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CHAPTER 1 ‒ General introduction 
Geographic range size 
Understanding the geographic distribution of species across space and time is one of the long 

standing challenges in ecology and evolution. Since the first naturalists of the 18th and 19th 

centuries, we have documented the enormous variation of species geographic distributions 

(hereafter geographic range) and have long sought to understand the mechanisms underlying 

such variation (Brown et al. 1996, Gaston 2003). Despite this, we are still a long way from 

understanding the principal drivers of range size variation and have a satisfactory explanation 

about why some species occur in larger area than others (Gaston 2009, Coreau et al. 2010, 

Sheth et al. 2020). The need to answer these questions has become more urgent in the recent 

decades as this knowledge is crucial to predict changes in biodiversity patterns in response to 

global changes, such as, climate change and habitat loss or habitat fragmentation (Brown et al. 

1996, Jetz and Rahbek 2002, Gaston 2009, Sandel et al. 2011, Grill et al. 2019). 

The species’ geographic range size has been studied across several taxonomic groups 

and has been related to multiple ecological and evolutionary factors. However, studies on 

range size have generally analyzed potential driving factors separately or have limited both 

the number of species and their spatial extent (Brown et al. 1996, Gaston 2003). Indeed, one 

of the main reasons for the lack of a comprehensive answer to the question of what 

determines species’ range sizes has been the lack of an holistic view that considers the full 

extent of species geographic distributions (i.e. extent of occurrence sensu Gaston and Fuller 

2009) and the complex way in which multiple driving factors may interact with each other 

and influence the range size differently among regions and taxonomic groups (Brown et al. 

1996, Sexton et al. 2009, Morueta-Holme and Svenning 2018, Sheth et al. 2020). 

Some macroecologial studies have made important contributions to the comprehension 

of the variation on species’ geographic ranges by evaluating quantitatively and statistically, 

different proprieties of this pattern across the globe (e.g. Li et al. 2016). However, these 

studies have been only applied to some taxonomic groups, mainly those with more 

information (e.g. birds and mammals), leaving out many others. Freshwater fishes are one of 

those groups, still lacking integrative studies describing species distribution patterns. The few 

studies dealing with the variation of freshwater fishes geographic range size have been 

species- and location-specific analyses (e.g. Tales et al. 2004, Bertuzzo et al. 2009). 
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Overcoming these knowledge gaps and applying them to guide conservation strategies 

for freshwater ecosystems is a critical challenge. Freshwater environments harbor an 

extraordinary rich and endemic biota, and provide diverse ecosystem goods and services (e.g. 

providing water quantity and quality as well as food and nutrition for billions of people 

globally, Costanza et al. 1997, Dudgeon et al. 2006). At the same time, this strong human 

dependence on freshwater ecosystems’ goods and services drives increased pressures, 

degrading these ecosystems, modifying species range sizes (Comte et al. 2013, Radinger et al. 

2017) and ultimately increasing species’ extinction risk (Vörösmarty et al. 2010, Albert et al. 

2020). These human pressures are projected to substantially increase for freshwater 

ecosystems in the near future, impacting further species’ persistence (Zarfl et al. 2015, 

Winemiller et al. 2016, Comte and Olden 2017, Albert et al. 2020). Thus, besides 

understanding the factors and processes explaining species’ geographic range sizes and their 

changes, it is also important from a conservation perspective to quantify the potential impacts 

that human-induced changes in range sizes could have on species’ extinction risks, to guide 

conservation priorities by pointing where actions are needed. 

 

Historical context: From the biodiversity distribution to the species 

geographic range 
Perhaps, the initial approach to understand the distribution of species was the Noah's Ark, an 

ancient narrative based on Mesopotamian stories and widely enacted between the 16th and 17th 

centuries during the biblical doctrine. Back then, the belief was that after the great flood the 

animals disembarked from Noah's Ark on Mount Ararat and dispersed around the globe (Fig. 

1, Mayr 1982). Thinkers at that time would have predicted the same geographic range size for 

all the living species. However, in the 18th century with the beginning of the age of 

explorations, a vast number of uneven distributed species were described, and it seemed no 

longer plausible that they all could be aboard an ark (Mayr 1982, Browne 1983). In the mid 

18th century, Carl Linnaeus, the father of systematics, was the first to think about the 

geography of species distributions alluding a term that later evolved “the regions in which the 

plants grow” (Candolle 1820, Nelson 1978). Linnaeus’ interpretation of the distribution of 

biodiversity (the mountain explanation) did not rely on dispersal from Noah’s Ark. Instead, he 

posited that each species was created in a particular climatic belt of a small mountainous 

island surrounded by a great flood and, as the floodwaters receded, different species dispersed 

outward from this island to colonize their preferred environments (Browne 1983). The French 
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naturalist Georges-Louis Buffon challenged Linnaeus’ explanation, recognizing that species 

were not perfectly suited to an environment; instead, the distribution of species across the 

globe was the result of the observed shifts in climate (Buffon 1770). Based on this 

observation, he proposed the Buffon’s law, then known as the “law of the distribution of 

forms”, stating that similar environments in isolated regions have distinct species assemblages 

with similar attributes (Browne 1983). This law has represented the basis of the first biotic 

zoning described during the 19th century (see below). 

 

Figure 1. Representation of the Noah’s Ark where animals are descending after the great 
flood. By Edward Hicks, 1846 Philadelphia Museum of Art. Image obtained from Wikimedia 
Commons. 

In the late 18th century, Carl L. Willdenow and Eberhard A. von Zimmermann, two 

German geographers who shared a similar view as Buffon, brought a geological perspective 

to explain the distribution of species. Based on the observation that different regions and 

continents shared common species, they proposed that the current distributions of species 

were the results of historical connections and dispersion processes (Mayr 1982). They also 

recognized early patterns in the spatial variation of species distribution by describing the 

https://commons.wikimedia.org/wiki/Main_Page
https://commons.wikimedia.org/wiki/Main_Page
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restricted range of plants in mountain regions (Morrone 2009). Willdenow transmitted his 

passion for plants and mountains to his pupil, Alexander von Humboldt (Hiepko 2006), who 

in the early 19th century, attempted to get a full picture of the phenomenon gathering 

empirical evidence to directly relate changes in species distribution with different 

environmental parameters. Through this evidence, Humboldt set up hypotheses on which 

factors might influence the physiology of plants and in turn their distribution (Morueta-Holme 

and Svenning 2018). Perhaps, the strongest relation that he inferred was that the physiological 

requirements of plants to ambient energy restricted their survival and distribution, which 

could be clearly seen while ascending a mountain (Fig. 2, Humboldt and Bonpland 1805, 

reviewed in Morueta-Holme and Svenning 2018). Humboldt also noted the effect of 

temperature seasonality on species ranges. He attributed the observation that many temperate 

plants spread from lowlands to high elevations to the fact that species in these regions were 

exposed to the same low temperatures in winter and at high elevations, and thus, that they 

have adapted to a wider range of temperatures. Conversely, the stable intra-annual 

temperature in the tropical regions resulted in clearer vegetation bands towards highlands 

(Humboldt and Bonpland 1805) (The same observation that lead Janzen to later develop the 

classic hypothesis “Mountain passes are higher in the Tropics”; Janzen 1967). 
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Figure 2. Scientific illustrations by Alexander von Humboldt. His famous illustration of 
Chimborazo volcano in Ecuador shows plant species living at different elevations (Public 
domain / Wikimedia Commons). 

 

The aforementioned biogeographers were very influential in the study of the distribution 

of species, identifying biotic zones and how environmental factors determined them. But, the 

first person that conceived the idea of species geographic range was Augustin de Candolle 

which described “les habitations” (dwellings), as “the country wherein the plant is native”, 

and “les stations” (the stations) as “the special nature of the locality in which each species 

customarily grows” (Candolle 1820: 383). Another important contribution of de Candolle was 

the hierarchical notion distinguishing between the factors that determined the distribution of 

species on a regional scale (temperature, light and the biology of the organisms) and those 

that influence global-scale patterns (historical factors that restrict the distribution of species 

into the provinces) (Lieberman 2012). 

During the second half of the 19th century, the fields of geology and paleontology added 

an evolutionary view to the distribution of species. At this time, geologists and 

paleontologists strongly questioned the view that climate alone could explain the distribution 

of species across the globe, and were looking for reasons why certain species were found in 

particular areas. Charles Lyell was the first to establish a relationship between the current 

distribution of species and their distribution in the fossil record. He proposed a deep-time 

dynamic where the geographic ranges of animals and plants contracted and expanded 

according to geologically mediated changes (Browne 1983). Charles Darwin, a profound 

admirer of Lyell, integrated this deep-time dynamic with the thesis that geological changes 

left descendants with modifications. This allowed Darwin to explain why species distributed 

in a certain region were more related among them than species found in other distant regions 

(“On this principle of inheritance with modification, we can understand how it is that sections 

of genera, whole genera, and even families are confined to the same areas, as is so commonly 

and notoriously the case”, Darwin 1859: 350-351). Alfred Russel Wallace extended Darwin’s 

vision proposing a global pattern of species distribution, where higher taxonomic hierarchies 

such as classes and orders, were generally spread over the whole Earth, whereas more derived 

ones such as families and genera were confined to more restricted parts of the globe. Overall, 

the first evolutionary approach of the geographical distribution of species identified that “the 

https://commons.wikimedia.org/wiki/Main_Page
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natural sequence of the species by affinity is also geographical” (Brooks 1984: 73). In other 

words, that the relationships between species across the tree of life is spatially structured. 

 
 

 
Figure 3. Evolution in the delimitation of geographical-biotic units during the 19th century. 
Early biotic zones (top) had coarse resolution and strong limits demarcated almost by 
latitudinal lines whereas Life zones theory (down) integrated climate and topography allowing 
to reduce resolution and define flexible limits. Top left, first atlas of the geography of plants 
in the New World, largely based by Humboldt’s collections. By Joakim F. Schouw in 1822 
(from Morueta-Holme & Svenning 2018). Top right, bioegraphic regions proposed y Alfred 
R. Wallace in his book The geographical Distribution of Animals (Public domain / Wikimedia 
Commons). Down, life zones of the United States proposed by Clinton Hart Merriam (Public 
domain / Wikimedia Commons). 

 

In the late 19th century, an integrated view in the study of natural and social phenomena 

began to permeate the biological sciences (Chamberlin 1965) advocating a more 

comprehensive view of species geographic distributions, where multiple factors interacted as 

drivers. Following Chamberlin, Clinton Hart Merriam proposed the “life zones” theory where 

he stated that climate interacted with topography forming circumpolar belts that aggregated 

https://commons.wikimedia.org/wiki/File:Wallace_biogeography.jpg
https://commons.wikimedia.org/wiki/File:Wallace_biogeography.jpg
https://commons.wikimedia.org/wiki/File:Life_Zones_Merriam.jpg
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species in climatic zones (Merriam 1894). The interest of this theory was a finer-resolution 

view of biotic zoning where borders were adjusted to environmental conditions instead of 

latitudinal lines (Fig 3). The “life zones” theory was widely accepted in its beginnings, 

however, in the early 20th century, the supporters of the emerging field of ecology considered 

that “distribution cannot be explained by the mere mapping of the extent either of 

hypothetical faunal divisions” (Ruthven 1920: 248). Ecologists proposed that combining the 

results of experiments altering the intensities of environmental factors along with the study of 

habitat preferences across the ranges of species was the correct way to identify the 

determinants of species distribution (Ruthven 1920, Moore 1920). This resulted in the 

construction of the first regional maps of species’ ranges based on wide sampling records 

(Fig. 4) and the nomination of different ecological factors as drivers of the species distribution 

(e.g. Grinnell 1914, 1917, Talbot 1934, Dennis 1938). Besides the contributions made by the 

field of ecology during the early 20th regarding the spatial and environmental component of 

species’ ranges, a temporal dimension was also proposed at that time by John Willis. stated 

the (Willis 1922). He proposed a positive age-area relationship about the dynamics of species 

geographic ranges where, in areas with no well-marked barriers, the oldest species would 

have the broadest geographic ranges. 

  
Figure 4. First regional-distribution maps of ground squirrels species elaborated by Joseph 
Grinnell (1910, Public domain / Wikimedia Commons). 

 

During the second half of the 20th century, the study of species geographic distributions 

underwent a pivotal moment and species ranges began to be studied as basic geographic units 

https://commons.wikimedia.org/wiki/Main_Page
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(Brown et al. 1996, Jenkins and Ricklefs 2011), transcending the delimitation of 

biogeographic regions as the only way to explain species distributions and establishing the 

concept of species range that we currently apply and study (i.e. the area across which a 

species occurs, Sheth et al. 2020). The first step to consolidate this single-species view of 

species distribution was the launch of multiple biological surveys (e.g. North American 

Breeding Bird Survey) and the compilation of maps of geographic ranges for thousands of 

species that allowed gathering different types of information on the distribution of species 

(e.g. Hall and Kelson 1959). Then, Eduardo Rapoport used this information to pose the initial 

guidelines to quantify and analyze different aspects of the species geographic ranges in his 

seminal book ‘Areografía’ (Rapoport 1975), clearly differentiating between biogeography 

(“the delimitation of faunistic or floristic sets and in the origin of their different elements”, 

Rapoport 1975: 21), areography (“the attention on the form and size of the geographical 

ranges of species and other taxa”, Rapoport 1975: 21), and ecogeography (“the study of the 

spatial distribution of taxa, but at a geographic level”, Rapoport 1975: 22). This promoted the 

description of early spatial patterns of geographic ranges such as the one showing that small-

ranged species are much more common than large-ranged ones and that species are not evenly 

spread through all the potential range (Rapoport 1975, Anderson 1977). Then, these 

geographic range patterns were rapidly associated with diverse hypotheses: habitat 

availability (Cody et al. 1975, Anderson and Koopman 1981), density dependent factors 

(Rosenzweig 1978), abundance (Bock and Ricklefs 1983, Brown 1984), life history (Reaka 

1980), and body size (Reaka 1980, Gaston and Lawton 1988). 

At the end of the 20th century, the computers-related technology developments 

facilitated the compilation and digitalization of the first large databases of species ranges, and 

allowed faster quantification and analysis of distributional patterns. Thus, the study of 

geographic range size at large spatial scales rapidly received considerable attention (Gaston 

1990, 1996, Brown et al. 1996), and the first global patterns were described. One of these 

patterns is the Rapoport’s rule that describe how species latitudinal range decreased toward 

the Tropics (Stevens 1989). Other relevant contributions were the macroecological 

relationships between the geographic range and the body size and abundances of species, 

documented by James Brown and Brian Maurer (1987, 1989). Through these relationships, 

Brown and Maurer offered insights into the empirical patterns and causal mechanisms that 

characterize the distribution of food and space across species (Brown and Maurer 1987, 

1989). Today, in the 21th century, these patterns set the basis of macroecological theory 
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(Keith et al. 2012, Brown 2019) where species geographic range size has been related with a 

long list of driving factors (Morueta-Holme and Svenning 2018, Sheth et al. 2020). Currently, 

the study of species geographic range sizes keeps growing, being at the interface of different 

knowledge fields such as ecology, evolution, biogeography and conservation (Li et al. 2016, 

McGill 2019, Newsome et al. 2020, Sheth et al. 2020). 

 

Determinants of species geographic range size: going from potential drivers 

to quantification of interacting forces. 
Since the time of Linnaeus, we have identified several extrinsic and intrinsic drivers that 

shape the variation of species’ geographic range sizes at both ecological (contemporary) and 

evolutionary (historical) scales (Sheth et al. 2020). Extrinsic drivers are external 

environmental conditions such as climate and dispersal barriers that directly affect the 

physiological requirements and morphological variation of species, ultimately determining the 

presence and accessibility of suitable habitats across the geographical space. Climate stability 

has been frequently seen as one of the main extrinsic drivers of species geographic range size 

(Stevens 1989, Morueta‐Holme et al. 2013, Li et al. 2016). At an ecological scale, climate is 

proposed to select against small range sizes via intra-annual variability (Stevens 1989, 

Morueta‐Holme et al. 2013, Li et al. 2016). Habitat availability is another prevalent driving 

factor, small range sizes having been associated with discontinuous areas and habitat 

fragments (Hawkins and Diniz‐Filho 2006, Morueta‐Holme et al. 2013), or poor habitats 

representativeness compared to their surroundings (Ohlemüller Ralf et al. 2008). Conversely, 

widespread habitats can harbor relatively more large-ranged species due to a larger potential 

for range expansion (Hawkins and Diniz‐Filho 2006, Ohlemüller Ralf et al. 2008). For 

terrestrial organisms, topographic heterogeneity is also an established driver acting negatively 

on species geographic range (Hawkins 2006, Li et al 2016), e.g.  mountain regions acting as 

dispersal barriers that constrain dispersal movements through steep-climate gradients and 

rapid changes of habitats (Brown et al. 1996, Hawkins and Diniz‐Filho 2006, Morueta‐Holme 

et al. 2013). 

Intrinsic drivers of geographic ranges are features of species that condition their 

response to external drivers (i.e. extrinsic factors) determining their ability to colonize new 

habitats. Niche breadth (Brown 1984, Slatyer et al. 2013) and dispersal capacity (Glazier and 

Eckert 2002, Laube et al. 2013) have been proposed as the main intrinsic drivers of species 

geographic range. Generalist species that can maintain stable or high population densities 
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across a broad range of environments or resources should become more widespread than 

specialized species with narrow niches (Brown 1984, Slatyer et al. 2013). Similarly, species 

with higher locomotion capacities should disperse across longer distances, promoting 

colonization and achieving larger range sizes (Glazier and Eckert 2002, Laube et al. 2013), 

whereas, low dispersal ability can lead to population differentiation promoting allopatric 

speciation into small-ranged species (Gutiérrez and Menéndez 1997). Other species traits 

related to dispersal capacity have been also associated with geographic range size. For 

example, when migratory behavior has a low fitness cost, dispersion is expected to be 

positively related to range size as migratory movements increase the probability of colonizing 

new areas (Hanski et al. 1993, Polechová 2018). Additionally, the commonly observed 

macroecological relationship between body size and range size shows an overall positive 

trend where small-bodied species can have a variety of range sizes, but larger-bodied species 

are increasingly constrained to larger ranges (Brown and Maurer 1987, 1989; this relationship 

is explained more in detail below in the section Range - body size relationship, and its 

conservation implications of this chapter). 

The above drivers explain the ecological reasons for the geographical variation of 

species range sizes. However, historical factors associated with species’ evolutionary history 

and/or climatic and geological history of the environment can also influence the size of the 

area where a species currently occurs. For example, in temperate regions, cyclical variations 

in the shape of Earth’s orbit induced climatic variability occurring at an evolutionary time 

scale (104–106 year). These variations created long-term climatically unstable conditions that 

may have selected in favor of large range species by lowering the proportion of small-ranged 

species (Dynesius and Jansson 2000, Jansson 2003, Sandel et al. 2011). The loss of historical 

barriers can also drive changes in species geographic range size, the connection of previously 

isolated areas favouring exchanges of biotas that allows the colonization of newly suitable 

areas and the subsequent expansion of species ranges (e.g. The Great American Biotic 

Interchange, Vermeij 1991). Conversely, the emergence of geological barriers fragments 

species ranges into isolated populations promoting speciation events that result in areas with 

high endemism and composed of species with small range sizes (e.g. the Andes uplift, Hoorn 

et al. 2010). Regarding time elapsed throughout species’ evolutionary history, the original 

proposal of the age – area relationship stated that the geographic range of a species continues 

to expand throughout its life (Willis 1922). However, the fossil record shows a non-linear 

relation where newly formed species tend to expand their ranges and then undergo a gradual 
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decline until extinction (Foote et al. 2007, Liow et al. 2010). Average range sizes within 

clades may also decline with speciation events (Jablonski and Roy 2003, Pigot et al. 2010), as 

the available space is divided by functionally similar species, leading to a negative 

relationship between the geographic range size of a species and the diversification rate of the 

corresponding clade. 

Despite the progress already made in identifying several drivers of species’ geographic 

range sizes, the need to go beyond a long list of factors and to develop a more holistic view of 

species ranges that allows us to predict how biodiversity patterns will change due to global 

environmental change is still necessary (Morueta-Holme and Svenning 2018, Sheth et al. 

2020). The new models of species geographic range size must consider the interactions 

among driving factors (Sheth et al. 2020) that directly and indirectly influence its variation 

while considering the factors’ effects across scales (Levin 1992, McGill 2010), regions 

(Morueta‐Holme et al. 2013), species traits (e.g. body size, Brown and Maurer 1987), and 

taxonomic groups (Li et al. 2016) (Fig. 5). This will allow us to have a comprehensive 

explanation of the distribution of species in specific places and times, but also to dispose of 

predictive, prescriptive, and scalable models (Hampton et al. 2013). 
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Figure 5. How driving factors operate? Factors that drive species’ geographic range size can 
interact (upper right) and influence geographic ranges at different dimensions scales (left). 
The relative importance of each driver at each scale (represented with gradient colors with 
respect to each axis; left) varies among them. At the same time, the importance of each driver 
can vary across each scale (lower right). 

 

This aspiration for a bigger picture of species geographic ranges builds on recent 

informatics developments and remote sensing technologies that have brought advances in 

methods and data availability. Large repositories of ecological and environmental data are 

becoming increasingly accessible (Hampton et al. 2013, Linke et al. 2019, Wüest et al. 2020), 

and the expansion of computational capabilities has allowed us to better translate our 

knowledge into empirical and theoretical models with greater inferential strength and 

causality (Hampton et al. 2013, Connolly et al. 2017). Today, the so-called biodiversity 

informatics provides us with the opportunity to test hypotheses at unprecedented spatial and 

temporal scales and integrate disciplines that typically focus on different levels of biological 

organization, such as phylogenetics, population dynamics, community ecology and 

macroecology (McGaughran 2015, La Salle et al. 2016, Benedetti‐Cecchi et al. 2018). 

Despite being promising, biodiversity informatics is also challenging (Michener and 

Jones 2012, Hampton et al. 2013, Farley et al. 2018). The enormous amount of information 

already collected is heterogeneous and spread in different databases or reside on papers or 

other media from both academic and gray literature, impeding its direct treatment and analysis 

(Edwards et al. 2000, Farley et al. 2018). Thus, some of the academic and certainly most of 

the “grey” biodiversity information is often not used for policy or management decisions, nor 

for scientific research (Edwards et al. 2000). The diversity and scatter of these data lies in the 

variety of ways in which studies are carried out resulting in large numbers of small and 

idiosyncratic data sets that accumulate relevant biological, ecological and environmental data 

collected from thousands of scientists (Michener and Jones 2012). Besides, language barriers 

and cultural differences across disciplines, institutions and countries hinder the data-sharing 

(Hampton et al. 2013). Integrating and analyzing massive amounts of heterogeneous data 

must be carefully planned, and this point is central in contemporary ecological and 

biogeography sciences (Hampton et al. 2013, La Salle et al. 2016, Wüest et al. 2020).  

Thus, through initiatives of developing new databases that make available the massive 

amount of inconspicuous and disconnected ecological data and the developing of models that 
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convert these emerging databases into comprehensive and synthetic results, we will be able to 

have a more holistic vision of species’ geographic ranges to better understand the nature and 

pace of ecological and environmental changes (Michener and Jones 2012).  

 

Geographic range size of freshwater fishes 
One of the most important challenges to achieve a unified view of biodiversity distribution is 

to contrast the proposed hypotheses and explore new ones across all the tree of life (Shade et 

al. 2018). However, in the case of geographic range size variation and its drivers, most 

research has focused on terrestrial environments, mainly for large terrestrial vertebrates 

(Brown et al. 1996, Sheth et al. 2020), skewing our understanding of species distribution 

toward a reduced group of charismatic species. Studies about this topic on freshwater fishes 

are scarce and restricted to specific clades and regions, (e.g. Hugueny 1990, Pyron 1999, 

Rosenfield 2002, Tales et al. 2004, Blanchet et al. 2013). These studies have identified as 

intrinsic drivers of range size, factors related to locomotion capacity, energetic requirements 

and the ability of species to occupy different habitats. For example, fish species presenting 

migratory behavior, high swimming capacity and small eggs have larger home ranges and a 

higher probability that offspring disperse and recruit successfully to new suitable habitats, 

resulting in larger range sizes (Blanchet et al. 2013, Giam and Olden 2018). Likewise 

terrestrial vertebrates, generalist fish species with larger bodies and presenting high local 

abundances tend to have larger geographic ranges (Pyron 1999, Tales et al. 2004, Giam and 

Olden 2018).  

Among extrinsic factors, river topology has been associated with the variation in the 

range size of freshwater fishes. Bertuzzo et al. (2009) found that fish species with small 

ranges can be distributed along all the Mississippi-Missouri river basin, whereas, large-ranged 

species tend to be restricted to the lowland waters. They attributed this pattern to the network 

structure of rivers (Fig 6) that increasingly constraint the dispersal movements of freshwater 

organisms toward the headwaters. Similarly, Carvajal-Quintero et al. (2015) found a negative 

relationship between the species’ regional range size and elevation in Tropical rivers. 

River architecture not only restricts dispersion within drainage basins but also among 

basins, hence freshwater fishes range size may have conserved the signal of historical-

geographical patterns (Smith 1981, Hocutt and Wiley 1986). For example, historical 

connections between rivers (i.e. paleo-connected river drainages) during the last glacial 
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maximum favored inter-basins colonization (Voris 2000, Dias et al. 2014b) which could have 

further favored the expansion of geographic ranges of species that inhabited ‘paleo-

connected’ basins. Besides, it has been hypothesized that wide river channels and lakes in 

North America have served as refuges for freshwater fish from adverse environmental 

changes during glacial periods and allowed them to recolonize northward as glacial sheets 

retreated (Griffiths 2010, Blanchet et al. 2013), making fish species using large rivers and 

lacustrine habitats to have larger range sizes than species that do not use these habitats (Giam 

and Olden 2018). 

  
Figure 6. Topologies of contrasting freshwater (left) and terrestrial environments (right). The 
branching-network and isolated structure makes freshwater environments more fragmented 
than terrestrial ones. Images obtained from the NASA earth observatory 
(https://earthobservatory.nasa.gov/images). 

 

Overall, because freshwater fishes have current and historical dispersal limitations not 

found among terrestrial taxa, we may expect fish species to display patterns of geographical 

ranges that differ from birds and mammals, supporting a growing body of literature that 

suggests that theories developed in open landscapes, such as terrestrial landscapes, may be 

https://earthobservatory.nasa.gov/images
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inadequate to predict the properties of complex branching ecosystems, such as river networks 

(Campbell-Grant et al. 2010, Rinaldo et al. 2014). 

 

Geographic range size in conservation 
Beyond its theoretical relevance, studying species geographic ranges is also critical for 

advancing fundamental knowledge in conservation practice and action (Mace et al. 2008, 

2010, Lee and Jetz 2011). By identifying the drivers and processes acting on species’ 

geographic range size we can make projections on the way global change will impact these 

ranges (e.g. Powers and Jetz 2019), allowing us to develop and prioritize conservation actions 

for the most affected species. Geographic range size can also be used as a surrogate for 

identifying species with rapid population decline (Mace et al. 2008), and constantly emerges 

as a key correlate of extinction risk across animals and plants (Lee and Jetz 2011, Böhm et al. 

2016, Chichorro et al. 2019). Additionally, by reflecting the vulnerability of restricted-ranged 

species, species’ geographic range size analyses play a key role in categorizing species 

according to their likelihood of extinction (including listing on the IUCN Red List of 

threatened species) and thus contribute importantly to indices of global trends in threat status 

and to the prioritization of species for conservation (Gaston and Blackburn 1996a, IUCN 

2001, Mace et al. 2008). Indeed, almost 50% of overall threatened species are actually listed 

as threatened on the basis of the geographic range size criterion alone, and in less known 

groups, such as amphibians, this could go up to 75% (Gaston and Fuller 2009). 

However, the variation of geographic range size by itself does not provide a mechanistic 

explanation for extinction risk. For example, a small range size alone or a range contraction 

would fail to detect if population processes needed for the species’ persistence are fulfilled 

(Mace et al. 2008). Therefore, it is not enough to know that species with small geographic 

ranges tend to be at greater risk; rather, we need to know how range size interacts with other 

ecological traits to make certain species more vulnerable than others (Davidson et al. 2009). 

Thus, by understanding how different key ecological drivers interact, we may be able to 

identify the species at greatest risk and to understand what makes them vulnerable (Davidson 

et al. 2009, Ripple et al. 2017). 
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Range - body size relationship, and its implications for conservation 
One of the most important patterns accounting for the variation in the size of species’ 

geographic ranges is the range – body size relationship (Brown 1995, Gaston and Blackburn 

2008). This relationship was proposed as a mechanistic explanation on how physical space 

and resources are allocated among species (Brown and Maurer 1987, 1989), and currently 

represents the basis of the seminal macroecological theory (Brown 2019). The range-body 

size relationship is determined by different ecological and evolutionary constraints that 

restrict the traits space to a triangular envelope through differential colonization, speciation 

and extinction processes (Fig. 7, Brown and Maurer 1987, 1989). The upper-horizontal bound 

of the triangle is settled by the maximum geographic area that species can potentially occupy 

(geographic constraint), the left-vertical bound corresponds to the minimum body size that a 

species of a given taxon can reach (physiological constraint), and the lower-diagonal bound 

represents the minimum viable geographic range size needed for species to achieve long-term 

persistence given their body sizes (Fig. 7, Brown and Maurer 1987, 1989, Gaston and 

Blackburn 1996). 

 

Figure 7. Empirical model describing the geographic range size–body mass relationship 
proposed by Brown and Maurer (1987, 1989). 
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Two main hypotheses have arisen to explain the lower-diagonal bound of the range-

body size relationship. First, large-bodied species tend to disperse more quickly and 

efficiently than smaller species filling a bigger portion of their potential distributional range 

(Gaston 1994a, Gaston and Blackburn 1996a). Second, large species have higher energetic 

demands than small species, hence large-bodied species occupy larger home ranges to attain 

enough resources to support viable population size to be able to persist (Brown and Maurer 

1987, Swihart et al. 1988). Thus, small species can have a variety of geographic range sizes 

while species with larger body size are restricted to larger ranges (Gaston and Blackburn 

1996a).  

From a conservation perspective, the lower-diagonal bound of the range – body size 

relationship is the most important feature and has been proposed as a probabilistic 

vulnerability limit whereby any species that is near or beyond this limit is prone to extinction 

or has a low probability of persistence through time (Brown and Maurer 1987, 1989, Gaston 

and Blackburn 1996a). Different studies have shown that the distance of species with respect 

to the lower limit is a reliable and useful predictor of extinction risk (Rosenfield 2002, Diniz-

Filho et al. 2005, Le Feuvre et al. 2016, Newsome et al. 2020) and have promoted its use for 

tracking trajectories of species towards or away from an extinction threshold and to evaluate 

how different human stressors may affect species vulnerability (Le Feuvre et al. 2016, 

Newsome et al. 2020). 

Despite its applied importance, no test has been done yet to link explicitly this empirical 

boundary to species’ lower probability of persistence. Providing empirical evidence that 

directly links this lower limit to a lower probability of species’ persistence or to the minimum 

viable geographic range size would be a meaningful advance in our comprehension about 

geographic ranges and vulnerability of species. 

 

Current conservation status of freshwater fishes 
Freshwater ecosystems are essential sources of environmental health, economic wealth and 

human well-being. Freshwaters maintain hydro-climatic regimes in our planet, have provided 

us food and water for domestic use and agriculture for millennia, sustained transportation 

corridors, supported recreation, and more recently, enabled power generation and industrial 

production (Costanza et al. 1997, Dudgeon et al. 2006, McIntyre et al. 2016). At the same 

time freshwaters harbor an extraordinary diversity of life. Covering about 2% of Earth’s 
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surface they host approximately one-third of all vertebrate species and 10% of all known 

species (Strayer and Dudgeon 2010, Reid et al. 2019). Besides, levels of endemism among 

freshwater species are remarkably high (Dudgeon et al. 2006, Tedesco et al. 2012, Reid et al. 

2019). The insular and fragmented nature of freshwater habitats restricts species’ distribution 

resulting in over half of the freshwater fishes confined to a single ecoregion (Abell et al. 

2008).  

Despite supporting human well-being and an extremely high biodiversity, the 

management of freshwater ecosystems worldwide most often focuses on macroeconomic 

profits and human water security rather than on the benefits provided by the ecosystem 

integrity (Vörösmarty et al. 2018). Consequently, we are living a freshwater ecosystems crisis 

(Harrison et al. 2018, Albert et al. 2020) where the current rates of wetlands loss are three 

times as high as forest loss (Gardner and Finlayson 2018), where populations of freshwater 

species have declined by an average of 83% since 1970 (more than twice the rate of land or 

ocean vertebrates, Grooten and Almond 2018), and where extinction rates are exceptionally 

high (e.g. freshwater fish extinction rates have been estimated to be more than 100 times their 

natural rates in Europe and United States, Dias et al. 2017).  

The causes of this biodiversity crisis are widely recognized. Habitat degradation by land 

use, habitat fragmentation, chemical and organic pollutions, flow modification, overfishing 

and climate change are the leading causes (Dudgeon et al. 2006, Grooten and Almond 2018, 

Reid et al. 2019, Albert et al. 2020) (Fig.8). Surface waters receive pollution from commercial 

activities (e.g. mining, agriculture, oil) and urban settlements, impairing freshwater 

biodiversity through toxicity or indirect impacts on habitats (Cope 1966). Due to the changes 

in the use and production of chemicals in the last decades, toxic pollutants are changing and 

their effects on aquatic populations and communities are largely unknown (Reid et al. 2019). 

Dams, weirs and levees fragment longitudinal (upstream-downstream) connectivity of rivers 

and, through flow alterations, also affect lateral (river to floodplain), vertical (surface to 

groundwater) and temporal (season to season) connectivity, disrupting important processes 

that support freshwater biodiversity (Albert et al. 2020, Tickner et al. 2020). Today, about 2.8 

million of major dams (i.e. dams with reservoir areas >103 m2) fragment two-thirds of the 

world’s long rivers (Grill et al. 2019) and dams continue to be built across the globe. Three 

thousand seven hundred major hydropower dams are currently either planned or under 

construction (Zarfl et al. 2015), and the increased political and economic support for the 

widespread development of small hydropower plants (SHP) has resulted in approximately 
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83,000 SHP operating or under construction (Couto and Olden 2018). Despite the impacts of 

SHPs are largely unknown, 11,000 new projects already appear in national plans, and if all 

potential generation capacity were developed, the number of SHP would triple (Couto and 

Olden 2018). 

 

Figure 8. Major and emerging drivers of freshwater biodiversity loss based on Dudgeon et al. 
(2006), Reid et al. (2019) and Albert et al. (2020). a) overfishing, b) water pollution, c) dams, 
d) species introduction, e) land change and water withdrawal, f) climate change, g) algal 
blooms, h) plastic pollution, i) noise pollution , j) emerging contaminants, k) light pollution, l) 
declining calcium (eutrophication). There are more threats than those mentioned in this figure, 
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for more information check original sources. Images obtained from Wikimedia Commons, 
Unsplah, and Pexels. 

 

Climate change alters hydroclimates as well as several ecological processes that 

underlie freshwater ecosystem functioning at different levels of biological organization 

(Scheffers et al. 2016). Overfishing, that includes both targeted species harvesting and 

mortalities through bycatch, has persisted during the last decades driving the decline of 

biodiversity (Allan et al. 2005). For example, overharvesting remains the key threat for the 

decrease of freshwater-megafauna populations (i.e. animals that reach a body mass of 30 

kilograms), that have declined by 88% on average during the last decades, reaching the 

highest declines in the Indomalaya and Palearctic realms (−99% and −97%, respectively; He 

et al. 2019). Also, the introduction of invasive species has caused multiple impacts that range 

from behavioral shifts of native species to complete restructuring of food webs and extirpation 

of entire faunas (Gallardo et al. 2016).  

There is long-standing recognition that environmental stressors can interact affecting 

freshwater ecosystems through multiple pathways (Ormerod et al. 2010, Vörösmarty et al. 

2010, Craig et al. 2017). Thus, emerging and persistent threats can have potential additive 

effects that might cause multiple ecological alterations, worsening the prognosis for 

freshwater biodiversity (Reid et al. 2019).  

Although for more than two decades scientists have warned about the global 

biodiversity crisis in freshwater ecosystems, and the low priority given to these ecosystems 

for global conservation-oriented actions (Brautigam 1999, Dudgeon et al. 2006, Harrison et 

al. 2018, Albert et al. 2020), freshwater populations continue to decrease rapidly (Grooten and 

Almond 2018, He et al. 2019) and the actions to safeguard freshwater biodiversity are still 

“grossly inadequate” (Harrison et al. 2018). This has arisen new emergency recovery plans 

and recommended actions to promote the restoration of freshwater biodiversity (e.g. Reid et 

al. 2019, Albert et al. 2020, Tickner et al. 2020). 

 

https://commons.wikimedia.org/wiki/Main_Page
https://unsplash.com/
https://www.pexels.com/
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Thesis 

Objective of the thesis 

This PhD thesis focuses on identifying the main drivers of geographic range size variation of 

freshwater fishes at global and biogeographic scales, as well as on understanding the 

processes that underlie the lower vulnerability limit settled by the range – body size 

relationship. Results were further applied to the specific case of habitat fragmentation by 

dams in the Magdalena River Basin (Colombia). 

 

Thesis structure  

This thesis is composed of six chapters that address the following topics: 

The first chapter consisted in the previous introduction section, where we presented a 

general context for the species’ geographic range and the range – body size relationship doing 

a special focus on freshwater fishes, and the importance of these two concepts in conservation 

science. 

The second chapter presents an analysis of global patterns of geographic range size 

variation of freshwater fishes where we identified the main ecological and historical drivers of 

fish species’ range sizes at a global scale and tested their consistency across the biogeographic 

realms. We found that the variation of geographic range size in freshwater fishes is 

determined by the complex interaction of multiple variables that influence directly and 

indirectly the geographic range size, and within this complex system the drainage position 

network and the historical connections among basins account for most of the variation (about 

90%). These highlight the importance of current and historical hydrological connectivity in 

the variation of the geographic range size of freshwater fishes. 

In the third chapter, we show an analysis where we assess the lower limit of the 

geographic range – body size relationship as boundary of lower probability of species’ 

persistence. For this, we reconstructed the range – body size relationship at a global and 

biographic realm scales and tested if the lower limit matched with the minimum viable range 

size represented by the spatial scale of synchrony. We found that the two limits matched at 

both spatial scales, providing empirical evidence that support the lower limit of the range – 

body size relationship as a species’ vulnerability limit. 
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In the fourth chapter, we use the lower limit of the species range – body size 

relationship to quantify the effect of fragmentation caused by the hydropower development on 

geographic range and vulnerability of the freshwater fish fauna of the Magdalena drainage 

basin (Colombia). We also identified the ecological and human-dependency traits of species 

related to a higher probability of extinction, both intrinsically and because of hydropower 

development. We found that both existing and planned dams fragment most fish species 

ranges, and splits species ranges into more vulnerable populations. Importantly, we found that 

migratory species, and those that support fisheries, are most affected by fragmentation. 

The fifth chapter consists of a global database that contains raw data of time series on 

fish species identities and abundances in different assemblages. This database gathers 11,441 

time-series of riverine fish communities, distributed in 11,125 unique sampling locations 

distributed, and span 21 countries, 5 biogeographic realms, and 402 hydrographic basins 

worldwide. These data offer the possibility to identify ecological processes underlying 

species’ geographic range stability as well as to calculate temporal changes in fish diversity at 

different spatial scales facilitating quantitative analyses of temporal patterns of biodiversity, a 

critical knowledge needed for the conservation of the freshwater fauna in the Anthropocene. 

Finally, in the sixth chapter, we present a general discussion of the results of my PhD 

thesis and highlight some perspectives to continue advancing our understanding of the 

geographic ranges of freshwater fishes. 

 

Biodiversity data of freshwater fishes 

To carry out the analyses of this thesis, we compiled the following three databases: 

A global database of species’ geographic range size. 

This database includes the geographic range maps of 9,075 species of freshwater fishes 

representing 31 orders and 177 families which correspond to 70%, 89% and 97% of the 

known species, orders and families, respectively (Tedesco et al. 2017). Range maps were 

compiled from two different sources, the IUCN that provided range maps for 6,013 species 

worldwide (except for a large proportion of South America), and a set of 3,062 species’ 

ranges reconstructed using occurrence records of multiple datasets and following the same 

methods as the IUCN (for more details see Chapter 1 methods and SI). 
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A global database of abundance time-series of freshwater fish assemblages (RivFishTIME). 

This database gathers 11,463 long-term time series (spanning > 10 years) of freshwater fish 

assemblages compiled from 47 individual datasets and represents a total of 109,346 surveys 

and 709,352 individual species abundance records at 11,147 independent locations. Surveys 

cover 1,417 species ray-finned fish species (Actinopterygii), and span longitudinal and 

latitudinal gradients, spanning 405 hydrographic basins distributed 25 countries, and 6 

biogeographic realms (for more details see Chapter 4). 

A database of occurrences and species traits for freshwater fishes of the Magdalena drainage 

basin (Colombia). 

This database contains 11,571 occurrence records for 204 fish species of the Magdalena 

River. These fish occurrences span from 1940 to 2014 and were compiled from the main fish 

collections of Colombia, the Colombian Biodiversity Information System 

(http://data.sibcolombia.net) and published literature. Occurrences records were 

complemented with ecological and human-dependency traits of 179 species. Species traits 

include: 1) body length, 2) species endemic to the Magdalena River Basin, 3) the species’ 

demographic strategy, 4) the habitat use, 5) species used as fishery resource, and 6) migratory 

species (for more details see Chapter 3 methods and SI). 
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CHAPTER 2 ‒ Drainage network position and 
historical connectivity explain global patterns in 
freshwater fishes range size 
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Abstract 
Identifying the drivers and processes that determine globally the geographic range size of 

species is crucial to understanding the geographic distribution of biodiversity and further 

predicting the response of species to current global changes. However, these drivers and 

processes are still poorly understood, and no ecological explanation has emerged yet as 

preponderant in explaining the extent of species’ geographical range. Here, we identify the 

main drivers of the geographic range size variation in freshwater fishes at global and 

biogeographic scales and determine how these drivers affect range size both directly and 

indirectly. We tested the main hypotheses already proposed to explain range size variation, 

using geographic ranges of 8,147 strictly freshwater fish species (i.e., 63% of all known 

species). We found that, contrary to terrestrial organisms, for which climate and topography 

seem preponderant in determining species’ range size, the geographic range sizes of 

freshwater fishes are mostly explained by the species’ position within the river network, and 

by the historical connection among river basins during Quaternary low-sea level periods. 

Large-ranged fish species inhabit preferentially lowland areas of river basins, where 

hydrological connectivity is the highest, and also are found in river basins that were 

historically connected. The disproportionately high explanatory power of these two drivers 

suggests that connectivity is the key component of riverine fish geographic range sizes, 

independent of any other potential driver, and indicates that the accelerated rates in river 

fragmentation might strongly affect fish species distribution and freshwater biodiversity. 

 

Significance 
Species’ geographic range size is a fundamental aspect of understanding and predicting 

changes in biodiversity patterns. Investigating the global drivers of geographic range size 

variation in freshwater fishes, we found clear evidence that current and historical connectivity 

are, by far, the main determinants of range size. More specifically, we found that, everything 

else being equal, species displaying basal position in the drainage network (i.e., lowland 

areas) and found in drainage basins that have had connections during Quaternary low-sea-

level periods have larger range sizes than their counterparts. Our findings suggest that 

connectivity is the key component of riverine fish geographic range sizes. This may have 

important implications for evaluating the vulnerability of freshwater species to river 

fragmentation.  
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Introduction 
The factors that determine species’ geographic range sizes are complex and interrelated, and 

disentangling this complexity represents a central concern in macroecology, biogeography, 

and conservation (Brown et al. 1996, Gaston 2003). At broad geographical scales, the 

overlapping of species ranges throughout space and time determines the variation in species 

richness and structure of regional biotas from which local communities are assembled (Gotelli 

et al. 2009). This overlapping of species ranges ultimately drives the biodiversity patterns that 

we use as a primary source to define regions of high conservation importance (e.g., Jenkins et 

al. 2013). Further, species’ range size is one of the most important criteria for assigning a 

species’ conservation status [International Union for Conservation of Nature (IUCN) Red List 

classification (IUCN 2018)], given its negative relationship with extinction risk(Gaston 2003). 

Quantifying the determinants of range size is also pivotal for evaluating community 

sensitivity to anthropogenic environmental change (Ohlemüller Ralf et al. 2008) and 

predicting shifts in response to climate change (Gaston 2003, Sandel et al. 2011, Li et al. 

2016). During the last decades, multiple ecological and evolutionary hypotheses have been 

proposed to explain the variation in species’ range sizes (SI Appendix, Table S1), including 

intrinsic biological characteristics of species (e.g., niche breadth, body size, population 

abundance, dispersal ability), metapopulation dynamics (i.e., colonization and/or extinction 

dynamics), and current or historical environmental characteristics (e.g., habitat availability 

and environmental variability) (Brown et al. 1996, Gaston 2003). However, the factors and 

processes determining the size of species’ geographic ranges at broad spatial scales are still 

poorly understood, as none has emerged as preponderant in explaining the extent of species’ 

geographical distributions (Lester et al. 2007, Calosi et al. 2010). For terrestrial groups 

(mostly vertebrates and plants), climatic and topographic factors have been recently identified 

as important determinants of species’ range size at continental or global scales, with 

widespread species having higher thermal tolerance and occurring in areas with higher current 

and historical climate variability and lower topographic heterogeneity (Whitton et al. 2012a, 

Morueta‐Holme et al. 2013, Li et al. 2016). Although strictly freshwater species (i.e., obligate 

freshwater dispersal) also inhabit continental landscapes, the global or continental 

determinants of their range size variation have never been assessed and may greatly differ 

from those identified for terrestrial ones. Indeed, a growing body of evidence suggests that 

theories developed in open landscapes, such as terrestrial, may be inadequate to predict the 

properties of complex branching ecosystems, such as river networks (Campbell-Grant et al. 

2007, Rinaldo et al. 2014). 
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Figure 1. Different features of hydrological connectivity across the longitudinal gradient of 
schematized river networks. Gradient solid lines represent two river drainages currently 
disconnected, but that formed a single paleobasin during a lower-sea-level period at the LGM 
(dashed blue lines). Solid black line shows the current seashore line and the dashed gray line 
the seashore during the LGM. In a downstream position of the river network, the branching 
degree is lower and the Euclidian distance between two localities (gray lines) is similar to the 
distance measured along the river network (yellow lines). As we move to more derivate 
positions toward headwaters, the dendritic branching increases and the Euclidian distance 
between two localities can be much shorter than the actual distance through the network 
(Fagan 2002). This increase in river branching toward headwaters is also accompanied by an 
increase in river slope that configures changes in habitats along a river drainage basin 
(Vannote et al. 1980, Benda et al. 2004). This results in a longitudinal gradient of 
hydrological connectivity that determines the travel distances and dispersal costs for aquatic 
organisms. On the right side are graphically represented the hydrological connectivity features 
along the longitudinal gradient. 

 

Strictly freshwater fishes are an ideal model to continue improving our knowledge about 

the factors and processes that determine species’ geographic range sizes. Indeed, unlike vagile 

terrestrial organisms, movements and dispersal processes of freshwater fishes are constrained 

by the dendritic and isolated arrangements of riverine ecosystems at different spatial scales 

(Fagan 2002, Benda et al. 2004). At the largest spatial scales, fish movements are limited by 

their inability to cross oceans, high mountain ranges, or expansive lands (Parenti 1991). This 

implies, for instance, that geographic range expansions between drainage basins are restricted 
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to geological and hydrological events, such as river captures (Albert et al. 2017) or the 

confluence of river systems during low-sea-level periods resulting from climatic changes 

(Dias et al. 2014b). At smaller spatial scales (i.e., within drainage basins), fish movements are 

determined by a combination of biotic and abiotic factors, including species’ dispersal 

capacities and behaviors (Radinger and Wolter 2014), the degree of river network branching 

(Fagan 2002), the basin slope, and other barriers to dispersal (e.g., rapids and waterfalls) that 

vary longitudinally along the network (Benda et al. 2004) (Fig. 1). As a consequence, 

drainage basins are structured by gradients of hydrological connectivity, where the branching 

and type of habitats encountered by species depend on the species’ position within the 

drainage network, determining the travel distances and dispersal costs for freshwater species 

(Campbell-Grant et al. 2007, Tonkin et al. 2018) (Fig. 1). 

Here we identify the main drivers of geographic range size variation of riverine fishes at 

global and biogeographic scales. In addition, we explore the complex path system of 

interactions among these drivers that ultimately determines species’ range size variation. To 

do so, we compiled the most comprehensive dataset available to date for riverine fish species 

distributions, including 8,147 species (i.e., 63% of all known strictly freshwater species; 

Tedesco et al. 2017) covering all continents. Using these distributions, we applied multilevel 

path models (MLPMs) to evaluate at a global scale the effect of several drivers encompassing 

the main explanations already proposed for the variation of species’ geographic range size (SI 

Appendix, Table S1). This allowed us to determine the direct and indirect effects through 

which multiple drivers influence the geographic range size, while controlling for the effect of 

random factors (i.e., taxonomic relatedness and spatial dependence). We further examined the 

strength and consistency of these drivers and pathways among the different biogeographic 

realms of the world. 

 

Results 
The range sizes of freshwater fish species varied over six orders of magnitude, from 13 to 

10,996,733 km2, with a median of 77,322 km2 (SI Appendix, Fig. S1). All MLPMs (for global 

and by biogeographic realms) yielded significant coefficients, indicating that the variation in 

geographic range size was well represented by our path models, and that no links among 

variables were missing (SI Appendix, Tables S2–S8). The R2 values of range size for all 

MLPMs ranged between 0.739–0.909 and 0.758–0.921 for the marginal (R2
m, fixed factors) 
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and conditional (R2
c, fixed plus random factors) variances, respectively (SI Appendix, Table 

S9). 

  

Figure 2. Final path model describing direct and indirect drivers of the geographic range size 
of freshwater fish species at the global scale. Solid lines indicate positive relationships, and 
dashed lines indicate negative relationships. Arrows indicate the direction of the relationship. 
Bold lines indicate the strongest relationships, with line widths proportional to importance. 
Colors in the boxes show the group of hypotheses to which each predictor belongs: orange 
boxes represent climatic and energy drivers, blue boxes represent historical drivers, green 
boxes represent geomorphological drivers, and red boxes represent species traits. Boxes with 
two colors are drivers belonging to two different groups of hypotheses. 

 

Drainage network position (DNP; the average of the stream orders where a species 

occurs) and historical connectivity (a measure of past connections among drainage basins) 

were, by far, the most important drivers of range size variation in freshwater fish species at 

the global scale (Figs. 2 and 3), both with positive standardized path coefficients (SPC) 

followed by aridity and topographic heterogeneity showing negative coefficients. Glaciation 

history and body size were, respectively, the most important historical climatic and species 
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biological trait variables associated with range size, both presenting a positive SPC. Other 

predictors (i.e., migratory behavior, swimming capacity, drainage basin area, and temperature 

anomaly and seasonality) showed the lowest coefficients, all of them being positive (Fig. 2). 

These general results remained stable when using diverse proxies for different predictors (SI 

Appendix, Sensitivity Analysis). 

 

 

Figure 3. Relationships between species range size and the main predictors at the global 
scale: drainage network position and historical connectivity. 

 

At the scale of biogeographic realms, four of the drivers found to be important at the 

global scale were also included in all MLP models: DNP, historical connectivity, topographic 

heterogeneity, and body size (Fig. 4 and SI Appendix, Figs. S2–S7), highlighting consistent 

results at both global and realm scales. DNP was again the most important range size 

predictor in all realms. Large-range species were related to higher values of DNP (i.e., located 

at downstream positions in the drainage network), historical connectivity, body size, and 

lower values of topographic heterogeneity. Productivity and long-term climatic stability 

affected range size differently across realms: negatively in Tropical realms (e.g., Neotropics) 

and positively in Temperate realms (e.g., Nearctic). Our measure of diversification (i.e., the 

number of species within the species’ genus) had a direct and negative effect only in the 

Tropical realms (Fig. 4 and SI Appendix, Figs. S2–S7). When drainage basin area, migratory 

behavior, swimming capacity, and temperature seasonality were directly related to species 

range size, effects were always positive. Precipitation seasonality affected geographic range 

size indirectly mainly through the effect of other climatic and geomorphological variables (SI 

Appendix, Figs. S2–S7). 
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Figure 4. SPC for each direct driver of geographic range size across the biogeographic realms 
proposed by Leroy et al. (Leroy et al. 2018). Abbreviations for drivers are: drainage network 
position (DNP), historical connectivity (HC), topographic heterogeneity (TH), aridity (ARI), 
drainage basin area (BA), temperature anomaly (TA), glaciation history (GLA), temperature 
seasonality (TS), precipitation seasonality (PS), productivity (PRO), diversification (DIV), 
body size (BS), migratory behavior (MB), and swimming capacity (SC). 

 

We found that predictors were highly interrelated at the global scale, affecting indirectly 

the geographic range size of freshwater fishes (Fig. 2 and SI Appendix, Table S9). For 

example, DNP was positively linked to drainage basin area and precipitation seasonality, and 

negatively with topographic heterogeneity and aridity (Fig. 2). Higher values of historical 

connectivity were related to high DNP, smaller drainage basin area, and lower topographic 

heterogeneity. Geomorphological predictors (i.e., DNP, topographic heterogeneity, and 

drainage basin area) were highly interrelated with all other predictor types (i.e., species’ traits, 

climatic, and historical variables), whereas species traits and climatic predictors mainly linked 

to predictors belonging to the same type (Fig. 2). At the realm scale, we found slight 

variations among predictors’ relationships, mainly for drainage basin area, DNP, and aridity 

(Fig. 4 and SI Appendix, Figs. S2–S7). The relationships of these predictors with temperature 

and precipitation seasonality varied in their effect, being positive or negative, depending on 

the realm (Fig. 4 and SI Appendix, Figs. S2–S7). In general, the effect size of the relationships 
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between predictors was high (SI Appendix, Table S9), resulting in complex models with 

strong relationships, regardless of the spatial scale considered. 

 

Discussion 
Our results provide a comprehensive assessment of geographic range size variation in 

freshwater fishes, quantifying the relative effects of climatic, topographic, historical, and 

biotic drivers at the global scale and their consistency among the different biogeographic 

realms (Fig. 2). At both global and realm scales, these drivers explained approximately 90% 

of the variance in geographic range size, and two of them strikingly accounted for most of this 

variability: the species’ position within the drainage network (DNP; SPC = 0.817 at the global 

scale, with an amplitude of 0.647–0.851 SPC among realms) and drainage basin historical 

connectivity (0.364 SPC at the global scale, with an amplitude 0.147–0.378 SPC among 

realms). 

Geographic range size is linearly linked to the species’ preferential location within the 

river network, being larger for fish species occurring in basal positions of the drainage 

network (i.e., lowlands and lower drainages portions) and lower for species preferentially 

inhabiting headwaters (Fig. 1). A similar pattern has been reported by Bertuzzo et al. (2009) 

within the Mississippi drainage basin, showing the absence of species with small geographic 

ranges in high-order streams. Further, and independent of their position within the river 

network, species inhabiting drainage basins that were connected during the lower-sea-level 

periods of the Quaternary exhibit larger range sizes than species inhabiting historically 

unconnected basins. Within a river drainage, the species’ position in the network determines 

the relative role of geographic and environmental processes in regulating the extent, cost, and 

rates of dispersal movements across a river drainage basin (Fagan 2002, Campbell-Grant et al. 

2007, Tonkin et al. 2018). Indeed, the variation of branching organization across river systems 

can exert strong regulations on species’ metapopulation dynamics (Campbell-Grant et al. 

2007, Tonkin et al. 2018), mainly by regulating, throughout the river network, the travel 

distance between species’ suitable habitats (Fagan 2002, Campbell-Grant et al. 2007) (Fig. 1). 

For example, in low-branching areas such as lowlands and/or lower drainage portions, there 

may be more “free” movements than in highly branching areas such as headwaters (Fagan 

2002, Campbell-Grant et al. 2007, Tonkin et al. 2018) (Fig. 1). Accordingly, headwaters are 

less open to new arrivals of individuals, and therefore are more isolated than downstream 
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areas (Carvajal‐Quintero et al. 2015, Schmera et al. 2018). In addition, seasonal flooding in 

lowland areas can connect previously unconnected habitats, leading to movement of 

organisms between locations that would not occur under base flow conditions 

(Morán‐Ordóñez et al. 2015). Meanwhile, changes in river slope and the direction of flow 

primarily determine the cost of upstream movements for strictly freshwater organisms along a 

river basin (Datry et al. 2016). Low river slopes in lowlands promote slow-running waters 

(i.e., low water velocity) characterized by wide channels and a high proportion of backwaters 

and pools, whereas in headwaters, streams have most often steeper slopes with torrential 

waters and higher portions of rapids and waterfalls (Benda et al. 2004, Allan and Castillo 

2007). The harsh conditions of headwaters also promote morphological and habitat 

specialization, resulting in the restriction of fish species distributions toward the headwaters 

(Carvajal‐Quintero et al. 2015). Conversely, the higher-connectivity conditions in lowlands 

and lower portions of rivers promote demographic connections among populations that are 

fundamental for species persistence and for their recovery from disturbances (Cowen and 

Sponaugle 2009). All these factors create a hydrological connectivity gradient along the 

drainage network, which most probably explains the strong effect of the drainage network 

position on fish species ranges. 

Among drainage basins, it was already found that historical connectivity has promoted 

fish colonization processes worldwide (Dias et al. 2014b). Our measure of historical 

connectivity quantifies the extent of connectedness among basins during the last glacial 

maximum, when sea levels dropped up to 120 m and river mouths progressed through 

kilometers of exposed marine shelves before reaching the ocean (Voris 2000, Dias et al. 

2014b). This resulted in connections among previously isolated drainage basins that left an 

imprint on global biodiversity, where paleo-connected basins were richer and shared more 

species (as a result of colonization from other rivers within the same paleo-basin) than paleo-

disconnected ones (Dias et al. 2014b). Our findings show that such imprints on the 

biodiversity of river basins have been driven by the positive effect of historical connectivity in 

determining freshwater species’ range sizes. Overall, our results suggest that lowland 

freshwater fish were the most efficient to expand their geographic range size, mainly because 

lowlands have higher levels of current and historical hydrological connectivity (Fig. 1). 

Beyond the overall importance of drainage network position and historical connectivity, 

other factors also played a secondary role in determining freshwater fishes’ range sizes. We 

found that topographic heterogeneity affects negatively species’ range sizes. High topographic 
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relief has long been recognized as imposing constraints on dispersal, resulting in high species 

turnover and smaller range size for most animals (Brown et al. 1996), including on riverine 

fishes (Smith 1981, Carvajal‐Quintero et al. 2015). Furthermore, high altitudinal gradients 

imply less frequent drainage connections and fish species crossovers (Smith 1981). Aridity 

was also a negative driver of species range size. In freshwater ecosystems, aridity fragments 

rivers’ surface, dividing drainage basins in different pieces, which may result in a direct and 

negative effect on fish ranges by disrupting fish movements (Unmack 2001). Indirect effects 

of aridity on geographic range size may be mediated by the extrinsic effects of temperature 

and precipitation seasonality on aridity, which affect the water balance in riverine ecosystems, 

reducing basin areas and modifying the dendritic structure of river drainages (Seager et al. 

2013). 

Finally, species’ traits related to dispersal ability (i.e., swimming capacity, migratory 

behavior, and body size) also affected freshwater fish range sizes, but with secondary 

importance. Better dispersers tend to have larger geographic ranges because they are able to 

sustain sink populations at large distances from source populations, whereas poor dispersers 

may lead to a larger proportion of potentially suitable habitats being unoccupied (Lester et al. 

2007). This has been corroborated for freshwater fishes, for which greater dispersers and 

large-bodied species have larger geographic range sizes than poor disperser and small-bodied 

species (Blanchet et al. 2013). In addition, migratory behavior directly influences fish species 

range size, as reported for temperate freshwater fishes (Blanchet et al. 2013). Migratory 

behavior can also indirectly affect range size via dispersal ability and body size, because 

migrants tend to be better dispersers, which in turn increases range size (Baldwin et al. 2010), 

and may have larger body size (Zhao et al. 2017). 

To summarize, we found that the variation in geographic range sizes of freshwater 

fishes is jointly determined by the interaction of multiple predictors that create a complex path 

model, where drainage network position and historical connectivity are the most important 

predictors at both global and biogeographic realm scales (see SI Appendix for a detailed 

discussion about differences in minor drivers between realms). These results suggest that the 

geographic range size of freshwater fishes has been mainly shaped by the current and 

historical hydrological connectivity that determines the effort and distance of fish movements 

within a drainage basin, as well as the possibility of colonizing new basins during historical 

connections among basins resulting from sea level changes. Importantly, our results contrast 

with what has been observed for terrestrial and marine species for which connectivity has not 
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been identified as a major driver of species’ geographic range sizes (Lester et al. 2007, Crooks 

et al. 2011). It is therefore highly probable that the unique dendritic nature of river drainage 

basins, in which isolation can occur at much finer spatial scales than in other systems (Hughes 

et al. 2009), generates unique dispersal processes. 

The strong links that we found between range size and hydrological connectivity 

strengthen the vulnerability of freshwater species to fragmentation caused by damming and 

human-origin barriers (Fagan 2002, Carvajal‐Quintero et al. 2017) and indicates that the 

accelerated rates in river fragmentation (Zarfl et al. 2015, Grill et al. 2019) might strongly 

affect fish species distributions, which will likely have profound influences on fish diversity 

in the future. 

 

Methods 
Geographic Range Size. We compiled range maps for 9,075 species of freshwater fishes 

from two different sources. The IUCN Red List (https://www.iucnredlist.org/) provided range 

maps for 6,013 species worldwide, with the exception of a large portion of South America. 

We complemented this region covering the Amazon Basin and southern South America, using 

occurrence records of 3,062 species from different databases of freshwater fishes (see SI 

Appendix for further details on these datasets). To map these complementary ranges, we 

followed the same methodology as the IUCN, which consists of dissolving the HydroBASINS 

units or subbasins (Lehner and Grill 2013) where a species was present according to the 

occurrence records (SI Appendix, Fig. S8A). We calculated the species’ range sizes as the 

extent of occurrence (km2) falling within the occupied subbasin areas (SI Appendix, Fig. 

S8B). We assigned each species’ range to their native biogeographic realm: Neotropical, 

Ethiopian, Sino-Oriental, Nearctic, Palearctic, or Australian, following Leroy et al. (Leroy et 

al. 2018) (Fig. 4), on the basis of the midpoint of its latitudinal and longitudinal range.  

Our final dataset of native ranges included 8,147 fish species, excluding island 

endemics and considering only strictly freshwater Actinopterygii species to ensure that all the 

analyzed species were restricted to freshwater environments and that their dispersion 

processes have been continental. 

https://www.iucnredlist.org/
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Drivers. On the basis of ecological theory and hypotheses proposed in previous studies, we 

developed a set of predictions regarding the potential drivers of the geographic range size of 

freshwater fishes (SI Appendix, Table S1). 

Current climate. To represent current climate conditions, we measured three variables related 

to current climatic stability and climatic extremes. As a measure of present climatic stability, 

we used the average values of temperature and precipitation seasonality within the species’ 

range (Whitton et al. 2012a, Morueta‐Holme et al. 2013). For climatic extremes, we 

calculated themean value of the Köppen aridity index (Köppen 1931). On a global scale, this 

aridity index is the best measure to describe water availability and identifies the most humid 

and arid regions (Quan et al. 2013). The original data on these climate variables were 

downloaded from WorldClim (Fick and Hijmans 2017). 

Long-term climatic changes. We measured long-term climatic changes as the mean 

temperature anomaly since the Last Glacial Maximum (LGM; 22 ky), encompassed by a 

species range. Temperature anomaly was calculated as the difference between the current 

mean annual temperature and mean temperature at the LGM. The current mean annual 

temperature was obtained from WorldClim (Fick and Hijmans 2017), whereas the mean 

annual temperature at the LGM was calculated as the average of CCSM4 and MIROC-ESM 

(Hijmans et al. 2005) Paleoclimate models. Finally, we represented the LGM glaciation 

history by the proportion of overlapping area between species’ range and the glacial extent at 

21 ky before present (Peltier 1994). 

Productivity. Our measure of within-range productivity was calculated as the mean net 

primary production. We obtained net primary production values from Zhao et al. (Zhao et al. 

2005) proposing a productivity metric that describes the growing season relationship between 

gross primary production and different respiration metrics. 

Drainage network position. We measured the species’ DNP as the average of the unique 

values of stream order (Strahler 1952; SI Appendix, Fig. S9) within the species range (e.g., a 

species occurring in stream orders 2–6 will have a DNP value of 4). The stream orders were 

obtained from Shen et al. (Shen et al. 2017). Stream order is a numeric measure of the river 

branching complexity, where increasing values describe a progressive downstream position in 

the dendritic structure and a lower branching (Fig. 1). As stream order decreases toward the 

headwaters, the dendritic branching structure becomes more complex (Strahler 1952). The 

stream order is highly related to other metrics also used to describe the species position in 
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river networks [e.g., the “direct tributary area” used by Bertuzzo et al. (2009)]. This 

longitudinal change in stream order also describes a gradient in the basin slope and habitats, 

with gentle slopes and high proportions of backwaters and pools for high stream order values, 

and steeper torrential waters mostly composed by rapids and waterfalls for low stream order 

values (Benda et al. 2004) (Fig. 1). We compared our polygon-based measure of occupied 

stream orders to the same measure based on occurrence records (SI Appendix) to control for 

any bias related to the potential inclusion of unoccupied streams within the polygons. These 

two ways of computing DNP resulted in very similar estimates (R2 = 0.72). 

Historical connectivity. As a measure of past connections among drainage basins, we focused 

on how sea-level changes reconfigured the connectivity between river systems during the 

LGM. Throughout the Quaternary, the Earth’s climate fluctuated periodically, resulting in 

lower-sea-level periods (Voris 2000) that allowed currently separated drainages to connect at 

their lower parts, making fish dispersal processes possible within these larger formed paleo-

drainages (Dias et al. 2014b) (Fig. 1). According to the paleo-drainages reconstruction 

proposed by Dias et al. (2014), at the global scale, we derived a metric of historical 

connectivity as the number of basins in which a species currently occurs divided by the 

number of paleo-basins covered by that species range. This metric indicates to what extent 

currently occupied drainage basins were regrouped into larger connected paleo-drainages 

during lower-sea-level periods. 

Geomorphology. We evaluated the effect of two geomorphological drivers of drainage basins 

on species range size: the area of the drainage basins occupied by each species and the 

topographic heterogeneity within their distribution range. The drainage basin area can be 

considered as the maximum surface extent that a freshwater fish species could potentially 

occupy, analogous to the continental extent applied in a similar analysis for terrestrial 

vertebrates (Li et al. 2016). We measured this proxy of area availability as the mean drainage 

area of the basins where a species occurs. To measure topographic heterogeneity, we created a 

raster layer based on the variance of elevation among each grid-cell and all other grid-cells 

within a 15-km buffer. High values of this measure represent high topographic heterogeneity 

between a grid-cell and its neighboring cells. We computed an overall topographic 

heterogeneity metric for each species as the mean value across all grid-cells that overlapped 

with the species range. 
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Diversification. We used the total number of species within each genus as a coarse proxy of 

the clade’s diversification level that each species has experienced (Verdú 2002). Total species 

numbers by genus were obtained from FishBase (Froese and Pauly 2019). 

Species traits. We used four traits related to locomotion ability, migratory behavior, energy 

demand, and trophic position (SI Appendix, Table S1) to evaluate their effect on fish range 

size. The maximum body length (mm) reported in FishBase (Froese and Pauly 2019) for each 

species was used as a measure of body size. The presence of migratory behavior (only 

potamodromous species in our case) for each species was also drawn from FishBase (Froese 

and Pauly 2019). Prey-capture ability and swimming capacity measures were calculated from 

morphological measurements available from Toussaint et al. (2016). From this comprehensive 

morphological database of freshwater fishes, we used six traits (SI Appendix, Table S10) 

commonly used in the assessment of fish functional diversity (Villéger et al. 2010, Pease et al. 

2015, Toussaint et al. 2016). This database covered 93% (±0.03%) of the fish species 

considered here. All six traits were assigned to a species function (i.e., prey-capture ability or 

swimming capacity; SI Appendix, Table S10) and then ordered by a principal components 

analysis, using a regularized algorithm designed for ordination analysis that handles missing 

values (Josse and Husson 2016). We retained the first axis of each principal components 

analysis (which accounted for >50% of the variance; SI Appendix, Table S10) to represent 

each species function. 

All the distribution data and spatial variables mentioned were projected into the 

Behrmann equal-area cylindrical projection, and all rasters were rescaled to a resolution of 2.5 

arc-minutes. 

Data Analysis. We performed MLPMs (Shipley 2009) to identify the drivers of the 

geographic range size variation in freshwater fishes and how these drivers are related with 

each other. MLPMs allow moving beyond the estimation of direct effects and analyze the 

relative importance of different causal models, including direct and indirect paths of influence 

among multiple variables (Shipley 2009). To apply MLPMs, we used an integrative modeling 

approach that sequentially integrates a series of complementary procedures. We first 

assembled an expected path model to depict the expected relationships and interrelationships 

between the species range size and the multiple predictors, based on hypotheses previously 

proposed in the literature (SI Appendix, Fig. S10 and Tables S1 and S11). Next, we identified 

drivers of each endogenous (response) variable, using Multilevel and Generalized Multilevel 
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Models (MLM and GMLM), in which we included genus, family, and order as random nested 

factors to account for the taxonomic relatedness among species. Residual spatial 

autocorrelation in regression models can lead to biased parameter estimates and P values. We 

found differences in the residuals among biogeographic realms (P < 0.0001), suggesting that 

the inclusion of realms as random effects could improve the parameter estimates of the 

models. Finally, we ran all the MLM and GMLM, including all possible combinations of the 

explanatory variables as fixed terms, based on the expected path model (SI Appendix, Fig. 

S10), including taxonomy and biogeographic realms as nested- and multilevel-random 

factors, respectively. All variables except migratory behavior and DNP were log10-

transformed, and weak correlations (R < 0.5) among predictor variables were observed (SI 

Appendix, Fig. S11). 

We performed multimodel inference based on information theory (Burnham and 

Anderson 2002) to determine the average parameters from the MLM regressions. As a cutoff 

criterion to delineate a top model set, we used fitted models with ΔAICc ≤ 2 (Burnham and 

Anderson 2002). Variance explained by each inferred model was estimated with marginal and 

conditional R2 (Nakagawa and Schielzeth 2013). Marginal R2 (R2
m) is concerned with 

variance explained by fixed terms, and conditional R2 (R2
c) with variance explained by both 

fixed and random factors. 

We then combined the inferred MLMs to set the observed path model and test whether 

this model was consistent with our data, using the d-separation test (Shipley 2009). The d-

separation test specifies the minimum set of independence and examines the validity of 

conditional independence statements that hold true among all variables in a given causal 

model. We tested the composite validity of all independence statements combining the P 

values through Fisher’s C statistic and tested missing linkages, using the criterion that 

unlinked variables are conditionally independent (Shipley 2016). Hence, we obtained the 

residuals of the inferred models of each endogenous variable to examine relationships among 

those residuals and unlinked variables. For variables with no predictors (e.g., topographic 

heterogeneity), we used the raw values instead of the residuals (Grace et al. 2012). Because 

very large datasets can detect very minor residual associations between variables and lead 

models with very complex and nonsignificant scientific graphical relations, we only included 

missing linkages of conditional statements with fixed effects sizes (R2
m) > 0.1 and P values < 

0.01 (Grace et al. 2012; SI Appendix, Tables S2–S8). To compare the relative strength of each 
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causal, we calculated SPC of the causal linkages. Finally, we applied the above modeling 

approach for each biogeographic realm, considering only the species endemic to each realm. 

Both data analyses and calculations of variables were performed in R 3.4.3 (R 

Development Core Team 2017). For details on R packages used, see SI Appendix, Table S12. 
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Supporting Information 

 

Supporting discussion 

Differences in the effect of some drivers among biogeographic realms 

The effect of some drivers on the geographic range size variation of freshwater fishes differed 

among biogeographic realms. These differences can be related to the particularities of each 

realm. For instance, productivity and long-term climatic changes (glaciated area and 

temperature anomaly since the Last Glacial Maximum, LGM) negatively affected range size 

in tropical realms such as the Neotropics and Ethiopian, and positively in temperate realms 

such as the Nearctic and Palearctic. The productivity hypothesis states that higher productivity 

supports greater population densities (Storch et al. 2018), which in turn support larger ranges 

through a reduced risk of local extinction (Brown et al. 1996). However, this hypothesis 

predicts no simple pattern, given that productivity is generally higher at lower latitudes 

leading to a reverse Rapoport pattern (Whitton et al. 2012a). The little empirical evidence 

supporting the effect of productivity on species range sizes suggests that the productivity 

hypothesis only applies for large-ranged species (Jetz and Rahbek 2002) and in temperate 

regions (Whitton et al. 2012a), which coincides with our findings. The different effects of 

long-term climatic changes observed between temperate and tropical realms could be related 

to the land extensions affected by these climatic changes, being widespread in high-latitude 

regions (Morueta‐Holme et al. 2013, Li et al. 2016), whereas affecting mostly mountain areas 

in the tropics (Sandel et al. 2011) where steep environmental gradients could limit the 

available habitat for a species and act as dispersal barriers promoting small-ranged species 

(Janzen 1967, Hawkins and Diniz‐Filho 2006). The effect of our proxy of diversification also 

varied depending on the realm. We detected a slight negative effect in tropical realms, the 

Neotropics and Ethiopian, showing that most diverse clades tend to be composed of species 

with small range sizes. This pattern agrees with what would be expected from intense 

diversification processes, where the average range size within a clade is divided by 

functionally similar species, leading to a negative relationship between species range size and 

diversification rate of the corresponding clade (Jablonski and Roy 2003, Pigot et al. 2010). 
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Supplementary Methods 

Compilation of the global dataset of species occurrences 

In order to control for two potential biases in our approach (see below), we built a global 

dataset of species occurrences obtaining records from different sources (see table below). We 

removed duplicated records, checked valid species names following (Froese and Pauly 2019), 

and validated the native geographic location of each occurrence according to an updated 

version of Tedesco et al. (2017). The final occurrence dataset had 1,114,220 occurrence 

records for 12,167 freshwater fish species. 

Database Date of 
access Web site Geographic 

coverage 

Bold 02/05/2018 http://www.boldsystems.org/index.php/ World 
Fishnet2 02/05/2018 http://www.fishnet2.net/aboutFishNet.html World 
GBIF 02/05/2018 https://www.gbif.org/ World 
IdigBio 02/05/2018 https://www.idigbio.org/ World 
Obis 03/05/2018 http://iobis.org/ World 
FaunAFRI 03/05/2018 http://www.poissons-afrique.ird.fr/faunafri/ Africa 
Atlas of Life 02/05/2018 http://spatial.ala.org.au/webportal/ Australia 
Biofresh 03/05/2018 http://project.freshwaterbiodiversity.eu/ Europe 
SpeciesLink 02/05/2018 http://splink.cria.org.br/index?criaLANG=pt Brazil 
ICMbio 02/05/2018 https://portaldabiodiversidade.icmbio.gov.br/portal/ Brazil 
AmazonFISH 09/04/2018 https://www.amazon-fish.com/ Amazon basin 
Museo NoelKempf 05/02/2016 http://museonoelkempff.org/museo/ Bolivia 
PUCRS 05/02/2016 http://www.pucrs.br/mct/colecoes/ictiologia/ Brazil 
SiBBr 05/02/2016 http://www.sibbr.gov.br/ Brazil 
Fundacion OGA 15/06/2010 https://museoscasso.com.ar/fundacion-oga/ Argentina 
NeoDatIII 30/06/2010 http://www.mnrj.ufrj.br/search.htm Brazil 

 

Controlling for potential bias 

We checked for two potential biases that may affect our data. The first one concerns the data 

sources used to construct geographic ranges for Neotropical fish species, and the second one 

concerns 2) the polygon-based approach used to measure the drainage network position for 

each species. 

1) The geographic range size of Neotropical fishes. Although we followed the same 

methodology as the IUCN to map the distribution of fish species distributed in the 

Amazon Basin and southern South America (i.e. regions where the IUCN does not 

provide range maps), we still checked for any potential effects related to the use of 
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a different data source. For this purpose, we compared for the same species the 

range size directly obtained from the IUCN to the range size obtained from 

applying the same IUCN methodology but using the distribution information from 

the independent occurrence dataset described above. These two different data 

sources provided very similar species range sizes (R = 0.87, for 4253 species with 

both IUCN polygon and occurrence data available), hence eliminating this 

potential bias from our results. 

 

2) The polygon effect in measuring drainage network position. We measured the 

drainage network position (DNP) of a species using the range polygons. However, 

DNP can also be measured with a more local and precise approach, i.e. using 

sampling records. By construction, the polygon-based range may include local 

habitats and stream orders where a species is not actually occurring. To make sure 

that our polygon-based approach is not affecting our results, we compared our 

DNP values with those measured from occurrence records using the global dataset 

of species occurrences described above. We calculated the occurrence-based DNP 

for each species as the average of the unique values of stream order among the 

occupied grid cells (i.e. the same procedure as for the polygon-based approach). 

This comparison yielded very similar estimates of DNP (R= 0.72, for 6,963 species 

with both polygon and occurrence data available). 

 

Sensitivity analysis 

In order to test the sensitivity of our results to changes in predictor metrics, we compiled data 

for eight metrics or proxies related to two hypotheses: climatic extremes and precipitation (see 

Table below). For each metric, we calculated the average value within the species ranges. 

Then, we ran multilevel models considering the same hypotheses and random factors as in our 

final model (see methods), but replacing the target metric. Additionally, we calculated 

standardized regression coefficients to compare the relative strength of each predictor among 

models. All variables were log10-transformed and highly correlated variables (R > 0.5) were 

not included in the models. 
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Hyphothesis Metric Dataset source 

Climate 
extremes 

Maximum temperature* (Fick and Hijmans 2017) 
Minimum temperature (Fick and Hijmans 2017) 
Maximum precipitation (Fick and Hijmans 2017) 
Minimum precipitation * (Fick and Hijmans 2017) 
Potential evapotranspiration (Abatzoglou et al. 2018) 
Water deficit (Abatzoglou et al. 2018) 

Precipitation 

Runoff 1 (Precipitation minus actual 
evapotranspiration) 

(Fick and Hijmans 2017, 
Abatzoglou et al. 2018) 

Runoff 2 (Precipitation minus 
potential evapotranspiration) 

(Fick and Hijmans 2017, 
Abatzoglou et al. 2018) 

*Highly correlated variables 

 

This sensitivity analysis clearly validated our main findings. Regardless of the metrics used to 

describe climatic extremes and water availability, drainage network position and historical 

connectivity remained as the most important drivers of range size variation (Table below), 

implying that connectivity is the key component of riverine fish geographic range sizes.  

Predictors Standardized Coefficients 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Drainage network position 0.817 0.819 0.818 0.813 0.808 0.808 
Historical connectivity 0.363 0.351 0.351 0.357 0.354 0.354 
Topographic 
heterogeneity -0.187 -0.194 -0.194 -0.192 -0.191 -0.191 
Drainage basin area 0.062 0.092 0.092 0.058 0.061 0.062 
Body size 0.139 0.135 0.135 0.128 0.129 0.129 
Migratory behavior 0.095 0.088 0.088 0.083 0.083 0.083 
Swimming capacity 0.057 0.048 0.048 0.054 0.051 0.052 
Glaciation history 0.124 0.133 0.133 0.12 0.124 0.125 
Temperature seasonality 0.017 0.092 0.092 0.014 0.017 0.010 
Temperature anomaly 0.022 0.101 0.101 0.091 0.088 0.091 
Aridity -0.187 -0.198 -0.197 

   Precipitation seasonality -0.020 
     Runoff 1 * 

 
0.101 

    Runoff 2 † 
  

0.100 
   Maximum precipitation 

   
0.097 

  Minimum temperature 
   

-0.065 
  Potential 

evapotranspiration 
    

-0.009 
 Water deficit           -0.01 

* Precipitation minus actual evapotranspiration 
† Precipitation minus potential evapotranspiration  
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Figure S1. a) Rank-range size curve in a semilogarithmic scale, b) geographic range size 
frequency distribution (RSFD). 
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Figure S2. Final path model describing direct and indirect drivers of the geographic range 
size of freshwater fish species in the Neotropics realm. Solid lines indicate positive 
relationships and dashed lines indicate negative relationships. Arrows indicate the direction of 
the relationship. Bold lines indicate the strongest relationships, with line widths proportional 
to importance. Colors in the boxes show the group of hypotheses to which each predictor 
belongs: orange boxes represent climatic and energy drivers, blue boxes represent historical 
drivers, green boxes represent geomorphological drivers and red boxes represent species 
traits. Boxes with two colors are drivers belonging to two different groups of hypotheses.  
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Figure S3. Final path model describing direct and indirect drivers of the geographic range 
size of freshwater fish species in the Ethiopian realm. Solid lines indicate positive 
relationships and dashed lines indicate negative relationships. Arrows indicate the direction of 
the relationship. Bold lines indicate the strongest relationships, with line widths proportional 
to importance. Colors in the boxes show the group of hypotheses to which each predictor 
belongs: orange boxes represent climatic and energy drivers, blue boxes represent historical 
drivers, green boxes represent geomorphological drivers and red boxes represent species 
traits. Boxes with two colors are drivers belonging to two different groups of hypotheses.  
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Figure S4. Final path model describing direct and indirect drivers of the geographic range 
size of freshwater fish species in the Sino-Oriental realm. Solid lines indicate positive 
relationships and dashed lines indicate negative relationships. Arrows indicate the direction of 
the relationship. Bold lines indicate the strongest relationships, with line widths proportional 
to importance. Colors in the boxes show the group of hypotheses to which each predictor 
belongs: orange boxes represent climatic and energy drivers, blue boxes represent historical 
drivers, green boxes represent geomorphological drivers and red boxes represent species 
traits. Boxes with two colors are drivers belonging to two different groups of hypotheses.  
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Figure S5. Final path model describing direct and indirect drivers of the geographic range 
size of freshwater fish species in the Nearctic realm. Solid lines indicate positive relationships 
and dashed lines indicate negative relationships. Arrows indicate the direction of the 
relationship. Bold lines indicate the strongest relationships, with line widths proportional to 
importance. Colors in the boxes show the group of hypotheses to which each predictor 
belongs: orange boxes represent climatic and energy drivers, blue boxes represent historical 
drivers, green boxes represent geomorphological drivers and red boxes represent species 
traits. Boxes with two colors are drivers belonging to two different groups of hypotheses.  
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Figure S6. Final path model describing direct and indirect drivers of the geographic range 
size of freshwater fish species in the Palearctic realm. Solid lines indicate positive 
relationships and dashed lines indicate negative relationships. Arrows indicate the direction of 
the relationship. Bold lines indicate the strongest relationships, with line widths proportional 
to importance. Colors in the boxes show the group of hypotheses to which each predictor 
belongs: orange boxes represent climatic and energy drivers, blue boxes represent historical 
drivers, green boxes represent geomorphological drivers and red boxes represent species 
traits. Boxes with two colors are drivers belonging to two different groups of hypotheses.  
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Figure S7. Final path model describing direct and indirect drivers of the geographic range 
size of freshwater fish species in the Autralian realm. Solid lines indicate positive 
relationships and dashed lines indicate negative relationships. Arrows indicate the direction of 
the relationship. Bold lines indicate the strongest relationships, with line widths proportional 
to importance. Colors in the boxes show the group of hypotheses to which each predictor 
belongs: orange boxes represent climatic and energy drivers, blue boxes represent historical 
drivers, green boxes represent geomorphological drivers and red boxes represent species 
traits. Boxes with two colors are drivers belonging to two different groups of hypotheses.  
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Figure S8. Diagram showing the procedure used to map and calculate a species’ geographic 
range size (i.e. as applied by the IUCN): a) we identified the HydroBASINS units (Lehner and 
Grill 2013) in all the drainage basins where a species was present according to the occurrence 
records available; b) we dissolved the sub-basins and calculated the species’ range sizes as the 
extent of occurrence (km2) falling within the occupied sub-basin areas. c) All predictors were 
then measured based on these species’ ranges extracting data from rasters (top) or through 
polygons manipulations (down) (see methods in the main text for more details). The basin and 
HydroBASINS units showed in this figure are only illustrating the methodology and are not 
based on real data.  
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Figure S9. Diagram showing how the Strahler stream order may increase along the 
longitudinal gradient of a river network.  
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Figure S10. Full expected path model describing potential direct and indirect effects over the 
geographic range size and the interactions among the multiple predictors. Potential underlying 
mechanisms are presented in Table S1 and Table S2. Colors in the boxes show the group of 
hypotheses to which each predictor belongs: orange boxes represent climatic and energy 
drivers, blue boxes represent historical drivers, green boxes represent geomorphological 
drivers and red boxes represent species traits. Boxes with two colors are drivers belonging to 
two different groups of hypotheses.  
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Figure S11. Pearson correlation coefficients among considered predictors of freshwater fishes 
range size. 
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Table S1. Main hypotheses proposed to explain the geographic variation in species range size. Each hypothesis is related to the corresponding 1 

predictor tested here for freshwater fishes. These hypotheses were compiled from previous studies or developed from the ecological literature on 2 

freshwater fishes and support the expected relationships between range size and the predictors in the full expected path model (Fig. S9). 3 

Predictor/driver Hypothesis 
Group of 

Hypotheses 

Temperature 
seasonality 

The climatic variability hypothesis states that species inhabiting more variable climates have 
evolved broad physiological tolerances and adaptations. This allow species to tolerate more 
heterogeneous environments, occupying broader niches and ranges than species in more stable 
climates (Stevens 1989, Whitton et al. 2012b). 

Climatic and 
energy 

availability 

Precipitation 
seasonality 

Extreme climates 
(aridity) 

Climatic extremes such as extreme temperatures or droughts are expected to constrain species 
distributions (Pither 2003, Bozinovic et al. 2011). In freshwater environments, for instance, 
aridity boosts the physical stress (Brown et al. 1996) and increases isolation by dividing river 
drainages (Unmack 2001). 

Productivity 

The energy availability hypothesis is based on the premise that higher primary productivity 
supports greater population densities (Storch et al. 2018), which in turn supports larger ranges 
through mechanisms such as reduced risk of local extinction (Brown et al. 1996). The energy 
availability hypothesis has been corroborated in the northern-hemisphere for amphibians, 
where high primary productivity supports larger species' ranges (Whitton et al. 2012b). 

Glaciation 
History 

The impact of past glaciations has been proposed as a factor affecting species distributions, 
differentially selecting against narrow-ranged species in temperate regions (Araújo et al. 
2008). Similarly, past climatic conditions have been evoked to explain the Rapoport's rule, 
due to a greater vulnerability to harsh conditions for small-ranged species in Northern 
latitudes (Jansson 2003). 

Historic / 
Climatic and 

energy 
availability Temperature 

anomaly 

Climate change since the LGM is particularly important for terrestrial organisms because it 
has strongly affected the distributions of small-range vertebrates (Sandel et al. 2011) and 
favored larger ranges size (Morueta‐Holme et al. 2013, Li et al. 2016). 
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Diversification 

Average range sizes within clades should decline along each speciation event (Jablonski and 
Roy 2003, Pigot et al. 2010), as the available space is divided by functionally similar species, 
leading to a negative relationship between the geographic range size of a species and the 
diversification rate of the corresponding clade. 

Historic 

Historical 
connectivity 

The historical connectivity hypothesis predicts that fish species occurring in basins that were 
connected during lower sea level periods had opportunities to expand their ranges and should 
have larger distributions. The climatic fluctuations of the Quaternary period resulted in sea 
level changes that configured the connectivity between river systems (Voris 2000). This 
historical connectivity between drainage basins has left an imprint on the global diversity 
patterns of freshwater fishes (Dias et al. 2014a). 

Historic / 
Geomophology 

Drainage 
network position 

River drainage networks are dendritic branching systems (see Fig. 1) where headwater 
habitats are more isolated and steeper than main-channel habitats (Fagan 2002, Benda et al. 
2004). For strictly freshwater organisms, the position in the river network determines the 
travel distances and dispersal costs to move between two localities (Campbell-Grant et al. 
2007, 2010, Terui et al. 2018). As a consequence, the higher connectivity related to 
downstream positions of the network should be related to larger range size of species. 

Geomorphology 
Topographic 
heterogeneity 

Topographic heterogeneity is an established driver of geographic range size for terrestrial 
organisms (Brown et al. 1996, Hawkins and Diniz‐Filho 2006, Li et al. 2016). Heterogeneous 
areas serve as barriers constraining dispersal movements by high elevational gradients with 
varying climates and habitats (Janzen 1967). In freshwaters, changes in elevation have also 
been related to restricted species distributions (Carvajal‐Quintero et al. 2015). 

Drainage basin 
area (habitat 
availability) 

The habitat availability hypothesis has been proposed to explain differences in species range 
size between continents (Letcher and Harvey 1994). In principle, locations surrounded by 
broad land areas should harbor large-ranged species due to a greater potential for expansion 
(Hawkins and Diniz‐Filho 2006). Small-ranged terrestrial organisms have been associated 
with small habitat areas and small habitat fragments (Ruggiero et al. 1998, Hawkins and 
Diniz‐Filho 2006, Morueta‐Holme et al. 2013). 
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Body Size 

The commonly observed macroecological relationship between body size and range size 
shows a triangular shape, where small species can have a variety of range sizes, but larger-
bodied species are increasingly constrained to larger ranges (Brown and Maurer 1987, 1989) 
to achieve their resource needs and long-term persistence (Brown 1984). This triangular 
constraint has also been reported for freshwater fishes (Le Feuvre et al. 2016, 
Carvajal‐Quintero et al. 2017). An overall positive trend is hence expected between body and 
range sizes. 

Species traits 

Migratory 
behavior 

Migratory behavior is expected to be positively related to range size as migratory movements 
increase the probability of colonizing new areas. However, divergent results have been 
observed. For instance, migratory birds in the Holarctic region have smaller geographic 
ranges than non-migrants, potentially because migrations are limited to a longitudinal axis 
(Böhning-Gaese et al. 1998, Bensch 1999), whereas more general analyses have shown larger 
geographic ranges for long-distance migrants than for sedentary bird species (Gaston and 
Blackburn 1996b, Laube et al. 2013). For temperate freshwater fish, migratory behavior is one 
of the traits that best explain species geographic range sizes (Blanchet et al. 2013). 

Prey capture 
(trophic position) 

The species trophic level has been proposed as a factor influencing range size. Upper and 
lower trophic levels rely on food resources that greatly differ in their availability and spatial 
arrangement. For instance in mammals, carnivore species need large home ranges due to their 
energetic requirements (Carbone et al. 2007), whereas omnivorous and herbivores with lower 
energy demands tend to have smaller home ranges (Kelt et al. 2001). 

Swimming 
capacity 

The locomotion ability hypothesis is based on the assumption that higher dispersal capacities 
should promote long-distance dispersal and colonization (Gutiérrez and Menéndez 1997, 
Glazier and Eckert 2002), avoiding geographic isolation (Laube et al. 2013). In temperate 
freshwater fish species, higher values in swimming capacity traits have been related to larger 
range sizes (Blanchet et al. 2013). 

 4 



68 
 

Table S2. Conditional independence claims implicit in the observed path model at the global 5 

scale (Fig. 1 in the main text). Fisher’s C statistic and p-values are provided at the bottom of 6 

the table. Abbreviations for variables are: geographic range size (GRS), drainage network 7 

position (DNP), topographic heterogeneity (TH), drainage basin area (BA), historical 8 

connectivity (HC), temperature anomaly (TA), glaciation history (GLA), aridity (ARI), 9 

temperature seasonality (TS), precipitation seasonality (PS), productivity (PRO), 10 

diversification (DIV), body size (BS), migratory behavior (MB), and swimming capacity 11 

(SC). Ø represents a null set of control variables (i.e., these are not parental variables required 12 

in the conditional statement). * represents conditional statements evaluated but not included to 13 

calculate C and p-values (see methods section in the main text for more details). 14 

GLOBAL 
Conditional independence statements P R2m 
(GRS,PS)|{TS,ARI,GLA,TA,HC,TH,DNP,BA,BS,MB,SC} 0.1916 0.0044 
(SC,TH)|{BS,BA,DNP} 0.1532 0.0005 
(SC,HC)|{BS,BA,DNP,TH} 0.2330 0.0044 
(SC,PS)|{BS,BA,DNP} 0.4395 5.0813-07 
(SC,TS)|{BS,BA,DNP} 0.9074 0.0029 
(SC,TA)|{BS,BA,DNP,TH,GLA,TS} 0.3709 2.3018e-05 
(SC,GLA)|{BS,BA,DNP,TS} 0.2820 3.4242e-05 
(SC,ARI)|{BS,BA,DNP,TA,TS,PS} 0.3401 0.0004 
(MB,HC)|{SC,BS,BA,DNP,TH} 0.2761 0.0183 
(MB,PS)|{SC,BS,BA,DNP,TH} * 2.4523e-09 0.0023 
(MB,TS)|{SC,BS,BA,DNP,TH} * 5.8739e-09 0.0008 
(MB,TA)|{SC,BS,BA,DNP,TH,GLA,TS} * 1.0086e-20 0.0001 
(MB,GLA)|{SC,BS,BA,DNP,TH,TS} 0.3996 0.0001 
(MB,ARI)|{SC,BS,BA,DNP,TH,TA,TS,PS} 0.1794 0.0018 
(BS,HC)|{SC,BA,DNP,TH} 0.3117 0.0165 
(BS,PS)|{SC,BA,DNP,TH} 0.2063 0.0003 
(BS,TA)|{SC,BA,DNP,TH,GLA,TS} 0.2163 0.0025 
(BS,GLA)|{SC,BA,DNP,TH,TS} 0.7114 0.0023 
(BS,ARI)|{SC,BA,DNP,TH,TA,TS,PS} 0.3475 0.0023 
(BA,TS)|{TH,ARI,PS} 0.4094 6.3054e-05 
(BA,TA)|{TH,ARI,PS,GLA,TS} * 8.9124e-15 4.7554e-05 
(BA,GLA)|{TH,ARI,PS,TS} 0.1976 0.0189 
(DNP,TS)|{TH,BA,PS} * 1.4439e-12 0.0013 
(DNP,TA)|{TH,BA,PS,ARI,GLA,TS} * 5.9153e-18 0.0017 
(DNP,GLA)|{TH,BA,PS,ARI,TS} * 9.8812e-11 0.0092 
(TH,PS)|{Ø} * 1.8597e-11 0.0072 
(TH,TS)|{Ø} * 4.0598e-09 0.0067 
(TH,GLA)|{TS} 0.2066 0.0006 
(TH,ARI)|{TA,TS,PS} * 4.0385e-20 0.0526 
(HC,PS)|{BA,DNP,TH} 0.1755 6.0910e-05 
(HC,TS)|{BA,DNP,TH} * 1.5870e-14 0.0024 
(HC,TA)|{BA,DNP,TH,GLA,TS} * 1.0662e-08 3.1493-05 
(HC,GLA)|{BA,DNP,TH,TS} 0.1019 0.0053 
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(HC,ARI)|{BA,DNP,TH,TA,TS,PS} 0.2326 0.0064 
(GLA,PS)|{TS} 0.4443 0.0003 
(GLA,ARI)|{TS,TA,PS} * 1.3770e-13 0.0026 
(TS,PS)|{Ø} 0.9248 4.9021e-07 

   C =  
 

58.5972 
Overall p-value (χ2 df=48) 

 
0.1405 

  15 
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Table S3. Conditional independence claims implicit in the observed path model in Neotropics 16 

realm (Fig. S1). Fisher’s C statistic and p-values are provided at the bottom of the table. 17 

Abbreviations for predictors are: geographic range size (GRS), drainage network position 18 

(DNP), topographic heterogeneity (TH), drainage basin area (BA), historical connectivity 19 

(HC), temperature anomaly (TA), glaciation history (GLA), aridity (ARI), temperature 20 

seasonality (TS), precipitation seasonality (PS), productivity (PRO), diversification (DIV), 21 

body size (BS), migratory behavior (MB), and swimming capacity (SC). Ø represents a null 22 

set of control variables (i.e., these are not parental variables required in the conditional 23 

statement). * represents conditional statements evaluated but not included to calculate C and 24 

p-values (see methods section in the main text for more details). 25 

NEOTROPICS 
Conditional independence claim P R2m 
(SC,TH)|{BS,BA,DNP} 0.9746 0.0021 
(SC,HC)|{BS,BA,DNP,TH} 0.7513 0.0116 
(SC,PS)|{BS,BA,DNP} 0.8902 0.0004 
(SC,TS)|{BS,BA,DNP} 0.6878 0.0006 
(SC,TA)|{BS,BA,DNP,TH,TS} 0.5204 6.3066e-05 
(SC,ARI)|{BS,BA,DNP} 0.8867 0.0002 
(SC,PRO)|{BS,BA,DNP,TS,PS,ARI} 0.2459 0.0010 
(MB,HC)|{BS,DNP,BA,SC,TH} 0.0989 0.0237 
(MB,PS)|{BS,DNP,BA,SC,TH} 0.6736 0.0004 
(MB,TS)|{BS,DNP,BA,SC,TH} 0.0587 0.0024 
(MB,HC)|{BS,DNP,BA,SC,TH,TS} 0.4270 0.0008 
(MB,DIV)|{BS,DNP,BA,SC,TH} 0.9999 2.9068e-30 
(MB,ARI)|{BS,DNP,BA,SC,TH,TA,TS,PS} 0.9215 0.0014 
(MB,PRO)|{BS,DNP,BA,SC,TH,ARI,TS,PS} 0.3163 0.0011 
(BS,HC)|{DNP,BA,TH,PRO} 0.3229 0.0354 
(BS,PS)|{DNP,BA,TH,PRO} 0.8828 0.0004 
(BS,TS)|{DNP,BA,TH,PRO} 0.4166 0.0024 
(BS,TA)|{DNP,BA,TH,PRO,TS} 0.0733 0.0023 
(BS,HC)|{DNP,BA,TH,PRO,TA,TS,PS} 0.6119 0.0023 
(BA,TS)|{TH,PS,ARI} * 4.4127e-15 6.3054e-05 
(BA,TA)|{TH,PS,ARI,TS} * 4.3902e-18 4.7553e-05 
(BA,DIV)|{TH,PS,ARI,SC,BS,DNP} 0.9999 0.0189 
(BA,PRO)|{TH,PS,ARI,TS} * 2.1304e-11 0.0021 
(DNP,PS)|{BA,TH,ARI} * 1.2469e-12 0.0525 
(DNP,TS)|{BA,TH,ARI} * 2.2109e-13 0.0022 
(DNP,PS)|{BA,TH,ARI,TS} 0.1065 0.0875 
(DNP,PRO)|{BA,TH,ARI,TS,PS} 0.1805 0.0067 
(TH,PS)|{Ø} * 4.3777e-12 0.0183 
(TH,TS)|{Ø} * 3.8453e-19 0.0264 
(TH,ARI)|{TS,PS,TA} * 8.3348e-19 0.0165 
(TH,PRO)|{TS,PS,ARI} * 1.8649e-17 0.0046 
(HC,PS)|{BA,DNP,TH} 0.3960 7.5345e-06 
(HC,TS)|{BA,DNP,TH} * 7.6559e-14 0.0112 
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(HC,TA)|{BA,DNP,TH,TS} 0.2631 0.0257 
(HC,DIV)|{BA,DNP,TH,SC,BS,TH} 0.4571 0.0001 
(HC,ARI)|{BA,DNP,TH,TS,PS,TA} 0.0887 0.0553 
(HC,PRO)|{BA,DNP,TH,TS,PS,ARI} 0.9632 0.0214 
(PS,TS)|{Ø} * 1.0092e-14 0.0269 
(PS,TA)|{TS,TH} * 5.3803e-11 0.0094 
(PS,DIV)|{SC,BS,DNP,TH} 0.9999 3.2454e-26 
(TS,DIV)|{SC,BS,DNP,TH} 0.9999 2.8068e-26 
(TA,DIV)|{SC,BS,DNP,TH,TS} 0.9999 1.6969e-24 
(TA,PRO)|{SC,BS,DNP,TH,TS,PS,ARI} 0.9576e-16 0.0057 
(DIV,PRO)|{TH,SC,BS,DNP,TS,PS,ARI} 0.1743 0.0056 
(DIV,ARI)|{TH,SC,BS,DNP,TS,PS,TA} 0.6861 0.0197 
(GRS,TS)|{MB,SC,DIV,PS,PRO,TH,ARI,DNP,BA,HC,BS} 0.9157 0.0019 
(GRS,TA)|{MB,SC,DIV,PS,PRO,TH,ARI,DNP,BA,HC,BS,TS
} 0.6235 0.0020 

   C =  
 

55.9584 
Overall p-value (χ2 df=68) 

 
0.8514 

  26 
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Table S4. Conditional independence claims implicit in the observed path model in Ethiopian 27 

realm (Fig. S2). Fisher’s C statistic and p-values are provided at the bottom of the table. 28 

Abbreviations for predictors are: geographic range size (GRS), drainage network position 29 

(DNP), topographic heterogeneity (TH), drainage basin area (BA), historical connectivity 30 

(HC), temperature anomaly (TA), glaciation history (GLA), aridity (ARI), temperature 31 

seasonality (TS), precipitation seasonality (PS), productivity (PRO), diversification (DIV), 32 

body size (BS), migratory behavior (MB), and swimming capacity (SC). Ø represents a null 33 

set of control variables (i.e., these are not parental variables required in the conditional 34 

statement). * represents conditional statements evaluated but not included to calculate C and 35 

p-values (see methods section in the main text for more details). 36 

ETHIOPIAN 
Conditional independence claim P R2m 
(SC,BA)|{BS,DNP,ARI,TH,PS}  0.7326 0.0016 
(SC,TH)|{BS,DNP}  0.2839 0.0001 
(SC,HC)|{BS,DNP,BA,TH}  0.4103 0.0027 
(SC,PS)|{BS,DNP}  0.1278 0.0012 
(SC,TS)|{BS,DNP}  0.1551 0.0030 
(SC,TA)|{BS,DNP,TH,TS}  0.6022 2.7183e-08 
(SC,ARI)|{BS,DNP,TS,PS,TA}   0.2458 0.0011 
(SC,PRO)|{BS,DNP,TS,PS,ARI} 0.4395 0.0003 
(MB,HC)|{BS,DNP,BA,SC,TH}  0.0925 0.0249 
(MB,PS)|{BS,DNP,BA,SC,TH} * 3.1191e-17 0.0185 
(MB,TS)|{BS,DNP,BA,SC,TH} * 6.0630e-12 0.0008 
(MB,TA)|{BS,DNP,BA,SC,TH,TS} * 1.9999e-14 0.0076 
(MB,DIV)|{BS,DNP,BA,SC,TH}  0.9999 0.0014 
(MB,ARI)|{BS,DNP,BA,SC,TH,TS,PS,TA}   0.1148 0.0178 
(MB,PRO)|{BS,DNP,BA,SC,TH,TS,PS,ARI}   0.1409 0.0278 
(BS,HC)|{DNP,BA,TH,PRO}  0.1682 0.0180 
(BS,PS)|{DNP,BA,TH,PRO} 0.7295 0.0043 
(BS,TS)|{DNP,BA,TH,PRO} 0.4166 0.0159 
(BS,TA)|{DNP,BA,TH,PRO,TS} 0.2657 0.0136 
(BS,ARI)|{DNP,BA,TH,PRO,TS,PS,TA} 0.9088 0.0126 
(BA,TS)|{TH,PS,ARI} * 7.7065e-34 0.0338 
(BA,TA)|{TH,PS,ARI,TS} * 5.9721e-58 2.2576e-05 
(BA,DIV)|{TH,PS,ARI,SC,BS,DNP}  0.9999 4.4184e-21 
(BA,TS)|{TH,PS,ARI,TS}  0.4890 0.0202 
(DNP,TS)|{BA,TH,PS,ARI}  0.5872 9.9294e-05 
(DNP,TA)|{BA,TH,PS,ARI,TS} * 6.0663e-14 0.0214 
(DNP,PRO)|{BA,TH,PS,ARI,TS}  0.1047 0.0011 
(TH,TS)|{Ø}  0.4278 0.0060 
(TH,PS)|{Ø} * 1.3105e-10 0.0157 
(TH,ARI)|{TS,PS,TA} * 4.4062e-20 0.0962 
(TH,PRO)|{TS,PS,ARI} * 2.6628e-05 0.0245 
(HC,PS)|{BA,DNP,TH}  0.5177 0.0117 
(HC,TS)|{BA,DNP,TH}  0.0768 0.0319 
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(HC,TA)|{BA,DNP,TH,TS}  0.2798 0.0041 
(HC,DIV)|{BA,DNP,TH,SC,BS,TH}  0.9999 1.7977e-28 
(HC,ARI)|{BA,DNP,TH,TS,PS,TA}  0.4930 0.0071 
(HC,PRO)|{BA,DNP,TH,TS,PS,ARI} * 2.1109e-12 0.0020 
(PS,TS)|{Ø} * 2.5643e-15 0.0188 
(PS,TA)|{TS,TH} * 1.3620e-14 0.0009 
(PS,DIV)|{SC,BS,DNP,TH}  0.9999 6.2217e-27 
(TS,DIV)|{SC,BS,DNP,TH}  0.9999 6.5580e-28 
(TA,DIV)|{TS,TH,SC,BS,DNP}  0.9999 6.9072e-25 
(TA,PRO)|{TS,TH,PS,ARI} * 1.7064e-09 0.0638 
(DIV,ARI)|{SC,BS,DNP,TH,TS,PS,TA}  0.1505 0.0079 
(DIV,PRO)|{SC,BS,DNP,TH,TS,PS,ARI}  0.3181 0.0045 
(GRS,PS)|{MB,SC,DIV,PRO,TH,ARI,DNP,BA,HC,BS,TS}  0.1370 0.0002 
(GRS,TA)|{MB,SC,DIV,PRO,TH,ARI,DNP,BA,HC,BS,TS}  0.4482 5.0098e-05 

   C =  
 

70.7947 
Overall p-value (χ2 df=68) 

 
0.3846 

  37 
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Table S5. Conditional independence claims implicit in the observed path model in Sino-38 

oriental realm (Fig. S3). Fisher’s C statistic and p-values are provided at the bottom of the 39 

table. Abbreviations for predictors are: geographic range size (GRS), drainage network 40 

position (DNP), topographic heterogeneity (TH), drainage basin area (BA), historical 41 

connectivity (HC), temperature anomaly (TA), glaciation history (GLA), aridity (ARI), 42 

temperature seasonality (TS), precipitation seasonality (PS), productivity (PRO), 43 

diversification (DIV), body size (BS), migratory behavior (MB), and swimming capacity 44 

(SC). Ø represents a null set of control variables (i.e., these are not parental variables required 45 

in the conditional statement). * represents conditional statements evaluated but not included to 46 

calculate C and p-values (see methods section in the main text for more details). 47 

SINO-ORIENTAL 
Conditional independence claim P R2m 
(SC,BA)|{BS,DNP,ARI,TH,PS} 0.1878 0.0085 
(SC,TH)|{BS,DNP} 0.1446 0.0049 
(SC,HC)|{BS,DNP,BA,TH} 0.6265 0.0147 
(SC,PS)|{BS,DNP,PS} 0.5136 0.0005 
(SC,TS)|{BS,DNP} 0.5772 0.0004 
(SC,TA)|{BS,DNP,TH,TS} 0.6652 0.0036 
(SC,ARI)|{BS,DNP,TS,PS} 0.7660 0.0002 
(MB,HC)|{BS,DNP,BA,SC,TH} 0.9110 0.0073 
(MB,PS)|{BS,DNP,BA,SC} 0.3554 0.0065 
(MB,TS)|{BS,DNP,BA,SC,TH} 0.2753 0.0018 
(MB,TA)|{BS,DNP,BA,SC,TH,TS} 0.1069 0.0098 
(MB,ARI)|{BS,DNP,BA,SC,TH,TS,PS} 0.9946 0.0007 
(BS,HC)|{DNP,BA,TH} 0.1573 0.0213 
(BS,PS)|{DNP,BA,TH} 0.2585 0.0070 
(BS,TS)|{DNP,BA,TH} 0.5763 0.0040 
(BS,TA)|{DNP,BA,TH,TS} 0.6439 0.0016 
(BS,ARI)|{DNP,BA,TH,TS,PS} 0.2187 0.0414 
(BA,TS)|{TH,PS,ARI} 0.8548 0.0999 
(BA,TA)|{TH,PS,ARI,TS} 0.8289 0.0100 
(DNP,TS)|{TH,PS,ARI,BA} 0.4231 6.3054e-05 
(DNP,TA)|{TH,PS,ARI,BA,TS} 0.1310 0.0004 
(TH,PS)|{Ø} * 1.2283e-09 0.0145 
(TH,ARI)|{TS,PS} * 6.0006e-16 0.0316 
(HC,PS)|{BA,DNP,TH} * 1.9411e-13 0.0149 
(HC,TS)|{BA,DNP,TH} 0.1862 0.0090 
(HC,TA)|{BA,DNP,TH,TS} * 6.7965e-15 0.0116 
(HC,ARI)|{BA,DNP,TH,TS,PS,} 0.2929 0.0243 
(PS,TS)|{TH} * 9.1106e-21 0.0388 
(PS,TA)|{TH,TS} * 3.8865e-11 0.0001 
(TA,ARI)|{TS,TH,PS} * 1.0285e-13 0.0001e-12 
(GRS,PS)|{MB,SC,TA,TH,ARI,DNP,BA,HC,BS,TS} * 8.4441e-14 0.0554 

   C =  
 

44.956 



75 
 

Overall p-value (χ2 df=46) 
 

0.5159 
  48 
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Table S6. Conditional independence claims implicit in the observed path model in Nearctic 49 

realm (Fig. S4). Fisher’s C statistic and p-values are provided at the bottom of the table. 50 

Abbreviations for predictors are: geographic range size (GRS), drainage network position 51 

(DNP), topographic heterogeneity (TH), drainage basin area (BA), historical connectivity 52 

(HC), temperature anomaly (TA), glaciation history (GLA), aridity (ARI), temperature 53 

seasonality (TS), precipitation seasonality (PS), productivity (PRO), diversification (DIV), 54 

body size (BS), migratory behavior (MB), and swimming capacity (SC). Ø represents a null 55 

set of control variables (i.e., these are not parental variables required in the conditional 56 

statement). * represents conditional statements evaluated but not included to calculate C and 57 

p-values (see methods section in the main text for more details). 58 

NEARCTIC 
Conditional independence claim p R2m 
(SC,BA)|{BS,ARI,TH,PS} 0.3276 0.0178 
(SC,DNP)|{BS,ARI,TH,PS} 0.3101 0.0121 
(SC,TH)|{BS} 0.5030 5.2860e-06 
(SC,HC)|{BS,DNP,BA,TH} 0.9782 0.0232 
(SC,PS)|{BS,TH} 0.4040 0.0267 
(SC,TS)|{BS} 0.1326 0.0003 
(SC,TA)|{BS,TH,TS,GLA} 0.6667 0.0019 
(SC,ARI)|{BS,TS,PS,TA} 0.2886 8.8653e-05 
(SC,GLA)|{BS,TS} 0.7859 0.0017 
(SC,PRO)|{BS,TS,PS,TA,ARI} 0.9328 5.8812e-05 
(MB,BA)|{BS,SC,TH,PS,ARI} 0.2385 0.0034 
(MB,BA)|{BS,SC,TH,PS,ARI,BA} 0.2321 0.0130 
(MB,HC)|{BS,SC,BA,DNP,TH} 0.1573 0.0135 
(MB,PS)|{BS,SC,TH} 0.2321 0.0017 
(MB,TS)|{BS,SC} 0.4605 0.0072 
(MB,TA)|{BS,SC} 0.8374 0.0016 
(MB,ARI)|{BS,SC,TH,TS,PS,TA} 0.9310 0.0101 
(MB,GLA)|{BS,SC,TS} 0.9621 0.0001 
(MB,PRO)|{BS,SC,TS,PS,TA,ARI} 0.5671 0.0101 
(BS,HC)|{DNP,BA,TH,PRO,TA} 0.3581 0.0650 
(BS,PS)|{DNP,BA,TH,PRO,TA} 0.4412 0.0202 
(BS,TS)|{DNP,BA,TH,PRO,TA} 0.2327 0.0145 
(BS,ARI)|{DNP,BA,TH,PRO,TA,PS,TS} 0.3581 0.0215 
(BS,HC)|{DNP,BA,TH,PRO,TA,PS,TS,ARI} 0.8487 0.0119 
(BA,TS)|{TH,PS,ARI} * 5.2149e-19 0.0866 
(BA,TA)|{TH,PS,ARI,GLA} 0.3027 0.0116 
(BA,PRO)|{TH,PS,ARI,TS} 0.1446 0.0243 
(BA,GLA)|{TH,PS,ARI,TS} 0.2196 0.0388 
(DNP,TS)|{BA,TH,PS,ARI} * 1.0810e-13 0.0210 
(DNP,TA)|{BA,TH,PS,ARI,TS,GLA} 0.1159 0.0157 
(DNP,PRO)|{BA,TH,PS,ARI,TS} 0.4558 0.0202 
(DNP,GLA)|{BA,TH,PS,ARI,TS} * 2.9799e-23 0.0143 
(TH,TS)|{Ø} 0.1446 0.0317 
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(TH,ARI)|{TS,PS,TA} * 4.2843e-19 0.0489 
(TH,PRO)|{TS,PS,ARI} 0.3461 0.0399 
(TH,GLA)|{TS} 0.7753 0.0024 
(HC,PS)|{BA,DNP,TH} 0.3623 0.0778 
(HC,TS)|{BA,DNP,TH} 0.6414 0.0165 
(HC,TA)|{BA,DNP,TH,GLA,TS} 0.1778 0.0178 
(HC,ARI)|{BA,DNP,TH,TS,PS,TA} 0.3825 0.0038 
(HC,PRO)|{BA,DNP,TH,TS,PS,ARI} 0.5918 0.0117 
(HC,GLA)|{BA,DNP,TH,TS} 0.1112 0.0165 
(PS,TS)|{TH} 0.1785 0.0002 
(PS,TA)|{TH,TS,GLA} * 4.1020e-14 0.0004 
(PS,GLA)|{TH,TS} 0.4570 0.0145 
(TA,PRO)|{TS,PS,GLA,ARI} 0.2887 0.0177 
(GLA,ARI)|{TS,PS,TA} 0.9924 0.0198 
(GLA,PRO)|{TS,PS,ARI} * 4.7826e-12 0.0030 
(GRS,PS)|{MB,PRO,TH,DNP,BA,HC,BS,TS} 0.6662 0.0496 
(GRS,TA)|{MB,PRO,TH,DNP,BA,HC,BS,TS,GLA} 0.0758 0.0182 
(GRS,SC)|{MB,PRO,TH,DNP,BA,HC,BS,TS} 0.4142 0.0002 
(GRS,GLA)|{MB,PRO,TH,DNP,BA,HC,BS,TS} 0.1621 0.0196 
(GRS,ARI)|{MB,PRO,TH,DNP,BA,HC,BS,TS,PS,TA} 0.9295 0.0103 

   C =  
 

89.6827 
Overall p-value (χ2 df=92) 

 
0.5490 
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Table S7. Conditional independence claims implicit in the observed path model in Palearctic 60 

realm (Fig. S5). Fisher’s C statistic and p-values are provided at the bottom of the table. 61 

Abbreviations for predictors are: geographic range size (GRS), drainage network position 62 

(DNP), topographic heterogeneity (TH), drainage basin area (BA), historical connectivity 63 

(HC), temperature anomaly (TA), glaciation history (GLA), aridity (ARI), temperature 64 

seasonality (TS), precipitation seasonality (PS), productivity (PRO), diversification (DIV), 65 

body size (BS), migratory behavior (MB), and swimming capacity (SC). Ø represents a null 66 

set of control variables (i.e., these are not parental variables required in the conditional 67 

statement). * represents conditional statements evaluated but not included to calculate C and 68 

p-values (see methods section in the main text for more details). 69 

PALEARCTIC 
Conditional independence claim P R2m 
(BS,HC)|{DNP,BA,PRO,TA} 0.3424 0.0102 
(BS,PS)|{DNP,BA,PRO,TA} 0.2742 0.0236 
(BS,TS)|{DNP,BA,PRO,TA} 0.0562 0.0013 
(BS,TA)|{DNP,BA,PRO,TA,GLA,TS} 0.7043 0.0427 
(BS,ARI)|{DNP,BA,PRO,TA,PS,TS,TA} 0.8540 0.0002 
(BS,TH)|{DNP,BA,PRO,TA} 0.6202 0.0017 
(BS,GLA)|{DNP,BA,PRO,TA,TS} 0.7047 0.0071 
(BA,TS)|{TH,PS,ARI} * 6.7926e-11 0.0119 
(BA,TA)|{TH,PS,ARI,TS,GLA} 0.7988 0.0169 
(BA,PRO)|{TH,PS,ARI,ARI,TS} 0.3551 0.0049 
(BA,GLA)|{TH,PS,ARI,TS} 0.3551 0.0652 
(DNP,TS)|{BA,TH,PS,ARI} 0.8939 0.0921 
(DNP,TA)|{BA,TH,PS,ARI,TS,GLA} 0.1126 0.0718 
(DNP,PRO)|{BA,TH,PS,ARI,TS} 0.3930 0.0001 
(DNP,GLA)|{BA,TH,PS,ARI,TS} 0.6749 0.0001 
(TH,ARI)|{TS,PS,TA} 0.3792 0.0011 
(TH,PRO)|{TS,PS,ARI} 0.1401 0.0006 
(TH,GLA)|{TS} 0.0827 0.0073 
(TH,TS)|{Ø} 0.2491 0.0024 
(TH,PS)|{Ø} 0.2206 0.0021 
(HC,PS)|{BA,DNP} 0.6000 0.0113 
(HC,TS)|{BA,DNP} * 2.3392e-11 0.0173 
(HC,TA)|{BA,DNP,TH,TS,GLA} 0.5024 0.0274 
(HC,PS)|{BA,DNP,TS,PS,TA} 0.9999 3.7245e-29 
(HC,PRO)|{BA,DNP,TS,PS,ARI} 0.4257 0.0002 
(HC,GLA)|{BA,DNP,TS} 0.5024 0.0002 
(PS,TS)|{Ø} 0.7211 0.0003 
(PS,TA)|{TA,TH,GLA} * 3.2979e-15 0.0278 
(PS,GLA)|{TS} 0.9247 0.0001 
(GLA,PRO)|{TS,PS,ARI,TA} 0.5551 0.0001 
(GLA,ARI)|{TS,PS,TA} 0.1265 0.0055 
(GRS,PS)|{PRO,TH,ARI,DNP,HC,BS,TS,GLA} 0.4604 0.0090 
(GRS,TA)|{PRO,TH,ARI,DNP,HC,BS,TS,GLA} 0.2237 0.0107 
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(GRS,PS)|{PRO,TH,ARI,DNP,HC,BS,TS,GLA,PS} 0.8943 0.4897 

   C =  
 

89.6827 
Overall p-value (χ2 df=62) 

 
0.5489 
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Table S8. Conditional independence claims implicit in the observed path model in Australian 71 

realm (Fig. S6). Fisher’s C statistic and p-values are provided at the bottom of the table. 72 

Abbreviations for predictors are: geographic range size (GRS), drainage network position 73 

(DNP), topographic heterogeneity (TH), drainage basin area (BA), historical connectivity 74 

(HC), temperature anomaly (TA), glaciation history (GLA), aridity (ARI), temperature 75 

seasonality (TS), precipitation seasonality (PS), productivity (PRO), diversification (DIV), 76 

body size (BS), migratory behavior (MB), and swimming capacity (SC). Ø represents a null 77 

set of control variables (i.e., these are not parental variables required in the conditional 78 

statement). * represents conditional statements evaluated but not included to calculate C and 79 

p-values (see methods section in the main text for more details). 80 

AUSTRALIAN 
Conditional independence claim p R2m 
(BS,HC)|{DNP,BA,TH,TA,PROD} 0.3560 0.0309 
(BS,PS)|{DNP,BA,TH,TA,PROD} 0.0993 0.0135 
(BS,TS)|{DNP,BA,TH,TA,PROD} 0.7944 0.0592 
(BS,HC)|{DNP,BA,TH,TA,PROD,PS,TS,TA} 0.7432 0.0794 
(BS,GLA)|{DNP,BA,TH,TA,PROD,TS} 0.2932 0.0501 
(BA,PS)|{TH,ARI} 0.3973 0.0373 
(BA,TS)|{TH,ARI} 0.4963 0.0165 
(BA,TA)|{TH,ARI,TS,GLA} 0.6113 0.0175 
(BA,PRO)|{TH,ARI,ARI,TS} 0.2188 0.0321 
(BA,GLA)|{TH,ARI,TS} 0.9907 0.0083 
(DNP,TS)|{BA,TH,ARI} 0.3579 7.2099e-05 
(DNP,TA)|{BA,TH,ARI,PS,TS,GLA} 0.3885 0.0055 
(DNP,PRO)|{BA,TH,ARI,PS,TS,ARI} 0.2216 0.0359 
(DNP,GLA)|{BA,TH,ARI,TS} 0.8829 0.0007 
(DNP,PS)|{BA,TH,ARI} 0.1625 0.0449 
(TH,HC)|{BA,DNP} 0.9137 0.0924 
(TH,GLA)|{TS} 0.6848 0.0007 
(TH,PS)|{Ø} 0.8606 0.0004 
(TH,TS)|{Ø} 0.9001 0.0115 
(TH,ARI)|{TS,PS,TA} 0.1761 4.0691e-05 
(TH,PRO)|{TS,PS,ARI} 0.6711 0.0113 
(HC,PS)|{BA,DNP} 0.2155 0.0136 
(HC,TS)|{BA,DNP} 0.3362 0.0569 
(HC,TA)|{BA,DNP,TH,TS,GLA} 0.6263 0.0592 
(HC,ARI)|{BA,DNP,TS,PS,TA} 0.1431 0.0143 
(HC,PRO)|{BA,DNP,TS,PS,ARI} 0.5923 0.0616 
(HC,GLA)|{BA,DNP,TS} 0.3209 0.0048 
(PS,TS)|{Ø} 0.5466 0.0055 
(PS,TA)|{TS,TH,GLA} 0.1679 0.0138 
(PS,GLA)|{TS} 0.2383 0.0622 
(ARI,GLA)|{TS,PS} 0.9953 0.0268 
(ARI,PRO)|{TS,PS,TA} 0.2384 0.0188 
(GLA,PRO)|{TS,PS,TA} 0.3707 0.0074 
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(GRS,PS)|{PRO,GLA,TH,DNP,TA,HC,BS,TS} 0.7906 0.0064 
(GRS,ARI)|{PRO,GLA,TH,DNP,TA,HC,BS,TS,PS} 0.6713 0.0251 
(GRS,BA)|{PRO,GLA,TH,DNP,TA,HC,BS,TS,ARI} 0.3244 0.0104 

   C =  
 

63.4543 
Overall p-value (χ2 df=72) 

 
0.7537 
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Table S9. Effect size (R2
m and R2

c) for all the endogenous-variables in the final path models. 82 

Endogenous variable Global Netropical Ethiopian 
Sino-

Oriental Nearctic Palearctic Australian 
R2

m R2
c R2

m R2
c R2

m R2
c R2

m R2
c R2

m R2
c R2

m R2
c R2

m R2
c 

Geographic range size 0.792 0.871 0.823 0.836 0.739 0.758 0.801 0.879 0.815 0.889 0.775 0.809 0.909 0.921 
Drainage network 
position 0.262 0.423 0.305 0.440 0.174 0.326 0.332 0.524 0.247 0.416 0.326 0.427 0.416 0.417 
Historical connectivity 0.428 0.623 0.326 0.358 0.312 0.431 0.636 0.672 0.591 0.665 0.401 0.450 0.489 0.905 
Drainage basin area 0.145 0.729 0.244 0.301 0.182 0.384 0.450 0.525 0.213 0.412 0.179 0.309 0.570 0.764 
Aridity 0.748 0.879 0.698 0.707 0.572 0.722 0.573 0.672 0.267 0.831 0.661 0.713 0.619 0.624 
Glaciation history 0.505 0.73 

      
0.224 0.398 0.127 0.312 0.258 0.258 

Temperature anomaly 0.488 0.574 0.341 0.448 0.554 0.642 0.717 0.741 0.543 0.602 0.272 0.729 0.623 0.662 
Migratory behavior 0.229 0.498 0.336 0.570 0.196 0.410 0.292 0.662 0.168 0.404 

    Swimming capacity 0.182 0.583 0.138 0.429 0.175 0.486 0.281 0.659 0.146 0.594 
    Body size 0.129 0.624 0.210 0.658 0.234 0.508 0.163 0.506 0.157 0.612 0.153 0.744 0.228 0.652 

Productivity 
  

0.438 0.473 0.444 0.533 
  

0.363 0.533 0.242 0.358 0.336 0.352 
Topographic 
heterogeneity 

              Temperature seasonality 
      

0.275 0.671 
      

Precipitation seasonality 
        

0.190 
 
0.491 

    Diversification 
  

0.259 0.381 0.268 0.399 
         83 
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Table S10. Morphological measures used in the species traits PCA and the variance 84 

accounted for by the first PCA axis (see (Toussaint et al. 2016) for further details on the 85 

morphological measures). 86 

Morphological 
measure Link with fish functions Species trait 

Variance 
accounted by 
the first PCA 

axis 
Oral gape 
position 

Feeding position in the water 
column 

Prey capture 63% Relative 
maxillary 

length 

Size of mouth and strength of 
jaw 

Body lateral 
shape Hydrodynamism and head size 

Swimming 
capacity 52% 

Pectoral fin 
vertical position Pectoral fin use for swimming 

Pectoral fin size Pectoral fin use for swimming 

Caudal 
peduncle 
throttling 

Caudal propulsion efficiency 
through reduction of drag 
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Table S11. Main hypotheses for freshwater fishes supporting the interrelationships considered among the multiple predictors of geographic range 88 

size. These hypotheses were compiled from previous studies or developed from the ecological literature and support the links in the full expected 89 

path model (Fig. S9). 90 

Endogenous 

variable 

Parental 

variable 
Expected link Reference 

    

Drainage network 
position (i.e. river 

drainage branching 
complexity) 

Topographic 
heterogeneity 

Drainage network position should decrease with high topographic 
heterogeneity because stream order decreases in areas with high topographic 
heterogeneity. 

(Benda et al. 2004) 

Drainage basin 
area 

Drainage branching complexity should increase with the surface area of the 
drainage basin. 

(Horton 1945, Strahler 
1952) 

Aridity 
Drainage branching complexity should decrease with aridity, because 
aridity fragments drainage basins reducing their hydrological network 
complexity. 

(Unmack 2001) 

Drainage basin area 

Topographic 
heterogeneity 

Small drainage basins are mostly found near coastlines (coastal stream) 
where low topographic heterogeneity is expected (Benda et al. 2004) 

Aridity Drainage basin area should decrease with aridity as aridity decreases water 
availability and fragments basin area dividing river surface. (Unmack 2001) 

Temperature 
seasonality 

Topographic 
heterogeneity 

Temperature seasonality should increase with topographic heterogeneity 
because high amplitudes in temperature are more frequent in mountain 
regions. 

(Kubokawa et al. 
2016) 

Precipitation 
seasonality 

Topographic 
heterogeneity 

Precipitation seasonality should increase with topographic heterogeneity 
because precipitation varies with elevation. (McGuire et al. 2005) 

    

Aridity 

Temperature 
seasonality 

Aridity should decrease with lower temperature seasonality because 
temperature significantly affects water balance in riverine ecosystems. 

(Walton 1969, Seager 
et al. 2013) 

Precipitation 
seasonality 

Aridity should increase in regions with low annual precipitation because 
evapotranspiration exceeds water availability. 

(Walton 1969, Seager 
et al. 2013) 
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Temperature 
anomaly 

Aridity should be greater in regions with greater long-term increases in 
temperature. 

(Sherwood and Fu 
2014, Huang et al. 
2016) 

    

Productivity 

Aridity 
Productivity should decrease with higher values of aridity because 
productivity and CO2 exchange are determined in large part by soil moisture 
conditions. 

(Suyker et al. 2003, 
Polley et al. 2010) 

Temperature 
seasonality 

Productivity should decrease with low-temperature seasonality because 
productivity is regulated by both temperature and the amount and timing of 
precipitation. 

(Parton et al. 2012, 
Peng et al. 2013) 

Precipitation 
seasonality 

Productivity should decrease with low-precipitation seasonality because 
productivity is regulated by both temperature and the amount and timing of 
precipitation. 

(Parton et al. 2012, 
Peng et al. 2013) 

    
Glaciation history Temperature 

seasonality 

Ice cover extent during glacial periods should increase with high-
temperature seasonality because glaciations have occurred in regions with 
low temperatures and a high seasonal range of temperatures. 

(Savin 1977, Annan 
and Hargreaves 2013) 

    

Temperature 
Anomaly 

Glaciation 
history 

Temperature anomaly should be greater in regions covered by ice during 
glacial periods because these regions have experienced greater changes in 
temperature since the LGM. 

(Annan and 
Hargreaves 2013) 

Temperature 
seasonality 

Temperature anomaly should be greater in regions with greater temperature 
seasonality because the LGM was harsher in regions with greater seasonal 
ranges of temperatures. 

(Savin 1977, Annan 
and Hargreaves 2013) 

Topographic 
heterogeneity 

Temperature anomaly should be higher in regions with a greater 
topographic heterogeneity because climate change velocity since the LGM 
has been greater in temperate and mountain regions. 

(Sandel et al. 2011) 

    
Diversification Drainage basin 

area 
Diversification should be greater in regions where species have higher 
habitat availability. 

(Preston 1960, Pagel et 
al. 1991) 
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Drainage 
network 
position 

Diversification should be greater on intermediate river orders because 
network branching promotes genetic diversity and differentiation between 
local populations, but headwater streams (the most branched region in the 
river networks) have high extinction and low colonization rates due to their 
high rates of disturbances and greater isolation. 

(Resh et al. 1988, 
Thomaz et al. 2016) 

Topographic 
heterogeneity 

Diversification should be greater in regions with greater topographic 
heterogeneity because diversification is higher in mountain regions and with 
high habitat heterogeneity. 

(66–68) 

 

Body size 

Diversification should be greater in clades with smaller body size because 
diversification is constrained by the ability of individuals to turn resources 
into offspring. The same relationship is expected based on the lower 
dispersal capacities of smaller bodied species. 

(68–70) 

Palaeo-connectivity 

Topographic 
heterogeneity 

Drainage basins with high topographic heterogeneity should have lower 
chances for palaeo-connectivity because palaeo-connections between 
drainage basins occurred mainly in flat regions with large continental shelf. 

(Voris 2000) 

Drainage 
network 
position 

High order streams should have greater palaeo-connectivity because the 
historical connection between drainage basins has occurred among lowland 
river portions. 

(Voris 2000) 

Drainage basin 
area 

Larger drainage basins should have lower chances for palaeo-connectivity 
because palaeo-connections were most frequent between small basins 
located in coastal regions. 

(Dias et al. 2014a) 

    

Body size 

Topographic 
heterogeneity 

Smaller-bodied species should occur in regions with high topographic 
heterogeneity because species body size tends to decrease with elevation. 

(Fu et al. 2004, Hu et 
al. 2011) 

Drainage 
network 
position 

Fish species in low stream orders should have a smaller body size because 
headwater streams are located in the most elevated portions of the drainage 
basins, and fish body size tends to decrease with elevation. 

(Fu et al. 2004) 

Drainage basin 
area 

Fish species body size should be greater in larger drainage basins because 
large-bodied species require greater areas to meet their energy requirements. 

(Brown and Maurer 
1987, 1989) 
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Temperature 
seasonality 

Species that inhabit regions with high-temperature seasonality should have 
greater body sizes. According to Bergmann's rule, species inhabiting high 
latitudes (i.e. regions with low temperature and great temperature 
seasonality) tend to be larger in size. 

(Bergmann 1848, 
Ashton et al. 2000, 
Belk and Houston 
2002) 

Migratory behavior 

Body size 
Species presenting migratory behavior should have greater body sizes 
because larger-bodied species tend to present more efficient migratory 
strategies. 

(Zhao et al. 2017) 

Drainage basin 
area 

Migratory behavior should be more frequent in species that inhabit large 
drainage basins because freshwater migrations tend to occur over long 
distances. 

(Aidley 1981, Dingle 
2014) 

Drainage 
network 
position 

Fish species with migratory behavior should inhabit high-order streams 
because riverine fish migrations are commonly associated with species that 
inhabit lowlands and perform upstream migrations. 

(Lucas and Baras 
2001) 

Topographic 
heterogeneity 

Fish species with migratory behavior should be distributed in areas with 
lower topographic heterogeneity because migratory freshwater fishes mainly 
inhabit the basal portions of the river network (i.e. river lowlands). 

(Lucas and Baras 
2001) 

Swimming 
Capacity Fish migratory species should have higher swimming capacities. 

(Lucas and Baras 
2001, Tudorache et al. 
2008) 

Prey capture Body size Findings on the relationship between the trophic position and body size are 
not straightforward, but some studies report a positive relationship. 

(Arim et al. 2010, Ou 
Chouly et al. 2017) 

Swimming capacity 

Drainage 
network 
position 

Swimming capacity should be greater in high order rivers because dispersal 
strategies are different in low order rivers with turbulent waters. 

(Ward et al. 2003, 
Tudorache et al. 2008) 

Drainage basin 
area 

Fish species inhabiting large drainage basins should have greater swimming 
capacities to cover large areas. (Taylor et al. 1982) 

Body size Large-bodied species should have greater swimming capacities because they 
must forage larger areas to satisfy their energetic requirements. (Taylor et al. 1982) 
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Table S12. R packages used in this study. 

Methods section R packages Reference 

Species geographic range sf (version 0.7-2)  (Pebesma et al. 2018) 

Current climate sf (version 0. 7-2) , raster (version 2.8-4) (Hijmans et al. 2018, 
Pebesma et al. 2018)  

Long–term climate 
stability sf (version 0. 7-2) , raster (version 2.8-4) (Hijmans et al. 2018, 

Pebesma et al. 2018) 

Productivity sf (version 0. 7-2) , raster (version 2.8-4) (Hijmans et al. 2018, 
Pebesma et al. 2018)  

Drainage network position sf (version 0. 7-2) , raster (version 2.8-4) (Hijmans et al. 2018, 
Pebesma et al. 2018)  

Historical connectivity sf (version 0. 7-2)  (Pebesma et al. 2018) 

Geomorphology sf (version 0. 7-2) , raster (version 2.8-4) (Hijmans et al. 2018, 
Pebesma et al. 2018) 

Diversification rfishbase (version 2.1.2) (Boettiger et al. 2012) 

Morphological species 
traits 

rfishbase (version 2.1.2), missMDA 
(version 1.13) 

(Boettiger et al. 2012, 
Josse and Husson 
2016) 

Data analysis lme4 (version 1.1-18-1), mgcv (version 
1.8-24), MuMIn (version 1.40.4) 

(Bates et al. 2015, 
Bartoń 2018, Wood 
2018) 
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CHAPTER 3: Does the lower limit of the range-
body size relationship represents the minimum 
viable range of the species? 
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Abstract 
Current rates of environmental degradation and species extinctions have prompted 

development of various approaches to assess species extinction proneness. However, these 

efforts are often limited by the lack of detailed population data required for a formal 

evaluation of extinction risk, pressing scientists to look beyond the population level and to 

build on predictive frameworks. The lower limit of the macroecological relationship between 

the species range size and body size is usually interpreted as a link between the minimum 

viable range size (MVR) needed for the species persistence and organismal traits that restrict 

the use of space and resources across species. Nonetheless, this link has never been explicitly 

tested. Here, we compare the MVR predicted by this macroecological limit with an 

independent MVR estimated through the temporal fluctuations of population abundances 

across space. Our results support the lower limit of the range ‒ body size relationship as a 

reliable method to assess the species MVR and an effective conservation prioritization tool to 

assess vulnerable species, especially in poorly studied areas and taxonomic groups. 
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Introduction 
Extinction risk or species vulnerability estimates are essential for prioritizing conservation 

actions (Joseph et al. 2009). Geographic range size consistently emerges as a key correlate of 

extinction risk in vertebrates (Gaston 1994b, Sodhi et al. 2008, Cardillo et al. 2008, Lee and 

Jetz 2011), where species occupying smaller geographic ranges are assumed to have a higher 

risk of extinction. However, species are not all equally vulnerable when facing a small 

geographic range. The minimum viable range size (MVR) needed for long-term persistence 

likely depends on the species traits that determine the local and regional abundance of their 

populations. Body size scales with many of the species attributes that influence geographic 

ranges (e.g. population density, individual home range size and dispersal capability) (e.g. 

Schmidt-Nielsen 1984). In particular, the energetic constraints shaping the relationship 

between body size and metabolic requirements (Swihart et al. 1988) cause larger species to 

have larger geographic ranges to compensate their lower population densities (Damuth 1981, 

Brown and Maurer 1987) as populations of large species with small ranges are more likely to 

be extirpated, both because of low effective population sizes and high vulnerability to 

catastrophic events (Gaston 1994b). Conversely, small-bodied species can maintain higher 

population abundances in smaller areas. Large-bodied species also tend to have higher 

dispersal capacities than smaller species filling a bigger portion of their potential 

distributional range (Gaston and Blackburn 1996a). 

These assumptions have been advanced to explain the triangular relationship between 

species geographic range and body size, one of the earliest patterns documented in 

macroecology (Brown and Maurer 1987, 1989) that has been already observed for several 

taxonomic groups and at various geographic scales (e.g.Taylor and Gotelli 1994, Gaston and 

Blackburn 1996, Diniz-Filho and Tôrres 2002, Diniz-Filho et al. 2005, Agosta and Bernardo 

2013, Le Feuvre et al. 2016, Carvajal‐Quintero et al. 2017, Inostroza‐Michael et al. 2018, 

Newsome et al. 2020). This range‐body size relationship shows a triangular shape in a 

bivariate trait space and is defined by three boundaries (Fig 1), two considered hard and one 

flexible. The two hard limits are boundaries set by extrinsic and intrinsic properties of the 

species, with the first one setting the upper limit (i.e. maximum range size) determined by the 

spatial extent of the study area, whereas the second boundary sets the left limit (i.e. minimum 

body size) settled by physiological constraints (Brown & Maurer 1987, 1989). Finally, the 

third and flexible boundary results from the direct positive relationship between the species’ 
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body size and its minimum range size needed for attaining viable populations (Brown and 

Maurer 1987, 1989). 

This lower and flexible boundary has been associated with a high probability of 

extinction (Brown and Maurer 1987, 1989) and used to define the MVR for species given 

their body size (Gaston and Blackburn 1996a). Hence, from a conservation perspective, this 

boundary is of utmost importance as potentially constituting a vulnerability limit, a species 

being near or beyond the boundary having a low probability of persistence through time 

(Brown and Maurer 1987, 1989, Gaston and Blackburn 1996a). Several studies have 

contributed empirical evidence showing that distance of species to the lower boundary of the 

range-body size relationship is a suitable predictor of species’ threatened status (e.g. 

Rosenfield 2002, Le Feuvre et al. 2016, Newsome et al. 2020). This has prompted 

assessments of the range-body size lower boundary to evaluate the conservation status of 

poorly studied species as well as tracking and forecasting changes in species extinction risk 

due to anthropogenic perturbations (Le Feuvre et al. 2016, Carvajal‐Quintero et al. 2017). 

 
Figure 1. Left, the theoretical model describing the geographic range size–body mass 
relationship proposed by Brown and Maurer (Brown and Maurer 1987, 1989). Right, the 
relationship uncovered by Agosta and Bernardo (2013), who found a breakpoint in the lower 
boundary for mammals. 

 

However, despite three decades of applying the lower boundary of the range-body size 

relationship to define the MVR of species, no test has been done yet to link explicitly this 
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empirical boundary to species’ lower probability of persistence. Here we intend to fill this 

important theoretical and applied knowledge gap by relating the MVR estimated from the 

lower boundary of the range-body size relationship (here after called ‘macroecological 

MVR’) with an independent MVR estimated from spatio-temporal dynamics of population 

abundances (here after called ‘spatio-temporal MVR’). To estimate the spatio-temporal MVR 

of a given species we used the concept of spatial synchrony; i.e. the synchronous temporal 

dynamics in the abundance of spatially separated populations. Spatial synchrony has indeed 

well-recognized implications for the long-term persistence and extinction probability of 

species (Allen et al. 1993, Liebhold et al. 2004). Notwithstanding the fact that different 

populations of a same species are connected or not, synchronous population dynamics can 

increase species vulnerability to common stochastic events leading to higher species 

extinction risk, while population asynchrony dynamics may lead to longer term stability and 

persistence (Allen et al. 1993, Heino et al. 1997, Gonzalez and Loreau 2009). Spatial 

populations synchrony usually decreases with increasing geographic distance between 

populations (Ranta et al. 1995, Bjørnstad et al. 1999, Liebhold et al. 2004), allowing to define 

a “limit of synchrony”, i.e. the maximum distance or geographic range where synchrony can 

still be observed between populations (Bjørnstad et al. 1999). Above the area defined by this 

limit, divergent population dynamics allow for compensatory mechanisms, preventing local 

declines and extinctions (Heino et al. 1997, Liebhold et al. 2004). We can hypothesized that 

this unit may represent the minimum viable population range size for a given species hence 

defining a spatio-temporal MVR that should mirror the macroecological MVR set by the 

species range-body size spatial pattern. 

Focusing on riverine fishes, we first estimated the macroecological MVR using a global 

dataset of species distribution and body size for 9.075 species to estimate the macroecological 

MVR. In a second step we used population abundance time-series available for 62 species 

distributed worldwide to evaluate the limit of population synchrony and further estimate the 

spatio-temporal MVR. Our findings clearly support the use of the macroecological MVR as a 

vulnerability limit to identify species with higher extinction risks in conservation targets, both 

at global and biogeographic realm scales (based on Leroy et al. 2019). 
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Methods 

Geographic range and body size data 

To build the range-body size relationships at global and biogeographic realm scales we used 

the geographic range size of freshwater fishes estimated by Carvajal-Quintero et al. (2019) for 

9075 species (~70% of all described freshwater fish species) distributed worldwide, and the 

maximum body length provided by FishBase (Froese and Pauly 2020) as a measure of body 

size. 

Time series data 

The time series of population abundances needed to define the spatio-temporal MVR were 

obtained from RivFishTIME, the largest database of long-term (≥ 10 years) time series of 

freshwater fish assemblages collected to date (Comte et al. 2020). This database provides time 

series for 1,603 species across 13,131 sampling locations resulting in 136,545 time series of 

local populations (i.e. the abundances of a given species in a given sampling location over 10 

years or more). To ensure the direct comparison of local populations across geographic space 

and time, we divided the global database into comparable datasets where all records were 

sampled during the same climatic season, using the same protocol and registered with the 

same type of abundances (e.g. individuals /m2) throughout the time period (see Comte et al. 

2020 metadata for more details). Non-native species occurrences were filtered out according 

to the global freshwater fish distribution database provided by Tedesco et al.(2017). When an 

occurrence did not intersect with any of the drainage basins reported in Tedesco et al. (2017), 

we assigned the species status (native or exotic) of the closest basin belonging to the same 

country. In other cases, we used the species distribution status reported in FishBase (Froese 

and Pauly 2020). Species usually not occurring in continental waters (i.e. fresh and brackish 

waters) were excluded based on FishBase information (Froese and Pauly 2020). We applied a 

sample size criterion (i.e. number of time series per species) to ensure reliable estimates of the 

spatio-temporal MVR, retaining only species with 10 or more comparable years (i.e. same 

sampling years) from at least 10 locations. The application of the above data selection criteria 

resulted in species occurring in temperate and sub-temperate regions exclusively (see below 

and Fig S1). Consequently, we only kept time series based on samplings performed between 

April and September (i.e. the warm season) to integrate major fish reproductive and 

movement events (Wootton 1990, Bromage et al. 2001, Bradshaw and Holzapfel 2007) that 

primarily occurr during that season in temperate regions due to increasing temperatures and 

photoperiod (Sommer et al. 1986, Winder and Schindler 2004). Because this selection of time 
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series may result in different combinations according to the number of sampled years and 

sites, we always kept the group of time series that covered the highest number of sampled 

sites to include the largest portion of the species geographic range in the spatio-temporal 

MVR estimates. All time series using non-continuous abundance values were excluded, and 

all abundance values > 99.9% quantile were considered as potential data errors and further 

excluded. All these data selection criteria resulted in 62 species and 3918 time series that were 

sampled in three different biogeographic Realms (Nearctic, Palearctic and Australian, 

following Leroy et al. 2019, Fig S1) which were used to estimate the spatio-temporal MVR. 

Macroecological MVR 

We estimated the macroecological MVR at the global and biogeographic realm scales using 

range-body size relationships based on log10-transformed variables and quantile regressions 

to determine the lower (0.10 quantile) and upper boundaries (0.90 quantile) of the relationship 

(Scharf et al. 1998). To consider the possibility of a breakpoint in the lower limit as proposed 

by Agosta and Bernardo (2013), we fitted quantile segmented regressions with respect to 

body size. For each segmented regression, we estimated the location of the breakpoint through 

an iterative search procedure (Crawley 2013). We obtained the coefficient and a goodness of 

fit measure (analogous to the conventional R2, (Koenker and Machado 1999) on either side of 

the breakpoint and reported the results only for the significant model (p < 0.05) with the best 

fit and showing a negative slope at the left side of the breakpoint as reported by Agosta and 

Bernardo (2013). Our estimates of the macroecological MVR were based on 9.075 species at 

the global scale and 733, 584 and 76 species for the Nearctic, Palearctic and Australian 

realms, respectively. These species represent 70% of the global freshwater fish fauna and 

88%, 53% and 21% for Nearctic, Palearctic and Australian realms respectively. 

Spatio-temporal MVR 

As mentioned before, we used the concept of spatial population synchrony and, more 

specifically, the limit of population synchrony as an estimate of the spatio-temporal MVR for 

each selected species. We measured this limit as the x-intercept distance in a spline 

correlogram (Bjørnstad and Falck 2001) based on the time series of each species and their 

spatial distribution. Spline correlogram differs from commonly used spatial correlograms (and 

Mantel correlograms) as it estimates dependence as a continuous function of distance, rather 

than by grouping into distance classes. This brings to spline correlograms a greater precision 

and the capacity to adapt well to the different underlying covariance structures (Bjørnstad et 

al. 1999, Bjørnstad and Falck 2001). The x-intercept in a spline correlogram is the distance at 
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which the spatial autocorrelation of a variable reaches zero or turns negative (Sokal and 

Wartenberg 1983, Bjørnstad et al. 1999), and can be used as an estimate of the spatial scale of 

a regional autocorrelation pattern (Sokal and Wartenberg 1983, Epperson and Li 1997). In our 

case, the distance determined by the x-intercept is the minimum distance needed to obtain 

uncorrelated abundances between populations, i.e. the limit of population synchrony for a 

given species. We then converted this distance into a geographic range area using this 

distance as the diameter of a circle. We chose a circular shape as the best way to represent the 

minimal area ensuring that we are covering the limit of population synchrony in any direction 

across the geographical space. For species with more than one value for the limit of 

population synchrony (i.e. species with time series available for more than one comparable 

dataset), we calculated the average. To obtain an estimate of the spatio-temporal MVR, we 

finally relate each species-level MVR value to the corresponding species body size applying a 

log10-linear regression. Importantly, we controlled for the potential bias that could affect our 

estimates of spatio-temporal MVR values if larger ranges formed by the time series sampling 

sites would provide systematically larger MVR values (i.e. no correlation was observed 

between the convex-hull area formed by the time series sampling points of each species and 

the corresponding spatio-temporal MVR values, R2 =0.0004, p = 0.866, Fig S2). 

Comparing MVR estimates 

We build the spatio-temporal MVR to provide a mechanistic basis and validation of the 

macroecological MVR based on their graphical comparison. We further compared these two 

vulnerability limits of species range size through a linear regression using 100 values 

predicted by each limit model (i.e. quantile and linear regression for the macroecological and 

spatio-temporal limits respectively). These values were sampled equidistantly along the 

minimum and maximum values of body sizes reported in the spatio-temporal MVR. Finally, 

we contrasted the distance of species in respect to the macroecological and spatio-temporal 

MVR using a Gaussian linear model. 

We applied the all above approach at the global and biogeographic realm scales. 

Because large sampling size can detect very minor residual associations between variables 

and lead models with not significant-scientific relations, we only considered models with 

effect sizes (Goodness of fit or R2) > 0.1 and p < 0.05 (Anderson 2008). Data analyses were 

performed in R 3.4.3 (R Development Core Team 2017). For details on R packages used, see 

supplementary methods, Table S1. 
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Results 
The shape of the range-body size relationship was reconstructed at a global scale and for the 

three biogeographic realms (Fig 2, table S2). At the global scale, a linear relationship better 

described the lower boundary of the macroecological relationship, whereas for the considered 

realms we found evidence for both, linear (Australia) and segmented relationships (Nearctic 

and Palearctic) (Fig 2, Table S2). 

 

Figure 2. Representation of the range-body size relationship at different spatial scales. The 
red line represents the regression of the 10% quantile and the expected MVR settled by the 
macroecological relationship. The blue line represents the regression of the 90% quantile. 
Orange line and dots represent the observed MVR described by the relationship regional scale 



98 
 

of synchrony and body size. Up left global scale, up right Nearctic, down left Palearctic, and 
downright Australian. 
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Figure 3. Distance of species respect to macroecological MVR (red, quantile 0.10) and 
spatio-temporal MVR (orange). The boxes represent the median, the first quartile and the 
third quartile of the distances, and violin plots represent sideways density plots. From top to 
bottom: Global scale, Nearctic, Palearctic and Australian. The two box plots for the Paleartic 
region represent the two portions of the quantile-segmented regression 

We calculated the spatio-temporal MVR for 62 species at a global scale, distributed 

across the biogeographic realms as follow: 31 Nearctic, 18 Palearctic and 14 Australian. The 

range of body sizes of these species covered between 62 and 89% of the body size intervals 

reported in this study (Fig 2) allowing us to build the spatio-temporal MRV at both global and 

realms spatial scales. Only for the Nearctic realm, because of no available small-sized species, 

it was not possible to represent the first segment of the lower bound (Fig 2). In all four cases 

we broadly observe coherent shapes of the macroecological and spatio-temporal MVR. We 

further found a highly significant relationship when comparing the sequence of values 

predicted by both MVR estimates (R2 = 0.96-0.99, Table S3), showing that the spatio-

temporal MVR limit recreated well the shape and tendency of the macroecological MVR 

limit. At the global scale, the spatio-temporal and macroecological MVR limits matched 

perfectly showing a similar distance of species respect to both limits, and at the realm scale, 

distance of species to the spatio-temporal and macroecological MVR limits varied slightly but 

with no significant difference for the Nearctic and Australian region (Fig 2 and 3, Table S4). 

These results remained stable when using 0.05 quantile regressions, instead of 0.1, for the 

macroecological MVR (Fig S2 and S4, Table S4). 

 

Discussion 
By linking the lower bound of the range – body size relationship to the synchrony limit 

estimated from spatio-temporal dynamics of population abundances, we contribute for the 

first time empirical evidence supporting that this macroecological bound represents a 

vulnerability limit established by the minimum viable range size required for long-term 

persistence of species. The macroecological and spatio-temporal limits matched across all the 

spatial scenarios that we evaluated, showing a linear and positive relationship respect to 

species body size at a global scale, and both linear and segmented relationships across 

biogeographic realms. 

Our study extends our comprehension about the processes that shape the lower bound of 

the range - body size relationship giving us a framework to understand how different 

population and species level factors interact, determining the long-term persistence of species 
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according to their geographic range and body size. Here we showed at a global scale that the 

species’ MVR increases linearly with body size establishing a vulnerability limit that restrict 

large-bodied species to large geographic areas to ensure their long-term persistence (Fig. 2). 

Large-bodied species present high dispersal capacities that allow them to forage widely to 

face temporal and spatial variation in resources and thus fulfill their high energetic demands 

(Kleiber 1975, Brown and Maurer 1987, 1989), besides, higher dispersal can also protect 

small local populations from extinction by allowing the influx of immigrants (Abbott 2011). 

However, dispersal is a ‘double-edged sword’ and can result in high the risk of global 

extinction by spatially synchronizing local populations (Liebhold et al. 2004, Abbott 2011) 

over greater distances (Marquez et al. 2019). Thus, occupying only wide geographic range 

large-bodied species can ensure enough resources to sustain viable populations and avoid 

synchronizing dynamics caused by their high dispersal. At the same time, large geographic 

ranges sizes are commonly associated with habitat-generalist strategies and wider 

environmental niches (Slatyer et al. 2013, Cardillo et al. 2019) being less sensitive to climate-

synchronizing drivers and occupying habitats with different environmental conditions (Loreau 

and de Mazancourt 2008, Pandit et al. 2016) where populations can fluctuate independently.  

Meanwhile, small species have lower energetic constraints being viable in both small 

and large geographic ranges. However, be smaller brings alternative challenges, especially to 

those species with a small range that are more sensitive to catastrophic events (Gaston 1994b, 

Sodhi et al. 2008, Cardillo et al. 2008, Lee and Jetz 2011) and tend to have ecological traits 

related to high population synchrony (i.e. specialist-habitat strategies and restricted 

environmental niche; (Liebhold et al. 2004, Slatyer et al. 2013, Cardillo et al. 2019). To 

counter these adverse conditions, small-bodied species with smaller ranges are more abundant 

to reduce the probability of local extinctions (Gaston 1994b, Gaston and Blackburn 1996a), 

and through lower dispersal capacities and short life histories diminish the rates and scale of 

spatial synchrony (Liebhold et al. 2004, Marquez et al. 2019). Small-bodied species with large 

geographic range are the most viable species (i.e. the furthest from the vulnerability limit) as 

they tend to present lower energetic constraints (Kleiber 1975, Brown and Maurer 1987, 

1989) and reduced spatial synchrony due to their wide niche and large ranges (Liebhold et al. 

2004, Slatyer et al. 2013, Cardillo et al. 2019).  

Finally, because species’ geographic range and body size are continuous instead of 

binary variables (small/large), the distribution of a gradient of combinations of range and 

body with a greater or lower degree of viability are distributed across the bivariate space 
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outlining a triangular envelope and settling the minimal geographic range needed to fulfill in 

the long term their energy demands and meet the demographic requirements (i.e the MVR 

limit, Fig 1). 

The different patterns (i.e. linear and segmented) that we found across biogegraphic 

realms suggest that the evolutionary history of areas have favored certain combinations of 

species’ range and body sizes. Climate instability of temperate regions has been commonly 

proposed to select against small geographic ranges and body size via intraannual variability 

and extreme colds, as invoked in Rapoport’s (Stevens 1989) and Bergmann’s rules 

(Bergmann 1848) respectively. Besides, long-term climatically unstable areas have been 

found to harbor lower proportions of small-range species because their increased extinction 

under climate changes due to narrow climate niches and poor dispersal capability (Dynesius 

and Jansson 2000, Sandel et al. 2011). Along with climate-driven extinctions, the earliest 

human activities have also affected fundamental macroecological patterns. In mammals, for 

example, the shape of the range–body size relationship has changed over time as a result of 

human‐driven extinctions promoting the body size downgrading during the late Quaternary 

(Smith et al. 2019). These human transformations have mainly affected species with the 

smallest and largest body size (Smith et al. 2019). Thus, the current and historical climate 

instability together with human activities over the late Quaternary may be related to the low 

proportion of fish species with small range and body size that generate the segmented pattern 

in temperate realms (i.e. Palearctic and Nearctic), while at in the Australian realm (and at a 

global scale), the linear patterns seem to be related the presence of species that inhabit tropical 

ecosystems that can maintain a large number or small ranged species in a reduced space 

(Hawkins and Diniz‐Filho 2006).  

Beyond the theoretical importance of our results, the validation of the lower limit of the 

range – body size relationship also has important applied implications, as this limit can be 

used to address the main challenges faced today by IUCN in the red listing of species (see 

(Bachman et al. 2019) for more details in red listing challenges). Through the initiative 

Barometer of life (Stuart et al. 2010), the IUCN is increasing the number of assessed species 

to understand the conservation status of global biodiversity and provide a solid basis for 

informing conservation decisions. The goal by the end of 2020 is to assess at least 160,000 

species and even this colossal effort will only represent 8 % of all known species (CoL 2019). 

As IUCN continues expanding the species coverage of extinction risk assessments, it is 

possible to use the lower limit of the range – body size relationship as a “low-data approach” 
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to rapidly identify vulnerable species (i.e. species below the MVR limit) across un-assessed 

and data-deficient taxa, creating a first global assessment of the conservation status of species. 

Additionally, the lower vulnerability limit of the range – body size relationship can be used to 

update and monitor changes in the vulnerability of their species. As vulnerability assessments 

of species become outdated after 10 years under IUCN rules, it is important to keep the 

species conservation status updated to better address national and global environmental 

legislation, identification species and sites for conservation investment (Rondinini et al. 

2014), and actions to mitigate species threats (Butchart et al. 2010). The monitoring of species 

conservation status allows measuring our progress in tackling the biodiversity crisis (Pereira 

and Cooper 2006, Butchart et al. 2010) and better understand the changes in the vulnerability 

of species under human stressors (e.g. Carvajal‐Quintero et al. 2017). 

Our validation of the lower bound of the range - body size relationship is based on 

freshwater fish data. However, the triangular shape of this macroecological relationship and 

the presence of the linear and segmented lower bounds have been widely documented across 

multiple vertebrate taxa (e.g. Agosta and Bernardo 2013, Inostroza‐Michael et al. 2018, 

Newsome et al. 2020), therefore, we believe that our findings can be extrapolated to other 

taxonomic groups (at least vertebrates). This could be corroborated using the using BioTIME 

(Dornelas et al. 2018) an extensive database of biodiversity time series covering different 

taxonomic groups. 

In conclusion, our results validate the lower limit of range –body size relationship as an 

approach to evaluate the MVR needed for long-term species persistence. This MVR limit is 

determined by different physiological and ecological factors that constrain the use of the 

geographic space and the spatial dynamic of populations according to the combination of 

range and body size of species. The shape of the lower limit can vary according to the 

evolutionary history of the study areas that have selected certain combinations of species 

range and body sizes. The lower limit of the species range –body size relationship can be used 

for different conservation purposes, such as to identify vulnerable species (i.e. species close or 

beyond the lower limit), and track changes in the vulnerability of species due to the impacts of 

the current environmental change. 
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Supporting information 
 

 

 

Figure S1. Map with the occurrences of time series that we used. 
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Figure S2. Scaterplot showing no relation between the spatio-temporal MVR and the 

sampling area across the studied species. 
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Figure S3. Representation of the empirical range-body size relationship at different spatial 

scales. The red line represents the regression of the 5% quantile and the empirical MVRS 

settled by the macroecological relationship. The blue line represents the regression of the 95% 

quantile. Orange line and dots represent the Theoretical MVRS described by the relationship 

regional scale of synchrony and body size. (a) Global scale, (b) Nearctic, (c) Palearctic, and 

(d) Australian. 
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Figure S4. Distance of species respect to macroecological MVR (red, quantile 0.05) and 

spatio-temporal MVR (orange). The boxes represent the median, the first quartile and the 

third quartile of the distances, and violin plots represent sideways density plots. From top to 

bottom: Global scale, Nearctic, Palearctic and Australian. The two box plots for the Paleartic 

region represent the two portions of the quantile-segmented regression 
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Table S1. R packages used in this study. 

 

 Methods section R packages Reference 

Species’ body size rfishbase (version 2.1.2)  Boettiger et al. 2019 
Freshwater-species Filter  rfishbase (version 2.1.2)  Boettiger et al. 2019 
Spline correlograms ncf (version 1.2-9) Bjornstad 2019 
Quantile regressions quantreg  Koenker et al. 2019 
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Table S2. Result of the quantile and quantiles segmented regressions fitted to represent the 

macroecological limits. 

 

Quantile Value t value p Goodness of 
fit 

Global 0.10 0.40259 15.58693 < 0.000001 0.37069851 
0.05 0.46257 4.88686 < 0.000001 0.31114404 

 

Quantile Value t value p Goodness of 
fit Segment 

Nearctic 

0.10 -4.67749 -3.40676 0.00468 0.3296705 1 0.05 -4.67749 -3.22824 0.00660 0.4778336 
0.10 0.78786 4.91744 < 0.000001 0.6132081 2 0.05 0.50543 4.31184 0.00002 0.4959111 

 

Quantile Value t value p Goodness of 
fit Segment 

Palearctic 

0.10 -0.95154 -2.37616 0.01795 0.15668515 1 0.05 -0.93593 -3.71531 0.00023 0.14686891 
0.10 2.86538 2.53001 0.01265 0.11221277 2 0.05 3.32765 2.16596 0.01221 0.13595863 

 

Quantile Value t value p Goodness of 
fit 

Australian 0.10 2.48890 2.83201 0.00590 0.15892946 
0.05 2.32392 2.24824 0.02742 0.2041558 
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Table S3. Results of the linear models relating the 100 values predicted by the 

macroecological and spatio-temporal limits. 

 

Quantile Estimate t value p R2 

Global 0.10 2.32028 56.43 <2e-16 0.969 
Neartic segment 2 0.10 5.7249 84.57 <2e-16 0.986 
Paleartic segment 1 0.10 0.2673 89.64 <2e-16 0.992 
Paleartic segment 2 0.10 1.850 91.57 <2e-16 0.993 
Australian 0.10 6.3394 56.42 <2e-16 0.968 
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Table S4. Results of the linear models contrasting the species distance respect to the 
macroecological and spatio-temporal limits. Models with p < 0.05 but a low effect size (R2 
< 0.1) were not considered significative. 

 

Quantile Estimate t value p R2 

Global 0.10 -0.10774 -6.8 1.089e-11 0.002972 
0.05 -0.33121 -7.007 4.222e-12 0.04164 

Neartic segment 2 0.10 -0.09694 -2.068 0.06891 0.00295 
0.05 -0.33121 -7.007 4.222e-12 0.04251 

Paleartic segment 1 0.10 -2.00879 -16.86 < 2.2e-16 0.3699 
0.05 -2.58049 -21.65 < 2.2e-16 0.492 

Paleartic segment 2 0.10 -0.9233 -5.129 6.00e-07 0.09878 
0.05 -1.4456 -8.027 4.465e-14 0.2083 

Australian 0.10 -0.08967 -0.470 0.639 0.001697 
0.05 -0.4644 -2.449 0.01566 0.0441 
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Table S5. Results of the regression fitted to represent the spatio-temporal limits. 

 

Estimate t value p R2 

Global 0.5697 2.932 0.004759 0.1707 
Neartic segment 2 0.4476 1.985 0.005663 0.1697 
Paleartic segment 1 -3.501 -2.151 0.0644 0.6982 
Paleartic segment 2 1.7988 1.695 0.0116 0.1931 
Australian 1.1219 4.225 0.00118 0.598 
 

 

 

  



112 
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Abstract 
Tropical rivers are experiencing an unprecedented boom in dam construction. Despite rapid 

dam expansion, knowledge about the ecology of tropical rivers and the implications of 

existing and planned dams on freshwater dependent species remains limited. Here, we 

evaluate fragmentation of fish species’ ranges, considering current and planned dams of the 

Magdalena River basin, Colombia. We quantify the relationship between species’ range 

and body sizes and use a vulnerability limit set by this relationship to explore the influence 

that fragmentation of species’ ranges has on extinction risk. We find that both existing and 

planned dams fragment most fish species’ ranges, splitting them into more vulnerable 

populations. Importantly, we find that migratory species, and those that support fisheries, 

are most affected by fragmentation. Our results highlight the dramatic impact that dams can 

have on freshwater fishes and offer insights into species’ extinction risk for data-limited 

regions. 
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Introduction 
Nearly two-thirds of the world’s largest rivers were fragmented by dams at the start of this 

century (Nilsson et al. 2005), and the remaining proportion of free-flowing rivers are 

rapidly declining (Finer and Jenkins 2012, Zarfl et al. 2015, Winemiller et al. 2016). 

Despite diverse impacts from dams on freshwater ecosystems, tropical and subtropical 

regions of South America, Africa, and Asia are experiencing booms in dam construction 

due to growing human population, economic development, and demand for low-carbon 

energy sources (Kareiva 2012, Finer and Jenkins 2012, Zarfl et al. 2015). At the same time, 

our understanding about the consequences of dams on species’ extinction risk remains 

limited. Numerous studies have focused on impacts to species’ diversity post dam 

construction (Poff et al. 2007), but approaches are needed that quantify potential 

consequences of new dams prior to their implementation. Such approaches could be 

particularly useful in regions where dam expansion is imminent (Kareiva 2012, Zarfl et al. 

2015, Winemiller et al. 2016), and where biological information for species remains limited 

(Meyer et al. 2015). 

Expanding fundamental macroecological relationships between species’ range and 

body sizes (primarily documented in terrestrial vertebrates to date) could help us to better 

understand the potential impacts that dams can have on the vulnerability of freshwater-

dependent species. The range-body size relationship commonly forms an approximate 

triangular shape (Gaston and Blackburn 1996a); the spatial extent of the study area sets the 

upper limit of the triangle, and forms the upper limit of species’ range size (Figure 1). The 

slope of the lower bound of this relationship forms because smaller species have a variety 

of range sizes, but larger-bodied species only have relatively large range sizes. Across 

assemblages, the minimum range size required for a given species, based on body size, 

generates a “probabilistic” vulnerability limit in bivariate space (Figure 1), whereby any 

species that is near or beyond this limit is prone to extinction or has a low probability of 

persistence through time (Gaston and Blackburn 1996a). In this way, the triangular 

constraint space formed between range and body size could change as species’ range size 

changes. Such changes could occur because of natural processes or because of dams or 

other human-induced factors that influence habitat loss or fragmentation. Indeed, changes 
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in range size have quite consistently been shown to be a strong predictor of extinction risk 

(Di Marco et al. 2015). 

 

 

Figure 1. Representation of the theoretical constraint envelope described by the 
interspecific functional relationship between species’ body size and geographical range size 
(modified from (Brown and Maurer 1987)). Note that small-bodied species show both 
small and large range size (high variance), whereas large-bodied species show only large 
range size (low variance). The solid line indicates the absolute space constraint, whereas 
the dashed line (referred to here as a vulnerability limit) is commonly associated with a 
minimum viable population size that is necessary for species’ persistence. Based on the 
vulnerability limit, larger-bodied species are highly sensitive to fragmentation, because they 
require large range sizes for their persistence (i.e., to maintain sustainable population sizes), 
and so too are smaller-bodied species with restricted range sizes. 

 

From a conservation perspective, the lower boundary of the range-body size 

relationship is an important feature because it has been shown to represent a lower limit of 

range size (from here “vulnerability limit”) below which species have heightened extinction 

risk (Figure 1; (Brown and Maurer 1989, Gaston and Blackburn 1996a)). Furthermore, to 

our knowledge, the range-body size relationship has not yet been used to quantify potential 

effects of anthropogenic fragmentation on species’ extinction risk. With this in mind, we 

draw on the range-body size relationship to evaluate fragmentation caused by current (fully 
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constructed and under construction) and current + planned dams (under consideration or 

proposed) on the range sizes of 179 freshwater fish species in the Magdalena River basin. 

We further evaluate whether range-size fragmentation, and subsequent reduction in range 

size results in species shifting closer to the vulnerability limit, and subsequent extinction 

risk. For both current and current + planned damming, we summarize species’ extinction 

risk at two scales: (1) within fragments of species’ natural ranges, which we consider the 

“population” level and (2) across all fragments created within a species’ natural range, 

which we considered the species level. Finally, we evaluate whether fragmentation from 

both current and current + planned damming differentially affects certain ecological traits 

or human-dependency factors. 

 

Methods 

Study area, species’ ranges, and dam occurrences 

We compiled a comprehensive data set of fish species’ occurrence records for the 

Magdalena River basin, Colombia. The Magdalena River is the main fluvial ecosystem of 

northwest South America (1,540 km long; 7,100 m3/s discharge), and is a major source of 

hydropower (Jiménez‐Segura et al. 2016) and economic development in Colombia (Galvis 

and Mojica 2007, Barletta et al. 2015). 

Our data set included occurrence records from 1940 to 2014, with 11,571 occurrence 

records for 204 fish species (Supporting Information: Dataset). We represented range size 

for each fish species as the extent of occurrence sensu International Union for Conservation 

of Nature (IUCN 2016). Range size was represented as the area (kilometer2) falling within 

the convex hull formed around each species’ occurrence records in the Magdalena River 

basin (Supporting Information: Methods and Figure S1). Species with less than three 

occurrence records were excluded from our analyses (25 species, see Supporting 

Information: Dataset), and all subsequent analyses were undertaken for 179 fish species. 

We further checked the distribution of each species based on an updated freshwater fish 

checklist that is in progress for Colombia (Maldonado‐Ocampo et al. 2005) and the 

Colombian fisheries catalog (Lasso et al. 2011). This additional step allowed us to 

corroborate the narrow distribution of species with a small number of records (<10), 
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certifying that these were rare and locally endemic species. Importantly, given the 

intensification of human induced changes to the land- and waterscapes of the Magdalena 

River basin over the last several decades, it is possible that our range size estimates are 

conservative. 

The geographic location and construction status of large impassable dams (>20 MW 

hydropower capacity) either those known to occur, or planned for, the Magdalena River 

basin were obtained from Lehner et al. (Lehner et al. 2011), Opperman et al. (Opperman et 

al. 2015), and The Nature Conservancy (TNC, unpublished data). We focused our 

assessment on these large dams because they have been shown to prohibit fish species’ 

dispersal (e.g., (Pelicice and Agostinho 2008, Winemiller et al. 2016). Our assessment 

included a total of 29 current (fully constructed and under construction) and 29 planned 

(under consideration or proposed) dams, respectively. 

Ecological traits and human-dependency attributes 

We collected information on maximum body length (millimeters) for each of the 179 fish 

species from FishBase (Froese and Pauly 2016) and published literature (Supporting 

Information). When different sources provided different values, we used the largest body 

size, and used maximum body length as a measure of body size. We collected additional 

information about each fish species ecological characteristics and human dependences, 

including: (1) species’ endemicity to the Magdalena River basin, (2) species’ demographic 

strategy, (3) species’ functional group and (4) whether a species is used as resource, 

commercially or for subsistence, including migratory species (Table S1). 

Data analyses 

We used quantile regression (with “quantreg” package; Koenker 2015) in R statistical 

software (R Core Team 2013) to determine the relationship between species’ natural range 

and body sizes, and to define the lower (0.05 quantile) and upper boundaries (0.95 quantile) 

of the relationship (Scharf et al. 1998). Two statistical analyses were implemented to verify 

that the relationship between species’ natural range and body sizes is actually triangular, 

testing for a significant slope parameter of the lower boundary. First, we fitted linear 

quantile mixed models (LQMMs; using “lm4” package; (Bates et al. 2015)) considering 

quantiles 0.05 and 0.95 with genus, family and order as random factors to account for the 
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taxonomic relatedness of species. Second, we quantified the significance of the lower 

boundary (0.05 quantile) with a randomization test procedure where body size values were 

permuted 4,999 times resulting in a null distribution of slope values. 

After determining the relationship between range and body size, and respective 

thresholds, we determined those species that either did or did not fall below the upper limit 

of the 95% confidence interval of the lower boundary (as defined by the 0.05 quantile). 

Scharf et al. (Scharf et al. 1998) demonstrated that quantile regression produces robust 

estimates, and that the 0.05 quantile produces a similar, but more conservative, estimate 

than the 0.10 quantile, which is also frequently used. For all subsequent analyses, we 

considered this limit to be the vulnerability limit, as suggested by Le Feuvre et al. (Le 

Feuvre et al. 2016). 

To determine fragmentation of species’ ranges by current and current + planned 

dams, we overlaid each species’ geographic range (i.e., the range we considered to be their 

natural range) with the fragments resulting from the subdivision of the whole drainage 

basin by both current and planned dams (Figures S1 and S2). Fragmentation from planned 

dams was accounted for by including all current and all planned dams. The intersection of 

species’ natural geographic ranges with the fragmented drainage basin resulted in multiple 

occupied fragments, and subsequently, these fragmented ranges were assumed to be 

independent populations because of dam size and the impossibility of dispersal between 

dams. These fragmented ranges combined with the vulnerability limit, as defined by 

species’ natural ranges, resulted in a binary output of populations that we considered to 

either have heightened extinction risk (i.e., with ranges occurring below the vulnerability 

limit defined by species’ natural range-body size relationship) or not. This “lower boundary 

rule”, applied to each of the 179 species, produced (1) a mean value of the fragmented 

geographic range and (2) a proportion of endangered “populations” for each species, 

respectively. 

To determine the relative importance and effect of the ecological and human-

dependency attributes, we fitted generalized linear mixed models (GLMMs) with 

“binomial” distribution errors to the two extinction risk measures using “lm4” package 

(Bates et al. 2015). We ran models for all possible combinations of the explanatory 
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variables and then performed model averaging based on the “Akaike Information Criterion” 

(AIC). As a cut-off criterion to delineate a “top model set” providing average parameter 

estimates, we used models with ΔAICc <2 (Grueber et al. 2011). As with the LQMMs, we 

included genus, family and order as random factors in the GLMMs to account for the 

taxonomic relatedness of species and to avoid pseudoreplication. 

 

Results 
At the species level, the triangular relationship, based on species natural range and body 

sizes was stronger than could be predicted by chance (P = 0.0042; Figure 2A). The LQMM 

accounting for the taxonomic relatedness of species also revealed a significant positive 

slope for the lower bound of the relationship between range and body sizes (P = 0.01). 

Based on natural range and body sizes, 11% (~20) of species in the Magdalena River basin 

have intrinsically heightened extinction risk (Figure 2A). 

Current dams subdivide the Magdalena River basin into 30 fragments (~8,700 

km2/fragment on average; Figure S2). Consequently, fish species’ natural ranges are split 

into multiple smaller disconnected fragments. We found that, on average, species’ natural 

ranges in the Magdalena River basin are currently split into nine (±8) fragments by large 

dams. On average, each species currently has 60% (±21%) of their fragmented populations 

falling below the vulnerability limit based on the range-body size relationship. Put another 

way, based on current damming, at least 74% (132) of fish species in the Magdalena River 

basin have at least half of their fragmented populations falling below the vulnerability limit 

(Figure 2B). 

Looking to the future, the potential doubling of current dams through planned dams 

(for a total of 58 large dams) would again double the number of fragments (i.e., 59 

fragments) dividing the Magdalena River basin, and decrease average fragment size 

(~4,400 km2/fragment on average; Figure S2). Subsequently, planned dams would greatly 

increase the average number of fragmented populations (29 ± 18.7) per fish species, and 

result in 79% (141) of fish species having at least half of their fragmented populations 

falling below the vulnerability limit (Figure 2C, Supporting Information: Dataset). On 
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average, across the 179 fish species, 64% (±20%) of the fragmented populations are 

projected to fall below the vulnerability limit if all planned dams are implemented along the 

Magdalena River. 

 

Figure 2. Range and body size relationship for 179 freshwater fish species of the 
Magdalena River basin. The blue solid line represents the regression of the 95th quantile. 
The red solid line represents the regression of the 5th quantile, and the dashed lines the 
95% confidence intervals. The upper confidence interval (the red line) represents the 
species’ vulnerability limit, built from the natural scenario (without fragmentation; A). For 
each of the 179 species, range size is shown for each fragmented population caused by 
damming (current [B] and current + planned [C]), and the species-level range size, which is 
the mean range size of all species’ fragmented populations (current [D] and current + 
planned [E]). On the right side of each plot is a map to illustrate the scenario of 
fragmentation evaluated. 

 

We also found that both current and planned damming heightens extinction risk at the 

species level (where each new species-level fragmented range size is the average size of 

their “populations”). Current damming reduces the range size for the majority of species 

(92%) and increases the percentage of species that fall below the vulnerability limit by 11% 

(Figure 2D). Similarly, we found that construction of planned dams in addition to current 
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dams would further heighten extinction risk at the species level; all 179 fish species would 

have reduced range size and 41% of fish species would shift below the vulnerability limit 

(Figure 2E). Regardless of the damming scenario considered, we found that the proportion 

of species falling below the vulnerability limit increased as fragment size decreased (Figure 

3). 

 

Figure 3. TheMagdalena River basin with fragments based on current (left) and planned 
(right) dams. The shade of each fragment reflects the proportion of threatened species based 
on their body size, fragment size, and the vulnerability limit as defined by the relationship 
between species’ ranges and body sizes. 

 

We found that under natural conditions, endemic and “opportunistic” species have 

heightened extinction risk (Figure 4), and endemic species are significantly closer to the 

vulnerability limit than others (Table S2). At the population level, we found no particular 

species trait or human-dependency factor to be more affected by current and planned dams 

than another (Table S3). However, we found that regardless of ecological traits or human 

dependency factors, fragmentation of species’ ranges caused by both current and planned 

dams increases the percentages of species falling below the vulnerability limit (Figure 4). 
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We also found a notable and significant increase in extinction risk for both migratory 

species and known fisheries species (Figure 4; Table S2) when considering both current 

and current and planned dams, respectively. 

 

Figure 4. Percentage of vulnerable species for each trait and each scenario of fragmentation 
evaluated. 
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Discussion 
Drawing on the macroecological relationship between fish species’ range and body sizes, 

we determined the extent to which current and planned dams fragment fish species’ ranges, 

and the effect that this fragmentation has on species’ extinction risk. Our findings solidify 

the sensitivity of freshwater-dependent species to fragmentation caused by damming 

(Fagan 2002). 

We found that fish species endemic to the Magdalena River basin are inherently 

under heightened extinction risk compared to non-endemic species. We also found that 

current and planned damming increases the percentage of vulnerable species regardless of 

the ecological traits considered. Our findings suggest widespread impacts from current 

damming are likely to have already occurred in the Magdalena River basin. Indeed, under 

current damming, there is an 11% increase in fish species with heightened extinction risk 

compared to natural conditions. 

The range-body size relationship used in our analyses is particularly relevant for 

overcoming data limitations that are often faced when making decisions about species’ 

extinction risk (Lasso et al. 2011, Bland et al. 2012). Around the world, diverse criteria are 

used to evaluate species’ extinction risk, and many assessments, such as those undertaken 

by the IUCN, are based on changes in range size. By quantifying the impact of current and 

potential human disturbances on species’ range sizes, our approach offers a quantitative 

approach that complements ongoing efforts to evaluate freshwater species’ extinction risk 

(Carrizo et al. 2013), and our analyses could be applied to other regions to improve our 

understanding about species’ extinction risk now and in future. In addition, systematic data 

on current and future land use, roads or low-head dams were unfortunately not available for 

our analyses, but such data could be explicitly integrated into future studies. Using these 

additional data, our approach could also be used to quantify how different human 

disturbances influence species’ extinction risk based on reductions in range size over time. 

An additional refinement to our approach could include the explicit consideration of 

species’ habitat preferences to reduce any overestimation of fragmentation impacts on 

species. 
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Ultimately, species extinction depends on remaining fragment size (Morita and 

Yamamoto 2002), the minimum viable population of each species supported (Fagan 2002), 

and potentially, other interacting human disturbances that we were unable to account for 

here. Depending on the generation time of a species, documenting losses caused by range 

fragmentation can take years to decades (Tilman et al. 1994). However, loss of individual 

populations, and localized extinctions, could be more frequent than the extinction of an 

entire species depending on fragment size, the potential for dispersal between fragments, 

and suitability of remaining habitat (Fagan 2002). Our analyses could be used proactively 

to identify populations and species with heightened extinction risk because of 

fragmentation and losses in range size, and to identify those populations in greatest need of 

conservation action to avoid imminent losses. Several studies have explored species traits 

and found that smaller body sizes, migratory behavior, limited ranges, and specialized 

habitats often explain freshwater fish extinction risk (e.g., (Angermeier 1995, Reynolds et 

al. 2005). We found that both migratory fish species and species of fisheries importance are 

particularly affected by fragmentation from current dams, and will be more greatly affected 

if planned dams are implemented along the Magdalena River. In tropical river fisheries, 

like those of the Magdalena River, migratory species are highly valued by local fishers (Orr 

et al. 2012, Winemiller et al. 2016). Indeed, the Magdalena River fishery is the most 

productive in Colombia, and has been increasingly depleted over the last three decades 

(Galvis and Mojica 2007, Barletta et al. 2015). There remains limited understanding, and 

general lack of quantitative data, to pinpoint the primary causes of fishery decline in the 

Magdalena River basin (Barletta et al. 2015), but our analyses suggest that damming could 

be a major contributing factor by disconnecting fish populations. Furthermore, our findings 

highlight that if all dams that are currently planned for the Magdalena River are 

implemented, fragmentation of species’ ranges will increase, further fragmenting fishery 

species’ ranges, and heightening extinction risk. 

Our findings support recent calls for more informed and systematic approaches to 

assessing dam expansion feasibility at basin scales (Winemiller et al. 2016, Lees et al. 

2016), and our analyses begin to address this need, offering a repeatable method to quantify 

the impacts of current and expanding dams on biodiversity. While our results offer 

important insights about freshwater dependent fish species’ extinction risk, outputs from 
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our assessment could also be integrated into more formal optimization analyses like those 

presented by Ziv et al. (Ziv et al. 2012). Outputs from our own, or other similar analyses, 

could be used to generate scenarios that explore both the allocation and potential removal 

of individual or groups of dams to minimize fish species’ extinction risk while ensuring 

benefits returned from hydropower. Indeed, integrating our methods and findings within a 

decision theory framework could reduce regional scale impacts from fragmentation caused 

by damming to ensure retention of large enough range sizes to support species persistence. 
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Supporting Information 
 

Methods 

We compiled a comprehensive dataset of fish species’ occurrence records maintained by 

the seven main fish collections of Colombia (Universities: Javeriana, Antioquia, Tolima, 

Católica de Oriente; and the Institutes: Alexander von Humboldt, Instituto de Ciencias 

Naturales, and Instituto para el Patrimonio Natural y Cultural del Valle del Cauca). This 

dataset was complemented with occurrences from the Colombian Biodiversity Information 

System (http://data.sibcolombia.net) and published literature (see reference list below). We 

followed species taxonomy presented in Fishbase (Froese & Pauly 2015). 

Tributary drainage areas used to determine species range area were obtained from a 

modeled hydrologic network based on the EarthEnv-DEM90 digital elevation model 

(Robinson et al. 2014). We verified the accuracy of the modeled hydrologic network with 

existing hydrologic maps of Colombia (IGAC, the Colombian Geographic Institute). All 

analyses were carried out in ArcGIS 10.3. 
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Figure S1 The Magdalena River basin showing an example of species’ distribution records 
(blue dots), the fragments created by current and planned dams (gray and green polygons) 
and the convex hull formed by the most external species records (orange polygon). Gray 
polygons are those fragments where the species is considered to be present. The orange 
polygon represent the area that we measured (in km2) to obtain the natural geographic range 
size of a given species. The intersection between orange polygon and each gray polygon 
represent the areas measured to obtain the fragmented geographic range size of a given 
species (Pseudoplatystoma magadaleniatum [Buitrago-Suárez & Burr 2007] in this 
example). 
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Figure S2 Maps of three different fragmentation scenarios evaluated for the Magdalena 
River basin: a natural scenario without human-induced fragmentation (left), a current 
fragmentation scenario based on current dams (center), and a future fragmentation scenario 
based on both current and planned dams (right). The main channel of the watershed is 
represented with the dark blue line (in the left scenario) and tributaries are depicted with 
clear blue lines. 

 



130 
 

Table S1 Summary of the methodology and the bibliography used to determine different 
ecological traits and human-dependency attributes. 

 

Biological trait or 
human-related 

attribute 
Meaning Data source 

Endemic species Endemic species of the Magdalena Basin. (Maldonado‐Ocampo 
et al. 2005) 

Migratory species Species that presentmigrations. 
(Lucas and Baras 

2001, Carolsfeld et al. 
2003) 

Functional group 

Classification is based on body shape, habitat 
use, morphological and/or behavioral 
adaptations, and it separates species into five 
groups: torrent, pool, pelagic, rheophilic, and 
non-torrent benthic. 

(Carvajal‐Quintero et 
al. 2015)† 

Life history 
strategy 

Life strategies based in the trade-offs among 
different demographic traits (reproduction, 
growth and survival): Equilibrium, Periodic, 
Opportunistic(Winemiller and Rose 1992). 

(Carvajal-Quintero 
and Maldonado-
Ocampo 2014)*†  

Fisheries resources 
Species that represent commercial and 
subsistence fisheries resources within the 
Magdalena basin. 

(Lasso et al. 2011) 

* Information based on expert knowledge. 
† For species with no available information, we used information from species within the same genus. 
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Table S2 Final most parsimonious generalized linear mixed models (GLMMs) with 
binomial distribution errors at the species level for natural, current fragmentation caused by 
damming, and current + planned fragmentation caused by damming. Model parsimony was 
determined using the AIC value. 

 

Natural scenario 

Variable Estimate z value p value 

Endemic species 1.4109 0.5916 0.0171 
Current fragmentation 

Variable Estimate z value p value 

Migratory species and fishery resources 1.7030 3.296 0.0009 
Endemic species 0.5836 0.4540 0.2025 

Current + planned fragmentation 

Variable Estimate z value p value 

Migratory species and fishery resources 2.6681 3.073 0.0021 
Functional group - Pelagic -0.0391 0.048 0.9614 
Functional group - Pool -0.9146 1.144 0.2527 
Functional group -Reophilic 21.4711 0.029 0.9765 
Functional group - Torrent -0.4643 0.620 0.5352 
Endemic species 0.2390 0.635 0.5254 
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Table S3 Final most parsimonious generalized linear mixed models (GLMMs) with binomial 
distribution errors at the population level for current and current + planned fragmentation. 
Model parsimony was determined using the AIC value. 

 

Current fragmentation 

Variable Estimate z value p value 

Endemic species 0.5830 1.782 0.0747 
Migratory species and fishery resources 0.3968 0.898 0.3694 

Current + planned fragmentation 

Variable Estimate z value p value 
Endemic species 0.3736 1.108 0.2680 
Migratory species and fishery resources -0.2723 0.694 0.4877 
Life history - Opportunistic -0.1681 0.416 0.6773 
Life history - Periodic -0.7191 1.456 0.1455 
 

  



133 
 

CHAPTER 5 ‒ RivFishTIME: A global database of 
fish time-series to study global change ecology in 
riverine systems 
 

 

 

 
Photo by Jorge García-Melo (Project CaVfish Colombia) 
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Abstract 

 

Motivation: We compiled a global database of long-term riverine fish surveys from 46 

regional and national monitoring programs as well as individual academic research efforts 

upon which numerous basic and applied questions in ecology and global change research can 

be explored. Such spatially- and temporally-extensive datasets have been lacking for 

freshwater systems compared to terrestrial ones. 

 

Main types of variables contained: The database includes 11,441 time-series of riverine fish 

community catch data, including 649,703 species-specific abundance records together with 

metadata related to geographic location and sampling methodology of each time-series. 

 

Spatial location and grain: The database contains 11,125 unique sampling locations (stream 

reach), spanning 21 countries, 5 biogeographic realms, and 402 hydrographic basins 

worldwide. 

 

Time period and grain: The database encompasses the period 1951–2019. Each time-series 

is composed of a minimum of two yearly surveys (mean = 8 years) and represents a minimum 

time span of 10 years (mean = 19 years). 

 

Major taxa and level of measurement: The database includes 949 species of ray-finned 

fishes 

(Class Actinopterygii). 

 

Software format: .csv 

 

Main conclusion: Our collective effort provides the most comprehensive long-term 

community database of riverine fishes to date. This unique database should interest ecologists 

who seek to understand the impacts of human activities on riverine fish biodiversity, and 

model and predict how fish communities will respond to future environmental change. 

Together, we hope it will promote advances in macroecological research in the freshwater 

realm. 
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Introduction 
Increasing awareness of the ongoing biodiversity crisis has motivated global initiatives to 

compile large-scale datasets of population and community abundance records that have been 

consistently sampled through recent times (Pereira and Cooper 2006). Included among these 

are the Global Population Dynamics Database (Inchausti and Halley 2001), the Living Planet 

Index database (Loh et al. 2005), and more recently, the BioTIME database (Dornelas et al. 

2018). These databases have proven extremely useful and allowed major advancements in 

ecological research (e.g. Kendall et al. 1998, Sibly et al. 2005, Butchart et al. 2010, Dornelas 

et al. 2014); however, they remain highly biased towards terrestrial and marine assemblages 

(e.g. only 0.50% of the records concern riverine fishes in BioTIME, the most recent of these 

initiatives). This is unfortunate as effective strategic plans for conserving water resources that 

support human well-being and ecosystem integrity rely on access to comprehensive, pertinent, 

quantitative information regarding the status and trends of riverine biodiversity over regional 

to continental scales (Tickner et al. 2020). 

Long-term studies of riverine species are limited because they require highly specialized 

and time-consuming sampling methods. Furthermore, rivers in remote areas are often difficult 

to access (Olden et al. 2010, Radinger et al. 2019). Nevertheless, over the past decades, large-

scale policies have been enacted in response to the rapid degradation of freshwater resources, 

such as the Water Framework Directive in the EU (adopted in 2000, Hering et al. 2004) and 

the Clean Water Act in the USA (passed by US congress in 1972, Paulsen et al. 2008), which 

require countries to monitor and evaluate the biological integrity of surface waters through 

time to adopt quality standards that restore and maintain ecological integrity (Kuehne et al. 

2017). Beyond these official national and regional monitoring programs, the temporal 

dynamics of riverine systems and their fish communities have also been assessed through 

various independent, though often local in extent, academic research programs (e.g. Gido 

2017, Matthews and Marsh-Matthews 2017b). All of these institutional and academic 

monitoring efforts have produced considerable freshwater fish temporal data that remain 

largely inaccessible to the broader scientific community due to the inherent difficulty in 

gathering and harmonizing field data from disparate institutions and sampling protocols (Buss 

et al. 2014). 

To fill this important gap, we here present RivFishTIME, a compiled and curated 

database of long-term (≥ 10 years) surveys of riverine fish communities at a fine spatial 

(stream reach) and taxonomic (species) resolution, using data mining approaches to 
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harmonize existing but currently fragmented biomonitoring data sets. Riverine fish are 

extremely diverse in spite of the small surface they inhabit on Earth: they represent about 40% 

of all known fish species while occupying <1% of available aquatic habitat (“the freshwater 

fish paradox” sensu (Lévêque et al. 2008, Tedesco et al. 2017). However, they are also among 

the most threatened taxonomic groups on Earth because of the convergence between the high 

concentration of biodiversity and the many pressures resulting from human uses of freshwater 

resources and habitat change (Reid et al. 2019, Tickner et al. 2020). The RivFishTIME 

database provides a unique opportunity to understand the rate, magnitude, and geography of 

biodiversity trends, and to identify opportunities to mitigate human impacts on riverine 

systems (Pereira and Cooper 2006, Anderson 2018). Due to the paucity of spatially- and 

temporally-extensive datasets in freshwater compared to terrestrial systems (Heino 2011), 

RivFishTIME should also help ecologists close the gap between these two systems and to 

address a wider range of taxa in unraveling large-scale spatio- temporal biodiversity patterns. 

 

Methods 

Data acquisition 

We gathered time-series of fish community abundance data for riverine (lotic) ecosystems, 

broadly defined as freshwater bodies that are continually or intermittently flowing. We tried 

to the extent possible to exclude wetlands and brackish habitats (salinity > 0.5 ‰). Note, 

however, that due to the complex nature of the datasets, we do not guarantee that sites are 

located on free-flowing river segments (i.e. natural condition without impoundment, 

diversion, or other modification of the waterway). We used the following criteria for data 

inclusion: (1) the location of the sampling sites is known and consistent through time, (2) the 

sampling protocol is known and consistent through time, (3) the sampling survey sought to 

quantify all species in the fish community according to well-established protocols, (4) 

species-specific abundances are available for each survey, (5) surveys at a given site were 

conducted over a period of at least 10 years, and (6) at least two yearly surveys with non-null 

abundance are available. We considered abundance measures derived from direct fish counts, 

catch-effort indexes such as relative abundances (%) and catch per unit effort (CPUE), 

abundance classes, as well as statistically estimated abundances (e.g. Leslie method; (Ricker 

1975). 
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To identify potential datasets, we used Google Search, Google Scholar and Dataset 

Search with different combinations of the keywords “time series”, “fish”, “abundance”, 

“stream”, “river”, “freshwater”, “community”, “temporal”, and “monitoring” or “monitoring 

program”. We screened the scientific as well as the grey literature to identify studies 

involving temporal datasets of fish communities and conducted similar searches in data 

repositories such as Dryad (https://datadryad.org/stash) and FigShare (https://figshare.com/). 

We also conducted targeted searches for national and regional monitoring programs by adding 

country names to the previous keywords. For the European Union, we further used the EuMon 

database as a reference to identify fish monitoring databases (available at 

http://eumon.ckff.si/about_daeumon.php). 

We contacted all the authors and monitoring program coordinators to request and obtain 

permission to publish the data and/or ensure that the license under which the data were 

publicly released allowed their inclusion in our global effort (e.g. Open Government License, 

CC0 1.0 Universal). We excluded the datasets for which we did not receive permission, unless 

the reusability of data was clearly stated on the online repositories where the data were 

released. 

Quality control 

Taxonomy. We validated species scientific names using the online database Fishbase (Froese 

and Pauly 2019). We used the R package rfishbase (as of December 2019; (Boettiger et al. 

2012) and confirmed names with no match manually using the Catalog of Fishes (Fricke et al. 

2018). We then selected only records involving ray-finned fishes (Class Actinopterygii), 

excluding rays and lampreys, and unidentified species. 

Coordinates. We harmonized the coordinate system by projecting (if necessary) the 

coordinates of the individual datasets using the World Geodetic System (WGS84) as 

reference geographic coordinate system. We visually inspected the spatial distribution of the 

sites with respect to their respective country, region, or state borders as given in the original 

data sources and discarded sites with dubious coordinates (e.g. sites located in the ocean). We 

also removed sites whose coordinates were located outside of any hydrographic basin using 

the global major river basin GIS layer in HydroSHEDS (Lehner et al. 2008). 

Consistent sampling methods. We excluded surveys lacking information on sampling methods 

and selected only time-series collected using a consistent sampling protocol through time. The 

latter evaluation was dataset-specific as dictated by the complexity of the monitoring scheme 

https://datadryad.org/stash
https://figshare.com/
http://eumon.ckff.si/about_daeumon.php


138 
 

and the available metadata. For instance, surveys were deemed consistent if they did not 

experience any major deviation in sampling protocol, and disregarded minor variations (e.g. 

number of anodes or traps, area sampled) due to survey-specific constraints (e.g. water depth, 

habitat complexity). By contrast, several monitoring programs implemented alternate 

sampling protocols to compare the efficiency of different gears (e.g. seining versus 

electrofishing) or sampling methods (e.g. continuous versus point electrofishing); these time-

series conducted at the same sites but using different sampling protocols were kept separate in 

the database. 

Duplicates. We removed duplicates within individual datasets based on the coordinates of the 

sites, date of the survey, and species collected (e.g. due to different name attribution for the 

same site). We also identified potential duplicates among datasets (e.g. overlap between state-

level and national databases) based on the coordinates of the sites rounded to three digits to 

account for different post-processing of the individual datasets. 

Database formatting 

Each entry (species abundance record) was assigned a unique (1) site, (2) survey, and (3) 

time-series identifier. The site ID corresponds to a given pair of coordinates, the survey ID to 

a sampling campaign, and the time-series ID to a combination of site × sampling protocol. 

Additionally, each site ID was assigned to a biogeographic realm (Olson et al., 2001) and 

hydrographic basin (HydroSheds; Lehner et al., 2008) based on its coordinates. For each 

sampling ID, we aggregated abundance records if they were given separately for individuals, 

size classes or sub-species for each validated species name or if different sampling passes, 

hauls, or sub-sampling areas were considered. We also converted time-series species 

abundances to densities or CPUE whenever possible. The different surveys were kept 

independent when conducted on different occasions within the same calendar year. We 

provided the year together with the quarter of the survey (1: January-March; 2: April-June; 3: 

July-September, 4: October-December). We also provided the associated unit (abundance 

class, count, CPUE, individuals/100m2, Leslie index, relative abundance) for each species 

abundance record. Finally, we extracted basic information regarding the sampling protocol, 

including details on electrofishing (backpack, shore-based or boat mounted electrofishers), 

netting (dip nets, gill nets, beach or pelagic seines), trapping (minnow traps, fyke nets or hoop 

nets), snorkeling, and trawling techniques. Many survey protocols involve a combination of 

sampling approaches; therefore, we encourage the data user to refer to each data source for 

more information on the sampling methods. 
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The database is organized in three tables (.csv format): the time-series table, the survey 

table, and the information source table. The tables can be linked using the unique dataset 

source ID and time-series ID. The time-series table contains: (1) source ID, (2) site ID, (3) 

time-series ID, (4) primary sampling method, (5) secondary sampling method, (6) latitude 

(WGS 84), (7) longitude (WGS 84), (8) hydrographic basin, and (9) biogeographic realm. The 

survey table contains: (1) time-series ID, (2) survey ID, (3) sampling year, (4) sampling 

quarter, (5) species scientific name, (6) abundance, and (7) abundance unit. The information 

source table contains the full citation(s), online link to the raw data when publicly available, 

as well as the name(s) and contact of the data responsible(s) for each individual dataset. A list 

of the data sources is found in Appendix 1; for further information consult the metadata. Data 

curation was performed in the R (3.6.0) programming environment (R Core Team 2019). 

 

Results 
Our database includes 11,441 time-series of riverine fish compiled from 46 individual source 

datasets, representing a total of 107,464 surveys and 649,703 individual species abundance 

records at 11,125 unique sites. Survey-specific species richness across all time-series ranges 

from 1 to 50 species, and covers 949 ray-finned fish species. The surveyed sites display a 

wide distribution along longitudinal and latitudinal gradients, spanning 21 countries, 402 

hydrographic basins, and 5 biogeographic realms (Fig. 1a). Despite broad geographical 

coverage, we note a clear spatial bias towards the Palearctic (European Union) and, to a lesser 

extent, Nearctic (North America) and Australasia realms. The abundance time-series are 

largely represented by individual counts, followed by densities (individuals/100m2) and 

CPUE (Fig. 1b). Abundance classes, Leslie index and relative abundance represent < 1% of 

the time-series. Electrofishing is by far the main sampling technique used to record the time-

series, although variations are noticeable among biogeographic realms (Fig. 1c). For instance, 

snorkeling and dipnetting sampling techniques are only represented in the Neotropics, 

whereas gillnetting is the most common gear in the Afrotropics. 
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Figure 1. (a) Map showing the distribution of the time-series where each time-series is 
represented by a dot with colors indicating the biogeographic realm and size representing fish 
species richness (averaged across surveys). Inset histograms display the distribution of the 
time-series according to latitude and longitude. Barplots show the distribution of the time-
series with respect to the (b) type of abundance, and (c) primary sampling method. Note the 
log10(x+1) y-axes in (b)-(c). 

 

The time-series cover a time period from 1951 to 2019 and are mainly concentrated 

overthe last two decades (average first year = 1996; Fig. 2a). Surveys have been conducted 

primarily in the 3rd (July-September) and 4th (October-December) quarters of the year, 

especially in the Palearctic and Nearctic realms (corresponding to periods of low flows), but 

all quarters are represented in the different biogeographic realms (Fig. 2b). The mean time 

span of the time-series is of 19 years and ranges from 10 to 68 years, with the longest time-

series located in the Palearctic (Fig. 2c). The sites were sampled from (non-necessarily 
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consecutive) 2 to 52 years, with an average number of yearly surveys of 8 years (Fig 2d). 

Again, the highest number of yearly surveys was found in the Palearctic. The completeness of 

the time-series (i.e. ratio of number of yearly surveys to the overall time span) ranges from 4 

to 100%, with a mean value of 45% (Figure 2e). Importantly, the degree of completeness is 

largely uncorrelated to the time span of the time-series (r = 0.05). 

 

Figure 2. (a) Temporal distribution of the yearly surveys relative to the period covered by the 
database (1951-2019). Each time-series appears in rows where the background colors 
correspond to the biogeographical realms and white indicates sampled years. (b) Temporal 
distribution of the surveys with respect to the quarter of the year. Temporal characteristics of 
the time-series with respect to the (c) overall time span, (d) number of yearly surveys, and (e) 
completeness defined as the ratio between the number of yearly surveys and the overall time 
span (expressed in %). Note the log10(x+1) y-axes in (b)-(e). 
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Conclusions 
Our collective effort provides the most comprehensive long-term community database of 

riverine fishes to date, spanning large biogeographic, climatic and hydrographic gradients. 

Almost all biogeographic realms are represented but it is important to note that our database is 

not exempt from spatial bias. For instance, less than 1% of the time-series belong to the 

Afrotropic or Neotropic realms, whereas 84% belong to the Palearctic realm. These spatial 

gaps often present in biodiversity-rich regions (tropical areas, southeast Asia) are likely to 

mirror the current networks of freshwater monitoring programs (Buss et al. 2014, Radinger et 

al. 2019) as well as biodiversity research efforts (Martin et al. 2012), and hence will be 

prioritized in future updates of RivFishTIME. We also warn data users that species abundance 

may not be directly comparable across sites without a full understanding of the specifics of 

sampling approach and effort, with respect to their selectivity and efficiency (Goffaux et al. 

2005, Portt et al. 2006, Benejam et al. 2012, Oliveira et al. 2014), and refer to the original data 

sources for more information about the sampling protocols. Despite these unavoidable 

limitations associated with secondary datasets collected for multiple purposes, we are 

convinced that this unique database will stimulate new research in the fields of global change 

ecology and macroecology in the freshwater realm. We provide a static version of the 

database with this article (1951-2019), but we aim to continue interacting with data 

contributors to update and add new time-series datasets to be released through the iDiv portal 

(https://idata.idiv.de/idiv/Content/Databases) and the more specialized Freshwater 

Biodiversity Data Portal (https://data.freshwaterbiodiversity.eu/). This unique database 

provides the needed baseline information for conservation and restoration efforts. 

  

https://idata.idiv.de/idiv/Content/Databases
https://data.freshwaterbiodiversity.eu/
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Supporting information 

 

Appendix 1 - Data sources 

 

SourceID Citations URLaccess 

1 ((Agència Catalana de l’Aigua 2003, 2010, 
2018)) 

http://aca-web.gencat.cat/ 

2 ((Casatti et al. 2009, Zeni et al. 2017)) − 

3 (Universidad de Antioquia-Empresas Publicas 
de Medellin 2019) 

− 

4 (Erős et al. 2014) − 

5 (Gammon 2003) − 

6 (Ecosystem Health Monitoring Program 
Queensland 2019) 

https://hlw.org.au/report-card/ 

7 (Finnish electrofishing register Hertta 2019) https://wwwp2.ymparisto.fi/koekal
astus_sahko/yhteinen/Login.aspx?R
eturnUrl=%2fkoekalastus_sahko 

8 (Sigouin 2017) https://open.canada.ca/data/en/datas
et/fe2441a6-8ae4-4884-b181-
cd7ec53bd842 

9 (Whitney et al. 2016) − 

10 (Gido et al. 2013, 2019) − 

11 (Kesner and Marsh 2010) https://www.rosemonteis.us/docum
ents/kesner-marsh-2010 

12 (Griffith 2017, Griffith et al. 2018) https://doi.org/10.23719/1376690 

13 (Occhi, V. T. & Vitule, J. R. S. Unpublished 
data) 

− 

14 (Terui et al. 2018) − 

15 (Iowa DNR [Department of Natural 
Resources] 2013) 

https://data.iowa.gov/Environment/
BioNet/e7yf-f5fs 

16 (Milardi et al. 2020) − 

17 (Lévêque et al. 2003) − 
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18 (Pyron et al. 1998) − 

19 (Gido 2017) https://doi.org/10.6073/pasta/150e2
18b069074a8ecede85a7406d43f 

20 (McLarney et al. 2013) http://coweeta.uga.edu/dbpublic/per
sonnel_bios.asp?id=wmclarney 

21 (Long Term Resource Monitoring Program 
2016) 

https://www.umesc.usgs.gov/data_li
brary/fisheries/fish1_query.shtml 

22 (Matthews and Marsh-Matthews 2017a) https://doi.org/10.5061/dryad.2435k 

23 (Murray-Darling Basin Authority 2018) https://data.gov.au/data/dataset/mur
ray-darling-basin-fish-and-
macroinvertebrate-survey 

24 (Minnesota Pollution Control Agency 2018) https://cf.pca.state.mn.us/water/wat
ershedweb/wdip/search_more.cfm?
datatype=assessments 

25 (Montana, Fish, Wildlife & Parks 2019) http://gis-
mtfwp.opendata.arcgis.com/items/8
192e75218c6460ba97ba3dd0a2fb3a
5 

26 (U.S. Geological Survey 2019) https://aquatic.biodata.usgs.gov/clea
rCriteria.action 

27 (U.K. Environmental Agency 2019) https://data.gov.uk/dataset/d129b21
c-9e59-4913-91d2-
82faef1862dd/nfpd-freshwater-fish-
survey-relational-datasets 

28 (North Carolina Department of 
Environmental Quality 2018) 

https://deq.nc.gov/about/divisions/w
ater-resources/water-resources-
data/water-sciences-home-
page/ecosystems-branch/fish-
stream-assessment-program 

29 (Fagundes et al. 2015) − 

30 (Winston et al. 1991, Taylor 2010) https://onlinelibrary.wiley.com/doi/f
ull/10.1111/fwb.13211 

31 (Ineelo Mosie and Kaelo Makati 2018) https://www.gbif.org/dataset/77929
c0a-7506-4b2d-a49d-10fc3312d50d 

32 (Office français de la biodiversité 2019) http://www.naiades.eaufrance.fr/acc
es-donnees#/hydrobiologie 

33 (Oklahoma Water Resources Board 2019) http://home-
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owrb.opendata.arcgis.com/search?ta
gs=fish 

34 (Agencia Vasca del Agua 2019) http://www.uragentzia.euskadi.eus/i
nformazioa/ubegi/u81-0003341/eu/ 

35 (Ortega et al. 2015) − 

36 (Davenport, S.R. Unpublished data) − 

37 (Dala-Corte et al. 2016) − 

38 (The Resh Lab 2019) https://nature.berkeley.edu/reshlab/ 

39 (Toronto and Region Conservation Authority 
(TRCA) 2018) 

https://data.trca.ca/dataset/2018-
watershed-fish-community 

40 (U.S. Fish and Wildlife Service 2017) − 

41 (Stefferud, J. A. Unpublished data) − 

42 (Sers 2013) https://www.slu.se/en/departments/a
quatic-
resources1/databases1/database-for-
testfishing-in-streams/ 

43 (Benejam et al. 2010, Merciai et al. 2017) − 

44 (Miyazono and Taylor 2015) https://bioone.org/journals/The-
Southwestern-Naturalist/volume-
60/issue-1/MP-02.1/Long-term-
changes-in-seasonal-fish-
assemblage-dynamics-in-
an/10.1894/MP-02.1.short 

45 (Rinne and Miller 2006) − 

46 (Van Thuyne et al. 2013, Brosens et al. 2015) https://ipt.inbo.be/resource?r=vis-
inland-occurrences 
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CHAPTER 6 – General discussion and 
perspectives 
The results of this thesis revealed that the most important drivers of the variation of 

geographic range size of freshwater fishes at global and biogeographical scales are the mean 

drainage network position of species and the historical connectivity between basins, 

highlighting the importance of current and historical hydrological connectivity in shaping fish 

distribution across fresh waters (Carvajal-Quintero et al. 2019, see chapter 2). These findings 

contrast with the ones reported for terrestrial ecosystems, where the main drivers of species 

range sizes are more related to climate and topography (Whitton et al. 2012a, Morueta‐Holme 

et al. 2013, Li et al. 2016). Such contrasts raise the question of whether drivers of species 

range size variation varies among lineages of the tree of life. It is widely recognized that 

current macroecological patterns are not independent of the evolutionary history of lineages 

(e.g. Hernández et al. 2013). Indeed, lineage-specific drivers of macroecological patterns may 

arise because of unique ecological features developed throughout the evolutionary history of 

lineages. In addition to the specific drivers of range size that we found for freshwater fish, 

Sheth et al. (2020) recently proposed that mechanisms explaining the variation in range size 

among plant species may also be unique given their sessile nature, diversity of mating systems 

and ploidy levels, and prevalence of hybridization and sympatric speciation. This shows the 

importance of continuing to explore and contrast macroecological patterns across the tree of 

life and adds to recent calls asking to include less charismatic groups in macroecological 

studies to reach a more unifying theory (Shade et al. 2018, Phillips et al. 2019). 

The challenge of understanding the whole picture of species geographic distributions 

goes beyond contrasting different hypotheses across the tree of life. Today, ecological and 

evolutionary research has recognized the need of shifting toward a re-emphasis on the 

complexity and interconnection of processes (Morueta-Holme and Svenning 2018, McGill 

2019), integrating previously separated disciplines and accounting for multiple driving factors 

that interact and influence each other along and among scales (McGill 2010, Chase et al. 

2018, Morueta-Holme and Svenning 2018, McGill et al. 2019, see chapter 1). This step 

towards evaluating more complex models is supported by our entry into the Big Data age that 

allows us to test hypotheses at unprecedented spatial, temporal, and phylogenetic scales (La 

Salle et al. 2016, Benedetti‐Cecchi et al. 2018). As the assmbly, storage, sharing and access to 

data continue growing, it is also important that we develope new models that merge data from 
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different environmental realms (freshwater, marine and terrestrial) and test new driving 

factors of species’ geographic range size. For example, despite a long-standing theory 

[originating with Darwin (1859)] suggesting that biotic interactions set species range limits, 

this hypothesis has not been clearly tested (Louthan et al. 2015). Because interactions 

constrain the patterns of species occurrence (Tingley et al. 2014, Louthan et al. 2015), the 

spatial variation in the intensity of interactions may influence the size of species’ geographic 

range. Species plasticity is another important driving factor to explore. Despite some previous 

studies failed to find strong support for a positive relationship between the phenotypic 

plasticity of species and their geographic range size (e.g. Sheth and Angert 2014, Hirst et al. 

2017) future studies should evaluate the different facets of plasticity (genotypes, populations, 

species and clades) and consider only traits that contribute to environmental adaptability 

(Sheth et al. 2020). 

As future avenues to continue advancing our understanding of species’ geographic 

ranges size, specifically for freshwater fishes, we propose that it is first important to test, 

besides connectivity per se, the effects of other environmental factors associated to species’ 

drainage network position (DNP). Along with the variation in the species DNP, there are 

indeed multiple correlated factors (e.g. temperature, dissolved oxygen, slope; see chapter 1 for 

more details). Partitioning and quantifying the effect of these factors would be valuable to 

achieve a more deterministic understanding of the geographic range size of freshwater fishes. 

It is also important to continue testing other hypotheses that have been widely recognized in 

terrestrial environments but poorly explored in fresh waters. For example, the abundance, 

niche breadth and/or niche position/ range size hypotheses have received strong support for 

terrestrial organisms (e.g. Slatyer et al. 2013, Sheth et al. 2020, Vela Diaz et al. 2020; and 

references therein. https://doi.org/10.1111/geb.13139). Our results show that the niche breath 

hypothesis (i.e. species using different habitats would be more widespread) seems not to apply 

for riverine fishes, as species with larger ranges were restricted, in our dataset, to lowland 

habitats where climatic and habitat conditions are more spatially stable (see chapter 2). 

However, the niche position (i.e. species utilizing widespread habitats should be more 

widspread), as well as the abundance/range size hyptheses still need to be tested. Another 

unexplored topic is the role of macroevolutionary processes in shaping freshwater fish 

species’ range size. Even if we evaluated the effect of diversification on freshwater fish 

ranges through a coarse and timeless proxy (i.e. the total number of species within each 

genus;  chapter 2), there is still a whole field to explore using the emerging phylogenies of 
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bony fishes (e.g. Rabosky et al. 2018, Bourgeaud et al. 2019), for example, testing the 

influence of speciation and extinction rates for which have been found mixed effect in 

terrestrial environments (e.g. Cardillo et al. 2003, Castiglione et al. 2017). Other relevant 

features that could be evaluated using these newly available phylogenies are the dynamics and 

constraints of geographic range size at evolutionary time scales. The hypotheses that we 

evaluated in this thesis assume that the interspecific difference in range size is at ‘static 

equilibrium’. However, geographic range size is highly dynamic at an evolutionary time scale 

(Warren et al. 2014), and ‘equilibrium’ hypotheses cannot explain why intrinsic factors (see 

chapter 1 for details) do not continiously evolve constraining the evolutionary dynamics of 

range size (Mayr 1963, Sheth et al. 2020). Phylogenetic reconstruction methods that explicitly 

incorporate historical shifts of species’ geographic range (e.g. Rolland et al. 2018) are a 

promising way to disclose these evolutionary dynamics and identify the factors that affect 

them. Furthermore, understanding the evolutionary dynamics of species range sizes is of 

utmost importance in the study of global environmental changes allowing us to better 

understand the response of species under changing environmental conditions and identifying 

the potential pathways to extinction (Tanentzap et al. 2020). 

The findings of this thesis also demonstrated that fragmentation of geographic ranges by 

dams drastically increases the extinction risk of species (see chapter 4). Fragmentation by 

dams represents one of the greatest threats to freshwater fish biodiversity (Nilsson et al. 2005, 

Reid et al. 2019, Albert et al. 2020) by impairing movements between spawning and feeding 

areas (Freeman et al. 2007, Juracek 2015) and splitting populations into smaller units that 

reduce fish abundances (Alò and Turner 2005, Ziv et al. 2012, Carvajal‐Quintero et al. 2017). 

Currently, about two-thirds of the large rivers (>1,000 km) are fragmented by dams (Grill et 

al. 2019) and thousands of major and small hydropower plants are under construction, 

planned, or in consideration (Zarfl et al. 2015, Couto and Olden 2018). Today, this higher 

hydropower expansion rate is concentrated in tropical regions (Zarfl et al. 2015), representing 

a great threat to the high diversity supported for tropical fresh waters. For example, the basins 

of Mekong, Amazon and Congo support about one-third of the world’s freshwater fish 

species, much of them endemic, and about 1,300 large dams currently fragment or are planned 

to fragment the water courses of these three large rivers (Winemiller et al. 2016). In addition 

to biodiversity losses, the construction and operation of hydropower plants also carry social 

impacts on local human communities related to food and water availability (Richter et al. 

2010, Orr et al. 2012), emissions of greenhouse gas (Gibson et al. 2017), deterioration in 
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water quality (Wei et al. 2009), changes in hydrology and sediment transport (Constantine et 

al. 2014), and spread of water-associated diseases and invasive species (Lerer and Scudder 

1999, Johnson et al. 2008).  

Several calls for reducing the multiple impacts of future dams have raised the need for 

basin-scale planning of hydropower development (e.g. Kareiva 2012, Ziv et al. 2012, 

Opperman et al. 2015, Winemiller et al. 2016, Latrubesse et al. 2017). Currently, our 

knowledge on impacts of dams is largely focused in local and post-dam-construction studies. 

However, to achieve a holistic view of the impacts of new hydropower projects, assessments 

must go beyond by accounting and forecasting synergies with existing and other planned 

dams, as well as land cover changes and likely climatic shifts (Castello and Macedo 2016, 

Poff et al. 2016, Winemiller et al. 2016). The lower limit of the macroecological relationship 

between the geographic range and body size represents a valuable tool to attain these 

purposes. In this thesis, we showed through this lower limit how we can be used to evaluate 

changes in species vulnerability due to shifts in species geographic range (see chapter 3), and 

at the same time, assess how the cutting of geographic ranges into smaller pieces induced by 

hydropower development in a tropical basin (i.e. effects of current and planned dams) 

heighten the extinction risk of species (see chapter 4). Recent studies have started to use this 

limit to also assess the additive effects of dam fragmentation and other human-related 

stressors (e.g. dam fragmentation + climate change, Herrera et al. in press), supporting the 

high potential of this macroecological limit as a tool to guide the sustainable management of 

hydropower development, and overall, to quantify and forecast how the reshaping of species 

range size occurring in the Anthropocene affects and will affect the persistence of species. 

We identify two future steps in the use of the lower limit of the range – body size 

relationship. The first step is to scale up the basin- and regional-scales assessments of changes 

in species extinction risk (e.g. Carvajal-Quintero et al. 2017, Herrera et al. in press) building a 

global picture of the additive and/or synergetic impacts of human stressors on freshwater fish 

fauna. Thus, we will be able to forecast potential scenarios of changes in species diversity by 

identifying hotspots of species extinction risk. As a second step, we propose to integrate the 

range – body size relationship with temporal dynamics of extinction to better understand and 

quantify the species’ extinction debt across the planet. For example, relating the number of 

nonviable species predict through the range – body relationship with known rates of species 

loss (e.g. (Hugueny 2017). By addressing this second step, we will be able to go beyond the 

geography of species extinction risk, determining regions with the fastest rates and shortest 
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delays in species extinction. From an applied view, the results of these two steps could be 

directly used to set our conservation priorities and inform where actions are needed. 

In regions identified as a priority for conservation the connectivity of watercourses must 

be restored and safeguarded. The findings of this thesis show that the branching architecture 

of river networks intrinsically constrain the movements of freshwater fishes (see chapter 2) 

that highly restricts their ability to respond to environmental changes (Olden et al. 2010). 

Therefore, the effect of human-origin fragmentation has more severe impacts on freshwater 

than for terrestrial ecosystems, by reducing drastically metapopulation persistence (Fagan 

2002). The extent of the effect of fragmentation in freshwater environments depends on the 

size of the remaining fragment, showing higher species vulnerability as fragment size 

decreases (Fagan 2002, Carvajal‐Quintero et al. 2017). Similarly, Roberts et al. (2013) 

showed that the effects of climate change on freshwater fishes are more profound in small 

fragments, highlighting that the greatest conservation need is for management to increase 

fragment lengths to forestall species extinction risk because of climate change. There is large 

evidence showing that restoration of river connectivity recovers populations (Lovett 2014, 

O’Connor et al. 2015) and increases the diversity of freshwater communities (Paillex et al. 

2009, Magilligan et al. 2016). Besides, the restoration of river connectivity also brings great 

economic and social benefits. For example, by removing old dams we can save the great costs 

of their maintenance, which can exceed up to three times the cost of removal (Born et al. 

1998). Also, it has been reported that only a few months after dam removals, different species 

that sustain fisheries stocks spawn in tributaries that were inaccessible before, increasing 

abundance of  their populations in the newly available habitats (O’Connor et al. 2015). In this 

way, we call for the reorganization of the management and development of hydropower 

across the world, by restoring connectivity in places where hydroelectric production is not 

greater than the environmental and social benefits and favouring construction of new 

hydropower plants in places where others already exist leaving the rest of the hydrological 

network with full connectivity. This is a research topic where efforts should be focused on to 

reduce the degradation of freshwater ecosystems. 

Finally, we consider that the database RivFishTIME (see chapter 5) represents valuable 

information to tackle further challenges in the study of the geographic ranges of freshwater 

fishes, bringing the opportunity to understand the spatio-temporal dynamics of different 

characteristics of the distribution of freshwater fishes (e.g. local occurrence, extent of 

occurrence, geographic range), and also connect them with population features (e.g. 
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abundance and occupancy). For example, we could use this database to evaluate patterns in 

the variation of abundance across the species' geographic range (e.g. Osorio‐Olvera et al. 

2020) as well as temporal trends in the extent of occurrence of species across the globe (e.g. 

Comte et al. 2014). RivFishTIME can also be used as a ‘backbone’ to integrate information 

from different aspects of biodiversity and evaluate trends and interactions between them, 

something that has not been explored at large spatial and temporal scales. 
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Evaluating determinants of freshwater fishes geographic range sizes to inform ecology 

and conservation 

 

Abstract: Understanding the geographic distribution of species across space and time is one 
of the long-standing challenges in ecology and evolution. Among the major components of 
species distribution, the species’ geographic range size has been studied across several 
taxonomic groups and has been related to multiple ecological and evolutionary factors. The 
geographic range size of species is also of paramount importance in conservation strategies 
because it consistently emerges as a key correlate of extinction risk, where species occupying 
smaller geographic ranges are assumed to have a higher risk of extinction. Results concerning 
these fundamental and applied aspects of geographic range size have largely neglected 
freshwater fish, commonly focusing on the usual vertebrate groups (e.g. mammals, birds). 
However, freshwater fish, the most diverse vertebrate group, can provide novel insights about 
the geographic range size determinants and threats because of the unique dendritic shape and 
reduced amount of their habitat (i.e. river networks) compared to other terrestrial and marine 
ecosystems. 

In this PhD work, we analyzed for the first time the global patterns of geographic range size 
in freshwater fish species and tested previous hypotheses proposed to explain the variation of 
geographic range size in other taxonomic groups. Our findings showed that current and 
historical connectivity are the most important factors driving the geographic range size of 
freshwater fishes, contrasting with the main determinants reported for terrestrial and marine 
taxa. From an applied point of view, we focused on the usually observed macroecological 
relationship between the species’ geographic range size and body size. This relationship 
would allow estimating the minimum geographic range size needed by species for long-term 
persistence. Based on ecological theory of species temporal fluctuations of abundances, we 
provide a mechanistic validation of this relationship, supporting its use to identify vulnerable 
species and their changes in extinction risk through reduced geographic ranges induced by 
anthropogenic factors. Using a tropical river basin as a case study, we used this 
macroecological relationship to quantify changes in species extinction risk due to the 
fragmentation of their ranges caused by hydropower development. The results and the data 
compiled in this thesis represent useful information to guide and inform conservation in 
freshwater fish and give the opportunity to continue filling theoretical gaps. 
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Résumé : Comprendre la répartition géographique des espèces dans l'espace et le temps est 
un défi de longue date en écologie et évolution. Parmi les principales composantes de la 
répartition des espèces, la taille de l'aire de répartition géographique a été étudiée dans 
plusieurs groupes taxonomiques, et liée à de multiples facteurs écologiques et évolutifs. La 
taille de l'aire de répartition géographique des espèces est également liée au risque 
d'extinction, où les espèces occupant des aires géographiques plus petites présentent un risque 
d'extinction plus élevé, et relève donc d’une importance primordiale dans les stratégies de 
conservation. Les résultats concernant ces aspects fondamentaux et appliqués de la taille de 
l'aire de répartition géographique ont largement négligé les poissons d'eau douce, se 
concentrant généralement sur d’autres groupes de vertébrés (p.ex. les mammifères, les 
oiseaux). Cependant, les poissons d'eau douce, le groupe de vertébrés le plus diversifié, 
peuvent fournir de nouvelles perspectives sur les déterminants de la taille de l'aire 
géographique et sur l’impact des perturbations anthropiques en raison de la forme dendritique 
unique et la taille réduite de leur habitat (des réseaux fluviaux) par rapport aux autres 
écosystèmes terrestres et marins. 

Dans ce travail de doctorat, nous avons analysé pour la première fois les patrons globaux de la 
taille de l'aire géographique des espèces de poissons d'eau douce et testé les hypothèses 
explicatives précédemment proposées pour d'autres groupes taxonomiques. Nos résultats ont 
montré que la connectivité actuelle et historique sont les facteurs les plus importants qui 
déterminent la taille de l'aire de répartition géographique des poissons d'eau douce, 
contrastant avec les principaux déterminants signalés chez les vertébrés terrestres et marins. 
D'un point de vue appliqué, nous nous sommes concentrés sur la relation macroécologique 
communément observée entre la taille de l'aire géographique et la taille corporelle des 
espèces. Cette relation permettrait d’estimer la taille minimale de l'aire géographique 
nécessaire aux espèces pour leur persistance à long terme. En se basant sur les fluctuations 
temporelles des abondances des espèces, nous fournissons une validation mécaniste de cette 
relation, confortant son utilisation pour identifier les espèces vulnérables et leurs changements 
de risque d'extinction face aux réductions de l'aire géographique induites par des facteurs 
anthropiques. En utilisant un bassin fluvial tropical comme étude de cas, nous avons utilisé 
cette relation macroécologique pour quantifier les changements dans le risque d'extinction des 
espèces en raison de la fragmentation de leurs aires de répartition due au développement de 
l'hydroélectricité. Les résultats et les données compilés dans cette thèse représentent des 
informations utiles pour guider et informer la conservation des poissons d'eau douce et fourni 
des éléments pour continuer à combler les lacunes théoriques. 
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