Interference cancellation in MIMO and massive MIMO systems - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Interference cancellation in MIMO and massive MIMO systems

Annulation d’interférences dans les systèmes MIMO et MIMO massifs (Massive MIMO)

Résumé

MIMO systems use sensor arrays that can be of large-scale (massive MIMO) and are seen as a potential candidate for future digital communications standards at very high throughput. A major problem of these systems is the high level of interference due to the large number of simultaneous transmitters. In such a context, ’conventional’ orthogonal pilot design solutions are expensive in terms of throughput, thus allowing for the so-called ’blind’ or ’semi-blind’ channel identification solutions to come back to the forefront as interesting solutions for identifying or deconvolving these MIMO channels. In this thesis, we started with a comparative performance analysis, based on CRB, to quantify the potential size reduction of the pilot sequences when using semi-blind methods that jointly exploit the pilots and data. Our analysis shows that, up to 95% of the pilot samples can be suppressed without affecting the channel estimation performance when such semi-blind solutions are considered. After that, we proposed new methods for semi-blind channel estimation, that allow to approach the CRB. At first, we have proposed a SB estimator, LS-DF which allows a good compromise between performance and numerical complexity. Other SB estimators have also been introduced based on the subspace technique and on the ML approach, respectively. The latter is optimized via an EM algorithm for which three reduced cost versions are proposed. In the case of a specular channel model, we considered a parametric estimation method based on times of arrival estimation combined with the DF technique.
Les systèmes de communications MIMO utilisent des réseaux de capteurs qui peuvent s’étendre à de grandes dimensions (MIMO massifs) et qui sont pressentis comme solution potentielle pour les futurs standards de communications à très hauts débits. Un des problème majeur de ces systèmes est le fort niveau d’interférences dû au grand nombre d’émetteurs simultanés. Dans un tel contexte, les solutions ’classiques’ de conception de pilotes ’orthogonaux’ sont extrêmement coûteuses en débit utile permettant ainsi aux solutions d’identification de canal dites ’aveugles’ou ’semi-aveugles’ de revenir au-devant de la scène comme solutions intéressantes d’identification ou de déconvolution de ces canaux MIMO. Dans cette thèse, nous avons commencé par une analyse comparative des performances, en nous basant sur les CRB, afin de mesurer la réduction potentielle de la taille des séquences pilotes et ce en employant les méthodes dites semi-aveugles. Les résultats d’analyse montrent que nous pouvons réduire jusqu’à 95% des pilotes sans affecter les performances d’estimation du canal. Nous avons par la suite proposé de nouvelles méthodes d’estimation semi-aveugle du canal, permettant d’approcher la CRB. Nous avons proposé un estimateur semi-aveugle, LS-DF qui permet un bon compromis performance / complexité numérique. Un autre estimateur semi-aveugle de type sous-espace a aussi été proposé ainsi qu’un algorithme basé sur l’approche EM pour lequel trois versions à coût réduit ont été étudiées. Dans le cas d’un canal spéculaire, nous avons proposé un algorithme d’estimation paramétrique se basant sur l’estimation des temps d’arrivés combinée avec la technique DF.
Fichier principal
Vignette du fichier
edgalilee_th_2019_ladaycia.pdf (2.19 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03117139 , version 1 (20-01-2021)

Identifiants

  • HAL Id : tel-03117139 , version 1

Citer

Abdelhamid Ladaycia. Interference cancellation in MIMO and massive MIMO systems. Networking and Internet Architecture [cs.NI]. Université Sorbonne Paris Cité, 2019. English. ⟨NNT : 2019USPCD037⟩. ⟨tel-03117139⟩
215 Consultations
207 Téléchargements

Partager

Gmail Facebook X LinkedIn More