Skip to Main content Skip to Navigation

Ab initio study of electronic surfaces states and plasmons of gold : role of the spin-orbit coupling and surface geometry.

Abstract : The PhD thesis is devoted to the ab initio study of surface plasmons and surface states offlat and vicinal surfaces of Au through the simulation of electron energy loss (EEL) spectraby means of the density functional theory (DFT) and the time-dependent density func-tional perturbation theory (TDDFPT). The influence of the spin-orbit coupling (SOC)and of the surface geometry has been investigated. In bulk Au I have studied the effect ofthe inclusion of semi-core electrons on the EEL spectrum at q = 0 and the plasmon peakposition and intensity. In particular, I have shown that in order to reproduce the EELspectrum on a wide frequency range (0-60 eV) it is important to account for semi-coreelectrons in the pseudopotential although they can be frozen in the core in studies of thelow energy part of the spectrum (below 20 eV). I have made methodological developmentsfor TDDFPT with SOC in the ultrasoft pseudopotential scheme that led to the practicalimplementation of SOC in the Liouville-Lanczos and Sternheimer approaches. I have thensuccessfully applied these approaches that allowed me to model systems with hundreds ofatoms. I have revisited the plasmonic excitations in bulk Au, pointing out that, in partic-ular, one can observe traces of an unscreened s-like bulk plasmon in the EEL spectrum atq = 0 calculated without SOC. I have also demonstrated that SOC has a small but notice-able effect on the Au EEL spectrum and plasmon peak, mainly modifying the unscreeneds-like plasmon peak and thus bringing the calculated spectrum into a better agreementwith experimental results at q = 0. Moreover I have observed that the dispersion ofthe acoustic surface plasmon (ASP) on the Au(111) surface is slightly modified by SOC,because the ASP comes from the surface state that itself is modified by SOC through theRashba splitting. To investigate the effect of geometry I have studied the vicinal (322),(455) and (788) surfaces of Au. In particular I have performed the theoretical study of thesurface states, analyzing the evolution of the Shockley surface state from the flat Au(111)surface towards the surfaces with terraces of different width. I have shown the surfaceresonance-to-surface state transition from (322) to (455) and (788) surfaces. I have shownalso the transition from the average-surface-modulated to the terrace-modulated statefrom (322) to (455) and (788) surfaces, as well as the transition from the extended 2Dstate to the quasi-1D state confined within the terrace. These results are in agreementwith experiments and results obtained with the Kronig-Penney periodic potential model.I have performed the EEL spectrum calculations for the Au(455) surface which I havemodeled with a 5 nm sized slab separated from its periodic neighbors by 5 nm of vacuum.I have identified signatures of the ASP in these spectra, showing that indeed, for the caseof the transferred electron wavevector momentum perpendicular to the step, the ASPdispersion is not changed with respect to the ASP dispersion of the Au(111) surface forq < 0.125 Å −1 . For bigger values of q, however, the ASP peak has a lower energy com-pared to the ASP peak of the Au(111) surface, showing signs of the ASP confinement, andsuggesting that two types of the ASP could occur: an intra(sub)band plasmon, similarto the Au(111) surface plasmon, and an inter(sub)band plasmon, characteristic of thisvicinal surface.
Complete list of metadata
Contributor : Abes Star :  Contact Connect in order to contact the contributor
Submitted on : Monday, February 1, 2021 - 1:01:59 AM
Last modification on : Tuesday, June 15, 2021 - 3:32:36 AM
Long-term archiving on: : Sunday, May 2, 2021 - 6:18:19 PM


Version validated by the jury (STAR)


  • HAL Id : tel-03126631, version 1



Oleksandr Motornyi. Ab initio study of electronic surfaces states and plasmons of gold : role of the spin-orbit coupling and surface geometry.. Materials Science [cond-mat.mtrl-sci]. Université Paris Saclay (COmUE), 2018. English. ⟨NNT : 2018SACLX116⟩. ⟨tel-03126631⟩



Record views


Files downloads