Numerical and Experimental Approach for Bipolar Plates in PEM Fuel Cells : Novel Designs of Fluid Domain - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2020

Numerical and Experimental Approach for Bipolar Plates in PEM Fuel Cells : Novel Designs of Fluid Domain

Approche numérique et expérimentale des écoulements au sein des piles à combustible : innovations liées aux conditions aux limites

Résumé

This thesis is part of a wider project that aims at improving proton exchange membrane fuel cell (PEMFC) efficiency and stability. Our contribution aims at improving the geometry and structure of channels in anode and cathode bipolar plates (BPP) using experiments and simulations. The operation of a PEMFC involves multiphase flows and multiphysics phenomenon such as reactant concentration and electron exchange between the components. To simulate such a complex system employed industrial codes as well as Lattice Boltzmann Method. Chapter 1 reminds the basic principle of PEM fuel cell and the role of the fluids that flow through BPP channels. We describe a standard version of the latter and the modifications which we consider here. Chapter 2 details a classical model that describes PEM fuel cell operation in steady regime and assumes single phase flows in channels. The underlying equations and their simulation (using COMSOL) are validated by an experiment performed on standard single cell. The simulation evidences channels exhibiting unequal fluid fluxes while the literature points the negative effects of such heterogeneity. Since the used models disregards the possibility of having water in two phases, Chapter 3 describes a LBMcolorgradientcodefortwophaseflows. Wevalidateitagainstanexperimentperformed of a T-junction, a device that has applications beyond fuel cell. Chapter 4, differently, is devoted to steady gas flows in parallel channels that differ from standard fuel cell. An algorithm automatically homogenizes the fluid flow by modifying domain geometry within definite limits. It applies to diverse settings, and manages parallel channels by varying parameters as channel number and widths. However, the distributing channels that span the fluid between channels at BPP inlet and recollect it at outlet also matter. The author thus proposes designs that equalize channel flows. The author creates a new design to study the manufacturing feasibility of BPP. Chapter 5 describes water drop directional spreading on metallic structures decorated with fin shaped channels of parallel axis: experiments reveal almost total spreading only in one direction. Three dimensional LBM and Volume of Fluid simulationsretrievetheobservedtrendandcapturesmallerscaledetailssuggestingsubsetsof the fluid domain where capillary forces or inertia dominate. Most significant results are two phase flows simulations. They describe the different regimes of films or drops at the outlet of a T-junction whose other branches are fed with immiscible wetting and non-wetting fluids. Moreover, they describe how water drops spread on a microscopic relief which results into skewed capillary force.
La présente thèse fait partie d’un projet destiné à améliorer l’efficacité et la stabilité des piles à combustible à membrane à échange de protons. Elle présente des expériences et des simulations visant à faire évoluer en ce sens la géométrie de canaux véhiculant des fluides à travers les plaques bipolaires à l’anode et à la cathode. En effet, l’electricité produite dépend en particulier d’écoulements diphasiques couplés avec divers phénomènes physiques et très impactés par les forces interfaciales sur les surfaces solides qui les limitent. Nous avons utilisé des codes indutriels ainsi que la méthode des réseaux de Boltzmann pour simuler les sytèmes complexes en jeu. Le chapitre 1 rappelle le principe de base des piles à combustible ainsi que le rôle des fluides s’écoulant dans les canaux des plaques bipolaires. En partant de piles standard,nousjetonslesbasesdesmodificationsétudiéesici. Lechapitre2détailleunmodèle classique du fonctionnement des piles à combustible en régime stationnaire, supposant des écoulements monophasiques dans les canaux. Une expérience réalisée sur une unique pile de ce type valide la formulation mathématique du modèle ainsi que l’outil numérique (Comsol). La simulation met en évidence l’hétérogénéité des flux dans les différents canaux, alors qu’on connait l’influence négative de cette hétérogéneité. Cependant le modèle utilisé ne tient pas compte de la possibilité d’avoir de l’eau en phase liquide (et pas uniquement gaseuze) dans les écoulements. Pour y remédier, le chaptitre 3 décrit un code LBM fondé sur le modèle du gradient de couleur pour les écoulements diphasiques. Ce code est validé à partir d’une expérience réalisée sur une jonction en T, un dispositif applicable bien au delà du contextedespilesàcombustible. Lechapitre4restedanslecadred’écoulementsstationnaires gazeux dans des canaux parallèles, mais cependant différents de ceux de piles standard. Un algorithme uniformise automatiquement les écoulements des différents canaux en modifiant leur géométrie, dans certaines limites cependant. Il fait pour cela varier des paramètres comme le nombere de canaux et leurs largeurs. Les dispositifs répartissant ou collectant le fluide entre les différents canaux à l’entrée ou à la sortie influencent aussi le résultat. Nous proposons des géométries uniformisant les écoulements des divers canaux. Hélas le résultat n’est pas satisfaisant en terles de production électrique . Le chapitre 5 décrit les déplacements dirigés et spontanés de gouttes d’eau sur des structures métalliques pourvues de canaux d’axes parallèles, mais dont la forme rappelle des nageoires: une expérience met en évidence une direction nettementprivilégiée pour l’étalement des gouttes. Les simulations tri-dimensionnelles en LBM et par la méthode du volume de fluide corroborent la tendance observée tout en révélant à plus petite échelle des détails qui échappent aux visualisations mises en oeuvre: l’effet des forces capillaires est clairement dominant, et s’exerce dans des régions bien précises du dispositif, alors que dans d’autres régions l’inertie est essentielle aussi. Les simulations d’écoulements diphasiques décrits aux chapitres 3 et 5 représentent les résultats principaux.
Fichier principal
Vignette du fichier
Thesis_Abbaspour_2020.pdf (20.58 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03142675 , version 1 (16-02-2021)

Identifiants

  • HAL Id : tel-03142675 , version 1

Citer

Nima Abbaspour. Numerical and Experimental Approach for Bipolar Plates in PEM Fuel Cells : Novel Designs of Fluid Domain. Other. Université d'Avignon, 2020. English. ⟨NNT : 2020AVIG0507⟩. ⟨tel-03142675⟩
202 Consultations
158 Téléchargements

Partager

Gmail Facebook X LinkedIn More