
HAL Id: tel-03121661
https://theses.hal.science/tel-03121661

Submitted on 26 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hydration of drug-like molecules with molecular density
functional theory and the hybrid-4th-dimension Monte

Carlo approach
Sohvi Luukkonen

To cite this version:
Sohvi Luukkonen. Hydration of drug-like molecules with molecular density functional theory and
the hybrid-4th-dimension Monte Carlo approach. Theoretical and/or physical chemistry. Université
Paris-Saclay, 2020. English. �NNT : 2020UPASF030�. �tel-03121661�

https://theses.hal.science/tel-03121661
https://hal.archives-ouvertes.fr




 



dissertation by

SOHVI LUUKKONEN

HYDRATION OF DRUG-L IKE MOLECULES
WITH MOLECULAR DENS ITY FUNCTIONAL THEORY

AND THE HYBRID - 4TH -D IMENS ION MONTE CARLO APPROACH

maison de la simulation, cea saclay, université paris-saclay

under the supervision of
DANIEL BORGIS & MAXIMIL IEN LEVESQUE



“The least important things,

sometimes, my dear boy,

lead to the greatest discoveries.”

— The First Doctor
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RÉSUMÉ EN FRANÇAIS

Le développement d’un médicament prend en moyenne plus de 10 ans et coûte 1 milliard de dollars.
Pour accélérer le processus, et diminuer le coût, on utilise des méthodes in silico lors de l’étape de
la découverte du médicament. Cela consiste à faire du criblage et de l’optimisation de ligands à
partir de bases de données de ∼100 000 molécules de type médicament pour proposer quelques
candidats à l’étape préclinique. Le critère majeur de la sélection est l’affinité entre le potentiel
médicament et la cible biologique.

L’interaction se passant dans notre corps, cette affinité, i.e. l’énergie libre de liaison, doit être
prédite dans l’eau. De plus, le médicament doit être soluble dans l’eau et parfois être capable
de traverser la membrane cellulaire modélisée par le coefficient de partage eau/n-octanol pour
avoir accès à la cible. Globalement, les propriétés de solvatation jouent un rôle important dans la
conception de médicaments avec une grandeur importante au cœur des processus : l’énergie libre
de solvatation et particulièrement l’énergie libre d’hydratation (ELH).

Numériquement, la solvatation peut être étudiée soit par (i) des simulations exactes mais coû-
teuses avec plusieurs centaines d’heures CPU par ELH, soit par (ii) des modèles de continuum
rapides mais qui ne tiennent pas compte de la nature moléculaire du solvant et donc manque de
précision, soit par (iii) des théories des liquides approximées qui gardent l’information moléculaire
du solvant pour une diminution en temps de calcul. L’objectif de cette thèse est de proposer un
outil numérique précis mais rapide pour la prédiction des énergies libres d’hydratation de molécules
d’intérêt pharmaceutique.

La théorie de la fonctionnelle de densité moléculaire (MDFT) est une approche de théorie de liquide
qui permet l’étude des propriétés thermodynamiques d’équilibre de n’importe quelle soluté rigide.
L’avantage de cette théorie et du code de haute performance associé est de prédire les énergies
libres de solvatation et la structure d’équilibre moléculaire de solvatation de petites molécules type
médicament en quelques minutes CPU. Dans son état actuel, la théorie est une approximation au
niveau "hyper netted-chain" (HNC) et a deux désavantages : (i) elle traite des molécules rigides
donc des solutés à conformère unique figés dans l’espace et (ii) l’approximation HNC introduit une
forte surestimation de la pression du système qui en conséquence conduit à la surestimation de
l’énergie libre de la formation de la cavité et doit être compensée par une correction de pression
(PC) a posteriori.

Pour bien développer et évaluer la performance de MDFT, on a besoin des données de référence
à conformère unique et d’évaluer l’importance de la flexibilité du soluté quand on prédit des EHL
de molécules type médicament. Pour cela, on s’est tourné vers l’approche Monte-Carlo hybride à 4e
dimension et son code maison développée par Luc Belloni car la majorité des codes de simulation
bien développés sont écrits pour des molécules flexibles.

H4D-MC est une méthode originale de simulations exactes pour calculer les ELH à partir du
principe de Jarzynski avec simulations courtes hors-équilibre pendant lesquelles on introduit le
soluté dans le solvant ou on le retire du solvant avec un paramètre de couplage dans une 4ème
dimension qui dépend du temps. En combinant les données des insertions et des destructions avec
le théorème de Crooks et après une analyse paramétrique, on a pu montrer que H4D-MC permet
de calculer les ELH des molécules de type médicament cinq fois plus rapidement que l’approche
classique de perturbation de l’énergie libre pour une précision statistique de moins de 0.1 kcal/mol.

Nous avons utilisé l’approche H4D-MC pour calculer les ELH à conformère unique des 642
petites molécules type médicament de la base de données FreeSolv. En comparant les résultats
H4D-MC aux ELH obtenues par des calculs MD+FEP etat de l’art avec un soluté flexible fourni
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par la base de donnée, on trouve que les deux méthodes donnent le même ELH pour la majorité
des molécules mais des déviations importantes sont présentes pour certaines solutés.

Pour vérifier que ces déviations viennent du manque de flexibilité dans les calculs H4D-MC et
pas de problèmes dans le code, nous avons implémenté la flexibilité dans le code H4D-MC. On a
fait cela à deux niveaux : (i) on peut propager les conformères de soluté en même temps que les
configurations du solvant pendant le MC et (ii) les conformères du soluté ont la possibilité de se
relaxer pendant l’insertion et la destruction. En recalculant les ELH de la base de données FreeSolv
avec des solutés flexibles, nous retrouvons les ELH flexible de la base de données FreeSolv avec un
gain de temps de fois quatre par rapport à l’approche MD+FEP.

En faisant une analyse chemoinformatique et multiconformationnelle, nous avons pu identifier
un sous-ensemble de FreeSolv, nommée FreeSolv-rigide, de 214 molécules (un tiers de la base de
données originale) pour lesquelles la flexibilité du soluté n’affecte pas du tout leur ELH et 80%
des déviations dues à la flexibilité sont plus petites que la précision expérimentale de 0.6 kcal/mol.
Par ailleurs, nous avons pu identifier la caractéristique primaire pour prédire si la flexibilité joue un
rôle important : la capacité de former des liaisons hydrogènes avec l’eau et surtout la possibilité
de former des liaisons hydrogènes intramoléculaires. Nous avons aussi pu montrer que, pour la
majorité de ces petites molécules type médicament, on réussit à récupérer l’ELH flexible avec
quelques calculs à conformère unique.

Donc nous avons utilisé l’approche H4D-MC pour calculer des données de références à conformère
unique et nous avons montré que pour une grande partie des molécules type médicament de la
base de données FreeSolv, la flexibilité du soluté n’a pas un rôle important pour prédire leurs ELH.
Nous pouvons donc appliquer l’approche rapide mais approximée sur ces molécules.

Nous montrons que les ELH brutes prédites par MDFT-HNC sont très éloignées des valeurs
de référence pour la base de données FreeSolv comme attendu à cause de la surestimation de la
pression du système. Si nous appliquons une première correction de pression simple, proposée par
le groupe en 2014, on prédit les ELH de référence avec une erreur moyenne de 2 kcal/mol. Cette
correction dépend de la pression HNC du système (∼10 000 atm à la place de l’atm attendue
expérimentalement) et du volume du soluté définie originalement comme le volume molaire partielle
(PMV) du soluté (un output direct de MDFT).

Nous visons une précision d’un demi kcal/mol (∼1 kT ≈ précision expérimentale) pour MDFT.
Pour cela nous avons proposé trois améliorations de la correction de précision : (i) en définissant le
volume soluté comme une union de volumes atomiques de van der Walls (vdW) optimisés, (ii) en
ajoutant une correction machine learning avec des réseaux de neurones entraînés à minimiser la
différence entre les résultats MDFT-HNC et H4D-MC, ou (iii) en ajoutant un terme de surface
inspiré de “scale particle theory” et un terme de correction de chargement empirique à la correction
de pression originale. Tous les trois développements mènent à une précision de 0.5 kcal/mol. La
dernière est la correction la plus rigoureuse et est applicable à n’importe quel type de soluté, mais
la correction électrostatique dépend de la variation du volume du soluté pendant le chargement
et donc nécessite deux minimisations MDFT. Donc, pour appliquer MDFT dans le cadre des
applications pharmaceutiques, où la vitesse est clef, nous conseillons d’utiliser la correction pression
vdW pour éviter la deuxième minimisation.

Pour évaluer rigoureusement la performance de MDFT-HNC à prédire des ELH et des structures
de solvatation, nous avons fait un benchmark sur une variété de systèmes : solutés sphériques
neutres ou chargés et des solutés moléculaire de la base de données FreeSolv et la molécule d’eau
comme soluté elle-même. Pour les ELH, nous trouvons que MDFT-HNC couplé à la correction de
pression et de surface prédit celles des systèmes neutres avec une précision de moins d’un demi
kcal/mol et celles des ions avec une précision de moins de 5 kcal/mol (∼5% d’erreur relative).

Pour les structures de solvatation moléculaires, nous montrons que MDFT-HNC les prédit
généralement plutôt bien mais a quelques défauts systématiques : elle surestime les densités autour
des sites neutres ou peu chargés et sous-estime les densités autours des sites anioniques. Elle ne
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réussit pas non plus à bien prédire la structure tétraédrique des liaisons hydrogènes autour de la
molécule d’eau.

Le but final est de réussir à prédire avec précision mais efficacement des ELH expérimentales de
molécules d’intérêt pharmaceutique. Pour cela, nous avons comparé la capacité de MDFT-HNC
avec la correction de pression vdW et des simulations MD+FEP à prédire les ELH expérimentales
de solutés rigides de la base de données FreeSolv. Nous avons trouvé que les deux approches
prédisent les ELH expérimentales avec une erreur moyenne de 1 kcal/mol mais MDFT permet un
gain de temps de 3 à 4 ordres de magnitude par rapport aux calculs de référence de MD+FEP.
Avec une analyse chemoinformatique, nous avons pu montrer qu’une grande partie de l’erreur de
MDFT-HNC vient de la paramétrisation du champ de force et pas de la théorie approximée en
elle-même.
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CONTEXT - DRUG DES IGN

A drug molecule is a small (few hundreds of Daltons) organic molecule that will bind to biological
target (a protein such as enzymes, receptors or ion channels) related to the disease/condition, and
modify, increase (agonist receptor) or block (antagonist receptor), the activity of the biological
target.

The development of a new drug, from drug discovery, after the therapeutic target is selected,
to commercialisation, through (pre-)clinical trials and approval, takes on average over 10 years
and the median cost is $985 million, counting expenditures on failed trials [1] (fig. 0.1a). Starting
from a database of millions of already existing molecules, eg. the ZINC database of ∼ 750 million
purchasable compounds [2], the first stage is to do in vitro high-throughput screening (HTP)
to select lead compounds which can be optimised, with in silico methods (fig. 0.1b). The main
criterion of selection is the affinity, i.e. the binding free energy, between the solute target’s active
site ∆G

ligand−target
bind . This first stage can take up to three years and is the least expensive stage

of the drug development process. Its objective is to propose few hundred potential drug leads to
the in vivo pre-clinical trials via efficient screening with hopefully not missing good candidates
(false negatives) and not letting through false positives. Currently, only 0.02 and 10 % of starting
molecules in pre-clinical and clinical trials lead to an approved drug, respectively. Earlier the ‘bad’
ligands are rejected, more time and money is saved.

As the drug-receptor interaction happens in our body, this affinity needs to be computed in to
be predicted in water where the binding free energy is defined as a combination of binding free
energy in vacuum and the hydration free energies of the ligand, the target and the complex:

∆G
ligand−target
bind,H2O = ∆G

ligand−target
bind.vac + ∆G

ligand−target
hydr −

(

∆G
ligand
hydr + ∆G

target
hydr

)

.

Other criteria include target selectivity, the ligands solubility as it needs to disolve into the
blood (log S = −(∆Ghydr + ∆Gsub)/2.303RT where ∆Gsub is the sublimation free energy), and
potentially the capacity to petrate the cell membrane to access the receptor modelled by the
water/n-octanol partition coefficient (log Pow = (∆Goctanol − ∆Ghydr)/2.303RT where ∆Goctanol

is the octanol solvation free energy). Solvation and especially hydration free energies are omnipresent
in these quantities. Thus it is important to have accurate but fast computational tools to predict
solvation free energies.

(a) (b)

Figure 0.1: Scheme of (a) the drug design process and (b) the drug discovery and pre-clinical phases.
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The most rigorous way to do the in silico optimisation would be done with explicit solvent
simulations, but as a computation of a single HFE takes hundreds of cpu.h, it is impossible to
do virtual screening on hundreds of thousands of molecules with this approach. Therefore, the
pharmaceutical industry and academics use docking and scoring functions to evaluate the affinity
[3, 4, 5]. Docking is a method for predicting the preferred orientation and position of the ligand,
i.e. potential drug, in the targets active site and scoring functions are fast approximate numerical
methods used to estimate the intensity of affinity between the ligand and the target when docked.
They calculate a score, representing the binding free energy, between the two molecules, in few
seconds from a set of descriptors characterising the complex with a numerical function. It has been
shown that these approaches work sometimes very well and sometimes not at all [6]. Hence they
are not very predictive and can lead to multiple false positives or negatives. In 2016, considering
the difficulty but nevertheless necessity of evaluating precisely SFEs in the drug design process,
important actors of the pharmaceutical industry publicly called the academic world for alternatives,
pointing out the lack of accuracy or speed of current methods [7].

Beyond predicting the SFE, and its derivatives, of potential drug molecules, studying solvation
of the biological target site can be very fruitful in the structure-based drug design processes. As
subtle structural variations of the ligand can have profound impact on the binding with the target’s
active site, mapping the location and orientation, and the binding affinity of water molecules in the
target site can offer ample information into the properties of the active site. They can describe the
hydrophobic forces and potential hydrogen bonds driving the binding of the potential ligand.
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1
INTRODUCTION

Water covers 71% of the earth’s surface and makes ∼ 65% of the human body weight. It is the
essence of life and surrounds us everywhere and thus making it the environment of most chemical
reaction. Therefore, predicting if a substance, an ion, a molecule or a complex, likes water or not,
i.e. is it hydrophilic or -phobic, is of first importance in in silico physical chemistry. Furthermore,
the hydration of substance can greatly affect its structure and activity. Thus making important of
studying compounds in their natural environment, which is commonly water.

1.1 solvation and hydration

In chemistry, a solution is a homogeneous mixture of two or more components defined as

‘A liquid or solid phase containing more than one substance, when for conveni-

ence one (or more) substance, which is called the solvent, is treated differently

from the other substances, which are called solutes. When, as is often but not

necessarily the case, the sum of the mole fractions of solutes is small compared

with unity, the solution is called a dilute solution. A superscript attached to

the ∞ symbol for a property of a solution denotes the property in the limit of

infinite dilution.’

- IUPAC [8]

and solvation is a fundamental phenomenon in chemistry defined as

‘Any stabilizing interaction of a solute (or solute moiety) and the solvent or

a similar interaction of solvent with groups of an insoluble material (i.e. the

ionic groups of an ion-exchange resin). Such interactions generally involve

electrostatic forces and van der Waals forces, as well as chemically more specific

effects such as hydrogen bond formation.’

- IUPAC [8]

This thesis is solely focused on liquid solutions and even more specifically on hydration, i.e. the
solvation process with water as the solvent. Theoretically, the solvation process can be defined
as bringing/submerging a solute, whether it is a solid, a liquid or a gas compound, from a fixed
position in an ideal gas to fixed position in a solution [9]. However, in practice, the solvation process
happens experimentally by the transfer of a molecule from a gas phase to the solution or by the
dissolution of a solid solute. Whereas, the most common theoretical pathway is by the creation of
an artificial solute cavity in the solution where the solute is inserted (fig. 1.1). In both cases, the
solution (and solute) structure can relax leading to a chemical/physical equilibrium.

Once solvated the compound (molecule, complex, salt pair etc.), the stability, the structure or the
activity of the solute compound can be strongly altered by the influence of the solvent molecules,
eg. salt molecules can dissolve to single ions, proteins can change conformations drastically or
proton exchanges can occur with a protonic solvent. The prediction of these solvation effects has
been for a long time a goal of many physical-chemists and there are two main aspects that one
can consider when studying solvation: energetics and structural profiles.

1
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Figure 1.1: Thermodynamic cycles of the solvation process via (left) the experimental path and (right)
theoretical path decomposed into an alchemical (artificial non-physical) process.

1.1.1 energetic informations

At the heart of all energetic information connected to solvation lies the solvation free energy (SFE)
∆Gsolv, i.e. the excess chemical potential µexc of the solute molecule. A free energy is defined as the
chemical potential that measures the reversible work during a transformation of a thermodynamic
quantity (eg. volume, pressure, number of particles) or a change of the interaction potential along
a physical or a non-physical reaction coordinate. For the physical-chemists, the most commonly
used free energy is the Gibbs free energy, i.e. the work in a thermodynamic system at constant
temperature T and pressure P.

The solvation free energy is the necessary work to bring a solute from vacuum to the solvent, i.e.

work due to the change of the number of particles, which is equivalent to ‘turning on’ the interaction
between the solute and the solvent molecules or to the excess chemical potential supplied to the
system by the solute (fig. 1.2). It can be considered as the Gibbs free energy difference between
the final state, solvated system (N + m), and the initial state, bulk solvent (N) and solute (m) in
the vacuum:

∆Gsolv = GN+m − (GN + Gm). (1.1)

Figure 1.2: Illustration of the solvation free energy.

The solvation free energy can be decomposed into an enthalpic and an entropic term,

∆G = ∆H − T∆S (1.2)

where ∆H is the solvation enthalpy resulting from the broken solute-solute and solvent-solvent
and formed solute-solvent bonds; and ∆S the solvation entropy resulting from the increase of
disorder due to the dispersion of the solute in the solvent and the increase of order due to the
structuration of the solvent around the solute.

Experimentally, the solvation free energy is defined as the transfer free energy of 1 mol of
the solute from the gas phase to a solution at a concentration of 1 mol/l. These solvation free
energies, and enthalpies, can be measured by isothermal titration (micro)calorimetry or gas phase
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chromatography. The computation of solvation free energies, as for any free energy, is non-trivial
as it requires the sampling of all possible states that can be visited during the transformation.
Computational methods for predicting solvation free energies are discussed in detail in part i.

Nevertheless, the ability to predict solvation free energies, possibly combined with gas-phase
calculations, unlocks the access to a multitude of other important physical quantities such as
partition (log P) coefficients [10], activities (γ), solubilities (log S) [11], binding free energies
(∆GAB,solv

bind ) [12, 13] or potentials of mean force (PMF) defined as

log Pαβ = (∆Gα
solv − ∆G

β
solv)/2.303RT (1.3)

log γ = ∆Gsolv/2.303RT (1.4)

log S = −(∆Gsolv + ∆Gsub)/2.303RT (1.5)

∆GAB,solv
bind = ∆GAB,vac

bind + ∆GAB
solv − (∆GA

solv + ∆GB
solv) (1.6)

PMF(r) = ∆GAB
solv(r)− ∆GAB

solv(∞) + UAB (1.7)

where α and β are two non-miscible solvents, ∆Gsub the sublimation free energy of a substance,
∆GAB,x

bind the binding free energy between molecules A and B in solution or vacuum; ∆GAB
solv(r) the

solvation free energy of the AB pair separated by r and UAB the direct interaction between the
pair, and R the gas constant.

1.1.2 structural informations

The most exhaustive information that one can have on the structure is to the knowledge of all
molecular positions at all instants. However, as the positions vary non-stop it renders the information
on the instantaneous positions very difficult to read and impossible to measure experimentally.
Therefore, one needs to introduce quantities that measure the average structure of the solution.
The most complete average quantity is the molecular equilibrium solvation structure ρeq(r, ω)

that is the average static microscopic structure of the solvent around a solute which is a function
of the solvent position (r) and orientation (ω). From ρeq(r, ω) one can deduce a multitude of
information. One of the most commonly used features in the liquid state physics is the radial
site-site distribution function g(r) = ρ(r)/ρbulk (fig. 1.3a).

Another piece of information that can be extracted from the solvation structure can be for
example the identification of (i) hydrophilic or -phobic regions of a solute, important information
for protein folding or self-assembly; (ii) highly bounded water molecules in a protein’s active site
(fig. 1.3b), an important piece of information when selecting/optimizing a potential drug molecule
in structure-based drug design; or (iii) polarization fields around charged solutes.

Experimentally this fully molecular (spatial and orientational) structure of the liquids is impossible
to measure. However, one can measure the structure factor S with X-ray or neutron diffraction
experiments [14]. Note that, contrary to solids, liquids are isotropic. Hence, the structure factor only
depends on the norm of the diffraction vector k = ‖k‖ and not on its orientation. The structure
factor can be linked to the fully molecular equilibrium structure via the radial distribution function

S(k) = 1 + ρ
y

R3

e−ikrg(r)dr (1.8)

Numerically the equilibrium solvation structure can be obtained either by explicit solvent simulation
or liquid state theories and cannot be obtained with implicit solvent methods (see following sections
and chapters for more information on these methods). The molecular solvation structure, that
depends on the position and the orientation of the solvent molecules is a direct output of liquid
state theories whereas one needs to accumulate lots of data from long trajectories to obtain it from
explicit solvent simulations.
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(a) (b)

Figure 1.3: Illustration of structural information: (a) radial distribution function between water oxygen atoms
(black line: experimental results, grey line: TIP3P simulations, dashed line: SPC simulations)
[15], (b) crystallographic solvent molecules on a protein.

1.2 modelling solvation effects

As mentioned above, computing solvation free energies and even solvation profiles is not trivial. To
do this there are 3 families of in silico methods to study solvation, recapitulated in table 1.1 and
presented in more detail in the following chapters [16]. The first two approaches, implicit calculation,
also called polarizable continuum models (PCM), and explicit solvent simulations have been wildly
used for years, the former for its cheap computational cost and the latter for its precision. However,
in the last few decades, the third approach, liquid state theories (LST), is gaining momentum
because of their good balance between precision, simplicity, and speed.

Method Speed Structure Energetics

Implicit solvent calculation Fast No Yes

Explicit solvent simulations Slow Yes Yes

Liquid state theories Fast Yes Yes

Table 1.1: Summary of computational methods to study solvation

Some approaches that combine multiple methods, eg. treating the first few solvation layers with
explicit solvents and treating the long-range interactions with either an implicit solvent model or LST
[17, 18]; or using explicit solvent simulations to compute the solvation structure from trajectories
and plug it to a functional of solvent density to extract local thermodynamic information, such
as solvation free energies. The family of the latter approaches is called inhomogeneous solvation
theories (IST) [19, 20, 21] that include methods like WaterMap [22, 23], solvation thermodynamics
of ordered water (STOW) [24] and grid IST (GIST) [25].

Beyond choosing the computational theory, one needs to choose how to model the solute, either
with a quantum (QM) or a classical force field (MM) representation, and, in the case of explicit
solvent, how to model the solvent also either with a QM or a MM representation. Table 1.2
summarises the different computational approaches to study solvation as a function of the solute
and solvent representations. In the force field representation, the atomic charges can be treated
as either fixed point charges or fluctuating with a polarizable force field model. There are also
some coarse-grain models, intermediates between implicit and explicit solvent/atom models, which
gather a group of atoms into a single interaction site [26].
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Solute Solvent Methods

Quantum Quantum Ab initio simulations

Quantum Force field QM/MM and QM/LST

Quantum Implicit QM/PCM

Force field Force field Classical simulations and LST

Force field Implicit MM/PBSA or MM/GBSA

Table 1.2: Summary of computational methods to study solvation depending on the solute and solvent
models.

As the focus of this work is MDFT, a classical liquid state theory, and classical explicit solvent
simulations are used as a reference, we used force field representation for the solutes and the solvent
and restrict ourselves to fixed point charge models for simplicity. The most common force field
representation of non-bonded interactions is a pair potential composed of a Lennard-Jones term
and a Coulomb potential,

Unon−bonded(rij) = 4ǫij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

− qiqj

4πε0rij
(1.9)

where rij is the distance between atomic sites i and j, ǫij =
√

ǫiǫj and σij = (σi+σj)/2 are
the mixed Lennard-Jones parameters, and ε0 the vacuum permittivity. The bonded intramolecular
potentials are given in equation 6.2.

For the solvent, as we studied hydration, we used either the rigid SPC/E or TIP3P water models.
Their force field parameters are detailed in table 1.3. Both models are simple 3-sites point charge
models with a single Lennard-Jones sphere sitting the oxygen atom and partial charges situated on
the oxygen and the hydrogen sites (fig. 1.4). Both models are widely used by the community.

σ [Å] ǫ [kJ/mol] rOH[Å] qO [e] qH [e] θ [°] ǫr

SPC/Ea 3.11600 0.6500 1.0000 -0.820 +0.410 109.47 71

TIP3Pb 3.15061 0.6364 0.9572 -0.834 +0.417 104.52 99

Exp.c 0.9910 105.5 78d

Table 1.3: Force field parameters and relative permittivity of SPC/E and TIP3P water models. Refs.
a[27],b[28],c [29] and d[30]

In general, water cannot be perfectly described with a simple pair-potential force field due to
multi-body effects, hydrogen bonding, quantum effects etc. Multiple models containing different
numbers of sites have been developed, with the principle of that increasing the number of sites
should improve the quality of the model. However, for simple 3-sites models, SPC/E produces
relatively well the solvation structures and TIP3P the solvation free energies. For further information
on water models, Martin Chaplin has collected a great review of the most commonly used water
models [31].

1.3 other applications

1.3.1 synthesis/production

As mentioned before, the largest majority of natural or laboratory chemical reactions happens in
organic or aqueous solutions. At the end of a chemical synthesis, in laboratory or industry, the aim
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Figure 1.4: Illustration of a three-point water model.

is to separate and collect the final molecule/product of interest. One of the easiest ways to do it is
to have selective precipitation of the final product. To do this optimally one needs to know the
relative solubilities log S of the different compounds in the solution. Furthermore, most organic
chemistry reactions are done in organic solvents and one of the most common ways to recover
the final product is via liquid-liquid extraction between the non-miscible organic phase, commonly
modelled with cyclohexane, and aqueous phase. To do this efficiently, one should know the partition
coefficient log P of the molecule of interest between the solvents. Additionally, the last few years
have seen a large push towards ‘green chemistry’ [32]. One of the principles is to ‘use safer solvents
and reaction conditions’ and which means to substitute more toxic and environmentally hazardous
organic solvents, like toluene, to aqueous solutions if possible. One possible way to do this is to
modify the substances so that they will be more soluble in water, i.e. try to increase the hydration
free energy of the compound.

1.3.2 aquatic toxicity

Another important use of solubilities and partition coefficients is for the predictions of aquatic
toxicity [33]. All chemicals authorised by the European Chemical Agency (ECHA) require the
prediction of the water solubility and the n-octanol/water partition coefficient log Pow which can be
done in some cases with QSAR models [34, 35]. These are important information for the protection
of the environment. Furthermore, water-soluble substances gain access to humans and other living
organisms and the log Pow models the capacity of a compound to pass the cell membrane. These
are properties that we want to avoid in most compounds, eg. used in food packaging.

1.4 scope of this thesis

In this thesis, we aim to develop and apply two ‘newish’ solvation free energy calculation methods:
hybrid 4th dimension Monte-Carlo (H4D-MC), originally developed for grand canonical simulation
[36], and molecular density functional theory (MDFT) [37, 38, 39, 40].

Part I reviews a selection of models and methods to study solvation with a focus on the
computation of solvation free energies. It presents briefly the three main families of SFE calculation
methods: implicit solvent calculations, explicit solvent simulation and liquid state theories.

Part II presents the developments and results of the H4D-MC approach for simple spherical
solutes and small organic molecules. A special focus is given on including solute flexibility in
H4D-MC and to an analysis of the effect of solute flexibility on the hydration free energies of small
drug-like molecules.

Part III focus on the MDFT in the hyper-netted chain approximation (HNC). It includes a
presentation of the development made to MDFT-HNC, a rigorous benchmarking of MDFT-HNC
from simple hydrophobic spheres to molecular solutes, through ions, and a chemoinformatics
analysis on the performance of MDFT-HNC for small drug-like molecules.



Part I

STATE -OF -THE -ART : SOLVATION MODELS AND

METHODS

The aim of this thesis is to develop a method to compute solvation free energies fast.
Today the reference to that is polarizable continuum models. It’s worth starting by a
few pages to make clear what PCMs are and what are their limitations which are related
to their accuracy.

In chapter 3, I describe the free energy perturbation approach, the reference for computing
SFEs accurately. There are possible enhancements of the FEP approach with the use
of alchemical intermediates with either stratification or slow growth. They are also
described in this chapter. The inconvenience of FEP and its enhancements is that they
are very time-consuming.

Liquid state theories make today the promise of fast computation of accurate SFEs.
Chapter 4 gives an introduction to these liquid state theories with a focus on the classical
density functional theory approach.



2
CONTINUUM MODELS

Why this chapter?

The aim of this thesis is to compute hydration free energies accurately but very

efficiently. The refence in fast computation of solvation free energies is continuum

solvent approaches.

How to compute solvation free energies with implicit solvent? What are their limitations ?

Implicit solvent models consider the solvent as a polarizable continuous isotropic medium
characterized by a dielectric constant εr with the solute M placed in a cavity within this medium
(figure 2.1). These mean-field approaches referred to as polarizable continuum models (PCM), are
numerically very cheap compared to explicit solvent calculations presented in the following chapter.
Hence they are popular in QM calculation or classical simulations of large biomolecular systems.
This chapter is mainly based on the reviews by Roux and Simonson [41] and Skyner et al. [16].
More in-depth discussion, especially for QM calculations, are available in the reviews by Cramer
and Truhlar [42] and by Tomasi et al. [43, 44].

In the continuum models, the solvation free energy is decomposed into a non-polar and a polar
part,

∆Gsolv = ∆Gnp + ∆Gelec (2.1)

where ∆Gnp is usually referred to as the ‘cavity formation free energy’ and ∆Gelec as the ‘charging
free energy’. The former is modelled by solvent accessible area term and the latter by a continuum
electrostatic reaction field.

Figure 2.1: Illustartion of continuum solvent model: a solute formed cavity in mean field characterized by
the solvent dielectric constant.

2.1 non-polar term

In scale particle theory (SPT) [45, 46, 47], which describe the free energy of inserting a non-polar
repulsive sphere into a solvent, the reversible work to produce a spherical cavity of radius R can

8
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be rigorously calculated for a hard-sphere liquid of bulk density nbulk as long as 2R ≤ a, the
hard-sphere diameter (for water with a non-polar solute a = 2.75 Å [46]) and reads,

W(R) = −kBT ln

(

1 − 4

3
πR3nbulk

)

(2.2)

In the limit of a large cavity, or solute particle, thermodynamic considerations lead to

W(R) =
4

3
πR3P + 4πR2γ

(

1 − δ

R

)

+ . . . (2.3)

where P is the isotropic pressure, γs the solvent surface tension and δ a molecular length scale
related to the so-called curvature correction of the surface tension (δ ∼ 0.5 Å for water [46]). The
remaining terms are assumed to be negligible. In practice, (i) the PV-like (in R3) term is expected
to be negligible, an atmospheric pressure corresponds to an energy of 1.5 × 10−5 kcal/mol per Å3,
and the free energy is dominated by the surface term; and (ii) the length scale is such that the
curvature dependence is only significant when the radius R is very small.

SPT provides an important concept of relating the non-polar free energy contribution to the
surface area of the solute. If one neglects pressure and the curvature effect, the non-polar term of
solvation free energy can be approximated as

∆Gnp = γs A(M) (2.4)

where is A(M) is the solute surface of the solute in the M conformation which is most commonly
defined as solvent-accessible surface area (SAS) ASAS (figure 2.2).

Figure 2.2: Illustration of the solute surfaces. The solvent accessible surface (SAS) is traced out by the
centre of the probe sphere, representing a solvent molecule, when rolling on the atoms defined
by their van der Waals radii. The solvent excluded surface (SES) is the topological boundary of
the volume where the probe sphere can not penetrate.

Another approach is to assume that the non-polar term of solvation free energy can be represented
as a linear sum of atomic contributions weighted by their solvent-exposed area,

∆Gnp =
atoms

∑
i

ξi Ai(M) (2.5)

where ξi is a parametrized atomic free energy per unit are constant for each atom type and Ai the
solvent-exposed area of the atom i which depends on the solute configuration M.

The deficiencies of these simple surface area approaches have been recognized and further
decomposition of the non-polar term into cavity ∆Gcav and van der Waals dispersion ∆GvdW has
been proposed ∆Gnp(M) = ∆Gcav + ∆GvdW and have shown to improve results [48].
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2.2 charging term

For an isotropic solvent with random thermal motion, the average electric field is null at any given
point. When introducing a charged solute, or a solute with partial charges, it creates a net change
in orientation, introducing an overall change in the charge distribution represented by a continuous
electric field E(r), known as the ‘reaction field’. The charging free energy in a continuum model,
i.e. the work required to create the charge distribution is determined by

∆Gelec =
1

2

∫

drρq(r)Velec(r) (2.6)

where ρq is the interaction of solute charge density and Velec(r) electrostatic potential.
The Maxwell-Gauss equation reads

∇ · D(r) =
ρq(r)

ε0
(2.7)

where D(r) = ε0E(r) + P(r) = εr(r)E(r) is the electric displacement field, P(r) the system’s
polarization field, εr(r) the solvent’s position-dependent dielectric constant and ε0 the vacuum
permittivity. As the electric field at any given point is the gradient of the electrostatic potential
Velec(r), the Maxwell-Gauss equation can be rewritten as a second-order differential equation,
called the Poisson equation :

∇ · [εr(r)∇Velec(r)] = −ρq(r)

ε0
. (2.8)

This equation can not be solved analytically for complex geometries such as large molecules and
hence it needs to be solved numerically with appropriate methods [49, 41, 50, 51, 52]. The Poisson
equation is valid only for systems under non-ionic condition, whereas in a real solution, dissolving
a solute produces a mobile electrolyte. This effect is taken into account by coupling the Poisson
equation with the thermal Boltzmann distribution, yielding the following Poisson-Boltzmann (PB)
equation

∇ · [εr(r)∇Velec(r)]−
2znion

ε0
sinh (βqVelec(r)) = −ρq(r)

ε0
(2.9)

where z = |q| is the valence of the ions and nion the ion density. The slow convergence of
the PB equation makes the prediction of the electrostatic potential for the charging free energy
computationally expensive and often inaccurate. It works best for systems where the solute cavity
is near-spherical or ellipsoidal, but for systems with more complex geometries, it is cumbersome.
Therefore most continuum models use derivations approximating the Poisson equation. In the
classical cases, the most common methods are the generalized Born (GB) equation and self-
consistent reaction field models (SCRF).

For a simple net charge q in a spherical cavity of radius a the charging free energy is given by
the Born formula:

∆Gelec = − 1

8πε0

(

1 − 1

εr

)

q2

2a
. (2.10)

For more complex geometries the empirical GB model gives the charging free energy as a
superposition of several net charges in spherical cavities described by the Born formula :

∆Gelec = − 1

8πε0

(

1 − 1

εr

)

∑
i

∑
j

qiqj

fij
(2.11)
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with

fij =

√

√

√

√r2
ij − aiaj exp

(

r2
ij

4aiaj

)

(2.12)

where rij is the distance between the centre of atoms i and j; and ai the (empirical) effective Born
radius of the atom i. GB provides a very fast method with similar accuracy to PB for computing
the charging free energy and hence has large success in molecular modelling. PB/GB methods
coupled with the cavity term and molecular mechanics for the possible solute movements are called
MM/PBSA and MM/GBSA approaches [53].

The other approaches are self-consistent reaction field models, such as the Onsager model which
models a dipole(s), characterized by a (total) dipole moment µ, in a spherical cavity [54, 55] or the
Kirkwood-Westheimer model with a general multipole model in a spherical or ellipsoidal cavity [56,
57]. These simple models are not fully capable of predicting solvent behaviour in many realistic
cases.

All of the previous models use (point) charges inside the cavity, whereas PCM models for quantum
calculations use the apparent surface charge of the solute to compute the charging free energy.
These methods can be split into two categories [58]: dielectric (DPCM) where the solvent is treated
as a polarizable medium [59], and conductor-like (CPCM) polarizable continuum models, where
the solvent is treated as a conductor-like medium.

The DPCM uses the exact dielectric boundary condition for the calculation of the polarization
charge densities σ on the surface segments of the solute cavity M. Currently the most commonly
used DPCM methods are integral equation formalism PMC (IEFPCM) [60, 61] which has shown to
perform well compared to other DPCM models [44].

The CPMC uses a simpler boundary condition of a conductor and takes into account the
reduction of the polarization charge densities occurring at finite permittivity by a slightly empirical
scaling. The most common CPCMs are “conductor-like screening model” (COSMO) [62] and its
derivative for the computation of chemical potentials “conductor-like screening model for real
solvent” (COSMO-RS) [63, 64].

2.3 limitations

By definition, continuum solvent models are mean-field approaches where the solvent is represented
by only its approximate electrostatic properties and lack all molecular information of the solvation
structure. The solvation structure can have an important effect on the SFE as the solvation enthalpy
depends on the change of the number of solvent-solvent bonds and the entropy on order in the
solvent. These effects are especially important with protonic polar solvents like water where the
bulk solvent is ordered by hydrogen bond networks and where the solvation structure can by guided
by hydrogen bonding. Dismissing these structural effects leads to important inaccuracies in the
implicit solvent models.

To remember

The aim of this thesis is to compute hydration free energies accurately but very

efficiently. The refence in fast computation of solvation free energies is continuum

solvent approaches.

Here, we briefly described emprical way of computing solvation free energies with continuum
models. These approaches are very fast but lack precision as they miss all molecular
information of the solvent. In the next chapter, we will describe how to calculate them
exactly.



3
SOLVATION FREE ENERGIES WITH S IMULATIONS

Why this chapter?

The aim of this thesis is to compute hydration free energies accurately but

very efficiently. The exact approach is to compute them from explicit solvent

simulations with free energy perturbation.

This chapter briefly presents the free energy perturbation methods to compute solvation
free energies and approaches the improve the statistics, mainly with the use of alchemical
intermediates either by stratification or by a time-dependent coupling parameter.

The free energy methods presented in this chapter are based on classical molecular dynamics
or Monte Carlo simulations with a classical force field representation of the solute and solvent
molecules. As mentioned before the computation of a solvation free energy is not trivial and cannot
be obtained from a single simulation of the solvated system or from a simple difference between
simulations of the solvated system and the bulk solvent, but require the sampling of all possible
states that can be visited during the transformation. The majority of this section is based on
information from AlchemistryWiki edited by M.R. Shirts, L. Nade, D.L. Mobley and J.D. Chodera
[65] and lecture notes of M. S. Shell [66].

The basic idea behind all free energy calculations and methods yields from a core equation
derived from statistical mechanics: the free energy difference in a canonical (NVT) ensemble is

∆Fij = −kBT ln
Qj

Qi
(3.1)

where ∆Fij is the Helmholtz free energy difference between states i and j, kB the Boltzmann
constant, T the temperature and Q the canonical partition function.

3.1 free energy perturbation

One of the earliest free energy methods consists of computing the free energy difference between a
reference state and some perturbed state via exponential averaging. Perturbation techniques have
a long history in statistical mechanics and were pioneered by Born and Kirkwood in the 1920s and
’30s. Robert Zwanzig introduced the free energy perturbation (FEP) method in the context of MD
and MC simulations in 1954 [67]. Starting from equation 3.1 the Zwanzig relationship1 reads,

β∆F01 = − ln
Q1

Q0
= − ln

∫

e−βU1(q
N)dqN

∫

e−βU0(qN)dqN

= − ln

∫

e−β∆U(qN)−βU0(q
N)dqN

∫

e−βU0(qN)dqN
= − ln

∫

p0(q
N)e−β∆U(qN)dqN

= − ln〈e−β∆U(qN)〉0 (3.2)

1 Free energy perturbation ≡ exponential averaging ≡ Zwanzig relationship/equation

12
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where β = 1
kBT is the inverse of the thermal energy, U0(qN) and U1(q

N) are the potential energy

of the initial state 0 and the perturbed state 1, qN the spatial coordinates and the momenta
of the N particles system, ∆U = U1 − U0 the potential energy difference between states initial
and perturbed state, p0 = e−βU0

∫

e−βU0
the probability of having the system in state U0(qN) and

〈· · · 〉0 the ensemble average over the state 0. The free energy difference is obtained exponentially
averaging the potential energy difference between the initial and perturbed state for an ensemble
of configuration obtained by the propagation of an equilibrium simulation in the initial state 0. The
Zwanzig equation is asymmetric and the free energy difference can be obtained from a simulation
propagated in state 1 via

β∆F01 = ln
Q0

Q1
= ln〈eβ∆U〉1. (3.3)

In principle the Zwanzig equation is straightforward. However, calculating a correct free energy
difference is hard due to important statistical errors because of the exponential averaging. The
Zwanzing equation can be reformulated as

β∆F01 = − ln〈e−β∆U〉0 = − ln
∫

e−β∆U p0(∆U)d∆U (3.4)

with p0(∆U) =
∫

δ[U1(q
N)−U0(q

N)−∆U]e−βU0(q
N )dqN

∫

e−βU0(q
N )dqN

. As illustrated in figure 3.1, e−β∆U grows very

large for negative values of ∆U whereas p0(∆U) typically peaks at some intermediate value of ∆U

and tends to zero away from it. An important part of e−β∆U p0(∆U) is in a region where p0(∆U)

is quasi-zero. Hence some configurations that have a large contribution to the integral due to the
exponential averaging are sampled very rarely in the simulation, i.e. a substantial portion of the
average depends on the rare events of the simulation in state 0. Therefore the simple FEP can
only be used for very small perturbations where ∆U ≈ 0 as larger perturbations result in very large
statistical errors.

U

p0( U)

exp( U)

p0( U)exp( U)

Figure 3.1: Problem of computing free energy differences. Representation of equation 3.4 terms.

3.1.1 widom test particle

The Zwanzig equation and its derivatives (see below) are highly general and can be applied to any
free energy calculation. They are based on the direct calculation of the overall partition functions
Q0(N) and Q1(N) yielding the free energy difference of the system ∆F can be applied to any
free energy calculations with a variation of U. Benjamin Widom proposed a method in 1963 for
computing a free energy difference in the specific case of changing the number of particles in the
system, eg. computing solvation free energy of the new particle [68]. The Widom insertion method
is an application of the Jarzynski equality [69] since it measures the free energy difference via the
average work to change the system from a state with N molecules (with Q(N)) to a state with
N + 1 molecules (with Q(N + 1)). It yields the excess chemical potential of one component rather
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than the system free energy as µexc =
∆F
∆N with ∆N = 1. The excess chemical potential, i.e. the

difference between the chemical potential of a given species and that of an ideal gas under the
same conditions reads as

βµexc = ln

∫

e−βU(qN)dqN

∫

e−βU(qN+1)dqN+1
. (3.5)

This problem can be reformulated in the formalism of FEP, where the perturbation is to ‘turn
on’ the interaction of (N + 1)th molecule of the system with all of the other molecules, i.e.

the (N + 1)th molecule is converted from a non-interacting ideal gas particle to an interacting
one. The potential energies of the initial and perturbed states are U0(qN+1) = U(qN) and
U1(q

N+1) = U(qN+1) respectively and the energy difference is ∆U = U(qN+1)−U(qN) = ucross

with ucrossthe interaction energy between the inserted particle with all other particles in the system.
In this case, the Zwanzig equation can be written as

βµexc = − ln〈e−βucross〉N . (3.6)

The asymmetric Zwanzig equation can be applied to particle destruction and the excess chemical
potential can be obtained with βµexc = ln〈eβucross〉N+1. The practical details for test particle
insertions and destructions are detailed in algorithms 3.1 and 3.2 respectively.

Algorithm 3.1 Widom test particle insertion
1. perform an equilibrium simulation of N solvent molecules

2. periodically pause the simulation and insert a test particle, i.e. the solute molecule, at a
random position and orientation in the simulation box, i.e. convert the (N + 1)th ideal gas
particle into the interactive test particle

3. compute ucross (≡ ∆U)

4. remove the test particle and continue the simulation as if the test never occurred

5. compute the average − ln〈e−βucross〉N over the simulation.

Algorithm 3.2 Widom test particle destruction
1. perform an equilibrium simulation of N + 1 particles, i.e. N solvent molecules and the solute

molecule

2. periodically pause the simulation and remove a particle, i.e. the solute molecule, from the
simulation box, i.e. convert the (N + 1)th interacting test particle to an ideal gas particle

3. compute −ucross (≡ −∆U)

4. replace the test particle and continue the simulation as if the test never occurred

5. compute the average ln〈eβucross〉N+1 over the simulation.

Note that, Widom insertion and destruction are instantaneous, i.e. there is no relaxation of the
test molecules or the environment. This leads to large statistical errors as (i) the particle insertion
fails for systems with a large density as there is almost always a core overlap resulting in large ∆U

and (ii) as the removal of ‘large’ solutes is very unfavourable due to the creation of non-physical
cavities in the solvent.
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3.1.2 bennett acceptance ratio

In 1976 Charles Bennett proposed an approach, later called the Bennett acceptance ration (BAR)
[70], to optimize the Zwanzig equation as to minimize the statistical error via error propagation.
He rewrote the FEP equation as,

β∆F01 = − ln

∫

e−βU1(q
N)dqN

∫

e−βU0(qN)dqN

= − ln

(

∫

e−βU1(q
N)dqN

∫

w(rN)e−βU0(qN)−βU1(qN)dqN
−
∫

w(rN)e−βU(qN)−βU1(q
N)dqN

∫

e−βU0(qN)dqN

)

= − ln
〈we−βU1〉0

〈we−βU0〉1
(3.7)

where w(qN) is a weight function and the two averages imply two simulations: one simulation in
state 0 averaging values of we−βU1 and another simulation in state 1 averaging values of we−βU0 .
Note that this expression combines information from the transformations in both ways and it is
symmetric, i.e. both states 0 and 1 appear in equal roles. The idea is to find an optimal value of w

that minimizes the expected statistical error of the free energy difference. Using standard error
propagation rules to determine σ2

β∆F and minimizing it variationally with respect to w, he found
the optimal value of weight function as,

w(rN) ∝ (
e−βF0−βU1(q

N)

n0
+

e−βF1−βU0(q
N)

n1
)−1 (3.8)

where n0 and n1 are the numbers of configurations used from states 0 and 1. Details of the
derivation are given by Frenkel and Smit [71] and they showed that the proportionality constant
does not affect the statistical error. If we assume n0 = n1 and plug the equation 3.8 into equation
3.7, we obtain the following BAR equation

β∆F01 = ln 〈 1

1+e−β∆U+β∆F01
〉0/〈 1

1+eβ∆U+β∆F01
〉1. (3.9)

Note that, one can not perform a simple average during the simulations as ∆F01 appears on both
sides of the equation. Instead, we must save a list of energies during the simulation in order to
evaluate the averages by solving the BAR equation self-consistently at the end. The BAR equation
can be shown to be identical to the Ferrenberg-Swendsen multiple histogram reweighting technique
in the limit that the histogram bin size goes to zero, another free energy calculation method not
presented here [72].

BAR method provides a statistically optimal estimator of a free energy difference between two
states. However even with BAR one obtains large statistical errors if the two states are substantially
different, which is the case for most solvation free energy calculations, as the there is little to no
overlap between the phase spaces explored by the two states, i.e. ∆U is too large.

3.2 alchemical intermediates

To overcome the problem of the small, or non-existent, overlap between the initial and final state,
one can divide the total FE difference into a series of small steps in which the system hops gradually
from state 0 to state 1. This is done with the use of ‘partial’ solutes, i.e. alchemical intermediates,
for which the solute-solvent interaction uλ

crossincreases gradually from 0 (non-interacting ideal
particle) to ucross (fully interacting solute molecule). For this, we introduce a coupling parameter λ

that links the alchemical intermediate states to the initial and final states typically via

Uλ = (1 − λ)U0 + λU1. (3.10)
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There are two ways to set the coupling parameter λ:

1. Stratification: λs are set at fixed values defined a priori and an equilibrium simulation is
propagated at each Uλ potential

2. Slow/fast growth: a time-dependant λ(t) that evolves on the fly during an out-of-equilibrium
simulation

3. Extra degree of freedom: λ dynamical variable that varies during a simulation and the
potential of mean force is constructed from the measured λ-distribution (not discussed here
for simplicity).

3.2.1 stratification: discretised coupling parameter

The idea of stratification is to decrease the ∆U between two states, and in consequence improve
the statistics, by simulating m intermediates states between the initial and final state, with fixed
values of λ and computing the free energy difference between two following states ∆Fλiλi+1

. The
total free energy difference is the sum of the m + 1 individual free energy differences :

β(F(λ = 1)− F(λ = 0)) = ln
Q(λ = 0)

Q(λ = 1)

= ln

(

Q(λ0 = 0)

Q(λ1)

Q(λ1)

Q(λ2)
...

Q(λm)

Q(λm+1 = 1)

)

= β
m

∑
i=0

∆Fλiλi+1
. (3.11)

Stratification can strongly reduce the statistical error and it permits the computation of free
energy differences for systems with ∆U ≫ 0 such as solvation free energies. However K = m + 2

equilibrium simulations must be performed in order to compute the total free energy difference.
One uses typically ∼ 20 intermediate states for a solvation free energy calculation. Hence, the
statistical accuracy comes at the expense of more simulations.

In the case where the intermediates states are non-physical, eg. in the solvation process, the
process is called an alchemical transformation but stratification can also be used for physical
intermediates where for example λ fixes the position of a molecule in a potential of mean force
calculations. For alchemical transformations, the simple linear scaling presented in equation 3.10
raises some problems as it gives very unequal phase space overlaps. This linear mixing rule is
sufficient for some changes, such as for the change of atomic partial charge. But for cases where
the number of interacting particles changes, the free energy differences for low values of λ diverge
[65]. This ‘end-point catastrophe’ is due to the singularity at r = 0 because of the r−12 term in
the LJ potential. This singularity causes mostly problems to thermodynamic integration (see 3.3)
but also to FEP calculation.

Hence, in the case of alchemical transformation, the intermediate states are divided into 2
categories (figure 3.2) :

• the van der Waals part is treated with ‘soft core potential’ to get around numerical instabilities
[73, 74]. In the soft core potential, the alchemical variable λ is coupled with the configuration
variable r to smoothing out the singularity. This is corresponds to adding a extra dimension
to r and it reads,

U(λ, r) = 4ǫλn

[

(

α(1 − λ)m +
( r

σ

)6
)−2

−
(

α(1 − λ)m +
( r

σ

)6
)−1

]

(3.12)

where α is positive constant (usually 0.5), m and n are positive integers (usually 1) and, σ and ǫ

the Lennard-Jones parameters of the solute site. Typically one uses ∼ 15 − 20 values of λLJ for
the van der Waals (vdW) part.
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• the electrostatic part is treated with linear scaling of the partial charges. Typically one uses
∼ 4 values of λelec for the electrostatic part.

λLJ = λelec = 0 λLJ = 1, λelec = 0 λLJ = λelec = 1

Figure 3.2: Alchemical transformation: staring from the bulk solvent with solute as a non-interacting particle,
the solute is created by first turning on the non-polar interactions and then turning on the
charges.

The statistics of stratification can be improved by applying (i) BAR to all λiλi+1 couples or
(ii) using multistate Bennett acceptance ratio (MBAR) developed by Shirts and Chodera in 2008
[75]. MBAR is a generalisation of BAR, which uses data from all K states simultaneously. MBAR
equation is identical to the Weighted Histogram Analysis Method (WHAM) [76], an extension of
Ferrenberg-Swendsen multiple histogram reweighting technique, with zero-width bins.

3.2.2 slow growth: time-dependent coupling parameter

The idea of slow growth is to improve the statistics of a Widom test particle method by introducing
the solute into the bulk with a finite speed, i.e. not to create the test particle suddenly into
the bulk but introducing it slowly by imposing a time-dependant coupling parameter λ(t) during
an out-of-equilibrium simulation joining the states 0 and 1, which gives time to relax to the
solvent environment. Solvation free energy is constructed from the external work W due to the
introduction of the solute with the Jarzynski equality. The Jarzynski equality is an equation in
statistical mechanics that relates the free energy difference between two states and the irreversible
work along an ensemble of trajectories joining the same states and reads as

β∆F = − ln〈e−βW〉. (3.13)

It is valid no matter how fast the process happens and it has experimental (RNA folding [77]) and
theoretical (Widom [68]) applications.

Recently, Luc Belloni developed a theory, and a code, ‘hybrid 4th dimension’-MC (H4D-MC)
for grand canonical simulations (µVT) based on the idea of adding or removing molecules via
a 4th dimension with a time-dependent coupling parameter [36] to keep the chemical potential
constant µ. This methodology can also be used for measuring the excess chemical potential of a
solute during a canonical (NVT) or isobaric (NPT) simulation. The algorithms for measuring the
solvation free energy via solute insertion or destruction are detailed in algorithms 3.3 and 3.4. The
slow insertion or destruction gives time for the solvent (and the solute molecule) to relax during
the transformation improving the statistics drastically compared to simple Widom.

In the case of propagation in the NPT ensemble, as it will be the case in this thesis, the Jarzynski
equality is modified to

βµexc = − ln〈Ve−β∆H〉+ ln〈 1

V
〉 (3.14)

where V is the simulation cell volume of the system at the time of the insertion/destruction.
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As for simple FEP, the statistics of H4D-MC can be improved with coupling information
from the forward and the backward transformations with the Crooks fluctuation theorem [78], a
non-equilibrium version of BAR, which reads

pdes(∆H) = pins(∆H)e−β(∆H−µexc). (3.15)

where pinsand pdes are the insertion and destruction distributions of ∆H = ∆HN+1 − ∆HN

respectively.
This in-house code by Luc Belloni was originally written for rigid solutes whereas most of the

well known MD codes are written for flexible molecules and one needs to use constraints to have
a rigid solute. As MDFT calculations are done on rigid solutes, we need reference data for rigid
solutes. Hence H4D-MC is used as the reference method in this thesis for MDFT. Implementing
solute flexibility in H4D-MC is discussed in the chapter 6.

Algorithm 3.3 H4D-MC insertion
1. perform an equilibrium simulation of N solvent molecules with intermolecular interactions

given by Uij(rij) pair potential (with rij = |ri − r j|)
2. periodically pause the simulation and slowly insert a solute molecule, at a random position and

orientation in the simulation box, via 4th dimension with a short MD simulation. The interaction

potential between the solute and the solvent molecules is given by Vik

(
√

r2
ik + (wi − wk)2

)

where w is the ‘altitude’ of a molecule in the 4th dimension that governs the 3D motion of all
solvent molecules. wi = 0 for all solvent molecules and the solutes altitude wk evolves during
the simulation from wmax (input parameter) to 0 with a given speed v (input parameter).

3. compute ∆H = HN+1 − HN (≈ W) of the insertion process

4. return the simulation to the state before the insertion and continue the simulation as the test
never occurred

5. compute the average − ln〈e−β∆H〉N over the simulation.

Algorithm 3.4 H4D-MC destruction
1. perform an equilibrium simulation of N solvent molecules and the solute molecule with

intermolecular interactions given by Uij(rij)

2. periodically pause the simulation and slowly delete the solute molecule via 4th dimension with
a short MD simulation where the interaction potential between the solute and the solvent

molecules is given by Vik

(
√

r2
ij + (wi − wk)2

)

. The solutes altitude wk evolves during the

simulation from 0 to wmax with a given speed v.

3. compute −∆H = HN − HN+1 (≈ −W) of destruction process

4. return the simulation to the state before the deletion and continue the simulation as the test
never occurred

5. compute the average ln〈eβ∆H〉N+1 over the simulation.

A similar approach with multiple short non-equilibrium MD simulations measuring the anni-
hilation/creation work was proposed by Procacci and collaborators in 2014 [79, 80, 81]. They
found that these out-of-equilibrium approaches have wall clock times that are at least one order of
magnitude smaller than for stratified MD+FEP approaches. These computation times are discussed
in section 5.1.1.

In practice, solvation free energies can not be done with simple FEP between initial and final
states, i.e. the Widom test particle method, and need alchemical transformation done either by
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stratification with K ∼ 25 ergodic equilibrium simulations or by a time-dependent coupling with
two ergodic equilibrium simulations coupled with multiple (over 1000) short out-of-equilibrium
simulations. Both methods are exact, in the force field approximation, if the sampling is done
correctly. However, these methods are time-consuming, requiring 10s to 100s of CPU-hours for a
single solvation free energy.

3.3 alternative methods and improving sampling

In addition to the FEP and the approaches to improve sampling presented above, there are few
other methods/approaches to either (i) compute solvation free energies or (ii) improve the sampling
in a FEP calculation. They include the thermodynamic integration, weighted histogram methods,
Hamiltonian replica exchange, Umbrella sampling, λ-dynamics or ensemble dynamics.

Thermodynamic integration (TI) [82] is one of the most common and intuitive methods to
compute free energy differences. The idea is to compute free energy differences by taking the
derivative of the free energy difference with respect to λ over m intermediate states. Starting with
the identity of the free energy βF = − ln Q, its derivative with respect to λ yields

β
dF

dλ
= − d

dλ
ln Q = − d

dλ
ln
∫

e−βUλ(q
N)dqN

= − 1

Q

d

dλ

∫

e−βUλ(q
N)dqN

=
β

Q

∫

dUλ(q
N)

dλ
e−βUλ(q

N)dqN

= β

〈

dUλ(q
N)

dλ

〉

λ

. (3.16)

If one does an integration over the whole λ range we get the following thermodynamic integration
equation

∆F01 =
∫ 1

0

〈

dUλ(q
N)

dλ

〉

λ

dλ. (3.17)

TI is not quite as general as FEP based techniques, since it requires the computation of
Hamiltonian’s derivatives and since only a finite number states are used a numerical integration
scheme is required for the computation of equation 3.17. Nonetheless, if the method is used
correctly it is one of the most accurate free energy computation methods. Note that the infinite
potential singularity of linear alchemical potentials causes problems for TI as derivate diverges at the
singularity. Therefore a soft-core potential should be used when doing alchemical transformations
with TI.

Weighted Histogram Analysis Method (WHAM) [76] is the earliest method taking into
account information from all intermediate states. WHAM was developed for alchemical transform-
ations from its precursor, the first version of multiple histograms relighting techniques proposed
by Ferrenberg and Swendsen [72]. It is based on the principle that if you have a finite number
of states, one can create a histogram with discrete bins that provide the relative probability of
observing the states of interest, assuming that the bins were created along the selected reaction
path, here along the alchemical variable λ. From these probabilities, one can compute free energies
among other things. In the limiting case where the bin width is chosen to be zero, the WHAM
equation is equivalent to the MBAR equation.

Umbrella sampling [83] is used to improve the sampling of configurations by adding bias terms
to constrain the simulation in some way. This method can lower energetic barriers and accelerate
the sampling of slow degrees of freedom in the system.
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Hamiltonian replica exchange (HREX) [84, 85] can be used to improve the sampling of
configurations. In ‘classic’ stratified FEP calculations, all K states are run independently, however,
these simulations can be run in parallel with each state λi allowed to swap atoms/molecules,
under certain conditions, from another state λj with different energy barriers. This accelerates the
sampling of configuration that are rare in state λi.

Expanded Ensemble dynamics (EED) [86] samples both the spatial coordinates and the
alchemical variable during a single simulation. The probability of any given state is given by
P(r, λ) ∝ exp (−βUλ + gλ) with gλ an user-specified weight factor of the λth state. EED
simulations are a serialized version of the REX formalism, allowing the exploration of multiple
intermediate states in a single simulation.

λ-dynamics [87, 88, 89] treats the alchemical coupling parameter λ as a dynamical variable,
i.e. as an extra degree of freedom with a fictitious mass, and construct a potential of mean force
from the measured λ-distribution.

To remember

The aim of this thesis is to compute hydration free energies accurately but

very efficiently. The exact approach is to compute them from explicit solvent

simulations with free energy perturbation.

Here, we presented the exact approach to compute solvation free energies with free en-
ergy perturbation and two approaches to improve the statistical pression with alchemical
intermediates:

• to most widely used approach of stratification

• a novel approach with a time-dependent coupling parameter.
Both approaches lead to exact results, in the force field approximation, but are time-
consuming: the former requires hundreads and the latter tens of CPU-hours.
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L IQU ID STATE THEORIES

Why this chapter?

The aim of this thesis is to compute hydration free energies accurately but

very efficiently. The reference of speed are emprical continuum models that lack

accuracy and the exact free energy perturbation approach is very time-consuming.

The liquid state approach offers a compromise between speed and accuracy.

This chapter briefly presents the use of liquid state theories to study solvation with the
introduction of two LST approaches:

• the reference interaction site model

• the molecular density functional theory (the main theory of this thesis).

In the previous chapters, we briefly presented the widely used implicit solvent calculations and
explicit solvent simulation to study solvation. Another approach to study liquids and solvation is
the use of statistical mechanics methods to deduce thermodynamic quantities directly from the
Hamiltonian of any given system without sampling. This chapter includes a short presentation of
basic concepts of liquid state theories and the integral equation approach before a more detailed
presentation of the molecular density functional approach. This chapter, based in majority on the
books by Hansen and McDonald [90] and Hirata [91]; and the thesis of Guillaume Jeanmairet [92]
and Lu Ding [93].

First, in statistical mechanics, a rigid molecule can be fully described by a six-dimensional vector
with three positional degrees of freedom r = (x, y, z) and three orientational degrees of freedom
ω = (θ, φ, ψ) corresponding to the Euler angles illustrated in figure 4.1a.

Secondly, liquids are characterized by their density fluctuations in time and space due to thermal
fluctuations. Unlike in solids, molecules in liquids have a diffusive motion changing their position
and orientation continuously, hence basic concepts when describing liquids are the local densities
n(r) = ∑i δ(r − ri) and their fluctuations δn(r) = n(r)− nbulk. In a uniform liquid, the first
moment of the density field is constant, nbulk ≡ 〈n(r)〉 ≡ N/V with N the number of particles in
a system and V the volume of the system. It does not carry microscopic information of the liquid
structure. However, the second moment of the density fluctuations 〈δn(r)δn(r′)〉 contains ample
information about the structure of liquids.

A natural way to represent the microstructure in liquids is the use of a pair correlation function
(PCF) g(r1 − r2, ω1, ω2) = ρ(r1 − r2, ω1, ω2)/ρ0 where ρ and ρ0 are the six-dimensional density
field (n(r) =

∫

ρdω) that represents the density at {r2, ω2} when another molecule is at {r1, ω1}
and bulk density,ρbulk = nbulki/8π2, respectively that depend on the position and the orientation
of the molecules. nbulk is the spatial homogeneous bulk density, typically 0.033 molecules per Å3

for water at room conditions (≡ 1 kg/L), and i/8π2 the angular normalization constant with i the
order of the main symmetry axis of the solvent molecule (i = 2 for water which has an axial C2v

symmetry along the molecules dipole with all the integrals of ψ calculated implicitly between 0 and
π). It translates the probability of having two molecules at positions r1 and r2 with orientations ω1

and ω2, respectively, in the environment created by the surrounding molecules. The starting point

21
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Figure 4.1: Illustration on a water molecule of (a) the three Euler angles in the ZXZ representation and
(b) the direct and indirect contributions to the total correlation function.

to use and determine these functions in statistical mechanics is the molecular Ornstein-Zernike
equation (MOZ) [94]. It is an integral equation defining the direct correlation function c(12), with
the notation (12) = (r1 − r2, ω1, ω2) in terms of the total correlation function h(12) = g(12)− 1

and it reads

h(12) = c(12) +
∫

V
c(13)ρ(3)h(32)d3 (4.1)

There are two contributing effects for the total correlation between molecules 1 and 2: (i) the
direct correlation between 1 and 2, and (ii) the indirect correlation via a third body 3. Figure 4.1b
illustrates these contributions.

As the equation contains two unknown functions h and c, another equation, a closure relation, is
required to solve the MOZ equation. The exact closure relation reads as

g(r, ω) = e−βU(r,ω)+γ(r,ω)+b(r,ω) (4.2)

where U is the interaction potential, typically a Hamiltonian with a sum of Lennard-Jones and
Coulombic potential, γ = h − c the indirect correlation function and b the bridge function coming
from the graph theory. The bridge function is known formally as an infinite diagrammatic re-
summation of virial diagrams, but is not numerically tractable and hence the closure relation
needs to be approximated. The ‘original’ closure relation approximate is the hyper netted-chain
approximation where the bridge term is neglected completely, b = 0. Until recently, MOZ equation in
the HNC approximation was numerically very challenging to solve for molecular systems. Therefore,
other approximations of the closure relations have been developed such as the mean-spherical
approximation (MSA) [95], the Percus-Yevick approximation (PYs) [96], particularly adapted for
hard spheres or the Kovalenko-Hirata approximation (KH) [97] a hybrid of MSA and HNC developed
for the RISM approach presented in the following section.

There are two families of methods to solve the MOZ : (i) directly by solving the integral equations
or their approximates or (ii) by using the classical density functional theory framework. A brief
presentation of the first approach is presented in the following section before presenting the second
approach in more detail as it is the core method of this thesis.

4.1 molecular integral equations and rism

The direct resolution of the fully molecular OZ equations with spatial and angular dependencies is
numerically not tractable. Blum proposed to expand the angular-dependant correlation function
onto rotational invariants so that the MOZ equation can be reduced to (much) smaller number of
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function evaluations [98, 99, 100]. In the ’80, Fries and Patey adopted this formalism to propose a
numerical solution for the full HNC approximation [101]. However, the numerical resolution of the
fully molecular MOZ-HNC, for shapes deviating from spheres, is cumbersome and therefore the use
of molecular integral equations theory (MIET) has not gained a large success in the community.

To overcome the numerical cost, an approximate approach, called the reference interaction site
model (RISM), was proposed by Chandler and Andersen in 1972 [102]. It averages the orientations
of the interacting molecules and approximates the molecular solvents as combinations of spherical
atomic sites with strong intramolecular correlations representing chemical bonds. It can be seen as
an expansion of the generalized (non-molecular) OZ of n atomic components (eq. 4.20) with cij

the typical intermolecular correlation function if i and j are not sites of the same molecule and a
very strong intramolecular correlation function if i and j are sites of the same molecule. The original
RISM theory accounts approximately for one of the two important chemical aspects of molecules:
the geometry, in terms of the intramolecular correlation. However, it does not handle the other
chemical aspect of molecules, electrostatics, in its original form. The complete characterisation of
the chemical specificity of the molecular liquids became possible with the so-called extended RISM
theory (XRISM) [102, 103, 104, 105]. The numerical resolution of the ‘molecular’ OZ equation is
drastically simplified as now we have N one-dimensional problem, with N the number sites in the
molecule, depending only on r each, instead of one fully molecular six-dimensional one.

Note that the original (X)RISM theory is a one-dimensional theory producing site-site radial
distributions and cannot produce 3D profiles. A multitude of development and approaches have
been made to obtain a three-dimensional reduction of the fully molecular solute-solvent MOZ
equation [106, 107, 108, 109] with the most successful approach being the 3D-RISM [110, 97]
which computes the three-dimensional solvent density ρ(r) around a single fixed solute at the origin
recovering the N densties of each site ρi(r).

Beyond the solvation profile, Chandler and Singer [111], and later Kovalenko and Hirata, have
shown that one can obtain analytically the solvation free energy of a solute from the RISM+HNC
and 3D-RISM+KH formalism.

In summary, the RISM approaches enable the fast computation of solvation profiles and solvation
free energies by approximating the MOZ equation with site-site OZ equation (SSOZ) that drastically
simplified the numerical resolution as the original six-dimensional problem has been transformed
into a N times a one- or three-dimensional problem. In principle, this approximation is permitted.
However, there are no guarantees the MOZ closure relations, like PY or HNC, work for the SSOZ
as the diagrammatic development is not proper. RISM+HNC does not have exact virial coefficients,
it predicts wrong dielectric constants, and for a lot of cases the molecule 3D structures are not
respected and it even does not have a solution for a lot of cases. To overcome some of these
problems, multiple phenomenological modifications/corrections have been proposed without any
base in liquid state theories: RISM specific closure relations (eg. KH [97] ), additional Lennard-Jones
site on water’s hydrogen sites (not typically there in most water force field models) or proposal of
bridge functions in r−1.

Nevertheless, as the RISM approaches are numerically cheap, few tens of minutes compared to
hundreds of hours with MD+FEP, and for a long time there were no numerically tractable LST
alternatives, these approaches are gaining in momentum in last few years in the computation of
SFEs, their derivatives and solvation profiles [91, 112, 113, 114, 115, 116]. Also, the RISM approach
can be coupled with (i) ab initio quantum calculations, RISM-SCF/MCSCF [117] or EC-RISM
(embedded cluster RISM) [118], to do QM/LST calculations where the solute(s) is treated with a
quantum model and the solvent with RISM; (ii) with classical simulation (MM/RISM) to provide
solvent effects for example in the conformational sampling of large biomolecules [119]; (iii) with
the generalized Langevin equation (RISM-GLE) to study dynamical processes in solution [120].
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4.2 molecular density functional theory

The density functional theory of classical molecular fluids, in its atomic or molecular version [37,
38, 39], is the cousin of the well-known electronic Kohn-Sham density functional theory [121,
122], extended to finite temperature in the grand canonical ensemble by D. Mermin [123] and
further developed for classical fluids by R. Evans [124, 125]. In the grand canonical ensemble, the
Hohenberg-Kohn theorems can be rewritten as

1. Theorem: For a given fluid, potentially subject to an outside potential, a unique free energy
functional E [ρ] of the fluid can be written.

2. Theorem: This functional is minimal for the fluid density corresponding to the thermodynamic
equilibrium and Ω = min

ρ→ρeq

{E [ρ]} = E [ρeq] is the grand potential of the system.

In consequence, if the exact expression of E [ρ] is known, the grand potential Ω and the equilibrium
fluid density, i.e. the structural and energetic equilibrium properties, can be obtained by the
variational principle. Even though the discovery of the electronic and classical DFT (cDFT) was
quasi-simultaneous, the cDFT did not have the same success as its electronic counter-part. This
was due to the prior existence of methods, such as molecular dynamics (MD) and Monte Carlo
(MC) simulations, for studying systems with N-body in the fields of classical mechanics, that always
stayed ‘reasonably solvable numerically’.

Nevertheless, the solvation free energy of a solute can be defined as the difference of the grand
potential of the solvated system Ω and the grand potential of the bulk solvent. In the cDFT
framework, this difference can be expressed in a functional form :

∆Gsolv = Ω − Ωbulk = min
ρ→ρeq

{F [ρ]} = F [ρeq] (4.3)

where F = E − Ebulk is the free energy functional to be minimized, ρ ≡ ρ(r, ω) the molecular
6-dimensional solvent density characterizing the position and the orientation of the rigid solvent
molecule relative to the rigid solute, and ρeq the equilibrium solvent density. Note, that here we
solve MDFT in its 3D version: r represents the absolute position of a molecule and ω represents
its orientation with respect to a fixed reference and with respect to the solute as in MIET and
MDFT in 1D. In the absence of solute, the equilibrium density is the homogeneous angular and
spatial bulk density ρbulk .

4.2.1 mdft functional

Without approximations, the MDFT functional can be split as follow :

F = Fint +Fext = Fid +Fexc +Fext (4.4)

where Fint = Fid + Fexc is the intrinsic term composed of the ideal term Fid for a fluid of
non-interacting particles and the excess term Fexc that introduces structural correlations between
solvent molecules; and Fext the external term is the direct cost of the interaction of the solute and
the solvent density.

The ideal term reads

Fid = kBT
∫

drdω

[

ρ(r, ω) ln

(

ρ(r, ω)

ρbulk

)

− ∆ρ(r, ω)

]

(4.5)

where kBT is thermal energy (∼ 0.59 kcal/mol or ∼ 2.479 kJ/mol at 300K) and ∆ρ(r, ω) ≡
ρ(r, ω)− ρbulk the excess density over the bulk density.



4.2 molecular density functional theory 25

The external contribution comes from the interaction potential Uext between the solute molecule
and a solvent molecule (the molecule, protein, ligand or their complex, ... embedded in water). It
reads

Fext =
∫

drdωρ(r, ω)Uext(r, ω). (4.6)

Here we study classical solutes so the interaction potential uses the same non-bonded force field
parameters as in a molecular dynamics simulation, typically made of Lennard-Jones (LJ) potentials
and electrostatic interactions. In principle, the solute could be quantic [126].

The excess term describes the effective solvent-solvent interactions, formally known to be an
infinite diagrammatic resummation of virial diagrams, but is not numerically tractable. It may be
written as a density expansion around the homogeneous bulk density ρbulk:

Fexc = − kBT

2

∫

dr1dω1

∫

dr2dω2∆ρ(r1, ω1)

× c(2)(r12, ω1, ω2)∆ρ(r2, ω2) +O(∆ρ3) (4.7)

= − kBT

2

∫

dr1dω1∆ρ(r1, ω1)γ(r2, ω2) +O(∆ρ3)

= FHNC +FB (4.8)

where c(2)(r12, ω1, ω2) is the homogeneous solvent-solvent molecular direct correlation function
with r12 = |r1 − r2|, FB the bridge functional containing all the (unknown) terms of a higher order,
∆ρ3 and beyond, and γ = c(2) ∗ ∆ρ the indirect solute-solvent correlation function defined as the
spatial and angular convolution of the excess density with the direct correlation function c(2), see
eq. 4.1. The second-order direct correlation function of the bulk solvent for a given thermodynamic
conditions c(2) is an input of the MDFT theory and is provided by previous Monte Carlo simulations
coupled to integral equations calculations [17, 18], carefully corrected for finite-size effects [127]
performed for the neat liquid.

If one cuts the expansion at order two in excess density, that is, if one cancels the bridge
functional, one finds that the MDFT functional produces at its variational minimum the HNC
equation for the solute-solvent distribution:

ln g = ln

(

ρ

ρbulk

)

= −βUext + γ. (4.9)

See appendix A for the derivation. The rest of the excess term, the so-called bridge functional
can be approximated empirically [128, 129, 130, 131, 132] or rigorously through higher-order
direct correlation functions that are not numerically tractable as of today. The work in this
thesis is performed with MDFT at its lowest level of accuracy: MDFT-HNC, i.e. with a vanishing
bridge functional (The HNC approximation was initially qualified as the homogeneous reference
fluid approximation (HRF) [133, 134, 38, 93]). This HNC level can only be improved by adding
subsequent, well-funded, bridge functionals. MDFT-HNC can be considered as a rigorous basis that
one can only improve.

4.2.2 mdft algorithm and code

As defined by equation 4.3, once the MDFT functional is defined, to obtain the solvation free
energy of the solute and its equilibrium solvation structure, one needs to minimise it for :

• a given rigid solute, composed of ‘atomic’ sites described by an xyz-position and a partial
charge q and Lennard-Jones parameter σ, ǫ triplet (or a quantum solute, not discussed here
for simplicity)
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• a given rigid solvent (or a mixture of solvents, not discussed here for simplicity) described by
‘atomic’ sites with xyz-position and the {q, σ, ǫ}-triplet, its homogeneous direct correlation
function c(2) and its bulk density ρbulk

This minimisation is done by an in-house MDFT high-performance Fortan95 code developed
by Maxilimilien Levesque, Daniel Borgis et al. which implements the MDFT theory. Figure 4.2
represents the main structure of the MDFT code.

solute.in dft.in

Initialization

Read	input

Initialize	tensors
and

pre-calculate	resuable	data

Initialize	

Evaluate	 	and	

Converged?

Minimize

New	density	

Finding	equilibrium	density Post-processing

Apply	corrections	to	energy

Solvation	free	energy

Equilibrium	solvation	structure

Other	properties

NO

YES

Figure 4.2: Main structure of the MDFT code.

The following four technical details are briefly discussed below :

• Supercell discretisation

• Minimiser

• Variable substitution to avoid unphysical densities

• Convolutions

Supercell discretisation: the six-dimensional tensors of (r, ω) are discretised on a spatial and
an angular grids. The Cartesian Lx × Ly × Lz [Å3] space is discretised on a homogeneous grid of
nx × ny × nz nodes and the angular grid is discretised with the Gauss-Legendre quadrature for
θ ∈ [0, π] and trapezoidal quadratures for φ ∈ [0, 2π] and ψ ∈ [0, 2π

i ] with i the main symmetry
axes of the solvent molecule (i = 2 for water). Furthermore, the angular discretization can be
expressed in terms of the projections onto generalized spherical harmonics Rm

µν [98, 99, 93]. The
number of each angular dimension is linked to the order of the quadrature, nmax. Table 4.1 shows
the equivalence between the value of nmax = mmax and the number of projections and angles for a
solute with C2V-symmetry like water.

C2V symmetry no symmetry

nmax nindependent projections nω nindependent projections nω

1 4 6 10 6

2 14 45 35 75

3 28 84 84 196

4 55 225 165 405

5 88 330 286 726

Table 4.1: Correspondence between value of nmax and number of projections and the number of orientations
nω for a molecule with C2V symmetry and without one.

Minimiser: the MDFT code proposes two minimisers for the functional minimisation: (i) simple
steepest-descent or (ii) limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [135, 136]
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which uses the densities ρi and the gradients ∇F [ρi] (see appendix A) of the past m iterations to
speed up the minimisation.

Variable substitution to avoid unphysical densities: during minimisation, the density variable
ρ(r, ω) can have unphysical negative values, which can also cause the divergence of the minimisation.
To avoid this phenomenon, the density variable is substituted during the minimisation with the
variable ξ, defined by

ρ(r, ω) = ρbulkξ2(r, ω) (4.10)

which can take negative values while the density ρ always stays positive.
Convolutions: the main advantage of MDFT compared to other methods is its speed. The ideal

and external terms are local, therefore their computation time scales linearly with nxyznω with
nxyz = nx × ny × nz and nω = nθ × nφ × nψ. However, the excess term is non-local and involves
the spatial and angular convolution γ = c(2) ∗ ∆ρ. The spatial convolution can be computed
efficiently with fast Fourier transformations (FFT) due to the following property of convolutions

f ∗ g = FT−1[FT( f )FT(g)], (4.11)

i.e. the convolution of real space functions can be computed as the inverse Fourier transformation
(FT) of a simple product of functions in the reciprocal space. In an equivalent manner, the
orientational convolution is replaced by an algebric product between projections. Recently, our
group proposed a similar computation of the angular convolution with the fast generalised spherical
harmonic transformation (FGSHT) [40]. The coupling of these two methods decreases drastically
the computation time of the excess term, which is now in the same order of magnitude as for the
ideal and external terms. This was a major breakthrough which enabled the computation of the
MOZ in the HNC approximation for fully molecular solvents.

4.2.3 free energy corrections

To obtain a final solvation free energy with MDFT-HNC two types of a posteriori corrections need
to be added to the final value of the MDFT functional Fmin obtained by variational minimization :

• standard free energy corrections briefly discussed here

• and pressure correction (PC) due to the HNC approximation discussed in detail in Chapter 8.

Similarly to most MD or MC simulations, MDFT uses periodic boundary conditions (PBC), treats
the van der Waals part of the potential with a cut-off scheme and the electrostatics with Ewald
scheme. Hence, usual free energy correction should be applied to MDFT results to (i) include
the effect of long-range van der Waals interactions (∆GvdW−LR); and for charged systems (ii) a
Madelung-like correction incorporating the contribution of all the periodic images (∆Gelec−B) and
(iii) taking into account the choice of the summing up convention of the solvent charges (∆Gelec−C)
. The corrected MDFT solvation free energy reads,

∆Gsolv = Fmin + ∆GvdW−LR + ∆Gelec−B + ∆Gelec−C + PC. (4.12)

The long-range correction for the Lennard-Jones potential [137] reads

∆GvdW−LR = nbulk

∫ ∞

rc

ULJ(r)4πr2dr

=

nsolute

∑
i

nsolvent

∑
j

16πnbulkǫijσ
3
ij

[

1

9

(

σij

rc

)9

− 1

3

(

σij

rc

)3
]

≈
nsolute

∑
i

nsolvent

∑
j

−16

3
πnbulkǫij

σ6
ij

r3
c

(4.13)
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where ULJ(r) is the Lennard-Jones potential, rc the cut-off distance, nx the number of solute
or solvent sites, ǫij =

√
ǫiǫj and σij = (σi + σj)/2 are the geometric and arithmetic averages

of the Lennard-Jones parameters between the solute and the solvent sites, according to the
Lorentz-Berthelot mixing rules.

The electrostatic corrections for charged systems [138, 139] read

∆Gelec−B =
1

8πε0

(

1 − 1

εr

)

q2

L

[

ξ +
4π

3

(

RI

L

)2

− 16π

45

(

RI

L

)5
]

(4.14)

≈ ξ

8πε0

(

1 − 1

εr

)

q2

L
(4.15)

∆Gelec−C = − 1

6ε0
nbulkγq

[

1 − 4π

3

(

RI

L

)3
]

(4.16)

≈ − 1

6ε0
nbulkγq (4.17)

where ε0 is the vacuum permittivity, εr the relative permittivity of the solvent, q the charge of the
solute, L the box length, RI the ion radius, ξ ≈ −2.837297 the energy per particle in a simple cubic
lattice [140] and γ = Tr(Q) the solvent’s spheropole moment with Q the quadrupole moment of
the solvent molecule. As RI is significantly smaller than the size of the computational supercell, i.e.

RI ≪ L, its quadratic and higher-order values of (RI/L) are considered negligible.

4.2.4 solvation structure

Equation 4.3 states that at the same time as MDFT produces the solvation free energy of
an arbitrarily complex molecule (the value of the functional at its minimum), it produces the
equilibrium solvent structure around this solute (the density that minimizes the functional) in its
full molecular description; the molecular (density reduced) solvent distribution function is given by

g(r, ω) = ρ(r,ω)
ρbulk

. From this full molecular distribution, one can extract more readable information.
For instance, the first moment of g(r, ω) is the three-dimensional scalar field

g(r) =
1

8π2

∫

g(r, ω)dω (4.18)

from which one can derive the usual spherically symmetric radial distribution function gi(r) between
solute and solvent sites or the number density n(r) = nbulkg(r).

Another important quantity embedded in g(r, ω) is the polarization field

P(r) =
µnbulk

8π2

∫

ω̂g(r, ω)dω (4.19)

where µ is the value of solvent molecule dipole moment, ω̂ the unitary vector along the dipole axis
depending on (θ, φ) only. One can also obtain so-called water maps from g(r, ω), catching the
most probable water molecules position and orientation around the solute.

It should be noted that the equilibrium molecular solvent density g(r, ω) is a direct output of
MDFT. This information cannot be obtained with implicit solvent methods, or even with RISM,
and in the case of molecular simulations, one would have to accumulate such data during a long
trajectory, averaging in spatial voxels of typical size 0.1–0.5 Å for a series of orientations. For just
the spatial density profile, this can be tackled nowadays, especially with the recent approach using
an estimator based on forces rather than simple binning to decrease the variance of the estimate
of g [141, 142, 143]. Nevertheless, accumulating data in the full six-dimensional orientation and
position space is a daunting task, even more difficult than computing SFE’s. MDFT produces this
six-dimensional map in the same few minutes as needed to predict the SFE.
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4.3 correspondence between miet and mdft

The direct connection between MIET, and its approximate RISM, and MDFT might seem non-
existent. However, starting from the generalized MOZ of multicomponent systems,

hµν(12) = cµν(12) + ρ ∑
λ

xλ

∫

hλν(13)cµλ(23)d3 (4.20)

where xλ = Nλ/N is the fraction of species λ ∈ [1, n]; the coupled MOZ relations for a
homogeneous two-component solute-solvent mixture, where the solute M is infinitely diluted
(xM → 0) in the solvent S (xS → 1), can be written as

hSS(12) = cSS(12) + ρ

∫

hSS(13)cSS(23)d3 (4.21)

hSM(12) = cSM(12) + ρ

∫

hSS(13)cSM(23)d3 (4.22)

hMS(12) = cMS(12) + ρ

∫

hMS(13)cSS(23)d3 (4.23)

hMM(12) = cMM(12) + ρ

∫

hMS(13)cSM(23)d3. (4.24)

Eq. 4.21 is the MOZ equation for bulk solvent. Eqs. 4.22 and 4.23 are equivalent and describe
the correlation between the solute and the solvents molecules. Eq. 4.24 is the MOZ equation for
the solute-solute correlation which is rarely used in (M)IET as HNC closure relation is insufficient
for describing the solute-solute correlations.

The MDFT excess functional, eq. 4.8, can be deduced from eq. 4.23 if one imposes the HNC
approximation, i.e. FB = 0.

To remember

The aim of this thesis is to compute hydration free energies accurately but

very efficiently. The reference of speed are emprical continuum models that lack

accuracy and the exact free energy perturbation approach is very time-consuming.

The liquid state approach offers a compromise between speed and accuracy.

Here, we presented two ways to study solvation by the resolution of the molecular Ornstein-
Zernike integral equation by either approximating it by site-site correlations (RISM) or by
resolving it rigorously at the hyper netted-chain approximation level in the density functional
formalism (MDFT). They are approximate theories that give a good compromise between
speed and accuracy with a main disadvantage: the solute is rigid.



RECAP ITULAT ION OF PART I

To recapitulate the presentations of three families of methods to compute solvation free energies:

• Polarizable continuum models (PCM) are the reference for speed (seconds) but as they do
not include any structural informations of the solvation they are prone to be inaccurate

• Free energy perturbation simulations (MD+FEP) are the reference for accuracy as they are
exact in the force field approximation but their use is limited by their large computation times
(tens/hundreds of hours)

• Liquid state theories (LST) are approximate theories that compute solvation free energies of
rigid solutes with a compromise between speed (minutes) and accuracy.

Figure 4.3: Illustration of accuracy-computation time trade of the solvation free energy methods. Creation
by Anton Robert.

A main disadvantage of LST is that predict the SFE for a single conformer, i.e. a rigid solute. From
this arises three important points:

• Is solute flexibility important when computing SFEs?

• If yes, how to take the effect of into account in LSTs?

• To correctly evaluate and develop the approximations in LSTs, one need rigid solute reference
data.

These points are addressed in the following part.
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Part II

HYDRATION WITH H4D -MC

This part presents how to compute solvation free energies of rigid and flexible solutes
with H4D/MC.

Chapter 5 focuses on rigid single conformer solutes. It includes a parameter analysis to
optimise the statistical efficiency of the hydration free energy calculation and presents the
HFE results from simple (charged) spherical solutes to a set of small organic molecules
of the FreeSolv database.

In chapter 6, the H4D-MC method is extended to flexible solutes. This chapter focuses
on methodological developments and technical aspects for computing efficiently HFEs
of flexibles solute with H4D-MC.

Chapter 7 presents a chemoinformatics analysis of the solute flexibility of small drug-like
molecules. We quantify at which point solute flexibility is important in HFE calculations
of the FreeSolv database and define a sub-set of ‘rigid’ molecules, i.e. solutes for which
flexibility does not affect the HFEs that can be used as a reference database for single
conformer SFE methods. Additionally, we try to identify solute features for which solute
flexibility is needed.



5
RIG ID SOLUTES

Why this chapter?

In order to develop single conformer SFE methods, one needs to have rigorous

reference data for rigid solutes. However, most MD(+FEP) codes are written for

flexible solutes and thus one needs to apply constraints in order to compute SFEs

of rigid molecules. Is there a way to compute exact SFEs of rigid solutes more

efficiently?

In this chapter, we show how to compute efficiently HFEs of simple neutral and charged
spherical solutes and small rigid molecules with the H4D-MC approach. The first part
of the chapter includes a parameter analysis of the H4D-MC method and comparison of
computation times to the classic MD+FEP approach, before showing the results for the
spherical solutes and small organic molecules.

As mentioned in chapter 4.2, MDFT calculations are done with a single conformer rigid solute,
and we need accurate and precise rigid solute single conformer reference data to correctly evaluate
and develop the MDFT approach. To produce this reference data we developed and used an
original approach: the ‘hybrid 4th dimension Monte Carlo’ (H4D-MC) [36] and its in-house code.
We originally choose to use H4D-MC as it was written for rigid molecules whereas most of the
well-known commercial or open-source MD codes are written for flexible solutes and needs to use
constraints to obtain a rigid solute. But as shown in the following chapters, we discovered H4D-MC
to be a very efficient alternative to classic MD+FEP simulations when computing HFE of rigid and
flexible solutes.

The principle of using H4D-MC approach for solvation free energy calculations was presented in
sec. 3.2.2, and in algorithms 3.3 and 3.4. Briefly, as a reminder, (i) it propagates two equilibrium
simulation with MC, one of bulk solvent and one with the solvated solute, (ii) periodically introduces
or removes ‘slowly’ the solute from the simulation box with a short non-equilibrium MD simulation
in a 4thdimension where the ‘distance’ to the simulation box is imposed by time-dependent coupling
parameter w(t), and (iii) computes the excess chemical potential of the solute, i.e. the solvation
free energy, work needed to insert or destruct the solute with Jarzynski principle.

This thesis project was the first time that the H4D-MC approach was used to systematically
compute solvation free energies as it was originally written for grand canonical µVT simulation.
Therefore, the first section of this chapter is a systematic analysis of the H4D insertion/destruction
parameters. The second and the third sections, present HFE calculation results for (i) neutral and
charged spherical solutes, and (ii) molecular solutes, respectively.

5.1 analysis of insertion/destruction parameters

A systematic analysis of MD simulation parameters of the H4D insertion/destruction (ins/des)
process was done to determine optimal values to minimize the statistical error with the minimal
simulation time. This analysis was done on the amitriptyline molecule (FreeSolvID: 5282042 [144],
sec. C for more information of the FreeSolv database) represented in fig. 5.1. It is the largest solute,
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by site number (44), of the FreeSolv database with a partial molar volume VPM ∼ 335 Å3 (this
value is evaluated from a fast nmax = 1 MDFT calculation, see eq. 8.3) and largest intramolecular
distance dmax equal to 11.7 Å.

Figure 5.1: Amitriptyline 2D- and 3D-structure.

The five simulation parameters were :

• simulation box size with four different number of the solvent molecules: N = 50, 100, 200

and 400, which correspond to L ≈ 11.5, 14.5, 18.2 and 23.00 Å and V ≈ 1500, 3000, 6000

and 12000 Å3 for the bulk solvent

• relaxing the simulation box volume with the solute’s partial molar volume during insertion/de-
struction or not (*)

• maximal “altitude” in the 4th dimension for the solute: wmax = 2, 3 or 5 Å

• insertion/destruction speed: v = 0.1, 0.05 or 0.10
√

kT
M , i.e. 3.7 × 10−5, 1.9 × 10

−4 or

3.7 × 10−4 Å/fs

• MD time step of ins/des process: ∆t = 0.01, 0.02 or 0.04
√

M
kT Å, i.e. 2.7, 5.4 or 10.8 fs

(*) The propagation is done with a NPT MC simulation but in the basic case the out-of-equilibrium
MD trajectory is done without a thermostat and with a fixed volume. An additional option changes
the volume of the box with V ± V0

t
tmax

during the insertion (+) and the destruction (−) to help
the solvent relaxation. V0 is a arbitrarily volume chosen at the beginning. Closer it is to the partial
molar volume of solute better the statistics will be. Note that this changes the definition of the work

in the Jarzynski equation (eq. 3.14) from ∆H to ∆H + PV0 + N ln
(

V+V0
V

)

with P the system
pressure.

Table 5.1 recapitulates the evolution of the amitriptyline’s HFE, its error bars, and the computation
time as a function of these simulation parameters. Figures 5.2 and 5.3 plot the evolution of the
HFE and the evolution of the insertion and destruction distributions pins(∆H) and pdes(∆H),
respectively. Narrower and more gaussian-like the distribution and larger the overlap between them
is, better the statistics will be.

First of all, as the H4D-MC uses Ewald method for both the electrostatics and the Lennard-Jones
(LJ) part, the simulation supercell can be smaller than in most MD and MC codes where the
minimum box size is L ≥ 2rLJ−cutoff ? 20 Å with rLJ−cutoff is LJ cut-off radius, typically ∼ 10 Å.
Also, most codes use tin-foil conditions for the electrostatic Ewald summation, i.e. the relative
permittivity of the imaginary surface ε′ around the infinity system created by the periodic supercells
is set to ∞ , which sets the dipole correction of the Ewald summation to zero. In H4D-MC this
quantity ε′ set to the closest possible to the systems dielectric constant, eg. ε′ = 99 the dielectric
constant of TIP3P bulk water. This improves the quality of the Ewald summation even at small
cut-off distances at least for neutral solutes.

Nonetheless, the insertion of a “large” solute like amitriptyline, with a VPM that is over 10% of the
initial bulk box of 100 water molecules, the destruction and especially the insertion statistics with a
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N wmax [Å] v

[

√

kT
M

]

∆t

[

√

M
kT Å

]

V0 [Å3] ∆G100 ∆G1000 ∆G3000 ∆G5000 t100 MC+1MD [CPU.s]

100 3 0.05 0.02 335 −10.21 ± 0.88 −8.13 ± 0.32 −8.13 ± 0.21 −8.00 ± 0.17 2+20=22

100 3 0.05 0.02 0 −5.16 ± 103 −8.27 ± 16 −7.23 ± 5.93 −6.93 ± 4.44 2+20=22

100 5 0.05 0.02 335 −7.59 ± 0.66 −8.06 ± 0.30 −8.23 ± 0.18 −8.34 ± 0.14 2+30=32

100 3 0.01 0.02 335 −7.98 ± 0.25 −8.10 ± 0.08 −8.19 ± 0.05 −8.15 ± 0.04 2+73=75

100 3 0.10 0.02 335 −7.91 ± 40 −10.70 ± 1.05 −8.07 ± 0.53 −8.36 ± 0.43 2+6=8

100 3 0.05 0.01 335 −7.64 ± 2.07 −8.07 ± 0.44 −8.37 ± 0.22 −8.24 ± 0.18 2+37=39

100 3 0.05 0.04 335 −8.85 ± 106 −8.27 ± 104 −6.38 ± 103 −6.33 ± 103 2+9=11

50 3 0.05 0.02 335 −9.25 ± 4.99 −7.40 ± 0.53 −7.34 ± 0.31 −7.50 ± 0.22 1+10=11

200 3 0.05 0.02 335 −8.96 ± 1.85 −8.06 ± 0.36 −8.10 ± 0.18 −8.13 ± 0.17 5+46=51

400 3 0.05 0.02 335 −10.59 ± 0.79 −8.74 ± 0.50 −7.98 ± 0.29 −7.75 ± 0.20 15+112=127

Table 5.1: Amitriptyline: evolution of H4D-MC hydration free energy and computation times as a function of the simulation parameters and number of accumulations. ∆Gx

corresponds to the HFE obtained after x iterations of 100 MC cycles of simulation box propagation and one MD insertion/destruction process. Hydration free
energies in kcal/mol and CPU-times as a sum of 100 propagation MC cycles and 1 MD insertion/destruction.
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Figure 5.2: Evolution of the HFE of amitriptyline as a function of simulation parameters and the number of
accumulations.

very wide pins(∆H) and little to none overlap between the insertion and destruction distributions
as it can be seen in fig. 5.3b. This leads to very large statistical errors of the HFE even for long
accumulations as the solvent molecules do not have the place to correctly relax in fixed volume.
This problem was overcome by the addition of a new feature, that imposes the increase/decrease
(linear in time) of the supercell volume by V0, a value close to the solute volume, during the ins/des
process, thus helping the simulation box relaxation and improving drastically the statistics (see figs.
5.2 and 5.3a.).

Three other simulation box sizes, N = 50, 200 and 400, were tested to verify that there are no
finite-size effects. As can be seen in figs. 5.3a,d,e and f, all four box sizes give similar pins(∆H)

and pdes(∆H) profiles. In fig. 5.2 it can be seen that HFEs for simulation boxes with N ≥ 100

converge to the same value, hence confirming that a small box of 100 water molecules is large
enough for a neutral molecule of 44 atomic sites. This is a great advantage of the method as the
computation time increases with N2. As a comparison, the FreeSolv MD+FEP calculation of the
amitriptyline was done in a supercell of 2366 water molecules (L ≈ 41 Å).

Secondly, the starting/ending ‘altitude’ in the 4th dimension during the ins/des process, should
be large enough so that there is no important solute-solvent overlap at wmax, at least larger than
max{σi/2} with σi LJ diameter of the site i (max{σi/2} = 1.7 Å for amitriptyline). On the
other hand, large values of wmax increase the computation time, as it increases linearly with wmax,
for little to none improvement in the statistics. Three values were tested. The overlap between
solute and solvent molecules were too big for the smallest one, wmax = 2 Å, leading to unstable
simulations. When comparing results for wmax = 3 and 5 Å, we can see a slightly better overlap
between pins(∆H) and pdes(∆H) for 5 Å than 3 Å (figs. 5.3a and c), leading to slightly better
statistics (fig. 5.2 and table 5.1). However, the improvement is so slight that it does warrant the
increase of computation time by a factor 1.6.

The third parameter to be determined was the insertion speed v, with three values at 0.01, 0.05

and 0.10 in the code’s intrinsic units of
√

kBT/M with M = 18 g/mol the molar mass of water
molecules. These values correspond to v = 0.37, 1.9 and 3.7 × 10−4 Å/fs, in more classical units.
This parameter seems to have the most important effect on the statistics. In figs. 5.3a,g and h, we
see that the width of the distributions decreases and the overlap increases significantly, with the
decrease of the ins/des speed, and thus leads to better statistics as seen on the error bars in fig. 5.2.
The very slow speed of ins/des, v = 0.01, gives clearly the best statistics. However, this comes with
a great computational cost as there is a factor five between v = 0.01 and 0.05

√
kBT/M. Hence

we chose to use v = 0.05 as a compromise between precision and speed, as v = 0.10 was too fast
producing no overlap at all between the distributions and thus producing bad statistics. It should
be noted that the amitriptyline was one of the few solutes for which good statistics were hard to
obtain. The average statistical error for the FreeSolv database, with v = 0.05

√
kBT/M and 3 000

accumulations was 0.03 kcal/mol. We also preferred to use v = 0.05 to be consistent with the
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Figure 5.3: Evolution of the pins(∆H) (red) and pdes(∆H) (turquoise) as a function of simulation para-
meters and the number of accumulations.
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flexible solute calculations of the following chapter, where a larger number of accumulations is
favoured to better sample the solute conformers.

For the MD time step, the two smallest values ∆t = 0.01 and 0.02
√

M/kBTÅ (∆t = 2.7 and
5.4 fs) give similar distributions (figs. 5.3a and i) and thus similar statistics (fig. 5.2). Note that both
values are already larger than the typical MD time step of ∆t = 2 fs = 0.007

√
M/kBTÅ. Using

larger time step, 0.04
√

M/kBTÅ (= 10.8 fs), gives the widest and most separated pins(∆H)

and pdes(∆H) distributions, leading to huge error bars. Hence, we chose ∆t = 0.02
√

M/kBTÅ as
default time step for optimal statistics and minimal computation time.

Note that all the simulations converge, with 3000 sampling points, to the same value with
exception of simulations with V0 = 0 and ∆t = 0.04

√
M/kBTÅ for which the error bars are too

large to conclude anything, and for the smallest simulation box, N = 50, for which the bulk box
length was smaller than the largest intramolecular distance of amitriptyline, so problems should be
expected. Even in those cases, the predicted HFEs are within 2 kcal/mol of the other predictions.

All following H4D-MC simulations are done with the reference parameters of N = 100, wmax = 3

Å, v = 0.05
√

kBT/M, ∆t =
√

M/kBTÅ and V0 ∼ VPMV for molecular solutes and V0 = 0

for small spherical solutes. There is a small improvement of the error bars when increasing the
accumulation from 2 × 3 000 to 2 × 5 000 but does not warrant the increase of computation time
from ∼ 36h to ∼ 53h. Moreover, as mentioned before, the mean statistical error with 3 000

accumulations is 0.03 kcal/mol for the FreeSolv database. Full simulation details are given in
appendix D.

5.1.1 computation time

With these reference parameters and 3 000 accumulations, the computation of an SFE takes ∼ 18

hours (wall-clock time) if the insertion and the destruction simulations are done in parallel on a
single core each (∼ 36 CPU.h). The FreeSolv’s MD+FEP calculation done with Gromacs (v.2018.3)
[145, 146, 147, 148, 149] of the amitriptyline was done in a simulation box of length 41 Å. It leads
to a wall-clock time of ∼ 11 hours (∼ 220 CPU.h) if the K = 20 states are simulated in parallel,
5 ns propagation per state, on a single core each. This leads to a speed-up of ×6 when comparing
H4D/MC and MD+FEP CPU-computation times. Note that the MD+FEP calculation was done
with a flexible solute, for a rigid solute the sampling could be potentially decreased thus reducing
the computation time.

Moreover, contrary to molecular dynamics based MD+FEP calculations, H4D-MC can be, in
principle, infinitely parallelised. For the Gromacs MD+FEP calculation, each λ can be run as a
separate simulation and the simulation box of L = 41 Å can be efficiently parallelised of 16 cores.
Thus a single MD+FEP SFE calculation can be parallelised efficiently on a maximum of 320 cores,
leading to a wall-clock time of ∼ 1h45 (∼ 545 CPU.h). On a typical laboratory cluster of 64 cores,
one can run four separates λs in parallel with 16 cores for each simulation leading to a wall-clock
time of ∼ 8h30.

Currently, the H4D-MC code is not parallelised and for each SFE calculation, it uses two cores
(one for the insertions and another for the destructions). However, each ins/des out-of-equilibrium
simulation is independent and could be performed on a separate core. Moreover, as the propagation
is done with MC and we are not interested in dynamical quantities, like correlation times, even the
propagation could be done with several parallel simulations of the bulk solvent and the solvated
system. In fig. 5.4, we show the evolution of the wall time as a function of the total number used
and the number of cores used for propagation. The figure is plotted for the reference parameters
defined in the previous section for 2 × 3 000 accumulations and takes into account the 3 minutes
used for initialisations and equilibration (10 000 MC cycles).

On a large cluster of 1024 cores, without any parallelisation of the propagation the wall-clock
time is ∼ 1h45, and if one parallelises the propagation to 2 × 32 cores the wall-clock time should
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Figure 5.4: Evolution of H4D-MC wall-clock time as a function of the total number of cores. Each line
corresponds to a different number of cores used for propagation. The light and dark rose
indicates wall times under 1 and 2 hours respectively.

be only ∼ 10 minutes. On a typical laboratory cluster of 64 cores, the wall-clock time should be
∼ 2h15 and ∼ 40 minutes without and with the parallelisation of the propagation on 2 × 32 cores,
respectively. This leads to a speedup of ∼ 4 and ∼ 13, without and with the parallelisation of the
propagation, of the wall-clock time when computing SFEs with H4D-MC compared to computing
them with MD+FEP on a typical laboratory cluster.

All computation times were estimated on a cluster of Intel Xeon CPU E5-2690 v4 @ 2.60GHz

CPUs.

5.2 spherical solutes

5.2.1 hydrophobic solutes

First, we H4D-MC computed the HFEs of simple hydrophobic spherical solutes, noble gases and
unified-atom methane and neopentane, to test the H4D-MC code by comparing them to MD+FEP
calculation done with Gromacs. The H4D-MC calculations were done with the parameters defined
in the previous section and the Gromacs calculations with the parameter files given by FreeSolv
with 884 solute molecules (L ≈ 30 Å). V0 was set to 0 for all solutes except the neopentane for
which it was set to 120 Å. The hydration free energies are computed in TIP3P water [28]. Table
5.2 recapitulates the force field parameters and calculated HFEs of the hydrophobic solutes. As the
fig. 5.5a shows, H4D-MC reproduces well the HFEs obtained with the classic MD+FEP approach.

Hydration free energy [kcal/mol]

Solute σ [Å] ǫ [kJ/mol] ∆GExp [150] ∆GMD+FEP ∆GH4D−MC

Neon 3.035 0.15432 2.48 2.68 ± 0.02 2.66 ± 0.04

Argon 3.415 1.03931 1.99 1.99 ± 0.01 2.05 ± 0.04

Krypton 3.675 1.40510 1.66 1.79 ± 0.01 1.81 ± 0.04

Xenon 3.975 1.78510 1.45 1.59 ± 0.01 1.62 ± 0.05

Methane 3.730 1.23000 2.04 ± 0.01 2.14 ± 0.04

Neopentane 6.150 3.49000 −0.33 ± 0.01 −0.22 ± 0.09

Table 5.2: Lennard-Jones force field parameters and hydration free energies of rare gases and unified
methane and neopentane molecules.
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Figure 5.5: Correlation between HFEs obtained with H4D-MC and MD+FEP of (a) hydrophobic spheres
and (b) monovalent ions (cations in purple and anions in turquoise).

5.2.2 monovalent ions

Next, we computed the HFEs for a series of spherical monovalent ions with H4D-MC. The force
field parameters of these ions are given in table 5.3 [151]. Reference calculations were done with
Gromacs with the parameter files given by FreeSolv with 2164 solute molecules. To study finite-size
effects of charged systems we performed the HFE calculations for the sodium and chloride ions with
four different box sizes: N = 50, 100, 256 and 400 (L ≈ 11.5, 14.5, 20 and 23 Å). As we simulate
charged systems with periodic boundary conditions, we should apply Hünenberger’s finite-size
corrections to the results [139, 138] (cf. 4.2.3). Note that, in the Ewald implementation of H4D-MC,
the self-energy correction of the first term of eq. 4.14 (q2ξ/8πε0 ) is already accounted for. In
fig. 5.6, we plot these ‘brute’ HFEs, with the self-correction, and with the rest of the ‘type B’
correction with ionic radii that vary from 0 Å to 3.0 Å. Firstly, the brute results seem to converge
for relatively small boxes, N = 256, as the deviation to the largest box are below 0.1 kcal/mol and
even with only 100 water molecules, HFEs are close to the converged value.
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Figure 5.6: Evolution of H4D-MC HFE of sodium (left) and chloride (right) ions as a function of simulation
box length. Turquoise data correspond to the ‘brute’ results and other to ‘typeB’ corrected
HFEs with different ionic radius.
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Contrary to what Hünenberger et al. claim, we found large variations to the HFE depending on
the ionic radii used in the ‘type B’ correction. Moreover, the ionic radius that produces a plateau
and therefore corrects for the finite-size effects, R ≈ 1.5 Å for both ions, does not correspond to the
usual way to define an ionic radius from the first peak of the radial distribution function, RNa ∼ 2

Å and RCl ∼ 3 Å. For both cases, if we use the ionic radius defined from the gion−O (dashed line
in fig. 5.6) the quality of size convergence decreases significantly. As we are not convinced by
the pertinence of radius dependant terms in the ‘type B’ correction and our brute results seem
to converge for relatively small box sizes, we decide not to apply the radius dependant ‘type B’
correction terms to our future results. We found, similar problems with the radius dependence
of ‘type C’ correction, i.e. convergence improved for radii close to 1 Å instead of the 2 or 3
Å expected for which the convergence is degraded compared to brute results. Thus, only the
non-radius-dependent part of the ‘type C’ correction is applied, −17.8q kcal/mol for TIP3P water.

Figure 5.5b plots the correlation between HFEs obtained with the MD+FEP and H4D-MC
approach, and table summarises 5.3 the HFEs for the full series monovalent ions. The H4D-MC
calculations were done with N = 400 to be sure.

Ion σ [Å] ǫ [kJ/mol] R [Å] ∆GMD+FEP ∆GH4D−MC

F- 3.434 4.654 × 10−1 2.7 −95.9 ± 0.1 −95.6 ± 0.1

Cl- 4.394 4.160 × 10−1 3.1 −70.8 ± 0.1 −68.6 ± 0.1

Br- 4.834 2.106 × 10−1 3.2 −65.7 ± 0.1 −62.2 ± 0.1

I- 5.334 1.575 × 10−1 3.4 −59.0 ± 0.1 −54.0 ± 0.1

Li+ 2.874 6.154×10−4 1.9 −133.3 ± 0.2 −133.2 ± 0.2

Na+ 3.874 idem 2.2 −109.0 ± 0.1 −108.6 ± 0.1

K+ 4.543 idem 2.4 −95.2 ± 0.1 −92.8 ± 0.1

Cs+ 5.173 idem 2.6 −85.4 ± 0.1 −81.6 ± 0.1

Table 5.3: Force field parameters and hydration free energies (in kcal/mol) of monovalent ions.

5.2.3 {q, σ, ǫ}−spheres

In the previous two sections, we tested and confirmed the functioning of H4D-MC to compute SFE
with an exact comparison of H4D-MC results to classical MD+FEP results. These results will be
used as reference data for an MDFT-HNC benchmark in chapter 9. This analysis will show that
MDFT in the HNC approximation somewhat struggles to predict the HFEs of anions especially and
does not capture correctly the solvation profile around hydrophobic and hydrophilic solutes. To
correct these, the next step will be the development of a solute-independent bridge functional. A
first step in the goal of developing a bridge functional is to compute the bridge function which is
defined from

gsim = e−βU+hsim∗c+b (5.1)

In this aim, we computed reference HFEs and molecular solvation profiles for a large range
of spherical solute with σ varying from 1.0 to 4.0 Å with steps of 0.5 Å, ǫ varying from 0.1 to
2.1 kJ/mol with steps of 0.2 kJ/mol and charges varying from -1.0 to +1.0 e with steps of 0.2
e. The σ and ǫ ranges correspond to values present in the GAFF force field. The HFEs of these
{q, σ, ǫ}−triplets are given a file at github.com/sohviluukkonen/Thesis.

github.com/sohviluukkonen/Thesis
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5.3 molecular solutes - freesolv

The FreeSolv database, a widely used reference database produced by Mobley et co-workers [152,
144], contains HFEs obtained by experiments and state-of-the-art MD+FEP calculations for 642
small neutral organic molecules. However, as mentioned before, MDFT calculations are done with
a single conformer rigid solute, and we need accurate and precise rigid solute single conformer
reference data to correctly evaluate and develop the MDFT approach. Therefore we recomputed
the HFEs of the FreeSolv database with rigid solute, with and without partial charges, for the
initial configuration given in ref. [144]. Same non-bonded force fields parameters, GAFF (v1.7)
[153] with AM1-BCC [154, 155] partial charges for the solutes and TIP3P [28] for the water.

Figures 5.7a and 5.7b show the correlations between HFEs obtained with rigid solute H4D-MC
and flexible solute MD+FEP methods as given in ref. [144] for the whole FreeSolv database without
and with partial charges. For most of the solutes, flexibility is not a very important factor in the
HFE calculation as the correlation between the rigid and flexible solute calculations are high with
small discrepancies.
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Figure 5.7: Correlations between HFEs obtained with rigid solute H4D-MC and flexible solute MD+FEP
calculations for the FreeSolv database (a) without and (b) with partial charges.

For the hydrophobic solutes (fig. 5.7a) , the deviations between rigid and flexible results are
especially with an MAE of 0.1 kcal/mol, no deviations above 1 kcal/mol, and 66% of the solutes
(421) with deviations below 0.1 kcal/mol. The criterion of 0.1 kcal/mol was chosen as (i) it
corresponds to the statistical error of these methods and (ii) we want to develop a theory with a
precision of 0.1 kcal/mol. For most of the solutes with partial charges solute (fig. 5.7b), flexibility
is not important as 46% of the solutes (295) have deviations lower than 0.1 kcal/mol. These
molecules will be considered completely rigid concerning the HFE, i.e. solute flexibility does no
affect at all on HFE prediction. However, the MAE of 0.41 kcal/mol, even if it is smaller than
the experimental precision of ∼ 0.5 kcal, is significantly higher than the statistical errors of the
rigid H4D-MC and flexible MD+FEP methods. The effect of solute flexibility and how to treat in
H4D-MC are discussed in details in the following chapters.



42 rigid solutes

To remember

In order to develop single conformer SFE methods, one needs to have rigorous

reference data for rigid solutes. However, most MD(+FEP) codes are written for

flexible solutes and thus one needs to apply constraints in order to compute SFEs

of rigid molecules. Is there a way to compute exact SFEs of rigid solutes more

efficiently?

Here, We showed that the HFEs of spherical model solutes and small rigid molecules can be
rigorously calculated with the H4D-MC approach leading to a speed-up of 6 times when
compared to the classic MD+FEP approach. As a result, we now have produced rigorous
reference data for single conformer SFE approaches. In the next chapter, we implement
solute flexibility to H4D-MC to verify that we recover the flexible solute results obtained
with MD+FEP.



6
SOLUTE FLEX IB IL ITY IN H4D -MC

Why this chapter?

There are some divergences between rigid solute H4D-MC and flexible solute

MD+FEP hydration free energies. Are these deviations due to solute flexibility

or due to problems in H4D-MC?

In this chapter, we extend the H4D-MC approach to flexible solutes. It presents the theoret-
ical development made to H4D-MC to enable the use of flexible solutes and the tricks to
compute solvation free energies of flexible solutes efficiently.

The H4D-MC theory and code were originally written for grand canonical µVT simulations with
a fluctuating number of rigid particles/molecules [36]. Then it was modified to measure the excess
chemical potential due to the insertion/destruction of a rigid single conformer solute. During this
thesis, the theory and code were extended to more realistic, flexible solutes. The first section of
this chapter introduces the theoretical methodology to perform flexible solute simulations with
H4D-MC, the second part presents some techniques to optimise the statistics and the last section
presents the comparison of the two methods presented in the first section.

6.1 solute flexibility in h4d-mc

In the most general case, the total energy (potential and kinetic) difference between the final
(solute in solvent) and initial (bulk solvent + solute in vacuum) states of a solvation free energy
process reads

∆H = H(w = 0)− H(w = ∞)

= HN(0)− HN(∞) + HM(0)− HM(∞) + vcross(0)− vcross(∞)

= HN(0)− HN(∞) + HM(0)− HM(∞) + vcross (6.1)

where HN(∞) and HN(0) are the internal energies of the system when the solute does not interact
with the solvent (w = ∞) and is fully interacting with the solvent (w = 0). These energies can
be decomposed into three terms : the total energy of the N solvent molecules and their kinetic
energy, the total energy of the solute molecule M and the cross interaction between the N solvent
molecules and the solute M. By definition, the cross term at infinite limit is null, vcross(∞) = 0.

In the case of the simple Widom test particle method [68], the passage from ∞ to 0 is
instantaneous, i.e. the solute or the solvent does not have time to relax (HN(∞) = HN(0)

and HM(∞) = H(0)), thus ∆HWidom = vcross. In the case of H4D-MC with a rigid solute
considered up to now, the solvent relaxation is permitted during the insertion/destruction, but
the solute is kept rigid during the ins/des process (during propagation the solute may be flexible)
yields ∆Hrigid = HN(0) − HN(∞) + vcross. In the case where the solute can relax during the
insertion/destruction process the energy difference ∆Hflex is given by equation 6.1.

There are two ways to take solute flexibility into account during an H4D-MC hydration free
energy calculation:

43
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1. as a combination of multiple single conformer calculations, i.e. the solute conformers are
propagated in vacuum and solvent during the MC cycles but kept rigid during the ins/des
process (∆Hrigid)

2. as a fully flexible simulation, i.e. the solute conformers are propagated in vacuum and solvent
during the MC cycles and subject to relaxation during the ins/des process as well (∆Hflex).

Both approaches should give the same results but we hope that the latter approach would improve
the statistics compared to the former one.

The solute internal energy is defined with the same bonded and non-bonded force field parameters
and equations as in any classical MD or MC simulations: Lennard-Jones and Coulombic potential
for the non-bonded part, with the exclusion of “1-4” interactions, i.e. interactions between solute
sites separated by less than 3 bonds are not accounted for; and the bonds, angles and dihedrals
(proper and improper) are defined with the following harmonic potentials

Ubond(rij) = kr(r − req)
2

Uangles(θijk) = kθ(θ − θeq)
2

Udihedrals(φijkl) = kφ(1 + cos (nφ − φs))
2 (6.2)

where kx is the force constant of harmonic potential, req and θeq the equilibrium bond distance and
angle, and n and φs the multiplicity and phase of the dihedral. In principle, this flexible molecule
approach could be applied to the solvent too, but as we study hydration and most of the water
force fields are for a rigid molecule there is no need (for now) to do it.

6.2 simulation parameters related to flexibility

For flexible solutes, the MC propagation works the same as before except that, now, the shifting of
solute sites are also considered, with force-bias as before, with a maximum displacement ∆rmax. As
the intramolecular forces vary faster than the intermolecular one, one needs to choose a smaller
value for the solute site displacement ∆rsolute sites

max than for solvent molecule translation ∆rH2O
max = 0.3

Å. We found that ∆rsolute sites
max = 0.1 Å leads to acceptation probabilities close to ∼ 40% and was

chosen as the default value. Setting ∆rsolute sites
max to 0, leads to a rigid solute.

By default, the probability to move a solvent molecule or a solute site is equivalent. However,
for some solutes, we observe very long propagation times to sample some rare conformers and
conformers with high energy barriers. For example, the diflunisal molecule (FreeSolvID: 6055410,
the molecule with the largest deviation between a rigid H4D-MC and flexible MD+FEP calculation)
have two main conformers: one with an intramolecular H-bond and one without. They are illustrated
in figs. 6.1a and 6.1b. Figure 6.1c shows the internal energy of a flexible diflunisal molecule in
water as a function of MC cycles for a total of 106 MC cycles. As it can be seen, even for a relative
long simulation time, the conformers with an intramolecular H-bond are almost exclusively sampled
even though one could expect the conformer without the intramolecular H-bond to be favourable
in water as the H-bonds between the solute and the solvent stabilise the solvation.

To improve the conformational sampling in solution, an option for preferential displacement
pH2O/solute−site was implemented, i.e. the possibility to change the relative probabilities to move a
solvent molecule or a solutes site. Figure 6.1d shows that the sampling of solute conformers in
solution is drastically improved by increasing the probability to move a solute site by five compared
to a solvent molecule (pH2O/solute−site = 1/5). Both states are sampled with slightly more weight
on the states with an intramolecular H-bond, for no increase in computation time. The value
pH2O/solute−site = 1/5 is set to be the default value for flexible solute simulations as a compromise
of sampling flexible solute conformers but also letting the solvent structure propagate between
solute destructions.
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Figure 6.1: Illustration of diflunisal conformers (a) with (Uint ∼ −25 kcal/mol) and (b) without an
intramolecular H-bond (Uint ∼ −35 kcal/mol) . Evolution of the diflunisal internal energy in
solution as a function of the MC cycles for (c) pH2O/solute−site = 1 and (d) pH2O/solute−site =
1/5.

Still, accumulating 3 000 ins/des process (same the number of accumulations used for the
rigid solute calculations in the previous chapter) with an interval of nH2O

MC = 100 MC cycles leads
to 3 × 105 MC cycles in total, for which the sampling of diflunisal conformers is rather poor as
illustrated in fig. 6.1d. Therefore, for the case of destruction, the accumulation interval is extended
to nH2O

MC = 1 000 MC cycles, to improve sampling, which increases the destruction simulation
computation time by two (∼ 33 cpu.h). For the insertions, the interval for the bulk solvent is kept
at 100 MC and the vacuum conformers, for which the propagation is computationally very cheap,
are obtained with a separate MC simulation with an accumulation interval of nvacuum

MC = 104, i.e.

each vacuum conformer is obtained with nvacuum
MC × nsolute sites elementary displacement attempts.

Figures 6.2a and 6.2b show the evolution of the internal energy of the diflunisal in solution
(nH2O

MC = 1 000) and in vacuum (nvacuum
MC = 104), respectively. For the diflunisal, in solution, both

conformers are present, whereas, in vacuum, the molecule stays in the more stable conformer with
the intramolecular H-bond. These results are expected as the two states are separated by ∼ 10

kcal/mol (∼ 16 kBT) which (i) is a relatively high energy difference to overcome in vacuum and (ii)
makes the intramolecular H-bond conformer much more stable, whereas in water (i) the thermal
fluctuations enable the crossing of larger energy gaps and (ii) the addition of two H-bonds with the
solvent, obtained by breaking the intramolecular H-bond, stabilises the solvated molecule.

The last parameter related to solute flexibility is the solute sites mass during the ins/des process.
msolute sites = ∞ (numerically 1020) makes the solute rigid during the ins/des process, thus leading
to the case of ‘mixture of single conformer calculations’, whereas msolute sites = 1 makes the solute
fully flexible and gives the solute’s sites the same mass as the solvent molecules during the MD
ins/des process. In order to obtain good statistics we expect the solvent relaxation to be more
important than the solute relaxation during the ins/des process. Therefore, it is interesting to
have msolute sites > 1 to prioritise the movement of solvent molecules. We expect that the overlap
between insertion and destruction distributions increases with a finite solute mass compared to the
rigid solute and we expect a better overlap for msolute sites > 1 than msolute sites = 1.
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Figure 6.2: Evolution of the diflunisal internal energy in (a) solution and (b) vacuum.

Figure 6.3a plots the insertion and destruction distributions for diflunisal with msolute sites =

1, 3, 5, ∞ after 3 000 accumulations. The plots are smoothed by a Gaussian filter (σ = 1) to make
them more readable. Firstly, the insertion distributions pins are narrower than the destruction
distributions pdes. This is not surprising as ‘all’ the insertions are started with the ‘same’ conformer
with the intramolecular H-bond, whereas the destructions are started both in the conformations
with and without the intramolecular H-bond. This effect can be seen the most clearly on pm=∞

des

which seems to be a combination of two ‘Gaussians’ centred at ∼ 20 and ∼ 14 kcal/mol. In the
case of a finite mass, this double peak seems to disappear forming a single large blob, as the solute
structure can evolve between the two forms during the destruction process. Secondly, looking at
the position of the distribution, one sees that the pm=3

des and pm=5
des are similarly positioned, whereas

pm=1
des and pm=∞

des are somewhat shifted/stretched to lower values of ∆H, i.e. away from the pins

distributions. For the insertion distributions, they are all very similar with maybe pm=3
ins and pm=5

ins

slightly narrower than pm=1
ins and pm=∞

ins .
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Figure 6.3: Diflunisal’s (a) insertion (red) and destruction (turquoise) distributions with msolute sites =
1, 3, 5, ∞ and a zooms of overlap region in (b).
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Overall all the distributions are very similar and have similar overlaps of pins and pdes (fig.
6.3b). If one integrates the overlap area, one finds that is slightly larger areas for msolute sites = 3

and 5 that msolute sites = 1and ∞ as we expected. There is no significant difference between
msolute sites = 3 and 5, so we arbitrary chose msolute sites = 3 as the default value for fully flexible
H4D-MC calculations.

To summarize, the default parameters for flexible solute in H4D-MC are

• maximum solute site displacement ∆rsolute sites
max = 0.1 Å

• solute mass during ins/des : msolute sites = 1020 (without solute relaxation) or msolute sites = 3

(with solute relaxation)

• for insertion
– 102 MC cycle propagation of the bulk solvent + 104 MC propagation of the solute in

vacuum

• for destruction
– 103 MC cycle propagation of the solvated system
– preferential displacement of solute’s sites pH2O/solute−site = 1/5

6.3 comparison of single rigid conformers vs. fully flexible solute

In this section, we compare the performance of the two flexible solute H4D-MC methods: the solute
conformers are sampled in vacuum and solution during the MC propagation and (i) the solute is
kept rigid during the ins/des processes ( = combination of multiple single conformer ins/des) or
(ii) the solute can be relaxed during ins/des process. Figure 6.4 shows the correlation between the
HFEs obtained by the two approaches after 2 × 3 000 accumulations. With excellent correlations
and very small deviations, it shows that both methods produce similar results. As expected, the
average statistical error of each solute, shown in fig. 6.5 (triangles) is smaller if the solute is relaxed
during ins/des than when not.
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Figure 6.4: Correlation between HFEs obtained with flexible solute H4D-MC with and without solute
relaxation during the ins/des process for the FreeSolv database.

Figure 6.5 also shows the evolution of the ME, MAE and RMSE between the flexible MD+FEP
and flexible H4D-MC with and without solute relaxation during the ins/des process. First of all,
deviations of both approaches to the classic flexible solute MD+FEP calculations are very small.
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With relaxation and 3 000 accumulations, the ME is quasi-zero, the MAE is 0.12 kcal/mol and the
RMSE 0.21 kcal/mol. As we recover the MD+FEP results, this is a confirmation that H4D-MC
approach works for the computation of HFEs of flexible solutes and the errors of single conformer
calculations are due to solute flexibility and not bugs in the H4D-MC code. Now, we can be
confident in our rigid solute reference data produced in the previous chapter.
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Figure 6.5: The MAE (circles) and RMSE (squares) between flexible solute MD+FEP and H4D-MC with
(turquoise) and without (pink) solute relaxation, and the average statistical error (triangles) as
a function of H4D-MC accumulations.

Similarly to the statistical error of each solute, the MAE and RMSE are lower with the fully
flexible solute approach than with the mixture of single conformers approach. However, the effect
of solute relaxation is very small. The small difference between the fully flexible solute and the
mixture of single conformers approach demonstrates than the flexible solute HFEs can be recovered
with single conformer methods, like MDFT. However, we used few thousands of conformers which
is not feasible with MDFT, as the computation of the HFEs eg. 6 000 conformers would lead to
∼ 200 cpu.h, i.e. computation times similar to MD+FEP. The use of only a few conformers is
discussed in the following chapter.

Moreover, with the flexible solute calculation with H4D-MC, with 2 × 3 000 accumulations,
leads to a computation time of ∼ 51 cpu.h compared to ∼ 220 cpu.h with Gromacs. Thus, we
have proposed a new method to compute flexible solute HFEs with a speedup of four times when
compared to classic MD+FEP approaches.

Why this chapter?

There are some divergences between rigid solute H4D-MC and flexible solute

MD+FEP hydration free energies. Are these deviations due to solute flexibility

or due to problems in H4D-MC?

We showed that H4D-MC can be used for the efficient computation of the flexible solute
HFEs of small molecules. First of all, these results confirmed the legitimacy of our single
conformer reference data. Moreover, showed that flexible solute SFEs can be recovered from
single conformer SFE calculations and H4D-MC allows a speedup of four times compared to
classical MD+FEP when computing HFEs.
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FLEX IB IL ITY IN THE FREESOLV DATABASE

Why this chapter?

The aim of this thesis is to compute hydration free energies accurately but very

efficiently. The liquid state approach offers a compromise between speed and

accuracy but is a single conformer approach. Is a rigid solute free energy method

usefull ?

In this chapter we analyse if solute flexibility is important for the computation of HFEs
of small drug-like molecules. If it’s the case can we predict for which solute features is
important. Additionally, we identify a set of solutes suited to benchmarking rigid solute
methods like our MDFT and (ii) solute features that can predict if solut

In this chapter, we try to evaluate whether it is necessary to have a flexible solute molecule or is
a single conformer calculation enough when predicting hydration free energies of small drug-like
molecules. This analysis is done by comparing rigorous H4D-MC simulation results obtained either
with a single conformer solute as calculated in chapter 5 and a fully flexible solute as computed in
chapter 6 for the FreeSolv database of small drug-like molecules [144]. Moreover, we try to identify
solute features which can predict if solute flexibility is necessary for the HFE calculation. Most of
the results presented in this chapter are going to be published in [156].

7.1 single conformer vs. flexible solute

Figure 7.1a, shows the correlation between HFEs obtained with a single conformer and flexible
solute simulations. Table 7.1 summarizes the statistical measures characterizing this correlation. In
general, the agreement between the single conformer and flexible solute results is good with high
correlation coefficients and mean absolute error (MAE) of 0.41 kcal/mol. The MAE is smaller than
a typical experimental error of ∼0.5 kcal/mol of modern-day calorimetry, but significantly larger
than the statistical errors of the H4D-MC method with error bars below 0.1 kcal/mol.

Figure 7.2a and table 7.2 quantify at which point a single conformer calculation is sufficient for
the FreeSolv database. For almost half of the database, the deviations are below 0.1 kcal/mol, i.e.

similar to the statistical errors. Hence, for these molecules, the solute flexibility does not have any
effect on the hydration free energy. Moreover, for 80% of the database, the effect of flexibility is
not critical as they have deviations smaller than the experimental error. However, there are some
important outliers with 10% of the database having deviations of more than 1 kcal/mol between
the rigid and flexible solute results and there are even five solutes with a deviation larger than 4
kcal/mol (illustrated in fig. 7.2b).

In the following, a solute is considered ‘rigid’ in respect to the hydration free energy, i.e. the
hydration free energy of a molecule is not affected by the lack of solute flexibility, if the deviation
is between the flexible and single conformer calculation is below 0.1 kcal/mol (295 solutes) for
development purposes in chapter 8 or below the average experimental error of 0.6 kcal/mol for
analysis in chapter 10.

49
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Figure 7.1: Comparison of (a) single conformer and (b) average of 20 single conformers and fully flexible
solute hydration free energies obtained with H4D-MC for the FreeSolv database.

Full dataset (642)

1 conformer 20 conformers

MAE [kcal/mol] 0.41 ± 0.07 0.15 ± 0.03

RMSE [kcal/mol] 0.94 ± 0.19 0.38 ± 0.13

ME [kcal/mol] 0.15 ± 0.07 0.05 ± 0.03

Max. error [kcal/mol] 8.47 4.89

Pearson’s R 0.98 ± 0.01 1.00 ± 0.01

Spearman’s ρ 0.98 ± 0.01 1.00 ± 0.01

Kendall’s τ 0.92 ± 0.01 0.97 ± 0.01

Table 7.1: .Summary of the statistical measures characterizing the correlations between HFEs obtained with
flexible solute and with (i) one single conformer or (ii) a combination of 20 single conformers
H4D/MC simulations calculations for the full FreeSolv database.

AE [kcal/mol] < 0.1 < 0.2 < 0.5 < 1.0 < 2.0 < 4.0

Single conformer

#solutes (%) 295 (46) 409 (64) 515 (80) 576 (90) 607 (95) 637 (99)

MAE [kcal/mol] 0.05 0.07 0.12 0.18 0.25 0.37

20 conformers

#solutes (%) 399 (62) 524 (82) 613 (95) 628 (98) 635 (99) 640 (100)

MAE [kcal/mol] 0.04 0.07 0.10 0.11 0.13 0.14

Table 7.2: Number of solutes and the cumulative mean absolute error (MAE) as a function of the absolute
error (AE).
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Figure 7.2: Sorted deviations between flexible solute and (a) single conformer and (c) 20-conformer average
hydration free energies with cumulative MAE (solid pink line) and RMSE (dashed pink line). (b)
and (d) Chemical structure of the solutes with deviations larger than 4 kcal/mol in each case.

7.2 multiple conformers analysis

The single conformer calculations were done with the initial conformer given in the FreeSolv
database. The origin of these conformers is not discussed by Mobley and co-workers [152, 144] as,
in their flexible solute simulations, the solute structures will be equilibrated and propagated. They
seem to correspond to a (local) minima in vacuum. However, from the previous comparison, we
cannot be sure that a solute really is ‘rigid’, concerning its HFE, or were we just ‘(un)lucky’ and
the single conformer simulation with initial conformer gives the right average HFE of a flexible
solute whereas another conformer would not give it.

To confirm that the ‘rigid’ solutes, as defined above, are really rigid we performed 2 × 10 shorter
rigid solute simulations for Ncon f = 2 × 10 conformers obtained after 105 MC cycle propagation in
vacuum or solution for all the FreeSolv database molecules. Two short 500 accumulations ins/des
simulations were run for each conformer to obtain a rough estimate of the HFE of each conformer
(the average statistical error is 0.14 kcal/mol). The length of the simulations was limited, as even
with 500 accumulations, the computation of the analysis reaches ∼ 120 cpu.h for each molecule
bringing the computation time for the analysis of the whole database to ∼ 77 000 cpu.h.

For each solute, the Boltzmann average of the HFEs 〈∆Grigid〉 = −kBT ln〈e−β∆Grigid〉, their
standard error σ(∆Grigid) and the average statistical error 〈ste(∆Grigid)〉 was computed from
these 20 conformer calculations. Fig. 7.1b shows the correlation between HFE obtained with the
fully flexible solute HD4-MC calculation and the 〈∆Grigid〉. Using 20 conformers per solute instead
of only one improves all the statistical measures (see table 7.1: the correlation coefficients are now
R = ρ = 1.00 instead of R = ρ = 0.98 and the MAE and the RMSE are 0.15 and 0.38 kcal/mol
instead of 0.41 and 0.94 kcal/mol before. The use of 20 conformers instead of only one decreases
the error of 67 %.
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First of all, this good news for single conformer SFE methods, like MDFT, as for most small
flexible solutes of the FreeSolv database, the flexible solute HFE can be recovered from rigid solute
HFE calculations of a few conformers. However, there are still some solutes with large deviations
to the flexible result. Therefore, this approach should be applied with caution to single conformer
calculations and more reliable sampling methods should be considered or developed when trying to
include solute flexibility to single conformer methods.

However, this analysis does not give us the confirmation of whether the solutes defined as ‘rigid’
in the previous section, i.e. |∆Gflex − ∆Ginitial

rigid | < 0.1 kcal/mol, are really rigid within respect to
the HFE or were we just ‘(un)lucky’ with initial conformer. Therefore we define a solute really to
be rigid if it fulfils the following two criteria

|∆Ginitial
rigid − 〈∆Grigid〉| < 0.1 kcal/mol

ste(∆Grigid) =
σ(∆Grigid)
√

Ncon f
< 〈ste(∆Grigid)〉. (7.1)

where ste(∆Grigid) the standard error of the multi-conformer HFE. Figures 7.3a and 7.3b
illustrate these two new rigidity criteria: they plot the correlation between the original rigidity
criterion, i.e. the deviation between the flexible solute and single conformer calculation, and the
deviation between the original single conformer and the multi-conformer average of short single
conformer simulations (7.3a) and the standard deviation of the short simulations (7.3b). It seems
that the majority of the molecules defined as rigid previously are really rigid in the sense that the
solute flexibility does not affect the hydration free energy as defined by the new criteria.
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Figure 7.3: The deviation between the initial single conformer HFE and (a) the mean HFE of short single
conformer simulations and (b) the standard deviation of the short single conformer HFEs as a
function of the original flexible solute-single conformer deviation for the FreeSolv database. In
pink solutes that fill the rigidity criteria of equation 7.1 and the flexible ones in turquoise.

However, there are some ‘outliers’. Some solutes, that were defined as rigid previously are in
reality flexible, i.e. we were ‘(un)lucky’ to find the correct HFE with a single conformer. There
are also molecules defined as ‘flexible’ previously that seems to be rigid in the reality. To quantify
this, table 7.3 shows the confusion matrix, i.e. the error matrix, between solutes defined as rigid or
flexible from the initial conformer calculation and the multi-conformer average. In general, both
approaches define a solute flexible or rigid for 80 % of the molecules. However, of the 295 solutes
originally defined as ‘rigid’ only 214 (72 %) are really rigid as defined by the multi-conformer
analysis.
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R 214 81 295

F 46 301 347

259 267

Table 7.3: Single conformer and multi-conformer confusion matrix for solute flexibility of the FreeSolv
database.

We can now, with confidence, identify these 214 solutes defined as rigid with the original and
the new rigidity criteria as a rigid solute sub-set of the FreeSolv database, called ‘FreeSolv-rigid’
that can be used for the development of single conformer SFE methods like liquid state theories
and continuum model approaches. This sub-set is given in appendix E.

7.3 focus on flexible solutes

7.3.1 effect of mass, number of bonds and rings

In this section, we analyse the error distributions along a few selected solute that could be related
to solute flexibility. The aim is to be able to predict a priori for which types of solutes, or solute
features, solute flexibility is necessary. Fig. 7.4 plots the error distribution in function of the solute
size, represented by the solute mass, and the number of rotational bonds and cycles in the solute
molecules. One could expect solute flexibility to increase with the solute size and the number of
rotational bonds, and decrease with the number of cycles. As it can be seen on the fig. 7.4 there is
no significant correlation between these features and deviation between the single conformer and
flexible solute.
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Figure 7.4: Distribution of the deviations between HFEs obtained with flexible solute and single conformer
H4D/MC simulation as a function of three features (a) solute’s molar mass (with a bin size of
50 Da), (b) number of rings in a solute and (c) the number of rotational bonds in a solute with
turquoise lines corresponding to the median error in each bin, the boxes and the whiskers to
25-75% and 5-95% intervals respectively and black circles to fliers outside the 5-95% interval.
The pink hexagons and the numbers above each bin correspond to the MAE and the population
of the bin. (*) The last represented bins regroup the solutes with a mass = 350-493 Da, number
of rings = 3-5 and number of rotational bonds = 9-16 to be statistically significant.

7.3.2 effect of h-bond donors and acceptors

In figure 7.5, we show the same plot as fig. 7.4, but for the number of H-bond donors (HBD) and
acceptors (HBA). There is an important effect of the number of H-bond donors on the deviation
with a factor 4 between the MAE of 0.89 kcal/mol, twice as much as for the whole database, for
the solutes with an HBD (29% of the database, fig. 7.6b) compared to solutes without one at 0.22
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kcal/mol (fig. 71% of the database fig. 7.6a), which is half of the MAE of the whole database.
The increased number of HBDs in a solute introduces a somewhat systematic bias to the single
conformer calculations as the mean (signed) error (ME) increases with the number of HBD in a
solute. There seems to be the same effect of HBAs, with a factor 5 between the MAE of 0.56
kcal/mol for the solutes with HBAs (67% of the database, 7.6d) and the MAE of 0.11 kcal/mol
for solutes without them (33% of the database, 7.6c). Note that, almost all the HBD groups, like
hydroxyls and amines, are also HBAs.
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Figure 7.5: Distribution of the deviations between flexible solute and single conformer HFEs as a function of
the number of H-bond (a) donors and (b) acceptors in a solute with turquoise lines corresponding
to the median error in each bin, the boxes and the whiskers to 25-75% and 5-95% intervals
respectively and black circles to fliers outside the 5-95% interval. The pink hexagons and the
numbers above each bin correspond to the MAE and the population of the bin. (*) The last
represented bins regroup the solutes with 3-6 H-bond donors and 6-8 H-bond acceptors to be
statistically significant.

We identified 47 molecules in the database, including the five solutes with the largest deviation
illustrated in fig. 7.2b, that have at least HBD-HBA couple positioned in a way that they can form
an intramolecular H-bond. In fig. 7.6f, we can see that the largest deviations are found for these
solutes with a potential intramolecular H-bond with an MAE of 1.80 kcal/mol, over four times
higher than for the full database. The single conformer calculations systematically underestimate
the hydration free energies of these solutes with a ME of 1.29 kcal/mol.

7.3.3 effect of functional groups

In figure 7.7, we plot the deviation distribution between the single conformer and the flexible solute
calculation as a function of the chemical groups present in the database. For statistical significance,
only groups contained at least in five solutes are represented. This analysis confirms the dependence
of solute flexibility on the presence of H-bond donors. Nine out of the ten chemical functions with
the smallest deviations (MAE < 0.3 kcal/mol) do not contain H-bond donors whereas seven out of
the ten groups with the largest deviations (MAE > 1.0 kcal/mol) are H-bond donors. Moreover,
the largest deviations are distinctly found for 1,2-diols, i.e. solutes with two hydroxyl groups next
to each other in a way that they can form an intramolecular H-bond. We note also, the less there
is steric encumberment around the H-bond donor the larger the effect of flexibility is: primary
alcohols (MAE = 1.51 kcal/mol) have larger deviations that secondary alcohols (1.08 kcal/mol)
and primary amines (1.63 kcal/mol) have larger errors than secondary amines (0.54 kcal/mol).
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Figure 7.6: Correlations between hydration free energies predicted by flexible solute MD+FEP and single
conformer H4D/MC for the sub-sets of solutes with or without H-bond donors or possible
intramolecular H-bonds.



56 flexibility in the freesolv database

-3 -2 -1 0 1 2 3 4
Error distribution (kcal/mol)

(5) 1,2-diol
(10) alkylamine
(6) aryl fluoride

(14) carboxylic acid
(31) primary amine

(30) primary alcohol
(8) orthoester

(19) secondary alcohol
(29) dialkyl ether

(10) orthocarboxylic acid derivative
(10) thiophosphoric acid ester
(21) primary aromatic amine
(5) secondary alkylarylamine

(9) nitrate
(12) oxo(het)arene

(20) alkyl aryl ether
(49) phenol or hydroxyhetarene

(36) ketone
(17) secondary amine

(7) tertiary carboxylic acid amide
(267) aromatic

(61) aryl chloride
(8) trialkylamine

(26) nitro
(33) halogen derivative

(52) carboxylic acid ester
(16) tertiary amine
(37) alkyl chloride

(12) carbonitrile
(9) thioether

(8) tertiary alkylarylamine
(88) heterocyclic
(6) aryl bromide
(6) alkyl fluoride

(24) aldehyde
(50) alkene

(17) alkyl bromide
(13) diaryl ether

(11) dialkylamine
(5) thiol

(9) alkyl iodide
(6) alkyne

MAE = 0.41

Figure 7.7: Distribution of the deviations between flexible solute and single conformer HFEs for the chemical
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boxes and the whiskers to 25-75% and 5-95% intervals respectively and black circles to fliers
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To remember

The aim of this thesis is to compute hydration free energies accurately but very

efficiently. The liquid state approach offers a compromise between speed and

accuracy but is a single conformer approach. Is a rigid solute free energy method

usefull ?

We showed by comparison of single conformer HFEs to flexible solute HFEs and by
multi-conformer analysis that solute flexibility does not have any effect on the HFEs of
34 % of FreeSolv database and can be considered as a reference "FreeSolv-rigid" for the
developement of single conformer SFE methods. The multi-conformer analysis showed also
that the flexible solute HFE can be recovered from a single conformer calculation of few
solutes.

Additionally, we identified that the main features determining if solute flexibility is
important in HFE calculations are potential hydrogen bond donors and acceptors. For
molecules without H-bond acceptors, solute flexibility does not have any importance with
an MAE of 0.11 kcal/mol between single conformer and flexible solute predictions. Solute
flexibility is almost as negligible for solutes without H-bond donors with an MAE of 0.22
kcal/mol, whereas solute flexibility is very important for solutes with potential intramolecular
H-bonds with an MAE of 1.81 kcal/mol.



RECAP ITULAT ION OF PART I I

Hybrid 4th dimension Monte Carlo: the novel method that compute hydration free energies via
short out-of-equilibrium simulations where the solute is inserted or removed from the simulation
box enables the efficient computation of hydration free energies of small drug-like molecules with a
speed up 6 (rigid solute) or 4 (flexible solute) times in the computation time when compared to
classic stratified free energy perturbation calculations.

FreeSolv database: of the 642 molecules of the database 213 (33%) are rigid with respect to the
hydration free energy, i.e. solute flexibility does not affect the computed HFE of the solute. For
the rest of the molecules, solute flexible affects their HFE. However, for 520 (81%) molecules the
deviation between the rigid and flexible solute calculations is smaller than the typical experimental
error of 0.6 kcal/mol. Solute flexibility is important for molecules with H-bond donors and/or
acceptors and especially for molecules with potential intramolecular H-bonds.
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Part III

HYDRATION WITH MDFT -HNC

This part presents the developments made to MDFT-HNC and the main results obtained
with MDFT-HNC.

Chapter 7 briefly introduces an indispensable a posteriori pressure correction of the
hydration free energies predicted by MDFT-HNC. This pressure correction compensates
of the large overestimation of the cavitation formation energy for the HNC approximation.
The chapter also includes the presentation of four developments made to improve this
correction by (i) taking into account solvent compressibility, (ii) optimization of the
solute volume, (iii) addition of machine learning terms or (iv) by addition of a surface
term to the correction.

Chapter 8 presents a rigorous benchmarking of MDFT-HNC with the new surface
term corrected pressure correction on a multitude of systems: starting from simple
hydrophobic spheres to molecular solutes like water itself and small organic molecules,
via spherical ions. It aims to assess carefully the accuracy of MDFT at the HNC level,
acknowledge its successes, and more importantly enlighten where it fails, in order to
pinpoint on which aspects the efforts for proper bridge functionals should be put. To
this end, the MDFT results will be compared systematically throughout this paper to
‘exact’ results generated by ourselves by Monte-Carlo.

Chapter 9 makes more through chemo-informatics analysis of MDFT-HNC results of the
small drug-like molecules of the FreeSolv database. The aim is the assess the performance
of MDFT-HNC, with the faster optimized solute volume pressure correction, to predict
solvation free energies in the scope of drug design and identifying features of solutes for
which MDFT performs well or not.



8
PRESSURE CORRECTION

Why this chapter?

The aim of this thesis is to compute hydration free energies accurately but very

efficiently. MDFT could offer a compromise between speed and accuracy. However,

the bare MDFT-HNC hydration free energy predictions are in the woods. We

know that most of this error is due to a bad estimation of the system’s pressure.

Can we correct this pressure estimation?

An original pressure correction was proposed by the group in 2014. In this chapter we try to
improve it with three approaches :

• optimisation of the solute volume
• fitting by machine learning
• addition of a surface term

One of the characteristics that should-be accounted for when describing water is the presence of a
liquid-gas coexistence at normal conditions, T = 300 K and P = 1 atm. Due to this, experimentally,
the creation of a microscopic gas bubble, or cavity, in bulk water does not cost anything energetically.
This coexistence of liquid and gas phases transcribes as a double-well in the homogeneous free
energy as a function of the density (fig. 8.1) with minima at gas density ngas ≈ 0 and at liquid
bulk density nbulk = 1 kg/l or 0.033 molecules/Å3.

The major weakness of the HNC approximation has been known for a long time [157], as its
original sin is to be a quadratic theory around the liquid bulk density nbulk and thus to only have a
single well at nbulk. Therefore, it can not accommodate for the liquid-gas transition as it largely
overestimates the pressure of the system with PHNC ∼ 10 000 atm instead of the experimental 1
atm. This consequently leads to large overestimations of the cavity creation energy in HNC.

ngas nliquid
1 atm

G
so

lv
/V

Water density

HNC approx.
Experimental

Figure 8.1: Homogenous free energy as a function of water density.

There are two options to overcome this problem : (i) by pushing the theory beyond the second-
order and introducing the so-called bridge functional which, by definition, starts at the cubic order
in perturbation [128, 129, 130, 131, 132]; (ii) by adding a so-called pressure correction (PC),
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an a posteriori correction to HNC results to correct for the overestimation of the bulk pressure.
This chapter focuses on the new developments of the pressure correction with a short description
of the original pressure correction proposed in refs. [158, 159] before a presentation, of first a
fundamental addition to the PC, and then of the developments made to improve it with three
different approaches.

8.1 original pressure correction

For large spheres or any general cavity, the solvation free energy should tend to PV, where P is
the experimental or simulated pressure, thus virtually zero at a normal pressure of 1 atm unless
micrometric sizes are reached. On the other hand, the HNC approximation has non-zero values of
PHNCV as the pressure is given by

PHNC =
F [0]

Vcell
= kBTnbulk

(

1 − 1

2
nbulkĉ000(0)

)

(8.1)

where Vcell is the volume of the supercell and ĉ000(0) is the q = 0 Fourier component of the
spherically averaged direct correlation function in eq. 4.8. PHNC has largely overestimated values
compared to experiment or simulations ones : PSPC/E

HNC = 11 260 atm and PTIP3P
HNC = 9 400 atm. This

leads to a large overestimation of the cavity formation free energy and the solvation free energy as
illustrated in fig. 8.2a on the FreeSolv database. Hence, a first pressure correction was proposed by
Sergiivskyi et al. [158, 159] to correct the overestimation of the bulk pressure and reads

PC = −(PHNC − PExp)V ≃ −PHNCV. (8.2)

Note two remarks on the PC: (i) even if this correction is justified in the macroscopic limit, it is
not at the molecular level; and (ii) how should one define the solute volume V.

Originally the solute volume was defined by the unambiguous partial molar volume (PMV or
VPM). The PMV can be derived rigorously in LSTs from the variation of ∆N of the number of
solvent molecules in the supercell while inserting the solute at a constant temperature, volume and
solvent chemical potential. The PMV pressure correction reads

PCPMV = −PHNCVPM

= −PHNC
∆N

nbulk
(8.3)

This correction improves drastically the solvation free energies predicted by MDFT (fig. 8.2b). For
the FreeSolv database, MDFTHNC-PMV yields an MAE of 2.14 kcal/mol and R = 0.95 compared
to 19.42 kcal/mol and R = 0.29 for the uncorrected MDFT-HNC results. A closely related pressure
correction of type aVPM+b with empirically adjusted constants a and b has been proposed and is
wildly used for 3D-RISM calculations [160, 161, 162].

At the same time, an additional empirical pressure correction was proposed that improved
significantly predictions [158, 159], and read

PC+
PMV = −(PHNC − Pid)VPM

= −(PHNC − kBTnbulk)VPM. (8.4)

Although this correction is now wildly used in the RISM community [162], we find that it does not
improve the results with our current (nmax ≥ 3) MDFT-HNC version. Besides we could never finally
justify it theoretically. A field theory approach [163] eventually leads to −(PHNC − Pid/2)VPM but
not to eq. 8.4. We thus prefer to stick to the well-justified original pressure correction of eq. 8.3.



62 pressure correction

20 15 10 5 0 5
GH4D MC/rigid (kcal/mol)

5
0
5

10
15
20
25
30
35
40
45

m
in

 (k
ca

l/m
ol

)

ME = 19.42 kcal/mol
MAE = 19.42 kcal/mol
RMSE = 20.85 kcal/mol
Pearson R= 0.29
Spearman = 0.30
Kendall = 0.21

± 1.0 kcal/mol
± 2.0 kcal/mol

(a)

20 15 10 5 0
GH4D MC/rigid (kcal/mol)

20

15

10

5

0

m
in

+
PC

PM
V (

kc
al

/m
ol

)

ME = 1.63 kcal/mol
MAE = 1.89 kcal/mol
RMSE = 2.23 kcal/mol
Pearson R= 0.95
Spearman = 0.94
Kendall = 0.79

± 1.0 kcal/mol
± 2.0 kcal/mol

(b)

Figure 8.2: Comparison between the hydration free energies of the FreeSolv database obtained by reference
simulations and MDFT-HNC (a) without correction and (b) with the PCPMV correction.

8.1.1 compressible fluids

In the original PCPMV, the PMV was defined as VPM = ∆N/nbulk which is the correct definition
for incompressible fluids. This is not the case of the water and the correct partial molar volume
reads,

VPMV = (∆N − nbulkkBTχT)n
−1
bulk (8.5)

where χT is the isothermal compressibility, nbulkkBTχT = 0.0773 and 0.0630 for TIP3P and SPC/E
at normal conditions. Now, the PCPMV reads

PC′
PMV = −PHNCVPM

= −PHNC

nbulk
(∆N − nbulkkBTχT). (8.6)

Note that, the new second term is constant for a given solvent: 0.32 kcal/mol for TIP3P and
0.33 kcal/mol for SPC/E. As it can be seen in table 8.1, this modification does not improve the
results for the FreeSolv database, it even decreases the quality. Nevertheless, this correction will be
applied in future results as it uses fundamentally the correct definition of the PMV in a compressible
fluid.

The choice of the PMV as the solute volume is not unambiguous and the PC is only exact for
macroscopic volumes. In the following section, we propose three approaches to improve the PC by
(i) using an optimized volume for the solute, (ii) fitting the MDFT/simulations (or experiment)
difference with machine learning or (iii) adding a surface term to the PC correction.

8.2 optimized van der waals volume

First, we proposed [164] an empirical approach to improve the pressure correction: define an
optimized van der Waals volume pressure correction that reads

PCvdW = −PHNCVvdW (8.7)
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Fmin Fmin + PCPMV Fmin + PC′
PMV

MAE 19.42 ± 0.61 1.88 ± 0.09 2.14 ± 0.10

RMSE 20.84 ± 0.71 2.23 ± 0.10 2.47 ± 0.10

ME −19.42 ± 0.61 1.63 ± 0.12 1.94 ± 0.12

Pearson’s R 0.29 ± 0.09 0.95 ± 0.01 0.95 ± 0.01

Spearman’s ρ 0.30 ± 0.08 0.94 ± 0.02 0.94 ± 0.02

Kendall’s τ 0.21 ± 0.06 0.79 ± 0.02 0.79 ± 0.03

Table 8.1: Summary of the statistical measures characterizing the correlations between single conformer for
HFEs obtained from H4D-MC and MDFT-HNC calculations (i) without any PC, (ii) with the
original PCPMV and (iii) with the compressibility corrected PC′

PMV for the FreeSolv database.

where the solute volume is defined as the sum of the volume of the voxels (of width 0.05 Å) within
RvdW

i of the solute atom i. This corresponds to the volume inside the solvent excluding surface in
fig. 2.2. The radii depend upon the chemical nature of each atom and were initially taken from
Bondi’s paper [165] that gathers multiple experimental estimations and are gathered in table 8.2.

vdW radius (Å) C N O H F

Initial values 1.700 1.550 1.520 1.200 1.470

Optimized/Sim. 1.711 1.734 1.588 1.588 1.318

Optimized/Exp. 1.682 1.893 1.430 1.353 1.510

Cl Br I P S

Initial values 1.750 1.850 1.980 1.800 1.800

Optimized/Sim. 1.590 1.815 1.872 1.458 1.721

Optimized/Exp. 1.887 1.984 1.960 1.426 1.804

Table 8.2: van de Waals radii used for PCvdW. First row: initial values as taken from experiments [165].
Second and third rows: optimized values within respect to rigid H4D-MC results and experimental
results.

Since those experimental values are not defined unambiguously and they are subject to large
incertitude, we optimized them so that PCvdW minimizes the RMSE of MDFT compared to
reference simulations or experimental values. The vdW volumes, and thus the vdW radii, were
iteratively calculated and optimized via the Nelder-Mead algorithm [166, 167] using a bootstrap
technique on sub-set of 288 molecules of the FreeSolv database (45% of the database) determined
to be rigid in chapter 7. The radii were modified by 6% on average and are reported in table 8.2.

Firstly, we optimized the vdW radii with reference to rigid H4D/MC results in order to discard
all error compensation effects due to the force field or solute flexibility. The optimization was
done on a sub-set of 288 molecules to test and ensure the transferability of the new pressure
correction. Figure 8.3a shows the final correlation between hydration free energies obtained with
MDFTHNC-vdW and reference simulations for the full FreeSolv database. The PCvdW divides the
error by almost a factor five with respect to H4D-MC simulations: the MAE is now 0.46 kcal/mol
compared to 2.14 kcal/mol with PCPMV. The correlations are also improved with R = 0.99 and
τ = 0.93 compared with R = 0.95 and τ = 0.79 before. Note that even though the vdW radii
were optimised on less than half of the database, these results are obtained on the whole database
showing a high transferability to the other molecules.
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Figure 8.3: Comparison between the hydration free energies of the FreeSolv database of MDFT-HNC with
the PCvdW correction and (a) the reference simulations and (b) experimental values.

Secondly, we turned to optimise the vdW radii on experimental solvation free energies. Since
MDFT computes the SFE of rigid solutes, we restrict ourselves to the sub-set of 288 rigid molecules.
Figure 8.3b shows the comparison between PCvdW-corrected MDFT results and experimental SFEs.
We find an MAE of 1.07 kcal/mol, thus reaching the same accuracy as reference simulation at
1.06 kcal/mol.

In this approach, the radii optimisation was done once on the 288 rigid solutes and took a few
tens of CPU.min only. If the radii are optimized on a larger pool of molecules, a slight improvement
can be seen but it comes from over-fitting, especially for flexible molecules. Note that the calculation
of VvdW is negligible compared to the MDFT minimisation and it only needs one MDFT calculation
compared to the more rigorous approach presented in the section 8.4 that needs two MDFT
minimisations. This is a simple, versatile and efficient pressure correction that can be applied
beyond MDFT to other HNC-level liquid state theories.

8.3 machine learning fitted correction

Another approach is to directly fit the free energy difference between the MDFT result and the
reference calculation or experimental values instead of fitting the solute volume to have an optimal
pressure correction. This fitting can be done efficiently with machine learning approaches. We
propose to do it with neural networks (NNs). Here we used a feed-forward neural network (FNN),
also called multilayer perceptron (MLP), regression as our ML algorithm.

8.3.1 neural network

The FNNs are the simplest artificial neural networks as the information only flows in one direction,
i.e. forward, from the input nodes, through the hidden nodes, to the output node(s) without any
cycle or loop in the network. In general NNs are algorithmic structures consisting of multiple layers,
each layer containing nodes, i.e. the neurons (fig. 8.4). Every node in a layer i is connected to all
nodes of the layer i + 1 with weights Wi,j→i+1,k with j and k nodes of layers i and i + 1 respectively.
The value of neuron k is given by

xi+1,k = fa

(

∑
j

Wi,j→i+1,kxi,j + bk

)

, (8.8)
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where x is the value of a node, fa an activation function which makes the system non-linear and bk

an additional bias. The weights W and biases b are the parameters to be adjusted by the computer
during the training via back-propagation. Normally, the activation function is not applied for the
transition between the last hidden layer and the output layer.
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Figure 8.4: Illustration of (a) a two-layer feed-forward neural network and (b) scheme of operations between
two layers.

We want to fit a single value correction to the MDFT results to minimise the deviation to
simulation (or experimental) values. Therefore, the ML task is to do a regression with nin input
nodes corresponding each to a parameter/descriptor describing the solute molecule and a single
output node, nout = 1, corresponding the final energy correction. The learning is supervised as we
try to minimise the deviation to known experimental values: at each iteration, the training outputs
are calculated from the input data with the current weights and biases. Then, the difference between
the calculated output and target values are evaluated with a loss function, e.g. cross-entropy. The
training process consists of minimising this loss function via a back-propagation process which
consists of correcting the weight and bias values, with a gradient calculation, layer by layer in
reverse order starting from the output layer.

8.3.2 input data and hidden layers

How to represent molecules, by digital encoding, in a way that they can be used by a NN model
as input data while it captures the essential structural and chemical information of the molecule?
Two important properties that are desirable, but not required, for representations are uniqueness,
i.e. the molecular structure is associated with a single representation, and invertibility, i.e. each
representation is associated with a single molecule, in other words, there is a one-to-one mapping
in both ways [168].

The most ‘complete’ way to represent a molecule it is three-dimensional chemical structure,
but the direct implementation of the nuclear coordinates as ML input creates several issues. The
major one is that these coordinates are not invariant to molecular translation and rotation, and
the permutation of atomic indexes. Recently, multiple schemes have been proposed the essential
information of the 3D structure to a more ML appropriate format using the molecule’s internal
coordinates or atomic densities [169]. These 3D structure-based representations are needed for ML
methods applied to quantum systems but are quite cumbersome.

Therefore, many molecular representations are based on two-dimensional graphs of the molecule
[168, 170]. The most well-known 2D representation of molecules is the (canonical) ‘simplified
molecular-input line-entry system’ (SMILES) that are unique and invertible. Their problem is they
are not fixed in length and thus are not optimal input for NN where the number of input nodes
does not vary. The most common way is to use chemical fingerprints, which is a list, of fixed length,
of binary values (0 or 1) characterising a molecule (eg. is there any halogen atoms present? is
there more than 3 oxygen atoms? etc.). We chose the widely used MACCS keys [171], 166 bits
long 2D fragment-based keyed fingerprints to represent the solute plus an additional input node
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corresponding to the HFE predicted with MDFT, nin = 166MACCs + 1∆GMDFT = 167. The
MACCS were generated with python’s rdkit package [172] from the SMILES given in FreeSolv.

Now that, we have chosen our input data format and thus the number of input nodes, we need
to choose hidden layers’ structure. The optimal structure depends on the complexity of the task
and the level of abstraction, i.e. the number of hidden layers, needed to resolve it. There is no way
of knowing a priori how many layers and how many nodes in a hidden layer one should use to get
an optimal result. For the large majority of ML task, only a few levels of abstraction is needed (1,2
or 3 layers) and a thumb-rule for the number of hidden nodes is given as

nhidden ≈ nin + nout

2
=

167 + 1

2
= 84. (8.9)

Building on trials and errors, we found that a neural network with two hidden layers with 84
hidden nodes with the rectified linear unit (ReLU) activation function gave the optimal results.
The neural network was done with the python open-source library scikit-learn [173] and the model
details are given in appendix F.

8.3.3 cross-validation

An important part of building and validating an ML model is to split the data, here the FreeSolv
database, into a training set with whom the NN optimization is done, and a test set not used
during the training with whom the final optimized model is validated. The imperative obligation of
having a test set, i.e. data to validate the model not seen during training, is not a problem for
large datasets (N > 10 000) where a part of the original dataset, can be ‘wasted’ as the test set
and is not used during the training. Here, our dataset is small (N = 620) so either we have to
(i) ‘waste’ a large part of the dataset as the test set leading to a very small training (larger the
training set better the model will be), or (ii) to use only a very small test set to validate the model
leading to large uncertainty on the model’s real performance. This means either having a model (i)
that is not very well optimised and probably over-fitted to a small set of molecules or (ii) not be
very confident in the model as it validated on a very limited number of data points.

To overcome this, we used cross-validation: the dataset is split into K sub-sets and K parallel
neural networks are trained separately with each one using a different sub-set Xtest = Xk as the
test set and the rest as the training set, Xtrain = ∑

K
i Xi 6=k (fig. 8.5). We chose to split the initial

dataset with K = 62 leading to 62 separate NN optimisations with Ntest = 10 and Ntrain = 610.
To limit over-fitting, 5% of the training set (30 molecules) were used as a validation set during
training and some additional measures were taken (see appendix F for more information). The
optimisation of the 62 NNs took one and a half minutes with 60 minimisation iteration on average
per NN (∼1.5 s/NN and ∼ 0.02 s/minimisation iteration).

58010 30NN1
NN2

NN3

NN4

NN62

Figure 8.5: Illustration of the test (pink), training (turquoise) and validation (purple) set splitting.

Figure 8.6 shows the MAE, RMSE and R distributions of the optimized 62 NNs for the
training and test sets. As expected, the training set errors are lower and correlation is higher than
for the test set with 〈MAEtrain〉 = 0.36 < 〈MAEtest〉 = 0.42 kcal/mol, 〈RMSEtrain〉 = 0.57 <
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〈RMSEtest〉 = 0.65 kcal/mol and 〈Rtrain〉 = 0.990 > 〈Rtest〉 = 0.987. The optimisations were run
several times with different random variable initiations, all the optimisations gave similar results with
less < 10% of the variation in average statistical measures between different optimisations. The test
set distributions are quite asymmetric with long sparse tails to high errors and small correlations, i.e.
few NNs are not well optimized for their test sets. Is this due to bad luck in training/test set split,
eg. all the nine thioesters are in a single test set without any representation in the training set?
This seems not to be the case, as we tried multiple different training/test set splits and in all cases
a few ‘outlier’ NNs emerged. For example, the HFE of the 1-amino-4-hydroxy-9,10-anthracenedione
(FreeSolvID: 4371692) was systematically not well corrected by the different NNs.
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MAE (kcal/mol)
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20
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0.0 0.5 1.0 1.5 2.0
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R
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Figure 8.6: Statistical measure (MAE, RMSE and R) distributions for training and test sets and the number
minimization steps of the 61 NNs. Vertical lines correspond to the averages over all the NNs
(training set in teal and test set in purple).

8.3.4 ml corrected mdft results

Figure 8.7, plots the correlation between reference HFEs and those obtained with the ML-corrected
MDFT. The final MDFT results for the whole database were obtained by regrouping all the 62 test
set’s results. The correlation between reference values and ML-corrected MDFT results is high, with
R = ρ = 0.97 and τ = 0.87. The deviations are almost twice smaller than with MDFTHNC+vdwW,
with an MAE of 0.59 kcal/mol (∼ experimental precision) and RMSE of 0.90 kcal/mol compared
to 1.07 and 1.49 kcal/mol before. We can conclude, that this simple and fast (the training takes a
few minutes and the prediction is instantaneous) ML correction works very well for the FreeSolv
database.

However, as any ML model, especially the NNs, are ‘black boxes’ tasked to do interpolation
between specific data of the training set: this model should correctly predict a correction to MDFT
HFEs for other small neutral organic molecules but if used for example on small charged organic
molecules there is no guaranty at all that it will work. Moreover, as this model uses MACCS
fingerprints as input data it can not be used for example inorganic molecules as the MACCS
representation was developed for (small) organic compounds. To develop a more ‘universal’ ML
correction the input data format, i.e. the solute representation, should be a more general one and
the training should be done on the ‘full’ chemical space of the MDFT calculations.
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Figure 8.7: Comparison between the reference hydration free energies and those obtained with MDFT-HNC
with an ML correction for the FreeSolv database.

8.4 surface term

Finally, we propose a third, more rigorous, approach to correct the PC term. As mentioned before
the original PC in eq. 8.2 is justified as the dominant term in the macroscopic limit is the pressure
term. But at the molecular level as for small cavities or solutes, this correction should also depend
on the solute’s surface area.

8.4.1 hydrophobic spheres

To study this aspect we started by examining the solvation of hydrophobic spheres, which is the
paradigmatic problem for either the standard scaled particle theory (SPT) [174, 175] or more recent
advances in the theory of hydrophobicity and hydrophobic interactions [176, 177]. Figure 8.8a
shows the hydration free energy of a hard-sphere of increasing radius R computed by MDFT-HNC
and compared to the simulation results given by Hummer et al. [178] and Huang and Chandler
[176] with the SPC/E water model. Figure 8.8a also includes the analytical limit for cavity volumes
that can only accommodate 0 or 1 water molecules, namely [178],

∆G = −kBT ln(1 − nbulkV), (8.10)

where V = 4πR3/3 is the hard-sphere volume. It can be seen in fig. 8.8a that MDFT-HNC
and simulations fulfil this exact small-radii limit for R < 1.8 Å; MDFT-HNC even matches the
simulation results slightly beyond that radius and diverges from them afterwards. In fig. 8.8b, we
compare the solvation free energy per surface area, computed either by MC by Huang-Chandler as
∆G(R)/4πR2, or by MDFT after pressure correction as (Fmin(R)− PCPMV)/4πR2. Both curves
present a horizontal asymptote pointing to the surface tension γ. Simulations yield γsim = 72

mJ/m2, a value close to the experimental one but somewhat larger than the reported gas-liquid
surface tension of SPC/E [179] whereas MDFT-HNC yields the much smaller value γHNC = 16

mJ/m2: thus not only the HNC pressure has to be corrected but also the surface tension.
An important question while using SPT is the definition of solute volume and surface to be

considered, usually derived from either the solute van der Waals surface (vdW) or the solvent-
accessible surface (SAS) illustrated in fig. 2.2. The two of them differ by the extension of the
probe sphere, i.e. solvent (water) molecule, radius Rw. Here, the question is rather the relationship
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Figure 8.8: (a) Hydration free energy of a hard-sphere (HS) of radius R obtained by MDFT-HNC (blue
line) or by MC simulations by Hummer et al. [178] or Huang and Chandler [177] (red bullets
and red line, respectively). The line in cyan is the analytical result of eq. 8.10. (b) Hydration
free energy per unit area, ∆G/4πR2, as a function of HS radius computed by MC or by MDFT
with PCPMV.

between the measured VPM and the hard-sphere volume V. Figure 8.9a, clarifies that relationship.
We observe that VPM is optimally fitted by VPM = 4πR∗3/3 with a shifted radius R∗ = R − Rw

and Rw = 0.972. R∗ can be identified to the vdW radius generating a vdW surface of area
S = 4πR∗2 rather than the solvent-accessible surface of area S = 4πR2.
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Figure 8.9: (a) Partial molar volume VPM vs hard-sphere radius R obtained by MDFT-HNC. It is best
fitted by VPM = 4πR∗3 with R∗ = R − 0.972. (b) Correction to the HNC solvation free energy
normalised by the first-order pressure correction [thus, the quantity a(R∗) defined in eq. 8.12]
as a function of the PMV: exact computation (solid blue line), or estimation using eq. 8.13,
with the value of δ = 0.32 Å (cyan dashed-dotted curve) or with δ = 0 (red dashed-dotted
curve).

Supposing a truncated SPT expression (eq. 2.3) for the hydration free energy with the same Rw

for both simulations and MDFT-HNC

∆G = P
4

3
πR∗3 + γ4πR∗2

(

1 − δ

R∗

)

(8.11)

with R∗ = 3
√

3VPM/4π and accounting for the fact that Psim ≃ 0, one can write a correction to
the HNC approximation as

PCPMV−surf = ∆GHNC − ∆Gsim = a(R∗)PHNCVPM (8.12)

with

a(R∗) = 1 +
3∆γ

PHNCR∗

(

1 − δ

R∗

)

(8.13)
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and ∆γ = γHNC − γsim = −56 mJ/m2. The first term of a(R∗) yields the pure PMV pressure
correction PCPMV and the second one a surface correction to it; the length parameter δ relates to
the so-called curvature correction to the surface tension or, in this case, to the surface tension
difference. It can be determined by imposing the condition that ∆GHNC = ∆Gsim for small radii,
e.g. for R∗ = 1 Å ( ⇐⇒ R ≃ 2 Å, see fig. 8.8a). This condition yields δ = 1+ PHNC/3∆γ = 0.32

Å. The approximation of eq. 8.13 is compared to the simulation results in fig. 8.9b and fits quite
well. Note that it is a parameter-free expression and only ∆γ enters. The simpler approximation
with δ = 0 applies only above ∼ 500 Å3.

As shown in this section, the pressure correction proportional to the PMV as we proposed
previously is strictly valid for very large solutes of micrometric size. For microscopic to nanoscale
solutes, at least a surface correction ∆γ, preferably the next correction term in a scaled-particle
theory parametrization, should be accounted for. On this simple paradigmatic example, one observes
that there is no way that a simple correction strictly proportional to the PMV can be applied unless
limited to a small range of PMV.

8.4.2 molecular solutes

As shown in the previous section, MDFT-HNC fails for what seems to be the simplest case, i.e.,
estimating the free energy cost of creating cavities. This failure extends to non-polar solutes
composed of LJ sites with no partial charges. Fig. 8.11a plots the correlation between the MDFT
and H4D-MC results for the hydration free energies ∆GLJ of the solutes without partial charges,
when the simple pressure correction PCPMV is applied. As for the fully charged solutes (fig. 8.2a),
this correction improves greatly the bare results, but it cannot be considered as satisfactory yet,
with an MAE at 3.05 kcal/mol and R = 0.55.

Similarly to fig. 8.9a for hard spheres, fig. 8.10 plots the “exact” correction factor of eq. 8.13,
(∆GHNC − ∆Gsim) /PCPMV, and a fit using the analytical form of eq. 8.13, with R∗ = 3

√
3VPM/4π,

thus as for an hypothetical, equivalent spherical solute. Only the parameter ∆γ has to be adjusted
since it stands here for an effective value accounting for a mean Lennard–Jones attraction that
was not present in the derivation for hard spheres. We find an optimal value ∆γ = −6.9 mJ/m2

For a purely repulsive hard-sphere in TIP3P water, one would expect ∆γ = −39.2 mJ/m2 with
γHNC = 13.1 mJ/m2 and γsim = 53.2 mJ/m2 from Ref. [179]; the corresponding curve is also
presented in fig. 8.10. The figure also represents the horizontal line corresponding to a simpler
correction of the form a ∗ PCPMV, compatible with previous suggestions [161] (eq. 8.4), with an
optimal value a = 0.86. This type of correction only applies because the range of PMV values
that are spanned is relatively small. In contrast to the formula in eq. 8.13, this correction gives an
incorrect limit when PMV becomes larger.

Figures 8.11b and 8.11c, show the new correlations between the MDFT-HNC and simulation
HFEs with just a pressure correction renormalized by the constant factor 0.86, or applying the more
elaborated analytical form of eq. 8.13, which gives a better description of the surface effects and
yields the correct large volume limit. From (a)–(c), one goes initially from an MAE of 2.92 kcal/mol
and an R of 0.56, to 0.41 kcal/mol and 0.83, and finally to 0.38 kcal/mol and 0.88. Note that this
agreement is obtained with a very rude, spherical approximation for the vdW surface area, which
could certainly be improved. In particular, the slope of the correlation should be corrected. Note that,
previously, an empirical PC+

PMV was proposed in eq. 8.4. For TIP3P (PHNC − Pid) /PHNC = 0.86,
which is exactly what we now suggest by introducing surface contributions. With the current
understanding, we consider this agreement as satisfying, but fortuitous.

Figure 8.11d shows the correlation between MDFT-HNC and simulation results for the electrostatic
contribution of the HFE, i.e. ∆Gelec

H4D−MC = ∆GH4D−MC − ∆GLJ
H4D−MC and F elec

min = Fmin −FLJ
min,

where the first terms are computed for the fully charged solutes. Without any correction, we
observe already a very good agreement with an MAE of 0.53 kcal/mol and a correlation of 0.99,
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Figure 8.10: Exact correction to HNC normalised by the first order-pressure correction [the quantity a(R∗)
in eq. 8.12] for the Lennard-Jones contribution to the SFE as a function of the solutes PMV.
Each blue dot represents a molecule in FreeSolv dataset. The dots in magenta correspond
to the analytical fit of eq. 8.13, using an effective spherical radius R∗ = 3

√
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parameter-free result for a purely repulsive sphere in TIP3P water is given by the dashed line.

but nevertheless, a mean slope of 0.88 instead of 1. We find that the agreement can even be
improved to an MAE of 0.26 kcal/mol and a slope of nearly 1 by adding a pressure-like correction
+0.6∆PCPMV = 0.6PHNC∆VPM, involving the difference of the PMV with and without charges
∆VPM = VPM − VLJ

PM; see fig. 8.11e. ∆VPM is always negative, and this new correction goes with
an opposite sign with respect to the standard one. It means that the regular pressure/surface
tension correction PCPMV−surf above, roughly −0.86PCPMV, is overcompensated by electrostatic
effects that we do not yet fully understand; this correction remains empirical at this stage.

Overall, fig. 8.11f displays the final correlation results adding both the Lennard–Jones and
electrostatic contributions. For each solute, this requires two independent minimizations, with
and without the solute partial charges. Reducing the parametrization to its minimum to capture
the correct physics, i.e., a single parameter ∆γ correcting the pressure correction by surface
effects, and no empirical correction of the electrostatics, yields an MAE of 0.66 kcal/mol and
an R of 0.99 with a mean slope of 0.85. This is significantly better than with the initial values
obtained with an original pressure correction with an MAE of 2.14 kcal/mol and R of 0.95 with a
slope of 0.72. Accounting for the full story reported above, i.e. incorporating in addition to the
well-justified one-parameter correction for the LJ contribution, another one-parameter correction
for the electrostatic contribution yields an MAE of 0.44 kcal/mol, a correlation of 0.99, and a
correlation slope close to 1.

8.5 recapitulation

Table 8.3 shows that all three developments of the PC give similar results and improves the quality
MDFT-HNC results compared to the simple PMV correction incompressible fluids PC′

PMV, and
table 8.4 summarises the advantages and disadvantages of each approach.
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Figure 8.11: Comparison between HFEs obtained with MDFT-HNC and H4D-MC simulations for the
FreeSolv database : (a,b,c) correspond to the MDFT-HNC results for non-polar part (LJ) with
(a) the original PCPMV, (b) a renormalized pressure correction 0.86PCPMV, and (c) the surface
corrected PCPMV−surf of eq. 8.13. (d) corresponds to the MDFT-HNC result for electrostatic
SFE, (e) to the same plus an empirical pressure-like correction 0.6∆PCPMV, and (f) to the
total HFE as the sum of (c) and (e).
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Fmin + PC′
PMV Fmin + PCvdW Fmin + PCML Fmin + PCPMV−surf

MAE 2.14 ± 0.10 0.46 ± 0.03 0.43 ± 0.04 0.45 ± 0.03

RMSE 2.47 ± 0.10 0.58 ± 0.04 0.65 ± 0.07 0.61 ± 0.06

ME 1.94 ± 0.12 0.33 ± 0.04 −0.01 ± 0.04 −0.18 ± 0.04

Pearson’s R 0.95 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Spearman’s ρ 0.94 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.02

Kendall’s τ 0.79 ± 0.03 0.92 ± 0.01 0.91 ± 0.03 0.92 ± 0.03

Table 8.3: Summary of the statistical measures characterizing the correlations between HFEs obtained from
H4D-MC and MDFT-HNC calculations (i) with the original pressure correction for compressible
fluids PC′

PMV , (ii) with the van der Waals volume pressure correction PCvdW, (iii) with the
machine learning pressure correctionPCML and (iv) with the surface corrected pressure correction
PCPMV−surf for the FreeSolv database. All energies in kcal/mol.

Pros Cons

PCvdW No extra cost Only for organic molecules

PCML No extra cost Only for neutral organic molecules

PCPMV−surf Applicable to all solutes (see next chapter) Needs two MDFT minimisations

Table 8.4: Summary of the pros and cons of three new pressure corrections.

To remember

The aim of this thesis is to compute hydration free energies accurately but very

efficiently. MDFT could offer a compromise between speed and accuracy. However,

the bare MDFT-HNC hydration free energy predictions are in the woods. We

know that most of this error is due to a bad estimation of the system’s pressure.

Can we correct this pressure estimation?

Here, we proposed three approaches to improve the original pressure correction proposed
by the group. All three approaches improved the MDFT results for the FreeSolv database.
Of the three approaches, the addition of a surface term leads to best results and can be
applied to any type of solute. However, as it demands two MDFT calculations instead of a
singles one, we recommend the use of the vdW volume-based correction for organic solutes
as it improves the original results without increasing the computation time.



9
MDFT -HNC BENCHMARK

Why this chapter?

The aim of this thesis is to compute hydration free energies accurately but very

efficiently. MDFT could offer a compromise between speed and accuracy. Is

MDFT-HNC well-suited for any type of solute? Is the HNC approximation with

an appropriate pressure correction good enough?

In this chapter, we compare MDFTHNC+PMV-surf results rigorously to exact single conformer
simulation results for four types of solutes :

• hydrophobic spheres
• monovalent ions
• water as solute
• small organic molecules

This chapter benchmarks the performance of MDFT-HNC with new pressure-surface correction
PCPMV−surf, the best correction to date. This is done by a rigorous comparison of MDFT results,
solvation free energies and solvation profiles, to state-of-the-art H4D-MC simulation results for a
multitude of systems, with the same force field parameters and same fixed solute geometries: from
simple spheric hydrophobic solutes and spherical ions to small organic molecules.

All computations were done with the TIP3P water model for the solvent. For water in MDFT,
we find in general that nmax = 3, corresponding to 84 orientations per grid point, gives sufficient
accuracy compared to higher-order expansions, e.g., nmax = 5 corresponding to 330 orientations.
Most of the calculations presented below were performed with nmax = 5 just for safety as this
is completely affordable for the relatively small solutes that were considered. Most of the results
presented in this chapter were published in Luukkonen et al. [180].

9.1 spherical solutes

9.1.1 hydrophobic solutes

We started with simple one-site hydrophobic solutes: rare gases and united-atom representation of
methane and neopentane. H4D-MC simulations were performed with a box of 100 water molecules
and with the same simulation parameters determined in 5.1. MDFT calculations are done with
a solute embedded in a cubic supercell of length 24 Å, with periodic boundary conditions, a
spatial resolution of 0.25 Å (= 96x96x96 grid nodes) and an angular resolution of 330 (nmax = 5)
orientations per spacial grid node. The force field parameters of these hydrophobic solutes are
described in table 9.1.

Table 9.1 also includes their experimental HFEs and those obtained with H4D-MC simulations and
MDFT-HNC. The correlation between the computed HFEs is plotted in fig. 9.1a. The agreement
between MDFT and simulations is good with a small MAE between the methods of 0.23 kcal/mol

74
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Hydration free energy [kcal/mol]

Solute σ [Å] ǫ [kJ/mol] ∆GExp [150] ∆Gsim ∆GMDFT

Neon 3.035 0.15432 2.48 2.68 ± 0.02 2.23

Argon 3.415 1.03931 1.99 1.99 ± 0.01 1.98

Krypton 3.675 1.40510 1.66 1.79 ± 0.01 2.06

Xenon 3.975 1.78510 1.45 1.59 ± 0.01 1.83

Methane 3.730 1.23000 2.04 ± 0.01 1.96

Neopentane 6.150 3.49000 −0.33 ± 0.01 0.09

Table 9.1: Lennard-Jones force field parameters and hydration free energies of rare gases and unified
methane and neopentane molecules.

and a high linear correlation with R = 0.97. We can also go beyond the HFEs and compute, for
example, potentials of mean forces (PMFs) between two solutes via

PMF(R) = ∆GAB
solv(R)− ∆GAB

solv(∞) + UAB(R) (9.1)

where ∆GAB
solv(R) is the SFE and UAB(R) the direct interaction of the AB pair separated by a

distance R. Figure 9.1b shows the PMF obtained with MDFT (nmax = 5, L = 43.75 Å and
dx = 0.25 Å) and H4D-MC (400 water molecules) between two unified-atom methane solutes.
MDFT captures correctly the first minimum and maximum but not quite the subsequent fluctuations
in the PMF.
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Figure 9.1: Comparison of (a) HFEs of spherical hydrophobic solutes and (a) the PMF between two methane
atoms obtained with MDFT and simulation.

Figure 9.2 compares the solute-solvent water site-site distribution profiles of the united-atom
methane and neopentane obtained with MDFT and simulations. As already evidenced in the
past [38], the HNC approximation predicts correctly the cavity volume and the rising of the first
peak. Its characteristic feature for small hydrophobic solutes is to slightly displace the first peak
and overestimate its height. The peak location is better for the larger solute but the height
overestimation remains. Overall, however, the approximation is also doing fine on the structure.
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Figure 9.2: Radial solvation profiles obtained with MDFT-HNC (turquoise) and simulations (purple) for
two hydrophobic Lennard-Jones solutes.

9.1.2 monovalent ions

Here, we study the solvation of simple monovalent ions: four anions, F−, Cl−, Br−, I−, and four
cations, Li+, Na+, K+, Cs+, described with force field parameters given by Horinek et al. [151].
Those are recapitulated in Table 9.2. H4D-MC simulations were performed with a box of 400 water
molecules and with the same simulation parameters determined in 5.1. MDFT results were obtained
from two calculations with the solute, one with partial charges and one without, embedded in a
cubic supercell of length 32 Å, with periodic boundary conditions, a spatial resolution of 0.25 Å (=
128x128x128 grid nodes) and an angular resolution of 330 (nmax = 5) orientations per spacial grid
node. In both cases, since the calculations are done for a periodic system, two types of correction
have been applied, of the so-called B and C types (see sec. 4.2.3, [138, 139, 40])

Ion σ [Å] ǫ [kJ/mol] ∆Gsim ∆GMDFT ∆∆Gsim ∆∆GMDFT

F- 3.434 4.654 × 10−1 −95.6 ± 0.1 −95.0 −27.13 −24.6

Cl- 4.394 4.160 × 10−1 −68.6 ± 0.1 −70.3 - - - -

Br- 4.834 2.106 × 10−1 −62.2 ± 0.1 −65.4 6.48 4.9

I- 5.334 1.575 × 10−1 −54.0 ± 0.1 −58.9 14.49 11.4

Li+ 2.874 6.154 × 10−4 −133.2 ± 0.2 −132.5 −201.65 −202.9

Na+ 3.874 idem −108.6 ± 0.1 −104.8 −176.89 −175.1

K+ 4.543 idem −92.8 ± 0.1 −91.3 −161.31 −161.6

Cs+ 5.173 idem −81.6 ± 0.1 −81.9 −145.99 −152.2

Table 9.2: Force field parameters and hydration free energies (in kcal/mol) of monovalent ions.

Table 9.2 reports HFEs obtained with MDFT and reference simulations and figures 9.3a and 9.3b
shows the correlation between MDFT and simulation for the absolute solvation free energies ∆G

and the relative solvation free energies as defined in Ref. [151], ∆∆G = ∆G + z∆G(Cl−), with
z = ±1 according to the ion valence and ∆G(Cl−) the value obtained for Cl-. The latter was the
reference free energies that Horinek et al. used to fit their ions force field parameters since it cancels
the somehow uncontrolled surface charge corrections that should be added when comparing to
experimental values. These figures include the MDFT results with the original PCPMVto illustrate
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Figure 9.3: Comparison of (a) absolute and (b) relative HFEs of monovalent ions obtained with MDFT-HNC
and simulations. Cations in purple and anions in turquoise. Small squares correspond to results
with PCPMV and larger spheres to results with PCPMV−surf.

that the new PCPMV−surf, originally developed for neutral solutes, improve the MDFT-HNC results
for charged solutes too. Overall, MDFT-HNC results are quite good for small cations with an MAE
of 1.66 kcal/mol (and of 4.00 without the surface correction) but not so well for the anions with
an MAE of 2.58 kcal/mol (and of 11.30 without the surface correction).

A primary output of MDFT is the full molecular equilibrium solvent structure g(r, ω) from which
one can derive easily radial g(r) and polarization P(r) distribution functions or any other angular-
dependent density distribution. Figures 9.4a and 9.4b present the radial density and polarization
distributions for all the ions. Concerning the g(r)’s, MDFT-HNC clearly performs better for the
cations than for the anions. For the cations, MDFT correctly predicts the position of the first two
maxima and first minimum. For the smallest cation, Li+, MDFT sightly overestimates the intensities
of the maxima, and for the larger cations, MDFT slightly underestimates the relative intensities of
the maxima and the minimum. This effect increases with the cation size. In the case of the anions,
the g(r) predicted with MDFT deviates much more from the simulation results. The position of
the first peak and its width are correct. As for the second peak, it is displaced to larger distances.
Since the position of the second peak in water is a sign of tetrahedral order, the cation here taking
the place of one water molecule, we concluded before that the HNC approximation is missing here
some tetrahedral order. For the polarization radial distributions P(r), the correspondence between
simulations and MDFT is much better both for cations and anions, with some differences in the
intensities of the minima and maxima, but globally an excellent agreement.

Beyond the traditional computation of the atomic pair distribution functions, MDFT has the
great advantage of providing, in addition, the complete information on the orientations of the
water molecules around the solute. Here, in spherical symmetry, this translates to the knowledge
of the angular-dependent density maps g(r, cos θ′, ψ′), where θ′ is the angle between the dipole
direction of one water molecule at position r from the ion and r itself, ψ′ the rotation angle around
the dipole direction. g(r, cos θ′, ψ′) is easily deduced from the full distribution in laboratory frame,
g(r, ω), by a spherical average over all r-orientations.

In fig. 9.5a and 9.5b, we have concatenated all this information into the 2D-plots of g(r, cos θ′) =
1

2π

∫

dψ′g(r, cos θ′, ψ′), indicating the preferred orientation of the solvent dipoles as a function of
the radial distance and g(cos θ′, ψ′) ≡ g(rmax, cos θ′, ψ′), where rmax is the distance corresponding
to the maximum of the radial density distribution g(r); this indicates the preferred orientation of
the hydrogen atoms as a function of the dipole orientation. The plots are given for both Cl− and
Na+ and compare MDFT to simulations. As can be seen, the agreement is again excellent for the
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Figure 9.4: Radial (a) density and (b) polarization distribution around ions. Simulation results in black and
MDFT results in turquoise (anions) and pink (cations).

cation. At the peak of g(r), the water dipole is directed radially away from the cation (cos θ′ = 1),
i.e., with the oxygen closest to the cation and the hydrogen atoms pointing away symmetrically,
with no angular dependency in ψ′ close to cos θ′ = 1: the hydrogen sites rotate freely around the
dipole axis. For values of cos θ′ departing from 1, a distribution in ψ′ appears around ψ′ = π/2.
In our conventions, ψ′ = 0 or π, corresponds to the water molecule in the plane formed by the
dipole direction and ion-oxygen direction. The value π/2 corresponds to a configuration in which
the two hydrogen atoms become equidistant from the cation, thus maximizing the sum of the two
distances. As for the anion, the g(cos θ′, ψ′) maps look quite similar for MDFT and simulations
and display a peak centred around cos θ′ ≃ −0.58 = cos(π − θ0/2), where θ0 is the HOH angle
of the TIP3P model, and ψ′ = 0 or π in order to have the optimal H-bond to the anion. So far so
good, but as seen before, it cannot be perfect: a difference does appear in the g(r, cos θ′) map in
which the peak in simulation appears consistently at cos θ′ = −0.58 as before and extends roughly
between −0.4 and−0.8, whereas in MDFT, it extends more floppily from −0.4 and −1, with its
maximum at −1. The strength and directionality of the O–H–X− bond are clearly underestimated.
The second peak is displaced and is somewhat narrower in angle and more pronounced.

9.2 molecular solutes

9.2.1 water as solute

For the molecular solutes, we begin by the case of a TIP3P water molecule in TIP3P, a paradigm for
both an H-bond acceptor and donor. The MDFT-HNC result was obtained from two calculations,
one with the solute partial charges and one without, within a cubic supercell of side 24 Å, a spatial
resolution of 0.25 Å (=96x96x96 grid nodes), and nmax = 5. H4D-MC results were obtained with a
box of 100 solvent water molecules and with the simulation parameters determined in 5.1. For the
hydration energy of an additional water molecule in water (namely, the chemical potential of TIP3P
water), MDFT-HNC predicts a value of −6.3 kcal/mol (−4.69 without the surface correction, a
large part of the correction comes from the ∆VPM) which is in excellent accord with the value
given by simulation at −6.04 ± 0.07 kcal/mol.
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Figure 9.5: Two-dimensional maps of g(r, cos θ′) and g(ψ′, cos θ′) computed by simulations or by MDFT
for Cl− (top) or Na+ (bottom).
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Figure 9.6a shows the radial site-site pair distribution functions between the solute oxygen and
hydrogen sites and the solvent oxygen and hydrogen sites obtained from the MC simulation and
MDFT-HNC. Here, we recover the equivalent results obtained already 20 years ago by Richardi et

al. [181] and Lombardero et al. [182] using 1D-MOZ-HNC integral equations for both TIP3P and
SPC/E waters. Indeed, the same deficiencies of HNC appear: it does miss some of the (subtle)
tetrahedral symmetry in water. The the first O–O peak is correctly placed but too wide on its right
side; the second peak is misplaced and appears at a position pertinent to the second neighbour in
a general dipolar fluid, and not at the 4.6 Å value imposed by the tetrahedral symmetry. The first
O–H or H–O, peak is also at the correct position but underestimated. The H–H pair distribution
function appears almost structureless in MDFT-HNC.
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Figure 9.6: (a) TIP3P site-site radial distribution function. Isosurfaces for the polarization density Py(r)
(red and blue for positive and negative, respectively) computed (b) by MDFT with a voxel size
of 0.25 Å and (c) from a 50 ns long MD simulation with identical voxel size.

One can extract also the three-dimensional solvent charge densities, easily with MDFT, more
painfully by simulation since one needs to explore three-dimensional space with sufficient statistics.
This is illustrated in figs. 9.6b and 9.6c. They represent the isosurfaces of the 3D-polarization
density Py(r), where y is the axis perpendicular to the molecular plane. 9.6b shows the isosurfaces
Py(r) = ±0.035 D/Å3obtained by MDFT with a grid size of 0.25 Å, whereas 9.6c shows the
same quantity obtained by collecting histograms of identical voxel size along a 50-ns-long MD
trajectory (25 000 independent configurations). These 3D plots look familiar compared to previous
simulations [143] with a change of sign when crossing the symmetry plane. The two rather loose,
upper caps correspond to the solvent donor molecules presenting their hydrogen atoms to the
solute oxygen negative partial charge. The two lowest ones represent the solvent water molecule
presenting its oxygen to the hydrogen site pointing in the figure, and whose orientation can depart
from the average, symmetric one with the two hydrogen atoms pointing away and a vanishing Py.
Beyond the satisfactory agreement between MDFT and simulation, the noise appearing in the MD
results illustrates the statistical difficulty of accumulating 3D-densities by simulation, not to speak
of position and orientation densities, which are the direct output of MDFT.

Finally, we present in fig. 9.7b a feature that is not accessible to RISM-based approaches and
would require intense statistics in simulations: we plot the probability of finding a water molecule
in a fixed orientation at distance z from another, here the most probable orientation for a O–H–O
bond on the positive side, z < 0, which becomes an H-bond mismatch on the other side of the
donating molecule, for z > 0.
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Figure 9.7: (a) Representation of a solute water fixed in the centre of the box and a second solvent one at its
most probable location (rOO = 2.45 Å) and in its optimal angular configuration for H-bonding.
(b) The probability distribution for a water molecule keeping the same fixed orientation as in d.
and gliding along the z-axis.

9.2.2 freesolv database

As described already in part in chapter 8, for a more systematic study of molecular solutes, we
assessed the performance of MDFT-HNC on the FreeSolv database of small drug-like molecules.
As reference, we use rigid solute H4D-MC simulation results presented in 5.1. MDFT results were
obtained from two calculations of solute, one with and one without partial charges, in the same
initial FreeSolv configurations within a supercell of side 32 Å with a spatial resolution of 0.33 Å
(=96x96x96 grid nodes) and angular resolution of 84 orientations per spatial grid node (nmax = 3).
The MDFT calculations did not converge for 22 molecules (3% of the database, see appendix G.1
for the solutes that did not converge). All results presented below are for the 620 molecules that
led to convergence. The computational cost or average computation time per molecule on a single
CPU was 8 min—we usually use 8 CPU-threads, so ~1 min per solute in real-time. Note that we
could have done the calculation in a box of 21 Å, and hence, have had only 64 nodes in each
direction, for the vast majority of the molecules in the database, decreasing the simulation time to
under two minutes on average.

Figure 9.8 shows the comparison between simulation and MDFT results for the FreeSolv database
with the whole PCPMV−surf included. The correlation between the two methods is almost perfect
with correlation coefficients close to 1, with an average deviation below half a kcal/mol (MAE=0.44
kcal/mol) and negligible bias (ME=0.12 kcal/mol). MDFT-HNC with the PCPMV−surf predicts
HFEs of small neutral molecular solutes at the same accuracy as reference simulations for a speedup
of at least 3 orders of magnitude in computation time.

Additionally, we illustrate the capacity of MDFT-HNC to predict solvation profiles around a
molecule. It is illusory to span the whole database. We have chosen for illustration the case of
quinoline [FreeSolv ID: mobley_5857, a typical molecule of the FreeSolv database, whose chemical
structure presented in fig. 9.10]. The 3D-solvation structure obtained by MDFT is represented in fig.
9.9: 9.9a displays the number density in the plane of the molecule, with the associated alternation
of maxima and minima. 9.9b concerns another important quantity embedded in g(r, ω) that is,
the polarization field P(r). It displays the norm of the polarization field, i.e., ||P(r)||, in the plane
of the quinoline molecule obtained with MDFT-HNC. As expected, we find high polarization close
to the sites wearing localized charges, and the expected polarization with OH pointing toward N.
9.9c illustrates the solvation isosurface of n = 3nbulk around the solute.
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Figure 9.8: Correlation between HFEs obtained with single conformer H4D-MC and MDFT-HNC with
PCPMV−surf for the FreeSolv database.
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Figure 9.9: (a) Water density map (red: n < nbulk, white: n = nbulk and blue: n > nbulk) and (b) norm of
the polarization vector field (blue: high polarization, black arrows representing the orientation)
in the plane of the molecule obtained with MDFT-HNC. (c) Representation of the quinoline
molecule with four most probable water molecules and the water isosurface at n = 3nbulk.

A direct comparison to simulation results is made for the site radial distribution functions in fig.
9.10. The agreement appears very reasonable. For all solute atoms, the rise of the first peak follows
exactly that of the simulation: the shape of the cavity is perfectly reproduced. The maximum of the
first peak, if any, is correctly located, meaning that the first solvation shell lies where it should. For
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the carbon sites exposed to the solvent (e.g., C1, C6, C8, C9), one does recover the overestimation
of the height that was found for hydrophobic solutes in fig. 9.2. The g(r) for the nitrogen site
misses the important H-bond first peak. Since the nitrogen atom wears a relatively high partial
charge of −0.65e, one is back to the problem encountered before for strong negative charges, e.g.,
for anions or the oxygen of the water molecule.

Figure 9.10: Chemical structure of the quinoline and the radial distribution function g(r) between the heavy
atoms of the quinoline and water oxygens. Blue lines correspond to MDFT-HNC as obtained
in a few minutes, and red lines to MD simulations as obtained in a few hours.

Finally, from g(r, ω) one can also obtain so-called water maps catching the most probable water
molecule positions and orientations around the solute. Figure 9.9c shows the four most probable
position and the orientation of water molecules around the quinoline. Expectedly, they are found
close to the nitrogen atom.

To remember

The aim of this thesis is to compute hydration free energies accurately but

very efficiently. Is MDFT-HNC well-suited for any type of solute? Is the HNC

approximation with an appropriate pressure correction good enough?

When compared to single conformer simulations, MDFT-HNC with predicts HFEs of neutral
solutes within 1 kcal/mol and monovalent ions within 5 kcal/mol. For the solvation profiles,
MDFT-HNC finds the general form but typically overestimates the first peak around neutral
(or low charged), and underestimates and spreads the first peak around a (highly) charged
site. MDFT-HNC also misses part of the hydrogen bonding around a water molecule and
strongly negative charges.
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MDFT FOR DRUG–L IKE MOLECULES

Why this chapter?

The aim of this thesis is to compute hydration free energies of drug-like molecules

accurately but very efficiently. We know that MDFT-HNC when corrected with

an appropriate pressure correction predict hydration free energies of drug-like

molecules within 1 kcal/mol. But for which types of molecules does it work

especially well and for which does it struqgle more?

To get the insight we
• compare MDFT-HNC results with PCvdW to experimental data and state-of-the-art

simulations (the reference in HFE calculations) as well as to 3D-RISM, a competing
liquid-state theory

• identify solute features for which MDFT performance well and for which it struggles

This chapter focuses on a deeper chemoinformatics analysis of the MDFT results for the FreeSolv
database to assess MDFT-HNC’s capacity for drug design. As discussed in the introduction there
is a need for fast but precise prediction of solvation free energies for the process of drug design.
MDFT could be an answer for this demand as MDFT-HNC with rigorous PCPMV−surf a posteriori

correction has similar accuracy as time-consuming reference simulations, as shown in the previous
chapter. However, PCPMV−surf requires two MDFT calculations per solute and the 8 cpu.min
computation time per solute in the previous section is still somewhat expensive for the evaluation
of large databases. Therefore, we re-performed the MDFT-HNC calculations for FreeSolv database
with the PCvdW as it requires only one MDFT minimization per solute, within a supercell of length
21 Å, a spatial resolution of 0.33 Å (=64x64x64 grid nodes) and an angular resolution of 84
orientations per spatial grid node (nmax = 3). In this case, the average computation time on a
single CPU-thread was 1 min 53 sec. The MDFT minimization process did not converge for 23
solutes (4% database, see appendix G for more information). In chapter 6, we found that there
are 520 molecules for which the difference between a rigorous single conformer and flexible solute
H4D-MC simulation is below 0.6 kcal/mol, the average experimental precision of the database.
These molecules are defined as rigid, in respect of their hydration free energy, and as MDFT does
a single conformer calculation, the following analysis is performed on this sub-set of 520 quasi-rigid
solutes. Most of the content of this chapter will be published in Luukkonen et al. [183].

Firstly, MDFT results will be compared to state-of-the-art MD+FEP simulations and 3D-RISM,
another LST approach gaining success in the last few years. The following sections include an error
analysis on selected features of the drug-like molecules in order to identify MDFT’s strengths and
weaknesses and to be able to infer error bars on the method.

Figure 10.1a shows the correlation between experimental HFEs and those obtained with
MDFTHNC+vdW. The MAE is 0.92±0.07 kcal/mol and the Pearson’s correlation coefficient R is
0.93±0.01. MDFT results also have a small mean (signed) error of -0.07±0.11 kcal/mol which
indicates that MDFT does not have a systematic bias: it is lower in amplitude than the statistical
error bars. All the statistical measures characterizing this correlation are summarized in table 10.1.

84
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The error bars on the measures correspond to the 95% confidence interval 1. Note that, as we are
comparing MDFTHNC+vdW, an approached theory, to experimental data, the deviations could be
the results of incorrect approximations in MDFTHNC+vdW or due to bad force field parametrisation.

Table 10.1 contains also the statistical measures characterizing the correlations between experi-
mental values and those obtained with MD+FEP (fig. 10.1b) given by Duarte Ramos Matos et al.

[144] and those obtained with 3D-RISM-KH (fig. 10.1c) by Roy and Kovalenko [114]. Overall the
three methods perform at the same accuracy level with similar errors and correlation coefficients.
However, MDFT’s computation time is on average less than 2 CPU.min compared to hundreds of
CPU.h or tens gpu.h with MD+FEP and few tens cpu.min with 3D-RISM2. Hence for the same
accuracy, MDFT has a speed-up of 1-2 and 3-4 orders of magnitude, when compared to 3D-RISM
and MD+FEP respectively. Compared to 3D-RISM, MDFT does not have the consequences from
approximating MOZ [185, 186, 187, 90].

MD+FEP(a) 3D-RISM(b) MDFTHNC+vdW

MAE 0.98 ± 0.07 1.04 ± 0.09 0.92 ± 0.07

RMSE 1.29 ± 0.11 1.45 ± 0.11 1.25 ± 0.11

ME −0.40 ± 0.11 −0.19 ± 0.11 −0.07 ± 0.11

Max. error 4.57 7.11 4.82

Pearson’s R 0.94 ± 0.02 0.91 ± 0.02 0.93 ± 0.01

Spearman’s ρ 0.94 ± 0.01 0.89 ± 0.03 0.93 ± 0.02

Kendall’s τ 0.79 ± 0.02 0.73 ± 0.03 0.78 ± 0.03

cpu.h per solute ∼ 102 ∼ 10−1 ∼ 10−2

Table 10.1: Summary of the statistical measures characterizing the correlations between experimental
HFEs and those obtained with simulation-based free energy techniques, 3D-RISM-KH and
MDFT-HNC calculations for a sub-set of rigid molecules (520). All error measures are given
in kcal/mol and all error bars correspond to the 95% confidence interval. (a) Duarte Ramos
Matos et al. [144]. (b) Roy and Kovalenko [114].

10.1 effect of solute’s mass, charges and solvation structure

In order to give an optimal set of requirements and confidence intervals to MDFT-HNC predictions,
we now focus on finding sources of errors or correlations between errors. Figure 10.2 shows the
error distribution as a function of the solute’s (i) molar mass, (ii) largest partial charge max{qi}
and (iii) highest value of the 3D solvation structure max{g(r)}. As shown in figure 10.2a, the
heaviest molecules have the largest deviations to experimental values: the MAE increases with the
solute’s mass. For solutes with a molar mass larger than 200 Da, the MAE is 1.75 kcal/mol, i.e.

almost the double than for the whole database. However, these molecules present only 12% of the
rigid subset so their effect on the total MAE is not significant as seen on the cumulative MAE.
Similar trends are present also for the MD+FEP and RISM results with an MAE of 1.78 and 2.21
kcal/mol respectively for these molecules heavier than 200 Da (see fig. H.1)

Similarly to the molar mass, the deviation to experimental values increases with the magnitude
of the largest partial charge of the drug-like molecule, positive or negative, (see fig. 10.2b) with an

1 For each statistical measure X characterizing a dataset of N points (eg. N = 619 for the full set), the measure X’

was computed 10 000 times on N values chosen at random each iteration from the dataset. The error bars of X

correspond to two standard deviations of the X’ distribution.
2 3D-RISM computation times were recovered from a 2010 paper [184] as the 2019 paper [114] did not discuss

computation times
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Figure 10.1: Comparison of experimental HFEs and those obtained with (a) MDFT-HNC with PCvdW, (b)
MD+FEP simulations and (c) 3D-RISM for a sub-set of rigid solutes (520).
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Figure 10.2: Distribution of mean absolute error between predicted and experimental hydration free energies
as a function of three features (a) solute molar mass (with a bin size of 50 Da), (b) solute’s
largest local charge (0.2 e) and (c) the maximum of the 3D g(r) around the solute (5) with
turquoise hexagons (error bars correspond to the 95% confidence interval) presenting the MAE
of each bin and pink squares the cumulative MAE. The corresponding signed error distributions
are presented in (d), (e) and (f) with turquoise lines corresponding to the median error in each
bin, the boxes and the whiskers to 25-75% and 5-95% intervals respectively and black circles
to fliers outside the 5-95% interval. The number above each bin is the population of the bin
for the FreeSolv database and for each distribution the last three (350-500 Da), five (1-2 e) or
four (30-50) bins are gathered into one to be statistically significant.

MAE of 1.84 kcal/mol for solutes with max{qi} > 0.8e (6% of the rigid sub-set). The effect is
less pronounced for MD+FEP and RISM with MAEs at 1.55 and 1.50 kcal/mol respectively for
these molecules. This is expected for MDFT at the HNC approximation: the second-order density
expansion of the functional around ρ = ρbulk, or g = 1, misses higher order repulsion terms. This
leads to problems for cases with densities getting away from ρbulk: either high densities typically
found next to high (partial) charges or large solutes with large volumes where g = 0.

Besides the solute’s molar mass and partial charges, solute features known a priori, we can also
look at the output of an MDFT calculation, that is, the solvation profile, to predict, on this dataset
at least, the quality of the MDFT’s HFE predictions. Figure 10.3 illustrates the 3D solvent density
around 1-amino-4-hydroxy-9,10-anthracenedione (FreeSolvID: 4371692) with four water-oxygen
density iso-surfaces (g = 0.5, 2.5, 5.0 and 7.5). Low densities (fig. 10.3a) are observed on the limits
of the solute’s cavity but also after the first solvation peak (fig. 10.3d) of the hydroxyl group.
The largest oxygen densities (fig. 10.3d) are observed next to the hydroxyl-hydrogen and the less
crowded amine-hydrogen that are potential hydrogen-bond donors.

In fig. 10.2c, one can see that the MDFT’s deviation to experiment increases with the maximum
height of the solvation peaks with an MAE of 1.24 kcal/mol for solutes with max{g(r)} > 20 (1%
of the rigid sub-set). This result is expected as high-density peaks are difficult cases for the HNC
approximation as discussed in the previous paragraph. However, the link between the amplitude of
the deviation and the solvation structure is less pronounced as for the solute’s mass and partial
charges.

Figure 10.4 shows two-dimensional cross distributions of MAE for the three features studied
above. Often solutes with high mass and high charges/solvation peaks have the largest deviations
but deviations can be large for molecules with only one feature with a ’high’ value (eg. MAE of
3.05kcal/mol for solutes with max{g(r)} = 10 − 15 and max{qi} > 1.0e in fig. 10.4c). The
smallest deviations from experimental values are found for the solutes with a mass lower than 200



88 mdft for drug–like molecules

Figure 10.3: Water density isosurfaces around 1-amino-4-hydroxy-9,10-anthracenedione at (a) g = 0.5, (b)
2.5, (c) 5.0 and (d) 7.5.

Da, the largest partial charge of lower than 0.8 and highest solvation peak lower than 25, delimited
by the turquoise rectangles in figure 10.4 (73% of the database), with an MAE at 0.73±0.22
kcal/mol. A table of the three-dimensional cross distributions of MAE is given in appendix I.
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Figure 10.4: Distribution of mean absolute error between predicted and experimental hydration free energies
as a function of two features: (a) solute’s mass and largest partial charge, (b) solute’s mass
and highest solvation peak and (c) solute’s highest solvation peak and largest partial charge.
The number in each bin is the population of the bin.

10.2 effect of functional groups

This section assesses the performance of MDFT as a function of the chemical groups present in a
solute. Figure 10.5 shows the error distribution of MDFTHNC+vdWand reference MD+FEP as a
function of each chemical function present in at least five molecules of the database.

We observe a high correlation between the MAEs of MDFTHNC+vdW and MD+FEP (R = 0.90

and ρ = 0.81). In general, functional groups with small/large errors with MD+FEP also have
small/large errors with MDFTHNC+vdW. This indicates that the major part of MDFT’s error comes
from the force field parametrization and not the approximated theory itself. This is not unexpected
since it has been shown, in the previous chapters [180, 164], that MDFT with appropriate partial
molar volume corrections reproduces similar SFE’s with an accuracy of kBT or below. For example,
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Figure 10.5: Error distributions of (a) MDFTHNC+vdW and (b) MD+FEP for the chemical groups with
more than 5 solutes present in the database. The number of molecules in each group is written
within parenthesis. Turquoise lines correspond to the median error in each bin, the boxes and
the whiskers to 25-75% and 5-95% intervals respectively and black circles to fliers outside
the 5-95% interval. Pink diamonds correspond to the MAE of each functional group and the
vertical pink line to total MAE of the rigid subset.
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it has been noted that the GAFF parametrization of the hydroxyl groups leads to systematic errors
in HFEs computed with MD+FEP [188]. Here we observe above average MAEs for primary and
secondary alcohols with systematic underestimation of the HFEs (ME < 0 with a narrow distribution
of errors) for both MD+FEP and MDFTHNC+vdW.

Nonetheless, there are differences between MDFT’s and MD+FEP’s MAEs: MDFTHNC+vdW

significantly over-performs for some groups, like thiols, and under-performs for others, like nitrates,
when compared to MD+FEP. Hence the totality of MDFT’s error cannot be attributed to the force
field parametrisation.

Additionally, we did a similar cross-analysis between chemical functions, as for the mass, partial
charge and solvation peak couples. A table of all error bars reconstructed from this analysis is
given in appendix I. To illustrate these error estimates, fig. 10.6 shows the distribution of MAE for
molecules with an aromatic ring, the most frequent chemical function in the database (present in
214 solutes, i.e. 41%of the rigid sub-set), coupled with another chemical group. We see that, in
most cases, the MAE of an aromatic+another group is close to the overall MAE of the aromatics.
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Figure 10.6: Error distributions of solutes with an aromatic ring coupled to another chemical function for
couples present in more than five solutes. The number of molecules in each couple is written
within parenthesis. Turquoise lines correspond to the median error of each couple, the boxes
and the whiskers to 25-75% and 5-95% intervals respectively and black circles to fliers outside
the 5-95% interval. Pink diamonds correspond to the MAE of each functional group and the
vertical pink line at 1.18 kcal/mol corresponds to the MAE of all the molecules containing an
aromatic ring.

The most notable exception is the MAE of aromatic+oxo(het)arene at 3.58 kcal/mol which is
much higher than the MAE of all aromatics at 1.08 kcal/mol. This is coherent with oxo(het)arenes
having the largest errors of all functional groups. More interesting are couples like aromatic+alkene
(MAE=0.37 kcal/mol) or aromatic+aldehyde (MAE=1.34 kcal/mol) for which the MAEs of the
couples are significantly lower or higher than the MAE of the individual chemical functions that they
are composed of. Note that these couples contain only 2 and 4 solutes each so these behaviours
might be artefacts of limited sampling.
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To remember

The aim of this thesis is to compute hydration free energies of drug-like molecules

accurately but very efficiently. We know that MDFT-HNC when corrected with

an appropriate pressure correction predict hydration free energies of drug-like

molecules within 1 kcal/mol. But for which types of molecules does it work

especially well and for which does it struqgle more?

For rigid drug-like molecules, MDFT predicts HFEs with an MAE of 0.92 kcal/mol with an
average computation time of 2 minutes per solute. This is at the same level of accuracy as
state-of-the-art MD+FEP or 3D-RISM for a speedup of 3-4 or 1-2 of orders magnitude in
computation, respectively.
Additionally, we have identified solute features for which MDFT performance well or struggles.
They are generally the same as those for MD+FEP and comes from the force-field deficiencies.
For certain substances and on average, MDFT overperforms MD+FEP this is due to
compensation of errors rather than fundamental reasons.



CONCLUS ION - PART I I I

MDFT-HNC with an improved pressure correction, by the addition of a surface and charging terms
or by van der Waals volume optimisation, yield HFEs of drug-like molecules within half a kcal/mol.
The former is more general and can be applied to any type of solute but the charging term demands
two MDFT minimisations, whereas the latter does not increase the computation time but can only
be applied for atoms with tabulated values.

The rigorous benchmark of MDFT-HNC with PCPMV−surf showed that predicts the HFEs of neutral
solute, hydrophobic spheres or molecular solutes, within half a kcal/mol and small monovalent ions
within one kcal/mol (5% in relative error). As the solvation profiles, MDFT-HNC finds the general
form but typically overestimates the first peak around neutral (or low charged), and underestimates
and spreads the first peak around a (highly) charged site. MDFT-HNC also misses part of the
hydrogen bonding around a water molecule and strongly negative charges.

The final comparison MDFT-HNC with PCvdW, as speed is a key factor for drug design purposes,
HFEs of small organic molecules to experimental results shows that the MDFT predictions are
within 1 kcal/mol for an average computation time of 2 minutes per solute. This is at the same
level of accuracy as state-of-the-art MD+FEP or 3D-RISM for a speed up of 3-4 or 1-2 of orders
magnitude in computation, respectively.
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CONCLUS ION AND PERSPECTIVES



11
CONCLUS ION

The development of a new drug, from drug discovery to commercialisation, is a very expensive
and long process that takes on average over ten years with a median cost of one billion dollars.
Accelerating this process is a major societal challenge. One of the main approaches adopted is to
develop and increase the use of fast in silico methods for the screening of potential drug candidates
in the drug discovery phase.

The first stage of screening is the hit identification, where only the affinity, in solution, between
the potential drug molecule and the target is considered. This affinity is closely related to the
hydration free energy of the ligand, the target and the complex. Other important properties are the
selectivity of the ligand, its water-solubility and possibly its capacity to penetrate the cell membrane.
Today the exact simulation-based methods to predict solvation free energies are very slow and the
fast continuum models are inaccurate.

Molecular density functional theory is an exact theory that permits the energetical and structural
study of the solvation of rigid solute of any size or shape. However, similarly to its more well-
known electronic cousin, the exact functional is not known and therefore the theory must be
approximated. Nevertheless, a high-performance implementation of MDFT, in the hyper-netted
chain approximation with an a posteriori pressure correction to compensate some deficiencies of the
HNC approximation, predicts reasonable solvation free energies, within few kcal/mol, and molecular
solvation equilibrium profiles for a variety of small solutes in few minutes. It is not accurate enough
but a first step in the right direction.

In 2017, important theoretical and numerical advances were taken by the group to make the
rigorous and efficient resolution of MDFT-HNC possible. Therefore, the first part of my thesis was
to produce a large and systematic benchmark of the performance of MDFT-HNC on a variety of
systems. At the first stage, MDFT-HNC, which is an approximated theory, should be compared to
exact reference simulations, using the same Hamiltonian, to measure the advantages and deficiencies
of MDFT-HNC theory without having eg. error compensation of the force field approximation. For
simple spherical systems or a rigid molecule, like water, this means to use the same force field
parameters for the MDFT calculation and the MD+FEP simulation. But for molecules, even small
ones, it also means having rigid solute reference data done with the same single conformer used for
the MDFT calculation.

Thus, we needed to have single conformer reference data of drug-like molecules. These reference data
were produced with a novel hybrid-4th-dimension-Monte Carlo approach. H4D-MC was originally
developed for grand canonical simulations with a possible addition or deletion of rigid particles
during a simulation at imposed chemical potential µ. The addition or deletion is done via a short
out-of-equilibrium MD simulation in a 4th dimension which allows the relaxation of surrounding
medium and increases drastically the statistics of particle addition/deletion compared to the basic
Widom method. It was modified and developed to perform simulations in the isotherm-isobar
ensemble and to measure the excess chemical potential µexc, i.e. the solvation free energy of a
solute. With this approach, we (re)produced these reference calculations for (charged) spherical
solutes and single conformer small neutral drug-like molecules of the FreeSolv database to which
MDFT can be rigorously compared. These rigid H4D-MC HFEs were produced for a similar precision
as flexible solute MD+FEP for a speed up of factor 6 in the CPU-time. To validate our single
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conformer HFEs of molecular solutes we implemented solute flexibility into H4D-MC. We recovered
the flexible solute MD+FEP results for a speed up of factor 4 in the CPU-time.

The comparison of between single conformer, multi-conformer and flexible solute HFE calculations
of the FreeSolv database allowed us to identify (i) solute features, mainly potential hydrogen bond
donors and acceptors, that guide the importance of solute flexibility in a HFE calculation and (ii) a
sub-set of FreeSolv for which a single conformer HFE calculation is enough to produce the HFE of
the flexible solute.

The comparison MDFT-HNC results with the original pressure correction that depends only on the
solute volume to single conformer reference data showed advantages and limitations: it predicts the
HFEs of drug-like molecules within 2 kcal/mol of the reference data with an average computation
time of 2 min per solute. There is a speed up 3-4 orders of magnitude when compared to simulations
but the method stays quite inaccurate. The addition of a posteriori machine learning brings the
average error to half a kcal/mol. This inspired us two improve the pressure correction with two
approaches: (i) by optimising the van der Waals volume of the solute and (ii) by a more physics-
based approach of adding a surface and charging term to the pressure correction. Both corrections
also bring the average error to half a kcal/mol which starts to be promising for the screening
processes.

A new comparison of MDFT-HNC results with the more physics-based surface correction to
reference data of a variety of solutes showed that MDFT-HNC can predict HFEs of neutral solutes
with an accuracy of half a kcal/mol, including the HFE of the always challenging water molecule
within 0.2 kcal/mol, and monovalent ions within 5 kcal/mol (5% relative error). Note that the
charging correction demands two MDFT minimisations doubling the computation time.

Finally, as MDFT could be of great interest for the pharmaceutical application we paid a closer
look to the MDFT’s performance on drug-like molecules. We showed that MDFT-HNC, with the
vdW volume PC, predicts HFEs of small rigid drug-like molecules within 1 kcal/mol of experimental
results with an average computation time of 2 minutes per solute. This is at the same level of
accuracy as state-of-the-art MD+FEP or 3D-RISM, another liquid state theory approach, for a
speed-up of 3-4 or 1-2 of orders magnitude in computation time, respectively. Additionally, with a
chemoinformatics analysis, we identified solute features for which MDFT performs well or struggles.
Most of the time, MDFT struggles for the same types of molecules as MD+FEP and thus most
of the errors certainly come from force field deficiencies. For certain substances and on average,
MDFT over-performs MD+FE. This is due to the compensation of errors rather than fundamental
reasons.

Overall, we have shown MDFT-HNC with an appropriate pressure correction predicts well the
hydration free energies of small rigid neutral or charged systems. The next steps would be (i) on a
fundamental level to go beyond the HNC approximation with the addition of bridge functional to
bypass the pressure correction and also improve the solvation structure, and (ii) in the biochemical
and pharmaceutical interest to introduce smart solute flexibility into MDFT and go to larger
systems, like proteins.



12
PERSPECTIVES

12.1 for h4d-mc

The ‘novel’ hybrid-4th dimension-MC approach showed great potential for the computation hydration
free energies of small, rigid or flexible, neutral or charged, solutes. At present, the main disadvantages
of this approach come from its numerical implementation as it is currently (i) only implemented
for simple rigid solvents and (ii) the code is not parallelised. The former is not a problem as long
as studying hydration as most water models are rigid, but would cause problems if one wants
to use more complicated organic solvents, like cyclohexane and n-octanol (fig. 12.2). However,
implementing flexible solvents should not be a problem as developments made in chapter 6 for the
solute can be applied for the solvent.

The latter point is more crucial if one wants to use H4D-MC systematically and efficiently free
energy calculation method. As the in-house ‘test’ code does not include any parallelisation, it
is not very efficient compared to well-developed commercial or open-source MC or MD codes.
Furthermore, as discussed in chapter 5.1.1, the H4D-MC approach is embarrassingly parallel by
nature, which is not the case of the MD+FEP approach, and parallelisation could be implemented
at three different levels:

1. Each insertion/destruction process is independent, therefore every insertion/destruction could
be done on separate core and we can say it is ‘infinitely’ parallelisable.

2. The propagation of the bulk solvent and solvated system are done with MC, i.e. non-
deterministic, therefore the propagation could be done with multiple shorter simulations on
separate cores.

3. ‘Classic’ parallelisation methods used by well developed MC or MD codes could be applied to
the simulation box and thus running the propagations and the ins/des on multiple cores.

The first point conceptually the simplest to implement but by far the most ambitious as it gives
access towards even exascale computing.

12.2 for mdft

For the last decade the idea, the theory and the code of MDFT has been in development. Now
that MDFT-HNC with an appropriate pressure correction can predict hydration free energies of
molecular systems within 0.5 kcal/mol and within 1 kcal/mol of experimental data in a few minutes,
it is operational. Thus, the main perspective for MDFT is to apply it!

Nonetheless, the theory and the code are not perfect: the theory could be developed beyond the
HNC approximation, the code is limited by its memory-consumption and we need to find a smart
way to take solute flexibility into account. Moreover further theoretical and technical developments
will enable the use a quantum solute, the computation of binding free energies with MM/MDFT,
the entropic and enthalpic contributions and partition coefficients.
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12.2.1 going beyond the hnc approximations

Now that, MDFT (i) can be efficiently resolved at HNC approximation level, (ii) several a posteriori

correction to SFE correct for the deficiencies of the HNC approximation and (iii) with these pressure
corrections MDFT-HNC have been benchmarked on a multitude of systems yielding HFEs within
0.5 kcal/mol of rigorous reference simulations for small neutral molecules and the rest within 5
kcal/mol (less than 5% in relative error for ions): the next natural step is to go beyond the HNC
approximation, i.e. the second-order density expansion, with the addition of a bridge functional
that include cubic and higher-order perturbations.

This thesis provided a basis for the developments of bridge functional as (i) one lesson of this
work, already noted by others, is that for future improvement, it is certainly wise to proceed in two
steps, as it is done usually in simulations: first introducing the nude LJ interaction, then adding
the charges in a second step; (ii) the benchmark showed that MDFT-HNC struggles to predict the
correct structure especially around high negative charges (anions or water’s oxygen) and does not
produce the tetrahedral order of hydrogen bonding. Hence, the bridge functional should aim at
correcting these deficiencies; and (iii) this thesis produced a large quantity of reference data from a
multitude of simple spherical {σ, ǫ, q}-triplets to single conformer references of molecular solutes.

Proceeding as the first point suggested, we have recently proposed a simple angular-independent
parameter-free (in the sense that all the parameters appearing in the expression of the bridge func-
tional are determined unambiguously from the properties of the bulk solvent (pressure, isothermal
compressibility, liquid−gas surface tension, i.e. solute independent) weighted density bridge func-
tional for hydrophobic solvation [132]. This simple angular-independent, and thus computationally
efficient, can capture the main physical features of hydrophobic solvation and predicts the hydration
free energies of FreeSolv-LJ, i.e. solutes without partial charges, within 0.25 kcal/mol of reference
H4D-MC data.

To go beyond the hydrophobic solvation, i.e. when the partial charges are switched on, will require
an angle-dependent bridge functional in order to systematically improve the results presented in
this thesis. The development of the angular-dependent and solute-independent bridge functional is
currently going on. As remarked in the second point, this bridge functional should aim at correcting
deficiencies around negative charges and in hydrogen bonding.

Note that, even though only the HFE of the {σ, ǫ, q}-triplets were discussed in this thesis, the
full molecular ρ(r, ω) was rigorously computed for the {σ, ǫ, q}-triplets. These densities will be
used to verify and develop a bridge functional that also corrects the structures and not only the
HFE. Moreover, from these simulations, we can to extract the solute-dependent bridge function, a
first step in developing the bridge functional.

12.2.2 reducing the memory footprint

The main advantage of MDFT compared to simulations, or even RISM methods, is its speed.
The total CPU time of an MDFT minimisation is typically between few seconds to few (tens)
of minutes with the L-BFGS-B minimiser depending on the grid resolution. However, it is very
memory-consuming. The L-BFGS-B minimiser needs to store some data in double precision during
the iteration and, during the functional evaluation, the memory for 3 ρ(r, ω) needs to be open
simultaneously. As shown in fig. 12.1 the typical amount of used RAM is between 1 and 20 GB.
Typical laboratory clusters cannot allocate more memory to process. With our ‘normal’ MDFT
parameters of a cubic supercell with nmax = 3 and dx = 0.33 Å, we can only study box sizes
up to L = 42 Å. Therefore, we are limited to study relatively small systems with the L-BFGS-B
minimiser. To study larger biochemical systems the memory consumption should be reduced.

The easiest way to overcome this problem is to use a less memory-consuming minimiser like
steepest descent which is implemented into MDFT. However, the use of the simple steepest
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Figure 12.1: MDFT’s use of RAM as a function of spatial nodes in each direction and orientational
discretisation nmax.

descent minimiser decreases substantially the speed of minimisation leading the minimisation times
from few minutes to few hours depending on the grid resolution. Other options, to bypass the
memory problem, would be to parallelise the code to several nodes with MPI (currently the code is
parallelised with OMP) which requires only the modification of the FFT and L-BFGS-B processes.
This work is ongoing in Jeanmairet’s laboratory.

Another path to reduce the memory consumption is to use of non-uniform grids for the spatial and
orientational discretization. Currently, MDFT uses a homogeneous grid, in space and orientation,
i.e. it has the same resolution near and far from the solute which can lead to a very large number of
grid points. However, eg. looking at the radial distribution functions in chapter 9, density close the
water’s bulk density are recovered for rsite−O > 8 Å and the most interesting information is within
few Å of the surface of solute sites. Moreover, for large solutes, lots of frequent grid points are
‘wasted’ on the solute cavity here the solvent density is null. This is even more true for the angles.

To overcome the ‘wasting’ frequent spatial grid points far from the solute is to use a non-uniform
grid such as a set of spherical grids centred on solute sites. This can be seen as an expansion of
the density onto a set of ‘atomic-like orbitals’ where is ‘orbital’ could be expanded on a local basis
set like spherical harmonics. However, this approach does not resolve the wasting of grid points in
the solute cavity as the grid would be very tight where solute sites overlap.

As can be seen in fig. 12.1 the memory consumption increases a lot with the orientational
resolution. Similar to the spatial discretization, the fine orientational resolution is important close
to the solute sites and not so much far from the solute. To reduce memory-consumption, one could
implement a multi-grid approach with a higher orientational resolution close to the solute and lower
one further away.

Another option would be to expand the density on a wavelet basis instead of the Fourier basis,
as they are more adapted to process highly localised information [189, 190]. Preliminary theoretical
analysis indicates that the use of the wavelet approach instead of the direct one could reduce the
memory requirements of 99% in 3D while being computationally at least equivalent to the direct
approach. This would allow MDFT to compute free energies of systems roughly ten times larger
than it can in the current implementation with no trade-off in computational time. It has been
done for electronic DFT for example in BigDFT [190, 191] and MADNESS codes [192].

12.2.3 solute flexibility / mm-mdft

As shown, in this thesis (i) a single conformer HFE calculation is not sufficient for correctly
predicting the HFEs of molecules with H-bond acceptors and especially donors and (ii) the flexible
solute’s HFE cannot be systematically reconstructed from a handful of conformers obtained from
random snapshots of vacuum and solution simulations and computing the HFE for every conformer
in MD simulation with MDFT is not efficient at all. Nonetheless, H-bond acceptors and donors
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play an important role in biochemistry and the affinity between a ligand and a protein’s active site.
So correctly predicting their HFEs would be a great interest for MDFT. Therefore, it is important
to develop or apply more sophisticated methods to sample and identify important conformers. First
tries, conformer clustering to identify main average conformers did not lead to hoped results.

12.2.4 coupling mdft

The long-term aim has been to replace implicit solvent methods at different scales with MDFT.
Now that (i) MDFT can be efficiently and rigorously solved at the HNC level [40] and (ii) the
MDFT-HNC, when coupled with an appropriate pressure correction, can produce ‘acceptable’
results, the MDFT can be coupled with quantum calculations, molecular mechanics, drug design
pipelines or hydrodynamics. These are not any more long-term goals but current projects or doable
in the close future.

The first ongoing project is to couple MDFT at micro-scale with quantum calculations, QM/M-
DFT [126], as an alternative to widely used PCM methods and QM/MM simulations, and more
recently developed QM/RISM approaches [117, 118]. Here, the idea is to treat the solute with QM,
which creates the external potential Vext for the MDFT minimisation, and the solvent classically
with force field representation but instead of using ‘expensive’ explicit solvent simulations the
solvent in treated by the much faster MDFT. Moreover, as a replacement to (i) PCM it brings
structure information on the solvation missing in the implicit solvent models and (ii) it gives directly
the solvation free energy which cannot be obtained from a single QM/MM simulation and (iii) the
solvent induces a polarization of the electronic density which in turn modified the solvent density
ρ(r, ω).

The second project consists of coupling MDFT at the mesoscopic scale to Laboetie [193, 194,
195], a computational fluid dynamic code developed for chemical applications. It is based on
Lattice-Boltzmann methods for fluid simulation and takes into account the chemical specificity to
study the transportation of a chemical reactive. It is especially adapted for the study of particles
that can be adsorbed and desorbed to/on a surface. Here the MDFT aims to better model the
surface adsorption/desorption by computing the adsorption/desorption kinetic constants that are,
at the moment, produces as input parameters.

The third aim to propose MM/MDFT as a replacement of MM/PBSA and MM/GBSA to
estimate the binding free energy in drug design purposes [196]. Preliminary results on single
conformer of a docked ligand-active site complex, have shown that the quality of the binding
free energy prediction improves when structural information on the solvation is added via MDFT
when compared to MM/PBSA results [197]. The next step would be couple MDFT to drug design
pipeline, like AutoDock, to be able to systematically use MDFT to model the solvent effects in the
ligand-protein interaction and hopefully improve the quality of the affinity prediction.

12.2.5 effect of temperature

All MDFT (and H4D-MC) calculations in this thesis were performed at room temperature and only
solvation free energies were computed. This is due, as noted in chapter 4.2, to one of the MDFT’s
main input, the solvent-solvent pair correlation function c(2)(r12, ω1, ω2), that is computed for a
given temperature T and pressure P. Until now, these pair correlation functions are computed only
for the normal conditions T = 298.15 K and P = 1 atm. Thus MDFT could not be used at other
temperatures. and therefore could not be used to evaluate the entropic and enthalpic contributions
of the hydration process.

In the future, the possibility to use MDFT at other temperatures would be of great interest as
(i) for biochemical and pharmaceutical purposes it could be interesting to predict hydration free
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energies at body temperature (∼ 310 K), and furthermore, (ii) the possibility to use MDFT at
different temperatures gives access to the enthalpic and entropic contributions of the solvation
process. They can be of great importance when studying real applications [198, 199].

At the time of the writing of this thesis, the project of studying temperature effects of TIP3P’s
c(2)(r12, ω1, ω2) in the range of 280-320 K, i.e. the interesting temperature range in biochemistry
as, below it, water freezes and, above it, most proteins are denatured, is ongoing. Note that,
producing these c(2)(r12, ω1, ω2) is not trivial as it requires (i) very rigorous simulations, eg. a first
simulation is done at each temperature to evaluate the relative permittivity εr(T) of water to set
the relative permittivity of the imaginary surface ε′(T) ≈ εr(T) for the production run; (ii) very
long simulations MC to correctly sample the six-dimensional molecular density [17, 18]. Preliminary
results show that ∆c(2)/∆T seems to vary almost linearly in the range of 280-320 K. This could
allow the fast determination of c(2) and the use of MDFT at any temperature in the range. This,
in turn enables the computation of the hydration enthalpies and entropies with MDFT. There is
also a lead to determine the solvation entropy directly from MDFT without doing the minimisation
at two different temperatures.

12.2.6 partition coefficients

Beyond water, there are other important solvents, cyclohexane and n-octanol, used in modelling
solvation effects. The former is used as a model for a generic organic solvent in chemical synthesis
and the latter is used for modelling lipid membranes, eg. cell membranes. The partition coefficient
of both solvents with water, log Phw and log Pow, are important thermodynamic quantities: the
former to predict liquid-liquid extraction properties in research or industrial synthesis of organic
molecules and the latter to predict the capability of a molecule to penetrate a cell membrane, a
positive property of drug molecules and a negative one for molecules eg. in cleaning products.

Therefore, it would be of great interest to implement these two solvents to MDFT. In principle,
adding a new solvent to MDFT only requires the computation of the solvent-solvent pair correlation
function of the given rigid solvent. However, these are not ‘rigid’ solvent like water. For the
cyclohexane, as it is cyclic and has few degrees of freedom, this problem could be ‘easily’1 solved by
using a mixture of solvent where each separate solvent corresponds to the rigid conformer presented
in fig. 12.2a. N-octanol (fig. 12.2b) is much more complicated case as it has a long aliphatic chain
and lots of degrees freedom. It has lots of possible conformers and it is not evident how to model
n-octanol with few rigid conformers. Nevertheless, due to the importance of log Pow, especially in
pharmaceutical research the implementation of n-octanol into MDFT should be investigated.

(a) (b)

Figure 12.2: Illustration of (a) the main conformers of cyclohexane and their relative internal energies and
(b) chemical structure of n-octanol.

1 In principle, there are no issues to use a mixture of solvents like electrolytes (mixture of water and ions) as the

solvent in MDFT. However, for the moment the cost in memory is too high.
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A
GRADIENTS OF THE MDFT FUNCTIONAL

This appendix details the of gradient of the functional and shows that at the variational minimum
the MDFT function gives the HNC relations of solute-solvent distribution function.

First, starting from the ideal term of the MDFT functional (eq. 4.5), the finite difference is
reads
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and as δρ
ρ tends to 0, it is possible to do a Taylor expansion of ln
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Injecting the this result into the equation first equation, the finite difference reads
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and the derivative of the ideal term reads

β
δFid

δρ
= ln

(

ρ

ρbulk

)

.

102



gradients of the mdft functional 103

Secondly, starting from the external term of the MDFT functional (eq. 4.6), the finite difference
is reads

δFext[ρ] = Fext[ρ + δρ]−Fext[ρ]

=
∫

drdω(ρ + δρ)Uext −
∫

drdωρUext

=
∫

drdωδρUext (A.5)

and the derivative of the external term reads

β
δFext

δρ
= βUext. (A.6)

Thirdly, starting from the HNC part of the excess term of the MDFT functional (eq. 4.8), the
finite difference is reads

βδFHNC[ρ] =βFHNC[ρ + δρ, ρ′]− βFHNC[ρ, ρ′]

+ βFHNC[ρ, ρ′ + δρ′]− βFHNC[ρ, ρ′]

=2
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and the derivative HNC term reads

β
δFHNC

δρ
= −γ. (A.8)

At the variational minimum the derivative is null

β
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δρ

= ln
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+ βUext − γ = 0. (A.9)

By simple algebric transformations, one obtaines following the solute-solvent HNC relation

g =
ρ

ρbulk
= e−βUext+γ. (A.10)



B
STATIST ICAL MEASURES

Six statistical statistical measures are used in this thesis report to quantify the quality of MD+FEP,
H4D-MC, RISM or MDFT results : three mean errors and three correlation coefficients.

Three different mean errors are used to measure of the differences between values predicted by a
model 1 and the values actually observed (or predicted by a model 2) :

The Mean (signed) error (ME) which is formally defined as

ME =
∑i(ŷi − yi)

n
(B.1)

The Mean absolute error (MAE), also called the mean unsigned error (MUE), which is formally
defined as

MAE =
∑i |ŷ − yi|

n
. (B.2)

The Root-mean-squared error (RMSE), also called the root-mean-squared deviation (RMSD),
is formally defined as

RMSE =
√

MSE =

√

∑i(ŷi − yi)2

n
. (B.3)

where ŷi and yi are the corresponding observed and predicted values respectively and n the number
prediction. All the mean errors have the same unit as the predicted/observed value and smaller
they are the better the predictor. The sign of ME indicates if the predictor has a systematic bias
but is not pertinent if the predicted values are distributed uniformly around the observed values.
The MAE gives an uniform weight to all values whereas the RMSE is emphasizes the weight of the
outliers (MAE is always smaller than the RMSE).

Three different correlation coefficients are used to measure of the correlations between values
predicted by a model 1 and the values actually observed (or predicted by a model 2) :

The Pearson correlation coefficient (Pearson’s R) measures the linear correlation between
two variables X and Y. It is formally defined as

R =
cov(X, Y)

σXσY
(B.4)

where cov(X, Y) = E[(X − E(X))(Y − E(Y)] is the covariance between X and Y and σX and
σY the standard deviation of X and Y respectively. The commonly used coefficient of determination
R2 is the square of the Pearson’s R.

The Spearman rank correlation coefficient (Spearman’s ρ) measures the monotonic correl-
ation between two variables X and Y.. It is formally defined as

ρ =
cov(rgX, rgY)

σrgX
σrgY

(B.5)

where cov(rgX, rgY) the is covariance between rank variables and rgX and rgY, and σrgX
and σrgY

the standard deviation of rank variables. The Spearman correlation coefficient is defined as the
Pearson correlation coefficient between the ranked variables and varies the same way as the Pearson
correlation coefficient.
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The Kendall rank correlation coefficient (Kendall’s τ) measures also the monotonic correl-
ation between two variables X and Y. It is formally defined as

τ =
ncon − ndis

n(n − 1)/2
(B.6)

where ncon is the number of concordant pairs, ndis the number of disconcordant pairs and n the
total number of pairs. When evaluating each possible pair [(Xi, Yi), (Xj, Yj)], the pair is counted
as concordant if Yi > Yj when Xi > Xj or if Yi < Yj when Xi < Xj else the pair is counted as
disconcordant.

The correlations coefficients vary between -1 and 1 and the higher the magnitude of the
correlation coefficient better the linear/monotonic correlation is between the prediction and the
observation. The sign of R indicates if the predictions and the observable are directly correlated
(+) or anti-correlated (-).



C
FREESOLV DATABASE

The FreeSolv is a widely used database of hydration free energies curetted by the Mobleylab [200]. It
contains the experimental hydration free energies of 642 small neutral organic ‘drug-like’ molecules
and those obtained with state-of-the-art MD+FEP. The original database created by Mobley of 504
molecules was created based on previous datasets, notably from Rizzo [201] and previous studies
Mobley and co-workers. Additional molecules have been added as the result of new studied since
for example as part of the SAMPL challenges [202] resulting to the current database [203, 144].

The database has more than 70 chemical functions with a large distribution of the functional
groups (only 16 functions are present in over 20 solutes). The molecular masses range from 16 to
493 Da. These are typical sizes for drug-like molecules as defined by Lipinski’s ‘rule of five’ [204] of
molecule’s drug-likeness with a molecular mass criteria maximum at 500 Da. Moreover, 95% of the
database has a molecular mass lower than 300 Da defined as a limit for lead-like molecules by the
‘rule of three’ [205]. However, the average molar mass is 140 Da which implies that most solutes
are smaller than typical drug-molecules. The database contains only neutral molecules as measuring
SFEs of an isolated charged species requires extra thermodynamic assumptions or introduces other
complexities [144] that are still not well understood. Nevertheless, some molecules have relatively
high partial charges implying important electrostatic interactions with the solvent and probably
hydrogen bonding.
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Figure C.1: (a) Occurrence of the chemical function present in over 20 solutes and distribution of (b)
experimental hydration free energies, (c) solute mass and (d) solute’s highest partial charge.

The MD+FEP calculations were done with Gromacs [145, 146, 147, 148, 149] and analysed
with MBAR [75]. The database contains all the input files including the starting structures and
force field details of the molecules. The solutes were modelled with the GAFF force field [153]
(v1.7) with AM1-BCC charges [154, 155] and the water with the TIP3P model [28].
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D
H4D -MC S IMULATION DETAILS

All H4D-MC simulations are done with the following simulation parameters for rigid (table D.1)
and flexible (table D.2) solute simulations if not explicated differently in the text.

Simulation box parameters

Number of TIP3P water molecules: N 100

Temperature: T 298.15 K

Pressure: P 1 atm

Ewald decomposition: KL, sr, sk 8 4 4

Exterior dielectric constant: ǫ′r 99

H4D parameters

Maximum “altitude”: wmax 3 Å

Ins/des speed: v 0.05
√

kBT/M

Time step: ∆t 0.02
√

βMÅ

Ewald decomposition: KL′, s′r, s′k 8 3 3

Reference µ0
exc 0 kBT

Volume change: V0 ∼ VPM

Reduced mass of solute sites: m 1 × 1020 (=rigid solute)

MC propagation parameters

Equilibration 10 000 MC cycles

Accumulation interval 100 MC cycles

Max. translation of a solvent molecule 0.3 Å

Max. rotation of a solvent molecule 30 Å

λ parameters for MC Force-bias 0.5 0.5

Volume exchange probability 0.2

Max. change in ln V 0.05

Table D.1: Reference single conformer H4D-MC simulation parameters.
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Simulation box parameters

Number of TIP3P water molecules: N 100

Temperature: T 298.15 K

Pressure: P 1 atm

Ewald decomposition: KL, sr, sk 8 4 4

Exterior dielectric constant: ǫ′r 99

H4D parameters

Maximum “altitude”: wmax 3 Å

Ins/des speed: v 0.05
√

kBT/M

Time step: ∆t 0.02
√

βMÅ

Ewald decomposition: KL′, s′r, s′k 8 3 3

Reference µ0
exc 0 kBT

Volume change: V0 ∼ VPM

Reduced mass of solute sites: m 1 × 1020 (w/o relaxation)

3 (w/ relaxation)

MC propagation parameters

Equilibration 10 000 MC cycles

Accumulation interval of insertions 100 MC cycles

Insertion configuration generation in vacuum 10 000 MC cycles

Accumulation interval of destructions 1 000 MC cycles

Max. translation of a solvent molecule 0.3 Å

Max. rotation of a solvent molecule 30 Å

λ parameters for MC Force-bias 0.5 0.5

Volume exchange probability 0.2

Max. change in ln V 0.05

Max. displacement of a solute site 0.1 Å

Rel. probability to move a solvent and solute site 1 5

Table D.2: Reference flexible solute H4D-MC simulation parameters.



E
‘ FREESOLV -R IG ID ’

Table E.1 gives the FreeSolv identifications of the 213 FreeSolv solutes defined to be rigid. More
informations on these solutes at github.com/sohviluukkonen/Thesis

1075836 1893937 2725802 3761215 4893032 6250025 7690440 8809190

1079207 1899443 2771569 3762186 4983965 627267 7708038 8809274

1107178 1923244 2784376 3775790 5094777 628951 7732703 8827942

1160109 1929982 2789243 3802803 5110043 6303022 7769613 8885088

1189457 1952272 2802855 3968043 511661 6359135 778352 8966374

1199854 1963873 282648 3969312 5157661 6430250 7814642 900088

1231151 1977493 2837389 3980099 5220185 6474572 7859387 9028462

1235151 2008055 2859600 3982371 525934 6571751 7893124 9029594

1261349 2049967 2881590 4013838 5263791 6739648 7943327 9055303

129464 2068538 296847 4043951 5310099 676247 8006582 9073553

1363784 210639 2972345 4149784 5346580 6804509 8117218 9100956

1424265 2146331 2972906 4188615 5449201 6812653 8127829 9121449

1520842 2198613 299266 4219614 5471704 6911232 8260524 9139060

1674094 2261979 2996632 4287564 5494918 6981465 8311321 9246351

1717215 2341732 303222 4291494 5616693 6988468 8320545 929676

1723043 2390199 3053621 430089 5690766 7047032 8337977 9434451

1760914 2451097 3211679 4434915 5747188 7099614 8436428 9507933

1800170 2484519 3318135 4463913 5852491 7150646 8492526 9565165

1821184 2487143 3323117 4479135 5890803 7157427 8514745 9671033

1827204 2489709 3370989 4483973 5935995 7239499 8525830 9705941

1838110 2492140 3395921 4494568 5952846 7298388 8558116 9740891

1855337 2517158 3398536 4678740 5977084 7415647 8578590 9913368

186894 252413 3425174 468867 6081058 7532833 8614858 9942801

1873346 2577969 3525176 4694328 6091882 7578802 8739734 994483

1875719 2607611 3572203 4759887 6102880 7599023 8764620

1881249 2681549 3639400 4762983 6175884 7608462 8772587

1893815 2689721 3682850 4845722 6235784 766666 8785107

Table E.1: FreeSolv-rigid database: solute IDs.
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F
NEURAL NETWORK DETAILS

The neural network used to fit an energy correction to MDFT-HNC results in section 8.3 was done
with MLPRegressor feature of the Python3 open-source library sklearn [173]. The structure of the
feed-forward NN was an input layer composed of 167 nodes, with 166 corresponding to the MACCS
key [171] and one to the MDFT-HNC HFE of the solute, two hidden layers with 84 nodes each
and a single output node since we want to do single number regression.

The rectified linear unit function (ReLU) f (x) = max{0, x} [206], the most successful and
widely-used activation function [207], was applied between the input layer and hidden layers nodes
to have an non-linear model. As normal, the activation function was do applied between the last
hidden layer and output, since the ReLU function would not allow negative output values.

The optimisation was done with the Adam solver [208], an extension to stochastic gradient
descent widely used in machine learning community for its efficiency [209] with a constant learning
rate of 10−4, batch size of 50 for the stochastic optimiser and default Adam’s parameters β1 = 0.9

and β2 = 0.999. The model optimised the squared-loss function with a tolerance of 10−4.
The limit over-fitting the model on to the training data two measures were takes : (i) 5% of the

training data (30 molecules) were used a validation, their loss is was evaluated at each iteration
but this information is not used for the back propagation, and the optimisation is stopped when
the validation loss does not improve for 10 epochs; (ii) addition of the L2 penalisation term to the
loss function, i.e Ridge regularization with the penalisation scale parameter λ = 10−4.
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PROBLEMATIC SOLUTES FOR MDFT

There were 26 molecules for which the MDFT calculation did not converge either in chapter 9.2.2 (22
solutes) or 10 (23 solutes). Table G.1 summarizes these molecules and their characteristics. In general
these molecules have on average higher (i) experimental hydration free energies (〈∆G

Exp
solv〉26 =

−6.39 kca/mol vs. 〈∆G
Exp
solv〉642 = −3.81 kcal/mol), (ii) masses (〈mass〉26 = 187.26 Da vs.

〈mass〉642 = 138.58 Da) and (iii) partial charges (〈max{qi}〉26 = 0.75e vs. 〈max{qi}〉642 = 0.47e

) than average of the full dataset. We could not identify striking common characteristics explaining
why these molecules did not converge.

FreeSolvID ∆G
Exp
solv mass (Da) max{qi} [e] Functional groups

1527293 −0.82 ± 0.16 244.09 0.643 aryl flurodide, carboxylic

acid, aromatic

2078467 −7.00 ± 0.64 206.13 0.643 carboxylic acid, aromatic

2099370 −10.78 ± 0.18 254.09 0.633 ketone, carboxylic acid,

aromatic

2269032 −10.21 ± 0.18 230.09 0.619 alkyl aryl ether, carboxylic

acid, aromatic

2518989 −5.74 ± 1.93 393.00 0.915 alkyl chloride, carboxylic

acid imide N-substituted,

thioposphoric acid ester,

aromatic, heterocyclic

2958326 −3.65 ± 0.60 101.12 -0.830 secondary amine,

dialkylamine

3201701 −9.41 ± 1.93 238.14 0.901 tertiary amine,

alkylarylamine, urethane

3274817 −6.23 ± 1.93 240.07 -0.467 phenol or hydroxyhetarene,

nitro, aromatic

4587267 −23.62 ± 0.32 182.08 -0.607 primary alcohol, secondary

alcohol, 1,2-diol

4690963 −3.54 ± 0.60 118.19 -0.427 dialkyl ether

4934872 −5.23 ± 0.60 196.11 0.510 orthocarboxylic acid

derivative, orthoester,

aromatic

4936555 −6.78 ± 0.10 241.11 -0.668 secondary amine,

diarylamine, carboxylic

acid, aromatic
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112 problematic solutes for mdft

FreeSolvID ∆G
Exp
solv mass (Da) max{qi} [e] Functional groups

5393242 −6.48 ± 0.13 304.10 1.264 thiophosphoric acid ester,

aromatic, heterocyclic

5747981 −5.73 ± 0.60 150.09 0.529 dialkyl ether,

orthocarboxylic acid

derivative, orthoester

5880265 −6.25 ± 0.60 118.10 -0.594 primary alcohol, dialkyl

ether

6309289 −5.11 ± 0.60 85.08 -0.814 secondary amine,

secondary alphatic

amine, heterocyclic

6334915 −12.74 ± 1.93 255.93 1.517 halogen derivative,

phosphonic acid derivative,

phosphonic acidester

63712 −3.88 ± 0.60 99.10 -0.712 tertiary amine,

trialkylamine, heterocyclic

646007 −5.48 ± 0.60 71.07 -0.812 secondary amine,

dialkylamine, heterocyclic

6620221 −9.62 ± 0.30 221.105 0.742 alkyl aryl ether,

urethane, aromatic,

heterocyclic

7326706 −5.05 ± 0.60 348.93 1.237 aryl chloride,

thiophosphoric acid

ester, aromatic,

heterocyclic

7860938 −3.24 ± 0.60 129.15 -0.834 secondary amine,

dialkylamine

8426916 −4.07 ± 0.60 73.09 -0.835 secondary amine,

dialkylamine

8449031 −3.22 ± 0.60 101.12 -0.720 tertiary amine,

trialkylamine

8705848 −3.22 ± 0.60 101.12 -0.822 secondary amine,

dialkylamine

9460824 −4.37 ± 0.10 260.01 0.843 thiophosphoric acid este

Average −6.93 187.26 0.753

Table G.1: List of molecules that did not converge in our MDFT calculations. Solutes in bold correspond to
solutes that converged only in one of the MDFT calculation (straight one did not converge in
chapter 10 and italics in section 9.2.2). All other molecules led to divergence in both MDFT
calculations.
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Figure H.1: Distribution of mean absolute error between experimental hydration free and those predicted by
(a) MD+FEP and (b) 3D-RISM as a function of two features (left) solute’s molar mass (with
bin size of 50 Da) and (right) solute’s largest local charge (0.2 e) with turquoise hexagons
(error bars = 2σ) presenting the MAE of each bin and pink squares the cumulative MAE. The
corresponding signed error distributions are presented below with turquoise lines corresponding
to median error in each bin, the boxes and the whiskers to 25-75% and 5-95% intervals
respectively and black circles to fliers outside the 5-95% interval. The number above each bin
is the population of the bin for the FreeSolv database and for each distribution the last three
(350-500 Da) or five (1-2 e) bins are gathered into one in order to be statistically significant.
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MDFT -HNC ERROR BARS

Group 1 Group 2 Group 3 # MAE (kcal/mol)

Aromatic

- - 257 1.18 (0.15)

Heterocyclic

- 64 1.32 (0.27)

Aryl chloride 19 1.13 (0.45)

Diaryl ether 12 1.19 (0.58)

Oxo(het)arene 12 1.99 (0.91)

Aryl chloride

- 61 1.34 (0.31)

Phenol* 8 1.69 (0.53)

Diaryl ether 11 1.05 (0.55)

Carboxylic acid ester - 10 1.22 (0.48)

Alkene - 5 0.36 (0.18)

Phenol*

- 48 1.33 (0.46)

Aldehyde 5 2.19 (1.25)

Alkyl aryl ether 8 1.00 (0.81)

Ketone - 10 2.56 (1.50)

Halogen derivative
- 9 1.80 (0.94)

Tert. alkylarylamine 5 1.49 (1.49)

Primary amine - 21 1.36 (0.86)

Nitro
- 19 1.46 (0.64)

Tert. alkylamine 5 1.42 (1.41)

Aldehyde - 10 1.55 (0.75)

Alkyl aryl ether - 19 1.12 (0.47)

Tertiary amine - 9 1.61 (0.98)

Diaryl ether - 13 1.15 (0.54)

Carbonitrile - 6 0.84 (0.45)

Secondary amine - 5 2.24 (0.80)

Tert. alkylarylamine - 7 1.81 (1.20)

Thiophosphoric acid ester - 5 2.74 (0.98)

Aryl bromide - 6 0.93 (1.11)

Aryl fluoride - 5 1.62 (1.64)

Sec. alkylaryl amine - 5 2.24 (0.80)

Table I.1: MAEs of molecules with one, two or three specific chemical function. (1/3)
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Group 1 Group 2 Group 3 # MAE (kcal/mol)

Heterocyclic

- - 83 1.36 (0.27)

Aryl chloride
- 19 1.13 (0.46)

Diaryl ether 11 1.04 (0.55)

Dialkyl ether - 8 0.61 (0.28)

Diaryl ether - 12 1.19 (0.58)

Oxo(het)arene - 12 1.99 (0.90)

Secondary amine - 12 1.51 (0.76)

Sec. alkylaryl amine - 5 0.86 (0.34)

Aryl chloride

- - 61 1.34 (0.31)

Phenol* - 8 1.70 (0.53)

Diaryl ether - 11 1.05 (0.55)

Carboxylic acid ester - - 52 1.28 (0.23)

Alkene
- - 50 0.74 (0.21)

Alkyl choride - 5 1.86 (1.47)

Phenol*

- - 48 1.33 (0.46)

Aldehyde - 5 2.18 (1.24)

Alkyl aryl ether - 8 1.01 (0.81)

Alkyl chloride - - 36 0.88 (0.29)

Ketone - - 35 2.57 (0.54)

Primary alcohol - - 28 1.51 (0.37)

Dialkyl ether - - 26 0.88 (0.25)

Nitro
- - 25 1.32 (0.51)

Tert. alkylarylamine - 5 1.42 (1.41)

Aldehyde - - 24 0.80 (0.41)

Table I.2: MAEs of molecules with one, two or three specific chemical function. Data points only groups
containing at least five molecules. (2/3)
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Group 1 Group 2 Group 3 # MAE (kcal/mol)

Prim. aromatic amine - - 21 1.36 (0.86)

Alkyl aryl ether - - 19 1.12 (0.47)

Secondary alcohol - - 18 1.51 (0.62)

Alkyl bromide - - 17 0.63 (0.16)

Diaryl ether - - 13 1.14 (0.53)

Carbonitrile - - 12 1.00 (0.33)

Oxo(het)arene - - 12 1.99 (0.89)

Prim. aliphatic amine - - 10 2.86 (0.11)

Carboxylic acid - - 9 2.33 (0.89)

Thioester - - 9 1.80 (0.55)

Alkyl iodide - - 9 0.27 (0.08)

Nitrate - - 9 1.67 (0.60)

Orthocarboxylic acid derivative
- - 8 1.76 (0.60)

Orthoester - 6 1.84 (0.57)

Tertiary Alkylarylamine
- - 7 1.81 (1.21)

Halogen derivative - 5 1.49 (1.48)

Tert. carboxylic acid amide - - 7 1.20 (0.43)

Thiophoshoric acid ester - - 7 3.07 (0.87)

Alkyl fluoride - - 6 0.90 (1.03)

Dialkylamine - - 6 0.83 (0.30)

Trialkylamine - - 6 0.46 (0.31)

Alkyne - - 6 0.20 (0.12)

Sec. alkylarylamine - - 5 2.24 (0.80)

Thiol - - 5 0.30 (0.08)

Table I.3: MAEs of molecules with one, two or three specific chemical function. Data points only groups
containing at least five molecules. (3/3)
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mass (Da) max{|qi |} (e) max{g(r)} occurence MAE (kcal/mol)

0-50

0.0-0.2
0-5 5 0.41 (0.49)

5-10 1 0.09

0.2-0.4 0-5 5 0.41 (0.13)

0.4-0.6
0-5 4 0.56 (0.49)

10-15 2 1.46 (0.17)

0.6-0.8 10-15 1 0.24

0.8-1.0
5-10 2 2.80 (0.28)

10-15 1 0.68

> 1.0 5-10 1 0.48

50-100

0.0-0.2

0-5 3 0.81 (0.38)

5-10 34 0.39 (0.11)

10-15 1 0.31

15-20 1 18

0.2-0.4

0-5 7 0.66 (0.24)

5-10 27 0.72 (0.13)

10-15 2 0.66 (0.64)

0.4-0.6

0-5 2 0.48 (0.34)

5-10 20 0.61 (0.20)

10-15 6 0.91 (0.28)

15-20 4 1.18 (0.65)

20-25 3 1.67 (0.14)

25-30 3 1.17 (0.41)

0.6-0.8

5-10 17 1.25 (0.18)

10-15 8 1.07 (0.41)

15-20 3 1.49 (0.13)

20-25 2 2.15 (1.55)

> 30 2 2.31 (0.07)

0.8-1.0

0-5 1 0.89

5-10 5 2.39 (0.97)

10-15 1 2.53

15-20 1 1.25

25-30 2 0.62 (0.28)

> 1.0 5-10 1 0.27

Table I.4: MAEs for mass-charge-highest solvation peak triplet for m ∈ [0, 100] Da (1/4).
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mass (Da) max{|qi |} (e) max{g(r)} occurence MAE (kcal/mol)

100-150

0.0-0.2

0-5 1 1.17

5-10 41 0.51 (0.11)

10-15 8 0.22 (0.13)

15-20 5 0.33 (0.19)

20-25 1 0.62

0.2-0.4

0-5 1 0.40

5-10 25 0.66 (0.14)

10-15 3 0.95 (0.44)

0.4-0.6

5-10 22 0.63 (0.23)

10-15 11 0.90 (0.48)

15-20 5 1.04 (0.57)

20-25 8 1.09 (0.30)

25-30 12 0.91 (0.34)

> 30 14 1.32 (0.74)

0.6-0.8

0-5 1 0.76

5-10 44 0.88 (0.13)

10-15 17 1.34 (0.39)

15-20 5 1.21 (0.59)

20-25 4 1.28 (0.28)

25-30 3 0.61 (0.43)

> 30 3 2.32 (0.41)

0.8-1.0

5-10 9 1.20 (0.81)

10-15 11 0.72 (0.61)

15-20 1 1.12

20-25 2 0.86 (0.57)

> 1.0
5-10 2 2.22 (2.17)

10-15 3 2.75 (0.53)

Table I.5: MAEs for mass-charge-highest solvation peak triplet for m ∈ [100, 150] Da (2/4).
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mass (Da) max{|qi |} (e) max{g(r)} occurence MAE (kcal/mol)

150-200

0.0-0.2

0-5 2 1.18 (0.12)

5-10 21 0.76 (0.19)

10-15 2 0.41 (0.49)

15-20 3 0.21 (0.16)

0.2-0.4
5-10 16 1.34 (0.60)

10-15 2 1.34 (1.07)

0.4-0.6

5-10 8 0.65 (0.72)

10-15 2 1.03 (0.29)

15-20 3 1.73 (0.28)

20-25 2 0.99 (0.75)

25-30 3 0.21 (0.08)

> 30 1 2.05

0.6-0.8

5-10 8 1.54 (0.69)

10-15 6 1.63 (0.79)

15-20 4 0.93 (0.38)

20-25 2 2.42 (2.15)

25-30 3 3.50 (2.42)

> 30 4 0.93 (0.93)

0.8-1.0 5-10 3 2.52 (1.85)

> 1.0 10-15 1 2.99

200-250

0.0-0.2
0-5 7 1.23 (0.57)

10-15 1 0.69

0.2-0.4 5-10 5 1.35 (0.70)

0.4-0.6

20-25 1 2.65

25-30 1 1.76

> 30 2 2.27 (1.71)

0.6-0.8

5-10 2 2.65 (0.98)

10-15 2 1.12 (1.24)

15-20 3 1.81 (2.02)

25-30 1 0.11

> 30 1 1.85

0.8-1.0

5-10 1 0.60

10-15 14 2.81 (0.51)

15-20 1 3.00

20-25 2 2.35 (1.64)

25-30 1 1.23

> 30 1 8.81

Table I.6: MAEs for mass-charge-highest solvation peak triplet for m ∈ [150, 250] Da (3/4).
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mass (Da) max{|qi |} (e) max{g(r)} occurence MAE (kcal/mol)

250-300

0.0-0.2

5-10 2 1.33 (1.83)

10-15 1 1.40

15-20 2 1.68 (0.90)

0.2-0.4 5-10 4 1.14 (0.91)

0.6-0.8

10-15 1 2.11

15-20 2 0.55 (0.16)

20-25 2 1.41 (0.32)

> 30 1 5.16

0.8-1.0 10-15 1 3.94

> 1.0
10-15 1 3.36

15-20 1 1.93

300-350

0.0-0.2 10-15 2 2.31 (0.59)

0.2-0.4 5-10 3 0.14 (0.11)

0.6-0.18 10-15 3 0.15 (0.18)

0.8-1.0

10-15 1 3.69

15-20 1 0.95

> 30 2 3.12 (0.15)

> 1.0
10-15 1 3.62

> 30 1 3.68

> 350

0.0-0.2
5-10 2 2.07 (1.40)

10-15 8 3.19 (0.91)

0.2-0.4
5-10 1 1.01

10-15 1 0.19

0.6-0.8 15-20 1 4.82

0.8-1.9 > 30 1 4.67

> 1.0 25-30 1 0.32

Table I.7: MAEs for mass-charge-highest solvation peak triplet for m > 300 Da (4/4).
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