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Introduction

General context

In modern turbofan engines, fan noise is one of the main noise sources due to the constant
increasing of engines bypass ratio for fuel burn reduction purposes. Since the air traffic has
known a great expansion in the last decades, and especially since the recent events that nega-
tively impacted the aeronautic industry, the environment problematic became a main focus for
all protagonists. In particular, aircraft noise represent a significant interest for the aeronautic
community whether it is a question of ground impact or customer comfort. Moreover, the certi-
fication of aircraft is increasingly strict in terms of noise pollution, and forces engine and aircraft
manufacturers to work in early phases of the aircraft development on noise reduction solutions,
way before the aircraft first flight. As fan noise is characterized by broadband and tonal compo-
nents, acoustic liners (acoustic treatments) are introduced for their effectiveness in mitigating
both components. The tonal component is reduced by a resonance effect, while broadband noise
is tackled by dissipation effects due to viscosity effects. Both dissipation effects are tuned on
specific frequencies by modifying the liner geometry or intrinsic properties.

In order to be efficient, namely to absorb the fan noise, liners have to be studied in their operating
environment, for several flight conditions that consist in specific engine rotation speeds, aircraft
trajectories, and thus, thermodynamic conditions. For that purpose, simulations issued from
prediction numerical tools are extensively used, since experiments cannot be considered for
obvious costs reasons.
From the theory of acoustic propagation in a fluid flow written by authors such as Lighthill
[30, 31] who gave birth to the aeroacoustics field of research, Rienstra [20] who developed the
theory of acoustic propagation in ducts, and many others which contributed to the development
of fluid dynamic [27, 37] or acoustics [9, 45], these prediction numerical tools have been created
and constantly improved since the last century with the work of authors such as Jones [25] on
the aeroacoustic propagation, Tam [61, 64, 63, 62] on computational aeroacoustic matters such
as the acoustic boundary conditions, and others [73, 16, 14, 19]. For such prediction numerical
models, the flow behaviour inside and outside the nacelle is characterized using computational
fluid dynamics tools ([70, 33]), and allows for knowing the thermodynamical state of the fluid
in which the acoustic perturbation propagates. Some works have been devoted to acoustic noise
sources generated by the flow itself such as Bailly and Juvé [5, 6] in which a stochastic noise
generation process is solved using linearized Euler equation. In the present work, acoustic source
terms are neglected as the fan acoustic excitation is accounted for under the form of a duct modal
expansion.
In the framework of nacelle intake liners performance prediction, several working axes can be
drawn.

1) Noise generation, propagation and transmission in a moving fluid In order to
understand the mechanisms responsible for the noise production, some studies have been carried
out such as [3, 20, 29, 16] on fan noise propagation in duct, and [14] on the transmission/radiation
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of sound and vibration. This axis is of major importance since knowing the phenomena and
mechanisms responsible for acoustic noise in the nacelle allows for developing solutions that are
more efficient in mitigating it. The noise generation, which in our case mainly concerns the
study of the interaction between a moving fluid and moving mechanical parts such as the fan or
the engine internal systems, its propagation in a ducted environment for which the interaction
between the flow and the wall, under the form of a boundary layer is of major importance when
studying lined environments, and finally the transmission/radiation phenomenon can be studied
separately and are not in the framework of this thesis.

2) Acoustic treatments as mechanical systems A second axis is related to the mechanical
system that characterizes the liner itself. Such a mechanical system is an assembly of several
components for which the dissipation phenomena are to be well-modeled so it can be designed to
optimimal at specific frequencies (tunable to specific frequencies). The main quantity used for
characterizing a liner is its acoustic impedance. The theory of impedance calculation has been
introduced by Guess [18] for the mathematical formulation of perforations, or Parrott, Jones,
and Watson [43, 24, 23] on the assembly of several parts and the effects of liner geometry on its
acoustic impedance. In presence of a moving fluid, the dissipation phenomena are more complex
and are studied by several authors, especially at NASA and ONERA, using experiments ([8, 47,
65, 74, 75, 76]), and/or simulations, such as CFD [69, 51, 36, 34, 72, 12, 48] or computational
aeroacoustic codes (CAA) [13, 44, 71, 73].

3) Acoustic absorption using liners, and liner performance A final axis concerns the
absorption of acoustic perturbation in lined ducts in presence of a moving fluid. This axis is
devoted to the optimization of such liners in their operating environment in order to maximize
their ability to absorb the noise produced by the fan. Studies have been carried out on optimiza-
tion methods [50, 26, 11, 68] in order to improve their effectiveness in finding the combination
of design parameters that is the most adequate to tackle a specific noise frequency range. These
improvements concern the numerical tools used, the design parameters that are the most im-
pacting, or the choice of representation for the fan acoustic excitation. In [26], the interest
of an axially-segmented liner instead of a uniform one is demonstrated, using a multi-modal
representation of the fan noise, as it is done in the present work.

Motivations and goals

As the design of liner systems is frozen in early stages of an aircraft development, it exists a
non-negligible variability on the operating environment. This variability directly impacts the
design of liners by inducing large discrepancies on the quantities used for its design. Moreover,
each time these quantities are updated due to the increased maturity of the aircraft program,
lined surfaces are to be reoptimized in order to correctly respond to these updates, as well as ver-
ifying that the previous optimum design is still up to date. The updating phase thus represents
important costs in terms of computational time as well as workforce time. These costs could be
avoided, in a certain measure, by accounting for such a variability in early phases of the liner
design. This is the main problematic of the present work. As this external variability directly
impacts the environment of the liner, and more generally, the acoustic response of the lined
system for which the flow is highly dependant on the environment (thermodynamic quantities
such as the mean pressure, velocity, density of the fluid), the computational modeling of the
liner acoustic performance is uncertain.

In order to quantify and account for such an uncertain nature, a robust design of the liner is
carried out, by quantifying the overall uncertainty that lies within the liner design computational
process. The uncertainty quantification needs to be performed in a well-defined mathematical
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framework. The state-of-the-art computational aeroacoustic model of nacelle liners performance
is an industrial numerical code, Actran/TM, which has to be extensively studied so as to exhibit
the main components that are subject to the overall uncertainty. This first step is fundamental
in the framework of robust design and is considered as a challenge since the thesis work is ar-
ticulated around such an unknown system.

Once the state-of-the-art computational model is fully defined, a stochastic modeling of uncer-
tainties is introduced and grafted on the computational model. This stochastic modeling allows
for simulating the previously mentioned external variability, by accounting for the uncertainty
that lies within the model (modeling errors and model parameters errors), through parametric
and nonparametric probabilistic approaches of uncertainties. For instance, the parametric prob-
abilistic approach of uncertainties can be used for analyzing the stochastic acoustic response of
the system for which some parameters, such as the aircraft flight conditions, the liner geometry,
or the fan excitation definition, are modeled by random variables. Then, the propagation of un-
certainties in the system is analyzed using the computational model and stochastic solver, such
as the Monte Carlo method. The acoustic response is then random and the quantification of
uncertainties consists in estimating statistics, such as the mean, the variance, or the confidence
regions associated with a certain confidence level of quantities of interest. From these statistical
information, the robustness of a given liner design towards a simulated variability on its per-
formance model can be defined, in addition to the state-of-the-art liner acoustic performance.
This information, coupled to the performance information, allows for knowing the propensity
of a given liner design for maintaining its nominal performance when its environment is chang-
ing in a predefined range of variation accounted for by the level of uncertainty imposed on the
stochastic model. Then, making a compromise between performance and robustness, the liner
design can be chosen. The level of uncertainty is to be identified, prior to the optimization step,
using experimental data for example.

The general nonparametric and parametric probabilistic approaches of uncertainties, their prop-
agation, and their quantification solving statistical inverse problems can be found in [17]. Some
works based on the use of the parametric probabilistic approach of uncertain parameters, devoted
to uncertainty quantification for the liner impedance in presence of a flow have been carried out
in the last decade such as Jones [23] on a two-parameter liner impedance model and Brown [8] on
the test bench used at NASA for liner impedance measurements. In the same framework, other
also worked on the uncertainty quantification of liner impedance eduction methods such as Nark
[39] and Zhou [77] and the uncertainty on liner performance as done by Robinson [50]. Never-
theless, to our knowledge, uncertainty quantification in liner performance aeroacoustic models
has never been undertaken in the past. For that, the nonparametric probabilistic approach of
modeling errors [60] must also be used for taking into account model uncertainties.

The main goals of this thesis work can be summarized as follows.

1. Development of the fundamental equations for the convected acoustic propagation model
in lined ducts, on which Actran/TM is based. Construction of the boundary value problem
and its weak formulation in order to construct the computational aeroacoustic model. Use
of the finite element and infinite element methods for constructing the computational
models.

2. Formulation of a reduced-order computational model that is adapted to the implementation
of model uncertainties based on the use of random matrix theory.

3. Adaptation of the code to an interface problem focused on the liner using the reduced-order
model.
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4. Development of an adapted probabilistic model for main uncertain operators and the fan
excitation.

5. Identification of the hyperparameters that control the probabilistic models by solving sta-
tistical inverse problems with experimental measurements.

6. Robust optimization of liners in presence of the previously identified probabilistic models
of uncertainties.

Thesis outline

Mathematical framework and computational model

The present work is devoted to the construction of such a robust optimization framework. A first
Chapter is focused on the mathematical background on which the computational aeroacoustic
model of nacelle intake liner performance (Actran/TM) is constructed. We start from the
governing equations for the acoustic propagation in lined ducts in presence of a moving fluid.
The discretization of such a problem in a computational framework using finite and infinite
elements is performed. The degrees of freedom of the computational model are organized in
order that the system matrix allows for representing the liner surface and its interaction with
the flow. The fan acoustic excitation is also a crucial point that has to be investigated, because
the modal expansion on duct modes is not well defined in terms of acoustic energy repartition
between each mode. The model reduction method that is employed, following the matrix-system
reorganization is described and allow to set a proper environment for the robust optimization,
for which main components are exhibited.

Uncertainty quantification

As previously explained, the modeling errors are taken into account using the nonparametric
probabilistic approach of model uncertainties induced by modeling errors [54, 57, 60] and the
parametric probabilistic approach is used for uncertain parameters (see for instance [17, 60]).
The use of these probabilistic approaches to structural acoustics and vibration can be found in
[40, 41]. The proposed construction is extensively detailed in Chapter 2. The main components of
the computational model that have been exhibited in the first chapter are adequately randomized
using a proper modeling, constructed by respecting the physical and energetic properties of each
component, such as the energy conservation and dissipation properties. Then, the stochastic
computational model is operated and a sensitivity study of the acoustic response towards each
source of uncertainty is carried out in Chapter 4. This makes it possible to understand and
predict the behavior of the model subjected to variability, under the form of uncertainties.
Statistical inverse problems are solved for identifying the hyperparameters of the probabilistic
models using experimental measurements. The main goal is then to draw confidence regions
from the stochastic acoustic responses and try to frame a maximum of experimental points
inside the confidence region, and that, for each one of the sources of uncertainties. This is one
of the most important steps of this work since the stochastic model physical representativeness
is extensively studied, and since the identified levels of uncertainties are set at this stage, for the
rest of the robust optimization process.

Optimization of liners in presence of uncertainties

Finally, the last Chapter is devoted to the robust optimization of lined surfaces in presence of
the probabilistic models of uncertainties, previously identified, and constitutes the final step
and objective of this work. During this optimization, two different liners are used, for which
the intrinsic properties or design parameters are very different. A first step consists in choosing,
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from the available design parameters, the ones that are the most impacting the liner acoustic
performance. Then, a specific range for each parameters is defined by taking a proportion of
the nominal value (which corresponds to the optimum found by Airbus) from each side. A map
is drawn from the stochastic results computed for each liner design, and the optimum in terms
of performance is deduced, as well as the optimum in terms of robustness.

Scientific interest, novelties, and engineering aspects for aeronau-
tical industries

This work is devoted to the improvement of optimization methods for liner performance by
giving, not only an insight on the performance of a given liner design, but also on its ability to
keep its acoustic performance stable towards an external variability.
(i) A model reduction method has specifically been developed by Free Field Technologies in
Actran in order to be able to implement the nonparametric probabilistic model of uncertainties
in the aeroacoustic computational model for liner performance. Moreover, this work provides a
development of a stochastic reduced-order model adapted to the interface problem between an
acoustic liner and the acoustic perturbation created by the fan rotation, convected by a moving
fluid. The nonparametric stochastic modeling is used to construct such a stochastic model,
which is then adapted to the accounting of modeling errors within a computational model used
for industrial purposes, as well as the model parameters errors that are induced by an external
variability.
(ii) A parametric probabilistic model is developed to take into account uncertainties in the fan
excitation, that is an important point.
(iii) A methodology for the identification of hyperparameters of the probabilistic models is
proposed using experimental measurements.
(iv) A robust optimization of liners is proposed using the stochastic aeroacoustic computational
model for a very complex system based on the use of high-dimensional fidelity computational
model.
(v) The results obtained are completely novels in the framework of the robust design of acoustic
treatment for nacelle noise reduction.
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Nomenclature

Abbreviations

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulations

LES Large Eddy Simulations

NLF NonLinear Factor

POA Pourcentage of Open Area

QoI Quantity of Interest

Symbols

[AI ] Random imaginary part of the generalized Aeroacoustic matrix

[AR] Random real part of the generalized Aeroacoustic matrix

[ZNS] Random nonsymmetric part of the generalized Liner matrix

[ZI ] Random imaginary part of the generalized Liner matrix

[ZSS
I ] Random skew-symmetric imaginary part of the generalized Liner matrix

[ZS
I ] Random symmetric imaginary part of the generalized Liner matrix

[ZR] Random real part of the generalized Liner matrix

[A`] Aeroacoustic matrix condensed on liner dofs

[KL] Stiffness matrix of the pellicular domain

[ML] Mass matrix of the pellicular domain

[Z`] Liner matrix condensed on liner dofs

[A] Generalized aeroacoustic matrix

[AI ] Imaginary part of the generalized Aeroacoustic matrix

[AR] Real part of the generalized Aeroacoustic matrix

[Z] Generalized Liner matrix

[ZNS] Nonsymmetric part of the generalized Liner matrix

[ZI ] Imaginary part of the generalized Liner matrix

13



[ZSS
I ] Skew-symmetric imaginary part of the generalized Liner matrix

[ZS
I ] Symmetric imaginary part of the generalized Liner matrix

[ZR] Real part of the generalized Liner matrix

[σ] Second-order stress tensor

[τ̃ ] Second-order viscous stress tensor

[εif] Transfer matrix of zeros and ones selecting nonzeros dofs related to fan excitation

[Ci] Damping matrix of the inner domain finite element discretization

[Co] Damping matrix of the outer domain infinite element discretization

[H] Coupling matrix between inner and outer domain finite elment discretization

[I] Second-order identity tensor

[Ki] Stiffness matrix of the inner domain finite element discretization

[Ko] Stiffness matrix of the outer domain infinite element discretization

[Mi] Mass matrix of the inner domain finite element discretization

[Mo] Mass matrix of the outer domain infinite element discretization

[Zi] Liner impedance matrix of the inner domain finite/infinite element discretization

c+ Vector of incident duct modes amplitudes

g External acceleration vector induced by a gravity field

n Outward unit normal of surface Γ

nduct Outward unit normal of surface Γduct

nf Outward unit normal of surface Γf

nf Vector of the nonzeros dofs of ni

nho Outward unit normal of surface Γho

nh Outward unit normal of surface Γh

nio Outward unit normal of surface Γio

ni Excitation vector of the discretized inner domain

q Generalized coordinates of the Reduced-Order Model

r Space three-dimensional vector

v Fluctuating fluid velocity

v0 Steady flow velocity

vΓ(r, ω) Wall acoustic velocity for the liner (Myers boundary condition)

v∞ Uniform flow velocity
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F` Excitation vector condensed on liner dofs

Sduct Cross section of the duct domain Ωduct

∆xy Laplacian in the transversal plane (x, y)

Γ Acoustic treatments surface

Γduct Semi-infinite duct surface

Γf Surface for acoustic sources induced by the fan

Γho Outer hardwall surface

Γh Hardwall part of the model

Γio Interface between inner and outer domains

κ Fluid heat conductivity

F Generalized excitation vector

ω Angular frequency

Ωduct Duct domain of the intake acoustic problem

Ωi Inner domain of the intake acoustic problem

Ωo Outer domain of the intake acoustic problem

∂Ωduct Duct domain boundary

∂Ωi Inner domain boundary

∂Ωo Outer domain boundary

ψi Acoustic velocity potential in the inner domain

ψo Acoustic velocity potential in the outer domain

QoI Vector of the quantities of interest

ρ Fluctuating mass density

ρ0 Steady flow mass density

ρ∞ Uniform flow mass density

ṽ Fluid velocity

ρ̃ Fluid mass density

B̃ Fluid stagnation enthalpy

h̃ Fluid enthalpy

p̃ Pressure field

s̃ Fluid entropy

T̃ Fluid temperature field
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X̃ Thermodynamic variable, function of space and time

ϕ Acoustic velocity potential in the duct domain

ϕα(x, y) Eigenfunction of a duct mode α

B Fluctuating stagnation enthalpy

B0 Steady flow stagnation enthalpy

c Speed of sound

cα Amplitude of a duct mode α

h Fluctuating enthalpy

h0 Steady flow enthalpy

j Imaginary unit

kxyα Transversal wavenumber of a duct mode α

kzα Axial wavenumber of a duct mode α

M Local Mach number

M∞ Mach number at the infinite (uniform flow)

Nd Number of cut-on modes

Nf Number of dofs in the discretized fan surface

Ni Number of dofs in the discretized inner domain

No Number of dofs in the discretized outer domain

p Fluctuating pressure field

p0 Steady flow pressure field

R Norm of the radial unitary vector r

s Fluctuating entropy

s0 Steady flow entropy

Sf (r, ω) Acoustic source term induced by then fan rotation

T Fluctuating temperature field

t Time scalar variable

T0 Steady flow temperature field

X Fluctuating component of a thermodynamic variable

x Cardinal space coordinate

X0 Static component of a thermodynamic variable

y Cardinal space coordinate
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z Cardinal space coordinate

Z(r, ω) Liner local impedance

ZI(r, ω) Liner local reactance

ZR(r, ω) Liner local resistance
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Abstract: The problem to be solved is firstly introduced by describing the acoustical
system that is considered. The strategy for solving the problem is then presented. The physi-
cal/mathematical framework is introduced by presenting the fundamental equations for linearized
acoustic propagation in a moving fluid, related to nacelle-noise reduction. The boundary value
problem, its weak formulation, and the computational model obtained by finite element and in-
finite element discretization are presented. A reduced-order computational model is especially
constructed, which allows for exhibiting the impedance matrix of the liner and the aeroacoustics
that will be randomized in order to take uncertainties into account. The fan excitation model
is also presented in order to be adequately randomized as well. Finally, the formulation of the
robust design optimization of nacelle noise-reduction technology is given.
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CHAPTER 1. COMPUTATIONAL MODEL AND FUNDAMENTAL EQUATIONS

1.1 Problem to be solved

Acoustic liners in both intake and bypass sections of the engine are effective in mitigating noise
generated by the fan. In order to be efficient, namely to absorb the fan noise, liners have to
be studied in their operating environment. For this purpose, the acoustic problem has to be
written so as to model liners acoustical behavior, exposed to the fan acoustical excitation.

Liner

Intake

BypassFan

Figure 1.1: Illustration of the mechanical problem

From a physical point of view, the mechanical systems that are generally considered are the lined
intake and the lined bypass represented on a schematic view of the nacelle (Fig. 1.1). These two
acoustic systems are gathered into one domain called inner domain, separating the unsteady
flow (deformed by the plane passage) in the near-field from the uniform flow (coming from the
infinite and representing the plane movement through the air) in the far-field. Both systems are
acoustically excited by the fan rotation. In the present work, only the intake acoustic system
excited by the fan rotation is studied.

1.2 Strategy for solving the problem

The most general approach to aeroacoustic problems consists in solving the compressible Navier-
Stokes equations [9] through a direct numerical simulation (DNS) or Large Eddy Simulation
(LES) techniques. In this approach, the largest scales are resolved, from large to small (the
viscous scale for example). However, because of their numerical cost that grows exponentially
when computing propagation problem over long distances, studies are limited to low Reynolds
number.
Solving engineering problems thus requires an alternative approach such as the acoustic analogy
proposed by Lighthill [30]. Acoustic analogy assumes that noise generation and propagation are
decoupled. This implies that flow-generated noise does not impact the flow. The solution is
obtained in two steps: a first one computing aerodynamic sources, according to Möhring’s [37]
analogy, using the Computational Fluid Dynamics (CFD); and a second one propagating the
acoustic waves.

As explained above, this work is devoted to the analysis of the acoustic propagation in a moving
fluid. The acoustic sources generated by the flow itself are not considered. The reason why is
that the noise induced by the flow is negligible with respect to the fan-generated noise.
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1.3. CONVENTIONS AND NOTATIONS

The inhomogeneous nature of the fluid affects the acoustic wave propagation (convection effect,
refraction, etc.) It also produces aerodynamic noise that is not accounted for in this work as
explained above. Möhring’s comprehension and development of Lighthill’s work [37] takes flow
inhomogeneities such as vortices and entropy variations into account under the form of flow-
induced acoustic sources. He also uses a convected wave operator to represent the propagation
in a moving fluid, whereas Lighthill uses the classic Helmholtz wave operator in a steady flow [30].

Since aeroacoustic sources are not taken into account in this work, and since the walls are fixed
(no wall displacement), the formulation for the acoustic propagation in a moving fluid could
be obtained by using the usual convected Helmholtz equation for which the velocity field of
the steady flow is computed by solving the Navier-Stokes equation. Consequently, the acoustic
equation could be derived from a direct linearization of the Navier-Stokes equation keeping only
the pressure mode (neglecting the entropy and the rotational modes). Nevertheless, since the
software development associated with this work is done in the framework of Actran/TM (chosen
for its effectiveness in solving industrial convected acoustic problems), that is the general code
taking into account acoustic sources, we have used the same formulation with the stagnation
enthalpy B. Obviously, the two types of formulation give the same convected Helmholtz equation
formulated using the acoustic velocity potential.

1.3 Conventions and notations

Thermodynamic variable X̃ that is a function of space and time, is written as the sum of a
static component, corresponding to the local fluid equilibrium, denoted by the subscript X0,
and the corresponding fluctuating component is noted X. Interacting fluctuating quantities
can be turbulent associated with viscosity and rotational effects, entropic related to thermal
conductivity, and acoustic induced by the fluid compressibility.
The system is studied in a cartesian space defined by the coordinates (0, x, y, z). The space
dimension is accounted for under the form of a three-dimensional vector r = (x, y, z) and the
time dimension as a scalar t.
The operator nabla is defined in such a space as ∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

1.4 Fundamental equations for fluid dynamics

In this section, the fundamental equations for fluid dynamics are presented. From these funda-
mental equations, specific equations related to steady flow computation and convected acoustic
propagation are derived. The fundamental equations can be found in [27] and another presen-
tation reformulated for computational aeroacoustic can be found in [19].

1.4.1 Mass conservation equation

Considering that there is no pulsating acoustic source, which means that no mass is added to
the system (right-hand side of the equation is then equal to zero), then the mass conservation
equation is written as,

∂ρ̃

∂t
+ ∇·(ρ̃ ṽ) = 0 , (1.1)

in which ρ̃ is the mass density of the fluid and ṽ = (ṽx, ṽy, ṽz) is the fluid velocity.
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1.4.2 Momentum conservation equation

Introducing the second-order stress tensor [σ] = −p̃[I] + [τ̃ ] in which [τ̃ ] is the second-order
viscous stress tensor, p̃ is the pressure field, and [I] the second-order identity tensor, the Navier-
Stokes equation can be written [19] as,

∂ṽ
∂t
− ṽ× (∇× ṽ) = −1

ρ̃
∇p̃−∇

(
||ṽ||2

2

)
+

1

ρ̃
∇·[τ̃ ] + g , (1.2)

in which the vector g is the external acceleration induced by a gravity field.

1.4.3 Energy conservation equation.

Using Fourier’s law, in which κ is the heat conductivity of the fluid,

q = −κ∇T̃ , (1.3)

the energy equation can be written [27] as,

∂

∂t

(
1

2
ρ̃ ṽ2 + ρ̃ h̃− p̃

)
= −∇·

(
ρ̃ ṽ
(
ṽ2

2
+ h̃

)
− ṽ [τ̃ ]− κ∇T̃

)
+ ρ̃ ṽ·g , (1.4)

where ρ̃ ṽ · g represents the power of the gravity field, h̃ = ε̃+
p̃

ρ̃
is the fluid enthalpy, and T̃ is

the temperature field.

1.5 Transformations of fundamental equations

The system of fundamental equations described in Section 1.4 is transformed in order to obtain
a suitable form for solving the acoustic problem.

1.5.1 Transformation of the momentum conservation equation

By introducing the entropy thermodynamic law,

dh̃ = T̃ ds̃+
1

ρ̃
dp̃ , (1.5)

we can write,

T̃ ∇s̃ = ∇h̃− ∇p̃

ρ̃
. (1.6)

In addition, introducing the stagnation enthalpy,

B̃ = h̃+

(
||ṽ||2

2

)
, (1.7)

which is the enthalpy that the fluid would reach if it were brought to zero speed by a steady,
adiabatic process with no external work. The momentum conservation equation (1.2) can be
rewritten as,

ρ̃

(
∂ṽ
∂t

+ ∇B̃

)
= ρ̃ T̃ ∇s̃+ ρ̃ ṽ× (∇× ṽ) + ∇[τ̃ ] + ρ̃g . (1.8)
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1.6. STEADY FLOW COMPUTATION

1.5.2 Transformation of the energy conservation equation

Using the definition of the stagnation enthalpy B̃ Eq. (1.7) and its convective derivative
DB̃

Dt
=

∂B̃

∂t
+ ṽ·∇B̃, such as,

DB̃

Dt
=

∂

∂t

(
h̃+
||ṽ||2

2

)
+ ṽ·∇

(
h̃+
||ṽ||2

2

)
, (1.9)

the energy conservation equation (1.4) can be written as,

ρ̃
DB̃

Dt
− ∂p̃

∂t
= ∇·(ṽ [τ̃ ]) + ∇·

(
κ∇T̃

)
+ ρ̃ ṽ g . (1.10)

1.6 Steady flow computation

For a problem involving a convected fluid, steady thermodynamic values such as p0,v0, and ρ0,
are needed to compute the acoustic propagation. These values are computed using Computa-
tional Fluid Dynamics (CFD) for steady flows.
The CFD solver used is based on the compressible Euler equations, which are derived from the
Navier-Stokes equations [27], in which the viscous, thermal, and gravity effects are neglected.
Euler equations are defined as follows.

The mass conservation equation is written as,

∂ρ̃

∂t
+ ∇·(ρ̃ ṽ) = 0 . (1.11)

The momentum conservation equation is written as,

∂ṽ
∂t
− ṽ× (∇× ṽ) = −1

ρ̃
∇p̃−∇

(
||ṽ||2

2

)
. (1.12)

The energy conservation equation is written as,

∂

∂t

(
1

2
ρ̃ ṽ2 + ρ̃ h̃− p̃

)
= −∇·

(
ρ̃ ṽ
(
ṽ2

2
+ h̃

))
. (1.13)

1.7 Linearized equations for acoustic propagation in a moving
fluid

This section presents the derivation of the wave equation, needed to describe the evolution of
the stagnation enthalpy throughout the acoustic model. A set of hypotheses is used to describe
the acoustic fluid, as it has been made for the flow. These hypotheses are defined hereinafter.

The fluid accounted for is the air assimilated to an ideal gas characterized by a specific mass

ratio γ =
Cp
Cv

= 1.4. The boundary layer formed on the wall due to viscous effects is not ac-

counted for. It should be noted that such an assumption can be made in the case where the
pressure fluctuations induced by the boundary layer are small compared to the acoustic pressure
fluctuations induced by the fan rotation [29].

It is known that a major problem in aeroacoustic is that the equations are nonlinear (as noted by
Rienstra and Hirschberg in [20]). This implies that an exact general solution of these equations
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is not available. Acoustics is a first-order approximation (linear approximation) assuming that
the acoustic perturbations are small compared to the mean flow quantities. This means that
p � p0, ρ � ρ0, ‖v‖ � ‖v0‖, T � T0, and s � s0, in which p0, ρ0, v0, T0, and s0 correspond
to the steady flow values, where p, ρ, v, T , and s are small fluctuations. This leads to neglect
second-order terms and beyond (non linear effects). Nevertheless, in [29], Lidoine explains that
this assumption is only valid for acoustic fields of intensity inferior to 140 dB. For higher
intensity level, the nonlinear effects cannot be neglected. All sources taken into account are
therefore supposed to respect this limitation.

1.7.1 Convected wave equation

In order to write the convected wave equation describing the pressure behavior using the stag-
nation enthalpy B̃ as variable, a set of hypotheses is introduced as follows.

• No aerodynamic acoustic source terms are considered in the domain. The acoustic system
is only excited by the fan rotation (boundary condition).

• No heat production due to viscous dissipation occurs in the flow.

• The system is considered adiabatic, no heat transfer occurs in the flow.

• Gravity forces are neglected.

• The flow is locally isentropic (entropy can vary in space but not in time)

Following the above hypotheses (neglecting viscous stresses, heat conduction, and gravity),
Eq. (1.10) yields the relation between pressure and stagnation enthalpy,

DB̃

Dt
=

1

ρ̃

∂p̃

∂t
. (1.14)

Moreover, Eq. (1.8) is simplified as,

ρ̃

(
∂ṽ
∂t

+ ∇B̃

)
= ρ̃ ṽ× (∇× ṽ) + ρ̃ T̃ ∇s̃ . (1.15)

We introduce the time variations of the fluid density related to entropy variation,

∂ρ̃

∂t
=

(
∂ρ̃

∂p̃

)
s̃

∂p̃

∂t
+

(
∂ρ̃

∂s̃

)
p̃

∂s̃

∂t
, (1.16)

and the speed of sound definition c,

c2 =

(
∂p̃

∂ρ̃

)
s̃

. (1.17)

Using Eqs. (1.14) and (1.17), Eq. (1.16) yields an equation between stagnation enthalpy B̃ and
density ρ̃,

∂ρ̃

∂t
=

ρ̃

c2

DB̃

Dt
+
∂ρ̃

∂s̃

∂s̃

∂t
. (1.18)

Using Eq. (1.18) and using the following identity,

∂(ρ̃ ṽ)

∂t
= ρ̃

∂ṽ
∂t

+ ṽ
∂ρ̃

∂t
, (1.19)

the term ρ̃
∂ṽ
∂t

can be replaced by
∂(ρ̃ ṽ)

∂t
− ṽ

∂ρ̃

∂t
in Eq. (1.15) as follows,
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∂(ρ̃ṽ)

∂t
− ρ̃ ṽ

c2

DB̃

Dt
− ∂ρ̃

∂s̃
ṽ
∂s̃

∂t
= ρ̃ ṽ× (∇× ṽ) + ρ̃ T̃ ∇s̃ . (1.20)

By taking the difference between the divergence of Eq. (1.20) and the time derivative of Eq. (1.1),
the wave equation can be written as,

∂

∂t

(
ρ̃

c2

DB̃

Dt

)
+ ∇·

(
ρ̃ ṽ
c2

DB̃

Dt
− ρ̃∇B̃

)
= R̃ , (1.21)

with R̃ gathering all aerodynamic source terms (entropy and vorticity sources),

R̃ = −∇·(ρ̃ ṽ× (∇× ṽ))−∇·
(
∂ρ̃

∂s̃
ṽ
∂s̃

∂t
+ ρ̃ T̃ ∇s̃

)
− ∂

∂t

(
∂ρ̃

∂s̃

∂s̃

∂t

)
, (1.22)

Eq. (1.21) and Eq. (1.22) are then rewritten following Möhring [37], based on Howe [4, 21] for a
high Reynolds and homentropic flow (the second and third terms in Eq. (1.22) are then neglected
since the entropy is constant), as,

D

Dt

(
1

c2

DB̃

Dt

)
− 1

ρ̃
∇ · (ρ̃∇B̃) =

1

ρ̃
∇ · (ρ̃v× (∇× v) , (1.23)

in which the right-hand side is 0, assuming that vorticity terms are neglected while using a duct
modal expansion for the acoustic excitation as explained in Section 1.8.2.1.

1.7.2 Linearization of the convected wave equation

The unsteady flow is linearized around the steady flow whose fields notations are indexed by 0
(as introduced in Section 1.6). Consequently, we write,

p̃(r, t) = p0(r) + p(r, t) the pressure,

ρ̃(r, t) = ρ0(r) + ρ(r, t) the density,

ṽ(r, t) = v0(r) + v(r, t) the vectorial velocity,

T̃ (r, t) = T0(r) + T (r, t) the temperature,

s̃(r, t) = s0(r) + s(r, t) the entropy,

B̃(r, t) = B0(r) +B(r, t) the stagnation enthalpy.

(1.24)

For writing simplicity, spatial and temporal dependencies are omitted hereafter.

Since the flow is homentropic, the gradient of B0 is always perpendicular to v0 as,

∇B0 = v0 × (∇× v0) , (1.25)

which imposes v0 ·∇B0 = 0. Neglecting R̃, using v0 ·∇B0 = 0, and
∂B0

∂t
= 0, the linearization

of Eq. (1.23) around ρ0, B0 and v0 yields,
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∂

∂t

[
ρ0

c2

(
∂B

∂t
+ v0 ·∇B + v·∇B0

)]
+ ∇·

[
ρ0 v0

c2

(
∂B

∂t
+ v0 ·∇B + v·∇B0

)
− ρ0∇B

]
= 0 .

(1.26)

Rearranging Eq. (1.26), the linearized convective derivative
D0

Dt
=

∂

∂t
+v0·∇ appears as follows,

∂

∂t

[
ρ0

c2

(
∂B

∂t
+ v0 ·∇B

)]
+ ∇·

[
ρ0 v0

c2

(
∂B

∂t
+ v0 ·∇B

)
− ρ0∇B

]
=

−ρ0

c2

∂

∂t
(v·∇B0)− ρ0 v0

c2
∇·(v·∇B0) . (1.27)

Since vorticity and entropy aeroacoustic source terms are neglected, as previously mentioned,
the vorticity terms in Eq. (1.27) are neglected (∇B0 is then zero) such as,

∂

∂t

(
ρ0

c2

D0B

Dt

)
+ ∇·

(
ρ0 v0

c2

D0B

Dt
− ρ0∇B

)
= 0 , (1.28)

which corresponds to the partial linearization explained in [28, 15], and which can be rewritten
using Möhring’s [37] and Howe’s [4, 21] formulations as,

D0

Dt

(
1

c2

D0

Dt

)
B − 1

ρ0
∇ · (ρ0∇B) = 0 . (1.29)

The linearization of Eq.(1.14) yields

ρ0
D0B

Dt
=
∂p

∂t
. (1.30)

1.7.2.1 Frequency formulation of the convected wave equation

In this work, the following convention of Fourier transform with respect to time t and to space
r is the following,

q(r, ω) =

∫
R
q(r, t)e−jωtdt , q(k, ω) =

∫
R3

∫
R
q(r, t)e−jωt+jk·rdr dt , (1.31)

in which j =
√
−1. For simplifying the writing, we use the same notation for q and for its

Fourier transform (no confusion is possible).

The harmonic convention associated with this Fourier transform convention is thus, q0e
jωt−jk·r

with ω in rad/s.

By taking the Fourier transform of Eq. (1.28) with respect to time t yields,

− ω2ρ0

c2
B +

jω ρ0

c2
v0 ·∇B + ∇·

(
jωρ0v0

c2
B +

ρ0 v0

c2
v0 ·∇B − ρ0∇B

)
= 0 . (1.32)

Taking the Fourier transformation of Eq. (1.30) with respect to t yields the equation that allows
for retrieving the pressure,

jωp = ρ0(jωB + v0 ·∇B) . (1.33)
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1.8. BOUNDARY VALUE PROBLEM FOR THE LINEARIZED ACOUSTIC PROPAGATION

1.8 Boundary value problem for the linearized acoustic propaga-
tion

The linearized convected wave equation defined by Eq. (1.32) is quite general. For a given
acoustic problem, the boundary conditions associated with Eq. (1.32) must be defined in order to
obtain a well-posed boundary value problem. For general geometry, this boundary value problem
cannot exactly be solved, and must be solved using numerical methods. For this purpose, the
weak formulation of the boundary value problem is constructed. This weak formulation allows
for introducing the boundary conditions. Then, the finite element method and the boundary
element method are used. The formulation of both methods lays on a specific formulation,
presented in the following section.

Definition of the acoustic problem geometry .

8

8

8

8

Figure 1.2: Inlet acoustic problem

Figure 1.2 presents the geometry of the inlet acoustic problem, in which R3 is the whole
domain, Ωi is the inner bounded open domain of R3 of boundary ∂Ωi = Γio ∪ Γh ∪ Γ ∪ Γf, and
Ωo = R3\Ωi is the outer unbounded open domain of R3, whose boundary ∂Ωo.

Definition of the geometry and boundary conditions for inner domain Ωi. The unit
normal to boundary ∂Ωi outward of domain Ωi is written nio for the part Γio, nh for the part
Γh, n for the part Γ, and nf for the part Γf. Part Γ of the boundary ∂Ωo = ∂Ωi is the coupling
interface between the acoustic part Ωi and the liner, while Γf is the part on which the fan
excitation is applied. The inner problem implies the use of the following boundary conditions,

• Γio (inner outer) represents a nonphysical interface between inner and outer domains, on
which the continuity condition is written for the acoustic velocity potential and for its
gradient.

• Γh (hardwall) corresponds to rigid or "hardwall" part characterized by a zero normal
acoustic velocity.
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• Γ (liner) corresponds to acoustic treatments characterized by their impedance.

• Γf (fan) corresponds to the part of the boundary on which act acoustic sources induced
by the fan.

Definition of the geometry and boundary conditions for outer domain Ωo. The
boundary ∂Ωo of Ωo is written as Γio ∪ Γho in which Γho = Γh ∪ Γ ∪ Γf (this means that
∂Ωo = ∂Ωi). The unit normal to boundary ∂Ωo outward of domain Ωo is written as, noi = −nio
for the part Γio and nho for the part Γho. For the acoustic wave propagation in the outer domain,
Γho corresponds to a rigid wall on which the normal acoustic velocity will be equal to zero.
The outer problem implies the use of the following boundary conditions,

• Γio (inner outer) is a nonphysical coupling interface between inner and outer domains, on
which the continuity is written for the acoustic velocity potential and for its gradient (note
that infinite boundary elements will be used on Γio for accounting for the effects of Ωo on
Ωi through the coupling interface Γio)).

• Γho (hardwall outer) corresponds to a rigid wall characterized by a zero normal acoustic
velocity.

Definition of the geometry and boundary conditions for the semi-infinite duct Ωduct.
A semi-infinite cylindrical duct Ωduct is connected to the inner domain Ωi (the subscript i refers
to the inner domain) for which the coupling interface is the fan plane Γf . The boundary ∂Ωduct
of semi-infinite domain Ωduct is written as ∂Ωduct = Γf ∪ Γduct in which Γduct is the cylindrical-
surface part of the boundary of Ωduct. It should be noted that this domain is only introduced
for generating the acoustic excitation induced by the fan and consequently, has to be viewed as
a "fictional domain" with respect to the formulation of the boundary value problem related to
Ωi ∪ Ωo. This is the reason why Ωo = R3\Ωi. In this semi-infinite duct, the sound field is the
sum of a given incident sound field (represented by symbol +) and an unknown reflected sound
field (represented by symbol -), which will be represented (projected) on the duct modes (see
Section 1.8.1.3). The wall of the boundary of Ωduct is rigid on which a zero normal acoustic
velocity is applied.

1.8.1 Boundary value problem in the inner domain for the inlet case

1.8.1.1 Convected Helmhlotz equation in Ωi

Introducing the function ψi =
−B
jω

, the linearized frequency formulation of the convected wave

equation defined by Eq. (1.32) can be written in Ωi as,

− ω2ρ0

c2
ψi +

jωρ0

c2
v0 ·∇ψi + ∇·

(
jωρ0v0

c2
ψi +

ρ0v0

c2
v0 ·∇ψi − ρ0∇ψi

)
= 0 . (1.34)

1.8.1.2 Pressure and acoustic velocity in Ωi

The pressure is given by Eq. (1.33) that is written as,

p = −jωρ0 ψi − ρ0v0 ·∇ψi . (1.35)

The acoustic velocity in Ωi is derived as follows. For the linearized acoustic problem, Eq. (1.8)
yields (∇B0 = 0 neglecting vorticity forces as in Eq. (1.27)),
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∂v
∂t

+ ∇B = 0 . (1.36)

Taking the Fourier transformation and taking B = −jωψi, we obtain,

v = ∇ψi . (1.37)

1.8.1.3 Boundary conditions on ∂Ωi = Γio ∪ Γh ∪ Γ ∪ Γf

Boundary condition on Γio. The continuity of the acoustic velocity potential and of its
gradient is written on Γio,

ψi = ψo , ∇ψi = ∇ψo , (1.38)

in which ψo is the acoustic velocity potential in the outer domain Ωo (see section 1.8.3).

Boundary condition on Γh. Boundary Γh is a rigid wall, called "hardwall", and conse-
quently, the boundary condition on Γh is written as,

∂ψi

∂nh
= 0 . (1.39)

Boundary condition on Γ. Acoustic treatment or liner is characterized by its acoustic ab-
sorption. The absorption value of a liner depends on the material properties, which is modeled
by its local impedance. A continuity of the normal acoustic velocity vΓ ·n of the wall and
the acoustic fluid is implied. The impedance characterizes the liner, which relates the acoustic
pressure p to the normal acoustic velocity vΓ ·n by the following equation (see Section 1.9),

p(r, ω) = Z(r, ω)vΓ(r, ω)·n(r) . (1.40)

In presence of a flow, the behavior of a liner is given by the Myers boundary condition [38]. At
the interface between the liner and the acoustic moving fluid (assumed inviscid and isentropic),
which is assimilated to an acoustic diopter, Myers considers in his paper the continuity of
normal Eulerian displacements. In [29], Lidoine starts from the continuity of Lagrangian normal
displacements, citing Poirée’s work, which gives a better physical representation of the problem
than the Eulerian representation. Using a mixed representation that allows for writing the
Lagrangian displacements as a function of the Eulerian coordinates linked to the flow, the
equation between v · n and vΓ · n is written as,

v · n =

(
−1 +

1

jω
v0 ·∇−

1

jω
n · (n ·∇)v0

)
(vΓ · n) , (1.41)

in which vΓ · n represents the normal acoustic velocity of the surface Γ assimilated to the liner.
From Eqs. (1.35), (1.37), (1.40), and (1.41), it can be deduced that

∂ψi
∂n

=

(
1− 1

jω
v0 ·∇ +

1

jω
n · (n ·∇)v0

)
1

Z
(jωρ0ψi + ρ0v0 ·∇ψi) , (1.42)

in which
1

Z
denotes the local admittance at point r and at frequency ω of the liner.

The local impedance Z(r, ω) can be written as

Z(r, ω) = ZR(r, ω) + jZI(r, ω) , (1.43)

in which the real part ZR(r, ω) is a resistance that is positive and where ZI(r, ω) can have any
sign.
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Boundary condition on Γf expressed in terms of the acoustic velocity potential in
Ωduct. The boundary condition on Γf will be taken into account in the weak formulation of the
boundary value problem in the inner domain Ωi (see Eq. (1.62) and Eq. (1.63)) by specifying
the value of ψi and ∇ψi such that,

ψi = ϕ , ∇ψi = ∇ϕ , (1.44)

in which ϕ is the acoustic velocity potential in the semi-infinite duct represented by the "fic-
tional" domain Ωduct, which will have to satisfy the boundary value problem in Ωduct, which is
detailed in Section 1.8.2. This acoustic velocity field will be represented on duct modes.

1.8.2 Boundary value problem in the semi-infinite duct for the inlet case and
duct modes

The fan excitation and the coupling condition on Γf will be represented on a family of acoustic
duct modes (see for instance [45] and [20]). The acoustic velocity field in Ωduct will be projected
on the family of acoustic duct modes and will allow (i) for ensuring the coupling between the
semi-infinite duct Ωduct (see Fig. 1.2) and the inner domain Ωi on boundary Γf , and (ii) for
representing the acoustic excitation produced by the fan. It should be noted that the duct
modes are explicitly known for a simple cross-section of the duct such as a circle, an annular
cross-section or a rectangle, and can be computed for a nonsimple geometry of the cross-section.

In this work, it is assumed that Ωduct is a straight cylinder with z-axis, for which its cross-section
is constant and consequently, independent of z.

1.8.2.1 Boundary value problem in Ωduct

In cartesian coordinates (x, y, z), the acoustic velocity field ϕ(x, y, z) for the acoustic propagation
in z-direction of the semi-infinite straight duct Ωduct of axis z with a constant cross-section, in
which the steady flow is assumed to be subsonic and uniform along the z-direction, verifies the
following convected Helmholtz equation,

∆xyϕ+ (1−M2)
∂2ϕ

∂z2
− 2jkM

∂ϕ

∂z
+ k2ϕ = 0 in Ωduct , (1.45)

where ∆xy is the Laplacian in the transversal plane (x, y), M = ||v∞||/c is the Mach number
associated to the steady flow, k = ω/c is the wave number, and ϕ is the potential of the acoustic
velocity field. The boundary condition on Γduct consists in writing that the normal derivative
of the acoustic velocity potential is zero, that is to say,

∂ϕ

∂nduct
= 0 on Γduct , (1.46)

where nduct is the external unit normal to ∂Ωduct. In addition, the continuity of the acoustic
velocity potential ϕ with the acoustic velocity potential ψi is written on the interface Γf ,

ϕ = ψi on Γf . (1.47)

1.8.2.2 Duct modes and modal representation of the acoustic velocity field.

Let Sduct ∈ R2 be the constant cross-section (independent of z) of the straight cylindrical duct
Ωduct. The solution of the boundary value problem defined in Section 1.8.2.1 can be written as,

ϕ(x, y, z) =
∞∑
α=1

cαϕα(x, y) ejkzαz , (1.48)
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in which (x, y) 7→ ϕα(x, y) is defined in Sduct, where kzα is the axial wavenumber of the duct mode
α (note that we have used the opposite of the harmonic wave convention previously introduced,
it is +jkzαz and not −jkzαz). Substituting Eq. (1.48) into Eq. (1.45), it can be seen that ϕα
has to verify the following wave equation in cross-section, which is written as [49],

∆xy ϕα(x, y) + k2
xyα ϕα(x, y) = 0 in Sduct . (1.49)

The family of real-valued eigenfunctions {ϕα}α that is obtained by solving the above eigenvalue
problem in cross-section are orthonormal and are normalized such that,∫

Sduct

ϕα ϕβ dSduct = δαβ , (1.50)

for α and β in {1, 2, . . .} and where δαβ is the Kronecker symbol. The transversal wavenumber
kxyα of a given duct mode α is related to the axial wavenumber kzα by the two following
equations,

kzα =
kM ±

√
k2 −B2k2

xyα

B2
, (1.51)

in which B =
√

1−M2 and where k = ω/c0 is the acoustic wavenumber. The axial wavenumber
kzα of a given mode α can be real (propagative mode) or imaginary (evanescent mode).

1.8.2.3 Modal representation for the acoustic excitation by the fan and the re-
flected sound field

The acoustic velocity field ϕ defined by Eq. (1.48) is rewritten by keeping only a finite number
Nd of duct modes and by showing the contribution of the given incident sound field (represented
by symbol + and representing the acoustic excitation induced by the fan) and the contribution
of the unknown associated reflected sound field (represented by symbol -). From Eqs. (1.48) and
(1.51), function ϕ(x, y, z) can be written as,

ϕ(x, y, z) =

Nd∑
α=1

ϕα(x, y)
[
c+
α e

jk+zαz + c−α e
jk−zαz

]
, (1.52)

in which k+
zα is the axial wavenumber of the wave propagating in the upstream direction and

k−zα is the axial wavenumber of the wave propagating in the downstream direction, which are
expressed using Eq. (1.51) as,

k±zα =
kM ± γα

B2
, (1.53)

where γα =
√
k2 −B2k2

xyα can be expressed in terms of k−zα and k+
zα as,

γα = ±(k±zαB
2 − kM) , (1.54)

For more details, see Appendix B.

It should be noted that the acoustic excitation by the fan, which is associated with the incident
sound field, will be defined by giving the vector c+ = (c+

1 , . . . , c
+
Nd

), while the unknown reflected
sound field depends on the vector c− = (c−1 , . . . , c

−
Nd

) should be included with all the unknown
fields of the acoustic problem. Note that it is not a requirement to have as many constrained
modes as reflected modes. Also, the connection with the acoustic domain may induce reflected
modes in the duct that have wavelengths different from the injected modes.
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1.8.3 Boundary value problem in the outer domain for the inlet case

1.8.3.1 Convected Helmholtz equation in Ωo

Similarly to Eq. (1.34), the convected Helmholtz equation in Ωo (the subscript o refers to the
outer domain) is written as,

− ω2ρ∞
c2

ψo +
jωρ∞
c2

v∞ ·∇ψo + ∇·
(
jωρ∞v∞

c2
ψo +

ρ∞v∞
c2

v∞ ·∇ψo − ρ∞∇ψo

)
= 0 , (1.55)

in which ρ∞ and v∞ are the constant density and the constant velocity field corresponding to
the uniform inflow condition for the steady flow.

1.8.3.2 Boundary conditions on ∂Ωo = Γio

Boundary condition on Γio. On Γio, the boundary condition writes,

ψo = ψi , ∇ψo = ∇ψi , (1.56)

in which ψi is calculated by solving the boundary value problem in the inner domain Ωi (see

section 1.8.1) and where
∂ψo

∂noi
= ∇ψi · noi with noi = −nio in which noi is the unit normal to

boundary ∂Ωo outward of domain Ωo.

Boundary condition on Γho. For the acoustic propagation in the outer domain, Γho is
considered as a rigid wall, and consequently, the boundary condition is written as,

∂ψo

∂noi
= 0 . (1.57)

Boundary condition at infinity. On this boundary there is the outward Sommerfeld radi-
ation condition at infinity, which is written as,

lim
R→+∞

[
∂ψo

∂R
+ j

ω

c
ψo +M∞

∂ψo

∂R

]
= 0 , (1.58)

with R = ||r||, where ∂

∂R
denotes the derivative in the radial direction from the origin, and

M∞ =
||v∞||
c

.

1.9 Modeling of the liner (acoustic treatment)

As explained in Section 1.8.1.3, the effects of the liner on the acoustic propagation are modeled
by a local impedance. This local impedance is a complex number defined at a given point
r = (x, y, z) belonging to surface Γ, and at a given frequency ω, by a relation linking acoustic
pressure p(r, ω) and the acoustic normal velocity of surface Γ vΓ(r, ω) · n(r), such that,

p(r, ω) = Z(r, ω)vΓ(r, ω)·nΓ(r) . (1.59)

The modeling of the liner and the associated design parameters are presented and detailed in
Appendix C.
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LINEARIZED ACOUSTIC PROPAGATION FOR THE INLET CASE

1.10 Weak formulation of the boundary value problem for the
linearized acoustic propagation for the inlet case

1.10.1 Weak formulation of the boundary value problem in the inner domain

The weak formulation of the boundary value problem defined by Eqs. (1.34), (1.38), (1.39),
(1.42), and (1.44), relative to the inner domain for the inlet case, is written, for all δψi in the
admissible space of sufficiently regular real-valued functions defined on Ωi, as,∫

Ωi

δψi

(
−ω2ρ0

c2
ψi +

jωρ0

c2
v0 ·∇ψi

)
dr

+

∫
Ωi

δψi∇·
(
jωρ0v0

c2
ψi +

ρ0v0

c2
v0 ·∇ψi − ρ0∇ψi

)
dr = 0 . (1.60)

The second term of (1.60) is transformed by using the Green formula,∫
Ωi

δψi ∇·F dr =

∫
∂Ωi

δψi F·ni ds−
∫

Ωi

(∇δψi)·F ds , (1.61)

where ∂Ωi is the boundary of the inner acoustic domain Ωi, ni its outward unit normal, and
where ds is a surface measure on ∂Ωi. Taking into account the boundary conditions on the parts
Γio, Γ, Γf, and Γh of ∂Ωi, and the notations for the associated unit normals previously defined,
taking into account that v0 · n = 0 on Γ and v0 · nh = 0 on Γh (boundary conditions induced
by the Euler steady flow, which imposes the noslip condition by neglecting viscous effects), and
taking into account Eq. (1.44) for the acoustic source induced by the fan, Eq.(1.60) yields,

− ω2

∫
Ωi

ρ0

c2
δψi ψidr

+ jω

∫
Ωi

ρ0

c

{
δψi

v0

c
·∇ψi −∇δψi ·

v0

c
ψi

}
dr

+

∫
Ωi

ρ0

{
∇ψi ·∇δψi −

(
∇δψi ·

v0

c

)(v0

c
·∇ψi

)}
dr

+

∫
Γ

ρ2
0

jωZ(r, ω)
(jω + v0 ·∇) δψi (jω − v0 ·∇)ψids

+

∫
Γio

ρ∞δψi

{
jω

c2
v∞ ·nioψo +

(v∞
c
·nio

)(v∞
c
·∇ψo

)
− ∂ψo

∂nio

}
ds

=

∫
Γf

δψiSf(r, ω)ds, (1.62)

where the second term of the integral on Γ, which results from the Green formula and which cor-
responds to the integral over the outline of Γ, is neglected as rotational terms are not accounted
for, and with,

Sf(r, ω) = ρ0
∂ϕ

∂nf
− j ω

c
ρ0
v0

c
·nf ϕ− ρ0

(v0

c
·nf

)(v0

c
·∇ϕ

)
. (1.63)

The term in the right-hand side member of Eq. (1.62) represents the acoustic source induced by
the fan (incident sound field (+)) and also a coupling term due to the unknown reflected sound
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field (-). The last term in the left-hand side member represents the coupling term between the
inner domain and the outer domain.

1.10.2 Weak formulation of the boundary value problem in the outer domain

The weak formulation of the boundary value problem defined by Eqs. (1.55),(1.56), (1.57), and
(1.58) relative to the outer domain for the inlet case is written, for all δψo in the admissible
space of sufficiently regular real-valued functions defined on Ωo, as,∫

Ωo

δψo

(
−ω2ρ∞
c2

ψo +
jωρ∞
c2

v∞ ·∇ψo

)
dr

+

∫
Ωo

δψo∇·
(
jωρ∞v∞

c2
ψo +

ρ∞v∞
c2

v∞ ·∇ψo − ρ∞∇ψo

)
dr = 0 . (1.64)

The second term of Eq. (1.64) is transformed by using the Green formula, where ∂Ωo = Γio∪Γho
is the boundary of the outer acoustic domain Ωo, noi is the outward unit normal to Γio, nho
is the outward unit normal to Γho, and where ds is the surface measure on ∂Ωo. Taking into
account the boundary conditions on the part Γio and Γho of ∂Ωo, Eq.(1.64) yields,

− ω2

∫
Ωo

ρ∞
c2

δψo ψodr

+ jω

∫
Ωo

ρ∞
c

{
δψo

v∞
c
·∇ψo −∇δψo ·

v∞
c
ψo

}
dr

+

∫
Ωo

ρ∞

{
∇ψo ·∇δψo −

(
∇δψo ·

v∞
c

)(v∞
c
·∇ψo

)}
dr

+

∫
Γio

ρ∞δψo

{
jω

c2
v∞ ·noiψi +

(v∞
c
·noi

)(v∞
c
·∇ψi

)
− ∂ψi

∂noi

}
ds

= 0 . (1.65)

The last term in the left-hand side member represents the coupling term between the outer
domain and the inner domain.

1.11 Finite/Infinite Elements discretization of the weak formu-
lation of the boundary value problem related to the inlet

For all ω fixed in R, let ψi(ω) be the complex vector in CNi corresponding to the finite element
discretization of field ψi(r, ω) in which Ni is the number of degrees of freedom (dofs) for the
discretization of ψi(ω). Let ψo(ω) be the complex vector in CNo corresponding to the infinite
element discretization of field ψo(r, ω) in which No is the number of dofs for the discretization of
ψo(ω). Consequently, vector ψi(ω) corresponds to all the dofs associated with the nodes of the
mesh of domain Ωi, while ψo(ω) corresponds only to the dofs associated with the nodes of the
mesh of surface Γio. The formulation of the infinite elements that are used is the one proposed in
[15], for which there are internal nodes in the infinite domain (it is not true nodes) and primary
nodes that are located on finite-infinite interface Γio, which coincides with the nodes of the finite
elements of the inner domain, for which the dofs are gathered in complex vector ψo(ω).
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THE BOUNDARY VALUE PROBLEM RELATED TO THE INLET

1.11.1 Matrix equation for the acoustic problem

The finite element discretization of Eqs. (1.62) with (1.63) yields the following matrix equation,

{
−ω2[Mi] + jω[Ci] + [Ki] + [Zi(ω)]

}
ψi(ω) + [H(ω)]ψo(ω) = fi(ω) . (1.66)

The infinite element discretization of Eq. (1.65) yields the following matrix equation,

{
−ω2[Mo] + jω[Co] + [Ko]

}
ψo(ω)− [H(ω)]Tψi(ω) = 0 . (1.67)

• The symmetric (Ni × Ni) real matrix [Mi] is positive definite and corresponds to the
discretization (finite elements) of the bilinear form,∫

Ωi

ρ0

c2
δψi ψidr .

• The (Ni × Ni) real matrix [Ci] corresponds to the discretization (finite elements) of the
bilinear form, ∫

Ωi

ρ0

c

{
δψi

v0

c
·∇ψi −∇δψi ·

v0

c
ψi

}
dr .

• The symmetric (Ni×Ni) real matrix [Ki] corresponds to the discretization (finite elements)
of the bilinear form,∫

Ωi

ρ0

{
∇ψi ·∇δψi −

(
∇δψi ·

v0

c

)(v0

c
·∇ψi

)}
dr .

• The (Ni × Ni) complex matrix [Zi(ω)] corresponds to the discretization (finite elements)
of the bilinear form,∫

Γ

ρ2
0

jωZ(r, ω)
(jω + v0 ·∇) δψi (jω − v0 ·∇)ψids .

It should be noted that matrix [Zi(ω)] has nonzero entries only for the block submatrix
corresponding to the dofs associated with the nodes belonging to Γ (the liner).

• The (Ni × No) complex matrix [H(ω)] corresponds to the discretization (finite elements
for ψi and infinite elements for ψo) of the bilinear form,∫

Γio

ρ∞δψi

{
jω

c2
v∞ ·nioψo +

(v∞
c
·nio

)(v∞
c
·∇ψo

)
− ∂ψo

∂nio

}
ds .

• The symmetric (No × No) real matrix [Mo] is positive definite and corresponds to the
discretization (infinite elements) of the bilinear form,∫

Ωo

ρ∞
c2

δψo ψodr .
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• The skew-symmetric (No×No) real matrix [Co] corresponds to the discretization (infinite
elements) of the bilinear form,∫

Ωo

ρ∞
c

{
δψo

v∞
c
·∇ψo −∇δψo ·

v∞
c
ψo

}
dr .

• The symmetric (No ×No) real matrix [Ko] corresponds to the discretization (infinite ele-
ments) of the bilinear form,∫

Ωo

ρ∞

{
∇ψo ·∇δψo −

(
∇δψo ·

v∞
c

)(v∞
c
·∇ψo

)}
dr .

• The CNi-valued vector fi(ω) corresponds to the discretization (finite elements) of the linear
form, ∫

Γf

δψiSf(r, ω)ds .

1.11.2 Matrix representation of fi (fan acoustic excitation and reflected field)

Since fi(ω) is related to boundary Γf, only the components of fi(ω) related to the Nf < Ni dofs
in Γf are not zero. Let ff(ω) be the vector in CNf constituted of the components of fi(ω) that
are not equal to zero (components related to Γf ). Consequently, vector fi(ω) can be written as

fi(ω) = [Eif] ff(ω) , (1.68)

in which the sparse (Ni×Nf) real matrix [Eif] is constituted of 0 and 1. Taking into account the
expression of ϕ defined by Eq. (1.52), which shows that ϕ is a linear mapping of the complex
vector (c+, c−) ∈ CNd × CNd , with,

c+ = (c+
1 , . . . , c

+
Nd

) ∈ CNd , c− = (c−1 , . . . , c
−
Nd

) ∈ CNd , (1.69)

and taking into account the expression of the Nf complex vector ff(ω) deduced from fi(ω) con-
structed at the end of Section 1.11.1, vector ff(ω) belonging to CNf can be written as,

ff(ω) = [F+(ω)] c+ + [F−(ω)] c− (1.70)

1.11.3 Matrix representation of the duct modal coupling with the inner do-
main

For given vector c+ that defined the fan acoustic excitation, since vector c− is an unknown of
the problem, the matrix equations defined by Eqs. (1.74) and (1.70) are not algebraically closed
and we have to write, in the weak form, the continuity on Γf of the acoustic velocity potential
ψi with ϕ. It is assumed that boundary Γf is the end cross-section of the duct for which z = zf .
The weak form of the continuity of ψi with ϕ is then written as∫

Γf

ϕα(ψi − ϕ) dΓf = 0 , α = 1, . . . , Nd , (1.71)

which can be rewritten, using the expansion of ϕ given by Eq. (1.52) and the orthogonality
property of the duct modes defined by Eq. (1.50), as∫

Γf

ϕαψi dΓf − (c+
α e

jk+zα zf + c−α e
jk−zα zf ) = 0 , α = 1, . . . , Nd . (1.72)
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LINER DOFS AND EXPRESSION OF THE FAN ACOUSTIC EXCITATION

Using the finite element discretization of the inner domain, the finite element approximation of
the first term in the left-hand side of Eq. (1.72) can be written as [E]ψi(ω) in which [E] is a
constant (Nd ×Ni) real matrix. Introducing the diagonal (Nd ×Nd) complex matrices [R+(ω)]

and [R−(ω)] such that [R±(ω)]αβ = δαβe
jk±zα zf , the matrix representation of Eq. (1.72) can be

written as
[E]ψi(ω)− ([R+(ω)] c+ + [R−(ω)] c−) = 0 . (1.73)

1.11.4 Assembling the matrix equation for the acoustic problem

Note that, even if c+ was chosen as independent of ω (that is not necessary, because c+ can
depend on ω), then c− would depend on ω. It will now be noted as c−(ω). The unknowns of
the acoustic problem are the vectors ψi(ω), ψo(ω), and c−(ω). The assembling of the matrix
equation for the acoustic problem is obtained by gathering Eqs. (1.66), (1.67), and (1.73), which
yields,[Ai(ω)] + [Zi(ω)] [H(ω)] −[Eif] [F−(ω)]

−[H(ω)]T [Ao(ω)] [0]
[E] [0] −[R−(ω)]

ψi(ω)
ψo(ω)
c−(ω)

 =

[Eif] [F+(ω)]
[0]

[R+(ω)]

 c+ , (1.74)

in which complex matrices [Ai(ω)] and [Ao(ω)] are written as

[Ai(ω)] = −ω2 [Mi] + jω [Ci] + [Ki] , (1.75)

[Ao(ω)] = −ω2 [Mo] + jω [Co] + [Ko] . (1.76)

1.12 Frequency by frequency static condensation with respect to
the liner dofs and expression of the fan acoustic excitation

In Chapter 2, we will present the probabilistic modeling of uncertainties in the computational
model defined by Eq. (1.74). These uncertainties will be taken into account for both the paramet-
ric uncertainties and the model uncertainties induced by the modeling errors for the aeroacoustic
and for the liner. Consequently, we need to reorganize the algebraic structure of the complex
matrix equation Eq. (1.74) in order to exhibit the complex vector ψ`(ω) belonging to CN` of
the N` dofs of the liner and the complex vector ψa belonging to CNa of the Na other dofs of
(ψi(ω),ψo(ω), c−(ω)). This means that Na = Ni +No +Nd −N` and that,ψi(ω)

ψo(ω)
c−(ω)

 is rewritten as
[
ψ`(ω)
ψa(ω)

]
, Ni +No +Nd = N` +Na . (1.77)

Since we have Γ ∩ Γf = {∅},[Eif] [F+(ω)]
[0]

[R+(ω)]

 c+ is rewritten as
[

0
fa(ω)

]
, Ni +No +Nd = N` +Na , (1.78)

in which the CNa-vector fa(ω) can be written as

fa(ω) = [Ba(ω)] c+ , (1.79)

where [Ba(ω)] is a known complex (Na ×Nd) matrix.

Using Eqs. (1.77) and (1.78), the computational model defined by Eq. (1.74) can be rewritten
in a block form as,
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[
[A``(ω)] [A`a(ω)]
[Aa`(ω)] [Aaa(ω)]

] [
ψ`(ω)
ψa(ω)

]
+

[
[Z`(ω)] 0

0 0

] [
ψ`(ω)
ψa(ω)

]
=

[
0

fa(ω)

]
. (1.80)

The static condensation ω by ω is performed in eliminating the vector xa in the following matrix
equation, [

[A``(ω)] [A`a(ω)]
[Aa`(ω)] [Aaa(ω)]

] [
x`
xa

]
=

[
0

fa(ω)

]
, (1.81)

which yields,

[A`(ω)]x` = F `(ω) , (1.82)

in which the (N` × N`) complex matrix [A`(ω)] and the N` complex vector F `(ω) are written
as,

[A`(ω)] = [A``(ω)]− [A`a(ω)][Aaa(ω)]−1[Aa`(ω)] , (1.83)

F `(ω) = −[A`a(ω)][Aaa(ω)]−1fa(ω) . (1.84)

Using Eq. (1.79), Eq. (1.84) can be written as

F `(ω) = −[A`a(ω)] [Aaa(ω)]−1 [Ba(ω)] c+ , (1.85)

that is to say,
F `(ω) = [B`(ω)] c+ , (1.86)

in which the (N` ×Nd) complex matrix [B`(ω)] is defined by

[B`(ω)] = −[A`a(ω)] [Aaa(ω)]−1 [Ba(ω)] . (1.87)

The computation is performed thanks to the static condensation (Schur complement). Complex
matrices [A`(ω)] and [B`(ω)] are the results of the static condensation ω by ω. It should be
noted that this static condensation is performed using the classical Gauss elimination algorithm
without computing the inverse of matrix [Aaa(ω)]. The elimination of ψa(ω) in Eq. (1.80) yields,

[A`(ω)]ψ`(ω) + [Z`(ω)]ψ`(ω) = [B`(ω)] c+ . (1.88)

1.13 Computational reduced-order model using a pellicular pro-
jection

The algebraic structure of Eq. (1.88) that we have constructed, is adapted to the implementation
of uncertainties in the computational model. Following the explanations given at the beginning
of Section 1.12, both the parametric uncertainties and the model uncertainties induced by mod-
eling errors for the liner will be taken into account by modeling complex matrix [Z`(ω)] by a
random complex matrix.

However, the number N` of dofs related to the liner can be very high, in general we can have
several ten thousands dofs. Complex matrix [Z`(ω)] is a sparse matrix, but using the non-
parametric probabilistic approach of uncertainties [60], the associated complex random matrix
would be full, that would induce a huge numerical cost. For this reason, we have to construct
a reduced-order model of Eq. (1.88). For such a construction, a reduced-order basis has to be
introduced. Following the method proposed in [15], we chose to use a pellicular basis whose
construction is summarized hereinafter.
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1.13.1 Construction of the pellicular basis

This pellicular basis is associated with the acoustic radiation of the liner delimited by its bound-
ary Γ. There is a thin acoustic layer of fluid (the pellicular domain) on Γ, for which the character-
istic length is significatively lower than the characteristic wavelength of the study. Considering
that the acoustic layer thickness is infinitely thin with respect to the acoustic wavelength, a set
of acoustic modes related to the pellicular domain is computed solving the eigenvalue problem
derived from the computational model,

[KL]φα = λα[ML]φα , (1.89)

in which the symmetric (N`×N`) real matrices [KL] and [ML] are positive definite and represent,
respectively, the acoustic stiffness matrix and the associated mass matrix. The eigenvector φα
belonging to RN` is called a pellicular eigenvector and λα is its corresponding eigenvalue. These
pellicular eigenvectors verify the following orthogonal properties,

φTα [KL]φβ = λαδαβ

φTα [ML]φβ = δαβ

(1.90)

with δαβ the Kronecker symbol stating that for α 6= β, δαβ = 0.

Let n` be the number of pellicular eigenvectors φ1, . . . ,φn` that are retained for the construction
of the reduced-order model. We then introduce the (N`×n`) real matrix [Φ] whose columns are
φ1, . . . ,φn` .

1.13.2 Construction of the reduced-order model

The reduced representation consists in writing,

ψ`(ω) = [Φ]q(ω) , (1.91)

in which q(ω), which belongs to Cn` , is a complex vector of the generalized coordinates. The
reduced-order computational model consists in substituting Eq. (1.91) into Eq. (1.88), and then
to left-multiplying it by [Φ]T . We obtain,

([A(ω)] + [Z(ω)])q(ω) = F(ω) , (1.92)

in which the (n` × n`) complex matrix [A(ω)], the (n` × n`) complex matrix [Z(ω)], and the
Cn`-valued vector F(ω) are written as,

[A(ω)] = [Φ]T [A`(ω)][Φ] , (1.93)

[Z(ω)] = [Φ]T [Z`(ω)][Φ] , (1.94)

F(ω) = [B(ω)] c+ , (1.95)

in which the (n` ×Nd) complex matrix [B(ω)] is written as,

[B(ω)] = [Φ]T [B`(ω)] . (1.96)

Consequently, Eq. (1.92) can be rewritten as,

([A(ω)] + [Z(ω)])q(ω) = [B(ω)] c+ . (1.97)
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Once ψ`(ω) has been computed with Eqs. (1.91) and (1.97), vector ψa(ω) is computed with the
second line of Eq. (1.80) with Eqs. (1.79) and (1.91), that is to say, solving the matrix equation,

[Aaa(ω)]ψa(ω) = −[Aa`(ω)] [Φ]q(ω) + [Ba(ω)] c+ . (1.98)

The reduced-order model is then constituted of Eqs. (1.91), (1.97), and (1.98). In the framework
of the nonparametric probabilistic approach, the uncertainties in the computational model will
be implemented by substituting complex matrices [A(ω)] and [Z(ω)] by random complex matrices
[A(ω)] and [Z(ω)].

1.13.3 Algebraic properties of complex matrix [Z(ω)]

The complex matrix [Z(ω)] in Eq. (1.97) is associated with matrix [Zi(ω)], which corresponds
to the finite element discretization of the complex bilinear form of the term generated by the
Myers boundary condition (see fourth term of the left-hand side of Eq. (1.62)).
The complex matrix [Z(ω)] is written as

[Z(ω)] = [ZR(ω)] + j [ZI(ω)] , (1.99)

where [ZR(ω)] = Re{[Z(ω)]} and [ZI(ω)] = Im{[Z(ω)]} are nonsymmetric real matrices (the
symmetry only appears for v0 = 0).
Given Eq. (1.97) and the definition of matrix [A(ω)], it appears that the dissipative term induced
by complex matrix [Z(ω)] in the coupled system, corresponds to the real matrix [ZI(ω)]. As
[Z(ω)] 6= [Z(ω)]T (matrix nonsymmetric for v0 6= 0), the dissipative part is generated by the
symmetric part [ZS

I(ω)] of [ZI(ω)], the skew-symmetric part [ZSS
I (ω)] of [ZI(ω)] does not dissipate

energy. Consequently, the real matrix [ZI(ω)] is written as

[ZI(ω)] = [ZS
I(ω)] + [ZSS

I (ω)] (1.100)

in which

[ZS
I(ω)] = ([ZI(ω)] + [ZI(ω)]T )/2 , [ZSS

I (ω)] = ([ZI(ω)]− [ZI(ω)]T )/2 , (1.101)

where [ZS
I(ω)] and [ZSS

I (ω)] are symmetric and skew-symmetric matrices. It can be viewed that
the positive-definite symmetric real matrix [ZS

I(ω)] is associated with the bilinear form∫
Γ

ρ2
0ZR(r, ω)

ω
(
Z2
R(r, ω) + Z2

I (r, ω)
) (ω2ψi δψi + (v0 ·∇ψi)(v0 ·∇δψi)

)
ds(r) , (1.102)

that is effectively a positive-definite symmetric bilinear form because ω > 0 and the local resis-
tance ZR(r, ω) is positive (see Eq. (1.43)). Finally, matrix [Z(ω)] defined by Eq. (1.99) can be
rewritten as,

[Z(ω)] = [ZNS(ω)] + j [ZS
I(ω)] , (1.103)

with

[ZNS(ω)] = [ZR(ω)] + j [ZSS
I (ω)] (1.104)

in which [ZNS(ω)] is a complex matrix that is not symmetric (and not skew-symmetric) and
where [ZS

I(ω)] is a positive-definite symmetric real matrix corresponding to a dissipative term in
the coupled equation defined by Eq. (1.97).
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1.13.4 Algebraic properties of complex matrix [A(ω)]

In Eq. (1.97), the reduced complex matrix [A(ω)], related to aeroacoustics, is defined by Eq. (1.93).
This complex matrix [A(ω)] can be written as

[A(ω)] = [AR(ω)] + j [AI(ω)] , (1.105)

where [AR(ω)] = Re{[A(ω)]} and [AI(ω)] = Im{[A(ω)]} are nonsymmetric real matrices due to
the flow (v0 6= 0). In the aeroacoustics phenomenon related to the boundary value problem for
the inlet case, there is a radiation of the outgoing acoustic fields at infinity (Sommerfeld condition
in the outer domain Ωo and in the duct domain Ωduct), which induces an apparent dissipation.
Unfortunately, due to the presence of the flow, the method presented in Sec 1.13.3 for extracting
the dissipation part in the complex matrix Z(ω) cannot be used for the complex aeroacous-
tic matrix A(ω) in the framework of the generalized formulation available in ACTRAN/TM.
Consequently, because the dissipation part cannot be extracted, the stochastic modeling of the
aeroacoustic matrix will globally be carried out as presented in Chapter 2, without separating
the conservative part from the dissipative part.

1.14 Defining quantities of interest

The vector-valued Quantity of Interest, qoI(ω), is written as,

qoI(ω) = [Oobs(ω)]ψa(ω) , (1.106)

in which [Oobs(ω)] is an observation complex matrix giving the position of virtual microphones
placed in the far-field for the inlet case. Assuming that the virtual microphones are located in
the outer domain, then qoI(ω) will not depend on all the dofs gathered in ψa(ω) but only on
the dofs corresponding to the nodes located on finite-infinite interface Γio. Using Eq. (1.98),
qoI(ω) is given by

qoI(ω) = [FqoI(ω)] c+ − [AqoI(ω)]q(ω) , (1.107)

in which,

[FqoI(ω)] = [Oobs(ω)] [Aaa(ω)]−1 [Ba(ω)] , (1.108)

[AqoI(ω)] = [Oobs(ω)][Aaa(ω)]−1[Aa`(ω)] [Φ] , (1.109)

where vector q(ω) is the solution of the deterministic equation defined by Eq. (1.97).

Using Eq. (1.97), vector q(ω) of generalized coordinates can be written as,

q(ω) = ([A(ω)] + [Z(ω)])−1 [B(ω)] c+ . (1.110)

Substituting Eq. (1.110) into Eq. (1.107) yields,

qoI(ω) = [T(ω)] c+ , (1.111)

in which [T(ω)] = [FqoI(ω)]− [AqoI(ω)] ([A(ω)] + [Z(ω)])−1 [B(ω)].

A detailed view of the algorithms used during the present work are presented in Appendix D.

Robust design of nacelle noise reduction technologies 41 of 133



CHAPTER 1. COMPUTATIONAL MODEL AND FUNDAMENTAL EQUATIONS

1.15 Robust design optimization problem

1.15.1 Definition of the robust design optimization problem

The objective of this work is to perform robust design optimization, that is to say solving a
design optimization problem by taking into account uncertainties in the computational model.
We will have then to solve an optimization problem under uncertainties (OUU) related to an
objective function J(w) that will be constructed using the random quantities of interest gath-
ered in random vector QoI(ω).

The design optimization problem is formulated with respect to vector w = (w1, . . . , wnw) of the
design parameters related to the liner (geometrical parameters, mechanical properties, etc, see
Appendix C). Consequently, the impedance Z(r, ω) depends onw and the complex matrix [Z(ω)]
in Eq. (1.97) that is rewritten as [Z(ω;w)]. Due to uncertainties, matrix [Z(ω;w)] is modeled by
a random matrix [Z(ω;w)] whose probabilistic model is detailed in Chapter 2. Vector w belongs
to an admissible set Cw ⊂ Rnw . The optimization problem consists in minimizing a deterministic
objective function, denoted by J(w), which is constructed using statistics of stochastic process
{QoI(ω)}, ω ∈ [ωmin, ωmax]. The optimal value of wopt is then obtained by solving the following
optimization problem,

wopt = min
w∈Cw

J(w) . (1.112)

1.15.2 Example of objective function

We consider the stochastic computational model for which the complex matrix [Z(ω;w)] in
Eq. (1.97) is modeled by random complex matrix [Z(ω;w)] and the complex matrix [A(ω)] in
Eq. (1.97) is modeled by a random complex matrix [A(ω)]. These two random complex matrices
are written, taking into account Eqs. (1.103), (1.104), and (1.105), as

[Z(ω;w)] = [ZNS(ω;w)] + j [ZS
I(ω;w)] , (1.113)

and
[A(ω)] = [AR(ω)] + j [AI(ω)] , (1.114)

in which [ZNS(ω;w)] and [A(ω)] are random complex matrices (not Hermitian, not symmetric,
not skew-symmetric) and where random variable [ZS

I(ω;w)] is with values in the set of all the
positive-definite symmetric real matrices. Consequently, at a given frequency ω, the pressure in
the far-field (in the outer domain) in a given direction ξ (angle in rad defining the direction)
is a complex-valued random variable denoted by P (ω, ξ). Let {ω1, . . . , ωnω} be the set of the
nω frequencies of interest and let {ξ1, . . . , ξnξ} be the set of the nξ angles of interest for which
we want to minimize the pressure. Let {sjk, j = 1, . . . , nω, k = 1, . . . , nξ} some positive weights
that allow for favoring certain frequencies and certain angles. The weights must be such that∑

j

∑
k = sjk = 1. The objective function will be, for instance, of the following type,

J(w) = E

 1

nω + nξ

nω∑
j=1

nξ∑
k=1

sjk |P (ωj , ξk;w)|2
 , (1.115)

in which E is the mathematical expectation.

Let QoI(ω;w) = {QoI1(ω;w), . . . ,QoInξ
(ω;w)} be the random vector such that QoIk(ω;w) =

P(ω, ξk;w). Consequently, the set {P (ωj , ξk;w), j = 1, . . . , nω, k = 1, . . . , nξ} of random quan-
tities of interest is represented by the set of random vectors {QoI(ωj ;w), j = 1, . . . , nω}.
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1.15.3 Computation of the objective function

From Eq. (1.97), the random vector Q(ω) is solution of the random complex matrix equation,

([A(ω)] + [Z(ω;w)])Q(ω;w) = [B(ω)] c+ , (1.116)

and the random QoI(ω;w) is given by Eq. (1.107) that is rewritten as,

QoI(ω;w) = [FqoI(ω)] c+ − [AqoI(ω)]Q(ω;w) , (1.117)

in which, matrices [FqoI(ω)] and [AqoI(ω)] are defined by Eq. (1.108) and Eq. (1.109).

It should be noted that, in the proposed probabilistic model of uncertainties, matrix [B(ω)]
is kept as a deterministic matrix, although the reduced aeroacoustic matrix [A(ω)] has been
modeled by a random matrix for taking into account model uncertainties in the aeroacoustic
part (see the explanations given in Chapter 2).
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Chapter 2

Probabilistic approach for uncertainty
quantification and stochastic solver
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Abstract: In this chapter three sources of uncertainties are taken into account. The first
one is related to uncertainties induced by modeling errors in the impedance matrix of the liner
appearing in the reduced-order computational model. The second one corresponds to model un-
certainties in the aeroacoustic part of the computational model (including the mean-flow already
computed by CFD, the acoustic equations in moving fluids, and the duct acoustic related to the
fan excitation). The third one is related to uncertainties in the acoustic excitation induced by
the fan. The stochastic solver of the random equation is presented. For each value of the fre-
quency, the stochastic reduced-order model (SROM) is solved by the Monte Carlo method. The
convergence analysis is carried out with respect to the number of realizations.
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2.1 Brief summary of the nonparametric probabilistic approach
of uncertainties

For a given flight condition and given environment, the boundary problem considered is that of
aeroacoustics, the equations of which are that of the linearized convected acoustic wave equa-
tions formulated in the frequency domain. This aeroacoustic boundary problem depends on the
geometry of the very complex and unbounded domain, on the boundary conditions and in par-
ticular the impedance of the liner that is an elastoacoustic system, on the physical parameters,
on the velocity field of the flow, which is calculated by the CFD for the fixed flight condition,
and on the acoustic excitation induced by the fan. The development of the aeroacoustic compu-
tational model for this boundary value problem requires the introduction of simplifications and
approximations: simplification of the geometry and the representation describing the acoustic
excitation of the fan, simplification of the internal geometry of the reactor, introduction of two
vector bases for constructing the reduced-order computational model, and simplification of the
elastoacoustic model to build the impedance of the liner. In this aeroacoustic problem there are
many model uncertainties induced by modeling errors. It is known for a long time that model
uncertainties cannot be taken into account by parametric probabilistic approaches. It is for this
reason that the nonparametric probabilistic approach of model uncertainties was proposed in
2000 [54, 55, 57] and has given rise to numerous developments and validation works over the
past 20 years, and has now become a standard method, which is, for example, implemented in
commercial software such as MSC Nastran software.
Concepts, mathematical developments, and experimental validations can be found, for example,
in [56, 60, 59], in particular in [58, 41, 60, 42] for elastoacoustic problems, and for more recent
advances, for instance, in [2, 1]. Because of model uncertainties induced by modeling errors, the
boundary value problem that is constructed, from which the computational model is derived,
does not correspond to the physical reality that is modeled. It is therefore necessary to generate
a stochastic family of boundary value problems whose solution space is large enough to contain
the targets such as the experimental results. We recall that the family generated by a para-
metric approach does not allow the construction of such a family (see for example [60]). The
so-called nonparametric probabilistic approach consists in generating this stochastic family by
modeling operators of the boundary problems using random operators whose levels of statistical
fluctuations, that is to say, the levels of uncertainty, are controlled by hyperparameters. The
mathematical properties of the considered operators are preserved during the construction of
the associated random operators. One thus generates a family of stochastic solutions, which
obviously do not satisfy the initial boundary value problem by construction. If all the math-
ematical concepts and developments associated with the nonparametric probabilistic approach
can be used for the aeroacoustic problem considered in this work, it is necessary to specify the
algebraic properties of each random operator considered in order to use the appropriate subsets
of random matrices and to build their probabilistic models. These are the developments that
are presented in this chapter.

2.2 Methodology for uncertainty quantification

The three sources of uncertainties are involved as follows.
- The first one, which is related to modeling errors in the computational model of the impedance
matrix of the liner, is taken into account by the nonparametric probabilistic approach.
- The second one, which corresponds to model uncertainties in the aeroacoustic part of the com-
putational model including the mean velocity field generated by CFD, is also taken into account
by the nonparametric approach.
- The third one, which is related to uncertainties in the fan acoustic excitation is accounted for
by the parametric probabilistic approach.
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Since the sources of uncertainties related to the impedance matrix of the liner are independent
of the sources of uncertainties related to the aeroacoustic matrix, the two random matrices that
model the impedance of the liner and the aeroacoustics are statistically independent. For the
fan acoustic excitation, matrix [B(ω)] is kept as a deterministic matrix in the proposed model
of uncertainties, although the reduced aeroacoustic matrix [A(ω)] is modeled by a random ma-
trix for taking into account model uncertainties in the aeroacoustic part. This is a reasonable
approximation that is introduced because the nonparametric probabilistic approach is imple-
mented on the generalized coordinates (expanded on pellicular modes) and [B(ω)] involves the
physical coordinates.

All the random variables that are introduced in this chapter are defined on a probability space
(Θ, T ,P).

(i) - Nonparametric probabilistic approach of uncertainties in the liner.

We use the nonparametric probabilistic approach introduced in [54], developed and detailed
in [60], which allows for taking into account both the parametric uncertainties and the model
uncertainties induced by modeling errors in the computational model of the liner impedance.

This approach is going to be used for taking into account uncertainties induced by the liner
model in the nominal reduced-order computational model (ROM) of acoustic radiation of an
inlet. Introducing such uncertainties allows for constructing a stochastic reduced-order compu-
tational model (SROM) that depends on the frequency.

The nonparametric probabilistic approach is based on the use of sets of random matrices that
have especially been developed for that and whose mathematical constructions are summarized
in [60]. For the uncertainties in the liner model, this approach requires the probabilistic con-
struction of the complex random matrix [Z(ω;w)], depending on the design parameter w, which
is defined (see Eq. (1.113)) by

[Z(ω;w)] = [ZNS(ω;w)] + j [ZS
I(ω;w)] . (2.1)

The probabilistic model of [Z(ω;w)] could be constructed by using a Hilbert transform between
the real part and the imaginary part of [Z(ω;w)] in order to take into account the causality of
the dynamical system (as explained in [60]). Nevertheless, such a model is relatively difficult to
implement but above all, generates a significant computational cost, which can be huge for the
computational models such those used in the present work. Consequently, it is proposed to use
another model for which the causality is not imposed but, which has the advantage to respect
the algebraic properties of the random complex matrices, in particular the symmetry properties
and the positive-definiteness of the matrix associated with a dissipation.

The proposed probabilistic model of random complex matrix [ZNS(ω;w)] is thus constructed
using the extension presented in [35] of the one introduced in [57] for rectangular real random
matrices, while the probabilistic model of positive-definite symmetric real matrix [ZS

I(ω;w)] is
constructed using the set of positive-definite random matrices introduced in [54].

In this chapter, in order to simplify the notation, the design parameter w is removed from equa-
tions.

(ii) - Nonparametric probabilistic approach of uncertainties for the aeroacoustic part of the com-
putational model.
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As mentioned in Section 1.13.4, matrix [A(ω)] cannot be splitted into conservative and dissipa-
tive parts. Consequently, the use of the nonparametric probabilistic approach for random matrix
[A(ω)] consists in modeling it in the subset of random matrices, that we have introduced for
matrix [ZNS(ω)] related to the liner (see previous point (i)).

As for uncertainties related to the liner model, this approach is going to be used for taking
into account model uncertainties induced by the mean-flow computation (CFD), the acoustic
equations in moving fluids, the duct acoustic related to the fan excitation, and their approxima-
tions for constructing the computational model. These uncertainties are also integrated in the
stochastic reduced-order computational model (SROM) mentionned in (i) as it can be viewed
in Eq. (1.116).

The probabilistic model of random complex matrix [A(ω)] is thus done similarly to [ZNS(ω)].

As previously explained, random matrix [A(ω)] is assumed to be statistically independent of
random matrix [Z(ω)].

(iii) - Parametric probabilistic approach of uncertainties for the fan acoustic excitation.

The uncertainties for the complex vector c+ that has been introduced for describing the fan
acoustic excitation (incident wave, see Eqs. (1.52)) and (1.69)) is modeled in the framework of
parametric probabilistic approach [60] using the Maximum Entropy principle.

2.3 Construction of the probabilistic model of complex general-
ized liner impedance matrix.

2.3.1 Construction of the probabilistic model of random complex matrix
[ZNS(ω)].

The positive real parameter ω represents the frequency and is assumed to be fixed.
For this construction, we first introduce the polar decomposition of deterministic complex ma-
trix [ZNS(ω)] and then, we construct the complex random matrix [ZNS(ω)].

(i) - Polar decomposition of complex matrix [ZNS(ω)].

It is assumed that the (n` × n`) complex matrix [ZNS(ω)] is invertible. Therefore, it is proven
below that [ZNS(ω)] can be written (polar decomposition) as,

[ZNS(ω)] = [UZ(ω)] [TZ(ω)] , (2.2)

in which [UZ(ω)] is a complex unitary matrix in Mn`(C), which is such that,

[UZ(ω)]∗ [UZ(ω)] = [In` ] , (2.3)

in which [UZ(ω)]∗ = [UZ(ω)]
T
, which belongs to Mn`(C), is the transpose conjugate of matrix

[UZ(ω)] and where [In` ] is the (n` × n`) identity matrix. The matrix [TZ(ω)] belongs to the set
M+
n`

(C) of all the positive-definite Hermitian (n` × n`) complex matrices,

[TZ(ω)] ∈M+
n`

(C) . (2.4)

48 of 133 UGE - MSME 2020



2.3. CONSTRUCTION OF THE PROBABILISTIC MODEL OF COMPLEX GENERALIZED
LINER IMPEDANCE MATRIX.

This means that [TZ(ω)] is invertible, is such that [TZ(ω)]∗ = [TZ(ω)] (Hermitian symmetry),
and is such that z∗ [TZ(ω)] z > 0 for all z in Cn` such that ‖z‖ 6= 0 where ‖z‖ is the Hermitian
norm in Cn` .

The construction of the representation defined by Eq. (2.2) can be done as follows. As [ZNS(ω)]
is assumed to be invertible, then the matrix [HZ(ω)] can be written as,

[HZ(ω)] = [ZNS(ω)]∗ [ZNS(ω)] , (2.5)

which belongs to M+
n`

(C) and consequently, its spectral decomposition can be written as

[HZ(ω)] = [ΦZ(ω)] [SZ(ω)] [ΦZ(ω)]∗ , (2.6)

in which [SZ(ω)] is the diagonal (n` × n`) real matrix of the positive eigenvalues of [H(ω)] and
where [ΦZ(ω)] is the (n` × n`) complex matrix of the eigenvectors such that [ΦZ(ω)]∗ [Φ(ω)] =
[ΦZ(ω)] [ΦZ(ω)]∗ = [In` ]. Note that diagonal matrix [SZ(ω)] can also be viewed as the diagonal
matrix of the singular values of complex matrix [ZNS(ω)]. Let us define the matrix [TZ(ω)] by

[TZ(ω)] = [ΦZ(ω)] [SZ(ω)]1/2 [ΦZ(ω)]∗ . (2.7)

It can be seen that [TZ(ω)] belongs to M+
n`

(C). Let [UZ(ω)] be the complex matrix in Mn`(C)
defined (see Eq. (2.2)) by,

[UZ(ω)] = [ZNS(ω)] [TZ(ω)]−1 . (2.8)

Therefore, it can be verified that [UZ(ω)]∗ [UZ(ω)] = [In` ].

(ii) - Probabilistic model of random complex matrix [ZNS(ω)].

Let [ZNS(ω)] be the invertible complex matrix for which its polar decomposition, [ZNS(ω)] =
[UZ(ω)] [TZ(ω)], is defined in paragraph 2.3.1. In this section, we perform the construction of
the complex random matrix [ZNS(ω)], defined on a probability space (Θ, T ,P), with values in
Mn`

(C), associated with [ZNS(ω)], which is written as,

[ZNS(ω)] = [UZ(ω)] [TZ(ω)] , (2.9)

in which [TZ(ω)] is a complex random matrix, defined on (Θ, T ,P), with values in M+
n`

(C), and
of second-order, that is to say,

E{‖[TZ(ω)]‖2F } =

∫
Θ
‖[TZ(ω; θ)]‖2F dP(θ) < +∞ , (2.10)

in which E is the mathematical expectation, where the Frobenius norm ‖[a]‖F of a complex
matrix [a] in Mn`(C) is such that ‖[a]‖2F = tr{[a]∗ [a]} where tr is the trace of a matrix.

The probabilistic construction of random matrix [TZ(ω)] is performed as follows. As the deter-
ministic complex matrix [TZ(ω)] belongs to M+

n`
(C), its Cholesky factorization is written as,

[TZ(ω)] = [LZ
T (ω)]∗ [LZ

T (ω)] , (2.11)

in which [LZ
T (ω)] is an upper triangular (n` × n`) complex matrix with positive diagonal. Let

ε > 0 be a fixed positive small parameter (ε � 1). The random complex matrix [TZ(ω)] with
values in M+

n`
(C), is then constructed as,

[TZ(ω)] = [LZ
T (ω)]∗ [GNS

Z ] [LZ
T (ω)] , (2.12)
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in which the random (n` × n`) real matrix [GNS
Z ] belongs to the set SG+

ε of random matrices
defined below.

Definition and construction of the set SG+
ε of random matrices [60]. A random (n` × n`) real

matrix [GNS
Z ] belonging to SG+

ε is a random matrix with values in M+
n`

(R), which is independent
of parameter ω, and which is written as,

[GNS
Z ] =

1

1 + ε
{[GNS

0,Z] + ε[In` ]} , (2.13)

in which [GNS
0,Z] is a random (n` × n`) real matrix with values in M+

n`
(R), defined on (Θ, T ,P),

independent of parameter ω, and which belongs to the set SG+
0 of random matrices defined in

[60]. Random matrix [GNS
0,Z] has been constructed using the Maximum Entropy principle under

the constraints defined by the following available information,

E{[GNS
0,Z]} = [In` ] , E{log(det[GNS

0,Z])} = νG0,Z , |νG0,Z < +∞| . (2.14)

in which νG0,Z is any constant such that |νG0,Z | < +∞. The probability distribution obtained
for [GNS

0,Z] is not Gaussian and depends on constant νG0,Z . This probability distribution is
reparameterized with the dispersion parameter δNS

G,Z, which is assumed to be independent of
parameter ω, defined by,

δNS
Z =

{
E{|| [GNS

0,Z]− E{[GNS
0,Z]} ||2F }

||E{[GNS
0,Z]}||2F

}1/2

=

{
1

n`
E{|| [GNS

0,Z]− [In` ] ||
2
F }
}1/2

. (2.15)

Consequently, the probability distribution of the non-Gaussian random matrix [GNS
0,Z] depends

only on one hyperparameter that is δNS
Z . This hyperparameter allows for controlling the level of

statistical fluctuations, that is to say, for controlling the level of uncertainties.

Using E{[GNS
0,Z]} = [In` ], Eq. (2.13) yields E{[GNS

Z ]} = [In` ]. From Eqs. (2.11) and (2.12), it can
then be deduced that E{[TZ(ω)]} = [TZ(ω)]. Therefore, Eqs. (2.2) and (2.9) show that

E{[ZNS(ω)]} = [ZNS(ω)] . (2.16)

Using the previous equations, it can be seen that any realization [ZNS(ω; θ)] of random matrix
[ZNS(ω)], with θ in Θ, is computed by using the following formulas,

[ZNS(ω, θ)] = [UZ(ω)] [TZ(ω; θ)] , (2.17)

[TZ(ω; θ)] = [LZ
T (ω)]∗ [GNS

Z (θ)] [LZ
T (ω)] , (2.18)

[GNS
Z (θ)] =

1

1 + ε
{[GNS

0,Z(θ)] + ε[In` ]} , (2.19)

in which ε = 1e−13 and in which the realization [GNS
0,Z(θ)] is computed by using the following

representation of random matrix [GNS
0,Z],

[GNS
0,Z] = [LNS

Z ]T [LNS
Z ] , (2.20)

in which [LNS
Z ] is an upper triangular random matrix with values in Mn`(R) such that,

1. the random variables {[LNS
Z ]jj′ , j ≤ j′} are mutually independent.

2. for j < j′, we have [LNS
Z ]jj′ = σNS

G,ZGNS
G,Zjj′ in which σNS

G,Z = δNS
G,Z (n` + 1)−1/2 and where

GNS
G,Zjj′ is a real-valued Gaussian random variable with zero mean and with a variance that

is equal to 1.
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3. for j = j′, we have [LNS
G,Z]jj = σNS

G,Z

√
2VNS

G,Zj
where VNS

G,Zj is a positive-valued Gamma

random variable whose probability density function with respect to dv is written as

pVNS
G,Zj

(v) = 1R+(v)
1

Γ

(
n`+1

2(δNS
G,Z)2

+ 1−j
2

) v

n`+1

2(δNS
G,Z)

2−
1+j
2
e−v . (2.21)

The random variable νNS
Z j can be rewritten as the nonlinear transformation h(GNS

G,Zjj ;

n`; δ
NS
G,Z) of a real-valued Gaussian random variable GNS

G,Zjj with zero mean and with a
variance that is equal to 1.

4. The Gaussian random variables {GNS
G,Zjj′ , 1 ≤ j ≤ j

′ ≤ n`} are statistically independent.

Remarks.

1. The algebraic representation defined by Eq. (2.20) shows that although the entries {[LNS
Z ]jj′ , j ≤

j′} of [LNS
Z ] are mutually independent, the entries {[GNS

0,Z]jj′ , j ≤ j′} of [GNS
0,Z] are mutually

dependent.

2. The diagonal entries [LNS
Z ]jj , j = 1, . . . , n` of random matrix [LNS

Z ] depend on j.

2.3.2 Construction of the probabilistic model of positive-definite symmetric
real random matrix [ZS

I(ω)].

The construction of the positive-definite symmetric real (n` × n`) matrix [ZS
I(ω)] is written as

[ZS
I(ω)] = [LS

Z(ω)]∗ [LS
Z(ω)] , (2.22)

in which [LS
Z(ω)] is an upper triangular (n` × n`) complex matrix with positive diagonal. Let

ε > 0 be a fixed positive small parameter (ε � 1). The random complex matrix [ZS
I(ω)] with

values in M+
n`

(C), is then constructed as,

[ZS
I(ω)] = [LS

Z(ω)]∗ [GS
Z] [LS

Z(ω)] , (2.23)

in which [GS
Z] is a random matrix belonging to the set SG+

ε defined and constructed in Sec-
tion 2.3, for which the hyperparameter is δS

G,Z and allows for controling the level of uncertainties.

2.4 Construction of the probabilistic model of the generalized
aeroacoustic matrix.

2.4.1 Construction of the probabilistic model of random complex matrix
[A(ω)].

For this construction, we use the polar decomposition of deterministic complex matrix [A(ω)]
presented in Section 2.3.1-(i) and then, we construct the complex random matrix [A(ω)], using
the nonparametric probabilistic approach described in Section 2.3.1-(ii).

(i) - Polar decomposition of complex matrix [A(ω)].

As explained in Section 2.3.1-(i), the (n` × n`) complex matrix [A(ω)] can be written (polar
decomposition) as,

[A(ω)] = [UA(ω)] [TA(ω)] , (2.24)

Robust design of nacelle noise reduction technologies 51 of 133



CHAPTER 2. UNCERTAINTY QUANTIFICATION

in which [UA(ω)] is a complex unitary matrix in Mn`(C), which is such that,

[UA(ω)]∗ [UA(ω)] = [In` ] , (2.25)

and where [TA(ω)] is a positive-definite Hermitian matrix that belongs to the set M+
n`

(C),

[TA(ω)] ∈M+
n`

(C) . (2.26)

(ii) - Probabilistic model of random complex matrix [A(ω)].

Matrix [A(ω)] is modeled by the random matrix [A(ω)] using the representation defined by
Eq. (2.24), in which matrix [TA(ω)] is modeled by a random matrix [TA(ω)] as performed in
Section 2.3.1.
The probabilistic construction of random matrix [TA(ω)] is performed in a similar way as it is
done for the randomization of [TZ(ω)] in Section 2.3.1-(ii). As the deterministic complex matrix
[TA(ω)] belongs to M+

n`
(C), its Cholesky factorization is written as,

[TA(ω)] = [LA
T (ω)]∗ [LA

T (ω)] , (2.27)

in which [LA
T (ω)] is an upper triangular (n` × n`) complex matrix with positive diagonal. Let

ε > 0 be a fixed positive small parameter (ε � 1). The random complex matrix [TA(ω)] with
values in M+

n`
(C), is then constructed as,

[TA(ω)] = [LA
T (ω)]∗ [GA] [LA

T (ω)] , (2.28)

in which the random (n` × n`) real matrix [GA] belongs to the set SG+
ε of random matrices

defined in Section 2.3.1-(ii), for which the hyperparameter is δG,A and allows for controling the
level of uncertainties.

2.5 Statistical dependence properties of random matrices.

2.5.1 Statistical dependence properties of randommatrices [ZNS(ω)] and [ZS
I(ω)]

As explained in Sections 2.3 and 2.4, the level of uncertainties of random matrices [ZNS(ω)]
and [ZS

I(ω)] is controled by hyperparameters δNS
G,Z and δS

G,Z that are used in the construction of
random matrices [GNS

Z ] and [GS
Z]. The introduction of statistical dependencies between [ZNS(ω)]

and [ZS
I(ω)] can only be done by the introduction of statistical dependencies between [GNS

Z ] and
[GS

Z]. Two stochastic models related to the description of dependencies are proposed below.

(i) There is no available information concerning the dependencies and the Maximum Entropy
principle is used. Therefore, the result of the Maximum Entropy principle is that the two ran-
dom matrices are independent, which means that random matrices [GNS

Z ] and [GS
Z] are taken as

independent random matrices.

(ii) It is assumed that the sources of uncertainties are the same for the two random matrices.
Consequently, these matrices are perfectly statistically dependent, but their level of uncertainties
can be different (δNS

G,Z not equal to δS
G,Z). In this case, the proposed stochastic model consists in

choosing the same family of independent Gaussian random variables {GNS
Z jj′ , 1 ≤ j ≤ j′ ≤ n`}

for the constuction of [GNS
Z ] and {GS

Zjj′ , 1 ≤ j ≤ j′ ≤ n`} for [GS
Z], that is to say, GNS

Z jj′ = GS
Zjj′

for all j and j′.
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2.5.2 Statistical dependence properties of stochastic processes {[Z(ω)], ω ∈
[ωmin, ωmax]}, {[A(ω)], ω ∈ [ωmin, ωmax]}, and {C+(ω), ω ∈ [ωmin, ωmax]}

(i) - For all ω fixed in [ωmin, ωmax], the random matrices [A(ω)] and [Z(ω)], and the random
vector C+(ω), are statistically independent (see the explanations given at the begining of Sec-
tion 2.2).

(ii) - Since the random matrices [GNS
Z ] and [GS

Z] are independent of ω, for any finite partition
ω1, . . . , ωnω , the random matrices [Z(ω1)], . . . , [Z(ωnω)] are statistically dependent.

(iii) - Similarly, since the random matrix [GA] is independent of ω, for any finite partition
ω1, . . . , ωnω , the random matrices [A(ω1)], . . . , [A(ωnω)] are statistically dependent.

(iv) - The random vectors [C+(ω1), . . . ,C+(ωnω)], are dependent or independent following the
probabilistic model that is used.

2.6 Parametric probabilistic modeling of the fan acoustic excita-
tion

There are two possible approaches, described in Sections 2.6.1 and 2.6.2 for constructing the para-
metric probabilistic model of the fan excitation. The first one consists in using the modal com-
ponents {c+

α , α = 1, . . . , Nd}, while the second one uses the modal intensity {I+
α , α = 1, . . . , Nd}

of the duct modes. The choice is oriented by the available information in the result file (output)
of Actran/TM.

2.6.1 Probabilistic modeling of complex vector c+

In order to take into account the uncertainties on the complex vector c+ that has been introduced
for describing the fan acoustic excitation (incident wave, see Eqs. (1.52) and (1.69)), vector c+

is modeled by a random vector C+ with values in CNd . This random vector C+(ω) depends
on frequency ω. Nevertheless, in order to simplify the notation, this frequency dependence will
be removed in Section 2.6. The methodology used for performing the probabilistic construction
is based on the use of the Maximum Entropy principle. The first step consists in defining the
nominal value of c+, the second one in defining the available information, and the third one in
applying the Maximum Entropy principle under the constraints defined by the available infor-
mation.

(i) Nominal value. For α fixed in {1, . . . , Nd}, the component c+
α of vector c+ = (c+

1 , . . . , c
+
Nd

)
is written as,

c+
α = aα e

jϕ
α , (2.29)

in which aα is the amplitude and ϕ
α
is the phase. The nominal value of vector c+ is then

represented by the vector a = (a1, . . . , aNd) of the nominal values of the amplitudes and the
vector ϕ = (ϕ

1
, . . . , ϕ

Nd
) of the nominal values of the phases. The nominal values are assumed

to be given and consequently, the deterministic vectors a and ϕ are given.

(ii) Available information. The component α of random vector C+ = (C+
1 , . . . , C

+
Nd

) is written
as,

C+
α = A+

α e
jΦ+

α . (2.30)
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We then introduce the random vector A+ = (A+
1 , . . . , A

+
Nd

) of the amplitudes, and the random
vector Φ+ = (Φ+

1 , . . . ,Φ
+
Nd

) of the phase. We then have to construct the probability distribution
of the random variable (A+,Φ+) using the Maximum Entropy principle for which the available
information is defined as follows.

For α in {1, . . . , Nd},

1. A+
α is a second-order random variable with values in R+.

2. The mean value of A+
α is aα, that is to say, E{A+

α } = aα.

3. For a→ 0+ (0+ denotes 0 by upper values), the probability density function a 7→ pA+
α

(a)
must go to zero (if not, the value of pA+

α
(0) should be given and we have no information

about this). The weak constraint that allows for imposing this condition is E{log(A+
α )} =

b+α in which |b+α | < +∞ and where log is a Neperian logarithm. This unknown constant b+α
will be reexpressed in terms of the coefficient of variation δα = σα/aα of random variable
A+
α in which σα is the standard deviation of A+

α . This coefficient of variation is unknown
and is, either used as a sensitivity parameter with respect to the level of uncertaities, or
identified if experimental results are available.

4. Φ+
α is a second-order random variable that is centered in the nominal value ϕ

α
that is to

say, E{Φ+
α } = ϕ

α
.

5. The random variable Φ+
α is with values in [ϕ

α
− π , ϕ

α
+ π].

(iii) Maximum Entropy principle. We have to construct the probability density function (a,ϕ) 7→
pA+,Φ+(a,ϕ) of random variable (A+,Φ+), which is defined on {

∏Nd
α=1 R+}×{

∏Nd
α=1[ϕ

α
−π , ϕ

α
+

π]}. Applying the Maximum Entropy principle under the constraints defined by (ii)-1 to (ii)-5
yields the following results ([60]):

1. The random variablesA+
1 , . . . , A

+
Nd
,Φ+

1 , . . . ,Φ
+
Nd

are statistically independent, which means
that

pA+,Φ+(a,ϕ) =

Nd∏
α=1

{pA+
α

(aα)pΦ+
α

(ϕα)} , (2.31)

in which a = (a1, . . . , aNd) and ϕ = (ϕ1, . . . , ϕNd). It should be noted that this result is
due to the fact that no information is given concerning the dependencies of the components
of random variables A+ and Φ+.

2. For α in {1, . . . , Nd}, the probability density function pA+
α

of random variable A+
α is a

gamma pdf that is written as

pA+
α

(aα) = 1]0 ,+∞[(aα)
(δ−2
α )δ

−2
α

Γ(δ−2
α ) aα

(
aα
aα

)δ−2
α −1

exp{− aα
δ2
αaα
} , (2.32)

in which 0 ≤ δα < 1/
√

(2) and where Γ(β) is a Gamma function.
The probability density function pΦ+

α
of random variable Φ+

α is a uniform pdf that is written
as

pΦ+
α

(ϕα) =
1

2π
1[ϕ

α
−π ,ϕ

α
+π](ϕα) . (2.33)
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Taking into account Eq. (2.33), random variable Φ+
α can be written as

Φ+
α = ϕ

α
+ εαπ (2U+

α − 1) , (2.34)

in which U+
α is a uniform random variable on [0 , 1] and where we have introduced the

indicator εα whose value is zero or one. This parameter allows for killing the statistical
fluctuations of the phase taking εα = 0; if not εα = 1.

(iv) Remarks concerning the use of the probabilistic model. For α fixed in {1, . . . , Nd},

1. if δα = 0, then the amplitude A+
α = aα is deterministic and equal to the nominal value. In

this case, C+
α = aα e

jΦ+
α is a random complex coefficient with deterministic modulus and

random phase. In addition, if εα = 0, then C+
α = c+

α is a complex deterministic coefficient
equal to the nominal value.

2. if aα = 0, then A+
α = 0 because a gamma random variable with zero mean is equal to zero.

In this case, the complex random coefficient C+
α is zero.

3. if aα > 0, if δα > 0, and if εα = 0, then the random complex coefficient C+
α is written as

C+
α = A+

α e
jϕ
α . That is to say, the amplitude is random and the phase is deterministic.

2.6.2 Probabilistic modeling of the modal intensity of the fan excitation duct
modes

Definition of the modal intensity I+
α In the present paragraph, the frequency ω is fixed

and is removed for simplifying the writing. The acoustic pressure p is related to the velocity
potential ϕ by Eq. (1.35), in which the velocity potential ϕ, given by Eq. (1.48), can be rewritten
as

ϕ = ϕ+ + ϕ− , (2.35)

where

ϕ+(x, y, z) =
∑
α

c+
αϕα(x, y)ejkzαz . (2.36)

We then define p+
α , using Eq. (1.35), by

p+
α = −jωρ0ϕ

+
α − ρ0v0 ·∇ϕ+

α . (2.37)

in which ϕ+
α is the contribution of mode α in ϕ+. The modal intensity I+

α , related to pressure
p+
α , is defined by

I+
α = 10 log10

(
|p+
α |2

p2
ref

)
, (2.38)

in which pref is a reference pressure.

Probabilistic model of I+
α The probabilistic model I+

α of the random modal intensity could
be derived from the one used for C+

α . Nevertheless, for civil aircraft applications, a determin-
istic model I+

α is often used by the manufacturers and this model has to be accounted for in
the construction of the probabilistic model. This probabilistic model is thus constructed using
I+
α , which is chosen as the mean value of I+

α . The available information concerning the positive
random variable I+

α is its mean value I+
α and the amplitude of variations defined by a positive

interval Iα ⊂ R+ depending on α and containing the mean value. In addition, there is no
available information concerning the statistical dependence of the random variables I+

1 , . . . , I
+
Nd

.
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Using the MaxEnt principle of Information Theory, it is concluded that the random variables
I+

1 , . . . , I
+
Nd

are statistically independent, and the probability distribution of each I+
α is uniform

with support Iα and with mean value I+
α . Interval Iα is parameterized using a positive hyper-

parameter σα > 0 such that Iα = [I+
α (1− σα) , I+

α (1 + σα)]. Therefore, the random variable I+
α

can be written as

I+
α = I+

α (1 + σαUα) , 0 < σα < 1 , (2.39)

in which Uα is a centered uniform random variable on the interval [−1 , 1].

2.7 Construction of the SROM by using the nonparametric prob-
abilistic approach of uncertainties

From Eq. (1.106), the vector-valued random quantity of interestQoI(ω) at frequency ω is written
as,

QoI(ω) = [Oobs(ω)]Ψa(ω) , (2.40)

in which [Oobs(ω)] is the observation matrix introduced in Section 1.14.

As previously explained, the nonparametric probabilistic approach of both the parametric uncer-
tainties and the model uncertainties induced by modeling errors in the computational model of
the acoustic radiation of an inlet consists in modeling matrix [Z(ω)] of the ROM by the random
complex matrix [Z(ω)] constructed in Section 2.3 and [A(ω)] of the ROM by the random com-
plex matrix [A(ω)] constructed in Section 2.4. The uncertainties on the fan acoustic excitation
consist in modeling c+(ω) by the random complex vector C+(ω) as constructed in Section 2.6.
From Eqs. (1.117) and (1.116), it can be deduced that the SROM can be rewritten as,

QoI(ω) = [FQoI(ω)]C+(ω)− [AQoI(ω)]Q(ω) , (2.41)

in which the random vector Q(ω) of the generalized coordinates verifies the stochastic equation,

([A(ω)] + [Z(ω)])Q(ω) = [B(ω)]C+(ω) . (2.42)

The random complex vector Q(ωj ; θ`) of stochastic generalized coordinates is then written
as,

Q(ωj ; θ`) = ([A(ωj ; θ`)] + [Z(ωj ; θ`)])
−1 [B(ωj)]C+(ωj ; θ`) , (2.43)

2.8 Stochastic solver

The Monte Carlo method is used for solving the SROM. It consists in computing a set of νs
independent realizations, with νs sufficiently large, of the random quantities of interest by using
Eqs. (2.41) and (2.42). From this set of independent realizations, estimates of the statistics for
the quantities of interest are computed, such as probability density functions, moments (means,
standard deviations), confidence intervals. The convergence of the estimates are analyzed with
respect to νs.

The frequency band of analysis [ωmin, ωmax] is sampled in nω points {ω1, . . . ωnω}. For given ωj ,
νs realizations QoI(ωj ; θ`) for ` = 1, . . . , νs are given by

QoI(ωj ; θ`) = [FqoI(ωj)]C+(ωj ; θ`)− [AqoI(ωj)]Q(ωj ; θ`) , (2.44)
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in which the realization Q(ωj ; θ`) of random vector Q(ωj) is given by solving the deterministic
linear matrix equation,

([A(ωj ; θ`)] + [Z(ωj ; θ`)])Q(ωj ; θ`) = [B(ωj)]C+(ωj ; θ`) , (2.45)

in which {[A(ωj ; θ`)], [Z(ωj ; θ`)],C+(ωj ; θ`), ` = 1, . . . , νs} are νs independent realizations of
random complex matrix [A(ωj)], [Z(ωj)] and of random complex vector C+(ωj).

Substituting Q(ωj ; θ`) given by Eq. (2.45) in Eq. (2.44) yields,

QoI(ωj ; θ`) = [P(ωj ; θ`)]C+(ωj ; θ`) , (2.46)

in which,

[P(ωj ; θ`)] = [FqoI(ωj)]− [AqoI(ωj)] ([A(ωj)] + [Z(ωj ; θ`)])
−1 [B(ωj)] (2.47)

is a complex matrix.

2.9 Construction of a matrix representing the QoIs for a multiple
loadcases

Let us consider a multiple loadcases made up of Nd elementary loadcases c+,α for α = 1, . . . , Nd,
in which c+,α = (0, . . . , 1, . . . , 0) is a real vector of length Nd with zero components except
component α, which is equal to 1. Let [c+] = [c+,1 . . . c+,Nd ] be the (Nd×Nd) real matrix of the
multiple loadcase for which the columns are the elementary loadcases. With such a definition of
c+,α, it can be seen that [c+] = [INd ]. Denoting by [QoI(ωj , θ`)] the rectangular complex matrix
obtained with a computational code for this multiple loadcase, shows that

[P(ωj ; θ`)] = [QoI(ωj , θ`)] . (2.48)

2.10 Estimation of the robust-design objective function and con-
vergence with respect to the number of realizations

In the framework of the robust optimization problem, the random stochastic process {QoI(ω),
ω ∈ [ωmin, ωmax]} is considered as a function of the desgin parameter w that belongs to the ad-
missible set Cw. This stochastic process is then rewritten as {QoI(ω;w), ω ∈ [ωmin, ωmax]} (as
explained in Section 1.15.2, the random far-field pressure P (ω; ξ;w) depends on w).

For all w fixed in Cw, from Section 1.15.2, it can be deduced that the estimate J (νs)(w) of
objective function J(w) is written as,

J (νs)(w) =
1

νs

νs∑
`=1

 1

nω + nξ

nω∑
j=1

nξ∑
k=1

sjk |P (ωj , ξk; θ`;w)|2
 , (2.49)

For all w fixed in Cw, the mean-square convergence of statistics (see for instance [60]) related to
stochastic process {QoI(ω;w), ω ∈ [ωmin, ωmax]}, with respect to νs, could be analyzed without
difficulties. Nevertheless, we are interested in the convergence of estimate J (νs)(w) with respect
to νs.

The convergence analysis of the objective function with respect to νs will be carried out as
follows. For any given ε > 0 sufficiently small with respect to 1, for all w fixed in Cw, for a given
integer νs sufficiently large, the convergence of J (νs)(w) will be reached if, for all ν and for all
ν ′ greater than or equal to νs, |J (ν)(w)− J (ν′)(w)| ≤ ε.
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2.11 Implementation of the Monte Carlo solver

The computational implementation of the Monte Carlo method can be written under the form
of an algorithm. It is recalled that random real matrices [GNS

Z ], [GS
Z], and [GA] are indepen-

dent of ω and statistically independent. Let us assume that the deterministic upper triangular
matrices [LS

Z(ω1)], . . . , [LS
Z(ωnω)], [LZ

T (ω1)], . . . , [LZ
T (ωnω)], and [LA

T (ω1)], . . . , [LA
T (ωnω)] and the

deterministic square matrices [UZ(ω1)], . . . , [UZ(ωnω)] and [UA(ω1)], . . . , [UA(ωnω)], can be stored
in memory. Under this condition, the algorithm, which minimizes CPU time, is as follows (it
should be noted, that the loops that appear in algorithm 1 can be parallelized). An important
notice to be made is that, in the algorithm exposed below, the randomization of the excitation
vector c+ is not done at this stage, but is operated in post-processing, as the linear acoustics ap-
proximation is used. Such a randomization process is detailed in Chapter 4, using the probabilist
approach detailed in Section 2.6.

Algorithm 1 Monte Carlo method algorithm for the randomization of the aeroacoustic and
liner matrices

Fixing a value w in Cw of the design parameter.
Fixing a multiple load case.
for j = 1 to nω (loop ACTRAN) do
Calculation of the deterministic upper triangular complex matrices [LS

Z(ωj ;w)], [LZ
T (ωj ;w)],

[LA
T (ωj ;w)], and the deterministic square complex matrix [UZ(ωj ;w)] and [UA(ωj ;w)]

Initialization of the random number generator (same sequence for all the values of w and
ω)
for ` = 1 to νs do

Calculation of the full square real matrices [GS
Z(θ`)] [GNS

Z (θ`)], and [GA(θ`)].

Final assembly of the matrices in Eq. (2.45)
Solving the assembled linear system Eq. (2.45)
Calculation and storing QoI(ωj ; θ`;w) by Eq. (2.44)

end for
end for

A detailed view of the algorithms used during the present work are presented in Appendix D.
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Chapter 3

Nominal computational model for the
nacelle intake used for the application
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Abstract: This chapter describes the application devoted to a nacelle intake and presents
the construction of the nominal computational model for the aeroacoustics computation. We
present the methodology adopted to obtain the steady flow and the final intake acoustic mesh for
computational aeroacoustics. Note that all figures shown in this chapter use a 2D view.
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CHAPTER 3. NOMINAL NACELLE INTAKE MODEL

The aeroacoustic model presented here is used throughout the whole thesis. It corresponds
to the nacelle used during noise development static test (NDST) performed by the engine man-
ufacturer. Its geometry is slightly different from the one used for flight configuration. A static
test lip called "minibell" is used, which allows for ensuring a flow-field in the fan region, that is
equivalent to the one obtained in flight.

3.1 Definition of the system design obtained with Computer As-
sisted Drawing tool (CAD)

The starting point of every numerical study is the design of the actual system. Its complexity
depends on the degree of approximation needed for the study. The design is obtained by using
the aerolines of the nacelle given by the aerodynamics team at Airbus. The CAD obtained can
also be adapted for liner studies. It should be noted that the evaluation of the impact of the
liner design on the aerodynamic performances of the nacelle is of major importance. The CAD
of the application presented in this work is depicted in Fig. 3.1.

(a) Front view
(b) Side view

Figure 3.1: Intake model CAD.

3.2 Fluid mesh for Computational Fluid Dynamics (CFD)

3.2.1 Thermodynamic data associated with flight conditions

Once the system is designed, a set of thermodynamic values associated with flight conditions at
each certification point are needed in order to represent the uniform upstream flow. The engine
rotation speed (rpm), the mass flow rate of the fan (kg/s) are directly retrieved from the flight
conditions and the engine manufacturers data. Inside the duct, the specific thermodynamic
parameters are the in-duct static temperature Tduct, the in-duct static pressure pduct, and the
in-duct Mach number Mduct. Outside, the specific thermodynamic values for the upstream flow
are the static temperature at infinity T∞, the static pressure at infinity p∞, and the Mach number
at infinity M∞, which are generally retrieved at the plane altitude from the 1976 U.S Standard
Atmosphere [67] (relative humidity of 70% at ISA+10◦C). The following work is based on static
tests performed on ground, in which the engine regime is the only varying parameter, not the al-
titude of the plane. Consequently, infinite thermodynamic values are the same for all conditions.

The CFD computation (see Fig. 3.3) is carried out for aerodynamic conditions, not presented
here for confidentiality reasons, for each certification flight conditions (engine regime), by solving
the set of equations described in section 1.6. For the application presented, the effects of the
incidence are not accounted for.
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3.2. FLUID MESH FOR COMPUTATIONAL FLUID DYNAMICS (CFD)

(a) CFD 3D mesh (b) 2D view of the 3D mesh (center cutplane)

Figure 3.2:
Left: Illustration of the 3D CFD mesh in which the purple surface in the background imposes
a zero velocity potential (full absorption), the blue surface in the first plane imposes a zero
velocity, and the green plane in the center of the figure imposes a non-zero velocity.
Right: Illustration of the center cutplane of the 3D CFD mesh (left figure) in which a red
rectangle and a smaller green rectangle illustrate the different mesh sizes.

3.2.2 Rules for the fluid domain construction

The fluid domain is constructed following rules that only depend on a scalar parameter R related
to the duct radius. The fan plane is located where the flow can be considered as uniform, while
the other rules allow to take a sufficiently large zone to account for both heterogeneous and
uniform flows.

3.2.3 Fluid mesh

The mesh refinement is also constrained by specific criteria, which allow for giving sufficiently
small elements to correctly represent the flow in critical regions, and conversely, to keep accept-
able memory and time consumptions by giving large elements where the flow is considered as

uniform. These criteria are function of the acoustic convected wavelength λ =
c− ||ṽ||

f
, where c

is the local speed of sound that can be approximated by the equation (see [9] p.531 Eq. (10.63)),

c = c∞ ±
γ − 1

2
||ṽ||, in which c∞ is the speed of sound in the fluid, in the upstream flow. The

mean mesh size Le is defined by Le =
λ

4
and where ||ṽ|| is taken at the fan plane, and some

refinements are applied in the fluid domain.

3.2.4 Steady flow computation (CFD)

The steady flow is computed with the ACTRAN Flow utility, for which the formulation used is
summarized in Appendix A.
Figure 3.3 shows the steady flow results for the mass density and the velocity fields of the intake
model at the approach condition, for a mesh dimensioned at f = 1 000 Hz. These figures show
the existence of critical regions that require a mesh refinement. For example, one can observe
in Fig. 3.3b that the flow velocity is significantly higher in the duct, and even higher close to
the interior lip.
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(a) Steady flow mass density field (b) Steady flow velocity field

Figure 3.3: Illustration of steady flow results obtained by CFD for the nacelle intake model at
approach condition

3.3 Aeroacoustic mesh for Computational AeroAcoustics (CAA)

(a) CFD domain selection to CAA mesh (2D view) (b) CAA mesh (2D view)

Figure 3.4: 2D view of the 3D CFD mesh and 2D view of the 3D CAA mesh, for a maximum
frequency f = 1 000 Hz.

The aeroacoustic mesh, which is as well issued from the CAD, corresponds to a selection of the
CFD mesh elements. An ellipse is drawn on the CFD mesh following certain criteria on the
convected acoustic wavelength and the velocity field, as depicted in Fig. 3.4a, which decomposes
the whole domain in two subdomains whose meshes are differently refined. The inner domain
gathers the duct and the near-field, and the outer domain is the rest of the domain. The different
meshes are built following aeroacoustic meshing criteria. Finite elements are used to represent
the inner domain, while infinite elements represent the outer pseudo-infinite domain.

The meshing criteria of the CAA mesh depend on the acoustic convected wavelength, which
depend on the studied frequencies. The computational frequency chosen for this study is the
blade passing frequency (BPF). The studied frequency is assessed by using a specific mesh,
dimensioned by the highest frequency (one mesh at 1 000 Hz), that is around 500 kdofs.
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3.4. ACOUSTIC MESH FOR COMPUTATIONAL AEROACOUSTICS

Figure 3.5: 3D view of the intake CAA mesh, which depicts the Inlet surface (orange part in the
center of the figure), the Forward Fan Case surface (red part in the center of the figure close to
the fan plane), and the excitation plane (green part at the background of the figure)

3.4 Acoustic mesh for computational aeroacoustics

The steady flow velocity field computed by CFD is interpolated on the acoustic mesh shown in
Fig. 3.5. We then obtained the steady flow thermodynamic values at each node of the CAA
mesh. The acoustic solution is computed with this acoustic mesh.

Figure 3.6 shows the mass density, pressure, and velocity fields of the steady flow, interpolated
on the acoustic mesh for the three aircraft noise certification configurations. Since the results are
close for the three conditions, only the "approach" condition is presented for the low-frequency
mesh (1 000 Hz).

(a) Steady flow density field (b) Steady flow pressure field (c) Steady flow velocity field

Figure 3.6: 2D view of the 3D steady flow fields interpolated on the acoustic mesh for the
approach condition at f = 1 000 Hz.

Nodes repartition. Once the acoustic mesh is built, it can be decomposed in several sub-
domains, needed to impose boundary conditions. For example, a subdomain is created for the
liner, on which its impedance will be calculated at each node of the subdomain. The nodes
repartition is given in Table 3.1.
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Mesh FEM IEM Inlet FFC Excitation Sym plane Total

f = 1 000 Hz 423 498 9 182 4 821 981 3 285 16 559 458 521
f = 2 000 Hz 2 939 198 24 805 8 665 1 875 8 277 73 189 3 056 476

Table 3.1: Intake CAA mesh nodes repartition for the application

3.5 Nominal liner configuration considered in the application

In the application presented, the nominal liners considered are SDOF (see Appendix C), whose
physical properties are not presented here for confidentiality reasons.
From these physical properties, the impedance of the liner is calculated for each frequency, for the
whole discretized liner surface (by finite elements, whose mesh is presented in Fig. 3.5). These
calculations are performed using an Airbus internal iterative code whose models are presented
in Appendix C. This Airbus code computes the values of the impedance by iterating until a
tolerance value defined by the user is reached. A model uncertainty is then introduced in this
impedance model, which is taken into account using the nonparametric probabilistic approach
of uncertainties presented in Chapter 2.

3.6 Quantities of interest (output indicators)

The acoustic solution can be obtained for each node of the acoustic mesh. For obvious compu-
tational cost reasons, the acoustic field is generally not computed on the whole mesh. Virtual
points are placed in the 3D inner or outer domain, on which the acoustic pressure is observed
(quantities of interest). In the present work, a noise development static test (experiments) is
used. The two microphones configurations used are presented hereinafter.

(a) Intake lip ring of microphones

46m

0°

140°

(b) Far-field arc of microphones

Figure 3.7: Microphones configurations during noise development static test

a) Modal detection ring: The experimental modal detection ring consists of Nmics = 100
flush-mounted microphones distributed on the intake lip (see Figure 3.7a). For the simulations,
the microphone ring is located inside the inner domain (finite elements)

b) Far-field array: During static ground tests (NDST) microphones are located on an arc
placed on the ground. This arc is characterized by a radius of 46 m from the center of the
nacelle axis taken at the vertical of the lip leading edge, as depicted by Fig. 3.7b. For the far-
field simulations, the microphones (points) are located every degree from 0 to 140◦ in the outer
domain (infinite elements).
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Identification of the fan excitation
modal content, aeroacoustic, liner and
modal content uncertainties using
experiments
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Abstract: This chapter is devoted to the uncertainty quantification for 3D acoustic per-
formance model of nacelle liners (acoustic treatments). Uncertainties are taken into account in
order to increase the robustness of the predictions. A full computational acoustic propagation
model based on the convected Helmholtz equation in presence of a non-homogeneous flow velocity
field computed by solving the potential Euler Equations is used. A reduced-order computational
model is deduced in order to implement the probabilistic model of uncertainties. The model un-
certainties induced by modeling errors have been taken into account for the acoustic propagation
model and the liner model, using the nonparametric probabilistic approach. In addition, the
uncertainties on the acoustic excitation induced by the fan have been introduced using the para-
metric probabilistic approach. The developed methodology is applied to a 3D nacelle intake and
allows for computing the confidence regions of the random far-field radiated pressure in terms
of random SPL (Sound Pressure Level), which are compared to experiments for several flight
conditions and frequencies.
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The lack of knowledge related to the acoustic excitation induced by the fan rotation is a
major contribution to the overall uncertainty of the computational model. As explained in
Section 1.8.2, the acoustic excitation is represented by a finite sum of Nd duct modes imposed
to the acoustic system. In Section 2.6.2, the deterministic modal intensity I+

α and its random
counterpart I+

α of the duct modes have been defined. Concerning the construction of I+
α , an

empirical model based on civil-aircraft-manufacturer expertise is used. The current section aims
to present the identification of the level of uncertainty associated with the acoustic excitation
modal content. For that purpose, experimental data are used, corresponding to acoustic pres-
sures measured at points located on a ring at the intake lip, and also on a far-field microphones
array. The ring pressures are also simulated with the stochastic computational aeroacoustic
model defined in Chapter 3. The identification of the level of the mean value I+

α and the hy-
perparameter σα of the random variable I+

α is then performed minimizing the distance between
experimental and simulated data.

In a similar way, aeroacoustic and liner uncertainties are identified by comparing experimental
data and simulated data for which the modal content has already been identified. A first step
consists in introducing aeroacoustic uncertainties in the stochastic reduced-order model, using
the hardwall case. The SROM is then operated several times for which the level of aeroacoustic
uncertainties varies, following a trial method. Then, a confidence region corresponding to a 95%
level of confidence is drawn from each stochastic computation (resulting from the Monte Carlo
stochastic solver), and compared to experimental data. The main objective is therefore to frame
a maximum of experimental points inside the calculated confidence region, while keeping it the
thinnest possible. The same study is carried out by introducing liner uncertainties, using the
lined case. And finally, as aeroacoustic and liner uncertainties are fixed following the previously
mentioned constraints, uncertainties on the multi-modal (broadband) and emergences acoustic
levels are identified.

4.1 Definition of the general Quantities of Interest

4.1.1 Quantities of Interest on the ring

Acoustic pressure on the ring

pring,i(ω) =

Nazi∑
m=−Nazi

am(ω)ejmϕi , (4.1)

in which ω is the angular frequency, m is the azimuthal order, am(ω) is the complex amplitude
of the azimuthal order m, and ϕi = 2π(i − 1)/Nmics is the angle in rad of the ith microphone
(which is thus different from the phase operator introduced in Eq. (2.29)), in which Nmics is the
number of microphones on the ring. Equation (4.1) can be rewritten, in a matrix form, as

pring(ω) = [Φ]a(ω) , (4.2)

in which pring(ω) = (pring,1(ω), . . . , pring,Nmics) is the complex vector in CNmics , a(ω) = (a−Nazi(ω),

. . . , a0(ω), . . . , aNazi(ω)) is the complex amplitude vector in C2Nazi+1, and [Φ] is the complex ma-
trix in MNmics,2Nazi+1(C) such that [Φ]im = ejmϕi .

Azimuthal amplitude for the ring acoustic pressure Assuming that 2Nazi + 1 ≤ Nmics,
the complex amplitude vector a(ω) is obtained by using the left pseudo-inversion, as

a(ω) =
(

([Φ]∗[Φ])−1 [Φ]∗
)
pring(ω) . (4.3)
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Azimuthal Sound Pressure Level for the ring acoustic pressure The azimuthal ampli-
tude of azimuthal order m of the acoustic pressure on the ring, expressed in dB, is defined, for
m ∈ {−Nazi, . . . , 0, . . . , Nazi}, by

SPLring,m(ω) = 10 log10

(
|am(ω)|2

p2
ref

)
. (4.4)

4.1.2 Quantities of Interest for the far-field

Acoustic pressure in the far-field For the ith microphone on the far-field arc defined in
Fig. 3.7b, for which there are Nmics microphones, the acoustic pressure is denoted by pff,i(ω).
The complex vector in CNmics of the acoustic far-field pressures are then defined by

pff(ω) = (pff,1(ω), . . . , pff,Nmics
(ω)) . (4.5)

Sound Pressure Level in the far-field The sound pressure level of the ith microphone is
defined by

SPLff,i(ω) = 10 log10

(
|pff,i(ω)|2

p2
ref

)
, (4.6)

in which pff,i(ω) is defined by Eq. (4.5).

4.2 Definition of experimental QoIs

Figure 4.1: Experimental set-up: pressure measurements on the ring mounted on the nacelle
inlet.

Experimental QoI on the ring The experimental data are acquired on the ring that consists
of Nmics = 100 flush-mounted microphones distributed on the intake lip (see Figure 4.1). The
azimuthal sound pressure level on the ring is written as

SPLexp
ring,m(ω) = 10 log10

(
|aexp
m (ω)|2

p2
ref

)
, (4.7)

in which aexp
m (ω) is given by Eq. (4.3) for experimental data.
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Experimental QoI in the far-field The sound pressure level in the far-field is written as

SPLexp
ff,i (ω) = 10 log10

(
|pexp

ff,i (ω)|2

p2
ref

)
. (4.8)

4.3 Definition of simulated QoIs

The stochastic computational aeroacoustic model used for representing the experimental set-up
depicted in Figure ??, is the one defined in Chapter 3. Since the aeroacoustic computational
model is linear, in order to avoid the call to the computational model a large number of times
during the identification algorithm, the acoustic pressures on the ring and in the far-field, are
firstly computed for a given reference modal intensity I+,ref

α (ω). For instance, such a reference
I+,ref
α (ω) is chosen as 100 dB for all ω and for all α. Then, these results are used for computing
the acoustic pressures on the ring and in the far-field for a given modal intensity I+

α (ω). This
is the reason why we need to rewrite the different QoIs in function of the modal intensity I+

α

through the use of the reference modal intensity I+,ref
α (ω).

4.3.1 Expression of the different Quantities of Interest as a function of the
modal intensity I+

α

The acoustic pressure pi(ω) for each microphone i (ring or far-field) and for mode α is computed
using the computational aeroacoustic model. This acoustic pressure corresponds to an injected
acoustic modal intensity I+,ref

α for each duct mode α (see Section 2.6.2). From Eq. (2.38), the
square of the acoustic pressure modulus corresponding to each duct mode α corresponding to
I+,ref
α (ω), is defined by

|pref
α (ω)|2 = p2

ref 10(I+,refα (ω)/10) , (4.9)

in which pref = 2e−6 is the acoustic pressure of reference. For the modal intensity I+
α (ω), the

square of the acoustic pressure modulus is then written as

|pα(ω)|2 = p2
ref 10(I+α (ω)/10) , (4.10)

which can be rewritten using the reference modal intensity I+,ref
α as

|pα(ω)|2 = p2
ref 10(I+α (ω)−I+,refα (ω))/10 , (4.11)

Expression of the simulated QoIs on the ring Let aα(ω) ∈ C2Nazi+1 be the complex
amplitude vector of mode α such that

aα,ref(ω) =
(

([Φ]∗[Φ])−1 [Φ]∗
)
pα,ref

ring (ω) , (4.12)

in which pα,ref
ring (ω) is the vector in CNmics of the acoustic pressures on the ring computed for the

reference modal intensity I+,ref
α . The azimuthal sound pressure level SPLsim

ring,m(ω) on the ring
for the modal intensity I+

α (ω) is then given, for m ∈ {−Nazi, . . . , 0, . . . , Nazi}, by

SPLsim
ring,m(ω) = 10 log10

(
1

Nd

Nd∑
α=1

|aα,ref
m (ω)|2

p2
ref

× 10(I+α (ω)−I+,refα (ω))/10

)
. (4.13)
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Expression of the simulated far-field QoIs The sound pressure level in the far-field for
the modal intensity I+

α (ω) is given by

SPLsim
ff (ω) = 10 log10

(
1

Nd

Nd∑
α=1

|pα,ref
ff (ω)|2

p2
ref

× 10(I+α (ω)−I+,refα (ω))/10

)
, (4.14)

in which pα,ref
ff (ω) is the vector in CNmics of the acoustic pressures on the far-field arc computed

for the reference modal intensity I+,ref
α .

4.3.2 Notation for the random variable and the mean value of the QoIs

For the hardwall case (no liner), in the stochastic computational aeroacoustic model, the random
quantities are (1) the modal intensity I+

α (ω), whose hyperparameters of the probabilistic model
are I+

α (ω) and σα (see Section 4.3.1), which are identified separately, and (2) the generalized
aeroacoustic matrix for which the hyperparameter is δA. In this condition, the sound pressure
level becomes random and denotes these random variables and their mean values as follows.

• The random azimuthal sound pressure level on the ring, defined by Eq. (4.13), is denoted
SPLsim

ring,m(ω) (notation unchanged). A realization of this random variable is SPLsim
ring,m(ω; θ).

Its mean value is denoted SPLsim
ring,m(ω).

• The random sound pressure level in the far-field, defined by Eq. (4.14), is denoted SPLsim
ff (ω)

(notation unchanged). A realization of this random variable is SPLsim
ff (ω; θ). Its mean value

is denoted SPLsim
ff (ω).

4.3.3 Modeling of the deterministic modal intensity I+
α

Simulated data are computed following hypotheses on the modal content that concern broadband
and emergence levels, and energy repartition between the different modes. For that purpose,
a state-of-the-art modal content used by Airbus is introduced. A broadband level is set for
all azimuthal and radial orders. An emergence level corresponding to the engine order is set.
Then, a number of azimuthal orders from each side of the engine order mode is set, for which
the acoustic energy decays as a function of the azimuthal order. For the azimuthal order that
corresponds to the engine order, at the blade passing frequency that is studied here, we make
the hypothesis that the energy is only carried by the first radial order.
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• IEO is the modal intensity of the engine
order of azimuthal order m = mEO (red
bar),

• IFE− is the modal intensity of the nega-
tive flexible emergence of azimuthal order
m = mFE− (green bar),

• IZero is the modal intensity of the az-
imuthal order m = 0 emergence (purple
bar),

• IFE+ is the modal intensity of the posi-
tive flexible emergence of azimuthal order
m = mFE+ (cyan bar),

• IBB is the modal intensity of the broad-
band (blue bar),
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Algebraically, the modal content can be described as follows,



if m = mEO, I+,mod
α = IEO,

if m = mFE+ , I+,mod
α = IFE+ ,

if m = 0, I+,mod
α = IZero,

if m = mFE− , I+,mod
α = IFE− ,

if (|m−mEO| ≤ Nadj),

I+,mod
α = IEO

(
1−

(
m−mEO
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)2
)

+ (IBB − 10 log10(Nazi))
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)2
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(
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)2
)
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)2
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if (|m− 0| ≤ Nadj),
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α = IZero

(
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(
m
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)2
)

+ (IBB − 10 log10(Nazi))

(
m
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)2

− 10 log10(Nrad(m)),

if (|m−mFE− | ≤ Nadj),

I+,mod
α = IFE−

(
1−

(
m−m−FE

Nadj + 1

)2
)

+ (IBB − 10 log10(Nazi))

(
m−m−FE

Nadj + 1

)2

− 10 log10(Nrad(m)),

else, I+,mod
α = IBB − 10 log10(NaziNrad(m)).

(4.15)
in which, Imn is the modal intensity of azimuthal order m and radial order n, IEO is the modal
intensity of the engine order of azimuthal order m = mEO, IFE− is the modal intensity of
the negative flexible emergence of azimuthal order m = mFE− , IZero is the modal intensity of
the azimuthal order m = 0, IFE+ is the modal intensity of the positive flexible emergence of
azimuthal order m = mFE+ , IBB is the modal intensity of the broadband, Nadj is the number of
adjacent modes on which the engine order acoustic energy is reverberated, Nazi is the number
of azimuthal orders, and Nrad is the number of radial orders per azimuthal order.

4.4 Sensitivity analysis of QoIs with respect to uncertainties

This section aims to present some results of the sensitivity analysis with respect to uncertainties
in order to assess their impact on both far-field and ring modal pressure responses, for both
approach and cutback flight conditions. At the blade passing frequency (BPF), the excitation
modal content is different for the two flight conditions. It is then interesting to study both of
them in order to understand how the stochastic acoustic response will be impacted by higher
order emergences such as the engine order, which is cut-off for the approach condition, and
cut-on for the cutback condition.
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4.4.1 Approach condition

4.4.1.1 Sensitivity study of modal Sound Pressure Levels towards uncertainties

In this subsection, the sensitivity of modal QoIs towards aeroacoustic and liner uncertainties on
specific modes is undertaken. The main objective is to observe the raw impact of uncertainties
on those modes, by avoiding unwanted effects such as the smoothing due to the averaging over
all modes accounted for in the calculation of global SPLs. A comparison between hardwall con-
figuration with aeroacoustic uncertainties only and lined configuration with liner uncertainties
only is done as well as a comparison between far-field and ring datasets. This preliminary study
is done for the same flight condition (approach) and frequency (1 BPF), and allows for control-
ling the validity of the problem physical representativeness. For this specific configuration, fan
noise signature contains multimodal (broadband) noise and tonal noise. Tonal noise is generally
carried by modes for which the azimuthal order corresponds to the engine order, and/or the
rotor-stator interaction mode (Tyler and Sofrin [66]). As these specific modes are cut-off in this
specific configuration, the same sensitivity analysis should be done on another configuration,
for which the excitation modal content contains these modes. The present preliminary study is
carried out for a relatively simple configuration that allows for computational costs to remain
low (and thus allow for more analyses).

First mode (m,n) = (0, 1) The first mode generally radiates in the nacelle axis direction and
is not impacted by lined surfaces since its acoustic energy is concentrated at the center. This
mode is then interesting to be investigated in order to confirm that liner uncertainties will have
low to zero impact on the acoustic response in this configuration.

(a) Hardwall duct view (b) Lined duct view

(c) Hardwall fan view (d) Lined fan view

Figure 4.2: Visualization of the acoustic pressure (dB) for the first mode (m,n) = (0, 1) and for
the approach condition, inside the duct from two perspectives: side and front. Hardwall and
lined configuration are depicted.

In Fig. 4.2, the acoustic pressure (dB) for the first mode (m,n) = (0, 1) is shown from two per-
spectives. Inside the duct (Fig. 4.2a and Fig. 4.2b), the acoustic pressure is quite heterogeneous
along the nacelle axis, depicting a zone where it is higher (at the top, close to the lip for the
hardwall configuration, and outside along the nacelle axis for the lined configuration). In a cross
section of the nacelle where the fan is located (Fig. 4.2c and Fig. 4.2d), the difference between
hardwall and lined configuration is not important (only the global amplitude of the swelling
mode is different).

Before observing the differences of sensitivity between hardwall and lined configurations, it is
firstly important to have in mind how these differences behave using the nominal model.
In Fig. 4.3, the difference of hardwall and lined datasets are shown for the mode (m,n) = (0, 1).
On the ring, the difference is clear and not surprising. Lined data are less energetic since the
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(b) Far-field SPL.

Figure 4.3: Difference between Hardwall and Lined configurations for the ring nominal dataset
(left) and the far-field nominal dataset (right) for the approach condition at the blade passing
frequency f = 654 Hz (1 BPF) for the mode (m,n) = (0, 1). One graduation equals 1 dB on
left plot and 5 dB on right plot.

acoustic energy is absorbed by the liners. Nevertheless, for this mode, in the far-field, the
difference is not clear. There is apparently an odd creation of energy in the angle region 25◦

to 55◦. This is probably a numerical artefact, or less probably, a diffraction effect due to the
presence of the liner, which creates surface modes that cannot be accounted for since no boundary
layer is accounted for in this modeling of the liner in presence of a grazing flow. This can be
also related to the odd overpressure zone that is shown in Fig. 4.2b.
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(a) Hardwall with aeroacoustic uncertainties only
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(b) Lined with liner uncertainties only

Figure 4.4: Sensitivity of modal ring SPL data towards aeroacoustic uncertainty level δA (left)
and liner uncertainty level δZ (right) for the approach condition at the blade passing frequency
f = 654 Hz (1 BPF) for the mode (m,n) = (0, 1) by comparison between nominal data (black
line) and simulation data for different values of parameters δA and δZ. One graduation equals 5
dB.

In Fig. 4.4, the sensitivity of the mode (m,n) = (0, 1) towards aeroacoustic and liner uncertain-
ties is presented, observed on the ring microphone array. For the hardwall condition (Fig. 4.4a),
one can notice that the confidence region associated with each one of the uncertainty level values
(from 1 to 10%) thicken then quickly stabilize. This is a saturation phenomenon that occurs for
δA = 7.5%, and means that by adding more uncertainties, the width of the confidence region
would not increase much. This cannot be observed on the lined dataset for which uncertainties
have a low impact on ring acoustic pressure (Fig. 4.4b), which is not surprising as the acoustic
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energy in the duct is located at the center.
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(a) Hardwall configuration with aeroacoustic uncer-
tainties only
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(b) Lined configuration with liner uncertainties only

Figure 4.5: Sensitivity of far-field modal SPL data towards aeroacoustic uncertainty level δA

(left) and liner uncertainty level δZ (right) for the approach condition at the blade passing
frequency f = 654 Hz (1 BPF) for the mode (m,n) = (0, 1) by comparison between nominal data
(black line) and simulation data for different values of parameters δA and δZ. One graduation
equals 10 dB.

In Fig. 4.5a, the impact of aeroacoustic uncertainties over the hardwall far-field dataset is as-
sessed for different levels. One can notice that the confidence regions increase linearly as δA

increases. The saturation effect observed in Fig. 4.4a might appear for a greater value of δA on
the far-field dataset. Giving the presence of a rather heterogeneous repartition of energy inside
the duct, and especially close to the lip (see Fig. 4.2b), the impact of aeroacoustic uncertainties
seems legitimate. For the lined configuration (Fig. 4.5b), the impact of liner uncertainties is far
less important than aeroacoustic uncertainties on the hardwall case. Nevertheless, the impact
is much more visible on the far-field array than on the ring array for this configuration (see
Fig. 4.4b) simply because the dynamic is different in both figures, the confidence region being
approximately 2dB thick for both ring and far-field datasets.

Last mode (m,n) = (10, 1) The second mode to be investigated correspond to the last cut-on
mode of the excitation modal content. This mode is interesting because of its energy repartition
inside the duct, which is mainly concentrated close to the duct wall. As this mode is supposed
to be strongly attenuated by lined surfaces, liner uncertainties should have a higher impact on
the acoustic response.
Fig. 4.6 shows the acoustic pressure (dB) for the last mode (m,n) = (10, 1). Inside the duct
(Fig. 4.6a), the acoustic pressure is mainly concentrated close to the duct wall. This is conform
with what can be seen in Fig. 4.6c, on which one can observe the alternation between pressure
zeros and nonzeros. Since this mode has a high cut-off ratio and a short wavelength, and since
its energy is concentrated on the wall, this mode is highly absorbed by liner surfaces. This is
verified by a simple comparison between hardwall and lined duct views for which there is a clear
impact of the liner on the acoustic pressure (Fig. 4.6a).

As done for the first mode, we first observe the difference between hardwall and lined cases in
terms of modal SPL.
In Fig. 4.7, the difference between Hardwall and Lined configurations for the ring nominal
dataset (Fig. 4.7a) and the far-field nominal dataset Fig. 4.7b is presented. Contrarily to the
first mode (Fig. 4.3b), far-field hardwall and lined cases do not show an odd acoustic response.
Nevertheless, on the ring, one can observe a pattern in the acoustic response, which could be
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(a) Hardwall duct view (b) Lined duct view (c) Hardwall fan view (d) Lined fan view

Figure 4.6: Visualization of the acoustic pressure (dB) for the mode (m,n) = (10, 1) and for the
approach condition, inside the duct from two perspectives: side and front. Hardwall and lined
configuration are depicted.
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Figure 4.7: Difference between Hardwall and Lined configurations for the ring nominal dataset
(left) and the far-field nominal dataset (right) for the approach condition at the blade passing
frequency f = 654 Hz (1 BPF) for the mode (m,n) = (10, 1). One graduation equals 5 dB on
left plot and 10 dB on right plot.

related to the alternance of pressure zeros and nonzeros that can be observed in Fig. 4.6d for the
lined case. In the far-field, this phenomenon seems to be erased due to the far-field propagation
effects.
In Fig. 4.8a, the saturation phenomenon is still present and even more important than previously
presented (Fig. 4.4a) for the first mode. For δA = 5%, ring data are saturated by aeroacoustic
uncertainties. This is not the case for the lined configuration for which liner uncertainties have
a little impact on ring data. They have still more impact on this mode than for the mode
(m,n) = (0, 1) (see Fig. 4.4b). Since this mode has a high cut-off ratio (in comparison with the
mode (m,n) = (0, 1)), and consequently a short wavelength, this mode is more impacted by the
presence of the liner and so by liner uncertainties.
Fig. 4.9a depicts the impact of aeroacoustic uncertainties on the ring dataset corresponding to
the hardwall configuration. The mode (m,n) = (10, 1) seems very sensitive towards aeroacoustic
uncertainties as confidence regions tend to thicken and stochastic means increase as δA increases.
But contrarily to the first mode (see Fig. 4.5a), there is not a clear angle range for which uncer-
tainties have no impact. The same observation can be made for the lined case (Fig. 4.9b).

This study results are not ground breaking but allow for verifying the validity of the method.
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(a) Hardwall case/aeroacoustic uncertainties only
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Figure 4.8: Sensitivity of modal SPL data towards aeroacoustic uncertainty level δA for the
approach condition at the blade passing frequency f = 654 Hz (1 BPF) for the mode (m,n) =
(10, 1) by comparison between nominal data (black line) and simulation data with aeroacoustic
uncertainties for different values of parameters δA and δZ. One graduation equals 5 dB.
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(a) Sensitivity of azimuthal ring modal SPL to-
wards aeroacoustic uncertainties

10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

80

90

(b) Sensitivity of broadband far-field modal SPL
towards aeroacoustic uncertainties

Figure 4.9: Sensitivity of modal SPL data towards aeroacoustic uncertainty level δA and liner
uncertainty level δZ for the approach condition at the blade passing frequency f = 654 Hz
(1 BPF) for the mode (m,n) = (10, 1) by comparison between nominal data (black line) and
simulation data for different values of parameters δA and δZ. One graduation equals 10 dB.

The objective was to observe the impact of uncertainties over the ring dataset for two different
modes whose energy repartition is opposite: one mode whose energy is concentrated around
the nacelle axis, and another mode whose energy is located close to the wall. Aeroacoustic
uncertainties have a strong impact on both modes, whereas liner uncertainties have impact only
on the last mode, which is logical as it is strongly attenuated by liner surfaces.

4.4.1.2 Sensitivity of global Sound Pressure Levels towards uncertainties

In this subsection, global SPLs are used, as calculated using Eq. (4.13) for ring datasets, and
Eq. (4.14) for far-field datasets.
As it has been done for the modal sensitivity study, we observe the difference between hardwall
and lined datasets on global SPLs.
In Fig. 4.10, there are no odd differences between both datasets. The differences that have been
observed on the first mode are "erased" by the averaging on all cut-on modes.
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Figure 4.10: Difference between Hardwall and Lined configurations for the ring nominal dataset
(left) and the far-field nominal dataset (right) for the approach condition at the blade passing
frequency f = 654 Hz (1 BPF). One graduation equals 1 dB on left plot and 2 dB on right plot.

Aeroacoustic uncertainties A first step consists in observing the impact of several aeroa-
coustic uncertainty levels (δA values) towards global SPLs (for both ring and far-field data).
The range of δA ranges from minimum to maximum intuitive values such as the problem physi-
cal meaning would be respected (for example 90% of aeroacoustic uncertainties would not be a
reasonable value).
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Figure 4.11: Sensitivity of global SPL data towards aeroacoustic uncertainty level δA for the
approach condition at the blade passing frequency f = 654 Hz (1 BPF) by comparison between
experimental data (black line) and simulation data with modified modal content and aeroacoustic
uncertainties for several values. One graduation equals 5 dB.

In Fig. 4.11, the sensitivity study of global SPL towards aeroacoustic uncertainty level is pre-
sented for the approach condition at the BPF. δA varies from 1% to 10%. On the left figure
(Fig. 4.11a), the impact of aeroacoustic uncertainties on the ring modal SPL is observed. One
can notice that the sensitivity of SPLring,m is a logarithm function of δA. While, it seems that
the sensitivity of the far-field SPL (broadband) is a linear function of δA, as it can be seen in
Fig. 4.11b. This phenomenon has been encountered during the modal SPL sensitivity study
(subsection 4.4.1.1).
As explained, aeroacoustic uncertainties have a logarithmic impact on ring data, whereas a linear
impact is observed on far-field data. This difference can be explained by several factors. As the
aeroacoustic uncertainties increase, a saturation effect is quickly observed on ring data. While
this saturation might eventually be obtained for a much higher value of δA on far-field data (this
is the case for δA = 50%, see Fig. 4.11c).
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If we take the example of δA = 1%, ring data are much more impacted than far-field data. The
difference of the impact force between ring and far-field data is actually closely linked to the
nature of the modes that are captured by the different microphones. This can be explained by
the relative distance of the observer (ring or far-field) to the acoustic source (the fan). When
duct modes exit the nacelle intake, they are captured by the ring, then propagate to be later
captured by the far-field microphones. Indeed, one can notice that the ring, from its relatively
close distance to the emission source (fan), is more likely to capture high cut-off ratio modes
for which the acoustic wavelength is small. Whereas, as the far-field arc of microphone is far
from the source, low cut-off ratio modes (which are directive in a small angle region, e.g. a
small angle of emission) will mainly be captured, while high cut-off ratio modes will already
be attenuated. Also, because high cut-off ratio modes have less energy than low cut-off ratio
modes, the impact of uncertainties is more likely to have a stronger impact on the former. This
explains the difference observed for a low level of uncertainties.

Also, as the value of δA increases, we observe an increasing of the stochastic mean. This is
explained by the fact that uncertainties are imposed to matrix [(ω)] which is inverted during the
resolution of the stochastic system. Consequently, fluctuations of the acoustic response of such
a system are not linear, that is why we observe this kind of behaviour.

Liner uncertainties A sensitivity study of global sound pressure levels for both ring and
far-field stochastic data towards liner uncertainties is needed to observe how the uncertainty
will impact the model. For this study, a variation of liner uncertainties is undertaken (δZ =
[10%, 30%, 50%, 70%]), keeping aeroacoustic uncertainties to zero. As it has been seen in sub-
section 4.4.1.1, liner uncertainties have a small impact towards modal SPL, for the ring as well
as the far-field data. This could be explained by the fact that the liner studied is already op-
timized for this flight condition/frequency. In order to confirm or infirm this hypothesis, the
global stochastic SPLs are also computed using a lined surface for which the admittance has
been manually altered by a factor 200%. Results can be seen in Fig. 4.12b.
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Figure 4.12: Sensitivity of global Azimuthal SPL data towards liner uncertainty level δZ for the
approach condition at the blade passing frequency f = 654 Hz (1 BPF) by comparison between
experimental data (black line) and simulation data with modified modal content and aeroacoustic
uncertainties for several values: δA = 10% (cyan confidence region), δA = 30% (green confidence
region), δA = 50% (red confidence region), and δA = 70% (blue confidence region). Left:
optimized admittance; Right: altered admittance by a factor 200%. One graduation equals 5
dB. One graduation equals 5 dB for both plots.

In Fig. 4.12 (both left and right figures), one can observe that lined uncertainties have a low
impact on global ring data, especially for azimuthal orders in the range [−6; 6]. Whereas outside

Robust design of nacelle noise reduction technologies 77 of 133



CHAPTER 4. IDENTIFICATION OF MODAL CONTENT AND UNCERTAINTY LEVELS

this range, the azimuthal SPL is slightly affected by liner uncertainties. As it has been extensively
explained in the previous subsection, high cut-off ratio modes are more inclined to be affected
by uncertainties since they are poorly energetic. The alteration of the admittance nevertheless
implies a more important effectiveness of uncertainties, which is a good result in the framework of
the liner optimization for which an optimum in terms of acoustic absorbtion as well as robustness
is expected.
One can observe that in Fig. 4.12, the sensitivities towards liner uncertainties are slightly dif-
ferent when the liner admittance is not optimal. Although this result is reassuring, it cannot
be considered as conclusive. Liner uncertainties should have a more important impact on the
detuned liner. Another study would consist in doing this analysis for a different flight condition
and frequency for which the fan noise signature is more exhaustive, for example, a flight condi-
tion for which the mode carrying the engine order is cut-on.

4.4.2 Cutback condition

In this subsection, we reproduce the study carried out in 4.4.1.1 and 4.4.1.2.

4.4.2.1 Sensitivity study of modal Sound Pressure Levels towards uncertainties

Unlike the approach condition, the mode carrying the engine order is cut-on in cutback. The
Tyler and Sofrin interaction mode is still cut-on in this configuration. The present preliminary
study is carried out for a more complex configuration than presented in Subsection 4.4.1.1 and
allows for studying a richer modal content.

First mode (m,n) = (0, 1) The first mode generally radiates in the nacelle axis direction
and is not impacted by lined surfaces since its acoustic energy is concentrated at the center.
Since the cutback flight condition implies a higher engine regime, the acoustic levels should be
different than the approach, and thus, the impact of uncertainties too.

(a) Hardwall duct view (b) Lined duct view (c) Hardwall fan view (d) Lined fan view

Figure 4.13: Visualization of the acoustic pressure (dB) for the first mode (m,n) = (0, 1) and
for the cutback condition, inside the duct from two perspectives: side and front, for the cutback
flight condition. Hardwall and lined configuration are depicted.

In Fig. 4.13, the acoustic pressure (dB) for the first mode (m,n) = (0, 1) is shown from two
perspectives. Inside the duct (Fig. 4.13a) for the hardwall case, the acoustic pressure is quite
homogeneous except for two overpressure zones located at the nacelle lip. Whereas, for the lined
case (Fig. 4.13b), it exists overpressure zones in the nacelle axis, over the liner in addition to the
overpressure zones found on the hardwall case. This maybe corresponds to refraction effects due
to the presence of the liners. In a cross section of the nacelle where the fan is located (Fig. 4.13c
and Fig. 4.13d), the difference between hardwall and lined configuration is not important (only
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the global amplitude of the swelling mode is different).

Before observing the differences of sensitivity between hardwall and lined configurations, it is
firstly important to have in mind how these differences behave using the nominal model.
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Figure 4.14: Difference between Hardwall and Lined configurations for the ring nominal dataset
(left) and the far-field nominal dataset (right) for the cutback condition at the blade passing
frequency f = 946 Hz (1 BPF) for the mode (m,n) = (0, 1). One graduation equals 1 dB on
left plot and 5 dB on right plot.

In Fig. 4.14, the difference between Hardwall and Lined configurations for the ring nominal
dataset (Fig. 4.14a) and the far-field nominal dataset (Fig. 4.14b) is observed. As for the first
mode at the approach condition (Fig. 4.3b), it exists an angle region in the far-field for which the
acoustic energy of the lined case is greater than the hardwall case. This can also be explained
by refraction effects, as it can be seen in Fig. 4.13b on which overpressures are visible in the
center of the nacelle, that probably radiate in the nacelle axis. Also, as it has been observed
for the last mode of the approach condition (Fig. 4.7a), it exists some rebounds on the ring
acoustic response that could correspond to the number of lobes visible in Fig. 4.13b (we count
6 overpressure zones and 6 rebounds).
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Figure 4.15: Sensitivity of modal ring SPL data towards aeroacoustic uncertainty level δA (left)
and liner uncertainty level δZ (right) for the approach condition at the blade passing frequency
f = 654 Hz (1 BPF) for the mode (m,n) = (0, 1) by comparison between nominal data (black
line) and simulation data for different values of parameters δA and δZ. One graduation equals 5
dB.
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In Fig. 4.15, the sensitivity of the mode (m,n) = (0, 1) towards aeroacoustic and liner uncertain-
ties is presented, observed on the ring microphone array. For the hardwall condition (Fig. 4.15a),
the saturation phenomenon as observed in Fig. 4.4a for the approach condition, still occurs for
δA = 7.5%, and means that by adding more uncertainties, the width of the confidence region
would not increase much. This is still not observed on the lined dataset for which uncertainties
have less impact on ring acoustic pressure (Fig. 4.15b). This is not surprising since this mode is
not really attenuated by lined surfaces. Liner uncertainties thus have a relatively low impact.
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(b) Lined configuration with liner uncertainties only

Figure 4.16: Sensitivity of far-field modal SPL data towards aeroacoustic uncertainty level δA

(left) and liner uncertainty level δZ (right) for the cutback condition at the blade passing fre-
quency f = 946 Hz (1 BPF) for the mode (m,n) = (0, 1) by comparison between nominal data
(black line) and simulation data for different values of parameters δA and δZ. One graduation
equals 5 dB.

In Fig. 4.16a, the impact of aeroacoustic uncertainties over the hardwall far-field dataset is
assessed for different levels. One can notice that the confidence regions increase linearly as δA

increases. The saturation effect observed on ring data (Fig. 4.15a) might appear for a greater
value of δA on the far-field dataset. Giving the presence of a rather heterogeneous repartition of
energy inside the duct, and especially close to the lip (see Fig. 4.13b), the impact of aeroacoustic
uncertainties seems legitimate. For the lined configuration (Fig. 4.16b), the impact of liner
uncertainties is far less important than aeroacoustic uncertainties on the hardwall case.

Last mode (m,n) = (17, 1) The second mode to be investigated correspond to the last cut-on
mode of the excitation modal content. This mode is interesting because of its energy repartition
inside the duct, which is mainly concentrated close to the duct wall. As this mode is supposed
to be strongly attenuated by lined surfaces, liner uncertainties should have an impact on the
acoustic response.
Fig. 4.17 shows the acoustic pressure (dB) for the last mode (m,n) = (17, 1). Inside the duct
(Fig. 4.17a), the acoustic pressure is mainly concentrated close to the duct wall. This is conform
with what can be seen in Fig. 4.17c, on which one can observe the alternation between pressure
zeros and nonzeros. Since this mode has a high cut-off ratio and a short wavelength, and since
its energy is concentrated on the wall, this mode is highly absorbed by liner surfaces. This is
verified by a simple comparison between hardwall and lined duct views for which there is a clear
impact of the liner on the acoustic pressure (Fig. 4.17a).
In Fig. 4.14, the difference between Hardwall and Lined configurations for the ring nominal
dataset (Fig. 4.18a) and the far-field nominal dataset (Fig. 4.18b) are presented. As observed
for the last mode of the approach condition, we also observe rebounds in the acoustic response
of the lined case on the ring. These rebounds apparently correspond to alternating zeros and
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(a) Hardwall duct view (b) Lined duct view (c) Hardwall fan view (d) Lined fan view

Figure 4.17: Visualization of the acoustic pressure (dB) for the mode (m,n) = (17, 1) and for
the cutback condition, inside the duct from two perspectives: side and front. Hardwall and lined
configuration are depicted.

-150 -100 -50 0 50 100 150
60

70

80

90

100

110

120

(a) Hardwall with aeroacoustic uncertainties only

10 20 30 40 50 60 70 80 90 100 110 120
-30

-20

-10

0

10

20

30

40

50

(b) Lined with liner uncertainties only

Figure 4.18: Difference between Hardwall and Lined configurations for the ring nominal dataset
(left) and the far-field nominal dataset (right) for the approach condition at the blade passing
frequency f = 946 Hz (1 BPF) for the mode (m,n) = (17, 1). One graduation equals 5 dB on
left plot and 10 dB on right plot.

nonzeros visible in Fig. 4.17d. This phenomenon is still not observable on the hardwall case,
and in the far-field. Nevertheless, the peak observable at 0◦ for the hardwall case on the ring
corresponds to the overpressure zone visible on the bottom lip of the nacelle (Fig. 4.17a), that
is less important for the lined case.
In Fig. 4.19a, the saturation phenomenon is still present and even more important than pre-
viously presented (Fig. 4.15a) for the first mode. For δA = 5%, ring data are saturated by
aeroacoustic uncertainties. This is not the case for the lined configuration for which liner uncer-
tainties have a little impact on ring data. They have still more impact on this mode than for
the mode (m,n) = (0, 1) (see Fig. 4.15b). Since this mode has a high cut-off ratio (in compar-
ison with the mode (m,n) = (0, 1)), and consequently a short wavelength, this mode is more
impacted by the presence of the liner and so by liner uncertainties.
Fig. 4.20a depicts the impact of aeroacoustic uncertainties on the ring dataset corresponding to
the hardwall configuration. The mode (m,n) = (17, 1) seems very sensitive towards aeroacoustic
uncertainties as confidence regions tend to thicken and stochastic means increase as δA increase.
But contrarily to the first mode (see Fig. 4.16a), there is not a clear angle range for which
uncertainties have no impact. The same observation can be made for the lined case (Fig. 4.20b).

These study results are not ground breaking but allow for verifying the validity of the method.
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Figure 4.19: Sensitivity of modal SPL data towards aeroacoustic uncertainty level δA for the
approach condition at the blade passing frequency f = 946 Hz (1 BPF) for the mode (m,n) =
(17, 1) by comparison between nominal data (black line) and simulation data with aeroacoustic
uncertainties for different values of parameters δA and δZ. One graduation equals 5 dB.
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(a) Sensitivity of azimuthal ring modal SPL to-
wards aeroacoustic uncertainties
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Figure 4.20: Sensitivity of modal SPL data towards aeroacoustic uncertainty level δA and liner
uncertainty level δZ for the cutback condition at the blade passing frequency f = 946 Hz (1 BPF)
for the mode (m,n) = (17, 1) by comparison between nominal data (black line) and simulation
data for different values of parameters δA and δZ. One graduation equals 10 dB.

The objective was to observe the impact of uncertainties over the ring dataset for two different
modes whose energy repartition is opposite: one mode whose energy is concentrated around
the nacelle axis, and another mode whose energy is located close to the wall. Aeroacoustic
uncertainties have a strong impact on both modes, whereas liner uncertainties have impact only
on the last mode, which is logical as it is strongly attenuated by liner surfaces.

4.4.2.2 Sensitivity of global Sound Pressure Levels towards uncertainties

In this subsection, global SPLs are used, as calculated using Eq. (4.13) for ring datasets, and
Eq. (4.14) for far-field datasets, as it has been done in subsection 4.4.1.2.
In Fig. 4.21, the difference between Hardwall and Lined configurations for the ring nominal
dataset (Fig. 4.21a) and the far-field nominal dataset (Fig. 4.21b) is observed. As previously
explained, on the hardwall ring dataset, it exists a larger dynamic mainly due to the existence
of an overpressure region on the nacelle bottom lip (Fig. 4.17a).
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Figure 4.21: Difference between Hardwall and Lined configurations for the ring nominal dataset
(left) and the far-field nominal dataset (right) for the cutback condition at the blade passing
frequency f = 946 Hz (1 BPF). One graduation equals 1 dB on left plot and 2 dB on right plot.

Aeroacoustic uncertainties A first step consists in observing the impact of several aeroa-
coustic uncertainty levels (δA values) towards global SPLs (for both ring and far-field data). The
range of δA ranges from minimum to maximum intuitive values such as the problem physical
meaning would be respected (for example, as previously, 90% of aeroacoustic uncertainties would
not be a reasonable value).
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Figure 4.22: Sensitivity of global SPL data towards aeroacoustic uncertainty level δA for the
cutback condition at the blade passing frequency f = 946 Hz (1 BPF) by comparison between
experimental data (black line) and simulation data with modified modal content and aeroacoustic
uncertainties for several values. One graduation equals 10 dB on left plot and 5 dB on right
plot.

In Fig. 4.22, the sensitivity study of global SPL towards aeroacoustic uncertainty level is pre-
sented for the cutback condition at the BPF. δA varies from 1% to 10%. On the left figure
(Fig. 4.22a), the impact of aeroacoustic uncertainties on the ring modal SPL is observed. One
can notice that the sensitivity of SPLring,m is a logarithm function of δA. While, it seems that
the sensitivity of the far-field SPL (broadband) is a linear function of δA, as it can be seen in
Fig. 4.22b. This phenomenon has been encountered during the modal SPL sensitivity studies
(subsections 4.4.1.1 and 4.4.2.1), and the same was observed in the sensitivity study of global
SPL for the approach condition (subsection 4.4.1.2).
Nevertheless, what is more important here is that in Fig. 4.22b, we observe a great increase of
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the acoustic energy due to uncertainties in the angle region [40◦70◦]. This is to be accounted
for during the identification of all uncertainty levels.

Liner uncertainties For this study, a variation of liner uncertainties is undertaken (δZ =
[10%,30%, 50%, 70%]), keeping aeroacoustic uncertainties to zero. As it has been seen in subsec-
tion 4.4.2.1, liner uncertainties have a small impact towards modal SPL, for the ring as well as
the far-field data. This could be explained by the fact that the liner studied is already optimized
for this flight condition/frequency. In order to confirm or infirm this hypothesis, the global
stochastic SPLs are also computed using a lined surface for which the admittance has manually
been altered by a factor 200%. Results can be seen in Fig. 4.12b for the approach condition.
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Figure 4.23: Sensitivity of global SPL data towards liner uncertainty level δZ for the cutback
condition at the blade passing frequency f = 946 Hz (1 BPF) by comparison between exper-
imental data (black line) and simulation data with modified modal content and aeroacoustic
uncertainties for several values: δA = 10% (cyan confidence region), δA = 30% (green confidence
region), δA = 50% (red confidence region), and δA = 70% (blue confidence region). Left: Ring
dataset; Right: Far-field dataset. One graduation equals 5 dB.

In Fig. 4.23 (both left and right figures), one can observe that lined uncertainties have a low
impact on global ring data, especially for azimuthal orders in the range [−12; 12]. Whereas
outside this range, the azimuthal SPL is slightly affected by liner uncertainties. As it has
extensively been explained in the previous subsection, high cut-off ratio modes are more inclined
to be affected by uncertainties since they are poorly energetic. On the right figure Fig. 4.23b (far-
field dataset), one can observe a higher impact of liner uncertainties than previously observed for
the approach condition (Fig. 4.12). This can be explained by the fact that there are more modes
attenuated by the liner than for the approach, and thus, the uncertainties are more present.
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4.5 Statistical inverse identification of uncertainty levels

In this section, we present the results of the statistical inverse identification of aeroacoustic,
liner, and modal content uncertainty levels. This study is divided into 4 main steps that are (1)
the identification of the deterministic modal content Iα using the hardwall configuration, (2) the
identification of aeroacoustic uncertainties using the hardwall configuration, (3) the identification
of liner uncertainties using the lined configuration and the previously identified aeroacoustic
uncertainties, and (4) the identification of modal content uncertainty levels in presence of the
previously identified aeroacoustic and liner uncertainty levels. For this purpose, the underneath
objective is to try to frame experimental data with the 95% confidence region associated with
the stochastic response on both ring and far-field arrays. We use global SPLs (see (4.14) and
(4.13)), that have different sensitivities towards uncertainties. The identification could be simply
done by using only far-field data but, as the modal content of experimental data is not known,
we expect to reduce the error on the modal content by identifying one using different datasets.

4.5.1 Approach condition

1) Identification of the mean modal content The lack of knowledge related to the acous-
tic excitation induced by the fan rotation is a major contribution to the overall uncertainty
of the computational model. As explained in Section 1.8.2.1, the acoustic excitation is repre-
sented by a finite sum of Nd duct modes imposed to the acoustic system. In subsection 2.6.1,
the deterministic modal intensity I+

α and its random counterpart I+
α of the duct modes have

been defined. Concerning the construction of I+
α , an empirical model based on civil-aircraft-

manufacturer expertise is used. The current section aims to present the identification of the
mean acoustic excitation modal content, for which the uncertainty levels associated, defined
by the hyperparameter σα, are identified later. For that purpose, experimental data are used,
corresponding to acoustic pressures measured at points located on a ring at the intake lip, and
also on a far-field microphones array. The ring pressures are also simulated with the stochastic
computational aeroacoustic model defined in Chapter 2. The identification of the mean value I+

α

of the random variable I+
α is then performed by minimizing the distance between experimental

and simulated data.

In this subsection, the deterministic modal content is identified by comparing experimental data
and simulation data for which the modal content is modified, as explained in subsection 4.3.3.
The method consists in amplifying specific modes in order to lower the difference between sim-
ulation and experimental SPL quantities. For that purpose, the hardwall configuration is used
(no liners).
Fig. 4.24 shows the results of the modal content optimization using the custom modal content
specified in Section 4.3.3 for which a broadband level, one positive azimuthal and one negative
azimuthal emergence, and one emergence for the first mode are determined. The left figure
(Fig. 4.24a) shows the azimuthal modified content associated with this optimization, in which
emergences are shown. The right figure (Fig. 4.24b) shows the modification of the global sound
pressure levels for both ring and far-field data (red line). The black line refers to the nominal
calculation, without any modification of the modal content (all modes sent with a level of 100
dB). The main goal here is to try to tune the modal content so as to reduce the difference
between experimental data and simulated data to a minimum, for both ring and far-field data.

2) Identification of the aeroacoustic uncertainty level Once the modal content is coarsely
defined, the aeroacoustic uncertainties are identified by varying the parameter δA from 0 to 1.
The main goal is to try to frame a maximum number of experimental points within the 95%
confidence region plotted using superior and inferior quantiles.
As it has been showed in the previous paragraph 4.4.1.2, an aeroacoustic uncertainty level
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Figure 4.24: Identification of the deterministic modified modal content for the approach condi-
tion at the blade passing frequency f = 654 Hz (1 BPF) by comparison between experimental
data (blue line), nominal data (black line), and simulation data with modified modal content
(red line). One graduation equals 5dB on the left figure and 10 dB for both plots of the right
figure.

δA = 7.5% is sufficient to represent aeroacoustic uncertainties. In this paragraph, the associated
results are shown for both ring and far-field global SPLs.
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(a) Hardwall/Aeroacoustic uncertainties
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Figure 4.25: Left: Identification of the aeroacoustic uncertainty level δA (one graduation equals
10dB for top and 5dB for bottom figure). Right: Observation of the aeroacoustic uncertainty
level δA impact on the lined case (one graduation equals 20dB for top and 5dB for bottom
figure). Approach condition at the blade passing frequency f = 654 Hz (1 BPF). Comparison
between experimental data (blue line) and simulation data with modified modal content and
aeroacoustic uncertainties (with the red line being the statistical mean, and the yellow patch
the confidence region at 95%). Top: Azimuthal SPL of ring data. Bottom: Broadband SPL of
far-field data

In Fig. 4.25a, global SPL for both ring and far-field data are computed for an aeroacoustic
uncertainty level δA = 7.5%. One can observe that for both configurations of microphones, the
confidence region frames a satisfying number of experimental points, with the far-field being
the most important target. Now that aeroacoustic uncertainties are coarsely identified, liner
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uncertainties can be added to the computational model in order to identify their level.

3) Identification of the liner uncertainty level As liner uncertainties are introduced,
the computational model changes from hardwall to lined. Liner uncertainties are identified by
varying the parameter δZ from 0 to 1. The main goal is to try and frame a maximum number
of experimental points within the 95% confidence region plotted using superior and inferior
quantiles. As it has been seen in the paragraph 4.4.1.2, liner uncertainties have a relatively small
impact on global SPL. The choice of their level is then difficult to make. We then intuitively
decide to apply a reasonable level of liner uncertainty δZ = 30%.
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Figure 4.26: Left: Visualization of the modal content used for the identification (one graduation
equals 5dB for the bottom plot and 10 dB for the top plot). Right: Identification of the liner
uncertainty level δZ (one graduation equals 5dB for the bottom plot and 20 dB for the top plot).
Approach condition at the blade passing frequency f = 654 Hz (1 BPF). Comparison between
experimental data (blue line) and simulation data with modified modal content and aeroacoustic
uncertainties (with the red line being the statistical mean, and the yellow patch the confidence
region at 95%. Top: Azimuthal SPL of ring data. Bottom: Broadband SPL of far-field data

In Fig. 4.26b, one can notice that the confidence region calculated using both aeroacoustic and
liner uncertainties is not sufficiently large. This can first be explained by the lack of coherence of
the modal content for both hardwall and lined cases. Indeed, as we identify the modal content on
the hardwall case, in a perfect world, we could expect this modal content to be also appropriate
for the lined case. By adding modal content uncertainties, the confidence region should thicken,
while "explaining" the other phenomena that are responsible for the difference of modal content
between hardwall and lined cases, that are not accounted for in the modeling.

4) Identification of the modal content uncertainty level As aeroacoustic and liner un-
certainties has been fixed, the last parameters that allow for thickening the confidence region
and frame a maximum of experimental points are the modal content uncertainties. Those are
identified by varying the parameters σEO and σBB from 0 to 10 dB, keeping a confidence region
as thin as possible.
In Fig. 4.27a, the azimuthal stochastic content is depicted, on which the variability on each
azimuthal order is observed (±2.5dB for broadband modes and ±2.5dB for emergences). In
Fig. 4.27b, the global ring and far-field SPL are plotted, taking into account the modified modal
content (Subsection 4.5.1), aeroacoustic uncertainties, liner uncertainties, and modal content
uncertainties. A finer optimization is then needed to obtain a better identification, by varying
all parameters on small ranges around their previously identified values.
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(a) Visualization of the excitation stochastic az-
imuthal content
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(b) Top: Azimuthal SPL of ring data. Bottom:
Broadband SPL of far-field data

Figure 4.27: Left: Visualization of the modal content with acoustic excitation uncertainties
(one graduation equals 5dB). Right: Identification of the modal content uncertainty levels σEO

and σBB for the approach condition at the blade passing frequency f = 654 Hz (1 BPF) by
comparison between experimental data (blue line) and simulation data with modified modal
content and aeroacoustic uncertainties (the red line being the statistical mean, and the yellow
patch the confidence region) at 95%. One graduation equals 20dB for top and 5dB for bottom
figure.

4.5.2 Cutback condition

As the liner is to be optimized for several engine regimes (e.g flight conditions), it is important to
validate the identification method for at least one other engine regime. Moreover, since the opti-
mization of liners is presented only for the cutback condition, the identification of uncertainties
is of primary order.

1) Identification of the mean modal content The lack of knowledge related to the acous-
tic excitation induced by the fan rotation is a major contribution to the overall uncertainty of
the computational model. As explained in Section 1.8.2.1, the acoustic excitation is represented
by a finite sum of Nd duct modes imposed to the acoustic system. In Section 2.6.1, the deter-
ministic modal intensity I+

α and its random counterpart I+
α of the duct modes have been defined.

Concerning the construction of I+
α , an empirical model based on civil-aircraft-manufacturer ex-

pertise is used. The current section aims to present the identification of the level of uncertainty
associated with the acoustic excitation modal content. For that purpose, experimental data are
used, corresponding to acoustic pressures measured at points located on a ring at the intake
lip, and also on a far-field microphones array. The ring pressures are also simulated with the
stochastic computational aeroacoustic model defined in Chapter 2. The identification of the
mean value I+

α and the hyperparameter σα of the random variable I+
α is then performed by

minimizing the distance between experimental and simulated data.

In this subsection, the deterministic modal content is identified by comparing experimental data
and simulation data for which the modal content is modified, as explained in section 4.3.3. The
method consists in amplifying specific modes in order to lower the difference between simulation
and experimental SPL quantities. For that purpose, the hardwall configuration is used (no
liners).
Fig. 4.28 shows the results of the modal content optimization using the custom modal content
specified in Section 4.3.3 for which a broadband level (blue), one positive azimuthal (cyan) and
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(a) Visualization of the excitation azimuthal con-
tent
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(b) Top: Ring data. Bottom: Far-field data

Figure 4.28: Identification of the deterministic modified modal content for the cutback condition
at the blade passing frequency f = 946 Hz (1 BPF) by comparison between experimental data
(blue line), nominal data (black line), and simulation data with modified modal content (red
line). One graduation equals 5 dB for left plots and 10 dB for right plots.

one negative azimuthal emergence (green), one emergence for the first mode (magenta), and one
emergence corresponding to the mode carrying the engine order (red), are determined. The left
figure (Fig. 4.28a) shows the azimuthal modified content associated with this optimization, in
which emergences are shown. The right figure (Fig. 4.28b) shows the modification of the global
sound pressure levels for both ring and far-field data (red line). The black line refers to the
nominal calculation, without any modification of the modal content (all modes sent with a level
of 100 dB). The main goal here is to try to tune the modal content so as to reduce the difference
between experimental data and simulated data to a minimum, for both ring and far-field data.

2) Identification of the aeroacoustic uncertainty level Once the modal content is coarsely
defined, the aeroacoustic uncertainties are identified by varying the parameter δA from 0 to 1.
The main goal is to try to frame a maximum number of experimental points within the 95%
confidence region plotted using superior and inferior quantiles.
As it has been showed in the previous paragraph 4.4.1.2, an aeroacoustic uncertainty level
δA = 7.5% is sufficient to represent aeroacoustic uncertainties. In this paragraph, the associated
results are shown for both ring and far-field global SPLs.
In Fig. 4.29a, global SPL for both ring and far-field data are computed for an aeroacoustic
uncertainty level δA = 7.5%. One can observe that for both configurations of microphones, the
confidence region frames a low amount of experimental points, with the far-field being the most
important target. It exists an angle region between 40◦ and 60◦ for which aeroacoustic uncer-
tainties have a strong impact. This is a difficulty that induces a conflict with the identification
of the modal content. There is certainly a set of modes that radiate in this specific angle region
and are very sensitive towards aeroacoustic uncertainties.
Aeroacoustic uncertainties are also imposed to the lined case (Fig. 4.29b) in order to understand
their impact before adding liner uncertainties. What is observed is that on the ring dataset,
for azimuthal orders in the range [−12; 12], uncertainties have low impact, as it has already
been observed in subsection 4.4.2.2. Modal content uncertainties will then be needed to frame
experimental points in this specific azimuthal order range.

3) Identification of the liner uncertainty level As liner uncertainties are introduced,
the computational model changes from hardwall to lined. Liner uncertainties are identified by
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Figure 4.29: Left: Identification of the aeroacoustic uncertainty level δA (one graduation equals
20dB for top and 5dB for bottom figure). Right: Observation of the aeroacoustic uncertainty
level δA on the lined (one graduation equals 20dB for top and 10dB for bottom figure). Cutback
condition at the blade passing frequency f = 954 Hz (1 BPF). Comparison between experimental
data (blue line) and simulation data with modified modal content and aeroacoustic uncertainties
(with the red line being the statistical mean, and the yellow patch the confidence region at 95%.
Top: Azimuthal SPL of ring data. Bottom: Broadband SPL of far-field data

varying the parameter δZ from 0 to 1. The main goal is to try and frame a maximum number
of experimental points within the 95% confidence region plotted using superior and inferior
quantiles. As it has been seen in the paragraph 4.4.1.2, liner uncertainties have a relatively small
impact on global SPL. The choice of their level is then difficult to make. We then intuitively
decide to apply a reasonable level of liner uncertainty δZ = 30%.
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Figure 4.30: Left: Visualization of the modal content used (one graduation equals 5dB). Right:
Identification of the liner uncertainty level δZ. Approach condition at the blade passing fre-
quency f = 946 Hz (1 BPF). Comparison between experimental data (blue line) and simulation
data with modified modal content and aeroacoustic uncertainties (with the red line being the
statistical mean, and the yellow patch the confidence region at 95% (one graduation equals 20dB
for top and 10dB for bottom figure). Top: Azimuthal SPL of ring data. Bottom: Broadband
SPL of far-field data

In Fig. 4.30b, one can notice that the confidence region calculated using both aeroacoustic and
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liner uncertainties is not sufficiently large. The adding of liner uncertainties does not impact the
confidence region width at all, which is not surprising regarding what has been observed during
the sensitivity study (see Section 4.4). By adding modal content uncertainties, the confidence
region should thicken. While Fig. 4.30a depicts the modal content without any uncertainties,
which would induce some great error during the identification of liner uncertainties.

4) Identification of the modal content uncertainty level As aeroacoustic and liner un-
certainties have been fixed, the last parameters that allow for thickening the confidence region
and frame a maximum of experimental points are the modal content uncertainties. Those are
identified by varying the parameters σEO and σBB from 0 to 10 dB, keeping a confidence region
as thin as possible.
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(a) Visualization of the excitation stochastic az-
imuthal content
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Figure 4.31: Left: Visualization of the final modal content with excitation uncertainties (one
graduation equals 10dB). Right: Identification of the modal content uncertainty levels σEO

and σBB for the cutback condition at the blade passing frequency f = 946 Hz (1 BPF) by
comparison between experimental data (blue line) and simulation data with modified modal
content and aeroacoustic uncertainties (the red line being the statistical mean, and the yellow
patch the confidence region) at 95%. One graduation equals 20dB for top and 10dB for bottom
figure.

In Fig. 4.31a, the azimuthal stochastic content is depicted, on which the variability on each az-
imuthal order is observed (±5dB for broadband modes and ±5dB for emergences). In Fig. 4.27b,
the global ring and far-field SPL are plotted, taking into account the modified modal content
(Subsection 4.5.2), aeroacoustic uncertainties (Subsection 4.5.2), liner uncertainties (Subsec-
tion 4.5.2), and modal content uncertainties.

Qualitatively, the statistical inverse identification can be considered as correctly done. There
is a sufficient number of experimental points inside the confidence region for both far-field and
ring datasets. An important thing to notice is that the far-field 40 to 60◦ angle region is very
sensitive towards aeroacoustic uncertainties and grows accordingly. This phenomenon is difficult
to compensate with the modified modal content (which is logarithmic by essence). Therefore,
aeroacoustic uncertainties have to be kept relatively low to avoid the growing of energy in this
specific angle range. That is why, for this example, modal content uncertainties are set to a
high value, in order to increase the confidence region width and frame a maximum number of
experimental points.
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4.6 Discussion

The main objective of the present study is the robust design of nacelle liners. As liner design
is frozen in early phases of the aircraft development, the maturity of data is still very low. The
idea is to anticipate changes in aircraft data that would impact the liner optimum design. For
that purpose, uncertainties related to modeling errors and parameters errors in the computa-
tional model for liner performance have to be accounted for. In the computational model, the
main sources of uncertainties correspond to the accounting of the flow (computed using potential
Euler equations), the liner impedance calculation, and the fan acoustic excitation.
In this chapter, we have presented the inverse identification of the deterministic modal content,
the aeroacoustic, and liner uncertainty levels by using experimental data issued from a static
ground test for different configurations, one fully hardwall and one fully treated. Also, rep-
resentative flight conditions (engine regimes corresponding to approach and cutback) and one
frequency (1 BPF) are studied. From these configurations, two datasets are used, one close to
the fan (on the nacelle intake lip) and one in the far-field. The main idea is to try to tune the
modal content, its uncertainty levels as well as aeroacoustic and liner uncertainty levels by de-
creasing the distance between experimental and simulated ring data. Because ring microphones
are evenly distributed in the circumferential direction, the azimuthal content should be easy to
determine, whereas the radial content remains unknown. Then, the previously identified modal
content and uncertainty levels (using ring data) are supposed to be coherent with far-field data.
This means that, identifying the aforementioned parameters using only ring data should be suf-
ficiently precise to also frame far-field experimental points.
As it has been observed for several applications presented here, the identification is not that
simple. If the inverse identification of each parameter was a convex optimization problem with
only one possible optimum, then, identifying parameters using ring data would be sufficient.
But, this is not the case here, as there is a consequent number of parameters to optimize si-
multaneously. For example, there are several modal content definitions that can be used, each
one giving different results when used on far-field data. The azimuthal "location" of emergences
can wether have a strong impact on the far-field representation, or simply none, and the same
is observed for the impact of uncertainty levels. This usually leads to severe differences between
a tuning that is well-adapted to ring data, and a tuning that is well-adapted to far-field data,
which are more important in the end. A compromise between the two is then to be made. In
simpler terms, the precision of the identification of uncertainty levels strongly depends on the
modal content knowledge.
The present study is preliminary and is mainly dedicated to the validation of the methodology,
in addition to the identification of uncertainty levels. The respect of simple physical phenomena
such as the impact of uncertainties over duct modes whose energy repartition is well defined is
of major importance here. Then, the sensitivity of global sound pressure levels towards uncer-
tainties is also assessed and allows for understanding the behavior of the stochastic modeling in
an optimization framework. Above all, the synergy between the modal content and the sources
of uncertainties is studied and allows for identifying the levels of uncertainties and the nominal
modal content, as they are needed for the robust optimization of liners.
Nevertheless, considering the lack of knowledge related to the fan excitation modal content,
which is of major importance, the identification of uncertainty levels, which has been presented
here, can now be used for the robust optimization, in which for each set of design parameters,
a Monte Carlo analysis is done (for which the uncertainty levels identified in this chapter are
fixed). The robust optimization then gives access to the optimum of the liner in terms of acous-
tic performance (absorption) and also in terms of robustness, which is related to the level of
deviation of stochastic acoustic pressures.
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Chapter 5

Optimization of liners using the
identified level of uncertainties
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Abstract: In this final chapter, the main objective of the Thesis is tackled. Lined
surfaces inside the intake are optimized in presence of the previously identified aeroacoustic,
liner, and modal content uncertainties. Two types of liners are optimized, for which two main
design parameters are chosen. For that purpose, the stochastic reduced order model introduced
in Chapter 2 is extensively used so as to browse the design space built for each one of the
two parameters per liner. Lined surfaces are optimized by taking into account their acoustic
performance and also the robustness of the design, which is given by statistical estimates of the
acoustic responses issued from the Monte Carlo stochastic solver.
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CHAPTER 5. LINER OPTIMIZATION IN PRESENCE OF UNCERTAINTIES

5.1 Identification of the most important design parameters

In order to identify the most important parameters that intervene in the design of the liner, one
study could be done by varying each parameter on a defined range. Then, a principle component
analysis (PCA) could be carried out in order to determine the relative impact of each parameter
on the liner performance. This is not done here by lack of time and is not a crucial point of this
part. We use the expertise of Airbus to choose the most important design parameters from the
available design parameters of the computational model (see Chapter 3).

5.2 Strategy for optimizing liner surfaces

The objective of this final Chapter is to validate the methodology that has been constructed.
For that purpose, the main principle of this study is to carry out an optimization study of
two liners that have already been optimized by Airbus using their usual process. In a certain
measure, considering that the two optimization processes are difficult to compare, the objective
here is to take different values of design parameters around their optimized value (nominal) and
try to determine a "new" optimum based on a slightly different performance indicator and a
robustness indicator.

The first step is to compute the absorption of a given liner design. For that purpose we subtract
lined data to hardwall data, as it is done during a state-of-the-art optimization study. Since both
datasets are issued from the same experimental setup for which the lined surfaces are taped for
hardwall measurements and untapped for lined measurements, the approximation that consists
in subtracting the lined SPL from the hardwall SPL without using pressure quantities is valid.
This hypothesis is valid if we suppose that both modal contents are the same. The absorption
at a frequency ω, for the Monte Carlo sample θk, the microphone i, and a given liner design w,
is then written as,

∆SPLsim
ff (ω, i; θk;w) = SPLHW

ff (ω, i; θk;w)− SPLSW
ff (ω, i; θk;w) , (5.1)

in which SPLsim
ff (ω) is given by Eq. (4.14), SPLHW

ff (ω, i; θk;w) is the far-field simulated data of
the hardwall case, and SPLSW

ff (ω, i; θk;w) is the far-field simulated data of the lined case.
Using Eq. (5.1), the objective function associated with the mean of the stochastic acoustic
response is given by,

J
(νs)
mean(w) =

1

νs

νs∑
k=1

1

Nmics

Nmics∑
i=1

∆SPLsim
ff (ω, i; θk;w) (5.2)

The objective function associated with the standard deviation of the stochastic acoustic response,
using Eq. (5.1) and Eq. (5.2) is given by,

J
(νs)
std (w) =

√√√√ 1

νs − 1

νs∑
k=1

(
1

Nmics

Nmics∑
i=1

∆SPLsim
ff (ω, i; θk;w)− J (νs)

mean(w)

)2

(5.3)

Then the cost function, associated with each one of the target functions Eqs (5.2) and (5.3), has
been introduced in Chapter 1, Eq. (1.112). The optimal value wopt is obtained, as a reminder,
by solving the following optimization problem,

wopt = min
w∈Cw

J(w) . (5.4)

In the present framework, we try to make a compromise between liner performance and ro-
bustness towards an external variability. For that purpose, a cost function that allies both cost

94 of 133 UGE - MSME 2020



5.3. OPTIMIZATION OF THE FORWARD FAN CASE LINER (FFC)

functions (Eqs (5.2) and (5.3)) could be written by assigning different weights to each one of
the cost functions. Considering the lack of time and maturity of this part, we prefer to use our
judgement before trying to automatize the optimization problem.

5.3 Optimization of the forward fan case liner (FFC)

The FFC is characterized by a perforated resistive sheet (see Appendix C for more information)
whose principal parameters are the percentage of Open Area (POA) and the diameter (DIA)
of the face sheet perforations. The FFC is then, in the present study, optimized in function of
these two parameters. For that purpose, we use the already optimized values of the liner to
construct a design space that revolves around these nominal values. We take a percentage of the
nominal values from each side to create a response surface on which the optimum is searched.
The first coarse design space is constructed by taking percentages of the nominal values for each
parameter, as,

w = (1 + pw)wNom (5.5)

in which pw is the vector of all percentages and wNom is the nominal value of parameter w =
(w1, . . . , wN ), where wN is the N th design parameter. For the present study, we define w1 as
POA and pPOA = [−90%,−50%,−30%, 0%, 30%, 50%, 90%], 0% being the nominal value of
parameter POA.
The parameter w2 is defined as DIA for which pDIA = [−90%,−50%,−30%, 0%, 30%, 50%, 90%]
also.

(a) Mean over standard deviation (b) Standard deviation over mean

Figure 5.1: Cross projections of each cost function related to the FFC liner, on one another.
Coarse design space.

In Fig 5.1, a visualization of the 2D performance cost function plotted on the 3D robustness
cost function (Fig 5.1a) and a visualization of the 2D robustness cost function plotted on the
3D performance cost function (Fig 5.1a), are presented in order to have an idea of the indicators
behavior as a function of a variation of the design parameters.

In Fig. 5.2, the impact of design changes on both POA and DIA parameters is observed in terms
of stochastic mean and standard deviation. The interest of such a visualization is to confirm
that this impact is real and not purely numerical. One can observe non-negligible discrepancies
between each liner configuration, which is reassuring. Also, as observed during the identification
of uncertainty levels, in the angle region 40◦ to 70◦, the standard deviation admits a maximum,
which indicates that uncertainties have a strong impact in this specific region. Moreover, one
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Figure 5.2: Visualization of the impact of liner parameters on the stochastic mean and standard
deviation for the FFC liner.

can observe that the liner design changes, in this specific configuration, have an impact on
the acoustic response from 60◦ and not much before. This indicates that liner designs are quite
robust in the first half of the angle range and more sensitive towards design changes in the second
half. Finally, curves are grouped by colors (at iso diameter), and not by symbols (at iso POA),
which means that diameter of perforations has less impact than the POA. This observation is in
line with Airbus knowledge as there is a clear ranking in terms of impact between geometrical
parameters, the most impacting being the POA, then the resistive sheet thickness (not tested
here) and the diameter of perforation.
Another view is presented on Fig. 5.3, on which both cost functions are presented separately.
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Figure 5.3: 2D visualization of each cost function related to the FFC optimization for the coarse
design space.

In Fig. 5.3a, the cost function of the mean absorption Eq. (5.2) is presented and exhibits a
dynamic of 3 dB. The green point in the region {DIA ∈ [−90%,−30%]; POA ∈ [50%, 90%]}
represents the optimum in terms of acoustic performance. The blue point at the top represents
the optimum in terms of standard deviation (robustness) found and depicted in Fig. 5.3b, which
exhibits a dynamic of 0.5 dB. As it can be seen on the latter, there are two zones in which
the standard deviation is minimum. One in the region {DIA ∈ [60%, 90%]; POA ∈ [0%, 30%]},
and another in the region {DIA ∈ [−90%,−30%]; POA ∈ [50%, 90%]}. A compromise has
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then to be made between robustness and performance. By chance, the performance in terms
of acoustic performance is localized in the latter region. This allows for selecting a thinner
region for the optimization, in which both optima are gathered. This region is given by the
range pDIA = [−55%,−45%,−35%,−25%] for the Perforations diameter and the range pPOA =
[50%, 60%, 70%, 80%] for the POA.
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Figure 5.4: 2D visualization of each cost function related to the FFC optimization for the thin
design space.

In Fig. 5.4, the optimization results on a thinner range of design parameters, as defined in
Fig. 5.3 by the green dashed rectangles, are shown in terms of acoustic performance (5.4a)
and robustness (5.4b). The final optimum is again, a compromise between performance and
robustness. Taking into account the relatively low dynamic of the performance cost function
(all configurations have a approximately the same absorption), we chose to favor the robustness
of the design. The final optimum for this liner in terms of perforation diameter and percentage
of open area is then DIA = DIANom − 45%) and POA = POANom + 60%.
It is nevertheless really important to notice that, as explained earlier, the optima found in the
present study do not represent absolute optima and cannot replace Airbus optima in any case.
The optima given in the present study only allows for validating coarsely the method developed
during the thesis.
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5.4 Optimization of the inlet liner

The same study is done for the Inlet liner whose characteristics are acoustical, whereas they
are geometric for the FFC. For this specific face sheet (wire mesh), acoustic properties char-
acterize the liner and not geometrical ones. The two parameters that are chosen are the re-
sistance at an acoustic velocity v = 0.2 m/s (R20) and the Non-Linear Factor (NLF), which
are briefly described in Appendix C. For the Inlet liner, we define w1 as R20 and pR20

=
[−90%,−50%,−30%, 0%, 30%, 50%, 90%, 150%]. w2 is defined as NLF for which pNLF = [−90%,
−50%,−30%, 0%, 30%, 50%, 90%, 150%] also.

(a) Mean over std (b) Std over mean

Figure 5.5: Cross projections of each cost function related to the Inlet liner, on one another.

In Fig. 5.5, we present again the 3D visualizations of each one of the two cost functions for which
the color maps are given by the other cost function. What is clearly visible is that the perfor-
mance cost function is way smoother than the robustness cost function. In both visualizations,
the green point represents the optimum in terms of standard deviation.
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Figure 5.6: Visualization of the impact of liner parameters on the stochastic mean and standard
deviation for the Inlet liner.

In Fig. 5.6, the impact of design changes on both R20 and NLF parameters is observed in terms
of stochastic mean and standard deviation. The interest of such a visualization is to confirm
that this impact is real and not purely numerical. One can observe non-negligible discrepancies
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between each liner configuration, which is reassuring. Also, as observed during the identification
of uncertainty levels, in the angle region 40◦ to 70◦, the standard deviation admits a maximum,
which indicates that uncertainties have a strong impact in this specific region. For the cutback,
this phenomenon is known by Airbus, which indicates that the stochastic modeling correctly
responds and do not create odd results. Moreover, one can observe that the liner design changes,
in this specific configuration, have an impact on the acoustic response from 60◦ and not much
before. This indicates that liner designs are quite robust in the first half of the angle range and
more sensitive towards design changes in the second half. Finally, curves are grouped by colors
(at iso NLF), and not by symbols (at iso R20), which means that NLF has less impact than the
R20. This is a known result for wiremeshes.
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Figure 5.7: 2D visualization of each cost function related to the Inlet optimization for the coarse
design space.

In Fig. 5.7a, the optimum in terms of acoustic performance is presented. There is a dynamic
of 2.5 dB on the acoustic performance, which is slightly inferior than the dynamic found for
the FFC. Nevertheless, we observe a better sensitivity towards both parameters, even if the
model is more sensitive towards the R20 than the NLF. Its optimum corresponds to the couple
{R20,NLF} = {RNom

20 + 5%,NLFNom + 140%} In Fig. 5.7b, the optimum in terms of robustness
is presented and exhibits a dynamic of 0.35 dB on the standard deviation.
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Figure 5.8: 2D visualization of each cost function related to the Inlet optimization for the thin
design space.
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In Fig. 5.8, the thinner grid is presented (green and pruple dashed rectangles in Fig. 5.7) for
which pR20

= [−20%,−10%, 0%, 10%, 20%], and pNLF = [110%, 120%, 130%, 140%, 150%]. This
allows for framing the previous optima found on the coarse grid. There is a 0.2 dB dynamic on
the acoustic performance indicator, and 0.14 dB on the robustness indicator. What we observe
is that, in the region {pR20

∈ [−2%, 2%];pNLF ∈ [112%, 130%]}, a compromise can be made be-
tween performance and robustness, as the performance in this region is constant (and optimum),
and the robustness is maximum in the subregion {pR20

∈ [−2%, 2%];pNLF ∈ [115%, 120%]},
which is included in the acoustic performance optimum region. The final optimum for this
liner in terms of Resistance at v = 0.2m/s and Non-Linear Factor is then R20 = RNom

20 ) and
NLF = NLFNom + 120%). This result is quite reassuring since the R20 is the most important
parameter and the updated optimum is really not far from what Airbus has already optimized.
For the NLF, since this parameter is less important, the great difference proposed by the new
optimum is the relatively low impact of the NLF on the acoustic response of the liner.

100 of 133 UGE - MSME 2020



Discussion

In this Chapter, the results of the two liners optimization in presence of the uncertainties for
which the level has been identified in Chapter 4 are presented. This first optimization is done
for one flight condition (cutback) and one frequency (1 BPF) only. The objective here is to
compare the optimum obtained by Airbus on a full state-of-the-art optimization study, with the
one found in the simplified process presented in this work. For obvious reasons, it is not possi-
ble to compare both optima in the same conditions, as Airbus includes calculations for several
frequencies, flight conditions, and other refinements such as static to flight transformation, etc.
Nevertheless, this comparison gives an idea of what can be obtained with the stochastic model,
and more importantly, verify that the optimum found with this new method is not far away from
the industrial optimum. In order to optimize the liners, two quantities are computed based on
the stochastic acoustic absorption (which is the difference between hardwall and lined datasets)
and allow one for knowing the performance in terms of absorption of a given design, and two
for knowing the robustness the design.

A first optimization is done on the Forward Fan Case liner, which is the closest to the fan,
and also the smallest in terms of acoustic surface. Two parameters are chosen in order to be
optimized, the Percentage of Open Area (POA) and the diameter of the face sheet perforations
(DIA). The starting point of the optimization design is the definition of Airbus optima for each
parameter. A design space is then drawn from these values, by taking several percentages of
these nominal values from each side. From a first coarse design space, a thinner region is cut
from it, and the optimum for both parameters is drawn. For this specific study, the POA is
clearly more impacting on the acoustic performance than the diameter. This leads to a one sided
optimization study in terms of acoustic performance. For the robustness, the diameter has a
slightly better impact, enough to allow for finding an optimum.
A second optimization is done on the Inlet liner, which has a higher acoustic surface and also
a different face sheet definition (wire mesh instead of a perforated plate for the FFC). Two pa-
rameters are chosen in order to be optimized, the resistance at a velocity v =0.2 m/s (R20) and
the NonLinear Factor (NLF). For this study, even if the R20 has a significantly better impact
on the acoustic absorption, the NLF impacts allows also to have a clear optimal zone for the
acoustic performance, and even better for the design robustness.
For both studies, a compromise had to be made between acoustic performance in terms of ab-
sorption and robustness of the design. Even if we managed to find, by chance, both optima
in similar regions each time, it will not be that easy in further studies when adding several
frequencies, several flight conditions, and more design parameters. The blade passing frequency
being a crucial design frequency for liner design, results are quite promising.

The important point of this study is that the stochastic model seems to correctly work, and
gives, in this specific configuration, results that are not far away from the real optimum found
previously by Airbus. Nevertheless, as it has been explained in the previous chapter (4), the
results could be better if we managed to find a better modal content that would allow for
reducing the amount of excitation levels uncertainties, and thus give a better dynamic of results
and a more precise identification of aeroacoustic and liner uncertainties. This work could be
done in a separate thesis and would allow for a lot of progress in that specific domain.
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Conclusion

This work is devoted to the implementation of a robust design process allowing for associating to
the acoustic performance of a given liner design, its propensity to keep its optimum performance
stable towards an external variability. From an industrial point of view, this variability is closely
linked to the lack of maturity of an aircraft program in its early development phase for which
the acoustic treatments are designed. The industrial problematic is then to account for such
a variability in early phases of liner design in order to anticipate small changes that would
impact its design and therefore, its performance. A first goal is then to track and quantify
the main sources of uncertainties that lie within the numerical tool used for the dimensioning
of a liner following its acoustic performance. In such a tool, the liner design is characterized
by its acoustic impedance. The variability is accounted for under the form of uncertainties
within the computational model that can be induced by modeling errors such as the hypotheses
and approximations that are made, and also by model parameters errors, such as variations of
thermodynamic quantities that impact the calculation of the flow and the acoustic propagation.

Uncertainty quantification

In order to account for such a variability, a quantification of the overall uncertainty is carried
out. A first step consisted in detailing and understanding the physics on which the computa-
tional model is constructed on. For that purpose, the fundamental equations of the convected
acoustic propagation in lined ducts have been reestablished as well as the weak formulation of
the associated boundary value problem. The spatial discretization of the weak formulation is
made by using finite/infinite elements. In addition, an adapted reduced-order computational
model has been introduced in order to allow the implementation of random matrices related
to the nonparametric probabilistic approach of uncertainties on the aeroacoustic operator con-
densed on the liner interface and on the impedance operator of the liner. In a second step, we
have analyzed the algebraic mathematical properties of the three main operators that concern
the liner impedance, an operator responsible for the aeroacoustic effects of the liner in presence
of the flow, and the operator responsible for the excitation induced by the fan rotation, that is
assimilated to a duct modal representation.
In a third step, we have developed an appropriate probabilistic model of uncertainties for each
one of the uncertain operators of the computational model, based on their algebraic properties.
We have used the nonparametric probabilistic approach of uncertainties that allows to take into
account both modeling errors and uncertainties on the model parameters. This approach allows
for introducing random variations so as to imitate an external variability such as those induced
by small changes of flow-related properties, by engine regimes, by small changes in the liner
geometry such as a reduction of the perforation effective diameter and the thickness of the face
sheet, which can impact the calculation of its impedance, and thus, its acoustic performance.
Finally, a probabilistic model of the excitation induced by the fan has been proposed using the
parametric approach of uncertainties.
Such a variability on aeroacoustic and liner operators is controlled by two hyperparameters δA
and δZ that allow the level of uncertainties to be imposed. These hyperparameters have then
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been identified by solving a statistical inverse problem that consists in minimizing a distance
between the experimental measurements and the stochastic acoustic response simulated with
the stochastic computational model. For that purpose, confidence regions are drawn from the
acoustic stochastic response, and the underneath objective is then to frame a maximum of ex-
perimental points inside those confidence regions, while keeping them as thin as possible. At
this stage, trying to compare experimental and simulated data is quickly impossible. Indeed, as
the modal content of the fan is neither defined nor perfectly understood, and as modes are sim-
ulated with a basic level of 100 dB, the acoustic responses of both experimental and simulated
setups can not be compared because of great differences of levels and modal content. An im-
portant turning point of the present work then was to investigate the excitation modal content.
A customizable one was then introduced inspired by Airbus expertise. For the excitation, two
hyperparameters σEO and σBB allow for imposing a variability level in dB to, respectively, the
multi-modal basic acoustic level, and to each emergence level.

Sensitivity study towards uncertainties

We have extensively operated the stochastic reduced-order model in order to undertake a sen-
sitivity analysis of the acoustic response towards aeroacoustic and liner uncertainties. In order
to do so, the acoustic contribution of each excitation duct mode as well as global quantities
of interest, averaged on all excitation modes, have been observed on two different microphone
arrays. One is located in the nacelle intake lip, and one is located in the far-field. The interest
of using the former has been to determine, through the phase of each microphone, the azimuthal
response of each cylindrical duct mode. This has allowed for measuring (experimental setup) the
azimuthal modal content of each mode. While the latter microphone array (far-field) is specifi-
cally used for aircraft noise certification, as imposed by the authorities, and is thus a quantity
of interest for liner performance studies. During this work, two thermodynamic conditions have
been used and correspond to the approach and take-off phases. Hardwall and lined results have
been analyzed in order to determine the sensitivity of the model towards aeroacoustic uncer-
tainties and liner uncertainties separately.
The results of the sensitivity analysis towards aeroacoustic uncertainties, using the hardwall
case, show great differences between the two microphones arrays. Indeed, it exists some phe-
nomena as saturation effects that can be visible on the ring for a certain amount of aeroacoustic
uncertainties, and a different one in the far-field. This can be explained by several factors such
as the relative distance of each microphone array to the acoustic source, which induces a better
captation of high cut-off modes by the ring than the far-field array. As a matter of fact, highly
cut-off modes are more impacted by uncertainties. The saturation effect is thus much more
visible on the ring since the ring is more likely to capture highly ut-off modes than the far-field
array. It also exists strong differences of impact between aeroacoustic and liner uncertainties on
global sound pressure levels, which can be explained by the fact that aeroacoustic uncertainties
have a non-negligible impact on every mode, whereas liner uncertainties only have a significant
impact on the modes that are the most attenuated by liners.
A first objective of this work was to verify that the stochastic reduced-order model correctly
responded to the application of uncertainties. The idea has been to observe the impact of such
uncertainties on well-known excitation duct modes, for which the acoustic response is expected.
For examples, the first cut-off excitation mode is not impacted by liner whereas the last one
is. From this statement, an observation of the impact of uncertainties on both should follow
this trend: liner uncertainties then should have a significant, or slightly better, impact on the
former, whereas aeroacoustic uncertainties should impact both modes. This has been observed
and has allowed us to obtain a preliminary validation.
A second objective was to understand on which specific cut-off modes aeroacoustic and liner
uncertainties have an impact. We have observed that it can exist strong discrepancies in certain
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angular regions, where modes are very directive. This had to be accounted for in the identifi-
cation of uncertainty levels as well as the excitation modal content, because of strong conflicts
between the two.

Identification of excitation modal content and uncertainty levels

The identification study has been one of the most important step of the present work. The
setting of uncertainty levels and the modal content of the fan excitation representation have
to be used throughout the liner optimization process. The principle has been to compare ex-
perimental data with the simulated data acquired with the stochastic computational model for
which the level of uncertainties is controlled for the aeroacoustic and liner operators. The results
of such a system are a set of pressure responses from which statistical information are drawn.
A confidence region corresponding to a 95% degree of confidence has been calculated from it
and compared to the experimental results. The method has allowed us to frame a maximum of
experimental points inside the confidence region, while keeping it the thinnest possible.
The first step of the identification has consisted in determining a modal content that allows for
comparing simulated and experimental data. Initially, the idea was to identify such an energy
repartition between excitation modes, only by using the ring dataset, as they have been specifi-
cally acquired for that purpose. Once this would have been done, a transposition of the identified
modal content would have also been appropriate to the comparison of both experimental and
simulated far-field datasets. Unfortunately, we have observed important differences between ring
and far-field applications of the same modal content on the acoustic response. A compromise
between ring and far-field datasets has then been made, as far-field quantities of interest are of
primary importance in the liner optimization process. It probably exists a difference between
the post-processing of raw measured ring data and raw simulated data that explains the lack of
coherence between both datasets. This needs to be furtherly investigated.
Secondly, aeroacoustic uncertainties have been identified, as mentioned earlier, by thickening a
confidence region, related to an increase of the uncertainty level. For the two flight conditions
tested, the statistical inverse identification of aeroacoustic uncertainties was a convex optimiza-
tion problem for which there was a clear level to not overtake. Indeed, overtaking this specific
level would induce an increase of the stochastic mean and thus interfere with the tuning of the
modal content, previously fixed.
Then, the same analysis has been carried out for liner uncertainties, for which the hardwall case
has been replaced by liners (obviously). As it has been seen during the sensitivity analysis,
liner uncertainties have a significantly low impact on the acoustic quantity of interest that is
the global (or multi-modal) sound pressure level, as liner uncertainties have an impact on a few
excitation modes, for which the impact is flooded during the averaging on all cut-off modes. We
then chose to take a reasonable value of δZ = 30% for the rest of the analysis.
Finally, modal content uncertainties on the imposed acoustic levels (multi-modal and emergence
levels) have been identified, in presence of the fixed modal content, aeroacoustic uncertainties
and liner uncertainties. This final step has allowed for significantly improving the framing of
experimental points inside the confidence region, as modal content uncertainties are the most
impacting.
An important note to be made is to emphasize the need of a better modal content represen-
tation, which could drastically help with the identification of the two other uncertainty levels.
Also, as we have observed, the lack of impact of liner uncertainties compared to aeroacoustic
uncertainties is a difficulty for its identification. Moreover, the aeroacoustic uncertainties have
a significant impact on all modes, and especially on certain modes that are strongly directive in
one angular region in the far-field, and that can conflict with the previously fixed modal content.
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Optimization of liners in presence of uncertainties

Once uncertainty levels and modal content are fixed, the last and main goal of the thesis has been
the optimization of the two liner surfaces in presence of such uncertainties. For that purpose,
the two most impacting design parameters have been selected for each one of the liners. Then,
a coarse design space has been drawn by taking proportions of the nominal (optimum value
found by Airbus) from each side of each design parameters. In addition, a refined design space
has been derived from a first optimum, resulting from the coarse design space. It should be
noted that the optimization process used by Airbus consists in giving an information about the
acoustic performance of a given design (set of design parameters). What this work provides is an
information, in addition to the performance information, about the propensity of a given liner
design to keep its acoustic performance stable towards small changes that impacts its design
parameters. Namely, an information about the robustness of a given design. This information,
allied to the performance, allows for choosing a design in early phases of an aircraft development,
for which the acoustic performance would not be impacted by small changes induced by the
increasing maturity of the aircraft. Such a maturity increasing would then be anticipated in early
phases and would save some re-optimization activities that are time consuming, and therefore
give more flexibility to Airbus nacelle team, responsible for the liner acoustic performance.
Moreover, this thesis work allows for a preliminary study of the uncertainty that lies within the
computational model, that has never been done, to our knowledge.
The statistical inverse identification and the optimization have only been carried out for one
flight condition and one frequency in order to validate the developed methods. The Airbus
optimization process is more richer in terms of flight conditions and frequencies. Consequently,
the optimization results presented in this work cannot directly be compared to the Airbus results,
even if they are quite equivalent.

Perspectives and way forward

The work that we have presented is quite promising as the stochastic model implemented seems
to correctly respond to the application of uncertainty levels, even if liner uncertainties are weak
for the case that has been analyzed. This conclusion could be modified for other flight conditions
or other aircrafts. The optimization in presence of uncertainties gives interesting results for two
parameters. There is now an effort to be made, on one hand, on the industrialization of such
a reduced-order model by grafting it to the actual optimization process used by Airbus. On
the other hand, once the stochastic computational model is fully functional and linked, an
optimization study done on several frequencies and several flight conditions would allow us
to give a better evaluation of the pertinence of the probabilistic approach proposed from an
industrial point of view. This implies the use of 2D-axisymmetric nacelle intake models that
induces more model uncertainties due to the degradation of the model. The inverse identification
of uncertainty levels are then to be re-done in order to account for such a model degradation.
Last but not least, additional work should be undertaken concerning the representation of the
fan acoustic excitation that remains an important source of errors in this specific aeroacoustic
modeling. As this feature is developed in post processing, the modal content can be changed
and improved at will, without questioning the stochastic modeling of aeroacoustic and liner
uncertainties.
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Appendix A

Steady flow computation

In this appendix, we briefly summarize the steady flow computation that is carried out with the
ACTRAN flow utility.

1. Steady flow equation. The flow, which is assumed to be irrotational and compressible, is
modeled by the Euler compressible potential equation,

∇ · (ρvf ) = 0 , (A.1)

where vf = ∇ψ is a velocity field that derives from the velocity potential ψ and where ρ is the
mass density that is written as,

ρ =

(
1− (γ − 1)

2

||∇ψ||2

c2

) 1

γ − 1
. (A.2)

in which γ is a specific mass ratio and where c is the sound celerity.

2. Boundary conditions. The geometry of the boundaries of the fluid domain for the steady flow
computation (Eq. (A.1)) are shown in Fig. A.1. The upstream boundary condition consists in
imposing the value of the normal velocity for the flow condition at infinity (obtained from the
Mach number M∞ and the speed of sound c for a given atmospheric condition) as,

∂ψ

∂n
= ∇ψ · n = v∞ = M∞c. (A.3)

The downstream boundary condition consists in imposing a constant velocity potential as,

ψ = ψimposed. (A.4)

On the excitation plane, a normal velocity of the flow is imposed such as,

∂ψ

∂n
= ∇ψ = qm

1

ρS
= vfan. (A.5)

where qm is the mass flow rate and S is the section of the duct in the fan plane.

3. Computational model for the steady flow computation. The computational model is derived
from the finite element discretization of the weak formulation of the boundary value problem,
which is written as,

[A(Ψ)]Ψ = f , (A.6)
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in which matrix [A(Ψ)] depends on Ψ.

4. CFD solver. The CFD solver is based on the use of the following iterative algorithm,

[A(ΨN−1)]ΨN = f , (A.7)

where ΨN−1 and ΨN corresponds respectively to Ψ at iteration N − 1 and N . The solver
iterates N = Nmax times to reach a defined tolerance τ for the mass density as,

|ρN − ρN−1| < τ , (A.8)

Figure A.1: Intake model CFD mesh with the upstream plane (red plane located in the figure
background), the downstream plane (blue plane in the figure front), and the excitation plane
(green plane in the middle of the figure)

108 of 133 UGE - MSME 2020



Appendix B

Fan excitation

In Chapter 1, the excitation is represented using a modal basis, which is solution of a semi-infinite
hard-walled duct eigenvalue problem, as

ϕ(x, y, z) =

Nd∑
α=1

ϕα(x, y)
[
c+
α e

jk+zαz + c−α e
jk−zαz

]
, (B.1)

in which k+
zα is the axial wavenumber of the wave propagating in the upstream direction and

k−zα is the axial wavenumber of the wave propagating in the downstream direction, which have
been written as,

k±zα =
kM ± γα

β2
, (B.2)

where γα =
√
k2 − β2k2

xyα is expressed in terms of kxyα which is known from the shape of the
duct.
This appendix aims to fully characterize the solution ϕ(x, y, z) by defining the unknowns c±α =

|c±α |eφ
±
α for upstream and downstream directions.

B.1 Definition of hypotheses for characterizing the excitation

The excitation plane is composed of an incident sound field and a reflected sound field. The
incident sound field is represented by propagative modes in the upstream direction whose modal
intensities are known and are imposed, following the different types listed in Table B.1. The
corresponding reflected sound field in the downstream direction is deduced from the incident
sound field.

N◦ Type Amplitude Phase Associated Equation

1 Mode/mode Imposed / mode : a+
α = aα ϕ+

α = ϕ
α

c+α = aαe
ϕ

α

2 Linear combination Equidistribution :
∑
α a

+
α = I ϕ+

α = 0 c+α = aα
3 Linear combination Equidistribution :

∑
α a

+
α = I ϕ+

α = ϕ+
α c+α = aαe

ϕ+
α

4 Linear combination Equidistribution :
∑
αA

+
α = I ϕ+

α = Φ+
α c+α = A+

α e
Φ+

α

Table B.1: Excitation hypotheses on the amplitude and the phase of each duct mode

In Table B.1,

• the first three types are deterministic. The term "Equidistribution" refers to a commonly
used hypothesis, which states that the amplitudes are equally distributed on all incident
duct modes. We then have, |c+

α | = I/Nd in which the positive amplitude I is given.
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• the last type is random. As in the first three types, the amplitudes are deterministic and
equally distributed on all incident duct modes, which yields |c+,rand

α | = I/Nd. The random
variables φ+,rand

1 , . . . , φ+,rand
Nd

are independent copies of a uniform random variable φrand

on [0, 2π].

It should be noted that the intensity I is related to the modal amplitudes |c+
α | and |c−α | by

an equation that is developed in Section B.2. In practice, the acoustic excitation is defined
by giving the coefficients c+

1 , . . . , c
+
Nd

. The coefficients c−1 , . . . , c
−
Nd

are calculated by solving the
boundary value problem. and consequently, cannot be chosen arbitrarily.

B.2 Acoustic intensity in a hardwall duct in presence of a flow

In order to calculate the coefficients cα associated to Eq. (B.1), the acoustic intensity in a semi-
infinite hardwall duct in presence of an uniform mean-flow along the axial axis z (which implies
that v · ez = vz, v0 · ez = v0, in which ez, M · ez = M , and M = v0/c) is written as [20],

I =
P

S
=

∫
S

1

2ρ0cS
Re [(p+Mρ0cvz)(ρ0cvz +Mp)∗] ds , (B.3)

which can be rewritten using the velocity potential ϕ and p = −jω ρ0 ϕ− ρ0v0
∂ϕ

∂z
as,

I =
ωρ0

2cS

∫
S
Re
[
ϕ

(
jcβ2∂ϕ

∂z
+ ωMϕ

)∗]
ds . (B.4)

Substituting Eq. (1.52) into Eq. (B.4), the acoustic intensity writes,

I =
ωρ0

2cS

∫
S
Re

[
Nd∑
α=1

ϕα(x, y)
{
c+
α e

jk+zαz + c−α e
jk−zαz

} Nd∑
β=1

ϕβ(x, y)∗
(
ωM

[
c+
β e

jk+zβ z + c−β e
jk−zβ z

]

+jβ2c
[
jk+
zβ
c+
β e

jk+zβ z + jk−zβc
−
β e

jk−zβ z
])∗]

ds .

(B.5)

Using the orthonormality of the transversal modes ϕα as,

1

S

∫
S

ϕαϕ
∗
βds = δαβ , (B.6)

and taking z = 0 (position of Γf), Eq. (B.5) yields,

I =
ρ0 ω

2c

Nd∑
α=1

Re
[(
c+
α + c−α

) (
c−α − c+

α

)∗
cγ∗α
]
. (B.7)

which is developed as,

I =
ρ0 ω

2

Nd∑
α=1

Re
[
γ∗α

(
−|c+

α |2 + |c−α |2 + c+
α c
−∗
α − c−α c+∗

α

)]
. (B.8)
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Appendix C

Acoustic treatment modeling

Figure C.1: Schemes of Single and Double liners

The noise produced by the turbofan is partially absorbed by acoustic treatments called lin-
ers. Giving the extreme environmental conditions (temperatures varying from −50◦ C to +120◦

C, and flow velocities reaching 240 m/s) inside the nacelle, these treatments are subjected to
stringent requirements. From an aerodynamic point of view, the implementation of those tech-
nologies must not interfere with aerodynamic performance (in practice, recent studies quantify
a 20% drag due to the implementation of liners). Moreover, acoustic liners must be of negligible
mass, in a sector where every kilogram counts. Security conditions must obviously be respected
as well as ruggedness and serviceability. The anti-ice system must be integrated into the nacelle,
its implementation must not be complicated by the presence of the liner.
State-of-the-art liners mainly used for their respect of the above cited requirements are consti-
tuted of a resistive sheet attached to a honeycomb core, fixed on a rigid backing skin (figure
C.1). This core assembly, called "Single Degree Of Freedom" (SDOF) can be superposed, creat-
ing MDOF systems. A "Double Degree Of Freedom" (DDOF) liner is constituted of two SDOF
liners separated by an intermediate resistive sheet called septum, which confers a wider attenu-
ation spectra.

The honeycomb core structure imposes locally-reacting behavior such as resonance effects, by
guiding the incident wave and only allowing its transversal propagation. It acts as a quarter
wave resonator, which induces a maximum attenuation of the wave at a given frequency, driven
by its depth. Honeycomb core thus attenuates tonal noise, for example the one produced by the
fan.
The resistive sheet is a porous sheet, which allows energy dissipation through porosities: vis-
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cothermic dissipation by the holes, and calorific dissipation linked to swirl effects due to high
SPL, thus is nonlinear. Energy dissipation due to the presence of resistive sheet is not frequency
dependent and consequently, is used to attenuate broadband noise. The resistive sheet deter-
mines the attenuation level achieved by the liner where the honeycomb core drives the frequency
band to be attenuated.

A closer view of the liner is presented in figure C.2. Geometric parameters (defined for perforated
sheet) are depicted in order to introduce the different models used to represent the acoustic
behavior of such liners.

C.1 Modeling of the liner

In this section, the impedance of each part of the SDOF liner (resistive sheet, honeycomb core,
and rigid backing skin) is defined as a function of physical and acoustical parameters. Moreover,
the calculation of the total impedance of the stacking is described.

f

h
d

a

s

R0

R20

R105

R200

NLF

Honeycomb cell Perforated sheet Wiremeshed sheet

d

a

Figure C.2: Liner geometric and acoustic parameters: φ is the honeycomb cell diameter and h
its depth; σ the percentage of open area (POA), which is the ratio between the surface of all
perforations and the total surface of the sheet, d the perforation diameter, and t the resistive
sheet thickness; R0 is the wiremesh resistance at acoustic velocity v = 0, R20 at v =0.2 m/s,
R105 at v =1.05 m/s, R200 at v =2.0 m/s, and NLF = R200/R20 its non-linearity factor.

Acoustic liners are characterized by their surface impedance also called local impedance. This
impedance is a complex-valued function (r, ω) 7→ Z(r, ω), with r = (x, y, z). For ω fixed and for
r belonging to the facing sheet, Z(r, ω) is defined by,

Z(r, ω) =
p(r, ω)

vΓ(r, ω)·n(r)
, (C.1)

in which p(r, ω) is the acoustic pressure, and vΓ(r, ω)·n(r) is the acoustic normal velocity.

C.1.1 Resistive sheet

As depicted in Fig. C.2, two kinds of resistive sheets can be used: a perforated resistive sheet or
a wiremeshed resistive sheet. The models of these impedances are described hereinafter.

C.1.1.1 Perforated resistive sheet [18]

This subsection is issued from the reading of the Guess work [18] on perforated resistive sheet
liners assembly, which is used in the computer code developed by Airbus.
The impedance Z(r, ω) of the acoustic liner composed of an air cavity and of a perforated
resistive sheet, as depicted in figure C.1, can be decomposed in three parts. A linear part,
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C.1. MODELING OF THE LINER

Zlinear, describing the viscous and mass effects, a nonlinear part ZNL describing the grazing
flow effect and the high SPL effects, and a radiation part Zrad. The modeling of the liner is a
function of geometrical parameters, defined in figure C.2. It is assumed that these parameters
(sheet thickness t, hole diameter d, and spacing between holes a) are small compared to the
acoustic wavelength λ = c/f = 2πc/ω. The skin thickness t and the Percentage of Open Area
(POA), denoted by σ, are key parameters of the absorption achieved by such liner. The POA
drives the resistance and participates, as well as the skin thickness and the hole diameter, in the
mass reactance, denoted by,

χ

f
.

Below, the spatial dependence in r of impedance Z is removed and only the dependence in
frequency ω is kept.
The total impedance Z(ω) of such a liner is written as,

Z(ω) = Zlinear(ω) + ZNL(ω) + Zrad(ω). (C.2)

Linear part Zlinear. The linear part Zlinear(ω) depends on ω and corresponds to the impedance
of a short tube. Let ν be the kinetic viscosity of the fluid. The modeling of this impedance (see

[18]) is a function of the value of the dimensionless parameter
d

2

√
ω

ν
and of frequency ω that

must belong to [ωmin, ωmax] such that 4πd ≤ ωmin and ωmax � min{2πc

t
,
2πc

d
,
2πc

a
}. These

equations are


Zlinear(ω) =

32ν

σcd

(
1 +

t

d

)
+ j

4ωt

3σc
if

d

2

√
ω

ν
< 1,

Zlinear(ω) =

√
8νω

σc

(
1 +

t

d

)
+ j

(√
8νω

σc

(
1 +

t

d

)
+
ωt

σc

)
if

d

2

√
ω

ν
> 10.

(C.3)

In equation (C.3), the term
(

1 +
t

d

)
is a corrected length (thickness) to account for viscous

effects outside the entrance to the orifice (as explained in [18]).

Nonlinear part ZNL. The nonlinear part ZNL represents the effect of high-amplitude sound
waves and steady airflow through the orifice (tangential to the plate) [18]. It mainly depends
on the fluid velocity at the orifice denoted vorif (ω) = vrms

surf(ω)/σ, in which vrms
surf(ω) is the root

mean-square acoustic velocity at the surface of the material (taking into account all frequencies).
This velocity at the orifice allows to chose between the two following equations, depending on
the flow Mach number M ,


ZNL(ω) =

(1− σ2)

σ

|vorif (ω)|
c

if vorif (ω) ≥ 0.6M,

ZNL(ω) = 0.3M
(1− σ2)

σ
+

(1− σ2)

1.2σM

(
|vorif (ω)|

c

)2

if vorif (ω) < 0.6M.
(C.4)

Radiation part Zrad. The radiation part Zrad(ω) represents the mass inertance effects out-
side the tubes, the interaction between adjacent holes and a combination of airflow and sound
amplitude effects. It is given by the equation,

Zrad(ω) =
π2

2σ

(
d

λ

)2

+ j
ωδ

σc
, (C.5)
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in which δ is given by the equation ([18]),

δ =
8d

3π

(1− 0.7
√
σ)

(1 + 305M3)

(1 + 5000M2
orif )

(1 + 10000M2
orif )

, (C.6)

with Morif =
vorif
c

. Parameter δ can be compared to the Rayleigh correction term at the end

of a tube
8d

3π
. The term (1− 0.7

√
σ) describes the interaction between adjacent holes of the

perforated sheet. The factor
(

1

1 + 305M3

)
represents the effect of the mean flow on the liner,

while the factor

(
1 + 5000M2

orif

1 + 10000M2
orif

)
describes the effect of high-SPL.

Transfer matrix of the perforated sheet. Once the impedance Zps(ω) of such a perforated
resistive sheet is obtained, its transfer matrix [Mps(ω)] between the lower surface and the upper
surface of the perforated resistive sheet, is such that,

[
p2

v2

]
= [Mps(ω)]

[
p1

v1

]
, [Mps(ω)] =

[
1 Zps(ω)
0 1

]
, (C.7)

with Zps(ω) the impedance of the resistive sheet.

C.1.1.2 Wiremeshed resistive sheet

We briefly summarize the wiremeshed resistive sheet model that is proposed in [46]. This type
of resistive sheet, described in figure C.2, is represented by its resistance (real part of Z(ω)) at
different acoustic velocities, assuming that the resistance of the metallic mesh is a linear function
of the acoustic velocity. The impedance of such a resistive sheet is given by,

Zwm(ω) = Rwm(ω) + jχwm(ω). (C.8)

To represent the impedance of such a restive sheet, empirical formulas are used, depending on
the available parameters: R0, R20, R105, NLF (see caption of figure C.2). These parameters
are function of the acoustic velocity v = ||v|| and the porosity σ if the wiremesh is coupled to
a perforated sheet. These formulas are not presented here. In the general case, only R0 and
NLF are used to characterized the impedance of linear resistive sheets. The resistance Rwm(ω),
function of these two parameters is given by,

Rwm(ω) =
R0

σ
+

R0(NLF − 1)

(2− 0.2NLF )σ2
vac. (C.9)

The reactance of a wiremesh χwm is given by,

χwm =

(
χwm
f

)
f, (C.10)

with f the frequency, and
χwm
f

the mass reactance of the wiremeshed sheet.
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Transfer matrix of the perforated sheet. Once the impedance Zwm(ω) of such a perforated
resistive sheet is obtained, its transfer matrix [Mwm(ω)] between the lower surface and the upper
surface of the wiremeshed resistive sheet, is such that,

[
p2

v2

]
= [Mwm(ω)]

[
p1

v1

]
, [Mwm] =

[
1 Zwm(ω)
0 1

]
, (C.11)

with Zwm(ω) the impedance of the wiremeshed resistive sheet.

C.1.2 Honeycomb core

A honeycomb cell cavity is modelled by a tube filled with air for which the transfer matrix
between the lower surface and the upper surface of the honeycomb cell, [Mhc(ω)], is such that,

[
p1

v1

]
= [Mhc(ω)]

[
p0

v0

]
, [Mhc(ω)] =

[
cos(kh) j sin(kh)
j sin(kh) cos(kh)

]
, (C.12)

from which the impedance of the cell cavity is written [43] as,

Zhc(ω) =
−j

tan(kh)
, (C.13)

with k =
ω

c
and h is the cell depth.

C.1.3 Rigid backing skin

The back end of the stacking is made of a rigid backing skin, which imposes the nullity of the
acoustic velocity (rigid condition) following the transfer vector,

[
p0

v0

]
, v0 = 0. (C.14)

C.1.4 Assembly of a resistive sheet, a honeycomb core, and a backing skin

In the present work, SDOF liners are solely employed (assembly of a resistive sheet, a honeycomb
core, and a backing skin). From Eq. (C.7) or Eq. (C.11), Eq. (C.12), and Eq. (C.14), it can be
deduced that,

[
p2

v2

]
= [Mrs][Mhc]

[
p0

v0

]
, v0 = 0 . (C.15)

The impedance of the liner depends on the local Mach number that, consequently, depends on
point r.

C.1.5 General remarks

The liner parameters such as the POA, the geometry of the perforations, and their diameter d,
have an influence on the flow through the boundary layer formed over the liner. As explained in
Chapter 1, the boundary layer is not accounted for in the boundary condition related to the liner.
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APPENDIX C. ACOUSTIC TREATMENT MODELING

This influence of the liner on the flow is assumed to be small, which allows for not recomputing
the CFD at each optimization step of the liner.

This approximation will be taken into account in the uncertainties model that is introduced in
Chapter 2.
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Appendix D

Algorithms

In this appendix, we present the different algorithms used in the present work:

1. ACTRAN/TM half 3D deterministic run with model reduction methods

2. ACTRAN/TM half 3D deterministic run with model reduction methods and modified
modal content

3. ACTRAN/TM half 3D stochastic run

4. ACTRAN/TM half 3D stochastic run with modified stochastic modal content

5. Inverse identifications

Mean modal content

Aeroacoustic and liner uncertainty levels using experiments

Modal content uncertainty levels using experiments

6. Robust optimization in presence of the previously identified uncertainty levels
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1) DETERMINISTIC ACTRAN TM HALF 3D RUN

Global SPL

Data recovery

Inputs 

Full coupled
acoustic problem

• Mean flow computation: Appendix A
• CAA mesh: Fig 3.5
• Liner characteristics: Appendix C

• Propagation equations : 1.35/1.46/1.56
• Boundaries : 1.39-45/1.47-48/1.57-59 
• Weak formulation of the BVP: 1.61-1.66 
• Discretized BVP: 1.75-77

• Generalized coordinates: 1.111
• Physical coordinates backtransfo: 1.112
• Arrays: far-field/modal detection ring

• Ring QoIs:4.1-3
• Ring global (modal averaging): SPL: 4.4
• Far-field QoIs: 4.5
• Far-field global SPL: 4.6

Solution of the 
ROM

𝔸 𝜔 + ℤ 𝜔 𝐪 𝜔 = 𝐜+ 𝜔

Solution sequence (Actran deterministic)

Static condensation 
on liner dofs

Pellicular
projection

• Interface problem rewriting: 1.78-82
• Projection of the condensate: 1.83-88
• Condensed system on liner dofs: 1.89

• Modal basis construction: 1.90-91
• Elimination of aero unknowns: 1.92-97
• Reduced-Order Model: 1.98

Model reduction sequence (Actran)



2) DETERMINISTIC ACTRAN TM HALF 3D RUN (with modified MC)

Global SPL

Data recovery

Inputs 

Full coupled
acoustic problem

• Generalized coordinates: 1.111
• Physical coordinates backtransfo: 1.112
• Arrays: far-field/modal detection ring

• Ring QoIs:4.1-3
• Ring global (modal averaging): SPL: 4.4
• Far-field QoIs: 4.5
• Far-field global SPL: 4.6

Solution of the 
ROM

𝔸 𝜔 + ℤ 𝜔 𝐪 𝜔 = 𝐜+ 𝜔

Static condensation 
on liner dofs

Pellicular
projection

• Interface problem rewriting: 1.78-82
• Projection of the condensate: 1.83-88
• Condensed system on liner dofs: 1.89

• Modal basis construction: 1.90-91
• Elimination of aero unknowns: 1.92-97
• Reduced-Order Model: 1.98

Customized
modal content

• Broadband level
• Emergences
• Gaussian repercussion

Post-processing (External script)

Model reduction sequence (Actran)

Solution sequence (Actran)



3) STOCHASTIC ACTRAN TM HALF 3D RUN

Global SPL

Data recovery

Inputs 

Full coupled
acoustic problem

Construction of the 
SROM

• Randomization of [𝔸] : 2.24-28
• Randomization of [ℤ]: 2.2-23

• Generalized coordinates: 1.111
• Physical coordinates backtransfo: 1.112
• Arrays: far-field/modal detection ring

• Ring QoIs:4.1-3
• Ring global (modal averaging): SPL: 4.4
• Far-field QoIs: 4.5
• Far-field global SPL: 4.6

Solution of the 
SROM

Static condensation 
on liner dofs

Pellicular
projection

Introspective windows (Python script)

𝐀 𝜔, 𝜃 + 𝐙 𝜔, 𝜃 𝐐 𝜔, 𝜃 = 𝐂+ 𝜔, 𝜃

Algebraic
properties of 

principle operators

• Dissipative part of [ℤ]: 1.102
• Conservative part of [ℤ]: 1.105
• Properties of [𝔸]: 1.106

Solution sequence (Actran Monte Carlo)

Reduced-Order Model:

𝔸 𝜔 + ℤ 𝜔 𝐪 𝜔 = 𝐜+ 𝜔

• Random aeroacoustic matrix 𝐀 𝜔, 𝜃
• Random liner impedance matrix 𝐙 𝜔, 𝜃



4) STOCHASTIC ACTRAN TM HALF 3D RUN (with modified MC)

Global SPL per 
Monte Carlo 

sample

Data recovery

Inputs 

Full coupled
acoustic problem

• Stochastic ring global SPL:  subsec 4.3.2
• Stochastic far-field global SPL: subsec 4.3.2

Customized
modal content

• Monte Carlo external loop
• Random modal intensities

Post-processing (external script)

Construction of the 
SROM

• Randomization of [𝔸] : 2.24-28
• Randomization of [ℤ]: 2.2-23

Solution of the 
SROM

Static condensation 
on liner dofs

Pellicular
projection

Introspective windows (Python script)

𝐀 𝜔, 𝜃 + 𝐙 𝜔, 𝜃 𝐐 𝜔, 𝜃 = 𝐂+ 𝜔, 𝜃

Algebraic
properties of 
[𝔸] and [ℤ]

• Dissipative part of [ℤ]: 1.102
• Conservative part of [ℤ]: 1.105
• Properties of [𝔸]: 1.106

Solution sequence (Actran Monte Carlo)

Reduced-Order Model:

𝔸 𝜔 + ℤ 𝜔 𝐪 𝜔 = 𝐜+ 𝜔

• Random aeroacoustic matrix 𝐀 𝜔, 𝜃
• Random liner impedance matrix 𝐙 𝜔, 𝜃



5) INVERSE IDENTIFICATION OF THE MODAL CONTENT

DETERMINISTIC ACTRAN 
TM HALF 3D RUN

EXPERIMENTS 
(Hardwall case)

SPL𝑓𝑓,𝑖
𝑠𝑖𝑚(𝜔) (4.14)

Is the distance between experiments
and simulation sufficiently small ?

SPL𝑓𝑓,𝑖
𝑒𝑥𝑝

(𝜔) (4.8)

END

Loop on modal content parameters

Custom MC

SPL𝑓𝑓,𝑖
𝑠𝑖𝑚(𝜔)

Yes
No

N
ew

 M
C

 p
a

ra
m

et
er

s
va

lu
es



5) INVERSE IDENTIFICATION OF AERO/LINER UNCERTAINTY LEVELS

STOCHASTIC ACTRAN TM 
HALF 3D RUN

EXPERIMENTS 
(Hardwall or lined case)

SPL𝑓𝑓,𝑖
𝑠𝑖𝑚(𝜔, 𝜃)

(Section 4.3.2)

• Sufficient number of experimental points 
inside the confidence region ?

• Thinnest confidence region possible ?

SPL𝑓𝑓,𝑖
𝑒𝑥𝑝

(𝜔) (4.8)

END

YesNo

N
ew

 M
C

 p
a

ra
m

et
er

s
va

lu
es

• Confidence region
• Stochastic mean

Loop on 𝛿 values 

Custom MC



5) INVERSE IDENTIFICATION OF THE MODAL CONTENT 
UNCERTAINTY LEVELS 𝝈𝑩𝑩 and 𝝈𝑬𝑶

STOCHASTIC ACTRAN TM 
HALF 3D RUN

With aero/liner uncertainties

EXPERIMENTS 
(Hardwall or lined case)

SPL𝑓𝑓,𝑖
𝑠𝑖𝑚(𝜔, 𝜃)

(Section 4.3.2)
SPL𝑓𝑓,𝑖

𝑒𝑥𝑝
(𝜔) (4.8)

END

Loop on Modal Content uncertainty levels
Custom 

stochastic
MC

Yes
No

N
ew

 M
C

 u
n

ce
rt

a
in

ty
le

ve
ls

va
lu

es

• Sufficient number of experimental points 
inside the confidence region ?

• Confidence region thinnest possible ?

• Confidence region
• Stochastic mean



6) ROBUST OPTIMIZATION

STOCHASTIC ACTRAN TM 
HALF 3D RUN

Lined case (𝜹𝑨, 𝜹𝒁)

STOCHASTIC ACTRAN TM 
HALF 3D RUN

Hardwall case (𝜹𝑨)

SPLff,i
𝑆𝑊(𝜔, 𝜃) (4.8) SPLff,i

𝐻𝑊(𝜔) (4.8)

END

Loop on Liner parameters

Custom 
stochastic

MC

Yes
No

N
ew

 L
in

er
 p

a
ra

m
et

er
s

va
lu

es

• Optimum in terms of performance (mean) found ?
• Optimum in terms of robustness (std) found ?

• Standard deviation
• Stochastic mean

• Standard deviation
• Stochastic mean

-
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ABSTRACT : In modern turbofan engines, fan noise is one of the main noise sources due to the
constant increasing of engines bypass ratio for fuel burn reduction purposes. As fan noise is characterized by
broadband and tonal components, acoustic liners are introduced for their effectiveness in mitigating both com-
ponents through dissipation effects that are tunable by modifying the liner geometry. Simulations issued from
prediction numerical tools are thus extensively used for their tuning, since experiments cannot be considered for
obvious costs reasons. As the design of liner systems is frozen in early stages of an aircraft development, it exists
a non-negligible variability on its operating environment. This variability directly impacts the design of liners
by inducing large discrepencies on the quantities used for its numerical design. Moreover, each time these quan-
tities are updated due to the increased maturity of the aircraft program, lined surfaces are to be reoptimized.
The updating phase thus represents important costs in terms of computational time, which could be avoided by
accounting for such a variability in preliminary phases of the liner design. This is the main problematic of the
present work. As this external variability directly impacts the liner environment, the computational modeling
of the liner acoustic performance is uncertain. In order to quantify and account for such an uncertain nature, a
robust design of the liner is carried out, by quantifying the overall uncertainty that lies within the liner design
computational process. The state-of-the-art computational aeroacoustic model of nacelle liners performance is
an industrial numerical code, Actran/TM, which therefore has to be extensively studied so as to exhibit the
principle components that are subject to the overall uncertainty. A stochastic modeling of uncertainties is then
introduced and grafted on the computational model. It allows for simulating the previously mentioned external
variability, by accounting for the uncertainty that lies within the model (modeling errors and model parameters
errors), through parametric and nonparametric probabilistic approaches of uncertainties. Then, the propagation
of uncertainties in the system is analyzed using the computational model and the Monte Carlo stochastic solver.
The acoustic response is then random and the quantification of uncertainties consists in estimating statistics,
such as confidence regions associated with a certain confidence level of quantities of interest. From these statis-
tical information, the robustness of a given liner design towards a simulated variability on its performance model
can be defined, in addition to the state-of-the-art liner acoustic performance. This information then allows for
knowing the propensity of a given liner design to maintain its nominal performance when its environment is
changing in a predefined range of variation accounted for by the level of uncertainty imposed on the stochas-
tic model. Then, making a compromise between performance and robustness, the best liner design can be chosen.

Keywords : Robust design; Computational Aeroacoustics; ACTRAN/TM; Nonparametric probabilistic model;
Uncertainty quantification; Monte Carlo method ;

RÉSUMÉ : Dans les moteurs d’avions modernes, le bruit de fan est une des principales sources de bruit
du fait d’une augmentation constante du taux de dilution des moteurs visant à réduire leur consommation. Le
bruit de fan étant caractérisé par des composantes tonale et multi-modale, des traitements acoustiques appelés
liners sont utilisés pour leur efficatié à réduire des composantes de bruit, par des effets de dissipation acoustique
réglables en modifiant la géométrie du liner. Des modèles de prédictions numériques sont alors utilisés pour
leur réglage. Le design du liner étant gelé dans des phases préliminaires du développement d’un avion, il existe
une variabilité non négligeable sur son environnement de fonctionnement. Cette variabilité impacte directement
le design du liner en induisant une large disparité des données utilisées pour son design. De plus, à mesure
que la maturité de l’avion augmente, chaque mise-à-jour de ces données impose une réoptimisation du liner.
Cette étape de réoptimisation induit alors d’importants coûts de calcul qui pourraient être évités en prenant
en compte cette variabilité durant les phases préliminaires de design. Il s’agit de la principale problématique
de ce travail. À mesure que cette variabilité externe impacte l’environnement d’opérabilité du liner, le modèle
numérique de performance du liner devient alors incertain. Afin de quantifier et prendre en compte cette nature
incertaine, une conception robuste du liner est alors entreprise, par quantifiant l’incertitude globale qui réside
dans le modèle numérique de performance acoustique du liner. Le modèle aéroacoustique numérique utilisé
est un code industriel, ACTRAN/TM, et nécessite d’être intensivement étudié afin d’en déduire les principaux
composants les plus sensibles vis-à-vis de l’incertitude globale. Un modèle stochastique des incertitudes est
alors introduit et greffé sur le modèle aéroacoustique. Il permet de simuler l’incertitude globale mentionnée
précédemment, en prenant en compte l’incertitude qui réside dans le modèle numérique (erreurs de modèles et
erreurs des paramètres du modèle), en utilisant les approches probabilistes paramétriques et non-paramétriques.
Ensuite, la propagation des incertitudes dans le système est analysée en utilisant un solveur stochastique tel
que la méthode de Monte Carlo. La réponse acoustique du système est alors aléatoire et la quantification des
incertitudes consiste en une estimation de données statistiques telles que les intervalles de confiances associés
à un certain niveau de confiance sur les quantités d’intérêts. À partir de cette information statistique, la ro-
bustesse d’un design spécifique de liner vis-à-vis d’une variabilité simulée sur son modèle de performance peut
être définie, en plus de l’information classique de performance acoustique. Cette information permet alors de
connaître la propension d’un design à maintenir sa performance nominale lorsque son environnement change
dans un intervalle de variation préalablement défini par le niveau d’incertitudes imposé au modèle stochastique.
Alors, le meilleur design peut être choisi en faisant un compromis entre performance et robustesse.

Mots clés : Conception robuste; Modèle aéroacoustique numérique; ACTRAN/TM; Modèle probabiliste non-
paramétrique; Quantification d’incertitudes; Méthode de Monte Carlo;
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