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Abstract

The increasing utilization of sensor devices in addition to human-given data make it possible to capture real
world systems complexity through rich temporal descriptions. More precisely, the usage of a multitude of data
sources types (devices, humans) allows to monitor an environment by describing the evolution in time of sev-
eral of its dimensions through data streams. One core characteristic of such configurations is heterogeneity that
appears at different levels of the data generation process: data sources, timemodels and datamodels. In such con-
text, one challenging task for monitoring systems is to discover non-trivial temporal knowledge that is directly
actionable and suitable for human interpretation. In this thesis, we firstly propose to use a Temporal Abstraction
(TA) approach to express information given by heterogeneous raw data streams with a unified interval-based
representation, called state streams. A state reports on a high level environment configuration that is of interest
for an application domain. It is defined as a predicate involving data from one or several data sources. Such ap-
proach solves problems introduced by heterogeneity, provides a high level pattern vocabulary and also permits
also to integrate expert(s) knowledge into the discovery process. Second, we introduced the Complex Temporal
Dependencies (CTD) that is a quantitative interval-based pattern model. It is defined similarly to a conjunctive
normal form and allows to express complex temporal relations between states. Contrary to the majority of ex-
isting pattern models, a CTD is evaluated with automatic statistical assessment of streams intersection avoiding
the use of any significance user-given parameter. Third, we proposed CTD-Miner a first efficient CTD mining
framework. CTD-Miner performs an incremental dependency construction. CTD-Miner benefits frompruning
techniques based on a statistical correspondence relationship that aims to accelerate the exploration search space
by reducing redundant information and to provide a more usable result set. Finally, as discovering pairwise sig-
nificant time lag dependencies is a core operation in theCTD-Miner process, we proposed the Interval Time Lag
Discovery (ITLD) algorithm. ITLD is based on a confidence variation heuristic that permits to reduce the com-
plexity of the discovery process from quadratic to linear w.r.t a temporal constraint Δ on time lags. To evaluate
our approach, we implemented a motion simulation tool permitting to build data sets corresponding to a wide
range of configurations. We also gathered data from a real world experiment using video cameras and real time
video processing methods to build a real motion data set. Experiments showed that ITLD provides efficiently
more accurate results in comparisonwith existing approaches. Hence, ITLD enhances significantly the accuracy,
performances and scalability of CTD-Miner. The encouraging results given by CTD-Miner on our real world
motion data set suggests that it is possible to integrate insights given by real time video processing approaches in
a knowledge discovery process opening interesting perspectives for monitoring smart environments.
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Resumé

Les avancées significatives qu’ont connu les technologies de capteurs, leur utilisation croissante ainsi que leur inté-
grationdans les systèmesd’informationpermettentd’obtenir desdescriptions temporelles richesd’environnements
réels. L’information générée par de telles sources de données peut être qualifiée d’hétérogène sur plusieurs plans:
types de mesures physiques, domaines et primitives temporelles, modèles de données etc. Dans ce contexte,
l’application de méthodes de fouille de motifs constitue une opportunité pour la découverte de relations tem-
porelles non-triviales, directement utilisables et facilement interprétables décrivant des phénomènes complexes.
Nous proposons d’utiliser un ensemble d’abstraction temporelles pour construire une représentation unifiée,
sous forme des flux d’intervalles (ou états), de l’information générée par un système hétérogène. Cette approche
permet d’obtenir une description temporelle de l’environnent étudié à travers des attributs (ou états), dits de
haut niveau, pouvant être utilisés dans la construction des motifs temporelles. A partir de cette représentation,
nous nous intéressons à la découverte de dépendances temporelles quantitatives (avec information de délais)
entre plusieurs flux d’intervalles. Nous introduisons lemodèle de dépendances Complex Temporal Dependency
(CTD) défini de manière similaire à une forme normale conjonctive. Ce modèle permets d’exprimer un ensem-
ble riche de relations temporelles complexes. Pour ce modèle de dépendances nous proposons des algorithmes
efficaces de découverte : CTD-Miner et ITLD - Interval Time Lag Discovery. Finalement, nous évaluons les
performances de notre proposition ainsi que la qualité des résultats obtenus à travers des données issues de sim-
ulations ainsi que des données réelles collectées à partir de caméras et d’analyse vidéo.
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”à force de sacrifier l’essentiel pour l’urgence, on finit par oublier l’urgence de l’essentiel.”
EdgardMorin - La Méthode
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1
Introduction

1.1 Heterogeneous data-driven perception of real world

The remarkable advances in sensors, network technologies, and low storage costs had lead to the massive and
rapidly growing use of sensor devices. This is demonstrated by the spectacular growth of sensors and the”smart
object” industry in the last decade. Current numbers and future projections of used sensor devices are estimated
with dozens of billions [113] showing the great interest arousing around sensing technologies. Their dissemina-
tion and democratisation had touched public and private areas at very different scales (e.g., human body, trans-
portation engines, buildings, cities) and concerned a broad range of application areas (e.g., healthcare, manufac-
turing, energy).

This technological backgroundmakes it possible to acquire vast amounts of diverse temporal data that describe
environments through a wide range of attributes. Traditional sensors, more sophisticated devices (e.g., mobile
phones, video cameras), and humans (throughmanual reporting) can be seen as potential data sources that may
provide a data-driven perception of their environment. Moreover, advances in information retrieval techniques
make it possible to obtain high-level information from complex data with improving accuracy that approaches
some specific human cognitive capabilities. For instance, recent computer vision technologies with image and
video processing allow to visually ”sense” an environment. The availability of a wide variety of data sources of-
fers the opportunity to build informationally rich temporal descriptions of environments through a set of data
streams that we label as heterogeneous. Heterogeneity is an opportunity. This claim is based upon a simple
observation: the more qualitatively diverse is a dataset, the more it may include enough information to capture
the potential complexity of temporal phenomena/behaviours occurring in a given environment. To illustrate
this, let us consider the following toy example.

We describe in Figure 1.1.1.a a set of corridors equipped with a sensor system composed of door sensors and
video cameras. ”Real-time” video processing algorithms are applied to perform motion detection, object counts
and object recognition: C1, C3, C4 and C5 runs a motion detection algorithm; C2 provides object recognition;
C6 counts moving objects. A sample of data streams obtained by this sensor configuration is described in Fig-
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(a) Corridors equipped with door
sensors and video cameras

(b) Some attribute data streams gathered from the sensor system
depicted in Fig.3.1.1a

Figure 1.1.1: A sensed environment example and corresponding attribute streams

ure 1.1.1.b. Using motion events permits to describe 3 main qualitative trajectories: ”C1 then C3”, ”C1 then C4”
and ”C1 then C5”. The inclusion of door sensors data permits provides a piece of additional information. Only
trajectories ”C1 then C3” and ”C1 then C4” lead to a door openings:”C1 then C3” then ”DS1 open”, ”C1 then C4”
then ”DS2 open”, ”C1 then C5”. A More insightful description of this environment is possible with the inclusion
of object recognition data from camera 2: ”C1 then C3” then ”pedestrian in C2” then ”DS1 open”, ”C1 then C4”
then ”pedestrian in C2” then ”DS2 open”, ”C1 then ”bicycle in C2” then C5”. The description provided by the latter
three temporal patterns permits to understand that door openings are correlatedwith the object type ”pedestrian”
and that passage through C5 is observed exclusively by a bicycle. This simple example permits to emphasise that
the inclusion of the object recognition information in the description of typical trajectories in this environment
permits to acknowledge different behaviours types. This information type can then be used to predict the out-
come of a trajectory ( ”bicycle in C2” is always followed bymotion inC5) and trigger an action (display a helmet
advertisement in a screen near C5 in 1 second).

We believe that the use of multiple dimensions enhances descriptions expressivity and allows a better under-
standing, interpretability of patterns describing temporal phenomena occurring in a given sensed environment.
The effort of our thesis work leans towards contributing to solving the following general problem:

Problem 1
Howtodiscover non-trivial anddirectly actionable temporal knowledgefroma set of heterogeneous data streams?

Before tackling this challenging problem, let us first discuss the scope and definitions of the research field to
which this dissertation belongs: Data Mining and Knowledge Discovery.

1.2 Data mining and knowledge discovery: an overview

Frawley et al. [51] defined Knowledge Discovery (KD) as follows:

”Thenon-trivial extraction of implicit, previously unknown, andpotentially useful informationfromdata.”

In this perspective, data refers to a set of factsF (e.g a database) and information to a pattern: a statement S in a pre-
defined language L describing relationships among a subset of F, assessed with a certainty measure C. Certainty
is defined as the ability of patterns to fit non-analysed data. A pattern is considered as discovered knowledge if it
is enough certain and interesting according to the user. This definition permits to highlight several characteristics
of aKnowledgeDiscovery process. First, a knowledge discovery is non-trivial in that it has to ”domore than blindly

2
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compute” basic ”statistics” [51] (e.g average) but involves more sophisticated relationships. The second underly-
ing and recurrent characteristic of Knowledge discovery is that of novelty and non-triviality of discovered insights
([40, 41, 51]). Indeed, themain aim of a knowledge discovery task to provide previously unknown insights from
data. While sharing similar ideas, Fayyad et al. [40] provided a slightly different definition:

”The non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable pat-
terns in data”.

In that work, the notion of pattern can also describe a model applicable to a subset of data. The interesting about
this pattern definition is that a KD task is to discover underlying structures that may rule data sets which is a
more complex task than simple descriptions. Hence, this definition is general enough to include a large range of
insight models (e.g., motifs, sequential patterns, clusters, association rules, dependencies). KD is also referred to
as an interactive, and iterative process including numerous steps like understanding application domain and result
interpretation as users’ task or data sampling and data mining as computational tasks. What is suggested here is
that every KD process involves users input at different stages. We emphasise here the distinction made between
Knowledge Discovery and Data Mining. In the point of view of Fayyad et al. [40] data mining is:

”[...] a step in the KDD process consisting of applying data analysis and discovery algorithms that, under
acceptable computational efficiency limitations, produce enumeration of patterns of the data”

Dunham [37] also shared this idea while defining data mining algorithms task as determining ”a model that is
closest to the data”. Another definition given by Hand et al. [75] and Zaki and Meira [166] emphasised the often
large or massive characteristic of data sets to be analysed by a data mining approach in that it creates specific
problems and challenges in comparison with small and human manageable data. However, they did not share
the clear boundaries of data mining in knowledge process as defined by Fayyad et al. [40] because”for example, to
many people data transformation is an intrinsic part of datamining”. For example, Aggarwal [2] defined datamining
as ”[...] the study of collecting, cleaning, processing, analysing, and gaining useful insights from data.”. From our point
of view, a more balanced and complete definition of Knowledge Discovery and Data Mining are the ones given
by Mörchen [105]:

”Data Mining is the process of finding hidden information and/or structure in a data collection. This
includes extraction, selection, preprocessing, and transformation of features describing different aspects of
the data”

”Knowledge Discovery is Data Mining with the goal of finding knowledge, i.e., novel, useful, interesting,
understandable and automatically interpretable patterns.”

The underlying about these definitions is to stress the centrality of the human in the loop characteristic of Knowl-
edge Discovery. Indeed, KD assumes the output to be patterns or structures that are novel, useful, interesting
and understandable. All these characteristic involve somewhat prior human knowledge, intuition and subjectiv-
ity. Hence, data mining appears to be the tool and knowledge discovery the aim.

Knowledgediscovery anddatamining are intrinsically related to thedatabase community. Hence, this research
area was often referred to as Knowledge Discovery in Databases (e.g. [40, 41, 51]). However, while made from a
database community perspective (expect [105]), thementioned definitionsmay apply to amore general context
that is regardless of storage technique. For example, with the Internet of Things or monitoring applications, data
amounts to be processed can be large but, in some cases, considered as volatile: the information can be processed
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but not necessarily kept in (de) centralised storage facilities. Keeping that in mind we propose the following
definitions for the rest of this thesis:

”Data Mining is the process of finding real-world hidden information or structure from data-driven ob-
servations.”

”Knowledge Discovery is Data Mining with the goal of finding knowledge, i.e., novel, useful, interesting,
understandable and automatically interpretable insights.”

This research area gained interest as information systems, and storage capabilities made it possible to obtain
large amounts of data that can not be efficiently ingested by human analysts. Indeed, data overload (from a
database perspective [40]) or complexity of data structures (e.g. graphs, spatio-temporal data) motivate the
need to design efficient approaches that may assist human users to extract knowledge, or useful insights, from
such amounts of data. Without claiming exhaustivity, we provide hereafter some examples of application do-
mains.

Experimental Sciences. An example of data mining application in scientific research is that of bio-informatics
where data mining is involved in various experimental studies [87]. One of the most famous application can be
that of genetics studies [153]. Data mining is used extensively is astronomy that is known for its large data sets
[21] [144]. Another example is that ofmedical researchwhere, for example, the aim is todiscovernewassociation
rules between symptoms, diseases and treatments [164] [147]. Data mining has also a growing interest in social
sciences [64] [70], history [146] economics [38] and more generally in humanities.

Healthcare andhospitalmanagement. As highlighted byKoh andTan [86], datamining can be used in health-
caremanagement to designmore appropriate and efficient interventions andmedical protocols and reduce num-
bers of hospital admissions.

Telecommunication. The huge amounts of data generated by telecommunications technologies (e.g. network
events, phone calls logs) were also of interest for data mining approaches in the aim of detecting frauds or iden-
tifying/predicting network faults [157]. Telecommunication data has also been motivational for some notable
data mining contributions as the well-known episode mining of Mannila and Toivonen [101].

Retail andmarketing. One famous example of dataminingusage in retail andmarketing is thewell-knowmarket
basket problem introduced by Agrawal and Srikant [4]. Data mining techniques are also used for recommender
systems [130] (e.g. e-commerce).

Banking andFinance. One common application of datamining techniques in the banking sector is that of fraud
detection [126] that is devised to detect fraudulent behaviours in financial transactions.

Manufacturing and industry. The increasing use of sensors technologies in manufacturing and the rise of the
so-called ”Industry 4.0”, large amounts of data can be generated by industrial processes. In this context, data
mining techniques can be used for tasks as predictive maintenance or machines health predictions [92].

InternetofThings(IoT).Theusageof connecteddevices grows at a fast pace [114]making it possible to generate
huge amounts of data that can be processed by data mining techniques to extract hidden information, making
predictions or identifying recent trends [103]. Such context is relevant for awide variety of context. One example
is ”smart cities” [115] with application in traffic prediction or grid management. Another relevant context is
”smart homes” where data mining was applied, for example, to discover human activities in residences for health
care applications [129] [163].
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To conclude this section, we emphasise thatmethods and techniques included in theDataMining andKnowl-
edge Discovery scope are relevant in any context where the need to generate value from large amounts of data is
necessary. In aworldwhere sensing technologies are democratised, these approaches can be used to extract novel
knowledge and descriptions, permitting a better understanding of characteristics and phenomena that rules these
environments. In this thesis, we are interested in temporal data that, thanks to the temporal dimensions, permits
to describe attributes evolution in time.

1.3 The high-level interval-based state representation approach

Temporal data describe the state of attributes of a given subject or environment and situate this information in
the time dimension. As we will discuss in Chapter 2, data describing temporal information are modelled w.r.t
several characteristics of the data generation process that defines their semantics and interpretation.

Time domains. Generally speaking, data generation processes use a discrete representation of
time: no realisable data source can claim infinite temporal precision. Discrete time domains are
principally characterised by the adoption of a time granularity defining the level of temporal preci-
sion. The choice of temporal granularities depends on several parameters among which semantics
of temporal facts or hardware capabilities.

Temporal primitives. Temporal facts can use a duration concept. Time point data permits to pro-
vide a snapshot of an attribute at a given point in time (e.g. the train arrived at 8:00 p.m.). On
the other hand, time intervals express states lasting in time (e.g. temperature was above 20 degrees
between 10:00 a.m. and 1:00 p.m.).

Datamodels. Following temporal information semantics, data can use a wide variety of data mod-
els. For example, numerical values are used for time series (e.g. temperature sensor), symbolic
values for telecommunication alarms (e.g. connection events), item sets for market baskets, pixel
matrices for videos and images (e.g. outdoor cameras).

Datasets temporal formats. We distinguish in this work between twomain categories of temporal
datasets: subject-centred datasets associate each temporal fact to a subject (e.g client 1 purchased
item a in February 12th) and attribute-centreddatasets that discribes temporal factswithout assigning
them to any subject (e.g item a was bought in February 12th).

In aheterogeneousdata source system, several datamodelswith various characteristicsmay co-exist if different
attributes are generated by different types of data sources or express semantically different concepts. In order to
be able to extract temporal knowledge from data gathered from heterogeneous data sources sensing a particular
environment, the first question one may pose is:

Problem 2
How to take into account information given by heterogeneous data sources in the same knowledge dis-
covery process?

We think that two main directions can be investigated to solve this problem. The first is to use or design efficient
data mining techniques permitting to handle different data models. As we will discuss in Chapter 4, the majority
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of temporal pattern mining algorithms assume homogeneity in data models and their temporal aspects. The
approach we adopt in this thesis is that of representing information given by heterogeneous sources with a single
data model. This approach is called Temporal Abstraction and was defined by Moskovitch and Shahar [108] as:

”Temporal abstraction (TA) is the segmentation of a series of raw time-stamped, multivariate data into a
symbolic time interval series representation, often at a higher level of abstraction [...] suitable for human
inspection or for data mining.”

We use TA to represent information as a set of symbolic high-level interval-based data streams. We will discuss
briefly in Chapter 3 how the information provided by heterogeneous data sources systems may be represented
as a set of state streams. A state corresponds to a data configuration of interest for an application domain. It
is defined as a predicate on data produced by a data source system: it can use data from one or multiple data
sources. A state stream is an interval-based sequence composed of non-overlapping intervals [ti, ti+1) where a
state is said to be valid (i.e its corresponding predicate is verified during [ti, ti+1). The main difficulty of the TA
approach is the definition of states. This task can be accomplished using common sense knowledge (e.g a video-
monitored area is in state In Motion between events motion begin and motion end), domain expert knowledge
(e.g a patient is in state Sick if its corporal temperature is above 37°C degrees). Also, users may use data model
specific discretisation approaches to automatise the definition of states predicates (e.g. time series discretisation,
clustering). We believe that this approach may permit to obtain insightful temporal knowledge from mainly two
reasons:

• The set of defined states provides a high-level vocabulary for temporal pattern languages to be used in a
knowledge discovery process. Knowledge expressed with such high-level vocabulary is more easily inter-
pretable than with raw labels insights.

• The set of defined states can use knowledge from multiple domains. Therefore, the state stream represen-
tation of raw information can include various interpretations or perceptions of the same set of temporal
facts. This can constitute an opportunity to discover multi-domain knowledge.

In this work, we analyse different aspects of this datamodel unification approach and provide a general frame-
work without investigating in detail its practical and implementation aspects. We will, indeed, focus on the dis-
covery of temporal knowledge between interval-based state streams.

1.4 Temporal pattern languages and assessment

Theproblem ofmining temporal knowledge from interval-based state streams do not differ from any datamining
task. Mannila and Toivonen [102] provides a general problem formalization of data mining from an inductive
database perspective:

Problem 3 (Patternmining [101])
Let r be a dataset,L a language for expressing properties of the data and a constraint C. The task of data
mining is to find a theory T such that:

T (L, r, C) = (φ ∈ L | C(r, φ) is true)

Datamining in this definition consists of exploring a search space composed of all sentences of a languageL to
find elements φ ∈ L that fulfils a given constraint in a dataset r. The data mining algorithm computes the theory
T .
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In our context, r is a set of interval-based state streams r = {A0,A1, ...An}. In order to extract temporal
knowledge from r, we need to define a temporal pattern languageL, a set of constraints C defining the interest of
an element in L and design algorithm devised to compute the theory T . Therefore, to define our problem, we
need to respond to the following two questions.

A.What temporal knowledge do wewant to extract?

In this dissertation,weaim tofind”interesting” temporal relationships, or inother terms, ”interesting” co-occurrences
and successions of temporal facts. This task is known as temporal patternmining that wewill survey inChapter 4.
We distinguish contributions in this research field according to two main criteria that permit to guide the choice
of a consistent pattern language: time primitives and qualitative/quantitative temporal information.

Two main temporal primitives are used for temporal pattern mining: temporal information are either mod-
elled as time pointsor time intervals. Time points is the timeprimitive that received the largest research effort. Three
temporal qualitative temporal relationships exists between time point data: before, after, co-occurrence. These tem-
poral relations define relatively simple pattern language that consists mostly of event sequence description (e.g.
A after B after C ...). The co-occurrence relationship can be expressed using an event set sequence (e.g. A after
{B,C} after D). As argued by Allen [11], time intervals allow to express more complex relationships. The tem-
poral algebra that was formalised by the former authors is composed of 13 pairwise qualitative relationships that
make the definition of non-ambiguous and clear pattern languagesmore difficult and harder to compute. Indeed,
as reported in [82], the majority of interval-based pattern languages suffers from expressivity problems (e.g. the
same pattern may describe different temporal configurations).

Temporal patterns can also use quantitative information about time lags between successive temporal facts.
The very few contributions that include temporal information into pattern languages represents time lags as
ranges (e.g. A occurs 1 to 3 time units after B) or as typical time lags (A occurs 2 time units after B). The quan-
titative information can provide very insightful information as can be demonstrated by the following example
where specifics actions can be triggered according to the time lag characterisation of quantitatively different and
qualitatively equivalent behaviours.

Example 1 (Energy efficient advertising billboards)
Say that an advertising agency possesses a video billboard on a road where pedestrians, bicycles and cars move
along. To reduce the energy consumption of the billboard, the agency equips the road with four motion sensors
(two at each side of the road) and uses qualitative pattern detection to turn on or off sides of the billboard: if
an object moves toward the billboard, the later is turned on. The agency stores information given by motion
sensors and runs a sequential pattern mining algorithm on the gathered data. In this case, the extraction of
qualitative patterns seems to be useless. Qualitative successions of events are already known (and used) by
the domain expert. On the other hand, quantitative patterns permit to highlight and characterise actor types
based on time lags: short time lags for cars, medium for bicycles and large for pedestrians. This quantitative
characterisation of time lags is a novel insight that can be used by the advertising agency to personalise ads
displayed in the billboard screens w.r.t actors types based on their speed (e.g. display discounts on wheels for
cars, helmets ads for bicycles and nearby restaurants menus for pedestrians).

Quantitative information with interval-based pattern languages also permits to overcome some expressivity
problemsposedbypurely qualitative approaches. To the best of our knowledge, only two existent approaches can
be applied to interval-based patterns from interval streams [78, 127]. These two works represent the temporal
information between successive intervals as a pair (α, β). A relationship between intervals A and B with a (α, β)
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time lag denotes that the first endpoint of B often follows the first endpoint ofA after α time units and the second
endpoint of B often follows the second endpoint ofA after β time units. We use this temporal informationmodel
in this work. However, Hassani et al. [78] and Plantevit et al. [127] adopted different interestingnessmeasures and
different constraints. This leads to the second main question.

B.What is an interesting temporal relationship?

Depending on the type of data sets (i.e. sensory-like single sequences or database of short sequences), different
constraints and assessment approaches can be defined for temporal patterns. Numerous types of interestingness
criteria can be considered in a pattern mining approach [60]. In this section, we will focus on two main aspects
permitting to initially define the general problem of this thesis: an interestingness measure and an assessment
approach.

To the best of our knowledge, the majority of existing temporal pattern mining contributions considered oc-
currence counting as interestingnessmeasures. Without going into details, a pattern ismore interesting ifmore of
its occurrences appear in a data set. Depending on the structure of data set (e.g database of sequences, streams),
it can be calculated as an absolute number (i.e pattern p appears n times), as an absolute frequency (e.g pattern
p appears in 30% of the transactions) or as relative frequency, or confidence (e.g item B appear after 20% of
occurrences ofA). Compared with other assessment approaches, using confidence permits to havemore predic-
tive power as it define interest w.r.t the specific items. For instance, a pattern A before B may have an absolute
frequency of 50% but a confidence of 100%: A before B appear in 50% of the analysed sample andA is always fol-
lowed by B. Occurrence counting interestingness measures were largely used for time point and time interval data
(e.g [78]). The inherent duration concept of intervals allows to consider a different measure based on duration
of co-occurrence or intervals intersection as initially proposed by Plantevit et al. [127]. They proposed to model
a pairwise temporal relationship between statesA andB as a dependencyA→ B denoting that valid stateA often
occur with state valid B in terms of duration. This dependency is assessed via an intersection-based confidence
value:

conf(A→ B) =
len(A ∩ B)

len(A)

where len(A ∩ B) is the cumulative intervals’ duration of the temporal intersection between intervals of A and
B. In order obtain time lagged dependencies, the conclusion streams, here B, can be shifted with an (α, β)-
transformation. The resulting stream, notedB(α,β) is composed by intervals such that∀[ti, ti+1) ∈ B, ∃[tj, tj+1) ∈
B(α,β) | tj = ti − α and tj+1 = ti+1 − β. The confidence of the time lagged dependency A → B(α,β) is similarly
obtained via:

conf(A→ B(α,β)) =
len(A ∩ B(α,β))

len(A)

The intersection-based interestingnessmeasure allows in some cases, particularlywith dense sensory-like data, to
provide a better assessment of temporal relationships. We will provide several arguments in favour of this claim
in Chapter 3.

The second main criteria related to interestingness we discuss in this section is that of assessment. Generally
speaking, existing temporal pattern mining algorithms use user-defined thresholds for interestingness measures.
For instance, withoccurrence countingmeasures, existing algorithmsuseminimumsupport thresholds: a pattern
is interesting if its support/frequency/confidence exceeds theminimum support. While this approach offers the
practical advantage of permitting to users to define levels of interestingness according to their à priori knowledge,
thresholds can be challenging to define mainly when no prior knowledge is available before the mining process
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or when discovery algorithmmust be adapted automatically to changing contexts (e.g. fluctuating data density).
In [127], authors proposed to assess the intersection-based confidence measure w.r.t to a Pearson χ2 test of

independence. Thenull hypothesis of this test states that the validity duration ofA andB are statistically indepen-
dent. This test permits to automatically set interestingness thresholds for the mining process that is computed
without additional cost for each couple of interval-based streams.

The third element of a knowledge discovery process is that of themining algorithm. It is devised to enumerate
all patterns satisfying the problem constraints in a dataset. In [127], pairwise intersection based dependencies
are computed by the TEDDY algorithm devised to explore the quadratic search space of (α, β) time lags where α
and β values are included in a user-give temporal rangeΔ = [min,max]. It uses a level-wise breadth-first strategy
that starts from the most general time lag (min,max) down to singletons of the form (α, α). To accelerate the
mining process, it uses pruning criteria to avoid computing and assessing unpromising time lag candidates and
refine them while controlling the loss in the before mentioned confidence value.

Theobjectiveof this thesis is to extend thepairwise intersection-baseddependencymodel proposedbyPlante-
vit et al. [127] in the aim of expressing multi-state dependencies. More precisely, we aim to build an expressive
pattern language based on intersection-based dependencies, assessed automatically via a statistical test of inde-
pendence, that is general enough to express complex temporal phenomena. The second objective of this work is
to design efficient algorithms permitting to extract such patterns from a set of interval-based state streams.

1.5 Contributions

This dissertation tackles the problemof discovering quantitative temporal knowledge from a set of interval-based
state streams. In the following chapters, we will propose a new quantitative multi-state dependency model and
design algorithms for its efficient discovery. We can summarise the contributions presented in this thesis with
the following three main points.

TheComplex Temporal Dependencymodel (CTD) . We propose a patternmodel and language permitting to
express complex temporal relationships in a normal conjunctive form-like manner. In addition to the inference
(→) that defines the confidence relationship parameters, CTD includes conjunctive (∧) and disjunctive (∨)
operators allowing to express respectively conditional dependencies and reduce pattern redundancy. Complex
temporal dependencies canbeused tobuild conditional temporal state graphswhere each transition is temporally
quantified (information about time lag is provided) and have a confidence measure that takes into account prior
state validity information.

DiscoveringConditional temporal relationships. We design an algorithm, namedCTD-Miner, devised to ef-
ficiently extract the subset of statistically significantComplexTemporalDependencies that are necessary to build
a conditional temporal model. This algorithm integrates pruning criteria based on both Apriori-like assumption
and a closed-like property ofComplexTemporalDependencies. These are used to reduce the computational cost
of the exploration of the CTDs search space as well as reducing information redundancies in the result set.

Mining specific time lags between pairs of interval-based streams. One crucial step of CTD-Miner is that
of discovering pairwise temporal dependencies. This step is the core operation in our mining process as its effi-
ciency (computational time cost, precision of results) determines the performance of CTD-Miner. As the avail-
able algorithm, named TEDDY, is quadratic (at the worst case) w.r.t the temporal constraint Δ, we propose an
alternative approach, named Interval Time Lag Discovery, that is linear w.r.t Δ. It uses an exploration based on the
statistical assessment of minimal confidence variations heuristic, i.e. confidence gains and losses while adding or
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subtracting a unit from a time lag value. The evaluation of ITLD compared to the existing approaches, intersec-
tion basedTEDDY and occurrence counting-based PIVOTMiner [78], suggests that ITLDpermits to efficiently
more precise results. Hence, it permits to enhance performances of CTD-Miner.

1.6 Thesis outline

The reminder of this thesis is structured as follows. Chapter 2 discusses different aspects of temporal data mod-
elling. Chapter 3 motivates the temporal abstraction approach and the choice of the interval-based model as a
unique high-level symbolic representation of temporal information. Chapter 4 presents the state of the art of tem-
poral pattern discovery and categorizes available patterns languages and mining approaches w.r.t time primitives
and temporal information nature. In Chapter 5, we introduce andmotivate the Complex Temporal Dependency
model. We also show that CTDs can be used to build conditional models of temporal phenomena in a state
stream data set. Chapter 6 presents theCTD-Miner algorithm and its pruning criteria. Chapter 7 proposes ITLD
as a method for time lag discovery between interval-based streams. In Chapter 8, we evaluate the approach pre-
sented in this dissertation using synthetic datasets as well as real data gathered from an experiment usingmotion
detection fromoutdoor cameras. Finally, Chapter 9 concludes thiswork anddiscusses future directions and open
questions.
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Part I

TEMPORALDATAAND
INTERVAL-BASEDABSTRACTION
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2
Modeling Temporal Data
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Temporal data differs from static data by its temporal dimension. In addition to providing information about a
subject/attribute, temporal data situate this piece of information in time. Indeed, temporality is core information
when it comes to describing a dynamic world where features and behaviours are permanently changing in time.
In this work, we are interested in discovering knowledge depicting quantitatively temporal phenomena from a set
of data streams. In order to have a general understanding of our problematic, we first discuss in this chapter how
real-world temporal phenomena can be modelled through a brief survey on several aspects of temporal data.

2.1 Time domains

The first question one may pose when modelling temporal data concerns the time domain or the timeline repre-
sentation used to express temporal data. Three main time domain types can be distinguished: ordinal,continuous
and discrete .

The ordinal time domaindoes not properly contain elements but is defined as a relative order between temporal
assertions. This time domain is used to express relative temporal relations between facts without any concerns
about situating themon a quantitative timeline [7]. Thismodel is oftenused for datamining tasks (e.g. sequential
pattern mining) when only the total order is of interest to the application domain. For instance, a customer
purchases in a market can be expressed as a sequence describing the ordering of bought products baskets:

⟨{milk, diapers}, {tea, bread,milk}, ...., {coffee, diapers}⟩

In this example, we can notice that no information is given about the duration between the customer purchases
nor their dates (i.e. timestamps).

The discrete and continuous time domains can be characterized by their ability to situate pieces of data in a time-
line, or the temporal dimension. They are constituted by an infinite set of totally ordered elements t, called time
anchors, that are to be interpreted as ”landmarks” in the temporal dimension. One common analogy permitting
to illustrate the significant difference between these time domains is that of real and natural number. On the one
hand, the discrete time domain can be mapped into the set of integers: any element t of a discrete time domain
have a unique direct predecessor and unique direct successor. On the other hand, the continuous time domain is
to be related to the set of real numbers: the gap between twodistinct elements contains an infinite set of elements.

In a continuous time domain, the basic temporal elements are absolute points in time that can be associated
with a real number. It can be straightforwardly defined as follows.

Definition 1
The continuous time domain Tcont is an infinite time line representing the time dimension defined as a
infinite sequence of totally ordered time anchors:

Tcont = {ti}

where i ∈ N, ti < ti+1 and ∀i, ∃t, ti < t < ti+1.

The inherent assumption made by this time domain is that of infinite precision of the temporal information
[68]. This domain provides a handy abstraction tool to deal with temporal data and is the most used temporal
domain in data mining and machine learning fields. Frank [50] also argues that the continuous time domain is
”preferred in [...] all sciences that build models similar to physics, using differential equations, etc”. However, from a
data-driven practical point of view, the straightforward usage of such the time domainmay suffer from limitations
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(a) Temperature evolution corresponding to a
real phenomenon.

(b) Data produced by a temperature sensor as a
time series.

Figure 2.1.1: evolution of temperature and its time series representation.

when it comes to reflecting real-world data generation processes (hardware specifications), real-time processes
or temporality in natural language [136].

Let us consider the example of time series. Figure 2.1.1 provides an example of a real-world continuous tem-
perature evolution over time and its time series description that is given by a sensor with a 1Hz sample rate (one
given measure per second). Let us assume the continuous time domain and that a user wants temperature infor-
mation at the exact time point t = 1.5. The naive answer to this query is unknown: the sensor provided no data
value for this exact ”point” in time. However, the practical usage of such time series to describe the physical mea-
sure of temperature relies on the assumption of its ”smooth” evolution: a measure given at t is considered to be
valid, or a good enough approximation of the real value for any time point between t and t+1. Segev and Shoshani
[137] had a similar intuition while defining the ”continuous” time sequence type that involves, at the semantics
level, an interpolation function that assigns data to undefined data points in the continuous domain. This can
also be remarked from a natural language perceptive [140]. For example, the assertion the train arrived at 9 o’clock
does not usually refer to the exact absolute point in time 9 o’clock but to a portion of time that is small enough
to provide sufficient precision about this event (e.g. 1 minute for train arrivals). What is to emphasize here is
that the representation of temporal data must include abstract notions (e.g. precision, validity, interpolation) to
properly reflect the temporal approximation and assumptions that are inherent to the discrete data generation
process. Indeed, there is no realizable data source (humans nor devices) that can produce data fitting the contin-
uous time domain. Such data source should be capable of producing an infinity of values for any portion of time,
which requires an infinite storage capability. Snodgrass [140] exposed several practical arguments in that same
direction including imprecision of time measurement (an event can at best be situated within a small duration)
and necessity [...] to have some discrete encoding for time for any implementation. Goralwalla et al. [68] tackled
the notion of determinacy to address the uncertainty problem of temporal information at the conceptual level. A
temporal assertion is determinate, i.e. it is valid during an entire given duration, or indeterminate, i.e. it is verified
during at least a portion of the given duration. Another simplification is the use of an ε uncertainty amount for
each data value as stated by Frank [50] but may lead to contradictory temporal relations (total order transitivity
is not guaranteed) which makes it complicated and non-practical to express temporal relations and order.

The discrete time domain Tdisc is principally characterized by a temporal granularity corresponding to a non-
null duration defining the degree of precision, or resolution level, of the temporal dimension [67]. Several def-
initions and interpretations were given to this amount of time. Ariav [15] named it chronon and provided an
application-oriented definition: ”the shortestmeaningful unit of time in the specific application”. Amore abstract and
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philosophical definition was given by Allen and Hayes [13] for whom a moment indicates a non-decomposable
period (i.e amount of time) during which ”nothing could change [...]”. In the sense of Allen andHayes [13], a natu-
ral example of amoment is ”the time taken for a flash of lightning [...] where the world appears to be frozen”. The term
time granularity, in the sense used here, can be also referred to as bottom granularity [50] to differentiate it from
useful temporal mappings permitting to simplify temporal assertion (e.g for data summarization or visualization
[7]). In this work, we will refer to a temporal granularity as defined in the following.

Definition 2 (Temporal Granularity (TG))
A temporal granularity,TG, is a positive non-zero value inR∗+ corresponding to a fixed amount of time.
It refers to the minimum validity duration that a temporal fact can have within a temporal descriptionD.

Time granularities define the elements of a discrete time domain: indivisible time intervals. They are used to
structure the temporal dimension, or the timeline, into chunks of equal length. Follows the definition of a time
unit.

Definition 3 (Time unit (TU))
Let TG be the temporal granularity. The time unit TU defined by TG is the smallest time interval, of
duration TG, that can be used to situate data in time.

For Goralwalla et al. [68], a time granularity determinates a mapping G between an element of the discrete
time domain Tdisc and its interval counterpart in the continuous time domain Tcont. This mapping is defined as
follows:

G : tdisc → [tcont, tcont + TG)

where tdisc ∈ Tdisc, tcont ∈ Tcont and tcont and tdisc are considered to be equal in R. Thus, every temporal fact
expressed with a discrete time domain corresponds to a time interval in the continuous time domain. Notice
that intervals used in the before mentioned mapping are closed at their left endpoint and open at their right
endpoint to avoid paradoxical information. For example, say that an attribute A have different values in intervals
I1 = [a, b] (value v1) and I2 = [b, c] (value v2). This configuration includes a paradoxical information: at the
absolute time point b the attribute A has two values v1 and v2. In the rest of this document, we will assume that
temporal assertions are always temporally determinate in the sense of [68]. Hence, a piece of data is considered to
be valid at least during a duration corresponding to TG. Follows the formal definition of a discrete time domain
we use in this thesis.

Definition 4 (Discrete time domain)
A discrete time domain Tdisc of temporal granularityTG is a semi-infinite set of totally ordered time units:

Tdisc =< ti >

where i ∈ N, ti < ti+1 and ∄j, ti < tj < ti+1. Each time unit ti in Tdisc is defined as:

ti = [tci , t
c
i + TG)

where tci ∈ R such that tci = i ∗ TG. t0 = [0, 0 + TG) is the origin of Tdisc.

This definition, based onmapping proposed in [68], support only a linear complete order between time units
composing the discrete time domain. Other temporal ordering can also be used for other purposes than data
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representation as branching time (e.g. for model checking) or circular view [42] but are out of the scope of this
work.

A piece of temporal information is situated in the discrete time domain by a discrete temporal anchor.

Definition 5 (Discrete Temporal Anchor)
Let Tdisc =< ti > a discrete time domain of temporal granularity TG. A temporal anchor t in Tdisc is a
sequence of contiguous time units in Tdisc:

t =< tj, tj+1, tj+2... >

The size of a temporal anchor, noted |t|, is the number of its time units.

Theuse of discrete temporal anchors permits to situate pieces of data, or temporal data values, in the discrete time
domain. Segev and Shoshani [137] gave a general definition of temporal data values.

Definition 6 (Temporal Data value [137])
Let Tdisc a discrete time domain. A data value over Tdisc is a triplet (a, v, t) where a is an attribute, v is a
value and t a temporal anchor.

An example of data values can be extracted from the example depicted in Figure 2.1.1b: (Temperature, 20, <
1 >) that can be interpreted as Temperature has a value of 20 at time anchor 1. It is to notice that this definition
does not include a specified data model for values to include all possible data structures. Other works, especially
in the database community, considers that a data value, or a temporal database, can be bi-temporal if it supports
valid time (time anchor when a fact is valid) and transaction time (time anchor when a fact is recorded) [140].
This dimension (transaction time) will not be treated in this work, and we focus on valid times.

2.2 Temporal primitives

Any representation of temporal data assumes an underlying temporal semantic that guides the choice of tem-
poral primitives. Indeed, information that is perceived as instantaneous at a specific time granularity or lasting
in time supports different primitives: respectively, time points and intervals. The usage of a temporal primitive
defines the set of possible temporal relations that can stand between data values. As a consequence, any temporal
data mining problem is, partially, defined w.r.t to temporal primitives used in its input. Hereafter, we introduce
the most commonly used temporal primitives: time points and intervals. For each, we will discuss its temporal
semantics, provide a definition and list the possible pairwise temporal relations.

2.2.1 Point-based temporal data

In a discrete timemodel, point-based data refer to situations or facts that are perceived as instantaneous, i.e. with
a ”zero duration”. The following are some examples.

1. The train arrived at the station at 10:32 am

2. Temperature in the hall was 20 degrees at 12:31:20 pm

3. Last Monday’s weather was ”sunny.”
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Figure 2.2.1: Relations between two point-based data values A and B.

These examples show that the notion of ”instantaneity” depends on the semantics of an application domain or
data source’s hardware capabilities. It is, indeed, strongly related to used temporal granularity. Point-based data
can be thought to as ”snapshots” of an attribute at a certain degree of precision. It does not involve any duration
concept but describes the state of a data source or an attribute at a temporal anchor of size 1, i.e. composed by a
single time unit.

Definition 7 (Point-based data value)
Let T a discrete time domain. A point-based data value over T is defined as follows:

dpoint = (a, v, t)

where a is an attribute, v a value and t a temporal anchor such that |t| = 1.

Following the discussion of Section 2.1, a point-based data value is said to be valid during its temporal anchor.
Point-based data support 3 basic binary temporal operators that are defined w.r.t temporal total order: before,

after and co-occurrence . Let A = (aA, vA, tA) and B = (aB, vB, tB) two point based data values. The possible
qualitative temporal operators between A and B are:

• A occurs before B if tA < tB

• A occurs after B, if tA > tB

• A co-occurs with B if tA = tB

In some contributions, these basic operators can use quantitative informations,A is before n time units before
B, or numerical thresholds (cf Chapter 4). An example can be, A is at most 3 time units before B. This type of
temporal relations canbeencountered in temporal datamining approachesusing temporal constraints asmaximal
or minimal gaps. Another form of quantitative threshold informs that a relation stands within the duration of a
time window [101]. The basic temporal operators can also be associated with qualitative time lag semantics as
much beforeor closely after as stated byDubois andPrade [36]while proposing a fuzzy temporal reasoning. Notice
that the latter operators provide additional information about time lags between data values.

Many extensively used temporal datamodels consider the point-based primitive amongwhich time series and
event sequences. Time series can be considered as a sequence of anchored numerical values, often provided
periodically with a period p (e.g. a temperature sensor). Usually, this period p is considered to be the temporal
granularity of the time series. An event (numerical or symbolic) sequence is a non-periodic set of point-based
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data values. This temporal primitive is also the most commonly used in many temporal data mining algorithms
(cf Chapter 4).

2.2.2 Interval-based data

Interval-based data notify on temporal information that involves a duration concept explicitly. They are often
used to express the state of an attribute, an item or an environment. The following are some examples.

1. A door was open between 12:30:10 and 12:30:20

2. Temperature was high for 10 hours starting from 8:00 am

3. The number of employees in the office building was 100 between 8 am and 11 pm.

An interval-based data value associates an attribute value to a time range. Even in a discrete time domain, this
representation includes somewhat a continuous aspect suggested by its semantics. For example, in the second
example mentioned higher, the statement high temperature is considered as valid at any absolute time point rang-
ing between time anchor 8:00 am to 8:00 am +10 hours. Therefore, an interval of time can be considered as a
continuous time range whose endpoints are defined in a discrete time domain. Following the general definition
2.1 of a temporal data value, one can define, straightforwardly, an interval-based data value as a temporal data
value whose temporal anchor have a size greater or equal to 1 time unit corresponding to the property duration.
However, this temporal representation with simple temporal anchors (i.e. a set of contiguous time units), is not
practical in terms of interpretation and storage and does not permit to express explicitly the continuous aspect of
interval-based data. Indeed, interval-based data anchors are often represented as a pair of point-based endpoints.
Follows the property of equivalence between a temporal anchor (set of time units) and an anchored interval.

Property 1 (Anchored Interval)
Let t =< t1, t2, ..., tn > be a temporal anchor over a discrete time domain T where ∀ti ∈ t, ti = [tbi , tei ).
An anchored interval tint equivalent to t in T is the union of time units of t:

t⇔ tint = [tb0, t
e
n)

The duration of tint, noted |tint|, equals to |t| ∗ TG

It is to notice that intervals anchors are right-closed to avoid information paradoxes. Indeed, we consider
that an absolute point in time cannot support two different values for the same attribute. This representation is
often practical as it permits to ensure a validity continuity and is sufficient to the present work. However, this
representation is not a consensus. While defining its interval logic, Allen and Hayes [13] argue that endpoints
do not belong to intervals which comes, somewhat, to consider open intervals. An interval in Allen’ logic is
not a set of points defined over a continuous time domain. Time points, in their perspective, are not temporal
entitieswhere a fact canor cannot be true but defines transition times between intervals. However, an interval can
include a time point. In their axiomatization of temporal logic, they use the MEET relation over time moments:
two intervals a and bmeeting at a time point t infer that there is no possible interval meeting both a and b. In this
work, we refer to interval-based data values as defined hereafter.
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Figure 2.2.2: Graphical representation of the 13 intervals binary relations defined by Allen [10]. Each row
depicts a relation and its inverse. ”Equals” is its own inverse.

Definition 8 (Interval-based data value)
Let T be a discrete time domain of time granularity TG. A interval-based data value over T is defined as
follows:

dinterval = (a, v, t)

where a is an attribute, v a value and t a interval anchor such that |t| = n ∗ TG with n ∈ N∗. t is noted
[tb, te) for readability. The duration of dinterval is |t|. v is said to be valid during interval [tb, te).

Time intervals permits to expressmore complex and richer temporal relations than point-based temporal data.
For example, Mörchen [105] argues that interval-based temporal reasoning, in contrast with point-based data,
can express the coincidence concept i.e when two facts are partially valid together. As a consequence, interval-
based data can support more complex binary temporal relations. The most known interval-based temporal logic
wasproposedbyAllen andHayes [13] [9] [10] [11] [12]whodefined the13possiblequalitativebinary relations:
before, meets, overlaps, during, finishes, after, met by, overlapped by, started by, contains, finished by and equals. These
relations are depicted in Figure 2.2.2. Authors also proposed transitivity tables permitting to infer Allen’ relations
between intervals from previously known relations. For instance, if an interval i is before j and k is during j, then i
is before k.

Allen’ algebra was extended by Freksa [52] for semi-intervals reasoning. A semi-interval is defined as an in-
terval endpoint. Other extensions were also proposed to include fuzzy reasoning, e.g. [18, 36], and the relation
between uncertain intervals, i.e. where endpoints are modelled as ranges, e.g. [54, 61, 111, 116, 133, 135]. The
latter type of temporal reasoning is very relevant in contexts such as historical data. We will not developmore on
this aspect as it is out of the scope of this work.

2.3 Data models

In addition to time domains and temporal primitives, temporal data can use a wide variety of data models. With-
out claiming exhaustivity, this section aims to provide an overview of the diversity of temporal data models that
can be encountered in the literature and industrial applications. Figure 2.3.1 illustrate one possible categorization
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of temporal data and provides several examples. One first common categorization of data models is structural.
Generally, we can distinguish 3 data models types: Structured, Semi-structured and Unstructured data [55].

As stated by Gandomi and Haider [55] Structured data usually refers to tabular data found in spreadsheets or
relational databases. More generally, one can consider that data is structured if they are defined over a known and
unambiguous data model. This model can consist of a database schema for object/relational databases, nodes
and edges attributes for graph databases or simply data type (e.g. float, integer) of time series values. In other
words, the common characteristic of structured data is that records, or observations, can be straightforwardly
interpreted, processed and queried without any additional computation or ontology. Structured data can use
several data models as simple numeric or symbolic values, symbolic item sets or more complex structures such
as graphs and spatial data. Any of these data models can support a temporal dimension to build sequences.

Unstructured data are all data that do not follow any structuralmodel. Data types that stand in this category are
often referred to as raw data that needs specific analysis techniques to extract information. One example is that of
plain text with the extensively studied but yet challenging fields of Natural Language Processing (NLP) and text
mining [3]. Another example of unstructured data is image and video whose analysis extensively gained interest
with the promising and spectacular results given by deep learning field techniques [91]. Notice that video data
is temporal by nature and is not to be confused with image sequences (i.e. images can have multiple sources).

Semi-structured data are all data that are neither unstructured nor fully-structured [1]. Buneman [22] stated
that in semi-structureddata, information that is usually associatedwith schemes or datamodels in structureddata
is contained within the data and can be qualified sometimes as ”self-describing”. Unstructured data are encoun-
teredmainly in the web and have receivedmany research interests in, for example, the semantic web community.
Typical example of semi-structured data are XML files (e.g RDF) or JSON objects.

2.4 Subject-centred vs. Attribute-centred data sets

In addition to the characterization of temporal data nuggets w.r.t time domains, primitives and data models,
one key aspect to consider is the nature of temporal data sets. In this work, we distinguish between two main
classes of temporal data sets basedon ”activity separations”: subject-centred (transaction-like) and attribute-centred
(sensory-like) data sets. In addition to defining different knowledge discovery problems (cf Chapter 4), insights
that can be discovered from these data sets types have subtle semantics and interpretation differences that are
worth noticing. To illustrate the main differences between the proposed classes, let us consider the following
example.

Example 2
Let us consider the set of temporal facts depicted in Figure 2.4.1 describing timestamped events/actions as-
sociated with an identified subject. This set of facts can describe the behaviour of human actors a, b, c and d
through a set of actions A,B,CandD in a building. An action can describe behaviours such as opening a door,
passing through a corridor or turning on the light. The building manager is interested in discovering frequent
sequences of actions describing typical behaviours.

Let us consider two data generation scenarios for the former example:

• Case 1. The building manager collects data manually. For every single actor, the building manager identi-
fies the performed actions. He collects information about time, gives a unique ID to each individual and
labels each of its actions.
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Data

Unstructured

Sound Speech

Video Indoor/Outdoor cameras

Image Medical Imaging

Plain text Repports/Invoices

Semi-Structured
JSON
HTML

RDF/XML

Structured

Spatial data GPS tracking log

Graphs
Attributed graphs Social networks

Simple graphs Web pages networks

Symbolic

Item sets sequence Market basket data

Non-Periodic symbolic sequence Machine event log

Periodic symbolic sequence DNA sequence

Numeric Time series Temperature sensor

Figure 2.3.1: Several data types categories and examples
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Time SubjectID Event Time SubjectID Event Time SubjectID Event
0 a A 3 c B 13 c A
0 b A 4 b D 14 c D
1 c C 4 d D 14 d B
2 a A 6 d B 15 a C
2 b B 8 c A 16 d A
2 c D 9 d C 17 d A
2 d A 11 a D 18 a D
3 a B 11 c B 19 d D
3 b C 12 c C 20 a A

Figure 2.4.1: A set of temporal facts. At time stamp 0, the fact A is associated with object a

SubjectID Sequence
a (A, 0) (A, 2) (B, 3) (D, 11) (C, 15) (D, 18) (A, 20)
b (A, 0) (B, 2) (C, 3) (D, 4)
c (C, 1) (D, 2) (B, 3) (A, 8) (B, 11) (C, 12) (A, 13) (D, 14)
d (A, 2) (4, D) (6, B) (9, C) (B, 14) (A, 16) (A, 17) (D, 19)

Figure 2.4.2: The sequence database corresponding to temporal fact set in Figure 2.4.1 and Case 1 data
generation process.

• Case 2. Thebuilder manager uses sensors to keep track of activity in the building. For example, he equips
door with opening/closing sensors. The sensors monitor actions and time data but do not associate them
with a particular individual.

In the first case, the gathered data is commonly formatted as a sequence database as depicted in Figure 2.4.2
where a sequence of items (here actions) is associated to a unique subject ID (see Figure 2.4.4a for a graphical
representation). Notice that this database contains all information contained in the set of facts inFigure 2.4.1. The
ID attribute permits to make a clear separation between individuals behaviours. Rashidi and Cook [128] called
this dataset configuration transaction data. We call it in this work subject-centred to stress the ability to describe
the set of facts associated with particular subjects. The well-known market basket data belongs to this category
[4]. This type of configuration is also used for medical records [108] or GPS tracking data. Applying a pattern
mining approach, for the above example, can answer the following question:

What sequences of activities do individuals frequently perform in the building?

In the second case, sensory data is an unbounded flow of events/activities without a clear separation nor link
between individuals actions: the individuals’ ID is unknown for the generation process. This type of data is
often represented as a single sequence of events (e.g telecommunication data in [101]) or multiple attributes
sequences (e.g sensor data in [127] [128]). Figure 2.4.3 illustrates these representations. Rather thanmonitoring
individuals by describing their activities, this type of data monitors the activities themselves. In other words, the
data describe the actors’ activity effects on the environment through physical measures. One typical example is
that of temperature sensor that monitors temperature over time without explicitly associating its variation to a
particular phenomenon or an identified cause. For this reason, we call this data configuration attribute-centred
data. One consequence of attribute-centred generation processes is that the data may not quantitatively reflect
the importance, i.e. number of involved actors or occurrences, of a given fact. Let us illustrate this by the following
example.
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Example 3
Let us assume the fact set of Example 2. Say that event A corresponds to ”passage through entrance door”. In
Figure 2.4.1, one can notice that two individuals, with ids 1 and 2 passes simultaneously through the entrance
door at timestamp 0. With subject-centred data depicted in Figure 2.4.2, one can notice that these two occur-
rences are reported in the sequence database: one for each individual. Indeed, the manual generation process
permits to distinguish two simultaneous events. On the other hand, the buildingmanager uses amotion sensor
on top of the door to report on passages. When the two individuals pass simultaneously through the door, a
motion will be detected, and a unique event A is recorded as shown be Figure 2.4.3. Indeed, the motion sensor
is capable of providing a binary information (i.e. ”motion” and ”not motion”) without any quantification of
numbers or nature of actors in motion (e.g. a dog may also enter the building).

This slight but significant nuance in the generation process induces different discovery problems in compari-
son with subject-centred data. For our example, the problem that can be solved is the following:

What are the significant/frequent/usual successions of activities occurring in the building?

It is to notice that the former problem is different from the one posed earlier for subject-centred data. As a conse-
quence succession of events (patterns) that can be extracted can be different and has to be interpreted according
to the data configuration. To illustrate this statement, Figure 2.4.4 depicts several occurrences of pattern ABCD
corresponding to the set of facts of Example 2 given by a frequent patternmining approaches with a temporal gap
constraint between successive events. The two red patterns correspond to successions extracted from both the
sequence database (subject-centred) and single sequence (attribute-centred). What is to emphasize here is that
the neat interpretation of these two patterns is different:

• Subject-centred: half individuals in the database perform activity sequence ABCD

• Attribute-centred: there are two occurrences of the sequence ABCD.

Moreover, with the single sequence representation twomore occurrences of theABCDpattern, depicted in green,
are observed. One remark is that, for this particular example, the subject-focused result set is a subset of the
attribute-centred result set if the interpretation is not taken into account. Thismaymake sense as individuals event
sequences are, to some extent, a particular partition of the general event sequence. What is to stress here is that
the problem of mining attribute-centred data seems to be a more general problem than mining subject-centred
data. While transaction data can be straightforwardly transformed into a single sequence framework, for instance
by the concatenation of sequences in databases with specific conditions (e.g. distance between sequences), the
inverse seems to be more difficult. Indeed, this supposes having information permitting to partition the single
sequence such that each sub-sequence corresponds to facts related to a single subject. Techniques performing
this kind of partitions, as the well-known sliding window, does not allow to maintain the semantic meaning that
is underlying to subject-centred data. This aspect will be discussed in the next sections with more details.

26
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI061/these.pdf 

© [A. El Ouassouli], [2020], INSA Lyon, tous droits réservés



(a) Attribute sequences (streams) representations

(b) Single sequence representation

Figure 2.4.3: Common representations of attribute-centered (non transaction-like) temporal data sets

(a) Subject-centered sequence database

(b) Attribute-centered single sequence

Figure 2.4.4: A graphical representation of subject-centred (a) and attribute-centred (b) datasets corre-
sponding to Example 2. Coloured activity labels belong to occurrences of sequence pattern ABCD. Green
labels correspond to patterns found from a subject-centred data set. Red labels are included in patterns
discovered only from the attribute-centred database
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3.1 Introduction

Remarkable advances in sensors, network technologies and low storage costs had lead to themassive and rapidly
growing use of sensor devices in many application domains impacting both private, public and industrial areas
and at different scales (human body, buildings, industrial factories, cities). This is demonstrated by the spectac-
ular growth of sensors and ”smart objects” in the last decades. Current numbers and projections of used sensor
devices are estimated at dozens of billions [113] of devices. This shows the great interest arousing around sens-
ing technologies and explain their dissemination. Maybe the more illustrative example of the former claim is the
emergence of the Internet OfThings (IoT) paradigmwhere sensor devices, or ”smart objects”, are integrated into
the internet global network [158]. This makes it possible for monitoring application to ”sense” environments,
”contextualise”, ”understand” and interact back. Indeed, classical sensors, more sophisticated devices (mobile
phones, video cameras) as well as humans (through manual reporting) can be seen as data sources providing a
perception of their environment.

Another traditional field impacted by sensors technologies development is that of Industry. Indeed, manu-
facturing systems (e.g. production lines, industrial engineering) were traditionally using sensors to monitor, in
real-time, the state of machinery as production lines (temperature, pressure, counting pieces). However, the in-
creasing affordability of sensors aswell as storage capabilities,makes it possible to acquire vast amounts of reliable
data describingmanufacturing processes and enterprise operations. Besides, the use of such diverse data sources
comes with a significant heterogeneity: physical measures from traditional sensors, videos from cameras, textual
reports from human operators, images.

One common fact about the after-mentioned application domains is the growing heterogeneity of the gen-
erated and available data. This heterogeneity is to be seen as a great opportunity and poses various challenging
research problems.
Heterogeneity is an opportunity. This claim is based upon the following observation. The more attributes de-
scribe a given environment, themore they allowabetter accurate expression of possibly complex activities/behaviours/phenomena.
Besides, advances of information retrieval techniques for unstructured data permits to obtain, with improving
precision, complex information that tries to emulate the human cognitive capabilities. For instance, recent com-
puter vision technologies in image and video processing (e.g. object classification) offers the opportunity to
recognise and visually ”sense” an environment with great accuracy. Another example is Natural Language Pro-
cessing and associated fields that permit to retrieve information and provide context from human speech and
written text. This huge availability of diverse data permits to describe, for the same environment or subject of
study, a multitude of variables over time that captures the possible complexity of temporal phenomena.

In this context, Knowledge discovery (cf Chapter 4)may permit to extract patterns or structure in the data de-
scribing hidden temporal phenomena. Besides, patterns heterogeneity may provide more explainable insights.
Let us illustrate this with a simple toy example. We describe in Figure 3.1.1 a set of corridors equipped with a
sensor system composed of door sensors and video cameras capturing parts of the corridors. For data produced
by video cameras, advances in image and video processing make it possible to obtain useful insights: motion de-
tection, objects counts, object recognition. In this example (in Figure 3.1.1, C1, C3, C4 and C5 provides motion
detection, C2 provides object recognition and C6 counts moving objects. The analysis of motion information
would permit to obtain 3 main trajectories ”C1 then C3”, ”C1 then C4” and ”C1 then C5”. In this environment,
C3 and C4 can only be reached by pedestrians and C5 by cyclists. More valuable insight can then be obtained
while using different attribute types to form a heterogeneous temporal relation. For example, a pattern ”C1 then
<Bicycle> thenC5” providesmore insight than a simple trajectory pattern ”C1 thenC5”. This information can then
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(a) Corridors equipped with door
sensors and video cameras

(b) Some attribute data streams gathered from the sensor system
depicted in Fig.3.1.1a

Figure 3.1.1: A sensed environment example and corresponding attribute streams

be used to perform automatically specific tasks in the environment with regards to the object type information.
From a very general perspective, one can distinguish two main types of data sources providing perception:

devices (e.g. sensors) and human reports. Although insights from these data types can have different character-
istics and level of complexity, we will consider them as equivalent in this thesis to provide a very general point
of view. We will refer as data sources any device or human providing data. Follows the definition of a data source
and a data source system.

Definition 9 (Data Source)
A data source is an entity that can react and report on the state and evolution of a single or various at-
tributes of an environment. Formally, a data source d is defined as d = (id, ⟨(ai, Si)⟩) with id is its
unique identifier and ai an environment attribute monitored by d and Si a temporally anchored observa-
tion sequence of attribute ai produced by d.

For example, inFigure3.1.1,C1 is a data sourcedefinedas (C1, ⟨(motion,
(

(MB, 1), (ME, 4), (MB, 13), (MB, 14)
)

⟩).

Definition 10 (Data source system)
LetE be an environmentwhere a setA of activities/behaviours/phenomena occur. A data source system
associated with E , notedDS is a set of data sourcesDS = {di} sensing the evolution of E under the effect
ofA. A data source system provides a temporal description of E .

A data source system can be composed of sensors of different types aswell as inputs fromhumanusers (e.g. via
mobilephones). It composes aperception layerproviding ”real-time”monitoringof activities/behaviours/phenomena
occurring in a single environment. We can say that the state of the perception layer is changed by the environ-
ment temporal evolution. This perception layer provides, then, a set of data streams reporting each on a physical
measure describing one of the aspects of the environment. Figure 3.1.2 provides an illustration of such configu-
ration.

In this context, one general challenging problem posed to monitoring applications and knowledge discovery
techniques is the following:

Let E an environment equipped with a heterogeneous data source systemDS. How to extract non-
trivial, novel and directly actionable temporal knowledge of E from data streams given by DS?
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Figure 3.1.2: From environment evolution to temporal data. A simple data generation process overview

Temporal data provided by a heterogeneous data system can be highly heterogeneous at different levels. We
discussed in Section 2.1 different aspect of temporal datamodelling including timedomains, temporal primitives,
datamodels anddata formatting. Eachof these aspectsmayposeproblemswhen it comes toperforming temporal
knowledge extraction:

• Time domains heterogeneity. Assuming that data generation processes always use a discrete time do-
main, each data source di in a data source system uses a time granularity TGi corresponding to its data
semantics or sources capabilities (human perception, devices specifications).

• Temporal primitives heterogeneity. As discussed in Section 2.2, temporal data can usemainly two tem-
poral primitives, time points or time intervals, depending on data semantics. Indeed, temporal informa-
tion can include or not a duration concept. Semi-intervals can also be useful to express unbounded in-
formation. Besides, fuzzy temporal information (e.g. an event occurred between t1 and t2) can also add
complexity and heterogeneity to the set of temporal primitives used in a data source system.

• Datamodels heterogeneity. The qualitative diversification of data sources comes with great heterogene-
ity in temporal data representations. For instance, structured data (e.g. timestamped events, time series),
semi-structured data (e.g. JSON files, XML files) and unstructured data (e.g. images, videos, sound) can
all be generated by a data source systemmonitoring one single environment and providing a detailed tem-
poral description of it.

• Data format heterogeneity. A data source system can also produce temporal data that are attribute-
centred (e.g. sensory data) and subject-centred (e.g. market basket data).

The approach described in this chapter consists of representing the information given by a heterogeneous data
source systemwith a unique temporal informationmodel. This process of data transformation can be referred to
as Temporal Abstraction (TA). Moskovitch and Shahar [109] defined TA as follows.

Temporal abstraction (TA) is the segmentation and/or aggregation of a series of raw, timestamped, multivariate data
into a symbolic time interval series representation, often at a higher level of abstraction [...] suitable for human

inspection or for data mining.
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The main idea is to transform available heterogeneous data into a unique interval-based data model main-
taining sufficient temporal information contained in the original raw data for comprehension and analysis. This
representation relies on (1) specific information retrieval algorithms and (2) a set of predefined environment
states permitting to build a state stream description of an environment and provide a high level ”vocabulary” to
compose temporal patterns. The remainder of this section provides (1) the set of general hypothesises we adopt
in this work, (2) the motivations behind the interval-based temporal abstraction process, (3) a more detailed
description of our overall data transformation process, and finally (4) a discussion.

3.2 General Hypotheses

The first hypothesis we consider in this work is the temporal synchronisation of data sources.

Hypothesis 1 (Synchronisation of time domains)
Let E be an environment and DS = {di} a data source system with di = (id, ⟨(ai, Si)) a data source.
Data streams or sequences Si generated by DS are temporally synchronized with respect to an absolute
time domain.

In other words, this hypothesis states that origin time points (say t = 0) of all data sources are aligned. From
amore technical point of view, this hypothesis assumes that internal clocks of all devices generating data streams
are synchronised. The problem of independent clock synchronisation is not the object of this work.

Secondly, as we discussed in Section 2.1, we consider that all data sources generate data in a discrete way.
Therefore, data are always expressed in a discrete time domain. In this work, we make the hypothesis that every
data source has a known and fixed temporal granularity.

Hypothesis 2
Let E be an environment and DS = {di} a data source system with di = (id, ⟨(ai, Si)⟩) a data source.
Every data source di provides a data stream expressed in a discrete time domain of fixed granularity TGi.

Temporal granularities canbedirectly retrieved fromthe temporal informationprecision that is used to express
temporal anchors. For instance, if a data value has timestamps expressed in seconds, then we assume that its
granularity is 1 second. We also discussed in Section 2.1, validity assumptions that are inherent to the discrete
data generation process. Indeed, a data source temporal granularity refers also to the minimal duration in which
a data value is considered as valid. This is our third hypothesis.

Hypothesis 3
Data provided by a data source system are determinate (in the sense of [68])

This hypothesis states that any data value is valid during, at least, a duration corresponding to the temporal gran-
ularity of its data source. The interesting problem of indeterminate data information fuzziness will not be treated
in this work.

3.3 Motivations

We can distinguish several main motivations behinds a temporal abstraction approach aiming to represent tem-
poral information given by a heterogeneous data source system in the form of a set of state streams.
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3.3.1 Time domain and primitives heterogeneity

As discussed in Section 2.1, the first aspect one should consider while dealing with temporal data is what kind of
time domain to use. We argued that any real data generation process is inherently discrete - i.e. must be consid-
ered with a discrete time domain - as do not exists any data source (device nor human) that can pretend to have
infinite precision. On theother hand, to the best of our knowledge, temporal patternmining approaches consider,
in the analysis process, ”continuous” time domains as they assume homogeneous temporal granularity. Indeed, if
one considers a set of homogeneous temporal granularities, the inherent data ”validity” and ”interpolation func-
tions” assumptions are homogeneous in the entire data set. As a consequence, it is possible to interpolate the
discrete data into the continuous time domain without loss of qualitative nor quantitative relational information.
For instance, two co-occurring events generated with the same temporal granularity are also co-occurring if one
considers them as absolute time points in the continuous time domain. The same can be stated for the duration
between time points. In this work, we investigate the ability to perform data analysis on heterogeneous tempo-
ral data sets that may contain data modelled over different temporal granularities. For instance, a data source
system can contain a temperature sensor providing data with a granularity of a millisecond, a door sensor moni-
toring door opening and closing with a granularity of a second, and human-given events about the weather using
a granularity of 1 day. It is to notice that all after-mentioned events are time points as they do not consider any du-
ration concept at the semantic level. The use of such heterogeneous time granularities for the same environment
description raises the following problem for a data model unification:

Let Σ be a set of data streams having heterogeneous temporal granularities. How to represent tem-
poral data of Σ in a ”continuous” time domain suitable for knowledge discovery in a way that main-
tains possibly all temporal information given by Σ and consistent temporal relations between data?

To illustrate this problem, let us consider the toy example depicted in Figure 3.3.1a. Streams A and B have
a temporal granularity of two time units and one time unit respectively. Considering the fact that both A and B
contains time point events, the naive interpolation into the continuous timedomain is to consider events inA and
B as simple time points. For a raw event having a timestamp t in raw discrete A or B, the naive interpolation into
the continuous time domain that considers absolute timestamps is depicted in Figure 3.3.1b. What is to notice
here is that this naive interpolation comes with information loss at the relational level. For instance, absolute
time points inA and B are co-occurring in Figure 3.3.1b. This does not reflect correctly the available information
provided by raw streams A and B which can be expressed with Allen algebra with ”B starts A”. As a consequence,
the unification of time domains for data analysis purposes can be done through interpolation of discrete temporal
data into a ”continuous” time domain thatmaintains information about temporal granularities that are specific to
each data generation process. This permits to reflect better temporal information given be several data sources,
with several degrees of precision, while preserving relational aspects that can better describe the actual temporal
ordering of data.

The use of the term ”continuous” in the last paragraphs to qualify time domains is, in reality, a simplifica-
tion that necessitates a precision. Indeed, the use of the continuous time domain ”abstraction” through the time
granularity-based mapping do not produce data that are really in the continuous time domain. The unification
implicitly assumes the least commonmultiple of all temporal granularities as the granularity of the unified repre-
sentation.

As temporal granularities are defined as the smallest duration of time where a fact is valid, the unification
of time domain w.r.t a time granularity TG also allows considering time intervals as the unique time primitive
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(a) Discrete raw data streams A and B. The time granularity of A equals to twice that of B.

(b) A naive and straightforward interpolation into the continuous time domain

(c) Interpolation of time points events of streams A and B considering their temporal granularity

Figure 3.3.1: Two time point streams having different granularities (described in time axis). The naive
interpolation of time point data of streams A and B into the continuous time domain, in figure (b), induces
a loss of information. Their inherent validity assumption is not taken into account causing a deformation
of temporal relationship. Considering time granularities permits to maintain information given data validity
assumptions.

for the knowledge discovery process. Indeed, time points will be considered as intervals having as duration their
temporal granularity, and time intervals remain time intervals with consideration of temporal granularity for their
endpoints.

3.3.2 Data format heterogeneity

We discussed in Section 2.4 the two different temporal data formats that we called subject-centred data, e.g. se-
quence databases, and attribute centred-data, e.g. sensory data. We argued that the main difference between
these two data generation processes is the segmentation of data using activities separation. For subject-centred
data, temporal data are segmented to reflect attributes evolution that is related to single objects. On the other
hand, attribute-centred data describe the evolution of attributes without any information about their subject (i.e.
what object in an environment is responsible for the attribute evolution). The difference between these classes of
temporal data has consequences on data mining tasks as different problems can be posed and different interest-
ingness measures can be used (e.g. semantics behind support are different for the two classes). The questioning
posed by data formats heterogeneity is the following.

At which extent it is possible to benefit from the information given by both attribute-centred and
subject-centred temporal data in a discovery process aiming to extract knowledge of an environment?

Several approaches can be considered to solve this problem. One direction is to design algorithms that are
capable, with sufficient guarantees and corresponding interestingness measures, to process both attribute and
subject centred data. In this work, we consider a different approach to data unification. That means that we aim
to build a homogeneous description of a given environment that can be processed with traditional and existing
mining approaches.

There are mainly two ways to unify these two data formats. The first is to convert attribute-centred data to
subject-centred data. This consists of the segmentation of attribute centred into a set of data sets, each con-
taining data generated by a single subject in the environment, which is a difficult task. Indeed, it requires addi-
tional knowledge on themonitored temporal phenomena that can be hard to obtain or extract from the data with
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enough consistency guarantees. Sensory data are typical examples of the former claim. Follows an illustrative
example.

Example 4
Let us consider the data given by a traffic ultrasonic sensor set. Each device composing the system detects
whether a vehicle is present on the road in a given sensing range and provides a data stream to a monitoring
application. The obtained data set is composed of a set of attribute-centred data streams (one data stream
per device) describing the traffic of a given road (here the road is the environment). In the post-generation
processing stage, transforming this data set into subject-centred data consists of partitioning it such that each
partition contains events generated by a single car. This cannot be done straightforwardly with enough consis-
tency guarantees without additional information.

The second approach is to extract an attribute-centred description from subject-centred data. In other words,
we aim to discover typical temporal relations and correlations between environment attributes. If subject par-
titioning (where each piece of data is only related to other pieces of data that are related to the same subject) is
considered, the knowledge discovery process will provide insight about typical individual behaviours. As dis-
cussed briefly in Section 2.4, interesting relations and patterns may arise between data generated by multiple
subjects. The main idea is to extract environment description from attributes that are related to particular sub-
jects evolving in this environment. For example, if one considers a set of door access control devices in a building
providing timestamped data about access related to users identification. This information if subject-centred as
each event is associated with a unique user. However, if the ID attribute of each event is not considered, the ob-
tained data streams can be seen as an attribute-centred data set describing the set of doors in the environment
(where the attribute is ”door access”). Another example can be that of GPS data. The attribute-centred version
of coordinates (x, y) locating a particular mobile device is: the (x, y) location is occupied. At the technical stage,
this process requires simply getting rid (or the non-consideration) of the unique identification attribute.

3.3.3 Data models heterogeneity

As described in this section’s introduction, data sources systems can be composed of heterogeneous data sources.
Therefore, obtained temporal data sets can be composed of data expressed in a multitude of data models. We
described briefly in Section 2.3 several data models that can be encountered simultaneously in data sources sys-
tems. The main remark here is that a single environment can be temporally described by both structured, semi-
structured and non-structured data. Our goal is to be able to benefit from the information given by a multitude
of data sources, regardless of their data models, to build and discover complex temporal knowledge.

We attempt to unify the representation of the information given by heterogeneous data models. One naive
approach is to consider the most basic information representation for each attribute. for example, by using
streams containing binary data. More precisely, each data source provides values in a given domain with par-
ticular bounds. For instance, a time series domain can be N or R with given bounds and precision, each pixel
of an image or a video can have a value in N3 in the RGB space, and each tag in a stream of RDF/XML based
documents can have values in limited/unlimited string space. The basic idea here is to consider a binary stream
describing the validity of facts ”data sources X has value y”. In the following, we provide several examples of this
process.

Let us consider the simple example of a symbolic event streams S. Events types in S belong to a set of symbols
I = {a, b, c}. Information given by the event stream S can be represented with three attribute sequences A, B
and C containing each interval where resp. facts a, b and c are valid.
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Another example is that of a time series TS containing values in N that are bounded in the range δ of size n
(e.g. for a temperature sensor δ can be [−20, 50] in Celsius degrees). Information given byTS can be represented
with n streams each one containing intervals of time where TS has a particular value v.

A third andmore complex example is that of video data that is composed of n pixels having values in the RGB
colour space (including 2563 possible values). The straightforward application of the after-mentioned principle
induces the constitution of n ∗ 2563 different values streams.

While this approach can be reasonable for symbolic data, the last extreme example shows that the attribute
value streams representation is nor do-able, the size of attribute values space can be huge, nor interpretable in a
straightforward manner for many data models. Indeed, what is of interest in video data is the visual information
that needs interpretation and vision capabilities. Video analysis, image processing and computer vision algo-
rithms aim to detect static or dynamic pixel configurations that are considered to be of interest or that emulate
the human cognitive capabilities. This can be seen as a data segmentation or discretisation process aiming to de-
tect high-level visual concepts that can easily be interpreted and understood. As a consequence, video processing
algorithms can be used to generate high-level categorical data streams: one binary stream per possible high-level
category. For example, motion detection in videos can provide a stream ”Motion in Video 1” containing intervals
of time where a motion is detected. The same general approach can also be applied to numerical data with time
series discretisation, to raw text and audio files with, for example, speech analytics, and so on. The main idea
here is to use data model specific analysis process for information extraction to build high level attributes value
streams. This process has mainly two main advantages:

• It provides a more comprehensible and interpretable description of a given environment. This kind of
description permits to solve the interpretation problem of complex data (mainly with unstructured and
numerical data) encoding information into the streams label.

• Provides raw data with structure that permits a more simple joint use for knowledge discovery.

In addition to specific information retrieval algorithms, knowledge-based temporal abstraction, thatwas firstly
formalised by Shahar [139], can be used to build an interval stream-based representation that reports on high-
level states of a given environment. This task can be seen as the generic interpretation of raw data aiming to
provide a domain-specific perception of states and trends in the data corresponding to a given goal [139]. This
goal in our work is temporal knowledge discovery.

In addition to the unification of information representations, the description of an environment in terms of
high-level interpretation can be interesting in two main aspects. As for automatic specific information retrieval
processes, domain knowledge can provide useful ways to discretise and aggregate data. Indeed, the high-level
concepts introduced by domain experts can describe complex situations of interest involving one or various data
sources. This data ”wrapping” may reduce data amounts to be processed in the knowledge discovery process
when complex domain knowledge is available. The second aspect enhanced by temporal abstraction is that of
interpretability. Indeed, domain concepts (states and trends) can be seen as a set of high-level symbols forming
a description ”vocabulary” for both environment description and temporal knowledge representations.

We sum up the motivation behind the interval-based data unification approach in the following:

• The interval-based interpolationof rawdiscretedata into the ”continuous”domainusing timegranularities-
based temporal mapping permits to handle better time granularity heterogeneity. It allows to properly
reflect data validity assumptions that are inherent to the discrete data generation process.
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Figure 3.4.1: State streams construction process

• Subject-centred data can be converted into attribute-centred data describing the evolution of the environ-
ment through its subjects attributes. Existing knowledge discovery approaches can be straightforwardly
be applied (with single sequences approaches and associated interestingness measures).

• Attribute values streams and data discretisation based on specific automatic processes and knowledge-
based temporal abstraction permits to express information given by a set of heterogeneous data models
with a unique interval-based, high level, easily interpretable representation.

3.4 The state streams construction framework

In the last section, we motivated our approach devised to obtain a unified interval-based representation of het-
erogeneous data. Hereafter, we describe the overall framework and technical details of this process that aims to
produce state streams. It is composed of two main tasks: specific information retrieval and knowledge-based
temporal abstraction. Figure 3.4.1 provides an overview of this framework.

One core characteristic of this framework is that it can be used online to obtain the state stream representa-
tion of the environments in a near real-time capability. The reasons for this functionality follows. First, we aim
to provide the possibility to run temporal data analytics on the run. In other words, the knowledge discovery
process must be capable of building temporal insights and models incrementally. Secondly, this data unification
framework can be used to perform forecasting based on the discovered temporal knowledge.
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3.4.1 Specific information retrieval

The first task, named specific information retrieval in Figure 3.4.1, aims to extract information from raw data using
algorithms that are specific to each datamodel. At this stage, it is mandatory to run information retrieval, at least,
on unstructured data to obtain a structured data representation that is at a higher level. It can bewhether numeric
or symbolic.

The output of information retrieval must be modelled as an attribute data stream containing values in a spe-
cific symbol set. For example,motion information provided froma video analysis will contain time point event in
Tmotion = {MB,ME} where MB and ME denotes respectively motion begin and motion end. For semi-structured
data, a straightforward attribute streamapproach canbe considered. However, if a data source systemuses hetero-
geneous sources providing data using, for example, different XML tags (e.g. different tags for the same physical
attribute) or different JSON structures, it can be interesting to unify representations using data integration tech-
niques. With structured data, it is also possible to use specific information detection approaches, especially for
numerical values. For example, automatic discretization approaches (e.g SAX [94]) can be used for time series.
Other approaches as online outlier analysis [71] can also be integrated at this stage of the process.

The result of the information retrieval stage is a set symbolic or numeric structured streams that canbe formally
expressed with:

(a,TG, S)

with a an attribute label, TG a temporal granularity and S = ⟨(vi, ti)⟩ a sequence of data values vi (numeric or
symbolic) anchored at time ti (that can be a time point or an interval anchor) in the discrete-time domain defined
byTGi. It is to notice that data streams givenby specific information retrieval algorithmsmayhave heterogeneous
time granularities depending on the actual raw data sampling rates and algorithmic capabilities.

3.4.2 Knowledge-based temporal abstraction

The second stage of data unification consists of building a high-level interval-based stream representation of the
information given by the set structured symbolic and numeric attribute streams. Temporal abstraction in our
context is devised to build a representation of the environment through a set of domain-specific temporal con-
cepts called states. A state of an environmentE is a particular temporal data configuration referring to anon-trivial
situation of interest for the application domain. This situation can be defined with respect to data from one or
several attribute streams provided by one or several data sources. Follows the formal definition.

Definition 11 (State)
LetE be an environmentmonitored by data source systemDS andAT = {(ai,TGi, Si)} a set of attribute
streams extracted from DS. Formally, a state As is defined as a predicate:

As : T ,ATn → B

where T is the ”continuous” time domain.

The result of stateAs predicate is a boolean value stating thatAs is active or inactive at a given temporal anchor
t ∈ T given a subset of AT. It is to notice here that a state definition can rely on streams having heterogeneous
temporal granularities that has to be taken into account while defining a state predicate. As stated before, the
”continuous” time domain is, in reality, a discrete one defined by a temporal granularity TGs defined as the least
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common multiple granularities of the considered subset of AT. As a consequence, a state predicate on time an-
chor t ∈ T , defines the validity of the predicate on a time interval [t, t + TGs).

Temporal abstraction [139] provides a broad theoretical background for knowledge-based temporal abstrac-
tion involving multiple sub-tasks (temporal context restriction, vertical temporal inference, horizontal temporal
inference, temporal interpolation and temporal patternmatching) andmultiple domain knowledge types (struc-
tural, classification, temporal semantic, temporal dynamic). For this work, we adopted a simplified view of TA
based on simple basic operators. State predicates are defined using two types of operators: logical and temporal.
Logical operators, conjunctions∨ and disjunctions∧, permits to express conditions on data values. A temporal
operator permits to situate data values conditions in timewith respect to the temporal attribute of the state predi-
cate. Two principal temporal operators types can be useful for predicates definition. Relative temporal operators
refer to a data value that is temporally situated relatively to a temporal anchor. It infers conditions on ordering of
data in Si. Follows two relative temporal operators examples:

• next(t, (ai,TGi, Si)) retrieve data value in sequence Si that directly follows the absolute time point t in the
discrete time domain defined by TGi

• previous(t, (ai,TGi, Si)) retrieve data value in sequence Si that directly precedes absolute time point t in
time the discrete time domain defined by TGi

The other type of temporal operators is qualified as absolute. It permits to retrieve data at a particular temporal
anchor that can be a time point or an interval. The output can be then a single value or a sub-sequence.

• valueat(t, (ai,TGi, Si)). Provides data value of Si having temporal anchor containing t in the discrete time
domain defined by TGi.

• subseqat(tb, te, (ai,TGi, Si)). Gets sub-sequence s of Si containing values having temporal anchors t such
that tb ≤ t ≤ te where tb and te are absolute time points.

Some examples of states predicates that can be defined for this environment depicted in Figure 3.1.1b:

• motionInC1s(t, {C1}) ::= previous(t,C1) = MB

• increasingOccupancys(t, {C6}) ::= valueat(t,C6)− valueat(t− 1,C6) > 0

• congestions(t, {C1,C6}) ::= (previous(t,C1) = MB) ∧ (valueat(t,C6)− valueat(t− 1,C6) = 0)

Predicates can be simple conditions on a single raw data sequence values as motionInC1s that reports on simple
motion activity (the last event produced by C1 at the timestamp t is MB=Motion Begin). States can also report
on trends as increasingOccupencys, or can also integrate data from various sensors as for congestions.

The set of defined state predicates encoding domain knowledge are stored in a knowledge base and used to
build state streams.

Definition 12 (State stream)
A state stream A corresponding to state As is defined as

A = (As, ⟨[tbi , tei)⟩)

such that ∀tbi , tei ∈ T , tbi < tei < tbi+1 and ∀t ∈ [tbi , tei) | As(t, λ) = True with λ ⊆ AT with AT an
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attribute stream set.
The size of a state stream A noted#A corresponds to the number of its intervals. The length of a state stream

is the sum of its active intervals duration:

len(A) =
∑

[tb,te)∈A

(te − tb)

Forexample, the state streamcorresponding tomotionInC1s fromFig. 3.1.1b ismotionInC1 = (motionInC1s, ⟨[1, 4), [13, 14)⟩,
with#motionInC1 = 2 and len(motionInC1) = 4.

3.4.3 Operations on states streams

We define also three operations on state streams: intersections, unions and (α, β)-temporal transformation.

Definition 13 (Intersection of state streams)
The intersection of two state streams A and B, noted A ∩ B, is a state stream containing intervals where
both A and B are active.

A ∩ B = (As ∧ Bs, ⟨[tbi , tei)⟩

such that ∀t ∈ [tbi , tei), ∃[tbj , tej) ∈ A, [tbk , tek) ∈ B such that t ∈ [tbj , tej) and t ∈ [tbk , tek). Computing
the intersection is done in Θ(Max(#A,#B))

Definition 14 (Union of state streams)
Theunion of two state streamsA andB, notedA∪B, produces a new state stream containing the intervals
where A or B are active.

A ∪ B =
(

a ∨ b, ⟨[tbi , tei)⟩
)

such that ∀t ∈ [tbi , tei), ∃[tbj , tej) ∈ A, [tbk , tek) ∈ B such that t ∈ [tbj , tej) or t ∈ [tbk , tek). Computing
the union of two state streams can be done in Θ(Max(#A,#B)).

It is to notice that intersections andunions of state streams canbebuiltwithin the temporal abstractionprocess
using the conjunction and disjunctions of predicates As and Bs respectively.

Definition 15 ((α, β)-temporal transformation)
Let A = (As, ⟨[tbi , tei)) be a state stream. An (α, β)-temporal transformation is a linear operation on a
state stream’s intervals endpoints. The (α, β)-temporal transformation ofA provides a state stream, noted
A(α,β) =

(

As, ⟨[tbj , tej)
)

and defined with: ∀[tbj , tej) ∈ A(α,β), ∀t ∈ [tbj , tei), ∃[tbi , tei) ∈ A such that
t ∈ [tbi − α, tei − β). α is called intervals expansions. β is called intervals reductions. The (α, β)-temporal
transformation of a state stream A is done in Θ(#A).

The interpretation of an interval [tb, te) of an (α, β) transformed state stream A(α,β) is the following:

• State A will be activated after a duration α from tb and will be deactivated after a duration β from te.

Intersections, unions and (α, β)-temporal abstractions can be composed to build more complex state streams
with specific semantic interpretation corresponding to a wide range of situations. Follows two basic examples
using intersection or union with (α, β)-temporal transformation:
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• An interval ofA∩B(α,β) denotes thatA is active andBwill be activated after a duration α from thebeginning
of A and deactivated after a duration β from the end of A.

• An interval [tb, te) of A ∪ B(α,β) describes that whether A is active or B will be activated after a duration α
from tb and deactivated after a duration β from te.

Here, wewant to stress that the compositionof state streamswith intersections, unions and (α, β)-temporal trans-
formations denotes an interval of times where specific situations occur or will occur. From a high-level point of
view, composed state streams are temporal ”narratives” composed by situations of interest that are defined by
the user (the environment states) the are maintaining quantitative information through (α, β)-temporal trans-
formations. Our objective in this work is to extract temporal knowledge permitting to describe typical relations
between these kinds of quantitative temporal narratives.

3.5 Discussion

In this section, we proposed and described the use of a unified interval-based representation of temporal infor-
mation given by a heterogeneous data sources system. The output of the described framework is a set of interval-
based streams containing each portion of time where a high-level state is active. This state-based approach pro-
vides an interpretable temporal description of a given environment. It also defines a high-level vocabulary for
to-be-discovered temporal knowledge that integrates domain-specific concepts permittingmore straightforward
interpretability of novel insights.

The use of temporal abstraction to integrate domain insights into the process of building a high-level descrip-
tion of a given environment can be seen as an interpretation of temporal phenomena and environment charac-
teristic through the concepts of a given domain. One opportunity that is given by this approach that could be
investigated is the use of multiple domain knowledge to interpret the same set of temporal facts given by a data
source system. The intuition here is that significant temporal relations and correlations may exist between con-
cepts belonging to different domains. Indeed, the use of multiple domain knowledge may permit to enlight each
of single domains perception ”blind spots” and produce a more detailed temporal description from which novel
insights can be extracted.

Nevertheless, it remains several open issues that may impact the knowledge discovery process. The first one
is:

Are all information provided in the heterogeneous data sources system contained in the set of state streams?

While it is hard to provide a clear answer for unstructured data (e.g. are all visual pieces of information in a
video encoded in the state stream representation?), this question remains valid for structured, semi-structured
or even with the attribute stream representation used in our framework. Indeed, with our approach, there is no
guarantee that all raw data values (or attribute values) that are provided by the data source system are represented
in the obtained state stream set. In other terms, the question here is the existence of a bijection between raw-data
and their state stream representation. One direction to obtain insight about the information use issue is to design
”data usage” indicators that permit to quantify information in a certain high-level state-based description.

The second issue is somewhat the last question opposite.

Are the information described by a state stream S contained in another state stream S?
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The problem here is that of information representation redundancy that could affect the knowledge discovery
process. Indeed, if the same piece of data is involved in the definition of two state streams, to what extent the
information redundancy will produce trivial temporal knowledge? Onemay obtain states correlations due to the
influence of a single attribute that is involved in the predicate definition of both states. In this work, we make the
hypothesis that state streams are an abstraction of mutually exclusive raw data.

Hypothesis 4
In a state-based description of an environment, all state streams contain mutually exclusive information.
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Part II

DISCOVERINGQUANTITATIVE
TEMPORALDEPENDENCIES
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4
Temporal Patterns Discovery: an overview
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4.1 Introduction

Mining temporal data has receivedmuch interest in the last decades. Indeed, the need to obtain insight about the
evolution of processes is a necessity in various application domain as healthcare, retail, telecommunications. As
for static data (i.e. without a temporal dimension), temporal data can supportmultiple datamining task including
clustering, classification ... We refer the reader to [88, 131] for a more global overview of temporal knowledge
discovery and data mining.

In this section, we focus on Temporal Pattern Mining (TPM), i.e. algorithms devised to extract interesting
temporal relations between events/items from explicitly temporally ordered data. We propose to categorize ap-
proaches of this field following the main criteria of temporal primitives: time points and time intervals. Each
temporal primitive defines a different set of possible pairwise temporal relations between data values and, by ex-
tension, pattern languages. In addition to the primitive categorization, and in order to provide a comprehensible
overview of this research field, this section will use different categorization criteria. We introduce them in the
following.

Input data formats. As discussed in Section 2.4, temporal data mining problems definitions also depend on
how temporal data sets are formatted. Indeed, while using the same pattern model, two approaches can tackle
differentmining problems and theoretical issues. Categories for this criteria are the following: Sequence databases
and single sequences.

Temporal information. Temporal relations between data values can whether be qualitative or quantitative.
While the former reports on qualitative relations (e.g before, after, during, etc.), the later maintains information
about time lags and duration (e.g A follows B after n time units). We consider that quantitative relations are more
expressive and providemore insights about a given temporal relation as themaintained quantitative information
can be a discriminant factor. Follows two examples.

Example 5
In a medical context, let us consider a sequence database of symptoms and disease records. A research team is
interested in finding patterns describing temporal relations between symptoms and diseases in order to provide
more accurate medication and treatments. In the available database, the pattern SYMA SYMB (symptom A
precedes symptom B) is interesting (according to a given significance criteria). Let us assume that half of the
occurrences of succession SYMA SYMB are followed by disease DISC and the other half by disease DISD. In
this example, DISC follows SYMA SYMB if the duration between SYMA and SYMB is around d and DISD

follows SYMA SYMB if the duration between SYMA and SYMB is approximately d′ with d′ = 2 ∗ d. Using
qualitative pattern permits to extract temporal relation between the succession of the two symptoms with two
distinct diseases which are already useful. However, it does not permit to predict which of these two diseases are
more likely to follow this succession of symptoms. In the other hand, maintaining temporal relations provides
insight permitting to predict which disease is more likely to occur given the mined time information: if SYMB

follows SYMA after d time units, it is more likely that patient will have disease DISC, if the time lag is 2 ∗ d
then the medical team can expect DISD and adapt the treatments.

Example 6
Say that an advertising agency possesses a video billboard on a road where pedestrians, bicycles and cars move
along. To reduce the billboard energy consumption, the agency equips the road with four motion sensors (two
at each side of the road) and uses qualitative pattern detection to turn on or off sides of the billboard: if an
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objectmoves toward the billboard, the later is turned on. Theagency stores information given bymotion sensors
and runs a sequential patternmining algorithm on the gathered data. In this case, the extraction of qualitative
patterns seems to be useless. Qualitative successions of events are already known (and used) by the domain
expert. On the other hand, quantitative patterns permit to highlight and characterize actor types based on time
lags: short time lags for cars, medium for bicycles and large for pedestrians. This quantitative characterization
of time lags is a novel insight that can be used by the advertising agency to personalize ads displayed in the
billboard screens w.r.t actors types based on their speed (e.g. display discounts on wheels for cars, helmets ads
for bicycles and nearby restaurants menus for pedestrians).

Interestingness. As reportedbyGeng andHamilton [60] interestingnessmeasures in datamining are devised
to select and rank discovered patterns according to their interest for the user. In their work, they proposed nine
interestingness criteria: Conciseness, Generality/Coverage, Reliability, Peculiarity, Diversity, Novelty, Surpisingness,
Utility, Actionability/Applicability. In the rest of this section, Geng and Hamilton [60] classification of interest-
ingness measures will be used. For the sake of readability, definitions of useful criteria and related measures will
be provided while being relevant.

The remainder of this section, we will provide an overview of both point-based and interval-based tempo-
ral pattern mining approaches. For each primitive, we will introduce the major mining problems treated in the
literature, describe the most used pattern models and provide an overview of the main algorithmic approaches.

4.2 Point-based patterns

4.2.1 Patterns from Sequential Databases

Qualitative sequential patterns

In this section, we introduce the problem of mining sequential patterns from a sequence database and its exten-
sions. Temporal patterns from point-based sequential databases have received much interest in the last decades
with a considerable number of contributions. We will try to provide a comprehensive overview of this field with
significantworks. We refer the reader to the extensive surveys of Fournier-Viger et al. [49] for further details. This
section will also introduce several key concepts to the temporal pattern mining domain useful for the remainder
of this thesis.

The sequential pattern mining problem was introduced by Agrawal and Srikant [4] to tackle the problem of
finding frequent sequences in a database of customer transactions. An example of such databases is given by
Figure 4.2.1a. Each record associates a set of items to a customer ID and a transaction time that is considered as
a time point. Sequential patterns are extracted from a costumer sequence version of this database, as shown in
Figure 4.2.1b where records associate a temporally ordered list of item sets to a customer ID.

Sequential pattern mining as introduced by Agrawal and Srikant [4] can be formalized as follows. Let I =

{i1, i2, ...in} a set of items or symbols. An itemset X is a subset of I. The size of X, denoted |X| corresponds
to its items number. A itemset sequence S = ⟨X1,X2, ...Xk⟩ is an ordered list of itemsets. The length n of the
sequence is the sum of its itemsets sizes. A sequence of length n is referred to as a n-sequence. A sequence Sb =

⟨X′
1,X′

2, ...X′
n⟩ is said to be a sub-sequence of Sa = ⟨X1,X2, ...Xm⟩ if there exists integers i1 < i2... < in such that

X′
1 ⊂ Xi1 , X′

2 ⊂ Xi2 ... X′
n ⊂ Xin . A sequence database SDB = {S1, S2...Sp} is a set of sequences, called customer

sequence, having each a unique ID (1, 2, ..., p). A costumer supports an itemset sequence S if S is contained in
the customer sequence. The support of a sequence s is defined as the portion of costumers supporting s. It is a
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Custumer ID Transaction Time Items Bought
1 June 25 30
1 June 30 90
2 June 10 10,20
2 June 15 30
2 June 20 40, 60, 70
3 June 25 30, 50, 70
4 June 25 30
4 June 30 40, 70
4 July 25 90
5 June 12 90

(a) Customers transactions database sorted by Customer Id and transac-
tion time

Customer ID Customer Sequence
1 ⟨(30) (90)⟩
2 ⟨(10, 20) (30) (40, 60, 70)⟩
3 ⟨(30, 50, 70)⟩
4 ⟨(30) (40, 70) (90)⟩
5 ⟨(90)⟩

(b) Customer-Sequence Version of the database

Figure 4.2.1: A database of costumers transactions [4]

Generality/Coverage interestingness measure.

Definition 16 (Generality/Coverage interestingnessmeasure [60])
A pattern is general if it covers a relatively large subset of data set. [It] measures the comprehensiveness
of a pattern, that is, the fraction of all records in the data set that matches the pattern.

In a set of frequent sequences Σ, a maximal sequence is a frequent sequence that is not a sub-sequence of other
sequence in Σ. Follows an example.

Example 7
[4]Let us consider the sequence database inFigure 4.2.1b. For auser-givenminimumsupport of 25%, ⟨(30), (90)⟩
is a sequential pattern as it satisfies the minimum support (appears for customer 1 and 4) and it is not a
sub-sequence of an other frequent sequence. ⟨(30)(40, 70)⟩ is an example of sequence that not satisfies the
minimum support. ⟨(30), (40)⟩ is frequent but not maximal as ⟨(30)(40, 70)⟩ is frequent.

Sequence Maximality can be seen as a Conciseness interestingness measure.

Definition 17 (Conciseness interestingnessmeasure [60])
A pattern is concise if it contains relatively few attribute-value pairs while a set of patterns is concise if it
contains relatively few patterns [...].

Indeed, a set of sequence meeting the support threshold can contain redundant information if the user is inter-
ested in discovering the largest frequent sequences. This can lead to a massive number of sequences with redun-
dant information (w.r.t maximal interestingness criteria): for a frequent n-sequence, up to 2n − 1 non-empty
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frequent sub-sequences can exist. The potentially huge amount of patterns may make the results hard to under-
stand, interpret and remember for the end-user. This is a general problem for the data mining domain called
pattern flooding.

The problem of sequential pattern mining is the following:

Problem 4 (Sequential patternmining [4])
Given a sequence database SDB and a user-given minimum sequence support min-sup, find all maximal
sequences having a support greater than the user given minimum support min-sup.

Sequential pattern mining is an enumeration problem devised to explore the search space of all possible sub-
sequences in a database and find all frequent sequential patterns. Two main exploration strategies are used for
this exploration process: breadth-first or depth-first search. The search space to be explored can be represented as
a lattice where specifications use two kinds of sequence extensions: sequential extensions (adding an itemset at
the end of a sequence) and items sets extensions (adding an item to a sequence itemset).

Breadth-first approaches consider first all 1-sequences (i.e sequences of length 1). These sequences are ex-
tended using both sequential and itemset extension to generate and process 2-sequences. This process is repeated
(i.e generate k-sequences from (k-1)-sequences) until reaching the length of the largest sequence in the database.
For example, let SDB be a sequential database and I = {a, b, c} the symbols used in SDB. Let us assume that the
largest sequence in SDB have a length of 4. A breadth-first algorithm using sequential extensions will first con-
sider sequences ⟨{a}⟩, ⟨{b}⟩, ⟨{c}⟩. Then, it will process 2-sequences ⟨{a}{a}⟩, ⟨{a}{b}⟩, ⟨{a}{c}⟩, ⟨{a, b}⟩,
⟨{a, c}⟩, ⟨{b}{a}⟩, ⟨{b}{b}⟩, ⟨{b}{c}⟩, ⟨{b, c}⟩, ⟨{c}{a}⟩, ⟨{c}{b}⟩, ⟨{c}{c}⟩. After that, 3-sequences and 4-
sequences will be considered successively. The exploration stops at this stage as no sequence in SDB has a length
greater than 4.

Depth-first algorithms assume a total order (e.g lexicographical order) for the set of symbols I in SDB. For
example, with I = {a, b, c}, a possible order to be used is c ≻ b ≻ a. A depth-first strategy will start with
1-sequences and then perform recursively itemset extensions and sequence extensions with respect to the lexico-
graphical order. When a pattern can not be extended, the algorithm cancels the last extension to generate other
sequences using the next itemw.r.t the order. Assuming the former example configuration, the sequence process-
ing order for a depth-first strategy using itemset extensions before sequence extension, with a maximal sequence
length of 2will process patterns in the following order: ⟨{a}⟩, ⟨{a, b}⟩, ⟨{a, c}⟩, ⟨{a}{a}⟩, ⟨{a}{b}⟩, ⟨{a}{c}⟩,
⟨{b}⟩, ⟨{b, c}⟩, ⟨{b}{a}⟩, ⟨{b}{b}⟩, ⟨{b}{c}⟩, ⟨{c}⟩, ⟨{c}{a}⟩, ⟨{c}{b}⟩, ⟨{c}{c}⟩.

This exploration problem is considered as hard since it defines huge search spaces, even for small databases
containing a small set of sequences. One can convince himself of the last statement noticing that a sequence
having n items can contain up to 2n− 1 distinct non-empty sub-sequences. As a consequence, the naive approach
consisting of computing the support of all possible sub-sequences in a database and provide only those meeting
the coverage threshold is not efficient nor realistic for most of the real-life databases. Efficient sequential pattern
mining algorithm must be designed in order to avoid exploring the entire sub-sequences search space. The basic
mechanism used to prune this search space is based on the Apriori property. It states that if sb is a sub-sequence
of sa then sa have an equal or lesser support than sb. As a consequence, if a sequence s is found to be not frequent,
then all its extensions (or super-sequences) can be pruned.

The first sequential pattern mining algorithm was proposed by Agrawal and Srikant [4], AprioriAll. It uses
a breadth-first search strategy with candidate generation. First, the algorithm makes a pass over the sequence
database to count support of all 1-sequences and keep only the frequent ones in memory. Then, the algorithm
uses frequent k-sequences to generate (k+1)-sequences candidates by combining pairs of k-sequences sharing all
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{a} {b} {a} before {b} {ab}
ID Timestamps ID Timestamps ID Timestamps ID Timestamps
1 10 1 20 1 20 1
2 30 2 30 2 2 30
3 20,40,50 3 30,50 3 30,50 3 50
4 10 4 10,30 4 30 4 10

Figure 4.2.2: An IDList example: a vertical representation of a sequential database

but one item and, then, dropping sequences containing non-frequent sub-sequences using the Apriori property.
After that, a pass over the database is made to compute the support of each of the generated candidates and
only frequent sequences are kept in memory for the next iteration. Candidate generation and support count
are repeated until no frequent candidate is found. Maximal patterns are computed in a post-processing phase
on the set of frequent sequences. In order to improve the efficiency of ApioriAll, the authors proposed the well
known GSP algorithm [143] that uses a different candidate generation process and an improved algorithm for
support counting (claiming an up to 20% improvement rate). This first type of sequential pattern mining can be
labelled as breadth-first candidate generation algorithms. This kind of algorithms suffers from several limitations
including multiple database scans that come with high computational cost with large databases, the generation
of non-existent candidates (i.e. sub-sequences that are not occurring in the database) that increases the search
space or the necessity to keep all k-frequent patterns in memory for candidate generation which can consume a
tremendous amount of memory.

Another sequential pattern mining approach family is that of the SPADE algorithm proposed by Zaki [168]
inspired by ECLAT [167] an algorithm devised for association rules mining. The main idea of this type of algo-
rithms is to use a vertical representation of sequential databases. For each i in the itemset of symbols I, the vertical
representation associates a sequence identifier sid to the list of occurrence times of i, called IDList. We describe in
Figure 4.2.2 IDLists example for itemsets {a} and {b} from sequence database depicted in Figure 4.2.1b. IDLists
are used to compute straightforwardly (i.e. without a database pass) the support of sequential patterns using
temporal joins. For example, in Figure 4.2.2 the support of {a} before {b} and {ab} can be obtained directly
from IDLists of {a} and b. Using this representation, the algorithm requires, at most, three database scans which
minimize the I/O cost considerably compared to algorithms as GSP or AprioriAll. The SPADE algorithm can
use both breadth-first or a depth-first strategies. The first permits a more efficient pruning as all IDLists of a level
are availablewhile the second ismorememory efficient as it needs to keep track of only intermediary IDLists. We
refer the reader to the original paper [168] for further details on this approach. Many extensions were proposed
including those using optimization based on a bitmap representation of IDLists (e.g. [16, 17, 69, 134, 141])
permitting to use bitwise operations rather than temporal joins. Another vertical representation based contribu-
tion was proposed by Fournier-Viger et al. [48], called CM-Spade, that use co-occurrencemaps to store frequent
2-sequences occurrence. This permit to prune (i.e. not compute the temporal join) on sequences having a non-
frequent suffix.

In addition to the former types of sequential pattern mining, another category stands for pattern growth al-
gorithms. The most popular algorithm belonging to this category is probably PrefixSpan that was proposed by
[120] (and its former version FreeSpan [74]). This algorithm was inspired by FPGrowth [74] in that it uses
the database projection structure. These algorithms use a depth-wise search strategy according to a total order
(e.g. lexicographic order). It proceeds as follows. First, the algorithm scans the database to find frequent items
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Figure 4.2.3: Index set of pattern ⟨(30)⟩ and ⟨(30)(90)⟩ used by the MEMSIP algorithm [95]

or 1-sequences. During the depth-first exploration, for a frequent k-sequence s, PrefixSpan builds the projected
database of s. This projection contains the set of sequences containing the sub-sequence s fromwhich all itemsets
preceding s are removed. Then PrefixSpan scans this projected database to compute the support of all (k+1)-
sequences and selects the frequent ones. The depth-first strategy continues with building the projected database
of the first frequent (k+1)-sequence (w.r.t total order) starting from the projected database of s. These opera-
tions are recursively repeated in a depth-firstmanner until all sequential patterns are found. It is to notice that the
larger is a sequence, the lesser is the cost of computing the projected database. Pattern-growth algorithms have the
advantage of computing only sequences that appear in the database. This is a considerable gain in search space
size compared to approaches using candidate generation as GSP or even vertical approaches. The main limita-
tion of pattern-growth algorithm is the cost of building the projected database that can use a considerable amount
of memory. Some contributions proposed an optimization based on the usage of pointers to build projected
databases rather than making hard copies [121].

Lin and Lee [95] proposed the MEMory Indexing for Sequential Pattern mining (MEMISP) approach that
uses an all-in memory approach needing a single database scan and avoiding candidate generation. As its name
suggests, this algorithm uses an index data structure to store information about the frequent pattern. Figure 4.2.3
shows the indexes for patterns ⟨(30)⟩ and ⟨(30)(90)⟩. It is composed by the pattern occurrence position in the
sequence and a pointer the this later. Notice that the index structure does not refer to all sequences in the original
database. The MEMISP proceeds as follows. First, it scans the database once to maintain the entire database
in memory, to find frequent items and build their indexes. Then, the algorithm performs the following steps
recursively for each frequent (k)-pattern associated with an index: (1) counts the support for all existing (k+1)-
patterns extending the (k)-pattern by one item (2) for each frequent (k+1)-pattern, the algorithm computes its
index (fromthe indexof its (k)-patternprefix). Theseoperations are repeateduntil no frequentpatterns are found.
Notice that the Apriori property is used to prune non-frequent patterns. The main limitation of this approach is
that it has the maintain in memory the entire database in addition to patterns’ indexes. To be able to process
large database, the authors proposed to divide the original database into several chunks that can stick inmemory,
run the MEMISP algorithm and then scan the original database to compute the actual support. Experiments
showed that theMEMISP algorithmoutperformsbothPrefixSpan [120] andGSP [143]. However, this approach
is hardly relevant to huge databases as it needs greater memory consumption.

The former sequential pattern mining approaches aim to find all sequential patterns based on algorithmic im-
provements and novel databases representations. In order to accelerate the mining process, reduce the pattern
flooding problem and make long patterns discovery feasible (from a memory consumption perspective), many
contributions have proposed to discover subsets of frequent sequences directly. They use constraints meeting
the end-user interest and the conciseness interestingness. Indeed, the algorithms described above may integrate
a post-processing phase to compute maximal patterns (or other conciseness criteria), but all of them are devised
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Figure 4.2.4: Backward sub-sequence and backward super-pattern based pruning. Tree’s nodes are repre-
sented as sequence : support.

to mine all frequent sequences. The integration of constraints permits to provide pruning criteria permitting to
accelerate the mining process by several orders of magnitude and make the result set more easily interpretative
as containing less and more accurate (w.r.t the user) patterns.

Among the used constraints, several works proposed to mine directly concise representations of frequent
sequential patterns. These contributions aim to discover straightforwardly a subset of frequent sequential pat-
terns that is considered to be enough informative for the user’s task. One kind of concise representation is that
of maximal patterns (that we already defined higher). Many contributions have tackled the problem of mining
straightforwardly maximal patterns, e.g. [6, 39, 45, 48, 57, 98, 99]. One limitation of maximal patterns is that
they loose information. Indeed, all sequential patterns can be extracted from the set of maximal patterns, but
their support needs a database scan. Another subset of frequent sequential patterns is that of generator patterns
[46, 56, 79, 96, 125]. A sequence s is said to be generator if there is no sub-sequence ssub ⊑ s having the same
support as s. Another commondefinition, uses the concept of equivalence class introduced byPasquier et al. [118]
for frequent itemsets mining. An equivalence class contains all patterns supported by the same set of sequences.
Generator patterns are the minimal members of an equivalence class. The maximal members of an equivalence
class are called closed patterns that are the third representation that we treat. A closed sequential pattern s in a set
of patterns S is a pattern such none of its super-sequences in S have the same support.

The subset of closed patterns is interesting as it provides a lossless representation of the set of frequent se-
quences. That means that the support of every frequent sequence can be derived from the set of closed frequent
sequences. This is not the case for maximal patterns. The first work dealing with the problem of closed frequent
sequence mining is CloSpan of Yan et al. [162] that extends the PrefixSpan. The integrated closure checking
permits to perform efficient search space pruning based on backward sub-patterns and backward super-patterns.

In Figure 4.2.4 the support of sequence ⟨{b}{a}{c}⟩ is 3. Thedepth-first strategy using the lexicographical or-
der explores this pattern (and its super-sequences) before ⟨{c}⟩ that have the same support than ⟨{b}{a}{c}⟩.
This means that every occurrence of c in the database is involved in pattern ⟨{b}, {a}{c}⟩. Thus any super-
sequence having c as a prefix can not be closed: it will be included in a sequence previously obtained by extending
the ⟨{b}, {a}{c}⟩ sequence. Moreover, they will have the same support. As a consequence, the algorithm can
avoid computing any extension of sequence ⟨{c}. ⟨{c}⟩ is said to be the backward sub-pattern of ⟨{b}, {a}{c}⟩.
The same reasoning can be applied to backward super-pattern of Figure 4.2.4. Among further contributions,
some extends also the PrefixSpan algorithm as[154, 155] and others uses the vertical database representation as
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Figure 4.2.5: Graphical representation of a Delta pattern [165]

[53, 65, 90, 148].
Another type of constraints that can be used in sequential patternmining is that of contextual constraints. They

differ fromconcise representation constraints by the fact that the end-user defines them following its prior knowl-
edge. They permit to obtain a sub-set of frequent sequences fitting previously known properties. The exploration
process can then benefit from these constraints to perform search-space pruning (rather than applying them in
a post-processing stage) to gain in efficiency. Pei et al. [122] studied the incorporation of several constraints in
the frequent sequence mining process such as Maximum/Minimum length constraint, Item constraints (selection
of items to appear in a pattern) or Aggregate constraints. Other works (e.g) [8, 58, 59, 66] utilized user-given
regular expressions. Another form of constraints that are more relevant to the present work is that of temporal
constraints. They are user-defined conditions on temporal relations between itemsets in a sequence. The most
known temporal constraints are min-gap, max-gap and duration (i.e time lag between the first and last item must
be less than a specified threshold). Algorithms such as the early GSP [143], or more recent works, e.g. [20], had
used such constraints.

Quantitative sequential patterns

It is to notice that sequential pattern as defined by Agrawal and Srikant [4] are purely quantitative patterns. All
works use the pattern definition cited previously. An exception can be made for algorithms using temporal con-
straints that are, somewhat, temporal information indicating sequential temporality. However, this information
is not discovered but is user-given, yet, it is not to be considered as novel knowledge.

Few contributions are interested inmining quantitative frequent sequences. The problem of mining quantita-
tive patterns can be calledTemporal SequenceMining and is to be considered as an extension of Sequential Pattern
Mining. To the best of our knowledge, Yoshida et al. [165] were the firsts to model quantitative patterns and
to propose a method to find frequent time lags. They proposed the Delta pattern model where duration between
neighbouring itemsets in a pattern is modelled as a range. They are defined as follows. Let I be a set of symbols
and SDB a timestamped itemsets sequence database over I. A delta pattern is a sequential pattern:

DP = ⟨(Xi,Δi)⟩

where Xi ⊂ I and Δi = [mini,maxi] such that time lag δt between Xi and Xi−1 is between mini and maxi. A delta
pattern supports a sequence S = ⟨(Yi, ti)⟩with Yi ⊂ I and ti ∈ R+ if ∃p1 < p2 < p3 < ... < pn such that X1 ⊂
Yp1 ,X2 ⊂ Yp2 ...Xn ⊂ Ypn and min2 ≤ tp2 − tp1 ≤ max2...minn ≤ tpn − tpn−1 . Figure 4.2.5 provides a graphical
representation of a Delta Pattern.

Yoshida et al. [165] proposed a breadth-first candidate generation algorithm similar to GSP that maintains lag
information and integrate temporal constraints. In order to find frequent Delta patterns, the authors proposed
to perform clustering, based on a CF-Tree [173], on time lag between successive itemsets. The CF-Tree is built
during the scan of the database. As all breadth-first exploration, the proposed algorithm suffers from multiple
database scans that can slow significantly the mining process.
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Another early work is that of Chen et al. [26] where quantitative information is represented as single value
reporting on an exact time lag. They proposed both an Apriori candidate generation, I-Apriori, and a pattern-
growth, I-PrefixSpan, approaches. The main limitation of this work is considering the exact time lags. Indeed,
temporal successions of events may come with slight temporal variations that cannot be captured with this ap-
proach. For example, say that a pattern ⟨{a}{b}⟩ occurs with time gaps that slightly vary from 2 to 4 time units.
The algorithm will count support for 2, 3 and 4 separately. The support of each of these time-lagged occurrences
may not fit the coverage criteria leading to an underestimation of the ”importance” this item succession. To solve
this problem, Chen andHuang [25] proposed to use fuzzy logic to use a set of linguistic terms such as Short, Mid-
dle and Long defined withmembership functions. For example, the term Short can be defined with the following
function:

μShort(t) =



















1 t ≤ 2
15− t

13
2 < t < 15

0 t ≥ 15

Thesemembership functions are used in order to determine the degree at which a sequence supports a particular
pattern. Using an adequate fuzzy-support, the authors proposed an Apriori algorithm, FTI-Apriori, devised to
discover fuzzy sequential patterns. An example of such patterns can be: (a, Short, b, Long, e) denoting that a is
shortly followed by b and e follows after a long interval. It is to notice that patterns given by this approach cannot
be qualified entirely as quantitative as they do not provide numerical values for temporal information. Moreover,
user given membership functions for temporal semantics may be difficult to set.

Following the same logic, Hirate and Yamana [80] proposed to use a user-defined time granularityΔ to group
patterns occurrence that fit into intervals of interest. For example, say that the user wants to assess a pattern a
then b with a Δ of 1 day, all occurrences of b following a within 1 day will be counted together, occurrences of b
following a between 1 and days are considered together, and so on. They proposed an extension of PrefixSpan,
including the time granularity parameter. Again, this approach does not discover typical time lags but assesses
the support the frequent sequences w.r.t to a user-given granularity.

Giannotti et al. [62] [63] proposed the Temporally Annotated Sequence (TAS) pattern model where quantita-
tive information refer to a typical time lags. They are defined as follows.

Given a set of items I, a temporally annotated sequence of length n [...] is a coupleT = (s, α)where
s = {s1, s1, ...sn} is a ordered list of itemsets ∀i ∈ [1, n], si ⊂ I and α = {α2, α3, ...αn} is an ordered
list of temporal annotation such that αi is the time lag between si−1 and si.

A B C
αb αc

Figure 4.2.6: Graphical representation of a Temporally Annotated Sequence [62]

Figure 4.2.6 is the representation of a 3-TAS between A, B and C. The containment relation between tempo-
rally annotated sequences is defined w.r.t a time threshold τ. A TAS T1 = (s1, α1) is contained in an other T2 =

(s2, α2) if (s)1 is a sub-sequence of (s)2 and its itemsets time lags correspond to their corresponding itemsets inT2

with a variationof atmost τ. Letus considerT1 = (⟨{a}, {b}, {c}⟩, ⟨5, 9⟩) andT2 = (⟨{a}, {b, d}, {f}, {c, g}⟩, ⟨3, 3, 6⟩)
represented as follows:

T1 : {a} 5−→ {b} 10−→ {c}
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T2 : {a} 3−→ {b, d} 3−→ {f} 6−→ {c, g}

In this example, s1 is a sub-sequence of s2. T1 is not contained in T2 for τ = 0: time lag between {a} and {b} is
5 for T1 and 3 for T2. T1 is contained in T2 for τ = 2. Notice that the time lag between {b} and {c} in T2 is the
sum of time lags of consecutive itemsets 3 + 6 = 9. It is to notice that a frequent qualitative sequence (without
annotations) may not lead to a frequent TAS if its occurrences in the sequence database have sparse time lag not
allowing annotations α to be close enough from each other inRn

+ for a sequence with n itemsets. In this case, the
frequent sequence has no typical temporality. The process of mining TASs is devised to group sequences having
similar annotations. Thus, a frequent sequence whose annotations are dispersed will not lead to any frequent
TAS. The authors proposed to see this task for a fixed-length sequence as a density estimation problem. For a
given n-sequence T, each of its occurrences annotations can be associated with a single point in Rn

+ where each
temporal annotation corresponds to a dimension. Considering the inclusion property of parameter τ, if there
exists a typical annotation (or temporality), sequences points in Rn

+ will be included in a dense hypercube with
sides of length 2τ. This main idea was integrated into a PrefixSpan extension, calledMiSTA. It performs the same
steps as PrefixSpan for the depth-first exploration (including projected databases) and perform density estima-
tion to find specific annotations. The algorithm also prunes infrequent annotations to speed up the exploration
process.

Sequential rule mining

One interesting extension of the sequential pattern mining problem is that of sequential rules that is an extension
of the well studied Association Rule Mining. A sequential rule between a premise A and a conclusion B is noted
A → B and reports on a sequential relation: A is followed by B. A sequential rule is generally associated with a
traditional support in addition to a confidence measure defined as:

conf(A→ B) =
supp(⟨A,B⟩)
supp(⟨A⟩)

The confidence measures the conditional probability of obtaining B after the occurrence of A.

A B
conf(A→ B)

Confidence can be considered as a Reliability interestingness measure according to Geng and Hamilton [60]
taxonomy.

Definition 18 (Reliability[60])
A pattern is reliable if the relationship described by the pattern occurs in a high percentage of applicable
cases.

Sequential rules address the main limitation of sequential patterns. Indeed, even if a sequence may frequently
appear in a sequence database, it may have a low confidencemeasure. As a consequence, frequent sequencesmay
have low predictive power. The confidence assessment of sequential rules, in addition to the support, provide
information about the reliability of succession of items which is a key insight for prediction and decisionmaking.
A sequential rule is, then, considered to be interesting if its support and confidence are respectively greater than
user given minimum support and minimum confidence. Several variations of the sequential rule mining from
sequences databases problem exist.
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The first category of sequential rules is that considering the premise and the conclusion to be sequences:
A → B such that A = ⟨{X1,X2...Xn}⟩ and A = ⟨{Y1, Y2...Ym}⟩ where ∀Xi, ∀Yj,Xi ⊂ I, Yi ⊂ I. The first
work addressing this problem was proposed by Spiliopoulou [142], whose idea is to extract sequential rules in
post-processing aftermining the full set of frequent sequences. Some redundant rules are pruned in a post-mining
phase. Later, Lo et al. [97] investigates the extraction of a compressed and non-redundant set of sequential rules
considering smaller representations of frequent sequences as the set of generator patterns or closed patterns.
Authors claimed a huge improvement on scalability and a significant reduction of the number of found rules
(avoiding pattern flooding) in comparison with extracting the full set of rules from the full set of frequent se-
quences. However, the proposed algorithm also performs rule extraction as a post-processing phase. Van et al.
[149] proposed two algorithms as improvements for mining the full set of sequential rules. The first approach
MSR-ImpFull uses an ascending sort of frequent sequences w.r.t to their size so that sequences havingX as a prefix
are located after X. For a sequence s, the algorithm passes over the following sequences and tries to form rules
having s as premises. The second algorithmMSR-PreTree uses a pattern-growth algorithm to build a prefix tree of
frequent sequences. It uses a depth-first exploration to compute sequential rules. An extension of this algorithm,
IMSR-PreTree, was proposed by the same team [150]. It mainly includes pruning techniques in the prefix tree
exploration based on the following theorem

Theorem 1 ([150])
Given three nodes n1, n2 and n3 in a prefix tree such that n1 is the parent of n2 and n2 is the parent of n3. If
sup(n2)

sup(n1)
< minconf then

sup(n3)

sup(n1)
< minconf.

This theorem states that if Y is a child node ofX and
sup(Y)
sup(X)

< minconf then all child nodes of Y, Zi, cannot form

a rule with X. This theorem is used for pruning, potentially large, portions of the prefix-tree which accelerate the
exploration process.

The second category of sequential rules A → B considers sequence premises A = ⟨X1...Xn⟩ with ∀i,Xi ⊂ I
and an itemset as a conclusion B ⊂ I as a conclusion [30]. Chen and Lee [30] proposed a projected database
approach. For each k-sequence projected database, the algorithm builds (k+1)-sequences projected databases
and computes frequent itemsets. A sequential rule is generated with the k-sequence s if a frequent itemset i is
found in its projected database of the form s→ i and is considered as a result if its confidence is greater than the
minimum user-given threshold.

Another category of algorithms is that of sequential rules between itemsets: A → B such that A ⊂ I and
B ⊂ I [43, 44, 47].The items inA andB are not ordered. Let us illustrate this with the following simple sequence.

⟨{a}{b}{c}{d}⟩

Examples of sequential rules supporting this sequence are: {a} → {d}, {a, b} → {c} and {a, b} → {c, d}
To the best of our knowledge, the first work to address this problem was Fournier-Viger et al. [43] with CM-
Rules. Their main idea is to consider a sequence database (with temporal information) as a transaction database
that ignores temporal information (i.e. a sequence is considered as an itemset), find association rules with an
algorithm such as Apriori of Agrawal et al. [5] and finally scan the original temporal sequences database to com-
pute sequential support and confidence to eliminate rules that not correspond to sequential relations. The main
limitation of this algorithm relies on the number of intermediate discovered association rules. The larger is this
number, the more extracting sequential rule is executed with a greater cost. Moreover, this approach may gener-
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ate a large number of association rules corresponding to no frequent sequence in the database. Another approach
proposed by the same team proposed RuleGrowth [44] that is a PrefixSpan extension and ERMiner [47] using
the equivalence class concept discussed higher.

4.2.2 Patterns from a single sequence

The secondmain category of temporal patternmining problems concernsmining patterns froma single sequence.
They either temporally describe a single subject attributes/events over timeor attribute/events generated bymul-
tiple subjects without any separation between them. While sharing similar modelling concerns with pattern dis-
covery from sequential databases (e.g. pattern models), extracting patterns from a single sequence poses several
different theoretical issues. In the remainder of this section, we refer to a single sequence as a temporally ordered
list of items belonging to a set of symbols I:

S = ⟨(A1, t1), (A2, t2)...(An, tn)⟩

where ∀i,Ai ∈ I, ti ∈ R+ ≤ ti+1. Tb and Te will denote the starting time and the ending time of a sequence,
respectively. As a consequence, ∀i,Te ≤ ti ≤ Tb.

One of the early, and famous, contribution in this fieldwas proposed byMannila andToivonen [101]with the
well known EpisodeMining problem. Episodes are defined as follows. An episode α is a triple (V,≤, g)whereV
is a set of nodes,≤ is a partial order on V and g : V→ I is a mapping associating each node of V to a symbol in I.
This definition comes with a straightforward inclusion definition. Informally, an episode A is a sub-episode of B
if it includes all nodes of B respecting the order≤. Notice that serial episode (i.e. with≤ is a total order) can be
associated with sequential patterns, while parallel episodes (where≤ is trivial) to itemsets.

Generally speaking, with single sequences, the frequency cannot be assessed straightforwardly with the tradi-
tional sequential patternmining support. As a consequence, there is a need to partition this sequence to obtain a
coveragemeasure. This is a commonproblem for all discovery algorithms for single sequences. To solve this prob-
lem, the authors proposed a time window-based coverage interestingness measure. A window (w, tb, te) of sizew
in S can be formally defined as a sub-sequence of S containing the pairs (Ai, ti) such thatTb ≤ tb ≤ ti ≤ te ≤ Te.
Notice that the size of the setW(w, S) of all windows in a sequence S is given by |W(w, S)| = Te−Tb +w+ 1.
Semantically, a user-defined time window size denotes how close items in a sequence has to be in order to be
relevant for the user. It can also be considered as a temporal constraint. The frequency of an episode α is then
defined w.r.t to the fraction of windows in which the episode occurs:

f(α, S,w) =
|(w, tb, te) ∈ W(S,w) such that α occurs in (w, tb, te)|

|W(w, S)|

An episode is, then, frequent if its frequency is larger than a user-given minimum frequency minfr. Notice that
the support and frequency do not have the same semantics meaning. The support reports on the number of
occurrences in a given sequence sample (in a sequence database) while the frequency can be interpreted as the
probability that a randomly chosenwindowcontains an episode. The following example highlights the difference.
LetA→ B be an episode. Assume that the analyzed sequence contains an occurrence ofA, followed by Bwith a
time lagof 2 timeunits. Say that theuser defines a timewindowof 10 timeunits. Hence, this occurrenceofA→ B
will contribute at least 5 times to the frequency measure: one for each successive window of length 10. On the
other hand, it contributes by one unit to the occurrence counting support. Notice also that different frequency
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scores as defined byMannila andToivonen [101] are obtained for different window sizes: an occurrence ofA→
B contribute with one unit to the frequency with a window size of 3.

Mannila andToivonen [101]proposedafirst algorithm,WINEPI, using this frequencymeasure. It is abreadth-
first candidate generation algorithmdevised to discover the full set of frequent episodes using the Apriori property
for pruning. An interesting thing to notice is that WINEPI reduces the problem of mining a single sequence to a
sequential pattern mining problem. Indeed, if one builds a sequence database where each sequence corresponds
to a time window in a single sequence, finding frequent episodes (in the sense of Mannila and Toivonen [101])
comes to find frequent sequential patterns (in the sense of [4]). One drawback of WINEPI is that it has to scan
the entire sequence at each iteration to compute the frequencyof episode candidates. This operation is very costly
if the number of candidates is large. We refer the reader to the original work for further algorithmic details as it is
very similar to former algorithms description.

In the same work [101], the authors also proposed to compute episode rules from the set of frequent episodes.
An episode rule is an expression α⇒ β such that α is a sub-episode of β having a confidence given by:

conf(α⇒ β) =
f(β, S,w)
f(α, S,w)

Theepisode rule generation is done in a post-processing phase with the complexityΘ(n2)where n is the number
of frequent episodes. It consists simply of checking for each pair of frequent episodes, α and β if α is a sub-episode
of β and compute its confidence measure. If this confidence is greater than a user-given minimum confidence
threshold, it is outputted as a result.

In this work, authors also proposed an alternative approach,MINEPI, to assess episodes’ interestingness with
a support using the minimal occurrences concept. Given an episode α and a sequence S, a minimal occurrence
of α is a time interval [tb, te) in which α occurs such that there is no proper sub-interval of [tb, te) containing
α. The MINEPI algorithm is also an Apriori breadth-first algorithm that stores minimal occurrences of each
episode. More precisely, it scans the sequences once to store minimal occurrences of episodes of size 1. After
that, pairs of frequent episodes of length k are used to build episodes of length k+1. Minimal occurrences of
the (k+1)-candidates are computed using a temporal join of minimal occurrences of the two frequent k-episodes
(for serial episodes). This processmay remind the reader of vertical database representation for sequential pattern
mining. The main drawback of MINEPI is its memory consumption that can make discovering large episodes
infeasible. Indeed, the storage of minimal occurrences can even be larger, in terms of memory cost, than the
original sequence, especially within the first iterations. Sequential rules derived from episodes given theminimal
occurrences approach can, contrary to WINEPI results, contain temporal information. For example, if α is a
frequent episode with known minimal occurrences ⟨[tbi, tei)⟩ and β a frequent sub-episode of α with minimal
occurrences ⟨[tbj, tej)⟩, it is possible to build episode rules of the form:

β[w1]⇒ α[w2]

The interpretation of this rule is the following: if β has a minimal occurrence in an interval [tb, te) smaller than
w1 then α occurs at interval [tb, t′e) with t′e − tb ≤ w2 with a confidence conf. Computing the confidence of this
rule can be done in one pass throughminimal occurrences of α and β. For eachminimal occurrence of β, [tbj, tej)
with tej − tbj < win1 the algorithm locates the first minimum occurrence of α, [tbi, tei) such that tej ≤ tei and
tei − tbj ≤ win2.

One main limitation of window-based approaches is that they are not suitable to discover large patterns. In-
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A B C
≤ tus ≤ tus

Figure 4.2.7: Episodes obtained using the time unit separation constraint [23]

deed, for both WINEPI and MINEPI, the window size is a temporal bound on the overall episode, which is
limiting if an interesting succession of events stands in a single sequence. This can be a limiting aspect for appli-
cations such as trajectory discovery. To tackle this issue, Casas-Garriga [23] proposed a new frequency measure
using a temporal constraint, called time unit separation and noted tus, instead of window size. This constraint is
the same as themaximumgap constraint for sequential patternmining. It defines themaximum time lag between
successive events (for serial episodes). This way, episodes can be extendedwith no overall time limit. A graphical
representation is depicted in Figure 4.2.7. In this example, tus specifies the maximum time lag between A, B and
B,C. One can infer straightforwardly that themaximum time lag betweenA andC is 2∗ tus. Authors proposed an
algorithm EpiBF that implements a Best-first strategy [19]. It proceeds as follows. First, the algorithm computes
the set of all episode candidates of size 2 and the set of potential candidates of size 3. Then, the algorithm scans
repeatedly the sequences to compute the support of candidate episodes until this set is empty. In this process,
when an episode of size k becomes frequent w.r.t the user-givenminimum support, it ’notifies’ its super-episodes
of size k+ 1 in the set of potential candidates. If a potential candidate of size k+ 1 has two frequent sub-episodes
of size k (obtained by dropping either the first item or the last item), it is added to the set of candidates, and its
support begins to be counted. A candidate is not considered anymore if the continuous sequence scan comes to
the point where the counting started for this episode.

Another extension of episode mining was proposed by Laxman et al. [89] that proposed another frequency
measure based on non-overlapping episode occurrences.

Definition 19 (Non-overlapping episode occurrences [89])
Two occurrences of an episode are said to be non-overlapping if no event associated with one appear in
between the events associated with the other. The frequency of an episode is defined as the maximum
number of non-overlapping episode occurrences in the event sequence.

Given this definition, one can remark that non-overlapping frequent episodes are a subset of frequent episodes as
defined by Mannila and Toivonen [101] or Casas-Garriga [23]. One primary motivation behind this definition
is that an event must belong to at most one episode occurrence and that episode occurrences cannot be overlap-
ping. Indeed, authors in that work proposed to formally use episode and episode rules to build a particular class
ofHiddenMarkovChains (HMM) calledEpisode GeneratingHMMs. Authors claimed in their work thatHMMs
generated from themost frequent episodes aremuch likely to generate a given sequence. The algorithmproposed
by the authors implements an automata-based counting approach. While scanning an event sequence, the algo-
rithm maintains an automaton per episode candidate whose states corresponds to episode nodes. Whenever an
event A is found in the sequence, all automatons waiting for event A are incremented (passes to the next state).
When the final state is reached, the episode count is incremented by a unit, and the corresponding automaton is
reinitialized.

Episodemining can also support conciseness measures. Harms et al. [77] proposedGen-FCE andGen-REAR
to discover respectively frequent closed episodes and generate rules (called Representative Association Rule) from
the set of frequent closed episodes. The authors used a Formal Concept Analysis approach associated with a
sequence database built w.r.t a window size. This approach has similarities with WINEPI: each time window in
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the event sequence is considered as a database entry.
Harms and Deogun [76] proposed to extend episode rules as given by MINEPI with a time lag between the

the premise and the conclusion sequences. These time lagged episodes are noted α[w1] ⇒lag β[w2] where α and
β are constrained episodes (i.e α occurs within a time windoww1) and lag is the delay between the occurrence of
the premise α and the conclusion β. It is to notice that lag can be either a fixed time lag or a maximum time lag
constraint. The proposed algorithm,MOWCATL, is mostly inspired by theMINEPI algorithm and usesminimal
occurrences storage. The rule generation phase is done via the precedent algorithmGen-REAR. To the best of our
knowledge, this contribution is the first to propose a, somewhat, quantitative episode rule. Indeed, it includes, in
the case of the fixed time lag constraint, a time delay information. However, this approach may be non-efficient
to extract strong quantitative relationships for twomain reasons. First, Premises and conclusions in episode rules
are only temporally constrained by a time window: it does not provide any information about time lags between
intra-episodes events. Second, considering the exact time lag is somewhat limiting as temporal phenomena often
occur with slight temporal variations. As a consequence, this approach may miss interesting temporal relations.
This aspect is captured using the maximal time lag constraints but is general and comes with significant loss of
temporal information (is there one or various typical time delays? what is the time delays distribution?).

One of the first contributions dealing with mining quantitative patterns from a single point-based sequence
was proposed by Dousson and Duong [34]. In that work, authors used the chronicles formalism [35] that is
defined as a pair (S,T) where S is a set of labels and T is a constraint graph on instances of S where nodes cor-
responds to events in S and edges correspond to temporal constraints taking the form of an interval [lmin, lmax]

where lmin, lmax ∈ Z and lmin < lmax. Follows a graphical example:

A B C

D

[0, 4] [3,∞[

[5,∞][−2, 4]

It is to notice that this patternmodel is very similar toDelta Patterns that we discussed earlier. Themain differ-
ence relies onendpoints of temporal constraints that have tobepositive forDeltaPatternswhileChronicles support
negative and infinite bounds. As a consequence, Delta Patterns are limited to sequential pattern while Chronicles
are not. Chronicles can be seen as episodes (containing both serial and parallel relations) that are extended with
time lag information. In that preliminary work, the authors proposed the FACE algorithm (breadth-first candi-
date generation). However, this algorithm is not complete. As for a set of event types, the algorithmwill discover
a unique chronicle (the most general one) while several can exist. Several algorithms using the chronicle formal-
ism have also been proposed among which HCDA [31] that is devised to obtain the complete set of frequent
chronicles or [151] [32] for the discovery of discriminant chronicles, i.e. frequent patterns are used to discrimi-
nate between two sequences groups: the chronicle appears in the positive group anddonot appear in the negative
one. (Chronicles was also used for sequential databases mining [14] [83] [138] )

Ma andHellerstein [100] proposed another form of quantitative patterns. The authors designed an algorithm
to discover partially periodic associations, called p-patterns. A p-pattern describes a set of symbols, noted IS,
occurring frequently (w.r.t a minimum support) and periodically with a period p and a time tolerance δ. The
support of a p-pattern is computed w.r.t to successive occurrences, called inter-arrivals. The authors proposed
to discover significant periods based on a Chi-squared statistical test of independence. This test compares the
support of an inter-arrival timewith the number thatwould be expected froma randomsequence of inter-arrivals.
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Two algorithms were proposed to discover p-patterns based on two main steps: (1) find temporal associations,
and (2) find statistically significant periods. Temporal associations are found thanks to an Apriori candidate
generation algorithm that is largely similar to the window-based episode mining approach. Significant periods
are discovered as follows. For a given itemset the sequences are scanned to count occurrences of all inter-arrival
values (this operation is done in Θ(n) with n number of events in the sequence). The support of each inter-
arrival time is adjusted w.r.t δ to group similar time lags. Then, the statistical threshold thresh is computed and
compared to the empirical support sup. If sup ≥ thresh, then the p-pattern is considered as statistically significant.
The authors proposed two main approaches using the former algorithm steps. The first, called Period-First, finds
significant periods for each item and then computes temporal associations (p-patterns of itemsets). The second
algorithm, Association-first, uses the inverse strategy. The authors argue that Period-First is more efficient as it can
use early pruning on time periods. On the other hand,Association-first is more robust to sequence noise. Indeed,
one drawback of using inter-arrival-based support is that any noise item placed in between the occurrence of a
periodic pattern generates two ’false’ inter-arrival times and avoid the one ’true’ occurrence. As a consequence,
mining association with a window-based algorithm avoid early period-based pruning.

Li andMa [93] extended the formerwork to discover pairwise event dependencieswith statistically significant
time lags. They proposed a two-stage approach. The first one consists of a statistical preprocessing stage that
eliminates unpromising time lags to reduce the search space. For a relationA beforeB and a time lag r it estimates
the time lag distribution ofB from a randomly chosen time points in the sequence. It is compared to an estimated
conditional distribution of time lags between eventsA andA. IfA andB are not temporally correlated, the former
two distribution must be equal. If so, time lag r is pruned and considered as non-promising. The second stage
consists of identifying statistically valid time lags using the approach introduced in [100] for periodic patterns
(with the use of the chi-squared test). This approach is also based on inter-arrivals that can be inefficient with
noisy data or with overlapping occurrences.

This former problem was addressed by Tang et al. [145] who designed STScan for the discovery of pairwise
dependencies between events where quantitative information is given as a range. This algorithm is based, as for
the work of [100] and [95], on the support statistical assessment. More precisely, a dependency A→r B where
r = [tmin, tmax] is the time lag range, is statistically significant if the number of the successions AB with a time
lag within r, noted nr, exceeds the minimum required number according to the χ2 test of independence. This test
measures the degree of independence comparing the observed nr and the expected one under the independence
assumption. A time lag is said to be qualified (or significant) for a temporal relation, if its the support exceeds a
minimum support threshold minsup and its χ2 statistics is higher than a minimum threshold χ2

c . As the authors
aim is to discover time-lagged dependencies without a direct succession constraint (inter-arrival), a brute force
algorithm must test every possible time lag range r which is not affordable for large sequences To improve the
discovery process, STScan utilizes a sorted table, built in one sequence pass, that maintains all possible time lags
and their corresponding occurrences. STScan also reduces the search space considering a higher bound on the
size of r that is computed thanks to the minimal threshold χ2

c . This minimal interval length can be seen as a
temporal constraint.

More recently, contributions as [156, 170, 171] tackled the problem of discovering pairwise dependencies
with multiple and fluctuating time lags. Indeed, in many real cases, (1) multiple time lags between two events
types can exist and (2) the typical time lag of a phenomenon can fluctuate due to multiple factors (e.g., inherent
phenomena temporal variability, missing values, acquisition noise). In these works, the time lag between two
events ismodelled as a normal distributionN (μ, σ2)where μ is the actual time lag and σ the variance representing
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the fluctuations. These contributions utilize an expectationmaximization-based (EM) approach to find time lags
with maximum likelihood. Notice than with this framework does not provide any interestingness criteria that
may indicate the strength of a temporal dependency.

4.3 Interval-based patterns

Time intervals report on temporal events/attributes lasting in time. Temporal patternmining from interval-based
data aims to discover temporal relations between several interval types/labels from interval-based temporal data.

One main difficulty posed by the use of intervals is the induced pattern language. Indeed, contrary to point-
based data supporting simple relations (before, after, co-occurrence), 13 possible relations can stand between a pair
of intervals. As a consequence, temporal relations between multiple intervals are more challenging to model
efficiently with enough expressive power. We refer the reader to Höppner and Peter [82] work for a detailed
interval-based expressiveness study. Besides, regardless of exploration strategies, using Allen’ relationsmakes the
search spacemuch larger than for point-based sequential patternmining [11]. Instead ofmaintaining one relation
support (before), interval-based approaches must count occurrences of 7 possible temporal relations.

In the following section, we will consider several expressivity criteria, that can be encountered in the literature
(e.g. [82] [78]) to assess the quality of pattern languages.

• Completeness. A pattern language is said to be complete if it permits to infer the 13 possible temporal
relations between intervals. Notice also that the degree of completeness defines the search space size for a
pattern mining problem.

• Ambiguity. A pattern language is qualified as ambiguous if a pattern expressed in that language can sup-
port different interpretations. This criterion may be referred to also as Concurrency. We distinguish two
forms of ambiguity. The first is the qualitative ambiguity referring to cases where a pattern can support
several qualitative interpretations. The second is the quantitative ambiguity referring to patterns that can
support different interpretation in terms of time gaps and interval duration.

• Inelasticity. One main drawback of Allen’ qualitative relations is that they are susceptible to small tem-
poral variations. For example, a during relationship can be transformed to begins withwith only a variation
of 1 time unit. Inelasticity can be a serious limitation for, say, a frequent pattern mining approach as very
similar successions of labelled intervals (describing the same temporal phenomenon) can lead to different
patterns that are counted separately. As a consequence, a temporal phenomenon may be missed by the
algorithm if neither of its temporal variations meets to minimum support threshold. This criterion is also
called Robustness

• Pattern size. We evaluate the size of a pattern involving k intervals as the minimum number of nodes and
edges that would be necessary to represent a pattern as a directed graph. In these graphs, a node denotes a
symbol (intervals label), and an edge denotes the temporal relations between them.

In the following section, we will describe themain interval-based patterns languages and their associatedmin-
ing approaches. As for point-based temporal patternmining, we will principally categorize approaches w.r.t their
input data format (i.e. sequence databases or single sequence). In addition to this, we will distinguish between
quantitative and qualitative pattern models and discuss their expressive power.
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Figure 4.3.1: A sequence of intervals

Webegin with a rapid common formal definition of interval sequences that will be used for the rest of this sec-
tion. Let I = {i1, i2, i3, ..., in}be a set of symbols denoting interval types. An intervalEk is pairEk = (ik, [tbk , tek))
where ik ∈ I is the label of E and [tbk , tek) its interval temporal anchor. In some works, intervals are considered to
be closed [tb, te]. However, we will use the right-opened intervals as an unified definition (for reasons described
in Section 2.1) as these differences do not impact the comprehension and comparison between different pattern
models. For the sake of readability, wewill also denoteEk.ts as the first endpoint ofEk andEk.te as its second end-
point. An interval sequences is an ordered list of intervals Sint = ⟨E1, E2, E3, ..., En⟩. The ordering of intervals
may differ from a contribution to another. Some works considers total order of intervals using starting points i.e
∀k, tbk ≤ tbk+1 , while other considers the total order of ending points i.e ∀k, tek ≤ tek+1

4.3.1 Patterns from sequences databases

Qualitative Patterns

Most of the existing temporal pattern mining from interval-based data are interested in processing sequences
databases. This problem is very similar to the one posed earlier for point-based temporal data. These approaches
have as input a database of interval-based sequencesD = {(id1, S1), (id2, S2), ..., (idn, Sn)} where ∀k, Sk is an
ordered sequence of intervals and idk its identifier. The task of mining sequential patterns in interval-based se-
quences databases aims to discover patterns (defined w.r.t a pattern language) frequently occurring in a sequence
database.

To the best of our knowledge, Kam and Fu [85] was the first contribution to be interested to this problem.
They proposed a pattern language that the temporal arrangement of intervals as a composition of pairwise seed
relationships (X rel Y) where X, Y ∈ I and rel is an Allen’ relationship. For example, one can describe the se-
quence depicted in Figure 4.3.1 with the following formalism: ”(A overlaps B) overlaps (C before D)” or ”A
overlaps (B overlaps (C before D)”. As the number of such representations is exponential with respect to the
number of intervals, the authors proposed to discover a sub-set of these representation, called A1-pattern, taking
the form ((...(A1 rel1 A2) rel2 A3)... reln−1 Ak). For example, the sequence depicted in Figure 4.3.1 corresponds
to the following A1-pattern:

(((A overlaps B) overlaps C) before D)

This representation is rather useful to mine long patterns as it permits to explore the search space in a level-
wise manner. An A1-pattern, say X rel Y can be considered as a virtual interval with endpoints [tb, te) such that
tb = min(X.ts, Y.ts) and te = Y.te. As a consequence, the Allen’ relation between an A1-pattern and an interval
is computed similarly to the the relationship between two intervals. It is to notice that only 7 Allen’ relations
are used: reverse relations do not provide any additional information considering the proposed framework. Au-
thors proposed an Apriori-like candidate generation algorithm. The candidate generation is basically the same
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Figure 4.3.2: Ambiguity of A1-patterns. C1, C2 and C3 are cases of instances of interval C leading to
(((A overlaps B) overlaps C) before D)

as for sequential pattern mining and the Apriori property is used for unfrequent candidates pruning. The main
difference is that the algorithm evaluate which of the Allen’ relationships holds between an A1-pattern and the
extension candidate on the basis of intervals endpoints. This approach permit to emphasize the fact that interval-
based sequential mining is a more difficult task than its point-based version: a candidate pattern composed by a
A1-pattern of length k and a interval may generate, in the worst case, 7 frequentA1-patterns of length k+ 1. In that
same work, authors proposed also a second pattern model, called A2-pattern, and defined recursively as follows:
(1) a temporal pattern of size 2 is anA2-pattern (2) ifX is anA2-pattern and Y is a temporal pattern of size 2, then
X ref Y is an A2-pattern. As a consequence, A2-patterns are always composed by an even number of intervals. An
A2-pattern corresponding to sequence in Figure 4.3.1 is:

(A overlaps B) overlaps (C before D)

A2-patterns are discoveredwith a similar approach as forA1-patternswith the difference that candidate generation
uses seeds patterns of size 2 to extend frequent patterns of size 2k. One can notice thatA2-patterns are a subset of
A1-patterns.

The patternmodels proposed by Kam and Fu [85] can be considered as complete as they use the entire set of
Allen’ relations. They are also ambiguous. AnA1-patterns orA2-patterns between k intervals needs the specifica-
tion of k − 1 relations. We show in Figure 4.3.2 different interpretations of (((A overlaps B) overlaps C) before
D).The ambiguity problemmay lead to amisinterpretation of the resulting patterns but can also impact themin-
ing process as different arrangement of intervals can be counted together for an extension leading to potential
support overestimation. Later, ito et al. [84], Patel [119] extended this pattern model to reduce the ambiguity
problem. They proposed to augmente with an information about relations count to differentiate between differ-
ent interval arrangement. For instance, in Figure 4.3.2, C1 has 1 overlap (with B) and 0 meet, C2 has 2 overlaps
(with A and B) and 0 meet and C3 has 1 overlap (with B) and 1 meet. More precisely, they integrate the count
of 5 Allen relations to the A1-pattern model: contain (c), finish by (f), meet (m), overlap (o), start (s). Counts
are stored in an ordered vector [c, f,m, o, s] of length 1 where the first value contains the count for contain, the
second for finish by and so on. The former examples can be then represented as follows:

((A overlaps [0, 0, 0, 1, 0] B) overlaps [0, 0, 0, 1, 0] C1)

((A overlaps [0, 0, 0, 1, 0] B) overlaps [0, 0, 0, 2, 0] C2)

((A overlaps [0, 0, 0, 1, 0] B) overlaps [0, 0, 1, 1, 0] C3)

To discover this kind of patterns, authors proposed IEMiner [119]. It uses a breadth-first strategy with an op-
timized candidate generation for interval mining. For each enumeration level k, the algorithm extracts the set

66
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI061/these.pdf 

© [A. El Ouassouli], [2020], INSA Lyon, tous droits réservés



of frequent 2-patterns from frequent k-patterns. Candidates of length k + 1 are generated combining two fre-
quent k-patterns having the same prefix. Frequent 2-patterns are used to prune non-frequent candidates before
the support checking that is performed in one database scan.

The ambiguity problem was also addressed by Wu and Chen [160] who proposed to consider interval se-
quences as a sequence of point-based endpoints. An interval E = (i, [tb, te)) is represented as two endpoints
e+ = (i+, tb) and e− = (i−, te) where i+ and i− respectively denotes beginning and ending of event or state i.
As a consequence, interval sequences, and by extension interval-based patterns, can be represented as a series of
endpoints with relations before/after (<) or co-occurrence (=). An example of such representation corresponding
to sequence in Figure 4.3.1:

(A+, t1)(B+, t2)(A−, t3)(C+, t4)(B−, t5)(C−, t6)(D+, t7)(D−, t8)

with∀ti, ti ≤ ti+1. If two intervals of the same typeoccur in the same sequence, an additional index is appended to
interval endpoints. For instance, if two intervals A occur in a sequence, the endpoint representation will contain
endpoints A+

1 , A−
1 , A+

2 and A−
2 . This representation permits, somehow, to turn the problem of interval-based

patterns to a classical point-based sequential mining problem and permits to utilize existing approaches. The
authors proposed the TPrefixSpan algorithm that extends PrefixSpan to handle interval sequences. The main
difference stands in the candidate generation process where intervals, rather than endpoints, are used to extend
patterns and ensure non-ambiguity. This representation can also reduce the inelasticity problempartially. Indeed,
a small variation in intervals endpoints is less likely to change the relations between the two endpoints. Chen
et al. [27] also used this patternmodel for theCEMiner algorithm that is devised to discover closed patterns from
endpoint sequences. It uses a depth-first exploration strategy extending the BIDE [154] algorithm.

The endpoint representation approach was extended byMörchen and Fradkin [106] who proposed the Semi-
Interval Sequential Pattern (SISP).As its namemay suggest, authors proposed tomine interval-basedpatternbased
on the semi-interval formalism. The main difference between this work compared with the contribution of Wu
and Chen [160] is that a SISP is designed to express temporal relations between intervals, semi-interval (i.e.
intervals endpoints) and time point events. Authors utilize a closed sequential pattern mining algorithm (e.g.
BIDE) instead of mining the entire set of frequent sequential patterns. Follows some example of SISPs that can
be extracted from the sequence in Figure 4.3.1

p1 =A+B+A−B+

p2 =B+C−

p3 =C−D+D−

p1 is a pattern between intervals, p2 and pattern between two semi-intervals and p3 a pattern between an interval
and a semi-interval. However, using such generalization of the interval-based sequential pattern comes with am-
biguity. As endpoints are considered independently, SISP loses somewhat the inherent link between intervals
endpoints (contrary to in [160]). Figure 4.3.3 shows two interpretations of a pattern A+B+C+B−C−. Authors
also proposed the Semi-Interval Partial Order pattern (SIPO)model, that is a relaxed version of SISP in that do not
require the definition of all pairwise temporal relations between endpoints. Indeed, SIPOs define a partial order
between endpoints and can be defined as a directed acyclic graph. As a consequence, they may better handle the
inelasticity problem. SIPOs can be considered as ambiguous (but one can argue that they are designed to be so).
It is to notice the SISPs or SIPOs can express a larger set of patterns than Allen’ relation-based patterns.
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Figure 4.3.3: Ambiguity of the SISP pattern model. These two sequences support pattern A+B+C+B−C−

A B C D
A = o b b
B = o b
C = b
D =

Figure 4.3.4: Relationship matrix corresponding to sequence in Figure 4.3.7. o: overlaps, b: before. The
relationship between B and A is the inverse Allen relationship of the relation between A and B.

Similar to SISP, Wu and Chen [161] proposed the Hybrid Temporal Pattern (HTP) supporting both interval-
based and point-based data. As in the previous works, the authors proposed to transform interval sequences
into a sequence of endpoints. The main difference is that multiple occurrences of the same interval types are
distinguished using additional annotations. An interval of type A is denoted ⟨A1+A1−⟩ in the interval sequence
permitting to distinguish endpoints belonging to different intervals, e.g. (A1+ and A2−). As a consequence, the
ambiguity problem depicted in Figure 4.3.3 is resolved.

Winarko and Roddick [159] proposed the ARMADA algorithm that is devised to mine non-ambiguous pat-
terns. They adopted the RelationshipMatrix (RM) patternmodel that was introduced byHöppner andKlawonn
[81] in their work dealingwith single sequences. RM is known to be the firstnon-ambiguous interval based pat-
ternmodel. Its main idea is to specify the qualitative relationship between all pairs of intervals in a pattern. Thus,

the size of this representation for a pattern containing k intervals needs
n(n− 1)

2
relation specifications. An ex-

ample of a relationship matrix corresponding to the interval sequence of Figure 4.3.1 is depicted in Figure 4.3.4.
The algorithmic aspect of the work of Höppner and Klawonn [81] will be treated in the Section 4.3.2 as it is
out of the scope of the current section. The ARMADA algorithm is an extension of MEMISP [95] descried in
Section 4.2.1. ARMADA uses an extension of the MEMISP index that contains intervals instances that are nec-
essary to compute Allen’ relations while extending patterns. ARMADA uses also the same partitioning approach
to handle very large databases. In that work, authors also proposed to compute sequential rules from the set of
all frequent patterns. As for episodes [81], rules are depicted as X ⇒ Y where X is a sub-pattern of Y. For each
frequent pattern Y = ⟨s1, s2, s3, ..., sn⟩, there is at most n − 1 sub-pattern X of Y such that X = ⟨s1, ..., si⟩ with
i ∈ [1, n− 1]. For each sub-pattern X the confidence of the rule X⇒ Y is computed and considered as a result if
conf ≥ minconf. The algorithm processes sub-patternsX from i = n− 1 to i = 1 in order to perform pruning: if a
rule Xi ⇒ Y have a confidence lower than minconf then rules Xj ⇒ Y with j < i are not tested as they will have a
lower confidence. ARMADAalso include amaximumgap constraint. The gap between two intervals [tbi , tei) and
[tbj , tej) with tbi ≤ tbj is defined with tbj − tei . Notice that the gap between two intervals can be negative (e.g an
overlap relationship). If the user-given gap constraints is a positive integer, it affects only intervals with a before
relationship.

Another contribution using a similar pattern representation was proposed by Papapetrou et al. [117]. In that
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work, the authors proposed to use a more flexible version of Allen’ relations to reduce the inelasticity problem.
It consists of the use of an ε parameter to relax the temporal relations between endpoints (this approach was also
used in [107] that we discuss later).

Definition 20 ( ε-temporal relations [117] [107])
Let t1 and t2 be two time points and ε ∈ N a relaxation threshold. The temporal relations between t1 and
t2 considering ε are defined as follows:

• t1 co-occur with t2, noted t1 =ε t2 if |t1 − t2| ≤ ε

• t1 is before t2, noted t1 ≤ε t2 if t2 − t1 > ε.

We can argue that the use of the ε parameter is equivalent to consider a greater time granularity for the mining
process. That idea permits to reduce the inelasticity problem but comes with a loss of qualitative information
depending on the choice of ε, which needs domain knowledge. Notice also that a large ε parameter may reduce
time intervals to time points if |tb − te| ≤ ε which can be considered as information loss. Papapetrou et al.
[117] proposed H-DFS that explores an enumeration tree where each node is associated with the set of possible
arrangements (or RM). For example, a node {A,B}will contain all seven possible Allen relation between A and
B. HDF-S is inspired by the SPAM algorithm of Ayres et al. [17]. It uses both depth-first and breadth-first strate-
gies are used. It also uses the IDList vertical representation approach (cf. Figure 4.2.2). More precisely, HDF-S
uses a depth-first strategy for the first two levels of the enumeration tree to obtain frequent 2-patterns and their
respective IDLists. Then, H-DFS performs a depth-first strategy. It uses the Apriori property to avoid testing
every sub-pattern of a found frequent one. Maintaining IDLists of frequent 2-patterns (from the early breadth-
first exploration of levels 1 and 2 of the enumeration tree) permits to extend every k-pattern to a (k + 1)-pattern
without scanning the entire database to find pairwise relations. As the RM representation is a conjunction of
pairwise relations, the support computation and IDList build for a k-pattern can be done with temporal joins
between IDList of the (k-1)-pattern to be extended and IDList of frequent 2-patterns. This way, H-DFS benefits
from the advantages of both depth-first and breadth-first strategies. Authors also proposed to integrate temporal
constraints (maximum gap, interval duration) and structural constraints (overlapping and containment percent-
age) into the mining process. One main drawback of the former approach is the RM candidates generation that
considers all seven possible Allen’ relations, which slows down the discovery process.

This problem was addressed by Moskovitch and Shahar [107, 110] that proposed the KarmaLego algorithm.
It also uses the flexible Allen’ relations based on the ε parameter with the maximum gap constraints. KarmaLego
algorithm is composed of two steps Karma and Lego. Karma scans each sequence in the database to count the
occurrences of each existing pairwise interval relations (w.r.t ε) and keeps as results those meeting the coverage
criteria (support ≥ minsupport). This approach is mainly the same as ARMADA as it uses an index of all existing
patterns. Frequent pairwise patterns found byKarma are extended recursively by Lego using a depth-first strategy.
The authors proposed to speed up this exploration process using temporal transitivity to reduce the number of
generated extension candidates. Indeed, for each k-pattern extension, a naive approach may generate seven ex-
tension candidates (corresponding to Allen’ relations) for each of the k intervals. That leads to generate up to
7k possible candidates to be tested. However, the set of all possible extensions can include several contradictory
relations. For example, in Figure 4.3.1, we suppose that RelationshipMatrix for pattern ⟨A,B,C⟩ is known. If the
relation betweenC andD is known (before), one can infer the relation ofDwithA andB using their relationswith
C. For instance, A can not overlap D as A is before C and C is before D. Transitivity permits to infer this relation
straightforwardly: A before D. This notion was formalized as a transition table by Allen [10] and later by Freksa
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Figure 4.3.5: An interval sequence

[52]. Using transition tables, KarmaLego generates candidates recursively. More precisely, it generates possible
candidate relations between the last item of the to-be-extended pattern and frequent single intervals. At this stage,
the process is similar to the naive candidate generation. After that, for each possible candidate relation, the algo-
rithm computes recursively possible candidates w.r.t the transition table that returns only temporally consistent
candidates rather than the 7 Allen relations. This process permits to reduce the number of candidates for each
extension considerably potentially. The authors also proposed to perform an interval pre-clusteringw.r.t intervals
duration using an algorithm as k-means to append duration information to intervals labels. This process leads to
an increase in intervals symbols (each duration cluster is considered as a symbol) and by extension increases the
search space. Authors claimed that KarmaLego outperformsARMADA,H-DFS and IEMiner. Later, Moskovitch
and Shahar [108, 109] used the KarmaLego interval-based pattern algorithm to perform sequence classification.

Chen et al. [28] proposed another patternmodel, calledCoincidence Representation (CR). ACRcan be consid-
ered as an extension of both TSKR and SISP supporting only total order. TheTSKRmodel uses the coincidence
concept, i.e two interval coincides if theyoverlap in time, to transformmultiple interval sequences into a sequence
of coincidences, i.e itemset denoting co-occurring intervals. As this approachwas proposed for single sequences,
we provide further details in Section 4.3.2. As TSKR, CR utilizes the coincidence relationship (chords in TSKR)
to model simultaneity. It uses interval labelling with sub-intervals, called slices, rather than endpoints in SISP.
More precisely, given an interval A = [tb, te), three slices can be encountered:

• A+ is the first sub-interval of A. A+ = [tb, te+)with tb < te+ < te

• A− is the last sub-interval of A. A+ = [tb− , te)with tb < tb− < te

• A∗ is neither the starting nor the ending sub-interval of A. A∗ = [tb# , te∗)with tb < tb∗ < te∗ < te

In addition to interval labelling, the CR model includes an implicit specification of the meet relation noted @

in order to distinguish joint and disjoint intervals. The coincidence representation corresponding to interval
sequence in Figure 4.3.5 is the following:

⟨(A+)(A∗B+)(A∗B∗C)(A∗B−)@CA⟩

CoincidenceRepresentation is non-ambiguous and complete. In that work, authors proposedCTMiner tomine
the set of all coincidence representations frequent patterns. It is mostly based on PrefixSpan using projected
databases with a depth-first strategy. The same team extends this approach with CCMiner [29] to mine closed
CR frequent patterns.

Quantitative Patterns

While discovering qualitative patterns in interval-baseddata had receivedmuch interest, very few relatively recent
approaches were designed to discover quantitative relations in interval-based data.
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(a)

(b)

Figure 4.3.6: A 3 intervals sequence (a) and its hyper-cube representation in R3 (b)

To the best of our knowledge, Guyet andQuiniou [72]was the first to address the problemofmining frequent
quantitative patterns from interval sequences databases. Their approach is based on a hypercube representation
of sequences in the database. More precisely, an interval sequence of n intervals can be represented as a geometric
volume inRn whoseorthogonal projectionover each axis inRn corresponds to the endpoint of an interval. Figure
4.3.6 provides an illustration for a sequencewith 3 intervals. Using this representation, it is thenpossible to obtain
representative temporal bounds of a given frequent pattern using a density-based multi-dimensional clustering
as EM [33]. More precisely, if a set of intervals frequently appears in the database, their occurrences hyper-cube
representations are used to run the clustering algorithm to find ”dense” representative and frequent hyper-cubes
that are considered to be the quantitative patterns taking the form of a set of labelled intervals {(ik, [tbk , tek))}.
This process is integrated into an Apriori candidate generation algorithm called QTempIntMiner. Later, in [73]
extended this approachwithQTIPrefixSpan that used a depth-first strategy based onPrefixSpan and used another
multi-dimensional clustering approach (K-Means) to speed up the exploration process. The main drawback of
this approach is that it is endpoint sensitive: the same pattern occurring at t = 0 and t = Δmaynot overlap using
the hypercube representation. This fact leads to underestimating of some useful temporal relations potentially.

Another approach based on endpoint sequences was given byNakagaito et al. [112]. In that work, the authors
proposed two main strategies to model quantitative interval-based patterns. The first consists of considering a
single endpoint representative per interval to define the total order within the pattern. It can be whether the first,
the last or the middle endpoint of intervals. An interval-based quantitative pattern is denoted:

⟨
(d1,d′1)

i1
(t2,t′2)
>

(d2,d′2)
i2 ...

(tn,t′n)
>

(dn,d′n)
in ⟩

where ik denotes an interval symbol, (dk, d′k) a duration in the range [dk, d′k]of interval of type ik and (tk, t′k) a time
lag in the range [tk, t′k] between intervals of types ik and ik+1. The algorithm, QPrefixSpan is a direct extension of
PrefixSpan. Within the depth-first search space exploration, for each discovered representative endpoint frequent
pattern, the algorithm performs a numerical clustering to find and append quantitative duration and time lag
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annotations. Themain drawback of this approach is its ambiguity that comes from the fact of considering a single
endpoint per interval. This issue was tackled in the same work by considering the endpoint representation that
we have discussed earlier. It leads to patterns of the form:

⟨(d1,d′1)ep1
(t2,t′2)
>

(d2,d′2)ep2 ...
(tn,t′n)
>

(dn,d′n)epn ⟩

where
(dk,d′k)epk is an endpoint of an interval whose duration is in [dk, d′k]. The proposed algorithm QTPrefixSpan

follows the same approach than QPrefixSpan but with endpoints.
Another class of quantitative approaches utilizes Reich’ plots as a geometric interval space. It consists of rep-

resenting intervals in a 2-dimensional space: one for each temporal attribute: endpoints and/or duration. This
2D space can be whether formed by axes first endpoint & second endpoint or first endpoint & duration.

This approach was first used by Ruan et al. [132], who proposed PESMiner. The algorithm first plots intervals
contained in the sequence database on a 2D-space formed by axes first endpoint and duration. This representation
is used by the user to choose an appropriate clustering technique (setting as well their parameters) or to define,
based on domain knowledge, centroids of intervals ”groups” of the same type. The second step of the algorithm
consists of running the clustering technique to define a set of clusters’ centroids that will be used as seed pattern
(1-frequent patterns) for the sequential patternmining procedure. Theuser can adjust the clustering results based
on his domain knowledge. The third step is the execution of an Apriori-like candidate generation algorithm to
find frequent arrangements of patterns (or prototypes as called in the paper). The pattern matching (i.e. either
a sequence supports a pattern candidate) is calculated in a fuzzy fashion based on the intersection duration of
intervals of the same type, even if they do not appear in the same order to avoid the inelasticity problem. Redun-
dant patterns are removed in the last step of PESMiner. This approach is also endpoint sensitive as it assumes that
patterns are temporally aligned in sequences in the database.

The endpoint sensitivity is solved by PIVOTMiner that was proposed by Hassani et al. [78]. In this work,
authors focused on discovering quantitative information between pairwise interval types. Their pattern model,
called Base Pattern, consists of a tuple {O,T,Δ, S} where O is an origin label, T a target label, Δ the average
relative timing (sT − sO, eT − eO) between endpoints of O and T, and finally, S the support. PIVOTMiner uses
also the Reich’ plot but with different space axes first endpoint & second endpoint. As for PESMiner, intervals in
the database are plotted in the 2D space. In order tomine base pattern involvingA andB, the algorithm performs
an origin transformation consisting of translating all (geometrical) vectors havingA as an origin and B as a target
such that vectors origins coincide with the space origin. A geometrical clustering technique (DBSCAN in the
original work) is performed on instances of B to obtain the relative timing between A and B consisting of the
coordinates of the clusters’ centroids. This process is executed for each pair (O,T) once to extract base patterns.
This approach is endpoint-sensitive as temporal information is based on the relative time lags between intervals
rather than their exact ordering in a sequence.

4.3.2 Patterns from single sequence data

Qualitative patterns

To the best of our knowledge, Villafane et al. [152] were the firsts to address sequential interval-based patterns
for a single sequence, often called interval series. They proposed the containement pattern language that is based
on the during relation proposed by Allen. The main idea of the authors it to transform an interval sequence to
containment graphs G = (V, E) where each node in V corresponds to a unique interval and each edge in E
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(a) An interval sequence

(b) Containment graph

Figure 4.3.7: An interval sequence and its corresponding containment graph. For the sake of readability all
edges are not depicted in the containment graph (e.g A contains D)

links two nodes with a containment relationship. An example is depicted in 4.3.7. It is to notice that with that
model, the relationship between, for example, interval A and E (i.e before) is not taken into account. As a con-
sequence, containment patterns are not complete. However, this model can be sufficient to model and discover
hierarchical temporal relations. Containment patterns can be considered as non-ambiguous. Indeed, the dur-
ing relation is specified between all pairs of nodes. The approach proposed by the authors is to transform the
interval sequence to a containment graph and enumerate and count all possible containment relationships with
a depth-first strategy (graph based algorithm).

Zhang et al. [172] proposed an approach devised tomine similar patterns. Theproposed patternmodel, called
During Temporal Pattern (DTP), is also based uniquely on Allen’ during relationship. In that work, the authors
proposed to divide the single sequence into multiple small databases containing intervals having the same label.
Thus, when exploring the search space of DTPs, computing the support of each during relationship is done via a
join of these databases. This can remind the reader of the vertical representation discussed for sequence databases
(cf. Figure 4.2.2 without sequence IDs). The authors proposed a level-wise approach using the former sequence
partition and joins to compute pattern support.

Another patternmodel, namedRelationshipMatrix (RM), was proposed byHöppner and Klawonn [81]. The
authors proposed amining approach inspired by episodemining [101] that uses awindow-based frequencymea-
sure. They used an Apriori candidate generation algorithm. Besides, rules are derived from the set frequent RM
in the same formalism for episode rule. A rule is denoted X ⇒ Y where X is the premise pattern and Y the rule
pattern such that X is a sub-pattern of Y. They also interestingly discussed the use of window-based frequency
to compute pattern rules. They argued that pattern extension with fixed-width sliding windows could cause a
counter-intuitive drop in confidence measure as the conclusion part of the rule may not fit entirely for all time
windows where the premise appear. They proposed a new rule semantics defined as follows.

Given a randomly selected sliding window that contains an instance of the premise pattern, then with
probability [confidence] p this window overlaps a sliding window that contains the rule pattern.

This new confidence definition increases the confidence value as more sliding windows can fit it in comparison
with the traditional frequency confidence. Notice that this issue can be avoided using a traditional support mea-
sure based for example onminimal occurrences [101]. However, authors chose not to use this latter arguing that
it induces a less robust discovery on noisy data as it canmiss temporal relations between ”non-noise” intervals if,
for example, noise intervals of the conclusion’s type occur in the gap between the original intervals. In addition
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Figure 4.3.8: Chords sequence corresponding to an interval sequence

to the confidence measure, authors also proposed to use a J-Measure to rank rule patterns by their information
content.

Another pattern model, named Time Series Knowledge Representation (TSKR), was proposed by Mörchen
[104, 105]. The originality of this work compared with previously cited contributions is the use of coincidence
as the core relationships for interval-based patterns. The relation between two intervals is assessed w.r.t to their
overlapping duration rather than the count of this relation occurrence count. Two pattern models (contained in
the TSKR representation, that is to be seen more as a framework) were proposed.

First, chordspatterns express simultaneity between intervals. It can be defined as a subset ISof the symbol set I.
It describes time intervals where all intervals of types ik ∈ IS coincides, i.e. occur simultaneously. The coverage
interestingness measure of a chord, called support in that work, is defined w.r.t total duration in the sequence
where all intervals ik ∈ IS are active simultaneously. To avoid ambiguity of terms, we will refer to this coverage
measure as duration support. Authors also defined margin-closure for chord patterns.

Definition 21 (Margin-closed chord)
A chord ci is said to be margin-closed w.r.t to a threshold 0 < α < 1 if there are no super-chord cj that have
almost the same support:

supp(ci)
supp(cj)

< 1− α

The margin-closed chord is a pattern of several intervals occurring mostly together. It is to remark that margin-
closedness is a generalization of closed patterns. Mining ”frequent” chords consist of finding all margin-closed
subset of symbols occurring together with a duration support exceeding the user givenminimum threshold. This
task is very similar to frequent itemset mining. Thus, the authors proposed to use the enumeration approach
of CHARM, proposed by Zaki and Hsiao [169], that is a frequent itemset mining algorithm using a depth-first
exploration strategy. Chords patterns are non-ambiguous but clearly non-complete. Indeed, they only permit to
express simultaneous relations (i.e. a relaxed version of Allen’ equals relation).

Thesecondpatternmodel, that ismoreof interest for thiswork, arephrasepatterns. Aphrase is defined similarly
to episodes [101] but for interval-based data. A phrase is a partial order of k > 0 chords. Phrase pattern are
ambiguous as can be shown by Figure 4.3.9.

For this patternmodel, a traditional occurrence counting support is used. Themargin-closedeness is defined as
for chord pattern with respect to a parameter α. Authors proposed an algorithm for miningmargin-closed phrase
patterns that is inspired by the work of [24] that addressed mining closed partial order from itemset sequence
databases.

The proposed algorithm is detailed in the following. First, it converts a chord sequence into a series of interval
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(a) Two interval sequences

A ABC B

(b) A phrase pattern

Figure 4.3.9: Two interval based sequences (a) supporting the same phrase pattern (b)

itemset considering aminimumdurationparameter ε: an item is created for each chord lasting at least ε timeunits.
The obtained itemset sequence is converted into a database of sequences using a non-overlapping windowing (in
contrast with a sliding window approach) in order to be able to apply a closed frequent pattern algorithm (e.g.
CLOSPAN or BIDE). Mörchen [104] argued that the non-overlapping approach can be suggested by the data
(e.g. if significant gaps are between groups of intervals) or can be given à priori (w.r.t to the data generation pro-
cess). Other techniques can also be used (e.g. minimal occurrences). After that, the algorithm uses a sequential
pattern mining algorithm (qualitative)s to obtain closed frequent sequences w.r.t the user-given minimum sup-
port. The output of the algorithm must keep track of transactions T, where a closed sequential pattern s occurs.
From the obtained pairs (s,T) the algorithm builds groups (S,T)where S is a set of all closed patterns occurring
in all transactions inT. Frequent patterns in S are the patterns which aremargin-closed with respect to α and that
S is maximal, i.e. there is no other pattern occurring in all transaction in T and no additional transaction t ̸∈ T
where patterns in S occur. The last step of the algorithm builds partial order, phrase, for each margin-closed set
of sequential patterns. The partial order must represent each sequential pattern in S, and the partial order can
represent no other pattern. For instance, from a set S = {⟨A,B,C⟩⟨A,B,D⟩} where A, B, C, and D are set of
intervals symbols, the partial order that is built is represented as follows.

A B

C

D

Another example with a set S = {⟨A,B,C⟩⟨E, F,C⟩} follows.

A B

C

FE

We refer to the original work [105] and the earlier contribution of Casas-Garriga [23] for more algorithmic de-
tails.
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(a) Intersection and union (b) (α, β)-transformation

Figure 4.3.10: Examples of intersection and union and (α, β)-transformation

Quantitative patterns

A first work that addressedmining quantitative patterns from single sequences was proposed by Peter et al. [123,
124] who introduced the Pattern graphs (PG) model. PG is very similar to TSKR and CR in that it is defined as
a partial order between several nodes. Additionally, Pattern Graphs may specify the absence of specific intervals
in a given node and can include ”do not care” nodes permitting to model gaps between successive nodes. The
quantitative information is specified for interval duration and defined as a range that is initialized with [1,∞] and
refined by the mining algorithm. In [123], the authors proposed an algorithm for learning pattern graphs that is
not based on frequent pattern mining but used a heuristic search (beam search).

Plantevit et al. [127] designed an algorithm, TEDDY, devised to discover quantitative pairwise dependen-
cies between interval streams. Contrary to the majority of mentioned contributions, authors proposed to use
exclusively the intersection of state streams (a stream contains all intervals of a given type) as a coverage interest-
ingnessmeasure. Other contributions using coincidence, asTSKRwith chords, used coincidence for discovering
simultaneous relations but the partial order isminedw.r.t tominimum support. Besides, these algorithms require
thresholds as theminimum support or frequency (except [123]) while TEDDY utilizes statistical tests to set sig-
nificance thresholds automatically. It also focuses on reliability rather than coverage interestingness measures.
Follows more details algorithm TEDDY.

A pairwise temporal dependency between interval-based streams A and B, noted A → B, notifies that A
occur simultaneously with B. We call hereafter A the premise and B the conclusion. A → B is assessed with the
intersection length of A and B. The intersection of two state streams A and B, noted A ∩ B is a state stream
containing intervals where both A and B are active (Fig.4.3.10). Formally, A ∩ B = (a ∧ b, ⟨[tbi , tei)⟩) such that
∀t ∈ [tbi , tei), ∃[tbj , tej) ∈ A, ∃[tbk , tek) ∈ B such that t ∈ [tbj , tej) and t ∈ [tbk , tek). This operation is computed
in Θ(Max(#A,#B))where#A and#B denotes respectively the number of intervals in A and B.

The intersection length is used to define the following confidence measure.

conf(A→ B) =
len(A ∩ B)

len(A)

Notice that confidence is maximal (=1) if all active intervals of A are included in active intervals of B: A occurs
always with B. For example, in Fig. 4.3.10 conf(A→ B) =

3
6
.

In order to find relations of interest, and to avoid the utilization of a user-given threshold, this confidence
measure is statistically assessed via a Pearson χ2 test of independence. The independence hypothesis states that
A and B are statistically independent within a duration of T . It relies on the following assumption: if the active
length of B is uniformly distributed in T , there is no significant correlation between A and B. The given validity
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threshold on confidence is noted th(len(A), len(B)) and is given by:

th(lp, lc) =
lp ∗ lc +

√

3.84
T

lp ∗ lc(Tobs − lc)(Tobs − lp)

Tobs ∗ lp

for a significance level of 0.05. This thesis extends these results and more details about this statistical test will be
given in further chapters.

An important remark is that simultaneity do not permit to express dependencies when it happens that B is
time-delayed regarding A. The conclusion stream can be temporally shifted with an (α, β)-transformation to
obtain a relation of type A → B(α,β). This operation results on a state stream B(α,β) = ⟨[tbi − α, tei − β) |
[tbi , tei) ∈ B⟩. Hereafter, α is called expansion and β reduction. We describe in Fig. 4.3.10 two examples: a (0, 2)-
reduction B(0,2) and a (2, 0)-expansion B(2,0). This temporal transformation is done in Θ(#B). Therefore, the
associated confidence measure for a delayed temporal relation is given by:

conf(A→ B(α,β)) =
len(A ∩ B(α,β))

len(A)

A dependency A → B(α,β) means that: B starts at most α time units after A and B finishes at least β time units
after A. For simplicity purposes, we refer hereafter to this relation with: if A is active then B(α,β) is active.

The authors propose an algorithm, TEDDY, devised to discover such dependencies given a temporal con-
straint Δ on temporal transformation and by extension time lags. It explores the search space as a semi-lattice
defined by temporal transformations inclusion (i.e if an (α, β)-transformation sequence contains all intervals of
(α′, β′)-transformation then (α, β) includes (α′, β′)) using a breadth-first strategy. As the used confidence mea-
sure is monotonic, multiple temporal dependencies can express the same temporal relation. Therefore, TEDDY
integrates pruning criteria based on a dominance relationship permitting to select themost specific dependencies
by refining temporal transformations while controlling the loss in the intersection-based confidence measure. In
[127], the authors used pairwise dependencies to build a dependency graph. Further discussions on TEDDY
will be provided in next chapters.

The use of intersection length permits to obtain dependencies with a different meaning for frequent pattern
mining. The use of intersection as an interestingness measure for streaming data can, in some cases, provide a
better assessment of the strength of a temporal relation than the use of support. This will be discussed in the next
chapter.

Another approach that can be applied to single sequences is PIVOTMiner [78] that we already discussed.
While not being designed for single sequences, this approach can be adapted easily to this data format as it is
not endpoint-sensitive. Indeed, it considers the relative temporal relations between intervals rather than their
absolute positions or the other quantitative interval-based pattern mining approaches for sequences databases.
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5.1 Introduction

In this section, we describe and motivate the knowledge representation that we aim to extract from a set of state
streams. The proposed pattern or dependency model, named Complex Temporal Dependencies (CTD) aims to
generalize the pairwise dependency model using an intersection-based assessment proposed by Plantevit et al.
[127] to dependencies involving multiple states.

In the rest of this chapter, we will first discuss the main motivations behind an intersection-based assessment
of dependencies. This approach will be compared to the widely used counting support assessment for particular
examples. A detailed description of the automatic statistical intersection-based assessment will also be provided.
Secondly, we introduce the CTD dependency model that permits to intersection-based dependencies between
multiple states. Finally, we will discuss how CTDs can be used to build models of typical temporal phenomena.

5.2 Background and motivations

5.2.1 Intersection-based assessment

The majority of approaches devised to extract temporal patterns from interval-based data use an occurrence
counting support as a coverage interestingness measure. As discussed in Chapter 4, the occurrence counting
support may have different underlying semantics depending on the temporal data format and pattern constraints
(e.g. proportion of sequences, number of occurrences, the proportion of time windows).

The common point of these support and frequency measures is their relation assessment, or how relation-
ships between intervals contribute to the interestingnessmeasure. Indeed, they are counted on a qualitative basis
without regard to intervals durations as it can be done for time point data. This qualitative counting approach
can be sufficient for a wide range of cases, particularly when intervals duration is not of interest for an application
domain, with sparse data or with homogeneous intervals durations. However, we argue in this work that this
assessment approach can be misleading with interval-based streams in that the interestingness of a given tempo-
ral relation can be underestimated, particularly with attribute-centred data as sensory data. Indeed, the useful
monotonic property of an interestingness measure (the more occurrences of a given pattern, the greater is the
measure) is not always guaranteed. We believe that the intersection-based assessment, as proposed by [127],
provides better insights. Temporal relation between two state streams A and B is assessed based on the length
of their intersection A ∩ B. The evaluation of delayed relations is obtained via temporal transformations. For
instance, A ∩ B(t,t) is used to assess the relation A occurs before B with a time delay of t. To illustrate the differ-
ences between the before mentioned assessment approaches, let us consider the following simple example using
sensory data.

Example 8
Figure 5.2.1 describes a corridor equipped with two video cameras monitories the areas A and B. A motion
analysis algorithm is applied to videos given by A and B and produces two interval-based streams describing
the validity of states Motion in area X (in each area A and B). In this environment, the typical temporal
phenomenon is a uni-directional trajectory described by the qualitative relation ”A before B”: pedestrians pass
through A then B after a time delay t. For the sake of simplicity, let us assume that intervals of A and B have
a unique duration d. Let us consider two activity scenarios. In Figure 5.2.1a, few pedestrians pass through the
corridor. The produced state streams can be described as ”sparse” as they contain a number of intervals that is
equivalent to the number of pedestrians involved in the motion phenomena. The second case is that of dense
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(a) Sparse activity (b) Dense activity

Figure 5.2.1: A corridor equipped by two video cameras providing motion state streams for two areas A
and B

interval-based streams produced when activity in the corridor is intense: pedestrians follow each other in the
motion analysis area without any temporal separation, as shown in Figure 5.2.1b. In that case, state streams A
and B contain one long interval each that reports on data produced by the overall set of pedestrians (the state
Motion is continuously activated in each monitored area).

Let us now assess the temporal relation between A and B with occurrence counting and intersection-based
assessments. Considering the first scenario with spare activity (3 trajectory occurrences), the assessment of the
temporal relation between A and B is the following:

• Occurrence counting: A before B has 3 occurrences

• Intersection-based: len(A ∩ B(t,t)) = 3 ∗ d

In this case, both occurrence counting and intersection provide a good strength assessment of relation A before
B. It is proportional to the number of real-world occurrences: trajectory A then B was performed three times. In
the case of dense data (with nine pedestrians walking successively):

• Occurrence counting assessment: A overlaps B has one occurrence.

• Intersection-based assessment: len(A ∩ B(t,t)) = d′ with 3 ∗ d < d′ ≤ 9 ∗ d

Two things are worth noticing with the occurrence counting assessment. First, the occurrence counting score
is smaller with dense data describing more trajectories occurrences (a score of 3 is counted for sparse data de-
scribing three trajectories occurrences while a score of 1 is obtained for nine trajectories occurrences.). This
assessment can bemisleading and counter-intuitive as it does not respect the expectedmonotonicity: themore a
phenomenon is performed, the more its score is higher. Also, this can problematic in a pattern discovery process
as the interest of patterns (here occurrences of a trajectory) is no longer correlated with the assessment value.
Secondly, the qualitative Allen relation that appears with dense data,A overlaps B, does not describe properly the
physical phenomenon (a trajectory described as with a before relationship). On the other hand, the intersection-
based assessment value is monotonic with the activity described in the interval streams: the more frequent are
the occurrences of the given trajectory, the greater is the intersection length. For the sake of clarity, we stress the
fact that the intersection of streams is not necessarily strictly proportional to the number of temporal relations
occurrences. This is due to the attribute-centred nature of the data generation process as in the former example:
intervals reporting on the same trajectory are overlapping. We can express the intersection length valueA∩B(t,t)

as:
d′ = 9 ∗ d−

∑

len(overlaps)
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where 9∗ d is the proportional value of intersection length (theoretical subject-centredmaxima) and
∑

overlaps
is the sum of valid time intervals’ length that describes the motion of at least two pedestrians. Nevertheless,
the intersection length remains monotonic with respect to the trajectories occurrences. As a consequence, we
consider that an intersection based temporal relation provides more insights and is more easily interpretable.
Second, the quantitative temporal relation obtained with dense data is the same as for ”sparse” data and assessed
with A ∩ B(t,t). The core information given by this assessment approach is quantitative. The qualitative relation
between interval streams can be extracted from such quantitative information.

5.2.2 Pairwise Temporal dependencies, Confidence and statistical assessment

In Chapter 4, we have seen that the straightforward use of intersection-based assessment for interval sequences
was used in [127] for state streams pairwise dependencies. We recall that a dependency between a state stream
A and state stream B, noted A→ B, is assessed via an intersection-based confidence measure:

conf(A→ B) =
len(A ∩ B)

len(A)

It is a reliability measure that reports on the proportion of validity duration of A that is simultaneous with B. For
instance, a dependencyA→ B having a confidence of 1means thatA is always valid with B.What is assessed here
is the temporal dependency or ”correlation” between the validity of two states. Delayed temporal dependencies
use temporal transformations and is assessed in the same manner. For instance, the confidence of dependency
between A and B(α,β), noted A→ B(α,β), is assessed with:

conf(A→ B(α,β)) =
len(A ∩ B(α,β))

len(A)

In the rest of this manuscript, we will use notations without temporal transformations when these later are not
relevant or not necessary for comprehension (transformed streams are also intervals streams).

This confidence value is higher-bounded by the following quantity:

maxConf(A→ B) =
min

(

len(A), len(B)
)

len(A)

Thishigher-bound canbe easily proven as len(A∩B) ≤ min
(

len(A), len(B)
)

. Figure 5.2.2 shows themaximum
confidence with respect to premise and conclusion length. What can be noticed is that themaximum confidence
is monotonic with respect to both premise and conclusion length.

The interest of a given dependency is usually expressed via a user-given threshold (e.g. support threshold) that
defines the minimum value of an interestingness measure of a relation of interest for the user. The definition of
such thresholds may require prior knowledge on datasets to be processed by knowledge discovery techniques.
As a consequence, in many cases, including when prior insights about a data are not available or if the knowledge
discovery process needs to be fully automatized), setting a user-defined interest threshold may be a difficult and
costly task. This is particularly true with large datasets and for pattern languages defining large search spaces
(cf. Chapter 4). The contribution of [127] aims to discover pairs of interval-based streams that are statistically
dependent. Two state streams are said to be in a statistically valid temporal dependence if their intersection is
sufficiently large to not be due to chance. More specifically, they used a Pearson χ2 test of independence on
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(a) Maximum confidence w.r.t premise
length

(b) Maximum confidence w.r.t conclusion
length

Figure 5.2.2: Maximum confidence of a dependency A→ B with respect to premise and conclusion length

intersection length to determine a statistical significance threshold on confidence value. We describe hereafter
the details of this statistical test.

The Person χ2 test of independence is performed to determine whether two state streams A and B are statisti-
cally independent over an observation duration Tobs = [tbegin, tend)with:

tbegin = min( min
∀[ti,ti+1)∈A

ti, min
∀[tj,tj+1)∈B

tj) and tend = max( max
[ti,ti+1)∈A

ti+1, max
[tj,tj+1)∈B

tj+1)

Atimepoint (or elementary time interval in thediscrete timedomain)ofTobs canbelongornot to an interval of
a state streamA. Given that observation, it is possible to build a contingency tableO, Table 5.2.1, which partitions
the duration of Tobs into four possible observed outcomes expressed in terms states A and B validity.

Table 5.2.1: Observed contingency table O

B B

A len(A ∩ B) len(A)− len(A ∩ B)
A len(B)− len(A ∩ B) len(Tobs)− len(A)− len(B) + len(A ∩ B)

The statistical test of independence aims to compare these observed outcomes to the expected outcomes un-
der the independence hypothesis. The null hypothesis of this statistical test of independence states that the va-
lidity of states A and B is statistically independent. In order to build an expected contingency table under the
independence assumption, we make the following hypothesis.

Hypothesis 5 (Independence under the uniform distribution)
Let A and B two non-empty state streams over an observation duration Tobs . If A or B occurs uniformly
over Tobs, then states streams A and B are independent.

Following the later hypothesis, if one supposes that the validity of A is uniformly distributed over Tobs, the
probability that an elementary interval of B (a valid sub-interval of B of length 1) co-occurs with a valid state A is
len(A)

len(Tobs)
. As a consequence, as B has valid during a duration of len(B), the co-occurrence duration of A and B

(i.e the length of their intersection) under the null hypothesis is given by:

len(A) ∗ len(B)
len(Tobs)
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The three other outcomes are computed following the same reasoning. The expected contingency table is given
by Table 5.2.2.

Table 5.2.2: Expected contingency table E under the null hypothesis (independence)

B B

A
len(A) ∗ len(B)

len(Tobs)

len(A) ∗
(

len(T)− len(B)
)

len(Tobs)

A
(

len(T)− len(A)
)

∗ len(B)
len(Tobs)

(

len(T)− len(A)
)

∗
(

len(T)− len(B)
)

len(Tobs)

Given the observed and expected contingency tables, the value of the test-statistic is given by:

X2 =
2

∑

i=1

2
∑

j=1

(Oij − Eij)
2

Eij

=
len(T)

(

len(T)len(A ∩ B)− len(A)len(B)
)2

len(A)len(B)
(

len(Tobs)− len(B)
)(

len(Tobs)− len(A)
) (5.1)

The null distribution of the statistic value is approximated by the χ2 distribution with 1 degree of freedom
(df = (2 − 1) ∗ (2 − 1) = 1) for a traditional significance level of 0.05. The corresponding critical value is
χ2
0.05 = 3.84. As a consequence, the test-statistic value X has to be greater than χ2

0.05 to consider that the co-
occurrence duration is very likely to not to be due to chance. The following quadratic inequation in len(A ∩ B)
is derived from equation 5.1:

X2 ≥ χ2
0.05

len(T)
(

len(T)len(A ∩ B)− len(A)len(B)
)2

len(A)len(B)
(

len(Tobs)− len(B)
)(

len(Tobs)− len(A)
) ≥ 3.84

(

len(T)len(A ∩ B)− len(A)len(B)
)2 ≥ 3.84

len(T)
len(A)len(B)∗

(

len(Tobs)− len(B)
)(

len(Tobs)− len(A)
)

The roots of this equation, noted∩1 and∩2, are then given by:

∩1 =

len(A)len(B)−
√

3.84
len(Tobs)

len(A)len(B)
(

len(Tobs)− len(B)
)(

len(Tobs)− len(A)
)

len(Tobs)

∩2 =

len(A)len(B) +
√

3.84
len(Tobs)

len(A)len(B)
(

len(Tobs)− len(B)
)(

len(Tobs)− len(A)
)

len(Tobs)

As a consequence inequation 5.2 is verified for 0 ≤ len(A ∩ B) ≤ ∩1 (case 1) and ∩2 ≤ len(A ∩ B) ≤
len(Tobs) (case 2). Both these two cases denotes situations permitting to reject the null hypothesis of indepen-
dence but have different interpretations:
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• Case 1: the intersection length is lower than expected under the independence hypothesis.

• Case 2: the intersection length is higher than expected under the independence hypothesis. Having such
intersection length means that a dependency betweenA and B exists andmay permit to explain partly the
validity duration distribution of both A and B.

In this work, we focus on Case 2 intersection lengths as we aim to find significant dependencies between state
streams expressing typical temporal relations. Nevertheless, the case 1 intersection lengths (anomalies or anti-
dependencies) are worth to be studied in order to provide proper interpretation or infer anti-dependencies: Can
we infer dependencies of the form A→ B and B→ A from such intersection length cases?

In order to provide a significance threshold on confidence value,∩2 is normalized by len(A):

len(A ∩ B) ≥ ∩2

len(A ∩ B)
len(A)

≥ ∩2

len(A)

conf(A→ B) ≥ ∩2

len(A)
(5.2)

Then, a dependency A → B is said to be valid, iff. conf(A → B) ≥ ∩2

len(A)
. For conciseness, the statistical

threshold of A → B will be noted th(A → B) in the rest of this thesis. Nevertheless, it is known that the χ2

needs large sample sizes to be powerful enough and provide acceptable results. To guarantee this fact, we use,
as in [127], a conventional rule of thumbs that enforces the expected values in Table 5.2.2 to be greater than 5.
Otherwise, the dependency is not considered. As a consequence, very sparse state streams and extremely dense
ones are not considered: E11 and E22 can be respectively very small. In such cases, one may use other statistical
independence tests that are more accurate with small sample sizes as Fisher’ exact test of independence. We do not
investigate this direction in this work and focus on dependencies inducing large expected outcomes.

Statistical threshold function study

One main difference between the complex temporal dependencies and other pattern models is the assessment
approach. The assessment of CTDs is based on dynamic thresholds obtained from statistical tests of indepen-
dence rather than a constant (user-given) interest threshold which is monotonic by definition. In sequential
pattern mining approaches, this property is useful at different levels: defining closure, Apriori pruning ... In this
subsection, we study the dynamic statistical threshold behaviour.

The statistical threshold defined above can be seen as a function of 3 parameters:

th(A→ B) = th(len(A), len(B),Tobs)

Hereafter, we study the behaviour of this function w.r.t to its three variables.

Behaviour of th(A→ B)with respect toTobs.

Firstly, let us study the behaviour of the statistical thresholds when lengths of the premise and the conclu-
sion are constant and the observation duration is increasing. We describe in Figure 5.2.3 the behaviour of th in
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(a) len(A) < len(B) (b) len(A) > len(B) (c) len(A) = len(B)

Figure 5.2.3: Evolution of th for a dependency A→ B with respect to Tobs. Tobs ∈ [400, 20000]

different configurations len(premise) < len(conclusion), len(premise) > len(conclusion) and len(premise) =

len(conclusion).
In these figures, one can notice that for a fixed premise and conclusion length, the statistical threshold is de-

creasingmonotonicallywithTobs and tends towards 0. This is a direct result from the statistical threshold formula.

Proof. Let len(A) and len(B) be constant positive values:

th(Tobs) =

len(A)len(B) +
√

3.84
len(Tobs)

len(A)len(B)
(

len(Tobs)− len(B)
)(

len(Tobs)− len(A)
)

len(Tobs)len(A)

=

A +

√

B ∗ len(Tobs)
2 + C ∗ len(Tobs) + D
len(Tobs)

E ∗ len(Tobs)

=
A

E ∗ len(Tobs)
+

√

B ∗ len(Tobs)2 + C ∗ len(Tobs) + D
E ∗ len(Tobs)1.5

with A,B,C, E positive values.
A

E ∗ Tobs
is strictly decreasing with Tobs ≥ 1. Let f(x) =

√
B ∗ x2 + C ∗ x + D

E ∗ x1.5 .

f(x + 1)− f(x) can be expressed as follows.

f(x + 1)− f(x) =
√

B(x5 + 2x4 + x3) + C(x4 + x3) + Dx3

E
(

x(x + 1)
)1.5

−
√

B(x5 + 3x4 + 3x3 + x2) + C(x4 + 3x2 + 3x + x) + D(x + 1)3

E
(

x(x + 1)
)1.5

Forx ≥ 1, it is easy toproof that f(x+1)−f(x) < 0. Then; for len(Tobs) ≥ 1,
√

B ∗ len(Tobs)2 + C ∗ len(Tobs) + D
E ∗ len(Tobs)1.5

is strictly decreasingwithTobs. Then, we conclude that statistical threshold is strictly decreasingwithTobs ifA and
B have constant lengths.

As limTobs→∞

A
E ∗ Tobs

= 0 and limTobs→∞

√

B ∗ T2
obs + C ∗ Tobs + D
E ∗ T1.5

obs
= 0, we can conclude that the sta-

tistical thresholds approaches 0 if Tobs approaches infinity

Several observations can be made straightforwardly from these properties:
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Figure 5.2.4: Statistical threshold w.r.t to observation duration Tobs with premise and conclusion length in
constant proportion of Tobs

• Let a dependency A→ B be statistically valid for a given Tobs. If no additional intervals are added to A or
B within [Tobs,+∞[, then A→ B is statistically valid for [0,T′[where T′ ∈ [Tobs,∞[.

• If conf(A → B) = ε > 0, then exists a Tobs ∈ [0,+∞] such that A → B is statistically valid for all
T ≥ Tobs.

The first observation can be useful in a streaming context where a system aims to maintain a set of valid depen-
dencies between streams. More precisely, if a dependency is found to be valid for a given Tobs, it is possible to
estimate the maximum loss in confidence value in the worst case (no intersection between new intervals of A
and B are observed) and run new dependency analysis when this quantity reaches the minimum threshold. This
aspect will not be considered in this work but can be explored in further work. The second observation is prob-
lematic since every non-null confidence value may lead to statistically valid dependency. This problem is tackled
by the use of the rule of thumbs used in the statistical threshold computation that states that any value in the
expected outcomes contingency table has to be greater than 5.

From another perspective, we study the behaviour of the statistical threshold when lengths of the premise and
the conclusion have a constant proportion ofTobs. This can be seen as a simplification of situations when the data
generation process is constant over time: it generate an amount of data that is proportional to the observation

duration. Letx =
len(A)
Tobs

and y =
len(B)
Tobs

be respectively theobservation time lengthproportionof thepremise

(A) and the conclusion (B). The statistical threshold of a dependency A→ B can be expressed as follows:

th(A→ B) =
xy +

√

3.84
Tobs

xy(1− x)(1− y)

x

If one considers that x and y are constant values, one can remark that the statistical threshold approaches y when
Tobs approaches infinity. This can be remarked in Figure 5.2.4 for x = 0.1 and y = 0.5. This observation indicates

that if a dependency has a confidence that is strictly higher than the lower bound
len(B)
Tobs

for allTobs, then exists a

T such that this dependency is statistically valid for allTobs ∈ [T,∞[. This suggests that if a temporal phenomena
between A and B is occurring uniformly over time, i.e if the data generation process is constant, a dependency
between A and B is to be valid if enough observation duration is available. For instance, in Figure 5.2.4, let us
consider that a dependency A→ B has a dependency with confidence 0.55 for every Tobs. In this case, A→ B is
non statistically valid for a duration of Tobs = 1000 while it is for all Tobs > 10000.
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Figure 5.2.5: Statistical threshold w.r.t premise and conclusion length. Tobs = 100, len(A) ∈ [1, 100] and
len(B) ∈ [1, 100]. Red points are thresholds that are strictly greater than the confidence higher bound.

From a probabilist point of view, y can be seen as the probability of obtaining a valid elementary interval
[t, t+ 1) in a durationTobs in the conclusion stream, noted P(conclusion), and the confidence value interpreted as
the conditional probability of obtaining a valid conclusion knowing a valid premise, noted P(conclusion|premise).
The statistical threshold is lower bounded by P(conclusion) as if P(conclusion) = P(conclusion|premise) then
the premise and the conclusion are independent. From the precedent paragraph, one can say the minimum
conditional probability P(conclusion|premise) to assert that a dependency is valid approaches P(conclusion) with
Tobs. The straightforward interpretation of the former statement can be trivial: more data producemore accurate
dependencies as less significant dependencies are left. However, this result can be used in order the quantify
the degree of ”accuracy” of a given model. Indeed, for a given x and y, one can specify a threshold on quantity
ε = th(x, y,Tobs) − y, that correspond to minimum observation duration to consider that a statistical analysis
provides satisfactory outcomes. This can be formalized in future work.

Behaviour of th(A→ B)with respect to len(A) and len(B).

We describe in Figure 5.2.5 the thresholds values w.r.t premise and conclusion length for a fixed observation
duration. To obtain this figure, we computed all values of th(len(A), len(B),Tobs) for len(A) ∈ [0, 100] and
len(B) ∈ [0, 100] and Tobs = 100. In this figure, red points correspond to configurations where the statistical
thresholds are strictly greater than the confidence higher bound. This means that such configurations cannot
lead to statistically valid dependencies. Hereafter, we will discuss these cases more precisely while describing the
behaviour of the statistical threshold with respect to the premise and the conclusion lengths separately.

Let us first consider the evolution of statistical threshold w.r.t premise length expressed in terms of portions of
Tobs. We describe in Figure 5.2.6 the statistical threshold and the confidence higher bound for different constant
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conclusion lengths. One can notice that the statistical threshold function decreases monotonically with premise
length. Also, the statistical threshold can be higher as the confidence upper bound. More precisely, one can
remark that it is the case for great premise lengths when the conclusion length is small (e.g. conclusion length
equal to 1,5,10 in Figure 5.2.6) or for small premise lengths when conclusion lengths are longer (e.g. conclusion
length of 80 and 90). The same observations can be done for statistical thresholds with respect to conclusion
lengths as described in Figure 5.2.7 for different premise configurations. The statistical threshold is increasing
and then decreasing in [0,Tobs]. It is however monotonic in [0, x] such that x < Tobs and th(len(c), x,Tobs) = 1.

Extreme configurationswhere premise or conclusion lengths equal to the observation duration 5.2.6 and 5.2.7
are interesting to remark. Indeed, following the statistical validity definition, every dependency having a premise
or a conclusion length that is equal to observation duration will be valid as confidence value is always equal to 1
and so does the statistical threshold. We believe that this kind of dependencies is not of great interest and can be
considered as trivial formainly the following reason: a fully valid stream (i.e. havingTobs as length) is ”correlated”
with every non-zero length interval stream.

5.3 ComplexTemporalDependencies: a normal conjunctive form-like representation
of temporal relations

Starting from the pairwise temporal dependencies proposed in [127], we aim tomodel an intersection-based de-
pendency model permitting to express temporal relations between multiple states. Our objective is to be able to
describe potentially complex temporal phenomenawithin a particular environment. In this section, we introduce
the Complex Temporal Dependencies (CTD) model. It is based on a normal conjunctive form-like representa-
tionof temporal relations. Hereafter, wefirst discuss themainmotivations behind thismodelling approachbefore
providing a detailed description of the different operators used in our model and their semantic interpretation.

This temporal dependencies model must permit to express a large set of temporal relations with appropriate
and meaningful confidence measures. In other words, a multi-state dependency model, or our pattern language,
must:

• Express exclusively andwithout ambiguity temporal relations between several states. That is to say that the
interpretation of the representation of a temporal relationmust lead only to existing temporal phenomena.

• Provide confidence values that are consistent with the actual succession of states. More precisely, we want
to interpret a confidence value as an ”exact” probabilities estimation rather than a lower or upper bounds.

• Permit conciseness to enhance interpretability of results.

In order to make our reasoning easy to follow, we use examples of different practical configurations of motion
sensors from which the user aims to extracts significant trajectories. A trajectory can be seen as a succession of
valid motion states in several areas of an environment.

One first and straightforward approach is to use an aggregation of pairwise dependenciesmodelled as a depen-
dency graph to extract multi-state dependencies. It is a directed attributed graph G = (V, E) where V ⊂ Istates
with Istates the set of states and E = {

(

(A,B)|(A,B) ∈ V2 ∧ A ̸= B, (α, β), conf(A → B(α,β))
)

} the set of
edges between element ofV. An edge

(

(A,B), (α, β), c
)

denotes that it exists a dependency between stateA and
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(a) len(c) = 1 (b) len(c) = 5 (c) len(c) = 10

(d) len(c) = 20 (e) len(c) = 30 (f) len(c) = 40

(g) len(c) = 50 (h) len(c) = 60 (i) len(c) = 70

(j) len(c) = 80 (k) len(c) = 90 (l) len(c) = 100

Figure 5.2.6: Statistical thresholds with respect to premise (p) length for a fixed conclusion (p) . Tobs =
100. Green areas corresponds to valid confidence values. Red areas corresponds to non-valid confidence
values. Hashed areas are theoretically impossible non-valid confidence values.
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(a) len(p) = 1 (b) len(p) = 5 (c) len(p) = 10

(d) len(p) = 20 (e) len(p) = 30 (f) len(p) = 40

(g) len(p) = 50 (h) len(p) = 60 (i) len(p) = 70

(j) len(p) = 80 (k) len(p) = 90 (l) len(p) = 100

Figure 5.2.7: Statistical thresholds with respect to conclusion (c) length for different premise (p)
lengths.Tobs = 100. Green areas corresponds to valid confidence values. Red areas corresponds to non-valid
confidence values. Hashed areas are theoretically impossible non-valid confidence values.
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Figure 5.3.1: A set of corridors equipped with motion sensors. Red and blue arrows depict the two pedes-
trian trajectories occurring in this environment. Also, there is an equal number of blue and red pedestrians.

(α, β)-transformed state B, A → B(α,β) with confidence c. In this graph, one may consider all possible paths as
multi-state temporal dependencies.For example, the pairwise dependency graph corresponding the configura-
tion depicted in Figure 5.3.1 is:

A

C

B

D E

(d, d), 1 (d, d
), 1

(d, d
), 0.5

(d, d), 0.5

It is composed by a subset of all possible dependencies that can be extracted from the former environment:

• A → C(d,d) with a confidence of 1. All red pedestrians activate state A followed by state C after a delay of
d time units.

• B→ C(d,d) with confidence of 1 with the same interpretation as above.

• C→ D(d,d) with a confidence of 0.5. Both red and blue pedestrians activate motion in C and only half of
them (red pedestrians) activate motion in D after a delay of d.

• C→ E(d,d) with a confidence of 0.5 with the same interpretation as above.

This example permits to highlight two insightful observations. First, all existent paths in that graph do not nec-
essarily refer to an existent multi-state temporal relation: e.g there is no succession A then C then E. The set of
existentmulti-state qualitative temporal relations can be seen as a subset of all paths in the dependency graph. As
a consequence, modelling and discovering multiple state can not be achieved by a simple consideration of pair-
wise dependencies: the amount of false dependencies that can be constructed can be significantly huge. What
can be also be observed in that example is that the expression of relation betweenmore than 2 states is tied with a
conditionality notion. For example, temporal relation between active motion inC and E is strictly conditioned by
a prior validmotion inB. The conclusion of this first observation is thatmodellingmultiple statedependencies
must permit to express conditional relation.

The second observation that can be made relates to the confidence values of existent multi-state temporal
relations. In the former example, all (red) pedestrians who activate successively states A then C, activate state D.
The translation of this fact into a multi-state dependency language must be assessed with a confidence value that
is consistent with the actual conditional temporal relation:
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IF motion in A
AND motion in C after a duration d

THEN motion in D after a duration d
WITH CONFIDENCE of 1

In the pairwise dependency graph, one may notice that the confidence of dependency linking C toD is 0.5: only
half pedestrians activatingC also activateD. What is to stress here is that most insightful confidence value (i.e. 1)
must take into account the historicity induced by the conditional temporal relations. This is due to the fact that
temporal phenomena described as temporal relations between environment states are not necessarily Markov-
like processes.

Definition 22 (Markov process)
A stochastic process whose evolution after a given time t does not depend on the evolution before t, given
that the value of the process at t is fixed.a

aMarkov process - Encyclopedia of Mathematics - http://www.encyclopediaofmath.org/index.php?
title=Markov_process&oldid=37905 - Accessed 12/30/2019

Indeed, if one considers confidences as transitionprobabilities, onemaywant tomodel anenvironment through
its states as a structure similar to a Markov chain (i.e. discrete Markov process) considering pairwise dependen-
cies. The need for conditional temporal relations and, by extension, conditional confidences makes the Markov
property irrelevant formultiple states temporal relationmodel. In a graph representing existentmulti-states tem-
poral relations in a given environment, each edge must have a confidence value that takes into account states
validity history. As a consequence, in a conditional dependency graph, multiple edges may stand between two
states: one for each significant states interesting multiple correlations. We will discuss later in this chapter, how
to use temporal dependencies between multiple states to build such complex & conditional models.

The last expressivity criteria we deal within this section is that of conciseness of multi-state temporal relations
representation. Let us consider the example in Figure 5.3.2 that describes a set of directed corridors. To make
this example easy to follow, let us assume that there is no conditionality in this environment trajectories (i.e.
entering the environment byAdonot lead to a particular exit). Theobjective is to describe pedestrians significant
trajectories in this environment concisely.

With a conditional temporal relations approach, trajectories in this environment can be described through 9
multi-state dependencies of the form:

IF motion in A
AND motion in D after a duration d
THEN motion in E after a duration d'
WITH CONF. 0.33

Indeed, from each entrance (A or B or C) three exits are equivalently possible (E or F or G) and all trajectories
must pass through D. What is to be remarked is that this representation approach induces possibly information
redundancy. For instance, trajectories ADE, ADG and ADF have a common temporal relation prefix AD: this is
given in three conditional temporal relations. The insight that can be expressed from this situation is: If a motion
in A is followed by B then a motion in E or F or G is to be observed:

IF motion in A
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Figure 5.3.2: A set of corridors equipped with motion sensors. Red arrows indicate movement directions.

AND motion in D after a duration d
THEN (motion in E

OR motion in G
OR motion in F) after a duration d'

WITH CONF. 1

Following the same reasoning can be applied to trajectories ADF, BDF and CDF. As a consequence, all states
describing the corridor’s activity can be included in a unique temporal dependency:

IF (motion in A
OR motion in B
OR motion in C)

AND motion in D after a duration d
THEN (motion in E

OR motion in G
OR motion in F) after a duration d'

WITH CONF. 1

We believe that this type of temporal dependencies is more expressive for mainly two reasons. First, information
redundancy is reduced. In the former example, one unique dependency permits to express nine simple condi-
tional temporal relations. We consider that this is useful to provide a rapidly comprehensible insight on complex
temporal phenomena that sums up several behaviours (here trajectories) in a unique dependency. Secondly, the
aggregation of several conditional temporal relations can provide valuable information. In the former example,
each simple succession of states ADE, ADG and ADF tells simply that the succession of states AD leads respec-
tively toE,G andFwith each a confidence valueof0.33. Thedisjunctive relationAD(E or G or F)with confidence
of 1 tells another story: if a pedestrian passes throughA thenD, he will necessarily leave the corridor area from E,
G or F. This insight is not guaranteed if one takes into account the three conditional relations mentioned above.

From a more discovery process perspective, it is to notice that sometimes a temporal relation linking a dis-
junction of states to another state can be interesting while each of its equivalent conjunctive dependencies are not.
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One can convince himself of the latter statement considering a counting support interestingness measure. Let
a sequence AB have a support of 0.1 and AC a support of 0.15. The execution of a frequent sequential pattern
mining algorithm with a minimum support of 0.2 will not provide AB nor AC as results. However, a sequence
A(B or C) is of interest as its support equals 0.25. The last example can be transposed to the intersection-based
confidence assessment. We believe that disjunctive relationships can provide additional temporal insights that
cannot be discovered with simple conjunctions of states.

To conclude this section, we recall the threemain specifications (or constraints) of ourmulti-state dependency
model:

• The multi-state dependency model must be able to express conditional temporal relations.

• Confidence values must be consistent with the conditionality of temporal relations.

• The multi-state dependency model must be able to express disjunctive temporal relations.

In the remainder of this chapter, we will introduce the proposed Complex Temporal Dependencies (CTD)
model that implements the former conditions. In the next subsection, we describe the three operators used by
our model to express temporal relationships between states.

5.3.1 CTD’s Operators

Inference

As pairwise dependencies, theComplex Temporal Dependencies uses an inference operator, noted→. A depen-
dency between two state streams A and B is noted A → B. The left part of a Complex Temporal Dependency is
also called premise and its right part the conclusion. The inference operator’smain role is to associate a dependency
to the intersection-based confidence value. We recall hereafter the formula:

conf(A→ B) =
len(A ∩ B)

len(A)

With a slightly different point of view, one can observe that the inference operator induces a stream’s intersection
operation that defines the confidence parameters: it is the intersection between the dependency premise and its
conclusion. As discussed in Section 3.4.3, the intersection of two state streams is a state stream whose intervals
have specific semantics: an interval from A ∩ B denotes that both A and B are active. In other words, the result-
ing state stream contains all portion of time where a dependency is verified: it is the representative stream of a
dependency.

Definition 23 (Temporal Dependency representative stream)
Let A and B be two state streams and A → B a temporal dependency. A state stream representative of
A→ B, noted (A→ B)r is a state stream obtained via the intersection of its premise and conclusion:

(A→ B)r = A ∩ B

Considering state streams representatives permits to consider temporal dependencies between state streams
as state streams themselves. The usefulness of this concept will be discussed later.

We recall that, semantically, the inference operator expresses a simultaneity concept as it induces a stream
intersection. A → B with a confidence c means that A occurs with B with confidence c. The delayed temporal
relations are expressed via (α, β)-temporal transformations.
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Conjunctions

As discussed in the motivations section, a multi-state temporal dependency must express conditional temporal
relationships. From a practical point of view, temporal conditionality can be seen as a selection process or a
temporal join. For instance, let us consider the following conditional temporal dependency:

IF motion in A
AND motion in B after a duration d

THEN motion in C after a duration d
WITH CONFIDENCE of c

This relation express the following relationships: C is correlated to intervals of A that are followed by B after a
duration d with a confidence c. Therefore, the premise of this temporal dependency is composed by portions of
time where intervals of stream A are co-occurring with intervals of the stream B(d,d). The premise is then com-
puted via a stream intersection describing a conjunction of statesA and temporally transformedB. A conjunctive
relation in a multi-state temporal dependency is noted ∧. A temporal dependency can be then be defined as a
correlation between conjunctions of state streams:

A1 ∧ A2 ∧ ... ∧ Ak → Ak+1 ∧ Ak+2 ∧ ... ∧ An

where both premises and conclusion can be conjunctions of streams. The quantitative temporal information in
such dependencies must be expressed w.r.t a reference stream in order to make it easier to interpret. In the re-
minderof thiswork,wewill consider that at least one state in adependencypremise is not temporally transformed
in order to constitute a temporal reference. In addition to that, conjunction of streams will be noted following
the temporal order as a writing convention to facilitate dependencies reading. Thus, a conjunctive temporal de-
pendency can the formalized as:

R = A(0,0)
1 ∧ A(α2,β2)

2 ∧ ... ∧ A(αk,βk)
k → A

(αk+1,βk+1)

k+1 ∧ A
(αk+2,βk+2)

k+2 ∧ ... ∧ A(αn,βn)
n

with ∀αi, αi ≤ αi+1 and ∀βi, βi ≤ βi+1. A1 is the temporal reference of this dependency.
Since state streams conjunctions are state streams, the confidence value of conjunctive dependencies can be

simply obtained after the computation of the intersection stream of the premise and the conclusion:

conf(R) =
len(P ∩ C)

len(P)

with P = A(0,0)
1 ∩ A(α2,β2)

2 ∩ ... ∩ A(αk,βk)
k and C = A

(αk+1,βk+1)

k+1 ∩ A
(αk+2,βk+2)

k+2 ∩ ... ∩ A(αn,βn)
n .

It is to notice that both the inference and the conjunction operators express simultaneity (or succession in the
case of using temporal transformation). The main difference between these two operators is that the inference
operator indicate the set of states belonging to the premise and the set of states belonging to the conclusion. As a
consequence, the obtained confidence value is determined by the position of the inference operator. Indeed, the
value of len(P ∩ C) is the same wherever the inference operator is placed. For example, if we consider:

R′ = A(0,0)
1 → A(α2,β2)

2 ∧ ... ∧ A(αn,βn)
n
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The corresponding confidence value can be obtained with:

conf(R′) =
len(P ∩ C)

len(A(0,0)
1 )

since len(P∩ C) = len(P′ ∩ C′)with P′ = A(0,0)
1 andC′ = A(α2,β2)

2 ∩ ...∩ A(αn,βn)
n . These different confidence

values show also that the interpretation of these dependencies is specified by the inference operator position. For
instance, the interpretations of R and R′ are the following:

• R: IfA1 is followed byA2 after a delay given by (α2, β2) and byA3 after a delay given by (α3, β3) ... and byAk

after a delay given by (αk, βk) then follow Ak+1 after a delay given by (αk+1, βk+1) ... and An after a delay
given by (αk+1, βk+1)with confidence conf(R).

• R′: IfA1 is active then followA2 after a delay given by (α2, β2) ... andAn after a delay given by (αn, βn)with
confidence conf(R′).

Disjunctions

With conjunctive and inference operators, it is possible to express conditional dependencies between premises
and conclusions formedby a conjunction of delayed states. As discussed is themotivation section, thismodel can
use disjunctive relationships to enhance the interpretationof temporal dependencies through conciseness by per-
forming factorization of similar relationships. This also permits to build summaries providing general overviews
of complex temporal phenomena.

From a general perspective, our expressivity constraint can be translated into a conjunction of disjunctive rela-
tionships. Indeed, what is to be achieved by a disjunctive relation is the ability to group conjunctive dependencies
that share partially one or various quantitative states. Such temporal dependency can be noted:

D0 ∧ ... ∧ Dk → Dk+1 ∧ ... ∧ Dn

with Di a disjunction of states of S = {A0,A1, ...An}. A disjunction of two states A and B is noted A ∨ B. The
corresponding interval stream is composed by all portion of time where either state A or B are active. Therefore,
it is obtained via the unionA∪B. At this stage a temporal dependency can be formalized as a correlation between
two conjunctive normal forms:

∧

i

∨

j

A
(αij,βij)

ij →
∧

x

∨

y

A
(αxy,βxy)
xy

with Aij ∈ S , Axy ∈ S and ∃i, j such that (αij, βij) = (0, 0). This definition on temporal dependencies permits
to express temporal relations as in Figure 5.3.2, where there are disjunctive relationships between simple streams.
However, we consider that this is not sufficient to express more complex temporal relationships. Let us illustrate
this problemwith a simple corridor exampledepicted inFigure5.3.3. In this environment, all pedestriansperform
a trajectory going from A to E in a similar manner (delay between A and E is always the same). Two equivalent
groups (in terms of numbers and behaviours) are to be distinguished: the first group chose to pass through the
bottom corridor that is sensed by one motion sensor B, the second group choose the top corridor sensed by two
motion sensors C and D. Motion activity in that environment can represented with the following:
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Figure 5.3.3: Pedestrians pass through the top or the bottom corridors. All pedestrians have the same
speed and take the same time to go from A to E regardless of the chosen trajectory.

A

B

E

C D

(b, b
) (e1 , e1)

(c, c)
(d, d) (e 2,

e 2)

Expressing trajectories occurring in this environment with temporal dependencies using simple disjunctive re-
lations does not permit to capture the overall activity. Indeed, if one considers such disjunctive relations, the
obtained dependencies are A ∧ (B(b,b) ∨ C(c,c))→ E(b+e1,b+e1) and A ∧

(

B(b,b) ∨ D(c+d,c+d))
)

→ E(b+e1,b+e1).
We consider that a dependency of the formA∧ (B(b,b) ∨ (C(c,c) ∧D(c+d,c+d))→ E(b+e1,b+e1) is more insightful.
Indeed, semantically it reports that pathsABE andACDE are equivalent in quantitative terms (b+e1 = c+d+e2).
This permit to induce that the bottom and the above trajectories occur in the same way while considering simple
disjunctive relations does not provide such information. From a formalization point of view, the former example
complexity needs temporal dependencies defined as normal conjunctive forms where atomic formulas are con-
junctive normal forms of states in S . Formally, a dependency able to express this kind of temporal relation can
be defined as:

∧

i

∨

j

∧

k

∨

l

A
(αijkl,βijkl)

ijkl →
∧

x

∨

y

∧

z

∨

t

A
(αxyzt,βxyzt)

xyzt

.
This reasoning about disjunctive relations can be extended to higher levels of complexity with more disjunc-

tives levels. For example, the following temporal configuration is considered more complex than the former ex-
ample.

A

B

C

D

F

GE

The expression of this temporal configuration needs three levels of normal conjunctive forms. It can be written
as the following (without temporal transformation for more clarity):

A ∧
(

B ∨
(

C ∧
(

F ∨ (D ∧ E)
)

)

)

→ G

We define the level of dependency complexity as the number of levels of normal conjunctive forms that are
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necessary to express a complex temporal relation fully. For instance, the temporal pattern corresponding to Fig-
ure 5.3.2 can be expressed with the first level of complexity, temporal patterns corresponding to Figure 5.3.3 can
be expressed with a second complexity level dependency and the last example with a third level complexity de-
pendency.

Complex Temporal Dependencies definition

Considering the threementioned operators in this section and our discussion about temporal relations complex-
ity, we provide hereafter the formal definition of Complex Temporal Dependencies.

Definition 24 (Complex Temporal Dependency)
Let S = {A1,A2, ...,An} be a set of state streams. A Complex Temporal Dependency over S is defined
with:

l0
∧

i1

li1
∨

i2

...

lik−1
∧

ik

lik
∨

ik+1

S
(αi1...ik+1 ,βi1...ik+1

)

i1...ik+1
→

l1
∧

j1

lj1
∨

j2

...

ljn−1
∧

jn

ljn
∨

jn+1

S
(αj1...jn+1 ,βj1...jn+1

)

j1...jn+1

where ∀k, Sk ∈ S and ∃i1...ik+1 such that (αi1...ik+1 , βi1...ik+1
) = (0, 0)

The confidence value of a Complex Temporal Dependency R is given by:

conf(R) =
len(P ∩ C)

len(P)

where P and C are respectively the stream resulting of the computation of the ”recursive” normal conjunctive
forms of the dependency’s premise and conclusion. This operation is done with the computation of streams
corresponding to normal conjunctive forms from the highest level of complexity to the lower. The stream corre-
sponding to normal conjunctive forms are obtained by (1) computing temporal transformations (2) computing
disjunctions via interval streams unions, then (3) computing conjunctions via interval streams intersection. Let
us consider the following dependency for a running example:

A ∧
(

B ∨
(

C ∧
(

F ∨ (D ∧ E)
)

)

)

→ G

If we consider the states in this dependency are transformed streams (temporal transformations are already com-
puted), the confidence of this dependency is given by computing successively:

• Intersection SDE = D ∩ E

• Union SDEF = SDE ∪ F

• Intersection SDEFC = SDEF ∩ C

• Union SDEFCB = SDEFC ∪ B

• Intersection P = SDEFCB ∩ A. The result at this stage corresponds to the premise stream. The conclusion
in this example is constituted by a unique stream G

• Confidence:
len(P ∩ G)

len(P)
From a complexity point of view, all necessary stream operations for a confidence calculation are linear w.r.t

number of intervals in the streams.
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Sub-dependencies

A sub-dependency of a dependency R is a dependency involving a subset of states of R such that it preserves the
conjunctive and disjunctive relations between these states. For instance, if A and B are linked with a conjunctive
relation in R, a sub-dependency of R involving A and B must contain a conjunctive relation between A and B.

Definition 25 (Complex Temporal Sub-Dependencies)
Let S = {A1,A2, ...,An} be a set of state streams and R a Complex Temporal Dependency over S:

R =

l0
∧

i1

li1
∨

i2

...

lik−1
∧

ik

lik
∨

ik+1

S
(αi1...ik+1 ,βi1...ik+1

)

i1...ik+1
→

l1
∧

j1

lj1
∨

j2

...

ljn−1
∧

jn

ljn
∨

jn+1

S
(αj1...jn+1 ,βj1...jn+1

)

j1...jn+1

A sub-dependency R′ of R is a complex temporal dependency defined as:

R′ =

L0
∧

i1

Li1
∨

i2

...

Lik−1
∧

ik

Lik
∨

ik+1

S
(αi1...ik+1 ,βi1...ik+1

)

i1...ik+1
→

L1
∧

i1

Lj1
∨

j2

...

Ljn−1
∧

jn

Ljn
∨

jn+1

S
(αj1...jn+1 ,βj1...jn+1

)

j1...jn+1

where∀i, j i ≥ 1 and j ≥ 1 ; ∀x = y and Sx ∈ R, Sy ∈ R′, Sx = Sy ; andLx is a subset of
(

{x1, x2, ...},≤
)

the set of totally ordered naturals such that ∀x ∈ [0, lx], x ∈ {x1, x2, ...}.

In order to make this definition clearer, let us consider the following example.

R = A ∧
(

B ∨
(

C ∧
(

F ∨ (D ∧ E)
)

)

)

→ G

The logical relations within the premise of this dependencies can be represented as a logical tree where depth
levels correspond to conjunctive or disjunctive operators. As theCTDmodel is defined as a recursive conjunctive
normal form, the root of the logical tree is a conjunction and children of a conjunctive node are disjunctions and
vice versa. The logical tree corresponding to our example is the following.

∧

∨

∧

∨

∧

∨ D
1

∨ E
1

1

2

∧ ∨ F
11

1

2

∨ ∧ ∨ C
111

1

2

∧ ∨ ∧ ∨ B
1111

1

2

∨ ∧ ∨ ∧ ∨ A
11111

1

2

Edges’ labels in this tree corresponds to the used indexes in the recursive conjunctive normal form formula.
For instance, stateA corresponds to S111111 andD to S111112. This representation is useful to easily specify the logical
relation between two states in a complex recursive conjunctive normal form. It is given by the first common
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ancestor of two states. For example, A and B are related with a conjunction, B and F with a disjunctive relation
and C and E with a conjunction. Following the same reasoning, one can also specify logical expression between
multiple states. For example, the logical relationship betweenA,C andD can be obtained with the following tree
portion that is built preserving the path to the root of each state:

∧
A,(C,E)

∨
∧

C,E
∨ ∧ ∨ E

∨ ∧ ∨ C

∨ ∧ ∨ ∧ ∨ A

This tree portion is to be interpreted in terms of recursive normal conjunctive forms with:

A ∧ (C ∧ E)

as the commonancestorofC andE is a conjunction, and the commonancestorofA andC∧E is also a conjunction.
This relation can be called a logical sub-expression of the premise ofR. In the complex temporal sub-dependency,
theuseof a subset of totally orderednaturals as indexes for conjunctive anddisjunctive permits tomaintain logical
”paths” and, thus, extract the corresponding tree portion linking A, C and E.

A sub-dependency of aR is, then, defined as a complex temporal dependency between a logical sub-expression
of the premise of R and a logical sub-expression of its conclusion. For instance, A ∧ (C ∧ E) → G is a sub-
dependency of R.

Confidence monotonicity

One useful characteristic of interestingnessmeasures is that ofmonotonicity. For instance, the downwardmono-
tonicity of the counting support measure, stating that any sub-sequence of a frequent sequential pattern is fre-
quent, permits to use the Apriori pruning mechanism in sequential pattern mining. In this subsection, we study
the monotonicity of the intersection-based confidence measure w.r.t premise and conclusion extension.

A complex temporal dependency extension consists of adding a conjunctive or disjunctive logical relation to
either the premise or the conclusion. For instance, A ∧ B → C is a premise conjunction extension of A ∧ C
and A → B ∨ C is a conclusion disjunctive extension of A → B. Follows, the confidence (non)-monotonicity
properties w.r.t the premise and conclusion extensions.

Property 2 (Premise conjunctive extension effect on confidence)
Let R and R′ be CTDs such that R′ is obtained by a premise conjunctive extension of R. The confidence
of R′ can be higher, lower or equal to the confidence of R.

Proof. The confidence of A→ C and A ∧ B→ C are given by

conf(A→ C) =
len(A ∩ C)

len(A)

conf(A ∧ B→ C) =
len(A ∩ C ∩ B)

len(A ∩ B)
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Since

len(A ∩ C) ≥ len(A ∩ C ∩ B)

len(A) ≥ len(A ∩ B)

Then, conf(A→ C) can be higher, lower or equal to conf(A ∧ B→ C).

Property 3 (Premise disjunctive extension effect on confidence)
Let R and R′ be CTDs such that R′ is obtained by a premise disjunctive extension of R. The confidence
of R′ can be higher, lower or equal to the confidence of R.

Proof. The confidence of A→ C and A ∧ B→ C are given by

conf(A→ C) =
len(A ∩ C)

len(A)

conf(A ∨ B→ C) =
len

(

(A ∪ B) ∩ C
)

len(A ∪ B)

Since

len(A ∩ C) ≤ len
(

(A ∪ B) ∩ C
)

len(A) ≤ len(A ∪ B)

Then, conf(A→ C) can be higher, lower or equal to conf(A ∧ B→ C).

Property 4 (Conclusion conjunctive extension effect on confidence)
LetR andR′ beCTDs such thatR′ is obtainedby a conclusion conjunctive extensionofR. The confidence
of R′ is lower or equal to the confidence of R.

Proof. The confidence of A→ C and A→ B ∧ C are given by

conf(A→ C) =
len(A ∩ C)

len(A)

conf(A→ B ∧ C) =
len

(

A ∩ (B ∩ C)
)

len(A)

Since
len(A ∩ C) ≥ len

(

A ∩ (B ∩ C)
)

then,
conf(A→ C) ≥ conf(A→ B ∧ C)

Property 5 (Conclusion disjunctive extension effect on confidence)
LetR andR′ beCTDs such thatR′ is obtained by a conclusion disjunctive extension ofR. The confidence
of R′ is greater or equal to the confidence of R.
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Proof. The confidence of A→ C and A→ B ∨ C are given by

conf(A→ C) =
len(A ∩ C)

len(A)

conf(A→ B ∧ C) =
len

(

A ∩ (B ∪ C)
)

len(A)

Since
len(A ∩ C) ≤ len

(

A ∩ (B ∪ C)
)

then,
conf(A→ C) ≤ conf(A→ B ∧ C)

These four properties show that the intersection-based confidence is monotonic w.r.t conclusion extension
and non-monotonic for premise extensions. These properties can be extended to temporal transformations and
proofed with similar reasoning.

Conclusion

In this section, we motivated and defined the Complex Temporal Dependency model. It permits to express and
build complexdependencies, assessedwith an intersection-based confidencemeasure. It is basedon the inclusion
of conjunctive and disjunctive relations and defined as an inference relation between recursive normal conjunc-
tive forms. In the next section, we will discuss how Complex Temporal Dependencies can be used to build a
temporal model describing temporal phenomena occurring in a set of interval streams.

5.4 Modelling environment activities through CTDs

In Section 5.3, we argued that modelling complex temporal relationships between states can not be straightfor-
wardly be achieved with simple pairwise dependency graph as the Markov property cannot always be verified.
Indeed, the extraction of complex temporal dependencies from a dependency graph needs additional computa-
tions to ensure the existence of correlations and calculate the appropriate confidence measures.

In this section, we discuss how to build predictivemodels for complex temporal dependencies that are similar
to Markov chains, i.e. taking the form of a graph structure. Indeed, this can be useful to model complex tempo-
ral phenomena occurring in an environment with a useful model that can be used straightforwardly for several
application as:

• Perform temporal predictions: with conditional relationships that take into account the historicity and the
corresponding confidencemeasures, it is possible to predict the expected outcomes with great confidence
precision.

• Monitoring an environment through a conditional graph may allow performing concept drift analysis to
detect behavioural changes in an environment and trigger a new temporal dependency discovery process.

• Perform precise, realistic simulations based on conditional temporal relations.
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(a) Pedestrian trajectories (b) Bicycles trajectories

Figure 5.4.1: A set of corridors where pedestrians and bicycles have different typical trajectories

In order to illustrate this modelling problem, we consider the corridor environment we used in Figure 5.3.1
with a slightly more complex temporal configuration where both pedestrians and bicycles behave differently as
depicted in Figure 5.4.1. For simplicity purposes, say that our system follows the following rules:

• During the observation duration, the same number of pedestrians and bicycles crossed the environment.

• Bicycles had a speed twice higher than pedestrians. As a consequence, intervals induced by bicycles have
a duration that is twice lesser than those generated by pedestrians.

We want to model such an environment through its motion states in a way reflecting the quantitative and quali-
tative variety of trajectories occurring in it. Let us consider firstly, the pairs of states corresponding to the starting
of each trajectory. The following graph is obtained:

A C B

(2d, 2d), 0.66

(d, d), 0.33

(2d, 2d), 0.66

(d, d), 0.33

This graph is obtained with the following pairwise dependencies: A → C(d,d), A → C(2d,2d), B → C(d,d)

and A → B(2d,2d). The red and blue arrow correspond to pedestrian behaviours while the green and the black
one to bicycles’. It is to notice that time delays induced by pedestrians are twice greater than those generated
by bicycles. Both can be considered as significant and must appear in the description graph as they constitute
two different behaviours. The second thing to notice is the confidence difference. Pedestrians generate valid
intervals having twice the duration of those generated by bicycles. The direct consequence of this is that the
intersection lengthof, for example,A∩C(d,d) equals twice the intersection lengthofA∩C(2d,2d). As a consequence
2 ∗ conf(A → C(d,d)) = conf(A → C(2d,2d)) even if the number of pedestrians and bicycles is equal. This
examplepermits tohighlight the fact that confidence values arenotmeant tobe interpreted in termsof occurrence
probabilities, i.e. with an actor counting reasoning, but in terms of the proportion of active premise length.

From the precedent partial graph, the objective is to extend it to obtain a quantitative description of each
trajectory with corresponding confidence measures. The resulting graph must be the following:
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A

C

B

D E

(2d, 2d), 0.66(d, d), 0.33

(2d
, 2d

), 0
.66

(d,
d),

0.3
3

(d,
d),

1

(2d
, 2d

), 1
(2d, 2d), 1

(d, d), 1

For instance, the red graph path depicting the red pedestrian trajectory is to be interpreted in the following way.

• State A is correlated with state C with temporal transformation (2d, 2d) and confidence 0.66.

• State C is correlated with state D with temporal transformation (2d, 2d) and confidence 1 if the first tem-
poral transformation is verified.

We propose to materialize the conditional relationship (represented using colours in the former graph) using
conjunctive expressions labels on edges. With the former example, the red edge linking C to D will have an ad-
ditional attribute A ∧ C(2d,2d) denoting that the red edge is valid if and only if the interval of C is ”involved” in a
valid temporal relation A → C(2d,2d). Following the same logic, the obtained temporal dependency graph will
be:

A

C

B

D E

(2d, 2d), 0.66
(d, d), 0.33

(2d
, 2d

), 0
.66

(d,
d),

0.3
3

(d,
d),

1

B ∧
C
(d,

d)

(2d
, 2d

), 1

A ∧
C
(2d

,2d
)

(2d, 2d), 1
B ∧ C (2d,2d)

(d, d), 1A ∧ C (d,d)

This type of conditional temporal models can be useful to provide answers to queries such as:

• What statistically valid temporal relations can be expected if the current state is C?

• What statistically valid temporal relations can be expected if the current state isC, given a previous occur-
rence of state A?

• What statistically valid temporal relations can be expected if the current state is C, given an occurrence of
a state A, 2d times units before?

For instance, the first query answer is: a stateC can be followed by stateD after a duration (d, d)with confidence
1 if exists an occurrence of stateB before a (d, d) durationOR by stateD after a duration (2d, 2d)with confidence
1 if exists an occurrence of state C before a duration (2d, 2d)OR ...
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We believe that this type of insights provide explainable predictive information as it takes into account the
context. For instance, a state C will be followed by a state D (and not a state E) after a given duration because
there was a valid state B before. In the next chapter, we will propose an algorithm devised to discover statistically
significant Complex Temporal Dependencies permitting to build such conditional models.

5.5 Discussion and conclusion

In this chapter, we introduced the Complex Temporal Dependency model. It permits to express a broad set of
complex temporal relations and configurations between multiple environment states.

Nevertheless, we believe that this model can be improved on its temporal aspect to unsure a complete non-
ambiguity of temporal descriptions. Indeed, modelling time lags and delays with an (α, β)-temporal transforma-
tion does not provide a theoretical guarantee for non-ambiguity. Indeed, as discussed in Chapter 4, an interval,
without regards to its semantics, is defined with two parameters (i.e. two endpoints, or an endpoint and a du-
ration). The temporal relation between two intervals A and B can be represented graphically and relationally as
follows:

A+ A−

B+ B−

γ

α

θ

β

where A+, B+ denote the first endpoints and A−, B− the second endpoints. What can be noticed is that any
variation in a temporal parameter induces the variation of one other which insures non-ambiguity. This can be
formalized by the following simple equation:

α + θ = γ + β

Thus, the complete characterization of a temporal relation between two intervals can be achieved if three of the
four variables of the former equation can be discovered. With (α, β)-temporal transformation, the available tem-
poral information is α and β in the former illustration without any information about intervals durations (γ and
θ). The obtained temporal patterns can be represented as follows:

A+ A−

B+ B−

α β

As it can be noticed in the right illustration, the specification of α and β does not permit to obtain fully non-
ambiguous temporal pattern permitting to associate it with a unique Allen temporal qualitative relation. The ex-
tension of the CTDmodel to take into account this temporal information would permit to obtain precise tempo-
ral quantitative models. Unfortunately, to the best of our knowledge (cf Chapter 4), there is no available pattern
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discovery algorithm permitting to fully specify necessary temporal insights to build non-ambiguous quantitative
temporal patterns (this problem share similarities withTemporalConstraints Satisfaction ProblemsTCSP [82]).
In chapter 7, we propose an approach that can be extended in that direction. In this work, we will consider the
proposed Complex Temporal Dependency as sufficient and propose algorithms for their discovery.
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In this chapter, we introduce the CTD-Miner algorithm. It is devised to discover statistically significant com-
plex temporal dependencies in order tobuild a conditional temporalmodel. Thecomplex temporal dependencies
model defines an infinite search space. Its exploration with a brute force approach is nor efficient nor feasible for
even small state streams set. Therefore, in the first section, we discuss and motivate several constraints and as-
sumptions wemade to restraint our search and result space. In the second section, we discuss the applicability of
twoproperties, Apriori andpatterns closure, to our complex temporal dependenciesmodel. These twoproperties
will be used as conciseness interestingness constraints devised to reduce information redundancy in the result
set provided by our approach as well as enhancing the efficiency of the discovery process. In the third section,
we will describe CTD-Miner before concluding this chapter.

6.1 Problem definition

The complex temporal dependencymodel (CTD) introduced in the last chapter defines an infinite search space.
One can convince himself of this statement noticing that a dependency A → A is statistically valid (with a
confidence of 1). By extension, all complex temporal dependencies taking the form of:

A ∧ A ∧ .... ∧ A→ A ∧ A.... ∧ A

are likely to be significant. The set of such dependencies is infinite (the premise and conjunction streams can be
composed of an infinity of conjunctive and disjunctive relations). Besides, we consider that this type of complex
temporal dependencies is not of interest as they do not provide any non-trivial information.

Another dimension that is not bounded in our dependency model is the temporal dimension. A temporal
transformation can have both α and β values inN. This can be nuanced considering a finite observation duration
Tobs. Indeed, one may consider that α and β can be bounded in [0,Tobs]. The temporal transformations search is
then in Θ(|Tobs|2) for each stream involved in a temporal dependency.

Hereafter, we first introduce and motivate a set of hypothesises, assumptions and constraints permitting to
define a finite search sub-space corresponding to a useful form of dependencies permitting to build conditional
temporal models as described in Chapter 5. Secondly, we formalise our problem with regards to this set of con-
straints and assumptions and conclude the section with a search space study.

6.1.1 Constraints on Complex Temporal Dependencies

Temporal Constraint

In order to propose an efficient CTD discovery algorithm, the first problem one may address concerns the tem-
poral search space. As described before, considering a finite observation timeTobs, each state involved in a depen-
dency may support a number of temporal transformation in Θ(|Tobs|2) since every (α, β) (with 0 ≤ α ≤ Tobs

0 ≤ β ≤ Tobs) combination must be tested. As discussed in Chapter 4, temporal patterns discovery algorithm
often use temporal constraints to reduce search spaces and enhance exploration efficiency. The commonly used
assumption behind the use of such constraints is the following:

In order to be interesting, two temporal facts must occur close enough in time. [101]

This assumption was used, for example, in the work of Mannila and Toivonen [101] about episode mining to
motivate the use of temporal windows. When it comes to interval streams dependency mining, authors in [127]
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used a range Δ = [min,max] as bounds for temporal transformation values for pairwise dependency. In this
work, we will consider this same temporal constraint.

The question that is raised for multi-state temporal dependencies is how to apply this temporal constraint.
Generally speaking, there are two main ways to consider a temporal constraint when multiple items are consid-
ered (cf Chapter 4):

• Window-like constraint. The temporal constraint is applied to the overall temporal pattern.

• Maximum gap-like constraint. The temporal constraint is considered for successive temporal facts.

For our discovery algorithm, we chose to apply the temporal constraint in amaximum gapway formainly two
reasons and limitations introduced by the window-like temporal constraint: a window like a constraint limits
the overall duration of temporal patterns to be discovered and discovering temporally large pattern needs the
definition of large temporal search spaces.

To illustrate these two aspects, let us consider a temporal phenomenon P described by ten facts. It occurs typ-
ically in a period of 200 seconds with time lags between successive facts ranging between 0 and 30. Considering a
window-like constraint, one must specify a temporal constraint that is large enough (e.g. Δ = [0, 300]) to catch
the correlation between the first and the last temporal fact. Otherwise, the overall temporal correlation between
the ten facts will not be discovered. Hence, if the user does not have precise knowledge about temporal phenom-
ena described in a data set (particularly with streaming data that have no activity separation), it is likely to ”miss”
large interesting temporal phenomena. We consider the large successions of temporal facts provide more insight
about phenomena. For instance, a trajectory of 100 steps ismore interesting than numerous sub-trajectories of 10
steps. Themaximum gap constraint permits to obtain such large temporal relations as it does not bound patterns
temporally to be discovered but constrains the temporal gap between the closest facts.

The second argument in favour of gap-like constraint is the temporal search space size. With our former exam-
ple, discovering the overall temporal phenomenonneeds aminimal window-like constraint ofΔ = [0, 200]. This
constraint defines a search space of 2002 temporal transformations. If one considers an Apriori-like algorithm,
performing an incremental extension of temporal patterns taking into account conditional temporal relations (as
in ourmodel), each extension of the temporal pattern (performed nine times for ten steps) needs the exploration
of 2002 possible temporal transformations. With a maximum gap constraint, the same results can be achieved
with a Δ = [0, 30] performing nine explorations of a temporal search space of size 302. The temporal search
space cost with the gap constraint is smaller with the gap constraint by one order of magnitude in comparison
with even one search space exploration with the window-like temporal constraint approach. Following this dis-
cussion, we defined temporal constrained Complex Temporal Dependencies.

Definition 26 (Temporally constrained CTD)
LetS = {A1,A2, ...,An} be a set of state streams andΔ = [min,max] a constraint on temporal transfor-
mations. Let R be a Complex Temporal Dependency over S:

R =
∧

i1

∨

i2

...
∧

ik

∨

ik+1

S
(αi1...ik+1 ,βi1...ik+1

)

i1...ik+1
→

∧

ik+2

∨

ik+3

...
∧

in−1

∨

in

S
(αik+2...in ,βik+2...in

)

ik+2...in

where ∀i, Si ∈ S and ∃i1...ik+1 such that (αi1...ik+1 , βi1...ik+1
) = (0, 0). R is said to verify the Δ constraint

if ∀(αi, βi), ∃(αj, βj) such that |αi − αj| ∈ Δ and |βi − βj| ∈ Δ.
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For instance, let Δ = [0, 10] be a temporal constraint. The complex temporal dependency is a temporally
constrained Δ:

A(0,0) ∧ B(5,4) → C(15,6) ∧ D(15,16)

One can remark that C and D have temporal transformations that are not in Δ but are temporally distant from
another state in the dependency by a time lag in Δ. For instance, the temporal transformation of C has an expan-
sion value, 15, that is temporally distant by 10 ∈ Δ from the expansion ofB: the time lag between stateB and state
C respects the temporal constraint.

Non-cyclic constraint

The Δ temporal constraint makes the temporal search space finite, but the overall search space (combinations of
states and operators) remains infinite. In order to propose the first algorithm using the Complex Temporal De-
pendenciesmodel, we chose to constraint the search space tonon-cyclic dependencies. Anon-cyclic dependency
is a dependency where a state can appear at most once. Follows the formal definition.

Definition 27 (Non-cyclic CTD)
Let S = {A1,A2, ...,An} be a set of state streams. Let R be a Complex Temporal Dependency over S:

R =
∧

i1

∨

i2

...
∧

ik

∨

ik+1

S
(αi1...ik+1 ,βi1...ik+1

)

i1...ik+1
→

∧

ik+2

∨

ik+3

...
∧

in−1

∨

in

S
(αik+2...in ,βik+2...in

)

ik+2...in

where ∀i, Si ∈ S and ∃i1...ik+1 such that (αi1...ik+1 , βi1...ik+1
) = (0, 0). R is said to be non-cyclic if ∀Si ∈

R, ∄Sj ∈ R, i ̸= j such that Si = Sj.

For example, A(0,0) ∧ B(10,12) → A(10,0) do not respect the non-cyclic constraint. This type of dependencies
can be enough to describe temporal phenomena where states are not likely to appear more than once. A typical
example is that of straight trajectories. The non-cyclic constraint is introduced for simplicity allowing the design
a first algorithm devised to validate our approach and study its efficiency. A straightforward direction towards
allowing cyclic temporal relationships is to duplicate a given stream and name it differently. However, this ap-
proach causes information duplication since every interval-based stream is correlated with itself (a confidence of
1 is given for a temporal transformation (0, 0)). Hence, even if no ”interesting” dependency exists in a dataset of n
duplicated streams, at least

n
2
dependency will be given. Wewill discuss one direction to get rid of the non-cyclic

approach at the end of this chapter.

Non-conjunctive conclusions

In Section 5.4, we discussed how complex temporal dependencies could be used to build temporal models of
environments activities. What can be concluded from that section is that suchmodels can be built using complex
temporal dependencies with simple conclusions and dependencies representatives. Such dependencies can be
called non-conjunctive conclusion dependencies and defined as follows.

Definition 28 (Non-conjunctive conclusion CTD)
Let S = {A1,A2, ...,An} be a set of state streams. A non-conjunctive conclusion Complex Temporal
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Dependency over S is defined as:

R =
∧

i1

∨

i2

...
∧

ik

∨

ik+1

S
(αi1...ik+1 ,βi1...ik+1

)

i1...ik+1
→ S

(αj,βj)

j

where ∀i, Si ∈ S and ∃i1...ik+1 such that (αi1...ik+1 , βi1...ik+1
) = (0, 0).

For instance,A→ B(α,β)∧C(α′,β′) is not a non-conjunctive conclusionCTD since its conclusion is composed
by a conjunction of states of the input stream set.

6.1.2 Problem formalization

In this chapter, we are interested on the following problem:

Problem 5
LetS = {A1,A2,A3, ...An} a set of state streams andΔ = [min,max] a temporal constraint on temporal
transformations. Our goal is to discover statistically valid, temporally constraint constrained by Δ, non-
cyclic with non-conjunctive conclusion complex temporal dependencies.

6.1.3 Search space study

In this subsection, we study the search space defined by the constrained temporal dependencies pattern language.
Let us consider a set of n state streams S = {A1, ...,An} and a temporal constraint Δ = [min,max] ∈ N.
To structure the study of the search space defined by our problem, we propose to consider its two dimensions:
temporal and logical.

The temporal search space for a single state is constituted with all its temporally transformed variations. As
discussed earlier in this section, the number of theoretically possible temporal transformation for a single state
with a Δ = [min,max] temporal constraint is |Δ|2 = |max − min|2 if one considers all pairs (α, β). As a
consequence, for each dependency of k states, exists (|Δ|2)(k−1) temporal variation: each state can use |max −
min|2 temporal variations except the reference state (with (0, 0) transformation).

The logical search space contains all possible combinations of states. Since, we are interested in single conclu-
sions dependencies with the non-cyclic constraint, the number of possible conjunctive dependencies (without
disjunctions) is given by:

n−1
∑

k=1

(

n
k

)

(n− k)

For a given index k of the sum, the first term
(n
k

)

corresponds to the number of possible premises given by the
k-combination from the set of statesS . The second term (n− k) is the number of possible conclusions given the
non-cyclic constraint: for each k states premise, there is (n−k) possible conclusion. Thus, the product

(n
k

)

(n−k)
provides the number of dependencies of the formS1∧S2...∧Sk → Sk+1 whereSi ∈ S . This sumcanbe expressed
in a more simplified way with:

(2n−1 − 1) ∗ n
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Proof.

n−1
∑

k=1

(

n
k

)

(n− k) =
n−1
∑

k=1

n!
k!(n− k)!

(n− k)

= n ∗
n−1
∑

k=1

(n− 1)!
k!(n− k− 1)!

= n ∗ (
n−1
∑

k=0

(n− 1)!
k!(n− k− 1)!

− 1)

= n ∗
(

(
n−1
∑

k=0

(

n− 1
k

)

)− 1
)

= n ∗ (2n−1 − 1)

Theoverall number of dependencies using only the conjunctive relations with a simple conclusion is given by:

n
n−1
∑

k=1

(n− 1)!
k!(n− k− 1)!

∗ (|Δ|2)k

The term (|Δ|2)k corresponds to the number of temporal variations of states used in the conjunctive dependen-
cies. This expression can be simplified to:

n ∗
(

(1 + |Δ|2)n−1 − 1)
)

Proof.

n
n−1
∑

k=1

(

n− 1
k

)

∗ (|Δ|2)k = n
(

(

n−1
∑

k=0

(

n− 1
k

)

∗ (|Δ|2)k)− 1
)

The binomial theorem states that:
n

∑

k=0

(

n
k

)

∗ rk = (1 + r)n

The direct application of this theorem to our sum gives result:

n ∗
(

(1 + |Δ|2)n−1 − 1)
)

This number is a lower bound of the total search space since it does not consider disjunctive logical relations.
This search space size, however, indicates the complexity of a brute force exploration algorithm showing that such
an approach can not be considered for even small sets of states streams and small temporal constraints. What can
be concluded is that the realistic exploration of the search space defined by our problem can not be achieved
without efficient search space pruning criteria.
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6.2 Preliminaries

In the last section,wedefined theproblemofminingComplexTemporalDependencies froma setof state streams.
The study of the search space of conjunctive temporal dependencies showed that a naive brute force approach
could not apply to even small sets of state streams.

As discussed in Chapter 4, several properties can be used to prune search spaces for sequential pattern min-
ing, that is based, mostly, on count-based interestingness measure. We motivated in Chapter 5 the use of an
intersection-based interestingness measure for complex dependencies mining. In this section, we discuss the ap-
plicability of some of the available pruning mechanism to our problem, given the intersection-based confidence
measure. More precisely, we are particularly interested in the Apriori property and closure checking.

6.2.1 Is the Apriori property suitable for complex temporal dependencies mining?

For sequential pattern mining, the Apriori pruning mechanism relies on the downward closure property of the
count-based support of sequential pattern. This property states that any sub-sequence of a frequent sequential
pattern is also frequent. It is basedon themonotonicdecreaseof the count-based support interestingnessmeasure
with pattern extensions. For instance, if a sequential pattern ABC have a support of s, any of its sub-sequences
have a support equal or greater than s. The Apriori pruning mechanism uses this property as follows: any super-
sequence of an infrequent sequential pattern does not need to be generated and tested. The question we pose
in this subsection is: can we use an Apriori-like pruning mechanism to discover the subset of complex temporal
dependencies corresponding to our problem?

To respond to this question, let us first consider the differences between our problem and that of sequential
patterns/rule mining. As discussed in Chapter 4, sequential rule mining often use two user-given parameters:
minimum support and minimum confidence. Without digging into details, sequential rule mining approaches
mainly use the set of frequent sequences to build valid sequential rules. In this process, theApriori pruningmech-
anism intervenes in the support checking step (whatever the used algorithmic approach) thanks to the downward
closure property of the support measure. For example, rules that can be constructed from a sequence ABC (i.e.
AB→ C or A→ BC) will not be generated and tested if A or B are not frequent. While sharing the same objec-
tive (discovering interesting rules/dependencies) our problem is different in that, inter alia, there is no equivalent
concept of ”frequent sequence”. A sequence ABC can be interesting w.r.t the minimum support while, with our
problemsettings,A∧B∧C is not even assessednor corresponds to aparticular interest. Thiswould require theuse
of minimum user-given intersection-length thresholds which is not of interest for our problem. Indeed, we aim
to avoid any user-given interest threshold and rely on the statistical assessment of confidence values. Therefore,
an Apriori-like pruning mechanism is interesting if it can be applied straightforwardly to the intersection-based
confidence measure.

As our objective is to discover a set of significant complex temporal dependencies, one straightforward algo-
rithmic approach is to use incremental dependencies extensions to build statistically significant complex tempo-
ral dependencies. In our problem context, this means performing incremental premise extensions (with supple-
mentary conjunctive and disjunctive relations) and prune while finding non-valid dependencies. For example, a
dependency A ∧ B ∧ C → D is obtained by assessing successively A → D, A ∧ B → D and A ∧ B ∧ C → D.
If, for example, A ∧ B → D is not statistically valid the potential downward closure property would permit to
ensure thatA∧B∧C→ D is not statistically valid and avoid assessing it. In this context, theApriori-like pruning
mechanism can be formulated as follows:
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If a dependency R is not statistically valid, then all its super-dependencies are not statistically valid.

In order to apply this approach, the statistical validity defining the interest of a dependency must be downward
closed w.r.t to dependencies extensions:

Sub-dependencies of a statistically valid dependency are also statistically valid.

Twoconditions arenecessary to verify this property for ourproblem: (1) the interest thresholdmustbemono-
tonic w.r.t premise length (2) the interest measure must be inversely monotonic to the interest threshold. More
specifically, if confidence ismonotonically increasingwith premise extensions, thresholdsmust bymonotonically
decreasing and vice versa. The inversemonotonicity condition is necessary to guarantee the validity preservation
sincewe use dynamic statistical thresholds that depend on premise and conclusion lengths. The use of a static (or
fixed) validity threshold (frequent sequence mining) can be seen as a specific case since it is a constant value. In
our context, while the first condition is verified, unfortunately, the second one is not (cf. Section 5.3.1): the con-
fidence measure is not monotonic with premise extensions. Therefore, we conclude that an Apriori-like pruning
mechanism can not be applied with a premise extension exploration strategy.

In this work, we propose to consider a different exploration approach that is more directed towards the dis-
covery of conditional temporal models using Complex Temporal Dependencies. As described in Section 5.4, a
conditional temporal relation, modelled as a directed graph, is built in order to preserve conditionality of tempo-
ral relations. For more clarity, let us consider the following example.

A B C
(α1, β1), c1 (α2, β2), c2

A ∧ B(α1,β1)

In this example, we argue that the temporal phenomenon involving A, B, and C is of interest only if each of
its conditional ”steps” corresponds to a statistically valid temporal dependency. That is to say that if the relation
between A and B is not statistically valid, then there is no interest in assessing the relation between A, B then C.
This assumption permits to define, somehow, a downward closure based on the graph representation of temporal
phenomena. It can be formalised as follows:

P a temporal phenomenon and G = {V, E} a conditional temporal graph modelling P. P is con-
sidered as interesting if every e ∈ E corresponds to statistically valid non-conjunctive CTD

With the former example, the temporal relationship between A, B and C is interesting if A → B(α1,β1) and
A ∧ B(α1,β1) → C(α2,β2) are statistically valid. An Apriori-like mechanism can be derived from this statement
for incremental construction of statistically valid temporal relationships. For instance, let A → B a temporal
dependency and (A → B)r its stream representative. If A → B is statistically valid, then dependencies taking
the form (A→ B)r → X ≡ A ∧ B→ X with X ∈ S can be tested. Otherwise, they are pruned.

6.2.2 ”Closure” checking with an interval-based confidence measure

The concept of closed pattern is useful to perform both exploration search space pruning and to reduce informa-
tion redundancy or pattern flooding without loss of expressive power. Let us first recall the definition of closed
sequential patterns.
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Figure 6.2.1: Succession of intervals A, B, and C. Successions ABC and AC are closed. AB and BC are not.

Definition 29 (Closed sequential pattern (from [162]))
Let FS be the set of frequent sequential patterns including all sequences having a support no less than
the minimum support. The set of closed sequential pattern CS is defined as follows: CS = {α|α ∈
FS and ∄β ∈ FS such that α is a subset of β and α and β have the same support}

Let us consider the following simple illustrative example. Let ABCD be a frequent sequential pattern having a
support of s. If CD have the same support s, then CD is not closed. This can be interpreted as follows: all oc-
currences of CD contribute to the occurrence of the larger pattern ABCD. In other words, all ABCD and CD
report on the same temporal phenomenon occurrences. Thus, each frequent pattern obtained by extending CD
is a sub-pattern of a frequent pattern extending ABCD. Therefore, extending CD can be avoided and ABCD con-
sidered as a unique result that maintains the expressive power of CD or any of its extensions. We aim to extend
this reasoning for intersection based dependencies.

Let us first illustrate this with a simple example. We describe in Figure 6.2.1 3 streams A, B and C. From a
counting support perspective, in this configuration, succession of intervalsABC andAC are closed while BC and
AB are not: AB and BC have both a support of 2 that is equal to the support of ABC. Indeed, one can notice that
occurrences of eventsA, B andC that contributes to the support ofAB and BC are the those contributing the the
support ofABC. Let us now extend this to intersection based reasoning. The following set of 4 dependencies can
be extracted from the previous streams:

R1 = A→ B(α,α), conf = 0.5

R2 = A ∧ B(α,α) → C(2α,2α), conf = 1

R3 = B→ C(α,α), conf = 1

R4 = A→ C(2α,2α), conf = 1

Wedescribe in Figure 6.2.1 the representative streams of each of these dependencies. What can be noticed is that
both R1 and R2 have correspondent representative streams. More precisely the following equality is obtained:

(R1)r ∩ (R2)r = (R1)r = (R2)r

This can be interpreted as follows: active durations of streams A and B that contribute to dependency R1 are the
same that contribute to dependency R2. Thus, it can be concluded that these two dependencies are generated by
the same temporal phenomenon. This reasoning can be also applied toR3 using a supplementary temporal trans-
formation on its representative. Indeed, as B in R1 use an (α, α)-transformation, and B is the temporal reference
ofR2, assessing if these two dependencies describe the same phenomenon can be achieved by comparing the rep-
resentative streams of (R1)r and (R3)

(α,α)
r . On the other hand, it can be easily noticed in Figure 6.2.2 that R2 does

not contain all information provided byR4: R4 involvesmore active intervals ofA. The equality of representative
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Figure 6.2.2: Interval streams representatives of dependencies A → B(α,α), A ∧ B(α,α) → C(2α,2α), B → C(α,α)

and A→ C(2α,2α) extracted from streams in Figure 6.2.1

streams can also be expressed in terms confidence measures of dependencies between R1 and R2 as follows:

conf((R1)r → (R2)r) = 1 and conf((R1)r → (R2)r) = 1

These relations states that (R1)r and (R2)r are mutually and strongly correlated. However, the strict equality is
too restricting to be applied with noisy real world data. We propose then to use a relaxation parameter ε to allow
a certain degree of error that may correspond to noise or to temporal variability (i.e the same phenomenon can
be occurring with slight temporal variations). In order to exempt the user from providing the epsilon parame-
ter that may need expert knowledge, one approach is to use the statistical threshold on confidence measure. It
corresponds to the minimum intersection length that can be considered as statistically valid given the statistical
test of independence. The loss of a smaller amount w.r.t the maximal confidence value (=1) can be considered as
non-significant. Follows the definition of the relaxed correspondence relationship.

Definition 30 (Interval Streams correspondence relationship)
Let A and B two interval streams. A and B are correspondent if:

conf(A→ B) ≤ 1− ε

and conf(B→ A) ≤ 1− ε

with ε a relaxation parameter.

This relationship is used to detect closed-like complex temporal dependencies. We refer this property of tem-
poral dependencies as closed-like as it permits only to infer that two dependencies are describing the same tem-
poral phenomenon but are is not lossless. Indeed, a closed-like dependency does not provide information about
the confidence of sub-dependencies. For instance, R2 does not provide information about confidence value of
R1.

Definition 31 (Closed-like Complex Temporal Dependency)
Let S be a set of interval-based streams andR a set of Complex Temporal Dependencies over S , a de-
pendency R ∈ R and S the temporal reference state of R. R is closed-like inR if ∄R′ ∈ R such that R
is a sub-dependency ofR′ and (R′)r is correspondent to (R)

(α,β)
r with (α, β) the temporal transformation

of S in R′.

While not preserving confidence information in all cases, this property is useful for a discovery process to
implement two main pruning strategies: sub-temporal relations pruning and dependencies merge.
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The dependencies merge consists of merging dependencies of the form A→ B and B→ C if their represen-
tative streams are correspondent. This would permit to avoid testing a dependency A ∧ B→ C and reducing its
cost to the computation of the closed-like checking and the dependency confidence rather than exploring the en-
tire temporal search space. The second way to benefit from the closed-like CTD property is that of sub-temporal
relations pruning. We will detail this in the next section as we describe the CTD-Miner algorithm.

6.3 CTD-Miner

In this section, we introduce the Complex Temporal Dependencies Miner (CTD-Miner) that is devised to dis-
cover statistically valid Complex Temporal Dependencies to build a graph-based description of conditional tem-
poral phenomena that exists in a set of state streamS . It uses a breadth-first strategy based on discovering statisti-
cally valid Complex Temporal Dependencies of incremental sizes such that the stream representatives of depen-
dencies assessed in an iteration k are used as premises for iteration k+ 1. In this process, the Apriori-like pruning
is used to eliminate non-valid dependencies and benefits from the closed-like property of Complex Temporal
Dependencies. Hereafter, we describe more precisely each of the main steps of CTD-Miner.

Before detailing the main steps CTD-Miner, let us first describe our algorithm inputs and output. S =

{S1, S2, ..., Sn} is a lexicographically ordered set ofn temporally ordered interval-based state streams. Each stream
inS must have a unique label. Wewill assume that the stream length of state streams are known à priori. T ∈ N∗

is an observation duration. If not available, this parameter can be directly computed from S with:

Tmin = tmax − tmin | ∀S ∈ S, ∀[b, e] ∈ S, tmin ≤ b, tmax ≥ e

Tmin is theminimumobservation duration that contains all intervals of streams inS . Its computation can be done
inΘ(n)¹. Δ = [min,max] such thatmin,max ∈ Z2, is the constraint on (α, β)-transformation: min ≤ α ≤ max
andmin ≤ β ≤ max. We stress the fact the no order constraint is imposed on the pair α and β (wewill come back
andmotivate this point in thenext chapter). TheoutputofCTD-Miner is a set of complex temporal dependencies
permitting to build a conditional temporal relations graph.

CDT-Miner uses a breadth-first strategy to explore the conjunctive complex temporal dependencies search
space. As we described earlier, this exploration is not based on dependencies extensions (extending premises or
conclusions of previously assessed dependencies) but on conditional relations extensions using dependencies
stream representatives. We describe in the next paragraph the primary process of CTD-Miner before providing
more specific details.

The incremental construction of conditional temporal relations starts considering all streams in S as premise
candidates and stored in the ”candidates” set (line 2). Objects in this set are structured as follows:

⟨
(

Di, conf(Di), (Di)r
)

⟩

Di is a conjunctive temporal dependency such that ∀i,Di+1 = (Di)r → Swith S ∈ S . This structure describes a
conditional temporal relation graph: each element corresponds to an edge in the conditional graph. The initial-

¹ComputingTmin consists of finding both theminimumandmaximum time stamps in temporally ordered intervals sequences.
Temporal order permits to avoid iterating over all intervals of sequences in S
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Algorithm 1: CTD-Miner
Input: S : a lexicographically ordered set of state streams
T : observation duration
Δ = [min,max] : temporal constraint on time lags
Output:R : conditional temporal relations

1 R ← ∅
2 candidates← {∀S ∈ S | ⟨(S→ ∅, 1, S)⟩}
3 while |candidates| > 0 do
4 nextCandidates← ∅
5 for p ∈ candidates do
6 extended← False
7 process← PrePruning(p, nextCandidates ∪R)
8 if process then
9 for s ∈ S do

10 if NonCyclic(p,s) then
11 Δ′ ← Update(Δ, p)
12 results←TimeLagDiscovery(p, s, Δ′, T )
13 if |results| > 0 then
14 extended← True
15 newCandidates← newCandidates ∪ results

16 if |p| > 1 and not extended then
17 R ← AddAndEnsureClosure(R, p)

18 newCandidates←MergeDependencies(newPremises)
19 candidates← newCandidates

20 R ← BuildDisjunctions(R)
21 returnR
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Figure 6.3.1: 3 interval streams portions. Their endpoints time lags are reported at the right of the figure
with a temporal constraint Δ = [0,max].

ization of this structure is constituted by objects of the form:

(Si → ∅,−, Si)

where Si ∈ S .
In the main While loop (line 3 to 21), for each pair (p, s) of premise candidate in candidates and state stream

in S , the algorithm calls a quantitative pairwise dependency method, called generically TimeLagDiscovery (line
13). This method is devised to discover ”interesting” dependencies of the form p → s(α,β) given a temporal
constraint Δ and an observation duration T . A result given by this approach must have the same structure than
objects in candidates. If an ”interesting” relation is found from a candidate p and a conclusion stream s, it is added
at the end of p with its confidence and representative stream. For a simplicity purpose, we assume, for now, that
CTD-Miner uses a hypothetical efficient approach. One can also observe thatmultiple temporal relations can be
found for a single pair (p, s). The obtained results are added to the next iteration candidates (line 15) in order to
be extended. If no result is found, p is added to the result setR (line 18) following the Apriori-like principle we
discussed in the last section. The end of theWhile loop is guaranteed by the non-cyclic condition that is checked
at line 10. This is achieved by checking if the label of s is included in the set of labels of p (in Θ(|p|)).

Temporal Constraint Update

In section 6.1.1, we discussed the temporal constraint application. We argued that a window-like temporal con-
straint can be limiting for the discovery of large patterns that describe phenomena that last in time more than
the temporal constraint duration. In our context, using a such temporal constraint, i.e Δ = [min,max] for the
(α, β)-transformations approach, limits the duration of dependencies tomax−min time units. This can be easily
noticed in Figure 6.3.1. It describes the following temporal phenomenon: state A is active, then state B after a
duration d from A, then state C after a duration d′ from A. If one considers a temporal constraint Δ = [0,max]
such that max < d′ (depicted in red) , two dependencies can be discovered A → B(d,d) and B → C(d′−d,d′−d).
However, A ∧ B(d,d) → C(d′,d′) is out of the temporal scope defined by Δ as d′ < max. We consider that this
type of dependencies, and by extension large durations temporal relations descriptions, aremore interesting than
a set of temporally limited dependencies.

In order to consider theΔ constraint as a gap-like one, CTD-Miner, in line 11, updates locally theΔ constraint
that is touse the time lagdiscovery algorithmwith respect topreviouslydiscovereddependencies. Moreprecisely,
the main idea is to define the temporal reference of the search space with respect to the latest non-transformed
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stream that is added to the premise conjunction. In Figure 6.3.1, the temporal search space of dependencies of the
formA∧ B(d,d) → X is shifted by d time units, i.e Δ′ = [0+ d,max+ d] (depicted in red in the figure), in order
to capture all dependencies that would have been discovered for a dependency of typeB→ Xwithout increasing
the temporal search space exploration cost. In other terms, the temporal constraint update permits to consider B
as a reference for the temporal search space. It is also to notice that this approachmaintains the temporal relation
between non-reference states. One can convince himself observing in Figure 6.3.1 that d′ = d+ (d− d′). Thus,
if d and d′ are discovered (i.e time lags for A→ B and A ∧ B(d,d) → C) it is easy to infer the time lag between B
and C in this description (i.e d′ − d).

For simplicity, we used in the former example temporal transformations where expansion and reduction have
the same value. In order to make it more general for cases where α ̸= β, we propose the following temporal
constraint update for a dependency A→ B(α,β) and Δ = [min,max]:

Δ′ = [min + min(α, β),max + max(α, β)]

The justification for this formula follows mainly the same reasoning as the last paragraph but considering the
first and last endpoints. The lower bound of Δ is updated w.r.t to the lowest transformation parameter and the
higher bound w.r.t to the highest transformation parameter in order the guarantee that at least all ”interesting”
transformations that would have been discovered without the conjunctive relations can be discovered with it.

One limitation that is introduced by updating the temporal constraint for a premise A ∧ B(α,β) is that these
temporal relations with time lags corresponding to (α′, β′) such that α′ ≤ α and β′ ≤ β cannot not be discovered
by extending the latest dependency. Such temporal relations will be discovered independently. This discovery
leads to information redundancy if they correspond to the same temporal phenomenon. This problem is tacked
with the closed-like pruning that we introduce in the next subsection.

6.3.1 Closed-like based pruning

As discussed in Section 6.2.2, the closed-like property of Complex Temporal Dependencies can be used to detect
if the portions of state streams contributing to two different dependencies are describing the same temporal phe-
nomenon. CTD-Miner uses this property on thepurpose of pruning the search space and eliminate redundancies
in the results set.

Let us first consider the example depicted in Figure 6.2.1 and described in Section 6.2.2. Due to the lexico-
graphic order of state streams, the dependency A → B(α,α) is discovered first. In this example, all intervals of B
contribute to the former dependency. Therefore, the representative stream of A → B(α,α) is correspondent to
B(α,α). Hence, all dependencies of the form B → X with X ∈ S and their temporal relation extensions can be
pruned as all the information provided by B is maintained by A → B(α,α). Besides, CTD-Miner uses the tem-
poral constraint update routine to make sure that dependencies having B as a reference state are included in the
temporal search space of dependencies of the formA∧B(α,α) → X. This idea is implemented by the PrePrunning
procedure at line 7 in Algorithm 1 and described byAlgorithm 2. It checks if a temporal relation c is closed-like in
a set of reference temporal relations. For each existing temporal relation r, PrePruning tests, first, if states in c are
included in r (IsIncluded line 3). This operation is done in Θ(#r) and consists on testing if states appearing in c
are included in r and that their temporal transformations are consistent. For instance, if r contains a conjunction
A∧ B(α,β) ∧C(α′,β′), and c includes B∧C(α′′,β′′), isIncluded tests if α′− α = α′′ and β′− β = β′′. Then, if c is in-
cluded in r, PrePruning calculates the transformation of the representative of c with the temporal transformation
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Algorithm 2: PrePruning
Input: c : a temporal relation
R′ : a reference set of temporal relations

1 refc ← temporal reference of c
2 for r ∈ R′ do
3 if isIncluded(c, r) then
4 (α, β)← temporal transformation of refc in r
5 c(α,β)r ← Transform

(

cr, (α, β)
)

6 if isClosedLike(rr, c
(α,β)
r ) then

7 return True

8 return False

of its temporal reference in r (lines 4 and 5). Finally, it calls isClosedLike that returns a boolean indicating if c(α,β)r

and rr are correspondent. If it is the case, the procedure returns True and terminate. If non of the elements ofR′

are closed-like w.r.t c (i.e c is closed-like inR′), PrePruning returns False.
The second manner CTD-Miner use the closed-like relationship is that of merging dependencies. It is imple-

mented by MergeDependencies in line 18 of Algorithm 1. It takes as input the set of newly discovered temporal
relationships at a given iteration of the main while loop. This function is devised to merge any couple of depen-
dencies of type A → B and B → C where the conclusion stream of the first dependency is the reference state
of the second. More precisely, it tests if the representative streams of the dependencies are correspondent (using
the closed-like relationship). If so, a new dependency of the form A ∧ B → C is produced by extending the
first dependency that is deleted from the new premises set. This process permits to avoid performing the time
discovery algorithm (with the set of conclusion candidates given the non-cyclic condition).

At the end of the mainWhile loop (line 18 in Algorithm 1),R contains a set of closed-like temporal relations
discovered from S . R is sufficient to build a conditional temporal relations graph G(R) = {V, E} where V
contains state labels contributing to temporal relations in R and V is built using information in R. For each
R = ⟨{Di, conf(Di), (Di)r}⟩ ∈ R, each dependencyDi is added toG(R) as an edge in E containing the premise
of Di and its confidence. This representation reports on conditional conjunctive temporal. However, building
such representation using the process described higher may include redundant information. For example, if two
temporal relations have the same prefix, edges corresponding to the ”similar” temporal relations portions will be
duplicated. Moreover, the conjunctive-only representation does not provide insight about disjunctive relations
confidences. These problems are partially tackled by the BuildDijsunction procedure (line 19) that we describe in
the next subsection.

6.3.2 Computing disjunctive relations

The set of conjunctive complex temporal dependencies given by the incremental construction of temporal rela-
tionship permits to build a first version of the conditional temporal graph. However, as mentioned before, this
data structure does not provide any information about disjunctive relationships confidences and may contain
edges duplications. In this subsection, wemotivate and describe the BuildDisjunction (described in Algorithm 3)
procedure that is executed at the end, the incremental construction of conditional temporal relationships. It is
first devised to eliminate potential duplicate edges corresponding to common prefixes and compute confidences
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of a specific and useful subset of dependencies with disjunctive relationships.

Algorithm 3: BuildDisjunctions
Input:R′ : a set of closed-like conjunctive temporal relations

1 for r ∈ R do
2 for r′ ∈ reverseR do
3 if r = r′ then
4 break

5 d1, i1, d2, i2 ← GetCommonPrefixIndexes(r,−1, r′,−1)
6 if i1 ̸= −1 and i2 ̸= −1 then
7 suffix1 ← GetSuffix(d1, i1)
8 d2.AddDisjunction(i2, suffix1)
9 R ← R/d1

10 return BuildDisjunctions(R)

11 returnR

Let us first illustrate the edge redundancy problem with the following two temporal relations graph represen-
tations:

A B C D

A B E D

(α1, β1), c1 (α2, β2), c2

A ∧ B(α1,β1)

(α3, β3), c3

A ∧ B(α1,β1) ∧ C(α2,β2)

(α1, β1), c1 (α4, β4), c4

A ∧ B(α1,β1)

(α3, β3), c5

A ∧ B(α1,β1) ∧ E(α4,β4)

The blue nodes and edges correspond to a common prefix of these two dependencies. What can be observed
is that the edge linking A and B in these two temporal relations are redundant. A single graph representation,
including these two temporal relations, will, then, contain duplicate information: two identical edges betweenA
and B describing the same temporal relation (in term of intervals intersection). Therefore, the BuildDisjunction
function performs a prefix factorisation to obtain the following temporal relation object:

A B

C D

E D

(α1, β1), c1
(α 2,

β 2)
, c2

A ∧
B(

α 1,β 1)

(α3, β3), c3

A ∧ B(α1,β1) ∧ C(α2,β2)

(α4 , β
4 ), c4A ∧ B (α1 ,β

1 )
(α3, β3), c5

A ∧ B(α1,β1) ∧ E(α4,β4)

This object cannot be considered yet a conditional temporal graph: node D is duplicated. This structure can be
called a common-prefix conditional dependency tree. For this work, we consider that this type of structures have
enough expressive power and is implemented in Algorithm 3.
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6.3.3 Time Lag Discovery in CTD-Miner

The core operation executed by the incremental conditional temporal relations build is that of the discovery of
quantitative correlations between two dependencies. In Algorithm 1, this step, called generically TimeLagDis-
overy (line 12) is devised to detect quantitative temporal dependencies between two interval-based streams that
are assessed w.r.t an interestingness measure and a temporal constraint. CTD-Miner can use any approach de-
vised to detect meaningful time-lagged dependencies between interval-based streams with the condition of pro-
viding temporal information of the form of an (α, β) pair. These time lag information can be used to compute
intersection-based confidences even if the approach does not consider such an assessment approach. For in-
stance, CTD-Miner can be applied with a classical frequent pattern mining algorithm that uses a count-based in-
terestingness measure, e.g. [78] or, as motivated later, intersection-based assessment as TEDDY [127] or ITLD
that will be introduced in the next chapter. We will study in the experiments chapter the difference implied by
the choice of the assessment approach in term of quality of results provided by CTD-Miner. In this subsection,
we focus on intersection-based approaches and show that the time lag discovery step is critical to CTD-Miner in
that it determines both the quality and performance of its result.

As showed before, a time lag discovery algorithm that can be used in our context is devised to explore a
search space defined by the temporal constraint Δ. Since our dependency model expresses temporal informa-
tion as a pair of values (α, β), a naive exploration of such search space for a dependency p → s can be done in
Θ(|Δ|2 ∗ E) where E is the cost of assessing a dependency p → s(α,β) (or computing the interestingness mea-
sure). For instance, if the intersection based confidence is used, the confidence computation can be done in
Θ
(

max(#p,#s)
)

. Since such exploration is executed at a high frequency in the incremental construction pro-
cess that itself may be used in an online context, the complexity of the lag discovery process affects the efficiency
of CTD-Miner greatly. Therefore, time lag discovery algorithmsmust be able to perform an efficient exploration
thanks to pruning criteria and complexity reduction through efficient heuristics.

The secondway the time lag discovery approach impacts CTD-Miner is linked to the Apriori-like incremental
construction of conditional temporal relations. As described before, interesting temporal dependencies found at
an iteration k are used as premises candidates at iteration k + 1. This implies that the more dependencies found
at a given iteration, the greater is the cost of exploring the logical and temporal search spaces at the next iteration
due to the combinatorial explosion of dependencies numbers. For instance, with a classical frequent sequence
mining, the usermust define a support threshold that is high enough to prune non-frequent (i.e. non-interesting)
temporal relations but not too restrictive to be able to discover interesting relations. With the intersection-based
statistical assessment approach, the challenge is to obtain the better compromise between precision and recall:
maximising numbers of discovered true positives (valid time lags reporting on ”real” temporal relations) while
minimising numbers false positives (valid time lags that do not correspond to ”real” phenomena). The rate of
false positives affects CTD-Miner as it reduces the pruning power of the Apriori-like assumption significantly.
This aspect will be developed in more details in the next chapter.

The final point we discuss in this subsection is that of specificity of temporal relationships when using the
intersection-based assessment. An exploration of the temporal search space based on computing confidences
and statistical validity thresholds for each pair of temporal transformation is not sufficient to obtain concise re-
sults. Due to the confidence monotonicity of temporal dependencies w.r.t conclusion length, several temporal
transformations may lead to statistically valid temporal dependencies describing the same temporal transforma-
tion. One can convince himself of the latter statement with the following example. Let A and B two states, and a
temporal phenomenon that linksA and Bwith a time lag corresponding to (α, β). The confidence ofA→ B(α,β)
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is maximal and equals to 1. For each (α′, β′) such that B(α,β) ∩ B(α′,β′) = B(α,β), the confidence of A→ B(α′,β′)

equals to the maximal value 1. These two dependencies reports on the same temporal phenomenon but the first
one is more specific in that is describes more precisely the temporal aspect of the relation. A time lag discovery
algorithm used by CTD-Miner must be able to provide the most specific temporal dependencies; that is to say
that it is capable of providing one dependency per statistically valid temporal phenomenon. The duplication of
temporal dependencies reporting on the same interesting phenomenon also induces a combinatorial explosion
causing a decrease in CTD-Miner’s efficiency and pattern flooding in the result set.

As reported in Chapter 4, to the best of our knowledge, it exists two quantitative temporal pattern discovery
algorithms that can be applied in the context of dependencies between interval-based streams: PIVOTMiner
[78] that uses a count-based assessment approach andTEDDY[127]whose authors introduced the intersection-
based statistical assessment we use in this work. In the next chapter, we will introduce an alternative algorithm
to ITLD.

6.4 Conclusion & Discussion

In this chapter, we proposed theCTD-Miner algorithm. It is devised to compute a set of statistically valid depen-
dencies permitting to build conditional temporal models reporting concisely on a set of temporal phenomena
described by a set of interval-based streams. It uses an incremental construction approach that is enhanced using
both an Apriori-like pruning mechanism and a closed-like relationship. The obtained Complex Temporal De-
pendencies can be used to build conditional temporal state graphs modelling temporal phenomena that exists in
a given state stream set. Several directions can be investigated to extend this work.

The first aspect that can be investigated is that of getting rid of the non-cyclic constraint. One straightforward
approach to obtain complex temporal dependencies, including several mentions of a given state is to duplicate it,
with a different label, in the input streams set. We believe that thismay introduce large amounts of redundant and
trivial dependencies since each interval stream is correlatedwith itself (with a confidenceof 1). Another approach
can be that of using stream intersection to avoid taking into account in confidencemeasure the intersection of an
interval with itself.

Secondly, CTD-Miner can be extended in order to fully take advantage of the disjunction operator included
in the Complex Temporal Dependency model. The building disjunction approach proposed in CTD-Miner can
be extended to build disjunctive ”blocks” that allows expressing partial order. This would require supplementary
calculations of confidence measures. For instance, in the example used in Section 6.3.2 with an initially active
state A, the described model can provide precise confidences of observing states B, C, D and E:

• B was observed to be active after a duration corresponding to (α1, β1)with confidence c1

• Cwas observed to be active after a duration corresponding to (α2, β2)with confidence c2 if preceded by B.

• Ewas observed to be active after a duration corresponding to (α4, β4)with confidence c4 if preceded byB.

• D was observed to be active after a duration corresponding to (α3, β3)with confidence c3 if preceded by B
and C.

• D was observed to be active after a duration corresponding to (α3, β3)with confidence c5 if preceded by B
and E.
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In this example, an active state A is sufficient to provide without ambiguity time lags and confidences of further
states B, C and E but provides two different descriptions for state D. For the latest state, one can distinguish two
main cases: (1) active A is sufficient to describe the time lag and confidence for the occurrence of a further state
D or (2) these time lag and confidence needs an active state C or E to be specified. We believe that these two
cases correspond to two different semantic interpretations:

1. ABCD and ABED are two variations of the same temporal phenomenon/behaviour.

2. ABCD and ABED are two distinct temporal phenomena/behaviours sharing the same prefix.

These two cases distinguish two disjunctive blocks. An efficient disjunctions buildingmust be able to distinguish
between these two cases and recompute related confidences.
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7
Mining significant quantitative temporal dependencies between

pairs of interval-based streams
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Figure 7.1.1: Search space for a pair of interval streams with two dependencies A→ B(4,4) and A→ B(13,13)

. Δ = [0, 25]

7.1 Background & Problem statement

The problem of discovering quantitative dependencies between two interval-based streams A and B consists of
detecting a set of time delays describing each a linear temporal relationship ”of interest” between intervals of A
and B. More specifically, we aim to extract a set of dependenciesD of the form A→ B(α,β) such that:

1. A→ B(α,β) is valid w.r.t the intersection-based statistical assessment of the confidence measure.

2. A → B(α,β) is the most specific dependency describing a particular linear temporal relationship between
A and B.

An efficient algorithm, TEDDY, was proposed in the seminal work [127] introducing this problem. In this
subsection, we discuss each of the before-mentioned components of this exploration problem and TEDDY’s
solutions before concluding with the formal problem statement.

7.1.1 Discovering the set statistically valid dependencies

Given a temporal constraint Δ = [min,max], discovering statistically valid temporal dependencies between
a premise A and a conclusion B is consists of exploring the search space composed of all dependencies A →
B(α,β) such that α ∈ Δ and β ∈ Δ. This exploration consists of computing both the confidence value, done in
Θ
(

max(#A,#B)
)

, and the statistical threshold, inΘ(1), for each temporal dependencies. Thenaive exploration
of such search space has a complexity inΘ

(

max(#A,#B))∗|max−min|2
)

since every temporal transformation
(α, β) is to be assessed. We describe in Figure 7.1.1 the search space for a pair of state streams with two temporal
dependencies and Δ = [0, 25].

In [127], authors considered the exploration a sub-search space such that for every temporal transformation
α ≥ β ≥ 0. Such temporal transformation corresponds to cases where the conclusion streams are shifted (α =

β) or extended (α > β). In this chapter, wewill not consider such condition on extension and reduction values in
order to obtain themost precise time delay description if active intervals of the premise are correlatedwith bigger
conclusions intervals. This case can be observed in Figure 7.1.2) where the delay between A and B (B begins α

130
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI061/these.pdf 

© [A. El Ouassouli], [2020], INSA Lyon, tous droits réservés



(a) Original intervals A and B
(b) Temporal transformation of B
with the α ≥ β constraint

(c) Temporal transformation of B
without the α ≥ β constraint

Figure 7.1.2: The α ≥ β condition on temporal transformation do not permit to obtain the most precise
time lag description

time units after the beginning of A and ends β time units after the end of A) is better described by A → B(α,β)

while only A→ B(α,α) provides less ”precise” characterization of the temporal relation.
In the same work, authors proposed TEDDY that explores (using pruning criteria) the defined search space

(with α ≥ β) as a semi-lattice defined by the inclusion property of temporal transformations. A temporal trans-
formation (α, β) is said to be included in (α′, β′) if α ≤ α′ and β ≥ β′ and noted as follows (α, β)subseteq(α′, β′).
An example of such lattice is provided in Figure 7.1.3 for Δ = [0, 5]. In the worst case, the exploration of such
search space have the same complexity as a brute force approach (i.e quadratic w.r.t to |Δ|) but uses pruning cri-
teria to accelerate the exploration process. Two main pruning approaches are proposed for TEDDY. The first
uses confidencemonotonicity of the confidencemeasure w.r.t conclusion length to prune unpromising temporal
transformation candidates thanks to a lower bound on the statistical thresholds and a higher bound on confi-
dence length. More precisely, for any temporal transformation with α ≥ β, the following lower bound on the
statistical thresholds is verified:

LowerBound(α, β) ≥ min
(

1, th(0, 0)
)

where th(x, y) is the statistical threshold for a dependencyA→ B(x,y). With transformations (α, β) such that α ≥
β, len(B(α,β) ≥ len(B). Due to confidence monotonicity and the higher bound on the confidence measure (cf
Figure 5.2.7) statistical thresholds used corresponding to temporal transformations included in the semi-lattice
are lower bounded by th(0, 0) (as B(0,0) have the lowest length) or 1 if th(0, 0) > 1. Given a dependency A →
B(α,β) of depth d, it is possible to eliminate a non-promising transformation candidate (αc, βc) of the same depth
using a confidence gain/loss higher bound:

maxGain = (|α − αc|+ |β− βc|)
#B

len(A)

for a dependency A → B. Thus, if conf(A → B(α,β)) + maxGain > boundMinConf, candidate (αc, βc) can be
eliminated as it is not possible for a dependency A → B(αc,βc) to be statistically valid. As we do not use in this
work the α ≥ β constraint this pruning approach cannot be straightforwardly be applied. The second pruning
mechanism is based on a dominance relationship that controls confidences loss w.r.t to parents in the semi-lattice.
We discuss this pruning technique in the next sub-section.

7.1.2 Specific temporal dependencies selection

The exploration of the search space defined in the later section permits to obtain a set of (α, β)-transformations
such that each dependency A → B(α,β) is statistically valid. However, this result set may contain several sta-
tistically valid dependencies describing the same temporal correlation between the premise and the conclusion.
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[5, 0]

[5, 1] [4, 0]

[5, 2] [4, 1] [3, 0]

[5, 3] [4, 2] [3, 1] [2, 0]

[5, 4] [4, 3] [3, 2] [2, 1] [1, 0]

[5, 5] [4, 4] [3, 3] [2, 2] [1, 1] [0, 0]

Figure 7.1.3: Semi-lattice of temporal transformations defined by the inclusion relations for Δ = [0, 5]

One of the causes of this information redundancy is the confidence monotonicity w.r.t to conclusion length, es-
pecially when an inclusion relation stands between temporal transformations. Figure 7.1.4 provides an example
of such a case. Both dependencies A → B(α,β) and A → B(α′,β′) maximize the confidence value (=1 and are
both statistically valid) and describe the same temporal relation between A and B. The first dependency is con-
sidered as more specific: the intersection of A and B(α,β) maximizes the confidence value in a ”tight” manner, in
that, no active length of B(α,β) can be considered as ”superfluous” for the intersection A ∩ B(α,β). For temporal
transformations inclusion cases, authors of [127] proposed a dominance relationship permitting to compare the
specificity of temporal dependencies.

Definition 32 (Dominance relationship [127])
Let d1 = A → B(α,β) and d2 = A → B(α′,β′) be two temporal dependencies. d1 dominates d2 if
(α, β) ⊆ (α′, β′) and

1− conf(A→ B(α,β))

conf(A→ B(α′,β′))
< 1− len(B(α,β))

len(B(α′,β′))

This dominance relationship permits to refine the conclusion’s intervals while controlling the loss of confi-
dence. For (α, β) ⊆ (α′, β′), if (α, β) dominates (α′, β′), the confidence value will be reduced in the same pro-
portions than the length of the conclusion. If it is not the case, the conclusion’s length is more, proportionally,
reduced than the confidence value since the reduced active intervals do not intervene in the intersection with the
premise. Figure 7.1.4 provides a simple case where the loss of confidence between dependencies with (α, β) and
(α′, β′) is equal to 0 while the reduction in B’s length is not. In [127], this relationship is used in the semi-lattice
level-wise search space exploration to stop the refinement process, thus efficiently prune the search space, if a sig-
nificant loss is observed. One limitation of this approach appears when multiple significant dependencies stand
between a pair of streams as in Figure 7.1.1. In this example, the most specific dependencies are A → B(4,4)

and A→ B(13,13) with temporal transformations that are singletons in the semi-lattice. If the latter is explored in
a level-wise manner, dependency A → B(13,4) will be tested first as it is more general than the first two. What
can be noticed here is that direct children of (13, 4)will not be dominant as the loss in confidencemeasure while
refining intervals of B on both intervals endpoints is significant.

Oneother case of specificity that is not treatedby the before-mentioneddominance relationship is caseswhere
a specific temporal relation corresponds to an (α, β)-transformation such that α < β. In such case, a level-wise
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Figure 7.1.4: A → B(α,β) is more specific than A → B(α′,β′). The confidences of these two dependencies are
equal to 1

exploration of the semi-lattice will provide as the most specific dependencies a set of dependencies of the form
A→ B(θ,θ) such that α ≤ θ ≤ β if those are its most specific ancestors included in the semi-lattice. For example,
in the semi-lattice depicted inFigure 7.1.3, if exists a dependencyA→ B(1,3) threedependencieswill be returned:
A → B(1,1), A → B(2,2) and A → B(3,3). The dominance relationship can not be used in this case since there
is no inclusion relationship between (1, 1), (2, 2) and (3, 3), yet, these dependencies describe, partially, the same
temporal relation.

7.1.3 Problem statement

Given the exploration problem and the specific dependencies selection, we define the problem treated in this
chapter as follows.

Problem 6 (Quantitative temporal dependenciesmining)
Let A and B be two state streams and Δ = [min,max] a constraint on (α, β)-temporal transformations.
DiscoverR the set of statistically valid and most specific temporal dependencies A→ B(α,β).

In the remainder of this chapter, we will propose an alternative approach to the level-wise semi-lattice explo-
ration of the search space of time-delayed dependencies based on the analysis of elementary confidence varia-
tions.

7.2 The maximal elementary confidence variations exploration strategy

As described in the last section, the main idea behind the dominance relationship proposed in [127] is the re-
finement of large statistically valid temporal-transformations (i.e. more general (α, β) values) while controlling
the loss on confidence value. The exploration of dependencies withmore specific time lags can be stopped when
the observed loss on the confidence measure is considered as ”significant” w.r.t the dominance relationship. For
instance, in Figure 7.1.1, the level-wise exploration of the semi-lattice begins by testing the most general time
lag, i.e. [25, 0], and perform a refinement by exploring more specific children in a level-wise manner. Taking into
account the dominance-based pruning, every refinement on the left of time lags (α, 4) with α ∈ [13, 25] induces
a significant loss as well as every refinement on the right of time lags (13, β) with β ∈ [0, 4]. For every loss, a
search space pruning is performed, and none of its children is tested any more. Therefore, the level-wise algo-
rithm, TEDDY, proposed in [127], will provide (13, 4) as the most specific time lag. Several observations can be
made:

1. (13, 4) is the aggregation of actual specific time lags (13, 13) and (4, 4).
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2. The level-wise exploration tested 65 time lags (with a confidence computation inΘ
(

max(#A,#B)
)

) for
this simple case ((25− 13+ 1) ∗ (4− 0+ 1) = 13 ∗ 5 = 65) over the 338 possible ones (for Δ = [0, 25])

In this section, wepropose an alternative approach to the refinement process ofTEDDYpermitting to address the
specificity problem for cases withmultiple interesting temporal time lags stand between a pair of interval streams
and that reduces the exploration complexity, from quadratic to linear w.r.t Δ.

The refinement process based on the dominance relationship used in the level-wise discovery process, assesses
confidence losses based on elementary confidence variations.

Definition 33 (Elementary confidence variations)
Let A and B two interval-based streams and (α, β) a temporal transformation. Four elementary confi-
dence variations can be defined for a dependency A→ B(α,β):

• Elementary left-gain:LG(α, β) = conf(A→ B(α+1,β))− conf(A→ B(α,β))

• Elementary left-loss: LL(α, β) = conf(A→ B(α,β))− conf(A→ B(α−1,β))

• Elementary right-gain: RG(α, β) = conf(A→ B(α,β−1))− conf(A→ B(α,β))

• Elementary right-loss RL(α, β) = conf(A→ B(α,β))− conf(A→ B(α,β+1))

Assumingamaximal confidence variation assessment criteria permitting todecidewhether a confidence variation
is ”significant” or not¹, the characteristic of specific temporal dependencies w.r.t to elementary gains and losses is
the following:

• Each elementary confidence loss is ”significant”

• Each elementary confidence gain is not ”significant”

These two properties can be easily induced from the ”tight” confidence maximization strategy (cf Figure 7.1.4).
This also can be observed in Figure 7.1.1 where 3 temporal transformations verify these conditions: (13, 13),
(4, 4)which are themost specific time lags and (13, 4)which is the aggregation of the first two. What can also be
noticed in this very example is that significant losses corresponding to specific dependencies can be ”detected”
for different transformation values. For instance, for specific time lag (4, 4) the loss on confidence value induced
by conclusion’s intervals reduction on the left (subtracting a unit to the α expansion value) can be detected with
(4, 4), (4, 3) ... (4, 0). The same can be stated for confidence loss induced by intervals’ reduction on the right
(adding a unit to the β reduction value): (4, 4), (3, 4), ..., (13, 4) ... (20, 4). The inverse observation can also be
made for specific time lags expansions: confidence gains are not significant. While the significance of elementary
confidence variations for the same parameter is equivalent for numerous temporal transformations (as a sparse
the temporal phenomena is used to generate the example data) the evaluation of confidence variations for the
same expansion (or reduction) parameter can be non-equivalent given the sparsity and density of the interval
streams. For instance, applying large temporal transformation for dense interval streams may induce interval
overlaps which induces an underestimation of the actual influence of an elementary transformation with regards
to the real (i.e non-transformed) temporal data. This statement is also valid with (α, β)-transformation with α <

β with which intervals may be removed.

¹This aspect of our exploration strategy will be treated in the next subsection.
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To provide a precise assessment of time lag specificity, an approach needs to analyze confidence variation that
reflects actual temporal relations between the original streams. One interesting property permitting to solve this
problem is confidence variations upper-bound.

Property 6 (Maximal Confidence Variation)
Let A and B two interval-based streams. Elementary confidence variations for dependencies A→ B(α,β)

are upper bounded by confidence variation for A→ B(α,α):

Maximum left-gain: LG(α, β) ≤ LG(α, α)

Maximum left-loss: LL(α, β) ≤ LL(α, α)

Maximum right-gain: RG(α, β) ≤ RG(α, α)

Maximum right-loss: RL(α, β) ≤ RL(α, α)

Proof. Let A and B be two state streams. By definition of interval streams, for any interval I = [ti, ti+1) of B,
[ti−1, ti) and [ti+1, ti+1+1) are inactive intervals (otherwise, theywould bemergedwith I). Let (α, β) a temporal
transformation. We can distinguish three cases when it comes to confidence variations for A→ B(α,β):

• α > β: some intervals of B may be merged in B(α,β) due to extra length induced by an expansion greater
than reduction. The computation of elementary confidence variation on B(α,β) may induce a loss of infor-
mation as it misses the contribution of potentially merged intervals.

• α < β: some intervals of B may not be included in B(α,β) if their length is lesser than β − α. Their contri-
bution to elementary confidence variation is missed.

• α = β: the length and the time lag between intervals in B are preserved in B(α,β). Every original interval
contributes to the elementary confidence variation as the time lag between intervals equals at least to 1
time unit.

We conclude that elementary confidence variations for a temporal transformation (α, β) are upper-bounded by
elementary confidence variations with temporal transformations (α, α) for left gains/losses and (β, β) for right
gains/losses

This property suggests that the assessment of confidence variations with temporal shifts (i.e. transformations
of the form (α, α)) provides better insights on specific temporal time lags between intervals endpoints. Indeed,
temporal shifts cannot induce intervals merging (information of interval overlaps is lost) or removal as the time
lag between intervals, their length and numbers are preserved.

Based on this property, we propose an exploration strategy of the temporal search space devised to discover
specific expansions and reductions values rather than specific temporal transformations. Themain idea is to assess
for each value α ∈ Δ the ”significance” of maximal elementary confidence variations, i.e left and right gains and
losses, in order to detect independently specific expansions and reductions values. These specific expansion and
reduction values can, then, be used to build and assess the statistical validity of specific temporal dependencies.
Following this idea, the value α ∈ Δ is said to be:

• a specific expansion if LL(α, α) is ”significant” and LG(α, α) is not.
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• a specific reduction if RL(α, α) is ”significant” and RG(α, α) is not.

This straightforward assessment of confidence variations for each value α ∈ Δ needs 5 computations of confi-
dences in Θ(max(#A,#B)): computing a reference confidence conf(A → B(α,α) and 4 confidences with ele-
mentary transformations conf(A → B(α+/−1,α+/−1). Therefore, discovering specific expansion and reduction
values for a temporal constraint Δ = [min,max] can be done in Θ(5 ∗ |Delta| ∗ max(#A,#B)) which is linear
with respect to Δ. Moreover, maximal confidence variations have the following property.

Property 7 (Maximal Elementary gain/loss equality)
Let A and B be two interval-based streams. The following equalities stand for maximal elementary confi-
dence variations for any dependency A→ B:

LG(α, α) = LL(α + 1, α + 1)

RG(α, α) = RL(α − 1, α − 1)

Proof. By definition, every interval ofB (or its temporal shift) [ti, ti+1) has at least contiguous non-active intervals
of length 1 at his both sides.Let us note BL (resp. BR) the interval stream containing all non-active intervals of B
that are contiguous to every interval inB on the left (resp. on the right). BL(α,α) (resp. BR(α,α)) is then the interval
stream containing non-valid elementary intervals of B(α,α) that are contiguous on the left (resp. the rights) to its
valid intervals. The following is a graphical representation of BL and BR for a shift value of α and α + 1.

In this graphical representation, we can easily observe that the elementary confidence left gain for A → B(α,α)

is induced exclusively by BL(α,α) that contains#B intervals since maximal elementary confidence variations are
assessed with respect to conclusion shifts (i.e (α, α)-transformations that preserves the original length and time

lags between the conclusion’ intervals). Therefore, the left gain LG(α, α) equals to
len(BL(α,α) ∩ A)

len(A)
. It is also to

notice that intervals of BL(α,α) correspond the starting elementary interval of each interval in B(α+1,α+1). There-

fore, the left elementary loss for A→ B(α+1,α+1) is also induced by BL(α,α) and equals to
len(BL(α,α) ∩ A)

len(A)
. The

result follows. The equality RG(α, α) and RL(α − 1, α − 1) can be proofed following the same reasoning.

Theseequalities permits to reduce the costof specific expansions and reductions inΔ toΘ(3∗|Δ|∗max(#A,#B))
as each value α ∈ Δ shares a confidence variation assessmentwith its direct successor and direct predecessor. The
non-overlapping and removed intervals guarantee for temporal shifts permits also to infer the following equality:

conf(A→ B(α+1,α+1)) = conf(A→ B(α,α)) + LG(α, α)− RL(α, α) (7.1)

This equality can be easily proofed similarly to the gain/loss equality property of maximal confidence variation.
Using this equality, the discovery of specific expansions and reduction values in Δ = [min,max] needs the com-
putation of 1 confidence reference for the first value in Δ, i.e conf(A → B(min,min)), as the following confidence
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(a) Maximal confidence left gains (b) Maximal confidence right losses

Figure 7.2.1: Maximal confidences variations computed for the example depicted in Figure 7.1.1 and cor-
responding statistical thresholds (blue lines). Red points correspond to specific expansion and reduction
values.

references can be computed in Θ(1) given the precedent reference and its left gain and right loss. Therefore, the
number of confidence computations needed for the exploration ofΔ is 2∗ |Δ|+ 1. For instance, computedmaxi-
mal confidence gains and losses for the example described in Figure 7.1.1 with Δ = [0, 25] are depicted in Figure
7.2.1. In the two figures, one can observe two specific temporal dependency ’characteristic forms’ composed of
’significant’ confidence variations that are clearly distinguishable from ”non-significant” ones. These characteris-
tic forms permits to detect specific expansions and reduction values corresponding to values inΔwhere losses are
”significant” and gains are not. These specific values are then used to build specific dependencies using temporal
order: specific expansion 4 is associated with specific reduction 4 to obtain A → B(4,4) and specific expansion
13 is associated with specific reduction 13 to obtain A→ B(13,13).

The last element we deal with in this section is how to assess maximal confidence variations. In [127], the
refinement process is controlled by the dominance relationship that compares the reduction of the conclusion
intervals to the loss in confidence measure. For maximal confidence variations, we propose to use a different
approach based on the statistical validity test used for temporal dependencies. Indeed, the statistical assessment
problem can be formalized as an interval-based streams correlation problem. For a dependency A → Bα,α, the
reference confidence value is computed with A ∩ B(α,α). We aim to determine if the loss in intersection value
while adding or subtracting a unit from expansion or reduction is statistically significant in a given observation
duration Tobs. This can be achieved with the assessment of the correlation between the stream A ∩ B(α,α) and
a stream, noted B∗, of length and size #B composed of added or removed conclusion intervals of length 1 that
are produced by the elementary transformation. This is equivalent to calculate a statistical validity threshold for
a dependency (A ∩ B(α,α)) → B∗. The null hypothesis states that the intersection between A ∩ B(α,α) and B∗

are statistically independent. The contingency tables of the expected and observed outcomes can be derived
straightforwardly from that used for temporal dependencies (cf. Tables 5.2.2 and 5.2.1). Statistical thresholds
given by this approach are depicted in blue lines in Figure 7.2.1.

7.3 Interval Time Lag Discovery (ITLD) algorithm

In this section, we describe the Interval Time Lag Discovery algorithm (ITLD) that implements the exploration
strategy introduced in theprevious section. ILTD isdescribed inAlgorithm4. It takes as parametersp thepremise
interval-based stream, c the conclusion streams, a temporal constraint Δ = [min,max] and an observation dura-
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Algorithm 4: ITLD
Data: p, c: premise and conclusion streams, Δ = [min,max]
Tobs: observation duration
Result: R : set of specific dependencies of the form p→ c

1 R← ∅
2 G, L, TH← ⟨⟩
3 reference = Conf(p, c, (min,min))
4 for α = min→ max do
5 gain←Conf(p, c,(α + 1, α)) - reference
6 Add gain to G
7 loss← reference - Conf(p,c,(α, α + 1))
8 Add loss to L
9 Add th(len(p) * reference,#c) to TH

10 reference→ reference + gain - loss

11 sigExp, sigRed←GetSigVal(G, L, TH)
12 R← R∪GetSpecDep(sigExp, sigRed) return R

tion Tobs.
First, ITLD initializes the results set R as an empty set, G, L,TH, respectively, the maximal confidence left

gains, maximal confidence right losses and the statistical thresholds, as empty sequences (lines 1 and 2). The
reference confidence is also initialized with conf(p → c(min,min) which to be considered to compute confidence
variations for p→ c(min,min) (line 3). In themain loop (lines 4 to 10) computes themaximal confidence left gain
(line 5), the right loss (line 6) and the statistical thresholds for maximal confidence variations corresponding to
temporal transformations (α, α) (line 7). These values are appended respectively to G, L and TH. It is to notice
that a single validity threshold is computed for both gains and losses since the variation significance is calculated
with respect to the same confidence. In the 8th line, ITLD updates the reference confidence value for the next
iteration by applying equality 7.2.

Procedure GetSigVal(G, L, TH)
Data: G : expansion gains
L : reduction losses
TH : statistical thresholds
Result: sigExp, sigRed: temporally ordered specific values of expansions and reductions

1 sigExp, sigRed← ⟨⟩
2 if L[0] > TH[0] then
3 Add min to sigRed

4 for i = 1→ max− min do
5 if G[i] < TH[i] andG[i− 1] > TH[i− 1] then
6 Add min + i to specExp

7 if L[i] > TH[i] and L[i− 1] < TH[i− 1] then
8 Add min + i to specRed

9 if G[len(G)− 1] > TH[len(TH)− 1] then
10 Add max to sigExp

11 return sigExp, sigRed
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The second step of ITLD is the extraction of significant expansion and reduction values using the procedure
GetSpecVal (line 9). This operation, done in Θ(|Δ|), consists in verifying if each value in Δ correspond to a
specific or loss using the statistical thresholds :

• For each element i ∈ G : G[i] < TH[i] and G[i− 1] > TH[i− 1]

• For each element i ∈ L : L[i] < TH[i] and L[i− 1] > TH[i− 1]

If the gain (res. loss) value at i is specific,min+ i is added to sigExp (res. sigRed). The first value in L and last in G
are tested with a relaxed version of the higher conditions to capture dependencies with potential specific values
that are out of Δ:

• L[0] > TH[0]means that the specific loss l ≤ min⇒min is added to sigExp

• G[|G| − 1] > TH[0]means that the specific gain l ≥ max⇒max is added to sigExp

For instance, if we consider a temporal constraint Δ = [0, 10] with the example depicted 7.2.1.a the real specific
value 14 is out of bounds of Δ but statistically significant confidence variations are detected: max is considered
as a specific gain to maintain this information.

Procedure GetSpecDep(sigExp, sigRed)
Data: sigExp, sigRed: temporally ordered specific values of expansions and reductions
Result: specDep: the set of specific dependencies

1 specDep←{}
2 if |sigExp| == |sigRed| then
3 i← 0
4 while i < |sigExp| do
5 (α, β)← (sigExp[i], sigRed[i])
6 if Conf(A→ B(α, β))> th(len(A), len(B(α, β)) then
7 Add A→ B(α, β) to specDep

8 i ++

9 else
10 (α, β)← (sigExp[0], sigRed[|sigRed| − 1]
11 if Conf(A→ B(α, β)> th(len(A, len(B(α, β) then
12 Add A→ B(α, β) to specDep

13 return specDep

The last step GetSpecDep (Procedure GetSpecDep) builds specific dependencies candidates using temporal
order (first specific expansion with first specific reduction etc.) and tests if they are statistically valid (line 2 to
8). If an unequal number of specific expansion and reductions is found, the most general dependency (with
the greatest expansion and lowest reduction, line 10 to 12) is considered and tested permitting to avoid losing
temporal information.

7.4 Conclusion & Discussion

In this chapter, we proposed the Interval Time Lag Discovery Algorithm (ITLD) that is devised to discover
quantitative temporal dependencies between two interval-based streams. It uses a maximal confidence variation
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Figure 7.4.1: Maximal left gain with 3 temporal relations started by the same state

property to perform a linear exploration of a quadratic temporal search space defined by a temporal constraintΔ.
We argued that this exploration strategy permits to obtain more specific temporal relations in cases where multi-
ple dependencies stand between a pair of state streams in comparison with a semi-lattice level-wise exploration.
We will evaluate our approach in the following chapter and compare it the existing methods.

In conclusion, we discuss several ways to extend our work and open questions that might worth attention.
First, as evoked in the discussion section ofChapter 5, the information provided by ITLDorTEDDY[127] is not
complete. It characterize the temporal information between intervals with two parameters: the time lag between
the first endpoints and time lag between second endpoints. We believe that the maximal confidence variation
exploration strategy might permit to obtain a piece of supplementary quantitative information about duration
without additional computational cost. Typical durationsof premise intervals involved in a temporal dependency
might be extracted from themaximal confidence variation values. Thewidth of characteristic forms of significant
dependencies formed by equivalent confidence variation (e.g. Figure 7.2.1) can indicate the duration of premise
intervals involved in a given dependency. However, this approach can not be straightforwardly applied for all
cases, as we will see in the next chapter.

The second open question that remains unsolved by our approach concerns cases where multiple temporal
dependencies are temporally overlapping. For instance, this case may occur when a state starts two different
temporal relations. Figure 7.4.1 describes the maximal confidence gains for an example of such configuration
where three characteristic forms can be observed.

Another idea that can be investigated is that of storage and query of temporal dependencies. The question
posed is the following. Given distinct and two non-overlapping observation durations T1 and T2. Let us assume
that ITLD providesR1 andR2 the sets of statistically valid pairwise dependencies for respectively T1 and T2. It
is possible to infer the set specific dependencies and their confidences for T = T1 ∪T2 fromR1 andR2 without
running the temporal search space exploration? In other words, is it possible to perform aggregation of results
given for a different period without loss of information? This would permit to build a temporal dependencies
base that could be queried to obtain insight about an environment for different chunks of timewithout additional
exploration cost. This idea can be extended to Complex Temporal Dependencies.

Finally, ITLD can be extended to be applied in a fully online setting in that maximal confidence values may be
updated without computing confidences an overall sequence. More precisely, for a given dependency, the online
extension of ITLD might maintain a vector of |Δ| values corresponding to maximal confidence variations that
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should be updated given new intervals in the premise or the conclusion stream.
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8.1 Introduction

Thischapter aims to evaluate our approachdevised todiscover complex temporal dependencies between interval-
based streams. We evaluate both the qualitative and quantitative performance of ITLD and CTD-Miner using
synthetic data provided by a testbed tool that makes it possible to run a multitude of simulation scenarios. We
also use real-world motion data generated from a sensor system composed of outdoor video cameras and using
real-time video processing.

As stated in Chapter 4, two available approaches can be applied directly to discover quantitative temporal re-
lationships between interval-streams. The first, PIVOTMiner [78], use an occurrence count-based assessment
with a user-given interestingness parameter. This approach was designed for sequences databases but can be eas-
ily adapted to process streams as it is not endpoint sensitive. The second approach that we extend in this thesis,
TEDDY [127], uses the statistical assessment on the intersection-based interestingness measure. We compare
both qualitatively and quantitatively ITLD to these algorithms and analyze the efficiency of their use in CTD-
Miner. More specifically, the performance analysis presented in this chapter aims mainly to respond to the fol-
lowing general questions:

How do the intersection-based assessment compare to count-based assessment in terms of
discovery of temporal phenomena ? We argued in Chapter 5 that intervals intersection may pro-
vide a better assessment of temporal relationships compared to occurrence counting-based inter-
estingness measure. We aim hereafter to provide experimental evidence to this claim.

Howqualitatively efficient is our approach ? We proposed in Chapter 7 themaximal confidence
variation exploration strategy and its implementation, ITLD, in the aim of using it in CTD-Miner
process to enhance both execution times and accuracy. In this chapter, we study whether this ap-
proach permits to enhance the quality of results for pairwise and multiple state dependencies in
comparison with existing approaches and w.r.t different datasets’ characteristics. Also, we study
whether pruning techniques used in CTD-Miner affect the quality of the provided results.

Howeffective areCTD-Miner and ITLDin termsof execution time? Weevaluate the execution
time of ITLD w.r.t to different datasets’ characteristics and compare it to the quadratic baseline al-
gorithm and TEDDY that performs a semi-lattice level-wise exploration using pruning techniques.
Also, we evaluate the behaviour of CTD-Miner with the available time lag discovery approaches.

Is our approach robust to noise? We analyze if our approach is capable of discovering accurate
temporal dependencies with noisy data.

At what extent do our approach scale? A straightforward rule of thumb used in the analysis of
data streams is the following: the analysis execution time must be lesser than acquisition time. We
aim to evaluate the number of state streams that can be processed thanks to our approach within
this rule.

All algorithms used in this chapter were implemented¹ in Python and tested on a Core i7 2.1Ghz with 8GB
memory running Windows 10.

¹Implementations are available at: https://github.com/AElOuassouli/Quantitaive-Interval-Stream-Mining
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8.2 Preliminaries

This section aims to define several terms we use in this chapter.

Stream density refers to the quantity of active interval length over the total observation duration Tobs. This
metric permits to quantify active activity in a given duration: a higher densitymeans a high degree of activity. We
emphasize that a high number of temporal phenomena occurrences induces dense streams, but dense streams do

not imply straightforwardly high occurrence numbers. For a streamA the density of a stream is given by
len(A)
Tobs

.

TemporalVariability refers to slight variations in temporal phenomena in terms of quantitative temporal aspect.
For instance, pedestrians form a ”cluster” of actors that similarly perform a trajectory. This behaviour can be
reported on by a typical temporal pattern that does not precisely describe each exact occurrence of pedestrian
trajectory quantitatively but is representative of the general behaviour of the pedestrians ”cluster”.

Noise in interval-basedstream. Interval-based streams support binary information. Agiven timeunit iswhether
active or inactive. A noisy interval-based stream is a stream that includes a certain amount of meaningless infor-
mation including be ”positive” noise, i.e. additional active intervals, and data corruption, i.e. deactivation of true
active intervals.

Operations on state streams. This term refers indistinctly to operations used to compute dependencies’ confi-
dence values, including intersection and temporal transformations. These two operations are linear with respect
to the number of streams’ intervals.

8.2.1 Matching conditions and accuracy metrics

Knowledge discovery algorithms are hard to assess qualitatively in real-world contexts due to the unknown prop-
erty of the potentially discovered insight. Generally speaking, two general approaches can be used in this context.
The first, that is used extensively with machine learning methods, is to train a model on a portion of the datasets
and verify if this model has enough predictive power in another portion (that can be novel data). The second
is to use datasets describing known configurations with known ground truth (i.e. the model to be discovered is
known) and compare it to the provided results. In this chapter, we use this second approach as it tackles the qual-
ity assessment problem directly. The study of the predictive power in our context is a different problem inducing
more parameters that can be tackled in further work (does the activity is constant in a given time span ? at what
extent false prediction can be used for concept drifts detection ?)

In order to assess the accuracy of algorithms, we use mainly use the F1 score accuracy metric. It is defined
as the harmonic mean of precision and recall. Precision describes the proportion of accurate results in the set

of discovered dependencies: precision =
True positives

True positives + False positives
. Recall reports on the proportion of

accurate discovered results in the set of accurate dependencies: recall =
True positives

True positives + False negatives
. The

F1 score is used to seek good balance between precision and recall. It is given by:

F1 = 2 ∗ precision ∗ recall
precision + recall

In order to differentiate between positives and negatives w.r.t the ground truth we use several matching condi-
tions that aremore or less restrictive. Given a true dependencyDt = At → B(αt,βt)

t and a discovered dependency
Dd = A2 → B(α2,β2)

2 we define the following matching conditions for temporal dependencies.
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• Qualitative matching: Dt and Dd are equivalent if At = Ad and Bt = Bd.

• Exact matching: Dt and Dd are equivalent if they match qualitatively and (αt, βt) = (αd, βd).

• Relaxed θ Matching: for θ > 0,Dt andDd are equivalent if theymatch qualitatively and |αt− αd| ≤ θ and
|βt − βd| ≤ θ.

Thequalitativematching assesses the accuracy of a discovereddependency regarding thepresenceof a correlation
betweendependencies: is the algorithm capable of reporting on qualitative correlations ?. Theexactmatching reports
on the ability to discover the exact truth: is the algorithm capable of discovering the ground truth from the data ?. The
relaxedmatching is a trade off between the restrictive exact matching and the permissive qualitative matching. It
reports on the capability of discovering dependencies that are enough close to the ground truth in quantitative
terms: is the algorithm capable of discovering dependencies with approximative temporal information ?

8.3 Performance study

8.3.1 Datasets description

Simulation tool

In order to generate synthetic datasets, we designed a graphical motion simulation tool². A screen-shot of its user
interface³ is provided in Figure 8.3.1. This tool allows building motion simulation scenarios that can be run with
regards to different temporal characteristics. More precisely, simulation scenarios are defined w.r.t spacial and
temporal configurations. The spacial configuration definition consists of defining graphically an environment
that is characterized by:

• A set of directed segments that model a spacial configuration. It models all possible paths that can be
taken in a given environment byplacing in the grid a set of nodes (black points in cells’ centre) anddefining
directed segments (black lines) betweenpairs. For instance, a building configuration can be represented as
follows: nodes represent specific places (e.g. rooms, intersection) and segments corridors between these
specific places maintaining the distance information (e.g. corridor between the kitchen and the entrance
hall). All segments do not need to be connected.

• A set of motion sensors. In the grid, the user can place sensors (coloured squares) that will be used to
report on motion in their area during the simulation. Active sensors are coloured in grey if they are active
and in red otherwise.

• A set of trajectories. Given the set of segments representing all possible paths, the tool permits to define
specific trajectories for the simulation as an ordered set of connected segments (each segment is connected
to its direct successor and predecessor).

The graphical definition of an environment configuration is used to define a set of behaviours composing a
simulation scenario. A behaviour is defined with the following parameters:

• A trajectory t

²https://github.com/AElOuassouli/Quantitative-Interval-Stream-Mining/tree/master/Simulation%20Tool
³A graphical library developed by Lionel Robinault was partly used in the implementation of the user interface.
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• An activity time span T = [tb, te).

• An occurrence number. It defines the number of times the trajectory t will be taken during T . An occur-
rence corresponds to an actor instance performing a trajectory represented graphically by green squares.

• A speed distribution. In real-world contexts, the same phenomenon can occur with a slight temporal vari-
ation. For example, two pedestrians can perform the same trajectory with slightly different velocities.
Inspire by [156], wemodelled the velocity of a specific behaviour as a normal distributionV ∼ N (v, σ2)

with v a typical occurrence speed and σ2 the variance of the distribution.

Given a set of behaviours, the simulation process used in this tool is described in the following. For each
occurrence of each behaviour, the simulator creates an occurrence instance. It computes its starting time stamp
in the behaviour’s activity time span T w.r.t a to a uniform distribution⁴ and its velocity v w.r.t to the normal
distribution specified in the parameters. Given the starting timestamp and the velocity v, the simulator iterate
over time, time unit per time unit, to compute the instance’s next pixel coordinates (i.e. positions in the absolute
graphical area, not coordinate in the grid). In this process, if an actor instance enters an empty sensor’s S area at
timestamp tb, an interval is initialized with its first endpoint [tb,−). If the instance leaves the sensor area at te the
last interval is complete [tb, te) and added to the interval stream of S. This process is repeated until reaching the
final point of the trajectory. The result of this process is a set of interval-based sequences corresponding each to
a motion sensor. This simulation process can be played in the graphical area.

subsubsectionGenerated datasets
We describe hereafter the generated datasets used in this section.

Linear Trajectory. Table 8.3.1 describes a set of datasets obtained from the simulation tool that will be used in
this chapter. We defined a linear trajectory with ten equidistant sensors, as shown by Figure 8.3.2. In the rest of
this chapter, wewill refer to the state corresponding to the sensor with index i in as Sensori. We ran 11 simulations
varying the number of occurrences for the same duration T = 10000 and object speed (cf Table 8.3.1). Each
dataset contains ten state streams. The typical time lag between successive state is≈ (4, 4). As shown in Figure
8.3.3 intervals number increases with occurrences for sparse data (100 to 5000 occurrences) and decreases for
high-density event occurrences due to intervals overlap. Overlapping intervals correspond to situations where
two actor instances pass simultaneously, with a given delay, through a sensor area. In the other hand, active length
always increases when the event occurrences increases and ranges between 170 and 7850.

⁴The uniform distribution is used for simplicity and is sufficient for our experimental purposes. A more neat approach is to
consider arrival times (occurrence starting timestamps) as a Poisson process. The generation process even more sophisticated if

Figure 8.3.2: The linear trajectory used to generated synthetic datasets. It is directed from sensor 0 to
sensor 9. (Screenshot from the simulation tool)
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Figure 8.3.3: Average stream length and interval number with respect to occurrence number in the Linear
trajectory datasets described in Table 8.3.1

Table 8.3.1: 11 simulated data sets with increasing occurrences number (Occ). #Int: average number of
intervals per stream, Len: average streams length Den: average density % of T . T = 10000 time units

Occ #Int Len Den Occ #Int Len Den Occ #Int Len Den
100 95 170 1.7% 3000 1509 4150 41.5% 7000 1492 6990 69.9%
500 452 870 8.7% 4000 1606 5050 50.5% 8000 1386 7460 74.6%
1000 798 1640 16.4% 5000 1619 5860 58.6% 9000 1263 7850 78.5%
2000 1275 3030 30.3% 6000 1570 6471 64.5%

Linear trajectory with temporal variability. We generated a set of datasets using the same trajectory as above
but with temporal variability. The speed of occurrences was set to v = 10, observation duration to Tobs = 10000
and an occurrence number to 1000. We generated 17 datasets corresponding to a different variance σ values
ranging between [0, 2] containing streams with an average density of 25% (considered as sparse streams).

Linear trajectory with noise. We simulated a scenario composed of the same linear trajectory sensed by 10
equidistant sensors for Tobs = 10000 and occurrence number of 1000 and without temporal variability σ2 = 0.
We obtained a dataset with an average density of 16%. Starting from this dataset, we constructed 10 datasets by
addingauniformrandomnoise in eachdataset by introducingaproportion τ ∈ {0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4}
of false information (activating inactive intervals and vice-versa.). We describe in Figure 8.3.4 the number of in-
tervals w.r.t their durations in the first stream of the linear trajectory in the generated datasets. We can observe
that the noiseless dataset containmainly intervals of 2 time units and no intervals of duration 1. Intervals of length
1 correspond to spurious intervals corresponding to mainly additional noise intervals. It is also to notice that the
proportion of noise intervals of length 1 exceeds number of intervals of length 2 considered as true active intervals
for τ > 10.

8.3.2 Interval Time Lag Discovery (ITLD) assessment

This section aims to evaluate ITLDour quantitative time lag discovery algorithm and compare it to the two exist-
ing approaches: TEDDY [127] and PIVOTMiner [78]. All these works are devised to discover pairwise quanti-
tative relationships between interval-based data and models quantitative information as a pair (α, β).

we consider some correlations between occurrence (e.g. people tends to walk in pairs)
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Figure 8.3.4: Number of intervals w.r.t to their durations for Sensor1 in the Linear Trajectory with noise
datasets

PIVOTMiner was designed for sequences databases and uses occurrence counting minimum support as an
interestingness measure. To the best of our knowledge, it is the only approach that can be easily adapter to dis-
covering quantitative relationships between interval-based streams. The approach used in this algorithm is not
endpoint sensitive in that it is based on the analysis of relative quantitative relationships rather than absolute po-
sitions in a given timeline. As described in Chapter 4, it uses a geometrical approach consisting in projecting
intervals [tb, te) in a bi-dimensional space (first endpoint tb, second endpoint te) and run a clustering algorithm
to detect typical quantitative information. In order to fairly compare it with TEDDY and ITLD, we adapted this
algorithm to interval-based streams and included the temporal constraint Δ = [min,max] as for TEDDY and
ITLD. Parameters used in PIVOTMiner version we use in this work are described by the following:

• Δ = [min,max] the temporal constraint

• min-supp: The minimum support threshold

• ε: a neighbouring range for the density-based clustering algorithm (DBSCAN)

In the following,weevaluate thequality of results aswell as theperformanceof the three available algorithmsof
quantitative temporal patternmining algorithms. More precisely, we analyse their robustness to streams’ density,
temporal variability and noise. We also evaluate their performance with regards to numbers of streams intervals
and temporal constraint.
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Robustness to streams’ density

We executed ITLD, PIVOTMiner and TEDDY a temporal constraint of Δ = [0, 15] on the Linear Trajectory
datasets. We firstly used ε = 1 andmin-supp=

2
3
for PIVOTMiner. The obtained F1 scores are reported in Figure

8.3.5 for qualitative and exact matching.

(a) Qualitative Matching (b) Exact Matching

Figure 8.3.5: F1-Scores w.r.t to density of streams

This experiment shows that ITLD is robust to density even for exact matching, in comparison with PIVOT-
Miner andTEDDY.This latter candetect significant dependencies (high recalls) but outputs a significant amount
of false positives impacting the results’ precision. We observed that these false positives often have large temporal
transformations causing a significant increase in intervals lengths and intervals overlaps, particularly with dense
datasets. As a consequence, large intersections are obtained, and by extension high confidence values, which
can lead to statistically valid dependencies. Large temporal transformations deform, to some extent, the original
linear temporal information that is to be discovered. Besides, large temporal transformations induce intervals
overlap and fusion, which lead to a lower number of intervals in the conclusion stream. As a consequence, the
dominance-based pruning is less efficient in such cases as the observed loss/gain in confidencemeasure may not
include the contribution of all intervals in the original stream. ITLD tackles this problem as it considers confi-
dence variations for non-deformed intervals: number and lengths of the conclusion is maintained.

With the specifiedparameters, PIVOTMiner behaveswell for sparse data and gives similar results to ITLD, but
lower recalls are obtained for dense data. This is explained by the fact that overlaps caused by great densities cause
a fall in interval number and by extension, the occurrence count of interval relationships. Thus, PIVOTMiner
requires to lower the minimum support, which may cause a pattern flooding problem, or a more permissive ε
value (i.e. the distance between points for the clustering algorithm). For a more fair comparison, we executed
PIVOTMiner varying ε and theminimum support. The results are reported in Fig. 8.3.6. Even for the best ε value
(ε = 2), PIVOTMiner is sensitive to density. Low minimum supports causes pattern flooding (10%, 20%), and
the best qualitative results are given for 30%. These results show that using automatic statistical tests permits to
adapt the significance threshold to activity intensity, contrary to user-given significance thresholds approaches
requiring continuous parameter tuning.

We also report in Figure 8.3.7 the observed execution times of ITLD, TEDDY and PIVOTMiner. What is
evaluated here is the efficiency of these algorithmswith regards to streams interval number. This figure shows that
ITLD is slightly outperforming TEDDY for these datasets. While ITLD benefits from its linear complexity with
respect to interval numbers and temporal constraint, TEDDY’s process, that is quadraticw.r.t temporal constraint
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(a) ε variation. min-supp = 2/3

(b) min-supp variation. ε = 1

Figure 8.3.6: F1 scores (qualitative matching) for PIVOTMiner

and linear in numbers of intervals, is enhanced by its early pruning techniques. On the other hand, PIVOTMiner
that is quadratic w.r.t the number of intervals is slower than the other two algorithms even with the temporal
constraint.

Figure 8.3.7: Execution Time w.r.t density of streams

Conclusions

• ITLD is robust to streams density

• The use of the intersection-based confidence measure and a statistical interestingness assessment permits
to obtain, at least, precise results in comparison with using user-given thresholds on occurrence counting
supports.
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• The maximum confidence variation approach allows ITLD to obtain results with betters recalls in com-
parison with TEDDY.

• ITLD’s performances with respect to stream’s density show the better trade-off between accuracy and ex-
ecution time for this dataset. w

Robustness to temporal variability

We executed each algorithm with a temporal constraint Δ = [0, 15]. We also used ε = 1 and a minimum sup-
port of

2
3
for PIVOTMiner. Figure 8.3.8 reports on F1-score obtained for the Linear trajectory with temporal

variability datasets for qualitative, exact and relaxed matching (θ = 2).

(a) Qualitative Matching (b) Exact matching

(c) Relaxed matching θ = 2

Figure 8.3.8: F1 scores over velocity variance σ

The resulting F1 scores show that ITLD is the most robust to temporal variability for all matching approaches.
It is to notice that even if ITLD is less accurate for high variance values given the exact matching approach, it
provides results that are close to the ground truth (or typical behaviours with quantitative information close
to the average expected value). This can be observed with the relaxed matching with θ = 2. We describe in
Figures 8.3.9.a and Figure 8.3.9.b maximal confidence variations for a dependency Sensor1 → Sensor2 such that
Sensor1 is directly followed by Sensor2 in the linear trajectory with σ2 = 0 and σ2 = 2. What can be noticed
is that the characteristic form of specific temporal dependencies is ”flat” without temporal variability and tends
toward a Gaussian curve with σ2 = 2. Also, the characteristic form has a slightly larger width with temporal
variability (cf expansions in 8.3.9.b) causing the detection of a specific time lag value that is slightly different from
that observedwithout temporal variability. This explains the decrease in the F1 score with exactmatching. Figure
8.3.9.c andFigure 8.3.9.d describemaximal confidence variations for Sensor2 → Sensor1 and show that no specific
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transformation value is detected: no dependency stands for B followed by A (the dataset was generated in a one
way trajectory).

On the other hand, TEDDY provides a result sets with maximal precisions but low recalls for all variances σ2

as shown in Figure 8.3.10 for a variance of σ2 = 0. This is due to a large number of false positives. For example,
for the successive first states of the linear trajectory Sensor1 and Sensor2, TEDDY provided five dependencies
for σ2 = 0: A → B(11,11), conf = 1 corresponding to the ground truth and four other dependencies B →
A(10,4), conf = 0.44, B → A(11,5), conf = 0.45, B → A(12,6), conf = 0.45 and B → A(14,8), conf = 0.45
that are false positives. Indeed, no occurrence of this temporal relationship was included in the simulation. The
correspondingmaximal confidence variations provided by ITLDare depicted in Figure 8.3.9.a andFigure 8.3.9.c.

PIVOTMiner accuracy decreases with temporal variability for all matching approaches even for a permis-
sive minimum support of

2
3
. This is due to the clustering approach used in this algorithm. Increasing the vari-

ance of the speed normal distribution increases the distance between intervals projections in the (first endpoint,
second endpoint) space. Thus, with a restrictive ε = 1, no cluster satisfies the minimum threshold for high
variance values. Figure 8.3.11 describes results provided by DBSCAN with different variance and ε values for
Sensor1 → Sensor2 with an expected time lag of (11, 11). Figure 8.3.11.a shows that DBSCAN provided a unique
dense cluster (i.e red point at (11, 11)) for a null variance (no temporal variability) with an ε = 1. In this dataset,
all intervals of Sensor1 are related to an interval of Sensor2 with an exact (11, 11) time lag. With a variance equals to
2 (Figure 8.3.11.b), DBSCAN do not provide any frequent cluster. We can observe that the area surrounding the
coordinates (11, 11) contains a multitude of points due to temporal variability. This corresponds to the normal
distribution of velocities we used to generate the dataset. In order to obtain results, we increased the value of ε
andwere not able to to obtain frequent clusters until an ε = 4 as shown in Figure 8.3.11.c. Another way to obtain
results with PIVOTMiner is to lower the minimum threshold. For ε = 1 and σ2 = 2, we obtained a frequent
cluster for a min-supp=

1
4

containing few of the intervals corresponding to the behaviour (cf Figure 8.3.11.d)

and even multiple clusters for a minimum support of
1
6
.

This experiment suggests that using user-given interestingness thresholds makes it harder to detect unknown
temporal phenomena. Indeed, the usermust have prior knowledge about searched temporal phenomena in order
to set appropriate thresholds. For instance, in the results provided higher, knowing the approximate time lag dis-
tribution of the typical behaviour helps to set the ε parameter. However, this temporal distributionmay evolve in
time, requiring the adaptation of the algorithm’s parameters. Besides, multiple temporal relationships, each with
a different distribution (e.g. different variance values), may exist between pair of interval-based streams: finding
each temporal relation may require several executions with different optimal parameters. This problem is some-
what solved by the statistical approach used by ITLD and TEDDY as interestingness thresholds are calculated
adaptively (for each pair of state streams) w.r.t a statistical significance level that has to be set once by the user.

Conclusions

• This experiment suggests that ITLD is robust to temporal variability that follows a normal distribution.

• TEDDY has high precision, but low recall for the datasets used in this experiment: In comparison with
TEDDY, ITLD provides a better trade-off between precision and recall.

• ITLD permits to obtain accurate results without user-given parameters contrary to PIVOTMiner. Using
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(a) A→ B with σ2 = 0

(b) A→ B with σ2 = 2

(c) B→ A with σ2 = 0

(d) B→ A with σ2 = 2

Figure 8.3.9: Maximal confidence variations for a pair of state streams A and B such that A follows di-
rectly B is the linear trajectory for σ2 = 0 and σ2 = 2

Figure 8.3.10: Precision and recall obtained with TEDDY for σ2 = 0 and Δ = [0, 15]
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(a) ε = 1, σ2 = 0, min-supp= 2
3

(b) ε = 1, σ2 = 2, min-supp= 2
3

(c) ε = 4, σ2 = 2, min-supp= 2
3

(d) ε = 1, σ2 = 2, min-supp= 1
4 (e) ε = 1, σ2 = 2, min-supp= 1

6

Figure 8.3.11: Clustering results given by DBSCAN for PIVOTMiner for different variance σ2, ε and mini-
mum support min-supp for an expected time lag of (11, 11). Coloured points correspond to frequent clusters.
Δ = [0, 15]

155
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI061/these.pdf 

© [A. El Ouassouli], [2020], INSA Lyon, tous droits réservés



statistical interestingness threshold is useful when no prior knowledge is provided about temporal phe-
nomena to be discovered.

Robustness to noise

To evaluate the robustness to noise of our approach, we used theLinearTrajectorywith noise dataset. We used
Δ = [0, 15] andPIVOTMinerwas executedwithmin-supp=

2
3
and ε = 1. We report in Figure 8.3.12 on F1 scores

obtained for noise rates ranging between [0.01, 0.4]. Results provided by this experiment suggest that ITLD is
more robust to noise in comparison with TEDDY and PIVOTMiner. ITLD’s results score well in both precision
and recall, even for a noise rate of 40%.

(a) Qualitative Matching

(b) Exact Matching

(c) Relaxed Matching. θ = 0.5

Figure 8.3.12: Precision, recalls and F1 scores w.r.t noise rate.

The PIVOTMiner algorithm was able to provide results with high precision for low noise rates w.r.t quali-
tative and the restrictive relaxed matching (θ = 0.5). For these results, we observed that time lags given by
PIVOTMiner were slightly different from the expected temporal information. Indeed, PIVOTMiner uses clus-
ters centroids coordinates as representative time lag. Thus, with noise, the centroid coordinate derivative slightly
from the expected result, causing a decrease in exact precision. For higher noise rates, PIVOTMiner was not able
to provide satisfactory results with constant minimum support, as shown by the resulting recall scores. This is
simply due to the constant the interestingness measure and clustering parameters as discussed higher.
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As for previous experiments, TEDDY’s precision is impacted by amounts of false positives. Thus, we focus
on the current analysis on recalls on which TEDDY scores well usually. What can be observed is that the recalls
of both TEDDY and PIVOTMiner decrease more with noise rates in comparison with ITLD. TEDDY’s recalls
decreases starting from a noise rate of τ = 0.2 while ITLD’s first recall and precision impact was observed for
τ = 0.4. We recall that the length of false information in state streams for τ = 0.4 corresponds to 4000 that is
higher than the average original streams length 1640.

We also observed for the three algorithms a decrease of confidence and support values with noise rates. This
is simply due to the number of spurious intervals introduced by noise in the streams (cf Figure 8.3.4. This also ex-
plains the empty results set provided by PIVOTMiner for high noise rates: the proportion of true active intervals
decreases with high noise rates.
Conclusions

• This experiment suggests that ITLD is more robust to noise in comparison with TEDDY.

• The use of statistical assessmentmakes it possible to obtain accurate results with noisy data in comparison
with user-given interestingness measures that need parameters tuning.

Influence of the temporal constraint

We used the 1000 occurrences dataset of Linear trajectory to evaluate the influence of the temporal constraint on
the quality of results given by the three algorithms. These were executed for Δ = [0,max] with max ∈ [1, 60].
In this dataset, the expected temporal transformation between successive states in the linear trajectory is around
(4, 4). We report on F1 scores in Figure 8.3.13.

(a) Exact Matching (b) Relaxed Matching θ = 1

Figure 8.3.13: Execution time and F1-Scores w.r.t to tmax (tmin = 0)

As this streams in this dataset are sparse and noiseless, both PIVOTMiner and ITLD obtained maximum
F1-Scores for reasons discussed higher. TEDDY obtains high recalls and a growing precision with tmax for this
data set. That is partly explained by the proportion of true positives that grows with tmax due to the simulation
scenario: large temporal constraint makes it possible to capture dependencies between a state and a larger set
of its following states in the linear trajectory. TEDDY is capable of finding true positives but fails somehow to
detect true negatives for tmax < 30. This may be due to the fact that TEDDY is designed to extract correlations
based on intersection length and do not integrate the succession information directly. ITLD benefits from the
intersection model assessment and, at the same time, takes into account directly temporal successions as it uses
elementary confidence variations that can be seen as the number of impacted intervals. We also observed that
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TEDDY provides less false negatives for large temporal constraints with tmax ≥ 40, which suggests that the
quality of results given by TEDDY are dependent on the temporal constraint.

The ground truth of the dataset used in this experiments contains several dependencies with α < β. For
such cases, ITLD and PIVOTMiner were able to provide a precise result. Due to its semi-lattice exploration
strategy, results given by TEDDY contained multiple dependencies reporting on such cases. For example, with
Δ = [0, 60], PIVOTMiner and ITLD provided Sensor7 → Sensor(3,4)8 while TEDDY’s results contained two
dependencies Sensor7 → Sensor(3,3)8 and Sensor7 → Sensor(4,4)8 . In real-world scenarios, temporal relationships
with α < βmayexist in largenumbers and/orwith large β−α leading to ahugenumber of duplicated information
and pattern flooding.

We report in Figure 8.3.14 on execution times w.r.t Δ. It shows that ITLD outperforms TEDDY: for Δ =

[0, 60] ITLD runs seven times faster thanTEDDY.This is due to the linear complexity of ITLDw.r.t the temporal
constraint. As expected, running times of PIVOTMinerweremarginally affectedby the size ofΔ as this constraint
is simply used to reduce the number of vectors for the clustering step.

Figure 8.3.14: Execution Time w.r.t tmax in Δ = [0, tmax

Conclusions

• The accuracy of ITLD is not affected by the temporal constraint Δ

• ITLD provides precise temporal information when α < β compared to TEDDY.

• ITLD outperforms TEDDY for large temporal constraints due to its linear complexity.
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8.3.3 Complex Temporal Dependencies discovery

In this subsection, we evaluate the multiple states dependency discovery approach, CTD-Miner, that we intro-
duced inChapter 6. We examine the efficiency of its pruning criteria and the impact of the used time lag discovery
algorithm. Wewill evaluate performances of CTD-Miner with both ITLD andTEDDY as they are the only avail-
able approaches using streams intersection as interestingness criteria and statistical assessment. We chose not to
includePIVOTMiner in this evaluation as it uses occurrence counting support and requires additional user-given
parameters. We also assess its performance w.r.t the influence of the temporal constraint and density of streams.

Hereafter, we will use ITLD as the standard quantitative pairwise dependency algorithm for CTD-Miner
(ITLD is inserted at line 12 in Algorithm 1). Otherwise, it will be mentioned explicitly. For the need of our
experiments, we will use different configurations of CTD-Miner:

• CTD-Miner: CTD-Miner as described in Algorithm 1.

• Merging Performs the incremental construction with the merging routine. Pre-pruning (line 7) is re-
moved from Algorithm 1.

• WP (without pruning). Performs a simple incremental construction ofComplexTemporalDependencies
given the Apriori-like assumption. (line 7 and 18 are removed from Algorithm 1

• Pruning: Merging dependencies (Line 18 in Algorithm 1) is removed from CTD-Miner. Only Pre-
pruning is used to reduce the search space.

• CTD-Miner-TEDDY: CTD-Miner with TEDDY as a time lag discovery algorithm.

In order to assess the efficiency of these algorithms, we will use the number of state streams operations in
addition to execution times. It indicates precisely the main cost of the exploration process, including the closed-
like verifications for pruning and merging in addition to time lag discovery.

For all executions, we limited the execution of the CTD discovery algorithms to 40 minutes and used the
statistical threshold for the correspondence relationship.

Influence of the temporal constraint

In order to evaluate the influence of the temporal constraint on the five version of CTD-Miner described higher,
we use the 1000 occurrences stream of Liner Trajectory - slow. We first executed these algorithms with a list of
streams ordered w.r.t their position in the trajectory [Sensor0, Sensor1, Sensor2..., Sensor9] for Δ = [0, tmax] with
tmax ∈ [0, 100]. The results of this experiments are reported in Figure 8.3.15.

First, we observe thatCTD-Miner associated with one or both pruning techniques and ITLD as a time lag dis-
covery approach (CTD-Miner, Merging, Pruning, WP) runs significantly faster than CTD-Miner-TEDDY for this
dataset. CTD-Miner-TEDDY reached the 40 minutes execution limits for respectively tmax = 10 and tmax = 50.
It suffers from the precision of TEDDY (cf. the previous section) that generate a large number of false positives:
as discovered false positives at iteration i are considered as premises for iteration i+ 1, the number of dependen-
cies to be tested at each iteration increases exponentially. In Figure 8.3.15.b, we observe thatCTD-Miner-TEDDY
provided 12 results for Δ = [0, 1] while non is expected. This experiment shows that the precision of a time lag
discovery approach is critical to a multiple state dependency discovery algorithm. Indeed, it depends largely on
its precision score. We can also notice that the closed-like pruning and merging are not efficient in this case.
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(a) Execution time (b) Number of state streams operations

(c) Execution time (d) Execution time

(e) Number of state streams operations (f) Number of results

Figure 8.3.15: Execution times and number of results of the five versions of CTD-Miner w.r.t the tempo-
ral constraint Δ = [0, tmax].
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This experiment suggests that the closed-like pruning permits to accelerate the discovery process significantly
while not affecting the results’ quality. Weobserve in Figure 8.3.15.a thatCTD-Miner using pruning and/ormerg-
ing outperforms significantly WP, that reached the 40 minutes execution limit for tmax = 40, with higher values
of tmax (e.g a ratio of≈ 50 in execution time for tmax = 30). In Figure 8.3.15.b reporting on numbers of state
streams operations, one can notice that the number of executed state streams operations follows the same evolu-
tion of execution times and maintains the order of magnitude ratios. This shows that the efficiency of the CTD
exploration is determinedmainly by these operations execution number. Wewill focus on this performancemet-
ric as it does not depend on hardware specifications and configurations leading to variations in execution times⁵.
In Figure 8.3.15.f, we observe that closed-like pruning criterion preserves the quality of the results. The single
result provided by CTD-Miner with ITLD corresponds to the conditional relationship describing the linear tra-
jectory.

This experiment permits also to compare the cost the closed-like based pre-pruning and merging w.r.t to the
temporal constraint. In Figure 8.3.15.b, we observe thatMerging is slightlymore efficient than Pruning for tmax ≤
30 and inversely for tmax > 30. This is explained by the following.

Merging executes the time lag dependency algorithm 90 (10∗9) times to compute all pairwise dependencies in
the first iteration as it can be seen in Figure8.3.15.e. Theobtained candidate set contains all necessary information
to compute, by dependencies merging, all necessary CTDs composing the conditional temporal relationship
describing the entire trajectory without further iterations. For tmax = 10, this result set is exclusively composed
of dependencies of the form Sensori → Sensori+1 where Sensori+1 is the direct predecessor of Sensori is the linear
trajectory. As a consequence, the cost of merging dependencies in the result set is optimal. For larger values of
tmax, the first iteration result contains additional dependencies. For instance, with tmax = 20, each sensor streams
is temporally correlatedwith its twodirect successors. Aportionof the corresponding exploration tree is depicted
in Figure 8.3.16. This number increases each time a state can be related tomore dependencies. As a consequence,
with larger candidates set provided by the first iteration, the merging process has a greater cost slightly as it can
be observed in Figure 8.3.15.c. However, it remains negligible in comparison with the influence of tmax on the
time lag discovery algorithm.

On the other hand, Pruning relies on pruning premise candidates. For instance, if a dependency Sensor0 →
Sensor1 is discovered, all dependencies of the form Sensor1 → Sensori are pruned as Sensor1 is a correspondent
sub-dependency of Sensor0 → Sensor1. This process is used in all iterations to prune the search space as it can
observed in Figure 8.3.17. Also, the efficiency of Pruning increases with tmax as more premises can be pruned as
indicated in the former figure with tmax = 10 and tmax = 20. As a consequence, number of time lag discovery
algorithm executions, that are the most costly process in CTDs discovery, decrease with higher values of tmax as
shown in Figure 8.3.15.d. This explains the relative over-performance of Pruning and over Merging.

The use of both closed-like premise pruning and dependency merging makes CTD-Miner more efficient in
comparison with using a single search space reduction approach. As it can be noticed in Figure 8.3.15.e, CTD-
Miner benefits from dependencies merging when premise pruning is not efficient (e.g tmax = 10 and tmax = 15)
and from premise pruning when it permits to reduce the search space (for high values of tmax).

Wealso executed the fourCTD-Miner versionswith ITLDona streams list that not consider temporal streams
order to evaluate the order influence on the discovery process and pruning efficiency. First, we executed CTD-

⁵The correct use of execution times to compare algorithms with close performances requires multiple experiment executions
to obtain a sufficiently significant assessment and avoid independent running time variations.
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∅

...S3

S3 → S5S3 → S4

S2

S2 → S4S2 → S3

S1

S1 → S3S1 → S2

S0

S0 → S2S0 → S1

S0 ∧ S1 → S2

S0 ∧ S1S2 → S3

S0 ∧ S1 ∧ S2 ∧ S3 → S4

...

Figure 8.3.16: A portion of the exploration tree of Merging with Δ = [0, 10]. Nodes correspond to depen-
dencies. Solid frames refer to tested premises. Dashed frames indicate dependencies obtained by merging.
Dashed arrows denote ”merged with”.

∅

...S5S4S3

S3 → S5S3 → S4

S3 ∧ S4 → S6S3 ∧ S4 → S5

......

S2S1S0

S0 → S2S0 → S1

S0 ∧ S1 → S3S0 ∧ S1 → S2

......

(a) tmax = 10

∅

...S3S2S1S0

S0 → S3S0 → S2S0 → S1

S0 ∧ S1 → S4S0 ∧ S1 → S3S0 ∧ S1 → S2

......

(b) tmax = 20

Figure 8.3.17: A portion of the exploration tree of Merging with Δ = [0, 10] and Δ = [0, 20]. Nodes
correspond to dependencies. Solid frames refer to tested premises. Dashed arrows denote ”correspondent
sub-dependency of”.
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(a) Reverse order (b) Random order. Average on 7 executions

Figure 8.3.18: Number of streams operation w.r.t tmax and input streams list order

Miner with the reverse order. Figure 8.3.18.a shows that in that particular case, Pruning is equivalent to WP: any
premise pruning is not able to reduce the search space. In the other hand, CTD-Miner benefits from dependen-
cies merging. Second, we executed seven times the CTD-Miner versions on a streams list with randomised or-
ders. For all executions, we noticed that CTD-Miner outperforms bothPruning andMerging with all randomised
orders. Figure 8.3.18.b describes the simple average of streams operations. This indicates that using both search
space reduction approaches permits to enhance the scalability of CTD-Miner with regards to the temporal con-
straint size.

To conclude, our example shows that the use of a max-gap like temporal constraint permits to enhance the
performance of our approach. This has two main advantages. First, interesting temporal phenomena are not
bounded temporally. This is a useful propertywhen the overall duration of interesting phenomena are not known
à priori. Second, it permits to reduce the cost of the search space exploration considerably. For instance, with the
synthetic we used in the subsection, it is not necessary to define a sizeable temporal search space, e.g. Δ =

[0, 100], to capture temporally large temporal phenomena. For instance, using Δ = [0, 10] is sufficient to obtain
a description of a trajectory that is executed in 100 time units.
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Figure 8.3.19: Execution times of CTD-Miner and WP w.r.t to occurrence number

Figure 8.3.20: Number of conditional temporal relationships provided by CTD-Miner w.r.t to noise rate.

Robustness to density

We executedCTD-Miner andWP on the Linear Trajectory datasets obtained with a variation of simulation num-
ber of occurrences for Δ = [0, 9]. As expected, with this dataset, our approach, with and without pruning, was
able to find the single conditional relationship with all dataset without providing any false positives. This is due
to the fact that it uses ITLD as a time lag discovery algorithm that is itself robust to density.

This experiment also permits to evaluate the behaviour of CTD-Miner w.r.t number of interval. Execution
times reported in Figure 8.3.19 shows that the use of premise pruning and dependencies merging permits to re-
duce execution times significantly for this dataset by up two orders ofmagnitude. This suggests that our approach
can scale well with the number of intervals in a dataset.

Robustness to noise

The robustness to noise of CTD-Miner was evaluated with the Linear Trajectory with noise datasets with a con-
stant temporal constraint Δ = [0, 9]. We recall that the noise rate τ denotes the percentage of Tobs = 10000
containing false information. For instance, if τ = 10, 1000 elementary intervals in Tobs contains whether a spuri-
ous active interval or deactivated interval. We refer the reader to Figure 8.3.4 to intervals duration proportion in
the used datasets.

We report in Figure 8.3.20 on the number of conditional temporal relationships provided by CTD-Miner for
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(a) Number of pruned premises (b) Number of merging operations

Figure 8.3.21: Number of pruned premises and merging operation in CTD-Miner w.r.t noise rate.

different noise rates. We distinguish between 3 types of results:

• True positives are results that well describes qualitatively the succession of states corresponding to the
linear trajectory.

• Sub-dependencies are results that describes a portion of the trajectory qualitatively while maintaining the
temporal order.

• Negatives are results including at least one non-correctly ordered relationship. For instance, if ABCDE
correspond to the expected state order, ABDCE will be considered as a false positive.

This experiment shows that CTD-Miner was able to efficiently detect the entire trajectory (the true positive) up
to a noise rate of 25%. Also, no false positive nor sub-dependency was given with a noise rate less or equal to 5%.
Second, with noise rates greater than 7%, CTD-Miner provided sub-dependencies with relatively large amounts
for 20%, 25% and 30% and a single false positive for 30%. The number of sub-dependencies shows that the
correspondence relationship is less efficient with a large amount of noise. Spurious intervals and deactivated one
are uniformly distributed over the observation duration. As a consequence, the resulting intersection between
related states includes extra-length due to spurious intervals that are not related to any further streams and less
intersection due to deactivated true active intervals. This results on a greater difference between representative
streams of a dependency and its sub-dependencies. Thus, less premise pruning and merging operations can be
performed. This can be observed in Figure 8.3.21.

To conclude comments on this experiment, we can argue that CTD-Miner robustness to noise is satisfactory
with regards to the ratio of correct information over the amount of noise (spurious intervals + deactivated in-
tervals). We also consider that obtaining portions of true temporal relationships as results for a large amount of
noise remains acceptable. The resulting pattern flooding can be addressed in a pre-processing step that groups
highly similar results. However, we believe that the use of the correspondence relationship can be improved with
a better relaxation parameter other than the statistical threshold.

Robustness to temporal variability

One important aspect to evaluate is the robustness to temporal variability. We showed higher that ITLD permits
to discover pairwise dependencies with temporal variability efficiently. We showed that temporal information
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Figure 8.3.22: Number of conditional temporal relationships provided by CTD-Miner w.r.t to temporal
variability

remains consistent with respect to the ground truth but with slight variations. One question that is posed for
multiple state dependency discovery is: How often slight variations in pairwise dependencies time lag information
affect the incremental construction of complex temporal dependencies ?.

We executed CTD-Miner on the Linear trajectory with temporal variability datasets with Δ = [0, 15] and re-
port in Figure 8.3.22 on provided results. We use the same results classification as for the noise experiment. In
this figure, we observe that CTD-Miner provided with non-negligible amounts of false positives with temporal
variability. This is due to the detection of several dependencies by ITLD that do not coincide with the expected
order. For example, the following dependency was discovered (for σ2 = 2) with a confidence of 0.14:

Sensor1 ∧ Sensor(13,10)2 ∧ Sensor(25,20)3 ∧ Sensor(38,30)4 ∧ Sensor(53,51)6 → Sensor(53,58)5

The corresponding maximal confidence variations are depicted in Figure 8.3.23. This can be explained by the
following. Dependency Sensor1∧Sensor(13,10)2 ∧Sensor(25,20)3 ∧Sensor(38,30)4 → Sensor(53,51)6 was discoveredwith a
confidence of 0.5. It do not capture the entire temporal relationship between Sensor4 and Sensor6 due the limiting
temporal constraint. As a consequence, the resulting intersection takes into account active length of Sensor6 that
report on the fastest trajectory occurrences. Corresponding intervals intersect with small portions of intervals of
Sensor5 reporting on the slowest behaviours.

We also noticed that CTD-Miner was able to detect the entire trajectory for all variances σ. However, we ob-
served that the linear trajectory was reported at least twice, with variation in temporal information, for a variance
greater than 6. For instance, with σ2 = 2, we obtained 3 conjunctive results describing the entire trajectory.
They share the same prefix from Sensor1 to Sensor5 in terms of quantitative information but differ on the rest of
the trajectory due to the detection of 3 dependencies with Sensor6:

Sensor0 ∧ Sensor(11,12)1 ∧ Sensor(25,21)2 ∧ Sensor(38,31)3 ∧ Sensor(50,42)4 ∧ Sensor(65,52)5 → Sensor(62,62)6

Sensor0 ∧ Sensor(11,12)1 ∧ Sensor(25,21)2 ∧ Sensor(38,31)3 ∧ Sensor(50,42)4 ∧ Sensor(65,52)5 → Sensor(68,69)6

Sensor0 ∧ Sensor(11,12)1 ∧ Sensor(25,21)2 ∧ Sensor(38,31)3 ∧ Sensor(50,42)4 ∧ Sensor(65,52)5 → Sensor(77,77)6

The correspondingmaximum confidence variations are depicted in Figure 8.3.24. This is explained by the na-
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(a) Expansions α (b) Reductions β

Figure 8.3.23: Elementary confidence variations and statistical threshold (blue line) for dependency
Sensor1 ∧ Sensor(13,10)2 ∧ Sensor(25,20)3 ∧ Sensor(38,30)4 ∧ Sensor(53,51)6 → Sensor(53,58)5

(a) Expansions α (b) reductions β

Figure 8.3.24: Elementary confidence variations and statistical threshold (blue line) for dependency
Sensor0 ∧ Sensor(11,12)1 ∧ Sensor(25,21)2 ∧ Sensor(38,31)3 ∧ Sensor(50,42)4 ∧ Sensor(65,52)5 → Sensor(α,β)6

ture of the dataset that includes temporal variability. Slight variations in terms of time lags between successive
intervals accumulate at each extension (building CTD of length n from CTD of length n − 1) until obtaining a
multitude of specific dependencies characteristic shapes in maximal confidence variations. In such cases, each
specific dependency is extended on its own, resulting in qualitatively duplicated conditional temporal relation-
ships. In such cases, disjunctive relationships permit to reduce information redundancy and provide a more
condensed representation that is easier to interpret. For instance, results that were provided for σ2 are reduced
to 4 tree structures that sum up the entire behaviours. One interesting fact to also observe is the adaptation of
temporal constraint to temporal variability. In Figure 8.3.24, one can notice that the explored search space size is
greater than the initially set oneΔ = [0, 15]. Using pairwise dependencies to discover temporal relationships, and
by extension of limited Δ, with this dataset would not have permitted to discover the overall activity described in
the dataset.
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8.4 Results with the real world motion dataset

8.4.1 Dataset description

The dataset described in this section was provided by the Foxstream company⁶. We gathered data from a sensor
system composed of 4 outdoor cameras situated in an office area. Each of these cameras captures a portion of
the office area. Figure 8.4.1 shows snapshots of the four used cameras. Starting from images taken by these
cameras, we defined ten areas, displayed with red polygons in Figure 8.4.1, corresponding to physical regions of
interest and labelled as 1-1, 1-2, ..., 4-3. Figure 8.4.2 shows the position of these areas from an areal view. Starting
from images taken by these cameras, we used ”real-time”motion detection. Withoutmuch details, this process is
performed as follows. For each area, a background image corresponding to a static scene is computed and kept in
memory. This background image is compared to incoming frames: if a sufficient amount of incoming frames are
different enough from the background image an eventMotion begin is produced. An eventMotion end is triggered
if incoming frames are similar again to the background image. We collected data for three weeks and considered
time portions corresponding to office hours (18 days from 6 am to 8 pm) and obtained ten time point event
sequences. In order to obtain interval-based streams, we defined for each area X an environment state Motion in
area X noted M-X and defined with the simple predicate:

M-X(t,X) ::= last(t,X).v == Motion begin

This predicates states that an area X is in state Motion in area X, or M-X, at timestamp t (i.e time unit [t, t + 1)) if
the event of X preceding t equals Motion begin.

The 10 resulting state streams are described in Table 8.4.1. This data set describes motion activity in the office
area during 18 working days between 6 am and 8 pm. First observations showed that it contains a significant
amount of noise (e.g. detection of shadows, sudden luminosity changes) and several omissions were observed
(e.g. whena car passes throughananalysis zonewith a great speed). Moreover, the resulting streams are extremely
sparse.

Table 8.4.1: Dataset corresponding to the experiment described in Fig.8.4.2

Name #Int Len Name #Int Len Name #Int Len Name #Int Len
1-1 1403 4303 2-1 8640 47881 3-1 3909 14644 4-1 9686 30257
1-2 851 3257 2-2 2099 4947 3-2 3699 13423 4-2 4578 13397

2-3 8548 26847 4-3 9825 21273

While not being heterogeneous, this dataset is interesting as it permits us to evaluate and validate our approach
qualitatively with non-favourable settings. It describes a temporal phenomenon that is inherently temporally
variable: cars in this environment have the same behaviour in qualitative and quantitative aspects but with slight
temporal variations. Second, this dataset is noisy due to omissions and false detections. Indeed, motion detec-
tion, or more generally video processing, is still a challenging problem whose improving performance in the real
world depends on several real-world conditions (e.g. change in weather, luminosity). Being able to extract accu-
rate temporal knowledge from such dataset suggests that our approach can be applied in real-world contexts and
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Figure 8.4.1: Four outdoor camera views. Red polygons describe motion analysis areas.

Figure 8.4.2: Position of motion analysis areas (aerial view)
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Table 8.4.2: Observed ground truth on the real motion dataset. Row contains premises and columns con-
clusions. For example, 1-1→ 3-1 is expected while 3-1→ 1-1 is not

1-1 1-2 2-1 2-2 2-3 3-1 3-2 4-1 4-2 4-3
1-1 - X X
1-2 - X X X X
2-1 - X X X
2-2 X X X - X X X X
2-3 X X X X - X X X
3-1 - X X X
3-2 - X X
4-1 X X X X X X - X X
4-2 X X -
4-3 X X X X X X X X -

that data gathered from video processing can be integrated into a knowledge discovery process.

8.4.2 Pairwise dependencies

Inorder to assess the accuracyof ITLD in comparisonwithTEDDYandPIVOTMineron the realmotiondataset,
we constructed an approximate qualitative truth based on ground observations of trajectories taken by cars in the
office area that can be observed for a temporal constraint of Δ = [0, 40]. We emphasise that this ground truth
is used as an indication for the quality of results and do not provide a strong guarantee of completeness (some
positives may not be described in the state streams as well as some real positives may have been missed during
observations). It is described in Table 8.4.2. We compute accuracy scores based on the qualitative matching.

We firstly executed PIVOTMiner on this dataset using minimum support of 0.1 and ε = 1. The exploration
took 1704 seconds and provided 15 results with a maximal precision (= 1) a very low recall of 0.25. As we dis-
cussed earlier in this chapter, using user-given thresholds is a problematic task if no prior knowledge of temporal
phenomena to be found is available. With PIVOTMiner, setting optimal parameters depends on various factors
and data characteristics. For instance, temporal variability influences the ε parameter (how dense are clusters de-
scribing a temporal relationship ?) and trajectories occurrences influence theminimum support (do all ”significant”
temporal relationships occur with more than 10% of a particular state intervals ?). In our case, a user needs to execute
the discovery process varying the interestingness parameters to obtain satisfactory results.

Second, we compared the efficiency of both ITLD and TEDDY in order to validate our observations on syn-
thetic data. First, we executed both algorithms on the streams setwithout any pre-processing or parameters adap-
tation. We obtained results described in Table 8.4.3. We observe that ITLD ran five times faster than TEDDY
due to its linear complexity. The two algorithms also obtained similar F1 scores with a slightly better accuracy for
ITLD. We analyse these results in more details in the following.

Table 8.4.3: Results on the FOX data set for Δ = [0, 40] (Qualitative matching)

#Res Precision Recall F1-Score Accuracy Run. time (s)
TEDDY 94 0.49 0.98 0.65 0.45 760
ITLD 34 0.76 0.55 0.64 0.68 145

⁶www.foxstream.fr
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What can be first observed is that TEDDY provided positives for all pairs of state streams in the dataset. The
more precise analysis of the obtained results shows that ”false positives” provided by TEDDY have often large
temporal transformations with, in some cases, high confidence values. Follows some example:

1-1→ 2-1(40,0), conf = 0.42

1-1→ 4-3(40,0), conf = 0.47

3-2→ 1-2(40,0), conf = 0.05

4-2→ 2-1(40,1), conf = 0.39

These false positives are due to two main factors. First, large temporal transformation lead to a multiplication
of active length with factors up to 40. For instance, an active interval of duration 1 second may have a duration
of 41 if a temporal transformation (40, 0) is applied. These deformation of original state streams may lead to
intersections that are not reflecting any ”significant” temporal relationships. Second, state streams in the used
dataset are very sparse. As a consequence, even small intersection lengthsdue tonoise can lead to statistically valid
dependencies. Using the entire observation duration to compute the validity threshold leads to very low values.
However, we also observed that true positives provided by TEDDY are quantitatively accurate with satisfactory
time lag characterizations. For example, the following dependencies describe a car leaving the office area starting
from analysis zone 2-1:

2-1→ 2-3(7,2), conf = 0.36

2-1→ 4-3(12,4), conf = 0.37

2-1→ 4-1(14,7), conf = 0.31

Weobserve that expansions α and reductions β are ordered following the spatial configuration. As a consequence,
TEDDY outperforms significantly ITLD in terms of recall.

Wemade twomain observations on dependencies provided by ITLD that explains low accuracy scores. First,
the use of the statistical rule of thumbs (values of the expected contingency table ≥ 5 is too restrictive for the
maximal confidence variation assessment on very sparse data streams. For example, Figure 8.4.3 provides two
cases where these conditions lead to not considering the statistical test as valid. In these figures, the characteristic
form of specific dependencies is present but not detected due to the application of the rule of thumbs.

The second observation is also linked to the density of data streams. We noticed that the provided statistical
thresholds are very low. Indeed, maximal confidence variations assess the statistical significance of observing
a confidence gain due to adding or removing active intervals of length 1 from the conclusion intervals. These
quantities are negligible compared to the overall observation duration leading to very low statistical thresholds.
This has two consequences. First, 7 ”false positives” that do not correspond to a physical trajectory are obtained.
Figure 8.4.4 provide the maximal confidence variations (for expansions) of two of these cases. Second, true pos-
itives have large time lag information due to too permissive thresholds. One descriptive example of such cases is
2-1→ 2-3(40,0). Corresponding maximal confidence variations and thresholds are depicted in Figure 8.4.5.
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(a) 1-1→ 3-1 (b) 2-2→ 1-1

Figure 8.4.3: Maximal confidence variations for expansion value for 2 expected dependencies. Thresholds
≥ 1 corresponds to configuration where the rule of thumbs is not verified

(a) 3-1→ 2-1 (b) 4-2→ 2-1

Figure 8.4.4: Maximal confidence variations for expansion value for 2 ”false positives” provided by ITLD.

(a) 3-1→ 2-1 (b) 4-2→ 2-1

Figure 8.4.5: Maximal confidence variations for dependency 2-1→ 2-3(40,0)
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(a) Confidence variations for expansions (b) Confidence variations for reductions

Figure 8.4.6: Maximal confidence variations for dependency 1-1→ 2-2

In order to validate our first observations, we ran ITLD and TEDDYwith the same parameters using a signifi-
cance level of 0.005 for the statistical test (corresponding to a χ2 value of 7.879) in order to obtainmore restrictive
statistical thresholds. Resulting results are described in Table 8.4.6. As expected, the precision of ITLD was en-
hanced bymore restrictive statistical test (precision of 0.92). It is to notice thatTEDDY’s result was not impacted
qualitatively (the same results were provided with similar time lags) nor in terms of execution time.

Table 8.4.4: Results on the FOX data set for Δ = [0, 40] (Qualitative matching) with a 0.005 statistical
significance level.

#Res Precision Recall F1-Score Accuracy Run. time (s)
TEDDY 94 0.49 0.98 0.65 0.45 739
ITLD 27 0.96 0.55 0.70 0.75 143

We also executed ITLD without considering the rule of thumbs for maximal confidence variations with a
significance level of 0.005. The rule thumbs are applied in the dependency building and statistical validity verifi-
cation to ensure the validity of the statistical test. This execution provided results as described in Table 8.4.5.

Table 8.4.5: Results on the FOX data set for Δ = [0, 40] (Qualitative matching) with a 0.005 statistical
significance level.

#Res Precision Recall F1-Score Accuracy Run. time (s)
ITLD 40 0.92 0.76 0.84 0.84 161

What can be remarked is the significant enhancement of recall on the basis of the approximate ground truth.
The obtained F1 score suggests that ITLD is capable of providing results with a good balance between precision
and recall for this dataset. We also remarked that 7 negatives that were missed by ITLD involve stream 1-2 that is
the less dense (cf. Table 8.4.1). For example, specific reduction and expansion values for dependency 1-2→ 2-2
were detected by the maximal confidence variation approach (as shown in Figure 8.4.6) without the restrictive
rule of thumbs but was not considered as a valid dependency due to its statistical assessment (that includes the
rule of thumbs).

To perform a complete and fair assessment and comparison of ITLD and TEDDY, we executed both ap-
proaches while including a pre-processing stage that computes an effective observation duration for each pair of
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(a) Confidence variations for expansions (b) Confidence variations for reductions

Figure 8.4.7: Maximal confidence variations for dependency 1-1 → 3-2 with effective observation duration
obtained for a maximal gap of 80 time units.

streams. The effective observation duration is computed in linear complexity w.r.t to a maximal inactivity gap
between intervals. It simply removes from the overall observation duration Tobs any time span between active in-
tervals exceeding amaximal gap defined by the user. In order to not influence the results of the discovery process
qualitatively, the maximal gap constraint must be greater or equal to the size of the temporal constraint Δ. This
permit to avoid obtaining streams intersection length that would not be obtained with original streams. The ob-
tained effectiveobservation duration is used to compute statistical thresholds. We emphasise that different effective
duration are computed for each pair of state streams. From a higher level of abstraction, it comes to consider a
condensed version of each pair of state streams. However, the discovery process ran with such observation du-
ration loses the meaning of the statistical test of independence. Indeed, it gets rid of the observation duration
parameter that is essential for the interpretation of statistically valid dependencies. A dependency is valid w.r.t a
given observation duration. We executed both ITLD and TEDDY on a dataset with a maximal gap constraint of
2 ∗ |Δ|, non-application of the rule of thumbs with maximal confidence variations for ITLD and a significance
level of 0.05. The obtained results are described in Table 8.4.6.

Table 8.4.6: Results on the FOX data set for Δ = [0, 40] (Qualitative matching) with a 0.05 statistical
significance level and computation of effective observation durations.

#Res Precision Recall F1-Score Accuracy Run. time (s)
TEDDY 48 0.94 0.96 0.95 0.94 817
ITLD 34 0.97 0.70 0.81 0.83 180

They show that TEDDY results quality outperform that of ITLD, especially in terms of recall. This result
suggests that TEDDY was able to reduce amounts of false positives due to low observation durations. False
negatives provided by ITLD were mainly caused by high statistical thresholds that are due to low observation
durations used in the statistical test. This means that maximal confidence variations were not statistically valid
for the computed duration. An example of such case is depicted in Figure 8.4.7.

However, these results need to be nuanced. Results provided both by TEDDY, and ITLD depends on the
arbitrary choice of the maximal gap duration for the effective observation duration computation. This can be
easily observed with results described in Table 8.4.7 obtained for a maximal duration gap of 400.
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Table 8.4.7: Results on the FOX data set for Δ = [0, 40] (Qualitative matching) with a 0.05 statistical
significance level and computation of effective observation durations.

#Res Precision Recall F1-Score Accuracy Run. time (s)
TEDDY 91 0.50 0.97 0.67 0.49 790
ITLD 43 0.92 0.82 0.88 0.88 177

Finally, we emphasise that the execution duration of both ITLD, TEDDY and PIVOTMiner are negligible
in comparison with the entire observation duration. This is a prerequisite for being able to apply the discovery
process in a streaming context. Also, ITLD outperforms TEDDY in terms of execution time for Δ = [0, 40] for
all configuration by a factor of at least 4 due to its linear complexity w.r.t the size of the temporal search space.

8.4.3 Complex Temporal Dependencies

We also used the real-world motion dataset to evaluate the ability of our approach to discover multiple state de-
pendencies. In this case, finding quantitative temporal dependencies aims to discover ”interesting” trajectories
occurring in the office area that are mainly behaved by cars. We expected to obtain conditional temporal rela-
tionships describing how cars do enter into the office area to park and how they leave it. These simple behaviours
must respect the spatial configuration (e.g. a dependency between 3-1 and 2-1 is impossible with a time lag of
1 second). In the following, we execute different configurations of CTD-Miner to evaluate its behaviour with
real-world data. We recall that the used dataset is too sparse, as discussed in the last section. We will use a χ2

value of 7.879, corresponding to a confidence level of 0.005 for reasons exposed higher. Also, CTD-Miner uses
ITLD version where the statistical rule of thumbs is not applied to validity thresholds on maximal confidence
variations.

WeexperimentedCTD-Minerwith a subsetof state streams in the realmotiondatasetS = {1-1, 1-2, 2-1, 3-1, 3-2, 4-1}.
These streams were chosen such that there is no pair of analysis areas are directly adjacent for interpretation sim-
plicity. This permits to obtain dependencies where time lag are likely to be expressed with temporal transforma-
tions (α, β)where α ̸= 0 and β ̸= 0.

We executed CTD-Miner as well as CTD-Miner-TEDDY with a temporal constraint Δ = [0, 60]. CTD-
Miner-TEDDY completed the exploration process in≈ 1180 seconds, performed 105 temporal search space ex-
plorations and 66 premise pruning. It provided single result depicted in Figure 8.4.8. What can be noticed is that
this conditional includes all state streams in the input set anduses large temporal transformation. This conditional
relationship does not correspond to any significant trajectory in the office area. Therefore, we conclude that it
does not provide any significant or interesting knowledge of temporal phenomena occurring in the environment.
We also executed CTD-Miner-TEDDYwith a statistical significance level of 0.05. Same results (in terms of tem-
poral search space explorations, premise pruning numbers and result set) were given. This experiment suggests
that the use of temporal exploration strategy of TEDDY do not permit to provide precise insight, at least with
low-density datasets efficiently.

We executed CTD-Miner with ITLD as a quantitative dependencymining algorithm, as described in the first
paragraph of this section. The exploration process completed in ≈ 150 seconds (≈ 7 times faster than CTD-

1-2 2-1 1-1 3-2 3-1 4-1
(43, 0), 0.49 (102, 0), 0.37 (139, 1), 0.6 (195, 6), 0.91 (243, 26), 1

Figure 8.4.8: Conditional temporal relationships obtained by CTD-Miner-TEDDY for a set of streams S =
{1-1, 1-2, 2-1, 3-1, 3-2, 4-1} with Δ = [0, 60]
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Miner-TEDDY), performed 68 temporal search space explorations and 1 premise pruning. The provided results
are depicted in Figure 8.4.9. First, we noticed that all the provided results correspond to observable trajectories
without describing the entire set of possible trajectories. We will come back to this point later in this section.
Second, we can notice with conditional relationships d and e that temporal transformations are not necessarily
increasing with conjunctive relationships order. This is due to two combined reasons: temporal variability and
temporal constraint update approach. As the useddataset describe temporally variable phenomena (motion), rel-
atively large transformation is obtained. For instance, in pattern (d), the relationship between 3-1 and 4-1 is tem-
porally described by (17, 8). In order to extend this conjunctive relationship, CTD-Miner update the temporal
constraint toΔ = [0+8, 60+17] for reasonswedescribed inChapter 7. As a consequence, it is possible to extend
the conjunctive relationship between 3-1 and 4-1 with a state occurring between the previous states as 3-2. This
suggests that the temporal constraint update approach can be enhanced to ensure temporal order in conditional
temporal relationships, especially with temporally variable phenomena. This can be achieved by using separate
temporal constraint for expansion and reduction values (e.g in the former example, using Δα = [0+ 17, 60+ 17]
for expansions and Δβ = [0 + 8, 60+ 8] for reductions). The other approach can be re-computing confidences
of conjunctive relationships following temporal order. Results provided by CTD-Miner with ITLD described in
Figure 8.4.9 do not represent all possible trajectories in the office area. The reasons behind this quality of results
are the low density of data and the application of the statistical rule of thumbs. By definition, the representative
stream of any temporal dependencies has a length that is less or equal to the premise stream as a stream inter-
section provides it. As state streams in the used dataset are non-dense, the stream representative of, for instance,
pairwise dependencies is even less dense. As a consequence, in the case of low-density datasets, dependencies
with numerous conjunctive relationships are more likely to not verify a condition of the statical rule of thumbs.
To verify this statement, we executed CTD-Miner without the verification of the former conditions. Results de-
scribed in Figure 8.4.10 were obtained (execution time ≈ 154 seconds, 83 temporal search space explorations,
4 premise pruning). This result set constitutes a more complete and precise description of possible trajectories
in the office area, confirming our prior observation. This experiment permits to highlight the main limitation of
our approach with low-density data (i.e. valid and non-valid durations are extremely unbalanced) that can be
summed up with the following question. Does the statistical χ2 test of independence on maximal confidence
variations and confidence values still valid without a minimal quantity of information, or validity duration (ma-
terialised by the use of the rule of thumbs)? One direction that can be explored is that of using other statistical
independence tests that are more suitable for such configurations (e.g. Fisher exact test). Nevertheless, even
with this theoretical issue, our approach permitted to obtain a satisfactory environment description that is worth
commenting. Follows several comments of this result set showing how conditional temporal relationships may
be used and interpreted.
”Surprising” results interpretation. First, we can observe that trajectories starting from area 1-2 (that is the
less dense state stream in dataset) are obtained (pattern (a)) including a temporal relationship between 1-2 and
1-1 that is extended to 3-1. This relationship do not correspond to an actual trajectory but may indicate that
moving objects that passes through 1-1may activate sometimes analysis area 1-2 (for example under the effect of
car shadows passing through 2-2). A similar observation can be stated for relationships between 2-1 and 1-1 in
pattern (e) (possible cause: the top of cars going from 4-1 to 1-1 may activate zone 2-1 cf. Figure 8.4.1).
Confidences interpretation example. Let us consider pattern (d). The first conjunction of this conditional
relationship state that half of the active length of stream 1-1 is correlated with stream 3-1. This statement is likely
to be consistent with real behaviours: an equivalent number of parking spaces are available in both in the central
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1-1

3-1

3-2

(32,
14),

0.49

(27, 20), 0.19

(a)

2-1 4-1
(25, 5), 0.47

(b)

3-2 4-1
(17, 5), 0.45

(c)

3-1 4-1 3-2
(17, 8), 0.35 (11, 8), 0.19

(d)

4-1 2-1 1-1
(25, 5), 0.38 (12, 11), 0.04

(e)

Figure 8.4.9: Conditional temporal relationships obtained by CTD-Miner for a set of streams S =
{1-1, 1-2, 2-1, 3-1, 3-2, 4-1} with Δ = [0, 60]

main building north and south. Approximatively one third of the former activity induces motion in area 3-2: the
remaining cars park in spaces near are 3-1. The proportion of remaining cars leaving the office area generates a
proportion of 0.6 of the remaining active length: when reaching 3-2 from 1-1, the probability for a car of leaving
the office area is higher than parking.
Information redundancy. In the result set described in Figure 8.4.10, we observe that temporal relationships
between 3-2 and 4-1 appears in two conditional temporal relationships (c) and (d) that are both closed-like and
can be considered as non-redundant. This result is to be interpreted as follows: all environment actors perform-
ing the sub-trajectory 3-2 to 4-1 do not necessarily come from 1-1. In a higher level of abstraction, the former
statement can be expressed as: there are two types of cars leaving the office area passing through 3-1: thosewhich
had parked in the building north and those that had parked in the building south. It is to notice that the time lag
characterisation in the pattern (c) (17, 5) is more general compared to its correspondent in the pattern (d) (6, 7)
(obtained by subtraction) suggesting a behavioural difference.
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(25, 5), 0.38 (12, 11), 0.04 (39, 26), 0.52

(e)

Figure 8.4.10: Conditional temporal relationships obtained by CTD-Miner for a set of streams S =
{1-1, 1-2, 2-1, 3-1, 3-2, 4-1} with Δ = [0, 60] without application of statistical rule of thumbs.
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9
Conclusion and future directions

9.1 Conclusion

In this thesis, we have been interested in the general problemof discovering interesting temporal knowledge from
data providedbyheterogeneous data sources. More precisely, theworkpresented in this dissertation is structured
around twomain questions: (1) how to use heterogeneous data streams in a same knowledge discovery process?
and more specifically, at what extent heterogeneous data can be unified into a single data model that maintains
temporality? (2) how to extract quantitative temporal knowledge from a set of interval-based streams?

Thefirst part of this dissertation aims to introduce andmotivate the primary approach of ourwork andprovide
an answer to the first question. Chapter 2, analyses several conceptual characteristics of temporal data, including
time domains, time primitives, data models and datasets activities separation. We argued that the characteristics
of any temporal data model are guided by their generation process and semantics of described temporal phe-
nomena. As a consequence, heterogeneity of temporal data in a data source system (e.g. sensor system) may
be caused by each of these mentioned parameters. In Chapter 3, we described the general conceptual approach
we adopted to solve the heterogeneity problem. We proposed to use data models unification based on Temporal
Abstraction in order to apply a classical temporal patternmining approach. It aims to convert heterogeneous raw
data streams into a set of interval-based streams, called state streams. A state refers to a temporal configuration of
data referring to a high-level environment state of interest for the application domain. They are defined as predi-
cates, on data from one or multiple raw data streams, that can use expert knowledge or discretization approaches
(e.g. for time series). This process can also include specific pattern retrieval approaches to include complex in-
formation into the discovery process, especially for unstructured data as videos, images or texts. For instance, we
show in the Chapter 8 that temporal knowledge (trajectories in this case) can be extracted from data gathered
from video processing, specifically motion detection that is still a challenging task. Besides making it possible to
solve heterogeneity problems (unification of time domains, time primitives, data models and formats), this ap-
proachmakes it possible to obtain a description of a given environment through states that compose a high level,
understandable, vocabulary for pattern languages of discovery processes. We also believe that this approachmay
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facilitate the discovery of multi-domain and holistic knowledge that may highlight hidden correlations between
multiple domains of knowledge.

The second part of this thesis includes its main contributions. It tackles the problem of discovering temporal
knowledge from a set of interval-based data. InChapter 5, we proposed a generalisation of the intersection-based
quantitative pairwise dependency model previously proposed by [127]. Contrary to the majority of existing ap-
proaches regardless of their activity separation format (attribute of subject centred), the authors proposed to use
the intersection of interval-based streams as interestingness measure. We argued that this approach could pro-
vide a better assessment of temporal relationships in comparison with occurrence counting (for frequent pattern
mining), especially with dense attribute centred interval-based streams where a single interval may report on
multiple temporal relationships occurrences. Also, this approach uses a Pearson χ2 independence test to assess
the interestingness of pairwise temporal dependencies, making it possible to avoid using user-given thresholds.
In this work, we proposed Complex Temporal Dependencies that aims to model temporal relationships between
multiple states. It includes conjunction and disjunction operators, similarly to a normal conjunctive form, that is
expressive enough to describe a large set of temporal relationships and complex configuration. We also showed
how this dependency model could be used to build temporal models that maintain the conditionality of tem-
poral relationships. We argued that being able to report on such conditional relationships allows a better un-
derstanding of temporal phenomena and behaviours through consistent qualitative, quantitative and confidence
information. In Chapter 6, we proposed CTD-Miner an efficient algorithm devised to discover CTDs from a
set of interval-based streams. It is a breadth-first algorithm using incremental construction of conditional Com-
plex Temporal Dependencies. In this process, a corresponding Apriori-like pruning is used to reduce the search
space considerably. We also proposed a closed-like property permitting to prune the search space based on pre-
viously discovered dependencies as well as reducing redundancy in the result set. The process of CTD-Miner
uses a pairwise dependency discovery algorithm. At the best of our knowledge, only two existent approaches
can be directly or easily adapted to mining quantitative relationships between pairwise dependencies. The first,
named TEDDY [127], uses the intersection-based pairwise dependency model based on which we proposed
CTDs. The second, PIVOTMiner [78], is a frequent pattern mining using user-given thresholds. In this disser-
tation, we proposed in Chapter 7 an alternative approach Interval Time Lag Discovery (ITLD). It is based on the
analysis of maximal confidence variations heuristic permitting to perform a linear exploration of the quadratic
search space w.r.t the temporal constraint. Maximal confidence variations approach is based on the analysis of
intersection gains/losses, and by extension on confidence measure, induced by elementary translations of the
conclusion stream. This approach permits to maintain the number of intervals in an interval-based stream that
avoids overlapping and cancellation of intervals under the effect of temporal transformation. Finally, in Chap-
ter 8, we evaluate our approach using both simulated datasets and motion data gathered from a sensor system
composed of outdoor cameras. The experiments we conducted firstly shows that ITLD provides accurate results
in comparison with existing approaches. They also suggest the advantage of using statistical assessment in that
it permits to exempt the user from disposing of prior knowledge guiding its choice of interestingness threshold.
Also, the intersection-based assessment had shown better robustness to noise that occurrence counting support.
We also reported on performances of CTD-Miner. The experiments had shown that the pruning criteria based
on the closed-like property permit to efficiently accelerate the discovery process and reduce the number of re-
dundant results.
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9.2 Future directions

In this thesis, we havemotivated the use of interval-based data as a uniquemodel for a high-level representation of
information provided by heterogeneous data streams and proposed a pattern language as well as efficient discov-
ery algorithms devised to quantitative temporal knowledge discovery. Encouraging results permit to validate the
accuracy of our approach from a pattern mining perspective suggesting future studies, directions, and problems
to be addressed. We discuss several of these in the following.

Conductingqualitativeexperimentsandusecasesusingheterogeneoussystems. Althoughweexperimented
our approach in a real-world motion dataset, one weakness of our study is the lack of experimentation on more
real-world heterogeneous data streams systems. Another experimentation scenario that is worth conducting is
that including states corresponding to multiple expertise domains providing different perspectives on the same
set of temporal facts. Inorder tomake future studies easier toperform,webegan full implementationof the frame-
work presented in Chapter 3 that includes streamingmanagement, online interval-based streams construction, a
knowledge discovery module and also an extension of the simulation tool we used in this work.

Mining non-ambiguous quantitative interval-based patterns. As we have discussed in Chapter 4, there is no
known approach permitting to discover fully non-ambiguous interval-based patterns. Existing quantitative pat-
tern languages [127] [78] use time lag information represented as a pair (α, β) where values express the time
lag between first and second interval endpoints respectively. While providing sufficient temporal information to
describe a large set of temporal insight, this representation does not permit to fully characterize temporal rela-
tionships between intervals as it can be remarked in the following example.

A+ A−

B+ B−

α β

A fully non-ambiguous pairwise relationship between A and B would require at least an additional temporal in-
formation of intervals duration (e.g between A+ and A−) and/or the gap between between a first and second
endpoint or vice-versa. This supplementary information may be also included in the Complex Temporal De-
pendency Model. One direction that would permit to achieve this is made possible by the maximal confidence
variation approach. We believe that width of characteristic forms of specific dependencies may correspond to
the duration of premises intervals. Therefore, the problem is to evaluate the consistency of the former claimwith
noisy data and temporal variability.

On-line discovery of intersection-based dependencies. In this work, we focused on processing off-line data
in order to validate our approach. One open question that remains unsolved is the ability of on-line and contin-
uous mining of intersection-based dependencies. This task can be handy with huge data sources systems with
a big amount of streams providing data continuously that cannot be entirely stored in memory. This seems to
be achievable with pairwise dependencies using a continuous update of the maximal confidence variation values
and statistical validity thresholds. One approach is that of updating in Θ(|Δ|) these values for each incoming
interval. However, the generalization to online Complex Temporal Dependencies mining seems to be a more
difficult task to achieve and worth being investigated.
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Concept drift detection. CTD-Miner permits to discover conditional temporal relationships that permit to
build a temporal model of a given environment. Thismodel can be used to perform forecasting of events consist-
ing of a set of probabilities of occurrence of future states. One interesting task is to be able to assess the validity of
this temporal model over time and detect partial or total behavioural changes. This is a challenging task since it
requires to assess whether unsuccessful predictions are due to ordinary noise, outliers or real progressive/sudden
change in environment activity.

Temporal knowledge storage and query. In a context where storage is not feasible due to vast amounts of raw
data streams and on-line knowledge discovery is performed, one interesting feature is the storage and query of
insights discovered over time. For instance, let us consider that amonitoring system stores a temporalmodelwith
a granularity of one hour in a knowledge database. One query that could be interesting to execute is: What is the
temporal model of environment activity for the observation duration between 8:00 am and 8:00 pm?. The underlying
challenge to address this query is to be able tomerge several conditional temporalmodels into a unique onewith a
certain level of accuracy. With pairwise dependencies, webelieve that themaximal confidence variation approach
may permit to solve this problem.
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complexes. Pour ce modèle de dépendances nous proposons des algorithmes efficaces de découverte : CTD-Miner et ITLD - 

Interval Time Lag Discovery. Finalement, nous évaluons les performances de notre proposition ainsi que la qualité des résultats] 

obtenus à travers des données issues de simulations ainsi que des données réelles collectées à partir de caméras et d'analyse 

idéo. 
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