
HAL Id: tel-03128234
https://theses.hal.science/tel-03128234

Submitted on 2 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed resource allocation for virtual networks
Guillaume Fraysse

To cite this version:
Guillaume Fraysse. Distributed resource allocation for virtual networks. Distributed, Parallel, and
Cluster Computing [cs.DC]. Sorbonne Université, CNRS, LIP6, Paris, France, 2020. English. �NNT :
�. �tel-03128234�

https://theses.hal.science/tel-03128234
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

pour l’obtention du grade de
DOCTEUR de SORBONNE UNIVERSITÉ

Spécialité : Informatique
École Doctorale Informatique, Télécommunications et Électronique (ED130, Paris)

Distributed resource allocation for virtual
networks

Auteur: Guillaume FRAYSSE

Soutenue le 18 décembre 2020 devant le jury composé de:

Sébastien Monnet Rapporteur Professeur, Université Savoie Mont Blanc
François Taiani Rapporteur Professeur, Université de Rennes 1

Anne Fladenmuller Examinatrice Mâıtresse de Conférences (HDR), Sorbonne Université
Djamal Zeghlache Examinateur Professeur, Telecom SudParis

Pierre Sens Directeur de thèse Professeur, Sorbonne Université
Jonathan Lejeune Encadrant Mâıtre de Conférences, Sorbonne Université
Julien Sopena Encadrant Mâıtre de Conférences, Sorbonne Université
Imen Grida Ben Yahia Encadrante Orange

Résumé

Les dernières évolutions des infrastructures réseaux permettent d’apporter plus d’élasticité
et de dynamicité à la gestion des réseaux. La 5eme génération de réseaux (5G) permet
la création de châınes ordonnées de fonctions sur des réseaux virtuels (”slices”) qui peu-
vent être multi-domaines, voire multi-opérateurs. Les solutions d’orchestration centralisée
habituellement trouvées dans les réseaux peuvent ne pas répondre à certains des nouveaux
cas d’usage. Cette thèse plaide pour l’opportunité d’une solution distribuée au problème
d’allocation de ressources pour ces châınes ordonnées de fonctions.

Un nouvel algorithme distribué, découpé en deux parties distinctes, est proposé. La
première partie calcule un chemin en prenant en compte les contraintes sur l’ordre des
ressources et leur placement sur la topologie réseau. La seconde alloue les ressources
en utilisant des horloges vectorielles pour l’ordonnancement des requêtes et en utilisant
un mécanisme de préemption pour le faire respecter. Plusieurs heuristiques sont pro-
posées pour chacune de ces parties. Une méthode numérique est proposée pour comparer
les performances de algorithme à l’espérance mathématique. Les performances sont en-
suite comparées avec celles de quatre algorithmes de l’état de l’art sur une plateforme
d’évaluation basée sur le simulateur SimGrid [Cas+14]. Les résultats montrent jusqu’à
20% d’amélioration du taux d’utilisation moyen des ressources, sans dégrader les autres
métriques mesurées.

Abstract

The recent evolution of network infrastructures allows for more elasticity and dynamic-
ity to network management. The 5th generation of networks (5G) allows the creation
of Chains of Network Functions on top of virtual networks (”slices”) that can be multi-
domain, or even multi-operators. Centralised solution usually used for network manage-
ment might not be adequate for these newer use cases. This thesis makes the case for
the opportunity of a distributed solution to the problem of the allocation of resources for
these sorted chains of functions.

A new distributed algorithm, split in two distinct part, is introduced. The first part
computes a path that takes into account the constraints on the order of the resources and
their placement on the network topology. The second part allocates the resources using
vectors of counters for the scheduling or requests and a preemption mechanism to enforce
it. Several heuristics are proposed for both parts. A numerical method is proposed to
compare the performance of the algorithm to the expected value. The performances are
then compared with those of four algorithms from the state of the art on an evaluation
platform based on the SimGrid simulator [Cas+14]. Results shows an improvement of up
to 20% of the Average Usage Rate while not degrading the other metrics.

Contents

Abstract 1

List of Acronyms 4

1 Introduction 5
1.1 Context and motivation . 5
1.2 Contributions . 6
1.3 Structure of this manuscript . 6
1.4 Publications . 8

2 Background and problem statement 9
2.1 The convergence of telecommunications and computer networks 10
2.2 Evolution of the architecture of services . 11
2.3 Multi-domain services . 16
2.4 Resource allocation problems in networks 17
2.5 Conclusion . 24

3 State of the art 25
3.1 Definition and model for distributed resource allocation 26
3.2 Distributed algorithms for the allocation of resources: state of the art and

taxonomy . 28
3.3 Performance evaluation and comparison 35
3.4 Conclusion . 38

4 A distributed algorithm for the allocation of resources 39
4.1 Variables of nodes and messages . 40
4.2 Path computation . 42
4.3 Allocation . 45
4.4 Examples . 52
4.5 Heuristics . 59
4.6 Algorithm Complexity . 61
4.7 Conclusion . 62

5 Performance analysis 63
5.1 Metrics and reference configuration . 64
5.2 Experimental environment . 65
5.3 Systems with one instance of n types of resources 66
5.4 System with m instances of n types of resources 69
5.5 Computing the expected value for the Average Usage Rate 70

2

5.6 Conclusion . 76

6 Experimental comparison with state of the art algorithms 78
6.1 System setup . 80
6.2 Dijkstra’s Incremental algorithm . 80
6.3 Chandy-Misra Drinking Philosophers Problem (DrPP) algorithm 87
6.4 Rhee’s algorithm . 90
6.5 Bouabdallah-Laforest algorithm . 96
6.6 Summary . 103
6.7 Conclusion . 105

7 Conclusion 106
7.1 Contributions . 106
7.2 Limitations and future work . 107

Bibliography 110
Bibliography Chapter 2 . 110
Bibliography Chapter 3 . 112
Bibliography Chapter 4 . 124
Bibliography Chapter 5 . 125
Bibliography Chapter 6 . 126
Bibliography, others . 127

List of Figures 131

List of Tables 132

3

List of Acronyms

3GPP 3rd Generation Partnership Project. 12, 14, 15

API Application Programming Interface. 5, 13–15, 20, 21

CS Critical Section. 8, 19, 26–29, 31–34, 37, 42, 43, 45, 47, 50, 52, 62, 65, 76, 81–84,
86–95, 97–102

DiPP Dining Philosophers Problem. 30–32, 34, 35, 37, 38, 78, 80, 82, 86, 87, 89, 90, 129

DrPP Drinking Philosophers Problem. 3, 31, 32, 34, 36–39, 78, 79, 86–90, 94, 95, 127,
129

ETSI European Telecommunications Standards Institute. 12, 18, 19

FIFO First In First Out. 40, 50

IaaS Infrastructure as a Service. 13, 19

IoT Internet of Things. 10, 15

NFV Network Functions Virtualisation. 4, 5, 12–19

ONOS Open Network Operating System. 20, 21, 23

SDN Software-Defined Networking. 5, 9, 12–16, 19–23, 126

VM Virtual Machine. 12, 16, 19

VNF Virtual Network Function. 5, 9, 12–19, 39, 106

4

Chapter 1

Introduction

I am Groot!

Groot, Guardians of the Galaxy

This thesis advocates a distributed management of networks in some specific use cases.
It addresses the problem of the allocation of resources for network slices. The main
contribution is a new distributed algorithm for the allocation of resources in systems with
multiple instances of multiple types of resources. Its objective is to maximise the usage
rate of the resources. Multiple heuristics are proposed for this algorithm. These heuristics
are evaluated and compared to algorithms from the state of the art with experiments
run on a simulator based on SimGrid [Cas+14]. A numerical method is proposed to
compute the expected value for the usage rate of the resources and is used to evaluate
the performance of the algorithm.

1.1 Context and motivation

Telecommunications networks are geographically distributed, access points such as radio
antennas, fibre optics terminators or even Low Earth orbiting satellites are located all
over the world (or in space) to enable network access to every users. However, networks
are typically managed by a logically centralised component. In the standardised archi-
tectures used by almost all network operators, each access point sends data to what is
called the Core Network that is typically physically distributed to increase the network
resiliency. It is logically centralised and includes a centralised database, for example the
Home Subscriber Server (HSS) found in 3G and 4G mobile networks or the Unified Data
Management (UDM) in 5G. In parallel, virtualisation is offering more and more elasticity
to infrastructures, giving room for new paradigms for network services. The telecommu-
nications industry has introduced the Network Functions Virtualisation (NFV) standard to
leverage them. NFV enables the management of chains of network functions not only
of stand-alone functions. This introduces a constraint on the order of the functions in
the chains. Network slicing is another of these new paradigms that is introduced in
5G. Slices are virtual networks that can be instantiated across multiple network domains
or even across multiple network providers. A centralised management might not always
be a good fit for all the new multi-domain services. Having multiple providers side by
side, each with their own centralised manager, and each managing a subset of the overall
resources, might lead to starvation or scalability issues.

5

1.2 Contributions

This thesis makes the case that the allocation of resources for multi-domain network
slices can be likened to a generalisation of the Mutual Exclusion problem to systems with
multiple instances of multiple types of resources. First, the allocation of ordered chains of
network functions is modelled as an allocation problem in a system with multiple instances
of multiple types of resources.

A new distributed modular algorithm for the allocation of resources in systems with
multiple instances of multiple types of resources is proposed. Few distributed algorithms
from the state of the art target these systems and none of them consider the constraint
on the order in which resources are used. The proposed algorithm takes this constraint
into account. Its objective is to maximise the usage rate of network resources while
trying to minimise the number of messages necessary. The algorithm is composed of two
consecutive subroutines. The first is the path computation subroutine that select instances
in the network that satisfy the constraint on the order and computes the path connecting
them. The second is the allocation subroutine that allocate the selected resources. The
allocation follows a total order of the requests that is computed from the allocation vectors
of the request. These allocation vectors are composed of counter values set by each of the
selected instance. The algorithm includes a preemption mechanism to enforce this order
when multiple requests wants to allocate a same node concurrently.

Heuristics are proposed for each of the two subroutines of the algorithm. Heuristics for
the path computation offer different balancing of the load across instances to maximise the
usage rate. The order followed to allocate the resources during the allocation subroutine
has a direct influence on the performance of the algorithm. Three heuristics with different
allocation orders are proposed.

An experimental evaluation of the performance of the heuristics for both subroutines of
the algorithm is presented. The performance of the allocation subroutine is compared to
the mathematical expected value for the usage rate in the experimental settings. The per-
formance is also compared with four distributed algorithms for the allocation of resources
from the state of the art. Results show that, using the best heuristic, the algorithm offers
up to a 20% increase of the Average Usage Rate from the best performing algorithm from
the state of the art on this metric. It also shows that the same heuristic does not degrade
the performance on the other metrics.

1.3 Structure of this manuscript

Chapter 2 gives some background on the evolution of networking infrastructures and
some of the newest use cases that they enable. It introduces three of those evolutions.
The first evolution described is the concept of Chains of Virtual Network Functions (VNFs)
that allows the management of an ordered set of VNFs instead of a single VNF. It then de-
scribes Software-Defined Networking (SDN) a novel approach to network management that
introduces Application Programming Interfaces (APIs) to dynamically manage networks.
Finally it introduces network slices, a recent architecture proposed to have multiple vir-
tual networks on top of NFV infrastructures. The problem addressed in this work is the
allocation of resources in systems with multiple instances of multiple types of resources.
This chapter describes the problem and introduces the model that is used throughout this
thesis. It also describes a SDN use case that shows that stacking centralised managers
might not be a fitting solution to manage distributed resources.

6

Chapter 3 details the state of the art of distributed solutions to the allocation of
resources problem. Distributed architectures have been proposed since at least the 1960s.
A seminal paper on this topic has been authored by E. W. Dijkstra in 1965 [Dij65]. He
defined and solved the Mutual Exclusion problem in which multiple nodes (computers)
need to use a single resource (for example a printer). In these settings a single node can
use the resource at any given time and all the nodes need to use it eventually. Later
works extended the problem for systems with multiple types of resources or with multiple
instances of a single type of resources. A popular teaching tool for this problem is the
Dining Philosophers Problem where philosophers sit around a table and have to decide
who has the right to eat in a system where there is not enough silverware for everyone.
These solutions have been proposed for network problems like the allocation of radio
spectrum or Mobile Ad Hoc Networks. The work presented here tries to make the case
that this class of solution could be suited for some of the newest use cases in networks.

Capitalising on the previous efforts listed in this state of the art, a new distributed
modular algorithm for the allocation of resources is introduced in Chapter 4. This algo-
rithm addresses the constraint of the order of the resources. Its objective is to maximise
the usage of the resources for network operators. It is composed of two subroutines. A
path computation subroutine that computes a path with instances of the requests type
that respects the order. An allocation subroutine that allocates the resources according
to a total order of the requests. This total order is computed from the counter values
read on the nodes when computing the path, and then set in an allocation vector specific
to each request. An algorithm is not a Swiss Army knife that can work for all settings,
this is why several heuristics are proposed for both subroutines and their advantages and
drawbacks listed. These heuristics and the algorithm are thoroughly evaluated in the last
two chapters.

Chapter 5 shows the results of the experimental evaluation of the algorithm using the
SimGrid simulator [Cas+14] and Open MPI [Gab+04]. The heuristics of the algorithm
are compared with each other on three metrics: the Average Usage Rate, the Average
Waiting Time and the Average Number of Messages. Maximising the usage of the re-
sources raises the question of how high it could theoretically go, so a numerical solution
is proposed to compute the expected value in the experimental settings, and compare it
to the performance of the algorithm. Comparing the heuristics of the path computation
subroutine show that load-balancing across the different instances of a type of resources
improves the Average Usage Rate while degrading the length of the path. The heuristics
of the allocation subroutine show the importance of the order followed to allocate the
resource and that the Average Usage Rate can be improved when the probability that
another request tries to allocate one of the instance is taken into account.

Then, Chapter 6 details four algorithms from the state of the art with different so-
lutions to the problem. Dijkstra’s Incremental algorithm [Dij71], while being the first
algorithm proposed to solve a neighbouring problem with static requests, can be easily
adapted to the model and offers the best performance of the four. Chandy-Misra al-
gorithm [CM84] was the first to formulate and solve the allocation of multiple types of
resources, but is not adequate for systems where the possible requests are not known a
priori. Rhee’s modular algorithm [Rhe95] is based on a model close to the one modelled
in this work. Bouabdallah-Laforest algorithm [BL00] is the most recent algorithm to im-
prove the performance in systems with one instance of multiple types of resources. Their
performances are compared with that of the proposed algorithm. Results show that the
best heuristic for the allocation subroutine offers an improvement from these algorithms

7

in the experimental settings. The best heuristic allows an increase of up to 20% of the
Average Usage Rate and does not degrade the two other metrics.

Finally, the general conclusion enumerates the contributions of this work and lists the
current limitations, as well as possible future work.

1.4 Publications

[Fra+18b]

G. Fraysse et al. “Towards Multi-SDN Services: Dangers of Concurrent
Resource Allocation from Multiple Providers”. In: 2018 21st Confer-
ence on Innovation in Clouds, Internet and Networks and Workshops
(ICIN), short paper. 2018 21st Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN). Feb. 2018, pp. 1–5

[Fra+18a]

G. Fraysse, J. Lejeune, J. Sopena, and P. Sens. “Mapping the Allo-
cation of Resources for 5G Slices to the K-MUTEX with n Instances
of m Resources Problem”. In: 2018 14th International Conference on
Network and Service Management (CNSM), short paper. Nov. 2018,
pp. 318–322

[Fra+20]

Guillaume Fraysse, Jonathan Lejeune, Julien Sopena, and Pierre Sens.
“A Resource Usage Efficient Distributed Allocation Algorithm for 5G
Service Function Chains”. In: Distributed Applications and Interopera-
ble Systems. Ed. by Anne Remke and Valerio Schiavoni. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2020,
pp. 169–185

8

Chapter 2

Background and problem statement

Contents
2.1 The convergence of telecommunications and computer net-

works . 10

2.2 Evolution of the architecture of services 11

2.2.1 Chains of VNFs . 13

2.2.2 SDN . 13

2.2.3 Network slicing . 15

2.3 Multi-domain services . 16

2.3.1 Multi-domain architectures . 16

2.3.2 A 5G multi-domain use case: eHealth telemedecine 16

2.4 Resource allocation problems in networks 17

2.4.1 Problem statement and model 18

2.4.2 Solutions for the resource allocation problem 19

2.4.3 Problems of concurrent resource allocation from multiple providers 20

2.5 Conclusion . 24

If you’re havin’ Perl problems,
I feel bad for you, son
I got 99 problems,
So I used regular expressions
Now I have 100 problems

Randall Munroe,
XKCD #1171, ”Perl Problems”

This first chapter explains the background on the evolution of network infrastructures
that led to the formulation of the problem statement addressed in this work. The first
section is an overview of the evolution of networks since the first telecom networks to
the fifth, and currently last, generation of networks (5G). Then the next section has a
closer look on some of the latest evolution of network infrastructures: Software-Defined
Networking (SDN), network slicing and chains of Virtual Network Functions (VNFs). Ad-
ditionally it details an end-to-end use case that leverages all these evolutions. The last

9

section details the resource allocations problem statement and the model used through-
out this thesis. It also showcases centralised solutions are not always relevant and why a
distributed solution, such as the one detailed in the next chapters, can be an option.

2.1 The convergence of telecommunications and com-

puter networks

The first networks, retroactively called Plain Old Telephony System (POTS), introduced
at the end of the nineteenth century (1876) relied on analogue transmission. They were
initially used for interpersonal voice calls. The most famous image of this is the very first
call made by Alexander Graham Bell to his assistant Thomas Watson. Almost a century
later, the first generation of cellular networks (1G) appeared in the late 1970s in Japan,
it was also based on analogue transmission between the handsets and the radio towers.
Figure 2.1 gives an overview of the evolution of networks.

Interpersonal voice calls remained the main service offered until these networks started
to be replaced by networks based on digital transmission even if other services, such as
fax, started to appear. Fixed telecom networks moved to the Integrated Services Digital
Network (ISDN) standard, first deployed in 1988 in the United States. ISDN made it
easier to offer additional services like voicemail, conference calls, telephone exchanges for
home and enterprise customers.

Mass adoption of cellular networks started in the 1990s when the Global System for
Mobile Communications (GSM) standardised the 2nd Generation (2G) of mobile networks
that relies on digital transmission. 2G at launch allowed interpersonal voice calls using a
circuit-switched network similar to fixed networks. In circuit-switched networks, a circuit
is dedicated to the communication between the two endpoints.

The idea to interconnect computers arose in the late 1950s and was enabled by the
conception of new packet-switched networks. In packed-switched networks the data is
grouped in packets and each packet has a header that allows the identification of the
recipient and of the packet route to it. In the late 1960s the Defense Advanced Research
Projects Agency (DARPA) began working on what would eventually become the Internet
to interconnect computers networks. The IP and TCP protocols were both described in
1974 and are still the backbone of the World Wide Web. In 2020 most of the internet still
relies on the version 4 of the IP protocol (IPv4) that has been around since 1981 [Pos81].

At this point telecom networks, mainly used for voice calls, and computer networks
relied on very different technologies. Even when telecom networks moved to digital trans-
mission they still used a whole set of network protocols different from the TCP/IP stack of
computer networks. However these networks could use common physical layers, and it be-
came more and more common for these networks to share copper or fibre optic lines. The
introduction of the Digital Subscriber Line (DSL) technology allowed to use the same cop-
per pair to transmit both ISDN and DSL data, by using different frequencies than ISDN.
DSL was introduced once the cost allowed it in the late 1990s to transmit data between
subscribers most notably to provide Internet interconnection. Similarly wireless and fixed
telecom networks could share parts of a common backbone, the wireless components of
the Radio Access Network are only some of the parts of a cellular networks and can be
connected to other nodes of the networks with landlines.

Efforts to standardise how to make voice calls using computers and computer networks
started in the late 1990s and resulted in the ITU Telecommunication Standardisation Sec-

10

tor (ITU-T) H.323 [ITU96] and Internet Engineering Task Force (IETF) Session Initiation
Protocol (SIP) [HSS99] protocols as the first standards for Voice over IP (VoIP), respec-
tively in 1996 and 1999.

Access to the internet from Cellular Networks was introduced with General Packet
Radio Service (GPRS) in 2000 on 2G networks. This introduced an additional packet-
switched network in mobile networks that were only circuit-switched before that. The next
major evolution appeared with 4G networks. 4G was the first cellular networks technology
to introduce VoIP on the packet-switched network, with Voice over LTE (VoLTE). This
allowed future telecommunications networks to rely only on packet-switching both for
voice and data services. The first commercial VoLTE service was launched in 2012 in
Dallas (Texas, United States) [Inc12].

Slowly computer and telecommunications networks have converged to use common
network technologies. All communications have moved, or are moving, to IP networks and
circuit-switched networks are becoming an artefact of the past. The latest generation of
Telecommunication Networks, 5G networks, now tries to consolidate all of these evolutions
to enable VoIP communications, access to IP networks from mobile phones as well as other
endpoints such as computers, Internet of Things (IoT) sensors . . .

This evolution also can be seen on the network infrastructures. Even if telecom net-
works have always included computing elements (such as processors, memory, . . .) they
used to be based on dedicated hardware due to the specificity of the protocols and services
that were used only in the telecom world. The main service node of the 2G/3G voice net-
works is the Mobile Switching Center (MSC). A typical MSC from the 1990s or 2000s was
composed of a large number of specialised processors such as Digital Signal Processing
(DSP) for the treatment of the signal. New network functions can for the most part be
run on what is referred to as Customer of the Shelf (COTS) hardware, the same type of
servers that are used by other industries requiring computing power. COTS hardware is
mostly based on x86 processors.

2.2 Evolution of the architecture of services

Since the time when telecommunications and computer networks started to rely on the
same IP technologies and COTS hardware, their infrastructure has evolved and started to
converge too. In 2012 the European Telecommunications Standards Institute (ETSI), an in-
dustry forum composed of Network Operators, has standardised NFV [ISG14] to leverage
the recent evolution in computing and IP networking infrastructures: the virtualisation
of computing resources and the programmability and management functions offered
by the Cloud Computing paradigm, and Software-Defined Networking (SDN). This
evolution was introduced during the lifespan of 4G but 5G, the fifth generation of mobile
networks, is the first to include these evolutions from the start.

Telecommunication operators, or network service providers, host NFV infrastructures
that are composed of:

� Chains of Virtual Network Functions (VNFs): a Network Function is the unitary
component of a NFV network. Common VNFs can be a switch, a router, a firewall
or other security equipment. In the case of network service providers these services
are standardised by the 3rd Generation Partnership Project (3GPP), for example in
3G and 4G networks the Home Subscriber Server (HSS) is the main user database.
These functions are called VNF in the NFV context because they are virtualised.

11

digital transmission

analog transmission

F
ix

e
d

N
e
tw

o
rk

s

W
ire

le
ss

N
e
tw

o
rk

s

1876

2020

2015

2010

2005

2000

1995

1990

1985

1980

1975

1970
POTS
Deployment of the
first phone lines using
analog transmissions

IPv4

ISDN
Fixed lines use

digital transmission
- First transatlantic

optical fibre

H.323
First VoIP

standardSIP
VoIP standard still
mainly used in 2020

1G
Phone calls over
analog wireless

cellular technology

2G
Phone calls over
digital wireless

cellular technology

GPRS
Packet-switched

data standard:
Internet access

from mobile phones

3G

LTE 4G

VoLTE
VoIP Mobile

Phone calls over
packet-switched network,

using SIP

5G

Figure 2.1: Evolution of Telecom networks

12

Some use cases consider chains of VNFs, as detailed below.

� A virtualised infrastructure that leverages Cloud and SDN technologies. This allows
to run the Virtual Machines or containers that host the VNF. SDN is detailed in more
details in Section 2.2.2.

� Multiple slices or parts of slices. Slices are virtual networks running on top of one,
or more, NFV infrastructure(s), they are introduced in Section 2.2.3.

2.2.1 Chains of VNFs

NFV infrastructures are composed of multiple VNFs. Allocation of a single VNF is not
always sufficient, many use cases require multiple VNFs to inter-operate. To this end, in
2013 the ETSI NFV Industry Specification Group (ISG) identified VNF Forwarding Graphs
[ISG13] as a use case for NFV. A VNF Forwarding Graph defines a chain of VNFs, i.e., the
sequence of VNFs that packets traverse and are analogous to the connection with cables
of physical appliances.

Figure 2.2 shows two chains of VNF, in blue and green, in a system where three VNFs
are available: a firewall (FW), an Intrusion Detection System (IDS) and a load-balancer
(LB). The red chain uses successively the FW, IDS and LB. The blue chain only uses the
FW and LB.

Server

NFV infrastructure

FW IDS LB

Figure 2.2: Example of Service Functions Chaining: two chains in red and blue

The technology’s capabilities mean that a large number of virtual VNFs can be con-
nected together in a NFV environment. Because it’s done in software using virtual circuits,
these connections can be set up and torn down as needed with service chain provisioning
through the NFV orchestration layer.

2.2.2 SDN

Cloud Computing offers abstractions of computing infrastructures through the exposition
of APIs by the Infrastructure as a Service (IaaS) orchestrator. Likewise SDN offers abstrac-
tion of network resources and network services through a NorthBound API exposed
by a SDN controller. Origins of SDN lies in the observation [Kre+15; Ope16] that IP
networks are vertically integrated by vendors in their hardware middle-boxes (switches,
routers, ...). Both control plane and forwarding plane (also called data plane, or user
plane) are bundled. The control plane is the part of the network component in charge of
the service logic. The forwarding plane is the part in charge of forwarding the network
packets. The acronym SDN first appeared in a 2009 article [Gre09] to define the works
done at Stanford University that led to the OpenFlow protocol as described by McKe-
own et al. in their seminal white-paper in 2008 [McK+08]. They consider that this strong
integration has hindered innovation and evolution of networking architecture and made

13

managing IP networks increasingly complex. Kreutz et al. [Kre+15] cite the example of
the very slow transition of IPv4 to IPv6 as an example of these limitations.

The SDN controller is the main component of the control plane. It relies on the
SouthBound API to discuss with the forwarding plane that is composed of physical
nodes such as switches. SDN applications can interact with the SDN controller using the
NorthBound API. A sample SDN architecture, taken from [Wic+15], is shown in Figure
2.3.

Figure 2.3: High-level conceptual architecture of SDN from [Wic+15]

In their 2013 paper Jain et al. [Jai+13] present B4, a Wide Area Network (WAN)
that connects Google’s data centres across the globe with its own characteristics:

� it is a distinct WAN from their user facing WAN

� massive bandwidth requirements deployed on a limited number of sites (scalability
is not expected to go beyond a few dozens sites)

� elastic traffic that enables to optimise the bandwidth used

� full control over the edge servers and the network

This WAN is deployed using SDN, based on OpenFlow as the SouthBound API and a
modified version of Onix [Kop+10] as the SDN controller. Their drivers for such solution
was that typical WAN are over-provisioned and have 30− 40% average utilisation. This
over-provisioning allow an higher resiliency to network failure but at the cost of two to
three times the necessary bandwidth and equipment. Considering the massive traffic
Google has to deal with, and its increase that is faster that the increase of traffic on the
Internet, they chose this solution to be cost-efficient. Many of the links of this WAN
run at near 100% utilisation and all links average 70% utilisation over long time periods,
which is an improvement in efficiency of two to three times.

14

2.2.3 Network slicing

The 5G standard introduced the concept of network slicing [3GP16]. It is a concept
independent of the notion of chains of VNFs introduced above. A slice is a virtual network
composed of a set of VNFs built on top of one or several NFV infrastructures. The
slicing concept was first introduced by the Next-Generation Mobile Networks (NGMN) in
January 2016 [All16]. Since then several Standards Developing Organisation (SDO) and
Industry Fora have launched works to analyse the use cases and impact of network slicing.
The concept is not completely new, 3GPP first introduced a concept of end-to-end slicing
of 4G mobile networks in their release 13 as DEdicated CORe Network (DECOR).

NFV Infrastructure

Slice 1 Slice 2 Slice 3 Slice 4

Service Instance 1

Service Instance 2

Service Instance 3

Service Instance 4

Service Instance 5

Figure 2.4: Network Slicing architecture, adapted from [All16]

Figure 2.4 is adapted from the architecture introduced by the NGMN for network
slicing. On top of a single NFV infrastructure 4 slices use different subsets of the VNFs
available. Slice 1 uses one VNF in pale red, slice 2 uses also one VNF in orange. Slices 3
and 4 both use chains of 3 VNFs. In turn these slices are used by Service Instances, i.e.,
instances of services offered to customers. There is 1 Service Instance running on slice 1.
Two different Service Instances run on slices 2 and 3. Two different Service Instances, or
two instances of the same service, run on slice 4. This allows 5 different Service Instances
to run on a single NFV infrastructure.

The resources are exposed by different APIs (Cloud, SDN, NFV MANO, ...) that can
be used simultaneously by different services or users. This is a shift from traditional
telecom networks where resources are often used by a single service. NFV introduced the
possibility for multiple functions to share the same infrastructure but slicing also allows
multiple end-to-end services to share infrastructures.

Following the introduction of networks slices in 5G, 3GPP has standardised 3 types of
slices with different objectives:

� enhanced Mobile BroadBand (eMBB): bandwidth of 10Gbps

� massive Machine Type Communications (mMTC): density of up to 1 million devices/km2

� ultra-Reliable Low Latency Communication (uRLLC): as low as 1ms latency

A service can not be optimised for all three, a trade-off has to be found. Some applications
might require to be optimised for a single objective: Vehicle-To-Vehicle communications
require uRLLC, ultra high-definition video streaming requires eMBB while massive IoT
deployments may require mMTC. A use case is detailed below in Section 2.3.2.

15

2.3 Multi-domain services

This section first defines the different possible architectures for services that are split
across multiple domains and then introduces a recent use case.

2.3.1 Multi-domain architectures

The standard architectures for Cloud, SDN or network slicing focused on infrastructures
within a single domain. There are multiple reasons for which infrastructures might require
to be deployed in multiple domains. For scalability: when a single domain reached its
maximum capacity and the only way to add more capacity is to add another domain.
Infrastructures can be split in multiple domains for resilience or security, for example to
remove or isolate a compromised domain in case of an incident or an attack and still be
able to provide the service to the user. A service can also require to leverage services from
multiple providers, each in their own domain.

A domain is a set of resources with its dedicated manager. A provider can have one
or more domains. For example a domain in the context of SDN is the topology and set of
resources managed by one SDN controller. In the case of a Cloud it is the set of resources
managed by an orchestrator, e.g., an instance of OpenStack. For a network it can be a
Point of Presence (PoP), a set of VNFs in a small data centre on the border of the network.

An architecture is multi-domain when it involves multiple domains. The domains
can depend from a provider, or be split between different providers. Sung et al. [Sun+16]
gives some insight on networks consisting of multiple domains stating that large internet-
facing services such as Facebook are often hosted on a network of networks, where each
sub-network has unique characteristics. Facebook’s network consists of edge PoPs, a
backbone, and data centres. The devices, topology and management tasks vary per sub-
network. Yet, all of them must be configured correctly in order for the entire network to
work.

Figure 2.5 show an example of multi-domain end-to-end architecture for network slices
across three network service providers (NSP) A, B and C. Provider A is composed of
three domains A1, A2 and A3. Provider B and C are both composed of a single domain.
A domain here is a NFV infrastructure either with virtualised computing, storage and
network resources orchestrated by OpenStack, a Cloud Orchestrator and a SDN Controller
as A1, A2 and C1 or with only network resources orchestrated by a SDN controller as
A3 and B1. There are two 5G slices. Slice 1 runs 4 VNFs that are hosted on 4 VMs in
domains A1, A2 and C1. Slice 2 runs 2 VNFs that are hosted on 2 VMs in domains A2
and C1. Orthogonal to the slices is a management plane with specialised orchestrators
that communicates with the orchestrators of the various domains to manage these VNFs.

2.3.2 A 5G multi-domain use case: eHealth telemedecine

The European Commission launched the 5G Infrastructure Public Private Partnership
(5G PPP) [PPP] joint initiative with the European industry. 5G PPP identified several
vertical industry sectors which provided their needs and potential barriers for adoption:
automotive, manufacturing, media, energy, health, public safety and smart cities. As part
of the projects funded by this initiative, several use cases for these verticals have been
detailed. This section focuses on one in particular : eHealth in-Ambulance telemedecine
[Ale17] from the SliceNet 5G PPP project.

16

Figure 2.5: Architecture of multi-domain network slices

In this use case an ambulance serves as a connection hub for the devices inside. A
connected device, glasses in this specific use case, is present in the ambulance and connects
to the emergency department team at the destination hospital. The glasses are used
by the paramedics present in the ambulance to assist a patient and send real-time live
video stream of what they see to the emergency team at the hospital. The requirements
expressed for this use case include enhanced Mobile BroadBand (eMBB), to support the
bandwidth required (around 10Mbps) by the high-definition video stream, as well as ultra-
Reliable and Low-Latency communications (uRLLC) due to patient safety factors (10ms
peak to peak jitter, end-to-end latency inferior to 100ms, less than 0.05% packet loss and
99,999% reliability).

Figure 2.6 shows that this use case involves 4 network service providers (NSP) [Eur18].
Providers NSP1 and NSP3 provide connectivity with their Radio Access Networks (RAN)
and the network services for the ambulance in their Core and Mobile Edge Computing
(MEC) platforms, for the ambulance. Two providers are necessary to have sufficient cov-
erage of the RANs. Provider NSP2 may be an ISP that provides the Wan-Area Network
that connects the others providers and can also host other VNFs or management functions
for the end-to-end use case, e.g., it can configure QoS parameters between the domains.
Provider NSP4 is the enterprise domain for the hospital and its computing infrastructure
as well as the devices present in the ambulance.

2.4 Resource allocation problems in networks

This thesis focuses on the problem of allocating resources in networks for multi-domain
use cases. Networks rely on multiple kinds of resources and there are multiple known
problems for allocating these resources. The first section introduces the problem statement

17

Figure 2.6: Overview of the eHealth integrated multi-domain slicing-friendly infrastruc-
ture

and some formalism. Then Section 2.4.2 presents centralised solutions for the allocation
of VNF in NFV. Section 2.4.3 shows with an experiment why centralised solutions are
not always suited for multi-domain use cases. The last section introduces the distributed
approach that is developed in the next chapters.

2.4.1 Problem statement and model

Resource model The left part of Figure 2.7 shows a system with three network service
providers (NSP). Three types of resources are available: an Intrusion Detection Systems
(IDS), a Firewall (FW) and a Load-Balancer (LB). There are three instances of each type
of resources distributed across the three providers.

The set of resources is modelled as a non-directed connected static communi-
cation graph G=(N , E) where N is the set of nodes and E the set of edges. A node
holds exactly an instance of one type of resources. C = {c1, c2, ..., cC} is the set of types
of resources where C is the total number of types. An edge represents a network link.

Edges have positive weights to model the latency of the links between nodes noted
W = {w1, w2, ..., wE}, ∀wx ∈ W , wx ∈ IN and wx ≥ 0. A weight of 0 on an edge models a
system with multiple resources on a single node. A node with 2 resources can be modelled
in the graph as two nodes holding one resource each and connected by a zero-weight edge.

The right part of Figure 2.7 shows the same system in the proposed model.

Request model Each node in the graph can issue allocation requests. An allocation
request is modelled as a couple Req(n, [c1,. . . ,cs]) where :

� n is the requesting node,

18

NSP1

NSP2

NSP3

LB LB

LB

FW FW

FW

IDS IDS

IDS

1ms

1ms

1ms

1ms9ms

1ms 1ms

7ms

1ms 1ms

1ms

n2 n4

n5

n1 n3

n7

n8 n9

n6

e1
w1 = 1

e2
w2 = 1

e3
w3 = 1

e4
w4 = 1

e5
w5 = 9

e6
w6 = 1

e7
w7 = 1

e8
w8 = 7

e9
w9 = 1

e10
w10 = 1

e11
w11 = 1

c1 c2 c3legend

Figure 2.7: A system with 3 types of resources: c1 (LB), c2 (FW), and c3 (IDS)

� [c1, . . . , cs] where cr ∈ C,∀r is an ordered set of types of resources needed. The
request order gives the order of the resources in the request. The order of resources
can be different across requests.

In an example of chain of VNFs described by the ETSI NFV Working Group [ISG13],
packets need to traverse an IDS, a FW and a LB.

A request Req1 can be noted as Req1 =Req(n1, [c3,c2,c1]) in the system introduced
above. n1 is the requesting node, 3 types of resources c1, c2 and c3 are requested. The
request order is c3 < c2 < c1, i.e., first c3, then c2 and finally c1.

Allocation of a request The problem addressed is to allocate the requests, i.e., select
instances of types of resources in the order requested and allocate them to the requesting
node. When all the instances selected are allocated, the requesting node can enter its
Critical Section (CS) and start using the resource. Figure 2.8 shows a selection of instances
for Req1: the instances in nodes n8, n7 and n5 are selected and the requesting node n1

can use these resources in that order.

n1 n8 n7 n5Req1:

Figure 2.8: Selection of instances for Req1

2.4.2 Solutions for the resource allocation problem

Telecommunications networks and computing infrastructures often have a management
function. For NFV architectures ETSI introduced the MANagement and Orchestration
(MANO) architectural framework [ISG14]. A SDN network relies on a SDN controller.
Cloud Computing IaaS relies on an orchestrator. This function is often centralised, i.e., a
single instance manages all the resources of the domain.

19

Among the roles of the MANO is the placement of VNF in the NFV infrastructure.
When managed by a centralised orchestrator, most of these problems are NP-hard variants
of the bin packing problem. Bari et al. [Bar+15] proposed an Integer Linear Program-
ming (ilp) formulation to optimise the operational costs and usage while respecting the
Service Level Agreements (SLAs). Jia et al. [Jia+16] also try to minimise operational
costs and propose an online algorithm, i.e., an algorithm that handles requests as they
arrive, to address the problem that they classify as the multiple-knapsack problem, a prob-
lem known to be NP-hard. Carpio et al. [CDJ17] address the problem of placing VNF
with replicas to load-balance the network functions and try three optimisation methods
(Linear Programming, Genetic Algorithm and a Random Fit Placement algorithm).

One sub-problem for the placement of VNF on a NFV infrastructure is the problem of
the placement of VMs on Cloud infrastructures. Some surveys ([JS15; Wid+12]) analysed
VM placement techniques aiming at improving the way VMs are placed on the baremetal
machines that compose Cloud infrastructures. Mills et al. [MFD11] compared 18 VM
placement algorithms inspired by bin-packing literature. They conclude that the choice
of the algorithm for VM placement had no significant impact, but that the algorithm for
the selection of the cluster, i.e., a subset of servers in the infrastructure with their own
properties, leads to the most significant impact on resource optimisation.The objective of
VM placement is usually to reduce cost for a customer. However Feng et al. [Fen+12]
addressed it from the point of view of the provider and considered optimising the revenue
as their objective. Mijumbi et al. analyse in [Mij+16] some of the existing projects related
to NFV MANO. They concluded that current projects focused on centralised solutions
which pose scalability imitations. Centralised solutions are usually offline, i.e., they do
not handle requests as they arrive but compute a solution once a set of requests has
been received. This is because either the method used, or the cost and duration of the
computation, does not allow the online handling of requests.

All of the above, and many more, techniques are fitting centralised architectures. Most
of them handle requests offline and are not scalable to large number of resources due to
their computation costs. They do not consider the multi-domain architectures described
in Section 2.3.

2.4.3 Problems of concurrent resource allocation from multiple
providers

Multi-domain use cases require an orchestration of the resources of all domains. In some
cases it can be possible to have a centralised orchestrator that manages the resources of
all the domains. However, this type of solution is not always available or possible.

The rest of this section details an example of one of the problems that can arise
when multiple centralised orchestrators are involved and each of them only manages the
resources of its domain. The example shows the problem for a multi-domain SDN service.

Allocation use case This section introduces a problem faced by clients to allocate
resources distributed across multiple SDN providers. The content is adapted from a
paper originally published at the 21st Conference on Innovation in Clouds, Internet and
Networks and Workshops (ICIN) in 2018 [Fra+18b].

One of the SDN promises is the programmability of networks through APIs. Those APIs
allow different users to access the network concurrently. Thus leading to the allocation of

20

dedicated resources by a given domain. These APIs allow users to integrate the services
exposed by domains in their applications.

A user is an application or a person (e.g., system administrator) that uses NorthBound
APIs to interact with the SDN domains.

Consider two providers α and β with no prior knowledge of each others and that cannot
share information. No assumption is made on the architecture of the SDN controllers
themselves: they can be either centralised (like NOX [Gud+08]) or distributed (like Onix
[Kop+10] or Open Network Operating System (ONOS) [Ber+14]).

Figure 2.9 illustrates a use case with two users, Alice and Bob. They both want to
allocate one resource from each of the two providers α and β. Depending on how their
requests are processed, four results are possible.

1. Alice can allocate resource from both providers α and β. Bob cannot allocate any.

2. Symmetrically to the previous case, Bob can allocate resource from both providers
α and β. Alice cannot allocate any.

3. Alice can allocate one resource from providers β and Bob one from α.

4. Symmetrically to the previous case, Alice can allocate one resource from provider α
and Bob one from provider β.

Figure 2.9: Illustration of the concurrent allocation of two critical resources from two SDN
providers: 4 results are possible

Implementation A basic experiment to illustrate these four outcomes considers that
the two users, Alice and Bob, both want to request the creation of two flows. One flow
in each of the two distinct SDN networks of providers α and β. Each of the user expects
that his applications hosted by these two providers can communicate once the network is
configured. The architecture of the test-case is represented in Figure 2.10.

21

Figure 2.10: Sample test case: 2 authors Alice and Bob and 2 SDN providers

These two providers are each simulated by one instance of the open-source ONOS SDN
controller [Ber+14]) and one virtual switch. Each ONOS controller is connected to its vir-
tual switch using the OpenFlow 1.3 protocol as the SouthBound API. The expected result
is that once the flows in each provider are set-up, App1a (resp. App1b) the application
of Alice (resp. Bob) which runs in Domain α is able to send messages to App2a (resp.
App2b) the application of Alice (resp. Bob) which runs in Domain β. They are able to
communicate because flows will be created between the appropriate ports of the switches.
Those applications App1a,b are Python applications that send ICMP ECHO messages
displayed on the standard output by App2a,b. This is represented in Figure 2.11. For this
Alice (resp. Bob) requests the creation of a first flow between Pa1 and Pa2 (resp. Pb1
and Pb2) to SP α. It then requests a second flow between Pa5 and Pa6 (resp. Pb5 and
Pb6) to SP β. Tunnels are pre-configured for each user to allow direct communication
between the two providers: between Pa3 and Pa4 for Alice, between Pb3 and Pb4 for
Bob.

On a fifth VM, Alice and Bob are simulated by Bash and Python scripts that use
the NorthBound REST API of ONOS to request the creation of flows on the controllers.
Each script requests the creation of a single flow by each provider. An umbrella Bash
script runs the Alice and Bob scripts in a uniform random order. Random timers are also
introduced in the scripts to ensure that requests are not send in the same order every

22

Figure 2.11: Use case implementation: each user runs a SDN application in each of the
two domains α and β. Their applications send and receive ECHO messages

time. This allows the simulation of the concurrent allocation of resources by multiple
users in varying conditions.

The resource considered in this example is the number of flows on a SDN switch.
Memory limits the maximum number of flows that can be created on each switch. In the
test environment it has been set very low to allow the creation of a single flow on each
switch, using the flow limit parameter in Open vSwitch.

One simulation consists on running the umbrella script, which in turn runs the two
Alice and Bob scripts. After each simulation the configurations of the switches are reset.
All the VMs are hosted by the same computer running the VirtualBox hypervisor.

When the Alice and Bob scripts run concurrently the four outcomes introduced above
in Figure 2.9 are expected. At best only one user gets the two resources and the other is
left waiting. Worst cases are the cases labelled 2 and 3, when none of the user gets all
the resources required and both wait indefinitely.

Table 2.1 shows the results when the simulation is run 1000 times.

Result Occurrence
Alice gets none, Bob gets two re-
sources

33.8%

Alice and Bob gets one resource
each (either from α or β)

26.8%

Alice gets two resources, Bob gets
none

39.4%

Table 2.1: Sample result observed when simulation is run 1000 times

In this test 26.8% of the time each script/user only gets one of the two resources it
is expecting. Alice got both resources 39.4% of the time and Bob 33.8% of the time. As
there are four possible outcomes and requests are uniformly random, one could expect
that each user gets both resources 25% of the time, and in the remaining 50% they each
get only one resource. It is possible to obtain a result closer to these theoretical values but
this would require to coordinate the users. This shows that the results are very difficult
to predict. They depend on when each user sends his requests, when these requests are
received and how they are managed by the providers.

As expected due to the random factors, running this simulation multiple times leads
to slightly different numbers. However, this result is sufficient to show that a significant
number of times, in this run 26.8%, none of the user can move forward as it only managed
to allocate one of the two resources he required. In this case both users are said to be

23

experiencing starvation, they need to synchronize their allocations so they can each get
the resources in turn.

Starvation occurs because the resource satisfies some properties:

� unshareable: the resource can be used by only one user at a given time,

� not preemptable: only the user who has allocated the resource can release it,

� not interchangeable: no other resource from another component of the system
can be allocated to obtain the same result.

The resource considered here, i.e., the flow limit parameter in ONOS, satisfies these
properties. Additionally the problem occurs only because in the experiment this parame-
ter has been configured at a very low value. In a live production environment the problem
would only occur if the two providers had reached their full capacity. This is unlikely to
happen because engineering teams of production platform usually plan capacity to avoid
this situation. For this reason this use case was not considered further after this first
experiment and the next chapters focus on a different use case.

2.5 Conclusion

Network infrastructures leverage new paradigms to enable new use cases. Some of these
new use cases can be multi-domain which pose the question of the adequacy of the cen-
tralised managers usually found in networks. With the apparition of network slices, the
resources of network providers can be shared not only by multiple services, but also with
services that use resources from other providers. Centralised solution might not be able to
scale across all resources of all the domains, or a network service provider might not want
to allow an external manager to access their resources. Allocating resources for network
slices across multiple domains could even lead to starvation if the centralised managers
in each domain do not share information as showcased in a SDN example.

This might be an opportunity to consider a distributed solution for the allocation of
resources in networks. The requirement to allocate chains of network functions inside these
slices create an additional constraint on the order in which the resources are allocated.
The next chapter provides a state of the art of distributed solutions for the allocation of
resources. Then, a new algorithm for the distributed allocation of resources is introduced
in Chapter 4. Multiple heuristics for this algorithm are then evaluated in Chapter 5. The
performance of the algorithm is compared to that of algorithms from the state of the art
in the last chapter.

24

Chapter 3

State of the art

Contents
3.1 Definition and model for distributed resource allocation . . . 26

3.1.1 Definition of distributed mutual exclusion 26

3.1.2 Properties of the Mutual Exclusion 27

3.1.3 Description of the system . 27

3.2 Distributed algorithms for the allocation of resources: state
of the art and taxonomy . 28

3.2.1 One instance of one type of resources: the Mutex problem . . . 28

3.2.2 One instance of n types of resources: dining/drinking philosophers 30

3.2.3 m instances of one type of resources: k-mutex, k-out of-M . . . 33

3.2.4 m instances of n types of resources 34

3.2.5 Classification of algorithms . 35

3.3 Performance evaluation and comparison 35

3.4 Conclusion . 38

He’s clever, [. . .], I must admit there
are some smart people even among
the intelligentsia.

Mikhail Bulgakov, The Master and
Margarita

The previous chapter introduced the problem of the allocation of resources for networks
and the motivation for a distributed solution. The distributed allocation of resources
is typically addressed as a variant of the Mutual Exclusion problem first described by
E.W.Dijkstra in 1965 [Dij65]. Distributed resource allocation is not a new approach for
resource allocation in networks. Several papers [BHJ02; RWX04] have considered mutual
exclusion algorithms for the dynamic assignment of channels in radio spectrum. Badrinath
et al. proposed in [BAI94] to use two classic mutual exclusion algorithms [Le 77; Lam78]
for Mobile Ad hoc wireless NETworks (MANET). They propose modifications of these
algorithms to consider the mobility of nodes to reduce the search cost and the number

25

of messages. Following this initial work, other algorithms have been proposed to address
this specific problem [WK97; WCM01; WWV01; BVP02; Ben+04].

This chapter first describes in more details the model for distributed systems used
throughout this work in Section 3.1. Next, section 3.2 details a state of the art of the
variants of the Mutual Exclusion problem and the multiple solutions that have been
proposed to solve them. The last section 3.3 explains how the performance of these
algorithms is evaluated and shows how they compare to each other.

3.1 Definition and model for distributed resource al-

location

3.1.1 Definition of distributed mutual exclusion

The Mutual Exclusion problem was first described by Dijkstra in 1965 [Dij65] for systems
with N nodes that share one resource. In such systems each node, sometimes also called
site, is an autonomous computing unit that can run processes. Each node runs a Mutual
Exclusion algorithm locally that allows it to enter the Critical Section (CS) and to use
the resource exclusively. When a node needs to use the resource it execute requestCS
function. When it is done using the resource it runs a releaseCS function. The Mutual
Exclusion problem is the coordination of all the nodes such that a single node can enter its
CS at a given time, i.e., when the node is the sole user of the resource while the others are
waiting. It is assumed that the CS has a finite duration, i.e., the resource will eventually
be released. A conflict occurs when multiple nodes are requesting the same resource at
a given time. An extensive formal description of distributed systems has been made by
Lynch et Fischer in 1981 [LF81].

Application Process

Mutual Exclusion Process

Network

Recv(m)Send(m)

enterCSrequestCS releaseCS

Figure 3.1: Distributed mutual exclusion system architecture (from [WW11])

A representation of the components of the system appears in Figure 3.1, courtesy of
Welch and Walter [WW11]. Each node executes two processes :

� the mutual exclusion process which manages the access to the CS

� the application process, that requires to enter the CS, to use the resources and
release the CS

The application process can request the Mutual Exclusion process to enter the CS by
calling the requestCS function. The Mutual Exclusion process communicates with the

26

other nodes: it can send and receive messages using Send(m) and Recv(m) functions.
Once it becomes possible, depending on the algorithm used, the Mutual Exclusion process
notifies the Application Process that it can enter the CS using the enterCS function. Once
the application process is done using the resource, it notifies the Mutual Exclusion process
that it wants to leave the CS and releases the resource by calling the releaseCS function

In this specific system it is assumed that there is a single shared resource, but later
works proposed extensions detailed below. Some of these works address systems with
multiple resources, cf. Section 3.2.2. In this document, the terminology used is types
of resources. Other works address systems with multiple instances of resources, cf.
Section 3.2.3.

3.1.2 Properties of the Mutual Exclusion

A solution to the Mutual Exclusion problem needs to satisfy two properties :

� safety : there is at most one process in the CS

� liveness : each request has to be satisfied within a finite time (under the hypothesis
that the allocated resources are eventually released).

If the liveness property is not respected, i.e., a node waits indefinitely to get its requests
satisfied, it is said to be experiencing starvation.

All the solutions proposed to guarantee the liveness rely on a total order of the
requests.

3.1.3 Description of the system

For the reminder of this document, the system follows an asynchronous timing model
as defined in [Lyn96], i.e., the separate components take steps in arbitrary order. The
system is an Asynchronous Message-Passing System and is assumed to have the following
properties:

1. There are N nodes in the system.

2. The system is modelled as a non-directed connected communication graph.

3. Communication links are reliable. All messages are eventually delivered, they are
never duplicated.

4. Nodes are reliable. In particular the failure of nodes or the apparition of new nodes
is not taken into account.

5. Nodes communicate with each other only by message-passing.

6. Communication times between nodes is bounded and can be unknown.

7. No common clock is shared by the nodes

8. The time spent in its CS by a node is finite, i.e., a node use the resources that has
been allocated to him for a finite duration.

27

3.2 Distributed algorithms for the allocation of re-

sources: state of the art and taxonomy

3.2.1 One instance of one type of resources: the Mutex problem

Several taxonomies of the original Mutual Exclusion problem have been proposed: [Ray91b;
Sin93; Vel93]. The taxonomy proposed below builds on these and extends them with newer
variants of the problems and newer algorithms.

Figure 3.2 shows a sample system for this problem. This system is a 5-node network
and there is a single instance of one type of resources held by one of the node, in green
in the figure. The edges are the edges of the communication graph.

Figure 3.2: Sample system with one instance of one resource, held by the green filled
node.

Early solutions: shared memory

The problem of Mutual Exclusion was initially introduced for systems with one instance
on one type of resources. Initial solutions by Theodorus J. Dekker (referenced in [Dij65]),
for systems with only two processes, and Dijkstra [Dij65], for systems with n processes,
were designed for systems relying on shared memory. In such systems all the nodes
access a shared memory concurrently using an atomic operation that guarantees that
only one of them accesses them at a given time, i.e., it relies on a lower level (hardware,
Operating system) mechanism like compare-and-swap. Dijkstra’s algorithm was improved
first by Donald Knuth in 1966 [Knu66]. Then de Bruijn improved Knuth’s solution in
1967 [dBru67] to reduce the maximum number of turns, i.e., the number of loop iterations,
before a process enters its CS to (1/2) ∗ N ∗ (N − 1). Eisenberg and McGuire proposed
a further improvement [EM72] so that no node has to wait more than (N − 1) turns to
enter its CS.

Leslie Lamport proposed a new solution in 1974 [Lam74], known as the Bakery al-
gorithm as it is inspired by the method used by some bakeries (or other shops for that
matter) to give tickets with a unique number to customers. This solution [Lam19] is the
first that does not require a lower-level Mutual Exclusion.

Mutexes are today available in most Operating Systems for the synchronisation of the
threads of a program, e.g., in the Linux kernel 1, in the FreeBSD kernel 2 or the Windows
Win32 API 3. Most programming languages offer abstractions (lipthread for C, std::mutex

1https://www.kernel.org/doc/html/latest/locking/mutex-design.html
2https://www.freebsd.org/cgi/man.cgi?query=mutex&sektion=9
3https://docs.microsoft.com/en-us/windows/win32/sync/mutex-objects

28

https://www.kernel.org/doc/html/latest/locking/mutex-design.html
https://www.freebsd.org/cgi/man.cgi?query=mutex&sektion=9
https://docs.microsoft.com/en-us/windows/win32/sync/mutex-objects

in C++4, or have built-in mechanisms for concurrency that avoid the programmer to
address the problem himself. Erlang5 and Go 6 are two examples of languages based on the
Communicating Sequential Processes (CSP) model [Hoa78] which relieves the developer
from having to manages the concurrency himself. Java’s API proposes synchronized blocks
and ReentrantLock Objects.

Message passing solutions and first permission-based algorithms

Distributed systems evolved and it became more common to have independent nodes with
no shared memory but that were able to communicate by the passing of messages. All
the other algorithms presented below rely on the passing of messages. It is possible to
use message passing to emulate shared memory [Cad+17], so algorithms using shared
memory can be adapted to message passing.

New Mutual Exclusion algorithms based on message passing appeared in the late
1970s. Lamport’s 1978 landmark algorithm [Lam78] introduced the notion of logical
clocks to compute a total order of the CS requests based on logical timestamps. This
algorithm requires 3 ∗ (N − 1) messages in a complete communication graph. This algo-
rithm was improved by Ricart and Agrawala in 1981 [RA81] by removing the need for
acknowledgement messages, thus lowering the number of required messages to 2∗ (N−1).
O. Carvalho and G. Roucairol [CR83] in turn proposed a variation of the algorithm from
Ricart and Agrawala that can require less messages by considering asymmetric nodes
(i.e., all nodes do not have the same exact configuration at the time of their initialisa-
tion). Sanders [San87] introduced in 1987 a terminology for this first type of algorithms:
permission-based.

Permission-based algorithms enforce the safety property by the reception of a sufficient
number of permissions from other nodes.

Quorum-based permission-based solutions

Another approach proposed was to divide the topology in smaller subsets where each node
is part of one and only one of these subsets. Maekawa’s 1985 algorithm [Mae85] relies
on properties of finite projective planes to show that each subset needs to be only of
size
√
N . However it is prone to deadlocks [Sin93]. Other algorithms based on quorums

where proposed in [San87; AE91; MNR91].

Token-based algorithms

Gérard Le Lann proposed a solution in 1977 [Le 77] where the nodes are connected in
a ring topology and send tokens. This solution is similar to how token ring networks
(IEEE standard 802.5 [IEE04]) work: a control token guarantees that a single node is
transmitting at a given time. Alain K. Martin’s algorithm [Mar85] relies on a similar ring
topology.

After Carvalho and Roucairol proposed a modification of their algorithm, Ricart and
Agrawala replied with a modification [RA83] of their message-passing algorithm to use
a token that allows the node that holds it to enter its CS, in this algorithm the token is
transmitted along a virtual topology that connects the nodes. Suzuki and Kazami [SK85]

4https://en.cppreference.com/w/cpp/thread/mutex
5https://cacm.acm.org/magazines/2010/9/98014-erlang/fulltext
6https://golang.org/doc/faq#csp

29

https://en.cppreference.com/w/cpp/thread/mutex
https://cacm.acm.org/magazines/2010/9/98014-erlang/fulltext
https://golang.org/doc/faq#csp

proposed in 1985 an extension of Ricart-Agrawala to transform it to a token-based algo-
rithm using an additional PRIVILEGE message. Neilsen and Mizuno’s algorithm [NM91]
builds a Directed Acyclic Graph (DAG) virtual topology with the nodes to circulate a
token. Mukesh Singhal proposed in [Sin89] an algorithm aided by heuristic to deduce the
current location of the token. Several algorithms have been proposed relying on a similar
static-tree structure to send a token [vdSne87; TN87].

Some algorithms relaxed some of the usual assumptions found in other works. In
Raymond [Ray89b] and Helary-Plouzeau-Raynal [HPR88] algorithms nodes only commu-
nicate with their neighbours, they do not require a knowledge of the whole topology.

Naimi-Tréhel [NT87] improved the complexity of existing token-based algorithms to
logarithmic by using a dynamic tree structure. This algorithm is further described in
Section 6.5.1.

Mishra and Srimani [MS90] proposed two fault-tolerant Mutual Exclusion algorithms.
The first one is an extension of [SK85], but ensure that the system can recover when a
node failure is detected. The second one assumes that at any moment one of the nodes
acts as a centralised controller. Nishio et al. [NLM90] also proposed an extension of
[SK85] to make it resilient to failures. Sopena et al. [Sop+05] proposed a fault tolerant
extension of Naimi-Tréhel [NT87].

Ye-In Chang [Cha94] builds on Andrzej Goscinski work by [Gos89; Gos90; Gos91] to
propose extensions of several algorithms, [SK85; Sin89; Ray89b; Lam78; RA81], to address
real-time systems. In those variants requests are ordered based on priorities instead of the
time when they happened. Frank Mueller also proposed algorithms based on priorities
[Mue98; Mue99].

At first permission-based algorithms required more messages to gather permissions
from the nodes than what was needed by token-based algorithms to circulate a token.
However, Naimi-Tréhel [NT87] (token-based) and Agrawal-El Abbadi [AE91] (permission-
based) both have complexities that are logarithmic with the number of messages, cf. the
comparison the complexities of algorithms in next section 3.3. Token-based algorithms
are considered more prone to failure, as on top of the possible node failures it is possible
that the token gets lost or duplicated.

3.2.2 One instance of n types of resources: dining/drinking
philosophers

The Mutual Exclusion problem was first generalised for multiple types of resources in
1971 by E.W. Dijkstra [Dij71] as the Dining Philosophers Problem (DiPP). In this
formulation of the problem, 5 philosophers are sitting around a table, and a table is laid
for them to dine. On the table is served a spaghetti dish that can only be eaten with
two forks. Each philosophers is sitting in front of one plate and there are two forks on
each side of each plate. This forbids two neighbours to eat simultaneously. Such system
is represented in Figure 3.3.

30

� ��
� ��
� �� ��	� �

Figure 3.3: Sample system with one instance of n types of resources: the dining philoso-
phers problem

The algorithm proposed by Dijkstra [Dij71] is an incremental algorithm : the re-
sources are allocated incrementally according to a total order of the forks. It has a side
effect called the domino effect [Ran75]. This algorithm is detailed in Section 6.2. Nancy
A. Lynch [Lyn80; Lyn81] generalised the formulation of the problem to a graph with
any number of nodes representing the resources connected via edges that represent the
resource sharing constraints, and she proposed a graph-colouring approach to improve
the performance of Dijkstra’s algorithm. Francez-Rodeh [FR80] proposed a symmetric
distributed solutions, i.e., a system where all nodes have the same exact configuration at
the time of their initialisation. Lehmann-Rabin [LR81] proposed a probabilistic solution
for symmetric systems and proved that there is no perfectly symmetric non-probabilistic
solution to the DiPP. Chandy-Misra [CM84] relaxed this symmetry constraint and pro-
posed a DiPP algorithm, detailed in Section 6.3, based on the acyclicity of the graph
where forks are transmitted along the edges. The directions of the edges at any time
guarantee that there is no cycle in the graph. Page et al.[PJC93] proposed an algorithm
that improved the performances. Styer and Peterson[SP88] improved the worst case time
and failure locality (cf. definition in Section 3.3) of Lynch [Lyn80; Lyn81].

In the same 1984 paper Chandy-Misra [CM84] also propose a further generalisation,
the DrPP. In the DiPP requests are static: each node (philosopher) always requires
the same subset of resources, i.e., his left and right forks. In the DrPP, the requests
are dynamic, each node can request a different subset of the resources (bottles) at each
request. An algorithm that solves the DrPP can also solve the DiPP. Even if the opposite
is not true, some DiPP algorithms can be extended to solve the DrPP problem.

Several algorithms that target the DrPP problem, like Chandy-Misra, require that the
conflict graph is known a priori. The nodes of the conflict graph are the requests. If two
requests need a common resource there is an edge between the two corresponding nodes.
By definition for the DiPP problem the conflict graph is always known a priori because
requests are static.

Chandy-Misra [CM84], in the same paper, propose a DrPP algorithm that uses their
DiPP algorithm as a first subroutine. The forks are not the resources but are auxiliary
resources that allow the requesting node to allocate the bottles, which are the actual
resources. Welch-Lynch [WL93] generalised the idea of modular algorithms and their
solution can use a DiPP algorithm to select a node (resp. philosopher) which enters
a dining CS, then once the node is in a dining CS it can request the resources (resp.
bottles) it needs.

Ginat-Shankar-Agrawala proposed an algorithm [GSA89] that does not use a DiPP
subroutine. It is based on a time-stamping approach similar to Lamport’s logical clocks.

31

Figure 3.4 shows a system with one instance of n types of resources. In this example
n = 5 and each type of resources is represented on the nodes by a different shape and
colour. Each edge represents a communication link between two nodes. Contrary to the
settings of the DiPP problem, in this system a resource can be shared by more than 2
nodes of the system in Figure 3.3 and any node can request any resource. Algorithms
that address the DiPP problem can not easily be adapted to such a system.

Figure 3.4: Sample system with one instance of n types of resources, edges represent the
communication graph

Algorithms have been proposed to address such systems. Bouabdallah-Laforest [BL00]
relies on Naimi-Tréhel’s mutex algorithm [NT87] to circulate a control token along the
virtual tree. A node needs to own the Control Token to request its resources. This
algorithm is detailed in Section 6.5.

Aomar Maddi [Mad97] calls this problem the AND-Synchronisation problem where
each process can get an exclusive access to a set of resources rather than to a single one.
The paper distinguishes between implicit requests (when processes wait for a token to
arrive) and explicit requests (when requests are sent to the processes). He introduces
two algorithms, one for each case. In the algorithm for explicit requests each process
holds a token for its resource, the tokens are sent to the requesting process based on a
virtual clock. The algorithm for implicit requests sends these tokens along a virtual ring
topology.

Awerbuch-Saks [AS90] proposed a further generalisation called the dynamic job
scheduling problem. In this description of the problem, jobs request any number of
resources and need to be scheduled. In this model, the jobs are the nodes and they
are dynamic, i.e., jobs come and go. The objective of the algorithm is to minimise the
waiting time (or delay) between the moment a request is initiated and the moment when
the resources are allocated, cf. Section 5.1.1 for a formal definition. It uses a distributed
queue to achieve a polynomial-bounded waiting time that is function of the number of
conflicts. Bar-Ilan and Peleg [BP92] proposed a further improvement on performances for
synchronous complete communication systems. Another extension was proposed by Choy-
Singh [CS95] to include mechanisms for fault-tolerance using the doorway mechanism in
Lamport’s Bakery algorithm [Lam74]. Rhee’s moduler algorithm [Rhe95; Rhe98] builds
a distributed queue but like Welch-Lynch [WL93] starts by using a DiPP or DrPP as a
subroutine to get a lock on the set of resources. Instead of keeping the lock for the duration
of the CS it uses it only to adjust the total order of the requests in the global scheduler,
and contrary to Welch-Lynch [WL93] it improves the performances of the algorithm used
as a subroutine. Rhee’s algorithm is detailed in Section 6.4. Weidman et al.[WPP91] also
proposed to reuse Chandy-Misra as a subroutine for their dynamic allocation problem,
with the same response time and message complexity as Chandy-Misra’s. Sivilotti [SPS00]

32

proposes an algorithm that reuses Chandy-Misra’s mechanism of using forks as a mean
to provide dynamic priorities, and Choy-Singh’s [CS95] mechanism of double doorway of
thresholds to allow low-priority nodes to overtake high-priority nodes.

The Lejeune-Arantes-Sopena-Sens (LASS) algorithm [Lej+15] argue that the algo-
rithms mentioned above all require a global lock to serialise the requests. Their al-
gorithm does not require such global lock, and does not use a distributed queue either.
Instead it relies on allocation vectors of counters to compute a total order of the requests.
It does however make the assumption that resources are not managed locally by the nodes
holding them and moves the resources along the graph during its execution.

3.2.3 m instances of one type of resources: k-mutex, k-out of-M

Two sub-problems have been defined for systems with m instances of one type of resources.
Figure 3.5 shows a system where there are three instances, in green, of a single type of
resources. Edges represent the communication links.

Figure 3.5: Sample system with m green filled instances of 1 type of resources

The first sub-problem is known as the k-mutex, or as the l-exclusion problem. The
system allows up to k entries to a CS. This problem is solved by algorithms such as the
permission-based ones proposed by Raymond [Ray89a](which extends Ricart-Agrawala),
and Srimani-Reddy [SR92] (which extends Suzuki-Kasami). Token-based solutions have
been proposed by Makki et al. [Mak+92], Bulgannawar-Vaidya [BV95] (an extension
of Tréhel [TN87]) and Chaudhuri-Edward [CE06; CE08]. Kakugawa et al. [Kak+94]
proposed a solution based on an extension of coteries, called k-coterie, and using logical
clocks. A common data type to solve this problem in programming language is known as
the counting semaphore.

The second sub-problem is when one process tries to allocate k instances of the same
type (k < M) called the k-out of-M resources allocation problem. It has been defined by
Michel Raynal [Ray91a] who proposed an extension of Ricart-Agrawala for the problem
as the allocation of k instances sequentially using a Mutual Exclusion algorithm could
lead to a deadlock. This requires that the algorithms satisfies the safety and liveness
properties. The definition of the safety property is different than for the classical Mutual
Exclusion problem: the number of resources which are allocated to the processes at any
time is always less than or equal to M (each resource being allocated to only one process
at a time). The definition for liveness remains the same. Roberto Baldoni proposed a
permission-based quorum-based solution as an extension of Maekawa [Bal94]. Manabe
and Tajima [MT99] proposed a permission-based algorithm based on logical clocks.

33

3.2.4 m instances of n types of resources

A more general problem is shown in Figure 3.6 shows for a system with n = 3 types of
resources, and 1 (for the green resource) or 2 (for the red and blue resources) instances of
each of them. Edges represent the communication links.

Figure 3.6: Sample system with m instances of n types of resources

No algorithm has been proposed specifically for systems with multiple instances of
multiple types of resources. In this section are listed algorithms already mentioned in the
sections above and that proposed extensions to this more general problem. Multiple algo-
rithms addressing the DrPP have proposed extensions for cases where there are multiple
instances of each resource. They all consider that instances are all equivalent and can
be used indistinctly.

Token-based algorithms consider one token per instance. Bouabdallah-Laforest [BL00]
mentions a more general problem than the DrPP where several instances of each type of
resources are available. The extension proposed is to use a token per instance instead
of a token per type of resources. Upon reception of the token a node can choose among
the available instances. Maddi [Mad97] algorithm also proposes to circulate a token per
instance for systems with multiple instances.

Ginat-Shankar-Agrawala [GSA89] proposed two extensions of their DiPP algorithm to
address systems with more than one instance of each resource. In their baseline model
each node holds one instance of one type of resources. In the first extension, a node can
hold multiple instances of one type of resources. In the second extension a node can hold
multiple types of resources and multiple instances of each type. They propose to add a
notion of quantity to their algorithm.

Other DrPP algorithms do not address explicitly extensions for multiple instances but
can be adapted. Chandy-Misra [CM84] DrPP algorithm allows only a single node to enter
its CS and use resources at a given time. Adapting it for systems with multiple instances
only requires to consider that a fork can stand for any number of instances. Rhee [Rhe95]
is dependent on the algorithm used as a subroutine to lock the resources. If the algorithm
chosen can handle systems with multiple instances of each type of resources then a solution
would be to consider that each resource manager needs to handle a queue per instance.

It should be noted that it can be possible to adapt the problem so that a DiPP or
DrPP algorithm can be used. None of the algorithms considers the placement of the
instances. Selecting any instance arbitrarily can result in a higher latency due to the
distance between nodes. In this case it is possible to consider each instance as a new
type of resources by itself. The problem then becomes a DiPP or DrPP. The algorithm
presented in the next chapter does just that. It tries to minimise the overall length of the
path connecting the nodes holding the types of resources requested and to achieve that

34

consider that each instance is different depending on its location in the communication
graph.

3.2.5 Classification of algorithms

A classification of the distributed algorithms for the allocation of resources has been
proposed by Jonathan Lejeune in its PhD thesis [Lej15], it is represented in Figure 3.7. It
sums up what has been described above. The least general problem is the original mutex
problem for systems with 1 instance of 1 resource, and the most general is for systems
with m instances of n types of resources. A solution that addresses a problem can also
be used to solve a less general problem. For example a solution to the DiPP problem can
also solve the mutex problem.

1 instance of
1 resource: Mutex

1 instance of
n resources:
Dining/Drinking
philosophers

less general

more general

m instances
of 1 resource:
k-mutex /
semaphores

m instances of
n resources

Figure 3.7: Classification of problems for the distributed allocation of resources

Figure 3.8 shows a timeline of the different problems and algorithms mentioned above,
as well as the relationships between the various solutions.

3.3 Performance evaluation and comparison

In his taxonomy [Sin93], Mukesh Singhal lists three main metrics to compare the perfor-
mances of Mutual Exclusion algorithms :

� the message complexity: the total number of messages sent and received by a
node for each request to access the shared resources.

35

S
h
a
re

d
-M

e
m

o
ry

M
u
te

x

D
ek
59

[D
ij
65
]

[K
nu
66
]

[d
B
ru
67
]

[E
M
72
]

[L
am

74
]

P
e
rm

is
si

o
n
-b

a
se

d
M

u
te

x

[L
am

78
]

[R
A
81
][C
R
83
]

[v
d
S
n
e8
7]

[L
T
87
]

[T
N
87
]

[N
L
M
90
]

[M
S
90
]

[N
M
91
]

[M
N
R
91
][C

h
a9
4]

[M
u
e9
8;

M
u
e9
9]

[C
ad
+
17
]

Q
u
o
ru

m
-b

a
se

d
M

u
te

x

[M
ae
85
]

[S
an
87
]

[A
E
91
]

T
o
k
e
n
-b

a
se

d
M

u
te

x

[L
e
77
]

[R
A
83
][S
K
85
]

[M
ar
85
] [N
T
87
]

[S
op
+
05
]

[H
P
R
88
]

[R
ay
89
b
]

[G
os
89
;
G
os
90
;
G
os
91
]

k
-m

u
te

x

[R
ay
89
a]

[S
R
92
]

[M
ak
+
92
]

[K
ak
+
94
]

[B
V
95
]

[C
E
08
]

k
-o

u
t

o
f-
M

[R
ay
91
a]

[M
T
99
]

[B
al
94
]

D
rP

P
a
n
d

D
iP

P

D
rP
P
al
go
ri
th
m

th
at

co
n
si
d
er
s
an

ex
te
n
si
on

to
m
u
lt
ip
le
in
st
an
ce
s

[D
ij
71
]

[L
yn
80
;
L
yn
81
]

[F
R
80
]

[L
R
81
]

[C
M
84
]

[S
P
88
]

[G
S
A
89
]

[S
in
89
]

[A
S
90
]

[W
P
P
91
]

[B
P
92
]

[P
JC

93
]

[W
L
93
]

[C
S
93
] [C
S
95
]

[M
ad
97
]

[R
h
e9
5;

R
h
e9
8] [B

L
00
]

[S
P
S
00
]

[L
ej
+
15
]

1
9
6
0

1
9
6
5

1
9
7
0

1
9
7
5

1
9
8
0

1
9
8
5

1
9
9
0

1
9
9
5

2
0
0
0

2
0
0
5

2
0
1
0

2
0
1
5

2
0
2
0

u
se
s

ex
te
n
d
s

F
ig

u
re

3.
8:

T
im

el
in

e

36

� the response time: the time interval a request waits to enter its CS after its request
message has been sent out

� the synchronisation delay: the number of sequential messages required after a
node leaves its CS for a new node to enter its CS

Nancy A. Lynch’s 1980 paper [Lyn80] is perhaps the first to consider the response
time. Before that the most common metric considered was the number of messages.

Choy and Singh [CS95] proposed an additional metric failure locality. They define
the m-neighbourhood of a node as the set of nodes at a distance of a most m from the
node in the conflict graph. They define the failure locality of an algorithm to be m if
a process is free from starvation even if processes outside of its m-neighbourhood have
failed.

Table 3.1, taken from [Vel93] shows the message complexity of some permission-based
algorithms. Table 3.2, also from [Vel93], shows the performance of some token-based
algorithms. In these tables N stands for the number of nodes in the system.

Authors Problem Message
complexity

Dijkstra[Dij65] shared-memory

Eisenberg and McGuire[EM72] shared memory

Lamport’s bakery[Lam74] shared memory

Lamport’s Logical clock[Lam78] message passing 3 ∗ (N − 1)

Ricart and Agrawala[RA81] message passing 2 ∗ (N − 1)

Carvalho-Roucairol[CR83] message passing 0 to 2 ∗ (N − 1)

Maekawa[Mae85] message passing/quorum i ∗
√
N, 3 ≤ i ≤ 5

Sanders[San87] message passing |Ii − {i}|+ 2(|Ri − {i}|)
I is the inform set and R the request set, I is a subset of R and |I| < |R|
Raynal[Ray89c] message passing 2 ∗ (N − 1)2

Agrawal-El Abbadi[AE91] message passing O(log(N))

Singhal[Sin92] dynamic structure (N − 1) to 3 ∗ (N − 1)/2

Table 3.1: Performance of permission-based Mutex algorithms, after [Vel93]

Authors Problem Message
complexity

Le Lann[Le 77] message passing

Ricart and Agrawala[RA83] message passing N

Suzuki and Kazami[SK85] token L ∗N + (N − 1)
L is the number of Mutual Exclusion entries

Naimi-Tréhel[NT87] token /dynamic tree log(N)

van de Snepscheut[vdSne87] token /static tree log(N)

Raymond[Ray89b] token /static tree max:2 ∗D, average: log(N)
D is the diameter (longest path length) of the tree

Table 3.2: Performance of token-based Mutex algorithms, after [Vel93]

Rhee [Rhe95], extending results from [AS90] and [CS95], describes the complexity of
several DiPP and DrPP algorithms. This is shown in Table 3.4. The variables used in the
formulas are described in Table 3.3.

37

Variable Value represented

δ maximum number of conflicting processes at any time

U number of nodes IDs

r maximum number of resources in a request

k maximum number of resources in the system

Table 3.3: Variables used for performance evaluation

Authors Pb Message
complexity

Dijkstra[Dij71] DrPP O(N)

Lynch[Lyn81] DiPP O(δ)

Styer and Peterson[SP88] DiPP O(δlog(δ+1))

Choy and Singh[CS92] DiPP O(δ)

Page et al.[PJC93] DiPP O(δ2)

Chandy and Misra[CM84] DrPP O(N)

Rhee[Rhe95] DrPP O(max{δ2, rδ})
Awerbuch and Saks[AS90] dyn O(δ2log(U))

Weidman et al.[WPP91] dyn O(δ)

Bar-Ilan and Peleg[BP92] dyn O(δlog(U))

Choy and Singh 1[CS93] dyn O(δ2 + δlog ∗ (U))

Choy and Singh 2[CS93] dyn O(δlog ∗ (U))

Choy and Singh 3[CS93] dyn O(δ2 + δlog ∗ (U))

Rhee[Rhe95] dyn O(max{δ2 + δlog ∗ (U), rδ})
Ginat et al.[GSA89] dyn > 0 and < 2k

Bouabdallah-Laforest[BL00] dyn O(log(N)

Table 3.4: Performance of DiPP and DrPP algorithms, from [Rhe95]

3.4 Conclusion

Chapter 2 introduced the problem of the allocation of resources in networks addressed
in this work. None of the distributed algorithms presented in the above state of the art
address all the constraints. There are few algorithms for systems with multiples instances
of multiples types of resources and none of them address the placement of the resources
in the topology. None of them address the order in which the resources are used, required
for chains of functions, either. Additionally some have prerequisites, like the a priori
knowledge of the conflict graph.

The next chapter introduces an algorithm that address all the requirements of the
problem statement with no new prerequisite. The following chapters show the evaluation
of the heuristics proposed for the algorithm, as well as the comparison with some of the
algorithms introduced above: Dijkstra’s incremental algorithm [Dij71] as well as Chandy-
Misra [CM84], Rhee [Rhe95] and Bouabdallah-Laforest [BL00] DrPP algorithms.

38

Chapter 4

A distributed algorithm for the
allocation of resources

Contents
4.1 Variables of nodes and messages 40

4.2 Path computation . 42

4.2.1 Requesting to enter the CS . 42

4.2.2 Forwarding the messages . 43

4.2.3 Computing the path . 44

4.2.4 Total ordering of requests . 44

4.3 Allocation . 45

4.3.1 Allocating the resources . 45

4.3.2 Computing the total order of requests 48

4.3.3 Preempting an instance . 49

4.3.4 Leaving the CS . 52

4.4 Examples . 52

4.4.1 Example of running the algorithm with one request 53

4.4.2 Example of two concurrent requests with preemption of an in-
stance . 56

4.5 Heuristics . 59

4.5.1 Routing heuristics . 59

4.5.2 Allocation order heuristics . 60

4.5.3 Recap and example . 61

4.6 Algorithm Complexity . 61

4.7 Conclusion . 62

It’s educational

Pixies, U-Mass

This chapter details a distributed algorithm for the allocation of resources in networks,
addressing the problem described in Chapter 2 to allocate ordered chains of VNFs. The

39

algorithm was first described in the paper “A Resource Usage Efficient Distributed Al-
location Algorithm for 5G Service Function Chains” published at the 2020 Distributed
Applications and Interoperable Systems (DAIS) conference [Fra+20].

The algorithm is modular and consists of two consecutive subroutines:

� the path computation subroutine, detailed in Section 4.2, in which the algorithm
selects the instances of types of resources to be allocated and computes a routing
path between them. This path respects the order present in the request.

� the allocation subroutine, detailed in Section 4.3, in which the algorithm allocates
the resources selected during the path computation subroutine.

Each of these subroutines can choose among multiple heuristics depending on the
objectives. Possible heuristics for both subroutines are introduced in Section 4.5, along
with their pros and cons.

The algorithm provides a solution to the problem statement described in Section 2.4
using the system described in Section 3.1.3. It allocates requests for an ordered set of
resources in a system with multiple instances of multiple types of resources. It does not
assume that the communication links are First In First Out (FIFO), i.e., messages can
arrive in any order. It also does not assume that the nodes have a knowledge of the full
communication graph. No a priori knowledge of the conflict graph is required either.

4.1 Variables of nodes and messages

Each subroutine relies on multiple types of messages. Table 4.1 shows which message
uses which variable. The variables sent with the messages are described in Table 4.2. The
messages and how they use these variables are described in the next sections.

The algorithm requires nodes to keep track of several local variables. They are listed
in Table 4.3. These local variables are used by both subroutines and are prefixed by self.
in the pseudo-code in the next sections. The types defined for the variables are the types
used in this chapter, but an implementation of the algorithm could choose other types for
some of them. For example, the identifier of nodes (id variable) could be integers instead
of strings.

In the pseudo-code in the next sections, it is assumed that the index for vectors starts
at 0.

Messages Variable
request path allocVector preempter

ROUTING X X X
ROUTING ACK X X X

ALLOC X X X
ALLOC ACK X X X
PREEMPT X X X X

PREEMPT ACK X X X X
END CS X X X

Table 4.1: Variables used by messages

40

Variable Type Description
request couple (requestId:

integer, resourceTypes:
Vector of strings)

A couple with a request identifier and the
vector of all the requested types of

resources. The order in the vector is the
order in which the resources will be used,
i.e., resourceTypes[i] is the ith resources

that will be used.
path Vector of couples (id:

string, length: integer)
Path from the requesting node to the

current node. Each couple in the vector
contains a node identifier and its distance to

the previous node
allocVector Vector of couples (id:

string, counter: integer)
The allocation vector for the request. Each
couple in the vector contains the identifier of
a node holding one of the type of resources
requested and the value of the counter for

that node applicable to the request
preempter id: string The identifier of the node that initiated the

preemption

Table 4.2: Variables used in messages

Local variable Type Role
id string The identifier of the node

resourceType string The type of resources held by the node
counter integer The counter of the node. This counter is

used to compute the total order of the
requests, cf. Section 4.3.2.

waiting vector of t-uple(request,
path, allocVector)

Set of identifiers of requests waiting for
their turn to be allocated.

ignore vector of integer Set of request identifiers to be ignored upon
arrival, needed to deal with the distributed

nature of the system.
status one of {IDLE, ALLO-

CATED, PREEMPT-
ING}

Current status of the node

allocatedRequest same as request, path and
allocVector variables of
messages, cf. Table 4.2

Variables of the request
currently allocated on the
node

allocatedPath
allocatedVector
currentHandler string Identifier of the next node in the allocation

order of the request currently allocated on
the node (allocatedRequest), i.e., the node

currently handling this request

Table 4.3: Local variables of nodes

41

4.2 Path computation

The first subroutine computes a path with nodes that hold instances of the types of
resources requested and respecting the order in the request. It relies on two messages:
ROUTING and ROUTING ACK.

The requesting node starts by sending an initial ROUTING message towards the node
holding the first type of resources in the request. Subsequent ROUTING messages are
sent by each node on the path until all the types of resources have been selected.

The last node on the path then sends a ROUTING ACK message to the requesting
node.

Simultaneously this subroutine gathers the required information to build an allocation
vector for the request. The allocation vectors are used to compute a total order of the
requests. This is described below and then illustrated by an example in Section 4.4.
When this subroutine ends, the second one described in Section 4.3 starts to allocate the
resources.

This subroutine computes a valid path with the selected instances of all the requested
types of resources in the order given in the request. It does not check if the instances are
available.

4.2.1 Requesting to enter the CS

When a node wants to request resources it does so by building a first ROUTING message
in the requestCS function, the pseudo-code of which is shown in Algorithm 4.1. The
ordered vector of requested types of resources is given as a parameter to the function in
the variable request , described in Table 4.2. For instance, request.resourceTypes[i] is the
ith type of resources requested according to the order in the request.

This function computes two local variables: the path (line 3), and the allocVector
(line 4). The path is initialised (line 7), with a vector containing a couple: the identifier of
the requesting node and 0, which is the distance between the requesting node and itself.
As the request has just been initiated and no resource has been found yet, the allocVector
is initialised with an empty vector (line 8).

Then, using the getPathToResourceType function, the node identifies the node to which
the next message must be sent (line 11). The function updates the path variable to append
the information gathered. path now contains the first two nodes of the path and the
distance between them (line 12). The requesting node then sends a ROUTING message
to this node (line 13) with the variables request , path and allocVector .

Finally the function requestCS synchronously waits for a ROUTING ACK message
(line 16). This message will contain new values for the variables request, path and allocVec-
tor, noted respective r, p and a. These new values are sent as parameters to the allocate
function, detailed in the dedicated section 4.3, that will start the allocation subroutine.

42

1 Function requestCS (reque s t)
2 # Local v a r i a b l e s
3 path : vec to r o f couple (id : s t r i ng , l ength : i n t e g e r)
4 a l l o c V e c t o r : vec to r o f couple (id : s t r i ng , counter : i n t e g e r)
5

6 # I n i t i a l i s a t i o n o f v a r i a b l e s
7 path ←− [(s e l f . id , 0)]
8 a l l o c V e c t o r ←− []
9

10 # Send reque s t to f i r s t node on path
11 pathToNextResource ←− getPathToResourceType (r eques t [0])
12 path . append (pathToNextResource)
13 send ROUTING(request , path , a l l o c V e c t o r) to pathToNextResource . id
14

15 # Wait f o r the ack then s t a r t the a l l o c a t i o n subrout ine
16 w a i t f o r ROUTING ACK(r , p , a)
17 a l l o c a t e (r , p , a)
18 EndFunction

Algorithm 4.1: requesting the CS

4.2.2 Forwarding the messages

The algorithm assumes that each node in the system has some local knowledge on how
to reach all the types of resources. Each node keeps an up-to-date local routing table
containing the names of its neighbours, i.e., the nodes connected to it by an edge, that
are closer to each type of resources as well as the distances to these nodes. Table 4.4
shows an example of a routing table for a node n1. The table shows that there are two
instances of types of resources c1, each at a distance of 1. One can be reached through
n2, the other through n5. The entry in the routing table is the node itself for the type
of resources it holds, in the example it is assumed n1 holds an instance of c2. How these
routing tables are built and updated is out of scope here. The assumption is that the
topology is static, cf. Section 2.4.1. The solution used in the experiments is described in
Chapter 5.

Type Next node Total distance D to
of resources on the path this type of resources

c1
n2 1
n5 1

c2

n1 0
n5 8
n2 10

c3
n5 9
n2 11

Table 4.4: Sample routing table a node.

The getPathToResourceType function selects the next node on the path to a given
type of resources, it checks its routing table and selects one of the node according to the
routing heuristic. This function takes one parameter: the type of resources. It returns
a couple with the identifier of one node and its distance to the current node. Routing
heuristics are detailed in Section 4.5.2 and evaluated in the next chapter.

43

4.2.3 Computing the path

The pseudo-code for the handling of ROUTING messages is shown in Algorithm 4.2.
Upon reception of a message of this type a node checks if the type of resources it holds
(variable self.currentType) is of the next requested type (lines 20 to 23). If this is the case it
appends itself to the allocVector along with the current value of its self.counter variable
(line 22), and then increment self.counter (line 21). A distinct value of self.counter is
attributed to each request allowing the computation of the total order of the requests, cf.
Section 4.3.2.

If at least one type of resources has still not been selected (line 25), the algorithm
uses the getPathToResourceType function to identify the node where to send a ROUT-
ING message (line 29). It then sends the ROUTING message (line 32) with the request
variable and the updated values of path and allocVector as parameters.

Otherwise, if all the types of resources have been selected, the node sends a ROUT-
ING ACK message to the requesting node that will start the allocation subroutine (line
38). This message is the last sent by this subroutine and is handled in the allocation
subroutine described in Section 4.3 because the allocation of resources starts when this
message is received (Algorithm 4.1, line 17).

19 Function handleRouting (request , path , a l l o c V e c t o r)
20 i f s e l f . resourceType == reques t . resourceTypes [s i z e (a l l o c V e c t o r)]
21 s e l f . counter ←− s e l f . counter + 1
22 a l l o c V e c t o r . append (s e l f . id , s e l f . counter)
23 endif
24

25 i f s i z e (a l l o c v e c t o r) != s i z e (r eque s t . resourceTypes)
26 # The end o f the path has not been reached yet
27 # send updated a l l o c V e c t o r to next node
28 nextResourceType ←− r eque s t . resourceTypes [s i z e (a l l o c V e c t o r)]
29 pathToNextResource ←− getPathToResourceType (nextResourceType)
30 path . append (pathToNextResource)
31

32 send ROUTING(request , path , a l l o c V e c t o r) to pathToNextResource . id
33 return
34 endif
35

36 # This i s the case when the path computation f i n i s h e s
37 # Al l r e s o u r c e s have been found , sends ROUTING ACK to r e que s t i ng node
38 send ROUTING ACK(request , path , a l l o c V e c t o r) to path [0] . id
39 return
40 EndFunction

Algorithm 4.2: Reception of ROUTING messages

4.2.4 Total ordering of requests

The algorithm computes a total order of the requests to preserve the liveness property,
i.e., it guarantees that all requests are satisfied in a finite time. The method from the
LASS algorithm [Lej+15] based on allocation vectors built for each request is used to
compute this order.

The first step is to build the allocation vector for the request. This vector is built by
each of the node on the path that holds one of the requested instances. Each node has a
local counter, the local variable self.counter, that is initialised to 0. This counter acts

44

as a logical clock, but contrary to Lamport’s logical clocks [Lam78] it is local and only
incremented by the node when it receives a new request. As such it is then not possible
for two requests to get the same counter value for a node in their allocation vector. The
first request receives the value 1, the second receives the value 2, and so on. This can be
seen in line 21 for the handleRouting function.

Once the node has updated its local counter, it then updates the allocation vector
with the value of its counter (line 22). The updated allocation vector is inserted in the
ROUTING message when it is forwarded to the next node in the path (line 32). All the
allocation vectors are different so as to enforce the total order of the requests, cf. Section
4.3.2.

4.3 Allocation

The second subroutine allocates the instances that were selected during the path com-
putation subroutine. This allocation follows the total order defined by the allocation
order heuristic and described above in Section 4.2.4. When multiple concurrent requests
need to allocate the same instance, the total order of the requests is followed. If needed
a preemption mechanism is present to enforce this order.

Initially all the nodes start in the IDLE state. When their instance is allocated
for a request they enter the ALLOCATED state. When a node is already ALLO-
CATED and receives a new request for its instance, this new request might preempt the
instance if it comes before the request that had initially allocated the instance in the total
order. In this case the node enters the PREEMPTING state. The transitions from one
state to another are shown on the state diagram of figure 4.1.

IDLE ALLOCATED

PREEMPTING

ALLOC,ALLOC ACK,

PREEMPT, PREEMPT ACK

ALLOC

END CS

ALLOC

ALLOC,ALLOC ACK,

PREEMPT, PREEMPT ACK

ALLOC,ALLOC ACK,PREEMPT

PREEMPT ACK

Figure 4.1: State diagram of nodes

4.3.1 Allocating the resources

The core of the allocation subroutine is based on ALLOC messages. In a system where all
the nodes are initially in the IDLE state, a node that receives an ALLOC message enters
the ALLOCATED state and sends an ALLOC message to the next node according to
the allocation order heuristic. The operation is then repeated until the last node in the
allocation order is reached. Then, the last node sends an ALLOC ACK message to the
requesting node to inform it that the allocation is done. It then enters its CS and starts
using the instances. Upon leaving its CS it runs the function leaveCS shown in Algorithm

45

4.10 and sends a END CS message that is forwarded along the path to all the nodes
holding the requested types of resources.

ALLOC messages are sent to nodes according to the allocation order heuristic. Some
possible heuristics are detailed in the next section. To follow this allocation order, five
functions are assumed to be available and their outputs depend on the selected heuristic:

� firstNodes : a function that takes an allocation vector as parameter and returns a
vector with the identifiers of the nodes to allocate first,

� nextNode: a function that takes a path and a node identifier as parameters and
returns the node identifier of the node in the path that comes after the node given
as an input,

� previousNode: a function that takes a path and a node identifier as parameters and
returns the node identifier of the node in the path that comes before the node given
as an input,

� a isLast function that takes two parameters, a path and a node identifier, and
returns true if the node identifier passed as a parameter is the last node on the path
and false otherwise,

Start of the subroutine The first step of this subroutine is to handle the ROUT-
ING ACK message with the function allocate which pseudo-code is shown in Algorithm
4.3. This function is called at the end of the path computation subroutine. It uses the
firstNodes function (line 42) to identify the nodes where to start the allocation de-
pending on the allocation order heuristic. For most heuristics the vector returned by
firstNodes contains a single element because they allocate resources sequentially. Once the
node(s) to reach is(are) identified, the algorithm sends an ALLOC message to it(them).

To make the pseudo-code more readable, as the path has already been computed during
the first subroutine, it is assumed that a sendFwd function is available. sendFwd sends
a message from one node to another according to the path previously computed. When
a message reaches a node on the path that does not hold any of the requested type of
resources, it forwards the message to the next node in the path. This function sendFwd
is used in the pseudo-code of this section instead of the send function used in the first
subroutine.
41 Function a l l o c a t e (request , path , a l l o c V e c t o r)
42 nodesToAllocate ←− f i r s t N o d e s (a l l o c V e c t o r)
43 f o r node in nodesToAllocate
44 sendFwd ALLOC(request , path , a l l o c V e c t o r) to node
45 endfor
46 EndFunction

Algorithm 4.3: Allocation of requests

Handling the ALLOC message The pseudo-code for the handling of ALLOC mes-
sages is shown in Algorithm 4.4. The function relies on several of the local variables
described above in Section 4.1 to keep tracks of all the allocations received. If the node is
in the ALLOCATED state, the local variables allocatedRequest, allocatedPath, al-
locatedVector hold respectively the identifier of the request that allocated the instance,
its path, and its allocation vector. The variable currentHandler contains the identifier

46

of the node that was next on this request, i.e., the node that is currently handling the
request.

The function maintains two local variables : self.waiting and self.ignore. The self.waiting
vector contains t-uples of all the requests that have tried to allocate the instance held by
the current node and have not been able to yet, along with their paths and allocation vec-
tors. The self.ignore vector contains the identifiers of requests that will be ignored when
they arrive, it is necessary due to the distributed nature of the system where messages
can arrive in any order. The use of these two vectors is detailed below.

At first the algorithm checks (lines 49 to 52) if the request is in the self.ignore vector.
If this is the case it removes it from the vector and stops there.

If the node is currently in the IDLE state, it enters the ALLOCATED state and
stores the current request, its path, and its allocation vector respectively in the allocatedRequest ,
allocatedPath and allocatedVector variables (lines 57 to 61). Then the algorithm checks
(line 62) if the current node is the last node that needs to be allocated according to the
allocation order using the isLast function. If this is the case, it means that all the types
of resources have been allocated for the current request and the allocation is finished
so the algorithm sends an ALLOC ACK message to the requesting node, which is also
path[0] (line 63). If this is not the case it sends an ALLOC message along the path of
the request to the next node according to the allocation order. The algorithm uses the
currentHandler variable to store the identifier of the next node, this operation allows it
to know which node to send preemptions to as detailed below (lines 66-67).

If the node is currently in the ALLOCATED state when receiving an ALLOC mes-
sage, the algorithm checks (line 74) the precedence of the current request with the prece-
dence of the request that had allocated the instance before, according to the total order of
requests (cf. 4.3.2). If the current request has a lower precedence, the algorithm attempts
a preemption and the node enters the PREEMPTING state (line 75). It also appends
the current request, as well as the request that had previously allocated the instance,
to the self.waiting vector because the two requests are now on hold. Finally it sends
a PREEMPT message to the node stored in currentHandler with the values stored in
allocatedRequest, allocatedPath, allocatedVector variables as parameters (line 79).

Finally if the node is in the PREEMPTING state when receiving an ALLOC mes-
sage, the current request is stored in the self.waiting vector (lines 85 to 88). This request
will be handled in a later call to the handleAlloc function, once the node has left this
state.

Upon reception of an ALLOC ACK message a node simply enters its CS as shown in
the pseudo-code in Algorithm 4.5.

47

47 Function handleAl loc (request , path , a l l o c V e c t o r)
48 # Check i f r eque s t i s in the s e l f . i gno r e l i s t
49 i f r eque s t . r eque s t Id in self.ignore
50 s e l f . i gno r e ←− s e l f . i gno r e = r eque s t . r eque s t Id
51 return
52 endif
53

54 # I f IDLE send ALLOC to next node or
55 # ALLOC ACK i f the node i s the node ho ld ing the l a s t r e s ou r c e
56 switch s e l f . s t a t u s
57 case IDLE :
58 s t a t u s ←− ALLOCATED
59 a l l o ca t edReques t ←− r eque s t
60 a l l o ca t edVec to r ←− a l l o c V e c t o r
61 a l l ocatedPath ←− path
62 i f i s L a s t (s e l f . id , a l l o c V e c t o r)
63 sendFwd ALLOC ACK(request , path , a l l o c V e c t o r) to path [0] . id
64 return
65 else
66 currentHandler ←− nextNode (s e l f . id , a l l o catedPath)
67 sendFwd ALLOC(request , path , a l l o c V e c t o r) to currentHandler
68 return
69 endif
70

71 # I f ALLOCATED, compare cur rent and new r e q u e s t s
72 case ALLOCATED:
73 s e l f . wa i t ing ←− s e l f . wa i t ing + (request , path , a l l o c V e c t o r)
74 i f comparePrecedence (a l l o cVecto r , a l l o ca t edVec to r) < 0
75 s e l f . s t a t u s ←− PREEMPTING
76 s e l f . wa i t ing ←− s e l f . wa i t ing + (a l locatedRequest , a l locatedPath ,
77 a l l o ca t edVec to r)
78 sendFwd PREEMPT(a l locatedRequest , a l locatedPath , a l l o ca tedVector ,
79 s e l f . id) to currentHandler
80 return
81 endif
82 endcase
83

84 # I f PREEMPTING, append to wai t ing
85 case PREEMPTING:
86 s e l f . wa i t ing ←− s e l f . wa i t ing + (request , path , a l l o c V e c t o r)
87 return
88 endcase
89 endswitch
90 EndFunction

Algorithm 4.4: Handling of ALLOC messages

91 Function handleAllocAck (request , path , a l l o c V e c t o r)
92 enterCS ()
93 EndFunction

Algorithm 4.5: Handling of ALLOC ACK messages

4.3.2 Computing the total order of requests

To sort the requests according to the total order, the algorithm computes the precedence
of requests. A request Reqi will be allocated before a request Reqj if

48

precedence(Reqi) < precedence(Reqj). This allows the definition of the rank of a request
in the total order.
94 Function precedence (a l l o c V e c t o r)
95 # l o c a l v a r i a b l e s
96 sum : i n t e g e r
97 precedence : f l o a t
98

99 sum ←− 0
100

101 f o r element in a l l o c V e c t o r
102 sum ←− sum + element
103 endfor
104

105 precedence ←− sum / s i z e (a l l o c V e c t o r)
106 return precedence
107 EndFunction

Algorithm 4.6: Computing the precedence of two allocation vectors

Reqi is said to have a lower precedence than Reqj if the average of the counters
of the allocation vector VReqi of Reqi is lesser than the average value of the compo-
nents of the allocation vector VReqj of Reqj. For instance, consider two requests ReqA=
Req(n4, [c3,c2,c1]) and ReqB = Req(n6, [c1,c2,c3]). If their allocation vectors are VReqA =
((n6, 3), (n3, 3), (n4, 1)) and VReqB = ((n4, 2), (n3, 2), (n6, 1)) ReqB has a lower precedence
than ReqA, i.e., ReqB will be allocated before ReqA. The pseudo-code for the functions
precedence and comparePrecedence is shown in Algorithm 4.6 and Algorithm 4.7.
108 Function comparePrecedence (a l l ocVector1 , a l l o cVec to r2)
109 # l o c a l v a r i a b l e s
110 precedence1 : f l o a t
111 precedence2 : f l o a t
112

113 precedence1 ←− precedence (a l l o cVec to r1)
114 precedence2 ←− precedence (a l l o cVec to r2)
115

116 i f precedence1 < precedence2
117 return =1
118 endif
119

120 i f precedence1 > precedence2
121 return 1
122 endif
123

124 # precedence1 == precedence2
125 return t i e b r e a k (precedence1 , precedence2)
126 EndFunction

Algorithm 4.7: Comparing the precedence of two allocation vectors

It is possible for the average values of two vectors to be equal. In this case a function
tiebreak is assumed to be available (line 125) to break the ties between requests, for
example the identifier of nodes can be used.

4.3.3 Preempting an instance

Since the system is distributed a request can arrive on a node already in the ALLO-
CATED state for a request that has a higher precedence. This can lead to starvation.

49

To manage these situations the algorithm preempts the instances to enforce the total order
of the requests. This relies on two messages: PREEMPT and PREEMPT ACK. These
messages take an additional parameter: preempter. This variable stores the identifier of
the node that initiated the preemption.

First the function handlePreempt decides whether it needs to forward the preemption,
to accept it and send back a PREEMPT ACK, add the request to the self.waiting vector
or to do nothing. The pseudo-code is shown in algorithm 4.8.

As it is not assumed that communication links are FIFO, it is possible that a node
receives a PREEMPT message for a request that it is not aware of yet, i.e., it has not re-
ceived the corresponding ALLOC message. In this case, the node is either IDLE or AL-
LOCATED for another request and acknowledges the preemption, cf. the paragraph
“Acknowledging the preemption” below. Otherwise, the decision depends on the current
state of the node:

� If the node is ALLOCATED for the request that initiated the preemption (lines
138-152), there are two sub-cases. If the node is the node holding the last requested
instance, then the request has already entered its CS and it is too late to preempt
the instance, the algorithm waits for the request to leave its CS and does nothing
(line 140). If it is not the node holding the last requested instance then the request
is appended to the self.waiting vector (line 142), the state of the node changes
to PREEMPTING and a PREEMPT message is sent along the path of the request
(lines 143 and 145).

� If the node is PREEMPTING (lines 129-135) and the new request has a higher
precedence than the request that currently holds the instance, then the request is
stored in the local self.waiting vector, otherwise the node acknowledges the preemp-
tion, cf. the dedicated paragraph below.

Acknowledging the preemption If the node has accepted the preemption, it is either
because it did not know the request yet or because it was already preempting the instance
for a request with a lower precedence. It starts by appending the request to the self.ignore
vector (line 155). After that, it sends back a PREEMPT ACK message to the node that
initiated the preemption (line 156). When a node receives a PREEMPT ACK message,
it executes the handlePreemptionAck function. The pseudo-code is shown in Algorithm
4.9. In any case, the node changes back its status to IDLE.

If the node receiving the message is the node that initiated the preemption then it
finds the request with the lowest precedence stored in the self.waiting variable (line 163)
and resumes its allocation (line 164).

Otherwise, it removes the request from the self.waiting vector (line 166) because the
request is not being allocated anymore for now. Then, it sends a PREEMPT ACK mes-
sage to the previous node in the path (line 167). This message is propagated until the
node that initiated the preemption has been reached (line 169).

When a preemption occurs, the algorithm ensures that the resource is always released.
Either the node that receives the PREEMPT message decides to release it immediately,
either it waits for the current request to leave its CS. As CS have finite duration the
algorithm ensures that resources are released in finite time.

Because of the distributed nature of the system, even if PREEMPT messages are sent
along the same path as the ALLOC messages, a node may receive a PREEMPT before it
has received the corresponding ALLOC. To deal with such situations, each node maintains

50

a self.ignore vector. When it receives a PREEMPT for a request and it has not yet
received the corresponding ALLOC, it stores the request in the self.ignore vector (line
155 of Algorithm 4.8). When it finally receives the ALLOC for a request that is present
in the self.ignore vector, it ignores the ALLOC and removes the request from the vector
(lines 49-52 of Algorithm 4.4).

127 Function handlePreempt (request , path , a l l o cVecto r , preempter)
128 # I f a l r eady in PREEMPTING˜ state , append to wai t ing
129 i f s e l f . s t a t u s == PREEMPTING
130 i f precedence (a l l o c V e c t o r) > precedence (a l l o ca t edVec to r)
131 s e l f . wa i t ing ←− s e l f . wa i t ing + (request , a l l o cVecto r , path)
132 return
133 else
134 cont inue
135 endif
136 else
137 # I f a l l o c a t e d by the preempting request , check i f the node i s the l a s t
138 i f a l l o ca t edReques t . r eque s t Id == reques t . r eque s t Id
139 i f i s L a s t (s e l f . id path)
140 return
141 else
142 s e l f . wa i t ing ←− s e l f . wa i t ing + (request , a l l o cVecto r , path)
143 s t a t u s ←− PREEMPTING
144 sendFwd PREEMPT(request , path , a l l o cVecto r , preempter)
145 to nextNode (s e l f . id , a l l o c V e c t o r)
146 return
147 endif
148 else
149 # Only p o s s i b l e i f IDLE or ALLOCATED by another r eques t
150 cont inue
151 endif
152 endif
153

154 # The node accept s the preemption
155 i gno r e ←− i gno r e + (request , a l l o cVecto r , path)
156 sendFwd PREEMPT ACK(request , path , a l l o cVecto r , preempter) to preempter
157 endif
158 EndFunction

Algorithm 4.8: Handling of PREEMPT messages

159 Function handlePreemptionAck (request , path , a l l o cVecto r , preempter)
160 s e l f . s t a t u s ←− IDLE
161

162 i f (s e l f . id == preempter)
163 request , path , a l l o c V e c t o r ←− requestWithLowestPrecedence (s e l f . wa i t ing)
164 handleAl loc (request , path , a l l o c V e c t o r)
165 else
166 s e l f . wa i t ing ←− s e l f . wa i t ing = (request , a l l o cVecto r , path)
167 pathToPreviousResource ←− previousNode (s e l f . id , a l l o c V e c t o r)
168 sendFwd PREEMPT ACK(request , path , a l l o cVecto r , preempter)
169 to pathToNextResource . id
170 endif
171 EndFunction

Algorithm 4.9: Handling of PREEMPT ACK messages

51

4.3.4 Leaving the CS

When a node is done using the allocated instances, it leaves its CS by running the function
leaveCS (Algorithm 4.10). This function is run by the requesting node and sends a
END CS message to the first node in the allocation order (line 174).
172 Function leaveCS (request , path , a l l o c V e c t o r)
173 pathToNextResource ←− nextNode (s e l f . id , a l l o c V e c t o r)
174 sendFwd END CS(request , path , a l l o c V e c t o r) to pathToNextResource . id
175 EndFunction

Algorithm 4.10: Leaving the CS

When a node receives a END CS message it runs the function handleEndCS shown
in Algorithm 4.11. It changes its state back to IDLE (line 178). It then identifies the
next node according to the allocation order (line 183) and sends it a END CS message
(line 184). When the node that receives the message is the last according to the allocation
order it just does not send any more message (line 182).
176 Function handleEndCS (request , path , a l l o c V e c t o r)
177 i f s e l f . id in a l l o c V e c t o r
178 s e l f . s t a t u s ←− IDLE
179 s e l f . wa i t ing ←− s e l f . wa i t ing = (request , path , a l l o c V e c t o r)
180 endif
181

182 i f not i s L a s t (s e l f . id , a l l o c V e c t o r)
183 pathToNextResource ←− nextNode (s e l f . id , a l l o c V e c t o r)
184 sendFwd END CS(request , path , a l l o c V e c t o r) to pathToNextResource . id
185 endif
186 EndFunction

Algorithm 4.11: Handling the END CS messages

4.4 Examples

The examples in this chapter are based on the system shown in Figure 4.2, this is the
same system that was introduced in Section 2.4.1.

n2 n4

n5

n1

n3

n7

n8 n9

n6

1

1

1

19

1

1

7

1 1

1

c1 c2 c3

legend

Three types of resources

Figure 4.2: The sample system

52

Table 4.5 gives the routing tables for this system. In this example, node n1’s shortest
path to the type of resources c3 is of length 9 and starts at n5: (n1, n5, n7, n8), and node
n5’s shortest path to the type of resources c3 is of length 8 and starts at n7: (n5, n7, n8).

Type Node D

c1
n2 1
n5 1

c2

n1 0
n5 8
n2 10

c3
n5 9
n2 11

(a) n1

Type Node D

c1

n2 0
n5 1
n3 10

c2

n1 1
n5 8
n3 9

c3
n5 9
n3 10

(b) n2

Type Node D

c1
n4 1
n2 9

c2
n1 0
n2 10

c3
n6 1
n2 18

(c) n3

Type Node D

c1
n4 0
n3 10

c2 n3 1

c3
n6 1
n3 19

(d) n4

Type Node D

c1
n5 0
n2 1

c2
n1 1
n7 7

c3
n7 8
n2 11

(e) n5

Type Node D

c1
n4 1
n3 10

c2 n3 1

c3

n6 0
n3 19

(f) n6

Type Node D

c1 n5 7

c2
n7 0
n5 8

c3

n8 1
n9 1
n5 18

(g) n7

Type Node D

c1 n7 8

c2 n7 1

c3

n8 0
n9 1
n7 19

(h) n8

Type Node D

c1 n7 8

c2 n7 1

c3

n9 0
n8 1
n7 19

(i) n9

Table 4.5: Routing tables for nodes of system from figure 4.2. D is for Distance.

4.4.1 Example of running the algorithm with one request

n1 n8 n7 n5Req1:

Figure 4.3: Sample request Req1

The request Req1 = Req(n1, [c3,c2,c1]), previously used in Section 2.4.1, is used here as the
example to describe the behaviour of the algorithm, assuming this is the only request in the
system. The selection of instances found for Req1 is shown in Figure 4.3. Figure 4.4 shows
the messages sent during the execution of the algorithm for Req1 in the sample system to

53

select these instances. For this example, it is assumed that the getPathToResourceType
function always returns the node that is the closest for a given type of resources.

n1

n5

n7

n8

t
t1 t2 t3 t4 t5 t6

Req1 ALLOCATED CS

R
O
U
T
IN

G

[]

R
O
U
T
IN

G

[]

R
O
U
T
IN

G

[]

R
O
U
T
IN

G
[(n

8
, 3
)
]R

O
U
T
IN

G
[(n

8
, 3
)

(n
7
, 2
)

]RO
U
T
IN

G
A
C
K

 
(n

8
, 3
)

(n
7
, 2
)

(n
5
, 4
)

 
A
L
L
O
C

A
L
L
O
C

A
L
L
O
C

A
L
L
O
C

A
C
K

E
N
D
C
S

E
N
D

C
S

E
N
D

C
S

Figure 4.4: Algorithm execution for Req1, showing only the allocVector variable of ROUT-
ING and ROUTING ACK messages

n2

cn2 =1
n4

cn4 =4

n5 cn5 =3

n1

cn1 =1

n3

cn3 =2

n7 cn7 =1

n8cn8 =2 n9 cn9 =1

n6

cn6 =2
VReq1 = ∅

(a) t1: requestCS(), Req1 is sent
towards n8

n2

cn2 =1
n4

cn4 =4

n5 cn5 =3

n1

cn1 =1

n3

cn3 =2

n7 cn7 =1

n8cn8 =3 n9 cn9 =1

n6

cn6 =2

(b) t2: handleRouting(), n8’s counter
is incremented

Figure 4.5: Running the path computation subroutine Req1 1/3

Figure 4.5 shows n1 initiating the request by running requestCS. The getPathToRe-
sourceType function returns n5 for the type of resources c3. n1 sends an initial ROUT-
ING message to n5 with path = [(n1, 0), (n5, 1)] and an empty allocVector. When it
receives this message, n5 runs the handleRouting function and, as it does not hold
the first type of resources, sends a ROUTING message to the node n7 returned by
getPathToResourceType for c3 with the variable path = [(n1, 0), (n5, 1), (n7, 7)] and an
empty allocVector. When n7 receives this message it runs the handleRouting function,

54

and as it does not hold an instance of type c3 either, it sends a ROUTING message
to n8, according to the output of the getPathToResourceType function, with path =
[(n1, 0), (n5, 1), (n7, 7), (n8, 1)] and an empty allocVector. When n8 receives the ROUT-
ING message, its instance is of the first requested type of resources c3. Assuming that its
current counter value is 2, it increments its counter to 3, updates allocVector and sends
a ROUTING message in the direction of a node holding the second type of resources
requested c2, n7 according to the output of the getPathToResourceType function.

n2

cn2 =1
n4

cn4 =4

n5 cn5 =3

n1

cn1 =1

n3

cn3 =2

n7 cn7 =1

n8cn8 =3 n9 cn9 =1

n6

cn6 =2

VReq1 =
[
(n8, 3)

]

(a) t3: handleRouting(), a ROUTING
message is sent to n7

n2

cn2 =1
n4

cn4 =4

n5 cn5 =3

n1

cn1 =1

n3

cn3 =2

n7 cn7 =2

n8cn8 =3 n9 cn9 =1

n6

cn6 =2

(b) t4: handleRouting(), n7’s counter
is incremented

Figure 4.6: Running the path computation subroutine Req1 2/3

The variables are now path = [(n1, 0), (n5, 1), (n7, 7), (n8, 1), (n7, 1)] and allocV ector =
[(n8, 3)]. When n7 receives this message, as it holds the second type of resources requested
it increments its local counter from 1 to 2 and updates allocVector. This is shown in Figure
4.6.

n7 then sends a message to n5, the node in the direction of the last requested type
of resources. The variables are now path = [(n1, 0), (n5, 1), (n7, 7), (n8, 1), (n7, 1), (n5, 7)]
and allocV ector = [(n8, 3); (n7, 2)], cf. figure 4.7. When the message reaches n5, it
holds the last requested type of resources. It updates path and allocVector and sends a
ROUTING ACK message to the requesting node n1.

55

n2

cn2 =1
n4

cn4 =4

n5 cn5 =3

n1

cn1 =1

n3

cn3 =2

n7 cn7 =2

n8cn8 =3 n9 cn9 =1

n6

cn6 =2
VReq1 =

[
(n8, 3)
(n7, 2)

]

(a) t5: handleRouting(), a ROUTING
message is sent to n5

n2

cn2 =1
n4

cn4 =4

n5 cn5 =4

n1

cn1 =1

n3

cn3 =2

n7 cn7 =2

n8cn8 =3 n9 cn9 =1

n6

cn6 =2

(b) t6: handleRouting(), n5’s counter
is incremented

Figure 4.7: Running the path computation subroutine for Req1 3/3

The allocation subroutine then starts. Assuming that the allocation order heuristic
goes through the resources in the order in which they appear in the allocation vector, n1

sends an ALLOC message to n5. Then further ALLOC messages are sent by n5 to n7

and n7 to n8. Once the allocation is finished n8 sends an ALLOC ACK back to the
requesting node n1.

When n1 is done using the resources it sends an END CS message to n5. Then
subsequent END CS messages are sent by n5 and finally n7.

4.4.2 Example of two concurrent requests with preemption of
an instance

Figure 4.9 shows how preemption works in the case of the requests Req2 and Req3 de-
scribed in Figure 4.8a. Initially all nodes are in the IDLE state and no other request is
in the system. At the beginning of this example, the path computation subroutines of
these two requests are finished and their allocation vectors have been computed, they are
shown in Figure 4.8b.

n4Req2: n3 n6 n4

n6Req3: n4 n6 n3

(a) Selection of instances for Req2 and
Req3

VReq2 =




4
3
6


 VReq3 =




5
4
3




(b) Allocation vectors

Figure 4.8: Sample requests Req2 and Req3

56

n3

n4

n6

t
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18

Req2 Req3 ALLOCATED CSPREEMPTING

A
L
L
O
C

A
L
L
O
C

A
L
L
O
C

A
L
L
O
C

A
L
L
O
C

P
R
E
E
M

P
T

P
R
E
E
M

P
T

A
C
K A

L
L
O
C

A
C
K

E
N
D

C
S

E
N
D

C
S

E
N
D

C
S

A
L
L
O
C

A
C
K E

N
D

C
S

E
N
D

C
S

E
N
D

C
S

Figure 4.9: Allocations for Req4 and Req5, preemption of n6 by Req4

n2 n4

n5

n1

n3

n7

n8 n9

n6

(a) t1: allocate(), the allocation of Req3
starts. n3 sends an ALLOC message to n4.

n2 n4

n5

n1

n3

n7

n8 n9

n6

(b) t2: handleAlloc(), allocation of Req2 con-
tinues. n4 sends an ALLOC message to n6.

Figure 4.10: Allocation of Req2 and Req3 1/4

In this scenario, n6 start the allocation of Req3, at t1 shown in Figure 4.10a, by sending
an ALLOC message to n4, the first node to hold a type of resources according to the order
of the request. Upon reception of this message, n4 enters the ALLOCATED state. Then,
at t2 (Figure 4.10b), it continues the allocation of Req3 and sends an ALLOC message to
n6, the node that holds the second requested type of resources.

57

n2 n4

n5

n1

n3

n7

n8 n9

n6

(a) t3: allocate(), allocation of Req2 starts. n4
sends an ALLOC message to n3.

n2 n4

n5

n1

n3

n7

n8 n9

n6

(b) t4: allocation of Req2 continues. n3 sends
an ALLOC message to n6.

Figure 4.11: Allocation of Req2 and Req3 2/4

At t3, as shown in Figure 4.11a, n4 starts the allocation of Req2 and sends an AL-
LOC message to n3 which enters the ALLOCATED state. Then, at t4 (Figure 4.11b),
n3 continues the allocation of Req2 with an ALLOC message to n6.

n2 n4

n5

n1

n3

n7

n8 n9

n6

(a) t5: handleAlloc(), allocation of Req3 con-
tinues. n6 sends an ALLOC message to n3.

n2n2 n4

n5

n1

n3

n7

n8 n9

n6

(b) t6: handleAlloc(), n3 receives Req3 after
it has sent an ALLOC message for Req2. It
enters the PREEMPTING state and sends a
PREEMPT message to n6.

Figure 4.12: Allocation of Req2 and Req3 3/4

At t5 (Figure 4.12a), n6 continues the allocation of Req3 with an ALLOC message to
n3. Due to the distributed nature of the system, the last two messages cross each other.
When it receives the ALLOC message for Req3, n3 is already in the ALLOCATED state
for Req2. It checks the precedence of the two requests using their allocation vectors, and
computes that Req3 has the priority over Req2. It then decides to start a preemption and

58

enters the PREEMPTING state. Because it has already sent an allocation message to
n6 for Req2 it sends a PREEMPT message to n6 at t6.

n2n2 n4

n5

n1

n3

n7

n8 n9

n6

(a) t7: handleAlloc(), n6 sends a PRE-
EMPT ACK message. Upon reception n6 be-
comes ALLOCATED for Req3.

n2n2 n4

n5

n1

n3

n7

n8 n9

n6

(b) t8: handleAlloc(), Req3 ends. n3 sends an
ALLOC ACK message to the requesting node
n6.

Figure 4.13: Allocation of Req2 and Req3 4/4

At t7, as shown in Figure 4.13a, n6 receives the PREEMPT message. Because the
preemption is for Req2 and it is currently in the ALLOCATED state for Req2, it ac-
knowledges the preemptions by sending back a PREEMPT ACK message to n3. Now
that the preemption is done, n3 can now enter the ALLOCATED state for Req3. At t8,
the allocation of Req3 is finished so n3 sends a final ALLOC ACK to the requesting node
n6 (Figure 4.13b).

4.5 Heuristics

Each of the two subroutines of the algorithm can rely on several heuristics, each with its
own objective. This section details these heuristics and the pros and cons of each of them.
This is then summed up in Table 4.6. All the heuristics are evaluated experimentally in
the next chapter.

4.5.1 Routing heuristics

The path computation subroutine allows the use of various heuristics for the getPathToRe-
sourceType function described in Section 4.2.2. This function takes a type of resources as
an input and returns a couple with the identifier of a node and its distance to the current
node.

The first heuristic, called shortest , selects the node holding one instance of the re-
quested type of resources that is the closest from the current node, according to the routing
table. This heuristic allows the minimising of the length of the path. However, it does not
guarantee that the path computed for a whole request is the shortest path containing all
the resources as the sum of the shortest path can be different from the shortest end-to-end

59

path. The drawback of this heuristic is that for a given type of resources it always returns
the same node, resulting in poor load-balancing across the various instances. It is mostly
appropriate for systems with a single instance of each type of resources.

The second heuristic, called round-robin , performs a round-robin across the different
instances of the input type of resources. For example if there are three instances of the
request type of resources, the first time the getPathToResourceType is called it returns the
first instance. The second time it is called, it returns the second instance then the third
instance the third time. After that it starts over. It allows the balancing the load across
all the instances but does not consider the distance between the nodes. The resulting
path has, most of the times, a longer length than the path computed with the shortest
heuristic.

4.5.2 Allocation order heuristics

The allocation subroutine relies on an allocation order. Each request has an associated
partial request order for the resources within the request, i.e., the order in which the
resources are used, cf. Section 2.4.1. The allocation order is the order used by the
algorithm to allocate the resources. There is no relation between the request order and
the allocation order and they can be different for a same request.

Three heuristics are proposed here to select this allocation order. For each of these
heuristics, it is necessary to implement the four functions introduced in Section 4.3.1:
firstNodes, nextNode, previousNode and isLast.

The reverse allocation order heuristic sends the ALLOC messages in the reverse
order of the routing path. With this heuristic the path computation subroutine follows
the path in one direction, and the allocation subroutine follows the path in the opposite
direction returning to the requesting node. This reduces the number of required mes-
sages. This heuristic requires some minor changes to the pseudo-code in Section 4.2: lines
16-17 of function requestCS (Algorithm 4.1) and line 38 of handleRouting function (Al-
gorithm 4.2) need to be adapted so that it is not the requesting node that receives the
ROUTING ACK message.

The byvalues allocation order sends the ALLOC messages according to the values
of the counters in the allocation vector. Starting by allocating the node with the highest
counter value reduces the probability that requests with higher precedence arrive during
the rest of the allocation of the request. Upon reception of the ROUTING ACK message
the requesting node sends an ALLOC message to the node with the highest counter value
in the allocation vector. The allocation then follows the order of the values of the counters
in the allocation vector.

The parallel allocation order sends ALLOC messages to all the nodes present in the
allocation vector in parallel. This allows the heuristic to respect the total order of the
requests and does not require any preemption to enforce it. However, the experimental
results detailed in Section 5.3 show that this heuristic does not give the best usage rate
of resources. Other heuristics achieve a better usage rate because not enforcing the total
order of requests increase concurrency. The total order is not optimal, having an optimistic
strategy and not enforce it systematically improves the usage rate. This allows requests
to be allocated when no conflict is detected.

60

4.5.3 Recap and example

If the allocation vector for Req1 is VReq1 = ((n8, 3), (n7, 2), (n5, 4)), the allocation for the
reverse heuristic follows the order n5, n7, n8. For the byvalues heuristic the order is n5,
n8,n7 because 4 > 3 > 2. In the case of the parallel heuristic, when the path computation
subroutine finishes, the requesting node n1 sends ALLOC messages to the three nodes
n8, n7,n5 in parallel.

Table 4.6 sums up all the heuristics detailed in this section as well as their pros and
cons.

Subroutine Name of the heuristic Pros Cons

Path computation
shortest Minimise the path

length
In systems with

multiple instances of
each type of

resources: load is not
shared across

instances
round-robin In systems with

multiple instances of
each type of

resources: maximise
the usage rate of

resources by
load-balancing
requests across

instances

Longer path

Allocation
reverse Lower number of

ALLOC messages
Highest number of
preemptions, lower

usage rate of
resources

byvalues Lower number of
preemptions, higher

usage rate of
resources

High number of
preemptions

parallel Enforce the order of
requests, no

preemption and lower
number of overall

messages

Lower usage rate of
resources

Table 4.6: Heuristics

4.6 Algorithm Complexity

To compare the complexity of the algorithm with other algorithms from the state of the
art, the variables introduced in Table 3.3 are used.

The path computation subroutine requires ROUTING messages to go through at most
every node of the system as many times as there are nodes in the requests. If the requests

61

are of size r, then the maximum number of ROUTING messages emitted is r. The
algorithm requires an additional ROUTING ACK message resulting in at most (r + 1)
messages for the first subroutine.

Then, the allocation subroutine requires a similar r number of ALLOC messages with
an additional ALLOC ACK at the end. There are (r + 1) of these two messages. The
number of preemptions is variable but at most each of the δ conflicting requests could
require a preemption for each of the r resources in a request. Therefore the maximum
number of PREEMPT is δ ∗ r. The PREEMPT are followed by PREEMPT ACK, so
there are also at the most δ ∗ r PREEMPT ACK messages. The maximum number of
messages for the allocation subroutine is (r + 1) + 2 ∗ (δ ∗ r).

Once requests are over, the algorithm informs resources to leave their CS. This requires
r END CS messages.

The maximum number of messages emitted for both subroutines is then (r+ 1) + (r+
1) + 2 ∗ (δ ∗ r) + r = (2 ∗ δ + 3) ∗ r + 2, making the complexity O(r ∗ δ).

If the system has N nodes, then it also has N resources. Each message could possibly
be forwarded across all N nodes. This results in a maximum number of messages in the
system to be [(2 ∗ δ + 3) ∗ r + 2] ∗N .

4.7 Conclusion

This chapter introduced a new distributed algorithm composed of two subroutines for the
allocation of resources in networks. This algorithm allocates requests for an ordered set
of resources in a system with multiple instances of multiple types of resources. It does
not assume that nodes have a full knowledge of the communication graph. It also does
not require any knowledge of the conflict graph either.

The instances of types of resources are first selected when the path is computed accord-
ing to a routing heuristic. They are then allocated following an allocation order heuristic.
When conflicting requests arrive on a node, a preemption occurs to enforce a total order
of the requests. This total order is defined by computing the precedence of the allocation
vector. The elements of this vector are the values of the local counters of each node that
holds one of the selected instance.

The performance of the algorithm is impacted by the heuristics selected. The next
chapter shows an experimental evaluation of the performance of all the heuristics of the
algorithm. Chapter 6 then compares it to the performance of algorithms from the state
of the art in the same experimental settings.

62

Chapter 5

Performance analysis

Contents
5.1 Metrics and reference configuration 64

5.1.1 Metrics definition . 64

5.1.2 System configuration . 64

5.2 Experimental environment . 65

5.2.1 Implementations of the infrastructure 65

5.2.2 The Grid’5000/SILECS platform 66

5.3 Systems with one instance of n types of resources 66

5.4 System with m instances of n types of resources 69

5.5 Computing the expected value for the Average Usage Rate . 70

5.5.1 Description of the method . 72

5.5.2 Examples . 72

5.5.3 Generalisation to requests of size s on any system with 1 instance 74

5.5.4 Comparison with the expected value 76

5.6 Conclusion . 76

I’m worse at what I do best
And for this gift, I feel blessed

Nirvana, Smells like teen spirit

This chapter gives an extensive view of the performance of the algorithm detailed in
the previous chapter. First the metrics are defined in Section 5.1. Then, the experimental
environment is described in Section 5.2. The performance of the heuristics presented in
Section 4.5 is first evaluated for systems with 1 instance of n resources in Section 5.3,
then for systems with m instances in Section 5.4. Last a method to compute the expected
value is introduced in Section 5.5 and its results are compared to the performance of the
heuristics of the algorithm.

The comparison of performance with algorithms from the state of the art is done in
the next chapter.

63

5.1 Metrics and reference configuration

This section describes how the performance of algorithms is evaluated. First the metrics
are defined in Section 5.1.1. Then, the next subsection defines the reference system
configuration used for the tests.

5.1.1 Metrics definition

Three metrics are used to compare performance:

� the Average Usage Rate: the average percentage of used instances for the dura-
tion of the experiment. It is the sum of the times during which each resource is used
divided by the overall duration of the experiment for all resources. 100% means
that all resources are used all the time. 50% means that 50% of the resources are
used on average. The objective is to maximise this metric,

� the Average Waiting Time: the average time, given in units of simulator dis-
cretized time, spent by requests between the moment at which they are emitted and
the moment they are satisfied, i.e., the time between the sending of the first ROUT-
ING message and the reception of the ALLOC ACK message by the requesting
node. The objective is to minimise this metric,

� the Average Number of Messages per request: the ratio between the total
number of messages sent in the system for the duration of the test and the number
of requests. The objective is to minimise this metric.

5.1.2 System configuration

Figure 5.1: The Cesnet200706 44-node topology used for the experiments

A test configuration consists of a large number of parameters and each of them po-
tentially influences the results. The results are presented for a chosen reference system
configuration that was selected because it is representative of the main results. An
extensive evaluation of all the parameters and their impacts on performance was done.

64

This evaluation led to the selection of the values presented here. The main parameters
for this reference configuration are:

� A topology called Cesnet200706 with 44 nodes, shown in Figure 5.1. It is extracted
from the Internet Topology Zoo [Kni+11]. This topology was selected because its
size is large enough to avoid bias in the results from topologies that have too few
nodes. Larger topologies lead to longer simulation times to get similar results while
providing no added information. In this topology, the degrees of the nodes vary
from 1 to 18, with an average degree of 2.

� the size of requests is constant, i.e., all requests for a given test have the same
size and are for the same number of resources. This size takes multiple values in a
set of tests and is represented on the X-axis of the charts.

� the load is set so that each node starts a new request as soon as its previous requests
has ended.

For a given test, the workload contains requests that all have the same size, defined by
the size of requests constant listed above. In a given request, the types of resources are
all different. The types of resources in a request are selected randomly, using a uniform
distribution. When a request is generated each type of resources is selected randomly
across all types of resources, then (if the request is of size 2 or more) the second type
of resources in the request is selected among the remaining types of resources. This is
repeated until all types of resources have been selected.

For each test configuration multiple algorithms, or multiple heuristics of a single al-
gorithm, are compared in the next sections and chapter.

5.2 Experimental environment

A simulator was developped to run the experiments. First the two implementations of the
infrastructure based on the SimGrid simulator and the Open MPI library are described
below. Then the Grid’5000 platform used to run the experiments is introduced.

5.2.1 Implementations of the infrastructure

The first infrastructure implemented, that is used for most of the experiments detailed
here, is based on SimGrid [Cas+14] (version 3.23 from June 2019). SimGrid is an Open-
Source (LGPL licence) framework for the simulation of distributed computer systems.

The second implementation available in the simulator uses the Open MPI library
(version 3.1.3). Open MPI is an Open-Source implementation of the Message Passing
Interface [Gab+04]. MPI is a message-passing interface standardised by the MPI Forum.

The routing tables necessary for the first subroutine of the algorithm are built statically
by the simulator during the initialisation. The routing tables for all the nodes are built
based on the Link and Hosts of the SimGrid configuration, using Dijkstra’s Shortest Path
algorithm [Dij59].

For the tests performed here, the system is put under a heavy load. Each node starts
a first request after some random time, to avoid the special case where all the requests
arrive at the same time. Then, when the request is finished, i.e., all resources have been

65

allocated and the requesting node has released its CS, it sends a new request. This is
repeated until the end of the test.

The duration of all experiments is the same. The time spent in CS by the requests
is also constant. Empirically the value for the duration of CS was set to 300, 000 and a
duration of experiment of 500, 000, 000 so that time spent in CS is orders of magnitude
longer than the time spent to send a message between nodes. These durations are in the
unit of discretised time used by the simulator. This approximately simulates CS of 30
seconds and for a total duration of around 14 hours for a whole simulation. Experiments
show that this duration is long enough to make the impact of randomness negligible and
observe similar results on each run.

5.2.2 The Grid’5000/SILECS platform

Simulations are run on the Grid’5000 [Bal+13], a French research platform. This plat-
form allow the booking of full servers and the deployment of custom images of Operating
Systems on it. Booking a full server ensures that no other experiment that could impact
the performance is running on it. Since 2018, Grid’5000 is merging into the Super Infras-
tructure for Large-Scale Experimental Computer Science (SILECS) platform. A custom
server image based on Debian 10 is used. This allow a precise control of what the server
is running. This image includes the simulator and its dependencies such as SimGrid.
A SimGrid program is mono-threaded allowing the execution of multiple simulations in
parallel on a server with multiple cores/threads.

5.3 Systems with one instance of n types of resources

In this section the performances of the three heuristics for the allocation order described
in Section 4.5.2 are evaluated experimentally and compared. The system considered is a
system with 1 instance of n types of resources. Here n = 44 as the topology used for the
tests has 44 nodes and each node holds one type of resources.

In systems with one instance of each type of resources the routing heuristic has no
influence, because there is no choice to be made among instances. In this case the two
heuristics introduced in Section 4.5.1 return this single instance.

Figure 5.2 shows the comparison of the performance of the three heuristics for the
allocation order presented in Chapter 4: byvalues in green, reverse in blue and parallel in
black.

As for all performance graphs, the three metrics presented are the three introduced in
Section 5.1.1. The X-axis shows the size of the requests. The Y-axis shows the considered
metric. Both axis have a logarithmic scale.

For requests of size 1, the heuristic itself has no influence on the Average Usage Rate,
as can be seen in Figure 5.2a, or on the Average Waiting Time, (figure 5.2b). In such
configuration, the algorithm never performs any preemption.

For requests of size 2 to 7, the Average Usage Rate decreases for all the algorithms. A
minimum is reached around 8 or 9, depending on the algorithm because the probability
that requests conflict increases with the size of the requests. Two requests conflict if they
have at least one instance in common.

Figure 5.3 shows the probability that two requests do not conflict according to the
size of the requests. This probability is the ratio of the number of possible requests in
a subsystem S to the total number of possible requests. The number of resources in

66

(a) Average Usage Rate
(b) Average Waiting Time

(c) Average Number of Messages (d) Average Nb of PREEMPT Messages

Figure 5.2: Comparison of allocation order heuristics in a system with one instance of 44
types of resources

subsytem S is the total number of resources in the original system minus the number of
resources in one request. For requests of size s, it is computed by dividing the number of
permutations of size s in a system of size (N − s) by the total number of permutations
of size s in the system of size N . For example, for requests of size s = 10 in the system

of size N = 44 this probability is
10P44−10

10P44
≈ 5.28%. It can also be seen that the Average

Usage Rate becomes linear when the size of requests is around 15 or more. This is because
the probability that requests conflict is almost 100% for requests of size 15.

When the size of requests is superior to half the size of the system, here 44
2

= 22,
then it is not possible to allocate concurrently two requests. In such situations the only
possibility is to allocate the requests sequentially. The usage rate of the system keeps
growing linearly with the size of the requests. It is almost 100% for requests of size N as

67

each consecutive request will allocate all the resources. It is not exactly 100% due to the
cost of the algorithm. This is why the X-axis of the charts presented here stop at 22.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Size of requests

P
ro

ba
bi

lit
y(

%
)

Figure 5.3: Probability that two requests are not totally different, i.e., that two requests
have at least one conflicting resource

Figure 5.2a shows a pretty poor performance of the parallel heuristic on the Average
Usage Rate compared to the other heuristics. For requests of size 7, it reaches 21.28%
when the reverse reaches 24.5% and the byvalues 27.27%. The byvalues heuristic achieves
a significantly better result on this metric with respectively a 28% and 11% increase on
this example.

Figure 5.2b shows no notable difference in the Average Waiting Time between the
three heuristics. The byvalues heuristics performs very slightly better than the others.
The parallel heuristics introduces a waiting time a little longer in average than the two
others

Figure 5.2c shows that the Average Number of Messages is lower for the byvalues
allocation order for requests of size 3 and more. The parallel heuristic requires slightly
more messages but there is no significant difference. This is because the parallel heuristic
requires two messages, an ALLOC and an ALLOC ACK, to allocate an instance where
the other two heuristics only require one ALLOC message per resource plus an addi-
tional ALLOC ACK at the end of the allocation subroutine. The difference shrinks when
the size of requests increase because the two other heuristics lead to preemptions which
generate more messages. The reverse can require twice as many messages.

Figure 5.2d shows the Average Number of PREEMPT Messages, i.e., a subset of the
messages shown in Figure 5.2c. It shows that the difference in performance is due to
the high number of preemptions taking place when using the reverse allocation order.
The probability of preemptions taking place is lower when using the byvalues and parallel
allocation orders. The byvalues allocates the resources in the decreasing order of the
elements in the allocation vector. A higher value for an element means that the resource it
represents has been allocated more time than the others. As the requests in the simulations
are generated using a linear random generator, the probability that the next requests try to
allocate it again is lower. The reverse does not take into account the resource occupation
at all and only allocates the resources according to the path computed for the request.

Results show that the parallel heuristic never preempts resources as it results in all the
nodes knowing about the ongoing requests earlier than with other heuristics. This leads to
the nodes to respect the computed total order of the requests than with other heuristics.

68

This shows that even if the total order of the requests is necessary to decide which request
should have the priority on a node, it is not the reason behind the performance. If it is
enforced every time, it gives the results observed here. This shows that the computed order
is far from optimal. The algorithm actually improves the performance on the Average
Usage Rate by not enforcing this order when it is not needed to break the order between
competing requests.

5.4 System with m instances of n types of resources

This section evaluates the performance of the different heuristics of the algorithm in
systems with m instances of n types of resources. In such a system the routing heuristic
has an impact on the performance. The allocation order heuristic has the same impact
that was observed for systems with a single instance evaluated in the previous section,
therefore only the byvalues heuristic, that gives the best performance, is evaluated.

(a) Evaluation for 1 instance of 44 types of re-
sources

(b) Evaluation for 2 instances of 22 types of
resources

(c) Evaluation for 4 instances of 11 types of
resources

Routing:shortest
Allocation order:byvalues

Routing:round-robin
Allocation order:byvalues

Figure 5.4: Evaluation of Average Usage Rate for various numbers of instances and types
of resources

Figures 5.4a, 5.4b and 5.4c show the Average Usage Rate of the allocation order

69

byvalues heuristic for two different routing heuristics. All experiments are on the same
topology with a same overall number of instances (44), but with a different placement of
the instances. Each of the figures shows the results for a different number of instances for
each type of resources:

� Figure 5.4a shows the results for 1 instance of 44 types of resources,

� Figure 5.4b shows the results for 2 instances of 22 types of resources,

� Figure 5.4c shows the results for 4 instances of 11 types of resources.

With the shortest heuristic, a node always selects the same node for a given type of
resources. The result is that the load is not well balanced across all the instances, which
leads to a lower Average Usage Rate when the number of instances in the system increases.
For requests of size 5, the lowest Average Usage Rate observed is around 15% when there
are 4 instances in Figure 5.4c. This is lower than the worst result for the configuration
with a single instance of n resources in Figure 5.4a where the parallel reaches 21.28%.

As shown by the round-robin heuristic, the load balancing improves with a round-robin
on the different instances of each type of resources during the path computation subroutine.
For example with 4 instances of c1, the first request selects the first instance, the second
request the second one, and so on. It starts over with the fifth request that selects the
first one. The selection of the route has a significant impact when there are more than
one instance of the types of resources and improves the Average Usage Rate. In a systems
with multiple instances, a round-robin on all the instances allows an Average Usage Rate
that is similar to that of systems with 1 instance, as can be seen when comparing the
values reached by the round-robin heuristic in Figure 5.4c and the values reached by both
heuristics in Figure 5.4a.

The trade-off is that the length of the path with the round-robin heuristic can be longer
than with the shortest heuristic, because the different instances can be spread across the
graph. Figures 5.5 show the Average Path Length computed for the requests. When
there is a single instance, Figure 5.5a shows that there is no difference in the Average
Path Length as the two heuristics select the single instance each time. When the number
of instances increases the Average Path Length is higher when using the round-robin
heuristic. Figure 5.5b shows that the difference increases with the size of the requests to
reach a maximum of around 23%, the Average Path Length is a little below 26 for requests
of size 11 using the shortest heuristic when it is a little above 32 with the round-robin
one. In a systems where there are 4 instances as in Figure 5.5c, the difference between the
two heuristics increases. For requests of size 6, the Average Path Length with the shortest
heuristic is around 12, when it is 17 with round-robin, an increase of around 41%. This
difference increases to reach almost 60% for requests of size 11.

5.5 Computing the expected value for the Average

Usage Rate

The next chapter 6 shows experimental comparative results of the algorithm introduced in
the previous chapter against several state-of-the-art algorithms. However, this evaluation
raises the question of whether it is possible to get a better performance.

Computing the optimal scheduling for a set of requests is a complex numerical opti-
misation problem. This section describes a numerical method to compute the expected

70

(a) Evaluation for 1 instance of 44 types of re-
sources

(b) Evaluation for 2 instances of 22 types of
resources

(c) Evaluation for 4 instances of 11 types of
resources

Routing:shortest
Allocation order:byvalues

Routing:round-robin
Allocation order:byvalues

Figure 5.5: Evaluation of Average Path Length for various numbers of instances and types
of resources

71

value for the Average Usage Rate in the experimental settings. This is different from
computing the optimal solution but the expected value gives a good indication on the
overall performance of these algorithms. As can be seen in the experimental results, the
distributed mutual exclusion algorithms evaluated have significantly lower performance
than the expected value on this metric. The terminology expected value refers here to what
is commonly noted E(X) for a random variable X in probability theory and defined as the
arithmetic mean of a large number of independent realizations of X. The result is an ideal
value that could be obtained in a system with a full knowledge of the requests and the
states of the nodes considering that communications have no cost (i.e. communications
are instantaneous).

5.5.1 Description of the method

In the experimental protocol described in Section 5.1 each of the N nodes sends a request
when the test begins. Each node sends a new request after its previous one was completed
so that there is always N requests in the system and the system is under a constant
load. This method computes the Average Usage Rate after a given number of requests.
The prerequisite is that all the requests are equiprobable. This is consistent with the
experimental settings described in Section 5.1.2 where the generation of requests use a
uniform distribution.

It is not needed to consider the end of requests, so this system is a pure-birth process,
similar to a Yule process [Kar14]. It computes the n-step transition probability of this
process.

In this Markov chain, each state si represents the total number of resources used in
the system. When the system receives a new request it enters a new state if and only
if all the resources it requires are available. Otherwise the state of the system does not
change.

In the rest of this description, simple example systems are used to explain the states
of the Markov chain and the computation of the n-state probability.

5.5.2 Examples

Before diving in the general method, this section provides two examples in a system with
1 instance of 4 types of resources for requests of size 1 and 2. Requests of size 1 are a
special case that allows the introduction of the general idea. With requests of size 2 or
more, computing the probability of occurrence of a request is more complex.

Example: system with 1 instance of 4 types of resources, requests of size s = 1

Let’s first consider the case where the size s of requests is 1 in a system with 1 instance
of 4 types of resources. The size of requests is constant. The value associated with each
state of the chain is the number of resources used in this state. For a system of size 4
there are 5 possible states, noted {s0, s1, s2, s3, s4}, describing the number of resources
used: {0, 1, 2, 3, 4}.

The vector of possible states is then Vstates =




0
1
2
3
4




.

72

There are 4 possible requests, one for each of the 4 resources.
Initially no resource is used (the system is in state s0). Upon reception of a request

of size 1 the system reaches state s1 with a probability of 1, i.e., when a request of size 1
arrives on a system where no resources are currently allocated then one resource becomes
allocated in 100% the cases.

When in state s1, requests for the currently used resource do not impact the occupation
of the system and it remains in state s1, with a probability of 1

4
. Requests for other

resources will use another resource and the systems reaches state s2 (with a probability
of 3

4
).
This gives the following Markov chain in Figure 5.6.

s0 s1 s2 s3 s4

1

1
4

3
4

2
4

2
4

3
4

1
4

1

Figure 5.6: Markov chain for the example with requests of size s = 1

The transition matrix of this Markov chain is:

M1 =




0 1 0 0 0
0 1

4
3
4

0 0
0 0 2

4
2
4

0
0 0 0 3

4
1
4

0 0 0 0 1




p0 is the row vector containing the initial probabilities of being in each state at time
0. Its value is:

p0 =
[
1 0 0 0 0

]

Computing the average usage rate Usage4 after 4 requests can be obtained with:

Usage4 =
p4 ∗ Vstates

4
=

(p0 ∗M4
1) ∗ Vstates
4

=

[
1 0 0 0 0

]
∗




0 1 0 0 0
0 1

4
3
4

0 0
0 0 2

4
2
4

0
0 0 0 3

4
1
4

0 0 0 0 1




4

∗




0
1
2
3
4




4

Usage4 ≈
2.7344

4
≈ 68.36%

Example: system with 1 instance of 4 types of resources, requests of size s = 2

In statistics k-permutations of n can be noted using various symbols. For readability
reasons, hereafter the notation nPk is used to denote the number of k-permutations of a
k-element subset of an n-set.

This section introduces another example in the same system with 1 instance of 4 types
of resources as the section above. For requests of size 2, the set of all possible requests
is {(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3)}, i.e., all the

73

possible k-permutations. The total number of k-permutations is 4P2 = 12. Requests are
of size 2 and all resources are allocated at once. The set of possible states of the system
is then {0, 2, 4}, i.e., either no, two or four resources are used at a given time. This gives

the vector of possible states Vstates =




0
2
4


.

For this example the value of p0, the row vector containing the initial probabilities of
being in each state at time 0 is:

p0 =
[
1 0 0

]

This gives the Markov chain of figure 5.7.

s0 s2 s4

1

2P2
4P2

= 2
12

(4P2−2P2)
4P2

= 10
12

1

Figure 5.7: Markov chain for the example with requests of size s = 2

At the beginning there are no resources used in the system. Whatever the first request
is the system enters state s2, as the request is of size 2 . If the first request is {(1, 2)},
then the system may be fully occupied and enter s4 if the second request is not in conflict
with the first one. This happens only if the second request is {(3, 4)} or {(4, 3)}. This
gives a probability of 2

12
. In all other cases it remains in s2.

The Average Usage Rate Usage4 after 4 requests of size 2 can be computed:

Usage4 =
p0 ∗M4

2 ∗ Vstates
4

=

[
1 0 0

]
∗




0 1 0

0 (4P2−2P2)
4P2

2P2
4P2

0 0 1




4

∗




0
2
4




4

Usage4 =

[
1 0 0

]
∗




0 1 0
0 10

12
2
12

0 0 1




4

∗




0
2
4




4
≈ 2.8426

4
≈ 71.06%

5.5.3 Generalisation to requests of size s on any system with 1
instance

The examples in the sections above can be generalised to a system with 1 instance of
n types of resources with requests of size s. The number of resources used in the last
state of the system might not be n if s is not a divisor of n. Let’s consider n′ the integer
immediately inferior to n

s
∗ s, n′ ≈ n

s
∗ s. n = n′ when s is a divisor of n. In this case,

the states of the system are si where the number of resources used for si is i ∗ s and
i ∈ [0, n′]. For example in a systems with N = 44 nodes and for requests of size s = 3,
n′ = 14∗3 = 42, because it only possible to allocate 14 requests of size 3 in a system with
44 resources.

74

The vector of possible states of the system is : Vstates =




0
s

2 ∗ s
3 ∗ s
. . .
i ∗ s
. . .
n′




The total number of possible requests is the total number of k-permutations of requests
of size s in a system of size n, nPs. As in the above examples, the system leaves a state to
enter the next one only if the new request requires only resources that are still available.
In state si, i ∗ s resources are currently used. There are

n−(i∗s)Ps
nPs

possible requests for the
remaining n− (i ∗ s) resources.

This gives the Markov chain shown in Figure 5.8.

s0 s1 si si+1 sn′

1

n−[(i+1)∗s]Ps
nPs

nPs−n−(i+1)∗sPs
nPs

n−(i∗s)Ps
nPs

nPs−n−(i∗s)Ps
nPs

n−sPs
nPs

nPs−n−sPs
nPs

1

Figure 5.8: Markov chain for the generalised case

From this Markov chain, the transition matrix Mn given below can be deduced.

Mn =




0 1 0 0 . . . 0 0 . . . 0

0
nPs−n−1Ps

nPs

n−(1∗s)Ps
nPs

0 . . . 0 0 . . . 0

0 0
nPs−n−(2∗s)Ps

nPs

n−(2∗s)Ps
nPs

. . . 0 0 . . . 0

0 0 0 0 . . . 0 0 . . . 0

0 0 0 0 . . .
nPs−n−(i∗s)Ps

nPs

n−(i∗s)Ps
nPs

. . . 0

0 0 0 0 . . . 0
nPs−n−(i+1)∗sPs

nPs
. . . 0

0 0 0 0 . . . 0 0 . . . 0
0 0 0 0 . . . 0 0 . . . 1




To compute the usage rate Usagen after the nth request:

Usagen =
pn ∗ Vstates

n
=
p0 ∗Mn

n ∗ Vstates
n

=

[
1 0 . . . 0

]
∗Mn

n ∗




0
s

2 ∗ s
3 ∗ s
. . .
i ∗ s
. . .
n′




n

Even if computing the optimal scheduling of a specific set of requests is a NP-complete
problem, this method computes the expected value of the Average Usage Rate. For an
optimal scheduling of a given set of a requests, it could be higher or lower than what

75

is computed because the optimal scheduling depends on how the set of requests can be
arranged.

This method is used in the next section to compute the expected value of the Average
Usage Rate for a given size of requests and compare it to the performance of the allocation
orders subroutine of the algorithm detailed in Section 4.3.

5.5.4 Comparison with the expected value

In this section the performance of the algorithm described in Chapter 4 is compared
with the mathematical expectation Average Usage Rate computed with the Markov chain
detailed above in the previous section. Only the byvalues heuristic is considered in the
comparison as it was the one giving the best result.

Figure 5.9 shows, in grey and noted expected value, the values of the expected value
of the Average Usage Rate computed using the method presented in the above section.
The figures computed using this method assume that each node emits a new request at
each step, whereas in the experimental setup a new request is sent only when a previous
request has released its CS.

The expected value for the Average Usage Rate is significantly higher than the results
of the best heuristic of the algorithm in the previous chapter. This shows that there is still
room for improvement. This expected value of the Average Usage Rate can be approached
more easily with a centralised algorithm.

Allocation order: byvalues

Expected value

Figure 5.9: Comparison with expected value of the Average Usage Rate in a system with
one instance of 44 types of resources

5.6 Conclusion

This chapter compared the performance of the various heuristics proposed for the algo-
rithm presented in Chapter 4. It shows that for systems with a single instance, there is no
difference in the path computed by the two routing heuristics shortest and round-robin. In
system with multiple instances, load-balancing the requests, for example using the round-
robin heuristic improves the Average Usage Rate. Of the three heuristics proposed for
the allocation order, the byvalues offers the best performance on all the three considered
metrics because it limits the number of preemptions. It also does not enforce the order
of the requests when it is not required.

76

Comparing the performance of these heuristics with the expected value of the Average
Usage Rate shows that the performance of the algorithm is well below. This is because
a distributed algorithm, as explained in the previous chapter, only has a partial view of
the system.

It should theoretically be possible to build a consistent distributed global view of the
requests that would allow a solution to get closer to the expected value. However, that
could require a large number of messages (see Section 5.1.1 for the definition of metrics)
that make such a solution non scalable.

The next chapter compares the algorithm with other algorithms from the state of the
art, and shows that even if the performance is well below the expected value, it is better
than the state of the art.

77

Chapter 6

Experimental comparison with state
of the art algorithms

Contents
6.1 System setup . 80

6.2 Dijkstra’s Incremental algorithm 80

6.2.1 Description of the algorithm . 81

6.2.2 Example of execution in sample system 82

6.2.3 Performance evaluation . 85

6.3 Chandy-Misra DrPP algorithm 87

6.3.1 Description of the algorithm . 87

6.3.2 Example of execution for the sample scenario 88

6.3.3 Performance evaluation . 89

6.4 Rhee’s algorithm . 90

6.4.1 Description of the algorithm . 91

6.4.2 Example of execution in sample system 92

6.4.3 Performance evaluation . 95

6.5 Bouabdallah-Laforest algorithm 96

6.5.1 Naimi-Tréhel Mutex algorithm 97

6.5.2 Description of Bouabdallah-Laforest algorithm 100

6.5.3 Example of execution in sample system 101

6.5.4 Performance evaluation . 102

6.6 Summary . 103

6.7 Conclusion . 105

That is a fact. And fact is the most
stubborn thing in the world.

Mikhail Bulgakov, The Master and
Margarita

This chapter compares the performance of the byvalues allocation order heuristic in-

78

troduced in Section 4.5.2 to the performance of algorithms from the state of the art.
The selected algorithms tackle the problem of the distributed allocation of resources in
systems with one instance of multiple types of resources. The simulation environment
and methodologies for the tests are the same that are used in Chapter 5 to compare the
performance of the heuristics.

Four algorithms are studied, following the chronological order of their publications:

� Dijkstra’s incremental algorithm [Dij71], the first solution proposed to the Dining
Philosophers Problem (DiPP) to allocate a static set of resources. It is also applicable
to the Drinking Philosophers Problem (DrPP) and still widely used. It is described in
Section 6.2

� Chandy-Misra algorithm [CM84], the initial solution to the DrPP, described in Sec-
tion 6.3

� Rhee’s algorithm [Rhe95] is modular and builds a distributed queue of requests. It is
based on a model close to the model described in Section 2.4.1. The implementation
used for the evaluation uses Chandy-Misra DrPP algorithm as a subroutine. It is
described in Section 6.4

� Bouabdallah-Laforest algorithm [BL00], a simple and scalable token-based algo-
rithm that builds distributed queues for the resources to solve the DrPP, described
in Section 6.5

Some of these algorithms are rather old but, as shown in the state of the art in Chapter
3, there is a limited number of recent algorithms. The most recent published algorithm
seems to be the LASS algorithm [Lej+15] that addressed a model different than the one
used here. The algorithm described in Chapter 4 reuses its scheduling based on vectors
of counters to target the model described in Section 2.4.1. Before that Bouabdallah-
Laforest seems to be the latest algorithm that improved significantly the performance of
DrPP algorithms. Rhee’s algorithm target a model that is similar to the one used here.
The other selected algorithms are older but Dijkstra’s still offers the best Average Usage
Rate of these four algorithms. Chandy-Misra is a classic algorithm in the field. It is not
expected to perform well in the model because it requires an a priori knowledge of the
conflict graph. The analysis shows why it is not an adequate solution for the system.
Chandy-Misra algorithm is also used as a subroutine by Rhee’s algorithm.

Code for the algorithms is provided in a public Git repository: https://gitlab.com/
gfraysse/algorithms/tree/master/Distributed%C2%A0Mutual%20Exclusion/. The
code is in the Go language 1 because Go supports concurrency using the Communicating
Sequential Processes (CSP) model [Hoa78] which, along with the syntax of the language,
makes the code very similar to pseudo-code while being runnable.

These algorithms are compared to the allocation subroutine of the algorithm detailed
in Chapter 4. The experimental setup remains unchanged from the previous chapter
and the same reference system configuration is used. Only the byvalues allocation order
heuristic of the algorithm is considered for the comparison because the results in Chapter
5 show that this heuristic gives the best performance for all metrics in the experimental
settings. In Section 6.6, the performances of the four algorithms of the state of the art as
well as those of the three heuristics are summed up and a global comparison is made.

1https://golang.org/

79

https://gitlab.com/gfraysse/algorithms/tree/master/Distributed%C2%A0Mutual%20Exclusion/
https://gitlab.com/gfraysse/algorithms/tree/master/Distributed%C2%A0Mutual%20Exclusion/
https://golang.org/

The experiments show that the byvalues heuristic performs better than these selected
algorithms from the state of the art on the three metrics that are measured.

6.1 System setup

In the tests presented in this chapter, the system considered is the reference system
configuration described in Section 5.1.2. The system holds a single instance of 44 types
of resources.

The implementations of all the algorithms rely on the same first subroutine described
in Chapter 4 for the selection of the instance of types of resources and the computation of
the path. In a system with multiple instances, this allows the use of any DrPP algorithm
because each instance of a same type of resources becomes a specific instance once it has
been selected. The DrPP algorithm has to allocated the instances selected during the path
computation subroutine. This allows the comparison of the performance of the allocation
subroutine heuristics to any algorithm that addresses the DrPP.

All the examples given in this chapter are based on the same scenario. The scenario
considers a system with 1 instance of 5 types of resources, it is shown in Figure 6.1a. At
the beginning, two sample requests ReqA and ReqB shown in 6.1c and 6.1d are emitted in
the system. Given a global clock, ReqA is emitted by n1 before ReqB is emitted by n4. In
this configuration the path computation subroutine always returns the path to the single
instance so its results are identical for all algorithms and this subroutine has no influence
at all in the overall comparison.

n1

n2

n3

n4

n5

(a) Sample system with 1 in-
stance of 5 types of resources

n1 n2 n3 Types of resourcesn4 n5

ni Node ni is in CS

ni Resource of ni is ALLOCATED by ReqA

ni Resource of ni is ALLOCATED by ReqB

(b) Legend

n2 n5ReqA : n1

(c) Selection of instances for
sample requestReqA emitted
by n1

n5 n2ReqB : n4

(d) Selection of instances for sample request ReqB emitted
by n4

Figure 6.1: Scenario used in this chapter

6.2 Dijkstra’s Incremental algorithm

Dijkstra’s Incremental algorithm [Dij71] relies on a static total order of the set of
resources. Despite being the oldest algorithm detailed in this chapter, it is the algorithm
from the state of the art that achieves the best performance for the Average Usage Rate.

80

However it has the worst performance for the Average Waiting Time due to the domino
effect explained below.

6.2.1 Description of the algorithm

The algorithm, as initially described by E. W. Dijkstra, is formulated for use in a system
where processes use a shared memory. The problem addressed is the DiPP, as described
in Chapter 3.

The algorithm maintains a variable mutex and 2 arrays with an entry per process:
C, which holds the state of the process (among thinking, hungry or eating), and prisem,
which has a value of 1 when the process can start eating and 0 otherwise. The algorithm
relies on the basic operations on semaphores first described by E. W. Dijkstra in [Dijte]:
P (also called wait or acquire) and V (also called signal or release). It also relies on a
test(w) function that calls the V function on prisem[w] if philosopher w is allowed to eat.
The pseudo-code is shown in algorithm 6.1.

1 c y c l e begin th ink ;
2 # Process wait s f o r g l o b a l mutex
3 P(mutex) ;
4 # Once proce s s w ge t s the mutex , i t becomes hungry
5 C[w] := 1 ;
6 # Process w r e q u e s t s to eat
7 t e s t (w) ;
8 # Release the mutex
9 V(mutex) ;

10

11 # Wait f o r the mutex o f p roce s s w.
12 P(prisem [w]) ;
13 # Once mutex i s acquired , the proce s s can eat
14 eat ;
15

16 # Once the proce s s i s done eat ing , inform othe r s
17 # F i r s t l o ck the g l o b a l mutex
18 P(mutex) ;
19 # Process i s done eat ing , e n t e r s the th ink ing s t a t e
20 C[w] := 0 ;
21 # Inform both neighbours that p roce s s w i s done ea t ing
22 t e s t ((w + 1) mod 5) ;
23 t e s t ((w = 1) mod 5) ;
24 # Release the g l o b a l mutex
25 V(mutex) ;
26 end .

Algorithm 6.1: Dijkstra’s Incremental algorithm, as originally formulated for 5 philoso-
phers, from [Dij71].

The algorithm ensures that each process (or philosopher) will eventually start eating.
It allocates the resources (forks) by following the numbering of the philosophers (lines 22
and 23).

Adaptation to the model

E. W. Dijkstra’s model is a shared-memory system, it requires the algorithm to use a
mutex variable to modify the state of each node. In the model used here, each node
manages its instance and its own state. The P and V operations on the prisem[w]

81

variable are implemented by the messages ALLOC and ALLOC ACK, respectively, sent
to (respectively by) node w. A local queue of pending requests on each node plays the
role of the semaphore.

Also, in E. W. Dijkstra’s model a resource (fork) can only be allocated by the two
neighbouring nodes (philosophers). Another adaptation is required to allow for any num-
ber of resources, and not only two, to be requested according to the defined order.

Requesting the CS

When a node wants to enter its CS and allocate resources for a request, it selects, in
the request, the node holding a requested resource that comes first according to the
order of resources, i.e., nodes. Then, it sends an ALLOC message to this node, the P
operation. If the resource is not currently allocated, the node allocates it and replies
with an ALLOC ACK message, the V operation. Otherwise, the request is appended
to its local queue to be handled once the request currently holding the resource has
released its CS. Upon reception of an ALLOC ACK message, the requesting node sends
an ALLOC message to the next node holding one of the requested resources according to
the total order of the set of resources.

Releasing the CS

When a node releases its CS, it sends END CS messages to the nodes managing the
allocated resources so they can release them. Then, each of these nodes looks into its
local queue for pending requests that can now continue.

Pros and cons

This algorithm is easy to understand and implement. It delegates the locking of resources
to a basic mutex operation. On the evaluation platform, this operation is implemented as
a centralised lock on the requesting node with the ALLOC and ALLOC ACK messages
playing the role of the mutex operations. It offers a good performance on the Average
Usage Rate metric.

This algorithm has a drawback called the domino effect [Ran75]. As the total order
is based on the identifiers of the nodes, requests can pile up in the queue for some nodes
waiting for their resources to be available. Until these resources become available all the
locked resources from nodes which come before in the order of the nodes are unavailable.

Nancy A. Lynch [Lyn80; Lyn81] proposed an improvement of the algorithm based on a
graph where the nodes represent the resources and are connected via edges that represent
the resource sharing constraints. Her improvement is based on a colouring of this graph
in the DiPP model described by E. W. Dijkstra where requests emitted by a node are
always for the same set of resources. In the model used here, requests are not known a
priori and any node can request any resource making the graph complete with one colour
per node. Therefore it is impossible to optimise the colouring.

6.2.2 Example of execution in sample system

Initial state For the example the total order of resources is n1 < n2 < . . . < n5

according to their subscript values. The execution of the sample requests ReqA and ReqB

82

is shown in two figures. Figure 6.2 shows the timeline of the messages while figures 6.3 to
6.6 show how the messages are sent on the topology.

ReqA ReqB ALLOCATED CS

n1

n2

n3

n4

n5

t

AL
LO

C

A
L
L
O
C

A
L
L
O
C

A
C
K

A
L
L
O
C

A
L
L
O
C

A
C
K E

N
D

C
S

E
N
D

C
S

A
L
L
O
C

A
C
K

A
L
L
O
C A

L
L
O
C
A
C
K E

N
D
C
S

E
N
D

C
S

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Figure 6.2: Timeline of sample execution of Dijkstra’s Incremental algorithm

Execution At t1, n1 requests to enter its CS for ReqA. It sends an ALLOC message to
n2, the node in the request that comes first according to the order (Figure 6.3a).

n1

n2

n3

n4

n5

1

(a) t1: ReqA is emitted from
n1 and tries to allocate n2
first

n1

n2

[ReqB]
n3

n4

n5

2c

2b

2a

(b) t2: ReqB is emitted from
n4. It is stored in the local
queue of n2.

n1

n2

[ReqB]
n3

n4

n5

3

(c) t3: ReqA continues, n2
acknowledges

Figure 6.3: Sample execution of Dijkstra’s Incremental algorithm 1/4

At t2, n4 requests to enter its CS for ReqB. Similarly to n1, it first sends an AL-
LOC message to n2. n2 is already ALLOC for ReqA so it stores ReqB in a local queue of
pending requests (Figure 6.3b). At t3, n2 replies with an ALLOC ACK to n1 because it
has received ReqA first (Figure 6.3c), as shown by the timeline in Figure 6.2.

83

n1

n2

[ReqB]
n3

n4

n5

4a 4b

(a) t4: ReqA continues

n1

n2

[ReqB]
n3

n4

n5

5b 5a

(b) t5: ReqA allocation fin-
ishes

n1

n2

[ReqB]
n3

n4

n5

(c) t6: ReqA is allocated

Figure 6.4: Sample execution of Dijkstra’s Incremental algorithm 2/4

At t4, n1 then sends an ALLOC to n5 (Figure 6.4a), that replies with an AL-
LOC ACK at t5 (Figure 6.4b). At t6, ReqA is allocated and n1 can enter its CS and
use the resources of n2 and n5 (Figure 6.4c).

n1

n2

[ReqB]
n3

n4

n5

6

7a 7b

(a) t7: ReqA is done using re-
sources, n1 releases them

n1

n2

n3

n4

n5

8a

8b

8c

(b) t8: n2 resumes and ac-
knowledges ReqB

n1

n2

n3

n4

n5

9

(c) t9: n4 allocates n5

Figure 6.5: Sample execution of Dijkstra’s Incremental algorithm 3/4

When n1 releases its CS at t7 it sends END CS messages to n2 and n5 (Figure 6.5a).
At t8, n2 and n5 check their local queues (Figure 6.5b). The queue of n5 is empty for now,
and n2 read the pending request ReqB in its local queue, removes it from its queue, and
decides to resume it by sending an ALLOC ACK message to n4.

n1

n2

n3

n4

n5

10

(a) t10: ReqB allocation fin-
ishes

n1

n3

n4n2

n5

(b) t11: ReqB is allocated, n4
uses resources

n1

n2

n3

n4

n5

11c

11b

11a, 12

(c) t12: n4 releases resources

Figure 6.6: Sample execution of Dijkstra’s Incremental algorithm 4/4

Then, at t9 n4 sends an ALLOC message to n5 (Figure 6.5c), which acknowledges with

84

an ALLOC ACK at t10 (Figure 6.6a), allowing n2 to enter its CS and use the resources
at t11 (Figure 6.6b). Once n4 releases its CS, at t12, it sends END CS messages to n2 and
n5 (Figure 6.6c).

Message Complexity

For each request, the algorithm requires to send an ALLOC message to each node holding
one of the requested resources to allocate them, which in turn sends an acknowledgement
ALLOC ACK message to the requesting node. It also requires one END CS message per
resource in the request to release it. There are 3 messages per resource requested, hence
the message complexity of Dijkstra’s incremental algorithm is O(N), where N stands for
the number of resources. This is summed up in Table 3.4 in Section 3.3.

In the example here:

� ReqA requires the messages 1, 3, 4a, 4b, 5a and 5b to allocate the resources as well
as the messages 6, 7a and 7b to release them. A total of six meaningful messages,
plus three additional forwarding messages.

� ReqB requires the messages 2a, 2b, 2c, 8a, 8b, 8c, 9 and 10 to allocate the resources
as well as the messages 11a, 11b 11c and 12 to release them. A total of six meaningful
messages, plus six additional forwarding messages.

6.2.3 Performance evaluation

Simulation results The comparison of the results of Dijkstra’s Incremental algorithm
and of the byvalues allocation order heuristic on SimGrid are shown in Figure 6.7.

All metrics show that allocating the resources with the byvalues allocation order heuris-
tic gives the best results. In Figure 6.7a an improvement of up to 20%, for requests of size
6, can be seen for the Average Usage Rate. Figure 6.7c shows that the Average Waiting
Time for the Incremental algorithm is significantly worse than for the byvalues heuristic
for requests of size 3 and more due to the domino effect.

As shown in Figure 6.7b, byvalues does not generate more messages than the Incre-
mental. The byvalues heuristic requires one ALLOC message per resource in the request,
plus an additional ALLOC ACK at the end for a total of r + 1 messages where r is the
size of the request, when the Incremental algorithm requires two messages per resource,
an ALLOC and an ALLOC ACK for a total of 2 ∗ r messages. For requests of size 5 and
less, the byvalues heuristic requires less messages but for requests of 6 and more the two
have a similar number of messages, this is because of preemptions. The number of PRE-
EMPT andPREEMPT ACK messages increases reducing the difference in performance.
This is similar to the difference between the parallel and the byvalues heuristics for the
same reasons.

Real experiments with MPI

The results shown above from the simulator are confirmed with an implementation based
on Open MPI version 3.1.3 [Gab+04]. The core of the experimental platform remains
the same, Open MPI is implemented as an alternative execution platform from SimGrid.
The implementation of the messages for this platform relies on Protocol Buffers 2 for

2https://developers.google.com/protocol-buffers

85

https://developers.google.com/protocol-buffers

(a) Average Usage Rate

Dijkstra's Incremental

Allocation order: byvalues

(b) Average Number of Messages (c) Average Waiting Time

Figure 6.7: Comparison with Dijkstra’s incremental algorithm in a system with one in-
stance of 44 types of resources

the serialisation of the messages. Each node in the topology is run on a stand alone
application. The applications are run on several servers on the Grid’5000 infrastructure
[Bal+13]. The selected servers have two Intel Xeon E5-2630v3 8-core processors, 128 GiB
of RAM, 1Gbps network interfaces.

The tests are done on the same Cesnet200706 44-node topology. The application in-
stances are split across 4 servers. There is no correlation between the Grid’5000 servers
used and the nodes of the topology, the nodes of the topology are distributed randomly
on the 4 servers. Each Grid’5000 server runs 11 application instances. The network
configuration is standard for Open MPI, no specific events are programmed. All commu-
nications use the MPI primitives to send and receive messages and are not optimised in
case two nodes are on the same physical Grid’5000 server, but MPI may optimise these
communications. However the network latency is not analysed for these tests. As for the
simulation based on SimGrid, there are 44 types of resources and a single instance of each
of them. As for the simulation the duration of the CS is constant, it is set to 20 seconds.
The duration of each test is also constant and set to 30 minutes.

Table 6.1 shows some numerical results for the Average Usage Rate. There is no
significant difference on how algorithms compare to each other from what is observed on
the simulator. Numerical values vary from the simulator but remain comparable.

86

Request size Dijkstra’s Incremental reverse heuristic byvalues heuristic
MPI SimGrid MPI SimGrid MPI SimGrid

5 21.56% 25.46% 27.18% 27.21% 32.27% 31.36%
6 17.14% 23.7% 20.35% 25.19% 31.07% 29.34%
7 17.64% 23.47% 25.74% 24.5% 26.23% 27.27%
8 21.41% 23.02% 24.46% 23.84% 26.70% 26.95%

Table 6.1: Average Usage Rate with Open MPI

6.3 Chandy-Misra DrPP algorithm

The Chandy-Misra DrPP algorithm [CM84] is detailed and evaluated in this section. It
is based on their DiPP algorithm. The DrPP algorithm is one of the algorithms that have
been evaluated as subroutines by Rhee for his algorithm [Rhe95] described in the next
section 6.4.

6.3.1 Description of the algorithm

The DrPP is a generalisation of the DiPP in which requests are dynamic, i.e., a philosopher
can request any subset of resources and this subset can change across requests. In this
problem the resources are bottles that the philosophers need to drink from. The forks
are not resources but are auxiliary resources that are required to collect the bottles and
to enter the CS. Chandy-Misra solution relies on their DiPP algorithm. In their model,
bottles are associated to the same edges of the conflict graph as forks.

The algorithm builds a graph which represents the precedence between pairs of con-
flicting processes (philosophers), called the precedence graph of the system. This graph
is similar to the conflict graph, it has the same nodes and edges. However in the precedence
graph, edges are oriented. They are oriented towards the philosopher holding the fork.
The algorithm requires the precedence graph to be acyclic at any given time, including
at the initialisation.

Requesting the CS

When a node wants to enter its CS, it first must request the forks from the philosophers
holding them according to the same precedence graph used for the DiPP algorithm. When
a philosopher holds all the forks he can decide to drink from the bottles that are on the
same edges as the forks, or leave them. Another way to say it is that the philosopher
needs to enter the DiPP CS first, which gives him a lock on the bottles that allows him
to drink from them.

Releasing the CS

When a node releases its CS (resp. is done drinking), it can send the bottles it is holding
to its neighbours.

Adaptation to the system

In Chandy-Misra model, bottles (resources) and forks (auxiliary resources) sit on each
edge of the conflict graph. In the example given in the paper the forks and bottles are

87

only shared by two philosophers (nodes). In the sample system described at the beginning
of this chapter, any node can request any subset of resources. And this subset can change
across requests. It is then necessary that each node shares a fork and a bottle with every
other nodes. This means that the precedence graph becomes a complete graph. Figure
6.8a shows both the topology, with the black undirected edges, and the precedence graph
where the oriented edges are represented by the orange forks. Both graphs share the same
nodes.

Pros and cons

Chandy-Misra algorithm was the first to describe and solve the DrPP. Their solution allows
multiple requests to allocate their resources concurrently when they do not share resources
in the conflict graph. The major drawback of Chandy-Misra algorithm in the generalised
setting, described just above, where any node can request any subset of resources, is that
the precedence graph becomes a complete graph. So only one node can use resources at
any given time.

6.3.2 Example of execution for the sample scenario

Initial state At t0 the forks are held by the node with the lowest identifier. They
are represented in Figure 6.8 with the handle of the fork facing the node holding it. For
example in Figure 6.8a n1 holds all its forks. The names of the fork is not shown in Figure
for readability reasons but, like for the example for the DiPP algorithm, a fork is labelled
fij where i and j are the identifiers of the two nodes sharing the fork. The bottles are the
resources held by the nodes.

n1

n2

n3

n4

n5

(a) t1: initial stage, n1 can enter
CS for ReqA

n1

n2

n3

n4

n5

(b) t2: n1 releases its CS, n4 re-
quests fork from n1

n1

n2

n3

n4

n5

(c) t3: n4 gets fork from n1

Figure 6.8: Chandy-Misra DrPP algorithm 1/2

Execution Figures 6.8 and 6.9 show how the system evolves when n1 and then n4 want
to enter their CS successively. Initially, at t1, n1 holds all the forks, it can clean them and
enter its CS immediately to use the resources (bottles) n2 and n5 (Figure 6.8a). At t2,
n1 releases its CS and stop using the resources (Figure 6.8b). At this moment, n4 wants
to enter its CS, it needs for that to gather the forks it does not currently hold from its
neighbours in the precedence graph n1, n2 and n3. As shown in 6.10, it starts by sending
a REQ FORK message to n1. When it gets f14, at t3, it requests their shared fork f24 to
n2 (Figure 6.8c).

88

n1

n2

n3

n4

n5

(a) t4: n1 gets fork from n2

n1

n2

n3

n4

n5

(b) t5: n4 gets fork from n3 and
can enter CS

ni nj

fork fij is held by ni

ni nj

fork fij is now held by nj

(c) Legend

Figure 6.9: Chandy-Misra DrPP algorithm 2/2

When n4 gets f24, at t4, it then requests f34 to n3 (Figure 6.9a). When it finally gets
f34, at t5, n4 holds all its forks and can enter its CS and start using resources n2 and n5

(Figure 6.9b).

ReqB

CS

n1

n2

n3

n4

n5

t

R
E
Q

F
O
R
K

S
E
N
D

F
O
R
K

R
E
Q

F
O
R
K

S
E
N
D

F
O
R
K

R
E
Q

F
O
R
K

S
E
N
D

F
O
R
K

t1 t2 t3 t4 t5

Figure 6.10: Timeline of Chandy-Misra DrPP algorithm

Message Complexity

The algorithm requires a node to send one message to each of the other nodes to request
the shared forks. Then, each of these nodes needs to reply to this message to send the
fork. If the node already holds a fork it does not need to send a message for this fork.
The message complexity of Chandy-Misra DiPP algorithm is O(N). This is summed up
in Table 3.4 in Section 3.3.

6.3.3 Performance evaluation

Figure 6.11 shows the results of the simulations run on SimGrid of Chandy-Misra DrPP
algorithm [CM84] compared to the byvalues allocation order heuristic.

As Chandy-Misra algorithm allows only one CS at a time, only one request can be
allocated at any given time so the Average Usage Rate is linear (Figure 6.11a). The
usage rate can be approximated easily, for request of size 7, usage rate is approximately
7/44 ≈ 15.91%. This linear graph highlights when the Average Usage Rate becomes linear
for the byvalues heuristic. The two graphs rejoin shortly after a size of 12 for requests.

The Average Number of Messages is significantly higher for Chandy-Misra algorithm
than for the byvalues heuristic, as shown in Figure 6.11b. This is due to the large number

89

of messages to manage the forks used to choose the node that enters the CS. As an exam-
ple, REQ FORK and SEND FORK account for 97.8% of the total number of messages
for requests of size 6.

Figure 6.11c shows that the Average Waiting Time is constant for Chandy-Misra.
Because a single request is in CS at a given time, all the other requests have to wait
for their turn. As the algorithm is fair, they all wait for a same amount of time. Each
node has to wait for 43 times the duration of a CS, 300000 in these simulations, so
43 ∗ 300000 = 1.29 ∗ 107. It is an order of magnitude higher than for the proposed
algorithm for smaller requests. This is consistent with the lower Average Usage Rate : as
only one request is allocated at a given time, all the other requests wait for their turn. The
two graphs rejoin for the same request size as for the Average Usage Rate. For requests
of size 12 and more, both algorithms allocate requests sequentially and both are fair.

(a) Average Usage Rate

Allocation order: byvalues

Chandy-Misra

(b) Average Number of Messages (c) Average Waiting Time

Figure 6.11: Evaluation of Chandy-Misra algorithm in a system with one instance of 44
types of resources.

6.4 Rhee’s algorithm

Rhee’s algorithm [Rhe95] is modular and composed of two subroutines.

90

The first subroutine can rely on any DiPP or DrPP algorithm to get an exclusive access
to the nodes holding the resources for the request. It can be any DiPP or DrPP algorithm,
the article has evaluated the performance using Chandy-Misra[CM84] and Choy-Singh
[CS93] algorithms as subroutines. In terms of terminology, this algorithm requires to
distinguish between the subroutine CS, i.e., the CS of the algorithm used for the first
subroutine, from the algorithm CS. While in the subroutine CS the algorithm computes
the position of the request in a global distributed queue. To achieve this, each node
maintains a local queue of requests.

Next, during the second subroutine, requests are allocated according to the order in
this queue. The queue is then updated when requests release their resources.

The intuition behind the algorithm is that by using a DrPP algorithm during the first
subroutine to manage only the order in the distributed queue the lock on the processes is
shorter and the performance of the selected DrPP algorithm is improved.

6.4.1 Description of the algorithm

Adaptation to the model

In Injong Rhee’s model processes, called users, try to enter their CS by requesting re-
sources to resource managers, each resource manager manages one resource. The topol-
ogy issue is not addressed, it is assumed that every users can communicate with every
resource managers and that every resource managers can communicate with their peers.
To adapt it to the model introduced in Section 2.4.1 resource managers are mapped to
nodes. Users are mapped to nodes as well because the model assumes each node can also
be a requesting node.

Requesting the CS

When a node wants to enter its algorithm CS, the first subroutine (i.e., the algorithm
that has been chosen for the first subroutine) is executed to get an exclusive access to
the nodes holding the requested resources. The algorithm then computes a position for
the request using REPORT and MARKED messages. REPORT messages are sent by the
requesting node to get information about the current queues of nodes. A node replies
with a MARKED message that contains the list of currently occupied positions in its
local queue. The computed position is the same in all the local queues, it is computed
to be the lowest common position available among all the nodes holding resources for the
request. It then leaves the subroutine CS. If it is in the first position of the local queues,
it can then enter the algorithm CS and start using the resources.

When a request is the first in the local queues of the nodes holding the requesting
resources, which means it is also the first in the distributed queue, each of these nodes
sends a GRANT to the requesting node. When the requesting node has received GRANT
from all the nodes it enters its CS.

Releasing the CS

When a node releases its algorithm CS and the allocated resources, ADV or DEC messages
are sent to inform other nodes that other requests can move up in their local queues.
DEC messages are sent by the nodes holding the resources that just got releases to the
requesting nodes of requests in their local queues that can now move up in the queue. If

91

a requesting node has received DEC messages from all the nodes in a request, it sends
back ADV to inform them that they can move the request up in their queue. This is
done asynchronously and this step does not require an exclusive access to the nodes.

Pros and cons

Rhee’s algorithm improves the Average Usage Rate of the algorithms used for the sub-
routine evaluated in the paper: Chandy-Misra[CM84] and Choy-Singh [CS93]. However
it requires a very large number of messages to manage the distributed queue.

6.4.2 Example of execution in sample system

Initial state Initially the local queues of all nodes are empty, hence the distributed
queue is also empty.

Execution Figures 6.12 and 6.13 to 6.16 show the execution of the algorithm for the
two requests ReqA and ReqB introduced in Figure 6.1. Table 6.2 shows the evolution of
the local queues of each node at each step.

ReqA ReqB ALLOCATED CSCM CS

Execution of CM algo

n1

n2

n3

n4

n5

t

R
E
P
O
R
T

R
E
P
O
R
T

M
A
R
K
E
D

M
A
R
K
E
D

S
E
L
E
C
T
(1
)

S
E
L
E
C
T
(1

)

G
R
A
N
T

G
R
A
N
T

R
E
P
O
R
T

R
E
P
O
R
T

M
A
R
K
E
D

M
A
R
K
E
D

S
E
L
E
C
T
(2

)

SE
L
E
C
T
(2
)

R
E
L
E
A
S
E

R
E
L
E
A
S
E

D
E
C
(2

)

D
E
C
(2)

A
D
V
(2

)

A
D
V
(2
)

G
R
A
N
T

G
R
A
N
T

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Figure 6.12: Timeline of sample execution of Rhee’s algorithm

n1 needs to execute Chandy-Misra (hereafter CM) algorithm to enter the CM CS for
ReqA and n4 needs to execute CM to enter the CM CS for ReqB. Section 6.3 showed that
only one of them can enter the CM CS at any given time. In this example n1 is the first
to enter the CM CS. The messages and steps of the CM algorithm are not included here
for the sake of readability.

92

n1

n2

n3

n4

n5

1

2a 2b

(a) t1: ReqA is in CM CS, n1
sends REPORT

n1

n2

n3

n4

n5

3

4a 4b

(b) t2: resources reply with
MARKED to n1

n1

n2

n3

n4

n5

5

6a 6b

(c) t3: n1 selects position 1
for ReqA

Figure 6.13: Sample execution of Rhee’s algorithm 1/4

At t1, n1 starts in CM CS and n1 sends a REPORT message to the nodes holding the
resources, as shown in 6.13a. Upon reception of this message each node replies with a
MARKED message at t2 (Figure 6.13b) that contains the list of positions already occupied
in its local queue. In this case, all the queues being initially empty, each message contains
an empty list. Based on this information, n1 can select position 1 for ReqA. Table 6.2
shows the evolution of the local queues during the execution of this example. n1 sends
a SELECT message at t3 (Figure 6.13c) to n2 and n5 to inform them it has selected the
first position. n1 can then leave the CM CS as it has secured its initial place.

Node
time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
n1 ∅
n2 ∅ position 1 : ReqA

position 1 : ReqA position 1 : ReqBposition 2 : ReqB
n3 ∅
n4 ∅
n5 ∅ position 1 : ReqA

position 1 : ReqA position 1 : ReqBposition 2 : ReqB

Table 6.2: Evolution of the local queues of the nodes with time

n1

n2

n3

n4

n5

7

8a 8b

(a) t4: position 1 is granted
to n1 for ReqA

n1

n2

n3

n4

n5

(b) t5: ReqA start using the
resources

n1

n2

n3

n4

n5

10c

10b

9,10a

(c) t6: ReqB is in CM CS. n4
sends REPORT

Figure 6.14: Sample execution of Rhee’s algorithm 2/4

When they receive the selection from n1, the nodes grant the access to their resources
with a GRANT message (Figure 6.14a). At t5, n1 can enter its algorithm CS and start

93

using the resources. As n1 has left the CM CS at t3, n4 can execute CM and enter the CM
CS. As for n1, the messages for this part are not included here for the sake of readability.
It is assumed that the CM algorithm has been executed between t3 and t6. ReqB can
then follow the same steps as ReqA: it asks the nodes for a REPORT message of their
occupied positions at t6 (Figure 6.14c).

n1

n2

n3

n4

n5

12a

12b

11,12c

(a) t7: resources reply with
MARKED to n4

n1

n2

n3

n4

n5

14c

14b

13,14a

(b) t8: ReqB selects position
2

n1

n2

n3

n4

n5

15

16a 16b

(c) t9: ReqA releases re-
sources

Figure 6.15: Sample execution of Rhee’s algorithm 3/4

The nodes reply with MARKED at t7 (Figure 6.15a) allowing n4 to select a position
in the queues (Figure 6.15b). As position 1 is already held by ReqA, it selects position 2
at t8 (Figure 6.15b). When ReqA releases its CS, n1 sends RELEASE messages to release
the resources at t9 (Figure 6.15c).

n1

n2

n3

n4

n5

18a

18b

17,18c

(a) t10: DEC sent to inform
n4 it can change ReqB posi-
tion

n1

n2

n3

n4

n5

22c

22b

21,22a

(b) t11: n4 sends ADV to
change ReqB position

n1

n2

n3

n4

n5

16a

16b

15,16c

(c) t12: position 1 is granted
to ReqB

Figure 6.16: Sample execution of Rhee’s algorithm 4/4

Once the resources are released, the next requests can advance in their local queues.
n2 and n5 inform n4 with DEC messages that its position in the distributed queue can
decrease at t10 (Figure 6.16a). n4 accepts to advance its position in the queues and informs
them with ADV messages at t11 (Figure 6.16b). ReqB is now in the first position, it can
enter its algorithm CS and start using the resources at t12.

Message Complexity

Injong Rhee evaluated the performances of his algorithm using the Chandy-Misra [CM84],
and Choy-Singh [CS93] DrPP algorithms. The results show that the performance of this
algorithm on the Average Waiting Time is similar no matter the algorithm used as a

94

subroutine, with Chandy-Misra requiring less messages than Choy-Singh in his experiment
settings. For the evaluation below, Rhee’s algorithm relies on the Chandy-Misra [CM84]
DrPP algorithm as a subroutine.

The algorithm relies on another algorithm as a first subroutine so the number of
messages needed depends on the algorithm selected. For the rest of the execution the
algorithm requires one REPORT, one SELECT and one GRANT per resource in the
request. It also requires DEC and ADV for each conflict. The complexity is O(MsgA+rδ})
where MsgA is the number of messages of the first subroutine, r is the size of the request
and δ the maximum number of conflicting requests at any time during the execution of
the algorithm.

6.4.3 Performance evaluation

Figures 6.17 show, in red, the results of simulations of Rhee’s algorithm [Rhe95] compared
to the byvalues heuristic on SimGrid. These are the only figures where results are not
shown for all the possible values of x due to the very high number of messages. The
number of messages has a direct influence on the duration of a simulation. Because the
SimGrid simulator is based on discrete events, each time a message is sent or received
the execution of the thread is interrupted. So the more messages there are in a test the
longer its simulation lasts. For example in the results below, for requests of size 8 the
byvalues heuristic sends around 100 messages in average and Rhee’s algorithm around
4325 messages (Figure 6.17b). The duration of the simulation for the algorithm in this
case is around 6 minutes, while the simulation of Rhee’s algorithm lasts 5220 minutes
(or 4.5 days). Generating the whole graph takes weeks while providing no additional
information. Only the simulations for the most significant size of requests have been
evaluated on the experimental platform. The algorithm was also evaluated, along with
the another algorithm described in this chapter, on other topologies with a smaller number
of nodes.

As expected, the algorithm improves the Average Usage Rate from the pure Chandy-
Misra DrPP algorithm as shown in Figure 6.17a. But the Average Usage Rate is still
significantly lower than with the byvalues heuristic. Rhee’s original paper evaluated the
algorithm with Chandy-Misra[CM84] and Choy-Singh [CS93] algorithms for the first sub-
routine. The results show that there is no significant difference to expect with a different
algorithm because the time spent in the subroutine CS is orders of magnitude shorter
than the time spent in the algorithm CS.

The Average Number of Messages, shown in Figure 6.17b, is worse than the Chandy-
Misra algorithm because it adds new messages for the management of the distributed
queue. It is the worst algorithm for that metric by several orders of magnitude. This
metric could be improved if another algorithm than Chandy-Misra had been used for the
first subroutine, however the results show that the Average Number of Messages for Rhee’s
algorithm grows exponentially due to the messages specific to the algorithm. Rhee’s paper
shows that using Chandy-Misra algorithm for the first subroutine requires less messages
than when using Choy-Singh algorithm. It also shows that it requires less messages than
Awerbuch-Saks [AS90] algorithm on most of the test cases. Rhee’s own evaluation in his
article show that using Choy-Singh algorithm [CS93] rather than Chandy-Misra results
in a significantly larger number of messages, around 30%.

The Average Waiting Time is improving from the Chandy-Misra algorithm. It is
however slightly higher than the byvalues heuristic (Figure 6.17c).

95

Using another algorithm than Chandy-Misra DrPP for the first subroutine could affect,
and probably improve, the results for the Average Usage Rate and Average Waiting Time,
but it would not reduce the number of messages required for the management of the
distributed queue.

Rhee’s solution to the distributed allocation problem is based on the construction of
a distributed queue of the requests. It does not try to find a better scheduling, it simply
is based on the order of arrival of the requests on each node. A similar approach could
be used to build an optimised queue that would increase the Average Usage Rate, but
that would require synchronising all the nodes on this queue. This can be achieved with a
global view of the requests for example. However that could require even more messages,
which is already the main drawback of Rhee’s algorithm.

(a) Average Usage Rate

Allocation order: byvalues

RheeCM

(b) Average Number of Messages (c) Average Waiting Time

Figure 6.17: Evaluation of Rhee’s algorithm in a system with one instance of 44 types of
resources.

6.5 Bouabdallah-Laforest algorithm

The Bouabdallah-Laforest [BL00] algorithm extends the Naimi-Tréhel algorithm for the
exclusive access to multiple types of resources. The algorithm is token-based with a unique
Control Token in the system and one Resource Token per resource. The algorithm relies
on the Chang [CHA90] improvement of the Naimi-Tréhel Mutual Exclusion algorithm

96

described hereafter to move the Control Token in an overlay tree built on top of the
physical topology.

First the Naimi-Tréhel algorithm is described. Then, the Bouabdallah-Laforest algo-
rithm is explained with the same example as the other algorithms.

6.5.1 Naimi-Tréhel Mutex algorithm

The Naimi-Tréhel Mutex algorithm [NT87] is a token-based algorithm for Mutual Exclu-
sion, in systems with one instance of one type of resources. This algorithm builds two
virtual structures: a dynamic tree and a queue. The head of the queue is the node holding
the token and the tail the last node to have requested it. The virtual tree describes the
path to the tail of the queue and its root is eventually the node holding the token. Each
node maintains two variables:

� father stores the father of the node in the tree

� next stores the node to send the token to when leaving the CS, i.e., the next node
in the queue

The algorithm uses two messages REQUEST and TOKEN to move the token in the
tree. A node that wants to enter its CS requests the token with a REQUEST message.
The token is sent in a TOKEN message.

The example below shows how the virtual structures are updated dynamically accord-
ing to the requests of the nodes. These dynamic structures allow the algorithm to limit
the number of messages. A request to enter the CS is sent only to a subset of all the
nodes according to the current structure. Thank to this, the algorithm has a logarithmic
complexity for the Average Number of Messages. This makes it one of the most efficient
algorithms for Mutual Exclusion for this metric as shown in Section 3.3.

Example of execution

Figures 6.19 to 6.21 show a sample execution for the algorithm. The scenario is, given a
global clock, n1 requests to enter its CS, then n3 and finally n4. Figure 6.22 shows the
virtual structures maintained by the algorithm. The messages sent are shown in Figure
6.18. Initially the root of the virtual tree is n1 (Figure 6.22a).

CS

p1

p2

p3

p4

p5

t

R
E
Q
U
E
S
T

T
O
K
E
N

R
E
Q
U
E
S
T R

E
Q
U
E
S
T

T
O
K
E
N

t1 t2 t3 t4 t5 t6 t7 t8

Figure 6.18: Timeline of sample execution of Naimi-Tréhel algorithm

97

n1

n2

n3

n4

n5

(a) t1: n1 enters its CS

n1

n2

n3

n4

n5

1

(b) t2: n3 requests to enter
its CS

n1

n2

n3

n4

n5

2

(c) t3: n1 leaves CS, sends
the token to n3

Figure 6.19: Sample execution of Naimi-Tréhel algorithm 1/3

At t1, n1 requests to enter its CS and can do it immediately as it holds the token (cf.
Figure 6.19a). Then at t2 (Figure 6.19b), n3 wants to enter its CS, to do so it sends a
REQUEST message to n1 which stores n3 as its father and in its next variable (Figure
6.22b). When n1 leaves its CS, at t3, it sends the token using a TOKEN message to n3

(Figure 6.19c) and clear its next variable (Figure 6.22c).

n1

n2

n3

n4

n5

(a) t4: n3 enters its CS

n1

n2

n3

n4

n5

3c 3b 3a

(b) t5: n4 requests to enter
its CS

n1

n2

n3

n4

n5

4

(c) t6: n1 forwards the re-
quest to n3

Figure 6.20: Sample execution of Naimi-Tréhel algorithm 2/3

At t4, n3 can enter its CS because it has received the token (Figure 6.20a). When n4

wants to enter its CS, at t5 (Figure 6.20b), it requests the token to its father which is n1.
The virtual tree is updated so that n4 is the new father of n1 (Figure 6.22d). At t6, when
n1 receives the request, it does not hold the token anymore so it forwards the request to
its own father n3 (Figure 6.20c). n4 becomes the ex father and next of n3, (Figure 6.22e).

98

n1

n2

n3

n4

n5

5a

5b

(a) t7: n3 leaves CS and
sends the token to n4

n1

n2

n3

n4

n5

(b) t8: n4 enters its CS

Figure 6.21: Sample execution of Naimi-Tréhel algorithm 3/3

Finally when n3 leaves its CS, at t7, it sends the token to n4 and clear its next (Figure
6.22f). At t8, n4 can enter its CS.

p1

p2 p3 p4 p5

(a) t1: p1 is the root of the
virtual tree

p1

p2

p3

p4 p5

(b) t2: p3 becomes the root
of the virtual tree and the
next of p1

p1

p2

p3

p4 p5

(c) t3-t4: p1 has released its
CS. It clears its next when
sending the token to p3

p1

p2

p3

p4

p5

(d) t5: p4 wants to enter its
CS. It becomes the root of
the virtual tree. While p1
forwards the request to p3,
no node has p3 as its father

p1

p2

p3

p4

p5

(e) t6: p4 becomes the root of
the virtual tree and the next
of p3

p1

p2

p3

p4

p5

(f) t7-t8: p3 releases its CS
and clears its next

pi pj pi.father = pj pi pj pi.next=pj

(g) Legend

Figure 6.22: Evolution of the virtual structures during the execution of Naimi-Tréhel
algorithm

99

6.5.2 Description of Bouabdallah-Laforest algorithm

Each node keeps a local list of the Resource Tokens it is holding.
The Control Token maintains two lists :

� a list A holding all the free instances,

� a (key, value) set B telling which node has last requested an instance. The keys are
instances of types of resources, the values are nodes.

Adaptation to the system

With the Bouabdallah-Laforest algorithm, because it relies on the virtual structures of
the Naimi-Tréhel, a node can send a message to any node of the communication graph,
i.e. topology. For instance when a node requests the Control Token. This requires each
node to have a full knowledge of the communication graph, when the system allows a
node to have a partial view of the graph. However, in a system with one instance of
multiple types of resources, according to the description in Section 4.2.2, each node has
a knowledge on how to reach each type of resources. In this case, it means that each
node knows how to reach any node of the communication graph allowing to use the same
experimental setup. Evaluating the algorithm on a system with multiple instances would
require additional development.

Requesting the CS

When a node wants to enter its CS it first asks for the Control Token using the overlay
structure of the Naimi-Tréhel algorithm. Once it holds the Control Token, it can either
use the resources to enter its CS, if all the requested resources are free, or it can request the
missing resources by sending INQUIRE messages to the last requesters of these resources,
according to the B set. In return these nodes update their next to be the node that sent the
INQUIRE and reply with a INQ ACK1 messages. If a node holds some resources when
it receives the INQUIRE message then it send the Resource Token in the INQ ACK1.
When the requesting node has received INQ ACK1 messages from all the nodes it can
unlock the Control Token.

Releasing the CS

When a node releases its CS it informs the last requesters of the resources that they are
not used anymore using INQ ACK2 messages.

Pros and cons

The management of the Control Token is based on the Naimi-Tréhel Mutual Exclusion
algorithm that has a low message complexity. However these messages can be sent to
any node of the system because the virtual structures are independent from the topology.
Therefore it is possible that a message has to go through many nodes before reaching the
node it is looking for.

However the requirement to hold the Control Token creates a global lock on the
resources which gives poor results in terms of Average Usage Rate and Average Waiting
Time.

100

6.5.3 Example of execution in sample system

Initial state At t0, the virtual tree of Naimi-Tréhel is initialised with n1 as the root
and n1 holds the Control Token. Also, at t0, all resources are free so the list A contains
all the resources {n1, n2, n3, n4, n5} and set B is empty.

ReqA ReqB ALLOCATED CS

n1

n2

n3

n4

n5

t

R
E
Q
U
E
S
T

C
T S

E
N
D

C
T IN

Q
U
IR

E
IN

Q
A
C
K
2

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Figure 6.23: Timeline of sample execution of Bouabdallah-Laforest algorithm

t Holder list A set B
t0

n1

{n1, n2, n3, n4, n5} {}
t1

{n1, n3, n4}
{(n1, {n2, n5})}

t2
t3

n4
t4
t5 {(n4, {n2, n5})}t6

Figure 6.24: Evolution of the Control Token

Execution Figures 6.23, 6.25 and 6.26 show an example of execution for the algorithm
for the two sample requests ReqA and ReqB. Table 6.24 shows the evolution of the Control
Token during the execution of the algorithm.

n1

n3

n4n2

n5

(a) t1: ReqA is emitted. n1
has the Control Token, it can
enter its CS.

n1

n3

n4n2

n5

1c 1b

1a

(b) t2: ReqB is emitted. n4
requests the Control Token.

n1

n3

n4n2

n5

2a 2b

2c

(c) t3: n1 sends the Control
Token to n4

Figure 6.25: Sample execution of Bouabdallah-Laforest algorithm 1/2

101

When ReqA is emitted at t1 (Figure 6.25a) n1 updates the Control Token so that list
A contains the used resources n2 and n5 and that set B reflects that they have been
allocated for n1. n1 can enter its CS. When ReqB is emitted at t2 (Figure 6.25b), n4

requests the Control Token by sending a REQUEST CT message to n1 which is the root
of the virtual tree.

n1

n3

n4n2

n5

3c 3b

3a

(a) t4: n4 requests missing
resources from n1

n1

n2

n3

n4

n5

4a 4b

4c

(b) t5: ReqA finished, n1
sends tokens to n4.

n1

n3

n4n2

n5

(c) t6: n4 enters CS, ReqB
uses the resources.

Figure 6.26: Sample execution of Bouabdallah-Laforest algorithm 2/2

At t3, in Figure 6.25c, n4 receives the Control Token from n1 in a SEND CT message
and becomes the root of the virtual tree. n4 can now read in the Control Token that the
resources it needs for ReqB are held by n1 so it requests them with an INQUIRE message
at t4 (Figure 6.26a). When ReqA has finished using the resources at t5, n1 sends the
tokens for the resources with a INQ ACK2 message to n4, the node holding the Control
Token according to the virtual tree (Figure 6.26b). n4 then updates the Control Token
accordingly to indicate that it holds the tokens for the resources (Table 6.24). ReqB can
now enter its CS, at t6 (Figure 6.26c).

Message Complexity

This algorithm has a low message complexity because Naimi-Tréhel has a logarithmic
log(N) complexity for the number of messages where N is the number of nodes. On top
of the REQUEST CT and SEND CT messages needed by the Naimi-Tréhel algorithm
to move the Control Token, at most three messages are required for each resource in a
request: one INQUIRE, one INQ ACK1 and one INQ ACK2. The algorithm requires
between 0 and 3k messages, where k is the number of resources.

6.5.4 Performance evaluation

Figures 6.27 show, in blue, the results of the Bouabdallah-Laforest algorithm compared
to the byvalues allocation order heuristic on simulation run on SimGrid.

The algorithm relies on a Control Token to allow requests to allocate their resources.
This Control Token introduces a global lock when resources are not available, which
explain why the algorithm has worse performance in terms of Average Usage Rate (Figure
6.27a). The byvalues heuristic has a better concurrency, allowing non-conflicting requests
to be allocated.

The Bouabdallah-Laforest algorithm also requires a larger number of messages in
average (Figure 6.27b). Even if its message complexity is logarithmic, more than 80% of
its messages are for the circulation of the Control Token because these messages can be

102

from any node to any node. The byvalues heuristic follows the path computed during
the first subroutine and requires less messages in average. The message complexity is not
sufficient to measure the difference of behaviour of the two algorithms, because it only
considers the number of messages sent. This metrics shows the impact of the topology, a
message might need to be forwarded by many nodes before reaching its destination.

(a) Average Usage Rate

Allocation order: byvalues

Bouabdallah-Laforest

(b) Average Number of Messages (c) Average Waiting Time

Figure 6.27: Evaluation of Bouabdallah-Laforest algorithm in a system with one instance
of 44 types of resources

The Average Waiting Time metric is also higher with the Bouabdallah-Laforest algo-
rithm (Figure 6.27c). Requests wait for a longer time to be allocated because the Average
Usage Rate is lower.

6.6 Summary

Few papers from the state of the art detailed in Section 3.2 include experimental eval-
uations of the algorithms. Page et al. [PJC93] compared the Average Response Times
of their algorithms to Awerbuch-Saks[AS90] and Chandy-Misra[CM84]. Rhee [Rhe95]
compared the Average Response Times and Average Message Complexity of his algo-
rithm to Awerbuch-Saks[AS90], Chandy-Misra[CM84] and Choy-Singh [CS93]. Lejeune et
al.[Lej+15] compared Average Usage Rate and Average Response Time of their algorithm

103

to Bouabdallah-Laforest [BL00] and an incremental algorithm using the Naimi-Tréhel
algorithm for Mutual Exclusion.

(a) Average Usage Rate

Allocation order: byvalues

Allocation order: parallel

Dijkstra's Incremental

Allocation order: reverse

RheeCM

Chandy-Misra

Bouabdallah-Laforest

(b) Average Number of Messages (c) Average Waiting Time

Figure 6.28: Evaluation of all algorithms in a system with one instance of 44 types of
resources

Figure 6.28 include all the results above in a single figure. It shows how all these
results compare to each other. Sorting the algorithm by Average Usage Rate the best
performance on all three metrics is obtained by the algorithm introduced in Chapter 4
using the byvalues allocation order heuristic. The reverse allocation order heuristic also
gives better results than the other algorithms from the state of the art for the Average
Usage Rate.

Figure 6.28c shows that all algorithms, except Dijkstra’s incremental due to the domino
effect, have the same Average Waiting Time once the Average Usage Rate becomes linear
for requests of size 10 and more. The figure also shows that all the other algorithms
compute a fair scheduling of the sequential requests. Since there are as many requests in
the system as there are nodes (44), each request waits for the other 43 to end before it is
allocated, as seen in the evaluation of Chandy-Misra algorithm in Section 6.3.3.

From the state of the art, Dijkstra’s Incremental has the best Average Usage Rate
but performs the worst by several orders of magnitude for the Average Waiting Time.
Rhee’s algorithm comes next but requires significantly more messages than the others.

104

Bouabdallah-Laforest is not efficient for requests of size 7 and less because of the global
lock of the resource, it also requires more messages than most of the algorithms despite
using the low complexity Naimi-Tréhel algorithm. Chandy-Misra can only allocate a
single request at any given time and has the worst Average Usage Rate and also the
second worst Average Waiting Time.

6.7 Conclusion

This chapter gives the results of experiments conducted with state-of-the-art algorithms
for distributed resource allocation. They are compared to the performance of the algo-
rithm introduced in Chapter 4. The experiments focus on systems with one instance of
multiple types of resources as few algorithms address systems with multiple instances.

The results show that the proposed algorithm outperforms all the algorithms on the
three metrics considered: Average Usage Rate, Average Waiting Time and Average Num-
ber of Messages. This shows that computing a total order with allocation vectors of
counters as done by the LASS algorithm [Lej+15] removes the need for a global lock
and allows for a better concurrency of requests. The drawback of the algorithm is that
the number of messages depends on the number of preemptions. This information is
usually not known in advance as it is dependant on the order of arrival of the messages
which is typically difficult, if not impossible, to predict. This can make the algorithm
non-deterministic on this metric. The parallel heuristic offers an intermediate solution
because it does not require preemptions but with a lower performance on all metrics than
the byvalues heuristic.

No results are shown in this chapter for systems with multiple instances. All the
experiments uses the same first subroutine detailed in Chapter 4 to select the instances
and compute a path so the output of this first subroutine is identical for all. A comparison
between the two routing heuristics was done in the previous chapter and shows that it is
the selection of the resource that changes the load-balancing and affects the performance.
Bouabdallah-Laforest is the only algorithm from the state of the art and evaluated in
this chapter that considered a generalisation for systems with multiple instances. It only
considers that a requesting node can select one of the instances, it does not however
address the method to select the instance.

105

Chapter 7

Conclusion

“There must be some way out of
here” Said the joker to the thief
”There’s too much confusion,
I can’t get no relief”

Bob Dylan, All Along the Watchtower

The problem addressed in this work belongs to the larger class of problems of the dis-
tributed allocation of resources. Here the focus is on requests for the allocation of chains
of VNFs in network slices modelled as an allocation problem in systems with multiple
instances of multiple types of resources. A new modular distributed algorithm is intro-
duced to address this problem. Multiple heuristics are proposed and evaluated, each with
their trade-offs between increasing the usage rate, reducing the waiting time and limiting
the number of messages required. This algorithm is evaluated against four algorithms
from the state of the art and against the expected value. This conclusion first lists the
contributions of the work presented here. Then its limitations are listed, which give room
for future work.

7.1 Contributions

The work presented here is at the intersection of two research domains: networks and
distributed systems. These domains intersect on multiple research topics but there is
limited interest for the class of algorithms under focus here. Networks often include a
centralised manager, but as shown in Chapter 2 new multi-domain use cases have emerged
recently with 5G making the case for a distributed management of network resources.
Instead the focus is on the allocation of chains of VNFs for 5G slices which require the
distributed allocation of ordered sets of resources, here the resources are VNFs. Three
contributions are detailed:

A new distributed algorithm for the allocation of resources in networks. As
shown in the state of the art in Chapter 3 the allocation of resources in distributed systems
is mainly addressed as a variant of the Mutual Exclusion problem. However, few works
address systems with both multiple types of resources and multiple instances and none
addresses them specifically. The placement of the instances in the system and the order
in which the resources are used are also not considered. The new algorithm presented

106

in Chapter 4 addresses these constraints. The instances are selected in a first subroutine
to compute a path that satisfies the constraint on the order and contains instances of
the requested types of resources while computing a vector of counters that allows the
computation of a total order of the requests. Then, the second subroutine allocates these
instances using a preemption mechanism to enforce the total order when multiple requests
try to allocate an instance. Multiple heuristics are described for these two subroutines
as well as their pros and cons. An extensive evaluation of the performance of multiple
heuristics of the algorithm in Chapter 5 shows that the order followed to allocate the
resources has a strong influence on the number of preemptions. The results show that
reducing the number of preemptions improves the overall performance.

A numerical method to compute the expected value of the Average Usage
Rate based on Markov chains. The method computes the expected value of the
Average Usage Rate in the experimental settings where each node has always one request
of constant size in the system. The performance of the algorithm is then compared with
it. These ideal values could only be theoretically reached by an omniscient orchestrator
informed instantly of the states of the nodes and the requests. However, the results show
there is still room for improvement.

An experimental evaluation of the performance of the heuristics of the algo-
rithm against algorithms from the state of the art The experimental comparison
with algorithms from the state of the art in Chapter 6, in a simulator based on SimGrid,
shows that the algorithm has better performance on the three considered metrics. A com-
parison using MPI on Grid’5000 is done with the algorithm of the state of the art with
the best performance. It confirms that using allocation vectors of counters to compute
the global order of requests gives better results than the other techniques. The results
also show that the improvement does not come from the order itself but from the fact
that the algorithm allows multiple requests to allocate resources at the same time if they
are not trying to allocate the same instances. The trade-off of the algorithm is that the
number of messages depends on the number of preemptions which can make it difficult
to predict. An order based on the ordering of the nodes gives good result for the Average
Usage Rate or the Average Number of Messages required but introduces a domino effect
that makes the Average Waiting Time order of magnitude worse than for other methods.
Other algorithms that require a global lock of the resources do not offer the same level of
concurrency of the requests.

7.2 Limitations and future work

Further work is required to try to improve or evaluate in more details the performance of
the algorithm. Adaptations to other systems or use cases can also be considered. Below
is a list of possible future work.

7.2.1 Improving the performance

The byvalues heuristic offers a better performance than the algorithms of the state of the
art that were evaluated, but it may be possible to improve the performance further.

107

Getting closer to an optimum A centralised solution with a global view of the system
could be used to get closer to the expected value Average Usage Rate computed in Chapter
5. A solution that builds a global view of a distributed list of requests might improve
the Average Usage Rate but the trade-off is the high number of messages that is orders
of magnitude bigger than for the algorithm proposed. Both these methods might not be
adapted to every system. A solution still has to be found to get closer to this maximum
while keeping a low number of messages. A more thorough comparison with a global view-
based solution could highlight the pros and cons of both methods. The expected value is
not an optimum, depending on the actual set of requests on a given system it might be
possible to achieve better or worse results. Comparing the performance of the algorithm
with an optimum would allow the quantification of this difference. As the problem is
NP-hard, it might be necessary to make this comparison on smaller topologies than the
44-node topology used in the experiments described here.

Identifying other heuristics more adapted to specific objectives Other heuristics
can be considered for the algorithm. For the path computation subroutine, none of the
heuristic proposed is trying to minimise the length of the path. A heuristic that looks
for a compromise between load-balancing and the length of the path might be interesting
for some use cases. For the allocation of resources, only totally random requests are
evaluated while in a production systems the set of requests might not include all the
possible permutations of resources, or some requests might be more frequent than others.
In these situations the generic allocation order heuristics presented here might not be
the most efficient and a heuristic tailored to the actual profile of requests would be more
adequate. All the allocation order heuristics described in Section 4.5 are pessimistic: they
expect deadlocks to happen. In production systems where requests are less random than
on the experimental platform, there might be a lower risk of deadlocks. An optimistic
approach would try to allocate the resources earlier and only handle deadlocks once they
are detected.

7.2.2 Extending the system

The model proposed for the system is not adequate for every use cases and may need to
be extended, two kinds of extension are proposed here.

Extending to dynamic topologies Among the assumptions made in the model used
is that the resources are placed on the nodes of a static graph while the number and
placement of resources of production platforms change over time: nodes can be added or
removed, voluntarily when it is linked to capacity planning or involuntarily when this is
because of failures. The algorithm cannot be used as is, adaptations are required when
dealing with a dynamic graph. A fault tolerance mechanism could be added to deal with
the loss of nodes.

Extending to heterogeneous systems and requests The simulations shown here
take a lot of parameters. The influence of each parameter was studied in details. Still, for
the sake of simplification some parameters are not studied specifically in the experiments.
All the edges have the same weight of 1. Having different weights for the edges is not
expected to change the overall results but a real system with multiple instances and with
variations of the weight of the edges, i.e., the latency of the network links, might not

108

benefit from the algorithm if the length of paths has an impact on the service delivered
by the resources. This needs to be considered when choosing the heuristic of the first
subroutine to maximise the load-balancing among instances while minimising the length
of paths. Also, even in systems with multiple instances, requests in the simulation are
never for more than one instance for a given type of resource. This is not expected to have
any influence on the results but has not been tested. Results show that the difference of
performance between algorithms is linked to the load of the system.On systems with a
low number of requests there might not be notable differences between algorithms.

7.2.3 Evaluating on a live 5G platform with actual workloads

Networks often are designed with a centralised manager and it does not make it simple
to identify and implement a distributed use case other than on an experimental platform
built on purpose like what was done during the course of this work. There are several
steps forward left to make before we could be able to implement this algorithm on a
multi-domain use case on a production-like platform. A target multi-domain architecture
needs to be defined, for example a multi-domain 5G platform. The multi-domain use
cases need to get more mature so research can focus on them. Then, the algorithm needs
to be integrated in the multi-domain 5G platform for these use cases.

109

Bibliography

Bibliography Chapter 2

[3GP16] 3GPP. Specification # 28.801 Telecommunication Management;Study on Man-
agement and Orchestration of Network Slicing for next Generation Network.
2016. url: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3091 (page 15).

[Ale17] Ana Cristina Aleixo. “Vertical Sector Requirements Analysis and Use Case
Definition”. In: (2017) (page 16).

[All16] NGMN Alliance. NGMN 5G P1 Requirements & Architecture Work Stream
End-to-End Architecture Description of Network Slicing Concept. 2016. url:
https://www.ngmn.org/publications/technical-deliverables/page/

3/ (page 15).

[Bar+15] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. “On Orchestrating
Virtual Network Functions”. In: 2015 11th International Conference on Net-
work and Service Management (CNSM). 2015 11th International Conference
on Network and Service Management (CNSM). 2015, pp. 50–56 (page 20).

[Ber+14] Pankaj Berde et al. “ONOS: Towards an Open, Distributed SDN OS”. In:
Proceedings of the Third Workshop on Hot Topics in Software Defined Net-
working. HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 1–6 (pages 21,
22).

[CDJ17] Francisco Carpio, Samia Dhahri, and Admela Jukan. “VNF Placement with
Replication for Loac Balancing in NFV Networks”. In: 2017 IEEE Interna-
tional Conference on Communications (ICC). 2017 IEEE International Con-
ference on Communications (ICC). 2017, pp. 1–6 (page 20).

[CM84] K. M. Chandy and J. Misra. “The Drinking Philosophers Problem”. In: ACM
Trans. Program. Lang. Syst. 6.4 (1984), 632–646 (pages 7, 31, 34, 36, 38, 79,
87, 89, 91, 92, 94, 95, 103).

[Eur18] Eurecom. “Design and Prototyping of Integrated Multi-Domain SliceNet Ar-
chitecture”. In: (2018) (page 17).

110

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3091
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3091
https://www.ngmn.org/publications/technical-deliverables/page/3/
https://www.ngmn.org/publications/technical-deliverables/page/3/

[Fen+12] G. Feng, S. Garg, R. Buyya, and W. Li. “Revenue Maximization Using
Adaptive Resource Provisioning in Cloud Computing Environments”. In:
2012 ACM/IEEE 13th International Conference on Grid Computing. 2012
ACM/IEEE 13th International Conference on Grid Computing. 2012, pp. 192–
200 (page 20).

[Fra+18b] G. Fraysse et al. “Towards Multi-SDN Services: Dangers of Concurrent Re-
source Allocation from Multiple Providers”. In: 2018 21st Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN), short
paper. 2018 21st Conference on Innovation in Clouds, Internet and Networks
and Workshops (ICIN). 2018, pp. 1–5 (pages 8, 20).

[Gre09] Kate Greene. TR10: Software-Defined Networking. 2009. url: http://www2.
technologyreview.com/news/412194/tr10-software-defined-networking/

(page 13).

[Gud+08] Natasha Gude et al. “NOX: Towards an Operating System for Networks”.
In: SIGCOMM Comput. Commun. Rev. 38.3 (2008), 105–110 (page 21).

[HSS99] Mark Handley, Henning Schulzrinne, and Eve Schooler. SIP: Session Ini-
tiation Protocol. 1999. url: https : / / tools . ietf . org / html / rfc2543

(page 11).

[Inc12] MetroPCS Communications Inc. MetroPCS Launches World’s First Com-
mercially Available Voice Over LTE Service and VoLTE-Capable 4G LTE
Smartphone. 2012. url: https://www.prnewswire.com/news-releases/
metropcs-launches-worlds-first-commercially-available-voice-

over-lte-service-and-volte-capable-4g-lte-smartphone-165336456.

html (page 11).

[ISG13] ETSI NFV ISG. ETSI GS NFV 001: Network Functions Virtualisation (NFV)
Use Cases. 2013. url: https://www.etsi.org/deliver/etsi_gs/NFV/
001_099/001/01.01.01_60/gs_NFV001v010101p.pdf (pages 13, 19).

[ISG14] ETSI NFV ISG. ETSI GS NFV-MAN 001 V1.1.1 Network Functions Virtu-
alisation (NFV); Management and Orchestration. 2014 (pages 11, 19).

[ITU96] ITU-T. H.323 : Visual Telephone Systems and Equipment for Local Area
Networks Which Provide a Non-Guaranteed Quality of Service. 1996. url:
https://www.itu.int/rec/T-REC-H.323-199611-S/en/ (page 11).

[Jai+13] Sushant Jain et al. “B4: Experience with a Globally-Deployed Software De-
fined Wan”. In: Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 3–14
(page 14).

[JS15] Brendan Jennings and Rolf Stadler. “Resource Management in Clouds: Sur-
vey and Research Challenges”. In: J. Netw. Syst. Manage. 23.3 (2015), 567–
619 (page 20).

[Jia+16] Yongzheng Jia et al. “Online Scaling of NFV Service Chains across Geo-
Distributed Datacenters”. In: (2016). arXiv: 1611.08086 [cs] (page 20).

[Kop+10] Teemu Koponen et al. “Onix: A Distributed Control Platform for Large-
Scale Production Networks”. In: Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation. OSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 351–364 (pages 14, 21).

111

http://www2.technologyreview.com/news/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/news/412194/tr10-software-defined-networking/
https://tools.ietf.org/html/rfc2543
https://www.prnewswire.com/news-releases/metropcs-launches-worlds-first-commercially-available-voice-over-lte-service-and-volte-capable-4g-lte-smartphone-165336456.html
https://www.prnewswire.com/news-releases/metropcs-launches-worlds-first-commercially-available-voice-over-lte-service-and-volte-capable-4g-lte-smartphone-165336456.html
https://www.prnewswire.com/news-releases/metropcs-launches-worlds-first-commercially-available-voice-over-lte-service-and-volte-capable-4g-lte-smartphone-165336456.html
https://www.prnewswire.com/news-releases/metropcs-launches-worlds-first-commercially-available-voice-over-lte-service-and-volte-capable-4g-lte-smartphone-165336456.html
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
https://www.itu.int/rec/T-REC-H.323-199611-S/en/
https://arxiv.org/abs/1611.08086

[Kre+15] D. Kreutz et al. “Software-Defined Networking: A Comprehensive Survey”.
In: Proceedings of the IEEE 103.1 (2015), 14–76 (pages 13, 14).

[McK+08] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus Networks”.
In: SIGCOMM Comput. Commun. Rev. 38.2 (2008), 69–74 (page 13).

[Mij+16] R. Mijumbi et al. “Management and Orchestration Challenges in Network
Functions Virtualization”. In: IEEE Communications Magazine 54.1 (2016),
98–105 (page 20).

[MFD11] K. Mills, J. Filliben, and C. Dabrowski. “Comparing VM-Placement Algo-
rithms for On-Demand Clouds”. In: 2011 IEEE Third International Con-
ference on Cloud Computing Technology and Science. 2011 IEEE Third In-
ternational Conference on Cloud Computing Technology and Science. 2011,
pp. 91–98 (page 20).

[Ope16] OpenDaylight Project, director. Evolution of SDN in Google’s Network Infrastructure-
Vijoy Pandey. 2016 (page 13).

[Pos81] J. Postel. Internet Protocol. 1981. url: https://tools.ietf.org/html/
rfc791 (page 10).

[PPP] 5G PPP. 5G PPP. url: https://5g-ppp.eu/ (page 16).

[Sun+16] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y. Wong, and Hongyi Zeng.
“Robotron: Top-down Network Management at Facebook Scale”. In: Proceed-
ings of the 2016 ACM SIGCOMM Conference. SIGCOMM ’16. New York,
NY, USA: ACM, 2016, pp. 426–439 (page 16).

[Wic+15] J. A. Wickboldt et al. “Software-Defined Networking: Management Require-
ments and Challenges”. In: IEEE Communications Magazine 53.1 (2015),
278–285 (page 14).

[Wid+12] A. Widjajarto, S. H. Supangkat, Y. S. Gondokaryono, and A. S. Prihatmanto.
“Cloud Computing Reference Model: The Modelling of Service Availability
Based on Application Profile and Resource Allocation”. In: 2012 Interna-
tional Conference on Cloud Computing and Social Networking (ICCCSN).
2012 International Conference on Cloud Computing and Social Networking
(ICCCSN). 2012, pp. 1–4 (page 20).

112

https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://5g-ppp.eu/

Bibliography Chapter 3:
Shared-Memory Mutex algorithms

[dBru67] N. G. de Bruijn. “Additional Comments on a Problem in Concurrent Pro-
gramming Control”. In: Commun. ACM 10.3 (1967), 137–138 (pages 28, 36).

[Dij65] E. W. Dijkstra. “Solution of a Problem in Concurrent Programming Control”.
In: Commun. ACM 8.9 (1965), 569– (pages 7, 25, 26, 28, 36, 37).

[EM72] Murray A. Eisenberg and Michael R. McGuire. “Further Comments on Di-
jkstra’s Concurrent Programming Control Problem”. In: Communications of
the ACM 15.11 (1972), 999 (pages 28, 36, 37).

[Knu66] Donald E. Knuth. “Additional Comments on a Problem in Concurrent Pro-
gramming Control”. In: Communications of the ACM 9.5 (1966), 321–322
(pages 28, 36).

113

Bibliography Chapter 3:
Token-Based Mutex algorithms

[Gos89] A. Goscinski. “A Synchronization Algorithm for Processes with Dynamic
Priorities in Computer Networks with Node Failures”. In: Information Pro-
cessing Letters 32.3 (1989), 129–136 (pages 30, 36).

[Gos91] Andrzej Goscinski. Distributed Operating Systems: The Logical Design. Vol. 21.
Addison-Wesley Sydney, 1991 (pages 30, 36).

[Gos90] Andrzej Goscinski. “Two Algorithms for Mutual Exclusion in Real-Time Dis-
tributed Computer Systems”. In: Journal of Parallel and Distributed Com-
puting 9.1 (1990), 77–82 (pages 30, 36).

[HPR88] J. M. Helary, N. Plouzeau, and M. Raynal. “A Distributed Algorithm for
Mutual Exclusion in an Arbitrary Network”. In: The Computer Journal 31.4
(1988), 289–295 (pages 30, 36).

[Le 77] Gerard Le Lann. “Distributed Systems-towards a Formal Approach.” In: IFIP
Congress. Vol. 7. Toronto. 1977, pp. 155–160 (pages 25, 29, 36, 37).

[Mar85] Alain J. Martin. “Distributed Mutual Exclusion on a Ring of Processes”. In:
Science of Computer Programming 5 (1985), 265–276 (pages 29, 36).

[NT87] Mohamed Naimi and Michel Tréhel. “An Improvement of the logN Dis-
tributed Algorithm for Mutual Exclusion”. In: Proceedings of the 7th Inter-
national Conference on Distributed Computing Systems, Berlin, Germany,
September 1987. IEEE Computer Society, 1987, pp. 371–377 (pages 30, 32,
36, 37, 97).

[Ray89b] Kerry Raymond. “A Tree-Based Algorithm for Distributed Mutual Exclu-
sion”. In: ACM Trans. Comput. Syst. 7.1 (1989), 61–77 (pages 30, 36, 37).

[RA83] Glenn Ricart and Ashok K Agrawala. “Authors’ Response to ”on Mutual
Exclusion in Computer Networks” by Carvalho and Roucairol”. In: Commu-
nications of the ACM 26.2 (1983), 147–148 (pages 29, 36, 37).

[SK85] Ichiro Suzuki and Tadao Kasami. “A Distributed Mutual Exclusion Algo-
rithm”. In: ACM Trans. Comput. Syst. 3.4 (1985), 344–349 (pages 29, 30, 36,
37).

114

Bibliography Chapter 3:
Permission-Based Mutex algorithms

[Cad+17] Viveck R Cadambe, Nancy Lynch, Muriel Medard, and Peter Musial. “A
Coded Shared Atomic Memory Algorithm for Message Passing Architec-
tures”. In: Distributed Computing 30.1 (2017), 49–73 (pages 29, 36).

[Cha94] Ye-In Chang. “Design of Mutual Exclusion Algorithms for Real-Time Dis-
tributed Systems”. In: Journal of Information Science and Engineering, Vol.
10 (1994), 527–548 (pages 30, 36).

[Lam78] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Commun. ACM 21.7 (1978), 558–565 (pages 25, 29, 30, 36, 37,
45).

[LT87] Nancy A Lynch and Mark R Tuttle. “Hierarchical Correctness Proofs for Dis-
tributed Algorithms”. In: Proceedings of the Sixth Annual ACM Symposium
on Principles of Distributed Computing. 1987, pp. 137–151 (page 36).

[MS90] Shivakant Mishra and Pradip K Srimani. “Fault-Tolerant Mutual Exclu-
sion Algorithms”. In: Journal of Systems and Software 11.2 (1990), 111–
129 (pages 30, 36).

[Mue98] F. Mueller. “Prioritized Token-Based Mutual Exclusion for Distributed Sys-
tems”. In: Proceedings of the First Merged International Parallel Process-
ing Symposium and Symposium on Parallel and Distributed Processing. Pro-
ceedings of the First Merged International Parallel Processing Symposium
and Symposium on Parallel and Distributed Processing. 1998, pp. 791–795
(pages 30, 36).

[Mue99] Frank Mueller. Priority Inheritance and Ceilings for Distributed Mutual Ex-
clusion - IEEE Conference Publication. 1999. url: https://ieeexplore.
ieee.org/document/818861/ (pages 30, 36).

[NM91] Mitchell L Neilsen and Masaaki Mizuno. “A DAG-Based Algorithm for Dis-
tributed Mutual Exclusion.” In: ICDCS. 1991, pp. 354–360 (pages 30, 36).

[NLM90] Shojiro Nishio, Kin F. Li, and Eric G. Manning. “A Resilient Mutual Exclu-
sion Algorithm for Computer Networks”. In: IEEE Transactions on Parallel
& Distributed Systems 3 (1990), 344–356 (pages 30, 36).

[RA81] Glenn Ricart and Ashok K. Agrawala. “An Optimal Algorithm for Mutual
Exclusion in Computer Networks”. In: Commun. ACM 24.1 (1981), 9–17
(pages 29, 30, 36, 37).

115

https://ieeexplore.ieee.org/document/818861/
https://ieeexplore.ieee.org/document/818861/

[TN87] Michel Tréhel and Mohammed Naimi. “A Distributed Algorithm for Mutual
Exclusion Based on Data Structures and Fault Tolerance”. In: Proc. IEEE
Phoenix Conf. on Computer and Communications. 1987, pp. 35–39 (pages 30,
33, 36).

[vdSne87] Jan L. A. van de Snepscheut. “Fair Mutual Exclusion on a Graph of Pro-
cesses”. In: Distributed Computing 2.2 (1987), 113–115 (pages 30, 36, 37).

116

Bibliography Chapter 3:
Quorum-Based Mutex algorithms

[AE91] Divyakant Agrawal and Amr El Abbadi. “An Efficient and Fault-Tolerant
Solution for Distributed Mutual Exclusion”. In: ACM Transactions on Com-
puter Systems 9.1 (1991), 1–20 (pages 29, 30, 36, 37).

[Mae85] Mamoru Maekawa. “A N Algorithm for Mutual Exclusion in Decentralized
Systems”. In: ACM Trans. Comput. Syst. 3.2 (1985), 145–159 (pages 29, 36,
37).

[MNR91] Masaaki Mizuno, Mitchell L Neilsen, and Raghavendra Rao. “A Token Based
Distributed Mutual Exclusion Algorithm Based on Quorum Agreements.” In:
ICDCS. 1991, pp. 361–368 (pages 29, 36).

[San87] Beverly A. Sanders. “The Information Structure of Distributed Mutual Ex-
clusion Algorithms”. In: ACM Trans. Comput. Syst. 5.3 (1987), 284–299
(pages 29, 36, 37).

117

Bibliography Chapter 3: k-mutex
algorithms

[Bal94] Roberto Baldoni. “An O(NM(M+1/)) Distributed Algorithm for the k-out of-
M Resources Allocation Problem”. In: 14th International Conference on Dis-
tributed Computing Systems. 14th International Conference on Distributed
Computing Systems. 1994, pp. 81–88 (pages 33, 36).

[BV95] S. Bulgannawar and N. H. Vaidya. “A Distributed K-Mutual Exclusion Al-
gorithm”. In: Proceedings of 15th International Conference on Distributed
Computing Systems. Proceedings of 15th International Conference on Dis-
tributed Computing Systems. 1995, pp. 153–160 (pages 33, 36).

[CE08] Pranay Chaudhuri and Thomas Edward. “An Algorithm for K-Mutual Exclu-
sion in Decentralized Systems”. In: Computer Communications 31.14 (2008),
3223–3235 (pages 33, 36).

[Kak+94] Hirotsugu Kakugawa, Satoshi Fujita, Masafumi Yamashita, and Tadashi Ae.
“A Distributed K-Mutual Exclusion Algorithm Using k-Coterie”. In: Infor-
mation Processing Letters 49.4 (1994), 213–218 (pages 33, 36).

[Mak+92] K. Makki et al. “A Token Based Distributed k Mutual Exclusion Algorithm”.
In: [1992] Proceedings of the Fourth IEEE Symposium on Parallel and Dis-
tributed Processing. [1992] Proceedings of the Fourth IEEE Symposium on
Parallel and Distributed Processing. 1992, pp. 408–411 (pages 33, 36).

[MT99] Y. Manabe and N. Tajima. “(H, k)-Arbiters for h-out of-k Mutual Exclu-
sion Problem”. In: Proceedings. 19th IEEE International Conference on Dis-
tributed Computing Systems (Cat. No.99CB37003). Proceedings. 19th IEEE
International Conference on Distributed Computing Systems (Cat. No.99CB37003).
1999, pp. 216–223 (pages 33, 36).

[Ray89a] Kerry Raymond. “A Distributed Algorithm for Multiple Entries to a Critical
Section”. In: Information Processing Letters 30.4 (1989), 189–193 (pages 33,
36).

[Ray91a] Michel Raynal. “A Distributed Solution to the K-out of-M Resources Allo-
cation Problem”. In: Advances in Computing and Information - ICCI ’91.
International Conference on Computing and Information. Springer, Berlin,
Heidelberg, 1991, pp. 599–609 (pages 33, 36).

[SR92] Pradip K. Srimani and Rachamallu L. N. Reddy. “Another Distributed Algo-
rithm for Multiple Entries to a Critical Section”. In: Information Processing
Letters 41.1 (1992), 51–57 (pages 33, 36).

118

Bibliography Chapter 3:
Dining/Drinking philosophers
algorithms

[AS90] B. Awerbuch and M. Saks. “A Dining Philosophers Algorithm with Poly-
nomial Response Time”. In: Proceedings [1990] 31st Annual Symposium on
Foundations of Computer Science. Proceedings [1990] 31st Annual Sympo-
sium on Foundations of Computer Science. 1990, 65–74 vol.1 (pages 32, 36–
38, 95, 103).

[BP92] Judit Bar-Ilan and David Peleg. “Distributed Resource Allocation Algorithms
(Extended Abstract)”. In: Proceedings of the 6th International Workshop on
Distributed Algorithms. WDAG ’92. Springer. London, UK, UK: Springer-
Verlag, 1992, pp. 277–291 (pages 32, 36, 38).

[BL00] A. Bouabdallah and C. Laforest. “A Distributed Token-Based Algorithm for
the Dynamic Resource Allocation Problem”. In: SIGOPS Oper. Syst. Rev.
34.3 (2000), 60–68 (pages 7, 32, 34, 36, 38, 79, 96, 104).

[CM84] K. M. Chandy and J. Misra. “The Drinking Philosophers Problem”. In: ACM
Trans. Program. Lang. Syst. 6.4 (1984), 632–646 (pages 7, 31, 34, 36, 38, 79,
87, 89, 91, 92, 94, 95, 103).

[CHA90] Y. CHANG. “An Improved O(Log N) Mutual Exclusion Algorithm for Dis-
tributed Systems”. In: Proc. the 10th Int. Conf. on Distributed Computing
Systems (1990), 295–302 (page 96).

[CS95] Manhoi Choy and Ambuj K. Singh. “Efficient Fault-Tolerant Algorithms for
Distributed Resource Allocation”. In: ACM Trans. Program. Lang. Syst. 17.3
(1995), 535–559 (pages 32, 33, 36, 37).

[Dij71] E. W. Dijkstra. “Hierarchical Ordering of Sequential Processes”. In: Acta
Informatica 1.2 (1971), 115–138 (pages 7, 30, 31, 36, 38, 79–81).

[FR80] Nissim Francez and Michael Rodeh. “A Distributed Abstract Data Type
Implemented by a Probabilistic Communication Scheme”. In: 21st Annual
Symposium on Foundations of Computer Science (Sfcs 1980). 21st Annual
Symposium on Foundations of Computer Science (Sfcs 1980). 1980, pp. 373–
379 (pages 31, 36).

[GSA89] David Ginat, A. Udaya Shankar, and A. K. Agrawala. “An Efficient Solution
to the Drinking Philosophers Problem and Its Extensions”. In: Distributed Al-
gorithms. International Workshop on Distributed Algorithms. Lecture Notes
in Computer Science. Springer, Berlin, Heidelberg, 1989, pp. 83–93 (pages 31,
34, 36, 38).

119

[Lam74] Leslie Lamport. “A New Solution of Dijkstra’s Concurrent Programming
Problem”. In: Communications of the ACM 17.8 (1974), 453–455 (pages 28,
32, 36, 37).

[LR81] Daniel Lehmann and Michael O. Rabin. “On the Advantages of Free Choice:
A Symmetric and Fully Distributed Solution to the Dining Philosophers
Problem”. In: Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’81. New York, NY, USA:
ACM, 1981, pp. 133–138 (pages 31, 36).

[Lej+15] J. Lejeune, L. Arantes, J. Sopena, and P. Sens. “Reducing Synchronization
Cost in Distributed Multi-Resource Allocation Problem”. In: 2015 44th In-
ternational Conference on Parallel Processing. 2015 44th International Con-
ference on Parallel Processing. 2015, pp. 540–549 (pages 33, 36, 44, 79, 103,
105).

[Lyn80] Nancy A. Lynch. “Fast Allocation of Nearby Resources in a Distributed
System”. In: Proceedings of the Twelfth Annual ACM Symposium on The-
ory of Computing. STOC ’80. New York, NY, USA: ACM, 1980, pp. 70–81
(pages 31, 36, 37, 82).

[Mad97] Aomar Maddi. “Token Based Solutions to M Resources Allocation Problem”.
In: Proceedings of the 1997 ACM Symposium on Applied Computing. SAC ’97.
New York, NY, USA: ACM, 1997, pp. 340–344 (pages 32, 34, 36).

[PJC93] Ivor Page, Tom Jacob, and Eric Chern. “Fast Algorithms for Distributed Re-
source Allocation”. In: IEEE Transactions on Parallel and Distributed Sys-
tems 4.2 (1993), 188–197 (pages 31, 36, 38, 103).

[Rhe95] Injong Rhee. “A Fast Distributed Modular Algorithm for Resource Alloca-
tion”. In: Proceedings of 15th International Conference on Distributed Com-
puting Systems. Proceedings of 15th International Conference on Distributed
Computing Systems. 1995, pp. 161–168 (pages 7, 32, 34, 36–38, 79, 87, 90,
95, 103).

[Rhe98] Injong Rhee. “A Modular Algorithm for Resource Allocation”. In: Distributed
Computing 11.3 (1998), 157–168 (pages 32, 36).

[Sin89] M. Singhal. “A Heuristically-Aided Algorithm for Mutual Exclusion in Dis-
tributed Systems”. In: IEEE Transactions on Computers 38.5 (1989), 651–
662 (pages 30, 36).

[SPS00] Paolo AG Sivilotti, Scott M Pike, and Nigamanth Sridhar. “A New Dis-
tributed Resource-Allocation Algorithm with Optimal Failure Locality”. In:
Proceedings of the 12th IASTED International Conference on Parallel and
Distributed Computing and Systems. Vol. 2. 2000, pp. 524–529 (pages 32,
36).

[SP88] Eugene Styer and Gary L. Peterson. “Improved Algorithms for Distributed
Resource Allocation”. In: Proceedings of the Seventh Annual ACM Sympo-
sium on Principles of Distributed Computing. PODC ’88. New York, NY,
USA: ACM, 1988, pp. 105–116 (pages 31, 36, 38).

120

[WPP91] E. B. Weidman, I. P. Page, and W. J. Pervin. “Explicit Dynamic Exclu-
sion Algorithm”. In: Proceedings of the Third IEEE Symposium on Parallel
and Distributed Processing. Proceedings of the Third IEEE Symposium on
Parallel and Distributed Processing. 1991, pp. 142–149 (pages 32, 36, 38).

[WL93] Jennifer L. Welch and Nancy A. Lynch. “A Modular Drinking Philosophers
Algorithm”. In: Distributed Computing 6.4 (1993), 233–244 (pages 31, 32,
36).

121

Bibliography Chapter 3: Other
references

[BAI94] BR Badrinath, Arup Acharya, and Tomasz Imielinski. “Structuring Dis-
tributed Algorithms for Mobile Hosts”. In: 14th International Conference
on Distributed Computing Systems. IEEE. 1994, pp. 21–28 (page 25).

[BVP02] R. Baldoni, A. Virgillito, and R. Petrassi. “A Distributed Mutual Exclusion
Algorithm for Mobile Ad-Hoc Networks”. In: Proceedings ISCC 2002 Seventh
International Symposium on Computers and Communications. Proceedings
ISCC 2002 Seventh International Symposium on Computers and Communi-
cations. 2002, pp. 539–544 (page 26).

[Ben+04] Mahfoud Benchaba, Abdelmadjid Bouabdallah, Nadjib Badache, and Mo-
hamed Ahmed-Nacer. “Distributed Mutual Exclusion Algorithms in Mobile
Ad Hoc Networks: An Overview”. In: ACM SIGOPS Operating Systems Re-
view 38.1 (2004), 74–89 (page 26).

[BHJ02] Azzedine Boukerche, Sungbum Hong, and Tom Jacob. “A Distributed Algo-
rithm for Dynamic Channel Allocation”. In: Mobile Networks and Applica-
tions 7.2 (2002), 115–126 (page 25).

[CR83] Osvaldo Carvalho and Gerard Roucairol. “On Mutual Exclusion in Computer
Networks”. In: Communications of the ACM 26 (1983), 146–147 (pages 29,
36, 37).

[CE06] Pranay Chaudhuri and Thomas Edward. “An o (vn) Distributed Mutual
Exclusion Algorithm Using Queue Migration.” In: J. UCS 12.2 (2006), 140–
159 (page 33).

[CS93] Manhoi Choy and Ambuj K. Singh. “Distributed Job Scheduling Using Snap-
shots”. In: Distributed Algorithms. International Workshop on Distributed
Algorithms. Springer, Berlin, Heidelberg, 1993, pp. 145–159 (pages 36, 38,
91, 92, 94, 95, 103).

[CS92] Manhoi Choy and Ambuj K. Singh. “Efficient Fault Tolerant Algorithms for
Resource Allocation in Distributed Systems”. In: Proceedings of the Twenty-
Fourth Annual ACM Symposium on Theory of Computing (Victoria, British
Columbia, Canada). STOC ’92. New York, NY, USA: ACM, 1992, pp. 593–
602 (page 38).

[Dij59] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In:
Numerische Mathematik 1.1 (1959), 269–271 (page 65).

[Hoa78] C. A. R. Hoare. “Communicating Sequential Processes”. In: Communications
of the ACM 21.8 (1978), 666–677 (pages 29, 79).

122

[IEE04] IEEE. IEEE 802.5 Web Site. 2004. url: http://www.ieee802.org/5/

www8025org/ (page 29).

[Lam19] Leslie Lamport. My Writings. 2019 (page 28).

[Lej15] Jonathan Lejeune. “Algorithmique distribuéee d’exclusion mutuelle : vers
une gestion efficace des ressources”. Université Pierre et Marie Curie, 2015
(page 35).

[Lyn96] Nancy A Lynch. Distributed Algorithms. Elsevier, 1996 (page 27).

[Lyn81] Nancy A. Lynch. “Upper Bounds for Static Resource Allocation in a Dis-
tributed System”. In: Journal of Computer and System Sciences 23.2 (1981),
254–278 (pages 31, 36, 38, 82).

[LF81] Nancy A. Lynch and Michael J. Fischer. “On Describing the Behavior and
Implementation of Distributed Systems”. In: Theoretical Computer Science.
Special Issue Semantics of Concurrent Computation 13.1 (1981), 17–43 (page 26).

[Ran75] Brian Randell. “System Structure for Software Fault Tolerance”. In: Ieee
transactions on software engineering 2 (1975), 220–232 (pages 31, 82).

[Ray91b] Michel Raynal. “A Simple Taxonomy for Distributed Mutual Exclusion Al-
gorithms”. In: ACM SIGOPS Operating Systems Review 25.2 (1991), 47–50
(page 28).

[Ray89c] Michel Raynal. “Prime Numbers as a Tool to Design Distributed Algorithms”.
In: Information processing letters 33.1 (1989), 53–58 (page 37).

[RWX04] Injong Rhee, Ajit Warrier, and Lisong Xu. Randomized Dining Philosophers
to TDMA Scheduling in Wireless Sensor Networks. Citeseer, 2004 (page 25).

[Sin93] M. Singhal. “A Taxonomy of Distributed Mutual Exclusion”. In: Journal of
Parallel and Distributed Computing 18.1 (1993), 94–101 (pages 28, 29, 35).

[Sin92] Mukesh Singhal. A Dynamic Information-Structure Mutual Exclusion Algo-
rithm for Distributed Systems. 1992. url: https://www.computer.org/
csdl/journal/td/1992/01/l0121/13rRUwI5TQs (page 37).

[Sop+05] Julien Sopena, Luciana Arantes, Marin Bertier, and Pierre Sens. “A Fault-
Tolerant Token-Based Mutual Exclusion Algorithm Using a Dynamic Tree”.
In: Euro-Par 2005 Parallel Processing. Ed. by José C. Cunha and Pedro D.
Medeiros. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2005, pp. 654–663 (pages 30, 36).

[Vel93] Martin G Velazquez. A Survey of Distributed Mutual Exclusion Algorithms.
Colorado State Univ., 1993 (pages 28, 37).

[WCM01] J Walter, Guangtong Cao, and Mitrabhanu Mohanty. “A K-Mutual Exclusion
Algorithm for Wireless Ad Hoc Networks”. In: Proceedings of the First An-
nual Workshop on Principles of Mobile Computing. Citeseer. 2001 (page 26).

[WK97] JE Walter and Savita Kini. “Mutual Exclusion on Multihop, Mobile Wireless
Networks”. In: Texas A&M Univ., College Station, TX 77843-3112, TR97 14
(1997) (page 26).

[WWV01] Jennifer E Walter, Jennifer L Welch, and Nitin H Vaidya. “A Mutual Ex-
clusion Algorithm for Ad Hoc Mobile Networks”. In: Wireless networks 7.6
(2001), 585–600 (page 26).

123

http://www.ieee802.org/5/www8025org/
http://www.ieee802.org/5/www8025org/
https://www.computer.org/csdl/journal/td/1992/01/l0121/13rRUwI5TQs
https://www.computer.org/csdl/journal/td/1992/01/l0121/13rRUwI5TQs

[WW11] J. Welch and J. Walter. Link Reversal Algorithms. Synthesis Lectures on Dis-
tributed Computing Theory. Morgan & Claypool Publishers, 2011 (page 26).

124

Bibliography Chapter 4

[Fra+20] Guillaume Fraysse, Jonathan Lejeune, Julien Sopena, and Pierre Sens. “A
Resource Usage Efficient Distributed Allocation Algorithm for 5G Service
Function Chains”. In: Distributed Applications and Interoperable Systems.
Ed. by Anne Remke and Valerio Schiavoni. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2020, pp. 169–185 (pages 8,
40).

[Lam74] Leslie Lamport. “A New Solution of Dijkstra’s Concurrent Programming
Problem”. In: Communications of the ACM 17.8 (1974), 453–455 (pages 28,
32, 36, 37).

[Lam78] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Commun. ACM 21.7 (1978), 558–565 (pages 25, 29, 30, 36, 37,
45).

125

Bibliography Chapter 5

[Bal+13] Daniel Balouek et al. “Adding Virtualization Capabilities to the Grid’5000
Testbed”. In: Cloud Computing and Services Science. Ed. by Ivan I. Ivanov,
Marten van Sinderen, Frank Leymann, and Tony Shan. Vol. 367. Communi-
cations in Computer and Information Science. Springer International Pub-
lishing, 2013, pp. 3–20 (pages 66, 86).

[Dij59] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In:
Numerische Mathematik 1.1 (1959), 269–271 (page 65).

[Gab+04] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation”. In: Recent Advances in Parallel Virtual
Machine and Message Passing Interface. Ed. by Dieter Kranzlmuller, Péter
Kacsuk, and Jack Dongarra. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2004, pp. 97–104 (pages 7, 65, 85).

[Kar14] Samuel Karlin. A First Course in Stochastic Processes. Academic press, 2014
(page 72).

126

Bibliography Chapter 7

[Dijte] Edsger W. Dijkstra. “Over Seinpalen”. N.d. (page 81).

[Gab+04] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation”. In: Recent Advances in Parallel Virtual
Machine and Message Passing Interface. Ed. by Dieter Kranzlmuller, Péter
Kacsuk, and Jack Dongarra. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2004, pp. 97–104 (pages 7, 65, 85).

[Kar14] Samuel Karlin. A First Course in Stochastic Processes. Academic press, 2014
(page 72).

[Kni+11] S. Knight et al. “The Internet Topology Zoo”. In: IEEE Journal on Selected
Areas in Communications 29.9 (2011), 1765–1775 (page 65).

[Mae85] Mamoru Maekawa. “A N Algorithm for Mutual Exclusion in Decentralized
Systems”. In: ACM Trans. Comput. Syst. 3.2 (1985), 145–159 (pages 29, 36,
37).

127

Bibliography, others

[Cas+14] Henri Casanova et al. “Versatile, Scalable, and Accurate Simulation of Dis-
tributed Applications and Platforms”. In: Journal of Parallel and Distributed
Computing 74.10 (2014), 2899–2917 (pages 1, 5, 7, 65).

128

List of Figures

2.1 Evolution of Telecom networks . 12
2.2 Example of Service Functions Chaining: two chains in red and blue 13
2.3 High-level conceptual architecture of SDN from [Wic+15] 14
2.4 Network Slicing architecture, adapted from [All16] 15
2.5 Architecture of multi-domain network slices 17
2.6 Overview of the eHealth integrated multi-domain slicing-friendly infras-

tructure . 18
2.7 A system with 3 types of resources: c1 (LB), c2 (FW), and c3 (IDS) 19
2.8 Selection of instances for Req1 . 19
2.9 Illustration of the concurrent allocation of two critical resources from two

SDN providers: 4 results are possible . 21
2.10 Sample test case: 2 authors Alice and Bob and 2 SDN providers 22
2.11 Use case implementation: each user runs a SDN application in each of the

two domains α and β. Their applications send and receive ECHO messages 23

3.1 Distributed mutual exclusion system architecture (from [WW11]) 26
3.2 Sample system with one instance of one resource, held by the green filled

node. 28
3.3 Sample system with one instance of n types of resources: the dining philoso-

phers problem . 31
3.4 Sample system with one instance of n types of resources, edges represent

the communication graph . 32
3.5 Sample system with m green filled instances of 1 type of resources 33
3.6 Sample system with m instances of n types of resources 34
3.7 Classification of problems for the distributed allocation of resources 35
3.8 Timeline . 36

4.1 State diagram of nodes . 45
4.2 The sample system . 52
4.3 Sample request Req1 . 53
4.4 Algorithm execution for Req1, showing only the allocVector variable of

ROUTING and ROUTING ACK messages 54
4.5 Running the path computation subroutine Req1 1/3 54
4.6 Running the path computation subroutine Req1 2/3 55
4.7 Running the path computation subroutine for Req1 3/3 56
4.8 Sample requests Req2 and Req3 . 56
4.9 l . 57
4.10 Allocation of Req2 and Req3 1/4 . 57
4.11 Allocation of Req2 and Req3 2/4 . 58

129

4.12 Allocation of Req2 and Req3 3/4 . 58
4.13 Allocation of Req2 and Req3 4/4 . 59

5.1 The Cesnet200706 44-node topology used for the experiments 64
5.2 Comparison of allocation order heuristics in a system with one instance of

44 types of resources . 67
5.3 Probability that two requests are not totally different, i.e., that two requests

have at least one conflicting resource . 68
5.4 Evaluation of Average Usage Rate for various numbers of instances and

types of resources . 69
5.5 Evaluation of Average Path Length for various numbers of instances and

types of resources . 71
5.6 Markov chain for the example with requests of size s = 1 73
5.7 Markov chain for the example with requests of size s = 2 74
5.8 Markov chain for the generalised case . 75
5.9 Comparison with expected value of the Average Usage Rate in a system

with one instance of 44 types of resources 76

6.1 Scenario used in this chapter . 80
6.2 Timeline of sample execution of Dijkstra’s Incremental algorithm 83
6.3 Sample execution of Dijkstra’s Incremental algorithm 1/4 83
6.4 Sample execution of Dijkstra’s Incremental algorithm 2/4 84
6.5 Sample execution of Dijkstra’s Incremental algorithm 3/4 84
6.6 Sample execution of Dijkstra’s Incremental algorithm 4/4 84
6.7 Comparison with Dijkstra’s incremental algorithm in a system with one

instance of 44 types of resources . 86
6.8 Chandy-Misra DrPP algorithm 1/2 . 88
6.9 Chandy-Misra DrPP algorithm 2/2 . 89
6.10 Timeline of Chandy-Misra DrPP algorithm 89
6.11 Evaluation of Chandy-Misra algorithm in a system with one instance of 44

types of resources. 90
6.12 Timeline of sample execution of Rhee’s algorithm 92
6.13 Sample execution of Rhee’s algorithm 1/4 93
6.14 Sample execution of Rhee’s algorithm 2/4 93
6.15 Sample execution of Rhee’s algorithm 3/4 94
6.16 Sample execution of Rhee’s algorithm 4/4 94
6.17 Evaluation of Rhee’s algorithm in a system with one instance of 44 types

of resources. 96
6.18 Timeline of sample execution of Naimi-Tréhel algorithm 97
6.19 Sample execution of Naimi-Tréhel algorithm 1/3 98
6.20 Sample execution of Naimi-Tréhel algorithm 2/3 98
6.21 Sample execution of Naimi-Tréhel algorithm 3/3 99
6.22 Evolution of the virtual structures during the execution of Naimi-Tréhel

algorithm . 99
6.23 Timeline of sample execution of Bouabdallah-Laforest algorithm 101
6.24 Evolution of the Control Token . 101
6.25 Sample execution of Bouabdallah-Laforest algorithm 1/2 101
6.26 Sample execution of Bouabdallah-Laforest algorithm 2/2 102

130

6.27 Evaluation of Bouabdallah-Laforest algorithm in a system with one in-
stance of 44 types of resources . 103

6.28 Evaluation of all algorithms in a system with one instance of 44 types of
resources . 104

131

List of Tables

2.1 Sample result observed when simulation is run 1000 times 23

3.1 Performance of permission-based Mutex algorithms, after [Vel93] 37
3.2 Performance of token-based Mutex algorithms, after [Vel93] 37
3.3 Variables used for performance evaluation 38
3.4 Performance of DiPP and DrPP algorithms, from [Rhe95] 38

4.1 Variables used by messages . 40
4.2 Variables used in messages . 41
4.3 Local variables of nodes . 41
4.4 Sample routing table a node. 43
4.5 Routing tables for nodes of system from figure 4.2. D is for Distance. . . . 53
4.6 Heuristics . 61

6.1 Average Usage Rate with Open MPI . 87
6.2 Evolution of the local queues of the nodes with time 93

Now I guess I’ll have to tell ’em
That I got no cerebellum
Gonna get my Ph.D.
I’m a teenage lobotomy

Ramones, Teenage Lobotomy

132

	Abstract
	List of Acronyms
	Introduction
	Context and motivation
	Contributions
	Structure of this manuscript
	Publications

	Background and problem statement
	The convergence of telecommunications and computer networks
	Evolution of the architecture of services
	Multi-domain services
	Resource allocation problems in networks
	Conclusion

	State of the art
	Definition and model for distributed resource allocation
	Distributed algorithms for the allocation of resources: state of the art and taxonomy
	Performance evaluation and comparison
	Conclusion

	A distributed algorithm for the allocation of resources
	Variables of nodes and messages
	Path computation
	Allocation
	Examples
	Heuristics
	Algorithm Complexity
	Conclusion

	Performance analysis
	Metrics and reference configuration
	Experimental environment
	Systems with one instance of n types of resources
	System with m instances of n types of resources
	Computing the expected value for the Average Usage Rate
	Conclusion

	Experimental comparison with state of the art algorithms
	System setup
	Dijkstra's Incremental algorithm
	Chandy-Misra drpp algorithm
	Rhee's algorithm
	Bouabdallah-Laforest algorithm
	Summary
	Conclusion

	Conclusion
	Contributions
	Limitations and future work

	Bibliography
	Bibliography Chapter 2
	Bibliography Chapter 3
	Bibliography Chapter 4
	Bibliography Chapter 5
	Bibliography Chapter 6
	Bibliography, others

	List of Figures
	List of Tables

