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Abstracts

Titre: Marchés pair-à-pair de l’électricité dans les réseaux électriques

Mots clés: Marché pair-à-pair, Flux optimal de puissance, Répartition de puissance, Marché
de l’énergie, Marché des capacités, ADMM

Résumé: Le déploiement de ressources énergétiques distribuées, combiné à une gestion plus
pro-active de la demande et à l’intégration de systèmes de gestion d’énergie, fait entrer l’exploitation
des systèmes électriques et des marchés de l’électricité dans un nouveau paradigme. En partie
liés à leur structure décentralisée, les marchés dits pair-à-pair ont gagné un intérêt consid-
érable. Les marchés pair-à-pair reposent sur des négociations bilatérales entre les agents pour
faire correspondre l’offre et la demande. De plus, ils peuvent cartographier l’ensemble des
échanges possibles, ce qui permet de repenser ces interactions avec le réseau.

Ces travaux de thèse traitent de trois défis majeurs dont la résolution est essentielle avant
d’envisager le passage à des applications réelles : (i) le passage à l’échelle pour gérer un nom-
bre croissant d’acteurs et de ressources distribués, (ii) le respect des contraintes du réseau
électrique, et (iii) la résilience du marché à la présence d’agents stochastiques.

Une analyse de complexité a permis de montrer que le passage à l’échelle des marchés pair-
à-pair et le mécanisme de résolution peut être renforcé par trois améliorations réduisant les
complexités algorithmiques et structurelles. Pour le respect des contraintes réseau, le manuscrit
propose d’introduire des redevances qui seraient liées à l’utilisation du réseau électrique. Deux
approches sont considérées pour déterminer ces redevances réseau. La première, exogène, exige
que le gestionnaire de réseau les fournisse a priori avant le début des négociations. Dans la
seconde, le gestionnaire de réseau actualise les redevances réseau de manière endogène à chaque
itération pour mieux tenir compte de l’état actuel du réseau. Enfin, les prévisions de production
et de consommation des agents stochastiques sont mieux prises en compte par la création d’un
marché pair-à-pair de l’énergie et des capacités de réserve, pour corriger un éventuel déséquilibre
de puissance due à des erreurs de prévision.
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Title: Peer-to-peer electricity markets in power systems

Keywords: Peer-to-peer markets, Optimal power flow, Economic dispatch, Energy market,
Capacity Market, ADMM

Abstract: The deployment of distributed energy resources, combined with a more proactive
demand side management and energy management systems, is inducing a new paradigm in
power system operation and electricity markets. Within a consumer-centric market frame-
work, peer-to-peer approaches have gained substantial interest. Peer-to-peer markets rely on
multi-bilateral negotiation among all agents to match supply and demand. These markets can
yield a complete mapping of exchanges onto the grid, hence allowing to rethink market–grid
interactions.

This thesis treats three main challenges which needs to be overcome before considering real
world implementations: (i) scalability to host a growing number of distributed users and re-
sources, (ii) compati-bility with grid constraints, and (iii) resilience to stochastic power injec-
tions.

After a complexity analysis, scalability of peer-to-peer markets and the proposed negotiation
mechanism to solve them is enhanced by three improvements reducing algorithmic and struc-
tural complexities. Feasibility of the peer-to-peer electricity market is eventually obtained with
the use of network charges. Two approaches are proposed to handle these network charges.
The first, exogenous, requires the system operator to provide them a priori before negotia-
tions start. In the second, the system operator updates network charges endogenously at each
iteration to better account for the current grid status. Finally, power forecasts of stochastic
agents are taken in a more comprehensive way by the developpement of peer-to-peer market on
both energy and capacities, used to restore power balance in case of misdipatch due to forecast
errors.
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French résumé

Contexte et défis actuels

Le concept des systèmes d’alimentation électrique a débuté en 1881 avec la première fourniture
publique d’électricité au monde qui a illuminé les rues locales de la ville de Godalming dans
le Surrey [7]. Utilisant l’eau, la centrale de Godalming était donc aussi la première centrale
hydroélectrique de Grande-Bretagne. Des copies et des extensions de cet exemple ne tardèrent
pas à fleurir au fil des ans jusqu’à devenir aujourd’hui le coeur de la vie moderne et des fac-
teurs clés du développement technologique et économique. Pour témoigner de l’hégémonie de
l’électricité dans nos systèmes économiques modernes, il est possible de citer l’exemple d’une
panne d’électricité subit aux États-Unis en 2003. Cette panne massive aurait causé des pertes
économiques estimées à 6 milliards de dollars par le ministère de l’énergie états-unien. Or,
pour des raisons historiques de coûts d’investissement, de gestion et de rentabilité, la produc-
tion d’énergie électrique c’est concentrée autour de grandes centrales thermiques au charbon,
gaz ou nucléaire et d’immenses barrages hydroélectriques. Et c’est précisément pour des raisons
de fiabilité que les réseaux électriques ont, pour la plupart, été développés suivant une archi-
tecture hiérarchique mieux adaptée à la production massive et localisée de l’énergie. Ainsi, un
système électrique est composé d’un réseau de transport pour acheminer de grandes quantités
d’énergie électrique entre les unités de production, de plusieurs centaines de MVA, et des gros
consommateurs de plusieurs MVA tels que des usines. Considérés comme une charge connec-
tée au réseau de transport, les réseaux de distribution dirigent ensuite l’énergie à des charges
plus petites allant de quelques kVA à plusieurs centaines de kVA, telles que des maisons, des
bâtiments et l’éclairage public. Les réseaux de transport adoptent une topologie maillée pour
améliorer la fiabilité de l’approvisionnement en énergie. Cette architecture permet d’adapter les
flux d’énergie en cas de défaillance, que ce soit d’une ligne ou d’une centrale électrique. Comme
les réseaux de distribution fournissent des installations moins critiques, une architecture radi-
ale est utilisée pour réduire les coûts d’installation. En conséquence, l’exploitation des réseaux
électriques est divisée en zones. Les réseaux de transport sont contrôlés par des gestionnaires
de réseaux de transport (GRT), typiquement un par pays en Europe. Et les réseaux de distri-
bution peuvent être contrôlés indépendamment les uns des autres par différents gestionnaires
de réseaux de distribution (GRD).

Très pratique et adapté à cette façon hiérarchique de produire et de consommer l’électricité, la
répartition économique de la production d’électricité dans les systèmes électriques est organ-
isée sous la forme de structures centralisées dans un marché de gros. En revanche, les petits
consommateurs doivent d’abord s’abonner à un fournisseur d’électricité. Il est à noter qu’en
fonction des régions et de la législation, ils peuvent avoir le choix entre un ou plusieurs four-
nisseurs. Ensuite, avec les gros producteurs et consommateurs, les fournisseurs d’électricité
peuvent à leur tour participer au marché de gros centralisé sur une plate-forme. Toutefois,
l’augmentation des quantités d’électricité produite à partir de sources d’énergie renouvelables,
avec par exemple des champs éoliens ou des toits solaires utilisant des onduleurs, une demande
plus souple et un engagement plus important des consommateurs ont entraîné une réduction
de la prévisibilité de l’offre et de la demande. Parallèlement à la libéralisation des marchés de
l’électricité, ayant entraîné des flux transfrontaliers plus importants et un fonctionnement plus
volatil en raison des échanges à court terme, le système est exposé à des écarts d’injections et de
flux de puissance de plus en plus importants avec la planification initiale. Mais ce changement
majeur de produire l’énergie électrique de manière plus diffuses sur les territoires bouleversent
les méthodes d’administration utilisées par les gestionnaires de réseau.
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En effet, l’électricité est un vecteur énergétique transportée par un système électrique et doit
donc obéir à ses règles physiques. Le principe fondamental auquel sont confrontés les ges-
tionnaires de réseau est qu’il doit y avoir à tout moment l’équilibre des puissances entre la
production et la consommation. Les réseaux électriques n’ont pas de capacité de stockage in-
terne durable comme peuvent en avoir les réseaux de gaz avec l’augmentation de la pression ou
comme les réseaux d’eau pouvant inclure des réservoirs tampons. Par conséquent, les gestion-
naires de réseaux sont de plus en plus souvent amenés à interférer avec les décisions du marché
de l’électricité et d’effectuer des actions coûteuses de ré-allocation de puissance pour maintenir
l’équilibre des puissances. Pour assurer la qualité d’approvisionnement, les gestionnaires de
réseaux disposent également de mesures de sécurité. Ils peuvent par exemple être plus restric-
tifs que les limites réelles du réseau pour conserver des marges de sécurité. Historiquement,
l’énergie électrique est produite avec d’énormes machines électriques offrant une certaine inertie
mécanique, les gestionnaires de réseaux les utilisent notamment comme un tampon à très court
terme leur donnant le temps de prendre des mesures pour rétablir l’équilibre des puissances. Ce
tampon à court terme est observé à travers la vitesse de variation de la fréquence des courants
et tensions alternatifs, par exemple 50 Hz avec une marge de ±0,2 Hz en Europe. Même
dans un vaste réseau électrique aussi interconnecté qu’en Europe, le présence de se tampon de
court terme n’est pas suffisant pour palier aux éventuelles variations rapides de production et
de consommation. Pour cela, des marchés de capacités ont été mis en afin de compenser un
déséquilibre prolongé. Ces marchés de capacités permettent donc aux producteurs de vendre
une part de leur puissance installée aux gestionnaires de réseaux de transport qu’ils pourront
ensuite préempter et utiliser pour rétablir l’équilibre entre la production et la consommation.

Objectifs et contribution de la thèse

Cependant les ressources énergétiques distribuées, conjointement avec les techniques d’informa-
tion et de communication et la gestion des systèmes énergétiques des bâtiments et maisons,
nous font repenser notre approche de l’exploitation des systèmes électriques. En particulier,
en descendant aux niveaux inférieurs du réseau, de nouveaux types d’agents apparaissent, les
"consommacteurs", ayant la capacité de produire et de consommer (et très probablement de
stocker dans un avenir proche). Bien que des efforts considérables soient déployés pour faire
évoluer l’exploitation du réseau électrique, les marchés de l’électricité n’ont pas encore suivi le
même processus d’adaptation à ce nouveau contexte, avec ses défis et ses opportunités. La piste
principale d’évolution serait l’adaptation des marchés de l’électricité d’un système centralisé
sur les gros producteur vers un système centré sur les consommacteurs [8,9]. Il est notamment
probable que les futures organisations de marche comprennent une composante d’échange pair-
à-pair ou communautaire [10]. Un marché dit pair-à-pair repose sur de multiples échanges
bilatéraux qui relient directement deux consommacteurs coopérants. Le recours à de multiples
échanges bilatéraux pourrait présenter un certain nombre d’avantages, par exemple grâce à la
différenciation de produit et à sa nature centrée sur le consommacteur, ce qui permettrait de
créer une multitude de nouveaux modèles commerciaux.

La nécessité du recours aux marchés pair-à-pair provient non seulement du passage à une large
échelle des ressources énergétiques distribuées et des consommacteurs mais aussi de l’intérêt
que ceux-ci portent pour les énergies renouvelables et leur envie de plus s’impliquer dans les
choix énergétiques avenirs. Ce souhait d’implication pourra par exemple se faire par le biais
de la différentiation de produit. La différenciation de produit est ici vue comme le fait que
les acteurs du marché peuvent exprimer des préférences sur le type et la qualité de l’énergie
qu’ils vont s’échanger. Ces préférences peuvent concerner une production locale d’énergie, une
énergie à faible émission de CO2, etc. Lorsqu’ils ont des préférences et des intérêts communs,
un groupe de consommacteurs peut souhaiter se regrouper et former une communauté comme
dans [11]. Une telle communauté peut être considérée comme un marché de gros entre les mem-
bres de la communauté, organisé autour d’un gestionnaire de communauté à but non lucratif.
Le gestionnaire de la communauté gérerait alors le marché de gros local et servirait d’interface
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avec le reste du monde extérieur (soit en marché de gros, soit en pair-à-pair) pour fournir
ou vendre l’excédent d’énergie. Les communautés locales peuvent également être représentées
par des échanges bilatéraux, chaque membre commerçant uniquement avec son gestionnaire de
communauté. Partant de ce constat, on peut noter qu’une collectivité n’est pas spécifiquement
liée à une zone géographique ou électrique. Les communautés peuvent donc être composées de
membres reliés à différentes zones du réseau électrique. De plus, une communauté de consom-
macteurs peut également faire partie d’une communauté plus large. Les centrales électriques
et les agrégateurs virtuels pourraient également être représentés dans ce cadre comme des com-
munautés dont les "actifs" seraient membres. Les échanges bilatéraux multiples sont donc une
façon plus générale de représenter les marchés. C’est pour cette raison, que ces travaux de
thèse se concentrent sur les échanges bilatéraux multiples à la base des marchés pair-à-pair.

Plusieurs défis s’opposent l’introduction de ces futurs marchés de consommacteurs. Tout
d’abord, l’implication de tous les consommacteurs, même les plus petits, pose la question de
savoir si le mécanisme de négociation est évolutif et capable de traiter un nombre aussi impor-
tant de transactions bilatérales. Si ce mécanisme devait être appliqué en Europe, le marché qui
en résulterait concernerait plusieurs dizaines de millions de consommateurs. Plusieurs amélio-
rations, allant de l’augmentation du taux de convergence algorithmique à la structure des
transactions bilatérales, sont proposées ici pour résoudre ce problème. Il est toutefois possible
d’améliorer continuellement cet algorithme au fur et à mesure du déploiement des marchés de
consommacteurs. Au-delà de ce défi technique, les deux autres défis sont conceptuels et mettent
à l’épreuve une mise en œuvre réelle de tels marchés. En effet, il peut y avoir des divergences
entre la négociation du marché et la répartition réalisable sur le réseau électrique en raison
des contraintes liées à son exploitation. Pourtant, ces réseaux sont gérés de manière centralisé
par les gestionnaires de réseau. L’incohérence entre la nature décentralisée des marchés de
consommacteurs et le fonctionnement centralisé des réseaux électriques doit donc être traitée
avant d’envisager sa réelle mise en place. Ainsi, le second objectif de ces travaux de thèse fut
de concilier ces deux points de vue en proposant un marché pair-à-pair dont les échanges bi-
latéraux satisfont les contraintes du système électrique. La méthode proposée pour déterminer
les échanges bilatéraux doit également être adaptée aux consommacteurs stochastiques et non
contrôlables tels que les parcs éoliens et les centrales solaires qui sont sujets à des erreurs de
prévisions météorologiques. Or, les marchés de capacités sont traditionnellement traités de
manière centralisée pour bénéficier au mieux du foisonnement d’un nombre important de con-
sommacteurs stochastiques. Ainsi, le troisième et dernier défi traité dans cette thèse est le
développement d’un marché de capacités décentralisé compatible avec le marché pair-à-pair de
l’énergie. À cette fin, le marché des capacités proposé utilise également des échanges bilatéraux
multiples sur les capacités afin de préserver une prise de décision décentralisée. De cette façon,
le marché pair-à-pair de l’énergie et des capacités qui en résulte ne se contente pas de dis-
tribuer de l’énergie électrique mais, en même temps, constitue des réserves de capacité. Ces
capacités seront alors disponibles pour compenser d’éventuelles erreurs d’acheminement dues
aux incertitudes de la production d’électricité.

Description des travaux

L’objectif de ces travaux de thèse est donc de proposer un marché pair-à-pair adapté aux
réseaux électriques. Le marché pair-à-pair de l’électricité proposé doit être (i) améliorable
pour faire face au défi du passage à l’échelle, (ii) compatible avec les contraintes des réseaux
électriques, et (iii) résilient face aux consommacteurs stochastiques. Avant de répondre à
ces objectifs, le chapitre 2 présente les formulations usuellement utilisés pour modéliser les
marchés électriques centralisés. Le chapitre présente ensuite une formulation généralisée des
problèmes de coordination et propose un algorithme de résolution décentralisée associé. La
résolution des marchés de l’électricité se fait essentiellement sur plusieurs pas de temps. Cela
permet notamment aux différents acteurs du marché de minimiser leur coûts d’exploitation et
de maximiser leur profits. Pour ce faire, ils modulent leur production au cours de la journée
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pour tirer le meilleur parti de la courbe de consommation, si contrôlables comme les centrales
thermiques, ou de leur productible estimé, si non-contrôlables comme les producteurs éoliens
ou solaires. Bien que les développement de cette thèse sont compatibles avec plusieurs pas de
temps, l’accent est mis sur des solutions à un seul pas de temps afin de clarifier les propos et
de mieux expliciter leurs bénéfices.

Les chapitres suivants visent alors à répondre aux interrogations et à proposer des solutions pour
surmonter les trois défis majeurs énoncés précédemment. Ces chapitres s’organisent comme suit.
Le chapitre 3 fait une analyse de convergence de l’algorithme de résolution associée au problème
de coordination présenté au chapitre 2. À l’issue de cette analyse, le chapitre 3 présente plusieurs
contributions qui soit améliorent intrinsèquement l’algorithme, soit modifient la structure du
marché pair-à-pair pour en diminuer la complexité. Ensuite, deux approches visant à prendre
en compte les contraintes du système électrique dans le marché pair-à-pair sont exposées dans
le chapitre 4. Après avoir rappelé le problème en question, le chapitre développe les deux tech-
niques envisagées, à savoir une technique exogène et l’autre endogène. Le chapitre 5 discute des
moyens de gérer l’incertitude à laquelle sont confrontés les consommacteurs stochastiques tels
que les parcs éoliens et les centrales solaires. Pour ce faire le chapitre 5 fait appel à un marché
pair-à-pair des capacités résolue conjointement au marché pair-à-pair de l’énergie introduit au
chapitre 2. Le chapitre compare ainsi différentes manières de répartir les incertitudes entre les
consommacteurs stochastiques.

Les chapitres 3 à 5 sont résumés ci-dessous suivant le même ordre.

Amélioration des performance pour un passage à l’échelle des marchés pair-à-pair

Dans la description du problème plus général de coordination, le chapitre 2 propose l’utilisation
d’un algorithme itératif de résolution basé sur l’alternating direction method of multipliers
(ADMM). Le premier objectif du chapitre 3 fut donc de vérifier ce choix en le comparant
à un second basé sur l’algorithme de consensus et d’innovation relaxé (relaxed consensus and
innovation en anglais) lui aussi itératif. À l’occasion de la validation de l’utilisation de l’ADMM,
une analyse de complexité est réalisée pour déceler les points faible des marchés pair-à-pair.
Cette analyse a notamment permis fournir des orientations d’améliorations algorithmiques et
structurelles. Ainsi, le chapitre propose dans un second temps d’utiliser des communications
asynchrones entre les consommacteurs plutôt que les communications synchrones usuellement
utilisées. En effet, dans des applications réelles l’hypothèse d’itérations synchrones implique
que la durée entre chaque itération est dictée par le consommacteur le plus lent. Des retards
de calcul peuvent aussi apparaître en cas de matériels peu performants ou lorsque les sous-
problèmes locaux d’optimisation sont compliqués à résoudre. Des retards de communication
causés par de faibles bandes passantes ou un trafic internet important peuvent aussi se présenter.
La probabilité non négligeable d’avoir des retards importants justifie l’analyse des effets liés à
l’utilisation d’itérations asynchrones. Cette étude a ainsi révéler la résilience de l’algorithme
basé sur l’ADMM aux retards de communication. Cette constatation positive est essentielle
pour les futurs marchés pair-à-pair car ceux-ci augmenteront le nombre d’échanges entre les
différents acteurs du marché et, par conséquent, ces retards en raison d’un trafic internet.
L’autre algorithme testé étant incapable de gérer de tels retards, l’analyse a définitivement
confirmé l’utilisation de l’ADMM pour le reste du manuscrit.

Une seconde voie d’amélioration a ensuite été proposé par le chapitre afin de réduire le nombre
de total de messages nécessaires pour parvenir à un consensus de négociation entre tous les
consommacteurs. Il est à noter que, selon l’analyse de complexité en début de chapitre, la
réduction du nombre de messages échanger pour parvenir à un consensus permet de réduire
la complexité algorithmique d’un marché pair-à-pair. En outre, les informations sont poten-
tiellement coûteuses lorsqu’elles doivent être échangées rapidement en très grand nombre. Cela
implique un risque de surcharge des infrastructures existantes et la nécessité de développer des
protocoles et des canaux spécifiques [12]. Le chapitre présente et test des critères d’arrêt alter-
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natif permettant aux consommacteurs de décider le moment auquel ils souhaitent conclure les
négociations avec leurs partenaires plutôt que d’avoir à continuer jusqu’au consensus de tous les
échanges bilatéraux. Appliquée sur les marchés pair-à-pair, cette amélioration algorithmique
épuise potentiellement le nombre de messages échangés requis pour obtenir les échanges bi-
latéraux optimaux. Grâce à ces critères d’arrêt alternatif des négociations, il est possible de
réduire considérablement le nombre de messages échangés tout en préservant le même respect
du bilan de puissance global et, donc la qualité énergétique.

Un avantage supplémentaire du marché pair-à-pair est qu’il permet également de pouvoir
adopter la structure de la plupart des autres marchés de consommacteurs. Par exemple,
un marché pair-à-pair peut prendre la forme d’un marché communautaire simplement en re-
groupant les consommacteurs autour de gestionnaires de communauté. Ces communautés pour-
raient ensuite rester isoler ou être interconnectées entre elles par des échanges bilatéraux via
les gestionnaires de communauté. En somme, cela correspond simplement à modifier le graphe
de communication entre consommacteurs. La définition intelligente de ce graphe de commu-
nication est donc identifiée comme une troisième voie d’améliorer du temps de convergence et
de réduction du nombre de messages des marchés pair-à-pair. Il est à noter que la modifica-
tion du graphe de communication permet de faire varier la complexité structurelle des marchés
pair-à-pair. Lors d’une analyse sur la densité du graphe de communication par méthode de
Monte-Carlo, le chapitre 3 a montré qu’il est possible de trouver un compromis entre optimalité
du marché pair-à-pair, rapidité de convergence et réduction du nombre de messages échangés.
Ainsi, il est possible de tirer parti de la flexibilité structurelle des marchés pair-à-pair.

Marchés pair-à-pair de l’énergie électrique respectant les contraintes réseaux

La nature décentralisée et indépendante des marchés pair-à-pair peut naturellement conduire
à des injections de puissance ne respectant pas les contraintes du réseau électrique. Ainsi,
cela produirait des écarts entre les injections de puissance issues d’un marché pair-à-pair et
celles effectivement acceptables pour le gestionnaire réseau, soumis aux contraintes physiques
du réseau. Parallèlement, s’il semble normal de socialiser les coûts liés au réseau dans la forme
actuelle des marchés de gros et de détail, l’utilisation d’échanges bilatéraux ferait repenser la
manière dont ces coûts sont attribués. L’objectif du chapitre 4 est donc de décrire comment
les coûts liés au réseau peuvent d’être attribués dans un marché pair-à-pair. Pour ce faire,
le chapitre décrit d’abord dans quelles mesures le problème classique des flux de puissances
optimal peut être adapté pour inclure les échanges bilatéraux multiples dans sa formulation. Il
est notamment montré que les contraintes de réseau peuvent être condensées dans une fonction
barrière qui restreindrait le marché pair-à-pair à un certain domaine fixé. Deux approches ont
ensuite été proposées pour traiter cette fonction barrière contenant les contraintes du réseau
électrique. La première approche propose de remplacer la fonction barrière évaluant par une
fonction d’allocation des coûts réseau jouant le rôle de redevances pour l’utilisation du réseau.
Conçues individuellement pour chaque échange bilatéral, les redevances d’utilisation réseau
doivent être considérées comme un outil permettant au gestionnaire réseau de facturer le con-
sommacteur d’une manière qui reflète l’impact qu’ont ces échanges bilatéraux sur le système
qu’il gère. Le montant perçu par le gestionnaire réseau grâce aux redevances peut alors ensuite,
par exemple, servir à financer l’investissement de nouvelles lignes, à la maintenance, aux taxes
ou aux sur-coûts de congestion du réseau. Le gestionnaire réseau fournirait les tarifs de ces
redevances réseau à l’avance afin que les consommacteurs puissent adapter leurs stratégies de
production ou de consommation. Par conséquent, les redevances doivent être estimées au préal-
able de manière exogène par le gestionnaire réseau. Établies de manière exogène et a priori,
ces redevances réseau ne donneraient donc aucune garantie quant au respect des contraintes
réseau.

Pourtant, le non respect des contraintes réseau peut mettre en péril tout le système électrique,
d’autant plus au sein de réseaux électriques faibles ou sous-dimensionnés. Les redevances réseau
exogènes, fournissant uniquement une incitation économique, ne sont toujours suffisante. Une
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participation plus forte du gestionnaire réseau au mécanisme de négociation des échanges bi-
latéraux serait donc nécessaire. C’est pour cette raison que la seconde approche proposée dans le
chapitre 4 traite directement la fonction barrière des contraintes réseau en même temps que les
négociations sur les échanges bilatéraux. Dans ce cadre, les consommacteurs ne négocieraient
alors pas seulement entre eux mais chercheraient également le consensus avec les injections de
puissance certifiées comme réalisables par le gestionnaire réseau. Pour les certifier, le gestion-
naire réseau chercherait les flux de puissance optimaux ayant les injections de puissance les
plus proches possibles de celles souhaitées par les consommacteurs. Du point de vue des con-
sommacteurs, ce consensus avec le gestionnaire réseau prendrait aussi la forme de redevances
réseau mais qui seraient cette fois liées à leurs injections de puissance sur le réseau. Issues d’un
flux de puissance optimal et étant constamment vérifiées par le gestionnaire réseau, ces rede-
vances réseau englobent les contraintes du réseau électrique de manière endogène. L’avantage
de ces redevances réseau endogènes est qu’elles conduisent les consommacteurs à des injections
de puissance identiques à celles d’un flux de puissance optimal centralisé classique. En effet,
les échanges bilatéraux sont uniquement vus comme des variables de relaxation et n’altèrent
donc pas les coûts finaux des consommacteurs. Les redevances réseau endogène présentent
également l’avantage de demander moins d’efforts financiers des consommacteurs que sur les
redevances réseau exogènes pour obtenir des injections de puissance réalisables. En revanche,
comme cela était attendu, les redevances réseau endogènes ralentissent la vitesse de convergence
des négociations car elles nécessitent la cherche du flux de puissance optimal à chaque itération.

En conséquence, les deux approches proposées pour tenir compte des contraintes réseau dans les
marchés pair-à-pair de l’électricité sont de bonnes candidates, mais elles doivent toutefois être
améliorées avant d’être mises en place dans des applications réelles. Convergeant rapidement,
les redevances réseau exogènes ne proposent cependant pas toujours des solutions réalisables
sur le réseau électrique et ce en particulier lorsqu’elles ne sont pas conçues de manière adéquate.
En revanche, les redevances réseau endogènes compensent cette lacune en incluant le gestion-
naire réseau dans la boucle de décision, permettant ainsi de garantir le respect des contraintes
réseau. En revanche, cette garantie est obtenue au prix d’un processus de décision plus lent
que l’approche exogène. Plusieurs pistes d’amélioration sont envisageables. Premièrement, les
redevances réseau exogènes peuvent être renforcées en passant à une allocation nodale. Cette
répartition nodale des coûts pourrait même être étayée par l’utilisation de l’apprentissage ma-
chine automatique, des chaînes de Markov ou d’outils liés aux séries temporelles pour anticiper
les meilleures redevances réseau en chaque noeud. Pour améliorer les redevances réseau en-
dogènes, il est possible d’envisager des communications asynchrones entre les consommacteurs
et le gestionnaire réseau. Pour être plus conforme au concept décentralisé des marchés pair-
à-pair, la recherches des plus proches injections de puissance pourraient être effectuées sur la
base de résolutions distribuées ou décentralisées du flux de puissance optimal. Enfin, en guise
de compromis entre les redevances réseau exogènes et endogènes, l’utilisation de l’approche
exogène nodale peut être envisagée dans un premier temps. Puis, après quelques itérations, de
les actualiser de manière endogène pour les adapter au niveau actuel de l’utilisation du réseau.

Marché pair-à-pair de l’énergie électrique et des capacités

L’inconvénient de ces nouveaux marchés de consommacteurs est qu’ils considèrent souvent
l’intégration de consommacteurs déterministes. Hors, la majorité des nouveaux moyens de
production d’énergie électrique sont issues de sources renouvelable et intermittentes tels que
les champs éoliens et solaires. Pour prendre les incertitudes de production en compte, un
marché classique et centralisé de l’électricité considère deux types distincts. Tout d’abord,
le marché de l’énergie électrique cherche à déterminer le plan de production des différents
consommacteurs participants. Puis, un marché des capacités vient supplanter le marché de
l’énergie en attribuant un plan de provision des puissances restantes qui pourront être mobilisée
en cas de déséquilibre si l’un des consommacteurs stochastique et non-contrôlables faillis à
ces engagement d’injection de puissance. Ces deux marchés, d’énergie et de capacité, sont
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résolus de manière indépendante et, généralement, séquentielle. Cependant, les considérer de
manière indépendante amène à des résultats sous-optimaux. Ainsi, l’actuel marché centralisé de
l’électricité conduit inévitablement à mauvaise utilisation des ressources primaires [13]. Pour
obtenir la solution optimal, les incertitudes doivent être considérées conjointement avec les
prévisions de production et de consommation dans une formulation stochastique du marché.
Les marchés stochastiques de l’énergie sont résolus à l’aide d’algorithmes centralisés, ou bien
en se basant sur des résolutions par scénarios coûteux en échange d’information [14]. Les
marchés stochastiques de l’énergie ne sont donc pas adaptés aux marchés de consommacteurs,
décentralisés de part leur nature. Néanmoins, l’emploi de contraintes probabilistes semble être
une bonne alternative aux approches purement stochastiques, [15]. Dès lors, le chapitre 5 de
ce manuscrit investigue la formulation et la résolution d’un marché pair-à-pair de l’énergie et
des capacités à l’aide de contraintes probabilistes.

L’approvisionnement des capacités est aussi historiquement géré de manière centralisée afin
de bénéficier du foisonnement entre les prévisions de production et de consommation des con-
sommacteurs stochastiques. Il était dès lors cohérent de faire appel à une unique contrainte
probabiliste globale pour l’ensemble des incertitudes présentes dans le marché. Cependant,
cette contrainte probabiliste global fait appel à des variables agrégeant de nombreux consom-
macteurs ce qui fait obstacle à la décentralisation de l’affectation des capacités de réserve. En
particulier, la contrainte probabiliste global permet de décider avec quel niveau de confiance
global, ou pourcentage de chance, la quantité de capacités globalement réservée sera suffisante
pour palier aux erreurs de prévision et assurer l’équilibre des puissances. Pour surmonter cette
difficulté technique et conceptuel. Le chapitre 5 propose de séparer la contrainte probabiliste
global en de multiples contraintes probabilistes localisées au niveau de chaque consommacteur
stochastique. Ceci correspond en réalité à un changement de paradigme car à l’issue de cette
séparation, chaque consommacteur stochastique se voit maintenant responsable de constituer
suffisamment de capacité de réserve pour couvrir ces propres erreurs de prévision. La quantité
de capacité qu’un consommacteur stochastique devra apporté sera déterminée par le niveau
de confiance local de sa contrainte probabiliste. Hors, les consommacteurs stochastiques ne
possèdent pas nécessairement les installations suffisantes pour approvisionner suffisamment de
capacité de réserve. Dès lors, le chapitre propose également de permettre à ceux-ci d’acheter
des capacités supplémentaires au près des consommacteurs contrôlable présent sur le marché
via des échanges bilatéraux multiples. Les consommacteurs n’échangeraient donc pas unique-
ment de l’énergie de manière multi-bilatéral mais aussi des capacités de réserve. Le marché
pair-à-pair ainsi obtenu permettrait la détermination conjointe et simultanée des quantités
d’énergie échanger entre les consommacteurs et des capacités que les consommacteurs con-
trôlables doivent mettre à disposition des consommacteurs stochastiques.

Se pose maintenant la question de la manière avec laquelle les taux de couverture locaux des
incertitudes, c’est à dire les niveaux de confiance locaux des consommacteurs stochastiques,
seront déterminés. Pour illustrer cette difficulté, le chapitre 5 propose deux approches princi-
pales pour allouer les niveaux de confiance locaux. La première approche, plus simple, consiste
à les définir proportionnellement au niveau de confiance global. La seconde, plus complète,
consiste à allouer une proportion de la quantité total de capacités nécessaire aux consommac-
teurs stochastiques. Le chapitre a testé les performances de ces deux approches au travers de
quatre configuration, la première suivant trois types de coefficient proportionnel et la seconde
avec un seul d’entre eux. Deux de ces quatre configurations ont montré leur aptitude à fournir
des capacités de réserve globales suffisantes avec un faible écart d’optimalité par rapport à
l’approche centralisée classique.

Mais elles se sont toutefois montrées insuffisances lorsque les consommacteurs stochastiques
prévoyaient de faibles productions. Incapable de déterminer si ces lacunes étaient inhérentes à
la nature des approches proposées ou si elles provenaient de la faible taille du cas d’étude, la
création d’un cas d’étude d’ampleur est nécessaire à l’avenir. Les deux configurations s’étaient
constamment montrées insuffisantes pourraient être améliorées avec l’augmentation du coeffi-
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cient multiplicateur. Cette augmentation pourrait être choisie judicieusement sur la base des
données historiques observées par le gestionnaire du réseau électrique. Un autre travail futur in-
téressant serait l’extension de l’actuel marché pair-à-pair de l’énergie et des capacités à plusieurs
pas de temps. Cela permettrait entre autre d’étudier la possibilité pour un élément de stockage
de tirer parti des sources d’énergie renouvelables lorsqu’elles sont excédentaires. En effet, un
élément de stockage pourrait absorber la surproduction ou la sous-consommation des consom-
macteurs stochastiques pour la revendre ensuite soit sous forme d’énergie, soit comme capacité
de réserve. Cette étude pourrait ensuite être étendue pour savoir s’il serait plus intéressant que
cette élément de stockage soit localisé au niveau de chaque consommacteur stochastiques ou
plutôt mutualisé au marché dans son ensemble.

Conclusions

Pour conclure, l’objectif de cette thèse était d’étudier la possibilité d’utiliser le concept de
marché pair-à-pair dans les marchés de l’électricité. Il est important de noter que le passage
des marchés classiques de l’électricité qui sont gérés de manière centralisé vers des marchés pair-
à-pair de l’électricité, décentralisés par nature, correspond à un vrai changement de paradigme.
Il était donc essentiel de vérifier les points clés qu’un marché de l’électricité doit remplir.
Ce manuscrit s’attache tout particulièrement aux trois points clés suivants: (i) le passage à
l’échelle pour inclure un nombre important de consommacteurs, (ii) vérifier la compatibilité
des puissances injectés avec les contraintes du réseau électrique, et (iii) être résilient à la
présence de consommacteurs stochastiques. Après avoir rappelé la formulation classique des
marchés électriques centralisés, le manuscrit a tout d’abord décrit comment ceux-ci pouvaient
être modifiés afin d’intégrer les échanges bilatéraux multiples entre consommacteurs qui sont
à la base des marchés pair-à-pair. Également, un effort de généralisation théorique a été
mené pour montrer que les travaux de cette thèse peuvent être étendus et appliqués à de
nombreux autres domaines. Ainsi, la formulation obtenue permet de résoudre des problèmes
de coordination généralisée. Comme le nom l’indique, les problèmes de coordination consistent
en un ensemble d’acteurs ayant des variables locales d’optimisation interdépendantes et qui,
par conséquent, doivent se coordonner pour s’entendre sur les valeurs de celles-ci. Le manuscrit
propose notamment de résoudre ce type de problème avec un algorithme décentralisé inspiré de
l’ADMM. C’est sur cette base que le manuscrit développe ensuite les solutions pour surmonter
les difficultés à surmonter pour atteindre les trois points clés énoncés.

En effet, à l’occasion d’une analyse de complexité, le processus de négociation basé sur l’ADMM
à prouvé son intérêt pour les marchés pair-à-pair et, plus largement, les marchés de consom-
macteurs. Pour répondre au premier défis du passage à l’échelle, le manuscrit propose deux
améliorations algorithmiques, permettant de réduire le temps de convergence des négociations,
et une amélioration structurelle, permettant de réduire la complexité du problème. Ensuite,
pour assurer la faisabilité des échanges bilatéraux et des injections de puissance qu’ils induisent
sur le réseau électrique, le manuscrit propose l’introduction de redevances réseau illustrant les
coûts de gestion qu’ils engendrent pour le gestionnaire du réseau. Deux approches de calcul
de ces redevances réseau sont proposées. La première, exogène, les déterminent a priori et
les transmets aux consommacteurs avant le début des négociations. La seconde, endogène,
requière au gestionnaire du réseau de les mettre à jour au fur et à mesure du processus de
négociation. Enfin, une meilleure inclusion des consommacteurs est étudié notamment pour
mieux en compte leur prévision de production et les incertitudes autour de celle-ci. Pour cela, le
manuscrit élabore un marché pair-à-pair de l’électrique dans lequel les consommacteurs échang-
erait non-seulement de manière bilatéral en énergie mais aussi sur les capacités de réserves à
constituer pour palier aux éventuelles erreurs de prévision. Dans ce marché pair-à-pair de
l’énergie et des capacités chaque consommacteur stochastique serait dorénavant seul respons-
able de la constitution d’une quantité suffisante de capacité capable de compenser ces propres
erreurs de prévision. Ce manuscrit montre ainsi la possibilité théorique d’utiliser un marché
pair-à-pair de l’électrique dans des applications réelles.
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Nomenclature

Acronyms

ADMM Alternating direction method of multipliers

CED Community-based economic dispatch

HPC High-performance computing machine

MBED Multi-bilateral economic dispatch

PCMBED Power consensus multi-bilateral economic dispatch

RCI Relaxed consensus and innovation

Time symbols

·t Denotes time step t (when absent the symbol is taken constant in time)

∆T Time increment between two time steps

T Time horizon

Energy markets

·m Denotes prosumer m

·n Denotes prosumer n

·nm Denotes a bilateral trade from prosumer n to prosumer m

∆pmax
n Prosumer n’s upper ramp bound

∆pmin
n Prosumer n’s lower ramp bound

γnm Prosumer n’s preference when trading with prosumer m

Λn Prosumer n’s energy trade prices

λnm Prosumer n’s energy trading price with prosumer m

P Matrix of bilateral power trades

µn Prosumer n’s perceived price

Ω Set of prosumers in the market

ωn Prosumer n’s list of trading partners

ζ̃ · Regularization function of the peer-to-peer market

cn Prosumer n’s energy cost function

En Prosumer n’s stored energy

Emax
n Prosumer n’s upper stored energy bound
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Emin
n Prosumer n’s lower stored energy bound

pn Prosumer n’s power set-point

pmax
n Prosumer n’s upper power bound

pmin
n Prosumer n’s lower power bound

pston Prosumer n’s power injected in the storage

ptotn Prosumer n’s total amount of power

pnm Prosumer n’s bilateral power trade with prosumer m

Reserve markets

α·
n Uncertain prosumer n’s uncertainty allocation factor

·nc Denotes non-controllable, uncertain prosumers

δ Global confidence level

δn Uncertain prosumer n’s local confidence level

λ+
nm Prosumer n’s upward reserve trading price with prosumer m

λ−
nm Prosumer n’s downward reserve trading price with prosumer m

R
+ Matrix of bilateral upward reserve trades

R
− Matrix of bilateral downward reserve trades

Ωn Prosumer n’s set of the node on which it is connected (singleton)

Ωnc Set of non-controllable, uncertain prosumers in the market

P Probability operator

σn Uncertain prosumer n’s power forecast standard deviation

σnc Uncertain prosumers’ global power forecast standard deviation

p̃n Uncertain prosumer n’s random variable

p̃nc Uncertain prosumers’ global random variable

c+n Prosumer n’s upward reserve cost function

c−n Prosumer n’s downward reserve cost function

Fn Prosumer n’s cumulative distribution function

fn Prosumer n’s probability distribution function

Fnc Uncertain prosumers’ global cumulative distribution function

fnc Uncertain prosumers’ global probability distribution function

pµn Uncertain prosumer n’s expected power forecast

pnc Uncertain prosumers’ global contracted power

pµnc Uncertain prosumers’ global expected power forecast
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r+ Global upward reserve

r− Global downward reserve

r+,min
n Prosumer n’s maximal upward reserve

r+n Prosumer n’s upward reserve

r−,max
n Prosumer n’s maximal downward reserve

r−n Prosumer n’s downward reserve

r+nm Prosumer n’s bilateral upward reserve trade with prosumer m

r−nm Prosumer n’s bilateral downward reserve trade with prosumer m

Optimal power flows

B Power system’s susceptance matrix

G Power system’s conductance matrix

·i Denotes node i ∈ N

·j Denotes node j ∈ N

·ij Denotes a line from node i to node j with (i, j) ∈ L

ℓB Power transfer distribution factor

ℓmax
ij Line’s capacity limit between node i and node j

ηpn Prosumer n’s active power endogenous network charge

ηqn Prosumer n’s reactive power endogenous network charge

γ Cost allocation function

γ·
n Prosumer n’s total amount of money paid via network charges

γ·
SO System operator’s total amount of money collected through network charges

γ·
nm Prosumer n’s exogenous network charge when trading with prosumer m

Z
th Thevenin electrical distance matrix between nodes

L Set of lines in the power system

N Set of nodes in the power system

Ni Set of prosumers connected to node i

θi Node i’s voltage angle

θmax
i Node i’s upper voltage angle bound

θmin
i Node i’s lower voltage angle bound

Y Power system’s complex admittance matrix

Z Power system’s complex impedance matrix

S Vector of complex/apparent power injections on the power system
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sij Complex line power flow from node i to node j

V Vector of node’s complex voltages

dPT
nm Power transfer electrical distance between prosumers n and m

dth
nm Thevenin electrical distance between prosumers n and m

N zone
nm Number of crossed zones for the trade between prosumers n and m

P SO Power system’s feasible active power injection plan

QSO Power system’s feasible reactive power injection plan

qn Prosumer n’s reactive power injection

qmax
n Prosumer n’s upper reactive power bound

qmin
n Prosumer n’s lower reactive power bound

u· Network charges’ unit fee

vi Node i’s voltage magnitude

vmax
i Node i’s upper voltage magnitude bound

vmin
i Node i’s lower voltage magnitude bound

Generalized coordination problem

E Global exchange matrix between agents

E
(n) Global exchange matrix arranged to agent n’s point of view

E
(n)
· Sub block matrix of E(n)

·m Denotes agent m

·n Denotes agent n

·u Denotes element u of a local variable

·v Denotes element v of a local variable

Λn Agent n’s dual variable of variable exchanges

λnm Dual variable exchange between agent n and agent m

G Function mapping indexes of local variables Xn to indexes of global variable X

H Function routing exchanged information to an agent from its partners

Xn Agent n’s feasibility set

Xn Agent n’s average between Xn’s exchanged variables and X
′

n

φ Number of agents

φn Size of agent n’s local variable

ϕn Agent n’s local objective function

e Total number of exchanges

xxvi



X Global variable collection of local variables Xn

Xn Agent n’s local variable

X
′

n Agent n’s copy of its partners shared variables

Main operators

( · )·,h Denotes the h-th column vector of a matrix

( · )g,· Denotes the g-th row vector of a matrix

( · )g,h Denotes the g-th row element on the h-th column of a matrix

( · )g Denotes the g-th element of a vector

·∠· Denotes a complex number given in its magnitude and angular form

·∗ Denotes the complex conjugate

∂·
∂·

Partial derivative

| · | Denotes the cardinal of a set and the element-wise absolute value of a matrix, vector or
scalar

‖ · ‖2 Denotes the Euclidean norm of a matrix or a vector

diag( · ) Returns a square matrix with the provided vector on the main diagonal

·̃ Extended value of a function/Random variable

Negotiation mechanisms

·k Denotes the k-th iteration of negotiation

ǫd,tol Dual global feasibility tolerance

ǫp,tol Primal global feasibility tolerance

ǫdn Prosumer/Agent n’s dual local residual

ǫpn Prosumer/Agent n’s primal local residual

πρ
n Coordination problem’s disagreement function of agent n

ρ Penalty factor (> 0)

σρ Peer-to-peer market’s disagreement function

Lρ Augmented Lagrangian of a problem

Ln,ρ Prosumer n’s piece of the augmented Lagrangian of a problem
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ranging from algorithmic convergence rate increase to bilateral trades structure are proposed
here to overcome this issue. But this can continuously be improved along with the deploy-
ment of prosumer markets. Beyond this technical challenge, the other two are more conceptual
challenges testing the real implementation of prosumer markets. Indeed, there may be discrep-
ancies between the market clearing and the actually feasible dispatch due to the grid-related
and operational constraints. Yet, they are managed centrally by system operators. The in-
consistency between decentralized prosumer markets and centralized power system operation
must be treated before considering implementing them in the real world. Thus the second
objective of this work is to reconcile these two point of views by proposing a peer-to-peer mar-
ket which bilateral trades satisfy power system constraints. Moreover, the proposed method
to determine bilateral trades also has to be adapted to stochastic, non-controllable prosumers
such as wind farms and solar power plants which are subject to weather forecast errors. Yet,
reserve market are traditionally handled in a central manner to benefit from large the number
of non-controllable prosumers and the statistical compensation or correlation of their produc-
tion forecasts. So the third, and last, challenge treated in this thesis is the development of a
decentralized reserve market compatible with the peer-to-peer energy market. For this pur-
pose, the proposed reserve market also uses multiple bilateral trades on reserves to preserve the
decentralized decision making. This way, the resulting peer-to-peer energy and reserve market
not only dispatches power but also procure reserves at the same time. These reserves will then
available to compensate eventual mis-dispatches coming from power production uncertainties.

1.3 Thesis outline

The goal of this thesis is to propose a peer-to-peer electricity market suited for power systems.
In consequence, the proposed peer-to-peer electricity market must be (i) scalable, (ii) compat-
ible with grid constraints, and (iii) resilient to stochastic prosumers. To this end, Chapter 2
introduces the classical models used to solve the problems which can be encountered in Fig-
ures 1.1 and 1.2. After exposing the solutions considered to reach the decentralized decision
making of Figures 1.3 and 1.4, the chapter further outlines a generalized formulation for co-
ordination problems and proposes an associated decentralized solving algorithm. Even though
compatible to multiple time steps, focus is eventually put on single time step solutions to add
clarity to the proposed solutions. Chapter 3 makes a convergence analysis of this solving al-
gorithm and presents several improvements, which either intrinsically boosts the algorithm or
specifically targets the structure of the peer-to-peer market. Then, approaches to account for
power system’s constraints are exposed in Chapter 4. After recalling the problem at hand, the
chapter develops the two possible techniques envisaged in this thesis, namely an exogenous and
an endogenous one. Chapter 5 discusses ways to handle the uncertainty faced by stochastic pro-
sumers such as wind farms and solar power plants. With the help of an additional decentralized
reserve capacity market, in parallel of the decentralized energy market introduced in Chapter 2,
Chapter 5 compares the different ways to allocate uncertainties. Finally, Chapter 6 concludes
and discusses possible directions for future works. It can be noted that Chapters 3 to 5 are
self-consistent and can thus be read independently from each other or from the manuscript.

This manuscript presents the contributions of this work either in already published papers or
in working papers written during this Ph.D. project.
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Decentralized coordination

problems in electricity markets 2
This chapter provides an overview of the bases of the work made during this thesis. It introduces
the problem formulations which are linked to electricity markets and gives bases for the issues
tackled by this thesis. By rewriting these problems, an alternative formulation inserting the
use of multiple direct bilateral trades presents the way decision making is decentralized in this
thesis. This chapter then defines a more general framework, namely coordination problems,
as well as a decentralized solving algorithm associated to it which are used in the rest of this
thesis. Finally, the chapter makes a parallel between optimization and game theory to solving
these generalized coordination problems.
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2.1 Models and problems in electricity markets

In lights of past, present and future situations of the electrical system described in Chapter 1,
it is important to define the outline of this chapter. For this purpose, Subsection 2.1.1 shows
the classical problem formulations, usually centralized, used in the context of power systems
and electricity markets. Then, Subsection 2.1.2 describes the basis on which this thesis builds
upon to modify these classical problem formulations into problems which can be solved in a
decentralized manner.

2.1.1 Classical problem formulation

As introduced in Figure 1.2 the electrical system is composed by a set Ω of prosumers. In
this thesis prosumers are supposed rational as in [24], i.e. always objectively taking the most
beneficial decisions, and non-strategic, i.e. not anticipating actions and reactions of other
prosumers.

Centralized energy market

At a given time step t, the goal of each prosumer n is to minimize its cost ctn which is a
function of power set-point ptn as in (2.1a). For this purpose, the prosumer can adapt ptn within
flexibility a range defined by a lower pt,min

n and an upper pt,max
n bound, as in (2.1c). In the

case of a fully flexible prosumer, such a generator, these bounds are constant in time and equal
to the installed capacities, so pmin

n and pmax
n . For a fixed prosumer, such as a non-controllable

load, these bounds may depend on the time but set as both equal to the fixed set-point (so
pt,min
n = pt,max

n ). However, in the case of a new semi-flexible prosumer which has both a base
load and controllable devices, such as a building and an energy manager system (EMS), both
bounds can be different and time dependent. By convention the power set-point ptn is taken
positive if prosumer n produces electricity, and negative when it consumes. As expressed in
(2.1b), the power balance over the set Ω of prosumers is what couples prosumers’ individual
problem. Thus, the classical centralized energy market of the market operator in Figure 1.2
reads

Centralized energy market – Single time step

min
(ptn)n∈Ω

∑

n∈Ω
ctn
(
ptn
)

(2.1a)

s.t.
∑

n∈Ω
ptn = 0 (2.1b)

pt,min
n 6 ptn 6 pt,max

n n ∈ Ω (2.1c)

which can independently be solved at each time step t = 1 . . . T , with T the time horizon. Note
that this problem can also be called economic dispatch or pool market in the literature.

However, from prosumers point of view market time steps are not completely independent
and, thus, needs time coupling constraints. For example, prosumers such as flexible generators
may have ramping constraint. In that case the difference between power set-points of two
consecutive time steps ptn and pt+∆T

n would be limited within a lower ∆pt,min
n and an upper

∆pt,max
n ramp bound, as in (2.2d). These bounds may be infinite if the prosumer does not have

any ramping constraints. Time coupling constraints also appear for prosumers with energy
storage capabilities. As expressed in, the amount of energy charged in an ideal storage is
proportional to the charging power pt,ston and the amount of time ∆T between two time steps.
By convention, the power injected in the storage pt,ston is taken positive when charging, and
negative when discharging. The amount of energy stored is limited by a lower Emin

n and
an upper Emax

n stored energy bound, which is constant in time. If a prosumer does not have
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storage, then its energy bounds are both equal to zero. As expressed in (2.2e), the total amount
of power pt,totn that a prosumer can provide is then the sum of both the power set-point ptn and
the charging power pt,ston . The storage model could be completed with some imperfections such
as in [25–28] to account for charge/discharge efficiencies, self-discharge and aging. In light of
this, it would be more optimal to directly account for all market time steps rather than solving
each of them sequentially as suggested previously. Thus, the centralized energy market on
multiple time steps reads

Centralized energy market – Multiple time steps

min
(ptn,pt,ston ,p

t,tot
n ,Et

n)n∈Ω,t=1...T

∑T

t=1

∑

n∈Ω
ctn
(
ptn
)

(2.2a)

s.t.
∑

n∈Ω
pt,totn = 0 t = 1 . . . T (2.2b)

pt,min
n 6 ptn 6 pt,max

n n ∈ Ω, t = 1 . . . T (2.2c)

∆pt,min
n 6 ptn − pt−∆T

n 6 ∆pt,max
n n ∈ Ω, t = 1 . . . T (2.2d)

pt,totn = ptn + pt,ston n ∈ Ω, t = 1 . . . T (2.2e)

Et
n = Et−∆T

n + pt,ston ·∆T n ∈ Ω, t = 1 . . . T (2.2f)

Emin
n 6 Et

n 6 Emax
n n ∈ Ω, t = 1 . . . T (2.2g)

with given initial power set-points (p0n)n∈Ω and stored energies (E0
n)n∈Ω. Note that powers,

set-points ptn, storage pt,ston and total pt,totn , are all supposed constant during the length of the
time step, so in [t, t+∆T [.

Centralized energy and reserve market

With the deployment of distributed energy resources, especially renewable energy sources, there
is a need to better consider prosumers with stochastic behaviours in the market [13]. Even
though classical problems also encounter stochastic non-controllable loads such as houses, these
were not an important issue as uncertainties were aggregated and considered globally at the
transmission level. Aggregating lower electrical grid levels notably allowed to improve forecast
performances, since it is easier to forecast power consumption of a large district of houses rather
an an individual one for example. For robustness, lines in distribution networks have been
oversized, allowing to neglect congestion issues. Thus, the distribution system operator main
focus resides in voltage limits. The recent change on the generation side, with the development
of renewable generators, did not fundamentally changed system operators management as they
represented a small part of the production. But, nowadays, renewable generators may represent
an important part of the energy production such as in Denmark for example. Therefore it
rapidly became vital to reinforce the accounting of both energy and reserves. Instead of clearing
the market for each possible scenario, stochastic electricity markets usually split the problem
in two. The first market aims to dispatch energy, such as showed previously in (2.1) and
(2.2), while the second evaluates the amount of power capacity to reserve in case of dispatch
errors [29]. Note that this second market handling errors can sometimes also be called capacity
reserve or capacity market in the literature. Dispatch errors can either be handled in a robust
way, e.g. with a scenario based approach [14, 30], or in a probabilistic way, e.g. with chance
constraints [15,29]. Due to tractability issues [31], this thesis favors the use of chance constraints
over the scenario based approach.

The central energy and reserve market for a given time step t can be expressed as follows

9
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Centralized energy and reserve market – Single time step

min
(ptn,r−t

n ,r+t
n )

n∈Ω

ptnc,r
−t,r+t

∑

n∈Ω
ctn(p

t
n) + c+t

n (r+t
n ) + c−t

n (r−t
n ) (2.3a)

s.t.
∑

n∈Ω
ptn = 0 (2.3b)

pt,min
n + r−t

n 6 ptn 6 pt,max
n − r+t

n n ∈ Ω (2.3c)

0 6 r+t
n 6 r+t,max

n n ∈ Ω (2.3d)

0 6 r−t
n 6 r−t,max

n n ∈ Ω (2.3e)

r+t =
∑

n∈Ω
r+t
n (2.3f)

r−t =
∑

n∈Ω
r−t
n (2.3g)

ptnc =
∑

n∈Ωnc

ptn (2.3h)

Pf t
nc

(
−r−t 6 ptnc − p̃tnc 6 r+t

)
> δ (2.3i)

where the index ·nc relates to non-controllable prosumers as a group. Note that this problem
assumes an hourly reserve time frame to simplify the formulation.

In addition to the centralized energy market (2.1), problem (2.3) includes a centralized reserve
market to overcome uncertainties of non-controllable prosumers, such as wind farms for exam-
ple. Gathered in Ωnc ⊂ Ω, each uncertain prosumer n’s power production or consumption is
a random variable noted p̃tn defined by probability distribution function f t

n. In consequence,
uncertain prosumer n may undergo a deviation ∆t

n = ptn − p̃tn from the original energy unit-
commitment ptn. A reserve market procures production and consumption margins to overcome
the overall deviation of uncertain prosumers from their total energy unit-commitment ptnc,
given by (2.3h). Random variable p̃tnc denotes the overall uncertain power production and fol-
lows probability distribution function f t

nc which is a copula of local probability distributions
(f t

n)n∈Ωnc
. Each prosumers n can either provide an upward reserve r+t

n , i.e. a generation reserve,
or a downward reserve r−t

n , i.e. a demand reserve. The total upward r+t and downward r−t

reserves available in the market, given by (2.3f)–(2.3g), must cover uncertainties up to a global
confidence level δ as in (2.3i). The global confidence level can also be seen as an indication of
market’s aversion towards risk, so of its robustness.

Of course, the engagement of reserves may induce additional costs to the ones providing it.
Hence, in (2.3a), prosumers also aim at minimizing cost functions c+t

n and c−t
n which are respec-

tively linked to upward and downward reserves. As in (2.3d)–(2.3e), upward and downward
reserves prosumers can provide might be limited by technical constraints, respectively noted
r+t,max
n and r−t,max

n , such as ramping limits for example. Moreover, a prosumer proposing re-
serves takes the responsibility of actually being able to provide them. So, prosumers’ energy
commitment and reserve procurement must be within their flexibility range. In other words,
the feasible flexibility range accessible for energy unit-commitment is tightened by the promised
amount of reserves, as in (2.3c). Being centralized both on energy and reserves it would be
coherent to solve problem (2.3) using chance-constrained program algorithms such as the ones
in [32–34].

The presence of variable, non-controllable, uncertain prosumers pleads even more for the use
of storage units. For example, a fully (resp. half) charged storage unit would always be
able to procure upward reserves (resp. upward and downward reserves) corresponding at its
installed capacity. In the case where the uncertain prosumers are renewable sources which
underestimates their power production most of the time, the storage unit would be able to
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extract the excess of energy whether than renewables shedding it. In consequence it would be
more interesting to clear centralized energy and reserve markets on multiple time steps such as
follows

Centralized energy and reserve market – Multiple time steps

min
(ptn,r−t

n ,r+t
n )

n∈Ω

(pt,ston ,p
t,tot
n ,Et

n)n∈Ω

ptnc,r
−t,r+t; ∀t=1...T

∑T

t=1

∑

n∈Ω
ctn(p

t
n) + c+t

n (r+t
n ) + c−t

n (r−t
n ) (2.4a)

s.t.
∑

n∈Ω
ptn = 0 t = 1 . . . T (2.4b)

pt,min
n + r−t

n 6 ptn 6 pt,max
n − r+t

n n ∈ Ω, t = 1 . . . T (2.4c)

0 6 r+t
n 6 r+t,max

n n ∈ Ω, t = 1 . . . T (2.4d)

0 6 r−t
n 6 r−t,max

n n ∈ Ω, t = 1 . . . T (2.4e)

∆pt,min
n 6 ptn − pt−∆T

n 6 ∆pt,max
n n ∈ Ω, t = 1 . . . T (2.4f)

pt,totn = ptn + pt,ston n ∈ Ω, t = 1 . . . T (2.4g)

Et
n = Et−∆T

n + pt,ston ·∆T n ∈ Ω, t = 1 . . . T (2.4h)

Emin
n 6 Et

n 6 Emax
n n ∈ Ω, t = 1 . . . T (2.4i)

r+t =
∑

n∈Ω
r+t
n t = 1 . . . T (2.4j)

r−t =
∑

n∈Ω
r−t
n t = 1 . . . T (2.4k)

ptnc =
∑

n∈Ωnc

ptn t = 1 . . . T (2.4l)

Pf t
nc

(
−r−t 6 ptnc − p̃tnc 6 r+t

)
> δ t = 1 . . . T (2.4m)

where optimization variables are cleared over all time steps the once rather then sequentially
as suggested for (2.3).

Centralized optimal power flow

But electricity markets are not isolated or except of physical constraints as a speculative market
is. Electricity markets trade on a commodity which needs a physical support to actually be
exchanged, namely the power system (also called electrical network or electrical grid). As
explained in [35], the centralized energy market of (2.1) is transformed into an optimization
called centralized optimal power to consider power flows and limits of the power system.

The electrical grid is a large-scale network, which connects electricity prosumers, and consists of
a set of network nodes N and network lines L. Each line is associated with a tuple (i, j) defining
its sending and receiving nodes. Being sensitive to orientation, note that lines set L contains
the two tuples (i, j) and (j, i) of each line. The AC power flow equations model the complex,
steady-state network flows of a power system and determine the non-linear relationship between
complex voltages V t and complex/apparent power injections St, both which are defined for all
nodes of N ,

St = diag(V t)(YV t)∗ (2.5)

where ·∗ gives the conjugate of a complex number or the element-wise conjugate of a vector or
matrix. Function diag( · ) returns a square diagonal matrix with the elements of the provided
vector on the main diagonal. Y represents the complex (|N | × |N |) network admittance
matrix [36], with | · | the cardinal of a set. In presence of multiple prosumers connected to
the same node the complex power injection at a node would be the sum of these prosumers’
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injection, then power flow equations (2.5) can be written

∑

n∈Ni

ptn + j qtn =
∑

(i,j)∈L
stij i ∈ N (2.6)

with j the imaginary number, ( · )g the g-th element of a vector. Set Ni lists the prosumers
connected to node i. Variable qtn represents the imaginary/reactive power injected by prosumer
n and ptn its active power injection. The complex power flowing through a line from node i to
node j, denoted by stij, can be expressed in two forms. First, the matrix form simply develops
(2.5) for each line such that

stij =(V t)i (Y)∗i,j (V
t)

∗
j (i, j) ∈ L, i ∈ N (2.7)

where ( · )g,h denotes the g-th row element on the h-th column of a matrix. being complex
values each element could be expressed in their magnitude and angular form. So, the second
form classically used in power systems writes line power flows as

stij =
(
vti∠θ

t
i

)
(Y)∗i,j

(
vtj∠− θtj

)
(i, j) ∈ L, i ∈ N (2.8)

where operator ·∠· denotes a complex number given in its magnitude and angular form. Hence,
node i’s complex voltage can be written (V t)i = vti∠θ

t
i with vti and θti respectively voltage

magnitude and angle. Note that it is also very common to split (2.6) in real and imaginary
parts when using (2.8) for line flows. The resulting polar AC power flow equations are then
expressed with

∑

n∈Ni

ptn = vti
∑

j∈N
vtj
(
(G)i,j cos(θ

t
i − θtj) + (B)i,j sin(θ

t
i − θtj)

)
i ∈ N (2.9a)

∑

n∈Ni

qtn = vti
∑

j∈N
vtj
(
(G)i,j sin(θ

t
i − θtj)− (B)i,j cos(θ

t
i − θtj)

)
i ∈ N (2.9b)

where G and B are real and imaginary parts of Y.

Thus, the problem satisfying electrical grid constraints reads

AC optimal power flow

min
(ptn,qtn)n∈Ω

(vti∠θti)i∈N
, (stij)(i,j)∈L

∑

n∈Ω
ctn
(
ptn
)

(2.10a)

s.t. pt,min
n 6 ptn 6 pt,max

n n ∈ Ω (2.10b)

qt,min
n 6 qtn 6 qt,max

n n ∈ Ω (2.10c)

vmin
i 6 vti 6 vmax

i i ∈ N (2.10d)

θmin
i 6 θti 6 θmax

i i ∈ N (2.10e)

|stij| 6 ℓmax
ij (i, j) ∈ L (2.10f)

stij =
(
vti∠θ

t
i

)
(Y)∗i,j

(
vtj∠− θtj

)
(i, j) ∈ L (2.10g)

∑

n∈Ni

ptn + j qtn =
∑

(i,j)∈L
stij i ∈ N (2.10h)

for a given time t. The AC optimal power flow includes lower and upper limits on voltage
magnitudes (2.10d), voltage angles (2.10e) and apparent power line flows (2.10f) to AC power
flows, noted stij between node i and j as in (2.10g), and nodal power balances (2.10h). Note
that there is a reference bus in voltage angle. Generally taken null, voltage angle limits of the
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reference bus are then both set to zero, so θmin
ref = θmax

ref = 0. Similarly to active power injections,
prosumers’ reactive power injection can vary within a range defined by a lower qt,min

n and an
upper qt,max

n bound. To add time coupling prosumers such as in market (2.2), one would only
need to replace power balance (2.2b) by power flows (2.10h) and reactive power and network
limits (2.10c)–(2.10g) for each time step. Note that in (2.10h), the power injected by prosumer
n would be pt,totn instead of ptn in presence of storage variables.

The optimal power flow based on the full AC power flow equations as presented in (2.10) is
named AC-OPF in [37, 38]. The non-linearity of (2.10g) and the quadratic aspect of apparent
power flow limits (2.10f) renders the AC-OPF non-linear and non-convex [39]. Potentially many
local minima, saddle points and very flat regions still challenge existing solving algorithms. In
particular, AC optimal power flows are, in general, NP-hard [40, 41]. Significant advances in
non-convex optimization have been achieved. Many local search techniques exist for efficiently
computed feasible solutions, such as interior point methods or sequential quadratic program-
ming [42]. Nevertheless, none of them is guaranteed to converge for non-convex problems.
Even if they do, the solution quality is determined by the initialization point chosen and there
is no proof that the obtained solution is the global optimum. Thus, computational robust-
ness remains the biggest challenge for both AC power flow and optimal power flow algorithms
which often fail to succeed [43–46]. Note that the failure rate increases with the size of the
electrical networks. Several convex approximations of the AC power flow equations are widely
used for the optimal power flow today. Convex approximations help to increase the reliability
of solving algorithms and foster widespread application of optimization tools which improve
decision-making. These approximations leverage the benefits of convex programming to provide
globally optimal solutions of the approximated problems they solve as well as computational
robustness and efficiency. Three main convex approximations can be found in the literature.
First, the fully linearized DC approximation neglects reactive power, voltage magnitudes and
losses, leading to DC-OPF [47]. The second leverages the quadratic voltage dependency of the
AC power flow equations, leading to second order cone optimal power flow (SOC-OPF) [48–50].
The third is a more general convexification technique based on semi-definite programming, lead-
ing to SDP-OPF [51]. It can be noted that the two last relaxations and approximations are
more accurate than the first one. All these approaches lead to synthesis work such as [35] which
lists them in greater detail and also associates a dedicated solving algorithm to each of them.
Finally, to insure reliability of the obtained optimal operation points, models generally include
additional security margins within their line capacities and voltage limits. For example, [23]
studies security margins and uncertainty constraints in optimal power flows.

2.1.2 Decentralized formulation based on bilateral trades

The goal of this thesis is to proposed a decentralized way to clear these three problems histor-
ically centralized. For this purpose, this thesis focused on the use of multiple bilateral trades,
also called peer-to-peer trades, as presented in Figure 1.3.

Decentralized energy market

Considering multiple bilateral trades in an energy market calls for a split of power set-points
ptn, in the manner of [52], into a set of multiple bilateral trades ptnm such that

ptn =
∑

m∈ωt
n

ptnm n ∈ Ω, t = 1 . . . T (2.11)

where ωt
n lists prosumer n’s trading partners. Every possible bilateral power trades within the

community can be condensed in a matrix P
t of the form

P
t =






pt11 · · · pt1|Ω|
...

. . .
...

pt|Ω|1 · · · pt|Ω||Ω|




 (2.12)
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where | · | denotes the cardinal of a set. Bilateral trade ptnm is necessarily equal to zero if
prosumer m is not in prosumer n’s trading partnership set ωt

n. To insure that bilateral trades
are reciprocal, i.e. agreed upon by both parties, they must be balanced in amount. So, each
bilateral trade must verify that ptnm = −ptmn. As outlined in (2.13b), this power balance can be
condensed by imposing P

t to be skew-symmetric, which also imposes that a prosumer can not
trade with itself, i.e. ptnn = 0. By convention, a bilateral trade is taken positive, i.e. ptnm > 0,
when prosumer n sells power to prosumer m, and negative when buying. In consequence, power
set-points and total amount of power traded by prosumers must be equal for each prosumer,
as in (2.13c), to guarantee its own balance. In other words, it guarantees that a prosumer sells,
reps. buys, as must power than it produces, resp. consumes.

The main advantage of this approach is that it provides more procurement flexibility to pro-
sumers. In other words, it is now possible for prosumers to select which peers supply its
consumption or which peers it want to supply. This can either be done in a rigid way, through
the definition of partnership sets ωt

n, or a more adaptable way by favoring certain peers. To this
end, as in (2.13a), a prosumer n can assign an additional undesirability charge γt

nm, reflecting
its aversion to trade with prosumer m, in its minimization objective. A positive undesirability
charge γt

nm > 0 is to be seen as a penalty while a negative undesirability charge γt
nm < 0 can be

assimilated to a subsidy. Note that an undesirability charge equal to zero corresponds to a neu-
tral point of view. Thus, the decentralized energy market at a time t based on multi-bilateral
trades reads

min
(

ptn,(p
t
nm)

m∈ωt
n

)

n∈Ω

∑

n∈Ω

[

ctn
(
ptn
)
+
∑

m∈ωt
n

γt
nmp

t
nm

]

(2.13a)

s.t. P
t = −PtT (2.13b)

ptn =
∑

m∈ωt
n

ptnm n ∈ Ω (2.13c)

pt,min
n 6 ptn 6 pt,max

n n ∈ Ω (2.13d)

where ·T denotes the transpose operator. Since, as mentioned in Subsection 2.1.1, all powers
are supposed constant during the length of the time step [t, t + ∆T [ it is still possible to talk
about an energy market even though trades are made on power.

The extension of this multi-bilateral trades approach to the multiple time step energy market
(2.4) is straight forward at it solely consist in verifying bilateral trades’ reciprocity (2.13b) for
each time step and to consider prosumers’ the total amount of power pt,totn as the total traded
amount, in (2.13c), instead of their power-points. The final decentralized version of multiple
time step energy market (2.2) can be written

min
(

ptn,p
t,sto
n ,p

t,tot
n ,(ptnm)

m∈ωt
n
,Et

n

)

n∈Ω,t=1...T

∑T

t=1

∑

n∈Ω

[

ctn
(
ptn
)
+
∑

m∈ωt
n

γt
nmp

t
nm

]

(2.14a)

s.t. P
t = −PtT t = 1 . . . T (2.14b)

pt,totn =
∑

m∈ωt
n

ptnm n ∈ Ω, t = 1 . . . T (2.14c)

pt,min
n 6 ptn 6 pt,max

n n ∈ Ω, t = 1 . . . T (2.14d)

∆pt,min
n 6 ptn − pt−∆T

n 6 ∆pt,max
n n ∈ Ω, t = 1 . . . T (2.14e)

pt,totn = ptn + pt,ston n ∈ Ω, t = 1 . . . T (2.14f)

Et
n = Et−∆T

n + pt,ston ·∆T n ∈ Ω, t = 1 . . . T (2.14g)

Emin
n 6 Et

n 6 Emax
n n ∈ Ω, t = 1 . . . T (2.14h)

Note that trade partnership sets are taken as time dependent ωt
n to provide a more general

formulation, allowing prosumers to adapt with whom they trade with in time.
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Decentralized energy and reserve market

Even though bilateral power trades as described above were still used in the energy and reserve
market of (2.3) and (2.4), the resulting market would solely be decentralized for the energy part.
Indeed, it is important to notice that control variables {ptnc, r

−t, r+t} respectively defines the
global non-controllable present in the market and the global amount of upward and downward
reserves in (2.4j)–(2.4l). Yet, the three of them are used in a chance constraints which can solely
be handled centrally. Thus even with bilateral trades on energy, the energy and reserve market
as currently formulated can be distributed but can not be solved in a decentralized manner. As
it will be detailed later in Chapter 5, this thesis proposes to reformulate the problem in such
way that it can be decentralized. For this, global chance constraint (2.4m) is split into local
chance constraints such that each uncertain prosumer is responsible for the provision of its own
reserve coverage. Then, Chapter 5 also adopts the strategy of using multi-bilateral trades on
reserves to allow uncertain prosumers to acquire reserves from peers.

Decentralized energy market account for grid constraints

Contrary to the classical energy market (2.1), in the AC optimal power flow of (2.10), the
balance of active power is not solely regulated through a simple null sum. Thus two main
obstacles to the use of multi-bilateral trades arise. First, allowing bilateral trades implies the
presence of trade reciprocity constraint (2.13b) in addition to nodal power balance equations
(2.10h). This would lead to a problem with two contradictory active power balances as the
AC power flow model leads to power losses and, hence, is not compatible with bilateral trades
which are balanced. Secondly, being a complex set of equations by nature, computation of
electrical constraints (2.10f)–(2.10h) can not be distributed among prosumers as they require
power injections of all prosumers, in particular for nodal power balances (2.10h). As it will be
detailed in Chapter 4, this thesis proposes two methods, one exogenous the other endogenous,
to handle power flow equations in a decentralized energy market based on bilateral trades. It
is important to note here that the goal of this thesis is solely to introduce a way for the peer-
to-peer market to interact with the system operator such that market outcomes are feasible on
the power system. In other words, the goal is not to propose a decentralized way to solve the
optimal power flow problem.

2.2 Generalized decentralized coordination problem

Remark. This section presents both a generalized coordination problem formulation and the
associated decentralized solving algorithm. Self consistent, the following chapters will always
present the studied problems and expose dedicated solving algorithms. Thus the theoretical
developments proposed in Sections 2.2 and 2.3 are not required for the understanding of the
rest of the thesis. Their purpose is to provide a theoretical generalization larger than the sole
context of peer-to-peer markets. In consequence, notations used in them are distinct.

The objective of this section is to extend the use of bilateral exchange variables to solve more
general coordination problems, which encompass the different problems presented in Section 2.1.
A coordination problem is to be seen here as a problem revolving around a set of agents with
their own objectives and constraints which are trying to agree on a certain number of vari-
ables. Note that the proposed formulation is indeed not only a collaboration problem but a
coordination since it is equivalent to a pure Nash equilibrium problem, arguments detailed in
Section 2.3. Depending on the field of application other names could be used to denote agents.
For example in game theory they would be called players, or actors. Prosumers and system
operators as presented in the previous section correspond to different type of agents. First,
Subsection 2.2.1 presents the formulation of this generalized coordination problem. Based on
consensus alternating direction method of multipliers (ADMM), Subsection 2.2.2 develops a
decentralized negotiation algorithm compatible with the formulation. Finally, line 11 and Sub-
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section 2.2.3 show some extensions and practical examples in which the generalized coordination
problem and the associated negotiation algorithm could be used.

2.2.1 Generalized coordination problem formulation

Being an association of multiple local problems linked by common coupling objectives and/or
constraints, coordination problems are most likely to be used in distributed or decentralized
frameworks. The general formulation of coordination problems considered in this thesis reads

min
X=(XT

1 , ... ,X
T

φ)
T

∑φ

n=1
ϕn(Xn) (2.15a)

s.t. EX = 0 (2.15b)
Xn ∈ Xn n = 1 . . . φ (2.15c)

with column vectors Xn ∈ R
φn , sets Xn ⊂ R

φn and functions ϕn : Rφn → R for any n = 1 . . . φ,
and matrix E ∈ R

e×(φ1+ ···+φφ). Note that φ > 1 denotes the total number of agents in the
problem which aim to minimize their local cost ϕn by optimizing their local variable Xn within
a feasibility set Xn. In addition, agents may want to reach consensus or reciprocity1 on variables
related or common with some peers. All e consensus and reciprocity constraints are condensed
in (2.15b) where E is the global exchange matrix between agents, which could also be called
communication matrix, and vector X ∈ R

φ1+ ···+φφ gathers all local vectors. Note that e = 0
would mean that agents were isolated.

As introduced in Subsection 2.1.2, these consensus and reciprocity constraints can be expressed
as direct bilateral exchanges between coordinating peers. In other words, saying that agent n
has to reach consensus on its u-th variable element with agent m’s v-th variable element can
be translated by the following constraint

(Xn)u − (Xm)v = 0 (2.16)

where ( · )u denotes the u-th element of a vector. If this consensus is the g-th bilateral exchange
constraint then the g-th row of global exchange matrix E is composed of zeroes except for
elements

(E)g,G(n,u) = 1 and (E)g,G(m,v) = −1 (2.17)

pointing the two targeted scalar variables, where ( · )g,h denotes the g-th row element on the
h-th column of a matrix. Index mapping function G given by

G : (n, u) 7→ u+
∑n−1

h=1
φh (2.18)

passes from the local index u of agent n’s local variable Xn to its global index in X. By
convention

∑0
h=1 φh = 0 as the set on which the sum occurs is empty. In the case of a

reciprocity between agents’ variable elements constraint (2.16) becomes

(Xn)u + (Xm)v = 0 (2.19)

in which case (2.17) becomes

(E)g,G(n,u) = 1 and (E)g,G(m,v) = 1. (2.20)

One could note that in either case global exchange matrix E verifies the following properties:
each matrix element (E)g,h ∈ {−1, 0, 1}, each row g = 1 . . . e of E is such that

∑
|(E)g,·| = 2,

so
∑
|E| = 2 e, and

∑
(E)g,· ∈ {0, 2}, with | · | the element-wise absolute value operator.

1In analogy with physical systems, the consensus between states of two systems is an equality of potentials,
so equal values (e.g. the temperature of two built-in pieces or the voltage potential of two free wires connected
on the same source), while the reciprocity is an equality of flows, so opposite numbers (e.g. the heat transferred
between two bodies or the electric current flowing between two connected devices).

16



2.2.2 Decentralized negotiation algorithm

The proposed decentralized negotiation algorithm is an iterative process based on the consensus
version of ADMM. First synthesized in [53], the ADMM is a distributed algorithm. Through
a decomposition inspired from [2], the problems tackled here can be solved in a decentralized
manner2. Since [53] in 2011, many improvements have been proposed and adjoined to the
original ADMM algorithm. As it is not the focus of this section, a straightforward adaptation
of the consensus ADMM is used here without any convergence rate improvements. Several
convergence rate improvements will be proposed in Chapter 3.

Reformulation of the problem

As proposed in [2], constraints (2.16) and (2.19) can be reformulated. For this, each agent n
would have a local copy X ′

n of the exchanged variables from the point of view of its partners.
This allows to pass from a classically distributed consensus ADMM to a decentralized form.
Agent n’s local copy X ′

n can be obtained by

X ′
n = H(n,X) (2.21)

where routing function H extracts peers’ variables of X which are exchanged bilaterally with
agent n. Put in a matrix form, suppose that rows of global matrix exchange E are sorted to
obtain its per block form with respect to agent n’s point of view, noted E

(n). This arranged
matrix reads

E
(n) =






X1 · · · Xn−1 Xn Xn+1 · · · Xφ

E
(n)
1 0 E

(n)
3

E
(n)
4 E

(n)
5 E

(n)
6

E
(n)
7 0 E

(n)
9




 (2.22)

where E
(n)
· are sub block matrices and 0 null matrices of adequate size. Then, routing function

H can be written as

H : (n,X) 7→ X ′
n =

(
X1 · · · Xn−1 Xn Xn+1 · · · Xφ∣
∣
∣E

(n)
4

∣
∣
∣ 0

∣
∣
∣E

(n)
6

∣
∣
∣

)

X (2.23)

which is linear. It is important to note here that the local copy vector X ′
n of peers’ exchanged

variables adopts the same sign convention as agent n’s peers, so not the one of agent n. Routing
function H actually plays the role of a communication network which carries the information
between agents. It can be noted that X ′

n ∈ R
en where en =

∑
|E·,G(n,1...φn)| and matrices E(n)

4 ,

E
(n)
5 and E

(n)
6 all have en rows.

Coupling consensus and reciprocity constraints (2.15b) can be split and replicated at agents’
level. Thus consensus and reciprocity constraints undergone by an agent n would be expressed
as

En

[
Xn

X ′
n

]

= 0 (2.24)

2It is important to note that this thesis uses the terminology of optimization theory, not of computer systems.
In consequence, the term distributed algorithm relates to an algorithm which possesses a central computation
unit which supervises and helps local units to converge towards a solution. The term decentralized algorithm
relates to an algorithm which does not have any supervisory entity but which still relies on communications
between local units. In other words, contrary to computer systems, a decentralized algorithm here does not
consider agents to be also isolated communication wise. Hence, a distributed algorithm adopts a star-like
communication structure between computation units, while a decentralized algorithms has a meshed or fully
meshed communication structure between computation units.
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where local exchange matrix En is given by

En =
(

Xn X ′
n

E
(n)
5

[

E
(n)
4 E

(n)
6

]

∅

)

(2.25)

where [ · ]∅ deletes empty columns of a matrix. Note that
[

E
(n)
4 E

(n)
6

]

∅
returns a square matrix

of size en which rows could be rearranged to obtain a diagonal matrix composed of ones or

minus ones, so it also verifies
∑
∣
∣
∣

[

E
(n)
4 E

(n)
6

]

∅

∣
∣
∣ = en. It can be noted that

Xn =
1

2
En

[
Xn

−X ′
n

]

∈ R
en (2.26)

is the mean value between agent n’s local variables exchanged and the one from its exchanging
peers and follows agent n’s point of view of the sign convention in reciprocity exchanges. Thus,

Xn − En

[
Xn

0

]

represents agent n’s half distant to proceed in order to reach consensus and

reciprocity with all its peers. This difference for all n = 1 . . . φ is also a way to verify if global
consensus and reciprocity constraints (2.15b) are satisfied when they equal zero.

Based on these notations problem (2.15) is now reformulated as follows

min
X=(XT

1 , ... ,X
T

φ)
T

W=(WT

1 , ... ,WT

φ )
T

∑φ

n=1
ϕn(Xn) (2.27a)

s.t.
1

2
En

[
Wn

−H(n,W )

]

= En

[
Xn

0

]

n = 1 . . . φ (2.27b)

Xn ∈ Xn n = 1 . . . φ (2.27c)

where W =
(
WT

1 , . . . ,W
T

φ

)T
is a global slack variable which copies global variable X through

(2.27b) to insure that X satisfies consensus and reciprocity constraints (2.15b). Thus, Wn is a
copy of agent n’s local optimization variable Xn.

Decomposition of the problem

The augmented Lagrangian of problem (2.27) can be written

Lρ(X,W,Λ) =
∑φ

n=1
Lρ
n(Xn,W,Λn) (2.28)

where ρ > 0 is the penalty factor, Λ =
(
ΛT

1 , . . . ,Λ
T

φ

)T
is the collection of dual variables

Λn ∈ R
en of local consensus and reciprocity constraints (2.27b) and Lρ

n gathers Lagrangian
terms involving agent n. Local parts of the augmented Lagrangian are such that

Lρ
n(Xn,W,Λn) = ϕ̃n(Xn) + πρ

n

(

Xn,
1

2
En

[
Wn

−H(n,W )

]

,Λn

)

(2.29)

where function ϕ̃n is the extended-value of ϕn, is the sense of [54], on the domain defined by Xn.
The disagreement of agent n with its exchanging partners is expressed through cost function
πρ
n given by

πρ
n : (Xn, Zn,Λn) 7→ ΛT

n

(

Zn − En

[
Xn

0

])

+
ρ

2

∥
∥
∥
∥
Zn − En

[
Xn

0

]∥
∥
∥
∥

2

2

(2.30)
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where ρ > 0 is a penalty factor scaling the weight given to the disagreement with respect to the
agent’s cost function ϕn. Operator ‖ · ‖2 denotes the Euclidean norm of a vector or a matrix.
So, for a matrix Z, ‖Z‖22 =

∑
(Z)2·,·.

Thus, ADMM of (2.27) consists in iteration steps

Xk+1 = argmin
X

Lρ(X,W k,Λk) (2.31a)

W k+1 = argmin
W

Lρ(Xk+1,W,Λk) (2.31b)

Λk+1
n = Λk

n + ρ

(
1

2
En

[
W k+1

n

−H(n,W k+1)

]

− En

[

Xk+1
n

0

])

n = 1 . . . φ. (2.31c)

Since it applies to independent local Lagrangian parts Lρ
n(Xn,W

k,Λk
n), (2.31a) can be split

among agents. Each agent n would then concurrently compute

Xk+1
n = argmin

Xn

Lρ
n(Xn,W

k,Λk
n). (2.32)

As for the consensus ADMM of [53], update (2.31b) can analytically be obtained with

W k+1
n =

1

2
En

[
Xk+1

n

−H(n,Xk+1)

]

−
1

2ρ
En

[
Λk

n

−H(n,Λk)

]

n = 1 . . . φ (2.33)

since there are no constraints and that agents’ extended-value functions are evaluated on fixed
variables Xk+1

n . Substituting (2.33) in (2.31c) implies that dual variables (Λk+1
n )u and (Λk+1

m )v
on both sides of an exchange between agent n and m are equal of opposite sign for a consensus

exchange, and are equal of the same sign for a reciprocity exchange. Thus, En

[
Λk+1

n

−H(n,Λk+1)

]

=

0 after the first iteration and (2.33) can be simplified in

W k+1
n =

1

2
En

[
Xk+1

n

−H(n,Xk+1)

]

n = 1 . . . φ (2.34)

In consequence, there is no need of an additional central entity to compute (2.31b) since its
simplified form (2.34) can directly be substituted in (2.32) and (2.31c) which can both be
computed locally by agents.

Final algorithm

The final decentralized negotiation algorithm solving (2.27) and, hence, coordination problem
(2.15) reads

Xk+1
n = argmin

Xn

ϕn(Xn) + πρ
n

(

xn, X
k

n,Λ
k
n

)

s.t. Xn ∈ Xn

n = 1 . . . φ (2.35a)

X ′k+1
n = H(n,Xk+1) n = 1 . . . φ (2.35b)

X
k+1

n =
1

2
En

[
Xk+1

n

−X ′k+1
n

]

n = 1 . . . φ (2.35c)

Λk+1
n = Λk

n + ρ

(

X
k+1

n − En

[

Xk+1
n

0

])

n = 1 . . . φ (2.35d)

where augmented Lagrangian terms of consensus and reciprocity constraints (2.24) are aggre-
gated in local projection functions πρ

n which illustrates agent n’s over costs relative to the lack
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of consensus and reciprocity with its exchanging peers. Agent n’s disagreement cost function
πρ
n is given by

πρ
n : (Xn, Xn,Λn) 7→ ΛT

n

(

Xn − En

[
Xn

0

])

+
ρ

2

∥
∥
∥
∥
Xn − En

[
Xn

0

]∥
∥
∥
∥

2

2

(2.36)

where ρ > 0 is a penalty factor scaling the weight given to the disagreement with respect to
agents cost functions (ϕn)n. Thus disagreement cost function πρ

n economically encourages agent
n to reach consensus and reciprocity with its exchanging peers. Local exchange matrix En is
extracted from global exchange matrix E to reflect how agent n’s local optimization variable
Xn is related to the variables X ′

n copied from its exchanging peers. Note that ρ is common to
all agents and as, hence, to be agreed upon in advance before launching the iterative process.
Operands ·T and ‖·‖2 respectively denote the transposition and the Euclidean norm of a vector
or matrix. Lagrangian multipliers Λn ∈ R

en associated to agent n’s consensus and reciprocity
constraints (2.24) can be seen as agent n’s prices of coordination with the exchanging peers.

One can notice that agents can compute each iteration steps (2.35) independently. However an
agent can not execute them all successively independently from others as (2.35b) requires to
wait for all agents in order to gather their local variable update Xk+1

n in Xk+1. This negotiation
algorithm guarantees at each iteration step that local variables are feasible at agents’ level, i.e.
(2.15c) are always satisfied, while consensus and reciprocity exchanges (2.15b) are only verified
at convergence up to a primal ǫp,tol and dual ǫd,tol feasibility tolerance. Global stopping criteria
associated to (2.35) read

∥
∥
∥(ǫ

p,k+1
1 , . . . , ǫp,k+1

φ )
∥
∥
∥
2
6 ǫp,tol and

∥
∥
∥(ǫ

d,k+1
1 , . . . , ǫd,k+1

φ )
∥
∥
∥
2
6 ǫd,tol (2.37)

for primal and dual local residuals respectively given by

ǫp,k+1
n =

1

2

∥
∥
∥
∥
X

k+1

n − En

[

Xk+1
n

0

]∥
∥
∥
∥
2

and ǫd,k+1
n =

1

2

∥
∥
∥X

k+1

n −X
k

n

∥
∥
∥
2

(2.38)

which can be estimated locally by agents.

The overall negotiation algorithm, illustrated in Figure 2.1, occurs as follows. First, each local
agents independently updates their local variables based on (2.35a) in a parallel manner. Once
updated, each agent specifically sends the updated values to its exchanging peers and waits
to receive back their counter values. Then, concurrently, each agent sequentially evaluates
the new average Xn between its local values and the ones of its peers with (2.35c), updates
exchange prices Λn with (2.35d) and estimates local primal rn and dual sn residuals of the
current iteration with (2.38). Finally, agents share their local residuals in a broadcast manner
so that they can all test stopping criteria (2.37). This process repeats until convergence of
the algorithm. Convergence of the negotiation algorithm is ensured under the assumption of
convexity of the problem. So, convexity of local functions ϕn and local sets Xn for each agent
n = 1 . . . φ is then a sufficient condition to guarantee convergence of the negotiation algorithm
towards the optimal value.

2.2.3 Practical examples

Decentralized energy market – Single time step

Writing the decentralized energy market (2.13) at time t into the form of (2.15) is rather
straightforward. For this, prosumer n’s local optimization variable X t

n can gather its power
set-point, ptn, and all possible bilateral trades which it could make, (P)n,·, as follows X t

n =
(

ptn, p
t
n1, . . . , p

t
n|Ω|

)

, so φn = |Ω| + 1. Then, time t’s prosumers objective function ϕt
n would

read
ϕt
n

(
X t

n

)
= ctn

((
X t

n

)

1

)
+
∑

m∈ωt
n

γt
nm

(
X t

n

)

m+1
(2.39)
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Decentralized energy market – Multiple time steps

As it can be observed in Subsection 2.1.1, the presence of storage implies the presence of a
charge/discharge power pt,ston , a total amount of power traded pt,totn and a stored amount of
energy Et

n at each time step t for each prosumer n. Then, the optimization variable of a

prosumer n at time t becomes X t
n =

(

ptn, p
t
n1, . . . , p

t
n|Ω|, p

t,sto
n , pt,totn , Et

n

)

, so φn = |Ω|+4. Time

t’s optimization set of time independent constraints X t
n is now such that

X t
n ∈ X

t
n ⇔







pt,totn =
∑

m∈ωt
n
ptnm

pt,min
n 6 ptn 6 pt,max

n

pt,totn = ptn + pt,ston

Emin
n 6 Et

n 6 Emax
n

(2.41)

which allows to define prosumer n’s overall optimization set Xn as follows

(
X1

n, . . . , X
T
n

)
∈ Xn ⇔







X t
n ∈ X

t
n t = 1 . . . T

∆pt,min
n 6 ptn − pt−1

n 6 ∆pt,max
n t = 1 . . . T

Et
n = Et−1

n + pt,ston ·∆T t = 1 . . . T
(2.42)

To obtain decentralized energy market (2.14)’s objective function separated per prosumer, sums
on time horizon T and prosumer set Ω must be swapped. Prosumer n’s final objective function
would then read

ϕn

(
X1

n, . . . , X
T
n

)
=
∑T

t=1
ϕt
n

(
X t

n

)
(2.43)

with ϕt
n as defined above in (2.39). It can be recalled that an optimization point of view is

taken here, so all market time steps are solved at the same time.

Then, if global optimization variable X is defined as follows

X =
(
X1

1 , . . . , X
1
φ, . . . , X

T
1 , . . . , X

T
φ

)
(2.44)

with φ = |Ω|, it is possible to write multiple time step decentralized energy market (2.14) such
as

min
X=(X1

1 ,...,X
1
φ
, ... ,XT

1 ,...,XT
φ )

∑φ

n=1
ϕn

(
X1

n, . . . , X
T
n

)
(2.45a)

s.t. EX = 0 (2.45b)
(
X1

n, . . . , X
T
n

)
∈ Xn n = 1 . . . φ (2.45c)

with a global exchange matrix E = diag
(
E

1, . . . ,ET
)
, where diag( · ) applied to matrices returns

a diagonal per block matrix. In consequence, decentralized energy market (2.14) on multiple
time steps can be defined in a form similar to its single time step formulation (2.13). Hence, for
the sake of simplicity, in the rest of the thesis after this chapter all problems will be simplified
to their single time step form and time step exponents ·t disappear.

Optimal power flow with multiple system operators

As pointed by [55], power systems are large interconnected systems with a high degree of
complexity, so the control of such systems is a challenging task. For the determination of
optimal settings for the controllable devices, optimal power flow (2.1.1) is a suitable method.
But centralized optimal power flow taking the entire grid into account is often not feasible.
Reasons are the size of the resulting optimization problem but also the concurrent control of
the system by several independent entities. To facilitate the application of optimal control to
large-scale systems, the overall problem can be decomposed into sub-problems which are solved
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For a given time step t, the overall multi-area problem can be written

min
X=(Xξ)ξ∈Ξ

∑

ξ∈Ξ c
t
ξ

(
X t

ξ

)
(2.46a)

s.t. E
tX t = 0 (2.46b)

X t
ξ ∈ X

t
ξ ξ ∈ Ξ (2.46c)

where area objective functions read

ctξ
(
X t

ξ

)
=
∑

n∈Ωξ
ctn
(
ptn
)

(2.47)

and area electrical network constraints read

X t
ξ ∈ X

t
ξ ⇔







pt,min
n 6 ptn 6 pt,max

n n ∈ Ωξ

qt,min
n 6 qtn 6 qt,max

n n ∈ Ωξ

vξ,min
i 6 vξ,ti 6 vξ,max

i i ∈ N ξ

θξ,min
i 6 θξ,ti 6 θξ,max

i i ∈ N ξ

|ℓtij| 6 Sξ,max
ij (i, j) ∈ Lξ

ℓtij = (vti∠θ
t
i) (Y)∗i,j

(
vtj∠− θtj

)
(i, j) ∈ Lξ

∑

n∈N ξ
i
ptn + j qtn =

∑

j∈N ℓtij i ∈ N ξ∗

(2.48)

for an optimization variable X t
ξ =

(

(ptn, q
t
n)n∈Ωξ , (vti∠θ

t
i)i∈N ξ ,

(
ℓtij
)

(i,j)∈Lξ

)

. Global exchange

matrix E
t of (2.46) would then be defined such that

vti − vtj =0 (i, j) ∈ N c (2.49a)

θti − θtj =0 (i, j) ∈ N c (2.49b)

are satisfied.

Multi-block ADMM

Multi-block ADMM is an important extension of the classical ADMM of [53] which is largely
used in big data optimizations. Multi-block optimization problems such as in [61–63] takes the
form of

min
(X1, ... ,Xφ)

∑φ

n=1
ϕn(Xn) (2.50a)

s.t.
∑φ

n=1
AnXn = B (2.50b)

Xn ∈ Xn n = 1 . . . φ (2.50c)

where An ∈ R
a×φn are given matrices and B ∈ R

a is a given vector.

The two main approaches, namely Jacobian and Gauss-Seidel multi-block ADMMs, are histori-
cally used to solve them. But they both suffer from two main drawbacks. The first issue is that
they both require the presence of a central entity which updates the Lagrangian multipliers
of coupling constraint (2.50b) or, at least, which as to gather all the information needed to
test the stopping criterion. This negative effect is even more present in the case of the Jaco-
bian multi-block ADMM since local optimization variable updates are made sequentially, while
the Gauss-Seidel multi-block ADMM makes them in a concurrent manner. The second, and
non-negligible, drawback is that each algorithm requires the set of coupling matrices matrices
{A1, . . . ,Aφ} to satisfy certain conditions in order to insure convergence towards the optimal
solution. For instance, [61] shows (for φ = 3, so for φ > 3 by extension) that convergence of
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the Gauss-Seidel multi-block ADMM is ensured if there exist two integers n and m such that
any two matrices of the different sets {An, . . . ,An+m} and {An+m+1, . . . ,Aφ,A1, . . . ,An−1}
are orthogonal. This condition allows to reorder a subset of agents in the proof of convergence
by propagation from the original case of φ = 2 (verified since convergence of [53]’s ADMM is
proved) to the φ + 1 case. And, according to [64], convergence of the Jacobian multi-block
ADMM is ensured if matrices An are mutually near-orthogonal and have full column-rank.
This condition is sufficient as well, but is more restrictive than for the Gauss-Seidel approach
since near-orthogonality applies to all matrix couples An and Am 6=n rather than between two
subset partitions of coupling matrices.

However, by reformulating multi-block problem (2.50) into

min
X=(XT

1 , ... ,X
T

φ
,XT

φ+1)
T

∑φ+1

n=1
ϕn(Xn) (2.51a)

s.t. EX = 0 (2.51b)
Xn ∈ Xn n = 1 . . . φ+ 1 (2.51c)

with agent φ + 1’s optimization variable Xφ+1 ∈ R
φ1+ ···+φφ , objective function ϕφ+1 null (so

ϕφ+1 = 0) and local optimization set

Xφ+1 =
{

Xφ+1 ∈ R
φ1+ ···+φφ

∣
∣
∑φ

n=1
An(Xφ+1)G(n,1...φn) = B

}

(2.52)

where Gn = G(n, 1 . . . φn) points to agent n’s copies with mapping function G defined in (2.18).
The global exchange matrix E used to match (2.51) to (2.50) reads

E =








X1 X2 Xm (Xφ+1)G1 (Xφ+1)G2 (Xφ+1)Gφ

1 0 0 −1 0 0

0 0

0 0
0 0 1 0 0 −1







.

(2.53)
It is then possible to use the negotiation algorithm of Subsection 2.2.2 to solve multi-block
problem (2.50). This method still requires an additional entity to handle multi-block constraint
(2.50b) in the form of a projection of vector Xφ+1, which copies

(
XT

1 , . . . , X
T

φ

)T
, on Xφ+1.

However, contrary to Jacobian and Gauss-Seidel multi-block ADMMs, there is no condition on
coupling matrices {A1, . . . ,Aφ} to obtain convergence of the algorithm. Indeed, now, convexity
of local functions ϕn and local sets Xn for each agent n = 1 . . . φ is the only sufficient condition
to guarantee convergence of the negotiation algorithm towards the optimal value.

Note that this approach can be extended to any coupling constraints of the form

Aeq(X1, . . . , Xφ) = 0 (2.54a)
Aineq(X1, . . . , Xφ) 6 0 (2.54b)

where Aeq and Aineq are any functions, which must be convex to insure convergence of the algo-
rithm towards the optimal solution. Moreover, even though it may not be directly useful here,
this approach can be extended to the presence of multiple coupling constraints (2.50b) simply
by introducing multiple additional agents, null objective functions ϕφ+m, local optimization set
Xφ+m, optimization variable Xφ+m and to append the different global exchange matrices Em

such as defined above, for as much m as multi-block coupling constraints.
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2.3 Equivalent game theory problem: A pure Nash game

This section makes a parallel between the optimization form of generalized coordination formu-
lation (2.15) and the equilibrium approach that would be taken in a game theoretical context.
This will especially explain why the presented generalized problem of in Section 2.2 can indeed
be considered as a coordination problem and not only a collaboration problem. With an equiv-
alent in game theory, coordination problems such as peer-to-peer markets would not have to
suppose that agents are non-strategic. Indeed, the game theoretical properties would induce
that it is more beneficial economically for agents to behave truthfully. First Subsection 2.3.1 ex-
plains the equivalent equilibrium form that is considered here. Then, Subsection 2.3.2 exposes
eventual conditions and implications of such equivalence.

2.3.1 Equivalent game theory problem

Writing generalized coordination problem (2.15) as a game theory problem consists in splitting
such that each agent, named player in such case, solely focus on their own local optimization
problem. Player n’s optimization problem would then read

min
Xn

ϕn(Xn) + ΛT

n En

[
Xn

0

]

(2.55a)

s.t. Xn ∈ Xn (2.55b)

where local exchange matrix En allows to link local optimization variables of Xn, named actions
or decisions in game theory, with peers’ exchanged actions, grouped in X

′

n, through local
exchange constraints, as expressed in (2.24) or (2.27b) in presence of slack copy actions Wn.
Dual variables Λn are the Lagrangian multipliers associated to these constraints and, in a costs
optimization context, can be seen as exchange prices. Thus, local objective (2.55a) illustrates
the fact that player n as to make a trade off between its own local costs, represented by function
ϕn, and the cost of exchanging with outside peers, represented by the inner product term.

Since players can not act on dual variables Λn but only on their local actions Xn, there is a
need for a bilateral exchange operator. The bilateral exchange operator would aim at matching
exchanges by selecting dual variables Λn such that mismatches are minimized. Thus, bilateral
exchange operator optimization simply consists in

min
Λ1,...,Λφ

−
∑φ

n=1
ΛT

n En

[
Xn

X
′

n

]

(2.56a)

s.t. Λn ∈ R
en n = 1 . . . φ (2.56b)

where en is local exchange matrix En’s number of rows. Remember that exchanged actions X
′

n

can be extracted from global actions’ list X =
(
XT

1 , . . . , X
T

φ

)T
through mapping function H,

with X ′
n = H(n,X), which specifically points elements of X which are exchanged with a player

n. It can be noted that this problem can not only be solved on a per player basis but also per
exchanges (i.e. for each line of En) as Xn and X

′

n are fixed. In consequence, this computation
could be assign to each player on exchanges involving it. This allocated computations would
then replace Lagrangian multiplier update (2.35d). However, to truly entrust players, these
allocated computations would have to be carried by a sealed, certified software or hardware.

2.3.2 Conditions of equivalence and implications

The Lagrangian of game problem (2.55)–(2.56) reads

L(X,Λ) =
∑φ

n=1
Ln(Xn,Λn) (2.57)
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where Λ =
(
ΛT

1 , . . . ,Λ
T

φ

)T
is the collection of all dual variables and Ln is the Lagrangian of

player n. Player n’s Lagrangian is such that

Ln(Xn,Λn) = ϕ̃n(Xn) + ΛT

n En

[
Xn

0

]

(2.58)

where ϕ̃n is the extended-value function of ϕn, in the sense of [54], on the domain defined
by Xn. An optimal decision, i.e. an equilibrium, of game theory problem (2.55)–(2.56) must
satisfy its Karush - Kuhn – Tucker (KKT) conditions. One can note that KKT conditions of
(2.58), reading

(Xn)u :
∂ϕ̃n

∂ (Xn)u
+ ΛT

n (En)·,u = 0 u = 1, . . . φn (2.59a)

(Λn)u : − (En)u,·

[
Xn

X
′

n

]

= 0 u = 1, . . . en, n = 1 . . . φ (2.59b)

are identical to the ones of the optimization form of generalized coordination problem (2.15).
There are also identical to the ones of the augmented Lagrangian in (2.28)–(2.29) of its modified
form with the additional slack global variable W .

As seen in (2.55), it appears that no variables of a player materializes in the problem of another,
so game theory problem (2.55)–(2.56) is a pure Nash game, or pure equilibrium problem.
Moreover, KKT conditions (2.59) show that the Jacobian of game theory problem (2.55)–(2.56)
is symmetric. Thus, according to the principle of symmetry as described in [65], (2.55)–(2.56)
is a game theory problem equivalent to coordination problem (2.15). Note that the equivalence
does not require any additional conditions than already mentioned, i.e. convexity. Similarly
to optimization problems, a Nash game may have a unique or multiple solutions. Such as for
convexity of an optimization problem, the easiest way is to check its Jacobian matrix. If it is
positive definite, then the game is strongly monotone, and thereby it has a unique solution.
Yet, KKT conditions (2.59) are met if and only if extended-value functions ϕ̃n are strongly
convex, so if objective functions ϕn and optimization sets Xn are strongly convex.

Being equivalent to the game theory problem exposed in Subsection 2.3.1, agents of the gen-
eralized coordination problem in Subsection 2.2.1 have the incentive to be truthful, i.e. to act
based on its “true” preferences and not to deviate from them. However, this is obtained by the
presence of a bilateral exchange operator as a trusted third party. This trusted party could for
example take the form of a centralized trading platform. As mentioned above, the computation
carried by this operator can be entrusted at agents’ level in the form of a sealed and certified
software or hardware. Note that new cryptography technologies such as blockchain could be in-
vestigated in the future. Even though solutions of the coordination problem could be obtained
with a decentralized algorithm, incentive compatibility can solely be reached by a distributed
framework. So in absence of a trusted third party, rationality and non-anticipativity hypothe-
ses must hold for the decentralized algorithm proposed in Subsection 2.2.2 to lead towards the
same equilibrium as game theory problem (2.55)–(2.56).

2.4 Synthesis

This chapter first described the context and defined the perimeter in which this thesis applies.
The complexity of electricity markets and the power systems on which they operate present
many challenges which are still strong open research fields. Power systems are complex on sev-
eral levels. First, the steady state AC model of the power system is non-linear, due to complex
power flows, and has quadratic inequality constraints, due to line flow limits. The resulting
optimal power flow problem is then strongly non-convex and NP-hard. Even with simplified
models of the network, the scale of real power systems with its dozens of thousands of nodes
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such as, for example, in Europe. To overcome this structural complexity, control and operation
of electrical networks has been assigned to multiple entities dividing the network not only in
geographical areas, such as countries or regions, but also in power levels, leading to transmission
or distribution system operators. This cut provided smaller, more manageable networks but
lead to coordination issues between system operators. Another structural complexity has been
increasing in the past years with the constant growth of distributed energy resources, such as
renewables, and of pro-active consumers, the so called prosumers. The goal of this thesis is to
study how new market frameworks, peer-to-peer markets in particular, can be adapted to the
specific constraints of electricity markets.

In a second step, electricity markets and power systems have been assimilated to the more
general framework which are coordination problems. A generalized formulation of coordination
problems have been proposed in this chapter. In this formulation, agents are supposed to pos-
sess its own set of objective and constraints. Then, links between the variables of these agents
are seen as bilateral exchanges of information. To respectively correspond to potential or flux
information, bilateral exchanges can either be modeled as a consensus of the two variables, i.e.
equal in value and sign, or as a reciprocity, i.e. equal in value but with opposite signs. Associ-
ated to this, the chapter developed an algorithm which can solve the generalized coordination
problem in a decentralized manner. Based on consensus ADMM, the negotiation algorithm
handles the problem in an iterative way such that agents concurrently aim at minimizing not
only their own objective function but also additional terms compelling them to reach consensus
and reciprocity with others. As presented in a practical example, this coordination framework
allows to solve large electrical networks with multiple areas or system operators by coordi-
nating them. Moreover, applying bilateral exchanges into bilateral power trades, also called
peer-to-peer trades, allow to deal with energy markets in a decentralized way.

However, several issues are still at hand. Indeed, even though the approach proposed by the
generalized coordination problem allows to decompose the problem into simpler, less complex
ones, this may have been done at the price of an increasing algorithmic complexity with the
multiplication of coordinating variables. After a convergence analysis, Chapter 3 proposes
different techniques to improve the convergence rate of the negotiation algorithm. On top of
that, the practical examples presented in this chapter distinguished the issue of multiple area
optimal power flow and the one of decentralized energy markets. This chapter also showed that
a combination of both, to obtain a decentralized energy market aware of the power system’s
limits, is not straightforward. Chapter 4 details the two approaches proposed in this thesis
to reach such awareness. Finally, presence of stochastic behaviours such as renewable sources
requires not only an energy market but also a reserve capacity market. When handled in
a probabilistic way, the global chance constraint which determines the minimum amount of
reserves is strongly centralized. Thus the reserve capacity market can not directly be treated
in a decentralized way. Chapter 5 presents the approach proposed by this thesis to overcome
this obstacle.
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Computational properties and

improvements 3
After a complexity analysis of the general problem and the associated solving algorithm, this
chapter proposes multiple solutions to reduce the problem complexity or to improve the conver-
gence rate of the algorithm. Overall these improvements aim to improve peer-to-peer markets
and, thus in a larger way, of decentralized coordination problems applicability in real world
implementations.
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3.1 Introduction

Resource allocation in electricity markets is traditionally solved with a centralized clearing
mechanism, where agents participate in a centralized market. Due to the energy transition
[66], power systems are currently undergoing an important change of nature challenging the
efficiency of the centralized market organization. Increasing deployment of distributed energy
resources, prospects for increasing demand response and distributed storage (residential, electric
vehicles, etc.), as well as the rapid progress of sensing and control systems based on information
and communication technologies (ICT), enable a profound rethinking of electricity markets.
Firstly this growth applies to high-capacity renewable power plants and large storage units.
Such facilities are significant enough to be integrated into the operators port-folio and have a
significant individual impact on the grid. But beyond these large installations, each consumer
is in a position to potentially become a player on the electricity market, via domestic storage
or roof-mounted photovoltaic panels. The introduction of these small-sized agents with both
the ability to generate and consume energy, the so-called prosumers, pleads for a shift of the
electricity markets to a more consumer-centric framework. As of current practice, small-sized
prosumers are managed at retail level, since existing mechanisms, such as real time markets
for distributed energy sources (DERs) and demand response [67], require thresholds on agents’
size and often a strict dichotomy between consumers and producers. Extending these existing
mechanisms to small-sized prosumers is not an option, since the amount of communications
and data required can quickly become too large to be handled efficiently by a central agent.
In order to improve the robustness and performance of electricity networks, it is necessary to
involve these distributed actors as part of the management of the network [10]. Nevertheless,
this is extremely difficult in the paradigm of centralized electricity markets, as such mechanisms
cannot directly connect millions of players.

The aforementioned reasons justify the need for adapting electricity market designs to more
decentralized organizations. Decentralized electricity markets were first introduced by Wu and
Varaiya as coordinated multilateral transactions [68], now better known as peer-to-peer trades
when solely involving two parties. In this framework, each market participant directly negoti-
ates with a set of trading partners with the objective of minimizing their energy procurement
costs. In view of large scale applications, regulation and other economic arguments – such as
licensing and certification, data and employment regulation – are fundamental but still open
topics [69]. Depending on the overall objectives and potential regulation, alternative organiza-
tions may be considered. An attempt of categorizing some of the possible organization layouts
of decentralized electricity markets is proposed in [10], where additionally to a peer-to-peer
market, the authors identify two other market organizations. In the first one, prosumers are
connected to microgrids which can either be isolated or interconnected; while in the second
one, prosumers are organized in groups, namely energy communities, in which resources, not
necessarily geographically located close to each other, are managed in small local centralized
markets. Other recent literature proposes peer-to-peer energy-trading markets either to incen-
tivize prosumers to form virtual power plants [70] or for microgrid management [71]. Each
organization has been investigated independently and through different market mechanisms.
On one hand, peer-to-peer energy trading is proposed in the form of matching contracts [70],
consensus-based optimization [72], microgrid management [73] and control systems [74]. On
the other hand, community-based mechanisms are designed as control strategies [75], coalition
games [76] and distributed optimization [11].

As suggested in Chapter 2, decentralized electricity markets can be conceived as consensus-
based decentralized optimization of prosumers’ energy procurement on a communication graph.
As displayed in Figure 3.1, nodes of the graph represent market participants while edges are
placed to connect two agents who can trade with each other. From this point of view, one can
interpret a centralized market as a radial decentralized market (a). The market is cleared in a
decentralized fashion, where agents do not disclose their assets’ information but negotiate with
a central agent, i.e. market maker or operator, to minimize their energy costs. In the same
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thanks to product preference, allowing for a wealth of new business models. Nevertheless,
consumer-centric and, in particular, peer-to-peer markets require a very large amount of in-
formation to be exchanged, much greater than that required for a centralized market [79]. In
a real-time context, such exchanges run the risk of not having enough time to succeed if the
deadline is reached before the end of the negotiation process. In addition, information is po-
tentially expensive when it has to be exchanged rapidly in very large volumes. This implies
a risk of overloading existing infrastructures and the necessity to develop specific protocols
and channels [12]. These information costs – that are inherent to these markets – lead to the
question of their value within the clearing and the potential trade-offs if they are to be reduced.
Thus, the following stage of this chapter focuses on testing alternative stopping criterion al-
lowing agents to decide when to conclude negotiations with their partners rather than having
to pursue until every trades have reached agreement. Applied on peer-to-peer markets, this
algorithmic improvement potentially depletes the number of exchanged messages required to
obtain the optimal bilateral trades.

In consequence, the chapter proceeds as follows. First, Section 3.2 makes a complexity anal-
ysis of two consumer-centric markets, namely community-based and peer-to-peer. These two
market frameworks will be associated to different solving algorithms to evaluate whether the
use of consensus alternating direction method of multipliers (ADMM) in the previous chapter
was a relevant choice as suggested in the literature. The goal being to compare them without
being influenced on particularities of a given test case, Section 3.2 also introduces randomly
generated setups to avoid specific configurations. Based on the same setups, Section 3.3 tests
the resilience of the two consumer-centric market and their associated solving algorithms to
computation and communication delays. This section also tests the benefits of using asyn-
chronous communications in such conditions. Choosing the ADMM solving algorithm which
showed more reliable in the two first sections, Section 3.4 builds upon this and proposes al-
ternative stopping criteria and analyzes whether they allow to reduce the number of messages
required to solve peer-to-peer markets without endangering market’s power balance or optimal-
ity. Finally, Section 3.5 performs a sparsity analysis on peer-to-peer markets’ communication
graph before Section 3.6 concludes on the computation properties and proposed improvements
of consumer-centric and, especially, peer-to-peer markets.

3.2 Complexity analysis

The emphasis is placed on two alternative paradigms represented by a community-based mar-
ket and by a full peer-to-peer framework. In a Community-based Economic Dispatch (CED),
all prosumers communicate with a supervisory node that coordinates the process to optimal-
ity in a distributed manner [11]. In case of a Multi-Bilateral Economic Dispatch (MBED),
fully decentralized peer-to-peer trades among all participants are obtained without needing
third-party supervision [52]. Following [80], a third market structure, called Power Consen-
sus Multi-Bilateral Economic Dispatch (PCMBED), considers a full peer-to-peer negotiation
process handled in a distributed fashion by means of a virtual supervisory node.

Consequently, a computational analysis of these consumer-centric market structures is con-
ducted in this section using multiple-core simulations. First Subsection 3.2.1 describes for-
mulations and algorithms of the evaluated consumer-centric markets. After a description in
Subsection 3.2.2 on how test cases are generated, a convergence analysis is carried out in Sub-
section 3.2.3 to assess the trade-off between convergence speed and accuracy. Scaling properties
are investigated in Subsection 3.2.4 as a function of the number of prosumers involved, con-
sidering both computational and communication burden. Finally, Subsection 3.2.5 gathers
conclusions of this complexity analysis.

32



3.2.1 Evaluated market organisations

To make the consumer-centric market mechanisms comparable, for a given set of prosumers,
all three market structures are based on total cost minimization, where each prosumer is either
a consumer or a producer. All proposed structures aim at solving the economic dispatch
problem of a local community that is assumed to be autonomous (no interaction with the
system operator or grid services provided). In the case of a community-based market, a single
price system is considered where prosumers, supposed rational and non-strategic, do not express
individual preferences. In contrast in a peer-to-peer setup, the power balance on each trade
yields differentiated electricity prices.

Community-based market

Since focusing on the computational properties only, we adopt a simplified version of the dis-
tributed CED, proposed in [11]. Community Ω’s objective is to minimize the sum of the costs
cn of its prosumers n ∈ Ω. The problem can be formulated as

min
(pn)n∈Ω

∑

n∈Ω
cn(pn) (3.1a)

s.t.
∑

n∈Ω
pn = 0 (3.1b)

pmin
n ≤ pn ≤ pmax

n n ∈ Ω (3.1c)

where the power set-point pn of prosumer n (negative when consuming) range within a lower
pmin
n and an upper pmax

n boundary, and (3.1b) grants Ω’s power balance. Since the objective
function and power boundaries are separable among prosumers, the market is cleared by means
of a distributed optimization algorithm, i.e. [53]’s ADMM. A supervisory virtual prosumer, the
so-called community manager, coordinates the negotiation process as in an optimal exchange
problem. The solving iterative procedure is summarized by

pk+1
n = argmin

pn

(

fn(pn) + yk∆k +
ρ

2

∥
∥∆k − pkn + pn

∥
∥
2

2

)

n ∈ Ω (3.2a)

∆k+1 =
∑n

n=1
pk+1
n (3.2b)

yk+1 = yk + ρ∆k+1 (3.2c)

where ∆k represents the power balance residual constraint and yk the electricity price at it-
eration k, both being computed by the central prosumer. Note that ρ > 0 denotes ADMM’s
penalty factor. The penalty factor used in this section and the next is ρ = 1.

Decentralized peer-to-peer based market

The formulation of the decentralized peer-to-peer market extends (3.1), as the power set-points
pn of each prosumer n are defined as the sum of the power pnm bilaterally traded with a set of
trading partners m ∈ ωn. The MBED problem reads as

min
(pn,(pnm)m∈ωn )n∈Ω

∑

n∈Ω
fn(pn) +

∑

m∈ωn

γnmpnm (3.3a)

s.t. pnm + pmn = 0 n ∈ Ω, m ∈ ωj (3.3b)

pn =
∑

m∈ωn

pnm n ∈ Ω (3.3c)

pmin
n ≤ pn ≤ pmax

n n ∈ Ω (3.3d)
pnm ≥ 0 n ∈ Ωp, m ∈ ωj (3.3e)
pnm ≤ 0 n ∈ Ωc, m ∈ ωj (3.3f)
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where prosumers apply specific preferences on their trades with the use of product differen-
tiation coefficient γnm, as in [52]. However, it may be noted that the problem resulting of
(3.3a)–(3.3d) would be convex but not strictly convex. This comes from the fact that multiple
combinations of bilateral trades (pnm)m∈ωn

may be found to obtain the same power set-point
pn. In consequence, a strict convexification technique has to be found. The sign constraints
on power trades (3.3e)-(3.3f) serve this purpose as they force producers Ωp and consumers Ωc

respectively to only sell and buy energy. The downside of this is that it may shift the resulting
optimal solution if it involves arbitrage of one prosumer. The trading reciprocity constraint
(3.3b) imposes reciprocity of bilateral trades and allows for product differentiation, reflected
by the price of each and every trade.

A relaxed consensus and innovation (RCI) method can be used to solve the optimization prob-
lem under the assumption that the cost functions (cn) have a bijective gradient of inverse (c

′−1
n ).

Even if consensus and innovation (C+I) methods are slower to converge than direct methods,
they present lighter computation and a higher algorithmic flexibility. The iterative process, for
a producer, reads

yk+1
nm = yknm − βk

(
yknm − ykmn

)
− αk

(
pknm + pkmn

)
(3.4a)

µn
k+1 =

∣
∣µn

k + ηk
(
pkn − pmax

n

)∣
∣
+

(3.4b)

µn
k+1 =

∣
∣µn

k + ηk
(
pmin
n − pkn

)∣
∣
+

(3.4c)

gknm =
|pnm|+ δk

∑

l∈ωn
(|pnl|+ δk)

(3.4d)

pk+1
nm =

∣
∣
∣pknm + gknm

(

c
′−1
n

(
yk+1
nm − γnm − µn

k+1 + µn
k+1
)
− pkn

)∣
∣
∣

+

(3.4e)

where tuning parameters {αk, βk, ηk, δk} are persistent sequences. Variables yknm, µn
k and

µn
k are the dual variables of trading reciprocity constraints and power boundary constraints,

respectively. And variables gknm are asymptotically proportional factors. Operator | . |+ is
the positive part operator (to be replaced by the negative part for consumers). The RCI
implementation defines a fully decentralized negotiation process, where all calculations are
made locally by each prosumer. The persistent sequences used in this section and the next are
taken as defined in [52] and read

αk =
0.01

k0.01
βk =

0.1

k0.1
ηk = 0.005 δk = 1. (3.5)

Distributed peer-to-peer based market

A distributed implementation of (3.3) is formulated through the PCMBED, proposed in [80].
In this formulation, prosumers focus on reaching consensus on their local trades pnm by means
of a global variable znm. The RCI method (3.4) is adjusted as (here for a producer)

zk+1
nm =

(
pknm − pkmn

)
/2 (3.6a)

yk+1
nm = yknm − βk

(
yknm − ykmn

)
− αk

(
pknm − zk+1

nm

)
(3.6b)

µn
k+1 =

∣
∣µn

k + ηk
(
zk+1
n − pmax

n

)∣
∣
+

(3.6c)

µn
k+1 =

∣
∣µn

k + ηk
(
pmin
n − zk+1

n

)∣
∣
+

(3.6d)

gknm =
|pnm|+ δk

∑

l∈ωn
(|pnl|+ δk)

(3.6e)

pk+1
nm =

∣
∣
∣zk+1

nm + gknm

(

c
′−1
n

(
yk+1
nm − γnm − µn

k+1 + µn
k+1
)
− zk+1

n

)∣
∣
∣

+

(3.6f)
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The z and y updates (3.6a)-(3.6b) are operated by the central prosumer while the others are
computed locally by each prosumer. Implementing this PCMBED approach allows analyzing
the benefits of a distributed implementation of a peer-to-peer market compared to a decentral-
ized framework, as well as the impact of the intermediary z-update on the RCI process.

3.2.2 Test cases of reference

This subsection describes the simulation setups and computing framework to showcase the
algorithms’ properties.

Test case generation

To avoid possible dependencies on contingent combination of assets, simulations are performed
using a sample of ten randomly generated setups. The samples are drawn from uniform distri-
bution and in such way that extreme cases are avoided. In particular, the presence of flat utility
curves and preponderant prosumers are eluded. At first given the fixed number of prosumers,
the number of producers and consumers are sampled randomly such that there is at least a
third of each type. In addition, variations of prices and power set points range are controlled
in order to have a resilient tuning. The total consumption and production are sampled ran-
domly within a range that is proportional to the number of prosumers and split randomly into
the individual capacity of each prosumer. Following a common assumption in literature, the
utility curves are assumed quadratic while built according to a price range of flexibility that is
sampled randomly. The product differentiation in the peer-to-peer structures is here expressed
as a preference for local consumption, with trading costs that are proportional to the euclidean
distance between two prosumers calculated from their randomly generated positions on a two
dimensional map.

Computing infrastructure

Simulations are executed on a High-Performance Computing machine located at DTU of 2500
cores in total. For this work only 912 cores are accessible, divided in 38 nodes and connected by
10GB Ethernet cables. Each node is equipped with two Intel Xeon Processor 2650v4 (12 core,
2.20GHz) and 256 GB RAM and 480 GB-SSD disk. To study a more realistic application, we
assign each prosumer of the community to a core of the HPC and we design a communication
system through a message passing interface.

Using a parallel structure for the simulations allows to better describe prosumers’ actual com-
putational efforts as well as their interactions. By designing a message passing interface, com-
munication architectures are modeled to match the three different negotiation processes [81].
For instance, in the CED and PCMBED a master core takes care of the collective computations
and communications (master-to-prosumer and prosumer-to-master). On the other hand, for the
MBED approach all calculations are done by the market participants and the communications
are point-to-point. In section Subsection 3.2.3 and Subsection 3.2.4, synchronous communica-
tions are implemented through the message passing interface with blocking functions.

3.2.3 Convergence analysis

First, emphasis is placed on convergence properties. The fact that peer-to-peer markets reflect
individual preferences, contrary to community-based structure, impacts negotiation mecha-
nisms as well as computational efficiency. The convergence of each algorithm is benchmarked
against centralized implementation formulated as the optimization problems in (3.1) and (3.3).
Convergence for groups of 25 prosumers is considered to verify whether and how the investi-
gated algorithms achieve optimality. Simulations’ results are only expressed in terms of itera-
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(a) Focus on MBED and PCMBED evolution range (b) Focus on CED evolution range

Figure 3.2: Number of iterations required to reach different levels of accuracy for the proposed algo-
rithms

tions since synchronous communications are used for these simulations. The results discussed
in this section will not depend on the hardware employed.

The average number of iterations required for the different algorithms to reach a given opti-
mality gap is depicted in Figure 3.2 as well as the power residual used as a description of the
feasibility of the solution. Additionally, the surface represents the mean absolute error at each
optimality gap. Given the low complexity of the test case, a straightforward implementation
of the ADMM is used for the solution of the CED. Even with this approach, the CED reaches
small optimality gaps considerably faster than the peer-to-peer market frameworks. The use
of the z-update (3.6a) speeds up the initial convergence and decreases the power residual for
the PCMBED compared to the MBED. However, the PCMBED appears to be less efficient to
reach low optimality gaps. For all algorithms, the optimality gap and of the power residual
show similar patterns. This justifies for the rest of the section, that the optimality gap can
be used to describe both the convergence of the algorithm and the feasibility of the solution
found.

While the CED shows on average a linear convergence rate with a mean relative error of
maximum 16%, both algorithms for peer-to-peer negotiation display a change in the convergence
rate when the optimality gap is below 10−4. This behaviour is mainly caused by few simulations
for which the algorithms are much slower to reach small optimality gaps. Indeed, for the MBED
the maximum detected mean relative error for optimality gaps above 10−3 is below 25%, while
it increases to around 80% for optimality gaps below 10−4. The PCMBED shows a similar
behaviour with two simulations that push up the average number of iterations. However,
the mean relative error is consistently between 30% and 60% which implies a more constant
dependency of the convergence speed on the setup. The convergence patterns of the peer-to-
peer markets show that the tuning parameters are not able to cope with all setups.

3.2.4 Scaling analysis

Intuitively, prosumer-centric markets such as those described here will be challenged by increas-
ingly large numbers of participants. In this subsection, the ability of the proposed approaches
to scale up their negotiation mechanisms is analyzed by investigating the time complexity of the
implemented algorithms [82]. For this reason, each market framework is simulated on different
community sizes – from 25 to 300 prosumers. Overall, the expected theoretical scaling trends
can be well correlated with the simulations within the given range. By assigning each pro-
sumer to a parallel thread, the maximum number of prosumers is limited but communication
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processes are introduced in the performance assessment. Time complexity T a of an algorithm
a ∈ {CED, MBED, PCMBED} can be split as

T a(NΩ) = taalg(NΩ)t
a
str(NΩ). (3.7)

respectively depending on algorithmic times structural complexities. First, algorithmic com-
plexity taalg expresses the number of iterations required for the algorithm to converge. Thus,
this term depends only on the algorithm implemented (in this case ADMM or RCI) but not
on the structure of the implementation (distributed or decentralized). Second, structural com-
plexity tastr expresses the average time required to compute an iteration. It can be noted that
both algorithmic and structural complexities vary with the number of prosumers NΩ, i.e. the
size of the test case. For the investigated market frameworks, expressions of algorithmic and
structural complexities are proposed here as function of the number of prosumers (expressed
by means of operator ∼) and verified empirically.

Algorithmic complexity

As it is difficult to implement a comparable stopping criterion for different algorithms, the
number of iterations for which each algorithm is above a certain optimality gap while increasing
the number of prosumers is investigated and reported in Figure 3.3. While the CED and the
MBED have a low spread between the different optimality gaps, the PCMBED is found more
unstable when it comes to higher accuracy of the solution. Even if the benefit of a faster power
consensus seems to fade for the PCMBED as the size of the setup increases, a linear algorithmic
complexity can be extrapolated for all algorithms taalg ∼ O(NΩ) (R2 above 0.95).

Structural complexity

The algorithms’ structural complexity is assessed through the average time to complete an
iteration in a synchronous handling of the communication. As this analysis depends mostly on
the structure of the implementation, the results of the PCMBED can also be transferred to a
decentralized implementation as the MBED (i.e. without the z-update). The results, displayed
in Figure 3.4, report a linear trend for all algorithms (R2 between 0.97 and 0.995). However,
in order to transcend from the hardware employed for these simulations and to provide a more
general interpretation, a theoretical analysis of the structural complexity is carried out for each
algorithm.

(a) Focus on MBED and PCMBED evolution range (b) Focus on CED evolution range

Figure 3.3: Evolution of the number of iterations required to reach optimality gaps of 10−2, 10−3 and
10

−4 over the number of prosumers.
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Figure 3.4: Impact of scale on the average time per iteration

The structural complexity is split into computation time and communication time. Under the
assumption that the time to communicate a message of size S can be expressed through a linear
function ha

com(S), the structural complexity becomes

tastr = δacom(NΩ)h
a
com(S

a(NΩ)) + δacomp(NΩ)∆tcomp (3.8)

where δacom and δacomp are respectively the number of communications and computations needed
for algorithm a and ∆tcomp is the time it takes to complete one operation. In the distributed
structures, different complexity can apply for the central prosumers and for the market partic-
ipants. However, as synchronous communication are used, the maximum of the two defines the
general complexity. From the structure of the algorithms their complexity can be extrapolated,
as reported in Table 3.1. It is important to notice that for peer-to-peer algorithms, all prosumers
complexity (not the central prosumer in the case of the PCMBED) depend on the number of
trading partners Nωn

= | ωn | and not on the actual size NΩ of the setup. Even if in these
setups the trading partners are comparable to the total number of prosumers Nωn

∼ NΩ. Note
that one could reduce the algorithmic complexity by limiting the number of trading partners
per prosumer. Section 3.5 develops on this and points that cutting the number of partnerships
may degrade optimality when not done wisely.

A difference appears between the expected structural complexity of the PCMBED (quadratic)
and the empirical results (linear). However, when looking separately at the results for compu-
tation and communication time, respectively the average time that each participant takes to
compute the local optimization, in Figure 3.5a, and to transmit its messages, in Figure 3.5b, the
expected results are verified. The computation time of the central prosumer in the PCMBED

Table 3.1: Structural complexity of the different algorithms.

Model CED MBED PCMBED

Prosumer type Central Other Any Central Other

δacom(NΩ) O(NΩ) O(1) O(Nωn
) O(NΩ) O(1)

Sa(NΩ) O(1) O(1) O(1) O(Nωn
) O(Nωn

)

δacomp(NΩ) O(NΩ) O(1) O(Nωn
) O(NΩNωn

) O(Nωn
)

tastr O(NΩ) O(Nωn
) O(NΩNωn

)
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Figure 3.5: Evolution of average computation (a) and communication (b) time over the number of
prosumers.

shows the expected quadratic increase, but as the values are smaller compared to the commu-
nication ones (even in the specific feature of the HPC implementation) the quadratic trend is
not perceived in the total complexity. Only some small differences are noted: for instance, the
synchronous communications give the exact same trend for all prosumers (both central and
non) in the CED and the PCMBED. The communication time is only slightly dependent on
the size of the data transmitted (ha

com(S) ∼ O(1)) thanks to the communication hardware used
for the HPC. However, this might not be the case in practice, where different communication
infrastructures can lead to more variable time to transmit messages of different sizes.

These results show the importance of the characteristics used for the implemented architecture.
An efficient handling of the central prosumer in the distributed cases reduces the structural
complexity, as it does for the CED and PCMBED in the exposed simulations. As for the
communication framework, the distributed structure for instance could benefit from an efficient
handling of large communications, while decentralized algorithms require more sparse and
reliable communication framework to operate efficiently.

3.2.5 Conclusions

With the new usages of electricity, the classical centralized pool market is bound to be re-
placed by more consumer-centric market structures which can be named prosumer markets.
Before reaching real world implementations, these prosumer markets have to overcome many
challenges. Scalability can be pointed as the main issue due to the constant increase of dis-
tributed energy resources, local storage units, energy management systems, etc. This section
assessed computational properties of three prosumer market configurations. The first consid-
ered a community-based framework solved in a distributed manner with ADMM. The two
last considered a peer-to-peer market structure either solved in a decentralized or a distributed
manner based on RCI. Their computation and communication complexities have been analyzed
theoretically and verified via simulations by means of parallel programming.

As expected, the community-based approach was found faster and more scalable than the two
peer-to-peer configurations. Yet, peer-to-peer markets are the only framework allowing for
product differentiation. So improving them may be of interest such as to open for new business
opportunities. Notably, the complexity analysis of this section identified sparsity of the com-
munication matrix, defining prosumers’ trading partners, as a way to improve scalability. This
point is further developed later in Section 3.5. Moreover, this section highlighted that ADMM
seemed more adequate to clear prosumer markets than the RCI. Before finally discrediting the
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RCI in favor of ADMM, there is still a need to assess their robustness to computation and com-
munication delays. Indeed, the complexity analysis showed that the messages exchanged over
the communication infrastructure grows with the number of prosumers. Added with a diversity
of computation units among prosumers, communication and computation delays are therefore
very likely to occur. In consequence, the prosumer market clearings must be resilient to them.
This aspect is studied in Section 3.3. Another way to improve scalability of prosumer markets
would be to explore on better stopping criteria which are currently global. As a matter of fact,
the relevance of considering them at a global level is questionable, in particular for peer-to-peer
markets. To this end, Section 3.4 studies the use of several alternative stopping criteria in the
case of a peer-to-peer market.

3.3 Resilience to asynchronous communications

As presented in Subsection 3.2.4, both computation and communication complexity impact on
the average time per iteration. When dealing with actual applications, the assumption of syn-
chronous communications implies that the time of each iteration is dictated by the slowest pro-
sumer. Computation delays appear in case of non performing hardware or when sub-problems’
optimization are hard to solve, while communication delays are caused by bandwidth limits or
internet traffic. The non-negligible likelihood of having significant delays justifies the need of an
analysis on how the algorithms investigated in Section 3.2 behave in case of asynchronous com-
munications. First, Subsection 3.3.1 describes the methodology used for the analysis. While
Subsection 3.3.2 presents simulation results in a second step, Subsection 3.3.3 concludes on the
resilience to asynchronous communications.

3.3.1 Methodology

For the sake of simplicity, both computation and communication delays are modeled in order
to control their disparities. Carried on the same test cases and HPC machine as described in
Subsection 3.2.2, computation heterogeneity is accounted for by assigning different computation
time to each prosumer. Computation time of the central prosumer is fixed to τC = 0.01
seconds and computation time of each other prosumer is sampled with the following uniform
distribution τi = τC+U(− ǫ

2
,− ǫ

2
). Using the uniform distribution models large diversity of local

problem complexities and computation unit performances. The amplitude of ǫ ∈ [0, τC ] varies to
investigate the resilience of the algorithms to an increasing diversity. The modelling of different
hardware computing power is assumed by forcing the computation time of each prosumer with
a sleep command. Note that can also model different complexity of the prosumers’ routine.
For this reason, for each simulation the sampled computation time is kept fixed, representing
systematic delays in the negotiation mechanism.

Communication delays are modeled as random variables X̃, following an exponential distribu-
tion λe−λx, as proposed in [83]. Since accounting for internet traffic and bandwidth limitations,
a new delay is sampled for each communication instance. By employing non blocking com-
munication instances in the message passing interface, the prosumers can proceed with their
optimization routine even if their communication is not finalized. To investigate the robustness
towards different sizes of communication delays (simulating weaker and stronger networks), the
expected value of the exponential distribution varies E[X̃] = 1

λ
∈ [0, τC ].

In case of distributed or decentralized systems affected by computation or communication de-
lays, each prosumer can receive multiple information (e.g. of price and power set point) at each
iteration. In order to manage these multiple updates, three different strategies are commonly
implemented in literature. A first attempt considers only the most recent information received.
As not only the time stamp are communicated but also the number of iteration of the sending
prosumer, it is possible to identify the last updated variables. However, this strategy does not
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exploit all the available information. In order to take into account all updates, each prosumer
can average all the information received at each iteration. Finally, a compromise between these
two approaches by implementing an exponential weighed average over the information received
is also investigated. In that case, the most recent values have a larger impact, but all the
information is taken into consideration.

3.3.2 Simulation results

When simulating how the investigated algorithms respond to asynchronous updates, the peer-
to-peer approaches are found to be unstable. Both communication and computation delays
lead to oscillations of the negotiation process, especially when the bilateral trades have to
be finely settled. Further investigation on efficient consensus algorithms in perspective with
existing literature (e.g. [84]) are required to increase resilience of the RCI algorithm towards
asynchronous behaviours. On the other hand, the CED is found very resilient to both compu-
tation and communication delays. The distributed structure of ADMM together with a lower
number of variables allow the negotiation process to converge to optimality also when exposed
to a highly asynchronous functioning.

The performance of the CED are reported in Figure 3.6, presented as the relative time increase
to reach convergence due to random computation and communication delays of amplitude given

(a) Last received information (b) Mean of received information

(c) Exponential average of received information

Figure 3.6: Relative time increases of the three tested strategies to reach a 0.01% optimality gap for
different levels of computation and communication delays.
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in the axis. They show that the negotiation mechanisms are generally robust towards asyn-
chronous information updates. The time to reach 0.01% of optimality gap is at maximum
doubled if compared to a synchronous system. On one hand the heterogeneity of computation
time impacts the algorithmic performance linearly and with small increases, on the other hand
communication delays have a more complicated influence. Depending on the strategy used
to handle multiple information, the results show that in some cases higher expected values
of communication delays speed up convergence. This behaviour addresses a well-known issue
of ADMM exchange algorithm for non-orthogonal multi-block problems [85]. In case of com-
munication delays, the impact of unstable equilibrium is smoothed as prosumers change their
optimal set-points at different rates.

Over all simulations, the strategy that leads to the lowest relative time increase (average 41.1%
and standard deviation of 19.3%) is to consider only the most recent information. Using the
average of the information received only slows down the process (average time increase of 55.6%
and standard deviation of 19.5%). Employing an exponential weighted average on the multiple
updates leads to a behaviour in between the two other strategies (average time increase of 50.6%
and standard deviation of 19.9%). However, in case of less smooth convergence, this strategy
can allow for a good trade-off between filtering the noise of oscillating phenomena and speed of
convergence. Further work on an adaptive tuning of the exponential weights employed would
be needed to achieve robust performances in case of more complicated negotiation mechanisms.

3.3.3 Conclusion

Distributed or decentralized negotiation algorithms of future consumer-centric markets will in-
crease the number of exchanges. As a consequence, the traffic over communication network
infrastructures would intensify which may in turn produce more communication delays. As ex-
posed in Section 3.2, the increasing number of prosumers participating in such markets would
not only challenge communication networks, but also prosumers’ local computation units. Pro-
sumers would deal with local optimization problems of variable complexities which would, thus,
induce computation delays. This section conducted a first order analysis on the resilience of
the proposed negotiation algorithms when facing communication and computation delays with
asynchronous communications. It has been shown that the RCI algorithm is much less robust
to such delays than the consensus ADMM based solving algorithm. This confirms the use of
the ADMM based negotiation algorithm proposed in Chapter 2 to solve generalized coordina-
tion problems such as peer-to-peer electricity markets. Note that before its final publication
in [2], [80] took Sections 3.2 and 3.3’s conclusions, published in [1], into account and changes
from RCI to consensus ADMM for its negotiation algorithm. From this point forward only the
ADMM based algorithm will remain in the rest of the manuscript.

More than testifying to ADMM’s resilience to communication and computation delays, the
analysis of this section identified that asynchronous communications could also speed up the
convergence in some cases. This observation opens the opportunity to study the conditions and
improvement which can be brought to the decentralized peer-to-peer negotiation mechanism
presented in Chapter 2 and largely use in the rest of the manuscript. Even though solely
performed on a simplified communication network model for now, the use of more realistic delay
characteristics or models would notably help show whether asynchronous communications will
benefit the development of consumer-centric markets such as peer-to-peer markets.

3.4 Alternative stopping criteria

Consumer-centric markets require much more intensive information exchanges then classical
centralized markets [79]. Yet Section 3.2 showed that would come at the disadvantage of
involving larger communication delays for the peer-to-peer market structure in particular. In
a real-time context, such exchanges would run the risk of not having enough time to succeed
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if the deadline is reached before the end of the negotiation process. Moreover, information is
potentially expensive when it has to be exchanged rapidly in very large volumes. This implies
a risk of overloading existing infrastructures and the necessity to develop specific protocols
and channels [12]. These information costs – that are inherent to consumer-centric markets
– lead to the question of their value within the clearing and the potential trade-offs if they
are to be reduced. In the peer-to-peer market structure prosumers exchange information with
each trading partners which puts more pressure on the communication infrastructure than
the community-based structure. Moreover, as pointed in Section 3.1, the peer-to-peer market
structure is able to capture the form of most consumer-centric market layouts solely by adapting
its communication matrix. For both these reasons, this section as well as the rest of the
manuscript focuses on the peer-to-peer market structure.

Within a peer-to-peer energy market, information exchanges make it possible to solve a con-
strained optimization problem. The objective is then to achieve maximum social welfare for
the people involved while respecting the operating constraints of the electricity grid. On one
hand, the costs associated with the exchange of information compete with the satisfaction of
the various market prosumers. It is up to each prosumer to decide if he can have a profit from
looking for a better trade. On the other hand, a compromise with the network’s operating con-
straints appears. Indeed, exchanging too little information means that the constraints of the
optimization problem may not be precisely respected. When the decided dispatch is enforced,
this will imply non-compliance with grid codes, voltage values, overloads [86] or imbalances that
will have to be compensated. This leads to increased stress on the network, a deterioration in
energy quality and additional operating costs. In the subsequent stages of this section, only
the power equilibrium constraint will be considered. What is the evolution of the imbalance of
a peer-to-peer market according to the number of messages exchanged? How does the cost of
communications evolve when trying to reduce the balancing cost for the system operator? Is
it possible to propose alternative implementations reducing this number of messages?

To answer these questions the rest of the section is organized as follows. First, 3.4.1 recalls the
formulation of the studied peer-to-peer market problem and describes the associated decentral-
ized negotiation mechanism, based on consensus ADMM as recommended by the conclusions
of Sections 3.2 and 3.3. Note that both are at the base of the rest of the manuscript and
be largely reused. In a second step 3.4.2 presents the different stopping criteria that are pro-
posed here in the objective of reducing the number of messages exchanged to reach consensus.
Subsection 3.4.3 describes the case studies, similar to the ones of Subsection 3.2.2, on which
the Monte Carlo simulations of the peer-to-peer market are performed. The evolution of the
imbalance according to the different stopping criteria will then be presented. Finally, Subsec-
tion 3.4.4 gathers conclusions and perspectives for future work on the matter of mitigation of
communication costs.

3.4.1 Standard peer-to-peer market design

A peer-to-peer market is based on a community of prosumers with flexible consumption or
production. The scope here being centred on exchange mechanisms, a deterministic version
of the market clearing is addressed. A single market time unit is considered. However, as
depicted in Chapter 2, it may readily be extended to multiple time units with temporally
binding constraints. As it is classically done, prosumers are supposed rational in the sense
of [24], i.e. always objectively taking the most beneficial decisions, and non-strategic, i.e. not
anticipating actions and reactions of other prosumers. In a first step, the peer-to-peer market
design is recalled. The associated negotiation mechanism based on [53]’s consensus ADMM.

Problem formulation

The goal of any market-clearing, formed by a set Ω of NΩ participants, is to match demand
and supply while minimizing the total cost. The total cost sums all individual cost functions
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as in (3.9a). To minimize its cost function cn, prosumer n is able to optimize its traded volume
pn within a flexibility range defined by a lower pmin

n and an upper pmax
n bound, as expressed in

(3.9d). Note that a traded amount pn is taken positive if prosumer n is selling electricity, and
negative when buying.

However a peer-to-peer market is intrinsically based on multi-bilateral trades. This fundamental
mechanism calls for a split of these net powers into a set of multiple bilateral trades pnm in the
manner of [72]. Every possible bilateral power trades within the peer-to-peer community can
be gathered in matrix P. Elements pnm of this matrix which are not imposed to zero reflect
prosumers m belonging to the trading partnership set ωn of prosumer n. The total traded
volume of a prosumer n is then obtained by pn =

∑

m∈ωn
pnm as in (3.9c). For a bilateral

contract to be valid both partners need to agree on both a quantity and a price. Trade
reciprocity on quantities is enforced by (3.9b), ensuring that pnm = −pmn. Price consensus is
implicitly reached through the negotiation mechanism as detailed below. One can note that
(3.9b) implies that P is skew-symmetric, so pnn = 0.

The final peer-to-peer market problem can be formulated as

Standard peer-to-peer electricity market

min
P,pn∈Ω

∑

n∈Ω
cn(pn) (3.9a)

s.t. P = −PT [Λ] (3.9b)

pn =
∑

m∈ωn

pnm [µn] n ∈ Ω (3.9c)

pmin
n 6 pn 6 pmax

n [νmin
n , νmax

n ] n ∈ Ω. (3.9d)

Note that dual variable matrix Λ = (λnm) gathers all trading prices while µn represents pro-
sumer n’s perceived price. Such as introduced in Subsection 3.2.1, this formulation allows for
an additional specific cost on each bilateral trade to express preferences as in [72] or to allocate
grid-related costs as in [2] and Chapter 4.

Negotiation mechanism

As developed in [2], peer-to-peer market (3.9) can be solved in a decentralized manner based on
the consensus ADMM of [53], which seems appropriated according to [1,87]. The decentralized
negotiation mechanism associated to (3.9) reads at each iteration k

P k+1
n = argmin

Pn

cn(pn) +
∑

m∈ωn
σρ
(

pnm,
pknm−pkmn

2
, λk

nm

)

s.t. pn =
∑

m∈ωn
pnm

pmin
n 6 pn 6 pmax

n

(3.10a)

λk+1
nm = λk

nm − ρ
(
pk+1
nm + pk+1

mn

)
/2 (3.10b)

where penalty factor ρ > 0 and Pn = (pnm)m∈ωn
groups trade proposals of prosumer n. Aug-

mented Lagrangian terms gathered in

σρ : (x, y, z) ∈ R
3 7→ z (y − x) +

ρ

2
(y − z)2 (3.11)

represents an prosumer’s overcosts due to the lack of consensus with its partners. It aims at
economically encouraging an prosumer to reach power consensus with its partners. According
to [53], convergence of negotiation mechanism (3.10) is ensured as long as cost functions cn are
closed, proper and convex. Note that in (3.10b) prices are updated with a symmetric corrective
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term. Hence, prices are identical on both ends of a trade when λ0
nm = λ0

mn. The global stopping
criteria associated to (3.10) are such as

∑

n∈Ω
ǫp,k+1
n 6 ǫp,tol2 and

∑

n∈Ω
ǫd,k+1
n 6 ǫd,tol2 (3.12)

with, respectively, primal and dual local residuals

ǫp,k+1
n =

∑

m∈ωn

(
pk+1
nm + pk+1

mn

)2
(3.13a)

ǫd,k+1
n =

∑

m∈ωn

(
pk+1
nm − pknm

)2
. (3.13b)

Parameters ǫp,tol and ǫd,tol denotes primal and dual global feasibility tolerances, respectively.

Overall, the negotiation mechanism, described in Algorithm 2, occurs in the following steps. At
first prosumers solve their local optimization (3.10a). Then, they send the new trade proposals
(
pk+1
nm

)

m∈ωn
to their respective partners. Once all counter proposals

(
pk+1
mn

)

m∈ωn
are received,

prosumers can update trading prices
(
λk+1
nm

)

m∈ωn
with (3.10b) and local residuals

(
ǫpn, ǫ

d
n

)k+1

with (3.13). Finally, they broadcast local residuals to all such that they can test global stopping
criterion (3.12)1. This process is repeated until convergence.

Algorithm 2: Standard peer-to-peer negotiation mechanism

Data: ρ, ǫp,tol, ǫd,tol

1 for n ∈ Ω do in parallel

Data: cn, p
min
n , pmax

n , ωn

2 Initialize: pnm = pmn = λnm = 0, ∀m ∈ ωn;
3 do

4 Pn ←− (3.10a); /* Update local proposals */

5 foreach m ∈ ωn do

6 Send pnm to and receive pmn from prosumer m;
7 λnm ←− (3.10b); /* Update trading price */

8 end

9

(
ǫpn, ǫ

d
n

)
←− (3.13); /* Update local residuals */

10 Broadcast
(
ǫpn, ǫ

d
n

)
and receive

(
ǫpm, ǫ

d
m

)

m∈Ω\{n}
;

11 while (3.12) not True;
12 end

3.4.2 Proposed alternative stopping criteria

The resolution of an electricity market in a peer-to-peer approach achieves a global optimum
in a fully decentralized manner while respecting the physical constraints that are inherent in
an electricity network [2] – the power balance will be the only constraint considered here.
In this sense, this is therefore a relevant alternative to centralized or community electricity
markets. Indeed, the latter require the participation of a coordinating prosumer even when they
are resolved in a decentralized manner. However, peer-to-peer resolution inherently presents
computational difficulties that were presented in [1] and Section 3.2. In particular the present
section focuses on the very important number of messages that have to be exchanged between

1Besides costly communication, this could rise a privacy concern which is beyond the scope of this study.
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peers. This issue is made even more critical as the number of messages Nmessage increases with
the square of the number of participants NΩ:

Nmessage = O
(
N2

Ω

)
(3.14)

whereas a classical pool-based market only requires the number of message to increase linearly
with the number of prosumers. This characteristic is likely to be blocking for a real and
operational deployment of peer-to-peer markets.

In order to reduce the number of messages exchanged when resolving a peer-to-peer market,
this section implements and compares several alternative stop criteria regarding their commu-
nication needs.

• stopping criteria per prosumer: each prosumer can unilaterally decide to stop trying
to improve his exchanges with his peers. The iteration when this decision occurs is
denoted kn. Then the powers that prosumer n will exchange with prosumers m ∈ ωn

no longer evolve and remain frozen at (pnm)
kn
m∈ωn

. The other prosumers continue their
negotiations independently until each one of them meets their individual stopping criteria.
This individual stopping criteria is based on the share of prosumer n into the global primal
and dual residues rn and sn. A prosumer shall stop trading as soon as the primal and
dual residues which concern his trades fall below a tolerance:

ǫp,k+1
n 6 ǫp,tol

pros

2
and ǫd,k+1

n 6 ǫd,tol
pros

2
(3.15)

• stopping criteria per trade: each prosumer can unilaterally decide to stop trying to im-
prove a particular trade with a peer while carrying on the negotiation with his other
peers. The iteration when this decision occurs is denoted knm. Then the power prosumer
n will exchange with prosumer m no longer evolves and remains frozen at pknm

nm . The pro-
sumer will continue to negotiate with his other peers until each one of his trades meets
their individual stopping criteria. The global algorithm is stopped when all trades of all
prosumers are finished. This stopping criteria per trade only considers the share of trade
pnm into the global primal and dual residues rn and sn. A prosumer shall stop trading as
soon as the primal and dual residues which concern his trades fall below a tolerance:

(
pk+1
nm + pk+1

mn

)2
6 ǫp,tol

trade

2
(3.16a)

(
pk+1
nm − pknm

)2
6 ǫd,tol

trade

2
(3.16b)

For each one of these two criteria, thresholds ǫppros, ǫ
d
pros, ǫ

p
trade and ǫdtrade can either be defined

in an absolute or a relative manner. In the latter case, they can be fixed as a fraction of the
prosumer’s nominal power:

ǫp,d,tol
pros,trade = a ·max

(
|pmin

n |, |p
max
n |

)
(3.17)

It should be observed that these alternative stopping criteria no longer provide evidence of the
convergence of the peer-to-peer negotiation algorithm towards a global optimum. Although the
objective functions are unchanged as well as the decomposition scheme of the global problem,
no demonstration of the convergence of a peer-to-peer market when some exchanges are frozen
before the end of the global algorithm has been found in the literature so far. In addition,
exchanges between peers are assumed to be synchronous in this case: each exchange of the
kth iteration takes place before all peers move on to the k + 1th iteration. Although this
assumption seems unrealistic in view of Section 3.3 and the potential large deployment of
peer-to-peer markets. Indeed, more realistic communication models, such as of [88], may be
required as power system performances may be affected by them in the case of asynchronous
communications [89].
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However, the stopping criterion was considered here as an exogenous constraint, for example set
by regulation to maximize the system’s efficiency. In an individual approach, where each pro-
sumer would bear the communication costs for each message he sends, the problem could then
be formulated as a trade-off between the communication cost and the expected improvement
of a trade. Such a resolution would require anticipating prosumers’ decisions and, therefore,
assuming that prosumers would behave strategically.

3.5 Sparsity analysis of the communication matrix

One of the pointed advantage of the peer-to-peer market structure is that it encompasses
most consumer-centric market. This is made possible thanks to the flexibility enabled by the
communication matrix. An important point is that the layout of the communication matrix
does not affect the optimality of the economic dispatch in a peer-to-peer market as simple as
the one of Section 3.4. Notably, Subsection 3.5.1 shows that the same peer-to-peer negotiation
mechanism allows to reach the same optimal economic dispatch for different market layouts.
In a second step, Subsection 3.5.2 demonstrates that this observation does not hold as soon as
the individual cost terms are added, such as product differentiation coefficients γnm in MBED’s
objective function (3.3a). Indeed, these additional specific cost terms change the nature of
the market and, hence, stir the market equilibrium as it would no longer be comparable to
the classical centralized market. In spite of that Subsection 3.5.2 also shows that peer-to-peer
market’s flexibility may also allow for a compromise between the sparsity of its communication
matrix and the convergence speed, so the number of exchanged messages.

3.5.1 Changes without optimality alterations

After a brief description of the test cases, this subsection analyzes the influence of different
organization layouts on market equilibrium.

An attempt of categorizing some of the possible organization layouts of decentralized electricity
markets is proposed in [10], where additionally to a peer-to-peer market, the authors identify
two other market organizations. In the first one, prosumers are connected to microgrids which
can either be isolated or interconnected; while in the second one, prosumers are organized in
groups, namely energy communities, in which resources, not necessarily geographically located
close to each other, are managed in small centralized markets.

Test case description

In an attempt to categorize prosumer market organizations, [10] identified two structures in
addition to peer-to-peer markets. In the first one, prosumers are connected to microgrids which
can either be isolated or interconnected. In the second one, prosumers are organized in groups,
namely energy communities, in which resources, not necessarily geographically located close to
each other, are managed in small centralized markets. As highlighted in Section 3.1, these two
additional structures can be grouped in one family which could be named community-based.
It is here proposed to compare both peer-to-peer and community-based market structures to
the classical centralized organization.

Yet, two remarks could be made. First, one could note that the centralized organization could
be solved with Subsection 3.4.1’s peer-to-peer market model and the associated negotiation
mechanism. As illustrated in Figure 3.11a, the prosumers would be grouped around an ad-
ditional prosumer playing the role of the market operator. This market operator would be a
non-profit entity without production or consumption capabilities. In other words, the market
operator’s cost function power bounds would be all set to zero. Thus, the market operator
would simply gather prosumers power injections, in the form of single bilateral trades, and
verify the overall power balance. Second, community-based layouts can also be modeled by
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(3.9) Lagrangian with respect to power set-points pn and bilateral trades pnm provides the two
following Karush–Kuhn–Tucker stationarity conditions

µn =
∂c̃n
∂pn

n ∈ Ω (3.18a)

µn =λnm n ∈ Ω, m ∈ ωn (3.18b)

where c̃n denotes cost function cn’s extended-value function, in the sense of [54], defined on
power boundary range (3.9d). In this situation trading prices λnm are uniform and equal to
the centralized market price λPool, as (3.18a) would be replaced by λPool = ∂c̃n

∂pn
for all n ∈ Ω.

The communication graph is therefore expected to have no effect on the global social welfare.
This fact is confirmed by the simulations as reported in Table 3.3. Centralized, peer-to-peer
and community-based organizations reach the same social welfare optimum for a price of 15.22
c$/kW. The three structures reach the same level of total consumption and production of 1.44
MW confirming that, overall, prosumers obtain the same set-points. It can also be observed
that the total power exchanged, i.e.

∑
|P|/2, is doubled for centralized and community-based

structures due to the presence of a central entity, inducing a double counting of trades. This
translates the presence of managers whose trades are also encompassed in the sum. The same
remark can be done for the centralized organization for the centralized market structure, so
with single community.

3.5.2 Changes with optimality losses

Now, increasing per trade individual cost terms are introduced to analyze their influence on
both market outcomes and negotiations’ convergence speed. Afterwards, a Monte Carlo analysis
outlines the influence of communication matrix sparsity on the same performance indicators.

With per trade individual cost terms

Whenever per trade individual cost terms are not null, different market outcomes occur de-
pending on the market layout. For the sake of this study, per trade individual cost terms are
solely considered outside of communities, hence only on inter-community exchanges in Fig-
ure 3.11b and for all trades in Figure 3.11c. Consequently, the centralized structure is not
affected by these cost terms as it behaves as a single community. As expected, in Table 3.4a

Table 3.4: Simulation results for 1 c$/kW per trade individual cost term (with ǫp,tol
= ǫd,tol

= 10
−4)

Centralized Peer-to-peer Community-based

Social Welfare ($) 125 102 105
No. of iterations 82 80 195
Penalty factor ρ 5.10−4 0.01 5.10−4

Avg. trading price (c$/kW) 15.22 15.58 15.28
Cons./prod. power (kW) 1440 1152 1192

Tot. exchanged power (kW) 2880 1152 2880
(a) Overview

Balance of trade Interior price

Community 1 -908 kW 16.50 c$/kW
Community 2 590 kW 14.50 c$/kW
Community 3 319 kW 14.50 c$/kW

(b) Focus on communities’ power balance
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the social welfare of the peer-to-peer approach is negatively impacted by the use of a 1 c$/kW
trade-based transaction cost. The effect is largest on prices and, hence, power set-points. It
can be noted that, since the transaction costs are uniform, all participants are equally affected
in the peer-to-peer structure. The community-based simulation also shows a decrease of social
welfare.

In presence of per trade individual cost terms, such as in (3.3), Karush–Kuhn–Tucker station-
arity conditions (3.18) would become

µn =
∂c̃n
∂pn

n ∈ Ω (3.19a)

µn =λnm − γnm n ∈ Ω, m ∈ ωn (3.19b)

with γnm the individual cost term on the bilateral trade from prosumer n to prosumer m. It can
be observed in (3.19) that a difference of price appears at the community manager level between
the inside, where γnm = 0, and the outside of a community, where γnm 6= 0. Table 3.4b shows
that communities with a positive balance of trade perceive a lower price within the community,
while communities with a negative balance are penalized with a higher interior price as they
need to import power. By increasing the value of trade-based transaction costs, one can observe
that these differences follows the same trend. In fact, the average trading price grows linearly
in both peer-to-peer and community-based layouts. The social welfare is less impacted in the
community-based layout than in the peer-to-peer one, as already pictured in Table 3.4. In
addition, convergence speed of the negotiation mechanism appeared to linearly increase with
transaction costs’ intensity for both peer-to-peer and community-based approaches. However,
in the community-based case the slope is rather flat compared to the peer-to-peer. A broader
study should be conducted to evaluate in more comprehensively the influence of transaction
costs on the negotiation mechanism.

Random sparsity

To evaluate the influence of communication structures on market outcomes, a Monte Carlo
analysis is carried out on the peer-to-peer structure for different levels of sparsity of the com-
munication graph. Starting from a fully connected peer-to-peer market, i.e. each prosumer is
connected to all others, the communication graph is progressively altered by randomly deleting
links. The Monte Carlo analysis, over 1000 cases for each 5% step of sparsity, allows to de-
scribe how peer-to-peer market outcomes evolve as communication links get sparser. Obtained
in the presence of a unitary trade-based transaction cost, Figure 3.12a outlines means (lines)
and standard deviations (shadows) of social welfare and average trade prices. The sparser
communications are, the more likely it is for market outcomes to be affected and with a larger
variety. This correlates with the increased possibility of prosumers to be unsatisfied, e.g. when
a consumer is solely partnered to other consumers.

As it is harder for prosumers to match their requirements, negotiations’ convergence speed
can be significantly slowed down, as shown in Figure 3.12b. But even though increasing the
number of iterations, Figure 3.12c shows that the increase of sparsity would have a benefit
in the reduction of the overall number of messages to exchange to reach consensus and, thus,
to reduce traffic on the communication network. Comparing Figures 3.12a and 3.12b, it is
possible to notice that there exist situations where the trade-off between convergence speed
and the amount of messages can be found without a too great impact on the social welfare.
Hence, the development of methods to retrieve communication layouts that optimize this trade-
off becomes fundamental in order to enhance the feasibility in real world implementations of
decentralized electricity markets. Notably, it can be seen that good trade-offs can be found
between 40% and 55% sparsity. In future works, one could use matching algorithms or machine
learning techniques to find beneficial trade-offs.
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3.6 Synthesis

The goal of this chapter was to challenge the suggestion made in Section 2.2 to solve peer-
to-peer electricity markets based on consensus ADMM. To obtain these results the chapter
first conducted a complexity analysis on two consumer-centric organization, namely peer-to-
peer and community-based markets, each with a different associated algorithm, respectively
relaxed consensus and innovation and ADMM. Testing the two different algorithms allowed to
show that the ADMM based version was more efficient for consumer-centric market clearing.
By means of a message passing interface these algorithms have been deployed on HPC which
enabled investigation of their computation and communication complexities of the two market
organizations. As expected, the community-based distributed approach was found faster and
more scalable. However, peer-to-peer markets are the only framework allowing for product
differentiation such as through preferences. This first analysis has then been deepened by
studying the resilience of these algorithms to computation and communication delays. This
study was essential mainly for communication delays as future consumer-centric markets will
increase the number of exchanges and, thus, increase those delays due to a more intense traffic
on communication network infrastructures. The other one being unable to handle such delays,
this analysis finally confirmed the use of ADMM based algorithms for consumer-centric markets.

Validating the choice of algorithm made in Chapter 2 for generalized decentralized coordination
problems which comprehend consumer-centric markets, the chapter then proposed improve-
ments to make it more scalable and, hence, more practical for real world implementations.
Being a challenge in particular for peer-to-peer markets, the first improvement aimed at re-
ducing the number of messages required to reach consensus of peer-to-peer market clearing.
By testing alternative, maybe more meaningful, stopping criteria, the chapter showed it was
possible to greatly reduce the number of exchanged messages while preserving the same respect
of the overall power balance and thus the same energy quality. Solely testing this on the peer-
to-peer market structure does not mean the same can not be observed for the community-based
market structure. Actually, peer-to-peer markets are shown to be able to take the form of most
consumer-centric market structures. For example, a peer-to-peer market could take the form
of a community-based structure simply by grouping prosumers in clusters and add non-profit
entities to operate them. This change of the communication graph would then result in com-
munities gathered around community managers which could be interconnected or stay isolated.
In fact, the design of this communication graph has been identified as another possible way
to improve peer-to-peer market’s negotiation algorithm. Notably, modifying sparsity of the
communication matrix allowed to reduce the number of exchanged messages as it reduced the
problem’s structural complexity.

This chapter also identified several further works to improve further peer-to-peer markets scal-
ability for real world implementations. Firstly, the alternative stopping criteria approach could
be enhanced by accounting for more strategic prosumers. However, considering strategic pro-
sumers would also arise the issue of privacy. Indeed, strategic attitudes may push prosumers to
reverse engineer their partners’ characteristics, thus violating their wish of privacy. Secondly,
using matching algorithms or machine learning techniques may help exploit sparsity of the com-
munication graph to find beneficial trade-offs between low optimality gaps, convergence rate
and the number of messages exchanged to reach consensus. Finally, prosumer markets may also
be able to take advantage from asynchronous communications by using more comprehensive
communication network models.
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Decentralized coordination

problems in shared infrastructures 4
Decentralized coordination problems such as the peer-to-peer markets may require a physical
infrastructure to actually convey and operate the agreed bilateral trades. This chapter focuses
on the case of electricity peer-to-peer markets and, hence, their interaction with the system
operator of the electrical network on which they are connected. Two methods are highlighted in
this chapter to include the system operator in the loop of bilateral trades’ negotiation. First, the
system operator could provide network charges a priori to stir agents towards a solution more
acceptable for the infrastructure. Second infrastructures with critical constraints, the system
operator would have to take a more active role by regularly updating network charges directly
during the negotiation process.
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4.1 Introduction

As introduced in Chapter 1, recent changes in the way electrical energy is generated and
consumed make us rethink our approach to power systems operation and, in particular, how
electricity markets are organized. Electricity markets are expected to go from producer-centric
to consumer-centric [8, 9], while they will most likely include a peer-to-peer and community-
based component [10]. It may be noted, as illustrated in Chapter 1, that community-based
markets can also be seen exclusively with the multiple bilateral trades of the peer-to-peer
market. In consequence, this chapter and the rest of the manuscript solely focuses on the peer-
to-peer market structure. The decentralized and independent nature of peer-to-peer markets
may naturally lead to power injections violating grid constraints. Thus, there would be a
discrepancy between their market outcomes and the dispatch a system operator would obtain
when accounting for grid-related and operational constraints. In parallel, while it appears
normal to socialize grid-related costs in the current wholesale-retail market structure, a future
with bilateral trades and preferences may allow to rethink the way we attribute such costs. Our
objective here is hence to describe a consumer-centric market allowing to allocate grid-related
costs in an exogenous manner. Grid related costs may refer to network investment cost as well
as operating costs such as maintenance, power losses, etc.

The various attribution mechanisms are to impact trades and subsequent network usage. The
first approach to coordinated multi-lateral1 electricity trades was already proposed more than
20 years ago [68]. The original aim was to allow for the separation of economics and reliability of
system operation, as is the case for the current European pool-based electricity markets. The
framework developed in [68] involved an iterative process where all prosumers first propose
their trades followed by the system operator estimating whether the requested trades respect
operational constraints. This framework was enhanced in [90] with a game-theoretical analysis
of the obtained solutions. In both cases, the authors pointed at the fact that charges for network
usage were not considered.

A second approach may consist in relying on optimal power flow models, allowing to consider
network constraints in an endogenous manner (see e.g. [36]). While those are traditionally
solved in a centralized fashion, many decomposition techniques were proposed to solve them in
a distributed manner. Based on approximate Newton directions, [55] proposed a decentralized
method to solve optimal power flow control for power systems with overlapping areas. [91]
followed by [77] respectively proposed distributed state estimation and multi-agent coordina-
tion in micro-grids based on consensus and innovation approach. Concurrently [92] used the
alternating direction method of multipliers (ADMM), developed by [53], to solve optimal power
flow in a distributed manner. [93] did the same with another consensus-based mechanism and
applied it to energy management of cooperative micro-grids with peer-to-peer energy sharing
in [94]. A comparison of different distributed and decentralized algorithms was finally made
in [47]. More recently, works like that of [73] proposed to account for network limits in the pres-
ence of distributed renewable resources using decentralized consensus on a blockchain. Even
though those operational problems are increasingly considered in decentralized manner, these
do not comprise a market construct nor they account for how grid-related usage costs would
be attributed.

In network-constrained economic dispatch problems, e.g. [95], nodal prices classically encom-
passes both energy generation and congestion-related costs. In such case, grid-related costs can
not be dissociated from the final energy price. In contrast, the bilateral contracts considered
here solely include the energy generation cost. They will be supplemented by network charges
recovering the grid-related costs. This chapter proposes two ways to manage such network
charges. The system operator can first estimate network charges exogenously, based on past
data for example, so that prosumers know them a priori and can anticipate their actions.

1Note that bilateral trades are a specific case of multi-lateral trades involving only two prosumers. A
multi-lateral trade can theoretically involve a very high number of prosumers.
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Contrary to a classical economic dispatch, this transparency on network charges enables agents
to anticipate on what it will cost them to trade on the network. In this exogenous approach,
network charges can not only allow to recover all network costs but also other costs e.g. op-
erational, taxes and policy-related costs. However network constraints would not be enforced
directly but rather accommodated through these network charges. The resulting peer-to-peer
market formulation comprises a simple tool, transparent to market participants, for system and
market operators to limit potential detrimental effects that might be induced by peer-to-peer
markets on power networks. Second, at the image of classical optimal power flows, network
charges could also be estimated endogenously, so at the same time as prosumers proceed their
trades negotiation. This method is particularly adapted to more critical or weak power systems
for which network constraints must absolutely be guaranteed.

This chapter is structured as follows. Firstly, the peer-to-peer electricity market comprising
network constraints is recalled in Section 4.2. To compare both exogenous and endogenous per-
formances, the section also presents a standard test case specifically developed for joint peer-to-
peer markets and optimal power flow, so for grid-aware consumer-centric markets. Exogenous
network charges are then developed in Section 4.3 while Section 4.4 focuses on endogenous
network charges. Note that in both cases the specific market design and, in the exogenous
case, cost allocations are first described. Then simulation results of each approach is exposed.
Finally, Section 4.5 syntheses the findings of this chapter.

4.2 Peer-to-peer electricity market with network

constraints

A peer-to-peer market is based on a community of prosumers with flexible consumption or pro-
duction. As it is classically done in the literature, prosumers are supposed rational as in [24], i.e.
always objectively taking the most beneficial decisions, and non-strategic, i.e. not anticipating
actions and reactions of other prosumers. In this chapter, emphasis is eventually placed on a
deterministic clearing mechanism for a single market time unit. It may readily be extended
to multiple time units with temporally binding constraints, such as explained in Chapter 2.
First, the electricity peer-to-peer market formulation with grid constraints is exposed in Sub-
section 4.2.1 to recall the context of this chapter. Then, Subsection 4.2.2 describes the standard
test case on which exogenous and endogenous network charges allocation methods are tested.

4.2.1 Problem Formulation

This chapter aims at proposing an alternative way to treat the following endogenous peer-to-
peer electricity market

min
P,pn∈Ω,θi∈N

∑

n∈Ω

cn (pn) (4.1a)

s.t. P = −PT (4.1b)

pn =
∑

m∈ωn

pnm n ∈ Ω (4.1c)

pmin
n 6 pn 6 pmax

n n ∈ Ω (4.1d)
sij = | (Y)i,j (θj − θi)| 6 ℓmax

ij (i, j) ∈ L (4.1e)
∑

n∈Ni

pn =
∑

(i,j)∈L
sij i ∈ N (4.1f)

which straightly includes transmission network constraints, as in [95], in the context of a peer-
to-peer market. In transmission networks, the admittance of electrical lines L, noted (Y)i,j for
the line connecting node i and j, are classically assumed to be driven by their inductance in
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presence of pure sinusoidal voltage and current. This assumption leads to real power flows sij
proportional to the difference of voltage angles, noted θi at node i, between the two ends of
the line as in (4.1e). To avoid any damage to transmission lines their flows are bounded by
thermal limits ℓmax

ij related to the heat they can dissipate. Moreover, a power balance must be
kept (4.1f) at each nodes N of the grid between line flows and power injections of prosumers
connected to it, so in Ni at node i.

The goal of a peer-to-peer community Ω is to minimize the total cost which sums all individual
cost functions as in (4.1a). To minimize its cost function cn, prosumer n is able to optimize its
volume traded pn within a flexibility range defined by a lower pmin

n and an upper pmax
n bound,

as expressed in (4.1d). Traded amount pn is taken positive if prosumer n is selling electricity,
and negative when buying. Considering multi-bilateral trades calls for a split of net powers, in
the manner of [52], into a set of multiple bilateral trades pnm. Every possible bilateral power
trades within the community can be condensed in a matrix P such that

P =





p11 · · · p1|Ω|
...

. . .
...

p|Ω|1 · · · p|Ω||Ω|



 (4.2)

where pnm is necessarily equal to zero if prosumer m is not in prosumer n’s trading partnership
set ωn. Net powers are then obtained by pn =

∑

m∈ωn
pnm as in (4.1c). Note that the definition

of partnership set ωn only inform on prosumer n’s possible trades but does not enforce partic-
ipation. As outlined in (4.1b), P is skew-symmetric to insure power balance of each trade, so
pnn = 0. This allows to potentially individualize prices per trade.

It is essential to notice that contrary to [95] dual variables of nodal power balances (4.1f), noted
ηi, do not include the energy generation price but only prices derived from network operation.
Note that congestion rights originate from (4.1e)’s dual variable. In this case, energy generation
prices are given by the dual variables for trade reciprocity (4.1b), denoted Λ = (λnm).

Directly coupling the peer-to-peer market to grid constraints as in (4.1) implies an intense
involvement of the system operator at each step of the solving algorithm. To level this an
exogenous approach of the network limitations could be used. Network constraints (4.1e)–(4.1f)
can be condensed in a regularization function ζ̃DC, equal to 0 if they are respected and +∞ if
they are violated. It can be noted that in this case ζ̃DC depends on the real power injections
P = (pn)n∈Ω. Then, problem (4.1) can be written as the following endogenous peer-to-peer
electricity market regularized with DC power flows which reads

DC regularized peer-to-peer electricity market

min
P=(pn)n∈Ω,P

∑

n∈Ω

cn(pn) + ζ̃DC(P ) (4.3a)

s.t. P = −PT (4.3b)

pn =
∑

m∈ωn

pnm n ∈ Ω (4.3c)

pmin
n 6 pn 6 pmax

n n ∈ Ω. (4.3d)

Note that ‘regularized peer-to-peer market’ denotes the generalized form of (4.3) with any
regularization function ζ̃.

4.2.2 Improved standard test case

To evaluate market responses flexible prosumers need to be defined. In addition, grid charac-
teristics are needed to test feasibility of power commitments. Some test cases exist for peer-
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Table 4.1: Prosumers’ characteristics of peer-to-peer New England test case (with pn > 0 when pro-
ducing and < 0 when consuming)

Prosumer Bus an (e/MW2) bn (e/MW) pmin
n (MW) pmax

n (MW) qmin
n (MVar) qmax

n (MVar)

1 1 0.067 64 −146.4 −9.76 −44.2 −44.2
2 3 0.047 79 −483 −32.2 −2.4 −2.4
3 4 0.047 71 −750 −50 −184 −184

4 7 0.053 62 −350.7 −23.38 −84 −84

5 8 0.082 65 −783 −52.2 −176.6 −176.6

6 9 0.052 83 −9.8 −0.65 66.6 66.6
7 12 0.087 63 −12.8 −0.853 −88 −88

8 15 0.057 81 −480 −32 −153 −153

9 16 0.050 73 −493.5 −32.9 −32.3 −32.3
10 18 0.052 69 −237 −15.8 −30 −30

11 20 0.071 62 −1020 −68 −103 −103

12 21 0.064 79 −411 −27.4 −115 −115

13 23 0.057 60 −371.3 −24.75 −84.6 −84.6
14 24 0.082 80 −462.9 −30.86 92.2 92.2
15 25 0.069 78 −336 −22.4 −47.2 −47.2

16 26 0.069 70 −208.5 −13.9 −17 −17

17 27 0.086 62 −421.5 −28.1 −75.5 −75.5
18 28 0.054 70 −309 −20.6 −27.6 −27.6
19 29 0.078 66 −425.3 −28.35 −26.9 −26.9
20 31 0.081 70 −13.8 −0.92 −4.6 −4.6

21 39 0.059 71 −1656 −110.4 −250 −250

22 30 0.089 18 0 1040 140 400

23 31 0.067 21 0 646 −100 300

24 32 0.055 37 0 725 150 300

25 33 0.082 25 0 652 0 250

26 34 0.088 17 0 508 0 167

27 35 0.076 38 0 687 −100 300

28 36 0.084 28 0 580 0 240

29 37 0.077 36 0 564 0 250

30 38 0.051 38 0 865 −150 300

31 39 0.087 19 0 1100 −100 300

4.3.1 Market design

The exogenous terms would aim not only at allocating congestion-related costs but also costs of
maintenance and modernization of power lines, taxes, and policies such as e.g. renewable sup-
port schemes. Preference prices as introduced in [52], recalled in Subsection 2.1.2, seems a good
candidate for this purpose. Thus, regularization function ζ̃DC evaluating network constraints
can be replaced by the cost allocation function defined as

γ(P) =
∑

n∈Ω

[

γ0
n +

∑

m∈ωn

γnmpnm

]

(4.5)

where parameter γnm is the network charge associated to power trade pnm for the given time
step. Constant terms γ0

n, which do not affect the minimization outcome, allow to reflect costs
that are independent of the power traded, such as power line investment and maintenance.
Network charges γnm, detailed in Subsection 4.3.2, would then account for congestion-related
costs and taxes. Function γ is separable among participants, and will be integrated in their
objective function as it will be further discussed in Subsection 4.3.2. Note that γ also represents
the amount of money collected by the system operator from community Ω for its use of the
power system.

Exogenous peer-to-peer electricity market reformulation

In peer-to-peer electricity market (4.3) regularized with cost allocation function (4.5), reci-
procity constraint (4.3b) is the only barrier to fully distribute the problem. To overcome this
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an additional slack variable W can be considered. Variable W, which can contribute to reach
consensus, aims at being the image of all possible trades P. For this, reciprocity constraint
(4.3b) is replaced by power consensus constraint (4.6b) leading to the deterministic, single time
step, exogenous peer-to-peer electricity market

Exogenous peer-to-peer electricity market

min
P=(pn)n∈Ω,P,W

∑

n∈Ω

[

cn(pn) + γ0
n +

∑

m∈ωn

γnmpnm

]

(4.6a)

s.t.
(
W −W

T
)
/2 = P (4.6b)

pn =
∑

m∈ωn

pnm n ∈ Ω (4.6c)

pmin
n 6 pn 6 pmax

n n ∈ Ω (4.6d)
pnm > 0 n ∈ Ωg (4.6e)
pnm 6 0 n ∈ Ωc (4.6f)

pmin
n 6 pnm 6 pmax

n n ∈ Ωp. (4.6g)

In other words, prosumer n keeps the possibility to opt-out of the market, i.e. with outcome
(pnm)m = 0, if its power boundaries allow it.

It can be noted that problem (4.6a)–(4.6d) is convex, but not strictly convex. Indeed if pa-
rameters γnm were to be uniform overall trades, there would be a flat minima as the objective
function would only be sensible to power set-points pn which could be obtained by several
combinations of prosumer n’s bilateral trades Pn = (pnm)m∈ωn

. In this situation prosumers can
buy a large amount of energy at a low price from one prosumer to sell it back at a higher price
to another. This possibility of arbitraging can be proscribed by limiting the possible amounts
traded. Generators, for which pmin

n > 0 and grouped in Ωg, are forbidden to buy power in
(4.6e). On the other hand consumers, for which pmax

n 6 0 and grouped in Ωc, are forbidden to
sell power in (4.6f). However, prosumers, gathered in Ωp, must still be able to either buy or
sell power since they are such that pmin

n < 0 < pmax
n . Power trades of prosumers are bounded

by their power boundaries as in (4.6g).

The augmented Lagrangian of (4.6) is such that

Lρ(P,P,W,Λ,M) =
∑

n∈Ω
Ln,ρ(pn, Pn,W,Λn, µn) (4.7a)

with W = (wnm)n,m, Λ = (λnm)n,m and M = (µn)n∈Ω. Local augmented Lagrangians read

Ln,ρ(pn, Pn,W,Λn, µn) = c̃n (pn) + µn

(∑

m∈ωn

pnm − pn

)

+ γ0
n +

∑

m∈ωn

[

γnmpnm + λnm ((wnm − wmn)/2− pnm)

+ (ρ/2) ((wnm − wmn)/2− pnm)
2
]

(4.7b)

where ρ > 0 is the penalty factor, Pn = (pnm)m∈ωn
and Λn = (λnm)m∈ωn

. Function c̃n is the
extended-value of cn, in the sense of [53], with a domain defined by (4.6c)–(4.6g). Karush—
Kuhn—Tucker (KKT) stationarity conditions of (4.7) allows to obtain equalities

µn =

{
∂c̃n
∂pn

λnm − γnm m ∈ ωn

, n ∈ Ω (4.8)
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Note that the perceived price µn, which is the dual variable of constraint (4.6c), links prosumer
n’s energy cost ∂c̃n

∂pn
to trading prices (λnm)m∈ωn

and network charges (γnm)m∈ωn
.

The KKT conditions (4.8) of the exogenous peer-to-peer electricity market have to be compared
to the ones obtained for endogenous problem (4.1). Yet, KKT optimality conditions of (4.1)
can be written

µn =

{
∂c̃n
∂pn

λnm − ηi∈Ωn m ∈ ωn

, n ∈ Ω (4.9)

where ηi∈Ωn denotes the dual variable of nodal balance constraint (4.1f) associated to the node i
on which prosumer n is connected which is stored in singleton set Ωn. If one had complete prior
knowledge of the market, they could solve the endogenous peer-to-peer economic dispatch (4.1)
and deduce the optimal nodal energy prices, namely γnm = ηi∈Ωn . However, in doing so they
would only be able to recover their costs of congestion but neither taxes nor other operation
costs as proposed in this paper.

In a centralized energy market as exposed in Subsection 2.1.1, consensus constraint (4.6b)
is replaced by power balance constraint

∑

n∈Ω pn = 0 and constraints (4.6c)–(4.6g) are non-
existent. Hence, KKT stationarity conditions of the pool market give

∂c̃n
∂pn

+ λPM = 0 (4.10)

where dual variable λPM of the power balance constraint represents the pool market energy
price. As both (4.6) and the pool market would be made of the same prosumers, one could
readily notice that (4.6) without network charges, so with all γnm = 0, leads to a uniform
trading price equal to the pool market price λPM. The system operator does not intervene
in solving (4.6) as it only provides network charges γnm a priori. Hence, network charges are
provided in a transparent manner before negotiations such that prosumers can anticipate on
the over costs brought by the use of the power system.

Specific decentralized exogenous peer-to-peer electricity market algorithm

As developed in [2]’s appendix, a decentralized procedure based on the consensus ADMM
of [53] can be used to solve (4.6). This decentralized method solves global problem (4.6)
and, hence, leads to a competitive equilibrium which efficiency strongly depends on the chosen
network charges. According to [87] ADMM seems well adapted for negotiation mechanisms
in smart grids. Several extensions and convergence rate improvements have been proposed
in [96–99]. Given the focus of this chapter is not on scalability a straightforward implementation
of consensus ADMM is used.

The final decentralized exogenous negotiation mechanism reads

(pn, Pn)
k+1 = argmin

pn,Pn

cn(pn) + γ0
n +

∑

m∈ωn

[

γnmpnm + σρ
(

pnm,
pknm−pkmn

2
, λk

nm

)]

s.t. pn =
∑

m∈ωn
pnm

pmin
n 6 pn 6 pmax

n

pnm > 0 if n ∈ Ωg

pnm 6 0 if n ∈ Ωc

pmin
n 6 pnm 6 pmax

n if n ∈ Ωp

(4.11a)

λk+1
nm = λk

nm − ρ
(
pk+1
nm + pk+1

mn

)
/2 (4.11b)

where disagreement cost function σρ is given by

σρ : (x, y, z) ∈ R
3 7→ z (y − x) +

ρ

2
(y − z)2 (4.12)
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problem (4.6) and this specific algorithm are directly in line with the generalized coordination
problem proposed in Section 2.2 since it corresponds to the one time step practical example of
Subsection 2.2.3.

Privacy issues

This type of decentralized negotiation mechanism is believed to require solely local character-
istics. However, a deeper analysis based on inverse problem theory [100] should be conducted
to verify that exchanges of power proposals does not jeopardize this privacy. As illustrated
in [101–103], privacy issues go beyond than the sole topic of multi-bilateral trades but also
affect smart grids in general. Interestingly, the proposed negotiation mechanism limits the
amount of transmitted information as prosumers only send their trade proposal to their direct
partners and their local residuals. In this context it would be interesting to use a secured
mechanism, as does [73] for prices updates. In addition, game theory studies on bounded ratio-
nality, as in [104,105], still hold but might need some adaptations. As initiated in Section 2.3,
a further game theoretical analysis may also determine the impacts of strategic behaviors on
the exogenous peer-to-peer market.

4.3.2 Exogenous operation cost allocation

When the goal is to obtain a peer-to-peer market with allocation of grid-related costs it is
possible to use network charges as in (4.5). Contrary to preference prices chosen by prosumers,
parameters γnm are provided by the system operator a priori when used as network charges. As
mentioned in Section 4.1, remember that, in this section, a cost allocation policy refers to the
way costs are divided between peer-to-peer market participants. The proposed cost allocation
policies will define how network charges are estimated. They will eventually be pondered by
a coefficient named unit fee to allow a level of slackness for the system operator to reach cost
recovery. Another objective of network charges may be to reduce congestion risks. In other
words, it should allow the system operator to incite prosumers to behave in a beneficial way for
the power system. This property is important because the outcome of (4.6) does not necessarily
satisfy network constraints (4.1e)–(4.1f), as shown later in Subsection 4.3.3.

Finally, when an incident occurs on the electric network security dispositions are automated.
However, the market as defined initially is not intrinsically considering this deteriorated mode.
Partnership sets ωn could be dynamically adapted in case of congestion. But this would require
to duplicate the number of signals sent by the system operator to prosumers. In addition,
prosumers would have to manage different routines. A simpler way to influence prosumers
is to apply new unit fees. This way, network charges offer an indirect mechanism to handle
deteriorated modes. Thus, network charges can push prosumers to shift from their usual
partners to others unaffected by the malfunctions while keeping the same routine. At the limit,
this operating mode of cost allocation policies enables market islanding. This corresponds to a
security market procedure with the least grid stress while waiting for repairment.

After explicitly expressing the amount of money collected by the system operator, three cost
allocation policies are proposed.

Total Fees

The money paid (resp. received) by prosumer n for buying from (resp. selling to) prosumer
m is given by the perceived price µn = λnm − γnm, as shown in (4.8). Network charges
represent exogenous costs. Thus, when prosumer n consumes its γnm are negative which leads
to perceived prices µn higher than trading prices λnm. When generating perceived prices are
lower than trading prices since parameters γnm would be positive. The total money paid or
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received by a prosumer n ∈ Ω, for real power bilateral trades per time step, is expressed by

λExo
n (Pn) =

∑

m∈ωn

λnmpnm −
(

γ0
n +

∑

m∈ωn

γnmpnm

)

︸ ︷︷ ︸

=γExo
n (Pn)

(4.15)

where γExo
n (Pn) is the part reserved to the system operator.

From the system operator’s point of view, the total amount of money collected through network
charges is simply given by γExo

SO (P) =
∑

n∈Ω γExo
n (Pn). As mentioned previously, the focus is

put only on real power trades fees and not reactive power injection’s. This money can be used to
cover operation expenses – such as maintenance, power losses, power injection compensations,
etc. – as well as investment cost when considering multiple time steps.

Unique Cost Allocation Policy

The way to allocate costs is to share them equally between community members. At the image
of Paris’ one-way trip public transportation ticket, no discrimination is made between trades.
Because of the universality of this policy, prosumers in recurrently congested areas might not
be spurred to behave in a responsible manner. Misbehavior of a few prosumers may penalize
the rest of the community. If network charges are such that both ends of a trade are equally
responsible, they can be written as

γuniq
nm = ±

uuniq

2
, ∀(n,m) ∈ Ω× ωn, (4.16)

where the sign of γuniq
nm is such that γuniq

nm pnm > 0, so > 0 for producers and 6 0 for consumers.
Unique unit fee uuniq is expressed in e/MWh in the case of an hourly time step.

Electrical Distance Cost Allocation Policy

To be more precise in how costs are allocated it is possible to use network charges proportional to
the electrical distance between prosumers. As for cab travels, this cost allocation policy would
incite prosumers to trade with their closest electrical partners. Such policy would reflect that
long electric distances are costlier to operate due to power losses for example. However, power
losses can not directly be considered as they are quadratic, which can not be superposed. When
both ends of a trade equally share responsibility and the previous sign convention is followed,
network charges become

γdist
nm = ±

udistdnm

2
, ∀(n,m) ∈ Ω× ωn, (4.17)

where dnm is the electrical distance between prosumer n and prosumer m. Distance unit fee
udist is expressed in e/MWh/distance unit if the same time step is used.

The definition of an electrical distance is a crucial issue for this cost allocation policy. [106] rec-
ommends two electrical distances, initially developed to allow a better vulnerability assessment
through topological visualization of an electrical structure. It is possible to either consider

1. the Thevenin Impedance Distance, where each line is weighed by the norm of its Thevenin
impedance after which a shortest path algorithm is performed to obtain the Thevenin
electrical distance between two distant nodes, or

2. the Power Transfer Distance, where the absolute value of Power Transfer Distribution
Factors induced by a unitary trade are summed.
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towards self-consumption. In this sense, the zonal cost allocation policy allows to economically
isolate an area. However, its efficiency strongly depends on zones’ design.

A possible way to obtain the network charges is to sum zonal network fees of zones crossed
by each trade. As mentioned previously, the electrical path is not unique which could lead to
multiple lists of crossed zones. To select only one of them, the shortest electrical path criterion,
as defined above with the Thevenin electrical distance, can be taken. Then, chosen crossed
zones would reflect the most stressed one by a trade. For illustrative simplicity, in this section
the mechanism is simplified by considering a uniform zonal unit fee. This way, the problem
of how zonal unit fees are designed between zones is limited. When costs are equally shared
on both ends of a trade and the sign convention is conserved, uniform zonal network charges
become

γzone
nm = ±

uzoneNzone
nm

2
, ∀(n,m) ∈ Ω× ωn, (4.20)

where Nzone
nm corresponds to the number of crossed zone for trade pnm. Zonal unit fee uzone is

expressed in e/MWh.

Both electrical distance and zonal cost allocation policies depend on grid characteristics, sup-
posed time independent. Their unit fees can be adapted to grid’s status (e.g. between day
and night). As any exogenous approach the proposed allocation policies may not ensure effi-
ciency of the peer-to-peer market, as pointed in [95] in the case of transmission rights. Even
though local marginal prices seem effective, they may be largely rejected for their opacity by
peer-to-peer market participants anxious for transparency. To define the unit fees, as well as
zones, the system operator can periodically, e.g. yearly, update unit fees based on the revenue
adequacy and the congestion occurrence rate of the last period. This type of historical data
analysis is a common practice. For example the French transmission operator, RTE, publishes2

its transmission tariffs (or TURPE for Tarif d’Utilisation du Réseau Public d’Electricité) based
on this type of analysis. More details on this method can be found in the “Study on tariff
design for distribution systems”3 prepared for the European Commission. Alternatively, zones
can follow administrative delimitation such as states. Note that other allocation policies have
recently been proposed such as in [109].

4.3.3 Simulation results

Not affecting market outcomes, constant terms γ0
n are set to zero. However, cost allocation

policies will exert differently on the trade. For example, let consider the trade between node
16’s consumer (middle left) and node 39’s producer (middle right) of Figure 4.1. Since the
test case is based on a meshed network the power transfer distance is used. Note that in such
case unit fee udist is expressed in e/MWh. The power transfer electrical distance between node
16 and 39 is 7.3, without dimension. While Thevenin impedance distance’s path, passing by
nodes {16, 17, 18, 3, 2, 1, 39}, crosses two zones. This gives a ratio 7.3 between the electrical
distance and uniform network charges, and a ratio of 2 in the case of zonal network charges.

Free Market

Free market refers to the peer-to-peer market without network charges. In the peer-to-peer New
England test case, the free market leads to an electricity price of 57.2 e/MWh which is uniform
as exposed in Subsection 4.3.1. Iterative process (4.11) converges in 9.5 seconds in MATLAB
to primal and dual residuals below 10−4 when ρ = 1. Independently from the power system, it
is important to study interactions between prosumers. Looking at how trades are distributed

2https://clients.rte-france.com/lang/an/clients_producteurs/services_clients/tarif.jsp
3https://ec.europa.eu/energy/sites/ener/files/documents/20150313%20Tariff%20report%

20fina_revREF-E.PDF
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timality compared to the free market without network limitations. Distance-based network
charges rapidly degrades the social welfare since low unit fees suffice to impact market out-
comes, as observed in Figures 4.5b and 4.7. Remember that the proposed network charges
encompass more than just congestion-related costs. Hence, exogenous peer-to-peer market
(4.6) can neither be compared to the endogenous peer-to-peer economic dispatch (4.1) nor
to [95]. If network charges were including only congestion-related costs, one with complete
prior knowledge of the market could choose them optimally as suggested by the KKT optimal-
ity conditions given in Subsection 4.3.1. Since no distributed solution approach exists, (4.1)
is handled with a centralized interior-point solver. In comparison to the classical economic
dispatch, the proposed method based on network charges brings transparency and is simple to
implement in peer-to-peer markets. However, this may be done at the cost of technical and
economical drawbacks as respectively pointed in Figures 4.7 and 4.8. This result reinforces
the interest of developing a distributed approach solving (4.1) similarly to [90], which would
require more involvement from the system operator.

4.3.4 Conclusions on exogenous network charges

Peer-to-peer markets are considered as a likely evolution of the power systems driven by dis-
tributed energy resources and ICT development. In this section a peer-to-peer electricity market
including network charges has been considered. Network charges, provided a priori, have been
used as incentives to account for grid-related costs in a simple and transparent way. This
mechanism incites market participants to respect power system’s limits, rather than enforcing
them. Tested for three incentive frameworks, on a novel test case based on the IEEE 39-bus
test system, it has been shown the ability of this mechanism to limit the stress put on the
physical grid by the market. Network charges also allow the system operator to collect money
from market participants for their use of the grid in the aim of reaching cost recovery. On the
down side, the approach may lead to inefficient or unfeasible solutions when network charges
are not chosen wisely.

This exogenous approach is a candidate for a future implementation of peer-to-peer markets
with low involvement of the system operator. In addition, the development of network charges
adapted to distribution networks, so considering reactive powers, would provide a more generic
exogenous peer-to-peer market. As any consumer-centric system, it is essential to study the
privacy and the security of market participants as well as the stability of the proposed design.
In particular the presence of prosumers who could have the ability to be self sufficient represent
a risk of snowballing effect. For each prosumer opting out, remaining prosumers would suffer
from higher charges due to a redistribution between less participants. Finally, the resilience
of the system to non-rational or strategic prosumers must be examined before a real world
implementation.

4.4 Endogenous network charges

The above Section 4.3 showed how network charges could be simply encompassed in a decen-
tralized peer-to-peer electricity market. The approach not only allowed the system operator to
collect congestion related costs but also side costs to cover, for example, maintenance, mod-
ernization of power lines, taxes and policies. The low computation burden put on the system
operator and on the market clearing was another advantage of the exogenous approach. How-
ever, the low participation of the system operator in the negotiation process came at a great
price since it did not insure the respect of network constraints. Yet, network constraints vio-
lation may put the all power system at risk, in particular for weak and undersized (or at least
not oversized) electrical grids. In such configuration, economical incentives of the exogenous
approach are not sufficient and network constraints must actually be enforced by the system
operator. Thus, another way to define network charges may be needed.
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For this purpose, the system operator must take a more important part in the negotiation
mechanism and determine network charges on the fly, in other words in an endogenous way.
This section develops on how network charges can be determined endogenously by directly
including the system operator’s inputs in the negotiation process. First, Subsection 4.4.1 details
the proposed market design to obtain endogenous network charges. Then Subsection 4.4.2
discusses simulation results of these endogenous network charges and compares their benefits to
the exogenous approach presented above. Finally, Subsection 4.4.3 concludes on the endogenous
approach to determine network charges and gathers perspectives for further developments.

4.4.1 Endogenous market design

Extending the application of the endogenous approach to weak and undersized power systems
calls for considering a more precised power flow model than the DC one. The market design
is described here for the full AC model and, more generally, for any network model including
both active and reactive powers. The endogenous market design can then be straightly applied
to not only transmission networks but also distribution networks or a mix of it as long as there
is only one system operator.

Endogenous peer-to-peer electricity market with reactive power and power losses

The peer-to-peer economic dispatch considered here is a direct extension of (4.3) to AC network
constraints (2.10d)–(2.10h) condensed in regularization function ζ̃AC, equal to 0 if they are
respected and +∞ if they are violated. In a direct implementation this regularization would be
represented by a barrier function. It can be noted that ζ̃AC would not only depend on real power
injections P = (pn)n∈Ω but also on reactive power injections Q = (qn)n∈Ω. Of course, prosumers
would also need to acknowledge their reactive injections qn. Prosumer n’s cost function can
then be written cn(pn, qn) to account for both active and reactive generation costs. Note that
this cost function would allow to implement inverter’s P-Q curve and account for their apparent
power, which would be more relevant. Finally, prosumer n’s reactive injection would also be
ranged within a lower qmin

n and an upper qmin
n bound as expressed in the classical central optimal

power flow problem (2.10).

It is essential to notice that there may be a discrepancy between real power injections of the
peer-to-peer market, where supply equals demand, and power system’s power balance, where
the supply must also compensate for line losses. To alleviate this issue the system operator
may participate in the peer-to-peer market to provide for its power losses. The system operator
would then be considered as an additional agent in the peer-to-peer market buying power to
compensate for active losses. By convention the peer-to-peer community Ω does not only include
the prosumers but also the additional market participant, called loss provider, providing for
system operator’s power losses. The loss provider is identified by index ·Loss. To distinguish
this new peer-to-peer community Ω∗ = Ω ∪ {Loss} from community Ω of Section 4.3, solely
including prosumers, constituents of Ω∗ are called market peers. Since system operators does
not classically aim at losses minimization, the objective of the loss provider is the null function
and, having to compensate power losses, its only local constraint is to match its active power
set-point pLoss equal to the power system’s active power losses. Active power losses can simply
be estimated by the system operator through the sum of active powers injected in the power
system, as in (4.22f). Thus, loss provider’s active power bounds are infinite and its reactive
power bounds equal zero. Note that the system operator’s constraint (4.22c) is redundant with
the set of nodal power balances.

Hence, the new peer-to-peer electricity market regularized with AC power flows reads

75



Peer-to-peer electricity markets in power systems

AC regularized peer-to-peer electricity market

min
(pn)n∈Ω∗ ,(qn)n∈Ω∗ ,P,W

∑

n∈Ω∗

cn(pn, qn) + ζ̃AC(P,Q) (4.22a)

s.t.
(
W −W

T
)
/2 = P (4.22b)

pn =
∑

m∈ωn

pnm n ∈ Ω∗ (4.22c)

pmin
n 6 pn 6 pmax

n n ∈ Ω∗ (4.22d)

qmin
n 6 qn 6 qmax

n n ∈ Ω∗ (4.22e)

pLoss = −
∑

n∈Ω
pn (4.22f)

which adds the estimation of active power losses to the regularized peer-to-peer electricity
market of (4.3). This problem is still compatible with the preferences of [52], for this one solely
has to consider them in an extended form of prosumer cost function such that cn(pn, qn, Pn).
Node voltages and line flows are not considered as optimization variables as they are side
variables internal to ζ̃AC. Moreover, it may be noted that the AC model could even be extended
to add high-voltage DC power lines in the power system, for example such as expressed in [110].
Being internal to the regularized function, the change of model is transparent to prosumers.

Straightforward distributed endogenous peer-to-peer market algorithm

As developed in [2]’s appendix, bilateral trades can be negotiated in a decentralized manner
based on the consensus ADMM. However, the network constraints, common to all, can not be
directly decoupled from prosumers in a decentralized manner but must be handled centrally
by the system operator. At the image of [53]’s consensus ADMM with regularization, the
system operator does not directly verify network constraints on prosumers power injections
P = (pn)n∈Ω and Q = (qn)n∈Ω but on a copy of them, respectively noted P SO = (pSOn )n∈Ω
and QSO = (qSOn )n∈Ω. Consensus between power injections and their respective copy would
then be insured by (4.23b)–(4.23c). Being a sum of power injections over prosumers, losses
estimation takes [53]’s sharing ADMM form. Thus, losses estimation should be carried by the
loss provider on (pLossn )n∈Ω copies of system operator’s active power injections P SO = (pSOn )n∈Ω,
transforming (4.22f) into (4.23i). Thus, (4.23b)–(4.23c) are common to prosumers but not to
the loss provider.

The straightforward application of [53]’s consensus ADMM with regularization on (4.3) leads
to the following problem reformulation

min
P∗=(pn)n∈Ω∗ ,Q∗=(qn)n∈Ω∗ ,P,W,(pLoss

n )n∈Ω,

PSO=(pSOn )n∈Ω,Q
SO=(qSOn )n∈Ω

∑

n∈Ω∗

cn(pn, qn) + ζ̃AC(P
SO, QSO) (4.23a)

s.t. pSOn = pn n ∈ Ω (4.23b)

qSOn = qn n ∈ Ω∗ (4.23c)

pSOn = pLossn n ∈ Ω (4.23d)
(
W −W

T
)
/2 = P (4.23e)

pn =
∑

m∈ωn

pnm n ∈ Ω∗ (4.23f)

pmin
n 6 pn 6 pmax

n n ∈ Ω∗ (4.23g)

qmin
n 6 qn 6 qmax

n n ∈ Ω∗ (4.23h)

pLoss = −
∑

n∈Ω
pLossn (4.23i)
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where the system operator solely handles optimization variables P SO = (pSOn )n∈Ω and QSO =
(qSOn )n∈Ω, while the loss provider handles variables pLoss, qLoss, PLoss = (pLossm)m∈ωLoss

and
(pLossn )n∈Ω.

After simplifications such as in [2]’s appendix, for reciprocity constraint (4.23e), and in [53], for
consensus constraints (4.23b)–(4.23c) and sharing constraints (4.23d) and (4.23i), the ADMM
of (4.23) gives the following distributed endogenous negotiation mechanism

(pn, qn, Pn)
k+1 = argmin

pn,qn,
Pn=(pnm)m∈ωn

cn(pn, qn) +
∑

m∈ωn
σρ
(

pnm,
pknm−pkmn

2
, λk

nm

)

+σρ
(
pn, p

SO,k
n , ηp,kn

)
+ σρ

(
qn, q

SO,k
n , ηq,kn

)

s.t. pn =
∑

m∈ωn
pnm

pmin
n 6 pn 6 pmax

n

qmin
n 6 qn 6 qmax

n

(4.24a)

(P SO, QSO)k+1 = argmin
PSO=(pSOn )n∈Ω,

QSO=(qSOn )n∈Ω

ζ̃AC(P
SO, QSO) +

∑

n∈Ω

[

σρ
(
pk+1
n , pSOn , ηp,kn

)

+σρ
(
qk+1
n , qSOn , ηq,kn

)

+σρ
(

pSO,k
n − 1

|Ω|
pk+1
Loss, p

SO
n −

1
|Ω|

pSO,k
Loss ,

1
|Ω|

ηp,kLoss

) ]

(4.24b)

pSO,k+1
Loss = −

∑

n∈Ω
pSO,k+1
n , qSO,k+1

Loss = qk+1
Loss (4.24c)

λk+1
nm = λk

nm − ρ
(
pk+1
nm + pk+1

mn

)
/2 (4.24d)

ηp,k+1
n = ηp,kn + ρ

(
pSO,k+1
n − pk+1

n

)
(4.24e)

ηq,k+1
n = ηq,kn + ρ

(
qSO,k+1
n − qk+1

n

)
(4.24f)

where disagreement cost function σρ is given by

σρ : (x, y, z) ∈ R
3 7→ z (y − x) +

ρ

2
(y − x)2 (4.25)

and the penalty factor ρ > 0. Lagrangian multipliers ηpn and ηqn are respectively the dual
variables of constraints (4.23b) and (4.23c) for n ∈ Ω, and of (4.23d) and (4.23c) for n =
Loss. As in Subsection 4.3.1’s exogenous negotiation mechanism, element λnm of matrix Λ

corresponds to generation price of electricity for traded volume pnm. Possible trades of market
peer n can be grouped in variable Pn = (pnm)m∈ωn

. According to [53], supposing cost functions
(cn)n∈Ω and ζ̃AC to be closed, proper, and convex is a sufficient condition to ensure convergence
of (4.24). Of course, this is not true for ζ̃AC modeling lines with the AC power flow model, which
equations were recalled in Subsection 2.1.1. The grid would then need to be modeled with a
convex relaxation of the AC power flow model such as with second order cone programming [48,
49], condensed in extended-value function ζ̃SOCP, or semi-definite programming [51], condensed
in ζ̃SDP.

This negotiation mechanism allows to have primal feasibility of constraints (4.23f)–(4.23i) at
each iteration step. However, primal feasibility of trades reciprocity (4.23e) and of power
injections consensus (4.23b)–(4.23c) are only verified at the limit after convergence. Note that
the terms encompassed in disagreement function σρ aim at economically encouraging prosumers
to reach consensus with their trading partners and the system operator. Global stopping criteria
associated to (4.24) are such as

∑

n∈Ω∗
ǫp,k+1
n 6 ǫp,tol

2
and

∑

n∈Ω∗
ǫd,k+1
n 6 ǫd,tol

2
(4.26)

with, respectively, primal and dual local residuals

ǫp,k+1
n =

(
pSO,k+1
n − pk+1

n

)2
+
(
qSO,k+1
n − qk+1

n

)2
+

1

4

∑

m∈ωn

(
pk+1
nm + pk+1

mn

)2
(4.27a)

ǫd,k+1
n =

(
pk+1
n − pkn

)2
+
(
qk+1
n − qkn

)2
+
∑

m∈ωn

(
pk+1
nm − pknm

)2
(4.27b)
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where ǫp,tol and ǫd,tol denotes primal and dual global feasibility tolerances, respectively. Note
that local residuals (4.27) of the decentralized exogenous peer-to-peer market algorithm have
been extended into (4.27) to also account for active and reactive power injections consensus
residuals.

As illustrated in Figure 4.9, the overall distributed endogenous negotiation mechanism occurs
as follows. Each market peer n first solves its own local optimization (4.24a) to update active
power set-point pk+1

n , reactive power set-point qk+1
n and look for better bilateral trade proposals

P k+1
n = (pk+1

nm )m∈ωn
. Then, market peer n shares its power set-points with the system operator

and individually send trade proposals pk+1
nm to each partner m ∈ ωn. When all power injec-

tions P k+1
∗ = (pk+1

n )n∈Ω∗ and Qk+1
∗ = (qk+1

n )n∈Ω∗ are gathered, the system operator looks for
the closest feasible injection plan P SO,k+1 = (pSO,k+1

n )n∈Ω and QSO,k+1 = (qSO,k+1
n )n∈Ω, which

satisfies the power system’s constraints such as in (4.24b). The system operator then completes
P SO,k+1
∗ = (pSO,k+1

n )n∈Ω∗ and QSO,k+1
∗ = (qSO,k+1

n )n∈Ω∗ by estimating the resulting power losses
pSO,k+1
Loss and qSO,k+1

Loss with (4.24c) and send overall power set-points back to market peers. To
know what prosumers owes for their network usage, the system operator also keeps track of
network charges Ep,k+1 =

(
ηp,k+1
n

)

n∈Ω
and Eq,k+1 =

(
ηq,k+1
n

)

n∈Ω
by updating them at each iter-

ation with (4.24e)–(4.24f). While waiting for the system operator’s feedback, market peers can
update their trading prices Λk+1

n = (λk+1
nm )m∈ω with (4.24d) once it received all counter proposals

P
′

n = (pk+1
mn )m∈ω. When finally receiving feasible power injections pSO,k+1

n and qSO,k+1
n , each mar-

ket peer n can update the corresponding network charges ηp,k+1
n and ηq,k+1

n with (4.24e)–(4.24f).
Market peers are now able to deduce their local residuals

(
ǫpn, ǫ

d
n

)k+1
with (4.27). Finally, each

market peer n broadcasts its local residuals to all and, when all local residuals
(
ǫpm, ǫ

d
m

)k+1

m∈Ω∗\{n}

are received, tests global stopping criteria (4.26). This process is repeated until convergence.

Modified decentralized endogenous peer-to-peer market algorithm

The straightforward application of ADMM, in its consensus with regularization form, presents
the main disadvantage to sequence bilateral market peer’s local optimization (4.24a) and, then,
system operator’s power flow feasibility search (4.24b). It is proposed here to adapt the for-
mulation of (4.23) such that (4.22) can be solved in a decentralized manner. This way system
operator’s computation can be done in parallel to the one of market peers (or at least of
prosumers if it also handles loss providers computation). This potentially allows to gain com-
putation time. For this purpose system operator’s extended-value objective function ζ̃AC should
be treated as any other market peer. Its goal would not be to reach reciprocity on bilateral
trades such as between market peers, but to reach consensus with all market peers’ power
set-points. To do so, as done in [53]’s consensus ADMM, global slack variables are added to
the problem. Equality constraints (4.23b)–(4.23d) are thus replaced by

pSOn = pcn n ∈ Ω (4.28a)
pcn = pn n ∈ Ω (4.28b)

qSOn = qcn n ∈ Ω∗ (4.28c)
qcn = qn n ∈ Ω∗ (4.28d)

pSOn = pcLossn n ∈ Ω (4.28e)

pcLossn = pLossn n ∈ Ω (4.28f)

where ·c denotes a copy variable. Variable P c = (pcn)n∈Ω copies P = (pn)n∈Ω and P SO =
(pSOn )n∈Ω while variable Qc = (qcn)n∈Ω copies Q = (qn)n∈Ω and QSO = (qSOn )n∈Ω. And, variable
P cLoss = (pcLossn )n∈Ω copies P Loss = (pLossn )n∈Ω and P SO = (pSOn )n∈Ω. Note that consensus
constraints (4.23b)–(4.23d) are respectively equivalent to (4.28a) + (4.28b), (4.28c) + (4.28d)
and (4.28e) + (4.28f).
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After simplifications similar to the ones made for bilateral trades, the final decentralized en-
dogenous negotiation mechanism, solving (4.23) with (4.28) instead of (4.23b)–(4.23d), reads

(pn, qn, Pn)
k+1 = argmin

pn,qn,Pn=(pnm)m∈ωn

cn(pn, qn) +
∑

m∈ωn
σρ
(

pnm,
pknm−pkmn

2
, λk

nm

)

+σρ
(

pn,
p
SO,k
n +pkn

2
, ηp,kn

)

+ σρ
(

qn,
q
SO,k
n +qkn

2
, ηq,kn

)

s.t. pn =
∑

m∈ωn
pnm

pmin
n 6 pn 6 pmax

n

qmin
n 6 qn 6 qmax

n

(4.29a)

(P SO, QSO)k+1 = argmin
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|Ω|
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(4.29b)

pSO,k+1
Loss = −

∑

n∈Ω
pSO,k+1
n , qSO,k+1

Loss = qkLoss (4.29c)

λk+1
nm = λk

nm − ρ
(
pk+1
nm + pk+1

mn

)
/2 (4.29d)

ηp,k+1
n = ηp,kn + ρ

(
pSO,k+1
n − pk+1

n

)
/2 (4.29e)

ηq,k+1
n = ηq,kn + ρ

(
qSO,k+1
n − qk+1

n

)
/2 (4.29f)

with ρ > 0. Even though they are written on different lines, due to the difference of formulation,
iteration steps (4.29a) and (4.29b)–(4.29c) are actually computed at the same time. This can be
testified by the fact that, contrary to (4.24b)–(4.24c), system operator’s steps (4.29b)–(4.29c)
solely consider previous iteration step information. This time Lagrangian multiplier ηpn for
n ∈ Ω is the dual variable of both (4.28a) and (4.28b), since KKT stationarity condition of
(4.28) instead of (4.23b)–(4.23d) on variable pcn shows that they are equal. Similarly ηqn for any
n ∈ Ω∗ is the dual variable of (4.28c) or (4.28d). In the same way and as in its distributed
version, Lagrangian multiplier ηpLoss is the dual variable of both (4.28e) and (4.28f). Neither
the fact that Lagrangian multipliers ηpn and ηqn do not refer to the same consensus constraints
nor that they are computed differently in (4.24) and (4.29) alters their value after convergence.
Indeed, if one looked at the KKT stationarity conditions of (4.23) and of (4.23) with (4.28)
instead of (4.23b)–(4.23d), they would obtain the same equations when deriving on variables
pn, qn, pSOn and qSOn .

Such as with (4.24), this negotiation mechanism allows to have primal feasibility of constraints
(4.23f)–(4.23i) at each iteration step. However, primal feasibility of trades reciprocity (4.23e)
and of power injections consensus (4.28) are only verified at the limit after convergence. Global
stopping criteria associated to (4.29) are such as

∑

n∈Ω∗
ǫp,k+1
n 6 ǫp,tol

2
and

∑

n∈Ω∗
ǫd,k+1
n 6 ǫd,tol

2
(4.30)

with, respectively, primal and dual local residuals

ǫp,k+1
n =

1

4

∑

m∈ωn

(
pk+1
nm + pk+1

mn

)2
+

1

4

(
pSO,k+1
n − pk+1

n

)2
+

1

4

(
qSO,k+1
n − qk+1

n

)2
(4.31a)

ǫd,k+1
n =

∑

m∈ωn

(
pk+1
nm − pknm

)2
+
(
pk+1
n − pkn

)2
+
(
qk+1
n − qkn

)2
(4.31b)

where ǫp,tol and ǫd,tol denotes primal and dual global feasibility tolerances, respectively.
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As illustrated in Figure 4.10, the overall decentralized endogenous negotiation mechanism oc-
curs as follows. Each market peer n first solves its own local optimization (4.29a) to update
active power set-point pk+1

n , reactive power set-point qk+1
n and look for new bilateral trade pro-

posals P k+1
n = (pk+1

nm )m∈ωn
. Then, market peer n can share its power set-points with the system

operator and individually send trade proposals pk+1
nm to each partner m ∈ ωn. During that time,

based on all previous injections P k
∗ = (pkn)n∈Ω∗ and Qk

∗ = (qkn)n∈Ω∗ , the system operator can first
look for the closest feasible injection plan P SO,k+1 = (pSO,k+1

n )n∈Ω and QSO,k+1 = (qSO,k+1
n )n∈Ω,

which satisfies the power system’s constraints such as in (4.29b) and estimate resulting power
losses pSO,k+1

Loss and qSO,k+1
Loss with (4.29c). The system operator then shares feasible injections,

P SO,k+1
∗ = (pSO,k+1

n )n∈Ω∗ and QSO,k+1
∗ = (qSO,k+1

n )n∈Ω∗ , and collects market peers’ new asked
injections P k+1 = (pk+1

n )n∈Ω∗ and Qk+1 = (qk+1
n )n∈Ω∗ . To know what prosumers owes for their

network usage, the system operator also keeps track of network charges Ep,k+1 =
(
ηp,k+1
n

)

n∈Ω

and Eq,k+1 =
(
ηq,k+1
n

)

n∈Ω
by updating them at each iteration with (4.24e)–(4.24f). Market

peers can now update their trading prices Λk+1
n = (λk+1

nm )m∈ω with (4.29d) based on the counter
proposals received from their partners, P

′

n = (pk+1
mn )m∈ω, and updates their network charges

ηp,k+1
n and ηq,k+1

n with (4.29e)–(4.29f). Market peers are now able to deduce their local resid-
uals

(
ǫpn, ǫ

d
n

)k+1
with (4.31). Finally, each market peer n broadcasts its local residuals to all

and, when all local residuals
(
ǫpm, ǫ

d
m

)k+1

m∈Ω∗\{n}
are received, tests global stopping criteria (4.30).

This process is repeated until convergence.

Several remarks can be made on this decentralized negotiation mechanism. First, the system
operator’s role solely consist in providing the new feasible power injections based on the pre-
vious ones sent by market peers. Moreover, optimal power flow (4.29b) may be complex and
require some time to compute compared to market peers step (4.29a), particularly for a large
power system. It is then possible to gain some computation time by simply starting the next
feasibility search (of step k + 2) as soon as the system operator received wished power injec-
tions P k+1

∗ = (pk+1
n )n∈Ω∗ and Qk+1

∗ = (qk+1
n )n∈Ω∗ . To improve this even more, market peers

may send their power set-points first so that the system operator can start the computation
as soon as possible. This may be particularly beneficial since, as explained in [1] and recalled
in Section 3.2, the communication time required to exchange many trade proposals may be
longer than the computation time. Being decentralized, this negotiation mechanism is not
supported by a central entity, at least for bilateral trades. The system operator is to be seen
here as a support to market peers providing useful information to deduce their network charges
and guiding them so they can attain acceptable trades. The system operator computation
could even be handled asynchronously from market peers trade negotiations, and would then
be seen as a small shared memory between market peers. Problem (4.23) with (4.28) instead
of (4.23b)–(4.23i) and negotiation mechanism (4.29) are obviously in line with the generalized
coordination problem proposed in Section 2.2 as it is similar to the concept multi-block ADMM
in practical example line 11.

System operator implementation

Even though separated, the loss provider and the system operator can be carried by the same
computation unit. This separation has actually been made to obtain a loss provider compatible
with the generic model of prosumers since steps (4.24a) and (4.24d)–(4.24f) are valid for all
market peers n ∈ Ω∗. Compatibility of the loss provider iteration step with the one of prosumers
came at the expense of using the fact that cost function cLoss and reactive power set-point qLoss
are both null. Thus, if one wanted to consider a local objective such as losses minimization,
they would have to multiply cost function cLoss by |Ω| in order to preserve homogeneity of
(4.24a)’s objective. Currently, the loss provider’s reactive power set-point qLoss is equal to zero,
so the system operator’s copy qSOLoss will simply follow. But one could of course extend the
concept with a peer-to-peer market on reactive power and, thus, reactive power losses.
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It is important to note that the system operator’s feasibility searches (4.24b) and (4.29b) take
the form of a classical optimal power flow. In the straightforward distributed endogenous
case, system operator step (4.24b) could be written such as (2.10) in Subsection 2.1.1 where
prosumers’ cost functions would read

cSO,k
n : pSOn , qSOn 7→ σρ

(
pk+1
n , pSOn , ηp,kn

)
+ σρ

(
qk+1
n , qSOn , ηq,kn

)

+ σρ

(

pSO,k
n −

1

|Ω|
pk+1
Loss, p

SO
n −

1

|Ω|
pSO,k
Loss ,

1

|Ω|
ηp,kLoss

)

(4.32)

and would have to be updated at each iteration step before (4.24b). In the decentralized
endogenous case, system operator step (4.29b) prosumers’ cost functions would read
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n : pSOn , qSOn 7→ σρ
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2
, pSOn , ηp,kn
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, pSOn −
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|Ω|
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Loss ,

1

|Ω|
ηp,kLoss

)

(4.33)

and would have to be updated at each iteration step before (4.29b). One could observe that
these two formulations only differs in the way they take prosumers outputs into account. The
distributed form considers updated variables pk+1

n , pk+1
n and pk+1

Loss. While the decentralized
form averages prosumers’ past iteration variables pkn, q

k
n and pkLoss with system operator’s past

iteration variables pSO,k
n , qSO,k

n and pSO,k
Loss . When using classical optimal power flow tools it is

possible to preserve active and reactive power bound limits (2.10b)–(2.10c) to guide the process.
The system operator would not have access to prosumers’ boundaries of the current time step
but it can, however, use installation capacities stipulated in network usage contracts.

4.4.2 Simulation results

Such for the exogenous peer-to-peer electricity market in Subsection 4.3.3, the endogenous peer-
to-peer electricity market presented here is tested on the test case described in Subsection 4.2.2.
Primal and dual tolerances used for the stopping criteria are both set to 10−3, so ǫp,tol =
ǫd,tol = 10−3, and the penalty factor to one, so ρ = 1. First, it is important to verify the
optimality, in other words the exactness, of the solutions reached by the endogenous peer-
to-peer electricity market both in its distributed and decentralized versions. Especially, the
solutions reached must have exactly the same power injections as the classical optimal power
flow as expressed in (2.10). Used as reference in the literature [111, 112], it can be noted
that simulations use MATPOWER both to provide the classical optimal power flow reference
and for feasibility searches (4.24b) and (4.29b) of the system operator. Once their accuracy
is verified, endogenous peer-to-peer electricity market’s solutions are analyzed and compared
to the exogenous approach as previously developed in Section 4.3. Finally, this subsection
compares computation performances of both endogenous versions to the exogenous one.

Analysis on endogenous negotiation algorithms’ optimality

Only being a relaxed version of classical optimal power flow (2.10), the presence of bilateral
trades is not supposed to alter the equilibrium reached on power injections. It can be noted
that convergence of ADMM towards the global optimal value is only guaranteed for a convex
problem. Of course, being based on gradient descent, ADMM would also converged towards
an optimal solution but which could be only local. However, even in the strongly non-convex
AC line flow modelling, both proposed endogenous negotiation mechanisms converges towards
the optimal solution as the reference MATPOWER centralized optimal power flow. Indeed,
Figure 4.11 shows that the endogenous negotiation mechanisms leads to the same active and
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first way to compare the obtained bilateral trades would be to show them on test case’s map
such as in Figure 4.4. Using the exact same normalization for trades thickness and the same
color chart, Figure 4.16 plots bilateral trade maps of the following simulations. To serve as
reference and to facilitate comparisons, Figure 4.16a duplicates Figure 4.4a of the peer-to-peer
electricity market in absence of any network consideration, so without network charges. Fig-
ure 4.16b presents trade results of the exogenous peer-to-peer electricity market based on the
unique zonal cost allocation policy, as introduced in Subsection 4.3.2, for a unit fee uzone of
20 e/MWh per crossed zone. This unit fees has been chosen based on Figure 4.7 such that it
is the least costly and does not induce congestion. Note that a unit fee uzone of 20 e/MWh
corresponds to 35% of the free market price on the x-axis of Figure 4.7. Then, Figures 4.16c
and 4.16d respectively plot bilateral trades of DC and AC endogenous peer-to-peer electricity
markets.

One can note on Figure 4.16 that endogenous network charges have much less impact on
bilateral trades than exogenous policies. Even though individualizing at the level of each
node and hence each prosumer, endogenous charges are much more meticulously defined and
adapted to the current power injection plan. Indeed, even in its more detailed form that is
the electrical distance cost allocation policy, exogenous network charges still has one tuning
parameter, namely the unit fee, which is common for the all network. The zonal cost allocation
policy with different unit fee per zone would be more refined but still lack precision for trades
happening within it. The optimal approach for exogenous network charges would then be the
transformation of the zonal cost allocation policy into a nodal one by considering each node
as a zone possessing its own individual price. This approach would then consist in forecasting
nodal prices, so anticipating what would endogenous network charges be.

The global influence on bilateral trades can also be testified in Table 4.2. This table shows that
endogenous network charges apply much less pressure on the peer-to-peer market to reach a
feasible power dispatch. Indeed, DC and AC endogenous network charges respectively impose
a 1.6% and 2.2% power trades reduction to reach feasible power injections while the exogenous
approach requires a 25.6% reduction in its electrical distance form and more than 44% for
the two others. One could remark that exogenous network charges at least allows to isolate
zones from each others from an economical point of view, in particular the zonal cost allocation
policy. However it may be remarked that, even if showing many inter-zone exchanges, the
system operator could also perform this by altering its power system layout. To isolate zone
2 for example, the system operator would solely need to suppress the two lines linking it to
zone 1 and 4 from the list of available lines. In such case, the feasibility search made at
each iteration of the endogenous negotiation mechanism could even be decomposed as two
independent power systems, each with their system operator, but without directly changing
prosumers partnerships.

Table 4.2: Influence of network charges approaches on total traded amounts

Unit fee (e/MWh) Between peers (MW (%)) Between zones (MW)

Exogenous
uuniq = 20 2156 (55.4) 35

udist = 5 2901 (74.5) 24

uzone = 20 2137 (54.9) 0

Endogenous
DC 3832 (98.4) 526

AC 3808 (97.8) 480

No network charges 3894 (100) 574
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First, it can be noticed that the decentralized negotiation mechanism in presence of exogenous of
network charges is slower than in absence of them. Only the example of zonal allocation policy
is presented here, but the tendency is the same with the other allocation policies of Section 4.3.
This speed decrease actually does not come from the fact that peers must solve hard problems
at each iteration, on the contrary since the average computation time per iteration is lower,
but from a higher number of iterations to settle the last trades. However, one can note that
endogenous negotiation mechanisms are slower then these two previous cases. Even though
simplifying peers’ local computation, the time required for the system operator to compute its
feasibility search dominates peers’ computation time. For example in the DC line flow modelling
case, the computation time required by the system operator at each iteration is of the same
order as for peers (around the double). In consequence, the higher number of iterations needed
for the decentralized endogenous approach is still faster than the distributed approach as each
iteration takes as much time as the slowest between peers and the system operator instead
of both the slowest peer plus the system operator. However, the benefit of the decentralized
approach is blurred in the AC line flow modelling case as system operator’s feasibility search
is much slower than peers’ computation. An interesting point is that the average time per
iteration to compute the feasibility search is about half the time the classical optimal power
flow. This mainly comes from the warm starts as this step is only slower for the first iteration.

But, it is too soon to conclude that endogenous network charges are too slow compared to
exogenous charges, when scaling up, to reach real world implementation. Indeed, it is important
to note that performances results presented here were obtained without any of the algorithm
improvements proposed in Chapter 3 which could modify these conclusions. Notably, the use
of asynchronous communications in the endogenous negotiation mechanism would largely help
reduce the computation time as many bilateral trades iteration could be carried during a single
feasibility search step. The system operator would then only be queried a handful of times
before reaching consensus. Of course the mathematical proof of convergence would not hold any
longer, such as it did not with the non-convex AC line flow model. But emulations in Section 3.3
and the literature, e.g. [83], showed the efficiency of asynchronous communications. Note
that in an asynchronous setup, frontiers between distributed and decentralized approaches of
network charges would be blurred and solely consist in whether peers consider system operator’s
corrective injections or its average with what they proposed, and vice-versa for the system
operator. As prosumers’ power set-point mainly evolves at the beginning of the negotiation
process, it could also be considered to query the system operator at more specific moments
such as at the first step and when power set-points almost stabilizes. In addition, it may not be
coherent to use a centralized feasibility search to coordinate with a fully decentralized market
decision making framework. Thus, combining the endogenous negotiation mechanism with a
distributed or decentralized optimal power flow algorithm such as [113,114], with synchronized
or asynchronized iteration steps, could help improve its convergence rate. Thus, there is a
need in further works to study these possible improvements of the endogenous negotiation
mechanism before ruling it out and solely envisage exogenous network charges.

4.4.3 Conclusions on endogenous network charges

To partially conclude, this section exposed another peer-to-peer electricity market design in
which network charges would be defined in an endogenous manner. Contrary to the exogenous
approach of Section 4.3, these endogenous network charges would directly encompass power
system’s constraints and estimated simultaneously with bilateral power trades. To solve this,
the decentralized exogenous negotiation mechanism would be adjoined with an optimal power
flow to search for the feasible power injection plan closest to the one requested by prosumers.
Handled by the system operator, this closest feasibility search would then allow to replace
exogenous network charges by endogenous ones updated at each iteration. In the case of
a model with active power losses, an additional market participant would be required to buy
power from prosumers to compensate for line losses. Tested in the novel case based on the IEEE
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39-bus test system, endogenous network charges demonstrated to be efficient in guaranteeing
power system constraints. It has also been confirmed that optimal power injections reached by
a classical optimal power flow approach were not altered by the presence of bilateral trades,
thus making endogenous network charges efficient from an economic perspective too.

However, the optimality allowed by endogenous network charges came at the price of a slower
negotiation mechanism process. Because it implies a strong involvement of the system op-
erator, obtaining endogenous network charges requires to conduct an optimal power flow at
each negotiation iteration. Guarantee on the non-violation of power flow constraints being
essential in most power systems, particularly in distribution and weak systems, future work on
improving convergence speed of endogenous network charges is necessary. After choosing the
most adequate line flow model, several leads of improvement can be listed. First, the use of
asynchronous communications, at least for the interaction between peers and the system oper-
ator, would allow peers to carry bilateral power trade negotiation while waiting for the system
operator’s feedback. This would reduce the number of times the closest feasibility search has
to be conducted and, overall, the convergence time. Independently from the type of commu-
nication, decentralized trade negotiations could be combined to a distributed or decentralized
optimal power flow algorithm for rather than a fully centralized one. It would then be possible
to synchronize iteration counters of both processes, thus concurrently searching for bilateral
trades and feasible injections rather than fully computing the closest feasibility search.

4.5 Synthesis

The aim of this chapter was to study the way peer-to-peer electricity markets could interact
and account for electrical network constraints. For this purpose, the chapter first described
how the classical optimal power flow problem would be adapted to include multi-bilateral
trading to its formulation. Even though another approach is favored in Chapter 5, note that
this formulation could account for uncertainty by using a scenario-based stochastic optimization
framework. This description notably showed that network constraints could be condensed in an
extended-value function which would actually regularized peer-to-peer market’s problem. Two
approaches to treat network constraints’ regularization function have then been proposed. The
first approach proposed to replace regularization function evaluating network constraints by a
cost allocation function introducing network charges. Individually designed for each bilateral
trade, network charges are to be seen as a tool to allow the system operator to charge prosumer
in a way which reflects how their bilateral trades impact the power system. The amount
of money collected by the system operator through these charges could for example serve to
finance power line investment and maintenance of the power system or congested-related costs
and taxes. To allow prosumers to adapt their trading strategies, the system operator would
provide these network charges a priori and, hence, would have to be evaluated before hand in
an exogenous manner. In consequence, these exogenous network charges would not give any
guarantee to the system operator that the electrical network constraints would be all respected.

Yet, network constraints violation may put all the power system at risk, in particular for weak
and undersized electrical grids. Thus, network charges in the form of exogenous economical
incentives would not suffice and need to be reinforced with a stronger involvement of the system
operator in bilateral trades’ negotiation mechanism. For this hand, rather than replacing it, the
second proposed approach directly treats network constraints’ regularization function at the
same time as bilateral trade’s negotiations. Prosumers would then not only negotiate with each
other on bilateral trades but also aim at reaching consensus with the system operator on feasible
power injections. The system operator would then conduct an optimal power flow on its power
system with the objective of finding closest feasible injections from prosumers request. From
prosumers perspective this consensus would take the form of network charges on their power
set-points rather than on each bilateral trade. Being determined through an optimal power flow,
these network charges would thus endogenously encompass electrical network constraints. The
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advantage of these endogenous network charges is that they lead prosumers to the same power
injections as in optimal power flow. Bilateral trades are relaxation variables so they do not alter
prosumers’ objective functions. Endogenous network charges also presented the advantage of
putting less pressure on bilateral trades than exogenous ones to obtain feasible, congestion free
power injections. However, as expected, endogenous network charges came at the detriment
of convergence speed. Indeed, requiring an optimal power flow at each iteration, endogenous
network charges in their current framework strongly slows the negotiation mechanism.

In consequence, the two proposed approaches to account for network constraints in peer-to-peer
electricity markets are good candidates but they both need further improvements before getting
in future real world implementations. Fast to reach convergence, exogenous network charges
however proved to have insufficient or unfeasible solutions when they are not designed wisely.
In opposition, endogenous network charges made up for this deficiency by hardly including
network constraints and, hence, guaranteeing their respect but lacked in rapidity. Several
tracks of improvements can be foreseen. First, exogenous network charges could be enhanced
by passing to a nodal based cost allocation policy. This nodal cost allocation could even be
further strengthened with the use of machine learning, Markov switching or time series tool to
anticipate the best nodal network charges. To improve endogenous network charges, it would
be possible to consider asynchronous communications between market peers and the system
operator. Moreover, to be more in line with the decentralized concept of peer-to-peer, the
closest feasibility searches could be carried based on distributed or decentralized resolutions of
the optimal power flow problem. Finally, as a trade off between exogenous and endogenous
network charges, one could imagine first using the nodal exogenous approach for the first
negotiation iterations and, then, update them endogenously once or twice to adapt the nodal
network charges to the current situation.
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Decentralized stochastic

coordination problems 5
This chapter focuses on coordination problems in presence of stochastic behaviours. As a coor-
dination problem, stochastic behaviours may be considered overall through a coupling constraint
to take advantage of their spread or to overcome their correlation. This chapter proposes to
split this common constraint into individual stochastic constraints. Different different methods
to allocate the uncertainty among entities are presented. They notably allow to adapt the way
risks are shared between them depending, for example, on the way they have on the overall un-
certainty. Finally, performance analyses are conducted to evaluate these uncertainty allocation
methods.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Decentralized energy and reserve market . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Centralized energy and reserve market . . . . . . . . . . . . . . . . . 96

5.2.2 Peer-to-peer energy and reserve market . . . . . . . . . . . . . . . . . 98

5.2.3 Specific decentralized peer-to-peer energy and reserve market algorithm 99

5.3 Uncertainty allocation methods . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.1 Relative uncertainty allocation . . . . . . . . . . . . . . . . . . . . . . 102

5.3.2 Absolute uncertainty allocation . . . . . . . . . . . . . . . . . . . . . 103

5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.1 Test case description . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.2 Reliability of decentralized uncertainty allocations . . . . . . . . . . . 107

5.4.3 Optimality gap and impact on prosumers . . . . . . . . . . . . . . . . 110

5.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

93



Peer-to-peer electricity markets in power systems

5.1 Introduction

Resource allocation in electricity markets is traditionally handled by centralized platforms
gathering offers and demands of market participants to form the well known pool market.
The centralized clearing mechanism as proven to be efficient and scaling well over the years.
However, the efficiency of this organization is being challenged by the introduction of novel
actors and behaviors. Distributed energy resources jointly with information and communica-
tions technology and energy management systems, either for residential homes or buildings,
scatter the electrical power production and consumption throughout the electrical network.
Going down to lower levels of the network, the appearance of prosumers with both the ability
to produce and consume (and most likely store) electricity is emblematic of the transforma-
tions occurring in the domain. While power system operators are making substantial efforts
to strengthen electrical networks to these new types of use, electricity markets have not gone
yet through the same process of accommodating to the new context at hand. As of current
practice, small-sized prosumers are managed at retail level in existing mechanisms such as real
time market and demand response [67]. This particularly comes from regulatory thresholds put
on prosumers’ size and, often, a strict dichotomy between pure consumers and pure producers.
One can understand that these exiting mechanisms are not adapted to small-sized prosumers
as it would exponentially increase the amount of communications and data which must be
centralized by the market operator.

As mentioned in previous chapters, in response to this issue, electricity markets are expected
to go from producer-centric to more decentralized approaches [10] which can be qualified as
prosumer-centric. Already 20 years ago, Wu and Varaiya proposed the first decentralized
electricity market based on coordinated multilateral transactions [95]. Originally developed
to separate economics from power systems’ reliability, it has recently been enhanced with a
game-theoretical properties analysis of the obtained solution in [90]. When solely involving
two parties this approach can be assimilated to peer-to-peer trades in which each market
participant directly negotiates with a set of trading partners such as in [2]. Prosumers’ objective
is then to minimize their energy procurement costs by favoring the most profitable partnerships.
Alternatively, [10] categorized two other possible layouts of decentralized or distributed market
structures. In the first one, prosumers are connected in microgrids, either interconnected or
not, while prosumers are grouped in energy communities which are not necessarily connected
on the same local microgrid in the second. Although other architectures have been proposed
in recent literature [72–74, 115], [4] showed they all can be represented as particular cased of
the peer-to-peer market structure.

However, these novel market structures often suppose deterministic prosumers and rarely con-
siders their eventual uncertainties, which are inherent for some of them such as renewable
sources. The classical centralized market framework considers two distinct markets, one trad-
ing energy and another bidding on reserves. Depending on one another, these two markets
are usually dealt in a sequential manner. But this sequential approach of energy and reserve
markets necessarily leads to sub-optimal solutions. Thus, the current centralized energy and
reserve market inevitably leads to a sub-optimal use of primal resources [13]. To obtain the best
solution, uncertainties must be considered jointly with power production and consumption fore-
casts in a stochastic market formulation. Even though leading to the optimal solution, a fully
stochastic energy market is not adapted for future decentralized prosumer markets. Indeed,
stochastic energy markets are solved with centralized algorithms such as two stage stochastic
programs. An other way to solve them would be to use scenario based approaches, but these
are not tractable communication wise [14]. Nevertheless, chance constraint based optimization
seems a good alternative to scenario based approaches, [15]. One could rather formulate the
stochastic energy market into the form of a chance constraint problem. The obtained energy
and reserve market would thus propose both energy and reserve market products but would
allocate them jointly, within a single market problem resolution. In this configuration, reserved
capacities would be used to restrain the energy market such that prosumers are able to pro-
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vide a sufficient amount of power capacity. The reserved capacities would then be used to
compensate misdispatches if an error of consumption or production forecast occurred.

Of course, reserving the total amount of capacity in a robust way, i.e. allowing to overcome any
worst case, would be costly and sub-optimal. For this reason, an energy and reserve market
formulated as a chance constraint problem would provide the possibility to choose the confidence
level with which one wants the market to allocate reserves. The confidence level is to be seen
here as an indicator of how risk averse the electricity market is. So, a confidence level of 100%
implies that the market is fully risk-averse and such must provide reserves for the worst case.
On the contrary, a confidence level of 0% would mean that the market is willing to take all the
risks, thus no capacity would have to be reserved and the energy side of the market can simply
considers the expected forecasts. Note that one could use the notion of risk level, so opposite
to the notion of confidence level mentioned above. For example [116] named it loss-of-load-
expectation and [117] calls it risk threshold. For example, as in [116], the reserve procurement
is classically done globally using a joint chance constraint. Such joint chance constraint requires
global variables which aggregate uncertain prosumers’ actions. Yet, an issue arises when going
towards a decentralized framework such as peer-to-peer markets. Indeed, peer-to-peer markets
call for a split of the global chance constraint into multiple individual chance constraints at
uncertain prosumers’ level.

This chapter proposes a peer-to-peer market with bilateral contracts both on energy and re-
serves. To stay coherent with the decentralized aspect of prosumer markets, reserves are con-
sidered at a local level by uncertain prosumers through individual chance constraints. Solved
in a decentralized manner, this formulation leads to a fully decentralized market coupling both
energy and reserve market products such that uncertain prosumers must constitute sufficient
reserves to compensate their own unreliability. If technically possible, uncertain prosumers can
constitute reserves locally with their own asset, such as load-shedding or renewable power
spillage for example. If insufficient, uncertain prosumers can also buy additional reserves
through bilateral contracts with other partners such as reliable, controllable prosumers. In
other words, the proposed formulation leads to a combined peer-to-peer energy and reserve
market which can be solved by a decentralized negotiation mechanism similar to the one pro-
posed in previous chapters. Yet, splitting chance constraints may lead to sub-optimalities due
to too restrictive or too slack individual chance constraints.

Individual chance constraints were the first chance constraints formulated in 1958 by [118]. But
reaching a specific global level of confidence without optimality gaps was too complex. Thus,
they were replaced by joint chance constraints later in 1965 by [119]. Since, the literature has
mainly been focused on joint chance constraints due to their simplicity of design and their satis-
fying optimality performances. Chance-constrained programs solving this type of problem have
been developed soon after, such as [33] in 1972 and [120] in 1974. Also called integrated chance
constraints, improvements have been made through the years to solve joint chance constraint
problems. Notably, [121] made efforts to obtain a reduced form of the solving algorithm and [34]
used non-linear problem solvers. Moreover, theoretical extensions have been made in [122–124]
on coupled random variables, approximations of non-convex chance constraints and two-sided
linear chance constraints. Conditions on convexity of chance-constrained problems can be found
in [124–126]. Joint chance constraints have been used for many applications such as resource
allocation in [127, 128], optimal power flow in [129–131] and demand response in [132]. One
of the main application of chance constraints is robust optimization and, in particular, distri-
butionally robust optimization which leads to many theoretical studies. Contrary to classical
chance constraints with known probability distributions, distributionally robust optimization
rather focus on ambiguity sets of probability distributions as exposed in [133,134]. Ambiguity
sets are generally based on historical data and aim at estimating the worst possible probability
distribution on which to optimize in a robust manner. Distributionally robust chance constraint
can be approximated in various ways. For example, Bonferroni, Fréchet, Bernstein or worst-
case conditional value at risk approximations can be used as in [122,123,135,136], respectively.
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Applications of distributionally robust optimization in power systems can for example be found
in [137–140].

However, the study on the conditions of equivalence between joint and individual chance con-
straints seemed almost non-existent in the explored literature. Some works by S. Ponda can
be found on this topic. For example, [117, 141] proposed a formal approach to allocate risks
in a distributed chance-constrained task allocation. Yet, their work was restricted to one-sided
inequality chance constraints while an energy and reserve market requires two-sided inequality
chance constraints. This chapter proposes to make the necessary extensions to handle a two-
sided inequality chance constraint problem that is the peer-to-peer energy and reserve market.
The allocation methods to separate the joint, global chance constraint into split, individual
ones are proposed and tested in this chapter. The first method suggests to directly define local
confidence levels as a proportion of the global one. In this case risks are allocated in a relative
manner as they are allocated with respect to the overall probability area which an uncertain
prosumer must cover. In the manner of [117], the second method rather allocates amounts of
reserves that uncertain prosumers need to cover. In this case the amount of reserves that each
uncertain prosumers must retain is a proportion of the global amount of reserved capacities
required to reach the global confidence level. Thus, risks are allocated in an absolute manner
as they are allocated with respect to quantities.

This chapter is structured as follows. After recalling the formulation of a centralized, joint
chance-constrained, energy and reserve market, Section 5.2 describes the novel peer-to-peer
energy and reserve market. A decentralized negotiation mechanism solving it is also exposed.
Section 5.3 presents the different uncertainty allocation policies which can be used to define the
local confidence levels observed by uncertain prosumers. Both relative and absolute methods are
presented there. Proposed uncertainty allocation policies are then compared to the centralized
form in Section 5.4 through simulations on a yearly test case, based on [3]’s modified IEEE
14-bus system. Finally, Section 5.5 concludes on uncertainty allocation policies and gathers
perspectives for further work.

5.2 Decentralized energy and reserve market

A peer-to-peer market is based on a community of prosumers with flexible consumption or pro-
duction. As it is classically done in the literature, prosumers are supposed rational as in [24], i.e.
always objectively taking the most beneficial decisions, and non-strategic, i.e. not anticipating
actions and reactions of other prosumers. After recalling the formulation of a centralized energy
and reserve market in Subsection 5.2.1, bilateral trades are introduced in Subsection 5.2.2 to
obtain a peer-to-peer energy and reserve market. A decentralized negotiation mechanism solv-
ing this problem is then described in Subsection 5.2.3. The emphasis being placed on allocating
reserves in a decentralized way, no temporally binding constraint is considered and time steps
are supposed independent. Thus, each time unit, e.g. hourly, will be treated as an isolated
test case configuration. As explained in Chapter 2, note that it may readily be extended to
multiple time units with temporally binding constraints.

5.2.1 Centralized energy and reserve market

Classically, a pool market which combines both energy and reserves can be expressed as the
following chance-constrained problem
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Centralized energy and reserve market

min
(pn,r

+
n ,r−n )n∈Ω

pnc,r
+,r−

∑

n∈Ω
cn(pn) + c+n (r

+
n ) + c−n (r

−
n ) (5.1a)

s.t. pmin
n + r−n 6 pn 6 pmax

n − r+n n ∈ Ω (5.1b)

0 6 r+n 6 r+,max
n n ∈ Ω (5.1c)

0 6 r−n 6 r−,max
n n ∈ Ω (5.1d)

∑

n∈Ω
pn = 0 (5.1e)

r+ =
∑

n∈Ω
r+n (5.1f)

r− =
∑

n∈Ω
r−n (5.1g)

pnc =
∑

n∈Ωnc

pn (5.1h)

Pfnc

(
−r− 6 pnc − p̃nc 6 r+

)
> δ (5.1i)

where control variables {pnc, r
+, r−} defined in (5.1f)–(5.1h) are associated to the global level

and, hence, handled by a central operator. Note that the index ·nc relates to non-controllable
prosumers as a group. In a deterministic clearing market, the goal would be to minimize the
total cost of a group Ω of prosumers participating in the market, which would sum individual
energy cost functions cn as in (5.1a). To do so, each prosumer n can define its power set-point
pn within a feasible flexibility range bounded by lower pmin

n and upper pmax
n bounds. Power

set-point pn is taken positive if prosumer n is net producer and negative if net consumer. The
global power balance of the market is ensured by constraint (5.1e).

As the energy market is associated to a reserve market, power set-points pn are to be seen as
prosumers’ unit-commitment which must be satisfied. Any deviation from it would constitute
a breach of commitment and call for the use of an additional capacity to compensate it. This
additional capacity would have to be reserved before hand in a centralized reserve market.
Reserves aim to overcome uncertainties of non-controllable prosumers, such as wind farms for
example. Gathered in Ωnc ⊂ Ω, each uncertain prosumer n’s power production or consumption
forecast is a random variable noted p̃n defined by probability distribution function fn. For
example, if uncertain prosumer n was a wind farm, random variable p̃n would denote the amount
of power that may be produced with a probability Pfn(p̃n). Thus, an uncertain prosumer n
may undergo a deviation ∆n = pn− p̃n from its original unit-commitment pn. A reserve market
procures reserves to overcome the global deviation of all uncertain prosumers. Their total unit-
commitment pnc is given by (5.1h). Random variable p̃nc denotes the global uncertain power
forecast following probability distribution function fnc, which is a copula of local probability
distributions (fn)n∈Ωnc

. Each prosumer n can either provide an upward reserve, i.e. a generation
reserve, or a downward reserve, i.e. a demand reserve. Upward and downward reserve set-points
are thus self-constituted and respectively noted r+n and r−n . Global upward r+ and downward
r− reserves available on the market are defined in (5.1f)–(5.1g) and must cover generation
uncertainties up to a global confidence level δ as in (5.1i). The global confidence level can also
be seen as an indication of market’s aversion towards risk, so of its robustness.

Of course, the engagement of reserves may induce additional costs to the ones providing them.
Hence, in (5.1a), prosumers also aim at minimizing cost functions c+n and c−n which are respec-
tively linked to the cost of providing upward and downward reserves. As in (5.1c)–(5.1d), up-
ward and downward reserves provided by a prosumer may be limited by technical constraints,
such as ramping limits for example. These reserve limits are respectively noted r+,max

n and
r−,max
n . Moreover, a prosumer proposing an amount of reserved capacity takes the responsibil-
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ity of actually being able to provide it. So, prosumers’ power set-point and reserve set-points
must be within their flexibility range. In other words, the feasible flexibility range accessible
to power set-point pn is tightened by the promised amount of reserves, as in (5.1b).

5.2.2 Peer-to-peer energy and reserve market

As pointed earlier, the current change in the power system, with new ways to produce and to
consume electricity, calls for a shift from centralized producer-centric to decentralized prosumer-
centric market structures. Focusing on the so called peer-to-peer market architecture, this thesis
proposes the use of multiple bilateral trades, which can be seen as small unit-commitments
between trading partners. Considering multi-bilateral trades requires a split of net powers, in
the manner of [52], into a set of multiple bilateral trades pnm. Every possible bilateral power
trades within the community can be condensed in a matrix P such that

P =





p11 · · · p1|Ω|
...

. . .
...

p|Ω|1 · · · p|Ω||Ω|



 (5.2)

where pnm is necessarily equal to zero if prosumer m is not in prosumer n’s trading partnership
set ωn. Net powers are then obtained by pn =

∑

m∈ωn
pnm as in (5.5e). As outlined in (5.5b), P

is skew-symmetric to insure power balance of each trade, so pnn = 0. This allows to potentially
individualize prices per trade.

As mentioned in the introduction, aiming for a decentralized reserve market implies the split
of joint chance constraint (5.1i) into individual chance constraints

Pfn

(
−r−n 6 pn − p̃n 6 r+n

)
> δn (5.3)

for each uncertain prosumer n ∈ Ωnc. This way each uncertain prosumer takes the responsibility
of covering its own variability up to local confidence level δn. The allocation of the global risk
responsibility, illustrated by δ, into local confidence levels (δn)n∈Ωnc

is discussed in Section 5.3.
But it can be noted that the eventual correlation of local probability functions (fn)n∈Ωnc

would
have to be taken into account in the definition of local confidence levels (δn)n∈Ωnc

. Despite that,
uncertain agents may not be able to cover all their variability on their own with load-shedding
or power spillage. In consequence, a way of exchanging reserves should be added to the market.
At the image of power bilateral trades this chapter proposes the use of reserve bilateral trades.
This would then allow flexible and controllable agents to sell their reserve to uncertain agents
and, hence, have the possibility to monetize their full available capacity. Every possible upward
and downward reserve bilateral trades within the community can reciprocally be condensed in
matrices R

+ and R
− such that

R
+ =






r+11 · · · r+1|Ω|
...

. . .
...

r+|Ω|1 · · · r+|Ω||Ω|




, R

− =






r−11 · · · r−1|Ω|
...

. . .
...

r−|Ω|1 · · · r−|Ω||Ω|




 (5.4)

where r+nm and r−nm are necessarily equal to zero if prosumer m is not in prosumer n’s trading
partnership set ωn. As outlined in (5.5c)–(5.5d), R+ and R

− are skew-symmetric to insure
reciprocity of each trade. Note that reserve tradings could be extended to specific partnership
sets, ω+

n and ω−
n reciprocally for upward and downward reserves. As the goal is to introduce the

proposed techniques, all trading partnership sets are supposed identical to clarify the message.

However, it is important to note that the sign convention used for reserve trades differs from
the one of power trades. Indeed, a prosumer n buying upward reserve capacity from prosumer
m needs to be credited of this amount, so r+nm > 0, while this amount must be debited if
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it is sold, so r+nm 6 0. These observations are also true for downward reserve trades. Total
amount of upward r+,tot

n and downward r−,tot
n reserves available to prosumer n combine reserve

set-points r+n and r−n , which are self procured, and the sum of reserves traded with partners.
Thus, for example, prosumer n’s total upward reserve is given by r+,tot

n = r+n +
∑

m∈ωn
r+nm, as

in (5.5f)–(5.5g). With reserve trades sign convention, one could notice that if a controllable
prosumer n were to sell all its self procured upward reserve r+n , its total upward reserve left
and available would then equal zero. To ensure that a prosumer can not sell more reserve than
it can actually provide, total reserves available locally are forced to be positive, i.e. 0 6 r+,tot

n

and 0 6 r−,tot
n as in (5.5k).

Gathering all these changes, the proposed peer-to-peer energy and reserve market finally reads

Peer-to-peer energy and reserve market

min
(pn,r+n ,r−n ,r

+,tot
n ,r

−,tot
n )

n∈Ω

P,R+,R−

∑

n∈Ω
cn(pn) + c+n (r

+
n ) + c−n (r

−
n ) (5.5a)

s.t. P = −PT (5.5b)

R
+ = −R+,T (5.5c)

R
− = −R−,T (5.5d)

pn =
∑

m∈ωn

pnm n ∈ Ω (5.5e)

r+,tot
n = r+n +

∑

m∈ωn

r+nm n ∈ Ω (5.5f)

r−,tot
n = r−n +

∑

m∈ωn

r−nm n ∈ Ω (5.5g)

pmin
n + r−n 6 pn 6 pmax

n − r+n n ∈ Ω (5.5h)

0 6 r+n 6 r+,max
n n ∈ Ω (5.5i)

0 6 r−n 6 r−,max
n n ∈ Ω (5.5j)

0 6 r+,tot
n , r−,tot

n n ∈ Ω (5.5k)

Pfn

(
−r−,tot

n 6 pn − p̃n 6 r+,tot
n

)
> δn n ∈ Ωnc (5.5l)

where all control variables are handled locally by prosumers. Prosumer n’s control variables
are power set-point pn, reserve set-points r+n and r−n , total available reserves r+,tot

n and r−,tot
n ,

bilateral power trades Pn = (pnm)m∈ωn
and reserve bilateral trades R+

n = (r+nm)m∈ωn
and R−

n =
(r−nm)m∈ωn

. Note that reserve bilateral trades help prosumers to adjust their total available
reserves. Thus, prosumer n’s uncertainty coverage does not solely considers self procured
reserves as in (5.3) but for the total amount of reserves at its disposable as in (5.5l). It can
also be pointed that reserve set-points r+n and r−n are still the ones used to tighten power
set-point pn flexibility range in (5.5h). Indeed, while total available reserves r+,tot

n and r−,tot
n

helps compensate forecast errors, this power would not actually flow towards or outwards of a
prosumer. If activated, traded reserves R+

n and R−
n would be engaged by trading partners to

balance the global power balance. Thus, total available reserves r+,tot
n and r−,tot

n are rather to
be seen as contractual reserves.

5.2.3 Specific decentralized peer-to-peer energy and reserve market
algorithm

As developed in [2]’s appendix, a decentralized procedure based on the consensus ADMM
of [53] can be used to solve (5.5). This decentralized method solves global problem (5.5)
and, hence, leads to a competitive equilibrium which efficiency strongly depends on the chosen
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network charges. According to [87] ADMM seems well adapted for negotiation mechanisms
in smart grids. Several extensions and convergence rate improvements have been proposed
in [96–99]. Given the focus of this chapter is not on scalability a straightforward implementation
of consensus ADMM is used. It can be noted that convergence, so existence, and uniqueness
of a solution are guaranteed as long as the problem is convex. This condition is verified if:
(i) all cost functions (cn, c

+
n , c

−
n )n∈Ω are convex, and (ii) chance constraints (5.5l) are convex.

Conditions on convexity of chance constraints can be found in the literature such as in [124–126].

The final decentralized energy and reserve negotiation mechanism reads

Xk+1
n = argmin

Xn

cn(pn) +
∑

m∈ωn
σρ
(

pnm,
pknm−pkmn

2
, λk

nm

)

+ c+n (r
+
n ) +

∑

m∈ωn
σρ
(

r+nm,
r
+,k
nm−r

+,k
mn

2
, λ+,k

nm

)

+ c−n (r
−
n ) +

∑

m∈ωn
σρ
(

r−nm,
r
−,k
nm−r

−,k
mn

2
, λ−,k

nm

)

s.t. pn =
∑

m∈ωn
pnm

r+,tot
n = r+n +

∑

m∈ωn
r+nm

r−,tot
n = r−n +

∑

m∈ωn
r−nm

pmin
n + r−n 6 pn 6 pmax

n − r+n
0 6 r+n 6 r+,max

n

0 6 r−n 6 r−,max
n

0 6 r+,tot
n , r−,tot

n

Pfn (−r
−,tot
n 6 pn − p̃n 6 r+,tot

n ) > δn if n ∈ Ωnc

(5.6a)

λk+1
nm = λk

nm − ρ
(
pk+1
nm + pk+1

mn

)
/2 (5.6b)

λ+,k+1
nm = λ+,k

nm − ρ
(
r+,k+1
nm + r+,k+1

mn

)
/2 (5.6c)

λ−,k+1
nm = λ−,k

nm − ρ
(
r−,k+1
nm + r−,k+1

mn

)
/2 (5.6d)

where Xn =
{

pn, r
+,tot
n , r+n , r

−,tot
n , r−n , X̂n

}

gathers prosumer n’s optimization variables, sub-

variable X̂n = {Pn, R
+
n , R

−
n } gathers all its bilateral trades, disagreement cost function σρ is

such as
σρ : (x, y, z) ∈ R

3 7→ z (y − x) +
ρ

2
(y − x)2 (5.7)

and penalty factor ρ > 0. Element λnm of matrix Λ corresponds to generation price of electricity
for power trade pnm. Similarly, λ+

nm and λ−
nm are elements of matrices Λ

+ and Λ
− and can

be assimilated as procurement prices of upward and downward reserves. Note that Λ, Λ
+

and Λ
− are respectively the dual variables of (5.5b)–(5.5d). This formulation allows to have

primal feasibility of constraints (5.5e)–(5.5l) at each iteration step. However, primal feasibility
of trades reciprocity (5.5b)–(5.5d) is only verified at the limit after convergence. Note that
additional terms of the augmented Lagrangian, represented by disagreement cost function σρ

in (5.6a), aim at encouraging, economically, a prosumer n to reach power consensus with its
partners. Global stopping criteria associated to (5.6) are such as

∑

n∈Ω
ǫp,k+1
n 6 ǫp,tol

2
and

∑

n∈Ω
ǫd,k+1
n 6 ǫd,tol

2
(5.8)

with, respectively, primal and dual local residuals

ǫp,k+1
n =

1

4

∑

m∈ωn

[(
pk+1
nm + pk+1

mn

)2
+
(
r+,k+1
nm + r+,k+1

mn

)2
+
(
r−,k+1
nm + r−,k+1

mn

)2
]

(5.9a)

ǫd,k+1
n =

∑

m∈ωn

[(
pk+1
nm − pknm

)2
+
(
r+,k+1
nm − r+,k

nm

)2
+
(
r−,k+1
nm − r−,k

nm

)2
]

(5.9b)

where ǫp,tol and ǫd,tol denotes primal and dual global feasibility tolerances, respectively.
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5.3 Uncertainty allocation methods

While exposing peer-to-peer energy and reserve market (5.5), Section 5.2 voluntarily overlooked
the way local confidence levels (δn)n∈Ωnc

are defined. Indeed, scattering the decision making
should not deteriorate the quality of the solution and, in particular, the robustness provided
by the global amount of reserves constituted. Local confidence levels should be such that local
chance constraints (5.5l) provide the same global guarantee as with global confidence level δ in
chance constraint (5.1i). This section exposes two approaches to allocate the uncertainty. The
first way to allocate uncertainty would be to directly distribute portions of global confidence
level. In other words, it allocates probability levels that each uncertain prosumer has to cover.
Hence, it will be named relative uncertainty allocation. The second approach rather consists
in sharing the amount of reserves necessary to reach the global confidence level. Uncertain
prosumers would receive shares of it and would have to cover for a local amount of reserves
to gather, which in turn could be translated in a local confidence level. This approach can
be qualified as absolute uncertainty allocation since it distributes reserve amounts rather than
their equivalent probabilities. It can be pointed that the two presented approaches can be
employed independently to the correlation or not of uncertain prosumers. Naturally, these
correlations would impact their performances.

5.3.1 Relative uncertainty allocation

An intuitive way to share risks between uncertain prosumers would be to simply distribute por-
tions of global confidence level δ to relative local confidence levels (δreln )n∈Ωnc

. Local confidence
levels would then be defined as follows

δreln = αn δ (5.11)

with αn is the uncertainty allocation factor adjusting responsibility shares among prosumers.
For example, one could want to share risks proportionally to the part they take in the global
uncertainty in average or in deviation. Corresponding uncertainty allocation factors would
respectively take the forms

αµ
n = pµn/p

µ
nc (5.12a)

ασ
n = σn/σnc (5.12b)

with pµnc = E[p̃nc] and pµn = E[p̃n] where E[ · ] denotes the expectation operator. It can be
noted that pµnc and pµn respectively reflect global and local expected power outputs of uncer-
tain prosumers. Similarly, σnc and σn are global and local standard deviations of global fnc

and local fn power forecasts. Even though these two uncertainty allocation factors verify that
∑

n∈Ωnc
δn > δ, there is no guarantee that they lead to a more robust solution than the cen-

tralized approach. Indeed, the Boole-Bonferroni inequality, classically used in distributionally
robust optimization, is sufficient only in the case of worst case approximations. That is why
one may be tempted to use a unitary uncertainty allocation factor such as

α1
n = 1 (5.13)

which necessarily leads to a more robust solution than the centralized approach. However this
increased robustness also induces a less optimal solution, i.e. a costlier reserve dispatch.

The relative uncertainty allocation distributes portions of the probability area δ, covered by
global chance constraint (5.1i), to local probability areas δreln covered by local chance constraints
(5.5l). As illustrated in Figure 5.2 these probability areas (in green) would be allocated regard-
less of probability distribution functions. The simplicity of this approach is a strong advantage
for real world implementation as no additional knowledge on global and local power forecasts
is required. However, similarly to exogenous network charges in Chapter 4, this apparent sim-
plicity comes at the expense of a careful design of uncertainty allocation factors αn. Indeed,
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This corresponds to an upward reserve, which is inline with global and local maximal guaranteed
powers expressions

pδ
−

= pnc − r+ and pδ
−

n = pn − r+,tot
n . (5.16)

The absolute uncertainty allocation consist in distributing the total amount of reserve required
into local requirements on local available reserves. This can be written

(
r+,tot
n + r−,tot

n

)
= αn

(
r+ + r−

)
⇔

(

pδ
+

n − pδ
−

n

)

= αn

(

pδ
+

− pδ
−
)

(5.17)

where both equations are equivalent with regard to expressions of pδ
+
, pδ

−

, pδ
+

n and pδ
−

n . How-
ever, allocating the full reserve range such as (5.17) would not allow to deduce absolute local
confidence levels (δabsn )n∈Ωnc

. Cumulative distribution functions are not linear, so it is not possi-
ble to deduce local confidence levels of two-sided inequality chance constraints as it was in [117]
for one-sided chance constraints.

In consequence, there is a need to split the coverage bands in two. Spread on each side of the
expected power, one corresponds to the downward reserves to procure in the event of a power
higher than expected. The second would represent the upward reserves required in the event of
a power lower than expected. So, this chapter proposes to extend [117] to two-sided inequality
probability constraints instead of one-sided ones. The distribution of reserves coverage on both
sides of the expected value is illustrated in Figure 5.2 with the use of two different colors for
downward (purple) and upward (orange) reserves. Absolute allocation (5.17) is now replaced
by

(

pδ
+

n − pµn

)

= αn

(

pδ
+

− pµnf

)

(5.18a)
(

pµn − pδ
−

n

)

= αn

(

pµnf − pδ
−
)

(5.18b)

with pδ
+
, pδ

+

n , pδ
−

and pδ
−

n as defined in (5.15)–(5.16). Uncertainty allocation factors (αn)n∈Ωnc

adjust responsibility shares among prosumers. To simplify the message the same uncertainty
allocation factor has been chosen for both sides. But one could use two uncertainty allocation
factors α+

n and α−
n to respectively differentiate between downward and upward reserve allo-

cations. Using two different uncertainty allocation factors may particularly be interesting in
the case of non-symmetrical probability distributions or when there is a change of symmetry
between global and local probability distribution functions as represented in Figure 5.2.

A two-sided inequality probability verifies that Pf (a 6 X̃ < b) = F (b)− F (a), with a < b ∈ R

and where f and F are respectively probability and cumulative distribution functions of random
variable X̃. Hence, inequalities (5.14) can also be written as

Fnc

(

pδ
+
)

︸ ︷︷ ︸

δ+

−Fnc

(

pδ
−
)

︸ ︷︷ ︸

δ−

> δ and Fn

(

pδ
+

n

)

︸ ︷︷ ︸

δ+n

−Fn

(

pδ
−

n

)

︸ ︷︷ ︸

δ−n

> δn (5.19)

where Fnc and Fn are respectively the cumulative distribution functions associated to proba-
bility distribution functions fnc and fn. Combining (5.18) with (5.19) returns

δ+n = Fn

(

pµn + αn

(
F−1

nc

(
δ+
)
− pµnf

))

(5.20a)

δ−n = Fn

(

pµn − αn

(
pµnf − F−1

nc

(
δ−
) ))

(5.20b)

104



where F−1
nc is the inverse function of Fnc. Note that global probability distribution Fnc may in-

clude correlations between uncertain prosumers if present. The absolute uncertainty allocation
finally gives

δabsn = Fn

(

pµn + αn

(
F−1

nc

(
δ+
)
− pµnf

))

− Fn

(

pµn + αn

(
F−1

nc

(
δ−
)
− pµnf

))

(5.21)

as cumulative distribution functions are odd. Recall that pµnc = E[p̃nc] and pµn = E[p̃n] are
global and local expected power outputs of uncertain prosumers, with E[ · ] the expectation
operator. The question now resides in the definition of δ− and δ+. Front-tail and end-tail
global probabilities are linked to the global confidence level by

1− δ
︸ ︷︷ ︸

Global probability error

= δ−
︸︷︷︸

Front-tail probability

+ 1− δ+
︸ ︷︷ ︸

End-tail probability

(5.22)

since the global probability error was split between both tails in (5.19). Thus, the definition of
δ+ and δ− in (5.21) allows to emphasize on either tails, if one is more problematic for example.
A barycenter of mass β can be defined to represent the importance of the front-tail in the global
probability error. Front-tail and end-tail probabilities would then be given by

δ− = β (1− δ) and 1− δ+ = (1− β) (1− δ) (5.23)

where β ∈ [0, 1]. Since we are currently considering symmetrical probability distributions we
can rightly assume both tails to be equally important. In such case, the barycenter is taken as
follows β = 1/2 in the rest of the chapter.

As it is more aware of global and local forecast errors, the absolute uncertainty allocation ap-
proach may offer a lower optimality gap than the relative approach. Note that no hypothesis
were required to obtain (5.21) and are, thus, also valid when uncertain prosumers are corre-
lated. Yet, computing the global probability distribution function fnc of correlated uncertain
prosumers requires to conduct convolutions which would jeopardize their privacy. However,
considering independent uncertain prosumers would help preserve their privacy. Indeed, if un-
certain prosumers are supposed independent and are either in great numbers or follow Gaussian
curves, the global probability distribution function would be a Gaussian with an expected value
pµnc =

∑

n∈Ωnc
pµn and a standard deviation σ2

nc =
∑

n∈Ωnc
σ2
n. In such case, fnc can be estimated

without uncertain prosumers revealing too much information on themselves. Moreover, uncer-
tainty allocation factors ασ

n based on standard deviations as given in (5.12b) would be good
candidates.

5.4 Simulation results

The objective of this section is to evaluate performances of the proposed uncertainty allocations
by analyzing simulation results. After describing the case on which they have been tested on
in Subsection 5.4.1, the section investigates several points. Firstly, Subsection 5.4.2 verifies the
ability of the proposed uncertainty allocations to globally cover forecast errors by providing
enough reserves. Secondly, Subsection 5.4.3 looks into the optimality gaps they might induce
by comparing them to the centralized energy and reserve market recalled in Subsection 5.2.1.
The same subsection also investigates the way prosumers are impacted by them. Note that the
four decentralized uncertainty allocations tested in the following simulation results are reported
in Table 5.1.

5.4.1 Test case description

To evaluate the proposed peer-to-peer energy and reserve market, flexible prosumers as well as
uncertain prosumers need to be present within a single case study. Some test cases exist for peer-
to-peer energy markets, such as in [2,3], but they do not provide uncertain prosumers’ forecasts,
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Table 5.1: Tested decentralized uncertainty allocations

Name (Acronym used in figures) Allocation method (δ·n) Allocation factor (α·
n)

Relative expectation uncer-
tainty allocation (Rel. αµ)

Relative as in (5.11) (δreln ) Expected power ratios as in (5.12a) (αµ
n)

Relative standard deviation un-
certainty allocation (Rel. ασ)

Relative as in (5.11) (δreln ) Standard deviation ratios as in (5.12b) (ασ
n)

Relative unitary uncertainty al-
location (Rel. α1)

Relative as in (5.11) (δreln ) Unitary ratios as in (5.13) (α1
n)

Absolute standard deviation
uncertainty allocation (Abs.
ασ)

Absolute as in (5.21) (δabsn ) Standard deviation ratios as in (5.12b) (ασ
n)

actual realizations or forecast errors. Separately, there exist some open-source databases which
provide such information for wind and solar productions, such as [142] and [143] respectively.
But they do not describe characteristics of the market in which they are connected.

Hence, there is a need for a novel test case adapted to study peer-to-peer markets both on
energy and reserves. The focus here is put on combining [3]’s test case with [142, 143]’s data
sets. Illustrated in Figure 5.3, [3] is based on the IEEE 14-bus test system [144] and has cost
functions cn such that

cn(pn) =
1

2
anp

2
n + bnpn (5.24)

where an and bn parameters of the 20 prosumers are given in [145]. Note that the connection
to the main grid is represented by a prosumer with a quadratic term equal to zero and a linear
term equal to pool market prices. Prosumers’ flexibility as well as pool market prices present
in [145] are based on Australian data sets [146,147] and are normalized with installed capacities.

Data sets [142, 143] have been used to provide forecast errors to [145]’s renewable producers.
Power production forecasts p̃n are given by

p̃n = pn +∆n (5.25)

where realized power pn comes from [145] and forecast error ∆n is deduced from [142, 143],
after being normalized with installed capacities. It can be noted that data sets [142, 143]
aggregate productions of wind and solar on a geographical area over several years, while [145]
concerns multiple assets over a single year. Thus, each uncertain prosumer represents a single
year of [142, 143]. Uncertain prosumers can thus be considered independent. The rest of the
chapter assumes that power forecast errors follow a normal distribution. Standard deviations
σn are constant and deduced from forecast errors ∆n observed over the year. In consequence,
global probability distribution function fnc follows a Gaussian curve centered on power forecast
p̃nc =

∑

n∈Ωnc
p̃n with a standard deviation σnc = ‖(σn)n∈Ωnc

‖2.

To synthesize, the final test case is composed of: (i) 11 flexible consumers, (ii) 3 flexible
producers, (iii) 5 independent uncertain renewable producers, 3 wind and 2 solar farms, and
(iv) a prosumer representing the connection to the grid. All prosumers have quadratic energy
cost functions cn. Both quadratic and linear terms are null for renewables, while the linear
term of the prosumers representing the grid is equal to the pool market price. Renewable
producers are assumed independent and have normal probability distributions with a constant
standard deviation. Global probability distribution fnc, encompassing all uncertain prosumers,
have a standard deviation σnc = 5.20 MW for a total installed capacity of 180 MW. Note that
the average global power forecast error is solely of 6 kW. The test case includes hourly time
steps over a year. Finally, upward and downward reserve cost functions (resp. c+n and c−n )
are supposed purely quadratic and equal to cn’s quadratic terms. Renewable prosumers can
not provide upward reserves, r+,max

n∈Ωnc
= 0, since they can not guarantee their provision. But

they can always procure downward reserves simply by shading their production. Since shading
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prosumers of the market to the prosumers creating the issue in the first place, so to uncertain
prosumers. This transfer of responsibility can be seen in Figure 5.9 illustrating self constituted
reserves and what is actually available at the end after prosumers made bilateral trades on
reserves. As expected, renewable prosumers (here the sole uncertain prosumers) are the ones
procuring downward reserves abundantly with their ability to shade production. It can be
seen that controllable agents buys unnecessary downward reserves, but this is an artefact as it
only come from the free of charge particularity of renewables shading. Unable to make their
own, renewable prosumers are however obliged to buy upward reserves from the controllable
prosumers participating in the market. For this specific test case, one could observe that renew-
able producers mainly get there available upward reserve form the producers and, marginally,
from the connection to the main grid. Thus the peer-to-peer community appears to be rather
autonomous on reserves in this test case. Note that this autonomy of reserves could even be
enforced by taking out the grid prosumer from the reserve side of the peer-to-peer energy and
reserve market, which would induce specific trading partnership sets for each market product.

5.5 Synthesis

To conclude on decentralized stochastic coordination problems, this chapter proposed a new
decentralized way to handle reserve allocations by the mean of a peer-to-peer energy and
reserve market. This decentralized approach notably calls for shift from the classical share of
responsibility for all members of the market community to solely the responsibility of members
at the origin of the issue, namely uncertain prosumers such as renewable sources. The transfer
of responsibility was allowed by the introduction of new market products, namely upward and
downward reserve bilateral trades, allowing uncertain prosumers to buy reserves from other,
more reliable prosumers if they are unable to provide enough on their own. But the split of the
global responsibility materialized by a joint chance-constraint into local individual ones rose
the question of how the global level of confidence to reach should be allocated among uncertain
prosumers into local level of confidences. Two main approaches to allocate the coverage of
uncertainty have been proposed in the chapter. The first, simpler, approach consist in a direct
proportional share of the global confidence level while the second, more comprehensive, rather
shared portions of the global amounts of reserves required to reach the targeted global level of
confidence.

Tested on an adapted form of the IEEE 14-bus test system, two of the four proposed uncer-
tainty allocations proved to be promising. These two approaches have shown their ability to
provide sufficient global reserves only with a low optimality gap compared to the centralized
approach. But they had insufficient performances at low expected power forecasts of renew-
able sources. Unable to determine if these lower performances was inherent to their nature or
whether coming from the small size of the test case, this calls for the creation of a much larger
test case both involving controllable and stochastic prosumers in sufficient numbers to verify
their performances in a future work. Even though showing insufficient performances, the two
other approaches could be improved by the presence of a multiplicative coefficient, which could
be called unit uncertainty allocation. At the image of Chapter 4’s unit fees u· for exogenous
network charges, this additional parameter could be chosen wisely based on historical data by
the system operator. Another interesting future work would be the extension from the current
single time-step peer-to-peer energy and reserve market to a multiple time-step version. Doing
so would for example allow to study the possibility for a storage unit to take advantage of
renewable sources. Indeed, a storage unit could absorb their non-predicted over production,
rather than shedding it, and to sell it back either as energy or upward reserve at latter times.
This study could then be extended to the question of whether this storage should be localized
at each uncertain prosumer or as a bigger independent actor.
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Conclusions and perspectives 6

6.1 Summary and conclusions

The objective of this thesis was to study the feasibility of the concept of peer-to-peer markets to
electricity markets. An important point was that considering a peer-to-peer electricity market
does not only entail into a change of paradigm from a centralized to a decentralized structure
of electricity market, but also requires an adaptation of the peer-to-peer market framework
to the specific constraints existing in power systems. After a reminder of the classical prob-
lems at hand, the thesis first described how classically centralized electricity markets would be
adapted to allow for bilateral trades between prosumers at the basis of peer-to-peer markets.
While it appeared relatively straightforward in simple energy market, the thesis pointed strong
conceptual difficulties when considering the electrical network’s constraints or the procurement
of reserves which are centralized by nature. An effort of theoretical generalization has been
conducted to exhibit that the works of this thesis can be applied to many other fields. Notably,
the proposed generalized coordination problem was able to ally the decentralized nature of
peer-to-peer markets with the centralized nature of power systems. Indicated by the name,
coordination problems consist in a set of problems within which numerous entities are inter-
dependent and, thus, need to coordinate and agree on certain linking variables. Coordination
problems are a large family of optimization problems as it not only includes most if not all type
of markets, of goods in particular, but also problems in which systems much coexist with each
other, such as energy systems (electricity, heat and gas systems) or a fleet of drones or vehicles,
or even large systems integrating multiple complex subsystems, such as the power grid itself
or a house with several intelligent appliances or a factory with robots. Based on alternating
direction method of multipliers (ADMM), the thesis proposed a negotiation algorithm which
orchestrates the resolution of such coordination problems in a decentralized way. Exposing how
it could be applied on different examples, the decentralized algorithm showed its applicability
and usefulness for peer-to-peer electricity markets.

Indeed, at the occasion of a complexity analysis, the thesis was able to show the interest of
using the ADMM in comparison to another type of algorithm sometimes used in the litera-
ture, namely consensus and innovation. This confirmed comments made in other literature
that ADMM based algorithm may be appropriated for consumer-centric and, hence, peer-to-
peer markets. The complexity analysis also revealed that the structural complexity of the
peer-to-peer market organization induced more scalability issues than other consumer-centric
markets as the community-based one. Notably, even though also impacted by the size of the
market, the analysis showed that the computational burden placed on prosumers during the
negotiation mechanism was not as pregnant as the communication burden put on the commu-
nication infrastructure. Yet, the important traffic that would be induced by such algorithm
would inevitably induce and increase communication delays. Thankfully the ADMM based
negotiation mechanism proved rather resilient to such conditions, in particular when taking
advantage of asynchronous communications so that fastest and closest prosumers could pursue
the negotiation process without having to constantly wait for the slowest and farthest prosumer
of the market. In the view of the important implications peer-to-peer electricity market would
have on the communication infrastructure, two improvements have been identified with the
common aim of reducing the number of messages that must be exchanged between the market
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participants to reach final consensus. The first focused on improving the negotiation mecha-
nism itself. Alternative stopping criteria have been tested to allow prosumers to unilaterally
conclude negotiations on bilateral trades which already reached consensus before the end of
the negotiation process. So,by giving more meaning to stopping criteria, i.e. at the level of
bilateral trades rather than overall, it has been possible to reduce the number of exchanged
messages necessary to reach consensus without negatively impacting the overall power balance
of the market. The second improvement focused on reducing the structural complexity of the
peer-to-peer market framework. One of the main advantage of the peer-to-peer market is that
it can change its structural complexity simply by changing the way prosumers are intercon-
nected with one another. This notably allows the peer-to-peer market framework to assume
most consumer-centric market organizations solely by adapting its interaction graph accord-
ingly. For example, the peer-to-peer market can assume the pool and community-based market
configurations respectively by gathering prosumers around one or multiple non-profit entities
named market operator and community managers. This adaptability could be used to design
interaction graphs reducing the structural complexity of the problem and, thus, reduce the
number of information exchanged to reach consensus. In consequence, the chosen negotiation
mechanism demonstrated its ability for further improvements to overcome the scalability issues
of real world implementations.

Other conceptual dilemmas such as grid constraints and stochastic behaviors were still at hand
before obtaining an actual peer-to-peer electricity market. First, contrary to speculative mar-
kets, electricity markets as well as most commodity markets have strong constraints coming
from their physical nature requiring a physical infrastructure to carry them between mar-
ket participants. Even though already hard to solve, electricity network models are still less
complex than other commodity markets. Indeed, other energy carriers such as heat and gas
infrastructures are not only non-convex but would also account for internal storage, named line
packs in gas networks for example. This would have required to directly consider multiple time
step problems rather than simpler single time step models first. In the case of good shipments,
such as common goods transported in containers or cargoes, optimization variables would have
been discrete by nature which would have inherently brought more complexity to the problem.
Moreover, good markets usually enclose long horizon time coupling constraints as their trans-
portation takes time. Having continuous variables and able to be model on independent time
steps, electricity markets are a good starting applicative example to show how the centralized
nature of physical infrastructures can be overcome to coordinate with decentralized peer-to-
peer markets. This thesis showed that all constraints and objectives of the electrical network
could be gathered in one unique entity, such as the system operator, with which prosumers
would coordinate at the same time as they negotiate bilateral trades with each other. Two
class of approaches have been identified for prosumers to coordinate with this system operator.
The first approach proposes to account for power system constraints in an exogenous way. In
this setup the system operator would provide network charges to prosumers before the start of
the negotiations so that they are aware of the costs they will have to face for using the power
system and act accordingly during the negotiations. Thus prosumers would simply account for
additional costs they would have to pay, on a per trade basis, for using the grid. The main
advantage of this approach is that the exogenous peer-to-peer electricity market unfolds as any
standard peer-to-peer market as it would simply adapt the prosumers model to the electrical
network on which they are connected to. However, being exogenous and, hence, given a priori,
these exogenous network charges can not guarantee respect of power system constraints in every
circumstances. For this, network charges would have to be estimated endogenously at the same
time as prosumers have knowledge of their power injections on the grid. And that is exactly
what the second approach proposes to account for power system constraints. In the resulting
endogenous peer-to-peer electricity markets, prosumers send updates of their injected or with-
drawn power to the system operator at each iteration step of bilateral trade negotiations. The
system operator is then able to to re-estimate the network charges and to check feasibility of
the inquired power injections. Now insuring the feasibility of the peer-to-peer market outcomes,
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this approach as the inconvenient of requiring a strong presence of the system operator in the
negotiation process and, hence, a certain amount of computation power.

The second conceptual dilemma challenging feasibility of peer-to-peer electricity markets for
real world applications is the issue of stochastic behaviors. Even though they originate locally
at prosumers level, uncertain power productions have a global impact on the market as they
can combine one another and aggravate their potential harmful consequences. Thus, procuring
a sufficient amount of reserves to these probable dispatch errors is essential. Historically, these
reserves have been managed centrally by the system operator as resulting power unbalances
would occur on the power system its manages. Yet, one could say that uncertain prosumers
such as renewable sources should be the only ones with the responsibility to provide reserves
covering their own forecast errors. But uncertain prosumers, renewable sources in particular,
would not be capable to provide sufficient reserves on their own as this would require them to
have important local storage units which would render them economically non-viable. Uncertain
prosumers would then need to contract reserves from other prosumers which are controllable.
This thesis proposed these contracts of reserves to be made through bilateral contracts such
as already made on energy. A peer-to-peer energy and reserve electricity market thus emerges
and allows prosumers to provide and exchange not only electrical energy between them but
also a way for uncertain prosumers to procure sufficient amounts of reserves. Controllable
prosumers would then still be able to fully benefit from their installed power capacity by
monetizing it on both energy and reserves market products. However simply saying that
uncertain prosumers must procure as much coverage as it was aimed overall in a centralized
approach may lead to sub-optimalities. Indeed this would result in a more robust solution which
may bring reserves overcosts as it would not take advantage of positive statistical correlations
between uncertain prosumers and solely suppose the negative ones. To tackle this the thesis
proposed two approaches to allocate the overall coverage required at uncertain prosumers’
level. One approach, named relative uncertainty allocation, proposes that uncertain prosumers
directly considers a proportion of the global level of confidence that must be reached. While the
other, named absolute uncertainty allocation, rather shares proportions of the total amount of
reserves that are required to reach this global level of confidence. This second approach would
lead to lower optimality gaps as it accounts for uncertain power probability distributions in a
more comprehensive way. This second, absolute approach showed to have similar performances
to the robust approach, where uncertain prosumers have to locally reach the same level of
confidence as it would be asked globally, but at smaller costs, so lower optimality gaps. In spite
of these promising performances, this absolute uncertainty allocation displayed weaknesses
when the global amount of uncertain power forecasted is low. But the goal only being to show
that it was possible to allocate uncertainty, the simulations have been conducted on a small
sized test case which did not allow to deeply analyze the results and, hence, understand whether
this weakness was inherent to the proposed technique or linked to the lack of disparity between
prosumers.

In consequence, the developments and results presented in this thesis demonstrated that it was
possible to adapt the simple standard peer-to-peer market framework to the specific technical
needs of electricity markets. More specifically, this thesis proposed approaches to tackle the
issue of power system constraints and stochastic behaviors. The solutions developed in this
thesis can not only apply to peer-to-peer electricity markets but also to the large family of
coordination problems. It can finally be noted that these developments have been tested on
modified IEEE test systems as no general test cases has been standardize this type of consumer-
centric markets, including both network constraints and power production forecasts.

6.2 Perspectives for future work

The work in this thesis has opened up a number of different directions for future research, some
of which are discussed below.

115



Peer-to-peer electricity markets in power systems

Even though proving theoretical feasibility of peer-to-peer electricity markets, the most funda-
mental issue raised by this thesis revolves around the practicability of the proposed solutions
in real world implementations. The question of scalability is particularly important to solve
as power systems can connect hundreds of thousand, if not multiple millions of electrical pro-
sumers. Thus, the possibility to use a peer-to-peer electricity market ubiquitously on a large
power system highly depends on the ability of its decentralized negotiation mechanism to
tackle large numbers of prosumers. This calls for algorithmic and structural improvements of
the peer-to-peer negotiation mechanism. This thesis notably showed the potential gain of using
alternative stopping criteria which are more meaningful. It has been pointed that these criteria
could be even further perfected by allowing for more strategic behaviors during the negotiation
process as the prosumers would be in better capacity to estimate available gains with their
partners and, therefore, anticipate the final agreement. The number of iterations necessary for
a bilateral trade to be settled would then decrease. In a similar way, one could inspire the
design of prosumers’ partnerships from matching algorithms. The structural complexity, so the
density of prosumers interaction graph, would then sink as the number of bilateral negotiations
initiated would be cut down. Another strong direction of communication reduction would be
to take advantage of the time continuous nature of most actors in the power system. Indeed,
all convergence speed results presented in this thesis have been obtained based on optimization
variable initial points set to zero. A deep analysis on the use of warm start strategies, even as
simple as persistence, may plummet the number of iterations and exchanged messages to reach
consensus. Of course, all these technical improvements would not completely suppress the ex-
change of information between prosumers. A better understanding of communication delays,
with more realistic communication network models for example, may allow to test further the
resilience of the negotiation mechanism when using asynchronous communications. This anal-
ysis could in turn open new strategies of improvement in which, for example, communication
delays would not be a liability but an advantage.

Naturally, this necessity of technical improvements to allow for large scale implementations
does not replace the need to refine the proposed methods to account for electricity markets’
specificities. Efficient computation wise, the exogenous peer-to-peer electricity market showed
vulnerabilities in the way the network charges should be defined to offer sufficient guarantees
of electrical network constraints’ respect. The use of historical data would for example help
the system operator to more accurately estimate the future power flows and thus provide
network charges more adapted to the current situation of the power system. But before this
more operational requirements, even the design of the power system’s zones can be questioned.
These same historical data analyses may also be able to answer to this question. In fact the
use of machine learning, Markov switching or time series techniques may also help improve
computation performances of the endogenous peer-to-peer electricity market as it would allow
the system operator to start the negotiation process with nodal network charges closer to their
final values. This would boost the endogenous negotiation process which main inconvenient
was a much slower convergence rate than its exogenous counterpart. In a way the use of
historical data analysis calls for an hybridization of the two approaches where the exogenous
method would be called less frequently, e.g. every several market time units, and update
exogenous network charges for the next following time steps. This would make a compromise
between the need to guarantee power system’s constraints and the necessity of negotiation’s
swiftness. Moreover, upgrading the endogenous peer-to-peer electricity market by the use of a
decentralized resolution of power flow equations may both improve the overall convergence rate
and foster more localized communications. In fact, these two characteristics not only lessen
the amount of traffic to carry but also reduce the amount of messages which have to transit
across the whole communication infrastructure. The decentralized resolution of power flows
would equally facilitate the resolution of large power systems where multiple system operators
must coordinate, not only because of interconnected transmission networks but also between
transmission and distribution system operators.

Whereas respect of power flow constraints is the foundation, peer-to-peer electricity markets
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must also satisfy other points for power systems’ stability and, therefore, their feasibility in
real world applications. Notably, the ability of peer-to-peer electricity markets to guarantee the
power balance at all times as well depends on their capacity to manage stochastic behaviors and
to compensate for unfulfilled commitments at the origin of misdispatches. Although promising,
the uncertainty allocations proposed in view of obtaining a decentralized peer-to-peer energy
and reserve market showed some gaps. Before refining them, there is a need for a deeper
analysis, e.g. on much larger cases, to identify whether the difficulties exposed in this thesis
are inherent to the proposed approaches or linked to the specifics of the small case on which
they were tested. Testing the proposed uncertainty allocations on larger and more realistic
cases may also be the occasion to see if they can be extended to highly correlated probability
distributions in a straightforward manner or if they need to be completed. Concurrently to
these studies, one could investigate the benefits of including storage units in such framework.
Especially, this would be the occasion to extend the current peer-to-peer energy and reserve
market formulation to multiple time steps and to implement strategies of storage management.
It would then be possible to analyze on the best economical compromise between large common
storage units and small localized ones. Moreover, the question of power system constraints and
reserves have been treated separately, but the final peer-to-peer electricity markets would have
to combine both issues. Naturally endogenous peer-to-peer market and peer-to-peer energy
and reserve market formulations are compatible as they are. Yet, the resulting endogenous
peer-to-peer energy and reserve market would solely guarantee power flow feasibility of energy
trades but not of reserves if they ever need to be engaged. Thus, there would be a need to
extend power system constraint formulations so that they encompass the eventual participation
of reserves to power flows.

Furthermore, the presence of storage units rises the question of how the presented peer-to-peer
market formulations could be extended to multiple time steps. As a matter of fact a simple
multiple time steps formulation has been proposed at the beginning of the manuscript but only
in a deterministic configuration where the social welfare was optimized over all time units at
the same time. Hence, the simple formulation results in a multiple time units dispatch decided
before the first time step, so at the image of the current day-ahead pool market. Yet, one could
operate on a gliding time window to constantly update its bilateral trades such as allowed by
the current intraday market. It may be interesting to study a peer-to-peer electricity market
on a gliding trading window or, even more, to not only negotiate on quantities/fluxes but also
length of the time frame during which the quantity/flux is valid. In such case each bilateral
trade would have its own time window. Of course such framework would have to account for
past trades that are still active. The same negotiation mechanism would thus start before
each market time unit in which prosumers would mostly be looking for recourse trades to refine
their commitments or occasionally negotiate a new long term window trade. In consequence this
framework would be the first step towards a continuous peer-to-peer electricity market where
prosumers can asynchronously initiate a new negotiation whenever they desire. Aside from this,
it may be interesting to apply the proposed generalized coordination problem to a coupled multi-
energy market formulation such as a peer-to-peer electricity, heat and gas market. A coupled
multi-energy market like this would greatly improve the interactions between energy vectors
and may allow to consolidate each of them by using strengths of the others and, more simply,
enable prosumers at interfaces to optimize their production or consumption process. On a more
general level, the advances developed in this thesis for the particular case of electricity markets
may straightforwardly be applied to the generalized coordination problem. Nevertheless, other
theoretical developments may be necessary. For now, the conditions guaranteeing convergence
and optimality of the proposed decentralized solving algorithm are solely satisfied for the small
family of convex coordination problems. Yet the good performances of the non-convex AC
endogenous negotiation mechanism questions the possibility of extending these conditions to
other families of non-convex coordination problems, e.g. quadratically constrained quadratic
problems such as the AC endogenous peer-to-peer electricity market. In addition, extending the
conditions of convergence and optimality to the family of integer problems would largely extend
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the range of applications. For example, this would allow to apply the proposed negotiation
algorithm to non-fluid commodity markets, i.e. markets which goods are transported discretely
such as in containers or in cargoes.
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