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RÉSUMÉ

Le problème de satisfaisabilité booléenne consiste à trouver une solution à une formule

propositionnelle. Ce problème NP-complet peut modéliser une grande variété de prob-

lèmes industriels et académiques couvrant la planification, la résolution des dépendances,

la vérification formelle, l’optimisation logique, la cryptographie, etc. Les progrès récents

ont permis de mettre au point des solveurs SAT très efficaces, capables de traiter des mil-

lions de variables et des millions de contraintes. Les compétitions internationales SAT met-

tant en vedette des modèles industriels mettent au défi et stimulent le développement de

solveurs SAT de plus en plus efficaces.

Dans la pratique, de nombreux systèmes présentent des symétries ce qui permet de raison-

ner sur une abstraction quotient de l’espace de recherche, basée sur des classes d’équivalence

par rapport aux symétries, et réduire exponentiellement l’espace de recherche dans les cas

favorables. Dans cette thèse, nous explorons comment exploiter les réductions de symétrie

pour améliorer les performances des solveurs SAT.

Les approches existantes pour exploiter les symétries dans la résolution SAT, consistent à

calculer les symétries du problème puis à générer des "prédicats de rupture de symétrie sta-

tique" qui s’ajoutent au problème, obligeant le solveur à adopter un seul représentant pour

chaque classe d’équivalence des solutions. Le problème avec cette approche est que le

nombre de contraintes supplémentaires peut être plus important que le problème original

et peut surcharger le solveur. La première contribution de cette thèse appelée CDCL[sym]

est un nouvel algorithme léger et dynamique, qui n’introduit ces contraintes supplémen-

taires de rupture de symétrie que de manière opportuniste au fur et à mesure que le solveur

progresse.

Une deuxième approche pour exploiter les symétries consiste en ce qu’on appelle la rup-

ture de symétrie dynamique qui s’intéresse à la propagation symétrique des deductions du

solveur lorsque cela est possible. Cette approche résout certains modèles que la rupture de

symétrie statique ne peut résoudre, et vice-versa, mais à notre connaissance, ces approches
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n’avaient jamais été combinées avec succès. Dans notre deuxième contribution de cette

thèse, nous combinons cette stratégie avec la précédente. permettant pour la première fois

la propagation à la volée de déductions symétriques tout en continuant à bénéficier des

avantages de CDCL[sym].

Tous les algorithmes présentés dans cette thèse ont été mis en implémentés et largement

testés à l’aide de grands benchmarks issus de compétitions SAT. Le solveur SAT sensible à

la symétrie développé au cours de cette thèse s’avère compétitif par rapport à l’état de l’art

et, dans de nombreux cas symétriques, est capable de surpasser les autres solveurs.



ABSTRACT

Boolean satisfiability (SAT) solves the problem of finding a solution to a propositional Boolean

formula. This NP-complete problem can model a wide variety of industrial and academic

problems covering planning, dependency resolution, formal verification, logic optimiza-

tion, cryptography. . . Recent advances have led to very efficient SAT solvers, able to deal

with millions of variables and constraints. International SAT competitions featuring indus-

trial models challenge and drive the development of ever more efficient SAT solvers.

Many systems in practice exhibit symmetries, that can allow to reason on a quotient ab-

straction of the search space, based on equivalence classes with respect to the symmetries,

that can be exponentially smaller than the full search space in favorable cases. In this the-

sis, we explore how to exploit symmetry reductions to improve the performance of SAT

solvers.

Existing approaches to exploit symmetries in SAT solving, consist in computing the sym-

metries of the problem then generating so-called "static symmetry breaking predicates"

that are added to the problem, forcing the solver to adopt only one representative for each

equivalence class of solutions. The problem with this approach is that the number of addi-

tional constraints can be larger than the original system, and may overload the solver. The

first contribution of this thesis called CDCL[sym] is a novel lightweight and dynamic algo-

rithm, that only introduces these additional symmetry breaking constraints opportunisti-

cally as the solver progresses.

A second approach to exploit symmetries consists in so-called dynamic symmetry breaking

that is concerned with symmetric propagation of the deductions of the solver when pos-

sible. This approach solves some models that static symmetry breaking cannot solve, and

vice-versa, but to our knowledge these approaches had never been successfully combined.

In our second contribution of this thesis, we combine this strategy with the previous ap-

proach, enabling for the first time on the fly propagation of symmetric deductions while

still gaining the benefits of CDCL[sym].
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All the algorithms presented in this thesis have been implemented and extensively tested

using large benchmarks taken from SAT competitions. The symmetry aware SAT solver

developed during this thesis is shown to be competitive with the state of the art and in

many symmetric cases is able to outperform all other solvers.
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1
INTRODUCTION

The interest of using computers for logic deduction and reasoning can be traced in the

nineteenth century. In 1869, William Stanley Jevons designed and built the first machine

doing logic inference. With the progress of computers, logic is used in different domains

such as design automation process (logic optimization, test pattern generation, formal ver-

ification, functional simulation, etc.). Nowadays, one of the methods used in Boolean rea-

soning is the automatic satisfiability (SAT).

Given a propositional formula (generally the constraints of an encoded problem), SAT solv-

ing consists in deciding whether the formula is satisfiable (i.e., all constraints can be sat-

isfied) or unsatisfiable (i.e., there is no way to satisfy all constraints at the same time).

This computation is made by a SAT solver that answers SAT when the formula is satisfiable

and UNSAT otherwise. SAT is the first problem that has been proven to be NP-complete in

1971 [13]. Every NP problem can be solved by encoding it into a SAT one. Solving this prob-

lem in polynomial time would solve the P versus NP question, one of the seven millennium

prize problems.

Despite this complexity, SAT solvers can model a wide variety of industrial and academic

problems covering planning [33], bounded model checking (BMC) [9], Haplotype infer-

ence [42], cryptography [44]. . . In recent work, researchers have succeeded in proving, us-

ing a SAT solver, a maximum limit for the problem of coloring Pythagorean triples [27], with

a proof weighing 200 TB. The success of SAT comes from the introduction of sophisticated

heuristics and optimization of the solving algorithm called Conflict Driven Clause Learning

1



2 CHAPTER 1. INTRODUCTION

(CDCL) algorithm [43]. It is based on the first non memory intensive algorithm DPLL [16]

named by its authors Davis, Putnam, Logemann, and Loveland.

Nevertheless, some problems have a huge search space and some of their instances can-

not be handled. An example of such a problem can be the vehicle routing problem (VRP).

It concerns the service of a delivery company, in which given a fleet of vehicles based in

a depot, they must make rounds between several customers who have requested each a

certain amount of goods. The tour of the vehicle refers to all clients being visited by it.

The goal of this problem is to find the tour that minimizes the delivery cost with different

criteria monetary, distance, time, . . . Finding the optimal solution for the VRP problem is

NP-Hard [56]. When we look in more detail at an instance of this problem, renaming the

set of identical vehicles will give us exactly the same problem, this is called a symmetry.

More precisely, a symmetry is a transformation that leaves an object (or some aspect of the

object) unchanged. Symmetries are typically defined as a syntactical property of a problem

when its presence is inherent to the encoding of the problem and so a permutation of vari-

ables preserves the original specification. In the case where symmetries are independent

of any particular representation of the problem, we speak of semantic symmetry.

The presence of symmetries in a problem leads the search algorithm to fruitlessly explore

symmetric search spaces and greatly hinders its performance. The approach that avoids

the solver to visit these symmetrical search spaces is called Symmetry breaking. But to ex-

ploit symmetries, it is still necessary to find them. To achieve this in SAT, the detection of

syntactical symmetry is done by transforming the specification in a colored graph and then

apply a graph automorphism tool.

When symmetries are computed, the most common approach to exploit them is to use a

static symmetry breaking technique. It takes the symmetric problem as input and produces

a satisfiability equivalent formula by eliminating symmetries. This is done by augment-

ing the problem with constraints that force the solver to not explore the symmetric search

spaces. This approach is an easy way to integrate static symmetry breaking, no modifica-

tion of the solver is necessary. In addition, this approach works well on many symmetric

applications. However, some highly symmetric instances cannot be solved using this tech-

nique. Indeed the number of symmetry breaking constraints can be exponential in relation

to the size of the problem and their presence slows down the solver instead of improving

its performance.

There is also another approach to handle symmetry called dynamic symmetry breaking.

Here, the management of symmetries is done during the search and different possibilities

exist. First, the behavior of the solver is analyzed to avoid it to visit same symmetric part
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of the search space. It thus accelerates the resolution of the problem. Second, under some

conditions some symmetrical facts can be deduced through symmetry from the state of

the solver. This has the effect of accelerating the tree traversal of the solver and reduce the

solving time.

This thesis addresses the challenge of optimizing the solving of a SAT problem in presence

of symmetries. In detail, my research exploits symmetry breaking during solving time.

It provides two major contributions. The first one uses the strengths of static symmetry

breaking approach and applies it dynamically to avoid the drawbacks of the approach.

It adds an opportunistic symmetry controller that avoids visiting symmetric part of the

search spaces. Benchmarks show that this makes it possible to solve very difficult symmet-

ric problems. The second contribution uses the previous one and combines it with state-

of-the-art dynamic symmetry breaking approach and so takes the best of two worlds. This

combination leads to important theoretical step for the usage of partial symmetry breaking

and local symmetries.

The remaining of this document is organized in 6 chapters. Chapter 2 describes the state-

of-the-art for the Boolean satisfiability problem, Chapter 3 focuses on the symmetries present

in SAT. Chapter 4 focuses on the first contribution that dynamically uses the symmetries.

Chapter 5 describes our second proposal and Chapter 6 concludes the thesis. More pre-

cisely:

The Boolean Satisfiability Problem The goal of Chapter 2 is to better understand what is

SAT. It describes in detail the basics about propositional logic that will be used in the rest

of the manuscript. Satisfiability is a hard problem but some particular forms that are easier

to solve are presented such as 2-SAT, Horn SAT and Xor-SAT. This chapter also describes

the original solving algorithm called DPLL, and the most commonly used today called the

Conflict Driven Clause Learning algorithm (CDCL). This last algorithm can handle sophis-

ticated problems, thanks to different heuristics, an overview of which will be presented.

Finally, with the presence of multicore machines, an overview of the state-of-the-art paral-

lel SAT solving is presented.

Symmetries and SAT The goal of Chapter 3 is to better understand what is a symmetry

and its usage in the SAT context. For this purpose, we first present group theory and the

notation used in the rest of the manuscript. This chapter also presents the process to find

the (syntactic) symmetries of a SAT problem. This computation involves the creation of a

graph from the problem and the computation of an automorphism tool. After obtaining the

symmetries, the second part presents how to exploit them for reducing the search space of
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the solver. The two major approaches are the static symmetry breaking approach and the

dynamic symmetry breaking approach. Static symmetry breaking is so far the most popular

approach to take advantage of symmetries. It relies on a symmetry preprocessor which

augments the initial problem with constraints that force the solver to consider only a few

configurations among the many symmetric ones. Dynamic symmetry breaking exploits the

symmetries during the computation of the SAT solver to accelerate the tree traversal of the

SAT solver using symmetrical facts or to avoid symmetric configurations like in the static

approach.

Between Static and Dynamic Chapter 4 describes our efficient dynamic symmetry break-

ing approach. The first part explains our algorithm, a new way to handle symmetries that

avoid the main problem of the current static approaches. Our proposal has been imple-

mented in the state-of-the-art SAT solver MiniSAT [22]. The second part presents the

extensive experiments on the benchmarks of last six SAT competitions, which show that

our approach is competitive with the best state-of-the-art static symmetry breaking solu-

tions. The last part presents different heuristics that can improve the performance of our

algorithm.

Composing dynamic symmetry handling Chapter 5 describes the theoretical and prac-

tical aspects of combining two existing symmetry breaking approaches with the introduc-

tion of local symmetries. Extensive experiments show that the hybrid approach is better

than each approach taken individually. The local symmetries allow to combine another

symmetry breaking approach. Finally, Chapter 6 concludes this manuscript and discusses

different directions we have identified for future works.
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THE BOOLEAN SATISFIABILITY PROBLEM
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2.1 SAT basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 An NP-complete problem . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Some easy to solve forms . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Some related problems . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Solving a SAT problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Conflict Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Preprocessing / Inprocessing . . . . . . . . . . . . . . . . . . . . . . 19

2.2.5 Optimizing SAT solving . . . . . . . . . . . . . . . . . . . . . . . . . 20

In this thesis, our goal is to exploit the symmetry properties of SAT problems. Before we get

to the heart of the matter, we first introduce the Boolean satisfiability (SAT) problem.
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8 CHAPTER 2. THE BOOLEAN SATISFIABILITY PROBLEM

2.1 SAT basics

The goal of SAT is to determine whether a propositional formula is satisfiable (i.e. all con-

straints can be satisfied) or unsatisfiable (i.e. there is no way to satisfy all constraints at

the same time). The formula is constituted of Boolean or propositional variables, i.e. each

variable has two possible values: true or false (noted respectively > or ⊥). We call literal

a propositional variable or its negation. For a given variable x, the positive literal is rep-

resented by x and the negative one by ¬x. Given a formula ϕ, we denote Vϕ (respectively

Lϕ) the set of variables (respectively literals) used in the formula (the index in Vϕ and Lϕ is

usually omitted when clear from context). To build complex formulas, it is sufficient to use,

¬,∨ and ∧ which are respectively the negation, disjunction and conjunction operators. The

remaining operators like, ⇒,⇔ and ⊕, · · · can be expressed using combinations of the basic

ones. For example, a ⇒ b, can be expressed as ¬a ∨b. Every binary operator adds a pair of

parentheses to define explicitly the semantic of the formula. In the absence of parentheses,

the following priority order applies (from the highest to the lowest priority): negation (¬),

conjunction (∧), disjunction (∨). An assignment, noted α, is defined as the function that

assigns a value to each variable of ϕ:

α : V 7→ {>,⊥}

As usual, α is said total, or complete, when all elements of V have an image by α, otherwise

it is partial. By abuse of notation, an assignment is often represented by the set of its true

literals. For example,α= {¬x1, x3} means that x1 is set to false and x3 is set to true. The set of

all (possibly partial) assignments of V is noted Ass(V ). A truth table gives an evaluation of

all possible assignments for a given formula. Table 2.1 shows the evaluation of the negation

(¬), the conjunction (∧), and the disjunction (∨) operators. For convenience, the true value

(>) is also represented by 1, and the false value (⊥) is represented by 0. When a formula

is always true, independently from the assignment, it is called a tautology: x ∨¬x is an

example of tautology.

x y ¬x x ∨ y x ∧ y

0 0 1 0 0

0 1 1 1 0

1 0 0 1 0

1 1 0 1 1

Table 2.1: Truth table of basic operators
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A formula is said to be satisfiable (SAT) if there is at least one assignment that satisfies it;

otherwise the formula is unsatisfiable (UNSAT). In order to compare different formulas, the

concepts of logical equivalence and logical consequence are defined in Definition 2.1 and

Definition 2.2 respectively.

Definition 2.1: Logical equivalence

Two formulas ϕ and ψ are equivalent iff every assignment α that satisfies formula ϕ

also satisfies the formula ψ and vice versa. It is denoted by ϕ≡ψ.

Definition 2.2: Logical consequence

A formula ψ is a logical consequence of a formula ϕ if each assignment that satisfies ϕ

also satisfies ψ and is denoted by ϕ |=ψ.

2.1.1 Normal forms

In Boolean logic, there are some particular forms of formulas, called normal forms. To

introduce some of them, we first need to present the concepts of cube and clause.

Definition 2.3: Cube

A cube γ is a finite conjunction of literals represented equivalently by:

γ=
k∧

i=1
li

Definition 2.4: Clause

A clause ω is a finite disjunction of literals represented equivalently by:

ω=
k∨

i=1
li , or by the set of its literals ω= {li }i∈�1,k�

With respect to its size, a clause is said to be unary, binary, ternary, n-ary if it contains

respectively one, two, three, or n literals. Clauses have the following property that can be
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exploited to simplify the formula. When a clause ω1 is a subset of another clause ω2, noted

ω1 ⊂ω2, we say that ω1 subsumes ω2. And any assignment that satisfies ω1 will also satisfy

ω2. So, ω2 is redundant with respect to ω1 and can be removed from the formula.

Definition 2.5: Conjunctive Normal Form

The Conjunctive Normal Form (CNF) of a formula is a finite conjunction of clauses. It

can also be represented by

ϕ=
k∧

i=1
ωi (or by the set of its clauses ϕ= {ωi }i∈�1,k�)

Definition 2.6: Disjunctive normal form

The Disjunctive normal form (DNF) of a formula is finite disjunction of cubes. I can

be also represented by

ϕ=
k∨

i=1
γi

The following table is a summary of the laws that allow to transform any formula to a nor-

mal form.

Associativity laws
(x ∨ y)∨ z ≡ x ∨ (y ∨ z)
(x ∧ y)∧ z ≡ x ∧ (y ∧ z)

Commutativity laws
x ∨ y ≡ y ∨x
x ∧ y ≡ y ∧x

Identity laws
x ∨⊥≡ x
x ∧>≡ x

Domination laws
x ∨>≡>
x ∧⊥≡⊥

Idempotent laws
x ∨x ≡ x
x ∧x ≡ x

Distributive laws
x ∨ (y ∧ z) ≡ (x ∨ y)∧ (x ∨ z)
x ∧ (y ∨ z) ≡ (x ∧ y)∨ (x ∧ z)

Negation laws
x ∨¬x ≡>
x ∧¬x ≡⊥

double negation law ¬(¬x) ≡ x

De Morgan’s laws
¬x ∨¬y ≡¬(x ∧ y)
¬x ∧¬y ≡¬(x ∨ y)

Table 2.2: Set of laws of operators

Every formula can be transformed into a logically equivalent normal form. The Conjunc-

tive normal form is the input form of state-of-the-art SAT solvers. Any propositional for-

mula can be transformed in CNF form with polynomial time [51].
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2.1.2 An NP-complete problem

The SAT problem is the first NP-complete problem proven by Stephen Cook in 1971 [13].

NP-completeness means that a SAT problem can be solved with a non-deterministic Tur-

ing machine in polynomial time (NP) and is also NP-hard. A problem is said to be NP-hard

(non-deterministic polynomial-time hard) if any NP problem can be reduced to this prob-

lem in polynomial time. If someone finds an algorithm that solves SAT in polynomial time,

this answer one of the most important unsolved problems in theoretical computer science:

the P versus NP problem, that is also one of the seven millennium prize problems [11].

2.1.3 Some easy to solve forms

Some particular instances of the SAT problem can be solved in polynomial time.

2-SAT [4]. In this particular form, the given CNF formula contains only binary clauses.

Each clause is transformed into an implication and the conjunction of these form a directed

graph called binary implication graph. For example, the clause x ∨ y will be transformed

into ¬x ⇒ y and ¬y ⇒ x. Then, a strong connected component (SCC) is computed to de-

termine the satisfiability of the formula. If the same variable is present in both its positive

and negative values in the same SCC then the formula is declared unsatisfiable, otherwise a

solution can be deduced and so the problem is satisfiable. This algorithm can be computed

in linear time complexity.

Horn SAT [20]. In this particular form, the given CNF formula contains only Horn clauses.

There are three forms of Horn clauses:

• strict Horn clause that contains only one positive literal and at least one negative

literal

• positive Horn clause that contains only one positive literal and no negative literals

• negative Horn clause that contains only negative literals.

To solve this particular form of formula, it suffices to apply Boolean constraint propagation

(BCP) (or unit propagation) explained in section 2.2.1.2 until a fix point is reached. Roughly

speaking, it satisfies all unit clauses in cascade. At the end of the procedure, either an empty

clause is deduced and the problem is declared UNSAT or the fix point is reached and the

formula is declared SAT. Like 2-SAT, this algorithm can also be computed in linear time

complexity.
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XOR SAT [48]. In this particular form, each clause contains the xor (⊕) operator rather

than or (∨). This problem can be seen as a system of linear equations. Gaussian elimination

is an algorithm that allows to solve this kind of problem in polynomial time, more exactly

in O(n3).

2.1.4 Some related problems

Different kinds of problems are related to SAT. One of them is sharp-SAT (#SAT) [57]. Its

purpose is to count the number of satisfiable assignments in a formula. Another related

problem is the maximum satisfiability problem (MAX-SAT) [10]. In this case, the problem is

to find the maximum subset of clauses that can be satisfied for a formula. Different variants

of this problem exist. For example, some constraints must be satisfied (hard clauses) and

MAX-SAT is applied on the remaining clauses called soft clauses. The last related problem is

quantified Boolean formula (QBF) where the quantifiers ∃ and ∀ are present in the formula.

For example, ∀x ∃y ∃z (x∨y)∧z. This particular form is a generalization of the SAT problem

with PSPACE complexity [24].

2.2 Solving a SAT problem

2.2.1 Algorithm

Two kinds of algorithms exist to solve satisfiability problems. First, incomplete algorithms [32]

which do not provide any guarantee that they will eventually report either a satisfiable as-

signment or declare the formula unsatisfiable. This kind of algorithm is out of scope of this

thesis. Second, the complete algorithms, which provide a guarantee that if an assignment

exists, it will be found or declare that the formula is unsatisfiable. This section describes

different complete algorithms to solve propositional formulas.

2.2.1.1 A naive algorithm

A naive approach to solve a SAT problem is to try all possible assignments. For a proposi-

tional formula with n variables, we have to verify, in the worse case, 2n assignments. The

algorithm first tries an assignment, for example all literals are set to false and then if the

formula is not satisfiable, it tries other assignments. This algorithm is finished when ei-

ther a satisfiable assignment is found and so the formula is declared SAT or no assignment

is satisfying the formula and so the formula is declared UNSAT. Figure 2.1 illustrates the

search tree for a given problem with six variables. The formula presented in the figure has



2.2. SOLVING A SAT PROBLEM 13

6 clauses, with 2 ternary clauses and 4 binary clauses. This formula is SAT, the assignment

α11 = {¬x1,¬x2, x3,¬x4, x5,¬x6} is a solution of the problem. A naive algorithm might check

10 assignments before finding the solution. In the general case, due to the number of vari-

ables in problems, this algorithm will be intractable.

x1

x2

x3

...

x6

α1 α2

x6

...

x3

...
...

x2

x3

...
...

x3

...
...

x6 x6

α63 α64

· · ·

α11· · · · · ·

0

0

0

0

0

0 1

1

1

1

1

1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

ω1 = {x1, x2, x3}

ω2 = {x4, x5, x6}

ω3 = {¬x1,¬x5}

ω4 = {¬x2,¬x4}

ω5 = {¬x3,¬x4}

ω6 = {¬x3,¬x6}

Figure 2.1: All possible assignments for a problem with 6 variables

2.2.1.2 Davis Putnam Logemann Loveland algorithm (DPLL)

One of the first, non-memory-intensive, algorithm developed to solve SAT problems is the

Davis Putnam Logemann Loveland algorithm (DPLL) [16]. It explores a binary tree using

depth first search, as shown in Algorithm 1. The construction of the tree relies on the unit

propagation (line 3) presented in detail in Algorithm 2 and on a decision variable that is

chosen on line 8. Both values of this variable are checked, the true value on line 9 and

the false value on line 11. When a leaf of the tree is inconsistent (i.e. a variable needs

to be set to true and false at the same time), called a conflict (line 5), the opposite value

of the decision is explored. Recursively, when both values of a variable lead to a conflict,

the solver backtracks one level (chronological backtracking), i.e. tries the opposite value of

the previous decision. When the top of the tree is reached and a conflict occurs, it means

that the formula cannot be satisfied and the solver reports UNSAT (line 13). However, if the

formula is empty in any branch, this means that the current assignment satisfies the whole

formula and the algorithm reports it on line 10 or 12.
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1 function DPLL(ϕ: CNF formula, α assignment)
2 returns an assignment if ϕ is SATand UNSAT otherwise
3 ϕ,α← unitPropagation(ϕ,α);
4 if {} ∈ϕ then
5 return UNSAT; // Conflict

6 if ϕ= {} then
7 return α ; // ϕ is SAT

8 x ← assignDecisionLiteral();
9 if α← DPLL(ϕ∪ {x},α) then

10 return α

11 if α← DPLL(ϕ∪ {¬x},α) then
12 return α

13 return UNSAT; // ϕ is UNSAT

Algorithm 1: The DPLL algorithm.

An important function in the DPLL algorithm is the Boolean constraint propagation (BCP)

also called unit propagation (Algorithm 2) This function set the values of unit clauses in

order to satisfy them. It is applied until a fix point is reached: either there are no more

unit clauses in the formula or an inconsistency is found. The second case means that the

current assignment cannot satisfy the formula and the solver needs to backtrack to explore

another branch.

1 function unitPropagation(ϕ: CNF formula, α assignment)
2 returns CNF formula and assignment α
3 while {l } ∈ϕ and {} ∉ϕ do

// Remove all clauses containing l, all literals ¬l

4 ϕ←ϕ | l

5 α←α∪ {l }

6 return ϕ,α

Algorithm 2: Unit propagation

When DPLL is executed on the formula of Figure 2.1, after making decisions on literals

¬x1 and ¬x2, unit propagation detects that x3 must be assigned to true. This propagation

prevents to explore non-interesting assignments. Actually, when x3 is set to false, the clause

ω1 cannot be satisfied and as it remains 3 variables and so 23 possible assignments (fromα1

to α8). These assignments will never be checked. The performance of the DPLL algorithm

is highly impacted by the choice of decision variable. assignDecisionLiteral is the

procedure responsible of choosing it. Its objective is to find a literal that will generate a
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maximum of unit propagations. Intuitively, decision literals can be viewed as “guesses”

and propagated literals can be viewed as “deductions”. Finding the optimal variable that

will generate the maximum number of propagation is NP-Hard [10]. Different heuristics

exists to choose the decision variable, some of them are presented in Section 2.2.3.

2.2.1.3 Conflict Driven Clause Learning (CDCL) algorithm

The principal weakness of the DPLL algorithm is to discover the same inconsistencies sev-

eral times (principally due to chronological backtracking and absence of learning), leading

to unnecessary CPU usage. Conflict Driven Clause Learning (CDCL) [43] is a sound and

complete algorithm that overcomes this weakness. Algorithm 3 gives an overview of CDCL,

like DPLL, it walks on a binary search tree. Initially, the assignment is empty and the de-

cision level that indicates the depth of the search tree, noted by dl, is set to zero. The al-

gorithm first applies unit propagation to the formula ϕ for the assignment α (line 6). An

inconsistency or a conflict at level zero indicates that the formula is unsatisfiable, and the

algorithm reports it (from line 7 to line 9). When the conflict is occurring at a higher level,

its reason is analyzed and a clause called conflict clause is deduced (line 10). The work done

in this procedure will be explained thereafter. This clause is learnt (line 12) (added to the

formula). This clause is redundant with respect to the current formula, and so it does not

change the satisfiability of ϕ. It also avoids encountering a conflict with the same causes

in the future. The analysis is completed by the computation of a backjumps level, the as-

signment and decision level are updated (line 11). As the level can be much lower than

the current level, this is called non-chronological backtracking or backjump. Finally, if no

conflict appears, the algorithm chooses a new decision literal (lines 14 and 15). The above

steps are repeated until the satisfiability status of the formula is determined.
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1 function CDCL(ϕ: CNF formula)
2 returns > if ϕ is SATand ⊥ otherwise
3 dl ← 0 ; // Current decision level
4 α←;;
5 while not all variables are assigned do
6 (ϕ,α) ← unitPropagation(ϕ|α,α);
7 if {} ∈ϕ then // A conflict occurs
8 if dl = 0 then
9 return ⊥ ; // ϕ is UNSAT

10 ω← analyzeConflict();
11 (dl ,α) ← backjumpAndRestartPolicies();
12 ϕ←ϕ∪ {ω} ;

13 else
14 α←α∪ assignDecisionLiteral();
15 dl ← dl +1;

16 return >; // ϕ is SAT

Algorithm 3: The CDCL algorithm.

2.2.2 Conflict Analysis

A conflict is an inconsistency discovered by the solver, a situation that requires for a variable

to be set simultaneously to the true and false. Figure 2.2 shows an example that leads to a

conflict. First, the solver chooses ¬x1 as a decision (noted D (¬x1) in the figure) then, ¬x6

and, then ¬x5. This last one propagates x4 (marked with P (x4) in the figure), which in turn

propagates x2 and x3. To satisfy ω1, x3 needs to be set to >, and to satisfy ω5, it needs to be

set to ⊥. As a variable cannot have both values, a conflict appears (noted C in the figure).

ω1 = {x1, x2, x3}
ω2 = {x4, x5, x6}
ω3 = {¬x1,¬x5}
ω4 = {¬x2,¬x4}
ω5 = {¬x3,¬x4}
ω6 = {¬x3,¬x6}

α = D (¬x1)

ω1 = {x1, x2, x3}
ω2 = {x4, x5, x6}
ω3 = {¬x1,¬x5}
ω4 = {¬x2,¬x4}
ω5 = {¬x3,¬x4}
ω6 = {¬x3,¬x6}

D (¬x6)

ω1 = {x1, x2, x3}
ω2 = {x4, x5, x6}
ω3 = {¬x1,¬x5}
ω4 = {¬x2,¬x4}
ω5 = {¬x3,¬x4}
ω6 = {¬x3,¬x6}

D (¬x5)

ω1 = {x1, x2, x3}
ω2 = {x4, x5, x6}
ω3 = {¬x1,¬x5}
ω4 = {¬x2,¬x4}
ω5 = {¬x3,¬x4}
ω6 = {¬x3,¬x6}

P (x4)

ω1 = {x1, x2, x3}
ω2 = {x4, x5, x6}
ω3 = {¬x1,¬x5}
ω4 = {¬x2,¬x4}
ω5 = {¬x3,¬x4}
ω6 = {¬x3,¬x6}

P (¬x2) C

Figure 2.2: Decisions/Propagations that leads to a conflict
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Applied another time, this serie of decisions would provoke the same propagation and lead

to the same conflict. To escape this situation, one needs to analyze the situation and feed

the algorithm with the information that prevents it to do the same mistake again. This is

done by use of the so-called implication graph. It represents the current state of the solver

and records all dependencies between variables. It is updated when a variable is assigned

(on decision/propagation), or unassigned (on backjumping operation). The implication

graph is a directed acyclic graph (DAG) in which a vertex represents an assigned variable

labeled by l@dl(l) where l represents the assigned literal and dl(l) represents the decision

level of the literal l . Root vertices that have no incoming edges represent decision literals.

The remaining vertices represent propagations. Each incoming arc, labeled by a clause,

represents the reason of this propagation. This clause must be assertive (i.e. all literals are

false except one that is not yet assigned). Figure 2.3 shows the implication graph of the

previous example (Figure 2.2).

¬x1@1

¬x6@2

¬x5@3

x4@3

¬x3@3

¬x2@3

x3@3

Reason Side Conflict Side

ω2

ω2 ω5

ω4

ω1

ω1

Cut 1

Decision

Propagation

→ Implication

↔ Conflict

UIP

– Cut

Figure 2.3: Implication graph

The analyzeConflict procedure analyzes this graph to find the reason of the conflict.

To do that, a search of a unique implication point (UIP) is performed. A UIP of the last

decision level of the implication graph is a variable which lies on every path from the deci-

sion to the conflict. Note that there might be many UIPs for a given decision level. In such

a case, UIPs are ordered according to the distance with the contradiction. The First UIP
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(FUIP) is the closest to the conflict. It is well known that the FUIP provides the smallest set

of assignment that is responsible for the contradiction [58]. A UIP divides the implication

graph in two sides with a cut; the reason side contains decision variables that are responsi-

ble of the contradiction and the conflict side that contains the conflict. A UIP is always in

the reason side. Figure 2.3 depicts the cuts in the implication graph. Once the reason side

of a conflict is established, a conflict-driven clause (or simply conflict clause) is produced.

To build this clause, it suffices to negate the literals that have an ongoing arc to the cut that

contains the UIP. In Figure 2.3, the produced learned clause will be ωl = {x1,¬x4}. Since

the information of this clause is redundant regarding the original formula, it can be added

without any restriction. The conflict clause can be simplified using the implication graph

to reduce its size (by detecting redundancies [54]). All learned clauses are stored in a clause

database.

The backjumpAndRestartPolicies procedure is executed after producing the con-

flict clause. All variables from the highest decision level to the current decision level are

unassigned and so the current decision level and assignment are updated accordingly. If

a conflict implies only one level, the decision variable must be assigned to the opposite

value at level 0. This means that this literal must be true without any decision. Adding the

conflict clause prunes the search space that obviously contains no solution. This is the key

point of the CDCL algorithm and the big difference with the DPLL algorithm. In our exam-

ple on Figure 2.3, the target decision level is 1 because the highest decision level different

that the current one constructed in the conflict clause is 1. After backtracking, the conflict

clause will be assertive and the FUIP is the only variable that has not a value and so will

be propagated in the next step of the algorithm. In our example, at the decision level 1 the

literal x1 is set to the false value and the assertive conflict clause ωl = {x1,¬x4} propagates

x4 to the false value .

2.2.3 Heuristics

Decision heuristics. The choice of the decision variable has a huge impact on the overall

solving time. It influences the number of propagations and so the depth of the search tree.

The Variable State Independent Decaying Sum (VSIDS) [49] measure is one of the most

famous decision heuristics and is used nowadays in almost all solvers; each variable has

an activity and is increased by a multiplicative factor when it participates to the resolution

of a conflict. Decision heuristics choose the unassigned variable with the highest activity.

Learning rate based branching (LRB [39]) is the latest decision heuristic. It is a general-

ization of VSIDS and its goal is to optimize the learning rate (LR), defined as the ability to
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generate learned clauses. The LRB of a variable is the weighted average (computed with

exponential recency weighted average (ERWA)) value taken by its LR over the time. Unas-

signed variable with the highest LRB is chosen as a decision.

Restarts heuristics. Another important mechanism is restart. Basically, the solver aban-

dons its current assignment and restarts from the top of the tree, while maintaining some

information, like learned clauses, scores of variables, etc. The restart prevents the solver to

get stuck in the same part of the search space (phenomenon known as heavy tailing [25]).

Detecting this phenomenon has been widely treated in the literature [5,7]. These strategies

are based on counting the number of conflicts or on the monitoring the current search’s

depth. Theoretically, a solver with restarts has a better result [28] and is today used in al-

most all state-of-the-art solvers.

Cleaning clause database. Storing all learned clauses will end up with memory exhaus-

tion and the cost of unit propagation will increase. So, the solver needs to develop a policy

to eliminate some of them. These clauses are redundant with regards to the initial problem,

removing them will not affect the satisfiability of the formula. In the literature, different cri-

teria exist. The size of the clause is one of them and is very often used by solvers. A small

clause has a better chance to participate to the unit propagation and so be useful for the

solving. As a consequence, large clauses are removed.

Clause activity is another criterion, a clause augments its activity when it participates to

conflict analysis. Clauses with a lower activity that are not implied in the resolution of con-

flicts are removed. The last, often, used criterion is based on the Literal Block Distance

(LBD) measure. It is a measure that computes the quality of a clause. It is based on the

number of decision levels present in the clause. The more a clause has a high value of LBD

and the weaker its quality is, and so it will be deleted from the clause database.

In current state-of-the-art solvers, multiple criteria are used and half of the learned clauses

are removed during the clause database cleaning process.

2.2.4 Preprocessing / Inprocessing

In order to optimize solving time, some transformation can be applied to simplify the origi-

nal formula. This is done by preprocessing the formula before the start of the solving. When

it is used during the solving (usually after a restart), it is called inprocessing. Simplification

of the formula is made by removing clauses and/or variables.

Variable elimination simplification is based on the resolution inference rule [50]. Consider
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the two clauses ω1 = {x1, xi , ..., x j } and ω2 = {¬x1, yi , ..., y j }. The resolution inference rule

allows to derive a clause ω3 = {xi , ..., x j , yi , ..., y j } which is called the resolvent as it results

from solving two clauses on the literal x1 and ¬x1. Subsumption aims at removing clauses.

Consider two clauses ω1 and ω2, such that ω1 ⊂ ω2, then ω2 can be safely removed from

the original formula. Self subsuming resolution uses resolution rules and subsumption. at

the same time, the resolvent clause subsumes the original one. For example, ω1 = {x1,¬x2}

andω2 = {x1, x2, x3}, then the resolvent clause will beω3 = {x1, x3} which subsumesω2. This

principle is implemented in the SatElite [21] preprocessor engine and is used in almost

all modern SAT solvers.

Other simplification techniques exist such as Gaussian elimination which detects a sub

formula in a XOR-SAT form and solves it in a polynomial time [48]. This technique can

also be used in inprocessing [53]. Some techniques exploit the structure of the original

formula and add relevant clauses to speed up the resolution time of the SAT solver. One

of them uses the community structure of the formula to find good clauses to add into. A

preprocessor engine doing that is modprep [3].

2.2.5 Optimizing SAT solving

With the emergence of multi-core architectures and the increasing power of computers,

one way to optimize the solving of a SAT problem is the exploitation of these cores. Port-

folio, first introduced in ManySAT [26], is a technique that launches several SAT solvers in

parallel with different heuristics (decisions, restarts, ...) that communicates or not between

them. When one of them finds a solution or finds that none exists, the overall computation

is finished. Another technique to develop a parallel SAT solver is called divide and con-

quer. In this technique, the search space is divided dynamically and submitted to different

solvers that cooperate to find a solution. This is used in different solvers like, for exam-

ple [12, 38]. Some specific techniques like load balancing and work stealing is applied to

avoid a solver to be idle. A recent framework PaInleSS (a Framework for Parallel SAT Solv-

ing) can be used to easily create a new parallel SAT solver with different heuristics [36] [37].

Another way to optimize the solving time of SAT solvers is the exploitation of symmetries.

The rest of this manuscript will detail how this allows to improve the performance of SAT

solvers in the presence of symmetries in the original formula.
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Despite the NP-Completeness character of the SAT problem, state-of-the-art solvers are

able to handle many industrial problems. This is mainly due to the capacity of SAT solvers

to prune the search space using, for instance, learnt clauses. Another way to accelerate

solving is the exploitation of symmetries. These are common in real life.

Consider the problem of searching for a pattern in butterfly wings. Most butterflies have

an identical pair of wings. After checking that both wings are symmetric (process called

symmetry detection), the pattern can be searched for only one wing. Searching this pattern

in the other wing is useless (process called symmetry exploitation). In this chapter, we show

how to detect that a given formula has symmetries and how to exploit them to accelerate

the solving in the SAT context.

21
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3.1 Group theory basics

Since symmetries belong to a branch of mathematics called group theory, this section gives

us an overview.

3.1.1 Groups
Definition 3.1: Group

A group is a structure 〈G ,∗〉, where G is a non-empty set and ∗ a binary operation such

that the following axioms are satisfied:

• associativity: ∀a,b,c ∈G , (a ∗b)∗ c = a ∗ (b ∗ c)

• closure: ∀a,b ∈G , a ∗b ∈G .

• identity: ∀a ∈G ,∃e such that a ∗e = e ∗a = a

• inverse: ∀a ∈G ,∃b ∈G , commonly denoted a−1, such that a ∗a−1 = a−1 ∗a = e

Note that, commutativity (i.e. a ∗ b = b ∗ a, for a,b ∈ G) is not a required axiom. If it

satisfies it, the group is said abelian. The last definition leads to important properties: i)

uniqueness of the identity element. To prove this property, assume 〈G ,∗〉 a group with two

identity elements e and f then e = e ∗ f = f . ii) Uniqueness of the inverse element. To

prove this property, suppose that an element a has two inverses, denoted b and c in groups

〈G ,∗〉, then,

b = b ∗e

= b ∗ (a ∗ c) c is an inverse of a, so e = a ∗ c

= (b ∗a)∗ c associativity rule

= e ∗ c b is an inverse of a, so e = a ∗b

= c identity rule

The structure 〈G ,∗〉 is denoted simply G when clear from the context that G is a group with

a binary operation. In this thesis, we only consider finite groups, i.e. groups with a finite

number of elements.

Definition 3.2: Subgroup

Given a group G , a subgroup is a non-empty subset of G which is also a group with the

same binary operation. We denote H ≤G , the subgroup H of G .
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A group has at least two subgroups:

1. trivial subgroup: the subgroup composed of the identity element {e}. (All other sub-

groups are non-trivial)

2. improper subgroup: the subgroup composed of itself. (All other subgroups are proper).

Definition 3.3: Generators of a group

If every element in a group G can be expressed as a linear combination of a set of

elements S = {g1, g2, ..., gn} then we say that G is generated by S. This is denoted by G =

〈S〉 = 〈{g1, g2, ..., gn}〉

In other words, to obtain the group, it is sufficient to compose all permutations in the gen-

erators set until a fix point. So the generators are a compact representation of a group.

3.1.2 Permutation group
Definition 3.4: Permutation

A permutation is a bijection from a set X to itself.

Example: given a set X = {x1, x2, x3, x4, x5, x6}, consider

g =
(

x1 x2 x3 x4 x5 x6

x2 x3 x1 x4 x6 x5

)

In this example, g is a permutation that maps x1 to x2, x2 to x3, x3 to x1, x4 to x4, x5 to x6 and

x6 to x5. Permutations are generally written in cycle notation, the self-mapped elements are

omitted. So the permutation in cycle notation will be

g = (x1 x2 x3) (x5 x6)
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Definition 3.5: Support of a permutation

The support of the permutation g , noted suppg , is the set of elements that are not

mapped to themselves:

suppg = {x ∈ X | g .x 6= x}

Definition 3.6: Stabilized variable over permutation

A variable x is stabilized by a permutation g iff x ∉ suppg .

Definition 3.7: Permutation Group

A set of permutations of a given set X form a group GX with the composition operation

(◦). This group is called permutation group.

Definition 3.8: Symmetric Group

The set of all permutations of a set X is the symmetric group of X and is noted S(X ).

A permutation group G induces an equivalence relation on the set of elements X being

permuted. Two elements x1, x2 ∈ X are equivalent if there exists a permutation g ∈G such

that g .x1 = x2. The equivalence relation partitions X into equivalence classes referred to as

the orbits of X under G . The orbit of an element x under group G (or simply orbit of x when

clear from the context) is the set. [x]G = {g .x | g ∈G}

3.2 Symmetries in SAT

The previous mathematical definitions of group theory can be applied to a CNF formula.

The symmetric group of permutations of V (i.e. bijections from V to V ) is noted S(V ). The

group S(V ) naturally acts on the set of literals: for g ∈S(V ) and a literal ` ∈L , g .`= g (`)

if ` is a positive literal, and g .` = ¬g (¬`) if ` is a negative literal. The group S(V ) acts on

assignments (possibly partial) of V as follows:
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∀g ∈S(V ), ∀α ∈ Ass(V ), g .α= {g .` | ` ∈α}.

The set of symmetries of ϕ is noted Gϕ and is a subgroup of S(V ). The symmetry of a

formula ϕ preserves the satisfaction, for every complete assignment α:

α |=ϕ⇔ g .α |=ϕ

These symmetries can be obtained either syntactically or semantically. Semantic symme-

tries are independent of any particular representation of the problem. Conversely, syntactic

symmetries depend of the encoding of the problem and can lead to different symmetries.

We say that g ∈S(V ) is a symmetry of ϕ if the following conditions hold:

• permutation fixes the formula, g .ϕ=ϕ:

• g commutes with the negation: g .¬l =¬(g .l )

3.3 Symmetry detection in SAT

For the detection of symmetries in SAT, we first introduce the notion of graph automor-

phism. Given a colored graph Gr = (V ,E ,γ), with a set of vertices set V ∈ [1,n], a set of

edges E and γ a mapping: V → C , where C is a set of colors, an automorphism of Gr is a

permutation on its vertices, aut : V →V , such that:

• ∀(u, v) ∈ E =⇒ (aut .u, aut .v) ∈ E

• ∀v ∈V ,γ(v) = γ(aut .v)

The graph automorphism problem is to find if a given graph has a non-trivial permuta-

tion group. The computational complexity of this algorithm is conjectured to be strictly

between P and NP [34, 55]. Several tools exist to handle this problem like saucy3 [31],

bliss [30], nauty [45], etc. To find symmetries in a SAT problem, the formula is encoded

in a colored graph and an automorphism tool is applied on it. In particular, given a formula

ϕ with m clauses and n variables, the graph is constructed as follows [10]:

• clause nodes: represent each of the m clauses by a node with color 0;

• literal nodes: represent each of the l literals by a node with color 1;
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• clause edges: connect a clause to its literals by linking the corresponding clause node

and literal nodes;

• boolean consistency edges: connect each pair of literals that correspond to the same

variable.

ω1 = {x1, x2, x3}
ω2 = {x4, x5, x6}
ω3 = {x1, x4}
ω4 = {x2, x5}
ω5 = {x3, x6}
ω6 = {¬x1,¬x2}
ω7 = {¬x1,¬x3}
ω8 = {¬x2,¬x3}
ω9 = {¬x4,¬x5}
ω10 = {¬x4,¬x6}
ω11 = {¬x5,¬x6}

¬x1
x1

¬x2

¬x3

ω6

ω7

x4

ω1

ω3

x2

ω8

x5

ω4

x3 x6

ω5

¬x4

¬x5

¬x6

ω9

ω10

ω2
ω11

Figure 3.1: Example of the constructed symmetry graph for a given CNF

Figure 3.1 shows the graph representation of a CNF. This problem has 6 variables and 11

clauses. So, the graph will have 12 + 11 = 23 vertices, where 12 represent the number of lit-

eral vertices (circles in the figure ) and 11 represents the number of clause vertices (squares

in the figure). The graph will also have 6 + 24 = 30 edges, 6 edges for Boolean consistency

(red edges in the figure) and 24 edges that link clause vertices to the literals. An optimiza-

tion to reduce the number of graph vertices is possible. It is achieved by modeling binary

clauses using graph edges instead of graph vertices. However, in some particular cases,

it can produce spurious permutations (i.e. Boolean consistency is not respected [2]). To

ensure that the permutation is valid, the following condition must be satisfied:

∀x ∈ suppg , g .¬x ==¬g .x

In other words, we check if the image of the negation of x is equals to the negation of the

image of x, for each element x in the support of the permutation. This optimization re-

duces considerably the size of the graph, and accelerates the symmetry detection. In the

previous example, we can remove 9 nodes and 9 edges. More generally, we can remove from

the graph as many nodes and edges as there are binary clauses on the formula. Figure 3.2

represents the optimized graph for the detection of automorphism.
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ω1 = {x1, x2, x3}
ω2 = {x4, x5, x6}
ω3 = {x1, x4}
ω4 = {x2, x5}
ω5 = {x3, x6}
ω6 = {¬x1,¬x2}
ω7 = {¬x1,¬x3}
ω8 = {¬x2,¬x3}
ω9 = {¬x4,¬x5}
ω10 = {¬x4,¬x6}
ω11 = {¬x5,¬x6}

¬x1
x1

¬x2

¬x3

x4

ω1

x2 x5

x3 x6

¬x4

¬x5

¬x6

ω2

Figure 3.2: Example of constructed symmetry graph for a given CNF

After its construction, the graph is given to an automorphism tool. This tool will produce

its set of generators. With the previous graph, the following generators are obtained using

bliss as the automorphism tool:

g1 = (x2 x3)(x5 x6)(¬x2 ¬x3)(¬x5 ¬x6)

g2 = (x1 x2)(x4 x5)(¬x1 ¬x2)(¬x4 ¬x5)

g3 = (x1 x4)(x2 x5)(x3 x6)(¬x1 ¬x4)(¬x2 ¬x5)(¬x3 ¬x6)

In the graphical representation of these generators presented in Figure 3.3 such as g1 in

green, g2 in blue and g3 in red, we can see that all variables belongs to the same equivalence

class.

x1 x2 x3

x4 x5 x6

Figure 3.3: Graphical representation of generators.
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3.4 Usage of symmetries

To illustrate the usage of symmetries, consider the pigeonhole problems (see Figure 3.4),

where n pigeons are put into n −1 holes, with the constraint that each pigeon must be in a

different hole. This is a highly symmetric problem. Indeed, all the pigeons (resp. holes) are

exchangeable without changing the initial problem. The search algorithm explores fruit-

fffff
Figure 3.4: Graphical representation of an instance of the pigeonhole problem (5 pigeons,
4 holes)

lessly the symmetric search space, i.e. tries all possible combinations of couples (pigeon,

hole). Solving this problem with a standard SAT solver, like MiniSAT [22], turns out to be

very time consuming (and even impossible, in a reasonable time, for high values of n).

To avoid this combinatorial explosion, a technique called symmetry breaking allows a SAT

solver to avoid the visit of symmetric search space. For this purpose, there are two prin-

ciples, known as static symmetry breaking and dynamic symmetry breaking. In the general

case, visiting one assignment for each orbit is sufficient to determine the satisfiability of the

whole formula. In the first case, symmetry breaking constraints that invalidate symmetric

assignments are added to the initial problem before the start of solving (statically). The

second one alters the search space during the solving (dynamically). The solver uses sym-

metries (present in the formula) to remove symmetric assignments or uses it to propagate

symmetrical facts.

In the following sections, we present in detail the two principles.

3.4.1 Static symmetry breaking

This section explains how to statically exploit symmetrical properties of a SAT problem. In

this approach, only one assignment (branch) from each orbit is visited and all others are

omitted.This leads us to the following questions:

1. How to choose a branch that is equivalent to all symmetric ones?

2. How to generate constraints that forbid symmetrical assignments?
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To answer question 1, we need to introduce an ordering relation between assignments

Definition 3.9: Assignments ordering

We assume a total order, ≺, on V . Given two assignments (α,β) ∈ Ass(V )2,we say that

α is strictly smaller than β, noted α<β, if there exists a variable v ∈ V such that:

• for all v ′ ≺ v , either v ′ ∈α∩β or ¬v ′ ∈α∩β.

• ¬v ∈α and v ∈β a.

aWe could have chosen as well v ∈α and ¬v ∈β without loss of generality.

In other words, if the prefix of both assignments is equal, according to the ordering rela-

tion ≺ and the next variable v has a different value (α(v) = ⊥,β(v) = >), then α < β. Note

that < coincides with the lexicographical order on complete assignments. Furthermore, the

< relation is monotonic as expressed by the following proposition:

Proposition 3.1: Monotonicity of assignments ordering

Let (α,α′,β,β′) ∈ Ass(V )4 be four assignments.

If α⊆α′ and β⊆β′, then α<β =⇒ α′ <β′

Proof. The proposition is a direct result of Definition 3.9.

Given a formulaϕ and its group of symmetries G , the orbit ofα under G (or simply the orbit

of α when G is clear from the context) is the set [α]G = {g .α | g ∈G}.

The optimal approach to solve a symmetric SAT problem would be to explore only one

assignment per orbit (for instance each lex-leader). The lexicographic leader (lex-leader) of

an orbit [α]G is defined by mi n<([α]G ). This lex-leader is unique because the lexicographic

order is a total order.

To answer the second question, the set of lex-leader predicates for a permutation g ∈Gϕ is

defined as:

LLg =∀i : (∀ j < i : x j = g .x j ) ⇒ xi ¹ g .xi
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Each predicate is evaluated using the assignment α used by the solver. If there exists sym-

metrical assignment g.α such that g .α < α, the predicate is evaluated to false and to true

otherwise. For example, let α1α2,α3 the orbit of the permutation g (g maps α1 → α2 →
α3 → α1) and α2 is the lex-leader according to the ordering relation, so the predicate is

evaluated to true only by α2 and to false by the others.

The conjunction of LLg , for all permutations g ∈Gϕ produces a sound and complete set of

symmetry breaking predicates (sbps). In this case, only the lex-leader assignment is visited

for each orbit. This approach is called full symmetry breaking. However, the size of the

sbps can be exponential in the number of variables of the problem and so, they cannot be

totally computed. To overcome this problem, only a subgroup is considered, in this case the

conjunction of LLg for H ⊂Gϕ (such that g is a permutation of the subgroup) produces a set

of symmetry breaking predicates that aims at visiting at least one assignment for each orbit.

This approach is is called partial symmetry breaking. In this situation, several assignments

per orbit can be visited but often bring a considerable reduction of the search space. Partial

symmetry breaking gives a good trade-off between the number of generated constraints

and the reduction of the search space. In the partial and full symmetry breaking, the set of

symmetry breaking predicates generated is denoted by ψ.

Theorem 3.1: Satisfiability preservation sbps

Let ϕ be a formula and ψ be the computed sbps for the set of symmetries in Gϕ:

ϕ and ϕ∧ψ are equi-satisfiable.

Proof. Ifϕ∧ψ is SAT thenϕ is trivially SAT. Ifϕ is SAT, then there is some assignment β that

satisfiesϕ. Without loss of generality, β can be chosen to be the lex-leader of its orbit under

Gϕ. Thus, sbps do not contradict β, which implies that β |=ψ.

The generation of lex-leader constraints proposed by Crawford et al. [14] is defined as fol-

lows:

LLg =∀i : (∀ j < i : x j = g .x j ) ⇒¬xi ∨ g .xi

Figure 3.5 shows an example of the generated clauses for the permutation g3 of the previous

example and a lexicographic order. The last constraint of the figure produces tautological

clauses. Actually variables x1, x4 are present with both polarities. The constraints of other

variables also produce tautological clauses.
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Order : x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 ≺ x6 ; (⊥<>)
Permutation : g3 = (x1 x4)(x2 x5)(x3 x6)(¬x1 ¬x4)(¬x2 ¬x5)(¬x3 ¬x6)

Constraints Generated sbps

x1 ¹ x4 ¬x1 ∨x4

x1 = x4 ⇒ x2 ¹ x5 x1 ∨x4 ∨¬x2 ∨x5

¬x1 ∨¬x4 ∨¬x2 ∨x5

x1 = x4 ∧x2 = x5 ⇒ x3 ¹ x6 x1 ∨x4 ∨x2 ∨x5 ∨¬x3 ∨x6

¬x1 ∨¬x4 ∨x2 ∨x5 ∨¬x3 ∨x6

x1 ∨x4 ∨¬x2 ∨¬x5 ∨¬x3 ∨x6

¬x1 ∨¬x4 ∨¬x2 ∨¬x5 ∨¬x3 ∨x6

x1 = x4 ∧x2 = x5 ∧x3 = x6 ⇒ x4 ¹ x1 x1 ∨x4 ∨x2 ∨x5 ∨x3 ∨x6 ∨¬x4 ∨x1

· · ·
¬x1 ∨¬x4 ∨x2 ∨x5 ∨x3 ∨x6¬x4 ∨x1

· · ·

Figure 3.5: Example of generated sbps for one permutation

Here, the number of clauses generated per constraint increase exponentially by the cardi-

nality of the support of the permutation. Hence, Aloul et al [1] proposed a more compact

representation of sbps based on the creation of auxiliary variables. These variables encode

equality of literals and are disjoint from the support of the permutation. The following

clauses encode a compact lex-leader for a permutation:

¬yi ∨¬xi−1 ∨¬xi ∨ g .xi 1 ≤ i ≤ n ¬yi ∨¬xi−1 ∨ yi+1 1 ≤ i ≤ n

¬yi ∨ g .xi−1 ∨¬xi ∨ g .xi 1 ≤ i ≤ n ¬yi ∨ g .xi−1 ∨ yi+1 1 ≤ i ≤ n

where {y0, · · · , yn} is the set of auxiliary variables, y0 is a unit clause that encodes the first

equality and {x1, ..., xn} is the set of variables sorted with the lexicographic order. Figure 3.6

shows the compact encoding of the generated constraints. This form grows linearly with

respect to the number of variables. The auxiliary variables that encode the equality of two

literals provide this reduction. Three auxiliary variables are introduced in this example

x7, x8, x9 such that x7 encodes the equality of x1 and x4, x8 encodes the equality of x2

and x5, and x9 encodes the equality of x3 and x6.
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Order : x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 ≺ x6 ; (⊥<>)
Permutation : g3 = (x1 x4)(x2 x5)(x3 x6)(¬x1 ¬x4)(¬x2 ¬x5)(¬x3 ¬x6)

Constraints Generated SBP

x1 ¹ x4 ¬x1 ∨x4

x7

x1 = x4 ⇒ x2 ¹ x5 ¬x7 ∨¬x1 ∨¬x2 ∨x5

¬x7 ∨¬x1 ∨x8

¬x7 ∨x4 ∨¬x2 ∨x5

¬x7 ∨x4 ∨x8

x1 = x4 ∧x2 = x5 ⇒ x3 ¹ x6 ¬x8 ∨¬x2 ∨¬x3 ∨x6

¬x8 ∨¬x2 ∨x9

¬x8 ∨x5 ∨¬x3 ∨x6

¬x8 ∨x5 ∨x9

Figure 3.6: Example of compact generated SBPs for one permutation

Shatter is a tool [1] for partial symmetry breaking. It computes a compact lex-leader sbps

with the symmetries produced by saucy3 [31]. Table 3.1 shows the number of symmetry

breaking predicates and the number of auxiliary variables added to the original formula.
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Instances #vars #clause #sbp #auxiliary variables

battleship-12-12-unsat 936 144 1498 378
battleship-12-23-sat 1662 276 5464 1375
battleship-14-26-sat 2562 364 3688 929
battleship-14-27-sat 2653 378 7222 1814
battleship-16-16-unsat 2176 256 4388 1102
battleship-16-31-sat 3976 496 12094 3035
battleship-24-57-sat 16308 1368 40372 10113

chnl10_11 1122 220 2416 615
chnl10_12 1344 240 2736 696
chnl10_13 1586 260 3252 826
chnl11_12 1476 264 3204 813
chnl11_13 1742 286 3636 922
chnl11_20 4220 440 6760 1710

fpga10_15_uns_rcr 2130 300 4580 1160
fpga10_20_uns_rcr 3840 400 6768 1712
fpga11_12_uns_rcr 1476 264 3704 938
fpga11_13_uns_rcr 1742 286 4076 1032
fpga11_14_uns_rcr 2030 308 4740 1199
fpga11_15_uns_rcr 2340 330 5196 1314
fpga11_20_uns_rcr 4220 440 7864 1986

hole010 561 110 1054 269
hole015 1816 240 3280 828
hole020 4221 420 6478 1630
hole030 13981 930 21322 5346
hole040 32841 1640 44934 11254
hole050 63801 2550 81682 20446

Urq6_5 1756 180 109 0
Urq7_5 2194 240 143 0
Urq8_5 3252 327 200 0

x1_40 314 118 42 1
x1_80 634 238 80 0

Table 3.1: Number of sbps generated on different problem categories

Table 3.1 presents the number of variables and clauses present in the formula and also

the number of sbps generated and the number of auxiliary variables added on different

problem categories that are: battleship (the battleship puzzle), chnl (channel routing in-
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stances), fpga (routing of global wires in integrated circuits), hole (the pigeonhole prob-

lem), urq (randomized instance based on expanded graphs), xor (exclusive or chain).

We can observe that the number of produced sbps and added auxiliary variables can be

much larger than respectively the number of initial clauses and variables. On the urq and

xor categories it is not the case because these problems present a special permutation that

maps one literal to the opposite one. In this case, a lot of sbps are tautologies and few

auxiliary variables are produced.

3.4.1.1 Special form of the group

Some formulas exhibit a specific type of symmetry, called row (column) interchangeability.

These are a subset of variables structured as a two-dimensional matrix. Each row (column)

is interchangeable, so, all variables of a row (column) permute with any other one. This

form of symmetry is common in different kinds of problems like the pigeon hole problem

in which pigeons and holes are interchangeable. The usage of row (column) interchange-

ability can significantly improve SAT performance. Actual symmetries can be eliminated

by the addition of only a linear number of symmetry-breaking constraints [23]. To ensure

this linear number of constraints, one condition must be satisfied : the lexicographic order

of variables needs to respect the structure of the matrix. In practice, automorphism tools

give only the set of generators that contains no information on the structure of the group.

The authors of BreakID [18] developed an algorithm to detect this specific structure and

exploit it.

3.4.1.2 Binary lex-leader constraints

BreakID tries to generate a maximum number of binary lex-leader constraints. The first

lex-leader constraint generated by each permutation is a binary clause. Enumerating the

whole symmetry group will generate many binary clauses but will be time consuming. To

avoid this enumeration, the graph structure of the orbit is exploited: as the orbit can be

seen as a strongly connected component, there must exist a permutation that permutes a

variable (for example the smallest variable according to the lexicographic order) of an or-

bit with each of the other variables of the same orbit. This allows us to generate as many

binary lex-leader constraints as the size of the orbit. In addition, constructing a sequence

of subgroups that stabilize the smallest variable allows the generation of new binary sbps.

This sequence ends when a trivial subgroup is reached and is called a stabilizer chain. Fig-

ure 3.7 shows the application of the stabilizer chain. In the example, the considered group

has three permutations and its graphical representation is shown. Given the lexicographic

order, the smallest variable is x1 and all other variables are in its orbit. According to the or-
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dering relation, five sbps are generated, one sbp for each variable of the orbit except the

smallest one. Then, the subgroup that stabilizes x1 is computed. It contains only one

permutation (g1). As x2 is the smallest variable according to the lexicographic order, the

constraint ¬x2 ∨ x3 is generated. The stabilizer chain leads to a trivial group and no more

binary clauses are generated. In total, six binary clauses are generated without adding any

auxiliary variables. Moreover, a property can be observed, when the smallest variable has

the greatest value (> in this case), all variables in the orbits must have the same value. The

Order : x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 ≺ x6 ; (⊥<>)

g1 = (x2 x3)(x5 x6)(¬x2 ¬x3)(¬x5 ¬x6)
g2 = (x1 x2)(x4 x5)(¬x1 ¬x2)(¬x4 ¬x5)
g3 = (x1 x4)(x2 x5)(x3 x6)(¬x1 ¬x4)(¬x2 ¬x5)(¬x3 ¬x6)

x1 x2 x3

x4 x5 x6

g1 = (x2 x3)(x5 x6)(¬x2 ¬x3)(¬x5 ¬x6)

x2 x3

x5 x6

ω1 = {¬x1, x2} ω4 = {¬x1, x5}

ω2 = {¬x1, x3} ω5 = {¬x1, x6}

ω3 = {¬x1, x4}

ω6 = {¬x2, x3}

Figure 3.7: Generation of binary symmetry breaking predicates

size of the stabilizer chain is heavily dependent on the chosen lexicographic order. To avoid

reaching trivial subgroups quickly an incremental order is proposed. It uses the size of the

orbit and occurrences of variables in the set of generators: the biggest orbit produces more

binary clauses and variables with few occurrences allow to disable less generators.

3.4.1.3 BreakID

To summarize BreakID combines three ideas: i) It investigates whether the generators

produced by the automorphism tool have the row interchangeability special form and ex-

ploit it if so; ii) It generates a maximum number of binary lex-leader constraints; iii) It gen-

erates the classical sbps.
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3.4.1.4 Conclusion

The static symmetry breaking approach acts as a preprocessor that augments the initial

formula with sbps. These constraints avoid the exploration of isomorphic search spaces. In

the general case, the number of these clauses is often too large to be handled effectively by

a SAT solver [41]. On the other hand, if only a subset of the symmetries is considered then

the resulting search pruning will not be perfect and its effectiveness will depend heavily on

the symmetries chosen heuristically. [10]. An important point in static symmetry breaking

is the chosen lexicographic order. Variable ordering may impact the number of generated

constraints and hence the performance of the underlying solver. Different orders are stud-

ied in the literature. One of the simplest order is the lexicographical order. Some other

existing orders exploit the structural properties of the problem [18]. Combining the gener-

ation of binary sbps with the exploitation of these properties allows state-of-the-art solver

to solve more symmetric instances. Despite these optimizations and the good reduction

of the search space with symmetries, some formula that exhibit symmetries are still in-

tractable for a state-of-the-art SAT solver. Moreover, a disadvantage of static symmetry

breaking is that the solver is influenced by sbps. Internal heuristics consider these clauses

as the original clauses, so the solver explores the search space with a different manner and

affects performance negatively.

3.4.2 Dynamic symmetry breaking

Dynamic symmetry breaking approaches aims at exploiting the symmetries during the

solving by altering the behavior of the solver. During the solving, the solver uses symme-

tries (present in the formula) to remove symmetric assignments or to propagate symmet-

rical facts. Propagating symmetrical facts has the consequence of reducing the number of

decisions that are chosen heuristically and increase the number of propagations. In other

words, symmetries transform some “guesses” into “deductions”. So, it improves the perfor-

mance of the underlying solver. In the literature, different approaches of dynamic symme-

try breaking exist, this section presents the most important of them.

3.4.2.1 SymChaff

One of the first tools for dynamic symmetry breaking is SymChaff a structure-aware SAT

solver [52] and applies only on particular groups (section 3.4.1.1). To take part of this prop-

erty, instead of using the classical decision heuristic that chooses exactly one variable, all

symmetric variables are considered at the same time (k-branching). Roughly speaking, all

variables in the same orbit are assigned/unassigned at the same time. So, all possible valu-
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ations of the orbit can be checked once. In this approach, only the number of true and false

literal matters and computing the number of possible valuations is trivial in this particular

form of group. For example, consider the permutations: g1 = (x1 x2), there are 4 possible

valuations F F , T T , F T and T F , where the first letter is the valuation of x1 and the second

is the valuation for x2. As F T and T F have the same number of true and false, only one of

them needs to be explored. The order in which the valuations are checked has a tremen-

dous impact on solver performance. This approach has good results when the group of

symmetries presents a particular form. In the general case, when we consider any group,

computing the number of possible valuations will be very difficult and this approach is not

applicable.

3.4.2.2 Symmetry Propagation

A different approach can be used to accelerate the tree traversal using symmetrical facts

during the solving. One of them is symmetry propagation (SP) [19]. The general idea of this

approach is to propagate symmetrical literals of those already propagated. In other words,

it accelerates the tree traversal by “transforming some guesses (decisions) into deductions

(propagations)”. These deductions will reduce the overall tree traversal depth and hence

will eventually accelerate the solving process. To explain this approach, let us first give

some definitions.

Definition 3.10: Logical consequence

A formula φ is a logical consequence of a formula ϕ denoted by ϕ |= φ, if any assign-

ment α satisfying ϕ also satisfies φ. Two formulas are logically equivalent if each is a

logical consequence of the other.

Proposition 3.2: Symmetry propagation

Let ϕ be a formula, α an assignment and l a literal. If g is a symmetry (permutation)

of ϕ∪α and ϕ |= {l }, then ϕ∪α |= g .{l }.

In other words, if a literal l is propagated by the solver and g is a valid symmetry for the

subproblem ϕ∪α (in which all satisfied clauses and false literals are removed) then, the

solver can also propagate the symmetric of l . The problem here is to determinate which

symmetries are valid for the formula ϕ∪α.
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Definition 3.11: Active symmetry

A symmetry g is called active under a partial assignment α if g .α=α.

Definition 3.11 leads to the following proposition:

Proposition 3.3

Let ϕ be a formula and α a partial assignment. Let g be a symmetry of ϕ, if g is active

under the assignment α, then g is also a symmetry of ϕ∪α.

The previous proposition states that an active symmetry g for a partial assignment α is still

valid for the formula ϕ∪α. So when a literal l is propagated, and a symmetry g is active

for a partial assignment α, the solver can also propagate g .l . Moreover, the group theory

allows to compose permutations, and the composition of two active symmetries is also an

active symmetry, so the solver can also propagate g 2.l , g 3.l , ...

Active symmetries need strong requirements and so their applications are limited. De-

vriendt et al [19] improved the notion of active symmetries in the SAT context by introduc-

ing the notion weakly active symmetries that relax some constraints.

Definition 3.12: Weakly active symmetry

Letϕbe a formula and (δ,α,γ) a state of a CDCL solver in whichδ is the set of decisions

α is the current assignment and γ the reasons of the learned clauses. Then a symmetry

g is weakly active if g .δ⊆α

This definition leads to the following proposition:

Proposition 3.4

Let ϕ be a formula, α an assignment. If there exists a subset δ ⊆ α and a symmetry g

of ϕ such that g .δ⊆α and ϕ∪δ |=ϕ∪α, then g also is a symmetry of ϕ∪α.

In other words, we can detect with minimal effort the symmetries ofϕ∪α by keeping track

of the set of variables δ, which are in state-of-the-art complete SAT solving algorithms,
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the set of decision variables. Obviously, a weakly active symmetry can also propagate the

symmetrical literals of a propagated one. Moreover, weakly active symmetries allow more

propagations and so are more efficient. Symmetry propagation gives good performances

on many symmetric instances. The overall performance of the symmetry propagation is

intrinsically related to the decision heuristics of the underlying SAT solver.

3.4.2.3 Symmetry Explanation Learning

All learned clauses are logical consequences of the problem and the symmetric of these

clauses are also relevant and can be added to the formula without restrictions. Symmetry

learning scheme (SLS) [6] adds the symmetric clauses when they are learnt. This solution

could add duplicate clause and create a memory overhead. Moreover, the deletion policy of

learnt clause could remove clauses before they are effectively used. To alleviate these draw-

backs, Symmetry Explanation Learning (SEL) [17] adds symmetrical clauses when they are

useful. A clause is said to be useful if it participates to the unit propagation or conflict anal-

ysis. Modern CDCl solvers maintain an implication graph and store the reason of a prop-

agated literal (that is an assertive clauses) and computing the symmetrical of this clause

may lead to useful clause. In general, symmetries permute few literal and so the probabil-

ity that the symmetrical clause are also assertive is high. Symmetrical clauses are added in

a different clause database and are promoted to the classical one when they are useful at

the end of the unit propagation. As unit propagation is done until fix point, it ensures no

duplicate clause is added to the problem. To limit the memory impact, symmetrical clauses

are deleted when the variable responsible for the propagation is unassigned.

Moreover, SEL provides some interesting properties: first, the authors prove that SEL prop-

agations are a super-set of the one provided by SP. It also does not need to track any status of

symmetries (as opposed to SP). Like SP no satisfying assignment is discarded. Nonetheless,

the negative point is that SEL may flood the solver if the used set of symmetries is big.

3.4.2.4 Conclusion

Dynamic symmetry breaking approaches exploit the symmetry property of the formula

during the solving. It avoids the creation, as in static symmetry breaking, of potentially

useless clauses that increase the size of the original formula. Different approaches exist,

one uses k-branching that allows to visit only lex-leader assignment but can be applied

only in groups of particular form. Others use symmetries to propagate symmetrical facts.

Mainly, they transform decisions (guesses) into propagations (deductions), that accelerate

the tree traversal and may improve the overall performance of the solver. Moreover, as they
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are integrated directly to the search engine, solvers can adapt their heuristics dynamically,

like for example the restart. However, the integration of a dynamic approach must be done

carefully, since the CDCL algorithm is a highly optimized and fine-tuned search engine.

The integration of symmetry breaking can slow down its core engine.
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4.1 General idea

In the static symmetry breaking approach constraints are added to the original problem

that avoids the solver to visit symmetrical search space. But, in the general case, the size of

the sbp can be exponential in the number of variables of the problem so that they cannot be

entirely computed. Even in more favorable situations, the size of the generated sbp is often

too large to be effectively handled by a SAT solver [41]. On the other hand, if only a subset of

the symmetries is considered then the resulting search pruning will not be that interesting

and its effectiveness depends heavily on the heuristically chosen symmetries [10]. Besides,

these approaches are preprocessors, so their combination with other techniques, such as

symmetry propagation [19], can be very hard. Also, tuning their parameters during solving

time turns out to be tough. For all these reasons, some classes of SAT problems cannot be

solved easily yet despite the presence of symmetries. To handle these issues, we propose a

new approach that reuses the principles of the static approaches, but operates dynamically:

the symmetries are broken during the search process without any pre-generation of the

sbp. It is a best effort approach that tries to eliminate, dynamically, the non lex-leading

assignments with a minimal computation effort. To do so, we first introduce the notions of

reducer, inactive and active permutations (with respect to an assignment α) and effective

symmetric breaking predicates (esbp).

Definition 4.1: Reducer, inactive and active permutation

A permutation g is a reducer of an assignmentα if g .α<α (hence α cannot be the lex-

leader of its orbit. The permutation g reduces the assignment and all its extensions).

The permutation g is inactive on α when α < g .α (so g cannot reduce α and all its

extensions). A symmetry is said to be active with respect toαwhen it is neither inactive

nor a reducer of α.

Proposition 4.1 restates this definition in terms of variables and is the basis of an efficient

algorithm to track the status of a permutation during the solving. Let us, first, recall that

the support of a permutation g , suppg , is the set {v ∈ V | g .v 6= v}.
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Proposition 4.1

Let α ∈ Ass(V ) be an assignment, g ∈S, a permutation and suppg ⊆ V the support of

g . We say that g is:

1. a reducer of α if there exists a variable v ∈ suppg such that:

• ∀ v ′ ∈ suppg , s. t. v ′ ≺ v , either {v ′, g−1(v ′)} ⊆α or {¬v ′,¬g−1(v ′)} ⊆α,

• {v,¬g−1(v)} ⊆α;

2. inactive on α if there exists a variable v ∈ suppg such that:

• ∀ v ′ ∈ suppg , s. t. v ′ ≺ v , either {v ′, g−1(v ′)} ⊆α or {¬v ′,¬g−1(v ′)} ⊆α,

• {¬v, g−1(v)} ⊆α;

3. active on α, otherwise.

When g is a reducer of α we can define a predicate that contradicts α and yet preserves the

satisfiability of the formula. Such a predicate will be used to discard α, and all its exten-

sions, from a further visit and hence prune the search tree.

Definition 4.2: Effective Symmetry Breaking Predicate

Letα ∈ Ass(V ), and g ∈SV . We say that the formulaψ is an effective symmetry break-

ing predicate (esbp for short) for α under g if:

α 6|=ψ and for all β ∈ Ass(V ),β 6|=ψ⇒ g .β<β

The next definition gives a way to obtain such an effective symmetry-breaking predicate

from an assignment and a reducer.

Definition 4.3: A construction of an esbp

Let ϕ be a formula. Let g be a symmetry of ϕ that reduces an assignment α. Let v be

the variable whose existence is given by item 1. in Proposition 4.1. Let U = {v ′,¬v ′ |
v ′ ∈ Vg and v ′ ¹ v}. We define η(α, g ) as (U ∪ g .U ) \α.
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Example. Let us consider V = {x1, x2, x3, x4, x5}, g = (x1 x3)(x2 x4), and a partial assignment

α = {x1, x2, x3,¬x4}. Then, g .α = {x1,¬x2, x3, x4} and v = x2. So, U = {x1,¬x1, x2,¬x2} and

g−1.U = {x3,¬x3, x4,¬x4} and following the Definition 4.3, we can deduce than η(α, g ) =
(U ∪ g .U ) \α= {¬x1,¬x2,¬x3, x4}.

Proposition 4.2

η(α, g ) is an effective symmetry-breaking predicate.

Proof. It is immediate that α 6|= η(α, g ).

Let β ∈ Ass(V ) such that β∧η(α, g ) is UNSAT. We denote a α′ and β′ as the restrictions of α

and β to the variables in {v ′ ∈ Vg | v ′ ¹ v}. Since β∧η(α, g ) is UNSAT, α′ =β′. But g .α′ <α′,
and g .β′ <β′. By monotonicity of <, we thus also have g .β<β.

It is important to observe that the notion of ebsp is a refinement of the classical concept of

sbp defined in [1]. Specifically, like sbp, esbp preserve satisfiability.

Theorem 4.1: Satisfiability preservation

Let ϕ be a formula and ψ an esbp for some assignment α under g ∈Gϕ. Then,

ϕ and ϕ∧ψ are equi-satisfiable.

Proof. Ifϕ∧ψ is SAT thenϕ is trivially SAT. Ifϕ is SAT, then there is some assignment β that

satisfiesϕ. Without loss of generality, β can be chosen to be the lex-leader of its orbit under

Gϕ. Thus, g does not reduce β, which implies that β |=ψ.

4.1.1 Algorithm

This section describes how to augment the state-of-the-art CDCL algorithm with the afore-

mentioned concepts to develop an efficient symmetry-guided SAT solving algorithm. The

approach is implemented using a couple of components: (1) a Conflict Driven Clauses

Learning (CDCL) search engine; (2) a symmetry controller. Roughly speaking, the first com-

ponent performs the classical search activity on the SAT problem, while the second ob-

serves the engine and maintains the status of the symmetries. When the controller detects
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a situation where the engine is starting to explore a redundant part1, it orders the engine

to operate a backjump. The detection is performed thanks to symmetry status tracking

and the backjump order is given by a simple injection of an esbp computed on the fly. Al-

gorithm 4 explains how to extend the CDCL algorithm described in Section 2.2.1.3 with a

symmetry controller component.

1 function CDCLSym(ϕ: CNF formula, SymController: symmetry controller)
returns > if ϕ is SAT and ⊥ otherwise

2 dl ← 0 // Current decision level
3 α←;
4 while not all variables are assigned do
5 i sCon f l i ct ← unitPropagation()
6 SymController.updateAssign(α)
7 i sReduced ← SymController.isNotLexLeader(α)
8 if i sCon f l i ct || i sReduced then
9 if dl == 0 then

10 return ⊥ // ϕ is UNSAT

11 if i sCon f l i ct then
12 ω← analyzeConflict()

13 else
14 ω← SymController.generateEsbp(α)

15 ϕ←ϕ∪ {ω}
16 (dl ,α) ← backjumpAndRestartPolicies()
17 SymController.updateCancel(α)

18 else
19 α←α∪ assignDecisionLiteral()
20 dl ← dl +1

21 return > // ϕ is SAT

Algorithm 4: the CDCLSym SAT Solving Algorithm.

The symmetry controller is initially given a set of symmetries G , the generators of the group

of symmetries. It observes the behavior of the SAT engine and updates its internal data ac-

cording to the current assignment, to keep track of the status of the symmetries. This obser-

vation is incremental: whenever a literal is assigned or canceled, the symmetry controller

updates the status of all the symmetries. This corresponds to lines 6 and 17 of Algorithm 4.

When the controller detects that the current assignment cannot be a lex-leader (line 7), it

generates the corresponding esbp (line 14).

1Isomorphic to a part that has been/will be explored.
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In the remainder of this section, functions composing the symmetry controller are detailed.

4.1.1.1 Symmetries Status Tracking.

The updateAssign, updateCancel and isNotLexLeader functions (Algorithm 5)

track the status of symmetries based on Proposition 4.1 ; there resides the core of our algo-

rithm.

All these functions rely on the pt structure: a map of variables indexed by permutations.

Initially, pt[g ] = min≺(suppg ) for all g ∈G according to the ordering relation and all permu-

tations are marked active.

For each permutation g , the symmetry controller keeps track of the smallest variable pt[g ]

in the support of g such that pt[g ] and g−1(pt[g ]) do not have the same value in the current

assignment. If one of the two variables is not assigned, they are considered to have different

values.

When new literals are assigned, only active symmetries need to have their pt[g ] updated

(line 2). This update is done thanks to a while loop (lines 4 and 5).

When literals are canceled, we need to update the status of symmetries for which some

variable v before pt[g ], or g−1(v), becomes unassigned (line 9). Symmetries that were in-

active may be reactivated (line 11).

The current assignment is not a lex-leader if some symmetry g is a reducer. This is de-

tected by comparing the value of pt[g ] with the value of g−1(pt[g ]) (line 16). The function

isNotLexLeader also marks symmetries as inactive when appropriate (lines 18 and 19).

4.1.1.2 Generation of the esbp.

When the current assignment cannot be a lex-leader, some symmetry g is a reducer. The

function generateEsbp computes the η(α, g ) of Definition 4.3, the effective symmetry-

breaking predicate of Proposition 4.2. This will prevent the CDCL engine to explore further

the current partial assignment.

4.1.2 Illustrative example

Let us illustrate the previous concepts and algorithms on a simple example. Let the order-

ing relation be x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 ≺ x6 | ⊥<>, and two generators:

G = {g1 = (x1 x2)(x4 x5), g2 = (x1 x4)(x2 x5)(x3 x6)} (written in cycle notation with oppo-
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1 function updateAssign(α: assignment)
2 foreach active g ∈G do
3 v ← pt[g ];
4 while {v, g−1(v)} ⊆α or {¬v,¬g−1(v)} ⊆α do
5 v ← next variable in Vg ;

6 pt[g ] ← v

7 function updateCancel(α: assignment)
8 foreach g ∈G do
9 u ← min{v ∈ Vg | {v,¬v}∩α=; or {g−1(v),¬g−1(v)}∩α=;};

10 if u ¹ pt[g ] then
11 mark g as active;
12 pt[g ] ← u;

13 function isNotLexLeader(α: assignment)
14 foreach active g ∈G do
15 v ← pt[g ];
16 if {v,¬g−1(v)} ⊆α then
17 return >; // g is a reducer

18 if {¬v, g−1(v)} ⊆α then
19 mark g as inactive ; // g can’t reduce α or its

extensions

20 return ⊥
21 function generateEsbp(α: assignment) returns ω: generated esbp
22 ω← {};
23 g ← the reducer of α detected in isNotLexLeader;
24 v ← mi n(Vg );
25 u ← pt[g ];
26 while u 6= v do
27 if v ∈α then ω←ω∪ {¬v} else ω←ω∪ {v};
28 if g−1(v) ∈α then ω←ω∪ {¬g−1(v)} else ω←ω∪ {g−1(v)};
29 v ← next variable in Vg

30 ω←ω∪ {¬v, g−1(v)};
31 return ω

Algorithm 5: the functions keeping track of the status of the symmetries and gener-
ating the esbp.
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site cycles omitted). Their respective supports sorted according to ordering relation are,

suppg2
= {x1, x2, x4, x5} and suppg2

= {x1, x2, x3, x4, x5, x6}.

On the assignment α=;, both permutations are active and pt[g1] = pt[g1] = x1. When the

solver updates the assignment to α = {x4}, both permutations remain active and pt[g1] =
pt[g2] = x1. On the assignment α = {x4, x1}, the symmetry controller updates pt[g2] to x2,

while pt[g1] remains unchanged. On the assignment α = {x4, x1,¬x2}, g1.α = {x5, x2,¬x1},

which is smaller than α (because x1 ∈α and ¬x1 ∈ g .α): g1 is a reducer of α. The symmetry

controller then generates the corresponding esbp ω= {¬x1, x2}.

4.2 Implementation and Evaluation

In this section, we first highlight some details on our implementation of the symmetry con-

troller. Then, we experimentally assess the performance of our algorithm against three

other state-of-the-art tools.

4.2.1 cosy: an efficient implementation of the symmetry controller

We have implemented our method in a C++ library called cosy (1630 LoC). It implements

a symmetry controller as described in the previous section, and can be interfaced with

virtually any CDCL SAT solver. cosy is released under GPL v3 license and is available at

https://github.com/lip6/cosy.

4.2.1.1 Heuristics and Options.

Let us recall that finding the optimal ordering of variables (with respect to the exploita-

tion of symmetries) is NP-hard [40], so the choice for this ordering is heuristic. cosy offers

several possibilities to define this ordering:

• a naive ordering, where variables are ordered by the lexicographic order of their names;

• an ordering based on occurrences, where variables are sorted according to the num-

ber of times they occur in the input formula. The lexicographic order of variable

names is used for those having the same number of occurrences;

• an ordering based on symmetries, where variables belonging to the same orbit (under

the given set of symmetries) are grouped together. Orbits are ordered by their number

of occurrences.

https://github.com/lip6/cosy
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The ordering of assignments we use in this paper orders positive literals before negative

ones (thus, > < ⊥), but using the converse ordering does not change the overall method.

However, it can impact the performance of the solver on some instances, so that it is an

option of the library. All the symmetries we used for the presentation of our approach are

permutations of variables. Our method straightforwardly extends to permutations of liter-

als, also known as value permutations [10].

4.2.1.2 Integration in MiniSAT.

We show how to integrate cosy to an existing solver, through an example of MiniSAT [22].

First, we need an adapter that allows the communication between the solver and cosy (30

LoC). Then, we adapt Algorithm 3 to the different methods and functions of MiniSAT.

In particular, the function updateAssign is moved into the uncheckEnqueue func-

tion of MiniSAT (2 LoC). The updateCancel function is moved to the cancelUntil

function of MiniSAT that performs the backjumps (2 LoC). The isNotLexLeader and

generateEsbp functions are integrated in the propagate function of MiniSAT (30

LoC). This is to keep track of the assignments as soon as they occur, then the esbp is pro-

duced as soon as an assignment is identified as not being lex-leader. Initialization issues

are located in the main function of MiniSAT(15 LoC). The integration of cosy increases

MiniSAT code by 3%.

4.2.2 Evaluation

This section presents the evaluation of our approach. All experiments have been per-

formed with our modified MiniSAT called MiniSym. The symmetries of the SAT prob-

lem instances have been computed by two different state-of-the-art tools saucy3 [31] and

bliss [30]. For a given group of symmetries, the first tool generates less permutations to

represent the group than the second one, but it is slower than the other one. We selected

symmetric instance of the SAT contests [29] from 2012 to 2017, we call a symmetric in-

stance a CNF instances for which bliss finds symmetries that could be computed in at

most 1000 seconds of CPU time. We obtained a total of 1350 symmetric instances (discard-

ing repetitions) out of 3700 instances in total. All experiments have been conducted using

the following conditions: each solver has been run once on each instance, with a time-

out of 5000 seconds (including the execution time of the symmetries generation except for

MiniSAT) and limited to 8 GB of memory. Experiments were executed on a computer with

an Intel Xeon X7460 2.66 GHz featuring 24 cores and 128 GB of memory, running a Linux

4.4.13, along with g++ compiler version 6.3. We compare MiniSym using the occurrence
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order, value symmetries, and without lex-leader forcing, against:

• MiniSAT, as the reference solver without symmetry handling [22];

• Shatter, a symmetry breaking preprocessor described in [1], coupled with theMiniSAT

SAT engine;

• BreakID, another symmetry breaking preprocessor, described in [18], also coupled

with the MiniSAT SAT engine.

Each SAT solution was successfully checked against the initial CNF. For UNSAT situations,

there is actually currently no way to provide an UNSAT certificate in presence of symme-

tries, no checker take into account the presence of sbps. Nevertheless, we checked our

results were also computed by the other measured tools. Unfortunately, out of the 1350

benchmarked formulas, we have no proof or evidence for the 15 UNSAT formulas computed

by MiniSym only. Results are presented Tables in 4.1, 4.2, and 4.3. We report the number

of instances solved within the time and memory limits for each solver and category. We

separate the UNSAT instances (Table 4.1) from the SAT ones (Table 4.2). Besides the ref-

erence with no symmetry (column MiniSAT), we have compared the performance of the

three tools when using symmetries computed by saucy3 (see Table 4.1a and Table 4.2a),

and bliss (see Table 4.1b and Table 4.2b). Rows correspond to groups of instances: from

each edition of the SAT contest, and when possible, we separated applicative instances

(app〈x〉 where 〈x〉 indicates the year) from hard combinatorial ones (hard〈x〉). This separa-

tion was not possible for the editions 2015 and 2017 (all2015 and all2017). The total number

of instances for each bench is indicated between parentheses. For each row, the cells cor-

responding to the tools solving the most instances (within time and memory limits) are

typeset in bold and grayed out. Table 4.3 shows the cumulative and average PAR-2 times of

the evaluated tools. PAR-2 measure is used in SAT competition, it corresponds to the sum

of cumulative time of solved instances with twice the timeout of unsolved instances.
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Benchmark MiniSAT Shatter BreakID MiniSym

app2016 (134) 18 19 20 17
app2014 (161) 23 23 22 24
app2013 (145) 6 8 8 10
app2012 (367) 115 115 120 120
hard2016 (128) 8 17 50 42
hard2014 (107) 9 24 30 29
hard2013 (121) 12 24 48 29
hard2012 (289) 86 84 88 93
all2017 (124) 8 14 15 14
all2015 (65) 9 8 8 10
TOTAL (no dup) 261 302 371 345

(a) With saucy3

Benchmark MiniSAT Shatter BreakID MiniSym

app2016 (134) 18 21 18 19
app2014 (161) 23 21 20 24
app2013 (145) 6 7 10 11
app2012 (367) 115 106 114 123
hard2016 (128) 8 11 79 77
hard2014 (107) 9 45 40 53
hard2013 (121) 12 51 56 54
hard2012 (289) 86 69 90 93
all2017 (124) 8 14 15 15
all2015 (65) 9 7 8 8
TOTAL (no dup) 261 324 415 439

(b) With bliss

Table 4.1: Comparison of different approaches on the UNSAT instances of the benchmarks
of the six last editions of the SAT competition.

Benchmark MiniSAT Shatter BreakID MiniSym

app2016 (134) 20 22 21 20
app2014 (161) 24 24 24 22
app2013 (145) 34 35 35 43
app2012 (367) 121 112 119 126
hard2016 (128) 0 0 0 0
hard2014 (107) 14 17 17 14
hard2013 (121) 23 23 24 22
hard2012 (289) 135 141 143 138
all2017 (124) 23 20 26 27
all2015 (65) 7 5 7 6
TOTAL (no dup) 325 323 337 335

(a) With saucy3

Benchmark MiniSAT Shatter BreakID MiniSym
app2016 (134) 20 20 22 20
app2014 (161) 24 24 23 22
app2013 (145) 34 32 30 33
app2012 (367) 121 112 120 118
hard2016 (128) 0 0 0 0
hard2014 (107) 14 14 17 18
hard2013 (121) 23 24 26 25
hard2012 (289) 135 134 141 142
all2017 (124) 23 25 26 29
all2015 (65) 7 5 6 6
TOTAL (no dup) 325 316 334 336

(b) With bliss

Table 4.2: Comparison of different approaches on the SAT instances of the benchmarks of
the six last editions of the SAT competition.

Solver PAR-2 sum PAR-2 avg
MiniSAT 8 074 348 5 981
Shatter 7 770 434 5 756
BreakID 6 909 999 5 119
MiniSym 7 229 700 5 355

(a) With saucy3

Solver PAR-2 sum PAR-2 avg
MiniSAT 8 074 348 5 981
Shatter 7 517 556 5 569
BreakID 6 444 954 4 774
MiniSym 6 245 448 4 626

(b) With bliss

Table 4.3: Comparison of PAR-2 times (in seconds) of the benchmarks on the six last edi-
tions of the SAT competition.

We observe thatMiniSymwithsaucy3 solves the most instances in only half of the UNSAT

categories and BreakID solves 26 instances more than our approach. However, with

bliss, MiniSym solves the most instances in all but four of the UNSAT categories ; it

then also solves the highest number of instances among its competitors. This shows the

interest of our approach for UNSAT instances. Since symmetries are used to reduce the
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search space, we were expecting that it will bring the most performance gain for UNSAT

instances. The situation for SAT instances is more mitigated (Table 4.2), especially when

using saucy3. Again, this is not very surprising: our method may cut the exploration of a

satisfying assignment because it is not a lex-leader. This delays the discovery of a satisfying

assignment. The other tools suffer less from such a delay, because they rely on symmetry

breaking predicates generated in a pre-processing step. Also, when seeing the global re-

sults of MiniSAT, we can globally state that the use of symmetries in the case of satisfiable

instances only offers a marginal improvement.
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Figure 4.1: cactus plot total number of instances

We observe that performances our tool are better with bliss than with saucy3 (see

fig 4.1). We explain it as follows: saucy3 is known to compute fewer generators for the

group of symmetries than bliss. Since the larger the symmetries set is, the earlier the

detection of an evidence that an assignment is not a lex-leader will be, we generate less

symmetry-breaking predicates (only the effective ones). This is shown in Table 4.4;MiniSym

generates an order of magnitude fewer predicates than BreakID.

Number of SBPs BreakID MiniSym
UNSAT (316) 12 088 433 1 579 623
SAT (312) 13 839 689 359 352

(a) With saucy3

Number of SBPs BreakID MiniSym
UNSAT (399) 2 576 349 913 339
SAT (320) 12 179 513 457 452

(b) With bliss

Table 4.4: Comparison of the number of generated SBPs each time BreakID and
MiniSym both compute a verdict (number of verdicts between parentheses).

We also conducted experiments on highly symmetrical instances (all variables are involved

in symmetries), whose results are presented in Table 4.5. The performance of BreakID on

this benchmark is explained by a specific optimization for the total symmetry groups that
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are found in these examples, that is neither implemented in Shatter nor in MiniSym.

However, the difference betweenBreakID andMiniSym is rather thin when usingbliss.

Our tool still outperforms Shatter on this benchmark.

Benchmark MiniSAT Shatter BreakID MiniSym
battleship(6) 5 5 5 5
chnl(6) 4 6 6 6
clqcolor(10) 3 4 5 6
fpga(10) 6 10 10 10
hole(24) 10 12 23 11
hole shuffle(12) 1 2 12 3
urq(6) 1 2 6 2
xorchain(2) 1 1 2 2
TOTAL 31 42 69 45

(a) With saucy3

Benchmark MiniSAT Shatter BreakID MiniSym
battleship(6) 5 5 5 6
chnl(6) 4 6 6 6
clqcolor(10) 3 5 8 10
fpga(10) 6 10 10 10
hole(24) 10 24 24 23
hole shuffle(12) 1 3 7 4
urq(6) 1 2 6 5
xorchain(2) 1 1 2 2
TOTAL 31 56 68 66

(b) With bliss

Table 4.5: Comparison of the tools on 76 highly symmetric UNSAT problems.

4.3 Some optimization

Dynamic usage of symmetry properties allows the solver to adapt classical heuristics and

symmetry based one on-the-fly. For example, some restart heuristics are based on the

number of conflicts, taking into account injection of esbp may impact the performance

of the overall SAT solver.

4.3.1 Adapt heuristics dynamically

Other heuristics on the symmetry handling may increase the performance. We present

here some of them. In some cases, multiple permutations can be reducers at the same

time, and each one generates different symmetry breaking constraints. The backtrack and

the pruning capacity depends heavily on the chosen constraint. In our library, the first

reducer permutation generates the esbp. Another point concerns the injection of the sym-

metry breaking predicates. Two choices are possible, first, before the unit propagation and

second, at the end of the propagation. This choice will impact the solver behavior. In the

first case, esbp takes the lead over the classical conflict (if it occurs). Conversely, in the sec-

ond case, the classical conflict takes the lead over esbp. This can be especially useful on

SAT problems because esbp can eliminate non lex-leader SAT assignment. To emphasize

this behavior, the conflict of the esbp can be ignored in the sense that the conflict clause

is just added into the clause database and so will participate to the next unit propagation.

This gives to the solver the ability to find a solution symmetrical branch but avoid to get

multiple times on non-minimal part of search. It can be useful if we know in advance that

the problem is satisfiable.
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4.3.2 Change the Order Dynamically

As seen before, the ordering relationship between variables influence the minimal value of

each orbit (lex-leader) and the generated constraints. The symmetry controller is "waiting"

for the solver that assigns the variables that allows it to decide if the current assignment is

the lex-leader. The main idea to change dynamically the order, and so the lex-leader, is that

the symmetry breaking order follows the decision heuristics of the solver, then the symme-

try controller can decide quickly if the current assignment is minimal. Changing this order

dynamically is possible with some requirements: all esbps and all deduced clauses from a

symmetry breaking predicates need to be removed. If these constraints are not deleted, the

correctness of the algorithm is not guaranteed.

4.3.3 Impact of the sign in variable ordering

With the same variables ordering, swapping the value thus, > < ⊥ or ⊥ < > may impact

drastically the performance of the solver. To illustrate it, consider the pigeonhole problem

with 100 holes and 101 pigeons with the increasing order of the variables and change only

the sign. With ⊥<>, the solver generates 20 619 esbps, and takes 13.8 seconds to solve it.

With the reverse order (><⊥), it generates 33 263 esbps and solves it in 93.4 seconds. Fig-

ure 4.2 shows this difference on 500 symmetric instances with a scatter plot that compares

the same variable order with > <⊥ and ⊥ <>, MiniSymFT is the solver in which ⊥ <>,

and MiniSymTF is the solver in which > < ⊥. On the left, we compare the computation

time of the solver. As we can observe MiniSymTF is more efficient on some UNSAT in-

stances (red points in the figure). The right figure shows the number of generated esbp by

solvers in a log scale. On the large majority of instances, they generate approximately the

same number of esbps. But the difference can be an order of magnitude higher. This can be

due to the time of execution of the solver and/or the impact of the sign of the constraints.
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Figure 4.2: Comparison of the order with different signs on 500 symmetric instances.

MiniSymTF is generally better and is the default choice in the library. If it is running on a

specific application, reverse order can be chosen if it performs better.

4.4 Conclusion

SymmSAT uses same the principles as static symmetry breaking approaches but operates

dynamically by injecting effective symmetry breaking during the search. This overcomes

the main problem of the static approaches, i.e. that they generate many sbps that are not

effective in the solving (size of the generated formulas, overburden of the unit propagation

procedure, etc.). The idea we brought is to break symmetries on-the-fly: when the current

partial assignment cannot be a prefix of a lex-leader (of an orbit), an esbp that prunes this

forbidden assignment and all its extensions is generated. This approach is implemented

in the C++ library called cosy. It is an off-the-shelf component that can be interfaced

with virtually any CDCL SAT solver. cosy is released under GPL license and is available

at https://github.com/lip6/cosy.

The extensive evaluation of our approach on the symmetric formulas of the SAT contests

from 2012 to 2017 shows that it outperforms the state-of-the-art techniques, in particular

on unsatisfiable instances, which are the hardest class of the problem.

https://github.com/lip6/cosy
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5.1 General idea

In the previous chapter, we presented an approach that reuses the principles of the static

approaches, but operates dynamically (namely, the effective symmetry breaking approach [46]):

the symmetries are broken during the search process without any pre-generation of the

sbps. The main advantage of this technique is to cope with the heavy (and potentially block-

ing) pre-generation phase of the static-based approaches. It also gives more flexibility for

adjusting some parameters on the fly. Nevertheless, we also observed that many formulas

59
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easily solved by the pure dynamic approaches remained unsolvable by our approach and

vice versa. This is particularly true when compared with the symmetry propagation tech-

nique developed by Devriendt et al. [19]. Hence, our goal is to explore the composition of

our algorithm with the symmetry propagation technique in a new approach that would mix

the advantages of the two classes of techniques while alleviating their drawbacks [47]. At

first sight, the two approaches appear to be orthogonal, and hence could be mixed easily.

However, as we show in the rest of this chapter, this is not completely true: both theoreti-

cal and practical issues have to be analyzed and solved to get a running complementarity.

Since the approach based on symmetry propagation (later called SPA) focuses on acceler-

ating the tree traversal and the approach based on effective symmetry breaking (later called

ESBA) targets to prune the tree traversal, the question of combining these approaches, to

solve a formula ϕ, can be reformulated as:

is it possible to accelerate the traversal while pruning the tree?

5.1.1 Theoretical foundations

To answer the previous questions, we analyze the evolution ofϕ during its solving. In ESBA,

ϕ evolves, incrementally, to an equi-satisfiable formula of the form ϕ≡ϕ∪ϕe ∪ϕd , where

ϕe is a set of injected esbps andϕd is a set of deduced clauses (logical consequences). Both

sets are modified continuously during the solving. Hence, to be able to compose ESBA

with SPA, we have to consider the symmetries of ϕ′ =ϕ∪ϕe ∪ϕd as allowed permutations

in place of those of ϕ. A first naive solution could be to recompute, dynamically, the set of

symmetries of ϕ∪ϕe ∪ϕd for each new ϕe ∪ϕd , but this would be an intractable solution

generating a huge complexity. A computationally less expensive solution would be to keep

track of all globally unbroken symmetries as the clauses of ϕe are injected during the solv-

ing process: considering formula ϕ and a set of esbps ϕe then the set of global unbroken

symmetries is:

GU S = ⋂
ωe∈ϕe

St ab(ωe )∩Gϕ

where St ab(ωe ) = {g ∈S |ωe = g .ωe } is the stabilizer set of ωe and Gϕ is the set of symme-

tries ofϕ. Sinceϕ∪ϕe |=ϕd , then GU S is a valid set of symmetries forϕ∪ϕe ∪ϕd . Then, (1)

each time a new set of esbp clauses is added, its stabilizer will be used to reduce GU S; (2)

conversely, when a set of esbp clauses is reduced1, GU S cannot be enlarged by the recov-

ered broken symmetries because of the retrieved set: at that point, we do not know which

symmetries become valid! As a consequence, the set of globally unbroken symmetries will

1In classical CDCL algorithm, this can be due to a back-jump or a restart.
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converge very quickly to the empty set. At this point, SPA will be blocked for the rest of the

solving process without any chance to recover. Therefore, this solution is of limited inter-

est in practice. We propose here to improve the aforementioned solution by alleviating the

issue cited in point (2). We first present the intuition, then we will detail and formalize it.

Consider formula ϕ′ as before. It can be rewritten as:

ϕ′ =ϕ⋃
i

(ϕe ∪ϕd ) , such that ϕe ∪ϕd =⋃
i

(ϕi
e ∪ϕi

d ) and ϕ∪ϕi
e |=ϕi

d for all i

So, GU Si = ⋂
ωe∈ϕi

e

St ab(ωe )∩Gϕ is a valid set of symmetries for the sub-formulaϕ∪ϕi
e ∪ϕi

d ,

and GU S can be obtained by GU S = ⋂
i

GU Si . If some esbp clauses are added to ϕ′, then

the new GU S is computed as described in (1). The novelty here comes with the retrieval of

some set of clauses: by keeping track of the symmetries associated with each sub-formula

(GU Si ), it is now easy to recompute a valid set of symmetries for ϕ′ when some set ϕk
e ∪ϕk

d

is retrieved. It suffices to operate the intersection on the valid symmetries of the rest of the

sub-formulas: GU S = ⋂
i 6=k

GU Si .

5.1.2 Local Symmetries

The general and formal framework that embodies the above idea is given by the following.

It first relies on the notion of local symmetries that we introduce in Definition 5.1.

Definition 5.1: Local Symmetries

Let ϕ be a formula. We define Lω,ϕ, the set of local symmetries for a clause ω, and with

respect to a formula ϕ, as follows:

Lω,ϕ = {g ∈S |ϕ |= g .ω}

Lω,ϕ is local since the set of permutations applies locally to ω. It is then straightforward to

deduce the next proposition that gives us a practical framework to compute, incrementally,

a set of symmetries for a formula (by using the intersection of all local symmetries).

Proposition 5.1

Let ϕ be a formula. Then,
⋂
ω∈ϕ

Lω,ϕ ⊆Gϕ.
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Proof. Let ϕ be a formula. Then, ∀ω ∈ ϕ,∀g ∈ Lω,ϕ,ϕ |= g .ϕ. So, ∀g ∈ ⋂
ω∈ϕ

Lω,ϕ,ϕ |= g .ϕ.

This is combined with the fact that the number of satisfying assignments for a formula is

not changed by permuting the variables of the formula, we have g .ϕ |= ϕ. Hence ϕ ≡ g .ϕ,

and g ∈Gϕ (by definition).

Using this proposition, it becomes easy to reconsider the symmetries on-the-fly: each time

a new clauseω is added to the formulaϕ, we can just operate an intersection between Lω,ϕ

and
⋂

ω′∈ϕ
Lω′,ϕ to get a new set of valid symmetries for ϕ∪ {ω}. Proposition 5.2 establishes

the relationship between the local symmetries of a deduced clause and those of the set of

clauses that allow its derivation.

Proposition 5.2

Letϕ1 andϕ2 be two formulas, withϕ2 ⊆ϕ1. Letω be a clause such thatϕ2 |=ω. Then,

(
⋂

ω′∈ϕ2

Lω′,ϕ1 )∪St ab(ω) ⊆ Lω,ϕ1

Proof. Let us consider a clauseω and a permutation g ∈ (
⋂

ω′∈ϕ2

Lω′,ϕ1 )∪St ab(ω). Since,ϕ2 |=
ω, then g .ϕ2 |= g .ω. Since ϕ1 |= ϕ2(ϕ2 ⊆ ϕ1), and g ∈ (

⋂
ω′∈ϕ2

Lω′,ϕ1 )∪St ab(ω), then we have

ϕ1 |= g .ϕ2 (from Def. 5.1). Hence, ϕ1 |= g .ϕ2 |= g .ω, and then, g ∈ Lω,ϕ1 (by definition).

5.2 Algorithm

This section shows how to integrate the propositions developed in the previous section as

the basis of our combo approach in a concrete Conflict-Driven Clause Learning (CDCL)-

like solver. First recall the algorithm of symmetry propagation used for the combination

of two approaches. CDCLSp (see Algorithm 6) implements SPA, and also has a struc-

ture similar to the one of CDCL. In this algorithm, the symmetry propagation actions are

executed by the controller component (spController) through a call to the function

symPropagation (line 6). This propagation is allowed only if the conditions are met.

Such conditions are evaluated by tracking on-the-fly the status of the symmetries. This

is implemented by functions updateSymmetries (line 17) and cancelSymmetries

(line 13).

The algorithm we propose for the composed approach is presented in algorithm 7. Let us

detail the critical points.
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1 function CDCLSymSp(ϕ: CNF formula, spController: symmetry propagation controller)
2 returns > if ϕ is SATand ⊥ otherwise
3 dl ← 0 ; // Current decision level
4 α←;;
5 while not all variables are assigned do
6 i sCon f l i ct ← unitPropagation() ∧ spController.symPropagation();
7 if i sCon f l i ct then
8 if dl = 0 then
9 return ⊥; // ϕ is UNSAT

10 ω← analyzeConflict();
11 (dl ,α) ← backjumpAndRestartPolicies();
12 ϕ←ϕ∪ {ω} ;
13 spController.cancelActiveSymmetries();

14 else
15 α←α∪ assignDecisionLiteral();
16 dl ← dl +1;
17 spController.updateActiveSymmetries();

18 return >; // ϕ is SAT

Algorithm 6: The CDCLSp algorithm. Blue (or grey) parts denote additions toCDCL.

• Line 13: when a conflict is detected, then the analyzing procedure is triggered. Ac-

cording to Proposition 5.2, the generated conflicting clause ω should be associated

with the computation of its set of local symmetries. Thus, we update the classical

analyzeConflict procedure to analyzeConflictSymSp that produces such

a set: ϕ1 contains all the clauses that are used to derive ω2. So, at the end of the con-

flict analysis, we operate the intersection of a local symmetry of these clauses to get

the set of local symmetries of ω. We can thus complete this set with the stabilizer set

(see Proposition 5.2).

In the classical algorithm of symmSAT, when a non lex-leader assignment is detected,

then the esbp generation function, generateEsbp, is called. In the new algorithm

this function is replaced by a new one calledgenerateEsbpSp. In addition to com-

puting the esbp clause ω, it produces the stabilizer set of ω3.

• Line 20: cancelActiveSymmetriesSym extends functioncancelActiveSymmetries

of Algorithm 6 with the additional reactivation of the symmetries that have been

broken (deactivated) by ESBPA. Technically speaking, each time a deduced literal

2These are clauses of the conflict side of the implication graph when applying the classical conflict anal-
ysis algorithm.

3The only allowed local symmetries in case of an esbp.
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1 function CDCLSymSp(ϕ: CNF formula, symController: symmetry controller,
2 spController: symmetry propagation controller)
3 returns > if ϕ is SAT and ⊥ otherwise
4 dl ← 0 ; // Current decision level
5 α←;;
6 while not all variables are assigned do
7 i sCon f l i ct ← unitPropagation() ∧ spController.symPropagation();
8 symController.updateAssign(α);
9 i sReduced ← symController.isNotLexLeader(α);

10 if i sCon f l i ct ∨ i sReduced then
11 if dl = 0 then
12 return ⊥; // ϕ is UNSAT

13 if i sCon f l i ct then

14 〈ω,L = ⋂
ω′∈ϕ1

Lω′,ϕ1 ∪St ab(ω)〉← analyzeConflictSymSp();

15 else

16 〈ω,L = St ab(ω)〉← symController.generateEsbpSp(α);

17 (dl ,α) ← backjumpAndRestartPolicies();
18 ϕ←ϕ∪ {ω} ;
19 symController.updateCancel(α);

20 spController.cancelActiveSymmetriesSym() ;

21 spController.updateLocalSymmetries(L);

22 else
23 α←α∪ assignDecisionLiteral();
24 dl ← dl +1;

25 spController.updateActiveSymmetriesSym() ;

26 return >; // ϕ is SAT

Algorithm 7: The CDCLSymSp algorithm. Additions derived from MiniSym and
CDCLSp are reported in red and blue (or gray). Additions due to the composition of
the two algorithms are reported with a gray background.
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is unassigned, all symmetries that became inactive because of its assignment (see

updateLocalSymmetries andupdateActiveSymmetriesSym functions be-

low) are reactivated.

• Line 21: updateLocalSymmetries is a new function of spController. It is

responsible of updating the status of the manipulated symmetries so that only those

respecting Proposition 5.1 are active each time the symPropagation function is

called. Technically speaking, each symmetry of the complement set (to Gϕ) of the set

L is marked inactive (it is a broken symmetry), if it is not already marked so. Here, the

asserting literal of clause ω becomes responsible of this deactivation.

• Line 25: updateActiveSymmetriesSym extends functionupdateActiveSymmetries

of algorithm 6. The reason clause,ωl , of each propagated literal, l , by theunitPropagation

function is analyzed. Each symmetry of the complement set (to Gϕ) of the set local

symmetries ofωr is marked inactive, if it is not already marked so. l becomes respon-

sible of this deactivation.

5.2.1 Illustrative Example

Consider the following permutation G = {g1 = (x1x2)(x3x4), g2 = (x3x4)(x5x6)}, the lexico-

graphic ordering relation of variables with > < ⊥ and the current assignment α = {¬x7}.

Suppose the permutation g1 already generated the esbp ωe = {x1¬x2} then the associated

local symmetry is g2 because it stabilizes ωe (g2.ωe =ωe ). Then, suppose a conflict occurs

and the resulting clause is ωd = {x4 x7}. In the conflict analysis, this clause is deduced by

the original clauses and ωe . So, it has the same valid symmetries as ωe . As g2.ωd = {x3 x7}

is an assertive clause and g2 is a valid permutation for this clause, SP can propagate x3 (the

symmetrical of ωd ).

5.2.2 Implementation

We have implemented our combo on top of the minisat-SPFS4 solver, developed by the

authors of SPA. This choice has been influenced by two points: (1) take advantage of the

expertise used to implement the original SPA method; (2) the easiness of integrating our

implementation of ESBA to any CDCL-like solver (because it is an off-the-shelf library5).

However, this choice has the drawback of doubling the representation of symmetries. This

4https://github.com/JoD/minisat-SPFS
5This library is released under GPL v3 license, see https://github.com/lip6/cosy.

https://github.com/lip6/cosy
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Benchmark minisat-Sp minisat-Sym minisat-SymSP
Generators 0-20 (704) 194 197 198
Generators 20-40 (136) 33 34 34
Generators 40-60 (141) 28 28 29
Generators 60-80 (168) 65 64 65
Generators 80-100 (51) 28 34 34
Generators >100 (200) 58 59 60
TOTAL no dup (1400) 406 416 420

Table 5.1: Comparison of the number of SAT problems solved by each approach.

Benchmark minisat-Sp minisat-Sym minisat-SymSP
Generators 0-20 (704) 233 220 226
Generators 20-40 (136) 50 54 54
Generators 40-60 (141) 75 83 83
Generators 60-80 (168) 11 11 10
Generators 80-100 (51) 11 11 11
Generators >100 (200) 90 109 107
TOTAL no dup (1400) 470 488 491

Table 5.2: Comparison of the number of UNSAT problems solved by each approach.

can be a hard limit to treat certain big problems from the memory point of view. The im-

plemented combo solver can be found at:

https://github.com/lip6/minisat-SymSp

5.3 Evaluation

This section compares our combo approach against ESBA and SPA. All experiments have

been performed with a modified version of the well-knownMiniSAT solver [22]: minisat-Sp,

for SPA; minisat-Sym, for ESBA; and minisat-SymSP, for the combo. Symmetries of

the SAT problems have been computed by bliss [30]. We selected from the last seven

editions of the SAT contest [29], the CNF problems for which bliss finds some symme-

tries that could be computed in at most 1000s of CPU time. We obtained a total of 1400

SAT problems (discarding repetitions) out of the 4000 proposed by the seven editions of

the contest (from 2012 to 2018). All experiments have been conducted using the following

settings: each solver has been run once on each problem, with a time-out of 7200 seconds

(including the execution time of symmetry generation) and limited to 64 GB of memory.

Experiments were executed on a computer with an Intel Xeon Gold 6148 CPU @ 2.40 GHz

featuring 80 cores and 1500 GB of memory, running a Linux 4.17.18, along with g++ com-

piler version 8.2. Tables 5.1 and 5.2 present the obtained results for SAT and UNSAT prob-

https://github.com/lip6/minisat-SymSp
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lems respectively. The first column of each table lists the classes of problems on which we

operated our experiments: we classify the problems according to the number of symme-

tries they admit. A line noted “generators X-Y (Z)” groups the Z problems having between

X and Y generators (i.e. symmetries). Other columns show the number of solved problems

for each approach. Globally, we observe that the combo approach can be effective in many

classes of symmetrical problems. For SAT problems, the combo has better results than the

two other approaches (4 more SAT problems when compared to the best of the two others)

and this is despite the significant cost paid for the tracking of the symmetries’ status. When

looking at the UNSAT problems, things are more mitigated. Although, the total number of

solver problems is greater than the best of the two others, we believe that the cost for track-

ing the symmetries’ status has an impact on the performances. This can be observed on the

first and last lines of Tables 5.2: when the number of generators is small (first line), the ESBA

benefits greatly from the SPA. When the number of generators is high (last line), we see a

small loss of the combo with respect to ESBA. It is also worth noting that the combo ap-

proach solved 8 problems that could not be handled by ESBA nor SPA. Table 5.3 compares

Solvers PAR2 (1400) CTI (825)
minisat-SymSp 5,653,089 614,856
minisat-Sym 5,682,892 584,868
minisat-Sp 6,026,840 612,638

Table 5.3: Comparison of PAR-2 and CTI times (in seconds) of the global solving.

the different techniques with respect to the PAR-2 and the CTI time measures. PAR-2 is the

official ranking measure used in the yearly SAT contests [29]. CTI measures the Cumulative

solving Time of the problem Intersection (i.e. 825 problems solved by all solvers). While

PAR-2 value gives a global indication on the effectiveness of an approach, CTI is a good

measure to evaluate its speed compared to other approaches. Hence, we observe that the

combo has a better PAR-2 score, and this shows its effectiveness. However, it is the less fast

when coming to solved intersection. This is clearly due to the double cost paid for tracking

the symmetries’ status (one for ESBA and the other for SPA). Having a unified management

of symmetries tracking would probably reduce this cost.

To go further in our analysis, we also compared the ratio between the number of decisions

and the number of propagations. This is a fair measure to assess the quality of a SAT solving

approach: if the ratio is small, then this means that the developed algorithm is producing
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Figure 5.1: Comparison of the ratio between the number of decisions and the number of
propagation for the combo w.r.t. ESBA and SPA.

more deduced facts than making guesses, which is the best way to conclude quickly on

a problem! The scatter plots of Fig.5.1 show a comparison between the aforementioned

ratios. When comparing minisat-Sp to minisat-SymSp (left-hand side scatter plot),

we observe that the ratio goes in favor of minisat-Sp for the problems solved by both

approaches. This is an expected result since the main objective of SPA is to minimize the

number of decisions while augmenting the number of propagation. What is important to

underline here is highlighted on the right-hand side scatter plot: on a large majority of

UNSAT problems, the ratio goes in favor of minisat-SymSp w.r.t. minisat-Sym. This

confirms the positive impact of SPA when applied in conjunction with ESBA.
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CONCLUSION AND FUTURE WORKS

6.1 Conclusion

This thesis presented different approaches to increase the performance of solving the Boolean

satisfiability problem (SAT) (see Chapter 2) in presence of symmetries. Symmetries are

common and can be found in different classes of problems like graph coloring, FPGA rout-

ing, etc. The presence of symmetries in a problem hinders the performance of the solver. It

forces it to explore every symmetric branch of the search tree thus facing to a combinatorial

explosion. Some trivial question for a human, like: Can 100 pigeons fit in 99 holes?, where

pigeons (holes) are symmetric, becomes impossible for a state-of-the-art solver. To deal

with symmetries in SAT problems, two approaches exists (see Chapter 3). The first one,

called static symmetry breaking approach, acts as a preprocessor augmenting the initial

problem to prune symmetrical assignments of the search tree. The second one called dy-

namic symmetry breaking, acts during the solving. Like in the static approach, it prunes the

symmetrical assignments of the search tree or accelerates its traversal using symmetrical

facts. Each approach has its weaknesses and strengths. However, some highly symmetrical

instances cannot be solved with state-of-the-art approaches. In this thesis, we improved

current symmetry breaking approaches to deal with more symmetric formulas.

Our first symmetry based approach (see Chapter 4) introduced the notion of effective sym-

metry breaking predicates (esbp) that borrows the principle of static symmetry breaking

approach but operating dynamically [46]. This approach overcomes the combinatorial ex-

69



70 CHAPTER 6. CONCLUSION AND FUTURE WORKS

plosion caused by the pre-generation of sbp in the state-of-the-art static approaches. An

extensive evaluation shows that our approach improves on state-of-the-art static symme-

try breaking approaches. The method is encapsulated in a library called cosy and can be

integrated easily to any CDCL-like SAT solver. It is released under GPL-v3 license and is

available athttps://github.com/lip6/cosy. Though easy to use and effective, this

method cannot handle some problems that are easily solved by other dynamic symmetry

breaking approaches like Symmetry Propagation (SP) [19]. Chapter 5 presented our second

contribution that combines two dynamic symmetry breaking approaches: our first algo-

rithm with the SP approach. In terms of performance, the combined version does not bring

a big difference compared to the use of esbp. Nevertheless it can solve few instances that

cannot be solved with previous approaches. Overall, this work answers the precise ques-

tion: "Is it possible to accelerate the traversal while pruning the tree with symmetries?". We

clearly did show that the answer is yes, thanks to the notion of local symmetries.

6.2 Perspectives

The contributions of this thesis have allowed to treat new instances of SAT problems by

exploiting symmetries. However there are many exciting extensions to this work that could

be investigated.

A limit of our current approach is the assumption that we can find symmetries in a rea-

sonable time. Some models challenge this assumption, either because symmetry compu-

tation is too difficult or because the model exhibits no global symmetries. However our

algorithms remain correct even if we only consider a subgroup of symmetries, this simply

leads to exploring several representatives per equivalence class. We can also support grad-

ual introduction of symmetries during the CDCL execution, but symmetries that have been

considered cannot be easily removed. Therefore we could develop variants of CDCL-sym

that opportunistically detect and augment symmetries on-the-fly. A more challenging ex-

tension would be to exploit partial symmetries, that do not exist in the original problem,

but may appear as variables are assigned and the set of clauses is simplified.

While most SAT solvers use a sequential algorithm, recent tools such as PainLess [36] try to

benefit from massively multi-core modern architectures. There are two main approaches

to parallel SAT solving: portfolio where solvers executing diverse strategies on the whole

problem are competing to answer first and divide-and-conquer where each solver is given

a different sub-problem. In a portfolio context, it clearly makes sense to run our solver

as one of the strategies since there are instances only we can solve currently. We could

https://github.com/lip6/cosy
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also start the SAT solving in parallel with the symmetry computation, and integrate the

symmetries as soon as they are available. Finally a more challenging perspective consists in

guiding the divide and conquer algorithm to help obtain sub-problems that exhibit (partial)

symmetries, even if there are no global symmetries in the original problem.
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