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Abstract

In this Ph. D. thesis, we study the optimization of recommender systems with the objective of
providing more re�ned suggestions of items for a user to bene�t. The task is modeled using the
multi-armed bandit framework. This thesis is divided into two parts: Chapter 3 and 4 study two
problems encountered in recommender systems while Chapter 5 and 6 discuss about the practical-
ity of bandit algorithms. Each chapter can be read independently of each other. The organization
as follows:

• Chapter 1 presents the context and contributions of this thesis (in French).

• Chapter 2 is a general introduction to the stochastic multi-armed bandit problem.

• Chapter 3 introduces a new multi-armed bandit model where arms are grouped inside “or-
dered” categories with e-commerce as the motivating example. We prove instance-dependent
lower bounds on the cumulative regret for three notions of dominance between categories,
indicating how the complexity of the bandit problems increases with the generality of the
ordering concept considered. We also provide algorithms that fully leverage the structure
of the model with their associated theoretical guarantees. Finally, we have conducted an
analysis on real data to highlight that those ordered categories actually exist in practice.

• Chapter 4 revisits the multi-armed bandit framework for online advertising in the pay-per-
click model. In this setting, arms have a budget, a time of arrival and a lifetime. We present
several bandit algorithms relevant to the setting and perform an empirical evaluation, both
qualitative and quantitative, of these algorithms. Finally, we carry out a simulation with
parameters from real data.

• Chapter 5 studies the problem of minimizing the total regret incurred over a series of tasks.
While most bandit algorithms are designed to have a low worst-case regret, we examine
here the average regret over bandit instances drawn from some prior distribution which
may change over time. We speci�cally focus on con�dence interval tuning of UCB algo-
rithms. We further apply our solution to the mortal bandit problem, showing empirical
improvement over previous work.

• Chapter 6 examines the greedy heuristic in multi-armed bandits. Although the Greedy
algorithm is known to have a linear regret in the standard model, we show that it enjoys
highly competitive performance in numerous settings. Theoretically, we prove that the
Greedy algorithm run on a subset of arms verify near-optimal worst-case regret bounds in
several models. Empirically, we perform experiments in numerous popular models that
show that the Greedy algorithm outperforms the previous state-of-the-art in many cases.
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Notation

Mathematics
P Probability
E Expectation
Ec Complement of setE
1{B} Indicator of setB (1{B}(x) = 1 if x ∈ B and 0 otherwise)
bxc, dxe Floor and ceiling functions of x
e1, . . . , ed Standard basis vectors of the d-dimensional Euclidean space
‖x‖p p-norm of vector x
〈x, y〉 Inner product between x and y

Bandits
K Number of arms
T Time horizon
At Choice of the learner at time t
Xt Reward obtained at time t
Vk Distribution of arm k
µk Mean reward of arm k
µ? Largest mean reward among all arms
∆k Suboptimality gap of arm k (∆k = µ? − µk)
Nk(t) Number of pulls of arm k at time t
R(T, π), RT Regret of algorithmπ at the end of timeT (RT when context is clear)
BRQ(T, π) Bayesian regret of algorithm π at time T under prior distributionQ
µ̂k(t) Empirical mean of rewards obtained for arm k at time t
UCBk(t) Upper con�dence bound of arm k at time t

Miscellaneous
[n] {1, 2, . . . , n− 1, n}
Beta(α, β) Beta distribution with parameters α, β > 0

f(n) = O(g(n)) Landau notation: lim sup
n→∞

f(n)

g(n)
<∞
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Cette thèse s’inscrit dans le cadre d’une collaboration entre le Centre Borelli de l’École Normale
Supérieure Paris-Saclay et l’équipe Pertinence de Cdiscount, responsable des résultats du moteur
de recherche et des di�érentes recommandations présentes sur le site. Les modèles développés par
l’équipe Pertinence sont principalement basés sur les di�érentes interactions passées entre les uti-
lisateurs et le site Cdiscount. Leur objectif est d’améliorer l’expérience utilisateur en lui proposant
des produits correspondant à son besoin.

Ce premier chapitre est l’occasion de revenir sur le contexte de cette thèse, ainsi que de rappeler
l’histoire des systèmes de recommandation et des bandits multi-bras. Nous résumons également
les problématiques et les contributions des di�érents chapitres.

1.1 Contexte de cette thèse

Deux problématiques sous-jacentes du site de commerce électronique Cdiscount motivent cette
thèse.

La première problématique concerne la dynamique et la temporalité des informations traitées.
Les approches actuelles se basent sur une représentation synthétique construite à partir d’informa-
tions disponibles une fois par jour. L’intégration de nouvelles informations en temps réel (�ux de
données) est un challenge pour une entreprise comme Cdiscount, qui interagit avec des millions
d’utilisateurs chaque jour, avec l’arrivée de nouveaux utilisateurs et de nouveaux produits en per-
manence. Il s’agit de développer, dans des environnements non-stationnaires, des outils d’appren-
tissage séquentiel, où les nouvelles informations ont une in�uence directe sur les modèles estimés.
En e�et, Cdiscount a besoin de proposer des produits pertinents à ses utilisateurs (exploitation),
tout en obtenant de nouvelles informations sur ses produits encore peu connus (exploration).

1
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1 Introduction

La seconde problématique est liée à l’adaptation des modèles au contexte. Le contexte fait ré-
férence à des connaissances implicites ou explicites concernant les besoins de l’utilisateur, son en-
vironnement et son comportement de navigation. Les produits du catalogue de Cdiscount étant
nombreux et variés, nous sommes particulièrement intéressés par la personnalisation des produits
présentés aux utilisateurs a�n d’améliorer son expérience utilisateur. Ici il est important de sou-
ligner qu’avec des millions d’utilisateurs uniques chaque jour, les approches proposées devront
prendre en considération un problème supplémentaire de volumétrie.

De tels problèmes sont au cœur des orientations récentes les plus actives prises par la recherche
en machine learning. Les algorithmes de bandit sont connus pour o�rir des solutions au dilemme
exploration/exploitation. Cependant si ces algorithmes capturent l’essence de ce dilemme, ils s’avèrent
insu�sants dans de nombreux cas, en particulier lorsque les données évoluent au �l du temps et
sont contextualisées. Certains algorithmes de bandit prennent en compte l’un ou l’autre de ces
deux verrous, mais ils sont conçus pour des modélisations simples et où chaque verrou est traité
indépendamment de l’autre. De plus ils nécessitent d’être adaptés pour être utilisables sur des don-
nées réelles où de nombreux autres éléments entrent en jeu tels que des aspects multicritères (plu-
sieurs métriques doivent être optimisées simultanément), ou des cas dans lesquels des contraintes
fortes sont imposées (diversité notamment). En�n peu d’expérimentations ont été e�ectuées sur
un système en ligne avec un fort tra�c comme celui de Cdiscount.

1.2 Systèmes de recommandation et bandits multi-bras

Dans cette section, nous rappelons ce qu’est un système de recommandation ainsi que le problème
de base du bandit multi-bras. Nous passons également en revue les di�érents travaux réalisés dans
ce modèle qui peuvent être utiles dans le cadre des systèmes de recommandation.

1.2.1 Systèmes de recommandation

De façon générale, les systèmes de recommandation sont des algorithmes qui visent à recomman-
der des objets pertinents à un utilisateur. Le mot « objet » est ici un terme général et peut désigner
une publicité dans le cadre de la publicité en ligne, un produit dans celui du commerce électro-
nique ou encore un contenu dans les réseaux sociaux. Les systèmes de recommandation sont ainsi
omniprésents dans nos vies de tous les jours. Dans la Figure 1.1, nous illustrons un système de
recommandation du site de commerce électronique Cdiscount ; il s’agit ici d’un carrousel de pro-
duits personnalisés présent sur la page d’accueil du site et basé sur l’historique de navigation d’un
utilisateur. Signe supplémentaire de leur importance, l’entreprise Net�ix a proposé il y a quelques
années un concours où le but était de produire un algorithme capable d’améliorer de 10% les pré-
dictions sur un jeu de données comparé à leur propre algorithme, avec au bout du compte un prix
d’un million de dollars à gagner. Pour la petite histoire, ce prix a été remporté au bout de presque
3 ans d’e�orts par une équipe composée de plusieurs chercheurs d’entreprises privées.

Données àdisposition Commençons par préciser les données sur lesquelles sont entraînées
les systèmes de recommandation. On distingue deux types de données sur un utilisateur : celle
explicite et celle implicite. Les données explicites sont directement fournies par les utilisateurs. On
peut par exemple demander à un utilisateur de noter son attrait pour un objet ou ce qu’il préfère

2
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1.2 Systèmes de recommandation et bandits multi-bras

Figure 1.1 : Exemple de système de recommandation : carrousel de produits personnalisés sur la page d’ac-
cueil du site de commerce électronique Cdiscount.

entre deux choix. Les données implicites concernent elles les éléments relatifs à la navigation d’un
utilisateur. Cela peut être les pages qu’il a consulté, sa fréquence de visite, ce sur quoi il a cliqué
ou même le temps qu’il a passé sur une page.

Approches classiques On distingue principalement trois types d’approche des systèmes de
recommandation pour suggérer des objets pertinents : la première est un �ltrage utilisant les in-
formations sur l’objet et l’utilisateur dit �ltrage de contenu, la seconde repose sur un �ltrage col-
laboratif et la dernière est une approche hybride.

Le �ltrage de contenu prend en considération des informations supplémentaires que sont les
préférences des utilisateurs et les descriptions des objets. L’idée est alors de construire un mo-
dèle basé sur toutes ces caractéristiques qui explique les interactions utilisateurs-objets passées. Par
exemple, un algorithme très largement répandu est TF-IDF (de l’anglais Term Frequency-Inverse
Document Frequency) qui consiste, dans ce cas, à pondérer les caractéristiques d’un objet en fonc-
tion des préférences d’un utilisateur. Le poids d’un objet augmente ainsi proportionnellement à
son attrait par l’utilisateur. Cette méthode a le désavantage de devoir collecter des données sur
les utilisateurs ; cela peut notamment poser problème pour le respect de la vie privée. Un second
problème est qu’elle va avoir tendance à proposer systématiquement des objets similaires à ceux
auxquels un utilisateur a interagit ; c’est ce que l’on appelle le problème de sur-spécialisation. Cette
approche sou�re ainsi d’un large biais mais d’une faible variance.

L’approche collaborative quant à elle se base uniquement sur les interactions utilisateurs-objets
passées. L’idée est alors de détecter les objets similaires ainsi que les utilisateurs ayant des préfé-
rences communes. Il existe deux sous-catégories algorithmes dans cette approche. La première
catégorie, nommée « model-based », assume l’existence d’un modèle sous-jacent qui explique les
di�érentes interactions. Un exemple typique d’algorithme dans ce cas est la méthode de factorisa-
tion de matrices dont le but est de représenter les utilisateurs et les objets dans un espace de plus
faible dimension. Au contraire, la seconde catégorie, communément appelée « memory-based »,
n’assume aucun modèle sous-jacent. Un algorithme classique dans ce cas est celui des plus proches
voisins qui, pour un utilisateur donné, non seulement recommande des objets similaires à ceux
qu’il a aimé mais va aussi recommander des objets aimés par des utilisateur avec des préférences
communes. Cette approche sou�re néanmoins du départ à froid : sans donnée sur un utilisateur,
il est impossible de lui recommander quoi que ce soit. Il en est de même pour un nouvel objet.
En théorie, cette seconde catégorie d’approches collaboratives sou�re d’un faible biais mais d’une
large variance et inversement pour la première catégorie.
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La dernière approche est une approche hybride qui combine le �ltrage de contenu et le �ltrage
collaboratif. C’est de nos jours l’approche la plus utilisée puisqu’elle permet de compenser certaines
faiblesses de l’une ou l’autre approche. Il existe deux moyens de combiner les deux approches. Le
premier consiste à entraîner un modèle de �ltrage de contenu et un autre de �ltrage collaboratif
séparément puis de combiner leurs sorties. Le second moyen est d’entraîner un unique modèle en
utilisant les interactions passées de l’approche collaborative ainsi que les données sur les utilisateurs
et les objets de l’approche basé sur le contenu. Cette dernière méthode utilise généralement des
réseaux de neurones pour se faire.

Évaluation des performances Un dernier point important est celui de l’évaluation des
systèmes de recommandation. En e�et, au delà de la précision de ses recommandations qui peut
être mesurée de façon standard, par exemple à l’aide de l’erreur quadratique moyenne, d’autres cri-
tères plus abstraits entrent aussi en compte, comme la diversité et l’explicabilité des recommanda-
tions. Ces critères sont di�cilement évaluables sur un jeu de données classique. Ainsi, la meilleure
façon de comparer deux systèmes de recommandation est d’e�ectuer un test en ligne, dit « test
A/B » qui consiste à proposer le premier algorithme à une partie des utilisateurs et le second à
l’autre partie. Cependant, ce processus est généralement coûteux et demande un certain niveau de
con�ance dans les algorithmes à évaluer. Par ailleurs, l’évaluation hors-ligne d’algorithmes séquen-
tiels pose de nombreuses problématiques en soit et est un domaine très actif de recherche.

1.2.2 Bandits multi-bras

Comme mentionné précédemment, nous modélisons ce problème à l’aide du cadre des bandits
multi-bras. Ce modèle constitue également un sous-domaine de l’apprentissage par renforcement
qui consiste pour un agent à apprendre, de par sa propre expérience, les actions à e�ectuer dans
le but d’optimiser une certaine récompense. En e�et, le problème du bandit multi-bras peut-être
vu comme un processus décisionnel markovien avec un seul état. Bien que le nom « bandit »
puisse prêter à sourire, il désigne en réalité une machine à sous avec un long manche qui, dans
l’argot anglo-saxon, est communément appelé « one-armed bandit ». La motivation du premier
article sur les bandits était d’ailleurs on ne peut plus sérieux puisqu’il s’agissait d’optimiser les essais
cliniques ; ce travail de Thompson [137] date par ailleurs de 1933. Ce modèle a par la suite été
formalisé en 1952 par Robbins [127].

Dans cette thèse, nous nous concentrons sur le modèle de bandit dit stochastique. De manière
plus formelle, il s’agit d’un jeu de décision à temps discret où un agent interagit de manière séquen-
tielle avec un jeu deK ∈ N distributions de probabilitéV1, . . . ,VK aussi appelé bras. Soulignons
ici que le nombre de bras K est connu mais la distribution Vk associée au bras k ∈ {1, . . . ,K}
est elle inconnue. À un instant t ∈ N, l’agent choisit un bras At ∈ {1, . . . ,K} et reçoit une
récompense stochastique Xt tirée selon la distribution VAt du bras sélectionné. Cette étape est
réitérée jusqu’à un instant T ∈ N que l’on appelle l’horizon et qui peut être connu ou non. Nous
illustrons ces cycles dans la Figure 1.2. L’objectif le plus étudié est celui de maximiser la somme des
récompenses obtenues, c’est à dire

∑T
t=1Xt.

Il est clair que si les moyennes des bras étaient connues, l’algorithme optimale serait de jouer le
bras avec la plus grande récompense moyenne à tous les pas de temps. Cet algorithme est d’ailleurs
communément appelé « oracle ». Ces paramètres étant malheureusement inconnus, l’agent fait
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Bras 1

BrasAt

BrasK

Agent
Tire un brasAt ∈ {1, . . . ,K}

Reçoit une récompenseXt ∼ VAt

Figure 1.2 : Illustration d’un cycle dans un problème de bandit pour chaque tour t = 1, . . . , T .

ainsi face à un dilemme que l’on appelle « exploitation vs. exploration ». En e�et, l’agent doit
choisir à chaque étape entre, explorer un bras de sorte à gagner de l’information sur celui-ci ou,
exploiter le meilleur bras empiriquement.

Les problèmes de bandit sont un sujet de recherche très actif comme en témoigne les récents
livres de Bubeck et Cesa-Bianchi [27], Lattimore et Szepesvári [100] et Slivkins [135]. Ils sont
par ailleurs l’objet de nombreuses applications autre que les systèmes de recommandation comme
aperçu par Bouneffouf et Rish [24]. Nous proposons dans le Chapitre 2 une introduction plus
détaillée du modèle de bandit.

1.2.3 Bandits multi-bras appliqués aux systèmes de recommandation

La section précédente a décrit le modèle de base du bandit multi-bras. Depuis, plusieurs travaux se
sont attardés à adapter ce modèle à di�érentes applications de sorte à améliorer les performances
autant empiriquement que théoriquement. Nous détaillons ici les principales contributions dont
l’objectif est l’optimiser des systèmes de recommandation.

Commençons tout d’abord par parler des bandits contextuels qui sont généralement utilisés en
pratique. Pour les systèmes de recommandation, le contexte peut, par exemple, faire référence à
des informations supplémentaires sur l’utilisateur et ce qu’il a fait par le passé. Du point de vue
théorique, on suppose qu’à chaque pas de temps, le joueur observe un contexte avant de prendre
une décision. L’idée est donc ici de tirer pro�t du contexte pour améliorer les recommandations.
Cette prise en compte du contexte peut se marier avec n’importe quel modèle de bandit. Li, Chu,
Langford et Schapire [103], notamment, ont appliqué les bandits contextuels au modèle linéaire
et ont évalué leur approche sur un jeu de données tiré de la page d’accueil du site d’actualités de
l’entreprise Yahoo!.

Le modèle du bandit linéaire [1] est un moyen de tirer pro�t des similarités entre les bras, ce qui
est utile quand leur nombre est grand. Dans ce modèle, les bras sont représentés par un vecteur de
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caractéristiques et la récompense obtenue en tirant un bras est une fonction linéaire de son vecteur
et d’un paramètre inconnu auquel s’ajoute un bruit.

Un autre article intéressant qui utilise le jeu de données précédemment évoqué est celui de
Chapelle et Li [33]. Ils ont étudié, entre autres, l’impact du délai entre le choix du joueur et l’ins-
tant où il reçoit sa récompense. En e�et, en pratique il se peut que cela ne soit pas immédiat à cause
de diverses contraintes de temps d’exécution. Les algorithmes de bandit avec récompense di�érée
sont un sujet actif de recherche.

Certaines approches visent à imiter les stratégies classiques des systèmes de recommandation vu
précédemment.Gentile, Li et Zappella [60] ont proposé un algorithme basé sur le regroupement
séquentiel des utilisateurs. Li, Karatzoglou et Gentile [106] ont généralisé le travail précédent
en regroupant, en plus, les objets en fonction de la similitude des regroupements induits sur les
utilisateurs. Maillard et Mannor [112] ont analysé un problème où les paramètres du modèle
sont supposés être regroupés dans catégories inconnues. Kawale, Bui, Kveton, Tran-Thanh et
Chawla [82] et Wang, Wu et Wang [147] ont eux proposé des algorithmes pour e�ectuer une
factorisation de matrices de manière séquentielle. Les bandits stochastiques de rang 1 [76] sont un
modèle particulier qui peuvent être appliqués aussi bien sur des regroupements d’utilisateurs et
d’objets que dans des modèles de clics.

Des algorithmes de bandit ont par ailleurs été développés dans des modèles de clics. Kveton,
Szepesvari, Wen et Ashkan [90] ont adapté des algorithmes standards dans le modèle de clics en
cascade. Combes, Magureanu, Proutiere et Laroche [42] ont eux aussi considéré ce modèle de
clics et ont développé un algorithme asymptotiquement optimal. Le modèle de clics basé sur la po-
sition a lui été étudié par Lagrée, Vernade et Cappe [93]. Lattimore, Kveton, Li et Szepesvari
[97] et Zoghi, Tunys, Ghavamzadeh, Kveton, Szepesvari et Wen [155] ont considéré un mo-
dèle de clics plus général qui englobe les deux précédents. Katariya, Kveton, Szepesvari etWen
[77] ont étudié un modèle où plusieurs clics sont possibles.

D’autres travaux ont pris en compte le fait que les produits ont une durée de vie limitée. Ainsi,
Chakrabarti, Kumar, Radlinski et Upfal [32] ont étudié un modèle où les bras sont régis par
une durée de vie et de nouveaux bras apparaissent en permanence.Combes, Jiang et Srikant [40],
Jiang et Srikant [72] et Slivkins [134] ont considéré un modèle où le tirage d’un bras induit un
coût et un bras ne peut plus être choisit après que son budget soit épuisé.

Dans la même veine, certains travaux ont considéré un modèle non-stationnaire [59] où les
récompenses des bras changent avec le temps. Louëdec, Rossi, Chevalier, Garivier et Mothe
[109] ont discuté d’une décroissance de la récompense d’un bras en fonction du temps. Au contraire,
Levine, Crammer et Mannor [102] ont étudié un décrochage de la récompense d’un bras sujet à
son nombre de tirages.

1.3 Nos contributions

Cette thèse se divise en deux parties. Dans la première partie, nous nous attardons sur deux pro-
blématiques rencontrées dans le commerce électronique, mais que l’on rencontre aussi dans de
nombreux systèmes de recommandation. La deuxième partie va elle se concentrer sur les perfor-
mances des algorithmes de bandit en pratique. Plus précisément, comment on peut les améliorer
et si il ne vaut pas mieux utiliser des heuristiques simples dans certains cas.
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1.3 Nos contributions

1.3.1 Problématiques du commerce électronique

Dans le Chapitre 3, nous considérons le problème du grand nombre de produits que doit traiter
un site de commerce électronique. En e�et, les bras du modèle de bandit sont ici les di�érents
produits qui peuvent être a�chés. Même si ce nombre est �ni, il est en pratique prohibitif vu que
le regret croît de manière linéaire avec le nombre de bras. Pour être exact, c’est la borne inférieure
que l’on appelle « problème-dépendant » qui croît de façon linéaire ; le regret d’un algorithme ne
pouvant être meilleur que cette borne, son regret croît, au mieux, linéairement avec le nombre de
bras. Ainsi, un algorithme conventionnel va prendre un temps extrêmement long avant d’obtenir
des performances satisfaisantes. Pour résoudre ce problème, nous allons exploiter une structure
inhérente d’un site de e-commerce qui est celle des catégories dans lesquelles les produits sont
classés. Comme un client est généralement intéressé par un faible nombre de catégories, le but
est alors de regrouper les informations obtenues au sein d’une catégorie pour accélérer la phase
d’apprentissage d’un algorithme de bandit et au �nal, proposer de meilleurs recommandations.

Sur le plan théorique, nous introduisons un nouveau modèle de bandit dans lequel les bras sont
rangés dans des catégories dites « ordonnées », c’est à dire qu’il existe un ordre partiel, supposé
connu, entre les catégories. Par conséquent, il existe une catégorie qui « domine » les autres mais
cette catégorie est inconnue. Nous introduisons également trois concepts de dominance entre ca-
tégories qui sont progressivement plus faibles de sorte que de plus en plus de problèmes de bandit
satisfont au moins l’un d’entre eux. Nous prouvons des bornes inférieures sur le regret pour cha-
cun de ces concepts qui indiquent, entre autres, comment la complexité des problèmes de bandit
augmente avec la généralité du concept de dominance considéré. Nous fournissons également
deux algorithmes qui exploitent pleinement la structure du modèle et nous prouvons des garan-
ties théoriques pour l’un d’entre eux. En�n d’un point de vue plus appliqué, nous avons mené une
analyse sur des données sur site de e-commerce Cdiscount pour souligner que l’on observe bien
ces types de dominance dans la pratique.

Le Chapitre 4 traite le cas particulier des contenus sponsorisés qui représentent une source de
revenue importante de nos jours pour les e-commerçants. On les repère facilement puisqu’ils sont
souvent accompagnés du label « sponsorisé ». Le problème peut être décrit comme suit, pour
un mot-clé donné, plusieurs annonceurs voudraient voir leurs produits s’a�cher à une position
stratégique et le moteur de recherche doit choisir lequel. L’annonceur sélectionné paie alors des
frais uniquement lorsque son annonce a été cliquée. Ces contenus ont la spéci�cité d’être régis par
un budget et une durée de vie. En e�et, chaque annonceur dispose d’une somme maximale qu’il
est prêt à dépenser et son annonce n’est disponible que sur une période donnée. Les budgets et les
disponibilités sont généralement connus au début de la campagne, la seule inconnue est donc le
taux de clics.

Dans ce Chapitre 4, nous modélisons un modèle de bandit où chaque bras dispose d’un budget,
d’un temps d’arrivée et d’une durée de vie qui lui est propre. Ces caractéristiques ayant été étudiées
séparément dans de précédents travaux, l’idée est ici de réuni�er ces di�érents travaux. Ce modèle
présente la particularité que la stratégie optimale n’est plus de tirer le meilleur bras à chaque étape.
Pour s’en convaincre, considérons un exemple simple constitué de deux bras. Supposons qu’ils
arrivent tous les deux en même temps et que le premier bras a une plus grande moyenne, dispose
d’une plus longue durée de vie et d’un plus petit budget. Si on tirait systématiquement le premier
bras, il se pourrait qu’une fois son budget épuisé, le second bras ne soit plus disponible. Si on
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contraire, on commençait par tirer le second bras et ensuite le premier, on obtiendrait alors une
meilleure récompense �nale. Nous proposons alors plusieurs algorithmes de bandit et les évaluons
de manière extensive sur de nombreuses simulations dont une tirée de données réelles.

1.3.2 Heuristiques en pratique

Le Chapitre 5 étudie l’optimisation d’algorithmes de bandit et spéci�quement ceux utilisant la
borne supérieure d’un intervalle de con�ance comme indice ; ce qui est notamment le cas du très
populaire algorithme UCB (de l’anglais Upper Con�dence Bound [9]). En e�et, la plupart des
travaux dans le littérature sur les bandits se concentrent sur l’obtention des meilleurs garanties
possibles sur le regret. Pourtant, même si la théorie nous garantie un regret optimal dans le pire
cas, les algorithmes optimaux vont être beaucoup trop conservateurs dans de nombreux cas et ainsi
explorer inutilement, ce qui conduit à un large regret en pratique. Il a ainsi été montré que sur des
problèmes relativement simples, de simples heuristiques obtiennent de meilleurs résultats que des
algorithmes plus sophistiqués [89, 144] ; ce qui constitue un obstacle à leur usage en pratique.

Nous construisons alors un modèle où l’on résout de manière successive des problèmes de ban-
dit. Ces problèmes sont tirés selon une distribution à priori, qui est inconnue et qui peut être
stationnaire ou non. Le but est ainsi de construire un meta-algorithme qui va être en charge d’op-
timiser, par rapport à cette distribution, l’algorithme de bandit qui résout les tâches successives.
Cette approche peut être vu comme un cas particulier de « meta learning » ou encore de « lifelong
learning ». À titre d’exemple, si la distribution est connue et �xée, l’objectif est équivalent à celui
de minimiser le regret Bayesien. Nous allons pour se faire opter pour un autre algorithme de ban-
dit en charge de l’optimisation. Ce chapitre est principalement empirique et s’attarde sur l’intérêt
et la façon d’optimiser un algorithme de bandit en pratique dans des environnements station-
naires et non-stationnaires. La méthode est ensuite appliquée au modèle du bandit mortel où les
bras apparaissent et disparaissent constamment. Nous observons notamment des performances
supérieures à l’état de l’art. Par ailleurs, nous montrons empiriquement qu’un simple algorithme
glouton qui tire le meilleur bras empirique à chaque étape est plus performant que l’état de l’art
dans le problème de bandit à bras continus.

Le Chapitre 6 va formellement prouver que l’algorithme glouton jouit d’un regret sous-linéaire
dans ce cas. Plus globalement, nous y étudions l’heuristique gloutonne dans les problèmes de ban-
dit. Notre analyse théorique se concentre sur l’utilisation de l’algorithme glouton sur un sous-
échantillonnage de bras et nous prouvons des regrets sous-linéaires dans les cas de bandits conti-
nus, avec un nombre in�nis de bras et avec un grand nombre de bras. Ces résultats théoriques sont
complétés par de multiples expériences qui montrent les performances hautement compétitives
de cet algorithme, notamment sur des horizons courts relativement à la complexité du problème
considéré. Nous poursuivons également cette analyse empirique par plusieurs simulations dans
divers modèles de bandit qui montre une nouvelle fois l’intérêt de l’algorithme glouton dans le cas
où il existe de nombreux bras qui sont presque optimaux.

1.4 Plan du mémoire

Ce mémoire consacré à l’optimisation des systèmes de recommandation à l’aide du modèle de ban-
dit multi-bras est ainsi divisé en deux parties. Les chapitres 3 et 4 étudient deux problèmes ren-
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1.4 Plan du mémoire

contrés dans les systèmes de recommandation alors que les chapitres 5 et 6 s’attardent sur la mise
en pratique des algorithmes de bandit. Chaque chapitre peut être lu indépendamment des autres.
Plus précisément :

• Le chapitre 2 est une introduction générale au problème du bandit multi-bras. Il contient
ainsi tous le bagage nécessaire pour comprendre ce mémoire.

• Le chapitre 3 introduit un nouveau modèle de bandit où les bras sont rangés dans des caté-
gories ordonnées. Le commerce électronique est ici l’exemple motivant.

• Le chapitre 4 revisite le problème de bandits pour la publicité en ligne. Nous prenons ainsi
en compte le fait que les bras disposent d’un budget, d’une certaine durée de vie et que de
nouveaux apparaissent constamment.

• Le chapitre 5 étudie l’optimisation d’un algorithme de bandit sur une série de problèmes.

• Le chapitre 6 examine l’heuristique gloutonne dans divers modèles de bandit. Nous nous
posons notamment la question si un algorithme glouton peut être préférable à d’autres plus
sophistiqués dans certains cas.
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In this Ph. D. thesis, we are interested in the multi-armed bandit problem. This problem consti-
tutes a sub-domain of reinforcement learning which consists, for an agent, in learning the actions
to be carried out from his own experience in order to optimize a certain reward. More formally,
the multi-armed bandit problem can be seen as a Markovian decision-making process with one
state. The name “bandit” actually refers to a slot machine with a long handle informally called
“one-armed bandit”. This model was introduced without naming it in 1933 by Thompson [137]
with the aim of optimizing clinical trials. It was subsequently formalized by Robbins [127].

In this chapter, we present the common base of the bandit theory. This is meant to be com-
prehensive enough to understand this thesis. Thus, we recall the stochastic multi-armed bandit
model, the de�nition of the regret of an algorithm as well as lower bounds on achievable regret.
We also review some commonly used bandit algorithms and present di�erent applications beyond
recommender systems. For readers interested in a broader introduction to bandit problems, we
recommend the following books: Bubeck and Cesa-Bianchi [27], Lattimore and Szepesvári [100] and
Slivkins [135]. We also recommend the article by Boune�ouf and Rish [24] for an overview of bandit
applications.

2.1 Model

Here we focus on the stochastic multi-armed bandit model. Formally, it is a discrete-time decision-
making game where a learner interacts sequentially with an unknown set of K ∈ N probability
distributions V1, . . . ,VK called arms. We emphasis that the number of arms K is known while
the distribution Vk associated with arm k is unknown for each k ∈ {1, . . . ,K}. At time step t,
the learner chooses an arm At ∈ {1, . . . ,K} and receives a reward Xt drawn according to the
distribution of the chosen armVAt . This step is reiterated for each time step t = 1, . . . , T where
T is a time horizon which may or may not be known. We illustrate these cycles in Figure 2.1. We
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Arm 1

ArmAt

ArmK

Learner
Pulls an armAt ∈ {1, . . . ,K}

Receives a rewardXt ∼ VAt

Figure 2.1: Illustration of a cycle in a bandit problem for a round t ∈ {1, . . . , T}.

also make use of a standard notation [T ] := {1, . . . , T}. The most commonly studied objective
is to maximize the sum of the rewards obtained

∑T
t=1Xt.

It is clear that if the mean rewards were known, the optimal algorithm would be to choose the
best arm, that is the one with the largest expected reward. As usual in the literature, we assume
that the best arm is unique. This algorithm is called the “oracle”. The parameters of the problem
being unknown, the learner thus faces a dilemma called “exploitation vs. exploration”. Indeed,
the learner must choose, at each time step, between exploring an arm to gain information on it
and using the information collected so far to play the best arm in sight.

2.2 Regret of an algorithm

In the literature, the performance of an algorithm is usually measured by its regret, de�ned as the
di�erence between the cumulative reward of the oracle and the one of the algorithm. Thus, max-
imizing the cumulative reward is equivalent to minimizing the regret. We denote by µ1, . . . , µK
the expectation of the distributions associated with the arms and we de�neµ? = arg maxk∈[K] µk
the best arm, often called the optimal arm. The (expected) regret of an algorithmπ is then written

E[R(T, π)] = E

[
Tµ? −

T∑
t=1

µAt

]
= Tµ? −

T∑
t=1

E[µAt ]

where the expectation is taken with respect to the randomness of the successive choices and the
possible randomization of the algorithm. It is clear that the regret veri�es R(T, π) ≥ 0 and
R(T, π) ≤ Tµ? for any horizon T and for any algorithm π. In particular E[R(T, π)] = O(T )
means that the algorithm π fails to �nd the best arm with a non negligible probability. Thus, we
would like an algorithm which satis�es a sublinear regret, that is E[R(T, π)] = o(T ).
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2.3 Assumption on reward distributions

If the context is clear, we will often drop the dependence onπ and abbreviate the regretR(T, π)
of algorithm π byRT .

There also exists a decomposition of the regret which is useful in theoretical analysis. Denote
byNk(t) =

∑t
s=1 1{As = k} the number of times the armk has been played between the times

1 and t. We also de�ne the suboptimality gap ∆k = µ?− µk as being the di�erence between the
mean of the best arm and of that of arm k. The regret can then be rewritten as

E[R(T, π)] =
K∑
k=1

∆kE[Nk(T )] .

This decomposition is widely used to prove upper bounds on the regret of an algorithm. Indeed,
thanks to this decomposition, it simply su�ces to bound the expected number of times the algo-
rithm draws a suboptimal arm k.

2.3 Assumption on reward distributions

An assumption often made in the literature, and which we too will do, is to assume that each
distribution associated with an arm is subgaussian. We recall that we say a random variable is
subgaussian if its tail distribution decreases as quickly as a Gaussian distribution with the same
mean and the same variance. Formally,

De�nition 2.1. Let σ > 0. A random variableX is σ2-subgaussian if for all λ ∈ R, we have

E[exp(λX)] ≤ exp
(
λ2σ2/2

)
.

This implies, among other things, the following well-known theorem which explains the origin
of the term and which we will use frequently.

Theorem 2.1. IfX is σ2-subgaussian, then for any ε ≥ 0, we have

P(X ≥ ε) ≤ exp

(
− ε2

2σ2

)
.

A corollary which will be useful concerns the mean of subgaussian random variables.

Corollary 2.1. Let X1, . . . , Xn be n independent σ2-subgaussian random variables. Then for
any ε ≥ 0, it holds that

P
(
X(n) ≥ ε

)
≤ exp

(
−nε

2

2σ2

)
whereX(n) = 1

n

∑n
i=1Xi.

Without loss of generality, we will assume thereafter that σ = 1 so as not to overload the
notations.

Another common assumption is to assume that arms lie in a bounded interval, typically [0, 1].
Though that this implies that the distributions are 1/4-subgaussian, tighter concentration bounds
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should be picked. Additionally, similar concentration inequalities can be obtained with the Ho-
e�ding inequality.

2.4 Regret lower bounds

We recall here two lower bounds on the regret that an algorithm can hope to achieve. For simplic-
ity, we assume here that arms are Gaussian distributions with unit variance. Let us denote I the
set of Gaussian bandits with K ≥ 2 arms. In this section and in this section only, to specify the
dependency on an instance I ∈ I , we denote the regret of an algorithm π on instance I and hori-
zon T byRI(T, π). First, we need the following de�nition to exclude algorithms that have a low
regret on some instances and a linear regret on others. This is for example the case of algorithms
that pull the same arm all the time.

De�nition 2.2. An algorithm π is said to be consistent with I if for any instance I ∈ I and for
all α ∈ (0, 1], its regret is negligible compared to Tα. In other words,

sup
α∈(0,1)

lim sup
T→∞

E[RI(T, π)])

Tα
= 0 .

Problem-dependent bound The �rst lower bound, called “problem-dependent”, is due to
Lai and Robbins [95]. As its name suggests, this lower bound is expressed as a function of the
parameters of the problem that are the suboptimality gaps. It has had a considerable impact on
the literature since most bandit algorithms are designed to reach this milestone.

Theorem 2.2. An algorithm π consistent with I satisfies for all I ∈ I

lim inf
T→∞

E[RI(T, π)]

log(T )
≥ cI =

∑
k:∆k>0

2

∆I
k

where ∆I
k is the suboptimality gap of arm k in instance I .

As an example, the UCB algorithm is asymptotically optimal for Gaussian bandits [100] and
KL-UCB is also for Bernoulli bandits [56, 113]. The asymptotic regret is often indicative of �nite-
time performance. However, in practical regimes, the lower-order terms hidden by the asymp-
totics can be dominant. Garivier, Ménard, and Stoltz [58] highlighted what the second-order terms
depend on; they additionally proved that the regret of any algorithm grows linearly in an initial
phase.

Worst-case bound It may be that, for a �xed horizon T , a problem is so complex that this
bound does not provide any information. This is for instance the case where an arm is arbitrarily
close to the optimal one and thus di�cult to distinguish given the time horizon. Thus, a second
lower bound called “minimax” or “worst-case” has been proven by Auer, Cesa-Bianchi, Freund, and
Schapire [10]. As indicated by its name, this bound is valid for each instance in a given set of bandit
problems and is thus independent of the parameters of each instance, contrary to the �rst bound.
We recall here the theorem of Lattimore and Szepesvári [100].
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2.5 A brief overview of bandit algorithms

Theorem 2.3. Let K > 1 and T ≥ K − 1. Then, for any algorithm π, there exists an instance
I ∈ I with a mean vector µ = (µ1, . . . , µK) ∈ [0, 1]K such that

E[RI(T, π)] ≥ 1

27

√
(K − 1)T .

As an example, the MOSS algorithm [7] attains this lower bound, up to constant factors.
Also note that some algorithms are both asymptotically and minimax optimal; this is for exam-

ple the case of kl-UCB++ [115] and AdaUCB [96].

2.5 A brief overview of bandit algorithms

Here we brie�y review bandit algorithms focusing on two families of policies that we will use fre-
quently in this thesis. The �rst one is based on the principle of optimism in the face of uncertainty,
while the second one uses the Bayesian point of view.

Algorithm 1: UCB
for t← 1 toK do

Pull armAt = t

for t← K + 1 to T do

Pull armAt ∈ arg max
k∈[K]

µ̂k(t− 1) +

√
6 log T

Nk(t− 1)

The optimism principle In the �rst family, we describe the keystone that is the UCB algo-
rithm [9]. This is an index policy which assumes that arms are as good as possible knowing the
information collected so far and chooses the best of them at each time step. Formally, the algo-
rithm begins by pulling each arm once. Then, the index of arm k at time t is de�ned as follows.
We de�ne the average reward µ̂k(t) = 1

Nk(t)

∑t
s=1Xs1{As = k} and the con�dence radius

rk(t) =
√

6 log T
Nk(t) . The UCB index of the arm k at time t is then written

UCBk(t− 1) = µ̂k(t− 1) + rk(t− 1) .

This index is therefore decomposed in two terms, one representing the exploitation and the other
the exploration. The exploration term is chosen so that the true expected reward belongs to the
con�dence interval thus created with high probability (it actually holds with a con�dence level
1/T 3 for each arm at each round). We can notice that this interval is constructed with the con-
centration bound on subgaussian variables seen previously (originally it was constructed with the
Hoe�ding inequality). The UCB algorithm therefore naturally controls the exploration vs. ex-
ploitation dilemma: arm k is drawn either because it has a large empirical reward or because it has
a large exploration term due to the fact that it was not pulled enough. We have actually presented
here a (slightly) modi�ed version of the original algorithm which will be more useful to under-
stand the analysis developed in this thesis (usually, the time horizon T is replaced by the time step
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2 Stochastic multi-armed bandits

t so that the algorithm is anytime). We now give an upper bound on the regret of this algorithm,
which was originally proven by Auer, Cesa-Bianchi, and Fischer [9].

Theorem 2.4. On a stochasticK-armed 1-subgaussian bandit problem, the regret of UCB verifies

E[RT ] ≤ 24
∑

k:∆k>0

log T

∆k
+

∑
k:∆k>0

∆k + 1 .

For completeness, we prove this theorem as similar arguments will be of use in subsequent
proofs.

Proof. Without loss of generality, we assume the �rst arm is optimal, that is µ? = µ1. The theo-
rem will be proven by bounding E[Nk(T )] for each suboptimal arm k and the result is obtained
thanks to the regret decomposition. We make use of a standard technique which is to de�ne a
“good” event in order to distinguish the randomness of the distributions from the behavior of
the algorithm.

LetE be the good event de�ned by

E =

{
∀t ∈ [T ],∀k ∈ [K] : |µ̂k(t)− µk| ≤

√
6 log T

Nk(t)

}
.

Let k ∈ [K] be any suboptimal arm. We can thus further decompose its number of pulls by

E[Nk(T )] ≤ 1 + E[1{E}Nk(T )] + E[1{Ec}Nk(T )] ≤ 1 + E[1{E}Nk(T )] + TP(Ec)

where in the last inequality we used thatNk(T ) ≤ T and the “1” term results from the initializa-
tion.

First, we bound P(Ec). With a slight abuse of notation, we denoteXk(s) the empirical mean
of arm k after s pulls. Since it is 1

s -subgaussian, we have

P

(∣∣Xk(s)− µk
∣∣ >√6 log T

s

)
≤ 2

T 3
.

Taking a union bound over k ∈ [K] and s ∈ [T ], we obtain

P

(
∃s ∈ [T ],∃k ∈ [K] :

∣∣Xk(s)− µk
∣∣ >√6 log T

s

)
≤ 2

T
.

In particular, this implies that P(Ec) ≤ 2

T
.

On the other hand, we bound the number of pulls E[1{E}Nk(t)] for t ≤ T . At time t+ 1,
arm k is pulled if

UCBk(t) ≥ UCB1(t) .
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2.5 A brief overview of bandit algorithms

Since the good event holds, we also have

UCBk(t) ≤ µk + 2rk(t)

UCB1(t) ≥ µ1

Putting the previous inequalities together yields

Nk(t) ≤
24 log T

∆2
k

.

In particular, E[1{E}Nk(T )] ≤ 24 log T
∆2
k

and the proof is conclude.

This theorem tells us that the UCB algorithm is asymptotically optimal, with respect to the
parameter-dependent lower bound, up to a constant factor. We mention that a di�erent choice
of con�dence level and a more careful analysis lead to a tighter bound. We can also use this result
to obtain a minimax upper bound on the regret of the UCB algorithm.

Theorem 2.5. On a stochasticK-armed 1-subgaussian bandit problem, the regret of UCB verifies

E[RT ] ≤ 10
√
KT log T +

∑
k:∆k>0

∆k + 1 .

Proof. Let ε > 0 to be tuned later. Using the decomposition of the regret, we have

E[RT ] =
K∑
k=1

∆kE[Nk(t)]

=
∑

k:∆k<ε

∆kE[Nk(t)] +
∑

k:∆k≥ε
∆kE[Nk(t)]

≤ Tε+
∑

k:∆k≥ε

24 log T

∆k
+

∑
k:∆k≥ε

∆k + 1

≤ Tε+
24K log T

ε
+

∑
k:∆k>0

∆k + 1

≤ 2
√

24KT log T +
∑

k:∆k>0

∆k + 1

where in the �rst inequality we have used
∑

k:∆k<ε
Nk(t) ≤ T and the result of the previous

theorem, and the last row is obtained by taking ε =
√

24K log T
T .

We thus see that there exists a logarithmic factor with respect to the horizon T in excess com-
pared to the minimax lower bound.

Many variants of the UCB algorithm have been proposed: UCB-V [8] uses variance estimates
to tune the con�dence radius, KL-UCB [56, 113] concerns Bernoulli bandits, kl-UCB++ [115]
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2 Stochastic multi-armed bandits

and AdaUCB [96] are designed to be both asymptotically and minimax optimal, and many oth-
ers. The di�erence between them concerns either the assumption on rewards distributions or the
objective in terms of regret.

Algorithm 2: Thompson Sampling for Bernoulli bandits
Initialization: Set Sk = 0 and Fk = 0 for k = 1, . . . ,K
for t← 1 to T do

for k ← 1 toK do

Sample θk(t) ∼ Beta(Sk + 1, Fk + 1)

Pull armAt ∈ arg maxk θk(t) and observe rewardXt

if Xt = 1 then

SAt = SAt + 1
else

FAt = FAt + 1

Bayesianprinciple We describe here theThompsonSamplingalgorithm which is extremely
popular in the literature. It is actually the �rst bandit algorithm introduced in 1933 by Thomp-
son [137] (without any theoretical guarantee). It regains popularity recently due to its excellent
empirical performance [33]. The theoretical analysis then followed [6, 81].

The Thompson Sampling algorithm consists in placing a prior distribution on each arm.
At each step, a sample is drawn from each posterior distribution and the arm with the highest
value is chosen. The distribution of the selected arm is then updated. Formally, let us denote by
F(t) = σ(A1, X1, . . . , At, Xt) the information available after t steps. Let Πt = P(·|Ft) be the
posterior distribution of the means parameters at the end of step t. The algorithm then samples,
at each time step, from the posterior distribution Πt−1 and pulls the arm with the best sample.

A more concrete example of Thompson Sampling is in the case of Bernoulli bandits. Indeed
a natural choice of prior for a Bernoulli distribution is the Beta distribution. Initially, the prior
is usually chosen to be uniform, that is a Beta(1, 1) prior. Then, after arm k has been pulled, its
distribution is update to a Beta(Sk(t)+1, Nk(t)−Sk(t)+1) distribution whereSk(t) denotes
the number of successes of arm k until time t. Thompson Sampling was proven to achieve
asymptotical optimal problem-dependent bound in this case [6, 81]. We also mention that the
choice of the prior has a signi�cant e�ect on the performance of Thompson Sampling.

There exists another algorithm that use both the Bayesian point of view and the optimism prin-
ciple: theBayes-UCBalgorithm [79]. Indeed, instead of sampling from the posterior distribution
of each arm like Thompson Sampling, Bayes-UCB computes a given quantile value for each
arm and pulls the best one likeUCB. It also achieves an asymptotical optimal problem-dependent
bound for Bernoulli bandits.

ExploreorExploitprinciple We regroup here three types of algorithms: Explore-Then-
Commit [100], SuccessiveElimination [54] and Epsilon-Greedy [9]. Explore-Then-
Commit pulls each arm successively until a prede�ned time step and then commit to the best arm
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empirically. Its main drawback is that it must know the parameters of the problem to perform op-
timally. SuccessiveElimination also pulls each arm successively but it eliminates arms that are
evaluated suboptimal over time. Epsilon-Greedy spreads the exploration more uniformly over
time: at each time step t, it explores a random arm with probability εt, otherwise it pulls the best
arm in sight. It has the same drawback as Explore-Then-Commit, it must know the parameters
of the problem to perform optimally. All these algorithms share the fact that they either explore
or exploit as opposed to UCB where this is a mix of both. They also are asymptotically optimal
up to constant factors. However, their disadvantage is that the exploration is uniform over arms
which hurt their performance in practice. Garivier, Lattimore, and Kaufmann [57] actually proved
that Explore-Then-Commit is necessarily suboptimal by a factor 2.

Tracking principle The last family of algorithms worth mentioning is what we called track-
ing algorithms: DMED [67], IMED [68] andOSSB [41]. These algorithms share the common idea
that is to pull arms that do not satisfy the inequality on their number of draws resulting from the
problem-dependent lower bound. They pull the best empirical arm if all arms verify their con-
ditions. They simply di�er in the way they explore. Thereby they satisfy asymptotical optimal
problem-dependent bounds.

2.6 Another performance index: the Bayesian regret

Another notion of regret that we will use later is the Bayesian regret. As the name suggests, we
assume here the existence of a prior distribution which regulates the set of possible reward dis-
tributions. For instance, a simple case is when the prior distribution controls expected rewards.
The idea is then to study the regret of an algorithm knowing this distribution. Since we study a
subset of problems, we would ideally like to have stronger theoretical guarantees. Formally, in the
parametric framework, a random vector θ = (θ1, . . . , θK) is generated according to a prior dis-
tributionQ, and the distribution Vk of arm k depends on the parameter θk. The Bayesian regret
is then de�ned as follows

BRQ(T, π) =

∫
E[R(T, π)]dQ(θ) .

Note that the optimal Bayesian regret is necessarily smaller than the minimax regret since we eval-
uate an algorithm an a subset of problems. And we cannot actually do better, up to constant
factors, for all prior distributions [100].

An optimal dynamic-programming algorithm for Bayesian bandits is known as Gittins in-
dex [62] but unfortunately it is most of the time intractable. We refer the interested reader to Lat-
timore and Szepesvári [100, Chapter 35, and references therein] for an exhaustive overview on Bayesian
bandits.
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2.7 Applications

We conclude this section with a short description of several applications range bandit problems
can be applied to. Even is the main motivation of this thesis concerns recommender systems, some
results might be of independent interest.

Clinical trials This was the main motivation of the �rst article on bandit problems [137]. An
arm here represents a potential treatment and the goal is to identify the best one in a mini-
mal number of trials. Unfortunately, bandit algorithms still have not been used in clinical
trials [145].

Black-box stochastic optimization Consider the problem of hyperparameter selection of an
algorithm. If it returns noisy rewards, we can treat it at a bandit problem where arms
are possible parameter values. We thus obtain strategies to re�ne the parameter over time.
Chapter 5 in particular considers the optimization of the UCB algorithm. Another possi-
bility is to �x the budget, that is the number of times we can run the algorithm and the goal
is then is identify the best value at the end of this “test” phase.

Tree search One of the successful application of bandit algorithms comes from AlphaGo [133],
an algorithm that become famous by outplaying world-class players at Go, a game known
for its complexity. Indeed, one of its keystone is a tree search algorithm that make use of a
bandit algorithm at each node [87].

Routing problem Consider the problem of sending packets from one vertex to another in a
network represented by a graph with the objective of �nding the shortest path. It can be
modeled as a bandit problem where arms are the set of paths between the two points, each
packet represent a time step and the feedback is the time taken by a packet to reached its
destination. This application is one of the main motivations for combinatorial bandits.

Cognitive radio We can view the problem of communication between a wireless device and a
gateway as a bandit problem where arms are the di�erent possible channels. Actually, the
problem is much more complicated as many devices may try to communicate at the same
time; which lead to the study of multi-players bandits.
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Bandit algorithms for e-commerce
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In this chapter, we introduce a new stochastic multi-armed bandit setting where arms are grouped
inside “ordered” categories. The motivating example comes from e-commerce, where a customer
typically has a greater appetence for items of a speci�c well-identi�ed but unknown category than
any other one. We introduce three concepts of ordering between categories, inspired by stochastic
dominance between random variables, which are gradually weaker so that more and more bandit
scenarios satisfy at least one of them. We �rst prove problem-dependent lower bounds on the cu-
mulative regret for each of these models, indicating how the complexity of the bandit problem
increases with the generality of the ordering concept considered. We also provide algorithms that
fully leverage the structure of the model with their associated theoretical guarantees. Finally, we
have conducted an analysis on real data to highlight that those ordered categories actually exist in
practice.

3.1 Introduction

The traditional bandit model must be adapted to speci�c applications to unleash its full power.
Consider for instance e-commerce. One of the core optimization problem is to decide which
products to recommend, or display, to a user landing on a website, in the objective of maximizing
the click-through-rate or the conversion rate. Arms of recommender systems are the di�erent
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products that can be displayed. The number of products, even if �nite, is prohibitively huge as
the regret, i.e. the learning cost, typically scale linearly with the number of arms. So agnostic
bandit algorithms take too much time to complete their learning phase. Thankfully, there is an
inherent structure behind a typical catalogue: products are gathered into well-de�ned categories.
As customers are generally interested in only one or a few of them, it seems possible and pro�table
to gather information across products to speed up the learning phase and, ultimately, to make
more re�ned recommendations.

Our results We introduce and study the idea of categorized bandits. In this framework, arms
are grouped inside known categories and we assume the existence of a partial yet unknown order
between categories. We aim at leveraging this additional assumption to reduce the linear depen-
dency in the total number of arms. We present three di�erent partial orders over categories in-
spired by di�erent notions of stochastic dominance between random variables. We considered
gradually weaker notions of ordering in order to cover more and more bandit scenarios. On the
other hand, the stronger the assumption, the more “powerful” the algorithms can be, i.e. their
regret is smaller. Those assumptions are motivated and justi�ed by real data gathered on the e-
commerce website Cdiscount. We �rst prove asymptotic problem-dependent lower bounds on
the cumulative regret for each of these models, with a special emphasis on how the complexity of
the bandit problems increases with the generality of the ordering concept considered. We then
proceed to develop two generic algorithms for the categorized bandit problem that fully leverage
the structure of the model; the �rst one is devised from the principle of optimism in the face of
uncertainty [9] when the second one is from the Bayesian principle [137]. Finite-time problem-
dependent upper bounds on the cumulative regret are provided for the former algorithm. Finally,
we conduct numerical experiments on di�erent scenarios to illustrate both �nite-time and asymp-
totic performances of our algorithms compared to algorithms either agnostic to the structure or
only taking it partly into account.

3.2 Relatedwork

The idea of clustering is not novel in the bandit literature [26, 60, 88, 105, 117] yet they mainly focus
on clustering users based on their preferences. Li, Karatzoglou, and Gentile [106] extended these
work to the clustering of items as well. Katariya, Jain, Sengupta, Evans, and Nowak [74] considered a
problem where the goal is to sort items according to their means into clusters. Similar in spirit are
bandit algorithms for low-rank matrix completion [75, 83, 153]. Maillard and Mannor [112] studied a
multi-armed bandit problem where arms are partitioned into latent groups. Valko, Munos, Kveton,
and Kocák [143] and Kocák, Valko, Munos, and Agrawal [86] proposed algorithms where the features
of items are derived from a known similarity graph over the items. However, none of these works
consider the known structure of categories in which the items are gathered.

The model �ts in the more general structured stochastic bandit framework i.e. where expected
reward of arms can be dependent [2, 49, 91, 98, 123]. More recently, Combes, Magureanu, and
Proutiere [41] proposed an asymptotically optimal algorithm for structured bandits relying on
forced exploration (similarly to Lattimore and Szepesvari [99]) and a tracking mechanism on the
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number of draws of sub-optimal arms. However, these approaches forcing exploration are too
conservative as the linear dependency only disappears asymptotically.

There exist two other ways to tackle the bandit problem with arms grouped inside categories.
The �rst one could rely on tree search methods, popularized by the celebrateduct algorithm [87].
Alternative hierarchical algorithms [43] could also be used. The second one could be linear ban-
dits [1, 45, 128] where we introduce a “categorical” feature that indicates in which category the
arm belongs. However, these approaches are also not satisfactory as they do not leverage the full
structure of the problem.

3.3 Model

We now present the variant of the multi-armed bandit model we consider. As usual, a decision
maker sequentially selects (or pulls) an arm at each time step t ∈ {1, . . . , T} =: [T ] . As mo-
tivated in the introduction, the total number of possible arms can be prohibitively large, but we
assume that this large number of arms are grouped in a small number M of categories. For the
sake of presentation, we are going to assume that each category has the same number of arms
K , yet all of our assumptions and results immediately generalize to di�erent number of arms.
We emphasize again that the M categories of K arms each form a known partition of the set of
arms (of cardinality MK). At time step t ∈ [T ], the agent selects a category Ct and an arm
At ∈ Ct in this category. This generates a reward Xt = µCtAt + ηt where ηt is some indepen-
dent 1-subgaussian white noise andµmk is the unknown expected reward of the arm k of category
m. For notational convenience, we will assume that arms are ordered inside each category, i.e.
µm1 > µm2 ≥ · · · ≥ µmK−1 > µmK for all category m and that category 1 is the best category,
with respect to a partial order de�ned below. To be precise, since the order is only partial, some
categories might not be pairwise comparable, but we assume that the optimal category is com-
parable to, and dominates, all the others. We stress out that, in the partial orders we consider,
the maximum of µmk over m and k is necessarily µ1

1. As in any multi-armed bandit problem, the
overall objective of an agent is to maximize her expected cumulative reward until time horizon

T or identically, to minimize her expected cumulative regret E[RT ] = Tµ1
1 − E

[
T∑
t=1

µCtAt

]
, or

equivalently, E[RT ] =
∑
m,k

∆m,k E[Nm
k (T )], where ∆m,k := µ1

1 − µmk is the di�erence, usu-

ally called “gap”, between the expected rewards of the best arm and the kth arm of category m
and Nm

k (t) :=
∑t

s=1 1{Cs = m,As = k} denotes the number of times this arm has been
pulled up to time step t. We also introduce here the notation ∆n,l

m,k := µnl −µmk to compare two
di�erent arms.

Relations of dominance The main assumption to leverage is that the set of categories is
partially ordered with a unique maximal element. Those partial orders are quite similar to the
standard ones induced by stochastic dominance [16, 64] over random variables. We are going to
consider three notions of dominance (inducing three di�erent partial orders) that are gradually
weaker so that the bandit setting is more and more general. Consequently, the regret should be
higher and higher.
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Figure 3.1: Illustration of dominances on three (imaginary) categories

De�nition 3.1. Let A = {µA1 , . . . , µAK} ⊂ R and B = {µB1 , . . . , µBK} ⊂ R be a pair of
categories,

Group-sparse dominance A group-sparsely dominates B, denoted by A �s B, if each ele-
ment of A are non-negative and at least one is positive, and each element of B are non-
positive, i.e., max

k∈[K]
µAk > min

k∈[K]
µAk ≥ 0 ≥ max

k∈[K]
µBk .

Strong dominance A strongly dominates B, denoted by A �0 B, if each element of A is
bigger than any element of B, i.e., min

k∈[K]
µAk ≥ max

k∈[K]
µBk .

First-order dominance A �rst-order dominates B, denoted by A �1 B, if
sup
x∈R

FA(x) − FB(x) ≤ 0 , where FA(x) = 1
K

∑K
k=1 1{µAk ≤ x} is the cumulative

distribution function of a uniform random variable over A (and similarly for B).

The �rst notion of dominance is inspired by the classic (group-)sparsity concept in machine
learning, that already emerged in variants of multi-armed bandits [29, 92]. It is quite a strong
assumption as it implies the knowledge of a threshold1 between two categories. The second notion
weakens this assumption as the threshold is unknown. The third notion is even weaker. The
second and third notions of dominance are similar to the zeroth (also called strong) and �rst-
order of stochastic dominances between two random variables respectively uniform over A and
B. Hence, the three concepts of dominance immediately generalize to categories with di�erent
number of elements, with the very same de�nitions. Furthermore, one can weaken even more the
dominance, e.g. introducing a second-order variant, but we will not consider it in this paper.

Example To illustrate the concepts of dominance, we have represented, in Figure 3.1, 3 (imag-
inary) categories of 3 arms each. It can be easily checked that, for the �rst-order dominance,

1This threshold is here �xed at 0 for convenience, but it could have any value.

26



3.4 Empirical evidence of dominance

C1 C2 C3 C4

0.0133 0.0140 0.0089 0.0069
0.0114 0.0088 0.0086 0.0063
0.0108 0.0083 0.0078 0.0053
0.0107 0.0082 0.0056 0.0051
0.0096 0.0078 0.0052 0.0051
0.0095 0.0078 0.0050 0.0044
0.0088 0.0078 0.0049 0.0042
0.0086 0.0077 0.0047 0.0041
0.0084 0.0076 0.0042 0.0040
0.0080 0.0074 0.0041 0.0038

Table 3.1: Click-through rates of the four categories on the dataset.

C1 �1 C2 �1 C3 as, if they have the same number of elements, A �rst-order dominates B
if the kth largest elements of A is greater than the kth largest element of B, for any k. Moreover,
for the strong dominance, C1 �0 C3 since the worst mean of C1 is higher than the best mean
of C3. Moreover, if this common value was known, then the dominance would even be group-
sparse.

Lemma 3.1. Let C1, . . . ,CM be finite categories. If there is a category C? that dominates all the
other ones for any of the partial orders defined above, then C? contains the maximal element of the
union C1∪C2∪ . . .∪CM . Moreover, if A group-sparsely dominates B, then the dominance also
holds in the strong sense. Similarly, ifA strongly dominatesB, then the dominance also holds in the
first-order sense.

The proof is almost immediate, hence omitted.

3.4 Empirical evidence of dominance

We illustrate these assumptions on a real dataset. We have collected the click-through rates of
products in four di�erent categories over one month on the e-commerce website Cdiscount, one
of the leading e-commerce companies in France, gathered in Table 3.1. Categories C1, C2 and
C3 are three of the largest categories2 in terms of revenue while C4 is a smaller category. The
following dominances can be highlighted.

Strong dominance C1 strongly dominates C4 as its minimum CTR is 0.008 compared to the
maximum CTR of 0.0069 for the other. Similarly, C2 strongly dominates C4.

First-order dominance C2 �rst-order dominates C3 as the CTR of each line of the second
column are bigger than those of the third column. This dominance is not strong as 0.0074
is smaller than 0.0089. C3 �rst-order but not strongly dominates C4.

2For privacy reason, the exact content of the di�erent categories cannot be revealed.
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Figure 3.2: Cumulative distribution functions of the four categories on the dataset.

Uncomparable categories C1 and C2 are not comparable with respect to any partial order.

Notice that, had the �rst item ofC2 performed only 5% worse than observed, thenC1 would have
been optimal with respect to the �rst-order dominance; the click-through rate of the best item of
C2 is so higher than the second one, we could expect it is actually an outlier, i.e. an artefact of the
choice of that speci�c month and category. So even if the dominance assumption is not satis�ed
during that speci�c month, assuming it would still give good empirical results.

The relations of dominance can be easier to determine based on the representation of the asso-
ciated cumulative distribution functions of Figure 3.2. As the cumulative distribution function
of the uniform random variable on categoryC4 is, pointwise, the biggest one, this means that this
category is �rst-order dominated by all the other ones. Moreover, it reaches 1 while the cdf of C1

and C2 are still at 0. This implies that the dominance of these two categories is even strong. This
analysis motivates and validates our assumption.

3.5 Lower bounds

In this section, we provide lower bounds on the regret that any “reasonable” algorithm (the precise
de�nition is given below) must incur in a multi-armed bandit problem where arms are grouped
into partially ordered categories (with a dominating one). To simplify the exposition, we assume
here that noises are drawn i.i.d. from a Gaussian distribution with unit variance. The class of algo-
rithms we consider are consistent [95] with respect to a given a class of possible bandit problems
M =

{
µ = (µ1, . . . , µMK) ∈ RMK

}
. We recall that an algorithm is consistent withM if, for

any admissible reward vector µ ∈ M and any parameter α ∈ (0, 1], the regret of that algorithm

is asymptotically negligible compared to Tα, i.e., sup
α∈(0,1)

lim sup
T→∞

Eµ[RT ]

Tα
= 0 . Graves and Lai

[63] proved that any algorithm consistent withM has a regret scaling at least logarithmically in
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T , with a leading constant cµ depending on µ (andM) i.e., lim inf
T→∞

Eµ[RT ]

log(T )
≥ cµ ; moreover,

cµ is the solution of some auxiliary optimization problem. In our setting, it rewrites as

cµ = min
N≥0

∑
m,k

Nm
k ∆m,k subject to

∑
m,k

Nm
k (µmk − λmk )2 ≥ 2,∀λ ∈ Λ(µ) ,

where Λ(µ) =
{
λ ∈M;µ1

1 = λ1
1, λ

1
1 < maxm,k λ

m
k

}
. We point out that the assumption of

dominance is hidden in the class of bandit problemM. Moreover, the square arises in the previous
equation due to the KL divergence of the standard Gaussian distribution. In the remaining and
with a slight abuse of notation, we are going to call an algorithm consistent with a dominance
assumption if it is consistent with the set of all possible vectors of means satisfying this dominance
assumption.

Group-sparse dominance In this case, the above optimization problem has a closed-form
solution.

Theorem 3.1. An algorithm consistent with the group-sparse dominance satisfies

cµ =

K∑
k=2

2

∆1,k
.

Proof. The set Λ(µ) in the optimization problem can be decomposed into Λ(µ) = Λk(µ)t· · ·t
ΛK(µ) where Λk(µ) is the set of alternative parameters in which arm k of category 1 is optimal.
Indeed, as we know that λ1

1 = µ1
1 > 0, the best category is known and the regret incurred by

suboptimal categories is non-existent. Thus, asymptotically, we fall back into deriving a lower
bound on the regret in one category, i.e. in the classic multi-armed bandit setting.

This lower bound indicates that all arms in the optimal category (and only those) should be
pulled a logarithmic number of times, hence the regret should only scale asymptotically linearly
in the number of arms in the optimal category instead of linearly with the total number of arms.
We want to stress out here that Theorem 3.1 might have a misleading interpretation. Although the
asymptotic regret scales withK and independently ofM , the �nite-stage minimax regret is still of
the order of

√
MKT , as with usual bandits. This is simply because the lower-bound proof [27]

of the standard multi-armed bandit case uses set of parameters of the form (0, . . . , 0, ε, 0, . . . , 0)
which respect the group-sparse assumption. As a result, the asymptotic lower bound of Theo-
rem 3.1 is hiding some �nite-time dependency in MK (possibly of the form of an extra-term in∑

m,k 1/∆m,k, yet independent of log(T )) that non-asymptotic algorithms3 would not be able
to remove.

Strongdominance In the case of strong dominance, a similar closed-form expression can be
stated.

3We call an algorithm non-asymptotic if its worst-case regret is of the order of
√
MKT , maybe up to some additional

polynomial dependency in M and K . In particular, classic algorithms for structured bandits [41, 99] are only
asymptotical.
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3 Categorized multi-armed bandits

Theorem 3.2. With strong dominance, a consistent algorithm verifies

cµ =
K∑
k=2

2

∆1,k
+

M∑
m=2

2

∆m,K
.

Proof. Without loss of generality, we assume that we haveM = 2 categories and that category 2
has a unique worst arm. The condition in the optimization problem can be written as

K∑
k=2

N1
k (µ1

k − λ2
k)

2 +
K∑
k=1

N2
k (µ2

k − λ2
k)

2 ≥ 2,∀λ ∈ Λ(µ) ,

where Λ(µ) = Λ2(µ) t · · · t ΛK(µ) t Λ2(µ) where Λk(µ) is the event in which the best arm
is mistaken by arm k in the category 1, i.e.

Λk(µ) = {µ1
1}×]−∞, µ1

1[× . . .×]µ1
1,+∞[× . . .×]−∞, µ1

1[×]−∞, µ1
1[× . . .×]−∞, µ1

1[

and Λ2(µ) is the event in which we mistake category 2 as the optimal category, i.e.

Λ2(µ) = {µ1
1}×]−∞, µ1

1[× . . .×]−∞, µ1
1[×]µ1

1,+∞[× . . .×]µ1
1,+∞[ .

On Λk(µ), the condition is equivalent to

N1
k

(
µ1

1 − µ2
k

)2 ≥ 2 ,

and on Λ2(µ),
K∑
k=1

N2
k

(
µ1

1 − µ2
k

)2 ≥ 2 .

The minimization problem can thus be separated in two parts: the �rst part corresponds to �nding
the best arm in the optimal category and the second part to �nding the optimal category.

For the �rst part, the solution is the same as in the multi-armed bandit setting and is given by
N1
k = 2

(∆1,k)
2 .

For the second part, let us prove that the solution is given byN2
K = 2

(∆2,K)
2 andN2

k = 0 for

k 6= K . We have the following problem

min
N2≥0

K∑
k=1

N2
k∆2,k =: f(N2) subject to

K∑
k=1

N2
k (∆2,k)

2 ≥ 2 .

On one side, we have

min
N≥0

f(N) ≤ min
n≥0

f(0, . . . , 0, n) = f

(
0, . . . , 0,

2

(∆2,K)2

)
=

2

∆2,K
,
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3.5 Lower bounds

and on the other side, since ∆2,k < ∆2,K , we have

K∑
k=1

N2
k∆2,k >

1

∆2,K

K∑
k=1

N2
k (∆2,k)

2 ≥ 2

∆2,K
.

Hence the solution of the optimization problem in the suboptimal category and the lower bound
on the regret follows.

This lower bound indicates that the dominance assumption can be leveraged to replace the
asymptotic linear dependency in the total number of arms into a linear dependency in the number
of arms of the optimal category plus the number of categories. WithM categories ofK arms each,
the dependency in MK is replaced into M + K . However, as before and for the same reasons,
the �nite-time minimax lower bound will still be of the order

√
MKT . The lower bound of

Theorem 3.2 seems to indicate that an optimal algorithm should be pulling only the arms of the
optimal category and the worst arm (not the best!) of the other categories, at least asymptotically
and logarithmically. Yet again, there is no guarantee that non-asymptotic algorithms can achieve
this highly-demanding (and rather counter-intuitive) lower bound.

First-order dominance There are no simple closed form expression of cµ with the �rst-
order dominance assumption. We nonetheless provide a variational expression. By simplifying
the optimization problem, we obtain the two following conditions

∀ k 6= 1, N1
k (∆1,k)

2 ≥ 2 ,

and ∀ k ∈ [K],

k−1∑
i=1

[(
N1
i+1

(
µ1
i+1 − µ̃i

)2
+N2

i

(
µ2
i − µ̃i

)2)
1
{
µ2
i < µ1

i+1

}]
+N2

k (∆2,k)
2

+

K∑
j=k+1

(
N1
j

(
µ1
j − µj

)2
+N2

j

(
µ2
j − µj

)2) ≥ 2 ,

(3.1)

where µ̃i =
N1
i+1µ

1
i+1 +N2

i µ
2
i

N1
i+1 +N2

i

and µj =
N1
j µ

1
j +N2

j µ
2
j

N1
j +N2

j

.

However, for the sake of illustration, we provide a closed-form solution for a speci�c case.

Theorem 3.3. With first-order dominance andM = K = 2 and assuming that arms are inter-
twined, 4 i.e. µ1

1 > µ2
1 > µ1

2 > µ2
2, a consistent algorithm satisfies

cµ =
2

∆1,2
+

2

∆2,2
+

2

∆2,1

(
1− (∆2,2 −∆1,2)2

(∆1,2)2 + (∆2,2)2

)
.

4WithK =M = 2, if arms are not intertwined, then the strong assumption actually holds.
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3 Categorized multi-armed bandits

Proof. Assuming the arms are intertwined, the �rst term in the Equation (3.1) disappears since
the condition in the indicator function is not veri�ed. In the case of M = 2 categories and two
arms per categoryK = 2, the following conditions are derived

N1
2 ≥

2

(∆1,2)2 , N2
2 ≥

2

(∆2,2)2 ,

and
N2

1 (∆2,1)2 +N1
2

(
µ1

2 − µ
)2

+N2
2

(
µ2

2 − µ
)2 ≥ 2 ,

where µ =
N1

2µ
1
2 +N2

2µ
2
2

N1
2 +N2

2

.

Since this is a minimization problem, it is clear that the regret is minimize on the lower bounds
ofN1

2 andN2
2 . Putting this two quantities in the last inequality, we obtain

N2
1 ≥

2

(∆2,1)2

[
1−

((
µ1

2 − µ
∆1,2

)2

+

(
µ2

2 − µ
∆2,2

)2
)]

. (3.2)

Developing µ, we have

µ =

2µ12
(∆1,2)2

+
2µ22

(∆2,2)2

2
(∆1,2)2

+ 2
(∆2,2)2

=
µ1

2(∆2,2)2 + µ2
2(∆1,2)2

(∆1,2)2 + (∆2,2)2 .

Now developing µ12−µ
∆1,2

, we get

µ1
2 − µ
∆1,2

=
∆1,2

(
µ1

2 − µ2
2

)
(∆1,2)2 + (∆2,2)2 =

∆1,2∆1,2
2,2

(∆1,2)2 + (∆2,2)2 .

Similarly,
µ2

2 − µ
∆2,2

= −
∆2,2∆1,2

2,2

(∆1,2)2 + (∆2,2)2 .

Plugging this into Equation (3.2), we obtain

N2
1 ≥

2

(∆2,1)2

1−

(
∆1,2

2,2

)2

(∆1,2)2 + (∆2,2)2

 .
The result follows by the decomposition of the expected regret.

It is quite interesting to compare this lower bound to the corresponding ones with group-
sparsity where cµ = 2

∆1,2
, with strong dominance where cµ = 2

∆1,2
+ 2

∆2,2
and without structure

at all where cµ = 2
∆1,2

+ 2
∆2,2

+ 2
∆2,1

. Clearly, lower bounds are, as expected, decreasing with
additional structure. More interestingly, the �rst-order lower bound somehow interpolates be-
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tween this two by multiplying the term 2
∆2,1

by a factor ρ ∈ (0, 1); ρ = 0 corresponding to the
stronger assumption of strong dominance and ρ = 1 to the absence of dominance assumption.

3.6 Algorithms and upper bounds

We introduce in this section two algorithms developed for the categorized multi-armed bandit
problem. The �rst one is based on the principle of optimism in the face of uncertainty [9] while
the second one is a variant of Thompson Sampling [137]. Regret upper bounds are given in
each dominance hypothesis for the �rst algorithm.

3.6.1 Optimism principle

Our �rst algorithm is based on the principle of optimism in the face of uncertainty and is summa-
rized in Algorithm 3. It behaves in three di�erent ways depending on the number of categories
that are called “active”. The de�nition of an active category will depend on the assumption of
dominance. Formally, let δ ∈ (0, 1) be a con�dence level (�xing the con�dence level actually
requires that the horizon T is known, but there exist well understood anytime version of all these
results [48]). At time step t, it computes the set of active categories, denoted C(t, δ). The three
states of Algorithm 3 are then as follows:

Algorithm 3: CatSE(δ)
Pull each arm once
while t ≤ T do

Compute set of active categories C(t, δ)
if |C(t, δ)| = 0 then

Pull all arms
else if |C(t, δ)| = 1 then

Perform UCB(δ) in the active category
else

Pull all arms in active categories
end

end

1. |C(t, δ)| = 0: no category is active; the algorithm pulls all arms.

2. |C(t, δ)| = 1: only one category is active; the algorithm performs UCB(δ) in it.

3. |C(t, δ)| > 1: several categories are active; the algorithm pulls all arms inside those.

We now detail what we called an active category for each notion of dominance de�ned previ-
ously along with theorems upper bounding the regret of the CatSE algorithm.
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3 Categorized multi-armed bandits

Group-sparse dominance Under this assumption, we say a category is active if it has an
active arm. Following the idea of sparse bandits [92] or bounded regret [29], we say that the arm
k of categorym is active if

µ̂mk (t) :=

∑
s≤t;(Cs,As)=(m,k)Xs

Nm
k (t)

≥ 2

√
logNm

k (t)

Nm
k (t)

.

This condition ensures that the expected number of times an arm with positive mean is non active
is �nite. Similarly, the expected number of times an arm with non positive mean is active is also
�nite. Hence, the expected number of times a suboptimal category is pulled is also �nite. Then,
the set of active categories, denoted C(t) is simply

C(t) :=

{
m ∈ [M ];∃ k ∈ [K], µ̂mk (t) ≥ 2

√
logNm

k (t)

Nm
k (t)

}
.

Theorem 3.4. In the group-sparse dominance setting, the expected regret of CatSE verifies with
probability at least 1− 2δKT ,

E[RT ] ≤
K∑
k=2

8 log 1
δ

∆1,k
+
∑
m,k

∆m,k +
40

(µ1
1)2

log
16

(µ1
1)2

∑
m,k

∆m,k + (M − 1)K
π2

6

∑
m,k

∆m,k .

The �rst term is the bound of the UCB algorithm while the third term is the regret incurred
when the optimal category is non active and the last term comes from a suboptimal category being
active. As a result, CatSE is asymptotically optimal, up to a multiplicative factor.

Proof. Consider the following clean event

E1 =

∀ t ∈ [T ], ∀ k ∈ [K], |µ̂1
k(t)− µ1

k| ≤

√
2 log 1

δ

N1
k (t)

 .

Using union bounds over t and k, one obtains thanks to the subgaussian assumption that
P(E1) ≥ 2δKT . In the following, we assume the clean event holds true. In the case in which
only the optimal category is active, we get the regret of the UCB algorithm

E[RT ] ≤
K∑
k=2

8 log 1
δ

∆1,k
.

On the other hand, the set of active categories is empty if the optimal category is non active.

That means that ∀ k ≤ s, µ̂1
k(N

1
k (t)) < 2

√
logN1

k (t)

N1
k (t)

where s is the number of arms with pos-

itive expected reward. Let E2 denote this event. The number of times it happen is bounded.
Indeed, since
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E2 ⊆

{
µ̂1

1(N1
1 (t)) < 2

√
logN1

1 (t)

N1
1 (t)

}
=: E3 ,

and

n ≥ 3 +
32

(µ1
1)2

log
16

(µ1
1)2
⇒ 2

√
log n

n
− µ1

1 ≤ −
µ1

1

2
,

we have

E

[
T∑

t=MK+1

1{E2}

]
≤ E

[
T∑

t=MK+1

1{E3}

]

≤
(

3 +
32

(µ1
1)2

log
16

(µ1
1)2

)
+

T∑
u=1

P
(
µ̂1

1(u)− µ1
1 < −

µ1
k

2

)

≤
(

3 +
32

(µ1
1)2

log
16

(µ1
1)2

)
+

T∑
u=1

exp
(
−u

8
(µ1

1)2
)

≤ 3 +
32

(µ1
1)2

log
16

(µ1
1)2

+
8

(µ1
1)2

.

Finally, the set of active categories has more than one element if a suboptimal category is active,

i.e. ∃m 6= 1,∃ k ∈ [K]; µ̂mk (Nm
k (t)) ≥ 2

√
logNm

k (t)

Nm
k (t) . LetE4 denote this event. The number

of times it happen is also bounded. Indeed,

E
T∑
t=1

1{E4} ≤
∑
m,k

T∑
u=1

P

(
µ̂mk (u) ≥ 2

√
log u

u

)

≤
∑
m,k

T∑
u=1

P

(
µ̂mk (u)− µmk ≥ 2

√
log u

u

)

≤
∑
m,k

T∑
u=1

1

u2
≤ (M − 1)K

π2

6
.

Combining the three inequalities, we conclude.

A trick to improve empirically the performance of the algorithm is to replace the round-robin
sampling phase (when |C(t)| = 0) by choosing an arm with a higher probability the closer it is to
be active. This idea was analyzed in Bubeck, Perchet, and Rigollet [29] with additional assumptions.
Yet this can only improve the second term of the regret, which is already constant with respect
to the time horizon T (so we chose to not focus on it). For example, a possibility is to pull arm
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(m, k) at time twith probability 5 pmk (t) ∝

(√
4 logNm

k (t)

Nm
k (t)

− µ̂mk (t)

)−2

. Another possible

improvement is to eliminate categories in which there exist an arm whose upper bound is less than
0. Again, this only improves a term constant with respect to T .

Strong dominance In this case, CatSE will use the information gathered by all arms. The
overall idea is to construct a con�dence region for the mean vector and to eliminate a category as
soon as it is clearly dominated by another one. The statistical test to perform in order to determine
which categories to eliminate is based on the following alternative characterization of dominance.

Let S(K) := {x ∈ RK+ ; ‖x‖1 = 1} be the K-simplex and µm := (µmk )k denote the vector
of means of categorym.

Proposition 3.1. C1 strongly dominates C2 if and only if

∀x ∈ S(K), ∀y ∈ S(K), 〈x, µ1〉 ≥ 〈y, µ2〉 .

Proof. Let (ei)i denotes the unit vectors. Taking x = ek and y = el hands µ1
k ≥ µ2

l .
In the other direction, let (α, β) ∈ S(K)× S(K). We have

〈α, µ〉 =
K∑
k=1

αkµk =
K−1∑
k=1

αkµk +

(
1−

K−1∑
k=1

αk

)
µK = µK +

K−1∑
k=1

αk(µk − µK) .

Now, using the previous equality, we obtain

〈α, µ1〉 − 〈β, µ2〉 =

K∑
k=1

αkµ
1
k −

K∑
k=1

βkµ
2
k

= (µ1
K − µ2

1) +
K−1∑
k=1

αk(µ
1
k − µ1

K) +
K∑
k=2

βk(µ
2
1 − µ2

k)

≥ 0 .

At the end of the p-th round of the phase of successive elimination of categories, each arm has
been pulled p times. A natural estimator of µm ∈ RK is the coordinate wise empirical average of
rewards, i.e., µmk (p) = 1

p

∑p
r=1X

m
k (r), where (with a slight abuse of notation), Xm

k (r) is the
reward gathered by the r-th pull of arm k of category m. We now describe the statistical run at
the end of round p ∈ N; category n ∈ [M ] is eliminated by categorym ∈ [M ] if it holds that

L+
m(p, δ) := max

x∈S(K)
〈x, µ̂m(p)〉 − ‖x‖2β(p, δ)

> min
y∈S(K)

〈y, µ̂n(p)〉+ ‖y‖2β(p, δ) =: L−n (p, δ) ,
(3.3)

5Other potential functions may lead to improvement.
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where β(p, δ) =
√

2
p

(
K log 2 + log 1

δ

)
. The set of active categories is then de�ne as follows

C(t, δ) =
{
m ∈ [M ];∀n 6= m,L+

n (t, δ) ≤ L−m(t, δ)
}
.

Theorem 3.5. In the strong dominance case, the regret of CatSE satisfies w.p. at least 1− δMT ,

RT ≤
K∑
k=2

8 log 1
δ

∆1,k
+
∑
m,k

∆m,k

+ 8
(
K log 2 + log

1

δ

) M∑
m=2

min
x,y∈S(K)

( ‖x‖2 + ‖y‖2
〈x, µ1〉 − 〈y, µm〉

)2
K∑
k=1

∆m,k

To prove this theorem, we need the following Lemma.

Lemma 3.2. With probability at least 1− δ, the following holds uniformly overall all x ∈ RK ,

〈x, µ̂m(p)− µm〉 ≤ ‖x‖2

√
2

p

(
K log 2 + log

1

δ

)
.

Proof. Fix x ∈ R and δ ∈ (0, 1) a con�dence level. According to Lattimore and Szepesvári [100],
we have with probability at least 1− δ,

‖µ̂(t)− µ‖Vt ≤

√
2

(
K log 2 + log

1

δ

)
.

If an agent pulls each arm sequentially, we are in the �xed design setting. In this case, (assuming
t is a multiple ofK), we have Vt = N(t)IK , i.e. it is a diagonal matrix and we conclude.

We are now ready to prove the theorem.

Proof. LetE0 denote the clean event

E0 =
{
∀ t ∈ [T ];∀m ∈ [M ],∀x ∈ RK , 〈x, µ̂m(t)− µm〉 ≤ ‖x‖2β(t, δ)

}
,

where β(t, δ) =
√

2
Nm(t)

(
K log 2 + log 1

δ

)
.

Using union bounds over the time and the categories, and by Lemma 3.2, we obtain P(Ec0) ≤
δMT .

Suppose we are in the clean event and let m 6= 1 be a suboptimal category and t be the last
time when we did not invoke the stopping rule, i.e. that the categorym is still active. First remark
that category 1 is never eliminated by categorym on the clean event since mink µ

1
k ≥ maxk µ

m
k .

By Equation (3.3), this means that ∀x ∈ S(K),∀y ∈ S(K),

〈x, µ̂1(t)〉 − 〈y, µ̂m(t)〉 ≤ (‖x‖2 + ‖y‖2)

√
2

N(t)

(
log

1

δ
+K log 2

)
,
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3 Categorized multi-armed bandits

where N(t) denotes the number of times each category have been pulled. As we are in the clean
event, we have ∀x ∈ S(K), ∀y ∈ S(K),

〈x, µ1〉 − 〈y, µm〉 ≤ 2(‖x‖2 + ‖y‖2)

√
2

N(t)

(
log

1

δ
+K log 2

)
.

Inverting this equation, we obtain the following upper bound onN(t)

∀x ∈ S(K),∀y ∈ S(K), N(t) ≤ 8

(
K log 2 + log

1

δ

)(
‖x‖2 + ‖y‖2
〈x, µ1〉 − 〈y, µm〉

)2

.

The proof is conclude with the analysis of the UCB algorithm [9].

First-orderdominance CatSEwill proceed with �rst-order dominance as with strong dom-
inance, the major di�erence is the statistical test. Let us �rst characterize the notion of �rst-order
dominance.

Proposition 3.2. C1 �rst-order dominates C2 if and only if

∀x ∈ S(K), 〈x, µ1〉 ≥ 〈x, µ2〉 .

Proof. Taking x = ek hands µ1
k ≥ µ2

k. In the other direction, let x ∈ S(K). We have

〈x, µ1 − µ2〉 =
K∑
k=1

xk(µ
1
k − µ2

k) ≥ 0 .

The statistical test is then de�ned as follows: category n ∈ [M ] is eliminated by categorym ∈
[M ] at round p if

Dm,n(p, δ) := max
x∈S(K)

〈x, µ̂mσ (p)− µ̂nτ (p)〉
‖x‖2

> 2γ(p, δ) , (3.4)

where µ̂mσ (p) and µ̂nτ (p) represent respectively the reordering of µ̂m(p) and µ̂n(p) in decreasing

order andγ(p, δ) =
1√
2p

(√
K log

1

δ
+
√

1 + (K + 1) logK
)

. We emphasis the permutation

is speci�c to both a category and a round. This statistical test yields the following set of active
categories

C(t, δ) = {m ∈ [M ];∀n 6= m,Dm,n(t, δ) ≤ 2γ(t, δ)} .
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3.6 Algorithms and upper bounds

Theorem 3.6. Under the additional assumption that Xt ∈ [0, 1], in the first-order dominance,
the regret of CatSE verifies with probability at least 1− δMT ,

RT ≤
K∑
k=2

8 log 1
δ

∆1,k
+
∑
m,k

∆m,k

+ 16

(
K log

1

δ
+K logK + logK + 1

) M∑
m=2

∑K
k=1 ∆m,k

‖µ1 − µm‖22
.

To prove this result we need the following Lemma.

Lemma 3.3. With probability at least 1− δ,

‖µ̂mσmt (t)− µm‖2 ≤
1√
2t

(√
K log

1

δ
+
√

1 + (K + 1) logK

)
,

where µ̂mσmt (t) denotes the vector µ̂m(t) ordered in decreasing order.

Proof. The McDiarmid inequality gives the following

P
{
‖µ̂mσmt (t)− µm‖ ≥ E‖µ̂mσmt (t)− µm‖+ ε

}
≤ exp(−2tε2/K) .

Now we just have to bound E‖µ̂mσmt (t)− µm‖2. If Y1, . . . , YN are σ2-subgaussian, then

P
{

max
i=1,...,N

Yi ≥ ε
}
≤ N exp

(
− ε2

2σ2

)
.

This give, by a careful integration, that

E
(

max
i=1,...,N

Yi

)2

≤ 2σ2(log(N) + 1) .

In our case, we have σ2 = 1
4t . Using that the expectation of the kth maximum of N random

variables is smaller than the expectation of the maximum ofN − (k − 1) random variables [46],
we obtain

E‖µ̂mσmt (t)− µm‖22 ≤
1

2t

K∑
k=1

(1 + log(K − (k − 1)))

≤ 1

2t
(K + logK!)

≤ 1 + (K + 1) logK

2t
,

where the last inequality comes from the Stirling formula. The result follows.
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3 Categorized multi-armed bandits

Proof. Let de�ne the clean event

E1 =

{
∀ t ∈ [T ],∀m ∈ [m],

‖µ̂mσmt (t)− µm‖2 ≤
1√
2t

(√
K log

1

δ
+
√

1 + (K + 1) logK

)}

By Lemma 3.3 and with union bounds over t andm, we have P(Ec1) ≤ δMT . Letm 6= 1 and t
be the last time we pulled categorym.

By Equation (3.4), we have

∀x ∈ S(K), 〈x, µ̂1
σ1
t
(t)− µ̂mσmt (t)〉 ≤ 2‖x‖2γ(t, δ) .

Moreover, notice that after t samples, ∀x ∈ S(K),

1

‖x‖2

∣∣∣〈x, µ̂1
σ1
t
(t)− µ̂mσmt (t)〉 − 〈x, µ1 − µm〉

∣∣∣ ≤ ‖µ̂1
σ1
t
(t)− µ1‖2 + ‖µ̂mσmt (t)− µm‖2

≤ 2γ(t, δ) ,

where the last inequality holds true with probability at least 1 − δMT . Combining the two
inequalities, one obtains with probability at least 1− δMT ,

Nm(t) ≤ 8

‖µ1 − µm‖22

(√
K log

1

δ
+
√

1 + (K + 1) logK

)2

≤ 16

‖µ1 − µm‖22

(
K log

1

δ
+K logK + logK + 1

)
where in the last inequality we used the Cauchy–Schwarz inequality. Hence the result.

3.6.2 Bayesian principle

Algorithm 4: Murphy Sampling
while t ≤ T do

Sample θ(t) ∼ Πt−1(·|Hd)
Pull (Ct, At) ∈ arg max(m,k) θ

m
k (t)

end

The Murphy Sampling (MS) algorithm [80] was originally developed in a pure exploration
setting. Conceptually, it is derived from Thompson Sampling (TS) [137], the di�erence is
that the sampling respects some inherent structure of the problem. To de�ne MS, we denote by
F(t) = σ(A1, X1, . . . , At, Xt) the information available after t steps andHd the assumption
of dominance considered. Let Πt = P(·|Ft) be the posterior distribution of the means param-
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(a) Sparse and strong dominance scenario
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Figure 3.3: Regret of various algorithms as a function of time.

eters after t rounds. The algorithm samples, at each time step, from the posterior distribution
Πt−1(·|Hd) and then pulls the best arm, which, by de�nition, is in the best category sampled
at this time step. In comparison, TS would sample from Πt−1 without taking into account any
structure. To implement this algorithm, we use that independent conjugate priors will produce
independent posteriors, making the posterior sampling tractable. The required assumption, i.e.
the structure of our problem, is then attained using rejection sampling. We do not provide theo-
retical guarantees on its regret but we will illustrate empirically on simulated data that it is highly
competitive compared to the other algorithms, as is TS in the standard multi-armed bandit set-
ting [33].

3.7 Experiments

We �nally present numerical experiments illustrating the performance of the algorithms we have
introduced. We compare them with two families of algorithms. The �rst one is algorithms for the
multi-armed bandit framework, namely UCB [9] and TS [137]; they are agnostic to the structure
of the arms. The second family of algorithms is adapted to tree search, namely UCT [87]; they
partially take into account the inherent structure. Speci�cally, they will just use the fact that arms
are grouped into categories but not that one category dominates the others. We consider two
scenarios for the di�erent dominance hypothesis. In all experiments, rewards are drawn from
Gaussian distributions with unit variance and we report the average regret as a function of time, in
log-scale. To implement TS andMS, we pulled each arm once and then sampled using a Gaussian
prior. The simulations were ran until time horizon T = 10000 and results were averaged over
100 independent runs.

Group-sparse & strong dominance We start by grouping the experiments in the group-
sparse and strong dominance setting, as we recall that the only di�erence between the two concepts
is the knowledge of a threshold between the best category and the others. In this �rst scenario, we
analyze a problem with �ve categories and �ve arms per category. Precisely, in the �rst category the
optimal arm has expected reward 1, and the four suboptimal arms consist of one group of three

41



3 Categorized multi-armed bandits

(stochastically) identical arms each with expected reward 0.5 and one arm with expected reward 0.
The four suboptimal category are identical and are composed of two arms with expected rewards 0
and−1, respectively and a group of three arms with expected reward−0.5. We used the subscript
s and 0 to denote the assumption of dominance the algorithm exploited. CatSEs and CatSE0

were run with δ = 1
t and δ = 1

Mt , respectively. Results are presented on Figure 3.3a. In the case
of group-sparse dominance, CatSEs (implement here with the potential sampling improvement)
outperforms both UCB and UCT; MSs asymptotically performs as well yet with a slightly higher
regret. Interestingly, UCT performs well in the beginning; thanks to the lack of an exploration
phase compared to CatSEs. In the case of strong dominance, MS0 and CatSE0 asymptotically
perform alike and slightly better than UCT. However, the regret of CatSE0 is much higher due
to its round-robin sampling phase; this can be seen in the beginning as CatSE0 is still in the
search of the optimal category. If we compare the two versions of each algorithm between them,
we can notice two points. Firstly, for CatSE, the result of the potential sampling improvement
is signi�cant. Secondly, for MS, the regret in the group-sparse case is slightly worse than in the
strong dominance case even though it is stronger. This is simply due to our implementation and
the di�culty of the posterior sampling, speci�cally the rejection sampling phase.

First-order dominance Finally, we consider the �rst-order dominance setting. In this sce-
nario, we look upon a problem with �ve categories and ten arms per category. Precisely, in the
optimal category, the best arm has expected reward 5 while the nine suboptimal arms consist of
three group of �ve, three and one arms, with expected rewards 4, 3 and 2, respectively. The four
suboptimal categories are composed of two arms with expected rewards 4.5 and 0, respectively,
and eight arms with expected reward 3. CatSEwas run with δ = 1

Mt and the results are presented
on Figure 3.3b. Once again, MS and CatSE outperform baseline algorithms and both appear to
have the same slope asymptotically with a signi�cant di�erence between their regret, again due
to the exploration phase of CatSE. It is interesting to observe that UCT performed poorly; as
noticed in [43], the convergence can be sluggish. Indeed, the main issue occurs when the best arm
is underestimated. In that case, it is pulled a logarithmic number of times the optimal category is
pulled, which is a logarithmic number of times, since the second best arm overall is in suboptimal
categories. Hence, it would take an exponential of exponentials number of time for the optimal
arm to become the best again.

3.8 Conclusion

In this chapter, we have introduced a novel structured bandit framework inspired by e-commerce
applications. In our setting, the arms are assumed to belong to ordered categories. We have pre-
sented three di�erent relations of dominance between categories and we con�rmed the veracity
of our model on real data. For each dominance, we derived asymptotic regret lower bound and
we devised two generic algorithms to solve the categorized bandit problem.

Two problems remain open: the �rst one is a better exploration phase inCatSE since it heavily
impacts the regret and as noted in [57], ETC algorithms are necessarily suboptimal; and the second
is an upper bound on the regret of the MS algorithm since it is highly competitive in practice. We
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3.9 A suboptimal algorithm in the strong dominance case

believe that it is asymptotically optimal and that it can be applied to other setting of structured
bandits.

3.9 A suboptimal algorithm in the strong dominance case

In this section, we analyze a natural, yet suboptimal, algorithm in the case of the strong domi-
nance assumption. Indeed, the lower bound stated in Theorem 3.2 seems to indicate that the best
way to identify a suboptimal category in this case is by pulling its worst arm. The algorithm in
question, which is essentially CatSE with another de�nition of active category, follows this idea.
We call this algorithm MinMaxCatSE. Let δ ∈ (0, 1) be a con�dence level. At each time step
t, it computes the best lower bound C+

m(t, δ) and the worst upper bound C−m(t, δ) inside each
category. Formally, for a categorym

C+
m(t, δ) = max

k∈[K]
µ̂mk (t)−

√
2 log

(
1
δ

)
Nm
k (t)

C−m(t, δ) = min
k∈[K]

µ̂mk (t) +

√
2 log

(
1
δ

)
Nm
k (t)

Then it rejects suboptimal categories if their worst arm is statistically worse than the best arm of
another category. Similarly to CatSE, we de�ne C(t, δ) the set of active categories at time t as
follows

C(t, δ) =
{
m ∈ [M ];∀n 6= m,C+

n (t, δ) ≤ C−m(t, δ)
}

We prove the following theorem bounding its regret.

Theorem 3.7. With probability at least 1− 2δMKT , the regret of MinMaxCatSE satisfies

E[RT ] ≤ 8

K∑
k=2

max

{
1

∆1,k
,
4∆1,k

∆2
],K

}
log

1

δ
+

M∑
m=1

K∑
K=1

∆m,k

+
M∑
m=2

(
32 log 1

δ

(∆m,K)2

(
K∑
k=1

∆m,k

))

where ∆],K = minm=2,...,M ∆m,K .

MinMaxCatSE outplays, theoretically, UCB since ∆m,k

(∆m,K)
2 ≤ 1

∆m,k
(∆m,k ≤ ∆m,K ), so

the dependency with respect to the gaps of arms in suboptimal categories is greatly reduced. Its
major drawback is that it only uses the information of the best and worst arms in categories to
discover suboptimal ones; and thus does not use the information obtained on intermediate arms
like CatSE. Notice that the MinMaxCatSE is obtained by choosing x = (1, 0, . . . , 0) and
y = (0, . . . , 0, 1) in Equation (3.3) while CatSE instead optimize over these values. As a result
MinMaxCatSE is a special case of CatSE and the latter is always better in the worst-case.
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3 Categorized multi-armed bandits

Proof. Let E be the good event de�ned by

E =

∀m ∈ [M ],∀k ∈ [K], ∀u ∈ [T ], |µ̂mk − µmk | <

√
2 log 1

δ

u

 .

Using the subgaussian assumption and a union bound, one obtains P(Ec) ≤ 2δMKT .

On the good event E , the optimal category is never eliminated. Otherwise, we would have

µm1 ≥ µ̂m1 (t)−

√
2 log 1

δ

Nm
1 (t)

> µ̂1
K(t) +

√
2 log 1

δ

N1
K(t)

≥ µ1
K

which is impossible by assumption.

Now let us upper bound the number of times a suboptimal category is active. By de�nition of
the algorithm we have to upper bound the number of times we pull its worst arm. Let t be the
last time categorym is active. At time t, we have

µ̂1
1(t)−

√
2 log 1

δ

N1
1 (t)

≤ µ̂mK(t) +

√
2 log 1

δ

Nm
K (t)

which implies that

∆m,K ≤ 2

√2 log 1
δ

N1
1 (t)

+

√
2 log 1

δ

Nm
K (t)

 = 4

√
2 log 1

δ

Nm
K (t)

where the last equality comes from the fact thatN1
1 (t) = Nm

K (t). Hence,

Nm
K (t) ≤

32 log 1
δ

(∆m,K)2

The result follows with the classic analysis of the UCB algorithm [9], the max term arising from
the fact that UCB pulls more times a suboptimal arm.

3.10 Full information feedback

In this section, we study heuristics derived under the full information feedback in the categorized
bandit model. We recall that with this feedback, the learner observes a reward for each arm. She
still does not know their expected rewards. This was intended to serve as a benchmark for the
bandit feedback. Thereby, we also make the additional assumption that the reward distributions
are Gaussian random variables with unit variance.
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3.10 Full information feedback

3.10.1 Heuristics

We begin by providing algorithms in the full information feedback. This setting allows us to focus
on the choice of the category at each time step rather than which arm to choose. Consequently,
we use the Follow-The-Leader (FTL) algorithm [48] to choose which arm to pull once the
choice of the category is set. We recall that after a uniformly random pull in the �rst time step, the
FTL algorithm pulls the arm with the highest average reward. Hence, our problem is reduced to
�nding the best category empirically i.e. determining the category which is more likely to satisfy
the speci�ed stochastic dominance assumption.

Extension of the FTL algorithm

The �rst algorithm, called HFTL (the H stands for hierarchical) is summarized in Algorithm 5.
It is a generalization of the FTL algorithm to our framework. We know that for two random
variables, if X stochastically dominates Y (for any order) then the expectation of X is greater
than the expectation of Y . Back to our problem, let Km be the number of arms of category
m, µm := 1

Km

∑
k∈[Km] µ

m
k be the mean of category m and µ̂m(t) be its empirical estimate

based on the samples observed until time step t. At time t, the HFTL algorithm pulls category
Ct ∈ arg maxm∈[M ] µ̂

m(t) i.e. the HFTL algorithm di�erentiates categories based on the av-
erage reward across all its arms and consequently, aggregates the information of a category to a
unique value.

Algorithm 5: HFTL
Choose a category and an arm randomly
for t = 2, . . . , T do

Pull categoryCt ∈ arg maxm∈[M ] µ̂
m(t)

Pull armAt ∈ arg maxk∈[KCt ]
µ̂Ctk (t)

end

The Greedy Approach

Another point of view of the FTL algorithm is that it is a greedy algorithm: it pulls the arm with
the best empirical mean which is none other than the maximum likelihood estimator (MLE) of
the expected reward. Let us employ the same principle in our problem. Considering M = 2
categories, one has to determinate which one is more likely to be better.

First, we assume that one category is optimal, for instance categoryA is better than categoryB,
and we determinate the MLE of the means given our constraints. In the case of Gaussian rewards
with unit variance, we must solve the following optimization problem

min
µ:A�B

∑
k∈[KA]

(
µAk − µ̂Ak

)2
+
∑

k∈[KB]

(
µBk − µ̂Bk

)2
. (3.5)
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3 Categorized multi-armed bandits

Then we solve again Equation (3.5) but this time assuming that category B is optimal. Once
our two constrained solutions obtained, we evaluate them and our best empirical category will be
the one maximizing the likelihood, i.e. the quantity in Equation (3.5).

The problem with this approach is that the solution to Equation (3.5) is, most of the time,
intractable. One simple solution can, nonetheless, be obtained in the case of �rst-order stochastic
dominance with the same number of arms in the two categories. Recall that category A �rst-
order dominates category B if the kth best arm ofA is better than the kth best arm of B and the
di�culty is reduce to compare one arm with another. Consider the kth best arm empirically of
categoryAwith empirical mean µ̂A(k) and the one of categoryBwith empirical mean µ̂B(k), we then
have two cases: if µ̂A(k) ≥ µ̂

B
(k), the constraint is already satis�ed; in the other case, if µ̂A(k) < µ̂B(k),

the solution to the constrained problem is simply the mean of the two empirical means: µA(k) =

µB(k) =
µ̂A
(k)

+µ̂B
(k)

2 =: µ(k). Then, the optimal category empirically is simply the category which
minimizes the divergence between the constrained and the unconstrained estimations, which in
the case of categoryA better than B is denoted by dA�B and de�ned by

dA�B :=
∑
k∈[K]


(
µ̂A(k) − µ(k)

)2

2
+

(
µ̂B(k) − µ(k)

)2

2

1{µ̂A(k) < µ̂B(k)} (3.6)

This algorithm, which we called Greedy1, is summarized in Algorithm 6.

Algorithm 6: Greedy1
Choose a category and an arm randomly
for t = 2, . . . , T do

Compute d1�2 and d2�1 according to (3.6)
Pull the category minimizing the divergence
Pull armAt ∈ arg maxk∈[KCt ]

µ̂Ctk (t)

end

A pseudo-Greedy Approach

We discern that the Greedy approach chooses the category which is the closest to being optimal
by pushing the empirical means of all categories in order to satisfy the constraints. Our idea is to
mimic this technique but this time we push only the arms of one category.

In the case of strong dominance, we compute the divergence between the empirical means of
the supposed optimal category and the ones of the other category in order to satisfy the con-
straints. More formally, let µ̃B := maxk∈[KB] µ̂

B
k be the best empirical mean of category B,

we denote by d0
A�B the divergence

d0
A�B :=

∑
k∈[KA]

(
µ̃B − µ̂Ak

)2
2

1
{
µ̂Ak < µ̃B

}
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3.10 Full information feedback

In the case of �rst-order dominance with two categories, we already know the hierarchy in the
worst case by de�nition. Hence, for categories with the same number of arms, the divergence is
given by

d1
A�B :=

∑
k∈[K]

(
µ̂B(k) − µ̂

A
(k)

)2

2
1{µ̂B(k) > µ̂A(k)}

Our algorithm named pGreedy is then summarized in Algorithm 7.

Algorithm 7: pGreedy-p
Choose a category and an arm randomly
for t = 2, . . . , T do

Compute dp1�2 and dp2�1 given dominance p
Pull the categoryCt minimizing the divergence
Pull armAt ∈ arg maxk∈[KCt ]

µ̂Ctk (t)

end

3.10.2 Experiments

We present some numerical experiments of the proposed policies to show their strengths and
weaknesses. We compare them with FTL since it does not take into account the structure of the
arms.

We consider three scenarios with two categories in which the rewards are Gaussian distributions
with unit variance. As previously, we report the regret as a function of time. Results were averaged
over 50000 independent runs.

Scenario 1: Strong dominance

In the �rst scenario, we analyze a simple problem with two arms per category in the case of strong
dominance. More precisely, the expected rewards are 0.6 and 0.5 for the �rst category and 0.4 and
0.3 for the second category. The simulations were ran until time horizon T = 2500. Results are
presented on Figure 3.4.

In this scenario, HFTL and pGreedy0 have the same regret and perform slightly better than
FTL. They ruled out more easily the arms in the sub-optimal category. However, in the case of
strong dominance, the main di�culty lie in the optimal category hence the small di�erence be-
tween their regrets.

Scenario 2: First-order dominance

In the second scenario, we analyze the same problem as previously but this time we swap two
arms to be in the case of �rst-order dominance. Speci�cally, expected rewards are 0.6 and 0.4 for
the �rst category and 0.5 and 0.3 for the second one. The simulations were also run until time
horizon T = 2500. Results are presented on Figure 3.5.
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Figure 3.4: Regret of various algorithms as a function of time in the full information framework and strong
dominance scenario. Curves of HFTL and pGreedy0 are similar.
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Figure 3.5: Regret of various algorithms as a function of time in the full information framework and �rst-
order dominance scenario. Curves of HFTL, pGreedy1 and Greedy1 are similar.
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Figure 3.6: Regret of various algorithms as a function of time in the full information framework and strong
dominance scenario.

In this scenario, HFTL, Greedy1 and pGreedy1 have similar performance and clearly out-
perform FTL. They ruled out the overall second best arm by taking into account the structure of
the arms. Our pseudo-Greedy algorithm imitates excellently the Greedy one, and interestingly,
HFTL matches up with these two algorithms.

Scenario 3: Worst-case

In the last scenario, we consider a more challenging problem in which the structure of the arms
are less discernible. Precisely, there are ten arms per category with expected rewards 0.4 except for
one arm in one category which have the expected mean of 0.6. The simulations were run until
time horizon T = 5000. Results are presented on Figure 3.6.

The goal of this experiment is to show why one cannot be satis�ed with HFTL; as soon as the
means of our categories are close, HFTL performs poorly. In this scenario, FTL has the lowest
regret, closely followed by pGreedy0. This is not surprising as nearly all arms were selected to be
noise in this scenario.
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In this chapter, we revisit the multi-armed bandit framework for online advertising in the pay-
per-click model. In this setting, several advertisers would like to display an ad on a given search
query and the search engine must choose which ad to show. The selected advertiser pays only
when her ad is clicked. Sponsored contents have two distinctive characteristics: they have both a
budget and a lifetime. Previous works on the bandit framework looked at the setting by address-
ing either the issue of the budget, in the so-called bandits with budgets framework, or the lifetime
constraint, in the mortal bandit framework. When in fact, both issues are veri�ed for sponsored
contents in practice. This chapter aims at bridging the gap between the two literature by pro-
viding a general framework that consider both these constraints. We present several multi-armed
bandit algorithms relevant to the setting and perform an empirical evaluation, both qualitative
and quantitative, of these algorithms. Finally, we carry out a simulation with parameters taken
from real data.

4.1 Introduction

The problem of online advertising can be described as follows. Given a search query, several ad-
vertisers would like to be display their product on a prominent position and the search engine
must pick which ad to show. The selected advertiser then pays a fee only when her ad is clicked;
this is the so-called pay-per-click model. The peculiarity of these contents is that they have both a
budget and a lifetime. Each advertiser has a �nite amount of money she is willing to pay, hence the
amount of times her ad can be displayed is also �nite. Furthermore, each advertiser usually de�ne
a speci�c period of time for her ad to be displayed. This may be due to seasonal events, a change
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in the advertiser campaigns or any other reason in which the search engine has no control over.
Both the budget of an ad and its lifetime are generally known in advance since they are set at the
beginning of the ad campaign. The only uncertainty is that the click-through rate (henceforth,
CTR) of an ad, i.e. the probability that it will be clicked is unknown. Nonetheless, the estimates
of these click probabilities can be re�ned over time.

In the standard multi-armed bandit framework, the optimal solution is always to pull the best
arm, i.e. the one with the highest expected reward. However in the ad allocation setting, this is no
more the case. To be convinced of this, consider a simple example with two ads, one with a long
lifetime and a small budget and the other with a short lifetime and a large budget. If the �rst ad
yields a better payo�, one may be tempt to only show this ad. Yet, as its budget is so small, it may
run out quickly; so quickly that as this time comes, the second arm is no more available. Thus
there is a strong probability that the cumulative reward culminates to a lower amount that if we
had exhaust the second ad �rst and then the �rst one.

In this chapter, we study a bandit setting where the number of pulls of an arm is restricted by
its budget and/or its lifetime. These features have previously been dealt with separately, under
the name of bandits with budgets and mortal bandits, respectively. Though both models di�er,
the motivation remains exactly the same: the optimization of ad allocation. Thus we present
algorithms adapted from the literature and perform extensive empirical evaluation on simulated
and real data.

4.2 Relatedwork

As previously mentioned, this chapter is at the junction of bandits with budgets and mortal ban-
dits.

In the bandit with budgets model, arms have a (limited) budget that restrict their number of
pulls. Jiang and Srikant [72] and Slivkins [134] proposed natural extensions of the UCB algorithm
to this setting. Combes, Jiang, and Srikant [40] studied an extension of KL-UCB and proved that
it is asymptotically optimal. They further presented two algorithms adapted from the knapsack
bandit problem. This framework should not be confused with the budgeted bandit setting [110]
where the pull of an arm implies a random cost and the learner aims at maximizing her cumulative
reward with a constrained budget.

On the contrary in the mortal bandit model, arms have a speci�c time of arrival and a lifetime;
they cannot be played outside their windows. Thus, new arms may appear all the time and an
algorithm needs then to continuously explore new arms. Chakrabarti, Kumar, Radlinski, and Upfal
[32] proposedAdaptiveGreedy, an algorithm based on Epsilon-Greedy in which the proba-
bility of exploration depends on the performance of the best arm available. Recently, Traca, Rudin,
and Yan [140] argued to limit the exploration of dying arms and modi�ed AdaptiveGreedy and
UCB in that sense.

As we will see later, the core optimization problem resulting from taking into account both the
constraint of budget and lifetime will be a knapsack problem [114]. Moreover, the bandit with
budgets setting is actually a special case of bandit with knapsack problem. Bandits with knapsack
have already been studied [4, 13, 70, 142]. Unfortunately, they treat only the “simplest” knapsack
problem while in the case of ad allocation, the problem becomes more complex as we will see.
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4.3 Problem setup

We now formalize the setting. The decision maker sequentially selects a functional arm amongK
to be displayed at each time step t ∈ {1, . . . , T} =: [T ], where T denotes the time horizon. For
an arm to be functional, it needs on one hand to be available and on the other hand to have enough
budget in case of a click. Each arm k ∈ [K] is characterized by the following quantities: a CTR
µk ∈ [0, 1], a payment per click bk, a budget Bk, a time step of arrival sk ∈ [T ] and a lifetime
lk ∈ N?. We point out that only the CTRs are uncertain, since the budget and payment per click
are known and we often know in advance when ads will disappear. We further emphasis that we
consider the pay-per-click model, meaning that the advertiser of arm k pays bk to the decision
maker if and only if her arm obtained a reward of 1, i.e. the ad has been clicked. It is also natural
to assume that arms are Bernoulli distributed.

While arms can come and go, there exist periods of time, which we call batches, where the set
of arms remains the same. Formally, there exists M ∈ N? such that (sk, lk) ∈ {t0, . . . , tM}2
with 1 = t0 < t1 < · · · < tM = T for all ad k, where with a slight abuse of notation, arms die
after the time horizon, i.e. sk + lk ≤ T for all arm k ∈ [K]. We denote by Tm = tm − tm−1

for m ∈ [M ] the length of batch m, Am the set of arms available at the beginning of batch m
andA := ∪m∈[M ]Am the set of all arms. Notice that we recover the bandit with budgets and the
mortal framework by settingM = 1 andBk =∞, respectively.

The goal of the decision maker is to maximize the total reward
∑M

m=1

∑Tm
t=1wAt , wherewk :=

bkµk is the expected value of one impression of arm k and At is the arm selected at time t. As
usual in the bandit literature, the goal is equivalent to minimize the regret, by comparing with
an “oracle” strategy. Unfortunately in this model, the oracle has no closed-form solution and is
furthermore tedious to evaluate. For the sake of completeness however, in the rest of this sec-
tion, we describe the oracle along with some remarks. The oracle is the solution of the following
optimization problem,

max
x

M∑
m=1

∑
k∈Am

wkx
m
k (4.1)

subject to

sk+lk−1∑
m=sk

xmk ≤
Bk
wk

, ∀ k ∈ A∑
k∈Am

xmk ≤ Tm , ∀m ∈ [M ]

xmk ≥ 0 and integer, ∀m ∈ [M ], ∀ k ∈ Am

The oracle actually solves a bounded multiple knapsack problem with assignment restrictions and
unit weights. With words, that means that we have several knapsacks (the batches in which arms
neither appear nor disappear) with several items (the ads), where each items have a given number
of copies (this represents the budget of an ad), a given item cannot go in some knapsack (ad not
available) and each item have a unit weight (we display one ad at each time step). The problem
being a generalization of the multiple knapsack problem is NP-hard. It is itself a special case of the
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generalized assignment problem. There exists some work on multiple knapsack problem with as-
signment restrictions focusing more on approximation algorithms [44, 47, 118]. As the items have
a unit weight, the solution of the greedy algorithm is optimal in the standard knapsack problem.
Hence the greedy strategy is a 2-approximation algorithm in this setting [39].

4.4 Algorithms

In this section, we go through the algorithms relevant to the dynamic ad allocation setting. We
also make (in this section only) a slight abuse of terminology by describing the score of an arm
by its CTR. Actually, we should multiply this quantity by the payment per click but since this a
known constant, it would only hinder the notation. All algorithms automatically pull arms that
are available and never selected before.

KL-UCB The �rst algorithm is a natural extension of KL-UCB [56]. It consists of pulling the
arm with the largestKL-UCB index among available arms. It has further been analyzed by Combes,
Jiang, and Srikant [40] in the bandit with budgets setting. We recall that the KL-UCB index of arm
k at time t is de�ned by

sup{q ∈ [µ̂k(t), 1] : Nk(t)d(µ̂k(t), q) ≤ log(t− sk) + 3 log(log(t− sk))}

where µ̂k(t) andNk(t) denote respectively the empirical mean and number of pulls of arm k up
to time t and d(a, b) represent the Kullback–Leibler divergence between Bernoulli distributions
with parameter a and b, respectively.

KUBE The KUBE (knapsack–based upper con�dence bound exploration and exploitation) al-
gorithm is inspired by Tran-Thanh, Chapman, Rogers, and Jennings [142] and is depicted in Algo-
rithm 8. The idea behind KUBE is to compute a solution of the knapsack problem that results
from available arms. Since some parameters of the optimization problem are unknown, we use
upper con�dence bound of the estimate. Formally, at each time step t, KUBE solves the following
problem

max
x

Kt∑
k=1

xk UCBk(t) (4.2)

such that
Kt∑
k=1

xk ≤ T − t+ 1

xk ≤ min

{
Bk(t)

LCBk(t)
, Lk(t)

}
∀k ∈ [Kt]

xk ≥ 0 and integer ∀k ∈ [Kt]

where Kt denotes the number of arms available at time t, Bk(t) and Lk(t) are respectively the
remaining budget and the remaining lifetime of arm k at time t; UCBk(t) and LCBk(t) denote
respectively an upper and lower bound on the expected reward of arm k computed with the infor-
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mation gathered until time t. We make use of the standard con�dence radius
√

log(t−sk)
2 Nk(t) . Since

xk represents the number of times arm k must be pull to obtain the optimal solution, KUBE
randomly selects an arm according to the solution of the knapsack problem, i.e. P(At = k) =

xk∑Kt
j=1 xj

. Since the knapsack problem is NP-hard, we make use of a greedy approximation to

compute the solution; we rank the arms by decreasing UCB index and from the top to the bot-
tom, we increment xk as much as possible with respect to the constraints.

Algorithm 8: KUBE
Input: Horizon T , budget and lifetime of arms when they arrive
for t← 1 to T do

if arm k is available andNk(t) = 0 then

At = k
else

Compute solution (xk)k of Equation (4.2)
Pull randomlyAt with P(At = k) =

xk∑Kt
j=1 xj

BalancedExploration BalancedExploration is an adaptation of the �rst algorithm
proposed by Badanidiyuru, Kleinberg, and Slivkins [13] and is summurizd in Algorithm 9. The idea
is to simultaneously exhaust the budget of best arms at the time horizon T . Precisely, the time is
divided into batches and the length of a batch is the number of arms available at the beginning of
it. At the start of a batch, we compute the UCB index of arms along with a bound on the number
of times each of arms can be pulled over the remaining time steps. Then we construct a probability
distribution over the available arms. Speci�cally, starting from the best available arm to the worst,
we assign a probability mass which is the estimated number of times the arm can be pulled divided
by the remaining number of time steps. We do so until the accumulated probability reached 1.
We make use of the following con�dence radius

rad(µ̂, N) =

√
Crad µ̂

N
+
Crad
N

whereCrad = log(TK), µ̂ is the average empirical reward of an arm andN denotes its number of
pulls. The estimated number of pull of arm k at time t is thus min

{
T − t+ 1, Lk(t),

Bk(t)
LCBk(t)

}
.

Then for each time step in the phase, BalancedExploration chooses an arm according to this
distribution. If the selected arm is not available anymore, it passes to the next round.

PrimalDualBwk PrimalDualBwK is an adaptation of the second algorithm proposed by
Badanidiyuru, Kleinberg, and Slivkins [13] and is depicted in Algorithm 10. The idea is to greed-
ily pull arms with the greatest bang-per-buck, i.e. reward per unit of resource consumption. To
do so, the algorithm treats the budget and lifetime of an arm as resources and puts a �ctitious
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Algorithm 9: BalancedExploration
Input: Horizon T , budget and lifetime of arms when they arrive
for phase p← 1 to . . . do

for arm k ← 1 toKt do

Compute LCBk(t) and UCBk(t)
Compute a distributionD over arms
for the nextKt rounds do

Choose an arm k as an independent sample fromD
if arm k is available then

Pull arm k
else

Pass

price on each arm. Additionally, we also consider the remaining number of rounds as a resource.
PrimalDualBwK considers the same con�dence radius as BalancedExploration.

4.5 Warm-up: A toy model

To illustrate that the greedy oracle, i.e. playing the best arm available, is no longer the optimal
solution, look at this simple example. Consider a problem with two arms whose CTR are 0.2 and
0.1, a payment per click of 1 for both, and a budget of 1000 and 5000 respectively. The time
horizon T = 10000 is divided into two batches with 5000 time steps each. Both arms are at
hand at the beginning but the second arm is only available in the �rst batch while the �rst one
is all time long. In this example, the �rst arm is better than the second one but it does not have
enough budget to be played all along the time horizon. Actually, in average, it has roughly enough
budget for one batch. Thus, an oracle algorithm must play the second arm in the �rst batch then
the �rst arm in the second batch. We compare the previously described algorithms with a random
and a greedy algorithms. The former selects randomly an available arm while the latter pulls the
arm with the best empirical reward. Results are averaged over 1000 iterations and are presented
on Figure 4.1.

As expected, KL-UCBperforms poorly as it concentrates on the optimal arm on the �rst batch.
PrimalDualBwK performs similarly. KUBE and BalancedExploration manage to lever-
age the knowledge of the budget and availability to achieve a better �nal reward. We can see that
their cumulative rewards is lower than the one of KL-UCB in the �rst batch indicating that they
pull less the optimal arm. Interestingly, Random and Greedy achieve great �nal rewards. The
former was expected since in expectation the optimal arm in only pulled half the time; while for
the latter, it is actually its failure of �nding the optimal arm that improve its reward in the end.
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Algorithm 10: PrimalDualBwK
Input: Horizon T , budget and lifetime of arms when they arrive
for t← 1 to T do

if t = 1 or a new arm arrive then

Set vt = 1Kt+1

for arm k ← 1 toKt do

if arm k is available andNk(t) = 0 then

At = k
else

Compute LCBk(t) and UCBk(t)

Set yt = vt/‖vt‖1

Pull arm k ∈ arg min
j∈[Kt]

yK+1 + yjLCBj(t)
UCBj(t)

Set ε =

√
log(Kt + 1)

B
whereB = min

{
T − t+ 1,min

k
Lk(t),min

k

Bk(t)

LCBk(t)

}
Update vt+1,Kt+1 = vt,Kt+1 · (1 + ε) and
for arm j ← 1 toKt do

if Lj(t) ≤ Bj(t)/LCBj(t) then

vt+1,j = vt,j · (1 + ε)
else if j = k then

vt+1,k = vt,k · (1 + ε)LCBk(t)
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Figure 4.1: Reward of various algorithms as a function of time in a toy model. Curves of KL-UCB and
PrimalDualBwK are similar.
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Figure 4.2: Bayesian regret of various algorithms as a function of the budget of arms for diverse expected
lifetimeL.

4.6 Empirical evaluation

In this section, we evaluate the proposed algorithms on several simulated setups. Speci�cally, we
�rstly consider a setting close to bandits with budgets and study the in�uence of the lifetime of
arms; then, we consider a setting close to mortal bandits and study the impact of the budget of
arms.

4.6.1 Bandit with budgets settingwith lifetimes

Like the previous section, we study a framework with a single set of arms that arrive at the same
time. This setting is similar to the bandit with budgets model, with the additional assumption that
arms have a lifetime. Specially, we consider problems with K = 10 arms with expected rewards
drawn i.i.d. from a Beta(1, 9) distribution. Arms have the same budget and the same expected
lifetimeL. Lifetime of arms are draw i.i.d. from a Geometric distribution with expectationL. We
compare the performance of the previously described algorithms (Random and Greedy are this
time far from optimal) for di�erent expected lifetime and we vary the budget of arms. Results are
averaged over 500 iterations and are displayed on Figure 4.2.
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We see that KL-UCB performs slightly better than PrimalDualBwK, though the di�erence
is signi�cant for large budget and long lifetime, and they both outplay KUBE and Balanced-
Exploration. It is interesting to mention that the latter two algorithms aimed at achieving the
optimal solution at time T while the others two are more greedy and pull the best “bang-per-
buck” arm. While this principle works great on the toy model, it seems that the uncertainty on
more complicated models hinders its e�ciency.

4.6.2 Mortal bandit settingwith budgets

We now study a setting closer to the mortal bandit model, where arms have a (limited) budget.
The number of arms available remains �xed throughout the time horizon T , that is when an arm
dies, it is immediately replaced by another one. We emphasis that there can be arms available that
have exhausted their budget. The lifetime of arm k, denotedLk, is drawn i.i.d. from a Geometric
distribution with expected lifetimeL; this arm died after being available forLk rounds. Specially,
we again consider problems withK = 10 arms with expected rewards drawn i.i.d. from a Beta(1,
9) distribution. Arms have the same budget and the same expected lifetime L. We compare the
performance of the previously described algorithms for di�erent budget and we vary the expected
lifetime of arms. We slightly modify BalancedExploration and KUBE to optimize the solu-
tion with respect to the expected lifetime instead of the time horizon, i.e. in both algorithms, the
probability distribution over arms is computed as if the time horizon has been divided in batches
of length the expected lifetime of arms and we want to optimize the cumulative reward in those
batches. In practice, this considerably improves the performance of both algorithms. Results are
averaged over 500 iterations and are displayed on Figure 4.3.

For large budget, KL-UCB outperforms other algorithms. It is interesting to notice that its
regret increase roughly logarithmically as a function of the lifetime, just as PrimalDualBwK
while for KUBE and BalancedExploration the increase is more linear. For small budget, we
again observe that KL-UCB performs best but only for relatively short lifetime while PrimalD-
ualBwKoutmatches it for long lifetime; its regret even decreases compared to moderate lifetime.
KUBE and BalancedExploration are once again outplayed.

4.7 Dynamic ad allocation

We now compare the performance of the proposed algorithms on a simulation with real-world
parameters from an ad allocation problem. We start with a brief description of the problem on
the Cdiscount website, one of the leading e-commerce companies in France. For each search query
inputs, the search engine on the Cdiscount website outputs a list of products, in the order of ten,
on some slots. Among these slots, a small number is generally saved for sponsored contents. The
objective is to optimize the revenue on these slots.

We have collected the data of auctions for a speci�c search query1 over a period of two months.
These data contains for each ad, the budget of the advertiser, the date the campaign starts, the
date of its end and its bid, i.e. the maximum amount the advertiser is willing to pay. As auctions
are usually second-price, this bid is not the pay-per-click. Moreover, some ads can be the subject

1The keyword and the resulting data will not be revealed to protect business-sensitive information.
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Figure 4.3: Bayesian regret of various algorithms as a function of the lifetime of arms for diverse budgetB.
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Table 4.1: Relative performance of various algorithms on a simulation with real-world parameters.

KL-UCB KUBE BalancedExploration PrimalDualBwK

2.035 1.348 1.950 1.990

of di�erent bids, for di�erent campaigns. We make use of the mean pay-per-click in these cases.
Each ad has been subject to some number of impressions and clicks for the search query. We
discarded any ad with less than 100 impressions for better estimate of the CTRs and less bias. This
results in K = 52 total arms. The number of time step, i.e. the number of times the keyword
has been searched, has also been collected for each day. To protect business-sensitive information,
we report the relative performance of the proposed algorithms, which is the cumulative reward of
an algorithm divided by the one of the random policy, similarly to Li, Chu, Langford, and Schapire
[103]. Results are averaged over 500 iterations and are presented on Table 4.1.

Once again and as expected after the previous section, KL-UCBperforms better than the other
algorithms even if BalancedExploration and PrimalDualBwK are close behind; KUBE is
unsurprisingly outplayed.

4.8 Conclusion

In this chapter, we have studied a bandit model where arms have both a budget and a lifetime to
tackle the problem of online advertising. Since these features have been dealt with separately in
the literature, we have presented several algorithms and evaluated them on numerous experiments.
We have showed that, despite the fact that the greedy oracle is no more optimal, conventional algo-
rithms achieve better performance that algorithms that try to leverage the additional information
due to the complexity and the uncertainty in real-world setups. Nonetheless, knapsack-based al-
gorithms remain competitive empirically.
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Bandit algorithms in practice
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Continuously learning and leveraging the knowledge accumulated from prior tasks in order to
improve future performance is a long standing machine learning problem. In this paper, we study
the problem in the multi-armed bandit framework with the objective to minimize the total regret
incurred over a series of tasks. While most bandit algorithms are designed to have a low worst-case
regret, we examine here the average regret over bandit instances drawn from some prior distribu-
tion which may change over time. We speci�cally focus on con�dence interval tuning of UCB
algorithms. We propose a bandit over bandit approach with greedy policies and we perform ex-
tensive experimental evaluations in both stationary and non-stationary environments. We further
apply our solution to the mortal bandit problem, showing empirical improvement over previous
work.

5.1 Introduction

Most of the work in the stochastic bandit literature focuses on developing algorithms with opti-
mal worst-case regret on some problem class, typically on bounded or subgaussian rewards. While
the theory guarantees that these algorithms will have a sublinear regret in all instances within the
problem class, they will be overly conservative for the majority of these instances, leading to a
large regret. Additionally, on these “easier” instances, sophisticated algorithms are outperformed
by simpler heuristics [89, 144], which is an obstacle to their implementation in practice. In this
chapter, we consider that the learner successively interacts with a task sampled from a problem in-
stance with some prior distribution, which may or may not be stationary over time. Within each
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task, there is a learning problem which is a multi-armed bandit problem with a �xed time hori-
zon. The learning agent does not know the model parameters of each bandit problem, nor does
she know the prior distribution within the bandit instance. Yet, it is critical for the learner be to
able to “track” this probability distribution to build lifelong learning agent and thus achieve the
best possible performance. In a stationary environment, the learner experiences the same bandit
problem over and over again, and an e�cient policy, in order to improve the performance when it
faces the same problem again, should leverage the information acquired from previous tasks. Con-
versely in a non-stationary environment, the distribution within the bandit instance may change
over time and the previously learned solution may fail to keep its good performance under the new
distribution. An e�cient policy must thus continuously learn to improve itself. The goal of the
learning agent is then to learn a policy that selects a bandit algorithm for each task, and achieves a
low lifelong regret, that is a low cumulative regret across all tasks. This approach can be regarded
as a special case of meta-learning [131, 139] or lifelong learning [36, 132, 138].

Our results In this chapter, we focus on a tractable instance of this problem, the tuning of
the con�dence interval width of UCB-like policies. We �rst evaluate the impact of the choice of
algorithm on empirical performance over several environments with di�erent prior and di�erent
number of arms. On a side note, we prove a bound on the Bayesian regret of a tuned UCB algo-
rithm showing that we do not lose all theoretical guarantees. We then concentrate on learning in
a stationary environment. We �rst investigate the in�uence of the various initializations on per-
formance. Next, we discuss about the main part of this chapter, i.e., the learning of the optimal
algorithm. For this purpose, we consider a bandit over bandit approach, that is using a bandit
algorithm to choose the optimal parameter. We show empirically that the Greedy algorithm as
meta-algorithm performs extremely well. We next concentrate on learning in a non-stationary en-
vironment, precisely we look at both an abruptly changing and a slowly changing environment.
To this e�ect, we adapt the Greedy algorithm using methods from non-stationary bandits. Fi-
nally, we apply our method to a more realistic setting: the mortal bandit problem. By decom-
posing the time horizon into episodes according to the expected lifetime of arms, we show great
empirical improvement compared to previous work.

5.2 Relatedwork

Bayesian bandits [19, 61, 62] have been studied extensively with the goal of developing optimal
algorithms in the Bayesian sense. Lower bounds on the Bayesian regret are also given by Kauf-
mann [78] and Lai [94]. Unfortunately, computing the Bayesian optimal algorithm is generally
intractable [100].

The closest to our work is that of Lazaric, Brunskill, et al. [101] who considered a framework
which closely resembles to ours except they studied the stochastic setting and further assumed a
�nite set of models; whereas we consider the Bayesian setting and do not make any assumption
on the number of changes in the prior distribution. Deshmukh, Dogan, and Scott [51] extended
the previous work in the contextual framework. Also related to our work, Maes, Wehenkel, and
Ernst [111] tuned existing algorithms and also learned index policies of historical features. Hsu,
Kveton, Meshi, Mladenov, and Szepesvari [69] proposed a best-arm identi�cation algorithm for tun-
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ing the con�dence interval of the UCB algorithm and the posterior distribution of the Thomp-
son Sampling algorithm. Boutilier, Hsu, Kveton, Mladenov, Szepesvari, and Zaheer [25] focused on
“di�erentiable” algorithms and optimized them by gradient ascent. In comparison, the setting of
these works are o�ine while we are more interested in the lifelong regret incurred in potentially
non-stationary environments.

Several works also use bandit algorithms as meta-algorithm. Li, Jamieson, DeSalvo, Rostamizadeh,
and Talwalkar [104] introduced a bandit-based approach to hyperparameter optimization using Se-
quentialHalving, a pure-exploration bandit algorithm, as a subroutine. The celebratedUCT
algorithm [87] makes use of the UCB algorithm applies on trees. In the non-stationary frame-
work, a few methods involve bandit algorithms in a hierarchical way: Hartland, Gelly, Baskiotis,
Teytaud, and Sebag [66] considered a meta-bandit to decide whether to accept the change detection
or not; Cheung, Simchi-Levi, and Zhu [37] used the EXP3 algorithm to decide the window size of
the SW-UCB algorithm; and Wu, Iyer, and Wang [149] and Wu, Wang, Li, and Wang [150] adopted a
hierarchical bandit algorithm where a master bandit manages some slave bandits.

The model can also be viewed as a special case of mortal bandits [22, 32, 140] in which arms
show up by batch where the time of death is the same for each arm in a given batch.

5.3 Setting

In the stochastic multi-armed bandit model, an agent interacts sequentially with a set ofK distri-
butions V1, . . . ,VK , called arms. At time t, the agent chooses an arm At, which yields a reward
Xt drawn from the associated probability distributionVAt . The objective is to design a sequential
strategy maximizing the expected cumulative reward up to some time horizonT . Letµ1, . . . , µK
denote the mean rewards of arms, and µ? := maxk∈[K] µk. The goal is equivalent to minimiz-
ing the regret, de�ned as the di�erence between the expected reward accumulated by an oracle
strategy always playing the best arm at each round, and the one accumulated by an algorithm π,

E[R(T, π)] = E

[
T∑
t=1

(µ? − µAt)

]
where the expectation is taken with respect to the randomness in the sequence of successive

rewards from each arm and the possible randomization of the algorithm. Furthermore, we assume
the following Bayesian parametric bandit setting: a random vector θ = (θ1, . . . , θK) is drawn
from a prior distribution Q, and the distribution of arm k depends on the parameter θk. This
leads to the notion of Bayesian regret which depends on the prior distributionQ,

BRQ(T, π) =

∫
E[R(T, π)]dQ(θ) .

We consider a lifelong learning setting where at each episode j the learner interacts with a task
V
θj1
, . . . ,V

θjK
, where each θjk is drawn i.i.d. from an unknown prior distributionQj . The objec-

tive is to �nd a series of algorithms minimizing the lifelong Bayesian regret over J episodes,
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LBRQ(T,π) =

J∑
j=1

BRQj (T, πj)

where π = (π1, . . . , πJ) and Q = (Q1, . . . , QJ) denote respectively the algorithms and
the prior distributions for each episode. We further assume that the horizon for each task T and
the number of episodes J are known. An unknown number of episodes can be handled as usual
[48]; while the knowledge of the time horizon is mostly for convenience in the choice of the sub-
algorithm and similar results can be achieved with an anytime algorithm.

In order to minimize the lifelong regret, our method consists of designing a meta-algorithm
which, at each episode j, selects an algorithm πj from a set of algorithms, which can be �nite or
in�nite, that aims at minimizing the Bayesian regret with respect to the prior distributionQj .

We especially focus on a tractable set of algorithms: the UCB algorithm [9] with a parameter γ
controlling the width of the con�dence interval. We emphasis that similar results can be obtained
with any UCB-like algorithm. Formally, the UCB(γ) index of arm k ∈ [K] in round t is

UCBk(t) = µ̂k(t− 1) + γ

√
2 log(1/δ)

Nk(t− 1)

where µ̂k(t) is the average reward of arm k in the �rst t rounds, Nk(t) is the number of times
that arm k have been pulled in the �rst t rounds and δ = 1/T is the probability that the con�-
dence interval fails. Note that the case γ = 1 corresponds to the theoretical value that minimizes
the worst-case regret, while γ = 0 corresponds to the Greedy algorithm. Hence for this class
of algorithms, the meta-algorithm faces a new trade-o� between being conservative and being ag-
gressive on a class of bandit instances. Thereby, the objective that is to minimize the lifelong regret
is equivalent to �nding the optimal values of γ ∈ [0, 1] that minimizes the Bayesian regret in each
episode.

Theoretically, any minimax optimal algorithm will also be optimal, up to constant factors, in
the Bayesian setting [100]; and thus optimal in the lifelong setting. Yet, we will see that we can em-
pirically improve these algorithms. We end this section with an analysis of this tuned UCB. More
generally, Russo and Van Roy [129] noticed that the Bayesian regret of any UCB-like algorithm sat-
is�es

BRQ(T,UCB) ≤ E

[
T∑
t=1

(µ? − UCBA?(t)) +
T∑
t=1

(UCBAt(t)− µAt)

]
(5.1)

where A? denotes the optimal arm, which is a random variable. Speci�cally for the UCB algo-
rithm we state the following theorem.

Theorem 5.1. For 1-subgaussian distributions with mean in [0, 1], UCB(γ) with γ > 0 satisfies

BRQ(T,UCB(γ)) ≤ 4KT 2δ4γ2 + 2γ
√

2KT log(1/δ) .

As an example, for γ = 1 and δ = 1/T , we get the known boundO
(√
KT log T

)
.
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Proof. LetE be the event that for all t ∈ [T ] and k ∈ [K],

|µ̂k(t− 1)− µk| < γ

√
2 log(1/δ)

Nk(t− 1)
.

Using the subgaussian assumption and a union bound, we get that P(Ec) ≤ 2KTδ4γ2 . On the
event Ec, the terms inside the expectation of Equation (5.1) are bounded by 2T , while on the
eventE, the �rst sum is bounded by 0 and for the second term, standard computations yield

T∑
t=1

(UCBAt(t)− µAt)1{E} ≤ 2γ
√

2KT log(1/δ) .

Putting together the pieces completes the proof.

5.4 Choice of the class of algorithms

We begin by showing that the choice of the algorithm in the class of algorithms, i.e. the set of all
algorithms in which we seek to �nd the one that maximize the average cumulative reward over
bandit instances, is of the utmost importance in order to have the best possible empirical perfor-
mance, and the most favorable algorithm depends on a number of factors. In Figure 5.1, we eval-
uate the Bayesian regret of several UCB-like policies as a function of their parameter γ in di�erent
settings. In the �rst scenario, the distribution of each arm is a Bernoulli distribution where the
expected reward is drawn i.i.d. from a uniform distribution over [0, 1]. In the second, we change
the problem to Gaussian bandits and in the third scenario, we change the prior to a Beta(1, 3)
distribution. In all scenarios, the horizon is �xed at T = 1000 and we vary the number of arms
K . Results, averaged over 5000 iterations, are presented on Figure 5.1.

Let us concentrate on the �rst scenario one moment. For K = 5, i.e. for a small number
of arms, we compare di�erent UCB-like algorithms: the original UCB algorithm [9], MOSS [7],
which is known to be minimax optimal contrary to UCB, and AdaUCB [96] which is simulta-
neously minimax optimal, asymptotically optimal, and never worse than UCB in the worst case.
Interestingly, the later statement is also veri�ed on the Bayesian regret for all values of γ. The same
can also be said almost everywhere for MOSS over UCB. For large values of γ, AdaUCB outper-
forms MOSS while for small values, MOSS only improves slightly over AdaUCB. As a result, if
one is purely interested in great empirical performance, a default choice would be AdaUCB for
any value of γ. However in the lifelong setting, we want to optimize the parameter γ and it is not
clear which choice of algorithm will perform better through all the episodes; AdaUCB may be
better but this also makes it harder for the meta-policy to �nd the optimal value of γ, meaning a
potentially larger lifelong regret compared to UCB for example. Additionally, the best Bayesian
regret of the optimally tuned version of each algorithm is roughly the same for all three. Hence our
choice of the UCB algorithm, which is simple enough for illustration and may also be suitable for
practical applications. We �nally note that for all algorithms, the gain of their tuned version over
the default choice (γ = 1) is substantial even though MOSS and AdaUCB are minimax optimal
up to constant factors, supporting our choice to optimize algorithms for practical purpose.
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Figure 5.1: Bayesian regret of various algorithms as a function of γ for diverse environments and numbers
of armsK . Rows correspond respectively to Bernoulli bandits with a uniform prior, Gaussian
bandits with a uniform prior and Bernoulli bandits with a Beta(1, 3) prior. Columns correspond
respectively toK = 5,K = 63 andK = 250 arms.
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ForK = 63 andK = 250, i.e. for moderate and large number of arms, we compare the UCB
algorithm with sub-sampled versions of itself, denoted SubUCB(m). Formally, SubUCB(m) se-
lects randomlym arms and performs UCB on these arms. ForK = 63, we see that the Greedy
algorithm, symbolized by UCB with γ = 0, performs better than any tuned UCB and also better
than SubUCB. For K = 250, SubUCB performs always better than UCB. It is interesting to
notice that as m grows bigger, up to a certain point, SubUCB(m) has a better optimal Bayesian
regret, becomes more sensitive to the parameter γ and a sub-sampled version of the Greedy al-
gorithm turns into the best strategy possible.

We mention that these behaviors, i.e. the good empirical performance of theGreedyalgorithm
and the superiority of a sub-sampled version of UCB in the case of a great number of arms, have
been pointed out by Bayati, Hamidi, Johari, and Khosravi [17]. We showed that they also hold true
empirically after tuning of the con�dence interval width. Furthermore, these behaviors can also
be observed in the second and third scenarios, however what we called moderate and large values
ofK are, in these cases, higher than previously.

5.5 Learning in a stationary environment

In this section, we consider the learning of the optimal algorithm in a �xed environment, i.e. when
the prior distribution is the same in all episodes. In this case, the objective is equivalent to �nding
the algorithm that minimizes the Bayesian regret for that speci�c prior distribution.

5.5.1 Influence of the initialization

We start with a study of the e�ect of the initialization choice on empirical performance. By default,
most bandit algorithms initialize arms by pulling them at least one time. Knowing that we solve
again and again similar bandit problems, we may want to �nd a more clever initialization. For
example, consider a challenging bandit problem with a large number of arms with respect to the
time horizon and assume we have found a reasonably good arm; exploiting this arm may then
be more rewarding that exploring new arms in the hope of �nding a better one. This becomes
especially critical the more greedy we get. In this section, we �x the value of the hyperparameter
γ and we evaluate three di�erent initializations. In all cases, we set the empirical means of arms
to a speci�c value and their upper con�dence bounds are built as if they have been played once.
In the �rst case we set this value at 0 (Init 1), in the second (Init 2) and third (Init 3) cases, it is
�xed at the mean and median, respectively, of previous empirical means. We denote by “Init 0”
the default initialization, i.e. pulling each arm once.

In these experiments, the time horizon is set at T = 1000 for each episode. We consider the
same scenarios as the last section; namely, Bernoulli bandits with a uniform prior, Gaussian ban-
dits with the same prior and Bernoulli bandits with a Beta(1, 3) prior. Once more, we vary the
numbers of arms K . We �x γ = 0.2 and we repeat this tuned UCB for J = 100 episodes with
the di�erent initializations previously mentioned. On Figure 5.2, we report the lifelong regret
averaged over 100 iterations.

It is complex to observe a clear trend across the di�erent simulations. For small values ofK , the
choice of initialization is insigni�cant; except for the initialization at 0 in the �rst scenario, they
all have roughly the same performance. For intermediate values of K , the impact of the choice

71



5 Lifelong learning in multi-armed bandits

0 25000 50000 75000 100000
Time

0

750

1500

2250

3000

Lif
el

on
g 

Re
gr

et

Init 0
Init 1
Init 2
Init 3

0 25000 50000 75000 100000
Time

0

3000

6000

9000

12000

Lif
el

on
g 

Re
gr

et

Init 0
Init 1
Init 2
Init 3

0 2500 5000 7500 10000
Time

0

625

1250

1875

2500

Lif
el

on
g 

Re
gr

et

Init 0
Init 1
Init 2
Init 3

0 25000 50000 75000 100000
Time

0

1750

3500

5250

7000

Lif
el

on
g 

Re
gr

et

Init 0
Init 1
Init 2
Init 3

0 25000 50000 75000 100000
Time

0

3500

7000

10500

14000

Lif
el

on
g 

Re
gr

et

Init 0
Init 1
Init 2
Init 3

0 2500 5000 7500 10000
Time

0

750

1500

2250

3000

Lif
el

on
g 

Re
gr

et

Init 0
Init 1
Init 2
Init 3

0 25000 50000 75000 100000
Time

0

400

800

1200

1600

Lif
el

on
g 

Re
gr

et

Init 0
Init 1
Init 2
Init 3

0 25000 50000 75000 100000
Time

0

2500

5000

7500

10000

Lif
el

on
g 

Re
gr

et

Init 0
Init 1
Init 2
Init 3

0 2500 5000 7500 10000
Time

0

750

1500

2250

3000
Lif

el
on

g 
Re

gr
et

Init 0
Init 1
Init 2
Init 3

Figure 5.2: Lifelong regret of a deterministic meta-algorithm with various initializations in stationary envi-
ronments. Rows correspond respectively to Bernoulli bandits with a uniform prior, Gaussian
bandits with a uniform prior and Bernoulli bandits with a Beta(1, 3) prior. Columns corre-
spond respectively to K = 5, K = 63 and K = 250 arms. Shaded areas show standard
errors.
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of initialization becomes apparent. Although there is no optimal choice, initializing arms with
the median of previous arms seems more robust. For large value of K , a clear trend is emerging:
pulling each arm once is always the worst thing to do. It was expected since we spend most of the
time initializing arms. There is still no optimal choice in this case, yet the initialization at 0 seems
more robust. As the choice of initialization is insigni�cant on instances with a small number of
arms, which we study in this chapter, in what follows we assume that each strategy uses the default
initialization in each episode.

5.5.2 Bandit algorithms as meta-algorithm

Now that the initialization rule is set, we can focus on the meta-algorithm, i.e. the algorithm that
is responsible for picking the parameter γ of the UCB algorithm for each episode, and ultimately,
it is the keystone in the minimization of the lifelong regret. We consider bandit algorithms for the
choice of the meta-algorithm, since they are e�cient online optimization algorithms. This may
seem like a vicious circle as we are talking about optimization of bandits algorithms and we want
to avoid having to optimize the optimizer. Fortunately, the two algorithms, the meta-algorithm
and the sub-algorithm, face a di�erent problem. Indeed, the sub-algorithm aims at maximizing
the average reward over bandit instances while the meta-algorithm aims at maximizing a func-
tion, which is the expected cumulative reward of the sub-algorithm with respect to its parameter
γ. The dilemma encountered by the meta-algorithm is actually a continuous-armed bandit prob-
lem [11, 85] where the set of arms lies in some bounded interval, in our case the di�erentγ ∈ [0, 1].
Kleinberg [85] proposed a simple, yet worst-case optimal, strategy which consists in discretizing the
strategy space into a �nite set ofn equally spaced points and running a standard bandit algorithm
over those points. Unfortunately, their theoretical result holds only when the function to be opti-
mize satis�es some Hölder conditions which may not veri�ed for the Bayesian regret of UCB(γ).
Still, that does not refrain us from using this strategy. The chosen number of arms n is critical
in practice; set too low we may be far from the optimal solution and set too high we may end up
exploring all the time. Auer, Ortner, and Szepesvári [11], with a similar algorithm, claimed a value
n = (J/ log J)1/3 is optimal without knowing the exact Hölder condition. We thus choose
this speci�c discretization in our simulations. It has also been noted by Bayati, Hamidi, Johari, and
Khosravi [17] that theGreedyalgorithm, known to have a linear regret, ran with a su�ciently large
number of arms may bene�t from “free” exploration. This change point in its behavior happens
around

√
J ; we also evaluate Greedy with a discretization which contains that many points.

Once again we consider the same three scenarios for experiments. We set the number of episodes
J = 10000 and we compare di�erent meta-algorithms, namely Thompson Sampling (TS)
with a uniform prior [6], AdaUCB [96] and the Greedy algorithm with the two discussed dis-
cretizations, denoted Greedy(100) for the discretization with 100 points. We also report an ora-
cle meta-algorithm, which knows the optimal γ. Results are averaged over 100 iterations and are
displayed on Figure 5.3.

The results are similar in the three scenarios We see that TS has a linear regret indicating that it
fails to learn a good parameter γ in this time frame. Whereas the regret of AdaUCB is sublinear
and the algorithm is thus learning; however it is outperformed for a relatively long period of time
by a naive Greedy, which is stuck to a suboptimal, yet good arm. The most interesting part is
that Greedy(100) performs extremely well; its regret is remarkably close to the one of Oracle
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Figure 5.3: Lifelong regret of various meta-algorithms in stationary environments. Figures, from left to
right, correspond respectively to Bernoulli bandits with a uniform prior, Gaussian bandits with
a uniform prior and Bernoulli bandits with a Beta(1, 3) prior. Shaded areas show standard errors.

and is even sublinear. This supports the notion of free exploration for a large enough number of
arms of the Greedy algorithm.

5.6 Learning in a non-stationary environment

We now focus our attention to learning in a non-stationary environment, i.e. in which the prior
distribution is not the same for all episodes. We will consider two scenarios: one where the envi-
ronment changes abruptly and another where it slowly changes over time. Regrettably, adaptively
tracking the prior distribution is intractable without making strong distributional assumptions,
and potentially at the cost of forced exploration. Nonetheless, that does not mean that trying to
improve over a naive algorithm is hopeless. Taking inspiration from the stochastic non-stationary
bandit literature [59], we adapt the greedy index to take into account a changing environment.

The following two adjustments are based on the idea of “forgetting” rewards obtained long ago.
The �rst one is based on discounting. Formally, let ω ∈ (0, 1) be the discount factor and de�ne
the discounted (D) greedy index

µ̂ωk (t) =

∑t
s=1 ω

t−sXk1{As = k}∑t
s=1 ω

t−s1{As = k}
.

The idea is to reduce the weight of rewards collected a long time ago, making the index more sen-
sitive to recent payo�s. A similar approach, somewhat more sharp, called sliding-window (SW),
simply discards rewards older than a parameter τ ∈ N?. Formally, the SW greedy index is de�ned
as

µ̂τk(t) =

∑t
s=t−τ+1Xk1{As = k}∑t
s=t−τ+1 1{As = k}

.

Both these indexes are similar to those of Discounted UCB and Sliding-Window UCB [59], the
di�erence being that the exploration terms are removed. Unfortunately, there is no choice of ω
and τ which guarantees strong performance, and they must be tuned empirically for the speci�c
environment. Additionally, because both of these algorithms do not re�ect on the whole hori-
zon, the optimal discretization for theGreedy algorithm is also more challenging to determinate.
Consequently, in the following, we set the number of points in the discretization at a lesser value.
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Figure 5.4: Lifelong regret of various meta-algorithms in non-stationary environments. Figures correspond
respectively to an abruptly changing and a slowly changing environment. Shaded areas show
standard errors.

In the following experiments, we run the Greedy algorithm with the di�erent indexes1 on a
discretization consisting of 21 equally-spaced points. In both scenarios, each episode is a Bernoulli
bandit problem with K = 10 arms, the time horizon T = 1000 and the number of episodes is
set at J = 10000. In the �rst scenario, we consider an abruptly changing environment, the prior
distribution over the expected rewards of arms is a Beta(1, 3) distribution for j ≤ J/3 and j ≥
2J/3 and a Beta(3, 1) distribution in between. While in the second scenario, we consider a slowly
changing environment, the prior at episode j is a Beta(2 + cos(2πj/J + π), 2 + cos(2πj/J))
distribution. In the �rst scenario, we also report a policy which restart at times where the prior
changes; this can be seen as an oracle we aim to emulate. Results are reported on Figure 5.4 and
are averaged over 100 runs.

In both scenarios, DGreedy and SWGreedy are able to track the change in the prior distri-
bution while Greedy fails to do so. In the abruptly changing scenario, SWGreedy outperforms
DGreedy, thus underlining the need to discard data from the previous prior. Regrettably, when
the �rst prior comes back, both algorithms take a long time before �nding again the previously
learned solution; making Greedy competitive in this experiment even if it completely missed the
�rst change. Conversely in the slowly changing scenario, Greedy fails to track the slow change
in the prior distribution and thus accumulates a larger regret with in addition a broader variance.
DGreedy and SWGreedy are roughly similar in this case, though SWGreedyperforms slightly
better in the end. We would also like to mention that there is a hidden parameter in DGreedy.
Indeed, in the Greedy algorithm, each arm must have enough information for the greedy index
to be de�ned. In Greedy, and also in SWGreedy, this is done by ensuring that each arm has
been played at least once. In DGreedy, this initialization is more challenging to determine and
we believe it is partly responsible for the poor performance of DGreedy. In both experiments,
we arbitrarily set this value to 1.

1We choose ω = 0.9975 and τ = 1000 on both scenarios; these parameters have been roughly tuned.
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5.7 Application to mortal bandits

Finally in this last section, we apply our method to a more realistic setting, the mortal bandit prob-
lem [32], where arms appear and disappear regularly (in particular, an arm is not always available
contrary to the standard model). While the notion of episode may be more elusive in this setting,
we show that synchronizing an episode according to the expected lifetime of arms can help to
overcome this di�culty. We look upon the case where this value is known and the one where it is
not and thus have to be estimated. We also have to modify the index of the UCB sub-algorithm
to take into account that arms arrive at di�erent times and for the unknown expected lifetime.
Thereby, we replace the log(T ) term by log(t − sk + 1), where t and sk denotes respectively
the current and the arrival time steps for arm k. We then again pick the Greedy algorithm as
meta-algorithm.

We consider the same setting as Chakrabarti, Kumar, Radlinski, and Upfal [32]. Although they
mostly consider a large number of arms, we previously illustrated in Section 5.4 that this issue
can be reduced via sub-sampling to a more tractable one, and with better performance as well.
Therefore we focus our attention on problems with a small number of arms. In this setting, the
number of arms remains �xed throughout the time horizon T , that is when an arm dies, it is
immediately replaced by another one. The lifetime of arm k, denoted Lk, is drawn i.i.d. from a
geometric distribution with expected lifetimeL; this arm died after being available forLk rounds.
We also assume that arms are Bernoulli random variables. We consider two scenarios: in the �rst
one, expected rewards of arms are drawn i.i.d. from a uniform distribution over [0, 1], while in the
second scenario they are drawn from a Beta(1, 3) distribution. In both cases, we �x the number
of arms K = 5 and the expected lifetime L = 1000. The horizon is set at T = 1000L, mean-
ing that there are on average 1000 episodes throughout the time horizon. We compare several
algorithms: the untuned UCB algorithm and its optimally tuned variant (OracleUCB), along
with a tuned AdaptiveGreedy (AG) [32];2 and our proposed methods, PeriodicUpdate-
UCB (PU-UCB) and PeriodicEstimatedUpdate-UCB (PEU-UCB), where in the �rst one
we assume the knowledge of the expected lifetime, while in the second it is estimated by the em-
pirical lifetime of dead arms. On top of both our proposed policies lies a Greedy algorithm with
n =
√

1000 arms. Results are averaged over 100 runs and are reported on Figure 5.5.

These experiments further underline the bene�t of tuning the UCB algorithm for practical
purposes. AG, a state-of-the-art algorithm in the mortal bandit setting, is clearly outperformed
by OracleUCB. Additionally, PU-UCB and PEU-UCB, with somewhat similar performances
on both instances, become rapidly better than AG, which is optimally tuned. We also remark
once more that the regrets of both algorithms are sublinear, highlighting the performance of the
Greedy meta-algorithm. Interestingly, PEU-UCB performs slightly better than PU-UCB on
scenario 2, hinting at a potentially better decomposition of episodes.

2Both algorithms have been tuned with respect to the expected lifetime. On scenario 1, γ = 0.25 and c = 1.5, while
on scenario 2, γ = 0.25 and c = 2.5.
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Figure 5.5: Regret of various algorithms in the mortal bandit setting. Figures correspond respectively to a
uniform and a Beta(1, 3) priors. Shaded areas show standard errors. PU-UCB and PEU-UCB
are almost identical in (a).

5.8 Conclusion

In this chapter, we have studied a lifelong learning problem in the multi-armed bandit framework
where tasks arrive sequentially, sampled from a problem instance with some prior distribution.
We �rst introduced our method which consists in optimizing a bandit algorithm, focusing on
con�dence interval width tuning of UCB-like policies. We then considered a bandit over bandit
approach employing greedy algorithms as meta-algorithm and evaluated them in both stationary
and non-stationary environments. Finally, we applied our method to a more realistic setting, the
mortal bandit problem, by decomposing the time horizon into episodes according to the expected
lifetime of arms and showed great empirical improvement compared to previous work.

Interesting directions The most prominent future work, especially in terms of practical
applications, concerns the tracking of seasonal environments. It is crucial for building lifelong
learning agents. Just recently this problem has been studied in the non-stationary bandit setting
[35, 53].

Another direction may be the analysis of theGreedy algorithm in the continuous-armed ban-
dit problem. It has been shown in a recent line a work that it enjoys great performances in several
bandit frameworks [15, 17, 73, 125], and this setting is most likely one of them as shown indirectly
in our experiments. Although it may be suboptimal, with high probability it concentrates quickly
on arms with high expected rewards and thus works extremely well in practice. The next question
is the “optimal” discretization for the greatest performance. This is the objective of the next chap-
ter.
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The Greedy algorithm is the simplest heuristic in sequential decision problem that carelessly
takes the locally optimal choice at each round, disregarding any advantages of exploring and/or
information gathering. Theoretically, it is known to sometimes have poor performances, for in-
stance even a linear regret (with respect to the time horizon) in the standard multi-armed ban-
dit problem. On the other hand, this heuristic performs reasonably well in practice and it even
has sublinear, and even near-optimal, regret bounds in some very speci�c linear contextual and
Bayesian bandit models. We also shown empirically in Chapter 5 that a greedy algorithm satis�es
sublinear regret in the continuous-armed bandit problem.

We build on a recent line of work and investigate bandit settings where the number of arms is
relatively large and where simple greedy algorithms enjoy highly competitive performance, both
in theory and in practice. We �rst provide a generic worst-case bound on the regret of theGreedy
algorithm. When combined with some arms subsampling, we prove that it veri�es near-optimal
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Figure 6.1: Regret of various algorithms as a function of time in a Bernoulli bandit problem. Results are
averaged over 1000 runs and the shaded area represents 0.1 standard deviation.

worst-case regret bounds in continuous, in�nite and many-armed bandit problems. Moreover,
for shorter time spans, the theoretical relative suboptimality of Greedy is even reduced.

As a consequence, we subversively claim that for many interesting problems and associated
horizons, the best compromise between theoretical guarantees, practical performances and com-
putational burden is de�nitely to follow the greedy heuristic. We support our claim by many nu-
merical experiments that show signi�cant improvements compared to the state-of-the-art, even
for moderately long time horizon.

6.1 Introduction

The exploration, although detrimental in the short term, is usually needed in the worst-case as it
ensures that the learning algorithm “converges” to the optimal arm in the long run. On the other
hand, the Greedy algorithm, an exploration-free strategy, focuses on pure exploitation and pulls
the apparently best arm according to the information gathered thus far, at the risk of only sam-
pling once the true optimal arm. This typically happens with Bernoulli rewards where only arms
whose �rst reward is a 1 will be pulled again (and the others discarded forever). As a consequence,
with some non-zero probability, the regret grows linearly with time as illustrated in the following
example.

Example. Consider a relatively simple Bernoulli bandit problem consisting ofK = 2 arms with
expected rewards 0.9 and 0.1 respectively. With probability at least 0.01, Greedy fails to �nd the
optimal arm. On the other hand, with probability 0.92 it su�ers no regret after the initial pulls.
This results in a linear regret with a large variance. This typical behavior is illustrated in Figure 6.1
in comparison to the Thompson Sampling algorithm [137].
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Figure 6.2: Bayesian regret divided by the horizon for UCB (left) and Greedy (right) as a function of the
number of arms and the horizon in Gaussian bandit problems. Results are averaged over 500
runs.

Two solutions have been proposed to overcome this issue. The �rst one is to force the explo-
ration; for example with an initial round-robin exploration phase [55], or by spreading the ex-
ploration uniformly over time à la Epsilon-Greedy [9]. However, both these algorithms need
to know the di�erent parameters of the problem to perform optimally (either to set the length
of the round-robin phase or the value of ε), which represents a barrier to their use in practice.
The second solution is to have a data-driven and adaptive exploration; for example, by adding
an exploration term à la UCB [9], by using a Bayesian update à la Thompson Sampling [137],
by using data- and arm-dependent stopping times for exploring à la Explore-Then-Commit
[120, 121] or by tracking the number of pulls of suboptimal arms [14, 67, 68]. With careful tuning,
these algorithms are asymptotically optimal for speci�c reward distributions. Yet this asymptotic
regime can occur after a long period of time [58] and thus simpler heuristics might be preferable
for relatively short time horizon [89, 144].

Conversely, the simple Greedy algorithm has recently been proved to satisfy near-optimal re-
gret bounds in some linear contextual model [15, 73, 125] and a sublinear regret bound in some
Bayesian many-armed setting [17]. In particular, this was possible because the Greedy algorithm
bene�ts from “free” exploration when the number of arms is large enough. We illustrate this be-
havior in the following example.

Example. Consider bandit problems where rewards are Gaussian distributions with unit vari-
ance and mean rewards are drawn i.i.d. from a uniform distribution over [0, 1]. In Figure 6.2, we
compare the regret of Greedy with the UCB algorithm for di�erent number of arms and time
horizon. For both algorithms, we observe a clear transition phase between problems with higher
average regret (with darker colors) and problems with lower regret (with lighter colors). In this
example, this transition takes the form of a diagonal.

This diagonal is much lower for Greedy compared to UCB, meaning that Greedy performs
better in the problems in-between, and this in spite of UCBbeing optimal in the problem-dependent
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sense (on the other hand, that is when the horizon is large,UCBoutperformsGreedy). The intu-
ition is that, when the number of near-optimal arms is large enough, Greedy rapidly converges
to one of them while UCB is still in its initial exploration phase. The key argument here is the
short time horizon relatively to the di�culty of the problem; we emphasis on the “relatively” as
in practice the “turning point”, that is the time horizon for which UCB performs better, can be
extremely large.

Numerous interesting problems actually lie in the bottom left corner of Figure 6.2, i.e., bandit
problems with a large number of arms and a relatively short time horizon and, as a consequence,
the Greedy algorithm should be considered as a valid baseline.

Our results We �rst provide a generic regret bound on Greedy, and we illustrate how to
derive worst-case regret bounds. We will then instantiate this regret bound to a uniformly sampled
subset of arms and prove this satis�es near-optimal worst-case regret bounds in the continuous-
armed, in�nite-armed and many-armed bandit models. As a byproduct of our analysis, we get
that the problem of unknown smoothness parameters can be overcome by a simple discretization
depending only on the time horizon in the �rst of these models. In all these settings, we repeat
the experiments of previous papers and show that theGreedy algorithm outmatches the state-of-
the-art. We also present empirical results of Greedy in the linear, cascading, mortal and budgeted
bandit models that further show its competitive performance against existing algorithms.

6.2 RelatedWork

TheGreedy algorithm recently regained some attention in Bayesian bandit problems with a large
but �nite number of arms [17]. It performs extremely well empirically when the number of arms is
large, sometimes better than “optimal” algorithms; in that case, the regret of Greedy is sublinear,
though not optimal. In the following, we get rid of the strong Bayesian assumptions and we con-
sider many di�erent bandit models, where a subsampling technique is required and considered in
the following.

Another recent success of Greedy is in linear contextual bandit problems, as it is asymptot-
ically optimal for a two-armed contextual bandit with linear rewards when a covariate diversity
condition holds [15]. This idea can be extended to rewards given by generalized linear models. If
observed contexts are selected by an adversary, but perturbed by white noise, then Greedy can
again have optimal regret guarantees [73]. Additional assumptions can even improved those re-
sults [125, 126]. Those results hold because exploration is not needed thanks to the diversity in
the contexts. We do not believe this assumption is satis�ed in many practical scenarios and we are
therefore rather interested in the implicit exploration of Greedy. As a consequence, we shall no
further consider the contextual framework (even if admittedly, our results could be generated via
careful binning [120]). Interestingly, an extensive empirical study of contextual bandit algorithms
found that Greedy is actually the second most e�cient algorithm and is extremely close to the
�rst one [21].

The Greedy algorithm has already been shown to enjoy great empirical performance in the
continuous-armed bandit model [71]. In this chapter, we make formal this insight. Finally, we
mention that in the one-dimensional linear bandit problem with a known prior distribution,
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the cumulative regret of a greedy algorithm (under additional structural assumptions) admits an
O(
√
T ) upper bound and its Bayes risk admits anO(log T ) upper bound [116]. Linear bandits

are only considered empirically in this chapter (see Section 6.8.4).
We also provide, in Section 6.10, a short literature review on the di�erent bandit settings studied

in this chapter.

6.3 Preliminaries

In the stochastic multi-armed bandit model, a learning agent interacts sequentially with a �nite
set of K distributions V1, . . . ,VK , called arms. At round t ∈ N, the agent chooses an arm At,
which yields a stochastic rewardXt drawn from the associated probability distributionVAt . The
objective is to design a sequential strategy maximizing the expected cumulative reward up to some
time horizon T . Let µ1, . . . , µK denote the mean rewards of arms, and µ? := maxk∈[K] µk be
the best mean reward. The goal is equivalent to minimizing the regret, de�ned as the di�erence
between the expected reward accumulated by the oracle strategy always playing the best arm at
each round, and the one accumulated by the strategy of the agent,

E[RT ] = E

[
T∑
t=1

(µ? −Xt)

]
= Tµ? − E

[
T∑
t=1

µAt

]
where the expectation is taken with respect to the randomness in the sequence of successive

rewards from each arm and the possible randomization in the strategy of the agent. Let Nk(T )
be the number of pulls of arm k at the end of round T and de�ne the suboptimality gap of an
arm k ∈ [K] := {1, . . . ,K} as ∆k = µ? − µk. The expected regret is equivalently written as

E[RT ] =

K∑
k=1

∆kE[Nk(T )] .

The Greedy algorithm Summarized in Algorithm 11, Greedy is probably the simplest
and the most obvious algorithm. Given a set ofK arms, at each round t, it pulls the arm with the
highest average reward

µ̂k(t− 1) =
1

Nk(t− 1)

t−1∑
s=1

Xs1{As = k}

with the convention that 0/0 = ∞, so that the �rst K pulls initialize each counter. Thus,
Greedy constantly exploits the best empirical arm.

In the rest of the paper, unless stated otherwise, we assume that the stochastic rewardXt takes
the form Xt = µAt + ηt where {ηt}Tt=1 are i.i.d. 1-subgaussian white noise and that µk are
bounded for allk ∈ [K],µk ∈ [0, 1] without loss of generality. We further assume the knowledge
of the time horizon T , unknown time horizon can be handled as usual in bandit problems [20].
Finally, we say that arm k is ε-optimal for some ε > 0 if µk ≥ µ? − ε.
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Algorithm 11: Greedy
Input: Number of armsK
for t← 1 toK do

Pull armAt = t // Initialization

for t← K + 1 to . . . do

Pull armAt ∈ arg maxk∈[K] µ̂k(t− 1) // Exploitation

6.4 Generic bounds on Greedy

We now present the generic worst-case regret bound on Greedy that we will use to derive near-
optimal bounds in several bandit models.

Theorem 6.1. The regret of Greedy verifies for all ε > 0

E[RT ] ≤ T exp

(
−Nε

ε2

2

)
+ 3εT +

6K

ε
+

K∑
k=1

∆k

whereNε denotes the number of ε-optimal arms.

Remark. This bound generalizes a Bayesian analysis [17]. It is slightly looser; indeed the Bayesian
assumption can be used to boundNε and further improve the third term by bounding the num-
ber of suboptimal arms. Those techniques usually do not work in the stochastic setting.

Proof. The proof combines two techniques standard in the literature: creating a “good” event in
order to distinguish the randomness of the distributions from the behavior of the algorithm and
decomposing the arms into near-optimal and suboptimal ones. Fix some ε > 0.

Good event De�ne the eventE, through its complement, by

Ec =
⋂

k:∆k≤ε
{∃t | µ̂k(t) ≤ µk − ε} .

In words,E is the event that at least one ε-optimal arm is never underestimated by more than
ε below its mean reward. Using the independence of the events along with the concentration
bound of [see 17, Lemma 2], we obtain

P(Ec) ≤ exp

(
−Nε

ε2

2

)
. (6.1)

Bound on the number of pulls of suboptimal arms On the event E, let k ∈ [K] be
an arm such that ∆k > 3ε. With a slight abuse of notation, we denote by µ̂tk the average reward
of arm k after t samples. The expected number of pulls of arm k is then bounded by
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E[Nk(T ) |E] ≤ 1 +
∞∑
t=1

P
(
µ̂tk ≥ µ? − 2ε

)
≤ 1 +

∞∑
t=1

P
(
µ̂tk − µk ≥ ∆k − 2ε

)
≤ 1 +

∞∑
t=1

exp

(
−t(∆k − 2ε)2

2

)
≤ 1 +

1

exp
(

(∆k−2ε)2

2

)
− 1

≤ 1 +
2

(∆k − 2ε)2
(6.2)

where in second inequality we used that µ̂tk is 1/t-subgaussian and in the last inequality we
used that ex ≥ 1 + x for all x ∈ R.

Putting things together We �rst decompose the regret according to the eventE

E[RT ] ≤ E[RT |Ec]P(Ec) + E[RT |E] . (6.3)

As mean rewards are bounded in [0, 1], the regret on the bad event is bounded by T and by
Equation (6.1) we have

E[RT |Ec]P(Ec) ≤ T exp

(
−Nε

ε2

2

)
.

We further decompose the second term on the right-hand side of Equation (6.3),

E[RT |E] ≤
∑

k:∆k≤3ε

∆kE[Nk(T )|E] +
∑

k:∆k>3ε

∆kE[Nk(T )|E] .

The �rst term is trivially bounded by 3εT , while for the second term we have by Equation (6.2),
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∑
k:∆k>3ε

∆kE[Nk(T )|E] ≤
∑

k:∆k>3ε

2∆k

(∆k − 2ε)2
+

K∑
k=1

∆k

≤
∑

k:∆k>3ε

6

(∆k − 2ε)
+

K∑
k=1

∆k

≤
∑

k:∆k>3ε

6

ε
+

K∑
k=1

∆k

≤ 6K

ε
+

K∑
k=1

∆k

where in the second inequality we used that ∆k ≤ 3(∆k − 2ε), which holds true since ∆k ≥
3ε. Hence the result.

It is easy to see that this bound is meaningless whenNε is independent of T as one of the �rst
two terms will, at least, be linear with respect toT . On the other hand,Nε has no reason to depend
on the time horizon. The trick to obtain sublinear regret will be to lower boundNε by a function
of the number of arms K , then to optimize K with respect to the time horizon T . To motivate
this, consider the following example.

Example. Consider a problem with a huge number of arms n with mean rewards drawn i.i.d.
from a uniform distribution over [0, 1]. In that speci�c case, we roughly haveNε ≈ εK for some

subset of arms, chosen uniformly at random, with cardinalityK . Taking ε =
(

log T
K

)1/3
, so that

the �rst term in the generic bound is sublinear, yields aO
(

max

{
T
(

log T
K

)1/3
,K
(

K
log T

)1/3
})

regret bound, which comes from the second and third terms respectively. If we subsampledK =

T 3/5(log T )2/5 arms, so that the maximum is minimized, the regret bound becomesO
(
T 4/5(log T )1/5

)
;

in particular it is sublinear.

This argument motivates this paper and will be made formal in subsequent sections. Though
this does not lead to optimal bounds – as expected by the essence of the greedy heuristic in the
multi-armed bandit model –, it will nonetheless be highly competitive for short time span in many
practical bandit problems.

It is possible to theoretically improve the previous result by using a chaining/peeling type of
argument. Unfortunately, it is not practical to derive better explicit guarantees as it involves an
integral without close form expressions.

Corollary 6.1. The regret of Greedy verifies
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E[RT ] ≤ min
ε

{
3εT+

6K

ε
+

∫ 1

ε

(
3T +

6K

x2

)
exp

(
−Nx

x2

2

)
dx
}

+T exp

(
−K

2

)
+

K∑
k=1

∆k .

Proof. We recall the de�nition of the eventEε, through its complementEcε ,

Ecε =
⋂

k:∆k≤ε
P(∃t | µ̂k(t) ≤ µk − ε) .

Consider any increasing sequence {εm}Mm=0 and denote Em the good event associated with
εm for m ∈ {0, . . . ,M}. By the chain rule and the previous computation of the regret on the
good event (see proof of Theorem 6.1), we have

E[RT ] ≤
(

3ε0T +
6K

ε0

)
P(E0) +

(
3ε1T +

6K

ε1

)
P(E1 ∩ Ec0) + . . .

+

(
3εMT +

6K

εM

)
P(EM ∩ EcM−1) + TP(EcM−1) +

K∑
k=1

∆k

≤
[(

3ε0T +
6K

ε0

)
−
(

3ε1T +
6K

ε1

)]
P(E0) + . . .

+

[(
3εM−1T +

6K

εM−1

)
−
(

3εMT +
6K

εM

)]
P(EM−1)

+

(
3εMT +

6K

εM

)
P(EM ) + TP(EcM ) +

K∑
k=1

∆k

where in the second inequality we used that 1{A ∩Bc} = 1{A} − 1{B} if B ⊂ A. In the
proof of Theorem 6.1, we show that

P(Ecm) ≤ exp

(
−Nεm

ε2
m

2

)
form ∈ {0, . . . ,M}. Hence we obtain

R(T ) ≤
(

3ε0T +
6K

ε0

)
+
M−1∑
m=0

[(
3εm+1T +

6K

εm+1

)
−
(

3εmT +
6K

εm

)]
exp

(
−Nεm

ε2
m

2

)

+ T exp

(
−K

2

)
+

K∑
k=1

∆k

87
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The middle term is upper-bounded by

M−1∑
m=0

(εm+1 − εm)

[
3T +

6K

ε2
m

]
exp

(
−Nεm

ε2
m

2

)
,

which converges, as the mesh of the sequence εm goes to zero, towards∫ 1

ε

(
3T +

6K

x2

)
exp

(
−Nx

x2

2

)
dx

Hence the result.

6.5 Continuous-armed bandits

We �rst studyGreedy in the continuous-armed bandit problem. We recall that in this model, the
number of actions is in�nitely large. Formally, letA be an arbitrary set and F a set of functions
fromA → R. The learner is given access to the action setA and function classF . In each round
t, the learner chooses an actionAt ∈ A and receives rewardXt = f(At) + ηt, where ηt is some
noise and f ∈ F is �xed, but unknown. As usual in the literature [11, 65, 85], we restrict ourselves
to the caseA = [0, 1], ηt is 1-subgaussian, f takes values in [0, 1] andF is the set of all functions
that satisfy an Hölder condition around the maxima. Formally,

Assumption 6.1. There exist constantsL ≥ 0 and α > 0 such that for all x ∈ [0, 1],

f(x?)− f(x) ≤ L · |x? − x|α

where x? denotes the optimal arm.

This assumption captures the degree of continuity at the maxima and it is needed to ensure
that this maxima is not reached at a sharp peak.

Similarly to CAB1 [85], the Greedy algorithm will work on a discretization of the action set
into a �nite set ofK equally spaced points {1/K, 2/K, . . . , 1}. Each point is then considered as
an arm and we can apply the standard Greedy algorithm on them.

Remark. The same analysis holds if it chooses a point uniformly at random from the chosen
interval

[
k−1
K , kK

]
for 1 ≤ k ≤ K , see also Auer, Ortner, and Szepesvári [11].

The problem is thus to set the number of points K . The �rst regret bound on the Greedy
algorithm assume that the smoothness parameters are known.

Theorem 6.2. If f : [0, 1] → [0, 1] satisfies Assumption 6.1, then for a subsampling of K ≥(
L
ε

)1/α arms, the regret of the Greedy algorithm verifies for all ε > 0

E[RT ] ≤ T exp

(
− K

2L1/α
ε2+1/α

)
+ 4εT +

6K

ε
+K .
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In particular, the choice

K =

(
2

3

)α/(4α+1)(4

3

)2α/(4α+1)

L2/(4α+1)T (2α+1)/(4α+1)(log T )2α/(4α+1)

yields forL ≤
√

3
2TK

α+1/2,

E[RT ] ≤ 13L2/(4α+1)T (3α+1)/(4α+1)(log T )2α/(4α+1) + 1 .

Proof. Let ε > 0. The regret can be decomposed into an approximation and an estimation term,

Tf(x?)−
T∑
t=1

f(xt) = T

(
f(x?)− max

k∈[K]
f

(
k

K

))
+

(
T max
k∈[K]

f

(
k

K

)
−

T∑
t=1

f(xt)

)

From Assumption 6.1, the �rst term is bounded by εT whenK ≥
(
L
ε

)1/α. Then, according
to Theorem 6.1, we just have to lower bound Nε to conclude the proof. To do so, we begin by
proving a lower bound on the number of arms that are ε-optimal with respect to the best arm
overall. LetNC

ε denotes this quantity.

Bound onNC
ε From Assumption 6.1, an ε-optimal arm k may verify (there can be ε-optimal

that are not around the maxima)

L

∣∣∣∣x? − k

K

∣∣∣∣α ≤ ε
Rearranging the terms and using that k is an integer, we obtain⌈

K

(
x? −

( ε
L

)1/α
)⌉
≤ k ≤

⌊
K

(
x? +

( ε
L

)1/α
)⌋

This means that we have the following lower bound onNC
ε

NC
ε ≥

⌊
K

(
x? +

( ε
L

)1/α
)⌋
−
⌈
K

(
x? −

( ε
L

)1/α
)⌉

+ 1

Thanks to Lemma 6.1, we obtain

NC
ε ≥

⌊
2K
( ε
L

)1/α
⌋

Finally, using that b2xc ≥ x for x ≥ 1 (easily verify with the assumption on K), we obtain
the following lower bound

NC
ε ≥ K

( ε
L

)1/α
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Figure 6.3: Regret upper bound of various algorithms as a function of time in the continuous-armed bandit
model with smoothness parametersL = 1 and α = 1.

Conclusion We trivially have that Nε ≥ NC
ε . The �rst part of the Theorem then results

from the fact that
∑K

k=1 ∆k ≤ K since µk ∈ [0, 1] for all k ∈ [K].
On the other hand, the second part comes from taking ε2 = 3K/(2T ) which is the value of ε

that minimizes the term 4εT + 6K/ε.

This bound is sublinear with respect to the time horizon T , yet suboptimal. Indeed, the lower
bound in this setting is Ω

(
T (α+1)/(2α+1)

)
and the MOSS algorithm run on a optimal discretiza-

tion attains it since its regret scales, up to constant factor, asO
(
L1/(2α+1)T (α+1)/(2α+1)

)
[65].

Yet, as mentioned previously, Greedy is theoretically competitive for short time horizon due to
small constant factors. In Figure 6.3a, we displayed regret upper bounds of MOSS andGreedy as
a function of time for functions that satisfy Assumption 6.1 with smoothness parametersL = 1
and α = 1. We see that the bound on Greedy is stronger up until a moderate time horizon
T ≈ 12000.

Of course, assuming that the learner knows smoothness parametersα andL is often unrealistic.
If we want to ensure a low regret on very regular functions, by taking α → ∞, we have the
following corollary.

Corollary 6.2. If f : [0, 1] → [0, 1] satisfies Assumption 6.1, then for a subsampling of K =√
4
3T log T arms, the regret of Greedy verifies forL ≤ 31/4(4/3)(2α+1)/4T 2α(log T )(α+1)/2,

E[RT ] ≤ 15 max{L1/(2α+1), L−1/(2α+1)}T (3α+2)/(4α+2)
√

log T + 1 .

Proof. It is a direct consequence of Theorem 6.2 with ε =

(
L1/α

√
3 log T
T

)α/(2α+1)

.

Once again, Greedy attains a sublinear, yet suboptimal, regret bound. In the case of unknown
smoothness parameters, the regret lower bound is Ω

(
L1/(1+α)T (α+2)/(2α+2)

)
[108], which is

attained by MeDZO with a O
(
L1/(α+1)T (α+2)/(2α+2)(log2 T )3/2

)
regret bound [65]. This

time, Greedy also has a lower polynomial dependency which makes it even more competitive
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theoretically. In Figure 6.3b, we displayed regret upper bounds of MeDZO and Greedy (with
unknown smoothness parameters) as a function of time for functions that satisfy Assumption
6.1 with smoothness parameters L = 1 and α = 1. Here we cannot see the turning point since
Greedy is stronger up until an extremely large time horizon T ≈ 1, 9 · 1046. Our numerical
simulations will further support this theoretical advantage.

6.6 Infinite-armed bandits

We now study the in�nite-armed bandit problem. In this setting, we consider the general model
of Wang, Audibert, and Munos [148]. In particular they assume a margin condition on the mean
reward of a randomly drawn arm. Formally,

Assumption 6.2. There exist µ? ∈ (0, 1] and β > 0 such that the expected reward µ of a ran-
domly drawn arm satisfies

P(µ > µ? − ε) = O
(
εβ
)

, for ε→ 0 .

Equivalently, there exist c1 > 0 and c2 > 0 such that

c1ε
β ≤ P(µ > µ? − ε) ≤ c2ε

β .

Similarly to UCB-F [148], Greedy will consist of initially choosingK arms and then running
the standard Greedy algorithm on those arms. The problem is then to choose the optimal num-
ber of armsK . The following regret bound on the Greedy algorithm assume the knowledge of
the parameter β and c1.

Theorem 6.3. Assume Assumption 6.2 of the model. The regret of the Greedy algorithm verifies
for any subsampling ofK > 0 arms and for all ε > 0

E[RT ] ≤ T
[
exp
(
−c1

4
Kε2+β

)
+ exp

(
−c1

8
Kεβ

)]
+ 4εT +

6K

ε
+K .

In particular, the choice

K =

(
2

3

)(2+β)/(4+β)( 8

c1(4 + β)

)2/(4+β)

T (2+β)/(4+β)(log T )2/(4+β)

yields

E[RT ] ≤ 20(c1(4 + β))−2/(4+β)T (3+β)/(4+β)(log T )2/(4+β) .

Proof. Let ε > 0. Once again, thanks to Theorem 6.1 we just have to bound Nε and the result
will follow by adding the approximation cost εT .

We construct a good event on the expected rewards of sampled arms. Let Iε = [µ?−ε, µ?] and
N I
ε =

∑K
k=1 1{k ∈ Iε} be the number of ε-optimal arms with respect to all arms. Assumption

6.2 implies that
p = E[1{k ∈ Iε}] = P(k ∈ Iε) ∈ [c1ε

β, c2ε
β]
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Let δ ∈ [0, 1). By Cherno� inequality we have

P
(
N I
ε < (1− δ)Kp

)
≤ exp

(
−Kpδ2/2

)
In particular, taking δ = 1

2 yields

P
(
N I
ε < c1ε

βK/2
)
≤ exp

(
−c1ε

βK/8
)

Now we trivially have thatNε ≥ N I
ε , and hence we obtain

P
(
Nε < c1ε

βK/2
)
≤ exp

(
−c1ε

βK/8
)

By constructing a good event based on the previous concentration bound and using
∑K

k=1 ∆k ≤
K , we obtain the �rst part of the Theorem.

The second part results from (i) the �rst exponential term dominates since ε2+β ≤ εβ for all
ε ∈ [0, 1] and β > 0 and (ii) the choice of ε =

√
3K/(2T ) which is the value that minimizes

4εT + 6K/ε.

In comparison, the lower bound is this model is Ω
(
T β/(1+β)

)
for any β > 0 and µ? ≤ 1 and

UCB-F obtained aO
(
T β/(β+1) log T

)
regret bound in the caseµ? = 1 orβ > 1 and a Õ

(
T 1/2

)
bound otherwise [148]. The regret of Greedy is once again sublinear, though suboptimal, with a
lower logarithmic dependency. Our numerical simulations will further emphasis its competitive
performance.

The case of unknown parameters is more complicated to handle compared to the continuous-
armed model and is furthermore not the main focus of this paper. A solution proposed by Car-
pentier and Valko [31] nonetheless, is to perform an initial phase to estimate the parameter β.

6.7 Many-armed bandits

We now consider the particular model of many-armed bandit problem of Zhu and Nowak [154].
It is somehow related to the previous two except it also takes into account the time horizon. In
particular, it focuses on the case where multiple best arms are present. Formally, let T be the time
horizon, n be the total number of arms and m be the number of best arms. We emphasis that n
can be arbitrary large andm is usually unknown. The following assumption will lower bound the
number of best arms.

Assumption 6.3. There exists γ ∈ [0, 1] such that the number of best arms satisfies

n

m
≤ T γ .

We assume that the value γ (or at least some upper-bound) is known in our case, even though
adaptivity to it is possible [154]. The following Theorem bounds the regret of aGreedyalgorithm
that initially subsamples a set of arms.
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Theorem 6.4. Assume Assumption 6.3 of the model and that the number of armsn is large enough
for the following subsampling schemes to be possible. Depending on the value ofα and the time hori-
zon T , it holds

• If T 1−3α ≤ log T , in particular for α ≥ 1
3 and T ≥ 2, choosing K = 2T 2α log T leads

to
E[RT ] ≤ 14Tα+1/2 log T + 2 .

• Otherwise, the choice ofK = 2
√
T 1+α log T yields

E[RT ] ≤ 14T (3+α)/4
√

log T + 2 .

Proof. Again we just need a lower bound on the number of optimal arms in the subsampling
and we construct a good event to do so. We reuse the previous notation Nε to denote this value
(ε = 0 here). LetNS

ε be the number of optimal arms with respect to all arms. In the case of a sub-
sampling ofK arms done without replacement,NS

ε is distributed according to a hypergeometric
distribution.

By Hoe�ding’s inequality, we have for 0 < t < pK

P
(
NS
ε ≤ (p− t)K

)
≤ exp

(
−2t2K

)
where p = m/n. We want to choose t such p − t > 0 otherwise the bound is meaningless. In
particular, the choice of t = p

2 yields

P
(
NS
ε ≤

pK

2

)
≤ exp

(
−p

2K

2

)
We then trivially have thatNε ≥ NS

ε . The regret on the bad events is then given by

T

[
exp

(
−pK

2

ε2

2

)
+ exp

(
−p

2K

2

)]
For the regret to beO(1) on the bad events, the two following inequalities must be verify

pK

2

ε2

2
≥ log T

p2K

2
≥ log T

Now the term 3εT + 6K
ε of Theorem 6.1 is minimized for ε2 = 2K/T . This leads to

pK2

2
≥ T log T

p2K

2
≥ log T

93



6 The greedy heuristic in multi-armed bandits

Using that p = T−α, we obtain

K ≥ 2 max
{√

T 1+α, T 2α
√

log T
}√

log T

The proof is concluded by decomposing according to the value inside the max term.

The previous bounds indicate that Greedy realizes a sublinear worst-case regret on the stan-
dard multi-armed bandit problem at the condition that the number of arms is large and the pro-
portion of near-optimal arms is high enough. To compare, the MOSS algorithm run on an opti-
mal subsampling achieves aO

(
T (1+γ)/2 log T

)
regret bound for all γ ∈ [0, 1], which is optimal

up to logarithmic factors [154]. In this case, our numerical simulation will show that Greedy is
competitive even when the setup is close to the limit of the theoretical guarantee of Greedy.

6.8 Experiments

We now evaluate Greedy in the previously studied bandit models to highlight its practical com-
petitive performance. For fairness reasons with respect to the other algorithms, and in the idea of
reproducibility, we will not create new experiment setups but reproduce experiments that can be
found in the literature (and compare the performances of Greedy with respect to state of the art
algorithms).

6.8.1 Continuous-armed bandits

In the continuous-armed bandit setting, we repeat the experiments of Hadiji [65]. We consider
three functions that are gradually sharper at the maxima and thus harder to optimize. Speci�cally,
we consider

f1 : x 7→ 0.5 sin(13x) sin(27x) + 0.5

f2 : x 7→ max(3.6x(1− x), 1− |x− 0.05|/0.05)

f3 : x 7→ x(1− x)
(

4−
√
| sin 60x|

)
These functions verify Assumption 6.1 with α = 2, 1, 0.5 and L ≈ 221, 20, 2, respectively,

and are plotted for convenience in Figure 6.4. Noises are drawn i.i.d. from a standard Gaussian dis-
tribution and we consider a time horizonT = 100000. We compare theGreedy algorithm with
MeDZO [65], CAB1 [85] with MOSS [7] as the underlying algorithm and Zooming [84]. For
Greedy, we use the discretization of Corollary 6.2 while for CAB.MOSS we choose the optimal
discretizationK =

⌈
L2/(2α+1)T 1/(2α+1)

⌉
. ForMeDZO, we choose the parameter suggested by

authors B =
√
T . We emphasis here that CAB.MOSS and Zooming require the smoothness

parameters contrary to MeDZO and Greedy. Results are averaged over 1000 iterations and are
presented on Figure 6.5. Shaded area represents 5 standard deviation for each algorithm.

We see that Greedy outperforms the other algorithms in all scenarios. We can clearly observe
that the slope of the cumulative regret of Greedy is stepper than the one of CAB.MOSS, yet it
manages to obtain a lower regret by quickly concentrating on near-optimal arms. Moreover, the
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Figure 6.4: Functions considered in the continuous-armed bandit experiments.
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Figure 6.5: Regret of various algorithms as a function of time in continuous-armed bandit problems.

di�erence is striking for the relatively large time horizon considered here. Interestingly, the slope
of Greedy is more pronounced in the second scenario; this may be due to the low number of
local maxima which negatively a�ects the number of ε-optimal arms for Greedy.

6.8.2 Infinite-armed bandits

In the in�nite-armed bandit setting, we repeat the experiments of Bonald and Proutiere [23]. We
consider two Bernoulli bandit problems with a time horizon T = 10000. In the �rst scenario,
mean rewards are drawn i.i.d. from the uniform distribution over [0, 1], while in the second sce-
nario, they are drawn from a Beta(1, 2) distribution. We assume the knowledge of the parameters.
We compare Greedy with UCB-F [148] and TwoTarget [23] that further assumes Bernoulli
rewards and the knowledge of the underlying distribution of mean rewards. For Greedy, we use
the subsampling suggested in Theorem 6.3. Results, averaged over 1000 iterations, are displayed
on Figure 6.6 and the shaded area represents 0.5 standard deviation for each algorithm.

Once again, we see the excellent empirical performances of Greedy. It is actually outper-
formed by TwoTarget in the uniform case since the latter has been speci�cally optimize for
that case (and is asymptotically optimal) butGreedy is more robust as the second scenario points
out; furthermore, TwoTarget works only for Bernoulli rewards contrary to Greedy.
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Figure 6.6: Regret of various algorithms as a function of time in in�nite-armed bandit problems.

6.8.3 Many-armed bandits

In the many-armed bandit setting, we repeat the experiment of Zhu and Nowak [154]. We consider a
Bernoulli bandit problem where best arms have an mean reward of 0.9 while for suboptimal arms
they are evenly distributed among {0.1, 0.2, 0.3, 0.4, 0.5}. The time horizon is T = 5000 and
the total number of arms n = 2000. We set the hardness level at γ = 0.4 resulting in a number
of best armsm =

⌈
n
T γ

⌉
= 64. In this setup, Greedy is near its limit in terms of theoretical guar-

antee. We compare OracleGreedy, the greedy algorithm run on an subsampling of arms ana-
lyzed previously, with MOSS [7], OracleMOSS [154] (which consider an optimal subsampling
forMOSS) and the standardGreedy algorithm that consider all arms. ForOracleGreedy, we
consider a subsampling of K = (1 − 2γ)T 2γ log T/4 arms, which corresponds to the value of
a more careful analysis of the regret in the bad events in Theorem 6.4 for 1/4-subgaussian ran-
dom variables. Results are averaged over 5000 iterations and displayed on Figure 6.7. Shaded area
represents 0.5 standard deviation for each algorithm.

Once again we observe the excellent performance of Greedy on a subsampling of arms; it out-
performsOracleMOSS, its closest competitor, since both assume the knowledge of the hardness
parameter γ and subsample. It is also interesting to notice that the variance of OracleGreedy
is much smaller than OracleMOSS.

6.8.4 Linear bandits

In the linear bandit model, for each round t, the learner is given the decision setAt ⊂ Rd, from
which she chooses an actionAt ∈ At and receives rewardXt = 〈θ?, At〉+ ηt, where θ? ∈ Rd is
an unknown parameter vector and ηt is some i.i.d. white noise, usually assume 1-subgaussian. In
this model, theGreedy algorithm consists of two phases: �rstly, it computes the regularized least-
square estimator of θ; then, it plays the arm in the action set that maximizes the linear product
with the estimator of θ.

Here we consider a problem with a large dimension relatively to the time horizon. Precisely, we
�x d = 50, a time horizon T = 2500 and the noise is a standard Gaussian distribution. The set
of arms consists of the unit ball and the parameter θ is randomly generated on the unit sphere. We
compare Greedy with LinUCB [1] and BallExplore [52], an algorithm speci�cally designed
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Figure 6.7: Regret of various algorithms on a many-armed bandit problem with hardness level α = 0.4.

for such a setting. The regularization term λ is set at 1 for Greedy and LinUCB, the con�dence
term δ = 1

T for LinUCB and the parameter ∆ = d for BallExplore. Results, displayed on
Figure 6.8, are averaged over 50 iterations. Shaded area represents 2 times the standard deviation
for each algorithm.

We see that Greedy outperforms both LinUCB and BallExplore; in particular the regret
of Greedy is sublinear. Another point that we have not emphasized so far is the computational
complexity. Until now, the di�erence in terms of computation was rather insigni�cant. This is
no longer the case for algorithms designed for linear bandits as they must solve an optimization
problem at each time step. For example, in this simulation, the number of seconds per iteration
on a single-core processor is 70 for Greedy, 678 for LinUCB and 1031 for BallExplore. In
words, Greedy is nearly ten times faster than LinUCB.

6.8.5 Cascading bandits

We now bring our attention into a special case of stochastic combinatorial optimization under
semi-bandit feedback that is the cascading bandit problem. Formally, we have L ∈ N ground
items and at each time step t, the agent recommends a list

(
at1, . . . , a

t
K

)
of K ≤ L items to the

user. The user examines the list, from the �rst item to the last, and clicks on the �rst attractive item,
if any. With each item l ∈ [L] is associated a weightw(l) ∈ [0, 1], which denotes the click prob-
ability of the item. The reward of the agent at time t is given by 1−

∏K
K=1

(
1− w(atk)

)
∈ {0, 1}

and she receives feedback for eachk ∈ [K] such thatk ≤ ct = min
{

1 ≤ k ≤ K : wt(a
t
k) = 1

}
where wt(atk) ∼ Bernoulli(w(atk)) and we assume that the minimum over an empty set is∞.
In this setting, the Greedy algorithm outputs a list consisting of theK best empirical arms. The
goal of these experiments is to study in which regimes, as a function of L and K , the Greedy
algorithm might be preferable to the state-of-the-art.
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Figure 6.8: Bayesian regret of various algorithms as a function of time in a linear bandit problem.

We reproduce the experiments of Kveton, Szepesvari, Wen, and Ashkan [90] in the Bayesian set-
ting. We compare Greedy with CascadeKL-UCB [90] and TS-Cascade [38]. Cascade-
Greedy and CascadeKL-UCB share the same initialization which is to select each item once as
the �rst item on the list. For each algorithm, the list is ordered from the largest index to the small-
est one. We consider two scenarios: on the �rst one, the prior on the expected rewards is a uniform
distribution while on the second scenario, we consider a more realistic Beta(1, 3) distribution so
that most arms have low expected rewards. The time horizon is set atT = 10000. The regret and
standard deviation of each algorithm, averaged over 100 iterations, are reported in Table 6.1 and
6.2 for di�erent values ofL andK .

As expected by the Bayesian setting, Greedy outplays the state-of-the-art when the number
of arms L is large. Even more interesting is that, as the number of recommended items K gets
larger the regret of Greedy decreases at a faster rate than the other algorithms. Our intuition is
that the conservatism of standard bandit algorithms is ampli�ed asK increases and this is further
exacerbates by the cascade model where items at the bottom of the list may not get a feedback.
On the contrary, the Greedy algorithm quickly converges to a solution that uniquely depends
on past individual performances of arms. In addition, the contrast between the performance of
Greedy and the state-of-the-art is even more striking in the second scenario. This is not particu-
larly surprising as the Beta(1, 3) distribution gives rise to harder problems for the considered time
horizon.

6.8.6 Mortal bandits

We now consider the mortal bandit problem where arms die and new ones appear regularly (in par-
ticular, an arm is not always available contrary to the standard model). In this setting, theGreedy
algorithm pulls the best empirical arm available. As previous work considered a large number of
arms, state-of-the-art algorithms in this setting, e.g. AdaptiveGreedy [32], emphasis an hidden
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6.8 Experiments

Table 6.1: Bayesian regret of various algorithms in cascading bandit problems with a uniform prior.

L K Greedy CascadeKL-UCB TS-Cascade

16 2 176.1± 26.4 48.1 ± 2.7 109.7± 1.8
16 4 10.2± 1.9 9.9 ± 1.0 28.4± 0.9
16 8 0.7 ± 0.2 0.7 ± 0.1 3.6± 0.3
32 2 166.1± 22.8 58.7 ± 3.5 178.7± 2.5
32 4 6.7 ± 0.9 10.1± 0.8 47.0± 1.0
32 8 0.2 ± 0.03 0.7± 0.08 8.3± 0.4
64 2 135.5± 15.6 76.6 ± 3.7 288.6± 2.6
64 4 6.5 ± 0.5 12.5± 0.6 80.3± 1.3
64 8 0.3 ± 0.02 0.9± 0.07 16.6± 0.5
128 2 133.1± 12.4 107.4 ± 4.8 442.6± 3.4
128 4 9.4 ± 0.3 18.0± 0.8 127.4± 1.5
128 8 0.5 ± 0.02 1.5± 0.1 27.9± 0.6
256 2 137.2 ± 10.6 151.0± 5.6 605.7± 3.1
256 4 16.6 ± 0.2 26.9± 1.0 179.5± 1.4
256 8 1.0 ± 0.03 1.8± 0.1 39.9± 0.5

Table 6.2: Bayesian regret of various algorithms in cascading bandit problems with a Beta(1, 3) prior.

L K Greedy CascadeKL-UCB TS-Cascade

16 2 590.4± 83.5 207.9± 5.2 199.5 ± 3.6

16 4 304.8± 35.7 116.4± 4.2 103.2 ± 2.9

16 8 97.9± 11.7 39.6± 2.1 34.4 ± 1.6

32 2 433.1± 49.1 330.7 ± 8.3 333.7± 3.8
32 4 192.2± 23.1 166.2± 6.0 163.3 ± 3.7

32 8 38.7 ± 5.3 50.1± 2.9 54.6± 1.9
64 2 576.2± 55.8 485.8 ± 11.2 540.1± 4.8
64 4 144.2 ± 12.3 207.5± 6.8 246.1± 4.1
64 8 20.3 ± 1.8 49.2± 2.2 76.4± 1.6
128 2 575.2 ± 40.1 710.9± 16.3 843.4± 4.7
128 4 100.8 ± 5.5 270.6± 7.4 372.9± 3.7
128 8 18.0 ± 0.6 60.7± 2.0 115.7± 1.4
256 2 522.5 ± 32.4 1068.3± 26.1 1235.1± 6.3
256 4 125.1 ± 3.8 380.0± 10.3 551.1± 3.85
256 8 27.3 ± 0.4 86.4± 2.6 174.8± 1.5
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Figure 6.9: Bayesian regret of various algorithms as a function of the expected lifetime of arms in mortal
bandit problems.

subsampling of arms due to their initialization. They further required a careful (manual) tuning
of their parameter for optimal performance. Consequently, we compare Greedy to a standard
bandit algorithm extended to this model and we consider a small number of arms. Similarly to
the last setting, the goal is to observe in which regimes, as a function of the expected lifetime of
arms, Greedy might be preferable.

We repeat the experiments of Chakrabarti, Kumar, Radlinski, and Upfal [32] with K = 100.
The number of arms remains �xed throughout the time horizon T , that is when an arm dies, it is
immediately replaced by another one. The time horizon T is set at 10 times the expected lifetime
of the arms. The lifetime of arm k, denotedLk, is drawn i.i.d. from a geometric distribution with
expected lifetimeL; this arm dies after being available forLk rounds. We consider logarithmically
spaced values of expected lifetimes. We also assume that arms are Bernoulli random variables. We
consider two scenarios: in the �rst one, expected rewards of arms are drawn i.i.d. from a uniform
distribution over [0, 1], while in the second scenario they are drawn from a Beta(1, 3) distribution.
We compare the Greedy algorithm with Thompson Sampling [5]. Results are averaged over
100 iterations and are reported on Figure 6.9. Shaded area represents 0.5 standard deviation for
each algorithm.

As expected, Greedy outperforms TS for intermediate expected lifetime and vice versa for
long lifetime. And for short lifetime, as we previously saw, a subsampling of arms could have
considerably improve the performance of both algorithms.

6.8.7 Budgeted bandits

We now consider the budgeted bandit problem. In this model, the pull of arm k at time t entails a
random cost ck(t). Moreover, the learner has a budgetB, which is a known parameter, that will
constrain the total number of pulls. In this setting, the index of an arm in the Greedy algorithm
is the average reward divided by the average cost. Like before, the objective is to evaluate in which
regimes with respect to the budgetB, Greedymight be preferable to a state-of-the-art algorithm.

We reproduce the experiments of Xia, Ding, Zhang, Yu, and Qin [151]. Speci�cally, we study two
scenarios withK = 100 arms in each. The �rst scenario considers discrete costs; both the reward
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Figure 6.10: Regret of various algorithms as a function of the budget in budgeted bandit problems.

and the cost are sampled from Bernoulli distributions with parameters randomly sampled from
(0, 1). The second scenario considers continuous costs; the reward and cost of an arm is sampled
from two di�erent Beta distributions, the two parameters of each distribution are uniformly sam-
pled from [1, 5]. The budget is chosen from the set {100, 500, 1000, 5000, 10000}. We compare
Greedy to Budget-UCB Xia, Ding, Zhang, Yu, and Qin [151] and BTS [152]. The results of sim-
ulations are displayed in Figure 6.10 and are averaged over 500 runs. Shaded area represents 0.5
standard deviation for each algorithm.

Interestingly, in this setting the interval of budgets for which Greedy outperforms baseline
algorithms is extremely small for discrete costs and large for continuous costs. In the latter case,
even for large budget Greedy has a lower expected regret than BTS. Nonetheless it su�ers from
a huge variance which makes its use risky in practice.

6.9 Conclusion

In this chapter, we have re�ned the standard version of Greedy by considering a subsampling
of arms and proved sublinear worst-case regret bounds in several bandit models. We also carried
out an extensive experimental evaluation which reveals that it outperforms the state-of-the-art for
relatively short time horizon. Besides, since its indexes are usually computed by most algorithms,
it is trivial to implement and fast to run. Consequently, the Greedy algorithm should be con-
sidered as a standard baseline when multiple near-optimal arms are present, which is the case in
many models as we saw.

Interestingdirections We leave open the question of adaptivity. Adaptivity here could re-
fer to adaptive subsampling or adaptivity to unknown parameters. In particular in the continuous-
armed bandit problem, previous work showed that the learner pays a polynomial cost to adapt
[65]. Knowing that Greedy works best for relatively short time horizon, it might be interesting
to study this cost for a greedy strategy and for what time horizon it might be worth it.

Another interesting, and relevant in practical problems, direction is to analyze the performance
of Greedy in combinatorial bandits (with a large number of arms and thus a non-tractable num-
ber of actions), but with some structure on the rewards on arms [50, 90, 122, 124].
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6 The greedy heuristic in multi-armed bandits

6.10 Short literature review

In this section, we provide a short literature review on the di�erent bandit models considered in
this chapter.

Continuous-armed bandits Agrawal [3] introduced the continuous-armed bandit prob-
lem with nonparametric regularity assumptions. Kleinberg [85] established the lower bound and
provide a optimal algorithm up to a sublogarithmic factor. Auer, Ortner, and Szepesvári [11] im-
proved the previous bound assuming a margin condition. Kleinberg, Slivkins, and Upfal [84] con-
sidered generic metric spaces assuming that the mean-payo� function is Lipschitz with respect to
the (known) metric of the space. Bubeck, Munos, Stoltz, and Szepesvari [28] considered generic topo-
logical spaces and that the mean-payo� function is locally Lipschitz with respect to a dissimilarity
function known to the decision maker. All these works assumed known smoothness parameters;
Bubeck, Stoltz, and Yu [30], Hadiji [65], and Locatelli and Carpentier [108] studied the adaptivity to
unknown parameters

Infinite-armed bandits Berry, Chen, Zame, Heath, and Shepp [18] introduced the in�nite-
armed bandit problem, they consider a problem consisting of a sequence of n choices from an
in�nite number of Bernoulli arms, withn→∞. The objective is to minimize the long-run failure
rate. The Bernoulli parameters are independent observations from a known distribution. Bonald
and Proutiere [23] also considered Bernoulli arms but they studied the cumulative regret, focusing
on the uniform prior distribution. Wang, Audibert, and Munos [148] considered a more general
model. In particular they assumed that rewards are uniformly bounded in [0, 1] and that the
expected reward of a randomly drawn arm is ε-optimal with probabilityO

(
εβ
)

for some β > 0.

Many-armed bandits Models in many-armed bandit problems are more varied. Teytaud,
Gelly, and Sebag [136] provided an anytime algorithm when the number of arms is large compar-
atively to the number of time steps. Wang, Kurniawati, and Kroese [146] proposed a cross-entropy
based algorithm. They aimed to focus exploration on a small subset of arms. They did not provide
theoretical upper bounds. Chaudhuri and Kalyanakrishnan [34] introduced a notion of regret with
respect to a given quantile fraction ρ of the probability distribution over the expected rewards of
arms. Russo and Van Roy [130] considered learning a satis�cing action and analyze the discounted
regret. They propose a Thompson Sampling like algorithm and further studied applications to
linear and in�nite-armed bandits. The de�nition of a satis�cing action is set by the learner. Ou,
Li, Yang, Zhu, and Jin [119] proposed a semi-parametric model to formulate expected rewards. Zhu
and Nowak [154] considered a setting with multiple best/near-optimal arms without making any
assumptions about the structure of the bandit instance. Their objective was to design algorithms
that can automatically adapt to the unknown hardness of the problem.

Linear bandits The literature on linear bandits is quite large and we refer the reader to Latti-
more and Szepesvári [100] for an in-depth overview. We mention Abbasi-Yadkori, Pál, and Szepesvári

[1] who proved that an expected regret of Õ
(
d
√
T
)

can be achieved as long as the means are guar-
anteed to lie in a bounded interval. Deshpande and Montanari [52] also considered a linear bandit
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problem with a dimension that is large relative to the time horizon. They proposed an algorithm
that limits exploration and achieves good reward within a short time frame.

Cascadingbandits Kveton, Szepesvari, Wen, and Ashkan [90] introduced the cascading bandit
model and proposed two algorithms based on UCB and KL-UCB. Combes, Magureanu, Proutiere,
and Laroche [42] proposed an asymptotically optimal algorithm. Cheung, Tan, and Zhong [38] pro-
posed an algorithm based on Thompson Sampling. Zong, Ni, Sung, Ke, Wen, and Kveton [156]
considered a linear variant of the model. Li, Wang, Zhang, and Chen [107] further considered a
contextual setting.

Mortal bandits Chakrabarti, Kumar, Radlinski, and Upfal [32] introduced the mortal bandit
model and proposed an algorithm in which the level of greediness depends on the performance
of the best arm available. Traca, Rudin, and Yan [140] argued to reduce exploration of dying arms.

Budgetedbandits Tran-Thanh, Chapman, Munoz De Cote Flores Luna, Rogers, and Jennings [141]
introduced the budgeted bandit problem and proposed an Explore-Then-Commit algorithm.
Tran-Thanh, Chapman, Rogers, and Jennings [142] proposed knapsack-based algorithms. Xia, Li,
Qin, Yu, and Liu [152] proposed a Thomson sampling algorithm. Xia, Ding, Zhang, Yu, and Qin [151]
further extended the problem to continuous random costs Let us also cite Badanidiyuru, Kleinberg,
and Slivkins [12] who considered a more general framework.

6.11 Useful lemma

Lemma 6.1. Let a and b be two real numbers. Then the following holds true

ba+ bc − da− be ≥ b2bc − 1

Proof. We have

ba+ bc − da− be = ba+ bc+ bb− ac
≥ ba+ b+ b− ac − 1

= b2bc − 1

where we used respectively that, dxe = −b−xc and bx+ yc ≤ bxc+ byc+ 1.
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A An improved bound on the regret
of Follow-The-Leader in full
information

In this section, we provide a tighter upper bound, compared to Degenne and Perchet [48], on the
regret of the Follow-The-Leader algorithm under the full information feedback. We recall
that in the full information setting, the learner observes a reward for each arm independently of
her previous choices. We also recall that after a uniformly random pull in the �rst time step, the
Follow-The-Leader algorithm pulls the arm with the highest average reward.

As usual in the literature, we consider σ2-subgaussian reward distributions and a unique opti-
mal arm which is arm 1 without loss of generality. We further assume that the suboptimal gap is
the same for all arms and we denote it ∆. We now state the theorem.

Theorem A.1. The expected regret of FTL in the full information setting with equal suboptimal
gaps verifies for all t ∈ N

E[Rt] ≤
4σ2

∆
(1 + log(K − 1)) + ∆

K − 1

K
.

Proof. The main improvement comes from comparing the optimal arm and all suboptimal arms
rather than two by two. The probability of pulling a suboptimal arm at time t+ 1 is bounded by

P(At+1 6= 1) ≤ P
(

max
k 6=1

µ̂k(t) ≥ µ̂1(t)

)
≤ 1− P

(
max
k 6=1

µ̂k(t) < µ̂1(t)

)
≤ 1−

∏
k 6=1

P(µ̂k(t) < µ̂1(t))

≤ 1−
∏
k 6=1

(1− P(µ̂k(t) ≥ µ̂1(t)))

Using that µ̂k(t) is 1/t-subgaussian for all k, we have

P(µ̂k(t) ≥ µ̂1(t)) = P(µ̂k(t)− µ̂1(t)− (−∆) ≥ ∆)

≤ exp

(
− t∆

2

4σ2

)
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Hence, we get

P(At+1 6= 1) ≤ 1−
∏
k 6=1

(
1− exp

(
− t∆

2

4σ2

))

≤ 1−
(

1− exp

(
− t∆

2

4σ2

))K−1

Finally, by the standard decomposition of the regret we obtain

E[Rt] = ∆

T−1∑
t=1

P(At+1 6= 1) + ∆
K − 1

K

≤ ∆

T−1∑
t=1

1−
(

1− exp

(
− t∆

2

4σ2

))K−1

+ ∆
K − 1

K

≤ ∆

∫ ∞
0

1−
(

1− exp

(
−x∆2

4σ2

))K−1

dx+ ∆
K − 1

K

≤ 4σ2

∆

∫ 1

0

1− uK−1

1− u
du+ ∆

K − 1

K

≤ 4σ2

∆

∫ 1

0

K−2∑
k=0

ukdu+ ∆
K − 1

K

≤ 4σ2

∆

K−1∑
k=1

1

k
+ ∆

K − 1

K

≤ 4σ2

∆
(1 + log(K − 1)) + ∆

K − 1

K

where in the second inequality we used that the function inside the sum term is positive and de-
creasing.
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Titre: Algorithmes de bandit pour l’optimisation des systèmes de recommandation
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Résumé: Dans cette thèse de doctorat, nous
étudions l’optimisation des systèmes de recom-
mandation dans le but de fournir des suggestions
de produits plus raffinées pour un utilisateur. La
tâche est modélisée à l’aide du cadre des ban-
dits multi-bras. Dans une première partie, nous
abordons deux problèmes qui se posent fréquem-
ment dans les systèmes de recommandation :
le grand nombre d’éléments à traiter et la ges-

tion des contenus sponsorisés. Dans une deux-
ième partie, nous étudions les performances em-
piriques des algorithmes de bandit et en partic-
ulier comment paramétrer un algorithme tradi-
tionnel pour améliorer les résultats dans les en-
vironnements stationnaires et non stationnaires
que l’on rencontre en pratique. Cela nous amène
à analyser à la fois théoriquement et empirique-
ment l’algorithme glouton qui, dans certains cas,
est plus performant que l’état de l’art.

Title: Bandit algorithms for recommender system optimization

Keywords: Reinforcement learning, multi-armed bandits, recommender system, e-commerce

Abstract: In this Ph.D. thesis, we study the
optimization of recommender systems with the
objective of providing more refined suggestions
of items for a user to benefit. The task is mod-
eled using the multi-armed bandit framework.
In a first part, we look upon two problems that
commonly occur in recommender systems: the
large number of items to handle and the man-

agement of sponsored contents. In a second
part, we investigate the empirical performance
of bandit algorithms and especially how to tune
a conventional algorithm in order to improve
performance in stationary and non-stationary
environments that arise in practice. This leads
us to analyze both theoretically and empirically
the greedy algorithm that, in some cases, out-
performs the state-of-the-art.
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