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Résumé

L’objectif principal de la thèse est de proposer et d’analyser des modèles mathématiques
basés sur des équations aux dérivées partielles (EDP) afin de décrire la dynamique spatiale
de deux espèces de campagnols (Microtus arvalis et Arvicola terrestris), qui sont particuliè-
rement surveillés dans l’est de la France. Les modèles que nous avons proposés reposent sur
des EDP qui décrivent l’évolution de la densité de la population de campagnols en fonction
du temps, de l’âge et de la position dans l’espace. Nous avons suivi deux approches complé-
mentaires pour représenter la dynamique. Dans la première approche, nous avons proposé
un premier modèle qui consiste en une EDP scalaire en structurée en temps, en âge, et en
espace. Elle est complétée par une condition au bord non locale. Le flux est linéaire à coeffi-
cient constant dans la direction de l’âge mais contient un terme non local dans les directions
de l’espace. De plus, l’équation contient un terme de second ordre par rapport aux variables
spatiales. Nous avons démontré l’existence et la stabilité de solutions faibles entropiques pour
le modèle en utilisant, la compacité par compensation établie par Panov et un argument du
type doublement de variables. Dans la deuxième approche, nous nous sommes inspirés du
modèle Multi Agents introduit par Marilleau-Lang-Giraudoux, où la dynamique spatiale des
juvéniles est découplée de l’évolution locale dans chaque parcelle. Pour mettre en place ce
deuxième modèle, nous avons introduit un graphe orienté dont les nœuds sont les parcelles
(ou colonies). Dans chaque nœud, l’évolution de la colonie est décrite par une équation de
transport structurée en temps et en âge, et les mouvements de dispersion dans l’espace sont
représentés par les passages d’un nœud à un autre. Nous avons proposé une discrétisation du
modèle, par des schéma volumes finis, et, grâce à des simulations numériques, nous avons pu
illustrer le fait que le modèle est capable de reproduire certaines caractéristiques qualitatives
de la dynamique spatiale observée dans la nature. Nous avons ensuite proposé un troisième
modèle qui est un système proie-prédateur constitué d’une équation hyperbolique pour les
prédateurs et d’une équation parabolique-hyperbolique pour les proies analogue à celle pro-
posée dans le premier modèle. Le terme de force dans l’équation des prédateurs dépend de
manière non localement de la densité des proies et les deux équations sont également cou-
plées via des termes sources classiques de type Lotka-Volterra. Nous avons établi l’existence
de solutions en appliquant la méthode de la viscosité évanescente, et nous avons établi un
résultat de stabilité par un argument de type doublement de variables. Enfin nous avons pro-



posé et validé un schéma de type volumes finis pour le premier modèle.

La dernière partie de mes travaux de recherche est dédiée à un projet auquel j’ai parti-
cipé lors d’une école d’été CEMRACS. Il concerne un sujet de biomathématiques différent
du thème principal de la thèse et porte sur un modèle épidémiologique pour la salmonel-
lose. Nous avons proposé un nouveau cadre de modélisation générique multi-échelles de la
transmission hétérogène d’agents pathogènes dans une population animale. Au niveau intra-
hôte, le modèle décrit l’interaction entre le microbiote commensal, le pathogène et la réponse
inflammatoire. Des fluctuations aléatoires de la dynamique écologique du microbiote indivi-
duel et de la transmission à l’échelle inter-hôte sont ajoutées pour obtenir un modèle EDP de
la distribution des agents pathogènes au niveau de la population. Une extension du modèle
a, par ailleurs, été développé pour représenter la transmission entre plusieurs populations. Le
comportement asymptotique ainsi que l’impact des stratégies de contrôle, y compris le net-
toyage et l’administration d’antimicrobiens, sont étudiés par des simulations numériques.

Mots-clés : Méthode des volumes finis, Équation parabolique – hyperbolique, Compacité par
compensation, Problème aux limites non locales, Systèmes proie-prédateur, Équations de
transport.



Abstract

The main objective of the thesis is to propose and analyze mathematical models based on
partial differential equations (PDE) to describe the spatial dynamics of two species of voles
(Microtus arvalis and Arvicola terrestris), which are particularly monitored in Eastern France.
The models that we have proposed are based on PDE which describe the evolution of the
density of the population of voles as a function of time, age and position in space. We have
two complementary approaches to represent the dynamics. In the first approach, we propose
a first model that consists of a scalar PDE depending on time, age, and space supplemen-
ted with a non-local boundary condition. The flux is linear with constant coefficient in the
direction of age but contains a non-local term in the directions of space. Moreover, the equa-
tion contains a second order term in the spatial variables only. We have demonstrated the
existence and stability of weak entropy solutions for the model by using, respectively, the Pa-
nov’s theorem of the multidimensional compensated and a doubling of the variables type
argument. In the second approach we were inspired by a Multi Agent model proposed by
Marilleau-Lang-Giraudoux, where the spatial dynamics of juveniles is decoupled from local
evolution in each plot. To apply this model, we have introduced a directed graph whose nodes
are the plots. In each node, the evolution of the colony is described by a transport equation
with two variables, time and age, and the movements of dispersion, in space, are represented
by the passages from one node to the other. We have proposed a discretization of the model,
by finite volume methods, and noticed that this approach manages to reproduce the qualita-
tive characteristics of the spatial dynamics observed in nature. We also proposed to consider
a predator-prey system consisting of a hyperbolic equation for predators and a parabolic-
hyperbolic equation for preys, where the prey’s equation is analogous to the first model of the
vole populations. The drift term in the predators’ equation depends nonlocally on the density
of prey and the two equations are also coupled via classical source terms of Lotka-Volterra
type. We establish existence of solutions by applying the vanishing viscosity method, and we
prove stability by a doubling of variables type argument. Moreover, concerning the numerical
simulation of the first model in one-dimensional space, we obtain a finite volume discretiza-
tion by using the upwind scheme and then validate the numerical scheme.

The last part of my thesis work is a project in which I participated during a Summer school



CEMRACS. The project was on a subject of biomathematics different from that of the thesis
(an epidemiological model for salmonellosis). A new generic multi-scale modeling framework
for heterogeneous transmission of pathogens in an animal population is suggested. At the
intra-host level, the model describes the interaction between the commensal microbiota, the
pathogen and the inflammatory response. Random fluctuations in the ecological dynamics of
the individual microbiota and transmission at the inter-host scale are added to obtain a PDE
model of drift-diffusion of pathogen distribution at the population level. The model is also ex-
tended to represent transmission between several populations. Asymptotic behavior as well
as the impact of control strategies, including cleaning and administration of antimicrobials,
are studied by numerical simulation.

Keywords : Finite volumes method, Parabolic–hyperbolic equation, Compensated compact-
ness, Nonlocal Boundary value problem, Prey-predator systems, Transport equations.
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Introduction

Small rodents, as voles, are cornerstone species in most temperate ecosystems as their
presence is necessary for the survival of a variety of predators. At the same time, they can be
vectors of serious diseases transmissible to humans and lead to significant losses in agricul-
tural production and storage. Hence, the control of populations of voles is a major problem
for ecologists and socio-ecologists.

From 1989, Patrick Giraudoux and collaborators monitored these vole populations in the
Alps (Massif des Ecrins) and in eastern France, in particular within the framework of the Zone
Atelier Arc Jurassien and the Zone Atelier Alpes, see in [21, 4, 23]. Direct observations, real-
ized in different countries and ecosystems, show that density variations of voles are due to
multiple driving factors: climate, topography, the proportion between farmland and forest,
different kinds of predators, and so on (see [17] and references therein). In more detail, as
described in the papers [21, 23, 41, 29], voles are herbivores rodents, who dig underground
tunnels where they breed and stay most of the time. Their ideal environment is grassland,
where both food and shelter are easily available, but they can also settle in woodlands and
in laboured fields. In each of these landscapes, the density and the kind of predators vary,
leading to different mortality rates. Voles’ reproduction season lasts typically from April to
October, but variations are possible due to weather conditions and, of course, depending on
the landscape characteristics. Mortality is everywhere high during the winter season because
of starvation. The population of voles can be structured into three age classes: babies, juve-
niles, and adults. Observations show that babies and juveniles have larger mortality rates than
adults, and that only juveniles and adults reproduce. Moreover, while most individuals always
remain in a small neighborhood of the nest, juveniles can exhibit much more significant spa-
tial dynamics. Indeed, under specific stress conditions, some of the juveniles disperse to ini-
tiate new settlements. The mechanism triggering dispersal is still not completely understood
and it is most probably related to the interaction of several factors. However, for modeling
purposes, it is reasonable to link stress conditions to overcrowding, and say that dispersal be-
gins when the total number of individuals in a colony reaches a threshold value, fixed as a
fraction of the carrying capacity of the environment. New colonies most often appear in a ra-
dius of a few hundreds meters around the original one, but individuals might disperse further



than 5 Km from the initial colony. Topography, especially height, drives the dispersal direc-
tion, and during this phase voles’ mortality is very high. Since most voles die out of predation,
disease, or starvation, as a first approximation we can neglect aging when describing the adult
population: in particular, it is not necessary to consider a decline of fertility over age. Sex ratio
at birth is 1-1, so that it is enough to model the female population.

Moreover, the results of these ecologists also revealed that outbreaks of vole populations
occurred as a wave, and dispersal spread over more than 2500 km2. For example, paper [21]
investigates the effect of land use, landscape composition and structure on the population
dynamics of voles from 1989 to 1994 in the Doubs department, France, by using index meth-
ods. They divided the Doubs into four different agroclimatic zones due to the characterized
geomorphological features of the department. Data used were collected every year by the
technicians of the Regional Crop Protection Service, Ministry of Agriculture of the communes
in the department to record vole colonies. Land-use patterns were studied based on agricul-
ture and forestry data from the French Ministry of Agriculture, collected over several years. In
[4] they provide empirical evidence showing that the wave-like profile detected for the vole
population, adds to the list of empirical examples supporting the theory that periodic Travel-
ling Wave solutions do occur in natural populations undergoing multi-year cycles.

Extensive literature is devoted to the mathematical modeling of such populations, see
[38, 45] and the references therein, in which the focus is on a two variables dynamics (time
and age or time and space) while the observations suggest that the evolution depends on the
three of them. The paper [47], monograph [46] studied the dynamic population with three
variables, but we do not find in the literature a satisfactory model including the dynamics of
dispersal.

Therefore, it is interesting to propose and analyze mathematical models with three vari-
ables (age, time, and space), based on partial differential equations to describe all of the be-
haviors of the vole population, which include population behavior (vole population growth
dynamics) and individual behavior (vole movements), with the hope that the obtained results
match the available collected data from the biologists. This work is the first step of collabo-
ration with biologists aiming to find the way to control the population of voles, a subject of
many surveys and investigations over multiples years.

In the thesis, we study the modeling of the spatial dynamics of these vole populations,
from two different points of view. Firstly, we propose and study a macroscopic PDE model to
describe the spatial dynamics of a vole population structured in age where we use a nonlin-
ear flux to describe the dispersal of voles (since it regarded as a travelling wave). We suppose
that the dispersal motion of juvenile individuals in space starts when the total density of voles
reaches a threshold value. This dispersal direction depends on the topography. We obtained
the well-posedness of the model under some suitable assumptions on the parameters, de-
tailed in [9]. The qualitative behaviour of the solutions to this PDE model is not straightfor-
ward and we still need to calibrate our parameters to fit the observations. Also, our ultimate



goal is to produce effective tools toward the monitoring and management of voles, available
to researchers with no particular PDE background. For these reasons, on the one hand we
develop a numerical discretization of the model; on the other hand, we introduce another ap-
proach (in the second part of the thesis), where the spatial dynamics of juveniles is decoupled
from local evolution in each colony, inspired by the Multi-Agent Model in [29].

In the second part of the thesis, we introduce a directed graph whose nodes are the settle-
ments. In each node, the evolution of the density of voles living inside that place is described
by a transport equation of two variables: time and age. The traveling of juvenile individu-
als between nodes represents the voles dispersal. The numerical discretization is easier and
still adapted to describe these movements in space, especially in the future work when we
will consider a significantly large area, combining hundreds of colonies. Furthermore, since
the equations in each node are classical, the existence and uniqueness of the solutions are
available. Then this method is a simple but efficient way to illustrate the evolution of the vole
populations in space.

In the attempt to translate into the PDE formalism the essential characters of the evolution
of a vole population, in the first part of this thesis we consider the following initial boundary
value problem 

∂tρ+∂aρ+divx
(
ρχ1(a)v(x)Yθ(φ−R)

)=µ∆xρ−d(t , a, x)ρ,

ρ(t ,0, x) =A
(
φ

)(∫ T
A1
ρ(t , a, x)da

)
ω(t , x),

ρ(0, a, x) = ρ0(a, x),

(0.0.1)

where ρ = ρ(t , a, x) represents the density of voles of age a ∈ (0,T ), at the time t ∈ (0,T ), at
x ∈ R2, and T > 0 is given. In the first equation, φ=φ(t , x) is the total density of voles at time
t and position x, χ1(a) is a smooth approximation of the indicator function of the interval
[A1, A2], where A1 is the limit age of babies, A2 is the limit age of juveniles, R is a fraction of
capacity of the environment where the colony is located, Yθ is an approximation of the Heavi-
side function. The flux includes a linear term in the age direction and a nonlocal term, so that
when the total population, φ, reaches a certain value, R, the juveniles start to disperse with a
velocity v(x) which depends on the topography. The coefficient µ > 0 in the parabolic term
(a diffusion coefficient) represents the foraging activity of voles, and d(t , a, x) is the mortality
rate. In addition, in the boundary condition at a = 0, ω(t , x) is the reproduction rate of voles,
which depends on the seasons of the year and the landscape in which the voles are settled,
and A (φ) is a positive real function, representing the Allee’s effect. This means that if the total
population of voles, φ, falls below a certain threshold, the reproduction rate diminishes and
might become too small to compensate for the mortality. This boundary condition at a = 0
takes into account the fact that only juvenile and adult voles can reproduce. In the last equa-
tion, ρ0(a, x) is the initial condition at t = 0.

Since our model has the form of a hyperbolic-parabolic equation we use the compensated



compactness to study it. This approach has been used extensively to prove the existence of
entropy solutions of the equations, see [44, 18, 35, 43, 7, 8, 10]. Indeed, as this equation in-
cludes a nonlocal boundary condition on a and a flux term nonlocal in space, the estimates
on its approximations are a challenge. A priori estimates are impossible to do with the original
model because of the two difficult parts mentioned above. For example, to take the limit of
the approximation parabolic sequence, we need at least the boundedness of the sequence, ρε.
However, when we integrate on (0,T ), there are two terms that cannot be estimated. The first
term is from the boundary condition at a = 0, whose boundedness is unknown because its
definition depends on ρε. The other one comes from the derivative with respect to x of Yθ(φ).
To avoid those problems, we used cut-off functions to modify the equation before the com-
putations. We rewrite our equations for t ∈ (0,∞), a ∈ (0,∞) where the cut-off functions will
be used to neglect the newborn babies at a = 0 and the presence of individuals of age larger
than T . Moreover, the BV estimates on t , and on x can not be obtained. We use the lemma
of compensated compactness of Panov in [35] for multi-dimension space, to overcome that
difficulty. This model is introduced and analyzed in the published paper [9], in collaboration
with my supervisors Giuseppe M. Coclite and Carlotta Donadello.

Recently, there have been two different approaches to consider the spatial population of
voles, introduced by Berthier in [4], and Giraudoux et al in [29]. They are the first endeavors
in understanding the spatial dimension of the vole population dynamics. In [4], ecologists
showed that dispersal can be seen as a traveling wave (TW), by analyzing 16-year time se-
ries of cyclic vole populations collected at 314 localities covering 2500 km² in France, using
appropriate statistical analyses. The detected TW emerges and spreads from the edge of the
Jura Plateaus, an area with a high ratio of permanent grasslands favoured by voles. Moreover,
the direction of the wave’s movement is influenced by landscape obstacles, for example, the
significant high mountains and large lakes. Paper [29] leads to the conception of a hybrid
ODE-Multi Agent model, in which they propose to couple two modelling methods of ecology
in studying spatial dynamics (ABM and EBM). ABM (agent-based modelling), is a spatially
explicit paradigm that models space as a heterogeneous environment in which individuals
move and are represented as ’agents’. EBM (equation-based models) is a purely mathemat-
ical technique where the model is a set of equations (this paper uses a simple logistic ODE).
More in detail, in [29], Marilleaux, Lang and Giraudoux reproduced the first colonization dy-
namics observed from 1998 to 2010 in the Romanche Valley (Hautes Alpes, France) by a hybrid
ODE-Multi Agents model structured as follows : the valley area is decomposed into squared
cells of side length 100m, so that, at a first approximation, the evolution of the population
inside each of the cells can be described by an ODE (no spatial dynamics). As soon as the to-
tal population in a cell reaches a fixed threshold value, which is a fraction of the cell capacity,
dispersal occurs, i.e. some of the juvenile voles “leave” the cell, and aggregate into a migrating
vole agent with a specific dynamics also depending on the topography and landscape charac-
teristics of the neighbouring cell agents. In the following we refer to this model as MLG. The
advantage of this approach over the purely PDE one is that simulations are fast and their re-
sults are visualized in a format which is accessible to a non specialized audience. At the same
time, the description of the population dynamics inside cells is relatively rough, and the set



of parameters for which computational results match empirical observations is not organized
in a continuum, which makes it difficult to predict the behaviour of the model under pertur-
bations. Both approaches need a system of collected data, then analyze these data, and run
simulations to reproduce the ecological result of vole populations in space.

Thus, in the second part of the thesis, we exploit the idea of decoupling the local popu-
lation evolution from its spatial dynamics to construct two simple but effective PDE models
structured on a graph whose nodes correspond to the cells in the MLG model. The nodes
of the graph represent uniform landscape areas of relatively small size, where voles can settle.
Edges are used to model the main feature of voles’ macroscopic spatial dynamics, which is the
dispersal of juvenile individuals whenever the total population at one node reaches a thresh-
old number. This is supposed to be a gradual process in the first model while it takes place
instantaneously in the second model. We assume that a dispersal occurs inside the node (or
a cell) whenever its total population reaches a threshold value, R. The first model is a model
with gradual dispersal (GD), which means that the dispersal lasts for a time η > 0 after the
moment at which the total population of voles in the node passes again below R and the de-

parture rate of juveniles during dispersal is
c

η
, where c > 0 is chosen. The second model is

an instantaneous dispersal (ID), which means that whenever the total population at a node
reaches its threshold value, the departure of dispersers takes place instantaneously. As a con-
sequence, all the voles who left their node heading for another node will reach that node at
the same time. Although the second model describes less precisely the dynamics, it should be
easier to implement on large graphs in the view of a hybrid PDE-Multi Agent model similar
to the MLG, with several hundreds of nodes, for instance. For both models, we validate the
implementation by comparing them with their exact solution, which was obtained by using
the characteristic method, and then collect some numerical simulations on simple graphs,
which show that the models reproduce the qualitative features of the population dynamics at
the different landscapes and in different seasons of the year. We propose their discretization
by using the upwind scheme. Then we run several simulations to validate the schemes, to
compare the models, and to show that our models captures many of the features of vole pop-
ulation dynamics as they have been observed in real life, for example, changing the mortality
rate will influence the density of the population, which mentioned in the results of [29]. Fur-
ther, the different landscapes were obtained by changing the mortality as well as the birth rate
and changing the distribution matrix to show the high ratio of movement of voles toward their
favored landscape, where this matrix can depend on time. This approach is accomplished in
a preprint [19], in collaboration with my supervisors Carlotta Donadello and Ulrich Razafison.

From the previous results of the model for the spatial dynamics of the vole population,
we are interested in the interaction between the predator-prey system, for example between
voles and foxes in the area. Inspired by the existence and uniqueness of the solutions of a
system hyperbolic predator and parabolic preys proposed in [13], we introduce a new system,
in which the hyperbolic-parabolic model of voles replaces the preys equation and modifies
slightly by adding another mortality rate of prey, b(a,u), which depends on the density of



predators u and the age of voles, for example, the ratio of juvenile voles will be caught by
predators is much higher. Besides, the predator’s equation we consider follows

∂t u +divx
(
uν(φ)

)= (b(φ)−β)u,

where b(φ) is the birth rate of predators, depending on the total density of voles, β > 0 is
the mortality rate of predators. The drift here depends nonlocally on the density of preys,
introduced in [13], meaning that the predators tend to move towards the regions where preys
concentrate highly, as expressed in the velocity map

ν(φ) = κ ∇(φ∗η)√
1+

∥∥∇(φ∗η)
∥∥2

,

where η is a positive smooth mollifier, and κ> 0 is the maximal speed of predators. The fixed
point argument used in [13] to prove existence and stability for a predator-prey system does
not apply to our system in a straightforward way because it requires extremely fine infor-
mation on the coefficients appearing in the a priori estimates for both predators’ and preys’
equations. This is not easy to achieve in our case, because the equation we use for the prey
come from a specific population model and its analytical study is rather technical. In this
system, we use the vanishing viscosity method to establish suitable estimates to obtain the
strong-compactness of those entropy solutions. Since the estimates on u and ρ are related
closely, we use the convolution properties to shift the difficulty of estimates on φ to η, then
we choose the appropriate assumptions on η to obtain estimates on u and ρ, and finally we
can apply the results from the first model. This work is achieved in a preprint [11] in collabo-
ration with my supervisors Carlotta Donadello and Giuseppe M. Coclite.

Concerning the numerical simulation of the first model in one-dimensional space, that is
an ongoing work in collaboration with my supervisor Ulrich Razafison and Frédéric Lagoutière.
We obtain a finite volume discretization by using the upwind scheme. We validate the numer-
ical scheme by comparison with an exact solution of the model using special initial conditions
for which the dispersal does not occur, and then comparing once again with a reference solu-
tion corresponding to a generic initial condition and computed with a very fine mesh.

In summary, we introduced a PDE model of spatial dynamics of a vole population and
then studied the existence, uniqueness and stability of the solution. This model is suitable
to describe the vole population in Eastern France, as monitored and presented by empirical
observations in [21],[29],[4]. We provided the wellposedness of a nonlocal mixed hyperbolic-
parabolic system related to the previous model of the vole population. We implemented and
validated the proposed scheme in one-dimensional space. Moreover, the numerical simu-
lations of the model of vole populations spatial dynamics via transport equations on graphs
shows that our model captures many of the features of vole populations dynamics in real life.
The parameters in the reproduction and mortality rates allow to reproduce the evolution in
different landscapes. Furthermore, the simulations that we presented show the ability of the
models to reproduce cycles of dispersals in the populations of voles, as well as persistence or



extinction of a colony.

In addition, I have participated to a 6-weeks summer school (CEMRACS) where I collab-
orated to a project entitled "A multi-scale epidemic model of Salmonella infection with het-
erogeneous shedding". It does not relate to the main topic of my thesis but about the pop-
ulation dynamics of a bacterial infection. It was led by Simon Labarthe, Béatrice Laroche,
Bastien Polizzi and Magali Ribot, it led to a publication, [27], in collaboration with the other
members of the working group. Salmonella infection is the most common vector of collective
food poisoning in the developed world. As such, deciphering the mechanisms of infection in
humans and animals is a fundamental step towards the design of efficient epidemiological
policies, in order to reduce the burden on agrifood industry and healthcare systems resulting
from Salmonella zoonoses. Salmonella is a bacterial genus composed of various pathogenic
strains, that colonize and infect the digestive tract of farm livestock, such as chickens or pigs,
representing a threat for human health ranging from food poisoning to typhoid fever.

In the project, we propose a generic multiscale modeling framework of heterogeneous
pathogen transmission in a livestock, accounting for the interaction dynamic between the
commensal microbiota, the pathogen and the inflammatory response at the intra-host level
and transmission at the between-host scale in a single animal population. This model is fur-
ther extended at the metapopulation level, to model transmission between several popula-
tions. I contributed to the theoretical part, to study the existence and stability of the solution,
and then run a simulation task, named "cleaning strategy". The cleaning treatment removes
a constant fraction of the pathogen reservoir per time unit. Moreover, cleaning might start
after a given time and/or might be periodic. The aim of the task is to study various control
strategies to limit the spreading of pathogens within the population.

The content of this thesis articulates into five chapters. The first 4 chapters relate to
the model spatial dynamics of the vole population and chapter 5 concerns the project on
Salmonella. They are summarized as follows

• In Chapter 1, we introduce and explain the above PDE model in more detail. In sec-
tion 1.1, we give the suitable assumptions on the parameters to be used in the next
proofs, the definition of the entropy weak solutions, and the main results. In Sec-
tion 1.2, we introduce a sequence of parabolic approximations of problem (1.1.7), then
we establish estimates on the regularity of the solutions and their derivatives with re-
spect to the age and space variables. We can not achieve the BV on x and on t of the
sequence, especially, estimates on the time derivatives are not available, which mo-
tivates the application of a compensated compactness lemma due to Panov, see [35],
to get the strong-compactness of the sequence. One additional difficulty comes from
the fact that our flux is not genuinely nonlinear and depends explicitly on all the vari-
ables. We overcome this obstacle by using the same idea as in [12, 7], see the proof
of Lemma 1.9. From that, we gain the existence of the entropy solution of the system.
Moreover, the uniqueness and stability of entropy weak solutions are proved in Sec-



tion 1.3 using a doubling of variables type argument. The application of this technique
is not too difficult even if the flux depends explicitly from all of the variables thanks to
the high regularity of {ρε}ε with respect of the space variables.

• In Chapter 2, we propose two models to describe the spatial dynamic of vole popula-
tions and motivate our assumptions on the basis of observed population characteris-
tics. The models are based on age-structured transport equations set on a graph. The
chapter is organized as follows. In Section 2.1 we describe the models and motivate
our assumptions on the basis of observed population characteristics. In Section 2.2
we present the corresponding finite volumes numerical schemes and validate them by
comparison to explicitely computed exact solutions, and present the first comparison
of the two models. Section 2.3 collects some numerical simulations on simple graphs,
which show that the models reproduce the qualitative features of the population dy-
namics.

• In Chapter 3, we introduce a prey-predator system in Section 3.1, where we replace
the prey’s equation by the model of the vole population structured in age, and then
we present all of the necessary assumptions on the parameters in the system, the def-
inition of the weak entropy solutions, and the main results. In Section 3.2, we intro-
duce a sequence of parabolic approximations of the pair of solutions, then perform a
priori estimates of these sequences, before we apply the compensated compactness
lemma by Panov to show the strong compactness of the sequence for voles. Besides,
since we prove L∞ and BV estimates on the approximate solutions of predator, uε, we
can apply Helly’s theorem to obtain the strong compactness of predators. Lemma 3.12
establishes the existence of an entropy solution in the sense of Definition 3.2. The
uniqueness and stability of the solutions are proved in Section 3.3 using a doubling of
variables type argument. In Section 3.4, we prove the lemma related to the estimates
on η mollifier.

• In Chapter 4, we present the numerical scheme of the model spatial dynamics of the
vole population structured in age in one-dimensional space. We validate the imple-
mentation of the scheme, which is adapted by the upwind scheme and using the im-
plicit treatment to avoid possible difficulties of the CFL condition for the diffusion,
where we add the Neumann boundary condition on space variable. In Section 4.1,
we introduce the scheme of model in one-dimensional space, and establish the linear
system for the scheme. In Section 4.2, we find an exact solution for the scheme under
a suitable assumption forbidding dispersal, then compare it with the numerical solu-
tion. Next, we validate the complete model by comparing it with a reference solution,
which is computed by choosing a fine mesh.

• In Chapter 5, the single population model is described in Section 5.1. The different
scales and their interconnection are detailed. We start from an ODE equation model-
ing the intra-host evolution of the pathogen load with respect to time, including the



host response. We next introduce a stochastic perturbation to this dynamics to ac-
count for biological variability. This SDE is used to derive a drift-diffusion PDE de-
scribing the evolution of a population density with respect to time and to pathogen
load. The well-posedness of the model and asymptotic convergence towards a steady
state is analyzed and an extension to the case with transmission of salmonella within
the population through a reservoir is also proposed, leading to the coupling between
a drift-diffusion PDE for the population and an ODE for the reservoir variable. Sec-
tion 5.2 is devoted to some simulations of the two previous models, with or without
a reservoir, and we observe that in both cases, the solution always converges towards
a steady state. In Section 5.3, some simulations of epidemic control strategies based
on cleaning or drug treatment, are performed and compared. Cleaning is modeled
through the addition of a term in the ODE for the reservoir variable, whereas drug
treatment is described by the addition of a drift term in the population PDE equa-
tion. Then, in Section 5.4, a compartment model taking into account some exchanges
between populations is introduced and studied numerically. The model becomes in
this section a large system that couples through transfer flux terms the models of the
compartment dynamics composed of the previous drift-diffusion PDEs for the popu-
lations coupled to the ODE for the reservoir variables.

From the results obtained and the ongoing projects in this thesis, we have the following
perspective directions

— The results that we obtained in Chapter 2 allow us to pursue the work with the con-
struction of a hybrid model combining the instantaneous dispersal (ID) model to de-
scribe the vole populations dynamics at the nodes and the agent-based model devel-
oped in [29] to reproduce the spatial dynamics on large graphs. This work could be ac-
complished in collaboration with an expert research engineer in LMB, in collaboration
with Lang and Marilleau. Another direction of further research could be the enhance-
ment of both models, GD and ID, by considering a distribution matrix that depends on
the current state of the system. For example, one could imagine that dispersers would
avoid an already overcrowded node.

— We introduce a discretization of the model in Chapter 1 in two-dimensional space,
by finite volume scheme. This work is more challenging: since there are four variables
(time t, age a, and space (x1, x2)), the implementation of the numerical scheme is more
complicated but still feasible. Indeed, similarly to building on the 1-D finite volume
scheme presented in Chapter 4, its 2-D version can be accomplished. After that we
could validate the scheme and run simulations in a large domain, that may use par-
allel computing and the biological and topographic data coming from observations.
Particular care should be put in the processes of data storage and transmission among
computers.

— In [3], the authors studied the cycle of the parasite Echinococcus multilocularis, a dis-



ease very present in central Europe (north of the Alps), on the plateaus in the north of
the Himalayas. The parasite’s eggs laid in the environment are then ingested by inter-
mediate hosts which potentially include small rodent mammals, like voles. After that,
the intermediate host is consumed by a definitive canine host (fox, dog, wolf, coyote).
The lifespan of the worms in the definitive host is 3 to 4 months, during which the
oncospheres produced are discharged via the feces into the environment. Humans ac-
cidentally can become infected through the ingestion of eggs, either through contact
with definitive hosts or through food and possibly water. This parasite’s egg causes
the disease called human alveolar echinococcosis, which is rare but can exceed 1 case
over 1000 in the cantons of Haut-Doubs (France). The course of the disease is often fa-
tal without early treatment. In this paper, they analyse the general ecoepidemiological
model describing the dynamics of clinical states population of the parasite’s interme-
diate and definitive hosts by ordinary differential equations. For this epidemic, there
were around ten mechanistic dynamic models written with ordinary differential equa-
tions. From the modeling point of view, it could be interesting to study a PDE system
for cycle of the parasite from the perspective of a predator-prey PDE model, as we did
in Chapter 3.



Chapter 1
A model for the spatial dynamics of a vole
population structured in age

1.1 Mathematical formulation of the model

In this section we introduce the essential mathematical features of our model. The precise
assumptions are postponed to the next section.

Motivated by the ecological observations above, we consider the density of voles’ popula-
tion as a function of fours variables

ρ : R+×R+×R2 → R

(t , a, x = (x1, x2)) 7→ ρ(t , a, x),
(1.1.1)

where t is the time, a the age and x the space variables. We are only interested in the dynamics
over a finite interval of time [0,T ] and we introduce constants 0 < A1 < A2 < T so that a vole
is young if its age a is in (0, A1), juvenile if its age a is in (A1, A2) and adult otherwise. The call
total density of voles at (t , x) the integral

φ(t , x) :=
∫ T

0
ρ(t , a, x)da. (1.1.2)

As φ approaches the threshold value R, juvenile disperses leave the colony with velocity v =
v(x). It depends on the topography, namely v(x) ≈ V(∇z(x)) where z(x) is the height of the ele-
vation at x, and it is assumed to be strictly positive. Instead of considering separate equations
for the three age groups (or to see them as branches of a graph, as in [14]) we decided to write
a single equation with age-dependent parameters. In particular, to single out the dispersers,
who are a fraction of juveniles, we consider ρχ1(a), where χ1 is a smooth approximation of (a
multiple of) the indicator function of the interval (A1, A2).

Then, the equation describing the evolution of our population writes as

∂tρ+∂aρ+divx
(
ρχ1(a)v(x)Yθ(φ−R)

)=µ∆xρ−d(t , a, x)ρ, (t , a, x) ∈ (0,T )× (0,T )×R2,
(1.1.3)



where Yθ is an approximation of the Heaviside function, d= d(t , a, x) is the mortality rate and
the second order term µ∆xρ can be seen as the limit of a Brownian motion and represent the
foraging activities performed by all individuals. Everywhere in the paper the coefficient µ> 0
is fixed and we are not consider the limit as µ→ 0.

The boundary condition at a = 0 takes the form

ρ(t ,0, x) =A
(
φ

)(∫ T

0
ρ(t , a, x)Yθ(a − A1)da

)
ω(t , x), (t , x) ∈ (0,T )×R2, (1.1.4)

where ω is the reproduction rate and the coefficient A
(
φ

)
reproduces Allee’s effect, see [32].

This means that if the total population of a colony falls below a certain threshold, reproduc-
tion rate also diminishes and might become too small to compensate for mortality. All of our
results remain valid if A is a constant function taking value in (0,1]. Examples of non constant
A are functions of the form

A (φ) = αφγ

(β+φ)γ
,

for different choices of α, β and γ.
Finally, we fix an initial condition at t = 0 to complete our problem

ρ(0, a, x) = ρ0(a, x), (a, x) ∈ (0,T )×R2. (1.1.5)

1.1.1 Assumptions

The functions Yθ are defined as follows. Consider a function Y ∈C∞(R) such that

Y (ξ) =
{

1, if ξ≥ 0,

0, if ξ≤−1,
Y ′(ξ) ≥ 0,

then

Yθ(ξ) = Y

(
ξ

θ

)
.

Starting from Yθ one can pick a suitable k ∈ (0,1) and define

χ1(a) = kYθ(a − A1)Yθ(A2 −a).

To limit the number of constants appearing in the equations we set k = 1, but this has no
effect on the analysis.

Our wellposedness analysis is performed on a problem which differs from the model pre-
sented in the previous section for two reasons:

— to avoid additional difficulties coming from the presence of a boundary at T > 0 we
write our equation for t ∈ R+, but we introduce cut-off functions to neglect the pres-
ence of individuals of age larger than T ;



— when computing the total population of the colony we neglect newborn individuals.
More precisely we fix 0 <σ<< 1 and replace the definition of φ in (1.1.2) by

φ(t , x) :=
∫ ∞

0
ρ(t , a, x)χ2(a)da, (1.1.6)

where

χ2(a) =Yσ(a −σ)Yθ(T −a).

Finally, our problem writes as
∂tρ+∂aρ+divx

(
ρχ1(a)v(x)Yθ(φ−R)

)=µ∆xρ−d(t , a, x)ρ, (t , a, x) ∈ (0,∞)× (0,∞)×R2,

ρ(t ,0, x) =A
(
φ

)(∫ ∞
0 ρ(t , a, x)χ3(a)da

)
ω(t , x), (t , x) ∈ (0,∞)×R2,

ρ(0, a, x) = ρ0(a, x), (a, x) ∈ (0,∞)×R2,
(1.1.7)

where

χ3(a) =Yθ(a − A1)Yθ(T −a).

We choose θ > 0 so small that

χ1(0) =χ3(0) = Yθ(−A1) = 0, (1.1.8)

and we observe that

χ1 ≤χ3 ≤χ2, χ2(0) = Yσ(−σ) = Y (−1) = 0. (1.1.9)

On v,d,A ,ω,ρ0 we shall assume that

v ∈C∞(R2)∩L2(R2)∩L∞(R2), divx (v) ∈ L1(R2)∩W 2,∞(R2), (1.1.10)

d ∈C∞([0,∞)× [0,∞)×R2)∩W 1,∞((0,∞)× (0,∞)×R2), 0 < d∗ ≤ d(·, ·, ·) ≤ d∗, (1.1.11)

A ∈C∞(R)∩L∞(R), A (·) ≥ 0, A (0) = 0, |A ′(ξ)ξ|, |A ′′(ξ)ξ| ≤C0, (1.1.12)

ω ∈C∞([0,∞)×R2)∩W 1,∞((0,∞)×R2), ω(·, ·) ≥ 0, (1.1.13)

ρ0 ∈ L1((0,∞)×R2)∩L∞((0,∞)×R2), ρ0 ≥ 0, (1.1.14)

sup
x∈R2

∥∥ρ0(·, x)
∥∥

L1(R) , sup
a≥0

∥∥ρ0(a, ·)
∥∥

L1(R2) ,
∫
R2

T V (ρ0(·, x))dx ≤C0, (1.1.15)

for some positive constants d∗, d∗ and C0.

1.1.2 Main result

We use the following definitions of solution.

Definition 1.1. We say that a function ρ : [0,∞)× [0,∞)×R2 → R is a weak solution of (1.1.7)
if the following holds for every T > 0



(D.1) ρ ≥ 0, ρ ∈ L∞(0,T ;L1((0,∞)×R2))∩L∞((0,T )× (0,∞)×R2)∩L2((0,T )× (0,∞); H 2(R2));

(D.2) the integral functionφdefined in (1.1.6) satisfiesφ≥ 0, φ ∈ L∞(0,T ; H 3(R2))∩L2(0,T ; H 4(R2))∩
H 1((0,T )×R2);

(D.3) for almost every (t , x) ∈ (0,T )×R2, ρ(t , ·, x) ∈ BV (0,∞) and

ρ(t ,0+, x) =A
(
φ

)(∫ ∞

0
ρ(t , a, x)χ3(a)da

)
ω(t , x),

where ρ(t ,0+, x) is the trace of ρ(t , ·, x) at a = 0;

(D.4) for every test function ξ ∈C∞
c (R4)∫ ∞

0

∫ ∞

0

∫
R2

(
ρ∂tξ+ρ∂aξ+ρχ1(a)v ·∇xξYθ(φ−R)+µρ∆xξ−dρξ

)
dx da dt

+
∫ ∞

0

∫ ∞

0

∫
R2

A
(
φ

)
ρ(t , a, x)χ3(a)ω(t , x)ξ(t ,0, x)dx da dt

+
∫ ∞

0

∫
R2
ρ0(a, x)ξ(0, a, x)dx da = 0.

Definition 1.2. We say that a weak solution ρ is an entropy weak solution of (1.1.7) if for any
nonnegative test function ξ ∈ C∞(R4) with compact support and for any constant k ∈ R there
holds ∫ ∞

0

∫ ∞

0

∫
R2

(|ρ−k| (∂tξ+∂aξ)−divx
(|ρ−k|χ1vYθ(φ−R)

)
ξ

+µ∆x |ρ−k|ξ− sign
(
ρ−k

)
dρξ

)
dx da dt

+
∫ ∞

0

∫
R2

|ρ(t ,0+, x)−k|ξ(t ,0, x)dx dt

+
∫ ∞

0

∫
R2

|ρ0(a, x)−k|ξ(0, a, x)dx da

≥
∫ ∞

0

∫ ∞

0

∫
R2

sign
(
ρ−k

)
kχ1(a)divx

(
v(x)Yθ(φ−R)

)
ξdx da dt .

(1.1.16)

Remark 1.1. Obviously we can rewrite our equation as

∂tρ+diva,x(F (ρ)) =µ∆xρ−dρ,

with
F (ρ) = (ρ,ρχ1(a)v1(x)Yθ(φ−R),ρχ1(a)v2(x)Yθ(φ−R))

and v = (v1, v2).
In Definition 1.2 we exploit the fact that the first component of the flux is linear, hence no

boundary layer appears at a = 0, see [2]. Then the second term in the entropy inequality (1.1.16)
is equivalent to∫ ∞

0

∫
R2

sign

(
A

(
φ

)(∫ ∞

0
ρ(t , a, x)χ3(a)da

)
ω(t , x)−k

)(
ρ(t ,0+, x)−k

)
ξ(t ,0, x)dx dt .



The main result of this chapter is the following.

Theorem 1.1. Assume (1.1.10), (1.1.11), (1.1.12), (1.1.13), (1.1.14), and, (1.1.15). Then, the ini-
tial boundary value problem (1.1.7) admits a unique entropy weak solution ρ in the sense of
Definition 1.1. Moreover, if ρ and r are the two entropy weak solutions of (1.1.7) obtained in
correspondence of the initial data ρ0 and r0, then the following stability estimate holds∥∥ρ(t , ·, ·)− r (t , ·, ·)

∥∥
L1((0,∞)×R2) ≤CeCeC t ∥∥ρ0 − r0

∥∥
L1((0,∞)×R2) (1.1.17)

for a positive constant C > 0 and almost every t ≥ 0.

1.2 Existence

In order to prove the existence of a solution to problem (1.1.7) we consider a sequence of
its parabolic approximations and we establish suitable a priori estimates on their solutions,
see Section 1.2.1. Then, thanks to the multidimensional compensated compactness intro-
duced by Panov in [35, 36], we show the existence of a vanishing viscosity limit satisfying the
properties of Definitions 1.1 and 1.2, see Section 1.2.2.

Let {ρ0,ε}ε be a C∞((0,∞)×R2) family of approximations of the initial condition ρ0 such
that

ρ0,ε→ ρ0, a.e. and in Lp ((0,∞)×R2),1 ≤ p <∞ as ε→ 0,

ρ0,ε ≥ 0,
∥∥ρ0,ε

∥∥
L1((0,∞)×R2) ≤C ,

sup
x∈R2

∥∥ρ0,ε(·, x)
∥∥

L1(R) , sup
a≥0

∥∥ρ0,ε(a, ·)
∥∥

L1(R2) ,
∥∥∂aρ0,ε

∥∥
L1((0,∞)×R2) ≤C ,

(1.2.18)

where, here and in the following, C denotes some positive constant independent on ε.
For any given ε > 0, we call ρε = ρε(t , a, x) the unique classical solution of the following

problem
∂tρε+∂aρε+divx

(
ρεχ1(a)vYθ(φε−R)

)=µ∆xρε+ε∂2
aaρε−dρε, (t , a, x) ∈ (0,∞)× (0,∞)×R2,

ρε(t ,0, x) =A
(|φε|)(∫ ∞

0 |ρε(t , a, x)|χ3(a)da
)
ω(t , x), (t , x) ∈ (0,∞)×R2,

ρε(0, a, x) = ρ0,ε(a, x), (a, x) ∈ (0,∞)×R2,
(1.2.19)

where

φε(t , x) :=
∫ ∞

0
ρε(t , a, x)χ2(a)da. (1.2.20)

The well-posedness of (1.2.19) can be proved following the same arguments of [7, 8, 10].
Namely, one applies the Duhamel principle to get preliminary estimates on solutions, then
establishes the local existence of a unique solution by a fixed point argument. Further energy
estimates permit to extend the existence result globally in time.



1.2.1 A priori estimates

Lemma 1.1 (Nonnegativity). We have that

ρε ≥ 0, φε ≥ 0. (1.2.21)

Proof. Consider the function

ξ 7→ η(ξ) =−ρ1(−∞,0)(ξ).

and observe that
η′(ξ) =−1(−∞,0)(ξ), η(ξ) = ξη′(ξ).

From (1.2.19) we obtain

d

d t

∫ ∞

0

∫
R2
η(ρε)dx da =

∫ ∞

0

∫
R2
η′(ρε)∂tρεdx da

=−
∫ ∞

0

∫
R2
η′(ρε)∂aρεdx da −

∫ ∞

0

∫
R2

divx
(
ρεχ1vYθ

)
η′(ρε)dx da

+µ
∫ ∞

0

∫
R2
η′(ρε)∆xρεdx da −

∫ ∞

0

∫
R2
η′(ρε)dρεdx da +ε

∫ ∞

0

∫
R2
η′(ρε)∂2

aaρεdx da

=
∫
R2
η(ρε(t ,0, x))︸ ︷︷ ︸

=0

dx +
∫ ∞

0

∫
R2
ρεχ1(v ·∇xρε)Yθη

′′(ρε)dx da︸ ︷︷ ︸
=0

−µ
∫ ∞

0

∫
R2
η′′(ρε)

(∇xρε
)2 dx da︸ ︷︷ ︸

≤0

−
∫ ∞

0

∫
R2
dη(ρε)dx da︸ ︷︷ ︸
≤0

+ε
∫ ∞

0

∫
R2
∂a

(
η′(ρε)∂aρε

)
dx da−ε

∫ ∞

0

∫
R2
η′′(ρε)(∂aρε)2︸ ︷︷ ︸
≤0

dx da

≤−ε
∫
R2
η′(ρε(t ,0, x))︸ ︷︷ ︸

=0

∂aρε(t ,0, x)dx = 0.

Thus, integrating on (0, t ) we get

0 ≤
∫ ∞

0

∫
R2
η(ρε(t , a, x))dx da ≤

∫ ∞

0

∫
R2
η(ρ0,ε(a, x))dx da = 0,

and then

η(ρε(t , a, x)) = 0.

As a consequence we have that ρε ≥ 0. The nonnegativity of φε follows from the one of ρε and
the definition of φε.



Remark 1.2. Thanks to Lemma 1.1, we can improve the boundary condition in (1.2.19) remov-
ing the absolute values, i.e.

ρε(t ,0, x) =A
(
φ

)(∫ ∞

0
ρε(t , a, x)χ3(a)da

)
ω(t , x).

In our proofs we exploit the fact that the functions χi , i = 1, 2, 3 have similar shapes and in
particularχi (0) = 0, as this means that the estimates in the next lemma apply to all the integral
functions of the form ∫ ∞

0
ρε(t , a, x)χi (a)da, i = 1, 2, 3.

Lemma 1.2. Let ξ ∈C∞([0,∞)) be any of the functions χi , i = 1, 2, 3, and consider

ψε(t , x) =
∫ ∞

0
ρε(t , a, x)ξ(a)da.

The following estimates hold ∥∥ψε(t , ·)
∥∥

L1(R2) ≤ eC tC , (1.2.22)∥∥ψε(t , ·)
∥∥

L2(R2) ,
∥∥∇xψε

∥∥
L2((0,t )×R2) ≤ eC tC , (1.2.23)∥∥∇xψε(t , ·)

∥∥
L2(R2) ,

∥∥D2
xψε

∥∥
L2((0,t )×R2) ≤ eC tC , (1.2.24)∥∥D2

xψε(t , ·)
∥∥

L2(R2) ,
∥∥D3

xψε

∥∥
L2((0,t )×R2) ≤ eC tC , (1.2.25)∥∥D3

xψε(t , ·)
∥∥

L2(R2) ,
∥∥D4

xψε

∥∥
L2((0,t )×R2) ≤ eC tC , (1.2.26)

for every t ≥ 0 and for a suitable constant C > 0 independent on ε. In particular∥∥∂tψε(t , ·)
∥∥

L1(R2) ,
∥∥∂tψε(t , ·)

∥∥
L2(R2) ,

∥∥ψε(t , ·)
∥∥

L∞(R2) ,
∥∥∇xψε(t , ·)

∥∥
L∞(R2) ≤ eC tC , (1.2.27)

for every t ≥ 0.

Proof. Everywhere in the proof we denote generically by c the constants not depending on ε.
We multiply (1.2.19) by ξ(a) and integrate with respect to a

∂tψε−µ∆xψε+divx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
=

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
da. (1.2.28)

Using the nonnegativity of ρε, ψε and the boundedness of ξ′/ξ, ξ′′/ξ, d

d

d t

∫
R2

|ψε|dx = d

d t

∫
R2
ψεdx =µ

∫
R2
∆xψεdx −

∫
R2

divx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx︸ ︷︷ ︸

=0

+
∫
R2

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)︸ ︷︷ ︸
≤cξ

da dx ≤ c
∫
R2
ψεdx.

Therefore, (1.2.22) follows from the Gronwall Lemma and (1.2.18).



We continue by proving (1.2.23). We multiply (1.2.28) by ψε

d

d t

∫
R2

ψ2
ε

2
dx =

∫
R2
ψε∂tψεdx

=µ
∫
R2
ψε∆xψεdx −

∫
R2
ψεdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx +

∫
R2

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)︸ ︷︷ ︸
≤cξ

ψεda dx

≤−µ
∫
R2

|∇xψε|2dx +
∫
R2

∇xψε ·v
(∫ ∞

0
ρεχ1ξda

)
Yθdx + c

∫
R2
ψ2
εdx

≤− µ

2

∫
R2

|∇xψε|2dx + 1

2µ

∫
R2

|v|2
(∫ ∞

0
ρεχ1ξda

)2

Yθ︸ ︷︷ ︸
≤cψ2

ε

dx + c
∫
R2
ψ2
εdx

≤− µ

2

∫
R2

|∇xψε|2dx + c
∫
R2
ψ2
εdx.

Using again the Gronwall Lemma we get (1.2.23).
We continue by proving (1.2.24). We multiply (1.2.28) by −∆xψε

d

d t

∫
R2

|∇xψε|2
2

dx =
∫
R2

∇xψε ·∂t∇xψεdx =−
∫
R2
∆xψε∂tψεdx

=−µ
∫
R2

|D2
xψε|2dx +

∫
R2
∆xψεdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx −

∫
R2

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)︸ ︷︷ ︸
≤cξ

∆xψεda dx

≤− µ

2

∫
R2

|D2
xψε|2dx + c

∫
R2

(
divx

((∫ ∞

0
ρεχ1ξda

)
vYθ

))2

dx + c
∫
R2
ψ2
εdx

≤− µ

2

∫
R2

|D2
xψε|2dx + c

∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2Y 2
θ︸ ︷︷ ︸

≤c

dx

+ c
∫
R2

(∫ ∞

0
ρεχ1ξda

)2

|divx (v) |2Y 2
θ︸ ︷︷ ︸

≤c

dx + c
∫
R2

(∫ ∞

0
ρεχ1ξda

)2

(Y ′
θ)2|v|2︸ ︷︷ ︸

≤c (as supp(ξ)⊂(0,T ))

|∇xφε|2dx + c
∫
R2
ψ2
εdx.

Using the Gronwall Lemma we get

∥∥∇xψε(t , ·)
∥∥2

L2(R2) +µect
∫ t

0
e−cs

∥∥D2
xψε(s, ·)

∥∥2
L2(R2) ds

≤ ect
∥∥∇xψε(0, ·)

∥∥2
L2(R2) + cect

∫ t

0

∫
R2

e−cs
(∫ ∞

0
ρεχ1ξda

)2

dx ds

+ cect
∫ t

0

∫
R2

e−cs
∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx ds + cect
∫ t

0

∫
R2

e−cs |∇xφε|2dx ds.

Since the functions

φε, (t , x) 7→
∫ ∞

0
ρεχ1ξda



have the same structure as ψε we can use (1.2.23) and get (1.2.24).
We continue by proving (1.2.25). We multiply (1.2.28) by D4

xψε.

d

d t

∫
R2

|∆xψε|2
2

dx =
∫
R2
∆xψε ·∂t∆xψεdx =

∫
R2

D4
xψε∂tψεdx

=µ
∫
R2
∆xψεD4

xψεdx −
∫
R2

D4
xψεdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

+
∫
R2

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
D4

xψεda dx

=−µ
∫
R2

|D3
xψε|2dx +

∫
R2

D3
xψε ·∇xdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

−
∫
R2

∇x

(∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
da

)
·D3

xψεdx

≤− µ

2

∫
R2

|D3
xψε|2dx + c

∫
R2

(
∇xdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

))2

dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
da

∣∣∣∣2

dx

≤− µ

2

∫
R2

|D3
xψε|2dx + c

∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2Y 2
θ︸ ︷︷ ︸

≤c

dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|D2
x v|2Y 2

θ︸ ︷︷ ︸
≤c

dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′′
θ )2︸ ︷︷ ︸

≤c (as supp(ξ)⊂(0,T ))

|∇xφε|4dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′
θ)2︸ ︷︷ ︸

≤c (as supp(ξ)⊂(0,T ))

|D2
xφε|2dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2Y 2
θ︸ ︷︷ ︸

≤c

dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2(Y ′
θ)2︸ ︷︷ ︸

≤c (as supp(ξ)⊂(0,T ))

|∇xφε|2dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|∇xφε|2dx + c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
da

∣∣∣∣2

dx

≤− µ

2

∫
R2

|D3
xψε|2dx + c

∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + c
∫
R2

|∇xφε|2dx + c
∫
R2

|∇xφε|4dx

+ c
∫
R2

|D2
xφε|2dx + c

∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣4

dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
+ da

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
− da

∣∣∣∣2

dx,

where (
εξ′′+ξ′−dξ

)
+ =max{

(
εξ′′+ξ′−dξ

)
,0},(

εξ′′+ξ′−dξ
)
− =max{−(

εξ′′+ξ′−dξ
)

,0}.



We remind that (
εξ′′+ξ′−dξ

)
+ ≥ 0,

(
εξ′′+ξ′−dξ

)
− ≥ 0,(

εξ′′+ξ′−dξ
)= (

εξ′′+ξ′−dξ
)
+−

(
εξ′′+ξ′−dξ

)
− .

Integrating over (0, t ) we get∥∥D2
xψε(t , ·)

∥∥2
L2(R2) +µ

∥∥D3
xψε

∥∥2
L2((0,t )×R2)

≤
∥∥D2

xψε(0, ·)
∥∥2

L2(R2) +
∫ t

0

∥∥∥∥(∫ ∞

0
ρεχ1ξd a

)
(s)

∥∥∥∥2

H 2(R2)
ds +

∫ t

0

∥∥φε(s, ·)
∥∥2

H 2(R2) ds

+
∫ t

0

∥∥∥∥(
∇x

∫ ∞

0
ρεχ1ξda

)
(s)

∥∥∥∥4

L4(R2)
ds +

∫ t

0

∥∥∇xφε(s, ·)
∥∥4

L4(R2) ds

+
∫ t

0

∥∥∥∥(
∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
+ da

)
(s)

∥∥∥∥2

L2(R2)
ds

+
∫ t

0

∥∥∥∥(
∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
− da

)
(s)

∥∥∥∥2

L2(R2)
ds.

To achieve the proof of (1.2.25) we use the embedding H 1(R2) ⊂ L4(R2) and we remark that
the estimates (1.2.23), (1.2.24) apply to the functions

φε, (t , x) 7→
∫ ∞

0
ρεχ1ξda,

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
± da.

Indeed a classical regularization argument applied to the continuous cut-off functions in the
last expression allows to prove estimates (1.2.23), (1.2.24).

We continue by proving (1.2.26). We multiply (1.2.28) by −D6
xψε

d

d t

∫
R2

|D3
xψε|2
2

dx =
∫
R2

D3
xψε ·∂t D3

xψεdx =−
∫
R2

D6
xψε∂tψεdx

=−µ
∫
R2
∆xψεD6

xψεdx +
∫
R2

D6
xψεdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

−
∫
R2

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
D6

xψεda dx

=−µ
∫
R2

|D4
xψε|2dx +

∫
R2

D4
xψε∆xdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

−
∫
R2
∆x

(∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
da

)
D4

xψεdx

≤− µ

2

∫
R2

|D4
xψε|2dx + c

∫
R2

(
∆xdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

))2

dx

+ c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
+ da

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
− da

∣∣∣∣2

dx

≤− µ

2

∫
R2

|D4
xψε|2dx + c

∫
R2

∣∣∣∣D3
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2Y 2
θ︸ ︷︷ ︸

≤c

dx



+ c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2Y 2
θ︸ ︷︷ ︸

≤c

dx + c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|D2
x v|2Y 2

θ︸ ︷︷ ︸
≤c

dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|D3
x v|2Y 2

θ︸ ︷︷ ︸
≤c

dx + c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|∇xφε|2dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|D2
x v|2(Y ′

θ)2︸ ︷︷ ︸
≤c

|∇xφε|2dx + c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|∇xφε|2dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′′
θ )2︸ ︷︷ ︸

≤c

|∇xφε|4dx + c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|D2
xφε|2dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2(Y ′′
θ )2︸ ︷︷ ︸

≤c

|∇xφε|4dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|D2
xφε|2dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′′′
θ )2︸ ︷︷ ︸

≤c

|∇xφε|6dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′′
θ )2︸ ︷︷ ︸

≤c

|D2
xφε|2|∇xφε|2dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|D3
xφε|2dx

+ c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
+ da

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
− da

∣∣∣∣2

dx

≤− µ

2

∫
R2

|D4
xψε|2dx + c

∫
R2

∣∣∣∣D3
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣4

dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣4

dx + c
∫
R2

|D3
xφε|2dx + c

∫
R2

|D2
xφε|2dx + c

∫
R2

|D2
xφε|4dx

+ c
∫
R2

|∇xφε|2dx + c
∫
R2

|∇xφε|4dx + c
∫
R2

|∇xφε|6dx + c
∫
R2

|∇xφε|8dx

+ c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
+ da

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
− da

∣∣∣∣2

dx.

Integrating over (0, t ) we get∥∥D3
xψε(t , ·)

∥∥2
L2(R2) +µ

∥∥D4
xψε

∥∥2
L2((0,t )×R2)

≤
∥∥D3

xψε(0, ·)
∥∥2

L2(R2) +
∫ t

0

∥∥∥∥(∫ ∞

0
ρεχ1ξda

)
(s)

∥∥∥∥2

H 3(R2)
ds +

∫ t

0

∥∥φε(s, ·)
∥∥2

H 3(R2) ds

+
∫ t

0

∥∥∥∥(
D2

x

∫ ∞

0
ρεχ1ξda

)
(s)

∥∥∥∥4

L4(R2)
ds +

∫ t

0

∥∥∥∥(
∇x

∫ ∞

0
ρεχ1ξda

)
(s)

∥∥∥∥4

L4(R2)
ds



+
∫ t

0

∥∥D2
xφε(s, ·)

∥∥4
L4(R2) ds +

∫ t

0

∥∥∇xφε(s, ·)
∥∥4

L4(R2) ds

+
∫ t

0

∥∥∇xφε(s, ·)
∥∥6

L6(R2) ds +
∫ t

0

∥∥∇xφε(s, ·)
∥∥8

L8(R2) ds

+
∫ t

0

∥∥∥∥(
D2

x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
+ da

)
(s)

∥∥∥∥2

L2(R2)
ds

+
∫ t

0

∥∥∥∥(
D2

x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
− da

)
(s)

∥∥∥∥2

L2(R2)
ds.

Since H 1(R2) ⊂ Lp (R2), for very 1 ≤ p <∞ and the functions

φε, (t , x) 7→
∫ ∞

0
ρεχ1ξda, (t , x) 7→

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
± da,

have the structure we assume forψε, we can use (1.2.23), (1.2.24) and (1.2.25) to obtain (1.2.26).
Finally, (1.2.27) follows from (1.2.23), (1.2.24), (1.2.25), (1.2.26), (1.2.28) and the embed-

ding H 2(R2) ⊂ L∞(R2).

Corollary 1.1. Define
ρ0
ε(t , x) = ρε(t ,0, x).

The following estimates hold∥∥ρ0
ε(t , ·)

∥∥
L1(R2) ,

∥∥D2
xρ

0
ε

∥∥
L1((0,t )×R2) ,

∥∥∂tρ
0
ε

∥∥
L1((0,t )×R2) ≤ eC tC , (1.2.29)∥∥ρ0

ε(t , ·)
∥∥

L2(R2) ,
∥∥∇xρ

0
ε(t , ·)

∥∥
L2(R2) ≤ eC tC , (1.2.30)∥∥∇xρ

0
ε

∥∥
L2((0,t )×R2) ,

∥∥D2
xρ

0
ε

∥∥
L2((0,t )×R2) ,

∥∥∂tρ
0
ε

∥∥
L2((0,t )×R2) ≤ eC tC , (1.2.31)∥∥ρ0

ε(t , ·)
∥∥

L∞(R2) ≤ eC tC , (1.2.32)

for every t ≥ 0 and a constant C > 0 independent on ε.

Proof. Thanks to (1.1.12), (1.1.13), (1.2.21), we have

0 ≤ ρ0
ε =A (φε)ω︸ ︷︷ ︸

≤c

∫ ∞

0
ρεχ3da,

|∇xρ
0
ε| ≤|A ′(φε)||ω|

∫ ∞

0
ρεχ3da︸ ︷︷ ︸

≤c

∣∣∇xφε
∣∣+A (φε)|ω|︸ ︷︷ ︸

≤c

∣∣∣∣∇x

∫ ∞

0
ρεχ3da

∣∣∣∣+A (φε)|∇xω|︸ ︷︷ ︸
≤c

∫ ∞

0
ρεχ3da,

|D2
xρ

0
ε| ≤|A ′(φε)||ω|

∫ ∞

0
ρεχ3da︸ ︷︷ ︸

≤c

∣∣D2
xφε

∣∣+|A ′′(φε)||ω|
∫ ∞

0
ρεχ3da︸ ︷︷ ︸

≤c

∣∣∇xφε
∣∣2

+A (φε)|ω|︸ ︷︷ ︸
≤c

∣∣∣∣D2
x

∫ ∞

0
ρεχ3da

∣∣∣∣+A (φε)|D2
xω|︸ ︷︷ ︸

≤c

∫ ∞

0
ρεχ3da +2|A ′(φε)||∇xω|

∫ ∞

0
ρεχ3da︸ ︷︷ ︸

≤c

∣∣∇xφε
∣∣



+2|A ′(φε)||ω|︸ ︷︷ ︸
≤c

∣∣∣∣∇x

∫ ∞

0
ρεχ3da

∣∣∣∣ ∣∣∇xφε
∣∣+2|A (φε)||∇xω|︸ ︷︷ ︸

≤c

∣∣∣∣∇x

∫ ∞

0
ρεχ3da

∣∣∣∣ ,

|∂tρ
0
ε| ≤|A ′(φε)||ω|

∫ ∞

0
ρεχ3da︸ ︷︷ ︸

≤c

∣∣∂tφε
∣∣+A (φε)|ω|︸ ︷︷ ︸

≤c

∣∣∣∣∂t

∫ ∞

0
ρεχ3da

∣∣∣∣+A (φε)|∂tω|︸ ︷︷ ︸
≤c

∫ ∞

0
ρεχ3da.

Therefore, (1.2.29), (1.2.30), (1.2.31), and (1.2.32) follow from (1.2.22), (1.2.23), (1.2.24), (1.2.25),
(1.2.26), and (1.2.27).

Lemma 1.3 (L∞ estimate on ρε). We have that∥∥ρε(t , ·, ·)
∥∥

L∞((0,∞)×R2) ≤CeC t , (1.2.33)

for every t ≥ 0.

Proof. Let c be a positive constant that will be fixed later. Define

ρε(t , a, x) = e−ctρε(t , a, x).

ρε satisfies the problem
∂tρε+ cρε+∂aρε+divx

(
ρεχ1(a)vYθ(φε−R)

)=µ∆xρε+ε∂2
aaρε−dρε, (t , a, x) ∈ (0,∞)× (0,∞)×R2,

ρε(t ,0, x) =A
(
φε

)(∫ ∞
0 ρε(t , a, x)χ3(a)da

)
ω(t , x), (t , x) ∈ (0,∞)×R2,

ρε(0, a, x) = ρ0,ε(a, x), (a, x) ∈ (0,∞)×R2.
(1.2.34)

Moreover, for any given T > 0 there exists a sufficiently large constant k > 0 such that for any
t ≤ T and x ∈R2 (1.2.18), (1.2.21), and (1.2.32) imply

0 ≤ ρε(t ,0, x), ρ0,ε(a, x) ≤ k. (1.2.35)

Consider the function

ξ 7→ η(ξ) = (ξ−k)1(k,∞)(ξ),

and observe that
η′(ξ) =1(k,∞)(ξ), ξη′(ξ) = η(ξ)+kη′(ξ).



From the equation in problem (1.2.34) we obtain

d

d t

∫ ∞

0

∫
R2
η(ρε)dx da =

∫ ∞

0

∫
R2
η′(ρε)∂tρεdx da

=− c
∫ ∞

0

∫
R2
η′(ρε)ρεdx da −

∫ ∞

0

∫
R2
η′(ρε)∂aρεdx da −

∫ ∞

0

∫
R2

divx
(
ρεχ1vYθ

)
η′(ρε)dx da

+µ
∫ ∞

0

∫
R2
η′(ρε)∆xρεdx da−

∫ ∞

0

∫
R2
η′(ρε)dρεdx da︸ ︷︷ ︸

≤0

+ε
∫ ∞

0

∫
R2
η′(ρε)∂2

aaρεdx da

≤−c
∫ ∞

0

∫
R2
η(ρε)dx da︸ ︷︷ ︸
≤0

−ck
∫ ∞

0

∫
R2
η′(ρε)dx da +

∫
R2
η(ρε(t ,0, x))d x

−
∫ ∞

0

∫
R2

divx
(
(ρε−k)χ1vYθ

)
η′(ρε)dx da

−k
∫ ∞

0

∫
R2

divx
(
χ1vYθ

)
η′(ρε)dx da−µ

∫ ∞

0

∫
R2
η′′(ρε)

(∇xρε
)2 dx da︸ ︷︷ ︸

≤0

−ε
∫
R2
η′(ρε(t ,0, x))∂aρε(t ,0, x)d x−ε

∫ ∞

0

∫
R2
η′′(ρε)(∂aρε)2d ad x︸ ︷︷ ︸

≤0

≤
∫
R2
η(ρε(t ,0, x))d x +

∫ ∞

0

∫
R2

(ρε−k)χ1(v ·∇xρε)Yθη
′′(ρε)dx da︸ ︷︷ ︸

=0

−k
∫ ∞

0

∫
R2

(c +divx
(
χ1vYθ

)
)η′(ρε)dx da −ε

∫
R2
η′(ρε(t ,0, x))∂aρε(t ,0, x)d x.

Thanks to (1.1.13), (1.2.35), and (1.2.27) we notice that for c large enough

η(ρε(t ,0, x)) = 0, η′(ρε(t ,0, x)) = 0, c +divx
(
χ1vYθ

)≥ 0,

which imply

d

d t

∫ ∞

0

∫
R2
η(ρε)dx da ≤ 0.

Thus, we integrate over (0, t ) and recalling the inequalities (1.2.35) we obtain

0 ≤
∫ ∞

0

∫
R2
η(ρε(t , a, x))dx da ≤

∫ ∞

0

∫
R2
η(ρ0,ε(a, x))dx da = 0,

and

η(ρε(t , a, x)) = 0.

As a consequence we have that ρε ≤ k.



Lemma 1.4 (L1 estimate on ρε). We have that∥∥ρε(t , ·, ·)
∥∥

L1((0,∞)×R2) ≤CeC t , (1.2.36)

for every t ≥ 0.

Proof. Let λ ∈ C∞([0,∞)) be a nonincreasing nonnegative function with support concen-
trated in 0 where it takes value 1, more precisely

λ′ ≤ 0 ≤λ, λ(0) = 1, λχ1 ≡ 0. (1.2.37)

In practice, as we can assume without loss of generality that θ < A1/4, we could set λ(a) =
Yθ(A1/2−a), but this specific expression plays no role in the following.

Consider the function

rε(t , a, x) = ρε(t , a, x)−λ(a)ρε(t ,0, x).

Clearly rε satisfies the boundary condition

rε(t ,0, x) = 0 (1.2.38)

and the equation

∂t rε+∂arε+divx
(
rεχ1vYθ

)−µ∆xrε−ε∂2
aarε+drε

=λ(
µ∆xρ

0
ε−∂tρ

0
ε−dρ0

ε

)−λ′ρ0
ε+ελ′′ρ0

ε.
(1.2.39)

Multiplying both sides of (1.2.39) by sign(rε) and using [2, Lemma 2]

d

d t

∫ ∞

0

∫
R2

|rε|dx da =
∫ ∞

0

∫
R2
∂t rεsign(rε)dx da

=−
∫ ∞

0

∫
R2
∂arεsign(rε)dx da −

∫ ∞

0

∫
R2

divx
(
rεχ1vYθ

)
sign(rε)dx da︸ ︷︷ ︸

=0

+µ
∫ ∞

0

∫
R2
∆xrεsign(rε)dx da +ε

∫ ∞

0

∫
R2
∂2

aarεsign(rε)dx da −
∫ ∞

0

∫
R2
d|rε|dx da︸ ︷︷ ︸

≤0

+
∫ ∞

0

∫
R2
λ

(
µ∆xρ

0
ε−∂tρ

0
ε−dρ0

ε

)
sign(rε)dx da

−
∫ ∞

0

∫
R2
λ′ρ0

εsign(rε)dx da +ε
∫ ∞

0

∫
R2
λ′′ρ0

εsign(rε)dx da

≤‖λ‖L1(0,∞)

∫
R2

∣∣µ∆xρ
0
ε−∂tρ

0
ε−dρ0

ε

∣∣d x +
(∥∥λ′∥∥

L1(0,∞) +ε
∥∥λ′′∥∥

L1(0,∞)

)∫
R2
ρ0
εd x,

Integrating over (0, t ) and using (1.2.18), Corollary 1.1

‖rε(t , ·, ·)‖L1((0,∞)×R2) ≤CeC t .

Finally, using again Corollary 1.1,∥∥ρε(t , ·, ·)
∥∥

L1((0,∞)×R2) ≤‖rε(t , ·, ·)‖L1((0,∞)×R2) +‖λ‖L1(0,∞)

∥∥ρ0
ε(t , ·)

∥∥
L1(R2) ≤CeC t ,

that is (1.2.36).



Lemma 1.5 (L2 estimate on ρε). We have that∥∥ρε(t , ·, ·)
∥∥

L2((0,∞)×R2) ,
∥∥∇xρε

∥∥
L2((0,t )×(0,∞)×R2) ,

p
ε
∥∥∂aρε

∥∥
L2((0,t )×(0,∞)×R2) ≤CeC t (1.2.40)

for every t ≥ 0.

Proof. We argue as in the proof of Lemma 1.4 and we prove first an L2 estimate on rε.
We multiply both sides of (1.2.39) by rε

d

d t

∫ ∞

0

∫
R2

r 2
ε

2
dx da =

∫ ∞

0

∫
R2

rε∂t rεdx da

=−
∫ ∞

0

∫
R2

rε∂arεdx da︸ ︷︷ ︸
=0

−
∫ ∞

0

∫
R2

divx
(
rεχ1vYθ

)
rεdx da

+µ
∫ ∞

0

∫
R2

rε∆xrεdx da +ε
∫ ∞

0

∫
R2

rε∂
2
aarεdx da −

∫ ∞

0

∫
R2
dr 2

εdx da

+
∫ ∞

0

∫
R2
λ

(
µ∆xρ

0
ε−∂tρ

0
ε−dρ0

ε

)
rεdx da −

∫ ∞

0

∫
R2
λ′ρ0

εrεdx da +ε
∫ ∞

0

∫
R2
λ′′ρ0

εrεdx da

≤
∫ ∞

0

∫
R2

rεχ1Yθv ·∇xrεdx da −µ
∫ ∞

0

∫
R2

|∇xrε|2dx da −ε
∫ ∞

0

∫
R2

(∂arε)2dx da

+
∫ ∞

0

∫
R2
λ

(
µ∆xρ

0
ε−∂tρ

0
ε−dρ0

ε

)
rεdx da +

∫ ∞

0

∫
R2

(
ελ′′−λ′)ρ0

εrεdx da

=−
∫ ∞

0

∫
R2

r 2
ε

2
divx

(
χ1Yθv

)︸ ︷︷ ︸
≤c

dx da −µ
∫ ∞

0

∫
R2

|∇xrε|2dx da −ε
∫ ∞

0

∫
R2

(∂arε)2dx da

+
∫ ∞

0

∫
R2
λ

(
µ∆xρ

0
ε−∂tρ

0
ε−dρ0

ε

)
rεdx da +

∫ ∞

0

∫
R2

(
ελ′′−λ′)ρ0

εrεdx da

≤c
∫ ∞

0

∫
R2

r 2
εdx da −µ

∫ ∞

0

∫
R2

|∇xrε|2dx da −ε
∫ ∞

0

∫
R2

(∂arε)2dx da

+ c ‖λ‖2
L2(0,∞)

∫
R2

(
µ2(∆xρ

0
ε)2 + (∂tρ

0
ε)2 +d2(ρ0

ε)2)dx

+ c
(
ε2

∥∥λ′′∥∥2
L2(0,∞) +

∥∥λ′∥∥2
L2(0,∞)

)∫
R2

(ρ0
ε)2dx.

We integrate the inequality above over (0, t ) and the claim follows from (1.2.18), Gronwall
Lemma and Corollary 1.1.

Lemma 1.6 (H 2 estimate on ρε). We have that∥∥∇xρε(t , ·, ·)
∥∥

L2((0,∞)×R2) ,
∥∥D2

xρε
∥∥

L2((0,t )×(0,∞)×R2) ,
p
ε
∥∥∂a∇xρε

∥∥
L2((0,t )×(0,∞)×R2) ≤CeC t

(1.2.41)
for every t ≥ 0.

Proof. We argue as in the proof of Lemma 1.4 and we prove first an H 2 estimate on rε.



We multiply both sides of (1.2.39) by −∆xrε

d

d t

∫ ∞

0

∫
R2

|∇xrε|2
2

dx da =
∫ ∞

0

∫
R2

∇xrε ·∂t∇xrεdx da =−
∫ ∞

0

∫
R2
∆xrε∂t rεdx da

=
∫ ∞

0

∫
R2
∆xrε∂arεdx da +

∫ ∞

0

∫
R2

divx
(
rεχ1vYθ

)
∆xrεdx da

−µ
∫ ∞

0

∫
R2

(∆xrε)2dx da −ε
∫ ∞

0

∫
R2
∆xrε∂

2
aarεdx da +

∫ ∞

0

∫
R2
drε∆xrεdx da

−
∫ ∞

0

∫
R2
λ

(
µ∆xρ

0
ε−∂tρ

0
ε−dρ0

ε

)
∆xrεdx da +

∫ ∞

0

∫
R2
λ′ρ0

ε∆xrεdx da −ε
∫ ∞

0

∫
R2
λ′′ρ0

ε∆xrεdx da

=−
∫ ∞

0

∫
R2
∂a

( |∇xrε|2
2

)
dx da︸ ︷︷ ︸

=0

+
∫ ∞

0

∫
R2

∇xrε ·vχ1Yθ∆xrεdx da +
∫ ∞

0

∫
R2

rεdivx
(
χ1vYθ

)
∆xrεdx da

−µ
∫ ∞

0

∫
R2

(∆xrε)2dx da −ε
∫ ∞

0

∫
R2

|∇x∂arε|2dx da +
∫ ∞

0

∫
R2
drε∆xrεdx da

−
∫ ∞

0

∫
R2
λ

(
µ∆xρ

0
ε−∂tρ

0
ε−dρ0

ε

)
∆xrεdx da +

∫ ∞

0

∫
R2
λ′ρ0

ε∆xrεdx da −ε
∫ ∞

0

∫
R2
λ′′ρ0

ε∆xrεdx da

≤− µ

2

∫ ∞

0

∫
R2

(∆xrε)2dx da −ε
∫ ∞

0

∫
R2

|∇x∂arε|2dx da

+ c
∫ ∞

0

∫
R2

((rε)2 +|∇xrε|2 +λ2 (
∆xρ

0
ε)2 +λ2(∂tρ

0
ε)2 + (λ2 + (λ′)2 + (λ′′)2)(ρ0

ε)2))dx da.

Therefore, the claim follows from (1.2.18), the Gronwall Lemma, Corollary 1.1, and Lemma
1.5.

Lemma 1.7 (L1 estimate on ∂aρε). We have that∥∥∂aρε(t , ·, ·)
∥∥

L1((0,∞)×R2) ≤CeC t ,

for every t ≥ 0 and a suitable constant C independent on ε.

Proof. Observe that differentiating the equation in (1.2.19) with respect to a we get

∂2
t aρε+∂2

aaρε+divx
(
∂aρεχ1vYθ

)+divx
(
ρεχ

′
1vYθ

)
=µ∆x∂aρε+ε∂3

aaaρε−∂adρε−d∂aρε.
(1.2.42)

Using [2, Lemma 2] we get

d

d t

∫ ∞

0

∫
R2

|∂aρε|dx da =
∫ ∞

0

∫
R2
∂2

t aρεsign
(
∂aρε

)
dx da

=
∫ ∞

0

∫
R2

(ε∂3
aaaρε−∂2

aaρε)sign
(
∂aρε

)
dx da+µ

∫ ∞

0

∫
R2
∆x∂aρεsign

(
∂aρε

)
dx da︸ ︷︷ ︸

≤0

−
∫ ∞

0

∫
R2

divx
(
∂aρεχ1vYθ

)
sign

(
∂aρε

)
dx da︸ ︷︷ ︸

=0

−
∫ ∞

0

∫
R2

∇xρε ·vχ′1Yθsign
(
∂aρε

)
dx da



−
∫ ∞

0

∫
R2
ρεχ

′
1divx (v)Yθsign

(
∂aρε

)
dx da −

∫ ∞

0

∫
R2
ρεχ

′
1v ·∇xφεY ′

θsign
(
∂aρε

)
dx da

−
∫ ∞

0

∫
R2
∂adρεsign

(
∂aρε

)
dx da−

∫ ∞

0

∫
R2
d|∂aρε|dx da︸ ︷︷ ︸
≤0

≤
∫
R2

|(ε∂2
aaρε−∂aρε)(t ,0, x)|d x + c

∥∥∇xρε(t , ·, ·)
∥∥

L2((0,∞)×R2) ‖v‖L2(R2)

+ c
∥∥ρε(t , ·, ·)

∥∥
L2((0,∞)×R2) ‖divx (v)‖L2(R2) + c

∥∥ρε(t , ·, ·)
∥∥

L2((0,∞)×R2)

∥∥∇xφε(t , ·)
∥∥

L2(R2)

+ c
∥∥ρε(t , ·, ·)

∥∥
L1((0,∞)×R2) .

Since
(ε∂2

aaρε−∂aρε)(t ,0, x) = ∂tρ
0
ε−µ∆xρ

0
ε+dρ0

ε,

the claim follows from (1.2.18), (1.2.24), the Gronwall Lemma, Corollary 1.1, Lemma 1.4 and
Lemma 1.5.

1.2.2 Convergence to an entropy weak solution

We are now ready to prove the existence of a converging subsequence of {ρε}ε. To this end
we apply the multidimensional compensated compactness result introduced by Panov in [35,
36], which does not require estimates on {∂tρε}ε. For the reader’s convenience we recall the
exact statement by Panov in Lemma 1.8. It should be noticed, however, that the application of
this technique to our setting is not straightforward, as the flux of our equation does not satisfy
the hypothesis of the lemma. We can overcome this difficulty, as it has been done in [12, 7],
because we have estimates on {∇(a,x)ρε}ε. Namely, we rewrite (1.2.19) as follows

∂tρε+div(a,x)

(
ρ2
ε/2
ρ2
ε/2

)
= (ρε−1)∂aρε+ρεdivx

(
ρε

)
−divx

(
ρεχ1(a)vYθ(φε−R)

)+µ∆xρε+ε∂2
aaρε−dρε,

(1.2.43)

and we consider the original flux of the equation as a part of the source term.

Lemma 1.8 (Theorem 5, in [14]). Let {uν}ν∈N be a sequence of functions defined in [0,∞)×Rd

with values in R. Assume that
— {uν}ν∈N is bounded in L∞

l oc ((0,∞)×Rd ) ;

— F ∈C 2(Rd ;Rd ) is a genuinely nonlinear vector field, in the sense that for any unit vector
n ∈Rd the map u ∈Rd 7→ F (u) ·n is not affine on any non-trivial interval ;

— for every convex entropy η ∈ C 2(R) with flux Q ∈ C 2(R;Rd ) such that Q ′ = F ′η′ the se-
quence

{∂tη(uν)+div (Q(uν))}ν∈N

is compact in H−1
l oc ((0,∞)×Rd ).

Then there exist a function u ∈ L∞
loc ((0,∞)×Rd ) and a sequence {νk }k∈N, νk → 0, such that

uνk → u, a.e. in (0,∞)×Rd and in Lp
l oc ((0,∞)×Rd ), 1 ≤ p <∞.



Lemma 1.9 (Strong compactness of {ρε}ε). There exist a function ρ : [0,∞)× [0,∞)×R2 → R

and a sequence {εk }k∈N ⊂ (0,∞), εk → 0, such that for every T > 0

ρεk → ρ, a.e. in (0,T )× (0,∞)×R2 and in Lp
l oc ((0,∞)× (0,∞)×R2), 1 ≤ p <∞,

ρ(·, ·, ·) ≥ 0,

ρ ∈ L∞(0,T ;L1((0,∞)×R2))∩L∞((0,T )× (0,∞)×R2)∩L2((0,T )× (0,∞); H 2(R2)),

ρ(t , ·, x) ∈ BV (0,∞), for a.e. (t , x) ∈ (0,∞)×R2.

(1.2.44)

Proof. We rewrite (1.2.19) as follows

∂tρε+div(a,x)

(
ρ2
ε/2
ρ2
ε/2

)
= (ρε−1)∂aρε+ρεdivx

(
ρε

)
−divx

(
ρεχ1(a)vYθ(φε−R)

)+µ∆xρε+ε∂2
aaρε−dρε.

(1.2.45)

Let η ∈C 2(R2) be a convex entropy with flux Q ∈C 2(R;R2) such that

Q ′(ρ) =
(
ρη′(ρ)
ρη′(ρ)

)
.

Multiplying both sides of (1.2.45) by η′(ρε) we get

∂tη(ρε)+div(a,x)
(
Q(ρε)

)
=η′(ρε)

[
(ρε−1)∂aρε+ρεdivx

(
ρε

)−divx
(
ρεχ1(a)vYθ(φε−R)

)+µ∆xρε−dρε
]

︸ ︷︷ ︸
L1,ε

+ε∂2
aaη(ρε)︸ ︷︷ ︸
L2,ε

−εη′′(ρε)(∂aρε)2︸ ︷︷ ︸
L3,ε

.

(1.2.46)

We claim that

{L1,ε}ε is bounded in L1
loc ((0,∞)× (0,∞)×R2), (1.2.47)

{L2,ε}ε is compact in H−1
loc ((0,∞)× (0,∞)×R2), (1.2.48)

{L3,ε}ε is bounded in L1
loc ((0,∞)× (0,∞)×R2). (1.2.49)

Indeed for every K ⊂⊂ (0,∞)× (0,∞)×R2, thanks to Lemmas 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,∥∥L1,ε
∥∥

L1(K ) ≤
∥∥η′(ρε)

∥∥
L∞(K )

[
(
∥∥ρε∥∥L∞(K ) +1)

∥∥∂aρε
∥∥

L1(K ) +
∥∥ρε∥∥L2(K )

∥∥∇xρε
∥∥

L2(K )

+ c
∥∥ρε∥∥L2(K )

∥∥∇xφε
∥∥

L2(K ) + c
∥∥φε∥∥L2(K )

∥∥ρε∥∥L2(K ) + c
∥∥φε∥∥L2(K )

∥∥∇xρε
∥∥

L2(K )

+ c
∥∥∆xρε

∥∥
L2(K ) +‖d‖L∞(K )

∥∥ρε∥∥L1(K )

]
≤ c,

L2,ε =∂a(εη′(ρε)∂aρε),∥∥εη′(ρε)∂aρε
∥∥

L2(K ) ≤ε
∥∥η′(ρε)

∥∥
L∞(K )

∥∥∂aρε
∥∥

L2(K ) ≤ c
p
ε→ 0,∥∥L3,ε

∥∥
L1(K ) ≤ε

∥∥η′′(ρε)
∥∥

L∞(K )

∥∥∂aρε
∥∥2

L2(K ) ≤ c.



The Murat Lemma [31] implies that

{∂tη(ρε)+div(a,x)
(
Q(ρε)

)
}ε is compact in H−1

loc ((0,∞)× (0,∞)×R2).

Lemma 1.10 (Existence). The function ρ introduced in Lemma 1.9 is an entropy weak solution
of (1.1.7) in the sense of Defintion 1.2.

Proof. Thanks to Lemma 1.9 we have only to verify that (1.1.16) holds. We follow the argument
of [2].

Let ξ ∈ C∞(R4) be a nonnegative test function with compact support and k ∈ R be a con-
stant. Multiplying (1.2.19) by sign

(
ρε−k

)
we gain

∂t |ρε−k|+∂a |ρε−k|+divx
(|ρε−k|χ1vYθ(φε−R)

)
+k sign

(
ρε−k

)
χ1divx

(
vYθ(φε−R)

)
≤µ∆x |ρε−k|+ε∂2

aa |ρε−k|− sign
(
ρε−k

)
dρε.

testing with ξ∫ ∞

0

∫ ∞

0

∫
R2

(
|ρε−k|(∂tξ+∂aξ)+|ρε−k|χ1Yθ(φε−R)v ·∇xξ

−k sign
(
ρε−k

)
χ1divx

(
vYθ(φε−R)

)
ξ

+µ|ρε−k|∆xξ−ε∂a |ρε−k|∂aξ− sign
(
ρε−k

)
dρεξ

)
dx da dt

+
∫ ∞

0

∫
R2

(∣∣∣∣A (
φε

)(∫ ∞

0
ρε(t , a, x)χ3(a)da

)
ω(t , x)−k

∣∣∣∣−ε∂a |ρε−k|(t ,0, x)

)
ξ(t ,0, x)dx dt

+
∫ ∞

0

∫
R2

|ρ0,ε(a, x)−k|ξ(0, a, x)dx da ≥ 0.

As ε→ 0, thanks to Lemmas 1.5 and 1.9 and the Dominate Convergence Theorem we gain∫ ∞

0

∫ ∞

0

∫
R2

(
|ρ−k|(∂tξ+∂aξ)+|ρ−k|χ1(a)Yθ(φ−R)v ·∇xξ

−k sign
(
ρ−k

)
χ1divx

(
vYθ(φ−R)

)
ξ+µ|ρ−k|∆xξ− sign

(
ρ−k

)
dρξ

)
dx da dt

+
∫ ∞

0

∫
R2

∣∣∣∣A (
φ

)(∫ ∞

0
ρ(t , a, x)χ3(a)da

)
ω(t , x)−k

∣∣∣∣ξ(t ,0, x)dx dt

− lim
ε→0

ε

∫ ∞

0

∫
R2
∂a |ρε−k|(t ,0, x)ξ(t ,0, x)dx dt

+
∫ ∞

0

∫
R2

|ρ0(a, x)−k|ξ(0, a, x)dx da ≥ 0.



Thanks to Remark 1.1 we have to prove that

lim
ε→0

ε

∫ ∞

0

∫
R2
∂a |ρε−k|(t ,0, x)ξ(t ,0, x)dx dt

=
∫ ∞

0

∫
R2

sign

(
A

(
φ

)(∫ ∞

0
ρ(t , a, x)χ3(a)da

)
ω(t , x)−k

)
×

(
A

(
φ

)(∫ ∞

0
ρ(t , a, x)χ3(a)da

)
ω(t , x)−ρ(t ,0+, x)

)
ξ(t ,0, x)dx dt .

(1.2.50)

Observe that

ε

∫ ∞

0

∫
R2
∂a |ρε−k|(t ,0, x)ξ(t ,0, x)dx dt

=ε
∫ ∞

0

∫
R2

sign

(
A

(
φε

)(∫ ∞

0
ρε(t , a, x)χ3(a)da

)
ω(t , x)−k

)
∂aρε(t ,0, x)ξ(t ,0, x)dx dt .

Therefore, due to Lemma 1.9, in order to prove (1.2.50) it is enough to prove that

lim
ε→0

ε

∫ ∞

0

∫
R2
∂aρε(t ,0, x)ξ(t ,0, x)dx dt

=
∫ ∞

0

∫
R2

(
A

(
φ

)(∫ ∞

0
ρ(t , a, x)χ3(a)da

)
ω(t , x)−ρ(t ,0+, x)

)
ξ(t ,0, x)dx dt .

(1.2.51)

Consider the cut-off functions {λn}n such that

0 ≤λn ≤ 1, λn(0) = 1, λn

(
1

n

)
= 0, −n ≤λ′

n ≤ 0. (1.2.52)

Testing (1.2.19) with λn(a)ξ(t , a, x)∫ ∞

0

∫ ∞

0

∫
R2

(
ρε(∂tξ+∂aξ)+ρεχ1(a)v ·∇xξYθ(φε−R)+µρε∆xξ−ε∂aρε∂aξ−dρεξ

)
λndx da dt

+
∫ ∞

0

∫ ∞

0

∫
R2

(ρε−ε∂aρε)λ′
nξdx da dt

+
∫ ∞

0

∫ ∞

0

∫
R2

A
(
φε

)
ρε(t , a, x)χ3(a)ω(t , x)ξ(t ,0, x)dx da dt

−ε
∫ ∞

0

∫
R2
∂aρε(t ,0, x)ξ(t ,0, x)dx dt

+
∫ ∞

0

∫
R2
ρ0,ε(a, x)λnξ(0, a, x)dx da = 0.

Thanks to Lemmas 1.5 and 1.9, as ε→ 0 we get

lim
ε→0

ε

∫ ∞

0

∫
R2
∂aρε(t ,0, x)ξ(t ,0, x)dx dt

=
∫ ∞

0

∫ ∞

0

∫
R2

(
ρ(∂tξ+∂aξ)+ρχ1(a)v ·∇xξYθ(φ−R)+µρ∆xξ−dρξ

)
λndx da dt

+
∫ ∞

0

∫ ∞

0

∫
R2
ρλ′

nξdx da dt +
∫ ∞

0

∫ ∞

0

∫
R2

A
(
φ

)
ρ(t , a, x)χ3(a)ω(t , x)ξ(t ,0, x)dx da dt

+
∫ ∞

0

∫
R2
ρ0(a, x)λnξ(0, a, x)dx da.



Finally, sending n →∞ we get (1.2.51) and the proof is concluded.

1.3 Uniqueness and stability

In this section we conclude the proof of Theorem 1.1 proving (1.1.17).
We follow [2] and prove the following preliminary lemma.

Lemma 1.11. Let ρ and r be two entropy weak solutions of (1.1.7) obtained in correspondence
of the initial data ρ0 and r0. For every nonnegative test function ξ ∈ C∞(R4) with compact
support the following inequality holds∫ ∞

0

∫ ∞

0

∫
R2

(|ρ− r | (∂tξ+∂aξ)−divx
(|ρ− r |χ1v(Yθ(φ−R)+Yθ( f −R))

)
ξ

+µ∆x |ρ− r |ξ−|ρ− r |dξ) dx da dt

+
∫ ∞

0

∫
R2

|ρ(t ,0+, x)− r (t ,0+, x)|ξ(t ,0, x)dx dt +
∫ ∞

0

∫
R2

|ρ0(a, x)− r0(a, x)|ξ(0, a, x)dx da

≥
∫ ∞

0

∫ ∞

0

∫
R2

sign
(
ρ− r

)
χ1

(
r divx

(
vYθ(φ−R)

)−ρdivx
(
v(x)Yθ( f −R)

))
ξdx da dt ,

(1.3.53)

where

f (t , x) :=
∫ ∞

0
r (t , a, x)χ2(a)da.

Proof. We double the variables and write

ρ = ρ(t , a, x), r = r (s,b, y), φ=φ(t , x), f = f (s, y),

where x = (x1, x2) and y = (y1, y2).
Consider the following test function

Ξn(t , s, a,b, x, y) = ξ
(

t + s

2
,

a +b

2
,

x + y

2

)
λn

(
s − t

2

)
λn

(
b −a

2

)
λn

( y1 −x1

2

)
λn

( y2 −x2

2

)
,

where

λn (u) = nλ(nu), λ ∈C∞(R), λ≥ 0, ‖λ‖L1(R) = 1, supp(λ) ⊂ [−1,1].

We write (1.1.16) for ρ(t , a, x) using r (s,b, y) as a constant and integrate over (s,b, y)∫ ∫ ∫ ∫ ∫ ∫ (|ρ− r | (∂tΞn +∂aΞn)−divx
(|ρ− r |χ1(a)v(x)Yθ(φ−R)

)
Ξn

+µ∆x |ρ− r |Ξn − sign
(
ρ− r

)
dρΞn

)
dx dy da db dt ds

+
∫ ∫ ∫ ∫ ∫

|ρ(t ,0+, x)− r |Ξn(t , s,0,b, x, y)dx dy db dt ds

+
∫ ∫ ∫ ∫ ∫

|ρ0(a, x)− r |Ξn(0, s, a,b, x, y)dx dy da db ds

≥
∫ ∫ ∫ ∫ ∫ ∫

sign
(
ρ− r

)
rχ1(a)divx

(
v(x)Yθ(φ−R)

)
Ξn dx dy da db dt ds,

(1.3.54)



and we write (1.1.16) for r (s,b, y) using ρ(t , a, x) as a constant and integrate over (t , a, x)∫ ∫ ∫ ∫ ∫ ∫ (|ρ− r | (∂sΞn +∂bΞn)−divy
(|ρ− r |χ1(b)v(y)Yθ( f −R)

)
Ξn

+µ∆y |ρ− r |Ξn + sign
(
ρ− r

)
dρΞn

)
dx dy da db dt ds

+
∫ ∫ ∫ ∫ ∫

|ρ− r (s,0+, y)|Ξn(t , s, a,0, x, y)dx dy da dt ds

+
∫ ∫ ∫ ∫ ∫

|ρ− r0(b, y)|Ξn(t ,0, a,b, x, y)dx dy da db dt

≥−
∫ ∫ ∫ ∫ ∫ ∫

sign
(
ρ− r

)
ρχ1(b)divy

(
v(y)Yθ( f −R)

)
Ξn dx dy da db dt ds.

(1.3.55)

Adding (1.3.54) and (1.3.55)∫ ∫ ∫ ∫ ∫ ∫ (
|ρ− r | (∂tΞn +∂sΞn +∂aΞn +∂bΞn)

−divx
(|ρ− r |χ1(a)v(x)Yθ(φ−R)

)
Ξn −divy

(|ρ− r |χ1(b)v(y)Yθ( f −R)
)
Ξn

+µ∆x |ρ− r |Ξn +µ∆y |ρ− r |Ξn

− sign
(
ρ− r

)
(d(t , a, x)ρ−d(s,b, y)r )Ξn

)
dx dy da db dt ds

+
∫ ∫ ∫ ∫ ∫

|ρ(t ,0+, x)− r |Ξn(t , s,0,b, x, y)dx dy db dt ds

+
∫ ∫ ∫ ∫ ∫

|ρ− r (s,0+, y)|Ξn(t , s, a,0, x, y)dx dy da dt ds

+
∫ ∫ ∫ ∫ ∫

|ρ0(a, x)− r |Ξn(0, s, a,b, x, y)dx dy da db ds

+
∫ ∫ ∫ ∫ ∫

|ρ− r0(b, y)|Ξn(t ,0, a,b, x, y)dx dy da db dt

≥
∫ ∫ ∫ ∫ ∫ ∫

sign
(
ρ− r

)
rχ1(a)divx

(
v(x)Yθ(φ−R)

)
Ξn dx dy da db dt ds

−
∫ ∫ ∫ ∫ ∫ ∫

sign
(
ρ− r

)
ρχ1(b)divy

(
v(y)Yθ( f −R)

)
Ξn dx dy da db dt ds.

Since

∂tΞn +∂sΞn =∂ t+s
2
ξ

(
t + s

2
,

a +b

2
,

x + y

2

)
λn

(
s − t

2

)
λn

(
b −a

2

)
λn

( y1 −x1

2

)
λn

( y2 −x2

2

)
,

∂aΞn +∂bΞn =∂ a+b
2
ξ

(
t + s

2
,

a +b

2
,

x + y

2

)
λn

(
s − t

2

)
λn

(
b −a

2

)
λn

( y1 −x1

2

)
λn

( y2 −x2

2

)
,

As n →∞ due to the regularity in x of ρ and r we get (1.3.53).

Lemma 1.12. The following inequality holds∥∥φ(t , ·)− f (t , ·)
∥∥2

L2(R2) +µect
∫ t

0

∫
R2

e−cs |∇x(φ− f )|2 dx ds

≤ cect
∥∥ρ0 − r0

∥∥2
L1((0,∞)×R2) + cect

∫ t

0

∫ ∞

0

∫
R2

e−cs(ρ− r )2 dx da ds.

(1.3.56)



for every t ≥ 0. In particular, we have that(∫ t

0

∫
R2

e−cs |∇x(φ− f )|2 dx ds

)1/2

≤ cect
∥∥ρ0 − r0

∥∥
L1((0,∞)×R2) + cect

(∫ t

0

∥∥ρ(s, ·, ·)− r (s, ·, ·)
∥∥2

L1((0,∞)×R2) ds

)1/2

,

(1.3.57)

for every t ≥ 0.

Proof. Since φεk e satisfies

∂tφεk −µ∆xφεk +divx

((∫ ∞

0
ρεkχ1da

)
vYθ(φεk −R)

)
=

∫ ∞

0
ρεk

(
εkχ

′′
2 +χ′2 −dχ2

)
da.

as k →∞ we get the equation for φ

∂tφ−µ∆xφ+divx

((∫ ∞

0
ρχ1da

)
vYθ(φ−R)

)
=

∫ ∞

0
ρ

(
χ′2 −dχ2

)
da. (1.3.58)

Analogously, f satisfies

∂t f −µ∆x f +divx

((∫ ∞

0
rχ1da

)
vYθ( f −R)

)
=

∫ ∞

0
r
(
χ′2 −dχ2

)
da. (1.3.59)

Subtracting (1.3.58) and (1.3.59)

∂t (φ− f )−µ∆x(φ− f )+divx

((∫ ∞

0
(ρ− r )χ1da

)
vYθ(φ−R)

)
+divx

((∫ ∞

0
rχ1da

)
v(Yθ(φ−R)−Yθ( f −R))

)
=

∫ ∞

0
(ρ− r )

(
χ′2 −dχ2

)
da.

(1.3.60)

Then

d

d t

∫
R2

(φ− f )2

2
dx +µ

∫
R2

∣∣∇x(φ− f )
∣∣2 dx

=
∫
R2

(φ− f )

(∫ ∞

0
(ρ− r )

(
χ′2 −dχ2

)
da

)
dx

−
∫
R2

(φ− f )divx

((∫ ∞

0
(ρ− r )χ1da

)
vYθ(φ−R)

)
dx

−
∫
R2

(φ− f )divx

((∫ ∞

0
rχ1da

)
v(Yθ(φ−R)−Yθ( f −R))

)
dx

=
∫
R2

(φ− f )

(∫ ∞

0
(ρ− r )

(
χ′2 −dχ2

)
da

)
dx

+
∫
R2

∇x(φ− f ) ·v
(∫ ∞

0
(ρ− r )χ1da

)
Yθ(φ−R)dx



+
∫
R2

∇x(φ− f ) ·v
(∫ ∞

0
rχ1da

)
(Yθ(φ−R)−Yθ( f −R))dx

≤1

2

∫
R2

(φ− f )2 dx + 1

2

∫
R2

(∫ ∞

0
(ρ− r )

(
χ′2 −dχ2

)
da

)2

dx

+ µ

2

∫
R2

∣∣∇x(φ− f )
∣∣2 dx + 1

µ

∫
R2

|v|2
(∫ ∞

0
(ρ− r )χ1da

)2

Yθ(φ−R)2 dx

+ 1

µ

∫
R2

|v|2
(∫ ∞

0
rχ1da

)2

(Yθ(φ−R)−Yθ( f −R))2 dx

≤c
∫
R2

(φ− f )2 dx + cect
∫ ∞

0

∫
R2

(ρ− r )2 dx da + µ

2

∫
R2

∣∣∇x(φ− f )
∣∣2 dx.

Using the Gronwall Lemma and we get∥∥φ(t , ·)− f (t , ·)
∥∥2

L2(R2) +µect
∫ t

0

∫
R2

e−cs |∇x(φ− f )|2 dx ds

≤ ect
∥∥φ0 − f0

∥∥2
L2(R2) + cect

∫ t

0

∫ ∞

0

∫
R2

e−cs(ρ− r )2 dx da ds.

The definition of φ and f gives (1.3.56).
Finally, we prove (1.3.57). Using (1.2.33) and (1.3.56) we gain(∫ t

0

∫
R2

|∇x(φ− f )|2 dx ds

)1/2

≤ c

(
µect

∫ t

0

∫
R2

e−cs |∇x(φ− f )|2 dx ds
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(
ect
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∫ ∞
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∫
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(∫ t

0

∥∥ρ(s, ·, ·)− r (s, ·, ·)
∥∥2

L2((0,∞)×R2) ds

)1/2

≤ cect
∥∥ρ0 − r0

∥∥
L1((0,∞)×R2) + cect

(∫ t

0

∥∥ρ(s, ·, ·)− r (s, ·, ·)
∥∥2

L1((0,∞)×R2) ds

)1/2

.

Proof of Theorem 1.1. Thanks to Lemma 1.10, we need only to prove (1.1.17). We rewrite
(1.3.53) in the following form∫ ∞

0

∫ ∞

0

∫
R2

(|ρ− r | (∂tξn +∂aξn)+|ρ− r |χ1(Yθ(φ−R)+Yθ( f −R))v ·∇xξn

+µ|ρ− r |∆xξn −|ρ− r |dξn
)

dx da dt

+
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0
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)
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(
r divx

(
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)−ρdivx
(
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))
ξn dx da dt ,



for a sequence {ξn}n of nonnegative test functions approximating the characteristic function
of the strip (−∞, t )×R×R2. Sending n →∞∥∥ρ(t , ·, ·)− r (t , ·, ·)

∥∥
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Thanks to the regularity of the functions A and Yθ we can conclude∥∥ρ(t , ·, ·)− r (t , ·, ·)
∥∥

L1((0,∞)×R2)

≤
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(1.3.61)



Using (1.3.56) in (1.3.61)∥∥ρ(t , ·, ·)− r (t , ·, ·)
∥∥
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(1.3.62)

Squaring both sides and using the Hölder Inequality we get∥∥ρ(t , ·, ·)− r (t , ·, ·)
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(1.3.63)

Using the Gronwall Lemma we gain (1.1.17) and the proof is concluded.



Chapter 2
On the mathematical modeling of vole
populations spatial dynamics via transport
equations on a graph

2.1 Description of our models

We propose two models to describe the spatial dynamics of a voles population structured
in age. Both models write as transport equations on graph.

Voles’ sex ratio at birth is 1-1, [6, 37], so that it is enough to model the female population,
which is structured into three age classes: young voles, whose age a varies between 0 and A1,
juveniles, a ∈ [A1, A2], and adults, a > A2. The same observations suggest that A1 ≈ 18 days
and A2 ≈ 56 days, but for simplicity we assume the normalization A2 = 3A1. Since most voles
die out of predation, disease or starvation, at a first approximation we could neglect aging
when describing the adult population: in particular it is not necessary to consider a decline of
fertility over age. Nevertheless, to avoid non realistic results when performing simulations on
a large time horizon (e.g. 4 years), we define A3 as the maximal age that a vole individual can
attain (different values will be taken into account) and we set our model so that individuals
of age larger than A3, if any, do not participate any more in the evolution of the system. As
numerical values for age transitions, we fix A1 = 1, A2 = 3 and A3 = 20.

We partition the natural space into squared cells of side length 100 m, Vi , i = 1, . . . ,nv .
We measure the distances between cells centers and, based on observations, we estimate the
average time needed by a vole to cover such distances. Then we define a finite weighted graph
Γ= (E ,V ), whose set of nodes V = {V1, . . . ,Vnv } represents the cells, while the set of its edges E

consists of the triples (Vi ,V j ,`i j ) where Vi 6=V j belong to V (no loops are allowed) and `i j > 0
is the travel time between the two vertices. For simplicity we will always assume that Γ is not
directed, therefore `i j = ` j i . In general it is possible to assume that the graph is complete, i.e.
that there exists an edge joining any given pair of nodes. From the modeling point of view this
is compatible with the fact that some individuals (long range dispersers) can be recaptured at



observation sites more than 5 Km apart from each other.
Each node Vi is endowed with an initial boundary value problem representing the evolu-

tion of the density of voles in Vi , ρi , with respect to the time and age variables t and a,

ρi : R+×R+ → R+

(t , a) 7→ ρi (t , a).
(2.1.1)

The total number of voles in Vi at time t is given by the integral

Φi (t ) =
∫ A3

0
ρi (t , a)da. (2.1.2)

The spatial dynamics of the population is represented by transmissions of density from one
node to the others. The local spatial dynamics, related to foraging activities is neglected. We
recall that while most individuals spend almost all of their lives in burrows, where they also
breed, some of the juveniles have a significant spatial dynamics during dispersals. The mech-
anism triggering dispersal is still not completely understood and it is most probably related
to the interaction of several factors (see for instance [1, 4, 6, 16, 21, 24, 25, 41, 42] and refer-
ences therein). However, for modeling purposes, it is reasonable to link stress conditions to
overcrowding, and say that dispersal begins when the total number of individuals in a colony
reaches a threshold value, fixed as a fraction of the carrying capacity of the environment, R.
New colonies most often appear in a radius of a few hundreds meters around the original one,
but individuals might disperse over more than 5 Km. Topography, in particular relief, drives
the dispersal direction, and during this phase voles’ mortality is very high.

We define a stochastic matrix K of size nv ×nv . Its coefficients ki j fix which fraction of
voles leaving the node Vi would head toward V j . Since no loops are allowed, we set ki i = 0 for
any i ∈ {1, . . . ,nv }. At a modeling level we can imagine that ki j depends, for example, on the
height or the landscapes in Vi and V j , therefore in general ki j 6= k j i . From the modeling point
of view it makes sense to consider a time dependent matrix K. An example in this direction
is given in Section 2.3.2, but for the simplicity of the presentation, we keep K constant for the
moment.

Assume that at time t̄ some of the voles initially at Vi disperse. Since voles age and die
during dispersal but cannot reproduce, the evolution of voles leaving Vi at time t̄ and age a
and heading toward V j , is described by the ODE problem{

∂su(s) =−ddi su(s),

u(0) = ki jρi (t̄ , a)
(2.1.3)

where ddi s represents mortality during dispersal. The estimated travel time from Vi to V j is
the weight `i j , therefore the density of voles of age a +`i j reaching V j at time t̄ +`i j is

ki jρi (t̄ , a)exp(−`i jddi s) = Ki jρi (t̄ , a).

Remark that the matrix K = (Ki j ) ∈ Rnv×nv is not stochastic, not symmetric and depends on
time if and only if K does.



2.1.1 A model with gradual dispersal (GD model)

We always assume that a dispersal begins from the node Vi whenever its total population
Φi reaches the threshold Ri . In the first model, the dispersal lasts for a time η> 0 after the mo-
ment at which Φi passes again below Ri and the departure rate of juveniles during dispersal
is c/η, where c > 0 is a parameter to be chosen. Notice that Ri is not the capacity of the node
Vi but a fraction of it, which means that voles are uncomfortable for Φi = Ri but they are not
missing resources.

To introduce the initial boundary value problem at the node Vi we consider the balance
law

∂tρi +∂aρi =−di (t , a)ρi +Pi (t , a), (2.1.4)

where t and a are respectively the time and age variables, di is the mortality rate at Vi , de-
pending on time and age, and Pi (t , a) is a source term which accounts for the possible depar-
ture/arrival of voles due to dispersal. The exact form of Pi is given below.

Together with (2.1.4) we consider the initial condition

ρi (0, a) = ρ0,i (a), (2.1.5)

and the boundary condition

ρi (t ,0) =Ai (Φi (t ))
∫ A3

0
bi (t , a)ρi (t , a)da, (2.1.6)

where bi is the reproduction rate of the node Vi and the coefficient Ai (Φi ) reproduces Allee’s
effect, see [33]. This means that if the total population of a colony falls below a certain thresh-
old, reproduction rate also diminishes and might become too small to compensate for mor-
tality. The experimental observations suggest that this situation rarely occurs for voles, so that
Ai ≡ 1 is a reasonable choice in our simulations. However from the numerical point of view
no additional difficulty comes from considering non constant Ai , see also the Section 2.4 for
a short additional discussion.

For t > 0 given and i ∈ {
1, . . . ,nv

}
, we call Ti (t ) =

{
τi

1, . . . ,τi
mi (t )

}
the (possibly empty) set

of times τi
r < t at which a dispersal outbreak took place from Vi . Then the term Pi (t , a) in

equation (2.1.4) takes the form

Pi (t , a) =− c

η
χ[Ri ,+∞)( sup

z∈[(t−η)+,t ]
Φi (z))χ[A1,A2)(a)ρi (t , a)

+ c

η

∑
j=1,...,nv

j 6=i

m j (t )∑
r=1

δ
τ

j
r
(t −` j i )χ[A1,A2)(a −` j i )K j iρ j (t −` j i , a −` j i ),

(2.1.7)

whereχ[Ri ,+∞) andχ[A1,A2) are the characteristic functions of the intervals [Ri ,+∞) and [A1, A2)
respectively, t 7→ δτ(t ) is the Kronecker delta centered at τ and we use the notation x+ =
max(x,0).



2.1.2 A model with instantaneous dispersal (ID model)

The model with gradual dispersal introduced above is very solid as it is based on classical
PDE’s for which a complete well-posedness theory is available. Moreover, the examples in
the next section show that it reproduces the main features of the voles’ population dynamics.
Nevertheless, in order to bring the model to full size, on a graph counting several hundreds
of nodes, one should overcome a number of technical difficulties in parallelization and data
storage. For this reason and in view of the possible construction of an hybrid PDE-Multi Agent
model similar to the MLG, we propose here a second model which leads to a slightly less
precise description of the dynamics, but should be easier to implement on large graphs.

Roughly speaking, we modify the previous model so that whenever the total population
at a node Vi reaches the threshold value Ri , the departure of dispersers takes place instanta-
neously. As a consequence, all the voles who left Vi heading for V j will reach the node V j at
the same time. These “instantaneous” departures/arrivals are easier to implement in a finite
volume scheme and are not too demanding in term of data storage.

In order to write the model for the node Vi , we introduce Fi =
{
σi

0,σi
1, . . . ,σi

mi

}
, where

σi
0 = 0 and σi

mi
= T , be the (possibly reduced to {0,T }) set of all the times between 0 and the

final time T at which, either a dispersal outbreak, or an arrival of voles, took place for the node
Vi .

Then between two times σi
K and σi

K+1, where K = 0, . . . ,mi −1, the model can be written
as follows

∂tρi +∂aρi =−d(t , a)ρi ,

ρi (t ,0) =A (Φi (t ))
∫ A3

0
bi (t , a)ρi (t , a)da,

ρi (σi
K+, a) =χ[0,A1)∪[A2,A3](a)ρi (σi

K−, a)+ (
1−χ[Ri ,+∞)(Φi (σi

K−))
)
χ[A1,A2)(a)ρi (σi

K−, a)

+
∑
j 6=i

j=1,...,nv

m j−1∑
r=1

δ
σ

j
r
(σi

K −` j i )χ[R j ,+∞)(Φ j (σi
K −` j i ))χ[A1,A2)(a −` j i )K j iρ j (σi

K −` j i , a −` j i ).

(2.1.8)

2.1.3 Reproduction and mortality rates

Voles’ reproduction season lasts typically from April to October, but variations are pos-
sible due to weather conditions and, of course, depending on the landscape characteristics.
The ideal environment for fossorial voles is grassland where both food and shelter are easily
available, but they can also settle in woodlands and farmlands. Mortality also depends on
landscape characteristics as it is strongly related to the density and the kind of predators, but
is everywhere higher during the winter season as food becomes scarce.

Based on [40, 26], the basic reproduction number R0 of a voles’ population is 0.0165 fe-
males per female and per day during the reproduction season and only juvenile and adult in-
dividuals reproduce. In the time scale of our models this correspond to 0.3 per juvenile/adult



vole per unit time. In Section 2.2.1, to validate our numerical schemes, we use as reproduc-
tion rate the piecewise constant function b(a) = 0.3χ[A1,A3](a). Everywhere else in the paper
we consider a smooth approximation of b, namely

b1(a) =α ·
{

0.15exp(K (a − A1 −ε)) if 0 ≤ a ≤ A1 +ε,

0.3−0.15exp(−K (a − A1 −ε)) if a > A1 +ε,
(2.1.9)

where we set K = 10 and ε = 0.2. The parameter α ∈ (0,1] allows to adapt the average rate to
specific situations, as we do in Sections 2.3.1 and 2.3.2.

Observations reported in [26] suggest that the average mortality rate during the reproduc-
tion season varies between 0.04 and 0.6 per 2 weeks, but the mortality rate for juvenile and
newborn individuals is 1 to 3 times larger than for adults. Translated to our setting the value
of mortality rate is between 0.05 and 0.77 per unit time. These informations lead us to define
a mortality rate function of the following form

d1(a) = δ ·
{

0.1−0.025exp(K (a − A2 −ε)) if 0 ≤ a ≤ A2 +ε,

0.05+0.025exp(−K (a − A2 −ε)) if a > A2 +ε,
(2.1.10)

where δ > 1 is a parameter to be tuned. The graphs of b1 and d1 for α = δ = 1 appear in
Figure 2.1.
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Figure 2.1 – The reproduction and mortality rates as functions of age.

To validate our schemes it is enough to run simulations over a short interval of time, t ∈
[0,1.3], which corresponds to less than one month in real time. In general however we wish
to simulate the population dynamics over one or more years, so that we have to take into
account the difference between the reproduction season, lasting from april to october, and
the cold season where the reproduction stops and the mortality rate is more important, see
for instance [22]. In our context, one year starting from April 1st corresponds to the period
[0,T ], where T = 20, and the reproduction season is [0,T ∗], where T ∗ = 12. Given κ > 1 we
take

Kb(t ) =
{

1 if 0 ≤ t ≤ T ∗,

0 if T ∗ < t ≤ T,
and Kd(t ) =

{
1 if 0 ≤ t ≤ T ∗,

κ if T ∗ < t ≤ T,
(2.1.11)



and we compute the reproduction and mortality rates as functions of two variables defined
on [0,T ]× [0, A3] as

bK (t , a) = Kb(t )b1(a) and dK (t , a) = Kd(t )d1(a). (2.1.12)

The values of α, δ and κ will be specified for each of our examples.
To give a first, basic example of the evolution induced from the parameter functions above

we consider the evolution internal to one single node over one year computed by the two
models. The initial condition at t = 0 consists of 70 adults equidistributed over their age class.
We set α= 1, κ= 1.5 and observe that if we choose δ= 1 several dispersals take place in both
models starting at time t ' 8.1. After T ∗ = 12, the total populations decreases and the only
voles remaining at t = T are the adult ones. Their total number is larger than the initial con-
dition (' 90 for the GD model and ' 80 for the ID model), so we say that the colony persists.
On the other hand, if the mortality rate is higher, with δ = 5.5, the population declines, no
dispersal occurs and the colony disappears before the end of the simulation.

The models coincide in this latter case, while in the first one we can observe several dif-
ferences. Essentially, some of the juvenile voles do not leave the node during dispersal in the
GD model, therefore the total population remains higher and we see more dispersals for the
GD model than for the ID one.
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(a) GD model, persistence.
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(b) ID model, persistence.
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Figure 2.2 – With reference to Section 2.1.3: the evolution of the voles population at one node.
Left and center: low mortality in the GD and ID models respectively. Right : high mortality.

2.2 Finite volumes approximations of the models

In this section, we propose finite volumes numerical schemes for the models described
above and we validate them by comparison with exact solutions, for which analytical expres-
sions exist and can be computed via the classical method of characteristics, [20, 38]. As the
models rely on transport equations, the schemes are based on upwind schemes, [28].

Given a finite time horizon T > 0 and a suitable maximal age A3, we consider the compu-
tational domain [0,T ]× [0, A3] and let ∆t and ∆a be respectively the constant time and age
steps. We set NT = bT /∆tc, N1 = bA1/∆ac, N2 = bA2/∆ac and NA = bA3/∆ac. Then for any



1 ≤ h ≤ NA, we introduce the cells Kh = [ah−1/2, ah+1/2), the cells centers ah = (h − 1/2)∆a
and, for 0 ≤ n ≤ NT , we define the times t n = n∆t . For any given i , j ∈ {1, . . . ,nv }, i 6= j , we
approximate the edge (Vi ,V j ,`i j ) by (Vi ,V j ,Li j∆t ), where Li j = b`i j /∆tc. Analogously, we
approximate the age increase during dispersal by L∗

i j∆a where L∗
i j = b`i j /∆ac.

Given a node Vi , 1 ≤ i ≤ nv , we denote by bn
i ,h , dn

i ,h and ρn
i ,h , for 1 ≤ h ≤ NA and 0 ≤ n ≤ NT ,

the approximation of the averages of bi (t n , ·), di (t n , ·) and ρi (t n , ·) on the cell Kh , namely

bn
i ,h = 1

∆a

∫
Kh

bi (t n , a)da , dn
i ,h = 1

∆a

∫
Kh

di (t n , a)da,

ρ0
i ,h = 1

∆a

∫
Kh

ρi ,0(a)da and ρn
i ,h ' 1

∆a

∫
Kh

ρ(t n , a)da if n > 0.

(2.2.13)

For each i ∈ {1, . . . ,nv } and n ∈ {0, . . . , NT } the total population of voles in Vi at time t n is

Φn
i =∆a

NA∑
h=1

ρn
i ,h .

The numerical scheme for the GD model For any given value of the parameter η> 0, min-
imal time span of any dispersal in our model, we introduce the number of time steps Nη =
bη/∆tc and we fix to Nη∆t the minimal duration of a dispersal in the numerical scheme. For

n ∈N fixed and τi
K in Ti (t n) =

{
τi

1, . . . ,τi
mi (t n )

}
, the set of outbreak times taking place from Vi

before t n , we introduce Nτi
K
= bτi

K /∆tc. We next define

Φ̃n
i = sup

(n−Nη)+≤m≤n
Φm

i , N i j
K = Nτi

K
+Li j and δn

N
i j
K

=
{

1 if n = N i j
K ,

0 otherwise.

We finally set

d n+1
i ,h = 1+∆t

(
dn+1

i ,h + c

η
χ[Ri ,+∞)

(
Φ̃n

i

)
χ[N1,N1+N2)(h)

)
,

which comes from the implicit treatment of the mortality term in (2.1.4) and the semi-implicit
treatment of the dispersal term in (2.1.7). Then, writing a standard upwind scheme for the
transport part of (2.1.4) and using an explicit treatment of the last term of (2.1.7) we obtain
the following scheme

ρn+1
i ,h =

1

d n+1
i ,h

(
1− ∆t

∆a

)
ρn

i ,h + ∆t

∆a
ρn

i ,h−1 + c
∆t

η

∑
j 6=i

j=1,...,nv

m j (t n )∑
K=1

δn

N
j i

K

χ[N1,N1+N2](h −L∗
j i )K j iρ

n−L j i

j ,h−L∗
j i

 ,

for 1 ≤ i ≤ nv , 1 ≤ h ≤ NA, 0 ≤ n ≤ NT −1,

ρn
i ,0 =Ai (Φn

i )∆a
NA∑

h=1
bn

i ,hρ
n
i ,h , 1 ≤ i ≤ nv , 0 ≤ n ≤ NT −1.

(2.2.14)



The numerical scheme for the ID model For n ∈N, let σi
K be in the set

Fi (t n) =
{
σi

1, . . . ,σi
mi (t n )

}
of times at which either a dispersal or an arrival took place in the node Vi before t n . We
introduce Nσi

K
= bσi

K /∆tc.

Writing again a standard upwind scheme for (2.1.8), we get for each i ∈ {1, . . . ,nv },

ρn+1
i ,h = 1

1+∆tdn+1
i ,h

((
1− ∆t

∆a

)
ρn

i ,h + ∆t

∆a
ρn

i ,h−1

)
, 1 ≤ h ≤ NA, Nσi

K
≤ n < Nσi

K+1
,

ρn
i ,0 =Ai (Φn

i )∆a
NA∑

h=1
bn

i ,hρ
n
i ,h , Nσi

K
≤ n < Nσi

K+1

ρ
N
σi

K
i ,h = ρ

N
σi

K
−

i ,h −χ[Ri ,+∞)(Φ
N
σi

K
−

i )χ[N1,N1+N2)(h)ρ
N
σi

K
−

i ,h

+
∑
j 6=i

j=1,...,nv

m j−1∑
r=1

δ
N
σi

K
−L j i

N
σ

j
r

χ[R j ,+∞)(Φ
N
σi

K
−L j i

j )χ[N1,N1+N2)(h −L∗
j i )K j iρ

N
σi

K
−L j i

j ,h−L∗
j i

, 1 ≤ h ≤ NA.

(2.2.15)

2.2.1 Validation

In this part, we validate the implementation of the numerical schemes described above by
comparison to exact solutions for which an analytical expression exists.

We consider a simple graph consisting of two nodes V1 and V2 and, denoting by L the
matrix of the travel times and K the distribution matrix, we set

L =
(

0 0.5
0.5 0

)
, and K =

(
0 1
1 0

)
, (2.2.16)

which means that, during a dispersal in the node V1, all the juvenile voles will move to the
node V2 and vice versa. The initial conditions at the nodes are the following

— At V1, we consider 50 juveniles and 170 adults. Individuals are equidistributed over
their age class.

ρ1(0, a) = 50

A2 − A1
χ[A1,A2)(a)+ 170

A3 − A2
χ[A2,A3](a). (2.2.17)

— At V2, we consider 120 adults. Individuals are equidistributed over this age class.

ρ2(0, a) = 120

A3 − A2
χ[A2,A3](a). (2.2.18)

For simplicity we assume all the other parameters of our models to be piecewise constant and
identical on the two nodes

— Reproduction rate: b(a) = 0.3χ[A1,A3](a) ;



— Mortality rate: d(a) = db jχ[0,A2)(a)+dadχ[A2,A3](a) = 0.2χ[0,A2)(a)+0.1χ[A2,A3](a) ;
— Dispersal threshold: R = 200 ;
— Mortality rate during dispersal: ddi s(a) = 0.5.

For the GD model we set c = 1 and we also have to fix the value of the minimal time span of
dispersal and we set η= 0.25.

The exact solution for the GD model

In this section we provide a detailed description of the explicit solution in the time interval
[0,1.3] for the GD model with the settings and initial conditions introduced in Section 2.2.1.
The travel time between the two nodes is `= 0.5.

Solution at V1 during the first dispersal, t ∈ [0, t1] The given initial condition makes the total
population in V1 at t = 0 larger than the dispersal threshold R and triggers a first dispersal. The
density of voles in V1 is a function of time and age, defined piecewise with respect to age

ρ1(t , a) =



babies1(t , a) = be−db j a ∫ A3
A1
ρ1(t −a,c)dc, a ∈ [0, t ),

0, a ∈ [t , A1 + t ),

juv1(t , a) = 50
A2−A1

e−(db j+1/η)t = 25e−4.2t , a ∈ [A1 + t , A2),

newad1(t , a) = 50
A2−A1

e−(db j+1/η)(t−(a−A2))−dad (a−A2)

= 25e−4.2(t−(a−A2))−0.1(a−A2), a ∈ [A2, A2 + t ),

adults1(t , a) = 170
A3−A2

e−dad t = 10e−0.1t , a ∈ [A2 + t , A3].

(2.2.19)

We observe that the total density of juvenile voles of age a who have left V1 at time t is given
by

50

A2 − A1
e−db j t − juv1(t , a),

so that the density of voles of age a leaving V1 at time t is

disp(t , a) = 50

A2 − A1
e−db j t

(
−db j −

(
db j +

1

η

)
e−t/η

)
. (2.2.20)

The value of the total population in V1, Φ1, equals the threshold R at t0 ' 0.18755. From this
moment the dispersal continues for a time η more, and we denote by t1 = t0 +η' 0.43755 the
instant at which it ends.

Solution at V1 between two dispersals, t ∈ [t1, t2]. The function ρ1 is still piecewise defined
with respect to the age variable, but its components are different. The evolution of the com-
ponent juv1 is juv12. The new components correspond to the babies born at t > t1, babies2,



and to the voles passing from juveniles to adults at t > t1, newad2.

ρ1(t , a) =



babies2(t , a) = be−db j a ∫ A3
A1
ρ1(t −a,c)dc, a ∈ [0, t − t1),

juv12(t , a) = juv1(t1, a − (t − t1))e−db j (t−t1), a ∈ [A1 + t , A2),

newad2(t , a) =
juv1(t1, a − (t − t1))e−db j (t−t1−(a−A2))−dad (a−A2), a ∈ [A2, A2 + (t − t1)),

ρ1(t1, a − (t − t1))e−d(a)(t−t1), otherwise.
(2.2.21)

The total population at V1,Φ1, increases up to reach again the value R at t = t2 ' 0.84818. This
triggers a second dispersal.

Solution at V1 for t ∈ [t2, A1]. The second dispersal modifies the dynamics of the juveniles,
so that the functions giving the density of newborns and the density of new adults also need
to be updated. The evolution of the component juv12 is juv123.

ρ1(t , a) =



babies3(t , a) = be−db j a ∫ A3
A1
ρ1(t −a,c)dc, a ∈ [0, t − t2),

juv123(t , a) = juv12(t2, a − (t − t2))e−(db j+1/η)(t−t2), a ∈ [A1 + t , A2),

newad3(t , a) =
juv12(t2, a − (t − t2))e−db j (t−t2−(a−A2))−dad (a−A2), a ∈ [A2, A2 + (t − t2)),

ρ1(t2, a − (t − t2))e−d(a)(t−t1), otherwise.
(2.2.22)

It should be noticed that the total population in V1 reaches again the value R at time t3 '
0.94675. This does not produce an immediate change in the dynamics because the difference
t3−t2 is less thatη, but tells us that the second dispersal will last up to time t4 = t3+η' 1.44675.

Solution at V1 for t ∈ [A1,1.3]. For t > A1 we have to consider two additional age classes :
some of the babies becomes juvenile and start to reproduce, we denote them by newjuv4, and
babies born after time t = A1, babies4.

ρ1(t , a) =


babies4(t , a) = be−d(a)a

∫ A3
A1
ρ1(t −a,c)dc, a ∈ [0, t − A1),

babies1(t , a), a ∈ [t − t1, A1),

newjuv4(t , a) = babies1(A1, a − (t − A1))e−db j (t−a)−(db j+1/η)(a−A1) a ∈ [A1, t ),

ρ1(A1, a − (t − A1))e−d(a)(t−A1), otherwise.
(2.2.23)

Solution at V2 before the arrival of voles from V1, t ∈ [0,`]. At time t = 0 the total population
at V2 is 120. We will see that no dispersal takes place from this node for t = [0,1.3]. We use
a different font to distinguish the age groups appearing in the solution at node V2, while the



indices are given in the same way.

ρ2(t , a) =


babies1(t , a) = be−db j a ∫ A3

A1
ρ2(t −a,c)dc, a ∈ [0, t ),

0 a ∈ [t , A2 + t ),

adults1(t , a) = 120
A3−A2

e−dad t = 12
17 e−0.1t , a ∈ [A2 + t , A3].

(2.2.24)

Solution at V2 during the arrival of the first group of dispersers, t ∈ [`,`+ t1]. We have to
take into account several new groups of individuals. The new components correspond to the
babies born at t > `, babies2, and to the voles arriving from the node V1. Some of them arrive
as juveniles, juv2, some as adults, adults2. Some of the juveniles become adults after their
arrival, we call them newad2. The voles whose age is in (A2 +`, A2 + t ) originated from V1, but
when they arrived they were jounger than A2+`, we call this group adultsevol2. We compute
their density using (2.2.20) and the fact that while travelling from V1 to V2 the dispersers solve
the ODE y ′ =−ddi s y .

ρ2(t , a) =



babies2(t , a), a ∈ [0, t −`),

juv2(t , a), a ∈ [A1 + t , A2),

newad2(t , a)+adults2(t , a), a ∈ [A2, A2 + (t −`)),

adults2(t , a), a ∈ [A2 + (t −`), A2 +`),

adultsevol2(t , a), a ∈ [A2 +`, A2 + t ),

ρ2(`, a − (t −`))e−d(a)(t−`), otherwise,

(2.2.25)

that is

ρ2(t , a) =



be−db j a ∫ A3
A1
ρ2(t −a,c)dc, a ∈ [0, t −`),∫ t

` e−db j (t−s)e−ddi s`disp(s −`, a − (t − s +`))d s, a ∈ [A1 + t , A2),

juv2(t − (a − A2), A2)e−dad (a−A2)+∫ t
t−(a−A2) e−dad (t−s)e−ddi s`disp(s −`, a − (t − s +`))d s, a ∈ [A2, A2 + (t −`)),∫ t

` e−dad (t−s)e−ddi s`disp(s −`, a − (t − s +`))d s, a ∈ [A2 + (t −`), A2 +`),

adults2(t − (a − (A2 +`)), A2 +`)e−dad (a−(A2+`)), a ∈ [A2 +`, A2 + t ),

ρ2(`, a − (t −`))e−d(a)(t−`), otherwise.
(2.2.26)

Solution at V2 for t ∈ [`+ t1,1.3]. In the interval of time [`+ t1,`+ t2] no more voles arrive
from V1 and the total population of V2 does not attain the threschold value R. For our valida-
tion we only compute the solution up to time t = 1.3 < `+ t2. The age groups already present
in the dynamics just evolve following the prescribed mortality rates, until time t = A1 when
some on the individuals in babies1 become juvenile. Therefore for t ∈ [`+t1, A1] the function



ρ2 takes the form

ρ2(t , a) =


babies3(t , a) = be−db j a ∫ A3

A1
ρ2(t −a,c)dc, a ∈ [0, t − (`+ t1)),

newad3(t , a) =
juv2(`+ t1, a − (t −`− t1))e−db j (t−(`+t1)−(a−A2))−dad (a−A2), a ∈ [A2, A2 + t − (`+ t1)),

ρ2(`+ t1, a − (t −`− t1))e−d(a)(t−(`+t1)), otherwise.
(2.2.27)

While for t ∈ [A1,1.3] ρ2 becomes

ρ2(t , a) =



babies4(t , a) = be−db j a ∫ A3
A1
ρ2(t −a,c)dc, a ∈ [0, t − A1),

babies1(t , a), a ∈ [t − A1, A1),

newjuv4(t , a) = babies1(A1, a − (t − A1))e−db j (t−A1), a ∈ [A1, t ),

newad4(t , a) =
juv2(A1, a − (t − A1))e−db j (t−A1−(a−A2))−dad (a−A2), a ∈ [A2, A2 + t − A1),

ρ2(A1, a − (t − A1))e−d(a)(t−A1), otherwise.
(2.2.28)

Figure 2.3 shows the comparison between the exact and the numerical solutions at the
two nodes for the GD model at the final time T = 1.3. We observe a perfect matching between
the two solutions where the numerical one was computed with ∆a =∆t = 0.00625.

The exact solution for the ID model

In this section we provide a detailed description of the explicit solution in the time interval
[0,1.3] for the ID model with the settings and initial conditions introduced in Section 2.2.1.
The travel time between the two nodes is `= 0.5.

Solution at V1 for t ∈ [0, A1]. The given initial condition makes the total population in V1

at t = 0 higher than the dispersal threshold R, therefore the juvenile individuals immediately
leave the node. The density of voles in V1 is a function of time and age, defined piecewise with
respect to age

ρ1(t , a) =


babies1(t , a) = be−db j a ∫ A3

A1
ρ1(t −a,c)dc, a ∈ [0, t ),

0, a ∈ [t , A2 + t ),

adults1(t , a) = 170
A3−A2

e−dad t = 10e−0.1t , a ∈ [A2 + t , A3].

(2.2.29)

Solution at V1 for t ∈ [A1,1.3]. Starting from time t = A1 a fraction of the babies will become
juveniles and their reproductive process has to be taken into account. This leads to the forma-
tion of two more age groups : the babies born after time t = A1, babies2, and the individuals
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Figure 2.3 – With reference to Section 2.2.1: the comparison between the population of voles
in the exact solution and the GD model for η= 0.25.

passing from the babies to juveniles, newjuv2.

ρ1(t , a) =



babies2(t , a) = be−db j a ∫ A3
A1
ρ1(t −a,c)dc, a ∈ [0, t − A1),

babies1(t , a), a ∈ [t − A1, A1),

newjuv2(t , a) = babies1(A1, a − (t − A1))e−db j (t−A1), a ∈ [A1, t ),

0, a ∈ [t , A2 + t ),

adults1(t , a) = adults1(A1, a − (t − A1))e−dad (t−A1), a ∈ [A2 + t , A3].

(2.2.30)

Solution at V2 before the arrival of voles from V1, t ∈ [0,`]. The dynamics is the same in the
two models. The explicit form of the solution is given in (2.2.24).



Solution at V2 for t ∈ [`, A1]. The density of voles reaching V2 at t = `= 0.5 are

50

A2 − A1
χ[A1+`,A2+`](a)e−`ddi s ,

then some of them are juveniles, juv2, some are adults, adults2. Some of the juveniles be-
come adults after their arrival, we call them newad2. We call babies2 the babies born for t > `.

ρ2(t , a) =



babies2(t , a) = be−db j a ∫ A3
A1
ρ2(t −a,c)dc, a ∈ [0, t −`),

juv2(t , a) = 50
A2−A1

e−`ddi s−db j (t−`), a ∈ [A1 + t , A2),

newad2(t , a) = juv2(t − (a − A2), A2)e−dad (a−A2), a ∈ [A2, A2 + (t −`)),

adults2(t , a) = 50
A2−A1

e−`ddi s−dad (t−`), a ∈ [A2 + (t −`), A2 + t ),

ρ2(`, a − (t −`))e−d(a)(t−`), otherwise.
(2.2.31)

Solution at V2 for t ∈ [A1,1.3]. Starting from time t = A1 a fraction of the babies will become
juveniles and their reproductive process has to be taken into account. This leads to the forma-
tion of two more age groups : the babies born after time t = A1, babies3, and the individuals
passing from the babies to juveniles, newjuv3.

ρ2(t , a) =


babies3(t , a) = be−db j a ∫ A3

A1
ρ2(t −a,c)dc, a ∈ [0, t − A1),

babies1(t , a), a ∈ [t −`, A1),

newjuv3(t , a) = babies1(A1, a − (t − A1))e−db j (t−A1), a ∈ [A1, t ),

ρ2(A1, a − (t − A1))e−d(a)(t−A1), otherwise.

(2.2.32)

Figure 2.4 illustrates the comparison between the explicit solution and its numerical so-
lution at the two nodes for the ID model at the final time T = 1.3. We again observe a perfect
agreement between the two solutions. The numerical solutions was computed with ∆a =
∆t = 0.00625.

2.2.2 Numerical convergence

We introduce here the following relative L1-discrete error for the density in the node Vi ,
i = 1, 2, at a given time t n

en
i =

∑
1≤h≤Na

|ρi (t n , ah)−ρn
i ,h |∑

1≤h≤Na

|ρi (t n , ah)| ,

where ρ(t n , ah) is an exact solution evaluated at the point ah and at time t n .
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Figure 2.4 – With reference to Section 2.2.1: the comparison between the population of voles
in the exact solution and in the ID model.

In tables 2.1 and 2.2, we have reported the relative L1-discrete errors for both models in the
two nodes V1 and V2, computed for different values of age and times steps at two final times
T = 0.6 and T = 1.2. The results suggest the convergence of the numerical schemes. More-
over, figures 2.5 and 2.6 suggest that order of convergence of the scheme for the GD model is
approximately between 0.71 and 1, and the one for the ID model is 1. We can also observe
that the loss of accuracy of the scheme for the GD model is mainly due to the approximation
of the arrival term in (2.1.7).
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(c) V1 at T = 1.2
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Figure 2.5 – L1-discrete relative errors for the GD Model in log/log scale at T = 0.6 and T = 1.2



∆t ∆a eNT
1 , T = 0.6 eNT

2 , T = 0.6 eNT
1 , T = 1.2 eNT

2 , T = 1.2
0.1 0.1 7.51×10−2 6.×10−2 5.42×10−2 1.128×10−2

0.05 0.05 4.2×10−2 3.1×10−2 2.8×10−2 5.89×10−2

0.025 0.025 2.07×10−2 1.66×10−2 1.39×10−2 3.53×10−2

0.0125 0.0125 1.13×10−2 8.8×10−3 7.1×10−3 2.16×10−2

0.00625 0.00625 5.7×10−3 4.9×10−3 3.7×10−3 1.55×10−2

Table 2.1 – L1-discrete relative errors for the GD model

∆t ∆a eNT
1 , T = 0.6 eNT

2 , T = 0.6 eNT
1 , T = 1.2 eNT

2 , T = 1.2
0.1 0.1 4.33×10−4 1.22×10−2 1.2×10−3 1.38×10−2

0.05 0.05 2.19×10−4 6.13×10−3 6.05×10−4 6.93×10−3

0.025 0.025 1.1×10−4 3.07×10−3 3.03×10−4 3.47×10−3

0.0125 0.0125 5.56×10−5 1.53×10−3 1.52×10−4 1.73×10−3

0.00625 0.00625 2.75×10−5 7.66×10−4 7.63×10−5 8.67×10−4

Table 2.2 – L1-discrete relative errors for the ID model
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Figure 2.6 – L1-discrete relative errors for the ID model in log/log scale at T = 0.6 and T = 1.2

2.2.3 A first comparison between the two models

In this section we consider once again the initial conditions (2.2.17), (2.2.18) and we com-
pute the evolution of the vole populations in the two nodes by the GD model when the pa-
rameter of minimal time span for a dispersal is reduced to η= 3×10−3, c = 1 and the final time
is T = 1.3. The result obtained for ∆a =∆t = 3×10−4 is in Figures 2.7.

We can observe that the profile of the solution is, at a first approximation, similar to the
solution obtained from the same initial condition by the ID model, see Figure 2.4. In partic-
ular we observe that the two dispersals occuring in the fist cell for t > 1 concerne a so small
number of juveniles that none of them reaches the second cell, so that the dynamics of the
second cell is almost identical in the two simulations.

This means that, even if the ID model is necessarily less precise, it suffices to capture the
dynamics we would observe in the GD model for small values of η.



0 0.2 0.4 0.6 0.8 1 1.2
0

100

200

300

t

vo
le

p
o

p
u

la
ti

o
n

s

babies

juveniles

adults

all voles

(a) Node V1

0 0.2 0.4 0.6 0.8 1 1.2
0

100

200

300

t

vo
le

p
o

p
u

la
ti

o
n

s

babies

juveniles

adults

all voles

(b) Node V2

Figure 2.7 – The voles populations of the two nodes computed with GD model for η= 3×10−3

2.3 Numerical simulations

In this section, we perform numerical simulations on the two models, in order to show
their ability to reproduce the qualitative behavior of vole populations and in particular their
spatial dynamics. In this chapter we limit our attention to simple toy models as the imple-
mentation of the schemes on graph representing large regions would require a large effort in
optimization and in parallelization of the codes, which we defer to future investigation.

Everywhere in the following we assume that the minimal duration of a dispersal in the GD
model is η= 7/18 that corresponds to one week in real time.

2.3.1 Two-nodes dynamics

In this section, we investigate the evolution of a population of voles on a graph consisting
of two nodes assumed to represent two different types of landscapes and the edge linking
them. The landscapes we consider are described below:

— The first node represents a crop field, which is a source of abundant food and shelter
for voles during summer and spring. This traduces into high reproduction rate and
low mortality rate in the warm season. On the contrary mortality becomes high at
harvesting time and remains so up to the end of one year cycle.
To reproduce such properties, we consider the reproduction and mortality rate func-
tions defined by (2.1.9), (2.1.10) and (2.1.12) where we assume α= 1, δ= 1 and κ= 2.6.

— The second node represents a forest, where the population of voles is almost stable
over several years. The reproduction rate is lower than in the crop field, but the mor-
tality varies less dramatically from warm to cold season.
To reproduce such properties, we consider the reproduction and mortality rate func-
tions defined by (2.1.9), (2.1.10) and (2.1.12) where we assume α = 0.656, δ = 1 and
κ= 1.5.

We assume that the travel time from one node to the other is ` = 0.5. Then we consider



the travel time matrix and the distribution matrix as

L =
(

0 0.5
0.5 0

)
and K =

(
0 1
1 0

)
respectively. The initial conditions are of 70 adult individuals in each node, equidistributed
over their age class. The simulations, performed with ∆a = ∆t = 0.00625, are depicted in
Figures 2.8.

Both models reproduce the cyclic behavior of the population. A characteristic feature of
the ID model is the appearance of sharp peaks, as in Figure 2.8(d). This is due to the fact that
voles coming from the node representing the crop field reach their destination at moments
where the total population in the node representing forest is close to the dispersal thresh-
old. This sudden population increase, sufficient to trigger dispersal, lasts only one time step.
On the contrary, no peaks arise in Figure 2.8(c) as in the GD model, dispersals and arrivals
happen progressively. Moreover, since not all of the juveniles leave, the variation in the total
population is lower, see Figures 2.8(a) and 2.8(c).

2.3.2 Three-nodes dynamics

In this section we run our models on a complete graph with three nodes, Vi , i = 1,2,3.
This allows us to use a more interesting distribution matrix to reproduce, for example, the
fact that voles prefer to move downhill rather than uphill, and that they are more likely to stop
at places where resources are more abundant. Since the availability of food may change in
time, we consider a time dependent distribution matrix in our second example.

The simulations of this section are performed with ∆a =∆t = 0.0125.

Scenario 1: Three nodes located at different heights

We assume here that the node V1 is located at the highest spot and V3 at the lowest one. For
all the nodes, we use the mortality and the reproduction rates defined by (2.1.9), (2.1.10) and
(2.1.12) with α = δ = 1 and κ = 1.5. As initial conditions we take φ1(0) = 100, φ2(0) = 50 and
φ3(0) = 0, that means that the third node is initially empty. It has been observed that when
dispersal occur, voles move more frequently downhill (2 times out of 3), see for instance [16,
29]. In other to take into account this characteristic, we consider the following distribution
matrix

K =
 0 1 0

1/3 0 2/3
0 1 0

 .

In particular, this means that all the dispersals taking place from V1 or V3 head toward V2,
while 2 out of 3 voles leaving V2 would go to V3. We fix the that the travel times matrix as

L =
 0 1 1.5

1 0 0.5
1.5 0.5 0

 . (2.3.33)
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Figure 2.8 – With reference to subsection 2.3.1: the evolution of the population over 4 years
for the two models.

Figures 2.9 show the evolution of the population for both models over three years. We can
observe numerous outbreaks from V2, which are due to the fact that all the voles that disperse
from V1 and V3 arrive in this node. Moreover from Figure 2.9(c), we can see that, due to the
relatively long duration of dispersal, the total population in V2 largely exceeds the threshold
200 in the second and third year.

We can also notice that a persistent colony appears in V3 thanks to the individuals arriving
from the other nodes.

Scenario 2: Time dependent distribution matrix

We consider a domain partitioned into three cells. The first one, V1, is located at a higher
elevation than the two others, which are on the same level. We make the following choice of
parameters :
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0 10 20 30 40 50 60
0

100

200

300

t

vo
le

p
o

p
u

la
ti

o
n

s
babies

juveniles

adults

all voles

(d) V2, ID model
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(e) V3, GD model
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Figure 2.9 – With reference to Section 2.3.2: The population of voles over 3 years in V1, V2 and
V3 for both models.



— In V1 α = δ = 1, κ = 1.5 and the initial condition consists of 100 adults individuals
equidistributed over their age class.

— In V2 we imagine to have a crop field. as in Section 2.3.1. Then we setα= δ= 1, κ= 2.6
and the initial condition consists of 70 adults individuals equidistributed over their age
class.

— In V3 we have a forest as in Section 2.3.1. Then we set α= 0.656, δ= 1, κ= 1.5 and take
the same initial condition as in V2.

We assume now that during spring and summer, i.e. for t ∈ [0,10], eventual dispersers tend
to move to the second colony because of the abundance of food source in a crop landscape.
While in autumn and winter, i.e. for t ∈ [10,20], they rather move downhill to the third cell,
as we mentioned in Section 2.3.1. Therefore we consider the dispersal ratio matrix K1 for
t ∈ [0,10] and K2 for t ∈ [10,20],

K1 =
 0 0.7 0.3

0.3 0 0.7
0.2 0.8 0

 , K2 =
 0 0.3 0.7

0.3 0 0.7
0.3 0.7 0

 . (2.3.34)

We assume that the travel time between any two nodes is 0.5, so that

L =
 0 0.5 0.5

0.5 0 0.5
0.5 0.5 0

 . (2.3.35)

In Figures 2.10 we present the evolution of the populations of voles in the three nodes for
both models during three years. We can observe several dispersals occuring every year from
each node. As we already noticed in previous simulations, the arrivals of voles increase the
frequency of outbreaks. Moreover, we can see that in V2, that is the crop field landscape, the
population of voles increases over the reproduction season with the appearance of peaks for
the second model in Figure 2.10(d). However, due to the high mortality rate after harvesting
the increase of the total population each year is slow and contained, in particular its mini-
mal value in a one year period is amost constant. On the contrary, in V3, the minimal value
of the total population increases over one year, which means that there are more and more
adults. At the end of the third year, we have approximatively 110 and 96 adult individuals in
Figure 2.10(e) and Figure 2.10(f) respectively. As a consequence of the increment of the adult
population, we can see in the two figures that there are more and more dispersal outbreaks.
Figure 2.10(f) also shows more peaks than in Figure 2.10(d).

2.4 Allee’s effect : survival number of a colony

We investigate in this part the minimal number of juvenile or adult individuals needed
to maintain the existence of a colony when we consider the reproduction and the mortality
rates defined by (2.1.9), (2.1.10) and (2.1.12) with α = δ = 1 and κ = 1.5. To that end, in the
boundary condition at a = 0, (2.1.6), we consider a non constant function A of the form
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(c) V2, GD model
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Figure 2.10 – With reference to Section 2.3.2: the population of voles over 3 years on three
nodes representing different landscapes.

A (φ) = βφγ

(B +φ)γ
.

so that the model can reproduce the Allee’s effect. For simplicity, we just consider case in



which β= 1, γ ∈N, and

B =
(
γ+1

γ−1

)
φ
γ
∗, (2.4.36)

where φ∗ is a given value. As an example, if we take γ= 8 and φ∗ = 20 we obtain

A (φ) = φ8(
9.208

7 +φ8
) , φ≥ 0. (2.4.37)

This function has an inflection point at φ = 20 whose value is A (20) = 7/16 = 0.4375, see
Figure 2.11. This factor makes the reproduction rate almost insignificant when the total pop-
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Figure 2.11 – The function defined in (2.4.37).

ulation is less than 20. Considering one node and using the mortality and the reproduction
rates defined by (2.1.9), (2.1.10) and (2.1.12) with α = δ = 1 and κ = 1.5, that is the same pa-
rameters as in Figures 2.2(a) and 2.2(b), we can see in Figures 2.12, that we need at least 19
juvenile individuals or 20 adult individuals in the initial condition for the colony to persist
over several years without any external support. Figures 2.13 show the evolution of the popu-
lations of voles inside a colony during two years when we start from 18 juvenile and 19 adult
individuals respectively. As we can see, the colony disappears in less than two years. We can
calibrate the model to obtain a realistic survival number by changing the inflection point of
the function A .



0 5 10 15 20
0

20

40

60

80

100

t

vo
le

p
o

p
u

la
ti

o
n

s

babies

juveniles

adults

all voles

0 5 10 15 20
0

20

40

60

80

100

t
vo

le
p

o
p

u
la

ti
o

n
s

babies

juveniles

adults

all voles

Figure 2.12 – Populations of voles in a colony starting with 19 juvenile (left) or 20 adult (right)
individuals.
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Figure 2.13 – Populations of voles in a colony starting with 18 juvenile (left) or 19 adult (right)
individuals.



Chapter 3
An hyperbolic-parabolic predator-prey
model involving a vole population
structured in age

3.1 The model and the assumptions

Our goal in this chapter is to investigate the wellposedness of a predator-prey model ex-
tending the model for a vole population structured in age we introduced in [9]. To this end we
couple the latter equation to the hyperbolic equation for predators proposed in [13] in which
the drift depends nonlocally on the density of preys, so that the predators tend to move toward
the regions in which preys are more abundant. The system we consider writes as follows

∂t u +divx
(
uν(φ)

)= (b(φ)−β)u, (t , x) ∈ (0,T )×R2,

∂tρ+∂aρ+divx
(
ρχ1(a)v(x)Yθ(φ−R)

)=µ∆xρ−d(t , a, x)ρ−p(a,u)ρ, (t , a, x) ∈ (0,T )2 ×R2,

ρ(t ,0, x) =A
(
φ

)(∫ ∞

0
ρ(t , a, x)χ3(a)da

)
ω(t , x), (t , x) ∈ (0,T )×R2,

ρ(0, a, x) = ρ0(a, x), (a, x) ∈ (0,T )×R2,

u(0, x) = u0(x), x ∈R2,
(3.1.1)

where u = u(t , x) and φ = φ(t , x) represent the respective density of predators and preys at
(t , x). Since the prey population is also structured on age its dynamics is better described
by ρ = ρ(t , a, x), which is the density of preys of age a at (t , x). More precisely, the relation
between φ and ρ is given by

φ(t , x) =
∫ ∞

0
ρ(t , a, x)χ2(a)da, (3.1.2)

where χ2(a) is an approximation of the indicator function of the interval (σ,T ), where T is
the target time of our observation and 0 <σ¿ 1. The parameter σ does not play a role in the



modeling, but allows to avoid technical difficulties in our analysis. In the first equation, the
function b(φ) represents the reproduction rate of predators depending on preys’ availability,
while β > 0, the predators’ mortality rate, is assumed to be constant. As in [13] the flux of u
is driven to the direction of higher preys’ concentration by a nonlinear, nonlocal velocity ν of
the form

ν(φ) = κ ∇(φ∗η)√
1+

∥∥∇(φ∗η)
∥∥2

, (3.1.3)

where κ > 0 is the maximal speed of predators and η is a positive smooth mollifier with∫
R2 ηdx = 1 so that the convolution (φ(t )∗η)(x) represents an average of the density of preys

in a neighborhood of x at time t .
The equation for the preys, introduced in [9], is related to classical models for the dynam-

ics of a population structured in age, see [14, 32], but the choice of the coefficients and bound-
ary conditions at a = 0 takes into account the data collections and ecological considerations
in [4, 17, 21, 23, 41]. We recall here the essential assumptions on the form of the coefficients.

We introduce constants 0 < A1 < A2 so that a vole is young (baby) if its age a is in (0, A1),
juvenile if its age is in (A1, A2) and adult otherwise. The three age classes differ as babies do
not reproduce, adults’ mortality rate is lower and juveniles exibit a significantspatial dynamic
during dispersals. Dispersal is a characteristic phenomenum of vole populations, correlated
to overcrowding. Whenever the density of voles φ rises above a threshold value R > 0, rep-
resenting a fraction of the capacity of the environment, the juvenile individuals leave their
original colony and disperse over relatively large distances (0.5 to 5 km) with velocity v(x). We
fix θ > 0 and we consider an approximation of the Heaviside function, Yθ, defined as

Y (ξ) =
{

1, if ξ≥ 0,

0, if ξ≤−1,
Y ′(ξ) ≥ 0, Yθ(ξ) = Y

(
ξ

θ

)
.

From Yθ we costruct the approximations of the indicator functions of the intervals (σ,T ),
(A1, A2), and (A1,T )

χ1(a) = Yθ(a − A1)Yθ(A2 −a), χ2(a) = Yθ(a −σ)Yθ(T −a), χ3(a) = Yθ(a − A1)Yθ(T −a).

The mortality rate of voles splits into two terms: p = p(a,u) represents the mortality due to
the presence of the specific predator whose density is u, while d= d(t , a, x) stands for all other
casualties (sickness, starvation, generic predation, etc).

The second-order term µ∆xρ represents short range spatial dynamics related to foraging
activities. Everywhere in the following θ and µ> 0 are fixed.

In the boundary condition at a = 0, the function ω = ω(t , x) is the reproduction rate of
voles depending on time and position. The function A (φ) describes the influence of the total
density of voles on natality.

The fourth and fifth equations are the respective initial conditions at t = 0 for voles and
predators.



3.1.1 Assumptions

The coefficients b,v,d,p,A ,ω and the initial data ρ0,u0 of system (3.1.1) satisfy the follow-
ing conditions:

b ∈C∞(R)∩W 1,∞(R), b(·) ≥ 0, (3.1.4)

v ∈C∞(R2)∩L2(R2)∩L∞(R2), divx (v) ∈ L1(R2)∩W 2,∞(R2), v > 0, (3.1.5)

d ∈C∞([0,∞)× [0,∞)×R2)∩W 1,∞((0,∞)× (0,∞)×R2), 0 < d∗ ≤ d(·, ·, ·) ≤ d∗, (3.1.6)

p ∈C∞([0,∞)×R)∩W 2,∞((0,∞)×R), 0 < p∗ ≤ p(·, ·) ≤ p∗, (3.1.7)

A ∈C∞(R)∩L∞(R), A (·) ≥ 0, A (0) = 0, |A ′(ξ)ξ|, |A ′′(ξ)ξ| ≤C0, (3.1.8)

ω ∈C∞([0,∞)×R2)∩W 1,∞((0,∞)×R2), ω(·, ·) ≥ 0, (3.1.9)

ρ0 ∈ L1((0,∞)×R2)∩L∞((0,∞)×R2), ρ0 ≥ 0, (3.1.10)

sup
x∈R2

∥∥ρ0(·, x)
∥∥

L1(0,∞) , sup
a>0

∥∥ρ0(a, ·)
∥∥

L1(R2) ,
∫
R2

T V (ρ0(·, x))dx ≤C0, (3.1.11)

u0 ∈ L1(R2)∩BV (R2)∩L∞(R2), u0 ≥ 0. (3.1.12)

for some positive constants d∗, d∗, p∗, p∗, C0.
For what the velocity of predators, ν, is concerned, we fix the mollifierη so to ensure the es-

timates in the following Lemma, whose proof is postposed to Section 3.4 (see also [13, Lemma
4.1])

Lemma 3.1. Let η be such that

∇xη ∈ (C 2 ∩W 2,2 ∩W 1,∞)(R2,R2). (3.1.13)

Then the map ν : L1(R2;R) 7→C∞(R)∩W 1,∞(R2;R2) satisfies∥∥ν(φ)
∥∥

L∞(R2;R2) ≤ K
∥∥φ∥∥

L1(R2,R) , (3.1.14)∥∥divx
(
ν(φ)

)∥∥
L2(R2,R) ≤ K

∥∥φ∥∥
L1(R2;R) , (3.1.15)∥∥∇xν(φ)

∥∥
L∞(R2,R2×2) ≤ K

∥∥φ∥∥
L1(R2;R) , (3.1.16)∥∥ν(φ1)−ν(φ2)

∥∥
L∞(R2,R2) ≤ K

∥∥φ1 −φ2
∥∥

L1(R2,R) , (3.1.17)∥∥∇x(divx
(
ν(φ)

)
)
∥∥

L2(R2,R2) ≤ K
(
1+K

∥∥φ∥∥
L1(R2,R)

)∥∥φ∥∥
L1(R2,R) , (3.1.18)∥∥divx

(
ν(φ1)−ν(φ2)

)∥∥
L2(R2,R) ≤ K

(
1+K

∥∥φ2
∥∥

L1(R2,R)

)∥∥φ1 −φ2
∥∥

L1(R2,R) , (3.1.19)

where K is a positive constant.

3.1.2 Main result.

Our main result is the wellposedness of entropy weak solutions for system (3.1.1), stated
in Theorem 3.1. We adopt the following definitions of weak solution and entropy solution



Definition 3.1. We say that the pair (u,ρ) is a weak solution of (3.1.1) if the following holds for
every T > 0

(D.1) ρ ≥ 0, ρ ∈ L∞(0,T ;L1((0,∞)×R2))∩L∞((0,T )× (0,∞)×R2)∩L2((0,T )× (0,∞); H 2(R2)).

(D.2) u ∈ L1((0,T )×R2)∩BV ((0,T )×R2).

(D.3) For almost every (t , x) ∈ (0,T )×R2, ρ(t , ·, x) ∈ BV (0,∞) and

ρ(t ,0+, x) =A
(
φ

)(∫ ∞

0
ρ(t , a, x)χ3(a)da

)
ω(t , x),

where ρ(t ,0+, x) is the trace of ρ(t , ·, x) at a = 0.

(D.4) For every test function ξ ∈C∞
c (R4)∫ ∞

0

∫ ∞

0

∫
R2

(
ρ∂tξ+ρ∂aξ+ρχ1(a)v ·∇xξYθ(φ−R)+µρ∆xξ−dρξ−pρξ

)
dx da dt

+
∫ ∞

0

∫ ∞

0

∫
R2

A
(
φ

)
ρ(t , a, x)χ3(a)ω(t , x)ξ(t ,0, x)dx da dt

+
∫ ∞

0

∫
R2
ρ0(a, x)ξ(0, a, x)dx da = 0,

∫ ∞

0

∫ ∞

0

∫
R2

(u∂tξ+uν(φ) ·∇xξ+ (b(φ)−β)uξ)dx da dt +
∫ ∞

0

∫
R2

u0(x)ξ(0, a, x)dx da = 0.

Definition 3.2. We say that a weak solution (u,ρ) is an entropy solution of (3.1.1) if for any
non-negative test function ξ ∈ C∞(R4) with compact support and for any constant c ∈ R there
hold ∫ ∞

0

∫ ∞

0

∫
R2

(|ρ− c| (∂tξ+∂aξ)−divx
(|ρ− c|χ1vYθ(φ−R)

)
ξ

+µ∆x |ρ− c|ξ− sign
(
ρ− c

)
(d+p)ρξ

)
dx da dt

+
∫ ∞

0

∫
R2

|ρ(t ,0+, x)− c|ξ(t ,0, x)dx dt

+
∫ ∞

0

∫
R2

|ρ0(a, x)− c|ξ(0, a, x)dx da

≥
∫ ∞

0

∫ ∞

0

∫
R2
csign

(
ρ− c

)
χ1(a)divx

(
v(x)Yθ(φ−R)

)
ξdx da dt

(3.1.20)

and∫ ∞

0

∫ ∞

0

∫
R2

(|u − c|∂tξ+|u − c|ν(φ) ·∇xξ+ sign(u − c) (b(φ)−β)uξ
)

dx da dt

+
∫ ∞

0

∫
R2

|u0(x)− c|ξ(0, a, x)dx da ≥
∫ ∞

0

∫ ∞

0

∫
R2
csign(u − c)divx

(
ν(φ)

)
ξdx da dt .

(3.1.21)



Theorem 3.1. Assume (3.1.4)-(3.1.13), then the initial boundary value problem (3.1.1) admits
a unique entropy solution (u,ρ) in the sense of Definition 3.2. Moreover, if (u1,ρ1) and (u2,ρ2)
are the two entropy solutions of (3.1.1) having initial data (u1,0,ρ1,0) and (u2,0,ρ2,0), then there
exists a positive constant C such that the following estimate holds for almost every t ≥ 0

‖u1(t , ·)−u2(t , ·)‖L1(R2)+
∥∥ρ1(t , ·, ·)−ρ2(t , ·, ·)

∥∥
L1((0,∞)×R2)

≤ CeCeC t ∥∥ρ1,0 −ρ2,0
∥∥

L1((0,∞)×R2) +CeCeC t ∥∥u1,0 −u2,0
∥∥

L1((R2) .

(3.1.22)

3.2 Existence

The existence argument is based on the compactness analysis of a sequence of solutions
to approximating problems defined as follows. For any given ε> 0, we let (ρε = ρε(t , a, x),uε =
uε(t , x)) be a solution of the problem

∂t uε+divx
(
uεν(φε)

)= (b(φε)−β)uε+ε∆xuε, (t , x) ∈ (0,T )×R2,

∂tρε+∂aρε+divx
(
ρεχ1(a)v(x)Yθ(φε−R)

)
=µ∆xρε−d(t , a, x)ρε−p(a,uε)ρε+ε∂2

aaρε, (t , a, x) ∈ (0,T )2 ×R2,

ρε(t ,0, x) =A
(|φε|)(∫ ∞

0
|ρε(t , a, x)|χ3(a)da

)
ω(t , x), (t , x) ∈ (0,T )×R2,

ρε(0, a, x) = ρ0,ε(a, x), (a, x) ∈ (0,T )2 ×R2,

uε(0, x) = u0,ε(x), x ∈R2,

(3.2.23)

where

φε(t , x) =
∫ ∞

0
ρε(t , a, x)χ2(a)da,

and {(ρ0,ε,u0,ε)}ε is a family of approximations of the initial condition (ρ0,u0) such that

ρ0,ε ∈C∞((0,∞)×R2), u0,ε ∈C∞(R2), ε> 0,

ρ0,ε→ ρ0, a.e. and in Lp ((0,∞)×R2),1 ≤ p <∞, as ε→ 0,

u0,ε→ u0, a.e. and in Lp (R2),1 ≤ p <∞, as ε→ 0,

ρ0,ε ≥ 0,
∥∥ρ0,ε

∥∥
L1((0,∞)×R2) ≤C , ε≥ 0,

sup
x∈R2

∥∥ρ0,ε(·, x)
∥∥

L1(R) , sup
a≥0

∥∥ρ0,ε(a, ·)
∥∥

L1(R2) ,
∥∥∂aρ0,ε

∥∥
L1((0,∞)×R2) ≤C , ε≥ 0,∥∥u0,ε

∥∥
L1(R2) ,

∥∥∇xu0,ε
∥∥

L1(R2) , ε
∥∥∆xu0,ε

∥∥
L1(R2) ≤C , u0,ε ≥ 0, ε> 0.

(3.2.24)

3.2.1 A priori estimates.

In this section we establish the a priori estimates on (uε,ρε) which are necessary to pass
to the limit as ε→ 0 in (3.2.23).

From now on we use the notation C for all the positive constants independent on ε ap-
pearing in the text or in the statements of our results, while in proofs we write c to indicate
any positive constant non depending on ε, and cT for quantities of the form cect , t ∈ (0,T ).



Lemma 3.2 (Nonnegativity of ρε,φε, uε). We have that

ρε ≥ 0, φε ≥ 0, uε ≥ 0. (3.2.25)

Proof. Consider the function

x 7→ η(x) =−ρ1(−∞,0)(x).

and observe that
η′(x) =−1(−∞,0)(x), η(x) = xη′(x).

From (3.2.23) we obtain

d

d t

∫ ∞

0

∫
R2
η(ρε)dx da =

∫ ∞

0

∫
R2
η′(ρε)∂tρεdx da

=−
∫ ∞

0

∫
R2
η′(ρε)∂aρεdx da −

∫ ∞

0

∫
R2

divx
(
ρεχ1vYθ

)
η′(ρε)dx da

+µ
∫ ∞

0

∫
R2
η′(ρε)∆xρεdx da −

∫ ∞

0

∫
R2
η′(ρε)(d+p)ρεdx da +ε

∫ ∞

0

∫
R2
η′(ρε)∂2

aaρεdx da

=
∫
R2
η(ρε(t ,0, x))︸ ︷︷ ︸

=0

dx +
∫ ∞

0

∫
R2
ρεχ1(v ·∇xρε)Yθη

′′(ρε)dx da︸ ︷︷ ︸
=0

−µ
∫ ∞

0

∫
R2
η′′(ρε)

(∇xρε
)2 dx da︸ ︷︷ ︸

≤0

−
∫ ∞

0

∫
R2

(d+p)η(ρε)dx da︸ ︷︷ ︸
≤0

+ε
∫ ∞

0

∫
R2
∂a

(
η′(ρε)∂aρε

)
dx da−ε

∫ ∞

0

∫
R2
η′′(ρε)(∂aρε)2︸ ︷︷ ︸
≤0

dx da

≤−ε
∫
R2
η′(ρε(t ,0, x))︸ ︷︷ ︸

=0

∂aρε(t ,0, x)dx = 0.

Thus, integrating on (0, t ) we obtain η(ρε(t , a, x)) = 0 which implies that ρε ≥ 0, and then
φε ≥ 0.

From (3.2.23) we obtain

d

d t

∫
R2
η(uε)dx =

∫
R2
η′(uε)∂t uεdx

=−
∫
R2
η′(uε)divx

(
uεν(φε)

)
dx︸ ︷︷ ︸

=0

+
∫
R2
η′(uε) (b(φ)−β)︸ ︷︷ ︸

≤c

uεdx +ε
∫
R2
η′(uε)∆xuεdx︸ ︷︷ ︸

≤0

≤ c
∫
R2
η(uε)dx.

Integrating on (0, t ) and applying Gronwall Lemma we obtain η(uε(t , x)) = 0, so that uε ≥
0.



Remark 3.1. Without loss of information, we can remove the absolute value in the boundary
condition for ρε in (3.2.23).

We consider the class of functions

ψε(t , x) =
∫ ∞

0
ρε(t , a, x)ξ(a)da,

for ξ ∈C∞([0,∞]) such that
supp(ξ) ⊂ (0,T ). (3.2.26)

In particular any of the functions χi , i = 1,2,3, can play the role of ξ, so that the estimates
obtained for ψε apply to φε.

Lemma 3.3 (L1 estimate onψε). For all t ≥ 0, we have that∥∥ψε(t , ·)
∥∥

L1(R2) ≤ eC tC . (3.2.27)

Proof. We multiply by ξ(a) the equation forρε in system (3.2.23) then, integrating with respect
to a, we get

∂tψε−µ∆xψε+divx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
=

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ−p(a,uε)ξ

)
da. (3.2.28)

Due to the nonnegativity of ρε, ψε and the boundedness of ξ′/ξ, ξ′′/ξ, d,p we have

d

d t

∫
R2

|ψε|dx = d

d t

∫
R2
ψεdx =µ

∫
R2
∆xψεdx −

∫
R2

divx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx︸ ︷︷ ︸

=0

+
∫
R2

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ−pξ

)︸ ︷︷ ︸
≤cξ

da dx ≤ c
∫
R2
ψεdx.

The result comes from the Gronwall Lemma and the assumptions in (3.2.24).

Lemma 3.4 (L2 estimate onψε). For any t ≥ 0, we have∥∥ψε(t , ·)
∥∥

L2(R2) ,
∥∥∇xψε

∥∥
L2((0,t )×R2) ≤ eC tC . (3.2.29)



Proof. We multiply (3.2.28) by ψε and have

d

d t

∫
R2

ψ2
ε

2
dx =

∫
R2
ψε∂tψεdx

=µ
∫
R2
ψε∆xψεdx −

∫
R2
ψεdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

+
∫
R2

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ−pξ

)︸ ︷︷ ︸
≤cξ

ψεda dx

≤−µ
∫
R2

|∇xψε|2dx +
∫
R2

∇xψε ·v
(∫ ∞

0
ρεχ1ξda

)
Yθdx + c

∫
R2
ψ2
εdx

≤− µ

2

∫
R2

|∇xψε|2dx + 1

2µ

∫
R2

|v|2
(∫ ∞

0
ρεχ1ξda

)2

Yθ︸ ︷︷ ︸
≤cψ2

ε

dx + c
∫
R2
ψ2
εdx

≤− µ

2

∫
R2

|∇xψε|2dx + c
∫
R2
ψ2
εdx.

Integrating over (0, t ) and using the Gronwall Lemma we get (3.2.29).

Lemma 3.5 ( L∞ estimate on uε). For every t ≥ 0, we have

‖uε(t , ·)‖L∞(R2) ≤CeC t . (3.2.30)

Proof. Let C be a positive constant that will be fixed later. We define

uε(t , x) = e−C t uε(t , x),

and we consider the associated problem{
∂t uε+divx

(
uεν(φε)

)= (b(φε)−β−C )uε+ε∆xuε,

uε(0, x) = u0,ε(x).

We claim that for any given T > 0 there exist a sufficiently large constant k > 0 and a suitable
C such that uε(t , x) ≤ k for any t ≤ T and x ∈R2, provided u0,ε(x) ≤ k for all x ∈R2.

Consider the function
x 7→ η(x) = (x−k)1(k,+∞)(x),

and observe that
η′(x) =1(k,+∞)(x), xη′(x) = η(x)+kη′(x).



We have

d

d t

∫
R2
η(uε)dx =

∫
R2
η′(uε)∂t uεdx

=−
∫
R2
η′(uε)divx

(
uεν(φε)

)
dx +

∫
R2
η′(uε)(b(φε)−β−C )uεdx +ε

∫
R2
η′(uε)∆xuεdx︸ ︷︷ ︸

≤0

≤−
∫
R2
η′(uε)divx

(
(uε−k)ν(φε)

)
dx︸ ︷︷ ︸

=0

−k
∫
R2
η′(uε)divx

(
ν(φε)

)
dx

+
∫
R2

(η(uε)+kη′(uε))(b(φε)−β−C )dx

≤
∫
R2
η(uε)(b(φε)−β−C )dx −k

∫
R2
η′(uε)(C +β+divx

(
ν(φε)

)−b(φε))dx.

From the inequality
∥∥divx

(
ν(φε)

)∥∥
L∞ ≤ 2

∥∥∇ν(φε)
∥∥

L∞ and the estimates in (3.1.16) and (3.2.27),
it follows that for C large enough

C +β−b(φε) ≥ 0, C +β+divx
(
ν(φε)

)−b(φε) ≥ 0,

thus,
d

d t

∫
R2
η(uε)dx ≤ 0.

Integrating over (0, t ) we obtain

0 ≤
∫
R2
η(uε(t , x))dx ≤

∫
R2
η(u0,ε(x))dx = 0,

which means uε ≤ k. The inequality (3.2.30) follows.

Lemma 3.6. For all t ≥ 0, the following estimates on uε hold

‖uε(t , ·)‖L1(R2) ≤ eC tC , (3.2.31)

‖uε(t , ·)‖L2(R2) ,‖∇xuε‖L2((0,t )×R2) ≤ eC tC , (3.2.32)

‖∇xuε(t , ·)‖L2(R2) ,‖∆xuε‖L2((0,t )×R2) ≤ eC tC . (3.2.33)

Proof. We recall the equation of uε

∂t uε+divx
(
uεν(φε)

)= (b(φε)−β)uε+ε∆xuε. (3.2.34)

(3.2.31). Using the nonnegativity of uε we have

d

d t

∫
R2

|uε|dx = d

d t

∫
R2

uεdx =ε
∫
R2
∆xuεdx −

∫
R2

divx
(
uεν(φε)

)
dx︸ ︷︷ ︸

=0

+
∫
R2

(b(φε)−β)︸ ︷︷ ︸
≤c

uεdx ≤ c
∫
R2

uεdx.



Then, applying the Gronwall Lemma we gain

‖uε(t , ·)‖L1(R2) ≤
∥∥u0,ε(·)

∥∥
L1(R2) ect .

(3.2.32). We multiply (3.2.34) by uε to obtain

d

d t

∫
R2

u2
ε

2
dx =

∫
R2

uε∂t uεdx

=−
∫
R2

divx
(
uεν(φε)

)
uεdx +

∫
R2

(b(φε)−β)u2
εdx +ε

∫
R2
∆xuεuεdx

≤
∫
R2

uεν(φε).∇uεdx + c
∫
R2

u2
εdx −ε

∫
R2

|∇xuε|2dx

≤
∫
R2

∇x

(
u2
ε

2

)
.ν(φε)dx + c

∫
R2

u2
εdx −ε

∫
R2

|∇xuε|2dx

≤
∫
R2

u2
ε

2
divx

(
ν(φε)

)
dx + c

∫
R2

u2
εdx −ε

∫
R2

|∇xuε|2dx

≤cT

∫
R2

|uε|dx + c
∫
R2

u2
εdx −ε

∫
R2

|∇xuε|2dx.

Integrating over (0, t ) and then using the Gronwall Lemma we get

‖uε(t , ·)‖2
L2(R2) +2εect

∫ t

0
e−cs ‖∇xuε(s, ·)‖2

L2(R2) ds ≤ ect ‖uε(0, ·)‖2
L2(R2) + cect .

(3.2.33). We multiply (3.2.34) by −∆xuε to obtain

d

d t

∫
R2

|∇xuε|2
2

dx =
∫
R2

∇xuε ·∂t∇xuεdx =−
∫
R2
∆xuε∂t uεdx

=
∫
R2
∆xuεdivx

(
uεν(φε)

)
dx −

∫
R2
∆xuε(b(φε)−β)uεdx −ε

∫
R2

|∆xuε|2dx

=−
∫
R2

∇xuε∇x
(∇xuε.ν(φ)+uεdivx

(
ν(φ)

))
dx +

∫
R2

(b(φ)−β)|∇xuε|2dx

+
∫
R2
b′(φ)∇xφ.∇xuεuεdx −ε

∫
R2

|∆xuε|2dx

≤−ε
∫
R2

|∆xuε|2dx + c
∫
R2

|∇xuε|2 d x + cT

∫
R2

|∇xψε|2 d x

+
∫
R2

∇x

( |∇xuε|2
2

)
.ν(φ)dx +

∫
R2

|∇xu|2 |∇xν(φ)|︸ ︷︷ ︸
≤cT

dx +
∫
R2

|∇xu|2 |divx
(
ν(φ)

) |︸ ︷︷ ︸
≤cT

dx

+
∫
R2

|∇xuε|uε|∇xdivx
(
ν(φ)

) |dx

≤−ε
∫
R2

|∆xuε|2dx + cT

∫
R2

|∇xuε|2dx + cT

∫
R2

|∇xψε|2dx + cT

∫
R2

|∇xdivx
(
ν(φ)

) |2dx.

Integrating over (0, t ) and using the estimates in (3.1.18) and (3.2.29) we gain

‖∇xuε(t , ·)‖L2(R2) +ε‖∆xuε(·, ·)‖L2((0,t )×R2) ≤ cect .



Lemma 3.7. For every t ≥ 0, the following estimates on ψε hold∥∥∇xψε(t , ·)
∥∥

L2(R2) ,
∥∥D2

xψε

∥∥
L2((0,t )×R2) ≤ eC tC , (3.2.35)∥∥D2

xψε(t , ·)
∥∥

L2(R2) ,
∥∥D3

xψε

∥∥
L2((0,t )×R2) ≤ eC tC , (3.2.36)∥∥ψε(t , ·)

∥∥
L∞(R2) ≤ eC tC , (3.2.37)∥∥D3

xψε(t , ·)
∥∥

L2(R2) ,
∥∥D4

xψε

∥∥
L2((0,t )×R2) ≤ eC tC , (3.2.38)∥∥∂tψε(t , ·)

∥∥
L1(R2) ,

∥∥∂tψε(t , ·)
∥∥

L2(R2) ,
∥∥∇xψε(t , ·)

∥∥
L∞(R2) ≤ eC tC . (3.2.39)

Proof. (3.2.35). The proof is identical to the proof of [9, Lemma 2.2, Eq. (2.8)], due to the
boundedness of the mortality rate related to predation p(·,u).
(3.2.36). At first, we consider the following estimate

d

d t

∫
R2

(ψεuε)2

2
dx =

∫
R2

(u2
εψε∂tψε+ψ2

εuε∂t uε)dx

=µ
∫
R2

u2
εψε∆xψεdx −

∫
R2

u2
εψεdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

+
∫
R2

u2
ε

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ−pξ

)︸ ︷︷ ︸
≤c, see (3.2.26)

ψεda dx −
∫
R2

uεψ
2
εdivx

(
uεν(φε)

)
dx

+
∫
R2
ψ2
ε(b(φε)−β)u2

εdx +ε
∫
R2
ψ2
ε∆xuεuεdx

≤−µ
∫
R2

∇x(u2
εψε)∇xψεdx −ε

∫
R2

∇x(ψ2
εuε)∇xuεdx + c

∫
R2

(ψεuε)2dx

+ cT

∫
R2
ψ2
εdx + cT

∫
R2

(
divx

((∫ ∞

0
ρεχ1ξda

)
vYθ

))2

dx

+
∫
R2

∇x(ψ2
εuε) ·ν(φε)uεdx

≤−µ
∫
R2

u2
ε|∇xψε|2dx −ε

∫
R2
ψ2
ε|∇xuε|2dx −2(µ+ε)

∫
R2

∇x

(
u2
ε

2

)
∇x

(
ψ2
ε

2

)
dx

+ c
∫
R2

(ψεuε)2dx + cT

∫
R2
ψ2
εdx + cT

∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2Y 2
θ︸ ︷︷ ︸

≤c

dx

+ cT

∫
R2

(∫ ∞

0
ρεχ1ξda

)2

|divx (v) |2Y 2
θ︸ ︷︷ ︸

≤c

dx + cT

∫
R2

(∫ ∞

0
ρεχ1ξda

)2

(Y ′
θ)2|v|2︸ ︷︷ ︸

≤c, see (3.2.26)

|∇xφε|2dx

+2
∫
R2

∇xψεψεu2
εν(φε)︸ ︷︷ ︸
≤cT

dx +
∫
R2
ψ2
ε∇x

(
u2
ε

2

)
·ν(φε)dx

≤−µ
∫
R2

u2
ε|∇xψε|2dx −ε

∫
R2
ψ2
ε|∇xuε|2dx + (µ+ε)

∫
R2

u2
ε︸︷︷︸

≤cT

(|∇xψε|2 +ψε∆xψε

)
dx

+ c
∫
R2

(ψεuε)2dx + cT

∫
R2
ψ2
εdx + cT

∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx



+ cT

∫
R2

(∫ ∞

0
ρεχ1ξda

)2

dx + cT

∫
R2

|∇xφε|2dx + cT

∫
R2

∇xψεψεdx +
∫
R2

u2
ε

2
divx

(
ν(φε)

)
︸ ︷︷ ︸

≤cT

ψ2
εdx

≤−µ
∫
R2

u2
ε|∇xψε|2dx −ε

∫
R2
ψ2
ε|∇xuε|2dx + cT

∫
R2

|∇xψε|2dx + cT

∫
R2

|∆xψε|2dx

+ c
∫
R2

(ψεuε)2dx + cT

∫
R2
ψ2
εdx + cT

∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx

+ cT

∫
R2

(∫ ∞

0
ρεχ1ξda

)2

dx + cT

∫
R2

|∇xφε|2dx.

Using the Gronwall Lemma and the estimates in (3.2.29), (3.2.35) we gain

∥∥ψε(t , ·)uε(t , ·)
∥∥2

L2(R2) +2µect
∫ t

0
e−cs

∫
R2

u2
ε(s, x)|∇xψε(s, x)|2dxds

+2εect
∫ t

0
e−cs

∫
R2
ψ2
ε(s, x)|∇xuε(s, x)|2dxds ≤ cect . (3.2.40)

Then, we multiply (3.2.28) by D4
xψε to have

d

d t

∫
R2

|∆xψε|2
2

dx =
∫
R2
∆xψε ·∂t∆xψεdx =

∫
R2

D4
xψε∂tψεdx

=µ
∫
R2
∆xψεD4

xψεdx −
∫
R2

D4
xψεdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

+
∫
R2

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ−p(a,uε)ξ

)
D4

xψεda dx

=−µ
∫
R2

|D3
xψε|2dx +

∫
R2

D3
xψε ·∇xdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

−
∫
R2

∇x

(∫ ∞

0
ρε

(
εξ′′+ξ′−dξ−p(a,uε)ξ

)
da

)
·D3

xψεdx

≤− µ

2

∫
R2

|D3
xψε|2dx + c

∫
R2

(
∇xdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

))2

dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ−p(a,uε)ξ

)
da

∣∣∣∣2

dx

≤− µ

2

∫
R2

|D3
xψε|2dx + c

∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2Y 2
θ︸ ︷︷ ︸

≤c

dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|D2
x v|2Y 2

θ︸ ︷︷ ︸
≤c

dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′′
θ )2︸ ︷︷ ︸

≤c, see (3.2.26)

|∇xφε|4dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′
θ)2︸ ︷︷ ︸

≤c, see (3.2.26)

|D2
xφε|2dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2Y 2
θ︸ ︷︷ ︸

≤c

dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2(Y ′
θ)2︸ ︷︷ ︸

≤c, see (3.2.26)

|∇xφε|2dx



+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|∇xφε|2dx + c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
da

∣∣∣∣2

dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
∇xρεp(a,uε)ξda

∣∣∣∣2

dx + c
∫
R2

∣∣∣∫ ∞

0
ρε ∂up(a,uε)︸ ︷︷ ︸

≤c

∇xuεξda
∣∣∣2

dx

≤− µ

2

∫
R2

|D3
xψε|2dx + c

∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + c
∫
R2

|∇xφε|2dx + c
∫
R2

|∇xφε|4dx

+ c
∫
R2

|D2
xφε|2dx + c

∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣4

dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
+ da

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
− da

∣∣∣∣2

dx

+ c
∫
R2

|∇xψε|2dx + c
∫
R2
ψ2
ε|∇xuε|2dx,

where (
εξ′′+ξ′−dξ

)
+ =max{

(
εξ′′+ξ′−dξ

)
,0},(

εξ′′+ξ′−dξ
)
− =max{−(

εξ′′+ξ′−dξ
)

,0}.

Integrating over (0, t ) we get∥∥D2
xψε(t , ·)

∥∥2
L2(R2) +µ

∥∥D3
xψε

∥∥2
L2((0,t )×R2)

≤
∥∥D2

xψε(0, ·)
∥∥2

L2(R2) +
∫ t

0

∥∥∥∥(∫ ∞

0
ρεχ1ξd a

)
(s)

∥∥∥∥2

H 2(R2)
ds +

∫ t

0

∥∥φε(s, ·)
∥∥2

H 2(R2) ds

+
∫ t

0

∥∥∥∥(
∇x

∫ ∞

0
ρεχ1ξda

)
(s)

∥∥∥∥4

L4(R2)
ds +

∫ t

0

∥∥∇xφε(s, ·)
∥∥4

L4(R2) ds

+
∫ t

0

∥∥∥∥(
∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
+ da

)
(s)

∥∥∥∥2

L2(R2)
ds

+
∫ t

0

∥∥∥∥(
∇x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
− da

)
(s)

∥∥∥∥2

L2(R2)
ds

+
∫ t

0

∥∥∇xψε(s, ·)
∥∥2

L2(R2) ds +
∫ t

0

∫
R2
ψ2
ε(s, x)|∇xuε(s, x)|2dxds.

We remark that a classical regularization argument applied to the continuous cut-off func-
tions in

I± =
∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
± da,

shows that estimates (3.2.29), (3.2.35), apply to I±.
Then (3.2.29), (3.2.35), (3.2.40) and the embedding H 1(R2) ⊂ L4(R2) give us (3.2.36).



(3.2.37). Directly follows from (3.2.29), (3.2.35), (3.2.36) and the embedding H 2(R2) ⊂ L∞(R2).
(3.2.38). We prove first the following estimate using the L∞ bounds on uε and ψε

d

d t

∫
R2

|∇xψε|2u2
ε

2
dx =

∫
R2

u2
ε∇xψε∂t∇xψεdx +

∫
R2

|∇xψε|2uε∂t uεdx

=−
∫
R2

u2
ε∆xψ∂tψεdx −

∫
R2

∇x(u2
ε) ·∇xψε∂tψεdx +

∫
R2

|∇xψε|2uε∂t uεdx

=−µ
∫
R2

u2
ε|D2

xψε|2dx +
∫
R2

u2
ε∆xψεdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

−
∫
R2

u2
ε

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ−pξ

)︸ ︷︷ ︸
≤cξ

∆xψεda dx

−µ
∫
R2

∇x(u2
ε) ·∇xψε∆xψεdx +

∫
R2

∇x(u2
ε) ·∇xψεdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

−
∫
R2

∇x(u2
ε) ·∇xψε

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ−pξ

)︸ ︷︷ ︸
≤cξ

∆xψεda dx

−
∫
R2

|∇xψε|2uεdivx
(
uεν(φε)

)
dx +

∫
R2

|∇xψε|2(b(φε)−β)u2
εdx +ε

∫
R2

|∇xψε|2∆xuεuεdx

≤− µ

2

∫
R2

u2
ε|D2

xψε|2dx + cT

∫
R2

(
divx

((∫ ∞

0
ρεχ1ξda

)
vYθ

))2

dx + cT

∫
R2
ψ2
εu2

εdx

+ cT

∫
R2

|D2
xψε|2dx + cT

∫
R2

|∇xψε|2dx + cT

∫
R2

|D3
xψε|2dx

+ cT

∫
R2

(
∇xdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

))2

dx + cT

∫
R2

|∇xψε|4dx

+3
∫
R2

|∇xψε||D2
xψε|u2

εν(φε)︸ ︷︷ ︸
≤cT

dx +
∫
R2

u2
ε

2
|divx

(
ν(φε)

)
︸ ︷︷ ︸

≤cT

|∇xψε|2dx + c
∫
R2

|∇xψε|2u2
εdx

−2ε
∫
R2

∇xψεD2
xψε∇x

(
u2
ε

2

)
dx −ε

∫
R2

|∇xψε|2|∇xuε|2dx

≤− µ

2

∫
R2

u2
ε|D2

xψε|2dx −ε
∫
R2

|∇xψε|2|∇xuε|2dx + cT

∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx

+ cT

∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + cT

∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + cT

∫
R2

|∇xφε|2dx

+ cT

∫
R2

|∇xφε|4dx + c
∫
R2

|D2
xφε|2dx + cT

∫
R2
ψ2
εu2

εdx + cT

∫
R2

|D2
xψε|2dx + cT

∫
R2

|∇xψε|2dx

+ cT

∫
R2

|D3
xψε|2dx + cT

∫
R2

|∇xψε|4dx + c
∫
R2

|∇xψε|2u2
εdx.

Using the Gronwall Lemma and the estimates in (3.2.29), (3.2.35), (3.2.36), (3.2.40) we gain∫
R2

|∇xψε(t , x)|2uε(t , x)2dx +µect
∫ t

0
e−cs

∫
R2

uε(s, x)2|D2
xψε(s, x)|2dxds



+2εect
∫ t

0
e−cs

∫
R2

|∇xψε(s, x)|2|∇xuε(s, x)|2dxds ≤ cect . (3.2.41)

We continue by proving (3.2.38). We multiply (3.2.28) by −D6
xψε

d

d t

∫
R2

|D3
xψε|2
2

dx =
∫
R2

D3
xψε ·∂t D3

xψεdx =−
∫
R2

D6
xψε∂tψεdx

=−µ
∫
R2
∆xψεD6

xψεdx +
∫
R2

D6
xψεdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

−
∫
R2

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ−p(a,uε)ξ

)
D6

xψεda dx

=−µ
∫
R2

|D4
xψε|2dx +

∫
R2

D4
xψε∆xdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

)
dx

−
∫
R2
∆x

(∫ ∞

0
ρε

(
εξ′′+ξ′−dξ−p(a,uε)ξ

)
da

)
D4

xψεdx

≤− µ

2

∫
R2

|D4
xψε|2dx + c

∫
R2

(
∆xdivx

((∫ ∞

0
ρεχ1ξda

)
vYθ

))2

dx

+ c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
+ da

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
− da

∣∣∣∣2

dx

+ c
∫
R2

∣∣∣∣∆x

(∫ ∞

0
ρεp(a,uε)ξda

)∣∣∣∣2

dx

≤− µ

2

∫
R2

|D4
xψε|2dx + c

∫
R2

∣∣∣∣D3
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2Y 2
θ︸ ︷︷ ︸

≤c

dx

+ c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2Y 2
θ︸ ︷︷ ︸

≤c

dx + c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|D2
x v|2Y 2

θ︸ ︷︷ ︸
≤c

dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|D3
x v|2Y 2

θ︸ ︷︷ ︸
≤c

dx + c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|∇xφε|2dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|D2
x v|2(Y ′

θ)2︸ ︷︷ ︸
≤c

|∇xφε|2dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|∇xφε|2dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′′
θ )2︸ ︷︷ ︸

≤c

|∇xφε|4dx + c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|D2
xφε|2dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2(Y ′′
θ )2︸ ︷︷ ︸

≤c

|∇xφε|4dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|∇x v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|D2
xφε|2dx



+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′′′
θ )2︸ ︷︷ ︸

≤c

|∇xφε|6dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′′
θ )2︸ ︷︷ ︸

≤c

|D2
xφε|2|∇xφε|2dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

|v|2(Y ′
θ)2︸ ︷︷ ︸

≤c

|D3
xφε|2dx + c

∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
+ da

∣∣∣∣2

dx

+ c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
− da

∣∣∣∣2

dx + c
∫
R2

∣∣∣∫ ∞

0
∇xρε ·∇xuεξ ∂up(a,uε)︸ ︷︷ ︸

≤c

da
∣∣∣2

dx

+ c
∫
R2

∣∣∣∣∫ ∞

0
∆xρεξp(a,uε)da

∣∣∣∣2

dx + c
∫
R2

∣∣∣∫ ∞

0
ρεξ ∂

2
uup(a,uε)︸ ︷︷ ︸

≤c

|∇xuε|2da
∣∣∣2

dx

+ c
∫
R2

∣∣∣∫ ∞

0
ρεξ∂up(a,uε)︸ ︷︷ ︸

≤c

∆xuεda
∣∣∣2

dx

≤− µ

2

∫
R2

|D4
xψε|2dx + c

∫
R2

∣∣∣∣D3
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣∫ ∞

0
ρεχ1ξda

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρεχ1ξda

∣∣∣∣4

dx

+ c
∫
R2

∣∣∣∣∇x

∫ ∞

0
ρεχ1ξda

∣∣∣∣4

dx + c
∫
R2

|D3
xφε|2dx + c

∫
R2

|D2
xφε|2dx + c

∫
R2

|D2
xφε|4dx

+ c
∫
R2

|∇xφε|2dx + c
∫
R2

|∇xφε|4dx + c
∫
R2

|∇xφε|6dx + c
∫
R2

|∇xφε|8dx

+ c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
+ da

∣∣∣∣2

dx + c
∫
R2

∣∣∣∣D2
x

∫ ∞

0
ρε

(
εξ′′+ξ′−dξ

)
− da

∣∣∣∣2

dx

+ c
∫
R2

|D2
xψε|2dx + c

∫
R2

|∇xψε|2|∇xuε|2dx + cT

∫
R2

|∇xuε|4dx + cT

∫
R2

|∆xuε|2dx.

We integrate over (0, t ), and we remark once again that, up to a regularization argument, the
estimates obtained for ψε apply to I± as well. Then (3.2.29), (3.2.35) and (3.2.36), (3.2.41),
(3.2.33), together with the embedding H 1(R2) ⊂ Lp (R2) for very 1 ≤ p <∞ give us∥∥D3

xψε(t , ·)
∥∥2

L2(R2) +µ
∥∥D4

xψε

∥∥2
L2((0,t )×R2) ≤ cect .

(3.2.39). It follows from (3.2.29), (3.2.35), (3.2.36), (3.2.38), (3.2.28) and the embedding H 2(R2) ⊂
L∞(R2).

The following two lemmas provide keys estimates on ρε, its derivatives and its trace at a =
0. We omit their proofs as they closely follow the argument used in the proofs of [9, Corollary
2.1, Lemma 2.3], using Lemmas 3.3, 3.4, 3.7, 3.2.30, and the boundedness of p.



Lemma 3.8 (Estimates on the trace of ρε at a = 0). Define ρ0
ε(t , x) = ρε(t ,0, x).

For every t ≥ 0 the following estimates hold∥∥ρ0
ε(t , ·)

∥∥
L1(R2) ,

∥∥D2
xρ

0
ε

∥∥
L1((0,t )×R2) ,

∥∥∂tρ
0
ε

∥∥
L1((0,t )×R2) ≤ eC tC ,∥∥ρ0

ε(t , ·)
∥∥

L2(R2) ,
∥∥∇xρ

0
ε(t , ·)

∥∥
L2(R2) ≤ eC tC ,∥∥∇xρ

0
ε

∥∥
L2((0,t )×R2) ,

∥∥D2
xρ

0
ε

∥∥
L2((0,t )×R2) ,

∥∥∂tρ
0
ε

∥∥
L2((0,t )×R2) ≤ eC tC ,∥∥ρ0

ε(t , ·)
∥∥

L∞(R2) ≤ eC tC .

Lemma 3.9 (Estimates on ρε). For every t ≥ 0 the following estimates hold∥∥ρε(t , ·, ·)
∥∥

L∞((0,∞)×R2) ≤CeC t , (3.2.42)∥∥ρε(t , ·, ·)
∥∥

L1((0,∞)×R2) ≤CeC t , (3.2.43)∥∥ρε(t , ·, ·)
∥∥

L2((0,∞)×R2) ,
∥∥∇xρε

∥∥
L2((0,t )×(0,∞)×R2) ,

p
ε
∥∥∂aρε

∥∥
L2((0,t )×(0,∞)×R2) ≤CeC t , (3.2.44)∥∥∇xρε(t , ·, ·)

∥∥
L2((0,∞)×R2) ,

∥∥D2
xρε

∥∥
L2((0,t )×(0,∞)×R2) ,

p
ε
∥∥∂a∇xρε

∥∥
L2((0,t )×(0,∞)×R2) ≤CeC t ,

(3.2.45)∥∥∂aρε(t , ·, ·)
∥∥

L1((0,∞)×R2) ≤CeC t . (3.2.46)

Lemma 3.10 (BV estimate w.r.t. x on uε). For every t ≥ 0 the following estimate holds

‖∇xuε(t , ·)‖L1(R2) ≤CeC t . (3.2.47)

Proof. From the equation of uε in (3.2.34) we have the equation

∂t∇xuε+∇x
(∇uε ·ν(φε)+uεdivx

(
ν(φε)

))= (b(φε)−β)∇xuε+b′(φε)∇xφεuε+ε∇x∆xuε.

We define

sign(∇xuε) = (sign
(
∂x1 (uε)

)
, sign

(
∂x2 (uε)

)
),

where x = (x1, x2). Then, using the L∞ bounds on ∇xφε and ν(φε) in (3.2.39), (3.1.14), we get

d

d t

∫
R2

|∇xuε|dx =
∫
R2

sign(∇xuε)∂t∇xuεdx

=−
∫
R2

∇x(∇xuε ·ν(φε))sign(∇xuε)dx︸ ︷︷ ︸
=0

−
∫
R2

∇x(uεdivx
(
ν(φε)

)
)sign(∇xuε)dx

+ε
∫
R2

∇x∆xuε sign(∇xuε)dx︸ ︷︷ ︸
≤0

+
∫
R2
b′(φε)∇xφε︸ ︷︷ ︸

≤cT

uε sign(∇xuε)dx +
∫
R2

(b(φε)−β)︸ ︷︷ ︸
≤c

|∇xuε|dx

≤
∫
R2

|∇xuε||divx
(
ν(φε)

) |dx −
∫
R2

uε∇x(divx
(
ν(φε)

)
)sign(∇xuε)dx

+ cT

∫
R2

uεdx + c
∫
R2

|∇xuε|dx

≤c
∫
R2

|∇xuε|dx + cT

∫
R2

|uε|dx + c
∫
R2

u2
εdx + c

∫
R2

|∇xuε|2dx

+
∫
R2

|divx
(
ν(φε)

) |2dx +
∫
R2

|∇x(divx
(
ν(φε)

)
)|2dx.



We obtain the desired inequality (3.2.47) integrating over (0, t ), using the Gronwall Lemma
and the estimates in Lemma 3.6, (3.1.15) and (3.1.18).

Lemma 3.11 (BV estimate w.r.t. t on uε). For every t ≥ 0, the following estimate holds

‖∂t uε(t , ·)‖L1(R2) ≤CeC t . (3.2.48)

Proof. From the definition of ν(φ) in (3.1.3) we compute

∂tν(φε) = κ ∂tφε∗∇xη(
1+

∥∥φε∗∇xη
∥∥2

)3/2
,

then from (3.2.39) we have∥∥∂tν(φε)
∥∥

L∞(R2;R2) ≤ κ
∥∥∇xη

∥∥
L∞(R2;R2)

∥∥∂tφε
∥∥

L1(R2,R) ≤CeC t .

Similarly, explicit computations give us

divx
(
ν(φε)

)= κ φε∗∆xη(
1+

∥∥φε∗∇xη
∥∥2

)3/2
, (3.2.49)

and

∂t divx
(
ν(φε)

)= κ ∂tφε∗∆xη(
1+

∥∥φε∗∇xη
∥∥2

)3/2
−3κ(φε∗∆xη)

φε∗∇xη√
1+

∥∥φε∗∇xη
∥∥2

∂tφε∗∇xη(
1+

∥∥φε∗∇xη
∥∥2

)2 .

Therefore, from (3.2.27), (3.2.39), we obtain∥∥∂t divx
(
ν(φε)

)∥∥
L2(R2;R)

≤ κ
∥∥∂tφε∗∆xη

∥∥
L2(R2;R) +3κ

∥∥φε∗∆xη
∥∥

L∞(R2;R)

∥∥∂tφε∗∇xη
∥∥

L2(R2;R2)

≤ κ
∥∥∂tφε

∥∥
L1(R2;R)

(∥∥∆xη
∥∥

L2(R2;R) +3
∥∥∆xη

∥∥
L∞(R2;R)

∥∥∇xη
∥∥

L2(R2;R2)

∥∥φε∥∥L1(R2;R)

)
≤CeC t .

The estimates above allow us to prove (3.2.48). From the equation (3.2.34) for uε we have

∂2
t t uε+divx

(
∂t uεν(φε)

)+divx
(
uε∂tν(φε)

)= (b(φε)−β)∂t uε+b′(φε)∂tφεuε+ε∆x∂t uε,



then we consider

d

d t

∫
R2

|∂t uε|dx =−
∫
R2

divx
(
∂t uεν(φε)

)
sign(∂t uε)dx︸ ︷︷ ︸

=0

+ε
∫
R2
∆x∂t uε sign(∂t uε)dx︸ ︷︷ ︸

≤0

−
∫
R2

(∇uε∂tν(φε)︸ ︷︷ ︸
≤cT

+uε∂t divx
(
ν(φε)

)
)sign(∂t uε)dx

+
∫
R2

(b(φε)−β)︸ ︷︷ ︸
≤c

|∂t uε|dx +
∫
R2
b′(φε)∂tφεuεsign(∂t uε)dx

≤cT

∫
R2

|∇xuε|dx + c
∫
R2

u2
εdx +

∫
R2

|∂t divx
(
ν(φε)

) |2 d x

+ cT

∫
R2

|∂tφε|dx + c
∫
R2

|∂t uε|dx.

Integrating on (0, t ) we obtain (3.2.48) thanks to (3.2.32), (3.2.39) and (3.2.47) and the Gronwall
Lemma.

We are now ready to prove the compactness of the families {ρε}ε and {uε}ε, and the first
part of Theorem 3.1, establishing the existence of entropy solutions for the system (3.1.1).

Lemma 3.12 (Strong compactness of {ρε}ε and {uε}ε). There exists a couple of functions (u,ρ)
and a sequence {εk }k∈N ∈ (0,∞), εk → 0, such that, for every T > 0

ρεk → ρ, a.e. in (0,T )× (0,∞)×R2 and in Lp
loc ((0,∞)× (0,∞)×R2), 1 ≤ p <∞,

ρ(·, ·, ·) ≥ 0, ρ(t , ·, x) ∈ BV (0,∞), for a.e. (t , x) ∈ (0,∞)×R2,

ρ ∈ L∞(0,T ;L1((0,∞)×R2))∩L∞((0,T )× (0,∞)×R2)∩L2((0,T )× (0,∞); H 2(R2)),

(3.2.50)

and

uεkh
→ u a.e. in (0,T )×R2 and in Lp

loc((0,∞)×R2), 1 ≤ p <∞,

u(·, ·) ≥ 0, u ∈ L∞((0,T )×R2)∩BV ((0,T )×R2).
(3.2.51)

Proof. The proof of the strong convergence (up to a subsequence) for {ρε}ε follows the argu-
ment used in [9, Lemma 2.9], which is based on the Murat Lemma, [31], and the compensated
compactness result in [35, Th. 5]. Thanks to Lemmas 3.2.30, 3.11, 3.10, {uε}ε is bounded in
L∞((0,T )×R2)∩BV ((0,T )×R2) so that Helly’s Theorem applies.

Lemma 3.13. The couple of functions (u,ρ) introduced in Lemma 3.12 is an entropy solution
of (3.1.1) in the sense of Definition 3.2.

Proof. It is clear that the couple (u,ρ) is a weak solution of (3.1.1) in the sense of Definition
3.1 thanks to the strong convergence results in Lemma 3.12. In particular, the fact that ρ is a
weak solution comes directly from [35, Th. 5].



We obtain (3.1.20) as in [9, Lemma 2.10], then we only have to verify that (3.1.21) holds.
Let ξ ∈C∞(R4) be a nonnegative text function with compact support and c ∈ R be a constant.
Multiplying the equation of uε in (3.2.23) by sign(uε− c) we have

∂t |uε− c|+divx
(|uε− c|ν(φε)

)+ csign(uε− c)divx
(
ν(φε)

)
≤ sign(uε− c)(b(φε)−β)uε+ε∆x |uε− c|.

Then, ∫ ∞

0

∫ ∞

0

∫
R2

(|uε− c|∂tξ+|uε− c|ν(φε) ·∇xξ+ sign(uε− c)(b(φε)−β)uεξ

+ε|uε− c|∆xξ− csign(uε− c)divx
(
ν(φε)

)
ξ
)

dx da dt

+
∫ ∞

0

∫
R2

|uε,0(x)− c|ξ(0, a, x)dx da ≥ 0.

By taking the limit for ε→ 0, we get (3.1.21).

3.3 Uniqueness and stability

In this section we establish the inequality (3.1.22), which concludes the proof of Theorem
3.1. To this end we introduce the following preliminary lemma.

Lemma 3.14. Let (u1,ρ1) and (u2,ρ2) be two entropy solutions of (3.1.1) obtained from the ini-
tial data (u1,0,ρ1,0) and (u2,0,ρ2,0) respectively. For every nonnegative test function ξ ∈C∞

c (R4)
the following inequalities hold∫ ∞

0

∫ ∞

0

∫
R2

(
|ρ1 −ρ2| (∂tξ+∂aξ)−divx

(|ρ1 −ρ2|χ1v(Yθ(φ1 −R)+Yθ(φ2 −R))
)
ξ

+µ∆x |ρ1 −ρ2|ξ−|ρ1 −ρ2|dξ−|ρ1 −ρ2|p(a,u1)ξ

− sign
(
ρ1 −ρ2

)
(p(a,u1)−p(a,u2))ρ2ξ

)
dx da dt

+
∫ ∞

0

∫
R2

|ρ1(t ,0+, x)−ρ2(t ,0+, x)|ξ(t ,0, x)dx dt +
∫ ∞

0

∫
R2

|ρ1,0(a, x)−ρ2,0(a, x)|ξ(0, a, x)dx da

≥
∫ ∞

0

∫ ∞

0

∫
R2

sign
(
ρ1 −ρ2

)
χ1

(
ρ2divx

(
vYθ(φ1 −R)

)−ρ1divx
(
v(x)Yθ(φ2 −R)

))
ξdx da dt ,

(3.3.52)

where

φi (t , x) :=
∫ ∞

0
ρi (t , a, x)χ2(a)da, for i = 1, 2,



and ∫ ∞

0

∫ ∞

0

∫
R2

(
|u1 −u2|∂tξ−divx

(|u1 −u2|(ν(φ1)+ν(φ2))
)
ξ

+|u1 −u2|(b(φ1)−β)ξ+ sign(u1 −u2) (b(φ1)−b(φ2))u2ξ
)

dx da dt

+
∫ ∞

0

∫
R2

|u1,0(x)−u2,0(x)|ξ(0, a, x)dx da

≥
∫ ∞

0

∫ ∞

0

∫
R2

sign(u1 −u2)
(
u2 divx

(
ν(φ1)

)−u1 divx
(
ν(φ2)

))
ξdx da dt .

(3.3.53)

Proof. We double the variables and write

ρ1 = ρ1(t , a, x), ρ2 = ρ2(s,b, y), φ1 =φ1(t , x), φ2 =φ2(s, y) u1 = u1(t , x) u2 = u2(s, y),

where x = (x1, x2) and y = (y1, y2).
Consider the test function

Ξn(t , s, a,b, x, y) = ξ
(

t + s

2
,

a +b

2
,

x + y

2

)
λn

(
s − t

2

)
λn

(
b −a

2

)
λn

( y1 −x1

2

)
λn

( y2 −x2

2

)
,

where

λn (u) = nλ(nu), λ ∈C∞(R), λ≥ 0, ‖λ‖L1(R) = 1, supp(λ) ⊂ [−1,1].

To prove inequality (3.3.52) we follow the doubling of variables argument appearing in [9,
Lemma 3.1], and use the regularity of p and the L∞ bounds on u1, u2. Then we have only to
verify (3.3.53). We write (3.1.21) for u1(t , x) using u2(s, y) as a constant and integrate over (s, y)∫ ∫ ∫ ∫ ∫ ∫ (|u1 −u2|∂tΞn −divx

(|u1 −u2|ν(φ1)
)
Ξn

+ sign(u1 −u2) (b(φ1)−β)u1Ξn
)

dx dy da db dt ds

+
∫ ∫ ∫ ∫ ∫

|u1,0(x)−u2|Ξn(0, s, a,b, x, y)dx dy da db ds

≥
∫ ∫ ∫ ∫ ∫ ∫

sign(u1 −u2)u2divx
(
ν(φ1)

)
Ξndx dy da db dt ds,

(3.3.54)

and we write (3.1.21) for u2(s, y) using u1(t , x) as a constant and integrate over (t , x)∫ ∫ ∫ ∫ ∫ ∫ (|u1 −u2|∂sΞn −divy
(|u1 −u2|ν(φ2)

)
Ξn

−sign(u1 −u2) (b(φ2)−β)u2Ξn
)

dx dy da db dt ds

+
∫ ∫ ∫ ∫ ∫

|u1 −u2,0(y)|Ξn(t ,0, a,b, x, y)dx dy da db dt

≥−
∫ ∫ ∫ ∫ ∫ ∫

sign(u1 −u2)u1divx
(
ν(φ2)

)
Ξndx dy da db dt ds.

(3.3.55)



Summing (3.3.54) and (3.3.55) we have∫ ∫ ∫ ∫ ∫ ∫ (|u1 −u2|(∂tΞn +∂sΞn)−divx
(|u1 −u2|ν(φ1)

)
Ξn −divy

(|u1 −u2|ν(φ2)
)
Ξn

+|u1 −u2|(b(φ1)−β)Ξn + sign(u1 −u2) (b(φ1)−b(φ2))u2Ξn
)

dx dy da db dt ds

+
∫ ∫ ∫ ∫ ∫

|u1,0(x)−u2|Ξn(0, s, a,b, x, y)dx dy da db ds

+
∫ ∫ ∫ ∫ ∫

|u1 −u2,0(y)|Ξn(t ,0, a,b, x, y)dx dy da db dt

≥
∫ ∫ ∫ ∫ ∫ ∫

sign(u1 −u2)u2divx
(
ν(φ1)

)
Ξndx dy da db dt ds

−
∫ ∫ ∫ ∫ ∫ ∫

sign(u1 −u2)u1divx
(
ν(φ2)

)
Ξndx dy da db dt ds.

As n →∞ we get (3.3.53).

Lemma 3.15. For every t ≥ 0, the following inequality holds∥∥φ1(t , ·)−φ2(t , ·)
∥∥2

L2(R2) +µeC t
∫ t

0

∫
R2

e−C s |∇x(φ1 −φ2)|2 dx ds ≤CeC t
∥∥ρ1,0 −ρ2,0

∥∥2
L1((0,∞)×R2)

+CeC t
∫ t

0

∫ ∞

0

∫
R2

e−C s(ρ1 −ρ2)2 dx da ds +CeC t
∫ t

0

∫
R2

e−C s(u1 −u2)2 dx ds.

(3.3.56)

In particular, we have that(∫ t

0

∫
R2

e−C s |∇x(φ1 −φ2)|2dxds

)1/2

≤CeC t
∥∥ρ1,0 −ρ2,0

∥∥
L1((0,∞)×R2)

+CeC t
(∫ t

0

∥∥ρ1(s, ·, ·)−ρ2(s, ·, ·)
∥∥2

L1((0,∞)×R2) ds

)1/2

+CeC t
(∫ t

0
‖u1(s, ·)−u2(s, ·)‖2

L1(R2) ds

)1/2

.

(3.3.57)

Proof. Since φεk satisfies

∂tφεk −µ∆xφεk+divx

((∫ ∞

0
ρεkχ1da

)
vYθ(φεk −R)

)
=

∫ ∞

0
ρεk

(
εkχ

′′
2 +χ′2 −dχ2 −p(a,uεk )χ2

)
da,

as k →∞ we get the equation of φ. Then, subtracting the equation for φ2 from the equation
for φ1 we obtain

∂t (φ1 −φ2)−µ∆x(φ1 −φ2)+divx

((∫ ∞

0
(ρ1 −ρ2)χ1da

)
vYθ(φ1 −R)

)
+divx

((∫ ∞

0
ρ2χ1da

)
v(Yθ(φ1 −R)−Yθ(φ2 −R))

)
=

∫ ∞

0
(ρ1 −ρ2)

(
χ′2 −dχ2 −p(a,u1)χ2

)
da −

∫ ∞

0
ρ2 (p(a,u1)−p(a,u2))χ2 da.

(3.3.58)



Then

d

d t

∫
R2

(φ1 −φ2)2

2
dx +µ

∫
R2

∣∣∇x(φ1 −φ2)
∣∣2 dx

=
∫
R2

(φ1 −φ2)

(∫ ∞

0
(ρ1 −ρ2)

(
χ′2 −dχ2 −p(a,u1)χ2

)
da

)
dx

−
∫
R2

(φ1 −φ2)
(∫ ∞

0
ρ2 (p(a,u1)−p(a,u2))︸ ︷︷ ︸

≤c|u1−u2|
χ2 da

)
dx

−
∫
R2

(φ1 −φ2)divx

((∫ ∞

0
(ρ1 −ρ2)χ1da

)
vYθ(φ1 −R)

)
dx

−
∫
R2

(φ1 −φ2)divx

((∫ ∞

0
ρ2χ1da

)
v(Yθ(φ1 −R)−Yθ(φ2 −R))

)
dx

≤c
∫
R2

(φ1 −φ2)2 dx + cect
∫
R2

(u1 −u2)2 dx + cect
∫ ∞

0

∫
R2

(ρ1 −ρ2)2 dx da

+ µ

2

∫
R2

∣∣∇x(φ1 −φ2)
∣∣2 dx.

Using Gronwall Lemma we get

∥∥φ1(t , ·)−φ2(t , ·)
∥∥2

L2(R2) +µect
∫ t

0

∫
R2

e−cs |∇x(φ1 −φ2)|2 dx ds

≤ ect
∥∥φ1,0 −φ2,0

∥∥2
L2(R2) + cect

∫ t

0

∫ ∞

0

∫
R2

e−cs(ρ1 −ρ2)2 dx da ds + cect
∫ t

0

∫
R2

e−cs(u1 −u2)2 dx ds.

Finally, we obtain (3.3.56) and (3.3.57) from the definition of φ1 and φ2.

We are now ready to complete the proof of Theorem 3.1.

Proof. Our goal is to prove the inequality (3.1.22). We rewrite (3.3.52) and (3.3.53) as∫ ∞

0

∫ ∞

0

∫
R2

(|ρ1 −ρ2| (∂tξn +∂aξn)−|ρ1 −ρ2|χ1(Yθ(φ1 −R)+Yθ(φ2 −R))v ·∇xξn

+µ|ρ1 −ρ2|∆xξn −|ρ1 −ρ2|dξn −|ρ1 −ρ2|p(a,u1)ξn

− sign
(
ρ1 −ρ2

)
(p(a,u1)−p(a,u2))ρ2ξn

)
dx da dt

+
∫ ∞

0

∫
R2

|ρ1(t ,0+, x)−ρ2(t ,0+, x)|ξn(t ,0, x)dx dt

+
∫ ∞

0

∫
R2

|ρ1,0(a, x)−ρ2,0(a, x)|ξn(0, a, x)dx da

≥
∫ ∞

0

∫ ∞

0

∫
R2

sign
(
ρ1 −ρ2

)
χ1

(
ρ2divx

(
vYθ(φ1 −R)

)−ρ1divx
(
v(x)Yθ(φ2 −R)

))
ξn dx da dt ,

(3.3.59)



and∫ ∞

0

∫ ∞

0

∫
R2

(|u1 −u2|∂tξn +|u1 −u2|(ν(φ1)+ν(φ2)) ·∇xξn +|u1 −u2|(b(φ1)−β)ξn

+ sign(u1 −u2) (b(φ1)−b(φ2))u2ξn
)

dx da dt

+
∫ ∞

0

∫
R2

|u1,0(x)−u2,0(x)|ξn(0, a, x)dx da

≥
∫ ∞

0

∫ ∞

0

∫
R2

sign(u1 −u2)
(
u2 divx

(
ν(φ1)

)−u1 divx
(
ν(φ2)

))
ξn dx da dt ,

(3.3.60)

where {ξn}n is a sequence of nonnegative test functions approximating the characteristic func-
tion of the strip (−∞, t )×R×R2. Sending n →∞, we have that

‖u1(t , ·)−u2(t , ·)‖L1(R2)

≤
∥∥u1,0 −u2,0

∥∥
L1(R2) −

∫ t

0

∫
R2

sign(u1 −u2)
(
u2 divx

(
ν(φ1)

)−u1 divx
(
ν(φ2)

))
dx ds

+
∫ t

0

∫
R2

|u1 −u2|b(φ1)︸ ︷︷ ︸
≤c

+sign(u1 −u2) (b(φ1)−b(φ2))︸ ︷︷ ︸
≤c|φ1−φ2|

u2 dx ds

≤
∥∥u1,0 −u2,0

∥∥
L1(R2) +

∫ t

0

∫
R2

|u1 −u2|divx
(
ν(φ1)

)
dx ds

−
∫ t

0

∫
R2

sign(u1 −u2)u1 divx
(
ν(φ1)−ν(φ2)

)︸ ︷︷ ︸
see (3.1.19)

dx ds

+ c
∫ t

0

∫
R2

|u1 −u2|dx ds + cect
∫ t

0

∫
R2

|φ1 −φ2|dx ds

≤
∥∥u1,0 −u2,0

∥∥
L1(R2) + cect

∫ t

0

∫
R2

|u1 −u2|dx ds

+ cect
∫ t

0

(∫
R2

|divx
(
ν(φ1)−ν(φ2)

) |2 dx

)1/2

ds

+ c
∫ t

0

∫
R2

|u1 −u2|dx ds + cect
∫ t

0

∫
R2

|φ1 −φ2|dx ds

≤
∥∥u1,0 −u2,0

∥∥
L1(R2) + c(1+ect )

∫ t

0
‖u1(s, ·)−u2(s, ·)‖L1(R2) ds

+ cect
∫ t

0

∥∥ρ1(s, ·, ·)−ρ2(s, ·, ·)
∥∥

L1((0,∞)×R2) ds,

and∥∥ρ1(t , ·, ·)−ρ2(t , ·, ·)
∥∥

L1((0,∞)×R2)

≤
∥∥ρ1,0 −ρ2,0

∥∥
L1((0,∞)×R2) +

∫ t

0

∫
R2

|ρ1(s,0+, x)−ρ2(s,0+, x)|dx ds



−
∫ t

0

∫ ∞

0

∫
R2

sign
(
ρ1 −ρ2

)
χ1(a)

(
ρ2divx

(
vYθ(φ1 −R)

)−ρ1divx
(
vYθ(φ2 −R)

))
dx da ds

−
∫ t

0

∫ ∞

0

∫
R2

sign
(
ρ1 −ρ2

)
(p(a,u1)−p(a,u2))ρ2 dx da ds

≤
∥∥ρ1,0 −ρ2,0

∥∥
L1((0,∞)×R2) +

∫ t

0

∫ ∞

0

∫
R2

|A (φ1)ρ1 −A (φ2)ρ2|χ3ωdx ds

−
∫ t

0

∫ ∞

0

∫
R2

sign
(
ρ1 −ρ2

)
χ1(a)

(
ρ2divx

(
vYθ(φ1 −R)

)−ρ1divx
(
vYθ(φ2 −R)

))
dx da ds

−
∫ t

0

∫ ∞

0

∫
R2

sign
(
ρ1 −ρ2

)
(p(a,u1)−p(a,u2))ρ2 dx da ds

≤
∥∥ρ1,0 −ρ2,0

∥∥
L1((0,∞)×R2) +

∫ t

0

∫ ∞

0

∫
R2

A
(
φ1

)∣∣ρ1 −ρ2
∣∣χ3ωdx da ds

+
∫ t

0

∫ ∞

0

∫
R2

∣∣A (
φ1

)−A
(
φ2

)∣∣ρ2χ3ωdx da ds

+
∫ t

0

∫ ∞

0

∫
R2

|ρ1 −ρ2|χ1(a)divx
(
vYθ(φ1 −R)

)
dx da ds

−
∫ t

0

∫ ∞

0

∫
R2

sign
(
ρ1 −ρ2

)
χ1(a)ρ1divx (v) (Yθ(φ1 −R)−Yθ(φ2 −R))dx da ds

−
∫ t

0

∫ ∞

0

∫
R2

sign
(
ρ1 −ρ2

)
χ1(a)ρ1v ·∇x(Yθ(φ1 −R)−Yθ(φ2 −R))dx da ds

+ cect
∫ t

0
‖u1(s, ·)−u2(s, ·)‖L1(R2) ds

≤
∥∥ρ1,0 −ρ2,0

∥∥
L1((0,∞)×R2) + c

∫ t

0

∥∥ρ1(s, ·, ·)−ρ2(s, ·, ·)
∥∥

L1((0,∞)×R2) ds

+ cect
∫ t

0

∫
R2

∣∣A (
φ1

)−A
(
φ2

)∣∣dx ds

+ cect
∫ t

0

∫
R2

∣∣Yθ(φ1 −R)−Yθ(φ2 −R)
∣∣dx ds

+ cect
(∫ t

0

∫
R2

∣∣∇x(Yθ(φ1 −R)−Yθ(φ2 −R))
∣∣2 dx ds

)1/2

+ cect
∫ t

0
‖u1(s, ·)−u2(s, ·)‖L1(R2) ds

≤
∥∥ρ1,0 −ρ2,0

∥∥
L1((0,∞)×R2) + c(1+ect )

∫ t

0

∥∥ρ1(s, ·, ·)−ρ2(s, ·, ·)
∥∥

L1((0,∞)×R2) ds

+ cect
(∫ t

0

∫
R2

∣∣∇x(φ1 −φ2)
∣∣2 dx ds

)1/2

+ cect
∫ t

0
‖u1(s, ·)−u2(s, ·)‖L1(R2) ds.

Using (3.3.57), we have

‖u1(t , ·)−u2(t , ·)‖2
L1(R2) +

∥∥ρ1(t , ·, ·)−ρ2(t , ·, ·)
∥∥2

L1((0,∞)×R2)

≤
∥∥u1,0 −u2,0

∥∥2
L1(R2) + c(1+ect )

∫ t

0
‖u1(s, ·)−u2(s, ·)‖2

L1(R2) ds



+ c(1+ect )
∥∥ρ1,0 −ρ2,0

∥∥2
L1((0,∞)×R2) + c(1+ect )

∫ t

0

∥∥ρ1(s, ·, ·)−ρ2(s, ·, ·)
∥∥2

L1((0,∞)×R2) ds.

Finally, we use the Gronwall Lemma to obtain the result (3.1.22).

3.4 Proof of Lemma 3.1

Proof. This lemma is similar to [13, Lemma 4.1], in particular, (3.1.14) and (3.1.17) already
appeared there. For completeness we sketch the proof of the other estimates.

(3.1.15). directly comes from the definition of ν in (3.1.3) and the expression of divx
(
ν(φ)

)
in (3.2.49).

(3.1.16). We compute ∇xν(φ) by using the fact that ∇x( f ν) = f ∇xν+ν⊗∇x f

∇xν(φ) = κ 1(
1+

∥∥φ∗∇xη
∥∥2

)1/2
∇x(φ∗∇xη)+κ(φ∗∇xη)⊗∇x

1(
1+

∥∥φ∗∇xη
∥∥2

)1/2

= κ φ∗∇2
xη(

1+
∥∥φ∗∇xη

∥∥2
)1/2

−κ(φ∗∇xη)⊗ (φ∗∇2
xη)(φ∗∇xη)(

1+
∥∥φ∗∇xη

∥∥2
)3/2

,

then (notice that to shorten the notations we write L∞ for L∞(R2;R2×2))∥∥∇xν(φ)
∥∥

L∞

≤ κ
∥∥φ∗∇2

xη
∥∥

L∞(
1+

∥∥φ∗∇xη
∥∥2

)1/2
+κ

∥∥∥∥∥∥∥
φ∗∇xη(

1+
∥∥φ∗∇xη

∥∥2
)1/2

⊗ φ∗∇2
xη(

1+
∥∥φ∗∇xη

∥∥2
)1/2

φ∗∇xη(
1+

∥∥φ∗∇xη
∥∥2

)1/2

∥∥∥∥∥∥∥
L∞

≤ κ
∥∥φ∗∇2

xη
∥∥

L∞ +κ

∥∥∥∥∥∥∥
φ∗∇xη(

1+
∥∥φ∗∇xη

∥∥2
)1/2

∥∥∥∥∥∥∥
L∞

∥∥φ∗∇2
xη

∥∥
L∞

∥∥∥∥∥∥∥
φ∗∇xη(

1+
∥∥φ∗∇xη

∥∥2
)1/2

∥∥∥∥∥∥∥
L∞

≤ 2κ
∥∥φ∗∇2

xη
∥∥

L∞ ≤ 2κ
∥∥∇2

xη
∥∥

L∞
∥∥φ∥∥

L1(R2;R) .

(3.1.18). We compute gradient of (3.2.49)

∇xdivx
(
ν(φ)

)= κ φ∗∇∆xη(
1+

∥∥φ∗∇xη
∥∥2

)3/2
−3κ(φ∗∆xη)

φ∗∇2
xη(

1+
∥∥φ∗∇xη

∥∥2
)2

φ∗∇xη(
1+

∥∥φ∗∇xη
∥∥2

)1/2
,

then ∥∥∇xdivx
(
ν(φ)

)∥∥
L2(R2;R2)

≤ κ
∥∥φ∗∇∆xη

∥∥
L2(R2;R2) +3κ

∥∥φ∗∆xη
∥∥

L2(R2;R2)

∥∥φ∗∇2
xη

∥∥
L∞(R2;R2×2)

≤ κ
∥∥φ∥∥

L1(R2;R)

(∥∥∇∆xη
∥∥

L2(R2;R2) +3
∥∥∆xη

∥∥
L2(R2;R)

∥∥∇2
xη

∥∥
L∞(R2;R2×2)

∥∥φ∥∥
L1(R2;R)

)
.



(3.1.19). We have that

divx
(
ν(φ1)−ν(φ2)

)
= κ (φ1 −φ2)∗∆xη(

1+
∥∥φ1 ∗∇xη

∥∥2
)3/2

+κ(φ2 ∗∆xη)

 1(
1+

∥∥φ1 ∗∇xη
∥∥2

)3/2
− 1(

1+
∥∥φ2 ∗∇xη

∥∥2
)3/2

 .

Using the inequality |(1+x2)−3/2 − (1+ y2)−3/2| ≤ 48
25

p
5
|x − y |, we obtain∥∥divx

(
ν(φ1)−ν(φ2)

)∥∥
L2(R2;R)

≤ κ
∥∥(φ1 −φ2)∗∆xη

∥∥
L2(R2;R) +

48

25
p

5
κ

∥∥φ2 ∗∆xη
∥∥

L∞(R2;R)

∥∥(φ1 −φ2)∗∇xη
∥∥

L2(R2;R2)

≤ κ
∥∥φ1 −φ2

∥∥
L1(R2,R)

(∥∥∆xη
∥∥

L2(R2;R) +
48

25
p

5

∥∥∇xη
∥∥

L2(R2,R2)

∥∥∆xη
∥∥

L∞(R2;R)

∥∥φ2
∥∥

L1(R2,R)

)
.



Chapter 4
Numerical schemes for a vole population
model in one-dimensional space

4.1 Finite volumes approximations of the model

Firstly, we recall the hyperbolic-parabolic model of voles
∂tρ+∂aρ+∂x(ρχ1(a)v(x)Yθ(φ−R)) =µ∆xρ−dρ, (t , a, x) ∈ (0,T )× (0, A3)×Ω
ρ(t ,0, x) =A

(
φ

)(∫ A3

A1

ρ(t , a, x)da

)
ω(t , x), (t , a, x) ∈ (0,T )× (0, A3)×Ω

ρ(0, a, x) = ρ0(a, x), (a, x) ∈ (0, A3)×Ω,

(4.1.1)

where t ∈ (0,T ) is the time, a ∈ (0, A3) is the age, x ∈ Ω ⊂ R is the space. The constants
0 < A1 < A2 < A3 are such that a vole is young if its age a is in (0, A1), juvenile if its age a
is in (A1, A2) and adult if its age a is in (A2, A3). For the numerical simulations, we need to im-
pose a boundary condition on the space domain. We choose here to impose a homogeneous
Neumann boundary condition, i.e.

∂xρ(t , ·) = 0, on ∂Ω. (4.1.2)

Given a finite time horizon T > 0, a suitable maximal age A3, and a finite domain space
Ω= [−d ,d ], we consider the computational domain [0,T ]×[0, A3]×[−d ,d ] and let∆t ,∆a and
∆x be respectively the constant time, age and space steps.

We set NT = bT /∆tc, NA = bA3/∆ac and NX = b2d/∆xc. Then for any 0 ≤ h ≤ NA, we
introduce the points ah+1/2 = h∆a and, for any 1 ≤ h ≤ NA, the cells Kh = [ah−1/2, ah+1/2)
and the cells centers ah = (h −1/2)∆a. Without loss of generality we can always assume that
A1 = h̄∆a for a suitable index h̄, and we have A2 =αh̄∆a, where α> 1.

Similarly, we define a mesh for space as follows: for any 0 ≤ i ≤ NX we introduce the points
xi+1/2 =−d + i∆x and, for any 1 ≤ i ≤ NX , the cells Ki = [xi−1/2, xi+1/2[ and the cells centers

xi =
xi−1/2 +xi+1/2

2
=−d + (2i −1)

∆x

2
.



Finally, we define t n = n∆t for 0 ≤ n ≤ NT .
For 1 ≤ i ≤ NX , 1 ≤ h ≤ NA and 0 ≤ n ≤ NT , we denote by ωn

i , dn
i ,h and ρn

i ,h the approxima-
tion of the averages of ω(t n , ·), d(t n , ·, ·) and ρ(t n , ·, ·) on the cells Ki and Ki ×Kh , namely

ωn
i = 1

∆x

∫
Ki

ω(t n , x)dx, dn
i ,h = 1

∆a∆x

∫
Kh

∫
Ki

d(t n , a, x)da dx,

ρ0
i ,h = 1

∆a∆x

∫
Kh

∫
Ki

ρ0(a, x)da dx and ρn
i ,h ' 1

∆a∆x

∫
Kh

∫
Ki

ρ(t n , a, x)da dx, n > 0.

(4.1.3)
For each i ∈ {1, . . . , NX } and n ∈ {0, . . . , NT } the average of the total population of voles in

cell i at time t n is

φn
i = 1

∆x

∫
Ki

φi (t n , x)dx,

that is

φn
i = 1

∆x

∫
Ki

∫ A3

0
ρ(t n , a, x)da dx

= 1

∆x

NA∑
h=1

∫
Kh

∫
Ki

ρ(t n , a, x)da dx '∆a
NA∑

h=1
ρn

i ,h .

From the Neumann condition in (4.1.2), we haveρ
n
0,h = ρn

1,h , 0 ≤ n ≤ NT , 1 ≤ h ≤ NA,

ρn
Nx ,h = ρn

Nx+1,h , 0 ≤ n ≤ NT , 1 ≤ h ≤ NA.

We will use the upwind scheme to discretize the model (4.1.1), where for the diffusion
term, we choose to use an implicit treatment, in order to keep the hyperbolic CFL condition,
i.e.

∆t

∆a
≤ 1, and ‖v‖L∞

∆t

∆x
≤ 1.

Assume that (ρn
i ,h) are given. For 1 ≤ i ≤ NX , 1 ≤ h ≤ NA, and 0 ≤ n ≤ NT , we obtain the

following scheme

(1+∆td n+1
i ,h )ρn+1

i ,h − µ∆t

∆x2

(
ρn+1

i+1,h −2ρn+1
i ,h +ρn+1

i−1,h

)
=

(
1− ∆t

∆a

)
ρn

i ,h + ∆t

∆a
ρn

i ,h−1

−∆t

∆x

[
Yθ(φn

i+1/2 −R)v(xi+1/2)χ1(ah)ρn
i+1/2,h︸ ︷︷ ︸

Fn
i+1/2,h

−Yθ(φn
i−1/2 −R)v(xi−1/2)χ1(ah)ρn

i−1/2,h︸ ︷︷ ︸
Fn

i−1/2,h

]
,

ρn
i ,0 =A (φn

i )∆a
NA∑

h=h̄

ρn
i ,hω

n
i ,

(4.1.4)



where in the flux, F, we use the upwind scheme to define

ρn
i+1/2,h =

{
ρn

i ,h if v(xi+1/2) ≥ 0, 1 ≤ h ≤ NA, 0 ≤ n ≤ NT ,

ρn
i+1,h if v(xi+1/2) < 0, 1 ≤ h ≤ NA, 0 ≤ n ≤ NT ,

and we denote Fn
+1/2,h ,Fn

−1/2,h ∈ RNX the vectors of flux for each pair of index h ∈ {1, ..., NA},
and n ∈ {0, ..., NT }.

We finally obtain the main linear system

An+1
h X n+1

h = B n
h ,

for every 1 ≤ h ≤ NA, 0 ≤ n ≤ NT , where

An+1
h =


1+∆t dn+1

1,h 0 · · · 0

0 1+∆t dn+1
2,h · · · 0

... · · · . . .
...

0 · · · 0 1+∆t dn+1
NX ,h

−µ ∆t

∆x2


−1 1 0 · · · 0
1 −2 1 · · · 0

0
. . . . . . . . .

...
... · · · 1 −2 1
0 · · · 0 1 −1

 ,

X n+1
h =


ρn+1

1,h
ρn+1

2,h
...

ρn+1
NX ,h

 ,

and

B n
h =

(
1− ∆t

∆a

)
ρn

1,h
ρn

2,h
...

ρn
NX ,h

+ ∆t

∆a


ρn

1,h−1
ρn

2,h−1
...

ρn
NX ,h−1

− ∆t

∆x

(
Fn
+1/2,h[1 : Nx]−Fn

−1/2,h[1 : Nx]
)

.

4.2 Validation

In this part, we validate the implementation of the numerical scheme described above.
The numerical solution is compared to the exact solution of the equation in the case where
the total population of voles never exceeds R, at any point in the domain. Under these cir-
cumstances, the flux term of space will not contribute to the model (4.1.1).

Next, since computing an exact solution for the complete equation is impossible, we com-
pare the numerical solution with a reference numerical solution, computed with the finest
possible mesh. Also, we assume thatΩ= (0,r ) and A ≡ 1.



We recall that the dispersal of juvenile voles in the flux term with respect to space will not
appear if the total population is always less than the threshold value R. In order to have that,
we choose the initial density of voles

ρ0(a, x) = R

(A3 +1−e−A3 )
(1+e−a)e

2x3−3r x2

6 . (4.2.5)

Then we have φ(t , x) < R, for every (t , x) ∈ (0,T )× (0,r ). Moreover, taking the mortality and
reproduction rates respectively

d(t , a, x) = 1+2e−a

1+e−a
+µ(2x − r )+µx2(x − r )2 and ω(t , x) = 2

(A3 − A1 −e−A3 +e−A1 )
, (4.2.6)

we deduce that the system has an exact solution defined by

ρ(t , a, x) = R

(A3 +1−e−A3 )
e−t (1+e−a)e

2x3−3r x2

6 . (4.2.7)

Due to the computational cost, we have to take a small value for the finite time T = 0.5, and
as a consequence, small values A1 = 0.5, A2 = 1, A3 = 1.5, r = 0.5. Moreover, we set R = 200,
µ= 1 and the velocity function v(x) = x for the validation part.

Figure 4.1 compares the exact and numerical solution, representing the total population
of voles, at the time t = 0.5, and their initial data at t = 0. We observe a good agreement
between the two solutions, the numerical one was computed with ∆a =∆t =∆x = 0.00625.
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Figure 4.1 – Comparison of the total population of voles between the exact solution and the
numerical solution at t = 0.5 and t = 0.

In the next part, we consider the whole equation in (4.1.1) and choose, as a reference so-
lution, the numerical solution computed with ∆a = ∆t = ∆x = 0.0015625. In this case, we
investigate the different initial data, ρ0(a, x), ρ1

0(a, x), ρ2
0(a, x), knowing that the dispersal of

juvenile voles takes place in the cases of ρ1
0(a, x) and ρ2

0(a, x).
Figures 4.2, 4.3, 4.4 show the comparison between the reference solution and numerical

solution, which is computed with∆a =∆t =∆x = 0.0046875 and at time t = 0.3. In figures 4.4,
the initial total population of voles is larger than the threshold value at every point of the
domain, while in figures 4.3, the initial total population is larger than R in just a part of the
domain. The difference between the values of the two solutions in all the considered cases is
negligible.
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4.2.1 Numerical convergence

We introduce here the relative L1-discrete error for the density at a given time t n defined
by

en
L1 =

∑
1≤ j≤Na

∑
1≤i≤Nx

|ρ(t n , a j , xi )−ρn
i , j |∑

1≤ j≤Na

∑
1≤i≤Nx

|ρ(t n , a j , xi )| , (4.2.8)

where ρ(t n , a j , xi ) is the exact solution evaluated at the point a j , xi and at time t n .
In tables 4.1, we have reported the relative L1-discrete errors for the model, that we obtain

by comparing our numerical solution with the exact solution from the previous part, com-
puted for different values of age, space and times steps at the time t = 0.5. The results suggest
the convergence of the numerical scheme. Moreover, figures 4.5 indicate that the order of
convergence of the scheme is approximately 1.

∆t ∆a ∆x eNT

L1

0.1 0.1 0.1 3.8×10−2

0.05 0.05 0.05 1.99×10−2

0.025 0.025 0.025 1.01×10−2

0.0125 0.0125 0.0125 5.13×10−3

0.00625 0.00625 0.00625 2.58×10−3

Table 4.1 – L1-discrete relative errors for the exact solution.
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Figure 4.5 – L1-discrete relative errors for the model in log/log scale at t = 0.5, comparing with
the exact solution.

Remark 4.1. In this result, we consider µ = 1, but we have performed other comparisons with
different values of µ and obtain similar results.



Next, for the relative L1-discrete error concerning the comparison with the reference so-
lution, we use a similar formula in (4.2.8). More precisely, we redefine

en
L1 =

∑
1≤ j≤Na

∑
1≤i≤Nx

|ρ̃n
i , j −ρn

i , j |∑
1≤ j≤Na

∑
1≤i≤Nx

|ρ̃n
i , j |

, (4.2.9)

where ρ̃n
i , j is the reference solution computed on the cell K j ×Ki at time t n .

In tables 4.2, we have reported the relative L1-discrete errors of the whole model for three
different initial data, computed for different values of age, space and times steps at the final
time t = 0.3. The results again suggest the convergence of the numerical scheme. Moreover,
figures 4.6 suggests that the order of convergence of the scheme is approximately 1.

∆t ∆a ∆x eNT

L1 , ρ0 eNT

L1 , ρ1
0 eNT

L1 , ρ2
0

0.1265625 0.1265625 0.1265625 8.95×10−2 8.95×10−2 1.06×10−1

0.0421875 0.0421875 0.0421875 2.35×10−2 2.35×10−2 3.48×10−2

0.0140625 0.0140625 0.0140625 6.72×10−3 6.72×10−3 9.58×10−3

0.0046875 0.0046875 0.0046875 2.35×10−3 2.34×10−3 2.59×10−3

Table 4.2 – L1-discrete relative errors for the reference solution
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Figure 4.6 – L1-discrete relative errors for the whole model in log/log scale at t = 0.3, compar-
ing with the reference solution.



Chapter 5
A Multi-Scale Epidemic Model of Salmonella
infection with Heterogeneous Shedding

5.1 Mathematical models for a population structured by pathogen
load

In this section, we will first present an ODE model which describes the evolution of pathogens
in the gut for an individual. From this model, we will deduce a PDE for a population of indi-
viduals with pathogen loads, i.e. a drift-diffusion equation structured in pathogen load. We
are able to prove the existence and uniqueness of the solution to this PDE and to compute
explicitly the unique stationary state, which is reached asymptotically. This system is finally
generalized by adding an ODE which takes into account the pathogens in the environment
seen as a reservoir.

5.1.1 A simple model of the pathobiome dynamics

A simple way to model the pathobiome dynamics in the host gut is to consider two pop-
ulations: the pathogen and its ecological competitors among the commensal gut bacteria. In
order to build the equations, the following mechanisms are considered: the pathogens pro-
voke an inflammatory response of the host, which affects the pathogens as well as the com-
mensal bacteria. However, the inflammation causes an increase in the oxygen level near the
gut epithelium, thus providing a competitive advantage to the pathogens. Indeed, the com-
mensal microorganisms are mainly anaerobic, which means that they are highly sensitive to
oxygen.

We now detail the model construction step-by-step. We start by assuming an antagonistic
relationship between the pathogen and its ecological competitors, i.e. the fraction of microor-
ganisms in the microbiota that share the same ecological niche. Let p and b be the concen-
trations of pathogens and antagonistic microbes in the host gut, and K > 0 be the carrying
capacity of the niche, in the absence of any other limiting factor. The antagonism is modeled



by the equation
p +b = K (5.1.1)

Note that p ′ =−b′ at any time, so that when p increases, b decreases and vice versa, which is
consistent with an antagonistic relationship. Note also that (5.1.1) allows the elimination of
the unknown b in the equations describing the evolution of the system, however for the sake
of clarity we will keep both variables until the end of the model description.

The pathogens and the antagonistic bacteria present in the intestine compete to conquer
the niche, and the resident bacteria exert a barrier effect against the invasion, meaning that in
the absence of any other phenomenon they eliminate the pathogens. Consequently, equation
(5.1.1) is expanded into the following system of two differential equations:

p ′ = − µ0pb

b′ = µ0pb

where µ0 is a positive coefficient accounting for the efficiency of b in the competition.
We now introduce, as mentioned above, a deleterious signal, such as oxygen, resulting

from the inflammatory response to the pathogens. Let d be this signal, its evolution in time is
modelled as

d ′ = 1

τ

(
−d +C2

pn

pn +p?n

)
.

In this equation, the presence of the pathogens directly promotes the host inflammatory re-
sponse and induces the production of d . This promotion is limited when the number of

pathogens become very high; this is expressed through the sigmoid function C2
pn

pn +p?n

"centered" around the threshold value p? ∈ [0,K], with n ∈ N∗ an exponent controlling the
stiffness of the sigmoid. The parameter τ models a time delay between the evolution of the
pathogens and the evolution of the signal d .

Two additional phenomena happen. First the deleterious signal d is more harmful to the
antagonistic microbiota b than to the pathogens, thus favouring the pathogens in their fight to
conquer the niche. Additionally, b undergoes a limitation in the efficiency of its competition
with p related to the actual environment in the gut, such as the presence of other competitors
of b or the basal immune system response, which we model by a self-inhibition term. These
effects are taken into account by modifying the expression of the coefficient µ0 according to

µ0 =µ
(
1− α

µ
b − C1

µ
d

)
, (5.1.2)

where µ, α and C1 are positive. The term 1− α

µ
b represents the limitation related to the envi-

ronment, and −C1

µ
d accounts for the influence of the deleterious signal d .

The evolution of b and p is therefore modeled by the following equations

b′ =bp
(
µ−αb −C1d

)
p ′ =−bp

(
µ−αb −C1d

)
,



in which the antagonistic relationship between b and p is now more complex than a simple
competition where b wins and p loses, since asymptotically the introduction of (5.1.2) may
modify the trade-off between b and p and allow for coexistence.

Using (5.1.1) to eliminate b and setting A = αK−µ, the overall model is expressed as a
system of two equations on p et d :

p ′ = p(K−p)
(

A−αp +C1d
)

,

d ′ = 1

τ

(
−d +C2

pn

pn +p?n

)
.

Finally, we assume that the dynamics of d is very fast, that is 0 < τ ¿ 1. Therefore, it
is natural to assume that d is at quasi-steady state, and to simplify the model into a single
equation

p ′ = p(K−p)

(
A−αp +C

pn

pn +p?n

)
, (5.1.3)

where C =C1C2. We then get a monodimensional ODE on the pathogen only, that keeps track
of the main drivers of Salmonella infection through its coefficients: 1) the parameter A sums
up microbial ecology characteristics of the commensal by balancing its maximal efficiency
coefficient µ with the environmental harshness αK , which is also taken into account by the
parameterα; 2) the parameter C reflects the virulence of the host inflammatory response (the
parameter C2 describing the amount of deleterious signal produced during inflammation and
C1 its impact on commensals); 3) the host sensitivity to pathogens is shaped by the coeffi-
cients p?, that determines the amount of pathogen tolerated by the host, and the exponent n
that represents the virulence of the inflammation (a higher n induces a sharper inflammatory
response to the pathogen presence, beneficiary to the pathogen).

Depending on the values of A, α, C , n and p?, this ordinary differential equation can pos-
sess from two to five steady states in the interval [0,K], including 0 and K, alternatively stable
or unstable. Discarding the trivial situation in which only two steady states (K is stable, 0 is
unstable) exist, the stability of the equilibria in the case of 3, 4 or 5 steady states in [0,K] is
summarized in Table 5.1, when A,α and C are positive. As mentioned in the introduction,
we are interested in the biologically relevant situation of low and high-shedders, which cor-
responds to the co-existence of two stable steady states. The equilibria corresponding to 0
(no pathogen in the gut) or K (complete elimination of the antagonistic fraction of the mi-
crobiota) are not realistic in a livestock population context, where the contamination by the
pathogen is certain and the commensal microbiota resistance is never totally suppressed. So
the relevant situation on which we will focus is when there are two stable (p1 and p3) and
three unstable (0, p2 and K) steady states. The two stable steady states are interpreted as the
concentrations of pathogens in low and high-shedders respectively.



Stability
Value 3 steady states 4 steady states 5 steady states

0 unstable unstable unstable
p1 stable stable stable
p2 unstable unstable
p3 stable
K unstable stable unstable

Table 5.1 – Stability of the steady states 0 < p1 < p2 < p3 < K when A,α and C are positive.

5.1.2 A model derived from individual stochastic variability

From the previous ODE model, we obtain now an evolution equation for a whole popula-
tion of individuals structured by pathogen loads.

Biological systems often exhibit intrinsic stochastic fluctuations in their dynamics. It there-
fore seems sensible to reformulate the model (5.1.3) as a stochastic differential equation (SDE)

d P = F (P )d t +σdB , (5.1.4)

where P (t ) is now a stochastic variable modeling the amount of pathogens in the gut, dB is a
gaussian unitary white noise, σ > 0 is the instantaneous standard deviation of the stochastic
fluctuations in the model and the function F is defined on R by

F (p) =

p(K−p)

(
A−αp +C

pn

pn +p?n

)
, if p ∈ [0,K] ,

0, otherwise.
(5.1.5)

It can be easily checked that F is uniformly Lipschitz on R, and has linear growth. As σ is
constant, we can use standard results from SDE theory (see e.g. [34]) to obtain the so-called
forward Kolmogorov equation of (5.1.4)

∂t u(t , p) =−∂p (F (p)u(t , p))+ σ2

2
∂2

pp u(t , p),

u(0, · ) = uini( · );

the solution u(t , p), defined on L2(R+×R), is the probability density function of p(t ) at time
t , conditionally on the probability density of the initial pathogen population density function
uini.

However, this model is not quite satisfactory as brownian stochastic fluctuations make
it possible to achieve realizations of p(t ) that are negative or greater than K. To avoid this,
the SDE (5.1.4) has to be transformed into a SDE with reflecting boundary conditions which
requires more sophisticated tools from stochastic process theory (see e.g. [39] for a quick



introduction). The resulting forward Kolmogorov equation is modified in such a way that the
solution space is now L2

(
R+,L2 (0,K)

)
and its formulation is

∂t u(t , p) =−∂p (F (p)u(t , p))+ σ2

2
∂2

pp u(t , p),

∂p u(·,0) = ∂p u(·,K) = 0,

u(0, ·) = uini(·) ∈ L2(0,K ),
∫ K

0
uini(p)d p = 1.

We now consider a very large population such that it can be described by a population den-
sity s(t , p), meaning that

∫ b
a s(t , p)d p is the number of individuals with a pathogen load be-

tween a and b at time t . Define s(t , p) = Nu(t , p) so that the total size of the population

N =
∫ K

0
s(t , p)d p is constant. Then the population density s satisfies the following equations:

∂t s(t , p) =−∂p (F (p)s(t , p))+ σ2

2
∂2

pp s(t , p), (5.1.6a)

∂p s( · ,0) = ∂p s( · ,K) = 0, (5.1.6b)

s(0, · ) = sini( · ) ∈ L2(0,K),
∫ K

0
sini(p)d p = N , (5.1.6c)

where F is defined at Eq.(5.1.5). This is a realistic population model, structured with respect
to the pathogen load, in the absence of pathogen transmission.

5.1.3 Existence of solutions to Eq. (5.1.6) and convergence towards a sta-
tionary state

Let us now prove the existence and uniqueness of the solution to system (5.1.6).

Proposition 5.1. For sini ∈ L2(0,K), the PDE (5.1.6) has a unique solution in C ([0,T ],L2(0,K)).

Proof. Consider the unbounded operator A with domain

D(A) = {w ∈ H 2(0,K), w ′(0) = 0, w ′(K) = 0},

such that for all w ∈D(A),

A(w) =−(F w)′+ σ2

2
w ′′.

Then −A is a regular Sturm-Liouville operator. It follows from [15] that A generates a strongly
continuous semigroup on L2(0,K), which proves the proposition.

We now prove that system (5.1.6) possesses a unique stationary state.



Proposition 5.2. The PDE (5.1.6) has a unique stationary state defined by

s∞(p) =λexp

(
2

σ2

∫ p

0
F (r )dr

)
with λ= N∫ K

0
exp

(
2

σ2

∫ p

0
F (r )dr

)
d p

, (5.1.7)

where F is defined at Eq. (5.1.5).

Proof. The stationary states of model (5.1.6) are the solutions of the equation:

∂p

(
F (p)s∞(p)− σ2

2
∂p s∞(p)

)
= 0, with

∫ K

0
s∞(p)d p = N .

Thanks to the definition of F and the boundary conditions, this leads to

F (p)s∞(p)− σ2

2
∂p s∞(p) = 0.

This simple ODE has a unique solution given by formula (5.1.7).

Finally, we can show that the solution reaches asymptotically this stationary state.

Proposition 5.3. The solution of the PDE (5.1.6), defined at Prop.5.1, converges at exponential
rate towards the steady state s∞ defined in Prop. 5.2.

Proof. We first consider solution s(t , ·) of (5.1.6) with initial condition in D(A) as defined in
proposition 5.1, and follow the method proposed by Bolley et al. in [5]. We consider the L2

weighted norm ∥∥ f
∥∥2

L 2(]0,K[,1/s∞) =
∫ K

0
f (p)2 d p

s∞(p)

and define the function

G(t ) = ‖s(t , ·)− s∞‖2
L 2(]0,K[,1/s∞) .

As the initial condition is in D(A), s(t , ·) is in C 1((0,T ),D(A)) and we can differentiate G with
respect to t , which leads to

G ′(t ) = 2
∫ K

0

(
s(t , p)

s∞(p)
−1

)
∂t s(t , p)d p =σ2

∫ K

0

(
s(t , p)

s∞(p)
−1

)
∂p

[
∂p s(t , p)− 2

σ2
F (p)s(t , p)

]
d p.

Then, integrating by parts, using boundary conditions (5.1.6b) and the fact that F (0) = F (K ) =
0, see Eq.(5.1.5), we find that

G ′(t ) =−σ2
∫ K

0
∂p

(
s(t , p)

s∞(p)
−1

)[
∂p s(t , p)− 2

σ2
F (p)s(t , p)

]
d p

=−σ2
∫ K

0

∣∣∣∣∂p

(
s(t , p)

s∞(p)
−1

)∣∣∣∣2

s∞(p)d p.



From Poincaré-Wirtinger’s inequality for bounded domain with weighted norm (see [30,
Lemme 3.3]) applied with ‖.‖L 2(]0,K[,s∞), there exists a constant κ depending only on the do-
main [0,K ] and the weight s∞, such that

κ

∫ K

0

∣∣∣∣ s(t , p)

s∞(p)
−1

∣∣∣∣2

s∞(p)d p É
∫ K

0

∣∣∣∣∂p

(
s(t , p)

s∞(p)
−1

)∣∣∣∣2

s∞(p)d p.

Then, using the expression of G and G ′, we obtain that

G ′(t ) É−κσ2G(t ).

Finally, by a direct application of the differential form of Gronwall’s lemma, one can deduce
that for all initial condition in D(A), the solution s(t , p) of (5.1.6) converges when time goes to

infinity towards the steady state s∞, in the sense of L 2
(
]0,K [ , 1

s∞

)
, at rate e−σ2κt .

From the density of D(A) in L2(0,K ) it follows that for all initial condition in L2(0,K ), the (mild)
solution s(t , p) of (5.1.6) also converges when time goes to infinity towards the steady state s∞,

in the sense of L 2
(
]0,K [ , 1

s∞

)
, at rate e−σ2κt .

5.1.4 Generalized model adding transmission through an external reser-
voir

Our aim in this subsection is to add some exchanges of pathogens between individuals
through the environment. The salmonella pathogen can be released in the environment by
the infected animals and can contaminate food sources, for example watering troughs. This
mechanism creates an external reservoir of pathogens which varies according to the excre-
tion and absorption of salmonella by individuals. Thus, it constitutes a major environmental
factor in the spread of pathogens. In order to account for this mechanism, the model (5.1.6)
is modified into

∂t s(t , p) =−∂p

((
F (p)+βin(p)r (t )−βex(p)

)
s(t , p)

)
+ σ2

2
∂2

pp s(t , p), (5.1.8a)

d r (t )

d t
=−

(
γ+

∫ K

0
s(t , p)βin(p)d p

)
r (t )+

∫ K

0
s(t , p)βex(p)d p, (5.1.8b)

σ2

2
∂p s(t ,K)+βex(K)s(t ,K) = σ2

2
∂p s(t ,0)−βin(0)r (t )s(t ,0) = 0, (5.1.8c)

s(0, · ) = sini( · ) ∈ H 1(0,K),
∫ K

0
sini(p)d p = N , r (0) = rini ∈R+, (5.1.8d)

where F is defined at Eq.(5.1.5).
Here the new variable r denotes the reservoir of pathogens in the environment. In PDE (5.1.8a),

the term βin(p)r represents the uptake of pathogens from the environment, while βex(p)
stands for the pathogen excretion by individuals. Similarly, in the ODE (5.1.8b), the quan-
tity r (t )s(t , p)βin(p)d p indicates the uptake of pathogens from the environment by individ-
uals with pathogen load p and the last term s(t , p)βex(p)d p describes the increase of the



pathogen reservoir induced by individuals with pathogen load p. We set βin(p) = βin
(
K−p

)
and βex(p) = βexp, with βin,βex > 0, so that the contamination from the reservoir decreases
with the pathogen load whereas the excretion increases with the pathogen load. The positive
parameter γ is the natural decay rate of the pathogen reservoir. Finally, boundary conditions
are modified into Robin boundary conditions in order to ensure the conservation of the total
population.

5.2 Numerical results for models (5.1.6) without transmission
and model (5.1.8) with transmission

Our goal in this section is to display and comment some numerical simulations of sys-
tems (5.1.6) and (5.1.8); we test different initial data and compare the solutions of the two
models, with or without transmission.

The numerical scheme is based on upwind scheme for the transport term and the time-
implicit centered three point scheme for the diffusion part. The simulations have been per-
formed with Python 3 (using Numpy & Scipy) on a 500 cell mesh grid and with the parameters
summarized in table (5.2).

In this theoretical analysis, in the absence of experimental calibration, the parameters A,
α and C are set to values for which the deterministic model (5.1.3) has two well separated
non trivial stable equilibria corresponding to the last column in Table 5.1, in order to obtain
a bimodal equilibrium distribution in equation (5.1.6), describing the coexistence of high-
shedder and low-shedder phenotypes in the population. The parameter K has been chosen
arbitrarily, and could be rescaled to reflect another carrying capacity. The logistic threshold
p? has been tuned to trigger an inflammation into the host gut when the pathogen load is
close to half the carrying capacity. The diffusion parameter σ was selected in the same or-
der of magnitude than the transport process, meaning that the stochastic effects during the
pathogen infection are not negligible and can impact the pathogen dynamics. The parame-
ters βi n and βex provide a small inter-host infection rate.

Parameter K A α C n p? σ γ βin βex

Value 5.0 0.1 0.35 1.2 50 2.15 1.75 1.0 1 0.2

Table 5.2 – Values of the parameters used to perform the simulations presented in section 5.2.

5.2.1 Structured population without transmission

Figure 5.1 represents some solutions of the population model (5.1.6) structured by pathogen
load and without transmission through a reservoir, for the parameters given at Table 5.2.
Three different initial data, shown in dotted blue line in Subfigures 5.1(a), 5.1(b) and 5.1(c)



are considered:

sini(p) = 0.2, sini(p) = e−(p1−p)2/4∫ K

0
e−(p1−p)2/4d p

, sini(p) = e−(p3−p)2/4∫ K

0
e−(p3−p)2/4d p

, (5.2.9)

where p1 ∼ 0.285 and p3 ∼ 3.714 are the two stable steady states. As expected, for each
initial datum, the solution converges towards the theoretical stationary state computed at
Eq. (5.1.7). This stationary state possesses two maximal values at p = p1 and p = p3, corre-
sponding respectively to the low-shedder and the high-shedder groups and a minimal value
at p = p2, an unstable steady state of Eq.(5.1.3). However, we can observe some discrepancies
in the transient behavior, as noticed on the plots of Subfigures 5.1(d), 5.1(e) and 5.1(f) repre-
senting the evolution with time and pathogen load of the density population s. Especially,
depending on the initial datum, the steady state can be reached from above (p3 neighborhood
in Fig. 5.1(a), 5.1(c), p1 neighborhood in Fig. 5.1(b)) or from below (p1 neighborhood in Fig.
5.1(a), 5.1(c), p3 neighborhood in Fig. 5.1(b)). Furthermore, the steady state is reached faster
in Fig. 5.1(d) (around t = 6) than in Fig 5.1(e) (around t = 9) or 5.1(f) (around t = 8).

5.2.2 Structured population with transmission through a pathogen reser-
voir

Figure 5.2 represents the density population s, solution to the structured in pathogen load
population system (5.1.8), with transmission through a pathogen reservoir. The initial datum
used for this simulation is sini(p) = 0.2 and rini = 0.

The evolution of the population density s(t , p) is plotted in Subfigure 5.2(a), together with
levelsets. Numerical experiments show that s(t , p) converges towards a stationary state. The
time evolution of the reservoir variable r and of the total pathogen load within the population∫ K

0
ps(t , p)d p is displayed in Subfigure 5.2(b). Due to the pathogen excretion, the reservoir

variable first increases until a maximal value of 0.123 at t = 1.11. Then in a second phase, it
slightly decreases and tends to stabilize around 0.099. Subfigure 5.2(c) shows the comparison
between the solution s(t , p) for t = 5, in dashed green line, and t = 10 close to the station-
ary state (red line). To highlight the effect of the reservoir, we plot s∞, i.e. the stationary
state without reservoir (r− control, black line), which differs notably from the stationary state
with reservoir (red line). It can be observed that low and high shedder clusters are shifted
and that their sizes are changed. Indeed, the low shedder cluster is centered around the
steady state p1 ' 0.61 for the model with the reservoir variable, whereas it is centered around
the steady state p1 ' 0.28 without the reservoir variable. In addition, the low shedder clus-
ter is larger in the sense that it contains more individuals when accounting for the reservoir
variable. For the high shedder cluster, the effect is the opposite. Indeed, in the model with
the reservoir variable, the cluster is smaller (fewer individuals) and shifted towards a smaller
value of pathogen load: p3 ' 3.43 instead of p3 ' 3.71 without reservoir variable. The increase
of the low-shedder average pathogen load may reflect the higher exposure to environmental
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(f) Population density evolution,

for sini(p) = e−(p3−p)2/4∫ K

0
e−(p3−p)2/4

Figure 5.1 – Basal experiment: Evolution of the population distribution when no transmis-
sion is considered (model (5.1.6)). Each column corresponds to the different initial data in-
troduced in Eq. (5.2.9). Top row: population density is displayed at time t = 0 (blue dotted
line), t = 5 (green dashed line) and t = 10 (red dashed line), compared to the stationary state
without reservoir (r− control, plain black line). Bottom row: Evolution of the population den-
sity, together with level sets, for the three different initial data.

pathogen, whereas the decrease of high shedder load may come from excretion. Indeed, the
degradation of the pathogen in the environment makes the reservoir variable a sink source
for intra-host pathogens and pulls the pathogen loads towards lower values.

For this model, stationary states can be computed thanks to some fixed-point technique.
However, the proof of the asymptotic convergence towards a stationary state is much more
difficult to handle than the proof of Prop.5.3, due to the coupling with the ODE.
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Figure 5.2 – Pathogen reservoir: Evolution of the population density when contact with an
environmental pathogen reservoir is added (model (5.1.8)). Initial data are sini(p) = 0.2 and
rini = 0. (A) Population density dynamics together with level sets. (B) Evolution of the en-
vironmental pathogen reservoir r (red line) and total pathogen load within the population∫ K

0
ps(t , p)d p (blue dotted line). (C) Population densities s at times t = 0 (dotted blue line),

t = 5 (green dash dotted line) and t = 10 (red dashed line), compared with the stationary state
of the model without reservoir s∞ (r − contr ol , black line).

However, we can draw some first conclusions from numerical experiments: for the range
of parameters we have tested for βin and βex, the solution always converges towards a steady
state. Moreover, whatever the initial datum sini chosen among those of Eq.(5.2.9) or Dirac
masses and whatever rini, the population density s converges asymptotically towards the
same stationary solution.

Consequently, we think that the PDE system (5.1.8) possesses only one stable stationary
solution and that all solutions converge towards this steady state.

5.3 Study of various control strategies

Control strategies consist in external actions in order to limit the spread of pathogens
within the population. Two types of control will be considered: on the one hand, the clean-
ing action limits the pathogen reservoir in the environment, by removing a certain amount of
pathogens represented by the reservoir variable, and, on the other hand, drugs can be used
to cure the population. A combination of these two treatments is also considered and a com-
parison between these three possibilities is performed.

Let us first describe how to model the two treatment strategies in the PDE system (5.1.8).
The cleaning action removes pathogens from the environment. It can be modeled by

adding an extra term of the form −C (t ,r ) in the right hand side of Equation (5.1.8b) for the



reservoir variable. As a first attempt to describe this mechanism, it is assumed that C is a linear
function of r , meaning that the cleaning treatment removes a constant fraction of pathogen
reservoir per time unit. Moreover, cleaning might start after a given time and/or might be
periodic. Therefore, we assume that C takes the following form:

C (t ,r ) = ρr1t∈IC ,

where ρ ∈ R+ is the cleaning rate and IC the time interval(s) during which the cleaning is
applied.

On the contrary, the treatment with drugs decreases the pathogen load of the individuals.
Therefore this mechanism is modeled by adding an extra term −T (t , p)s(t , p) in the drift term
of the population mass balance equation (5.1.8a). It is assumed that the treatment removes a
constant fraction of the pathogen load of an individual per time unit and that it also depends
on time. So, we write the term T accounting for drug treatment as

T (t , p) = θp1t∈IT ,

where the rate θ ∈R+ models the treatment efficiency and IT the time interval(s) during which
the treatment is administrated.

Taking into account cleaning and drug treatment, the system (5.1.8) becomes

∂t s(t , p) =−∂p

((
F (p)+βin(p)r −βex(p)−T (t , p)

)
s(t , p)

)
+ σ2

2
∂2

pp s(t , p), (5.3.10a)

d r (t )

d t
=−

(
γ+

∫ K

0
s(t , p)βin(p)d p

)
r (t )+

∫ K

0
s(t , p)βex(p)d p −C (t ,r ), (5.3.10b)

σ2

2
∂p s(t ,K)+ (

βex(K )+T (t ,K )
)
s(t ,K) = σ2

2
∂p s(t ,0)+ (

T (t ,0)−βin(0)r (t )
)
s(t ,0) = 0,

(5.3.10c)

s(0, · ) = sini( · ) ∈ H 1(0,K),
∫ K

0
sini(p)d p = N , r (0) = rini ∈R+. (5.3.10d)

The simulations presented in the following subsections are performed with the parame-
ters of Table 5.2. We also take ρ = 5 for the cleaning rate and θ = 0.25 for the drug treatment
rate.

5.3.1 Cleaning strategy

Let us begin with the study of the cleaning strategy.
Figures 5.3 and 5.4 represent two simulations of system (5.3.10) with cleaning only, i.e.

T (t , p) = 0. For the simulation displayed in Figure 5.3, the cleaning is activated during the
whole simulation, namely IC = R+, whereas in the simulation displayed in Figure 5.4 the
cleaning is only activated on the time interval IC = [10,20].

The results presented in Figure 5.3 are comparable to the simulation presented in Subsec-
tion 5.2.2. Indeed, in this case, system (5.3.10) reduces to system (5.1.8) in which the decay
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Figure 5.3 – Reservoir, cleaning, no drug, stationary treatment: Evolution of the population
density when contact with an environmental pathogen reservoir is added and when cleaning
and no drug are applied (model (5.3.10) with T = 0). Initial data are sini(p) = 0.2 and rini = 0.
Cleaning is applied during the whole simulation (IC = R+). (A) Population density dynamics
together with level sets. (B) Evolution of the environmental pathogen reservoir r (red line) and

total pathogen load within the population
∫ K

0
ps(t , p)d p (blue dotted line). (C) Population

densities s at times t = 0 ( blue dotted line), t = 5 (green dash dotted line) and t = 10 (red
dashed line), compared with the stationary state of the model with reservoir but no cleaning
and no drug treatment (r + contr ol , black line).

rate for the pathogen reservoir γ has been shifted to γ̃= γ+ρ. As in Section 5.2.2, the system
seems to converge towards a stationary state. However, the features previously observed are
enhanced. First, we can notice that the population density s affected by cleaning contains
more low shedder individuals and less high shedder individuals than the population density
without cleaning. In addition, the reservoir variable takes lower values in the case of cleaning;
for example, we observe that at time t = 10, r (10) ' 0.038 with cleaning and r (10) ' 0.118 with-
out cleaning. Similarly, the total pathogen load in the whole population takes lower values,
for example, at time t = 10,

∫ K
0 ps(10, p)d p ' 2.0 without cleaning and

∫ K
0 ps(10, p)d p ' 1.77

with cleaning. Finally, the pathogen loads corresponding to low and high shedder individuals
are changed (p1 ' 0.42 and p3 ' 3.39) compared to the model without cleaning (p1 ' 0.61 and
p3 ' 3.43).

Figure 5.4 displays the results of a simulation where the cleaning is applied only during
a range of time IC = [10,20], which allows to study the dynamic response of the system. In
Subfigures 5.4(a) and 5.4(b) , we can notice three different periods of time. The first one cor-
responds to the time range t ∈ [0,10], when the system evolves without cleaning. During this
time interval, the system behaves like system (5.1.8) (see Section 5.2.2). The second period
corresponds to t ∈ IC = [10,20], when the cleaning is applied; according to Figure 5.4(b), the
pathogen reservoir rapidly drops off to a range of values similar to those found in the simula-



tion where the cleaning is applied from the beginning, see Figure 5.3(b). On the opposite, the
dynamic adaptation of the population is slower. Indeed, as it can be observed in Figure 5.4(b),
the total pathogen load

∫ K
0 ps(t , p)d p, plotted in blue dashed line, also decreases but takes a

longer time to stabilize. In the last period, which corresponds to t > 20, cleaning is removed.
Here again, the dynamic adaptation of the pathogen reservoir variable occurs very quickly,
whereas the adaptation of the population is slower.

As a conclusion, the cleaning action does not change the global dynamics of the system,
but leads to smaller reservoir pathogen levels and lower average pathogen load in the pop-
ulation. Moreover, we can observe that the population dynamics response to cleaning takes
more time than the pathogen reservoir dynamics response. Furthermore, when cleaning is
stopped, the pathogen distribution rapidly turns back to the distribution observed when no
cleaning is applied, showing that cleaning should be applied at a period smaller than this
relaxation time scale to be efficient as a control strategy.
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Figure 5.4 – Reservoir, cleaning, no drug, transient treatment: Evolution of the population
density when contact with an environmental pathogen reservoir is added and when cleaning
and no drug are applied (model (5.3.10) with T = 0). Initial data are sini(p) = 0.2 and rini =
0. Cleaning is applied on the time interval IC = [10,20]. (A) Population density dynamics
together with level sets. (B) Evolution of the environmental pathogen reservoir r (red line) and

total pathogen load within the population
∫ K

0
ps(t , p)d p (blue dotted line). (C) Population

densities s at times t = 0 (blue dotted line), t = 5 (green dash dotted line) and t = 10 (red
dashed line), compared with the stationary state of the model with reservoir but no cleaning
and no drug treatment (r + contr ol , black line).

5.3.2 Drug treatment strategy

In this subsection, we now consider the effect of a drug treatment and we neglect the
cleaning, i.e. C (t ,r ) = 0 in Eq. (5.3.10). Two different scenarios of treatment are discussed



below.

Figure 5.5 represents the first scenario in which the treatment is applied for all time, namely
IT =R+. According to Figure 5.5(a) displaying the population dynamics and Figure 5.5(b) rep-
resenting the pathogen reservoir, the system seems to converge towards a stationary state.
The effect of the treatment can be estimated by comparing this simulation with the results
obtained in Section 5.2.2, that is to say the same system without treatment. In Figure 5.5(b), it
can be observed that the pathogen reservoir takes lower values in the case with treatment than
without, for example r (10) = 0.053 with treatment and r (10) = 0.10 without. As expected, the
total pathogen load in the population is smaller, meaning that the population is less infected
by the pathogen when a treatment is administrated. This observation is enforced by compar-
ing the size of the low and high shedder groups in Figure 5.5(c) with the ones in Figure 5.2(c).
Indeed, with a drug treatment, a large part of the population concentrates around the low
shedder pathogen load value p1 and the high shedder group, i.e. individuals with a pathogen
load around p3, is smaller. Moreover, the treatment shifts towards lower values the pathogen
loads corresponding to low and high shedder individuals, namely

(
p1, p3

) = (0.39,3.09) with
the treatment, whereas

(
p1, p3

)= (0.61,3.43) without.
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Figure 5.5 – Reservoir, no cleaning,drug, stationnary treatment: Evolution of the population
density when contact with an environmental pathogen reservoir is added and when no clean-
ing but drug treatment is applied (model (5.3.10), with C = 0). Initial data are sini(p) = 0.2 and
rini = 0. Cleaning is applied on the time interval IT = R+. (A) Population density dynamics
together with level sets. (B) Evolution of the environmental pathogen reservoir r (red line)

and total pathogen load within the population
∫ K

0
ps(t , p)d p (blue dotted line). (C) Popula-

tion densities s at times t = 0 (blue dotted line), t = 5 (green dash dotted line) and t = 10 (red
dashed line), compared with the stationary state of the model with reservoir but no cleaning
and no drug treatment (r + contr ol , black line).

In the simulation represented in Figure 5.6, drug treatment is only applied during the time



interval IT = [10,20]. As for the cleaning case, this simulation allows to study the dynamic
response of the system to the drug treatment and the evolution of the solution in Subfig-
ures 5.6(a) and 5.6(b) can also be divided into three periods. The first one corresponds to
the time range t ∈ [0,10] with no cleaning. In this first phase, the system behaves like Sys-
tem (5.1.8), see Section 5.2.2 for the corresponding numerical results. The second time pe-
riod corresponds to t ∈ IC = [10,20]. During this period, according to Figure 5.6(b), the total
pathogen load of the population, plotted in blue dashed line, and the pathogen reservoir de-
crease exponentially. Remark that, here, both the pathogen reservoir and the total pathogen
load within the population decrease with the same exponential rate, unlike what was ob-
served for the cleaning case. In the last period, which corresponds to t > 20, the treatment is
removed and, as expected, the pathogen reservoir and the total pathogen load increase. Here
again, the dynamic adaptation of the pathogen reservoir and the average pathogen load fol-
low an exponential dynamics with a comparable rate. After the end of the therapy, the system
recovers its original dynamics, showing again that the administration periodicity is important
for a durable effect.
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Figure 5.6 – Reservoir, no cleaning, drug, transient treatment: Evolution of the population
density when contact with an environmental pathogen reservoir is added and when no clean-
ing but drug treatment is applied (model (5.3.10), with C = 0). Initial data are sini(p) = 0.2 and
rini = 0. Cleaning is applied on the time interval IT = [10,20]. (A) Population density dynamics
together with level sets. (B) Evolution of the environmental pathogen reservoir r (red line)

and total pathogen load within the population
∫ K

0
ps(t , p)d p (blue dotted line). (C) Popula-

tion densities s at times t = 0 (blue dotted line), t = 5 (green dash dotted line) and t = 10 (red
dashed line), compared with the stationary state of the model with reservoir but no cleaning
and no drug treatment (r + contr ol , black line).



5.3.3 Combination of cleaning and drug treatment

We now consider the case when cleaning and drug treatment are combined in order to
decrease the pathogen load. A simulation of System (5.3.10) with both terms C (t ,r ) and T (t ,r )
is displayed at Figure 5.7. In this simulation, cleaning and treatment are activated during the
whole time, namely IC = IT = R+. The values for the cleaning rate and the treatment rate are
the same as in the previous subsections and, as expected, both effects accumulate. Indeed, by
comparing Figure 5.7(b) with Figures 5.3(b) and 5.5(b), it can be observed that the pathogen
reservoir and the total pathogen load remain lower than in the cleaning or the drug treatment
cases. Here again, it seems that the system converges towards a stationary state, according to
Figure 5.7(a).
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Figure 5.7 – Reservoir, cleaning, drug, stationary treatment: Evolution of the population
density when contact with an environmental pathogen reservoir is added and when clean-
ing and drug treatment are applied (model (5.3.10)). Initial data are sini(p) = 0.2 and rini = 0.
Cleaning and drug treatment are applied on R+. (A) Population density dynamics together
with level sets. (B) Evolution of the environmental pathogen reservoir r (red line) and total

pathogen load within the population
∫ K

0
ps(t , p)d p (blue dotted line). (C) Population densi-

ties s at times t = 0 (blue dotted line), t = 5 (green dash dotted line) and t = 10 (red dashed
line), compared with the stationary state of the model with reservoir but no cleaning and no
drug treatment (r + contr ol , black line).

5.3.4 Comparison of the various control strategies

According to the simulations presented in the previous subsections, the cleaning strategy
does not allow to decrease efficiently the pathogen load. On the opposite, the drug treatment
seems much more efficient and leads to a substantial reduction of the pathogen load in the
population. Indeed, cleaning reduces the environmental pathogen load which decreases the



positive drift term βin(p)r in Eq. (5.3.10a): the impact of cleaning on the pathogen distribu-
tion is then driven by the excretion represented by the negative drift βex(p) which is no longer
balanced by the pathogen absorption. The same behavior occurs during drug treatment:
the environmental pathogen load is decreased consecutively to the reduction of the high-
shedding, and the negative drift βex also nearly fully applies. However, it is supplemented in
that case by the treatment negative drift T (t , p), inducing a stronger impact on the pathogen
distribution. Depending on the parameters, the high shedder can be eliminated. However,
these conclusions are highly dependent on the chosen parameter values and the modeling of
the control strategies is highly simplified. Finally, the combination of cleaning and treatment
seems to be, in any case, the most efficient strategy.

5.4 Generalization to a compartment model with transfers

In this section, we generalize the model (5.1.8) introduced in Sec. 5.1.4 by considering
compartments. In particular, the compartments can represent different cages (or farms), be-
tween which there exist exchanges of animal or/and of the pathogens present in the environ-
ment, for example pathogens carried by farming tools.

Let us define d ∈N∗ as the number of compartments. From now on,

s(t , p) = (
s1(t , p), s2(t , p), . . . , sd (t , p)

) ∈Rd

will be a vector gathering the populations of the various compartments, structured by pathogen.
Similarly, r (t ) = (

r1(t ), r2(t ), . . . , rd (t )
) ∈Rd is now the vector gathering the reservoir vari-

ables in all the compartments. Moreover, let A, respectively B, be the transfer matrix in Md (R)
representing the exchanges between compartments for the individuals, respectively for the
salmonella pathogen reservoirs. Indeed, for 1 É i , j É d and i 6= j , the coefficient Ai , j Ê 0
(resp. Bi , j Ê 0) corresponds to the transfer rate from compartment j to compartment i . Be-
cause the total population of animals (resp. pathogens in the reservoir) has to be conserved by
the transfers between compartments, the diagonal coefficient Ai ,i , which corresponds to the
total amount leaving the compartment i , satisfies Ai ,i = −∑

k 6=i Ak,i (resp. Bi ,i = −∑
k 6=i Bk,i ).

With these notations, the model writes as

∂t s(t , p) =−∂p

((
F (p)+βin(p)r −βex(p)

)
s(t , p)

)
+ σ2

2
∂2

pp s(t , p)+As(t , p), (5.4.11a)

d r (t )

d t
=−

(
γ+

∫ K

0
s(t , p)βin(p)d p

)
r +

∫ K

0
s(t , p)βex(p)d p +Br (t ), (5.4.11b)

σ2

2
∂p s(t ,K)+βex(K )s(t ,K) = σ2

2
∂p s(t ,0)−βin(0)r (t )s(t ,0) = 0, (5.4.11c)

s(0, · ) = sini( · ) ∈ H 1(0,K),
∫ K

0
sini(p)d p = N , r (0) = rini ∈R+. (5.4.11d)

Let N (t ) =
∫ K

0
s(t , p)d p be the vector of the total population in each compartment. By

integrating (5.4.11a), one can deduce that N satisfies the ODE N ′(t ) = AN (t ). Therefore,



using Eq.(5.4.11d), the population sizes in all compartments are explicitly given by N (t ) =
exp(tA) N , where N (0) = N =

∫ K

0
sini(p)d p is the vector of the initial total populations in the

cages. We also remark that the overall total population remains constant since
(∑

i Ni
)′ =∑

i
(

AN
)

i =
∑

j (
∑

i Ai , j )N j = 0.

5.4.1 Numerical simulations for multiple compartments (cages/farms)

In the following, we consider the case of 4 compartments and we perform some numerical
simulations. We will first study the case of transfers of individuals without any transfer of
reservoir pathogens, then the case of transfers of reservoir pathogens without any transfer of
individuals.

Multiple compartments and transfers of individuals

Here, we investigate the case with no transfers for the reservoir pathogens r , that is to say
B = 0, and only transfers of individuals between the compartments. This situation may repre-
sent a farm where individuals of the same species will be exchanged between different cages
or several farms with exchanges of individuals of the same species between them. Therefore,
we make the assumption that the populations have the same characteristics in each compart-
ment, i.e. F , βex and σ are identical. However, each compartment, cage or farm, may have its
own properties and we use therefore different values for the intakes of pathogens from the
reservoir βin and for the reservoir decay rate γ according to the compartment. In addition,
different initial distributions of the population in terms of pathogen load sini(p) and various
initial conditions of reservoir pathogens rini are considered. The corresponding values are
gathered in Table 5.3 and the transfers of individuals between compartments are given by the
matrix

A =


−2.25 0.75 0.75 0.75

0.5 −1.5 0.5 0.5.
0.25 0.5 −1.5 0.75
1.5 0.25 0.25 −2

 . (5.4.12)

Note that all the rows of A sum to 0 meaning that there is no loss or gain of individuals in-

duced by transfers. Moreover, we choose sini such that N = (
1 1 1 1

)T ∈ Ker(A). Therefore,
the repartition of livestock in each compartment remains constant over time. This particular
choice has been made to be able to compare the results with the simulations without trans-
fers.

The results of the simulation with these parameters are displayed in Figure 5.8. As it can
be observed in Figures 5.8(a) and 5.8(b), the system seems to converge towards a stationary
state. In Figure 5.8(b) the dashed curves represent the pathogen reservoirs in red and the
pathogen population loads

∫ K
0 ps(t , p)d p in blue as a function of time when the transfers are

neglected, whereas the plain curves correspond to the same quantities when the transfers are
given by matrix A defined at Eq. (5.4.12). Similarly, in Fig. 5.8(c), the black curves correspond



Parameter Compartment 1 Compartment 2 Compartment 3 Compartment 4

sini(p) 0.2 ϕ0(p) ϕ0.5(p) ϕ1(p)
rini 0.1 0.125 0.15 0.175
βin 1.6 1.3 1.0 0.7
γ 0.4 0.7 1.0 1.3
σ 2.45 1.4 1.75 2.1

Table 5.3 – Values of the intakes of pathogens from the reservoir βin, reservoir decay rate
γ, initial distributions of the population in terms of pathogen load sini(p) and initial con-
ditions of reservoir pathogens rini for the 4 different compartments, used in the simulation
represented in Figure 5.8. The function ϕα(p) used to build the initial data is defined by

ϕα(p) = e−(αK−p)2/9∫ K
0 e−(αK−p)2/9d p

.

to the population distribution s(t = 10, p) as a function of the pathogen load p at time t = 10
when the transfers are neglected; the solutions at different times when transfers are taken into
account are displayed, namely s(t = 0, p) in blue, s(t = 5, p) in green, and s(t = 10, p) in red.
According to these simulations, the transfers of individuals modify the solution. For example,
the pathogen reservoir and the total pathogen load for the population in the first compart-
ment are lower than when transfers are accounted. On the opposite, in the second compart-
ment, the pathogen reservoir and the total pathogen load for the population are higher when
the transfers are activated. For the third compartment, the dynamics is almost unchanged.
Finally, for the fourth compartment, the values at final time t = 10 for the pathogen reservoir
and the total pathogen load of the population are similar but the transient dynamics is slowed
down.

Multiple compartments and transfers between pathogen reservoirs

Now, we study the case with no transfers of individuals, that is to say A = 0, and only trans-
fers of reservoir pathogens between the compartments. Transfers of pathogen reservoirs be-
tween compartments correspond for example to transfers of pathogens induced by farming
activities, for instance by using the same clothes or boots in different buildings on a farm. It
can also represent the spread of the pathogen reservoir by environmental factors, e.g. wind,
between farms or cages. In this case, all the parameters can be different from one compart-
ment to another. However, in order to compare the effects of the transfers of the pathogen
reservoirs with the transfers of individuals, the simulation presented in Figure 5.9 has been
performed with the same parameters as in previous section, see Table 5.3. The transfers for
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Figure 5.8 – 4 compartments, animal transfer, no reservoir transfer: Evolution of the popu-
lation density in the 4 compartments when contact with an environmental pathogen reservoir
is considered (model (5.4.11)). In the different compartment, no particular treatment is ap-
plied. Transfer of individuals between compartments is given by the matrix A in Eq. (5.4.12),
but no transfer between compartment reservoir variables is added (B = 0). Initial data are
different in each compartment (see parameter in Table 5.3 )(A) Population density dynamics
together with level sets. (B) Evolution of the environmental pathogen reservoir r (red line)

and total pathogen load within the population
∫ K

0
ps(t , p)d p (blue line), compared with a

simulation with no inter-compartment transfer at all (A = 0,B = 0), in dotted lines. (C) Pop-
ulation densities s at times t = 0 (blue dotted line), t = 5 (green dash dotted line) and t = 10
(red dashed line). The solution is compared with the solutions r+contr ol of system (5.1.8) at
t = 10 computed with the parameters of Table 5.3. We note that consequently, r+contr ol is
different in each compartment and that this simulation represents a situation with no inter-
compartment transfer (A = 0,B = 0).

the pathogen reservoirs are given by the matrix

B =


−6 0.25 0.5 0.25
2 −1 2.5 0.5
1 0.25 −6 0.25
3 0.5 3 −1

 . (5.4.13)

According to Figures 5.9(a) and 5.9(b), the solution seems to converge in time towards a
stationary state. The main effect of transfers of the pathogen reservoirs between compart-
ments can be observed in Figure 5.9(b), which compares the pathogen reservoir size and the
total pathogen load in the population over time, in plain curves, with the same simulation
without transfers, in dashed curves. With transfer matrix B given at Equation (5.4.13), we can
notice the effects of the pathogen transfers, for example in compartment 4 or for the time



range [0,2] in compartment 1. However, within the range of parameters used in this anal-
ysis, the effect of pathogen reservoir transfers is very weak on the population. Indeed, we
can remark that the total pathogen load – see Figure 5.9(b) – and the stationary states of the
pathogen load distribution – see Figure 5.9(c) – with and without transfers for the reservoir
pathogens are almost identical.
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Figure 5.9 – 4 compartments, no animal transfer, reservoir transfer: Evolution of the pop-
ulation density in the 4 compartments when contact with an environmental pathogen reser-
voir is considered (model (5.4.11)). In the different compartments, no particular treatment
is applied. Transfer of individuals between compartments is discarded (A = 0) but transfer
between compartment reservoir variables is added (B given by Eq. (5.4.13)). Initial data are
different in each compartment (see parameter in Table 5.3) (A) Population density dynamics
together with level sets. (B) Evolution of the environmental pathogen reservoir r (red line)

and total pathogen load within the population
∫ K

0
ps(t , p)d p (blue line), compared with a

simulation with no inter-compartment transfer at all (A = 0,B = 0), in dotted lines. (C) Pop-
ulation densities s at times t = 0 (blue dotted line), t = 5 (green dash dotted line) and t = 10
(red dashed line). The solution is compared with the solutions r+contr ol of system (5.1.8) at
t = 10 computed with the parameters of Table 5.3. We note that consequently, r+contr ol is
different in each compartment and that this simulation represents a situation with no inter-
compartment transfer (A = 0,B = 0).

Multiple compartments and spreading of pathogen load

Finally, we study a case with transfers of individuals and reservoir pathogens and we aim
at exploring the spreading and contamination of pathogens from the first compartment to the



three other compartments. Initial data are therefore given by:

si ni ,1(p) = 0.2, si ni ,k (p) = 1p<0.25∫ K
0 1p<0.25(p)d p

, k ∈ {2,3,4} (5.4.14)

and we use the same parameters for all the compartments, that can be found in Table 5.2. The
transfer matrices A and B are given by:

A =


−1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1

 and B =


−1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1

 . (5.4.15)

such that the first compartment contaminates the second, the second contaminates the third
and the third contaminates the fourth.

The results are displayed in Fig. 5.10. As expected, the population densities converge to
the same stationary state in the four compartments. With this parameter set, the propaga-
tion phenomenon is fast in comparison with the convergence time to stationary state in each
compartment. We can observe, in particular in subfigure 5.10(b), that the pathogens reach the
next compartment with a time delay, which propagates from one compartment to the other.

5.4.2 Towards a continuous model in space

By considering a large number of compartments and appropriate transfers between them,
our model can be seen as a rough approximation of a continuous model in space. For exam-
ple, the situation where the exchanges between compartments are induced by a diffusion
process can be approximated by considering laplacian matrices with periodic boundary con-
ditions for A and B, but with two different diffusion coefficients, namely

A = 3


−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

 and B =


−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

 . (5.4.16)

The parameter values and initial data remain the same as in the two previous subsections
and are summarized in Table 5.3. Here again, we can see at Figure 5.11 that the solution
seems to converge towards a stationary state. Due to the use of diffusion-like transfers, we can
observe in Figure 5.11 that the repartitions of individuals in terms of pathogen loads tend to
homogenize. The same kind of homogeneisation can be observed for the reservoir pathogen,
its asymptotic values being close in each compartment.
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Figure 5.10 – 4 compartments, animal and reservoir transfers, initial pathogen load in the
first compartment: Evolution of the population density in the 4 compartments when con-
tact with an environmental pathogen reservoir is considered (model (5.4.11)). In the dif-
ferent compartments, no particular treatment is applied. Transfer of individuals and reser-
voir variables between compartments are considered (A and B given by Eq.(5.4.15)). Initial
data are given at Eq. (5.4.14) and the pathogen load is initially concentrated in the first com-
partment; the other parameters are independent of the compartments and can be found in
Table 5.2. (A) Population density dynamics together with level sets. (B) Evolution of the en-
vironmental pathogen reservoir r (red line) and total pathogen load within the population∫ K

0
ps(t , p)d p (blue line), compared with a simulation with no inter-compartment transfer at

all (A = 0,B = 0), in dotted lines. (C) Population densities s at times t = 0 (blue dotted line),
t = 5 (green dash dotted line) and t = 10 (red dashed line). The solution is compared with
the solutions r+contr ol of system (5.1.8) at t = 10 computed with the parameters of Table 5.2
and no inter-compartment transfer (A = 0,B = 0).
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Figure 5.11 – 4 compartments, diffusive-like transfers: Evolution of the population density
in the 4 compartments when contact with an environmental pathogen reservoir is consid-
ered (model (5.4.11)). In the different compartments, no particular treatment is applied.
Diffusive-like transfer of individuals and pathogen reservoir variables is added (A and B
given by Eq. (5.4.16)). Initial data are different in each compartment (see parameter in Ta-
ble 5.3 )(A) Population density dynamics together with level sets. (B) Evolution of the en-
vironmental pathogen reservoir r (red line) and total pathogen load within the population∫ K

0
ps(t , p)d p (blue line), compared with a simulation with no inter-compartment transfer at

all (A = 0,B = 0), in dotted lines. (C) Population densities s at times t = 0 (blue dotted line),
t = 5 (green dash dotted line) and t = 10 (red dashed line). The solution is compared with the
solutions r+contr ol of system (5.1.8) at t = 10 computed with the parameters of Table 5.3. We
note that consequently, r+contr ol is different in each compartment and that this simulation
represents a situation with no inter-compartment transfer (A = 0,B = 0).
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Résumé: L’objectif principal de la thèse est de proposer et d’analyser des modèles mathématiques basés sur des équations aux dérivées
partielles (EDP) afin de décrire la dynamique spatiale de deux espèces de campagnols (Microtus arvalis et Arvicola terrestris), qui sont
particulièrement surveillés dans l’est de la France. Les modèles que nous avons proposés reposent sur des EDP qui décrivent l’évolution de
la densité de la population de campagnols en fonction du temps, de l’âge et de la position dans l’espace. Nous avons suivi deux approches
complémentaires pour représenter la dynamique. Dans la première approche, nous avons proposé un premier modèle qui consiste en une
EDP scalaire en structurée en temps, en âge, et en espace. Elle est complétée par une condition au bord non locale. Le flux est linéaire à
coefficient constant dans la direction de l’âge mais contient un terme non local dans les directions de l’espace. De plus, l’équation contient
un terme de second ordre par rapport aux variables spatiales. Nous avons démontré l’existence et la stabilité de solutions faibles entropiques
pour le modèle en utilisant, la compacité par compensation établie par Panov et un argument du type doublement de variables. Dans la
deuxième approche, nous nous sommes inspirés du modèle Multi Agents introduit par Marilleau-Lang-Giraudoux, où la dynamique spatiale
des juvéniles est découplée de l’évolution locale dans chaque parcelle. Pour mettre en place ce deuxième modèle, nous avons introduit un
graphe orienté dont les nœuds sont les parcelles (ou colonies). Dans chaque nœud, l’évolution de la colonie est décrite par une équation de
transport structurée en temps et en âge, et les mouvements de dispersion dans l’espace sont représentés par les passages d’un nœud à un
autre. Nous avons proposé une discrétisation du modèle, par des schéma volumes finis, et, grâce à des simulations numériques, nous avons
pu illustrer le fait que le modèle est capable de reproduire certaines caractéristiques qualitatives de la dynamique spatiale observée dans la
nature. Nous avons ensuite proposé un troisième modèle qui est un système proie-prédateur constitué d’une équation hyperbolique pour
les prédateurs et d’une équation parabolique-hyperbolique pour les proies analogue à celle proposée dans le premier modèle. Le terme
de force dans l’équation des prédateurs dépend de manière non localement de la densité des proies et les deux équations sont également
couplées via des termes sources classiques de type Lotka-Volterra. Nous avons établi l’existence de solutions en appliquant la méthode de
la viscosité évanescente, et nous avons établi un résultat de stabilité par un argument de type doublement de variables. Enfin nous avons
proposé et validé un schéma de type volumes finis pour le premier modèle.

La dernière partie de mes travaux de recherche est dédiée à un projet auquel j’ai participé lors d’une école d’été CEMRACS. Il concerne
un sujet de biomathématiques différent du thème principal de la thèse et porte sur un modèle épidémiologique pour la salmonellose.
Nous avons proposé un nouveau cadre de modélisation générique multi-échelles de la transmission hétérogène d’agents pathogènes dans
une population animale. Au niveau intra-hôte, le modèle décrit l’interaction entre le microbiote commensal, le pathogène et la réponse
inflammatoire. Des fluctuations aléatoires de la dynamique écologique du microbiote individuel et de la transmission à l’échelle inter-hôte
sont ajoutées pour obtenir un modèle EDP de la distribution des agents pathogènes au niveau de la population. Une extension du modèle a,
par ailleurs, été développé pour représenter la transmission entre plusieurs populations. Le comportement asymptotique ainsi que l’impact
des stratégies de contrôle, y compris le nettoyage et l’administration d’antimicrobiens, sont étudiés par des simulations numériques.
Mots-clés: Méthode des volumes finis, Équation parabolique – hyperbolique, Compacité par compensation, Problème aux limites non lo-
cales, Systèmes proie-prédateur, Équations de transport.

Abstract: The main objective of the thesis is to propose and analyze mathematical models based on partial differential equations (PDE) to
describe the spatial dynamics of two species of voles (Microtus arvalis and Arvicola terrestris), which are particularly monitored in Eastern
France. The models that we have proposed are based on PDE which describe the evolution of the density of the population of voles as a
function of time, age and position in space. We have two complementary approaches to represent the dynamics. In the first approach, we
propose a first model that consists of a scalar PDE depending on time, age, and space supplemented with a non-local boundary condition.
The flux is linear with constant coefficient in the direction of age but contains a non-local term in the directions of space. Moreover, the
equation contains a second order term in the spatial variables only. We have demonstrated the existence and stability of weak entropy
solutions for the model by using, respectively, the Panov’s theorem of the multidimensional compensated and a doubling of the variables
type argument. In the second approach we were inspired by a Multi Agent model proposed by Marilleau-Lang-Giraudoux, where the spatial
dynamics of juveniles is decoupled from local evolution in each plot. To apply this model, we have introduced a directed graph whose
nodes are the plots. In each node, the evolution of the colony is described by a transport equation with two variables, time and age, and
the movements of dispersion, in space, are represented by the passages from one node to the other. We have proposed a discretization of
the model, by finite volume methods, and noticed that this approach manages to reproduce the qualitative characteristics of the spatial
dynamics observed in nature. We also proposed to consider a predator-prey system consisting of a hyperbolic equation for predators and
a parabolic-hyperbolic equation for preys, where the prey’s equation is analogous to the first model of the vole populations. The drift term
in the predators’ equation depends nonlocally on the density of prey and the two equations are also coupled via classical source terms of
Lotka-Volterra type. We establish existence of solutions by applying the vanishing viscosity method, and we prove stability by a doubling
of variables type argument. Moreover, concerning the numerical simulation of the first model in one-dimensional space, we obtain a finite
volume discretization by using the upwind scheme and then validate the numerical scheme.

The last part of my thesis work is a project in which I participated during a Summer school CEMRACS. The project was on a subject of
biomathematics different from that of the thesis (an epidemiological model for salmonellosis). A new generic multi-scale modeling frame-
work for heterogeneous transmission of pathogens in an animal population is suggested. At the intra-host level, the model describes the
interaction between the commensal microbiota, the pathogen and the inflammatory response. Random fluctuations in the ecological dy-
namics of the individual microbiota and transmission at the inter-host scale are added to obtain a PDE model of drift-diffusion of pathogen
distribution at the population level. The model is also extended to represent transmission between several populations. Asymptotic behavior
as well as the impact of control strategies, including cleaning and administration of antimicrobials, are studied by numerical simulation.
Keywords: Finite volumes method, Parabolic–hyperbolic equation, Compensated compactness, Nonlocal Boundary value problem, Prey-

predator systems, Transport equations.
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