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Dissertation Summary

This dissertation is centered around the existence of time—periodic solutions for Hamiltonian
models that arise from Fluid Mechanics. In the first part, we explore relative equilibria taking
the form of rigid motion (pure rotations or translations) in the plane with uniform and non
uniform distributions for standard models like the incompressible Euler equations or the gen-
eralized quasi-geostrophic equation. In the second part, we focus on a similar study for the 3D
quasi—geostrophic system. The study of this model shows a remarkable diversity compared
to the 2D models due to the existence of a large set of stationary solutions or the variety of
the associated spectral problems. In the last part, we show some works in progress of this
dissertation, and also some conclusions and perspectives.

In what follows, we briefly explain the contents of this thesis and the works contained in it.

e Chapter 1 deals with a general introduction to the above mentioned models, the con-
tribution of this dissertation and related literature. It is divided in two sections: two—
dimensional Euler equations and three-dimensional quasi—geostrophic system.

e Chapter 2 is devoted to the work [69], which is a collaboration with my thesis advisors
T. HMIDI and J. SOLER. This work is currently accepted for publication in Archive for
Rational Mechanics and Analysis. There, we focus on the existence of non uniform rotat-
ing solutions for the 2D Euler equations, which are compactly supported in bounded
domains. The main idea is the bifurcation from stationary radial solutions. The system
reduces to two coupled nonlinear equations for the shape of the support and the den-
sity inside it. We will deeply analyze the bifurcation diagram around a quadratic profile,
i.e. (A|z|? + B)1p, by using Crandall-Rabinowitz theorem and also refined properties of
hypergeometric functions.

e Chapter 3 refers to the work [67], which is published in Nonlinearity. This chapter aims to
provide a robust model for the well-known phenomenon of Kadrman Vortex Street arising
in nonlinear transport equations. The first theoretical attempt to model this pattern was
given by VON KARMAN [91, 92] using a system of point vortices. The author considered
two parallel staggered rows of Dirac masses, with opposite strength, that translate at the
same speed. Following the numerical simulations of SAFFMAN and SCHATZMAN [138],
we propose to study this phenomenon in a more realistic way using two infinite arrows
of vortex patches. Hence, by desingularizating the system of point vortices, we are able
to rigorously prove these numerical observations

e Chapter 4 is the content of [68], which is a collaboration with my thesis advisor T. HMIDI
and with J. MATEU, and is currently submitted for publication. It aims to study time peri-
odic solutions for the 3D inviscid quasi—geostrophic model. We show the existence of non
trivial rotating patches by suitable perturbation of stationary solutions given by generic
revolution shapes around the vertical axis. The construction of those special solutions is
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achieved through bifurcation theory. In general, the spectral problem is very delicate and
strongly depends on the shape of the initial stationary solutions. Restricting ourselves
to a particular class of revolution shapes and exploiting the particular structure of our
model, we are able to implement the bifurcation at the largest eigenvalue of a family of
1D Fredholm type operators.

Chapter 5 is devoted to explain some works in progress of this dissertation. Some con-
clusions of the above mentioned works together with some new perspective and future
works are also given at the end of this chapter.

Finally, Appendices A, B and C collect some necessary results about bifurcation theory,
potential theory and special functions.



Resumen en castellano

Esta tesis se centra en la existencia de soluciones periédicas en tiempo de modelos hamilto-
nianos que surgen en Mecénica de Fluidos. En la primera parte, exploraremos en el plano
soluciones con movimiento rigido (rotaciones puras o translaciones) con distribucion uniforme
o no uniforme para modelos como las ecuaciones de Euler incompresibles o el modelo quasi-
geostrofico generalizado. En la segunda parte, nos centraremos en un estudio similar para el
sistema quasi-geostrofico tridimensional. El estudio de este modelo muestra una gran riqueza
comparado con los modelos bidimensionales, esto es debido al conjunto de soluciones esta-
cionarias y también a la gran diversidad de problemas espectrales asociados. En la tltima
parte, mostramos varios trabajos en desarrollo de esta tesis junto con algunas conclusiones y
perspectivas.
A continuacién, explicaremos brevemente los contenidos de la tesis.

e En el primer capitulo presentamos el estado del arte acerca de los principales temas trata-
dos en esta tesis y otros temas relacionados. Esta dividido en dos secciones: las Ecua-
ciones de Euler bidimensionales y el sistema quasi-geostréfico tridimensional.

e El capitulo 2 esta enfocado al trabajo [69], el cual es una colaboracién con mis supervi-
sores de tesis T. HMIDI y J. SOLER. Este trabajo estd actualmente aceptado para publi-
cacion en Archive for Rational Mechanics and Analysis. En este capitulo, nos centramos en
la existencia de soluciones no uniformes, con soporte compacto en dominios acotados,
que rotan en las Ecuaciones de Euler bidimensionales. La principal idea es la bifurcaciéon
desde soluciones radiales (las cuales son estacionarias). El sistema estd compuesto de
dos ecuaciones acopladas no lineales para la forma del soporte y para la densidad den-
tro de él. Analizaremos profundamente el diagrama de bifurcacién alrededor de per-
files cuadraticos, esto es (A|z|?> + B)lp, usando el teorema de Crandall-Rabinowitz y
propiedades refinadas de funciones hipergeométricas.

e El tercer capitulo se centra en el trabajo [67], el cual estd publicado en Nonlinearity. Este
capitulo propone un modelo para el fenémeno conocido como Karman Vortex Street que
aparece en ecuaciones de transporte no lineales. Los primeros intentos teéricos para en-
tender este modelo fueron los de VON KARMAN [91, 92] mediante un sistema de puntos
de vorticidad. El autor consideré dos calles paralelas de masa de Dirac, con fuerza op-
uesta, que se transladan a velocidad constante. Siguiendo las simulaciones numéricas
de SAFFMAN y SCHATZMAN [138], proponemos estudiar este fendmeno de una forma
mas realistica considerando dos calles infinitas de parches de vorticidad (vortex patches).
Mediante la desingularizaciéon del modelo de puntos de vorticidad propuesto por VON
KARMAN, somos capaces de demostrar rigurosamente las simulaciones numéricas prop-
uestas por SAFFMAN y SCHATZMAN.

e El capitulo 4 incluye el trabajo [68], el cual es una colaboracién con mi supervisor de
tesis T. HMIDI y con J. MATEU; estd actualmente sometido a publicacién. Se centra
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en el estudio de soluciones periddicas para el modelo tridimensional quasi—geostréfico
sin viscosidad. Mostramos la existencia de parches que rotan, los cuales son una per-
turbacién de parches estacionarios que son superficies de revolucién alrededor del eje
vertical. La construccién de estas soluciones especiales se consigue mediante teoria de bi-
furcacién. En general, el problema espectral es muy delicado y depende fuertemente de
la solucién estacionaria inicial. Restringiéndonos a una clase de superficies de revoluciéon
y explotando la forma particular de nuestro modelo, somos capaces de implementar la bi-
furcacién a partir del autovalor mas grande de una familia de operadores tipo Fredholm
en una dimensioén.

El capitulo 5 explica algunos trabajos en proceso de esta tesis. Algunas conclusiones y
perspectivas de trabajo son también dadas a final de este capitulo.

Finalmente, en los apéndices A, B y C damos algunos resultados necesarios sobre teoria
de bifurcacion, teoria del potencial y funciones especiales.



Résumé en Francais

Comprendre la turbulence hydrodynamique reste le plus grand défi a I'interface des mathématiques
et d’autres sciences, et a été d'un grand intérét méme pour les artistes. En 1932, SIR HO-
RACE LAMB a exprimé son intérét pour les turbulences: “ Je suis un vieil homme maintenant,

et quand je mourrai et irai au ciel, il y a deux questions sur lesquelles j'espere étre éclairé. L'un est
I'électrodynamique quantique, et I'autre est le mouvement turbulent des fluides. Et a propos du premier,

je suis plutot optimiste. ”

LEONARDO DA VINCI, également appelé “Maitre de I’'eau”, a révlé ses préoccupations avec
le pouvoir de 1'eau: “ Si les humains ne pouvaient pas controler 'eau, ils pourraient néanmoins
travailler avec il”. Voir la figure 1.1 pour “Studies of Water”, 'un de ses travaux scientifiques sur
les écoulements de fluides. Plus tard, VINCENT VAN GOGH a documenté son observation des
écoulements turbulents dans son uvre d’art bien connue “The Starry Night”, voir la figure 1.2.
La, la lumiere et les nuages coulent en tourbillons turbulents sur le ciel nocturne. Récemment,
un groupe de scientifiques a pris des photos numériques de peinture et a calculé la probabilité
relative que deux pixels a une certaine distance aient la méme luminance. Ils ont constaté que
les mémes modeéles se répetent a différentes échelles spatiales. Remarquablement, les peintures
de sa propre période turbulente montrent une luminance avec une chelle similaire a celle de la
théorie mathématique de la turbulence.

De maniere informelle, la turbulence fait référence & un comportement chaotique et désordonné
dans le fluide qui ne semble étre prédit que statistiquement ou dans un sens moyen, plutot
qu’exactement. On appelle it fluides a la fois des gaz et des liquides, a condition que le gaz
ne soit pas trop mince. Les deux obéissent a des lois mathématiques trés similaires. Dans un
état turbulent, les écoulements de fluide deviennent instables et fluctuants. Cet état est associé
a un grand nombre de vortex trés mélangés qui interagissent sur une large gamme d’échelles
temporelles et spatiales.

En 1557, LEONARD EULER a proposé les équations dites d’Euler qui sont 1'une des premiéres
équations aux dérivées partielles de la littérature. Ils décrivent la dynamique d’un fluide non
visqueux et consistent en un systeme couplé pour I’quation de continuité de la densité et
I'quation d’quilibre de l'impulsion linéaire. Dans cette theése, nous nous intresserons au cas
des fluides parfaits bidimensionnels, c’est--dire des fluides incompressibles homogenes idéaux
situés dans le plan R%. Par fluide idéal, nous entendons lorsque les seules forces sont normales
aux frontieres et que leur force par unité de surface est déterminée par la pression p du fluide:

vi+v-Vu=—-Vp, in]0,+o0)xRY,
dive = 0, in [0, +-00) x RY,
v(0,z) = vo(x), with 2 € R%.

Les équations d"Euler peuvent étre reformulées en termes de vorticité du fluide, qui représente
la tendance du fluide a tourner, et la vitesse du fluide. Dans le cas bidimensionnel, cela devient
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RESUME EN FRANCAIS

une pure équation de transport pour le tourbillon et dont la vitesse associée peut étre récupére
a partir d"un opérateur intégral singulier:

wi+v-Vw=0, inl0,+00) x R?,
w=Vt.o, in [0, +00) x R?,
dive =0, in [0, +00) x R?,

w(0,7) = wo(z), withx e R2

Les tourbillons sont des composants importants des écoulements de fluide. Nous obser-
vons la formation et la dissipation de tourbillons dans une trés large gamme de fluide, puis
leur formulation et leur dynamique constituent un domaine important de la mécanique des
fluides. On peut penser a différentes catégories de vortex. D’une part, nous trouvons un vortex
ponctuel qui est une distribution de tourbillon infinie concentrée sur un point (c’est-a-dire un
delta de Dirac sur un point) et il se caractérise par sa force de vortex. Une nappe vortex con-
siste en une vorticit infinie concentrée le long d'une ligne, c’est-a-dire un delta de Dirac sur une
ligne. Dans ce cas, il se caractérise non seulement par sa circulation mais aussi par la forme de
la ligne. D'un autre c6té, un patch vortex a une distribution finie et uniforme du tourbillon a
I'intérieur d'un domaine du plan, qui est caractérisé par la forme de la frontiere.

Ces définitions ont leurs équivalents dans le cas tridimensionnel. En particulier, nous nous
intéresserons également au modéle 3D quasi géostrophique modélisant la vorticité potentielle
q:

Oiq + udq +vdeq =0, (t,x) € [0,+00) x R3,
Ay =g,

u = —821/% v = 317%

q(t =0,2) = qo(x).

Cette thése est consacrée a I’émergence de solutions périodiques en temps pour des modeles
hamiltoniens issus de la mécanique des fluides. Dans la premiere partie, nous explorons dans
le plan les solutions en mouvement rigide (rotation ou tranlation pures) avec des distribu-
tions uniformes ou non pour des modeéles standards comme les équations d’Euler incom-
pressibles ou I’équation de surface quasi—géostrophique généralisée. Dans la deuxiéme partie,
nous menons une étude analogue pour le systéme quasi-géostrophique en 3D. L'étude de ce
modele montre une remarquable richesse par rapport aux modeles 2D que ce soit par rapport
I'ensemble des solutions stationnaires ou la diversité des problemes spectraux associés. Dans
la derniere partie, nous discutons quelques travaux en cours de cette these.

Dans la suite, nous allons expliquer briévement le contenu de cette these et les travaux
qu’elle contient.

e Le chapitre 1 traite d'une introduction générale aux modeles mentionnés ci-dessus, de
I'apport de cette these et de la littérature associée. Il est divisé en deux sections: les
équations d’Euler bidimensionnelles et le systeme quasi-géostrophique tridimensionnel.

e Le chapitre 2 est consacré au travail [69], qui est une collaboration avec mes directeurs
de these T. HMIDI et J. SOLER. Ce travail est actuellement accepté pour publication dans
Archive for Rational Mechanics and Analysis. IL s’agit de montrer 1’existence de solutions
inhomogenes en rotation uniforme pour les équations d’Euler 2D, avec un support com-
pact.
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Le premier travail sur ce sujet est celui de CASTRO, C "ORDOBA et G OMEZ - SERRANO
dans [28] sur la désingularisation des V-états . La, ils ont trouvé des vortex rotatifs non
uniformes C? supportés dans des domaines bornés fermés aux poches.

Ici, nous suivons une approche différente qui est la bifurcation a partir de profils radiaux
stationnaires. En effet, supposons que nous ayons un tourbillon initial de type

wo(z) = q(x)1p(x),

ol ¢ : D — R est un profil lisse et D est un domaine borné simplement connecté. Cette
solution tourne a une vitesse angulaire constante (2 € R, c’est-a-dire

w(t,z) = wo(e M x)

)

si et seulement si

Rl(QaQ) = (UO(ZC) - ij_) ' Vq(m) = Oﬂ T € D7
Ro(Q,q) = q(x)(vo(x) — Qxt) - fi(x) =0, =€ dD.

Dans notre cas, nous décrirons nos solutions avec une application conforme ® : D — D
du disque unité D dans un domaine borné simplement connecté D et avec une fonction
réelle f : D — R qui désigne le profil de densité. Autrement dit, nous rechercherons des
solutions rotatives avec des données initiales

wol@) = (f 0 @) (@) lg(p)(a), @ € R

De plus, nous considérerons que f est une perturbation d’une fonction radiale fy et Phi
est une perturbation de la carte d’identité au sens suivant

f=fotg, et ®=Id+¢.

Le systeme se rameéne a deux équations non linéaires couplées liant la forme du support
et la densité du tourbillon a l'intérieur. Nous avons examiné en détail le diagramme de
bifurcation autour de la solution stationnaire (A|z|? + B)1p avec une distribution quadra-
tique. Ceci repose en partie sur le théoreme de Crandall-Rabinowitz, combiné avec des
propriétés fines des fonctions hypergéométriques.

Le chapitre 3 porte sur le travail [67], qui est publié dans Nonlinearity. L’objectif principal
est de fournir une description rigoureuse de 'existence des allées de von Kdrmén pour
divers modeles de transport nonlinéaires. Signalons que la premiere tentative théorique
pour modéliser ces structures a été élaborée par VON KARMAN [91, 92] dans le cadre
du systeme des points vortex. L'auteur a considéré deux allées paralléles de masse de
Dirac, avec des circulations opposées, et qui sont animées d"un mouvement de translation
uniforme. En effet, nous considérerons la distribution suivante:

wo(z) = Z S0y () — Z S(att,—n) (),
kezZ keZ
poura € R, [ >0eth #0.

Des simulations numériques obtenues par SAFFMAN et SCHATZMAN [138], montrent que
ce type de structures persiste également pour des tourbillon plus réalistes de type poches
de tourbillon fortement concentrées. Nous proposons de démontrer rigoureusement ces
observations numériques en procédant par une désingularisation du modele des points
vortex.
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e Le chapitre 4 concerne le travail [68], qui est une collaboration avec mon directeur de

thése T. HMIDI et J. MATEU, et soumis pour publication. Il vise a étudier 1'existence des
solutions périodiques en temps pour le modele quasi-géostrophique non visqueux 3D.
Nous montrons l’existence de poches en rotation uniforme en perturbant adéquatement
des solutions stationnaires données par des formes de révolution régulieres autour de
’axe vertical. Ici, nous paramétrons ces domaines par:

D:{(rew,cos(qﬁ)) : 0§r§r(¢,9),0§0§277,0§¢§7r},

ol la forme est suffisamment proche d"un domaine de forme de révolution, ce qui signifie
que

(¢, 0) = ro(¢) + f(o,0),
pour une petite perturbation non axisymétrique f(¢, §) de la courbe génératrice ry(¢).

La construction de ces solutions spéciales est réalisée grace a la théorie de la bifurcation.
En général, le probléme spectral sous-jacent est tres délicat et dépend fortement de la
forme des solutions stationnaires initiales. Cependant en exploitant la structure parti-
culiéere de notre modele, nous réussissons a valider la bifurcation a partir des grandes
valeurs propres d"une famille discrete d’opétaeurs 1D de type Fredholm.

Plus précisément, 1 "étude spectrale peut étre liée a un probleme de valeur propre d’
un opérateur compact auto—adjoint et nous pouvons implémenter la bifurcation a partir
d ‘une classe de formes de révolution a la plus grande valeur propre de cet opérateur.
Des difficultés supplémentaires générées par les singularités des podles sont résolues par
l'utilisation d’espaces fonctionnels appropriés avec des conditions aux limites de Dirich-
let et une théorie du potentiel affinée avec des noyaux anisotropes.

Le chapitre 5 est consacré a quelques travaux en cours de cette thése. Certaines conclu-
siones des travaux mentionnés ci-dessus ainsi que de nouvelles perspectives et travaux
futurs sont également données a la fin de ce chapitre.

e Enfin, les annexes A, B et C collectent quelques résultats nécessaires sur la théorie de la

xii

bifurcation, la théorie du potentiel et les fonctions spéciales.
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Understanding the hydrodynamic turbulence remains the greatest challenge at the interface
of mathematics and other sciences, and has been of great interest even for artists. In 1932, SIR
HORACE LAMB expressed his interest in turbulence: “I am an old man now, and when 1 die and go
to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,
and the other is the turbulent motion of fluids. And about the former I am rather optimistic.”

LEONARDO DA VINCI, also called “Master of Water”, revealed his preoccupations with
the power of water: “If humans could not control water, they could nonetheless work with it”. See
Figure 1.1 for “Studies of Water”, one of his scientific works about fluid flows. Later, VINCENT
VAN GOGH documented his observation of turbulent flows in its well-known piece of art “The
Starry Night”, see Figure 1.2. There, light and clouds flow in turbulent swirls on the night sky.
Recently, a group of scientists took digital pictures of paintining and calculated the relative
probability that two pixels at a certain distance have the same luminance. They found that same
patters are repeated at different spatial scales. Remarkably, paintings from his own turbulent
period show luminance with a scaling similar to that of the mathematical theory of turbulence.

Informally speaking, turbulence refers to a chaotic and disordered behavior in the fluid
which seems only to be predicted statistically or in an averaged sense, rather than exactly. We
refer as fluids both gases and liquids, provided that the gas is not too thin. Both obey very
similar mathematical laws. In a turbulent state, fluid flows become unstable and fluctuating.
This state is associated with a large number of highly mixing vortices that interact on a wide
range of temporal and spatial scales.

In 1557, LEONARD EULER proposed the so called Euler equations which are ones of the
first partial differential equations in the literature. They describe the dynamics of an invis-
cid fluid and consist of a coupled system for the continuity equation of the density and the
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Figure 1.1: “Studies of Water” by DA VINCI

balance equation of the linear momentum. In this thesis, we will be interested in the case of
two-dimensional perfect fluids, that is, ideal homogeneous incompressible fuids lying in the
plane R2. By an ideal fluid we mean when the only forces are normal to the boundaries and
their strength by surface unit is determined by the pressure p of the fluid. We refer to [5] for the
derivation of the Euler equations and their viscous counterpart (i.e., the Navier-Stokes equa-
tions).

Specifically, the question of global in time well posedness or blow up in three dimensions
is a extremely hard open problem with relevant implications in sciences. As a consequence,
important mathematics have been emerged when trying to solve related questions. Indeed, the
analogue version of such problem for the Navier—Stokes equations is one of the problems of
the millennium by Clay Institut of Mathematics. Its resolution entails a 1 million dollards prize
to the discoverer, as a recognition for a strong advance in mathematics.

The Euler equations can be reformulated in terms of the vorticity of the fluid, which repre-
sents the tendency of the fluid to rotate, and the velocity of the fluid. In the two—dimensional
case, it becomes a pure transport equation for the vorticity and whose associated velocity can
be recovered from a singular integral operator. Vortices are important components of the fluid
flows. We observe the formation and dissipation of vortices in a very wide range of the fluid,
and then their formulation and dynamics is an important area of Fluid Mechanics. We can
think of different categories of vortices. On the one hand, we find a point vortex which is an
“infinite” vorticity distribution concentrated on a point (meaning a Dirac delta on a point) and
it is characterized by its vortex strength. A vortex sheet consists in an “infinite” vorticity con-
centrated along a line, that is, a Dirac delta on a line. In this case, it is not only characterized
by its circulation but also by the line shape. On the other hand, a vortex patch has a finite and
uniform distribution of vorticity inside some domain of the plane, that is characterized by the

2



CHAPTER 1. INTRODUCTION

shape of the boundary. These definitions have their counterparts in the three-dimensional case
that we will mention later.

Along this thesis, we will be interested in special patters of weak solutions of fluid models.
In Chapter 2 and Chapter 3 we focus on the 2D Euler equations. In the first one, we show
the existence of non uniform rotating solutions which are compactly supported in a bounded
domain. Whereas, in the second one, we study the very special structure of the von Karman
Vortex Street in the Euler equations. Chapter 4 deals with the 3D quasi-geostrophic system,
where uniformly rotating weak solutions of patch form are found. In Chapter 5, we present
some works in progress of this dissertation. Some conclusions of the previous works are also
given in this chapter together with some new perspectives. Finally, we give some necessary
results on bifurcation theory, potential theory and special functions in Appendices A, B and C.

1.1 Two-dimensional Euler equations

Wild weak solutions of the incompressible Euler equations can capture the essence of turbu-
lence, even in the two—dimensional case. The importance of finding significant patterns of
weak solutions of the Euler equations is, therefore, essential for a deep knowledge about the
complex nature of turbulent fluids.

The evolution of an homogeneous incompressible ideal fluid without viscosity in R?, with
d > 2, is described by the Euler equations

v +v-Vu=-Vp, in]0,+o0) x R%
dive =0, in [0, +00) x R?, (1.1.1)
v(0,x) = vo(x), with 2 € R%.

Here, the unknowns are the velocity field v = (v!,...,v?) that depends on (, ) € [0, +o0) x RY
and the pressure p : [0,+00) x RY — R. Since the fluid is taken to be homogeneous, we have
normalized the density to one for simplicity. Then, the continuity equation (the conservation of
mass) is trivial and we can ignore it. The first equation in (1.1.1) agrees with the conservation
of linear momentum, which is derived from Newton’s second law assuming that the fluid is
ideal. Finally, the second equation in (1.1.1) describes the incompressibility condition. See [5]
for a derivation of these equations.

Regarding the well-posedness of the system, KATO and PONCE [94] addressed the local
existence and uniqueness of solution in the Sobolev space H?, for any s > ¢ + 1. Later, this
result has been extended to other spaces such as Holder or Besov spaces. We refer for instance
to [30, 37]. The question of global existence of solution is still an open problem except for the
two dimensional case, where the global well-posed is achieved in H?, for s > 2, see [150].

Along this thesis we shall focus mainly on the two-dimensional case. Actually, we will
pay special attention to the evolution of vorticity, which represents the tendency of the fluid to
rotate. Vorticity is described through

w =Vt v =d1vy — douvy.

We set here (1, 29)" = (—x2,21). Indeed, applying such operator V+- to (1.1.1) we observe
that the pressure term disappears from the dynamics and we arrive at the following system

wi+v-Vw=0, in]0,+00) x R?,
w=Vt.o, in [0, +00) x R?,
divv =0, in [0, +00) x R?,
w(0,7) = wo(z), withz €R2
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The first equation in the above system is a pure transport equation for the vorticity w. In fact,
looking at the P norm of the solution and using the incompressibility condition, the following
conservation law is achieved

lw(@®)lze = [lwol|z»,

forany ¢t > 0 and p € [1,+o00]. Such property is crucial in order to construct global classical
solutions of Kato type.

Notice that we can face the second and third equation in (1.1.1) dealing with a div — curl
problem by virtue of a function 1 such that v = V4. In this setting, such function is often
called the stream function. Therefore, applying the V- operator above defined we arrive at the
elliptic equation

A = w. (1.1.2)

Indeed, it can be solved by means of G the fundamental solution to the A operator, that is,

Y(t,z) = (G*w)(t,x) = % /R2 log |z — y|lw(t, y)dy.

Hence, the velocity field can be recovered via the vorticity in the following way

_ _ _ 1 [ @y
o(t,z) = Vit z) = (K *w)(t,z) = o /R2 Ww(t,y)dy.

This is the so called Biot-Savart law that links the velocity field with the vorticity. Such ideas
yield an equivalent system to (1.1.1) given by

wi+v-Vw=0, in [0, +00) x R?,
v=Kxuw, in [0, +00) x R?, (1.1.3)
w(t=0,2) =wy(z), withzeR2

In the case that the initial data belong to L' N L>, global existence and uniqueness of solution
is stated by YUDOVICH in [152]. One of the main consequences of Yudovich’s theorem is that
although the velocity field is not Lipschitz continuous (but log-Lipschitz), the trajectories are
well-defined and the vorticity is transported along the trajectories. That is, let X be the flow
associated to v, i.e.,

0X(t,x)

— = v(t, X(t,x)), X(0,2) =z €R? (1.1.4)

for any ¢ > 0. Hence denoting X, ' = X (t,-)~! we have
w(t,z) = wo(X; ' (),

forany t > 0 and z € R%

Along this introductory part, we review some recent studies on Euler equations and the
main contributions of this dissertation on this field. First, Section 1.1.1 contains an outline of
the main works on special solutions: stationary, rotating and translating solutions. Second,
we focus on vortex patches in Section 1.1.2, and more specifically, V-states (rotating vortex
patches). That is the main motivation behind the works developed in Chapter 2 and 3. Finally,
those works and related literature will be briefly introduced in Sections 1.1.3 and 1.1.4.
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1.1.1 Special solutions

In this section, we show some recent results on special solutions. First, we will introduce the
stationary solutions from which later we will look for periodic solutions around them. Later,
we will see that in the search of rigid motions (pure rotations or translations), the Euler system
can be simplified to an equation involving only the initial data.

Therefore, the search of stationary solutions reduces to studying the following equations

v-Vw=0, and v=K *xw. (1.1.5)

By using the structure of the velocity field via Biot-Savart law, it is easy to check that every ra-
dial vorticity defines a stationary solution. Hence, we find a large family of stationary solutions
from which we can look for periodic solutions around them. That is a key observation that will
support later our search for non uniform (and non radial) rotating vortices. See Section 1.1.3 or
Chapter 2. Moreover, by using the stream function, (1.1.5) amounts to

Vg - VAY = 0. (1.1.6)

In particular, if we assume Aty = F(v)), for some scalar function F, then the equation (1.1.6) is
automatically satisfied, see [107].

In the literature, there are several works about the study of stationary solutions. On the
one hand, LUO and SHVYDKOY [106] looked for solutions in polar coordinates taking the form
U(r,0) = r*p(0), for some A > 0. They found thatif 0 < \ < %, then only trivial solutions,
in the sense of parallel shear and rotational flows, are found. Outside that range of A, new
solutions with hyperbolic, parabolic and elliptic structure of the streamlines appear.

Later, CHOFFRUT and SVERAK [40] showed analogies of some finite-dimensional models in
the infinite-dimensional setting of Euler’s equations. Moreover, under some non-degeneracy
assumptions, they proved a local one-to—one correspondence between steady-states and co-
adjoint orbits. Then, CHOFFRUT and SZEKELYHIDI [41] found, using an h-principle [61], that
there is an abundant set of weak, bounded stationary solutions in the neighborhood of any
smooth stationary solution. In [75, 76, 74], HAMEL and NADIRASHVILI studied the Euler equa-
tions in the plane or in some domains assuming tangential boundary conditions. If such a flow
has no stagnation point in the domain or at infinity, in the sense that the infimum of its norm
over the domain is positive, then it inherits the geometric properties of the domain, for some
simple classes of domains. In particular, in an infinite two—-dimensional strip, the same authors
proved that a steady flow is parallel to the boundary of the domain. Moreover, they proved
that the stationary solutions to the Euler equations in the full space (with no stagnation point
at infinity) are shear flows.

Other approaches to study stationary solutions have been proposed through the study of
the characteristic trajectories (1.1.4) associated with stationary velocities, in connection with the
elliptic equation Ay = w = F(¢),i.e. (1.1.2). In this context, NADIRASHVILI in [117] studied the
geometry (curvature) of streamlines of smooth stationary solutions. KISELEV and SVERAK [99]
constructed an example of initial data in the disc such that the corresponding solutions for the
2D Euler equations exhibit double exponential growth in the gradient of vorticity. That is re-
lated to an example of the singular stationary solution provided by BAHOURI and CHEMIN [12]
with lack of Lipschitz regularity in the velocity field. Recently, GOMEZ-SERRANO, PARK, SHI
and YAO [71] proved that any smooth compactly supported non-negative stationary vorticity
must be radial. Other recent important results are due to GAVRILOV [70] and CONSTANTIN,
LA and VICOL [42], where they obtained very interesting examples of smooth compactly sup-
ported stationary solutions for the 3D Euler equations, based on Grad-Shafranov equations.

5



1.1. TWO-DIMENSIONAL EULER EQUATIONS

Furthermore, the Euler system is a Hamiltonian system that develops various interesting
behaviors at different levels, which are in the center of intensive research activities. Lots of
studies have been devoted to the existence and stability of relative equilibria (in general, trans-
lating and rotating steady—state solutions). We point out that despite the complexity of the
motion and the deformation process that the vorticity undergoes, some special vortices sub-
sist without any deformation and keep their shape during the motion. These fascinating and
intriguing structures illustrate somehow the emergence of order from disordered motion.

Indeed, one can study the existence of rotating solutions of the Euler equations (1.1.3), that
is,

w(t, ) = wo(e *¥g),
for some constant angular velocity {2 € R. Inserting this ansatz in (1.1.3), we arrive at the
equivalent system

R(Q,wp) := (vo(x) — Qat) - Vwg(z) = 0, (1.1.7)
for any z € R?. Here vy = v(0, ) is the initial velocity and is given in terms of the initial
vorticity wo via the Biot-Savart law. Note that the time dependence has disappeared due to the
special form of the solution.

A priori, there is an infinite family of solutions to (1.1.7) given by every radial function.
That is, given any radial function wy, one finds

R(Q,wo)(x) =0,

for any z € R? and Q € R. In the special case that the support of wy is a smooth bounded
domain D, that is,
wo(z) = q(z)1p(z),
for some smooth function ¢, hence (1.1.7) agrees with the coupled equations
R1(Q,q)(x) == (vo(z) — Qzt) - Vg(z) =0, z €D, (1.1.8)
Ra(Q, q)(x) == q(z)(vo(x) — Qzt) - fi(x) =0, =z €dD, (1.1.9)

where 7 is a unit normal vector to the boundary 0D.

A solution is called a vortex patch if wy is constant in D. In such a case the above system
reduces only to one equation given by (1.1.9), for any = € 9D. In Section 1.1.2 we will discuss
some recent results on V-states, that are the rotating vortex patches. Such results study the
equation (1.1.9) via bifurcation techniques around the stationary circular patch. However, the
case of non uniform rotating solutions is a more complicated problem since now one needs to
solve the full coupled system (1.1.8) and (1.1.9), and not only (1.1.9) as for uniform patches.
One of the main works of this thesis is to consider the existence of non uniform solutions close
to some radial profiles by using bifurcation arguments. This problem will be softly discussed
in Section 1.1.3 and the full description will be analyzed later in Chapter 2.

Another class of special interest is given by translating motions, that is,

W(t,iﬂ) = wO(x - Vt)v
for some constant speed V' € R2. In this case, the Euler equations (1.1.3) can be written as
T(Q,wp) := (vo(z) — V) - Vwp(x) = 0, (1.1.10)

for any 2 € R?. This equation will be carefully studied in Chapter 3 in order to find some special
structures in the Euler equations with periodic spatial patters. More precisely we shall inves-
tigate the so called Karmdn Vortex Street that consists in two rows of point vortices (or vortex
patches with small area) that translate along the space at constant speed. Such models for the
point vortices and vortex patches will be introduced also in Section 1.1.4 in this introduction.
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1.1.2 V-states: rotating vortex patches

The main goal of this section is to explore some special features of the vortex patch motion. We
shall write down the contour dynamics equations and investigate later the rotating patches,
which are called by V-states. Later, we will explain some results about the existence of such
solutions using bifurcation techniques. This is the main motivation of this thesis in order to look
for non uniform rotating solutions in Chapter 2, Kdrman Vortex Street structures in Chapter 3
or the existence of V—states in the 3D quasi—geostrophic system in Chapter 4.

Consider an initial vorticity wy in the vortex patch form, that is,

wo(x) =1p(z), =z eR2
According to Yudovich theorem, this structure is preserved in time and one has
w(t,z) =1p,(z), z€R?

for some domain D; with Dy = D. Note that D; is nothing but the evolution of D, by the flow,
thatis D; = X (¢, Dy). By using the equation of the characteristic trajectories (1.1.4), one arrives
to the well known contour dynamics equation:

dz(t,s)
dt

where s € T — z(t, s) is a parametrization of 0D;. Hence, the vortex patch problem is reduced
to the resolution of the above nonlocal differential equation. The global in time regularity
persistence of the boundary with ¢%*-regularity is delicate and was first shown by CHEMIN
[36], and then via different techniques by BERTOZZI and CONSTANTIN [18] and SERFATI [141].

The dynamics of the boundary is in general complex and hard to tackle its evolution. How-
ever few examples with a full description are known in the literature. Note that there is a
trivial solution to (1.1.11) given by the circular patch (this is due to its radial symmetry), which
is known as the Rankine vortex. Later, KIRCHHOFF [98] discovered that a vorticity uniformly
distributed inside an elliptic shape rotates about its center with constant angular velocity. Fur-
ther uniformly rotating m—-fold patches with lower symmetries generalizing Kirchhoff ellipses
were discovered numerically by DEEM and ZABUSKY [51]. We understand by a m—fold sym-
metric domain if it is invariant by the dihedral group D,,,. See Figure 1.3 for some examples.

Having this kind of V-states solutions in mind, BURBEA [21] designed a rigorous approach
to generate them close to a Rankine vortex through complex analytical tools and bifurcation
theory. Later this idea was improved and extended to different directions: regularity of the
boundary, various topologies, effects of the boundary conditions, and different nonlinear trans-
port equations. For the first subject, the regularity of the contour was analyzed in [26, 27, 86].
There, it was proved that close to the unit disc the boundary of the rotating patches are not
only ¢ but also analytic. Regarding the second point, similar results with richer structures
have been obtained for doubly connected patches [53, 83]. The existence of small loops in the
bifurcation diagram has been achieved very recently in [87]. For disconnected patches, the
existence of co-rotating and counter-rotating vortex pairs was discussed in [85]. We mention
that the approach of BURBEA is so robust that partial results have been extended to different
models such as the generalized surface quasi-geostrophic equations [27, 78] or shallow-water
quasi-geostrophic equations [58], but the computations turn out to be much more involved in
those cases.

Let us explain the main idea of BURBEA for the existence of uniformly rotating vortex
patches with m—fold symmetry. Assume that

2
= —1/ log |2(t,s) — 2(t, 7)|0-2(t, T)dT, (1.1.11)
2 0

wo(x) =1p(x), =€ R2,
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Figure 1.3: Numerical existence of V-States by DEEM and ZABUSKY [51]

for a simply—connected bounded domain D. Inserting such initial data in the equation for the
rotating solutions (1.1.7), we arrive at (1.1.9), that is,

(vo(z) — Qat) -7i(z) =0, x€dD, (1.1.12)

where 77 is a unit normal vector to 9D. Recall that vy is given in terms of wy via the Biot-Savart

law, that is,
1 [ (z—y)" i / dA(y)
_ UV ay = L [ AW
vo(@) 27T/D |z —y|? ) 2r Jpx—y’

where we show in the second term its expression in the complex sense. Next, we can parametrize
D by its conformal mapping

$:D— D,

where D is the unit disc. Straightforward computations using complex notation imply that the
rotating equation (1.1.12) is equivalent to

F(Q,¢)(w) := Im [(Q(I)(w) - % /D M(wy)) @’(w)w] =0, weT, (L113)
where
® =1d + ¢.

We have a trivial solution to (1.1.13) coming from ¢ = 0, that is & = Id. Indeed, in that case
we obtain the circular patch and then F(£2,0) = 0, for any Q € R. For that reason we have
normalized the conformal map to work with ¢ which is the perturbation of the trivial solution
(the circular patch).

The equation (1.1.13) is equivalent to the formulation used by BURBEA in [21]. The key idea
of BURBEA was looking for nontrivial solutions around the trivial solution (in this case ¢ = 0)
to (1.1.13) via bifurcation arguments. Thus, one needs that the linearized operator around
the trivial solution is a Fredholm operator of zero index (see Appendix A). By working with
singular integrals and using Appendix B, one finds

Oy F(©,0)h(w) = 3 an sin(n) {nQ _n- 1} ,

2
n>1
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where w = ¢ and we have decomposed h as

h(w) = Z anw" L,

n>1

Then, fixing Q,, = ”2—;1 we can check that the kernel of 04F(2,,0) is one dimensional in some

appropriate function spaces.

Using these ideas, BURBEA found the existence of families of V/—states that are m—fold sym-
metric, for m > 2. That proof was later revisited by HMIDI, MATEU and VERDERA in [86]. The
main result reads as follows.

Theorem 1.1.1. [86, Theorem 1] Given 0 < o < 1 and m = 2,3, ..., there exists a curve of m—fold
rotating vortex patches with boundary of class €1 bifurcating from the disc at Q,, = =

2m

In [86], the authors showed that the bifurcated patches near the Rankine vortices are in fact
¢ and convex. Notice that the case m = 1 corresponds to translations of the circular patch.

We point out that the countable curves bifurcate at the points €2,,, € (0, 1) and numerical
simulations conjectures that the associated angular velocities still lie in the same range. In
[66], FRAENKEL proved, using the moving plane method, that in the case that {2 = 0 the only
solution is the trivial one, i.e., the Rankine vortex. Later, HMIDI in [82] adapted this proof
to check that in the case Q = 1 or © < 0 (under some suitable geometric constraints) the
only rotating patch is the trivial one. Recently, GOMEZ-SERRANO, PARK, SHI and YAO did an
important progress in this topic and proved the same result for the range €2 ¢ (0, %) following

a new approach based on variational arguments and steiner symmetrization, see [71].

1.1.3 Non uniform rotating vortices

Motivated by the previous section, here we will investigate whether there are periodic solu-
tions around radial functions (which are stationary solutions). In particular, this section aims
to overview some recent studies on rotating non uniform solutions which are compactly sup-
ported in a simply—connected bounded domain. First, we will introduce the work of CASTRO,
CORDOBA and GOMEZ-SERRANO in [28] about the desingularization of the V-states. Later,
we present one of the main works of this thesis which is the bifurcation from quadratic radial
profiles that are far from the patches, we refer to Chapter 2 for more details.
Assume that we have an initial vorticity of the type

wo(z) = q(x)1p(x),

where ¢ : D — R is a smooth profile and D is a simply—connected bounded domain. That
solution rotates at a constant angular velocity 2 € R, that is,

W(t, ‘/E) = wO(eiith)a
if and only if

R1(Q,q) = (vo(z) — Qzt) - Vg(z) =0, ze€D,
Ry(Q,q) = q(z)(vo(z) — Qzt) - ii(z) =0, z € dD.

Such functionals R; and R, were introduced in (1.1.8) and (1.1.9). Recall that vg is obtained
through Biot-Savart law and it has the following expression

x—y)t 7
vo(z) ! /D(y)fJ(y)dA(y)=2ﬂ/D av) dA(y).

T2 Jp o —yP? T—y
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Given any radial function qo, one trivially has that R;(2,qy) = R2(,q0) = 0 for any Q €
R. Hence, one could try to implement Crandall-Rabinowitz theorem and find branches of
solutions around such initial radial profile. However, a priori one can not apply bifurcation
arguments to R; due to its bad spectral properties.

Namely, in order to apply Crandall-Rabinowitz theorem (or some generalization of the
theorem), one needs that the dimension of the kernel and codimension of the range of the lin-
earized operator around the trivial solution (in this case, qo) are finite. However, the linearized
operator £ of R; presents some technical problems: its kernel contains every radial function
and it is smoothing in the radial component. Indeed, it has the expression

L
o) = (£ - 0) b+ K () Voo, K@) = 5- [ =20 h)aac),
r 2 Jp |z — vyl
The loss of information in the radial direction can not be compensated by the operator K which
is compact. Hence, using standard function spaces (say Holder spaces), the codimension of the
range will not be finite. Moreover, one has that if hj is radial then £(ho) = 0, which gives
us that the kernel is of infinite dimension: it contains every radial function. Hence, one must
change such an equation by restricting to some particular solutions in order to apply bifurcation
arguments.

To the best of our knowledge, there are two ways to tackle that problem in the literature.
The first one is due to CASTRO, CORDOBA and GOMEZ—SERRANO in [28]. They found the
existence of ¢ rotating vortices with m—fold symmetry, for any m > 2. The proof is based on
the desingularization and bifurcation from the Burbea patches of Section 1.1.2.

In order to find the equation for the level sets of the vorticity of a global rotating solution,
they considered that the level sets of the initial vorticity wy that can be parametrized by

z(a, p) = r(a, p)(cos(a),sin(a)),
for a scalar function r(«, p), @ € Rand p € RT. Since we are looking for rotating solutions, the
level sets z(a, p,t) of w(t, -) rotate with constant angular velocity
2(a, pt) = eMa(a, p). (1.1.14)
Moreover, by definition one has
w(t, z(a, p,t)) = f(p),

for some scalar function f. By using the Euler equations and the above equation one obtains

(—v(t, z(a, p,t) + Oz (cr, p, 1)) - (Ouz) ™ (v, pyt) @)L f(/(gppz))(a oD =0,

where

olt.0p0) = 5o [ o/ oz (0, p.0) = 20, L)L ()00l )
Assuming now (1.1.14), one arrives at the equivalent equation
Fy(r,Q)(a, p) =Qr(a, p)Oar(a, p)

+ % /OOO /_i(apf)(P/) log(|z(a, p) — x(c’, p')]) cos(a — /) (Dar) (, p')de dp’
- %ﬁ:ﬂ) /Ooo /_T;(apf)(f’/) log(|z(a, p) — x(, p')]) cos(a — o' )r(d, p')da’ dp’

10
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T % /OOO _Z(apf)(P,) log(|z(a, p) — aj(a” p’)|) sin(o — o/)

X (r(a, p)r(a, p') + (Bar)(a, p)(Oar)(d, p'))da! dp’
=0.

Using supp(d,f) C (1 — a,1 + a), then such equation must be verified for « € T and p €
(1 —a,1+ a). The parameter a is used as a bifurcation parameter in [28].
Note that the above functional strictly depends on the choice of the function f. In [28], they

chose f such that f%(p) = H (%), where

1, p e (—OO, _1]7
H(p) := { 1+ [7 o(p)dp’, pe(—1,1), (1.1.15)
0 p € [1,00),

for some function ¢ € €3((—1, 1)) with f_ll o(p)dp = —1.
Hence, the main result of [28] reads as follows.

Theorem 1.1.2. [28, Corollary 2.2] There exist global rotating solutions for the 2D Euler vorticity
equation with €*-reqularity with compact support, with m—fold symmetry for any integer m > 2.

On the other hand, there is another way to tackle the problem presented by R; (2, ¢) about
its spectral properties, and thus to find non uniform rotating solutions supported on a simply—
connected bounded domain. The idea is to restrict our class of solutions and then change the
equation R;(€2,q) = 0 into a more particular one. This is one of the main problems of this
dissertation presented in Chapter 2. The main difference from the work done in [28] is that
now the bifurcated solutions are far away the patches.

More precisely, we will describe our solutions with a conformal map ¢ : D — D from the
unit disc D into a simply—connected bounded domain D and with a real function f : D — R
which denotes the density profile. That is, we will look for rotating solutions with initial data

wo(x) = (f 0 &7 )(x) Loy (@), = € R,

Moreover, we will consider that f is a perturbation of a radial function fy and @ is a perturba-
tion of the identity map in the following sense

f=fo+tg, and ®=1d+ ¢.

Then, using those variables the equation Ry((2, ¢) = 0 agrees with

—tm | (QB@) - = [ — LW e (ww| =0, w
F(Q.9.6)(w) =1 [(M() %/D@(w)—@(m'q)(y)' dA(y))M )] " ;;’16)

and we will refer to it as the boundary equation.
Let us now proceed to change the first equation R;(€2,q) = 0. The strategy is to look for
solutions such that

V(fo® ) (x) = u(Q, (f o @ ") (@))(vo(z) — Q)" (1.1.17)

for any = € D and for some scalar function ;. Notice that any solution to (1.1.17) is a solution
of the initial density equation (1.1.8). However, the reverse is not in general true. The scalar

11
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function . will be fixed in such a way that the radial profile fj, around which we look for non
trivial solutions, is also a solution to (1.1.17) for any angular velocity.
We can integrate the above equation (1.1.17) arriving to the equivalent form

1 1
G(,9,0)(2) == M(Q, f(2)) + 27T/Dlog [@(2) = ()| F ()| (W) [*dA(y) — 52P(2)* =0,
(1.1.18)
for any z € D. As for p, the function M is fixed in order to have that G(©2,0,0) = 0 for any
(2 € R. Hence, different initial profiles f; give us different equations.
In Chapter 2 of this dissertation we focus on the bifurcation around quadratic profiles. That

is, we study the particular case
fo(r) = Ar? + B, (1.1.19)

where A > 0 and B € R. For that choice of fj, the function M is given by

40 - B 1 2+3BQ+A2+4AB—8QB

84 "7 16A° 164 '
The first point that must be verified is that there are no trivial solutions (in the sense of ra-
dial solutions) around the quadratic profile fo(r) = Ar® + B. This is proved in Chapter 2, in
particular Proposition 2.4.3, that states the following.

M(Q,s) =

Proposition 1.1.3. Let xq be the unique root of the Gauss hypergeometric function F(1 — /2,1 +
V2;1;z), and Qg = g + ﬁ. Moreover, let G1,4(S, g) the functional G(€2, g,0) restricted to radial
functions g, and let fo(r) = Ar? + B be the quadratic profile, with A € R*, B € R. Then, there exists
e > 0 such that

Grad(Qvg) =0<+=g=0,

for any (2, g) € I x B(0,¢) and any bounded interval I, with I ([5, 5 + 4] U {Q}) = 0.

The main idea of the proof of the previous proposition is the use of the infinite dimensional
Implicit Function theorem and thus one has to analyze the linearized operator of G,,q4 around
the trivial solution. Studying its kernel, one finds a second order differential equation that
can be solved explicitly with the help of Gauss hypergeometric functions and here is where
F(1 — /2,1 + v/2;1;2) appears. Note that as a consequence of this result, this rules out the
possibility of getting radial solutions near the trivial one.

Define now the set Ssing as

Ssing 1= {Q 1 0F(€,0,0) is not an isomorphism},

where in the particular case of the quadratic profile it takes the form

_[A B  An+1) B N

Ssmg = {4 + 5 m %, n e N U {+OO}} . (1120)
Then, the Implicit Function theorem can be applied to the boundary equation (1.1.16) outside
the singular set Sing Obtaining that ¢ = N (€, g), for some smooth function N, see Proposition
2.3.3. Hence the density equation (1.1.18) can be reduced to

G(2,9)(2) == G(Q g, N (. 9))-

The idea now is to apply Crandall-Rabinowitz theorem to G and try to bifurcate from (2 that
belong to the dispersion set:

Saisp = {Q . Ker D,G(9,0) # {o}}. (1.1.21)

12
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Then, apart from analyzing the spectral properties of G (that is, dimension of the kernel and
codimension of the range of the linearized operator), one must verify that the singular and
dispersion sets are well-separated.

The linearized operator can be related to a Volterra type integro—differential equation, that
can be written in terms of Gauss hypergeometric functions. In this way, we find explicit special
regimes on A and B such that there exist nontrivial solutions around the quadratic profile. A
(simplified) version of our main theorem can be found in Theorem 2.1.1 and reads as follows.

Theorem 1.1.4. Let A > 0, B € R and m a positive integer. Then the following results hold true.

1. If A+ B < 0, then there is mg € N (depending only on A and B) such that for any m > my, there
exists a branch of non radial rotating solutions with m—fold symmetry for the Euler equation,

bifurcating from the radial solution (1.1.19) at some given €,, > 4525,

2. If B > A, then for any integer m € [1,8 + L] orm € [1,28 — 3] there exists a branch of

non radial rotating solutions with m—fold symmetry for the Euler equation, bifurcating from the
radial solution (1.1.19) at some given 0 < Q,,, < g. However, there is no solution to (1.1.18)
close to the quadratic profile, for any symmetry m > 28 + 2.

3. IfB>0o0rB < —%efor some 0,0581 < € < 1, then there exists a branch of non radial 1—fold
symmetric rotating solutions for the Euler equation, bifurcating from the radial solution (1.1.19)
at Ql =0.

4. If-4<B<0andQ ¢ Ssing, then there is no solutions to (1.1.18) close to the quadratic profile.

5. In the frame of the rotating vortices constructed in (1), (2) and (3), the particle trajectories inside
their supports are concentric periodic orbits around the origin.

From the transformation (4, B,Q2) — (—A, —B, —2) and the homogeneity of the equation
we can recover the case A < 0 excluded in the above theorem.

The main difficulty of the previous theorem is the spectral study. As we mentioned before,
one must analyze first the roots of (1.1.18), which strongly depends on the choice of ry. Let us
briefly explain why we restricted ourselves to the particular profile 7o(r) = Ar? + B. In order
to find nontrivial roots of (1.1.18) around the trivial profile, one needs that the kernel of the
linearized operator around it is not trivial. Moreover, we can restate such kernel as a second
order differential equation, which will depend on the choice of fj. A priori, for general profiles
we are not able to find an explicit solution of such equation but we do for some particular ones:
quadratic or, more generally, polynomial profiles. This is the step where we crucially need to
fix the initial profile, that we set as fo(r) = Ar? + B. However, in general, one could try to
solve the differential equation with more general profiles, like Gaussian ones, and to perform
the same analysis. This is an open problem and we refer to Section 5.4 for more details.

In our case, we can write the linearized operator of @ around the trivial solution as

9,G(2,0)h(z) — [; {jx (Q - f) _ |z|2} 1d + /c} h(2),

where K is a compact operator. In the case that % (2 — ) ¢ [0,1], we are able to get that

E)g@ (€2,0) is Fredholm of zero index. However, in the opposite case the linearized operator is
injective but the range is not closed. A more refined analysis and some coercivity estimates
imply also the injectivity of the nonlinear functional G getting the negative results of Theorem
1.14.

13
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Moreover, after solving the mentioned second order differential equation via Gauss Hy-
pergeometric functions, we can relate the kernel equation with finding the roots of an algebraic
scalar equation depending on the angular velocity {2 and the m—fold symmetry. More precisely,
we find the following identity

dim Ker 8,G(Q,0) = Card Ay,

0},

The set Ag is defined as

Agi={meN Gu(®)
with é =4 (Q-%),and

Cn(Q) = F(Q) |1 - 0 4 wﬂ] +/O Fp (7)™ [—1 + 2(27} dr, Qe (—o0,1].

The function F}, is a Gauss Hypergeometric function where the parameters depend on m:

m—vm?2+8 B m+vVm?2+8
-5 s U=V

Fr(2) = F(am,bpym+1;2),  ap = 5 5

See Appendix C for more details about Hypergeometric functions.

Therefore, the kernel study reduces to finding roots of (,,, which depends on the param-
eters A and B. These are the elements within the dispersion set (1.1.21) defined above and
different regions of such parameters give us the different scenarios described in Theorem 1.1.4.
Moreover, once we are able to apply Crandall-Rabinowitz theorem to (1.1.18), one must come
back to the boundary equation (1.1.16) via the Implicit Function theorem mentioned previously.
Hence, we need that the chosen angular velocity 2 € Sg;sp does not belong to the singular set
(1.1.20). To prove that we use a deep asymptotic analysis on € Syisp depending on m and
also for the points of the singular set Sging in order to show that they are well-separated.

Finally, let us remark the existence of 1-fold branches in Theorem 1.1.4—(3) which survive
even in regions where no other symmetry is allowed. Moreover, it occurs from Q2 = 0 and we
could find stationary solutions there. Note that the recent work of GOMEZ SERRANO, PARK,
SHI and YAO [71] implies that if the solution has a fixed sign and is stationary then it must be
radial. However, we have a region in Theorem 1.1.4—-(3) where the profile changes sign and non
radial stationary solutions may live in this branch. See Section 5.4 for a discussion about this
topic.

1.1.4 Karman Vortex Street

The von Karmén Vortex Street is a particular spatial periodic pattern observed in the wake
of a two-dimensional bluff body placed in a uniform stream at certain velocities. It can be
observed in atmospheric flows about island or in aeronautical systems, see [91, 92, 131, 138§,
139, 140, 144]. We refer to Figure 1.4 for the observation of this pattern close to Juan Fernandez
Chilean Islands.

The more classical model was given by VON KARMAN in [91, 92]. The author considered
the vortices that are modeled as two infinite rows of point vortices which can be staggered with
respect to each other. VON KARMAN found that the vortex street is only stable for a particular
geometric configuration of the vortices, and unstable for all others. In such a model, the vortices
are assumed to have already been formed, and their dynamics is studied in a inviscid flow.

However, the model given by VON KARMAN uses point vortices which are singular solu-
tions of the incompressible Euler equations. Indeed, these structures arise in the context of the
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Figure 1.4: Kdrman Vortex Street close to Juan Fernandez Chilean Islands. Source: Wikipedia.

Euler equations in the works of SAFFMAN and SCHATZMAN [138, 139, 140]. They considered
two rows of vortices with finite area, i.e., vortex patches of small area. They found numeri-
cally the existence of this kind of solutions that translate at a constant speed. Moreover, they
identified the stability region where the vortex patch street is stable, and this region shrinks
to a point when the vortex patches shrink to point vortices. Following these ideas, we focus
on the analytical existence of the Karman vortex Street in the Euler equations (and in other
incompressible models). This will be developed in Chapter 3.

First of all, let us introduce the N—vortex problem. Consider that the vorticity is formed by
N points situated in the plane with positions zj(t), that is,

N
wo(z) = ka5($ — 2(0)),
k=0

where T, is the strength of z;(t) for any ¢ > 0. The Kelvin circulation theorem, for an incom-
pressible perfect fluid without external forces, states that the circulation around a closed curve
moving with the fluid remains constant in time (see for instance [107, 118, 137]). Then, w(t, z)
will be always concentrated on point vortices, that is,

N
wt,x) = Tid(z — z(t)).
k=0
If we neglect the induced effect of a point on itself, the evolution of each point z,, is given by

d 1
Fmazm(t) =V~—H(zm),

where H is the Hamiltonian

1
H(z1,. o om) = = > Tk log(|zm — 2k).
k#j

The rigorous derivation of the point vortex system from Euler equation can be found in [109].
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Moreover, this system has some particular relative equilibria that translate or rotate without
deformation. The more simplest example is the two point vortices. Actually, given two initial
point vortices z1(0) and z2(0), with strengths I'; and I'y, then the time evolution consists in a
rotation or a translation depending on the circulations. Indeed, if I'1 + I'y = 0, then z,,(t) =
zm(0) + Vot, for some constant speed Vj that is related to the initial points. In the opposite case
that I'; + I's # 0, then we find a rotation evolution in the sense that z,,(t) = eiQtzm(O) (where
we are assuming that the center of masses of z;(0) and z2(0) is the origin), for some constant
angular velocity 2. For more details we refer to Proposition 3.2.1 in Chapter 3.

The point vortex model can be seen as a limit of highly concentrated vortex patches with
finite area. Indeed, if D is a bounded domain then the family

1
woe(z) = 8—21DE, with D, =¢eD,

converges weakly as € — 0 to the Dirac measure centered at zero.

In [108], MARCHIORO and PULVIRENTI proved the desingularization of point vortices for
Euler equations. That is, they found smooth solutions w. for Euler equations, suitably e-
concentrated around the points. We refer also to [50, 142] for more information about this
topic. Recently, AO, DAVILA, DEL PINO, MUSSO and WEI [1] achieved also the desingulariza-
tion of points for the (SQG); equations, with 3 € (0, 1), for the special case of vortices traveling
with constant speed along one axis or rotating with constant angular velocity. With different
techniques, HMIDI and MATEU [84] studied the desingularization of a pair of vortices by study-
ing small vortex patches around each point. Note that their work deals with Euler and (SQG),
equations, for S € (0,1).

Here we follow the ideas of HMIDI and MATEU in [84] in order to generate Kdrman Vortex
Street structures in Chapter 3. Consider an initial vorticity composed of two point vortices with
opposite circulations

wo () = 0,(0) (%) = G25(0) (2)- (1.1.22)

As it is mentioned before, its time evolution is given by a translating pair of vortices at constant
speed V. The goal is to find two simply—connected bounded domains D; and D, such that the

rescaled vorticity
1 1
woe(z) = — 2 leni+a(0) (z) — —3LeDat2(0) (2), (1.1.23)

evolves under the same law of the point vortices and translate uniformly with some constant
speed V for some ¢ ranging in some interval (0, ¢9). Consider without loss of generality that the
initial point vortices are located in the real axis in the following way: z;(0) = 0 and 22(0) = 2d,
for some d > 1. In order to find D; and D5 such that the evolution of (1.1.23) is a translation of
constant speed V/, that is

w(t,x) = wo(x — Vi),

then it must verify the equation for translating solutions (1.1.10) given in Section 1.1.1 by
T(Q,wo) = (vo(z) = V) - Vwp(x) =0, (1.1.24)

for any x € R?%. By using the expression of (1.1.23) in the preceding equation one finds that it
agrees with
(vo(x) = V) -7i(x) =0, x € (e0D1)U (edD3+ 2d), (1.1.25)

where 77 is an unit normal vector to the boundary. In order to reduce the unknowns of the
equation, we assume some relation between D; and D;, and analyzing the symmetries of the
equation one finds that the suitable one is Dy = —D;. Moreover, it implies that if (1.1.25) is
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true for any x € (¢0D;), then it holds also for « € (¢0D3 + 2d). Hence, it is enough to analyze
(1.1.25) only for x € (¢0Dy).

By virtue of the ideas developed in Section 1.1.2, one can rewrite such equation by using
a conformal map ¢ from the unit disc D into D;. However, here the conformal map ¢ must
depend on ¢ in order to overcome the singularity given by such parameter. Hence, such map
will take the form

=Id+ef. (1.1.26)

Notice that the rescaled of ® in terms of ¢ strongly depends on the singularity of the velocity
field. In order to adapt these techniques to other equations (such as the generalized surface
quasi-geostrophic equation) one must use a different scaling.

Finally, one finds that 7'(2,wp) = 0 is equivalent to

F(e,V, )(w) = Re [{T(e, /)(w) — V} wd(w)] =0,

for any w € T, where

_ L o) () 1 2(6) ,
1600 = 5 09 ™ O 523, oy oty O

Then, the initial problem is transformed into looking nontrivial roots of the equation F'(e, V, f).
Analyzing such equation, HMIDI and MATEU were able in [84] to establish the following result.

Theorem 1.1.5. [84, Main Theorem] Let

1 1
WO,E(J:) = 5721st (.CL’) + (5?1_51)?4_2(1(%'), (1.1.27)
ford > 1, and where 6 € {£1} . Then, there exists g > 0 such that the following results hold true.

e The case § = 1. For any ¢ € (0,0, there exists a strictly convex domain D5 at least of class ¢!
such that wy . in (1.1.27) generates a corotating vortex pair for the Euler equations.

e The case § = —1. For any ¢ € (0, o), there exists a strictly convex domain D5 at least of class €
such that wo . in (1.1.27) generates a counter—rotating vortex pair for the Euler equations.

They refer to corotating and counter rotating vortex pairs to rotating or translating vortex
pairs, respectively. The idea of the proof is the implementation of the infinite dimensional
Implicit Function theorem to F' around the initial solution F'(0, Vj, 0) = 0 (in the case of 6 = —1),
and more details will be given in the following when analyzing the desingularization of the
Kéarman Vortex Street model.

Coming back to the Karman Vortex Street structures, consider the model proposed by VON
KARMAN. Then, take a uniformly distributed arrow of points, with the same circulations and
located in the horizontal axis, i.e., (kl,0), with [ > 0 and k£ € Z. The second arrow is similar
to the preceding one and contains an infinite number of points, with opposite strength, which
will be parallel to the preceding one and with arbitrary stagger: (a + ki, —h) with a € R and
h # 0. We refer to Figure 1.5 for a better understanding of the localization of the points. Hence,
we consider the following distribution:

(@) = k1.0) (@) = Y Sasht,—n) (@), (1.1.28)

keZ keZ
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where a € R, 1 > 0 and & # 0. The evolution of each point is given by

z —z L z —Z
i = 3 Gl =a)! s~ nld) =50

rn _ 2
dt oty Tm(0) = 2 (0)

d . Zm(t) — 2 (t))* Zm(t) — Zi(t
eo-TEE - 3

kez
with initial conditions z,,(0) = ml and Z,,(0) = a + ml — ih, for m € Z. By taking into account
the previous infinite sums, it can be checked that all the points translate uniformly at the same
speed, see Section 3.2 or [137]. In the case a = 0 or a = %, the translation is parallel to the real
axis and the speed can be expressed by elementary functions:

1 mh
‘/0 —a coth <l> s for a = O,
1 wh l
‘/0 :51 tanh <l> N for a = 5

e ¢ e @
Figure 1.5: Kdrman Vortex Street located at the points (k/,0) and (a + kI, —h), with1 > 0,a € R,
h+#0,and k € Z.

Following the ideas of HMIDI and MATEU in [84], let us define

1 1
wo,e() = o Z Lepy+hi(z) — — Z 1D ta—intki(T), (1.1.29)

kez T hez
for! >0,a=0o0ra=1% ande > 0, and for some simply-connected bounded domain D;. In
the limit when ¢ — 0, we find in the weak formulation the point vortex street (1.1.28).
Similarly to the vortex pairs, we need to analyze (1.1.24) in the case that wy is given by
(1.1.29). To tackle such equation, we parametrize again the domain D; via a conformal map
from D into the domain taking the form

d=i(d+ef). (1.1.30)

Notice that the conformal map used for the desingularization of the vortex pairs (1.1.26) is

different to (1.1.30) and this is due to the direction of translation. Indeed, the vortex pairs

presented previously are located in the real axis and then the translation is along the y-axis.

However, here the translation is horizontal. Thus, for the well-posedness of the equation it

forces us to have a different symmetry for the domain. Recall that we need to introduce ¢ in the

definition of the conformal map in order to work with the singularity given by such parameter.
Hence, inserting (1.1.29) into (1.1.24), we get the equivalent equation

Frvs(e, f,V)(w) := Re [{IKVS(E, w) — V} w@’(w)} -0, weT, (1.1.31)
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where
Ixvs(e, f)(w) = vo(e@(w)),

and vy . is the velocity field associated to (1.1.29). Hence Iy s is a priori defined via two infinite
sums. However, by performing suitable integral computations in the periodic setting we find
some useful compact expression for the velocity field amounting to

an (Tet20) = 2(0)

: @'(¢)

(Tl +8(0) i)
l

2m2e

=),
— In
27T28 T

The main result in Chapter 3 concerns the existence of nontrivial solutions (e, V, ®) to the equa-
tion Frygs(e,V, f) = 0. The main statement can be found in Theorem 3.3.10 and reads as
follows.

Lievs(e, f)(w) = — — /T In

) ‘ /() de. (1.1.32)

Theorem 1.1.6. Let h,l € R, with h # 0and [ > 0,and a = 0 or a = % Then, there exist D¢ such
that ) )
wo(z) = ) Z L.petp(x) — ) Z 1_cpeta—intri(T), (1.1.33)
kez kez

defines a horizontal translating solution to the Euler equations, with constant speed, for any € € (0, o)
and small enough ¢y > 0. Moreover, D¢ is at least € L

In the proof of the previous theorem, the cornerstone is the choice of the appropriate func-
tion spaces for the perturbation f. Define the following spaces

Xoa={ €€ (T), flw)=) anw™ aneRy,

n>1

Yo =3 fe%"(T), f(e”’)=> ansin(nd), a, €R},

n>1

Yo =4 fe€o(T), f(e?) = Zan sin(nh), a, € R

n>2

By using some potential theory arguments on singular integrals, we are able to achieve that
Frvs is well-defined from R x X, x Rto Y, for a € (0,1). However, the linearized operator
around the trivial solution, that is d¢F'(0,0, V), is not an isomorphism in these function spaces,
which is needed to implement the infinite dimensional Implicit Function theorem. Indeed, the
linearized operator takes the form

01 Frvs(0,0, Vo) h(w) = —ilm (W (w)],

which is an isomorphism from X, to Yy, for o € (0,1). In order to overcome this difficulty and
get the persistence of the nonlinear functional Fxy s from R x X, x R to Y, one needs to fix V'
in terms of € and f. That is achieved by the following nonlinear relation

[ (e, HHud! (w)(1 — w?)dw
V(f:,f)— T f_l_w@’(w)(l—@2)dw )
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1.2. THE 3D QUASI-GEOSTROPHIC MODEL

and we can check that V (e, f) € R for (¢, f) € R x X,. The idea now is the implementation of
the Implicit Function theorem to Fxy s : R x X, — Y, defined by

Frvs(e, f) = Frvs(e, £,V (e, f)).

Finally, note that the construction given in the previous theorem is flexible and can also be
extended to more general incompressible models such as the generalized quasi—geostrophic
or the shallow water quasi—geostrophic systems. There, one needs to adapt the choice of the
scaling of the conformal map for every case. Thus, we find Kdrman Vortex Street structures
(in the sense of vortex patches) for those equations. This point will be discussed in detail later
in Chapter 3. Moreover, we shall investigate possible extensions around this topic. Indeed,
following the same ideas we can desingularize other special configurations of point vortices.
For instance, point vortices with same circulation located at the vertex of a regular polygon
rotate uniformly around the center of masses and the desingularization to the Euler equations
may happen. We refer to Section 5.2 for more details.

1.2 The 3D quasi—geostrophic model

Geophysical fluids are characterized by the strong influence of the Earth’s rotation about its
own axis (this gives rise to the Coriolis force) and the stratification, which refers to the in-
homogenization of the density. The core of Chapter 4 deals with quasi—geostrophic equations,
which describe large scale motion of fluids around the geostrophic and hydrostatic balance. On
the one hand, the geostrophic balance refers to a balance between the advected term and the
pressure. On the other hand, hydrostatic balance is the balance between the gravitational force
and the pressure. Both geostrophic and hydrostatic balance need small Rossby and Froude
numbers, which will be defined later.

In the next section, we formally derive this system from the inhomogeneous Euler equations
via the Boussinesq approximation. At the end, we will introduce the main contribution of
this thesis in this topic. That is, the existence of periodic rotating solutions in the 3D quasi-
geostrophic system.

1.2.1 Formal derivation from primitive equations

The derivation of the quasi-geostrophic system comes out from the inhomogeneous Euler
equations by taking into account the stratification effects and the Earth’s rotation: these are
denoted by the primitive equations. We refer for a formal derivation of the quasi—geostrophic
system to [15, 34, 35, 38, 54, 122], and for a rigorous justification to [89]. Although we consider
here inviscid fluid, let us remark that there is the analogue viscous quasi-geostrophic system
by using the Navier—Stokes equations, see the work of CHEMIN [38].

The inhomogeneous Euler equations read as

p(’LLt +u-Vu+ fo(_u27u170)) =—Vp-— ,0(070,9), (121)
ot +u-Vp =0, (1.2.2)
V- u =0, (1.2.3)

Here p is the scalar density, v = (u1,u2,us3) is a vector depending on (¢, z,y, z), and p is the
pressure. The term fj is linked to the speed of Earth’s rotation and is written as fo = 22 sin(6),
where 2 stands for the angular velocity of the Earth and @ its latitude. Let us forget in this
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section about initial conditions and boundary terms since our main goal is to formally derive
the quasi-geostrophic system.

The next step is to introduce the Boussinesq approximation (see for instance [48]). That
approximation is a way to study non isothermal flows instead of studying the full Euler equa-
tions. It states that the density variation is only important in the buoyancy term, meaning
the term p(0, 0, g), and it can be neglected in the rest of the equations. Under the Boussinesq
approximation, (1.2.1) and (1.2.3) reads as

ut+u-Vu+fo(—u2,u1,O) :_vp_p(ov())g)v (124)
V- u =0. (1.2.5)

We write the conservation of mass (1.2.2) in terms of the density o such that
p(t,z,y,z) =0(2) + olt, 2, y,2),

where 7 is the (known) background density profile. Hence p represents the fluctuation from p.
Then, using (1.2.2) we find that o satisfies

ot +u-Vo+usp, =0. (1.2.6)
Coming back to (1.2.4), decompose the pressure in the following terms
p(t7 z,Y, Z) = p(](Z) + p/(tv z,y, Z)v

and assume that we are in the hydrostatic balance p{,(z) = —go(z). In this way, omitting the
prime of p/, we find that (1.2.4) reads as

ur +u - Vu+ fo(—u2,u1,0) = —=Vp — 0(0,0,9). (1.2.7)

We can adimensionalize the system by taking L the typical horizontal length, U the typical
horizontal speed and H the typical depth, see [15, 54] for more details. That is, we do the
following change of variables

L
r=Lx', y=Ly, z=HZ, t= Et/’
UH
up = Uu'l, Uy = Uu’Q, us = Tug,
_ . UL
0=Po, o= fo o, p=foULp
gH
Let us define now the next three numbers:
e Aspect ratio:
_H
o= T
e Rossby number:
U
Lfo
e Froude number:
e U
V9D
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1.2. THE 3D QUASI-GEOSTROPHIC MODEL

In what follows we assume that the Froude number is of order ¢ and we will consider ¢ to be
small. Note that small Rossby number implies a strong effect of the Earth’s rotation. Here the
aspect ratio does not play an important role and let us take o = 1. Moreover, let us remark that

JoUL
= Pe.
gH :

Hence, the above equations (leaving off primes) can be written as

6(ut+uvu)+(_u27u170) :—Vp—Q(0,0,l), (128)
V- u =0, (1.2.9)
e(ot +u- Vo) +ugp, =0. (1.2.10)

Formally, assume that we have the following expansions for u; around e:
ui:u?—i—euil—l—...,

and similarly for the density and the pressure terms. Let us describe the singular limit when ¢
tends to 0 in a formal way. The first two equations of (1.2.8) together with (1.2.10) at order zero
reads as

ug = 9,p°, u(l) = — ypo, and ug =0,

which is known as the geostrophic balance. The hydrostatic balance comes from the third

equation of (1.2.8) achieving

QO = - zpo-

Note also that d,uf + d,yu3 = 0 from (1.2.9). Define now &° := 9,ud — d,uf, then one finds the
following equation for ¢°:

o€ = 0E° + uf0,€" + u90,£° = —Byuy — Dyuy.
Using (1.2.9) at the first order we find that d,u} + d,ul + 9,ul = 0. It implies
do& = d,us.

Define the stratification frequency (also called buoyancy or Brunt-Viisild frequency) N? =

—1/0.0. Hence
1
8z“:1’) = do0; <N290> )

by using that dyN? = 0. Then, one finally gets
1
do <axu8 — ,u — az(Nzgo)) =0. (1.2.11)
We define then the potential vorticity ¢ as
=9 0 ) 0 o 1 0
q = Oz — Oyy — Z(WQ ).
Notice that taking ¢ = p°, one easily finds that
1
q=A2p+ 8z(maz¢)a
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where A, = 92 + 83.
In the following section we analyze the very special case that N2 = 1 (this is the case of the
works [38, 89]). In this case, one has that

q= Ay,

where now A is the laplacian operator in three dimensions, and

(u, ul) = (=09, Dut)).

The structure of the system for N? = 1 is similar to the 2D Euler equations and hence we
can ensure the persistence of the vortex patches. However, the persistence of the geometrical
structures of the patches for N2 # 1 has been also studied, first with the work of DUTRIFOY
[60], and later by CHARVE [33].

1.2.2 Rotating patches around the vertical axis

The main contribution of this thesis to the field of quasi—geostrophic motion is to analyze the
existence of 3D patches uniformly rotating around the vertical axis motivated by the V-states
described in Section 1.1.2. From now on we assume that the buoyancy frequency N? is constant
and N? = 1. Hence, we aim to study the following system

0iq + ud1q +v0eq =0, (t,z) € [0,+00) x R3,
Ay =g,

U= —82¢7 v = 81w7

q(t =0,7) = qo(x).

The stream function v is given by

(1.2.12)

1 [ qlty)
47T RB |fL' - y‘

Y(t,x) = dA(y),

where dA denotes the usual Lebesgue measure. Then, the velocity field takes the form

e — )
(u,0)(t,7) = = / @1 = y22 —9)” o aay).
RS

A |z —y|?

From the evolution equation we recover that the potential vorticity is transported along the
trajectories. Considering an initial datum in the patch form ¢y = 1p, where D is a bounded
domain in R3, then

Q(tv ) = ]-Dtv
where D; is the image of D by the flow. Similarly to the 2D case, as for Euler equations, we can

implement the contour dynamics equations. Namely, for any sufficiently smooth parametriza-
tion +; of the boundary 0D; one has that

(Oye = U(t,ve)) - nlye) = 0,

where U = (u1,u2,0) and n(v;) is a unit normal vector to the boundary at the point ;.
Compared to the 2D equations that we have seen before, the quasi-geostrophic equations

enjoy richer structures and offer several new perspectives. Actually, at the level of stationary

solutions, those in the patch form are more abundant here than in the planar case. Indeed,
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1.2. THE 3D QUASI-GEOSTROPHIC MODEL

any domain with a revolution shape about the z—axis generates a stationary solution. The
analogous to Kirchhoff ellipses still surprisingly survive in the 3D case. In [112], MEACHAM
showed that a standing ellipsoid of arbitrary semi-axis lengths a,b and c rotates uniformly
about the z—axis with the angular velocity

A Rp (2, LAY = AR (2, A1, )

Q=upu

3(ATL =) ’
where A = 7 is the horizontal aspect ratio, u := \/C(Tb the vertical aspect ratio and Rp denotes
the elliptic integral of second order
3 [t dt

e N T R D)
For more details about the stability of those ellipsoids we refer to works of DRISTCHEL, SCOTT,
RENAUD, MCKIVER [56, 57, 59].
The main objective of Chapter 4 is to show the existence of non trivial rotating patches by
suitable perturbation of stationary solutions given by generic revolution shapes around the
vertical axis. Indeed, we look for solutions of the type

q(t,x) = qole " ap,23), qo=1p, x5 = (21,22). (1.2.13)

The initial domain is chosen so that it can be parametrized in the following way
D= {(rew,cos(gb)) 0<r<r(¢,0),0<0<21,0<¢< 7r} , (1.2.14)

where the shape is sufficiently close to a revolution shape domain, meaning that

T(¢, 9) = T0(¢) + f(¢7 9)7

for a small non—axisymmetric perturbation f(¢, #) of the generatrix curve ro(¢). Notice that we
are using spherical coordinates for the domain D in order to help us with the computations.
Moreover, we assume the following Dirichlet boundary conditions

r0(0) = ro(m) = f(0,0) = f(m,0) =0,

so that the poles (0,0, 1) remain unchanged. Inserting the ansatz (1.2.13) in the contour dy-
namics equation and using the parametrization of the domain given by (1.2.14), we get the
following equivalent formulation

Q

F(2, £)(¢,6) = to(r(,0)e”, cos(9)) — 57 (,0) =m(&, f)(¢) =0, (1.2.15)

for any (¢, 0) € [0, 7] x [0, 27], with

(@ £)(0) = 5 / {n(r(6.0)6% cos(o) - 5r2(0.6) o,
0

where v stands for the stream function associated to ¢y. Moreover, from the structure of the
stream function vy we achieve that F'(2,0) = 0 for any angular velocity (2 € R.

The main tool to find periodic solutions around the stationary shapes is the bifurcation
theory, and in particular, finding nontrivial solutions (£2, f) to (1.2.15). However when imple-
menting such program several hard difficulties emerge at the linear and nonlinear levels. In
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particular, the spectral problem here is very delicate and strongly depends on the shape of the
initial stationary solutions (that is, 7). Surprisingly, in this case we are finally able to bifurcate
from a quite large family of initial domains with mild regularity conditions. Consequently, we
do not need to restrict to a specific initial shape, as opposed to the non uniform rotating patches
in the Euler equations in Section 1.1.3, where we had to restrict to specific initial vorticity con-
figurations, namely, quadratic profiles.

The main result in Chapter 4 reads as

Theorem 1.2.1. Assume that rq satisfies
(H1) 7o € ([0, 7]).
(H2) There exists C' > 0 such that

Vo e0,n], C'sing <ro(¢) < Csin(o).

(H3) rg is symmetric with respect to ¢ = 5, i.e., ro (5 — ¢) =10 (5 + ¢), forany ¢ € [0, 3].

Then for any m > 2, there exists a curve of non trivial rotating solutions with m-fold symmetry to the
equation (1.2.12) bifurcating from the trivial revolution shape associated to ro at some angular velocity
Q.

We precise by m—fold shape symmetric shape of R?® we mean a surface whose horizontal
sections are m—fold symmetric as for the 2D case.

There are many difficulties when trying to apply bifurcation theory to (1.2.15), and the main
one is related to the choice of the function spaces. First, notice the following simplification in
(1.2.15):

9 1 21 9 9 1 27 5
#(0.0) = 5= [ 16,000 ~(ro(0) + F(0.0)* = 5 [ 1006 + 0,000
27
—2r0(0)f(6:6) + £(6,0)° = 5= [ (2r0()(6.0) + F(6,6)°)ab.
0
Then, we observe that the nonlinear functional (1.2.15) can be written as F' = —Qrgld + %,

for an appropriate functional .#. Note that r( is vanishing at the boundary {0, 7}, and thus
we need to include this degeneracy in the function spaces. Specifically, in order to avoid this
problem we can rescale F' as follows

P, f) = 20, (1.2.16)

To

and work with F instead of F. By doing so we can write I = —Q1d + .7, that is a better suited
operator. Our bifucation method then is divided into two main parts: the spectral study and
the regularity study, that we briefly discuss in the sequel.

On the one hand, from the point of view of the spectral study, we shall look at the linearized
operator and show that it is a Fredholm operator of zero index. Take h(¢,0) = 3", - hn(¢) cos(nd),
then

OrF(Q,00h(6,6) = Y _ cos(nf) {F1(1)(9) — 2} hn(¢) = Fu(ha)(#)] (12.17)
where .
1 T 27
Fn(hn)(9) s /0 ; Hu(0, 0, mh(p)dndep, (1.2.18)
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sin()ro () cos(nn)
Ho (), 0,1m) = 1.2.19
() ((ro(@) — 10(#))? + 2ro(@)ro(¥) (1 — cos(n)) + (cos(¢) — cos(¢))?) ( :

Observe then that the linearized operator contains both a local and nonlocal part. Moreover,
the function vq defined as

=

va(¢) = F1(1)(9) -

is crucial in order to have a Fredholm operator. Deflmng K = infye o) F1(1)(9), we get that
vq is strictly positive when 2 € (—oo, k) and thus we will restrict to angular velocities lying in
such interval.

Furthermore, after computing explicitly the integral in 1, we achieve that the linearized
operator can be expressed in terms of Gauss Hypergeometric functions as follows:

8 F(Q,0)h(6,0) = vo(s Zcos(nﬁ)ﬁ n) (),

where
L (ha)(9) :=hn(8) — K3 (hn) (),
Q L T n(d)a@)
K0 = | e e o)
22 (D Gin()rn (@) () [ Aro(d)ro(y)
Hnl6:2) =) [R(¢, )" Fn( R(¢,¢) )

Moreover v can be recovered as

6) = /0 Hy(é,¢)do — 9,

and we set
R(¢, ) := (r0(8) + ro(p))? + (cos(¢) — cos(p))*.

Here F;, denotes the Gauss Hypergeometric function

1 1
Fo(x) ::F<n+2,n+2,2n+1,x), x €[0,1),

and we refer to Appendix C for more information about these special functions. In addition,
the measure dug has the following expression

dpa(p) = sin()rg(¢)va(p)de.

The goal of such new measure is to symmetrize the linearized operator by working over the
new Hilbert spaces determined by the weighted Lebesgue spaces: L7, (0,7). We emphasize
that our hypothesis that 2 € (—o0o, k) guarantees that /. is a signed measure and the weighted
space is well defined.

Bearing all the above notation in mind, the kernel equation reduces to study whether 1 is
an eigenvalue of K. In fact, we prove that K : L2, — L2 is a compact self-adjoint integral
operator, and more precisely, it is of Hilbert-Schmidt type. A careful spectral study allows us
to determine that that the largest eigenvalue \,(2) is simple and monotone. Moreover, there
exists sequence (2, — & such that \,(€2,,) = 1, which is crucial in order to have that the kernel
of the linearized operator is one dimensional.
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On the other hand, from the point of view of regularity, at this moment the preceding
weighted spaces are too weak to get the persistence and regularity of the nonlinear functional F
on those spaces. In order to solve that, our candidate will be the Holder space 41 with Dirich-
let boundary conditions, and « € (0, 1). First, we need to check that the above eigenfunctions
of K£! belong to this new space, which a priori is not trivial and is equivalent to show such
regularity for h satisfying F,,(h) = voh. By using a bootstrap argument starting at » € L7,
we are able to achieve that h € ¢’1* and fulfills the Dirichlet conditions, for any n > 2. Here it
appears the restriction m > 2 in Theorem 1.2.1. Note also that the integral kernel of 7, that is
(1.2.19), is singular inside the interval (0, 27) but also on the boundary since r is vanishing and
thus one strongly needs the Dirichlet conditions for h. In particular, this creates some problems
in order to guarantee that vg = F,,(1) — Q belongs to 41 since the singularity at the bound-
ary can not be compensated with any function inside the integral. This will be solved with a
more delicate analysis using the Gauss Hypergeometric functions. Secondly, the persistence
of the nonlinear functional can not be achieved by standard potential theory arguments. Note
that the Euclidean kernel of the stream function v is deformated by the spherical coordinates
amounting to new singularities at the boundary and a more refined analysis is needed.

Finally, let us mention that the prototypes of domains satisfying the hypotheses (H1)-
(H3) are the sphere, agreeing with ry = sin(¢), or ellipsoids with same = and y axes, that is,
ro = Asin(¢). For these particular shapes, the associated stream function is very well-known
and thus some of the previous computations can be simplified, we refer to Section 4.6.1 for
more details. Indeed, hypothesis (H2) means that the initial domain can be located between
two ellipsoids and thus gives us some regularity on the domain. However, this is a technical
assumption needed for the persistence of the nonlinear functional but not for the spectral study.
Hence, the bifurcation of singular shapes not verifying (H2) may occur using some appropriate
weaker arguments. This will be discussed in Section 5.4.
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2.1 Introduction

The search for Euler and Navier-Stokes solutions is a classical problem of permanent relevance
that seeks to understand the complexity and dynamics of certain singular structures in Fluid
Mechanics. Only a few solutions are known without much information about their dynamics.

We will focus on the two-dimensional Euler equations that can be written in the velocity—
vorticity formulation as follows

wi+v-Vw =0, in [0, +00) x R,
v=K*xw, in [0, +00) x R?,
w(t=0,2) =wy(z), withzeR2

The second equation links the velocity to the vorticity through the so called Biot-Savart law,
where K (z) = 4 z

T 2 |z

This chapter fc‘)(luses on the existence of non uniform rotating solutions for the Euler equa-
tions, which are motivated by the rotating patches described in Section 1.1.2. It should be
noted that the particularity of the rotating patches is that the dynamics is reduced to the mo-
tion of a finite number of curves in the complex plane, and therefore the implementation of
the bifurcation is straightforward. However, the construction of smooth rotating vortices is
much more intricate due to the size of the kernel of the linearized operator, which is in general
infinite dimensional because it contains at least every radial function. Some strategies have
been elaborated in order to capture some non trivial rotating smooth solutions. The first result
amounts to CASTRO, CORDOBA and GOMEZ-SERRANO [29] who established for the SQG and
Euler equations the existence of 3-fold smooth rotating vortices using a reformulation of the
equation through the level sets of the vorticity. However the spectral study turns to be highly
complex and they use computer—assisted proofs to check the suitable spectral properties. In
a recent paper [28] the same authors removed the computer assistance part and proved the
existence of ¢ rotating vorticity with m-fold symmetry, for any m > 2. The proof relies on
the desingularization and bifurcation from the vortex patch problem. We point out that the
profile of the vorticity is constant outside a very thin region where the transition occurs, and
the thickness of this region serves as a bifurcation parameter. Remark that different variational
arguments were developed in [22, 72].

The main objective of this chapter is to construct a systematic scheme which turns to be
relevant to detect non trivial rotating vortices with non uniform densities, far from the patches
but close to some known radial profiles. Actually, we are looking for compactly supported
rotating vortices in the form

w(t, ) = wo(e ™), wy=(fo® N1lp, VzeR? (2.1.1)

where (1 is the angular velocity, 1p is the characteristic function of a smooth simply connected
domain D, the real function f : D — R denotes the density profileand ® : D — D is a conformal
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mapping from the unit disc D into D. It is a known fact that an initial vorticity wy with velocity
vp generates a rotating solution, with constant angular velocity €2, if and only if

(vo(z) — Qazt) - Vwg(z) =0, Vo €R?, (2.1.2)

where (z1,72) = (—x2,71). Thus the ansatz (2.1.1) is a solution of Euler equations (1.1.3) if
and only if the following equations

(vo(z) — Q') - V(fo @ 1) (z) =
(vo(z) — Qat) - (f o @7 1)(w)ii()

, in D,

0
0, on 0D, (2.1.4)

are simultaneously satisfied, where 7 is the upward unit normal vector to the boundary dD.
Regarding its relationship with the issue of finding vortex patches, the problem presented here
exhibits a greater complexity. While a rotating vortex patch solution can be described by the
boundary equation (2.1.4), here we also need to work with the corresponding coupled density
equation (2.1.3). One major problem that one should face in order to make the bifurcation ar-
gument useful is related to the size of the kernel of the linearized operator which is in general
infinite-dimensional. In the vortex patch framework we overcome this difficulty using the con-
tour dynamics equation and by imposing a suitable symmetry on the V-states: they should be
invariant by the dihedral group D,,. In this manner we guarantee that the linearized operator
becomes a Fredholm operator with zero index. In the current context, we note that all smooth
radial functions belong to the kernel. One possible strategy that one could implement is to
filter those non desirable functions from the structure of the function spaces by removing the
mode zero. However, this attempt fails because the space will not be stable by the nonlinearity
especially for the density equation (2.1.3): the frequency zero can be obtained from a resonant
regime, for example the square of a non vanishing function on the disc generates always the
zero mode. Even though, if we assume that we were able to solve this technical problem by
some special fine tricks, a second but more delicate one arises with the formulation (2.1.2). The
linearized operator around any radial solution is not of Fredholm type: it is smoothing in the
radial component. In fact, if wy is radial, then the linearized operator around wy associated with
the nonlinear map
F(w)(z) = (vo(x) = Qa7) - Vuw(x),

is given in polar coordinates by

9 _ L
L(wo)(h) = <vf—9> oh + K(h) - Ve, K (h)(x) = — / (@ —y)-

= h(y)dy.

The loss of information in the radial direction can not be compensated by the operator K which
is compact. This means that when using standard function spaces, the range of the linearized
operator will be of infinite codimension. This discussion illustrates the limitation of working
directly with the model (2.1.2). Thus, we should first proceed with reformulating differently
the equation (2.1.2) in order to avoid the preceding technical problems and capture non ra-
dial solutions by a bifurcation argument. We point out that the main obstacle comes from the
density equation (2.1.3) and the elementary key observation is that a solution to this equation
means that the density is constant along the level sets of the relative stream function. This can
be guaranteed if one looks for solutions to the restricted problem,

GO £, D)(z) = M(2. (2)) + 5= [ Tog[8(:) = 20 F I () Py — 5200()F = 0. 215)
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for every z € D, and for some suitable real function M. The free function M can be fixed so
that the radial profile is a solution. For instance, as it will be shown in Section 2.4, for the radial
profile

fo(r) = Ar® + B, (2.1.6)

we get the explicit form

40 - B 1 o, 3B2+ A%+ 4AB-80B
M) = =g A" T 16A '
Moreover, with this reformulation, we can ensure that no other radial solution can be captured
around the radial profile except for a singular value, see Proposition 2.4.3.
Before stating our result we need to introduce the following set, which is nothing but the
singular set introduced later, see (2.1.9), in the case of the quadratic profile,
A B An+1) B
Ssing =\

Z_ 4Ty 2 N* .
179 T ommra o "C UHOO}}

The main result of this chapter concerning the quadratic profile is the following.
Theorem 2.1.1. Let A > 0, B € R and m a positive integer. Then the following results hold true.

1. If A+ B < 0, then there is mo € N (depending only on A and B) such that for any m > my, there
exists a branch of non radial rotating solutions with m—fold symmetry for the Euler equation,

. . . . . A+2B
bifurcating from the radial solution (2.1.6) at some given Q,, > 2322,

2. If B > A, then for any integer m € [1,5 + 1] or m € [1,22 — 9] there exists a branch of
non radial rotating solutions with m—fold symmetry for the Euler equation, bifurcating from the
radial solution (2.1.6) at some given 0 < §,,, < g. Howeuver, there is no solutions to (2.1.5) close
to the quadratic profile, for any symmetry m > 22 + 2.

3. IfB>0o0rB < —ﬁfor some 0,0581 < € < 1, then there exists a branch of non radial 1—fold
symmetry rotating solutions for the Euler equation, bifurcating from the radial solution (2.1.6) at
O =0.

4. If-4 <B<0andQ ¢ Ssing, then there is no solutions to (2.1.5) close to the quadratic profile.

5. In the frame of the rotating vortices constructed in (1), (2) and (3), the particle trajectories inside
their supports are concentric periodic orbits around the origin.

This theorem will be fully detailed in Theorem 2.5.6, Theorem 2.7.3 and Theorem 2.8.2.
Before giving some details about the main ideas of the proofs, we wish to draw some useful
comments:

e The upcoming Theorem 2.8.2 states that the orbits associated with (2.1.3) are periodic with
smooth period, and at any time the flow is invariant by a rotation of angle 2. Moreover,
it generates a group of diffeomorphisms of the closed unit disc.

e The V-states constructed in the above theorem have the form fo ®11p. Also, itis proved
that the density f is €1*(D) and the boundary 9D is €% with a € (0, 1). We believe that
by implementing the techniques used in [27] it could be shown that the density and the
domain are analytic. An indication supporting this intuition is provided by the generator
of the kernel associated with the density equation, see (2.5.34), which is analytic up to
the boundary. The dynamics of the 1-fold symmetric V-states is rich and very interesting.
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The branch can survive even in the region where no other symmetry is allowed. Since the
bifurcation occurs from ; = 0, it is not clear from our result whether or not the branch
contains stationary solutions. However, we know that this branch is not given by a pure
translation of the radial solution. This follows from the structure of the function space
describing the conformal mapping regularity: there we kill the invariance by translation
by removing the frequency zero, for more details see Section 2.2.2 and Theorem 2.7.3. It
should be noted that in the context of vortex patches the bifurcation from the disc or the
annulus occurs only with symmetry m > 2 and never with the symmetry 1. The only
examples that we know in the literature about the emergence of the symmetry one is the
bifurcation from Kirchhoff ellipses [27, 84] or the presence of the boundary effects [55].
Interesting discussion about stationary solutions for active scalar equations can be found
in the recent paper of GOMEZ-SERRANO,PARK,SHI and YAU [71].

e From the homogeneity of Euler equations the transformation (4, B,(2) — (—A, —B, —Q)
leads to the same class of solutions in Theorem 2.1.1. This observation allows including
in the main theorem the case A < 0.

e The assumptions on A and B seen in Theorem 2.1.1 — (1) — (2) about the bifurcation cases
imply that the radial profile fj is not changing the sign in the unit disc. However in the
point (3) the profile can change the sign.

e The bifurcation with m—fold symmetry, m > 1, when B € (—A, —%) is not well under-
stood. We only know that we can obtain a branch of 1-fold symmetric solutions bifur-
cating from Q; = 0 for B € (—A, —1%6) for some € € (0, 1), nothing is known for other
symmetries. We expect that similarly to the result of Theorem 2.1.1-(2), they do exist but

only for lower frequencies, and the bifurcation curves are rarefied when B approaches
A

5

e Let us remark the existence of solutions with lower m-fold symmetry coming from the
second point of the above Theorem. Fixing A, the number of allowed symmetries in-
creases when |B| increases. We guess that there is a smooth curve when passing from one
symmetry to another one, see Fig.1.

Let us briefly outline the general strategy we follow to prove the main result and that could
be implemented for more general profiles. Using the conformal mapping ® we can translate
the equations (2.1.3)—(2.1.4) into the disc D and its boundary T. Equations (2.1.3)—(2.1.4) depend
functionally on the parameters (€2, f, ®), so that we can write them as

{ G(Q, f,®)(2) = Vz € D,

0,
F(Q, f,®)(w)= 0, YweT, (2.1.7)

with

F(, f,®)(w) :=Im [(Q@(w) - % /D MW@)%A@)) @’(w)w] =0, YweT,

where the functional G is described in (2.1.5). The aim is to parametrize the solutions in
(Q, f, ®) close to some initial radial solution (£2, fy,Id), with f, being a radial profile and Id
the identity map. Then, we will deal with the unknowns g and ¢ defined by

f=fot+tg, ®=Id+¢. (2.1.8)
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Ry

Figure 2.1: This diagram shows the different bifurcation regimes given in Theorem 2.1.1, with
A > 0. In the case B > 0, we can find only a finite number of eigenvalues (2, for which it
is possible to obtain a branch of non radial m—fold symmetric solutions of the Euler equation.
Here, m > 1 increases as B does. The region R;; admits solutions with m—fold symmetry
for 1 < m < i. In addition, solutions with m—fold symmetry for m > j are not found. The
transition between m = i and m = j is not known. Notice that in the region R, the bifurcation
occurs with an infinite countable family of eigevalues. However, the bifurcation is not possible
in the region Ry but the transition between Ry and R, is not well-understood due to some
spectral problem concerning the linearized operator. We only know the existence of 1-fold
symmetric solutions in a small region.

Thus, the equations in (2.1.7) are parametrized in the form G(£2, g, ¢)(2) = 0and F(Q2, g, ¢)(w) =
0, where G(€2,0,0)(z) = 0 and F'(€,0,0)(w) = 0. The idea is to start by solving the boundary
equation, which would reduce a variable through a mapping (2, f) — ® = N(Q, f), i.e. to
prove that under some restrictions F'(2, g, ¢) = 0 is equivalent to ¢ = N (Q, g). However, the
argument stumbles when we realize that this can only be done outside a set of singular values

Ssing 1= {Q 1 0F(€,0,0) is not an isomorphism}, (2.1.9)

for which the Implicit Function Theorem can be applied. Then, we prove that there exists an
open interval I for Q such that I C R\Ssing and N is well-defined in appropriated spaces,
which will be subspaces of Holder-continuous functions. Under the hypothesis that €2 € I, the
problem of finding solutions of (2.1.7) is reduced to solve

~

G(9,9)(z) =G(Q,9,N(2,9))(z) =0, VzeD. (2.1.10)

In order to find time dependent non radial rotating solutions to (1.1.3) we use the procedure
developed in [21] that suggests the bifurcation theory as a tool to generate solutions from a
stationary one via the Crandall-Rabinowitz Theorem. The values (2 that could lead to the
bifurcation to non trivial solutions are located in the dispersion set

Saisp = {Q . Ker D,G(9,0) # {o}}. (2.1.11)
The problem then consists in verifying that the singular (2.1.9) and dispersion (2.1.11) sets are
well-separated, for a correct definition of the interval I. Achieving this objective together with

the analysis of the dimension properties of the kernel and the codimension of the range of
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Dg@ (€2,0), as well as verifying the transversality property requires a complex and precise spec-
tral and asymptotic analysis. Although our discussion is quite general, we focus our attention
on the special case of quadratic profiles (2.1.6). In this case we obtain a compact representation
of the dispersion set. Indeed, as we shall see in Section 2.5, the resolution of the kernel equation
leads to a Volterra type integro-differential equation that one may solve through transforming
it into an ordinary differential equation of second order with polynomial coefficients. Sur-
prisingly, the new equation can be solved explicitly through variation of the constant and is
connected to Gauss hypergeometric functions. The structure of the dispersion set is very subtle
and appears to be very sensitive to the parameters A and B. Our analysis allows us to highlight
some special regimes on A and B, see Proposition 2.6.6 and Proposition 2.6.7.

Let us emphasize that the techniques developed in the quadratic profile are robust and
could be extended to other profiles. In this direction, we first provide in Section 2.4 the explicit
expression of the function M when the density admits a polynomial or Gaussian distribution.
In general, the explicit resolution of the kernel equations may turn out to be a very challenging
problem. Second, we will notice in Remark 2.5.9 that when fy = Ar*™+ B with m € N*, explicit
formulas are expected through some elementary transformations and the kernel elements are
linked also to hypergeometric equations.

In Section 2.8 we shall be concerned with the proof of the point (5) of Theorem 2.1.1 con-
cerning the planar trajectories of the particles located inside the support of the rotating vortices.
We analyze the properties of periodicity and symmetries of the solutions via the study of the
associated dynamical Hamiltonian structure in Eulerian coordinates, which was highlighted
by ARNOLD [11]. This Hamiltonian nature of the Euler equations has been the idea behind the
study of conservation laws in the hydrodynamics of an ideal fluid [11, 113, 116, 119], as well as
in a certain sense to justify Boltzmanns principle from classical mechanics [151].

We shall give in Theorem 2.8.2 a precise statement and prove that close to the quadratic
profile all the trajectories are periodic orbits located inside the support of the V-states, enclos-
ing a simply connected domain containing the origin, and are symmetric with respect to the
real axis. In addition, every orbit is invariant by a rotation of angle 2, as it has been proved for
the branch of bifurcated solutions, where the parameter m is determined by the spectral prop-
erties. The periodicity of the orbits follows from the Hamiltonian structure of the autonomous
dynamical system,

0 U(t, z) = W(Q, f,®)(¥(t,z2)), ¥(0,2)=2z¢€D, (2.1.12)

where

WS, f,®)(z) = (;{/E)(M)JC(_%@’(Wdyim(z)) (z), zeD.

Notice that I is nothing but the pull-back of the vector filed vy (z) —Qz" by the conformal map-
ping ®. This vector field remains Hamiltonian and is tangential to the boundary T. Moreover,
we check that close to the radial profile, it has only one critical point located at the origin which
must be a center. As a consequence, the trajectories near the origin are organized through pe-
riodic orbits. Since the trajectories are located in the level sets of the energy functional given
by the relative stream function, then using simple arguments we show the limit cycles are ex-
cluded and thus all the trajectories are periodic enclosing the origin which is the only fixed
point, which, together with the trajectories defined above, is a way of solving the hyperbolic
system (2.1.3). This allows to define the period map z € D — T, whose regularity will be at
the same level as the profiles. As a by-product we find the following equivalent reformulation
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of the density equation

1 T _
f(z)— Tz/o f(¥(r,z))dr =0, VzeD. (2.1.13)

We finally comment on three recent approaches to the analysis of rotating solutions. The
first one concerns rotating vortex patches. In [79], HASSANIA, MASMOUDI and WHEELER con-
struct continuous curves of rotating vortex patch solutions, where the minimum along the
interface of the angular fluid velocity in the rotating frame becomes arbitrarily small, which
agrees with the conjecture about singular limiting patches with 90° corners [25, 120]. In the sec-
ond contribution [28], it was studied the existence of smooth rotating vortices desingularized
from a vortex patch, as it was mentioned before. The techniques are based on the analysis of
the level sets of the vorticity of a global rotating solution. Since the level sets z(«, p, t) rotate
with constant angular velocity, they satisfy w(z(a, p,t)),t) = f(p). Thus, in [28] is studied the
problem of bifurcating it for some specific choice of f. In a broad sense, this result connects
with that developed in this chapter about the study of orbits and their periodicity. Finally,
BEDROSSIAN, COTI ZELATI and VICOL in [16] analyzed the incompressible 2D Euler equations
linearized around a radially symmetric, strictly monotone decreasing vorticity distribution.
For sufficiently regular data, inviscid damping of the §-dependent radial and angular velocity
fields is proved. In this case, the vorticity weakly converges back to radial symmetry as ¢t — oo,
a phenomenon known as vortex axisymetrization. Also they show that the #-dependent an-
gular Fourier modes in the vorticity are ejected from the origin as ¢ — oo, resulting in faster
inviscid damping rates than those possible with passive scalar evolution (vorticity depletion).

The results and techniques presented in this chapter are powerful enough to be extended to
other situations and equations such as SQG equations, co-rotating time-dependent solutions,
solutions depending only on one variable,...

2.2 Preliminaries and statement of the problem

The aim of this section is to formulate the equations governing general rotating solutions of the
Euler equations. We will also set down some of the tools that we use throughout the chapter
such as the functional setting or some properties about the extension of Cauchy integrals.

2.2.1 Equation for rotating vortices

Let us begin with the equations for compactly supported rotating solutions (2.1.3)—(2.1.4) and
assume that f is not vanishing on the boundary. In the opposite case, the equation (2.1.4)
degenerates and becomes trivial, which implies that we just have one equation to analyze.
Thus, (2.1.4) becomes

(vo(z) — Qat) -7i(z) =0, on dD. (2.2.1)

We will rewrite these equations in the unit disc through the use of the conformal map ® : D —
D. Note that from now on and for the sake of simplicity we will identify the Euclidean and the
complex planes. Then, we write the velocity field as

o7 T—y

vo(z) = ! /D(fo‘i)_l)(y)dA(y), Vz € C,
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where dA refers to the planar Lebesgue measure, getting

I B i ) BT ;
@) = 3= [ 30 5 YW, V=D

Using the conformal parametrization 6 € [0, 2] — ®(e¥) of 9D, we find that a normal vector
to the boundary is given by 7(®(w)) = w®'(w), with w € T. In order to deal with (2.1.3), we
need to transform carefully the term V(fo®~1)(®(z)) coming from the density equation. Recall
that for any complex function ¢ : C — C of class ¢! seen as a function of R?, we can define

Dsp(z) 1= 5 (rp() +ithg(2), and Dp(z) = 1 (Drp(2) — (=),

which are known in the literature as Wirtinger derivatives. Let us state some of their basic
properties:

O =059, dzp = 0.p.
Given two complex functions ¢1, ¢2 : C — C of class ¢ 1 in the Euclidean coordinates, the chain
rule comes as follows
9:(p1 0 p2) = (0201 0 p2) Ozp2 + (Fzp1 0 p2) D:2,
9z(p1 0 2) = (02401 0 p2) Ozp2 + (Ozp1 0 p2) Ozp3.

Moreover, since ® is a conformal map, one has that 9:® = 0. Identifying the gradient with the
operator 20 leads to
V(fod@ ') =20:(fo®™1).

From straightforward computations using the holomorphic structure of ®~!, combined with
the previous properties of the Wirtinger derivatives, we get

On(f 0 @7 1)(@) =(0:1) (@ ()02~ (2) + (3f) (@ ()02~ ()
=(0)) (@7 (@)@ ) (w),

where the prime notation ' for ®~! denotes the complex derivative in the holomorphic case.
Using that (®~! o ®)(z) = 2 and differentiating it we obtain

(@ 1Y(®(2)) = m

which implies

0S¥ (2)

Oz(f 0 @) (D(2)) = )P (2.2.2)

Putting everything together in (2.1.3)-(2.2.1) we find the following equivalent expression

W(Q,f,®)-Vf = 0, in D, (2.2.3)
W, f,®)-in = 0, on T, (2.2.4)

where 7i stands for a unit normal vector to T, and W is given by

WS, f,®)(z) = (2; /D q)(z{(_yzb(y) &' (1) [2dy — m@(z)> 2. (2.2.5)
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Then, the vector field W (€2, f, ®) is incompressible. This fact is a consequence of the lemma
below. Given a vector field X : C — C of class ¢ in the Euclidean variables, let us associate
the divergence operator with the Wirtinger derivatives as follows

divX(z) = 2Re[9.X (2)]. (2.2.6)

Lemma 2.2.1. Given X : D; _LC an incompressible vector field, ® : Dy — Dy a conformal map,
where D1, Dy C C, then (X o ®)®' : Dy — C is incompressible.

Proof. Using (2.2.6) we have that Re [0, X (z)] = 0, for any = € D;.
The properties of the Wirtinger derivatives lead to

0. [ X(@(2)®(2)] =0. [X(())] ®'(2) + X (@(2))0.9(2)
= (0. ) (B(2)) @ (2) ¥ (2) + (0:X)(®(2))0.8(2) ¥'(2)
X(2(2))0.9'(2)

=(0.X)(®(2))|®(2)|]>, Vz € Do.

Hence, we have that
Re [0. (X(0(2)@()) | = |@'(2)PRe [(9.X)(®(2))] =0, V= € Dy,
and (X o ®)®’ is incompressible. O

Let us remark that the equation associated to the V-states in [86] is nothing but the bound-
ary equation (2.2.4). In [86], V-states close to a trivial solution are obtained by means of a
perturbation of the domain via a conformal mapping. Since we are perturbing also the initial
density, we must analyze one more equation: the density equation (2.2.3). In order to apply the
Crandall-Rabinowitz Theorem we will not deal with (2.2.3) because it seems not to be suitable
when studying the linearized operator. Hence, we will reformulate this equation in Section 2.4.
Moreover, we will provide an alternative way of writing (2.2.3) in Section 2.8 to understand the
behavior of the orbits of the dynamical system associated to it.

2.2.2 Function spaces

The right choice of the function spaces will be crucial in order to construct non radial rotating
solutions different to the vortex patches.

Before going into further details we introduce the classical Holder spaces in the unit disc D.
Let us denote ¥%%(D) as the set of continuous functions such that

[f(z1) = f(z)]
[fllgoam) = IfllLeep) + sup < 400,
(D) (D) sdmeD |21 — 22

forany a € (0, 1). By €% (D), with k € N, we denote the ¥* functions whose k-order derivative
lies in 6% (D). Recall the Lipschitz space with the semi-norm defined as

1 ltip) == sup [f(21) = f(=2)|

n#nmed |21 — 2

Similarly, we define the Holder spaces ¢*%(T) in the unit circle T. Let us supplement these
spaces with additional symmetry structures:

€F(D) = {g :D = Re%hD), g(re? Zgn )cos(nf), gn € R, ¥z =re? € D},

n>0
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ERT) = { p:TReEH(T), p(e”) =) pasin(nd), Vw =e" ¢ T}. (2.2.7)
n>1
These spaces are equipped with the usual norm || - [|4r. One can easily check that if the
functions g € €2°*(D) and p € G2"*(T), then they satisfy the following properties

9(z) =g(z), pw)=-pw), VzeD VweT. (2.2.8)

The space ‘Ksk’o‘(D) will contain the perturbations of the initial radial density. The condition on
g means that this perturbation is invariant by reflexion on the real axis. Let us remark that we
introduce also a radial perturbation coming from the frequency n = 0, this fact will be a key
point in the bifurcation argument.

The second kind of function spaces is #¢*%(D), which is the set of holomorphic functions
¢ in D belonging to ¢*%(D) and satisfying

6(0)=0, ¢'(0)=0 and ¢(z) = #(z), VzeD.

With these properties, the function ¢ admits the following expansion

o(z) = zZanz”, an € R. (2.2.9)

n>1

Thus, we have

HECH(T) = {¢ € EHUT), o(w) = wZanw”, an €R, Yw € T}.

n>1

Notice that if ® := Id + ¢ is conformal then ®(D) is a simply connected domain, symmetric with
respect to the real axis and whose boundary is €. The space ##%*(D) is a closed subspace
of €*(D) equipped with the same norm, so it is complete. In the bifurcation argument, we
will perturb also the initial domain D via a conformal map that will lie in this space.

The last condition on ¢, given by (2.2.9), together with the symmetry condition for the
density (2.2.8), means that we are looking for rotating initial data which admit at least one
axis of symmetry. For the rotating patch problem this is the minimal requirement that we
should impose and up to now we do not know whether such structures without any prescribed
symmetry could exist.

Now, we introduce the following trace problem concerning the extension of Cauchy inte-
grals, which is a classical result in complex analysis and potential theory. It is directly linked to
[128, Proposition 3.4] and [136, Theorem 2.2]) and for the convenience of the reader we give a
proof.

Lemma 2.2.2. Let k € Nand a € (0,1). Denote by C : #€**(T) — #€"**(D) the linear map
defined by

p(w) = wZanw”, VweT=C(¢) = Zanz”, Vz e D.

neN neN
Then, C (¢) is well-defined and continuous.

Proof. First, it is a simple matter to check that the map C is well-defined. Thus, it remains to
check the continuity. We recall from [136, Theorem 2.2]) the following estimates on the modulus
of continuity

sup_[C(9)(:1) — C(9)(22)| <3 sup [ $(wr) — Blwa)], (2.2.10)
252 A
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forany ¢ < % and for any continuous function C(¢) in D, analytic in D and having trace function
¢ on the unit circle. Therefore, given 21, 2o € D with |z; — 23| < 1, we obtain

C -C —
C()(21) — C(¢)(22)] <3 sw |¢(w1) — (w2)|
|Zl - 2’,2|0[ wi,wo €T |Zl — ZQ'a
lwy —wa|<|z1 —22]
— _ «
<3 sup [p(w1) — ¢(w2)] sup |wy — ws
wi,wo €T |w1 - w2|a wq,wo €T |Z1 - Z2|a
[wy —wg|<1 lwy —wa|< |21 — 22|
<3 sup |p(w1) — ¢(’w2)|.
wl,wQET |w1 - w2|0‘
lwy —wg|<1

Now, let z € D and w € T such that |z — w| < 1, then we also get from (2.2.10)

COEN <16 +3  sup  lo(uwr) ~ 6(u)| < o(w)] +3_sup 2Lt =00
[y —Tf;; 1 ™ 11—’1:1,2;\; 1

)

which implies that
IC(D) I oo ) < 3l

Combining the preceding estimates, we deduce that
1C(¢)lg0.e Dy < 6| 0.0(T)-

Note that this estimate can be extended to higher derivatives and thus we obtain
1C()lgr.0(p) < 6|0

which completes the proof. O

(gO,a(T) .

€k (T)s

2.3 Boundary equation

This section focuses on studying the second equation (2.2.4) concerning the boundary equation
and prove that we can parametrize the solutions in (£2, f, ®) close to the initial radial solution
(fo,1d), with fy being a radial profile, through a mapping (€2, f) — ® = N (€, f). We will deal
with the unknowns g and ¢ defined by

f=lf+g o=Id+o.

Equation (2.2.4) can be written in the following way

= 1 f(y) NP /
F(Q,9,0)(w):=Im|| QP(w) — / d dA d'(w)w| =0, 2.3.1
(92,9, 0)(w) {( W)~ 57 [ G0y ¥ WA | @) 231)
for any w € T. Notice that from this formulation we can retrieve the fact that

F(2,0,0)=0, VQER,

which is compatible with the fact that any radial initial data leads to a stationary solution of
the Euler equations. Indeed, this identity follows from Proposition B.0.8 which implies that

1 [ foly)

1
dA(y) =w d v T.
o7 o w—y (y) w/o sfo(s)ds, Ywe
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The idea to solve the nonlinear equation (2.3.1) is to apply the Implicit Function Theorem.
Define the open balls

B_k.a(g0,€ ={gegD) st |g—g ka <E¢
{ sia(90,€) }¢ (0) st llg=gollka <=} 232)

Bgra(d0,2) ={0€#65©D) st |o—dolea<e},

fore >0,k €N, ac (0,1), go € €F*D) and ¢ € (D). The first result concerns the
well-definition and regularity of the functional F' introduced in (2.3.1).

Proposition 2.3.1. Let ¢ € (0,1), then F : Rx B_1,6(0,€) X B g2, (0, €) — €2 *(T) is well-defined
and of class €.

Remark 2.3.2. If ¢ € Bypna(0,6) withe < 1and k € N*, then ® = Id + ¢ is conformal and
bi-Lipschitz.

Proof. Let us show that F' € ¢1%(T). Since ®,® € €1%(T) it remains to study the integral
term. This is a consequence of Lemma B.0.5 in Appendix B, which yields F € €1(T).
Let us turn to the persistence of the symmetry. According to (2.2.8) one has to check that

F(Q,9,0)(w) =—-F(Q,g,¢0)(w), YweT. (2.3.3)

Using the symmetry properties of the density and the conformal mapping we write

w)

—m- w _i & ! (]2 O (W)
4 _(g@( - o [ dA<y>><I>< ) }
:Im_(QQ(w)—;ﬂ / q)(w‘)f(w()lqﬂ(y)IQdA(y))@’( ] }

Therefore, we get (2.3.3). This concludes that F(Q, g, ¢) is in €,"*(T). Notice that the depen-
dance with respect to 2 is smooth and we will focus on the Géateaux derivatives of F' with
respect to g and ¢. Straightforward computations lead to

F(2,9,6)(m) =Im (sw(w)—;?r /. qﬂ%@)@'@ﬂzmﬁl(m)@’(w)w}

F(Q,g,¢6)h(w) = —Im

W) [ )
i | 5 L P WRAW) .

DyF (9, g, ¢)k(w) =Im | Qk(w)®' (w)w + Q®(w)k' (w)w

_ wk'(w) f(y) 2
4 / q,(w) 5771 FaAw)
wCD (w —k ,
) / g BRI

_w®( w)/ Re[qﬂ( VK (y )]dA(y) :

(2.3.4)

41



2.3. BOUNDARY EQUATION

Let us use the operator .7 [®] defined in (B.0.11). Although in Lemma B.0.5 .7 [®] is defined in D
we can extend it up to the boundary D getting the same result. Hence, all the above expressions
can be written through this operator as

wd' (w)
2m

D,F($,9,¢)h(w) = — Im[ ﬁ[@](h)(w)} ,

DyF(S,g,6)k(w) =Im | GR(@) ' (w)w + GBIk (wyw — “F1%) 2121 1) (w)

wd' (w) k(w) — k(y) o

* 21 /D (®(w) — D(y))2 FW)| @' (y)|"dA(y)
wt'(w) - (Re PO

o7 ) T YO (w)] -

Since %W, ', ®, k" € €1%(D) and are continuous with respect to ®, Lemma B.0.5 entails
that all the terms except the integral one lie in 41*(D) and they are continuous with respect
to ®. The continuity with respect to f comes also from the same result. Note that although
our unknowns are (g, ¢), studying the continuity with respect to (g, ¢) is equivalent to doing it
with respect to (f, ). We shall now focus our attention on the integral term by splitting it as
follows

K@) W) .
/D (®(w) — D(y))2 FW)|12(y)|"dA(y) —/D (@(w) — B(y))? |D'(y)|“dA(y)

First, we deal with _#;[®]. Clearly

| Z1[@](w)] < C|fllgr.a(pys
and we define

) e F(W) = k@)(f(y) = f(w))
0 =V g ) — a2
- mw (w) + (f(y) = f(w))Va

= — Vuf(w)Ki(w,y) + K2 (w,y).

(k(w) — k(y))
(®(w) — (y))?

Using the same argument as in (B.0.13), we can check that K and K> verify both the hypotheses
of Lemma B.0.4. This implies that _#;[®] lies in ¢’>%(D). Taking two conformal maps ®; and
®, and estimating _#1[®1] — _#1[®2], we find integrals similar to those treated in Lemma B.0.4.

Concerning the second integral _#5[®], which seems to be more singular, we use the Cauchy-
Pompeiu’s formula (B.0.10) to find

K(w) = kW) \pronizaan = L [ B =k Frave
/D<D(w)_q)(y)|<1>(y)l dA(y) = Qi/T@(w)—q)(g) (€)P'(&)de.
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Differentiating it, we deduce

[ ) kg aay F R L[ HO ) e
_ K (w)e(w)r | 1
o) T u”

The first term is in ¥*%(T) and is clearly continuous with respect to ®. Integration by parts in
the second term .7 [®] leads to

T(®](w) = — /T e T / 5@/(5) .

Differentiating and integrating it by parts again one obtain the following expression

_ e
o (150 O <W&’5M>
T@) (w) =0 (w) [ ——r—%dE — ' (w) d§
T

() — (w ®(E) — P(w)

)
(’“'é?%) s
=3/ (w) e % ®' (w) TW@ (&)de

(k(©) - kw2 (578
— &' (w) 3 d§
T

(&) — @(w)

o (E20) TV TT
—0'(w).#[a] (W) (1) — @/().#[a] (“Zﬁff’”) (w)

' (w).s (D) (k(-)a ('523))) () + ' (w)h(w).[®) (a%ﬁ’?) (w),

where .#[®] is the operator defined in (B.0.20). Since the functions

o (“95°) k’(-)UQ@T), k, a(”zw>e<€°’“(D),

() () o'(-)

and are continuous with respect to ®, we can use Lemma B.0.7. Hence, these terms lie in
%%(D). Moreover, the same argument gives us the continuity with respect to ®. To conclude,
we use the fact that the Gateaux derivatives are continuous with respect to (g, ¢) and so they
are in fact Fréchet derivatives. O

The next task is to implement the Implicit Function Theorem in order to solve the bound-
ary equation (2.3.1) through a two-parameters curve solutions in infinite-dimensional spaces.
Given a radial function f; € ¥1%(D), we associate to it the singular set

R 1 1 1
Ssing 1= {Qn = / sfo(s)ds — n;— / s*" L fo(s)ds, Vn € N*U {—i—oo}}. (2.3.5)
0 0

This terminology will be later justified in the proof of the next proposition. Actually, this set
corresponds to the location of the points Q2 where the partial linearized operator d4F(2,0,0) is
not invertible. Let us establish the following result.
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Proposition 2.3.3. Let f : D — R be a radial function in ¢1%(D). Let I be an open interval such that
I C R\Ssing. Then, there exists ¢ > 0 and a 6" function

NI x Byra(0,6) — By (0,¢),

with the following property:
F(Q,9,0) =0+ ¢ = N(Q,9),

forany (2, 9,¢) € I x By1a(0,€) X Bypy2.a(0,¢€). In addition, we obtain the identity

DN (9,0)h(z —zZAnz

n>1

for any h € €5 (D), with h(re Z hy, (1) cos(n@), and

n>0
1
/ s" L h,(s)ds
A, =20 , 2.3.6
2n (Qn - Q) ( )
for any n > 1 where Q is defined in (2.3.5). Moreover, we have
IV(€2,0)h (2.3.7)

Remark 2.3.4. From the definition of the function space €."*(D) we are adding also a radial per-
turbation of the initial radial part given by the first mode n = 0. However, from the expression of
DN (9, 0)h(z) the first frequency disappears and the sum starts at n = 1. This is an expected fact be-
cause (2, g, 0) is a solution of F'($2, g, ¢) for any radial smooth function g. This means that N'(Q, g) =0,
and hence DyN (€, 0)h is vanishing when h is radial.

Proof. Applying the Implicit Function Theorem consists in checking that
DyF(€,0,0) : £6>%(D) — €, *(T),

is an isomorphism. A combination of (2.3.4) with Proposition B.0.8 allow us to compute explic-

itly the differential of F'(2, g, ¢) on the initial solution. In fact, let w € D — k(w) = w Z anw"
n>1

be a holomorphic function in s#%%*(D), then

DyF(€,0,0)k(w) =Im | Qk(w)w + Qwk (w)w — w’; (w) [ 1 O(y;dA(y)
m D W —
w [ k(w) — k(y) foly)

S foly)dA(y) — = Re[K(y)]dA(y)

2 o (w—y)

:Zanlm

n>1

1 1
+ w"/o sfo(s)ds — (n+ l)w”/o 52”+1f0(s)ds}
1 1
= Z ann { / sfo(s)ds + r :L_ L /0 52”+1f0(3)ds} sin(nd).

DW—Y

1
Qu" + Q(n+ w"™ — (n+ 1)w”/ sfo(s)ds
0
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Similarly, we get

F(2,0,0)h(w) = — Im [;/ 1) agy)

DW—Y
T 1
=——>% Im ww"“/ " h,(s)ds
2r 0
n>1
Z/ s" T, (s)ds sin(nf), (2.3.8)
n>1

where

o k(z) =) a2 € #€**(D) and  z> h(z) =D ha(r) cos(nd) € € (D),

n>1 n>0

are given as in (2.2.9) and (2.2.7), respectively. Then, we have that D,F(2,0,0) is one—to—one
linear mapping and is continuous according to Proposition 2.3.1, for any Q € I. Using the
Banach Theorem it suffices to check that this mapping is onto. Notice that at the formal level
the inverse operator can be easily computed from the expression of D4 F(£2,0,0) and it is given

by

DgF(9,0,0)~ = zz " (2.3.9)
n>1 n ”)
for any p(e Z pnsin(nd). Thus the problem reduces to check that D,F(2,0,0)"!p €

n>1
A€*(D). First, we will prove that this function is holomorphic inside the unit disc D. For
this purpose we use that

2
pn = — / p(e?) sin(nd)do. (2.3.10)
0

™

Since p € L*(T), we obtain that the coefficients sequences (pn) € ¢>. Using the facts that
lim,, 00 Qn = Qoo and that Qi 1s far away from the singular set, then we deduce that the Fourier
coefficients of DyF(2,0,0)"!p are bounded. Consequentely, this function is holomorphic in-
side the unit disc. It remains to check that this function belongs to ¢*%(D). By virtue of Lemma
2.2.2 it is enough to check that the restriction on the boundary belongs to €% (T). First, we
must notice that if p € €>%(T), then

wi py(w) =Y ppw” € EH(T).

n>1

For this purpose, let us write p in the form

1 .
= % Z pnw"”,  with  p_p, = —py.
neZ

Hence, p is nothing but the Szegd projection of p, which is continuous on 41%(T). Note that
this latter property is based upon the fact that p can be expressed from p through the Cauchy

integral operator
_! / ) e
TJr€E—w
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and one may use 7'(1) —Theorem of Wittmann for Holder spaces, see for instance [149, Theorem
2.1] and [86, page 10] or Lemma B.0.7. Secondly, we will prove that D,F(£2,0,0)"1p € €2<(T).
We define

DyF(9,0,0) ! p(w) := wq(w).

Let us show that ¢ is bounded. Using (2.3.10) and integration by parts, we have

10| oo (T
lon| < 2T()’

which implies that g is bounded. To prove higher regularity, we write ¢ as a convolution

q=p+* K,

where .

K (w) :Z(Qw_ﬁn).

n>1 "

Since p; € €%, we just need to check that K; € L'. To do that, we use the Parseval’s identity,
which provides that K; € L?(T):

K3 =3 — <oy b <,

n>1 (Q (2 n>1

where C'is a constant connected to the distance between 2 and the singular set Sy, defined
in (2.3.5). To study its derivative, let us write it as

q’(w):ﬁzgi —w[zpnw —|—an <M—;)w”} —:w[;er(w)—kS ,

n>1 n>1 n>1

n

~ 1 /!
B=0—0u, up—"T /52”+1fo<s)ds
0

From the foregoing discussion, we have seen that p; € €%%(T). As to the term S, it can be
written in convolution form
S = P+ * KQ,

with

Up n
Ky(w) = — n; CERTR

Since p; € €4*(T), then we just need to check that K5 € L!(T) to conclude. Using Parseval’s
identity we have that Ky € L? because

n+1)2 Lo 2
HKQH% ﬁ22(6+u)2 SCZ( nQ) </(; 52 +1f0(8)d8>

n>1 n>1

(n+1)>
<C .
Zn2(2n—|—1 < Feo

This achieves that DyF(,0,0)"!p € #¢**(D) and consequently the linearized operator
DyF(£,0,0) is an isomorphism. Hence, the Implicit Function Theorem can be used and it
ensures the existence of a ¢'~function AV such that

F(Q2,9,0) =0 <= ¢ =N(Q9),
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for any (Q,9,¢) € I x B (0,€) X Byg2.a(0,€). Differentiating with respect to g, we obtain
DyF(Q2,9,N(Q,9)) = 04F(Q,9,9) + 9F (2, 9,9) 0 9N (Q,9) = 0,

which yields
OGN (Q,0)h(2) = =04 F(2,0,0)" " 0 9,F(Q,0,0)h(2).

Then, using (2.3.9) and (2.3.8), straightforward computations show that

1 n+1h
DN (Q,0)h(z) = —z 3 20> 28 Jo s
ns1 2n Q Q )
This concludes the proof of the announced result. ]

2.4 Density equation

This section aims at studying the density equation (2.2.3) in order to get non radial rotating
solutions via the Crandall-Rabinowitz Theorem. We will reformulate it in a more convenient
way since we are not able to use the original expression (2.2.3) due to the structural defect
on its linearized operator as it has been pointed out previously. We must have in mind that
under suitable assumptions, the conformal map is recovered from the angular velocity €2 and
the density function via Proposition 2.3.3.

24.1 Reformulation of the density equation

Taking an initial data in the form (2.1.1) and noting that if the density f is fixed close to fy and
(2 does not lie in the singular set Sging, then the conformal mapping is uniquely determined as
a consequence of Proposition 2.3.3. Now, we turn to the analysis of the first equation of (2.1.3)
that we intend to solve for a restricted class of initial densities. The strategy to implement it is
to look for solutions satisfying the specific equation

V(fo® (@) =u (R (fo @ (@) (vo(x) — Qzt)*
=u (% (fo @ 1) (2)) (vg () +Qz), VzeD, (2.4.1)

for some scalar function p. One can easily check that any solution of (2.4.1) is a solution of
the initial density equation (2.1.3) but the reversed is not in general true. Remark that from
this latter equation we are looking for particular solutions due to the precise dependence of
the scalar function p with respect to f. The scalar function p must be fixed in such a way
that the radial profile fy, around which we look for non trivial solutions, is also a solution
of (2.4.1). Therefore, for any initial radial profile candidate to be bifurcated, we will obtain a
different density equation. Notice also that it is not necessary in general to impose to x to be
well-defined on R but just on some open interval containing the image of D by fo.

Now, let us show how to construct concretely the function .. By virtue of Proposition 2.3.3,
the associated conformal map to any radial profile is the identity map. Therefore, it is obvious
that a smooth radial profile fj is a solution of (2.4.1) if and only if

(01 =@ 2o |5 [ ;_%fo@)dA(y) +5]

Q
o2 Dz—y o

:,U(Qv fO(Z)) l
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(@A) |~ [ shilelds +2) z w2 €D =il

where we have used the explicit computations given in Proposition B.0.8. Thus, we infer that
the function p must satisfy the compatibility condition

(S, fo(r)) = %Q — 12]};5200(8)%, Vr e (0,1]. (2.4.2)

We emphasize that not for all radial profiles f, we can find a function y such that f satisfies (2.4.2)
In fact, we can violate this equation by working with non monotonic profiles. Taking f, ver-
ifying (2.4.2), let us go through the above procedure and see how to reformulate the density
equation. Consider the function

t 1
M () = /1t e (2.43)

for some ty € R. We use the subscript fj in order to stress that the above function depends on
the choice of the initial profile fy. This rigidity is very relevant in our study and enables us to
include the structure of the solution into the formulation. By this way, we expect to remove
the pathological behavior of the old formulation and to prepare the problem for the bifurcation
arguments. From the expression of the velocity field, it is obvious that

v+ 0 = = (oo [ togle =l 0 2 wa() - J00aP).

Since D is a simply connected domain, then integrating (2.4.1) yields to the equivalent form

Myy(9,(f 0 @7)(@) + 5 /D log |z — y|(f 0 @) ()dA(w) — Qs = A, Vo€ D,

for some constant A\. Using a change of variable through the conformal map ® : D — D, we
obtain the equivalent formulation in the unit disc

M@ 1) + 3= [ 10818(2) = S)IF0)I¥ W)PdAG) 52D =, VD, 244)

It remains to fix the constant A by using that the initial radial profile should be a solution of
(2.4.4). Thus the last integral identity in Proposition B.0.8 entails that

1 T
A= My, (fo(r)) —/ i/o sfo(s)dsdr — %QrQ. (2.4.5)

Notice that A does not depend on r since fy verifies (2.4.2). Then, we finally arrive at the
following reformulation for the density equation

Gy(0.9.)() = My (0 £2)) + 3= [ Tog [0(:) = B £ () PdAw) - 187 = A =0,

for any z € D. The above expression yields
G (2,0,0) =0, VQeR.
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Thanks to Proposition 2.3.3, the conformal mapping is parametrized outside the singular set
by 2 and g and thus the equation for the density becomes

Cr(29) == Gp (9, N (2 9)) = 0. (2.4.6)

Next, let us analyze the constraint (2.4.2), for some particular examples. Since we are looking
for smooth solutions, it is convenient to deal with smooth radial profiles. Then, one stands

folr) = fo(r?),

and thus (2.4.2) becomes

S arfy ()
(S, fo(r)) = o [ vre (0,1]. (2.4.7)

At this stage, there are two ways to proceed. The first one is to start with ]?0 and reconstruct u,
and the second one is to impose y and solve the nonlinear differential equation on Jo- This last
approach is implicit and more delicate to implement. Therefore, let us proceed with the first
approach and apply it to some special examples.

Quadratic profiles

The first example is the quadratic profile of the type
fo(r) = Ar* + B,
where A, B € R. In this case, fo(r) = Ar + B and thus (2.4.7) agrees with
-~ 4Ar 8A

Q, fo(r)) = = —, Vr e (0,1].
H(E fo(r)) 2Qr—%—Br 40 — B — fo(r) ©.1]
Then, we find
8A
p(Q,t) = N_B_ % (2.4.8)
which implies from (2.4.3) that
40— B 1
My () = sS4t 1eAt
Thus, using (2.4.5), we deduce that
40 - B 1 ) Ly o7 Qr?
A= A fO(T)—mfo(r) —/r 7_/0 sfo(s)alsdT—7
_ 2 A2 _
_ 8OB —-3B°— A 4AB‘ (2.4.9)

16A

As we have mentioned before, the conformal mapping is determined by €2 and g and so the last
equation takes the form (2.4.6). The subscript fy will be omitted when we refer to this equation
with the quadratic profile if there is no confusion.

Let us remark some comparison to the vortex patch problem. The case A = 0 agrees with
a vortex patch of the type fy(r) = B. It was mentioned before that the boundary equation
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studied in Section 2.3 is the one studied in [86] when analyzing the vortex patch problem.
Here we have one more equation in D given by the density equation. This amounts to look for
solutions of the type

wo(x) = (B +9) (27 (2)) Lo (@),
which implies that the initial vorticity B of the vortex patch is perturbed by a function that
could not be constant. However, using (2.4.1) and evaluating in fy(r) = B, for any r € [0,1],
one gets that for this case u = 0. Then if you perturb with g the equation to be studied is

V((fo+g)o® ')(z) =0, Vaed(D).
Using the conformal map ¢ and changing the variables we arrive at
V((fo+g)o® )(®(z)) =0, VzeD.
By virtue of (2.2.2), the above equation leads to
V(fo+9)(z) =0,

which gives us that g must be a constant. Hence, using our approach we get that starting with
a vortex patch we just can obtain another vortex patch solution.
Polynomial profiles
The second example is to consider a general polynomial profile of the type
fo(r):Arm-l-B, meN*, A>0, BeR.
From (2.4.7) we obtain that

1(Q,t) = dm(m + 1) Am

Consequently, we find that
.
dm(m + 1) A

Remark that for m = 1 we recover the previous quadratic profiles. The discussion developed
later about the quadratic profile can be also extended to this polynomial profile as we shall
comment in detail in Remark 2.5.9.

t t

My () = (20(m + 1) —mB)/

B

(s — B)lemds —/

s(s — B)lmmds} .
B

Gaussian profiles

Another example which is relevant is given by the Gaussian distribution,
folr) =€, AeR~

Inserting ]/% into (2.4.7) one obtains that

-~ 4A%r
Q =
/’1’< 7f0(7‘)) QQAT_GAT_l_l?
and thus AAlnt
n
M) = T 0

Then the formula (2.4.3) allows us to get

1 t1-
MfO(Q,t)—M[QQt—i—/l 1 Sds].

ns
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2.4.2 Functional regularity

In this section, we will be interested in the regularity of the functional G obtained in (2.4.6) for
the quadratic profile. Notice that in the case of the quadratic profile (2.1.6), the singular set
(2.3.5) becomes

~ A B A 1 B
Ssing = {Qn = Z—&-——M——n, Vn € N*U{—i—oo}}. (2.4.10)

Proposition 2.4.1. Let fy be the quadratic profile given by (2.1.6) and I be an open interval with
I C R\Ssing. Then, there exists ¢ > 0 such that

G : 1% Byro(0,2) » €1°(D),

o)

is well-defined and of class €, where G is defined in (2.4.6) and Biap(0,€) in (2.3.2).

(D)

Proof. Let us show that G(Q,g) € €4*(D). Clearly, M((, f) is polynomial in f and by the
algebra structure of Holder spaces we deduce that M(, f) € €*(D). Since ® € ¥%“(D), then
the only term which deserves attention is the integral one. It is clear that

/D log |B(-) — ®(y)|£()|®'(4)[2dA(y) € €°(D).

To estimate its derivative, we note that

(@)~ B(p) T _
V. 1og|®(z) — (y)| = |B(2) — O(y)]2 O(2) — (y)

~—
s

—
N

~—

which implies that

v. / log [9(2) — @(y)|£ ()| ®'(4) PdA(y) =3'(z) /D My@'(yw(y)
—F() ZR).

where the operator .#[®] is defined in (B.0.11). Thus, we can use Lemma B.0.5 obtaining that
Z [®] belongs to €1%(D). Since ® € ¥*(D) we deduce that the integral term of G(Q, g) lies in
the space ¢*%(D) and is continuous with respect to (f, ®).

Let us check the symmetry property. Take g and ¢ satisfying g(Z) = g(2) and ¢(2) = ¢(2).
It is a simple matter to verify that

M(Q, f(2) = M(Q, f(2)) and [®(z)]* = |®(2)]?, VzeD.
For the Newtonian potential, the change of variables y — 7 leads to
3 [ 1B 19() — 20) )@ () PdA() = 21 | 102 85 - )17 @)% () PdA)
~5- [ 108 18(2) = 90| £(0)|# () dA ).
Let us turn to the computations of the Gateaux derivatives, that can be computed as
DyG(9. 9)h(2) = 04GR, g, O)h(2) + DG (R, 9, 6) 0 DN (2, 9)h(2)-
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By virtue of Proposition 2.3.3, it is known that AV is ¢!, which implies that 9, (€2, g) is contin-
uous. Gateaux derivatives are given by

DyG(9.6)h(z) = DyM(E. S(NG) + 5 [ Tog]0(z) ~ )l ()PdA)

= S )~ g SO + 5 [ g 0(2) — )h(w) 1@ ) dAW),

and
+2 /D log [B(2) — ()| (4)Re [F)K (4)] dA().

We focus our attention on the integral terms. The operator .# [®] in (B.0.11) allows us to write

KO = k) oo s el
| S0 s T W)PAW) = k) F@I(S) — FBIED (o).

Thus, Lemma B.0.5 concludes that this term lies in 4%(D) and is continuous with respect to .
For the other terms involving the logarithm, we can compute its gradient as before; for instance

V. [ logla(:) - 2(p)|fwRe [T ()] dA)
D

=) [ 5 e [P ] ddw) =T 7] (M) (2).

) — ®(y) /()2

Re[®'(-)k'()]
[®"()]7
this term lies in ¥’1*(D) and is continuous with respect to ®. For the other terms involving a
logarithmic part, the same procedure can be done. Trivially, both D,G (€2, g, ¢) and DyG (£, g, ¢)
are continuous with respect to g. We have obtained that the Gateaux derivatives are continuous
with respect to (g, ¢) and hence they are Fréchet derivatives. O

Since € ¢1%(D) and is continuous with respect to ®, Lemma B.0.5 concludes that

Remark 2.4.2. Although we have done the previous discussion for the quadratic profile, the same ar-
gument may be applied for any radial profile fo. Note that the only difference with the quadratic profile
is that the function M, and the constant Xz, will depend on fy. Hence, we just have to study the
regularity of function M g, in order to give a similar result.

2.4.3 Radial solutions

The main goal of this section is the resolution of Equation (2.4.6) in the class of radial functions
but in a small neighborhood of the quadratic profiles (2.1.6). We establish that except for one
singular value for (2, no radial solutions different from f; may be found around it. This discus-
sion is essential in order to ensure that with the new reformulation we avoid the main defect
of the old one (2.1.2): the kernel is infinite-dimensional and contains radial solutions. As it was
observed before, Proposition 2.3.3 gives us that the associated conformal mapping of any radial
function is the identity map, and therefore (2.4.6) becomes

_40-B

GO f = (=) = S (2D = 11702 + 5= [ Togl= = sl (lDaa) -

R
ZEL_a=0
2 )
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for any z € D where ) is given by (2.4.9). Thus the last integral identity of Proposition B.0.8
gives

49 - B

f()—ﬂfz / /Sf Ydsdr — Qr - A=0, Vrel0,1].

Introduce the function G,.q : R X €([0,1];R) — %([0, 1]; R), defined by

Gra@ 10 = 52100~ 5220 - [ [Cssoysar - B 5 e
It is obvious that G,,q4 is well-defined and furthermore it satisfies
Grad(2, fo) =0, VQ eR. (2.4.11)
Through this chapter, it will be more convenient to work with the variable = instead of € de-
fined as L B
14 (g _ 2) , (2.4.12)

Before stating our result, some properties of the hypergeometric function x € (—1,1) — F(1 —
V2,1 + v/2;1; ), are needed. A brief account on some useful properties of Gauss hypergeo-
metric functions will be discussed later in the Appendix C. In view of (C.0.8) we obtain the
identity

F(1-vV2,1+V21;2) = 1_ F(—V2,V2;1;2). (2.4.13)
According to Appendix C, we have F(1 — v2,1 + /2;1;0) = 1, and it diverges to —oco at 1.
This implies that there is at least one root in (0,1). Combined with the fact that its derivative
is negative according to (C.0.4), we may show that this root is unique. Denote this zero by

xo € (0,1) and set
B A

Q=5+, (2.4.14)
Setting the ball

B(fo,e) ={f € €([0,1;R), |If = foll= < ¢},
for any € > 0, the first result can be stated as follows.
Proposition 2.4.3. Let fo be the quadratic profile (2.1.6), with A € R*, B € R and I be any bounded
interval with I N ([5, 2 + 4] U{Q0}) = @. Then, there exists e > 0 such that

Grad(2, f) =0 <= [ = fo,

forany (Q, f) € I x B(fo,e).

Proof. We remark that Gy.q is a ! function on (2, f). The idea is to apply the Implicit Function
Theorem to deduce the result. By differentiation with respect to f, one gets that

DyCrag(2, o) h(r) =2 O h(r) — / / sh(s)dsdr
40 — Ar’ — 2B
=8+h(r) . / = /0 sh(s)dsdr, (2.4.15)
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for any h € ([0, 1];R). Now we shall look for the kernel of this operator, which consists of
elements h solving a Volterra integro-differential equation of the type

40 — Ar? — 2B
ST / /sh )dsdr =0, Vre[0,1].
The assumption Q ¢ [2, 52 + ] implies that » € [0,1] — 49*@# is not vanishing and

smooth. Thus from the regularlzation of the integral, one can check that any element of the
kernel is actually *°. Our purpose is to derive a differential equation by differentiating suc-
cessively this integral equation. With the notation (2.4.12) the kernel equation can be written in

the form 1 .
Chir) = ( . )h(r) _ 8/r i/o sh(s)dsdr =0, Yre[0,1].

Remark that the assumptions on €2 can be translated into x, as € (—o0,1) and = # 0. Differ-
entiating the function Lh yields

(LhY (r) = (; - 7"2) W (r) — 2rh(r) + % /O " sh(s)ds.

Multiplying by r and differentiating again we deduce that

[y ()] _ (1 _ 7«2> W) + (1 5 ) MO ghy =0, re@©1).  (2416)

T T g r

In order to solve the above equation we look for solutions in the form

h(r) = p(xzr?).

This ansatz can be justified a posteriori by evoking the uniqueness principle for ODEs. Doing
the change of variables y = z 72, we transform the preceding equation to

y(1—y)p"(y) + (1 = 3y)p'(y) + p(y) = 0.

Appendix C leads to assure that the only bounded solutions close to zero to this hypergeometric
equation are given by

p(y) =7 F(1+V2,1-V2;1;y), VyeR,

and thus
h(r)=~ F(1++v2,1-v2;1;21%), VyeR. (2.4.17)

It is important to note that from the integral representation (C.0.2) of hypergeometric functions,
we can extend the above solution to € (—o0,1). Coming back to the equation (2.4.16) and
integrating two times, we obtain two real numbers o, 8 € R such that

Lh(r)=alnr+ g, Vre(0,1].

Since Lh € €(]0, 1], R), we obtain that & = 0 and thus LA(r) = /5. By definition one has Lh(1) =
(L — 1) h(1). The fact that z # 1 implies that £~ = 0 if and only if A(1) = 0. According to
(2.4.17), this condition is equivalent to YF(1 — v/2,1 + v/2; 1; ) = 0. It follows that the kernel
is trivial (y = 0) if and only if # # x(, with z( being the only zero of F(1 — v/2,1 + v/2;1;-).
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However, for + = z the kernel is one-dimensional and is generated by this hypergeometric
function. Those claims will be made more rigorous in what follows.

e Case x # xg. As we have mentioned before, the kernel is trivial and it remains to check that
L is an isomorphism. With this aim, it suffices to prove that £ is a Fredholm operator of zero
index. First, we can split £ as follows

1 T
L:=Ly+K, Ly:= (1 - r2> Id and Kh(r):= —8/ 1/ sh(s)dsdr.
T r T Jo

Second, it is obvious that £y : €([0,1];R) — €([0, 1];R) is an isomorphism, it is a Fredholm
operator of zero index. Now, since the Fredholm operators with given index are stable by
compact perturbation (for more details, see Appendix A), then to check that £ has zero index
it is enough to establish that

K (0,11:R) = (0, 1];R),

is compact. One can easily obtain that for h € ¢([0, 1]; R) the function Kh belongs to €1 ([0, 1]; R).
Furthermore, by change of variables

1
(Kh)'(r) = r/ sh(rs)ds and (Kh)'(0)=0, Vre(0,1],
0
which implies that
[Khllgr < Cllh]|pe.

Since the embedding ¢ ([0, 1];R) < %([0, 1];R) is compact, we find that K is a compact oper-
ator. Finally, we get that £ is an isomorphism. This ensures that D;G,q(, fo) is an isomor-
phism, and therefore the Implicit Function Theorem together with (2.4.11) allow us to deduce
that the only solutions of G1,4(€2, f) = 0in I x B( fo, €) are given by the trivial ones {(€, fo), 2 € I}.

e Case x = zy. In this special case the kernel of £ is one-dimensional and is generated by
Kerl = (F(1—v2,1+V2;1;2(-)?)). (2.4.18)
This case will be deeply discussed below in Proposition 2.4.4. O

Let us focus on the case 2 = §2y. From (2.4.18), the kernel of the linearized operator is one—
dimensional, and we will be able to implement the Crandall-Rabinowitz Theorem. Our result
reads as follows.

Proposition 2.4.4. Let fy be the quadratic profile (2.1.6) with A € R*, B € Rand fix Qg as in (2.4.14).
Then, there exists an open neighborhood U of (Q, fo) in R x € ([0, 1];R) and a continuous curve
€ € (—a,a) — (e, fe) € U with a > 0 such that

Grad(Qfa frﬁ) =0, VE € (_ava)'

Proof. We must check that the hypotheses of the Crandall-Rabinowitz Theorem are achived. It
is clear that
Grad(Qa fO) =0, vVQeR.

It is not difficult to show that the mapping (€2, f) — Gr.a(€Q, f) is €. In addition, we have seen
in the foregoing discussion that D¢Gyaq(€0, fo) is a Fredholm operator with zero index and
its kernel is one-dimensional. Therefore to apply the bifurcation arguments it remains just to
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check the transversality condition in the Crandall-Rabinowitz Theorem. Having this in mind,
we should first find a practical characterization for the range of the linearized operator. We
note that an element d € €'([0, 1]; R) belongs to the range of D G,4(0, fo) if the equation

1 _ .2 T
%h(r)— / 1i /0 sh(s)dsdr = d(r), Vre[0,1], (2.4.19)

admits a solution 7 in € ([0, 1]; R), where z is given by (2.4.14). Consider the auxiliary function H

H(r) = /T1 % /0 sh(s)dsdr, ¥r e [0,1].
Then H belongs to ¢1([0, 1]; R) and it satisfies the boundary condition
H(1)=0 and H'(0)=0. (2.4.20)
In order to write down an ordinary differential equation for H, let us define the linear operator
Lh(r) = /1 % /OT sh(s)dsdr, Vre[0,1],

for any h € €([0,1];R). Then, we derive successively,

(LhY (r) = —% /0 " sh(s)ds,
and
r(Lh)"(r) 4+ (L)' (r) = =rh(r).

Applying this identity to H one arrives at

8rxg
rH"(r) + H'(r) = R p— [H(r) + d(r)].
Thus, H solves the second order differential equation
r(1 — xor?)H" (r) + (1 — 2or®)H'(r) + 8raoH(r) = —8rzod(r), (2.4.21)

supplemented with boundary conditions (2.4.20). The argument is to come back to the original
equation (2.4.19) and show that the candidate

) = o () + d)]

is actually a solution to this equation. Then, we need to check that Lh = H. By setting # :=
Lh — H, we deduce that
r(#)"(r) + (#1)'(r) = 0,

with the boundary conditions #(1) = 0 and #’(0) = 0, which come from (2.4.20). The solution
of this differential equation is

.’7'[(7") =X+ A1lnr, VAg,A1 €R
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Since Lh and H belong to ([0, 1]; R), then necessarily A\; = 0, and from the boundary condition
we find \g = 0. This implies that Lh = H, and it shows finally that solving (2.4.19) is equivalent
to solving (2.4.21). Now, let us focus on the resolution of (2.4.21). For this purpose, we proceed
by finding a particular solution for the homogeneous equation and use later the method of
variation of constants. Looking for a solution to the homogeneous equation in the form #4(r) =
p(xor?), and using the variable y = z¢r?, one arrives at

(I —y)yp"(y) + (1 —y)p'(y) + 2p(y) = 0.

This is a hypergeometric equation, and one solution is given by y +— F(—v/2,v/2;1;y). Thus,
a particular solution to the homogeneous equation is # : r € [0,1] — F(—v/2,v/2;1;x0r?).
Then, the general solutions for (2.4.21) are given through the formula

| T sHy(s)
H(r) = K — | K1 =8 —d(s)ds| d v 0,1
where K, K> are real constants and § € (0, 1) is any given number. Since % is smooth on the
interval [0, 1], with #,(0) = 1, one can check that H admits a singular term close to zero taking
the form K Inr. This forces K to vanish because H is continuous up to the origin. Therefore,
we infer that

H(r) = #(r) [KQ — 8¢ /5 " . }1512(7) /0 13%(22 d(s)dsdT] , Vrelo,1].

The last integral term is convergent at the origin and one may take § = 0. This implies that

H(r) = #H(r) |:K2 — 8¢ /0’“ 7%1(7) /OT 13?;[‘22 d(s)dsd’]’:| , Vrel0,1].

From this expression, we deduce the second condition of (2.4.20). For the first condition,
H(1) = 0, we first note from (2.4.13) that F'(—v/2,v/2;1;2¢) = 0. Then, we can compute the
limit at » = 1 via I'Hopital’s rule leading to

U say(s) d
| ) ) " s(s) B /1—x32 (s)ds
H(1) = —8a E{l %(r)/o 52 (7) /0 1= 2052 d(s)dsdr = 822 %/0(1)

From the expression of # and (C.0.4) we recover that #{ (1) = —4zoF(1 — /2,14 /2;2; x0). We
point out that this quantity is not vanishing. This can be proved by differentiating the relation
(2.4.13), which implies that

F(1=V2,14V2;2520) = (m0 — 1)F(2 — V2,2 4+ V2; 2; 2),

and the latter term is not vanishing from the definition of hypergeometric functions. It follows
that the condition H (1) = 0 is equivalent to

b s7h(s) _

This characterizes the elements of the range of the linearized operator. Now, we are in a po-
sition to check the transversality condition. According to the expression (2.4.15), one gets by
differentiating with respect to () that

Do, 1 Graa(Qo, fo)h(r) = ih(r).
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Recall from (2.4.18) and the relation (2.4.13) that the kernel is generated by r € [0, 1] — 2o (r)

1—zqr?”
Hence, from (2.4.22) the transversality assumption in the Crandall-Rabinowitz Theorem be-

comes . ,
5% (5)
—————5ds #0
Rl
which is trivially satisfied, and concludes the announced result. O

2.5 Linearized operator for the density equation

This section is devoted to the study of the linearized operator of the density equation (2.4.6).
First, we will compute it with a general fy and provide a suitable formula in the case of
quadratic profiles. Second, we shall prove that the linearized operator is a Fredholm opera-
tor of index zero because it takes the form of a compact perturbation of an invertible operator.
More details about Fredholm operators can be found in Appendix A. Later we will focus our
attention on the algebraic structure of the kernel and the range and give explicit expressions by
using hypergeometric functions. We point out that the kernel description is done through the
resolution of a Volterra integro-differential equation.

2,51 General formula and Fredholm index of the linearized operator

Let fo be an arbitrary smooth radial function satisfying (2.4.2) and let us compute the linearized
operator of the functional G, given by (2.4.6). First, using Proposition 2.3.3 one gets

DuN(Q,0)h(z) = 2> Apz" =1 k(2), (2.5.1)

n>1
where 4, is given in (2.3.6) and h € €. "* (D). Therefore, differentiating with respect to g yields

D,G 1, (2,0)h =8,G 1, (€2,0,0)h + 845G, (2, 0,0)8,Nh(52, 0)
=0yG 1, (£2,0,0)h + 95G 1, (2,0, 0)k.

Using the Fréchet derivatives from Proposition 2.4.1, we have that
~ 1
DG 1, (2, 0)h(2) =Dg My, (2, fol2))(2) + 5 /Dlog |2 = ylh(y)dA(y) — QRe[zk(z)]
1 k(z) —k
+ /DRe [()_y(y)} Jo(y)dA(y)

2 z

n % /D log |2 — y| fo(y)Re[k' (y)]dA(y).

From the definition of M, in (2.4.3) we infer that

__ W)
w2, fo(l2D)’

Putting together the preceding formulas we obtain

Dy My, (82, fo(2))h(2) Vz e D.

h(z) 1

DG (2 0h(:) =t Dt o [ 1og = yih(1)dA(y) — Rezk(:)]
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+217r/DRe {k(z):];(y)] Jo(y)dA(y)

y4
.1 / log |2 — ylfo(y)Re[K (4)]dA(y), (252)
™ JD

where p is given by the compatibility condition (2.4.2). Next, we shall rewrite the linearized
operator for the quadratic profile, and we will omit the subscript fy for the sake of simplicity.
Taking 1 as in (2.4.8), we get

Dgé(Q,O)h(z) _! (i - r2> h(z) + L /Dlog |z — y|h(y)dA(y) — QRe[zk(z)]

8 2T
+217r/DRe V(i:z(y)} foly)dA(y)
+ [ oz |z =yl o Relk ()} dA (), 253

where z is given by (2.4.12).

In the following result we show that the linearized operator associated to a quadratic profile
is a Fredholm operator with index zero. Similar result may be obtained in the general case
imposing suitable conditions on the profiles.

Proposition 2.5.1. Let fy be the profile (2.1.6), with A € R* and B € R. Assume that Q ¢
(8,5 + 2] U Ssing. Then, DyG(Q,0) : €1(D) — €i*(D) is a Fredholm operator with zero in-
dex.

Proof. Using (2.5.3) we have
D,G(Q, 0)h(2) :é (i _ r2> h(z) + % /D log |2 — y|h(y)dA(y) — ORe[zk(=)]
L /D Re {k(z)_k(y)} foly)dA(y)

27 zZ—

n % /D log |2 — y| fo(y)Re[K (y)]dA(y)

= [; <i — 7“2> Id + IC] h(z),

where £ is related to h through (2.5.1). The assumption on (2 entails that the smooth function
z€D~— % — |z|? is not vanishing on the closed unit disc. Then the operator

1/1
§ (5 1P) s @) > o),

is an isomorphism. Hence, it is a Fredholm operator with zero index. To check that £ is also a
Fredholm operator with zero index, it suffices to prove that the operator K : €. (D) — €,"*(D)
is compact. To do that, we will prove that K : €1%(D) — ¢17(D), for any ~ € (0, 1). We split K
as follows

4
Kh =Y K;h,
=1
with )
Kih = ~ORezk(2)l,  Kah() = o [ loglz ~ ylh(9)dA(),
D
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1
Kah(:) =+ [ togls ~ Rl @A), Kan= 5 [ Re|FE=I0] figpaac)
The estimate of the first term 1 & follows from (2.5.1) and (2.3.7), leading to
[K1h]lg2.0p) < Cllhllgrep)- (2.5.4)

Concerning the term Ky we note that
I1KCahl| oo Dy < C|lhll Lo (D)

and differentiating it, we obtain

VoKah() = o [ f(_y)ydA(y»

Lemma B.0.4 yields
IV :Kahllg0py < Cllh| Lo D),

for any v € (0,1), and thus

[K2hlg1v ) < CllPll Lo (p)- (25.5)
The estimate of K3 is similar to that of Ky, and using (2.5.5) and (2.3.7) we find that
1Kshllg1+ ) < CllfollLoe ) Il L0y < CllfollLo ) 1Allg1.0(p)- (2.5.6)
Setting
k(z)—k
K(Zay): (z’—y(y)’ VZ#%

it is obvious that |K(z,y)| < [|k'[| L (p). Therefore, we have
IKahl| e < Cll foll o< [1K']] 1< (o)

Moreover, by differentiation we find

V.Kih(z) = S-Re /D VK (2,9) foly)dA(y).

Straightforward computations show that

VK (z,9)] <C|IK|| oo ylz — 9l
1K Lo (D) |K[| Lo (D)
lz1 =yl 21— yllz2 — Y

|V .K(21,y) — V.K(22,y)| <C|z1 — 22| {

Thus, hypotheses (B.0.8) are satisfied and we can use Lemma B.0.4 and (2.3.7) to find
IV.Kah

wox(0) < Cllfollz=[lkll42p) < CllfollLellPll4re o),

obtaining
1ahll51 ) < Cllfoll Lo o) Pllgr.eo)- (2.5.7)
Combining the estimates (2.5.4),(2.5.5),(2.5.6) and (2.5.7), we deduce

|IICh

w1 < Clh

%12 (D)>

which concludes the proof. O
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To end this subsection, we give a more explicit form of the linearized operator. Coming
back to the general expression in (2.5.2) and using Proposition B.0.8 we get that

DyG1,(2,0)h(z) = cos(nd) { 9 J(cozT)) - (AnGn(r) + WllHHn(r)ﬂ

n>1

+ Q fo(r / /sho )dsdr,

re' — h(re? Zh ) cos(nd) € €1*(D),

neN

for

where

1 T T
Gn(r) :=nQrn Tt 4=t / sfo(s)ds — (n+ 1)r"_1/ sfo(s)ds + Z;r_ll / s2 L £ (s)ds,
0 0

0
1 1 T
H,(r) ::r2”/ Sn_lhn(s)ds+/ s h,(s)ds
T 0

for any n > 1. The value of A, is given by (2.3.6) and recall that it was derived from the
expression dy N (€2, 0) when studying the boundary equation. Moreover, there is another useful
expression for A,, coming from the value of G,,(1)

Gn(1)=n [Q - /01 sfo(s)ds + "Z ! /01 s%“fo(s)ds] =n (Q — ﬁn) .

Those preceding identities agrees with

Hn(1)

SRR )

Vn > 1.

In the special case of fj being a quadratic profiles of the type (2.1.6), straightforward computa-
tions imply that

z) :Zcos(ne) {T hp(r) — — <A Gn(r)+ 5 TlLHHn(T’))}

_ 2 1 T
" ho(r) — / % /0 sho(s)dsdr, (2.5.8)
with
B An(n+1) ,_
Gn(r) =— mr LP,(r?), (2.5.9)
H,(r) =r*" /Tl w%hn(s)ds + /OT s" T h, (s)ds, (2.5.10)
n+21 A+2B n+2

Pofr) =r? = o - 2 st (2.5.11)

~ An(n+1) A1 An+1) B
Ap = (1) __ Ha(l) (2.5.13)

260 pf0, o)
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Remark that G, (1) # 0 since we are assuming that 2 ¢ Sqing, the singular set defined in (2.4.10).

From now on we will work only with the quadratic profiles. Similar study could be im-
plemented with general profiles but the analysis may turn out to be very difficult because the
spectral study is intimately related to the distribution of the selected profile.

2.5.2 Kernel structure and negative results

The current objective is to conduct a precise study for the kernel structure of the linearized
operator (2.5.8). We must identify the master equation describing the dispersion relation. As
a by-product we connect the dimension of the kernel to the number of roots of the master
equation. We shall distinguish in this study between the regular case corresponding to = €
(—00, 1) and the singular case associated to z > 1. For this latter case we prove that the equation
(2.4.10) has no solution close to the trivial one.

Regular case

Let us start with a preliminary result devoted to the explicit resolution of a second order differ-
ential equation with polynomial coefficients taking the form

(1 —zr®)rF"(r) — (1 — 2r?)(2n — 1)F'(r) + 8raF(r) = g(r), Yre€[0,1], (2.5.14)

This will be applied later to the study of the kernel and the range. Before stating our result we
need to introduce some functions
n—vn?+38 n+vn?+38

Fo(r) = F(an,bp;cnsr), an = 5 b= a=n+l (2515

where r € [0,1) — F(a, b; ¢; ) denotes the Gauss hypergeometric function defined in (C.0.1).

Lemma 2.5.2. Let n > 1 bean integer, x € (—oo, 1) and g € €([0, 1];R). Then, the general continuous
solutions of equation (2.5.14) supplemented with the initial condition F(0) = 0, are given by a one—
parameter curve

F(r) = r*"Fu(ar?) [i((i)) - ;,;11 /m TnH;g(T) /OT 11?”582 (i);g ((i)) deT} ‘

r2

Proof. Consider the auxiliary function F(r) = #(zr?) and set y = 2r%. Note thaty € [0, z] when

1
z>0andy € [z,0]if z < 0, then 7 = (¥)? in both cases. Hence, the equation governing this
new function is

1
) — (1 — D)1 — ) _ L (aNE (yy:

(=97 ) = =D =97 +27 )= (1) 9 ((5)7) (25.16)
with the boundary condition #(0) = 0. The strategy to be followed consists in solving the
homogeneous equation and using later the method of variation of constants. The homogeneous
problem is given by

(1= w)ydg (y) — (n = 1)(1 = y) F5(y) + 2% (y) = 0.
Comparing it with the general differential equation (C.0.16), we obviously find that 7, satisfies
a hypergeometric equation with the parameters

—n—vn?+38 —n+vn?+8

o=V TR o ,
2

c=1—n.
2
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The general theory of hypergeometric functions gives us that this differential equation is de-
generate because c is a negative integer, see discussion in Appendix C. However, we still get
two independent solutions generating the class of solutions to this differential equation: one
is smooth and the second is singular and contains a logarithmic singularity at the origin. The
smooth one is given by

ye(—00,1) =y F(l4+a—c,14+b—c,2—-cy).
With the special parameters (2.5.15), it becomes
y € (=00,1) = y" F (an; by cn; y) = 4" Fu(y)-

It is important to note that, by Taylor expansion, the hypergeometric function initially defined
in the unit disc D admits an analytic continuation in the complex plane cut along the real axis
from 1 to +oo . This comes from the integral representation (C.0.2).
Next, we use the method of variation of constants with the smooth homogeneous solution
and set
Fo:(—00,1) € D— y"Fu(y). (2.5.17)

We wish to mention that when using the method of variation of constants with the smooth
solution we also find the trace of the singular solution. As we will notice in the next step, this
singular part will not contribute for the full inhomogeneous problem due to the required reg-
ularity and the boundary condition F'(0) = 0. Now, we solve the equation (2.5.16) by looking
for solutions in the form 7 (y) = %y(y) K (y). By setting X := K’, one has that

, () n-1 L(5) (0
K+ {22(3)‘ y My)_% (L) h(y)

which can be integrated in the following way

n—1 Yy 1 1
Y 1 Fo(s) T\ 3 S\ 3
= — K R — — J— J—
() Fi(y) { 1+43: 0 s"(1—s) <s) g((m) )ds},
where K is a constant. Thus integrating successively we find K and # and from the expression
of Fyp we deduce

o=t Ko~ [ e (e g [P G) (G )]

for any y € (—o0, 1), with K3 a constant and where sign is the sign function. From straightfor-
ward computations using integration by parts we get

0) = —K; lim 4" F, w1, K
F(0) =— 1 limy n(y)/y RO T T

Combined with the initial condition 7(0) = 0 we obtain K; = 0. Coming back to the original
function F(r) = ¥ (zr?), we obtain

o= e [ [ s [ P26 ()]

xr
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The constant K can be computed by evaluating the preceding expression at r = 1. We finally
get

F(r) = r*"F,(zr?) [If;((i)) - x”4_1 /x: T"+1}5’3(7’) /OT 11771(5) x/sg (M) deT:| , (2.5.18)

S

for r € [0,1]. Observe from the integral representation (C.0.2) that the function F;, does not
vanish on (—o0, 1) for n > 1. Hence, (2.5.18) is well-defined and F'is ¥ in [0, 1] when z <
1. O

The next goal is to give the kernel structure of the linearized operator D,G(£2,0). We em-
phasize that according to Proposition 2.5.1, this is a Fredholm operator of zero index, which
implies in particular that its kernel is finite—dimensional. Before that, we introduce the singu-
lar set for « connected to the singular set of €2 through the relations (2.4.12) and (2.4.10)

~ A -
Ssing = {fb\n = A7>a Qn S Ssing} . (2519)

1(Qn -2

For any n > 1, consider the following sequences of functions

1
At 2B> a:} + / Fo(rx)r" [-1+ 2z7]dr, Vo e (—o0,1], (2.5.20)
0

where F}, has been introduced in (2.5.15). Then we prove the following.

Proposition 2.5.3. Let A € R*, B € Rand x € (—oo0, 1)\{§Smg U{0,z0}}, with (2.4.12) and (2.4.14).
Define the set

Ay = {n N, (u(z) = o}. (2.5.21)

Then, the kernel of Dg@ (€, 0) is finite—dimensional and generated by the €>° functions {f,, n € A,},
with hy, : z € D — Re [¥,(|2|%)2"] and

1 P.(t)  Fy(xt) 2xF,(xt) [! 1 T s"Fp(xs)
W= o T Ee B /t Tn+1F3(m)/0 = s [n(s)dsdr].

As a consequence, dim Ker Dg@(Q, 0) = Card A,. The functions P,, and F,, are defined in (2.5.11)
and (2.5.15), respectively.

Remark 2.5.4. Notice that the set A, can be empty; in that case the kernel of Dg@ (9,0) is trivial.
Otherwise, the set A, is finite.

Proof. To analyze the kernel structure, we return to (2.5.8) and solve the equations keeping in
mind the relations (2.5.13). Thus we should solve

4r H,(1) H,(r)
T CE e

1 1 T
ho(r) —/ 7'/0 sho(s)dsdr =0, Vr e |[0,1],

b (1) + ] =0, Vrel0,1], VneN*,

\ (2.5.22)
-7

8

where the functions involved in the last expressions are given in (2.5.9)-(2.5.13). The term
(r? — 1) is not vanishing from the assumptions on x. Note that the last equation for n = 0 has

T
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been already studied in Proposition 2.4.3, which implies that if + # x, then the zero function
is the only solution. Hence, let us focus on the case n > 1 and solve the associated equation.
To deal with this equation we write down a differential equation for H,, and use Lemma 2.5.2.
Firstly, we define the linear operator

1 1 r
ZLh(r) == r?" / Sn_lh(s)ds+ / s" T h(s)ds, (2.5.23)
r 0

for any h € €([0,1];R). Then, by differentiation we obtain

| 2n
2n—1
(Zh) (r) = 2nr /T s h(s)ds =

[.i”h(r) - /O ' s”“h(s)ds} |

=
It is important to precise at this stage that -Z’h satisfies the boundary conditions
(ZLh)(0) = (ZLh)'(1) = 0. (2.5.24)

Indeed, the second condition is obvious and to get the first one we use that % is bounded:

2n _ .24n n-+2
|$h<r>|s||humo("“ Py )

|n — 2| +n+2

for any n # 2. In the case n = 2 we have

1200 < Wl (i + 7).
and for n = 1 itis clearly verified. Differentiating again we obtain
% (LR ()] — (LhY (r) =~ h(r). (2.5.25)
Since H,, = Zh,,, one has

1
> [rH,, (r)] — Hp,(r) = =" (). (2.5.26)
Using Equation (2.5.22), we deduce that H,, satisfies the following differential equation
H,(1)x

Gn(1)

complemented with the boundary conditions (2.5.24). Let us show how to recover the full
solutions of (2.5.22) from this equation. Assume that we have constructed all the solutions H,,
of (2.5.27), with the boundary conditions (2.5.24). Then, to obtain the solutions of (2.5.22), we
should check the compatibility condition -Z’h,, = H,, by setting

(1 —xr®)rH"(r) — (1 — 2r®)(2n — 1) H. (r) + 8rzH,(r) = 8 " 2G, (), (2.5.27)

4r Gn(r)  Hp(r)

hn(r) = @ n(l)Gn<1) rntl

(2.5.28)

Combining (2.5.25) and (2.5.26), we deduce that # := Zh,, — H,, satisfies

o [Pt )] () =0,
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By solving this differential equation we obtain the existence of two real constants \g and A; such
that #(r) = Ao+\17?", forany r € [0, 1]. Since both .Zh,, and H,, satisfy (2.5.24), then # satisfies
also these conditions. Hence, we find #/(r) = 0, for any r € [0, 1], and this concludes that h,,
given by (2.5.28), is a solution of (2.5.22). We emphasize that h,, satisfies the compatibility
condition

1
H,(1) = / "y, (r)dr.
0
Indeed, integrating (2.5.26) from 0 to 1, we obtain

H;, (1)
2n

1
— (Hp(1) — Hp(0)) = —/0 by, (r)dr.

Thus, if H,, satisfies the boundary conditions (2.5.24), then the compatibility condition is auto-
matically verified. Now, let us come back to the resolution of (2.5.27). Since H,,(0) = 0, then
one can apply Lemma 2.5.2 with

26, (r). (2.5.29)

Therefore, we obtain after a change of variables that

H,(r) =r*"F,(zr*)H,(1) [Fnl(x)
2" (T 1 [TE(s) s\ (s}
G(1) /er THLER(T) /0 1—-s (;) Gn ((J:) >d8d7:|
=H, (1)r?"F, (zr?) o)
S 11 TR )
C Ga(1) ), T2n+1Fg(x7_2)/0 R Gn(S)deT:|. (2.5.30)

It remains to check the second initial condition: H},(1) = 0. From straightforward computations
using (2.5.9) and (2.5.12) we find that

xH, Lgnt2p (12
H/ (1) :IF{:((;)) [2nF,(z) + 22F) (z)] + Gi(fl)rF(nl()m) /0 1 fafsz )Gn(s)ds
_Ha(1) _ An(n+ Dz L g2t (2s?) Vs
T Fy(x) [tpn(x) (n—|—2)Gn(1)/0 1—xs? FPa(s7)d ]
_ 2nH,(1)
~F (16 ) (2.5.31)
where
B A1 A n+1 B A(n+ 1)z [ s*"TE, (zs?)
and
on(z) == nF,(z) + 2F) (). (2.5.32)

Note that G;,(1) # 0 because Q2 ¢ Sging. Let us link ¥, to the function ¢,,. Recall from (2.5.16)
and (C.0.16) that
r(1—2)F' 4+ (n+1)(1 — 2)F.(z) + 2F, = 0.
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Differentiating the function ¢, (z) and using the differential equation for F;, we realize that

pn(r) =(n+ 1)F,(2) + 2F)/(x)
1

=7 [ =2)(n+ DF(2) + (1 = 2)eF(z)] = -

2F, ()
11—z

The change of variables xs? — 7 in the integral term yields

1 2n+l 2 z
/ A ) I (:vs )Pn(SQ)dS = 1 / 7" Fn(7) P, (Z> dr.
0 0

1 — xs? 2gntl 1—71

Therefore we get
B A1 A n+1 B An+1) [* , n T
n (z) = n(@) {4 (a: B 1) + 2 n?+2n + 2n} + 4(n + 2)z" /0 Pn(T)T" P <x>dT'
From Definition (2.5.11) we find the identity

x

r 1
/ TLPn z - / n 2_
[ e, (Dar =5 [amm |

22

n+2 A+2B n+2
T — x| dr.
n+1 A n(n+1)

Integrating by parts, we deduce

An+1) [*, n T A n+l 1 A+2B
4(n+2)3:”/0 n(T)7"Fn (x)d7—4gon(.’r) <n+2 z An )

An+1) [* 1 A+2B ,
R /ngn(T)T” <T _7_714(71—1-1)37 dr.

By virtue of the following identity

A /1 1 +A n+1 +B+A n+1 1 A+2B —0
4 \z 2n242n 2n 4 \n+2 =z An -

the boundary term in the integral is canceled with the first part of ¥,,. Thus

_ An+1) [T nei{ 2 A+2B
U, (x) =— ppEs; /Ogon(T)T (T —T—A(n+1)x dr,

where, after a change of variables in the integral term, we get that

A(n+1) [* o 5 A+2B
U, (z) = S22 [ g (ra)r (- ) d
(x) yy /0 on(T2)T T+ T+ Aln+ 1)36 dr

Setting

! A+2B
_ n—1 2 e
Cn(T) _/0 on(Tx)T <—mT + 7+ 7A(n+ 1)x> dr,

we find the relation A( 0
n+
U () = TCn(x)-
Observe first that the zeroes of ¥,, and (,, are the same. Coming back to (2.5.32) and integrating

by parts we get the equivalent form

A+2B

Cn(w) = Fy () <1 —z+ A(n—l—l)x) + /01 Fo(rz)m™ (=1 + 227) dr.
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This gives (2.5.20). According to (2.5.31), the constraint H;,(1) = 0 is equivalent to H,(1) = 0
or (,(z) = 0. In the first case, we get from (2.5.30) that H,, = 0 and inserting this into (2.5.28)
we find h,,(r) = 0, for any r € [0, 1]. Thus, for n ¢ A,, where A, is given by (2.5.21), we obtain
that there is only one solution for the kernel equation, which is the trivial one. As to the second
condition (,(xz) = 0, which agrees with n € A,, one gets from (2.5.30) and (2.5.28) that the
kernel of Dg@ (€2, 0) restricted to the level frequency n is generated by

ﬁn(rew) = hy(r) cos(nd),
with

s" P2, (vs? n(s)ds
hy(r) = ! —TGn(T) rE(ar ) ) — 81" Fyy (wr? / / L=z’ Gu(l) dr

1 — xr? Gn(1) F.(z T2t L2 (p72)

The fact that h,, = 22 H,, (1) h}; together with H,(1) = / s, (s)ds imply
0

L oa n
"TEhy(s)ds = —. 2.5.
/0 s »(s)ds 1z (2.5.33)
Using
TGH(T) _ nPn(T2)

Ga(D) | Pu(1)’
and a suitable change of variables allows getting the formula,

/T s"P2F, (25%) G (s) T s, (25?) SEES) b2y
1—xzs? Gn(l) dr 1—xs? ni? Sd
P22 (572) = T2 (172) T

T TLF
/ P,(s)ds
1—as dr
T HLE2(z7) '
We have

PN o Po(r?)  Fu(ar?) 2zF,(ar?) [! 1 T s"Fp(xs)
ho(r) = 1— 22 {_ P,(1) + F,(z) B P,(1) /,,2 Tn+1Fg(xT)/0 1—uzs Pn(s)deT} '

Setting

1 Po(t) Fu(zt) 2xF,(zt) (1 1 T s"Fp(xs)
(e =T [_Pn(l) TE@ B /t Tn+1Fg(m)/0 1— s P”(SW“”}’

we deduce that
fin(2) = Gn(|2]*)|2]" cos(nf) = Re [%,(|z[*)z"], V z€eD. (2.5.34)

We intend to check that 4, belongs to ¥°>°(D; R). To get this it is enough to verify that ¢ belongs
to ([0, 1];R). Since = € (—o0,1), then 7 € [0,1] — F,(x7) is in €°°([0, 1]; R). The change of
variables s = 760 implies

/T s"Fy( / 0" F, (x10) P, (70) 40
1—as 1-— xTH dr
Tl F2 (xT) F2(xT) ’
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Since F;, does not vanish on (—oo, 1), then the mapping 7 € [0,1] — % belongs to ([0, 1];R).
It suffices to observe that the integral function is > on [0, 1]. Then, we have an independent

element of the kernel given by &} (-), for any n € A,. This concludes the announced result. [J

Remark 2.5.5. The hypergeometric function F,, for n = 1 can be computed as F'y(r) = F(a1,b1;c1;7) =
1 — r. Hence, the function (2.5.20) becomes

A+2B
2A

—(1—2) [1—x+A;me] +/01(1—7'a:)7'[—1+2337]d7—(1—:1:) (i“é)'

Ci(z) =Fi(x) [1 —z+ a:} + /01 Fi(rx)T [-1+ 2z7]dr

The root x = 1 is not allowed since x ¢ §sing~ Therefore, the unique root is x = —%. Coming back to
Q using (2.4.12), one has that Q = 0.

Singular case

The singular case = € (1, +00) is studied in this section. Notice that from (2.4.12), we obtain

|

B << B + —. (2.5.35)
2 2

It is worthy to point out that this case is degenerate because the leading terms of the equa-
tions of the linearized operator (2.5.22) vanish inside the unit disc. To understand this operator
one should deal with a second differential equation of hypergeometric type with a singularity.
Thus, the first difficulty amounts to solving those equations across the singularity and invert
the operator. This can be done in a straightforward way getting that the operator is injective
with an explicit representation of its formal inverse. However, it is not an isomorphism and
undergoes a loss of regularity in the Holder class. Despite this bad behavior, one would expect
at least the persistence of the injectivity for the nonlinear problem. This problem appears in
different contexts, for instance in the inverse backscattering problem [143]. The idea to over-
come this difficulty is to prove two key ingredients. The first one concerns the coercivity of the
linearized operator with a quantified loss in the Holder class. The second point is to use the
Taylor expansion and to establish a soft estimate for the reminder combined with an interpola-
tion argument. This argument leads to the following result.

Theorem 2.5.6. Let 0 <a <1, A > 0and B € Rsuch that £ ¢ [—1,—31]. Assume that Q sat-
isfies (2.5.35) and Q0 ¢ Sqing, where this latter set is defined in (2.4.10). Then, there exists a small
neighborhood V' of the origin in €2*(D) such that the nonlinear equation (2.4.6) has no solution in V,

except the origin. Notice that in the case B < —A, the condition Q ¢ Ssing follows automatically from
(2.5.35).

The proof of this theorem will be given at the end of this section. Before we should develop
some tools. Let us start with solving the kernel equations, for this reason we introduce some
auxiliary functions. Set

Fo(x) = F(=an, by by — ay + 1;2), (2.5.36)
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and define the functions

T Fn s)R )d
Fn(l) 7—71+1F2 (1) dri, yel0,1],

o — n—an—
JKl,Kz(y) = 1 KQ"‘fT s Fn(S)R ( x)ds
an ES K,
Y Fn <y) = + : dr|, y=>1,
Y

n(1) Fntl1-2an FE (1)

K+/ fo 1—7 } y €[0,1],

1 Lo+ [T IR (L )ds
2| Ry ds + dr| , >1,
3/0 G)er ) rF(r) !

Y

1 1 ,1

where g is the source term in (2.5.14). Our first result reads as follows.

and

17

A G)

yKl,Ké (y) =

with

Lemma 2.5.7. Let n > 2 be an integer, x € (1,+00) and g € €([0,1];R). Then, the continuous
solutions in [0,400) to the equation (2.5.14), such that F(0) = 0, are given by the two—parameters
curve

r€ 0,1 = F(r) = Fk, x,(xr?), Ki,Ks€R.

Moreover, if g € €*([0,1];R), for some p > 0, then the above solutions are €' on [0, 1] if and only
if the following conditions hold true:

R <1> =0 (2.5.39)
x
and

B B, [ E(s) s Lgn—an—1p> () 1
Ki=0, and Kp=—pt [ 00R, (;) ds —/1 TP R()ds. (25.40)

Letn = 1and g € 6([0,1]; R). Then the continuous solutions to (2.5.14), with F'(0) = 0, are given
by the two-parameters curve

€ 0,1 F(r) = Zg, i, (z1?), Ki, Ky €R.

If g € €*([0,1]; R), for some p > 0, then this solution is ¢ if and only if

1
Ry <i> =R,(0) = / "Ry (r)dr =0, (2.5.41)
0
and, Ky and K satisfy
LT Ra(2)d v sF
Ky = —3( K+ Jo Ra(Z)ds [ s ) (LY as. (2.5.42)
o T2(1—171)2 1 1—3 s
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Moreover, if F'(1) = 0, we have the additional constraint

w(-5[n 0O e 5

(s)
1[5 (1 1, JT 5P Ra( Lyds
=2 |:F1 (x> + ;Fl <x)} /1 T dr. (2.5.43)

Proof. We proceed as in the proof of Lemma 2.5.2. The resolution of the equation (2.5.16), in the
interval [0, 1], is exactly the same and we find

—fF(y) = yKl,KZ(y)7 Vy € [07 1]

In the interval [1, z], we first solve the homogeneous equation associated to (2.5.16). By virtue
of Appendix C, one gets two independent solutions, one of them is described by

~ (1
Fo(y) = y*" Frn (y> Yy ellal

Using the method of variation of constants, we obtain that the general solutions to the equation
(2.5.16) in this interval take the form

Fy) = Tk, k:(y), Yy €[l a].

The continuity of # in the interval [0, z] follows from the fact that the integrals in y appearing
in the right-hand side of (2.5.37) vanish when y goes to 1 and the constant K is the same in
both sides. Therefore, we get that r € [0, 1] — F(r) = # (zr?) is continuous.

Let us now select in this class those solutions who are 4. Notice that the solutions F are
%' in [0,2]\{1}. So it remains to study the derivatives from the left and the right sides of y = 1.
Since F,, and ﬁn have no derivatives on the left at 1 and verify

|El(y) ~Cln(l —y) and |E}(y)| ~ Cln(1l —y),

for any y € [0,1), see (C.0.6), then the first members of (2.5.37) have no derivatives at 1. This
implies necessary that K; = 0. Moreover, one gets

1 F,(s
o — 0 1 (S)R ( )

(2.5.44)

Since F,,(1) > 0 and R, is Holder continuous near 1, then the convergence of this integral is
equivalent to the condition R, (%) = 0. Now, using (2.5.37), we deduce that the right derivative
of #k, K, at 1is given by

1 1 Sn—an—lﬁ (S) 1
/ +y — 2. Tn\7 .
Fhe e, (1) = 0 (Kg—k/i T Ra( ) ds (2.5.45)

Combining (2.5.44) with (2.5.45), we deduce that F admits a derivative at 1 if and only if

_E(1) [ Eu(s) s Lgn—an=1F (g) 1
Ky =~ Re (5) ds / 5 TR (= )ds

W) Jo 1—3s 1—s s
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Thus, the ¢! —solution to (2.5.37) is given by

‘£T Fn(s ds
Fy) =y"Fuly / ) dr 10,1 (v)

Tn—i-lFQ
1 E,(1) L Fu(s sn—an— 1Fns
g, (L R R d3+f R (s A7 171,00 (y)
Y " ) 1 ntl— QQ"F,,%(T) T 1(1,00) Yy),
y

and, therefore, the solution to (2.5.14) takes the form
F(r) = F(zr?). (2.5.46)

This implies in particular that there is only one ¢! solution to (2.5.14) and satisfies F (:1:*%) = 0.
The case n = 1is very special since F(x) = 1 —z and hence F} vanishes at 1. As in the previous
discussion, the solution of (2.5.16) in [0, 1] is given by

Fy) =yl —y) [K +/ fog(l_TdT],

whereas for y € [1, 00) the solution reads as

1~ /1
Fly)=—F ()
( ) Y ! Yy
where K1, K and K3 are constants. We can check that the continuity of # at 1 is satisfied if and
only if
1 1 S
Ky =—— R ds
TR /o v ( )
1 [t S
=3 /0 Ra () ds

by using in the last line the explicit expression of F;(1) coming from (C.0.5):

(1) =F(Q1,2:4;1) = m -

dr

)

1Kot [T BOR,(L)ds
Kot | —
J FE(7)

@ =

Let us deal with the derivative, given by
V[T Ral2)ds L s
_ JO TP \x/ T - 2
(1-2y) [K1+/0 Ty dT} n y(l_y)/o R, (x) ds, ye[0,1],
~ ~ 1 .
rw=) F A RG] {ﬁ Jo Re (3) ds
1K+fTSF13)R( )d 1 o~
+ LY Kot ysF1(s)Rm 1 ds| g1
1 P (1) 1 1—s ST
1y z

T2 (7)
The convergence in 0 and 1 of the first part comes from R, (0) = R, (1) = fol Re (£)dr =0.In
which case, one gets

T

1 fOT Ra(2)ds

F7) =K1 - o T3(1—1)2

dr.
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For the second part of ¥, one needs fol Re (£)dr = 0 since F'is singular at 1 as it was men-

tioned before. Then,
1 ~
y sF 1
K2+/y i I(S)Rx () ds] .
1 1—s sx
Clearly, we have the constraint

B JoR 3 sFy(s) 1
=-3 (Kl —|—/ EUIACAY anis 1 — 7')2 d’]’) —/; T, Ra (sx) ds, (2.5.47)

in order to obtain 4! solutions. If, in addition, F'(1) = 0, which agrees with #'(z) = 0, we
obtain the following additional equation for K»:

(AR RO e w)

1 Ta (1N 1o 1\] LT TEER (L) ds
T T T T 1 7—4F12(7—)

1 [~ /1 1~ (1 Lod
S [Fl () +—F ()} / £, (2.5.48)
T T x T 17 F* (1) Py (5)
for any « > 1, and then we can obtain the exact value of K and then K; via the relation

(2.5.47). Hence, it remains to check (2.5.48). Note that ﬁl(z) = F(1,2;4; z), for z € (0,1), which
is a positive and increasing function. Take z = 1/z and hence, (2.5.48) is equivalent to

F'(1h) = 3

|—

We claim that

-

dr

joTe £1, (2.5.49)

a(2) = 2B (2) [ﬁl (2) + 2F} (z)} / 1

for any z € (0, 1). Note that ¢ is positive and we will prove that ¢(z) < 1, for any z € [0,1]. Itis
clear that ¢(1) = 0 and

. 3 /1 dr 1 1
lim z = = —= =—.
=0 J, 74F}(r) 3F}0) 3

Therefore 1
| —.
fal) =3
Moreover, since z € (0,1) — F\%(z) is decreasing then
1
/1 dr 1 ftdr 1 1-4°
. ZAF2(r) T F2(2) ). T 3F2(2) 2%

which implies

q(z) < X [ﬁl (2) + 2F! (z)} (1—2)(z2+2+1)
1-2%  2(z2+z2+1) -,
< { 3 371 (2) (1—2)F; (2) (2.5.50)
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From the integral representation for hypergeometric functions (C.0.2) one achieves that

~ Va2l -z
(1—-=2) ll(z):6(1—z)/0 Ldm

(1—zx)?
8
< a’
-9
4 ~
where we have used that sup z%(1 —z) = 77 Combining the last inequality with 1 < Fi(z),
z€0,1]
we deduce from (2.5.50)
1—2% 8z2(22+2z+1)
<
w2 < =+ 27
< —234+822+82+9
- 27
26
< o
- 27
for any z € [0, 1]. Consequently we get ¢(z) < 1 and the proof of (2.5.49) is completed. O

Proposition 2.5.8. Let A > 0and B € R such that £ ¢ [—1,—1]. Let Q satisfy (2.5.35) with

0 ¢ Ssing where the last set is defined in (2.4.10). Then, the following holds true:
1. The kernel of D,G(R,0) is trivial in € (D).
2. Let h € €°([0,1]) and d € €*([0, 1]) such that

DyG(Q,00h=d, h(re®) =" hn(r)cos(nd), d(re) =" dn(r)cos(nf),

neN neN

then, there exists an absolute constant C > 0 such that

hnllgooa)) < Clldnllgrjoy), Vn €N.

3. Coercivity with loss of derivative: for any o € (0, 1), there exists C' > 0 such that

17

%0(D) < C”Dg@(Qa O)hH%za(D).

Proof. (1) First, note that = # xy, where z( is defined in (2.4.14), because z¢ € (0,1). Then,
Proposition 2.4.3 implies that the last equation in (2.5.22) admits only the zero function as a
solution. We will check how the condition (2.5.39) gives us that there are no nontrivial €'~
solutions for n = 1. This can be done easily with the explicit expression of g given in (2.5.29)

for n = 1. Since 3 5 )
— e _ =
Gi(r)=-2 [7“ 5. T3 (1 x)] ,

g(r) = —16H,(1)zr3 {r‘l _3p2 3 (1 — 1)} .

Then, condition (2.5.39) is equivalent to

one obtains that

322 -3z +1=0 or H(1)=0.
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Since x > 1, one has Hi(1) = 0 and g = 0. Then, R = 0. By Lemma 2.5.7, one has that the
solution of (2.5.27) with H;(0) = 0 and Hj(1) = 0 is the trivial one: H;(r) = 0. Coming back
to (2.5.28), we deduce that h; = 0. Therefore, the only ¢ L_solution is the zero function, which
implies finally that the kernel is trivial.

Let us now deal with n > 2. Applying Lemma 2.5.7 to the equation (2.5.27) with (2.5.38) we
get that this equation admits a ¢! solution if and only if

Hy(1)Gp(z72) = 0. (2.5.51)

Using the expression (2.5.9), we find that

_1 An(n+1) 1-n _
Cnla™2) = —4<7<1+2>)9” PR ET,
and from (2.5.11) one has
1 1 A+2Bn+2
-1\ _ L
N (x2 P2z ) (2.5.52)
With the assumptions 422 ¢ [—1,0] and z > 1 one gets

P, (z7h) #0, Vn>2,
obtaining from (2.5.51) that
H,(1)=0, Vn>2.

Coming back to (2.5.27) we find that the source term is vanishing everywhere. Now, from
Lemma 2.5.7 and (2.5.37) we infer that

Hy(r)=0, ¥Yn>2,r¢€]0,1].

Inserting this into (2.5.22), we obtain h,, = 0 for any n € N*. Finally, this implies that the
vanishing function is the only element of the kernel.

(2) To get this result we should derive a priori estimates for the solutions to the equation
D,G(Q,0)h = d.

The pre-image equation is equivalent to solve the infinite-dimensional system

2 1

2pn+1

Ly
X

8

o, (1)

8

[AnGn(r) + Hn(r)] = da(r), Vn>1,

r
n

2 1y (2.5.53)
ho(r)—/ 7_/0 sho(s)dsdT = do(r),

where we use the notations of (2.5.9), (2.5.10) and (2.5.13). We first analyze the case of large n,
for which we can apply the contraction principle and get the announced estimates. Later, we
will deal with low frequencies, which is more delicate and requires the integral representation
(2.5.46). Let us first work with large values of n. Observe that the first equation of (2.5.53) can
be transformed into

hn(r) = 8 %an(T) +

1,2
x

Db da(n)] . (2.5.54)
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The estimate of A,,, defined by (2.5.10) and (2.5.13), can be done as follows

Jo 8" R ()| ds
om|Q, — Q|

[Ap| <

Keeping in mind the relation (2.4.12) and the assumption z ¢ é?sing, we obtain

1

sup—=—— < —+00,
n>1|Q, — Q|

and, on the other hand, it is obvious that

1 h
0 n -+ 2

Combining the preceding estimates, we find

C
Aal < 5llhn

(50([071]), (2555)

for some constant C' independent of n. Let us remark that according to the equation (2.5.54),
one should get the compatibility condition

A H, (2~
At by + 202 g ey =0
n 2nx™ 2

Hence, applying the Mean Value Theorem, combined with (2.5.55), we obtain

A lleo 0,1
Irallooony < O | (rGu () [l o,y
1 ||/ H, !
— ( ff)) + 1, 00,1 (2.5.56)
n i\ r 0 (0,1])

where in this inequality C' may depend on z but not on n. Now, it is straightforward to check
that
[(rGp(r))'| < Cn?, ¥re[0,1], (2.5.57)

Ha(r)\' 1 [ hals) n "ot
< o ):m"" /T po ds—rnH/O " hy(s)ds.

From this latter identity, we infer that

(%)

for any n > 3. Consequently, we get
< Cllhallgoo,1)- (2.5.58)

()
™ €0(0,1))

Plugging (2.5.58) and (2.5.57) into (2.5.56), we find

and second

n n
= <n 3t n+2> [hnllzooay) < Clihnllgoqoay), VYre[0,1],

C
lAnllgoqo,1) < g”hnH%’O([o,l]) + lld7, ll50(f0,1)-
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Hence, choosing ng large enough we deduce that
Ihnllgoqoay < ldullgoqos Vn > no.

Next, we deal with the cases 1 < n < ng. The preceding argument fails and to invert the
operator we recover explicitly the solution h,, from d,, according to the integral representation
(2.5.46). For this purpose we will proceed as in the range study in Subsection 2.5.3. By virtue
of (2.5.72), we find that H,, satisfies an equation of the type (2.5.14). Thus, using (2.5.46), we
deduce

xr? LTFn(S)'R )dsd ) . QaF 1
L2 (1) T o, 2]( r)+xrr <xr2>

1 F,(1 Fo(s s L gn—an—1F (s
« anlg L IES)R(E)dS - f 1-s ( )R( )d dT]— (’r‘) (25 59)
1 D.
1 Tn+172anF3(7—) (72,11 7’

H,(r) =2z"r*"F, (zr*

zr2

forn > 2, and

0 [TR(5)ds
Hy(r) =zr*(1 — z1r?) [Kl -/, m

1 -~ /1 1 [ 1 Ky — (LR 1y
R (= L/ R(8>ds+l/ 2Tl TR,y
zr? xzr? ) |3 Jo x . T4EF2(7) (z72,1]

where K and K are given in (2.5.42)-(2.5.43). From (2.5.38), we get

dT:| 1[07{%] (r)

+

1 n
1 ) y" Pu(y) —4my2dn(y5)} ,

R(5) = 1 [ 44,70

where P, is defined in (2.5.11).
Let us relate A,, with d,,. This can be obtained from the constraint R(%) = 0, which implies

n+2)z:td, (27 7)

N
A= A T D)

Let us remark that this relation is different from (2.5.55), which is not useful for low frequencies.
Consequently, using (2.5.52) we infer that

|An| < Clldnllgoqo,1y,  Vn € [1,m0].
Concerning R, we can get successively

R < C [|Anly™ + ¥ |duly?)

] . VYyelo1], (2.5.60)
which implies that

IR

zo01)) < C [|An] + [|dn

zo(o1)] < Clldn

%9([0,1])>
for any n > 1. In the case n > 2, we also obtain that

R < C [[Anly™ ™ + 537" (|da(y?)
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which amounts to
IR lzo 0,17 < C (ldnllzoqoy) + ldnllgooy) » ¥ > 2. (2.5.61)

Note that this last estimate can not be used for n = 1 since R is only Holder continuous. Then,
we can find in this case that

[R50 (0,17) < Clldnllgom((0,1))»

for = min (3, a).
Let us begin with n > 2. Using the boundedness property of F,,, which we shall see later in
Lemma 2.6.4, combined with an integration by parts imply

xr? LT F,L(S) ar? LT ‘R(S/z)‘ds
| Tn+1F3( ) = A Tl ’
1 S xr? R
<C 7‘ ($)|ds+0r2”/ IR }ds
0 1 — S 0 1 - S

" (2.5.62)

zr? _—n T
[ IR,
1 1—71

We discuss first the case r € [0, %m_%]. From the compatibility assumption (2.5.39), we recall
that R(%) = 0, and therefore we deduce from (2.5.60) and (2.5.61) that

FRE) Lo [T R(D)] IR o [T
ds+r ”/ d </ d+C ”/
0 1—8 0 1—8 0

<C (|An| + |ldn gy +r "+2Hdn

R ()|

wo([0,1])) »

€°([0,1]

for 2 < n < ng. In a similar way to the last integral term of (2.5.62), we split it as follows using
the estimates (2.5.60) and (2.5.61)

—n 1 —n T % -n T
/ RG _/ T m)lm/ T RE)
2 =T 1 1—-7 | 2 1—-71

2

1
2

! —-n T
%0(j0,1]) T ||dnH<K°([O,1D) + CLQ TR (J;) ‘ dr

<C (|Anl + ldnllgoqo1p + ldnllzoqoay + Cr "2 ldnllzoo,1))) -

C (|An] + || dn

Putting together the preceding estimates we get that

L"(5)72(7)(1%5
1—s T —nt+2
/1 TR (7) dr| < C (JAn] + lldnllzo o) + lldrnllzoo.1y) + Cr " lldnllgoo.17)) »

forr € [0, 3z 2] Plugging this into (2.5.59) yields

[Ho(r)] < C (|An| + lldn

%/0([071])) 7,277, + CT”+2||dn

(o) + lldy #0(0,1])» (2.5.63)
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Hy (1)

for r € [0, %x*%] and 2 < n < ng. Now, we wish to estimate the derivative of —%—~. Coming

back to (2.5.59), we deduce from elementary computations that

337’2
2n  2xrF! (zr?) 2 Fo(s)., /s
H/ _ Hn = n n -
n(7) ) < - Fo(xr?) ) * rFn(zr?) J 1—s R (m) ds,
for r € [0, 327 2]. By (2.5.63), we get

2n  2zrF! (zr?) o1
’Hn(ﬂ <T + W)' <C (|An| + lldnlloo,17) + ldnllgoo)

+Cr"tY|d,

0([0,1])-
Concerning the integral term, it suffices to apply (2.5.60) in order to get
1’7‘2 xr?
it [ (<€ [ R a0 )
Hence, combining the preceding estimates leads to
|Hy,(r)] < C (|An] + lldnllzoqoap + ldullgoqo) 7" + Cr™Hdnllgoqo,1))- (2.5.64)

This estimate together with (2.5.63) allows getting

()

for 2 < n < ng. The case n = 1 can be done using similar ideas since we only have the
singularity at 0 in this interval. Note that K and K5 can be estimated in terms of R having

1 1
< C (|An] + ldnllgoo,y) + lldnllgoqoay) , Vre {0, 3% 2} ,

|K1l, [ Ka| < [|R]|504(j0,1))-

Let us now move to the 1ntermed1ate case z € [s2~ 2,272]. Then, there is no singularity in

this range except for r = x~ 2 due to the logarithmic behavior of F), close to this point. This
logarithmic divergence can be controlled from the smallness of the integral term in H,,. Let us
show the idea. When we differentiate H,,, we obtain one term of the type

xr? fT F"(S)R(%)d
I FE(r)

2I'n+17”2n+1F7; (x,r,Q)

dr,
1

where we notice the logarithmic singularity coming from F), at 1. However, one has

xr? T Fn(s) Fn(s)R ds
22ty xrz)/ ‘£ () d < C|F! (zr*)(1 xr2)‘£ (%)

PR (@)
< C (IIRllgo o) + IRl o,1)
< C (|ldnllgoo,17) + Iz o,17)) -

Therefore, after straightforward efforts on (2.5.59) using (2.5.61), it implies that

| Hy,(r)| < C (An] + |l #0([0,1])) » (2.5.65)

#o((0,1)) T 1y,
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for 2 < n < ng. Hence, we obtain

()

for 2 < n < ng. In this interval, the case n = 1 is different. This is because we have not sin-
gularity coming from the hypergeometric function but we do have it coming from the integral.
Hence, some more manipulations are needed. In this case, H; reads as

1 T 2 T
2 [ R(2)ds ot [TR(2)ds
K 0 T 0 x )
1+/0 72(1—7)2dT L 7'2(1—7)2dT

1 1 1
%O([OJ])), Vr e 51’ 2,x 2|,

< C(|An| + ||dy

¢oo,1)) + Ildy,

Hy(r) = zr?(1 — zr?)

The first integral term can be treated as in the previous computations in the interval [0, %x*%].
Let us focus on the singular integral term. By a change of variables, one has

I’I‘Q fOT R(%)dsd
1 TH(l-7)?

T

RGP (2 e [T REL ARG,

x2r4(1 — zr?) x (1 —17)
< C ([IRllgogo,1p) + IRl (o,1) »

where we have used (2.5.39)-(2.5.41). Then, we obtain

SIS

[Hy ()] < C(1 = 27?)[[R|sg0.1po,1))
Similar arguments can be done to find that
Hi(r)\'
'(17,()) < Clldnlgo4(j0,17)>

for any r € [%x_%,x_%].
It remains to establish similar results for the case r € [af%, 1]. With this aim we use the
second integral in (2.5.59). Notice that the only singular point is r = 22 due to the logarith-

mic singularity of the hypergeometric function F! defined in (2.5.36). One can check that this
function is strictly increasing, positive and satisfies

1< E,(r) <sup F,(1) < +o0, Vre[0,1].
neN

As in the previous interval, the smallness of the integral term controls this singularity. The
same happens for the case n = 1. Hence, we get

Hy(r) '

T?’L
for 1 < n < ng. Therefore, in all the cases we have
Hy(r) '

rn

for 1 < n < ng. Applying the Mean Value Theorem to (2.5.54), and using (2.5.66) and (2.5.57),
allow us to obtain

_1
<C (|An‘ + ||d'ﬂ %”0([0,1])) , Vre [$ 2, 1]7

#o(0,1)) + lldn,

< C (lldnllzoo,1)) + ldnllzoqoy) »  Vr €[0,1], (2.5.66)

1

#o(0,1)) < C (|ldn

wo(o) + Idnllwoqoy) » ¥ € [Lno].
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Similar arguments can be done in order to deal with the equation for n = 0. Note that the
resolution of this equation is similar to the work done in Proposition 2.4.4.
Then, combining all the estimates, it yields

1001y < C (lldn

[0 + ldnllgooap) » Y eN.
This achieves the proof of the announced result.

(3) Let us recall the formula for the Fourier coefficients

27
dp(r) = 1/0 d(rcosf,rsin ) cos(nb)db.

™

We can prove that

C
l[dnllzo(0,17) < TTa l|dll%1.0 (D)
for n > 1. This can be done integrating by parts as

2

dp(r) = —— Vd(rcosf,rsinf) - (—sinf, cos f) sin(nb)db,

nm Jo

and writing it as

dn(r) :é /027r vd <r Cos <9 + %) , T sin <0 + %)) : (— sin (0 + %) , COS (9 + %)) sin(né)do

:# OQW [Vd (rcos (9+ %) , T sin (6—|— %)) : (—Sin (9—1— %) , COS <9+ %))

— Vd (rcosf,rsinf) - (—sin, cos 0)] sin(n#)do.

Consequently,
C

|dn(r)] < WWH%W(D)-

With similar arguments, one achieves that

c
#0(0,1)) + ldnllgoo,1)) < nHaHdH%a(D)’

[

and then
||hn||(£0([0,1]) < WHdH%Q’a(D)-

Therefore, we obtain

hllgo) < D Ihnllgoqo,) < Clldllgzam),
neN

which completes the proof. O

The next target is to provide the proof of Theorem 2.5.6.
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Proof of Theorem 2.5.6. In a small neighborhood of the origin we have the following decompo-
sition through Taylor expansion at the second order

~

G, h) = DG, 0)(h) + %D;QG(Q, 0)(h h) + (0, B,

where %5 (2, h) is the remainder term, which verifies

1 ~
%2282, b) |52 p) < glng G (8, 9)(h, h,h)

9,9,9

€22 (D)>

where g = th for some ¢ € (0,1). We intend to show the following,

Lp2 G(0,0)(h h) + 22(02, h)

H 59,9 < Cllhllf}g,a(mllhll%(m, (2.5.67)

%2(D)

for some 6; > 0 and do > 1, getting the last bound will be crucial in our argument. First, let us
deal with the second derivative of G. Straightforward computations, similar to what was done
in Proposition 2.4.1, lead to

D2 ,G(Q,0)(h,h)(z) = _h(z)? . Re /D Dy d(2, 0)(h)(z; = jgcb(sz, 0)(h)(y)

8A T

Re [ (940(2,0)(h)(2) — 84¢(2,0)(h)(y))*
- 27T/D =) fo(y)dA(y)

n 2Re/ 9y (€2, 0)(h)(2) — 9yp(£2,0)(h)(y)

™ D =Y

= 0,9( 00 (M) + - [ oz |2 =yl oa)]0,6(92 0) (Y (1) A ()

— QRe [82 ,6(€2,0)(h, h)(2)]

| Re / 02 ,6(92,0) (h, h)(2) = 82,6(2,0)(h, h)(y)
27 Jp zZ—=y

+ ;/Dlog |2 =yl fo(y)Re [92 ,6(,0)(h, h)' (y)] dA(y).

h(y)dA(y)

fo(y)Re [0,¢(€2,0)(h) (y)] dA(y)

fo(y)dA(y)

Recall the relation between d,¢(2,0)(h) and h

/1 s"h, (s)ds
— n _Jo .

By Proposition 2.3.3, one has that

1096(€2,0)h

z2ap) < C|lh

¢l (D) .
We claim that one can reach the limit case,

1956(€2, 0)R

#10) < |Ihllg00)- (2.5.68)
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The last estimate can be done using Proposition 2.2.2 in order to work in T as follows

Dgd(Q, 0 ()| = > / s"th,, (s)dse™
n>1
1
=3 Z/ / s"Hh(se Cos(nel) i dsde’
n>1
1 Z/Qﬂ/ +1 0 4 i) il g gy
= 1 (5et) (e 4 em 10 e dsd
4 n>1
1 2m .
== / / s h(se™) M0+ +em<9*9’>) dsdf'| .
4
n>1

Using Fubini we deduce that

2

Dy (€2, 0)1'(e”)

i(0+0") i(0—0") )
1 — sei(0+0") * 1 — sei0=0) dsdf
The latter estimate follows from the convergence of the double integral

/2” / dsdf

o |1—se? |
The next step is to deal with 83 ,¢(€,0)(h, h). By differentiating it, similarly to the proof of in
Proposition 2.3.3, we obtain

SCHh

WO(D) .

92 ,0(€,0)(h, h) = — %%F(Q,0,0)_l (02 ,F(2,0,0)(h, h) 4 20] ,F(£2,0,0)(h, 9y6(£,0)h)
+8§> (j)F(Q O O)( 9¢(Q O)h,agqb(Q,O)h)]

:_,Z nl,

n>1 ”)

where p(w) = 3, < py sin(nf) and

p(w) =07 ,F(,0,0)(h, h)(w) + 207 4F(2,0,0)(h, 0y$(£, 0)h) (w)
+ 95 4 F(2,0,0)(956(82,0)h, 9y6(£2, 0)h) (w)

:Im[wamm,oxh)'(w) [ 201,

s DW—Y
w) — 0gp(2,0)(h
o) = DO,

0,6(2,0)(h
0 Re [0,0(62.0) (0 (1)] dA(y) +223, (8% 0)(R)(w)0,0(5 0) () ()
%00 ) [ 2HL00N) - 260010

D

T (w — y)2

w2
=],
+w39¢(

fo(y)dA(y)
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2wy 8(2,0)( / Joly [8,6(2,0)(R) ()] dA(y)

_/ 9¢ (&2,0)( (w y§¢(ﬂ OW )] Foly)dA(y)

2w / 0y6(2,0)(h ><( ) = 050(2.0)(1)W)  \Re [0,6(2, 0)(h)'(4)] dA(w)
T Jo w—y)

=3 o) 15 50,01 () PdA() |
v Dw y

By Proposition 2.3.7 and due to the fact that 837 ;©(€2,0) can be seen as a convolution operator,
one has that

102 46(2,0) g0y < Cllpllgracr)-

Moreover, we claim that

Zoy k=012, (2.5.69)
with o9 > 1. First, we use the interpolation inequalities for Holder spaces

(2.5.70)

for k, k1 and k2 non negative integers, 0 < oy, g < 1 and
k+a= ,B(kl + Oél) + (1 — ﬂ)(kg + 052),

where 5 € (0,1). The proof of the interpolation inequality can be found in [80]. In order to get
the announced results, we would need to use some classical results in Potential Theory dealing
with the Newtonian potential and the Beurling transform, see Appendix B or for instance [64,
101, 110, 115]. Now, let us show the idea behind (2.5.69). To estimate the first term of p, we
combine (2.5.68) with the law products in Holder spaces, as follows,
/ h(y) _aa()
() —

0,(2,0)( Y)_ga(y)

< C|aye2. 0y ()

0(T)

Syl

@ (D) HhH%O(D)> :

€k (T) G (T)

+C |056(2,0)(R)'(:)

ko (T)

0(T)
< C (Ihllgoqoy Il gnacoy + I

Then, (2.5.69) is satisfied for the first term. Let us deal with the second term of p. For k = 0, one
has

H/agﬁb(ﬁao)(h)(-)—5g¢(9,0)( ),
D ((-) —y)?
C‘(%MQ 0)( pv/ ® ) dA (y) oo
#0p [ 2 ( el

(
h(y)
p [ © -

h(y)dA(y)

0.0 (T)

00 (T)

<C1956(2,0)(h) (llgo.()

+ C110,6(2,0) (k) Kl gy
¢0(T)
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h(y)
p | () p2ta)

+ C1050(2,0)(h)(-)

%0 (T)

0. (T)

<C [hllgopy 1Pllgo.0 (D) -

For k = 1,2, we would need the use of the interpolation inequalities:

H/g¢90 )> g)(b(QO)( )W),

0,0(2.0)(W()p. | 5 (y)y) dA(y)

0 pw [ BACOWG )y,

(y)dA(y)‘

@0 (T)

@k (T)

@ (T)

h(y)
p | () A

h(y)
p | () p2ta)
|[go.0p) + C A

<C[940($2,0)(h)()

@hoo(T)

%0(T)
+ C[046($2,0)(h)()

<|n

@k (T)

wr-10(D) |IP o)

It remains to use the interpolation inequalities in order to conclude. For the case & = 1, we
need to use (2.5.70) in order to get
2a

ooy < C MBS IR o).

17

w0 () 1P

We use again (2.5.70) for k = 2:

1+2a

_3
1llg1.0q0 llgonnoy < Cl1AlIZ) 112 o)

Note that in every case, the exponent of the €’-norm is bigger than 1. As to the remaining terms
of p, we develop similar estimates with the same order of difficulties leading to the announced
inequality (2.5.69).

Once we have these preliminaries estimates, we can check that (2.5.67) holds true. For
example, let us illustrate the basic idea to implement through the second term.

H | 1051) = yihto)Re [9,0(62.0)(h) ()] dA()

<C ||h89¢(9’ 0)(h),H<go,a(D) .
€2 (D)

Using the classical law products and (2.5.68) we find

<C|hllgo(p [956(2, 0)(h)’

©2.2(D) H‘sz’O‘(D)

Dlog (-) = ylh(y)Re [9y0(€2, 0)(h) ()] dA(y)

+ C [ hllgo.0py [|090(2, 0) (R

#0(D)

<C||hllgo.« oy 1Pll50 (D) -

The other terms can be estimated in a similar way, achieving (2.5.67). The same arguments
applied to the remainder term lead to

122(S2, h)

%22 (D) < CHhHifl2a(D)HhH6‘;O(D)
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The computations are long here but the analysis is straightforward.

Let us see how to achieve the argument. Assume that h is a zero to G in a small neighbor-
hood of the origin, then

~ ~

1
DyG(Q,0)h = —inggG(Q, 0)(h, h) — Zo(S2, h).

Applying Lemma 2.5.8—-(3) we deduce that

2llgo0) < ClIDG(R,0)h |2 (o)
1, ~
< Cll5D; ,G(,0)(h. 1) + Z2(, )

€22(D)
< Clall o 1012 o),

Consequently, if HhH%M(D) < C~1, then necessary |hllzo@y = O since §2 > 1. Therefore, we
deduce that there is only the trivial solution in this ball. O

Remark 2.5.9. The quadratic profiles are particular cases of the polynomial profiles studied in Section
2.4.1; fo(r) = Ar®™ + B. Here, we briefly show how to develop this case. Studying the kernel for this
case is equivalent to study the equations

Hy(r)

Al

hn (1) +

m(2m + 2)r2m=—2 [_ H,(1)

n 2m _ 1
(2= 22)

12 Lq g7
Tm ho(r) _/ / sho(s)dsdr =0, Vr € [0,1],
8 + TJo

} =0, Vrel0,1], Vne N~

where the functions Hy, and G, are defined in (2.5.9)-(2.5.10) and

1 2m + 2 B
— = Q——.
Tm A ( 2)

Thus H,, verifies the following equation

r(l— xmrgm)H;{(r)—(Qn -1 - xmrzm)H;L(r)
H,(1)

+ 2m(2m + 2)r*™ e, H, (1) = 2m(2m + Z)xmr"+2mG7(1)Gn(r).

Using the change of variables y = x,,,r*™ and setting H,,(r) = F(x,r*™), one has that

Y1) F ") P ) + T )

m
nt1 L
_mAl Sy e Ha() Ly )
The homogeneous equation of the last differential equation can be solved in terms of hypergeometric
functions as it was done in the quadratic profile. Then, similar arguments can be applied to this case.
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2.5.3 Range structure

Here, we provide an algebraic description of the range. This will be useful when studying the
transversality assumption of the Crandall-Rabinowitz Theorem. Our result reads as follows.

Proposition 2.5.10. Let A € R*, B € R and xzo be given by (2.4.14). Let x € (—o0, 1)\{351ng U
{0, 20} }, where the set S\Smg is defined in (2.5.19). Then

Im D,G(,0) = {d e ¢1(D) / d(2) %y (2)dz = 0, n € Am} ,
D

where )
Fo.(x B

A
=R + —
%a(z) = Re [1—cv|z|2 4z’

and the set A, is defined by (2.5.21).

Proof. In order to describe the range of the Dg@(Q, 0) : €4*(D) — €+ (D), we should solve
the equation

Dg@(ﬂ, 0)h=d, h(re?)= Z hn(r) cos(nf), d(re') = z dp(r) cos(nd).
n>0 n>0

From the structure of the linearized operator seen in (2.5.8), this problem is equivalent to

2

1
E—
s ) = D AnGn (1) 4 ——Ho ()| = dn(r), Y > 1
8 n 2rn+l
(2.5.71)
1 ,’,.2 1 1 T
L ho(r) — — [ sho(s)dsdr = dy(r),
8 r T Jo

where the functions involved in the last expressions are defined in (2.5.9)-(2.5.13). By Propo-
sition 2.4.3, the case n = 0 can be analyzed through the Inverse Function Theorem getting a
unique solution. Let us focus on the case n > 1 and proceed as in the preceding study for the
kernel. We use the linear operator defined in (2.5.23),

1 r
ZLh = 7“2"/ ! Th(s)ds +/ s"Th(s)ds,
T s"T 0
for any h € ([0, 1]; R), which satisfies the boundary conditions in (2.5.24) and

S (r(LRY (1))~ (ZRY(r) = —r" T h(r).

Taking H,, := Zh,, and using (2.5.71) we find that H,, solves

(1 —ar®)rH!(r) — (1 — 2r®)(2n — 1) H.,(r) + 8razH,(r)
= —16A,2r"2G (1) — 16znr™d, (r), (2.5.72)

complemented with the boundary conditions H,,(0) = H/,(1) = 0. This differential equation is
equivalent to (2.5.71). Once we have a solution of the differential equation (2.5.72) we have to
verity that Zh, = H,, where

8x
b (1) := T2 dn(r) +

A,r

- Gn(r) +

—— H,(r)
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Denote # := Zh,, — H,, then it satisfies

1 / / / o
o [r ot (r)]" — 2 (r) = 0.

From the boundary conditions one obtains that 4/ = 0 and thus .Zh, = H,. Now, since
H,(0) = 0, Lemma 2.5.14 can be applied with

g(r) = =16 A,zr" 2G (1) — 16znr™ L d, (r).

Thus, the solutions are given by
Ha(1) T L [TRs) s\ sy
__.2n 2 n S d
Hy(r) =r2"F, (xr?) [Fn(w) + Az /w:» rn+1Fg(r)/0 — (m) Gy (x) dsdr

e [* e ) T () (5)) ]

A change of variables combined with (2.5.13) yield

1 8x ! 1 T s"T2F, (25?)
H,(r) =H,,(\)r*"E, (xr? — / / n Gn(s)dsd
(r) @) (@) [Fn(m) Gn(1) J, T H1F2(x72) J 1— xs? (s)dsdr
1 1 T anrlF ($$2)
1 2nFn 2 n dn d d .
+ 16nar (xr )/r 72”+1F3(m72)/0 1= 22 (s)dsdr

Note that when d,, = 0, the function H,, agrees with the one obtained for the kernel. It remains
to check the boundary conditions. Clearly H,(0) = 0, then we focus on proving H} (1) = 0.
Following the computations leading to (2.5.31), we obtain

(1) =

2nH, (1 1 Lsntlp, (zs?
nH,(1) _ 1l6nz / s (xs )dn(s)ds.
0

F@em % " B

1 — xs2

We will distinguish two cases. In the first one A, is empty. Then, by virtue of Proposition
2.5.3 and Proposition 2.5.1, we obtain that D,G(€2,0) is an isomorphism. Otherwise, we have
U, (z) =0, for some n € N*, and the boundary condition is equivalent to

1 n+1F 2
/ T ) e =0, (2.5.73)
0 1—aor

IZ"_(ﬂz'Iz)z”} , and consider the linear form Ty, : %:**(D) — R

Define z € D — %,(2) = Re{
given by

Ty d = /D d(y) % (y)dA(y).

Condition (2.5.73) leads to T'x,,d = 0, which follows from
2w )
d(re') cos(nf)dd = wd,,(r).
0

Since %, belongs to ¥>°(D;R), we deduce that Ty, is continuous. Thus, Ker Tk, is closed and
of co-dimension one. In addition, from the preceding analysis one has that

Im D,G(9,0) C {d € ¢(D) : /d(z)xn(z)dz =0, ne AI} C () Ker Tx,.
D

neAy
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The elements of the family {4, : n € A;} are independent, and thus ) Ker Ty, is closed

neAy
and of co-dimension cardA,. As a consequence of Proposition 2.5.3, Ker D,G(£2,0) is of di-
mension cardA,. Using Proposition 2.5.1, D,G(£2,0) is a Fredholm operator of index zero.
Consequently, Im D,G(£2,0) is of co-dimension cardA,, and thus

Ing@(Q,O) = ﬂ Ker Ty, .

neAy

This achieves the proof of the announced result. O

2.6 Spectral study

The aim of this section is to study some qualitative properties of the roots of the spectral func-
tion (2.5.20) that will be needed when we apply bifurcation arguments. For instance, to identify
the eigenvalues and explore the kernel structure of the linearized operator, we should carefully
analyze the existence and uniqueness of roots z,, of (2.5.20) at each frequency level n and study
their monotonicity. This part is highly technical and requires cautious manipulations on hy-
pergeometric functions and their asymptotics with respect to n. Notice that for some special
regime in A and B, the monotonicity turns to be very intricate and it is only established for
higher frequencies through refined expansions of the eigenvalues x,, with respect to n. An-
other problem that one should face is connected to the separation between the eigenvalues
set and the singular set associated to (2.3.5). It seems that the two sequences admit the same
leading term and the separation is obtained at the second asymptotics level, which requires
much more efforts because the sequence {x, } converges to 1, which is a singular point for the
hypergeometric function involved in (2.5.20). Recall that n and m are non negative integers.

2.6.1 Reformulations of the dispersion equation

In what follows, we intend to write down various formulations for the dispersion equation
(2.5.20) describing the set (2.1.11). This set is given by the zeroes of (2.5.20) and the elements of
this set are called “eigenvalues”. As we shall notice, the study of some qualitative behavior of
the zeroes will be much more tractable through the use of different representations connected
to some specific algebraic structure of the hypergeometric equations. Recall the use of the
notation Fj,(x) = F(an,by;cn; ), where the coefficients are given by (2.5.15). The Kummer
quadratic transformations introduced in Appendix C leads to the following result:

Lemma 2.6.1. The following identities hold true:

A+2B
20 — 1 2x
F(ap,by; 2; — = F(ap, by; y L),
+n+1 (@n, bp;n + 25 2) CESCES) (Gn, bp;m + 35 2)
A+2B
Cn() A(n+1)$ (an,bp;n+ 1; ) (2.6.2)
n—(n+1)x 2nx
——————F(an, by; 2; < F(an, by; y L),
n 1 (a n+ x>+(n+1)(n+2) (a n+3;x)

forany n € Nand x € (—oo, 1), where we have used the notations (2.5.15).
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Proof. Let us begin with (2.6.1). The integral term in (2.5.20) can be written as follows

1 1 1
/0 Fy(rx)m" [-1 4+ 2z7]dr = (22 — 1)/0 F,(rx)m"dr — Zx/o E,(rx)m™(1 — 7)dr.

This leads to

1
Cn(z) =Fy(x) {1 —z+ m:r] + (2z — 1)/0 F,(rx)r"dr

— 2z /1 Fp(rz)r(1 — 1)dr. (2.6.3)
0

We use (C.0.10) in order to get successively

F(ap,bp;n+ 2;x)
n—+1

1
/ F(an,bp;n+ 1;7x)r"dr =
0
and
F(ap,bp;n+ 3;x)
n+1)(n+2) ’

for any x € (—o0, 1). Taking into account these identities, we can rewrite (2.6.3) as (2.6.1).

1
/ F(an,bp;n+ 1;72)m [1 — 7] dr =
0

In order to obtain (2.6.2), we use (C.0.9) with a = a,, b = b, and ¢ = n + 1, which yields

(n+3)z—(n+1)
n+1
(an B (n + 2))((n+ 2) B bn)x
(n+1)(n+2)

n+3)r—(n+1
:( )n—l—l( )F(an,bn;n—FQ;aJ)

(2n +2)z

— = F(an, bp; 3 L),
CESICE) (an, bp;n + 35 2)

F(ap,bp;n+1)(x—1) =

F(ap,by;n+2;x)

+

F(an,by;n+ 3; 1)

where we have taken into account the identities a,, + b,, = n and a,b, = —2. By virtue of the
first assertion of this lemma we obtain
A+2B
n =——zF nabn; 1;
Gu#) = 1y an b + 152
(n+1)—(n+3)x (2n + 2)x
Flapn,b;n +2; L Pap,bn;n + 3;
* i (@nsbosn 4+ 230) + oy gy s buin 4 3:2)
2¢—1 2z
Flap, bpin +2;7) — ——————F(an, bu;n + 3
t gt s buin 4 252) — ey Flan basn + 35 )
A+2B
=—————2F(an, by; 1;
A1 1) Flan buin + 1)
_ 1 2
—I—wF(an,bn;n—FQ;m) na F(an,bp;n+ 3;x).

Nt HCESIOES)

This achieves the proof of the second identity (2.6.2).
Let us also remark that using (C.0.7) we can deduce another useful equivalent expression for

Cn
Colz) = I%(:L’)F(an, bp;n+ 1;2) + Ig(ac)F(an + L byn+2;2) + Ig(m)F(an, bp;n + 3;x),
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where
Il(ac)  n—ay A+2B B n— l1+a,
T 41— ay An+1) n+l-a,)’
2N an(2z —1)
L@ = i mri—an
I(a) = w

C(n+D(n+2)

2.6.2 Qualitative properties of hypergeometric functions

The main task of this section is to provide suitable properties about the analytic continuation of
the mapping (n,z) — F'(an, bp; cn; z) and some partial monotonicity behavior. First, applying
the integral representation (C.0.2) with the special coefficients (2.5.15), we find

I'(n+1)
I'(n—a,)l'(1+ay

1
F(an,by;cn;z) = ] / el ) (1 — 7)) dr, (2.6.4)
0

for z € (—oo, 1]. Notice that, due to (C.0.5) we can evaluate it at 1, obtaining

I'(n+1)
I'(n—a,+1DT'(1+ay)’

Fan,bp;cn;1) = (2.6.5)
for any n > 2, where we have used the identity I'(x + 1) = «I'(x). We observe that the rep-
resentation (2.6.4) fails for the case n = 1 because a; = —1. This does not matter since as we
have already mentioned in Remark 2.5.5, the case n = 1 is explicit and the study of {; can be
done by hand. It is a well-known fact that the Gamma function can be extended analytically to
C\{0,-1,-2,...}. Therefore, the map n € N*\{1} — F(ay, by;cp;1) admits a €*°- extension
given by

Ft+1)

tt €l
F it €l Fool Lt —ar +1I'(1+a)’

: _ 4
with a = st
The first result that we should discuss concerns some useful asymptotic behaviors for t
F(t).
Lemma 2.6.2. The following properties are satisfied:
1. Let t > 1, then the function x € (—oo, 1] — F(a¢, be; ce; ) is positive and strictly decreasing.

2. For large t > 1, we have

1 2 In?
f(t):1—2nt—7+0<n2t)
t t t

and

_ 2
Fer)=22t 201 +O<ln3t),
t

where ~y is the Euler constant. In particular, we have the asymptotics

1 2 In?
F(an,bn;cn;l)—l_Qm_7+O<112n>
n n n
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and

d Inn  2(y—1) In?n
%F(an, bp;cn; 1) = 2? + 3 +0 ,

for large n.

Proof. (1) The case t = 1 follows obviously from the explicit expression given in Remark 2.5.5.
Now let us consider t > 1. According to (C.0.4), we can differentiate ' with respect to x:

b
F'(ac,be;ee;n) = e tF(at +1,be + L;ee + 1;2), Ve (—oo,1).

Cr

Using the integral representation (C.0.2) and the positivity of Gamma function, one has that for
anyc>b>0
F(a,b;c,z) >0, Ve (—oo,1). (2.6.6)

Since a: € (—1,0),bc,c. > 0, then we deduce that F(ar + 1,bc + 1;¢. + 1;z) > 0 and thus
F'(ac,besee;w) <0, Vo e (—oo,1).
This implies that « — F'(a¢, bc; ¢; ) is strictly decreasing and together with (2.6.5) we obtain

F(a,b;c,x) > F(ag,be;ee,1) >0, Vo € (—oo,1).
(2) The following asymptotic behavior

F<t + a) _ _ a—fB—n
1 p) —%Cn(a B,B)t :

holds as t — 400 by using [145, Identity 12], where the coefficients C),(cv— 3, ) can be obtained
recursively and are polynomials on the variables «, 3. In addition, the first coefficients can be
calculated explicitly

Cola—5,8)=1 and Cila—6,6) = 5o~ ) (a+5-1).
Taking @ = 1 and 8 = 1 — a: we deduce

I(t+1) 1 . 1 1
e S A— tat _ 1— tat ol =)= tat ol =
T(t+1—a) +gae (1 -a) HRAE TO\e)

where we have used that a, ~ —%. From the following expansion

Int In?t
tatzeatlnt:1_21+0<n >,

+2
we get
L(t+1) Int In?t
—=1-2—+40 . 2.6.7
Mt+1-—a:) e <t2> 26.7)

Using again Taylor expansion, we find I'(1 + a¢) = 1+ a.I"(1) + O (a?) . Therefore, combining
this with I"(1) = —y and a; ~ —2 yields

2 1
F(1+at)—1+t+0<t2>.
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Consequently, it follows that 7 admits the following asymptotic behavior at infinity

Fle) = 1—285 4 O(t2In’t) _1_21r17t_21+0 In? t
1+ Z 40k t Tt '

£2

Since I' is real analytic, we have that F is also real analytic and one may deduce the asymptotics
at +oo of the derivative 7’ through the differentiation term by term the asymptotics of F. Thus,
we obtain the second expansion in assertion (2). OJ

Our next purpose is to provide some useful estimates for F'(ay, by; cp; ) and its partial
derivatives. More precisely, we state the following result.

Lemma 2.6.3. With the notations (2.5.15), the following assertions hold true.

1. The sequence n € [1,400) +— F(an,by;cn;x) is strictly increasing, for any x € (0,1], and
strictly decreasing, for any x € (—o0,0).

2. Given n > 1 we have

—2zF,(x)
|On ()] < Wa

forany x € (—o0,0].
3. There exists C > 0 such that
|0z F (an, by cps )| < C + Clln(1 — )|,
forany x € [0,1], and n > 2.

4. There exists C' > 0 such that

Inn
|0nF(an7bn§Cn§x)| < OF;

forany x € [0,1], and n > 2.

5. There exists C' > 0 such that

|02 F (@, by ens )| <

1—2’

forany x € [0,1] and n > 2.
Proof. (1) Recall that F;, solves the equation
z(1—2)F) () + (n+1)(1 — 2)F,(z) + 2F,(z) = 0,

with F},(0) = 1 and F,(0) = % = n;fl As we have mentioned in the beginning of this section
the dependence with respect to n is smooth, here we use n as a continuous parameter instead

of t. Then, differentiating with respect to n we get
(1= 2)(0,F,)" (x) + (n+1)(1 — 2)(0nF) (2) + 2(0,F,) = —(1 — 2)F) (),

with (9, F,)(0) = 0 and (9, F,)'(0) = ﬁ We can explicitly solve the last differential equa-
tion by using the variation of the constant and keeping in mind that z — F,(z) is a homoge-
neous solution. Thus, we obtain

OnFo(z) = Fa(z) [KQ - /x 1 W <K1 - / ' F;(S)Fn(s)s”ds> dT} ,

0
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where the constant K must be zero to remove the singularity at 0, in a similar way to the proof
of Lemma 2.5.2. Since (0, F},)(0) = 0, we deduce that

1 1 T
Ky = — — F! "dsd
1= |, g J, O
and then
OnFyn(x / 2 7-n+1/ F!(s)F,(s)s"dsdr. (2.6.8)

The change of variables s = 76 leads to

OuF(x) = —F(x) /0 IF;(T) / F(+0) F, (+0)6"d0dr- (2.69)

Hence, it is clear that 9, F},(z) > 0, for z € [0,1), using Lemma 2.6.2-(1) . In the case z € (—o0, 0]
we similarly get O, F,(x) < 0. Let us observe that the compatibility condition (9, F;,)'(0) =

@ H)Q can be directly checked from the preceding representation. Indeed, one has

_ OpFu(x) _FL0) [} 6"de 2
! = —_— = n -
(0 F)(0) = lim = o, Fu(0) (n+1)2°

(2) First, notice that )
Fé(x) = —mF(an —|— 1, bn + ].,Cn + 1,.’E),

and from (2.6.6) we deduce that

| Fo ()] <

2
< ——F(ap+ 1,bp + 1,¢, + 1, 2).
n+1

Now studying the variation of z € (—o0,1) — F(a, + 1,b, + 1,¢, + 1,x) by means of the
integral representation (C.0.2), we can show that it is strictly increasing and positive, which
implies in turn that

0< F(an+1,bp+1,¢p+1,2) < F(ap, +1,b, +1,¢,+1,0) =1, Vz € (—o0,0].

This allows us to get,
2

n+1’

0< —Fl(z) < Vo € (—00,0]. (2.6.10)
Lemma 2.6.2-(1) implies in particular that

Fo(x)>1, Vxe€ (—o0,1),
and coming back to (2.6.9) we find

< 2Fu(2) 0 1
n+1 J, Fi(

! n 2F, (z) [° dr —2xF,(x)
ﬂ/o Fa(r0)f"dbdr < G202 | o) S v 1)

for € (—o0,0]. This achieves the proof of the announced inequality.

|On ()] <

(3) From previous computations we have

O F(ap,by;cpn;x) =

n+1F(1+an,n+1—an;n+2;x),
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which admits the integral representation

—oT(n +2)
m+1)I'(n+1—a,)T(1+ay,

1
6xF(an7 bn, Cn; .CU) = ) / Tnfan(l _ T)a"(]_ _ T.’L’)ilia"d’r
0

—2(n+ 2) o L
= n—an 1 _ Qan, 1 _ an
n+1 }—(n)/OT ( ) ( TI) dr
_—2(n+2)
= g1 7 W), (2.6.11)
where )
Jn(x) = / Tn_a"(l o T)an(l _ Tf)_l_a"dT.
0
Using
2(n+2)
-~ L 37
ilgf n+1 —

and the first assertion of Lemma 2.6.2, we have F(n) € [0,1], and

sup w <3. (2.6.12)
n>1 n+1
Consequently,
|02 F (an, by; ey )| < 3J,. (2.6.13)

To estimate .J,, we simply write

<[ =) <o [0 d c
< — ) (1 — = < — )andr < <
”—/0( ™) ( 2) T= /0( ™) "=1%a, =
for some constant C independent of n > 2, and for z € [0, %] In the case x € [%, 1), making
the change of variable
M (2.6.14)
and denoting the new variable again by 7, we obtain
[T 1
Ip <xz7nT / T (1+7) " %dr
0
1 T2
<g onl / 79 (1 4 7)1 ondr 4 g7t / 70 (1 4 7) gy
0 1
= /1 —an
SC’—i—C/l ( +7’> (1+7)"tdr < C+C|In(1 — )|,
1 T
which achieves the proof.
(4) According to (2.6.8) and Lemma 2.6.2—(1) we may write
x 1 T y n
|On Frn ()| <Fp(x) \ FX |E)(s)|Frn(s)s™dsdT
1 1 1 T
<—— - F!(s)s"dsd 2.6.1
_Fg(l) /0 T /O | n(S)S sar, ( 6 5)
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for z € [0,1] and n > 2. Using (2.6.13), the definition of .J,, and the fact that 0 < —a,, < 1, we
obtain

1—2x

1 1
|F! (z)] < 3/ T (1 — 1) (1 — 7)1 dr < / T (1 — )% dT.
0 0

Now, recall the classical result on the Beta function B defined as follows

F'n+1—-a,)'(1+ay)

1
/0 (1 —7)*dr =Bn+1—an,1+ay,) = T 19) , (2.6.16)
which implies in view of (2.6.5) that
! 1
R O ]

Consequently
3

(1—2)(n+1)Fu(1)
Inserting this inequality into (2.6.15) we deduce that

1 1 T Sn
F < - —n-l dsd
OnFunle)] < <n+1>F3<1>/0 T /0 [

and integrating by parts we find

1 T - T 1 1
n 1— n n 1 n_1
/7”1/ ° deT:[ u / ° ds} +/ S s
0 o 1—s n o 1—s nJfy s—1

|F(x)] <

Thus, it follows from the classical inequality > ;_; + < 1+ Inn that

1+1Inn

for n > 2. Since F,(1) > 0 and converges to 1, as n goes to oo, then one can find an absolute

constant C' > 0 such that

Inn
|On F ()| < C?,

for any n > 2, which achieves the proof of the estimate.

(5) Differentiating the integral representation (2.6.11) again with respect to = we obtain

(an + )an(n —ay)(n + 2)}_

p— ()T @)

axacF(am bn; Cn; .ZU) =

with .
Tole) = / L] (1~ )2 an gy,
0

According to (2.6.12) one finds that
|0 F(an, b € )| < 4T (2). (2.6.17)
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The procedure for estimating J, matches the one given for J,, in the previous assertion. Indeed,
we have the uniform bound J,(z) < C, for z € [0, %] Now, the change of variables (2.6.14)
leads to

T

T C
/1 T (1 + T)_Q_a"dT < ,
0

1—=z

—an—1

~

1
Jn(z) < /0 (1—7)"(1 —72) 2 %dr <

1—=x

_2

where we have used the bounds 0 < —a,, < 5 < 1, which are verified for any n > 2 and

z € [4,1). Inserting this estimate into (2.6.17) i\je\gbtain the announced inequality. O
Next we shall prove the following.
Lemma 2.6.4. There exists C' > 0 such that
|F(an, bp;n+ 1;2) — 1| SclnTn, (2.6.18)
1 < F(ap + 1,bp;n+ 2;2) <Chn, (2.6.19)
|F(an, bny;n+ 3;x) — 1] SclnTn, (2.6.20)

forany n > 2 and any z € [0, 1].

Proof. The estimate (2.6.18) follows easily from the second assertion of Lemma 2.6.3, combined
with the monotonicity of F}, and Lemma 2.6.2. Indeed,
Inn
|F(ana bn; Cn; 0) - F(ana bn; Cn; -'E)| < F(ana bn; Cn; 0) - F(ana bn; Cn; 1) <C—-u.
n
In the case (2.6.19), applying similar arguments as in the first assertion of Lemma 2.6.2, we
conclude that the function x € [0, 1] — F(a,, + 1, by;n + 2; ) is positive and strictly increasing.
Hence,
1< F(ap+ 1,bp;n+2;2) < Flap + 1,by;n + 2;1).

Combining (C.0.5) and (2.6.7) we obtain the estimate:

I'(n+2)
1 < F(an +1,by; 2;x) < Flap +1,by; 2;1) < < Chn.
< F(an + n+2;x) (an + n+2;1) T+ 1= a)T @+ a) n

To check (2.6.20), we use the first assertion of Lemma 2.6.2,
0<1-—F(an,bn;n+3;z) <1— F(an,bp;n+ 3;1).
Moreover, by virtue of (C.0.5) one has

I(n+3)  I(3)

F(an, bn; 1) = :
(@ bom + 33 1) F(n+3—a,) T3+ ay)

As a consequence of (2.6.7) and a,, ~ —%, we obtain

Pn+3) . lan 1 ING) 1
F(n—|—3—an)_1 2n +O<n>’ and F(3+an)_1+0 n)’

Therefore, the following asymptotic expansion
Flam buin+3:1) =1—227 4 0 <1>
n n
holds and the estimate follows easily. O
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Another useful property deals with the behavior of the hypergeometric function with re-
spect to the third variable c.

Lemma 2.6.5. Let n > 1, then the mapping ¢ € (by,00) — F'(an, by; c; ) is strictly increasing for
x € (0,1) and strictly decreasing for x € (—0o0,0).
Proof. First, we check the case n = 1 that comes by
2
F(ai,bi;e2) =1 — —x.
c

Let n > 1 and recall that the hypergeometric function F'(a,, by,;c;x) solves the differential
equation

2(1 — )02, F (an, b ;) + [c — (n 4+ 1)x)0p F(an, by; ¢; ) 4 2F (an, by; ¢; ) = 0,

with F'(an,bp;¢;0) = 1 and 0z F(an, by;c;0) = —%. Hence by differentiation it is easy to check
that 0.F (an, by; ¢; x) solves

(1 — x)@ix(&;F(an, bn;c;z)) + [c — (n+ 1)2|05 (0 F (an, bp; ¢; ) 4+ 2(0cF (an, by; ¢; )
= *azF(an;bn;C;x)u

with initial conditions

OcF(ap,bn;c;0) =0, and 0y(0.F(an,byn;c;0)) = x
Note that a homogeneous solution of the last differential equation is F'(an, by;c;z). By the
variation of constant method one can look for the full solution to the differential equation in
the form

OcF (an, by c;x) = K(x)F(ay, by; c; x),

and from straightforward computations we find that ' = K’ solves the first order differential
equation,

T(z) + o OuF (an, by; ¢ ) c(n+1)x} (&) = Oy F (an, bp; ¢; )

F(an, bn; c;x) z(1 —x) a _x(l—a:)F(an,bn;c;x).
The general solution to this latter equation is given by

(1 — )=+ 15| F (an, bn; ¢; 8)0sF (an, bns ¢; )
Kl - ds 5
F(an, bn; ¢; )%zl 0 (1—s)em

T(x) =
for z € (—o0, 1) where K € Ris a real constant. Thus

OcF (an, by c; ) = F(an, by;c;x) | Ko +

T _ \c—(n+1) T |e|lCea—1 . . o
/ (1—-7) {K1 _/ |s]s™ F(an, by; ¢; 8)0sF(an, by; ¢; S)ds} arl.
o F( 0

Ap, by c; 7)?|T|¢ (1 —s)en

where K, Ky € Rand zg € (—1,1). Since 0.F (ay, by; ¢; x) is not singular at z = 0, we get that
K1 = 0. Then, changing the constant K> one can take z( = 0 getting

8CF(an>bn; G {L’) = F(am bn; c; {L’) lK2 -
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dsdr

(1 — 1)~ (n+D) /T |5|°s L F (ay, by; ¢; 8)Os F (an, bp; ¢; )
F( an,bn,c 7)2|7|¢ (1 —g)em
The initial condition 0.F (ay, by; ¢;0) = 0 implies that K3 = 0 and hence

8CF(an7bn§C§x) = —F(an,bn;C'SL’)

X
’ c—(n+1) |S anabvmc 3)8 F(U,n,b',“C S)
/O (1-7) / |7‘|CF n, bpi ;7)2(1 — s)en dsdr.

Similarly to the proof of Lemma 2.6.2—(1) one may obtain that
F(ap,bp;c;x) >0 and 0y F(an,bp;c;x) <0,

for any ¢ > b, and x € (—o0, 1) . This entails that 0.F (ay, by; ¢; x) is positive for x € (0,1), and
negative when = € (—o0, 0), which concludes the proof. O

2.6.3 Eigenvalues

The existence of eigenvalues, that are the elements of the dispersion set defined in (2.1.11), is
connected to the problem of studying the roots of the equation introduced in (2.5.20). Here, we
will develop different cases illustrating strong discrepancy on the structure of the dispersion
set. Assuming A > 0 and B < —A, we find that the dispersion set is infinite. However, for
the case A > 0 and B > —%, the dispersion set is finite. Notice that the transient regime
corresponding to —A < B g —A is not covered by the current study and turns to be more
complicate due to the complex structure of the spectral function (2.5.20).

Let us begin with studying the cases

A>0, A+ B <0, (2.6.21)
A>0, A+4+2B<0, (2.6.22)
A>0, A+4+2B>0. (2.6.23)

Our first main result reads as follows.
Proposition 2.6.6. The following assertions hold true:

1. Given A, B satisfying (2.6.21), there exist no € N*, depending only on A and B, and a unique
root z,, € (0,1) of (2.5.20), i.e. (,(xy) = 0, for any n > ng. In addition,

A+ B
1
e(O, + an ),

and the sequence n € [ng, +00) — xy, is strictly increasing.

2. Given A, B satisfying the weak condition (2.6.22) and n € N*, then ¢, has no solution in (—oo, 0].
3. Given A, B satisfying (2.6.23), then ¢, has no solution in [0,1], for n € N*.

Proof. (1) The expression of the spectral equation (2.6.1) agrees with
Co(z) = IH)F(an, bu;n + 1;2) + I2(2)F(an + 1, by n + 2;2) + I3 (2)F(an, b; n + 3; ),
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where I}, I2 and I? are defined in Lemma 2.6.1. From this expression we get (,,(0) = a1 To

find a solution in (0, 1) we shall apply the Intermediate Value Theorem, and for this purpose
we need to check that ¢, (1) < 0. Applying (C.0.5) we get

B 1 A+2B I(n+1)
Cn(1) = n+1_an+A(n+1)] L(n+1—a,)'(1+ay)
anl(n +1) AT(n)

CT(n+2-a)l2+a,) T(n+3—a)lB+ay)

Using the following expansion for large n > 1
1 1 1
= o=
n+1-—a, n+1+ <n3)’

Cn(l):2A+B+O<lnn>.

and (2.6.7), we find

n+1 n?
Thus, under the hypothesis (2.6.21), there exists ng € N*, depending on A, B, such that

<n(1) <0, Vn > ng.

This proves the existence of at least one solution z,, € (0, 1) to the equation (,(z,) = 0, for any

n > ng. The next objective is to localize this root and show that z,, € (0, 1+ ﬁ*—nB). For this goal
it suffices to verify that

A+ B

(h(l—e)<0, Vee (0, _An) .

Let us begin with the first term I} (z) in the expression (2.6.1) which implies that

(1= ) = 1—2a, A—%—ZB} [A—FQB n—l—%—an]'

ntl-ay, Amn+1)] “|Am+1) n+l-an

Now, it is straightforward to check the following asymptotic expansions,

n2

1 - 2ay A+2B _y A+B (2n + 1)ay, _ 5 A+ B 40 1
n+l—-a, An+1) “An+1) m+1)n+1-a,) ~An+1) ’

and

A+2B _nflJran S A+2B L 2 — 2a,
B Ain+1) n+1-—a,

c An+1) n+1l-—a,
A+ B 1
< _ _
n>_ An +O(n2),

Therefore, we obtain

Thanks to (2.6.18), we deduce

1
11— Flan,byin+1;1—¢)| < O—2,
n
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which yields in turn

A+ B Inn
I'1 = &)F(ay,, by: 1l—g)< — 17 — ). 6.
n(1 =€) F(an, bn;n +1; E)_A(n+1)+0<n2> (2.6.24)

Next, we will deal with the second term I?2 of (2.6.1). Directly from (2.6.19) we get

|an (22 — 1)|

|I2(2)|F(an + 1,bp;n + 2;2) = F(an+1,bp;n+2;1) < < (2.6.25)

(n+1)(n+1-ap) n?
Similarly, the estimate (2.6.20) implies that
22F (an, bp;n+3;x2) _ C

I3 F(ay, by; . — il ’ < — 2.6.2

|n(x)| (a,b7n+3,m) (n+1)(n+2) —n2 ( 6 6)
Inserting (2.6.24), (2.6.25) and (2.6.26) into the expression of ¢,, we find

A+ B Inn
n(l—¢) < ——= — |
G 6)_A(n—f—l)—’—o(rﬂ)
for any e € (0, —%£58). From this we deduce the existence of ny depending on A and B such
that ALB
ey < 7
Gl —e) < YIS I

forany n > ng. Then ¢, has no zeroin (1+ %2, 1) and this achieves the proof of the first result.

Next we shall prove that z,, is the only zero of ¢, in (0, 1). For this purpose it appears to
be more convenient to use the expression for (,, given by (2.5.20). Let us differentiate (,, with
respect to x as follows

A+ 23) x] + Fp(x) [—1 +

02Cn(z) =F) () [1 —z+ yicES) A+2B ]

An+1)
1 1
+ / F! (rz)r™ " =1 + 2z7] dr + 2/ F(rz)r"dr.
0 0
From Lemma 2.6.2—(1), we recall that F;, > 0 and F, < 0. Hence for A+ 2B < 0and z € (0,1)
we get

A+2B

0zGn(x) < F/L(if)m

! 1
x — Fp(z) + / E! (rx)7™ " [=1 + 227 dT + 2/ Fy(tz)r" dr.
0 0

Applying the third assertion of Lemma 2.6.3 we find
|F!(z)] < Clan, Yn>2,

forany z € (0,1 + AX—TLB) and with C a constant depending only on A and B. It follows that

Oz Cn(x) <

A+2BJ1 1 C 2A+2|B|1
C@%— nn +7||M+(1—Fn(x)),

Uy <
1 n(x)JrCn < 1+ 00—

for z € [0,1+ 4E8), which implies according to (2.6.18) that

A+|B|ln
A n

0pCp(z) < =1+ C
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Hence, there exists ng such that

A+ B
An

1
0:Cn(x) < —5 Vi € {0, 1+ ) ,  Vn > nyg.

Thus, the function z € [0,1+ AXHB ) = (u(@) is strictly decreasing and admits only one zero
that we have denoted by x,,.
It remains to show that n € [ng, +00) > z, is strictly increasing, which implies in particular
that
Cm(zn) #0, Vn #m > ng. (2.6.27)

For this aim, it suffices to show that the mapping n € [ng, +00) — (,(x) is strictly increasing,
for any = € (0,1). Setting

Fo(x) = 1+ pa(2), (2.6.28)
we can write
n n A+2B A+2B
= — 1— ket
Gn(@) ndl a2t T Ayt e Lot ge o
n n A+ 2B

x + Ry (2)2.6.29)

1
"[-14 2z7]dT =: —
—l—/o pn(T2)T" [=1 + 227] dT i n+2x+A(n+l)
Since F;, is analytic with respect to its parameters and we can think in » as a continuous pa-
rameter, n — (,(z) is also analytic. Therefore, differentiating with respect to n, we deduce
that

1 x A+2B
nSn = -2 - niln .
Oen(®) = 1 " Ymr e T Ayt T o Ea@)
Consequently,
1 A+2B 1 3A+2B
OnCn () 1) x 17 + On Ry () (n+1)2[ I x]+8R(x)

We use the following trivial bound

_3A+2B

1
A

x >min(l,k), Vxe€][0,1],

where r = —24%8 is strictly positive due to the assumptions (2.6.21). Therefore, we can rewrite

the bound for 9,,¢,, () as follows

min (1, k)
(n+1)?

To estimate 0,, R,,(z) we shall differentiate (2.6.29) with respect to n,

OnGn(x) > + On Ry (). (2.6.30)

A+2B A+2B

An+ )’ O et

On Ry () =0nFy(2)(1 — z) + Op Fr(2)
1 1
+ /0 (OnFy(tx))T" [—1 + 227] dT + /0 pn(Tz)T" InT [—1 + 227] dT.

From (2.6.18) and Lemma 2.6.3, we deduce

A+2B A+2B

On Ry () zﬁnFn(x)mx - pn(a:)mx
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1 1
+ / OnFy (1) 7" [—1 + 227 dT + / pn(T2)T" InT [—1 4 227] dT,
0 0
and

OnFy ()

A+2B @) AT2B | A+ 28]
———pp(2) 2| K O—— —-.
An+1)" P Am )2 A

Observe that the first integral can be bounded as follows

Inn [* Inn

1
/ OnFn(tz) 7" -1+ 227]dT| < C—f [ 7" =1+ 227|dT < C—F,
0 n= Jo n

while for the second one we have

1 ] 1 1
/ pn(Tz)m" InT [—1 4+ 227]dT| < Cnn/ ™ InT|dr < C%,
0 n-Jo

where we have used (2.6.28) and Lemma 2.6.4. Plugging these estimates into (2.6.30), we find

min (1, k) |A+2B|In(n+1)
() 2 CFSIE -0— CESEE Ve € [0,1].

Then, there exists ny depending only on A, B such that

min (1, k)
>\ Y
for any n > ng and any z € [0, 1]. This implies that n € [ng, +0o[— (,(x) is strictly increasing
and thus (2.6.27) holds.

(2) From (2.6.2) one has

A+ 2B T
= " aF : 1:2) —
An+ 1) (an, bnin + L) = -
n(l —x) 2nx
B P, bun 4 22) +
(an, bnim + x)+(n+1)(n+2)

Cn(z) F(an,bp;n+ 2;x)

1 F(an,bp;n + 3;x).

Remark that the involved hypergeometric functions are strictly positive, which implies that

n
n+1

2
Cnlz) > <(1 —2)F(an,bu;n+2;2) + ni_fQF(a"’ bp;n + 3;30)) :

To get the announced result, it is enough to check that

2
(1 —2)F(an,bp;n+ 2;2) + TEQ)F(%, bp;n+3;2) > 1, Va € (—o00,0),

which follows from Lemma 2.6.5:

2z

(1 —z)F(an,bp;n + 2;2)+ )

F(ap,bp;n+ 3;x)

nT
n 4+

ZF(an,bn;n+2;x)<1 2) > F(an,bp;n+2;z) > 1,

for any = < 0. Thus, (,(z) > 0 for any x € (—o0,0) and this concludes the proof.
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(3) Let us use the expression of ¢, given in (2.6.2) obtaining

A+2B n(l—x)
n = -7 ny On; 1 7F ny On; 27
Cn() e +1) F(ap,bp;n+1;2) + ] (@n, bpsn + 25 2)
2nx
— F b 2; — F by 3;x).
n+1 (@nybosn+ 232) + gy gy £ (s brin 4 3.2
Then
T 2n
Calx) > 1 <_F(anabn;n+2;x> + 7H_2F<anabn§n+3;x)> )

for any z € [0,1). From Lemma 2.6.5 we deduce

2n n—9

—F(an,bp;n+2;2) +

forany n > 2 and x € (0, 1). This implies that (,(z) > 0, for z € (0,1) and n > 2. The case
n = 1 can be checked directly by the explicit expression stated in Remark 2.5.5. O

In the following result, we investigate more the case (2.6.23). We mention that according to
Proposition 2.6.6—(3) there are no eigenvalues in (0,1). Thus, it remains to explore the region
(—00,0) and study whether one can find eigenvalues there. Our result reads as follows.

Proposition 2.6.7. Let n > 2 and A, B € R satisfying (2.6.23). Then, the following assertions hold
true:

1. Ifn< B4 %, there exists a unique x,, € (—1,0) such that {,(xy) = 0.
2. Ifn < 2B there exists a unique x,, € (—oo,0) such that ¢, (x,,) = 0, with
1

1_ Ai2B
A(n+1)

< xp < 0. (2.6.31)

In addition, the map x € (—o0, 0] — () is strictly increasing.
3. Ifn> % + 1, then ¢, has no solution in [—1,0].
4. Ifn > 2B 4 2 then ¢, has no solution in (—oo, 0].

Proof. (1) Thanks to (2.5.20) we have that (,(0) ? > 0. So to apply the Intermediate Value

Theorem and prove that ¢,, admits a solution in [—1, 0] it suffices to guarantee that (,(—1) < 0.
Now coming back to (2.5.20) and using that z € (-1, 1) — F,,(x) is strictly decreasing we get

1
Cu(—=1) =F,(-1) (2 - m> - /0 Fo(—7)™ (14 27)dr

<F,(-1) (2 - m> - /01 (14 27)dr

A+2B 3n+4
<Fu(=1) (2_ A(n+1)) BCECED)

Consequently, to get (,,(—1) < 0 we impose the condition

Vo € [-1,0).

A+2B 3n+4

T A+ 1) T+ D(n+2)F(—-1) (2.6.32)
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Coming back to the integral representation, one gets
Fo(=1) < F,(0)27% < 2, (2.6.33)

due to the fact a,, € (—1,0). In addition, it is easy to check that

3n+4 S

5

z >
n+2 — 2’ Vnz2,
and the assumption (2.6.32) is satisfied if

_ A+2B 5
An+1) = 4(n+1)

holds, or equivalently, if

B 1
2<n< — —. 2.6.34
_n_A—I-S (2.6.34)

In conclusion, under the assumption (2.6.34), the function (,, admits a solution z,, € (—1,0).
Now, we localize this zero. Since F, is strictly positive in [—1,1], then the second term in
(2.5.20) is always strictly negative. Let us analyze the sign of the first term

A+2B
Fn(l') ].—I—me s
which has a unique root
1
A(n+1)

This root belongs to (—00,0) if and only if n < 22, which follows automatically from (2.6.34).

Moreover the mapping z — 1 — x + %x will be strictly increasing. Hence, if . < —1, then

Zn > Te. So let us assume that z. € (—1,0), then

A+2B

<0, Vxel[-1,z,

which implies that
Co(z) <0, Vrel[-1,z].

Therefore, the solution z,, must belong to (z., 0), and equivalently

1

1— A+2B
A(n+1)

< znp, <O0.

The uniqueness of this solutions comes directly from the second assertion.

(2) As in the previous argument we have that ¢, (0) = ;%5 > 0 and the idea is to apply also the
Intermediate Value Theorem. We intend to find the asymptotic behavior of ¢, for = going to
—o00. We first find an asymptotic behavior of F},. For this purpose we use the identity (C.0.3),
which implies that

X

F.(z)=(1—-2)""F <an,an+1,n+l, ) , Yz <0.

r—1
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Setting
on(y) :i= F(ap,an +1,n+1,y), Vye€][0,1], (2.6.36)
we obtain
an(1+ ap)
n+1
By a monotonicity argument we deduce that

on(y) = F(an+1la,+2,n+2,y), Vyel0,1)

with (), a constant depending on n. However, the dependence with respect to n does not
matter because we are interested in the asymptotics for large negative = but for a fixed n. Then,
let us drop n from the subscript of the constant C;,. Applying the Mean Value Theorem we get

‘(Pn(y) - Spn(1>| < C(l - y)) Vy € [07 1]'

Combining this estimate with (2.6.36) and a,, € (—1,0), we obtain

|Fn(z) — (1 —2) "p,(1)| < C(1 — x)_“"_l <C, Vz<0,
which implies in turn that
|Fo(z) — (1—2) "p,(1)| < C, Vo< -1 (2.6.37)

Consequently, we deduce that

1 1
/ Fy(ra)r™(— 1+ 227)dr ~22(—2) o (1) / pan gy
0 0
2 Can B
me(fx) on(l), ¥V —z>1.
Coming back to (2.5.20) and using once again (2.6.37) we get the asymptotic behavior

A+2B 2
Cn(@) ~pn (1) (=)~ (1 —rt A(;LL+ - af)

A+2B 2
~pn(1) <+ -1+ > (—x) %z, V—z>1.

A(n+1) n+2—apy

The condition
n<— (2.6.38)
implies that
A+2B 2
An+1) +n+2—an
Since ¢, (1) > 0, we deduce that

> 0.

:chrfnoo Cn(x) -

Therefore we deduce from the Intermediate Value Theorem that under the assumption (2.6.38),
the function ¢,, admits a solution z,, € (—o0, 0). Moreover, by the previous proof we get (2.6.31).

It remains to prove the uniqueness of this solution. For this goal we check that the mapping
z € (—00,0) > (,(z) is strictly increasing when n € [1, 22] . Differentiating ¢, with respect to
x yields

@) =P (@) 1wt A+2B)4 X >[A+2B _1]

An+1 An+1)

106



CHAPTER 2. NON UNIFORM ROTATING VORTICES AND PERIODIC ORBITS FOR THE
TWO-DIMENSIONAL EULER EQUATIONS

1 1
+ / FTIL(T.I)TTL+1(—1 + 2z7)dT + 2/ Fn(Tx)Tn+1dT.
0 0
From Lemma 2.6.2-(1) we infer that F(z) < 0, for x € (—0,0), and therefore we get
¢ (z) >0, Vze (—o0,z).

Let x € (z,0), then by a monotonicity argument we get

0<1 L A+2B <

-+ —0x
- An+1)" — 7
and thus

A+2B ! 2 2
Fi(x)[1-z4+-——z|+2 [ F "ar > F(0 > —

" () $+A(n—|—1)4+ /0 w(T2)T T > n()+n+2_ CESNCET)E

by using that F) (0) = —%H and that F) (z) is decreasing and negative in (—oo,1). From the

assumption (2.6.38) and the positivity of F;, we get

Fo(x) (ﬁ:ii - 1) >0, Vi€ (~o0,0].

Therefore, putting together the preceding estimates we deduce that

/ o 2 ! / n+l/ 7)dT
¢ (z) > (n+1)(n+2)+/0 F (ra)r™ (=1 + 227)d
2 L )T Hdr z € (—o0
T ), Farerln Ve e (<s0.0),

At this stage it suffices to make appeal to (2.6.10) in order to obtain

2

CESICESk Vo € (—o0,0],

1
—/ F! (rz)r"dr >
0
from which it follows
¢ (z) >0, Ve (—o0,0],

which implies that ¢, is strictly increasing in (—oo, 0], and thus z,, is the only solution in this
interval.

(3) Using the definition of ¢, in (2.5.20) and the monotonicity of F;,, one has

Co(z) > Fo(z) |1 —

A+2B 1 2 ] (26.39)

x+A(n+1)x_n+1+n+1

Now it is easy to check that

A+2B 1 2x . { n 2n-—1 A—|—2B}
min ,

1- — > , —
x+A(n—|—1)x n—|—1+n—|—1_ n+1"n+1 An+1)

for any z € [—1,0]. This claim can be derived from the fact that the left-hand-side term is
polynomial in 2 with degree one. Consequently, if we assume

> 1
n +
A )
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we get 201 — f(;ﬁ]f) > 0, and therefore (2.6.39) implies

Cu(z) >0, Vaoe[-1,0]

Then, ¢, has no solution in [—1, 0].

(4) Using the expression of ¢, in (2.5.20) and the monotonicity of F},, one has

A+ 2B 1 2
F 1-— —
Gnl@) > n(x)[ x+A(n+1)x n—|—1+n+1]
n n—1 A+ 2B
>E, - - : —00,0). 2.6.4
= (@[n+1 <n+1 1Mn+D>] v € (=00,0) (26.40)
The assumption
> 24 2B
n
A?

yields Tﬁ — ,f(ﬁf) > 0, and therefore (2.6.40) implies

Co(x) >0, Ve (—o0,0].
Thus, ¢, has no solution in (—o0, 0]. O

In the next task we discuss the localization of the zeroes of ¢,, and, in particular, we improve
the lower bound (2.6.31). Notice that B > 0 in order to get solutions of ¢, in (—oo, 0] in the case
A > 0and n > 2, by using Proposition 2.6.6 and Proposition 2.6.7-(4). Our result reads as
follows.

Proposition 2.6.8. Let A, B > 0and n > 2. If x,, € (—00,0) is any solution of (,, then the following
properties are satisfied:

. n n A+2B
1. n\<Ln ) n =1 -
We have P (wa) < 0, with Pu(e) = -5+ |~ 25 + G 3D
2n + 1 1

A+2B +1
200 +1) 45235 - s

2. Ifx,, € (—1,0), then x, == — < Zp.

A

3. We always have x,, < 55

Proof. (1) Since F,(tz) < Fy,(z), forany 7 € [0,1) and = € (—o0,0), then we deduce from the
expression (2.5.20) that

A+2B 1 2z
Cn(z) > Fp(z) |1 — 2+ A(n+1)x_ ] n+2 Fo(z)Z(x). (2.6.41)

As F, is strictly positive in (—o0, 1), then &, (z,,) < 0, for any root of (,.

(2) Recall from Proposition 2.6.7—(3) that if (n admits a solution in (—1,0) with n > 2 then
necessary 2 < n < 1+ Z. This implies that n < 22 and hence the mapping z — 1 —z + f(jfbff)x
is increasing. Combined with the definition of (2 6.35) and (2.6.31) we deduce that

A+2B
1-— — >
x+A(n+1)x_O, Vo € (z¢,0)
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and z,, € (z.,0). Using the monotonicity of F,, combined with the bound (2.6.33) we find from
(2.5.20)

() <2|l—a+

A+2B 1 2
+ } < Vo € (z,0).

A(n—i—l)x _n—|—1+n—|—27

Evaluating at any root x,, we obtain

2n +1 A+2B n+1
n+1 n An+1) n+2]°

A+2B  ntl
A(n+1) n+2

Keeping in mind that n < 22, we get > 0, and therefore we find the announced

lower bound for x,.

(3) In a similar way to the upper bound for z,,, we turn to (2.6.41), and evaluate this inequality
at — . Then we find

A A A A
n T A Fn T AaD n T AaD n\ = ap -
o (~35) > 7 (~55) +(~35) > # (-35)
Explicit computations yield
A n—1 A n 1
Pn <_2B> o+l +ﬁ[n+2 a n—l—l}
Since % > 0 and n > 2, then we infer that &7, (—%) > 0 and ¢, (—%) > 0. Now we recall

from Proposition 2.6.7-(2) that = € (—00,0) — (,(z) is strictly increasing. Thus combined this
property with the preceding one we deduce that

Tn < —ﬁ,

which achieves the proof. O

Notice that from Proposition 2.6.7-(4) when B < 0, the function ¢, has no solution in
(—00,0] for any n > 2. Moreover, in the case that 0 < B < 4, Proposition 2.6.7-(4) and
Proposition 2.6.8-(1) give us again that ¢,, has no solution in (—oo, 0] for any n > 2. Combining
these facts with Proposition 2.6.6—(3), we immediately get the following result.

Corollary 2.6.9. Let A > 0 and B satisfying

2|

<B<

|

Then, the function ¢, has no solution in (—oo, 1] for any n > 2. Howeuver, the function (; admits the
solution x1 = — 5. Notice that this latter solution belongs to (—oo, 1) if and only if B ¢ [~4.,0] .

In the next result, we study the case when z; € (0, %] for some 0 < € < 1, showing that
there is no intersection with other eigenvalues.

Proposition 2.6.10. Let A > 0. There exists ¢ € (0,1) such that if B < —1%6, then (,(x1) # 0 for

anyn > 2 and v = — 45, with € ~ 0,0581.
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Proof. From (2.5.20), one has

n 1
Cnl(rr) = Fn(xl)n n 1(1 —x1)+ /0 Fo(x1m)7"™ [—1 + 2z17] dT.

By the integral representation of F;, given in (C.0.2), we obtain that

I'(n+1)

Ea@) > s T 7 1

1
) /0 £ =L(] — )it (1 — o)~ = (1 — 2) "%,

for any z € (0, 1), using the Beta function (2.6.16). By the monotonicity of F;,(z) with respect to
x and the above estimate, we find that

(1 — $1)_a” < Fn(ml) <1,

for any n > 2 and z; € (0, 1), which agrees with the hypothesis on A and B. Hence, we have
that

n 1—a (1—x1)_a" 1
> —N(1— n 42 — .
Cnl1) n+1( 1) ten n-+2 n+1

The above expression is increasing with respect to n, which implies that

2 x 1
Cn(x1) > §(1 —x)tTe2 4 ?1(1 —p)7e2 - =
Since a2 = 1 — /3, we get
2 T 1
Cn(1) > 5(1 - 951)\/g + ?1(1 = x1)\/§_1 —3 = P(z1).

The function P decreases in (0, 1) and admits a unique root T whose approximate value is given
by z = 0, 52907. Hence, P(z1) > 0 for z; € (0,7], and consequently we get

Cal(z1) >0,
for B < —% , achieving the announced result. ]

We finish this section by the following result concerning the monotonicity of the eigenval-
ues.

Proposition 2.6.11. Let A > 0and 2B > A. Then, the following assertions hold true:

1. Let z € (—00,0), then n € [1, 28] v (,(x) is strictly increasing. In addition, we have

{o € (=00,0], Gul@) = 0} N {a € (~00,0], Gm(w) =0} =0,
forany n #m € [1, 28], and each set contains at most one element.

2. The sequence n € [1,5 +
Proposition 2.6.7.

} — @y, is strictly decreasing, where the {x,} are constructed in

o[

3. Ifme [1,28 — 2], then
Cn(xm) #0, Vn e N \{m}.
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Proof. (1) We shall prove that the mapping n € [1,22] — (,(x) is strictly increasing for fixed
x € (—00,0] and 2B > A. Differentiating (2.5.20) with respect to n we get

OnCn(x) =0nFp(x) {1 —x + A + 28 ] / OnFpn(ma)" [—1 + 27| dT

A+2B

n(x)m —|—/O Fo(rz)r"In7[-1+ 2z7]dT.

Using Lemma 2.6.3-(1) and the positivity of F},, we deduce that
1 1
/ OnFy(t2)" [-1 + 227]dT > 0, / Fo(rz)r"In7[—1+227]dr >0, Vze (—00,0).
0 0

Due to the assumption n € [1, %], we have that z. < 0, where z. is defined in (2.6.35). If

z € (—o0,x.], we find that
A+2B

which implies
OnCn(z) >0, Vre(-1l,z.),Yn>1.
We obtain
A+2B

1-— _— 1 2.6.42
0< x+A(n+1)x< , (2.6.42)

for x € (z.,0), which yields in view of Lemma 2.6.3-(2)

A+2B A+2B

Onn(x) >0nFo(w) |1 -2 + A(:+1)4 -f "(x)wx
A+2B —22F, A+2B
>8”F"(m)_Fn(x)A(n++ > Tt 1()? [_1 i }

Taking into account 2B > A, one gets 9,(,(xz) > 0,Vx € (—o0,0]. It remains to discuss the
case z. < —1. Remark that the estimate (2.6.42) is satisfied for any = € (—o0,0), and then the
foregoing inequality holds, and one gets finally

2B
OnCn(x) >0, Vze[-1,0],Vne [1, A} .

Consequently, we deduce that the mapping n € [1,22]  (,(x) is strictly increasing for any
x € (—00,0). This implies in particular that the functions ¢,, and ¢, have no common zero in
(—00,0) forn #m € [1,28].

(2) This follows by combining that z € (—00,0) ~— (,(z) and n € [1, 22]

increasing, proved in Proposition 2.6.7—(1) and Proposition 2.6.11—(1).

— (p(x) are strictly

<QB >2B

(3) By the last assertions, this is clear for n and it is also true for n + 2, since ¢,
has not roots in (—oo, 1), by Proposition 2.6.6 and Proposition 2.6.7. Then, let us study the case
n e (;TB 2B 1 9). First, using (2.6.31), we get that z,,, which is a solution of (,, = 0 with

m < = — 2 verifies

2B - A
Ty = — A

(2.6.43)
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Now, the strategy is to show that &, (x,,) > 0 for n € (%, % + 2), and then Proposition 2.6.8

will imply that {,(x,,) # 0. By definition, we have that

D) — T +m[ n A+QB}

Tht2 A+

If 25 + 4 i% <0, then &, (x,,) > 0. Otherwise, we use (2.6.43) getting

2B — A A+ 2B
P (em) > n [ n + }

ntl 24 | nt2 Am+D)

:W [nQ <1+25> +n<4+2f—4§z> +2<1—4]jj>].

Straightforward computations yield that the above parabola is increasing in n € (22,22 + 2).

Evaluating at n = 22 in the parabola, we find

88 +2
Inlem) > s w2

2.6.4 Asymptotic expansion of the eigenvalues

When solving the boundary equation in Proposition 2.3.3, one requires that the angular veloc-
ity is located outside the singular set (2.3.5). Consequently, in order to apply the bifurcation
argument for the density equation we should check that the eigenvalues {x,} constructed in
Proposition 2.6.6 do not intersect the singular set. This problem sounds to be very technical
and in the case A + B < 0, where we know that the dispersion set is infinite, we reduce the
problem to studying the asymptotic behavior of each sequence. Let us start with a preliminary
result.

Lemma 2.6.12. Let (x,,)nen be a sequence of real numbers in (—1,1) such that x, =1 — % 4+ o (%),
for some strictly positive number k. Then the following asymptotics

F(an +1,bp;n 4+ 2;52,) =n(n+o(1)),
e~ KT

147

+oo
holds, withn = & / dr.
0

Proof. The integral representation of hypergeometric functions (C.0.2) allows us to write

I'(n+2) _ nn+1)I(n)
I(n—a)l(2+an) " Tn—a)l(2+a,) "

F(ap + 1,bp;n+ 2;2,) =

where )
by = / e O T o R R e 7
0

lxn

Set ¢, = , making the change of variables 7 = 1 — ¢,,7/, and keeping the same notation 7
to the new Varlable we obtain

1

by =z, e, /an (1 —gpr)" ot plban (] 4 7)=anlgr
0
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From the first order expansion of z,,, one has the pointwise convergence

lim (1 —e,r)" %t =",

n——+00

K

for any 7 > 0. Since the sequence n — (1 — £)" is increasing, the Lebesgue Theorem leads to

1

e Hoo
lim (1 — gpr)on~tplban (] 4 p)y=an—lgr — / e T
0

n—-+oo 0

T

dr.
1+7’T

Therefore, we obtain the equivalence ¢,, ~ L. Combining the previous estimates with (2.6.7) we

n
find the announced estimate. I

The next objective is to give the asymptotic expansion of the eigenvalues.

Proposition 2.6.13. Let A and B be such that (2.6.21) holds. Then, the sequence {x,,,n > ng}, con-
structed in Proposition 2.6.6, admits the following asymptotic behavior

K Ck 1
=l toln)
where N
A + B 9 o0 e*HT
K}Z—Q A s ﬂnd Cx = KR —2+2/0 de
Proof. First we will check that
1
tn=1-"140 (> . (2.6.44)
n n
Recall that x,, — 1 and write
Tn =1—05,. (2.6.45)

Clearly 3, — 0 and we intend to give an equivalent. From (2.6.1), we know that z,, satisfies the
equation

gn(mn) :Ié(xn)F(any bp;mn + 1; xn) + Irzz(xn)F(an + 1,bp5n + 2; xn)
+ I3(20) F(an, bu;n + 3;2,)
=0, (2.6.46)

with

n—a 1+ n—1—a
Il _ mn . n
n{tn) n+1-—a, mn(n—l—l—i_n—i—l—an ’

an(2z, — 1)
nm+1)(n+1-a,)

2z,
(n+1)(n+2)

I2(z,) = — , and I3(z,) = —
By virtue of Lemma 2.6.4 one can write (2.6.46) as

Ii(2y) = I2(20)O(n) + I (2) (1 — Fan, bp;n + 1;2,) — I (2n) F(an, bo;n + 3;2,).  (2.6.47)
Using (2.6.45) one gets that

K (1+k)ap 1+k n—1-—ay
n+1-—a, (n—i—l)(n—i—l—an)+Bnn+1+ﬁnn+l—an'

I%(xn) ==
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Since a,, ~ —2 then we get successively

1+ kK)a 1+~ n—1—a
Il — _ K ( n n
() n+1-—ay (n+1)(n+1—an)+Bnn+1+5nn+1—an
K 1+k n— 9
=——+406n n 1 . 2.6.48
O Bt O (2.6.48)
and
2 Gnp 2a,53, 3
I (zn) = — + =0 (1/n%). (2.6.49)

m+1)(n+1—ay,) m+1(n+1-—ay)
In addition, I3(z,,) agrees with
2 205
D) +2)  rDnt2)
= O(1/n?). (2.6.50)

Ir%(xn) ==

Then, inserting (2.6.48)—(2.6.49)—(2.6.50) into (2.6.47) and using Lemma 2.6.4 for the right hand
side, we obtain

1 -1 1
_fyg it g " -0 (rf) . (2.6.51)
n n n+1-—ay, n
Thus, we find
1 1
8, [1 +0 ()} ~"40 <I12”> , (2.6.52)
n n n
which achieves a the announced result (2.6.44). At this stage we can write z,, in the form
K 1
Tp=1———up, U,=0 () . (2.6.53)
n n
Inserting (2.6.53) into (2.6.48), (2.6.49) and (2.6.50) we easily get
1 k(1 —k) 1

and

2 1 —2 1
2 - 3: i
I"‘<n+1>3+"<n3)’ and Iy <n+1>2+0<n3)’

where we have used a,, ~ —%. By virtue of the above estimates, Lemma 2.6.4 and Lemma

2.6.12, the expansion of u,, reads as

1— 2-2 1 —K24+2-2 1
k(1 — k) + 77+0( ):H K2+ 77+O< )

(n+1)2 n? n?

Up =
7’L2

n2

Using 1 =1 — L 4+ 0(-5), we find

1
n+l _ n n
2
K K =242 1
ot m o2 (1)
n n n

The final expression holds as a consequence of the following integration by parts

too o—KT too KT
=1—k dr = —dT.
" /0 1+7 /0 (14 71)2
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2.6.5 Separation of the singular and dispersion sets

In Section 2.2.4 we have established some conditions in order to solve the boundary equation.
If we want to apply Proposition 2.3.3, we must verify that (2 does not lie in the singular set Sing
given in (2.4.10). Moreover, from the last analysis, we have checked that the dispersion set S,
defined in (2.1.11), contains different sets depending on the assumptions on A and B. We will
prove the following results.

Proposition 2.6.14. Let A and B such that (2.6.21) holds. Denote by

B A
Qn == )
2 + 4z,

where the sequence (zy,)n>n, has been defined in Proposition 2.6.6. If ng is large enough depending on

A and B, then R
Qp, # Qyp, Yn > ng, Vp € N*,

where ﬁnp belongs to the set Spg introduced in (2.4.10). Moreover, there exists r. > 0 such that for
any K > k. we find ng € N such that

Qn#ﬁm, Vm >n > ng.

The number k. € (0,2) is the unique solution of the equation

[T
- ———dr = 0.
¢ 0 (1+7)?

Proof. 1t is a simple matter to have

Setting 7, = =5+, we obtain
T(Qn—3)
~ Kk K2—2 1
Tp=1——+ +0 <3) . (2.6.54)
n n n

Thus, condition €2,, # (Alm is equivalent to z,, # Z,. According to Proposition 2.6.13, we have

K cC 1
xn:1—+;+0(2>,
non n

9 too kT
Ck = K —2+2/ —dT.
0 (1 +7’)2

for n > ng, where

This implies that x,, # ), for large n. Moreover,
2
K ke —2 1 K 1
Tpp=1——+——+0(—=)=1-—+0| =
Lnp np + n2p2 + <n3> np + <n2> )

for any p € N* and O (%) being uniform on p. Therefore, we get that Z,, > z,,, for any p > 2,
with n > ny and ng large enough. Consequently, we deduce that z,, # Z,,, for any n > ny,
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and p € N*. To establish the second assertion, we will use an asymptotic expansion for Z,,1.
Thanks to (2.6.54) we can write

2
~ K K +K—2 1
xn+1=1—n+n2+0<n3>.

Then, since (Zy,)n>n, is strictly increasing and z,, # x,, to prove Z,, # x, for any m > n it
suffices just to check that Z,, 1 > z,,, which leads to

too kKT
g(K/) ::K—2/O ﬁd7>0

+7)
Since g is strictly increasing on [0, +00) and satisfies g(0) = —2 and ¢(2) > 0, there exists only
one solution «. € (0, 2) for the equation g(x) = 0. This concludes the proof. O

The next task is to discuss the separation problem when the dispersion set is finite.

Proposition 2.6.15. Let A > 0, B € Rand §smg being the set defined in (2.5.19). Then the following
assertions hold true:

1 IFB ¢ [~4,~4), then w1 = — b ¢ Sung.
2. If B > A, then the sequence m € [2, %} — ), defined in Proposition 2.6.7 satisfies

Tm F# Tpm, Vn > 1.

Proof. Recall from the definition of the set S. sing given in (2.5.19) that

_2n+1) 2B
n(n+2) An’

1
Tn
where we have used (2.4.10) and (2.4.12). Notice that when A and B are positive then n — 55%
is strictly increasing.

(1) Let us prove that
2(n+1) 2B
n(n+2) An’

Note that for n = 1 this constraint is always satisfied since we get

- % £1— Vn > 1. (2.6.55)

1_28B, 2B
3 A A
Thus (2.6.55) is equivalent to
n?—2 2B
—_—t - Yn>2.
n2+n—2 7 A "=

One can easily check that left part is strictly increasing on [2, +-00) and so

2
< 72 oy wyuso

1
2 " ni+n—2"

Consequently, if —22 ¢ [1,1] then the condition (2.6.55) is satisfied and this ensures the first
point.
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(2) From the expression of %, given in Proposition 2.6.8, we may write

n Tm
Pnlen) = 277 (1_55> ’

1” < ﬁ By the monotonicity of

z

and Z,,(z,) < 0, which implies , it is enough to prove

1
Zn

.1 (2.6.56)

Tm L2m

in order to conclude. According to (2.6.31), we have i <1- Aféjﬁfi). To obtain (2.6.56), it is
enough to establish

A+2B I ] 2m + 1 B
Am+1) = Tom 2m(m+1)  Am’
which is equivalent to
A+2B 2m +1 B

Am+ 10~ 2mm+1)  Am’
This latter one agrees with
B 1
- —
A7 2(m—-1)

which holds true since % > 1. O

2.6.6 Transversal property

This section is devoted to the transversality assumption concerning the fourth hypothesis of the
Crandall-Rabinowitz Theorem A.0.3. We shall reformulate an equivalent tractable statement,
where the problem reduces to check the non-vanishing of a suitable integral. However, it is
slightly hard to check this property for all the eigenvalues. We give positive results for higher
frequencies using the asymptotics, which have been developed in the preceding sections for
some special regimes on A and B. The first result in this direction is summarized as follows.

Proposition 2.6.16. Let A > 0and B € R, z € (—o0, 1)\{§Sing U{0,20}} and n € A, where all the
elements involved can be found in (2.4.12) (2.4.14)-(2.5.19) and (2.5.21). Let

re?? € D = iy (re) = h (1) cos(nb) € Ker Dgé(Q, 0),

Then R R
Dq ¢G(2,0)h, ¢ Im DyG(£2,0)

if and only if b}, satisfies

MR, (%) [ (s) n+42 sGn(s)
/0 1= 252 [ o4 Aps + A, Gn(D) ds #£ 0, (2.6.57)
where .
n+1p*
A= _fo st hn(s)ds’
2Gn(1)
and G, is defined by (2.5.9).
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Proof. Differentiating the expression of the linearized operator (2.5.8) with respect to {2 we ob-
tain

~ ) 1
0\ _ - -
Doy G(9, 0)h(re?) = n; cos(nf) [ () ((OQAn)G (r) + Ay, 69Gn(r))} + 5cho(r):
Differentiating the identity (2.5.13) with respect to 2 yields
H,(1) _ nAy,
mQ—Q,)2  Ga(l)
Similarly, we get from (2.5.9), (2.5.11) and the relation (2.4.12) between z and € that
0aGr(r) = ﬁn 19 <1> = nr"tt

xT

Putting together the preceding identities we find

rGp(r) 2 1
Do ,G(Q, n%lcos (nf) [ZA n(r) + Ap e — Apr + —2Aho(r).
Evaluating this formula at 4, yields
= ; R (r) rGp(r)
0y _ | n\"/) n+2
Dq ¢G(2,0)hy(re"”) = [ 54 A"+ A, o) cos(nb),

where A,, is related to A}, via (2.3.6). Now applying Proposition 2.5.10 we obtain that this
element does not belong to ImD,G/((2, 0) if and only if the function

* L h:L(T) n-+2 TG”(T)
€ [0,1] — dy(r) := 54 Apr™ T+ A, (D)
verifies Ut p ()
ST Fp(xst) o,
/o T gz n(s)ds #0,
which gives the announced result. [

The next goal is to check the condition (2.6.57) for large n in the regime (2.6.21). We need
first to rearrange the function d;, defined above and use the explicit expression of #, given in

(2.5.34). From (2.5.33) we get
n

Then, multiplying d}, by A—ln, we obtain
i h,(r) B n+2 rGn(r)] _ [ ha(r) . n+2 rGu(r)| _ » 2
An[ oA Apr +AnGn(1) = 244, T 4 Gn(D) =:r"H(r?),

where the function H takes the form

_ 4aGa(1) [ Pu(t)  Fu(ot) | 2zF,(ot) 1 1 T $F, (xs)
7-[(t)_An(l—:zct) [Pn(l) B F(x) + P(1) /; r"+1Fg(m)/0 1— 2o P, (s)dsdr

Bu(t)
Bu(1)
With the change of variables s ~ s? in the integral, condition (2.6.57) is equivalent to

/1 MH(S)CZS # 0. (2.6.58)
0

1—uxs

—t+5
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Regime A >0and A+ B <0

Here, we study the transversality assumption in the regime (2.6.21). Notice that the existence
of infinite countable set of eigenvalues has been already established in Proposition 2.6.6. How-
ever, due to the complex structure of the integrand in (2.6.58) it appears quite difficult to check
the non-vanishing of the integral for a given frequency. Thus, we have to overcome this diffi-
culty using an asymptotic behavior of the integral and checking by this way the transversality
only for high frequencies. More precisely, we prove the following result.

Proposition 2.6.17. Let A and B satisfying (2.6.21) and {x,, } the sequence constructed in Proposition
2.6.6 — (1). Then there exists ng € N such that

Ls"F (2,8 n
/0 1_(‘%%8)7‘[(8)&9 = —5(1 + 0(1)), vn > ng.

Proof. We proceed with studying the asymptotic behavior of the above integral for large fre-
quencies n. We write H = H1 + Ha + H3, with

_ 42,Gr(1) [Py(t)  Fu(oat)
Ha(t) _An(l — xnt) [Pn(l) Fu(x,) |’
42,Gp(1) 2z, F,(zpt) /1 1 /T S"Fy(zys)
= Pn )
Ha(t) An(l —z,t)  Po(1) e TVHF2(2,7) Jo 11— aps (s)dsdr
_ P(t)
Ha(t)=—t + Po(1)
Let us start with the function H;. Proposition 2.6.13 leads to
1 o — 2 1
7:1+E_C 2% +O<3>7
T, n n n
which, together with the expression of G,,(1) given in (2.5.12), imply
A 2
Gn(1) ~ —— (ch — K> +2). (2.6.59)

4n

Recall that the inequality F;,(1) < Fj,(z,t) < 1 holds for any t € [0, 1], and thus Lemma 2.6.2
gives that

< F,(1), Vn>no.

N |

Hence, H1 can be bounded as follows

¢ |:|Pn(t)
(1 —ant) [[Pa(1)]

with C' a constant depending in A and B. From the definition of P, in (2.5.11) we may obtain

|Hi(t)] < 3 + 1] , VYt elo,1],

|P,(t)] <C [1 —zpt + Tll] , Yt elo,1]. (2.6.60)

Moreover, plugging (2.6.59) into (2.5.12) we deduce that

c,{—/ﬁ2—|—2

Po(1) ~ —Ainanu) ~ T (2.6.61)
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Putting everything together one gets

_
n(l —z,t)

c ! s" Logn I
< — ——ds+C ds=:C|—=+1y).
_n/o (1 —xps)? o /0 1—2ns (n+2>

Hi(e)[ < C [ - 1} , Vtelo1],

from which we infer that

/0 7715' (Zns) Hi(s)ds

1—x,s
To estimate the second integral we use the change of variables s = 1 — ¢,7, with ¢,, = %,
leading to the asymptotic behavior
1 En ]_ - % 1 — EThn +oo —KT
L L[ O=en) / =" / c i (2.6.62)
Tn 0 1 —|— T 0 1 —|— T 0 1 + T

where we have used the expansion of z,, given by Proposition 2.6.13. As to the first integral we
just have to integrate by parts and use the previous computations,

1 1 1 n—1 1 00 —KT
L =— - i ds:<—/ c d7>n+o(n),
0

Tnl—xn xnJog 1—xps K 1+7

and consequently,

sup
n>ng

1 .n
/ MHl(s)ds’<+oo. (2.6.63)
0

1—z,s

The estimate H it is straightforward. Indeed, from (2.5.12) we may write

2.6.64
pao) < 1 [t [ B s (2.6.64)

Using once again (2.6.60) and Proposition 2.6.13 we get

/ 5 |P()|ds<c/ i ds+C/s"ds
o 1—xps nJo 1—xps 0

n+1 n+1
C T e G vr € [0,1].
“n(l—ax,)n+1 n+1 " n

t
ds < C——
/ T"H/ 1—mns n(s)lds C n

1-t

Hence, we deduce that

Since the function t € [0,1] — - is strictly decreasing , then we have

0< 1-
—1—x,t

<1, Vtelo,1].

Consequently, inserting the preceding two estimates into (2.6.64), we obtain

Ha(t) < S, e e o1,

n

nF 1 n
’ / xns) Ha(s)ds| < C/ i ds,
1—x,s nJo 1—aps

Thus we infer
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which implies

/ 1 M%(@ds) < ¢ (2.6.65)
0 n

1—x,s

sup
n>ng

where we have used (2.6.62). It remains to estimate the integral term associated with H3 which
takes the form

1 nFn n 1 n+1Fn n 1 1 nFn "
/ 87(338)?-[3(3)613 = —/ 5 (z S)ds—i— / G P,(s)ds.
0 0 Pa(1) Jo S

1—x,s

Similarly to (2.6.62), one has

1 .n+1
s F, (x,s
sup/ wds < +00.
n>ng J0 1—xps

To finish we just have to deal with the second integral term. Observe from (2.5.11) that P, is a
monic polynomial of degree two, and thus from Taylor formula one gets

P,(t) =P, (;) + (t - xln) P (;) + (t - xln)?

It is easy to check the following behaviors

1 1
Ty n T
Hence, we obtain

1 1 !
/ Sni(xns)pn(s)ds —pP () / Sniwds - —P <> / s"Fy(xps)ds
o l—xps Tn o 1l—xps Tn Tn 0

1 1

Concerning the last term we use the asymtotics of z,, leading to

- S InS — IpsS)as S — IpsS)as — r

For the first and second terms we use the estimate |F,(x,t) — 1| < C 1“7” coming from Lemma
2.6.4. Hence, we find

4 <1> /01 §"Fy(x,8)ds = —%(1 +0(1)).

Again from (2.6.62) we find

1 np 1 n 400 _—KT
/ S”(W)ds:/ i ds+o(1):/ C _dr+o(1).
0 o 1 o 1+

1—x,s — XpS T

Putting together the preceding estimates, we obtain

1—x,s n

too o—KT
1 np H/ dr —1 1
/‘S"(‘T”S)pn(s)ds_ o 1+7 +O< )7
0
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and combining this estimate with (2.6.61), we infer

+00 o—KT
. k| S ar—1
S"Fy(zps) /0 1+7
S T\ InS) g, (s)ds = :
/0 T— Hs(s)ds P n+ o(n)

Using the explicit expression of above constants defined in Proposition 2.6.13, we get that

+oo p—KT
n/ dr —1
0 1+T o ].

Cr — K2+ 2 X

and therefore .
/ MHg(S)dS =24 o(n).
0

1—x,s 2
Combining this estimate with (2.6.65) and (2.6.63), we deduce that

/1 73"Fn(xns)7_[(s)ds = —g +o(n),
0

1— sz,

which achieves the proof of the announced result. O

Regime B > A >0

In this special regime there is only a finite number of eigenvalues that can be indexed by a de-
creasing sequence, see Proposition 2.6.11-(1). In what follows we shall prove that the transver-
sality assumption is always satisfied without any additional constraint on the parameters.
More precisely, we prove the following result.

Proposition 2.6.18. Let B > A > 0. Then, the transversal property (2.6.57) holds, for every subse-
quence {a;n; n € [2, 44.8] } defined in Proposition 2.6.7, where

B 12B 9
Nap = -+, — - .
AB maX(A+8’ A 2>
Proof. Let us start with the case n € [2, % + l]. Using the expression of P, introduced in

8
(2.5.11) one has

A+2B n+2 - n+2
A nn+1)] n+1

Moreover, from the definition of &7 seen in Proposition 2.6.8, we get

2 Po(1) = 2 [1 -

o A+2B
n+1 n+2 An+1)
o n+ 2 (A+2B)(n+2)]\ n
_n+2<n+1+xn[ 1+ An(n+ 1) = n+2ann(1)<O.

This implies that P,(1) < 0. Since t € [0,1] — P,(t) is strictly increasing with z,, < 0, we
deduce that
P,(t) <0, Vtelo,1]. (2.6.66)

Therefore, we get from (2.5.12) that G,,(1) > 0. Let us study every term involved in (2.6.58)
by using the decomposition H = H; + Ha + H3 of Proposition 2.6.17. From the preceding
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properties, it is clear that Ha(t) > 0, for t € (0,1). In addition, we also have that t € [0, 1] —

-t + 113:8 is strictly decreasing and thus

];Z((i)) > Hs(1) =0, Ve el0,1].

Hs(t) = -t +

Concerning H; we first note that the mapping t € [0,1] — 11328 - I;;Ln((xx”nt)) is strictly decreasing

which follows from (2.6.66) and the fact that £}, is decreasing and P, is increasing. Thus,

Pn(t) _ Fn(fnt) Pn(l) _ Fn(xn) _

Combining (2.6.66) with (2.5.12), we deduce

42,Gp(1) {Pn(t) F,(zpt)

) = Ao [ B Folan) ] <0, te 1)

We continue our analysis assuming that

<1, vtelo1), (2.6.67)

42,Gp(1)
An(1 — x,t)

holds, we see how to conclude with. Since # is always positive then H will be strictly positive
if one can show that #;(t) + #H3(t) > 0, for any t € (0, 1). With (2.6.67) in mind, one gets

P,(t) Fn(a:nt)] g P,(t)  Fy(zat)

%(t)wg(t)z{ - Po(l) ~ Folan)

P,(1)  Fy(zn) —t, Vtelo,1].

Computing the derivatives of the function in the right-hand side term, we find

Fp(znt) _ apF(xat) B o ((Fulznt) _ 22 F"(z,t)
* ( Fp(2n) t) B Fo(zn) Lo < Fr(zn) t) Fo(zn) <0

The latter fact implies that the first derivative is decreasing, and thus

Fo(xnt) zn F)(0) —2xy, 2
- 7 < —1< —1< —1 1
O ( o) t) S o) S DR@) [ Sayr 150 veeldl

where we have used Lemma 2.6.3—(1). Therefore, we conclude that the mapping t € [0,1] —

?‘n(fx”nt)) — t decreases and, since it vanishes at t = 1, we get
F,(zpt)
t t)> ————~= —t >0, Vtelo1).
Hl( )+H3( )— Fn(xn) >0, 6[7 )

This implies that #(t) > 0 for any t € [0,1) and hence the transversality assumption (2.6.58)
is satisfied. Let us now turn to the proof of (2.6.67) and observe that from (2.5.12)

42, G (1) 1 n+l
= P,(1
‘An(l—xnt) 1—xntn+2x" n(1)
n+1 A+4+2B n+2 n+2
< 1-— - . 2.6.68
_n—|—2{xn[ A n(n—f—l)} n—f—l} ( )
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Using x,, defined in Proposition 2.6.8, and the fact that AfB n(”anl) — 1> 0, we obtain
4x,Gp (1) <n—|—1 1 A+2B n+2 n+ 2
Ty — —
An(l —zpt)| "n+2 A n(n+1) n+1

A+2B +2
n—|—1{2n+1 A n(T;H_l)_l_n—i—Q}

“n+2|2n+1) ﬁﬁ%_%% n+1

Consequently (2.6.67) is satisfied provided that

A4+2B _n+2
A n&ﬂ) -1 4 n+2
A+2B _ ntl = Topn +1 :

A(n+1) n+-2

A+2B  n+l
A(n+1) ~ nt2

Since > 0, then the preceding inequality is true if and only if

A+2B 2n% + 3n
Aln+1) ~ 2n2+4+3n—-2"

2n2+3n

It is easy to check that the sequence n > 2 — =220

inequality is satisfied for any n > 2 if

is decreasing, and then the foregoing

A+2B S z
An+1) — 6
Fom the assumption n + 1 < % + %, the above inequality holds if

B )
= >,
A~ 16

which follows from the condition B > A.

Let us now move on the case n € [2,22 — 9]. Note that we cannot use z, coming from
Proposition 2.6.8 since we do not know if z,, € (—1,0). In fact Proposition 2.6.7 gives us that
zn < —1,forn > £ 4 1. Hence, we should slightly modify the arguments used to (2.6.67). From

(2.6.68), we deduce that (2.6.67) is satisfied if

ont2

n+1
Tn 2 | _ A28 _n+2

A n(n+l)

By (2.6.31), it is enough to prove that
+2
1 =]
1— A+2B — 1— A+2B n+2

A(n+1) A n(n+l)

Straightforward computations give that the last inequality is equivalent to

A+2B S (n+3)n
An+1) =~ (n+2)(n—1)

Therefore, if n satisfies 2 < n < % - %, then we have

n+1+3 _ A+2B
n+l — An+1)

Hence, one can check that

n+1+§> (n+3)n
n+l ~ (n+2)(n—-1)
for any n > 2, and thus (2.6.67) is verified. O
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One-fold case

The main objective is to make a complete study in the case n = 1. It is very particular because
F} is explicit according to Remark 2.5.5 and, therefore, we can get a compact formula for the
integral of (2.6.58). Our main result reads as follows.

Proposition 2.6.19. Let n = 1 and x = —%, then we have the formula
1
sFy(xs) x—1
H(s)ds = .
/0 1—uas (s)ds 2z

In particular the transversal assumption (2.6.57) is satisfied if and only if x ¢ {0,1}.

Proof. Note that from (2.5.11)-(2.5.12) one has

P(t)=t>— —t—-- |1

2z 2 T

3 3 [ 1
Moreover, we get Fi(t) = 1 — t using Remark 2.5.5, and thus

w1 {Put>met>+2mext{[172 1 (ATSFﬂfﬁfa@yde

31 —at) | P(1)  Fi(x) Py(1) F2(z7) Jo 1—uws
Pl(t)
—t+
Pi(1)
1 x -~ Pl(t)
=l — . 2.6.

3(1—xt)H(t) t+P1(1) (2.6.69)

From straightforward computations we deduce
! 1 T sFy(xs) e e (( =)
P — 4 2z 4 T
/t T2F2 (1) /0 1—us 1(s)dsdr /t (1—7x)? dr
Denoting by ¢(7) = % — 57 — 3(1 — 1) and integrating by parts, we get
1 _ _ _
[T L[ e ] 1o 11z 1ot el
¢ (1 —7x)2 z|l—xz 11—tz 212 x |4z(l —x) 2x 1—tx
Therefore, after standard computations, we get the simplified formula
-~ 3(1—tx)(t —1
fe) 30—t 1),
x
Inserting this into (2.6.69), we find
t) = -1 =-2t24 St 2=,
H(t) +P1(1) t +It+ .
Plugging it into the integral of (2.6.58), it yields
! rz—1
/0 sH(s)ds = 5y
O
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2.7 Existence of non-radial time-dependent rotating solutions

At this stage we are able to give the full statement of our main result, by using the analysis of
the previous sections. In order to apply the Crandall-Rabinowitz Theorem, let us introduce the
m—fold symmetries in our spaces.

“haD)={ge @t D) : g(e2) =g(z), V2eD}, (2.7.1)
Cha M ={pedtam : peFw)=pw), vweT}, 2.7.2)
L%”ngjia(D) = {¢ c L%ﬁ%kva(D) : ¢(ei2ﬁz) — ei%(b(z), Yz € D} ] (2.7.3)

Note that the functions g € 625a(D), p € €4a(T) and ¢ € A" (D) admit the following
representation:

g(re') Z Gnm (1) cos(nmb), Z pnsin(nm@), and ¢(z) =z Z P

n>0 n>0 n>1

where z € D, r € [0,1] and € € [0, 27]. With these spaces, the functional F' defined in (2.3.1),
concerning the boundary equation, is also well-defined:

Proposition 2.7.1. Let ¢ € (0,1), then
F:Rx B%,la(O €) X B yy2.0(0,6) = ‘K;%(T)
is well-defined and of class €, where the balls were defined in (2.3.2).

Proof. Thanks to Proposition 2.3.1, it remains to prove that F'(€2, g, ¢) satisfies F'(2, g, ¢) (ei% w) =
F(w), withw € T:

27 Jo @(etm w) — B(
(et )| () o
~im Gw’i¢wo—1 S (c Q'd«m>¢wmaiw]

2 Jo @ (e w) — @(e’ T y)

[ 2 ——— G_i% 2 27
= Im -<Qe_im<1>(w) T A ggi};qi(@y )dA( )) (w)elmw}

F(Q,g,6) (¢ mw) = Im (Q o %) - L [ SWIPW) y)dA(y)) (P'(eii:w)ei%:w]

= F(Q,9,9)(w),
where we have used that qb(ei%z) =em o(2), (b/(ei%z) = ¢/(z) and g(ei%z) = g(z2). O

We must define the singular set (2.4.10) once we have introduced the symmetry in the
spaces. Fixing fj as a quadratic profile (2.1.6), the singular set (2.4.10) becomes

moo.
Ssmg

“a1tae T 2nm(nm +2)  2nm

~ A B A 1 B
{an: (nm+1) B neN*u{+oo}}.

For the density equation defined in (2.4.6) and the new spaces we obtain the following
result.
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Proposition 2.7.2. Let I be an open interval with T C R\S;’;g. Then, there exists € > 0 such that

G:1xBya

s, (D) (075) - %;;?{(D)

is well—defined and of class €, where Gis defined in (2.4.6) and B 1a (0,¢) in (2.3.2).

(D)

Proof. Similarly to the previous result, from Proposition 2.4.1 we just have to check that G(,9) (ei% z) =

G(£,9)(z), for z € D. From Proposition 2.3.3, there exists ¢ > 0 such that the conformal map ¢
is given by (€2, g), and lies in B%ﬁia(o, e). Then, using G(Q2, g) = G(2, g, (%2, g)), we have

- 27

i2T o\ 40 - B j2m f(elﬁz)Q
G(Q)gy¢)(e mz)_ ]A f(e mz)_wT
1 j <% QD ei%z 2
o [ogle(e ) —e(rwel ) Paay) - AT
7 /b 5
_40-B f(z)?
+27T/Dlog |(I>(elm z) — @(e m y)|f(e my)|q)/(e 2 y)|2dA(y)
Qle’n &(2)[?
—— =
2
= G(,9,9)(2),
where we have used the properties of functions g and ¢. 0

We have now all the tools we need to prove the first three points of Theorem 2.1.1, which
can be detailed as follows:

Theorem 2.7.3. Let A > 0, B € Rand fo a quadratic profile (2.1.6). Then the following results hold
true.

1. If A+ B < 0, then there is mg € N (depending only on A and B) such that for any m > my there
exists

— A+2B | Ak | Ar’—c 1
.Qm_ 4 +4m+4 m2m+0(m2)’

e V a neighborhood of (Q,,0,0) in R x %s%ﬁ(D) X %C&%"X(D),
o a continuous curve § € (—a,a) — (e, fe,0¢) €V,

such that (2.7.5),

wo=(fo® Nlgpy, f=fo+fe, ®=Id+ ¢,

defines a curve of non radial solutions of Euler equations that rotates at constant angular velocity
Q¢. The constants k and c; are defined in (2.6.13).

2. If B> A > 0, then for any integer m € [1,22 — 3] or m € [1, & + 1] there exists

e <O, < g,
e V aneighborhood of (Q,,0,0) in R x €o(D) x A€ (D),
e a continuous curve § € (—a,a) — (¢, fe,¢¢) €V,
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such that (2.7.5) defines a curve of non radial solutions of Euler equations. However, there is no
bifurcation with any symmetry m > 28 4 2.

3. IfB>0o0rB< —%E,for some 0,0581 < € < 1, then there exists

e V aneighborhood of (0,0,0) in R x €4"*(D) x #€>(D),
e a continuous curve § € (—a,a) — (¢, fe,p¢) €V,

such that (2.7.5) defines a curve of one-fold non radial solutions of Euler equations.

4. If —% < B < 0, then there is no bifurcation with any symmetry m > 1. However, in the case
that 0 < B < 4, there is no bifurcation with any symmetry m > 2.

Proof. (1) Let us prove the first assertion in the case A+ B < 0. We will implement the Crandall-
Rabinowitz Theorem (A.0.3) to G, defined in (2.4.6). First, we must concrete the domain of €.
From Proposition 2.6.6, there exist ng; and a unique solution z,, € (0, 1) of {;,(z) = 0 for any
m > ng,1. Then, the sequence defined by (2, = ﬁ + 8 > 4+ B decreases to 4 + £ since
(x,) increases to 1, see Proposition 2.6.6. This limit point % + % is different from Qg = g + ﬁ
because z, the unique root to (2.4.13), belongs to (0, 1). As a consequence, by taking ng; large
enough we can guarantee that €2, # y for any m > ng ;. Moreover, Proposition 2.6.14 gives
us that Q,,, # Qunn, for n € N, with ﬁmn € 8™ . Therefore, let I be an interval with €,,, € I and

sing*

INSHe=9, ¢l
By virtue of Proposition 2.3.3, we know that there exists ¢ > 0 and a ¢! function N : I x
B1.0(0,e) — B ,.2.0(0,¢), such that

F(Q,9,¢) =0 <= ¢ =N(Q,g)

holds, for any (£, 9,¢) € I X By1.a(0,€) X B ,2.4(0,¢). Hence, the conformal map is defined
through the density for that e. We define the density equation,

G x By (0,2) = €15 (D),

with the expression given in (2.4.6). Thanks to Proposition 2.7.2, the function G is well-defined
in these spaces and is ¢! with respect to (2, g). It remains to check the spectral properties of
the Crandall-Rabinowitz Theorem. Using Proposition 2.5.3, we know that the dimension of the
kernel of the linearized operator Dgé (€2,0) is given by the number of elements of the set A,
defined in (2.5.21). Note that we have introduced the symmetry m in our spaces, and therefore
we should take into consideration this fact. Hence in the kernel study we should restrict the
analysis of the resonance to the roots of (. Thus, instead of dealing with the set A, defined
in (2.5.21) we should consider the set

AT = {nm eN st Gun(z) =0, n> 1}.

Recall that z,, is the unique root of (,,(z) and the sequence n € [ng 1, +00[— xy, is strictly in-
creasing. Therefore we deduce that A7" = {m}, and since Qy,, ¢ 5§, we obtain that the kernel
is one dimensional. Moreover we know from Proposition 2.5.1 that D,G({2,,,0) is a Fredholm
operator with zero index . As to the transversality condition, note that using Proposition 2.6.16
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and Proposition 2.6.17 we may find ng > such that the transversality condition is satisfied pro-
vided that m > ng . Taking ng = max{ng 1,102}, then Crandall-Rabinowitz Theorem can be

applied to G obtaining a small neighborhood V of (Q,,, fo) in R x €4;2(D), and a continuous
curve ¢ € (—a,a) — (g, f¢) € V, of solutions to G(Q2, g) = 0 with

V£€ (—a,a), f$:£%+§ﬁ(£)7%%ﬁ(£)zoa

where £, is the generator of the kernel defined in Proposition 2.5.3. Notice that for £ # 0 we
have that f¢ # 0 and it is not radial because £, is not radial. Hence the density f, 4 f¢ can not
also be radial too. Furthermore, by Proposition 2.6.13 we know the asymtotics of z,,, obtaining

1 kK2 —cp 1
—=1+—+ +ol|l— |,
T m m?2 m2

where « and ¢, are defined in (2.6.13). Using the relation between z,, and €2, in (2.4.12), we
get

A+ 2B A+2B Ak  AkK®—c, 1
1 < Q= 1 + m + 1 2 <’ITL2> (2.7.4)
Therefore, we obtain that
wo=(fo® Nlgp)y, f=fo+fe, ®=Id + ¢, (2.7.5)

defines a solution to Euler equations that rotates at constant angular velocity {2¢. Moreover, we
claim that this solution is not radial for all { € (—a,a)\{0}. Indeed, as ® is conformal close in
our functional setting to Id then the only case where the shape ®(D) is radial corresponds to
® = Id. In this case the density given by fy + f¢ is not radial from the above discussion and
hence we get a non radial solution. On the other hand, if ® # Id then the support of wy, given
by ®(D) because the density f is not vanishing close to the boundary of ®(D), is not a radial
domain. In this cas we still get a non radial solution. So in all the cases the solutions that we
have constructed are not radial.

(2) Now, we are concerned with the existence of m-fold non radial solutions of the type (2.7.5)
in the case B > A > 0, for any integer m € [1,22 — %] orm € [1,5 + $]. In this part of the
theorem we also prove that there is no bifurcation with the symmetry m, for any m > % + 2.
As in Assertion (1), we check that the Crandall-Rabinowitz Theorem can be applied. From
Proposition 2.6.7 and Proposition 2.6.6, there is a unique solution x,, € (—o0, 1) of (;,(x) = 0.
In fact, z,, < 0. Then, we fix Q,,, = 4;4m + g. Note that by (2.6.31) and Proposition 2.6.8 we

get the bounds for 2,,,. Moreover, Proposition 2.6.15 gives that €, ¢ SS’ﬁlg. Then, let I be an
interval such that ,, € [ and I NS, = @. Using again Proposition 2.3.3 and Proposition

sing
2.7.2, we get that G:1Ix B1.a(0,¢) — Cam (D), is well-defined and % with respect to (€2, g).
As to the spectral properfies, we have stated in the previous proof that the dimension of the
kernel of the linearized operator is given by the roots of ¢,,,. Taking n = 1, we know that z,,
is the unique root of (,,(z). By Corollary 2.6.11 we get that (., () # 0, for any n > 2. Hence
Ay, = {m}.DuetoQ,, ¢ Ssrﬁlg, we have that the kernel is one dimensional. In addition we have
seen in Proposition 2.5.1 that DgCAJ (€©,0) is a Fredholm operator of zero index. Concerning the
transversal condition, note that using Proposition 2.6.18, we have that the transversal condition
is satisfied. Similarly to the previous proof, the Crandall-Rabinowitz Theorem can be applied
to G obtaining a curve { € (—a,a) — (€, f¢) solutions of G(€, g) = 0. Moreover, thanks to
Q¢ # Qo € (0,1), Proposition 2.4.3 gives that fo + f¢ can not be radial since f¢ # 0.
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First, note that Q ¢ [5, 5 + ﬂ is equivalent to < 1. By Proposition 2.6.6 and Proposition
2.6.7 we get that ¢,, has not solutions in (—oo, 1], for m > % +2, and then there is no bifurcation
with that symmetry by Proposition 2.5.1. In the opposite case, + > 1, there is no bifurcation

according to Theorem 2.5.6.

(3) Here, we are concerning with the case A,B > 0 or B < —1—16 for some € € (0,1), with
—% # o, where x is defined through (2.4.14). We work as in (1)-(2) checking the hypothesis
of Crandall-Rabinowitz Theorem. Fixing ; = 0 agrees with z; = —%, where we use (2.4.12).
Proposition 2.6.15 allows us to have that z; ¢ S'\sing. Then, we can take an interval I such that
0el,and

TﬂSSing:Q, Qo¢7

Again, Proposition 2.3.3 and Proposition 2.4.1 imply that
G :1x Byia(0,e) » €1°(D),

is well-defined and is ! in (22, g).

We must check the spectral properties. Due to the assumptions on A and B, we get that
x1 < 1. By Proposition 2.6.6, Proposition 2.6.8 and Proposition 2.6.10 we have that z; # z,, if
there exists x,, € (—o0, 1) solution of ¢,. Note that such ¢ comes from the Proposition 2.6.10.
Hence, by Corollary 2.6.11, we obtain that the kernel of Dgé(O, 0) is one dimensional, and
is generated by (2.5.34), for n = 1. Moreover, Proposition 2.5.1 implies that D,G(0,0) is a
Fredholm operator of zero index. The transversal property is verified by virtue of Proposition
2.6.19. Then, Crandall-Rabinowitz Theorem can be applied obtaining the announced result.
Note that the bifurcated solutions are not radial due to Proposition 2.4.3.

(4) The first assertion concerning the non bifurcation result comes from Proposition 2.6.6 and
Proposition 2.6.7 due to the fact that ¢, has not solutions in (—o0, 1], for m > 2. Moreover, by
Corollary 2.6.9 and Theorem 2.5.6 we get that there is no bifurcation for m = 1 since the only
possibility agrees with 2 = 0, which satisfies (2.5.35). Finally, the bifurcation with > 1is
forbidden due again to Theorem 2.5.6.

The last assertion follows from Corollary 2.6.9 and Theorem 2.5.6. O

2.8 Dynamical system and orbital analysis

In this section we wish to investigate the particle trajectories inside the support of the rotating
vortices that we have constructed in Theorem 2.1.1. We will show that in the frame of these V-
states the trajectories are organized through concentric periodic orbits around the origin. This
allows to provide an equivalent reformulation of the density equation (2.2.3) via the study of
the associated dynamical system. It is worth pointing out that some of the material developed
in this section about periodic trajectories and the regularity of the period is partially known in
the literature and for the convenience of the reader we will provide the complete proofs. Later,
we shall prove such results for our specific solutions of Theorem 2.1.1.

Assuming that (2.1.1) is a solution of the Euler equations, the level sets of ¢ (z) — Q@,
where ¢ is the stream function associated to (2.1.1), are given by the collection of the particle
trajectories,

Oupt2) ~((p(0,2) - plt,2)) = 7 (- 00 ) (o(e.a)
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©(0,7) =z € ®(D).

In the same way we have translated the problem to the unit disc D using the conformal map ¢
via the vector field W (€2, f, ®) in (2.2.5), we analyze the analogue in the level set context. We
define the flow associated to W as

W(t,z) =W(Q, f,®)(¥(t,2)), ¥(0,2)==2¢eD. (2.8.1)

Since vg(z) — Qz* is divergence free, via Lemma 2.2.1, we obtain that W (€, f, ®) is incompress-
ible, and then the last system is also Hamiltonian. In the following result, we highlight the
relation between ¢ and V.

Lemma 2.8.1. The following identity
p(n:(t), ®(2)) = ®(¥(t,2)), VzeD,

holds, where
(1) = 19" (@ (p(n(t), ®(2))]?,  12(0) = 0.

Proof. Let us check that Y (t,2) = ®~1(¢(t, ®(2))) verifies a similar equation as W(t, z) sets,

Y (12) =@ (@Y (1,04 (1. 9(2)) = i 20 (@Y (1,)) — 0001 (1,2)))
WO, (1,2)

(Y (t, 2))?

Now, we rescale the time through the function 7., and Y (1. (t), z) satisfies,

W, f,2)(Y(n(t), 2))

8tY(772(75)a Z) = Ug(t)(aty)(ﬁz(t), Z)) = ng(t) |(I>’<Y(T}(t) Z>>|2

=W, f,®)(Y (n(t), 2))-
Since Y (1.(0),2) = Y (0, 2) = ® !(¢(0, ®(z)) = 2, we obtain the announced result. O

The next task is to connect the solutions constructed in Theorem 2.1.1 with the orbits of the
associated dynamical system through the following result:

Theorem 2.8.2. Let m > 1and £ € (—a,a) — (S, fe, d¢) be one of the solutions constructed
in Theorem 2.1.1. The flow ¥ associated to W (S, fe, ¢), defined in (2.8.1), verifies the following
properties:

1. ¥ € €YR, €4 (D)).

2. The trajectory t — VU (t, z) is T}, periodic, located inside the unit disc and invariant by the dihedral
group Dy,. Moreover, if m > 4 then the period map z € D — T, belongs to €-(D).

3. The family (V(t)):er generates a group of diffeomorphisms of the closed unit disc.
The proof will be given in Subsection 2.8.5.
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2.8.1 Periodic orbits

Here we explore sufficient conditions for Hamiltonian vector fields defined on the unit disc
whose orbits are all periodic. More precisely, we shall establish the following result.

Proposition 2.8.3. Let W : D — C be a vector field in €' (D) satisfying the following conditions:
i) It has divergence free.
ii) It is tangential to the boundary T, i.e. Re (W (2)z) =0, VzeT.
iii) It vanishes only at the origin.
Then, we have

1. All the trajectories are periodic orbits located inside the unit disc, enclosing a simply connected
domain containing the origin.

2. The family (¥ (t)):cr generates a group of diffeomorphisms of the closed unit disc.

3. If W is antisymmetric with respect to the real axis, that is,
W(z) = -W(z), VzeD. (2.8.2)
then the orbits are symmetric with respect to the real axis.

4. If W is invariant by a rotation centered at zero with angle 0y, i.e. W (e%z) = %W (z), ¥z € D,
then all the orbits are invariant by this rotation.

Proof. (1) Let ¥ be the solution associated to the flux W

{ W(t,2) = W(¥(t,2)), (2.8.3)

U(0,z) =z €D.

From the Cauchy-Lipschitz Theorem we know that the trajectory ¢ — W (¢, z) is defined in a
maximal time interval (=75, T*), with T}, T* > 0, for each z € D. Note that when z belongs
to the boundary, then the second condition listed above implies necessarily that its trajectory
does not leave the boundary. Since the vector field does not vanish anywhere on the boundary
according to the third condition, the trajectory will cover all the unit disc. As the equation is
autonomous, this ensures that the unit disc is a periodic orbit.

By condition i) we get that (2.8.3) is a Hamiltonian system. Let H be the Hamiltonian function
such that W = V1 H. Since H is ¢! in D and constant on the boundary T according to the
assumption ii), then from iii) the origin corresponds to an extremum point.

Now, taking |z| < 1, the solution is globally well-posed in time, that is, 7, = T* = +oc0. This
follows easily from the fact that different orbits never intersect and consequently we should get

| (t,2)| <1, Vte (-T,T"),

meaning that the solution is bounded and does not touch the boundary so it is globally defined
according to a classical blow—up criterion.

We will check that all the orbits are periodic inside the unit disc. This follows from some
straightforward considerations on the level sets of the Hamiltonian H. Indeed, the w—limit of
a point z # 0 cannot contain the origin because it is the only critical point and the level sets
of H around this point are periodic orbits. Thus we deduce from Poincaré-Bendixon Theorem
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that the w—limit of » will be a periodic orbit. As the level sets cannot be limit cycles then we
find that the trajectory of z coincides with the periodic orbit.

(2) This follows from classical results on autonomous differential equation. In fact, we know
that the flow ¥ : R x D — D is well-defined and %" For any ¢ € R, it realizes a bijection with
UL(t,.) = ¥(—t,-), and (¥(t))cr generates a group of diffeomorphisms on D.

(3) The symmetry of the orbits with respect to the real axis is a consequence of the following
elementary fact. Given z € D and ¢ — V(¢, z) its trajectory, then it follows that ¢ — W(—t, 2) is
also a solution of the same Cauchy problem and by uniqueness we find the identity

V(t,z) =V (-t z), VteR.

(4) Assume that W is invariant by the rotation Ry, centered at zero and with angle 6. Let z € D,
then we shall first check the identity

Wt z) = W(t,e2), VteR. (2.8.4)

To do that, it suffices to verify that both functions satisfy the same differential equation with
the same initial data, and thus the identity follows from the uniqueness of the Cauchy problem.
Note that (2.8.4) means that the rotation of a trajectory is also a trajectory. Denote by D, and
¢ D, the domains delimited by the curves ¢t +— W(t, 29) and t + e W(t, z;), respectively.
Then, it is a classical result that those domains are necessary simply connected and they con-
tain the origin according to 1). Since different trajectories never intersect, then we have only
two possibilities: D, C €D, or the converse. Since the rotation is a Lebesgue preserving
measure, then D,, = eifo D.,, which implies that the periodic orbit ¢ — ¥(t, zo) is invariant by
the rotation Ry,. O

2.8.2 Reformulation with the trajectory map

In this section we discuss a new representation of solutions to the equations of the type

W(z)-Vf(z)=0, VzeD, (2.8.5)
with W a vector field as in Proposition 2.8.3 and f : D — Ra % function.
Proposition 2.8.4. Let W : D — C be a vector field satisfying the assumptions i),ii) and iii) of
Proposition 2.8.3. Then, (2.8.5) is equivalent to the formulation

1 T, _
flz)— TZ/O f(¥(r,z))dr =0, VzeDb, (2.8.6)

with T, being the period of the trajectory t — (¢, z).
Proof. We first check that (2.8.5) is equivalent to
f(¥(t,2) = f(z), VteR,V[z|<1. (2.8.7)

Although for simplicity we can assume that the equivalence is done pointwise, where we need
f € €', the equivalence is perfectly valid in a weak sense without nothing more than assuming
Holder regularity on f. Indeed, if f is a ¢! function satisfying (2.8.7), then by differentiating in
time we get

(W-V)(¥(t,z)) =0, VteR,V[z|]<1.
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According to Proposition 2.8.3, we have that (2.8.5) is satisfied everywhere in the closed unit
disc, for any ¢, U(¢,D) = D. Conversely, if f is a ¢! solution to (2.8.5), then differentiating with
respect to ¢ the function t — f(W(¢,2)) we get

U 2)) = (W V) (¥(1,2) = 0

Therefore, we have (2.8.7). Now, we will verify that (2.8.6) is in fact equivalent to (2.8.7). The
implication (2.8.7) = (2.8.6) is elementary. So it remains to check the converse. From (2.8.6)
one has

1

Ty,

fU(t,2)) =

Ty (t,2)
/) F(U(r, U (¢, 2))dr = 0. (2.88)
0

Since the vector field is autonomous, then all the points located at the same orbit generate pe-
riodic trajectories with the same period, and of course with the same orbit. Therefore, we have
Ty(i,z) = T.. Using (7, ¥(t, 2)) = ¥(t + 7, 2), a change of variables, and the 7, —periodicity of
7 = f(¥(,2)), then we deduce

1 T\Il(t,z) 1 t+T, 1 T,
/ fQU(r, ¥ (t, 2))dr = / fQU(r,2))dr = — | f(¥(7,2))dr = [(2).
T\I/(t,z) 0 T, J; T, 0
Combining this with (2.8.8), we get (2.8.7). This completes the proof. Ol

2.8.3 Persistence of the symmetry

We shall consider a vector field W satisfying the assumptions of Proposition 2.8.3 and (2.8.2)
and let ¥ be its associated flow. We define the operator f — Sf by

T. B
Sf(z)=f(z) — . J, f(¥(r,z))dr, VzeD.

We shall prove that f and S f share the same planar group of invariance in the following sense.
Proposition 2.8.5. Let f : D — R be a smooth function. The following assertions hold true:

1. If f is invariant by reflection with respect to the real axis, then S f is invariant too. This means
that
f(z) = f(z), VzeD= Sf(z)=Sf(z), VzeD.

2. If W and f are invariant by the rotation Ry, centered at zero with angle 6y € R, then S f commutes
with the same rotation. This means that

f(e%2) = f(2), VzeD= (Sf)(e™z) = Sf(z), VzeD.

Proof. (1) Let z € D, it is a simple matter to check that ¥(¢,zZ) = W(—t,z), which implies
Ts = T,, and then

1 1

T, T
S1G) = 16 = [ F (WD) dr = 1) = - [ 5wz dr = 51

(2) According to Proposition (2.8.3) and the fact that the vector-field W is invariant by the
rotation Ry, then we have that the orbits are symmetric with respect to this rotation and

Tio, =T, and W(t,e2) = W(t, 2),
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where we have used (2.8.4), which implies that

. T, . T,
SHE™) = 1) = [ (um)dr = 1) = 7 [ (W) dr = SH)
This concludes the proof. ]

2.8.4 Analysis of the regularity

Next, we are interested in studying the regularity of the the flow map (2.8.3) and the period
map. The following result is classical, see for instance [77].

Proposition 2.8.6. Let o € (0,1), W : D +— R? be a vector-field in €% (D) satisfying the condition
ii) of Proposition 2.8.3 and ¥ : R x D ~ D its flow map. Then ¥ € €*(R, ¢1*(D)) and there exists
C > 0 such that

195 Ollgr.0p) < Mool (14 w7

(hﬂl,a(D)|t|) , Vte R,
holds.

Now we intend to study the regularity of the function z = (z,y) € D — T. This is a clas-
sical subject in dynamical systems and several results are obtained in this direction for smooth
Hamiltonians. Notice that in the most studies in the literature the regularity is measured with
respect to the energy and not with respect to the positions as we propose to do here.

Let z € D be a given non equilibrium point, the orbit ¢ — U(t, z) is periodic and T} is the
first strictly positive time such that

(T, 2) —z = 0. (2.8.9)

This is an implicit function equation, from which we expect to deduce some regularity proper-
ties. Our result reads as follows.

Proposition 2.8.7. Let W be a vector field in (D), satisfying the assumptions of Proposition 2.8.3
and (2.8.2) and such that
W(z) =i2U(z), VzeD,

with
Re{U(z)} #0, VzeD. (2.8.10)
Then the following assertions hold true:

1. The map z € D ~ T is continuous and verifies the upper bound

2m —
0<T,<— "  _ v,eD. (2.8.11)
© 7 inf, g [ReU(z)|

2. Ifin addition U € €% (D), then z + T, belongs to ¢1*(D).

Remark 2.8.8. Since the origin is an equilibrium point for the dynamical system, then its trajectory is
periodic with any period. However, as we will see in the proof, there is a minimal strictly positive period
denoted by T, for any curves passing through a non vanishing point z. The mapping z € D\{0} — T,
is not only well—defined, but it can be extended continuously to zero. Thus we shall make the following
convention
To = lim T,,.
z—0
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Remark 2.8.9. The upper bound in (2.8.11) is “almost optimal” for radial profiles, where U(z) =
Uo(|#|) € R, and explicit computations yield

2
[Uo(l2)I"

T, =

Proof. (1) We shall describe the trajectory parametrization using polar coordinates. Firstly, we
may write for z = ret

W(z) = [W’"(r, 0) + W (r, 9)} et

with
WO(r,0) = rRe(U(re®?)) and W' (r,0) = —rIm(U(re'?)).

Given 0 < |z| < 1, we look for a polar parametrization of the trajectory passing through z,
U(t,2) = r(t)e™, r(0) = |2], 0(0) = Arg(2).
Inserting into (2.8.3) we obtain the system
#(t) = = r(t)im {U (r(©)e”) } = P(r(),0(1))
d(t) =Re {U (r(t)eie(t)) } = Q(r(t),0(2)). (2.8.12)

From the assumption (2.8.2) we find

which implies in turn that
P(r,—0) = —P(r,0) and Q(r,—0)=Q(r,0), Vrel0,1],V0 € R.

Thus, we have the Fourier expansions

Z P,(r)sin(nd), and Q(r,0) Z Qn(r) cos(nb).
neN* neN
Denoting by 7}, and U, the classical Chebyshev polynomials that satisfy the identities

cos(nf)) =T, (cosh)
sin(nf) =sin(0)U,,—1(cos ),

we obtain

P(r,0) =sin6 Z P, (r)Up—1(cos @) = sinf Fi(r,cosb).

neN*

Z Qn(r)T,(cos0) = Fy(r,cosb).

neN
Coming back to (2.8.12), we get

7(t) = sin@(t) Fi(r(t),cos6(t))

(2.8.13)
() = Fy(r(t), cos 0(t)).
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We look for solutions in the form
r(t) = f.(cos(0(t)), with f,:[-1,1] =R,

and then f, satisfies the differential equation

7266 == (G ) ((619) Sofcost) = |2 2814)
Note that the preceding fraction is well-defined since the assumption (2.8.10) is equivalent to
Fy(r,cos0) #0, Vrel0,1],0 €R.
Theorem 2.8.3-i7) agrees with
Fi(0,s) = Fi(1,s) =0, Vl|s| <1,
which implies that the system (2.8.14) admits a unique solution f, : [-1,1] — Ry such that
0< f(s) <1, Vsel[-1,1].
Hence, integrating the second equation of (2.8.13) we find after a change of variable

e(t) 1

0, F2(f-(coss),coss)

ds =t,

and, therefore, the following formula for the period is obtained

1 1

Oo+2m 2w
T. - | / ds| = / ds. 2.8.15
9 Fs (f.(coss),cos s) 0 |F2 (f2(cos s),coss) | ( )

This gives the bound of the period stated in (2.8.11). The continuity z — T follows from the
same property of z — f,, which can be derived from the continuous dependence with respect
to the initial conditions.

(2) Now, we will study the regularity of the period in ¢*. Note that (2.8.15) involves the
function f, which is not smooth enough because the initial condition z — f.(cos#) is only
Lipschitz. So it seems quite complicate to follow the regularity in €1 from that formula. The
alternative way is to study the regularity of the period using the implicit equation (2.8.9). Thus,
differentiating this equation with respect to 2 and y we obtain

(axTz)at\Il(Tz> z, y) + axqj(Tza z, Z/) -1 :07
(9,1.)0 ¥ (T 2, y) + 0, 0(T., 2,y) — i =0.

From the flow equation and the periodicity condition we get
0V (T, z) = W(z),

which implies

(2.8.16)
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Due to the assumption on W, the flow equation can be written as
WV (t,z) =i¥(t,2)U(V(t, 2)), V(0,2) =z,
which can be integrated, obtaining
U(t,2)=ze Jo U¥(r,2))dr

By differentiating this identity with respect to z, it yields
, t
0,0(1,2) = U 1 iz [, (G} ar]
0

Since ¥ (T, z) = z, we have
ol fo P U (r2))dr _

and thus
T,
DU(Ts,2) =1+ iz / 0, {U(¥(7,2))} dr.
0

Similarly, we find

T
Oy (T, 2) =1+ iz/ Oy {U (¥ (T, 2))} dr.
0
Combining these identities with (2.8.16), we obtain

{ (O T)W () = —iz fy~ 0 {U(¥(r, )} dr,
Oy )W (z) = —iz fo 0, {U(Y(T,2))} dr,

which, using the structure of W, reads as

(0. T)U(2) = —i fo F 0 {U(¥Y(7,2))} dr,
(0yT)U(2) = —i [o7 0y {U(¥(7,2))}dr.
Now, notice that from Theorem 2.8.3-iv), the vector field W vanishes only at zero and since
U(0) # 0, we find
U(z) #0, VzeD.

This implies that z € D — ﬁ is well-defined and belongs to ¢’1*(D). Therefore, we can write

L 0 2)) dr (2.8.17)

L
U(z) Jo
where we have used the notation V., = (0,,0,). According to Proposition 2.8.6 and classical
composition laws, we obtain

T Vo AU(U(r, )} € €(R;€°%(D)).

VT, = -

Since z — T, is continuous, then we find by composition that

T, -
p:2€Dm V. AU(¥(7,2))}dr € €(D).
0
Combining this information with (2.8.17), we deduce that z — T, € ¢*(D). Hence, we find in
turn that ¢ € ¥%(D) by composition. Using (2.8.17) again, it follows that z — VT, € €%%(D).
Thus, z — T, € €1*(D). This achieves the proof. O
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2.8.5 Application to the nonlinear problem

We intend in this section to prove Theorem 2.8.2. Let us point out that from Proposition 2.3.3,
the nonlinear vector field W (€2, f, ®) is chosen in order to be tangent to the boundary every-
where. We will see that not only this assumption but all the assumptions of Proposition 2.8.3
are satisfied if f is chosen close to a suitable radial profile.

Lemma 2.8.10. Let g € Gopm(D) and ¢ € A6 "(D), then W(Q, f, ®) € €1(D) and satisfies the
symmetry properties (2.8.2) and

W(Q, f,@)(e' 2) = e W(Q, £, ®)(2).

Moreover, if m > 4 then
W(Q, f,®)(z) =izU(z2), (2.8.18)

with U € €1%(D)

Proof. Using Proposition 2.3.1 and Proposition 2.7.1, then the regularity and the symmetry
properties of W (£, f, ®) are verified. Let us now check (2.8.18). Firstly, since ¢(0) = 0 and
¢ € #€**(D), we have

CI)(Z) = z@l(z), P, € %LQ(D).

In addition, ' € ¥"%*(D), and thus we find
iQ®(2) D (2) =izUy(2), with U; € €4*(D).
Now, to get (2.8.18) it is enough to check that
I(f,®)(2) = 2Us(z), with Uy € (D),

where

SR N 1) B
1.9)0) = 5 [ Sl Aw)

We look for the first order Taylor expansion around the origin of I(f, ®)(z). Using first the

change of variables y — ei%y and later the m-fold symmetry of f and ® (see (2.7.1)—(2.7.3)), it
is clear that

r.e0 - [ ;f(z))vb'(yn?m(y)
= [ LD ey paagy
> B(ciny)

Y B ()P
= [ e Y Ol

which leads to
I(f,®)(0) =0, (2.8.19)

for m > 2. This implies that one can always write I(f, ®)(z) = zUz(z), but Us is only bounded:

102l e ) < IVaLall ooy < (I

%La(D) .
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We shall see how the extra symmetry helps to get more regularity for U;. According to Taylor
expansion one gets

I(f,®)(2) = az + bz + 2> + dz*> + e|z|* + Lo.t. with a,b,c,d,e € C.
Using the reflection invariance with respect to the real axis of f and ®, we obtain
I(f,9)(2) = I(2),

which implies that a, b, ¢, d, e € R. Now, the rotation invariance leads to

I(f,®) (' z) = ' m I(2).
Then, we obtain

e=0, b(eg —-1)=0, c(ei%—l)zo, and d(e m —1)=0.

This implies that b = ¢ = d = 0, whenever m > 4. Thus, we have

I(f,®)(2) = az + h(z),
with h € €%%(D), and

h(0) =0, V.h(0) =0, and WV?2h(0)=0.

From this we claim that
h(z) = zk(z), with k€ €V*(D),

which concludes the proof. O

Now we are in a position to prove Theorem 2.8.2.

Proof of Theorem 2.8.2. The existence of the conformal map ® comes directly from Proposition
2.3.3, which gives the boundary equation (2.2.4). Moreover, Lemma 2.8.10 gives the decompo-
sition (2.8.18) and provides the necessary properties to apply Proposition 2.8.3. Furthermore,
we can use Proposition 2.8.4 in order to obtain the equivalence between a rotating solution
(2.1.1) of the Euler equations and the solution of (2.8.6). Proposition 2.8.6 gives the regularity
of the flow map, and it remains to check (2.8.10), using Proposition 2.8.7, in order to get the
regularity of the period function. In the case of radial profile, we know that

W (8, fo,1d)(z) = izUy(2), Us(z) = -2+ :2/(: sfo(s)ds

which implies

W, £,@)(2) = WS, fo,1d)(2) = = Q6(2) (1+9(2) ) — Q29'(2) + 7 ) 1(f, @) (2)
+1(f,®)(2) = I(fo,1d)(2).
It is easy to see that
29 (14 5E) | <10 (L4 1 o)
From (2.8.19) and Lemma B.0.5, we have

(f,

g () === ’ < NG L@ IV-I(f, @)l ) < C(@)Ifllg1.0(0) 19l (D)-
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Using again (2.8.19), we deduce
I(f,®)(2) — I(fo, o) (%) ‘

z

|v-1r(s.2) 1050, 20)] |

L (D)’

Straightforward computations imply

Hﬁ@@—ﬂh@ﬂ@—léj@umm+1/ka[()¢@”dm)

21 Jo (U — %) (2(y) — ©(2))
1 2Re{¢’(y)} + W(y)l2
"o ?(z) — ©(y) T

From this and using Lemma B.0.5, we claim that

[v- ) — 1t 20 | ) < C@)lg

L=(D)

(gl,a(D) .

Combining the preceding estimates we find

W(Q) fa (D)(Z) — W(Q) an Id)(Z):|

= [z’Uo(z) +W (9, f, QI>)(Z)] ;

z

W(Q, f,®)(z) == [iUo(z) +

with .
IW(Q, f,®)l| ) < C(f,®) (|h
Now, we take h, ¢ small enough such that

C(f,®) (Ihllgram) + 10llg2ep)) < e

g0 + [¢ls2eD)) -

and ¢ verifies .,
0<2 < inf ’Q — / sfo(s)ds‘ = inf |Up(z)],
0 zeD

0<r<1
in order to have

W(Q, f,®)(2) = izU(z), with 2[Re{U(2)}| > inf \Q—;/OTsfo(s)ds(.

0<r<1

To end the proof let us check that this infimum is strictly positive for the quadratic profile
fo(r) = Ar? + B, where A > 0. Take ¢ € (—a,a) — (%, fe, ¢¢) the bifurcating curve from
Theorem 2.1.1. Then for a small enough

B A

Qg = EJFTLI:&"IE <1 and Qg Qf Ssing

Thus
1" A1,

Qe — — sfg(s)ds:4<:c§r>

Consequently
1 (" All
f‘Q—— d’:'f———Q 0
Té% [0,1] ¢ SfO(S) s rel%,l} 4 T e

This achieves the proof. O
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3.1 Introduction

A distinctive pattern is observed in the wake of a two—dimensional bluff body placed in a
uniform stream at certain velocities: this is called the von Karméan Vortex Street. It consists of
vortices of high vorticity in an irrotational fluid. This complex phenomenon occurs in a large
number of circumstances. For instance, the singing of power transmission lines or kite strings
in the wind. It can also be observed in atmospheric flow about islands, in ocean flows about
pipes and in aeronautical systems. See [91, 92, 131, 138, 139, 140, 144].

The phenomenon of periodic vortex shedding can be described as an oscillating flow that
appears when a fluid passes across a bluff body. It was first studied experimentally in [131, 144].
The first theoretical model was later presented by VON KARMAN in [91, 92] and nowadays it is
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called Karman Vortex Street in the literature, see also [10, 104, 134] for further studies of such a
model. Specifically, the author considered a distribution of point vortices distributed along two
parallel staggered rows, where vortex strength at each row has opposite sign. Since the exact
problem seems to be complex from a theoretical point of view, there has been many different
approximations.

The generation of vortex shedding phenomena has been subject of study of many authors.
The main heuristic idea is that bluff bodies often induce separated flow over a substantial pro-
portion of their surfaces when placed within a fluid stream. Examples of bluff bodies are sharp
edges bodies. At low Reynold number, the flow stays stable around the body. However, for
high Reynold number (higher than a critical value) the body generates instabilities. After a
transient of time, an organized steady motion is often created, thus giving rise to vortex shed-
ding dynamics. Notice that both viscosity and bluff body are involved in the generation of the
shedding process. However, once created, they seem not to influence anymore the evolution
of the vortex street. This suggests that, if we focus on the later evolution of the street (but
not on the initial shedding formation process), an inviscid incompressible fluid model may be
proposed to describe this situation. See [90, 111, 140] for more details.

In the context of the Euler equations, Kdirméan Vortex Street structures arose in the works
by SAFFMAN and SCHATZMAN [138, 139, 140]. Inspired by the ideas by VON KARMAN [91, 92],
the authors considered two parallel infinite arrays of vortices with finite area and uniform
vorticity. After some numerical studies, they found the existence of this kind of solutions that
translate at constant speed. Also, they discussed about the stability properties of these steady
solutions with respect to two-dimensional disturbances by playing with two free parameters:
size of vortices and distance between vortices in the street. More specifically, they found linear
stability of the street for infinitesimal disturbances under an appropriate relation between such
free parameters.

In this chapter, we focus on the study of these structures in different inviscid incompressible
fluid models via a desingularization of the point vortex model proposed by VON KARMAN
[91, 92]. We obtain two infinite arrows of vortex patches, i.e. vortices with finite area and
uniform vorticity, that translate. Then, we recover analytically the solutions found numerically
by SAFFMAN and SCHATZMAN, not only in the Euler equations framework, but also in other
incompressible models, that we recall in the following.

Let ¢ be a scalar magnitude of the fluid satisfying the following transport equation

Owq+v-Vg=0, in|0,+00) x R?,
v =V, in [0, +00) x R?,
P =Gx*q, in [0, +00) x R?,
q(0,z) = qo(z), withx € R%

(3.1.1)

Note that the velocity field v is given in terms of ¢ via the interaction kernel G, which is assumed
to be a smooth off zero function. Here, (z1,22)" = (—22,1). In the case that G = 5= In| - |, we
arrive at the Euler equations. On the other hand, if G = —Ky(|A|| - |), with A # 0 and K the
Bessel function, the quasi—geostrophic shallow water (QGSW) equations are found. Finally, the

generalized surface quasi-geostrophic (g5QG) equations appears in the case that G = %#,
B
for f € [0,1] and C3 = %. Note that all the previous models have a common property:

the kernel G is radial, which will be crucial in this chapter.

The Euler equations deal with uniform incompressible ideal fluids and ¢ represents the vor-
ticity of the fluid, usually denoted by w. Yudovich solutions, that are bounded and integrable
solutions, are known to exist globally in time, see [107, 152]. When the initial data is the char-
acteristic function of a simply—connected bounded domain D, the solution continues being a
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characteristic function over D;, which is the evolution of Dy along the flow. These are known
as the vortex patches solutions. If the initial domain is ¢ Lo with0 < a < 1, the regularity per-
sists for any time, see [18, 36, 141]. The only explicit simply—connected vortex patches known
up to now are the Rankine vortex (the circular patch), which are stationary, and the Kirchhoff
ellipses [98], that rotate. Later, DEEM and ZABUSKY [51] gave some numerical observations
of the existence of V-states, i.e. rotating vortex patches, with m—fold symmetry. Using the
bifurcation theory, BURBEA [21] proved analytically the existence of these V—states close to the
Rankine vortex. There has been several works concerning the V-states following the approach
of BURBEA: doubly—conected V-states, corotating and counter—rotating vortex pairs, non uni-
form rotating vortices and global bifurcation, see [28, 53, 69, 79, 84, 86]. We refer also to Chapter
2 about non uniform rotating vortices in the Euler equations.

The quasi-geostrophic shallow water equations are found in the limit of fast rotation and
weak variations of the free surface in the rotating shallow water equations, see [146]. In this
context, the function ¢ is called the potential vorticity. The parameter A is known as the inverse
“Rossby deformation length”, and when it is small, it corresponds to a free surface that is nearly
rigid. In the case A = 0, we recover the Euler equations. Although vortex patches solutions
are better known in the Euler equations, there are also some results in the quasi—geostrophic
shallow water equations. For the analogue to the Kirchhoff ellipses in these equations, we
refer to the works of DRISTCHHEL, FLIERL, POLVANI and ZABUSKY [125, 126, 127]. In [58],
DRISTCHEL, HMIDI and RENAULT proved the existence of V—states bifurcating from the circular
patch.

In the case of the generalized surface quasi-geostrophic, ¢ describes the potential tempera-
ture. This model has been proposed by CORDOBA et al. in [44] as an interpolation between the
Euler equations and the surface quasi-geostrophic (SQG) equations, corresponding to 3 = 0
and 8 = 1, respectively. The mathematical analogy with the classical three-dimensional incom-
pressible Euler equations can be found in [43]. Some works concerning V-states in the gSQG
equations are [26, 27, 78, 84].

The point model for a Karman Vortex Street consists in two infinite arrays of point vortices
with opposite strength. More specifically, consider a uniformly distributed arrow of points,
with same strength in every point, located in the horizontal axis, i.e., (kl,0), with [ > 0 and
k € Z. The other arrow contains an infinite number of points, with opposite strength, which
will be parallel to the other one and with arbitrary stagger: (a + ki, —h) with a € Rand h # 0.
We refer to Figure 1.5 for a better understanding of the localization of the points. Hence, we
consider the following distribution:

00(x) =D S(h0)(®) = D Sasit—n) (), (3.1.2)
kezZ kez

where a € R, 1 > 0 and h # 0. If the kernel G is radial, then we will show that every point
translates in time, with the same constant speed. Moreover, if a = 0 or a = %, the translation
is parallel to the real axis. In the typical case of the Eulerian interaction, that is G = i In|-|,
the evolution of (3.1.2) has been fully studied, see [10, 104, 91, 92, 118, 124, 134]. The problem
consists in a first order Hamiltonian system and the evolution of every point is given by the
following system:

z -z + Zm - Z
dzm(t): 3 (2m(t) — 2k(t)) _Z( (t) k(t))|

dt 2, om0 = 2P

)
Zm(t) — 2(t)* () — 2
4=y Enl) =2l 5 <m<t>) 10

2 Pon(t) — 2 (0)P
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with initial conditions
2m(0) =ml
Zm(0) =a + ml — ih,

for m € Z. The rigorous derivation of the point vortex system from Euler equations can be
found in [109]. In this particular case, it can be checked that the velocity at every point is the
same, providing us with a translating motion. Indeed, if a = 0 or a = %, the speed can be
expressed by elementary functions, where we observe that the translation is horizontal:

1
Vo =— oth< Zh>’ for a =0,

21
1 wh l
Vo = 2ltanh< ] >, for a=g.

The works of SAFFMANN and SCHATZMAN [138, 139, 140] refer to the study of these struc-
tures in the Euler equations. In fact, they consider two infinite arrows of vortices with finite
area, which have uniform vorticity inside. These are two infinite arrows of vortex patches
distributed as in (3.1.2). They found existence of this kind of solutions numerically and they
studied their linear stability, see [138, 139, 140]. The problem can be studied not only in the
Euler equations for the full space, but in the Euler equations in the periodic setting. A theory
for the Euler equations in an infinite strip can be found in [17]. In [73], GRYANIK, BORTH and
OLBERS studied the quasi-geostrophic Karman Vortex Street in two-layer fluids.

The aim of this chapter is to find analitically solutions to the model proposed by SAFFMAN
and SCHATZMAN in [138, 139, 140]. We will do it not only for the Euler equations, but also
for other inviscid incompressible models. Here, we follow the idea of HMIDI and MATEU in
[85], where they desingularize a vortex pairs obtaining a pair of vortex patches that rotate or
translate (depending on the strength of the points). See also [1, 50, 108, 142] for other works
about the desingularization of point vortices.

Fore > 0and [ > 0, consider

Go.e( 52 > Ll Z 1 cpyta—intki(T), (3.1.3)
kez kez
where D; is a simply—connected bounded domain. In the case |D;| = |D|, witha =0ora = %,

and h # 0, we find the Karman Vortex Street (3.1.2) in the limit ¢ — 0. This means

. 1
lim {7T€2 Z 1.p,4m(x) — 52 Z 1 cpyvarki—in(T1, T2 } Zé(kl o) (@ 25(a+kz _py(

keZ kezZ keZ keZ

in the distribution sense. Then, we connect the vortex patch model (3.1.3) with the point vortex
model (3.1.2). In the following, we will refer to Kdrman Vortex Street or Kdrmén Point Vortex
Street when having the point vortex model (3.1.2). Otherwise, we denote by Kdrman Vortex
Patch Street in the case of (3.1.3). Assuming that ¢(t,z) = go(z — V't), for some V € R, and
using a conformal map ® : T — 0D;, we arrive at the following equation

F(e. £,V)(w) = Re [{T(. H(w) =V} wd'(w)] =0, weT,

where

I fw) = - — 3 / G(1e(@(w) — B(E)) — kI|)P'(€) de

k:eZ
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Z/G le(® D)) — a — kL + ih|)®'(€) de.

keZ
Let us explain the meaning of f. Assume that the conformal map is a perturbation of the
identity in the following way

®(w) =i (w+ ef(w) Zanw "a, eRweT. (3.1.4)

for G = ;- In|-|and G = —Ko(|A|| - |). Whereas, it will be consider as

O (w) = (w + @ (w ) Zanw " ap, €eRweT. (3.1.5)

n>1

for more singular kernels, such as G = C— W’ for g € (0,1). Hence, note that the scaling of the

conformal map must be adapted to each case depending on the singularity at the origin of the
velocity field.
Our main result in this work reads as follows.

Theorem 3.1.1. Consider G = 3=In|-|, G = —Ko(|A|| - |), or G = 271' ; ‘B,for A#Oand 5 € (0,1).

Let h,l € R, with h # 0andl > 0,and a = 0 or a = % Then, there exists a €* simply—connected
bounded domain D¢ such that

Q. FEQ > Lepeyn(e Z 1_cpeta—in+ki(T),
kez kez

defines a horizontal translating solution of (3.1.1), with constant speed, for any € € (0,¢e¢) and small
enough g > 0.

Note that the previous domains D are achieved for small perturbations f in the sense

1

¢la <0’<17

and then

€
® <l4+—
0)| <1+ o
obtaining some bounds for the size of D*.

The idea of the proof is based on the infinite dimensional Implicit Function theorem and
let us explain here the key points for Euler equations. We can proved that (0,0, Vp)(w) = 0,
for any w € T, where 1} is the speed of the point model (3.1.2). The nonlinear functional F' is

well-defined from R x X, x R to Y,,, where

{fG%lo‘ Zanw”aneR},

n>1

n>1

- {f € €M), f() = ansin(nh), a, € R} ,

for some a € (0,1). However, 9;F (0,0, V) is not an isomorphism in these spaces. Defining V'
as a function of € and f in the following way

Jo I(e, P (w)wd' (w)(1 — w2)dw

Vie.S) = rwd () (1 —o%)dw

(3.1.6)
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then, F' is also well-defined from R x X, to Y,, where

Yo =< fe€O(T), f(e¥) = Zan sin(nh), a, € R

n>2

Indeed, 0¢F (0,0, V) is an isomorphism in these spaces. Then, we fix the velocity V' depending
on ¢ and f as in (3.1.6). In this way, the Implicit Function theorem can be applied in order to
desingularize the point model (3.1.2) obtaining our main result.

This chapter is organized as follows. In Section 2, we introduce some preliminary results
about the N-vortex problem and, in particular, the point model for the Kdrman Vortex Street
(3.1.2) with general interactions. Section 3.3 refers to the Euler and QGSW equations, where
the singularity of the kernel is logarithmic. We will deal with the general case in Section 3.4,
following the same ideas as in the Euler equations. The gSQG equations will become a partic-
ular case of this study. Finally, Appendix C and Appendix B will be devoted to provide some
definitions and properties concerning special functions and complex integrals.

Let us end this part by summarizing some notation to be used along the chapter. We will
denote the unit disc by D and its boundary by T. The integral

/T 7€) de,

denotes the usual complex integral, for some complex function f. Moreover, we will use the

symmetry sums defined by
> ap= i > a, (3.1.7)
kez k| <K

except being specified.

3.2 The N-vortex problem

The N-vortex problem consists in the study of the evolution of a set of points that interact
according to some laws. Originally, the Eulerian interaction for the N-vortex problem is con-
sidered. But here, we start by assuming that the interaction between the points is due to a
general function G : R — R, which is smooth off zero. The problem is a first order Hamiltonian
system of the form

N
d i
Zrem(t) = ; TeV2 Gl|zm(t) — zi(1)]), (32.1)
k;Zm
with some initial conditions at ¢t = 0 and where m = 1,..., N. Moreover, 2z # z,, if k # m,

are N-points located in the plane R?. The constants I'; mean the strength of each point and the
interaction between them is due to G. In the case that G = i In| - |, we arrive at the typical
N-vortex problem:

Doty = 31, ) =20
a0 = s
k#m
First, we deal with the evolution of two points. We can check that they rotate or translate
depending on their strength: I'; and I's. Later, we will move on the configuration that we
concern: an infinite number of points with a periodic pattern in space. For more details about
the N-vortex problem in the case of the Eulerian interaction see [118].
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3.2.1 Finite configurations

There are some stable situations yielding to steady configurations. Here, we illustrate the evo-
lution of 2—points since the same idea is used later in the case of periodic configurations.

Proposition 3.2.1. Let us consider two initial points z1(0) and z2(0), with z1(0) # 22(0), located in
the real axis, with strengths I'y and T'y respectively. We have:

1. If Ty + Ty # 0 and T'121(0) + T'222(0) = 0, then the solution behaves as z(t) = *¥24(0), for
— ' — (Mi4T2)G'(|21(0)=22(0)])
k=1,2 withQ = 5100) =23 (0)] .
2. 1fF1—|—F2 =0, then z, (t) = Zk(O)—l—Ut,fOT k=12 withU = Z.FQG/(‘Zl (0)—22(0)|)Sigl’1(2’1 (0)—
22(0)).
Proof. According to (3.2.1), the evolution of the two points is given by the following system:
(1) = i0aG (|21 (1) — 22(0) G2
420(t) = —iD1G (|21(t) — 22(0))) =20

(1) By the above system, it is clear that % (T'121(t) + I'222(t)) = 0, which implies that

(3.2.2)

Flzl(t) + FQZQ(t) = Flzl(O) + FQZQ(O) =0.

Assuming that z; () = ¢*21(0), and using the above equation, one arrives at z3(t) = ¢"*25(0).
Then, the system (3.2.2) yields

{ 96921 (0) = i€V TaG(|21(0) — 22(0) ) =20,

i0625(0) = —ie ™1 G (|21 (0) — 22(0)]) G20
Since 21(0) and z2(0) are located in the real axis, one has that z;(0) — 22(0) € R, and then
subtracting the above two equations amounts to
(F1 +T'9)G(21(0) — 22(0)))
[21(0) — 22(0)]

(2) In this case, we have that 4 (z1(t) — 22(¢)) = 0, and thus

0=

21(t) — z2(t) = 21(0) — 22(0).

As a consequence, (3.2.2) agrees with

{ F21(t) = iT2G'(|21(0) — 22(0)|)sign(z1(0) — 22(0)),
G2a(t) = iT2G'(|21(0) — 2(0)|)sign(z1(0) — 22(0)),
which can be solved as
{ Z1 (t) = 21(0) + ZTQG’(|21 (0) — 22(0)|)sign(21 (0) — 2:2(0))757
z2(t) = 22(0) 4 iT'2G'(|21(0) — 22(0)])sign(z1(0) — 2z2(0))¢.
O

The above result gives us that two vortex points with I'; +I'y # 0, have a rotating evolution.
Otherwise, they translate. From now on, we refer that a structure translates when the evolution
of every point (or every patch, in the case of (3.1.1)) is a translation, with the same constant
speed.

In the usual N—vortex problem, meaning G = % In | - |, the above result is well-known, see
[118]. Here, we have seen that if the interaction of the points is due to a kernel that is radial,
we get the same evolution.
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3.2.2 Periodic setting

This section deals with the evolution of two infinite arrays of points with opposite strength,
which are periodic in space. More specifically, the points of the first arrow, which have the
same strength, will be located in the horizontal axis. Let us assume that we have one point at
the origin, and the next one differs of it a distance /. This means that we have the points (ki,0),
for ! > 0 and k € Z. The second arrow, with opposite strength to the previous arrow, will be
parallel to the horizontal axis but with a height & # 0, having the following distribution of
points: (a + kI, —h), for a € R and k£ € Z. For the moment, let us consider that « is any real
number.
Then, we focus on

= 810 (®) = D Saskt,—n (3.2.3)

kez kezZ

with h # 0,1 > 0 and a € R. In the following results, we check that the above initial configura-
tion translate when G = ;= In|-|, G = —Ko(|A||-|), G 27r B IB for 8 € (0,1), or for G satisfying
some general conditions. Moreover, if a = 0 or a = é, the translation is horizontal.

We are going to differentiate two cases depending on the behavior of the interaction G at
infinity. This is important in order to give a meaning to the infinite sum coming from (3.2.3),
whose equations are given by

/(12 ., (2m(t) — 2i( ) /(12 . (zm(t) — ~k(t))l
m;kezG(' o) = 20D SR G = 36 an) - 0D 2 LG
o) — (o) C O = S~ G Gal®) = 5(0)*

with initial conditions

2m(0) =ml
Zm(0) =a + ml — ih,

for m € Z. Then, we refer to the critical case in the case of the Eulerian interaction

1
G=—In
5l
Here, we must use the structure of the logarithm in order to have a convergence sum. Note
that here we need to use strongly the symmetry sum. Otherwise, the subcritical cases will use
the faster decay of GG at infinity as it is the case of the QGSW or gSQG interactions.
o Critical case: Let us first show the result for the Eulerian interaction, thatis, G = i In|-|. This

is already known, see for instance [104, 137], but we include here the proof for its clarity. Here,
we denote w to ¢ to emphasize that we are working with the vorticity.

Proposition 3.2.2. Given the point vortex street (3.2.3) with G = % In|-|,forh #0,l >0anda € R,
then the street is moving with the following constant velocity speed

Vo = %cot (W) (3.2.4)
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In the case that a = 0 or a = &, the translation is parallel to the horizontal axis with velocity

21

1 wh l
Vo 2ltanh< ; >, for a=g.

Remark 3.2.3. If w.(x) = kw(x), with k € R and w given by (3.2.3), then the velocity of the street is
‘/O,/i = &W.

Vo = 1coth( lh>, for a =0,

Proof. Define

= > Su0)(@) = Y Sarkt,—n(@

Ik|<K k|<K

The idea is to consider K — 400, getting wx — w in the distribution sense. The associated
stream function to w is given by

1 1 ,
——FZlnh:—kl\—%Zln|m—a—k’l+zh|, (3.2.5)
k<K k<K

where we are using complex notation. In order to pass to the limit, we need to use the structure
of the logarithm. Let us work with the sum in the following way

Z In|x —a—kl+ih| =In H (x —a — kl+ih)
k|<K |k|<K

K
=In|(x —a+ih) [[ (z — a+ih)* — K*1?)

k=1
(r —a+ih)?
e

=In

m(x —a+ih) ﬁ Hk212

Then, we have

1
1 = i —1
W, vr) = K;H;o{%n

k=1
w(x —a+ih) (x —a+ih)
_271' n I H <1 SR
k=1
Using the product expression for the sine, that is
22
sin(rz) = mx H <1 - I<:2> , (3.2.6)
k>1

we get that

(%))
s | — — — 1
2

l T

P(x) = lim Yi(x) = % In

K—o0

sin (W) I .
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In this way, we achieve that the sum in (3.2.5) converges. In the same way, the corresponding
velocity agrees with

T ik le—kI2  2r b |x—a—/~cl+ih|2’

where z is none of the points vortices. In each of the points, the velocity is given by

7 ml — kl 7 ml—a— kl+ih
vi(m) =5- \mz—kufﬁz mil —a— ki + ih|2’

k#m,|k|<K |k|<K
7 a—1th+ml—kl ) ml — kl
—ih ) =— - =
vk (a — th +ml) o Z |z — kiJ2 o0 Z |z —a — Kkl + ih|?’
|k|<K k#m,|k|<K

for any m € Z. We define v as the limit of the above function.
First, let us show that the velocity at every point is the same. We begin with the first arrow

1 ml —a — kl+1ih
) =— L
oiml) =g D, |ml klP 27rz|ml—a—k:l—|—ih|2

m#keZ
i a+ kl —1ih
T or Z e Z la Lkl —inl2
27 oz |k:l\ P |a + kl —ih|
a+ kl —1ih
Tom Z |a + kl — ih|?
:v(O).

Note that

> ="
kU2

0£kez

since we are using the symmetry sum (3.1.7). For the second arrow, we obtain

a—th+ml—kl 1 Z mil — kl
|

7
—ih+ml) = -t e R
v(a = ih+mi) 27rz|a—ih+ml—kl\2 o il — kI
m#keZ

a+ kl —1h ? kl
Z TR e 25 2 THP
“or |a+k:l ih|2  2r ooz |Kl|
:v(O).
Then, the velocity speed of the street is given by
a+kl—1ih i a+kl—
Yo=or Z < Ja+ ki - ih]2  2r Z |kl|2 T om Z < la+ ki — zh|2
0#£keZ
In order to find a better expression for V;, let us come back to the stream function. Using

. sinxj cosxy + ¢sinhxgcoshxy
Vin |sin(z)| = TS = cot x,

we achieve
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Let us now work with a = . Using the definition of the complex cotangent, we obtain

h— inh (T
ot mith = 3) 2) S e W 101 ( lh> = —itanh (Wh> )
ol cosh (T) !
which is the announced expression for the velocity. The same idea can be applied to get the
expression when a = 0. O

For the cases a = 0and a = 3, we notice that the velocity increases as h goes to 0. Moreover,
considering a = £ and h — 0 in the above proposition, one obtains the following corollary.

Corollary 3.2.4. The vortex arrow given by

Z5k10) 25( +klo)

keZ kez
is stationary, for any [ > 0.

Similar ideas can be applied to find that a horizontal arrow of points with the same strength
is stationary.

Proposition 3.2.5. The vortex arrow given by
T) = 25(a+kl,—h) (z)
kez

is stationary, for any a € Rand h € R.

e Subcritical case: We finish this section by showing the result for faster decays interactions. This

case will cover the QGSW and gSQG interactions: G = —Ky(|A||-|) or G = 2—'8% for g € (0,1).
The result reads as follows.

Proposition 3.2.6. Let G : R? — R be a smooth off zero function satisfying
(H1) G is radial such that G(z) = G(|z|),
(H2) there exists R > 0 and (1 € (0,1] such that |G’ (r)| < M%,for r > R.

Then,
= S0 (®) = D Sarks,—ny(@ (3.2.7)

keZ keZ

with h # 0,1 > 0and a € R, translates with constant velocity speed

a+kl—1ih

=1 ! kl —ih|)——————.
Vo=id Gllatkl—ihl)

keZ

(3.2.8)

In the case a = 0 or a = L, the translation is parallel to the horizontal axis.

Remark 3.2.7. From now on, we will assume that G is radial via (H1), we will write G for G when
there is no confusion in order to simplify notation.
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Remark 3.2.8. The second hypothesis is required to give a meaning to the infinite sum, which converges
absolutely. This condition could be weakened by assuming

Z |G'(a + kl —ih)| < +o0.
keZ

Proof. As in the previous models, the velocity at the points is given by

— Kl
—iv(ml) = Y G'(jml - ol ) e
m#keZ | kl|
l—a—kl+ih
—ZG’(|ml—a—kl+ih|)m ok
= |ml — a — kl + ih|
+ml —ih — kl
—i [—in) =S ¢ [ —ih— kl|) 2
iv(a + ml — ih) é (la+ml—1i |)\a+ml—ih—kl|
— Kl
- X:Gﬂmka —
m#keZ | |

for m € Z. The above sums are converging due to the second assumption. We can check that
the velocity is the same at every point of the street:

. — ki
—iv(ml) = Z G'(|ml — kl|)| ]
m#keZ
—E:G'mﬂ—a—kuwm) kA in
\l—a—kkmﬂ
keZ
B | | a+ kl—ih
Z:G|MD +) G(la+kl—i Dﬁiiﬁﬁﬂ
0#£keZ kez
+ kl—ih
:§:Gﬂa+M—ﬁmg————f
= la + kl — ih]|
== ZU(O)a
a+ml —ih — ki
—iv(a+ ml —ih) = ZG/ la +ml —ih — kl|) :
= |+m%wh—m
Z:Gwmlkm‘ M
m#keZ
( ih — kl ,
= G'(la—ih - kmriﬁf7m X:G“MD%H
keZ 0#keZ
= —v(0).

Then,

Tkl —ih
Vo=0(0)=:iS & kl — ip|)
0 ’U() Zk; (|a+ 1 |)|a—|—kl—zh|

Ifa =0ora=L% onehas that

2/

+ Kkl
G'(la+ Kkl —ih|)— " =
D G (lat e
keZ
and the translation is in the horizontal direction. ]
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In the general case, we also have that an array is stationary.

Proposition 3.2.9. Let G : R? — R be a smooth off zero function satisfying (H1)-(H2), then
2) =Y Saiit,—n)(x)
kez

is stationary for any a € Rand h € R.

It is clear that G = 27T ] 5, for B € (0,1), satisfies the hypothesis of the above results. In

the case of the QGSW interaction, we obtain similar results. In this case, the stream function
associated to (3.2.3) is given by

1 1 )
) = 5 ]Z;KO(M;E — ki) + 5 I;KO(M —a— kl+ihl). (3.2.9)

The definition and some properties of the Bessel functions can be found in Appendix C. The
above sum is convergent due to the behavior of K at infinity, which is exponential:

T _, 3
Ko(z) ~ 1/56 . larg(z)| < L

There is another representation of the stream function given in [73], where the periodicity struc-
ture is emphasized:

exp (_ (27rk) + )\2|m2|)
¢($17$2) = - l Z cos (Mm)

ez (%k) + A2 ¢
exp <— (%k) + A2|zg + h|>
s cos (27”“ (1 — a)> . (32.10)
= (27rk) + A2 a

Then, we state the result concerning the QGSW interaction.

Proposition 3.2.10. Given the point vortex street (3.2.3), with h # 0,1 > 0 and a € R, then the street
translates with the following constant velocity speed

a—+ kl—1ih

i .
Vo= 1 > Ki(Ma+kl— m|)m.

keZ

(3.2.11)
In the case that a = 0 or a = %, the translation is parallel to the horizontal axis.

3.3 Periodic patterns in the Euler and QGSW equations

This section is devoted to show the full construction of the Karman Vortex Street structures in
the Euler equations. Instead of considering two arrows of points as in Section 3.2, we consider
two infinite arrows of patches distributed in the same way than the arrows of points (3.2.3). We
will refer to this configuration in the Euler equations as Kdrmén Vortex Patch Street.

In the case of arrows of points, we showed in the last section that they translate. Here, we
want to find a similar evolution in the Euler equations. Since these structures are periodic is
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space, first we will have to look for the green function associated to the —A operatorin T x R,
which will come as an infinite sum of functions. This infinite sum can be expressed in terms of
elementary functions, which helps us in the computations. Once we have the equation that will
characterize the Kdrméan Vortex Patch Street, we will have to deal with the Implicit Function
theorem. Hence, a desingularization of the Karmdn Point Vortex Street will show the existence
of these structures in terms of finite area domains that translate.

At the end of this section, we will analyze the case of the QGSW equations, which will
follow similarly. Let us focus now on the Euler equations:

wr+v-Vw=0, in [0, +00) x R?,
v=K*w, in [0, +00) x R?,
w(t=0,7) = wo(x), withz € R2

The second equation links the velocity to the vorticity through the Biot-Savart law, where

K(z) = %% and - = (—z2,71). We denote by 1 the stream function, which verifies

v = V.

From now on we will use complex notation in order to simplify the computations. Then,
we identify (x1,22) € R2 with x; + ixzs € C. In the same way, 1t = iz. Moreover, the gradient
operator in R? can be identified with the Wirtinger derivative, i.e.,

V=90, Oep(e) = 1 (rp() + idap(), (3:31)

for a complex function .

3.3.1 Velocity of the Karman Vortex Patch Street

Consider the initial condition given by

1 1
wo(x1,x2) = Z 1p,(x1 — kl,x9) — = Z 1p,(x1 — kl,x2)

kez kez
1 1
= > 1p, i, w2) — = > 1pywi(@n, ), (3.3.2)
kez kez

where D; and D, are simply-connected bounded domains such that |D;| = |Dz|, and [ > 0.

The velocity field can be computed through the Biot-Savart law in T x R. For that, one must
find the Green function associated to the —A operator in order to have an expression for the
stream function ¢. Later, we just use that v = V-4, or with the complex notation, v = 2i0z1.
This will be developed in the next result, obtaining different expressions for the velocity, which
will be useful later.

Proposition 3.3.1. The velocity field of the Euler equations associated to (3.3.2) is given by the following

expressions:
sin (7r(ycl—§)) ‘ d€.
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1 T—¢ 1 (z—§)
() 47T2/8131 r—§ “- 27T2 oDy ’H <l>' “
1 z—¢& 1 m(x —&)
~ 5 e 3 o ()

(“DF o sin()

with

Proof. (1) Let us begin finding the stream function associated to
wo,K (21, 22) = Z 1p w21, 22) — — Z 1o, 4ki(@1, 22),
T k<K T k<K
by superposing the stream function of each one of the elements of the sum, i.e.,
ok (®) =55 Z / Injo —y — kil dA(y) — 5 Z / In|z —y— k| dA(y). (3.34)
k<K |k|<K

Using the same idea than in Proposition 3.2.2, we find that

K
Zln|x—y—kl|:1nWH(l—(xk;p ) Hk212

|k|<K k=1
and hence
K K
_ 1 m(x —y) (z —y) l 272
Yo.x () =573 /D In z kl'[l (1 o dA(y) + =— In ;Hk 12| Dy
K
1 m(r —y) (v — ) 272
g — In| ——2% 1— Ay) — —1 Do].

27r2/DQn l kl;[l( e )| AW " H“ =

where the sine formula (3.2.6) yields

Yole) = 2;/]31 In |sin (W)’ dA(y) - 21772/172 In

Then,
0%
vo() :7T2/D In
1

(3.3.3)
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__ 732’/13 iy In |sin <7r(:”l_5y)>‘ dA(y) + 732/13 iy In [sin (W)‘ dA(y)

1 . (m(x—=¢§) 1 . (7 =¢)
sin (l)‘ d€ + 27T/8D2 In |sin (l)' d€. (3.3.5)

=—— In
The Stokes theorem, see Appendix B, has been applied in the last line.

27’(2 oD,

(2) This expression comes from (3.3.5) and
20z In | sin(x)| = cot z,

used in Proposition 3.2.2.

(3) From (1), we can use the series expansion of the complex sine,

sin(z) = zH (2), +Z 2/<:+1 K,
k>1

in order to obtain

an (229

=1In

)k w2k 2k
Y G PIES NEACEY

k>1

29wl ()|

In +In

mlz—§) ’
z

Then, we have

_ 1 m(z —¢) m(z —¢§)
vo(x)——2—7r26Dlln — ‘ f—/@Dlln’H< l )'d{

1 m(z —¢) 1 m(z —¢§)
+§8D21H I ‘d£+2ﬂ'/dD21nH< I )‘dﬁ

Moreover, the Stokes formula (B.0.9) yields

) 1 1 —
vo(a) :;ﬂ/Dlx_ydm) %2 » ‘H( & 9)‘(1{3

i 1 1 m(x — &)
—W/L)Qx_ydA(y)%—% - ‘H( z )‘df.

Finally, let us now use the Cauchy—-Pompeiu’s formula (B.0.10) for the first and third terms, to

find
_ 1 T—¢ 1 —§)
wo(e) ‘W/aDlx gdf_? o, ‘H< l )' “

1 —¢ 1 m(z —§)
- 4r? 8D2m_§d£27r2/6D21n‘H< ! >'d£.

8|
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3.3.2 Functional setting of the problem

The first step is to scale the vorticity (3.3.2) in order to introduce the point vortices in our
formulation and be able to desingularize them. Let us define

1 1
woe() = —5 > 1epiimlz) — —= > 1epyiu(), (3.3.6)
kezZ keZ

for I > 0 and ¢ > 0. The domains D; and D, are simply—connected and bounded. In the case
that |D;| = |D| and eDy = —eD; + a — ih, with a € R and h # 0, we find the point vortex street
(3.2.3) passing to the limit ¢ — 0:

wo,0(x) = Z S0y () — Z S(atit,—n) (T)- (3.3.7)

keZ keZ

Proposition 3.2.2 deals with (3.3.7) from the dynamical system point of view, showing that it
translates. Moreover, if a = 0ora = é, the translation is horizontal.

Now, we try to find the equation that characterizes a translating evolution in the Euler
equations. Assume that we have w(t,z) = wo(z — Vt), with V' € C. Inserting this ansatz in the
Euler equations, we arrived at

(vo(z) = V) - Vwg(z) =0, =z €R?

"7

where indicates the scalar product in R%. As in the previous section, we want to work
always in the complex sense identifying (z1,z2) € R? as z1 + iz € C. The gradient operator
can be identify to the dz derivative as in (3.3.1). Then, we above equation can be written as:

Re [maf%(x)} =0, zeC.

When working with the scaled vorticity wo ., this equation must be understood in the weak
sense, yielding

(voe(x) —=V)-7i(x) =0, x€d(eD1+kl)Ud(eDy+ ki), (3.3.8)

or similarly,
Re [(vo,e(x) - V)ﬁ(x)} =0, 2€d(eDy+kl)Ud(eDy+ ki),

for any k € Z. Here, 71 is the exterior normal vector and vy . is the velocity associated to (3.3.6).
The expression of vy . coming from Proposition 3.3.1—(2) gives us

Vo () = ﬁ / oot [”(xl_y)} dA(y) — %17 / oot [”(f”l_y)] dA().

We can check that vg . (x + kl) = vo(z), for any k € Z. Moreover, we have that 7ip 5 (z + kl) =
fip(z), for any simply—-connected bounded domain D. Then, the equation (3.3.8) reduces to

Re [mﬁ(x)] =0, 2€dD;UdDs.

ConsidereDy = —eDy+a—th,fora=00ra = %, and h # 0. By using the relation between
Dy and Ds, the above system reduces to just one equation:

Re [Wﬁ@)] =0, z€dD,
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where

Vo (ex) = QZT/D cot [W] dA(y) — 2lZ7r/D cot {”(E(”” * y)l —at ih)} dA(y).

Other representations of the velocity field can be obtained using Proposition 3.3.1:

<7r(s(xl—€)))‘ d£—27r12 /m 1 (ﬂ(s(x—f—ﬁ) —a—i—ih))‘

l
At this stage, we are going to introduce an exterior conformal map (see [128]) from T into 9D
given by

1

In [sin
ﬂ-Q

d¢.

voe(ex) = —

O (w) =i(w+ef(w) Zanw " ap€RweET, (3.3.9)

where f does not depend on e. Let us remark that we use here exterior conformal maps in
order to alleviate the computations, but one can instead use an interior conformal map. For
others values of a, one must readjust the conformal map, but here we will consider ¢ = 0 and
a = § having a horizontal translation in the point vortex system.

Note that 77(®(w)) = w®’(w). Then, we can rewrite the equation with the use of the above
conformal map in the following way:

Fp(e, f,V)(w) := Re [{IE(E, Hw) — V} w<1>’(w)} —0, weT, (3.3.10)
where
Ip(e, f)(w) == — %25 [ nsin (”(E@(w)l_ <I>(£)))> O'(€) de
1 [ 7(e(P(w) + () —a+ih) ,
- 27T2€frln sin ( l ) ‘ d'(&) dE. (3.3.11)
Note that

Ip(e, f)(w) = voe(e®(w)).
As it is mentioned in the introduction, [85] deals with the desingularization of a vortex pairs in

both the Euler equations and the generalized quasi-geostrophic equation. In order to relate Fp
with the functional in [85], we can write Ig as

Ts(e. f)(w) = 1o / )= e - o [ (DD ey
€(<I>(w) ( ) —a + zh ,
HEn /T @ (w) =) —atin &

e [ (e l( >>a+zh>>‘@,@d5

_ 1 [ ow) @) e(®(w) + ®(§) —a+ih_,
_47728/ P(w) — @(§) v £+4w2 /T (®(w) — D(€)) — a+ihq)(£>d£
+1p(e, f)(w),

using the expression of the velocity written in Proposition 3.3.1-(3). The Residue Theorem
amounts to

oo £)(w) =5z [ G = g € de
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1 (€ ) / [(c w

Hence, the function I; comes from the study of the vortex pairs in [85]. We will take advantage
of the study done in that work about /. In this model, I; indicates the contribution of just two
vortex patches.

Remark 3.3.2. Note that for any a € R, we have that the point vortex street translates with constant
speed Vy given in Proposition 3.2.2. In the case of a = 0 or a = L, the translation is horizontal. In
order to desingularize the point vortex street, one tries to find a “small” domain around each point. Such
domain has to be symmetric with respect to the perpendicular axis to the one given by the translation
and that determinate the expression of the conformal map. Then, for the case of a horizontal translation,
the conformal map must have the expression 3.3.9. For other values of a, one has to readjust it in the
sense

O (w) =v(w + ef(w) Z apw ", ap ERwWET, (3.3.13)

n>1

with v € Cand |y| = 1. Then, one characterise the needed symmetry for the domain in terms of . In
order to alleviate the computations, we consider here a = 0 and a = %, but we expect that similar results
are obtained for other values of a.

The first step is to check that we recover the point vortex street with this model. Remind

thatazOora:%.

Proposition 3.3.3. Forany h # 0,1 > 0, the following equation is verified
Fg(0,0,Vp)(w) =0, weT,

where V; is given by (3.2.4).

Remark 3.3.4. We understand Fg(0,0, Vy) by the limit:

lim Fg(e,0, V).
e—0

Proof. The equation that we must check is

gi_I;I(l) Re {{Z;%/I_ln sin (W)’ dg

l
Using the Stokes Theorem, it agrees with

iy el { - g o [

cot [W(ei(w + yl) —a+ Zh)] dA(y) — vo}wz} _0

L
2l7T D

We study the equation in two parts. First, note that

i e [{2;T/E>COt r(ei(w—kyl)—av%h)] dA(y)—Vo}wi]
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e[ [P o1 7

=0, weT.

In the above limit, we may use the Dominated Convergence Theorem in order to introduce the
limit inside the integral. Second, we use the expansion of the complex cotangent as

o0

cot(z) = % +2T(2), T(2)=)

k=1

2
22 — w2k’

where T is a smooth function for |z| < 1. Then, the only contribution in FF is given by the first
part:

_ i mei(w —y) N e 1
213(1) Re [2[77/DCOt [l } dA(y)wz] = 2136 gRe {27@ vy dA(y)w
1 ,
= iy oo Rel]
= 07
for w € T, where we have used the Residue Theorem to compute the integral. O

We fix the Banach spaces that we will use when we apply the Implicit Function Theorem.
For a € (0,1), we define

Xo =S fe€T), flw)=> amw ™ a, R}, (3.3.14)
n>1

Yo =S fe?™(T), f(e’)=> ansin(nh), a, €R ;. (3.3.15)
n>2

Remark 3.3.5. Let us explain why we need that the first frequency in the domain Y, is vanishing. In
the case that a = 0 or a = %, it can be checked that Fg (¢, f, V) is well-defined and €* from R x X,, x R
to

Yo, =<4 fe€o(T), f(e¥) = Zan sin(nh), a, € R

n>1

But, when we linerarize Fr and obtain 0;Fg(0,0,V), thisi is not an isomorphism from X, to Y,.
However, it does from X, to Y. We are using Y,, instead of Y,, in order to implement later the Implicit
Function Theorem.

Remark 3.3.6. Note that if f € Bx,(0,0), with ¢ < 1, then ® is bilipschitz.

Proposition 3.3.7. The function V : (—¢g,e0) X Bx,(0,0) — R, given by

_f Ig(e, f)(w)wd®' (w)(1 — w?)dw
Vie ) == J5w® (w)(1 —w?)dw ’

(3.3.16)

fulfills V (0, f) = Vo, where Vy is defined in (3.2.4). The parameters satisfy: =9 € (0, min{1,1}), 0 <1,
a € (0,1), and X, is defined in (3.3.14).

162



CHAPTER 3. KARMAN VORTEX STREET IN INCOMPRESSIBLE FLUID MODELS

Proof. In the expression (3.3.16), let us work with the denominator. The Residue Theorem
amounts to

lim [ w® (w)(1 —w?)dw = z/ w(l —w?)dw = 27.
T

e—0 T

From (3.3.11) and the ideas in Proposition 3.3.3, we get

sin <”(€i(“’ - 5”) ' de + Vo}

. 1
gl_I}(IJIE(Z-Z )(w)—hm{ 53 /ln

e—0

— lim {76 v vb} : (3.3.17)

Note also that

/Tww(l — %) dw = /T(l ~ w*)dw =0,

via again the Residue Theorem. Then, the first term in (3.3.17) does not provide any contribu-

tion. It implies that
e —w)dw
V(Oa f) - Vof-rw(]- —62)dw = W.

Proposition 3.3.8. If V sets (3.3.16), then
FE : (—60,60) X BXa(O,G) — Ya,

with Fr(e, f) = Fgl(e, f,V (e, f)), is well-defined and €. The parameters satisfy that o € (0,1),
g0 € (0,min{1, t}) and o < 1.

Remark 3.3.9. Let us clarify why we need the condition ey < L. In some point of the proof we need to
use Taylor formula in the following way

Re [(z1 + tz2) 73]
|21 + t22

1
G(|Zl + 22|) = G(|Zl|) +/ G,(|Zl + t22|) dt, (3.3.18)
0

for z1,29 € Cand |z9| < |z1|. Here, the use of this formula is not explicit since we are referring to
the work [85], and this condition is needed in order to check |z2| < |z1|. Although we are not using it
explicitly in this proof, we will use it for the general equation in the following section.

Proof. We will divide the proof in three steps.
o First step: Symmetry of F. Note that ® given by (3.3.9) verifies

¢ (@) = _Wv

where we are taking ¥ = i in order to work with a = 0 or a = L. We are going to check that
Fg(e, f,V)(e") = > n>1 fnsin(nd), with f,, € R. To do that, it is enough to prove that

FE(E7 f7 V)(@) = _FE(Ev f7 V)(’LU)

Recall the following property of the complex integrals over T:

/T f(w)dw = — /T f(w)dw, (3.3.19)
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for a complex function f.
Let us start with the expression of I (e, f) and note that

a (Tl2) +2(0) o +.m>) |t L) 2(0) +fh>) |
(A 0 )|y | (S LB )|

In

a=0,

In

L
-

Then,

- (W(s(q)(w) +®(E) —a+ m)) ‘ o

In

l l

(L) + 6 0 1))

for a = 0 and a = L. Notice that I (e, f)(W) = Ig(e, f)(w), which implies

(2] =)

P(§) d¢

—212%elg (e, f)(w) :Aln

+Aln sin( ]
[} (w(e(@(w)l— @(g))))

/(€) dg

m(e(®(w) + (§)) — a+ih))
:/Tln i
+/T1n

= — 27T2€IE(57 f)(w).

P(§) d¢

m(e(®(w) + ®(§)) —a+ Zh))

P(§) d¢

o~

sin (”(5@(“’) + () —a+ ih))

Next, if V' is given by (3.3.16), then we are going to check that V' € R. Let us analyze the
denominator and the numerator of the expression of V:

2iIm[ /T In( f)(w)wd' (w)(1 — wQ)dw}

T

:/ Ie(e, f)(w)wd' (w)(1 — w*)dw —/IE(e,f)(w)wq)’(w)(l —w?)dw
T T

Ig(e, f)(w)wd (w)(1 — EQ)dw + /TIE(E, H(w)wd’'(w)(1 — @2)dw

Z/IE(E,f)(w)wq)’(w)(l — w?)dw —/IE(a,f)(w)w<I>/(w)(l — w?)dw
T T

and

2iIm [/T wd' (w)(1 — wg)dw} :/qu)'(w)(l — ) dw — [ wd'(w)(1 —w?)dw

:/wq>/(w)(1—w2)dw+ W (@)(1 — @2)dw
:

i
[
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= [ w®(w)(1—w)dw — | wd (w)(1 —w?)dw
= L@y = adw — [ wt )1 ~w)d
=0.

Then, V € R. Hence,

Fi(e, £,V)(@) =Re [{To(=, (@) =V} we'(w)]
= — Re [{I5(e, f)(w) = V} 0¥ (w)]
=—Fg(e, f,V)(w).

In order to check that FE(e, f) € Y,, weneed f; = 0. For that, we ask the condition

2 ) 1
/ Fi(e, f,V)(e") sin(0)df = —3 / Fi(e, [, V)(w)(1 = @0°)dw = 0,
0 T

which agrees with
/ {IE(E, w) — V} wd (w)(1 — T)dw = 0.
-
Using that V verifies (3.3.16), the last equation is clearly set.
e Second step: Regularity of V. Let us begin with the denominator, noting that

/ W)dw = i ! —w?)dw = 21 +ie | wf (w)dw = 2r—i w)dw
/T’u@ (w)(1—w )dw—z/rw(l+ef (w))(1 )d 27+ E/r f(w)d 2 E/Tf( )dw,

by using the Residue Theorem. Then, if |¢| < g9 and f € By, (0,0), the denominator is not
vanishing. Moreover, the denominator is clearly " in € and f.
We continue with the numerator denoting

Je, f) = /T oG, D@ wd (w)(1 — w2)dw

= / Ip(e, )(w)wd' (w)(1 — W) dw + / Ie(e, £)(w)wd' (w)(1 — @?)dw
T T
=:J1(e, f)(w) + Ja(e, f)(w),

using the decomposition of I done in (3.3.12). Note that I g is the part of I coming from the
vortex pairs analyzed in [85]. In that work J; is analyzed showing that it is 4! in € and f. Note
that the spaces used in [85] are also (3.3.14)—(3.3.15) and the condition ¢y < % is needed in their
computations, see Remark 3.3.9.

Then, it remains to study the regularity of Js(, f). We should analyze Iz, i.e.,

Io(e N)w) = 3 [ In A <”(q’(“’) _q’(f”)\@(é) ¢

- 2n2e l

1 /Tln - (ﬂ(a(fb(w) +@(§)) —a+ ih)) ’ o'(€) de

2m2e

l
e [ (et 000 ‘ »
o) - 9(6) ’

_;%/TIH‘H (”E( w )f/(f)dﬁ
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C on2e l
< (w) + ®(£)) — a +ih)

—/m : )‘f’(&)dﬁ

- (11(87 )+I2( 7f) +IS(57f) +I4(57 f))

‘H< <<1><w>+<1><s>>—a+m>>‘d5

Note that I; and I are smooth in both variables, due to that H(z) = %, see (3.3.3). Then
they are ¢! in ¢ and ®. Let us analyze the others terms. Using (3.3.3) and the expansion of the
logarithm,

14+n
In|l+ f(z |—Rez +f ),

one has
In|H(ez)| = €3G (e, 2),

with G smooth in both variables. This implies that I; is ¢! in ¢ and f. On the other way,
In|H(ez + 2')| = eGal(e, 2, 2') + G3(2),

with G5 and G3 smooth. Then, we find

B N =55 [ G2< m(@(w) + 2(¢)) “‘“h) e,

l ’ l
which is smooth in f and . Hence, we achieve that V is ! in both variables.

o Third step: Regularity of Fz. Decomposing I again as in (3.3.12), we get that

Fi(e. f) = Re [{Ix(e, ))(w) = Ip(e, f)w) = Ve, f) e’ (w)) .

Again, the part coming from Iis analyzed in [85], where it is shown that is %" in both variables.
From the second step, we got that / and V" are also smooth completing the proof. [

3.3.3 Desingularization of the Kairman Point Vortex Street

In this section, we provide the proof of the existence of Kdrman Vortex Patch Street via a desin-
gularization of the point vortex model given by the Karmén Point Vortex Street. The idea is to
implement the Implicit Function Theorem to the functional Fz defined in Proposition 3.3.8.

Theorem 3.3.10. Let h,l € R, with h # 0 and 1 > 0, and a = 0 or a = §. Then, there exist f(e) such

that Fi(e, f(€)) = 0, for € € (0,e0) and small enough £y > 0. As a consequence, there exist D such
that

1 1
wo (JU) = @ Z 1sDE+kl($) - @ Z 1—6D€+a—ih+kl<x)) (3.3.20)
kezZ kez

defines a horizontal translating solution of the Euler equations, with constant speed, for any € € (0,¢€p).
Moreover, D¢ is at least €.

Proof. In order to look for solutions in the form (3.3.20), we need to study the functional Ffg
defined in (3.3.10), where @ is given by (3.3.9). Moreover, V is a function of (e, f) described by
(3.3.16).
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In Proposition 3.3.8, we have that Fi; : Rx By, (0,0) — Y,, with F(e, f) = Fg(e, f, V(e, f)),
is well-defined and ¢, for ¢y € (0,min{l,1}) and 0 < 1. Then, we wish to apply the
Implicit Function Theorem to F. By Proposition 3.3.3 and Proposition 3.3.7, we have that

Fg(0,0)(w) = 0, for any w € T.
Let us show that 97 Fg(0,0) is an isomorphism:

05 Fi(0,0)h(w) = lim Re[ {afIE(o, P w)h(w) — a5V (0, O)h(w)} iw
+ {IE(e, 0)(w) — Vg} iwah'<w)} ,
By Proposition 3.3.7, we obtain 0¢V (0, f)h(w) = 0. Note also that
lmy Fe(e,0)(w) = i {572 + Vo -

Moreover, by expression (3.3.12), we have

@hwmwmw>4;/<£;>@_;21MM&5%9—0@
) w E
+47r2/Tw_§ (&) € + 95 1p(0,0)A(w)

i (R A i [ () —hE)@=8)
47'('2 T ’LU—& 47T2 T (U)—f)Q
+ 4;2/TZ_£h’(§) de.

Then, we obtain

1—/hw)—<®d L[ (hw) — )@ =8
s

- h
afFE'(Ov O)h(w) =Re ’U)—f 5_ 472 T (w—£)2

:h{b;/mw 4ﬂ/ww> T8

i [w—-¢,, 1,

By the Residue Theorem, we have

w — f / _
/TMh (€) d€ =0,
) - GRS Im [(h(w) = hE)(w-©)]
/T h) ge / de _2Z/T T de = 0.
Finally, we find
8 Fp(0,0)h(w) = —%Im W (w)] | (33.21)

which is an isomorpshim from X, to Y.
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Remark 3.3.11. Analyzing [85], we realize that the above linearized operator (3.3.21) agrees with the
linearized operator in [85] for the vortex pairs. This tells us that the only real contribution in the
linearized operator is due to two vortex patches: 1.p, and 1_.p, 1q—ih.

3.3.4 Quasi-geostrophic shallow water equation

In this section, we investigate the case of the quasi-geostrophic shallow water (QGSW) equa-
tions. Let g be the potential vorticity, then the QGSW equations are given by

@ +v-Vg=0, in [0, +00) x R?,
v =V, in [0, 4-00) x R?,
Y= (A-2)"lg, in|0,+00) x R?,
q(t =0,2) = qo(x), withx e R?

with A # 0. The same results to the Euler equations are obtained in this case. That is due to
the similarity of the kernel in both cases, in particular, they have the same behavior close to 0.
In Section 3.2 we analyzed the case of the N-vortex problem, see Proposition 3.2.10. Here, we
want to desingularize (3.2.3) in order to obtain periodic in space solutions that translate in the
QGSW equation.

The stream function 1 can be recovered in terms of ¢ in the following way

vit) = =5 [ Ko(Alle = sl)a(t.) dA).

2
The function K is the Modified Bessel function of order zero, whose definition and some of
their properties can be found in Appendix C. It is of great interest the expansion of K given in
(C.0.18) as

00 [z 2k
Ko(z) = —In (3) Io(=) + Y. ((;?)2 plk+1),
k=0 >
where .
p(l)=—y and @k+1)= Z%—% ke N*.
m=1

The constant v is the Euler’s constant and the function Iy is defined in Appendix C, but we
recall it as

AR S
0 £ R0 (k+ 1)

Via this expansion, one notice that

Ko(2) = —In(z) + go(2) + g1, (3.3.22)
where
00 (3)216—2 00 (z)2k—2
go(2) = — 22 (In(2) — In(2)) 2 m + 22 ; 2(k!)2 o(k+1),

g1 =—7—In(2).

Note that gg is smooth and go(z) = O(2? In(z)) close to 0.
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Consider a Karman Vortex Patch Street in the QGSW equations in the sense

1
qo(z) = Z 1py+hi(z) = — > 1pyul),

T kez keZ
where D; and D, are simply—connected bounded domains such that |[D;| = |Ds|, and [ > 0.
Motivated by Euler equations, assume Dy = —D1 + a — ih, having the following distribution
1
qo(r) = Z 1pywi(r) — - Z 1_pyatki—in(T), (3.3.23)
T kez kez

where we are rewriting Dy by D. The velocity field is given by

& —y—kl
K AN —y—kl dA(y

x+y—a—kl+1ih

Ki(Mz+y—a— Kk +ih dA

2ﬁkd/’1(M+y Ry Tk MW

%QE:/‘KbAMy kmm;%QQEZ/ Ko(Mz +y — a— ki + ihl)dy. (3.3.24)
kez keZ

We scale the expression (3.3.23) in the following way

1
qo.e(z) = 1.piri(z) — 1_piatki—in(T).
2 €2

keZ keZ

As in the Euler equations, if | D| = |D|, with @ € R and h # 0, we obtain the point model:

000() =Y S1,0)(®) = Y Sasrt,—m (@

kez keZ

which has been studied in Proposition 3.2.10. Considering now a translating motion in the
form q(t,z) = qo(x — Vi), with V' € C, then we arrive at

(vo(x) = V) -Vago(z) =0, z€R%
In the case of gp., we need to solve the above equation understood in the weak sense, i.e.,
(voe(z) —=V) -7i(z) =0, xz€d(ED+k)JI(—eD+a+kl—ih), (3.3.25)
which, as for the Euler equations, reduces to
ReG@ISfVW@ﬂ:Q x € d(eD), (3.3.26)

written in the complex sense. With the use of the conformal map (3.3.9):

P(w) = i(w+ef(w) Zanw " ap€RweT,
n>1
it agrees with
Faasw (e, f,V)(w) = Re [{Toasw (&, N(w) =V} wd'(w)] =0, weT, (3327
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where
Igasw (e, f)(w) = vos(e@(w)). (3.3.28)
Then,
Tasw (e f)(w) ::%25 > / Ko(Ne(®(w) — B()) — K)#(6) de
+ 53z ’;Z/Kg Ae(@ D(£)) — a — ki + ih|)®'(€) de.
Via the expansion of Ky, given in (3.3.22), one has
Taasw(e, N)w) =~ 5 o Z / In [\(=(®(w) — $(6)) — k)| ¥/(€) de
2“_’;2/111 W)+ B(E)) — a — ki + ih)| ¥'(€) de

=3  JLanetotw) — o)~ ) ¥ ¢

gz 2 90 (N=(@(w) + B(6) = a = K +iB]) #'(¢) de

kezZ
=In(e, ) (w) + Ioasw (e f)(w), (33.29)

where I is the corresponding function associated to Euler equations, see (3.3.11).

The analogue to Propositions 3.3.3, 3.3.7 and 3.3.8, and Theorem 3.3.10 are obtained, whose

proofs are very similar and so here we omit many details. Remark thata = 0 or a = £.

Proposition 3.3.12. For any h # 0and | > 0, the following equation is verified
FQGS’W(O, 0, Vb)(w) =0, weT,

where Vy is given by (3.2.11):

i a—+ kl—ih
Vo = Ki(Na + kl — h|) 22070
;; 1(Na+ k=Rl =

Proof. Using definition (3.3.27), we need to check that

;%Re ~ 53 62/1(0 Mei(w — &) — kl|) d¢

/KO Mei(w + €) — a — ki + ih|) dé — Vo}wz] =0.
27T 6kEZ

Via the Stokes Theorem, the expansion of Ky given in (3.3.22) and noting that

iw+ 2’

28‘G(|Z$+3§' |) = —’LG/(|'LZC +x |)m,

(3.3.30)
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for z,2’ € C and some function G : R — R, it reduces to

. A dA(y) i
;%Re[{%%/[)w_y - /90(5)\|w e~ o S /Ko Nei(w — €) — kil) d¢
Oyékez
Ae eilw—y) —a—kl+ih —
- KA —a—k Aly) — :
27T2Ekez/ 1(Ai(w +y) —a Z+Zh|)|51(w y)—a—k:l—i—zh|d () Vo}wz]
Note that
Jim 22X =€) _
e—0 g
and
lim /Ko Mei(x — &) = ki) d€ = Tim ix > /K1 Aei(w — €) — ki|) e.z(w—ﬁ)—kl
lei(w — &) — kI|?
o;ﬁkez 0+£keZ
=iA > /K1 A|EL]) IW =0,
0#keZ

making use of the Dominated Convergence Theorem. Secondly, via the definition of Vj in
(3.2.11), one has that

kl +ih —
K)\— — ki h—dA -Vo=0.
kez
The left term is also zero using the computations in Proposition 3.3.3. O

We avoid the proof of the following result, due to the similarity with Proposition 3.3.7.

Proposition 3.3.13. The function V : (—¢¢,e0) X Bx,(0,0) — R, given by

JtIgasw (e, f)(w)w® (w)(1 — w*)dw
J5w® (w)(1 — w?)dw ’

Ve, f) = (3.3.31)

fulfills V(0, f) = Vo, where V is defined in (3.2.11). The parameters satisfy: e € (0,min{1,%}),
o<1, a€(0,1),and X is defined in (3.3.14).

The next result concerns the well-definition of Fpgsw in the spaces defined in (3.3.14)-
(3.3.15).

Proposition 3.3.14. If V sets (3.3.31), then
FQGSW : (—50,60) X Bxa(o,a) — Ya,

with Foasw (e, f) = Foasw (e, f, V (e, f)), is well-defined and €. The parameters satisfy a € (0, 1),
g0 € (0,min{1,t}) and o < 1.

Proof. Note the similarity of this proposition to Proposition 3.3.8. Following its ideas, in order
to check the symmetry of Fpgsw, it is enough to prove that

Igasw (e, f)(w) = Igasw (e, f)(w).
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We take advantage of (3.3.19). Via its definition, note that

Tagsw (& 1) == 5752 3 | Ko(e(@(w) ~ 0() = k) E) de
kez

- > / Ko(Ne(@(w) + B(8)) — a— ki + ih|) ¥ () de

/ Ko(N(@(@) — ®(€)) + ki) ¥'(€) de

2W26
keZ

+ 55z Z/Ko Me(® (&) — a+ kl + ih|)®' (&) d¢

=Igcsw (e, f)(w).

Note that using the decomposition of Iggsw given in (3.3.29), the regularity problem reduces
to the same one for the Euler equations, done in Proposition 3.3.8. O

Finally, we state the result concerning the desingularization of the Kdrman Vortex Street.

Theorem 3.3.15. Let h,l € R, with h # 0and | > 0,and a = 0 or a = L. Then, there exist f(e) such
that Foasw (e, f(€)) = 0, for e € (0,e0) and small enough ey > 0. As a consequence, there exist D*
such that .
G0, () we? Z Lepeyri(z s} Z 1 _.peta—inthi(), (3.3.32)
kez keZ
defines a horizontal translating solution of the quasi—geostrophic shallow water equations, with constant
velocity speed, for any e € (0, e0). Moreover, D¢ is at least €.

Proof. By Proposition 3.3.14, we have that FQGSW : R x Bx,(0,0) — Y,, with FQGSW(a, f) =
Foasw (e, £,V (e, f)), is well-defined and ¢, for ¢y € (0,min{1,%}) and ¢ < 1. Moreover,
Proposition 3.3.12 and Proposition 3.3.13 give us that Foasw (0,0)(w) = 0, for any w € T. In
order to apply the Implicit Function Theorem, let us check that 8fFQGSW(O, 0) is an isomor-
phism.

First, using (3.3.29), one achieves

Iaasw(e, )(w) =Ir(e, f)(w 2m_:Z/go (B(uw) — @(6)) — k) ¥'(€) dé

+ gz 3 [0 Ole(@(w) + B(€) = a = K-+ i) ¥(€) de,

kezZ

where gq is a smooth function such that go(z) = O(2%In(2)) for small 2, see (3.3.22). Note that
lim elgasw (e, f)(w) = lim elp(e, f)(w)

and
gl_rf(l) Orlgaswi(e,0) = il_r}r(l) 0¢lE(e,0).

Thus, we have
. _ 1
afFQgsw(E, O)h(w) = 8fFE(€, O)h(w) = —gIm [h'(w)] ,
which is an isomorphism from X to Y. O
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3.4 Karman Vortex Street in general models

Kérman Vortex Patch Street structures are found both in the Euler equations and in the QGSW
equations. The important fact in both models is that the Green functions associated to the
elliptic problem of the stream function have the same behavior close to 0, having then the same
linearized operator. We can extend it to other models, where the generalized surface quasi-
geostrophic equations are a particular case, see Theorem 3.4.7 for more details. Here, let us
work with the general model:

g +v-Vqg=0, in [0, +00) x R?,
v =V, in [0, +00) x R?, (341)
v =Gxq, in [0, +00) x R, -
q(t =0,2) = qo(x), withx &R
3.4.1 Scaling the equation
The aim of this section is to look for solutions of the type
1
qo(z) = Z 1py+hi(z) = — > 1p, ().
T kez keZ
The domains D; and D; are simply—connected bounded domains such that |D;| = |D;|, and
[ > 0. Consider Dy = —D; + a — ih, having the following distribution
1 1
== 1pyu(@) = = > 1 prarkin(x), (3.4.2)
s m
kez keZ

where we are rewriting Dy by D. The velocity field is given by

g (z 22&2/ G(|lz —y — Kl|) dA(y) 22&2/ G(lx+y —a—kl+ih|)dA(y)
keZ keZ

:—212/&G lz —y — kl|) dA(y —212/&G(|x+y—a—kl+zh|)dA()

kezZ keZ
:—Z/ G|z —y — kl|)dy — Z/ G|z +vy — a — kl + ih|)dy, (3.4.3)
kezZ keZ

where 0z is defined in (3.3.1) and the Stokes Theorem (B.0.9) is used. In order to introduce the
point model configuration, let us scale the equation in the following way. For any € > 0, define

1
Q) = ) Z Lepthi(x ) Z 1 cDta+ki—in(T), (3.4.4)
keZ kez

for! > 0, h # 0and a € R. If |D| = |D|, then we arrive at the point vortex street (3.2.7) in the

limit when ¢ — 0, i.e.,
000() = S1,0)(®) = Y Sasrt,—my (@ (3.4.5)
keZ kezZ

This configuration of points is studied in Proposition 3.2.6, from the dynamical system point
of view, showing that (3.4.5) translates. From now on, take a = 0 or a = £ having a horizontal
translation in the point model. The associated velocity field to (3.4.4) is given by

voc(ex) = —Z/ G(le(x —v) kl)dy—Z/ G(le(x +y) — a — kl +ih|)dy

kez keZ
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We introduce now the conformal map. Consider ® : T — 9D such that

¢@O=i<w+(£€ﬂw0, fw)=> aw™, a,eRweT (3.4.6)

) n>1

Hence

we(et(w) == = 3 [ Gle@w) - a(e) — )P'(e) de

kezZ

- 3 [ Gl + B(€) —a ki + inh(€)de.

kez

Remark 3.4.1. The constant G(e) in the definition of the conformal map (3.4.6) comes from the sin-
gularity of the kernel in the general case. For the logarithmic singularities, we do not need to add this
constant because there we use the structure of the logarithm. When having more singular kernels, as in
this case, we need to introduce G(e).

Assuming that we look for translating solutions, i.e., ¢(t,z) = qo(z — V't), we arrive at the
equation

F@anmyzReHuan@»—v}mﬂm]:Q weT, (3.4.7)

where
I(e, f)(w) := voe(e®(w)).

The next step is to check thatif ¢ = 0, D = D and V' = V} (referring to the Karman Point Vortex
Street), equation (3.4.7) is verified.

Proposition 3.4.2. Let G satisfies
(H1) G is radial such that G(z) = G(|z|),

(H2) there exists R > 0 and (1 € (0,1] such that |G’ (r)| < 7nHLﬁl,for r > R,
(H3) there exists B35 € (0, 1) such that G(z) = O (2%2) and log |z| = 0 (G(z)) ,as z — 0.
Forany h # 0 and | > 0, the following equation is verified

F(0,0,Vo)(w) =0, weT

where V,y is given by (3.2.8):

a+ kl—1ih

Vo =i S G (la+kl—in) L m
=i Clat ) R )

keZ

Remark 3.4.3. From Hypothesis (H3) we are assuming that the kernel is more singular than the loga-
rithmic kernel analyzed in the previous sections, but less singular than the kernel of the surface quasi—
geostrophic equation. A typical kernel satisfying (H3) is the one coming from the generalized surface
quasi—geostrophic equation: G(x) = %ﬁ, for B € (0,1).
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Proof. By definition,

F(e,0, Vo) (w { [ G —ehde+ = 3 [ Gllsitw - -l de

O;ékez

+— Z/G|szw+§)—a—kl+lh|)d§ VO} }

k:eZ

Concerning the first term, we can compute it using

Re [:;/TG(dw—ﬂ)d{] — Re [:;w/TG(EH—ngg] - WiERe UTG(51—§|)dg] —0,

(3.4.8)
since the integral is a pure complex number. For the second term, note that
glrr(l)g Z /G lei(w — &) — Kl|) d§
0#keZ
__ 4 ei(w = §) — kI
= hm Z /G lei(w —§) — kD\sz(w 6= k”dg
®oshez
= > / G'( |I<:l|)
0#keZ |kl|
=0, (3.4.9)

via the Stokes Theorem (B.0.9) and taking into account (3.3.30). We have computed the above
limit by using the Convergence Dominated Theorem and (H3). Moreover, the sum is vanishing
because we are using the symmetry sum. Using again the Stokes Theorem for the third term,
one arrives at

;5%{ Z/G|mw+£)—a—kl+zh)d§ VO}

kez

_hm{ /G’ |5zw+£)—a—l<:l+zh|) cilw+§) —a=Mtih df—Vg}
keZ |

e—0 i(w+&) —a—kl+ih|
— kl+1h
kez
) . —a — ki +1ih
kez
:07

by definition of Vj, which is given in (3.2.8). Again, the above limit is justified with the Con-
vergence Dominated Theorem and (H3). O

In what follows, we will have to deal with the singularity in . But, there is a way to simplify
the equation in order to control this singularity. We decompose I (e, f) as

_rl(e, f)(w /G|e AN de+ 1 Y /Gys B(€)) — ki)' (€) de

€ 0sthez
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+ = Z/G le(® D(€)) — a — ki + ih|)®'(€) d¢
k:eZ
=: Ii(e, f)(w) + Ia(e, f)(w) + Is(e, f)(w). (3.4.10)

We can use Taylor formula (3.3.18):

Re [(z1 + t22)73]
‘2’1 + t22|

1
G(|z1 + 22]) :G(|21|)+/ G'(|z1 + tz2|) dt,
0

for 21,29 € Cand |23| < |21]. In the case of I3, take z; = ie(w — &) and 23 = iKE(ZE)(f(w) — (&),
implying
L /G el — &) de + iy //G(
Re [((w—£)+t@(f(w)— 1)
-9 +t@(f(w) y
& Lot —s@Dr©d
—11,1( 7f)( )+ Ti2(e, f)(w) + Ls(e, f)(w).

Let us check that |2z3| < |z]:

w=€) + () - 1©))

(F =7©)]
G)] ¢

2
=l w =&l < 7|w £l <zl

G(e)

2l = G w) — f(O)] <

In virtue of (3.4.8), we get

( )

Re| 2 [ Gl - €] —o

and then the nonlinear function F'(e, f, V') can be simplified as follows

2 [ el - swg}

—Re [{ @ Nw) - }u@’( )] P ECIGl ) dim[f’(w)]. (3.4.11)

F(e, £,V) =Re [{T(e, )(w) ~ V } we'(w)| — Re {“’f(

wG(e)
We use the descomposition of (e, f) in (3.4.10), and we are rewriting I (¢, f) as
Il(gﬂf) = Il,2(£7f)+11,3(67f)7 (3412)

since there is any contribution of 11 1 (e, f).
In the next result, we provide how V must depend on € and f.

Proposition 3.4.4. Let G satisfies the hypothesis (H1)-(H3) of Proposition 3.2.6 and Proposition 3.4.2,
and

G(er) eG' (er) . .
(H4) Gocm b soee — Lwhene 50, uniformly inr € (0, 2).

The function V' : (—¢o,€0) X Bx,_,(0,0) — R, given by
[ 1(e, Hw)wd (w)(1 — 0?)dw
V(&f) - ]‘qu)/(w)(l —WQ)dw )

fulfills V(0, f) = Vo, where Vy is defined in (3.2.8). The parameters satisfy: =9 € (0, min{1,1}), o <1,
and X is defined in (3.3.14).

(3.4.13)
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Proof. Note that

ﬁw w — w2 dw mw 1+ EE f’w 1 — w2 dw
v, ) = lin ST ]:)f(T) @( ><1dw o __ ST oD g/ ()1 T

via the Residue Theorem. We use the decomposition of (e, f) given in (3.4.10). Let us begin
with I (e, f):

Ii(e, f) 112(8 )(w) + I s(e, f)(w)

G’( (w0 + 155 () - 1(©))

Re[((w—sm@(f(w)—f@)))( (w) = 7©))]
(= &)+t (f(w) - F©)

/ Gel®(w) — B(E))) f/(€) de

X

dt d¢

Using (H4) and the Dominated Convergence Theorem, we get

o) =i [ Gf'“’gf') e [(w- U@~ F@)] de+i [ Glo—e)s©ds. (419

Note that the Dominated Convergence Theorem can be applied since the limit in (H4) is uni-
form. We can compute the above integrals in the following way

[ = ke [t - w1 = 7@) de =3 an [ EL e - - 1) e
o [ G
—@2{ | =t an - el
wn+2 G/(|1_€D _ _¢n
vure [ S0 -0 - ey ac,
R == o JReE) gnﬂz
:—Zannw / G(l1—¢)) 5n+1 (3.4.15)

where f(w) =}, - a,w™". Note also that

Gl =) G'(1-¢b,, Z
[ Dgmene, [ T D ga-ea [ o) ghrase m

In this way,

ti [ e e (14 g7/ 0) (0= ) = [ R0 Al - 1)

el
I Ly L]
"2 -

(=6 — ] de /T w1 - w)dw
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i M _ _gn @n—&-Qw 7w2 W
+i [ - o0 -ena [ @i —wt

—in/TG(|1—g|)€n1+1 dg/Twnwu—w?)dw}

by the Residue Theorem. Let us move on I3(e, f). Here, we use also Taylor formula (3.3.18) for
21 = —a — kl+ih and 23 = e(®(w) + ¢(§)), finding

Ii(e, f Z/G|—a—kl+zh|)

kez

ti G’ (|—a — kl + ih + et(®(w) + B(€))])
S/ 8
Re [(—a — Kl -+ ih + et(®(w) + B(E))) (@(w) + @(g))]

x T T ) T 5@ e

T / Glle(®(w) + B()) — a — kl + ih|) f'(€) dé
k:eZ

—ZZ// G’ (|—a — kl + ih + et(®(w) + B(€))|)

keZ

Re [(—a =kl + ih + et(®(w) + B(£))) (®(w) + D(0))]
x : dt d¢
[~ a— Kl + ih + ct((w) + B(€))]

G0 2 [ @) +(6) —a— ki + ins ) de

kEZ
2:1371(6, f) (w) + 1372 (8, f)(w) (3416)

Let us check that |z3| < |21|, which is necessary to use Taylor formula:
|2z2] = e|®(w) + P(&)| < 2¢||P||pe < 4e < |a+1—ih| < |z].

Note that
I35(0, f) = 0.

For the other term, we achieve using (H4) that

Im [(—a — ki + k) (w + )|

I31(0, f)(w _zZ/G/| a— kI +ih|) Ty d¢
kez
keZ |—a— +Z|
—Z/G’ —a— ki 4 p)) SO W EE
| —a — kl+ih|
kezZ
) . —a — kl +ih)
— "(l—a — ki (a—kl+ih)
ZWZG (|—a /<:+Zh|)‘_ T
keZ
:_71-‘/(]7
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by the Residue Theorem and the definition of V; given in (3.2.8). Using the same ideas for
I(e, f), we find that

Die, Hw) =i 3 /T /O G (|l + et(B(w) + B(E))])

0#£keZ
Re [(~kl + £t(®(w) + @(9))) ((w) + B(€)

X = Hl T ct(P(w) £ BE)| dt g

taE 2 /TG<|€<<I><w>+<I><£>>—kl|>f’(£>d£,

0#£keZ
and then,
LO,f)=—i Y le/|(k|Zl|)Re [w—¢€] d¢ = 0.
0#keZ
This implies that
tiy [ B e (14 5o ) (- w)w =0,
Finally, we find

5
G(e)

lim [ I(e, f)(w)w (1 +

iy [ Fw)) (= wdu == [ B flwie - o)
—Vo/w(l — w?)dw
- 27Tm'vo,

getting the announced result, i.e., V' (0, f) = Vb. O

Proposition 3.4.5. Let G satisfies the hypothesis (H1)—(H4) of Proposition 3.2.6, Proposition 3.4.2 and
Proposition 3.4.4, and

(H5) %Gi()g()r) — 0, d%ég(f)((;ff?r) — 0,when € — 0, uniformly in r € (0, 2).

If V sets (3.4.13), then

F: (—80,80) X BXl—ﬁQ (O, O‘) — Ylf/gQ,

with F(e, f) = F(e, f,V (e, f)), is well—defined and €. The spaces X and Y are defined in (3.3.14)-
(3.3.15) taking ow = 1 — B, and the parameters satisfy eo € (0, min{1, {}) and o < 1.

Proof. The proof has three steps: the symmetry of F, regularity of V, and regularity of F.

e First step: Symmetry of F. Let us prove that F(e, f, V)(e!) = > n>1 [osin(nd) with f, €R, ie,
checking that F verifies F'(e, f,V)(w) = —F\(e, f,V)(w). First, we work with I(e, f) showing
that I(c, £)(w) = 1(=, ) (w) :

TP == = 3 [ Gll(®w) - 8(9) - R de

keZ

=3 [ Glle(@(w) + 0(6) — a — ki + inh(e) de

keZ
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=15 [ Gle(@w) - 0@) - P

kezZ

+ Wig Z/_I_G(|€(<I>(w) + ®(E)) — a — kl +ih|)®/(€) d¢

kezZ

—— =3 | Glle(@w) - 2(&) - k@' (€)de

kezZ

= | Glle(@w) + 0(8) — = K + i (€) de

kez

- L Z/TG(|5(<I>(w) —®(€)) — kI)'(€) de

keZ

1 _ : /
3> | Gle(@@) + 0(€) = ki -+ iH)# () de

=I(e, f)(w).

Second, we prove that V' € R analyzing the denominator and the numerator of its expression:

2iIm[ /T (5, P (w)wd’ (w)(1 —EQ)dw}

—/TI(E, ) (w)ywd (w)(1 — @*)dw —

I
— 35—
~

I(e, ) (w)w®' (w)(1 ~w?)d

g
_|_
I
~
o
=
=
g
iy
3
—
|
g|
N
QU
g

(e, /) (w)wd (w)(1 — @*)dw —

|
o

and

2iIm [/Tu@'(w)(l —wz)dw} :/wab’(w)(l —w?)d
= [ w® ()1~ )

:/w@’(w)a — @) dw —
T
~0.

g
|

g
+
33—
g
<
3
=
|
g|
N7
QU
g

Thirdly, from the above computations we arrive at

F(e, £,V)(w) =Re [{TG, (@) - V } we/(w)|
= —Re [{I(c, f)(w) = V}u¥(w)|
== F(e [, V)(w).

Now, we have that F(e, f,V)(e?) = > n>1 [nsin(nd). Moreover, the condition (3.4.13) agrees
with the fact that fi = 0, we refer to the first step in the proof of Proposition 3.3.8 for more
details.
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e Second step: Regularity of V. In similarity with the Euler equations, we need to study first the
denominator:

/Twcb’(w)(l—w?)dw :z/Tw(w+gf’(w))(1—w2)dw = 277—1—1'5/

T

wf! (w)dw = 27r—i5/ f(w)dw,
T

where we have used the Residue Theorem. Then, if |¢| < ¢g and f € By, _ 5 (0,0), the denom-
inator is not vanishing. Moreover, it is ¢ lin fand € € (—¢0,€0). By the expression of V, it
remains to study the regularity of J(e, f):

J(e, )(w) = /T T F(w)wd (w)(1 - o?)duw,

We use the decomposition of I(e, f) given in (3.4.10). First, we began with the continuity is
both variables. Fixing f € Bx, ,, (0,0), note from Proposition 3.4.4 that

J(0, f) = 27 V4,

and then J is continuous in € € (—¢g,€p). Now, fixing € # 0, by Lemma B.0.1 and (H3), we get
easily that I;(e, f) € €1772(T), fori = 1,2, 3.

Secondly, we study the differentiability properties. Fix again f € Bx, , (0,0), and we
differentiate with respect to «:

LIe D) = [ TIE N ()1 - )
. i_% I(e, f)(w)wf (w)(1 — w?)dw
H(G(s) G(€)2>/TI( ) (w)w f(w)(1 Jdw. (3.4.17)

The last expression is continuous when € # 0 and now we aim to pass to the limit ¢ — 0. By
(H3) and (H4), we have that

i (a0~ ser) 1 (e~ 9) ="

By using Proposition 3.4.4, we find

| i G (w—¢) e
h e ) == | g e [0 - (7w — 7€) at

-1 /T G(jw — ) f/(€) dé + Va, (3.4.18)
which implies that

L _eG'(e) T T (w1 — 52\ —
Lo(g(g) G(€)2>/TI( , [(w)w f'(w) (1 Ydw = 0.

Let us analyze the first term of (3.4.17). Using the decomposition (3.4.10), we begin with

/T G P @)wd (w)(1 — 72)duw.

We use also the decomposition for I; given in (3.4.12). For the last term, one has that

d [ d (Ge|®(w) =)
hua(e f)w) = Z/TdE ( a© )f (&) ds,
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which is continuous in ¢ # 0 and f € Bx, 8y (0, 0). Moreover, (H5) implies that

. d
ilg(l) dfgh,ﬁi(@ )(w) =0,

for any w € T. Note that we can use the Dominated Convergence Theorem since the limit in
(H5) is uniform. We can differentiate I; » for ¢ # 0 and using once again (H5), we have that

lim dill 2(6 f)( ):0.

e—0

Let us now show the idea of I3(¢, f), and I>(e, f) will read similarly. Here, we use Taylor
formula (3.3.18) as it was done in (3.4.16):

I3(e, f)(w) =I31(c, f)(w) + I32(e, f)(w)
423//PG’a—m+quuywmxm@m

keZ
Re [(~a = ki + ih + et(®(w) + B(€))) (®(w) + D(0))]

| —a—kl+ih+et(P(w) + 2())]
}:/kue W)+ D)) — a — K+ ih|)f(€) de

kEZ

X

dt d¢

These two expressions are smooth in . In fact, we can check that 2 213(g, f) is continuous in
€€ ( 60,50) andf S BX1 8y (0 O')

Now, fix € # 0 and we focus on the regularity with respect to f. The integral I; is the more
delicate one since the kernel is singular. Remark the expression of this term:

(| G 7w - 1))
Re [((w &) +tgis (f(w) - £(9)) W) - F©)]
=9 +t%(f(w) — 7 )

/G | (w) — B(E)]) F/(€) de.

optite. i) =i [ [ 10 (e w9150 (w)—f(é“))D

Re [((w—&) + to&5(f(w) - £(©)) ) — F©)]
|(w — §)+tg(5)( w) — f(§))?

{(<w o+ 7€) - (hw) ~ i Y v
i //tG’( we £+t%(() @)

Re[(w &) + tei5(f(w) = £(€)) (Flw) = J©)]
(w8 +teg5(f(w) — [OF

X

dt d¢

Then,

X

dt d¢
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{0+ g5 () = (€ ) - (h(w) ~ ()}

viges [ 6 (-0 + 550w - s

Re[((w =)+t (hw) - b(e) (Tw) = 71O
w8+ tG@ (F(w) = F©)]

ol e (e e ﬂ“D

Re[(UJ &) + tei5(f(w) = 1)) (hlw
[(w—&) + tG(a) (f(w) = f(E))]

&G et - anne d

[ GElow) — o) ,
+G<e>2/T o) -0 ¢

(=04 g5 ()~ 1(€)) - htw) ~ in } a

For any € # 0, the above expression is continuous in f by using Lemma B.0.1. Moreover, using
(H4) we can obtain the limit when ¢ — 0 as

G'(lw—¢&)p TN T : '
O (0. () = i [ L tURe (- TGy = RE] de -+ [ G<|w—§)h<£>(c;ilg)

dt d¢

}dtdf

Note that it agrees when differentiating with respect to f in (3.4.14).

For the other two integrals, notice that /> and I3 are not singular integrals due to |e(®(w) —
®(§)) — kl| it not vanishing for k£ # 0 and neither |e(®(w) — ®(§)) —a — kl + ih|, forany k € Z.
This gives us that I and I3 are %. Let us show the idea of I»:

Orho(e fhw) =05~ Y / Gle(®(w) — B(E)) — ki)@' (€) de
O;Akez
(e (@ (w) — B(E)) — ki)
07élc€Z
<e<<1><w> _ <§>> kD) - (h(w) — h(E))
. E(@(w) — D(0)) ku (E)de
o X[ cle@w) - o) - de
O;Hcez

By Lemma B.0.1, the last expression is continuous in f. Moreover, it does when ¢ # 0 and it is
easy to check, with the help of the Convergence Dominated Theorem, that

0¢15(0, f)h(w) = 0. (3.4.20)
In the same way, one can check that 0;13(e, f) is continuous in both variables and
0¢13(0, f)h(w) = 0. (3.4.21)

e Third step: Regularity of . Since V (e, f) is €' in both variables and using the computations
above concerning (e, f), one can easily check that F' is €. O
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3.4.2 Main result

Finally, we can announce the result concerning the desingularization of the point model (3.2.7)
in the general system. We need to impose an extra condition to G in order to obtain that the
linearized operator is an isomorphism.

Theorem 3.4.6. Consider G satisfying (H1)-(H5) of Proposition (3.2.6), Proposition (3.4.2) and Propo-
sition (3.4.4), and

H6) 0¢ {n frG(1— €D -y ag — i fr S - (1 - gM] dg, n> 1]

Let h,l € R, with h # 0andl > 0,and a = 0 or a = L. Then, there exist f(e) such that F (e, f(e)) = 0,
for e € (0,e0) and small enough 9 > 0. As a consequence, there exist D such that

1
90.(2) we? Z Lepetri(® s} > 1 cpesainim(@), (3.4.22)
kezZ keZ

defines a horizontal translating solution of (3.4.1), with constant speed, for any ¢ € (0,e). Moreover,
De is at least €.

Proof. Let us consider F' : (—ep,&0) x Bx,_ 5, (0,0) = Yi_g,, withe € (0,1), e < ; lando < 1,

defined in Proposition 3.4.5. By that proposition, it is ! in both variables. Moreover, Proposi-
tion 3.4.2 and Proposition and 3.4.4, give us that (0, 0) = 0. In order to implement the Implicit
Function Theorem, let us compute the linearized operator:

95 F(0,0)h(w) = lim Re [{aff(o 0)h(w) — 9V (0, O)h(w)}
+{I(o, 0)(w) — Vo}inz_) (w)] G ;'G“Ef’)dglm [ (w)] .

By Proposition 3.4.4, then 0,V (0, f)h(w) = 0. In virtue of (3.4.18), we have

0. 7)(w) = -2 [ EI=Dre [(w - 77Tw) — 7 @] de - £ [ ciw-eDr©ras + i,

which implies
1(0,0)(w) = Vo.

Then, we have
97 F(0,0)h(w) —Re {iwafI(0,0)h(w) - /T G(1 - €]) dgh'(w)] |

On the other hand, using (3.4.19)-(3.4.20)-(3.4.21) we obtain
—r9;1(0,0)h(w) =9;11(0,0)h(w)

i [ G =€) p T 0w — T = hiED ; w— NI
=i [ E1 = Dre [0 - e)htw) — R@) e+ [ Gl - D) as

which amounts to

9, F(0,0)h(w) :Re{— w/T Glw =€) e {(w - g)m} d

) Jw =g
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-2 [ atw-ehie) /G ~¢f)de].

Let us define K : X1_g, — Y1_3,, as

ko = [ IR [0 - atw) — (@) de

+AGw»—wh@ms

O5F(0,0)h(w) = —1Re[H'(w) [y G(1 — &) + wK(w)].

Then,

For any h € X;_p, we have that h € ?72(T), and as a consequence of Lemma B.1 we achieve
that K(h) € €272(T). Since ¥?~%2(T) is compactly embedded in €' ~72(T), one has that the
operator K defined above is compact. On the other hand, h € X;_g, — I’ € Y;_g, is an isomor-
phism, which implies that it is a Fredholm operator of zero index. Since compact perturbations
of Fredholm operators are also Fredholm operators of same index, we conclude that 9;F(0, 0)
is Fredholm with zero index. As a consequence, checking that 9;F(0,0) is an isomorphism,
it is enough to check that the kernel is trivial. We can compute the integrals involved in the
linearized operator using (3.4.15), and find

[ e - e =@ =3 o [ g e

w—¢] 1-¢
e [ G'(11 =€) \
+w*2ﬁill_€|[u—5x1—s>hm}
/r (Jw — &|)R/ (€ r%:lannw/ f|)€n+1

where h(w) =}, - ap,w™". Note also that

. G =€)
| cte—eae. [ S lTT=ai—ena

(11— ¢)) .
| St - o0 - [ ol - dce

Finally, we achieve

B an, wn-‘,—l 1 -
orF0.0m(w) = e[V [ CUEDia=gn—emae

n>1

w"tt G -¢))
A Aillﬂ

n+1 L —n 1 _
m [ Gt = €l) gy de = [ Gleft el ag
=Y s+ oy [ ST oa - eas

=1 [1—-¢

&1 ) .
-3 | g - o0 - e

(1= (1 —&")]d¢
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1
—n/T.G(|1—§)§n+1 d§+n/TG(51—§|)d§}
= %sin n n — _t
=3 hsin((n+ 1)0){n [ G(1 e -€ ae

n>1

[ @-g) .
—i [ S mia -0 - e d).

By (H6), we get that the kernel is trivial and then the linerized operator is an isomorphism. []

Asa Consequence we get the result for the generalized surface quasi-geostrophic equation,

8
for 8 € (0,1) and C3 = % We just have to check that (H6) is

verified and these computations are done in [85] for the vortex pairs.

meaning G = Us
eaning 27T||ﬁ’

Theorem 3.4.7. Let h,l € R, withh # 0andl > 0,and a = 0or a = % Then, there exists D¢ such
that

q0 s(x 2 Z 15D5+kl Z 1—5D5+a Zh—i—kl( ) (3423)
kezZ kez

defines a horizontal translating solution of the generalized surface quasi-geostrophic equations for 5 €
(0, 1), with constant velocity speed, for any € € (0,e0) and small enough €9 > 0. Moreover, D is at
least 6.
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4.1. INTRODUCTION

4.1 Introduction

The large scale dynamics of an inviscid three-dimensional fluid subject to rapid background
rotation and strong stratification can be described through the so—called quasi—geostrophic
model. It is an asymptotic model derived from the Boussinesq system for vanishing Rossby
and Froude numbers, for more details about its formal derivation we refer to [122]. Rigorous
derivation can be found in [15, 34, 89].

We point out that this system is a pertinent model commonly used in the ocean and atmo-
sphere circulations to describe the vortices and to track the emergence of long-lived structures.
The quasi-geostrophic system is described by the potential vorticity ¢ which is merely advected
by the fluid,

Orq +ud1q +vdaq =0, (t,x) € [0,+00) x R3,

Ay =g,

u=—0, v =1, ®1D
q(t =0,2) = qo(x).

The second equation involving the standard Laplacian of R? can be formally inverted using
Green’s function leading to the following representation of the stream function 1,

1 a(ty)

l/J(t,l‘) = dA(y),

where dA denotes the usual Lebesgue measure. The velocity field (u, v, 0) is solenoidal and can
be recovered from ¢ through the Biot-Savart law,

(o)t ) = / (@ = yn,22 —92)” o aay).
R3

lz —yf?

Notice that the velocity field is planar but its components depends on the all spatial variables
and the potential vorticity is transported by the associated flow. The incompressibility of the
velocity allows to adapt without any difficulties the classical results known for 2D Euler equa-
tions. For instance, see [107], one may get global unique strong solutions when the initial data
qo belongs to Holder class ¢“, for a > 0. Yudovich theory [152] can also be implemented and
one gets global unique solution when gy € L' N L. This latter context allows to deal with
discontinuous vortices of the patch form, meaning a characteristic function of a bounded do-
main. This structure is preserved in time and the vortex patch problem consists in studying the
regularity of the boundary and to analyze whether singularities can be formed in finite time on
the boundary.

For the 2D Euler equations, the 1 regularity of the boundary of the patch, with o € (0, 1),
is preserved in time, see [36, 18, 141]. The contour dynamics of the patch is in general hardly
to track and filamentation may occur. Therefore it is of important interest to look for ordered
structure in turbulent flows like relative equilibria. It seems that, only few explicit examples
are known in the literature in the patch form: the circular patches which are stationary and
the elliptic ones which rotate uniformly with a constant angular velocity. This latter example
is known as the Kirchhoff ellipses. However lot of implicit examples with higher symmetry
have been constructed during the last decades and the first ones are discovered numerically
by DEEM and ZABUSKY [51]. Having this kind of V-states solutions in mind, BURBEA [21]
designed a rigorous approach to generate them close to Rankine vortices through complex
analysis tools and bifurcation theory. Later this idea was fruitfully improved and extended in
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CHAPTER 4. TIME PERIODIC SOLUTIONS FOR 3D QUASI-GEOSTROPHIC MODEL

various directions generating lot of contributions dealing, for instance, with interesting topics
like the regularity problem of the relative equilibria, their existence with different topological
structure or for different active scalar equations and so forth. For more details about this active
area we refer the reader to the works [26, 27, 28, 29, 52, 53, 55, 58, 67,69, 71, 78,79, 83, 84, 85, 86]
and the references therein. See also Chapters 2 and 3.

The main concern of this chapter is to investigate the existence of non trivial relative equi-
libria of the 3D quasi—geostrophic system close to the stationary revolution shapes. In our
context, we mean by relative equilibria periodic solutions in the patch form, rotating uniformly
about the vertical axis without any deformation. Very recently, REINAUD has explored numeri-
cally in [133] the existence and the linear stability of finite volume relative equilibria distributed
around circular point vortex arrays. Similar analysis has been implemented in [132] for toroidal
vortices. Apart from the numerical experiments, no analytical results had been yet developed
and the main inquiry of this paper is to design some technical material allowing to construct
relative equilibria close to general smooth stationary revolution shapes. The basic tool is bifur-
cation theory but as we shall see its implementation is an involved task which requires refined
and careful analysis. Let us explain more our strategy and how to proceed. First, we start with
deriving the contour dynamic equation for rotating finite volume patches 1p. To do so, we
look for smooth domains D with the following parametrization,

D ={(re cos(6)) : 0<r < r(6,6),0<09<2m0< 6 <},

where the shape is sufficiently close to a revolution shape domain, meaning that

(¢, 0) = ro(¢) + f(o,0),

with small perturbation f. Since the domain is assumed to be smooth then we should prescribe
the Dirichlet boundary conditions,

r0(0) = ro(m) = f(0,0) = f(m,0) = 0.

Notice that without any perturbation, thatis, f = 0, the initial data go = 1p defines a stationary
solution for (4.1.1), as we will prove in Lemma 4.2.1. Now a rotating solution about the vertical
axis is a time—-dependent solution taking the form,

q(t,x) = qo(e " an, x3), qo = 1p, &y = (x1,2).
We shall see later that this is equivalent to check that

Q

F(, £)(9,8) := 9o(r(9,0)e”, cos(¢)) — 577 (,0) =m(&, f)(¢) =0,

for any (¢, ) € [0, 7] x [0,27], where

m@ﬁw:;/‘@wwwﬁmw—&wwﬁa
0

where 1)y stands for the stream function associated to ¢y. With this reformulation we visualize
the smooth rotating surface as a collection of interacting stratified horizontal sections rotating
with the same angular velocity but their size degenerates when we approach the north and
south poles corresponding to ¢ € {0, 7}.
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In order to apply a bifurcation argument, one has to deal with the linearized operator of
F around f = 0. From Proposition 4.3.3 such linearized operator has a compact expression in
terms of hypergeometric functions. Indeed, for h(¢,0) = >_, - hn(¢) cos(nd), one gets

DpF(9,00h($,0) = ro(d)va(d) D cos(nb) Ln(hn)(6),

=
where
Lo (hn)(9) =hn(6) — K3 (ha) (9)
(@)~ [ O H6. ()
with

va(d) = /0 CHi(b,0)de—Q, R(6,0) = (ro(@) + ro(i2))” + (cos(@) — cos(p))?

and forn > 1,

2

22071 (3), sin()rg " (@) ) 1 <4T0(¢)7”0(90)>
(2n)! [R(6, )"+ 2 R(g,9) /)~

Hy(9,0) :=
Here F;, denotes the hypergeometric function

1 1
Fu(z)=F <n+ E,n—l— 5,2n—|— 1,:):) , x€]0,1).
An important observation is that the kernel study of 0;F(£2,0) amounts to checking whether 1
is an eigenvalue for KS}. To do that we first start with symmetrizing this operator by working
on suitable weighted Hilbert spaces. A natural candidate for that is the Hilbert space L2 (0, 7)
of square integrable functions with respect to the measure

dpa(p) = sin()rg (e)va(p)de.

In general this defines a sighed measure and to get a positive one we should restrict the values

s

of Q to the set (—o0, k), where k := inf / Hy (¢, p)dep.
#€(0,7) Jo

In the next step we prove that for any n > 1, the operator K5} : L2, — L2 actsas a compact
self-adjoint integral operator. This answers to the structure of the eigenvalues which is a discret
set and we establish from the positivity of the kernel that the largest eigenvalue A\, (Q2) giving
the spectral radius is positive and simple. For given integer n > 1, we define the set

I = {Q € (—oo,k) st A\(Q) = 1},

and in Proposition 4.4.3 we shall describe some basic properties on A, through precise study
of the kernel. Those properties show in particular that the set .}, is formed by a single point
denoted by (2,,, see Proposition 4.4.4 for more details. In addition, we show that the sequence
n € N* — , is strictly increasing which ensures that the kernel of the linearized operator
is a one—-dimensional vector space, see Proposition 4.4.7. Notice that the preceding weighted
space L2 is so weak in order to get its stability by the nonlinear functional . So we need to
reinforce the regularity by selecting the standard Holder spaces ¢ with Dirichlet boundary
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condition and a € (0, 1). However this choice generates two delicate problems. The first one is
to check that the eigenfunctions constructed in LZ ,, are sufficient smooth and belong to the new
spaces. To reach this regularity we need to check that the function v is 1 and this requires
more careful analysis due to the logarithmic singularity, see Proposition 4.4.1. Notice that the
eigenfunctions satisfy the boundary condition provided that n > 2 and which fails for n = 1.
The second difficulty concerns the stability of the Holder spaces by the nonlinear functional F,
in fact not F but another modified functional F* deduced from the preceding one by removing
the singularities coming from of the north and south poles, see (4.2.13). The deformation of the
Euclidean kernel through the spherical coordinates generates singularities on the poles because
the size of horizontal sections degenerates on those points. That is the central difficulty when
we try to implement potential theory arguments to get the stability of the function spaces and
will be discussed in Section 4.5.

Before stating our result, we need to make the following assumptions on the initial profile
rp and denoted throughout this paper by (H) :

(H1) 79 € €%([0, 71]), with 79(0) = ro(7) = 0 and ro(¢) > 0 for ¢ € (0, 7).
(H2) There exists C' > 0 such that

Vo e [0,7], Clsing <rolp) < Csin(e).

(H3) 7 is symmetric with respect to ¢ = 7, i.e., 7o (g - gb) =79 (% + gb), forany ¢ € [0, 5.

Now we are ready to give a short version of the main result of this paper and the precise
one is detailed in Theorem 4.6.1.

Theorem 4.1.1. Assume that r( satisfies the assumptions (H). Then for any m > 2, there exists a
curve of non trivial rotating solutions with m-fold symmetry to the equation (4.1.1) bifurcating from the
trivial revolution shape associated to rq at the angular velocity €, , the unique point of the set #,,.

We precise that we mean by m-fold shape symmetry of R? a surface invariant by rotation
with axis (0z) and angle 2=

There is the particular case of 79(¢) = sin(¢) defining the unit sphere. Here, its associated
stream function can be explicitly computed (see [96]) and it is quadratic inside the shape, that
is,

o(x) = %(x% + 23 4 22 — 3).
That gives us some interesting properties on the eigenvalues (2,,, of the above Theorem 4.1.1. In
particular, we achieve that the above eigenvalues €2, belongs to (0, 3). Same properties occur
also in the case of an ellipsoid of equal x and y axes defining a revolution shape around the
z—axis. In this case, the associated stream function is also quadratic. See Section 4.6.1 for a
more detailed discussion about those cases.

This chapter is structured as follows. In Section 4.2 we provide different reformulations for
the rotating patch problem and we introduce the appropriate function spaces. Section 4.3 is
devoted to different useful expressions of the linearized operator around a stationary solution.
The spectral study of the linearized operator will be developed in Section 4.4 In Section 4.5 we
shall discuss the well-definition of the nonlinear functional and its regularity. In Section 4.6 we
give the general statement of our result and provide its proof.
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4.2. VORTEX PATCH EQUATIONS

4.2 Vortex patch equations

Take an initial data uniformly distributed in a bounded domain of R3, that is, o = 1p. Then,
this structure is preserved by the evolution and one gets for any time ¢t > 0

q(t,z) = 1p)(z), (4.2.1)

for some bounded domain D(¢). To track the dynamics of the boundary (which is a surface
here) we can implement the contour dynamics method introduced by DEEM and ZABUSKY for
Euler equations [51]. Indeed, let v; : (¢,6) € T? — (¢, 0) € R3 be any parametrization of the
boundary 9D;. Since the boundary is transported by the flow then

(615% - U(t,%)) n(y) =0, (4.2.2)

where U = (u,v,0) and n(y;) is a unit normal vector to the boundary at the point ;. There is a
special parametrization called Lagrangian parametrization given by

Oyt = U(t,m),
which is commonly used to follow the boundary motion. From Biot-Savart law we deduce that
1 (¢ (4,0) — y)* 1 nt(y)
Utton(0.0) = o [ 00 cda) = o [ B do), @23)
1@0) = g7 D ve(9,0) —yl? A Jap, 1ve(9,0) — yl

where do denotes the Lebesgue surface measure of 0D;. We have used the notation xt =
(—x9,71,0) € R3 for x = (21, 79, 73) € R3.
4.2.1 Stationary patches

Our next goal is to check that any initial patch with revolution shape around the vertical axis
generates a stationary solution. More precisely, we have the following result.

Lemma 4.2.1. Let r : [—1,1] — Ry be a continuous function with r(—1) = r(1) = 0 and let D be the
domain enclosed by the surface {(r(z)e'?, 2), 0 € [0,2n],z € [—1,1]}, then q(t,z) = 1p(x) defines a
stationary solution for (4.1.1).

Proof. Recall from (4.2.3) that
i
Uy =~ [ B9 g4, (4.2.4)
D
Define

Zz- ?J 3
G(z):=Ulx = dA(y), = €R’,
(@) plr=yP

and let us prove that G = 0. Take § € R and denote by Ry the rotation: z = (zp,z3) —

(e®2,, x3). Since D is invariant by Ry, changing variables leads to

G(Rozx) = G(x).
Therefore G(x) = G(|zn|, 0, x3), which means that

— |zl y2 dA(y)

G(x) =
D= p ((Jzn] = y1)* +y3 + (v3 — y3)?)

Njw
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Since D is invariant by the reflexion: y — (y1, —y2,y3) then a change of variables implies that
G(z1,x2,23) = G(x1, —22,23) = —G(x1,22,23) and thus G(z) = 0. Consequently we get in
particular that

U(z)- =0, VredD.

On the other hand, we get from the revolution shape property of D that the horizontal compo-
nent of the normal vector is 7ij,(x) = (21, x2), which implies

U(z)-7fi(x) = (u,v)(x) - fig(x) =0, VaedD. (4.2.5)

This implies that 1p is a stationary solution in the weak sense. O

422 Reformulations for periodic patches

In this section, we shall give two ways to write down rotating patches using respectively the
velocity field and the stream function. Assume that we have a rotating patch around the z3
axis with constant angular velocity 2 € R, thatis D, = R D, with R, being the rotation of
angle Ot around the vertical axis. Inserting this expression into the equation (4.2.2) we get

(U(z) — QxJ‘) -ii(x) =0, VYxedD.

Since U is horizontal then this equation means also that each horizontal section D,, := {y €
R?, (y,z3) € D} rotates with the same angular velocity 2. Hence the horizontal sections satisfy
the equation

(U(z) — Q™) “7ip,, (zn) =0, xp = (71,22) € 0Dy, 73 €R,

where 7ip, . denotes a normal vector to the planar curve dD,,. Next we shall write down this
equation in the particular case of simply connected domains that can be described through
polar parametrization in the following way:

D= {(rew,cos(gb)) 0<r<r(¢,0),0<6<2m,0<¢< 77} . (4.2.6)

Notice that we have assumed in this description, and without any loss of generality, that or-
thogonal projection over the vertical axis is the segment [—1,1]. The horizontal sections are
indexed by ¢ and parametrized by the polar coordinates as 6 — r(¢, §) and it is obvious that

fop,, (r(¢,0)e) = (i0pr(4,0) — r(6,0)) ¢’

Then, the equation of the sections reduces to

Re [{Uh(qa, 0) — i (o, e)e“} {[i@gr(qﬁ, 0) + (o, 9)]6—”}] =0, Y(¢,0) € [0,7] x [0, 2],

(4.2.7)
with, according to (4.2.3) and the change of variable y3 = cos ¢,
Un(9,0) :=(U1, Us)(r(9,0), cos ¢)
/ / dyndys
6D ¢7 6297 COS(¢)) - y|
sin() (Oyr (i, n)e™ + ir(p,n)e™)

dndp. 428
// oD P = o e 1 429
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We shall look for a rotating solution close to a stationary one described by a given revolution
shape (6, ¢) + (ro(#)e?, cos(¢)). This means that we are looking for a parametrization in the
form

r(¢,0) = ro(¢) + f(0,0), Z fn(®) cos(nd). (4.2.9)

n>1

Implicitly, we have assumed that the domain D is symmetric with respect to the plane z, = 0.
In addition, we ask the following boundary conditions,

r0(0) = ro(m) = f(0,0) = f(7,0) =0

meaning that the domain D intersects the vertical axis at the points (0,0, —1) and (0,0, 1).
Define the functionals

Fo(Q. £)(6,0) = Re [{ 1,(£)(6,0) = (6, 0)¢” | {idr(9,0) ™ +7(0,0)e™ }] |

with

_ sin() (Opr (o, n)e™ + ir(p,n)e™)
L (£)(9,0) = Un(¢,0) = / / ew cos(8)) — (o m)ei, cos())] 1P
(4.2.10)

The subscript v refers to the velocity formulation and we use it to compare it later to the stream
function formulation. Hence, we need to study the equation:

Fy(, f)(0,0) =0, (¢,0) € [0,7] x [0, 2n].
By Lemma 4.2.1, one has F,(2,0)(¢,6) =0, for any 2 € R.

4.2.3 Stream function formulation

There is another way to characterize the rotating solutions described in the previous subsection
by virtue of the stream function formulation.

For ¢ € [0,7], let 0 € [0,27] — ~4(0) := r(,0)e?, be the parametrization of dD,, where
z = cos(¢). Then one can check without difficulties that (4.2.7) agrees with

00 { alr6(0).cos() — GhO)F | =0, ¥(6.0) < 0.7] x [0.27),

Then, the equation can be integrated obtaining

Yor6(0),c05(6)) — 5 11a(6)1> = m(9, £)(&),

where m(Q, f)(¢) is a function depending only on ¢ and given by
2T
; Q
(@ 1)) = 5 / {wo(r<¢, 0)e’,cos()) — (e, 9)} do, r=ro+f  (4211)
0

Let us consider the functional

Fs<Qv f)(‘f% 0) ( (¢a 9)6 COS( )) - %7”2(@25, 9) - m(Q> f)(¢)
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27
:G(Qvf)(qb,@)—i ; G(Q, f)(¢,n)dn, (4.2.12)

where Q
G(Q7 f)(d)a 9) = wO(T(¢7 6)67297 COS(¢)) - §T2(¢7 6)7

and the stream function is given by

©  r2m er(emn)
, ¥ cos(d)) — — - sin(p)rdrdndy .
Yol (@ 0)e, costo)) 4”[ [ [ |(rei, cos(p)) — (r(¢, 0)ei?, cos())]

Then, finding a rotating solution amounts to solving in f, for some specific angular velocity
constant €2, the equation

Fs(, f)(9,0) =0, V(¢,0) € [0,7] x [0,27].

Remark that one may check directly from this reformulation that any revolution shape is a
solution for any angular velocity €2, meaning that, F5(€2,0) = 0, for any 2. Motivated by the
Section 3 on the structure of the linearized operator, we find better to filter the singularities of
the poles and work with the modified functional

F5(©, f)(9,0)

F(Q, f)(¢,0) := W'
Therefore, we get
FN(0.0) = = {10000~ 5ro.02 —m@ D@} @213
with
T e prlem)
_ 1 rsin(p)drdnde
I(f)(¢,0) == = - [ [ [ e e0a(2) = (r(@. 67 cos(@))] (4.2.14)
and

T(¢,0) = TO(d)) + f(¢79)

4.2.4 Functions spaces

First we shall recall the Holder spaces defined on an open non void set & C R%. Let a € (0, 1)
then
¢(0) = {f: 0 R | fllgre < o},

with v v
[ fllgre = [[fllLe + [V fllzee + sup [Vite) - af ol
eAyeo |z — vl

It is known that ¥'1%(&) is a Banach algebra, meaning a complete space satisfying

[fgllgre < Cllfllgrellgllero.

Denote by T the one-dimensional torus and we identify the space -%(T) to the space %,.*(R)
of 2r—periodic functions that belongs to €% (R). The space ¢1%(T) is equipped with the same

195



4.3. LINEARIZED OPERATOR

norm of €1*((0, 27)). Next, we shall introduce the function spaces that we use in a crucial way
to study the stability of the functional F' defined in (4.2.13). For o € (0,1) and m € N*, set

X0 e { FeE e ((0,m) xT), f(6.0) = ful9) cos(nme)}, (4.2.15)

n>1
supplemented with the conditions

V8 € [0,27] f(0,0) = f(m,0) =0 and V(¢,0) € [0,7] x [0,27] f(7m—¢,0) = f(4,0).

(4.2.16)
This space is equipped with the same norm as ¢1*((0,7) x (0,2m)). The first assumption in
(4.2.16) is a kind of partial Dirichlet condition and the second one is a symmetry property with
respect to the equatorial ¢ = 5. Notice that any function f € €((0,7) x T) admits a contin-
uous extension up to the boundary, so the foregoing conditions are meaningful. Furthermore,
the Dirichlet boundary conditions allow in view of Taylor formula to get a constant C' > 0 such
that for any f € X}

[f (e, m)| <C||flLip sin @,
9 f(0,n) =0y f(m,n) =0 and [9,f(p,n)| < C|f
The notation Bxa (¢) means the ball of X} centered in 0 with radius .

Next we shall discuss quickly some consequences needed for later purposes and following
from the assumptions (H) on ry, given in the Introduction before our main statement.

1.0 8In%(p). (4.2.17)

e From (H2) we have that r((0) > 0 and by continuity of the derivative there exists § > 0
such that r{(¢) > 0 for ¢ € [0,6]. Combining this with the mean value theorem, we
deduce the arc-chord estimate: there exists C' > 0 such that

C Mo — ) < (role) —r0(9))* + (cos(¢) — cos())* < C(¢ — ¢)?, (4.2.18)
for any ¢, ¢ € [0, 7].

e We have that %(()) € ¢%([0,7]), and then ¢ € [0, 7] — % e ([0, 7).

4.3 Linearized operator

This section is devoted to show different expressions of the linearized operator around a revo-
lution shape. We can find an useful one in terms of hypergeometric functions. See Appendix C
for details about these special functions.

From now on, we will use the stream function formulation and then we omit the subscript
s to Fs in order to alleviate the notation. The linearized operator of the velocity formulation is
closely related to this one, see the previous section.

4.3.1 First representation

In the following, we provide the structure of the linearized operator of F' around the trivial
solution (€2, 0).

Proposition 4.3.1. Let F beas in (4.2.13) and (¢, 0) € [0, 7] x[0, 27] = h(¢,0) = 3, =, hn(¢) cos(nh)
be a smooth function. Then, B

OrF(Q,0)h(4,0) = —Q > () cos(nd)

n>1
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sin(¢@)ro(p) cos(n) dndp
cos(nb)
" 1;1 { / / V1e(9) (cos ¢ — cos )% — 2rg(P)ro(¢) cos(n)
sin(ip)ha (2)rof(e) cos(rnn) o
47‘(‘7"0 / / V72(9) ) + (cos ¢ — cos )% — 2ro(P)ro(¢p) cos(n) ! @} .
(4.3.1)

Proof. First, note that

[(re™, cos(p)) — (ro(9)e™, cos())[* = 1? +15(9) + (cos(¢) — cos(p))® — 2rro(¢) cos(d — 7).

The linearized operator at a state 7 is defined by Gateaux derivative,

07 F (92, 0)h(,0) == F(Q,th)‘tzo(qs 9)

it
_ 1 (jta(n,m)\ (6.0) ~ o /O%dGm )] _ (¢,n>dn>-

r0<¢) t=0

Thus straightforward computations yield
La@.m|_ (0.0 - / / MR _ g0 (5105, 0)
<z5, 0, 1)?
ro(p)
bln(g@)r(ro((b) —rcos(n)) drdnde
(r2 +3(6) + (cos(9) — cos(i))? — 2rro(@) cos(n))?
with

A(6,0,0.m) := 15() +75(8) + (cos(9) — cos(#))* = 2ro()ro(¢) cos(d —n).
By expanding h in Fourier series we get

0,G(2, 0)h( / / sin)ro(e) Costnn) o\ andip +Qro(é)ha(6) cos(nb)
n>1 ¢, y P, 77) 2

ro(p) .
LS (@) costan) / / / _sin(er(rolg) —r cos(n)drdndy B
T =1 o Jo Jo (r? +75(¢) + (cos(¢) — cos(p))? — 2rr(¢, ) cos(n)) 2
Let us analyze every term. For the first one, making the change of variable § — n — 71 we get
using a symmetry argument,

/ / sin(@)ro(p ) cos(nn)dndy / / sin(@)ro(e)hn(p) cos(n (77 0))dndy
1
sb, ,pm)? ¢, (0.0 —n)?

— cos(nf) / / y sin()70(p)hn () cos(nn)dndyp -
@) +13(d) + (cos(gb) — cos(p))? — 2ro(p)ro() cos(n))2

Concerning the last integral term, we first use the identity

r

Or - =
(r? + 75(¢) + (cos(¢) — cos())? — 2rro(¢) cos(n))
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1
(r2 + 13(6) + (cos() — cos(19))2 — 2rro () cos()) 2
r(r — 10(¢) cosn) _
(r2 + 13(¢) + (cos() — cos(9))2 — 2rro (@) cos()) 2

Consequently

T(6, / /m(gp) r cos(n)drdn
" (2 4 12(6) + (cos() — cos(p))? — 2rro(¢) cos(n))?

/ /m(ga) cos(n)drdn
2 4 12() + (cos(¢) — cos())2 — 2rro(¢) cos(1))?

) / /ro(%ﬂ) r2 cos (n) —rro(@)(1 — Sin2(77))d7“d77 .
b h (2 13(8) + (cos(6) — cos())? — 2rro(@) cos())?

Thus

(¢, ¢ / /TO(W) r(ro(¢) — rcos(n))drdn
(r2 +13(6) + (cos(6) — cos(i9))? — 2rro(¢) cos(n))

/ / o) cos(n)drdn
(r2 4 T‘O ) + (cos(¢) — cos(¢))? — 2rro(9) COS(??))%

) / / o) rro(@) sin?(n)drdn |
b 024 r3(6) + (cos(6) — cos())? — 2rrol() cos(n))

Integrating by parts with respect to 1 gives

/ /m(go) cos( )drdn
r2 +1¢(¢) + (cos(¢) — cos(p))? — 2rro(¢) cos(n))%

/27r /ro(eo) 7o (¢ )51n(17)2d7"dn ‘
(r2 +1r¢(9) + (cos(¢) — cos(¢))? — 2rro(e) cos(n))%

Putting together the preceding identities allows to get

/ / /TO(QP) sin(p)r(ro(¢) — rcos
72 +1¢(9) + (cos(¢) — cos(yp)

))drdnde
— 2rr9(g) cos(n)) >

Ui
)?
/ / /TO(W sin(¢)r cos(n)drdndyp
(r2 + 13(9) + (cos(6) — cos(p))? — 2rro(@) cos(n)) 2
(n

¢)
/ /27r sin()ro(p) cos(n)drdnde .
) +73(¢) + (cos(¢) — cos())? — 2ro(@)ro(¢) cos(n))2

Therefore we obtain

sin(p cos(nn)
0rG(2,0)h(¢p / / hn (@)dnde cos(n)
n>1 47T Qb, y P 0 — 77
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1 T sin(@)ro(p) cos(n)drdndye
+ — hyn () cos(nf / / 1
in n%jl (@) eestnd) 0 Jo (15(9) +13(e) + (cos(¢) — cos(i))? — 2ro()ro() cos(n))?
+Qro(¢) Y hn(9) cos(nd).

Now it is clear that
1 2

o o 05G(2,0)h(p,n)dn = 0,

and so (4.3.1) is given. O

4.3.2 Second representation with hypergeometric functions

The main purpose of this subsection is to provide a suitable representation of the linearized
operator. First we need to use some notations. For n > 1, set

1 1
F,(z) ::F<n+2,n+2,2n+l,x), x €[0,1),

where the hypergeometric functions are defined in the Appendix C. Other useful notations are
listed below,

R($, ) := (ro(d) +10(9))% + (cos(¢) — cos(9))?, 0 < ¢, <, (4.3.2)
and
22 (D2 i) (@) () L (Aro(d)rol)
Hy (9, p) = )i R o] Fn< R(o.0) ) (4.3.3)

Remark 4.3.2. Note from the above expression that

/ Hy(¢,p)dp = ( %) Orto(Re", cos(0)) |r=r(e) » (4.3.4)

where vy is the stream function at t = 0 associated to the domain parametrized by (ro(¢)e', cos(¢)),
for (¢,0) € [0, 7] x [0, 27].

Now we are ready to state the main result of this section.

Proposition 4.3.3. Let I beas in (4.2.13) and h(¢,0) = 3>, <, hn(9) cos(nb), (¢,0) € [0, 7] x [0, 2],
be a smooth function. Then, B

9 F(Q,0)h = cos(nf) L3 (hn)(9), (4.3.5)

n>1

where

L3 (h)(¢) =ha(9) U Hi(¢, p)dp — Q —/ (0, 0)hn(p)de, ¢ € (0,7).
0 0
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Proof. With the help of Lemma C.0.1, we can simplify more the expression of the linearized op-
erator given in Proposition 4.3.1. We shall first give another representation of the first integral

of (4.3.1),
sin(p)ro(p) cos(n) dnd
/ / NGl ¢>>+ro T (cos(9) — cos())2 — 2r0(@)ro(@) cos()

sin(¢)ro(p cos(n)

dndep.
471' V/27r0(0)ro( \/ 2(¢)+r2 (<p)+(cos $)—cos())2 — cos(n) ney

2ro(@)ro(p)

From Lemma C.0.1 we infer

3 .
2

" Fl < d 2 )
1\2 3(8)+72 () +(cos(¢)—cos(i))?
/ cost) d P (2), 611 B—
72 (¢)+r2 () +(cos(p)—cos(p))? 21 5 2 B 5
0 \/ 0 @0 (@) — cos(n) (1 + TO(¢)+TO(§=)()+(<;(5§;)S((?) cos(¢)) )
Thus we deduce

ﬂsin r2 T 7
£1(8) =ro(6); [ R (M) e = @) )

Remark that the validity of Lemma C.0.1 is guaranteed since the inequality

2 _ 4ro(@)ro() <1
1 4 Ta(@)+ri ()t (cos(¢) —cos(p))? (ro(¢) +10())? + (cos(¢) — cos(p))? ’
2ro(é)ro(¥)

is satisfied provided that ¢ # ¢ which leads to a negligible set. For the last integral in (4.3.1),
we apply once again Lemma C.0.1,

2T
/ cos(nn) d
L Vr6(0) +18(0) + (cos() — cos())? — 2ro()ro(e) cos(n)

22 (D2 im0 () . (Aro(d)ro(e)
o (2n)! RM%(@@F”( (¢, ) >

It follows that

sin() ()70 () cos(nn) o
/ / NGO T8+ (s8] = o7 = 2] st i

_u r0(¢>)7“8+1(¢)8m(90) P <4ro<¢)ro<s0>
(2n)! R"™2(¢,¢) "\ R(O9)

) hn () dep

:TO(¢)Hn(¢7 @)7

which gives the announced result. O
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4.3.3 Qualitative properties of some auxiliary functions

In the following lemma, we shall study some specific properties of the sequence of functions
{H,}, introduced in (4.3.3). We shall study the monotonicity of the sequence n — H,(¢, ¢)
which will be crucial later in the study of the monotonicity of the eigenvalues associated to the
operators family {£,,,n > 1}. We will also study the decay rate of this sequence for large n.

Lemma 4.3.4. Forany ¢ # ¢ € (0,7), the sequence n € N* — H,,(¢, @) is strictly decreasing.
Moreover, if we assume that rq satisfies (H2), then, for any 0 < o < 8 < 1 there exists a constant
C > 0 such that

|Hn(9,9)] < Cn_aww —o|™F, ¥n>1,¢#pe€(0,m). (4.3.6)
75 (¢)

Proof. By virtue of (4.3.3) we may write

[N

221172 (i 4 %) sin(p)ro(p)

xm’%Fn T),
(2n)'7‘( 4n+%ro(d))% ( )

Hy(p,0) =

where z := % belongs to [0, 1) provided that ¢ # ¢. Now using the integral representa-

tion of hypergeometric functions (C.0.2) we obtain

2+ ) sin@ri (0) @0y [ et b gy
Hy(,0) = on)in 4"+%r§(¢) = (n+%)x 0 21— )" "2 (1 — ta) dt

22071 (04 ) sin(e)rd (9)  (2n)!

= (2n)!7 4n+%7“0% (@) 2 (n+ %),Hn(l')

:ism(@)ro(%@)%%n(aj)’ (4.3.7)

with the notation )
Ho(z) = a;"+%/ =5 (1 — (1 — )bt
0

Therefore the announced result amounts to checking that n — #,,(z) is strictly decreasing for
any = € (0,1). This follows from the fact that n — 2" s strictly decreasing combined with

the identity
(t(l — t)) .
1—tx
t(1-t)

which shows the strict decreasing of this sequence since 0 < 5—* < 1, forany ¢,z € (0,1).

It follows that for any ¢ # ¢, the sequence n — H, (¢, ¢) is strictly decreasing.

It remains to prove the decay estimate of H,, for large n. It is an immediate consequence of
the following more precise estimate: for any a € [0, 1], we get

=

1 1
/ "3 (1— )" 3 (1 — ta) "3 dt = / (1 —t)2 (1~ tx)”
0 0

a(2)] < Vb 20 DL

_ 43.8
na(d— |z #.3.8)
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forn > 1 and |z| < 1. To see the connection with (4.3.6) recall first from (4.3.7) that

sin()ro(p)?
Hy(¢,9)| S ————=—
|Hy (¢, )] (@)

Since 0 < x < 1 then we obtain from (4.3.8) that forany 1 > 3 > a >0

[Hn ()]

[S][9N

n(l — )|t
o) 5 R S - )

By the definition of = one has

1 —
1—2x

R(¢, ¢)
(ro(¢) — ro())? + (cos(¢) + cos())?’
which, combines with (4.2.18), implies

1
Ho(z)] S— .
R P

That is the announced inequality. Let us now turn to the proof of (4.3.8). We write

L (1—t"z dt Lol dt
Ho(z gﬂﬂ*i/ =3 S\@z"+2/t"_2
M (2)] 2| i PR T 2| i el

where we have used that

1 —tz| >1—t]z| >1—t1,
forany t € [0,1] and |z| < 1. Observe that we get easily the identity

1 1 dt |Z|k
"= =Yy —_—
/o T =

(4.3.9)
1 ’
k>0 n -+ 2 + k

which implies

and

By using interpolation, we obtain

/1 a1l dt 1 |In(1 — |z]|*—
t 2 <—
0 1—tlz] = no [z[' 71— [2))*
which gives us

|Hn(2)] < \[2|Z‘n+% |In(1— |z~ 1

2t (1 = |2 n*
forn € N*and |z| < 1.

O
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4.4 Spectral study

In this section, we aim to investigate some fundamental spectral properties of the linearized
operator 9;F (£, 0) in order to apply the Crandall-Rabinowitz theorem. For this goal one must
check that the kernel and the co-image of the linearized operator are one dimensional vector
spaces. Noting that the study of the kernel agrees with the eigenvalue problem of a Hilbert—
Schmidt operator, we achieve that the dimension is one. Moreover, we will study the Fredholm
structure of the linearized operator, which will imply that the codimension of the image is one.
At the end of the section, we characterize also the transversal condition.

4.4.1 Symmetrization of the linearized operator

The main strategy to explore some spectral properties of the linearized operator at each fre-
quency level n is to construct a suitable Hilbert space, basically an L? space with respect to a
special Borel measure, on which it acts as a self-adjoint compact operator. Later we investigate
the eigenspace associated with the largest eigenvalue and prove in particular that this space is
one—dimensional.

Let us explain how to symmetrize the operator. Recall from (4.3.5) that for any smooth

function h(¢, 0) = Z hn () cos(nf), we may write the operator £,, under the form

P
200 =) {16) - [ Klooloiuato) | sell @i
with Ha( )
a6 9) = ot (a2
(@)= [ Hio)do -9 (@43)
and the signed measure
dpa(p) = sin(p)rg()va(p)de. (4.4.4)
Define the quantity
W=t /0 " Hy (6, 0)doo. (4.4.5)

We shall discuss in Proposition 4.4.1 below the existence of ~ which allows to guarantee the
positivity of the measure djuq provided that the parameter €2 is restricted to lie in the interval
(—o0, k). We shall also study the regularity of the function v which is delicate and more
involved. In particular, we prove that, under reasonable assumptions on the profile ry, this
function is at least in the Holder space ¢ for any « € (0, 1).

Notice that the kernel K, is symmetric. Indeed, according to (4.3.3) we get the formula

Kn(¢a SO) =

20 () T TN e) (Are@)re(y)
n _F, , (4.4.6)
@)t vo(9)vale) [R(s, )" ( R(9,¢) )

which gives the announced property in view of the symmetry of R, thatis, R(¢, p) = R(p, ¢).
We shall explore in Section 4.4.3 more spectral properties of the symmetric operator associ-
ated to the kernel K,,.
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4.4.2 Regularity of v

This section is devoted to study the regularity of the function v involved in (4.4.1), which turns
to be a very delicate problem. That is crucial for having a one dimensional kernel of £} in the
weight space L? and also later for the study of the regularity of the elements of such kernel in
a more regular space. Indeed, for lower regularities than Lipschitz class, such regularity can be
implemented in a standard way using some boundary behavior of the hypergeometric func-
tions. However for higher regularity of type ', the problem turns out to be more delicate
due to some logarithmic singularity induced by H;. To get rid of this singularity we use some
specific cancellation coming from the structure of the kernel. We shall also develop the local
structure of v near its minimum which appears to be crucial later especially in Proposition
44.3.
The main result of this section reads as follows.

Proposition 4.4.1. Let 7o be a profile satisfying (H1) and (H2). Then the following properties hold
true.

1. The function ¢ € [0, 7] — vqo(¢) belongs to €7 ([0, x]), for all B € [0, 1).
2. We have r > 0 and for any Q € (—oo, k) we get

Vo € 0,7, wva(p) >kr—Q>0.

3. The function vq belongs to €1%([0, 7)), for any a € (0,1), with

v5(0) = v (7)) = 0.

4. Let Q € (—o0, k| and assume that vq reaches its minimum at a point ¢ € [0, 7] then there exists
C > 0 independent of ) such that,

Vo € [0,7], 0<wa(¢)—ra(d) < Clo— o+
Moreover, for Q2 = & this result becomes

Vo € [0,7], 0< 1(9) < Clo— ol

Proof. (1) To start, notice first that according to (4.3.3)

_ 1 sin(p)rg(e) 4dro(@)ro() -
CArw [R(qb,g@)}g E ( R(¢, ) >, ve# s )

Hl(¢7 ()0)

where ) 2( )
. isin ©)rle)

Therefore we may write

Vo e (0,m), va(é)= /O " (6,0) (b )dp — .
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Using the boundary behavior of hypergeometric functions stated in Proposition C.0.2 we de-
duce that

dro(@)ro(e) 0 dro(¢)ro(p)
1§F1< R(6,9) )Smm ( R(6,9) )
) (COS¢—00890)2>
©))? + (cosp —cosp)? )

coon(i2

From the assumption (H2) on r, we can write, using the mean value theorem

(
(

(r0(¢) +10(1))* + (cos ¢ — cos )” < C(sing +sinp)” + (¢ — p)*.

In view of (4.2.18) we get for all ¢ # ¢ € [0, 7],

(ro(@) + 70())? + (cos ¢ — cos @)? < C(sin¢ + sin p)?
(ro(¢) — 10())? + (cos ¢ — cos p)? — (6 — )2

Consequently, we get

1< +C. (4.4.8)

1< #(é,9) <C+Cln (W) . (4.4.9)

On the other hand, it is obvious using the assumption (H2) on ry that

0< sin(gp)r%(d) < sin ¢ <C. Ve, b€ (0,7).
[R(g,0)]2 ~ T0(?)

It follows that

sup |va(@)| <C +C sup /7T In (Sln((ﬁ)—'—sm(sov dp < C,

6 (0,m) pe(0,m) /0 ¢ — ¢l
which ensures that v is bounded. Now let us check the Holder continuity. First that
9 R(0, ) = 2r(8)(r0() + r0(10)) + 2in p(cos p — cos @), (4.4.10)
which implies that

105 R(¢, 0)| < CR2 (6, 0).
It follows that

_3 _ -
0eR72(6,0)| SR™*(,0) S 75 (9):
Differentiating .1 with respect to ¢ yields

4m By 1 (6, 9) = Dp(R™2)(0, ) sin 3 ().

Hence using (H2) we deduce that

sin @ 1
sup |0pH1(h, )| < C < (4.4.11)
¢e(0,7r)| b 219, r3(p) ~ sing

From an interpolation argument using the boundedness of .#] we find, according to the mean
value theorem,

|1 (h1,0) — (b2, )| =[H1 (1, 0) — Ha(ba, 0)|' P10 (b1, 0) — Hi(D2, 0)|°
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<(2||Allp) 7| Al 6 — 6ol

§|¢1 B ¢2|IB

— (4.4.12)
sin” ¢

Next we shall proceed in a similar way to the estimate #5. Using Leibniz rule implies that

UK. 5) - ODRG5) gy (Ble))

84,%/2(425, @) = 47"0(90) RQ(d’a 90) ! R(¢7 ()0)

We know that 5
Vr e (—1,1), F{(z)= 1F(5/2,5/2;4;x).

Hence by virtue of the boundary behavior stated in Proposition C.0.2 we get
vz €[0,1), |Fi(2)] <1 -a)7"
It follows that, using (4.2.18),

4ro(¢)ro(so)> ‘ < (r0(9) +70(9))* + (cos ¢ —cosp)? _ R(¢, )
) ~(

R(¢, ¢ ro(¢) — r0(¢))2 + (cos ¢ — cos )2 ~ |¢ — g2
(4.4.13)

Vo £ o € (0,7) \F{(

By explicit calculation using (4.4.10) we get
ro(8)R(6,0) = 10(#)DpR($, ) =15(8) (1 () = 5(@) + (cos 6 — cos 9)?)
+ 2ro(¢@) sin ¢(cos ¢ — cos p).
Then using the mean value theorem we get
r0(@)R (¢, ) — 10($)0s R(, ©)| Sl¢ — | (r0() + 10(¢) + [ cos ¢ — cos @)
+ 70(¢) sin ¢| cos ¢ — cos ¢|
<16~ ¢lR2 (6, 0).

Putting together the preceding estimates we find

105 55(, )| Sro(9)]d — IR (¢, )

() -

Then using again the mean value theorem, we get ¢ € (0, 7) such that

a1, 0) — Ha(d2,0)| S |61 — d2llo — o .

Combining this estimate with (4.4.9) and using an interpolation argument we get for € > 0,
[H2(1, ) = H(92,9)] Slén = 62l — 0|7

. . . . 1-8
x <C’ +n (Sm o1+ Sm@) +1n (Sm d2+ Sm@)) (4.4.14)
o1 — | |p2 — ¢

<1 — ool (€ + n(sing) 2]} (16— o[ 7=).
Putting together (4.4.12) and (4.4.14) we deduce that
[(1262) (d1, ) — (1) (P2, )| <H1 (D1, 9)|Ha (b1, ) — Ha(da, 0)|
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+ Ji/?(d)% Qp)|<%/1(¢)la ‘70) - Ji/l(d)Qa 90)|
Slér — ¢’ (C + | In(sin @)Dl_ﬁ
xmasx (|6 — ¢l 7%, (sin ) 7).

Since 8 € (0, 1), then if € is small enough we obtain

™
sup / | Insin || — | P ~=dy < oco.
¢€(0,m) /0

Consequently we get

o (1) — va(d2)| < Clér — ¢al”,
which implies that v € €4([0, 7).

(2) The function ¢ — Q + vo(¢) is continuous over the compact set [0, 7| then it reaches its
minimum at some point ¢y € [0, 7|. Thus from the definition of « in (4.4.5) we deduce that

k= inf / H1 (¢, (P)dﬁp = / H1(¢05 @)dg@ > 07
#€(0,) Jo 0

which implies that

Voe0,m], vald) z/oﬂﬂlwo,w)dw S

Hence we infer that for any €2 € (—o0, k)

Voelo,n], valp)>r—Q>0.

(3) The proof is long and technical and for the clarity of the presentation it will be divided into
two steps. In the first one we prove that vq is ¢! in the full closed interval [0, 7r]. This is mainly
based on two principal ingredients. The first one is an important algebraic cancellation in the
integrals allowing to get rid of the logarithmic singularity coming from the boundary and the
second one is the boundary behavior of the hypergeometric functions allowing to deal with
the diagonal singularity lying inside the domain of integration. Notice that in order to apply
Lebesgue theorem and recover the continuity of the derivative up to the boundary we use a
rescaling argument. This rescaling argument shows in addition a surprising effect concerning
the derivative at the boundary points v, (0) and v, (): they are independent of the global struc-
ture of the profile ry and they do depend only on the derivative r((0). This propriety allows to
compute v(,(0) using the special geometry of the sphere where this derivative is vanishing. As
to the second step it is devoted to the proof of vf, € ¥(0, ) which is involved and requires
more refined analysis.

e Step 1: v € €1(]0, 7]). The first step is to check that vq is € on [0, 7]. Set

_ dro(@)ro(p)

o(¢, ) : Riog)

then we can check that

OpH1 (¢, p) =I1(0, ) (—ZR_l(aﬁ, @) R(), ©)F1(0(9, ) + Fi(0(¢, ©))dp0(0, Q)) ,
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which implies after simple manipulations that

304R 3 304R
OsHy =21 (—2% +700p = 5%(5 () = 1) + (Fi(p) — 3/4) [0sp + @ap])

— A (F{(p) — 3/4)9,p.
In addition using the identity

1 (F1(p) — 3/4)0pp =10, [F(p) — 3/4p — 1]
=0, (H1[F(p) —3/4p — 1]) — (0,541) [F(p) — 3/4p — 1],

we find
OpHy = 0 + 51 (Fi(0) — 1) + s (Fi(0) — 3/4) — 0, (1 [F(p) — 3/4p —1]),
with
304,R 3 3
ny = (—22 + 48¢P> - Zpaw%/la (4.4.15)
30sR
Ml = — i%% + agw%/l;

sy =K1 (9pp + Opp) -

Notice that F1(0) = 1, F{(0) = 3. Assuming that the following functions are well-defined and
using the boundary conditions then we can write

() = [ (0(6.)+ (60.9) [Fi(etér9) = 1] + 52009 [File(o0) — 3/4] ) g
=C1(¢) + C2(9) + C3(9), (4.4.16)
with

() = /0 "ol o)dp, Ga(d) = /0 " (6.0) [File(d, ) — 1]di

and

() = /0 " (6, ) [Fllel ) — 3/4]dg.

Direct computations show that

dpp(9,©) ZW _ W

According to (4.4.10) and using some cancellation, it implies that

(R(6,0) = 2r0(8) (rol) + o(9)) ) sin g(cos i — cos 9).

(¢, ) = — 3ro(6)

ro(¢)#1(9; ¢) <1+2To(¢)(ro(¢)+ro(@))>

R(¢, ) R(¢,¢)
#6702 () ro0) o) cos 6 — cos )
H(d,9) . cos o) — ro(@)ro(p)
+3 R(6,9) sm(qb)(cosqS go) 30,1 R(o0) (4.4.17)

208



CHAPTER 4. TIME PERIODIC SOLUTIONS FOR 3D QUASI-GEOSTROPHIC MODEL

We point out that this simplification is crucial and allows to get rid of the logarithmic singular-
ity.
Now we shall start with the regularity of the function

e (0,m) /0 (b, 0)de,

and prove first that it is continuous in [0, 7]. It is obvious from (4.4.17) that s¢ is " over any
compact set contained in (0, 7) x [0, 7] and therefore (; is €’ over any compact set contained
in (0, 7). Thus it remains to check that this function is continuous at the points 0 and 7. The
proofs for both cases are quite similar and we shall only check the continuity at the origin. For
this purpose it is enough to check that ; admits a limit at zero. Before that let us check that ¢;
is bounded in (0, 7). From the definition of R stated in (4.3.2) and using elementary inequalities
it is easy to verify the following estimates: for any (¢, ¢) € (0, 7)?

r0(6)(ro(6) +70()) _,
R(¢, ) =
70(P)10(p) <1

R(¢,p) ~2’
ro(¢)ro(p)| cos ¢ — cos | <R(, ).

In addition, the assumption (H2) implies that

sup  H1(o, p) < oco.
¢,0€(0,m)

Thus we find according to (4.4.11) and (H2)

2 sin(¢) ro(@)ro(p) ~ sin(¢)
V(¢,¢) € (0,7)7, |50(¢, ©) SR(cb, S |00 71(, )] R(6,0) S R(6,0) (4.4.18)

Hence we deduce that

™ sin(¢) /3 sin ¢
dp S de.
0 (

R(¢,0) " sin ¢ + sin ¢)?

Making the change of variables sin ¢ = x we get

Vo € (0,7), |G(P)] < ;

MIE]

/ sin ¢ g . ¢/1 1 dx
— " __dp =sin
o (sing + sinp)? v o (sing+x)?/1— 22

1

2 1
< gj —  d i < 1.
Nsmgb/g (S o+ )2 T +sing S

Thus

sup |¢1(¢)] < 0. (4.4.19)
»€(0,7)

Let us now prove that (; admits a limit at the origin and compute its value. For this goal, take
0 < § << 1 small enough and write

X

)
M@—AMW@W+AmW@W~
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The assumption (H2) combined with standard trigonometric formula allow to get the estimate
R(¢, @) =(sin ¢ + sin p)? + (cos ¢ — cos )% > 1 — cos(¢ + ). (4.4.20)
From this we infer that
V¢ el0,7/2,Vp € (6,7), R(p,¢) 21— cosd. (4.4.21)
Thus we get from (4.4.18)

/5 #0(9, p)dp 5/5 mdﬂﬂﬁ PO

This implies that for given small parameter ¢ one has

li do = 0.
¢li%/5 »0(9, p)dep

Therefore

5
lim sup (1 (¢) = lim sup/ 20(¢, )dep-
¢—0 ¢—0 Jo

Making the change of variables ¢ = ¢f we get

5 S
/ (b, )dip = / ? pseol, 00) db.
0 0

From (4.4.18) and (H2) one may write

o]
(¢4 )2’

which yields after simplification to the uniform bound on ¢,

V(g,¢) € (0,6)%, [s0(d.9)| S

Vo € (0,6 0) S ——5-
6[ ’ /¢]7 ¢%0(¢7¢ )N(1+0)2

This gives a domination which is integrable over (0, +00). In order to apply classical dominated

Lebesgue theorem, it remains to check the convergence almost everywhere in 6 as ¢ goes to

zero. This can be done through the first-order Taylor expansion around zero. First one has the

expansion

ro(¢8) = cod + p0e(98);  R(p, ¢0) = c2d? (1 + 6 + be(¢9))”,
with ¢g = r{(0) and lin% €(z) = 0. Thus, from the definitions (4.3.2) and (4.4.7) it is straightfor-
T—r

ward that

. e’ . oro(9) ot
i i A0 00 = G I RG00) W1 IP (1422

Hence

A B ro(0) =55 90)

Similarly we get

R6. 00 = . (4.4.23)

¢ro(¢)Hi(o, 90) (1 L 5T0(80)(ro(¢) + r0(¢9))> B 601(91353 9_;639)

4 ;IL% m sin ¢ ro(¢)r0(90) ( cos ¢ — cos(¢h)) = 0,
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and

. (), 90)
A i 5 00) R(¢, ¢0)

Standard computations yield

sin(¢) (cos ¢ — cos(¢)) =

R0, 41(6, 9) = — 3R (6.0) sin(0) rd(2) (16 () (ro(9) + ro()) + sin() (cos ¢ — cos p) )

2 : /
4 RV () + 2sin(P)roli) rh() @i
R2(¢, )
Thus
3 302 02
. 1 _ a1
47rq1§1g%)¢8¢,%/1(¢, #0) =cq ( 3(1 o) + §l +0)3> 3¢, AT o0 (4.4.25)
Therefore Jro(60) 5
ro(¢)ro(df - 0
4 1 —_— = : 442
m lim PO, K1 (b, ¢9) R0, 60) 3¢, A5 0y ( 6)
Plugging (4.4.23), (4.4.24) and (4.4.26) into (4.4.17)
. 3¢y g3
A lim 6500(9,6) =~ (g (2 + 39).
Using Lebesgue dominated theorem we deduce that
1) +oo
E 20° + 30"
47 1i = 3¢t =TT 6.
7T¢1L%/0 d0(0, 90)do 3¢, ,[ 150y do
Computing the integrals we finally get
. T
4 (}gr(l) G(o) = —1—000 . (4.4.27)

Let us now move to the regularity of the function ¢, defined in (4.4.16) through
be0.m). @@= [ al.o)F0.0) - 1)d,

where ¢ is defined in(4.4.15). From direct computations using |03 R| < R%, the boundedness
of %1, the assumption (H2) and (4.4.24) one can check that

0, R(9, )| 71 (0, )
R(¢, )

SRT2(e, 0).

21(,0)| S

+ [0,71(¢, ©)]

Using Proposition C.0.2 we get

[F1(e(9; #)) — 1] Se(@,¢) (1 + [In(1 — o(¢, ¢))])

ro()ro(p) n (ro(¢) + 10())? + (cos(¢) — cos(p))?
~"R(6,¢) (1“ (<m< )~ 70(9))% + (cos(s >—cos<@>>2)>- (44.28)
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Thus
. - <rd¢%dw)< | (&M¢)+rd¢»2+(aBW)—C%@ﬂ9>)'
Pl AR o) S e W 00— ro(@) + (cos(6) — con(e))?
Hence using the arc-chord property (4.2.18) we find
% F - <’“@W“w”<c 1 (I“¢@)>). 4.4.29
521(¢, @) [F1(0(9, ) — 1]| S R%(fb?@) +In 6 — o ( )
for some constant C' > 0. In addition, using (4.4.20) we get
¢€i[£1f£ R(¢, ) >0, (4.4.30)
pel ol

which leads to

Vo€ 0,1/2), g € [r/2), (b, o) [File(d,0) — 1] S 1+ |Inlé — ol
This implies that
sup / 2 (6, ©)[Fi (0 ¢)) — Uldo S 1+ sup / In]é— plldp < 0o, (4431)
pel0,m/2] /% ¢€(0,m/2] JO

Now in the region ¢, ¢ € [0, 7/2], we use the estimate (H2) leading to

(6+¢)? SR, 0) S (94 ¢)>

Plugging this into (4.4.29) we find

™

: P g <¢+w>

Making the change of variables ¢ = ¢f we obtain

s

P gy ¢+¢> ®0 1+0
1 dp = 1 d
[<¢+¢>3'“<¢>—¢| 4 [ <1+e>3“(|1—9|)@

AR 140
< 1 d
_/0 (1+0>3n(\1—9|> 7

which implies that

sup / * Ja1(6,0)[Fi (06, ) — 1]]dy < oo,
oel0,7/2] Jo

Therefore we obtain by virtue of (4.4.31)

sup / a1 (6, 9) [ Fi (0, ) — Ldep < 0.
¢€l0,7/2] J 0

By symmetry we get similar estimate for ¢ € [5, 7] and hence

sup [C2(0)] < o0. (4.4.32)
$€(0,m)
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Let us now calculate the limit when ¢ goes to 0 of (2 at zero. We shall proceed in a similar way
to (;. Let 0 < § < 1 enough small, then using (4.4.29) combined with (4.4.21) we obtain

timy [ (6.9 (p(6.2) = 11dp = 0

Hence

1)
lim sup Co(6) = lim sup /0 41(6,9) (Fi(p(, ) — 1)dy

$—0 #—0

Now we make the change of variables ¢ = ¢f and then

i sup () = lim s / b1 (6, 60) (Fi(p(6, 66)) — 1)dB

¢—0
According to (4.4.15) one has
3 60,R(, ¢9)
2 R(¢,¢0)
From the differentiating of the expression of R stated in (4.3.2) we get
¢y R(¢,60) _,¢ro(9)(ro(¢) +1o(¢0)) + ¢sin d(cos(¢f) — cos§)
R(¢, ¢0) (ro(¢) 4 70(¢0))? + (cos ¢ — cos(¢0))?
Taking Taylor expansion at the first order we deduce the pointwise convergence,
Lo GOR(0,00) 2
11m = .
»—0  R(¢p,¢0) 1+6
Combined with (4.4.22) it implies that
390y R(¢, $0)
T2 R6.00)

Plugging (4.4.25) and the preceding estimates into the expression of s given by (4.4.15) we
find

¢ (¢, 90) = — H1(9, 90) + ¢0,71(9, ¢0).

3¢y 0%

H(6.00) = ~ g

' B 366193 . 62
L1071 -0)
% 11y
From the result
i TO(@r0(00) 6
o=0 R(¢,00)  (1+6)*
we deduce the point-wise convergence
40
lm Fi(p(0,60) = Fy (2 )
Consequently,
_160%2(1—0) 460
Am lim 6301 (¢, ¢0) | F1(p(6, 60)) — } 0 Tyt <F1 <(1+9)2> - 1)‘
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Therefore,

+o0
. . 62(1 — 6) 46

Next, we shall implement similar study for (3 defined in (4.4.16). Straightforward computa-
tions yield

9p0(9, ¢) + 0p0(h, ) = 01(0, %) + 02(9, ), (4.4.34)
with ) )
01(6.9) = 470G =0 6) () — o), (4:435)
and
2(0) — 72
02(6.9) =4 5 =T ) (15 (0) i)
+ SW(cosgb — cos ) (sin¢ — sin )
g )2
+ 4l (i) + ra(rhe)). (4.4.36)
Since 7, is Lipschitz then using the mean value theorem we get
— )2
V6,0 € (0,7), lor(or0) + leator ) S 5 4437)
R2(¢, ¢)

From Proposition C.0.2 combined with (4.2.18) we get

IF(6(6,0) — 3/41 =3 |F(5/2,5/2:4: (6 9)) ~ 1
< 0o(¢, p) R(9, ¢)
ST0(@) — 7092 + (con — cos o

gw. (4.4.38)

In addition

52(, 0))| =|21(0, p)[|01(¢: ) + 02(¢, )]
sinpri(p) (¢ —¢)?
~ Ri(¢,¢) R2(¢,9)
sinp(p —¢)*
~ R¥d, )

Consequently, we obtain in view of (H2)

/ sin(@)ro(@)ro(¢) _  sing

As before, we can assume without any loss of generality that ¢ € [0, /2], then by (H2)

/”|%2(¢,¢)[F;<Q<¢,¢>)_3/4”@5 /2( SO g,
0 0

sin ¢ + sin p)?
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By the change of variables ¢ = ¢f we get

R 1 too
— T dp=| " ———dh < ——_df < .
/0 6t+o) " /0 (1+6) _/0 (1+6)* =

Therefore .
sup [ a0, 0)[F(0(6,0)) — 3/4ldo < o
¢€l0,m/2] J O
Consequently
sup |(3(¢)] < o0. (4.4.40)
#€[0,m]

Now, we shall calculate the limit of (3 at the origin. Let 0 < § < 1 enough small, then using
(4.4.39) combined with (4.4.21) and (H2) we obtain

tim [ a(6.0)[Fi(0(6.0) ~ 3/4]ldp = .

It follows that

)
lim sup (3(#) = limsup / o2, ©)[FL(e(d, ) — 3/4] dep.
»—0 »—0 0

Making the change of variables ¢ = ¢0 yields
5
fim sup a(¢) = limsup | 92ea(6, 06) [ (p(0,06)) — 3/4]do.
»—0 ¢—0 0

Using Taylor expansion at the order one in (4.4.35) and (4.4.36) we can check that

tim b1 (6. 00) = 10 1 i (6,00 = 0
6—0 o1L® - (1+6)3 40 0289 e

Hence we get in view of the definition of s and (4.4.22) the point-wise limit

A lim ¢5(¢, ¢0) =4 lim ¢ (¢ ¢>9)( (6, 90) + 02(¢) ¢@)) _ g1 POV
60 2\, - S0 (¥, 01\ 9, 029, = 2C (1 T (9)6

It follows that

dm lim 6223(6,90) (Fi (p(0. 00) — 3/4) = 4calm (F{ (uf‘f@?) - 3/4) -

Applying Lebesgue theorem yields

+oo
. . 030 1) ( _,/ 46

0
Putting together (4.4.16), (4.4.27), (4.4.33) and (4.4.41) we find

+oo
T [T (a0
477(})13%1/9(@ =—1g% + 4c, A 1109 Fl((l n 9)2) 3/4 | do
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430! / - PO (£ (0) ~1) a0 = i

Notice that the real number 7 is well-defined since all the integrals converge. This shows the
existence of the derivative of vq at the origin. It is important to emphasize that number 7 is
independent of the profile 7y and we claim that the number 7 is zero. It is slightly difficult to
check this result directly from the integral representation of 7, however we shall check it in a
different way by commuting its value for the unit ball

{(rew,z), rP+22<1,0¢ R}

whose boundary can be parametrized by (¢,0) > (ro(¢)e?, cos ¢) with ro(¢) = sin . Now
according to the identity (4.3.4) one has

/ Hy(, 9)dp = 1) B0 (re™, co8(6)) |r—ro(s) -

(¢

However it is known [96] that the stream function v is radial and quadratic inside the domain
taking the form

0<r<sing, po(re?, cos(¢)= (7’ + cos gb)

Consequently, with this special geometry the function v is constant and therefore
v (0) = vo(r) = 0.

e Step 2: v, € €(0, 7). We shall prove that vy, is €®(0, w) and for this purpose we start with
the first term in (4.4.16), i.e., (1. According to (4.4.17) it can be split into several terms and to fix
the ideas let us describe how to proceed with the first term given by

oo o) | Dy oo [,

and check that it belongs to (0, 7). The remaining terms of (; can be treated in a similar way
and to alleviate the discussion we leave them to the reader.

From the assumptions (H) on o we have 7, ¢ — Ts‘l)fz)) € €*(0,m) , then using classical law
products it suffices to verify that

oo / Sin(@)sn@B) ;¢ g0 ).
0 RE((b’@)

This function is locally ¢! in (0, 7) and so the problem reduces to check the regularity close to
the boundary {0, 7}. By symmetry it suffices to check the regularity near the origin. Decompose
the integral as follows

/ " sin(o)sin(e)rd(e) , / * sin(@)sin(e)ri(e) , / " sin(g) sin(e)rd(e) ,
b RIG.p) o Ri) s Rio)

Since we are considering ¢ € (0, 7/2), it is easy to check that the last integral term defines a ¢
function in [0, 7] and therefore the problem amounts to checking that the function

CI,I:W/ersimmw@’
0 Rz (¢, )
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is € close to zero. Making the change of variables ¢ = ¢ we get

35 .9 . 9 26 sm(¢9) 0(¢9)
o) / P sin(o)rF(00) ), _ / (m2)° "
0 0 ((

R2 (¢; ¢9) ro(¢)+m(¢0)) + (cos(qS) cos(qb@)) )

5
2

Let us now define the following functions

= g Sln(¢9)ro(¢9)
R3 (g, ¢0)

% sin(sf) (r0(59)>2
Vs e (0,9, Taopls):= ’ ’ - df. (4.4.42)
b ((M)2+ <w)g)z

Vsep,m/2], Tig(s) :—/
0

and

S S

We will show that T’ 4 € €“[¢,n/2] and Ty 4 € €(0, ¢] uniformly in ¢ € (0, 5). Thus we get
in particular a constant C' > 0 such that forany 0 < ¢1 < ¢2 < 7,

T1,61 ($1) — Th0 (2)] < Clon — 2|7, (4.4.43)

and
T2, (61) — T, (62)] < Clb1 — 2. (4.4.44)

By combining (4.4.43) and (4.4.44), we are able to get

1C1,1(f1) = Cra(d2)| < |Thgy (01) — Tig, (D2)| 4 [To,p0 (1) — T2,¢,(d2)] < Clr — 2]

This ensures that (1,1 € €%(0,7/2).
It remains to show that T 4 € €“([¢, 7/2]) and T 4 € €*((0, ¢]) uniformly in ¢ € (0, 3).
We start with the term T} ;. Then straightforward computations imply

7w ¢*sin(¢m/2s)rg(¢m/2s)
25" R (¢, ¢m/2s)

1 »°
<Cs (14 )5

Vs € [p,m/2], |0sT1(s)| =
<,

for any ¢, s € (0, 7/2]. Notice that we have used in the last line the following inequalities which
follow from the assumptions (H2),

¢ S T0(¢) 5 ¢7 vd) € [0777/2}

and

0 < ’"0(;59) <0, Voel0,1/29). (4.4.45)

Hence T} 4 € Lip([¢, 7/2]), uniformly with respect to ¢ € (0, 7/2).
Let us move to the term 75 4. First, we write

sin(¢0) B 1
% - 9/0 cos(pO7)dr
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and taking the derivative with respect to ¢ we obtain

< 1
s (bmffe)) = —92/0 sin(pO7)T dT.

Hence,

o (7)<

By the mean value theorem we infer

sin(s10)  sin(s20)

‘ < |81 — 52/6?
S1 S92

Interpolating between (4.4.45), which is also true for ry = sin, and (4.4.46) we obtain

sin(s10)  sin(s20)

' < C’Sl — 82’06917049206 = C‘Sl — 82‘04914»04‘
S1 59

Using Taylor formula
1
r(of) = o6 | rj(roo)ar,
0

one finds that if 0 < ¢ < 7/2 then

()

As before, one gets that if 0 < 516, s260 < 7/2 hence

1”0(819) _ 1“0(829)

51 52

’ < C|81 - 82|a01+a.

(4.4.46)

(4.4.47)

(4.4.48)

(4.4.49)

Now, let us check that 75 4 is € (0, ¢] uniformly in ¢ € (0,7/2). Let s1,s2 € (0, ¢], then using

the estimates (4.4.47) and (4.4.45), we achieve for any s € (0, ¢],

s . . 2 s
26 <s1ngj10) _ s1n2220)) (ro(sse)) ) 35 glrag?
rd¢9 §C|81—82| (1+9)5
0 <(r0(5)-ijro(50))2 + (cos(s)—cos(st?))2> b

S S

IS

[N}

< Cls1 — s2|%,

for a € (0, 1). In the same way

% singse) 7“0(559) (r0(85119) . ro(ss229)) X % 91+a02
5d(9 §C|81—82| <1+9)5
ro(8)+ro(s0)\2 cos(s)—cos(sf 2
b ((o()-i-o( )) +( (s)—cos( ))2)2 0

S S

S C|81 — 82|a.

To analyze the difference of the denominator in 75 4 we first write that for any 0 < 50 <

s - (LB (o)) Py

S S
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and by differentiation using (4.4.46) and (4.4.48) we find that if 0 < 50 < 7 hence

8‘9((55]%_%(5,39))‘ <(1+6)4
This implies in view of the mean value theorem
V0 < 510,590 < g, )S?ng(sl,&@) - 83373(82,829)‘ S (1 460)"s1 — 5o
Moreover
V0 < 510,500 < g, ‘S?ng(sl,slﬁ) - SgRig(SQ,SQG)) S+ 9)75.

Then by interpolation we get

V0 < 516,890 <

< g, ‘S?R_g(sl, 510) — SgR_g(SQ, 329)‘ <1+ 9)a_5|51 — 59|%

Therefore we obtain

 sin(s0) (ro(s6)\?| 5 s 5 p s .
— . ‘SIR 2(s1,810) — s5R 2(82,826)‘ df < |s1 — s2 (1+6)*=db,
0 0

which converges since a € (0, 1).
Combining the preceding estimates one deduces that

V1,50 € (0,0],  [Top(s1) — Top(s2)| < Cls1 — 52|,
uniformly in ¢ € (0, 7/2). Hence, we conclude that ¢; ; is (0, 7/2), for any « € (0, 1).

Let us now move to the regularity of (» defined in (4.4.16) which takes the form

G0) =~ (2(6) + Gald), (o) = / 20 0) I @) (06, 9)) ~ ld,

L R3(6,9)
and

C2,2(9) 2—/ 0 (0, 0) (F1(p(0, ) — 1)dep.
0

We give the details for the first function which can be split into two parts as follows

() = [ m sin(@)r2 (D) [F (o6, ) — 1ldg

COR@) 1
i / o SO (0. 2) — 1

=:11(¢) + I2(9).
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As before by evoking the symmetry property or r we can restrict the study to ¢ € [0, 5]. The
second term is the easiest one and we claim that I, € W, Indeed,

13(6) = / 0% (W) sin(Q)r2 () F1 (0(6, ) — d

+[ RE(6.2) sin()rg () F1(p(@, ¢))9gp(9, ©)dep.

It can be transformed into

16) = / 2 (%) sin()rd(¢) (Filp(0. ) — 1) o

/ é SIH(@T%(@)F{ (p(@,9))(Fpp(@; @) + 0pp(9, p))dp

/ ; sm(@)?"%(@)%(ﬂ (p(@,¢) — 1)dp.

Integrating by parts yields

1(6) = / 2 (%) sin()r3(0)(Fi (p(0.9)) — 1) dg

! / 3;?@%90) sin()r5 () F1 (6, ) (06p(0, ) + Bpp(e, @) dp

= R2(¢,¢)

T (2RG) )
+/; ” (Rz(as, R 0(“0)> (Fitoto. ) —1)de
—l—%r (m /2)( (p (gb,7r/2))_1>

R2(¢, %)

Notice that the last term is bounded uniformly on ¢ € [0,7/2]. In fact, one has from the

definition of R in (4.3.2)
1 1

R.T) = ro(n)2)

Vo € 10,7/2],
Using (4.4.10) we get
Oy R(,7/2) = 2r((¢)(ro(¢) + ro(m/2)) — 2sin ¢ cos ¢.

Moreover, since rq is symmetric with respect to 7/2 then we get r{, (3) = 0, which implies that
O0pR(7/2,7/2) = 0 and by the mean value theorem,

Vo € (0, ) ’(8¢R (6,7/2) (g ‘(b—g‘.
Hence, combining (4.4.28) and (4.4.8) we find
we(03). [(e(03))-1se(03) (-m[t-r(3)])
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(-]

Consequently

we(g) I (e p) 2 GG e
)

which ensures that this quantity is bounded in the interval (0, ).
Next, let us check the boundedness of the integral terms of I),. Inequality (4.4.30) allows to

get
0:R(6,0)\| |0:R(6,0) (%Rw7) ﬁ
‘ 0 = ||+ 5 9 | — 5 sin(@)ro(p)” || < oo,
e ¢< Rio, >>' R(6.9)] Rt )

which implies

s

!Ié(fb)ISH/ ’Fl(p(cb,so))—l)dsw |F1(p(,9))(0pp(0, ) + Opp(d, )| dep.

jus
2

Therefore, (4.4.8) combined with (4.4.13) and (4.4.37) yield

Vo € [0,7/2], |I5()] §C+C[ In <M> do + C[ (R(qj’ @)2 (QZ,_ w)de <C.

¢ — ¢ ¢ = %)’ R2(¢, )

Let us move to I;. First, we do the change of variables ¢ = ¢f leading to

 G(0sR)(6,00) _
L(¢) = S0 T sin(¢0)rd (¢ b, 0)) — 1)db.
1(9) [ (oo, SO0 ) (Fa(e(9.00) —1)

We will check that Iy is (0, 7/2), for any a € (0, 1). Indeed, take ¢; < ¢ € (0, 5), then

1(é1) — 1(@2) = / A i) 3010) (i, u0) 1) 0
T 2 1, P1

2¢2

+/2¢2 ¢1(8¢R)(¢1,¢1 ) sin(¢10)r (¢19)( (p (¢1’¢19))_Fl(p(¢2,¢29))>d9
0

RZ(¢17¢1 )
2¢9
¢1(3¢R)(¢1,¢19) : 5 ¢2(3¢R)(¢2,¢29) g 9
+ sin(¢10)rg (@ @20)15 (P20
[ ( RS (6n, 10) (¢10)r5(p10) — R (60, 620) n(¢20)rj( 2))
% (Fi(p(@2,620)) — 1)do
2111,1 —i—ILQ —‘1-1173, (4.4.51)

where

— ¢1(8¢R)(¢1,¢19) “in
fa s / Ko SOOE0)(Fio(or, 010) = 1)
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We follow the ideas done for ;. In order to estimate I ;, define

oo [Fe@uRG0)
Giols) : [ oo ) 3(00) (Fa(p(9, 00)) — 1) db.

Then
Vs e bm/2), 0sGrols) = — QZQW n@‘f)Tg (gf){ ( <¢>, ¢>) 1}

) 2s
Applying the mean value theorem with
(05 R)(¢, ¢0) = 2r(8)(ro(¢) + 70(¢0)) + 2sin()(cos(¢0) — cos(g)),

we get
(s R) (9, 90)| < Co(1 4 0) + 6|1 — 6. (4.4.52)

Moreover, using as before (4.4.28) combined with the assumptions (H) we find

(4.4.53)

Fi(p(6,00) 1| £ 12 (1410 ‘”9 )

Putting together the preceding estimates allows to get

(1+ & 1-— 3 1+ &
BRACCES RIS STARENANNILE
s2

¢5(1_|_7r)5 831—1-2% _ T
et B8 (L))
(S+§) 2s

10sG1,6(s)| <

)

2s

1_
It follows that

Vs € (0,7/2), ¢21(10p$ 10sG1,6(5)] S1+ ‘ln <g - s)‘ :

Now using this estimate combined with the mean value theorem we get for 0 < ¢ < ¢ < 5

b2
L] < / 10,G1 g, (5)] ds
o1

’ ln(%—s)‘ds.

@
<Clp1 — 92| +/¢

Using Holder inequality yields for any o € (0, 1),

/j In (5 = s)|ds <lér — 6f” (/0 i (5~ 5)

Notice that the constant C,, blows up when « approaches 1. Thus
v¢15¢2 S (077]—/2)> ‘Il,l| §0a|¢1 _¢2|a'

Next, let us move to the estimate of 1 5. Using (4.4.13) we arrive at

R(o.00) _ (11 0)
2102 =1

1 -«
o d«9> < Caldr — g2

|Fi(p(¢, ¢0))] < C (4.4.54)

222



CHAPTER 4. TIME PERIODIC SOLUTIONS FOR 3D QUASI-GEOSTROPHIC MODEL

Set
dro(@)ro(d0)

R0, 6) = pl9,06) = =T,

then differentiating with respect to 6 we get

_ _ 8ro(@)ro(¢9) / :
0080, 6) = = = 0 ((ro(6) + ro(89))671(66) + (cos(6) — cos(66))gsin(49))
L 4ro(¢)¢ro(¢0)
R(¢, ¢0)
Using the assumption (H2) we may check that
C

where C depends only on ||| L. Now by rewriting

g (0)

BH0.0) = (M) + (eteemten®

g0(¢) ro(¢9)
6 ¢

{(W)Z + (W)Q}Q

T + 7o(0f sin(¢f
| LT 00 1 (cos(o) — con(oo) L.
and differentiating on ¢ we get the estimate
C
VOSQbQSﬂ'/Z, |0¢89%( )|< (1+9)7
where C' depends only on ||7g]|«2. Taylor formulae
%(9 %(1 / 89% 7-»
combined with Z(1, ¢) = 1 yields
A CH / 000 % (T, )dT
This implies in turn that
1+46
sup [0s%(0,¢) < C|ln| —— ||. (4.4.55)
¢€(0,55 2

Combining this estimate with (4.4.54) we deduce that

(1+06)?
o 06l 90 <€ 1

(1+9>‘
In .
2
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Following an interpolation argument combining the preceding estimate with (4.4.53) yields
forany o € [0,1] and for 0 < ¢1 < ¢p2 < g
(1 + 6) >
In{——
2

Plugging this estimate into the definition of I; 5 given in (4.4.51) implies

N h 03 (1+46)3! 1+0)\1[" 1+6
12| < Clo1 — ¢a / ( ( ) ln< 5 ) ( +1In ‘ > df.
0

1+60)> |1—62
This integral converges, close to 1 and at oo, provided that 0 < o < 1. We mention that to get
the integrability close to 1 we use the approximation

1+0\160-1
In{—— ) ~——
2 2
As to the estimate of the term I, 3 described in (4.4.51) we roughly implement similar ideas.
For that purpose, we introduce the function

(1 + 9)3(1—1
16

|Fi(p(¢1, 910)) — Fi(p(¢2, 920))| < Clo1 — ha|®

@ 1+46
1+1In

(8¢R) (s, 59)
R3 (s,s0)

% Op R)(s,56) sin(s0) /ro(s0)\2
- [ T () (File(o.00) —1)a0

s

VOSSO, Gogls) = / in(s0)73(s0) [ (p(6, 09)) — 1)d6
0

Then combining (4.4.47), (4.4.52) and (4.4.53), we deduce that

sin(s16)  sin(s26)
S1 S2 To (S

/7;5 |8¢R(8589)|
0 <(<>+<9>)2+(<>—<9>)2> *

oF |Fi(p(¢, ¢0)) — 1]do

S S

o0
146 1 146
< _ « 14+ap2
<C|s; 82|[ (1+9)59 91+9<1+1’ >d9

<C|s1 — s2|°,

provided that a € (0, 1). Implementing the same analysis for the remaining terms and using in
particular (4.4.49) as for (1, we find

V0 < 51,82 <9, [|Gagl(s1) — Gag(s2)] < Cls1— s2|%,

uniformly for ¢ € (0,7/2). Therefore from the definition (4.4.51) we obtain for any 0 < ¢; <
QSQ > 25

113 =|Ga,6,(d1) — Gag,(¢1)| < Clopr — 2|

It remains to estimate the term (3 defined by (4.4.16). It can be split as follows,

G5(0) == [ I (0upt6,6) + 00000, [Filot0, ) - 5 e
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s

® sin(p)rd
:4177/ M(a@o(@ ©) + 0pp(d, ¥)) [F{(p(qb, ©)) — ﬂ dg
0

R2(0, )
1 [ sinle)rb(e) , E
+47T/g R (6,0) (0pp(: ) + Opp(9, ©)) {Fl(p((ﬁ, ) 4} de
=13+ 14.

We will show that I3 belongs to (0, 5) and the same procedure works as well to check the
regularity for I, that we skip here. To estlmate Is we proceed as before through the use of the
change of variables ¢ = ¢0,

1 [ sin(e8)ro(06)”
I3(6) = - [ R S (2u0)(0.00) + 016,90 | (o0, 00) — | a0

Define the functions

Lo [ esin(en)r300) 3
Hig(s) / e (0u0)(6,60) + (0,0)(&, ¢e>)[ (06, 60)) }

2 SSIN(sv )ra(s
Hy ofs) 1= [ O] R (6,00)(1006)(6.00) + 0.0)(6.00)) [ Fl(p(6.00)) — 2 a0

l\.’)»—‘

Hyos) = / OO R . 50)((000)(5:09) + (25 50) Filoto,00) ~ 3 | as

% sin 3 1
Hyofs) = / ORI 0 R (0,00) (960 0,00) + (0,0)(6.00)) | (ot 50)) = 3 ab.
0 )

In order to check that I3 belongs to ¢"*(0, ), it suffices to prove that each function H; ; is in
%“(0, %) uniformly in ¢ € (0,7/2), for any i = 1,...,4. Let us start with [, 4 showing that its
derivative is bounded.

From straightforward calculus it is easy to check that forany 0 < ¢ <s < 7,

o ol
]y (5)] <5 ¢;< (2 T‘;g )
) 28

Hence, we obtain

4
1 0(6)| S5 g3 (0) (6. 6m/25) + 0pp) (6, 2)|
2s

|(©40) (6,67/25) + (Do) (&, 6 /25) |

F{ (p(¢, ¢7/25)) — Z" :

y 3
Fi (p(o,¢7/25)) — 4' :
Using (4.4.34)—(4.4.37)—(4.4.38) allows to get
Al Ut ) s

HI S <= 17
e S S T v gy -2

which is uniformly bounded on 0 < ¢ < s < 7. We shall skip the details for Hs 4 which can be
analyzed following the same lines of the term T3 4 introduced in (4.4.42).
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Let us now focus on the estimate of H3 4. Set

T(0,s) := R%(s, 39)((8¢p)(5, s0) + (0pp) (s, 39)),

then using (4.4.37), we deduce

1-6)>
|ywwﬂ§0&+0;. (4.4.56)
By ranging the expression of .7 as follows
r2(s0) r2(s)
F(0,5) =4 (T00) _ rols)
' R% (s,s0) 0 S S
33
r§(sf) r2(s)
s
4 SR% (s 59)82 i ) (r(l)(s) B r6(50)>
53’
r0(50) ro(s) . .
Pt sins sinsf
+8m(coss — cos sf) < P )
3
(cos s—cos 560)?
— 0
+4 R%SQ ; <r0(: )7“6(5) + rois)ré(w)) ,
g
and differentiating with respect to s we find
1-6)2
10,7, 5)| < C((1+e))' (4.4.57)

We will not give the full details for this estimate because the computations are long and tedious,
but to get a more precise idea how this works we shall just explain the estimate of the first term
in 0s.7 given by (the other terms are treated similarly)

as 7‘0(89);7‘0(8) ro(se):m(s) B
VO0<bs< g, Ti(0,s) = 4 ( 3 ) T6<8)7‘0(59) ro(s)
R?2 (s,s0) S
3
Define (30) (5)
s L ro(st) — rols )
V0<98<§, g(0,s) := —
Then, one has dpg(6, s) = r{(sf) and then
105009(6, s)| = |07 (s6)| < C8. (4.4.58)

Since g(1, s) = 0, we can write by Taylor formulae

0
9(0,5) = / Dug(r, )dr.
1

and hence

0
By9(0,5) = / 0,09 (, 5)dr.
1
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Using (4.4.58), we achieve
V0 <0s< g 10.9(6, )| < C|1 - 6]6.

Plugging this into the the definition of .77 and using the mean value theorem yield to the esti-
mate )

11 —0]0(146)[1 — 0] < C(1 —0)°

(14 6)3 - (1+90)

Now, interpolating between (4.4.56) and (4.4.57), we find that for any a € (0, 1)

|7 < C

@ (1 _ 0)2
|9(9,31) - 9(9, 82)| < C|81 - 82| 7(1 T 9)27(1. (4459)
Using (4.4.38) we get
vo<b< . |Fl(p(600) — 5| <o (4.4.60)
= 727 1[) ) 47 (179)2 e

Combining this estimate with (4.4.59) and (4.4.38), we conclude that for any 0 < 51,50 < ¢ <

IR

P03 (1-62 0
(1+0)* (1+6)2(1—0)

—+o00
|H3.4(s1) — H3 4(s2)| <Cls1 — 32“/0 Py SdIC|s1 — 52|, (4.4.61)

for any « € (0,1). Let us finish working with Hy4 4. Moreover, as a consequence of (C.0.13) and

(4.4.55) one has
In <1 '; 9) ‘ . (4462)

(14 6)4
1-0)"

<1 +0>
In
2

0. (Filpto.s0) = 3 ) | < CIF ol s0)01(p(s.50)] < €

Interpolating between (4.4.60) and (4.4.62) we achieve
a 61704
(1 _ 9)2(17(1)

(1+06)%
(1—0)t
)

|Fi(p(s1,510)) — Fi(p(s2,520))| <Cls1 — 52|

o (14 6)tF3e IEEAY
SC|81 — 82| W In ? (4:.4:.63)
Finally, using (4.4.35), (4.4.37), (4.4.56) and (4.4.63) we obtain for any 0 < s1,s2 < ¢
“+oo
63 (1—0)2(146)13 1+6\1[*
H —H < — 59]® In|{ ——
|Ha,¢(s1) — Hap(s2)] <Cls1 — 82| [ T 0T (102105 n( 5 > do

de

<1+0>
In | ——
2

the convergence of the integral is guaranteed provided that a € (0, 1). This achieves the proof
of vg € €12(0,7) for any « € (0, 1).

+oo
§C|81—82|a/ (1+9)3a—2|1_0|—2a
0

§C|51 - 52|a7

(4) Since the function v reaches its minimum at a point ¢y € [0, 7], we have that if this point
belongs to the open set (0, 7) then necessary v, (¢9) = 0. However when ¢y € {0, 7} then from
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the point (3) of Proposition 4.4.1 we deduce also that the derivative is vanishing at ¢,. Using
the mean value theorem, we obtain for any ¢ € [0, 7]

va(o) =va(do) + vo(0) (¢ — do) = valdo) + (va(@) — vo (o)) (@ — do),

for some ¢ € (¢o, ¢). Since v{, € € then
[v4(8) — vh(90)| < Ihllaelé — dol°.
Notice that ||v, ||z« is independent of 2. Consequently

Vo€ (0,7, 0<vo(8)—va(do) < Clé— dol' ™,

for some absolute constant C. In the particular case 2 = x we get from the definition (4.4.5)
that v, (¢o) = 0 and therefore the preceding result becomes

Vo € [0,7], 0<w.(¢) <Clo— o't wvi(dy) =0.

4.4.3 Eigenvalue problem

In Section 4.4.1 we have checked that the operator £5! defined in (4.4.1) is of integral type. Then
studying the kernel of this operator reduces to solving the integral equation

Ky hn(9) := /0 ’ K (o, 9)hn(p)dpa(p) = hn(¢), Vo € [0,7], (4.4.64)

where the kernel K, and the measure duq are defined successively in (4.4.2) and (4.4.4). The
parameter (2 ranges over the interval (—oo, k). This latter condition is imposed to guarantee
the positivity of the measure duq through the positivity of v according to Lemma 4.4.1. We
point out that studying the kernel of £ amounts to finding the values of  such that 1 is an
eigenvalue of 2. To investigate the spectral study of Kf! we need to introduce the Hilbert
space Liﬂ of measurable functions f : [0, 7] — R such that

1l = ( / ) |f<90)|2dun(90)) * <o (4.4.65)

Notice that the space L,  is equipped with the usual inner product:

(f.g)a = /0 " H@a(@)duale), Vige Ll (4.4.66)

Remark 4.4.2. 1. Since dugq is a nonnegative bounded Borel measure for any ) € (—oo, k), then
the Hilbert space L2,  is separable.

2

2. Forany Q € (—o0, k), the space L, |

is isomorphic to the space L?, where

du(p) = sin(p) 15 () dep.

This follows from Proposition 4.4.1-(2)which ensures that vq is nowhere vanishing. However this
property fails for the critical value Q) = k because v, is vanishing at some points.
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The next proposition deals with some basic properties of the operator K.

Proposition 4.4.3. Let 0 € (—oo,k) and ry satisfies the assumptions (H1) and (H2). Then, the
following assertions hold true.

1. Foranyn > 1, the operator K} : L 2, — L2 is Hilbert-Schmidt and self-adjoint.

HQ

2. Forany n > 1, the eigenvalues of KS! form a countable family of real numbers. Let \,(Q) be the
largest eigenvalue, then it is strictly positive and satisfies

/ / ¢a§0)81n2(¢)740( ) ( ) (Qs)d d¢<>\ Q)</ / K2 ¢, d,UfQ( )d/J/Q(¢)
(¢) sin2 ()ro(p)

for any function o such that / 2(p)dp = 1.
0

3. We have the following decay: for any o € [0, 1) there exists C' > 0 such that
VQ € (—00,k),Vn > 1, / / K3(0, 9)dug(p) dua() < Ok — 2) 2",
o Jo

4. The eigenvalue () is simple and the associated nonzero eigenfunctions do not vanish in (0, ).
5. Forany Q € (—o0, k), the sequence n € N* +— X\, () is strictly decreasing.

6. Foranyn > 1 the map Q € (—oo, k) — A\, (Q) is differentiable and strictly increasing.

Proof. (1) In order to check that K} is a Hilbert-Schmidt operator, we need to verify that the
kernel K, satisfies the integrability condition

80 = ([ [ 100 Pain(ordunte) ) <+

Indeed, by (4.4.2) anf (4.3.3), one gets

0 B sin(¢) sin(¢ n(¢) "(¢) 2 (4ro(@)rolp)
||]C H;m =Ch / / R2n+1 ¢ %) VQ(QD)VQ(qb) Fn( (¢7 ) >d 19

for some constant C,, and R was defined in (4.3.2). Remark that

4ro(@)ro(e)
R(6,9) ‘ =1

Moreover, according to Lemma 4.4.1 the function v (y) is not vanishing in the interval [0, 7]
provided that Q2 < . Therefore we get

0 sin(¢p) sin( o (4ro(@)ro(e)
el = / / D0 (M) dede

By (C.0.11) and the assumption (H2) we deduce that

Q 2 4T0¢) ()
1G5, ||M2<C+C/ /1 Rl ) )d do
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T[T [ (ro(é) = ro())? + (cos ¢ — cos p)?
SC—FC’[ [ In ( R(0.9) )dgpdq&.

It suffices now to use the inequality (4.4.8) to get

12, <C+C/ / In? Sln¢+81|n(’0>dg0d¢<oo.

This concludes that the operator £} is bounded and is of Hilbert-Schmidt type. As a con-
sequence from the general theory this operator is necessary compact.

On the other hand, as we have mentioned before the kernel K, is symmetric in view of the
formula (4.4.6) and the symmetry of R defined in (4.3.2). Therefore we deduce that K is a
self-adjoint operator

(2) From the spectral theorem on self-adjoint compact operators, we know that the eigenvalues
of K form a countable family of real numbers. Define the real numbers

m= inf (KSh h)q and M= sup (KIh,h)e.

7llun=1 [A]lug=1

Since K is self-adjoint, we obtain o(K$}) C [m, M], with m € o(KS}) and M € o(K}), where the
set o(KS}) denotes the spectrum of K. Since \,,(92) is the largest eigenvalue, then

M(Q) =M= sup (KZh,h)q. (4.4.67)
Il =1

We shall prove that M > 0 and |m| < M. Indeed, for any h € L, the positive function |h|
belongs also to L2 with the same norm and using the positivity of the kernel K, we obtain

sup (Kih,h)o = sup  (Kh, h)q.
17llug =1 h>0,[|A g, =1

Using once again the positivity of the kernel one deduces that
Vh > 0,||h]luq = 1 = (KSth, h)q > 0.

Consequently, we obtain that M/ > 0. In order to prove that |m| < M, we shall proceed as
follows. Using the positivity of the kernel, we achieve

Im| < (K|R] |hl)a < M, Y|k, =1
This implies that M is nothing but the spectral radius of the operator ICT?, that is,
)
M = [IKy ez, )

From the Cauchy-Schwarz inequality, one deduces that

Kz, < [ ] V(0. 0P dua@ldunteo),

which implies that

2 T T 2
X(Q) < /0 /O Ko, 0)2dpa (@) dua(e).
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For the lower bound, we shall work with the special function

fly) = o)

il ) 07777
s oy F 0T

with the normalized condition || f||,, = 1 which is equivalent to

/07r O*(p)dp =1

MlQ) > (K2F, fo = / / ) S OIo(@) ) o) dido.
VQ(qb ) sinz ()ro(p)

This gives the announced lower bound for the largest eigenvalue.

and

(3) From the expression of K, given by (4.4.2) we easily get

o _ | [ e T[T HX6,9) sin(e)r
IiCnll,m<[ /0 Kn(¢a<ﬁ)dﬂﬂ(@)dﬂﬂ(¢)—/o [ vl 0)vo(o) sm(o)r

Using the definition (4.4.5) of x we infer

(¢
(¢)

~—

oN(ON

Voel0,n], valp)>r—Q

and combined with the assumption (H2) we obtain

,CQ _ H2 Sln ¢)r8(¢)d dodo.
K21, < (x / / RO ddsa

Applying Lemma 4.3.4 yields forany 0 < a < 3 < 1

I iy N(H—Q)Qnm/ / |6 — oI~ ddep.
0 0

By taking 8 < 3

nounced result,

(e — Q)22

||;LQ ~ (

dpdep.

5 we get the convergence of the integral and consequently we obtain the an-

(4) First, let us check that any nonzero eigenfunction associated to the largest eigenvalue \,,(2)
should be with a constant sign. Indeed, let f be a nonzero normalized eigenfunction and as-
sume that it changes the sign over a non negligible set. From the strict positivity of the kernel

in the interval (0, ), we deduce that
KR f(9) < KC1fI(9), Yo € (0,7).

First, by the assumption on f we get

/0 " K2 (6)F(8)dua(d) = M(Q) /0 " P(0)dpa(6) = M(9).
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Second, from (4.4.67) we have that

RN ldna@) < 2@

Consequently,

- /O " K2()(0)F (@)dpal) < /0 " K2(F(6) (D) dna(d) < An(€),

achieving a contradiction. Hence, any nonzero eigenfunction of A, (€2) must have a constant
sign. Now let us check that f is not vanishing in (0, 7). First we write

f(9) =

K (6) = M /O " Ha(6,0)f ()

From (4.3.3) and Lemma 4.4.1 we get
Vo, p € (0,m), Hp(g, ) >0, vo(e)>0.

The first assertion follows from the strict positivity of the associated hypergeometric function.
Combined with the positivity of f we deduce that

Vo € (0,m), f(¢p)>0.

Finally, we shall check that the dimension of the subspace generated by the eigenfunctions
associated to \,,(2) is one-dimensional. Assume that we have two independent eigenfunctions
fo and fi, which are necessary with constant sign, then there exists a,b € R such that the
eigenfunction a fy + bf; changes its sign. This is a contradiction.

(5) Using (4.4.2) combined with Lemma 4.3.4, we get that n € N* — K,,(¢, ¢) is strictly decreas-
ing for any ¢ # ¢ € (0, 7). Then, for any 2 € (—o0, k) and for any nonnegative function f, we
get

Vo e (0,m), Kif(9) > K f(9),

which implies in turn that

/ K2(/)(6)£(6)dua(o / K21 (£)(0)(6)dua().

Since the largest eigenvalue A, 1(12) is reached at some positive normalized function f,,+1 > 0,
then

A (9) = /0 " K21 (1) (D) s (B)dpin ()
< / " K2 (fni1)(6) fsr (6)disn(6)
su ICQ o)d
f|u§12)1/ ) MQ(¢)
< A(9).

This provides the announced result.
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(6) Fix Qp € (—0c0, ) and denote by f5! the positive normalized eigenfunction associated to the
eigenvalue ), (). Using the definition of eigenfunction, then

(R fa ) 0
<f7gzzv 7520>QO

The regularity follows from the general theory using the fact this eigenvalue is simple. How-
ever we can in our special case give a direct proof for its differentiability in the following way.
From the decomposition

/\n(Q) =

v 1R g, = 1

1 1 Q-

0@ rn(0) | va@)vey (@)’

we get according to the expression of K¢

Hy(9,¢)

ral@)a, (@) P

Q 1 T _ "
K., f(9) (¢)/0 Hy(o,0)f(p)de + (2 Qo)/O

77%20
= f(9) + (@ = Q0)%,° f(9)
with -
0
Therefore we obtain

Q0,02
<%n07 fr?v 7?0>Qo

<f7§27 7§LZO>QO

<K§30f§, r?o>90
<f1§27 T?O>Qo

As Sl is self-adjoint on the Hilbert space Lino then

An(Q) = + (Q - QO)

Qo £Q £Q0 Q 5 Qo Q0
(Ko fo's Fn®) 0 _ (fr, KR fa) 00 = An(Q0).

<f1§27 T?O>Qo <f7£127 7?O>Qo

Therefore we deuce that Q2 — \,(Q2) is differentiable at 2y and

%80,90 QO, Qo . 4 H, (6, .
< < Qof”gofg ko / mf§°(w)f§°(¢)sm(¢>)7“3<¢>)d¢dso-
n »Jn 0 0 0

AL (Q0) =

This formula is nothing but the Feynman-Hellman formula. Since

Vo, 6 € (0,m),  Hu(d9) >0, f;12(9) >0, vay(6) >0,
we find that A/, (€y) > 0, which achieves the proof of the suitable result. O
Next we shall establish the following result.

Proposition 4.4.4. Let n > 1 and rg satisfies the assumptions (H1) and (H2). Set
Sy = {Q € (—00,k) st A(Q) = 1}. (4.4.68)

Then the following holds true

1. The set ., is formed by a single point denoted by €2y, .
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2. The sequence (y,)n>1 is strictly increasing and satisfies

lim €, = k.
n——+0o

Proof. (1) To check that the set .7}, is non empty we shall use the intermediate value theorem
2) and (4.4.2)we find that

From the upper bound in Proposition 4.4.3-(2

H2(¢,¢)sin ¢r5(¢)
0 < A\ / / v (@)va(o) sin(e) Tg((p)dm(@) dpq().

Thus by taking the limit as {2 — —oo we deduce that
lim A,(Q2) =0. (4.4.69)
Q——oc0
Next, we intend to show that
lim A, (Q2) = +o0. (4.4.70)

Q—k
Using the lower bound of \,,(£2) in Proposition 4.4.3—(2), we find by virtue of Fatou Lemma

/ / sin
l/n SO)V s1n

for any o satisfying / 0*(¢)d¢p = 1. According to Lemma 4.4.1-(4), the function v, reaches its

(@)ro() dpde < liminf A, (Q
(@)m(@)gm«o) pd¢ < lim inf A, (Q),

[T T

minimum at a point ¢y € [0, 7] and
V¢ el0,n],

There are two possibilities: ¢g € (0,7) or ¢g € {0,7}. Let us start with the first case and we

0 < vk() < Clo — gl

shall take o as follows
s

with 8 < 5 and the constant c3 is chosen such that g is normalized. Hence using the preceding

estimates we get
(4.4.71)

®) sinZ
1
2

(@)ro(9) , pd < lim inf ), ().
¥

(9,
/ / |6 — gol == P|ip — go| P sin (9)ro (0
). According to (4.3.3) the function H,, is strictly

Let ¢ > 0 such that [¢pg — ,¢9 + ¢] C (0,7
positive in the domain (0, 7)?, hence there exists § > 0 such

V (9, 0) € [¢o — €, o + €, Hn(¢7 901)(5;)12((412;“0(@ >
sin (p)rg

Thus we obtain

¢do+e do+e
c / / _D0de it a(@Q).
bo—e Joo—e 10— 0l 2 TPlo—go| 2 TP Qo
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14a

By taking -5 + 3 > 1, which is an admissible configuration, we find

lim A, (2) = +o0.
Q—kK
Now let us move to the second possibility where ¢¢ € {0, 7} and without any loss of generality
we can only deal with the case ¢y = 0. From (4.3.3) and using the inequality
Vrel0,1), Fylx)>1,
we obtain

sin(p)r (@) )

qu, % € (Ovﬂ)7 Hn<¢a 90) zcn 1
[R(¢,9)]" "2

Combined with the assumption (H2), it implies

sin

() sin" 1 (6)

Vo, 0 € (0,7), Hu(¢,¢) 2en :
[R(¢, )"

Plugging this into (4.4.71) we find

sin™t2 2(p )sm"+2(¢) o
/ / 1+a+5 Tiag R(6, )]n+2 d@d¢gllgr{1_1£fA”(Q)'

Let ¢ > 0 sufficiently small, then using Taylor expansion we get according to (4.3.2)

0< ¢, 0 <e=> R(d,0) <Clop+ )

n+%¢n+%
1+a+5 1+a+6 (¢ + )2n+1 d({?dqb S hgl_}gf )\n(Q)

which gives after 31mp11f1cat10n

n—f—ﬁ(bn ,_ﬁ
/ / Pyt d¢d¢§1iggningn(Q),

Making the change of variables ¢ = ¢f we obtain

-5 B¢n S8 -5
/ / 2n+1 dpdd = / 2 2/B/ 1—|—9)2n+1d6d¢'

This integral diverges provided that a + 23 > 1 and thus under this assumption

Thus

lim A (92) = +o0.
Q—kK

Hence we obtain (4.4.70). By the intermediate mean value, we achieve the existence of at least
one solution for the equation
An(2) = 1.

Consequently, using Proposition 4.4.3 we deduce by the intermediate value theorem that the
set ./, contains only one element.
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(2) Since ,, satisfies the equation
An () = 1.

According to Proposition 4.4.3-(5) the sequence k — A, (€2,,) is strictly decreasing. It implies in
particular that
A1(n) < An(Q) = 1.

Hence by (4.4.70) one may apply the intermediate value theorem and find an element of the
set /41 in the interval (Q,, ). This means that Q,,; > ,, and thus this sequence is strictly
increasing. It remains to prove that this sequence is converging to ~. The convergence of this
sequence to some element 2 < & is clear. To prove that 2 = x we shall argue by contradiction
by assuming that Q2 < k. By the construction of §2,, one has necessary

Vn>1, MA(Q) > 1.

Using the upper-bound estimate stated in Proposition 4.4.3—(2) combined with the point (3)
we obtain for any a € (0, 1)

Vn>1, 0<\(Q) < (k—Q) 20 (4.4.72)
By taking the limit as n — +oo we find

lim A\, (Q2) =0.

n—-+o0o

This contradicts (4.4.72) which achieves the proof. Ol

4.4.4 Eigenfunctions regularity

This section is devoted to the strong regularity of the eigenfunctions associated to the operator
K$ and constructed in Proposition 4.4.3. We have already seen that these eigenfunctions be-
longs to a weak function space L7 . Here we shall show first their continuity and later their
Holder regularity.

Continuity
The main result of this section reads as follows.

Proposition 4.4.5. Let Q) € (—o0, k), n > 1, rg satisfies the assumptions (H1) and (H2), and f be an
eigenfunction for KS} associated to a non-vanishing eigenvalue. Then f is continuous over [0, 7], and
for n > 2 it satisfies the boundary condition f(0) = f(m) = 0. However this boundary condition fails
for n =1 at least with the eigenfunctions associated to the largest eigenvalue A1 (€2).

Proof. Let f € L7, be any non trivial eigenfunction of the operator K defined in (4.4.64) and

associated to an eigenvalue A # 0, then
1 m
= (0, dp, , ) a.e. 447
10) = 3o [ B(0.0)(@dg. Vo€ (0. (4473)

3
Since f € LZQ, then the function g : ¢ € [0, 7] — 7 (p) f(¢)belongs to L?((0,7); dp). Therefore
the equation (4.4.73) can be written in terms of g as follows

1

g(¢)—mw§)[ TE%(¢)T§(¢)Hn(¢,@)g(w)d% Vo € (0,m)a.e.
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Coming back to the definition of H,, in (4.3.3) we obtain for some constant c,, the formula

3 3 sin rnf% Tn+% T T
7“0_5(90)7“05<¢)Hn(¢, ©) =cn (v) 0 (v) 0 (¢)F (4 (o) 0(@)) '

[R(¢, )" 2 R(9.¢)

Using (4.4.9) and the assumption (H2) yields

n+i n+3 ) .
o3 (o) ro (@) *(9) (1, (sin(9) +sin(p)
0 2 (g (0)Hn(d, ) S I <1+1 ( - )) (4.4.74)
sin() + sin(p)
sem (IR,

This implies, using Cauchy-Schwarz inequality and the fact that v is bounded away from zero

l9(@)] < [r <1 +1In (W)) 9(p)de

s . ¢ + . %
Sl r2ay) <1+[ In? <W> d@)
S lles Vo € (0,7)a.e.

It follows that g is bounded. Now inserting this estimate into (4.4.73) allows to get
™ 3
£ Slalli [y () H (6.0

o / sy o 0) (0o o gz
0

[R(6,0)]" "> R(9,9)

Using once again (4.4.9) and the assumption (H2) we deduce that

’ sin" 1 (¢) sin"™ 4 () sin(@) + sin(y)
KOS / P (14 I (TRZ TR ) g,
) ((m(@+sm<¢>>2+<Cos¢_cow>z)n+2( ( i ))

By symmetry we may restrict the analysis to ¢ € [0, 7]. Thus, splitting the integral given in
(4.4.75) and using that
inf R(¢,p) >0,

pe[n/2,x]
¢€[0,7/2]

we obtain

[F( O SIS lle

sin"~L () sin"* 2 (p) sin(¢) + sin(y)
A (Sln(¢)+81n<g0))2n+1 <1+1n( |¢—Sp| ))d@

(1 +In (W))m

+If e
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It follows that

A A ¢+
|f(¢)l§||f||m[ W(l—kln(w_(p))dap—kﬁﬂm.

Using the change of variables ¢ = ¢f we get

NE]

1 % gn—1 1+6
F@)] S lluad ™2 / W(Hln (“J_rﬂ))d9+||f||m
0

1
SHmez(/) 2.

Consequently we find
1

sup 76 (¢)|f(@)] S 1fllua-

#€(0,m)

Inserting this estimate into (4.4.73) and using (4.4.74) yields

|f(¢)5|f|l;m/ ro 2 (9) Ha(6, 0)do
0

4 n+3 n—1 . .
o *(9)rg () o ((3in(9) + sin(p)
S [ e (140 (O L)) g,

As before we can restrict ¢ € [0, 5] and by using the fact

inf R >0
,nf (¢,) >0,
¢€[0,7/2]

we deduce after splitting the integral

|f(¢)§||f|m/ ro 2 (9) Ha(6, 0)di
0

Al et " prtignt (141 (22 ) o
S a6 ™) + 1l [ o (5T ) ) de

Making the change of variables ¢ = ¢ leads to

n—1 1 6"tz 6+1
W0 0.7/ 1O S art 0+ It | g (140 () ) @
0

Sl (6" + ¢3).

Consequently we get
Yo e (0,1), |£(0)] < Flua(ri1(6) + 78 ().
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This shows that f is bounded over (0, 7) and by Lebesgue theorem one can show that f is
in fact continuous on [0, 7] and satisfies for n > 2 the boundary condition

Last, we shall check that this boundary condition fails for n = 1 with the largest eigenvalue
A1(€). Indeed, according to (4.4.73) we have

1

| m.se.
However, from (4.3.3) we get

()

07 >0,
R2(0, )

Voe (0777)7 Hl(ovgp)zcl
Combining this with the fact that f does not change the sign allows to get that f(0) # 0. O

Holder continuity
The main goal of this section is to prove the Holder regularity of the eigenfunctions.

Proposition 4.4.6. Assume that rq satisfies the conditions (H) and let Q € (—oo, k), then any solution
h of the equation

1 s
MO) = oy [ Huledlh(o)dp. Vo€ (0.m) (44.76)

with X # 0, belongs to €1%(0, ), for any n > 2. The functions involved in the above expression can be
found in (4.3.3)—(4.4.1)—-(4.4.2).

Proof. From the initial expression of the linearized operator (4.3.1) in Proposition 4.3.1 and
combining it with Proposition 4.3.3, one has

)@ = [ ateomte= s [ [T o mneinde, @4z
n T 0 TLQD7 ()0 @_471'7“0(@5) 0 0 n 790777 90 7780, ot
with
R(@,,1) :=(ro(9) = 70(12))” + 2ro(@)ro(p) (1 — cosm) + (cos ¢ — cos ),
(6. o) o SITO() cos(n)
R3(6,,m)
It is clear that any solution h of (4.4.76) is equivalent to a solution of
Fulh
Voe O, hlg)= ZA .

From Proposition 4.4.1 we know that v € ¥1%(0, ) and does not vanish when Q € (—oc, k).
Therefore to check the regularity h € ¢1*(0, ) it is enough from the classical law products
to establish that F,,(h) € €*(0, ). Since h is symmetric with respect to ¢ = 5, then one can
verify that F,,(h) preserves this symmetry and hence we shall only check the regularity in the
interval [0, 7]. Notice that Proposition 4.4.5 tells us that h is continuous in [0, 7], for any n > 1.
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In order to prove such regularity, let us first check that

E(qﬁ, o,n) >C {(¢ — @)2 + (sin2(¢) + sinz(go)) sin2(77/2)} , Vo, € (0,7),Vn € (0,27),
(4.4.78)
which is the key point in this proof. In order to do so, recall first from (4.2.18) that

R(¢,0,m) > C(¢ — p)*. (4.4.79)

On the other hand, define the function

g1(x) = 2® +ro()” — 2wro(p) cos(n) + (cos(ip) — cos(¢))?,

which obviously verifies g (ro(¢)) = R(¢, ¢, n). Such function has a minimum located at
xe = ro(p) cos(n).

Now we shall distinguish two cases: cosn € [0, 1] and cosn € [—1,0]. In the first case we get

91(z) >g1(zc) = r5(¢) sin®(n) + (cos(p) — cos(¢))?
>1g () sin®(n).

From elementary trigonometric relations we deduce that
sin® n = 2sin®(n/2) (1 4 cos(n)) > 2sin’(n/2).
This implies in particular that, for cos7 € [0, 1]
R(@,,m) = 2 (i) sin®(1/2).

As to the second case cosn € [—1, 0], we simply notice that the critical point z.. is negative and
therefore the second degree polynomial g; is strictly increasing in R. This implies that

R(8,0,m) = 01(r0(6)) 291(0) > 75(i2) > 7 () sim®(17/2).
Therefore we get in both cases
R(¢.¢.m) 2 r3(p) sin’ (n/2). (4.4.80)
By the symmetry property R(¢, ¢, 1) = R(p, ¢,1) we also get
R(¢.0.m) 2 r§(¢) sin*(n/2). (4.4.81)
Adding together (4.4.79)—(4.4.80)—(4.4.81), we achieve
BR(0.0.m) 2 C(6 — @) + (15(9) + 1§ () sin® (1/2). (4.4.82)

It suffices now to combine this inequality with the assumption (H2) on ry in order to get the
announced estimate (4.4.78).
Let us now prove that F,(h) € €1 and for this aim we shall proceed into four steps.

e Step 1: If h € L* then F,,(h) € €*(0, 7).
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Here we check that F,,(h) € (0, ) for any n > 1. In order to avoid the singularity in the
denominator coming from rp, we integrate by parts in the variable 7

™ 2m
_ sin(p)rg (i) sin(nn) sin(n)h(p)
Fu(h)(¢) = 47rn[ /0 20 o) dndep.

Introduce
sin(¢)rg () sin(nn) sin(n)h(p)

R (¢, 0,m)

and according to Chebyshev polynomials we know that

K1(¢7 2 77) =

sin(nn) = sin(n) Up—1(cosn), (4.4.83)
with U, being a polynomial of degree n. Thus

sin(w)rg(w)%_l(cos n) sin?(n)h(y) .
R (¢, ¢,n)

K1<¢7 ()0777) =

Using the assumption (H2) combined with the estimate (4.4.78) for the denominator ﬁ(qﬁ, ©,n),
we achieve

|K1(¢ 0 77)' < HhHLoo Sin3((p) Slnz(n/Z) ‘

(6 — )2 + (sin2(9) + sin®(p)) sin2(n/2)) 2
< sin(p)

((¢ — ©)? + (sin®(¢) + sin?(g)) sin*(n/2))

Interpolating between the two inequalities

=

sin(¢p)

<lp—o™
((qb — )2 + (sin?(¢) + sin?(¢)) Sin2(n/2))

NI

and
sin(y)

(& = ¢)? + (sin®(¢) + sin®(¢)) sin®(1/2))
we deduce that for any 5 € [0, 1]

< sin~'(n/2),

SIS

Sin(y) Slp— g 0D sn 2. @48y
((6— )2 + (sin?(9) + sin?(¢)) sin?(1/2))

NI

Then,
1
¢ — ['=Fsin’(n/2)

Let us now bound the derivative 94K (¢, ¢, 7). For this purpose, let us first show that

|K1(é, 0,m)| S

[N

0sR (6, 0. 1) S R2 (9, 0,m). (4.4.85)
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Indeed
af§(¢’ p.n) _ 2r5(0)(ro(@) —rolp)) + 27“6(</>)7”0£80)(1 — cos(n)) + 2sin(¢)(cos(yp) — cos(¢))
R3(¢,0,m) R3(¢,0,m)

Using the identity 1 — cos(n) = 2sin?(n/2) and (4.4.78), we get a constant C' such that

|3<Az>§(¢,so,n)} ¢ — | + sin(p) sin®(n/2) <c
RiGom) ™ (6 0)? + (sin(@) +sin()) sin®(7/2)

achieving (4.4.85). Therefore, taking the derivative in ¢ of K yields

N[

sin® (p) sin®(n/2)
9 K1 (6, 0,m)| <C||h| L~ .
| () 1(¢ ® 77)‘ || ||L ((¢ _ 80>2 N (sin2(¢) +sin2(g0))Sin2(77/2))
< sin(¢p)
~ (¢ — 9)? + (sin?(¢) + sin®(p)) sin’(n/2)
. 6 — ¢l sin(p)

(SIS

T (60— @) + (5in(g) + sin () sin(n/2))
Hence (4.4.84) allows to get or any 8 € (0, 1),

1
0o K1(6,0,m)| < - |
|05 K1(¢, ¢, 1) |p — p|2=B sin®(1/2)

By adapting Proposition B.0.2 to the case where the operator K depends only on one variable,
we infer F,(h) € €7(0, ) for any 3 € (0, 1).

e Step 2: For n > 2, if h is bounded then F,,(h)(0) = 0.

Notice that this property was shown in Proposition 4.4.5 and we give here an alternative
proof. Since vq is not vanishing then this amounts to checking that F,,(h)(0) = 0. By continuity,
it is clear by Fubini that

Falh) / / sm(go)r ©) sin(nn) sm(nlh(go) dndy
~ dmn (r3(¢) + (1 — cos )?) 2

sin(p)r2 o
= 47m/ P)ro(p)hle)de 3/ sin(nn) sin(n)dn,
b ( (o ) (1 —cosp)? )2 0

which is vanishing if n > 2. Hence, 2(0) = 0, for any n > 2.

e Step 3: If h € (0, ) and h(0) = 0, then F,,(h) € W1°°(0, ).
Since we have shown before that F,,(h) € €°(0, ) for any 8 € (0,1). Then it is enough to
check that F,,(h)" € L*°(0, 7). For this aim, we write

Fanye) =2 / / sin(i)ro(¢)? sin(nn) sin(h(£)0R(G: o)

R (¢, ¢,m)
Adding and subtracting some appropriated terms, we find
Flh / / sin(i)r() sin(nn) sin(m) () = h(6)) QRS 0) )\
8 R2 (9, ¢,m)

242



CHAPTER 4. TIME PERIODIC SOLUTIONS FOR 3D QUASI-GEOSTROPHIC MODEL

 30) / " / 7 sin(e)ri(e) sin(o) sin(n) [0 R, 0,) + 0pR(G, 0]

R3(¢,¢,m)
3h ¢) / / sin(e 12(57177) Sln(”)a¢R(¢’¢’")dnd@
R2(,¢,m)
871' — 1+ 1 — (4.4.86)

Let us bound each term separately. Using (4.4.78), (4.4.83) and (4.4.85) we achieve

sin® () sin®(n)|¢ — ¢|*dndep
I <C|h||ga
N =Clle / / <sm2<¢>+sm (¢)) sin2(n/2))?

sm( o — ¢|*dndyp
<C”h””‘/ / G oP + () T () S ]2)

We write in view of (4.4.84)

sin(p) < 6 — ol sin(y)
(6 — ©)? + (sin?(¢) + sin®(i)) sin*(n/2) ~ ((¢ — )% + (sin*(¢) + sin®(p)) sinz(n/2))%
1
~ 1o — o2 sin(n/2)

Therefore by imposing 1 — o < 3 < 1 we get

s 2
dndg
1L (8)] < Cllhllsm/ / , < C||h|e,
0 0 |¢ - (p|27a7,8 Slnﬂ(n/2)

which implies immediately that I; € L>. Now let us move to the boundedness of I,. From
direct computations we get

|05+ 0,) Ri6,0,m)| =[20r0(6) — ro())(r(6) — 76 () + 2(c056 — cos ) (sin o — sin 6)
+2(1 = cos ) (rh(@)ro(¢) + r6()r0(6) | (44.87)
Combining the assumption (H2) with r, € W* and the intermediate value theorem yields
(95 + 0,) R, 0,m)| <C(16 = 6l + (sin o + sin 6) sin(n/2)
SC(|¢ — ¢|* 4 (sin + sin @) sin2(17/2)). (4.4.88)

Hence, using (4.4.78) and (4.4.83) we obtain

sin3 sm 2 4 (sin sin @) sin?
B(6)] <CIh(6) — h(0) / / () (0 = o & (ino & sind) s 00/2) o,
)2 + (sin®(¢) + sin*(p)) sin*(1/2)) 2

§C||h||fga/ / ' 2¢ad77dfp2 — .
0 Jo ((¢—¢)?+ (sin*(¢) + sin?(p)) sin®(n/2))

D=
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Interpolation inequalities imply
1
((¢ — ©)? + (sin*(p) + sin’(¢)) sin®(n/2))
Therefore we get for any ¢ € (0,7/2),¢ € (0,7) and n € (0, 27),
4
((¢ = ¢)? + (sin(¢) + sin(yp))? sin*(1/2))

It follows that

<o — @|* tsin~Y(¢) sin~%(n/2). (4.4.89)

(SIS

S — @l tsin™(n/2). (4.4.90)

D=

™ 2m
dndyp
L(¢)| <C||h||ge — < Cl|h||ga,
|2( )| H ” /0 [ |¢—cp\1_asm (7]/2> || ||

which gives the boundedness of I>. It remains to bound the last term I3. Then integrating by

parts we infer
¢)/ / sm ro(ap)) sin(nn) Sin(n)dndg&.
R2(¢,¢,n)

Then, since ~(0) = 0 and h € ¥ we find according to the assumptions (H), (4.4.78) and (4.4.83)
™ 2m
’ / / 6 sin () sin? (n) dnd
6 é
o Jo [(0—9)?+ (sin?(¢) +sin?(p)) sin®(n/2)] 2

T 27
o / / ¢*dndyp
o Joo [(@—9)? + (sin?(9) + sin’(p)) sin®(n/2)]

[I3(¢)| <C|[h

<C|lh T
2
Applying (4.4.90) yields
™ 2w
dndyp
Ls(6)| <C|lh||e : < C||h|e.
| 3(¢))| = || |<5 [ [ |¢_(P‘17a31na(77/2) || |<f

Finally, we get the announced result, that is, h € Whee(0, ).

e Step 4: If b/ € L*°(0,7) and h(0) = 0, then F,,(h)’ € €#(0,7) for any 3 € (0,1).
Coming back to (4.4.86) and integrating by parts in the last integral we deduce

. / / sini)r3() () sin(mn) sino) D60, 1) + 0, Rl6 0]
S R3 (¢, ¢,m)

/ / sm (go)h(go)) sin(nn) sin(n) dnd

A Rz (¢, ¢,1)
~ 8mn / / (T1 - *Tz (¢, 0, n)dndep, (4.4.91)
™

DJ
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with
9, (sin()ro()*h(y)) sin(nn) sin(n)
R (g, ,1)

We want to apply Proposition B.0.2 to each of those terms. First, for 77 we use (H) and (4.4.88)
combined with (4.4.78), we arrive at

T2 (d)a 2 77) -

Ty(6, )] < sin® (0)|h ()] sin*(n) (|¢ — ¢|* + (sin ¢ + sin o) Si}lQ(n))
{6 =) + (sin?(9) +sin®(¢)) sin’(/2)}
< h(#)]

- {((b — )2 + (sin?(¢) + sin?(p)) sin2(n/2)}% .

Since &/ € L* and h(0) = h(r) = 0 then we can write h(p) = sin(¢)h(y), with h € L>®(0, 7).
Consequently,

sin(,p)
{(¢ — ¢)? +sin2(p) sin2(n/2) }
< 1
(6 — )2 +sin?(n/2)}

Interpolating again, we find that for any § € [0, 1]

T2 (¢, ,m)| SllAl|zee

[N

[N

E : '
|6 = o['=7sin’(1/2)
Let us mention that we have proven that
h(g)] oL
{(¢ — 9)2 + (sin?(¢) + sin?(p)) sin?(n/2) } 2 ¢ — ¢|'~Fsin”(n/2)

forany $ € (0,1), ¢ € (0,7/2),¢ € (0,7) and 1 € (0, 27), which will be useful later.
Now we shall estimate the derivative of T} with respect to ¢. We start with

|T1(¢7 P 77)

(4.4.92)

106 { (95 + 0,) (o, 0.m) } | =[2rb(@)(r6(6) = () + 2(0(6) — ro())r ()
— 2sin(¢)(sin ¢ — sin ¢) — 2(cos ¢ — cos ) cos(¢)
+2(1 = cosn) (1 (@)rol) + rh()rh(@))] (44.93)

Using that r{j € L*°, we find

‘84, {96+ 0,)R(o,0.m)} ] <C (|6 — | +sin®(/2)) . (4.4.94)
Thus,
sin (i) () in2(n)| 05 { (9 + 0,) Rls, 0m) } |
R (,,m)
S Rsin’ ) |0 + 05 Rl6. o) [96R0r )|
R (9, ,m)

10sT1(0, 0, )| S
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Using (4.4.78)—(4.4.88)—(4.4.94), we find
BT (6 om)] < sin® ()| ()| sin®(n) {|¢ — ¢| + sin®(n/2) }
{(¢ — )% + (sin?(¢) 4 sin®()) sin(n/2) }
sin® (i) 1) sin?(n) {|¢ — ¢|* + (sin(p) + sin(¢)) sin*(n/2)}
{(¢ — )2 + (sin?(9) + sin?(p)) sin?(1/2) }°

5
2

It follows that
0uT1(b0m)| < sin()|h(p)| {|¢ — | + sin®(n/2)}
{(¢ — ¢)? + (sin?(¢) + sin®(¢p)) sin®(n/2) }
sin()|h ()| {|¢ — | + (sin(p) + sin(¢)) sin*(n/2) }
{(6— )2 + (sin*() + sin*(p)) sin?(n/2) }
. h(o)
~{(¢ — )% + (sin*(¢) + sin’(p)) sin*(n/2) }
Putting together this estimate with (4.4.92) we infer
]
{(¢ = 9)? + (sin?(¢) + sin*(p)) sin*(n/2) } *
SClg — 0|77 sin P (n/2),

3
2

for any 5 € (0,1).
Concerning the estimate of the term 75, we first make appeal to (4.4.78) and (4.4.83) leading
to

ITo(6,0.m)] < (sin®(¢) + sin®(p)|h(p)|) sin®(n/2) i
{(¢ — ©)? + (sin?(¢) + sin®(p)) sin®(n/2) } *
< (sin(p) + [R(e)]) _
T{(6 - 92+ (sin(6) + sin®()) sin?(7/2)} 2
Applying (4.4.84) and (4.4.92), one finds
[ Ta(¢, 0,m)| < Clg — o' 7 sin (n/2),

for any 8 € (0,1). The next stage is devoted to the estimate of 9475 and one gets from direct
computations

05T (0, 0. 1)] <(Sin3(”) +sin®(¢)|h(p)]) sin?(n/2) ‘%ﬁ(qﬁ,w,n)‘.
T R3 (6, ¢,1)

Using (4.4.85) and (4.4.78), it implies
(sin® () + sin®(p)|h()]) sin®(n/2)
{(¢ — )2 + (sin?(¢) + sin®(g)) sin®(n/2) }*
< (sin(p) + [h(¥)]) .
~ (¢ — ¢)? + (sin®(¢) + sin®(p)) sin®(n/2)
Therefore (4.4.84) and (4.4.92) allows to get
105T2(¢, 0,0)| < |6 — | =@ sin (n/2),

for any 8 € (0,1). Hence, by Proposition B.0.2 we achieve that F,,(h) € €7, for any 3 € (0,1),
which achieves the proof of the announced result. O
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44.5 Fredholm structure

In this section we shall be concerned with the Fredholm structure of the linearized operator
0y F(12,0) defined through (4.3.5) and (4.4.1). Our main result reads as follows.

Proposition 4.4.7. Let m > 2, o € (0,1) and Q € (—oo, k), then 6fF(Q, 0): X3 — X% isa
well-defined Fredholm operator with zero index. In addition, for Q = Q,,,, the kernel of 9 F(Qu, 0) is
one—dimensional and its range is closed and of co-dimension one.

Recall that the spaces X3, have been introduced in (4.2.15) and Q,,, in Proposition 4.4.4.

Proof. We shall first prove the second part, assuming the first one. The structure of the lin-
earized operator is detailed in (4.3.5) and one has for h(¢,0) = >, <1 hn(®) cos(nd)

9rF(Q,0)h = cos(nf) L3 (hn)(9),
n>1
where
£2(hn) (&) =va(6) /‘H (6. 0)hn(9)dp, 6 < [0,7).

In view of (4.4.1) and (4.4.64), this integral equation can be written in the form
KSh = h.
We define the dispersion set by
S={Q¢€ (~c0,r), Kerd;F(Q,0)+# {0}}.
Hence 2 € S if and only if there exists m > 1 such that the equation

Vo € [0777]7 K%(hm)((b) = hm(¢);

admits a nontrivial solution satisfying the regularity h,, € €>*(0,7) and the boundary con-
dition h,,(0) = hp(m) = 0. By virtue of Proposition 4.4.5 and Proposition 4.4.6 the foregoing
conditions are satisfied for any eigenvalue provided that m > 2. On the other hand, we have
shown in Proposition 4.4.3-(4) that for Q = Q,,, the kernel of £,,, is one-dimensional. Moreover,
Proposition 4.4.3-(5) ensures that for any n > m we have A\,(Q,,) < A\pn(Qy,) = 1. Since by
construction A, (£2,,) is the largest eigenvalue of S}, then 1 could not be an eigenvalue of this
operator and the equation
K& h = h,

admits only the trivial solution. Thus the kernel of the restricted operator 9;F(©,,,0) : X2 —
X, is one-dimensional and is generated by the eigenfunction

(¢,0) — hm (@) cos(mb).

We emphasize that this element belongs to the space X because it belongs to the function
space €1 ((0,7) x (0,27)) since ¢ + hy(p) € €1*(0,7). The range of 0y F(Qyy,0) is closed
and of co-dimension one follows from the fact this operator is Fredholm of zero index.

Next, let us show that GfF(Q, 0) is Fredholm of zero index. By virtue of the computations
developed in Proposition 4.3.1, we assert that

O E(©, 00h(6,0) = val)h(,0) — —G(h)(,6),
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with

G(h)(6,0) = / / sin(p)ro(@)hle: n)dnde (4.4.95)
¢a y P, 1 )5

A(¢,0, ¢.m) =(r0() = 10())* + 2ro($)ro() (1 — cos(8 — 1)) + (cos(¢) — cos())*.

Since €2 € (—o0, k), the function vq is not vanishing. Moreover, by Proposition 4.4.1 one has
that vg € €17, for any 8 € (0, 1).
Define the linear operator vold : X3 — X5 by

(veld)(h)(¢,0) = va(@)h(,0)-

We shall check that it defines an isomorphism. The continuity of this operator follows from the
regularity v € ¢1%(0,7) combined with the fact that 1%((0,7) x (0,27)) is an algebra. The
Dirichlet boundary condition, the m—fold symmetry and the absence of the frequency zero are
immediate for the product voh, which finally belongs to X};,. Moreover, since v, is not vanish-
ing, one has that volId is injective. In order to check that such an operator is an isomorphism, it
is enough to check that it is surjective, as a consequence of the Banach theorem. Take k € X,
and we will find h € X& such that (vqld)(h) = k. Indeed, h is given by

d(¢,0)
va(o)

Using the regularity of v and the fact that it is not vanishing, it is easy to check that its inverse
% still belongs to ¢'1%(0, 7). Similar arguments as before allow to get h € X2. Hence vgld isan
isomorphism, and thus it is a Fredholm operator of zero index. From classical results on index
theory, it is known that to get 8f}3’ (€, 0) is Fredholm of zero index, it is enough to establish that
the perturbation G : X3 — X3 is compact. To do so, we prove that for any § € (a, 1) one has
the smoothing effect

h(¢,0) =

VheXn, IGM)lgrs < Clhllgre,

that we combine with the compact embedding 617 ((0, ) x (0,27)) <= €-((0,7) x (0,27)).
Take h € X2 and let us show that G(h) € €1%((0,) x (0,27)), for any 3 € (0,1). We shall
first deal with a preliminary fact. Define the following function

n
Veel0,n],0,neR, golp,n) = / h(p, T)dT. (4.4.96)
0

By (4.2.17) we infer
l90(2,m)| < C|A]|Lip|€0 — 1| sin(p),

According to the definition of the space X, the partial function 7 — h(y, ) is 2m-periodic

2m
and with zero average, that is, / h(yp,7)dr = 0. This allows to get that n — go(¢,n) is also
0

2m-periodic, and from elementary arguments we find

90(,m)| < Cllh|Lip | sin((6 — n)/2)|sin(e), (4.4.97)

for any ¢ € [0, 7] and 6,7 € [0, 27]. In addition, it is immediate that gy € € ((0,7) x (0,27))
and

g0, m / dph(p, T)dr.

248



CHAPTER 4. TIME PERIODIC SOLUTIONS FOR 3D QUASI-GEOSTROPHIC MODEL

The same arguments as before show that the partial function 7 — d,h(p, 7) is 27-periodic and
with zero average. Moreover, 7 — 0,g9(, 1) is also 2r-periodic and

10,90(0,m)| < Clh]lLip | sin((0 —n)/2)], (4.4.98)

for any ¢ € [0, 7] and 0,1 € [0, 27]. Using the auxiliary function gy, one can integrate by parts
in G(h) in the variable 7 obtaining

(6.0 / / sin(p)rd () sin(n — 9)99(@ " ndep. (4.4.99)
A(0,0,0,1)?

The boundary term in the above integration by parts is vanishing due to the periodicity in 7 of
the involved functions. It follows from (4.4.78),

A(¢,0,0,m) Z (6 — ¢)* + (sin®(¢) + sin®()) sin®((0 — 1)/2), (4.4.100)

for any ¢, ¢ € (0,7) and 6,7 € (0, 27), and this estimate is crucial in the proof.
The boundedness of G(h) can be implemented by using (4.4.97) and (4.4.100). Indeed, we

write
) @.8)] bl / / s (p)rb(e)|sin(0 — | sin((0 —)/2)ldndy
(¢ 90)2 + (sin®(g) 4 sin(8)) sin®(6 — 1)/2))*

Il / / rg () sin*(p) sin®((0 —n)/2)|dndyp
(6 — )2 + (sin®(y) + sin®(¢)) sin®((0 — 1)/2))

e

Therefore, we obtain

7,2
GR)(@,0)] Slhllp / / olpldndp .
(6 — )2 + (sin () + sin?(6)) sin?(0 — 1),/2))

From the assumption (H2) on rp combined with (4.4.84) we get for any 5 € (0,1), and then

™ 2
1G(h)(¢,0)| §|hllup/ / |6 — 7 sin((6 —n)/2)| P dnde S ||h|wip-
0 0

Therefore

IG(M)][L~ < NI

gla. (4.4.101)

The next step is to check now that 0,G(h) € ¢* by making appeal to Proposition B.0.2. From
direct computations using (4.4.99) we infer

G (1) (,0) / / sin(p)rg (e Sm(9—n)ga(%n)%ﬂ%«%%n)dnd@
e A(6,0,,1)3

Adding and subtracting in the numerator 0,A(¢, 6, ¢, n), it can be written in the form

0,G(1)(6,6) / / sin(p)rg () sin(6 — n)ge (e, )((%A(dn ,0,1) + 0pA(0,0, ¢, ))dndcp

A($,0,0,7)3
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_/ / sin(e)rd () sin(® = mgo(p: MOAW. b, 00m)
A(,60,0,1)3

Integrating by by parts in ¢ in the last term yields

095G (h / / sin(p)r() sin0 = mgo(o, ) (06A(0,0,0,1) + 0, A0, 0, 0,m)
A(¢,8,0,1)?
/ / s]ﬂ ro(ﬁp)ge(% )3) Sln(e_n)dndgp
A, 0,0,m)2

The goal is check the kernel assumptions for Proposition B.0.2 in order to prove that ¢ and %
belong to ¥, for any 3 € (0, 1). For this aim, we define the kernels

Ky (6.0, 0.1) = sin()rd () sin(0 — n)go(0,n) (9 + 0,) A9, 0, ¢, 77)’

A(¢,60,0,n)%

and
0y (sin(p)rg(¢)go(e,m)) sin(0 — 1)

A(6,6,0,m)%

Let us start with /; and show that it satisfies the hypothesis of Proposition B.0.2. From straight-
forward calculus we obtain in view of the assumptions (H) and the mean value theorem

(0 + 9) A, 0, 0,m)| =[2(r5(¢) — 76()) (ro(#) — r0(0))
+2(ro(¢)ro () + ro(@)r((¢)) (1 — cos(8 — 1))
+ 2(sin(¢) — sin(p))(cos(¢) — cos())|
<(¢—9)* + (sing +sin¢) sin?((0 — n)/2). (4.4.102)

Ka(¢,0,0,m) :=

Using the inequality |ab| < 3(a? + b?) allows to get
sin |(9y + 9p) A(0, 0, 0,m)| S (6 — ¢)? + (sin® @ + sin® ¢) sin®((0 — 1)/2).
Thus, applying (4.4.100) we deduce that
sin @[ (9 + 0,) A8, 0, 0,m)| SIA(, 0, ¢,1)]- (4.4.103)
Then, putting together (4.4.97), (H2), (4.4.100) and (4.4.103) we find
sin()rg () sin((¢0 — n)/2)
(6 — ©)? + (sin*(¢) + sin*()) sin®((0 — 1) /2))

sin(¢)
¢ — )2 + (sin®(¢) + sin®(p)) sin*((6 — 1)/2))

As a consequence of (4.4.84), we immediately get

|K1(¢7 97 @, 77)| SHh”Llp

lw

SlAlLip

[SIE

K1 (6,0, 0,m)| S |1hllLipld — | sin((0 —n)/2)| 77, (4.4.104)
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for any /5 € (0, 1). Let us compute the derivative with respect to ¢ of K1,

sin()rg () sin(f — n)go (e, n)9s((0g + 0,) A(0,0, 0, 1))

6¢K1 (d)ﬂ 03 P 77) =

A(6,9,0,m)3
_ 5sin(p)rg(e) sin(0 — n)ga (0, 1) (9 + 9p) A(d, 0, 0. 1)) 06 A($, 6, 9, n)
2 A(9,0, p.m)?
From direct computations, we easily get
196((9 + 9) A6, 0, 0. m)| S |6 — ] +sin®((0 — n)/2) (4.4.105)
and
19A(6,0,0,m)| S |6 — ol + sin(p) sin((0 — m)/2). (4.4.106)
Then, it is clear from (4.4.100) that
95A(6.6,0.m)| < A2 (9.6, 0.7). (44.107)

In addition, one may check that

(9 + 0p) A, 0, 0,m)| < (6 — ) + (sinp + sin ) sin®((0 — n)/2)
<SAZ(6,0,0,0)(lp — ¢l + | sin((8 —1)/2))). (4.4.108)

By using (4.4.97), (H2), (4.4.100) (4.4.100), (4.4.103), (4.4.105), (4.4.106) and (4.4.108), one achieves

sin () (¢ — ol +sin*((0 — n)/2))
(& — )2 + (sin®(¢) + sin®(¢)) sin®((0 — 1) /2))
sin’ () (I — ¢l + [ sin((0 —1)/2)])

(6 — 9)2 + (sin(9) + sin(¢)) sin((60 — )/2)) *
sin?(p) (16 — ol + | sin((6 — n)/2))

(6 — )% + (sin*(¢) + sin®(¢p)) sin*((0 — 1) /2))

Therefore, using some elementary inequalities allow to get

|05 K1(¢,0,0,m)| S|IhllLip

Nl

+ 1Alluip

SlAlip

3
2

sin
(¢ — )% + (sin®(¢) + sin®(p)) sin*((§ —n)/2)
¢ — | ! sing
6 — )2 + (sin2() + sin(p)) sin®((0 — )/2))

Applying (4.4.84)implies for any 3 € (0,1)

105K1(6,0,0,m)| < Cl[hl|Liple — |~ sin((0 = n)/2)|7*

Now, let us move to the estimate of the partial derivative dy K1, given by

__sin(0)rg () (sin(0 — n)gs (2, 1)) (9 + 0p) A, 0, ¢, 1)
A(¢,0,0,n)3
N sin ()15 () sin(8 — 1) ge (0, 1) {gaqﬁ + 9,)A(4,6,0,1)}
A(9,0,0,m)2

|8¢5K1(¢7 67 ®, 77)| SHh’”Llp

SliAllLip

=

89K1(¢5 07 @, 77)
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2 A(¢7 97 907 ,r])
By definition of gy in (4.4.96) and (4.4.97), one concludes in view of (4.4.100) that

b sin(p)rg (@) sin(0 — n)ga (s, 1) (9 + 95) A, 0, 0, 1)) (0 A(¢, 0, 0,m))

109(sin (0 — 1) g0 (2, )| SlIklLip sin(e)| sin((0 = 0)/2)| S [BllLipAZ (6,0, 0,m). (4.4.109)

Moreover, using (4.4.102) one gets

109 {(95 + 0) A(6,0,0,m)} | <(sin(9) + sin(p))|sin(0 — n)| S A2(6,0, ,1). (4.4.110)

Using also the definition of A, we obtain

196 A6, 6, 0,m)| < Csin(¢)sin(p)|sin(0 — 1)| < sin(p)A2 (6,6, ¢, 7). (4.4.111)

Then, with the help of (4.4.100), (4.4.102) (4.4.109), (4.4.110) and (4.4.111), we can estimate 9y K
as

sin(0) (& — ©)2 + (sin(p) + sin(¢)) sin2((0 — ) /2))

(¢ — )2 + (sin®(¢) + sin?()) sin®((6 — 1)/2))*
sin®(p)

(¢ — 9)? + (sin®(¢) + sin>(p)) sin((0 — 1) /2)

sin(0) (& — ©)2 + (sin(p) + sin(¢)) sin2((0 — ) /2))

hl1; '
e o T (sin2(0) + sin () sin? (8 — )/2))°

|06K1(, 0, 0,m)| SIhllLip

+ (|7 | Lip

Consequently we get
I1h||ip sin® (¢
(¢ — ©)? + (sin*(¢) + sin*(¢)) sin®((0 — 1) /2)
< IRlluip | sin((6 — 1)/2)| " sin(p)
(0= 9)? + (sin*(6) + sin® () sin® (6~ n)/2))

Therefore we obtain by virtue of (4.4.84)

‘80K1(¢7 97 @, 77)| S

Nf=

00 K1(¢, 60, 0,m)| < CllhLipld — 0|~ P| sin((6 — n) /2|77, (44.112)

for any § € (0, 1). Hence, all the hypothesis of Proposition B.0.2 are satisfied and therefore we
deduce that ¢ belongs to ¢ ((0,7) x (0,2)), for any 8 € (0,1). The estimates of the kernel
K> we are quite similar to those of K1 modulo some slight adaptations. We shall not develop
all the estimates which are straightforward and tedious. We will restrict this discussion to the
analogous estimate to (4.4.104) and (4.4.112). First note that thanks to (4.4.97) and (4.4.98) one
gets

|95 (sin(0) 75(2)96 (. )| < | hllLip sin® ()| sin((6 — ) /2)].
This implies that

sin® (i) sin®((6 — 1) /2)
A(6,0,0,1m)2
sin(¢p) '
A(9,0,0,m)

|K2<¢7 97 2 77)‘ SHh’”Llp

SliAllLip

D=
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It follows from (4.4.100) and (4.4.84) that

| K2(,0,0,m)| < |Ihlliplé — || sin((6 —n) /2|~ (4.4.113)
which is the announced estimate. As to the estimate of 0y Ko we first write

9y, (sin(p)rg(@)h(e,n)) sin(0 — 1) L% (sin(p)rd(©)ge (0, m)) cos(d — )

89K2(¢7 07 @, 77) =

A(6,0,0,1)* A(6,0,¢0,1)2
3 aGA(¢7 97 ¥, 77)
——Ks(p,0,p,n)—F———= 44114
Straightforward calculations using (H2) and (4.2.17) show that
19, (sin()r5 () Dpga (0, m)) sin(@ — )] <Ihl sin® ()| sin((¢ —1)/2)|
3 ~ ip 3
A(9,0,0,m)2 A(9,0,0,m)2
sin®(p)
e 46,0, 6.m)
Putting together (4.4.100) and (4.4.84) implies
sin” () sin(e)
————— <[|sin((f — 2)|t—— L —
A3, 8,0, ~ = )
L (4.4.115)

< .
~|¢ — @lP|sin((0 —n)/2)[>~F
Therefore we find

|0, (sin()75(£)Daga (s, n)) sin(6 — )| - 1h][Lip |
A@,0,0,m)2 ~lo — olP|sin((0 —n)/2)]>~7

As to the second term of the right-hand side of (4.4.114), we get in view of (H2), (4.4.97) and
(4.4.98)

10, (sin()r5 ()96 (¢, m)) cos( sin® ()| sin((6 —7)/2)|

) SlihllLip

A(¢7 380777)% (¢, 9, (P,'f])g
sin?(p)
h|Lip————
Nl HLpA<¢’ 5o
It follows from (4.4.115) that
|9 (sin()rd () go (2, m)) cos(0 — )| _ Ilwip

A(6.0, 01} Slle {5 BTin((6 — w2 P2

Concerning the last term of (4.4.114), we put together (4.4.111), (4.4.113), (4.4.100) and (4.4.84)
that

|80A(¢7 , P11 )| —B o —(1-8)
Ko(¢,0,0,m) | 0 <||h|Lip| ¢ — sin( (60 2 —

SJHhHLipW - 80|7B| sin((0 — 77)/2|*(2*B)'

sin
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Therefore collecting the preceding estimates allows to get the suitable estimate for 9y K>,

106 55(6, 0, 0,m)| < |Ihlluiplé — || sin((0 — n) /2|~

The estimate for 04 K> can be done similarly in a straightforward way. Consequently the
assumptions of Proposition B.0.2 hold true and one deduces that % € ¢°((0,7) x (0,2n)).
Hence we obtain 9,G € ¢* ((0,m) x (0,2n)), with the estimate

105G (h)llgs < [Pl (4.4.116)

The next stage is to show that 9yG(h) € €* ((0,m) x (0,27)) following the same strategy as
before. From (4.4.95), we get

T 21
_ _1# 5111(()0)7‘0(90)]7’(()07 n)aeA(¢7 97 ®, 77)
9pG(h)(¢,0) = 2TO(¢)[ /0 4.0, dndep.

Direct computations show that

89"4((725) 65 ®, 77) 2T0( ) ( ) SHI(Q 77) = _8T]A(¢? 97 ®, 7])

It follows

" sin (@)ro(@)h(p,n)0yA(S, 0, 0,1)
A(6,0,0,1m)2

9pG(h)(¢,0) dndep.

On the other hand, integration by parts in 7 yields

/7'r /‘27I' 5111((,0)7“0(@)]1(90’ 9)8,7/1((?7 07 @, 77) d'r]d(p =0
- A(,6,0,1)°

Thus we deduce by subtraction

sin()ro() (h(,m) — h(e, ))57#1(%97%77)(1 J
/ / A($,0,0,m)% "

27“
/ / sin(p)rg () (h(e,n) — h((pﬁ)) sin(n — 0) dndep. (4.4.117)
A($,0,0,1m)

Since h € €19, then the mean value theorem implies

(@, 0) = b, )| S 1AlLipl0 — 7]

Moreover, by the 27-periodicity of h in 7 one obtains

9pG (h)(9,0) =

h(,6) = h(e,m)| S [hllgna] sin (60— n)/2)]. (44.118)
Define the kernel
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and let us check the hypothesis of Proposition B.0.2. First using (4.4.100), (H2) and (4.4.118)
we obtain

sind (i) sin? (0 = 1)/2)
(6= 9 + (sin(9) + sin () sin((6 — m),/2))
. sin(cp)

~

(& — )2 + (sin®(¢) + sin®(¢)) sin®((0 — ) /2))

[K3(0,0,0,m)| <

[NV

NI

Applying (4.4.84) yields

‘K3(¢>Ha 90777)‘ rg ||h

for any /5 € (0, 1). Let us estimate 0, K3 which is explicitly given by,

~ 3sin(e)rg(y) sin(n) (h(p,n) — h(p,0))05A($,0,¢,1)

1ol — o~ |sin((6 —n)/2)| 77, (4.4.119)

8¢K3(¢, 97 w, 77) =

2 A(,0,0,m)3

3 Dy A(6,6,0,1)
=—--K 797 ’ T AL a0 - N

o Kal0: 00 = g o)

By virtue of (4.4.107) and (4.4.119), we achieve

105K3(6, 0, 0,1m)| S|Bllgrald — 0|~ sin (0 — n)/2)| " A2 (6,0, 0,n),
1] 1.0
~1p — 2=Blsin((0 —n)/2)[F

for any 8 € (0, 1). It remains to establish the suitable estimates for 0y K3. First we have

9pA(9,0,0,m)  sin(p)rg(p) sin(n — 0)dph(y, 6)

3
69K3(¢7 97 2 77) = 7K3(¢7 07 2 77)

2 A(#,0,¢,1) A(,0,,7)
_ sin(p)rg(p) cos(n — 0) (h(y, ) — hip,0))
A(¢,6,0,m)2
Using (4.4.111) and (4.4.119) (where we exchange § by 1 — 3) we get
|69A(¢7 9,4%77)| Hh €l,a Singo
K3(0,0, ¢, S .
Ko@) G T~ o PToin((0 7217 Ak (6.6, 90m)
[172]lg1.0

~ |6 — ¢[P]sin((6 — n)/2)[2F

For the second term of the right-hand side of 9y K3 we write in view of (H2)

sin(¢)rg ()| sin(n — 0)19h(¢, 0)] sin’ ()| sin((6 — 1)/2)|

f NS 3
A($,0,0,1)2 A(¢,0,0,1)2
sin®(¢)

<l B
1lkie 5755, o, )

Applying (4.4.115) yields

sin(p)r3(¢) sin(n — 0)[|9sh(2.0)| iy |
A(6,0,0.m)} ~16— olPlsin((6 - n)/2)P7
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Concerning the last term of the right-hand side of 9yK3, it is similar to the foregoing one.
Indeed, using (4.4.118) and (H2) we get

sin® ()| sin((n — 6)/2)]
A(¢,0.¢,1m)2

» sin?(¢) .

N A(9,0,0,m)

sin(p)rd ()| cos(n — 6)||h(¢,n) — k(. 0)] <|lh
A(6,0,0,m)? ~

¢l

Sk

It suffices to use (4.4.115) to obtain

sin(go)r%((p)\ cos(n — 0)] |h(g0, n) — h(ep, 9)|
A(¢,0,0,1)?

sin® ()| sin((n — 0)/2)]
A(,6,0,1)?
|7l _

~p — plPlsin((0 —n)/2)|2~F

Sliallgre

Therefore we get from the preceding estimates

[Pl .
|6 — lP| sin((6 —n)/2)]>~7

Consequently, all the assumptions of Proposition B.0.2 are verified by the kernel K3 and thus
we deduce that 9,G(h) € €7 ((0,) x (0,2n)) for any 3 € (0, 1), with the estimate

|89K3(¢7 97 P, 77)' S

109G(h)

@8 Sk

¢la.

Putting together this estimate with (4.4.116) and (4.4.101) yields
IG(h)

18 S |k

Eliay

and this achieves the proof of the proposition. O

4.4.6 Transversality

We have shown in Proposition 4.4.7 that when 2 belongs to the discrete set {Q,,,m > 2}
then the linearized operator 9;F(Q,0) is of Fredholm type with one-dimensional kernel. This
property is not enough to bifurcate to nontrivial solutions for the nonlinear problem. A suffi-
cient condition for that, according to Theorem A.0.3, is the the transversal assumption which
amounts to checking ) )

02 1 F(Qny0) iy & Tm(0 (2, 0)),

where f} is a generator of the kernel of 8f1:“ (©2m,0). Note that as a consequence of (4.4.1) and
(4.4.2), for a function h : (¢,0) = >, 51 hn(¢) cos(nb) € X3, we get

Oy F(€,0)h(¢,0) =Y Lhn(9) cos(no),

with
LN () =va(9)hn(d) — / Hy (¢, 9) (9, 0)dep
0
=v0(9) (hn(9) — Kh(9)),
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where K is defined in (4.4.64). Hence, the second mixed derivative takes the form,
04, F(Q,0)h(¢,0) = —h(e,0).
Our main result of this section reads as follows.
Proposition 4.4.8. Let m > 2, then the transversal condition holds true, that is,
0%, F (Qn, 0) £, ¢ Tm(9F (2, 0)),
where f}, is a generator of the kernel of 9 F'(Qy, 0).
Proof. Recall from the proof of Proposition 4.4.7 that the function f;;, has the form
fn(0,6) = hiy(¢) cos(mb)
and A}, is a nonzero solution to the equation
Ko i (0) = i ()

It follows that
aé,fF(Qm7O)f;z<¢a ) = —hy,(¢) cos(mb).

Assume that this element belongs to the range of 0 fF(Qm, 0). Then we can find h,,, such that
B (0) = 102, () (hin (9) — Koy hun ().

Dividing this equality by vq,, and taking the inner product with A}, with respect to (-, -)q
defined in (4.4.66) yields by the symmetry of X

m

(B i)~y (Kb
:<hm,h*m>Q . <hm,/c§;mh*m>
:<hm,h:n - icgmh:n>
—0.

m

m

Qm

Coming back to the definition of the inner product (4.4.66) and (4.4.4), we find

/ (B (0))? sin(0) 13 (i0)dep = 0.
0

From the assumption (H) we know that 9 does not vanish in (0, 7). Then we get from the
continuity of A7, that this latter function should vanish everywhere in (0, ), which is a contra-
diction. Hence, we deduce that f};, does not belong to the range of 0fF(Qm, 0) and then the
transversal condition is satisfied. O
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4.5 Nonlinear action

This section is devoted to the regularity study of the nonlinear functional F' defined in (4.2.13)
that we recall for the convenience of the reader,

~ 1
F©2.1)6.0) = —= {1(0)(60.0) - 57%(6.0) ~mis2. (o)}
for any (¢,0) € (0,7) x (0,27) and where
r(e:m)
_ 1 rsin(p)drdnde
11)#.6)= / / / (e, cos()) — (1(6,0)e, cos(@))]

the mean m is defined in (4.2.11) and

7(9,0) =10(9) + f(,0).
We would like in particular to analyze the symmetry/regularity persistence of the function

spaces X defined in (4.2.15) and (4.2.16) through the action of the nonlinear functional F.

4.5.1 Symmetry persistence

The main task here is to check the symmetry persistence of the function spaces X}, defined in
(4.2.15) through the nonlinear action of F. Notice that at this level, we do not raise the problem
of whether or not this functional is well-defined and this target is postponed later in Section
4.5. First recall that

X0 = {f;[o,w] x [0,27] >R : f € €Y, £(0,0) = f(m,0) =0,
f(g—¢79>:f<g+¢,9> an cos an)}

n>1

Proposition 4.5.1. Let Q € R, f € X3 with m > 1 and assume that r( satisfies the conditions (H).
Then the following assertions hold true.

1. The equatorial symmetry:
F(Q,f) (r = .6) = F(Q.£) (¢,0), ¥(,0) € [0,7] xR
2. We get the algebraic structure,

F(Q,1)(¢,0) = fn() cos(n),

n>1
for some functions f,, and for any (¢,0) € [0, 7] x [0, 27].
3. The m~fold symmetry: F (S, f)(¢,6 + ) = F(Q, f)(¢,0), for any (¢,0) € [0,7] x R.
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Proof. (1) From the expression of F in (4.2.13), it is suffices to check the property for I(f). One
can easily verify using the symmetry of the functions cos and » combined with the change of
variables ¢ — T — ¢

r(p:n)
e _‘/ / / T e T
L / / / e ““7) rsin(r — )drdndyp
|(re®, — cos(g)) — (r(, )€, — cos(¢))|
) / / / (o) r sin(,p)drdnde
|(re®, cos(p)) — (r(¢, 0)e”, cos(¢))]

(2) In order to get the desired structure, it suffices to check the following symmetry

I(f)(¢,—0) = I(f)(#,0), V(¢,0)€[0,7] xR.

To do that, we use the symmetry of r, that is r(¢, —0) = r(yp, §), combined with the change of
variables 7 — —n allowing to get

R A e A rsin(yp)drdndy
1= == 4 [ [ [ (ret, cos(2)) — (r(&, —6)e=, cos(d))]
:_1/ﬂ /27r /T(%_n) rsin(p)drdnde
w) L o) - (1 0)e T, cos(@))
__l/ﬂ/zﬂ/r(%n) rsin(p)drdndy
=T ) ) e eos(9) - (r( 0)e, cos(@))
=1(f)

(¢,0).

(3) First, since r belongs to X then it satisfies (¢, 0+ 2T) = r(¢, §). Thus we get by the change
of variables n — n + %T

27 1 T fren rsin(p)drdnde
If) (¢, 0+=—=) = - - 21y i(0+2%)
m L b b |(7~em7cos(gp)) — (7"(¢, 0 + ﬁ)e m 7COS(¢))|
x T pr(entZ
_ _1/ /2 / o rsin(p)drdndy
rei(”+2l) ,cos(p)) — (r(o, H)ei(eJr%);COS((bm

_ / / /r(son rsin(p)drdnde
(ret, cos(p)) — (r(¢,0)e, cos(¢))]

1(f)(¢,0)

Notice that we have used the fact that the Euclidean distance id C is invariant by the rotation
action z — €' 2. ]
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The next discussion is devoted to the symmetry effects of the surface of the vortices on the
velocity structure. We shall show the following.

Lemma 4.5.2. If g satisfies (H) and f € X}, with m > 2, then

em / / s n)cos(n)ndp _,
(z—cosgo)2)2

z—cosnp) )

As a consequence, the velocity field defined in (4.2.4) is vanishing at the vertical axis, that is,
U(0,0,2) =0,

forany z € R.

Proof. Set for any z € R,

/ / sin(i9) 3y (r (19, 1) cos(n) )ddyp
7"2 (p,m) (z—cosgo)g)é ’
/ / sin(i9)y (1 (19, 17) sin (7)) dndep
r2 (o,m) (z—coscp)2>% '
Observe that from the periodicity in 7 we may write
/ / sin(p)(0,7)(w,n) cos(n)dnde
™ r2 (¢, n) + (2 — cosp) )1

/ / sin(p)r (i, 1) sin(n)dndg
.
o 2\ 2

7'23077 z—cosgo))

Since f € X5, then r(¢, —n) = r(¢,n) and so (0,7)(v, —n) = —(9y7)(¢, n). Therefore making
the change of variables n — —n allows to get I1(z) = 0.

To Check I>(z) = 0 we shall use the m-fold symmetry of r. In fact by the change of variables
n — 1+ 22 and using the 2m-periodicity in 77 and some elementary trigonometric identity, we

find
sin(¢)0, 80,77) sin(n + 27)) dnd
/ / (o) + (s —cos@)E

=cos(2m/m)I2(z) + sin(2w/m) 11 (z).

Since m > 2 and I;(z) = 0 then we get I>(z) = 0.
Coming back to (4.2.4) and following the change of variables giving (4.2.8) we easily get

U(0,0,2) = (I1(2), 12(2),0),

which gives the announced result. O
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4.5.2 Deformation of the Euclidean norm

The spherical change of coordinates used to recover both the velocity and the stream function
from the surface geometry of the patch yields to a deformation of the Green function. Notice
that in the usual Cartesian coordinates the Green kernel is radial and thus it is isotropic with
respect to all the variables. In the new coordinates we loose such property and the Green kernel
becomes anisotropic and the north and south poles are degenerating points. To deal with these
defects one needs refined treatments in the behavior of the kernel or also the adaptation of the
function spaces which are of Dirichlet type. The following lemma is crucial to deal with the
anisotropy of the kernel.

Lemma 4.5.3. Let m > 1,a € (0,1), rq satisfies (H), f € X, such that || f||Lip < € with € small

enough and set v = ro + f. Define for any ¢ € [0, 5], ¢ € [0,7], 0,7 € [0,27] and s € [0,1]
Js(d)a 97 2 7]) = (T((p, 77) - ST(¢7 9))2 + QST(QS? (9)7’((,0, 77)(1 - COS<9 - 77)) + (COS(¢) - COS(@)F'
Then

| Jo(,0,,m)| >C sin*(p), (4.5.1)
[s(6,0,0,1)| 2C((sin(9) + S62)sin?(0 — )/2) + (9 + 6P (0 - ), (452)

with C an absolute constant. Remark that we have restricted ¢ to € [0, 7 /2] instead of [0, 7] because the
symmetry of r with respect to 7.

Proof. Since f € Bxa (¢), for some ¢ < 1, and r verifies (H2) then

r(¢,n) =ro(p) + flo,n) > 2Csing — | f(p,n)].

In addition f satisfies (4.2.17) and in particular

|/ (e,
m < Cl”f”Lip'

It follows that,

r(p,m) > (2C — C1| flLip) sin(¢p).
By imposing || f|Lip < € = C%, we infer
r(¢,n) > C'sin(yp). (4.5.3)
Consequently, we obtain
Jo(9,0,,m) =r*(¢,n) + (cos() — cos(¢))* > C'sin*(p),
which gives the estimate (4.5.1). Let us now check the validity of (4.5.2). First, we remark that

Js(6,0,0,m) = r*(p,n) + 5*1%(¢,0) — 2s1(, )1 (0, ) cos(0 — n) + (cos(p) — cos(¢))?.

Denote
g1(z) :==r*(p,n) + 2* — 2xr(p,n) cos(6 — n) + (cos(p) — cos())?,
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and therefore we get the relation g (s7(¢,0)) = Js(¢, 0, ¢,n). From the variation arguments we
infer that the function g; reaches its global minimum at the point

=r(p,n) cos( —n).

Let us distinguish the cases cos(# — ) € [0,1] and cos(# — n) € [—1,0]. In the first case, one has
according to (4.5.3)

Js(¢797907 ) gl(ST'((f),e))
>g1(xc) = r*(,m) sin®(0 — 1) + (cos(p) — cos(¢))?
>C(sm2(<p)s1n (0 —n) + (cos(p) — cos(qb))Q).

Using that cos(6 — n) € [0, 1], one gets
sin?(0 — n) = 2sin*((0 —n)/2)(1 + cos(d — 7)) > 2sin®((0 — n)/2).
Moreover, since ¢ € [0, 5] and ¢ € [0, 7], we obtain
| cos(p) — cos(@)| =|(1 — cos(¢)) — (1 — cos(e))]
] sin?(6/2) — sin®(/2)|
=2|sin(¢/2) — sin(p/2)|(sin(¢/2) + sin(p/2))

>Cl¢ — ¢llo+ ¢l (4.54)

Hence
Js(@,0,0,m) 2C((sin2(@)sin?(6 = 0)/2) + (& + 9)*(6 — 9)%). (455)
In the second case where cos(f — 1) € [—1, 0], the critical point is negative, . < 0, and one has

from the variations of g;, the estimate (4.5.3) and (4.5.4)

JS(¢797 @7”) :gl(ST(d), ))
>g1(0) = r(ip,m)? + (cos(p) — cos(¢))?
2

>C(sin®(p)sin((0 — 1) /2) + (6 + ©)*(¢ — ¥)?). (4.5.6)
Putting together (4.5.5) and (4.5.6), one deduces that
J(,0,0,m) 2C (sin()sin? (0 = 0)/2) + (6 + ¢)2(6 — 9)?). (457)

for any ¢ € [0,7/2], ¢ € [0,7] and 0,7 € [0, 27].
Following the same ideas, we introduce the function

g2(x) = 2%+ 32r2(¢5, 0) — 2sxr(¢p,0) cos(6 — n) + (cos(p) — cos((j)))Z,

which satisfies g2(r(p, 1)) = Js(¢, 8, ¢,n). Then as before we can check easily that the function
g2 reaches its minimum at the point . = sr(¢,0) cos(f — n). Similarly we distinguishing be-
tween two cases cos(f — 1) € [0, 1] and cos(6 — n) € [—1,0]. For the first case, using (4.5.4), we
have

T5(6,0,0,m) 2C(s” sin(@)sin®((0 = 1)/2) + (6 + ©)*(6 — )).
Since ¢ € [0, 7/2], we have that sin(¢) > 2¢, and then
J5(,0,0.m) >C(s*¢?sin®((0 —1)/2) + (¢ + ¢)*(¢ — ¥)?). (4.5.8)
By summing up (4.5.7)—(4.5.8) we achieve (4.5.2). O
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4.5.3 Regularity persistence

In this section we shall investigate the regularity of the function F introduced in (4.2.13). The
main result reads as follows.

Proposition 4.5.4. Let m > 2, € (0,1) and ro satisfy (H). There exists ¢ € (0,1) small enough
such that the functional )
F :R X Bya(e) = X,

is well-defined and of class €. The function spaces X2, are defined in (4.2.15) and (4.2.16).

Proof. First we shall split the functional F into two pieces

2T
F(O.1)(6:0) = Fi1(6:0) = 3100 - 217r/ 6.0 - 51)(0.0)] db
0
with
_1(f)(#,0)
F()(6,0) == 15
Fo(f)(6,0) =2f(,0) + Sf@%

Note that I(f) is defined (4.2.14) and it is nothing but the stream function v associated to the
domain parametrized by

($,0) € [0,7] x [0,27] ((r0(¢) + 1(6,0))e”, cos ¢> .

Thus M
Fu(f)(6,0) = Yo ((ro(¢) +:;((i,) ))e?, cos gb)' 459)

We point out that according to the general potential theory the steam function vy belongs at

least to the space ¢'1%(R?). The proof will be divided into three steps.

Step 1: f — Fy(f) is €. In this step, we check that F is well-defined and of class ¢". The first
term is trivial to check. As to the second one, it is clear by Taylor formula using the boundary

conditions and (H2) that the function I” is bounded and vanishes at the points ¢ = 0, 7. For

o

the regularity, we differentiate with respect to ¢,

P@.0N _ oo (0N, ,1(6.0)
o (5 ) =0 (07) +2lg oo

Using again Taylor formula and the assumptions (H) on 7y we deduce that the functions

(¢,0) — fs(iﬁ’g) and (¢,0) — fé‘(l(f) belongs to ¥“. Thus using the algebra structure of this

latter space we infer that (¢, 0) — % belongs also to €. The same algebra structure allows

to get 0, ({—j) € ¢“. Following the same argument we obtain Jy F> belongs to ¢’*. Concerning

the symmetry; it can be derived from Proposition 4.5.1 combined with the fact that frequency
n = 0 is eliminated in the definition of F' by subtracting the mean value in 6.
Now let us check the ! dependence in f of Fj. First we can check that its Frechet derivative

takes the form
1(9,0)h(9,0)

OrFo(F)1(#,0) = 2h($,0) + 2=
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Using similar ideas as before, we can easily get that

107 Fa(f1)h = 05 Fa(f2)hllxg < Cllf1 — fallxg 7]l xg -

This implies that f — 07 F>(f) is continuous and therefore F; is of class €.

Step 2: f — Fi(f) is well-defined. This is more involved than F,. According to Proposition
4.5.1 the functional F} is symmetric with respect to ¢ = 7 and therefore it suffices to check
the desired regularity in the range ¢ € (0,7/2). Let us emphasize that we need to check the
regularity not for F but for its fluctuation with respect to the mean rate, that is,

27
F1:(00) = RGO = (Ao with (F(Di= 5= [ A0

First, we shall check that .#; is bounded and satisfies the boundary condition .%; (0, §) = 0, for
any 6 € (0,27). The remaining boundary condition .%(w, §) = 0 follows from the symmetry
with respect to the equatorial. For this purpose, we write by virtue of Taylor formula

1
Yy, € R?, Yo(xp, cos @) =1o(0,0, cos @) + xp, / Vo (T:Jch,cos ng)dT. (4.5.10)
0

Making the substitution z;, = (ro(¢) + f(,0))e? and using (4.5.9) we infer

vobs) (S8

Fi()(6.6) = )e [ S (7(r00) + 106,006 cos0) ar

T0(¢) ro()
~ (0,0, cos ) B
7.7’1‘0(¢) +</171(¢, 9)

We observe that the - denotes the usual Euclidean inner product of R%. Consequently, we obtain
F1(¢,0) = F11(9,0) — (F11)0- (4.5.11)

Let us analyze the term .#; ; and check its continuity and the Dirichlet boundary condition.
First we observe from the assumption (H2) that 0 is a simple zero for rp and we know that
f(0,8) = 0, then one may easily obtain the bound

(71,10, 0)] < C(L+ [0 fl| zo<) IV ntbol | oo r3)
Furthermore, according to Lebesgue dominated convergence theorem we infer

s T _ 8¢f(0, 0)\ o .
lim #1.4(6,6) = (1 G )e Vit (0,0,1),

and this convergence is uniform in # € (0,27). Notice that the same tool gives the continuity
of #1 1 in [0;7/2] x [0; 27].
Now, applying Lemma 4.5.2 we get V4 (0,0, 1) = 0, and therefore

Vo e (0, 271'), lim 9171((]5, 9) = lim <§171>9 = 0.
»—0 ¢—0

This implies that .%; is continuous in [0, ] x [0, 27] and it satisfies the required Dirichlet bound-
ary condition .%1(0,6) = % (m,6) = 0.
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The next step is to establish that 9p.%#7 and 9,71 are €. We will relate such derivatives to
the two-components velocity field U = Vﬁ@bg. Differentiating (4.5.9) with respect to 6 leads to

00 71(6,0) =00y ()(6,0)
—(6) Vatn(r(6, )¢, cos(@) - ({6 B)ic®” + dur(s, ewﬂ)

_1(6,0),, Ulr(6,0)e”,cos(d)
r0(9) r0(9) |

where (¢, 0) = ro(¢) + f(¢,0) and recall that - is the usual Euclidean inner product of R2.
Concerning the regularity of the partial derivative in ¢, we achieve

U(r(¢,0)e”, cos(9)) - ¢ +84r($,6)

(4.5.12)

OB (1)(6.0) = = T8 (r(6.0)e" cos(9) + P BT (6, 0)e” cos() -

- S 0.00(r(0,0)e” cos(o)

- 2 6.0)c%, cos) — Dar(0.0) OV

- 20, 0u(r(0,0)e” cos(). 4519)
Define

F1(6.0) = B 0(r(0.0)6", cos(e),
and
F2(6.0) = r(6.0) rl( ¢)COS(¢)) e,
Then from (4.5.13) we may write
sin(9)

8¢F1 (f)(¢7 9) = _/1(¢7 ) /2(¢7 ) 8zw0(r(¢7 9)610’ COS(¢))'

ro(9)
Note that the last term belongs to . Indeed, as (¢,0) — (r(¢,0)e COb(¢)) belongs to
%1 and 0.1 € €°(R®) then by composition we infer (¢,6) — 9.1 (r(¢,0)e?, cos(¢)) is in
%°((0,) x (0,27)). On the other hand, the function 52 - belongs to ¢’ and thus by the algebra
structure of ¥* we obtain the announced result.

Concerning the term _¢;, we use Taylor formula for the stream function v as in (4.5.10)
finding that

, 1
J1(4,0) :rO(@wo(O’O’COS 9) + 7"0_1(¢) (1 + f(¢,0)) / Vhwo(s r(¢, ) , COS (;S)ds et
0

r3(9)

1
_r6(¢)¢0(07 07 COS ¢) - f(¢7 9) 7,71 ST 6@'9 s - iew
) (1) “b)[ Uer(@, 1%, cosg)ds ™

We observe that the first term is singular and depends only in ¢ and therefore it does not
contribute in _#; — (_#1)y. Since (¢,0) — ’;(()"Zf)) belongs to ¢ then to get #1 — (_#1)g € €~ it
suffices to prove that

1
(6,6) / Ulsr(9,0)e,cos(@)) oy, o (4.5.14)
A r0(9)
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On the other hand to obtain ¢, € ¥ it is enough to get
Ur(6,0)r",cos(9)) .
ro(¢)

From (4.5.12) we get that 0y F'1 (f) € € provided that (4.5.14) and (4.5.15) are satisfied together
with

(¢,0) —

€6~ (4.5.15)

(6,0) = U(r(¢,0)r", cos(¢)) - € €. (4.5.16)
By virtue of (4.2.10) and the fact that U = V; 1), we find that

; sin() (Oyr(p, m)e™ + ir(p,n)e™) dndp
U(r(¢,0)e"?, cos(¢) : : 4517
i S / / ew o)~ e e )
Next we intend to prove (4.5.14), (4.5.15) and (4.5.16).

e Proof of (4.5.16). Using (4.5.17), we deduce that

, cos( sin(p)dy (r(,m) cos(n — 0)) dndp '
e / / 6‘9 ,cos(¢)) — (r(p,m)e™, cos(¢))|

Using the notation of Lemma (4.5.3) we find that

|(r(¢,8)e”, cos(¢)) — ({0, m)e™, cos(p))| = Jlé(%@,%n),

and therefore we may write

U(r(¢,0)e™?, cos(¢ / / sin(yp go n) cos(n — 0)) dndtp‘
Jl (¢v » P, 1 )

This can be split into two integral terms

U(r(¢,0)e™?, cos(¢)) - / / sin(p)yr so, n) cos(n — 0)dndep
(6,6, 0,m)

/ / sin <p)r(cp, n) sin(n — 0)dnde
Jl ¢v , P11 )

:=11(0,0) — L3(0,0). (4.5.18)

Next, we shall prove that Z; is ¢“. Notice that the second term 7 is easier to deal with than 7;
because its kernel is more regular on the diagonal than that of 7;. To get Z, € € it suffices to
use in a standard way Proposition B.0.2. We shall skip this part and focus our attention to the
proof to the delicate part Z;. For this aim let us define the kernel

sin(p)0,r(p,n) cos(n — 0
%(Qéae,@,n): (SO) nl(sp ) ( )
J12 (¢7 97 QO, 77)
We shall start with checking that .#; is bounded. For this goal we use Lemma 4.5.3 which
implies
C sin(p)|0yr (e, 1)

H1(9,0,0,m)| < 3
A 0] {(¢ +¢)2(6 — ©)? + (sin’ () + ¢2) sin®((0 — ) /2)}2
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It is easy to check the inequality

sin(¢p) < 1 .
((p+ 026 = )2 + Gin(9) + ) sin(6 = 0)/2))* (&= @) +sin2((0 ~0)/2))*
(4.5.19)
By interpolating between
(60 =) +sin2((0 = m)/2))* 2 16 - ¢,
and A
(6= @) +sin2((0 —m)/2))* = [sin((8 — m)/2),
one finds that for any 5 € [0, 1],
sin(p) < 1
< . . (4.5.20)
1 — |18 sin((0 — B
(0 + 01206 — 92 + (sin(p) + ) sn2((0 —)2))* @7 #1702
implying that
|16, 0,0,n)| < ¢ (4.5.21)

[@ — @' [sin((0 — ) /2)]P

Therefore, we easily achieve that 7; € L*°. To establish that Z; € ¥“, we proceed in a direct
way using the definition. Before that we remark that to get the ¥ regularity in both variables
(¢,0) it is enough to check the ¢’ *-regularity separately in the partial variables. Thus we shall
check that ¢ — Z;(¢,0) is €*(0, 7) uniformly in 6 € [0, 27]. The ¢ “-regularity of the mapping
0 — I1(¢,0) uniformly in ¢ € [0, 7] can be done in a similar way to the preceding one, and to
alleviate the discussion we shall skip this part. Take ¢1, ¢2 € [0, ] with 0 < ¢1 < ¢, then it is
easy to check from some algebraic considerations that

T1(62.6) — Ta(61.0 / / sin(ip) 9y (0, ) cos(n — 0)(J1(d1, 0, 0, n) — Ji(¢2,0, ¢, m))dnde
1§¢27 , @, 1 )Jf(¢1,9,(p,’l’])(Jf(¢170,g0,77)+J1§(¢2,97(p,7’]))

Coming back to the definition of .J; seen in Lemma 4.5.3, we can check that

Ji(¢1,0,0,1) — Ji(¢2,0,0,1) =(r(¢1,0) — 1(¢2,0)) (r(¢1,0) — 7(0,0) + r(¢2,0) — r(,n))
+2r(, 1) (r(¢1,0) — 1(¢2,0)) (1 — cos(6 —n))
f(cosgofcosdn +COSQ07COS(Z52)(COS¢1 fcosqﬁz).

Since r € Lip we infer by interpolation
[1(61,6) = 7(62,0)| < Clor = 21 (1r(91,8) = rlp, )| + [r(62,6) — ()],

and

[r(61,0) = (62, 0)] < Cln — 2l (r'=(01,0)] + ' (62,0)).

Consequently we find

|J1(¢170790777)7J1(¢2767§0777)‘ < C‘¢1 - ¢2‘a(|,’4<¢17 ) -r 907 ’2 “+ ’7" ¢27 7"(80,77)|2_a
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+ (0, ) (r' 7 (¢1,0) + ' (¢2,0)) (1 — cos(n — 6))
+ | cos(¢) — cos(¢)|>~* + | cos(g) — Cos(¢2)|2_a).

From straightforward calculus we observe that
Ir(¢i,0) = r(, >~ + (0, m)r(¢i,0)' (1 — cos(n — 0)) + |(cos(ip) —cos(a) "™ _
2—«a — ’

(¢Z? 7807 ) 2

and then we find

11(61,0,0,m)~T1(62,8,0,1)| < Clén — 621" (1,7 (D16, 0m) + 1,7 (9,6, 0,m))-

It follows that

|J1(¢17 y P51 )7J1(¢279790777)’

1%(¢27 aSO 77)]1<¢17 y @51 ) ( (¢17 2%/ )%—’_Jl%((b%e?@vn))
[$1 — ¢>2|a n [$1 — Pa|® _ (4522)

a 1 a
J7 (92,0 ,so,n)Jl (01,0,0,m)  JZ(P2,0,0,m)J7 (¢1,0,0,m)

S

Using (4.5.22), one finds

sin()|0yr dnd
IZ1(¢2.0) — T (61,0)] Sl — ¢2|a/ / )0y, m)ldndp
']1 ¢23 , @, M )Jl (¢1a 7@777)
2
sin(¢)|0yr (v, n)|dnd
L gMa// 0w (o.m)ldndp
Jl ¢25 7@777)‘]1 (¢1a 7@777)
By virtue of (4.5.20), for any § € (0,1) we obtain

// sin (¢ |37“<907 )|dnd // |0y (@, m)| T, 2 (¢2,9,s0,77)d77d<ﬂ_
Jp |61 — [' =Pl sin((6 — n)/2)|°

¢279 ®, U)J1 ¢17 , P51

Hence, we get in view of Lemma 4.5.3 and (4.2.17)
(0%

(sin® (i) + ¢7) sin((0 — 1) /2))

o
2

|877T(90777)| <

T1(8i,0,0m)2 (0 + ¢0)2(6i — )2 +

Sl — |~
for any ¢ = 1, 2. This implies that

/ / sin(y)|0, 7“(90, )ldnde / / |p2 — |~ *dndep
Jl |1 — [t sin((0 —n)/2)|P

¢27 y Py 11 )Jl (d)l) y Py 1]
< |¢2_90|_ad()0.
~ ) ler—eltf
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It is classical that i
_ —«
sup %dgp < 00,
#1,02€(0,7) Jo |¢1 - 90|
provided that 0 < o < 3 < 1. Similarly we prove under the same condition that

)| 0, dnd
sup / / sin(¢)| 7"(% mldndp
91$2€(0m) 0 J2 ¢27 , P51 ) 1 (¢179780777)

0€(0,27)

Putting together the preceding estimates yields forany 0 < a < 8 <1

Vo € (0,27), ¢1, 02 € (0,7), |Z1(¢2,0) — Z1(91,0)| < Clo1 — ¢2|?,

where the constant C' is independent of 6, ¢; and ¢,. Using similar ideas, we can also prove
that
Z1(¢, 02) — Z1(¢, 61)| < Cl01 — 62|

Finally, this allows to get that Z; is (0, 7) x (0, 2).
e Proof of (4.5.15). In fact we shall establish a more refined result:
U(sr(¢,0)e”,cos(9)) . 4
-ie
ro(¢)

uniformly with respect to s € [0, 1]. This allows to get the results (4.5.15) and (4.5.14).
Coming back to (4.5.17) and using J, introduced in Lemma 4.5.3 we find the expression

U(sr(¢,0)ei9’cos(¢)) it sin(¢ ( (¢,m)sin(n 0))
ro(¢) ro(o) / / %qﬁ’ P dndep.  (4.5.23)

(¢,0) — e ([0, 7] x [0,27]).

Moreover, by Lemma 4.5.2 we have

v .0) € (0,7) x (0,27), / / sin() 0y (r(,n) sin(n — 0))dndy _ 0
, JO(¢3 P, ) 7

and then we can subtract this vanishing term obtaining

U(sr(¢ 9)6’0 COS(¢)) 0 _

- e

ro(¢
bm ©)0 7] r(go, n)sin(n — 6’))5(57“(¢, 0) — 2r(p,n) cos(6 — 77))
JZ(0,0,0,0)J3 (6, 0.0)(JZ(¢,0,0,0) + JZ (6, 0,m))

dndep.

Notice that we eliminate .the Variable ¢ from the definition of Jy because it is independent of
this parameter. Since (¢, ) — e.6) 7o) ¢) is €*, then to get the desired regularity it is enough to
check it for the the integral term. Denote

Hal, 6.0, 0.m) = Sin@l)@n (r(e,m) si?(n — 9))8(8:‘((% 0) — 2r(yp, 717) cos(f —n))  wso

JS§(¢)07 §07n)<]05 (¢7 ()057]) (JS§(¢)05 80,77) + JO§ (¢7 ()0577))
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and let us show first that

T 27
(0,0) — / / Ha(s, 6,0, p,m)dndyp,
0 Jo

belongs to L. It is plain that

sin(p) (¢, 1) + 0yr (s, )| sin(n — 0)[)s(sr(¢,0) +r(,m))
JSE (¢a 9? @, n)JO(¢> @, 77)

| A2 (s,6,0,0,m)] S

Combined with the estimate (4.5.1), it yields

Ha(s, 6.0, 0,m)| < T2 1)+ 10r eyl sinn = 6)])s(s7(6,6) + ().
sin(p)J3 (6,6, ,7)

As we have mentioned before at different stages, the symmetry allows us to restrict the
discussion to the interval ¢ € (0,7/2). Then using Lemma 4.5.3 and (4.2.17) we achieve that

sr(¢p,0) +r(p,n) < s¢ + sin @
JZ (6,0, 0,m) {(p+0)%(¢ — ©)? + (sin®(p) + s2¢?) sin*((0 — 1) /2) }
< ! : (4.5.25)

D=

(6 — )2 +sin2((8 — 1)/2))

Hence, the estimate of (4.2.17) allows to get

Ao (s, 6,0, 0,1m)| <—Sne) +sin?(@)] sin(6 = )]

sin() (¢ — )2 + sin((0 — n)/2))?
1 1
< + .

T (6 — )2 +sin2((0 - n)/2))% sin' =% ()

By interpolation we deduce for any 5 € (0,1),

1

oa—1
|<%/2<87¢797(p777)| 5|¢ _ S0|1_ﬁ| Sln((0 o 77)/2)|6 + s ((p)

It follows that

T 2T
(6,0) — / / Ha(s,¢,0,¢,m)dnde € L=((0,7) x (0,2)).
0 0

Let us move to the ¥“-regularity of this latter function. This amounts to checking the partial
regularity separately in ¢ and 6. The strategy is the same for both of them and to alleviate the
discussion, we shall establish the regularity in the variable 6, contrary to the preceding section
where it wass established for Z; in the direction of ¢. The goal is to get a convenient estimate
for the difference

™ 21
/ / (Aa(s, 0,01, 0,1) — Ha(s, d,02,¢,1))dnde,
o Jo
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where 0 < 0; < 6, < 27. Coming back to the definition of the kernel %5 in (4.5.24) one deduces
through straightforward algebraic computations that

Ho(s, 0,01, 0.m) — Ha(s, ¢, 02, 0,1m) = T3 + Ly + L5 + Ls.
with
7, — (@), [T(sovln)(sin(n - 911) — sin( — ?2))]8[87“(% o) - 2r(ip, ) cos(61 — n)]
J2(8,01,0,1)JE (6, 0,1m)(J2 (6,01, 0,m) + J3 (0, 0,1))

Y

—~

1 —02)]s[sr(¢,61) — 2r(, n) cos(r — n)]

(0,0, n)(lﬁ(@ 01,0,m) + Jo%(sb, ©,n))
Js<¢702790777) - JS(¢7 917@7”)

[JS% ((bv 927 2 77) + ‘]O% (¢7 ©s 77)] [JS% (¢7 917 2 77) + JSé ((bv 027 @ 77)]
sin(p) 0y [r(go, n) sin(n — 02)}3[57"((;5, 01) — sr(o,62) — 2r(p, n)(cos(01 —mn) — cos(fy — 17))]
JSE (¢a 917 P 77) JO§ (d)a P, 77) (JSE (¢7 927 P 77) + JO§ (dja P, 77))

7 _ sin(yp)0, [7(¢,n) sin
4= 1
J32 (¢7 91) 2 77)‘]

Sl

X

)

5 —

and
7, = 5n(@)0y (r(@,m) sin(y — 02)) s [57(9, 0) — 2r(p, ) cos (6 — )]

To(6,01,0,m)2 Jo(6, 0,m)2 (Ju(, 02, 0,1) % + Jo(, 0,7)7)
Js(¢7 027 @, 77) - JS(¢7 917 @, 77)

X .

1 1 1
JS2 (¢7 927 P 77) (J52 (d)? 927 2 77) + J52 (¢7 917 ©s 7]))

We shall estimate independently each one of those terms. Concerning the term 73 it can be
estimated using (4.5.1)

sin() (r(¢, n) + 1057 (¢, m)[) s (s7(¢,01) + r(,n))

T
SiHQ(QO) Jg <¢a 917 12 77)

<16y — gy L0 192 m)s (s (9. 00) + (o).
sin()J2 (¢, 01, ¢,m)

Then by virtue of (4.5.25) and (4.2.17), we find

|Zs| <101 — 62

01 — 62 (sin(p) +sin(p))
sin(p) ((¢ — )2 +sin?((61 —n)/2))
< *Hp) ~

(6 — ©)2 +sin®((01 —1)/2))2
Combining this estimate with the interpolation inequality: for any § € [0, 1]

1 1
(6 o+ snl(01 ) }3 1o OPTon(Cr— 0/2)

Z5] <

SIS

|91 — 92| sin'

we infer
|61 — b ,
sin' ()| — ¢[8] sin((n — 61)/2)|' 7

VEIDS
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Thus

o 01 — 62|dndp
Taldndp <
// Lsldnd < // 2 — ol [sin(( — 01)/2)[7

S0y — 2],

uniformly in ¢ € (0, 7) and 61,6 € (0,27), provided that 0 < f < a < 1.
Concerning the term Z,, we first use the definition of J; in Lemma 4.5.3 and one may check

|JS(¢7 927 2 77) - JS(¢7 917 @, 77)‘ §|8T(¢7 91) - 8T(¢7 02)|(|ST(¢7 91) - T(@? 77)| + |8T(¢7 02) - 7"(807 17)|)
+2(sr(, 61) — sr(e,02))r(¢,n)(1 — cos(61 — 1))
+ 2s1(, 02)r (¢, n)‘ cos(fa — n) — cos(6; — 77)‘ (4.5.26)

Using the trigonometric identity
1 —cos(8 —n) = 2sin((0 — n)/2), (4.5.27)
we get
1 1
|JS(¢7 927 2 77) - Js(d)a 017 P, 77)| §|ST(¢a 01) - 8T(¢a 02)' (‘]52 (d)a 027 ®, 77) + J52 (d)’ 013 ®, 77))
+ 2s7(¢, 02)7(p,m)| cos(B2 — ) — cos(fy — n)|. (4.5.28)

From (4.2.17) combined with Taylor formula we find

02
1(6,02) — (. 61)] < ] 9 3n7"(<1>,77)d77‘

< 162 = 01 sin® (9).
Therefore we get by interpolation inequality
[57(6,61) — s7(,02)] S 161 — 0556 [[s7(6,61) — 10, m)|"
+lsr(6,62) = (o).
Hence
57(6,00) = 57(6,02)| S 101 = 0al°s6% [ 17 (8,01, 0,0) + L7 (6,00, 0m)] . (4529)

Combining (4.5.29) together with (4.5.26) implies

|JS(¢7 027 ®, 77) - JS(¢7 617 P 77)| §|91 - 92|asa¢a2 (JSli% (¢7 927 @, 77) + JSli% (¢7 917 ®, 77))
+2s1 (¢, 02)r(p, 77)| cos(fy —n) — cos(b; — 17)} (4.5.30)

Using once again (4.5.27) we get successively
— [ cos(0 — ) — cos(0y — )| < 2( sin® (02 —n)/2) + sin*((01 — n)/2))

and

52\@‘\/17005(92777)7\/lfcos(ﬁlfn)‘(]sin((ﬁl n)/2)| + |sin((62 — n)/2) \)
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CHAPTER 4. TIME PERIODIC SOLUTIONS FOR 3D QUASI-GEOSTROPHIC MODEL

<2/61 — 6| (Isin((01 — m)/2)| + |sin((62 — m)/2)]).
where we have used the inequality
| sinz| —[siny|| <[z —yl.
Hence we deduce by interpolation
€ 5161 — 0] (Isin((61 — n)/2) P~ + | sin((62 — m)/2)P~°). (45.31)

Using the assumption (4.2.17) and (4.5.2)we find

s1(6, 02)7 (2, )€ S sildn — 0ol (Isin((01 —m)/2) P~ + [sin((0 — n)/2) >~
S 5a¢a|01 _92| |:‘]3 : (¢)017S0)77)+‘]3 (¢a 02790a ):|

Inserting this inequality into (4.5.30) implies

a o 1-3 1-3
|']S(¢7027S0)77) (¢ 01580 77)' <|61_02| S ¢ ( 2(¢7‘92?903 )+JS 2((1)7017%0)77))‘
It follows that

|JS(¢592a@a ) J(¢7017S0777)| <|9
1
JS2 (¢7 627()07 )+JS (d)a 617()07 )

Thus we get

1

— 02|%s% 9" ( " (6,62, ¢, )+Js " (6,01, 0, ))

T2 < 6y — 0] — (r(sm) + Oyr ()] Sinl(92 —n)l)s(sr(d,61) + r(w;n))8“¢a2
JE (0,01, ,m) (sin(p) + JZ (6,01, ,m))" (sin(p) + JZ (¢, 02, ¢,7))
(r(:m) + Oyr(,m)| sin(82 — )|)s(sr (¢, 61) +r(p,m))s"0”"

J2 (6,00, 0.m) (sinp) + J2 (6,61, p,m)) (sin(p) + JZ (6,62, 0,m))"

Applying (4.5.25) combined with (4.2.17) we arrive at

+ 61 — 62|*

|61 — 62| (sin(p) + sin®(y)| sin(f2 — n)|)ssa¢a2
{(¢ — )2 +sin®((61 —n)/2)} % (sin(p) + JZ (¢, 01,0, m))*(sin(p) + JZ (¢, 02, ,7))
|01 — 02|“(sin(cp) + sin®(p)| sin(f2 — 77)|)ssa¢>0‘2

{(¢ — ¢)? +sin?((61 )/2)} (sin(yp) + Jé(@ 01, ¢,m))(sin(p) + Js%(cb, 02, %,1))*
< T+ Fo. (4.5.32)

1Z4| S

_l’_

The right hand side terms J; and 7> are treated similarly and we shall only focus on the first
one. Using (4.5.2) allows to get

|61 — O2]*
{(6 = 9)2 +sin((01 — n)/2)}? sin® ()

01 — 0] sin(6z — )] 59 |
[(6— )2 +sin((81 —7)/2)} 2 (sin() + J2 (6,0, 0,1))

NABS

+
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4.5. NONLINEAR ACTION

Using (4.5.2) we deduce, since o € (0, 1), that

[sin(0z — )| 526 < |sin(fa — )| 52 ¢
S J:TQ (0,02, 0,m). (4.5.33)
Thus
ME b1~ 5"
{(6— )% +sin2((81 — n)/2)}* sin° ()
N |61 — 6a]°

(6 — )% + sin2((01 — )/2)}? sin = ()

The same estimate holds true for J;. Therefore we find

T4 < 16y — 00 sin™ () + sinaz_l(cp)
{(¢ — ©)2 +sin?((61 —1)/2)}

Hence by interpolation inequality we get for all v € (0,1)

(NI

sin—® s a?—1
sin -+ sin
101 — 0] (¢) (¢)

Tl S = o s — M2

| ~

It follows that

2m ) + sin® ’1(g0)
[ ) mlanae <ios - 92'/ / AT, e

S101 — b2,

uniformly in ¢ € (0,7) and 01,62 € (0, 27), provided that 0 < v < min(1 — o, a?).
As to the treatment of T, it is quite similar to Z,. Thus we shall omit the details for this term
and focus on the estimate of the term 75. First we make the decomposition

Is = J3+ Ju,
with
j3 _ Sln(@)afl[ (SD, 77) Sln( )] [ST(¢7 91) - ST(¢7 92))]
Js§<¢a 017 w,n )‘]0 (<f>, @, n )( §<¢7 027 P, 77) + ‘]0 (d)a @, n ))
and

o S()0y[r (0. m) sin(n = 02)] sr(p, m) [ cos(61 —n) = cos(02 — )]

1 1 1 1
J82 (¢7 017 2 U)Jo2 ((7257 2 7]) (J82 (¢9 027 2 77) + JO2 (¢7 2 77))
Let us start with the last term J4. Using Lemma 4.5.3 combined with (4.5.31) and (4.2.17) yields

Js = —

[suup + sin®(¢p) | sin ((n — 62)/2)|] sin ¢

ARSI T
(¢a 91) 2 77) (‘]82 <¢a 027 P 77) + sin (p)

From (4.5.2) we infer

1
e sin® () + sin® () JZ (¢, 62, ¢, 1)

1

| Tal S161 — T T
J32 (¢7 91) 2 7]) (J82 (¢> 027 ®, 77) + sin (p)
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sin®
<|6; — 92|a#.

J? (gbv 917 @, 77)
Applying (4.5.25) leads to

a—1
7| S[61 — 6] d
((¢ — )2 +sin?((61 — n)/2))
(pa—l

G5« .
P e (o

T 2 ™ 2 a—1
e Hdndy
Jaldnde < |01 — 621 -
[, ) ttanae < 10— || =T — /27

SO = 62,

(SIS

NZE

Therefore

uniformly in ¢ € (0,27) and 61,6, € (0,27) provided that 0 < 8 < a < 1. Next we shall deal
with the term J5. Then by virtue of (4.5.29) combined with (4.2.17) we may write

5] 161~ 6ol sin(i) + sin* ()| sin(0z — )|
(d)aelv(pa ) ( (¢7927(p7 )2+Singp)

X (56 [ (0,0 ) + I (6,01

It follows that
(sin(p) + sin®(¢)|sin(0; — n)|)s' T
: o
J (¢791ﬂ(p3 )(']82 (¢7 92>()0a77) +Sln(p)
( ) + sin® ()| sin(fy — ”7)|)31+a¢a2

1
(¢7 917 2 77) (‘]52 (¢7 927 2 77) + sin 90)
S101 = 02| T30 + 01 — 02| T3.2.

According to (4.5.33) and since « € (0, 1) we find that

| Ts| Sl01 — 02/

+ 161 —

| < Snle) + sin ()| sin(0s — )" 576"
371’ ~ 1 1 ] o
J52 (¢7 917 Sov 77) (JS2 (¢7 927 907 77) + Sin (p)

o2

< Sin( )+Sll’l ( ) (¢5027@7 )
(¢7617907 )( E(d) 927()0) )+Sin(p)a

and similarly we obtain

o2

sin(p) +sin®(0) Js* (.02, 0.m)
o 1
J52 (¢7 917 2 77) (‘]52 (¢7 927 2 77) + sin ()0)
Consequently, we get from (4.5.25)

| T2 <

in=() + sin® ()
((¢ — ©)? +sin®((61 —n)/2))

|T51] <

D=
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_ sin%(p) +sin® (p)
~1o = @ |sin((01 —1)/2)

By integration, we obtain
2 a?-1
)+ sin® " ()
I 'jgl'd"d“””/ / o Tt e

uniformly in ¢ € (0,27) and 6; € (0,27) provided that 0 < v < min(a?,1 — «).
Following the same ideas as before and using (4.5.25) we get

Si R 1 . a?—
|33,2|§(1Wp) (sm (@) + (JZ (¢, 02,0, ) + sin ) 1)
J82(¢5017§0377)

< sin”™%(p) + sin‘IQ’l((p) .
T (6= @) +sin((01 —n)/2))?

It follows that

~(p) +sin® " (p)

sl S = w7

By integration, we deduce that
T 2w i 2 ., . a1
sin4 () + sin’ ()
|T3,2|dnde < : dndp.
I | T Tsa@ —me
<1

uniformly in ¢ € (0,27) and #; € (0,27) provided that 0 < a < 1. Putting together the
preceding estimates allows to get

T 21
// (T ldndio <|61 — 6u]°.
0 0

(%/2(87 ¢7 917 ()0777) - %(57 ¢792790777))d77d80 < 0‘91 - 92|a7

Therefore, we obtain

2w

uniformly in ¢ € (0, 7). This concludes the proof of the stability of the function spaces by F.

Step 3: F1is € 1 In this last step, we check that F} is ¢,
More precisely, we intend to prove the following

105 F1(f1)h = OrFi(fa)hllr~ < hllgrell fi = fallfia (4.5.34)
100 (O F1(f1)h — OpF1(f2)h) lge S Ihllgrellfi = follfia, (4.5.35)

and
106 (07 Fy(f1)h = O Fi(f2)h) leo SIblllgrallfi — fall o, (4.5.36)
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for some v > 0, and where f1, fi € X}, and are small enough.

Notice that this is stronger than the ¢!-regularity. Denote r;(¢,0) = ro(¢) + fi(#,0), for
t = 1,2. We will check directly the estimates for the derivatives, i.e., (4.5.35)-(4.5.36) and leave
the first estimate which is less delicate. From the expressions (4.5.12) and (4.5.13), it is enough to
check the estimates for the terms: U -¢% and % -ie?. As we can guess the computations are very
long, tedious and share lot of similarities. For this reason we shall focus only on one significant
term given by (4.5.18) to illustrate how the estimates works, and restrict the discussion to the
part Z,. One has

S e
JE(f)(,0,0,m)

_// sm(@) ) sin(n — 9)8fJ1(f)h(¢,9,%n)d?7d90

(<Z>, ;P 1)
Ti(f)h(9,0) h(¢, 0),
where
|(T(¢7 e)ew? COS(¢)) - (T'(QO, 77)6“77 COS(90>)|2 = ‘]1 (f)(¢a 07 ®, n)v r=rg+ f>
and

1
301 (N9, 0, 0.m) =(r(p.n) —1(0,0))(h(¢,n) = h($,6))
+ (r(p:mh(9,0) + b, m)r(¢,0))(1 — cos(n — 0)).
We will analyze only the first term 7; to exhibit the main ideas. The goal is to check
IT1(f1)h = Ti(f2)h grallfi = fallg

¢l
for some v > 0. We observe that

(J1(f1) = J1(£2))(¢, 0. 0,m) =(r1(p,m) = 11(,0))* = (r2(ip,m) = 12(0,0))?
+2(r1 = 72) (9, 0)r1(p,n)(1 — cos(6 — 1))
+2r2(¢,0)(r1 = r2) (¢, ) (1 — cos(6 — 1)) (4.5.37)

Now we write for any ¢, ¢ € (0,7) and 6,7 € (0, 27)

r(¢,0) —r(p,n)| < [r(d,0) — (@, 0)] + [r(, 0) — (e, m)l;

By the €1 regularity of r one has

r(¢,0) = (e, 0) < |o — @lllrllLip-

zo S|h

In addition, we claim that

r(0,0) — (@, m)| < |sin((0 — 1) /2)|lIr[Lip-

Indeed, and without any restriction to the generality we can impose that 0 < n < 6 < 27. We
shall discuss two cases: 0 < § —n < mand 7 < 6§ —n < 2r. In the first case, we simply write

r(,0) —rle,m)l _ |r(e,0) —rlem)l 16—l
[sin((0 —n)/2)] 10— |sin((0 —n)/2)]

< C|7|luips
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with C a constant. As to the second case 7 < 6 — 7 < 2m, by setting 77 = 1 + 27 we get

n—0¢€[0,], sin((6—n)/2)=—sin((0 —7)/2).
Since n — (¢, n) is 2m-periodic then using the result of the first case yields

r(,0) = (e, )| _|r(p,0) — (e, 0
[sin((0 —n)/2)]  [sin((6 —71)/2)]
< Cllrlluip-

This achieves the proof of the claim. Consequently we find

7(6,0) —r(e.m)| < lIrllLip (16 — ol + [ sin((6 — 1) /2)]). (4.5.38)

From algebraic calculus we easily get

[(r1(,m) — r1(0,0))* — (r2(,m) — r2(9,0))?| =|((r1 — r2) (0, 1) — (r1 — r2) (6, 6)]
X |((r1 +r2)(@,m) — (r1 +12)(6,6))).

Therefore we deduce successively from (4.5.38)

((rapum) = 11(0,0)* = (ralip,m) = 72(9, 0))?] Slirs = rallip (6 — ] + [ sin((0 —n)/2))
x (Iraem) = 11(6,0)] + Ira(p,m) = r2(6,6)]),

and
|(r1(0,m) = 11(6,0))* = (r2(,m) = r2(6,0))*| < |r1(,n) = 710, 0)* + |r2(p,m) — 72(0, 0) .
By interpolation, we infer for any v € [0, 1],
(r1(p,m) = 716, 0) = (ralip, 1) = 72(6, 0))2| S 1 = 2l (I = 017 + [sin((0 = m)/2)7)
% (Irapsm) = (9. )27 + Ira(ie,m) = ra(,0) 7). (45.39)
On the other hand, coming back to the definition of J; we get
Ti(f1)(9.8,0,m) = |r1(¢,6) —ri(e,m)[.
Thus, putting together this inequality with (4.5.39) and (4.5.37) yield

|(J1(f1) = S1(f2)) (¢, 0,0, 7)
J1§<f1>(¢797907n) + Jf(f?)(d%ea 90777)

< lirs = ral { (1o = o + Isin((0 = m)/2)]")

Now, we shall give an estimate of 71 (f1) — 71(f2) in L>. For this purpose, define the quantity

H3(f)(9,0,0,m) = Sin(‘»pzh(% n) sin(n — 9)’

Jl (f)((b? 97 2 77)

then one can easily check that

Z7(¢7 0, P, 77) :ji/?)(fl)(d)a 0, 2 77) - %(f2)(¢a 0, 2 77)
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(f )(¢7 2 ) (fl)(QSvQ)@vn).

(f )(¢7 y @51 )+J1%(f2)(</>a97%77)
(4.5.41)

sin(p)h(p,n) Sin(n 0)
JQ(fl)(¢7 y P 77)J2(f2)(¢7 2 )

w\»-‘ H

From this definition, it follows that
27
(Ti(f1) = Ti(f) / / To(6, 0,0, m)dyd.

According to (4.5.2)
91sin((0 = 1)/2) S1sn(0 = 1)/DI'6* (0 = )/

Slsin((0 —n)/2 )|7J1 C(F1)(9,0,0,1).
Combining this inequality with (4.5.40) and (4.5.41) leads to
i h -9 in((0 —n)/2)|"
2060, £ s — ol b Z O 1= ) 2)1)
‘]12 (fl)(¢7 0, ¢, 77)‘]12 (f2)(¢7 0,0, 77)

x (R (@0 + T (12)(6:6,.m)-

(4.5.42)

Applying Lemma 4.5.3, we infer
To(, 0, 0.0)| <[lr1 — 7ol sin(e) [k, m)|(l¢ — @)|7 + [ sin((6 —n)/2)|7)
9 ) 7 <f1 « l ¥
J7 (f1)(9.0,0,0)J7 (f2)(0,0,¢,m)
sin()|h(p, )|l — @)|7 + [sin((6 —n)/2)|7)

T2 (11)(@.0,0.0) (12)(6.0,.1)
sin() k(e )|( — &) + |sin((8 — 1)/2)[")

Slirt = r2llgia =
U+ )26 — )2 + (sin?() + 62) sin((0 — n)/2)}

+ H{rl - T2||’y 1,

Using the inequality ¢? > sin?() for any ¢ € R, one achieves
sin(p)|A(e, m)[ (I — ¢)|7 + |Sin((9 —n)/2)[")

1ty

‘17(¢’ 7‘70,77)| <||T1 — T2 ||<gla
(sin() + )17 {(¢ — )2 +sin2((0 —7)/2)} ?
B, m)lllry = 72l L
Tsin () {(& — )2 +sin2((0 — n)/2)}

h(m,n) = 0 allow to cancel the singularity and one gets

[N

The boundary conditions h(0,7) =
[Bllgrallrs = rallga

{(¢— @)% +sin2((0 — n)/2)}

(NI

|I7(¢7 97 2 77)| 5

Interpolating we find that for any 8 € (0,1),

[Allgrallrs — 72l q
I7 ¢797<p7n ~ . - .
T 0,0 S 15— I3 sin((y — 0)/2)P

Thus, we have that 77 is integrable in the variable (¢, n) uniformly in (¢, #), and then

ITi(f)h = Ti(f2)hll Lo Slhllgrallfi = f2llga-
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The next purpose is establish the partial ¥"“-regularity in ¢ and the partial regularity in 6 can
be done similarly. We want to prove the following

[(Ti(f1) = Ti(f2))h(#1,0) — (Ta(f1) — Ti(f2))h(¢2,0)] Slhllgrallfi = fallgraldr — ¢2|®
(4.5.43)

For this goal we need to study the kernel |Z7(¢1) — Z7(¢2)|. To alleviate the notation we simply
denote Z7(¢, 0, v, n) by I7(¢) and J1(fi)(¢i, 6, v, n) by J1(fi)(¢i). Adding and subtracting some
appropriate terms, one finds

|Z7(p1) — Zr(d2)| S Is + Lo + Tio + T11 + Li2

with
Ty —— sin(p) e, )| 1(f2)(@1) = N1 (71)(60)]
JZ(f1)(D1) T2 (f1)(d2) T2 (f2)(¢1) J2(f1)(h1) + T2 (f2) (1)
|J1(f1)(¢1) J1(f1)(¢2)|
J1 (f1)(o1) + J1 (fl)(¢2)
sin(p)[h (¢, 1)| |J1(f2) (1) — J1(f1)(¢1)]
Ti(f)(@2)2 11 (f2)(61) (J7 (f1) (1) + T2 (£2)(60)) (1 (F1)(61)2 + Ji(£2)(62)?)
|J1(f2)(¢1) - J1(f2)(¢2)|
J1 (f2)(¢1) + J1 (f2)(¢2)
Tio = — sin(p )|h(%77)| [(J1(f2) — Jll(fl))(¢1) - (Jll(fz) - J1(f1))(¢2)|7
f(fl)(¢2)<]1 (f2)(¢1) J? (f1)(#1) + J7 (f2)(¢2)
T = Slﬂ(¢)|h(90 n)| \Jl(fQ)(@) J}(f 1)(92)] 1
JP (f1)(¢2)J1 (f2)(¢1) (JQ(f1)(¢2) + Jz(fz)((bz))(c]f(f )(#1) + J2 (f2)(¢2))
|J1(f1)( 1) — J1(f1)(¢2)|
f(f1)(¢1) + J1 (f1)(#2)
and
Tiy—— Slﬂ(¢)|h(¢ﬂ7)\1 Ull(f2)(¢2) - Jll(fl)(¢2)|
T2 (f1)(h2) T2 (f2)(¢1) T2 (f2)(d2) JE(f1)(h2) + JZ (f2)(h2)

)z
M) @) = () (6]
TE()(61) + T2 (2) ()

The estimate of those terms are quite similar and we shall restrict the discussion to the term 7
which involves more computations. The analysis is straightforward and we will just give the
basic ideas. First one should give a suitable estimate for the quantity

[(J1(f2) = J1(f1))(P1) — (J1(f2) — J1(f1))(#2)]-
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By using (4.5.37)—(4.5.39), one finds

|(J1(f2) = (1)) (1) — (J1(f2) — J1(f1))(¢2)]
S —r2)(91,0) — (r1 = r2) (92, 0)[|(r1 + 72) (91, 0) — (11 4+ 7r2) (¢, 0)
+ [(r1 = r2)(¢2,0) = (r1 — r2) (0, m[|(r1 + r2)(d1,0) — (r1 + 12)(¢2,0)]
+ |(r1 = r2)(¢1,0) — (r1 — r2)(¢2,0)|r1 (e, n) sin®((0 — 1) /2)
+ [ra(¢1,0) — ra(da, )1 (r1 — r2) (0, )| sin®((0 — 1) /2).

Moreover,
|(r1 = 72)(61,0) = (r1 = 2)(¢2,0)| S r1 = 72]|*|oh1 — 02| (Ir1(61,0) — 71.(0, )"
Hra(¢1,0) = r2(0, )| 4 [r1(d2.0) — rilp. )+ [r2(62,0) = r2(0,m)| ')
and
(71 +72) (01, 0) = (r1 +72) (02, )| S |1 — 62| *(|71.(¢1,0) — ()|~

+ [r2(¢1,0) = ra(o,m)|' = + |ri(da, 0) — ri(e,m)| ¢
+ [ra(¢2,0) — r2(,n)|%).

In a similar way, we deduce first by triangular inequality

(1 4 72)(¢1,0) = (r1 +72) (@, )] <[r1(61,0) = r1(e, M) + [r2(¢1, 0) — riep, m)|
and second from (4.5.39)
(1 = 72)(¢2,0) = (r1 = 72)(p, )| Slir1 = 27 (|62 = @I + [ sin((6 — 1) /2)[7)
X (|7'1(¢270) - 7,1(80,””1*’}’ + |T2(¢270) - 712(@777)'177) .
Combining the preceding estimate we achieve
[(J1(f2) = 1(f1))(o1) — (Ni(f2) = J1(f1))(d2)]
Slor = 2l = foll” (Ir1(61,0) = r1(o,m) P~ + [r2(1,0) — r2(0,m)[*~°
)

Hri (2, 0) — r1(@,n) P + |ra(d2, 0) — r2(0,m)[>7)
Slor — @2l *I1f1 = Lol V(657 + &7 + 75 + E55°).

where we use the notation

& = |ri(¢,0) —rie,m)]; 1,7 € {1,2}
Hence,

2 2—a
2 g2
|Z10] Slo1 — o2l f1 — fall” — sin() |, n)| 2ij=1%i

T3 (F)(62) T2 (o)) T2 (1) (n) + T2 (f2) (@2)

By using the definition of .J; in Lemma 4.5.3, we immediately get

1
iy < JE(fi)(¢5),
that we combine with (4.5.38) in order to get
&ij S o5 — el 4 [sin((0 —n)/2)].
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We shall analyze the term associated to &7,; and the treatment of the other ones are quite similar.
First we note

&1 < o1 — '™ + [sin((0 —n)/2)['"*
TE (@) ()00 (T ()00 + T ()(@0)  TER @) (R)(6)
Making appeal to (4.5.25) and (4.2.17), we infer
sin(p)lh(e) . Pl
TE(F)(62)TE (f)(61) ~ {(61— @) +5in®(6 — 1)/} 2 {(d2 — 9)2 +sin®((6 — 1) /2)}
By interpolation we obtain for any v, 5 € [0,1],

sin(p) [h(#)]
JE (f1)(62) 7 (f2)(¢1)
Combining the preceding inequalities gives for any 71,2, 51, 52 € [0, 1]

=

01 — | p2 — |
sin((0 —n)/2)[>~7F

N Hh”Lipl

sin () |1 (¢, )] i <[l [P P 02 — ol
T(f)(62)2 11 (f2)(61)2 Ji(f1)(@1)2 + Ti(fa)(g)z ~ 0 [sin((0 —m)/2)Pmmh
_|_ HhHLp |¢1 - SD|_’72|¢2 - SD|_62
P

sin((0 — n)/2)[ T2
The majorant functions are integrable in the variable (¢, ) uniformly in ¢, ¢2, 6 provided that
l<m+B1<2—a and a<y+ P <1,

and under these constraints one can find admissible parameters. Consequently,

T 2T
/ / Trodidn < [Mlgrallfi — folllualés — él°
0 0

This achieves the proof. O

4.6 Main result

In this section we shall provide a general statement that precise Theorem 4.1.1 and give its
proof using all the previous results. Recall that the search of rotating solutions in the patch
form to the equation (4.1.1), that is, solutions in the form

—iQt(

q(t,.’E) = qO(e $17$2),$3), qo = ]-Da

where D is a bounded simply—connected domain surrounded by a surface parametrized by
(6,0) € [0,7) x [0,27] = ((ro(9) + (@, 0))e”, cos(9)),
reduces to solving the following infinite-dimensional equation
F(Q,f)=0

with f in a small neighborhood of the origin in the Banach space X2 and F is introduced in
(4.2.13). Notice that a solution is nontrivial means that the associated shape is not invariant by
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rotation along the vertical axis. Looking to the structure of the elements of space X one can
easily see that a nonzero element guarantees a nontrivial shape. Our result stated below asserts
that solutions to this functional equation do exist and are organized in a countable family of
one-dimensional curves bifurcating from the trivial solution at the largest eigenvalues of the
linearized operator at the origin. More precisely, we have the following.

Theorem 4.6.1. Let m > 2 be a fixed integer and r¢ : [0, 7| — R satisfies the conditions:
(H1) ro € €%([0,7]), with 79(0) = ro(7) = 0 and ro(¢) > 0 for ¢ € (0, ).
(H2) There exists C' > 0 such that

Vo e [0,7], Clsing <rol¢p) < Csin(e).

(H3) rg is symmetric with respect to ¢ = %, i.e., o (5 — ¢) =ro (% + @), forany ¢ € [0, Z].

Then there exist 6 > 0 and two one—dimensonal € -curves s € (—6,8) — fu(s) € X% and
s € (—0,0) — Qn(s) € R, with

Sm(0) =0, fin(s) #0,Vs#0 and Qy(0) = Qpy,
where y, is defined in Proposition 4.4.4, such that
Vs e (=6,8), F(Un(s), fm(s)) =0.

Proof. The main material to prove this result is Crandall-Rabinowitz theorem, recalled in The-
orem A.0.3. First the well-possednes and the regularity of F' : R x X2 — X2 were discussed
in Proposition 4.5.4. Thus it remains to check the suitable spectral properties of the linearized
operator at the origin. The expression of this operator is detailed in Proposition 4.3.3 and it is
a of Fredholm type of zero index according to Proposition 4.4.7. In addition for 2 = €, the
kernel is a one-dimensional vector space. Finally, the transversal condition is satisfied by virtue
of Proposition 4.4.8. H

4.6.1 Special case: sphere and ellipsoid

In this section we aim to show the particular case of bifurcating from spherical or ellipsoidal
shapes. The main particularity of these shapes is that their associated stream function is well-
known in the literature, see [96]. More specifically, let & be an ellipsoid inside the region

The associated stream function given by

wol@) = — [ AW

At Jg |z —yl’

can be computed inside the ellipsoid as

abc [ z? 3 @3 } ds
- + + -1 '
Yo(z) 1 /0 {a2+8 2+s 2+s V(@2 +8) (b2 + s) (2 + s)
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In the case that @ = b we have that the ellipsoid is invariant under rotations about the z—axis and
then it defines a stationary patch, see Lemma 4.2.1. Moreover and without loss of generality
we can take ¢ = 1. Note that in this case

vo() = a1(a)(2f + 23) + az(a)a3 + as(a),

where
ay(a) = aQ/OO ds
T (a2 +5)2y/1+ s’
ag(a) = a2/°° s
2T, (a2 + s)y/(1+ s)3’
and

as(a) := _a2/oo ds
SV A (a2 +5)2/1+ s

The sphere coincides with the case a = 1 having a;(1) = as(1) = # and a3(1) = 3.

The above expression of the stream function together with Remark 4.3.2 gives us that

/0 " Hi(é, @)dp = 201 (a),

for any ¢ € [0, 7]. Recall that H,, is defined in (4.3.3). Now, by virtue of Proposition 4.3.3 one
has

OrF(Q,0)h(¢,0) = _ cos(nd) L5 (hn)(9),

n>1

where

‘szz(hn)((b) :hn(¢) [2041(CL) - Q] - / Hn(¢7 (P)hn(QD)ng, (b € (Oa W)'
0

Moreover, the function v used in the spectral study and defined in (4.4.3) agrees with
va(¢) = 201 (a) — 9,

which now is constant on ¢. Also the constant « in (4.4.5) equals now to 2«a;(a). Hence, the
key point in Section 4.4.1 is the symmetrization of the above operator. For that reason, we have
defined the signed measure duq as

dpa () = sin()rd(¢)va(p)de,

in (4.4.4) and the operator K¢ in (4.4.64). However, since in this case v (y) is constant on ¢,
there is no need to introduce it in the measure with the goal of symmetryzing the operator. Fol-
lowing the ideas developed above, we deduce that the kernel study of the linearized operator
agrees in this case with the following eigenvalue problem

Kn(9) = (2a1(a) — Q)h(9).

Here, we define
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CHAPTER 4. TIME PERIODIC SOLUTIONS FOR 3D QUASI-GEOSTROPHIC MODEL

which does not depend now on 2 by definition of KS2. Note that both operators have similar
properties. Hence I, sets the properties given in Proposition 4.4.3 taking the Lebesgue space
L2 with

fie

djia(p) = sin(p)rg()de.

Denote by 3, the eigenvalues of K,, (for each n we have a family of eigenvalues). Then, we
have necessary that
Q, =2ai(a) — Bni-

In Theorem 4.6.1, bifurcation occurs from 2}, given by
0, = 2a1(a) - By,

with
61: = m?x /Bnﬂ"

Moreover, we know that 3} is positive and then 2} < 2a;(a). In particular, by Proposition
4.4.4, we have that Q} tends to k = 2aq(a). Furthermore, 2} increases in n and then we can
bound it below by 7. Using the equation for /7, that is

/0 " Hy(p. 9)h(o)dp = BLh(&),

one finds that 8} < 2aq(a) and then Q7 is positive. This implies that €27 is positive for any n.
Then, in Theorem 4.6.1 bifurcation holds at some 2}, € (0,2a1(a)). Let us remark that in the
case of the sphere, meaning a = 1, one has 2¢;(a) = %

There is an interesting open problem concerning, first the spectral distribution of the eigen-
values 3, ; (Whether or not they are finite, simple or multiple), and second if bifurcation occurs
at the eigenvalues €2,, = 21 (a) — ,,,; (Which is shown to happen only for the largest eigenvalue
B;). Notice that the simplicity and the monotonicity of the eigenvalues is a delicate problem
and could be related to the geometry of the revolution shape. Finally we observe that since
Bn,i < B:L then ,, = 20y (a) — ,Bnﬂ' > % — B; > 0.
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Chapter

Other works of the thesis and
conclusions

5.1 Remarks on stationary solutions for the Euler equations

This section aims to show a work in progress about some remarks on stationary solutions for
the 2D Euler equations that is motivated by the works described in Section 1.1.1.

As it is already presented in the previous chapters, the motion of an ideal inviscid incom-
pressible fluid in two dimensions is described through the Euler equations

O +v-Vu+Vp =0,
div(v) =0,
v(0,-) = vo,
where v is the velocity field and p is the scalar pressure. It is sometimes worthy to work with
the scalar vorticity w defined as

w = VJ' U = 81112 - 621)1.
Hence, applying the last operator to the above system, the vorticity—velocity formulation is

obtained
Oiw +v-Vw =0,

w=V+t.v,
div(v) =0,
w(0,-) = wp.

Since div(v) = 0, then v = V¢ = (=021, 019), for some function v called the stream function.
Thus, by the definition of w, one arrives at

A = w. (5.1.1)

In order to solve the Poisson equation, one has to assume some spacial decay for v, for instance,
|v| goes to 0 at infinity. Then, it yields the so called Biot-Savart law, which establishes that

1 ozt
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In order to look for stationary solutions, we need to study the equations
v-Vw=0 and v=K *xw,

or equivalently
Vi - VAY = 0. (5.1.2)

Note that if Ay = F(¢), for some scalar function F, the equation (5.1.2) is automatically satis-
fied, see for instance [107].

Here, we would like to provide an alternative way of obtaining stationary solutions. Our
motivation is founded on the following observation. If the vorticity is radial w(z) = f(|z]|),
then it is a solution of the Euler equations and it is stationary. Hence, we look for solutions
taking the form w(t,z) = fi(t, R(z)) and ¢ (t,x) = fa(t, R(x)), for some scalar function R. We
find that if (5.1.1) is verified, then they define a stationary solution. That is described in the
following lemma:

Lemma 5.1.1. Let (w, ) be a solution of Euler equation. If there exists R : R* — R smooth enough
such that w = w(t, R) and ¢ = 1(t, R), then (w, ) is stationary.

Once we have that the solutions depending on a scalar function are always stationary, we
work with the initial data checking that (5.1.1) is verified.

Theorem 5.1.2. Let Fy, Fy : R — R smooth off the origin, and R : R* — R satisfying
AR+ F1(R)|VR|* = F»(R). (5.1.3)

Then, wy = el PO EY(R) and vy = f}i eli T1(9)4sqr defines a stationary solution of the Euler
equations.

The idea of the previous theorem in the following. By Lemma 5.1.1, we have that v - Vw =
V4 - Vw = 0. For this reason, it remains to check the relation between w and 1), i.e., that
A = w. Since ¥ = Y(R) and w = w(R), then we have that Ay = w agrees with (5.1.3).

The well-posedness of (5.1.3) has been studied in bounded domains, see [8, 9, 129], where
they use a change of variable in order to simplify the equation. Here, we take advantage of the
same idea deriving some known equations and, when it is possible, come back to reinterpret
the results in the framework of the Euler equations. More precisely, let us consider a general
elliptic equation of the type

A+ f1(u)[Val? = fo(u),

where f1, fo : R? = R. Let
t
G(t) = /1 fi(r)dr, (5.1.4)

and h(s) be defined as foh(s) eG®dt = s, forall s € R. If u = h o z, then z verifies

AZ—f(Z):O,

where f(z) = fa(h(z))eC (),

By using the previous change of variable, we can make explicit connections between the so-
lutions of the 2D Euler equations with those of other PDEs systems and though this procedure
obtaining particular solutions of the 2D Euler system. Indeed, we can relate it with Allen-Cahn,
the stationary Schrodinger or Helmholtz equation, obtaining interesting solutions.
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Let us explain here the relation with Allen-Cahn equation. Choosing the functions F; and
F; as follow

Fi(R) R

Fy(R) = — ? (1 — ;R6> :

we obtain the vorticity and the velocity in terms of R as

w(r@) =2 (1- L)),

v(z1,2) = — R*(x) VI R(x).
Using the change of variables R = v/35, we get that S verifies
AS+5-5°=0.

This is the Allen-Cahn equation that has been a main subject of study due to its relation to the
De Giorgi conjecture.

Recently, in [63] the authors have proved the existence of solution of Allen-Cahn in dimen-
sion four with a finite number of compact connected component by means of the link with
Helmholtz equation. The case of our interest, n = 2, is studied in [121]. In this case, it is
important that there exists a family of explicit solutions

a-r+Db
tanh [ ———— |,
n( NG )

with a a unit vector in R? and b in R. Let us consider the particular case

S(x1,z2) = tanh <\“}1§) :

This is an odd function, which has the value 0 when 1 = 0 and it is invariant under translations
in the zo—axis. Hence, we can recover the vorticity and the velocity in terms of this explicit
solution

w(z1,29) = tanh <\%) — tanh?® (\‘%) ,

(1, 22) = tanh (\%) .

Notice that the above solution is in fact a shear flow. Moreover, it is clear that |v| — 0, when
|z1| — +00, achieving a stationary solution of Euler equations.
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5.2 Vortex patches choreography

In this section, we explore another work that has been motivated by the desingularization of the
Kérman Vortex Street done in Chapter 3. That is the desingularization of another configuration
of point vortices that now are located at the vertices of a regular polygon.

Recall the Euler equations in the vorticity form that has been introduced in the previous
chapters:

wi+v-Vw=0, in]0,+00) x R?,
v=K *w, in [0, +00) x R2, (5.2.1)
w(0,-) = wo, with z € R?,
where K (z) = %%
Consider initially a regular polygon with N sides and NV point vortices located at the ver-
tices of the polygon. Considering that the polygon has its center at the origin and that there is
a vertex in the horizontal axis, meaning z(0) = [ € R, then the others vertices are described by

2mm

zm(0) =e N z(0),

for any m = 0,...,N — 1. The evolution of such points is given by the classical N-vortex
problem, see Chapter 3, that is,

N-1

L )~ )
"0 =55 2 enl) 0P 622

i2mm

z2m(0) =e N z(0),

forany m =0, ..., N—1. Hence, we can show that the evolution of such points is given through
a rotation of constant angular velocity, and that is described in the following proposition.

i2Tm

Proposition 5.2.1. Let z,,(0) = e~
Zm(t) = €¥2,,(0), where

20(0) and 29(0) = € R, forany m = 0,...,N — 1. Then,

N

1 =g
0= o Z o (5.2.3)
k=1 -

foranym =0,...,N — 1.

It is well-known in the literature that in the case of a vortex pair with strength 1 and sepa-
rated by a distance d, one has that it rotates at angular velocity Q = —L, see [85] or Chapter 3.
Note that it agrees with (5.2.3) by taking N = 2 and d = 2[. See also [102, 23] for the stability
and numerical simulations of the polygon.

Motivated by Proposition 5.2.1 and also Chapter 3, our main task in this work is to find
domains D5, form =0,...,N —1, N > 2 and ¢ > 0, such that the initial data

L V-1
woe(z) = ) Z 1pe (2), (5.2.4)
m=0

evolves as a rotation in the Euler equations. That is, there exists 2 € R and € > 0 such that the
evolution of (5.2.4) is given by _
w(t,z) = wo (e ). (5.2.5)
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Indeed, we will consider that D;, are located in the plane as the point vortices in Proposition
5.2.1, that is, Y

DE, = e~ DS, (5.2.6)
for some bounded simply—connected Dg. Note that assuming that D = D + [, for [ € R*, one
finds for ¢ — 0 in (5.2.4) the point vortex distribution of Proposition 5.2.1:

N-1
woo(z) =Y 8 2z (@). (5.2.7)
m=0
Now assume that the evolution of (5.2.4) is given by (5.2.5). In that case, the Euler equations

agree with

(vo(:p) - QxL) ‘mope (x) =0, x€dD5, (5.2.8)

forany m = 0,... N — 1. Here ngp:, stands for a unit normal vector to 9 Dy,,.

As it happens in Chapter 3, the problem reduces to find the roots of (5.2.8) and we need
to overcome some difficulties in order to apply the infinite dimensional Implicit Function the-
orem. The main one is the persistence of the nonlinear function (5.2.8) in the function spaces
where the linearized operator is an isomorphism. To tackle this problem, we need to fix {2
depending on ¢ and the domain Dj in a suitable way. Then, after choosing the appropriate
function spaces we get the following result.

Theorem 5.2.2. Consider | € R* and N > 2. Then, there exists g > 0 with the following property.
Forall e € (0,¢e9), there is a simply—connected bounded domain D*, with center of masses [, such that

defines a rotating solution of (5.2.1), with some constant angular velocity (). Moreover, D* is at least
¢

As for the desingularization of the Kd&rmdn Vortex Street in Chapter 3, here we are able to
find this kind of structures also in other incompressible fluid models such as the generalized
quasi-geostrophic equation.
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5.3 Traveling waves in aggregation models

In this section we present another work of this dissertation that is under preparation. More
specifically, it consists in the study of relative equilibria in biological models. This is a joint
work with J. CAMPOS and my thesis advisor J. SOLER.

Chemotaxis refers to the motion of the species up or down a chemical concentration gra-
dient. Examples of this biological process are the propagation of traveling bands of bacterial
toward the oxygen [3, 4] or the outward propagation of concentric ring waves by the E. Coli
[19, 20]. The prototypical chemotaxis model was proposed by KELLER and SEGEL [95] and in
its general form reads as

Ovult, w) = 0a {u(t,:c><1> (W) - au(t,:r)axf(S)} , TER >0,
§0uS(t, ) = y92,5(t, ) + k(u, 9), 2 ERLSO, (5.3.1)
u(0,2) = uo(x), z €R.

The function u = wu(t, ) refers to the cell density at position z and time ¢, whereas S(¢, x)
means the density of the chemoattractant. Then, the above system consists in two coupled
equations in terms of u and S. The parameter a > 0 measures the strength of the chemical
signal and is called as the chemotactic coefficient. We take also §, y positive numbers where v is
the chemical diffusion coefficient. In the classical Keller-Segel model, the function & is taken to
be the identity map in order to have a classical diffusion in the first term of (5.3.1). Moreover, f
refers the chemosentivity function describing the signal mechanism and k(u, S) characterizes
the chemical growth and degradation.

The chemosensitivity function f can be chosen in different ways. The linear law agrees with
f(S) =S, thelogarithmic law is f(S) = log(S) or the receptor law refers to f(S) = S™/(1+5™)
for m € N. The system with linear law and k(u, S) = S—u is called as the minimum chemotaxis
model (see [39, 88]). The second one referring to the logarithmic law follows from the Weber—
Frechner law, see [6, 13, 49, 95] for some applications. We refer to [147] for a survey concerning
the logarithmic law.

Our work will focus on the case of logarithmic sensitivity, meaning f(S) = log(S) and
where k(u, S) = u — AS with A > 0. In this way, (5.3.1) agrees with

Oru(t, ) > B a(?IS(t, x)

u(t’gj) wu(t,x)} , T E R,t > 0,

duut,z) = 0, {u(t,w)q) <

§0,S(t,x) = v02,S(t,x) — AS(t,x) + u(t, r), x €Rt >0, (5:3.2)

u(0, ) = up(z), x €R.
The work is devoted to give a comparative between the Keller-Segel with classical diffusion

(where @ is taken to be the identity map) and the flux-limited diffusion. In this latter case, we
will assume that ® verifies conditions (H):

(H1) ® € €%(R),®(—y) = —®(y), and ®'(y) > 0.
(H2) limy, 400 ®(y) = ¢ > 0.

292



CHAPTER 5. OTHER WORKS OF THE THESIS AND CONCLUSIONS

Figure 5.1: Top: solutions for Keller-Segel model with classical diffusion. Bottom: solutions for
Keller-Segel model with flux—saturated diffusion.

In particular we take the relativistic model with

vy
Py )

\/ 1+ Ery?

but we can extend our results to functions ¢ satisfying (H) with some integrability conditions.
Note that the classical diffusion satisfies (H1) and (H2) with ¢ = +o0.
In this work, we will be interested in the investigation of traveling waves solutions, that is

P(y) = p (5.3.3)

u(t,z) = a(z —ot), and S(t,z) = S(x — ot), (5.3.4)
with o > 0, for some profiles @ and S. The search for traveling waves solutions is crucial to
understand the mechanisms behind various propagating wave patters. We will show that the
Keller-Segel system together with a flux-saturated mechanism exhibits new properties with
respect to the classical one. Here, we will study both cases and show their differences. We refer
to the shapes for traveling waves solutions in the case of classical diffusion to the top Figure
5.1 and for a flux—saturated diffusion to the bottom of Figure 5.1.

Let us briefly explain the idea of the work. Assume that we have a solution of type (5.3.4),

hence (5.3.2) agrees with
&Y
70'@1/ = 'EL(D <~> —a—=1u y
u S

—0058 =78" — A\S + 4,

where @/, 5" and S” represent the derivative with respect to the new variable s = = — ot. Under
the change of variables
Qr
, and v = ST, (5.3.5)
S

w =

|

the above system of ordinary differential equations is related to

w =wdt (av — o) — wo, (5.3.6)
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vV ==0"——v——+4—,, (5.3.7)

with some initial conditions. The purpose of this work is to analyze the coupled system (5.3.6)—
(6.3.7) and later come back to the original variables % and S via (5.3.5). We will separate in two
cases: first we will assume that ® = Id having a classical diffusion and later we will take ¢
defined as (5.3.3). The shape of the profiles & and S strongly depends on the previous cases. In
the following, we will briefly explain the main difference between both cases.

5.3.1 Linear diffusion

In the case of a linear diffusion, i.e,, ® = Id, the system (5.3.6)-(5.3.7) is not singular and
classical theory for ODEs gives us existence and uniqueness of solution. Assume that § = 0
for the sake of simplicity, and that the other parameters involved in (5.3.6)—(5.3.7) are positive
real numbers. Hence, the system reduces to

w' =w{(a—1)v -0}, (5.3.8)
v’ :é —v? - lw (5.3.9)
Y v

Different values of a and ¢ will exhibit different scenarios. That can be seen from the analysis
of the fixed points associated to (5.3.8)—(5.3.9). Set

v, = \/X (5.3.10)
ol

Hence, we get the following result.

Proposition 5.3.1. Define

0'2 g
(wi,v1) = (0,v,), (wa,v2) = (0,—v,), and (wg,vg)—@—(a”w,al),

where v, is defined in (5.3.10). Hence,

1. Ifa > 0and |1 — alv, < o, hence (5.3.8)—(5.3.9) has two fixed points given by (w;,v;), with
i = 1,2. The point (w1, v1) is a stable point, whereas (ws, v2) is a saddle point.

2. Ifa € (0,1) and o < (1 — a)v,, hence (5.3.8)—(5.3.9) has three fixed points given by (w;, v;),
with i = 1,2,3. The point (wy,v1) is a stable point, (wa, ve) is an unstable point and (w3, v3) is
a saddle point.

3. Ifa > 1land o < (a — 1)v,, hence (5.3.8)—(5.3.9) has three fixed points given by (w;, v;), with
i = 1,2,3. The points (w1, v1) and (wa, v2) are saddle points, whereas (w3, v3) is a stable point
or a stable focus.

The isocline map depends on the position (in case it exists) of the vertical line v = _%; and
the parabola w = A — yv?, with w > 0. First, consider a < 1. We find that the vertical line
v = %7 can cross the parabola depending on o > (1 — a)v, or 0 < (1 — a)v,. In the first case,
which correspond to Proposition 5.3.1-1 we find that the area under the parabola is positively
invariant. Therefore, either the solution enters the area under the parabola and the component
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of v of the system changes from decreasing to increasing, or the solution never touches the
parabola and v is always decreasing. As a consequence, there can not be limit cycles. On the
other hand, we are in the case of Proposition 5.3.1-2. Here, we have an extra fixed point (which
correspond to (w3, v3) in the above proposition) that is the intersection between the vertical
line v = -%; and the parabola. The phase diagram for both cases in a < 1 can be seen in the
upper part of Figure 5.2. The case a = 1 is very special since we do not have any vertical line: it
correspond to Proposition 5.3.1-1. As in the previous case, the area under the parabola remains
positive invariant. We refer the reader to Figure 5.2-C for its phase diagram.

Finally, the case a > 1 is more complicate. We have again two possibilities: either the
vertical line intersects the parabola. This is described in the bottom of Figure 5.2. In the case
that the line does not intersect the parabola, we get a similar scenario as for a < 1. In the other
case we can not ensure the non existence of limit cycles around the fixed point (w3, v3).

Moreover, by using the uniqueness of the stable manifold associated to a saddle point, we
are able to prove the existence of the solution (line in blue) described in Figure 5.2 with initial
datas wy = w, and vy > v,. Hence, by doing an asymptotic analysis of (5.3.8)—(5.3.9) we are
able to prove the behavior of the solutions (every line in blue) described in Figure 5.2. There the
solutions are considered to have initial data wy > 0 and vy > v,. Note that in the case of Figure
5.2-D, since we do not know the existence of limit cycles around (ws, v3) we do not know if the
solution with wg < wy either converges to the limit cycle or to (w3, v3).

In the case a < 1 corresponding to the top of Figure 5.2, considering initial data wy > 0
and v9 < —v, we find interesting solutions. This is described in Figure 5.3 where the two
blue solutions in the bottom part tends to a fixed point as s — —oo. That will provide us
later traveling—waves solutions of the type in the upper right part of Figure 5.1. Finally, let us
mention that there are also heteroclinic solutions joining fixed points, for instance, the one from
the fixed point (0, —v,) into (0, v,).

Once system (5.3.8)—(5.3.9) is analyzed, we can come back to the original variables @ and S
via (5.3.5). Among other types of solutions, we are able to find profiles for travelling-waves
solutions with the following shapes:

e Type 1: A function f : (s—,s;) = Risof Typelifs_,s; € Rand f(s-) = f(s4) =0.
e Type 2: A function f : (s—,s;) — Ris of Type 2 if s_ = —oco and s; € R. Moreover, f

satisfies f(s4) =0, and
lim f(s) = +o0.

S—>—00

Here, we have listed only the most interesting shapes found from the solutions in blue de-
scribed in Figures 5.2 and 5.3. We refer to the top of Figure 5.1 which illustrates the shapes of
the profiles. The existence of the above types of solutions strongly depends on the parameters
a and 0. Note that Type 1 gives us solitons type of solutions.

5.3.2 Nonlinear flux—saturated diffusion

This section deals with the Keller-Segel equation with nonlinear flux saturated diffusion. Take
that the function @ is defined as (5.3.3), that is,

Yy
2
\/ 1+ Ery?

Note that (5.3.3) satisfies (H) and then we can improve our results taking ® verifying (H) with
some integrability conditions.

D(y) =p
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A B 1
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wy 1 wy
.z .2 !
[ 5 !
Tl i : ]
3 3 :
1
1
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i
—y Vs
v—axis
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C‘G [ .
3
—v, 0
v—axis
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w—axis
w—axis

v—axis v—axis

Figure 5.2: Top (A and B): a < 1. Center (C): a = 1. Bottom (D and E): @ > 1. Left (A and D):
o < |1 — a|v,. Right (Band E): 0 > |1 — alv,.

Hence, the associated system for traveling—wave solutions is given by

w' =w{® ! (av — o) — v}, (5.3.11)
S SRS (5.3.12)
v

The first consequence of (H) is that the domain of definition of v is restricted to

g —¢C g C
<o < +.

a a

Then, the above condition together with w > 0 defines the domain of definition of the solutions.
Note that at the boundary, meaning v € {2-¢, 2¢}, the value of w’ blows up. Consider then
that the initial condition satisfies w(sg) = wy > 0 and v(sg) € (¢, ZE¢).

The study of the the fixed points and phase diagram of (5.3.11)—(5.3.12) depends on the
parameters and on the number of solutions of the equation

Y av - o) = . (5.3.13)
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*
K

w—axis

Figure 5.3: Case a € (0,1) and 0 < (1 — a)v,.

For the sake of simplicity we will assume that there is only one solution to (5.3.13), and thus we
consider that ||®'||z~ < a. Moreover, we define ¥ as the unique solution to (5.3.13). In the case
of ||®'||r~ > a we can have more than one solution and the analysis can be done in a similar
way.

In the following result, we analyze the fixed points of (5.3.11)—(5.3.12).

Proposition 5.3.2. Consider ® satisfying (H) and ||®'||L~ < a. Define v € [0, %) the unique
solution to
& Yav —0) =T,

and v, = \/% We have
(A) If o < ¢ — av, and g(av, — o) — v, > 0, then there exist three fixed points given by
(w17 1}1) = (07 U*)? (w27 UQ) = (07 7U*)7 and (w37 U3) = ()‘ - 7627ﬁ) :

We have that (w1, v) and (wa, ve) are saddle points, whereas (ws, v3) is a stable node or a stable
focus.

(B) If 0 < ¢ — av, and g(av. — o) — v, < 0, then there exists two fixed points given by (w1, v1) and
(wa, v2). We have that (w1, ve) is a stable point and (wa, ve) is a saddle point.

(C) If lave — ¢| < 0 < ¢+ av, and g(av, — o) — v, > 0, then there exists two fixed points given by
(w1, v1) and (w3, v3). We have that (w1, v1) is a saddle point, and (ws,v3) is a stable node or a
stable focus.

(D) If lav, — ¢| < 0 < ¢+ av, and g(av, — o) — v, < 0, then there exists one fixed point given by
(w1, v1).

(E) If o < av. — c, then there exists one fixed point given by (ws,v3). We have that (w3, vs3) is a
stable node or a stable focus.

By analyzing the sign of w’ and ¢’ in the different cases of the previous proposition, we
arrive at the phase diagram described in Figure 5.4.

Moreover, using a delicate analysis about the solutions of (5.3.11)—(5.3.12) we are able to
prove the existence of singular solutions touching the boundary. That is described in blue in
Figure 5.4 and more precisely in the following theorem.
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Theorem 5.3.3. For any vy € (%<, Zt€) there exist wg such that for any wo > w, any maximal

solution of (5.3.11)—(5.3.12) with initial data (vo, wo) are defined on (s_, sy) with —oo < s_ < sy <
+o00, which verifies

1. v(so) = =€, v(sy) = ==,
2. v e [s—,s4])and v'(s) <0,
3. w(s-), w(sy) € (0,+00),

4. w'(s-) = 400, W' (sy) = —o0.
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Figure 5.4: Cases given by Proposition 5.3.2

As in the classical regime, we can now come back to the original variables % and S via
(56.3.5). Note that since the solutions (curves in blue) in Figure 5.4 touch the boundary, we have
that w’ blows up at (s_, sy ), where this is the interval of maximal definition. That singularity
is also translated to the original variables having that @’ blows up. Hence, we are able to find
profiles of the following type:

e Type 3: A function f : (s_,s;) — Ris of Type 3 if s_,s; € Rwith f(s_), f(s+) > 0.
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Moreover, it satisfies that

lim f'(s) =400, and lim f'(s) = —oo.

S—S_ S—S4

We refer to the top of the bottom of Figure 5.1 which illustrates the shape of the profiles.
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5.4 Conclusions and perspectives

Some ongoing projects and future works that have arisen as a consequence of the results de-
veloped during this dissertation are presented here. We will focus on a specific short list con-
taining some of the most challenging problems from our point view.

This dissertation is mainly split in three different parts. First, we have studied inhomo-
geneous rotating vortices for the 2D Euler equations in Chapter 2, which appear as bifurca-
tion of some initial radial solutions. This is a joint work with HMIDI and SOLER. Second, in
Chapter 3 we have worked on the existence of Karman Vortex Street structures in different
incompressible 2D models such as Euler, generalized quasi-geostrophic or the shallow water
quasi—geostrophic equations. Thirdly, Chapter 4 have focused on the 3D quasi—geostrophic
system where we could check the existence of homogeneous 3D patches that rotate around the
z—axis. That problem is a collaboration with HMIDI and MATEU.

In Chapter 2, we provided a systematic scheme which turns to be relevant to detect non
trivial rotating vortices with non uniform vorticity, far from the uniform patches but close to
some known radial profiles. In particular, we fully analyzed the bifurcation from quadratic
ones, thus obtaining new behaviors in the bifurcated diagram compared to the uniform case.
There are two natural questions after that work. First, it is the generalization of the above result
with more general profiles. The second one concerns the third statement in Theorem 2.1.1 about
stationary solutions.

e General profiles: To the best of our knowledge, the only two works concerning inho-
mogeneous rotating vortices for the Euler equations are the work of CASTRO, CORDOBA
and GOMEZ SERRANO [28], and the content of Chapter 2 (see also [69]). While in Chapter
2 we are able to find rotating solutions around a quadratic profile that are far away the
patches, in [28] they found rotating solutions that are close to the Burbea patches.

The main difficulty in both works is the kernel study, and that forces us to restrict our-
selves to some particular initial profiles. As we explained in Chapter 2, the kernel prob-
lem in such work is related to the resolution of a Volterra equation that we are able to
solve in the case of quadratic profiles.

Analyzing the expression of 8fﬁ' », there are two different ways to solve this problem. The
first one is to study in more details such Volterra integro—differential equation and find
some special structures that enable us to solve it for more general profiles. The second
one is to try to analyze directly the kernel equation via some general results in spectral
theory. In fact, the kernel equation has the following (simplified) expression

L (2, hy) (1) ::Tn(fllr) (Gn(r) /01 s h, (s)ds + ri” /1 Z’:l(j) ds + ri" /OT Sn+1hn(s)d5)
:h’ﬂ(r)7

where G, and T,, are some functions depending on the initial density fy. In order to
achieve that the kernel is one dimensional, one must find NV and € such that there exists
anon trivial solution iy of the above equation. Then, instead of differentiating the above
equation and trying to solve explicitly the associated differential equation, one can study
the eigenvalues of the linear operator £,,, that strongly depends on fy. That is strongly
motivated by the work done in Chapter 4 (or [68]) where we studied rotating patches in
the 3D quasi-geostrophic system.

¢ Stationary solutions: There are many studies about stationary solutions for the 2D Euler
equations. In the case of stationary simply—connected vortex patches, FRAENKEL checked
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that the circular patch is the only stationary one, see [66]. In [71], GOMEZ SERRANO,
PARK, SHI and YAU proved that any smooth stationary solution with compactly sup-
ported and nonnegative vorticity must be radial.

An interesting future perspective is to find stationary solutions in the bifurcated branches
given in Theorem 2.1.1. In the case of a simply connected vortex patch, it is possible
to bifurcate the circular patch from the angular velocity @ = 0 but one just find pure
translations of the circle patch. In Chapter 2, we found a branch of 1-fold symmetric
rotating solutions bifurcating from 2 = 0 in the third point in Theorem 2.1.1. However, as
a consequence of our function spaces, we know that the bifurcated solutions are not given
by a pure translation of the initial radial profile and do not contain radial profiles. Then,
it is not clear from our result whether or not the branch contains stationary solutions.
However, in the case that they exist then they are non trivial stationary solutions.

In order to observe these nonradial stationary solutions close to the quadratic profile
fo(r) = Ar? + B, we could try to bifurcate the initial quadratic profile only in the family
of stationary solutions using the parameters A and B as bifurcation parameters (they
will play the role of the angular velocity €?). Indeed, by using the boundary and density
equation (1.1.16)—(1.1.18) we can define

G1<A7B7f7 ¢) :F(07 f7 ¢)7
G2<A7B7f7 ¢) :G(O7f7 ¢)

Here, we have some trivial solutions given by G (A4, B, fo,1d) = G2(A, B, fo,1d) = 0, for
any A, B € R. Following the ideas in Chapter 2, the first equation G can be solved via
the Implicit Function theorem and one can try to use Crandall-Rabinowitz theorem to
G2. The kernel of the linearized operator of G2 around f is one dimensional, which fol-
lows from the work done in Chapter 2. The problem here is that the classical transversal
condition in bifurcation theory is not verified and one has to work more with 81%(} .

Chapter 3 aims to provide a model for the phenomenon known as Karman Vortex Street.
The key idea is the desingularizing point vortices which turns to be very robust and can be
applied to other special solutions to the N-vortex system. The motivation of Chapter 3 was
the desingularization of a vortex pair in [85]. Two point vortices with same circulation rotate
at a constant angular velocity. However, if the circulation are opposite they translate at a con-
stant speed. Another relative equilibria in the N—vortex system is the case of point vortices at
any vertex of a regular polygon with same circulation. All this configuration rotates around
the center of the polygon at a constant angular velocity. This is explained in the previous Sec-
tion 5.2. The same idea of the desingularization of the vortex pairs can be applied to other
configurations of the discrete system.

To the best of our knowledge, the content of Chapter 4 is the first work concerning the bifur-
cation of trivial solutions of a 3D fluid model. There, we prove the existence of non uniformly
rotating patches that are bifurcated from a stationary one. Such stationary patch is a revolution
shape with some needed regularity. In the line of the study vortex patch type of solutions,
many questions remain open.

e Bifurcation of singular shapes: In Chapter 4 we have bifurcated stationary patches
which are revolution shapes around the vertical axis. We asked to these patches some
conditions and one of them is that the shape must be located around two stationary el-
lipsoids (meaning that the x and y axes are equal). That ensures us that the stationary
revolution shape has some regularity (we can think in an ellipsoid patch). However,
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such regularity is only needed in the persistence of the nonlinear function in the function
spaces, and it is not needed in the spectral study. Hence, we may try to bifurcate from
singular shapes where the spectral analysis is similar by using other weaker bifurcation
methods.

Bifurcation of the rotating ellipsoidal patches: In the case of the 2D Euler equations, the
Kirchhoff ellipses define rotating patches. As for the circular patch, HMIDI and MATEU
are able to bifurcate the ellipse patches in order to find a new family of rotating vortex
patches, see [84]. In Chapter 4, we are able to find rotating solutions close to some station-
ary patches. However, there is the analogue to the Kirchhoff ellipses here and they are the
ellipsoid patches with different 2 and y axis. Hence, we expect that the same techniques
(with more involved computations) could work in order to bifurcate the ellipsoid patches
and find some new rotating solutions.

Persistence of the regularity of the patch: As for the 2D Euler equations, the solutions
are transported along the trajectories in the 3D quasi—geostrophic system. Hence, the evo-
lution of a patch along the trajectories is again in this type. In the 2D case, the persistence
of the €1« regularity for the patch boundary is known by CHEMIN in [36]. We believe
that the same idea gives us the persistence of the regularity for the patch boundary in the
quasi—geostrophic system.

Axisymmetric 3D Euler equation: A more physical relevant system is the 3D Euler equa-
tions. The main different between the 2D and 3D Euler equations is the stretching term
w - Vv that does not appear in the 2D case. As a consequence, the study of some special
solutions for the 3D equations is a difficult problem.

There is a simplification of the 3D system in terms of axisymmetric solutions. Using
cylindrical coordinates, we refer to a axisymmetric solution when the velocity field does
not depend on the angle  direction, i.e.,

v="2"(t,r,z3)e, + U6<t, r,x3)eq + v3(t, T, x3)es,

where e3, eg and e3 is the standard orthonormal unit vectors defining the cylindrical coor-
dinate system. In the case that v/ = 0 we arrive at the axisymmetric flows without swirl.
In that case, the vorticity only depend on the angle component: w = w’ey. Moreover,

there exists a transport equation for %9, see [107].

For the axisymmetric system without swirl, we find some special relative equilibria (in
terms of patches) that behave as translations or rotations of the initial patch. Here, the
spherical patch will evolve as a translation in the z axis with constant speed. This is
known in the literature as the Hill spherical vortex, see [66, 81]. One can try to find
special solutions around the Hill vortex by using bifurcation arguments.



Appendix

Bifurcation theory and Fredholm
operators

The main aim of bifurcation theory is to explore the topological transitions of the phase portrait
through the variation of some parameters. A particular case is to understand this transition in
the equilibria set for the stationary problem F(\,z) = 0, where F' : R x X — Y is a a smooth
function and the spaces X and Y are Banach spaces. Assuming that one has a particular solu-
tion, F'(A,0) = 0 for any A € R, we would like to explore the bifurcation diagram close to this
trivial solution, and see whether we can find multiple branches of solutions bifurcating from a
given point (g, 0). When this occurs we say that the pair (Ao, 0) is a bifurcation point. When
the linearized operator around this point generates a Fredholm operator, then one may use
Lyapunov-Schmidt reduction in order to reduce the infinite-dimensional problem to a finite-
dimensional one. For the latter problem we just formulate suitable assumptions so that the
Implicit Function Theorem can be applied. For more discussion in this subject, we refer to see
[93, 97].
In what follows we shall recall some basic results on Fredholm operators.

Definition A.0.1. Let X and Y be two Banach spaces. A continuous linear mapping T : X — Y, isa
Fredholm operator if it fulfills the following properties,

1. dimKerT < oo,
2. ImT isclosedinY,
3. codim Im7T < oo.
The integer dim Ker T' — codim Im 7" is called the Fredholm index of T
Next, we shall discuss the index persistence through compact perturbations, see [93, 97].
Proposition A.0.2. The index of a Fredholm operator remains unchanged under compact perturbations.

Now, we recall the classical Crandall-Rabinowitz Theorem whose proof can be found in
[45].

Theorem A.0.3 (Crandall-Rabinowitz Theorem). Let X, Y be two Banach spaces, V' be a neighbor-
hood of 0in X and F' : R x V' — Y be a function with the properties,

1. F(\,0)=0forall A € R.
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2. The partial derivatives O\F), Oy F and 0,0y F exist and are continuous.
3. The operator O F'(0,0) is Fredholm of zero index and Ker(97F(0,0)) = (fo) is one-dimensional.
4. Transversality assumption: 0,05 F(0,0) fo ¢ Im(0¢F(0,0)).

If Z is any complement of Ker(0;F(0,0)) in X, then there is a neighborhood U of (0,0) in R x X,
an interval (—a,a), and two continuous functions ® : (—a,a) - R, f : (—a,a) — Z such that
®(0) = 5(0) = 0and

FH0) NU = {(2(€),&fo +£B(6)) : €] < a} U{(X,0): (A,0) € U}.
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Appendix B

Potential theory

This appendix is devoted to some classical estimates on potential theory that we have used
through all the previous chapters. We shall deal in particular with truncated operators whose
kernels are singular along the diagonal.

The action of such operators over various function spaces and its connection to the singu-
larity of the kernel is widely studied in the literature, see [64, 80, 101, 114, 115, 149]. In the case
of Calderon-Zygmund operators we refer to the recent papers [46, 47, 110] and the references
therein. In what follows we shall establish some useful estimates whose proofs are classical
and for the convenience of the reader we decide to provide most the details.

Let us first deal with singular integrals of the type

T(f) (w) = /T K(w,©)f(€) dé, weT, (B.0.1)

where K : T x T — C being smooth off the diagonal. The next result focuses on the smoothness
of the last operator, whose proof can be found in [78]. See also [80, 101, 105].

Lemma B.0.1. Let 0 < a < 1 and consider K : T x T — C with the following properties. There exists
Co > 0 such that

(i) K is measurableon T x T\ {(w,w),w € T} and

Co

w — €|’

K (w, §)| < Vw#eT.

(ii) Foreach & € T, w — K(w,§) is differentiable in T \ {{} and

Co

0w K (w,§)| < W7

Yw#EeT.

Then,

1. The operator T defined by (B.0.1) is continuous from L>(T) to €'~*(T). More precisely, there
exists a constant C,, depending only on « such that

IT(Hl1—a < CaCollfl Lo

305



2. For a = 0, the operator T is continuous from L>(T) to € (T), for any 0 < 8 < 1. That is, there
exists a constant Cg depending only on 3 such that

IT(H)lls < CsColl fl oo

Next, we study singular integrals of the type

1 1
K()(ar, 22) = /0 /0 K (21, 32,1, 92) F (1, y2)dya dya, (.02)

with (z1,22) € [0,1]> and where K : [0, 1]? x [0,1]?> — R is smooth out the diagonal.

Proposition B.0.2. Let K : [0,1]? x [0,1]2 — R be smooth out the diagonal, satisfying

Co
K < B.0.3
’ (1:1,1’2791,2/2” = |x1—y1|1_a|x2—y2|77 ( )
Co
K < B.0.4
‘ (x17$27y17y2)| = |$1*y1’7‘$2*y2|1_a7 ( )
Co
Op K < B.0.5
| 1 (m,y)| = |$‘1 — y1|2_a|$2 — y2|7’ ( )
|00, K (2,y)] < Co (B.0.6)

B T PR P
with o,y € (0,1). Then KC : L*°([0,1] x [0, 1]) — €([0, 1] x [0, 1]) is well-defined and
IE()lge < CCollf]|Los-
Remark B.0.3. Note that condition (B.0.5) (and also (B.0.6)) can be replaced by
|K(.CU17 xT2,Y1, y2) - K(flv 2,Y1, yQ)‘ S C|.CL'1 - ‘f1|ag(x17 'fly x2,Y1, y2)7

for 1 < @1 and 3|z — 21| < |y1 — 1]|. The function g must satisfy

1 rl
/ / 9(1’171:1791,$2ay2>dyldy2 S C)
0 JoO

uniformly in x1, 21, Ta.

Proof. The L* norm of IC(f) can be estimated as

1 1
K(F) ()] <CIIf ||z~ /0 /0 K (21, 29, 91, y2)dyn e

1 1
dy1 dys
SCC L°°/ /
oll7l o lz1—wlt= Jo lre — 12l

<CCol|flLe-

Remind that o,y € (0,1). Hence,

()L < CCol|fl| -

For the Holder regularity, take z1,27 € [0,1] with 1 < #;. Define d = |z — 21|, By, (1) =
{y €[0,1] : |y — 21| < r} and Bg, (r) its complement set. Hence

K(f) (@1, 22) = K(f)(21, 22)
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1 1 1 1
—/ / K(%xz,yl,yz)f(yhyz)dwdw—/ / K (71, 22,91, 92) f (Y1, y2)dy1dy2
0 0 0 0
1
:// K(x1, 2, y1,92) f(y1, y2)dy1dy2
0 J[0,1]NB., (3d)
1
_// K(21, 22, y1,92) f (Y1, y2)dy1dy
0 J[0,1]nBx, (3d)

1
"‘/ / (K (z1,22,y1,Y2) — K(£1, 22,91, 92)) f (Y1, y2)dy1dy2
o JoanBs, (3d)
=0 + I + I3.

Using (B.0.3), we arrive at

1 ! 1
1] <CCO||f||L°°/ del/ Ty
0,1]NB,, (3d) |71 — Y1l 0 |2 — ol

1
SCCo||f||L°<>/ T
Bz, (3d) |1 — 1]
<CCol|flLod®

=CCo| fl|Lee|z1 — 21|

In order to work with Iy, note that B,, (3d) C By (4d). Thus,

1 ! 1
2] <CCollf = | e [
0,1]NB,, (3d) |1 = Y1l 0 |72 — vl
1
<Ol [
Ba, (4d) |71 — 1]

<CCo|f[lpeelrr — 21|

For the last term /3 we use the mean value theorem and (B.0.5) achieving

|I3| <C

11
(w1 — fl)/ / / (On, K) (21 + (1 = 5)(27 — 21), w2, Y1, ¥2) f (Y1, y2)dy1dy2ds
o Jo Jioansg, (3d)

' dy1ds b dys
<CCol|f||pee|xr — 21 / / - — / .
1z | o Jonee, @ay [21+ 1 =s)(@1 —z1) =7 Jo |w2 —we]

Note that if y; € BS (3d), then

(1)

o1+ (L =s)(@ —21) —yi| = 21 —y1| = (L= s)d = o1 =] = ~—

lz1 —y1| > 6lzr —y — 1],

with § > 0, which implies

1
N dyds
T3] <CCol|fllz=la1 — 1| / / _dnds
0 J[0,1]nBg, (3d) |l‘1 y1|
B 1
SCCO||f||L°°|fU1—$1|4|x1_x~1|1_a

<CCo|f[|Loe |1 — 1]
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The ideas for estimating
K(f)(x1,2) — K(f) (w1, 22),

for zo, 75 € [0, 1] with x9 # @5, are similar. Then, we arrive at

1E(F)

go < CCo||f]|Lee-

The third operator studied here is the following one:

2(f)(=) = /D K(z)f(y)dA(y), =eD (B.0.7)

Lemma B.0.4. Let o € (0,1) and K : D x D — C is smooth off the diagonal and satisfies

|21 — 22|

|K(Zl7y)| S TR
|21 — yllz2 — 9]

and |K(Zl7 y) - K(ZQa y)' S C(0 (BOS)

21—y
forany z1, z2 # y € D, with Cy a real positive constant. The operator defined in (B.0.7)
& L*(D) — €"*(D)
is continuous, with the estimate
|-Z fllgo.epy < CCol fllL=(p), Vf € L>(D),
where C'is a constant depending on c.

Proof. 1t is easy to see that
|2 flle 0y < CColl fll Lo (D)-
Using (B.0.8) combined with an interpolation argument we may write
K (21,9) = K (22,9)| <|K(21,9) = K (22, 9)[* (1K (21, 9) [ + [K (22, 9)[' )

1 n 1
o=y ey

<CCp|z1 — 2z|* {
Thus from the inequality

|f(y)]
Zeg/D e (y) < CCollfll Lo (D)

we deduce the announced result. O

Before continuing to the next result, let us give the complex version of the Stokes theorem
and the Cauchy-Pompeiu’s formula.

The complex version of the Stokes theorem reads as follows. Let D be a simply connected
domain and f a ¢! scalar function, then

| @ das=2i [ sty aace) (B.0.9)
aD D
where 05 can be identify to the gradient operator in the same way
1
V =20z, 0Ozp(2) = 5 (O10(2) + i029(2)) .
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Let us introduce now the Cauchy-Pompeiu’s formula. Consider ¢ : D — C be a €' complex
function, then
1 _
_ / Iyely )dA( )= — / Mdg' (B.0.10)
7 w—1y 2mi Jop  w—¢&

The following result deals with a specific type of integrals that we have already encountered
in Proposition 2.3.1. More precisely we shall be concerned with the integral

FONE = [ 5 V|V PdAw). = €D, (B.0.11)

Lemma B.0.5. Let o € (0,1) and ® : D — ®(D) C C be a conformal bi-Lipschitz function of class
€%(D). Then
F[®] : €V%(D) — ¢-(D),

is continuous. Moreover, the functional F : ® € U — F|®| is continuous, with
U = {@ € €**(D) : ® is bi-Lipschitz and conformal}.

Proof. We start with splitting .7 [®] f as follows

/ 2
/ £ ‘Z |q>/( )2dA(y) + f(2) /D qmmy)

712 f(2) + f(Z) 2[®]f(2).

Let us estimate the first term .%; [®]f. The L>°(D) bound is straightforward and comes from

|f(y) — f(2)] [ flleip
18— 0(y)] = @

Setting

K[®)(z,y) = V. <m> ’

then one can easily check that K satisfies the assumptions

1
K[®](zy)| SCHfH%L&(D)m?

“he®), ey

[K[®](21,y) — K[®](22,9)] <CIf

[Zz‘ — zj|* |2 — 2]
lzi =yl |z —yllz — vl

where the constant C' depends on ®. Thus, Lemma B.0.4 yields
|V Z1[®] f[l0.0(p) < Ol fllgr.ys (B.0.12)

and hence we find

[ 71[@]f

Let us now check the continuity of the operator .%; : ® € % — %#,[®]. Taking ®;, P2 € % we
may write,

[f(y) = £(2)]
D

|5 (y)* — | ®5(y)I?|dA(y)
1(2)]

[F1[@1](2) — F1[P2] f(2)] S/D [©1(y) —
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/ 1 1
+ [ ) = 1010 5~ B

<Ol flluip (II®) — Pl ooy + |P1 — Pall (D)) -

dA(y)

Similarly we get
V(F1[B1]f(2) — F1[)f(2)) = /D K[®4](2 ) (1B (4) 2 — () P)dA(y)
n /D (K[@1](2, ) — K[®2](,)) [ (y) PdA(y).

Now, performing the same arguments as for (B.0.12) allows to get,

(121 (y)[* — 125(y)*)dA(y) < C[|®) = y]lg0.0(p)-

©0.%(D)

For the second integral term, we proceed first with splitting K[®] in the following way

K[®](,) = - M () - £()Vs (M)

VL f(2) K1 [0](2,y) + Ka[®](2, ).

Let us check that K;[®;] — K;[®2] obeys to the assumptions of Lemma B.0.4. For the first one,
it is clear from elementary computations that

| K [®1](2,y) — K1 [®2](2,9)| < C|®1 — Pallipoy|z — vl 7"
Adding and subtracting adequately we obtain

(K1[®1] — Ki[®2])(21,y) — (Ka[®1] — K1[P2])(22,v)

' (1 — P2)(21) — (D1 — Do) (y))(P1(22) — P1(y))(Pa(22) — Pa(21)) '
T (@1(21) = @1(y)(P1(22) — P1(y))(Pa(z1) — ‘132(y))(q’2(2’2) ‘I’2(y)

n ‘ (P2(21) — P2(y))(P1(22) — P1(y))((P1 — P2)(21) — 22)) ‘
(@1(21) = @1(y))(P1(22) — P1(y))(P2(21) — Pa(y) ‘I>2 (22) ‘I>2( )
‘ ((®1 — P2)(22) — (1 — %)( ) (D2(21) — Pa(y))( <I>1(zl ‘1’2 22)) ‘
(@1(21) — @1(y))(P1(22) — P1(y))(P2(21) — Pa(y))(Pa(22) (¥)
<Oy~ a1

Therefore, by applying Lemma B.0.4 we deduce that

/D (K[ (> y) — K1 [D2](-9) | @) PdA(y) < Oy — Boganoy.

©0.2(D)

Let us deal with K. Note that m is holomorphic, and then we can work with its complex
derivative. We write it as

Ko[®](z, y) = M@’(z). (B.0.13)
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We wish to apply once again Lemma B.0.4 and for this purpose we should check the suitable
estimate for the kernel. From straightforward computations we find that

< ‘ fly) = f(2)
T [(@1(2) = @1(y))?
1

, 1
+ ‘(f(y) — f(2))@3(2) ((q)l(z) — 1 (y))2 N (Po(2) — @2(2}))2> ‘

< Cllfllipll®1 — Polliplz —y| ™!
while for the second hypothesis we write

|(K2[®1] — Ka[®2])(21,y) — (K2[P1] — Ka2[P2])(22, )]
fly) = f(z1) L) (s fly) — (Z)
‘@a(zl)—@l(y)v(q’l(“) 2) =15, () = @1(y)?
@l () (B P2)(21) — (D1 — P2)()) (D1 + P2)(21) — (D1 + P2)(y))
S UURHECTE @10o1) — B (0) 2 (@2 (o1) — Ba(y))?
NP1+ P2)(22) — (P1 + ‘132)(11))'
)2(P2(22) — Pa(y))?

o[04z, y) — Kol @3] (2, )] (@ (=) - <I>'2<z>>]

5 (21(22) — P5(22))

\_/

— |

— (f(y) — f(22)) @) (22) (1 — P2)(22) — (91 — )(g)/

(@1(22) — P4 (
< C (1P — Dol o — LI \21—752|
= ||fHL1p(|| 1 ZHLlp + H 1 2||L1p) |,21 — y||22 — y‘

It follows from Lemma B.0.4 that

which concludes the proof of the continuity of .#; with respect to ®.
Let us now move to the second term .%,. By using a change of variables one may write

ZE) = [ gy 4w

< C||®; — P
%0.2(D)

%2,(){(D),

/D (Kal®1](y) — Kal2])(9)) |@(y) PdA(y)

First, note that
| F2[®@] f]| ) < C,
and
| Z2[®1]f — F2[Po] fllLop) < C| 1 —
By Cauchy-Pompeiu’s formula (B.0.10) we get

F2[0)f(2) =m®(2) - 2% [m) §—2(2)

We observe that the mapping ® € €%%(D) — ® € ¥?%(D) is well-defined and continuous. So
it remains to check that C[®] € ¥%(D) and prove its continuity with respect to ®. Note first
that C[®] is holomorphic inside the unit disc and its complex derivative is given by

[C[®])] (2) = ®'(2) /T mﬁ%(w@’(g)dg, vV zeD.
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Using a change of variables, we deduce that

Clall () = o) [ gl

GE IOk

where we have used the formula

d— =2 7

— (&) = £ (9).

FTO =@

For this last integral we can use the upcoming Lemma B.0.6 to obtain that [C[®]] € €% (D).
Although the last is clear, we show here an alternative procedure useful to check the continuity
with respect to ®. According to [135, Lemma 6.4.8], to show that [C[®]] € ¥*%(D) it suffices to
prove that

( cla])” (z)‘ <C(1- 2!, VzeD. (B.0.14)
Then, by differentiating we get
" — " (2 WEQ _ (5 2 WEQ
[CI]]" (2) = — @7( )/T<I>(§)—<I>(z)d§ (@'(2)) /T(q)(f)_@(z))gdﬁ
—:— ®"(2)C1[®](2) — (@' (2)) Ca[®](2).

For C;[®] we simply write

2VE _ 26) s
§ 38 — 2 31, Y

Cl[q)](z):/ TO " V) gy6)gg 4 2im 2252
T

() — @(2) o'(2)

F2P7(€)
(&)

el <o ([ 1) <oy

It remains to estimate C[®]. Integration by parts implies

Since £ € D+ & € ¢"(D), then we have

Cl#)) = [ gt ¥ O

o\
/(€)¢
() 7(8)
G
Since ® € ¥>*(D) and is bi-Lipschitz, then ¥ € ¥*%(D). Writing

with

i) = [ HE g O + 2im0(),

implies that

IE—z

U(¢
o) < ¢ [ =T ag s ampwie < 0 [ B2 0t 4 2o
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Thus, we have
C2[@](2)| < C(1 — [2[)*
Putting together the previous estimates, we deduce (B.0.14) which implies .%,[®] € €1%(D).
It remains to check the continuity of .%; with respect to ®. Splitting .#,[®1] — .%>[®»] as

D (y) > — [P (y) |
o Pi(z) - P1(y)

(‘I)z—q))(z)—( s ®)(Y) )
+/D (P1(2) — P1(y))(P2(2) — (y))|(I) 5(y)|7dA(y),

Fo[P1]f(2) — F2[Palf(2) = dA(y)

combined with Lemma B.0.4 yield

| Fa[@1] — F2[Po]

%92(D) < CH(I)l — Py

@2 (D)
Now, we need to prove a similar inequality for its derivative,
|- 5] ®1] — F3[ @[l g0.0 Dy < Cf|P1 — Pollg2.0(p)-
Since ® € ¥*%(D) — @' € €1*(D) is clearly continuous, we just have to prove that
[C[1])"(2) — [C[@2])"(2)] < Cl| @1 = Paflgzap) (1~ 27", Vze€D.

It is enough to check the above estimate for C; and C,. Let us show how dealing with the first
one, and the same arguments can be applied for Co. We have

& <<1>;1<§> _ @;(s)) 2 (@;(@ _ @;(@)
() - Gl < | | A A T ey
®1(8) — P1(2) '

(‘I)l ((I)l @2)(5) =2 (I)/Q(Z) 2(I,/ (5) .
<I>1(§) )(‘1’2(5) D4(2)) ( Ph(2) —¢ (@) D5(§)d¢

*23223
+/ ~ o, z) (@71(8) — 5(8))d§

orze | L T2\
" ¢>a<z>

<C||®1 — Pallg2aml (1 — |2))' 7,

where we have used that

2 (21§ P39 2 () AB)] )
£ <(I>’1(§) <I)’2(§)> (@/1(2) @é(z))‘ < C|® — P

Then, we obtain the inequality for C; [®], which concludes the continuity with respect to ®. [

g2z —§|.

The following result deals with a Calderon-Zygmund type estimate, which will be neces-
sary in the later development. The techniques used are related to the well-known T(1)-Theorem
of Wittmann, see [149]. Let us define

H(2) = /T K (2 €)f(€)dé, VzeD. (B.0.15)
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Lemma B.0.6. Let o € (0,1) and K : D x D — C smooth outside the diagonal that satisfies

K (21,y)| < Colz1 —y| 7, (B.0.16)

K1)~ Ko )] < Co2 =28, if 2as = sal < (B.0.17)

# (Id) € €%*(D), (B.0.18)
/ K(z1,€)d¢| < Co, (B.0.19)
9(DNB-, ()

forany z1,z2 #y € Dand p > 0, where Cy is a positive constant that does not depend on z1, z2, y and
p. Then,
A €% (D) — ¢%*(D)

is continuous, with the estimate

1 f

z0.ap) < CCo| fllgo.a Dy,
where C' is a constant depending only on c.

Proof. From (B.0.16) and (B.0.18), we get easily that
160 < | [ KGO0 - s+ |16) [ Ko
T

< Col|f

d§
(FOQ(D)/| | "1 — + O fllg0.a(D)
< CGo|lf

({O’O‘(D .

Taking 21, z2 € D, we define d = |z; — 22|. We write

/ K(21,€)f(€)d — / K (22.€)(€)d¢
:
/ K(z1,6) f(e1))de — / K (22, €)(f(€) — (1))
A=) /T K(21,€)dé — (=) /T K (22, €)dé
= [ KU - S - K (20, )(f(€) — F())de
TNB., (3d)

TNB:, (3d)

+ / (K (21,€) — K (2. ) (J(€) — f(0))de
TNBe, (3d)

A=) /T K(21,€)dé — (=) /T K (22, €)de
=L -1+ I3+ f(Z1)(I4 — I5).

Using (B.0.18), we achieve
|I4 - 15‘ S C|21 - 22|a.

Let us work with I; using the Layer Cake Lemma, see [105]. We use that |T N B, (p)| < Cp, for
any p > 0 and x € R?, which means that it is 1-Ahlfors regular curve. In fact, taking any z € D
and p > 0 ones has that

|d€]| _ o ) 1
/mBz@) P /o '{“T“Bz(”wz—alaZAHdA’
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_ /Ow\{semepmz—gsm?})dx

pafl +00

= [ igeTie-d <o |

pe

1 +oo =1
< C|pp* +/ AT=ad\ | < Cp%,
p

a—1

{eeT:lz—gl<ame}|ar

-1

where | - | inside the integral denotes the arch length measure. Applying the last estimate to I,

we find de]
1| < Coll fllopo.n / L 0o flgoe o |21 — 22l
11| < Col|fll50.0(D) N I ol| fllgo.a(pyl21 — 22|

For the term I3, we get

€|

3] < Col| fllz0.0pyl21 — 22| -
®) TB., (3d)e |21 — &2~

by (B.0.17). Now, we use again the Layer Cake Lemma, obtaining
|d¢] /°° H 1
= EeT: — >Nz =& = pp|dA,
/TﬂBz(p)C |z — £|2~« 0 |z — |2 | |
o0 1
— [ HeeTile-d=amE s - 2 o} ar
0
pa72 .
—/ ]{5eT:p§\z—§|gAﬁ}(dA
0
pa—2 =
< C/ Az=ad\ < Cp L,
0

Therefore,
13| < Coll f

It remains to estimate I5. First, let us write it as

cgo,a(D)|Zl - 22|a.

L= / K (22, €)(f(6) — F(z2))dé + (f(22) — (1)) / K (22, €)dé
TAB., (3d) TNB., (3d)

=t H1 + (f(22) — f(21))Ha.

H can be estimated as I; noting that B, (3d) C B,,(4d). To finish, we just need to check that
H, is bounded. Decompose it as

Hy = / K (29, €)de +/ K (29, €)d€ = Jy + Jo,
TNB., (2d) TAB., (3d)NB., (2d)°

since B, (2d) C B;,(3d). Note that

2] < Co / ] 00y [T 0 B, (3d)] < CCo.
TAB., (3d)NBx, (2d) |72 — €|

For the last term, we write
n-| K (22, €)d€ — K (2, €)d¢
A(DNB., (2d)) DNdB., (2d)
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By using condition (B.0.19), we get that the first integral is bounded. For the second one, we
obtain

|d¢|
< C / = DNdB,,(2d)| < C.
0 DﬁaBZQ(Qd) |22 —_ €| 2d| 2( )|

/ K (2, €)de
DNOB., (2d)

Combining all the estimates, we achieved the announced result. [

In the following result, we deal with the Cauchy integral defined as
fE)P'()
J[P z) = / =

Note that this classical operator is fully studied in [101] in the case that & = Id, then there we
will adapt that proof.

de. (B.0.20)

Lemma B.0.7. Let o € (0,1) and ® : D — ®(D) C C be a conformal bi-Lipschitz function of class
©2°(D). Therefore, we have that

I1®] : €°%(D) — €"*(D),
is continuous. Moreover, .9 : ® € U — J|®] is continuous, where % is defined in Lemma B.0.5.

Proof. Note that

s = [ Lt ac—elooyae),

where C is the Cauchy Integral. Then, it is classical, see [101], that

17 [@)()lsg0.00) = [IC[f 0 @' 0 D|lg0.a(p) < ClIf 0 @7 lg0.0() |2l ip(D)
<Clf

702012 | Lip() 12| [Lip (D)
To deal with the continuity with respect to the conformal map, we write
@1 () ( ) /
J\|® Dy d
@17 - S0 = 16 (G e - B e= [ oK

We will check that K verifies (B.0.16)-(B.0.19) in order to use Lemma B.0.6. Straightforward
computations yield

|K(21,9)| < C||®1 — P

gramlz —yl 7

|21 — 22|

|K(21,y) — K(22,9)| < C[|®1 — 2l[41.0(p) gl if 2|21 — 2o < [21 — gy,

using that |z — y| > |21 — y| — |21 — 22| > 3|21 — y| in the second property, which concerns
(B.0.16)-(B.0.17). Moreover,

3 3
K(z,8)d¢ = —— =0,
/T (2:6) &1 (T) Py(z)— & oo(T) P2(2) = ¢
which implies (B.0.18). In fact,
d§ d§
K(z,€)de = _% _%
/6(0032@)) (z:6) o, (00nB.(p)) P1(2) =& Ja,(aDnB.(p)) P2(2) — &

by applying the Residue Theorem, and where Cj that does not depend on p neither z, which
agrees with (B.0.19). Then, we achieve the proof using Lemma B.0.6. O

= CO»
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We give the explicit expressions of some integrals which appear in the analysis of the lin-
earized operator.

Proposition B.0.8. Let o € (0,1). Given h € €°*(D), k € #€>(D), where the spaces are defined
in Section 2.2.2, and a radial function fy € €(D), the following identities

k(2) (v) 1 |z - 1
/D(z—y)fo —ZWZAnZ l/o 7 fo(r)dr n/| Tfo(r)dr],

n>1 2|

zn+l1 |=|
foly) Re[k/ (y)|dA(y) =Y An(n+1) / rfo(r)dr + |22(n+1)/0 7“2"+1f0("“)d7"} :

Z _
D Yy n>1

fo(y) z [
dA(y) =27 ||2/ rfo(r)dr

DZ—Y
h(y) B . 1 1 w+1 2| .
/Dz_ydA(y)—w; l—z 1/|Z| o hn(r)dr + |Z|2n+2/0 "M h(r)dr |
|21
/Dlog|z—y|h(y) = —W;COS nﬁ)f {|z|“/ ! —h (T)dr—l—’;'n/o z|"+1hn(r)dr} ,
k(2) = k(y) _
/Dz—yf QW;Anz / sfo(s)ds,
/Dlog |z — y| fo(y)Re[k (y)] = —WZA cos (n0)

n>1

1 |2
X [|z|”/||rfo(7’)d7’—|— | 1|n/ 7’2n+1f0(7’)dr},

ngw—wm@MA@w=%{Aki[fmamw—/fiéﬁﬁvmﬁ

holds for z € D.
Proof. Note that h and k can be given by

Zh Ycos(nh), k(z —ZZAnZ

n>1 n>1
where z = re' € D.
(1) Using the expression for the function k, the integral to be computed takes the form
ontl yn+1 fO y)
/ ( dA(y).
Db Z-Y zZ-Y
An expansion of the function inside the integral provides

L — oy foly nek [ xJo(y)
/D p— Zz / ydA(y).

z—Y

The use of polar coordinates yields

k fo(y) . " gt
/Dy —=dA(y) —2/0 r fo('r)/ d€. (B.0.21)

iy Pz
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We split our study in the cases ¥ = 0 and k£ > 1 by making use of the Residue Theorem. For

k = 0, we obtain
/1 1 dg_{O, . |z| <,
TEE-2 —2miZ, |z| >,
whereas, we find
/ gt _ { 27rifd,lz—:, |z| <,
16— % 0, |z| >,

for any k£ > 1. This allows us to have the following expression

||
2772"_1/ rfo(r r—27rZz” ke k= 1/ r fo(r)dr
0 |z]
1

= o7l [/OM rfo(r)dr—n/lz| rfg(r)dr} .

Y n>1 An(n + 1)2". Then, the integral to be analyzed is

n+1 _ ,n+l
/z y fo(y)dA(y) _
D 2-Y z—Y

(2) Note that £'(z) =

fo(y) Relk'(y)]dA(y) = Z 2 DZ—Y

o
D Yy n>1

We study the two terms in the integral by using polar coordinates and the Residue Theorem

For the first one we have

n—1 1
dédr = —27Tz”1/ rfo(r)dr.

/D %y"dA<y> i /0 o) /T — i

In the same way, the second one can be written as

fO(y) -n _ / /
ey yy dA(y) = fo(r)r el e dfdr
|z] 2ﬂ.zn+1 2|
= 27‘(‘ Zn+1 f ( ) 2n+1d | ’21’14—2 fO(T)T2n+1dT7
that concludes the proof.
(3) This integral reads as
1 1 2 || 9 ||
fo) dA(y) =i / folr) / T v folr)dr = “j r folr)dr
0 T~ z Jo 2|

D? Y

(4) We use the expression of h(z) to deduce that

[ =3 5 [

o —
y n>1

m9 —inf
+e
) dA(y).

The two terms involved in the integral can be computed as follows
1

1 Sn—l 1
Z/ hn(r)/ —dédr = —271',2"_1/ —
0 TS = ¢ |z| T

r

hy (r)dr,

hn(r)ema _
/D Al =
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APPENDIX B. POTENTIAL THEORY

o
>
3
—
=
S~—
Q)
1
3
fea)
QL
s
—~
Ned
S—
Il

. 1 )
AL A [ h
sy ! ”(”/snﬂs
or [l orzntl el
= /0 " hy (r)dr = 7|z\2("+1) /0 " hy (r)dr.
(5) Let us differentiate with respect to  having that

8r/DIOg|Tei0 — y|h(y)dA(y) = Re [i/D h(y) ) Ay )]

Z=Yy

Re [ign [—z”_l / 1 Z’;(_‘?dH Z:H /0 ' S”th(S)dsH
= WZcos(nG)[ / <8) s+ 1+1 /OT S"th(s)ds].

n>1

This last integral was computed before by the Residue Theorem. Now, we realize that

_ot "/llh()d +1/r ntp (s)d
T.nrrsnflnss r”os n(8)ds

-1 ! 1 1 " +1
= —r" / Sn—l h ( )dS + ﬁ s" hn(s)ds
r

Then, we obtain

/log|z—y|h( =y~ [ / (Sl)ds+:n/0r s”“hn(s)ds] cos(nf) + H(6),

n>1

where H is a function that only depends on 6. Taking r = 0 we have that

H(6) = /D log([y)h(y)dA(y) =

The last is equal to zero due to the form of the function h: h(re?) = > n>1 ha(r) cos(nd).
(6) This integral can be done by spliting it as follows

D DR D z

zZ—y -y
= ZA”

n foly) ¥ foly)
& Dﬂ“(” - [ )]

Note that these integrals have be done before. Hence, we conclude using Integral (3) for the
first one and (B.0.21) for the second one.

(7) Similarly to Integral (5), we differentiate with respect to r

0, [ toglre” i fo(w)Re ()] dAGy [ | Pt wwl, <>}
= ﬁ;An(n—kl)Re [r [—z”_l/r sfo(s)ds + Z;::D /T 2"+1f0(8)dsH,
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= 7 Z Ap(n+ 1) cos(nf) [—r"l /Tl sfo(s)ds + Tnl-i-l /07’ 52"+1f0(s)ds} ,

n>1

where we use Integral (2). With the same argument than in Integral (5) we realize that
1 n ! 1 " 2n+1
—Opr— |7 sfo(s)ds + — [ s fo(s)ds
n . ™ Jo

1 1 r
= —rnl/ sfo(s)ds + RS /0 s2 £ (s)ds,

T

and hence

/Dlog re’ — ylfo(y)Re [K'(y)] dA(y)

1 r
=7 Z Ann +1 cos(nh) {r”/r sfo(s)ds + 7“1”/0 32”+1f0(5)ds] + H(6),

n
n>1

where H is a function that only depends on §. Evaluating in = 0 as in Integral (5), we get that
H = 0, obtaining the announced identity.

(8) As in Integral (5) and (7) we differentiate with respect to r having

o, [ toelre yiiatia) = Re|Z [ 2Waa| —onl ["spoyas

rJpr—Y

where the last integral is done in Integral (3). Hence,

[ toztre” = slotw)aa) =2 [ [ squ(spasar + 1 6),

where H is a function that only depends on §. Evaluating in » = 0 we get that

H(0) = /01 /()%slog sfo(s)dsdd = =27 /01 % /OT sfo(s)dsdr,

concluding the proof. O
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Appendix

Special functions

We give a short introduction to the Gauss hypergeometric functions and discuss some of their
basic properties. Recall that for any real numbers a,b € R, ¢ € R\(—N) the hypergeometric
function z — F'(a, b; ¢; z) is defined on the open unit disc D by the power series

F(a,b;c;2) = i M'Z—T, Vz € D. (C.0.1)

n=0 (C)n "

The Pochhammer symbol (z),, is defined by

() = {1, n =20,

x(x+1)---(z+n—-1), n>1,

and verifies
(@) =21+ 2)n-1, ()1 = (+n) (@)

The series converges absolutely for all values of |z| < 1. For |z| = 1 we have that it converges
absolutely if Re(a + b — ¢) < 0 and it diverges if 1 < Re(a + b — ¢). See [14] for more details.

We recall the integral representation of the hypergeometric function, see for instance [130,
p. 47]. Assume that Re(c) > Re(b) > 0, then we have

F(a,b;c;2) = L(e) ) /1 271 = 2)7 N1 — 22) % dx, Yz € C\[1,400)(C.0.2)
0

') (c—

Notice that this representation shows that the hypergeometric function initially defined in the
unit disc admits an analytic continuation to the complex plane cut along [1,+00). Another
useful identity is the following:

F(a,bjc;2) = (1 —2)"*F <a, c—b;c Zl> , V0arg(l —2z2)| <m, (C.0.3)
P
for Rec > Reb > 0.
The function I" : C\{—N} — C refers to the gamma function, which is the analytic continuation

to the negative half plane of the usual gamma function defined on the positive half-plane {Re z > 0}.
It is defined by the integral representation

+oo
I'(z) = / e Tdr,
0
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and satisfies the relation I'(z + 1) = zI'(z), ¥z € C\(—N). From this we deduce the identities

_F(J:—i—n) B ., T(l—=x)
(@)n = W? (@)n = (=1 m7

provided that all the quantities in the right terms are well-defined.
We can differentiate the hypergeometric function obtaining

d*F(a,b;c; ) _ (a)k(
dzF (c)

for k € N. Depending on the parameters, the hypergeometric function behaves differently at 1.
When Rec > Reb > 0 and Re(c — a — b) > 0, it can be shown that it is absolutely convergent
on the closed unit disc and one finds the expression

b
)kF(a+k,b+k;c+k;z), (C.0.4)
k

_ T(e)l(c—a—0)

Fla.biei) = 5 - o =b)’

(C.0.5)

whose proof can be found in [130, Pag. 49]. However, in the case a + b = ¢, the hypergeometric
function exhibits a logarithmic singularity as follows

F c; T
lim (a,b;¢;2)  T'(a+D)

51— —In(l1—2)  T(a)T(b)’ (C06)

see for instance [7] for more details. Next we recall some Kummer’s quadratic transformations
of the hypergeometric series, see [130],

cF(a,b;c;2) — (c—a)F(a,bje+1;2) —aF(a+ 1,b;c+ 1;2) = 0C.0.7)

(b—c)F(a,b—1;¢;2) 4+ (c—a—b)F(a,b;c;2) —a(z — 1)F(a+ 1,b;¢;2) = 0C.0.8)

(2c—a—b+ DZ_CF(a,b;c—i—l;z)—i— (a—c—=1)(c—=b+1)z
c c(c+1)

= F(a,b;c;2z)(z —1). (C.0.9)

F(a,b;c+2;z)

Other formulas which have been used in the preceding sections are

1
/ F(a,b;c;m2)7 Ydr = —=F(a,b; ¢ + 1; 2),
9y ) 1 (C.0.10)
F(a,b;c; “1—-7)dr= ——<F(a,b;c+2;2).
/0 (a,byc;m2)T (1 —T)dT et D) (a,b;c )
Let us also introduce the following lemma:
Lemma C.0.1. Letn > 0,5 € Nand A € R, then
BY on (1
/2“ cos(nf) do = 2 (2)”2 (2)nF<n+ﬁ Nt Lo 1 >
0 (Afcos(g))g (1+A)g+n (2n)! 2’ 2’ "1+ A

forany A € R such that ‘1%4‘ <1
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Proof. By a change of variables and using cos(260) = 2 cos?(f) — 1, we arrive at

27 0
/ cos(nb) b = 2 _ / cos(2n0) .
0 (A—cos(h)) (1+A4)2 Jo (1—125cos?(0))2
Since ‘ ‘ < 1, we can use Taylor series in the following way,

_8 B
2

(1 - I—FLA 0052(9)> = mZZO <1272'm a fz)m cos®™(0).

Then,

(3), 2

/2” cos(nd) Z
0 (A—cos(e))" 1+A% = omt (L+ AT

/ cos(2n8) cos>™(#)d6.
0

At this stage we use the identity

ml(x + 1)
20T (1 4+ ST (1 + 2¥)’

/7r cos” () cos(y0)do =
0

for x > —1 and y € R. That identity can be found in [52]. For # = 2m and y = 2n, we obtain

i
/27r cos(nd) d0 — 2 Z (§>m 2m r@em+1)
0 (A—cos(6))? (1+A4)7 =, ml 1+ A 2701+ m+n)l (1 +m —n)
8
L (2)m+n 1 T(2m + 2n + 1)
S+ A)E S men)! (L Ay 2m D (14 m 4 2n)T(1 + m)

We can use some properties of Gamma functions in order to find
F(m+142n)I'(m+ 1) =2n)!m!(2n + 1),

' 2 1 1
(2m +2n + ):22m+2n N mtn,
(m +n)! 2

(2),..7(3), (2

I'(2m+2n+1)
yrAn 2mAn (1 + m + 2n)I'(1 + m)

which implies

o Ny =

1(1+

(
o (f;)nzn(;)nz(n%)m(m;)m( ) >m

= 0t A)§+n (2n)! = m!(2n + 1), 1+ A4

n B 1
= F = =2n+1
i (n+2,n+2, n+

2
14+ A)°
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Some useful properties of Hypergeometric functions are the following.
Proposition C.0.2. The following assertions hold true.

1. Bound for F(a, a;2a; x) : for a > 1, there exists C' > 0 such that

Ve e[0,1), F(a,a;2a;z) <C

'hl(lxi_“””)‘ <O +C|n(1 —2)|. (C.0.11)

2. Bound for F(a,a;2a — 1,z) : for a > 2, there exists C' > 0 such that

1

Vz € [0,1), F(a,a;2a—1;m)§C|l |
-

(C.0.12)

3. Bound for F(a,a;2a — 2,x) : for a > 3, there exists C' > 0 such that

1

Vre[0,1), F(a,a;2a—2;x) < Cm.

(C.0.13)
4. For a > 1, there exists C' > 0 such that
Vo €[0,1), 0<F(a,a;2a;2) — 1< Cx(1+|In(1 —z)]).

5. For a > 2, there exists C > 0 such that

T

Ve €[0,1), |F(a,a;2a—1;2)—1| < C’1
-z

6. For a > 1, there exists C' > 0 such that any o € [0, 1]

|£1 — xo|*

va <z € [07 ]-)7 |F(CL,CL; 2a;m1) - F(a’ a; 2a;£2)| < C
|1—:C1|0“

(C.0.14)

7. For a > 2, there exists C' > 0 such that any o € [0, 1]

|21 — mo|*

Vry <z €[0,1), |F(a,a;2a—1;21) — F(a,a;2a — 1;12)| < Cm'

(C.0.15)

Proof. The main tool is the integral representation of the Hypergeometric functions (C.0.2).

(1) From the integral representation (C.0.2), it is easy to get

1
tafl 1—t¢ a—1
Fla,a,20,2) <c | T =D
b (1 —at)e

1 a—1
e (t(l — t)) 1 di-
b 1—uat 1—uat

Because t(1 — t) < 1 — tx for any ¢,z € [0, 1], then we deduce

Uoat
|F(a,a,2a,3)| <C /
0 1—xat
§C|ln(1 —z)|
xr
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(2) As for (1), we find

1
ta—l (1 o t)a—Q

F(a,a,2a — 1,2)| < -

o[ ()

Consequently, we infer from direction calculation

1

|F(a,a,2a—l,x)| <C m

dt

QC\,_.

IN

T—a
(3) We omit here the details of the proof by similarity with (1) and (2).

(4) First note from the integral representation that F'(a, a; 2a;x) > 0 provided that a > 0 and
z € [0,1). Moreover, it is strictly increasing function since from (C.0.4)

F'(a,a;2a; ) = gF(a+ 1,a+1;2a+ 1;2) > 0, Vz € [0,1).
According to (C.0.1) one may check by construction that F'(a, a; 2a;0) = 1 and therefore
F(a,a;2a;x) —1>0.

By the mean value theorem, we achieve

1
F(a,a;2a;z) — 1 = gx/ Fla+1,a+1,2a+ 1,72)dr.
0

Combining this representation with (C.0.12), where we replace a by a + 1, we achieve

T o1+ |In(1 - 2))).
—TX

1
F(a,a;2a;2) —1 SCJU/ 1
0

(5) By using similar arguments as the previous point, we obtain
1
0 < F(a,a;2a—1;2) —1< Cx/ F(a+1,a+ 1;2a;7x)dT.
0

Applying (C.0.13) by changing a with a + 1 allows to get

C

Then,
dr T

<C .
l—72)?2 = 1-—=x

1
F(a,a;2a — 1;2) — 1 < C’m/ (

0
(6) Lett € [0,1) and set g:(x) = (1 — tz)™% Take 0 < z3 < x1 < 1, then direct computations,
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using in particular the mean value theorem, show that

lgt(w1) — ge(w2)| <2(1 —taq)™"
|9¢(21) = ge(w2)| SC(1 — twr) ™" My — aa.
Let o € [0, 1] then by interpolation between the preceding inequalities we deduce that
l9¢(21) = ge(@2)| =lge(@1) — ge(@2)|'~Nge (1) — ga(w2)[*
SC(l — txl)_a_a|l‘1 — CL’2|Q.

It follows that

|F(a,a,2a,x1) — F(a,a,2a,z2)] <C

1
At“%L%W”@@ﬂ—m@ﬁMt

1 tafl(l _ t)afl
<Clzy — x2|* ———dt.
0

(1 _ xlt)a—l—a
Since a > 1 and for any ¢,z; € [0,1),

tafl 1—t¢ a—1
PO g pyiee,

0<
- (1 _ xlt)a—&-a -

then

|F(a,a,2a,z1) — F(a,a,2a,x2)| <Clx; — x|

1
/ (1— ;1;1t)_1_o‘dt‘
0

|21 — 32|®

<C———.
- ’1*1’1‘0‘

(7) This is quite similar to the proof of the preceding one. Indeed,

|F(a,a,2a —1,21) — F(a,a,2a — 1,29)| <C

1
At“Wﬂ%Vﬁ@@ﬂ—%@ﬁM4

1
<Clay — 2] / (1- xlt)_z_o‘dt’
0
|71 — 3|
<clmz T2
- |1 _ x1|l+o¢

O

The last point that we wish to recall concerns the differential equation governing the hyper-
geometric equation, which is given by,

2(1=2)F(2)" + (c— (a+b+1)2)F(2) — abF(z) = 0, (C.0.16)

with a,b, € R and ¢ € R\(—N) given. One of the two independent solutions of the last differ-
ential equation around z = 0 is the hypergeometric function: F'(a, b; ¢; z). It remains to identify
the second independent solution. If none of ¢,c — a — b,a — b is an integer, then the other
independent solution around the singularity z = 0 is

ACFla—c+1,b—c+1;2—¢;2). (C.0.17)
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We will be interested in the critical case when c is a negative integer. In this case, the hyperge-
ometric differential equation has as a smooth solution given by (C.0.17). However, the second
independent solution is singular and contains a logarithmic singularity, see [130, p. 55] for
more details. Real solutions around +oo may be also obtained as it is done in [7]. In fact, the
two independent solutions are given by

1 1
:f“F(a,a—i—l—c;a—i—l—b;) and z_bF<b,b—|—1—c;b+l—a;>.
z z

Now, let us define the Bessel function of the first kind and order v by the expansion

400 (_1)k (%)I/+2k

J,(z) = ;;) WT kD) larg(z)| < .

In addition, it is known that Bessel functions admit the following integral representation
1 ™
Jn(z) = / cos(nf — zsin@)df, =z € C,
T Jo

for v = n € Z. On the other hand, the Bessel functions of imaginary argument, denoted by I,
and K, are defined by

I,(z) = 2:: AT+ E+1) larg(2)| < T,

k=0
and ; 1)
nl_,—1I,(z
KV(Z) = §W Ve C:\Z7 |arg(z)| <.

An useful expansion for K,, can be found in [148]:

+00 (Z)n+2k

Kn(z) =(—=1)"* kzo m <ln (%) — %gp(k’ +1) — %go(n +k+ 1))

)

1 (= Dk(n—k—1)!
>

+35 (E)n72k
\2

2
k=0
for n € N*. In the case that we concern, Ky, it reads as

00 (2 2k
Ko(2) = —In (%) I(z)+ ((Qk?)g o(k+1), (C.0.18)
k=0
where .
o) = —y and p(k+1)= Z%—% ke N,
m=1

The constant v is the Euler’s constant. Moreover, the following asymtotic behavior at infinity
for Ky is given in [2]:

3
Ko(z) ~ 1/2%6_2, larg(z)| < 3™ (C.0.19)

Finally, the derivative of K, can be expressed by terms of Bessel functions. In particular, K =
—K;.
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Titre : Modéles dans les équations différentielles partielles issues de la mécanique des fluides

Mot clés : Mécanique des fluides, équations d’Euler, systéme quasi—geostrophique

Résumé : Cette thése est consacrée a I'émer-
gence de solutions périodiques en temps pour
des modéles hamiltoniens issus de la mé-
canique des fluides. Dans la premiere par-
tie, nous explorons dans le plan les solu-
tions en mouvement rigide (rotation ou tranla-
tion pures) avec des distributions uniformes ou
non pour des modéles standards comme les
équations d’Euler incompressibles ou I'équa-
tion de surface quasi—géostrophique généra-

lisée. Dans la deuxieme partie, nous menons
une étude analogue pour le systéme quasi—
géostrophique en 3D. Létude de ce modéle
montre une remarquable richesse par rapport
aux modéles 2D que ce soit par rapport a I'en-
semble des solutions stationnaires ou la diver-
sité des problémes spectraux associés. Dans
la derniére partie, nous discutons quelques
travaux en cours de cette thése.

Title: Patterns in Partial Differential Equations Arising from Fluid Mechanics

Keywords: Fluid Mechanics, Euler equations, quasi—geostrophic system

Abstract: This dissertation is centered around
the existence of time—periodic solutions for
Hamiltonian models that arise from Fluid Me-
chanics. In the first part, we explore relative
equilibria taking the form of rigid motion (pure
rotations or translations) in the plane with uni-
form and non uniform distributions for standard
models like the incompressible Euler equa-
tions or the generalized quasi—geostrophic

equation. In the second part, we focus on a
similar study for the 3D quasi—geostrophic sys-
tem. The study of this model shows a remark-
able diversity compared to the 2D models due
to the existence of a large set of stationary so-
lutions or the variety of the associated spec-
tral problems. In the last part, we show some
works in progress of this dissertation, and also
some conclusions and perspectives.
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