note that in this case, the mean trait is shifted in comparison to the optimal trait

without HT (which is x = 0).

A second option, for intermediate values of τ0, is the cycling behavior (Figure 5.1b). Since the

transfer rate is sufficiently large, the population is driven towards a deleterious trait, which is eventually

less fit than the trait x = 0. If the drift is not too strong, the very few individuals which were not

affected by HT and remained fit (with x close to 0) manage to regrow and eventually repopulate the

environment, which launches the cycle again.

The last possibility, for large values of the horizontal transfer rate τ0, is the extinction of the

population (Figure 5.1c). It occurs because too many individuals were affected by deleterious traits of

their neighbors, so that they die faster than is needed for replicating the population.

(a) Stabilization: τ0 = 0.02 (b) Cycles: τ0 = 0.4 (c) Extinction: τ0 = 0.9

Figure 5.1: Behavior of the population dynamics as the mutation rate τ0 is changing, (br = dr = 1, σ = 10−2,

K = 104, σ0 = 10−2, x0
mean = 0, N0 = 104).

To understand better this phenomenon, we have to give a precise definition of what do we actually

refer to, when we say ”the critical value” of the transfer rate. In the stochastic setting the answer

is not trivial, and that is where the individual-based model reaches its limit. What we observe

experimentally is the following: when we change the value of the HT rate starting from zero, the

cycles in the population dynamics become more clearly visible, the fluctuations of the mean trait and

the population size become more ample, until at some point the probability of extinction overweights
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the probability of survival and, finally, at the value of τ0, which we call ”critical” we obtain an almost

sure extinction.

But since we are working with a point process, giving a strict definition of a ”critical value for an

extinction” in terms of probability measures seems to be out of reach. Even in the experimental setting

this notion is ambiguous: when the value of τ0 is getting closer to a ”critical” value (numerically

we observe an almost sure extinction at τ0 = 0.49), in different repetitions of the same experiment

we may observe different types of behavior: either cycles, or extinction, which occurs after several

cycles. It is illustrated on Figure 5.2, where the computations, launched with exactly the same set

of parameters, give very different results. Furthermore, it is not always clear how to differentiate

between the stabilization and cycles, especially when the variance of the mutation kernel is large. To

the best of our knowledge, there is no straightforward way to analytically measure the probability of

each outcome under given initial conditions, which makes the model difficult to analyse.

This constraint of an individual-based model naturally leads us to studying a limiting system

described in Subsection 5.2.2.
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(b) Cycle and extinction
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(c) Cycles

Figure 5.2: Different behaviors for τ0 = 0.46 (and the other parameters as in Figure 5.1).

5.3.1.2 Lineages

With the help of the stochastic model we can keep track of the lineage of an individual i which lives

at a final observed time T . More precisely, we are interested in a history of a phenotype which leads

to a long-term survival of an individual.

We illustrate some numerical experiments on Figure 5.3. The four simulations are done with the

same parameters. In the background, every point with coordinates (t,x) represents an individual

with trait x living at time t (as in Figure 1). The solid lines represent the lineages of the individuals

that live at the final time. Small fluctuations are the results of birth with mutation, while the large

upwards jumps correspond to an occurrence of a HT.

First of all, we can see on the plot that all the lineages are gathered into one line up to t = 400.

It means that all individuals that live at final time t = 700 emanate from one single ancestor of the

initial population. This phenomenon is well known and referred to as coalescence in the literature (see
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for instance Kingman (1982), or Arenas and Posada (2014, 2010) for a mathematical description of a

classical population genetics theory).

Besides, we see that the lineages remain centered around x = 0 during almost all the observed

time. It is explained by the fact that every lineage that goes to a high value of x (corresponding to

deleterious phenotype) cannot recover (since the mutations are small), and eventually goes extinct.

This illustrates that the population manage to sustain because of the very few individuals that were

not affected by HT throughout the history.

Figure 5.3: Simulations on the stochastic model with lineages. τ0 = 0.4, Tmax = 700, dT = 0.1, K = N0 =

1000 and other parameters as in Figure 5.1.

5.3.2 Numerical scheme for the PDE model

In this subsection, a numerical scheme for (5.5) is presented, and its properties are numerically investi-

gated. For the discretization of (5.5), we consider a bounded space of traits [Xmin,Xmax], discretized

with Nx points. Denoting Nx the number of discretization points of the interval [Xmin,Xmax], we

define

∆x =
Xmin −Xmax

Nx − 1 ,

and

xi = Xmin + i∆x, 0 ≤ i ≤ Nx − 1.
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We consider the time interval [0,Tmax], discretized with Nt points tn = n∆t, for 0 ≤ n ≤ Nt − 1, and

where ∆t is defined as

∆t =
Tmax
Nt − 1 .

The approximations of the solution f of (5.5) at (tn,xi), and of its density ρ at tn are denoted fni

and ρn respectively. We recall that the initial condition f0 is a smooth function of x given in (5.16)

and the initial density ρ0 is computed using a left-point quadrature rule for f0 as follows:

ρ0 = ∆x
Nx−1∑
i=0

f0(xi).

The scheme is written with an explicit Euler scheme, in which the integrals are computed with a

left-point quadrature rule. For n ≥ 1 and 0 ≤ i ≤ Nx − 1, it reads

ε
fn+1
i − fni

∆t
= (d(xi) +Cρn) fni + [m ∗ (bf)]ni + fni ∆x

Nx−1∑
j=0

τ (xi − xj)
fnj
ρn

. (5.25)

In (5.25), the convolution product [m ∗ (bf)]ni is computed with a left-point quadrature rule, as

well as the other integrals. To do so, a grid in the z variable is defined as for the x variable. Let Zmin

and Zmax, and the number Nz of discretization points be given. The grid in z is defined as

∀0 ≤ k ≤ Nz − 1, zk = Zmin + k∆z,

where ∆z = (Zmax −Zmin) / (Nz − 1). When xi + εzk ∈ [Xmin,Xmax], the value of f(tn,xi + εzk) is

approximated by a linear interpolation of the (fni )0≤i≤Nx−1. When xi + εzk < Xmin, or xi + εzk >

Xmax, it is computed with a linear extrapolation of the (fni )0≤i≤Nx−1, using the slope at the

corresponding end of the X domain. Using the notation fn(xi + εzk) for the approximation of

f(tn,xi + εzk), we then define

[m ∗ (bf)]ni = ∆z
Nz−1∑
k=0

m(zk)b(xi + εzk)f
n(xi + εzk).

5.3.2.1 Case ε = 1: comparison with stochastic model

A first point that we are interested in is whether under identical parameters and initial conditions we

may reproduce the same behavior as in the stochastic model. Thus, we conduct several experiments,

fixing the parameter ε to 1 (thus, we do not rescale time, nor the mutation rate), leaving all the other

parameters fixed to the same values as in the stochastic simulation case.

As we may see on Figure 5.4, simulations correspond in overall to those of the stochastic model.

Indeed, when the HT rate τ0 is small enough the population rapidly stabilizes around its equilibrium

state (see Figure 5.4a), as in the stochastic simulations. A further similarity between the two models

is that in both cases the optimal trait is shifted a bit above 0. It is caused by the HT phenomenon.

For larger values of τ0, where we would expect to have distinguishable cycles, we observe indeed

damped oscillations, see Figure 5.4b. We stress that for the stochastic model it is not the case, see

Figure 5.1b. The way we understand the damping in the oscillations is that the PDE model and the

numerical algorithm that we use are not designed to have a precise grasp on the exponential small
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(a) Stabilization: τ0 = 0.02
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(b) Cycles: τ0 = 0.4
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(c) Extinction and cycles: τ0 = 0.9
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Figure 5.4: Behavior of the population dynamics described by a PDE model as the mutation rate τ0 is changing,

(br = dr = 1, σ = 0.01, ε = 1).

values of f , on which the cycling phenomenon relies. This limitation suggests to perform the change

of variable (5.6), and to write a numerical scheme which converges uniformly when ε → 0. This is

what the next subsection is devoted to.

On Figure 5.4c, we observe that as τ0 becomes larger the population gets extinct, and then,

surprisingly enough, ”reborns” after a period of extinction. This scenario can only be reproduced on

density-based models, since in individual-based model any extinction is definitive. On Figure 5.4d we

observe a full extinction of the population without regrowth. We will give further insights on those

two cases in the next subsection.

5.3.3 The scheme for the Hamilton-Jacobi equation

5.3.3.1 Case ε→ 0: description of the numerical scheme

As the rescaling parameter ε goes to 0, the model given by (5.7) gets closer to its limiting state (5.8).

However, the numerical approximation of (5.5) for ε� 1 is not a trivial task. Indeed, for small ε, the
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solution fε of (5.5), is expected to concentrate around the dominant trait. To be able to catch its

stiffness numerically, one has to refine the grid in x, to ensure enough precision in the computation of

f . As a consequence, the computational cost of the numerical simulations increases when ε→ 0, and

reaching the asymptotic regime with this scheme is not possible. In this part, we present a numerical

scheme for (5.5) which enjoys stability properties in the limit ε→ 0.

To avoid the increase of computational cost when reaching the asymptotics, and to ensure the

scheme approaches the limit Hamilton-Jacobi equation for small ε, a scheme for the solution uε of (5.7)

which enjoys the Asymptotic Preserving (AP) property is proposed here. Such schemes have been

introduced in Klar (1998, 1999), Jin (1999), their properties are often summarized by the following

diagram:
Pε

ε→0−−−−−−−→ P0
h
→

0
−−
−−
−−
→

h
→

0
−−
−−
−−
→

Shε
ε→0−−−−−−−→ Sh0

It should be understood as follows: when the parameter ε > 0 is fixed, the scheme Shε is consistent

with the ε-dependent problem Pε. When ε goes to 0, the solution of Pε converges to the solution of

the limit problem P0. The AP scheme Shε is stable along the transition to the asymptotic regime.

It means that, when ε goes to 0 with fixed discretization parameters h, the scheme becomes a limit

scheme Sh0 , which is consistent with the limit problem P0.

As an AP scheme is required to enjoy stability properties when ε is going to 0, one has to ensure

that all the quantities that have to be computed enjoy this property. In the case we are considering,

the main concerns are the computation of the integral containing the birth term, the computation

of the integral containing the transfer term and the computation of ρ. If all of them are correctly

defined, the scheme we propose reads

un+1
i − uni

∆t
= −(d(xi) +Cρn+1) +Bni + Tni , (5.26)

where Bni stands for an approximation of∫
R

m(z)b(xi + εz)e(uε(tn,xi+εz)−uε(tn,xi))/εdz, (5.27)

and Tni is for ∫
R

τ (xi − y)
f(tn, y)
ρ(tn)

dy. (5.28)

Here, we used the notations and discretization grids defined in the beginning of Section 5.3.2, and

the dependencies in ε are omitted to simplify the notations. In what follows, we present how Tni , Bni
and ρn+1 can be computed in a way that ensures they are consistent with their definition for fixed

ε, that they can be computed with a constant computational cost with respect to ε, and that their

asymptotic behavior when ε goes to 0 is meeting the continuous one (5.8).

• Computation of Tni . The direct approximation of (5.28) with a quadrature rule is consistent

for ε ∼ 1. However, since f is expected to concentrate when ε → 0, it lacks precision in the
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asymptotic regime. Especially, the convergence of f/ρ to a Dirac is not ensured when the

integral is approximated directly. Remarking that

fε(tn, y)
ρε(tn)

=
euε(tn,y)/ε∫

R

euε(tn,z)/εdz
=

e
(uε(tn,y)−max

x
uε(tn,x))/ε∫

R

e
(uε(tn,z)−max

x
uε(tn,x))/ε

dz
,

(5.28) is computed with a left-point quadrature rule in the integrals of the previous expression.

It reads

Tni = ∆x
Nx−1∑
j=1

τ (xi − yj)
e
(unj −max

l
un
l
)/ε

∆x
Nx−1∑
k=0

e
(un
k
−max

l
un
l
)/ε

=

Nx−1∑
j=1

τ (xi − xj)e
(unj −max

l
un
l
)/ε

Nx−1∑
k=0

e
(un
k
−max

l
un
l
)/ε

. (5.29)

For fixed ε, (5.29) is consistent with (5.28). Since all the arguments of the exponentials are

nonpositive, the limit of (5.29) for small ε can be read on that expression. Denoting j0 the index

such that

unj0 = max
l
unl ,

and supposing that there exists a unique such j0, the limit of (5.29) for small ε is

τ (xi − xj0).

This is consistent with the last term in the limit Hamilton-Jacobi equation (5.8).

• Computation of Bni . Once again, the numerical approximation of (5.27) is done with a

quadrature in the integral. Using the notations of Section 5.3.2, a grid in z is defined. The

functions m and b are respectively evaluated at zk and xi + εzk, but the interpolation of un at

xi + εzk has to be done with special care to make the scheme enjoy the expected asymptotic

behavior. Using a left-point quadrature rule, (5.27) is approximated by

∆z
Nz−1∑
k=0

ε|zk|≤dx

m(zk)b(xi + εzk)e
zk∇

ε,small
n,i,k + ∆z

Nz−1∑
k=0

ε|zk|>dx

m(zk)b(xi + εzk)e
zk∇

ε,large
n,i,k ,

where ∇εn,i,k stands for an approximation of

uε(tn,xi + εzk)− uε(tn,xi)
εzk

.

In both cases, it is computed with a linear interpolation of the values uni . Hence, ∇ε,largen,i,k is

given by

∇ε,largen,i,k =
ũni,k − u

n
i

εzk
,

where ũni,k is computed as the linear interpolation of (uni )1≤i≤Nx at xi+ εzk. If xi+ εzk < Xmin

or xi + εzk > Xmax, the extrapolation is done linearly using the slope at the first or last point

of the interval. Since εzk > ∆x, no stability issue is faced in this computation. Still using a

linear interpolation, when 0 < εzk ≤ ∆x, it is worth noticing that
ũni,k − u

n
i

εzk
=
uni+1 − uni

∆z
,
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and when 0 > εzk ≥ −∆x,
ũni,k − u

n
i

εzk
=
uni − uni−1

∆x
.

as a consequence, we define:

∇ε,smalln,i,k =



uni+1 − uni
∆x

, if 0 < εzk ≤ ∆x

uni − uni−1
∆x

, if − ∆x ≤ εzk < 0

0, if zk = 0.

This definition of Bni is consistent with (5.27). Moreover, when ε goes to 0 with fixed numerical

parameters, such as Zmin and Zmax, the expression ∇ε,largen,i,k is not used at all, and

Bni =
ε→0

Bn,0
i = ∆z

Nz−1∑
k=0
zk<0

m(zk)b(xi)ezk
un
i
−un

i−1
∆x +∆zm(0)b(xi)+∆z

Nz−1∑
k=0
zk>0

m(zk)b(xi)ezk
un
i+1−u

n
i

∆x .

(5.30)

• Computation of ρn+1. In (5.26), ρn+1 is considered in an implicit way, to make the limit

scheme be consistent with the limit equation (5.8). Since

ρ(t) =

∫
R

eu(t,x)/εdx,

for ε > 0, we define

ρn+1 = ∆x
Nx−1∑
i=0

eu
n+1
i /ε.

A closed equation on ρn+1 can be deduced from (5.26). Indeed, (5.26) yields

eu
n+1
i /ε = e−∆tρn+1/εe(uni +∆t[−d(xi)+Bni +T

n
i ])/ε,

and so

ρn+1 = ∆x e−∆tρn+1/ε
Nx−1∑
i=0

eAni /ε, (5.31)

where Ani denotes uni + ∆t (−d(xi) +Bni + Tni ) to simplify the notations. Eventually, ρn+1 is

the solution of h(y) = 0, where

h(y) = ye∆ty/ε − ∆xeA
n
i0

/ε
Nx−1∑
i=0

e(A
n
i −A

n
i0
)/ε, (5.32)

where Ani0 = max
i
Ani has been taken apart to get an uniform estimate with respect to ε on the

remaining sum. It is also a solution of the equivalent equation g(y) = 0, with

g(y) = −ε ln(y)− ∆ty+ ε ln(∆x) +Ani0 + ε ln
(
Nx−1∑
i=0

e(A
n
i −A

n
i0
)/ε
)

. (5.33)

To find ρn+1, a Newton’s method is applied on expression (5.32) or on (5.33). Both expressions

are smooth convex functions of ρ, and are equivalent. Hence, the Newton’s method converges

whatever is used. Nevertheless, it must be chosen with care. (5.32) is to be chosen when ρn+1

is close to 0 (for large values it becomes less accurate), whereas (5.33) is more adapted when
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ρn+1 is not small, since it is more prone to accumulate numerical errors when ρn+1 → 0. In the

effective implementation of the method, either one formulation or the other is chosen, depending

on the values reached during the iterations of the algorithm. Eventually, to ensure the stability

of the numerical resolution of (5.31) when ε→ 0, the inverse of the derivatives of h and g are

analytically computed and implemented as

1
h′(y)

=
ε

ε+ ∆t
e−∆ty/ε, 1

g′(y)
= − y

ε+ ∆t
.

Since y > 0, these two expressions are uniformly bounded with respect to ε when ∆t is fixed. As

a consequence, the cost of the numerical resolution of (5.31) does not increase with ε.

When ε > 0 is fixed, the scheme (5.26) is consistent with (5.7), since only quadrature formula and

interpolation methods have been used to write it. The way all the terms are computed, as well as

the numerical resolution of the non-linear equation (5.31), ensures the stability of the numerical

computations in the small ε regime. Hence, when ε → 0 with fixed discretization parameters, the

scheme (5.26) becomes

un+1
i − uni

∆t
= −

(
d(xi) +Cρn+1)+Bn,0

i + τ (xi − xj0),

where j0 is such that unj0 = max
i
uni , and Bn,0

i has been defined in (5.30).

We do not give a strict proof of consistency of this scheme with respect to the limiting Hamilton-

Jacobi equation (5.8), since it is out of scope of the project. However, we draw the attention to few

important points which need to be taken into account while working with the scheme. In particular,

the behaviour of the quantity ρ(t) is not well understood in the case of an extinction. The problem

is that intuitively ρ(t) must represent the density of the population — so that when it goes to zero,

we expect an extinction. However, in a Hamilton-Jacobi case even when the ρ(t) reaches zero, the

population can still regrow after some time. This can be explained by the fact that after two limiting

procedures (passing first to the infinite system size, and then to the infinite time horizon), the ”size” of

the population can not be described straightforwardly. Accurate link between the quantities obtained

as a result of stochastic and PDE simulation is also a question which requires further investigation

when ρ(t)� 1.

5.3.3.2 Case ε→ 0: the numerical results

In this subsection we simulate the dynamics of the population by considering a small value of ε and

discuss the obtained results in order to compare them with previous simulations. Note that, in order

to compare both, the stochastic and the Hamilton-Jacobi behaviours, the first step to do is to obtain

the simulations for the stochastic model also in the case where the HT rate is a smooth function as

we do for the Hamilton-Jacobi case. We recall that, in subsection 5.3.1 simulations for the stochastic

model are done with a Heaviside function as HT rate since it is a more natural choice for simulation

of a jump process.
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(a) Stabilization: τ0 = 0.02
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(b) Cycles: τ0 = 0.4
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(c) Cyclic extinction: τ0 = 0.9
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(d) Full extinction: τ0 = 1.2

Figure 5.5: Behavior of the population dynamics described by a PDE model for ε = 0.01 as the mutation rate

τ is changing, (br = dr = 1, σ = 1).

On Figure 5.5 we simulate the population dynamics for ε = 0.01. Upon rescaling time (for chosen

ε time scale T = 10 corresponds, in fact, to T
ε = 1000 in previous simulations) and the variance

parameter, we see the same patterns, with few differences.

On Figure 5.5a, we observe a stabilization of the mean trait, as in Figure 5.1a. Similarly, on

Figure 5.5b, we observe cycles, but on the contrary to the PDE model oscillations are not damped.

Moreover, it is worth pointing out that the duration of a cycle here corresponds to what we observe in

the corresponding stochastic plot (on Figure 5.1b) multiplied by ε = 0.01. On Figure 5.5c, we also

observe a cycling behavior, but the population goes periodically extinct (i.e the population reaches

exponentially small values, of order e1/ε), and then is reborn. In the stochastic model, it corresponds

to what is illustrated in Figure 5.2. It is not surprising that this behavior is difficult to observe in the

stochastic model, since very small populations are likely to go extinct.

On Figure 5.5d, we can see that the population goes completely extinct. The most interesting

case to comment is probably the ”partial” extinction seen on 5.5c. Note that despite the fact that ρ
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remains at 0 for some time, the population regrows. The point is that, as it was already mentioned

above, this numerical parameter has no 1:1 correspondence to the population size parameter Nt
K used

in stochastic model. Also note that similar behaviour of stochastic and HJ model are reproduced

under a bit different values of parameters. It is caused by the rescaled time and mutation kernel, so

that the rigorous link between the two models is still to be developed.

Another interesting thing to comment is that on Figure 5.5b we may notice that, from the dynamics

of the mean trait and the density of the population, it is easy to estimate the periods of the system.

Indeed, since the system is deterministic, we just have to compute the distances between local

maxima on each curve. For the stochastic system this task is more difficult, especially for a small

population, because it includes a filtering problem of a noisy signal. To get more accurate results in

the stochastic model we have to increase the time scale and number of individuals, which is costly from

a computational point of view. However, if our goal is to study numerically the lineages which lead to

the evolutionary rescue of the population, it is still more straightforward to use the individual-based

model.

To finish with, let us give some flavor on the computational cost of the simulations for each type.

In Table 1 we give a short overview of the elapsed time for the same values of parameters, but for

different schemes. As expected, individual-based model is the most expensive to compute. All the

computations were performed in numpy library of Python on MacBook Pro (Intel Core i5 processor,

2,7GHz).

∆ = 0.1, T = 10 ∆ = 0.01, T = 10

SM (N = 1000) 3.883s 38.145s

SM (N = 10000) 15.805s 153.255s

PDE (ε = 1) 0.186s 1.673s

HJ (ε = 10−2) 0.191s 1.636s

HJ (ε = 10−6) 0.195s 1.656s

Table 1: Elapsed time for the simulation of population dynamics for different models (other parameters are

fixed to values used throughout all the other simulations, τ = 0.5).

5.3.4 Comparison of the theoretical analysis of the Hamilton-Jacobi equation and the numerical

simulations of the stochastic model

5.3.4.1 Formal computations

In this section, we propose some formal computations for the stochastic model, based on the analysis

of the Hamilton-Jacobi equation performed in the previous section. To fix ideas, we assume n = 1 and

(5.3)-(5.12)-(5.13), and we fix all constants but τ0, as in the previous section. However, we choose the

function α as a Heaviside function (this is what has been used in the simulations), which is not a

smooth function, and thus will lead to minor modifications compared to the previous section.
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We make a strong formal assumption: taking K � 1, we assume that the population behaves like a

normally distributed random variable all the time, i.e

νKt (dx) = ρ(t)
1√

2πs(t)
e
− |x−x̄(t)|

2

2s(t)2 dx,

for some standard deviation s(t) and for x̄(t) defined in (5.9). We expect s(t) to be of the same order

as σ, but giving a general estimate for s(t) in function of x̄(t) seems intricate. The normalized size of

the population ρ(t) := NKt
K is approximately given by (see (5.11))

ρ(t) =
1
C
r(x̄(t)), (5.34)

where r is defined in (5.18).

We now formally compute the evolutionary singular state x?. But as α is a Heaviside function

(which formally corresponds to the case when δ → 0 in (5.19)), our derivations must be slightly

adapted. In particular, τ (x− x̄(t)) in (5.8) has to be replaced by∫
R

τ (x− y)ν
K
t (dy)

ρ(t)
,

and accordingly, recalling that the weak derivative of a Heaviside is a Dirac mass at 0, τ ′(0) in (5.19)

has to be replaced by ∫
R

τ ′(x̄(t)− y)ν(dy)
ρ(t)

=
2τ0√

2πs(t)
.

We find

x? =
τ0√

2πs?dr
, (5.35)

where s? is an unknown corresponding to the standard deviation of the population at equilibrium

concentrated at x = x?. Note that it corresponds to (5.19) with δ̃ := s?
√
π/2.

We now try to estimate s?. Formally, s? should be such that u?(x) := −(x−x?)2

2s2
?

is a stationary

solution of (5.8). Differentiating twice, and applying at x = x? we find

0 = brσ
2 (u′′?(x?))2 − 2dr,

(with the reasonable assumption τ ′′(0) = 0), which gives

s? =

√
σ

√
br

2dr
.

Numerically, we find s? = 0.12. We end up with the following formula:

x? =
τ0√

2πσdr
4

√
2dr
br

. (5.36)

5.3.4.2 Stabilization

We run a numerical test on the stochastic model corresponding to stabilization, for τ0 = 0.02, and the

other parameters as in Figure (5.1a). In this case, x? correspond to the mean trait of the population for

large time. From, (5.36) we find x? = 0.067, and from (5.34), we obtain ρ? = 1.99, which corresponds

to what we can see on Figure (5.1a).
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5.3.4.3 Threshold for cycles

Since equation (5.20) remains unchanged, we obtain the following threshold for cycles (corresponding

to (5.21)):

τcyc = 2πdrσ
√

br
2dr

.

With our choice of parameters, we obtain τcyc = 0.09. This threshold corresponds to the numerical

simulations (however, characterizing precisely whether cycles occurs or not on the numerical simulations

is not easy when τ0 is close to the threshold).

5.3.4.4 Threshold for extinction

Using (5.22), we can also find a threshold for extinction:

τext :=
√

2πbrdrσ 4

√
br

2dr
.

For our choice of parameters, we obtain τext = 0.30.

We now compare this formula with numerical experiments on the individual-based model. They

are organized as follows: we fix the birth br or the death rate dr, and save the first value of τ0 under

which the extinction occurs. Then, we increase the rate and save the next HT rate under which we

have an extinction. The resulting curve for the birth rate is saved on Figure 5.6a (for death rate:

Figure 5.6b). Non-concerned parameters remain fixed as in Subsection 5.3.1.

The numerical results, in particular, justify the at the first glance surprising fact that the extinction

threshold depends on the birth and death rate in the same manner. It seems logical to assume

that while a higher birth rate contributes to a bigger survival probability even with a relatively big

horizontal transfer rate, a higher death rate must have an opposite effect. However, in conditions of a

very ”harsh” environment individuals with non-fit traits die out before they manage to transfer their

genetic information to the other individuals. As a consequence, the value of the critical τ increases as

the value of the birth (or death) rate constant increases.

(a) Birth dependency (b) Death dependency

Figure 5.6: Dependency on the threshold for extinction τext with respect to the birth rate br and death rate dr



112 horizontal gene transfer: stochastic and deterministic approaches. numerical study.

conclusions

A first achievement of this chapter consists in an accurate numerical study conducted on the stochastic

model given by a point measure (5.1). To the best of our knowledge, in-depth analysis of the influence

of the HT rate on the evolutionary dynamics has not been yet attempted. Along with its accuracy, the

stochastic model reveals its limitation: an accurate theoretical description of what actually happens

in each observed scenario from a mathematical point of view seems to be out of reach. However, we

show that this model can be used for tracing back the lineage of the survived individuals through

several generations.

In a next step, in a numerical comparative study between the stochastic (individual based) and the

PDE (density) model both models exhibit the same behavior for a given set of parameters, which

justifies theoretical results from Billiard et al. (2016b, 2015). Minor differences (in particular, the

presence of damping oscillations) can be explained by a choice of a numerical scheme. However,

further analysis shows that the classical PDE model defined by (5.2.2) leads to instabilities if we try

to pass to an asymptotic setting under the small mutation assumption. Those instabilities are then

resolved by a transformation of an initial model to a Hamilton-Jacobi type equation and using an

asymptotic-preserving scheme. A further advantage of this approach is that the resulting equation

(5.7) is easier to analyze from a theoretical point of view than, for example, the stochastic model.

Finally, in a Hamilton-Jacobi setting we manage to numerically replicate the evolutionary rescue

of a small population which we observe in the stochastic model. This phenomena is illustrated for

stochastic, PDE and HJ simulation on Figure 5.7. On Figures 5.7a-5.7c we trace the moment of the

regrowth for different models. Figure 5.7a show the state of the population at a certain moment of

time: we see how the individuals are centered around a mean trait. For the PDE and HJ model

(red and green line respectively) we simply plot the density function, and on the first (blue) plot we

approximate a histogram which describes ratio Nt
K sorted by traits in stochastic model. Stochastic

simulations show the evolutionary rescue in a more distinct manner: we see how the very small number

of non-mutated individuals rescues the whole population from extinction (transition from 5.7b to

5.7c). On the contrary, the transition on the PDE model is dumped, and the regrowth is not clearly

visible. It is due to, again, numerical instability of the PDE scheme for small values of the density

function. Finally, HJ explicitly shows how the cycle occurs: the regrow of the ”fit” individuals we see

in stochastic plot is reproduced by a change of the maximum point (see again 5.7b to 5.7c).

We highlight again that in order to compare the models on a more applied level, we have to give a

formal definition of a quantity represented by ρ in a Hamilton-Jacobian case. In this work we have

made few steps toward the theoretical analysis of the limiting equation and an accurate description

of each event (evolutionary rescue, extinction, etc) in terms of solutions of a PDE. Even though

establishing a rigorous mathematical link between the behavior observed in the individual-based model

and the Hamilton-Jacobi equation is out of scope of this project, the obtained analytic results already

give a flavor of how the analysis of the evolutionary dynamics can be simplified in the future.
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(a) t = 167 (b) t = 198 (c) t = 216

Figure 5.7: Comparison of numerical simulations between the different models. τ0 = 0.4, ε = 0.1, δ = 0.001

and other parameters as in Figure 5.1. Blue line stands for the stochastic model, red line: for a

PDE, green — for a Hamilton-Jacobi PDE
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PA R A M E T R I C I N F E R E N C E FO R H Y P O E L L I P T I C E RG O D I C

D I F F U S I O N S W I T H F U L L O B S E RVAT I O N S

This Chapter is based on the article Melnykova (2020), published in Statistical Inference for Stochastic

Processes.

Abstract. Multidimensional hypoelliptic diffusions arise naturally in different fields, for example

to model neuronal activity. Estimation in those models is complex because of the degenerate structure

of the diffusion coefficient. In this Chapter we consider hypoelliptic diffusions, given as a solution of

two-dimensional stochastic differential equations (SDEs), with the discrete time observations of both

coordinates being available on an interval of length T = n∆n, with ∆n the time step between the

observations. The estimation is studied in the asymptotic setting, with T →∞ as ∆n → 0. We build

a consistent estimator of the drift and variance parameters with the help of a discretized log-likelihood

of the continuous process. We discuss the difficulties generated by the hypoellipticity and provide

a proof of the consistency and the asymptotic normality of the estimator. We test our approach

numerically on the hypoelliptic FitzHugh-Nagumo model, which describes the firing mechanism of a

neuron.

Résumé. Les diffusions hypoelliptiques multidimensionnelles apparaissent naturellement dans

différents domaines, par exemple pour modéliser l’activité neuronale. L’estimation dans ces modèles

est complexe en raison de la structure dégénérée du coefficient de diffusion. Nous construisons un

estimateur consistent et asymptotiquement normal des paramètres de la dérive et de la variance à

l’aide d’une log-vraisemblance discrétisée du processus continu lorsque des observations temporelles

discrètes des deux coordonnées sont disponibles sur un intervalle de longueur T = n∆n, avec ∆n le

pas de temps entre les observations. Nous discutons des difficultés générées par l’hypoellipticité et

apportons une preuve de la consistance et de la normalité asymptotique de l’estimateur dans le cadre

asymptotique T →∞ lorsque ∆n → 0. Nous testons notre approche numériquement sur le modèle

hypoelliptique de FitzHugh-Nagumo, qui décrit le mécanisme du tir d’un neurone.

6.1 introduction

Hypoelliptic diffusions naturally occur in various applications, most notably in neuroscience, molecular

physics and mathematical finance. In particular, neuronal activity of one single neuron (Höpfner

117
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et al., 2016a, Leon and Samson, 2018), or a large population of neurons (Ditlevsen and Löcherbach,

2017, Ableidinger et al., 2017), or exotic models of option pricing (Malliavin and Thalmaier, 2006) are

described by hypoelliptic diffusions.

The main difference between classical (or elliptic) and hypoelliptic systems of stochastic differential

equations (SDE) is that in the latter case the rank of the diffusion matrix is lower than the dimension

of the system itself. More formally, hypoellipticity can be explained in the following way: though the

covariance matrix is singular, smooth transition densities with respect to the Lebesgue measure still

exists. That is the case when the noise is propagated to all the coordinates through the drift term.

Hypoelliptic SDEs present a number of extra challenges in comparison to elliptic systems. The most

important problem is the degenerate diffusion coefficient. As the explicit form of transition densities

of a SDE is often unknown, parametric inference is usually based on discrete approximation with

a piece-wise Gaussian processes (see, for example Kessler (1997)). But in the hypoelliptic case this

approach cannot be applied directly because the covariance matrix of the approximated transition

density is not invertible, since its rank is smaller than the dimension of the system. The second

problem is that each coordinate has a variance of different order. It needs to be taken into account

when constructing the discretization scheme for approximating the density.

Now let us be more specific. Consider a two-dimensional system of stochastic differential equations

of the form: dXt = a1(Xt,Yt; θ(1))dt

dYt = a2(Xt,Yt; θ(2))dt+ b(Xt,Yt;σ)dWt,
(6.1)

where (Xt,Yt)T ∈ R × R, (a1(Xt,Yt; θ(1)), a2(Xt,Yt; θ(2)))T is the drift term, (0, b(Xt,Yt;σ))T

is the diffusion coefficient, Wt is a standard Brownian motion defined on some probability space

(Ω, (Ft)t≥0,P), where Ft contains the information about all states of the process until time t.

(θ(1), θ(2),σ) is the vector of the unknown parameters, taken from some compact set Θ1 ×Θ2 × Ξ,

and (x0, y0) is a bounded F0-measurable random variable, thus independent on (Xt,Yt).

The goal of this chapter is to estimate the parameters of (6.1) from discrete observations of both

coordinates X and Y . It is achieved in two steps: first, we consider a discretization scheme in order

to approximate the transition density of the continuous process. Then we propose an estimation

technique which maximizes the likelihood function of the discrete approximate model in the asymptotic

setting T = n∆n → ∞ and ∆n → 0 as n → ∞. Let us first discuss the solutions for hypoelliptic

systems proposed by other authors.

Several works treat the parametric inference problem for a particular case of system (6.1), the class

of stochastic Damping Hamiltonian systems, also known as Langevin equations (Gardiner and Collett,

1985). These hypoelliptic models arise as the stochastic expansion of 2-dimensional deterministic

dynamical systems — for example, the Van der Pol oscillator (Van der Pol, 1920) perturbed by noise.

They are defined as the solution of the following SDE:dXt = Ytdt

dYt = a2(Xt,Yt; θ)dt+ b(Xt,Yt;σ)dWt.
(6.2)
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The particular case of Hamiltonian systems with b(Xt,Yt;σ) ≡ σ and a2(Xt,Yt; θ) = g1(Xt; θ)Xt +

g2(Xt; θ)Yt is considered in Ozaki (1989), where the link between the continuous-time solution of (6.2)

and the corresponding discrete model is obtained with the so-called local linearization scheme. The

idea of this scheme is the following: for a SDE with a non-constant drift and a constant variance,

its solution can be interval-wise approximated by the solution of a system with a linear drift (see

Biscay et al. (1996), Ozaki (2012), Jimenez and Carbonell (2015)). This scheme allows to construct a

quasi Maximum Likelihood Estimator. Consistency of the estimator based on the local linearization

scheme for Hamiltonian SDEs is proven in León et al. (2018). Pokern et al. (2007) attempt to solve

the problem of the non-invertibility of the covariance matrix for the particular case of (6.2) with a

constant variance with the help of Itô-Taylor expansion of the transition density. The parameters

are estimated with the Gibbs sampler based on the discretized model with the noise propagated to

the first coordinate with order ∆
3
2
n . This approach allows to estimate the variance coefficient, but it

is not suitable for estimating the parameters of the drift term. In Samson and Thieullen (2012) it

is shown that a consistent estimator for fully and partially observed data can be constructed using

only the discrete approximation of the second equation of system (6.2). This method can be used in

practice even for more general models, under the condition that the system (6.1) can be converted to

the simpler form (6.2). However, this transformation of the observations sampled from the continuous

model (6.1) often requires the prior knowledge of the parameters involved in the first equation which

is often unrealistic. The particular case of (6.1), when b(Xt,Yt;σ) ≡ σ and the drift term is linear

and thus the transition density is known explicitly, is treated in Le-Breton and Musiela (1985). A

consistent maximum likelihood estimator is then constructed in two steps — first, a covariance matrix

of the process is estimated from the available continuous-time observations, and then it is used for

computing the parameters of the drift term. The resulting estimator is strongly consistent as T →∞.

Few works are devoted to the non-parametric estimation of the drift and the variance terms (Cattiaux

et al., 2014, 2016).

To the best of our knowledge for systems (6.1) the only reference is Ditlevsen and Samson (2017).

They construct a consistent estimator using a discretization scheme based on a Itô-Taylor expansion.

To take into account different variance orders in each variable they construct two separate estimators

for the rough and the smooth variables. However, this approach has several limitations. The first

problem consists in minimizing two different criteria simultaneously, which is not very natural from a

numerical point of view. The second problem is that in order to prove the convergence of the estimator

for each variable, the parameters in the other variable need to be fixed to their true values.

In this chapter, we want to avoid these limitations by proposing a single estimation criteria, able to

estimate simultaneously all the parameters. This allows to prove the theoretical convergence of the

vector of estimators, without any assumption on the knowledge of a set of parameters. Moreover, we

illustrate that from a numerical point of view, the estimation of the first coordinate parameters is less

biased than the one obtained with the approach proposed by Ditlevsen and Samson (2017). More

precisely, we develop a new estimation method, adjusting the local linearization scheme described in

Ozaki (1989) developed for the models of type (6.2) to the more general class of SDEs (6.1). Under
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the hypoellipticity assumption this scheme propagates the noise to both coordinates of the system

and allows to obtain an invertible covariance matrix. We start with describing the discretization

scheme, proving the rate of convergence even when only one part of the parameters is fixed at the true

value. Then we propose a contrast estimator based on the discretized log-likelihood, estimating the

parameters included in the drift and diffusion coefficient simultaneously. We study the convergence

of the scheme and prove the consistency and the asymptotic normality of the proposed estimator

based on the 2-dimensional contrast. To the best of our knowledge, the proof of this consistency is

new in the literature. We finish with numerical experiments, testing the proposed approach on the

hypoelliptic FitzHugh-Nagumo model and compare it to the other estimators.

This Chapter is organized as follows: Section 6.2 presents the model and assumptions. The discrete

model is introduced in Section 6.3. The estimators are studied in Section 6.4 and illustrated numerically

in Section 6.5. We close with Section 6.6, devoted to conclusions and discussions. The proofs are

gathered in Appendix.

6.2 models and assumptions

We assume that both variables of (6.1) are discretely observed at equally spaced periods of time ∆n on

the time interval [0,T ]. The vector of observations at time i∆n is denoted by Zi = (Xi,Yi)T , where

Zi is the value of the process at time i∆n, i ∈ 0 . . . n = T
∆n . We further assume that it is possible to

draw a sufficiently large and accurate sample of data, i.e that T = n∆n →∞, with the partition size

∆n → 0 as n→∞. Let us also introduce the vector notations:

dZt = A(Zt; θ)dt+B(Zt;σ)dWt, Z0 = z0, t ∈ [0,T ] (6.3)

where Zt = (Xt,Yt)T , Wt is a two-dimensional Brownian motion defined on the filtered prob-

ability space, z0 = (x0, y0), and θ = (θ(1), θ(2)) is the vector of drift parameters. The matri-

ces A and B represent, respectively, the drift and the diffusion coefficient, that is A(Zt; θ) =

(a1(Xt,Yt; θ(1)), a2(Xt,Yt; θ(2)))T and

B(Zt;σ) =

0 0

0 b(Zt;σ)

 .

Throughout the Chapter we use the following abbreviations for the partial derivatives (unless the

arguments need to be specified): ∂xif ≡
∂f
∂xi

(x1, . . . ,xp), ∂2
xi,xj ≡

∂2f
∂xi∂xj

(x1, . . . ,xp) ∀i, j ∈ [1, p]. We

suppress the dependency on the parameters, when their values are clear from the context, otherwise

additional indexes are introduced. True values of the parameters are denoted by θ(1)0 , θ(2)0 ,σ0 and P0

is the probability P
θ
(1)
0 ,θ(2)0 ,σ0

. We also refer to the variable Yt which is directly driven by the Gaussian

noise as ”rough”, and to Xt as ”smooth”.

We are working under the following set of assumptions:

A1 The functions a1(Zt; θ(1)), a2(Zt; θ(2)) and b(Zt;σ) have bounded partial derivatives of every

order, uniformly in θ and σ respectively. Furthermore ∂ya1 6= 0 ∀(x, y) ∈ R2.
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A2 Global Lipschitz and linear growth conditions. ∀t, s ∈ [0,∞) ∃Kθ s.t.:

‖A(Zt; θ)−A(Zs; θ)‖+ ‖B(Zt;σ)−B(Zs;σ)‖ ≤ Kθ‖Zt −Zs‖

‖A(Zt; θ)‖2 + ‖B(Zt;σ)‖2 ≤ K2
θ (1 + ‖Zt‖2),

where ‖ · ‖ is the standard Euclidean norm.

A3 The process (Zt)t≥0 is ergodic and there exists a unique invariant probability measure ν0 with

finite moments of any order.

A4 The functions a1(Zt; θ(1)), a2(Zt; θ(2)) and b(Zt;σ) are identifiable. By the identifiability we

mean that u(Zt; θ) ≡ u(Zt; θ0) ⇔ θ = θ0. The diffusion coefficient is assumed to be strictly

positive with a non-zero derivative with respect to σ, that is b(Zt;σ) > 0, ∂σb(Zt;σ) 6= 0 ∀t.

Further, we introduce a rather restrictive assumption, which will be required for the study of the

consistency and asymptotic normality of the parameter estimator.

A5 The function a1(Zt; θ(1)) can be represented in the following form:

a1(z; θ(1)) = f(z) + (θ(1))T g(x), (6.4)

where g(x) is a vector-valued function of the same dimension as the vector θ(1), f(z) is a

continuous function. The functions f(z) and g(x) are such that the assumptions (A1)-(A4) hold

everywhere.

The full force of the last assumption will be explained in Section 6.4.1, when the estimator is introduced.

The representation (6.4) implies that the derivative ∂ya1 does not depend on the parameter θ(1). It

will be shown in Section 6.3 that the marginal variance of variable X depends on ∂ya1. However,

condition (A5) ensures that θ(1) appears only in the drift, which simplifies the analysis. We note

however that in practice the estimator shows good results even when (A5) does not hold, as it will be

shown in the simulation study.

Assumption (A1) ensures that the system is hypoelliptic in the sense of the stochastic calculus of

variations (Nualart, 2006, Malliavin and Thalmaier, 2006). In order to prove it we first write the

coefficients of the system (6.3) as two vector fields, converting (6.3) from the Itô to the Stratonovich

form:

A0(x, y) =

 a1(x, y; θ(1))

a2(x, y; θ(2))− 1
2b(x, y;σ)∂yb(x, y;σ)

 A1(x, y) =

 0

b(x, y;σ)

 .

Then their Lie bracket is equal to

[A0,A1] =

 ∂ya1(x, y; θ(1))

∂xa2(x, y; θ(2))− 1
2∂xb(x, y;σ)∂2

xyb(x, y;σ)

 .

By (A1) the first element of this vector is not equal to 0, thus we conclude that A1 and [A0,A1]

generate R2. That means that the weak Hörmander condition is satisfied and as a result the transition

density for the system (6.3) exists (even if it is not always possible to write it in an explicit form).



122 parametric inference for hypoelliptic ergodic diffusions with full observations

(A2) is a sufficient condition to ensure the existence and uniqueness in law of the strong solution of

system (6.3), moreover this solution is Feller (Revuz and Yor, 2013). However, the Feller property

and the existence of the strong solution often hold under milder assumptions, thus (A2) can be often

relaxed. (A4) is a standard identifiability condition which is needed to prove the consistency of the

estimator. (A3) ensures that we can apply the ergodic theorem. That is, for any continuous function

f of polynomial growth at infinity:

1
T

∫ T

0
f(Zs)ds −→

T→∞
ν0(f) a.s.,

where ν0(·) is the stationary density of the model (6.3). By choosing this notation we highlight that

ν0(·) := ν
θ
(1)
0 ,θ(2)0 ,σ0

(·).

We do not investigate the conditions under which the process (Zt)t≥0 is ergodic as it is not the

main focus of this work. Ergodicity of the stochastic damping Hamiltonian system (6.2) is studied

in Wu (2001). Conditions for a wider class of hypoelliptic SDEs can be found in Roynette (1975),

Mattingly et al. (2002), Arnold and Kliemann (1987). It is also important to know that if the process

(Zt)t≥0 is ergodic then its sampling {Zi}, i ∈ [0,n] is also ergodic (Genon-Catalot et al., 2000).

6.3 discrete model

In this section we introduce a Local Linearization scheme, which approximates the solution Zt of

(6.3) by the solution of a piece-wise linear autonomous equation. This solution has a piece-wise

Gaussian density. We use the approximated solution to construct a discretization scheme and study

its properties.

6.3.1 Approximation with the Local Linearization scheme

Local Linearization refers to the family of approximation schemes studied by different authors (Biscay

et al., 1996, Ozaki, 2012, Jimenez and Carbonell, 2015). The idea consists in approximating the

solution of a general SDE by the solution of an autonomous linear SDE, which can be solved explicitly.

Before we proceed to the derivation of the scheme, let us introduce some additional notations. The

Jacobian of the drift vector A(z; θ) is given by∂xa1(x, y; θ(1)) ∂ya1(x, y; θ(1))

∂xa2(x, y; θ(2)) ∂ya2(x, y; θ(2))

 =: J(z; θ). (6.5)

We also define the Hessian matrix of the j−th coordinate (j = 1, 2) in the drift vector A(Zt; θ) as:∂2
xxaj(x, y; θ(j)) ∂2

xyaj(x, y; θ(j))

∂2
yxaj(x, y; θ(j)) ∂2

yyaj(x, y; θ(j))

 =: Haj (z; θ(j)).

For further use we also compute the following operator, which corresponds to the cross-term between

the diffusion and drift in the Itô-Taylor-expansion for each coordinate:

Tr
[
BT (z;σ)Haj (z; θ(j))B(z;σ)

]
= b2(z;σ)∂2

yyaj(z; θ(j)).
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We now consider the Itô-Taylor expansion of the drift term on the interval t ∈ [i∆n, (i+ 1)∆n]:

A(zt; θ) ≈ A(zi; θ) + J(zi; θ)(zt − zi) +
(t− i∆n)2

2 b2(zi;σ)∂2
yyA(zi; θ),

where ∂2
yyA(z; θ) := (∂2

yya1(z; θ(1)), ∂2
yya2(z; θ(2)))T .

This transformation allows us to find an approximate solution of (6.3). We introduce a new process

(Z̃t)t∈[i∆n,(i+1)∆n] which is the solution of the following linear equation (see Section 5.6 in Karatzas

and Shreve (1987)):

dZ̃t =

(
A(Z̃i; θ) + J(Z̃i; θ)(Z̃t − Z̃i) +

1
2b

2(Z̃i;σ)∂2
yyA(Z̃i; θ)(t− i∆n)

)
dt + B(Z̃i; θ)dWt.

The solution for the above equation is given for t ∈ [i∆n, (i+ 1)∆n] by

Z̃t = Z̃i +

∫ t

i∆n
eJ(Z̃i;θ)(t−s)

(
A(Z̃i; θ)− J(Z̃i; θ)Z̃i +

1
2b

2(Z̃i;σ)∂2
yyA(Z̃i; θ)(s− i∆n)

)
ds+∫ t

i∆n
eJ(Z̃i;θ)(s−i∆n)B(Z̃i; θ)dWs. (6.6)

Note that conditionally on Z̃i, Z̃i+1 is a normal variable, whose expectation and variance are given,

respectively, by:

E
[
Z̃i+1|Z̃i

]
= Z̃i +

∫ (i+1)∆n

i∆n
eJ(Z̃i;θ)((i+1)∆n−s)·(
A(Z̃i; θ)− J(Z̃i; θ)Z̃i +

1
2b

2(Z̃i;σ)∂2
yyA(Z̃i; θ)(s− i∆n)

)
ds (6.7)

Σ
[
Z̃i+1|Z̃i

]
= E

[(∫ (i+1)∆n

i∆n
eJ(Z̃i;θ)((i+1)∆n−s)B(Z̃i;σ)dWs

)
·

(∫ (i+1)∆n

i∆n
eJ(Z̃i;θ)((i+1)∆n−s)B(Z̃i;σ)dWs

)T . (6.8)

The approximation of the solution of (6.3) (Z̃i)i≥0 is then defined recursively as a sum of random

variables with mean and variance given by (6.7) and (6.8). However, these expressions are not

convenient for the numerical implementation because of the integrals and the matrix exponents. One

possible solution is to rely on numerical integration algorithms when implementing the scheme. But

we propose to simplify (6.7)-(6.8) in order to obtain the final scheme which is easier to implement

and analyze from the theoretical point of view. We use the following propositions, whose proofs are

postponed to appendix:

Proposition 6.1. The component-wise drift approximation for (6.7) is given by:

E
[
Z̃i+1|Z̃i

]
=

Ā1

Ā2

+O(∆3
n),



124 parametric inference for hypoelliptic ergodic diffusions with full observations

where Ā1 and Ā2 are given as follows:

Ā1(Z̃i; θ(1), θ(2),σ) := X̃i + ∆na1(Z̃i; θ(1))+

∆2
n

2

(
∂a1(Z̃i; θ(1))

∂x
a1(Z̃i; θ(1)) +

∂a1(Z̃i; θ(1))
∂y

a2(Z̃i; θ(2))
)
+

∆2
n

4 b2(Z̃i;σ)∂2
yya1(Z̃; θ(1))

Ā2(Z̃i; θ(1), θ(2),σ) := Ỹi + ∆na2(Z̃i; θ(2))+

∆2
n

2

(
∂a2(Z̃i; θ(2))

∂x
a1(Z̃i; θ(1)) +

∂a2(Z̃i; θ(2))
∂y

a2(Z̃i; θ(2))
)
+

∆2
n

4 b2(Z̃i;σ)∂2
yya2(Z̃; θ(2)).

(6.9)

Proposition 6.2. The matrix Σ[Z̃i+1|Z̃i] defined in (6.8) is approximated by:

b2(Z̃i;σ)

 (∂ya1)
2 ∆3

n
3 (∂ya1)

∆2
n
2 + (∂ya1)(∂ya2)

∆3
n
3

(∂ya1)
∆2
n
2 + (∂ya1)(∂ya2)

∆3
n
3 ∆n + (∂ya2)

∆2
n
2 + (∂ya2)2 ∆3

n
3

+O(∆4
n), (6.10)

where the derivatives are computed at time i∆n.

Both from the theoretical and computational point of view, it is enough to use only the lower-order

terms of (6.10). Thus, we define:

Σ∆n(Z̃i+1; θ,σ2) := b2(Z̃i;σ)

(∂ya1(Z̃i; θ(1))
)2 ∆3

n
3 ∂ya1(Z̃i; θ(1))∆2

n
2

∂ya1(Z̃i; θ(1))∆2
n
2 ∆n

 . (6.11)

The inverse of (6.11) is defined by:

Σ−1
∆n(Z̃i+1; θ,σ2) =

1
b2(Z̃i;σ)

 12
(∂ya1(Z̃i;θ(1)))

2∆3
n

− 6
∂ya1(Z̃i;θ(1))∆2

n

− 6
∂ya1(Z̃i;θ(1))∆2

n

4
∆n

 . (6.12)

Finally, the element-wise approximation of Z̃i+1 conditionally on Z̃i is written as:

X̃i+1 = Ā1(Z̃i; θ(1), θ(2),σ) + ξ1,i

Ỹi+1 = Ā2(Z̃i; θ(1), θ(2),σ) + ξ2,i,
(6.13)

where (ξ1,i) and (ξ2,i) are normal random sequences with zero means, independent in i, such that

the covariance matrix of vector (ξ1,i, ξ2,i) is given by (6.11). Numerically they can be simulated by

decomposing the matrix (6.11) with the help of the LU or Cholesky decomposition, i.e. any matrix

B̄(Zi; θ,σ2) such that B̄B̄T = Σ(Zi; θ,σ2), and multiply it by a 2-dimensional vector whose entries

are independent standard normal variables. The chosen method of the decomposition does not affect

the theoretical properties of the scheme. Note that the approximated diffusion term now depends on

the parameters of the drift term. It is proven that the approximated solution Z̃t converges weakly to

the true solution Zt with order 2 (see Theorem 2 in Jimenez and Carbonell (2015)).

Now we want to study component-wise the moments of the obtained discretization, built on the

observations of the process (Zt)t≥0. We will rely on the result of the following Proposition (recall

that the true value of the vector of parameters is denoted by θ0):
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Proposition 6.3 (Moments of the discretized process). The following holds:

E
[
Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)|Zi

]
= O(∆3

n)

E
[
Yi+1 − Ā2(Zi; θ(1)0 , θ(2)0 ,σ0)|Zi

]
= O(∆3

n)

E

[(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)

)2
|Zi
]
= (∂ya1)

2
θ
(1)
0

∆3
n

3 b2(Zi;σ0) +O(∆4
n)

E

[(
Yi+1 − Ā2(Zi; θ(1)0 , θ(2)0 ,σ0)

)2
|Zi
]
= ∆nb2(Zi;σ0) +O(∆2

n)

E
[(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)

)(
Yi+1 − Ā2(Zi; θ(1)0 , θ(2)0 ,σ0)

)
|Zi
]
= (∂ya1)

θ
(1)
0

∆2
n

2 b2(Zi;σ0) +O(∆3
n),

where E is taken under P0 and the derivatives ∂ya1 are computed at time i∆n.

Proof. The moments of the Feller process can be approximated by its generator (Kloeden et al., 2003).

That is, for a sufficiently smooth and integrable function f : R×R→ R:

E(f(Zt+∆n)|Zt = z) =

j∑
i=0

∆in
i!
Lif(z) +O(∆j+1

n ), (6.14)

where Lif(z) is the i times iterated generator of model (6.3) given by

Lf(z) = (∂zf(z))A(z) +
1
2 5

2
B f(z),

where 52
B(·) = b2(z;σ) ∂2

∂y2 (·) is a weighted Laplace type operator. Since the process is approximated

by (6.9), it coincides with (6.14) up to the terms of order ∆2
n.

Further, we need an extension of Proposition 6.3 which gives the order of moments of the increments

of the discrete process when parameters are fixed to their true values only partly. By doing that, we

loose one order of accuracy in the first two bounds, but the results for the variance remain unchanged.

Note however that we cannot obtain the last three terms unless θ(1) = θ
(1)
0 . This is the main technical

challenge to overcome when constructing an estimator.

Proposition 6.4. The following holds:

(i) E
[
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)|Zi

]
= O(∆2

n)

(ii) E
[
Yi+1 − Ā2(Zi; θ(1), θ(2)0 ,σ)|Zi

]
= O(∆2

n)

(iii) E

[(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)2
|Zi
]
= (∂ya1)

2
θ
(1)
0

∆3
n

3 b2(Zi;σ) +O(∆4
n)

(iv) E
[
(Yi+1 − Yi)2 |Zi

]
= ∆nb2(Zi;σ) +O(∆2

n)

(v) E
[(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(Yi+1 − Yi) |Zi

]
= (∂ya1)

θ
(1)
0

∆2
n

2 b2(Zi;σ) +O(∆3
n),

where E is taken under P0 and the derivatives ∂ya1 are computed at time i∆n.

Proof. We show the result for (i) and (iii). Start with (i):

Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ) = Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)+

Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)− Ā1(Zi; θ(1)0 , θ(2),σ).
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The difference E
[
Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)|Zi

]
= O(∆3

n) by Proposition 6.3 and the assumption

(A2). It remains to consider the second part:

Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)− Ā1(Zi; θ(1)0 , θ(2),σ) =

∆2
n

2

∂a1(Zi; θ(1)0 )

∂y

(
a2(Zi; θ(2)0 )− a2(Zi; θ(2))

)
+
∂2
yya1(Z; θ(1)0 )

2
(
b2(Zi;σ0)− b2(Zi;σ)

) .

Thus, E
[
Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)|Zi

]
= O(∆2

n). Let us now consider (iii):

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)2
=
(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)

)2
+(

Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)− Ā1(Zi; θ(1)0 , θ(2),σ)
)2

+

2
(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)

)(
Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)− Ā1(Zi; θ(1)0 , θ(2),σ)

)
.

Again, by Proposition 6.3 and the previous computations we have the following:

E

[(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)

)2
|Zi
]
= (∂ya1)

2
θ0

∆3
n

3 b2(Zi;σ) +O(∆4
n)

E

[(
Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)− Ā1(Zi; θ(1)0 , θ(2),σ)

)2
|Zi
]
= O(∆4

n)

E
[
2
(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)

)(
Ā1(Zi; θ(1)0 , θ(2)0 ,σ0)− Ā1(Zi; θ(1)0 , θ(2),σ)

)
|Zi
]
= O(∆5

n).

The rest of the proof follows the same pattern.

6.4 parameter estimation

In this section we propose a contrast estimator based on the pseudo-likelihood function and prove its

consistency and asymptotic normality. Then we discuss other already known results for the linear

homogeneous SDEs (least squares estimator in particular) and show how it works in the general case.

6.4.1 Contrast estimator

Let us introduce the so-called contrast function for the system (6.3). This function is defined as −2

times the log-likelihood of the discretized model (Florens-Zmirou, 1989, Kessler, 1997):

Ln,∆n(θ,σ2;Z0:n) =
1
2

n−1∑
i=0

(Zi+1 − Ā(Zi; θ))TΣ−1
∆n(Zi; θ,σ

2)(Zi+1 − Ā(Zi; θ))

+
n−1∑
i=0

log det(Σ∆n(Zi; θ,σ2)), (6.15)

where the inverse matrix Σ−1
∆n is given by (6.12). Then the local linearization (LL) estimator is defined

as:

(θ̂n,∆n , σ̂2
n,∆n) = arg min

θ,σ2
Ln,∆n(θ,σ2;Z0:n), (6.16)
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where θ̂n,∆n = θ̂
(1)
n,∆n , θ̂(2)n,∆n .

Before proceeding to the proofs, let us explain how the contrast estimator works in the classical

elliptic setting and give a roadmap for the proofs of consistency and asymptotic normality of the

estimator (6.16), following Kessler (1997). The first notable difference between the estimator (6.16)

and the elliptic case is that in the elliptic case the estimation of the drift and the variance parameters

can be separated. For example, the contrast estimator for a 1-dimensional SDE discretized with the

Euler-Maruyama scheme is defined as follows:

(
θ̂, σ̂2) = arg min

θ,σ2

n∑
i=1

(
1
2
(Xi+1 −Xi − ∆na(Xi; θ))2

∆nb2(Xi;σ)
+ log b2(Xi;σ)

)
,

where a(x; θ) is a drift term. Here the estimation of the parameter θ is independent of the

value of σ, because the minimization of the criteria boils down to minimizing the expression

(Xi+1 −Xi − ∆na(Xi; θ))2 and θ̂ converges to θ0 with a rate
√
n∆n. For the variance term, the

estimator of σ converges independently of the value of θ, because (Xi+1 −Xi − ∆na(Xi; θ))2 is of

order ∆n for any θ and it is enough to ensure the convergence of the variance parameter. The conver-

gence rate for the variance is
√
n. This property is also shared by the estimator for the Hamiltonian

SDE proposed by Samson and Thieullen (2012).

In a general hypoelliptic setting the parametric inference is more complicated. First, the drift

parameter θ is contained in the covariance matrix Σ∆n . Second, the variance of the first variable

is of order ∆3
n, while for an arbitrary chosen vector of parameters θ(1) the expression (Xi+1 −

Ā1(Zi; θ(1), θ(2),σ))2 is of order ∆2
n. It is not enough to show the convergence of the diffusion

parameter in a standard way. From the practical point of view it means that if we launch the

minimization algorithm on (6.16) only with respect to θ(2) and σ2, it will not converge to the true

value. The inverse, however, is possible: using the Proposition 6.4 the consistency result for θ̂(1) can

be obtained without fixing θ(2) and σ.

Ditlevsen and Samson (2017) propose to overcome the problem of dependency between the estimators

by separating the estimation of the rough and smooth variables. They introduce two separate contrasts,

based on the approximate marginal distribution on each variable.

θ̂(1) = arg min
θ(1)

n−1∑
i=1

3
2

(
Xi+1 − Ā1(Zi; θ(1), θ(2)0 ,σ0)

)2

∆3
n

(
∂ya1(Zi; θ(1))

)2
b2(Zi;σ0)

+

log
(
∂ya1(Zi; θ(1))b(Zi;σ0)

)2
)

. (6.17)

(
θ̂(2), σ̂2

)
= arg min

θ(2),σ2

n−1∑
i=1

1
2


(
Yi+1 − Ā2(Zi; θ(1)0 , θ(2),σ)

)2

∆nb2(Zi;σ)
+ log b2(Zi;σ)

 . (6.18)

The estimation is then conducted as follows: first, the parameters of the first equation are estimated

from (6.17). Estimator (6.17) is shown to converge with rate
√

n
∆n . Since the parameters of the

second equation are contained only in higher order terms, they are shown to have no impact on the

convergence of the estimator. We are able to show that thanks to the Proposition 6.4. Then, the
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obtained value θ̂(1) is plugged in (6.18). The contrast is minimized with respect to σ and θ(2). It is

proven that the estimator θ̂(2) converges with the rate
√
n∆n and σ̂2 — with a rate

√
n. The rates

are identical to the rates of convergence obtained in Kessler (1997) for elliptic systems. The weak

point of the scheme is that in order to prove the convergence of the estimator (6.18) the value of θ(1)

needs to be fixed to θ(1)0 .

We choose a different approach and focus on the 2-dimensional contrast without splitting the

numerical procedure in two parts. We still need to take into account the different rates of convergence

and the eventual dependencies between the parameters. Thus, the proof of the consistency and

asymptotic normality is splitted in two principal steps. The first step is a proof of the consistency and

the convergence rate for θ̂(1)n,∆n (Theorem 6.1). Except for the unusual convergence rate, the proof

repeats the standard techniques from Kessler (1997) and Ditlevsen and Samson (2017), adapted to

the unknown value of θ(2). The second step, however, is more intricate. As in Ditlevsen and Samson

(2017), the estimators for θ(2) and σ2 do not converge for an arbitrary θ(1). However, we prove that

the consistency and the asymptotic normality still hold for θ̂(2)n,∆n and σ̂2
n,∆n , because the sequence of

estimators θ̂(1)n,∆n is tight and converges with rates proven in Theorem 6.1. It is proven at the cost of

an additional assumption (A5) on the function a1(Zt; θ(1)) in the drift term.

We begin the study of the theoretical properties of the estimator from the following Lemma, on

which the consistency of θ̂(1) crucially relies:

Lemma 6.1. Under the assumptions (A1)-(A4), and assuming ∆n → 0 and n∆n →∞, the following

holds:

lim
n→∞,∆n→0

∆n
n

[
Ln,∆n(θ

(1), θ(2),σ2;Z0:n)−Ln,∆n(θ
(1)
0 , θ(2),σ2;Z0:n)

]
P0−→

6
∫

(a1(z; θ(1)0 )− a1(z; θ(1)))2

b2(z;σ)(∂ya1)2
θ

ν0(dz).

Proof is postponed to Appendix. On the next step we obtain the consistency and the asymptotic

normality of (6.16) with respect to θ(1):

Theorem 6.1. Under the assumptions (A1)-(A5), and assuming ∆n → 0, n∆n →∞ and n∆2
n → 0,

the following holds:

θ̂
(1)
n,∆n

P0−→ θ
(1)
0 ,

√
n

∆n
(θ̂

(1)
n,∆n − θ

(1)
0 )

D−→

N

0, 3
(∫

(∂θ(1)a1)(∂θ(1)a1)T

b2(z;σ)(∂ya1)
ν0(dz)

)−1(∫
b2(z;σ0)

b4(z;σ) (∂θ(1)a1)(∂θ(1)a1)
T

(
1 + 1

(∂ya1)2

)
ν0(dz)

) ,

where ∂xa1 is a simplified notation for ∂xa1(z; θ(1)0 )

The asymptotic variance of the estimator slightly differs from the one obtained in Ditlevsen

and Samson (2017). It is because the 2-dimensional estimator contains the cross-terms of type

(Xi+1 − Ā1(Zi; θ(1), θ(2),σ))(Yi+1 − Ā2(Zi; θ(1), θ(2),σ)), not taken into account if the estimator is
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splitted in two separate contrasts for rough and smooth variables. The speed of convergence, however,

stays the same. Notice also that the assumption (A5) is not used for Lemma 6.1, on which the proof

of consistency relies. However, it is needed for the asymptotic normality. However, we do not need

θ(2) and σ2 to be known, on the contrary to Ditlevsen and Samson (2017).

The idea of the proof of consistency for the diffusion and the rough term parameters follows

Gloter and Sørensen (2009). Since we are working in a compact set, we can always find a sequence

of estimators θ̂(1)n,∆n such that the sequence (θ̂
(1)
n,∆n − θ

(1)
0 ) is tight. Then we use the tightness in

combination with the rate of convergence obtained in Theorem 6.1 and the continuous mapping

theorem for proving the consistency of the remaining terms in a standard way. On this stage we need

the additional assumption (A5). The reason for that is when the parameter θ(1) is included in the

derivative ∂ya1, this parameter is present both in the drift and the variance term, which substantially

complicates the study. Also, assuming the linear shape of a1 with respect to θ(1), one can fully use the

speed of convergence for θ̂(1)n,∆n obtained in Theorem 6.1. It is rather restrictive, but the idea of the

proof can be reused for a more general case. For example, consistency for the parameters of the rough

variable can be obtained under the condition of Lipschitz continuity with respect to parameter θ(1),

at the cost of additional technicalities, which are omitted in this work. The consistency follows from

the following Lemmas, on which Theorem 6.2 is based (the proofs of both Lemmas and the Theorem

are postponed to Appendix):

Lemma 6.2. Under assumptions (A1)-(A5), and assuming ∆n → 0 and n∆n → ∞, the following

holds:

lim
n→∞,∆n→0

1
n∆n

[
Ln,∆n(θ̂

(1)
n,∆n , θ(2),σ2;Z0:n)−Ln,∆n(θ̂

(1)
n,∆n , θ(2)0 ,σ2;Z0:n)

]
P0−→

2
∫

(a2(z; θ(2))− a2(z; θ(2)0 ))2

b2(z;σ) ν0(dz)

Lemma 6.3. Under assumptions (A1)-(A5), and assuming ∆n → 0 while n∆n →∞, the following

holds:
1
n
Ln,∆n(θ̂

(1)
n,∆n , θ(2),σ2;Z0:n)

P0−→
∫ (

b2(z;σ0)

b2(z;σ) + log b2(z;σ)
)
ν0(dz)

Theorem 6.2. Under assumptions (A1)-(A5), and assuming ∆n → 0, n∆n →∞ and n∆2
n → 0 the

following holds:

θ̂
(2)
n,∆n

P0−→ θ
(2)
0 , σ̂n,∆n

P0−→ σ0

and

√
n∆n(θ̂

(2)
n,∆n − θ

(2)
0 )

D−→ N

0,
(∫

(∂θ(2)a2(z; θ(2)0 ))(∂θ(2)a2(z; θ(2)0 ))T

b2(z,σ) ν0(dz)

)−1
√
n(σ̂n,∆n − σ0)

D−→ N

(
0, 2

(∫
(∂σb(z,σ0))(∂σb(z,σ0))T

b2(z,σ0)
ν0(dz)

)−1)
.

The obtained rates coincide with the rates in Ditlevsen and Samson (2017), but with the advantage

that we avoid fixing any of the parameters to their true value, instead we work with the estimated

sequence θ̂(1)n,∆n .
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6.4.2 Conditional least squares estimator

For certain applications it is natural to split the estimation of the parameters in the diffusion coefficient

and the drift term (see, for example, Le-Breton and Musiela (1985)). First, it reduces the dimension of

the optimization problem, and thus spares the computational cost. Second, it is easier to generalize the

drift-based least square estimator to high-dimensional hypoelliptic systems, when the approximation

of the diffusion matrix is difficult to compute. The idea is to compute the least square estimator of the

differences between the discrete observations of (Zt)t≥0 and the expectation of this process computed

with the LL scheme. For system (6.3) however we should be careful about the order of each difference.

In order for the estimator to converge properly we need to renormalize the expression. We do that as

follows:

θ̂LSEn,∆n :=
(
θ̂(1),LSE , θ̂(2),LSE

)T
(6.19)

where

θ̂
LSE,(1)
n,∆n := arg min

θ(1)

n−1∑
i=0

(
Xi+1 − Ā1(Zi; θ(1), θ(2),σ)

)2

∆3
n

θ̂
LSE,(2)
n,∆n := arg min

θ(2)

n−1∑
i=0

(
Yi+1 − Ā2(Zi; θ(1), θ(2),σ)

)2

∆n
,

where Āj(Zi; θ(1), θ(2),σ), j = 1, 2 are defined in (6.9). Using the same reasoning as for the LL contrast

we prove the next Theorem (the proof is postponed to appendix):

Theorem 6.3. Under the assumptions (A1)-(A4) and the conditions ∆n → 0, n∆→∞ and n∆2
n → 0

the following holds:

θ̂LSEn,∆n
P0−→ θ0,

and√ n
∆n (θ̂

LSE,(1)
n,∆n − θ0)

√
n∆n(θ̂

LSE,(2)
n,∆n − θ0)

 D−→ 2N

0, I2 ·

1
3
∫
b2(z;σ0)(∂ya1(z; θ(1)0 ))2(∂θ(1)a1(z; θ(1)0 ))2ν0(dz)∫

b2(z;σ0)(∂θ(2)a2(z; θ(2)0 ))2ν0(dz)

 ,

where I2 is a 2× 2 identity matrix, θ̂LSE,(j)
n,∆n denote the j−th element of the vector LLSEn,∆n(θ;Z0:n) and

Ci =

∫
(∂θ(i)ai(z; θ

(i)
0 ))(∂θ(i)ai(z; θ

(i)
0 ))T ν0(dz)

The advantage of this estimator over the LL contrast is that due to the absence of the cross-terms, the

estimation of both parameters is independent. For instance, in Theorem 6.3 we prove the consistency

of the estimator with respect to θ(2) without assumption (A5) and fixing θ(1) to the estimated sequence

θ̂
(1)
n,∆n . Also, since the term (∂ya1(z; θ(1)0 )) is not present in the variance, we do not need (A5) to

obtain the asymptotic normality for the estimator of θ(1). The asymptotic variance differs from that

obtained in Theorems 6.1-6.2.Since the terms ∂ya1(z; θ(1)0 ) and b(x, y;σ) were not included in the

normalization, they appear in the covariance matrix and influence the performance of the estimator.
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Thus, in comparison to the LL estimator defined by (6.16), the conditional least square estimator may

perform worse and be prone to outliers when the diffusion coefficient and the value of (∂ya1(z; θ(1)0 ))2

are large.

Note that the result of Theorem 6.3 holds for any σ. However, the diffusion coefficient cannot be

estimated from criteria (6.19). One possible way to estimate it would be to plug in the obtained drift

parameters in the 2-dimensional criteria (6.15) or in the 1-dimensional criteria from Ditlevsen and

Samson (2017), given by (6.18). Analogously, when the noise in SDE (6.1) is additive (i.e., b ≡ const,

or in a special case when b(x, y;σ) ≡ σf(x, y), the parameter σ can be estimated explicitly with the

help of the sample covariance matrix. The properties of this approach for the elliptic case are proven

in Kessler (1997), Jacod and Protter (2011). For hypoelliptic systems, this approach must be modified,

as the discretization of order ∆n does not allow to compute the terms of order ∆3
n, which represent

the propagated noise. However, the value of σ can still be inferred from the observations of the rough

coordinate by computing

σ̃2
n,∆n =

1
n∆n

n−1∑
i=0

(Yi+1 − Yi)2

f2(Xi,Yi)
. (6.20)

It can be shown that this estimator is consistent and asymptotically normal. In fact, it is a straight-

forward consequence of point (iv) of Lemma 6.7 (see Appendix), but we do not aim to provide the

details here as it only concerns the particular case of model (6.1), that is, when the diffusion term

depends linearly on only one unknown parameter. However, we test the performance of the estimator

(6.20) in Section 6.5, devoted to the numerical experiments.

6.5 simulation study

6.5.1 The model

The two estimators (θ̂n,∆n , σ̂2
n,∆n) and (θ̂LSEn,∆n , σ̃2

n,∆n) are evaluated on the simulation study with a

hypoelliptic stochastic neuronal model called FitzHugh-Nagumo model (Fitzhugh, 1961). It is a

simplified version of the Hodgkin-Huxley model (Hodgkin and Huxley, 1952), which describes in

a detailed manner activation and deactivation dynamics of a spiking neuron. First it was studied

in the deterministic case, then in the stochastic elliptic setting with two sources of noise in both

coordinates. However, it is often argued that only ion channels are perturbed by noise, while the

membrane potential depends on them in a deterministic way. This idea leads to a 2-dimensional

hypoelliptic diffusion. In this Chapter we consider a hypoelliptic SDE with noise only in the second

coordinate as studied in Leon and Samson (2018). More precisely, the behaviour of the neuron is

defined through the solution of the systemdXt =
1
ε (Xt −X3

t − Yt − s)dt

dYt = (γXt − Yt + β)dt+ σdWt,
(6.21)

where the variable Xt represents the membrane potential of the neuron at time t, and Yt is a recovery

variable, which could represent the channel kinetic. The parameter s is the magnitude of the stimulus
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current and is often known in experiments, ε is a time scale parameter and is typically significantly

smaller than 1, since Xt moves ”faster” than Yt. Parameters to be estimated are θ = (γ,β, ε,σ). For

system (6.21) we obtain the following expressions for Ā and Σ∆n , which we plug in (6.15):

Ā(Zi; θ) =

Xi +
∆n
ε (Xi −X3

i − Yi + s) + ∆2
n

2ε

(
(1−3X2

i )
ε (Xi −X3

i − Yi + s)− (γXi − Yi + β)

)
Yi + ∆n(γXi − Yi + β) + ∆2

n
2
(γ
ε (Xi −X3

i − Yi + s)− (γXi − Yi + β)
)



Σ∆n(Zi; θ,σ) = σ2

 ∆3
n

3ε2
∆2
n

2ε
∆2
n

2ε ∆n


Hypoellipticity and ergodicity of (6.21) are proven in Leon and Samson (2018). The same problem,

but for the hypoelliptic setting is studied in Jensen (2014), Ditlevsen and Samson (2017).

6.5.2 Experimental design

We consider two different settings: an excitatory and an oscillatory behaviour. For the first regime,

the drift parameters are set to γ = 1.5, β = 0.3, ε = 0.1, s = 0.01 and the diffusion coefficient σ = 0.6,

and for the second γ = 1.2, β = 1.3, ε = 0.1, s = 0.01 and σ = 0.4. The diffusion coefficient does

not change the behaviour pattern, only the ”noisiness” of the observations. The starting point is

(X0,Y0) = (0, 0). Sample trajectories for both settings are shown on Figure 6.1.

We organize the trials as follows: first, we generate 100 trajectories using recursive formula (6.13)

for each set of parameters with ∆n = 0.0001 and n = 500000. The observed time interval is thus equal

to 50. Then we subsample the sequence so that we can vary the discretization step ∆n and eventually

truncate the observed time interval. We estimate the parameters by minimizing the contrast (6.15).

We refer to this method as LL contrast. For the least square estimator (LSE) we do the following: we

estimate the parameter σ explicitly from the observations of the second variable by (6.20), and then

compute the parameters of the drift by minimizing (6.19). In addition, we compare both methods to

the 1.5 strong order scheme (Ditlevsen and Samson, 2017), based on two separate estimators for each

coordinate, which are defined in (6.17) and (6.18).

The minimization of the criteria is conducted with the optim function in R with the Conjugate

Gradient method. As the initial value of parameters we take θ0 ±U([0, 1]), where U stays for the

uniform probabilistic law. In Tables 2-3 we present the mean value of the estimated parameters and

their standard deviation (in brackets), computed over 100 trajectories for each set of parameters. The

reported value of σ is obtained as
√
σ2, since only σ2 is identifiable. Figures 6.2-6.3 illustrate the

estimation densities for ∆n = 0.01 and the interval of observations being fixed to T = 5 or T = 50.

The LL contrast is depicted in blue, the least square estimator — in red, the 1.5 scheme in green.

The estimation of the diffusion coefficient σ with the LL estimator is slightly biased in both sets

of data. This bias does not appear in the one-dimensional criteria and when the value is directly

computed from the observations as a mean empirical variance. The performance of the LL contrast

improves when we reduce the step size and increase the observed time interval. However, when ∆n

becomes too small the performance of LL contrast with respect to σ is worse than the one-dimensional
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estimators for σ given by (6.18) and (6.20). It is slightly biased and its variance is bigger than that of

LSE and 1.5 estimator. One possible explanation is that the estimation of σ with the LL contrast,

as it is shown in Theorem 6.2, depends heavily on the convergence of the parameters of the first

coordinate. Minor inaccuracies in the estimation of the drift parameters lead to non-negligible errors

in σ̂. Note, for example, that the LL scheme scores better on interval T = 50 for ∆n = 0.01 than for

∆n = 0.001 (see Table 2), while for the other schemes it is not the case. Thus, it is important to

ensure that n→∞ faster than ∆n → 0, as required by Theorem 6.2.

Parameters of the second coordinate γ and β are estimated accurately with all three methods once

the time interval T is big enough (see the bottom pictures on Figures 6.2-6.3 for T = 50). However,

when T = 5, 1.5 scheme scores considerably worse than the LL and LSE estimator. Also when

estimating ε, the 1-dimensional criteria (6.17) does not score better than the LL and LSE estimators.

This parameter seems to be underestimated in the case of the 1.5 scheme, and this bias is bigger in the

case of the inhibitory setting for ∆n = 0.01. The problems in the inhibitory setting are anticipated,

since the trajectory is more erratic than in the excitatory case. Drift parameters are thus more difficult

to estimate: the variance of the estimators is bigger in average. Also, during the simulation study it is

observed that ε is the most sensitive to the initial value with which the optim function is initialized,

since it directly regulates the amount of noise which is propagated to the first coordinate. However,

as predicted by Theorems 6.1-6.2, estimators for ε converge indeed faster than for the rest of the

parameters.

6.6 conclusions

The proposed contrast estimator generalizes parametric inference methods developed for models of

type (6.2) to more general class (6.1). Numerical study shows that it can be used with no prior

knowledge of the parameters. It is the main advantage of our method over the analogous works, in

particular Ditlevsen and Samson (2017), where the convergence of the estimator is proven with the

parameters being partly fixed to their true values.

From the theoretical point of view, our estimators reveal good properties. Both the contrast based

on the local linearization scheme and the least square estimators are consistent. In the case of the

contrast, the estimator of the rough coordinate asymptotically depends on the estimator of the smooth

coordinate. Therefore its performance is sensitive to the form of the drift term. The convergence

of the smooth coordinate, however, does not depend nor on the diffusion term, nor on the rough

coordinate. The question of the asymptotic normality is more intricated. We prove the asymptotic

normality under rather restrictive assumptions of the drift term. Nevertheless, the method can be

applied to more general models, which is confirmed by the numerical study. The normality of the least

squares estimator is studied under no additional assumptions on the drift term. It is noted that the

estimation of parameters with LSE in the drift term is mutually independent, that gives an advantage

over the classical contrast estimator. However, numerically LSE is rather sensitive to the experiment

design and tends to produce outliers if the observation interval is not big enough.



∆n = 0.01, T = 5 γ β ε σ

LC 1.501 (0.053) 0.302 (0.055) 0.101 (0.001) 0.592 (0.056)

LSE 1.488 (0.108) 0.311 (0.149) 0.100 (0.000) 0.612 (0.020)

1.5 scheme 1.561 (0.362) 0.324 (0.295) 0.099 (0.000) 0.598 (0.019)

∆n = 0.01, T = 10 γ β ε σ

LC 1.504 (0.055) 0.306 (0.053) 0.100 (0.001) 0.562 (0.026)

LSE 1.503 (0.069) 0.299 (0.176) 0.100 (0.000) 0.610 (0.014)

1.5 scheme 1.540 (0.237) 0.301 (0.212) 0.099 (0.000) 0.596 (0.013)

∆n = 0.01, T = 50 γ β ε σ

LC 1.500 (0.050) 0.297 (0.052) 0.100 (0.000) 0.560 (0.018)

LSE 1.513 (0.072) 0.302 (0.068) 0.100 (0.000) 0.610 (0.007)

1.5 scheme 1.495 (0.095) 0.301 (0.093) 0.099 (0.000) 0.596 (0.007)

∆n = 0.001, T = 5 γ β ε σ

LC 1.505 (0.054) 0.306 (0.051) 0.100 (0.000) 0.699 (0.090)

LSE 1.498 (0.062) 0.290 (0.072) -47.86 (477.2) 0.599 (0.005)

1.5 scheme 1.497 (0.183) 0.304 (0.169) 0.100 (0.000) 0.598 (0.005)

∆n = 0.001, T = 10 γ β ε σ

LC 1.513 (0.049) 0.302 (0.054) 0.100 (0.000) 0.662 (0.096)

LSE 1.501 (0.051) 0.299 (0.052) 0.100 (0.000) 0.600 (0.004)

1.5 scheme 1.513 (0.159) 0.288 (0.161) 0.100 (0.000) 0.599 (0.004)

∆n = 0.001, T = 50 γ β ε σ

LC 1.487 (0.054) 0.303 (0.050) 0.100 (0.000) 0.628 (0.098)

LSE 1.493 (0.056) 0.303 (0.052) 0.100 (0.000) 0.601 (0.002)

1.5 scheme 1.488 (0.066) 0.302 (0.068) 0.100 (0.000) 0.600 (0.002)

Table 2: Set 1, γ0 = 1.5,β0 = 0.3, ε0 = 0.1,σ0 = 0.6.. Value without brackets: mean, value in parentheses:

standard deviation.
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Figure 6.1: Trajectories for two sets of parameters



∆n = 0.01, T = 5 γ β ε σ

LC 1.205 (0.046) 1.311 (0.053) 0.100 (0.001) 0.357 (0.013)

LSE 1.243 (0.771) 1.592 (0.887) 0.101 (0.002) 0.400 (0.014)

1.5 scheme 1.324 (0.357) 1.415 (0.365) 0.095 (0.002) 0.397 (0.014)

∆n = 0.01, T = 10 γ β ε σ

LC 1.201 (0.053) 1.303 (0.053) 0.100 (0.001) 0.356 (0.008)

LSE 1.251 (0.367) 1.507 (0.521) 0.100 (0.001) 0.399 (0.009)

1.5 scheme 1.260 (0.187) 1.354 (0.188) 0.091 (0.003) 0.396 (0.009)

∆n = 0.01, T = 50 γ β ε σ

LC 1.200 (0.046) 1.302 (0.048) 0.101 (0.001) 0.357 (0.004)

LSE 1.207 (0.208) 1.374 (0.288) 0.100 (0.001) 0.400 (0.004)

1.5 scheme 1.217 (0.073) 1.304 (0.075) 0.083 (0.009) 0.398 (0.004)

∆n = 0.001, T = 5 γ β ε σ

LC 1.206 (0.052) 1.302 (0.050) 0.100 (0.000) 0.370 (0.052)

LSE 1.183 (0.074) 1.330 (0.126) 0.100 (0.000) 0.400 (0.004)

1.5 scheme 1.239 (0.170) 1.327 (0.177) 0.100 (0.000) 0.400 (0.004)

∆n = 0.001, T = 10 γ β ε σ

LC 1.193 (0.050) 1.303 (0.050) 0.100 (0.000) 0.345 (0.013)

LSE 1.183 (0.069) 1.328 (0.101) 0.100 (0.000) 0.400 (0.003)

1.5 scheme 1.231 (0.126) 1.328 (0.114) 0.099 (0.000) 0.400 (0.003)

∆n = 0.001, T = 50 γ β ε σ

LC 1.201 (0.052) 1.301 (0.053) 0.100 (0.000) 0.344 (0.009)

LSE 1.207 (0.208) 1.374 (0.288) 0.100 (0.001) 0.400 (0.004)

1.5 scheme 1.206 (0.088) 1.295 (0.084) 0.099 (0.000) 0.400 (0.001)

Table 3: Set 2: γ0 = 1.2,β0 = 1.3, ε0 = 0.1,σ0 = 0.4. Value without brackets: mean, value in parentheses:

standard deviation.
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Figure 6.2: Estimation density for the LL contrast (blue), the LSE (red) and 1.5 scheme (green) estimators

for the excitatory set. ∆n = 0.01
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Figure 6.3: Estimation density for the LL contrast (blue), the LSE (red) and 1.5 scheme (green) estimators

for the inhibitory set. ∆n = 0.01
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The most important direction of the prospective work is the adaptation of the estimation method

to the case when only the observations of the first coordinate are available. Under proper conditions

it must be possible to couple the contrast minimization with one of the existing filtering methods and

estimate the parameters of the system (at least, partially).

Another point is the generalization of the contrast to systems of higher dimension. In practice we

often deal with high-dimensional systems with arbitrary number of rough and smooth variables. The

general rule which gives the contrast function in that case is not yet established. The most important

step here would be to establish the condition of hypoellipticity for such a system. Finally, it is crucial

to pair the method with a robust optimization procedure, since the minimization of the contrast is

sensitive to choice of the discretization step and initial conditions.

6.7 appendix

6.7.1 Properties of the scheme

Proposition 6.1. By integrating (6.6) by parts two times we get the following:

E
[
Z̃i+1|Z̃i

]
= Z̃i + J−1(Z̃i; θ)

(
eJ(Z̃i;θ)∆n − I

)
A(Z̃i; θ)+

1
2J
−2(Z̃i; θ)

(
eJ(Z̃i;θ)∆n − I − J(Z̃i; θ)∆n

)
b2(Z̃i;σ)∂2

yyA(Z̃i; θ) (6.22)

Recall that the matrix exponent for some square matrix M is given by eM =
∑∞
l=0

M l

l! . Then (6.22)

can be simplified as:

E
[
Z̃i+1|Z̃i

]
= Z̃i + J−1(Z̃i; θ)

(
I + ∆nJ(Z̃i; θ) +

∆2
n

2 J2(Z̃i; θ)− I +O(∆3
n)

)
A(Z̃i; θ)+

1
2J
−2(Z̃i; θ)

(
I + ∆nJ(Z̃i; θ) +

∆2
n

2 J2(Z̃i; θ)− I − ∆nJ(Z̃i; θ) +O(∆3
n)

)
b2(Z̃i;σ)∂2

yyA(Z̃i; θ) =

Z̃i + ∆nA(Z̃i; θ) +
∆2
n

2 J(Z̃i; θ)A(Z̃i; θ) +
∆2
n

4 b2(Z̃i;σ)∂2
yyA(Z̃i; θ) +O(∆3

n)

Writing the above expression component-wise gives the proposition.

Proposition 6.2. Let us consider each integral of (6.8) separately. Denote:

W(i+1)∆n =

∫ (i+1)∆n

i∆n
eJ(Z̃i;θ)((i+1)∆n−s)B(Z̃i;σ)dWs.
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Recall that the Jacobian of system (6.3) is given by (6.5) and the definition of the matrix exponent,

we have:

W(i+1)∆n =

∫ (i+1)∆n

i∆n
(I + J(Z̃i; θ)((i+ 1)∆n − s) +O(∆2

n))B(Z̃i;σ)dWs =

=

∫ (i+1)∆n

i∆n

1 + ∂xa1(Z̃i; θ(1))((i+ 1)∆n − s) ∂ya1(Z̃i; θ(1))((i+ 1)∆n − s)

∂xa2(Z̃i; θ(2))((i+ 1)∆n − s) 1 + ∂ya2(Z̃i; θ(2))((i+ 1)∆n − s)


+O(∆2

n)
]0 0

0 1

 b(Z̃i;σ)dWs =

b(Z̃i;σ)

0 ∂ya1(Z̃i; θ(1))
∫ (i+1)∆n
i∆n ((i+ 1)∆n − s)dWs +O(∆2

n)

0
∫ (i+1)∆n
i∆n dWs + ∂ya2(Z̃i; θ(2))

∫ (i+1)∆n
i∆n ((i+ 1)∆n − s)dWs +O(∆2

n)


Then we can calculate E

[
W(i+1)∆nW

′
(i+1)∆n

]
:

E
[
W(i+1)∆nW

′
(i+1)∆n

]
= b2(Z̃i;σ)E

 Σ(1)
∆n Σ(12)

∆n

Σ(12)
∆n Σ(2)

∆n

+O(∆4
n),

where entries are given by:

Σ(1)
∆n =

(
∂ya1(Z̃i; θ(1))

)2
[∫ (i+1)∆n

i∆n
((i+ 1)∆n − s)dWs

]2

Σ(12)
∆n =

(
∂ya1(Z̃i; θ(1))

∫ (i+1)∆n

i∆n
((i+ 1)∆n − s)dWs

)
(∫ (i+1)∆n

i∆n
dWs + ∂ya2(Z̃i; θ(2))

∫ (i+1)∆n

i∆n
((i+ 1)∆n − s)dWs

)

Σ(2)
∆n =

(∫ (i+1)∆n

i∆n
dWs + ∂ya2(Z̃i; θ(2))

∫ (i+1)∆n

i∆n
((i+ 1)∆n − s)dWs

)2

The first entry can be easily calculated by the Itô isometry:

E[Σ(1)
∆n ] =

(
∂ya1(Z̃i; θ(1))

)2
E

[∫ (i+1)∆n

i∆n
((i+ 1)∆n − s)dWs

]2

=

(
∂ya1(Z̃i; θ(1))

)2 ∫ (i+1)∆n

i∆n
((i+ 1)∆n − s)2ds =

(
∂ya1(Z̃i; θ(1))

)2 ∆3
n

3

Now consider the product of two stochastic integrals in the terms Σ(12)
∆n and Σ(2)

∆n . Assume for

simplicity that t = 0. From the properties of the stochastic integrals (Karatzas and Shreve, 1987), it

is straightforward to see that:

E

 lim
n→∞

∑
ti,ti−1∈[0,∆n]

(∆n − s)(Wti −Wti−1)
∑

ti,ti−1∈[0,∆n]

(Wti −Wti−1)

 =

= lim
n→∞

∑
ti,ti−1∈[0,∆n]

(∆n − s)E
[
(Wti −Wti−1)

2] = ∫ ∆n

0
(∆n − s)ds =

∆2
n

2

That gives the proposition.
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6.7.2 Auxiliary results

We start with an important Lemma which links the sampling and the probabilistic law of the continuous

process:

Lemma 6.4 (Kessler (1997)). Let ∆n → 0 and n∆n → ∞, let f ∈ R×Θ → R be such that f is

differentiable with respect to z and θ, with derivatives of polynomial growth in z uniformly in θ. Then:

1
n

n∑
i=1

f(Zi; θ)
P0−→
∫
f(z; θ)ν0(dz) as n→∞ uniformly in θ.

The Lemma is proven in Kessler (1997) for the one-dimensional case. Its proof is based only on

ergodicity of the process and on assumptions analogous to ours, and not on the discretization scheme

or dimensionality. So it can be generalized to a multi-dimensional case.

Proposition 6.4 in combination with the continuous ergodic theorem and Lemma 6.4 allow us to

establish the following important result:

Lemma 6.5. Let f : R2 ×Θ → R be a function with the derivatives of polynomial growth in x,

uniformly in θ. Assume ∆n → 0 and n∆n →∞. Then:

(i) 1
n∆3

n

∑n−1
i=0

f (Zi;θ)
(∂ya1(Zi;θ

(1)
0 ))2

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)2 P0−→ 1
3
∫
f(z; θ)b2(z;σ0)ν0(dz)

(ii) 1
n∆n

∑n−1
i=0 f(Zi; θ) (Yi+1 − Yi)2 P0−→

∫
f(z; θ)b2(z;σ0)ν0(dz)

(iii) 1
n∆2

n

∑n−1
i=0

f (Zi;θ)
∂ya1(Zi;θ

(1)
0 )

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(Yi+1 − Yi)

P0−→ 1
2
∫
f(z; θ)b2(z;σ0)ν0(dz)

Proof. We consider only the cross-term (iii), since the results for the first and the second term are

analogous to Ditlevsen and Samson (2017) (upon replacing the bounds from Proposition 6.3 by 6.4).

Thanks to Proposition 6.4 we know that:

E

[
1
n∆2

f(Zi; θ)
∂ya1(Zi; θ(1)0 )

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(Yi+1 − Yi) |Fi

]
=

1
2nf(Zi; θ)b

2(Zi;σ0) +O(∆n).

Then from Lemma 6.4 it follows that for n→∞ uniformly in θ:

n−1∑
i=0

E

[
1
n∆2

f(Zi; θ)
∂ya1(Zi; θ(1)0 )

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(Yi+1 − Yi) |Fi

]
P0−→

1
2

∫
f(z; θ)b2(z;σ0)ν0(dz)

Let us introduce an auxiliary Lemma which establishes the convergence in probability for the first

moments:

Lemma 6.6. Let f : R2×Θ→ R be a function with derivatives of polynomial growth in x, uniformly

in θ. Assume ∆n → 0 and n∆n →∞. Then the following convergence results hold:
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(i) 1
n∆n

∑n−1
i=0 f(Zi; θ)(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)) P0−→ 0

(ii) 1
n∆n

∑n−1
i=0 f(Zi; θ)(Yi+1 − Ā2(Zi; θ(1), θ(2)0 ,σ)) P0−→ 0

uniformly in θ.

Proof. Consider (ii). The expectation of the sum tends to zero for ∆n → 0 and n∆n → ∞ due to

Proposition 6.4. Convergence for θ(1) is due to Lemma 9 in Genon-Catalot and Jacod (1993) and

uniformity in θ(1) follows the proof of Lemma 10 in Kessler (1997). The second assertion is proven in

the same way. For (i) see Lemma 3 in Ditlevsen and Samson (2017).

We also need the following Lemma for proving the asymptotic normality of the estimators.

Lemma 6.7. Assume (A1)-(A4) and n∆n → ∞ and n∆2
n → 0. Then for any bounded function

f(z; θ) ∈ R2 ×Θ→ R the following holds:

(i) 1√
n∆3

n

∑n−1
i=0 f(Zi; θ)(Xi+1− Ā1(Zi; θ(1)0 , θ(2),σ)) D−→ N

(
0, 1

3ν0
(
b2(z;σ0)(∂ya1(z; θ(1)0 ))2f2(z; θ)

))
(ii) 1√

n∆3
n

∑n−1
i=0 f(Zi; θ)(Xi+1− Ā1(Zi; θ(1)0 , θ(2),σ))2− 1√

n

∑n−1
i=0 f(Zi; θ) 1

3b
2(z;σ0)(∂ya1(z; θ(1)0 ))2 D−→

N
(

0, 2
9ν0

(
b4(z;σ0)(∂ya1(z; θ(1)0 ))4f2(z; θ)

))
(iii) 1√

n∆n

∑n−1
i=0 f(Zi; θ)(Yi+1 − Yi)

D−→ N
(
0, ν0

(
b2(z;σ0)f2(z; θ)

))
(iv) 1√

n∆n

∑n−1
i=0 f(Zi; θ)(Yi+1−Yi)2− 1√

n

∑n−1
i=0 f(Zi; θ)b2(Zi;σ0)

D−→ N
(
0, 2ν0

(
b4(z;σ0)f2(z; θ)

))

(v)
1√
n∆2

n

n−1∑
i=0

f(Zi; θ)(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))(Yi+1 − Yi)−

1√
n

n−1∑
i=0

f(Zi; θ)
1
2b

2(Zi;σ0)∂ya1(Zi; θ(1)0 )
D−→ N

(
0, 4

3ν0
(
f(z; θ)b4(z;σ0)(∂ya1(z; θ(1)0 ))2

))
Proof. We focus on the proof of (v), since (i)-(iv) closely follow Lemmas 4-5 in Ditlevsen and Samson

(2017). To simplify the proof for the cross-term, we recall that the representation (6.13) can be

transformed so that the two noise terms are independent. For example, we can use an analogue of

such a decomposition proposed in Pokern et al. (2007):

Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ) = b(Zi;σ0)∂ya1(Zi; θ(1)0 )

 ∆
3
2
n√
12
η1
i +

∆
3
2
n

2 η2
i

+ δ1
i

Yi+1 − Yi = ∆na2(Zi; θ(2)) + b(Zi;σ0)∆
1
2
n η

2
i + δ2

i ,

where δ1
i and δ2

i are error terms such that E[δki |Fi] = O(∆2
n) and E[(δki )2|Fi] = O(∆4

n) (see Proposition

6.4), and η1
i and η2

i are standard independent normal variables.

Then Proposition 6.4 gives that

E
[(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(Yi+1 − Yi) |Fi

]
=

∆2
n

2 b(Zi;σ0)∂ya1(Zi; θ(1)0 ) +O(∆3
n),

then

E

[
f(Zi; θ)

((
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(Yi+1 − Yi)−

∆2
n

2 b2(Zi;σ0)∂ya1(Zi; θ(1)0 )

)
|Fi
]
= 0.
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With slightly more tedious computations (which are omitted) we get also that

E

[((
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(Yi+1 − Yi)−

∆2
n

2 b2(Zi;σ0)(∂ya1(Zi; θ(1)0 ))

)2
|Fi

]
=

4∆4
n

3 b4(Zi;σ0)(∂ya1(Zi; θ(1)0 ))2 +O(∆5
n)

Then we obtain:

1√
n∆2

n

n−1∑
i=0

f(Zi; θ)
(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(Yi+1 − Yi)−

1√
n

n−1∑
i=0

f(Zi; θ)
1
2b

2(Zi;σ0)∂ya1(Zi; θ(1)0 )

=
1√
n∆2

n

n−1∑
i=0

f(Zi; θ)

b(Zi;σ0)∂ya1(Zi; θ(1)0 )

 ∆
3
2
n√
12
η1
i +

∆
3
2
n

2 η2
i

+ δ1
i


(

∆na2(Zi; θ(2)) + b(Zi;σ0)∆
1
2
n η

2
i + δ2

i

)
− 1√

n

n−1∑
i=0

f(Zi; θ)
1
2b

2(Zi;σ0)∂ya1(Zi; θ(1)0 )

Since ∆n
n → 0 by design we see that

1
n∆4

n
E

[
n−1∑
i=0

f2(Zi; θ)
((
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(Yi+1 − Yi)−

∆2
n

2 b(Zi;σ0)(∂ya1(Zi; θ(1)0 ))

)2]
→ 4

3ν0
(
f2(z; θ)b4(z;σ0)(∂ya1(z; θ(1)0 )2

)

Further, since E
[
f4(Zi; θ)

((
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(Yi+1 − Yi)− ∆2

n
2 b

2(Zi;σ0)(∂ya1(Zi; θ(1)0 ))
)4
|Fi
]

is bounded by (A2), we have

1
n2∆8

n
E

[
n−1∑
i=0

f4(Zi; θ)
((

Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)
)
(Yi+1 − Yi)−

∆2
n

2 b2(Zi;σ0)(∂ya1(Zi; θ(1)0 ))

)4
|Fi

]
→ 0.

Therefore, we can apply again the Theorem 3.2 from Hall and Heyde (1980) and obtain the statement

(v).

Remark 6.1. Note that the results for the convergence in distribution for the increments of the second

coordinate hold without any assumption on the parameters of the function a2(z; θ(2)). It is due to the

fact that the order of the noise dominates the order of the drift term (which is not the case in first

coordinate, where the noise is propagated with the higher order). As a consequence, the convergence of

a functional
∑n−1
i=0 f(Zi; θ)(Yi+1 − Ā2(Zi; θ(1), θ(2),σ)) holds, with a proper scaling, for any value of

θ.

6.7.3 Consistency and asymptotic normality of the LL contrast estimator

Lemma 6.1. Consistency. The consistency of the estimator for the parameter θ(2) is based on

Lemma 6.2, with the arguments analogous to the proof of Theorem 6.1. For the diffusion parameter

σ, the result follows from Lemma 6.3. Denote I(σ,σ0) := b2(z;σ0)
b2(z;σ) + log b2(z;σ). We can choose some

subsequence nk such that σ̂n,∆n converges to some σ∞. By the definition of the estimator we know
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that I(σ∞,σ0) ≤ I(σ0,σ0). But we also know that b2(z;σ0)
b2(z;σ) + log b2(z;σ) ≥ 1+ log b2(z;σ0) and thus

I(σ∞,σ0) ≥ I(σ0,σ0), and by the identifiability assumption σ∞ ≡ σ0. It proves the consistency of σ̂.

Asymptotic normality. Consider

∆n
n

[
Ln,∆n(θ

(1), θ(2),σ2;Z0:n)−Ln,∆n(θ
(1)
0 , θ(2),σ2;Z0:n)

]
= T1 + T2 + T3 + T4,

where the terms are given as follows:

T1 =
6∆n
n∆3

n

n−1∑
i=0


(
Xi+1 − Ā1(Zi; θ(1), θ(2),σ)

)2

b2(Zi;σ)
(
∂ya1(Zi; θ(1))

)2 −

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)2

b2(Zi;σ)
(
∂ya1(Zi; θ(1)0 )

)2


T2 = − 6∆n

n∆2
n

n−1∑
i=0

1
b2(Zi;σ)


(
Xi+1 − Ā1(Zi; θ(1), θ(2),σ)

)(
Yi+1 − Ā2(Zi; θ(1), θ(2),σ)

)
∂ya1(Zi; θ(1))

−

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)(
Yi+1 − Ā2(Zi; θ(1)0 , θ(2),σ)

)
∂ya1(Zi; θ(1)0 )


T3 =

2∆n
n∆n

n−1∑
i=0


(
Yi+1 − Ā2(Zi; θ(1), θ(2),σ)

)2

b2(Zi;σ)
−

(
Yi+1 − Ā2(Zi; θ(1)0 , θ(2),σ)

)2

b2(Zi;σ)


T4 =

∆n
n

n−1∑
i=0

log
(
∂ya1(Zi; θ(1))
∂ya1(Zi; θ(1)0 )

)

Consider term T1:

T1 =
6∆n
n∆3

n

n−1∑
i=0

1
b2(Zi;σ)


(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ) + Ā1(Zi; θ(1)0 , θ(2),σ)− Ā1(Zi; θ(1), θ(2),σ)

)2

(
∂ya1(Zi; θ(1))

)2 −

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)2

(
∂ya1(Zi; θ(1)0 )

)2

 =
6∆n
n∆3

n

n−1∑
i=0

1
b2(Zi;σ)

[(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)2
[

1(
∂ya1(Zi; θ(1))

)2−
1(

∂ya1(Zi; θ(1)0 )
)2

+
2∆n(

∂ya1(Zi; θ(1))
)2 (Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(a1(Zi; θ(1)0 )− a1(Zi; θ(1)))+

∆2
n

(∂ya1(Zi; θ(1)))2

(
a1(Zi; θ(1)0 )− a1(Zi; θ(1))

)2
]

.

Recalling Lemmas 6.4, 6.6 and 6.5 we have that:

6
n∆2

n

n−1∑
i=0

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)2

b2(Zi;σ)

 1(
∂ya1(Zi; θ(1))

)2 − 1(
∂ya1(Zi; θ(1)0 )

)2

 P0−→ 0

6
n∆n

n−1∑
i=0

1
b2(Zi;σ)(∂ya1(Zi; θ(1)))2

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(a1(Zi; θ(1)0 )− a1(Zi; θ(1)))

P0−→ 0

6
n

n−1∑
i=0

(a1(Zi; θ(1)0 )− a1(Zi; θ(1)))2

b2(Zi;σ)(∂ya1(Zi; θ(1)))2
P0−→ 6

∫
(a1(z; θ(1)0 )− a1(z; θ(1)))2

b2(z;σ)(∂ya1(z; θ(1)))2 ν0(dz).
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Now consider T2, which can be rewritten as:

− 6
n∆n

n−1∑
i=0

(Yi+1 − Yi +O(∆n))
b2(Zi;σ)


(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ) + Ā1(Zi; θ(1)0 , θ(2),σ)− Ā1(Zi; θ(1), θ(2),σ)

)
∂ya1(Zi; θ(1))

−

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
∂ya1(Zi; θ(1)0 )

 = − 6
n∆n

n−1∑
i=0

(Yi+1 − Yi +O(∆n))
b2(Zi;σ)

[(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
[

1
∂ya1(Zi; θ(1))

− 1
∂ya1(Zi; θ(1)0 )

]
+

∆n
(∂ya1(Zi; θ(1)))

(a1(Zi; θ(1)0 )− a1(Zi; θ(1)))
]

.

Then we use the fact that the expectation of
(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
is of order ∆2

n and of

increments Yi+1 − Yi is of ∆n, and by Lemma 6.5 we obtain:

− 6
n∆n

n−1∑
i=0

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(Yi+1 − Yi +O(∆n))

b2(Zi;σ)(∂ya1(Zi; θ(1)0 ))

[
(∂ya1(Zi; θ(1)0 ))

(∂ya1(Zi; θ(1)))
− 1
]
P0−→ 0.

The same holds for T4. Consider then T3:

2∆n
n∆n

n−1∑
i=0

2

(
Yi+1 − Ā2(Zi; θ(1), θ(2),σ)

)2

b2(Zi;σ)
−

(
Yi+1 − Ā2(Zi; θ(1)0 , θ(2),σ)

)2

b2(Zi;σ)

 =

2
n

n−1∑
i=0

1
b2(Zi;σ)

[(
Yi+1 − Ā2(Zi; θ(1)0 , θ(2),σ)

)(
Ā2(Zi; θ(1)0 , θ(2),σ)− Ā2(Zi; θ(1), θ(2),σ)

)
−

(
Ā2(Zi; θ(1)0 , θ(2),σ)− Ā2(Zi; θ(1), θ(2),σ)

)2
]

This term is of order O(∆3
n) (since θ(1) is contained only in terms of order ∆2

n), thus it converges to

zero as ∆n → 0. Thus, we indeed have

lim
n→∞,∆n→0

∆n
n

[
Ln,∆n(θ

(1), θ(2),σ2;Z0:n)−Ln,∆n(θ
(1)
0 , θ(2),σ2;Z0:n)

]
P0−→

6
∫

(a1(z; θ(1)0 )− a1(z; θ(1)))2

b2(z;σ)(∂ya1(z; θ(1)))2 ν0(dz).

Theorem 6.1 (consistency and asymptotic normality of θ(1)). Throughout the proof we assume that

θ(1) ∈ R in order to simplify the notations.

Consistency. It follows essentially from Lemma 6.1. Indeed, the result of the Lemma (and the fact

that the parameter space is compact) implies that we can find a subsequence θ̂(1)n,∆n which converges

to some value θ(1)∞ . However, the minimum of the expression in Lemma 6.1 is attained for θ(1)0 . Then

by identifiability of the drift function we have the consistency, that is θ̂(1)n,∆n → θ
(1)
0 .

Asymptotic normality. The proof follows the standard pattern (see Kessler (1997), Genon-

Catalot et al. (1999), Ditlevsen and Samson (2017)). First, we write the Taylor expansion of the

function (6.15). Then we have:∫
∆n
n

∂2

∂θ(1)∂θ(1)
Ln,∆n

(
θ
(1)
0 + u(θ̂

(1)
n,∆n − θ0), θ(2),σ; z

)
du ·

√
n

∆n
(θ̂

(1)
n,∆n − θ

(1)
0 ) =

−
√

∆n
n

∂

∂θ(1)
Ln,∆n(θ

(1)
0 , θ(2),σ; z)
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Note that the values of θ(2) and σ may be taken arbitrary. Now we have to compute the first and

the second order derivatives of (6.15). We omit the dependency on parameters in the expression for

partial derivatives to make it readable and study the convergence of the first order derivative:

∂

∂θ(1)
Ln,∆n(θ

(1)
0 , θ(2),σ; z) =

n−1∑
i=1

[2∂2
y,θ(1)a1

∂ya1
− 6
b2(Zi;σ)∂ya1[

2(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))2

∆3
n(∂ya1)2 ∂2

y,θ(1)a1 +
2(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))(∂θ(1)a1)

∆2
n(∂ya1)

−

(Yi+1 − Ā2(Zi; θ(1)0 , θ(2),σ))(∂θ(1)a1)

∆n
−

(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))(Yi+1 − Ā2(Zi; θ(1)0 , θ(2),σ))(∂2
y,θ(1)a1)

∆2
n(∂ya1)

 (6.23)

Under assumption (A5) the only non-zero terms are the following:

∂

∂θ(1)
Ln,∆n(θ

(1)
0 , θ(2),σ; z) =

n−1∑
i=1
− 6
b2(Zi;σ)∂ya1

[
2(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))(∂θ(1)a1)

∆2
n(∂ya1)

−

(Yi+1 − Ā2(Zi; θ(1)0 , θ(2),σ))(∂θ(1)a1)

∆n

]
Applying Lemma 6.7, we get:

1√
n∆3

n

n−1∑
i=1

[ 12(∂θ(1)a1)

b2(Zi;σ)(∂ya1)
(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))

]
D−→ N

(
0, 36ν0

(
b2(z;σ0)

b4(z;σ) (∂θ(1)a1)
2
))

1√
n∆n

n−1∑
i=1

[
6(∂θ(1)a1)

b2(Zi;σ)
(Yi+1 − Ā2(Zi; θ(1)0 , θ(2),σ))

(∂ya1)

]
D−→ N

(
0, 36ν0

(
b2(z;σ0)

b4(z;σ)
(∂θ(1)a1)2

(∂ya1)2

))
Thus, we have the following convergence in law:√

∆n
n

∂

∂θ(1)
Ln,∆n(θ

(1)
0 , θ(2),σ; z) D−→ N

(
0, 36ν0

(
b2(z;σ0)

b4(z;σ) (∂θ(1)a1)
2
(

1 + 1
(∂ya1)2

)))
For the second order derivative we split again the expression (6.23) in several parts and study their

convergence:

T1 :=
∆n
n

n−1∑
i=1
− 12∆n

∆2
nb

2(Zi;σ)(∂ya1)2

[
(∂θ(1)a1)

2 + (Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))
(∂2
θ(1)θ(1)

a1)(∂ya1)

(∂ya1)2

]

T2 :=
∆n
n

n−1∑
i=1

6(Yi+1 − Ā2(Zi; θ(1), θ(2),σ))
∆nb2(Zi;σ)

(∂ya1)2∂2
θ(1)θ(1)

a1

(∂ya1)4

It is easy to see that the terms T2 converges to 0 by Lemmas 6.6 and 6.5. T1, according to the Lemma

6.4 and Lemma 6.6, converges to 12
∫ (∂

θ(1)
a1)2

b2(z;σ)(∂ya1)
ν0(dz). That gives the result.

Lemma 6.2. Note that we cannot infer the value of θ(2) with the same scaling as the parameter of the

smooth coordinate because the estimator for each variable converges with different speed. Thus, we

fix the parameter θ(1) to its estimated value θ̂(1)n,∆n and consider the same sum, but with a different

scaling, namely :

lim
n→∞,∆n→0

1
n∆n

[
Ln,∆n(θ̂

(1)
n,∆n , θ(2),σ2;Z0:n)−Ln,∆n(θ̂

(1)
n,∆n , θ(2)0 ,σ2;Z0:n)

]
= T1 + T2 + T3
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where the terms are given as follows:

T1 =
6

n∆4
n

n−1∑
i=0

1

b2(Zi;σ)
(
∂ya1(Zi; θ̂(1)n,∆n)

)2

[(
Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ)

)2
−

(
Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2)0 ,σ)

)2
]

T2 = − 6
n∆3

n

n−1∑
i=0

1
b2(Zi;σ)


(
Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ)

)(
Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ)

)
∂ya1(Zi; θ̂(1)n,∆n)

−

(
Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2)0 ,σ)

)(
Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ)

)
∂ya1(Zi; θ̂(1)n,∆n)



T3 =
2

n∆2
n

n−1∑
i=0

[
(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))2 − (Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))2

]
b2(Zi;σ)

We start with T1:

T1 =
6

n∆4
n

n−1∑
i=0

1

b2(Zi;σ)
(
∂ya1(Zi; θ̂(1)n,∆n)

)2

[(
Ā1(Zi; θ̂(1)n,∆n , θ(2)0 ,σ)− Ā1(Zi; θ̂(1)n,∆n , θ(2),σ)

)
(
Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2)0 ,σ)

)
−
(
Ā1(Zi; θ̂(1)n,∆n , θ(2)0 ,σ)− Ā1(Zi; θ̂(1)n,∆n , θ(2),σ)

)2
]
=

6
n∆4

n

n−1∑
i=0

1

b2(Zi;σ)
(
∂ya1(Zi; θ̂(1)n,∆n)

)2

[
∆2
n

2

(
∂ya1(Zi; θ̂(1)n,∆n)

)(
a2(Zi; θ(2)0 )− a2(Zi; θ(2))

)
(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ)

)
+

∆3
n

2

(
∂ya1(Zi; θ̂(1)n,∆n)

)(
a2(Zi; θ(2)0 )− a2(Zi; θ(2))

)
(
a1(Zi; θ(1)0 )− a1(Zi; θ̂(1)n,∆n)

)
+

∆4
n

4

(
∂ya1(Zi; θ̂(1)n,∆n)

)2 (
a2(Zi; θ(2)0 )− a2(Zi; θ(2))

)2
−

∆4
n

4

(
∂ya1(Zi; θ̂(1)n,∆n)

)2 (
a2(Zi; θ(2)0 )− a2(Zi; θ(2))

)2
]

Recall that
(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2)0 ,σ)

)
is of O(∆3

n) by Proposition 6.3. Thus, the first summand

of the T1 is of order ∆5
n and converges to 0. The second summand, under assumption (A5), can be

rewritten as

3
n∆4

n

n−1∑
i=0

∆3
n

(
θ
(1)
0 − θ̂(1)n,∆n

)T
g(Xi)

(
a2(Zi; θ(2)0 )− a2(Zi; θ(2))

)
b2(Zi;σ)

(
∂ya1(Zi; θ̂(1)n,∆n)

) =

3√
n∆nn

n−1∑
i=0

√
n

∆n

(
θ
(1)
0 − θ̂(1)n,∆n

)T
g(Xi)

(
a2(Zi; θ(2)0 )− a2(Zi; θ(2))

)
b2(Zi;σ)

(
∂ya1(Zi; θ̂(1)n,∆n)

) .
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√
n

∆n

(
θ
(1)
0 − θ̂(1)n,∆n

)T
converges to a normal variable with zero mean due to Theorem 6.1, and the

whole expression converges to 0, because n∆n →∞. Thus T1 converges to 0. Consider T2:

T2 = − 6
n∆3

n

n−1∑
i=0

∆n
(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)
(a2(Zi; θ(2))− a2(Zi; θ(2)0 ))

∂ya1(Zi; θ̂(1)n,∆n)b
2(Zi;σ)

+

∆2
n(a1(Zi; θ(1)0 )− a1(Zi; θ̂(1)n,∆n))(a2(Zi; θ(2))− a2(Zi; θ(2)0 ))

∂ya1(Zi; θ̂(1)n,∆n)b
2(Zi;σ)


Then, the first part of the sum converges to zero in probability after applying Lemma 6.6. The

second part of the sum also converges to zero because n∆n →∞ by design, and θ̂
(1)
n,∆n

P0−→ θ
(1)
0 . So

that, recalling (A5), and applying the arguments used above for T1 to a1(Zi; θ(1)0 )− a1(Zi; θ̂(1)n,∆n) =(
θ
(1)
0 − θ̂(1)n,∆n

)
g(Xi), we prove that T2 also converges to 0. So we just have to consider the remaining

term T3:

T3 =
2

n∆2
n

n−1∑
i=0

1
b2(Zi;σ)

[
(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))2+

(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))(Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ)− Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))+

(Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ)− Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))2 − (Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))2
]
=

2
n∆2

n

n−1∑
i=0

1
b2(Zi;σ)

[
∆n(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))(a2(Zi; θ(2)0 )− a2(Zi; θ(2)))+

∆2
n(a2(Zi; θ(2)0 )− a2(Zi; θ(2)))2

]
The first part of the sum converges to 0 due to Lemma 6.6. Then we apply Lemma 6.5 and get the

convergence:

lim
n→∞,∆n→0

1
n∆n

[
Ln,∆n(θ̂

(1)
n,∆n , θ(2),σ2;Z0:n)−Ln,∆n(θ̂

(1)
n,∆n , θ(2)0 ,σ2

0 ;Z0:n)
]
P0−→

2
∫

(a2(z; θ(2)0 )− a2(z; θ(2)))2

b2(z;σ) ν0(dz)

Lemma 6.3. We can split the contrast in the following sum:

lim
n→∞,∆n→0

1
2nLn,∆n(θ̂

(1)
n,∆n , θ(2),σ2;Z0:n) = lim

n→∞,∆n→0
[3T1 − 3T2 + T3 + T4]

where terms are given by follows:

T1 =
1
n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ))2

∆3
nb

2(Zi;σ)(∂ya1(Zi; θ̂(1)n,∆n))
2

T2 =
1
n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ))(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))

∆2
nb

2(Zi;σ)(∂ya1(Zi; θ̂(1)n,∆n))

T3 =
1
n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))2

∆nb2(Zi;σ)

T4 =
1
n

n−1∑
i=0

log b2(Zi;σ)
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For the term T1 we have:

T1 =
1

n∆3
n

n−1∑
i=0

1
b2(Zi;σ)

(
Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ)

)2

(∂ya1(Zi; θ̂(1)n,∆n))
2

=

1
n

n−1∑
i=0

1
b2(Zi;σ)

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ) + Ā1(Zi; θ(1)0 , θ(2),σ)− Ā1(Zi; θ̂(1)n,∆n , θ(2),σ)

)2

∆3
n(∂ya1(Zi; θ̂(1)n,∆n))

2
=

=
1
n

n−1∑
i=0

1
b2(Zi;σ)


(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)2

∆3
n(∂ya1(Zi; θ̂(1)n,∆n))

2

(∂ya1(Zi; θ(1)0 ))2

(∂ya1(Zi; θ(1)0 ))2
+

2∆n
(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)(
a1(Zi; θ(1)0 )− a1(Zi; θ̂(1)n,∆n)

)
∆3
n(∂ya1(Zi; θ̂(1)n,∆n))

2
+

∆2
n

∆3
n

(
a1(Zi; θ(1)0 )− a1(Zi; θ̂(1)n,∆n)

)2

b2(Zi;σ)(∂ya1(Zi; θ̂(1)n,∆n))
2


Thanks to the Lemmas 6.5 and 6.6, we know that the second term of the sum converges to 0 in

probability, and for the first one we have:

1
n

n−1∑
i=0

1
b2(Zi;σ)

(
Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ)

)2

∆3
n(∂ya1(Zi; θ̂(1)n,∆n))

2

(∂ya1(Zi; θ(1)0 ))2

(∂ya1(Zi; θ(1)0 ))2

P0−→
∫
b2(z;σ0)

b2(z;σ)
(∂ya1(z; θ(1)0 ))2

(∂ya1(z; θ̂(1)n,∆n))
2
ν0(dz)

For the third term, we use the assumption (A5), and then obtain the convergence to 0 in probability

thanks to Theorem 6.1, the continuous mapping theorem and Lemma 6.4:

2
n

n−1∑
i=0

∆2
n

∆3
n

(
a1(Zi; θ(1)0 )− a1(Zi; θ̂(1)n,∆n)

)2

b2(Zi;σ)(∂ya1(Zi; θ̂(1)n,∆n))
2

=
2
n2

n−1∑
i=0

(√
n

∆n (θ
(1)
0 − θ̂(1)n,∆n)

)2
g2(Xi)

b2(Zi;σ)(∂ya1(Zi; θ̂(1)n,∆n))
2

P0−→ 0.

Then, T2 decomposes as:

1
n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ))(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))

∆2
nb

2(Zi;σ)(∂ya1(Zi; θ̂(1)n,∆n))
=

1
n

n−1∑
i=0

(∂ya1(Zi; θ(1)0 ))

b2(Zi;σ)(∂ya1(Zi; θ̂(1)n,∆n)) (Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))

∆2
n(∂ya1(Zi; θ(1)0 ))

+

∆n(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))(a2(Zi; θ(2)0 )− a2(Zi; θ(2)))
∆2
n(∂ya1(Zi; θ(1)0 ))

+

∆n(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))(a1(Zi; θ(1)0 )− a1(Zi; θ̂(1)n,∆n))

∆2
n(∂ya1(Zi; θ(1)0 ))

+

∆2
n(a1(Zi; θ(1)0 )− a1(Zi; θ̂(1)n,∆n))(a2(Zi; θ(2)0 )− a2(Zi; θ(2)))

∆2
n(∂ya1(Zi; θ(1)0 ))


Again, using Lemma 6.6, we know that the second and the third terms are converging to 0 in probability.

For the first term, thanks to Lemma 6.5 we have the following convergence:

1
n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))(∂ya1(Zi; θ(1)0 ))

∆2
nb

2(Zi;σ)(∂ya1(Zi; θ(1)0 ))(∂ya1(Zi; θ̂(1)n,∆n))

P0−→

∫
b2(z;σ0)

b2(z;σ)
∂ya1(z; θ(1)0 )

∂ya1(z; θ̂(1)n,∆n)
ν0(dz)
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Finally, we treat the last term:

1
n

n−1∑
i=0

∆2
n(a1(Zi; θ(1)0 )− a1(Zi; θ̂(1)n,∆n))(a2(Zi; θ(2)0 )− a2(Zi; θ(2)))

∆2
nb

2(Zi;σ)(∂ya1(Zi; θ̂(1)n,∆n))

Using again the Lipschitz continuity of a1, Theorem 6.1 and the Slutsky’s theorem, we obtain a

convergence to zero in probability for this term. T4 converges in probability to
∫

log b2(z;σ)ν0(dz)

due to Lemma 6.4. Consider T3:

T3 =
1

n∆n

n−1∑
i=0

1
b2(Zi;σ)

[
(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))2+

2(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))(Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ)− Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))+

(Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ)− Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))2
]
=

1
n∆n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))2

b2(Zi;σ)
+

2 ∆n
n∆n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2)0 ,σ))(a2(Zi; θ(2)0 )− a2(Zi; θ(2)))
b2(Zi;σ)

+

∆2
n

n∆n

n−1∑
i=0

(a2(Zi; θ(2)0 )− a2(Zi; θ(2)))2

b2(Zi;σ)

Thanks to Lemma 6.5 and 6.6 we conclude that

T3
P0−→
∫
b2(z;σ0)

b2(z;σ) ν0(dz) + 0 + 0

Finally, we obtain

1
n
Ln,∆n(θ,σ2;Z0:n)

P0−→

∫ b2(z;σ0)

b2(z;σ)

3

 ∂ya1(z; θ(1)0 )

∂ya1(z; θ̂(1)n,∆n)

2

− 3 ∂ya1(z; θ(1)0 )

∂ya1(z; θ̂(1)n,∆n)
+ 1

+ log b2(z;σ)

 ν0(dz)

By assumption (A5) ∂ya1(·) does not depend on θ(1), thus ∂ya1(z;θ
(1)
0 )

∂ya1(z;θ̂
(1)
n,∆n

)
= 1. It gives the Lemma.

Theorem 6.2. The proof follows the standard pattern. Throughout the proof we assume that

θ(2) and σ ∈ R in order to simplify the notations. We write the Taylor expansion of the contrast

function defined in (6.15) and apply an appropriate scaling∫
Cn,∆n

(
ϕ0 + u(ϕ̂n,∆n −ϕ0); z

)
du En,∆n = −Dn,∆n(ϕ0),

where by ϕ we now denote (θ(2),σ) and the parameter θ(1) is fixed to its estimate θ̂(1)n,∆n throughout

the proof, and

Cn,∆n(θ) :=

 1
n∆n

∂2

∂θ(2)∂θ(2)
Ln,∆n(θ̂

(1)
n,∆n , θ(2),σ;Z0:n)

1
n
√

∆n
∂2

∂σ∂θ(2)
L(θ̂(1)n,∆n , θ(2),σ;Z0:n)

1
n
√

∆n
∂2

∂θ(2)∂σ
Ln,∆n(θ̂

(1)
n,∆n , θ(2),σ;Z0:n)

1
n

∂2
∂σ∂σLn,∆n(θ̂

(1)
n,∆n , θ(2),σ;Z0:n)

 ,

En,∆n :=

√n∆n(θ̂
(2)
n − θ

(2)
0 )

√
n(σ̂n − σ0)

 , Dn,∆n =

 1√
n∆n

∂
∂θ(2)
Ln,∆n(θ̂

(1)
n,∆n , θ(2),σ;Z0:n)

1√
n
∂
∂σLn,∆n(θ̂

(1)
n,∆n , θ(2),σ;Z0:n)

 .
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First, we compute the higher-order terms of the partial derivatives of first and second order with

respect to θ(2) and σ:

∂

∂θ(2)
Ln,∆n(·) =

n−1∑
i=1

−6
∆n(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ))

∆2
nb

2(Zi;σ)(∂
θ̂
(1)
n,∆n

a1)
+

2
∆n(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))

∆nb2(Zi;σ)

 =: D1
n,∆n

∂

∂σ
Ln,∆n(·) = −

n−1∑
i=1

∂σb

b3(Zi;σ)

6
(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ))2

∆3
n(∂θ̂(1)

n,∆n
a1)2 −

6
(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ)(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))

∆2
n(∂θ̂(1)

n,∆n
a1)

+

2
(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))2

∆n

+
∂σb

b(Zi;σ)
=: D2

n,∆n

∂2

∂θ(2)∂θ(2)
Ln,∆n(·) =

n−1∑
i=1

−6
∆n(∂2

θ(2)θ(2)
a2)(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ))
∆2
nb

2(Zi;σ)(∂θ(1)a1)
+

2
∆n(∂2

θ(2)θ(2)
a2)(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))

∆nb2(Zi;σ)
+

∆2
n(∂θ(2)a2)2

∆nb2(Zi;σ)

 =: C11
n,∆n

∂2

∂θ(2)∂σ
Ln,∆n(·) =

n−1∑
i=1

∂σb

b2(Zi;σ)

12
∆n(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ))

∆2
nb(Zi;σ)(∂θ(1)a1)

+

4
∆n(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))

∆nb(Zi;σ)

 =: C12
n,∆n = C21

n,∆n

∂2

∂σ2Ln,∆n(·) = −
n−1∑
i=1

6(∂σb)2 − 2b(Zi;σ)(∂2
σσb)

b4(Zi;σ)

6
(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ))2

∆3
n(∂θ(1)a1)2 −

6
(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ))(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))

∆2
n(∂θ(1)a1)

+ 2
(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))2

∆n

+
2b(Zi;σ)(∂

2
σσb)− (∂σb)2

b2(Zi;σ)
=: C22

n,∆n
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We start with proving the convergence for the terms Cn,∆n . Then we can obtain a convergence in

probability after few technical steps. We start with C11
n,∆n :

1
n∆n

C11
n,∆n =

1
n∆n

n−1∑
i=1

−6
∆n(∂2

θ(2)θ(2)
a2)(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ))
∆2
nb

2(Zi;σ)(∂θ(1)a1)
+

2
∆n(∂2

θ(2)θ
(2)
0
a2)(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))

∆nb2(Zi;σ)
+

∆2
n(∂θ(2)a2)2

∆nb2(Zi;σ)

 =

1
n∆n

n−1∑
i=1

−6
∆n(∂2

θ(2)θ(2)
a2)(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))
∆2
nb

2(Zi;σ)(∂θ(1)a1)
− 6

∆2
n(∂

2
θ(2)θ(2)

a2)(a1(Zi; θ(1)0 )− a1(Zi; θ̂(1)n,∆n))

∆2
nb

2(Zi;σ)(∂θ(1)a1)

2
∆n(∂2

θ(2)θ(2)
a2)(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))

∆nb2(Zi;σ)
+

∆2
n(∂θ(2)a2)2

∆nb2(Zi;σ)


Note that thanks to Lemma 6.6 we know that

1
n∆n

n−1∑
i=1

−6
∆n(∂2

θ(2)θ(2)
a2)(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))
∆2
nb

2(Zi;σ)(∂θ(1)a1)
+

2
∆n(∂2

θ(2)θ(2)
a2)(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))

∆nb2(Zi;σ)
+

∆2
n(∂θ(2)a2)2

∆nb2(Zi;σ)

]
P0−→
∫

(∂θ(2)a2)2

b2(z;σ) ν0(dz)

What about the remaining term, thanks to the assumption (A5) we have:

− 6
n∆n

n−1∑
i=1

(∂2
θ(2)θ(2)

a2)(a1(Zi; θ(1)0 )− a1(Zi; θ̂(1)n,∆n))

b2(Zi;σ)(∂θ(1)a1)
= − 6√

n∆n

1
n

n−1∑
i=1

(∂2
θ(2)θ(2)

a2)a1(Zi;
√

n
∆n

(
θ
(1)
0 − θ̂(1)n,∆n

)
)

b2(Zi;σ)(∂θ(1)a1)

We know that
(
θ
(1)
0 − θ̂(1)n,∆n

)√
n

∆n is normally distributed by Theorem 6.1, and 1
n

∑n−1
i=1

(∂2
θ(2)θ(2)

a2)

b2(Zi;σ)(∂θ(1)a1)

converges to its invariant density by Lemma 6.4. Then by Slutsky’s and the continuous mapping

theorem the product also converges in distribution to a normal variable, which is, divided by
√
n∆n

converges to zero since n∆n → ∞ by design. However, as n∆n → ∞, this term converges to 0 in

probability. As a result,

1
n∆n

C11
n,∆n

P0−→
∫

(∂θ(2)a2)2

b2(z;σ) ν0(dz)

With the same arguments we prove that 1
n
√

∆n
C12
n,∆n = 1

n
√

∆n
C21
n,∆n

P0−→ 0 and that

1
n
C22
n,∆n

P0−→ −4
∫

(∂σb)2

b2(z;σ0)
ν0(dz)
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Then we consider the remaining term, recalling the assumption (A5): We start with the term

1√
n∆n

D1
n,∆n =

1√
n∆n

n−1∑
i=1

−6
∆n(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ̂(1)n,∆n , θ(2),σ))

∆2
nb

2(Zi;σ)(∂θ(1)a1)
+

2
∆n(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))

∆nb2(Zi;σ)

 =
1√
n∆n

n−1∑
i=1

[
−6

(∂θ(2)a2)(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))
∆nb2(Zi;σ)(∂θ(1)a1)

−

6
(∂θ(2)a2)a1(Zi; θ̂(1)n,∆n − θ

(1)
0 )

b2(Zi;σ)(∂θ(1)a1)
+ 2

(∂θ(2)a2)(Yi+1 − Ā2(Zi; θ̂(1)n,∆n , θ(2),σ))
b2(Zi;σ)


For the first and the third term we simply apply Lemma 6.7 and obtain convergence in distribution

to N
(

0, ν0

(
(∂
θ(2)

a2)2

b2(z;σ0)

))
. For the second term we apply the result of Theorem 6.1, as well as the

continuous mapping and Slutsky’s theorem we may state that:

−6
n−1∑
i=1

(∂θ(2)a2) a1(Zi;
√

n
∆n (θ̂

(1)
n,∆n − θ

(1)
0 ))

b2(Zi;σ)(∂θ(1)a1)
D−→ −6

∫
(∂θ(2)a2)

b2(z;σ)(∂θ(1)a1)
a1(z; η̃)ν0(dz),

where η̃ is distributed as stated in Theorem 6.1. Then as n→ 0,

− 6
n

n−1∑
i=1

(∂θ(2)a2) a1(Zi;
√

n
∆n (θ̂

(1)
n,∆n − θ

(1)
0 ))

b2(Zi;σ)(∂
θ̂
(1)
n,∆n

a1)
P0−→ 0

By analogy, we prove the convergence for the term D2
n,∆n , obtaining:

1√
n
D2
n,∆n

D−→ N
(

0, 32ν0

(
(∂σb)2

b2(z;σ0)

))
That gives the result.

6.7.4 Consistency and asymptotic normality of the least squares contrast

Theorem 6.3. The proof will follow the one of the classical contrast. First, we define the following

quantities:

L(1),LSEn,∆n (θ(1), θ(2),σ;Z0:n) =
1
n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ(1), θ(2),σ))2

∆3
n

L(2),LSEn,∆n (θ(1), θ(2),σ;Z0:n) =
1
n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ(1), θ(2),σ))2

∆n

Consistency of θ̂(1). First, consider:

∆n
[
LLSEn,∆n(θ

(1), θ(2);Z0:n)−LLSEn,∆n(θ
(1)
0 , θ(2);Z0:n)

]
=

∆n
n∆3

n

n−1∑
i=0

[
(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ) + Ā1(Zi; θ(1)0 , θ(2),σ)−

Ā1(Zi; θ(1), θ(2),σ))2 − (Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))2
]
=

∆2
n

n∆3
n

n−1∑
i=0

[
2(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))(a1(Zi; θ(1)0 )− a1(Zi; θ(1)))+

∆n(a1(Zi; θ(1)0 )− a1(Zi; θ(1)))2 +O(∆2
n)
]
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Then we have from Lemmas 6.5, 6.6:

2
n∆n

n−1∑
i=0

(Xi+1 − Ā1(Zi; θ(1)0 , θ(2),σ))(a1(Zi; θ(1)0 )− a1(Zi; θ(1)))
P0−→ 0

1
n

n−1∑
i=0

(a1(Zi; θ(1)0 )− a1(Zi; θ(1)))2 P0−→
∫
(a1(z; θ(1)0 )− a1(z; θ(1)))2ν0(dz)

We conclude that there exists a subsequence θ̂(1)n,∆n = arg min
θ

LLSEn,∆n(θ;Z0:n) that tends to θ∞. Since

the minimum is attained at the point θ0 and from (A4), we conclude that θ∞ = θ0. Hence the

estimator is consistent.

Consistency of θ̂(2). Consider:

1
∆n

[
LLSEn,∆n(θ

(1), θ(2);Z0:n)−LLSEn,∆n(θ
(1), θ(2)0 ;Z0:n)

]
=[

1
n∆2

n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ(1), θ(2)0 ,σ) + Ā2(Zi; θ(1), θ(2)0 ,σ)− Ā2(Zi; θ(1), θ(2),σ))2−

(
Yi+1 − Ā2(Zi; θ(1), θ(2)0 ,σ))2

]
=

∆n
n∆2

n

n−1∑
i=0

[
2(Yi+1 − Ā2(Zi; θ(1), θ(2)0 ,σ))(a2(Zi; θ(2)0 )− a2(Zi; θ(2)))+

∆n(a2(Zi; θ(2)0 )− a2(Zi; θ(2)))2 +O(∆2
n)
]

Thanks to Lemmas 6.4, 6.5:

2∆n
n∆2

n

n−1∑
i=0

(Yi+1 − Ā2(Zi; θ(1), θ(2)0 ,σ))(a2(Zi; θ(2)0 )− a2(Zi; θ(2)))
P0−→ 0

∆2
n

n∆2
n

n−1∑
i=0

(a2(Zi; θ(2)0 )− a2(Zi; θ(2)))2 P0−→
∫
(a2(z; θ(2)0 )− a2(z; θ(2)))2ν0(dz)

The consistency is concluded following the same arguments as in the case of θ(1).

Asymptotic normality. We apply again a Taylor formula for a function (6.19):∫
Cn
(
θ0 + u(θ̂n − θ0

)
)du En = Dn(θ0),

where we define

Cn(θ) :=

∆n
n

∂2

∂θ(1)∂θ(1)
LLSEn,∆n(θ;Z0:n)

1
n

∂2

∂θ(1)∂θ(2)
LLSEn,∆n(θ;Z0:n)

1
n

∂2

∂θ(1)∂θ(2)
LLSEn,∆n(θ;Z0:n)

1
n∆n

∂2

∂θ(2)∂θ(2)
LLSEn,∆n(θ;Z0:n)

 ,

En :=

√ n
∆n (θ̂

(1)
n,∆n − θ

(1)
0 )

√
n∆n(θ̂

(2)
n − θ

(2)
0 )

 , Dn(θ) =

 √∆n
n

∂
∂θ(1)
LLSEn,∆n(θ;Z0:n)

1
n
√

∆n
∂

∂θ(2)
LLSEn,∆n(θ;Z0:n)

 .

Using Lemma 6.7 we get:

Dn(θ0)
D−→ −2N

0, I2 ·

1
3
∫
b2(z;σ0)(∂ya1(z; θ(1)0 ))2(∂θ(1)a1(z; θ(1)0 ))2ν0(dz)∫

b2(z;σ0)(∂θ(2)a2(z; θ(2)0 ))2ν0(dz)

 ,

where I2 is 2× 2 identity matrix. And by Lemmas 6.5, 6.4 we have the result for Cn(θ):

Cn(θ0)
P0−→ −2

∫ (∂θ(1)a1(z; θ(1)0 ))2ν0(dz) 0

0
∫
(∂θ(2)a2(z; θ(2)0 ))2ν0(dz)

 .

That, in the combination with the consistency result, gives the theorem.
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N O N - A S Y M P T O T I C S TAT I S T I C A L T E S T O F C OVA R I A N C E M AT R I X

R A N K

This chapter is based on the ongoing work in collaboration with Adeline Samson (Université Grenoble

Alpes) and Patricia Reynaud-Bouret (Université de Nice).

Abstract. The aim of this work is to develop a testing procedure which determines the rank of

the noise in a multidimensional stochastic process from discrete observations of this process on a

fixed time interval [0,T ] sampled with a time step ∆. More precisely, we are focused on evaluating

the probability that some diffusion coefficients of the process are negligible, where the ”negligibility”

is determined by a numerical value, set by the experimenter. As first step, we consider the 1- and

2-dimensional case with a known constant drift. In these cases the density of the test statistics can be

written explicitly. We construct the test and give conditions, under which the Type I and Type II

errors can be controlled. Further, we consider a general d−dimensional case and study the probabilistic

properties of the test statistics.

Résume. Le but de ce travail est de développer une procédure de test qui détermine le rang

du bruit dans un processus stochastique multidimensionnel à partir d’observations discrètes de ce

processus sur un intervalle de temps fixe [0,T ] échantillonné avec un pas de temps ∆. Plus précisément,

nous nous concentrons sur l’évaluation de la probabilité que certains coefficients de diffusion du

processus soient négligeables, où la �négligibilité� est déterminée par une valeur numérique, fixée par

l’expérimentateur. Dans un premier temps, nous considérons un cas de dimension 1 et 2 avec une

dérive constante connue. Dans ce cas, la loi des statistiques de test peut être écrite explicitement.

Nous construisons le test et donnons les conditions sous lesquelles les erreurs de type I et de type

II peuvent être contrôlées. De plus, nous considérons un cas général de dimension d et étudions les

propriétés probabilistes des statistiques de test.

Keywords. Statistical tests, concentration inequalities, non-asymptotic statistics, computational

statistics

7.1 introduction

Stochastic diffusions became a classical tool for describing a neuronal activity, either of a one single

neuron (Ditlevsen and Samson, 2012, Höpfner et al., 2016a, Leon and Samson, 2018), or a large network

of neurons (Ditlevsen and Löcherbach, 2017, Ableidinger et al., 2017). However, the techniques which
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would allow us to establish a rigorous link between a specific model and available neurophysiological

data is often missing. The open question is the source of stochasticity in spiking activity. One point of

view is that both the membrane and the ion channels of the neuron cell are affected by noise. Another

position is that only the ion channels have a stochastic behaviour and that their concentration in the

cell explicitly defines the membrane potential. The question is then how to test both hypotheses with

extracellular recordings of the membrane potential, i.e. discrete observations of the stochastic process.

Consider a filtered probability space (Ω,F , (Ft)t≥0,P). In this chapter we study the covariance

matrix of a d−dimensional process X, which is a solution of the following Stochastic Differential

Equation (SDE):

dXt = btdt+ σtdWt, (7.1)

bt : R → Rd,σt : R → Rd×q, and W is a q-dimensional Brownian motion. We assume that the

discrete equidistant observations of X on a fixed time interval [0,T ] are available, we denote them

by {Xi∆}i∈N. The central object of our study is rank(σσT ). One of the main difficulties is that we

assume the time step ∆ being fixed, which places us in a non-asymptotic setting.

Two main works dealing with the problem of the diffusion matrix rank estimation are the papers

Jacod et al. (2008), Jacod and Podolskij (2013). Jacod et al. (2008) has proposed to study the

determinant of r-dimensional minors of the given matrix by comparing them to a sequence of

thresholds. The rank is then estimated basing on the dimension r of the first non-vanishing minors.

Jacod and Podolskij (2013) has improved the procedure by computing the statistics with a varying

time step. They propose a statistical test which permits to test a hypothesis rank(σσT ) = r0 against

an alternative rank(σσT ) 6= r0.

Asymptotically, both approaches reveal good properties, but they are difficult to apply in a non-

asymptotic setting. The main problem is that when the discretization step ∆ is fixed, one cannot

always compute the true rank of the matrix σσT . In other words, one can never be sure that some of

the diffusion coefficients are truly zero. However, from a practical point of view, we do not necessarily

seek for the perfect answer. What we are rather interested in is whether the influence of noise is

negligible at a given precision (determined by the step size of observations ∆). By ”negligibility” we

mean a hard-set threshold (often linked to the value of ∆).

We proceed with the study as follows. First, we start by introducing the core statistics analogous

to Jacod et al. (2008). Our aim is to recycle the idea of ”thresholds” which aim to quantify the

degeneracy of a given matrix. However, instead of focusing on an integer value of the rank, our aim is

to quantify the probability that some of the diffusion coefficients are negligible. The exact definition

of ”neglibility” is, of course, dictated by a specific application. Thus, we restrict ourselves to some

threshold δ which can be deliberately calibrated.

Then, we consider a Brownian motion with a known drift and construct a non-asymptotic test

which determines if its diffusion coefficient σ2 is negligible (i.e., σ2 ≤ δ) or not. In one dimensional

case, the distribution of the statistics is chi-squared, so that the Type I and Type II errors can be

evaluated with a high precision. In a 2-dimensional case, even with a constant variance and known

drift, the task is more difficult. However, a statistical test based on the exact distribution of the
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statistics, can still be proposed. In 2-dimensional case we obtain a non-asymptotic control of Type I

and Type II errors.

Finally, when the dimension of the process is d > 2, and the drift and variance coefficients are

given by time-dependent functions, the problem is even more complicated. The distribution of the

random determinants, which are the key objects in developing the test, are rather well studied when

the dimension of the matrix is very large. Some asymptotic results are available in this case (see for

example Nguyen and Vu (2014)). However, they cannot be applied in a non-asymptotic setting. Thus,

our first goal is to study the distribution of the test statistics. For that, we are using recent results

from random matrix theory and quadratic forms of random variables (Nyquist et al., 1954, Girko,

1990, Mathai and Provost, 1992). We evaluate the tail distribution and give the lower and upper

concentration bounds. Then, we discuss how the test can be constructed and what can be potentially

inferred from the statistics into consideration.

This Chapter is organized as follows. First, we set the notations and present the main statistics

in Section 7.2. The respective subsections (7.3.1 and 7.3.2) are devoted to the study of simplified 1-

and 2-dimensional models in the case when the drift is known. In each subsection we present the

hypothesis of interest and then proceed to evaluating the risks of the test. We obtain the control of

the Type I and II errors in both cases. The last Section 7.4 is devoted to the general case, where we

do not put additional assumptions on the solution of (7.1) (such as constant drift, variance and a

low dimension). The primal goal is to study the distribution of the statistics and its probabilistic

properties in a non-asymptotic case. We conclude with discussion and perspectives.

7.2 notations and the layout of the chapter

Let us define the statistics which will be the main object of a study throughout the paper. We denote

by mat(a1, a2, . . . , ad) a matrix which is defined by its vector-columns a1, a2, . . . , ad. Consider a

d× d-dimensional matrix Ξi, given by

Ξi = mat(ξ1
i , ξ2

i , . . . , ξdi ), (7.2)

where ξji are given by the increments of the process X, defined in (7.1) as follows:

ξji :=
X(di+j)∆ −X(di+j−1)∆√

∆
j = 1, . . . , d, i = 1, . . . ,n. (7.3)

In other words, to construct the first matrix Ξ1 we take first d increments of the process and write

them column-wise (thus, obtaining a aquare d× d matrix), for the next matrix we start with the

d+ 1-th increment and so on, until we reach the end of the observed interval (so that n ,
[
T
d∆
]
). The

main assumption of the chapter is the following:

(A) ξji are independent in i and j.

This assumption is satisfied, when the drift and the variance term depend on time but do not depend

on the process X itself. Of course, it is rather restrictive, as it is not satisfied by autonomous diffusion
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processes. In this chapter we restrict ourselves to this setting, as it allows us to work in a direct

continuation of Jacod et al. (2008), Jacod and Podolskij (2013). We believe that most of the results

can be carried over to a more general setting at the expense of more complicated computations. Also,

some of the presented results (notably in a high-dimensional setting) do not require an independency

of rows, only of columns. Nevertheless, we keep the assumption (A) for the whole Chapter to avoid

confusions.

Note that the vectors ξji are distributed according to a normal law, i.e. ξji ∼ N
(
µji , Σji

)
, where µji

and Σji can be approximated, for example, by the Euler-Maruyama scheme as follows:

µji ≈
√

∆b(di+j−1)∆ (7.4)

Σji ≈ σ(di+j−1)∆σ
T
(di+j−1)∆ (7.5)

We then define the main quantity of interest as follows:

S =
1
n

n∑
i=1

det(Ξ2
i ), (7.6)

where Ξi is given by (7.2). The distribution of the statistics S given in (7.6) is well studied in Jacod

et al. (2008), Jacod and Podolskij (2013) in the asymptotic case, as ∆→ 0. In this setting the influence

of the drift is negligible, since it is of order O(∆). In the non-asymptotic case, the drift must be

taken into account. We note however that a lot of non-parametric drift estimators are available in the

literature (see, for example, book Kutoyants (2013)). Plugging the estimator would allow to work

with centered statistics, which are easier to analyze.

7.3 statistical tests of the matrix rank

In this Section we consider a special 1- and 2-dimensional process with constant diffusion coefficients

and a known drift. The specificity of this Section is that the distribution of the main statistics (7.6)

can be written explicitly, if it is centered. Both in 1- and 2-dimensional case we first center the

statistics, then we write their distribution in explicit form, and then we evaluate the power of the test.

7.3.1 1-dimensional case

We start with a simple 1-dimensional process, which is called the Brownian motion with drift:

dXt = bdt+ σdWt, X0 = x0, t > 0,

where b ∈ R, σ ∈ R. Recall that the process (X)t≥0 is discretely observed on a time interval [0,T ] at

equidistant time steps ∆. Our aim is to construct the following test:

H0 : σ2 < δ

H1 : σ2 ≥ δ,
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where δ is a pre-chosen parameter, possibly depending on a chosen step size ∆. Further, we will use

notations P0 and P1 to distinguish the cases when we evaluate the probability under the null or the

alternative hypothesis.

Note that in a 1-dimensional case the degeneracy of the diffusion matrix is equivalent to the fact

that the solution of (7.1) is a deterministic process. Thus, the aim of the procedure is to help to

decide whether the diffusion coefficient is small enough to consider X as a deterministic process.

The main statistics (7.6) of the test is given by 1
n

∑n
i=1 ξ

2
i , where ξi are defined by (7.3). Note

that ξi ∼ σ
(
ηi + ∆ b

σ

)
, where ηi are i.i.d. distributed standard normal variables. In other words,

‖ξ‖2 ∼ σ2χ2
n(λ), where χ2

n(λ) is a chi-squared distributed random variable with a non-centrality

parameter λ, defined as follows:

λ(σ) =
∆2b2

nσ2 .

Note that the non-centrality parameter is of order O(∆2). It means that as ∆→ 0, the law of ‖ξ‖2

transforms in a standard chi-squared law. Also, it means that even in the case when the drift b is

not known, the approximation of the statistics distribution should not be sensitive to the plugged-in

estimator of b. Now let us define a α-quantile under H0. Note that

P (S ≤ ε) = 1−Qn/2

(√
λ(δ),

√
ε

δ

)
,

where Qm(a, b) is a Markum Q-function, defined as:

Qm(a, b) =
∫ ∞
b

x
(x
a

)m−1
exp

(
−x

2 + a2

2

)
Im−1(ax)dx,

where Im−1 is a modified Bessel function of the first kind. Alternatively, Qm(a, b) may be also defined

as

Qm(a, b) = exp
(
−a

2 + b2

2

) ∞∑
k=1−m

(a
b

)k
Ik(ab).

Then, H0 hypothesis is rejected if S ≥ zα, where zα is such that Qn/2

(√
λ(δ),

√
zα
δ

)
= α. To the

best of our knowledge, the closed-form expression for the quantile of the non-central chi-squared

distribution does not exist. In practice, it can be approximated numerically with the help of built-in

methods in most statistical programming languages (such as R). However, by centering the statistics

we can obtain a closed-form expression for the rejection zone of the test.

Let us assume that the drift b is known or, at least, it can be estimated from discrete observations

(for example, by taking an empirical mean). As we have mentioned previously, since the drift is

only included in the non-centrality parameter with an order O(∆2), we expect that the law of the

statistics is not sensitive to the non-centrality parameter. We can then modify the entries ξi of the

main statistics as follows:

ξ̇i = ξi − b.

Then, we build the statistics S defined in (7.6) using ξ̇i, which we denote by Ṡ. Note that the

distribution of Ṡ is a centered chi-squared, in other words, Ṡ ∼ σ2χ2
n(0). Then, under H0, the

following holds:

P0
(
Ṡ ≥ δq1−α

)
= α, (7.7)
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where q1−α is a respective quantile of a chi-squared distribution. We then define the α quantile of the

test as follows:

zα = δq1−α.

The above equation gives the control of the Type I error and the rejection interval: H0 is rejected if Ṡ

is in the interval [zα,∞). Next, we want to determine the conditions under which the Type II error

can be controlled: in other words, how large should be the difference between the diffusion parameter

σ and δ, so that the alternative hypothesis would not be mistaken for H0 with high probability. The

control over Type II error can be obtained as follows:

P1
(
Ṡ ≤ zα

)
= P1

(
σ2χ2

n(0) ≤ zα
)
= P1

(
χ2
n(0) ≤

zα
σ2

)
.

It implies that P1
(
Ṡ ≤ zα

)
≤ β when zα

σ2 ≤ qβ . Thus, Type II error is bounded by a fixed risk level

β ∈ (0, 1) when

σ2 ≥ zα
qβ

. (7.8)

Equations (7.7)-(7.8) give the control over the Type I and Type II error of the test.

7.3.2 2-dimensional case

Now let us consider a 2-dimensional case. Analogously to the previous section, we are interested in

constructing a test which helps to determine the order of smallness of the diffusion coefficients. To

begin with, we focus on the case where the drift is known and constant. Consider a 2-dimensional

process, defined by the solution of:

dXt = bdt+ σdWt,

where b = (b1, b2)T is a drift vector and σ is a diagonal diffusion matrix with constant coefficients σ1

and σ2 on the main diagonal, W is a 2-dimensional Brownian motion. The goal is to construct the

test of the following hypothesis:

H0 : σ2
1σ

2
2 = δ

H1 : σ2
1σ

2
2 ≥ δ,

where δ is some chosen ”sensitivity” threshold. H0 and H1 correspond roughly to the case of the

covariance matrix being of a full rank or not, as δ can be arbitrarily close to 0.

The vectors ξ1
i and ξ2

i defined in (7.3) consist of the successive increments of a Gaussian process

with a given mean and a constant (unknown) variance, so that the corresponding column-vectors are

identically distributed as follows ∀j ∈ {1, 2}, i ∈ {1, . . . ,n}:

ξji :=
X(2i+j)∆ −X(2i+j−1)∆√

∆
∼ N

(
√

∆b1,
√

∆b2)T ,

σ2
1 0

0 σ2
2

 .

We then define the centered statistics as follows:

Ṡ =
1
n

n∑
i=1

det
(
mat

(
ξ1
i −
√

∆b, ξ2
i −
√

∆b
))2

.
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This choice corresponds to the matrix rank estimator proposed by Jacod et al. (2008), Jacod and

Podolskij (2013), observed with a time step ∆ on the interval T = n∆, but centered around 0.

Centering the statistics gives an immediate advantage of the cumulative distribution function being

explicitly known. In particular, the following proposition holds:

Proposition 7.1. Denote ṡi := det
(
mat

(
ξ1
i −
√

∆b, ξ2
i −
√

∆b
))2

. The following holds for all i:

P (ṡi ≤ x) = 1−
(√

x

σ2
1σ

2
2
+ 1
)
e
−
√

x

σ2
1σ

2
2

Proof. First, note that by Theorem 4.1.1. in Girko (1990) ṡi ∼ σ2
1σ

2
2χ

2
i,1χ

2
i,2, where by χ2

i,k we denote

a variable distributed according to a chi-squared distribution with k degrees of freedom, all variables

being independent in i. Here we use the advantage that the covariance matrix of each vector-column

is the same.

Then, we need to write the distribution of χ2
i,1χ

2
i,2. We use the result from Wells et al. (1962) .

Generally, the PDF of a product χ2
i,1χ

2
i,2 is written as follows:

f(ω) =
ω1/2K1/2(ω

1/2)√
2Γ(1)Γ(1/2)

, (7.9)

where Kv(x) is the modified Bessel function of the second kind. Further, we can use the fact that in

our specific case, K1/2(ω
1/2) = 1

2
√

2πe−
√
ωω−1/2, and simplify (7.9), obtaining:

f(ω) =
1
2
ω1/2√2πe−

√
ωω−1/2

√
2π

=
1
2e
−
√
ω.

Finally, note that

P (ṡi ≤ x) = P
(
σ2

1σ
2
2χ

2
i,1χ

2
i,2 ≤ x

)
= P

(
χ2
i,1χ

2
i,2 ≤

x

σ2
1σ

2
2

)
=

1
2

∫ x

σ2
1σ

2
2

0
e−
√
ωdω.

Computing the integral, we obtain the result.

Now, we will compute a confidence interval under which H0 holds with probability 1− α. It will

give us an α-quantile. Then, the following holds:

Proposition 7.2. Under H0 the following bound holds:

P0

Ṡ ≥ δ(1 +W

(
−α

1/n

e

))2
 ≤ α,

where W denotes Lambert W function1.

Proof. Note that under H0, E
[
Ṡ
]
= 2σ2

1σ
2
2 = 2δ ∀i. Then, using the Proposition 7.1, we obtain:

P0
(
Ṡ ≥ ε

)
= 1−P0

(
1
n

n∑
i=1

ṡi ≤ ε

)
≤ 1−

n∏
i=1
P0 (ṡi ≤ ε)

= 1−
(

1−
(√

ε

δ
+ 1
)
e−
√
ε
δ

)n
≤
(√

ε

δ
+ 1
)n

e−n
√
ε
δ

1 Definition and some of the properties of the Lambert W function are available in Appendix.
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Now we have to find ε such that (√
ε

δ
+ 1
)n

e−n
√
ε
δ ≤ α

Denote c := ε
δ . Then, we need to solve the following equation:

(√
c+ 1

)n
e−n
√
c ≤ α.

Note that the function (
√
c+ 1)n e−n

√
c is decreasing. Thus, one needs to set c ≥ c0, where c0 is a

root of the following equation: (√
c+ 1

)n
e−n
√
c = α. (7.10)

Note that (7.10) can be transformed as follows:

n ln
(√
c+ 1

)
− n
√
c = lnα

ln
(√
c+ 1

)
=

lnα
n

+
√
c

√
c = exp

(
lnα
n

+
√
c

)
− 1

The solution of such equation is given by a Lambert W function:

√
c = −W

(
−e(

lnα
n −1)

)
− 1 = −W

(
−α

1/n

e

)
− 1

Finally, we obtain the following constraint:

ε

δ
≥

(
W

(
−α

1/n

e

)
+ 1
)2

.

Now, let us denote the quantile

zα := δ

(
1 +W

(
−α

1/n

e

))2

. (7.11)

The dependency of zα is illustrated on the left panel of Figure 7.1, where the function
(

1 +W
(
−α1/n

e

))2

is plotted. Proposition 7.2 gives us the following rejection rule of the test:

H0 is rejected if Ṡ ≥ zα,

where zα is defined in (7.11). We are now interested in Type II error. For that, we need to evaluate

the probability to not reject H0 if H1 holds and see under which conditions it does not overpass the

fixed level β.

Proposition 7.3. For fixed levels of Type I and Type II risks α and β respectively and if

σ2
1σ

2
2 ≥ δ

 1 +W
(
−α1/n

e

)
1 +W

(
− (1−β)1/n

e

)
2

,

the following inequality holds:

P1
(
Ṡ ≤ zα

)
≤ β,
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Figure 7.1: Left panel: evolution of the function
(

1 +W
(
−α

1/n

e

))2
as n grows, for α = 0.05. Right panel:

evolution of the function f(α,β) =

 1+W
(

−α1/n
e

)
1+W

(
− (1−β)1/n

e

)2

as n grows and its limit value, for

α = β = 0.05.

Proof. Using Proposition 7.1, we obtain:

P1
(
Ṡ ≥ zα

)
≥

n∏
i=1

(ṡi ≥ zα) =
(√

zα

σ2
1σ

2
2
+ 1
)n

e
−n
√

zα
σ2

1σ
2
2

Our goal is to lower-bound the expression on the left by 1− β, where β denotes the accepted Type II

risk. Thus, we need to solve the following inequality:(√
zα

σ2
1σ

2
2
+ 1
)n

e
−n
√

zα
σ2

1σ
2
2 ≥ 1− β (7.12)

Denote c := zα
σ2

1σ
2
2
. Inequality (7.12) then holds for all c ≤ c0, where c0 is the root of the following

equation: (√
c+ 1

)n
e−n
√
c = 1− β.

The solution of this equation (see more detailed computations in the proof of Proposition 7.2) is given

as:

c =

(
W

(
− (1− β)1/n

e

)
+ 1
)2

.

Then, P1
(
Ṡ ≥ zα

)
≥ 1− β or, equivalently, P1

(
Ṡ ≤ zα

)
≤ β, when the following condition holds:

zα

σ2
1σ

2
2
≤

(
W

(
− (1− β)1/n

e

)
+ 1
)2

.

Recalling the definition of zα, we obtain:

δ
(

1 +W
(
−α1/n

e

))2

σ2
1σ

2
2

≤

(
1 +W

(
− (1− β)1/n

e

))2

σ2
1σ

2
2 ≥ δ

 1 +W
(
−α1/n

e

)
1 +W

(
− (1−β)1/n

e

)
2

.
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On Figure 7.1 we track the dependency of the limit conditions on the sample size n. Denote

f(α,β) =

 1 +W
(
−α1/n

e

)
1 +W

(
− (1−β)1/n

e

)
2

. (7.13)

For simplicity, we assume both Type I and Type II error levels to be fixed and equal to 0.05. Note

that when n = 1, meaning that we have only one observation on the interval [0,T ], the Type II risk is

controlled when the product σ2
1σ

2
2 is equal at least 10δ. As n→∞, then σ2

1σ
2
2 must be at least around

60δ. The obtained numerical result is backed up by Proposition (7.4). Indeed, for α = β = 0.05,

f(α,β) → lnα
ln(1−β) ≈ 58.4, which coincides with the limit obtained on Figure 7.1. This result may

seem counter-intuitive, as the bound becomes more restrictive as n grows. It can be explain by the

fact that the rejection interval shrinks as n→ 0, as it is seen on the left panel of Figure 7.1.

Let us now explain the practical meaning of the results obtained in Proposition 7.3. Evaluating the

Type II error gives us an idea about how ”far” from the null hypothesis should be the value of the

product σ2
1σ

2
2 in order to be interpreted as corresponding to H1. Now our goal is to show how this

condition evolves as n→∞. The following proposition holds:

Proposition 7.4. For α,β ∈ (0, 1), the following holds:

lim
n→∞

f(α,β) = lnα
ln(1− β) ,

where f(α,β) is defined in (7.13).

Proof. As the first step, we need to find an asymptotic expansion of W (x). In our case both expressions

−α1/n

e and − (1−β)1/n

e take their values on the interval (−1/e, 0) and converge to −1/e as n → ∞.

The interval x ∈ (−1/e, 0) corresponds to a W−1 branch of a Lambert function, and the function W (x)

is real-valued and monotone decreasing on this interval. However, the function W (x) is not analytic

at x = 1/e, since it is the branching point of two branches W0 and W−1. Thus, the derivative in this

point does not exist and W (x) cannot be expressed in the terms of its Taylor expansion. However,

several numerical approximations exist. For instance, when x ≥ −1/e, the following approximation

holds for the branch W−1 (Corless et al., 1996):

W (x) =
∞∑
m=0

θlp
l = −1 + p− 1

3p
2 +

11
72p

3 + . . . , (7.14)

where p = −
√

2(ex+ 1) and

θl =
l− 1
l+ 1

(
θl−2

2 +
γl−2

4

)
− γl−2

2 − θl−1
l+ 1 , θ0 = −1, θ1 = 1,

γl =
l−1∑
s=2

θsθl+1−s, γ0 = 2, γ1 = −1.
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Series (7.14) converge for |p| <
√

2. This condition holds for x ∈ (−1/e, 0), with p being in an interval

(−
√

2, 0). Applying this result to the function f(α,β), given in (7.13), we obtain:

f
1
2 (α,β) ≈

−
√

2(1− α1/n) + 2
3

(
1− α1/n

)
− 11

72

(
2(1− α1/n)

)3/2
+O

(
(1− α1/n)5/2

)
−
√

2(1− (1− β)1/n) + 2
3
(
1− (1− β)1/n

)
− 11

72
(
2(1− (1− β)1/n)

)3/2
+O

(
(1− α1/n)5/2)

=

√
1− α1/n

1− (1− β)1/n

(
1 +O

(
(1− α1/n)1/2

))
In other words, the value of f(α,β) is primarily determined by the ratio 1−α1/n

1−(1−β)1/n . Now we can find

the limit of this function for n→∞:

lim
n→∞

f(α,β) = lim
n→∞

1− α1/n

1− (1− β)1/n = lim
n→∞

1
n

(
1− α1/n

)
1
n

(
1− (1− β)1/n

)
Limits of the numerator and denominator for n→∞ exist and are equal to − ln(α) and − ln(1− β)

respectively. Thus, the limit of f(α,β) is determined as their ratio:

lim
n→∞

f(α,β) = lnα
ln(1− β)

Note that it can be tempting to replace a bulky expression (7.13) by its limit, obtained in the

Proposition 7.4. However, as illustrated on Figure 7.1, the limit is not sharp.

7.3.3 Summary of the obtained results

In this Section we consider the case when the distribution of the test statistics is explicitly known. In

order to apply it to a real data, one needs to couple the test with the drift estimator in order to center

the statistics. For example, if the drift is known to be constant, the empirical mean can be used as an

estimator. Of course, the assumption of constant drift is rather bold, especially in the case of neuronal

models. Analogously, one can apply non-parametric drift estimation and use the obtained process

for centering. However, most of the estimators require either the prior knowledge of the structure of

the diffusion coefficient, or at least some prior information about the distribution of the process. In

addition, the estimation error must be taken into account when deriving the distribution of the test

statistics. The accuracy of the obtained estimation can play a pivotal role in controlling the power of

the test.

7.4 distribution of statistics for a general d-dimensional process

Now we consider a process X given as a solution of SDE (7.1) in a general setting. Recall that the

matrices Ξi are defined in (7.2), and each of its vector columns is distributed according to a normal

law ξji ∼ N (µji , Σji ), where µji ∈ Rd, Σji ∈ Rd×d. The mean and the variance can be seen as estimated

values of the drift and diffusion coefficients, given by Euler-Maruyama scheme as in (7.4) and (7.5).
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We deliberately set this notation differently from the previous section, as in the general case the

expectation and the variance of each column vector cannot always be written explicitly, only estimated

or approximated.

The main variable of interest in this setting is a determinant det Ξ2
i . However, unlike in 2-dimensional

case, the density of det Ξ2
i cannot be written explicitly for d > 2. The probabilistic properties of S are

thus much harder to study. Our idea is to simplify the problem and to focus on the vector-columns of

Ξi, which are in fact quadratic forms of normal variables and are slightly easier to study.

7.4.1 Evaluation of moments

Let us give few useful results about
∥∥∥ξji ∥∥∥2

, i.e. the norm of the j−th vector-column in a matrix Ξi:

Proposition 7.5. The following holds:

E

[∥∥∥ξji ∥∥∥2
]
= tr

(
Σji
)
+ ‖µji‖

2,

V ar

[∥∥∥ξji ∥∥∥2
]
= 2tr

(
Σji
)2

+ 4(µji )
TΣjiµ

j
i

More generally, m−th moments of
∥∥∥ξji ∥∥∥2

can be evaluated as:

E

[(∥∥∥ξji ∥∥∥2
)m]

=


m−1∑
m1=0

(
m− 1
m1

)
gm−1−m1
i

m1−1∑
m2=0

(
m1 − 1
m2

)
gm1−1−m2
i . . .

 ,

where

gli = 2ll!
{

tr
(

Σl+1
i

)
+ (l+ 1)(µli)TΣliµ

l
i

}
Proof. Follows from Theorem 3.2b.2 in Mathai and Provost (1992), by rewriting

∥∥∥ξji ∥∥∥2
= ξji Id(ξ

j
i )
T ,

where Id is an identity d× d matrix.

Proposition 7.6. All the moments of the det Ξ2
i are bounded, in other words:

E
[(

det Ξ2
i

)m] ≤ E
 d∏

j=1

∥∥∥ξji ∥∥∥
2m .

Proof. We just have to apply Hadamard inequality, obtaining:

(
det Ξ2

i

)m
= (det Ξi)

2m ≤

 d∏
j=1

∥∥∥ξji ∥∥∥
2m

a.s..

Now we are ready to evaluate the tail distribution of S, which will be our test statistics.
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7.4.2 Tail distribution

In general setting it is difficult to explicitly write the probabilistic law of S, as we have done in the

previous sections. Thus, we will construct the test with the help of concentration inequalities, which

provide us with the information about the tail distributions of the variable S.

Lemma 7.1 (Sub-gaussian lower tail). Grant assumption (A). The following inequality holds:

P (S −E[S] ≤ −ε) ≤ exp
(

−ε2n2

4
∑n
i=1E[det Ξ4

i ]

)
.

Proof. Consider the following transformation:

P (S −E[S] ≤ −ε) = P
(
e−λ(S−E[S]) ≥ eλε

)
.

By Markov’s inequality we have ∀λ > 0:

P
(
e−λ(S−E[S]) ≥ eλε

)
≤ E

[
e−λ(S−E[S])

]
e−λε.

By independence of Ξi we note that

E
[
e−λ(S−E[S])

]
e−λε = e−λε

n∏
i=1
E
[
e−

λ
n (det Ξ2

i−E[det Ξ2
i ])
]
=

e−
λ
n (ε−

∑n

i=1 E[det Ξ2
i ])

n∏
i=1
E
[
e−

λ
n det Ξ2

i

]
.

Now consider

E
[
e−λ det Ξ2

i

]
= 1− λ

n
E[det Ξ2

i ] +
λ2

2n2E

[
2 det Ξ4

i

e−
λ
n det Ξ2

i + λ
n det Ξ2

i − 1
(λn det Ξ2

i )
2

]
.

Define

h(u) :=
e−u + u− 1

u2 .

Since λ > 0 and det Ξ2
i ≥ 0, the following holds:

h(
λ

n
λ det Ξ2

i ) ≤ h(0) = 1.

Then,

1
n2E

[
det Ξ4

i h(λ det Ξ2
i )
]
≤ 1
n
E
[
det Ξ4

i

]
E
[
e−

λ
n det Ξ2

i

]
≤ 1− λ

n
E
[
det Ξ2

i

]
+
λ2

n2E
[
det Ξ4

i

]
Finally, we obtain

P
(
e−λ(S−E[S]) ≥ eλε

)
≤ e−λε+

λ
n

∑n

i=1 E[det Ξ2
i ]

n∏
i=1

(
1− λ

n
E
[
det Ξ2

i

]
+
λ2

n2E
[
det Ξ4

i

])

≤ exp
(
−λε+ λ

n

n∑
i=1

E
[
det Ξ2

i

]
− λ

n

n∑
i=1

E
[
det Ξ2

i

]
+
λ2

n2

n∑
i=1

E
[
det Ξ4

i

])

= exp
(
−λε+ λ2

n2

n∑
i=1

E
[
det Ξ4

i

])
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Then, it remains to maximize the above expression with respect to λ, which boils down to finding the

minimal value of −λε+ λ2

n2
∑n
i=1E

[
det Ξ4

i

]
. Taking the derivative, we obtain:

d

dλ

(
−λε+ λ2

n2

n∑
i=1

E
[
det Ξ4

i

])
= −ε+ 2 λ

n2

n∑
i=1

E
[
det Ξ4

i

]
.

Solving the equation −ε+ 2 λ
n2
∑n
i=1E

[
det Ξ4

i

]
= 0 we obtain the optimal value of λ, which equals

εn2

2
∑n

i=1 E[det Ξ4
i ]

. Doing the last substitution, we obtain:

exp
(
−λε+ λ2

n2

n∑
i=1

E
[
det Ξ4

i

])
=

exp
(
− ε2n2

2
∑n
i=1E

[
det Ξ4

i

] + ε2n2

4
∑n
i=1E

[
det Ξ4

i

]) = exp
(
− ε2n2

4
∑n
i=1E

[
det Ξ4

i

])

That gives the result.

Now our aim is to evaluate the following probability:

P (S −E[S] ≥ ε) . (7.15)

The difficulty in obtaining (7.15) is that the variables det Ξ2
i are not bounded from above. Thus, we

can not use the same trick as in the previous subsection. The idea will be to split the probability

space Ω in two subspaces: one (denoted by Ω+
c ) will contain the events in which det Ξ2

i does not

exceed a certain constant ∀i, and the other is equal to Ω̄+
c = Ω \Ω+

c .

We define the set Ω+
c ⊂ Ω as follows:

Ω+
c :=

{∥∥∥ξji ∥∥∥2
≤ E

[∥∥∥ξji ∥∥∥2
]
+ cji ∀j ∈ 1, . . . d, i = 1, . . . ,n

}
, (7.16)

where ‖ · ‖ is the Euclidean norm, and denote by Ω̄+
c its complement and cji is defined as follows:

cji = tr
(

Σji
)(

d+ 2
√
dc+ 2c− 1

)
+ 2

∥∥∥µji∥∥∥2
√
c

d
, (7.17)

and the constant c is independent of i and j. Then, consider a random variable ω+
i = det Ξ2

i1Ω+
c

.

Probability (7.15) can be bounded as follows:

P (S −E[S] ≥ ε) ≤ P

(
1
n

n∑
i=1

(
ω+
i −E

[
det Ξ2

i

])
≥ ε

)
+P

(
Ω̄+
c

)
.

The idea is then to evaluate the probability P
(
ω+
i −E

[
ω+
i

]
≥ ε
)

and show that P (Ω̄+
c ) is small (or

negligible) for a good choice of the constant c. The first part of this sum can be evaluated thanks to

the following Lemma:

Lemma 7.2. Grant Assumption (A). In Ω+
c the following inequality holds:

P

(
S −E[S] ≥ ε

∣∣∣∣Ω+
c

)
≤ exp

− 2ε2n2∑n
i=1
∏d
j=1

(
tr
(

Σji
)
+ ‖µji‖2 + cji

)
 ,

with cji being defined in (7.17).
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Proof. First note that due to the Hadamard inequality, det Ξ2
i is bounded by the norms of its

vector-columns, which are in turn bounded on space Ω+
c . In other words,

det Ξ2
i ≤

d∏
j=1

∥∥∥ξji ∥∥∥2
≤

d∏
j=1

(
E

[∥∥∥ξji ∥∥∥2
]
+ cji

)
a.s.

For the bounded variable ω+
i = det Ξ2

i1Ω+
c

we can thus apply Hoeffding’s inequality (see Theorem 2.8

in Boucheron et al. (2013)):

P

(
n∑
i=1

(
ω+
i −E

[
ω+
i

])
≥ εn

)
≤ exp

− 2ε2n2∑n
i=1
∏d
j=1

(
E

[∥∥∥ξji ∥∥∥2
]
+ cji

)
 .

Since P
(∑n

i=1
(
ω+
i −E

[
det Ξ2

i

])
≥ εn

)
≤ P

(∑n
i=1
(
ω+
i −E

[
ω+
i

])
≥ εn

)
the statement of the propo-

sition also holds.

Now we focus on evaluating the probability P(Ω̄+
c ).

Lemma 7.3. The following holds:

P(Ω̄+
c ) ≤ dne−c

Proof. First, note that

P(Ω̄+
c ) = P

 n⋃
i=1

d⋃
j=1

{∥∥∥ξji ∥∥∥2
≥ E

[∥∥∥ξji ∥∥∥2
]
+ cji

} ≤
n∑
i=1

d∑
j=1

P

(∥∥∥ξji ∥∥∥2
≥ E

[∥∥∥ξji ∥∥∥2
]
+ cji

)

Let us evaluate P
(∥∥∥ξji ∥∥∥2

≥ E
[∥∥∥ξji ∥∥∥2

]
+ cji

)
. First, recall that vector ξji is normal with mean and

variance being given by µji and Σji . In particular, it implies that ∀λ ∈ Rd

E
[
exp

(
λT
(
ξji − µ

j
i

))]
≤ exp

‖λ‖2 V ar
[∥∥∥ξji ∥∥∥]
2

 = exp
(

1
2 ‖λ‖

2 tr
(

Σji
))

.

Then, by applying Theorem 2.1. from Hsu et al. (2012), we obtain the following:

P

(∥∥∥ξji ∥∥∥2
> tr

(
Σji
)(

d+
√

2dc+ 2c
)
+ tr

(
µji (µ

j
i )
T
)(

1 + 2
√
c

d

))
≤ e−c

P

(∥∥∥ξji ∥∥∥2
>
(
tr
(

Σji
)
+
∥∥∥µji∥∥∥)+ tr

(
Σji
)(

d+
√

2dc+ 2c− 1
)
+ 2

∥∥∥µji∥∥∥√ c

d

)
≤ e−c.

By Proposition 7.5 and the definition (7.16) the above expression can be rewritten as

P

(∥∥∥ξji ∥∥∥2
≥ E

[∥∥∥ξji ∥∥∥2
]
+ cji

)
≤ e−c.

It gives the result.

Combining the results of Lemma 7.2 and 7.3, we obtain the upper tail for (7.15):

Lemma 7.4. Grant assumption (A). The following bound holds:

P (S −E[S] ≥ ε) ≤ exp

− 2ε2n2∑n
i=1
∏d
j=1

(
tr
(

Σji
)
+ ‖µji‖2 + cji

)
+ dne−c, (7.18)

where cji is defined in (7.17).
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The ultimate bound for any c ≥ 0 may be obtained by minimizing (7.18). However, the function

involved in the right part of the expression is not convex, so that the existence of a global minimum

is not guaranteed. However, for the practical use we do not need a global minimum. It is suffices

that the probability can be bounded by an arbitrarily small value, such that the total probability of a

deviation from its mean value for a variable det Ξ2
i is bounded by a given risk. Combining Lemmas

7.1 and 7.4, we obtain the following result:

Theorem 7.1. Grant assumption (A) and let

zα =
1
n
Cdn(d,α)

√
−1

2 ln α

5dn

√√√√ n∑
i=1

d∏
j=1

(
tr
(

Σji
)
+

2√
dCn(d,α)

∥∥∥µji∥∥∥2
)

,

where Cn(d,α) =
√
d+

√
−2 ln α

5dn . Then, the following holds:

P (|S −E[S]| ≥ zα) ≤ α,

Proof. Using Lemmas 7.1 and 7.4 we may apply the following restrictions on ε and c:

(i) dne−c ≤ α

5 ,

(ii) exp

− 2ε2n2∑n
i=1
∏d
j=1

(
tr
(

Σji
)
+ ‖µji‖2 + cji

)
 ≤ 2α

5 ,

(iii) exp
(

−ε2n2

4
∑n
i=1E[det Ξ4

i ]

)
≤ 2α

5 .

First note that condition (i) is equivalent to c < − ln α
5dn . Second, note that the exponent on the left

side of (ii) grows as its denominator grows. Thus, we can embed the condition obtained on the first

step into the limitations on ε. First, note that by definition (7.17), the denominator in its full form is

written as follows:

n∑
i=1

d∏
j=1

(
tr
(

Σji
)(

d+ 2
√
dc+ 2c

)
+ 2

∥∥∥µji∥∥∥2
(√

c

d
+ 1
))

.

Using the bound on c obtained from condition (i), we obtain:

n∑
i=1

d∏
j=1

(
tr
(

Σji
)(

d+ 2
√
−d ln α

5dn − 2 ln α

5dn

)
+ 2

∥∥∥µji∥∥∥2
(√
−

ln α
5dn
d

+ 1
))
≤

n∑
i=1

d∏
j=1

(
tr
(

Σji
)(√

d+

√
−2 ln α

5dn

)2
+ 2

∥∥∥µji∥∥∥2
(√
−1
d

ln α

5dn + 1
))

.

It can be further simplified as follows:

n∑
i=1

d∏
j=1

(
tr
(

Σji
)(√

d+

√
−2 ln α

5dn

)2
+

2√
d

∥∥∥µji∥∥∥2
(√
− ln α

5dn +
√
d

))
≤

(√
d+

√
−2 ln α

5dn

)2d n∑
i=1

d∏
j=1

tr (Σji
)
+

2
√
d
(√
−2 ln α

5dn +
√
d
) ∥∥∥µji∥∥∥2

 .



7.5 conclusions 171

Denote Cn(d,α) :=
√
d+

√
−2 ln α

5dn . Then, the bounds on ε can be obtained from the following

inequality:

exp

− 2ε2n2

C2d
n (d,α)

∑n
i=1
∏d
j=1

(
tr
(

Σji
)
+ 2√

dCn(d,α)

∥∥∥µji∥∥∥2
)
 ≤ 2α

5 .

It results in the following bound:

ε ≥ 1
n
Cdn(d,α)

√
−1

2 ln α

5dn

√√√√ n∑
i=1

d∏
j=1

(
tr
(

Σji
)
+

2√
dCn(d,α)

∥∥∥µji∥∥∥2
)

.

Further, we need to consider (iii), which results in

ε ≥ 2
n

√√√√− ln α

5dn ·
n∑
i=1

E[det Ξ4
i ]

Note that the bound obtained in (ii) is more restrictive than the bound obtained in (iii), especially

when d is large. It gives the result.

7.5 conclusions

In this Chapter we first demonstrate that under the assumption of Section 7.3 (constant and known

drift), a statistical test can be proposed straightforwardly. Explicitly written density function allows

us to construct a statistical test and evaluate its power. However, in order to apply the obtained test

to real data, one would need to couple the testing procedure with an estimator of the drift, and prove

the distribution of the test statistics in this case.

The advantage of the considered 1- and 2-dimensional toy models is that they give an idea of the

behaviour of the test statistics in high-dimensional case. Indeed, it is proven in Proposition 7.1 that in

a 2-dimensional case, the distribution of S is equivalent to the distribution of product of chi-squared

and a normal variable. It is easy to extrapolate (using again the results from Girko (1990)) that

in d-dimensional case, the centered statistics with constant diffusion coefficient would behave as a

product of d chi-squared variables of 1, 2, . . . , d degrees of freedom. However, the probabilistic law

of such an object is not very well studied. Thus, it is difficult to propose results similar to Section

7.3 in a d−dimensional case, even if the case of constant coefficients is considered. In the case of

non-constant coefficients, the problem becomes much more complicated. To the best of our knowledge,

it is out of reach to explicitly write the distribution of the determinant of a random matrix with

non-centered non-unit variance normal variables.

Luckily, we do not always need an explicit distribution to construct a test. In Section 7.4 we try

to evaluate the tails of S and understand under which condition the statistics concentrates around

its mean value. The inequality on the lower tail is easy to obtain, since we use the non-negativity

of the test statistics (see Lemma 7.1). With the upper tail, the task is more difficult. The trouble

is that the determinants, being nothing else than multivariate polynomials, are notoriously difficult

to concentrate: among other things, they are not bounded and cannot be expressed as a Lipschitz
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function of Gaussian variables. Most of the works, studying the law of random determinants, consider

very special cases: for example, when the matrix is Hermitian (Mehta and Normand, 1998), when the

dimension is going to infinity (Nguyen and Vu, 2014), when the entries are centered and independently

distributed (Nyquist et al., 1954, Cicuta and Mehta, 2000, Costello and Vu, 2009). The structure of

our matrix (7.2) excludes the possibility of working under these assumptions.

Thus, our idea is to reduce the problem down to studying the distribution of the norms of the

vector-columns of the matrix using the matrix Hadamard inequality. They are simply quadratic

forms of the normal variables and are better studied in the literature (see, for example, book Mathai

and Provost (1992)). We use this trick to obtain the upper bound in Lemma 7.4. We need to note,

however, that by simplifying the problem of evaluating the upper tail, we loose a lot of information

about the distribution: the Hadamard inequality is easy to apply, but it is not sharp in general. Thus,

the obtained quantile expression in Theorem 7.1 is rather restrictive.

In order to build a test on the obtained results, several steps need to be achieved. First, we

need to be able to give an explicit expression, or a good approximation, of the first moment of S.

Some approximations of the expectation of the determinant of a very general matrix are available in

the literature (see Girko (1990)), but they are often difficult to apply in a non-asymptotic setting.

Second, we need an efficient way to deal with the drift term of the diffusion, or be encoded in the test

hypothesis one seeks to test. Indeed, the quantile in Theorem 7.1 depends on the determinant, thus

we need to evaluate it prior to constructing the test. Finally, as it is said above, using the Hadamard

inequality simplifies the evaluation of the tail, but causes a significant loss of information. Thus,

we need either a sharper upper bound, which would depend on the moments of S exclusively, or to

determine the dependency between the values of tr
(

Σji
)

(where Σji is the covariance matrix of the

j-th vector-column) and the det Ξi (Ξi being the core of the statistics).

7.6 appendix

7.6.1 Note on the Lambert W function

Lambert W function is a multivalued function, whose values are defined by the inverse relation of the

function

f(w) = wew,

where w is any complex number and ew is the exponential function. Each branch is denoted by Wk,

which is a complex-valued function of one complex argument. These functions satisfy the following

property: for any complex numbers w and z, wew = z holds if and only if for some k ∈ N, w = Wk(z).

Note that in the special case when z ∈ R and z ≥ −1
e , the Lambert W function has a unique real value.

More precisely, two real-valued branches of Lambert W function give the solution of the following

equation:

yey = x,x ≥ −1
e

,
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and the solution as given as follows

y =

W−1(x) if x ∈ [−1
e , 0),

W0(x) if x ≥ 0.

The point −1
e is a branching point for the branch W0 (also called a principal branch). The function

can not be differentiated at this point. For the other branches the branching point is located at x = 0.
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C O N C L U S I O N S , D I S C U S S I O N S , F U T U R E WO R K

During the 3-years long PhD contract, more questions have arisen as they have been solved in the

presented manuscript. The following articles were produced on the basis of the solved questions:

1. J. Chevallier, A. Melnykova, I. Tubikanec ”Diffusion approximation of Hawkes processes with

Erlang memory kernels: Theoretical and numerical analysis” (submitted, under review)

2. V. Calvez, S.F. Iglesias, H. Hivert, S. Méléard, A. Melnykova, S. Nordmann ”Horizontal

gene transfer: numerical comparison between stochastic and deterministic approaches”, ESAIM:

Proceedings and Surveys, EDP Sciences, 2020, CEMRACS 2018, Vol. (67), pp.135-160, doi:

10.1051/proc/202067009

3. A. Melnykova ”Parametric inference for multidimensional hypoelliptic ergodic diffusion with

full observations”, Statistical Inference for Stochastic Processes, 2020, Vol. (20), pp.595–635,

doi: 10.1007/s11203-020-09222-4

4. A. Melnykova, P. Reynaud-Bouret, A. Samson ”Concentration inequalities for an estimator of

covariance matrix rank in neuronal models”

The results presented in the manuscript were communicated on 6 international conferences and

several seminars. The codes reproducing the results are publicly available on author’s GitHub page

https://github.com/melnyashka.

We devote the concluding Chapter of this thesis to the questions which remained unsolved either

due to the lack of time, or because treating those questions would fall far out of the models, tools and

methods presented in this work. The author hopes that the issues addressed below could inspire the

interested reader to attempt their resolution.

part i: numerics

The most important message which can be taken from Chapter 4 (Theoretical and numerical analysis of

Hawkes processes with Erlang memory kernels and their diffusion approximation) is that the stochastic

diffusion, arising as a mean-field limit of PDMP model, can be used for studying such a complex

system as a spiking network of neurons. There are several advantages of using stochastic diffusions

in this framework: first, they are much easier and faster to simulate, since the complexity of the

177

https://github.com/melnyashka
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algorithm does not grow with the size of a neuronal network. Second, from a mathematical point of

view they are much more simple to study than the point processes. In particular, it is easier to derive

the moment properties or study the long-time behaviour of the system with the SDEs, since one can

use a large deviation theory (see, for example, Löcherbach (2019)). To sum up, the author hopes that

the results presented in this Chapter (and respective article Chevallier et al. (2020)) could contribute

towards better understanding of neuronal activity in interacting systems of neurons on a large scale.

Furthermore, the results obtained in Chapter 4 are inspiring from the statistical point of view: since

it has been shown that the diffusion approximation shares the properties of the PDMP, it must be

possible to use the statistical inference tools for SDEs for the parameter estimation in the presented

model. It is the main subject of the ongoing collaboration between the author of the manuscript,

Adeline Samson (Université Grenoble Alpes) and Susanne Ditlevsen (University of Copenhagen). To

construct a parameter estimation procedure given the observations of the point processes, several

steps are needed. Note that in the real life the integrated intensity process (described by a SDE) is

not observed (as well as the firing intensity). So, we would need first to reconstruct the integrated

intensity from the available observations of the point process. It can be conducted in several steps.

First, the neurons neurons need to be clasterised by using, for example, the method of Humphries

(2011). Then, the intensity rate can be estimated from spiking data with the help of kernel estimates

as in Shimazaki and Shinomoto (2010), or adapting a method of Gugushvili et al. (2018). Once it is

done, one may treat the resulting reconstructed process as a sample of the diffusion process. It only

remains to apply the methods of parametric estimation for SDEs to the reconstructed process.

At this moment, several approaches are possible. One possible solution would be to apply the

Approximate Bayesian Computation, using the numerical splitting scheme presented in Chapter 4

for simulating the paths, and taking the reconstructed integrated intensity as a reference solution.

Another idea could be to adapt the contrast-type (or pseudo-maximum likelihood) estimators to the

diffusion process. In that case, it is of crucial importance to determine the suitable ”depth” of the

memory kernel, i.e., the dimensionality of the considered diffusion. More generally, one could use

other methods which can be applied directly to the observations of the point process, for example,

Maximum Likelihood Estimators (see Ozaki (1979), Juditsky et al. (2020)), or Bayesian estimators

(Rasmussen, 2013).

The numerical results comparing the birth-and-death (individual-based) and Hamilton-Jacobi PDE

(density-based) models, obtained in Chapter 5 (and the corresponding paper Calvez, Vincent et al.

(2020)) are also encouraging. In particular, we show that the Hamilton-Jacobi type PDE captures

well the evolutionary rescue phenomena, and that the theoretical thresholds for changing the regime

can be also applied to the individual-based model. The most straightforward application of these

results would be to conduct a rigorous theoretical analysis of the resulting limiting equation. The first

step to this is already done in the Chapter. However, due to the strict time limitations imposed by

the CEMRACS project, we did not attempt, for example, the formal proof of convergence between

the PDE and Hamilton-Jacobi integro-differential model. The same fate has doomed the proof of

convergence of the semi-implicit scheme used to show the limiting behaviour of the system in a small
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population size. The author hopes that the results obtained for this particular example may be

carried over to other density-type models, which model the dynamics of the cancer cells under different

conditions (like in Example 1.4) and many others.

part ii: statistics

The results presented in Chapter 6 are interesting, first of all, from a theoretical point of view. In this

chapter we highlight statistical problems which are typical for hypoelliptic diffusions and not common

for elliptic case. In particular, the speed of convergence of parameters differs depending on whether or

not the respective variable is driven by the Brownian motion. Also, while studying the convergence of

estimator, we were forced to consider more restrictive assumptions on the drift term. Thus, the first

possible extension would be to try to obtain similar results in a non-Lipschitz case: the case which

includes, for example, most neuronal models considered in the manuscript.

As a second step, it could be interesting to adapt the procedure to high-dimensional systems, with an

arbitrary number of smooth and rough variables. For that one would need to propose a reliable scheme,

which would give a tractable discrete density. It can be done either with higher-order Itô-Taylor

expansions, or a splitting scheme, adapted to a wide class of systems. For Itô-Taylor expansions, one

can use a recently published preprint (Pigato, 2020), where a general result for an ”extended” diffusion

matrix is presented. It gives, in particular, the order of approximation which is needed for obtaining a

non-degenerate density, and also the conditions under which this approximation is possible.

Finally, the proposed estimation procedure must be adapted to the case when only one variable

is observable: it is the most crucial question for practical applications. The most straightforward

expansion would be to embed the obtained estimator in a filtering algorithm, which would allow to

treat the case of incomplete data. One could mimic the SAEM approach proposed by Ditlevsen and

Samson (2017), use the Gibbs sampling as in Pokern et al. (2007) or probably input the discrete data

into more modern estimation techniques, such as neuronal networks, using the contrast-type functions

as the loss function.

Another question to solve before applying any parameter estimation method is to choose between

the elliptic and hypoelliptic system. This is what the last chapter of this manuscript is devoted to.

The author considers Chapter 7 to be a starting point in developing non-asymptotic covariance matrix

rank tests for a general class of diffusion systems. By a non-asymptotic setting we mean the case

when data is observed only with a fixed time step. Our initial aim is to complement the works Jacod

et al. (2008), Jacod and Podolskij (2013), where the similar question is treated in asymptotic case.

We choose to use the same statisics as in the above mentioned works.

In the chosen framework we are forced to deal with several difficulties: first, the drift term, which

influences the accuracy of the test and needs to be either estimated from discrete data, or taken into

account as an error. Second, the test statistics is challenging: it is not bounded, not a Lipschitz

function, and, in general, cannot be expressed as a function of standard Gaussian variables. We are

able to obtain encouraging results in the 1- and 2-dimensional case (at least in the case of the constant
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drift and variance), however, the procedure for multidimensional processes needs to be improved.

Several steps need to be accomplished before constructing a valid statistical test in a d-dimensional

case: first, one needs to have an explicit expression or at least a good estimate of the moments of

the test statistics, second, we need a sharp bound on the distribution of the upper tail. Nevertheless,

the author hopes that the obtained results on the probabilistic properties of determinants of random

matrix with non-centered and not i.i.d. distributed Guassian entries can be used in a various other

fields, given the scarcity of the works on the subject.
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Statistiques, volume 52, pages 483–501. Institut Henri Poincaré, 2016a.
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Adeline Samson and Michèle Thieullen. Contrast estimator for completely or partially observed

hypoelliptic diffusion. Stochastic Processes and their Applications, 122:2521–2552, 2012. doi:

10.1016/j.spa.2012.04.006. URL https://hal.archives-ouvertes.fr/hal-00598553.

T. Shardlow. Splitting for dissipative particle dynamics. SIAM J. Sci. Comput., 24(4):1267–1282,

2003. doi: 10.1137/S1064827501392879.

Hideaki Shimazaki and Shigeru Shinomoto. Kernel bandwidth optimization in spike rate estimation.

Journal of computational neuroscience, 29(1-2):171–182, 2010.

Gordon D Smith, Gordon D Smith, and Gordon Dennis Smith Smith. Numerical solution of partial

differential equations: finite difference methods. Oxford university press, 1985.

Charles F Stevens and Anthony M Zador. Novel integrate-and-re-like model of repetitive firing in

cortical neurons. 1998.

G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5(3):

506–517, 1968. doi: 10.1137/0705041. URL https://doi.org/10.1137/0705041.

Daniel W Stroock and SR Srinivasa Varadhan. Multidimensional diffusion processes. Springer, 2007.

Irene Tubikanec, Massimiliano Tamborrino, Petr Lansky, and Evelyn Buckwar. Qualitative properties

of numerical methods for the inhomogeneous geometric brownian motion. 2020.

Henry C Tuckwell. Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories,

volume 8. Cambridge University Press, 2005.

Kenneth Uda. Ergodicity and spike rate for stochastic fitzhugh–nagumo neural model with periodic

forcing. Chaos, Solitons & Fractals, 123:383–399, 2019.

Balthasar Van der Pol. A theory of the amplitude of free and forced triode vibrations. Radio Review,

1(1920):701–710, 1920.

https://doi.org/10.1186/2190-8567-4-3
https://hal.archives-ouvertes.fr/hal-00598553
https://doi.org/10.1137/0705041


bibliography 193

WT Wells, RL Anderson, John W Cell, et al. The distribution of the product of two central or

non-central chi-square variates. The Annals of Mathematical Statistics, 33(3):1016–1020, 1962.

Jeffrey West, Zaki Hasnain, Paul Macklin, and Paul K Newton. An evolutionary model of tumor cell

kinetics and the emergence of molecular heterogeneity driving gompertzian growth. SIAM Review,

58(4):716–736, 2016.

David C Wood. The computation of polylogarithms. technical report. 1992.

Liming Wu. Large and moderate deviations and exponential convergence for stochastic damping

hamiltonian systems. Stochastic processes and their applications, 91(2):205–238, 2001.
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