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Abstract

The aim of this thesis is two-fold. On the one hand, optimal transportation methods are studied
for statistical inference purposes. On the other hand, the recent problem of fair learning is
addressed through the prism of optimal transport theory.

The generalization of applications based on machine learning models in the everyday life
and the professional world has been accompanied by concerns about the ethical issues that may
arise from the adoption of these technologies. In the first part of the thesis, we motivate the
fairness problem by presenting some comprehensive results from the study of the statistical parity
criterion through the analysis of the disparate impact index on the real and well-known Adult
Income dataset. Importantly, we show that trying to make fair machine learning models may
be a particularly challenging task, especially when the training observations contain bias. Then
a review of Mathematics for fairness in machine learning is given in a general setting, with some
novel contributions in the analysis of the price for fairness in regression and classification. In the
latter, we finish this first part by recasting the links between fairness and predictability in terms
of probability metrics. We analyze repair methods based on mapping conditional distributions
to the Wasserstein barycenter. Finally, we propose a random repair which yields a tradeoff
between minimal information loss and a certain amount of fairness.

The second part is devoted to the asymptotic theory of the empirical transportation cost. We
provide a Central Limit Theorem for the Monge-Kantorovich distance between two empirical
distributions with different sizes n and m, W,(P,,Qm), p > 1, for observations on R. In
the case p > 1 our assumptions are sharp in terms of moments and smoothness. We prove
results dealing with the choice of centering constants. We provide a consistent estimate of
the asymptotic variance which enables to build two sample tests and confidence intervals to
certify the similarity between two distributions. These are then used to assess a new criterion
of data set fairness in classification. Additionally, we provide a moderate deviation principle
for the empirical transportation cost in general dimension. Finally, Wasserstein barycenters
and variance-like criterion using Wasserstein distance are used in many problems to analyze the
homogeneity of collections of distributions and structural relationships between the observations.
We propose the estimation of the quantiles of the empirical process of the Wasserstein’s variation
using a bootstrap procedure. Then we use these results for statistical inference on a distribution
registration model for general deformation functions. The tests are based on the variance of the
distributions with respect to their Wasserstein’s barycenters for which we prove central limit
theorems, including bootstrap versions.

Keywords: Fairness, statistical parity, equality of odds, disparate impact, machine learning,
Wasserstein distance, repairing methodology, Central Limit Theorem, moderate deviation prin-
ciple, Wasserstein variation, goodness of fit.



Résumé

L’objectif de cette these est double. D’une part, les méthodes de transport optimal sont étudiées
pour l'inférence statistique. D’autre part, le récent probleme de I'apprentissage équitable est
considéré avec des contributions a travers le prisme de la théorie du transport optimal.

L’utilisation généralisée des applications basées sur les modeles d’apprentissage automatique
dans la vie quotidienne et le monde professionnel s’est accompagnée de préoccupations quant
aux questions éthiques qui peuvent découler de 'adoption de ces technologies. Dans la premiere
partie de cette these, nous motivons le probleme de 1’équité en présentant quelques résultats
statistiques complets en étudiant le critere statistical parity par I’analyse de l'indice disparate
impact sur ’ensemble de données réel Adult income. 1l est important de noter que nous montrons
qu’il peut étre particulierement difficile de créer des modeles d’apprentissage machine équitables,
surtout lorsque les observations de formation contiennent des biais. Ensuite, une revue des
mathématiques pour 1’équité dans l'apprentissage machine est donné dans un cadre général,
avec également quelques contributions nouvelles dans 'analyse du prix pour I'équité dans la
régression et la classification. Dans cette derniere, nous terminons cette premiere partie en
reformulant les liens entre I’équité et la prévisibilité en termes de mesures de probabilité. Nous
analysons les méthodes de réparation basées sur le transport de distributions conditionnelles vers
le barycentre de Wasserstein. Enfin, nous proposons le random repair qui permet de trouver un
compromis entre une perte minimale d’information et un certain degré d’équité.

La deuxieme partie est dédiée a la théorie asymptotique du cotlit de transport empirique.
Nous fournissons un Théoreme de Limite Centrale pour la distance de Monge-Kantorovich entre
deux distributions empiriques de tailles différentes n et m, W, (P, @Qm), p > 1, avec observations
sur R. Dans le cas de p > 1, nos hypotheses sont nettes en termes de moments et de régularité.
Nous prouvons des résultats portant sur le choix des constantes de centrage. Nous fournissons
une estimation consistente de la variance asymptotique qui permet de construire tests a deux
échantillons et des intervalles de confiance pour certifier la similarité entre deux distributions.
Ceux-ci sont ensuite utilisés pour évaluer un nouveau critere d’équité de I’ensemble des données
dans la classification. En outre, nous fournissons un principe de déviations modérées pour le
colit de transport empirique dans la dimension générale. Enfin, les barycentres de Wasserstein
et le critere de variance en termes de la distance de Wasserstein sont utilisés dans de nombreux
problemes pour analyser 'homogénéité des ensembles de distributions et les relations struc-
turelles entre les observations. Nous proposons ’estimation des quantiles du processus empirique
de la variation de Wasserstein en utilisant une procédure bootstrap. Ensuite, nous utilisons ces
résultats pour l'inférence statistique sur un modele d’enregistrement de distribution avec des
fonctions de déformation générale. Les tests sont basés sur la variance des distributions par
rapport a leurs barycentres de Wasserstein pour lesquels nous prouvons les théoremes de limite
centrale, y compris les versions bootstrap.

Mots-clé: Equité7 statistical parity, equality of odds, disparate impact, apprentissage machine,
distance de Wasserstein, méthodologie de réparation, Théoréeme de Limite Centrale, Principe de
déviations modérées, variation de Wasserstein, qualité de I’ajustement.
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Resumen

El propdsito de esta tesis es doble. Por un lado, se estudian métodos de transporte éptimo
destinados a hacer inferencia estadistica. Por otro lado, se considera el reciente problema del
aprendizaje justo con contribuciones basadas en la teoria del transporte éptimo.

El uso generalizado de aplicaciones basadas en modelos de aprendizaje automatico en la vida
cotidiana y en el mundo profesional ha traido consigo preocupaciones sobre las cuestiones éticas
que surgen de la adopcion de estas tecnologias. En la primera parte de la tesis, motivamos el
problema de la equidad presentando algunos resultados estadisticos exhaustivos sobre el estudio
del criterio statistical parity a través del andlisis del indice disparate impact en el conjunto
de datos reales Adult income. Mostramos que tratar de hacer modelos justos puede ser una
tarea particularmente dificil, especialmente cuando las observaciones de entrenamiento contienen
sesgos. A continuacién, se hace una revisién de los métodos matemadticos para el aprendizaje
justo en un marco general, con contribuciones novedosas en el analisis del precio de la equidad en
regresiéon y clasificacién. En este tltimo, concluimos esta primera parte reformulando los vinculos
entre la equidad y la previsibilidad en términos de métricas de probabilidad. Analizamos los
métodos de reparacién basados en el transporte de las distribuciones condicionales hacia el
baricentro de Wasserstein. Por iltimo, proponemos el random repair que establece un equilibrio
entre la pérdida de informacién y el nivel de equidad.

La segunda parte estd dedicada a la teoria asintotica del coste empirico de transporte. Pro-
porcionamos un Teorema Central del Limite para la distancia Monge-Kantorovich entre dos
distribuciones empiricas con tamafios n y m, W, (P, Qm), p > 1, y observaciones en R. En el
caso p > 1 nuestras hipétesis son minimales en términos de momentos y suavidad. Probamos
resultados que tratan con la eleccién de las constantes de centramiento. Proporcionamos una
estimacién consistente de la varianza asintética que permite construir tests de dos muestras e in-
tervalos de confianza para certificar la similitud entre dos distribuciones. Estos se utilizan luego
para evaluar un nuevo criterio de equidad en clasificaciéon binaria. Ademds, proporcionamos un
principio de desviaciones moderadas para el coste empirico de transporte en dimensién general.
Por tltimo, los baricentros de Wasserstein y el criterio de varianza utilizando la distancia de
Wasserstein se emplean en muchos problemas para analizar la homogeneidad de una coleccion
de distribuciones y las relaciones estructurales entre observaciones. Proponemos la estimacion
de los cuantiles del proceso empirico de la variacién de Wasserstein mediante un procedimiento
bootstrap. A continuacién, con estos resultados hacemos inferencia estadistica en un modelo de
deformacién general. Los tests se basan en la varianza de las distribuciones con respecto a su
baricentro de Wasserstein, para los que probamos teoremas centrales del limite, incluidas las
versiones bootstrap.

Palabras clave: Equidad, statistical parity, equality of odds, disparate impact, aprendizaje
automatico, distancia de Wasserstein, metodologia de reparacién, teorema central del limite,
principio de desviaciones moderadas, variacién de Wasserstein, bondad de ajuste.
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1.1 Motivation and framework for the fairness problem

Artificial Intelligence technologies are undoubtedly making human life easier over the last years.
In particular, machine learning based systems are reaching society at large and in many aspects of
the everyday life and the professional world. Powering self-driving cars, accurately recognizing
cancer in radiographies, or predicting our interests based upon past behavior, are just a few
examples in the wide array of technological applications in which they are showing great promise.
Yet with its benefits, machine learning techniques are not absolutely objective since model
classifications and predictions rely heavily on potentially biased data. Hence this generalization
of predictive algorithms has been accompanied by concerns about the ethical issues that may
arise from the adoption of these technologies, not only among the research community but also
among the entire population. Thanks to this, there has been a great push for the emergence of
multidisciplinary approaches for assessing and removing the presence of bias in machine learning
algorithms.

Fair learning is a recently established area of machine learning that studies how to ensure
that biases in the data and algorithm inaccuracies do not lead to models that treat individu-
als unfavorably on the basis of characteristics such as race, gender, disabilities, and sexual or
political orientation, just to name the more striking. The purpose of this thesis is presenting
a mathematical approach for the fairness problem in machine learning. The application of our
theoretical results aims at shedding some light on the maelstrom of techniques or mere heuristics
that ceaselessly appear to address these issues. We believe that a robust mathematical ground
is crucial in order to guarantee a fair treatment for every subgroup of population, which will
contribute to reduce the growing distrust of machine learning systems in the society.

The mathematical framework for fair learning is usually presented in the literature as follows.
Consider the probability space (2, B,P), with B the Borel o—algebra of subsets of R% and d > 1.
We will assume in the following that the bias is modeled by the random variable S € S that



represents an information about the observations X € X ¢ R?, that should not be included in
the model for the prediction of the target Y € R%, d > 1. The variable S is referred to as the
protected or sensitive attribute, and it is usually assumed to be observed. Finally, the class of
measurable functions f : (X, S) — Y will be denoted by F and, particularly, G will denote the
class of binary classifiers.

1.2 Bias and definition of fairness in machine learning

One of the first steps is showing the importance of understanding how bias could be introduced
into automatic decisions. From a mathematical point of view, we will describe in chapter
two possible models, proposed first in [Serrurier et al. [2019], that aim at formalizing this issue.
The first model (see Figure corresponds to the case where the data X are subject to the
bias nuisance variable S which, in principle, is assumed not to be involved in the learning task,
and whose influence in the prediction should be removed. Under this assumption, a fair model
requires that the outcome does not depend on the sensitive variable. On the other hand, the
second model (see Figure deals with the situation when a biased decision is observed as a
result of a fair score which has been biased by the uses giving rise to the target Y. Thus, a fair
model in this case will change the prediction in order to make it independent of the protected
variable. We observe that the probabilistic notion underlying each model is a different type
of independence between distributions. Hence, the choice of this assumption is decisive in the
criterion used for fairness. In this sense, we will be looking at the notion of perfect fairness as an
independence between the protected variable S and the outcome Y = f(X,S), both considering
conditionally given (second model) or not (first model) the true value of the target Y. Each
approach has motivated two different definitions:

e Statistical parity (SP) [Dwork et al., 2012] deals with ¥ L S

e Equality of odds (EO) [Hardt et al. |2016] considers Y | Y 1 S, and is especially well-
suited for scenarios where ground truth is available for historical decisions used during the
training phase.

Most fairness theory has been developed particularly in the case when S = {0,1} and S is a
sensitive binary variable. In other words, the population is supposed to be possibly divided into
two categories, taking the value S = 0 for the minority (assumed to be the unfavored class), and
S =1 for the default (and usually favored class). Hence, we will study more deeply this case in
the first part of the thesis, starting with chapter [2| which is framed in the binary classification
framework. Its purpose is to motivate the problem of fairness in machine learning by presenting
some comprehensive statistical results obtained from the study of the statistical parity criterion
with applications to credit scoring. We specifically consider the real Adult Income datasetﬂ It
consists in forecasting a binary variable which corresponds to an income lower or higher than
50k$ a year, where the existing unbalance between the income prediction and the Gender and
Ethnic origin sensitive binary variables is clearly noticeable. This decision could be potentially
used to evaluate the credit risk of loan applicants, making this dataset particularly popular in
the machine learning community. In this framework, bias of a binary classifier g(X, S) = Y is
frequently quantified with the disparate impact (DI):

B(g(X, S) = 1|5 = 0)
B(g(X.9) = 1S = 1)’

DI(g, X, S) =

"https://archive.ics.uci.edu/ml/datasets/adult
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This index was first introduced as the 4/5"-rule by the State of California Fair Employment
Practice Commission (FEPC) in 1971ﬂ Since then, the threshold 0.8 has been chosen in different
trials as a legal score to judge whether the discriminations committed by an algorithm are
acceptable or not (see |[Feldman et al. [2015], Mercat-Bruns [2016] or Zafar et al.| [2017a]). Yet,
this score, as well as many others described in the fair learning literature, are often used without
statistical control. In the cases where test procedures or confidence bounds are provided, they
are computed using a resampling scheme to get standardized Gaussian confidence intervals under
a Gaussian assumption which does not fit the distribution of the observations. In this chapter,
we promote the use of confidence intervals to control the risk of false discriminatory assessment.
Importantly, we obtain the exact asymptotic distribution of the estimates of different fairness
criteria using the classical Delta method approach [Van der Vaart, 1998]. Moreover, we show
that some standard approaches, including the removal of the sensitive variable or the use of
testing technics appeared as irrelevant when trying to correct the discriminatory behaviour of
machine learning algorithms. Finally, we will test two a priori naive solutions consisting either
in building a differentiate algorithm for each class of the population or adapting the decision of
a single algorithm in a different way for each subpopulation. Only the latter proves helpful in
obtaining a fair classification.

Returning to a more general supervised learning context, a review of the main fair learning
methodologies proposed in the literature over the last years will be presented from a mathe-
matical point of view in chapter Moreover, following our independence-based approach, we
will consider how to build fair algorithms and the consequences on the degradation of their
performance compared to the possibly unfair case. This corresponds to the price for fairness.
Recall that the performance of an algorithm is measured through its risk defined by

R(f) = E((Y, f(X,5))),

with £: (Y,Y) — £(Y,Y) € RT a certain loss function. Theoretically, a fair model f € F can be
achieved by restricting the risk minimization to a fair class of models, namely, infc 7, . R(f).
This class Frair will be particularly denoted by

Fsp={f(X,S)eF st YLS} o Fpo:={f(X,9)eF st Y|V LS}

depending on the fairness notion considered. In general, the price for fairness is then computed
as
Erair(F) = Jnf R(f)— inf R(f),

where the inf ;e 7 R( f) is known as the Bayes Risk. This minimal excess risk will be studied in this
review chapter, under both fairness assumptions and in two different frameworks: regression and
classification. On the one hand, some existing results on the boundness of the price for fairness
as statistical parity will be recasted. We make the following main points: (i) in the regression
problem, we recall a result from |Le Gouic and Loubes [2020] giving a lower bound for the minimal
excess risk in terms of the quadratic Wasserstein distance; (ii) in the classification problem, we
anticipate the upper bound for the minimal excess risk in terms of the Wasserstein variation
proposed in paper Gordaliza et al.| [2019], which we will refer to later in this introduction since it
corresponds to the content of chapter 4. On the other hand, the price for fairness as equality of
odds is also studied. Importantly, novel results giving the expressions of the optimal fair classifier
and the optimal fair predictor (under a linear regression gaussian model) will be presented.

’https://www.govinfo.gov/content/pkg/CFR-2017-title29-vol4/xml/CFR-2017-title29-vol4-part1607.
xml
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1.3 Imposing fairness with a repair methodology

The importance of ensuring fairness in algorithmic outcomes has raised the need for designing
procedures to remove the potential presence of bias. From a procedural viewpoint, methods
for imposing fairness can be roughly divided into three families. Methods in the first family
consist in pre-processing the data or in extracting representations that do not contain undesired
biases, which can then be used as input to a standard machine learning model. Methods in the
second family, also referred to as in-processing, aim at enforcing a model to produce fair outputs
through imposing fairness constraints into the learning mechanism. Methods in the third family
consist in post-processing the outputs of a model in order to make them fair. Yet building
perfect fair models may lead to poor accuracy: changing the world into a fair one with positive
action might decrease the efficiency defined as its similarity to the uses monitored through the
test sample. While in some fields of application it is desirable to ensure the highest possible
level of fairness; in others, including Health Care or Criminal Justice, performance should not be
decreased since the decisions would have serious implications for individuals and society. Hence,
it is of great interest to set a trade-off between fairness and accuracy, resulting in a relaxation
of the notion of fairness that is frequently presented in the literature as almost or approximate
fairness. To this aim, most methods approximate fairness desiderata through requirements on
the lower order moments or other functions of distributions corresponding to different sensitive
attributes.

In particular, in chapter 4| we present our repair methodology, which is included in the first
category of methods. There, the notion of fairness through the prism of statistical parity is
considered in the binary classification setting. Our repairing proposal consists in changing the
original distribution of the input variable X conditionally given the protected group S, denoted
by ps == L(X|S =s),s € {0,1}, in order to make them equal (total repair for perfect fairness)
or close enough (partial repair for almost fairness) to a new unknown target distribution. More
precisely, total repair amounts to mapping the original variable X into a new variable X = Ts(X)
such that conditional distributions with respect to S are the same, namely,

E(X|S:0) :E(X|S:1>.
Note that the transformation T : R — R? is random since it depends on the value of the
protected variable S. In this case, any classifier g built with such information will be such that

L (g(X )| S = O) =L (g(f( )| S = 1) , guaranteeing full fairness of the classification rule.

The Wasserstein (a.k.a Monge-Kantorovich) distance appears as an appropriate tool for
comparing probability distributions and arises naturally in optimal transport theory (we refer
to |Villani| [2009] for a detailed description). For P and @ two probability measures on R%, the
squared Wasserstein distance between P and @) is defined as

WiP.Q) = min [ lle=ylPdn(e.)
where II(P,Q) the set of probability measures on R? x R? with marginals P and Q. The
crucial fact that it respects the structure in the data makes it a good choice for the repairing
procedures, as it will preserve the relationship between the outcome and the data. Thus, this
choice suggests that the distribution of the repair should be the Wasserstein barycenter up
between the conditional distributions ps with respect to the weights ms = P(S = s) of the
protected classes s € {0, 1}, namely

pp € argmin,ep, {moW3 (10, v) +mW3 (11, v) }



and that the optimal way to reach it are the optimal transport maps up = psoT, *, for s =0, 1.
Note from the definition of the Wasserstein barycenter that this repair methodology could be
easily extended to S multiclass.

As mentioned before, we justify such an approach providing in Theorem an upper bound
for the price for fairness of the transportation towards the barycenter up. More precisely, we
prove that the minimal excess risk when considering the best classifier gp (Bayes rule) with the
repaired data and the original data is upper bounded by the weighted Wasserstein variation of
the conditional distributions multiplied by some constant

I,Ir}f{R(gBOTS7X)_R(gB’X)S)} §2\/§K Z WSW%(M&MB)
o s=0,1

Although the Wasserstein barycenter was already suggested in [Feldman et al.| [2015], the con-
sideration of weights is a novelty and yields in fact the good repair. We will also improve their
repair procedure, which in practice did not achieve the complete fairness in terms of statistical
parity, and we provide a generalization to higher dimensions.

Finally, we propose to set a trade-off between the quality of the classification with the repaired
data and the achieving of fairness by partially changing the data with our random repair. It
consists in introducing a proportion of contaminated data which follows the distribution of the
Wasserstein barycenter. Let B be a Bernoulli variable with parameter A € [0, 1], representing
the amount of repair desired for X, and define for s € {0, 1} the randomly repaired distributions

fion = L(BTL(X) + (1 - B)X | S = 5).

This would result in the blurring of the protected class as the level of repair increases, governed
by the Bernoulli parameter. Furthermore, justifications for the random repair outperforming the
existing partial method called geometric repair [Feldman et al., 2015], as well as a computational
scheme to put it into practice are provided.

1.4 Statistical approach for fairness assessment

Many methods for imposing fairness, as well as many definitions, are based on indexes that
clearly depend on the particular predictive algorithm (recall the disparate impact for example),
when in fact very different models could be trained from the same learning sample. Furthermore,
algorithms are usually inaccessible in the sense that explaining how the model is chosen may
be seen too intrusive by most companies, or it may be simply not possible for many of them
to change their learning procedures. To beat these shortchomings in the classification problem,
we propose in chapter [4] to look for a condition on the learning sample that ensures that every
classifier trained from it will be fair under the statistical parity criterion.

Particularly in this binary classification setting, besides the disparate impact, the balanced
error rate (BER) is also a commonly used index. The link between both scores as well as the
characterization of the latter in terms of the distance in total variation between the distributions
us, s € {0,1}, are given in Theorem Essentially, this result shows that the complete ab-
sence of bias in the training data corresponds to the total confusion between the two conditional
distributions. However, certifying this equality is equivalent to the homogeneity testing problem
and a goodness-of-fit test does not allow such a certification. From the statistical point of view,
we can only certify that the two distributions pg and p; are close. Thus, in view of this result,
one could be tempted to consider the testing problem

Hy : drv (po, 1) > Ao vs Hy = dry (po, 1) < Ao,



for some small Ay > 0. Unfortunately, this is not feasible: there exists no uniformly consistent
test for this problem, see Barron| [1989]. Consequently, if we want to statistically assess that g
and pq are not too different, we have to choose a better metric. Hence, in this thesis we propose
to use Wasserstein distances for this testing problem.

Applications of optimal transportation methods have witnessed a huge development in recent
times in a variety of fields, including machine learning and image processing. The number of
significant breakthroughs in the involved numerical procedures can help to understand some of
the reasons for this interest. We refer to (Chizat et al. [2018] for a more detailed account. In
the particular field of statistical inference, despite some early contributions (see, e.g., Munk and
Czado| [1998], del Barrio et al.| [1999a], del Barrio et al.| [2005] or Freitag et al.|[2007]), progress
has been hindered by the lack of distributional limits [Sommerfeld and Munk, 2018].

In the second part of this thesis, we aim at contributing to the asymptotic theory of the
empirical transportation cost. Precisely, in chapter [5]we provide a Central Limit Theorem for the
Wasserstein distance between two empirical distributions with sizes n and m, W, (Py, Qm), p >
1, for observations on the real line (see Theorem

= (WII;(Pna Qm) - Ewg(Pm Qm)) —w N(Oa (1 - )‘)0-127(P7 Q) + )‘U;Q)(Qv P))a

n+m

with nfm — A € (0,1). Note that the computation of the asymptotic variance is perfectly
detailed in the corresponding chapter. In the case p > 1 our assumptions are sharp in terms of
moments and smoothness. Also in this case, we prove results dealing with the choice of centering
constants by indicating a list of sufficient conditions under which it is possible to exchange the
constant EW?S (P, Q) by the true value WH (P, Q). We provide a consistent estimate of the
asymptotic variance which enables to build two sample tests and confidence intervals to certify
the similarity between two distributions.

In the setup of fair learning, rejecting the null with the test
Ho : Wy(po, 1) > Ao vs Hg : Wy(po, 1) < Ao,

will statistically certify that the distributions pg and @1 are not too different. This will guarantee
that the data set is fair, in the sense described above. In conclusion, we provide a new way
of assessing fairness in machine learning by considering confidence intervals for the degree of
dissimilarity between these distributions (with respect to the Wasserstein distance). Also, in
the last section, we outline how our fairness assessment procedure can be tuned in order to use
it with high-dimensional data.

Finally, we complete the asymptotic study of the empirical transportation cost proving a
moderate deviation principle in general dimension in chapter [6] Exploiting the same idea of
the linearization approach to obtain the CLT for the empirical quadratic transportation cost in
general dimension in del Barrio and Loubes [2019], we prove some moment inequalities under
more restrictive assumptions. This helps us to analyse the exponential convergence in probability
of

W3 (Pn, Q) — EW3 (P, Q)

towards 0, and subsequently to obtain a moderate deviation principle for such a statistic.

1.5 Deformation model for fair learning

Wasserstein barycenters and variance-like criterion using Wasserstein distance are used in many
problems to analyze the homogeneity of collections of distributions and structural relationships
between the observations. In chapter [7] we continue the study of the asymptotic theory of



the transportation cost with applications to the assessment of structural relationships between
distributions. In particular, we propose the estimation of the quantiles of the empirical process of
the Wasserstein’s variation using a bootstrap procedure. Then we use these results for statistical
inference on a distribution registration model for general deformation functions. The tests are
based on the variance of the distributions with respect to their Wasserstein’s barycenters for
which we prove central limit theorems, including bootstrap versions.

The application of these results to the fair learning problem is part of the future work of
this thesis. A schematic and brief idea to address it in a general setting could be the following,.
Consider observations (Xi,S51,Y1),...,(Xn, Sy, Y,) i.id. from the random vector (X,S,Y),
where Y € R, X € R, d > 1, and S € S = {1,...,k} is discrete. For each s € S and
i € {1,...,n}, let us denote by X;; := X; the observations of the usable attribute such that
S; = s and by ng the size of each protected group. We will moreover assume that the bias in
the observed sample comes from the influence of the nuisance sensitive variable S, in the sense
that the conditional distributions us := £ (X|S =s),s € S, are different. In this framework,
we propose to explain the presence of bias in the observed sample through a deformation model
for the data. That is, we will suppose that there exist some warping functions (g, ..., ¥})
belonging to a family G = Gg X - - - X G, and some random variables 7,1, ..., s n,, independent
and equally distributed from a common but unknown distribution v and such that, for every
seS,

Xoi = (¢0) " (0s0), 1< i <y

With this approach, the problem of reparing the data could be addressed through a deformation
model since: (i) ¢§ will be the optimal transport map pushing pg towards their Wasserstein
barycenter up, and (i) X; := ng; = ¢5(X;),4 € {1,...,n}, will be the repaired version of the
data that we are looking for.
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1.1 Motivation et cadre pour le probleme de I’équité

Les technologies de l'intelligence artificielle ont sans aucun doute facilité la vie de 'homme
ces dernieres années. En particulier, les systemes basés sur I’apprentissage machine atteignent
la société dans son ensemble, dans de nombreux aspects de la vie quotidienne et du monde
professionnel. Les voitures a conduite autonome, la reconnaissance précise du cancer sur les ra-
diographies ou la prédiction de nos habitudes a partir de nos comportements passés ne sont que
quelques exemples du large éventail d’applications technologiques dans lesquelles elles sont tres
prometteuses. Pourtant, en dépit de leurs avantages, les techniques d’apprentissage automatique
ne sont pas completement objectives, car les classifications et les prédictions des modeles re-
posent largement sur des données potentiellement biaisées. Cette généralisation des algorithmes
prédictifs s’est donc accompagnée de préoccupations quant aux problémes éthiques qui pour-
raient découler de I’adoption de ces technologies, non seulement au sein de la communauté des
chercheurs mais aussi de la population tout entiere. Ainsi, ’émergence d’approches multidis-
ciplinaires pour évaluer et supprimer la présence de biais dans les algorithmes d’apprentissage
machine a été fortement encouragée.

L’apprentissage équitable, ou fair learning, est un domaine d’apprentissage machine récemment
créé qui étudie comment garantir que les préjugés dans les données et les inexactitudes des al-
gorithmes ne conduisent pas a des modeles qui traitent les individus de maniere défavorable
sur la base de caractéristiques telles que la race, le sexe, les handicaps ou 'orientation sexuelle
ou politique, pour ne citer que les plus frappantes. L’objectif de cette these est de présenter
une approche mathématique du probleme de ’équité dans 'apprentissage machine. L’applica-
tion de nos résultats théoriques vise a faire la lumiere sur le maelstrom de techniques ou de
simples heuristiques qui semblent sans cesse aborder ces questions. Nous pensons qu’une base
mathématique solide est cruciale pour garantir un traitement équitable a chaque sous-groupe



de population, ce qui contribuera a réduire la méfiance croissante de la société a 1’égard des
systemes d’apprentissage machine.

Le cadre mathématique de 'apprentissage équitable est généralement présenté comme suit
dans la littérature. Considérons I’espace de probabilité (Q c R%, B, IP’), avec B le Borel o —algebra
des sous-ensembles de R%, d > 1. Nous supposerons dans ce qui suit que le biais est modélisé par
la variable aléatoire S € S qui représente une information sur les observations X € X C R?, qui
ne doit pas étre incluse dans le modele pour la prédiction de la cible Y € R%, d > 1. La variable
S est appelée l'attribut protégé ou sensible, et on suppose généralement qu’elle est observée.
Enfin, la classe de fonctions mesurables f : (X, S) — Y sera désignée par F et, en particulier, G
désignera la classe des classificateurs binaires.

1.2 Biais et définition de I’équité dans ’apprentissage machine

L’une des premieres étapes consiste a comprendre comment le biais pourrait s’introduire dans
les décisions automatiques. D’un point de vue mathématique, nous décrirons au chapitre |3| deux
modeles possibles, proposés d’abord dans [Serrurier et al.| [2019], qui visent & donner un apergu
de cette question. Le premier modele (voir Figure correspond au cas ou les données X sont
soumises a la variable de nuisance de biais S qui, en principe, est supposée ne pas étre impliquée
dans la tache d’apprentissage, et dont 'influence dans la prédiction devrait étre supprimée. Dans
cette hypothese, un modele équitable exige que le résultat ne dépende pas de la variable sensible.
D’autre part, le second modele (voir Figure traite de la situation ou une décision biaisée
est observée a la suite d’un score juste qui a été biaisé par les utilisations donnant lieu a I’objectif
Y. Ainsi, un modele équitable dans ce cas modifiera la prédiction afin de la rendre indépendante
de la variable protégée. Nous observons donc que la notion probabiliste sous-jacente a chaque
modele est un type différent d’indépendance entre les distributions. Le choix de cette hypothese
est donc déterminant dans le critere utilisé pour 1’équité. En ce sens, nous allons examiner la
notion de perfect fairness comme une indépendance entre la variable protégée S et le résultat
Y = f(X,S), les deux considérant de maniere conditionnelle (deuxieme modele) ou non (premier
modele) la valeur réelle de la cible Y. Chaque approche a donné lieu & des définitions différentes :

e Statistical parity (SP) [Dwork et al., [2012] traite de Y 1 S

e Equality of odds (EO) [Hardt et al., 2016 considere Y | Y L S, et est particulierement
bien adapté aux scénarios ou la vraie valeur est disponible pour les décisions historiques
utilisées pendant la phase de formation.

La plupart des théories de I’équité ont été développées en particulier dans le casou S € § =
{0, 1} est une variable binaire. En d’autres termes, la population est censée étre éventuellement
divisée en deux catégories, en prenant la valeur S = 0 pour la minorité (supposée étre la classe
défavorisée), et S = 1 pour le default (et généralement la classe préférée). Nous étudierons donc
plus en profondeur ce cas dans la premiere partie de la these, en commencant par le chapitre
qui est consacré a la classification binaire. Son but est de motiver le probleme de I'équité
dans I'apprentissage machine en présentant quelques résultats statistiques complets obtenus a
partir de I’étude du critere statistical parity avec les applications a la notation des crédits. Nous
considérons spécifiquement I’ensemble de données réelles Adult Incomeﬂ Elle consiste a prévoir
une variable binaire qui correspond & un revenu inférieur ou supérieur & 50k$ par an, ou le
déséquilibre existant entre la prévision de revenu et les variables binaires sensibles Genre et
Origine ethnique est clairement perceptible. Cette décision pourrait éventuellement étre utilisée

"https://archive.ics.uci.edu/ml/datasets/adult
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pour évaluer le risque de crédit des demandeurs de préts, ce qui rend cet ensemble de données
particulierement populaire dans la communauté de I’apprentissage automatique. Dans ce cadre,
le biais d’un classificateur binaire g(X, S) = Y est fréquemment quantifié avec le disparate impact
(DI) :

P(g(X,S) =15 =0)

P(g(X,8) =15 =1)

Cet indice a été introduit pour la premiere fois sous la forme de la regle des 4/5 par la Commis-
sion des pratiques d’emploi équitables de I’Etat de Californie (FEPC) en 197 Depuis lors, le
seuil de 0, 8 a été choisi dans différents proces comme note légale pour juger si les discriminations
commises par un algorithme sont acceptables ou non (voir [Feldman et al.| [2015], Mercat-Bruns
[2016] ou |[Zafar et al.| [2017a]). Pourtant, ce score, ainsi que beaucoup d’autres décrits dans la
littérature sur 'apprentissage équitable, sont souvent utilisés sans controle statistique. Dans les
cas ol des procédures de test ou des intervalles de confiance sont fournies, elles sont calculées en
utilisant un schéma de rééchantillonnage pour obtenir des intervalles de confiance gaussiens stan-
dardisés sous une hypothese gaussienne qui ne correspond pas a la distribution des observations.
Dans ce chapitre, nous encourageons 1'utilisation des intervalles de confiance pour controéler le
risque d’évaluation faussement discriminatoire. Il est important de noter que nous obtenons la
distribution asymptotique exacte des estimations des différents criteres d’équité en utilisant 'ap-
proche classique du Delta-méthode [Van der Vaart, [1998|. En outre, nous montrons que certaines
approches standard, notamment la suppression de la variable sensible ou l'utilisation de tech-
niques testing, ne sont pas pertinentes pour tenter de corriger le comportement discriminatoire
des algorithmes d’apprentissage machine. Enfin, nous testerons deux solutions a priori naives
consistant soit a construire un algorithme différencié pour chaque classe de la population, soit a
adapter la décision d’un algorithme unique de maniere différente pour chaque sous-population.
Seule cette derniere solution s’avere utile pour obtenir une classification équitable.

Pour revenir a un contexte d’apprentissage supervisé plus général, une revue des principales
méthodes d’apprentissage équitable proposées dans la littérature au cours des dernieres années
sera présenté d’un point de vue mathématique au chapitre [3l En outre, suivant notre approche
basée sur l'indépendance, nous examinerons comment construire des algorithmes équitables et
les conséquences sur la dégradation de leurs performances par rapport au cas éventuellement
injuste. Cela correspond au prix de I’équité. Rappelons que la performance d’un algorithme est
mesurée a travers son risque défini par

R(f) = E(((Y, f(X,5))),

avec £ : (YY) — £(Y,Y) € R* une certaine fonction de perte. Théoriquement, un modele
équitable f € F peut étre obtenu en limitant la minimisation du risque a une classe équitable
de modeles, a savoir, infc 7. R(f). Cette classe Frair sera particulierement dénotée par

DI(g,X,S) =

Fsp:={f(X,8)eF st YLS} ou Fgo:={f(X,S)eF st Y|V LS},

en fonction de la notion d’équité considérée. En général, le prix de I’équité est alors calculé
comme
Erair(F) := inf R(f) — inf R(f),
Falr( ) FEFraie (f) feF (f)
ou le infrc 7 R(f) est connu sous le nom de risque Bayes. Ce risque excédentaire minimal sera
étudié dans ce chapitre de révision, a la fois sous des hypotheses d’équité et dans deux cadres
différents : la régression et la classification. D’une part, certains résultats existants sur la limite du
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xml
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prix pour ’équité comme statistical parity seront refondus. Nous soulignons les points principaux
suivants : (i) dans le probleme de la régression, nous rappelons un résultat de Le Gouic and
Loubes| [2020] donnant une limite inférieure pour le risque excédentaire minimal en termes de
distance quadratique de Wasserstein ; (ii) dans le probleme de la classification, nous anticipons
le résultat avec la limite supérieure pour le risque excédentaire minimal en termes de variation
de Wasserstein proposée dans 'article |Gordaliza et al. [2019], que nous mentionnerons plus
loin dans cette introduction puisqu’elle correspond au contenu du chapitre 4 D’autre part, le
prix de I'équité comme equality of odds est également étudié. Il est important de noter que de
nouveaux résultats donnant les expressions du classificateur de 1’équité optimale et du prédicteur
de I’équité optimale (sous un modele de régression linéaire gaussien) seront présentés.

1.3 Imposer I’équité avec une méthodologie de réparation

L’importance de garantir I’équité des résultats algorithmiques a soulevé la nécessité de concevoir
des procédures pour éliminer la présence potentielle de biais. D’un point de vue procédural,
les méthodes permettant d’imposer 1’équité peuvent étre divisées en trois grandes familles.
Les méthodes de la premiere famille consistent a pré-traiter les données ou & extraire des
représentations qui ne contiennent pas de biais indésirables, qui peuvent ensuite étre utilisées
comme entrée dans un modele d’apprentissage machine standard. Les méthodes de la deuxieme
famille, également appelées in-processing, visent a forcer les modeles a produire des résultats
équitables en imposant des contraintes d’équité dans le mécanisme d’apprentissage. Les méthodes
de la troisieme famille consistent a post-traiter les résultats d’un modele afin de les rendre
équitables. Cependant, la construction de modeles équitables parfaits peut conduire & une
précision médiocre : obtenir un monde équitable avec une action positive pourrait diminuer
lefficacité définie comme sa similarité avec les utilisations controlées par I’échantillon test. Alors
que dans certains domaines d’application, il est souhaitable de garantir le plus haut niveau
d’équité possible, dans d’autres, notamment les soins de santé, la justice pénale ou les applica-
tions industrielles, les performances ne devraient pas étre diminuées car les décisions auraient de
graves implications pour les individus et la société. Il est donc tres intéressant d’établir un com-
promis entre ’équité et ’exactitude, ce qui entraine un assouplissement de la notion d’équité
qui est fréquemment présentée dans la littérature comme almost ou approximate fairness. A
cette fin, la plupart des méthodes se rapprochent des desiderata d’équité par des exigences sur
les moments d’ordre inférieur ou d’autres fonctions des distributions correspondant a différents
attributs sensibles.

En particulier, dans le chapitre 4| nous présentons notre méthodologie de réparation, qui est
incluse dans la premiere catégorie de méthodes. La, la notion d’équité a travers le prisme de la
statistical parity est considérée dans le cadre de la classification binaire. Notre proposition de
réparation consiste a modifier la distribution initiale de la variable d’entrée X conditionnelle-
ment au groupe protégé S, désigné par us := L (X|S =s),s € {0, 1}, afin de les rendre égales
(réparation totale pour une équité parfaite) ou suffisamment proches (réparation partielle pour
une équité quasi-totale) d’une nouvelle distribution cible inconnue. Plus précisément, réparation
totale revient a mapper la variable originale X dans une nouvelle variable X=T 5(X) de telle
sorte que les distributions conditionnelles par rapport & S soient identiques, & savoir,

E(X\S:O>:£<X|S:1).

Notez que la transformation Ty : R — R? est aléatoire puisqu’elle dépend de la valeur de
la variable protégée S. Dans ce cas, tout classificateur g construit avec de telles informations
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sera tel que £ (g(f() | S = O) =L (g(X') | S = 1) , garantissant une équité totale de la regle de
classification.

La distance de Wasserstein (alias Monge-Kantorovich) apparait alors comme un outil appro-
prié pour comparer les distributions de probabilité et se présente naturellement dans la théorie
du transport optimal (nous nous référons a |Villani [2009] pour une description détaillée). Pour
P et Q deux mesures de probabilité sur R?, la distance de Wasserstein d’ordre 2 entre P et Q
est définie comme

WiP.@) = min [ lle=yldn(e.)
oit II(P, Q) I’ensemble des mesures de probabilité sur R? x R? avec les marginaux P et Q. Le
fait crucial qu’il respecte la structure des données en fait un bon choix pour les procédures
de réparation, car il permettra de préserver la relation entre le résultat et les données. Ainsi,
ce choix suggere que la distribution de la réparation devrait étre le barycentre de Wasserstein
wup entre les distributions conditionnelles us par rapport aux poids s = P(S = s) des classes
protégées s € {0, 1}, & savoir

pp € argmin,ep, {moWs (o, v) +mWs (11, v)}

et que le meilleur moyen de ’atteindre est d’utiliser les plans de transport optimal up = us o
T, !, for s = 0,1. Il ressort de la définition du barycentre de Wasserstein que cette méthode de
réparation pourrait facilement étre étendue au cas ou S est multi-classe.

Comme mentionné précédemment, nous justifions cette approche en montrant dans le Théoreme
une limite supérieure pour le prix de I'équité du transport vers le barycentre up. Plus
précisément, nous prouvons que 'exces de risque minimal lorsque I'on considére le meilleur clas-
sificateur gp (régle de Bayes) avec les données réparées et les données originales est limité par la
variation de Wasserstein pondérée des distributions conditionnelles multipliée par une constante

2

l%jlf{R(gBoTS7X)_R(gB’X’S)} §2\/§K Z WSW%(M&MB)
o s=0,1

Bien que le barycentre de Wasserstein ait déja été suggéré dans |[Feldman et al.| [2015], la prise
en compte des poids ainsi que le controle de ’erreur sont des nouveautés importantes. Nous
allons également améliorer leur procédure de réparation, qui en pratique n’a pas atteint I’équité
complete en termes de statistical parity, et nous fournissons une généralisation a des dimensions
plus élevées.

Enfin, nous proposons d’établir un compromis entre la qualité de la classification avec les
données réparées et la réalisation de I’équité en modifiant partiellement les données avec notre
random repair. Cette methode consiste a introduire une proportion de données contaminées
qui suit la distribution du barycentre de Wasserstein. Soit B une variable de Bernoulli avec le
parametre A € [0, 1], représentant la quantité de réparation souhaitée pour X, et définir pour
s € {0,1} les distributions réparées de facon aléatoire

fior = L(BT.(X) + (1 - B)X | § = ).

Cela conduirait & un brouillage de la classe protégée a mesure que le niveau de réparation
augmente, régi par le parametre de Bernoulli. En outre, les justifications de la réparation aléatoire
surpassent la méthode partielle existante appelée geometric repair [Feldman et al., [2015], ainsi
qu’un schéma de calcul pour le mettre en pratique sont fournis.
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1.4 Approche statistique pour ’évaluation de I’équité

De nombreuses méthodes pour imposer ’équité, ainsi que de nombreuses définitions, sont basées
sur des indices qui dépendent clairement de l'algorithme prédictif particulier (rappelez-vous le
disparate impact par exemple), alors qu’en fait des modeles tres différents pourraient étre formés
a partir du méme échantillon d’apprentissage. En outre, les algorithmes sont généralement inac-
cessibles dans le sens ou expliquer comment le modele est choisi peut étre considéré comme trop
intrusif par la plupart des entreprises, ou il peut étre tout simplement impossible pour beaucoup
d’entre elles de modifier leurs procédures d’apprentissage. Pour surmonter ces difficultés dans
le probleme de la classification, nous proposons au chapitre 4| de rechercher une condition sur
I’échantillon d’apprentissage qui garantisse que chaque classificateur formé a partir de celui-ci
sera équitable selon le critere statistical parity.

En particulier, dans ce parametre de classification binaire, outre le disparate impact, le ba-
lanced error rate (BER) est également un indice utilisé en commun. Le lien entre les deux scores
ainsi que la caractérisation de ce dernier en termes de distance de variation totale entre les
distributions g, s € {0,1}, sont donnés dans le Théoréme m Essentiellement, ce résultat
montre que ’absence totale de biais dans les données d’aprentissage correspond a la confusion
totale entre les deux distributions conditionnelles. Cependant, la certification de cette égalité
équivaut au probleme du test d’homogénéité et un test d’adéquation ne permet pas une telle
certification. D’un point de vue statistique, on ne peut que certifier que les deux distributions ug
et p1 sont proches. Ainsi, au vu de ce résultat, on pourrait étre tenté de considérer le probleme
du test

Hy : drv (po, 1) > Ao vs Hy : dry (po, 1) < Ao,

pour quelque petit Ag > 0. Malheureusement, cela n’est pas possible : il n’existe pas de test
uniformément consistent pour ce probleme, voir Barron| [1989]. Par conséquent, si nous voulons
évaluer statistiquement que g et pq ne sont pas trop différents, nous devons choisir une meilleure
métrique. C’est pourquoi, dans cette these, nous proposons d’utiliser les distances de Wasserstein
pour ce probleme de test.

Les applications des méthodes de transport optimal ont connu un développement considérable
ces derniers temps dans divers domaines, notamment ’apprentissage machine et le traitement
de I'image. Le nombre de percées significatives dans les procédures numériques concernées peut
aider & comprendre certaines des raisons de cet intérét. Nous renvoyons a (Chizat et al. [2018]
pour un compte rendu plus détaillé. Dans le domaine particulier de I'inférence statistique, malgré
quelques contributions précoces (voir, par exemple, Munk and Czado| [1998|, |del Barrio et al.
[1999a], del Barrio et al.| [2005] ou [Freitag et al.|[2007]), les progres ont été entravés par ’absence
de limites de distribution [Sommerfeld and Munk, |2018].

Dans la deuxiéme partie de cette these, nous voulons contribuer a la théorie asymptotique
du cotit empirique du transport. Précisément, dans le chapitre [b[ nous fournissons un Théoreme
de limite central pour la distance de Wasserstein entre deux distributions empiriques de tailles
n et m, Wy(Py,Qm), p > 1, pour les observations sur la droite réelle (voir le Théoreme

= (Wig(Pna Qm) - EWI?(Pm Qm)) —w N(Oa (1 - )‘)0-127(P7 Q) + )‘U;Q)(Qv P))a

n+m

ou - = A€ (0,1). Notez que le calcul de la variance asymptotique est parfaitement détaillé

dans le chapitre correspondant. Dans le cas p > 1, nos hypothéses sont minimales en termes
de moments et de régularité. Dans ce cas également, nous traitons du choix des constantes de
centrage, en indiquant une liste de conditions suffisantes dans lesquelles il est possible d’échanger
la constante EW5(P,, Q,,) par la vraie valeur W5 (P, Q) . Nous fournissons une estimation
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consistent de la variance asymptotique qui permet de construire deux tests d’échantillons et des
intervalles de confiance pour certifier la similarité entre deux distributions.
Dans la mise en place d’'un apprentissage équitable, rejeter le nul avec le test

Ho : Wy(po, 1) > Ao vs Hg : Wy(po, 1) < Ao,

certifiera statistiquement que les distributions pg et ©1 ne sont pas trop différentes. Cela garantira
que ’ensemble de données est équitable, au sens décrit ci-dessus. En conclusion, nous proposons
une nouvelle fagon d’évaluer 1’équité de 'apprentissage machine en considérant les intervalles
de confiance pour le degré de dissimilitude entre ces distributions (par rapport a la distance de
Wasserstein). Dans la derniere section, nous expliquons comment notre procédure d’évaluation
de I’équité peut étre ajustée pour étre utilisée avec des données de grande dimension.

Enfin, nous complétons 1’étude asymptotique du coiit de transport empirique prouvant un
principe des déviations modérées en dimension générale au chapitre [6] En explitant la méme
idée de 'approche de linéarisation pour obtenir le TLC pour le colit empirique quadratique de
transport en del Barrio and Loubes| [2019], nous prouvons des inégalités de moment sous des
hypotheses plus restrictives. Cela nous aide a analyser la convergence exponentielle en probabilité
de

W22(Pna Q) - ]EWQQ(PTIJ Q)

vers (0, et a obtenir ensuite un principe des déviations modérées pour cette statistique.

1.5 Modele de déformation pour un apprentissage équitable

Les barycentres de Wasserstein et les criteres de variance utilisant la distance de Wasserstein sont
utilisés dans de nombreux problemes pour analyser I’homogénéité des collections de distributions
et les relations structurelles entre les observations. Dans le chapitre[7} nous poursuivons I’étude de
la théorie asymptotique du cout de transport avec des applications a 1’évaluation des relations
structurelles entre les distributions. En particulier, nous proposons l'estimation des quantiles
du processus empirique de la variation de Wasserstein en utilisant une procédure bootstrap.
Ensuite, nous utilisons ces résultats pour l'inférence statistique sur un modele d’enregistrement
de la distribution pour les fonctions de déformation générale. Les tests sont basés sur la variance
des distributions par rapport a leurs barycentres de Wasserstein pour lesquels nous prouvons les
théoremes de limite centrale, y compris les versions bootstrap.

L’application de ces résultats au probleme de I'apprentissage équitable fait partie du futur
travail de cette these. Voici un schéma et une breve idée pour l'aborder dans un cadre général.
Considérer les observations (X1,51,Y1),...,(Xn, Sp, Yy,) i.i.d. du vecteur aléatoire (X, S,Y), ou
YER XeERY d>1,et S€S=1{1,...,k} est discret. Pour chaque s € Set i € {1,...,n},
dénotons par X ; := X; les observations de I'attribut utilisable tel que S; = s et par ny la taille
de chaque groupe protégé. Nous supposerons en outre que le biais dans 1’échantillon observé
provient de I'influence de la variable sensible aux nuisances .S, en ce sens que les distributions
conditionnelles ps := L (X|S = s),s € S, sont différentes. Dans ce cadre, nous proposons d’ex-
pliquer la présence de biais dans I’échantillon observé par un modele de déformation des données.
C’est-a-dire que nous supposerons qu'il existe certaines fonctions de déformation (@5, ..., ¥})
appartenant a une famille G = Gy x --- x G, et certaines variables aléatoires ns1,...,0sn,,
indépendantes et également réparties a partir d’une distribution commune mais inconnue v et
telles que, pour chaque s € S,

Xsi= (02 nsi), 1 <i <.
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Avec cette approche, nous pouvons traiter le probleme de la réparation des données comme un
modele de déformation, car on aura cela : (i) ¢§ est la carte de transport optimale poussant
fis vers leur barycentre de Wasserstein pp, et (i) X; = ns; = ¢5(X;),i € {1,...,n}, sont la
version réparée des données que nous recherchons.
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Capitulo 1

Introduccion
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1.1 Motivacién y marco del problema de la equidad

En los tdltimos afios, las tecnologias basadas en la Inteligencia Artificial estan haciendo indu-
dablemente la vida humana mas facil. En particular, los sistemas basados en el aprendizaje
automatico, o en inglés machine learning, estan alcanzando a la sociedad en general, tanto en
el mundo profesional como en muchos aspectos de la vida cotidiana. Potenciar los coches au-
todirigidos, reconocer con precisién el cancer en las radiografias, o predecir nuestros intereses
basados en comportamientos pasados, son sélo algunos ejemplos en la amplia gama de aplicacio-
nes en las que estas tecnologias estan mostrando ser de gran valor y utilidad. Sin embargo, con
todos sus beneficios, las técnicas de machine learning no son absolutamente objetivas, pues las
clasificaciones y predicciones hechas por los modelos dependen en gran medida de datos poten-
cialmente sesgados. En consecuencia, este uso generalizado de los algoritmos de prediccién ha ido
acompanado de preocupaciones sobre las cuestiones éticas que pueden surgir de la adopcion de
estas tecnologias, no solo entre la comunidad investigadora sino también entre toda la poblacion.
Gracias a ello, se ha dado un gran impulso a la apariciéon de enfoques multidisciplinares para
detectar y eliminar la presencia de sesgos en las decisiones automéaticas tomadas por algoritmos.

El aprendizaje justo, del inglés fair learning, es un area recientemente establecida del apren-
dizaje automatico que estudia cémo asegurar que los sesgos en los datos y las inexactitudes de
los algoritmos no conduzcan a modelos que traten desfavorablemente a los individuos en base a
caracteristicas como la raza, el género, las discapacidades o la orientacién sexual o politica, sélo
por nombrar las de mayor impacto en la opinién ptublica. El propédsito de esta tesis es presentar
un enfoque matematico del problema de la equidad en el aprendizaje automético. La aplicacion
de nuestros resultados tedricos tiene como objetivo arrojar un poco de luz sobre la voragine de
técnicas o meras heuristicas que aparecen incesantemente para tratar de dar respuesta a estos
problemas. Creemos que una base matemaética robusta es crucial para garantizar un tratamiento
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justo para cada subgrupo de poblacion, lo que contribuira a reducir la creciente desconfianza de
la sociedad hacia los sistemas de aprendizaje automatico.

El marco matematico para el problema del aprendizaje justo se suele presentar en la literatura
como sigue. Consideremos el espacio de probabilidad (Q C Rd,B,]P’), con B la o—algebra de
subconjuntos de R% d > 1. Asumiremos que la variable aleatoria S € S modela el sesgo, de
manera que representa una informacién sobre las observaciones X € X C R? que no debe
ser incluida en el modelo para la prediccién de la respuesta Y € R% d > 1. Esta variable S,
cuyo valor se asume conocido, recibe el nombre de atributo protegido o sensible (protected o
sensitive attribute, en inglés). Finalmente, denotaremos por F la clase de funciones medibles
f:(X,9)— Y y, mis concretamente, por G cuando se trate de clasificadores binarios.

1.2 Sesgo y definicién de equidad en el aprendizaje automatico

Uno de los primeros pasos es motivar la importancia de comprender cémo los sesgos se pueden
introducir en las decisiones automaticas. Desde un punto de vista matematico, describiremos
en el capitulo 3| dos posibles modelos, propuestos por primera vez en Serrurier et al. [2019],
que tienen como objetivo formalizar esta cuestién. El primer modelo (véase la Figura |3.1a))
corresponde al caso en que los datos X estdan sujetos a la variable del sesgo S que, en principio,
se supone que no esta involucrada en la tarea de aprendizaje, y cuya influencia en la prediccion
debe ser eliminada. Bajo este supuesto, un modelo justo requiere que el resultado no dependa
de esta variable sensible. Por otra parte, el segundo modelo (véase la Figura se ocupa de
la situacion en que se observa una decisiéon sesgada como resultado de una puntuacién justa
que ha sido sesgada por los usos que dan lugar al objetivo Y. En este caso, un modelo justo
cambiaria la predicciéon para hacerla independiente de la variable protegida. Observamos que
la nocién probabilistica que subyace en cada modelo es un tipo diferente de independencia
entre distribuciones. Por lo tanto, la eleccién de esta hipétesis es decisiva en el criterio utilizado
para garantizar la equidad. En este sentido, consideraremos la nocién de equidad perfecta (perfect
fairness) como una independencia entre la variable protegida S y el resultado Y = f(X,9), tanto
condicionalmente al verdadero valor del objetivo Y (segundo modelo) como no condicionalmente
(primer modelo). Cada uno de estos enfoques ha dado lugar a diferentes definiciones:

e Statistical parity (SP) [Dwork et al., 2012] trata con Y L S

e Equality of odds (EO) [Hardt et al.,[2016] considera Y|Y I S, y es especialmente adecuada
para los escenarios en los que se dispone del verdadero valor de la etiqueta objetivo para
las decisiones histéricas utilizadas durante la fase de entrenamiento.

La mayor parte de la teoria de la equidad se ha desarrollado particularmente en el caso de que
S € § = {0, 1} es una variable binaria. Es decir, se supone que la poblacién se encuentra dividida
en dos categorias, tomando el valor S = 0 para la minoria (supuestamente la clase desfavorecida)
y S = 1 para la mayoria o clase por defecto (supuestamente la clase favorecida). Por tanto,
estudiaremos este caso de manera més detallada en la primera parte de la tesis, empezando en el
capitulo |2} el cual estd enmarcado en este escenario concreto de clasificacién binaria. Su objetivo
es motivar el problema de la equidad en el aprendizaje automatico mediante la presentacion
de resultados completos del estudio del criterio statistical parity con aplicaciones en puntuacion
crediticia. Especificamente, consideramos la base de datos reales conocido como Adult ]ncomeﬂ
Este conjunto consiste en predicciones de la variable binaria correspondiente a si un individuo
tiene ingresos anuales superiores a 50.000 $, en las que claramente se aprecia un desequilibrio

'https://archive.ics.uci.edu/ml/datasets/adult
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entre aquellas hechas para individuos con distinto género y origen étnico. El hecho de que esta
prediccion pueda ser potencialmente utilizada para evaluar el riesgo de los solicitantes de créditos,
ha popularizado este conjunto de datos entre la comunidad del aprendizaje automético. En este
contexto de clasificacién binaria, es frecuente cuantificar el sesgo de un clasificador g(X, S) = Y
mediante el disparate impact (DI):

P(g(X,$) = 1|5 = 0)
B(g(X,9) = 1|5 = 1)’

DI(g,X,S) =

Este indice se introdujo como la regla de los 4/5 en el State of California Fair Employment
Practice Commission (FEPC) en 1971E|. Desde entonces, en numerosos juicios se ha elegido el
umbral 0,8 para aprobar la equidad en las decisiones algoritmicas (véase por ejemplo |[Feldman
et al. [2015], Mercat-Bruns [2016] o [Zafar et al. [2017a]). Sin embargo, este score, al igual que
la mayoria de los descritos en la literatura, se utiliza frecuentemente sin un control estadistico.
Ademsds, en muchos casos, los contrastes de hipdtesis o regiones de confianza son obtenidos
bajo hipétesis de normalidad que no se corresponde con la distribucién de las observaciones.
En este capitulo [2| proponemos el uso de intervalos de confianza para controlar el riesgo de
falsedad en las evaluaciones discriminatorias. Cabe destacar la obtencién en esta tesis de la
distribucién asintética de varios criterios de equidad, a través del clasico Delta-método [Van der
Vaart), [1998]. Ademds, mostramos cémo algunos de los procedimientos estandar, tales como
la eliminacién del valor de la variable sensible de la muestra de entrenamiento o las técnicas
llamadas testing (detalladas més adelante), no son en absoluto efectivos cuando se trata de
corregir los comportamientos discriminatorios de los algoritmos. Finalmente, comprobamos dos
soluciones que consisten o bien en construir algoritmos diferenciados para cada clase, o bien
en adaptar la decision de un mismo algoritmo a cada clase; y concluimos que sélo la segunda
obtiene clasificaciones justas.

Volviendo a un contexto de aprendizaje supervisado mas general, en el capitulo|3|se hace una
revision de las principales metodologias de aprendizaje justo que se han propuesto en lo ultimos
anos. Ademds, plantearemos como construir algoritmos justos y cémo valorar la consecuente
degradacién en su desempeiio, en comparacién con el caso posiblemente injusto. Esta cuestion
corresponde con lo que se suele denominar precio de la equidad. Recordemos que la eficiencia de
un algoritmo se mide mediante el riesgo definido por

R(f) = E((Y, f(X,5))),

con £: (Y,Y)— (Y,Y) € Rt cierta funcién de pérdida. Teéricamente, un modelo justo f € F
se obtiene como resultado de la minimizacién del riesgo dentro de una clase de modelos justos,
es decir, inf re 7. R(f). En particular, denotaremos esta clase Frair por

Fsp={f(X,8)eF st YLS o Fro={f(X,9)eF st Y|V LS}

dependiendo de la nocién considerada de equidad. En general, el precio de la equidad se calcula
entonces como
Erair(F) := inf R(f) — inf R(f),
Falr( ) FEFraie (f) feF (f)
donde infsc 7 R(f) se conoce como el riesgo de Bayes. En este capitulo de revisién se estudiara
este exceso de riesgo minimo, bajo ambas nociones de equidad y en dos marcos diferentes: regre-
sién y clasificaciéon. Por un lado, revisitaremos algunos resultados existentes sobre la acotacion

®https://www.govinfo.gov/content/pkg/CFR-2017-title29-vol4/xml/CFR-2017-title29-vol4-part1607.
xml
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del precio de la equidad como statistical parity. En particular, (i) en el problema de regresion,
destacamos el resultado de |Le Gouic and Loubes [2020] que proporciona una cota inferior pa-
ra el exceso de riesgo minimo en términos de la distancia cuadratica de Wasserstein; (ii) en
el problema de clasificacion, anticipamos la cota superior para el exceso de riesgo minimo en
términos de la variacién de Wasserstein, propuesta en el trabajo |Gordaliza et al. [2019], a la
cual haremos referencia mas adelante en esta introduccién, puesto que corresponde al contenido
del capitulo [4 Por otro lado, también estudiamos el precio de la equidad como equality of odds.
En este caso, obtenemos las expresiones exactas del clasificador y predictor (bajo un modelo de
regresion normal) éptimos y justos.

1.3 Una nueva metodologia de reparacion para imponer equidad

La importancia de asegurar la equidad en los resultados algoritmicos ha suscitado la necesidad de
disenar procedimientos para eliminar la presencia potencial de sesgos. Desde el punto de vista
del procedimiento, los métodos para imponer la equidad se dividen habitualmente a grandes
rasgos en tres familias. En primer lugar, existe una familia de métodos que consisten en un pre-
procesado de los datos o en la extracciéon de representantes libres de sesgos indeseados, los cuales
pueden ser posteriormente utilizados como input en un modelo de machine learning estdndar.
En la segunda familia, se incluyen los métodos que fuerzan al modelo a producir resultados
justos mediante la imposicién de restricciones al mecanismo de aprendizaje. Por tltimo, los
métodos en la tercera familia consisten en un post-procesado del resultado de la prediccion
del modelo con el objetivo de hacerlo justo. Sin embargo, construir modelos perfectamente
equitativos puede conducir a una pérdida notable en su exactitud: tratar de cambiar el mundo
con buenas intenciones puede dafar la eficiencia de los modelos, entendida como la similaridad a
los usos monitorizados a través de la muestra de entrenamiento. Mientras que en algunos campos
de aplicacién es deseable alcanzar el nivel més alto de equidad posible, en otros, tales como la
sanidad o la justicia penal, la eficiencia no debe ser disminuida, pues las decisiones pueden tener
implicaciones muy graves sobre la vida de las personas o la sociedad en general. Por lo tanto, es
de gran interés establecer un equilibrio entre equidad y eficiencia de los modelos. Esto ha llevado
a una relajacién de la nocién de equidad que se presenta frecuentemente en la literatura como
equidad aproximada (en inglés almost o approzimate fairness). Con este propdsito, la mayoria
de los métodos aproximan la nocién de equidad mediante requerimientos sobre los momentos
de orden bajo o sobre otras funciones de las distribuciones de los datos X o de la prediccién Y
condicionadas a los atributos protegidos.

En particular, en el capitulo 4] presentamos nuestra metodologia de reparacién, que se inclu-
ye en la primera categoria de procedimientos para imponer equidad. Para ello, consideramos el
criterio de statistical parity en el marco de la clasificacién binaria. Nuestra propuesta de repa-
racion consiste en modificar las distribuciones originales de la variable aleatoria de entrada X
condicionadas al valor del atributo protegido .S, denotadas como s := L (X|S =s),s € {0,1},
con el objetivo de hacerlas idénticas (reparacion total para una equidad perfecta) o acercarlas
lo suficiente (reparacidn parcial para un equidad aproximada) a una distribucién nueva y des-
conocida. Formalmente, hacer una reparacion total significa transformar la variable original X
en la nueva X = Ts(X), de tal manera que las distribuciones condicionadas con respecto a S
coincidan

E(X|S:0>:£(X|S:1>.

Notemos el cardcter aleatorio de la transformacién Ty : R — R%, pues depende del valor de S.
Como resultado, cualquier clasificador g construido a partir de la nueva informacién satisfara

L (g(X) | S = O) =L (g(f() | S = 1) , garantizando la equidad completa.
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La distancia de Wasserstein (también conocida como de Monge-Kantorovich) surge de mane-
ra natural del problema del transporte 6ptimo y ha demostrado ser una herramienta apropiada
para comparar distribuciones de probabilidad (nos referimos a [Villani [2009] para una descrip-
cién detallada). La distancia cuadrética de Wasserstein entre dos medidas P y @ se define como

P, — yl|dn(
WHP.Q) = min [ lla=yldn(z.y).

donde TI(P, Q) denota el conjunto de medidas en el espacio producto R? x R? con marginales
P y @Q. Uno de sus rasgos caracteristicos es que respeta la estructura de los datos, lo que la
hace especialmente adecuada para los procedimientos de reparacion, pues conservard la relacion
existente entre la respuesta y los datos de entrada originales. Por tanto, esta eleccién sugiere
por un lado, que la distribucién de la reparacién sea el baricentro de Wasserstein pp entre las
distribuciones condicionales ps con respecto a los pesos de las clases protegidas w3 = P(S =
s), s € {0,1}, formalmente

pp € argmingep, {moW3 (o, v) + mWs (u1,v)}

y por otro lado, que la manera 6ptima de alcanzarlo sean los planes de transporte éptimo
pup = ps o Ty L, for s = 0,1. Ademds, notemos que de la definicién de baricentro se deduce
que la metodologia de reparacion propuesta es facilmente extensible al caso en que el atributo
protegido es discreto con més de dos clases.

Como ya se ha mencionado anteriormente, este enfoque estd justificado en el Teorema [4.3.3]
donde se proporciona una cota superior para el precio de la equidad que se consigue mediante
el transporte hacia el baricentro up. Mas concretamente, probamos que el exceso minimo al
comparar el riesgo del mejor clasificador gp (regla de Bayes) con los datos reparados y con
los originales estd controlado por la variacién ponderada de Wasserstein de las distribuciones
condicionadas multiplicada por cierta constante

f,II,lf{R(gBOTS7X)_R(gB7X)S)} SzﬂK Z 7T8W22(,UJSMUJB)
s 5=0,1

A pesar de que el baricentro de Wasserstein ya se habia sugerido con anterioridad en trabajos
como el de [Feldman et al.|[2015], la consideracién de los pesos es una novedad de nuestro resulta-
do y conduce a la buena reparacién de los datos. Ademads, mejoramos el esquema computacional
propuesto en el mencionado trabajo, el cual en la practica no alcanza la equidad completa en
términos de statistical parity, y proporcionamos una manera de generalizarlo a altas dimensiones.

Finalmente, proponemos una metodologia de reparacién parcial a la que denominamos ran-
dom repair, que pretende establecer un equilibrio entre el nivel alcanzado de equidad y la calidad
de la clasificacién que resulta de los datos reparados. Este método consiste en introducir una
proporcién de datos contaminados que siguen la ley del baricentro pp. Para ello, denotemos
por B una variable Bernoulli con pardmetro A € [0, 1], que representa la cantidad de reparacién
deseada para X. Definimos para cada s € {0,1} las distribuciones aleatoriamente reparadas
como

fior = LBIL(X) + (1 - B)X | S = s).

Como resultado, se consigue difuminar el valor de la variable protegida a medida que el nivel
de reparacion aumenta, gobernado por el parametro de Bernoulli. Por ultimo, justificamos por
qué este método es mejor que uno de los esquemas de reparacién parcial mas conocidos en
la literatura, denominado geometric repair [Feldman et all |2015], y proponemos un esquema
computacional para llevarlo a la practica.
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1.4 Un enfoque estadistico para la evaluacion de la equidad al-
goritmica

Muchos de los métodos para garantizar la equidad, asi como muchas de sus definiciones, estan
basados en indices que dependen claramente del algoritmo predictivo en cuestién (recuérdese
por ejemplo el disparate impact) cuando, en realidad, a partir de la misma muestra se pueden
entrenar modelos muy diferentes. Por otro lado, es habitual que los algoritmos sean inaccesibles,
en el sentido de que las empresas podrian interpretar como intrusivo el hecho de explicar cémo
construyen sus modelos, o simplemente no estdn interesadas en cambiarlos. Para hacer frente
a estos problemas en el ambito de la clasificacién binaria, en el capitulo [4] proponemos buscar
una condicién sobre la muestra de aprendizaje que asegure que cualquier clasificador entrenado
a partir de ella serd justo en el sentido dado por el criterio de statistical parity.

Particularmente en este contexto, ademés del disparate impact, otro indice habitual es el
llamado balanced error rate (BER). Dos de las contribuciones en este capitulo consisten tanto
en establecer el enlace entre ambos indices, como en caracterizar el segundo en términos de la
distancia en variacion total entre las distribuciones ps, s € {0, 1}. Esencialemente, en el Teorema
mostramos que la ausencia absoluta de sesgo en el conjunto de entrenamiento corresponde
con la confusion total entre dichas distribuciones condicionadas. Sin embargo, comprobar tal
igualdad equivale a un problema de homogeneidad entre distribuciones, y un test de bondad
de ajuste no permite tal certificaciéon. Desde un punto de vista estadistico, sélamente se puede
certificar que las dos distribuciones pg y p1 estan cerca. Como consecuencia de este resultado,
estariamos tentados a considerar el contraste de hipdtesis

Hy : drv (po, 1) > Ao vs Hy : dry (po, 1) < Ao,

para cierto Ag > 0 pequenio. Desafortunadamente, esto no es viable al no existir tests unifor-
memente consistentes para este problema (véase en Barron| [1989]). Asi pues, para comprobar
estadisticamente la diferencia entre ug y p1 debemos considerar otra métrica y, en esta tesis,
proponemos emplear las distancias de Wasserstein.

Recientemente, las aplicaciones de los métodos de transporte 6ptimo han experimentado un
enorme avance en una gran cantidad de campos, tales como el machine learning o el procesado
de imAagenes, por citar dos de los méas candentes. El creciente interés por estos métodos viene de
las mejoras en los procedimientos numéricos involucrados. Para mas detalles sobre este aspecto,
nos referimos a |Chizat et al.|[2018]. Particularmente en el campo de la inferencia estadistica, a
pesar de algunas contribuciones tempranas en Munk and Czado| [1998], |del Barrio et al.| [1999a],
del Barrio et al.|[2005] or Freitag et al. [2007], este progreso se ha visto frenado por la falta de
resultados sobre distribuciones limite [Sommerfeld and Munk, 2018§].

En la segunda parte de la tesis, nuestro objetivo es contribuir a la teoria asintética del
coste empirico de transporte. En concreto, en el capitulo [5| proporcionamos un teorema central
del limite para la distancia de Wasserstein W, (P, @m), con coste de orden p > 1, entre dos
distribuciones empiricas de distintos tamanos n y m, a partir de observaciones en la recta real

(véase el Teorema [5.2.1])
M (WE (Fr, Gin) — EWE(Fn, Gi)) —w N(0, (1 = N)oa(F,G) + Ao3 (G, F)),

n+m

siendo - — A € (0,1). El cdlculo de la varianza asintética se detalla perfectamente en el

correspondiente capitulo. En el caso p > 1, las hipétesis requeridas son minimales en términos
de momentos y suavidad de las distribuciones. También en este caso tratamos con la eleccion
de las constantes de centramiento, indicando un conjunto de condiciones suficientes bajo las
cuales es posible intercambiar EW5(F,,G,,)) por el verdadero valor WH(F,G). Por tltimo,
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proporcionamos un estimador consistente de la varianza asintética que, bajo las mencionadas
condiciones, nos permite construir tanto un test de dos muestras, como intervalos de confianza
para certificar la similaridad entre dos distribuciones.

En el contexto del aprendizaje justo, podemos decir de manera coloquial que rechazar la
hipétesis nula del contraste

Ho : Wy(po, 1) > Ao vs Hg : Wy(po, 1) < Ao,

certificara estadisticamente que las distribuciones pg y p1 no son demasiado diferentes. Esto
garantizard la equidad en el conjunto de datos, en el sentido indicado previamente. En conclusion,
proporcionamos una nueva metodologia de evaluacion de la equidad en el aprendizaje automatico
basada en intervalos de confianza para el grado de disimilaridad entre estas distribuciones (con
respecto a la distancia de Wasserstein). En la ltima seccién, indicamos cémo este método puede
modificarse para aplicarlo con datos en altas dimensiones.

Finalmente, el capitulo [f] completa el estudio de la teoria asintética del coste empirico de
transporte con un principio de desviaciones moderadas en dimensién general. Explotando la mis-
ma idea de la linealizacién para obtener el TCL para el coste empirico cuadratico de transporte
en del Barrio and Loubes [2019], probamos algunos resultados sobre desigualdades de momentos,
bajo ciertas condiciones mas restrictivas. Tales resultados nos ayudan a analizar la convergencia
exponencial en probabilidad de

W3 (Po, Q) — EW3(P,, Q)

hacia 0, y posteriormente a obtener un principio de desviaciones moderadas para este estadistico.

1.5 Modelo de deformacién para el aprendizaje justo

En muchos problemas que requieren analizar la homogeneidad de una coleccién de distribuciones
y las relaciones estructurales entre las observaciones, es habitual el empleo de los baricentros
de Wassertein y de criterios de varianza basados en la distancia de Wasserstein. En el capitulo
continuamos con el estudio de la teorfa asintética del coste de transporte con aplicaciones
a la evaluacién de las relaciones estructurales existentes entre distribuciones. En particular,
proponemos un procedimiento tipo bootstrap para estimar los cuantiles del proceso empirico de
la variacién de Wasserstein. Estos resultados son empleados para hacer inferencia estadistica
en un modelo general de deformacién para distribuciones. Los tests se basan en la varianza de
las distribuciones con respecto a su baricentro de Wasserstein, para la cual probamos teoremas
centrales del limite, con versiones bootstrap incluidas.

La aplicacion de estos resultados al problema de aprendizaje justo es parte del trabajo futuro
de esta tesis. De manera breve, un esquema para abordar esta cuestién podria ser el siguiente.
Consideremos observaciones (Xi,S51,Y1),...,(Xn, Sp,Ys) 1i.d. del vector aleatorio (X,S,Y),
dondeY e R, X cR% d>1,yS €S ={1,...,k} es discreta. Paracadas € Syi € {1,...,n},
denotemos por X ; := X; las observaciones del atributo legitimo y utilizable tales que S; = s, y
por ng el tamafno de cada uno de los grupos protegidos. Asumiremos ademé&s que el sesgo en la
muestra observada procede de la influencia de la informacién sensible dada en S, en el sentido
de que las distribuciones p, := £ (X|S = s),s € S, son distintas. En este contexto, proponemos
explicar dicha presencia de sesgo a través de un modelo de deformacién para los datos. Esto es,
supondremos que existen funciones de deformacién (¢, . . ., ¢}) que pertenecen a una familia, en
principio general, G = Gy X - -+ X Gy, y ciertas variables aleatorias 751, ..., 7sn,, independientes
e igualmente distribuidas que una medida desconocida v y tales que, para cada s € S,

Xsi= (02 nsa), 1 <i <.
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Con este enfoque, podemos tratar el problema de la reparacién de los datos como un modelo
de deformacién, ya que tendremos que: (i) ¢% serdn los planes de transporte éptimo que llevan
ps hacia el baricentro de Wasserstein up, y (ii) X; := ns; = ¢5(X;),i € {1,...,n}, serdn las
versiones reparadas de los datos que estamos buscando.

23



Part 1

Fairness in Machine Learning
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Chapter 2

A survey of bias in Machine Learning
through the prism of Statistical
Parity for the Adult Data Set

The content of this chapter is available online in Besse et al| [2020] and currently submit-
ted for publication. We have also provided a companion notebook at https://github.com/
XAI-ANITI/Story0OfBias/blob/master/Story0fBias.ipynbl
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Applications based on Machine Learning models have now become an indispensable part of
the everyday life and the professional world. A critical question then recently arised among the
population: Do algorithmic decisions convey any type of discrimination against specific groups
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of population or minorities? In this paper, we show the importance of understanding how a
bias can be introduced into automatic decisions. We first present a mathematical framework for
the fair learning problem, specifically in the binary classification setting. We then propose to
quantify the presence of bias by using the standard Disparate Impact index on the real and well-
known Adult income data set. Finally, we check the performance of different approaches aiming
to reduce the bias in binary classification outcomes. Importantly, we show that some intuitive
methods are ineffective. This sheds light on the fact that trying to make fair machine learning
models may be a particularly challenging task, in particular when the training observations
contain a bias.

2.1 Introduction

Fairness has become one of the most popular topics in machine learning over the last years and
the research community is investing a large amount of effort in this area. The main motivation
is the increasing impact that the lives of Human beings are experiencing due to the general-
ization of machine learning systems in a wide variety of fields. Originally designed to improve
recommendation systems in the internet industry, they are now becoming an inseparable part of
our daily lives since more and more companies start integrating Artificial Intelligence (AI) into
their existing practice or products. While some of these quotidian uses may involve leisure, with
vain consequences (Amazon or Netflix use recommender systems to present a customized page
that offers their products according to the order of preference of each user), other ones entail
particularly sensitive decisions such as in Medicine, where patient suitability for treatment is
considered; in Human Resources, where candidates are sorted out on an algorithmic decision
basis; in the Automotive industry, with the release of self-driving cars; in the Banking and In-
surance industry, which characterize customers according to a risk index; in Criminal justice,
where the COMPAS algorithm is used in the United States for recidivism prediction... For a
more detailed background on these facts see for instance Romei and Ruggieri| [2014b], Berk et al.
[2018] [Pedreschi et al.| [2012] or Friedler et al|[2019], and references therein.

The technologies that AT offers certainly make life easier. It is however a common miscon-
ception that they are absolutely objective. In particular, machine learning algorithms which
are meant to automatically take accurate and efficient decisions that mimic and even sometimes
outmatch human expertise, rely heavily on potentially biased data. It is interesting to remark
that this bias is often due to an inherent social bias existing in the population that is used
to generate the training dataset of the machine learning models. A list of potential causes for
the discriminatory behaviours that machine learning algorithms may exhibit, in the sense that
groups of population are treated differently, is given in Barocas and Selbst, [2016]. Various real
and striking cases that can be found in the literature are the following. In Angwin et al.| [2016],
it was found that the algorithm COMPAS used for recidivism prediction produces much higher
rate of false positive predictions for black people than for white people. Later in |Lahoti et al.
[2019], a job platform similar to Linkedin called XING was found to predict less highly ranked
qualified male candidates than female candidates. Publicly available commercial face recognition
online services provided by Microsoft, Face++, and IBM respectively were also recently found
to suffer from achieving much lower accuracy on females with darker skin color in [Buolamwini
and Gebru| [2018]. Although a discrimination may appear naturally and could be thought as
acceptable, as in [Kamiran et al. [2010] for instance, quantifying the effect of a machine learn-
ing predictor with respect to a given situation is of high importance. Therefore, the notion of
fairness in machine learning algorithms has received a growing interest over the last years. We
believe this is crucial in order to guarantee a fair treatment for every subgroup of population,
which will contribute to reduce the growing distrust of machine learning systems in the society.
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Yet providing a definition of fairness or equity in machine learning is a complicated task
and several propositions have been formulated. First described in terms of law [Winrow and
Schieber, 2009], fairness is now quantified in order to detect biased decisions from automatic
algorithms. We will focus on the issue of biased training data, which is one of the several
possible causes of such discriminatory outcomes in machine learning mentioned above. In the
fair learning literature, fairness is often defined with respect to selected variables, which are
commonly denoted protected or sensitive attributes. We note that throughout the paper we will
use both terms indistinctly. This variables encode a potential risk of discriminatory information
in the population that should not be used by the algorithm. In this framework, two main streams
of understanding fairness in machine learning have been considered. The probabilistic notion
underlying this division is the independence between distributions. The first one gives rise to the
concept of statistical parity, which means the independence between the protected attribute and
the outcome of the decision rule. This concept is quantified using the Disparate Impact index,
which is described for instance in [Feldman et al.| [2015]. This notion was firstly considered
as a tool for quantifying discrimination as the so-called 4/5'-rule by the State of California
Fair Employment Practice Commission (FEPC) in 1971. For more details on the origin and first
applications of this index we refer to Biddle [2006]. The second one proposes the equality of odds,
which considers the independence between the protected attribute and the output prediction,
conditionally to the true output value. In other words, it quantifies the independence between
the error of the algorithm and the protected variable. Hence, in practice, it compares the error
rates of the algorithmic decisions between the different groups of the population. This second
point of view has been originally proposed for recidivism of defendants in [Flores et al.| [2016].
Many others criteria (see for instance in Berk et al.| [2018] for a review) have been proposed
leading sometimes to incompatible formulations as stated in |Chouldechova [2017]. Note finally
that the notion of fairness is closely related to the notion of privacy as pointed out in [Dwork
et al.[[2012].

In this paper, our goal is to present some comprehensive statistical results on fairness in
machine learning studying the statistical parity criterion through the analysis of the example
given in the Adult Income dataset. This public dataset is available on the UCI Machine Learning
Repository[] and it consists in forecasting a binary variable (low or high income) which corre-
sponds to an income lower or higher than 50k$ a year. This decision could be potentially used
to evaluate the credit risk of loan applicants, making this dataset particularly popular in the
machine learning community. It is considered here as potentially sensitive to a discrimination
with respect to the Gender and Ethnic origin variables. The co-variables used in the prediction
as well as the true outcome are available in the dataset, hence supervised machine learning
algorithms will be used.

Section describes this dataset. It specifically highlights the existing unbalance between
the income prediction and the Gender and Ethnic origin sensitive variables. We note that a
preprocessing step is needed in order to prepare the data for further analyses and the performed
modifications are detailed in the Appendix[2.7.1.1] In Section [2.3] we then explain the statistical
framework for the fairness problem, by particularly focusing on the binary classification setting.
We follow the approach of the statistical parity to quantify the fairness and we thus present the
Disparate Impact as our preferred index for measuring the bias. Note that the bias is present in
this dataset, so the machine learning decision rules learned in this paper will be trained by using
a biased dataset. Although, many criteria have been described in the fair learning literature,
they are often used as a score without statistical control. In the cases where test procedures or
confidence bounds are provided, they are obtained using a resampling scheme to get standard-

'https://archive.ics.uci.edu/ml/datasets/adult

27


https://archive.ics.uci.edu/ml/datasets/adult

ized Gaussian confidence intervals under a Gaussian assumption which does not correspond to
the distribution of the observations. In this work, we promote the use of confidence intervals
to control the risk of false discriminatory assessment. We then show in the Appendix the
exact asymptotic distribution of the estimates of different fairness criteria obtained through the
classical approach of the Delta method described in [Van der Vaart| [1998]. Then, Section is
devoted to present some naive approaches that try to correct the discriminatory behaviour of
machine learning algorithms or to test possible discriminations. Finally, Section is devoted
to studying the efficiency of two easy way to incorporate fairness in machine learning algorithms:
building a differentiate algorithm for each class of the population or adapting the decision of a
single algorithm in a different way for each subpopulation. We then in Section present some
conclusions for this work and thus provide a concrete pedagogical example for a better under-
standing of bias issues and fairness treatment in machine learning. Proofs and more technical
details are presented in the Appendix. Relevant code in Python to preprocess the Adult Income
dataset and reproduce all the analysis and figures presented in this paper are available at the
link https://github.com/XAI-ANITI/StoryOfBias/blob/master/Story0fBias.ipynb. We
also provide the French version of this Python notebook at https://github.com/wikistat/
Fair-ML-4-Ethical-AI/blob/master/AdultCensus/AdultCensus-R-biasDetection.ipynb.

2.2 Machine learning algorithms for the attribution of bank
loans

One of the applications for which machine learning algorithms have already become firmly
established is credit scoring. In order to minimize its risks, the banking industry uses machine
learning models to detect the clients who are likely to deal with a credit loan. The FICO score
in the US or the SCHUFA score in Germany are examples of these algorithmically determined
credit rating scores, as well as those used by a number of Fintech startups, who are also basing
their loan decisions entirely on algorithmic models [Hurley and Adebayo, 2016]ﬂ Yet, credit
rating systems have been criticized as opaque and biased in |Pasquale [2015], Rothmann et al.
[2014] or Hurley and Adebayo [2016].

In this paper, we use the Adult Income dataset as a realistic material to reproduce this kind
of analyses for credit risk assessment. This dataset was built by using a database containing
the results of a census made in the United States in 1994. It has been largely used among
the fair learning community as a suitable benchmark to compare the performance of different
machine learning methods. It contains information from about 48 thousands of individuals,
each of them being described by 14 variables as detailed in Table This dataset is often used
to predict the binary variable Anual Income higher or not than 50k$. Such forecast does not
convey any discrimination itself, but it illustrates what can be done in the banking or insurance
industry since the machine learning procedures are similar to those made by banks to evaluate
the credit risk of their clients. The fact that the true value of the target variable is known, in
contrast to the majority of the datasets available in the literature (e.g. the German Credit Data),
as well as the value of potential protected attributes such as the ethnic origin or the gender,
makes this dataset one of the most widely used to compare the properties of the fair learning
algorithms. In this paper, we will then compare supervised machine learning methods on this
dataset. A graphic representation of the distribution of each feature can be found in https:
//www.valentinmihov.com/2015/04/17/adult-income-data-set/. This representation gives
a good overview of what this dataset contains. It also makes clear that it has to be pre-
processed before its analysis using black-box machine learning algorithms. In this work, we have

2See, e.g., https://www.kreditech.com/.
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deleted missing data, errors or inconsistencies. We also have merged highly dispersed categories
and eliminated strong redundancies between certain variables (see details in Supplementary
material . In Figure we represent the dataset after our pre-treatments, and show the
number of occurrences for each categorical variable as well as the histograms for each continuous
variable.
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Figure 2.1 — Adult Income dataset after pre-processing phase

2.2.1 Unbalanced Learning Sample

After pre-processing the dataset, standard preliminary exploratory analyses first show that the
dataset obviously suffers from an unbalanced repartition of low and high incomes with respect to
two variables: Gender (male or female) and Ethnic origin (caucasian or non-caucasian). These
variables therefore seem to be potentially sensitive variables in our data. Figure shows this
unbalanced repartition of incomes with respect to these variables. It is of high importance to
be aware of such unbalanced repartitions in reference datasets since a bank willing to use an
automatic algorithm to predict which clients should have successful loan applications could be
tempted to train the decision rules on such unbalanced data. This fact is at the heart of our
work and we question its effect on further predictions on other data. What information will be
learnt from such unbalanced data: a fair relationship between the variables and the true income
that will enable socially reasonable forecasts; or biased relations in the repartition of the income
with respect to the sensitive variables? We explore this question in the following section.
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Figure 2.2 — Enbalancement of the reference decisions in the Adult Income dataset with respect
to the Gender and FEthnic origin variables.

2.2.2 Machine Learning Algorithms to forecast income

We study now the performance of four categories of supervised learning models: logistic re-
gression 2002], decision trees [Mitchell et al), [1997], gradient boosting 2005],
and Neural Network. We used the Scikit-learn implementations of the Logistic Regression (LR)
and Decision Trees (DT), and the light GBM implementation of the Gradient Boosting (GB)
algorithm. The Neural Network (NN) was finally coded using PyTorch and contains four fully
connected layers with Rectified Linear Units (ReLU) activation functions.

In order to analyze categorical features using these models, the binary categorical variables
were encoded using zeros and ones. The categorical variables with more than two classes were
also transformed into one-hot vectors, i.e. into vectors where only one element is non-zero (or
hot). We specifically encoded the target variable by the values Y = 0 for an income below 50K $,
and Y = 1 for an income above 50K$. We used a 10-fold cross-validation approach in order to
assess the robustness of our results. The average accuracy as well as its true positive (TP) and
true negative (TN) rates were finally measured for each trained model. Figure summarizes
these results.
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Figure 2.3 — Prediction accuracies, true positive rates and true negative rates obtained by using
no specific treatment. Logistic Regression (LR), Decision Tree (DT), Gradient Boosting (GB)
and Neural Network (NN) models were tested with 10-folds cross validation on the Adult Income
dataset.

We can observe in Fig. that the best average results are obtained by using Gradient
Boosting. More interestingly, we can also remark that the prediction obtained using all mod-
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els for Y = 0 (represented by the true negative rates) are clearly more accurate than those
obtained for Y = 1 (represented by the true positive rates), which contains about 24% of the
observations. All tested models then make more mistakes on average for the observations which
should have a successful prediction than a negative one. Note that the tested neural network
is outperformed by other methods in these tests in terms of prediction accuracy. Although we
used default parametrizations for the Logistic Regression model as well as the Gradient Boosting
model, and we simply tuned the decision tree to have a maximum depth of 5 nodes, we tested
different parametrizations of the Neural Network model (number of epochs, mini-batch sizes,
optimization strategies) and kept the best performing one. It therefore appears that the neural
network model we tested was clearly not adapted to the Adult Income dataset.

Hence we have built and compare several algorithms ranging from completely interpretable
models to black box models involving optimization of several parameters. Note that we could
have used the popular Random Forest algorithm that could lead to equivalent but we privile-
giated boosting models whose implementation is easier using Python.

2.3 DMeasuring the Bias with Disparate Impact

2.3.1 Notations

Among the criteria proposed in the literature to reveal the presence of a bias in a dataset or in
automatic decisions (see e.g. Hardt et al. [2016] for a recent review), we focus in this paper on
the so-called statistical parity. This criterion deals with the differences in reference decisions or
the outcome of decision rules with respect to a sensitive attribute. Note that we only consider
the binary classification problem with a single sensitive attribute for the sake of simplicity,
although we could consider other tasks (e.g. regression) or multiple sensitive attributes (see
Hébert-Johnson et al. [2018] or |Kearns et al.| [2018]). Here is a summary of the notations we
use:

e Y is the variable to be predicted. We consider here binary variables where ¥ = 1 is a
positive decision (here a high income) while Y = 0 is a negative decision (here a low
income);

e g(X) = Y is the prediction given by the algorithm. As for Y, this is a binary variable
interpreted such that Y =0orY = 1 means a negative or a positive decision, respectively.
Note that most machine learning algorithms output continuous scores or probabilities. We
consider in this case that this output is already thresholded.

e S is the variable which splits the observations into groups for which the decision rules may
lead to discriminative outputs. From a legal or a moral point of view, S is a sensitive
variable that should not influence the decisions, but could lead to discriminative decisions.
We consider hereafter that S = 0 represents the minority that could be discriminated,
while S = 1 represents the majority. We specifically focus here on estimating the dispro-
portionate effect with respect to two sensitive variables: the gender (male vs. female) and
the ethnic origin (caucasian vs. non-caucasian).

Statistical parity is often quantified in the fair learning literature using the so-called disparate
impact (DI). The notion of DI has been introduced in the US legislation in 1971|:j It measures
the existing bias in a dataset as

P(Y =1|5=0)
PY=1S=1)’

3https://www.govinfo.gov/content /pkg/CFR-2017-title29-vol4 /xml/CFR-2017-title29-vol4-part1607.xml

DI(Y,S) = (2.3.1)
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Table 2.1 — Bias measured in the original dataset

Protected attribute DI CI
Gender 0.3597 | [0.3428,0.3765]
Ethnic origin 0.6006 | [0.5662,0.6350]

and can be empirically estimated as

n10 / ni
(noo + n10)" (no1 +n11)’

(2.3.2)

where n;; is number of observations such that ¥ =4 and S = j. The smaller this index, the
stronger the discrimination over the minority group. Note first that this index supposes that
P(Y =1|1S=0) < P(Y = 1|S = 1) since S is defined as the group which can be discriminated
with respect to the output Y. It is also important to remark that this estimation may be
unstable due to the unbalanced amount of observations in the groups S = 0 and S = 1 and the
inherent noise existing in all data. We then propose to estimate a confidence interval around
the disparate impact in order to provide statistical guarantees of this score, as detailed in the
Supplementary material 2.7.2l These confidence intervals will be used later in this section to
quantify how reliable are two disparate impacts computed on our dataset. This fairness criterion
can be extended to the outcome of an algorithm by replacing in Eq. the true variable Y
by g(X) =Y, that is

P(g(X,S) =1|S=0)
P(g(X.S) = 1S = 1)’

This measures the risk of discrimination when using the decision rules encoded in g on data
following the same distribution as in the test set. Hence, in |Gordaliza et al. [2019] a classifier g
is said not to have a disparate impact at level 7 € (0,1] when DI(g, X,S) > 7. Note that the
notion of DI defined Eq. was first introduced as the 4/5"-rule by the State of California
Fair Employment Practice Commission (FEPC) in 1971. Since then, the threshold 75 = 0.8
was chosen in different trials as a legal score to judge whether the discriminations committed
by an algorithm are acceptable or not (see e.g. [Feldman et al.| [2015] [Zafar et al. [2017a], or
Mercat-Bruns [2016]).

DI(g,X,S) = (2.3.3)

2.3.2 Measures of disparate impacts

The disparate impact DI(g, X, S) should be obviously close to 1 to claim that g makes fair
decisions. A more subtle, though critical, remark is that it should at least not be smaller
than the general disparate impact DI(Y,S). This would indeed mean that the decision rules
g reinforce the discriminations compared with the reference data on which it was trained. We
will then measure hereafter the disparate impacts DI(Y,S) and DI(g, X,S) obtained on our
dataset.

In Table we have quantified confidence intervals for the bias already present in the origi-
nal dataset using Eq. with the sensitive attributes Gender and Ethnic origin. They were
computed using the method of Appendix and represent the range of values the computed
disparate impacts can have with a 95% confidence (subject to standard and reasonable hypothe-
ses on the data). Here the DI computed on the Gender variable then appears as very robust
and the one computed on the Ethnic origin variable is relatively robust. It is clear from this
table that both considered sensitive attributes generate discriminations. These discriminations
are also more severe for the Gender variable than for the Ethnic origin variable.
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We have then measured the disparate impacts Eq. obtained using the predictions made
by the four models in the 10-folds cross-validation of Section These disparate impacts are
presented in Fig. We can see that, except for the decision tree with the Ethnic origin
variable, the algorithms have smaller disparate impact than for the true variable. The impact
is additionally clearly worsened with the Gender variable using all trained predictors. These
predictors therefore reinforced the discriminations in all cases by enhancing the bias present
in the training sample. Observing the true positive and true negative rates of Fig. which
distinguish the groups S = 0 and S = 1 is particularly interesting here to understand this effect
more deeply. As already mentioned Section the true negative (TN) rates are generally
higher than the true positive (TP) rates. It can be seen Fig. that this phenomenon is clearly
stronger in the subplot representing the TP and TN for S = 0 than the one representing them
for S = 1, so false predictions are more favorable to the group S = 1 than the group S = 0.
This explains why the disparate impacts of the predictions are higher than those of the original
data (boxplots Ref in Fig. [2.4)). Note that these measures are directly related to the notions
of equality of odds and opportunity as discussed in Hardt et al. [2016]. The machine learning
models we used in our experiments were then shown as unfair on this dataset, in the sense that
discrimination is reinforced.
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Figure 2.4 — Bias measured in the outputs of the tested machine learning models (LR, DT, GB,
NN) using the 10-folds cross validation. The disparate impacts of the reference decisions are
represented by the boxplot Ref to make clear that the unfairness is almost always re-inforced
in our tests by automatic decisions. These is also a good balance between the true and the
false positive decisions when the results are close to the dashed blue line. (Top) Gender is the
sensitive variable. (Bottom) FEthnic origin is the sensitive variable.

As pointed out in Friedler et al. [2019], there may have a strong variability when computing
the disparate impact of different subsamples of the data. Hence, we additionally propose in
this paper an exact Central Limit Theorem to overcome this effect. The confidence intervals
we obtain prove their stability when confronted to bootstrap replications and for this therefore
cross-validated our results using 10 replications of different learning and test samples on the
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three algorithms. The construction of these confidence intervals are postponed to Section [2.7.2
while comparison with bootstrap procedures are detailed in Section of the Appendix. In
order to conveniently compare the bias in the predictions with the one in the original data, we
show on the left the bias measured in the data. We can see that these boxplots are coherent with
the results of Table and Figure 2.4] and again show that the discrimination was reinforced
by the machine learning models in this test.

In all generality, we conclude here that one has to be careful when training decision rules.
They can indeed worsen existing discriminations in the original database. We also remark that
the majority of works using the Disparate Impact as a measure of fairness rely only on this
score as a numerical value with no estimation of how reliable it is. This motivated the definition
of our confidence intervals strategy in Appendix which was shown to be realistic in our
experiments when comparing the Ref boxplots of Figure [2.4 with the confidence intervales of
Tables Note that we will only focus in the rest of the paper on the protected variable
Gender since it was shown in Section to be clearly the variable leading to discrimination
for all tested machine learning models. We will also only test the Logistic Regression (LR) and
Decision Tree (DT) as they are highly interpretable, plus the Gradient Boosting (GB) model
which was shown to be the best performing one on the Adult Census dataset.

2.4 A quantitative evaluation of GDPR recommendations against
algorithm discrimination

Once the presence of bias is detected, the goal of machine learning becomes to reduce its im-
pact without hampering the efficiency of the algorithm. Actually, the predictions made by the
algorithm should remain sufficiently accurate to make the machine learning model relevant in
Artificial Intelligence applications. For instance, the decisions Y made by a well balanced coin
when playing head or tail are absolutely fair, as they are independent of any possible sensitive
variable .S. However, they also do not take into account any other input information X, making
them pointless in practice. Reducing the bias of a machine learning model g therefore ideally
consists in getting rid of the influence of S in all input data (X, S) while preserving the relevant
information to predict the true outputs Y. We will see below that this is not that obvious, even
in our simple example.

It is first interesting to remark that the problem cannot be solved by simply having a balanced
amount of observations with § = 0 and S = 1. We indeed reproduced the experimental protocol
of Sectionwith 16,192 randomly chosen observations representing males (instead of 32,650),
so that the decision rules were trained in average with as many males as females. As shown in
Fig. the trends of the results turned out to be very similar to those obtained in Fig.
(Gender).

We specifically study in section the effect of complying to the European regulations. From
a legal point of view, the GDPR’s recommendation indeed consists in not using the sensitive
variable in machine learning algorithms. Hence, we simply remove here S from the database in
subsection [2.4.1] and we consider in subsection [2.4.2] one of the most common legal proof for
discrimination called the testing method. It consists in considering the response for the same
individual but with a different sensitive variable. We will study whether this procedure enables
to detect the group discrimination coming from the decisions of an algorithm.
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Figure 2.5 — Bias measured in the outputs of the LR, DT and GB machine learning models using
the same experimental protocol as in Section m (see specifically Fig. ( Gender)), except
that we used the same amount of males (S = 1) and females (S = 0) in the dataset.

2.4.1 What if the sensitive variable is removed?

The most obvious idea to remove the influence of a sensitive variable S is to remove it from the
data, so we cannot use it when training the decision rules and then obviously when making new
decisions. Note that this solution is recommended by GPDR regulations. To test the pertinence
of this solution, we considered the algorithms analyzed in Sections and and then used
them without using the Gender variable. As in Section [2.3] a 10-fold cross-validation approach
was used to assess the robustness of our results.

As shown Figure [2.6} (top), the disparate impacts as well as the model accuracies remained
almost unchanged when removing the Gender variable from the input data. Anonymizing
database by removing a variable therefore had very little effect on the discrimination that is
induced by the use of an automated decision algorithm. This is very likely to be explained by the
fact that a machine learning algorithm uses all possible information conveyed by the variables.
In particular, if the sensitive variable (here the Gender variable) is strongly correlated to other
variables, then the algorithm learns and reconstruct automatically the sensitive variable from
the other variables. Hence we can deduce that social determinism is stronger than the presence
of the sensitive variable here, so the classification algorithms were not impacted by the removal
of this variable.

Obtaining fairness is a far more complicated task than this simple trick. It is at the heart
of modern research on fair learning. More complex fairness mathematical methods to reduce
disparate treatment are discussed for instance in Kleinberg et al.| [2016] or in |Gordaliza et al.
[2019].

2.4.2 From Testing for bias detection to unfair prediction

Testing procedures are often used as a legal proof for discrimination. For an individual pre-
diction, such procedures consist in first creating an artificial individual which shares the same
characteristics of a chosen individual that suspects a disparate treatment and discrimination,
but has a different protected variable. Then it amounts to testing whether this artificial indi-
vidual has the same prediction as the original one. If the predictions differ, then this conclusion
can serve as a legal proof for discrimination.

These procedures have existed for a long time (since their introduction in 1939 E[) , and
since 2006 when the French justice has taken them as a proof of biased treatment, although the

‘https://fr.wikipedia.org/wiki/Test_de_discrimination
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Figure 2.6 — Performance of the machine learning models LR, DT and GB when (top) removing
the Gender variable, and (bottom) when using a testing procedure.

testing process itself has been qualified as unfailﬂ Furthermore, this technique has been gen-
eralized by sociologists ans economists (see for instance Riach and Rich|[2002] for a description
of such method) to statistically measure group discrimination in housing and labour market by
conducting carefully controlled field experiments.

This testing procedure considered as a discrimination test is nowadays a commonly used
method in France to assess fairness for sociological studies of Observatoire des discriminationd]
and laboratoire TEPP as pointed out in [L’Horty et al., or governemental studies DAREQZ] of
French Ministry of Work ISM Corum ﬂ Some industries are labeled using such test. An audit
quality of recruiting methods is proposed while Novethzdﬂ proposes ethic formations.

Testing is efficient to detect human discrimination specially in labour market but hiring tech
is producing more and more softwares or web platforms performing predictive recruitment as
in Raghavan et al. [2020]. Does testing remain valid in front of machine learning algorithms?
This last strategy is evaluated using the same experimental protocol as in the previous sections.
The results of these experiments are shown in Figure 6-(bottom). Testing does not detect any
discrimination when the sensitive variable is captured by the other variables.

An algorithmic solution to bypass this testing procedure is given by the following trick. Train
a classifier as usual using all available information X, S and then build a testing compliant version
of it as follows : for an individual, the predicted outcome is assigned as the best decision obtained
on the actual individual f(z,s) and a virtual individual with exactly the same characteristics
as the original one, except for the protected variable s which has the opposite label s (e.g. the
Gender variable is Male instead of Female), namely f(z,s). Note that in case of multi-class

Shttps://www.juritravail.com/discrimination-physique/embauche/ph-alternative-A-1.html

Shttps://www.observatoiredesdiscriminations.fr/testing

"https://dares.travail-emploi.gouv.fr/dares-etudes-et-statistiques/etudes-et-syntheses/
dares-analyses-dares-indicateurs-dares-resultats/testing

Shttp://www.ismcorum.org/

9https://www.novethic.fr/lexique/detail/testing.html
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labels, the outcome should be the most favourable decision for all possible labels. This classifier
is fair by design in the sense that no matter their gender, the testing procedure can not detect a
change in the individual prediction.

Nevertheless, this trick against testing cannot cheat usual evaluation of discrimination by
using a disparate impact measure which is usual in the USA by measuring the impact on real
and not fictitious recruitment. This is the reason why hiring tech companies add some facilities
(Raghavan et al.|[2020]) to mitigate ethnic bias of algorithmic hiring for avoiding an enterprise
juridical complications. The evaluation of this strategy is evaluated using the same experimental
protocol as in the previous sections and these are shown in Figure [2.6}(bottom).

As expected for previous results, this method has little impact on the classification errors
and the disparate impacts. This emphasises the conclusion of Section claiming that the
Gender variable is captured by other variables. Removing the effect of a sensitive variable can
therefore require more advanced treatments than those described above.

2.5 Differential treatment for fair decision rules

2.5.1 Strategies

As we have seen previously, bias may induce discrimination of an automatic decision rule. Al-
though many complex methods have been developed to tackle this problem, we investigate in this
section the effects of two easy and maybe naive modifications of machine learning algorithms.
We present in this section the effect of two alternative strategies to build fair classifiers. They
have in common the idea of considering different treatments according to each group S = {0,1}.
These strategies are the following :

1. Building a different classifier for each class of the sensitive variable: This strategy
consists in training the same prediction model with different parameters for each class of
the sensitive variable. We denote separate treatment this strategy.

2. Using a specific threshold for each class of the sensitive variable: Here, a single
classifier is trained for all data to produce a score. The binary prediction is however
get using a specific threshold for each sub-group S = 0 or S = 1. Note that when the
score is obtained by estimating the conditional distribution n(z) = P(Y = 1|X = z)
then the threshold used is often 0.5. Here this threshold is made S-dependent and is
adapted to avoid any possible discrimination. In practice, we keep a threshold of 0.5 for
the observations in the group S = 1 but we adapt the corresponding threshold for the
observations in the group S = 0. In our tests, we automatically set this threshold on
the training set so that the disparate impact is close to 0.8 in the cases where it was
originally lower to this this socially accepted threshold. The classifier and the potentially
adapted threshold are then used for further predictions. This corresponds in a certain way
to favour the minority class by changing equality to equity. We denote this strategy as
positive discrimination since this procedure corresponds to this purpose.

2.5.2 Results obtained using the Separate Treatment strategy

Splitting the model parameters into parameters adapted to each group reduces the bias of
the predictions when compared to the initial model, but it does not remove it. As we can
see in Figure (top), where the notations are analogous to those in the above figures, it
improved the disparate impact in all cases for relatively stable prediction accuracies. Note that
the improvements are more spectacular for the basic Logistic Regression and Decision Tree
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Figure 2.7 — Performance of the machine learning models LR, DT and GB when (top) using
a Separate Treatment for the groups S = 0 and S = 1, and (bottom) when using a Positive
Discrimination strategy for the groups S = 0.

models than for the Gradient Boosting model. This last model is indeed particularly efficient
to capture fine high order relations between the variables, which gives less influence to the
strong non-linearity generated when splitting the machine learning model into two class-specific
models. Hence building different models reduces but does not solve the problem, the level of
discrimination in the decisions being only slightly closer to the level of bias in the initial dataset.

2.5.3 Results obtained using the Positive Discrimination strategy

Results obtained using the positive discrimination strategy are shown in Figure ( bottom,).
They clearly emphasize the spectacular effect of this strategy on the disparate impacts, which
can be controlled by the data scientist. By adjusting the threshold, it is possible to adjust the
levels of discriminations in the dataset, as in this example where the socially acceptable level of
0.8 can be reached. In this case we see a decrease in the performance of the classifier, but yet
being reasonable.

These results should however be tempered for a main reason. Although the average error
receives little changes, the number of false positive cases of women is clearly increased when
introducing positive discrimination. In our tests more than half of the predictions that should
have been false in the group S = 0 are even true. These false positive decisions have a limited
impact on the average prediction accuracy as they where obtained in the group S = 0 which has
less observations than S = 1 and that there are clearly less true predictions with ¥ = 1 than
Y = 0. Yet false positive errors are considered as the most important error type and thus this
increase may be very harmful for the decision maker. On a legal point of view, this procedure
may be judged as unfair or rises political issues that are far beyond the scope of this paper.
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2.6 Conclusions

In this paper, we provided a case-study of the use of machine learning technics for the prediction
of the well-known Adult Income dataset. We focused on a specific fairness criterion, the statistical
parity, which is measured through the Disparate Impact. This metric quantifies the difference of
the behaviour of a classification rule applied for two subgroups of the population, the minority
and the majority. Fairness is achieved when the algorithm behaves in the same way for both
groups, hence when the sensitive variable does not play a significant role in the prediction. Main
results are summarized in Figure |2.8

In particular, we convey the following take-home messages: (1) Bias in the training data
may lead to machine learning algorithms taking unfair decisions, but not always. While there
is a clear increase of bias using the tested machine learning algorithms with respect to the
Gender variable, the Ethnic Origin does not lead to a severe bias. (2) As always in Statistics,
computing a mere measure is not enough but confidence intervals are needed to determine the
variability of such indexes. Hence, we proposed an ad-hoc construction of confidence intervals
for the Disparate Impact. (3) Standard regulations that promote either the removal of the
sensitive variable or the use of testing technics appeared as irrelevant when dealing with fairness
of machine learning algorithms.
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Figure 2.8 — Summary of the main results: The best performing algorithms of Sections and
are compared here. (top) Boxplots of the disparate impacts from the least accurate method
on the left, to the most accurate method on the right, and (bottom) corresponding true positive
and true negative rates in the groups S =0 and S = 1.
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Note also that different notions of fairness (local and global) are at stake here. We first
point out that testing methods focus on individual fairness while statistical methods such as the
Disparate Impact Analysis tackle the issue of group fairness. These two notions if related to the
similar notion of discrimination with respect to an algorithmic decision are yet different. In this
work, we showed that an algorithm can be designed to be individually fair while still presenting
a strong discrimination with respect to the minority group. This is mainly due to the fact
that testing methods are unable to detect the discrimination hidden in the algorithmic decisions
that are due to the training on an unbalanced sample. Testing methods detect discrimination if
individuals with the same characteristics but different sensitive variables are treated in a different
way. This corresponds to trying to find counterfactual explanation to an individual with a
different sensitive variable. This notion of counterfactual explanations to detect unfairness has
been developed in Kusner et al. [2017]. Yet the testing method fails in finding a counterfactual
individual since it is not enough to change only the sensitive variable but a good candidate
should be the closest individual with a different sensitive variable but with the variables that
evolve depending on S. For this, following some recent work on fairness with optimal transport
theory as in |Gordaliza et al. [2019] developing an idea from Feldman et al.| [2015], some authors
propose a new way of testing discrimination by computing such new counterfactual models in
Black et al. [2020]. Finally, we tested two a priori naive solutions consisting either in building
different models for each group or in choosing different rules for each group. Only the latter
that can be considered as positive discrimination proves helpful in obtaining a fair classification.
Note that if some errors are increased (false positive rate), this method has a good generalization
error. Yet in other cases, the loss of efficiency could be greater and this method may lead to
unfair treatment.

This data set has been extensively studied in the literature on fairness in machine learning
and we are well aware of the numerous solutions that have been proposed to solve this issue.
Even with standard methods, it is possible for a data scientist, when confronted to fairness
in machine learning, to design algorithms that have very different behaviors and yet achieving
a good classification error rate. Some algorithms hamper discrimination in the society while
others just maintain its level, and some others correct this discrimination and provide gender
equity. It is worth noting that the most explainable algorithms, such as the logistic regression,
do not protect from discrimination. On the contrary, the capture of gender bias is inmediate
due to its simplicity, while more complex algorithms might be more protected from this spurious
correlation or, since the variable is discrete, better said spurious dependency.

The choice of a model should not be driven only by its performance with respect to a
generalization error but should also be explainable in terms of bias propagation. For this,
measures of fairness should be included in the evaluation of the model. In this work, we only
considered statistical parity type fairness but many other definitions are available, without any
consensus on the better choice for such a definition neither from a mathematical or a legal point
of view. A strong research effort in data science is hence the key for a better use of Artificial
Intelligence type algorithms. This will allow data scientists to describe precisely the algorithmic
designing process, as well as their behaviour, in terms of precision and propagation of bias.

In closing, note that biases are what enables machine learning algorithms to work and help-
fulness of complex algorithms is due to their ability to find hidden bias and correlations in very
large data sets. Hence bias removal should be handled with care because one part of this informa-
tion is crucial, while the other is harmful. Therefore, explainability should not be understood in
terms of explainability of the whole algorithm, but maybe one line of future research in machine
learning should focus on explainability of the inner bias of an algorithm, or its explainability
with respect to some legal regulations.
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Table 2.2 — The Adult Income dataset

N° | Label Possible values

1 | Age Real

2 | workClass Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-
gov, Withoutpay, Never-worked

3 | fnlwgt Real

4 | education Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm,
Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-
6th, Preschool

5 | educNum integer

6 | mariStat Married-civ-spouse, Divorced, Nevermarried, Separated, Widowed,
Marriedspouse- absent, Married-AF-spouse

7 | occup Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-
specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-
fishing, Transportmoving, Priv-house-serv, Protective-serv, Armed-
Forces

8 | relationship | Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried

9 | origEthn White, Asian-Pac-Islander, Amer-Indian- Eskimo, Other, Black

10 | gender Female, Male

11 | capitalGain | Real

12 | capitalloss | Real

13 | hoursWeek Real

14 | nativCountry | United-States, Cambodia, England, Puerto-Rico, Canada, Germany,
Outlying- US(Guam-USVlI-etc), India, Japan, Greece, South, China,
Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam,
Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador,
Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland,
Thailand, Yugoslavia, El-Salvador, Trinidad and Tobago, Peru, Hong,
Holand- Netherlands

15 | income > 50k, < 50k

2.7 Appendix to Chapter

2.7.1 The Adult Income dataset

2.7.1.1 Data preparation

As discussed in the introduction of Section the study has started with a detailed preprocess-
ing of the raw data to give a more clear interpretation to further analyses. First, we noticed that
the variable fnlwgt (Final sampling weight) has not a very clear meaning so it has been removed.
For a complete description of such variable access the link http://web.cs.wpi.edu/~cs4341/
CO0/Projects/fnlwgt. We have also performed a basic and multidimensional exploration
(MFCA) to represent the possible sources of bias in the data in https://github.com/wikistat/
Fair-ML-4-Ethical-AI/blob/master/AdultCensus/AdultCensus-R-biasDetection.ipynbl

This exploration leaded to a deep cleaning of the data set and highlighted difficulties present
on certain variables, raising the need to transform some of them before fitting any statistical
model. In particular, we have deleted missing data, errors or inconsistencies; grouped together
certain highly dispersed categories and eliminated strong redundancies between certain variables.
This phase is notoriously different from the strategy followed by |[Friedler et al.|[2019] who analyze
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raw data directly. Some of these main changes are listed below:
e Variable 3 fnlwgt is removed since it has little significance for this analysis.
e The binary variable child is created to indicate the presence or absence of children.
e Variable 8 relationship is removed since it is redundant with gender and mariStat.
e Variable 14 nativCountry is removed since it is redundant with variable origEthn.
e Variable 9 origEthn is transformed into a binary variable: CaucYes vs. CaucNo.
e Varible 4 education is removed as redundant with variable educNum.

e Additionally clean-up the < 50K, < 50K, > 50K and > 50K in variable “Target”

2.7.2 Testing lack of fairness and confidence intervals

Let (Xi,SZ-,Y; = g(Xi)> ,i = 1,...,n, be a random sample of independent and equally dis-
tributed variables. Previous criterion can be consistently estimated by their empirical version.
Yet the value of the criterion may depend on the data sample. Due to the importance of ob-
taining an accurate proof of unfairness in a decision rule it is important to obtain confidence
intervals in order to control the error of detecting unfairness. In the literature it is often achieved
by computing the mean over several sampling of the data. We provide in the following the exact
asymptotic behaviors of the estimates in order to build confidence intervals.

Theorem 2.7.1 (Asymptotic behavior of the disparate impact estimator) Set the em-
pirical estimator of DI(g) as

2im Lgex=1lsi=0 2 iy Isi=1
> Loxn=11si=1 221 Ls,=0
Then the asymptotic distribution of this quantity is given by

Y~ DI(g, X, 8)) % N(0,1), as n— oo, (2.7.1)
g

T, =

where o = \/VgoT (EZ1) 34V (EZy) and

T 1 bom1  PpoT1 Po
Vo (]Ezl) = < y T o9 2 )
b1mo  piTo P17y P1TO

po(1 — po)
5, = —pop1 p1(l—p1) ’
m1P0 —Top1 ToT1
—T71Po Top1 —ToT1  TT1

where we have denoted 75 = P(S1 = s) and ps =P(g(X1) =1,5=s), s=0,1, .

Proof:
Consider for ¢ = 1,...,n, the random vectors

Lyx)=11s=0

Z; = ]]'g(Xi):ll]'Sizl
Is;=0
Ts,=1

42



where 1,x,)=11s,=s ~ B(P(g9(X;) = 1,5; = s)) and 1g,=5s ~ B(P(S; = 5)), s =0,1,. Thus, Z;
has expectation

P(g(Xi) =1,5; =0)

| Ple(Xy) =1,8=1)
BZi= s 2o
P(S; = 1)

The elements of the covariance matrix Y4 of Z; are computed as follows:
Cov (Ly(x;)=1Lsi=0, Ly(x)=1Lsi=1) = E (lﬁ(xi)zllsizo]lsizl) —Pg(Xi) =1,8 = 0)P(g(X:) =
Cov (Lg(x)=1151=0, Is,=0) = E (Lg(x))=113,—0) — P(9(Xi) = 1,8 = 0)P(S; = 0)
=P(g(Xi) = DP(Si = 0) — P(¢(X3) = 1,5 = 0)P(S; = 0)
=[1-P(S =0)]P(g(X;) = 1,5 =0

Cov (1g(x,)=11s,=0, Is,=1) = E (Iyx,)=1ls,=0ls;=1) — P(9(Xi) = 1,5; = 0)P(S; = 1)

Cov (Lyxy=11s,=1,Ls,—0) = E (Lyx,)=1ls,—ols,=1) — P(9(Xi) = 1,

I
—_
S—
~
—~
®n

I
=)
S—

Cov (Ly(x;)=11s,=1, Is,=1) = E (Ty(x,)=115,21) — P(Si = DP(g(X;) = 1,8; = 1)
=P(g(X;) = 1,8 =1) = P(S; = )P(g(X;) = 1,5 = 1)
=P(g(X;) = 1,8 =1)[1 - P(S; = 1)]
=P(g(X;) =1,S; = 1)P(S; =0)

and finally,
Cov(lg,—0, Lg;=1) = E (Lg;=0lg,=1) — P(S; = 0)P(S; = 1) = —P(S; = 0)P(S; = 1).
From the Central Limit Theorem in dimension 4, we have that
N (Zn — IEZI) 4 Ny (0,%4), as n — oo.
Now consider the function

p: R* — R
14

($1,132,ZE3,$4) —
o3

Applying the Delta-Method (see in [Van der Vaart|[1998]) for the function ¢, we conclude that

Vi (9(Zn) — p(BZ1)) % VT (BZ)) Ny (0,%4), as n — oo,

where ¢(Z,) =T,, ¢(EZ,) = DI(¢9,X,S). O
Hence, we can provide a confidence interval when estimating the disparate impact over
a data set. Actually (Tn + %Zl_%> is a confidence interval for the parameter DI(g, X, S)

asymptotically of level 1 — .
Previous theorem can be used to test the presence of disparate impact at a given level.

Hop: DI(g,X,S)<p ws. Hypg: DI(g,X,S)>p (2.7.2)
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aims at checking if g has Disparate Impact at level 5. We want to check wether DI(g, X, S) < 5.
Under Hy, the inequality T,, — 8 < T,, — DI(g, X, S) holds, and so

\ﬁﬁ (T, — B) < \éﬁ (T, — DI(g9,X,5)).
Finally, from the inequality above and Eq. , we have that
Py, <\£ﬁ (T, — B) < Zla> > Py, ({f (T, — DI(g9,X,S)) < Z1a> —r 1l—-a,
as n — oo and, equivalently,
Pr, <‘(/f (T, = B) > Zl_a> < Py, (\f (T, — DI(g,X,5)) = Zl—a> —

as n — oo, where Z;_, is the (1 — a)-quantile of N(0,1). In conclusion, the test rejects Hy at
level o when

n
P, <\O_f (T, — B) = Zl—a) > .

When dealing with equality of odds, we want to study the asymptotic behavior of the estima-
tors of the true positive and true negative rates across both groups. The reasoning is similar for
the two rates, so we will only show the convergence of the true positive rate estimator, denoted
in the following by T'P(g).

Theorem 2.7.2 Set the following estimate of the true positive rate of a classifier g:

>ic1 Lgxp=1lvi=1ls,=0 2 it Lyi=1lg,—1

R, = .
T L= Lg(x=1Ls,=1 2o Tyimi Ls,=o

Then, the asymptotic distribution of this quantity is given by

\f (Rn — TP(g)) % N(0,1), as n — oo, (2.7.3)

where o = \/chT (EZ1) 24V (EZy) and

T 1 PoT1  PoT1  Po
VSO (EZl) = < y — 2 y — 2 s >
pbiro  piTo  PiTg PiTo

po(1—po)
= —por1 pi(l—p1)
po(l—ro)  —piro  7ro(1—170) ’
PoT1 pr(l—r1)  —ror1  ri(l—171)

where we have denoted ps = P(g(X1) = 1,Y1 = 1,51 = s), and rs = P(Y1 = 1,5 = s), for
s=0,1.

Proof of Theorem The proof follows the same guidelines of previous proof. We set here
:ﬂ'g(Xi)zlzﬂ‘i/izl]]-SiZO
Zi = ]]'Q(Xi)zlﬂnzll]'si=l

Iy,=11s,=0

Ty,=11s5,=1
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where ]lg(Xi):l]]‘)/i:l:[]‘SiZS ~ B(]P’(g(XZ) = 17Yi = 1,Si = 8)) and ]lyz:lllgizs ~ B(P(Y; = 1,52' =
s)), s =0,1,. From the Central Limit Theorem, we have that

Vn (Z, —EZy) 4 Ny (0,%4), as n — oo.

with
Po(1 — po)
—por1 pi(l—p1)
Y= . 2.74
* po(l—ro)  —piro ro(1—r70) ( )
DPor1 p1(l—r1) —ror1 ri(l—r)
Now consider the function
E R* — R
T1T4
(x1, 2,23, 24) —>
23

Applying the Delta-Method for the function ¢, we conclude that
= d
Vi (e(Z,) — p(EZy)) = Vol (EZ1) Ny (0,%4), as n — oo,
where ¢(Z,) = Ry, and ¢(EZ;) = TP(g). O

2.7.3 Bootstraping vs. Direct Calculation of IC interval

The estimation of the Disparate Impact is unstable. In this paper we promote the use of the
theoretical confidence interval based on the well known Delta method to control its variability.
Contrary to [Morris and Lobsenz, it does not rely on Gaussian approximation. We compare
the stability of this confidence interval to bootstrap simulations, see for instance in [Efron and
Tibshirani [1994] for more details on bootstrap methods.

For this we build 1000 bootstrap replicates and estimate the disparate impact. Figure [2.9
presents the simulations. We can see that the bootstrap simulations remain in the confidence
interval. Moreover, if we build a confidence interval for the bootstrap estimator, the confidence
intervals are the same. We obtain by the theoretical confidence interval [0.349,0.384] while the
bootstrap’s confidence interval is [0.349,0.385]. Hence the theoretical confidence is a reliable
measure of fairness for the data set and should be preferred due to its small computation time
compared to the 1000 bootstrap replication.

Note that in this paper, for sake of clarity, we have chosen to focus only on the disparate im-
pact criterion. Yet all other fairness criteria should be given with the calculation of a confidence
interval. For instance in del Barrio et al.| [2019b] we propose confidence intervals for Wasserstein
distance which is used in many methods in fair learning.

2.7.4 Application to other real datasets

To illustrate these tests we have also considered another two well-known and real data sets.

1. German Credit data. This data set is often claimed to exhibit some origin discrimina-
tion in the success of being given a credit by the German bank. Hence we compute the
disparate impact w.r.t Origin. We obtain

DI = 0.77 € [0.68, 0.87].

Hence here confidence intervals play an important role. Actually the disparate impact is
not statistically significantly lower than 0.8, which entails that the discrimination of the
decision rule of the German bank can not be shown, which promotes the use of a proper
confidence interval.
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Figure 2.9 — Comparison with bootstrap computations

2. COMPAS Recidivism data. A third data set is composed by the data of the contro-
versial COMPAS score detailed in Dieterich et al| [2016]. The data is composed of 7214
offenders with personal variables observed over two years. A score predicts their level of
dangerosity which determines whether they can be released while a variable points out if
there has been recidivism. Hence Recidivism of offenders is predicted using a score and
confronted to possible racial discrimination which corresponds to the protected attribute.
The protected variable separates the population into caucasian and non caucasian. To
evaluate the level of discrimination we first compute the disparate impact with respect to
the true variable and the COMPAS score seen as a predictor.

DI =0.76 € [.72,.81]; DI(COMPAS) = 0.71 € [0.68;0.74].

In both cases, the data are biased but the level of discrimination is low. Yet as mentioned
in al the studies on this data set, the level of errors of prediction is significantly different
according to the ethnic origin of the defender. Actually the conditional accuracy scores
and their corresponding confidence intervals show clearly the unbalance treatment received
by both populations.

TPR = 0.6 € [0.54,0.65]

TNR = 3.38 € [2.46,4.3]

This unbalanced treatment is clearly assessed with the confidence interval.
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Chapter 3

Review of Mathematical Frameworks
for Fairness in Machine Learning

The content of this chapter is available online in |del Barrio et al.| [2020] and currently submitted
for publication.
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A review of the main fairness definitions and fair learning methodologies proposed in the
literature over the last years is presented from a mathematical point of view. Following our
independence-based approach, we consider how to build fair algorithms and the consequences
on the degradation of their performance compared to the possibly unfair case. This corresponds
to the price for fairness given by the criteria statistical parity or equality of odds. Novel results
giving the expressions of the optimal fair classifier and the optimal fair predictor (under a linear
regression gaussian model) in the sense of equality of odds are presented.
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3.1 Introduction

With both the introduction of new ways of storing, sharing and streaming data and the drastic
development of the capacity of computers to handle large computations, the conception of models
have changed. Mathematical models were first designed following prior ideas or conjectures from
physical or biological models, then tested by designing experiments to test the validity of the
ideas of their inventors. The model holds until new observations enable to reject its assumptions.
The so-called Big Data’s area introduced a new paradigm. The observed data convey enough
information to understand the complexity of real life and the more the data, the better the
description of the reality. Hence building models optimised to fit the data has become an
efficient way to obtain generalizable models able to describe and forecast the real world.

In this framework, the principle of supervised machine learning is to build a decision rule
from a set of labeled examples called the learning sample, that fits the data. This rule becomes a
model or a decision algorithm that will be used for all the population. Mathematical guarantees
can be provided in certain cases to control the generalization error of the algorithm which
corresponds to the approximation done by building the model based on the observations and
not knowing the true model that actually generated the data set. More precisely, the data are
assumed to follow an unknown distribution while only its empirical distribution is at hand. So
bounds are given to measure the error made by fitting a model on such observations and still
using the model for new data. Yet the underlying assumption is that the observations follow
all the same distribution which can be correctly estimated by the learning sample. Potential
existing bias in the learning sample will be implicitly learnt and incorporated in the prediction.
The danger of an uncontrolled prediction is greater when the algorithm lacks interpretability
hence providing predictions that seem to be drawn from a yet accurate black-box but without
any control or understanding on the reasons why they were chosen.

More precisely, in a supervised setting, the aim of a machine learning algorithm is to learn
the relationships between characteristic variables X and a target variable Y in order to forecast
new observations. Set the learning sample as (Y1, X1),...,(Yn, X,) i.i.d observations drawn
from an unknown distribution IP. Set the empirical distribution P, = 1 3" | §x, y,. The quality
of the prediction will be measured using a loss function defined as £: (Y,Y) — £(Y,Y) € RT to
quantify the error made while predicting Y when Y is observed. Then for a given chosen class
of algorithms F, consider fn the best model that can be estimated by minimizing over F, the
loss function (and possibly a penalty to prevent overfitting for example), namely

fn € arg;réig {711 ;E(Yi, f(X3) + /\penalty(f)} , (3.1.1)

where X balances the contribution of both terms to get a trade-off between the bias and the effi-
ciency of the algorithm. The oracle rule is the best (yet unknown) rule that could be constructed
if the true distribution were known

frearg l}rgng{f(K f(X)) + Apenalty(f)}.

The predictions are given by Y = fn(X ). Results from machine learning theory ensures that for
proper choices of set of rules F, the prediction’s error behaves close to the oracle in the sense
that, from a mathematical point of view, the excess risk

Ep{l(Y, fa(X))} — Be{C(Y, f*(X))}

is small. So mathematical guarantees warrant that the optimal forecast model reproduces the
uses learnt from the learning set for new observations.
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3.2 A definition of fairness in machine learning as independence
criterion

3.2.1 Definition of full fairness

There is no doubt that machine learning is a powerful tool that is improving human life and
has shown great promise in the developping of very different technological applications, includ-
ing powering self-driving cars, accurately recognizing cancer in radiographs, or predicting our
interests based upon past behavior, to name just a few. Yet with its benefits, machine learn-
ing also involves delicate issues such as the presence of bias in the model classifications and
predictions. Hence, with this generalization of predictive algorithms in a wide variety of fields,
algorithmic fairness is gaining more and more attention not only in the scientific research and
Ethics communities (see for e.g. Besse et al. [2018a]), but also among the general population,
who is experiencing a great impact on its daily life and activity. Thanks to this, there has been
a push for the emergence of different approaches for assessing the presence of bias in machine
learning algorithms over the last years. Similarly, various classifications have been proposed to
understand the different sources of data bias. We refer to Mehrabi et al. [2019] for a recent
review.

Consider the probability space (€, B,P), with B the Borel o—algebra of subsets of R? and
d > 1. We will assume in the following that the bias is modeled by the random variable S € S
that represents an information about the observations X € X ¢ R?, that should not be included
in the model for the prediction of the target Y € R? d > 1. In the fair learning literature,
the variable S is referred to as the protected or sensitive attribute. We assume moreover that
this variable is observed. Most fairness theory has been developed particularly in the case when
S = {0,1} and S is a sensitive binary variable. In other words, the population is supposed to
be possibly divided into two categories, taking the value S = 0 for the minority (assumed to
be the unfavored class), and S = 1 for the default (and usually favored class). Hence, we also
study more deeply this case and it will be conveniently indicated in the rest of the chapter, but
in principle we consider general S. From a mathematical point of view, we follow the recent
paper Serrurier et al| [2019] that proposed the two following models that aim at understanding
how this bias could be introduced in the algorithms:

1. The first model corresponds to the case where the data are subject to a bias nuisance
variable which, in principle, is assumed not to be involved in the learning task, and whose
influence in the prediction should be removed. We refer here to the well-known example
of the dog vs. wolf in Ribeiro et al.| [2016], where the input data were images highly biased
by the presence of background snow in the pictures of wolves, and the absence of it in
those of dogs. As shown in Figure this situation appears when the attributes X are
a biased version of unobserved fair attributes X* and the target variable Y depends only
on X*. In this framework, learning from X induces biases while fairness requires:

X*1LS|Y and Y LS| X"
Note that neither X nor Y is independent of the protected S.

2. The second model corresponds to the situation when a biased decision is observed as a
result of a fair score Y* which has been biased by the uses giving rise to the target Y. Thus,
a fair model in this case will change the prediction in order to make them independent of
the protected variable. This is represented in Figure and, formally, it is required that

XLS|Y and YL S|Y,
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where Y™ is not observed. Note that previous conditions do not imply the independence
between Y and S (even conditionally to X).

(a) (b)

Figure 3.1 — Two models for understanding the introduction of bias in the model

In the statistical literature, an algorithm fn is called fair or unbiased when its outcome does
not depend on the sensitive variable. The notion of perfect fairness requires that the protected
variable S does not play any role in the forecast Y = f(X,S) of the target Y. In other words,
we will be looking at the independence between the protected variable S and the outcome 17,
both considering given or not the true value of the target Y. These two notions of fairness are
known in the literature as:

o Statistical parity (S.P.) deals with the independence between the outcome of the algorithm
and the sensitive attribute R
Y1LS (3.2.1)

e FEquality of odds (E.O.) considers the independence between the protected attribute and
the outcome conditionally given the true value of the target

YLS|Y (3.2.2)

Hence, a perfect fair model should be chosen within a class ensuring one of these restrictions
—. Observe that the choice of the notion of fairness is convenient regarding the
assumed model for the introduction of the bias in the algorithm: while statistical parity is
suitable for model equality of odds is for model [3.1D] and especially well-suited for scenarios
where ground truth is available for historical decisions used during the training phase.

In this work, we tackle only these two main notions of fairness developed among the machine
learning community. There are other definitions such as avoiding disparate treatment or predic-
tive parity, defined respectively as Y\X 1L SorY L S ]f’ A decision making system suffers from
disparate treatment if it provides different outcomes for different groups of people with the same
(or similar) values of non-sensitive features but different values of sensitive features [Barocas and
Selbst), 2016]. In other words, (partly) basing the decision outcomes on the sensitive feature value
amounts to disparate treatment. Technically, the disparate treatment doctrine tries to counter
explicit as well as intentional discrimination |[Barocas and Selbst], 2016]. It follows from the
specification of disparate treatment that a decision maker with an intent to discriminate could
try to disadvantage a group with a certain sensitive feature value (e.g., a specific race group)
not by explicitly using the sensitive feature itself, but by intentionally basing decisions on a
correlated feature (e.g., the non-sensitive feature location might be correlated with the sensitive
feature race). This practice is often referred to as redlining in the US anti-discrimination law and
also qualifies as disparate treatment [Gano, 2017]. However, such hidden intentional disparate
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treatment maybe be hard to detect, and some authors argue that statistical parity might be
a more suitable framework for detecting such covert discrimination [Siegel, 2014], while others
focus only on explicit disparate treatment |Zafar et al.l |2019]. For further details, we refer to
the comprehensive study of fairness in machine learning given in Barocas et al. [2019].

The description of the metrics given above applies in a general context, yet all four fairness
measures were originally proposed within the binary classification framework. Hence the litera-
ture cites and equivalent denominations will be presented in the following subsection specifically
for this context.

3.2.2 The special case of classification

Fairness has been widely studied in the binary classification setting. Here the problem consists in
forecasting a binary variable Y € {0, 1}, using observed covariates X € R?, d > 1. We introduce
also a notion of positive prediction: Y = 1 represents a success while Y = 0 is a failure. We
refer to Bousquet et al. [2004] for a complete description of classification problems in statistical
learning. In this framework, the two main algorithmic fairness metrics are specified as follows.

e Statistical parity. Despite the early uses of this notion through the so-called 4/5"-rule for
fair classification purposes by the State of California Fair Employment Practice Commis-
sion (FEPC) in 1971ﬂ it was first formally introduced as statistical parity in Dwork et al.
[2012] in the particular case when S is also binary. Since then it has received several other
denominations in the fair learning literature. For instance, it has been equivalently named
in the same introductory work as demographic parity or group fairness, and also in others
equal acceptance rate [Zliobaite, 2015] or benchmarking [Simoiu et al., [2017]. Formally, if
S € {0,1} this definition of fairness is satisfied when both subgroups are equally probable
to have a successful outcome

PY=1|S=0=P(Y =1|S=1), (3.2.3)

which can be extended to P(Y =1 | S) = P(Y = 1) for general S, continuous or discrete.
A related and more rigid measure is called avoiding disparate treatment in [Zafar et al.
[2017a] if the probability that the classifier outputs a specific value of the forecast given

a feature vector does not change after observing the sensitive feature, namely P(Y =1 |
X,8)=PY =1|X).

e FEquality of odds (or equalized odds) looks for the independence between the error of the
algorithm and the protected variable. Hence, in practice, when S is also binary it compares
the error rates of the algorithmic decisions between the different groups of the population,
and considers that a classifier is fair when both classes have equal False and True Positive
Rates

P(Y=1|Y=i,S=0)=P(Y =1|Y =4,8=1), fori=0,1. (3.2.4)

For general S, we note that this condition is equivalent to
P(Y=1|Y=i,8)=PY =1|Y =4), fori=0,1. (3.2.5)

This second point of view was introduced in Hardt et al| [2016] and has been originally
proposed for recidivism of defendants in [Flores et al.| [2016]. Over the last few years
it has been given several names, including error rate balance in |Chouldechoval [2017] or
conditional procedure accuracy equality in Berk et al.|[2018].

"https://www.govinfo.gov/content /pkg/CFR-2017-title29-vol4/xml/CFR-2017-title29-vol4-part 1607.xml
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Many other metrics have received significant recent attention in the classification literature. In
this setting, the already cited above disparate treatment, also referred to as direct discrimination
[Pedreshi et al., [2008|, looks at the equality for all x € X

PY=1|X=2,5=0=PY=1|X=12S=1) (3.2.6)

Furthermore, we note that equality of opportunity (Hardt et al. [2016] or Kusner et al.| [2017])
and avoiding disparate mistreatment |Zafar et all [2017a] are two metrics related to the previous
equalized odds, yet weaker. The first one requires only the equality of true positive rates, that
is when ¢ = 1 in , while the second looks at the equality of misclassification error rates
across the groups:

PYAY |S=0)=PY #£Y |S=1). (3.2.7)

Thus, equality of odds implies both the lack of disparate mistreatment and equality of opportunity,
but not viceversa. Finally, we mention also here predictive parity which was introduced in
Chouldechoval [2017]. It requires the equality of positive predictive values across both groups.
Therefore, mathematically it is satisfied when

PY=1|Y=1,8S=0=PY =1|Y=1,8=1). (3.2.8)

The fairness metrics defined above are evaluated only for binary predictions and outcomes.
By contrast, we can find also in the literature a set of metrics involving explicit generation of a
continuous-valued score denoted here by R € [0, 1]. Although scores could be used directly, they
can alternatively serve as the input to a thresholding function that outputs a binary prediction.

Among this set, we highlight the notion of test-fairness, which extends predictive parity
when the prediction is a score. An algorithm satisfies this kind of fairness (or it is said
to be calibrated) if for all scores r, the individuals who have the same score have the same
probability of belonging to the positive class, regardless of group membership. Formally, this
is expressed as P(Y =1 | R=7r,S=0)=PY =1| R =r,5 = 1), for all scores r. This
criteria was introduced in|Chouldechova [2017] and has also been termed as matching conditional
frequencies by Hardt et al.| [2016].

A related metric called well-calibration [Verma and Rubin, 2018] or calibration within groups
[Kleinberg et al., [2016] imposes an additional and more stringent condition: a model is well-
calibrated if individuals assigned score r must have probability exactly r of belonging to the
positive class. If this condition is satisfied, then test-fairness will also hold automatically, though
not viceversa. Indeed, we note that the scores of a calibrated predictor can be transformed into
scores satisfying well-calibration.

Finally, balance for positive/negative class was introduced in [Kleinberg et al| [2016] as a
generalization of the notion of equality of odds. Mathematically, this balance is expressed through
the equalities of expected values E(R |Y =¢,5=0)=E(R|Y =i,5=1), i € {0,1}.

3.2.3 Relationships between fairness criteria

It is also important to note that the wide variety of the proposed criteria formalizing different
notions of fairness (see reviews |Berk et al.| [2018] and |Verma and Rubin| [2018] for more details)
has led sometimes to incompatible formulations. The conditions under which more than one
metric can be simultaneously satisfied, and relatedly, the ways in which different metrics might
be in tension have been studied in several works [Chouldechova [2017, [Kleinberg et al., 2016,
Berk et al., |2018]. Indeed, in the following Propositions [3.2.1} [3.2.2] [3.2.3] we revisit three
impossibility theorems of fairness stating the exclusivity, except in non-degenerate cases, of the
three main criteria considered in fair learning.
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We study first the combination of all three of these metrics and then explore conditions under
which it may be possible to simultaneously satisfy two metrics. To begin with, it is interesting to
note that from the definition of conditional probability, the respective probability distributions
associated with each of these three fairness metrics can be expressed as follows:

LY,V |S)=L(Y |V,S)xL(Y |S) (3.2.9)

=LY |Y,8) x L(Y | S). (3.2.10)

We observe that on the right-hand side of equality (3.2.9) the first factor refers to predictive

parity, while the second one to statistical parity. Similarly, in the equality (3.2.10)) the first term

represents equality of odds while the second one the base rate, that is the distribution of the
true target among each group.

While the three results for fairness incompatibilities are stated hereafter in a general learning

setting and their proofs are gathered in the Appendix[3.6.1] in this section we present a discussion
in the binary classification framework. Let us consider then the following notations for s € {0, 1},

e TPR,:=P(Y =1|Y =1,8 = s) the group-specific true positive rates

e 'PR, := ]P’(Y =1]Y =0,5 = s) the group-specific false positive rates

e PPV, :=P(Y =1| Yy = 1, S = s) the group-specific positive predictive values

We consider first if a predictor can simultaneously satisfy equalized odds and statistical parity.

Proposition 3.2.1 (Statistical parity vs. Equality of odds) If S and Y are not indepen-
dent and Y and Y are not independent, then statistical parity and equality of odds cannot hold
sitmultaneously.

In the special case of binary classification the result can be sharpened as follows. Observe
that we can write for s € {0, 1},

P(Y=1|S=s)=P(Y =1|8=3s)TPR,+P(Y =0]|8 =s)FPR, (3.2.11)

Then computing the difference between expression (3.2.11]) for each class and assuming that
equalized odds holds, namely

TPRy=TPR, =P(Y =1|Y =1) and FPRy = FPR, =P(Y =1|Y =0),
we obtain

P(Y=1|8S=0)-P(Y =1]|5=1)
=P(Y=1|8=0-PY =1|S=1)PY =1|Y =1)
+PY =0|S=0-PY =0]|S=1)P(Y =1|Y =0)
=PY=1|8=0-PY =1|S=1)PY =1|Y=1)-PY =1|Y =0))

Statistical parity requires that left side is exactly zero. Hence, for the right side also being zero
necessarily P(Y =1 | S=0)=P(Y =1|S=1) Py =1|Y=1)=PY =1|Y =0).
However, it is usually assumed that base rates differs across the groups, that is, the ratio of
people in the group who belong to the positive class (Y = 1) to the total number of people in
that group. Thus, statistical parity and equalized odds are simultaneously achieved only if true
and false positive rates are equal. While this is mathematically possible, such condition is not
particularly useful since the goal is typically to develop a predictor in which the true positive
rate is significantly higher than the false.
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Proposition 3.2.2 (Statistical parity vs. Predictive parity) IfS andY are not indepen-
dent, then statistical parity and predictive parity cannot hold simultaneously.

By contrast, in the binary classification setup the two fairnessAmetrics are actually simulta-
neously feasible. Assume that statistical parity holds, that is, P(Y = 1|S =1) =P(Y = 1|S =
0) = P(Y = 1). Then, from equations (3.2.9)-(3.2.10) we can write the difference of positive
predictive values

TPRyP(Y =1|S=0)—TPRP(Y =1|S =1)

PPV, — PPV} = _ (3.2.12)
P(Y =1)

Under predictive parity the left side of the above equation must be zero, which in turn requires
that the ratio of the true positive rates of the two groups be the reciprocal of the ratio of the
base rates, namely

TPRy P(Y =1|5=1)

= 2.1
TPR, P(Y =1|S=0) (32.13)

Thus, while statistical and predictive parity can be simultaneously satisfied even with different
base rates, the utility of such a predictor is limited when the ratio of the base rates differs
significantly from 1, as this forces the true positive rate for one of the groups to be very low.

Proposition 3.2.3 (Predictive parity vs. Equality of odds) If S and Y are not indepen-
dent then predictive parity and equality of odds cannot hold simultaneously.

We explore this incompatibility in more detail in the binary classification framework. If both
conditions hold

TPRy=TPR,, FPRy=FPRy, and PPVy= PPV, (3.2.14)
SO we can write

PY=1]8)=> PY=1|Y=iSPY =1[85)=TPRP(Y =1|S5)+ FPRPY =0]5).
i=0,1

This together with equations — implies
P(Y =1]Y =1,8 = 0)P(Y = 1|S = 0)
—P(y=1Y =1,5=0) [TPROP(Y = 1|S) + FPRoP(Y = 0|5 = 0)] :
and using the notations above we obtain
TPRyP(Y = 1|S = 0) = PPV, [TPROIP(Y = 1|S) + FPRy(1 - P(Y = 1|S = 0))] .

Finally, we obtain the following expressions for the group-specific base rate for s =0

PPVyFPRy
P(Y =1|S=0) = 2.1
( [5=10) PPVyFPRy + (1 — PPVy)T PRy (3.2.15)

and reasoning likewise for s =1

PPViFPR,
P(Y =1|S=1) = 2.1
( §=1) PPViFPR, + (1 — PPV)TPR, (3:2.16)
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Hence, in the absence of perfect prediction, under assumption base rates have to
be equal for both equalized odds and predictive parity to simultaneously hold. When perfect
prediction is achieved, equations and take on the indefinite form 0/0 so therefore
do not convey anything definitive about base rates in that scenario.

We also note that the less strict metric equal opportunity (recall it requires only equal TPR
across groups) is compatible with predictive parity. This is evident from equations and
(3.2.16) when the condition FPRy = F'PR; is removed, thereby allowing equalized opportunity
and predictive parity to be simultaneously satisfied even with unequal base rates. However,
achieving this condition with unequal base rates will require that the FPR differs across the
groups. When the difference between the base rates is large, the variation between group-
specific FPRs may have to be significant which may reduce suitability for some applications.
Hence, while equal opportunity and predictive parity are compatible in the presence of unequal
base rates, practitioners should consider the cost (in terms of FPR difference) before attempting
to simultaneously achieve both. A similar analysis is possible when we considering parity in
negative predictive value instead of positive predictive value, i.e. equal opportunity and parity
in NPV are compatible, but only at the cost of variation between group-specific true negative
rates (TNRs).

3.3 Price for fairness in machine learning

In this section, we consider how to build fair algorithms and the consequences on the degradation
of their performance compared to the possibly unfair case. This corresponds to the price for
fairness.

Recall that the performance of an algorithm is measured through its risk defined by

R(f) = E(L(Y, f(X,9))).
Define some class or restriction of classes

Fsp={f(X,S)eF st Y LS} (3.3.1)
Fro={f(X,S) € F st Y|Y LS} (3.3.2)

From a theoretical point of view, a fair model can be achieved by restricting the minimization
(3.1.1)) to such classes. The price for fairness is

Erar(F) = inf R(f) — inf R()). (33.3)
If F denotes the class of all measurable functions, then inf;c 7 R(f) is known as the Bayes Risk.
In the following, we will study the difference of the minimal risks in under both fairness
assumptions and in two different frameworks, regression and classification, through an optimal
transport based approach.

Optimal transport (OT) is a foundational problem in optimization, that allows to compare
probability distributions while taking into account geometric aspects. Its optimal objective
value, the Wasserstein (a.k.a Monge-Kantorovich) distance, provides an important loss between
distributions that has been used in many applications throughout machine learning and statis-
tics, being one of the current trends among the research community |[Hiutter and Rigollet} 2019,
Bigot,, 2019, Ballu et al., 2020, Mérigot et al., 2019} Niles-Weed and Rigollet} 2019]. We refer to
Villani| [2009] for a detailed description on OT theory. For P and @ two probability measures
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on R, the squared Wasserstein distance between P and @ is defined as

P, — yl|Pdn(
WiP.Q)i= iy [ e~ ylPdn(a.y)

where TI(P, Q) the set of probability measures on R? x R? with marginals P and Q.

3.3.1 Price for fairness as Statistical Parity

The notion of perfect fairness given by statistical parity criterion implies that the distribution
of the predictor does not depend on the protected variable S.

3.3.1.1 Regression

In the regression problem, statistical parity condition is expressed through the equality of distri-
butions L(f(X,S)|S) = L(f(X,S)). Then in this setting a standard definition of this statistical
independence requires that P(f(X,s) € A|S = s) = P(f(X,S) € A) for all s € S and all
measurable sets A. Since f(X,S) is a real-valued random variable under Borel o-algebra, it
is fully characterized by its cumulative distribution function, and so it suffices to consider sets
A = [z,+00), for z € R.

This fairness assumption implies the weakest cases where E(f(X,S5)|S) = E(f(X,95)) as
presented in the works of [Dwork et al|[2012] and |Zemel et al. [2013], or equivalently when
Cov(f(X,S),S) = 0. Note that in the case where S is a discrete variable, the previous criteria
have a simpler expression. In particular, in the binary setup when S € {0, 1}, we can write

Exs(f(X,9)) = Ex[Es[f(X,S) | S]]
—P(S = 0)Ex(f(X,0) | § = 0) + P(S = DEx(f(X,1) | S = 1).

Then we have that statistical parity holds if, and only if,
Ex(f(X,9)]5=0)=Ex(f(X,5)]5=1).

In the general regression setting, we will use the following notations: X € X, S € S, Y € R?
When F is the set of all measurable functions from & xS to R?, the optimal risk (a.k.a. Bayesian
risk), is defined as

R*:=R(F) =minE[|Y — f(X,9)|?
(F) = minE[[Y’ — (X, S)|

is achieved for the Bayes estimator
n(X,5) = E[Y[(X,5)].

Denote pg the conditional distribution of the Bayes estimator E(Y|X,S) given S and for a
predictor g vs(g) the conditional distribution of g(X,S) given S. In Le Gouic and Loubes| [2020]
the authors relate the excess risk with a minimization problem in the Wasserstein space proving
the following lower bound for the price for fairness.

Theorem 3.3.1

inf R(f) —inf R(f) 2 inf EW; : 3.3.4
fGI?'—Fair (f) II} (f)_gllel]__ WQ(/Ls,I/S(g)) ( )

Moreover, if F = Fsp and us has density w.r.t. Lebesgue measure for almost every s, then
(3.3.4) becomes an equality

Erair(F) = Inf EsW3 (s, vs(g)- (3.3.5)
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Imposing fairness comes at a price that can be quantified which depends on the 2-Wasserstein
distance between distributions of Bayes predictors.

Finding the minimum in is related to the minimization of Wasserstein’s variation
which has been known as the problem of studying Wasserstein’s barycenter. Actually, for sta-
tistical parity constraint

inf EsW; (s, vs(g)) = inf EsW3 (s, v(g))
geF v(g)

which amounts to minimize
2
Vi ]ESW2(:U57V)

This problem has been studied in |Agueh and Carlier| [2011], |Le Gouic and Loubes [2017] or
del Barrio and Loubes| [2019]. The distributions ug are random distributions and define Pg their
distribution on the set of distributions. Hence The minimum is reached for up the Wasserstein
barycenter of Ps. Note that if S is discrete, in particular for the two class version S € {0, 1},
note 7y = P(S = s), the distribution Ps can be written as Ps = w10, + (1 — m1)d,,. Hence its
barycenter is a measure that minimizes the functional

v moWs (o, v) + (1 — mo) W3 (1, v).

Existence and uniqueness are ensured as soon as the pg have density with respect to Lebesgue
measure.

3.3.1.2 Classification

We consider the problem of quantifying the price for imposing statistical parity when the goal is
predicting a label. In the following and without loss of generality, we assume that Y is a binary
variable with values in {0,1}. If S is also binary, then Statistical Parity is often quantified in
the fair learning literature using the so-called Disparate Impact (DI)

P(g(X,$) =1] 5 =0)
B(g(X,8)=1]S=1)

DI(g,X,S) = (3.3.6)
This measures the risk of discrimination when using the decision rule encoded in g on data
following the same distribution as in the test set. Hence, in |Gordaliza et al. [2019] a classifier g
is said not to have a Disparate Impact at level 7 € (0,1] when DI(g, X,S) > 7. Perfect fairness
is thus equivalent to the assumption that the disparate impact is exactly DI(g, X,S) = 1. Note
that the notion of DI defined Eq. was first introduced as the 4/5""-rule by the State of
California Fair Employment Practice Commission (FEPC) in 1971. Since then, the threshold
70 = 0.8 was chosen in different trials as a legal score to judge whether the discriminations
committed by an algorithm are acceptable or not (see e.g. |[Feldman et al.|[2015] [Zafar et al.
[2017a], or Mercat-Bruns| [2016]).

While in the classification problem the notion of statistical parity can be easily extended for
general S € S, continuous or discrete, through the equality P(g(X,S) =1) = P(g(X,S) =11 5),
the index Disparate Impact has not been used in the literature for quantifying fairness in the
general framework. Hence, we only consider the classification problem. Still, if S is a multiclass
sensitive variable, we observe that a fair classifier should satisfy for all s € S,

P(g(X,S)=1)=P(g(X,S)=1|S5=5s). (3.3.7)
Hence, Disparate Impact could be extended to

DI(g, X, S) = min%e(‘;ig(s))(f)l T; |:Sl): ). (3.3.8)
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Tackling the issue of computing a bound in is a difficult task and has been studied
by several authors. In this specific framework, finding a lower bound for the loss of accuracy
induced by the full statistical parity constraint has not been solved. This is mainly due to
the fact that the classification setting does not specify a model to constrain the relationships
between the labels Y and the observations X, enabling a too large choice of models, contrary
to the regression case.

Yet in different frameworks, some results can be proved. On the one hand, in |Jiang et al.
[2019] a notion of fairness is considered which correspond to controling the number of class
changes when switching labels, which amounts to study the difference between classification
errors for plug in rules corresponding to all possible thresholds 7 of Bayes score called the model
belief, ng(X) = P(Y = 1|X,S) > 7. Authors achieve a bound using the W7 distance and prove
that the minimum loss is achieved for the 1-Wasserstein barycenter.

In the following we recall results obtained in |Gordaliza et al. [2019] which study the price for
fairness in statistical parity in the framework where we want to ensure that all classifiers trained
by a transformation of the data will be fair with respect to the statistical parity definition.

For this consider the Balanced Error Rate

P(g(X,8)=0]S8=1)+P(g(X,S)=1]|5=0)
2

corresponding to the problem of estimating the sensitive label from the prediction in the most
difficult case where the class are well balanced between each group labeled by the variable S. In
this setting, unpredictability of the label warrants the fairness of the procedure. Actually, given
e > 0,5 is not e—predictable from X if BER(g, X,S) > ¢, forall g € G

BER(g,X,S) =

DI(g,X,8) := ‘b‘g)).

We consider classifiers g such that a(g) > 0 and b(g) > 0.

Theorem 3.3.2 (Link between Disparate Impact and Predictability) Given random vari-
ables X : Q — RY, S :Q — {0,1}, the classifier g € G has Disparate Impact at level T € [0,1],

with respect to (X, S), if, and only if, S is (% — aTg)(l — 1)) —predictable from X.

T

Then, we can see that the notion of predictability and the distance in Total Variation between
the conditional distributions of X | S are connected through the following theorem

Theorem 3.3.3 (Total Variation distance) Given the variables X : Q — RY, d > 1, and
S:Q—{0,1},

min BER(g, X, S) =

min (1—dpy (£ (X]S =0),L(X]|S =1))),

N | —

where g : RY — {0, 1} wvaries in the family of binary classifiers G.
S is not e—predictable from X if

dry (L(X]|S=0),L(X|S=1))<1—2¢
where d7y is the Total Variation distance.

Hence fairness for all classifier f is equivalent to the fact that

1
in BER(g, X, S) = -
min (9, X,5) 5
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which is equivalent to
dTV(/'LOHUJI) = 07

where we have set ug = L(X|S) for S € {0,1}. Hence, perfect fairness for all classifiers in
classification is equivalent to the fact that the distance between conditional distributions of the
characteristics of individuals for the class defined by the different values of S is null.

Consider transformations that map the conditional distributions to a joint distribution. Con-
sider X € R? and S € {0,1}. Let Ts : R = R9, d > 1 be a random transformation of X such
that £(Tp(X) | S =0) = L(T1(X) | S = 1), and consider the transformed version X = T(X).
This transformation defines a way to repair the data in order to achieve fairness for all possible
classifiers applied to these repaired data X = Ts(X). This maps transforms the distributions
pus into their image by T's, namely for all S € {0,1}, pusyTs := pso TSTI. Note that the choice of
the transformation is equivalent to the choice of the target distribution vg = uSﬁTS. Fairness is
then achieved when the distance in Total Variations is equal to zero, which amounts to say that
To and T7 maps the conditional distributions towards thew same distributions, hence vy = v;.
In this framework the price of fairness can be quantified as follows. For a given deformation T,
set B

E(Ts) i= int P(g(X) £ Y) ~ Ra(X, 5).

The following theorem provides an upper bound for this price for fairness.

Theorem 3.3.4 (Gordaliza et al| [2019]) For each s € {0,1}, assume that the function ns(x) =
P(Y =1| X ==x,5 = s) is Lipschitz with constant Ks > 0. Then, if K = max{Ky, K1},

2

E(Ts) < 2V2K | Y m W3 (s, sy Ts)
5=0,1

Hence the minimal excess risk in this setting is achieved by minimizing previous quantity over
possible transformations T's. We thus obtain the following upper bound.

=

inf £(Ts) < 2V2K inf T W2 (s, pss T
nf €(Ts) < n S:ZO:I 5 (s 1oy Ts)

N[

<2V2Kinf [ > wW5 (s, v)

s=0,1

= \@K Z 7'('kS)/VQZ(,U/sa,U/B)

s=0,1

where pup denotes the Wasserstein barycenter between ug with weight g for S € {0, 1}.

Note that previous theorem can easily be extended to the case where S takes multiple discrete
values S € {1,...,k}. In the case where S is continuous, the same result holds using the
extension of Wasserstein barycenter in|Le Gouic and Loubes [2017] and provided that conditional
distributions ug are absolutely continuous with respect to Lebesgue measure.

3.3.2 Price for fairness as Equality of Odds

We study now the price for fairness meant as equality of odds, which looks at the independence
between the protected attribute and the outcome conditionally given the true value of the target,
that is, the error of the algorithm.
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3.3.2.1 Regression

Consider the regression framework detailed in section and let (X1,51,Y1), ..., (Xn, Sn, Yy)
be a sample of i.i.d. random vectors observed from (X, S,Y). Denote by X € R"*P and S € R"*!
the matrices containing the observations of the non-sensitive and sensitive, respectively, features
X and S. We will assume standard normal independent errors &1, ...,&, ~ N (0,1). Then, we
consider the linear normal model

Y = faa(X.9) +e. (3.3.9)
where the errors are such that E(e | (X,S)) = 0, and the predictor
f30,8(X,8) = oS+ BTX, fo €R, g e RP¥! (3.3.10)

is a linear combination of the sensitive and non-sensitive attributes. Then, the joint distribution
of (X,5,Y) is (p+2)—dimensional normal and we denote the vectors of means and the covariance
matrices as follows

X Yx Yxs Xxy
(X7 Sa Y) ~N s ) E?;(S Xg Ysy
py Sy Iy Dy

We note that the equality of odds criterion requires the linear fair predictor being independent
of S conditionally given Y, that is

f60,8(X,8) L S|Y,
which under the normal model is equivalent to the second order moment constraint
Cou(f(X,S),S|Y)=0. (3.3.11)

Hence, seeking for a fair linear predictor amounts to obtaining conditions on the coefficients
Bo, B for to hold. Since linear prediction can be seen as the most suitable framework
for Gaussian processes, the relaxation of could be justified as being the appropriate
notion of fairness when we restrict ourselves to linear predictors. Furthermote, linear predictors,
especially under kernel transformations, are used in a wide array of applications. They thus form
a practically relevant family of predictors where one would like to achieve non-discrimination.
Therefore, in this section, we focus on obtaining non-discriminating linear predictors.
Now if we denote by Cs xy € RP*! the vector of correction for fairness

Yxsly — Usy XXy
C = 3.3.12
S, XY < ESEY — E%Y ) ) ( )

then the optimal fair equality of odds predictor under the normal model can be exactly computed
as in the following result, whose proof is set out in the Appendix [3.6.2]

Proposition 3.3.5 Under the normal model (3.3.9)), the optimal fair (equality of odds) linear
predictor of the form (3.3.10) is given as the solution to the following optimization problem

(Bo,mm@mw) = argman g, g)e rpo [(Y — f0.8(X, 5))2]
Fro = {(Bo, ) € R x R? such that 87 (SxsEy — sy Exy) + o (SsSy — £3y) = 0}
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If moreover Y and S are not linearly dependent, it can be exactly computed as

Bo, fair = B?aircs,x,y
Bfair =3, %z,
where
Yz =3x +3sCsxyClxy + CoxySks + SxsCé xy

Yzy = Xxy + XsyCs xy.

Note also that the case where Y and S are linearly dependent corresponds to a totally unfair
scenario that is not worth studying. This result shows that, under the normal model, it is
possible to quantify the excess of risk attributable to achieving a fair regression. Precisely, we
can compute the loss when imposing the equality of odds condition (By, 5) € Fro by comparing
with the general loss associated to the minimizer

5 AT T ) )
(50, 87| 1= argmin g, sycrxrE [(V = fo8(X, 5))?] (3.3.13)

We have performed some simulations to obtain estimations of the minimal excess risk in
(3.3.3)) when imposing equality of odds under this gaussian linear regression framework. Precisely,
we have considered S ~ A(0,10) and X € R?, such that

vee((3)22)

The results of 1000 replications of the experiment are shown in Figure [3.2 There we present:
(a) the average minimal excess risk; and its (b) standard deviation, as the sample size increases,
taking particularly the values (100, 200, 400, 800, 1000, 1500, 2000, 3000, 5000, 10000). We observe
that the estimation seems to converge.

Moreover we observe that, while condition is equivalent to equality of odds in the
normal setting, it is generally a weaker constraint. However, the problem of achieving perfect
fairness as equalized odds in a wider setup conveys computational challenges as discussed in
Woodworth et al. [2017]. They showed that even in the restricted case of learning linear pre-
dictors, assuming a convex loss function, and demanding that only the sign of the predictor
needs to be non-discriminatory, the problem of matching FPR and FNR requires exponential
time to solve in the worst case. Motivated by this hardness result (see Theorem 3 in Wood-
worth et al.| [2017]), they also proposed a relaxation of the criterion of equalized odds by a more
tractable notion of non-discrimination based on second order moments. In particular, they pro-
posed the notion of equalized correlations, which indeed is generally a weaker condition than
, but when considering the squared loss and when (X, S,Y") are jointly Gaussian, it is in
fact equivalent (and, subsequently, equivalent to equality of odds). They also point out that for
many distributions and hypothesis classes, there may not exist a non-constant, deterministic,
perfectly fair predictor. Hence, we have restricted ourselves here to the normal framework in
which the computation of the optimal fair predictor is still feasible.

3.3.2.2 Classification

We consider again the classification setting where we wish to predict a binary output label
Y € {0,1} from the pair (X,S). In this section, we obtain the fair optimal classifier in the
sense of equality of odds in the particular case where S is also binary. We assume moreover that
both the marginals and the joint distribution of (S,Y") are non-degenerate, that is P(Y = 1) €
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Figure 3.2 — Minimal excess risk with Cov(X1,S) = 0.1, Cov(X2,S5) = 0.1

(0,1), P(S=1) € (0,1) and P(Y =1,5 =1) € (0,1). There are some other works dealing with
the computation of Bayes-optimal classifiers under different notions of fairness. In |[Menon and
Williamson| [2018] statistical parity and equality of oportunity are the considered constraints.
Our approach here extends the proposed in |(Chzhen et al.|[2019], where fairness is defined by the
weaker notion of equality of opportunity that requires just the equality of true posisitive rates
across both groups.

An optimal fair classifier is formally defined here as the solution to the risk minimination
problem over the class Fgo of binary classfiers satisfying the equality of odds conditions, that is

* .
g € argmn,

Fro={g€G:P(g(X,S)=i|Y =i, =0)=P(g(X,8) =i|Y =i,§ =1),i =0,1}.

eFpo R(9), where

In order to establish the form of such minimizer, we introduce the following assumption on
the regression function.
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Assumption 3.3.6 For each s € {0,1} we require the mapping t € P(n(X,S) <t | S =s) to
be continuous on (0,1), where for all (z,s) € R? x {0,1}, we let the regression function

n(z,s) =PY =1|X=2,S=s)=E[Y | X=2,5=5]. (3.3.14)

The following result establishes that the optimal equalized odds classifier is obtained recalibrating
the Bayes classifier gp(X,S) = 1y,(x,5)>1/2}, and its proof is included in the Appendix

Proposition 3.3.7 (Optimal Rule) Under Assumption an optimal classifier g* can be
obtained for all (z,s) € R x {0,1} as

*
xz,1)=1 . n(X,1) . 1-n(X.1)
g*(z,1) {1<20(X,1) 01 py=1 513 96 5(v 20 5=}

*
z,0)=1 . X,0) «_1-n(X,0
g"(x,0) {1<2n(X,0)+67 ]P(l;]il,szo)_aop(yg((),s=)o)}7

where (05,07) € R? is determined from equations

Ex|g=1 [77(?@ Dg*(X, 1)]  Exys=o [n(K 0)g*(X, 0)]

PY=1|S=1) PY=1|5=0)
Exjs-1 (1= (X, 1)g"(X. )] Exjsmo|(1 = n(X,0))g"(X,0)]
PY=0|S=1) - P(Y =05 =0)

Remark 3.3.8 Note that if 85 = 0 we recover the optimal fair equality of opportunity classifier
in|Chzhen et al| [2019]. If moreover 07 = 0 the above defined is the classical Bayes rule.

We have quantified the cost with respect to the loss of the generalization error needed to
ensure fairness in machine learning for classification and regression. If this price appears too
high for the practitioner, the notion of fairness has to be weakened into a quantitative measure
that can be adjusted for a trade-off between accuracy to the observations and fairness.

3.4 Quantifying fairness in machine learning

The importance of ensuring fairness in algorithmic outcomes has raised the need for designing
procedures to remove the potential presence of bias. Yet building perfect fair models may lead
to poor accuracy: changing the world into a fair one with positive action might decrease the
efficiency defined as its similarity to the uses monitored through the test sample. While in some
fields of application, it is desirable to ensure the highest possible level of fairness (see Shrestha
and Yang| [2019] for more details in applications of fair learning); in others, including Health
Care or Criminal Justice, performance should not be decreased since the decisions would have
serious implications for individuals and society. Hence, when perfect fairness requires to pay a
too great price, resulting in poor generalization errors with respect to the unfair case, it is natural
not to impose this strict condition but rather weaken the fairness constraint. In other words,
it is of great interest to set a trade-off between fairness and accuracy, resulting in a relaxation
of the notion of fairness that is frequently presented in the literature as almost or approximate
fairness. To this aim, most methods approximate fairness desiderata through requirements on
the lower order moments or other functions of distributions corresponding to different sensitive
attributes.

From a procedural viewpoint, methods for imposing fairness are roughly divided in the
literature into three families [Oneto and Chiappa, 2020, Dunkelau and Leuschel]. Methods in
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the first family consist in pre-processing the data or in extracting representations that do not
contain undesired biases (see e.g. Beutel et al.| [2017], |Calders et al.| [2009],|Calmon et al.| [2017],
(Chierichetti et al| [2017], Edwards and Storkey| [2015], [Feldman| [2015], [Feldman et al| [2015],
[Fish and Lelkes| [2015], [Gordaliza et al| [2019], Johndrow and Lum| [2019], Kamiran and Calders|
[2009, [2010} [2012], Madras et al| [2018a], [Song et al.|[2018], [Zemel et al.| [2013]), which can then
be used as input to a standard machine learning model.

Methods in the second family, also referred to as in-processing, aim at enforcing a model to
produce fair outputs through imposing fairness constraints into the learning mechanism. Some
methods transform the constrained optimization problem via the method of Lagrange multipliers
(see e.g. |Agarwal et al|[2018], Berk et al|[2017a], |Corbett-Davies et al. [2017], |Cotter et al,
[2018], [Kearns et al,| [2018], Narasimhan| [2018], [Zafar et al| [2017a] [2019]) or add penalties to
the objective (see e.g. [Bechavod and Ligett| [2017], Donini et al| [2018], Dwork et al| [2018],
[Fukuchi et al| [2015], [Hébert-Johnson et al| [2018], [Kamiran et al| [2012], [Kamishima et al/
2012], Kilbertus et al [2017], Komiyama et al|[2018], Madras et al. [2018b], Mary et al][2019],
(Nabi and Shpitser| [2018], Narasimhan| [2018], Oneto et al. [2019], Speicher et al.| [2018], Yona and|
Rothbluml [2018], Noroozi et al|[2019]), others use adversarial techniques to maximize the system
ability to predict the target while minimizing the ability to predict the sensitive attribute
and, finally, others rederive a new classifier from the first principles of distributional
robustness that incorporates fairness criteria into a worst-case logarithmic loss minimization
[Rezac ot al.

Methods in the third family consist in post-processing the outputs of a model in order to
make them fair (see e.g. |Adler et al|[2018], Ali et al|[2019], Chzhen et al. [2019], [Doherty et al.
2012], [Feldman| [2015], [Fish et al| [2016], [Hajian et al| [2012], [Hardt et al| [2016], Kim et al.
2019], [Kusner et al.| [2017], Noriega-Campero et al. [2019], [Pedreschi et al.| [2009)]).

As noticed in |Oneto and Chiappal [2020], this grouping is imprecise and non exhaustive.
Indeed, there are a number of works in the literature presenting alternative classifications, such
as the survey Zhang and Liu| [2020] that reviews existing literature on the fairness of data-driven
sequential decision-making, which includes in practice most decision-making processes.

In the following we describe more deeply two different families of methods, which are non-
mutually exclusive. First a group of in-processing methods which can be seen as a fair risk
minimization problem and includes the majority of the contributions. On the other hand, a
second category of methods based on optimal transport, which correspond mostly to pre or post
processing approaches, since it is the preferred tool in this thesis for fair learning.

3.4.1 Fairness through Empirical Risk Minimization

We recall that the aim of a supervised machine learning algorithm is to learn the relationships
between input characteristic variables and a target variable in order to forecast new observations.
In the fair learning setting, we observe (X1, S1,Y1), ..., (Xn, Sn, Yy ) i.i.d observations drawn from
an unknown distribution PP. Set the empirical distribution P,, = % >ty 0x,.8.y,- An almost-fair
model will be obtained by minimizing the empirical risk

Ra(f) = = D205 £(X0, )
i=1

with £: (Y,Y) — £(Y,Y) € R a certain loss function measuring the quality of the prediction,
and where the influence of the protected variable S in the forecast Y should be controlled. We
note that such influence must be null in the case of perfect fairness and could be imposed by

minimizing over a class Fyq, satisfying certain stringent conditions. The classes Fgp or Fro,
defined respectively in (3.3.1]) and (3.3.2)), are two possibilities for the minimization. In general,
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a relaxation of the problem would enable control on the level of fairness of the learnt algorithm.
This is proposed in the majority of the papers either by

(i) thresholding full-type fairness conditions, that is

?ijrran(f) such that §(f(X,S),S,Y) <e, (3.4.1)
€

where ¢ is a measure of dependency (with 0(f(X,S),S,Y) = 0 in the perfect-fair case)
and € > 0 represents the level of fairness; or

(ii) directly introducing the independence as a penalty into the objective

?éi%{Rn(f) +AS(f(X,S),8,Y)}, (3.4.2)

where A > 0 balances the contribution of both terms to get a trade-off between the bias
and the efficiency of the algorithm.

Yet the main question becomes how to select the notion of independence measured above
through the function §. Several choices exist in the literature. According to the division of perfect
fairness notions proposed in section [3.2.1] almost fairness requires quantifying the dependence
between the distribution of the protected variable S and

(i) either the distribution of the forecast Y, or the conditional distribution of the forecast
given the true value Y'Y,

(i) or the expectation E®(Y) or E(®(Y)|Y), through a chosen function ® : R — R.

Both points of view correspond to choices that can be made. In the following, we review
how this framework summarizes most of the recent papers dealing with almost fairness.

3.4.1.1 Imposing conditions on the distributions

The first set of approaches to get fair predictive behaviour by adding constraints through condi-
tions over the distributions has been studied in several papers. Depending on the basis of such
conditions, the main proposals can be organised as follows:

(a) Distance-based constraints. According to the definition of fairness as independence
criterion, this category of approaches aims at quantifying the distance between the prob-
ability distributions:

(i) L(Y]|S = s), for all s € S; or LY x 8) and L(Y) x L£(S), if statistical parity is
considered.

(i) E(}A’|Y, S =s), for all s € S, regarding to equality of odds.

The majority of the papers in this line of work considered Wasserstein distances and we
summarize the main contributions hereafter. In|Jiang et al.|[2019] two different approaches
to achieve statistical parity with Wasserstein-1 distance are proposed. First, a fast and
practical approximation methodology to post-process the model outputs by enforcing the
density functions of probabilities E(}Af | S = s) corresponding to groups of individuals with
different sensitive attributes to coincide with their Wasserstein-1 barycenter distribution.
Then, a penalization approach to binary logistic regression that aims at finding the model
parameters minimizing the logistic loss under the constraint of small Wasserstein-1 dis-
tances between the empirical counterparts of measures £(Y | S = s) and their empirical
barycenter.
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Wasserstein-type constraints for building fair classifiers has also been considered in [Ser-
rurier et al|[2019]. They provided algorithms which can incorporate both notions of
fairness through 1-Wasserstein distance-based contraints. Yet sharing some similarities
with [Edwards and Storkey| [2016], their approach is more flexible and enables to solve
wider classes of fairness problems based on different adversarial architecture resulting in
more suited loss functions. Neural networks are used to manage a large variety of input
data structure (e.g. images) as well as output labels (multiclass, regression, images...).
Their Wasserstein approximation using fairness benchmark datasets outperformed both
classical fair algorithms (e.g fair SVM) as well as similar adversarial architectures based
on Jensen or GAN losses (see references in the paper for more details.)

In [Risser et al.|[2019] algorithmic fairness is promoted by imposing closeness with respect
to quadratic Wasserstein distance between the scores used to build an automatic decision
rule. This regularization constraint is built with a deep neural network.

Specifically the concept of the barycenter in optimal transport theory is used in the recent
paper |Zehlike et al. [2020] to maximize decision maker utility under the chosen fairness
constraints. They proposed the Continuous Fairness Algorithm which enables a continuous
interpolation between different fairness definitions. This algorithm is able to handle cases
of multi-dimensional discrimination of certain groups on grounds of several criteria. They
included examples of credit applications, college admissions and insurance contracts; and
mapped out the legal and policy implications of their approach.

Information theory-based contraints. First contributions to this approach in the
context of fair supervised learning started with the work of Kamishima et al. [2011], who
designed an unfairness penalty term based on statistical parity criterion (referred to in their
paper as indirect prejudice), which restricts the amount of mutual information between the
prediction and the sensitive attribute. More precisely, they add a fairness regularization
term in the objective function that penalizes the mutual information between the sensitive
feature and the classifier decisions. In this way, this method treats the mutual information
as the unfairness proxy. Their technique is only limited to the logistic regression classifica-
tion model. Later in Kamishima et al. [2012] they used normalised MI to assess fairness in
their normalised prejudice index (NPI). Their focus is on binary classification with binary
sensitive attributes, and the NPI is based on the independence fairness criterion. In such
setting, mutual information is readily computable empirically from confusion matrices.
This work is generalised in [Fukuchi et al. [2015] for use in regression models by using a
neutrality measure, which is shown to be equivalent to the independence criterion. They
then use this neutrality measure to create inprocessing techniques for linear and logistic
regression algorithms. Similarly, Ghassami et al.| [2018] take an information theoretic ap-
proach to creating an optimisation algorithm that returns a predictor score that is fair
with respect to the equalized odds criterion.

An information theory motivated framework is also proposed in [Song et al.| [2018] where
the goal is to maximize what they called the expressiveness of representations of the data
while satisfying certain fairness constraint. Expressiveness, as well as statistical parity,
equalized odds and equalized opportunity, are expressed in terms of mutual information,
and tractable upper and lower bounds of these mutual information objectives are obtained.
A conexion between them and existing objectives such as maximum likelihood, adversarial
training |Goodfellow et al.,2014], and variational autoencoders [Kingma and Welling), 2013,
Rezende and Mohamed, 2015] is also presented. Their contribution serves as a unifying
framework for existing work [Zemel et al., 2013, Edwards and Storkey, [2016, Madras et al.,
2018a] on learning fair representations, being the first to provide direct user control over

66



the fairness of representations through fairness constraints that are interpretable by non-
expert users.

In the regression setting, measuring group fairness criteria is computationally challenging,
as it requires estimating information-theoretic divergences between conditional probability
density functions. Recently Steinberg et al. [2020] introduced fast approximations of the
statistical parity, equality of odds and predictive parity (there referred to as independence,
separation and sufficiency, respectively; following ...) fairness criteria for regression models
from their (conditional) mutual information definitions, and used such approximations as
regularisers to enforce fairness within a regularised risk minimisation framework.

Kernel theory-based constraints. Regularization is one of the key concepts in modern
supervised learning, which allows imposing structural assumptions and inductive biases
onto the problem at hand. It ranges from classical notions of sparsity, shrinkage, and
model complexity to the more intricate regularization terms which allow building specific
assumptions about the predictors into the objective functions, such as smoothness on
manifolds [Belkin et al., 2006]. Such regularization viewpoint for algorithmic fairness was
presented in Kamishima et al.| [2012] in the context of classification, and was extended
to regression and unsupervised dimensionality reduction problems with kernel methods in
Pérez-Suay et al. [2017]. The latter falls within the framework of statistical parity and
was the first work that considered this notion with continuous labels. They proposed
kernel machines to exploit cross-covariance operators in Hilbert spaces. In particular,
independence between predictor and sensitive variables is imposed by employing a kernel
dependence measure, namely the Hilbert-Schmidt Independence Criterion (HSIC) |Gretton
et al.| [2005], as a regularizer in the objective function.

Extentions of this work are presented in [Li et al.| [2019] where a general framework of
empirical risk minimization with fairness regularizers and their interpretation is given.
Secondly, they derived a Gaussian Process (GP) formulation of the fairness regularization
framework, which allows uncertainty quantification and principled hyperparameter selec-
tion. Furthermore, they introduce a normalized version of the fairness regularizer which
makes it less sensitive to the choice of kernel parameters. They demonstrate how the
developed fairness regularization framework trades off model’s predictive accuracy (with
respect to potentially biased data) for independence to the sensitive covariates. It is worth
noting that, in their setting, a function which produced the labels is not necessarily the
function we wish to learn, so that the predictive accuracy is not necessarily a gold-standard
criterion. Finally, we cite the work of [Tan et al., 2019] where the authors demonstrate the
promise of learning a model-aware fair representation focusing on kernel-based models.

3.4.1.2 Imposing conditions on the expectation

On the other side, reinforcement of fair algorithmic behaviour has been also proposed by requir-
ing conditions on the expected forecast in a large number of papers. More precisely, depending,
on the one hand, on the desirable metric of fairness (as discussed in section ; and on the
other, on the nature of the target Y and the protected attribute .S, the dependence measure
0 is set out to control different kinds of indexes. We note that this control could be imposed
following either (3.4.1)) or (3.4.2).

1.

For statistical parity, if Y, S € {0,1}, conditions on the probabilities of success across
groups P(f(X,S) = 1|5) are considered, being the mean difference score

P(f(X,S) = 1|8 = 1) — P(f(X, S) = 1S = 0), (3.4.3)
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which was first introduced in |Calders and Verwer| [2010], and the disparate impact
the preferent choices in the literature. These are generalized to conditions on the expec-
tation E(f(X,S)[S) (or E(4(f(X,S),Y)|S), with £ a loss function) or, from a sensitivity
analysis point of view, on the variances Var(E(f(X,5)|S)) (or Var(E(¢(f(X,S),Y)|S5))).

2. For equality of odds, if Y, S € {0,1}, then the goal is similar as before but taking into
account the true values of the target Y. Namely, the differences between TPR and FPR,
that is

P(f(X,S) =iV =i,S =1) —P(f(X,S) =iy =i,§ =0), fori =0,1,  (3.4.4)

are usually considered. Besides, in a less demanding way, others focus on the difference
between the overall accuracies

P(Y#Y |S=0)—PY #£Y |S=1). (3.4.5)

In a wider setup, this is extended to conditions on the expectation E(f(X,S)|Y,S) (or
E((f(X,S5),Y)|Y,S)) or the variance Var(E(f (X, S)|Y,S) (or Var(E({(f(X,S),Y)|Y,S)).

Given this overview summarizing the majority of proposals for relaxing the notion of fairness
through conditions on the input and output distributions of the algorithm, we cite some of the
main contributions to this approach. One of the first was the work of |Zemel et al.| [2013] which,
based on Dwork et al. [2012], combined pre-processing and inprocessing by jointly learning a
‘fair’ representation of the data and the classifier parameters. The joint representation is learnt
using a multi-objective loss function that ensures that (i) the resulting representations do not
lead to disparate impact, (ii) the reconstruction loss from the original data and intermediate
representations is small and (iii) the class label can be predicted with high accuracy. This
approach has two main limitations: i) it leads to a non-convex optimization problem and does
not guarantee optimality, and ii) the accuracy of the classifier depends on the dimension of the
fair representation, which needs to be chosen rather arbitrarily. Inspired by Zemel et al.|[2013],
the methods of Edwards and Storkey| [2016] and Madras et al. [2018a] also aim at learning fair
representations of the data.

In Zafar et al. [2017a] methods for training decision boundary-based classifiers without dis-
parate mistreatment (recall (3.2.7)) are described, with further extensions to existing notions
disparate treatment and disparate impact in Zafar et al.|[2017b|. Their proposals, as well as the
results of several experiments and applications to well-known real datasets, have been collected
later in Zafar et al. [2019]. They noticed that taking in the above formulation the de-
pendence measure ¢ in terms of the accuracies in , and similarly for , ensures that
the classifier chooses the optimal decision boundary within the space of fair boundaries speci-
fied by the constraints but yields to a very challenging problem. The reason is two-fold: first,
the fairness constraints lead to non-convex formulations; and second, the probabilities defining
such constraints are function having saddle points, which further complicates the procedure for
solving non-convex optimization problems [Dauphin et al., [2014]. Therefore, they proposed a
relaxation of these (non-convex) fairness constraints into proxy conditions, each in the form
of a convex-concave (or, difference of convex) function using a covariance measure of decision
boundary fairness. They design fair logistic regression classifiers and linear and nonlinear SVMs
as examples and heuristically solve the resulting optimization problem for a convex loss func-
tion. Adding constraints to the classification model is also in the line of work of |Goh et al.
[2016], Woodworth et al|[2017] and |Quadrianto and Sharmanska [2017]. While the constraints
are similar to those in [Zafar et al. [2019], the first two are only limited to a single specific loss
function and the third one to a single notion of unfairness.
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Another approach in pursuit of fairness as equality of odds in binary classifiers learned over
individuals from two populations is presented in Bechavod and Ligett| [2017]. They validate the
ability of such approach to achieve both fairness and high accuracy, implementing and testing
it on multiple datasets from the fields of criminal risk assessment, credit, lending, and college
admissions. Later in |Agarwal et al. [2018] both statistical parity and equalized odds conditions
are viewed as a special case of a general set of linear constraints. Based on that, the minimization
problem is shown to be reduced to a sequence of cost-sensitive classification problems, whose
solutions yield a randomized classifier with the lowest (empirical) error subject to the desired
constraints.

In [Menon and Williamson! [2018] disparate impact and mean difference indexes are related
to cost-sensitive risks and the tradeoffs between performance of in the problem of learning
with these fairness constraint are studied. They showed that the optimal classifier for these
cost-sensitive measures is an instance-dependent thresholding of the classprobability function,
and quantify the degradation in performance by a measure of alignment of the target and
sensitive variable. They also use such analysis to derive a simple plugin approach for the fairness
problem. Finally, in the classification setting we metion also Kearns et al. [2018], who considered
the problem of learning binary classifiers subject to equal opportunity and statistical parity
constraints when the number of protected groups is large.

In the fair regression framework, [Zafar et al. [2017a] suggested a relaxed notion of non-
discrimination based on first order moments

E(V]Y = 4,5 =0) = E(V]Y = y,5 = 1)

and proposed optimizing a convex loss subject to an approximation of this constraint. With a
similar aim, in previously cited paper[Woodworth et al.| [2017] (see section [3.3.2.1)) they proposed
a relaxation of the criterion of equalized odds by a more tractable notion of non-discrimination
based on second order moments. In particular, they proposed the notion of equalized correlations.
Later, in /Agarwal et al.| [2019] the fair regression problem is studied in a predictive setting where
X could be continuous and high-dimesional, S is discrete, and Y C [0, 1] could be discrete (but
embedded in [0, 1]) or continuous. Two different constraints in the minimization are
considered in this work. Firstly, a relaxation of statistical parity is proposed as, for all z € [0, 1]
and all s € S,

BF(X) > 2| S = ) — B(F(X) > 2| <e., (3.4.6)

where the slack €5 > 0 bounds the allowed departure of the CDF of f(X) conditional on S = s
from the CDF of f(X). Note that the protected variable S is not explicitely considered as input.
The difference between CDFs is measured in the co—norm corresponding to the Kolmogorov-
Smirnov statistic. On the other hand, they also propose to guarantee fairness through the

criteria bounded group loss
E(L(f(X),Y)|S) < &5 (3.4.7)

where, in fact, the threshold is uniform for all the classes in the definition, but, for the sake of
flexibility, it is allowed to specify different bounds 5, > 0 for each attribute value in the loss
minimization. Hence, fair regression with bounded group loss minimizes the overall loss, while
controlling the worst loss on any protected group. By Lagrangian duality, this is equivalent
to minimizing the worst loss on any group while maintaining good overall loss (referred to
as maz-min fairness). Unlike overall accuracy equality in classification |Dieterich et al.|[2016],
which requires the losses on all groups to be equal, they claimed that bounded group loss does
not force an artificial decrease in performance on every group just to match the hardest-to-
predict group. They also generalized their approach to randomized predictors to achieve better
fairness-accuracy trade-off.
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We finally cite the recent algorithm in Oneto and Chiappa [2020] called General Fair Em-
pirical Risk Minimization (G-FERM) that generalizes the Fair Empirical Risk Minimization
approach introduced in Donini et al.| [2018]. In this work, they also specify the method for
the case in which the underlying space of models is a RKHS and show how the in-processing
G-FERM approach described above can be translated into a pre-processing approach.

3.4.2 Fairness through Optimal Transport

Most methods obtain fair models by imposing approximations of fairness desiderata through
constraints on lower order moments or other functions of distributions corresponding to different
sensitive attributes (this is also what most popular fairness definitions require). As observed
in |Oneto and Chiappa; [2020], whilst facilitating model design, not imposing constraints on the
full shapes of relevant distributions can be problematic. One existing approach that does work
this way proposes to match distributions corresponding to different sensitive attributes either
in the space of model outputs or in the space of model inputs (or latent representations of the
inputs) using optimal transport theory, which correspond to post and pre-processing methods,
respectively. We note that the in-processing methods based on optimal transport are those
imposing constraints in terms of the Wasserstein distance and have already been described
above (see in section [3.4.1.1f(a)).

The idea of the pre-processing based methods to obtain fair treatment consists in blurring
the value of the protected class by transporting the original distribution of the input, condi-
tionally to this value, towards their Wasserstein’s barycenter. It was first considered in the
binaty classification problem in |[Feldman et al.|[2015], Johndrow and Lum| [2019] or [Hacker and
Wiedemann| [2017], and later improved in |Gordaliza et al.| [2019]. In this work, the choice of the
weighted Wasserstein’s barycenter with respect to the weights of the protected clased is formally
justified (see Theorem 4.3.3.) in terms of the minimal excess risk when considering the classfier
trained from the repaired data. Moreover, they propose to set an accuracy-fairness trade-off
through a partial repair approach called random repair, which it is shown to outperform the
previous geometric repair in [Feldman et al.| [2015].

The work in (Chiappa et al.| [2020], Jiang et al. [2019] presents an approach to fair classifi-
cation and regression that is applicable to many fairness criteria. In particular, they introduce
the notion of Strong Demographic Parity, which extends the statistical parity to a fair multi-
classification and regression problem. Based on that, in (Oneto and Chiappa, [2020] they derived
a simple post-processing method withing this framework to achieve Strong Demographic Parity
by transporting distributions to their Wasserstein barycenter. They also propose a partial trans-
portation for setting a fairness-accuracy trade-off called the Wasserstein 2-Geodesic method.

3.5 Conclusions

In this paper, we have presented a review of mathematical models designed to handle the issue of
bias in machine learning. Due to the large number of definitions, we have proposed a probabilistic
framework to understand the relationships between fairness and the notion of independence or
conditional independence. Hence imposing fairness is here modeled as imposing independence
with respect to the sensitive variable and constraints are naturally driven by the choice of
different measures for this independence. Within this framework, it becomes thus possible to
give another insight at several notions of fairness and also to quantity their effect on the decision
rule. In particular, we can defined and then compute in some cases the so-called price for fairness
to quantify the real impact of fairness constraint on the behavior of a machine learning algorithm.
This study provides a better understanding of fair learning, each different definition of fairness
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leading to different behaviors that can be compared in some cases. Yet many cases remain open
to further research to obtain a full theoretical framework of fair learning.

Moreover, we point out that we did not consider in this study many new interesting points of
view on fairness that deserve a specific study. In very particular, understanding fairness from a
causal point of view or using counter-examples as in |Loftus et al.|[2018] and Kusner et al. [2017]
or Black et al.| [2020] could provide another interpretation for fairness in machine learning.

3.6 Appendix to Chapter

3.6.1 Proofs of section m
Proof of Proposition Observe that if S 1L Y and Y UL Y | S then either S L Y or
Y1Y.

O

Proof of Proposition It suffices to observe that if S £ Y and S LY |Y then S LY.
O

Proof of Proposition SLY|YandS LY |Y impliesS L (Y,Y), and then S I Y.
U

3.6.2 Proofs of section [3.3.2.1

We start recalling some facts about Gaussian random variables.
Proposition 3.6.1 If (U, V,W) are jointly Gaussian, then

o Conditional expectation E(U|V) is linear in V and is given by
E(UIV) =EU) + SpyEy (V- E(V))
e Conditional covariance ¥y, yyw does not depend on W and is given by
Swvyw = Suy — Suw Sy Shw

Proof of Proposition In the particular normal model, this independence means that the
elements in positions (1,2) and (2, 1) of the covariance matrix of random vector (¢(X,S),S|Y)
are exactly zero. Therefore, the class of fair predictors is written as

Feo:={g: X x8—= RY: Cov(g(X,5),5|Y) =0} (3.6.1)

More precisely, previous condition can be written in terms of the covariances of (X, S,Y’) and

the coefficients (B, 5) of the linear model (3.3.9). Observe that the joint distribution of the
random vector (gg, g(X,S5),S,Y) is

BoS + BT X Bops + BT pux
g N Y1 2o
~ )UJS 9 ET E 9
Yy Ly 12 Y
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where

5, = [ B5%s + BTExB + 2608 Exs  foXs + BT Exs c R2%2

BoXsy + BT Exy g
T
Sy = [ PoXisy + 67 Xxy | _ p2xa
sy

Hence, from Proposition [3.6.1] we know that

1

Cov(g(X,5),8 | ¥) = 1 -
Yy

Y2k

Substituting the expressions above for ¥; and X9, we obtain that gg, g € Fro if and only if

(BoZs + B Sx5)Sy = Ssy (BoSsy + BT Sxy).
Then the optimal EO-fair predictor in this setting is the solution to the following optimization
problem:
(Bo,fm‘r,ﬁfair) 1= argmin g, g)eFpo (Y — gp,8(X, S))ﬂ (3.6.2)
Fro = {(Bo, B) € R x RP such that 7 (SxsZy — ZsyZxy) + o (SsZy — £%y ) = 0}.
We note that Cauchy-Schwarz inequality together with the assumption that Y and S are not

linearly dependent ensure ¥g¥y — E%Y > 0. Then we obtain that the class of EO-fair predictors
(Bo, B) € Fro are such that By = 87 Cs x.y, where

YxsXy — Mgy XXy 1
C = € RP*H,
5 < SeYy — X2

Hence, the optimal EO-fair predictor (3.6.2) can be obtained equivalently
. ' T 9
/Bfair - argmznﬁeRPE [(Y - ﬁ (X + SCS:X,Y)) :| :

Now if we denote Z := X + SCg xy, it is easy to check that the optimal EO-fair predictor can
be exactly computed as

Bfair = ZEIEZ,Ya where
Yz=Xx+ ZSCS,X,YC§X7Y +CsxyXis+ Exscg:,xy

Yzy =Xxy + X5y Cs xy.

3.6.3 Proofs of section |3.3.2.2

Proof of Proposition Let us consider the following minimization problem

() = min{R(g) : Pg(X, 8) =i |V =i,8 =1) =P(g(X,8) =i | Y =4,5=0),i =0,1}.
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Using the weak duality we can write
(*) =
=min max {R(g) + Z MiP(g(X,8)=i|Y=iS5S=1)-PX,S=i|Y=4iS= O)]}

9g€eg (Ao,Al)ERQ i—0.1
> a in< R(g) + AP@(X,8)=i]Y=4S5S=1)-PgX,S)=i|Y=¢5=0
(AOfIAll)PéRleelg{ @)+ 3 NFOS) =Y =68 = 1) ~F(g(X,5) =i Y =i >]}
=: ().
We first study the objective function of the max min problem (xx), which is equal to

P(g(X,8) #Y)+ Y XN (P(g(X,8) =i |V =i,§=1)-P(g(X,S) =i |Y =4,5 =0)).
1=0,1

The first step of the proof is to simplify the expression above to linear functional of the classifier
g. Notice that we can write for the first term

P(g(X,5) #Y) =P(g9(X,5) =0,Y = 1) + P(¢(X,5) = 1,Y = 0)
=P(g(X,S) =1) +P(Y = 1) - P(g(X,S) = 1,Y = 1) - P(¢(X,S) = 1,Y = 1)
=P(g(X,S) =1) +P(Y = 1) — 2P(g(X,S) = 1,Y = 1)
=P(Y =1) + E[g(X, 5)] = 2P(S = D)E [Tg(x,5)-1,y=1 | § = 1]

—2P(S = 0)E [1y(x,5)=1,y=1 | S = 0]
=P(Y =1) = P(S = 1)Ex|5=1 [9(X, 1)(2n(X, 1) — 1)]
—P(S = 0)Ex|s=0 [9(X,0)(2n(X,0) — 1)].

Moreover, for s = 0,1, we can write for the rest four terms in the objetive function

P(g(X,8)=1,Y =1|S=s) Exjg—s[g(X,s)n(X,s)]
P(Y=1]5=5s) - P(Y=1|S=5)
P(g(X,5)=0]Y =0,S5=s5)=1-Pg(X,5)=1|Y=0,5=s5s)
IEX|S:s [Q(Xv 5)(1 - ﬁ(X7 S))]
P(Y =0]S5=s)

P(g(X,S)=1|Y =1,8=s)=

—1-

Using these, the objective of (#x) can be simplified as

A
P(Y:”*EX'S:l[( ( ’ (]P’ _1|S_1)+1—IP’(Y:01|S:1)_QP(S:D)
Ao
+R(5 = 1)~ g2 )|
+Ex|s=o|9(X.0) (”(X’O) TP(Y = 1A1| S=0) 1-PY 201 S =0) _2P(S:0)>

A
+P(S=0)+1_p(yzol|520)>].
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For every A := (Ao, A1) € R? a minimizer g} of the problem (xx) can be written for all z € R? as

g(z,1)=1

A A A
1) (== Torris=n ~28(5=1)) +B(S=1)~ r=prys=ny <0}

=1 A A A
{1-n(X,1) (2_ [P’(Y:ll,Szl) - ]P’(Y:O?S:l) ) - ]P’(Y:O(,)Szl) <0}

= Ly conxa)-
gx(z,0) =

n(X
A B 1s 1)+)‘0]P’(Y os }

]l A A A
{n(X,0) (7 ]P’(Y:11|S:O) - 171P(Y:01|s:0) *2P(S:0)) +IED(S:O)JFWOMS:O) <0}

=1 A A A
{1-n(X,0) (2+ ]P’(Y:ll,S:O) + P(Y:O?S:O) ) + ]P’(Y:O(,)S:O) <0}

=1 (X,0) 1-7(X,0)
{1<2n(X,0)+ P(ynzl,s:o) —opy o= ot

It is interesting to observe that for Ay = 0 we recover the optimal equal opportunity classifier
obtained first in |(Chzhen et al.|[2019]. If in addition A\; = 0, then we recover the Bayes classifier.
Now, substituting this classifier into the objective of (xx) we arrive at

. A A
PY =1) - (/\o,rilll)neR? {EX|5:1 [U(Xal) <—2P(S =1)+ P(Y = 11’ S=1) 1 —-P(Y :01 | S = 1))
Ao
+P(S=1) - 1—]P>(Y:1]S:1)}+
)\1 )\0
+EX|S:O[77(XaO) <—2P(S:0) TPy =1]S=0) 1-PY =1| S:O)>

A
+P(S=0)+ 1—B(Y :0115:0)}43'

We observe that the mappings

(Mo, A1) = Exjs [ (X, 1) (—21@(5 =D+ = fl| VR iol 5= 1)>
+P(S:1)1—P(Y201|S:1)L

(%0, At) = Exs- 0[ (X,0) (_QP(SZO)_P(Y:ﬁS:O) O 1-P(Y ZAOl!SZO))
+P(S:O)+1—P(Y201|S:O)L

are convex, therefore we can write the first order optimality conditions as

0 € MHEx|s-1 {n(X, 1) (—2P(5 =1+ PY = i\1| S=1 1-P(Y ;\01 | S = 1))
RS =1) - 1—P(Yiol|s=1)]+

+O\Exx|s0 [n(X, 0) (—2P<S:0>— P = f1| =0 1P . | S:o))
P(S:O)Jrl—IP’(YiOHS:O)L

Under Assumption [3.3.6] this subgradient is reduced to the gradient almost surely, thus we have
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the following two conditions on the optimal value of \*

Ex|s-1 [n(x, 1)gt. (X, 1)}  Exjso [n(X, 0)gs. (X, o)}

PY=1]|5=1) B PY=1]|S5=0) (36:3)
Exjsot (1= n(X, )65 (X,1)]  Exjsmo|(1 = n(X,0))5(X,0)]
- (3.6.4)
P(Y =0]S=1) P(Y =0|S = 0)

and the pair (A\*, g3.) is a solution of the dual problem (xx). By the definition of the regression
function (3.3.14)), we note that previous conditions (3.6.3]) and (3.6.4)) can be written as

P(gi(X,1)=1]Y =1,8 =1) = P(g}.(X,0)=1|Y =1,S = 0)

which implies that the classifier g3. € Fro, that is, it is fair in the EO sense.
Finally, it remains to show that g}. is actually an optimal classifier. Indeed, since g3. is fair
we can write on the one hand

R(g3.) 2 min{R(g) : P(9(X,§) =i |Y =4,§ =0) =P(g(X,8) =i |¥Y =1,5§ =1),i=0,1} = ().
g
On the other hand, the pair (A\*, g3.) is a solution of the dual problem (xx), thus we have

() = R(gs) + D> A (P(g5(X,8) =i | Y =4,8 =0) = P(g5-(X,8) =i | Y =i,5 =1))}
i=0,1

= R(gr+)-

It implies that the classifier g}. is optimal, hence g* = g3..
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Chapter 4

Obtaining Fairness using Optimal
Transport Theory

The content of this chapter has been presented at the International Conference of Machine
Learning (Los Angeles, june 2019) and it is published in the book of Proceedings of Machine

Learning Research as |Gordaliza et al.| [2019].
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In the fair classification setup, we recast the links between fairness and predictability in terms

of probability metrics. We analyze repair methods based on mapping conditional distributions
to the Wasserstein barycenter. We propose a Random Repair which yields a tradeoff between

minimal information loss and a certain amount of fairness.

4.1 Introduction

Along the last decade, machine learning methods have become more popular to build decision
algorithms. Originally meant for Internet recommendation systems, they are now widely used in
a large number of very sensitive areas such as medicine, human ressources with hiring policies,
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banking and insurance (lending), police and justice with criminal sentencing, see for instance
Berk et al.|[2017b], Pedreschi et al.|[2012] or Friedler et al.|[2019]. The decisions made by what
is now referred to as Al have a growing impact on human life. The whole machinery of these
techniques relies on the fact that a decision rule can be learnt by looking at a subset of labeled
examples, the learning sample, and then is applied to the whole population which is assumed
to follow the same underlying distribution. So the decision is highly influenced by the choice of
the learning set.

In some cases, this learning sample may present some bias or discrimination that could
possibly be learnt by the algorithm and then propagated to the entire population through
automatic decisions, providing a mathematical legitimacy for this unfair treatment. When
giving algorithms the power to make automatic decisions, the danger may come that the reality
may be shaped according to their prediction, thus reinforcing their beliefs in the model which
is learnt. Hence, achieving fair treatment is one of the growing fields of interest in machine
learning. For a recent survey on this topic we refer to [Zafar et al| [2017a] or [Friedler et al.
[2019].

Classification algorithms are one particular focus of fairness concerns since classifiers map
individuals to outcomes. Some variables, such as sex, age or ethnic origin, are potentially sources
of unfair treatment since they enable to create information that should not be processed out by
the algorithm. Such variables are called in the literature protected variables. An algorithm is
said to be fair with respect to these attributes when its outcome does not allow to make inference
on the information they convey. Of course, the naive solution of ignoring these attributes when
learning the classifier does not ensure this, since the protected variables may be closely correlated
with other features enabling a classifier to reconstruct them.

Two solutions have been considered in the fair learning literature. The first one consists
in changing the classifier in order to make it not correlated to the protected attribute. We
refer for instance to [Zafar et al.|[2017a], Bechavod and Ligett| [2017] or Donini et al. [2018].
Yet, explaining how the classifier is chosen may be seen too intrusive for many companies,
or some of them may not even be able to change the way they build their models. Hence,
a second solution consists in modifying the input data so that predictability of the protected
attribute is impossible, whatever the classifier we train. The idea consists in blurring the value
of the protected class trying to obtain a fair treatment. This point of view has been proposed
in Feldman et al. |2015], Johndrow and Lum/ [2019] and Hacker and Wiedemann| [2017], for
instance.

In this paper, we first provide in Section [4.2| a statistical analysis of the Disparate Impact
definition and recast some of the ideas developed in [Feldman et al. [2015] to stress the links
between fairness, predictability and the distance between the distributions of the variables given
the protected attribute. Then, in Section we provide first in some theoretical justifica-
tions of the methodology proposed by previous authors (for one-dimensional data) to blur the
data using the barycenter of the conditional distribution with respect to the Wasserstein dis-
tance. These methods are called either total or partial repair. Then in Section [4.3.2] we propose
another methodology called random repair to transform the data in order to achieve a tradeoff
between a minimal information loss of the classification task and still a certain level of fairness.
We extend in Section [:4] this procedure to the multidimensional case and provide a feasible
algorithm to achieve the repair using the notion of Wasserstein barycenter. Finally application
to simulated data in Section [4.5| enables to study the efficiency of the proposed procedures.
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4.2 Framework for the fairness problem

Consider the probability space (€2, B,P), with B the Borel c—algebra of subsets of R% and d > 1.
In this paper, we tackle the problem of forecasting a binary variable Y : Q@ — {0,1}, using
observed covariates X : Q@ — R% d > 1. We assume moreover that the population can be
divided into two categories that represent a bias, modeled by a variable S : £ — {0,1}. This
variable is called the protected attribute and takes the values S = 0 for the minority (assumed
to be the unfavored class), and S = 1 for the default (and, usually, favored class). We also
introduce also a notion of positive prediction: Y = 1 represents a success while Y = 0 is a
failure. Hence, the classification problem aims at predicting a success from variables X, using a
family G of binary classifiers g : R? — {0,1}. For every g € G, the outcome of the classification
will be the prediction ¥ = g9(X). We refer to Bousquet et al. [2004] for a complete description
of classification problems in statistical learning.

In this framework, discrimination or unfairness of the classification procedures, appears as
soon as the prediction and the protected attribute are too closely related, in the sense that sta-
tistical inference on Y may lead to learn the distribution of the protected attribute S. This issue
has received lots of attention in the last years and several ways to quantify this discrimination
bias have been given. We refer for instance to Lum and Johndrow| [2016], (Chouldechoval [2017]
or Bechavod and Ligett| [2017] for the analysis of fairness in machine learning. Here we focus on
the definition given in Feldman et al,[2015] or Berk et al., [2017b]. A classifier g : R? — {0,1}
is said to achieve statistical parity, with respect to the joint distribution of (X, S), if

P(g(X)=1|8=0)=P(g(X)=1]S = 1). (4.2.1)

This means that the probability of a successful outcome is the same across the groups. Yet,
the independence described in is difficult to achieve and may not exist in real data. An
index called disparate impact (DI) of the classifier g with respect to (X, S) has been introduced
in Feldman et al.| [2015] as

DI(g,X,S) = (4.2.2)
The ideal scenario where g achieves statistical parity is equivalent to DI(g, X,S) = 1. As we
have metioned, statistical parity is often unrealistic and we can consider instead a certain level
of fairness as in the following definition.

Definition 4.2.1 The classifier g has disparate impact at level T € (0, 1], with respect to (X, 5),
if DI(g,X,S) <.

The disparate impact of a classifier measures its level of fairness: the smaller the value of 7, the
less fair it is. In the following, we denote a(g) := P(g(X) =1 ]S = 0) and b(g) := P(9(X) =
1| S =1). In this paper, we will consider classifiers g such that a(g) > 0 and b(g) > 0 (the
classifier is not totally unfair, in the sense that it does not predict the same outcome for a whole
level of the protected attribute). Moreover, we assume b(g) > a(g) (the default class S = 1 is
more likely to have a successful outcome). Thus, in the definition above 0 < 7 < 1. We point
out that the value 79 = 0.8 = 4/5, also known in the literature as the 80% rule, has been cited as
a legal score to decide whether the discrimination of the algorithm is acceptable or not (see for
instance Feldman et al| [2015]). This rule ensures that “for every 5 individuals with successful
outcome in the majority class, 4 in the minority class will have a successful outcome too”. It
will be useful in the sequel to use the definition in the reverse (positive) sense: a classifier does
not have disparate impact at level 7, with respect to (X, S), if DI(g, X,S) > 7.
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Finally, another definition has been proposed in the statistical literature on fair learning.
Given a classifier g € G, its balanced error rate (BER) with respect to the joint distribution of
the random vector (X, S) is defined as the average class-conditional error

a(g) +1-blg)

BER(g,X,S) = 5

(4.2.3)
Notice that BER(g, X, S) is the misclassification error of ¢ € G for predicting S when the
protected classes are equally likely (P(S = 0) = P(S = 1) = 1/2). This allows to define the notion
of e—predictability of the protected attribute. S is said to be e—predictable from X if there exists
a classifier g € G such that BER(g, X, S) < e. Equivalently, S is not e—predictable from X if
BER(g,X,S) > ¢, for all classifiers g chosen in the class G. Thus, if mingeg BER(g, X, S) = €*
then S is not e—predictable from X for all € < &*.

In the following, we recast previous notions of fairness and provide a probabilistic framework
to highlight the relationships between the distribution of the observations and the fairness of
the classification problem. We denote ps := L£(X|S =3s),s = 0,1. The following theorem
generalizes the result in [Feldman et al.| [2015] showing the relationship between predictability,
disparate impact and total variation distance.

Theorem 4.2.1 Given r.v.’s X € RY, S € {0,1}, the classifier g has disparate impact at level

T €[0,1], if and only if BER(g9,X,S) < 5 — @(% —1). Moreover

min BER(g, X, S) =

1—-d .
prers ( TV (#o,m))

| =

As noted in the Introduction, to get rid of the possible discrimination associated to a classifier
we could, in principle, either modify the classifier or the input data. If action on the algorithm
is not possible (for instance, if we have no access to the values Y of the learning sample) we
have to focus on the second option and change the data X to ensure that every classifier trained
from the modified data would be fair with respect to S. This transformation aimed at breaking
the dependence on the protected attribute, is called repairing the data. For this, [Feldman
et al. [2015], Johndrow and Lum| [2019] or [Hacker and Wiedemann| [2017] propose to map the
conditional distributions to a common distribution in order to achieve statistical parity. This
total repair of the data amounts to modifying the input variables X building a repaired version,
X, such that any classifier ¢ trained from X will have disparate impact 7 = 1, with respect
to (X' ,S) (equivalently, every classifier g that predicts Y from the new variable X will achieve
statistical parity). As a counterpart, it is clear that the choice of the target distribution should
convey as much information as possible on the original variables, otherwise it would hamper the
accuracy of the new classification.

In more detail, total repair amounts to mapping the original variable X into a new variable
X = Ts(X) such that conditional distributions with respect to S are the same, namely,

L(X|S:0):£(X|S:1). (4.2.4)

In this case, any classifier g built with such information will be such that £ <g()~( )| S = O) =

L (g(f( )| S = 1) , guaranteeing full fairness of the classification rule. To accomplish this trans-
formation, the solution detailed in many papers is to map both conditional distributions g
and p1 onto a common distribution v. Actually, the distribution of X is modified using a ran-
dom map Ty : R? — R? that depends on the value of the protected variable S and such that
L(To(X)|S=0)=L(Ti(X)|S=1). Consequently, two different problems arise.
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e First of all, the choice of the distribution v should be as similar as possible to both
distributions pg and pp at the same time, in order to reduce the amount of information
lost with this transformation, and thus still enabling the prediction task using the modified
variable X ~ v instead of the original X.

e Moreover, once the target v is selected, we have to find the optimal way of transporting
o and pg into it.

First, from Theorem the total variation distance is the natural choice to measure the
distances between the conditional distributions in the fairness problem. However, this distance
is computationally difficult to handle. Hence, previous works suggest the use of the Wasserstein
metric, Wa, which appears as an appropriate tool for comparing probability distributions and
arises naturally in optimal transport theory. We refer to [Villani [2009] for general background
on the topic. In this framework, T will be a random transport map between the distributions
L(X | S) and £(X). Then, when considering an optimal choice for the target distribution for
L(X), some authors (see Feldman et al. [2015]) propose, in the one-dimensional case, to choose
the distribution whose quantile is the mean of the quantile functions. In general this corresponds
actually to the so-called Wasserstein barycenter of the laws £(X | S = s), as we describe next.

Given probability measures (1;)1<;j<. with finite second moment and weights (w;)1<;j<, the
Wasserstein barycenter is a minimizer of

J
v > wWs (v, ), (4.2.5)
Jj=1

see Agueh and Carlier| [2011]. Empirical versions of the barycenter and their properties are
analyzed in Boissard et al. [2015] or Le Gouic and Loubes [2017]. Similar ideas have also
been developed in |Cuturi and Doucet| [2014] or |del Barrio and Loubes| [2019]. In general, the
Wasserstein barycenter appears to be a meaningful feature to represent the mean prototype of
a set of distributions. Note that in the one dimensional case, the mean of the quantile functions
corresponds actually to the minimizer of (4.2.5).

In the following section, we present some statistical justifications for this choice. Computa-
tion of Wasserstein barycenters may be a difficult issue in the general case. Yet, in this work we
only consider the barycenter between two probabilities g, 1 on R%, so we provide some details
on how to compute this barycenter in general dimension.

4.3 Repair with Wasserstein Barycenter

4.3.1 Learning with Wasserstein Barycenter distribution

In our particular problem, where J = 2 in (4.2.5)), the conditional distributions po and u; are
going to be transformed into the distribution of the Wasserstein barycenter pup between them,
with weights mg and 71, defined as

pp € argmin,ep, {moW3 (10, v) +mW3 (11, v) } -

Let X be the transformed variable with distribution pp. For each s € {0,1}, the deformation
will be performed through the optimal transport map (o.t.m.) 7, : R? — R? pushing each
towards the weighted barycenter pp. The existence of up is guaranteed (see Theorem 2.12 in
Villani| [2003]) as soon as s are absolutely continuous (a.c.) with respect to Lebesgue measure.
In that case,

E(I1X =TI | S = s) = Wi (s, ). (4.3.1)
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Remark 4.3.1 Note that computing the barycenter of two measures is equivalent to the com-
putation of the o.t.m. between them. If ugy is a.c. on R® and T : R* — R? denotes the o.t.m.
between o and jiy, that is p1 = poyT, then py = poy ((1 — A\)Id + XT') is the weighted barycenter
between g and py, with weights 1 — X and X, respectively. The map (1 —N)Id+ \T is an optimal
transport plan for all A € [0,1]. So, the complexity of computing pp = poy (mold + mT) is the
same as computing T .

Remark 4.3.2 Note also that for distributions on the real line, we can write the explicit ex-
pression of the barycenter up based on the exact solution to the optimization problem .
Given s € {0,1} and X € R, let Fs : R — [0, 1] denote the cumulative distribution function of
X, given S = s, and F;1 : [0,1] — R its quantile associated function. The weighted Wasserstein
barycenter up of po and py is the unique minimizer of the functional and its quantile
function can be computed as

Fgl(t) = (\Fy ' () + (1 = N F (), te[0,1].

Moreover, note that Fs (X | S=s) ~ U(0,1),s = 0,1, and the o.t.m. solution to is
Ts = Fg'oF;.

To understand the use of the Wasserstein barycenter as the target distribution for pg and
1, we will quantify the amount of information lost when replacing the distribution of X by a
new and, for the moment, unknown distribution of X obtained by transporting o and pp. Set
the random transport plan Ts : R — R, and the modified variable X = Ts(X). We point out
that choosing the distribution of X amounts to choosing the transport plans Ty and T}. We are
facing learning problems in two different settings.

e On the one hand, the full information available are the input variables X and the protected
variable S, which play an important role in the classification, since the classifier has a
different behavior according to the different classes S = 0 and S = 1. Hence, we let §
play a role in the decision process since it is associated to Y, and possibly giving rise
to a different treatment for the two different groups. In this case, the classification risk
when the full data (X,S) is available can be computed as R(g, X, S), the risk in the
prediction of a classification rule g that depends on both variables X and S, namely

e On the other hand, in the repair data only the modified version X of the input is at hand.
Hence, the risk when learning a classifier is R(h, X) := P(h(X) #Y).

Studying the efficiency of the method requires providing a bound for the difference between
the minimal risks obtained for the best classifier with input data X = Ts(X), and for the best
classifier with input data (X, S), called gg. These risks are respectively denoted Rp(X) and
Rp(X,S) =infy R(g, X,S) = R(gB, X, S), and then its difference is

E(X):= Rp(X) — Rp(X, S).

Note first that, given X =z and S = s, inf, R(g, X, S) can be computed by mimicking the usual
expression of the 2-class classification error as in |[Bousquet et al.| [2004], for instance. Denoting
by ns(z) :=P(Y =1| X =z,5 =),

Pe(X,S) #Y | X =2,5=35)
= ]lg(z,s)yéo(l - US('T)) + ]lg(z,s)yélns(x)'
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So we deduce that R(g, X, S)=E [1,x s)=0(2ns(X) — 1)] +E[1 —ng(X)]. The minimum risk is
thus obtained using the Bayes’ rule gp(z,s) = 1, (;)>1/2, showing that

Rp(X,S) :=mingR(g, X, S)
= E [12p5(x)-1<03(2n5(X) = 1)] + E[1 — ng(X)] .

Similarly, the risk related to a classifier h(X) is given by

R(h,X) = R(h, Ts(X))
= E [Lhorg(x)=0(2ns(X) = 1)] + E[1 — ns(X)]. (4.3.2)

Hence, the amount of information lost due to modifying the data is controlled by the following
theorem.

Theorem 4.3.3 Consider X € R? and S € {0,1}. Let Ts : R = R? d > 1 be a random
transformation such that L(To(X) | S = 0) = L(T1(X) | S = 1), and consider X = Ts(X).
Assume that ns(X) is Lipschitz with constant Ks >0, s =0,1. Then, if K = max{Ky, K1},

2

E(X) <2V2K | > Wi (s sy To) | - (4.3.3)
s=0,1

Theorem provides some justification to the use of the Wasserstein barycenter as the dis-
tribution of the modified variable. Similar inequalities in the framework of domain adaptation
are given in Redko et al.[2017]. In fact, minimizing the upper bound in (4.3.3)) with respect
to the function Ts : R — R? d > 1, leads to consider the transport plan carrying the con-
ditional distributions pg and pp towards their Wasserstein barycenter pp with weights mg, 71,
that is, usyTs = pp. Hence, this provides some understanding on the choice of the Wasserstein
barycenter advocated in the work Feldman et al.|[2015] and leads to the following bound

inf {R(gp o Ts, X) — R(gp, X, 9)}
S

2

< 2\/§K Z stg(ﬂsa ,UB) <
s=0,1

W3 (o, p11)-

Sle

This upper bound only provides some guidelines on the choice of the target distribution. Never-
theless, choosing the Wasserstein barycenter provides a reasonable and, more important, feasible
solution to achieve fairness. Recently in del Barrio et al| [2019b] a CLT for L, transportation
cost in R is provided, which enables to build two sample tests and confidence intervals to certify
the similarity between two distributions. We also point out that we only deal with the case of 2
classes for S, a majority and a minority, which is one of the main concerns in fair learning. Yet,
the result could be generalized to multiclass where S € S with several labels since it only relies
on the defintion of the Wasserstein barycenter. In this case, computing the barycenter becomes
a harder issue.

As pointed out previously, the total repair process ensures full fairness but at the expense
of the accuracy of the classification. A solution for this could be found in Feldman et al. [2015],
called geometric repair. The authors propose not to move the conditional distributions to the
barycenter but only partly towards it along the Wasserstein’s geodesic path between pg and p.
We analyze next this procedure and propose an alternative method for the partial repair.
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4.3.2 A new algorithm for partial repair

Let A € [0,1] be the parameter representing the amount of repair desired for X. Let Z be a
target variable with distribution pu. Set Rs = T; !, s = 0, 1, where T} is the o.t.m. pushing each
s towards the target p. Note that Rs(Z) follows the original conditional distribution .

Definition 4.3.1 (Random repair) Let B be a Bernoulli variable with parameter X. With
the above notation, we define for s € {0,1}, and X € (0,1) the repaired distributions

fisa = L(BZ+(1-B)R.(2))
= L(BTJ(X)+(1—-B)X|S=s). (4.3.4)

This repair procedure consists in randomly changing the distribution of the original X by
either selecting the target p or the original conditional distributions. The degree of repair is
governed by the Bernoulli parameter A: note that for A =0 fis0 = L(X | S = s) and for A =1
fisg = L£(Z) = p. The value of A should come from a trade-off between (i) the accuracy of
the new classification result, that leads to little changes in the initial distributions; and (%i) the
non-predictability of the protected variable, which implies that the two conditional distributions
should stay close with respect to the total variation distance. In fact, (see e.g. Massart, [2007]),
the distance in total variation between two probabilities P and () can be computed as

drv (P, Q) = Werrllﬂ(i]g o m(x # y). (4.3.5)

This leads to

drv (fion, firy) S P(BZ + (1 — B)Ro(2)
£ BZ+(1—-B)Ri(Z)) =1 —P(BZ + (1 — B)Ro(Z)
—BZ+(1-B)Ri(Z)<1-P(B=1)=1-A.

This bound suggests that A should be close to 1 to ensure non-predictability of S. Finally, observe
that the misclassification error using the randomly repaired data is a mixture of the two errors
with the totally repaired variable T's(X) and the original X since R(g, X)) = (1 — \)P(g(X) #
Y) + AP(g(Ts(X)) # Y). Hence, from Theorem the use of the Wasserstein barycenter
Z ~ pp is justified.

In the literature (for instance Zafar et al.|[2017a]), another partial repair procedure is used,
called geometric repair. As before, 1 is chosen as the barycenter up and the partially repaired
conditional distributions are defined as

for = LOZ + (1 - NRo(2))
— LOTL(X) + (1 NX | S=s), se{0,1}.

Observe that A = 1 yields the fully repaired variable, and A = 0 leaves the conditional distribu-
tions unchanged. So the parameter A governs how close the distributions are to the barycenter.
Such procedure sounds appealing since the conditional distributions are moved on the geodesic
path between the original distributions which warrants an optimal prediction and the barycen-
ter which warrants fairness. Controling this distance is the key of the geometric repair. Yet,
reasoning among the lines of previous argument to obtain an upper bound for the classification
risk using the partially repaired distributions pg » and g ) does not lead to a satisfying result.
This comes from the fact that the geometric repair moves the original distributions according
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to the Wasserstein distance, while fairness is measured through the total variation distance, and
they are of different nature. So if A € (0, 1), using (4.3.5) implies that

dTv(;Lo7)\,/L17,\) < P()\Z + (1 — )\)RO(Z) (4.3.6)
2T+ (- NR(Z)) = P(Ry(2) # Ba(2).

The previous bound means that the amount of repair quantified by A does not affect the TV
distance between the modified conditional distributions. Moreover, in some situations, (4.3.6))
turns out to be an equality. Consider, for instance,

Ho,0 = U(K,K + 1) U0 = U(—K —1, —K) (437)

as the distributions of X in each class. Then, the barycenter is p91 = p1,1 = U(—1/2,1/2) and
A A
pox =U —§+(1—)\)K,—§+(1—)\)K+1 ,
A A

In this case, the TV distance can be easily computed as

dTV(MO,AyMl,A) = min(l, (1 — )\)(ZK + 1)) (438)

We see from equation that dry (o, 12) = 1, if A < 2K/(2K+1), which means that the
protected attribute could be perfectly predicted from the partially repaired data set for values of
A arbitrarily close to 1. Thus, the bound provides some argument against the geometric
method since the repair should favour small distances between the original distributions to ensure
a certain desired level of fairness. Hence, rather than using a displacement along the Wasserstein
geodesic between the distributions, we propose the random repair which enables a better control
of their total variation distance, enhancing the disparate impact while not hampering too much
the efficiency of the classification.

In the next section, we propose a new algorithm for the total repair which in practice attains
full fairness in contrast with the existing in the literature. Based on it, we design a scheme to
perform the random repair.

4.4 Computational aspects for Repairing Datasets in (General
Dimension

Let {(X;,S;,Yi),i = 1,..., N} be an observed sample of (X,S,Y), and denote by ng and n;
the number of instances in each protected class. Without loss of generality, we assume that the
observations are ordered by the value of S,

xo, = X;, if 5, =0, 1=1,...,np,
T1 j—ng ::Xj, if SjZl, j=no+1,....N =ng+ni.

Generally, the sizes of the samples Xy = {z¢,1,...,Zon,} and X1 = {z11,..., 21, } are different
and Monge maps may not even exist between an empirical measure to another. This happens
when their weight vectors are not compatible, which is always the case when the target measure
has more points than the source measure. Hence, the solution to the optimal transport problem
does not correspond to finding an optimal transport map, but an optimal transport distribution.
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The cuadratic cost function becomes discrete as it can be written as a matrix C' = (c,]) with
cij = |lzo; —x14]*,1 <i<ng, 1 <j <ny. When g, = >0, 7305xo,i and i1, = D51, n15mlj,
the Wasserstein distance W (fo,n, ft1,n) between them is the squared root of the optimum of a
net-work flow problem known as the tramsportation problem. It consists in finding a matrix
v € Muyyxn, (R) which minimizes the transportation cost between the two distributions as

follows

min, Z cijij, subject to:
1<i<ng
1<j<ny
Yij > 0, (4.4.1)
Yo i = ni, for all 7,
doiE1 Vi = s for all ¢.

If 4 is a solution to the linear program (4.4.1]) then, the measure

MB,n = Z ,.3/1‘]‘5{71'0:60,1'4»7!'19311]'}
1<i<ng
1<j<m
is a barycenter of i, and p; ,, with weights mp and 71, according to Remark See [Cuturi
and Doucet| [2014] for details on the discrete Wasserstein and Optimal Transport computation.

4.4.1 Total repair

In practice, the implementation of the repair scheme in Section is based on the transport
matrix 4 from X to X;. As we have pointed out, in this transport scheme the major difficulty
comes from the fact that the sizes of these sets are different and the transport is not a one-by-one
mapping. Each point in the source set could be transported (with weights) into several points
of the target, or various points in the source could be moved into the same point of the target.
As a consequence, we must adapt the algorithm that produces the repaired data set, denoted
by X.

We detail next two different methods. The first one is similar to some existing in the
literature and does not achieve total fairness in practice, while the second one is a novelty and
does guarantee this property for the new data X.

(A) As depicted in Figure [.3(A), each original point in X, X} is changed by a unique point

given by
ni
To,; = ToTo,i + NoT1 E Yijr1,5, 1 <1 < ng,
Jj=1
no
.%17]‘ = N7 E YijTo,i + T121,5, 1<7<n.
i=1

The set X will be a collection of exactly ng + nq points. This approach generalizes to
higher dimensions the idea in |Feldman et al.| [2015] and Johndrow and Lum, [2019], which
only considered the unidimensional case, where the transport is written in terms of the
distribution funtions. Yet, in practice it builds two different sets Xy = {04, 1 <i<mnp}

and Xj = {z1,, 1 <j < mny} that do not ensure (4.2.4).

(B) To ensure total fairness, each point will split its mass to be transported into several modi-
fied versions. This generates an extended set X = XyUX;, which is formed by the complete
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distribution pup . As shown in Figure (B), if 455 > 0,1 <i <ng, 1 <j < nq, we define
the two points
T0,i,j i= T1,4i = ToT0,; + T1T15, (4.4.2)

and the sets

Xy = U {Zoj / %5 > 0,1 <j<mni}

1<i<ng

M= |J {F150/ 45> 0,1 <i<ng}.
1<j<ny

The rebuilt distributions have sizes equal to the number of non zero elements in 4, and each
point has weight 4;;. Unlike the previous, this approach does achieve total impredictability,
as it manages to produce repaired conditional distributions equally distributed.

Example 4.4.1 We have simulated two samples Xy and X of points in R of sizes ng =4 and
ny = 7. The optimal matriz solution to the problem (4.4.1)) is

ii-100 0 0 O
i 1 1 1

¥ = 07 47114(1)201O

o o o bog 110

0o 0o 00 0 +-11
If Xo and X are realizations of po and pa, respectively, then the left part of Figure )
represents procedure (A) that produces the repaired sets Xy = {Zo1,...,Zo4} (rounded green
points) and X1 = {Z11,...,Z1,7} (squared green points). As we can observe, the two sets are

clearly different and the statistical parity can not be reached. Otherwise, procedure (B) on the
right yields to Xy = Xj.

N 5 1,1 S=0 _ = 1,1
x1,1 ) Zo1,1 T1,1,1 ’
0.1 Zo,1 N 12 201 T0,1,2 T1,2,1 719
1,2 ~ ~
- L0,2,2 21,22
- 13 71,3 T023 71,32 T13
0,2 0,2 Z0,2 5 ) 42
T14 T 02,4 .
i 14 20,3,4 T1,4,3 T14
0,3 =
Zo,3 L 0,3 x1,5,3
Z15 Z15 ’ 20,3,5 5:1’6’3 Z15
- i- Mt
i ) 16 i ~0,3,6 164 "
0,4 T4 ) 0,4 Z0,46 F1r4 ,6
~ X )
r1,7 r1,7 04,7 1,7
(A) (B)
Figure 4.1 Figure 4.2

Remark 4.4.1 When the two samples Xy and X1 have equal size n and the weights v;; = %, 1<
1,7 < n, are uniform, the mass conservation constraint implies that v is a bijection and the
Monge problem is equivalent to the optimal matching problem mingc perm(n) %Z?:l Cio(i)- Both
repairing procedures (A) and (B) perfom the same generating Zo; = Z1,; = % (o +x14), 1 <
i <n, as depicted in Figure[{.]] Then, total fairness is always achieved.
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S=1

S=0 gl’l '
T1,1,1 5=
A 719
1= %0,2,2 bg'=0
T 12'0’2’3 %173:2 x1,3
620’2— _ T1,4,2 by =1
= 7 5
. 1,1 P T 51’4 1
x T ; ] =
0,1 01 ?;“0’3 ) ”
20,2 Too P11 T1,2 3= 21,53 b9175: 1
- 7 70,46
xo,3 Zo,3 1,2 %0,4 1 o 7 lafl,ﬁ 0
T = ~ 1,7,4 =
~ r1,3 x 4 ol 10
0,4 To4 3 L0,4,7 1
T1,4 1,4 b1 =1
Figure 4.4 — Repairing process when ng = n Figure 4.5 — Example of the random repair with

A= 1.

4.4.2 Random repair

As previously noted, trying to build the set X satisfying the goal may compromise too
much the accuracy of the classification with these new data. In this sense, the random repair
procedure proposed in this paper aims at setting a tradeoff between fairness and accuracy
through the parameter A, that models the amount of repair desired. We detail next how to
compute the randomly repaired set denoted by Xy, with A € [0,1]. According to , we will
randomly select either the points in the original sets A and A or their repaired sequels with
procedure (B). For this, consider a sample by, ..., byy4n, ~ B(A), and define

no ni
KXo\ = U Ro i X1y = U Ry, (4.4.3)
i=1 j=1

where Ry ; x and Ry j are the repaired sets of the points xo; and x1 j, respectively:

roo oo | Amoad if ;=0
027 {Zoiy [ Aij > 0,1 <j<m} if b=1

Ry md 1oL} if by =0
Lo {fz'l,j,z' / Yij > 0,1 <4 < no} if bno+j = 1

with i'(),i,j and @17]'71' given in " with weights 'S/i,j-

Example 4.4.2 Consider the situation in Example [[.{.1 Figure [{.5 represents the random

repair procedure for A = % Forl=1,...,n9+ n1 = 11, we have simulated values b; ~ B(%)

From (4.4.3) we have the randomly repaired sets

Xox = {x0,1,%0,2,2, 20,2,3, £0,2,4, 0,3, £0,4,6, £0,4,7 }

Xix=A{Z111,212, 2132, T1,42, T1,43, 1,53, T1,6,L1,7,4}-

4.5 Application with simulated data

In this section, we present an application of the repairing procedures in Section to some sim-
ulated data to illustrate their performance. We also provide an example in which the geometric
repair fails to remove the bias in the data.
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To introduce some bias in the simulated dataset X we have taken ng = 600 and ny =
400 examples from two multivariate normal distributions on R® with vector of means po =
(3,3,2,2.5,3.5) and 1 = (4,4, 3,3.5,4.5) and equal covariance matrices ¥ = diag(1,1,0.5,0.5,1).
Then, in order to simulate the classification Y, we have chosen parameters 5y = (1,—1,—-0.5,1,—1,1)
and 81 = (1,—0.4,1,—1,1,—0.5) to build a logit model for each group with different probability
of success for s = 0,1, m4(z) = lféiisﬁs, higher for the class S = 1.

Then, a new logit classifier has been trained from this simulated data, splitting the set into
the learning and the test sample using the ratio 300 / 700. In the first row of Table we can
see a summary of the performance of the logit with the original data. We have estimated the
disparate impact using its empirical counterpart and provided a confidence interval which was
established in Besse et al.|[2018b]. Before the repair, we can say with a confidence of 95% that
the logit rule has DI at level 0.53 with respect to S. Then, we have made the repair in R® in the
testing sample using the different procedures studied in this paper. We have used the previous
logit model, which was trained from biased data, to classify such repaired observations. In the
remaining rows of Table a summary of the performance of the logit with the repaired data
using procedures (A) and (B) is presented. We note that in the experiments with procedure
(A) the estimated value for DI is not exactly 1, as we have already anticipated. On the other
hand, procedure (B) manages to change the data to attain statistical parity. The error in the
logit classification done with the repaired data sets is a bit higher for the second procedure.

Finally, we present some results of the performance of the Geometric and random repair.
Figure [4.0] represents the evolution of the confidence interval for the disparate impact with
the amount of repair 0 < A < 1. Figure [5.5] shows the evolution with A of the error in the
classification done from the modified data set. For the experiments concerning the random
repair procedure, we have repeated it 100 times and then we have computed the mean of the
simulations. Clearly, the reached level of DI of the logit rule is higher with the random repair.
We note that the amount of repair necessary to achieve an estimated DI at level 0.8 for the logit
rule is 0.475 with the random repair, which entails an error of 0.1537; and 0.7 with the geometric
repair, which entails an error of 0.1371.

Table 4.1 — Disparate impact of the logit with the original and the repaired datasets

Repair ‘ Error  Difference DI CI 95%
- 0.0943 - 0.5309 (0.4230,0.6389)
(A) 0.1629 0.0686 0.9588 (0.7641,1.1535)
(B) 0.1874 0.0931 1 (0.8536,1.1464)

In order to see the failure of the geometric repair, we have simulated ng = n; = 500 obser-
vations from uniform distributions as in with K = 10. We have trained a random forest
classifier with the same ratio 300/700 for the learning and test sample. In Figure we can
see that the evolution of the disparate impact is controlled by the amount of repair only if we
use the random repair. As pointed out from inequality , we observe that for values of
A< % ~ 0.95, the DI does not increase with A for the partially modified distributions with the
geometric repair. This means that for values of the degree of repair close to 1, this procedure
does not manage to remove the bias in the data and consequently, it does not ensure the fairness
of every classifier.
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Figure 4.6 — CI at level 95% for DI of the logit Figure 4.7 — Error of the logit
Procedure
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Figure 4.8 — CI at level 95% for DI of the random forest classifier

4.6 Conclusions

We have provided a multidimensional expansion and a feasible algorithm to repair a learning
sample and incorporate fairness to prevent unfair algorithms to be learnt. Moreover this way of
correction can be improved using a random reparation as shown in the paper. Yet this way of
reparation only deals with disparate impact assessment and other criterion such as conditional
accuracy equality for instance will be further incorporated using the same ideas of Wasserstein
barycenter of conditional distributions.
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4.7 Appendix A to Chapter

4.7.1 Proofs

Proof of Theorem We will show that the conditions DI(g, X, S) < 7 and BER(g, X, S) <

% - @(l — 1) are equivalent, for all g € G. Indeed, given g € G,

1_
a(g)<1—1>:1—(71)19(g(X):1|S:0)

1
BER(g.X.5) < - —
Rlg, X, 8) =5 -~ (7 2 2

@P<g<x>—ows—1>+mg<x>—1rs—o>§1—(i—l)wgm—us—m

<:><1+<1—1>>]P(g(X):1]S:O)—i—IP)(g(X):0|S:1)§1

T

@%P(g(X):l\SzO)§1—[P’(g(X):0|S:1):IP>(g(X):1|S:1

& DI(g,X,S) = ﬁgzg)

~—

~—

0)
1) <.

n| »n
Il

1]
1]

Moreover, we denote by f;,i = 0, 1, the density functions of the conditioned variables X/S =
1, respectively, whose corresponding probability measures are both supposed to be, without loss
of generality, absolute continuous with respect to a measure p. In general, the misclassification
error could be written as:

P(g(X) # 5) = B(S = O)P (9(X) = 1| S = 0) + B(S = )P (9(X) =0 | S = 1) =
PS=0) [ fe)du(a) + B =1) / fi(@)du(). (47.1)
g9(X)=1 g

(X)=0
Now, for s = 0,1, we fixe the value of 73 = P(S = s), and from the Bayes’ Formula, we know

that
sts(X)
mofo(X) + mifr(X)

P(S=sX)=

Hence,
{P (S = O‘X) > P(S = 1‘X)} = {ﬂofo(X) > ﬂlfl(X)}, n— a.s.

Thus, we can deduce that the classifier that minimizes the missclassification error rate is

son ) 1 if mofo(x) < mifi(x)
g (@) _{ 0 if mofo(z)>mfi(z) ~

and from equation (4.7.1]),
winP((x) # §) = [ mofo(@)du(o) + | o f1 (2)dn().
9€9 {mofo(@)<m f1(2)} {mofo(@)>m1 f1(2)}

In our particular case, BER(g, X, S) = P(g(X) # S) when considering 7y = 71 = 3, so we have

that 1 if folz) < fi(x)
. B 7 ox) < frilz
g (95)—{ 0 if fo(z)> fi(z)
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and

min BER(g, X, S) = BER(g", X, S) = + [ / fola)dua) + [ i (l‘)du(w)]
=Y 2 1 o)< fi(@) fo(z)>f1(z)
=5 [Uon @auta).
This concludes the proof since by definition
drv (o) = 5 [ 150 = hldu =1~ [ (o r ) @du(o)
O

For the proof of Theorem we need the following lemma.
Lemma 4.7.1 Under Assumptions of Theorem [{.5.3, the following bound holds
R(gp o Ts,X) — R(gp, X, 5) < 2E[|ng(X) —ns o Ts(X)]].

Proof. We want to be able to control the difference infeg R(h, X) — inf,eg R(g, X, S).
To do this, observe that

heg
< R(gpoTs,X) = R(gs. X,S) = E [(2ns(X) — 1)Ly 0m(x)=0 — Lgp(x,9)=0)]
=E [(2ns(X) = 1)Lgors(x)205(x.5) (Lgpors(x)21 = Lyp(x.9)21)] »

Rp(X) — Rp(X,S) := inf R(h, X) — inf R(g, X, S)
g

where the last equality holds because (]lgBoTS(X)#) — (]lgB(X75)¢1) = 0 if, and only if, both
classifiers have the same response gp o Ts(X) = gp(X, 5).
Consider X =z and S = s,

o if gp(z,s) =1, 2ns(x) — 1 > 0 and 1, s~ = 0. In this situation, we deduce that
UgpoTy(2)gp(es) = 1 g o Ts(x) =0,

and
]lgBoTs(m);él - ]lgB(x,s)yél =1

e if gp(z,5) =0, 2ns(z) — 1 <0 and 14, 21 = 1. We deduce that
UgpoTy(2)#gp(es) = 1 € gp o Ts(x) =1,

and
Lypori@)#1 = Lgp(a,s)21 = =1

In any case, the random variable (2ng(X) — 1>]lgOT5(X)7égB(X,S')(]lgBOTS(X)sél — ILgB(Xﬁ)#) is
positive and so it is its expectation

R(gpoTs,X) — R(gp, X,S) = E[|2n5(X) — 1| Lgory(x)2g5(x,5)] =0
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Moreover, notice that ggoTs(x) =1, o1 ()51, forallz, foralls. Hence, gpoTy(x) # gp(, s)
S S 2

if, and only if, either ns(z) > 1 and n, o Ty(z) < § or ns(z) < 3 and 7, o Ty(z) > 1. In both
cases,

1 1
ns(w) — ) + 9 ns o Ts(x)

1

ns(x) — )

1
9~ ns o Ts(x)

]

ns(w) — ns o Ty(x)| =

)

and then it is clear that

2

1
ns(x) — ‘ < |ns(x) —ns o Ts(z)|, for all x, for all s.

In conclusion, the difference between the risk using the Bayes’ classifier with the original
variable X, S and the modified version X = Ts(X) can be bounded as follows

R(gpoTs,X)— R(gp, X,S) < 2E[Ins(X) —ns o Ts(X)]].

O

Proof of Theorem First, note that R(h, X) = R(h, Ts(X)) < R(gp,Ts(X)) = R(gp o
Ts,X). Thus, it suffices bounding the difference between the minimal risks obtained for the
best classifier with input data (X,S5), called gp, and the risk obtained with this classification
rule using the input data X

R(gpoTs, X) — R(gp, X, S) < 2E(x,5) [[ns(X) —ns o Ts(X)|]
=2[P(S = 0)Ex [[no(X) —no o To(X)[ | S =0] + P(S = DEx [[m(X) —m o T1(X)| | § =1]]

=2 > wEx [Ins(X) = ns 0 Tu(X)| | S = 5].
s=0,1

Moreover, by the Lipschitz condition and noting that a + b < 2%(a2 + b2)%, forall a,b € R, we
can write

R(QB OTSvX) - R(ngXv S) <2 Z s KsEx [HX _TS(X)H ’ S = 8]
s=0,1

N

<2V2K | ) mlEx[IX - Tl [ S=s)"] |
s=0,1

where K = max{Kj, K1 }. Finally, the Cauchy-Schwarz inequality gives

Rl(gp o Ts, X) ~ Rgp, X, 8) < 2V2K | 3 w2Ex [|X = T(X)|*| S = 5|
s=0,1

NI
NI

=2V2K | Y mWi(ps, pnsyTe) | < 2V2E | ) w3 (pe, 1y Te)
s=0,1 5=0,1
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4.7.2 Application on a real dataset

To ilustrate the performance of the repairing procedures in Section 3, we consider the Adult In-
come data set (available at https://archive.ics.uci.edu/ml/datasets/adult). It contains
29.825 instances consisting in the values of 14 attributes, 6 numeric and 8 categorical, and a
categorization of each person as having an income of more or less than 50, 000$ per year. This
attribute will be the target variable in the study. In the following, we estimate the Disparate
Impact using its empirical counterpart and provide a confidence interval which was established
in Besse et al|[2018b]. Among the rest of the categorical attributes, we focus on the sensitive
attribute Gender (“male”or “female”) to be the potentially protected. As the repairing proce-
dures work only with the numerical attributes, to check their effectiveness we will follow the
next steps:

1. Split the data set into the test and the learning sample using the ratio 2.500 / 27.325.

2. Train the classifiers based on logistic regression and random forests using the five numerical
variables: Age, Education Level, Capital Gain, Capital Loss and Worked hours per week.

3. Predict the target for the test sample with the built model and compute the misclassifica-
tion error of each rule.

4. Apply the repair procedure to the test sample described by the numerical variables.

5. Predict the target for the repaired data set with the built model and compute the misclas-
sification error again.

In Table a summary of the performance of the two classification rules considered is
presented. With a confidence of 95%, we can say that the logit classifier has Disparate Impact
at level 0.555 and the Random Forests at 0.54, with respect to Gender. Hence, both rules are
committing discrimination with respect to this sensitive variable. Now we will see how the
repairing procedures studied in section help in blurring the protected variable.

In Table we can see that in the experiments with procedure (A) the estimated value
for DI is not exactly 1, as we have already anticipated. On the other hand, procedure (B)
manages to change the data in such a way that both classification rules attain Statistical Parity.
Moreover, the error in the classification done with the repaired data sets is smaller when using
procedure (B) in the two cases. In Feldman et al. [2015], they propose a generalization to higher
dimension by computing the repairing procedure for each attribute. This procedure is denoted
in the table with the letter (C). We see that the error is smaller than with (A) but still much
bigger than with (B). Moreover, the estimated level of Disparate Impact is not 1 but it is closer
to the Statistical Parity than with procedure (A).

Finally, we present some results of the performance of the Geometric and Random Repairs.
Left part of Figures and represent the evolution of the estimated Disparate Impact
with the amount of repair 0 < A < 1, while the right part show the evolution with A of the
error in the classification done from the modified data set. For the experiments concerning the
Random Repair procedure (denoted RR in the figures) we have repeated it 100 times, and then
we have computed the mean of the simulations. Clearly, the level of DI reached is higher with
the Random Repair for the logit rule. For the random forest procedure since the rule is not
linear, the difference is not as high and Disparate Impacts have similar behaviors. Yet for larger
amount of repair the gap between the two different kinds of repair increases at the advantage of
the Geometric Repair.

Moreover, the error in the prediction from the new data modified with this procedure is
smaller than with the Geometric Repair. We note that the amount of repair necessary to
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achieve a confidence interval for DI at level 0.8 for the logit rule is 0.3 with the Random Repair,
which entails an error of 0.2068; and 0.55 with the Geometric Repair, which entails an error of
0.2136. In the case of the random forests rule, this value is 0.5 for both but the error is 0.1927
with the Random Repair; and 0.2076 with the Geometric Repair.

Table 4.2 — Performance and Disparate Impact with respect to the protected variable Gender.

Statistical Model ‘ Error DI CI 95%

Logit 0.2064 0.496 (0.437,0.555)
Random Forests | 0.168 0.484  (0.429,0.54)

Table 4.3 — Repairing procedures and Disparate impact of the rules with the modified dataset

Statistical Model ‘ Repair ‘ Error Difference DI CI 95%
Logit (A) | 0218 00116 0937 (0.841,1.033)
Logit (B) 0.2077  0.00128 1 (0.905, 1.095)
Logit (C) 0.2132 0.0068 0.94 (0.842,1.038)

Random Forests (A) |0.2272  0.0592 1.1 (0.976,1.223)

Random Forests (B) | 0.2045  0.0365 1 (0.886,1.114)

Random Forests (C) |0.2152  0.0472 1.091 (0.978,1.203)

1.1 Procedure 0.218

) Procedure
Geometric Geometric
Random Random
1
0.215
0.9
8
= 0.8 =
A g
0.7 0.210
0.6
0.2077
0.5 0.2064
0.205
0 0.1 0.2 03 04 05 0.6 07 08 09 1 0 0.1 0.2 03 04 05 0.6 07 08 0.9 1
Amount of repair A Amount of repair A

Figure 4.9 — CI at level 95% for DI (left) and error (right) of the classifier logit with respect to
Gender and the data repaired by the Geometric and Random Repair
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Figure 4.10 — CI at level 95% for DI (left) and error (right) of the classifier random forests with
respect to Gender and the data repaired by the Geometric and Random Repair

4.8 Appendix B to Chapter

4.8.1 Quantifying the loss when predicting with LASSO from the repaired
data through scale-location models

In this appendix we describe how imposing fairness constraints affects the quality of the predic-
tion when considering LASSO estimation.

We observe (Xi,51,Y1),...,(Xn,Sh,Y,) iid. from the random vector (X,S,Y’), where
Y € R, X € RP and S € {0,1} correspond respectively to response, usable and protected
attribute, as usual. Consider the following model

Y = (I, — S)Xa+ SXB +e¢, (4.8.1)
1 X1 ... le

T 1 X9 ... Xgp ) . . T

whereY = [V1,..., Y, ], X=| . . is the design matrix, o = [a, o1, ..., )",
1 X1 oo Xy

8 = [Bo; B, -, 8", S = diag(S1,...,S,) and ey, ...,&, are iid. N(0,0%). We will assume
that model holds exactly, with some true parameter values a* and 8* and we will denote
f* =, — S)Xa* + SXF*. Thus, the true model can be written Y = f* + ¢.

Now we want to predict Y using a transformation of X that depends on the protected group
S, say X = Ts(X), such that the impredictability of the protected attribute from the modified
data is ensured, which means that

LX]|S=0=L(X]|S=1). (4.8.2)

In particular, we will consider location-scale transformations. Thus, we will write for the trans-
formed design matrix

X = (I, — $)XMy + SXM, (4.8.3)
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where

, Ay = diag(as, . .., asp), bs = [bs1,. .., bsp)" (4.8.4)

and bs, Ag are the location and scale parameters, respectively, of the transformation T, s =0, 1.
with

More precisely, we have that X = (Xij)
1<i<n,1<j<p+1

Xij = boj + ag; Xij, 2<j<p+1,if S;=0

Xz‘j = blj + CLleij, 2<j<p+1,if S5 =1 (4.8.5)

Xz’l :1, izl,...,n
In order to quantify the loss in the prediction of Y from the modified data, we will consider

the Lasso o
2 : Y — X835
8= argmingegp+1 {n2

+AIIBII1},

where the coefficient 3 does not depend on the value of S = s. By definition of the Lasso, for
every 3 € RPTL it holds that

Iy — X513 Y — X813
n n

+ 1Bl < + M8l (4.8.6)

If we write
IV = X813 = | +e—XB|3 = |I.F* — XB3 + llell3 + 2¢7 (f* — XB),

and the same for § in the right-hand side of (4.8.6]), then we have the following basic inequality

* 55 2 A * W 2 T * X T *
Il7™ = X5z + M8 < I/ —XBl3 i 20 (f* =XB) 2 (fF —XB) + AllBll
n n n "
2e7X(B - B)

= ———— +AlBlh +

n

I/ - %813
n

The first term represents the random part where the measurement error plays a role. This part
can be easily bounded in terms of the /1-norm of the parameters involved as follows

2TX(5 — B)| |27 (1 — S)XMy + SXM)(5 - )
n - n
27 (I, — $)XMo(5 — 8)| | [27SXM(5 - )
< - + "
2|(eT(I, — 9)X) ; 2
<, g, A - o)
2|(e7' 9X) 5
+ o AESDalyag, 5 gy,

96



The idea of the penalty in the Lasso is that it should be chosen to control this random part.
Let us therefore introduce the sets

Jo ::{ max 2|(e7(I,, — 9)X) | < )\0}

1<j<p+1
Ji ;:{ max 2|(€TSX),J“ < AO};

1<j<p+1

where we assume A > k), for some constant k& > 0 that will be fixed later, to make sure that
on J := JyNJ1 we can get rid of the random part of the problem.

We will show next that for a suitable value of Ao, the set J has large probability. Let us
denote 3 = @ and &]2- = f]jj, j=1,...p+ 1, its diagonal elements

(4.8.7)

Lemma 4.8.1 Suppose that 6'J2- =1 for all j. Then we have for allt > 0, and for

2 4 21 1
A0:20\/ + 2log(p + )’

min{no, nl}

P(J) > 1—4dexp(—t/2).
—1

Proof of Lemma As A]2~ , the random variables

T
0. (e In—9)X), 2
V= I P~ N(0, )
T
1 (e5%), 2
Vi = T2 N(0,07),

with variances O'g, 0? < 1. Hence, for s =0, 1,

—t2 4+ 2log(p + 1)

) = 2exp(—£2/2),

P< max |V7[ > V12 + 2log(p + 1)) <2(p+1)exp(

1<j<p+1 2
(4.8.8)
and consequently,
2)(e(In = 9)X) 5| _ 20 1o >
< — 8.
P <1<rjr_1<a;(+1 o > T V24 2log(p+ 1) ) < 2exp(—t2/2) (4.8.9)
2[(e75X) ;] _ 20 2
P : 2+ 21 1)) <2 —t°/2). 4.8.10
(om0 > 22 PaTogp 1)) < 2espl2) (4:8.10)
We deduce that if we take \g = 20 % we have that P(J) > 1 — 4exp(—t2/2).
U
If we denote for s = 0,1, 7, = 7=, then on the set J we have for every 3 € Rp+1
. X: 9 . ~ . # X x X 2
W= 2002 e <3 (G200063 = )l + SH130(5 = ol + gl ) + =200,
(4.8.11)
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Y —X5]I3
n

} and assume that f* = X3°, which means

that the true response is linear. Then, the basic inequality becomes

Let us now consider ° := argminBeRpH {

QETX(/B - 6) + )\HBHI 4 HX/BO - Xﬁ”%’

IX8° — X513
n n n

+ Bl <

for all B € RPH.
For the proof of Corollary [£.8:3] the following observation is needed:

Remark 4.8.2 (Bound for the norm of the transformed parameters)

1 by be ... by ]| B Bo + X251 bs,3B;
M| L (;) S - el
0 0 0 : :
o _ﬂp_ L as,pBp

2 2 d 2 P 2 2 P 2 P 2
= [IMBll = 1Bo + > baiBil + 1Y aasBil < |Bol + D b Bl + D las B

j=1 j=1 j=1 j=1
< [Bol + [1bslloo (13111 = 1Bol) + llas oo (15111 = o)
= (I1bslloc + llaslloc) 18111 + (1= 1bsllsc = llasloo)lBol = esll Bl + (1 — e5)1Bol,

where cs = ||bs|loo + [|aslloos [|bs]loc = maxj=1,. p|bs;|, and |[as||cc = maxj=1,. plas ;|

Corollary 4.8.3 Assume than 6']2- =1 forall j. For somet > 0, let the reqularization parameter
be

2
- 2k6\/t +2log(p+ 1)
min{ng, n1}

where 6 is an estimator of o Then with probability at least 1 — «, where
o = 4dexp(—t?/2) + P(6 < o),
we have

0 A2
I6° ~ FAI3 _ |

" [0+ 2) (roll Mg 8011y + 1M 61

(1= 2) (1Bol + 7ol (M5 8%l + 71 (M7 8%l )|

ISK(MG 80 = MBI | (1 = S)X(MG 80 = M%) 3
n n

+ o
Proof of Corollary In particular, for 5% and on the set J we have

+ A8 +

XA —XAZ |2

n n

T 2 ~ 2 X 0112
<2 (108 - 800+ T - ) ) + gl + LEZ DT
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In particular, for Mo_l/BO and Ml_lﬁo it holds that

IX5° — X5]I3
n

+ MBI < + MMy B0 +

2T (5 — My 5°) (4.8.12)
n

X80 — XMy ' 803
n

+AIBlh <

X380 — X312 0cT(3 — M—140 XB0 — XA7-13012
||f8nﬁ||2 € (ﬁn L B)+/\HM{1,6’OH1+H P — P2 (y813)

Then, adding up expressions in both inequalities with weights 7y and 71, respectively, we have
that:

IX8° — X33
n

LB < o A O ]

(25T§§<5 — M'p") X0 — XMMOH%)
n n

A 25T§§3_M710 - XB0 — X M—150)12
m( G35 | yjagg oy + 28 T ).

From the definition of the transformation X, we can simplify the expression on the right-hand
side of the inequality above by observing that:

1.
XO—XM_IOQ XO—XM_102
RS- EMTIR e — KM 0l
n n
K~ ()X - SEMMG I3 | K" ~ (I~ S)KMoM; 50 — SXA
n n
— 4 ISX(8° — My My ' 8)[13 s [(In = S)X(8° — MoM{5°)[3
n n
— 4 [SX(My 5% — M 8|13 s I(Zn — $)X(My '8° — M'58°)13
n n

2. On the set J, if A > k), reasoning as before

2eT SX(My 3 — My M ' 5°)
n

25T (I, — S)X(Mof — )
n

2e7K(5 — My ' 8°)
n

IN

_l’_

IN

T 2 T 2 B
A (105 = 0+ T 1305 - 30y 1)

< (a3 Mg )+ S5~ 045 )

IN

v, =2 _ v 2 _
A (218 =257 8%l + (1 = )18 = 2587 )
and similarly

2:TSX(My 3 — 89
n

2eT (I, — S)X(Mof3 — MyM; ')
n

2eTX(5 — M 89)
n

IN

_l’_

IN

M z _ ﬁ 2
A (F0ato5 = oD 00+ TH1as5 - o711

<A (005 - 24280+ TR (B - 20l )

IN

A(FN8 = M7+ (L= )18 = M7 %%l

where in the last inequality v = Tgco + T1c1, with values ¢ defined in Remark
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So, gathering observations 1 and 2, we deduce that

0_~:
R s [ (01 9 200 - M)

(1= ) (rol( = M 8000l + 1G5 — M 6o
+ 70 [| Mg Bl + e | 7 B0 1]
4 ISEQMG = MUY I = )X 8 — M0

n n

Applying the triangle inequality we finally obtain

X O_X: 2 2
PR R0 4 MBl < A[Z0BI + 1+ %) (roll g 00 + s 1)

+(1—*)(|50|+7T0|( 7 8%0] + 71 (M7l )|
A ISEOMG 0 = M3 U = S)X(Mg '8 — M8

n n

4.8.1.1 Assuming sparsity in the parameters

Let us consider now a fixed 5 € RPT! and suppose that only a few of its components, say
0 < s <p+1, are non-zero. For an index set Z C {0,...,p} we will write

Bz = Bil(j € Z)
Bjze = Bi1(j ¢ Z).

Thus Bz :=[Bo,z, - - -, Bp,z] has nule entries at least for the indexes outside the set Z. Similarly
Bz has at least (p + 1) — s zeroes in the positions in Z. Clearly, 8 = Bz + Bzc. Moreover, we
will write Z(5) := {j € {0,...,p}/B; # 0} the set of indexes that correspond to non-zero entries
in 3, so |Z(B)| = s.

Lemma 4.8.4 For every 3 € RPT! we have on J, with X > ko,
/7~ XBI3 1f* - %8
”n’?H( Y Wizl <A (14 2) Uzes) - Bl + =201,

Proof of Lemma [4.8.4] By the second tringle inequality, it is clear that

18111 = 1Bzl + 1Bzl = 1Bz(s) — Bz(s) + Bzl + ||/BZ° gl
> 1Bzs)llr — 1Bz(8) — Bzl + Hﬁzc(ﬁ)Hl-

Thus, taking this into the left-hand side of (4.8.11)) and noting that by Remark

IMo(B = B)ll1 < callB— Bl + (1 — eo)|(B — Bol
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we obtain

f* - Xé 2 2 2
”n”2 +ABze It = MlBzes) = Bzl = AlBzes)

~ 2 T = - _X 2
2 (20005 = B)1h + S - D)l + 185 ) + IS

coTrp + 171 coTy + 171

<A (1 - k) 1828) = Bzl + X <k> 1822511

coTo + c171 |, 4 n If* — X8B3
n

e (R

which, if we denote v = coftg + ¢1711 > 0, finally gives us

I — XB)12

n

A (1= ) WBzemll < 2 (14 1) 1520) ~ B
v o= I+ = X813
—/\%‘(6_/3>0’+T

2N 1+ —Xp|3
<A (14 2) Wag — Buglh + 12

Remark 4.8.5 (Compatibility conditions) We say that the compatibility condition is met

for the set Z if for some constant ¢(Z) > 0 and for all 5 satisfying ||Bze|1 < E?ﬁ; 1Bzl1, it
%

holds that

] 1X8113
¢(2)> n

Theorem 4.8.6 Assume than &jz =1 for all j. For somet > 0, let the reqularization parameter
be

2
)\:%(}\/t ~|—210g(p—|—1)7

min{ng, n;}

182117 <

where & is an estimator of o. If for a given B € RPFL the set Z(B) satisfies the compatibility
condition, then with probability at least 1 — a, where

o = 4dexp(—t?/2) + P(6 < o),

we have

1~ %513 5 35 o[ 9s yI%E— I3
MBSl < WH (qu) +12(1_k>n> _

Proof of Theorem We notice that on the right-hand side, we could have two different
cases depending on which of the two expressions related to g is the larger one:

. 2 *7}1 2
i) MPBzs) — Bzl > w

\%

[

n

IN

ii) AlBzs) — Bzl
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In the first case,

*_XZ 2
I - %413

- (1 - %) \\Ezc(,g)\\1 <A (2 + %) Hézw) = Bzl

which in particular implies that

24+ 7) =
El J_r Z; 1Bz(8) — Bz ll1- (4.8.14)

1Bze(s)ll1 <

I/ — X3 2T
SRR (1= ) 18- 8l

* _ XB|I2 2 3
IIF" = X6l (1= 32) (182l + 1825) = BzsI1)

n
AN f*—Xp|2 AN
<A (1 + %> 1B2(8) — Bzl + ”nn2 +A (1 - %> 182(8) = Bz

AV IX(3 — B)ll»
6(8)  vn

where the last inequality follows from applying the compatibility condition to the set Z (), since
BZC(IB) — Bzeg) = Bzc(ﬁ) satisfies (4.8.14]). Now, the triangle inequality implies

<3A|Bz(s) — Bzl <

*_X: 2
I %R
n

WG XA = flla | 3MW5 K6 = flla

(1—%> 18 =8l < 50 Tn 5(8) NG

V12(1-%) = 24(1-%)

first and second, respectively, terms in the right-hand side,

Using inequalities ab < % + g and <“> (V121 = %)) < a® 4 6(1 — £)b? for the

* _Xs 2 ~
Hf - 6”2 +)\(1_%) Hﬂ_BHl
9N |IXB = £II3 9s 2 v IXB = £3
SwE T m TaaoneE MR T
and finally
I = %8I3, (1-2) 15— 81 < N 9 g v IR 3
n k = ¢2(B) | 12(1 - %)e2(B) k no

If we choose & > 0 such that 2( — %) > 1, that is & k > 2v, then from Lemma we
know that for t > 0 and A > 2ko £2+2log(p+1) > 4ya\/%
min{no,n1} min{ng,n1} ’

I —XBI1Z |, 2 X2 95 0 v IIRB - £¥|3
— + A5 - B < 2(5) + 0= 1)92(0) + 12X\ (1—E)7n
3s o 9s v |IXB - f*13
=25 <¢2<5> Rl )
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with probability at least 1 — 4 exp(—t2/2).
In the case ii),

I — XB)12

X5 — f*|3
n n ’

v 2
+/\(1—%> 18— Bl <3
and taking k > 2v and if A2 >,

I — X412

n

v I%8 - £13

X5 — f* )
n k n

2 2
+AIB =Bl <6 Iz 1222(1 —

Thus the result also holds in this case.

Now we observe that

E(”f*_m”%>:/oop<”f*_w>y>dy.
n 0 n

If we consider the change of variables

2
_ 3s 2 4 2log(p + 1) 95 v, IX8 — f*13
y‘2¢2(5>+<4w\/ min{ng. m1} ) <¢>2(5)+12( P 2)

_3s ) 2t2+210g(p+1)> 9s v X8 f1113

3220 95 v X8 = f*13
= dy = min{no, 1) <¢2(5) +12(1 — %) - tdt

then, from previous theorem we have

I — XB)12 322" 95 N AN )
E(ﬂ)gmin{no,m} g 120 P ) [ e

12 [ 9s v IX8 - 113
~ min{ng,n;} ((Z)Q(B) +12(1 - %)f ’

LASSO estimation, being one of the most common and well-known techniques for assessing
the quality of a regression model, makes the computations and results in this section of interest.
Yet we believe that the proposed model could be reconsidered for further analysis of its
limitations as well as for improvement as future work of this thesis.
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Part 11

Asymptotic theory
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Chapter 5

A central limit theorem for L,
transportation cost on the real line
with application to fairness
assessment in machine learning

This chapter corresponds to the publication |del Barrio et al.| [2019Db].

Contents
5.1 TIntroductionl. . . . . . . . . . . 105
5.2 CLT for L, transportation cost on the real linef . . . . . ... .. ... ... ... 109
5.3 Simulation resultsl . . . . . . . . ... 114
[>.4 Application to fair learning| . . . . . . ... 116
[5.5 Appendix to Chapter[5|. . . . . . . . .. . 121

We provide a Central Limit Theorem for the Monge-Kantorovich distance between two em-
pirical distributions with sizes n and m, Wy(Py,, Qm), p > 1, for observations on the real line.
In the case p > 1 our assumptions are sharp in terms of moments and smoothness. We prove
results dealing with the choice of centering constants. We provide a consistent estimate of the
asymptotic variance which enables to build two sample tests and confidence intervals to certify
the similarity between two distributions. These are then used to assess a new criterion of data
set fairness in classification.

5.1 Introduction

Applications of optimal transportation methods have witnessed a huge development in recent
times, in a variety of fields, including machine learning and image processing, among others. The
number of significant breakthroughs in the involved numerical procedures can help to understand
some of the reasons for this interest. We refer to Chizat et al. [2018] for a more detailed account.
In the particular field of statistical inference, despite some early contributions (see, e.g., Munk
and Czado [1998], del Barrio et al.| [1999a], del Barrio et al.|[2005] or Freitag et al| [2007]),
progress has been more slow. Among the reasons for this different rythm we can quote the claim
from Sommerfeld and Munk [2018] that transportation cost distance ‘is an attractive tool for
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data analysis but statistical inference is hindered by the lack of distributional limits’. Let us try
to give a more complete perspective on this claim.

With inferential goals in mind, the main object of interest is the transportation cost between
two sets of random points or between an empirical and a reference measure. In the, by now
classical, Kantorovich formulation, for probabilities P and Q on R? a transportation plan is a
joint probability, say m, on R? x R% with marginals P and Q. The associated transportation
cost is

M= [ camine).

where ¢ is some cost function, and the optimal transportation cost is the minimal value of I|[r]
among all choices of transportation plans, w, between P and (). The problem admits a much
more general formulation, but for our present purposes it is enough to know that for the choice
c(z,y) = cp(z,y) = |z — y||P, p > 1, if we denote by WH(P,Q) the corresponding optimal
transportation cost, then W, defines a metric in the set 7, (R%) of probabilities on R? with finite
p-th moment. We refer to Villani [2003] for general background on these facts.

If we observe X1,..., X, 1.id. P, Y7,...,Y,, iid. Q and write P, and @),, for the associated
empirical measures, then, assuming that P and @ have finite p-th moment it is well-known that
WE(P,, Q) — WE(P,Q) and WE (P, Qm) — W5(P,Q) almost surely. Enhancing this result
with a distributional limit theorem would yield a useful inferential tool in different problems.
Early work focused on the case P = (). From an inferential point of view this corresponds to
goodness-of-fit problems, with a distributional limit result providing approximate distributions
under the null model P = @. In this line we must cite |Ajtai et al| [1984] and |[Talagrand
and Yukich| [1993] dealing with the case when P = () is the uniform distribution on the unit
hypercube, with later contributions (see Dobri¢ and Yukich! [1995], [Fournier and Guillin| [2015])
covering an increasingly wider setup. These references dealt with general dimension d, but were
not satisfactory for inferential goals, since they only dealt with rates of convergence. Until
very recently, distributional limits were only available in the one-dimensional case (d = 1). In
this case, if p = 1 then, under some integrability assumptions W (P,, P) = Op(n~'/2), with
VnWi (P, P) converging weakly to a non Gaussian limit, see del Barrio et al.| [1999b]. If p > 1
then it is still possible to get a limiting distribution for /nW,(P,, P), but now integrability
assumptions are not enough and the available results require some smoothness conditions on P
(and on its density), see del Barrio et al|[1999a] and |del Barrio et al|[2005] for the case p = 2.
Some degree of smoothness (absolute continity of P with positive density on an interval) is,
in fact, necessary for boundedness of the sequence /nE(W,(P,, P)) if p > 1, see Bobkov and
Ledoux [2014].

In some statistical applications (in bioequivalence testing, but also in the application to fair
learning that we present later) the goal is to provide some statistical certification that the data
are not too far from a model, say homogeneity, P = (). Not rejecting the null Hy : P = @
would be a mere sanity check, but would not provide statistical evidence that the null holds
(even approximately). However, this kind of evidence would be granted from rejection of the
null Hy : p(P,Q) > Ay for some distance p. Computation of approximate p-values in this setup
would be possible through distributional limit theory for the case P # (). Hence, in the case of
transportation cost metrics it would be useful to prove a central limit theorem (CLT) for

rn(WE (P, Q) — an) (5.1.1)

for some centering a,, and scaling 7, > 0 (and similarly for the two-sample case) in the case
P # Q. Tt would be also useful to guarantee that we can take a, = W5(P,Q) as centering
constants.
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For the metric Wa (or a trimmed version of it) some limiting results for were given
in Munk and Czado| [1998] for one-dimensional data. More recently, Sommerfeld and Munk
[2018] handles d-dimensional data and general p, but it is constrained to the case when P and @
are finitely supported (extensions to probabilities with countable support are given in Tameling
et al.|[2017]). The picture is less complete in the case of continuous distributions. Back to the
case p = 2, a CLT in general dimension has been provided in |del Barrio and Loubes [2019]: if
Q@ has a positive density in the interior of its convex support and P and @ have finite moments
of order 4 + ¢ for some § > 0, then

V(W3 (P, Q) — EW3 (P, Q))) —w N(0,6%(P,Q)) (5.1.2)

for some o%(P, Q) which is not null if and only if P # Q. A two-sample version of such results
are also given in this work. Note that throughout the paper —, denotes weak convergence in
probabilities.

In this paper we provide extensions of to general distances W,, p > 1. We cover
only the case of one-dimensional data. In turn, from a probabilistic point of view the main
contributions of this paper are that (i) we prove the analogue of for general p > 1 under
sharp moment and smoothness assumptions (Theorem see also the subsequent comments
for discussion about the sharpness of this result) and (ii) we show that in the case p = 1,
when strict convexity of the cost function is lost, non-normal limits can occur, even in the case
P+£Q (Theorem. For the statistical applications that we present, the centering constants
in the former CLT’s are of crucial importance. We provide general conditions under which
E(W}(P,,Q)) can be replaced by W5 (P, Q) as centering constant in (Proposition [5.2.6)).
Combined with a consistent estimator of the asymptotic variance in the CLT’s (Proposition
, this enables us to define a consistent test

Ho : Wy(P,Q) > Ao vs Hy: Wy(P,Q) < Ao, (5.1.3)

that is, a consistent method for gathering statistical evidence to conclude that W,(P, Q) < Ag.
We would like to note at this point that our approach to prove Theorem [5.2.1| uses the fact

that if P and @ are probabilities on the real line with distribution functions (d.f.’s) F' and G,

respectively, then WY (P, Q) is simply the L,-distance between quantile functions, that is,

1
W};(P,Q)_/O |[F~t—G7p (5.1.4)

(see, e.g., Remark 2.19 in Villani| [2003]). For this reason, with some abuse of notation, we will
write W, (F, G) instead of W,(P,Q) in the sequel. We remark, however, that we do not rely
on strong approximations for the quantile process (as in Munk and Czado [1998] or |del Barrio
et al.|[1999a], for instance). This kind of approach would require much stronger smoothness
assumptions on F. Our technique, in contrast, is much closer to that in |del Barrio and Loubes
[2019] and is only used to prove some sharp variance bounds (Propositions and
and Corollary in the Appendix).

Currently, the increasingly frequent use of machine learning techniques affects many aspects
of our lives. This has yielded to a growing scientific attention to the framework of fair learning.
We refer for instance to|[Romei and Ruggieri| [2014a], |[Pedreschi et al.| [2012], (Chouldechoval [2017]
or [Friedler et al. [2019] and references therein. In this setting, decisions are made by algorithmic
procedures and the main concern is to detect whether decision rules, learnt from variables X,
are biased with respect to a subcategory of the population. Formally, the problem consists in
forecasting a binary variable Y € {0, 1} using observed covariates X € R%, d > 1, and assuming
that the population is divided into two categories that represent a bias, modeled by a protected
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variable S € {0,1}. A decision rule would be unfair for S when it favours individuals in the
main protected group, usually S = 1, in the sense that the outcome of the algorithm is not
just driven by the values of the covariates X but also by the values of S, leading to treating
differently individuals from both groups while they have similar covariates. This discrimination
may come from the algorithm or from a biased situation that would have been learnt from the
training sample.

In the first situation, many criteria have been given in the recent literature on fair learning
to detect whether an algorithm is committing discrimination (see Berk et al. [2017b] or Besse
et al.| [2018D] for a review). A majority of these definitions consider that the decision should be
independent from the protected attribute S. In Berk et al.|[2017b], a classifier g : R? — {0,1}
is said to achieve Statistical Parity, with respect to the joint distribution of (X, S5), if

P(g(X)=1|8=0)=P(g(X)=1]S=1). (5.1.5)

Therefore, if £ denotes the distribution of a random variable, then Statistical Parity is reached
by a classifier g when L£(g(X) | S =0)=L(g(X)|S=1) and g(X) and S are independent.

Yet, in most real problems the independence described in is difficult to achieve and,
in addition, it refers to a given classification rule when in fact very different classifiers could be
trained from the same learning sample. Furthermore, algorithms are usually inaccessible, in the
sense that explaining how the classifier is chosen may be seen too intrusive by most companies or
it may be simply not possible for many of them to change the way their models are built. To beat
these shortchomings, another solution originally proposed in [Feldman et al|[2015] and further
developed in |Gordaliza et al.|[2019], tries to look for a condition on the learning sample that en-
sures that every classifier trained from it is fair. This condition must guarantee that holds
for every classifier g : R? — {0,1}. If we denote in the following us := £ (X|S = s), s € {0,1},
then this means that pg and p; are equal. But certifying this equality is equivalent to the
homogeneity testing problem and, as pointed out before, a goodness-of-fit test does not allow
such certification. The most we can aspire to is providing statistical evidence that o and
are close. In Section [5.4] we argue in favour of the Wasserstein metrics to measure the distances
between the distributions.

As noted above, the CLT’s provided in this paper enable to construct a new test to assess
the degree of dissimilarity of different distributions, P and @), using our procedure for testing
. In the setup of fair learning, rejecting the null with this test we will be able to statisti-
cally certify that the distributions pg and @1 are not too different. This will guarantee that the
data set is fair, in the sense described above. Additionally, we provide a new way of assessing
fairness in machine learning by considering confidence intervals for the degree of dissimilarity
between these distributions (with respect to the Wasserstein distance). Also, in the last section,
we outline how our fairness assessment procedure can be tuned in order to use it with high-
dimensional data.

The remaining sections of this paper are organized as follows. Section presents the main
results, namely, the CLT’s for L, transportation cost for p > 1, with additional results deal-
ing with the choice of centering constants and consistent estimation of asymptotic variances.
In Section [7.6] we validate the theoretical results supporting the consistency of the variance
estimation using simulations for normal and uniform models, which also show that the asymp-
totically correct rejection rates are achieved and gives insight into the power of the test. Finally,
Section [5.4] is devoted to the application of this test to detect unfairness. We first introduce
two standard fairness criteria in the fair learning literature called disparate impact (DI) and
balanced error rate (BER). Then we present how the testing procedure and confidence
intervals for the Wasserstein distance would provide a coherent measure of unfairness
when dealing with data which have been repaired (i.e modified to promote fairness). Then we
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apply our theoretical results to real data, controling the amount of reparation and comparing
with DI and BER. These analyses also indicate why our fairness assessment procedure would
guarantee more robustness with respect to the outcomes of the classifier than the computation
of the DI or the BER. Proofs are gathered in the Appendix.

We end this introduction with some words on notation. F~! denotes the quantile function
associated to the distribution function F. sgn denotes the sign function (sgn(z) = 1, z > 0,
sgn(z) = —1, z < 0, sgn(0) = 0) and ¢ denotes the Lebesgue measure on R.

5.2 CLT for L, transportation cost on the real line

In this section we present the main results in this paper, namely, CLT’s for the transportation
cost between an empirical measure and a target measure or between two empirical measures.
Thus, we will assume that Xi,..., X, areii.d. r.v.’s with law P, Y1,...,Y,, are r.v.’s with law
Q, independent of the X;’s. P and @ will be probabilities on the real line. Hence, they are
determined by their distribution functions (d.f.’s), that we will denote by F and G. In fact, it
is well known that W) (P, Q) is simply the L,-distance bewteen quantile functions, that is,

1
WP = [ 1P -6 ora,

(see, e.g., Remark 2.19 in Villani| [2003]). For this reason, with some abuse of notation, we will
write W5 (F, G) instead of W5 (P, Q) in the sequel. F, will denote the set of probabilities on the
real line with finite g-th moment. We will write F' € F, with the meaning that the probability
with d.f. F belongs to F,. We will also write F}, (resp. Gy,) for the empirical d.f. based on
X1,..., Xy (resp. Y7,...,Y,).
To present our results, we set hy(z) = |z|P, z € R, p > 1 and introduce the functions
F=H(t)
ot F,G) = /F ) hyy (s — G '(F(s)ds, 0<t<Ll. (5.2.1)
2

We note that hf,(z) = psgn(z)|z[P~". Since F71(3) < s < F7'(t) implies § < F(s) < t while for
F7Y(t) < s < F71(3) we have t < F(s) < 3, we see that ¢,(t; F, G) is finite for every ¢ € (0,1).
In fact, we show in Lemma in the Appendix that, under the assumption F,G € Fo),
¢p(+3 F,G) € Ly(0,1). This allows us to introduce also

1
Gt F,G) == cp(t; F,G) — / cp(s; F,G)ds, 0<t<l1. (5.2.2)
0
We observe that changing F_l(%) by F~'(to) in (5.2.1) would not affect the definition of

& F,G).

It is convenient at this point to introduce the notation
1
oy (F,G) = / e (t; F, G)dt. (5.2.3)
0

Lemma ensures that 0'12) (F,G) is a finite constant provided F' and G have finite moments
of order 2p. Note that ag(F, G) = 0 if F = G. Otherwise, if F # G then G~ o F, which is
the optimal transportation map from F' to G, is different from the identity on a set of positive
measure and o2(F,G) > 0 if F is not a Dirac measure. We remark that o2(F,G) is not, in
general, symmetric in ' and G.

We are ready now for the main result in this section.
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Theorem 5.2.1 (Central Limit Theorem for W, with p > 1) Assume that F,G € Fap, and
G~ is continuous on (0,1) and p > 1. Then

(i) If X1,..., X, are i.i.d. F and F, is the empirical d.f. based on the X;’s

VROWE(F,, G) — EWP(F,,G)) =4 N(0,05(F,G)).

(ii) If furthermore F~1 is continuous, Yl,.. Y are i.i.d. G, independent of the X;’s, G,
(0,1) then

n+m

\/nTm(wp(Fn,G ) — EWS(Fp, Gim)) =0 N(0, (1= N)o2(F,G) + Ao2(G, F)).

A proof of this result is given in the Appendix. We would like to make some remarks about
Theorem at this point.

Remark 5.2.2 There has been a significant interest in empirical transportation costs in recent
times in the literature. We should mention at least Fournier and Guillin [2015], giving moment
bounds and concentration results for empirical transportation with L, cost in general dimension,
and |Bobkov and Ledouaj [2014)], with a comprehensive discussion of the one-dimensional case.
Both papers focus on the case where the law underlying the empirical measure and the target
measure are equal (in the setup of Theorem the case F' = G ). With the more specific goal
of CLT’s for empirical transportation costs, |Sommerfeld and Munk [2018] considers the case
when the underlying probabilities are finitely supported, while|Tameling et al.| (2017] covers prob-
abilities with countable support. The approach in these two cases relies on Hadamard directional
differentiability of the dual form of the finite (or countable) linear program associated to optimal
transportation. Without the constraint of countable support, |del Barrio and Loubes [2019] covers
quadratic transportation costs in general dimension.

There are similarities between the approach in|del Barrio and Loubes [2019] and the presen-
tation here, as one can see from a look at our Appendix. We must emphasize some significant
differences, however. An obvious one is that here we only deal with one dimensional proba-
bilities. On the other hand, we cover general L, costs. A more significant difference is that
assumptions in Theorem are sharp. Let us focus on (i) to discuss this point. To make
sense of WH(F,, G) we must consider G with finite p-th moment. Now, if we want F to satisfy
(i) for every G with finite p-th moment, by taking G to be Dirac’s measure on 0 we see that

WE(F,,G) = Z|X P

and the condition that F' has a finite 2p-th moment is necessary for the CLT to hold. Then it is
easy to check that, Ug(F, G) < oo for all F with finite moment of order 2p if and only if G has
a finite moment of order 2p. Thus, the assumption of finite moments of order 2p for F and G
seems to be a minimal requirement for (i) to hold. We note that for the quadratic cost, p = 2,
Theorem 4.1 in |del Barrio and Loubes [2019] required finite moments of order 4 + 6 on P and
Q for some § > 0.

Remark 5.2.3 Some words on the role of the continuity of G~ in (i) are also in place here.
That some sort of reqularity of the quantile function is needed for handling the empirical trans-
portation functional in dimension one was observed in |Bobkov and Ledoux [2014)]. In the case
F = G, absolute continuity of F~' is a necessary condition for having E(OW,(F,, F)) = O(ﬁ)
(Theorem 5.6 in |Bobkov and Ledouaj [2014]). Continuity of G= is also related to assumption
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(3) in|del Barrio and Loubes [2019]. In fact, that assumption, in the case of one-dimensional
probabilities, implies that G is supported in a (possibly unbounded) interval and G~ is differen-
tiable in the interior of that interval. Hence, the reqularity assumption in Theorem 18 also
slightly weaker than that in Theorem 4.1 in|del Barrio and Loubes [2019]. We should also note
at this point that Theorem 1 in|Sommerfeld and Munk [2018], for the case of finitely supported
probabilities on the real line corresponds to a case of discontinuity of the quantile functions and
this can lead to nonnormal limiting distributions.

When p = 1, the function hi(z) = |z| is no longer differentiable at every point and the
function ¢ (t; F, G) of is not well defined in general. It turns out that this can destroy
the asymptotic normality of W;(F,,, G) in some cases, as we can see in our next result, which is
proved in the Appendix. For the sake of brevity we present it for the one sample setup, but it
could be adapted to a two sample version.

Theorem 5.2.4 If I satisfies the integrability assumption

/ © JFOA = Fi))dt < % (5.2.4)

then

VEOWL(Fn, G) — Wi (F, G)) —5u /R vp(@)de,

where vp(x) = B(F(x)) if F(z) > G(z), vp(x) = —B(F(x)) if F(z) < G(z), vp(x) = |B(F(x))]
if F(x) = G(x) and B is a Brownian bridge on [0,1]. In particular, if {(F = G) = 0 then

V(Wi(Fy, G) = Wi(F, G)) =, N(0,07(F, @),

2
with o3 (F,G) = 01 At F,G)dt — (fol ca(t; F, G)dt) and

FoL()
a(t; F,G) = / sgn(s — G1(F(s)))ds, 0<t<1.
F=1(3)

The proof of this result is postponed to the Appendix.

Remark 5.2.5 We remark that under the assumption {(F = G) = 0 we have (s : s =
G~ Y(F(s))) = 0 (see the proof of Theorem for further details) and we could have writ-
ten b instead of sgn (with hi(xz) = |z|) in the definition of c1. On the other hand, Theorem
shows that, once the strict convexity of the cost function is lost, nonnormal limits can show
up, depending on the size of the set (F = G). In the extreme case F = G we recover that, under

629,
VW, (F,, F) —>w/R\B(F(x))|dx.

This was part of Theorem 1.1 in|del Barrio et al| [1999b]. Condition 18 slightly stronger
that the assumption of finite second moments (it holds if F' has a moment of order 2 +6). It
would be of interest to determine whether, similar to the case p > 1, a finite second moment
is enough to guarantee weak convergence of \/n(Wi(F,,G) — EOW1(F,,Q))), to a possibly non
normal limit. The technique that we have used in this paper does not seem to be give a complete
answer to that question.
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We would like to discuss next the role of the centering constants in Theorem Under
more restrictive assumptions there are similar CLT’s in which EW}(F,,, G) is replaced by the
simpler constants W5 (F, Q) (see, e.g., Theorem 4.3 in |del Barrio and Loubes [2019]). In fact,
the Kantorovich duality (see, e.g., [Villani [2003]) yields that

WP(F, G) sup /godF+/¢dG’
807/))6‘1)17

where @), is the set of pairs of integrable functions (with respect to F' and G, respectively)
satisfying ¢(z) +¢(y) < |o — y[P. But this entails E(Wp(Fn, G)) > sup, y)co, E( [ pdF,) +
JwdG = SUD(,, ), [ ¢dF+ [ ¢dG = WJ(F,G). Hence, we can replace the centering constants
in Theorem provided

0 < Vn(EWE(F,,G)) —WE(F,G)) — 0. (5.2.5)

Finding sharp conditions under which holds seems to be a delicate issue. We limit
ourselves to providing a set of sufficient conditions for it. The case F' = G has been considered
in Bobkov and Ledoux [2014] and can be handled with simple moment conditions. The general
case that we consider here seems to add some smoothness requirements. We limit our discussion
to p > 2. We will assume that F' is twice differentiable, with nonvanishing density, f, in the
interior of supp(F') = cl{z : F(x) ¢ {0,1}} and satisfies

sup 1= O (P (1)) < 0. (5.2.6)

t€(0,1) fAHFL())

Furthermore, we will assume that

for some s € (§,%5), n*EWy(F,,F) =0 asn— oo, (5.2.7)

f/l_ — 1)) 1)/)2dtﬁo (5.2.8)

(s /\ t — st)?
/ / 2F i (t))dsdt < 0. (5.2.9)

Condition ([5.2.6)) is a natural condition for approx1mating the quantile process by a weighted
uniform standard process. We refer to |del Barrio et al. [2005] for details. The other three
conditions are implied by the stronger assumption

(-2
/ofp( 1())dt< : (5.2.10)

This condition is, essentially, needed for ensuring that n?/ 2EWS(F,, F) is a bounded sequence,
see [Bobkov and Ledoux [2014]. We would like to note that, for p = 2, does not hold for
Gaussian F, while (5.2.7)), (5.2.8) and (5.2.9) do.

With these assumptions we can prove the following.

Proposition 5.2.6 Assume p > 2. Under the assumptions of Theorem[5.2.]),

(i) if F satisfies (5.2.6) to (5.2.9) then (5.2.5)) holds and, as a consequence,

VROWE(F,, G) — WE(F,G)) =4 N(0,05(F,G)).
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(i) if, furthermore, G satisfies (5.2.6) to (5.2.9) then

R (WP (F, Gm) = WH(F, G)) —w N(0, (1 = N)o2(F,G) + Ao3(G, F)).

n+m

A similar property has been proved in |Berthet et al. [2017] for non-necessarily independent
samples. Yet its proof requires stronger assumptions than the one presented here for the inde-
pendent case. A proof of Proposition [5.2.6]is given in the Appendix. The scheme of proof, in
fact, relies on some auxiliary results in del Barrio et al. [2005] that give, through a completely
different approach, asymptotic normality of \/n(W5(F,,G) — WH(F,G)).

The economy in assumptions that one can gain from dealing with the centering in Theorem
is, in our view, remarkable. Yet providing sharper conditions under which holds

remains an interesting open question.

For the statistical application of Theorem [5.2.1]it is of interest to have a consistent estimator
of the asymptotic variances. In the two sample case this can be done as follows. With the
standard notation X;) for the order statistics, define

dinn(X,Y) = 3 1K) = Gl (EDI = Xy = GRAEDP], i=2,.0m

=2

with dy pm(X,Y) =0 and

2
2 =LY 2, (X,Y) - (% S di7n7m(X,Y)> . (5.2.11)

We define 6’%%,,1 similarly exchanging the roles of the X;’s and the Y}’s. Finally, we set

62, =M g2 4152 (5.2.12)

n,m n+m"= 1,n,m n+m"~ 2,n,m"

We show next that &%,m is a consistent estimator of the asymptotic variance in the two sample
case in Theorem A consistent estimator for the asymptotic variance in the one sample
case can be obtained similarly. We omit details.

Proposition 5.2.7 If F,G € F», and F~*, G~ are continuous on (0,1) then
6nm — (L=Noa(F.G) + Aoa(G, F)
almost surely.
Proof. Simply note that (Aﬁmm = 01 612,(15; F,,Gy,)dt and apply Lemmam O
As a consequence of Propositions [5.2.6] and we have that if, additionally,
F#d
and F' (or G) is not a Dirac measure then

nm_ (Wp (Fn,Gm) =Wy (F,G))

n+m On,m

We can use (5.2.13)) for statistical applications in several ways. From (5.2.13)) we see that

—w N(0,1). (5.2.13)

IWE(F,G) £ 1/ 226, 1 ® 11— )] (5.2.14)

nm
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is a confidence interval for W5 (F, G) with asymptotic confidence level 1 — . Alternatively, we
could consider the testing problem

Hy : WP(F, G) > A(), vs H,: WP(F, G) < Ao, (5215)

where Ay is some threshold (to be determined by the practitioner). Rejection of the null as-
sumption in (5.2.15) would yield statistical evidence that the d.f.’s F' and G are almost equal.
We can handle this problem by rejecting the null if

WE(Fp, Gr) < A — /™06, @711 — o). (5.2.16)

It follows from ([5.2.13]) that the test defined by (5.2.16|) has asymptotic level a. In the following
sections we explore the use of this test for simulations and then for the assessment of fairness of
learning algorithms.

5.3 Simulation results

In this section, we first analyze the finite sample performance of the variance estimation given
by —. Then, we check the performance of the testing procedure for the
testing problem carrying out simulations under both the null and different alternatives.
All the simulations are done for different costs p = 1,2, 3.

Consider two independent samples X1,...,X,, i.i.d. and Y3,...,Y,, i.i.d. of distributions F’
and G, respectively, and denote by F;, and G, the corresponding empirical distribution functions
of each sample. We have simulated these samples from the following models.

Example 5.3.1 (Normal model) Consider F ~ N(0,1) and G ~ N(u, ), (p,A) € R x RT.
In this location-scale family, we have G=1(t) = A®@~(t) + i, t € (0,1), and

W,(F,G) = </01 (1= N2 () — u\”dt) ’ , p>1. (5.3.1)

For p =2, this is simply Wa(F,G) = /(1 — \)? + u2. Moreover, if A # 1,

ol F,G) = 1 [[(1= @7 () — f? — |l
ol G, F) = 32 [|(A = D@7 0) + ul” — [l”] = Acylt: F, C).

Note that in the location model, that is when A =1, W,(F,G) = |u|, p > 1. In this situation,
ep(t; F,G) = —p - sgn(p) [P~ @71 (t) = —p(t; G, F)

and ag(F, G) = O‘%(G, F) = p?u?P=2. Hence, we have an exact expression for the asymptotic
variance.

Example 5.3.2 (Uniform model) Consider F' ~ U(0,1) and G ~ U(a,b), a,b € R, b > a.
In this case, G™1(t) = a+ (b—a)F~Y(t) = a+ (b—a)t, t € (0,1). The Wasserstein distance
between the distributions in the location-scale model, that is when the scale parameter isb—a # 1,
s given by

=

Wy(F,G) = -0 _2))(p+ 0 (|1 — pPtt — |a\p+1>} ! . p>1. (5.3.2)
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Moreover,

et F.G) = == (1 = (b= ) —al” = Jof
b—a » a P
(6. F) =~ s 0= o= ap - [

In the location case, when b —a =1, the distance is W,(F,G) = |a|. We have that

¢t F,G) = pla]” ' ¢
(G, F) = plaP™ (a + 1),

and the asymptotic variances are o3(F,G) = 03(G, F) = Lp2a®2.

First, we illustrate the quality of the variance approximation (5.2.12) for finite n, and as-
suming equal sizes n = m. We have simulated data sets under the normal model in Example
5.3. 1| with p = 1, A = 1, and the uniform model in Example with a = —%, b= % In Figure
5.1] we can see that the variance estimates are close in the limit to the assymptotic values.

2
Moreover, Table shows the MSE= % Zjvzl ‘63- — 02‘ of such estimations as a function of

the size n of the samples, for large N = 1,000. We observe that this error tends to 0 as n
increases. Convengence seems to be faster for smaller values of p. There is also some indication
that convergence is slower for heavier tails. Consequently, choosing the value p = 1, instead of
2, is more convenient when dealing in practice with observations drawn from distributions with
heavy tails.

Secondly, to check the performance of the test , we have simulated 1,000 data sets
under the normal and the uniform models for different values of the respective parameters. In
Tables and we show the estimated probabilities of rejection for different sample sizes
n under the following simulation scenarios:

(i) Normal location model (Table : P =N(0,1),Q = N(u, 1), with o = 1,0.9,0.7,0.5,
and threshold Ay =1

0,1),Q = N(p,A), with (1, A) = (1,2),

(ii) Normal location-scale model (Table 5. = ,
), V(1,2

N(
(1,2),(0,2),(0,2), and threshold Ay = ( (0,1

~—

(iii) Uniform model (Table |5 P=U(- 2,2) Q = U(a,b) with (a,b) = (_%7%),(_%%)7

(— éa%)( il)),?,)) andthresholdAo_W(U( 1),U(— %%))

In the third column of each table that corresponds respectively to (i) p =1, (ii) (u, A) = (1,2),
(iii) (a,b) = (—31,1), such that the null Hy is true, we observe in all cases a fast convergence of
the rejection frequencies to the nominal value a = 0.05 for every cost p, and from sample sizes
not too large. The rest of the columns correspond to situations when the alternative H, holds.
Then, we see that the values of the power are higher as we move away from the boundary of
the null hypothesis Hy, without any significant differences in the behavior for different costs p.
The Wasserstein distances between the normal distributions in such alternatives are collected
in Table When p = 1, 3, the distances have been numerically computed. In the
uniform case, the exact values of the Wasserstein distances between each distribution
U(a,b) and U(0, 1) are contained in Table
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n p=1 p=2 p=3
9 50 0.03076 | 2.28517 | 79.70453
100 0.01434 | 1.25248 | 36.57057
200 0.00634 | 0.74908 | 15.10497
p 400 0.00290 | 0.32747 | 6.15403
o 3 500 0.00237 | 0.21351 | 5.50914
g 2 800 0.00148 | 0.18638 | 3.20970
4 1 1,000 | 0.00112 | 0.13431 | 2.59728
2,000 | 0.00054 | 0.0711 1.41032
5,000 | 0.00021 | 0.0304 | 0.52269
10,000 | 0.00011 | 0.0145 | 0.24127
1 o? 1 4 9

2 3 logio(n) 4 5

(a) Normal model with p=1, A =1 (a) Normal model with p=1, A=1

1 n p=1 p=2 p=3
12 50 8.15575e-05 | 5.38636e-04 | 8.20381e-04
p 3 100 3.51277e-05 | 2.91567e-04 | 3.88538e-04
200 1.55615e-05 | 1.52519e-04 | 1.72429e-04
&2 ? 400 7.74579e-06 | 7.29310e-05 | 8.51968e-05
500 5.45295e-06 | 5.60901e-05 | 7.10645e-05
800 3.98385e-06 | 3.6331e-05 | 4.68070e-05
1,000 | 2.88333e-06 | 3.12133e-05 | 3.36132e-05
% 2,000 | 1.31779e-06 | 1.53736e-05 | 1.59090e-05
5,000 | 5.63511e-07 | 6.40119e-06 | 7.16251e-06

e 1/12 1/12 3/64

2 logio(n) 5
(b) Uniform model with a = —%, b= % (b) Uniform model with a = —%, b= %

Figure 5.1 — Variance estimates for different sizes n Table 5.1 — MSE of the variance estimates

5.4 Application to fair learning

Fair learning is devoted to the analysis of biases that may appear when learning automatic
decisions, mainly classification rules, from a training sample. This sample may contain some
bias against a subpopulation, such that the variable to be predicted is unbalanced between
different groups. This bias could have been set intentionally or may reflect the bias present in
the use cases. A striking example is provided by Feldman et al.| [2015] or (Gordaliza et al.| [2019],
which look at high income prediction from a set of parameters that are influenced by gender.
The learning sample includes some numerical attributes together with a high income indicator
plus a gender indicator. Imagine that the goal is to train an automatic algorithm from this data
to determine whether future employees in a company deserve to be awarded high income. The
fact that females in the learning sample are mostly in the low income group can cause that a
careless training of an algorithm may associate merit to features which are related to gender,
resulting in biased decisions. This gender indicator should not play any role in such forecasts.
Thus, it is important to detect such automatic biases in order to prevent their generalization,
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n w=1 w=1 w=20 pn=0
p | n | p=1 | p=09 | u=0.7 | u=0.5 p A=2 | A=15 | A=2 | A=15

50 | 0.062 | 0.146 | 0.481 | 0.825 50 | 0.047 0.165 0.535 0.996
100 | 0.055 | 0.193 | 0.698 | 0.974 100 | 0.045 0.195 0.8 1
200 | 0.053 | 0275 | 0.918 | 1 200 | 0.036 0.323 0.974 1
| 400 | 0051 | 0413 | 0995 | 1 | 400 | 0.052 0.532 1 1
500 | 0.051 | 0.481 | 0.999 | 1 500 | 0.056 0.614 1 1
800 | 0.052 | 0.64 1 1 800 | 0.035 0.810 1 1
1,000 | 0.054 | 0.728 | 1 1 1,000 | 0.045 0.895 1 1
2,000 | 0.047 | 0.937 | 1 1 2,000 | 0.050 0.994 1 1

50 | 0.074 | 0.167 | 0.513 | 0.839 50 | 0.078 0.376 0.595 0.998
100 | 0.063 | 0.198 | 0.717 | 0.979 100 | 0.067 0.551 0.823 1
200 | 0.059 | 0272 | 0927 | 1 200 | 0.062 0.786 0.976 1
o | 400 | 0.055 | 0422 | 0.995 | 1 5 | 400 | 0.055 0.969 1 1
500 | 0.05 | 0.484 | 0.999 | 1 500 | 0.059 0.985 1 1
800 | 0.053 | 0.651 1 1 800 | 0.052 1 1 1
1,000 | 0.053 | 0.736 | 1 1 1,000 | 0.056 1 1 1
2,000 | 0.051 | 0.935 | 1 1 2,000 | 0.05 1 1 1

50 | 0.071 | 0.154 | 0.515 | 0.822 50 | 0.091 0.569 0.571 0.997
100 | 0.0662 | 0.206 | 0.715 | 0.973 100 | 0.093 0.762 0.758 1
200 | 0.057 | 0.266 | 0.925 | 1 200 | 0.072 0.935 0.939 1
5| 400 | 0.052 | 0422 | 0992 | 1 5| 400 | 0.06 1 0.996 1
500 | 0.057 | 0.497 | 0.997 | 1 500 | 0.064 0.999 0.997 1
800 | 0.053 | 0.652 | 1 1 800 | 0.069 1 1 1
1,000 | 0.053 | 0.733 | 1 1 1,000 | 0.06 1 1 1
2,000 | 0.051 | 0.937 | 1 1 2,000 | 0.049 1 1 1

Table 5.2 — Rejection rates in the location normal Table 5.3 — Rejection rates in the location-scale normal model
model with Ag =1 when Ay = W,(N(0,1),N(1,2))

or even worse, a justification of discriminatory behavior invoking mathematics.

As already mentioned in the introduction, in fair binary classification the data consists in a
binary variable Y € {0, 1} that we aim to predict using observed covariates X € R?, d > 1, while
a protected variable S € {0,1} models the subdivision of the population into two categories.
S = 0 stands for the minority class. In some approachs to fairness (see, e.g. [Feldman et al. [2015]
or |Chouldechova [2017]) a classifier g is considered to be fair when the conditional distributions
L(g(X)|S =0) and L(g(X)|S = 1) are close enough. This is often quantified in the statistical
literature using an index called the DI of the classifier g, with respect to (X, .5), as follows

P(g(X)=1]$=0)

DI(g, X, S) = P(g(X)=1|S=1)

(5.4.1)

Hence, a classifier g is said not to have DI at level 7 € (0,1] if DI(g, X, S) > 7. Note that in some
trials, the value 7p = 0.8 has been chosen as a legal score to decide whether the discrimination
committed by the algorithm is acceptable or not (see e.g. [Feldman et al. [2015] or Zafar et al.
[2017a]). A related criterion is the BER of g with respect to (X, .5)
Pg(X)=0[S=1)+P(gX)=1]5=0)

BER(g, X, S) = 5 . (5.4.2)

It describes how the variable S can be learnt by the classification rule g, originally meant to
predict the variable Y in the frame where the two classes S = 0 and S = 1 are balanced in the
population. Given € > 0, S is said to be e—predictable from X if there exists a classifier g € G
such that BER(g, X, S) < e. Equivalently, S is not e—predictable from X if BER(g, X, S) > ¢,
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TR N

2 2 2 3

50 0.063 0.249 0.472 0.902

100 0.047 0.376 0.724 0.998
p 1 2 3 200 0.05 0.561 0.93 1
-1 400 0.05 0.829 0.998 1
’; _ o | 116664 | 1.41421 | 1.61120 1 o 0.047 0.985 . )
i 1.00849 | 1.11803 | 1.20538 S 0978 : ;
A=15 ' ' : 1,000 | 0.059 0.995 1 1
H=0"1 079788 1 1.16858 2000 | 005 : . .

A=2 : : 50 0.068 0.268 0.489 0.899

=0 | ia0s0n | 05 | 058420 100 0.072 0.384 0.739 0.989
A=15 . : : 200 0.052 0.588 0.915 1
5 | 400 0.047 0.812 0.998 1
(a) Distances W,(N(0,1), N(, X)) 500 0.054 0.886 1 1
» 1 5 3 800 0.05 0.973 1 1
p— 1,000 | 0.056 0.99 1 1
b— %2 0.5 0.5 0.5 2,000 | 0.062 1 1 1
prp— 50 0.078 0.278 0.52 0.9

p— 1 0.45 | 0.45093 | 0.45184 100 0.07 0.403 0.704 0.992

pa— 200 0.065 0.606 0.9 0.998
b— 13 ] 0.41667 | 0.41944 | 0.42215 5 400 0.052 0.843 0.998 1
p— 500 0.057 0.873 0.998 1
p_ 2 1/3 1/3 1/3 800 0.061 0.973 1 1
3 1,000 0.05 0.996 1 1
(b) Distances W,,(U(0,1),U(a, b)) 2,000 0.044 1 1 1

Table 5.4 — Wasserstein distances Table 5.5 — Frequencies of rejection in the uniform model when

Ao =W,(U(0,1),U(-3,3))

for every g € G. Thus, if ¢* := mingeg BER(g, X, S) then S is not e—predictable from X for
all € < ¢*. From this we can say that ¢* is a global indicator of the fairness of the data. For
more details on these criteria and the relationship between them we refer to |Gordaliza et al.
[2019]. As in the introduction we denote pus = L(X | S = s). Then (see |Gordaliza et al. [2019)])
the minimum BER over a family of binary classifiers G can be expressed in terms of the Total
Variation distance between the conditioned distributions of the covariates X with respect to the
group S to whom they belong

min BER(g, X, 5) =

(1 —drv (o, 1)) - (5.4.3)
9€g

N =

We see from that the maximal value of €* is 1/2, which is only achieved in the case
of total confusion between the two conditional distributions. This corresponds to complete
absence of bias in the training data. Yet, from the statistical point of view we can only certify
that the two distributions are close as noted in the introduction. In the assessment of fairness in
algorithmic decisions, the conservative choice is to assume the distributions are different, because
rejecting the null would provide statistical evidence that pg and p; are close, ensuring some
level of fairness. Thus, in view of , one could be tempted to consider the testing problem
Hy : dpy (po, p1) > Ao vs Hy = dpy (o, p1) < Ao, for some small Ay > 0. Unfortunately, this
is not feasible: there exists no uniformly consistent test for this problem, see Barron [1989].
Consequently, if we want to statistically assess that pug and p; are not too different, we have to
choose a better metric. Hence, we propose to use testing procedures for Wasserstein distances
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as described in Section [5.2] for the testing problem
Hoy : Wy(po, 1) = Ao vs Hy : Wy(po, 1) < Ao, (5.4.4)

for a small Ag > 0 and p > 1. Alternatively, we can provide confidence intervals for W, (1o, 1)
using . We note that, while our testing procedure and confidence intervals have been
developed for univariate data, we could extend their applicability by assigning some score f :
R? — R to each observation and then consider the Wasserstein distance between the distributions
of such scores conditioned on the two protected groups L(f(X) | S = s), s € {0,1}. In practice,
this score will be estimated from the data through some regression model. This may have an
impact on the p-values of the corresponding tests or the coverage probability of the confidence
intervals but we expect this impact to be limited, particularly for large sample sizes. In our
application, we will use a logistic regression for f. Other regression models or machine learning
techniques, such as SVM or random forest, could be used for f, depending on the particular
problem at hand.

Recently, a number of different techniques have been proposed for transforming the data
when lack of fairness is detected, with the goal of removing or reducing the bias (discrimination)
in the data. This type of transformation is often called repairing. At a population level, these
repairing procedures involve modifying the original conditional distributions of the attributes
given the protected variable to make them equal (total repair) or close enough to each other
(partial repair), see Feldman et al.| [2015], Gordaliza et al.| [2019], Hacker and Wiedemann| [2017]
or |Johndrow and Lum) [2019].

It is clear that the choice of the distribution to whom the observed us are mapped should
convey as much information as possible on the original covariates X. Otherwise, it would
hamper the accuracy of the new classification. This constraint led some authors to recommend
the use of the so-called Wasserstein barycenter (of order p = 2), see Le Gouic and Loubes| [2017]
and references therein. Statistical justifications for this choice are provided in |Gordaliza et al.
[2019]. In particular, it is proved that, under some regularity conditions, the excess risk £(X),
namely, the difference in minimal classification error without and with the use of the information
contained in 5, is controlled by a weighted sum of the Wasserstein distances between the original
distributions and the distribution chosen for the repair, as follows

E(X) <2V2K | Y m W5 (s, sy Te) (5.4.5)
s=0,1

for some constant K > 0, where Ty is the optimal transport map pushing each p, towards the
common target. This bound provides some guidelines in the choice of the target distribution
since the Wasserstein barycenter of ug and pq, with weights w9 and 71, minimizes the right hand
side of (5.4.5)). With this choice the repaired attributes would be X = T,(X) and we would have
LIX|S=0)=L(X]|S=1).

A particular version of the partial repair procedure introduced in Feldman et al.|[2015] is
called Geometric Repair. The authors propose not to move the conditional distributions to the
Wasserstein’s barycenter but only part towards it on the Wasserstein’s geodesic path between
o and py. Let A € [0,1] be the amount of repair desired for X. The two Partially Repaired
conditional distributions for s € {0,1} are given by the interpolation

L(Xs)) = LAT{(X)+(1-NX|S=s), Ae[0,1]. (5.4.6)

We propose to use the confidence intervals (5.2.14]) for the Wasserstein distance between the
repaired distributions. This will provide a useful insight into the level of reparation needed to
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obtain a reasonable degree of fairness.

To illustrate the application of our results to the fair learning problem, we consider the
Adult Income data set (available at https://archive.ics.uci.edu/ml/datasets/adult). It
contains 29, 825 instances consisting in the values of 14 attributes, 6 numeric and 8 categorical,
and a categorization of each person as having an income of more or less than $50, 000 per year.
We will just consider the 5 numerical attributes: Age, Education Level, Capital Gain, Capital
Loss and Worked hours per week. A company trying to get an automatic algorithm for deciding
whether an employee deserves salary increase could be tempted to train the algorithm on these
data using the attributes and the high income indicator. We will train a logistic regression
f(X) =log(1/(1+exp(—BT X)), B € R>, to base our decisions on this score. We write g for the
corresponding logit classifier.

The sensitive attribute to be the potentially protected is the Gender (male or female). In
the following, we encode female by S = 0 and male by S = 1. The logit classifier presents some
bias with respect to the gender in the sense that the learning sample is biased and a female
is less likely to be awarded a salary increase compared to a male with similar characteristics.
This unfairness is shown in the literature in terms of DI and BER, as discussed in [Besse et al.
[2018b] and (Gordaliza et al.|[2019]. Here, we will use the confidence intervals (5.2.14) to assess
fairness of the original data set as well as of the repaired versions. In order to improve the
interpretability of the comparisons, we have normalized the scores so that the distances W5,
are of similar magnitude as BER. For ease of notation, we continue denoting by f(X) the
renormalized score. We mention here that all the analyses have been done for the three costs
p=1,23.

Figure shows the 95% confidence intervals for Wh(L(f(Xox) | S = 0),L(f(X1,) | S =
1)), as the amount of repair A € [0, 1] in (5.4.6)) increases. For a better understanding of Figure
5.2, we have included in Figures and the evolution of the DI and the BER of the logit
classifier, respectively, with W5 ,(L(f(Xo) | S = 0),L(f(X1.) | S = 1)), as the amount of
repair A € [0, 1] decreases. In Figure we can see how the Disparate Impact decreases as the
Wasserstein distance increases. The standard 0.8 level is attained when the distance is smaller
than 0.16,0.04 or 0.0125, respectively for p = 1,2, 3, which corresponds to A = 0.625. With this
level of repair the BER equals 0.485, as we see in Figure Moreover, Figure confirms
that the closer the distributions are in Wasserstein distance, the more the BER approaches its
minimum value 0.5 and, consequently, the less predictable the protected variable is from the
outcome of the logit classifier. Finally, we include Figure to show the relationship between
the DI and BER of the logit ¢, and Figure to see the evolution of the prediction error of the
logit classifier as the amount of repair increases.

From this figures we see that, although in general large values of DI and of BER, correspond
to small values of W}, this last quantity has a different nature since it evaluates the fairness of
the whole data set and not simply of a classification rule. We see this in particular in Figures
[£.3al and B.30 While the confidence interval for DI in the case A = 0.625 includes the value
DI =1 (perfect fairness for the algorithm) the corresponding confidence intervals for W5 do not
include the zero value, indicating that this level of repair is definitely not enough to guarantee
fairness of the repaired data.

In this paper, we have restricted ourselves to the computation of the Wasserstein distance
on the real line between the distributions of the score given by logistic regression, conditionally
given the protected group. Yet, we note that using a multidimensional version of the CLT in |del
Barrio and Loubes| [2019] we could provide a criterion of fairness directly for the observations
X € R% d > 1, by looking at the Wasserstein distance between g and pp. This approach is
also supported by result . This will be the subject of a forthcoming work.
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5.5 Appendix to Chapter

In this Appendix we provide the proofs of Theorems and and Proposition For
both Theorem and Proposition parts i) and ii) can be handled similarly. Hence, for
the sake of simplicity we focus on part i). The same techniques yield ii) with little extra effort.
Throughout the Appendix we will assume that Uy, ..., U, are i.i.d. r.v.’s uniformly distributed
on the interval (0,1). We write A,, for the empirical distribution function on Uy, ..., U, and
an(x) = /n(An(z) —x), 0 < x < 1 for the related empirical process. These Uy, ..., U, allow
to represent any other i.i.d. sample Xi,...,X, with d.f. F by taking X; = F~1(U;). We
use this construction in the sequel without further mention. It will be useful to recall the well
known fact (see, e.g., Theorem 6.9 in |Villani| [2009]) convergence in W, metric is equivalent to
weak convergence plus convergence of p-th moments. With our notation in terms of d.f.’s this
means that W,(F,,, ) — 0 if and only if F,,,(x) — F(x) for every continuity point of F' and
fol |E () [Pdt — fol |F~L(t)[Pdt as m — oco. The convergence condition can be equivalently
formulated in terms of quantile functions (see, e.g., Proposition 3.1, p. 112 in Shorack) [2000]).
Combining this with Vitali’s Theorem (see, e.g., Theorem 5.5, p. 55 in [Shorack [2000]) we see
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that

F.X(t) — F~L(t) for every t of continuity of F~!

and |F;1|P is uniformly integrable. (5.5.1)

Wp(Fp, F) = 0 if and only if {

We will make use of at some points in this Appendix.

Given a distribution function F' we write F,, for the empirical distribution function based on
the sample F~Y(Uy),..., F~Y(U,) and F;! for the quantile inverse of F,,. Note that F, 1(t) =
F~1(A;1(t)). For p > 1 we fix a d.f. G € Fyy, and define

Thp(F,G) = \/ﬁ(Wg(Fn,G) — EW(Fn, G))), F € Fyp. (5.5.2)
Similarly, using the notation in (5.2.1)) for ¢, and ¢,, we denote

1
T,(F,G) = / &t F,G)AW (1), F e Fap,
0

where {W(t)}o<t<1 is a standard Brownian motion on [0, 1]. Our method of proof of Theorem

is based on a careful analysis of the processes {1}, ,(F,G)}rer,, and {T,(F,G)}rer,,-

It follows from Lemma below and the isometry property of stochastic integrals (see, e.g.
chapter 3 in Karatzas and Shreve [1991]) that T,(-,G) is a centered Gaussian process with
covariance function

1
K(Fl,Fg):/ Ep(t;Fl,G)Ep(t;FQ,G)dt. (553)
0

In particular, T,(F,G) is a centered Gaussian r.v. with variance ag (F,G) as in . We
observe that our next result shows that T),(-,G) has continuous trajectories in the sense that
Wap(Fpm, F) — 0 implies E(Tp(Fy,, G) — T,(F, G))? — 0.

Lemma 5.5.1 If F,G € Fyp, p > 1, then c,(;F,G) € L2(0,1) and ¢,(; F,G) € L2(0,1).
Furthermore, if Fp, Gy, € Fop satisfy Wop(Fp, F) = 0, Wap(Giny G) — 0 and G™1 is continuous
on (0,1) then éy(-; Fin, Gm) = &p(; F, G) in L2(0,1) as m — oo.

Proof. We set d, = max(1, 2P=2) p > 1, and observe that

F=1(t)
e RG) < pdy) /F g (7 GTHE()P)ds| (5.5.4)
2

IN

pdy| F7H(t) = F~(3)) (IF_I(t)Ip_1 +HIFT P I P IG_I(%)\”_I)-
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The first claim follows upon using Hélder’s inequality to check that fol |F=1(s)]2|G~(s) 2P~ Vds
< 00. For the second we recall from that Wap(Ey,, F) — 0 implies that F,,1(t) — F~L(¢)
for every t of continuity for F~1 (hence, for almost every ¢ € (0,1)) and also that |F,,}|?" is
uniformly integrable (and the same holds for G}, with convergence at every point in (0,1)
since G~! is continuous). As noted in Section p(t; F, G) remains unchanged if we replace
the integral limit F~'(3) by a different quantile in the definition of ¢,(t; F,G) (as long as we
perform the same change in the centering constant). For this reason we can assume without
loss of generality that F~! is continuous at 3. Then |c,(t; Fin, G)| = |cp(t; F, G)| at every ¢ of
continuity for F~! (pointwise convergence of hy,(s — G™1(F,(s))) to hi(s — G71(F(s))) follows
from continuity of hj, and G~ recall from the discussion after that for € € (0, %) and
tin (e,1 —€) all the values of G~1(F},(s)) corresponding to s € [5,t) or s € (¢,1] lie in the
interval [G~1(¢), G~1(1 —¢)], which allows us to apply dominated convergence). Now, using the
bound for ¢, (t; Fyy, G) and uniform integrablility of |F,,}|?" and |G;,!|?’, we see that the
sequence czz,(-; Fin, Gy,) is uniformly integrable and conclude that c,(-; Fin, G) = ¢p(+; F, G) and
Cp(+3 Fny Gm) = 6+ F, G) in Lo(0,1).

O

We provide now some empirical counterparts of Lemmal5.5.1} First, a general variance bound
for T), ,(F, G) and then, under more restrictive assumptions, an approximate continuity result
for the trajectories of T}, (-, G). The main ingredient in the proof is the Efron-Stein inequality
for variances, namely, that if Z = f(Xy,..., X,,) with X3, ..., X,, independent random variables,
(X1,...,X}) is an independent copy of (Xi,...,X,) and Z; = f(X1,...,X],..., X,) then

Var(Z) < zn: E(Z — Z;)2.
=1

We refer, for instance, to Boucheron et al.| [2013] for further details.

Proposition 5.5.2 If F,G € Fap, p > 1, then there exists a finite constant C(F,G), depending
only on F and G such that

Var (T, ,(F,G)) < C(F,G), n>1.
A walid choice of the constant is given by C(F,G) = 8p? max(1,22P~D)(Cy(F) + Cy(F, Q)) with
C\(F) = B(IF~H(U) = F{(U) PP~ ()P Y)

and

eu(F,6) = (B(1F ) - P o)) (B(16 ),

Proof. We recall that F;, in equation is the empirical distribution function based on the
iid. sample X; = F~1(U;),i =1,...,n. Weset Z = W5(F,,G) and Z' = W}(F!,G), where F/,
is the empirical distribution function based on the sample X1, Xo, ..., X, and X1, X], Xo..., X,,
are i.i.d.. We write X(;) <--- < X, for the ordered sample. Let us assume that F is continuous.

i R;
Now, Z =Y [0 | X@y -G () Pdt = Y27y [5-1 | Xi— G~ (#)|Pdt with R; denoting the rank

of X; within the sample Xi,...,X,,. Continuity 'of I ensures that a.s. there are no ties and
(R1,...,Ry) is a random permutation of {1,...,n}. Let us write (R},...,R]) for the ranks in
the sample X1, Xo,..., X,. Now, Z is the minimal value of E(JU — V|?| X1, ..., X,, X]|) among
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random vectors (U, V) which, conditionally given the X;’s, have marginals F,, and G. This

shows that
n Ry
Z<y A_ | X; — GL(t)|Pdt
i=1 m

and, as a consequence,

Ry’

2-2'< [ 1 X =GP - 1X] - 6 op)ar

Using the fact that ||a+ h|P — |a|P’| < ph (la+ k[P~ + |a|P~!) for a € R,h > 0,p > 1 and writing
d,, for the same constants as in the proof of Lemma [5.5.1, we get that

Z-7 < plxi-X| / (X1 — G )P+ |X] — G ] ae

g, X g
< B 1\ p—1 | X1 1 '
< pd,|X; - X2 /Ql,_JG (a4 g L)
Hence (observe that R; and R} are equally distributed),
Ri/n 9
B(Z-27')? <8p2d2[ E(1X) — X|2)X1|272) + B(|X, — X]] \G*l(t)ypfldt)]
(R1=1)/n

Under the assumption F € Fap, C1(F) := E(| X1 — X{|*|X1/?~?) is finite. To bound the last
term we note that,

2p p—1

N el =10 2 1120\ 3 =1\ PT P
B(1%1 = X{Ifa G P ) < (B1X - x12) (B(fa 67 @ de) ) 7
Using again Holder’s inequality we see that

2
P p+1

. i
PR n
(JiuleTiopta) ™ <im0 @)

and, therefore,

2p

E(L%‘l|Gl(t)|pldt)p2pl = :LG:( J,Ll’G £)[P- 1dt>p 1

n - 1ij G @) PPdt =

IN

/ G-1 ()20t
T

CQ(Fv G)
2 0

As a consequence,

Lo 2
B(1X1 = Xi1 [, G 0P dt) < ==

1 p—1
with Co(F,G) = (E|X; — X[|?)*» (f |G71(t)[*Pdt) 7 < co. Now the Efron-Stein inequality,
and the fact that Z is a symmetric functlon of X1,..., Xy, which are i.i.d. yields
C(F,G)

Var(WE(F,,G)) < nE(Z — 72 < "
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with C(F,G) = 8p?d3(C1(F) + Co(F,G)). This yields the conclusion for continuous F. For
general F' we take continuous F,,, € Fg, such that Wy, (Fy,, F) — 0 as m — oo (take as
F,,, for instance, the convolution of F with the centered normal distribution with variance
1), A standard uniform integrability argument shows that both C(F,,,G) — C(F,G) and
Var( T p(Fm, G)) — Var (T, »(F, G)) as m — oo and completes the proof.

U

An interesting consequence of Proposition is that T}, ,(F, G) can be approximated by
Tnp(Far, Gu) with Fir, Gy being bounded support approximations of F' and G, respectively.
We give details next. We recall that we are using a single uniform sample Uy, ...,U, to gen-
erate every empirical d.f., as described at the beginning of this Appendix, and this determines
completely the covariance structure of the process {1}, ,(F, G)} rer,,-

Corollary 5.5.3 Assume F,G € Fa, and M > 0. Consider the distribution function Fy; with
quantile Fy;'(t) = max(min(F~(t), M), —M). Then there exist constants C(M, F,G) depending
only on M, F and G such that

Var( TLP(F G) TLP<FM7G))§C(M7FaG)7 n=>1

and C(M,F,G) — 0 as M — co. Furthermore, if Gy is the distribution function with quantile
G/ (t) = max(min(G~1(t), M), —M) then for every e > 0 there exist My > 0 and ng such that

Var(Ty, (F. G) = Top(Far, Gay)) < 2
for each M > My and n > ng.
Proof. We write Fy; for the distribution function with quantile Fy,* (t) = min(F~(t), M). We

will give a bound for Var(T, ,(F,G) — T, ,(Fan, G)), with a similar argument for the left tail
completing the proof. Now, observe that

1
WE(Fp, G) = WE((Fu)n, G / |F1 G_l(t)|pdt—/ Py (A1) — GH ()Pt
0

_ / |F- 1(A;1(t))c;—1(t)|ﬂdt/ M — G7L(t)[Pdt.
Ayl (t)>F(M) Ay (t)>F (M)

Note that the last expression does not depend on the values of F' ~Lin the set {s <F (M )}
particular, if we write F,'(s) = F~(s), if F~!(s) > M, F;,*(s) = 0 otherwise, and F*(s)
if F~1(s) > M, F;,'(s) = 0 otherwise, then W5 (F,,G) — WE((F)n, G) = WH((E )n,G) -
WE((EFpr)n, G). As a consequence,

Var(Tpp(F, G) — Tpp(Far, G)) < 2Var(Typ(Far, G)) + 2Var(Ty »(Ear, G)).

It follows from Proposition that (denoting a, = 8p? max(1,22(P~1)

p—1

(@) (B(1F ) - Fron))
(o F)'7 + @) ) (B (1B 00) - B o)),

with p, (H fo |H=(t)["dt. But Fy'(Uy) — Fy;! (Us) vanishes if Uy < F(M) and Uy < F(M).
Hence,

(|3 () — By (Un) ) < 227! /( v oran 1 E P HIET P )dsdr

Var(Typ(Fa, G)) < ap<M2p(FM)

IN
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By dominated convergence the last integral vanishes as M — oo. To bound Var( np(F v, G))
we simply note that

E(\Fz\}l(Ul)—Fz\}l(UﬂlQp) = /(01)2 | MIgs>rany — MIgspanyl P dsdt

1 1
2/ M?Pdt < 2/ |[F=L(t)|*Pdt

F(M) F(M)

IN

and, again by dominated convergence, the last upper bound vanishes as M — oo. This proves the
first claim and allows to consider only the case of F' supported in [—M, M] for the second claim.
As before, we show how to deal with the upper tail. Arguing as above, it suffices to bound the
variance of fé(M) |71 () -G~ L(t)|Pdt fG —1(t)— M|Pdt. We complete the bound for Zy; =

! F-1(t) = G~(t)|Pdt, since the other term can be dealt with in a similar way. We consider
fG(M) n Y

X = F~}(U]) with U{ an independent additional observation with uniforn law and argue as
in the proof of Proposition We consider Z), the version of Z; that we obtain replacing
X1 by X1 in the sample and denote by R;, R the ranks of X; and X{ in the samples. Now, if
Ry < nG(M) and R} < nG(M) then neither X; nor X| enter in the expressions that define Zy,
and Z},, respectively, and, consequently, Zy; — Z, = 0. Also, if R} < R; then X| < X; and
(recall that X7, ..., X,, X{ are upper bounded by M) replacing X; by X/ in the sample can only
increase the transportatlon cost, that is, Zy;— Z’ < 0. Hence, if Zy;— Z’ > 0 then R; < R1 and

R,1>TLG( ). f Ry = R/ then Zy — Z/ <fR/ |

X, -G ()P — | X, -G ]p‘dt. If Ry < R,

then X; < X/ and from the fact that a < b < ¢ < d implies (d—b)P+(c—a)? < (d—a)P+(b—c)?
R/
we can see that Zy — 2, < fR, X =GP — | X - G

dt as well. Summarizing,

we conclude that
iﬁ

Zy — Zy <

X =GP - !Xi—G’l(t)lp’dtI(R’l > nG(M)).

Ri—1

We can now mimick the proof of Proposition to see that

8102d2 p—1 p=1 1/p
B(Zu = Z3)% € =2 (1ap(F)'7 + p(@)'7 ) (B(1%0 = X{PP1(Ry > nG()) ) )
Finally, we note that the probability that R exceeds nG(M) is at most 1 — G(M) + % This
completes the proof.
O

When F and G have bounded support and G~! is continuous it is possible to give variance
bounds for the increments of T}, ,(-, G). In view of Corollary the assumption of bounded
support does not mean a great loss in generality, since slightly worse bounds can be obtained
for the general case from this particular one. Please note that the equivalence for the different
expressions for 012) (F1, F»; G) in the next result follows from (5.5.3)).

Proposition 5.5.4 If [y, Fy and G are supported in [—M, M) and G~1 is continuous then
there exists a sequence of constants R, (G,p, M), which depend on G,p, M and n but not on Fj,
i =1,2 such that R,(G,p, M) — 0 as n — oo and

Var (T p(F1, G) — Tpp(F, G)) < 305(F1, Fo; G) + M? Ry (G, p, M),
with o2(F1, F2; G) = E(T,(F1, G) — Ty(F2,G))* = [|6,(+; F1, G) — ¢(+; Fa, G)H%Q(o,l)-
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Proof. We consider first a finitely supported F, concentrated on z; < --- <z, with F(z;) =

sj, j = 1,...,k. We have s = 1 and set, for convenience, s9 = 0. Then WH(F,G) =
Z?Zl f;jﬂ lzj — G7L(t)[Pdt and W) (F,,G) = j 1 fA "Ssjil)| ; — G7H(t)|Pdt (recall the con-

struction for a,(x), F,, and A,, at the beginning of this Appendix). Hence,

1 k-1 Sj
WE(F.G) = /0 ok = G )Pt = ) /O 201 = G OF = |2y — G @)t
j=1

and similarly for W} (Fn,G) replacing s; with A sj). Writing again hy(z) = |z’ we have
|zj1 — GTLO)P — |z; — GTL(t)|P = ffjj“ h,,(s — G~1(t))ds and combining these last two facts,
we obtain

T, o= Vi (W (B, G) ~ WY(F. _Jn Z / " /+ Wy(s — G (0)ds)dr. (5.5.5)

Next, we define

\FZ/An(S]) /+ (s — G~ (s;))ds ) dt = Zan 5 /+ B (s — G\ (s))ds

and observe that
An(s)) AR -1 / -1
T, — Tl < \FZ ) (W (s — G\ (t)) — (s — G (Sj)))ds)dt‘. (5.5.6)
For later use, it is convenient to observe that
= el = anls) [ Hyls = G FENE = [ (s Gdan(s)
j=1 71
(this is easily checked if one takes into account that F and F~!, and as a consequence (5 F,G),

are piecewise constant and also that for any constant k& we have fol kdom,(s) = 0).
We consider now the continuity moduli

we-1(0) = sup |G (z) — GTH(y)l,
2y€l0.1] Ja—y|<5

wp, M (€) = sup Iy () — hyy(y)]-
z,y€[—2M ,2M],|x—y|<e

The assumptions on G~! imply that it can be extended to a continuous function on [0, 1]. Hence,
it is uniformly continuous and wg-1(8) — 0 as § — 0. Similarly, wy, ps(e) — 0 as € — 0. Observe
now that, for ¢ between s; and A,(s;), |G71(t) — G71(s;)| < wg-1(||an|ls/v/7). Hence,

[ il =671 0) =yl — 6 (sy)lds < (a1 — ) pan s (o oo/ V)

J

and, therefore, in view of ([5.5.6)),

k—1
T — Tn| < Z($J+1 ) wp, 1 (W1 ([an oo/ V1)) an(s5)]
j=1
< lanllsowp,ar(wg-1 ([lamllso/v/r)) (2 — 21)
< 2M|lan||ecwp,m (a1 ([lanlloo/v/12))-
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Hence, 5 .
E(T, — T,)* < MR, (G,p, M)

with Rn(G,p, M) = 4E[Hozn||oo w2y (wg ([lnlos /\/ﬁ)))] Uniform integrability of ||aw |2,
(this follows, for instance, from the well-known Dvoretzky-Kiefer-Wolfowitz inequality, see, e.g.,
Massart| [1990]) and the fact that wp ar(wg-1(]|anllsc/+/n)) is bounded and vanishes in proba-
bility ensure that R, (G,p, M) — 0 as n — oo.

Let us assume now that F; and F, are finitely supported as above and write T, ;, Tm,
1 = 1,2 for the corresponding versions of T}, and T, respectively. Observe that there is no loss
of generality in assumming that F; and F, have a common support (observe that is valid
even if ;41 — s; = 0 for some j; we can therefore take the union of the finite supports as the
common supporting set). Then

E(Ty1 — Th2)?
3E(Tp1 — Tn1)? +3E(Tny — Tpa)? + 3E(Tho — Tna)?.

Var( np(FlvG)*Tn,p(FZaG)) <
<

A simple covariance computation using shows that E( n1 — Tn,g) =0 (Fl, Fy;G) and
yields the conclusion.
For general F| and Fy we take Fj,,, i = 1,2, m > 1 with finite support (contained in
[—M, M]) such that Way(F; m, F;) = 0, i = 1,2, and the bound follows by continuity.
O

As a consequence of the variance bounds in Propositions [5.5.2] and [5.5.4] and in Corollary
we can prove now the announced CLT for the empirical transportation cost.

Proof of Theorem We will prove that

WQ(E( T p(F, G)) E(Tp(FaG))) —0

As in the proof of Proposition [5.5.3] we assume first that F' is concentrated on z1 < --- < xy
with F(z;) =sj, j=1,...,k and F,G supported in [—M, M]. Then we have

T, := vV (W(F,, G) ~ WE(E, IZ/ /I+ (s — G (1))ds )

Continuity of G~! and the multivariate CLT imply that

\/>/ n(57) /x;+1 (s — G—l(t))ds)dt}%_l —w {B(sj)(/gcj+1 hoy(s — G_l(sj))ds>}lf—1

Jj=1 ; Jj=1

as n — oo, with B(t) a Brownian bridge on [0, 1]. Hence, using the trivial fact that Z;:é B(sj)c; =
— E?;& d;j(B(sj+1) — B(sj)) if dy = ¢y and d; = Z{:o ¢1, we conclude that

T, —w T,(F, G). (5.5.7)

We note that the assumptions on F' and G guarantee that

‘f/ v /mm f (s G_l(t))ds)dt‘ < Klan(s;)|
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for some constant K. This shows that 72 is uniformly integrable and, together with (5.5.7) that
Wy (L’ <T n) , E(Tp(F, G))) — 0. But this, in turn, yields convergence of moments of order 2 or
smaller. In particular, we see that E(T,) — E(T,(F,G)) = 0, that is

Vn(EOWVP(F,, G)) — WE(F,G))) =0 (5.5.8)

as n — oo. But (5.5.7) and (5.5.8) show that T, ,(F,G) — Tp(F,G) and, again by uniform
integrability, that W (£ <Tn,p(F7 G)),E(TP(F, G))) —0

In a second step, we consider F,G supported in [-M, M], with G=! continuous. We
consider an approximating sequence F),, with finite support contained in [—M, M| such that
Wap(Fm, F') — 0. Now, for a fixed € > 0 we can, by Lemma ensure that J%(Fm, F,.G)<¢e?
for large m. For such m we take ng large enough to guarantee that R,(G,p, M) < 2/M? and
Wa(L(Thp(Fim, G)), L(Tp(F, G))) < € for n > ng (here R,(G,p, M) is as in Proposition.
But then, for n > ny,

Wa(L(Top(F, G)), L(Tp(F, G))) < Wa(L(Thp ( G)) L(Top(Fin, G)))
£ WL (T (P §)). £(Ty (Fs §))) + Wal£(Ty(Fr ). £(T,(F. C))
< 2e+e+e=A4¢,

and we conclude that W (L(T,, ,(F, G)), L(Tp(F, G))) — 0 as n — oco.

Finally, for F,G € Fy,, G~ continuous we use Corollary Note that G]T; is also con-
tinuous. The already considered cases show that, for fixed M, W» E(Tn,p(F v, G M)) , L(T »(Fs
GM))) — 0 as n — oo. Obviously, WQ(E( (FM,GM)) ﬁ( »(F, G))) — 0as M — oco. Let us
fix e > 0. We take My and ng large enough to ensure that W, ([,( T p(F, G)) E( np(FM, GM)))
<eif M > My and n > ng and take M > My large enough to guarantee Ws (L’( (Far, Gar) )
E( »(F, G))) e. For this choice of M we take n; > ng such that WQ(E( np(Ev, Gar ),
E( (Fa, Gar) )) e for n > ny. But then, arguing as above we see that Wg( ( np(F,G) ),
L(T,(F,G))) < 3¢ if n > ny. This completes the proof.

Il

Proof of Proposition As before, we give a proof for part (i). We will show first that
under the given assumptions

VAWE(Fs. G) ~ WE(F.C)) = N(0,0”) (55.9)
for some 0 > 0. For this goal we note that, by assumption (5.2.7)),
1
\/ﬁ/ [F~H = GTHP2IE = P2 < V(W (F, G) P2 (W (B, F))? = op(1).

0

Similarly, we see that
1
ﬁ/ [ = GRS = FH = op(1).
0
A Taylor expansion of h,(z) = |z|P and the fact that |z|[P~2 is a convex function imply that
-1 -1 -1 -1 ~1 -1 -1 -1
B =G = [P = G (B PO (P - 6|

< C(Fn_l - F_1)2(|F_1 _ G—l‘p—Z + ’Fn—l - G—1|p—2)'
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This bound and the above estimates yield that
1
VAWY(FLG) = WHR.G) = [ (B = PP = G7) = or(1),

Hence, we focus on the analysis of \/ﬁfol (F, ' —F~Yh(F~! —G~1). The moment assumptions

on I and G (see, e.g., Lemma 3.3 in Alvarez-Esteban et al. [2011]) allow to replace fol by fifﬁ

without modyfing the asymptotic behavior of the resulting r.v.. Also, by Lemma 2.3 in [del

Barrio et al,| [2005] and assumptions (5.2.6) and (5.2.8)), we can replace \/n(F, ! — F~!) in the
integral by the weighted uniform quantlle process, u,/f(F~1(-)), where uy,(t) = \/ﬁ(An (t)—1).
Therefore, to prove ([5.5.9) it suffices to prove convergence of

fl 1/" Ty (F~H = G7Y),

But now, Theorem 4.2 in |del Barrio et al.| [2005], assumptions and and the fact
that h,(F~' — G1) yield the result.

Now, from and Theorem [5.2.1] we conclude that /n(EW5(F,, G)—W}(F,G)) must be
bounded. This in turn yields moment convergence (up to order two; recall the proof of Theorem
of v/n(Wh(F,,G) — WH(F,G)). But since the limiting distribution of /n(W5(Fy,G) —

WE(F,G)) is, as noted above, centered, we must have
Vn(EWE(F,, G) = WE(F,G)) = 0
This concludes the proof. O

Proof of Theorem When p = 1, the identity
WP @) = [ IFu(a) - Glo)lda

(see, e.g., \Villani [2003]) allows to deal with the empirical transportation cost through the
consideration of the process

Under the assumption
/ JEO = FB)dt < oo

we have that af converges weakly in Li(R) to B, a centered Gaussian process on R with
covariance function

Cov (B (z), B¥ (y)) = F(z Ay) — F(z)F(y),

see Theorem 2.1 in |del Barrio et al.| [1999b]. By the Skorohod-Dudley-Wichura Theorem (see,
e.g., Theorem 11.7.2 ni Dudley| [2002]), we can, therefore, consider versions of af and B such
that ||af — BY|1, — 0 a.s.. Now,

V(Wi (Fy, G) = Wi (F,G)) = /Run(:c)dm,

where up(z) = n(|F(z) — G(x) + of (z)/vn] — |F(z) — G(z)]). We introduce vy(z) =
V(@) — Ga) + BF (@)l - |F(@) ~ G(x)) and v(z) = BF (x) is F(x) > G(z), v(z) =
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—BF(2) if F(z) < G(x) and v(z) = |BF (2)| if F(x) = G(x). We note that |u,(z) — v,(z)| <
laf (x) — B (z)|, which implies that

‘/Run(m)dx - /Rvn(:c)dx‘ < |l = B¥||, = 0 (5.5.10)

with probability one.
Now, if F(z) > G(x) then v,(z) will eventually equal BY (z), while if F(z) < G(x) then
vp(z) = —BF (x) for large enough n. Hence, v,(z) — v(z) pointwise. On the other hand,

[on(2)] < |BF(x)].

This shows that we can apply dominated convergence to conclude that
/ v (z)dr — / v(x)dx. (5.5.11)
R R
Combining (5.5.10) and (5.5.11)) we see that /n(Wi(F,,G) — Wi(F,G)) — [pv(z)dz. To

conclude we note that Bf' has the same distribution as B(F(-)) with B a standard Brownian
bridge on [0, 1]. Normality and the expression for the variance when ¢(F = G) = 0 follow from
the fact that, in that case,

/R o(z)dz = /R B(F(z))h(z)dz

with h(x) = I(F(z) > G(x)) — I(F(z) < G(x)). This last integral is a centered Gaussian r.v.
with variance

[ r ~ FoR@ @y = [ - ([ roa)’

where H(t) = flf:;((?) h(s)ds (the last equality follows, from instance, from Proposition 7.4.2,
2

p. 117 in Shorackl [2000]). Finally, we note that F(z) > G(x) if and only if G~1(F(z)) > =
and also that * = G~Y(F(x)) if and only if G(x) > F(z) and G(y) < F(x) for every y < .
But then G(z) = F(z) unless G is not continuous at x. But this can happen at most for a
countable collection of z. This means that I(F(x) > G(x)) = I(G™'(F(z)) > z) and, under the
assumption /(F = G) = 0, that I(F(z) < G(z)) = (G~ (F(x)) < z) for a.e. x. This completes
the proof.

U
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Chapter 6

Moderate deviations for empirical
transportation cost in general
dimension

Contents
6.1 Introductionl. . . . . . . . . . e 132
[6.2 MDP for empirical transportation cost in general dimension| . . . . . . . .. ... 135
[6.3 Moment bounds for A,| . . . . ... 138
[6.4 Appendix to Chapter[6]. . . . . . . . . . ... 139

We provide a Moderate Deviation Principle for the empirical trasportation cost in general
dimension. Exploiting the same idea of the linearization approach to obtain the CLT in|del Barrio
and Loubes [2019], we prove some moment inequalities under more restrictive assumptions.
This helps us to analyse the exponential convergence in probability of W2 (P, Q) —EW3(P,, Q)
towards 0. In the one-dimensional case, we sharpen the moment condition and give a simpler
characterization in terms of the speed in the MDP.

6.1 Introduction

Over the last decades, the asymptotic analysis of the optimal transportation cost has been one
of the main research topics in probability. Optimal transportation methods have proven to be
more and more useful to solve very different real life problems, concerning a wide variety of fields
that includes for example imaging sciences (such as color or texture processing), graphics (for
shape manipulation) or machine learning (for regression, classification and generative modeling)
among others. The significant developments in the numerical procedures that are involved can
help to understand some of the reasons for this interest in data analysis. We refer to|Chizat et al.
[2018] and Peyré et al.|[2019] for a more detailed account. In the particular field of statistical
inference, despite early contributions in [Munk and Czado| [1998], del Barrio et al.| [1999a], del
Barrio et al|[2005] or Freitag et al.|[2007], for instance; progress has been slowed by the lack of
distributional results. Yet in the latest years this rythm is changing and many generalizations
of optimal transport methods have been proposed in relation to approaches originating from
statistical inference, such as kernel methods and information theory. We refer to the review
Bigot| [2019] of the recent contributions in statistics on the use of Wasserstein distances and
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tools from optimal transport to analyse datasets whose elements may be modeled as random
probability measures, such as multiple histograms or point clouds.

Our main object of interest is the minimal transportation cost between two sets of random
points or between an empirical and a reference measure. In the classical Kantorovich formulation
the optimal transportation cost between two probabilities P and Q on R? is defined as

T(P,Q):= inf / c(x,y)dn(z,y),
(P, Q) b o) Rded( y)dr(z,y)

where II(P, Q) denotes the set of probability measures 7 over the product space R% x R? with
marginals P and @, and c is some cost function. While the problem admits a much more general
formulation, for our present purposes it is enough to know that if we denote by W5(P, Q) the
optimal transportation cost corresponding to the choice ¢(z,y) = ¢p(z,y) = ||z —y||’, p > 1,
then W, is the so-called Monge-Kantorovich distance, which defines a metric in the set F,(R%)
of probabilities on R? with finite p-th moment. For general background on these facts we refer
to |Villani [2003].

Recently, much effort has been devoted to the asymptotic analysis of the empirical trans-
portation cost. Precisely, with inference goals in mind, we observe Xi,...,X, ii.d. with
law P, Yi,...,Y,, iid. with law @, and we write P, and @,, for the associated empiri-
cal measures. Then, assuming that P and @ have finite p-th moment it is well-known that
WE(P,, Q) — WE(P,Q) and W5(P,, Q) — WEH(P,Q) almost surely. Furthermore, it is of
great interest to know the rate of such approximation, that is, how far is the empirical trans-
portation cost from its theoretical counterpart. To this task, central limit theorems (CLT), large
deviation principles (LDP) and moderate deviation principles (MDP) have been studied for

Tn(W;g(PmQ> —an), p>1, (6.1.1)

with some centering a,, and scaling 7, > 0 (and similarly for the two-sample case).

The first papers on this topic considered P = ) and n = m, meaning that the two random
samples come from the same generator. In this case, W5 (P, Q) is exactly zero and the problem
is to determined the vanishing rate of the empirical matching transportation cost, namely

THPQ) = inf > [|Xi = Yo",
"i=1

where S,, denotes the set of permutations of {1,...,n}. Early contributions considered the
canonical two-sample matching problem on the plane, that is when p=1,d =2 and P = (@ is
the uniform distribution on the unit square. In this case, Ajtai et al.| [L984] proved that there
exists K > 0 such that

1
E(nlogn)l/2 < T} < K(nlogn)'/?

with probability 1 — o(1). Refinements of this result, as well as concentration inequalities,
were obtained in Talagrand and Yukich [1993] and [Shor [1985], with later extensions in Dobri¢
and Yukich [1995] and Fournier and Guillin| [2015], covering an increasingly wider setup. The
connections between the two-sample matching problem and the Monge-Kantorovich problem
of optimal transportation of mass were exploited in |Ganesh and O’Connell [2007] to obtain
moderate and large deviation principles in a fairly general setting. In particular, their main
result consist in a MDP over the unit square as well as a LDP over a compact metric space,
where the rate function is characterized as a solution to a variational problem. Later |Barthe
and O’Connell [2009] extended this result to compact support in R?, and they obtained that the

(d+2) o
I X

exact moderate deviation rate function on the unit hypercube, is equal to . Their proof
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is essentially the same, combining large and moderate deviation results for empirical measures
given in [Wu| [1994] (which relies heavily on earlier work of Ledoux| [1992]) with convergence
rates for empirical measures in the Monge-Kantorovich distance due to Dudley| [1969] and for
the unbounded case to Rachev] [1991]. A related paper is |Gozlan and Léonard| [2007] where new
transportation cost inequalities are derived by means of elementary large deviation reasonings.
Further details on recent developments in the area of transport inequalities could be found in
Gozlan and Léonard, [2010].

Also a generalization of the moderate deviation principle in |Ganesh and O’Connell| [2007]
to general Polish spaces was proposed in [Torrisi [2012]. In this comprehensive work, results
on almost sure convergence, large and moderate deviation principles are proved under various
assumptions on the reference samples X/s,Y/s and the cost function, as well as expressions for
the large deviation rate functions in terms of infinite-dimensional variational problems. In some
specific situations, more insight into the expressions for the large deviation rate functions is given.
In particular, the case when Y, is supported on some countable subset {gp}n>1 C R?, which is
refered to as the grid transportation problem, is deeply studied. The main contributions are: (i)
lower bounds for the large deviation rate function of 7,7 /n for the two-sample matching problem
over a compact metric space are provided, as well as a similar result for the grid transportation
problem; (ii) the relation between Maurey’s T—property and the large deviation rate function;
(iii) for the one-dimensional grid transportation problem over the unit interval [0, 1], the large
deviation rate funtion is provided in terms of an optimization problem, which allows its numerical
estimation. Moreover, a moderate deviation principle for the optimal transport cost of the grid
transportation problem over a compact metric space is proved. Additionally, possible extensions
of all of the above to non-compact spaces are briefly discussed. Finally, in the one-dimensional
case with compact support, it is shown that the limit distribution for 7,¥/y/n is a random
variable whose tail is asymptotically equivalent to the tail of the modulus of a Gaussian random
variable. Specifically, a CLT is obtained for the grid transportation problem.

On the other hand and to a lesser extent, the case P # () has also been studied in the
literature. We highlight the following contributions to the asymptotic theory in this framework.
For one-dimensional data and quadratic cost p = 2 some limiting results for were given
in Munk and Czado [1998] for the metric Wy (or a trimmed version of it). More recently,
Sommerfeld and Munk| [2018] handles both general cost and dimension for P and @ finitely
supported, with later extensions to countable support in Tameling et al. [2017]. In general,
few asymptotic results are avalaible in the case of continuous probabilities. Recently, a CLT in
general dimension has been provided in del Barrio and Loubes| [2019] for quadratic cost p = 2: if
Q) has a positive density in the interior of its convex support and P and () have finite moments
of order 4 4 § for some § > 0 then

V(W3 (Pa, Q) — EW3(P,, Q) —w N(0,6%(P,Q)) (6.1.2)

for some o?(P,Q) which is not null if and only if P # Q. A two-sample version of such
results are also given in this work. Note that —,, denotes weak convergence in probabilities.
Extensions of to general distances W,, p > 1, in the one-dimensional case, as well
as results dealing with the choice of centering constants were provided in |del Barrio et al.
[2019b]. The proposed approach in |del Barrio and Loubes [2019] is based on the analysis of the
optimal transportation potentials, namely, the minimizers in the dual formulation of the optimal
transportation problem. Some variance bounds are obtained using the Efron-Stein inequality,
that are adapted to prove a linearization result that yields the CLT as a direct consequence.
In this work, we exploit the same idea of the linearization approach in|del Barrio and Loubes
[2019], under more restrictive assumptions, to prove some moment inequalities that help us to
analyse the exponential convergence, in probability, of T}, towards 0. This allows us to obtain a
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moderate deviation principle for

Ty, = W3(P,, Q) —EWj (P, Q).

6.2 MDP for empirical transportation cost in general dimension

Over the last years, algorithmic advances have triggered an increasing interest on optimal trans-
port (OT) methods. The popularization of entropic regularization proposed by |Cuturi| [2013]
as a tool of solving large-scale optimal transport problems quickly not only has been shown
to yield near-linear-time algorithms for the OT problem [Altschuler et al., [2017], but it also
appears to possess useful statistical properties which make it an attractive choice for machine
learning applications (see Genevay et al. [2018], Montavon et al.| [2016], Rigollet and Weed| [2018]
Schiebinger et al. [2019]). In particular, with the aim of obtaining results for statistical inference,
much effort is being devoted to the asymptotic analysis of the empirical transportation cost in
recent researchs. In|Mena and Niles-Weed| [2019] the authors prove several fundamental statisti-
cal bounds for entropic OT with the quadratic Euclidean cost between subgaussian probability
measures in arbitrary dimension. Through a new sample complexity result they establish the
rate of convergence of entropic OT for empirical measures. Their analysis improves exponen-
tially on the bound of |Genevay et al.| [2018] and extends their work to unbounded measures. In
addition, based on techniques developed by del Barrio and Loubes| [2019], they establish a CLT
for entropic OT, which was previously only known for finite metric spaces.

Let Z, be a sequence of random variables defined on a probability space (2, F,PP), with
values in a topological space X equipped with the Borel c—algebra B. We say that the sequence
Z, satisfies the large deviation principle (LDP) with good rate function I and speed n, if for all
BeB,

1
— inf I(z) <liminf —logP(Z, € B)
z€B° n—oo N

1
<limsup —logP(Z, € B) < — inf I(z),
n—oo T zeB
where I > 0, and for A > 0 the level sets {x : I(x) < A} are compact. Let (an)n>1 be a
decreasing, positive sequence such that

anp — 0 and na, — 0o, as n — oo.

We say that the sequence Z,, satisfies the moderate deviation principle (MDP) with good rate
function J and speed a,, if for all B € B,

— inlg J(x) < liniinf an logP(v/nan,Z, € B)
zeB° n— 00

< limsup a, log P(y/na,Z, € B) < — inf J(z), (6.2.1)

n—00 rEB
where J > 0, and for A > 0 the level sets {z : J(z) < A} are compact.

The main contribution in our paper is proving a MDP for the empirical OT with quadratic
cost in general dimension. Our approach is based on the idea proposed in |[del Barrio and
Loubes| [2019] to prove the CLT as in . Let Xi,...,X, be a sequence of R%—valued
random vectors such that logE [e<)‘7Xi>] < o0 in some ball around the origin, E(X;) = 0, and

1

the covariance matrix C' of X is invertible. Denote the empirical mean S, := = > | X; and

fix a, — 0 such that na, — 0o, as n — oo. From Theorem 3.7.1. in [Dembo and Zeitouni
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[1998], We have that the sequence S, satisfies the MDP with speed a,, and rate function
J(z) = 3(z,C71a).

In the rest of the section, we consider probabilities P and @ in R¢ with positive density in
the interior of their convex support, and Xi,..., X, i.i.d. with law P. Observe that we can
write

WiP.Q) = _min [ lle = ylPdr(a.y)

— / lo|2dP + / Jol%Q ~2_ max / vydn(z.y).

€l(pP,Q)
By the Kantorovich Duality (see e.g. [Villani| [2003]),

max /:cydw(x,y) = mm /Lde—i—/ ©*dQ,

rell(P,Q) peL(P),conver

where ¢* denotes the convex conjugate of ¢ [Rockafellar and Wets|, 1998]. Since P has density,
the minimizer (g of the right-hand side is the optimal transportation potential from P to @, up
to an additive constant, and Vg is the optimal transport map (see details in |del Barrio and
Loubes| [2019]). Then, we can write

W@ = [elar+ [ a2 ( [eutr [ deQ),

and similarly for the empirical measure P,

W(BQ) = [lellar, + [ liPaq 2 ( [ewarc+ [ deQ),

where ¢,,, n > 1, is the optimal transportation potential from FP,, to (). Thus, we have

T, = / l|2dP, — E| X4

[(f e ) (s )]

L= / l|2dP, — B Xy

9 K/@den+/soi§dQ) —E</‘P°dp”+/¢6dQ)]

:/’.’I,'H2dpn—2/@0(x>dpn—E”X1H2+2E(p0(X1),

Now, we define

and we observe that if we denote the random variable Y; := || X;]|* — 20(X;), then we can write

1 n
B
n-
=1
Now we define the variance of the variables Y;, i =1,...n,
0% (P,Q) := Var(|| X1 * = 2p0(X1).

Hence, assuming

136



(1) logE [e*Vi=EY)] < 400, VA with [A] < 4,
(IT) Var(Y;) > 0,

we can deduce from Theorem 3.7.1 in Dembo and Zeitouni [1998] applied to the sequence
Yi,...,Y,, that for any positive sequence (ay),>0 such that lim, - a, = 0 and lim,_, na, =
oo, we have that for all t > 0,

1 a?
——inf ————— < limi
3 20 gy < lminf anlog B(yia L > 1)
1 a?
<l log P Ln>1) < =5 inf 550 622
< limsup ay log (VnanLn > 1) < Qigtaz(P,QY (022
and also
N < lim inf ay log P(y/nan Ly < t)
leg_t 0.2(]37 Q) < gggé an log \/m n
1 a?
<l log P Lp<t) < —7 inf ———-. 0.2.3
< limsup a, log (VnanLy <) < 2 021 02(P,Q) (6:2:)

Therefore, L,, satisfies a MDP and our aim is to show the same result in for T,,. To
achieve this property we will obtain an exponential contiguity result for the probability measures
{L(Lyn)}n>1 and {L(T))}n>1. Precisely, we will show that such measures are exponentially
equivalent (see the general Definition 4.2.10 in |Dembo and Zeitouni [1998]). By Theorem 4.2.13
in Dembo and Zeitouni| [1998] it suffices to prove that for every 6 > 0

lim sup a, log P(v/na,|T,, — L,| > 0) = —oc. (6.2.4)

n—oo
Consider now X7, ..., X;, an independent sample copy of X1, ..., X, and we write P, ; for
the empirical measure on the sample X1,..., X;_1, X/, X;11,...,X,. As in the previous work

of |del Barrio and Loubes [2019], we introduce the rv’s

Ry =WE(P,,Q) - / (2] — 2¢0(x)) dPa(z). (6.2.5)

and we notice that A, := R, —ER, = L, —T,. For i =1,...,n, let R,; be computed by
replacing in (6.2.5) X; by Xj in the sample, that is, replacing P, by P, ;.

Our approach to obtain the MDP is based on the result in Proposition [6.3.2] postponed to
section [6.3] where we prove an upper bound for the moments of the random variable A,,. For
r > 2, define the quantities Cy, , := n"E(R, — Ry 1)".

Theorem 6.2.1 Consider P,(Q probabilities with positive density in the interior of their conver
support, and X1, ..., Xy, i.i.d. with law P. Assume that their support is bounded and fix {an }n>1
such that a,, — 0 and na, — 0o, as n — oco. If moreover:

(A1) P is such that NXil” < £oo, YA with |A| < 6,
(A2) aplog(Chp2) = —00, as n — oo,

then {T), }n>1 obeys a MDP with speed i and good rate function

Hm:é(d;QQ% (6.2.6)
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Remark 6.2.2 With respect to the assumptions in Theorem |6.2.1, we make the following ob-
servations:

1. By converity of the exponential, e2Yi < %6)‘“){”'2 + %62)‘9"0(&), and thus condition (I) could
be reduced to (Al).

2. Moreover, (II) means that Y; is not constant P — a.s., and we note that if po(x) =
Izl

5 —% P —a.s. with k € R constant, then Vo = Id. Hence, condition (I1) is equivalent
to the standard assumption P # Q, which is indeed assumed to obtain the CLT for T, in
del Barrio and Loubes [2019].

Remark 6.2.3 We note that I(x) is in fact a good rate function since for all a € [0,00) the
level sets {x € R|I(z) < a} are compact subsets of R.

Remark 6.2.4 (Condition (A42)) We have noticed that verifying condition (A2) in general
dimension is a complicated task since it amounts to study the rate of vanishing of the quantities
Cnr, for r > 2. This problem has been already tackled in the work of |del Barrio and Loubes
12019] where the authors show that if P and @Q have finite moments of order 4 + 0, for some
0 >0, then Cy, 2 — 0 as n — oo. Refinements on this result remain as future work of this thesis.
Yet in the particular one-dimensional setting, this could be sharpened as stated in the following
result.

Corollary 6.2.5 (MDP for probabilities on R) Consider P and @ probabilities on the real
line with respective distribution functions F' and G, and X1, ..., X, i.i.d. with law P. Assume
moreover that F and G have positive density and G~' is Hélder-continuous. Fiz {an}n>1 such
that a, — 0 and na, — oo, as n — oco. If moreover:

(A1) P is such that ANl < +o0, YA with || < 4,
(A2) aplog(n) — —oo, as n — oo,

then {1}, }n>1 obeys a MDP with speed i and good rate function defined in (6.2.6)).

6.3 Moment bounds for A,

Consider P and @ are probabilities in R? with positive density in the interior of their convex
support. Let X7,..., X, be an independent sample copy of Xi,..., X, and we write P, ; for
the empirical measure on the sample X, ..., X;-1, X/, Xj41,..., Xn.

As mentioned above, our approach to obtain the MDP is based on proving an upper bound for
the moments of the random variable A,,. For r > 2, recall the quantities C,, , = n"E(R,—Ry,1)";..
The following result controls the growth of the moments of A,,:

Lemma 6.3.1 If P and Q have bounded support, then there exists some constants A, B € R
(depending only on the support of P,Q) such that

- Cn'r '
E(A,)% < BAqTq, for all ¢ > 1. (6.3.1)

Proposition 6.3.2 If P and Q have bounded support, then there exists some constants A, B € R
(depending only on the support of P,Q) such that for everyt >0,

nt?
P (A, >t) < BCpa exp(—87).
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6.4 Appendix to Chapter @

Proof of Theorem [6 From Proposition [6.3.2] we have that for every ¢ > 0,

t2
8Aa, )

t
> = >
P (\/ran|An| > t) = P <\An\ > —

n

> < 2BC,, 2 exp(—

Now, taking logarithms we see that (6.2.4)) holds under assumption (A2) since

2
an logP (y/nan|Ay,| > t) < anlog(2BCh2) — A
Hence, {L(\/nanLy)}n>1 and {L(y/na,Ty)}n>1 exponentially equivalent. O

Proof of Lemma Following Boucheron et al.| [2013] we denote the random variables
VT and V™~ by

vt —ZE — Rni)2 X1, .., X

and

ZE — |X1,... Xn]

For ¢ > 1, Jensen’s inequality for condltlonal expectations gives

E (i(Rn — Rn,z)ile, e ,Xn>] <E (f:(Rn _ Rn,i)i> ‘

E(VH)!=E

=1 =1

Then, we have that |V, < | 3% (Rn — Ryi)? |lg and by the triangle inequality

1

Vg <n (Z E(Ry — Rn,niq) i (E(Rn - Rn,lﬁf) !
i=1
Now we note that
W (Pr, Q) =/ (lz]* = 2¢n(x))d Py () +/ (lyll* = 2¢5(2))dQ(y)
Rd Rd

and similarly for W2 (P!, Q), replacing (¢n, %) with (¢, (¢4,)*), where ¢, denotes the optimal
transportation potential from P to Q. Also, by optimality,

WEPLQ) > [ (el = 26u(e)dPh(o) + | (ol = 262w

Hence,

Ru=Rua <2 [ (g0la) = pu(@)dPala) =2 [ (o) = pu())dPL()

= 2 [(po(X2) — on(X1)) ~ (po(X7) — on(XD)]

Since the optimal transport maps g, @, take values in the bounded support of Q, we deduce
that for some positive constant L € R,

(Rn - Rn,l)Jr S

St
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Then, we can write

Qe

1
L2q—r q
HV+Hq <n (E(Rn — le)i(I) < <an(Rn _ le)r )

+ n2q-r
1
L2q—'r q
—(c..m——)".
( nrT g

Similarly, we can bound ||V ~||;. Then from Theorem 2 in Boucheron et al.| [2005] we obtain

2 g or
[Anllg < (AR «llg + I1(AR)-lg < 2v/26q Cnfj

Hence,

B < (a2 pgngn ol
Now, by the Stirling’s formula there exists B € R such that

¢ < BEZ < pges.
V4

We finish the proof taking B := % and A := 16kxeL?. .

Proof of Proposition Let A/, be an independent copy of A,, = R, — ER,,. Observe
that since A,, is centered, Ee " > 1, and by symmetry of A/, — A,, we have

EeMn < BernRe= M _ EeMAn—AL) _ f: N4 [(An - A%Pq] 7
B (29)!

q=0

for every A\ € R. Now, by convexity of z — 229

E [(A, — A))%] < 2%E [A2].
Moreover observe that, for every integer ¢ > 1,

CO_ e+ = @) =24
=1 =1

q!

These observations together with previous Lemma for r = 2 imply

o0 o0
\242249\BAIC, 2424 A9 2)\2A
EetAn < E q n2 BC,» ———— = BCpoexp , (6.4.1)
= (2q)!n4 ’ = q'nd ’

for some constants A, B € R. Now from Markov’s inequality we know that for every A > 0,
P(A, >t) < e Eexp(AA,).

Since this inequality holds for all values of A > 0, we may choose A to minimize the upper bound.
Let ¢4 be the Cramér transform of A,

YA, =sup(At — ¥a, (A)), (6.4.2)
A>0

140



where ¥a, (A) = log Eern, X > 0, is the logarithm of the moment generating function. Now,
consider the function ¢, () := log(BC,,2) + 2°A From (6.4.1), we deduce

n

YA, = sup(At — ¢n(A)) =: ¢, (1) (6.4.3)
A>0

Furthermore, in ldel Barrio and Loubes| [2019] it is shown that if P and @ have finite moments
of order 4 + ¢, for some 6 > 0, then C,2 — 0 as n — oo. This means that for n sufficiently
big, ¢,(0) < 0 and ¢} is a nonnegative function. The convexity of the exponential and Jensen’s
inequality imply ¢, (A) > () > AEA,,. Hence, for A < 0, we have A\t — ¢, (\) < 0 whenever
t > EA,,. Consequently, we can extend the supremum over all A € R both in (6.4.2)) and (6.4.3).
For each n > 0, the function ¢, is continuously differentiable and

dAt —¢n(N) _ d 2024, 4\
o = (M —log(BCyp) = = =) =t - ——.

The optimizing value of X is A\} = ﬁ and, as a result,

nt? nt?  nt?
w(t) = — —log(B —— = — —log(B .
Finally, we conclude since from Chernoff’s inequality (see details in [Boucheron et al.| [2013]) we
have that for every t > 0,

* « nt?
P(An 2 1) < exp(—4, (1)) < exp(=¢;, (1)) = BCnzexp(—o—).
O
Proof of Corollary We assume that G~! is Hélder-continuous with exponent 0 < p < 1
and constant L > 0. Moreover, we write F), for the empirical distribution function on Xy,..., X,

and ol (z) = \/n(F,(z) — F(z)), 0 < z < 1 for the related empirical process. As previously
shown in the proof of Lemma it holds that

Rn_Rn,ISQ/
R
2

n

(@0la) — pu(e)dPal) =2 [ (eo(a) — pule))dPs(z)

]Rd
[(po(X1) = @n(X1)) = (90(X7) = n(X1))] -

From this inequality we obtain

Cnp = n’E(Ry = Rnp) < % [E (p0(X1) = n(X0)) +E (po(X]) = ¢a(X7))°]

We fix yg € R in the interior of the support of GG. Since G has density, the optimal transport
potential from @ to P, is

unly) = [ NG

which is a convex and piece-wise linear fucntion, and such that

1—1 1

! = X, if — —.
wn(y) (i), 1 n <y< n

Thus, its convex conjugate ¢, = (¥,)* is also a convex and piece-wise linear function with
breakpoints X;),7 = 1,...,n, and slope G_l(%) on each interval (X(i),X(Z-H)) ,i=1,...,n.
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More precisely, for X;) <z < X(;;1) we can write

ZG 1) (X — Xgn) + G (D) — X )

T
X

Now we observe that for any fixed xg in the interior of the support of I, the optimal transport
potential from P to @ is the function ¢g(x f G ))ds, and then we have

en() — po(z) = / ' (G (Fu(s)) — GTYH(F(s)))ds.

X
From this last expression, we obtain
‘ 1 1
lon(z) — @o(x)] < /X |G™(Fn(s)) — G (F(s))lds
(#)
Fi|P
_ 2MLaf]le,

nz
Therefore,

(Xl))Q < CE(HaTITHig)

E (po(X1) = ¢n -

)

and condition (A2) is equivalent to

CE(lof]2)

lim a,log = —09,
n—00 nP
which finally means that a,, should be such that a,, log(n) — 400, as n — co. O
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Chapter 7

Central Limit Theorem and
bootstrap procedure for
Wasserstein’s variations with
application to structural
relationships between distributions

This chapter corresponds to the publication |del Barrio et al.| [2019a].
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Wasserstein barycenters and variance-like criterion using Wasserstein distance are used in
many problems to analyze the homogeneity of collections of distributions and structural rela-
tionships between the observations. We propose the estimation of the quantiles of the empirical
process of the Wasserstein’s variation using a bootstrap procedure. Then we use these results
for statistical inference on a distribution registration model for general deformation functions.
The tests are based on the variance of the distributions with respect to their Wasserstein’s
barycenters for which we prove central limit theorems, including bootstrap versions.
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7.1 Introduction

Analyzing the variability of large data sets is a difficult task when the information conveyed by
the observations possesses an inner geometry far from the Euclidean one. Indeed, deformations
on the data such as translations, scale location models for instance or more general warping
procedures prevent the use of the usual methods in statistics. Looking for a way to measure
structural relationships between data is of high importance. This kind of issues arises when
considering the estimation of probability measures observed with deformations. This situation
occurs often in biology, for example when considering gene expression. There has been over the
last decade a large amount of work to deal with registrations issues. We refer for instance to
Amit et al. [1991], |Allassonniere et al. [2007] or Ramsay and Silverman| [2005] and references
therein. However, when dealing with the registration of warped distributions, the literature
is scarce. We mention here the method provided for biological computational issues known
as quantile normalization in Bolstad et al|[2003], Gallon et al.| [2013] and references therein.
Recently, using optimal transport methodologies, comparisons of distributions have been studied
using a notion of Fréchet mean for distributions, see for instance in |Agueh and Carlier| [2011] or
a notion of depth as in |Chernozhukov et al.| [2017].

A natural frame for applications is given by observations drawn from a deformation model
in the sense that we observe J independent samples of random variables in R, with sample j
following distribution p;, such that

XZ"j:gj(&‘i’j), jZl,...,J, izl...,n,

where (g; ;) are i.i.d. random variables with unknown distribution p. The functions g; belong to
a class G of deformation functions, which models how the distributions j;’s can be warped one to
another by functions in the chosen class. This model is the natural extension of the functional
deformation models studied in the statistical literature for which estimation procedures are
provided in |Gamboa et al.| [2007] while testing issues are tackled in |Collier and Dalalyan| [2015].
In the setup of warped distributions a main goal is the estimation of the warping functions,
possibly as a first step towards registration or alignment of the (estimated) distributions. Of
course, without some constraints on the class G the deformation model is meaningless (we can,
for instance, obtain any distribution on R? as a warped version of a fixed probability having a
density if we take the optimal transportation map as the warping function; see Villani [2009]) and
one has to consider smaller classes of deformation functions to perform a reasonable registration.
In the case of parametric classes estimation of the warping functions is studied in |[Agullo-Antolin
et al.| [2015]. However, estimation/registration procedures may lead to inconsistent conclusions
if the chosen deformation class G is too small. It is, therefore, important to be able to assess
fit to the deformation model given by a particular choice of G and this is the main goal of this
paper. We note that within this framework, statistical inference on deformation models for
distributions has been studied first in Freitag and Munk| [2005]. Here we provide a different
approach which allows to deal with more general deformation classes.

The pioneer works |Czado and Munk [1998] and Munk and Czado| [1998] study the existence
of relationships between distributions F' and G by using a discrepancy measure between the dis-
tributions, A(F, G), built using the Wasserstein distance. The authors consider the assumption
A(F,G) > Ag versus A(F,G) < Ay for Ay a chosen threshold. Thus when the test is rejected,
this implies that there is a statistical evidence that the two distributions are similar with re-
spect to the chosen criterion. In this direction, we define a notion of variation of distributions
using the Wasserstein distance, W,., in the set of probability measures with finite r-th moments,
Fr(R%), r > 1, which generalizes the notion of variance for random distributions over R?. This
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quantity can be defined as

1/r

J
Z :u]7 I

1
W(Ml?'-'aMJ) inf 7
176]-} ]Rd J

which measures the spread of the distributions. Then, to measure closeness to a deformation
model we take a look at the minimal variation among warped distributions, a quantity that
we could consider as a minimal alignment cost. Under some mild conditions a deformation
model holds if and only if this minimal alignment cost is null and we can base our assessment
of a deformation model on this quantity. As in |Czado and Munk [1998] and Munk and Czado
[1998] we provide results (CLT’s and bootstrap versions) that enable to reject that the minimal
alignment cost exceeds some threshold (hence, to conclude that it is below that threshold). Our
results are given in a setup of general, nonparametric classes of warping functions. If, still, one
is interested in the more classical goodness-of-fit problem for the deformation model we also
provide results in a somewhat more restrictive setup.

The paper is organized as follows. The main facts about Wasserstein variation are presented
in Section 2, together with the key idea that fit to a deformation model can be recast in terms of
the minimal Wasserstein variation among warped versions of the distributions. Later, in Section
3 we prove some Lipsichtz bounds for the law of empirical Wasserstein variations as well as of
minimal alignment costs on R?. The implications of these results include that quantiles of the
minimal warped variation criterion can be consistently estimated by some suitable bootstrap
quantiles, which can be approximated by simulation, yielding some consistent tests of fit to
deformation models, provided that the empirical criterion has some regular limiting distribution.
This issue, namely, Central Limit Theorems for empirical minimal Wasserstein variation is
further explored for univariate distributions in Sections 4, covering non parametric deformation
models, and 5, with a sharper analysis for the case of semiparametric deformation models. These
sections propose consistent tests for deformation models in the corresponding setups. Section 6
provides some simulations to assess the quality of the bootstrap procedure. Finally, proofs are
postponed to Section 7.

7.2 Wasserstein variation and deformation models for distribu-
tions

Much recent work has been conducted to measure the spread or the inner structure of a collection
of distributions. In this paper we define a notion of variability which relies on the notion of
Fréchet mean for the space of probability endowed with the Wasserstein metrics, of which we
will recall the definition hereafter. First, for d > 1, consider the set F, (Rd) of probabilities
with finite r-th moment. For p and v in F, (]Rd), we denote by II(u, ) the set of all probability
measures 7 over the product set R x R? with first (resp. second) marginal y (resp. v). The L,
transportation cost between these two measures is defined as

Wiuo) = it /nx—yn dn(z.y).

This transportation cost allows to endow the set . (Rd) with the metric W, (i, v). More details
on Wasserstein distances and their links with optimal transport problems can be found in|Rachev
[1984] or |Villani| [2009] for instance.

145



Within this framework, we can define a global measure of separation of a collection of mea-
sures i, j = 1,...,n, as follows. Given probabilities j1,...,us € Fr(RY) let

. 1 J - 1/r
Vi (1, o5 i) = ne}?fw) (J ;Wr (u;m))
be the Wasserstein r-variation of p1, ..., py or the variance of the p;’s.

The special case r = 2 has been studied in the literature. Existence of a minimizer of
the map n — %Z‘j]:l W3(pj,m) is proved in |Agueh and Carlier| [2011], as well as uniqueness
under some smoothness assumptions. Such a minimizer, up, is called a barycenter or Fréchet
mean of y1,..., puy. Hence, Vo (p1, ..., puy) = (& Z;‘]:1 W2(uj, 115))'/?. Empirical versions of the
barycenter are analyzed in [Boissard et al. [2015] or Le Gouic and Loubes| [2017]. Similar ideas
have also been developed in |Cuturi and Doucet| [2014] or Bigot and Klein [2018§].

This quantity, which is an extension of the variance for probability distributions is a good
candidate to evaluate the concentration of a collection of measures around its Fréchet mean. In
particular, it can be used to measure fit to a distribution deformation model. More precisely,
assume as in the Introduction that we observe J independent i.i.d. samples with sample j,
Jj=1,...,J consisting of i.i.d. observations X; ;, ¢ = 1,...,n with common distribution ;. We
change for later convenience the notation in the Introduction. We assume that G; is a family
(parametric or nonparametric) of invertible warping functions and denote G = Gy X --- X G.
The deformation model assumes then that

there exists (¢7,...¢75) € G and i.i.d. (&;;)1<i<n such that
1<i<J

Xij=(¢})  (ei5) V1<j<J (7.2.1)

Equivalently, the deformation model (7.2.1)) means that there exist (¢},...¢%) € G such that
;(Xij), 1 <j < J,1<i<mn,areall iid. or, if we write u;(p;) for the distribution of
©;(X;;), that there exists (¢7,...¢%) € G such that

p (1) = -+ = pa(ey)- (7.2.2)

We propose to use the Wasserstein variation to measure fit to model (7.2.1)), through the
minimal alignment cost

4(G) = inf VT (), pa(90)) (7.2.3)
(@1,-507)EG

Let us assume that u1(p1),...,05(07), (01,...,05) € G are in F.(R?). If the deformation
model ([7.2.1)) holds then A,(G) = 0. Under the additional mild assumption that the minimum
in (7.2.3) is attained we have that the deformation model can be equivalently formulated as

A-(G)=0 (7.2.4)
and a goodness-of-fit test to the deformation model becomes, formally, a test of
Hy: A (G)=0 wvs. Hg: A (G)>0. (7.2.5)
A testing procedure can be based on the empirical version of A,(G), namely,

Anpr(G) = inf VI (pna(p1), s tna(@s)), (7.2.6)
(P15-00)EG
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where (i, j(¢;) denotes the empirical measure on ¢;(Xi;),...,¢;(Xn; ). We would reject the
deformation model for large values of A, (G).

As noted in |Czado and Munk| [1998] or [Munk and Czado| [1998] the testing problem
can be considered as a mere sanity check for the deformation model, since lack of rejection of
the null does not provide statistical evidence that the deformation model holds. Consequently,
as in the cited references, we will also consider the alternative testing problem

Hy: A(G) > Ao vs. Hy: A(G) < Ao, (7.2.7)

where Ag > 0 is a fixed threshold. With this formulation the test decision of rejecting the null
hypothesis implies that there is statistical evidence that the deformation model is approximately
true. In this case rejection would correspond to small observed values of A, ,(G). In later
sections we provide theoretical results that allow the computation of approximate critical values
and p-values for the testing problems and under suitable assumptions.

7.3 Bootstraping Wasserstein’s variations

We present now some general results on Wasserstein distances that will be applied to estimate
the asymptotic distribution of the minimal alignment cost statistic, A, ,(G), defined in .
In this section, we write £(Z) for the law of any random variable Z. We note the abuse of
notation in the following, in which W, is used both for Wasserstein distance on R and on R,
but this should not cause much confusion.

Our first result shows that the laws of empirical transportation costs are continuous (and
even Lipschitz) functions of the underlying distributions.

Theorem 7.3.1 Set v,v',n probability measures in F, (Rd), Yi,...,Y, iid. random wvectors
with common lawv, Y{,..., Y, ii.d. with law v and write vy, V), for the corresponding empirical
measures. Then

Wi (LOV; (Vi) LV (V) < Wi (v,1).

The deformation assessment criterion introduced in section 2 is basd on the Wasserstein r-

variation of distributions, V.. It is convenient to note that V" (v1, ..., ) can also be expressed
as
Vi(v,...,vy) = inf /T(yl,...,yJ)dﬂ(yl,...,yJ), (7.3.1)
m€ll(vi,...,vy)
where TI(v, ..., vy) denotes the set of probability measures on R? with marginals v1,...,v; and
. J
T(y17 cevy yJ) = MmN, cRd % Zj:l ||yj - Z”T'
Here we are interested in empirical Wasserstein r-variations, namely, the r-variations com-
puted from the empirical measures vy, ; coming from independent samples Vi ;,..., Yy, ; of

ii.d. random variables with distribution v;. Note that in this case problem is a linear
optimization problem for which a minimizer always exists.

As before, we consider the continuity of the law of empirical Wasserstein r-variations with
respect to the underlying probabilities. This is covered in the next result.

Theorem 7.3.2 With the above notation

W;(‘C(VT(VTLLD B VTLJ,J))’ ‘C(VT’(V;M,D B V’;ZJ,J))) < = Z W::(Vj? V;)
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A useful consequence of the above results is that empirical Wasserstein distances or r-variations
can be bootstrapped under rather general conditions. To be more precise, we take in The-

orem V' = v,, the empirical measure on Yi,...,Y, and consider a bootstrap sample
Yi, ..., Y, of iid. (conditionally given Yi,...,Y},) observations with common law v,,. We

will assume that the resampling size m,, satisfies m,, — oo, m, = o(n) and write v}, for the

empirical measure on Yy*,..., Yy and L*(Z) for the conditional law of Z given Y1,...,Y,.
Theorem [7.3.1] now reads
Wi (L5 (Wi (v, Vinps V), LWV (Vi , 7)) < Wi (v, v).

Hence, if W, (vy,v) = Op(1/r,) for some sequence r, > 0 such that ry,,, /r, — 0 as n — oo,
then, using that W, (L(aX), L(aY)) = aW,(L(X), L(Y)) for a > 0, we see that

W (L (i, Wr (W 0))s £ We Wi, 1)) € 220 Wy (v, v) — 0 (7.3.2)

n

in probability.

Asume that, in addition, r, W, (vp,v) — v (v) for a smooth distribution v (v). Then (see,
e.g., Lemma 1 in Janssen and Pauls [2003]) if ¢,(«) denotes the o quantile of the conditional
distribution L£* (77, Wr (v, V))

P (roWr(vn,v) < éu(a)) > o asn — oo. (7.3.3)

We conclude in this case that the quantiles of r, W, (v, ) can be consistently estimated by the
bootstrap quantiles, é,(a), which, in turn, can be approximated through Monte-Carlo simula-
tion.

As an example if d =1 and r = 2, under integrability and smoothness assumptions on v we

1/2
have /nWa(vy, v ( fo POFT@) B*( t) dt) , where f and F~! are the density and the quantile

function of v, see del Barrio et al. [2005], and holds.

For the deformation model , statistical inference is based on A,,,(G), introduced in
@ . Now consider 4], ,.(G), the corresponding version obtained from samples with underlying
distributions ,u;.. Then, a version of Theorem is valid for these minimal alignment costs,
provided the deformation classes are uniformly Lipschitz, namely, under the assumption that

b wp lE@ = e@]
TS PR

) j:17"'7J (7-3.4)

are finite.

Theorem 7.3.3 If L = max(L1,...,L;) < oo, with L;j as in , then

J
WE(E((An r(@)77), £(( 4, (6))7)) < L7 S Wi g ).
j=1
Hence, the Wasserstein distance of the variance of two collections of distributions can be con-
trolled using the distance between the distributions. The main consequence of this fact is that
the minimal alignment cost can be also bootstrapped as soon as a distributional limit theorem
exists for A, ,(G), as in the discussion above. In sections 4 and 5 below we present distribu-
tional results of this type in the one dimensional case. We note that, while general central limit
theorems for the empirical transportation cost are not available in dimension d > 1, some recent
progress has been made in this line, see, e.g., Rippl et al.| [2016] for Gaussian distributions and
Sommerfeld and Munk|[2018], which gives such type of results for distributions on R¢ with finite
support. Further advances in this line would enable to extend the results in the following section
to higher dimension.
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7.4 Assessing fit to non-parametric deformation models

We focus in this and the next sections on the case d = 1 and r = 2 and will simply write A(G) and
Ap(G) (instead of A3(G) and Az, (G)) for the minimal alignment cost and its empirical version,
defined in (7.2.3) and (7.2.6). Otherwise we keep the notation in section 2, with Xy ;,..., Xp ;
iid. r.v.s with law u; being one of the J independent samples. Now G; is a class of invertible
warping functions from R to R which we assume to be increasing. We note that in this case
the barycenter of a set of probabilities u1, ..., ps with distribution functions Fi,..., Fy is the
probability having quantile function Fg 1= %ijl F j_l, see, e.g., /Agueh and Carlier| [2011].

We observe further that p;(¢;) is determined by the quantile function ¢; o Fj_l. We will write

J
_ 1 _
FBI(SO):jZ@jOFjl (7.4.1)
j=1
for the quantile function of the barycenter of u1(¢1),...,pus(@s), while = will denote conver-

gence in distribution.

In order to prove a CLT for A, (G) we need to make assumptions on the integrability and
regularity of the distributions p; as well as on the smoothness of the warping functions. We
consider first the assumptions on the distributions. For each uj;, j = 1,...,J, we denote its
distribution function by F;. We will assume that p; is supported on an (possibly unbounded)
interval in the interior of which F} is C? and FJ’ = f; > 0 and satisfies

Fj(z)(1-F;(=))f} (=)

Slip @) < 00, (7.4.2)
and, further, that for some ¢ > 1
/ QNI BT (7.4.3)
o (FH(E®))
and for some r > 4
E[|X;|"] < cc. (7.4.4)

Assumption is a classical regularity requirement for the use of strong approximations
for the quantile process, as in |Csorgo and Horvath [1993] or [del Barrio et al.| [2005]. Our proof
relies on the use of these techniques. Then and are mild integrability conditions.
If F; has regularly varying tails of order —r (as, for instance, Pareto tails) then both conditions
hold (and also (7.4.2)) as long as r > 4 and 1 < ¢ < 2r/(r +2). Of course the conditions
are fulfilled by distributions with lighter tails such as exponential or Gaussian laws (for any
g€ (1,2)).

Turning to the assumptions on the classes of warping functions, we recall that a uniform
Lipsichtz condition was needed for the approximation bound in Theorem [7.3.3] For the CLT
in this section we need some refinement of that condition, the extent of which will depend on

the integrability exponent ¢ in (7.4.3)), as follows. We set pp = max (qiilﬂ) and define on

1
H; = CYHR) N LP° (X;) the norm HhJ'”Hj = sup |7 (z)| + E[|h; (X;)[*]?0 , and on the product
space Hi X --- X Hy, [|h]ly = Z}'le HhJ'HHj and assume that

Gj C H; is compact for || - |3, and sup |h'(a}}) — h'(x)
heg;

— 0, (7.4.5)

SuPpeg; |zh —x|—0
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and, finally, that for some r > max(4,pp),

E sup |h (X;)]" < oc. (7.4.6)
heg;

We note that ((7.4.6) is a slight strengthening of the uniform moment bound already contained
in (7.4.5) (we could take Do > max( 47,4) in (7.4.5) and (7.4.6) would follow). Our next result

gives a CLT for A,(G) under the assumptions on the distributions and deformation classes
described above. The limit can be simply described in terms of a centered Gaussian process
indexed by the set of minimizers of the variation functional, namely,

U(p) = V5 (u1(e1), - - - pa(es))-

An elementary computation shows that (U'/2(p) — UY?(p))? < J 23 LE(p;(X5) — 5(X;))3,

from which we conclude continuity of U with respect to || - ||5. In particular, the set
r={seg:Ulp) = iU} TAT
»€G: U(p) = nf U(¢) (7.4.7)

is a nonempty compact subset of G.
Theorem 7.4.1 Assume that (B )1< <y are independent Brownian bridges. Set

B;

1
CJ(SO) = 2/0 SO; [e) Fj_l(gpj o Fj_l — Fgl(@))m
J J

and C(p) = %Z}Izl ci(¢), ¢ € G. Then, under assumptions 47.4.21) to 4’7.4.61), C is a centered

Gaussian process on G with trajectories a.s. continuous with respect to || - [[3. Furthermore,
Vn(An(G) — A(G)) = min C(p).

A proof of Theorem is given in the Appendix below. The random variables fol cpg» o

-1 B; —1 —1 . . .
F; fjoiﬁij_l(goj o F; " — Fp (p)) are centered Gaussian, with variance

L inos) = ) G o (5 () B 21

xS @ (F () - Fi () ()dst.
In particular, if U has a unique minimizer the limiting distribution in Theorem is normal.
However, our result works in more generality, even without uniqueness assumptions.

We remark also that although we have focused for simplicity on the case of samples of equal
size, the case of different sample sizes, nj, j = 1,...,J, can also be handled with straightforward
changes. More precisely, let us write A,, . n,(G) for the minimal alignment cost computed from
the empirical distribution of the samples and assume that n; — 400 and

nj

2
—— 5 (y;)° >0,
ny4---4ng ()

then with straightforward changes in our proof we can see that

N1y (Ap,...n,(G) — A(G)) — min C( ), (7.4.8)

(ni4-+ny)’ 1 ot pel
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- g ~
where C(p) = 5 32721 &(p) and &(p) = (M) ¢4 ()-

If we try, as argued in section 2, to base our assessment of fit to the deformation model
(7.2.1) on A, (G), we should note that the limiting distribution in Theorem depends on
the unknown distributions j; and cannot be used for the computation of approximate critical

values or p-values without further adjustments. We show now how this can be done in the case
of the testing problem (7.2.7]), namely, the test of

Hy : AT(g) >Ag vs. H,: Ar(g) < Ay,

for some fixed threshold Ay > 0, through the use of a bootstrap procedure.

: * * .. .
Let us consider bootstrap samples X{ oo X j of i.i.d. observations sampled from p, ;,
the empirical distribution on Xij,..., Xy ;. We write g, . for the empirical measure on
* * 3
X{ - Xy, ; and introduce

A% (G) = inf VE (i, 1(01)s - i, ()
peG

Now, we base our testing procedure on the conditional a-quantiles (given the X; ;’s) of \/m,(A;, (G)—
Ay), which we denote ¢, (a; Ag). Our next result, which follows from Theorems and
shows that the test that rejects Hy when

\/E(An(g) — Ap) < énla;Ap)

is a consistent test of approximate level a for ([7.2.7). We note that the bootstrap quantiles
¢n(a; Ag) can be computed using Monte-Carlo simulation.

Corollary 7.4.2 If m, — oo, and m, = O(\/n), then under assumptions (7.4.9) to (7.4.6)

0 ifAG) > Ay
P(Vi(4a(G) — o) < en(a: A0)) = { @ if A(G) = Ag (7.4.9)
1 ifAG) < Ag

Rejection in the testing problem would result, as noted in section 2, in statistical
evidence supporting that the deformation model holds approximately (hence, that related regis-
tration methods can be safely applied). If, nevertheless, we were interested in gathering statisti-
cal evidence against the deformation model then we should consider the classical goodness-of-fit
problem . Some technical difficulties arise then. Note that if the deformation model holds,
that is, if A(G) = 0, then we have ¢, o ijl = F'(¢p) for each ¢ € T, which implies that the
result of Theorem [7.4.7] becomes

VnAn(G) = 0.

Hence, a nondegenerate limit law for A, (G) in this case requires a more refined analysis, that
we handle in the next section.

7.5 Goodness-of-fit in semiparametric deformation models

In many cases, deformation functions can be made more specific in the sense that they follow a
known shape depending on parameters that may differ for sample to sample. In our approach to
the classical goodness-of-fit problem we consider a parametric model in which ¢; = ¢,
for some finite dimensional parameter 6; that describes the warping effect within a fixed shape.
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Now, that the deformation model holds means that there exist 0* = (07,...,0%) such that for
1<i<n,1<75<J,
Xij = @5;1 (i) -
Hence, from now on, we will consider the following family of deformations, indexed by a param-
eter A € A C RP:
p:AXR — R
(Az) = ea(x)

The classes G; become now {py, : 0; € A}. We denote © = A7 and write A, (0©) and A(O)
instead of A,(G) and A(G). We also use the simplified notation p;(6;) instead of p; (¢g,),
Fp () for Fg (ve,,---,ve,) and similarly for the empirical versions. Our main goal is to prove
a weak limit theorem for A,(©) under the null in (7.2.5). Therefore, throughout this section
we assume that model holds. This means, in particular, that the quantile functions of
the samples satisfy Fj_1 = 9%7;1 o G71, with G the d.f. of the €i,j's. As before, we assume that

the warping functions are invertible and increasing, which now means that, for each A € A, @)
is an invertible, increasing function. It is convenient at this point to introduce the notation

¢j()\a$) = QOA(QDQE}('I))) Jj=1....J (751)

and ¢ for a random variable with the same distribution as the ¢; ;. Note that ¢;(07,z) = x.
Now, under smoothness assumptions on the functions v; that we present in detail below, if
the parameter space is compact then the function

Un(61,...,05) = Vs (1n1(61), - .-, pn,s(60))

admits a minimizer, that we will denote by én, that is

0, € argmin U, (0). (7.5.2)
0O
Of course, since we are assuming that the deformation model holds, we know that 6* is a
minimizer of

U(b,...,00) = Vs (11(61), .., s (07))-

For a closer analysis of the asymptotic behavior of A,,(0) under the deformation model we need
to make the following identifiability assumption

0" belongs to the interior of A and is the unique minimizer of U. (7.5.3)

Note that, equivalently, this means that 6* is the unique zero of U.

As in the case of nonparametric deformation models, we need to impose some conditions on
the class of warping functions and on the distribution of the errors, the ¢; ;. For the former,
we write D or D, for derivative operators with respect to parameters (hence, for instance,
D\, x) = (D19j(\, @), ..., Dpyj(A, x))T is the vector consisting of partial derivatives of 1;
with respect to its first p arguments evaluated at (A, z); D?*¢j(\,x) = (Dy (A, x))y,p is the
hessian matrix for fixed z and so on). ¥%(\,z) and similar notation will stand for derivatives
with respect to x. Then we will assume that for each j = 1,...,J, u,v = 1,...,p, and some
r>4

W;(-,-) is C2, (7.5.4)

E[sup ‘wj(/\,e)‘r] < 00, E[sup ‘Duwj()\,s)m < 00, E[sup ‘Duﬂ,wj()\,s)‘r] < o0, (7.5.5)
AEA AEA AEA
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and

supA€A|xf‘L—x|—>0

Y5(-,-) is bounded on A x R and  sup |¢5(A, ) — i\, ) 0. (7.5.6)
AEA

Turning to the distribution of the errors, we will assume that G is C? with G’(z) = g(x) > 0

on some interval and G e ,
sup () (1 - (2:6))9(@ <o (7.5.7)
@ g9(z)

Additionally (but see the comments after Theorem below) we make the assumption that

Lot —t)
/0 Wdt<oo. (7.5.8)

Finally, before stating the asymptotic result for A, (0), we introduce the p x p matrices

S = / Dai(07. G ()07 G (1))t
Sij =~ / Dua(67, G ()05, G0ty i #
and the (pJ) x (pJ) matrix
Y11 o X
s e (7.5.9)
Xy o Xy
3. is a symmetric, positive semidefinite matrix. To see this, consider x1,...,z; € RP and
a7 = [zT,. . 27] and note that

9 1
- / (3207 )i - Dinia(07. G (1)))?

%

— 2 (@i - Dhi(05, G (1) (- Dby (05, G (1))t
1<j
- J2/ > (i - Dithi(0F, G (1)) — (w5 - Dby (67, G1(1))))?dt > 0.
z<]

In fact, ¥ is positive definite, hence invertible, apart from some degenerate cases, For instance,
if p=1, ¥ is invertible unless all the functions D;y; (0, G~1(t)) are proportional.
We are ready now for the announced distributional limit theorem.

Theorem 7.5.1 Assume that the deformation model holds. Under assumptions to

A
0, — 0*

in probability. If, in addition, ® is invertible, then
Vi, —6%) = 27y,

where Y = (YL, ...,YI)T with

_g ! (p* -1 j(t)
_ J/o DUy (85,67 (1)) gy
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B; = Bj — %Zgﬂ By and (Bj)1<j<J independent Brownian bridges. Furthermore, if
also holds, then o

1< Yy By N2 1.
]:

We have to make a number of comments here. First, we note that, while, for simplicity, we
have formulated Theorem assuming that the deformation model holds, the CLT for 6, still
holds (with some additional assumptions and changes in ®) in the case when the model is false
and 6* is not the true parameter, but the one that gives the best (but imperfect) alignment.
Since our focus here is the assessment of the deformation models we refrain from pursuing this
issue.

Our second comment is about the indentifiability condition . At first sight it can seem
to be too strong to be realistic. Actually, for some deformation models it could happen that
P9 © Py = Posyy for some 6+ € O. In this case, if X;; = <p9_;1 (i) with €; ; i.i.d., then, for any 0,

Xij = gog_*lm (€i4) with & j = pg(e; ;) which are also i.i.d. and, consequently, (0 * 07,...,0 * 0%)
is also a ze]ro of U. This applies, for instance, to location and scale models. A simple fix to
this issue is to select one of the signals as the reference, say the J-th signal, and assume that
0% is known (since it can be, in fact, chosen arbitrarily). The criterion function becomes then

U(bh,...,05-1) = U(b1,...,0,-1,07). One could then make the (more realistic) assumption
that 6* = (67,...,0%_,) is the unique zero of U and base the analysis on U, (61,...,05-1) =

Un(01,...,051, 0j’}) and 9~n = argming Un(é) The results in this section can be adapted almost

verbatim to this setup. In particular, \/n(6, — 0*) = X'V, with Y7 = (v,...,YE ) and
Y= [Xijl1<ij<J—1. Again, the invertibility of ¥ is almost granted. In fact, arguing as above,
we see that and ¥ is positive definite if the functions Dy (0F,G7Y(t)),i=1,...,J — 1, are not
null.

Next, we discuss about the smoothness and integrability conditions on the errors. As before,
is a regularity condition that enables to use strong approximations for the quantile
process. One might be surprised that the moment condition does not show up here, but

in fact it is contained in (7.5.5)) (recall that ¢;(07,z) = x). The integrability condition (7.5.8)

2
is necessary and sufficient for ensuring fol %dt < oo (from which we see that the limiting

random variable in the last claim in Theorem is an a.s. finite random variable) and implies
that

1 2
B R
0

(G=H(1))
with G,, the empirical d.f. on a sample of size n and d.f G. We refer to |del Barrio et al.| [2005]
and |[Samworth and Johnson| [2004] for details. Condition is a strong assumption on the
tails of G and does not include, for instance, normal distributions. On the other hand, under
the less stringent condition

vt (s At —st)?
| | we e < (75:10)

which is satisfied for normal laws, it can be shown that the limit as 6 — 0
/1—5 B(t)? —t(1—1t) ”
5 g?(G7®)

exists in probability and can be expressed as a weighted sum of independent, centered x? ran-
dom variables, see del Barrio et al. [2005] for details. Then, denoting that kind of limits as
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2
f G tl 1t))t dt, under some additional tail conditions (still satisfied by normal laws; these are

condltlons (2.10) and (2.22) to (2.24) in the cited reference) we have

1 B 2 _ 1—
W2 (G, G) — e — / Wt —b),,
0

g*(G=H(1))

with ¢, = f 1=1/n %dt A simple look at the proof of Theorem 5.1 shows that under these
conditions (1nstead of (7.5.8)) we can conclude that

J—1

nAn(O) — Lo, ~ 15 |0 %dt lyTy-ly, (7.5.11)

Our last comment about the assumptions for Theorem concerns the compactness as-
sumption on the parameter space. This may lead in some examples to artificial constraints on
the parameter space. On the other hand, under some conditions (see, e.g., Corollary 3.2.3 in
Van der Vaart and Wellner)) it is possible to prove that the global minimizer of the empirical
criterion lies in a compact neighborhood of the true minimizer. In such cases the conclusion of
Theorem would extend for the unconstrained deformation model. As a toy example con-
sider the case of deformations by changes in scale, with J = 2. As above we fix the parameters
of, say, the first sample, and consider the family of deformations ¢, (x) = ocz. We assume that
the deformation model holds, with the first sample having d f. G and the second 1 _G~! (hence,

ES

is the unique minimizer of U(c)). We obtain that Uy, (o) = ; fo o 2) from which

we see that 6, = ([ Fn_lan_Ql)/( f(Fn_Ql) ) = o* as. and thus the conclusmn of Theorem
remains valid if we take © = (0, 00). To avoid further technicalities we prefer to think of this as
a different problem that should be handled in an ad hoc way for each particular example.
Turning back to our goal of assessment of the deformation model based on the ob-
served value of A,(0), Theorem gives some insight into the threshold levels for rejection
of the null in the testing problem . However, the limiting distribution still depends on
unknown objects and designing a tractable test requires to estimate the quantiles of this distri-

bution. This is the goal of our next result.

We consider bootstrap samples X} RTRRRED. &4 * i of 1.i.d. observations sampled from p7, write
Hom,, ; for the empirical measure on X7/, .. X;Z j and A%, (©) for the minimal alignment cost
computed from the bootstrap samples. We also write cn( ) for the conditional « quantile of

mp Ay, (©) given the Xj ;.

Corollary 7.5.2 Assume that the semiparametric deformation models holds. If m,, — oo, and
my/n — 0, then under assumptions (7.5.5) to (7.5.8) we have that

P (nA,(0) > é (1 —a)) — a. (7.5.12)

Corollary [7.5.2 show that the test that rejects Ho : A(©) = 0 (which, as disussed in section 2, is
true if and only if the deformation model holds) when nA,(©) > ¢é,(1 — «) is asymptotically of
level a.. It is easy to check that the test is consistent against alternatives that satisfy regularity
and integrability assumptions as in Theorem [7.5.1
The key to Corollaryis that under the assumptions a bootstrap CLT holds for m, Ay, (©).

As with Theorem the integrability conditions on the errors can be relaxed and still have
a bootstrap CLT. That would be the case if we replace (7.5.12) by (7.5.10) and the additional
conditions mentioned above under which holds. Then, the further assumption that the
errors have a log-concave distribution and m, = O(n”) for some p € (0,1) would be enough to
prove a bootstrap CLT, see the comments after the proof of Corollary in the Appendix.
In particular, a bootstrap CLT holds for Gaussian tails.
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7.6 Simulations

We present in this section different simulations in order to study the goodness of fit test we
propose in this paper. In this framework, we consider the scale-location family of deformations,
i.e 0" = (p*,0") and observations such that X; ; = W + oj€ij, for different distributions of € ;.

7.6.1 Construction of an a-level test

First, we aim at studying the bootstrap procedure which enables to build the test. For this we
choose a level @ = 0.05 and aim at estimating the quantile of the asymptotic distribution using
a bootstrap method.

Let B be the number of bootstrap samples, we proceed as follows to design a bootstrapped
goodness of fit test.

1. Forallb=1,...,B,

1.1. For j =1,...,J, create a bootstrap sample Xibj, .. X* with fixed size 0 < m < n,

m,j?
of the first observation sample X1 ;,..., X, ;
2
1.2. Compute (u?)” = inf U;b(0).
mpute (uz)” = inf U7(0)

2. Sort the values ( *b) b=1,...,B,

(u*m(1)>2 <...< (ufrgB))Q,

then take ¢, (1 —a) = upBU=e)

tatisti f U,(6).
salslcégg n(0)

, the 1 — a quantile of the bootstrap distribution of the

3. The test rejects the null hypothesis if nu2 > m <un§ (1= a))) .

Once the test is built, we first ensure that the level of the test has been correctly achieved.
For this we repeat the test for large K (here K = 1000) to estimate the probability of rejection
of the test as

Pr K Z (nunk>m u*<B(1 Dm) )

We present in Table these results for different J and several choices for m = m,, depending
on the size of the initial sample.

As expected, the bootstrap method enables to build a test of level a provided the bootstrap
sample is large enough. The required size of the sample increases with the number of different
distributions J to be tested.

7.6.2 Power of the test procedure

Then we compute the power of previous test for several situations. In particular we must
compute the probability of rejection of the null hypothesis under H,. Hence for several number
of distributions, we test the assumption that the model comes from a warping frame, when
a different distribution called ~ is observed. The simulations are conducted for the following
choices of the number of sample and for the different distributions;
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e J=2: N(0,1) and ~;
o J=3:N(0,1), NV (5,2?) and v;
e J=5:N(0,1), N (52%), N (3,1), N (1.5,3%) and ;

e J=10: N(0,1), N (5,2?), N (3,1), N (1.5,3%), N (7,4%), N (2.5,0.5%), N (1,1.5?),
N (4,3%), NV (6,5%) and ~;

and also for different choices of ~.
e Exponential distribution with parameter 1;
e Double exponential with parameter 1 (a.k.a Laplace distribution);
e Student distribution 7'(3) and T'(4) with 3 and 4 degrees of freedom.

All simulations are done for different sample sizes and different bootstrap samples, n and
my,. The results are presented in Tables and respectively.

We observe that the power of the test is very high in most of the cases. For the Exponential
distribution, the power is close to 1. Indeed this distribution is very different from the Gaussian
distribution since it is not symmetric, resulting easy to discard the null assumption. The three
other distributions do share with the Gaussian the property of symmetry, and yet the power
of the test is also close to one, increasing with the number of observations. Finally, for the
Student’s distribution, the higher the number of degrees of freedom, the more similar it becomes
to a Gaussian distribution. This explains why it becomes more difficult for the test to reject the
null hypothesis when using a Student with 4 degrees of freedom rather than with 3.

7.7 Appendix to Chapter

7.7.1 Proofs of section
Proof of Theorem We set T,, = Wy(vn,n) and T), = W, (v},,n) and II,,(n) for the set

of probabilities on {1,...,n} x R? with first marginal equal to the discrete uniform distribution
on {1,...,n} and second marginal equal to n and note that we have T, = inf ¢, ;) a(m) if we
denote

1/r
a(m) = (/ 1y — zH’"dﬁ(i,z)) .
{1,....,n} xR

We define similarly a’(7) from the Y; sample to get T, = inf ¢y, ;) /(7). But then, using the
inequality [[|af| — [[b[l] < [la —bl|,

1/r n

1
a(m) = d(m)] < / YZ-—Yi'waz',z == Y;;—Yi’r
la(m) — a' ()] ({1 77777 n}dell |"dm( )) (n;H ||>

This implies that

1/r

1 n
To = Tal" < =3 IV =YHII™
i=1
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If we take now (Y,Y”) to be an optimal coupling of v and v/, so that E[|Y —Y'||"] =
Wr(v,V') and (Y1,YY),..., (Y, Y,) tobeiid. copies of (Y,Y”) we see that for the corresponding
realizations of T, and T, we have

E (T, - T, ZE 1Y = Y/|I"] = Wr (v, /)"

But this shows that W,.(L(T},), L(T},)) < W, (v,V'), as claimed.
O

Proof of Theorem We write Vi = Vi(Uny1,- ooy Vnyg) and Vi, = Vi(vy, 4,0y 7).
We note that

Vio= inf T(i,...,i5)dm(iy,...,1
rn ﬂ'EH(Ul,...,UJ)/ ( 1, ’ J) ( 1, ; J)7
where Uj is the discrete uniform distribution on {1,...,n;} and
N _ T
T(Zlu"'v _gelllRI}l ZH}/ZJh] Z” :
We write T"(iy,...,is) for the equivalent function computed from the YZ’ ;’s. Hence we have
T (i1, ..., i)Y =Ty, ... i)Y < Z”Yw vl

which implies

(/T(“"“’”)dmh-'-ﬂlf))l/r - </T(i1,...,iJ)dW(il,...,iJ)>1/T
g

J nj
1 : _ 1 1
- Z/ ¥ = Yi gl dmCin, i) = 5 3 (n > 1Y - Y;,jw>
j=1 i=1

r

K.M—‘

J
Z HY;J,] - Y;‘/j,jnrdﬂ-(ib SRR ZJ)
7j=1

<

So,
1 (1 &
Vo=Vl 53 (30, 3 )
j=1 7 i=1

If we take (Y}, Y]) to be an optimal coupling of v; and v} and (Y7,5,Y7;),.. -, (Ynm,Y?{N) to be

VR
i.i.d. copies of (Yj,Y]), for j =1,...,J, then we obtain
1 nj J
[ V] < 53 (320 1) = § et
j=1 =1 i=1

The conclusion follows.

Proof of Theorem We argue as in the proof of Theorem [7.3.2] and write

Ay (G) = inf [ inf /T(cp;il,...,iJ)dﬂ'(il,...,iJ)] ,

peG well(Uy,...,Uy)
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where T(g;i1,...,i7) = minyeg + Z;-Izl 1Z:;.5(wj) —yll". We write T'(p; 1, ..., i) for the same
function computed on the Z; ;(¢;)’s. Now, from the fact [|Z; ;(¢;) — Z] ; (o) |I” < L"|| X35 — X, 51"
we see that

J
. - ; ) 1
IT(501, -y ig)" =T (pyin,. .., in)V|" < L' 2 X5 = Xi I

j=1
and, as a consequence, that
Velpna(@1)s i, g (02)) = Vil 1 (01) - i s (2) Z Z Xizg = X4l
j= zj—l
which implies
I
"
(A @) = (45, (@)1 < =57 (£ 02 Xy — X401
j=1

If, as in the proof of Theorem we assume that (X”,X ), i =1,...,n; are i.i.d. copies
of an optimal coupling for p; and ,u;-, with different samples 1ndependent from each other we
obtain that

E [[(40r ()" — (A, @)1 ] < & Zwr (g 115)-

7.7.2 Proofs of sections and

We provide here proofs of the main results in sections 4 and 5. Our approach relies on the
consideration the processes

J
Cnlp) = Vn(Un(p) = U(p)) and C(p Z ), ¢€g, (7.7.1)

K.M—‘

where Up (@) = V& (tn,1(01), - -+ tin, g (9)), Up) = Vi (pi(er), - miles)),
! / 1 1 1 Bj

() =2 o F g0 F7Y — F B -

o) =2 e oo B - 0

and (Bj), ., ; are independent standard Brownian bridges on (0,1). We prove below that the
empirical deformation cost process C,, converges weakly to C' as random elements in L>(G), the
space of bounded, real valued functions on G. Theorem will follow as a corollary of this
result.

We will make frequent use in this section of the following technical Lemma, which follows
easily from the triangle and Holder’s inequalities. We omit the proof.

Lemma 7.7.1 Under Assumption
1
. n _ 1 _
i) sup,, eg, vV fo (pj o F; Hh2 50, SUpy, eg; \/ﬁfl_%(cpj o F; h2 5o0.
1
.. = — 1 _ . 7.
i) sup, cg, Vv fo (g0 le)Q — 0, sup,, g, \/ﬁfl_%(goj o Fnjl)2 — 0 4n probability.
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i11) If moreover holds then for all 1 < j k < J
Lyt —t
/ # sup ‘cpj(Fj_l(t))’dt < 0o (7.7.2)
o Su(Fy (1) pseq;

Theorem 7.7.2 Under assumptions to(74.6) Cp, and C have a.s. trajectories in L>(G).

Furthermore, C is a tight Gaussian random elemnt and C,, converges weakly to C' in L*°(G).

. - - J ol
Proof. We start noting that U, (¢ ) 3 Z] 1 fo (p]oF leg(cp))2 and U(p) = & Sz Jo (pjo
_ _ . _ _ J _
Fj - FBI(‘P))Q with Fn,}B(‘P) =7 Zj:l ¥j ° Fn,;v FBl(SO) = %Z‘:1 ¥j ° Fj '. Now, "
implies that SUP,, g, fol(apj o Fj_l)2 < 00. Similarly, assumption 1) implies

K;:= sup |’ ()] < oo,
w;€G;j,x€(cj,dy)
Noting that fol gojoF_1 2 < 2f01 <p]oF_1)2+2K2 fol _I—F._l)z we see that SUP,. g, fol (pjo

F, J) < oo a.s. and, with little additional effort, conclude that C), has a.s. bounded trajectories.
~1

1 71
.7 f] OFj

On the other hand, writing d; 1 (¢ fo goj QE © Fk we see that for p,p € G

1
By,
dix(0) — di(p)] < 2, — \/ 0 Fy
4i(0) = dir(P)| < 115 = Pilloc| | oo b
b 1 By -1 -1
‘ . PjOFj W(‘PkOFk — pr o Fy, )‘
k
S ||S0j pj‘|00 sup

1
B
Pr€EGE ' JO fkoFk

1/‘] 1 7 _ 1/1’0
+(sup ]pj (fo {fkoF ’ ) (fo ok o F, 1 — pro F, 1|p0)

cj.d;)

But using iii) of Lemma [7.7.1] m

1—t
A =t I [ s ot @y < .

Hence, almost surely, sup%g ’ fol %gaj o Fj_l’ < 0o. Furthermore, from assumption ([7.4.3)),
3%

sup
PrEGK

we get that, a.s. fo (

x F ) < oo and thus, for some a.s. finite random variable T,

|dj i (¢) = djx (P)| < Tlle = pllg

for ¢, p € G. From this conclude that the trajectories of C' are a.s. bounded, uniformly
continuous functions on G, endowed with the norm ||-||4 introduced in (7.4.5). In particular, C
is a tight random element in L*°(G), see, e.g., p. 39-41 in Van der Vaart and Wellner.

From this point we pay attention to the quantile processes, namely,

png(t) = Vufi(FT O () — F7U(t), 0<t<1, j=1,..,J

A trivial adaptation of Theorem 2.1, p. 381 in |Csorgd and Horvath [1993] shows that, un-
der (7.4.2), there exist, on a rich enough probability space, independent versions of p, ; and

independent families of Brownian bridges {B,, j}n=100, j = 1,...,J, satisfying
1/2—v ‘Pn,j(t) - Bn,j(t” _ { Op(log(n)) if v =0
n su > = . 7.7.3
1/n§tglf—1/n (t(1—1)) Op(1)if0<v <1/2 ( )
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We work, without loss of generality, with these versions of p, ; and B, j. We show now that

sup |Cp () — C’n(w)‘ — 0 in probability (7.7.4)
peG

. A 1 — — _
with Co() = § Soy oy (9) and eas(p) =23 ¢ F (g0 Fy' = Fi () 5. To check

this we note that some simple algebra yields C),(¢) = %Z}le Cnj + % Z‘jjzl T With

1
A /0 (g5 0 Frl — g0 F) — (Frk(0) — Fi(9)]%

From the elementary inequality (a1 + -+ +ay)? < Ja? + -+ + Ja% we get that

J J 1 J 1
1<~ aym . L, 4y L
D g <D /0 (pjoFyj —pjoFy 1) < JEZKJ/O (Foj = F7)%
: iz j=1

with K := supy, g, ze(c;.d;) |95(%)| < 00, as above. Now we can use (7.4.4) and argue as in the

proof of Theorem 2 in |Alvarez-Esteban et al. [2008] to conclude that \/n fOI(Fn_’ jl — Fj_l)2 — 0
in probability and, as a consequence, that

J
1
sup |Cp(p) — i Z nj (@) ‘ — 0 in probability. (7.7.5)

@Gg ]:1

On the other hand, the Cauchy-Schwarz’s inequality shows that

1

- 2
n(/o (pjoFyi—wjoF; ) (pjoFt - Fél(@))
1 1
< x/ﬁ/o (pjoF, —wjon_l)Qx/ﬁ/O (pjo F; ' = Fg'(p))

and using i) and ii) of Lemma the two factors converge to zero uniformly in . A similar
argument works for the upper tail and allows to conclude that we can replace in (7.7.5)) ¢, ;(¢)

with énj(p) == 2y/n fl (pjoF,;—wpjo Fj_l)(cpj o Fj_1 — F5'(¢)). Moreover,
sup\/ #0780 B - P (o) < / | e s (oo 5 = 5 o)
peG fj fj

and by iii) of Lemma and Cauchy-Schwarz’s inequality

1
E[/O
1 Bn,j

1
Hence, sup,¢g ‘ Jo" ¢lio F ijijfl (pjo Fj_1 - Fgl(w))‘ — 0 in probability and similarly for the

By, j _ n o /t(1—1t) _ _
] supleser 5] < [ s sl ) F5 @l o

right tail. Now, for every t € (0,1) we have
pj 0 Fp () — i 0 Fy 1 (t) = @ (Knp, (8) (Fyj (8) = Fy (1) (7.7.6)
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for some K, (t) between Fn_]l(t) and F~1(t). Therefore, (recall (7.7.6)), to prove |l it

suffices to show that

-, B, ; - )
oet ’/i #ith l“”wf%%@ (1)~ Fj () ()t (777
o e O ey B

in probability. To check it we take v € (0,1/2) in ([7.7.3]) to get

/lpn,y() Bn,; (1)
1 Fi(F7H(®)

1 -3 t(1—1))”
<n'~10p(1) | M?&E\% C0) - Fpl@)wldeso(1.78)

sup |03 (F71(t) = Fig' () (t) |dt

n

in probability (using dominated convergence and iii) of Lemma [7.7.1)). We observe next that,

for each ¢ € (0,1), sup, g, |Kn,¢j (t) — F{l(t)| — 0 a.s., since Ky ,,(t) lies between Fﬁl( t)

and F‘l(t). Therefore, using (|7 we see that sup%eg] |0 (Hn,; (1) — @ (F L) = 0 as.

while, on the other hand, sup,, g, ]goj( n; (1) — @5 (F (t))| < 2K;. But then, by dominated
convergence we get that

E| sup [¢}(Kn, (1) = ¢(F (0)2] = 0,
©»;€G;

. V-t - - .
Since by iii) of Lemma [7.7.1| we have that ¢ — ﬁl(t)))supweg |¢j(Fj L)) — FBl(SO)(t)| is

integrable we conclude that

=a (- Bn,;(t — —
EZQE/; (B, (1)) — 0 (F; 1<t>>rwm<fy 1)) — Fj (o) ()|t

tends to 0 as n — oo and, consequently,

= ! Br;(t - —
aup / (B, (1)) — O (F: 1<t>>rwm<@ 1)) — Fj (o))t

Vamshes in probability. Combining this fact with ([7.7.8} - we prove and, as a consequence,
. Finally, observe that for all n > 1, C' has the same law as C’ ThlS completes the proof.
O

Proof of Theorem From Skohorod Theorem (see, e.g., Theorem 1.10.4 in [Van der
Vaart and Wellner)) we know that there exists on some probability space versions of C), and C
for which convergence of C,, to C holds almost surely. From now on, we place us on this space
and observe that

V(A (G) — A(G)) < nilllf Up — \/ﬁirllfU = inf Cy (). (7.7.9)
pel

On the other hand, if we consider the (a.s.) compact set I,y = {p € G : U(p) < infgU +
% |Cnllo}s then, if ¢ ¢ Ty, Uy () > infgU + ﬁ |Crlls » while if ¢ € T', then, U, (¢) <
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infg U + ﬁ |Cnllo- Thus, necessarily, infg U, = infp, U,, = infp, (U, — U + U) > infr, (U, —
U) +infr, U = infr, (U, — U) + infr U. Together with (7.7.9) this entails

inf Cn(p) < Vn(An(9) — A(G)) < inf Cn(p) (7.7.10)

pely

Note that for the versions that we are considering ||C;, — C|loc — 0 a.s.. In particular, this
implies that infr C,, — infr C a.s.. Hence, the proof will be complete if we show that a.s.

inf C,, — inf C. (7.7.11)
T'n r

To check this last point, consider a sequence ¢, € I',, such that C,(¢,) < infr, C, + % By
compactness of G, taking subsequences if necessary, ¢, — o for some ¢y € G. Continuity
of U yields U(p,) — U(po) and as a consequence, that U(pp) < infg U, that is, ¢ € T a.s..
Furthermore,

|Cl(en) = Clgo)| < [|Cn = Clloe + 1C (n) — C (¢0)| — 0.

This shows that
lim inf illlf Cpn > C(po) = illlfc (7.7.12)

and yields (|7.7.11)). This completes the proof.
O

Proof of Corollary In Theorem take p; = pp ;. Then, writing £* for the
conditional law given the X; ;, the result of Theorem reads

J
W3(L((Am, (G))2), L (A}, (9))?)) Z W3 (1 fim,j)

with L = sup,eg Hcp;H < oo. Since W,(L(aX + b),L(aY + b)) = aW,(L(X),L(Y)) for
a>0,b€R, the last bo%ond gives

WL (VI (A, (D)1 = (A(G))'2)), £ (Vimn (A7, (9D = (A(9))'72)))
J
< Lﬂ%; ; NDLZATTNY

As noted in the proof of Theorem j7.4.1|, the assumptions imply that /W3 (u;, pn ;) vanishes
in probability. Also, Theorem [7.4.1] and the delta method yield that

1

Vi (A, (G)Y? = (A(G)V?) — A2

with ~ the limiting law there, which, combined to the above bound, shows that

1

Vi (45, 0)'? = (AG)'?) = Sy

in probability. A further use of the delta method yields

Vimn (4, (G) = A(G)) =~

in probability. The result follows now from Lemma 1 in |[Janssen and Pauls [2003]. O
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Proof of Theorem We assume for simplicity that p = 1. The general case follows with
straightforward changes. Let us observe that

1 1
Uu0) = 33 [ 30062 = § S0, G 1)
j=1

with G, j the empirical d.f. on the am-’s (which areii.d. G). A similar expression, replacing Gy, ;
Wlth G is valid for U(0). Then 6) implies that supy |Upn(68) — U ()| — 0, from which recall
it follows that 6,, — 6* in probablhty Note that the second part in Assumption (7
is a techmcal assumption that ensures that, when considering a Taylor expansion in the 1ntegral
of U,(#), the remainder term in @ZJ;()\,H;JI) - @ZJ;()\, G;l) for any H,Zjl lying between G;j- and
G;l (obtained through a Taylor expansion) goes uniformly to zero.

From we have that U, is a C? function whose derivatives can be computed by differ-

entiation under the integral sign. This implies that
2 (! _ _ _
D;Uy, (0) = J/o D05, G ) (w505, G h) = 3 010k (0k, G, ),

2 [l _ _
D, Un(0) = — 7 /0 Dby (0, Gy 1) Dog(0q. G t), P # 4 (7.7.13)

and

2 ! _ _ _
DPvPUn(Q) = j /0 Dpr(epa Gn,;)(w](eﬁ Gn;) - % Zi:lwk’ (ekv Gn}g))

_ 1
e RN

Usmg also we obtain similar expressions for the derivatives of U(0), replacing everywhere
Gt o With G We write DU, (0) = (D;jUn(0))1<j<g, DU(0) = (D;U(0))1<j<s for the gradients
and X,(0) = [ngUn(@)]]_Spggj, X(0) = [Dp,qU(8)]1<p,g<sfor the Hessians of U,, and U. Note
that X* = ¥(0*) is assumed to be invertible.

We write now p,, ; for the quantile process based on the ¢; ;’s. Observe that ensures
that we can assume, without loss of generality, that there exist independent Brownian bridges,
B,, j, satisfying . Now, recalling that 1;(07, x) = x we see that

J
* PnJ( ) — % > k=1 Prk(t)

nD;Uyn(0%) = / D dt. 7.7.14

Now, using ([7.5.5)) and arguing as in the proof of Theorem we conclude that
— Pn, k B, k(t)
D (6 L dt / Da; (6 1) ——_dt| — 0
Pt a0 et (05 GO G )
in probability and, consequently,
Buj(t) = 5 ity Bua(t)
VnD;U, (0%) /D 1 S k=1 TR gt — 0 7.7.15

in probability. B
A further Taylor expansion of D;U, around 6* shows that for some 9? between 6,, and 0*

we have
D;Un(6n) = DiUn(6%) + (Dy;Un(67), - .., D3;Un(67)) - (6 — 6%)
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and because 6, is a zero of DU, we obtain

—D;U,(0%) = (D1;Un(07), ..., DyjUn(07)) - (6, — 07).

Writing %, for the J x.J matrix whose J-th row equals (DljUn(HN;Z), ooy DyUn( ?)), ji=1,...,J,
we can rewrite the last expansion as

—/nDU,(0*) = S,v/n(0,, — 6%). (7.7.16)

Now, recalling ([7.7.13]), assumptions ([7.5.4)) and 1} yield that S, & X* = ¥(0*) in prob-
ability. As a consequence, ([7.7.16]) and (7.7.15)) together with Slutsky’s Theorem complete the

proof of the second claim. ) A
Finally, for the proof of the last claim, since DU, (6,) = 0, a Taylor expansion around 6,
shows that

1

RO (67) = nUn(0n) = 5 (VL0 — 0%))'S(00) (VB — 07)) (7.7.17)

for some 6,, between 6,, and 6*. Arguing as above we see that E(én) — * in probability. Hence,
to complete the proof if suffices to show that

1 Y (Ba) = 3 Bus(®)?
NGRS oy s> I
p=

in probability. Since

2
U (%) = L - /1 (Pni(®) = 5 3 pus®)”
72 Jo g(GT(0) |
this amounts to proving that
! n,j(t) — Bn 2
[0 Bu0),
0 g(G=Ht

_1 2 _1 Y
/11 " (pn,j(t)—Bn,ét))) dtSOp(l)l/ll z (t(l—tZ;Z Lo

nl—?l/

n

using condition (|7.5.8)) and dominated convergence. From ([7.5.8]) we also see that
1 2
an(t) . .
——>—~——dt — 0 in probability.
/1; 9(G=1(1))?
Condition (7.5.8) implies also that fll_ 1 %dt — 0 in probability, see [Samworth and

Johnson| [2004]. Similar considerations apply to the left tail and complete the proof.
a

Proof of Corollary Writing £* for the conditional law given the X ;’s, we see from
Theorem [7.3.3 that

J
WAL (A, (O))/2), £ (i (A5, (O))2) < L2 5™ mW (11, ),
j=1
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where L = sup, , %(A,m), i denotes the law of the errors, ¢;j, and fi, ; the empirical d.f.

on €1 j,...,&n;. Note that L < oo by (7.5.6), while nW3(u, fin ;) = Op(1) as in the proof of
Theorem Hence, we conclude that

J 1 5
AL, (0) = = /0 (gOG_l) —5YTsTly
J=1

in probability. The conclusion now follows from Lemma 1 in |Janssen and Pauls| [2003].
U
If centering were necessary and we had rather than the limit in Theorem
we could adapt the last argument as follows. If A and B are positive random variables then
E|A—B| < E(AY?—BY2)21.2(EAE(AY/? -~ B'/2)2)1/2 We can apply this bound to (an optimal
coupling of ) my, A, (©) and m,A;, (©). Now if the errors have a log-concave distribution then
nEW3(p, fin ;) = O(logn), see Corollary 6.12 in Bobkov and Ledoux| [2014] and we conclude
that

WL (mnAm, (©) = ¢m,), L (mn Ay, () = ¢, ) = Wi(L(mnAm, (0)), L (mn A7, (O)))

vanishes in probability if m, = O(n”) for some p € (0,1) . As a consequence,

J 132 EB2 1
* - Tyv—1
mp Al (©) = cm, Z/O oG YISy

in probability.

7.7.3 Tables
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Table 7.1 — Simulations under Hy

J ‘ n my =n% m, =n%" m, =1 m, =n" m,=n"% m,=n
| 50 0,144 0,079 0,038 0,046 0,041 0,03
| 100 0,148 0,067 0,07 0,05 0,04 0,033
| 200 0,129 0,085 0,068 0,043 0,037 0,044
2 | 500 0,138 0,089 0,05 0,048 0,035 0,036
| 1000 0,127 0,086 0,063 0,055 0,039 0,032
| 2000 0,129 0,104 0,071 0,048 0,043 0,038
| 5000 0,039 0,042 0,041 0,049 0,043 0,055
| 50 0,295 0,194 0,115 0,078 0,054 0,034
| 100 0,273 0,163 0,089 0,053 0,034 0,039
| 200 0,238 0,15 0,077 0,054 0,047 0,031
3| 500 0,226 0,122 0,07 0,057 0,042 0,029
| 1000 0,217 0,107 0,092 0,069 0,042 0,035
| 2000 0,221 0,128 0,077 0,053 0,043 0,035
| 5000 0,205 0,145 0,082 0,06 0,025 0,047
| 50 0,659 0,428 0,281 0,129 0,111 0,081
| 100 0,583 0,337 0,192 0,104 0,083 0,053
| 200 0,538 0,281 0,159 0,081 0,078 0,029
5] 500 0,449 0,267 0,138 0,063 0,056 0,04
| 1000 0,415 0,238 0,129 0,064 0,051 0,037
| 2000 0,354 0,212 0,115 0,06 0,053 0,032
| 5000 0,322 0,203 0,108 0,057 0,061 0,039
| 50 0,996 0,971 0,873 0,702 0,553 0,456
| 100 0,994 0,902 0,708 0,433 0,33 0,226
| 200 0,958 0,802 0,521 0,247 0,184 0,119
10| 500 0914 0,663 0,388 0,149 0,093 0,063
| 1000 0,864 0,532 0,286 0,119 0,084 0,046
| 2000 0,813 0,473 0,239 0,103 0,063 0,051
| 5000 0,756 0,449 0,217 0,088 0,061 0,041
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Table 7.2 — Power of the test for L (1)

0,6

my, =n>

0,7

My =N

my, = n%8

0,9

my =n

0,95

My =N

My, =n

0,

961

0,

919

0,897

0,

864

0,

829

0,

838

0,

998

0,998

0,

995

0,

994

0,993

1

1

1

_ | = = | =

= | = = =

1
1
1
1

0,

939

0

91

0,

999

0,999

—_ = = = = =] =

_= | = = = = = | =
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Table 7.3 — Power of the test v 4 Laplace (0,1)

J ‘ n my, =n% m, =n%" m, =1 m,=n" m,=n"% m,=n
| 50 0,426 0,33 0,3 0,241 0,223 0,163
| 100 0,658 0,534 0,468 0,365 0,361 0,3
| 200 0,855 0,824 0,751 0,665 0,613 0,602
2 | 500 0,998 0,998 0,993 0,982 0,965 0,962
| 1000 1 1 1 1 0,999 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 0,657 0,533 0,422 0,331 0,282 0,223
| 100 0,831 0,708 0,586 0,514 0,461 0,377
| 200 0,946 0,915 0,841 0,778 0,709 0,661
3 | 500 1 0,998 0,997 0,994 0,989 0,977
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 0,895 0,741 0,633 0,471 0,394 0,333
| 100 0,936 0,874 0,728 0,623 0,519 0,443
| 200 0,994 0,947 0,903 0,847 0,786 0,696
5 | 500 1 1 1 0,996 0,992 0,985
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 1 0,997 0,97 0,875 0,79 0,703
| 100 0,997 0,985 0,949 0,854 0,765 0,643
| 200 1 0,996 0,968 0,924 0,859 0,789
10 | 500 1 1 1 0,996 0,996 0,975
| 1000 1 1 1 1 1 0,999
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
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Table 7.4 — Power of the test v 4 T(3)

I ‘ n my, =n% m, =n0" m, =n%® m, =n" m, =0 m,=n
| 50 0,566 0,445 0,429 0,352 0,321 0,307
| 100 0,775 0,704 0,647 0,576 0,503 0,454
| 200 0,942 0,927 0,882 0,833 0,771 0,697
2 | 500 1 0,997 0,995 0,991 0,989 0,957
| 1000 1 1 1 1 1 0,986
| 2000 1 1 1 1 1 0,999
| 5000 1 1 1 1 1 0,997
| 50 0,745 0,653 0,546 0,46 0,402 0,349
| 100 0,881 0,821 0,738 0,65 0,592 0,563
| 200 0,98 0,958 0,928 0,891 0,873 0,794
3 | 500 1 1 0,999 0,997 0,997 0,978
| 1000 1 1 1 1 1 0,995
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 0,91 0,813 0,682 0,593 0,525 0,45
| 100 0972 0,909 0,822 0,751 0,686 0,621
| 200 0,995 0,984 0,967 0,915 0,887 0,836
5 | 500 1 1 1 0,999 0,999 0,995
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 1 0,997 0,953 0,894 0,827 0,758
| 100 0,999 0,993 0,969 0,907 0,862 0,79
| 200 1 0,998 0,995 0,961 0,941 0,903
10 | 500 1 1 1 1 0,998 0,988
| 1000 1 1 1 1 1 0,998
| 2000 1 1 1 1 1 0,999
| 5000 1 1 1 1 1 1
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Table 7.5 — Power of the test v 4 T(4)

I ‘ n my, =n% m, =n0" m, =n%® m, =n" m, =n"% m,=n
| 50 0,398 0,353 0,292 0,207 0,182 0,183
| 100 0,623 0,52 0,429 0,341 0,29 0,228
| 200 0,826 0,717 0,65 0,589 0,526 0,41
2 | 500 0,989 0,978 0,954 0,928 0,878 0,787
| 1000 1 1 0,999 1 0,984 0,955
| 2000 1 1 1 1 1 0,985
| 5000 1 1 1 1 1 0,993
| 50 0,634 0,495 0,4 0,295 0,263 0,222
| 100 0,756 0,666 0,56 0,465 0,399 0,336
| 200 0914 0,859 0,778 0,663 0,602 0,521
3| 500 0,998 0,989 0,985 0,972 0,928 0,868
| 1000 1 1 1 1 0,999 0,963
| 2000 1 1 1 1 1 0,989
| 5000 1 1 1 1 1 1
| 50 0,851 0,709 0,583 0,426 0,359 0,316
| 100 0919 0,825 0,668 0,546 0,493 0,316
| 200 0,959 0,908 0,842 0,738 0,684 0,578
5 | 500 1 0,997 0,994 0,973 0,934 0,388
| 1000 1 1 1 1 0,999 0,968
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 0,999
| 50 1 0,986 0,941 0,813 0,774 0,653
| 100 1 0,988 0,925 0,806 0,738 0,606
| 200 1 0,991 0,948 0,854 0,813 0,679
10 | 500 1 1 0,998 0,985 0,954 0,386
| 1000 1 1 1 1 0,997 0,949
| 2000 1 1 1 1 1 0,974
| 5000 1 1 1 1 1 0,995
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Concluding remarks and future work

The generalization of the use of machine learning algorithms in the everyday life and the profes-
sional world has been accompanied by concerns about the ethical issues that may arise from the
adoption of these technologies. Even more, the entire population is becoming increasingly aware
of its serious implications. Therefore, the notion of fairness in machine learning has received a
growing interest among the research community over the last years, resulting in a great push for
the emergence of multidisciplinary approaches for assessing and removing the presence of bias in
algorithms. We believe this is crucial in order to guarantee a fair treatment for every subgroup
of population, which will contribute to reduce the growing distrust of machine learning systems
in the society. This thesis aims at studying the recent established area of fair learning through
an optimal transport based approach. We summarize in the following the main contributions
and mention some of the possible lines of future work.

In the first part, we have motivated the fairness problem by presenting a case-study of the
use of machine learning techniques for the prediction of the real and well-known benchmark
Adult Income dataset. In particular, we have provided some comprehensive results from the
analysis of the fairness criterion statistical parity measured through the disparate impact in-
dex, for which we have proposed an ad-hoc construction of confidence intervals. This metric
quantifies the difference between the behaviour of a classification rule applied for two subgroups
of the population, the minority and the majority. Fairness is achieved when the algorithm
behaves in the same way for both groups, resulting in the sensitive variable not playing a sig-
nificant role in the prediction. Importantly, we have noticed that trying to make fair machine
learning models may be a particularly challenging task, especially when the training observa-
tions contain bias. In such cases, standard regulations that promote either the removal of the
sensitive variable or the use of testing techniques appeared as irrelevant when dealing with
fairness of machine learning algorithms. This content is available online in Besse et al.| [2020]
and currently submitted for publication. We have also provided a companion notebook at
https://github.com/XAI-ANITI/Story0fBias/blob/master/Story0fBias.ipynb for repro-
ducibility purposes.

Then we have presented a review of mathematical models designed to handle the issue of
bias in machine learning in a general setting. We have proposed a probabilistic approach to
characterize perfect fairness in terms of the independence between the sensitive attribute and
the outcome of the algorithm, or conditional independence when the true value of the target is
available in the learning data. Within both frameworks, we have defined and then computed
the so-called price for fairness to quantify the real impact of fairness constraint on the behavior
of a machine learning algorithm. We have provided some novel contributions in the analysis
of this price in regression and classification. When perfect fairness requires to pay a too high
price, resulting in poor generalization errors with respect to the unfair case, it is natural not to
impose this strict condition but rather weaken the fairness constraint. A review of the methods
for imposing a level of fairness has been presented, with a classification into pre-, in- or post-
processing methods, depending on the time of application of the fairness conditions. We have
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noticed that, while a substantial part of the models in the first and last families are based
on optimal transport, methods in the in-processing group, which includes the majority of the
contributions in the literature, can be seen as fair risk minimization problems.

Our study provides a better understanding of fair learning, yet many cases remain open to
further research to obtain a full theoretical framework. We have pointed out that we did not
consider in this study many new interesting points of view on fairness that deserve a specific
study, including a causal approach for fairness [Loftus et al., 2018] or using counter-examples
[Kusner et al.l 2017, Black et al., [2020].

In the particular case of classification, we have recasted the links between fairness and pre-
dictability in terms of probability metrics. We have analyzed a repairing methodology based on
mapping conditional distributions to the Wasserstein barycenter, which is included in the first
category mentioned above. As a main contribution, we have justified such approach providing
an upper bound for the price for fairness of the transportation towards the barycenter. Finally,
we have proposed a random repair which yields a tradeoff between minimal information loss and
a certain amount of fairness. This content was presented at the International Conference of Ma-
chine Learning (Los Angeles, june 2019) and it is therefore published in the book of Proceedings
of Machine Learning Research as |Gordaliza et al.| [2019].

The second part of the thesis has been devoted to the asymptotic theory of the empir-
ical transportation cost. First, we have provided a Central Limit Theorem for the Monge-
Kantorovich distance W, (P, Q) between two empirical distributions with different sizes n
and m for observations on R and general cost p > 1. In the case p > 1 our assumptions are
sharp in terms of moments and smoothness. We have also proved results dealing with the choice
of centering constants. With important implications for statistical inference, we have obtained a
consistent estimate of the asymptotic variance which enables to build two sample tests and con-
fidence intervals to certify the similarity between two distributions. These have then been used
to assess a new criterion of dataset fairness in classification. These contributions correspond to
the publication |del Barrio et al.|[2019b]. Additionally, we have provided a moderate deviation
principle for the empirical transportation cost in general dimension.

Finally, Wasserstein barycenters and variance-like criterion in terms of the Wasserstein dis-
tance are used in many problems to analyze the homogeneity of collections of distributions and
structural relationships between the observations. In|del Barrio et al. [2019a] we have proposed
the estimation of the quantiles of the empirical process of the Wasserstein’s variation using a
bootstrap procedure. Then we have used these results for statistical inference on a distribution
registration model for general deformation functions. The tests are based on the variance of the
distributions with respect to their Wasserstein’s barycenters, for which we have proved central
limit theorems, including bootstrap versions. Although a detailed study on the application of
these results to fair learning remains for future work, a rough idea has been outlined in the
introduction of the thesis. Precisely, we have noticed that the problem of repairing the data
could be addressed through a deformation model.

The future work offered by this line of research is as broad as it is unpredictable, given the
dizzying evolution that artificial intelligence, particularly machine learning and data science, is
currently undergoing along with society’s misgivings and concerns.

Admittedly, there is still a long way to go in the deepening in fair learning and its mathe-
matical basis. As mentioned above, some methodologies including the causal approach or the
so-called counterfactual fairness have not been addressed in this thesis, but deserve further
attention. Additionally, it is worth considering the extension of our optimal transport based
approach to fair learning into other methodological contexts such as graphical [Baer et al., 2019,
Gilbert}, 2019] or econometric models.
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Besides this essential theoretical deepening in the mathematical models for fair learning,
the future of this promising area of machine learning must be aware of the fact that the main
motivation for its development actually relies on the wide range of real problems in which fairness
plays an important role. Let us mention at least two areas in which the growing of fair learning is
more than necessary as well as promising. First of all, the industrial application of fair learning
is a clear emerging area particularly characterized, on one hand, by being almost free of ethical
issues and, on the other hand, by the clear economic return that can be expected in fields such
as image processing for computer vision, statistical quality control and so on. Secondly, but
not less important at all, we must mention health applications, especially relevant nowadays
due to the pandemic situation that we are living, caused by COVID-19 disease. It is clear that
the use of contact tracking apps or the governments likely issuing biological passports push the
importance of fairness in machine learning algorithms as a priority to deal with.

Finally, as machine learning is an emerging area in rapid and continuous development, it will
be necessary to analyze the connections between fair learning and other areas of machine learn-
ing, such as transfer learning or domain adaptation. In particular, optimal transport techniques
seem to be apropriate to deal with these interesting problems.

174



Bibliography

P. Adler, C. Falk, S. A. Friedler, T. Nix, G. Rybeck, C. Scheidegger, B. Smith, and S. Venkata-
subramanian. Auditing black-box models for indirect influence. Knowledge and Information
Systems, 54(1):95-122, 2018.

A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach. A reductions approach to
fair classification. arXiv preprint arXiv:1803.02453, 2018.

A. Agarwal, M. Dudik, and Z. S. Wu. Fair regression: Quantitative definitions and reduction-
based algorithms. arXiv preprint arXiv:1905.12843, 2019.

M. Agueh and G. Carlier. Barycenters in the wasserstein space. SIAM Journal on Mathematical
Analysis, 43(2):904-924, 2011.

M. Agull6-Antolin, J. A. Cuesta-Albertos, H. Lescornel, and J.-M. Loubes. A parametric reg-
istration model for warped distributions with wasserstein’s distance. Journal of Multivariate
Analysis, 135:117-130, 2015.

M. Ajtai, J. Komlés, and G. Tusnddy. On optimal matchings. Combinatorica, 4:259-264, 1984.

J. Ali, M. B. Zafar, A. Singla, and K. P. Gummadi. Loss-aversively fair classification. In
Proceedings of the 2019 AAAI/ACM Conference on Al, Ethics, and Society, pages 211-218,
2019.

S. Allassonniere, Y. Amit, and A. Trouvé. Towards a coherent statistical framework for dense
deformable template estimation. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 69(1):3-29, 2007.

J. Altschuler, J. Niles-Weed, and P. Rigollet. Near-linear time approximation algorithms for op-
timal transport via sinkhorn iteration. In Advances in Neural Information Processing Systems,
pages 1964-1974, 2017.

P. Alvarez—Esteban, E. del Barrio, J. Cuesta-Albertos, and C. Matran. Uniqueness and approx-
imate computation of optimal incomplete transportation plans. Ann. I. H. Poincaré-Pr., 47:
358-375, 2011.

P. C. Alvarez-Esteban, E. Del Barrio, J. A. Cuesta-Albertos, and C. Matran. Trimmed com-
parison of distributions. Journal of the American Statistical Association, 103(482):697-704,
2008.

Y. Amit, U. Grenander, and M. Piccioni. Structural image restoration through deformable
templates. Journal of the American Statistical Association, 86(414):376-387, 1991.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias: There’s software used across
the country to predict future criminals. and it’s biased against blacks. ProPublica, 2016.

175



B. R. Baer, D. E. Gilbert, and M. T. Wells. Fairness criteria through the lens of directed acyclic
graphical models. arXiv preprint arXiv:1906.11533, 2019.

M. Ballu, Q. Berthet, and F. Bach. Stochastic optimization for regularized wasserstein estima-
tors. arXiv preprint arXiv:2002.08695, 2020.

S. Barocas and A. D. Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671, 2016.

S. Barocas, M. Hardt, and A. Narayanan. Fairness and Machine Learning. fairmlbook.org,
2019. http://www.fairmlbook.org.

A. Barron. Uniformly powerful goodness of fit tests. Ann. Statist., 17:107-124, 1989.

F. Barthe and N. O’Connell. Matchings and the variance of lipschitz functions. ESAIM: Prob-
ability and Statistics, 13:400—-408, 2009.

Y. Bechavod and K. Ligett. Penalizing Unfairness in Binary Classification. ArXiv e-prints, June
2017.

Y. Bechavod and K. Ligett. Penalizing unfairness in binary classification. arXiv preprint
arXi:1707.00044, 2017.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. Journal of machine learning research, 7(Nov):
2399-2434, 2006.

R. Berk, H. Heidari, S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern, S. Neel, and A. Roth.
A convex framework for fair regression. arXiv preprint arXiv:1706.02409, 2017a.

R. Berk, H. Heidari, S. Jabbari, M. Kearns, and A. Roth. Fairness in criminal justice risk
assessments: the state of the art. arXiv preprint arXiv:1703.09207, 2017b.

R. Berk, H. Heidari, S. Jabbari, M. Kearns, and A. Roth. Fairness in criminal justice risk
assessments: The state of the art. Sociological Methods € Research, page 0049124118782533,
2018.

P. Berthet, J.-C. Fort, and T. Klein. A central limit theorem for wasserstein type distances
between two different laws. arXiv preprint arXiv:1710.09763, 2017.

P. Besse, C. Castets-Renard, A. Garivier, and J.-M. Loubes. L’ia du quotidien peut elle étre
éthique? 2018a.

P. Besse, E. del Barrio, P. Gordaliza, and J.-M. Loubes. Confidence intervals for testing disparate
impact in fair learning. arXiv preprint arXiv:1807.06362, 2018b.

P. Besse, E. del Barrio, P. Gordaliza, J.-M. Loubes, and L. Risser. A survey of bias in ma-
chine learning through the prism of statistical parity for the adult data set. arXiv preprint
arXiv:2003.14263v2, 2020.

A. Beutel, J. Chen, Z. Zhao, and E. H. Chi. Data decisions and theoretical implications when
adversarially learning fair representations. arXiv preprint arXiv:1707.00075, 2017.

D. Biddle. Adverse impact and test validation: A practitioner’s guide to valid and defensible
employment testing. Gower Publishing, Ltd., 2006.

176


http://www.fairmlbook.org

J. Bigot. Statistical data analysis in the wasserstein space. arXiv preprint arXiv:1907.08417,
2019.

J. Bigot and T. Klein. Characterization of barycenters in the wasserstein space by averaging
optimal transport maps. ESAIM: Probability and Statistics, 22:35-57, 2018.

E. Black, S. Yeom, and M. Fredrikson. Fliptest: fairness testing via optimal transport. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pages
111-121, 2020.

S. Bobkov and M. Ledoux. One-dimensional empirical measures, order statistics and kantorovich
transport distances. preprint, 2014.

E. Boissard, T. Le Gouic, and J.-M. Loubes. Distributions template estimate with Wasserstein
metrics. Bernoulli, 21:740-759, 2015.

B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed. A comparison of normalization
methods for high density oligonucleotide array data based on variance and bias. Bioinformat-
ics, 19(2):185-193, 2003.

S. Boucheron, O. Bousquet, G. Lugosi, and P. Massart. Moment inequalities for functions of
independent random variables. The Annals of Probability, 33(2):514-560, 2005.

S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A mnonasymptotic theory
of independence. Oxford University Press, 2013.

O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. In
Advanced lectures on machine learning, pages 169-207. Springer, 2004.

J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. In Conference on fairness, accountability and transparency, pages 77-91,
2018.

T. Calders and S. Verwer. Three naive bayes approaches for discrimination-free classification.
Data Mining and Knowledge Discovery, 21(2):277-292, 2010.

T. Calders, F. Kamiran, and M. Pechenizkiy. Building classifiers with independency constraints.
In 2009 IEEE International Conference on Data Mining Workshops, pages 13—-18. IEEE, 2009.

F. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy, and K. R. Varshney. Optimized pre-
processing for discrimination prevention. In Advances in Neural Information Processing Sys-
tems, pages 3992-4001, 2017.

V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry. Monge—kantorovich depth, quantiles,
ranks and signs. The Annals of Statistics, 45(1):223-256, 2017.

S. Chiappa, R. Jiang, T. Stepleton, A. Pacchiano, H. Jiang, and J. Aslanides. A general ap-
proach to fairness with optimal transport. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

F. Chierichetti, S. Kumar, R.and Lattanzi, and S. Vassilvitskii. Fair clustering through fairlets.
In Advances in Neural Information Processing Systems, pages 5029-5037, 2017.

L. Chizat, G. Peyré, Schmitzer, B., and F. Vialard. Scaling algorithms for unbalanced optimal
transport problems. Math. Comp., 2018.

177



A. Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction
instruments. Big data, 5(2):153-163, 2017.

E. Chzhen, C. Denis, M. Hebiri, L. Oneto, and M. Pontil. Leveraging labeled and unlabeled
data for consistent fair binary classification. In Advances in Neural Information Processing
Systems, pages 12739-12750, 2019.

O. Collier and A. S. Dalalyan. Curve registration by nonparametric goodness-of-fit testing.
Journal of Statistical Planning and Inference, 162:20-42, 2015.

S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq. Algorithmic decision making and
the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 797-806. ACM, 2017.

A. Cotter, M. Gupta, H. Jiang, N. Srebro, K. Sridharan, S. Wang, B. Woodworth, and S. You.
Training well-generalizing classifiers for fairness metrics and other data-dependent constraints.
arXiv preprint arXiw:1807.00028, 2018.

J. S. Cramer. The origins of logistic regression. 2002.

M. Csorgé and L. Horvath. Weighted approximations in probability and statistics. J. Wiley &
Sons, 1993.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
neural information processing systems, pages 2292-2300, 2013.

M. Cuturi and A. Doucet. Fast computation of Wasserstein barycenters. In International
Conference on Machine Learning, pages 685—-693, 2014.

C. Czado and A. Munk. Assessing the similarity of distributions-finite sample performance of
the empirical mallows distance. Journal of Statistical Computation and Simulation, 60(4):
319-346, 1998.

Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and
attacking the saddle point problem in high-dimensional non-convex optimization. In Advances
in neural information processing systems, pages 2933-2941, 2014.

E. del Barrio and J.-M. Loubes. Central limit theorems for empirical transportation cost in
general dimension. The Annals of Probability, 47(2):926-951, 2019.

E. del Barrio, J. A. Cuesta-Albertos, C. Matran, and J. M. Rodriguez-Rodriguez. Tests of
goodness-of-fit based on the lo-Wasserstein distance. Ann. Statist., pages 1230-1239, 1999a.

E. del Barrio, E. Giné, and C. Matran. Central limit theorems for the Wasserstein distance
between the empirical and the true distributions. Ann. Probab., pages 1009-1071, 1999b.

E. del Barrio, E. Giné, F. Utzet, et al. Asymptotics for 12 functionals of the empirical quantile
process, with applications to tests of fit based on weighted Wasserstein distances. Bernoulli,
11:131-189, 2005.

E. del Barrio, P. Gordaliza, H. Lescornel, and J.-M. Loubes. Central limit theorem and bootstrap
procedure for wasserstein’s variations with an application to structural relationships between
distributions. Journal of Multivariate Analysis, 169:341-362, 2019a.

178



E. del Barrio, P. Gordaliza, and J.-M. Loubes. A central limit theorem for lp transportation
cost on the real line with application to fairness assessment in machine learning. Information
and Inference: A Journal of the IMA, 8(4):817-849, 2019b.

E. del Barrio, P. Gordaliza, and J.-M. Loubes. Review of mathematical frameworks for fairness
in machine learning. arXiv preprint arXiv:2005.13755, 2020.

A. Dembo and O. Zeitouni. Large deviations techniques and applications, volume 38 of Appli-
cations of Mathematics (New York). Springer-Verlag, New York, second edition, 1998. ISBN
0-387-98406-2. doi: 10.1007/978-1-4612-5320-4.

W. Dieterich, C. Mendoza, and T. Brennan. Compas risk scales: Demonstrating accuracy equity
and predictive parity. Northpoint Inc, 2016.

V. Dobri¢ and J. E. Yukich. Asymptotics for transportation cost in high dimensions. Journal
of Theoretical Probability, 8:97-118, 1995.

N. A. Doherty, A. V. Kartasheva, and R. D. Phillips. Information effect of entry into credit
ratings market: The case of insurers’ ratings. Journal of Financial Economics, 106(2):308-330,
2012.

M. Donini, L. Oneto, S. Ben-David, J. Shawe-Taylor, and M. Pontil. Empirical Risk Minimiza-
tion under Fairness Constraints. ArXiv e-prints, Feb. 2018.

M. Donini, L. Oneto, S. Ben-David, J. S. Shawe-Taylor, and M. Pontil. Empirical risk mini-
mization under fairness constraints. In Advances in Neural Information Processing Systems,
pages 27912801, 2018.

R. Dudley. Real Analysis and Probability. Cambridge University Press, 2002.

R. M. Dudley. The speed of mean glivenko-cantelli convergence. The Annals of Mathematical
Statistics, 40(1):40-50, 1969.

J. Dunkelau and M. Leuschel. Fairness-aware machine learning.

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through awareness. In
Proceedings of the 3rd innovations in theoretical computer science conference, pages 214-226.

ACM, 2012.

C. Dwork, N. Immorlica, A. T. Kalai, and M. Leiserson. Decoupled classifiers for group-fair
and efficient machine learning. In Conference on Fairness, Accountability and Transparency,
pages 119-133, 2018.

H. Edwards and A. Storkey. Censoring representations with an adversary. In /th International
Conference on Learning Representations, 2015.

H. Edwards and A. Storkey. Towards a neural statistician. arXiv preprint arXiv:1606.02185,
2016.

B. Efron and R. J. Tibshirani. An introduction to the bootstrap. CRC press, 1994.

M. Feldman. Computational Fairness: Preventing Machine-Learned Discrimination. PhD thesis,
2015.

179



S. A. Feldman, M.and Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian. Certi-
fying and removing disparate impact. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 259-268. ACM, 2015.

B. Fish, J. Kun, and A. D. Lelkes. A confidence-based approach for balancing fairness and
accuracy. In Proceedings of the 2016 SIAM International Conference on Data Mining, pages
144-152. STAM, 2016.

J. Fish, B.and Kun and A. D. Lelkes. Fair boosting: a case study. In Workshop on Fairness,
Accountability, and Transparency in Machine Learning. Citeseer, 2015.

A. W. Flores, K. Bechtel, and C. Lowenkamp. False positives, false negatives, and false analyses:
A rejoinder to machine bias: There’s software used across the country to predict future
criminals. and it’s biased against blacks. Fed. Probation, 80:38, 2016.

N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical
measure. Probab. Theory Rel., 162:707-738, 2015.

G. Freitag and A. Munk. On hadamard differentiability in k-sample semiparametric mod-
els—with applications to the assessment of structural relationships. Journal of multivariate
analysis, 94(1):123-158, 2005.

G. Freitag, C. Czado, and A. Munk. A nonparametric test for similarity of marginals-with
applications to the assessment of population bioequivalence. J. Stat. Plan. Infer., 137:697—
711, 2007.

S. A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary, E. P. Hamilton, and
D. Roth. A comparative study of fairness-enhancing interventions in machine learning. In

Proceedings of the conference on fairness, accountability, and transparency, pages 329-338,
2019.

K. Fukuchi, T. Kamishima, and J. Sakuma. Prediction with model-based neutrality. IEICE
TRANSACTIONS on Information and Systems, 98(8):1503-1516, 2015.

S. Gallén, J.-M. Loubes, and E. Maza. Statistical properties of the quantile normalization
method for density curve alignment. Mathematical biosciences, 242(2):129-142, 2013.

F. Gamboa, J.-M. Loubes, and E. Maza. Semi-parametric estimation of shifts. Electronic Journal
of Statistics, 1:616-640, 2007.

A. Ganesh and N. O’Connell. Large and moderate deviations for matching problems and em-
pirical discrepancies. Markov Process. Related Fields, 13(1):85-98, 2007.

A. Gano. Disparate impact and mortgage lending: A beginner’s guide. U. Colo. L. Rewv., 88:
1109, 2017.

A. Genevay, L. Chizat, F. Bach, M. Cuturi, and G. Peyré. Sample complexity of sinkhorn
divergences. arXiv preprint arXiv:1810.02733, 2018.

A. Ghassami, S. Khodadadian, and N. Kiyavash. Fairness in supervised learning: An information
theoretic approach. In 2018 IEEE International Symposium on Information Theory (ISIT),
pages 176-180. IEEE, 2018.

D. E. Gilbert. Luck, fairness and bayesian tensor completion. 2019.

180



G. Goh, A. Cotter, M. Gupta, and M. P. Friedlander. Satisfying real-world goals with dataset
constraints. In Advances in Neural Information Processing Systems, pages 2415-2423, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Advances in neural information processing
systems, pages 2672-2680, 2014.

P. Gordaliza, E. del Barrio, F. Gamboa, and J.-M. Loubes. Obtaining fairness using optimal
transport theory. In International Conference on Machine Learning, pages 2357-2365, 2019.

N. Gozlan and C. Léonard. A large deviation approach to some transportation cost inequalities.
Probability Theory and Related Fields, 139(1-2):235-283, 2007.

N. Gozlan and C. Léonard. Transport inequalities. a survey. arXiv preprint arXiv:1003.3852,
2010.

A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schélkopf. Kernel methods for mea-
suring independence. Journal of Machine Learning Research, 6(Dec):2075-2129, 2005.

P. Hacker and E. Wiedemann. A continuous framework for fairness. CoRR, abs/1712.07924,
2017.

S. Hajian, A. Monreale, D. Pedreschi, J. Domingo-Ferrer, and F. Giannotti. Injecting dis-
crimination and privacy awareness into pattern discovery. In 2012 IEEE 12th International
Conference on Data Mining Workshops, pages 360-369. IEEE, 2012.

M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In Advances
in neural information processing systems, pages 3315-3323, 2016.

U. Hébert-Johnson, M. P. Kim, O. Reingold, and G. N. Rothblum. Calibration for the
(computationally-identifiable) masses. In International Conference on Machine Learning,
pages 1939-1948, 2018.

M. Hurley and J. Adebayo. Credit scoring in the era of big data. Yale JL € Tech., 18:148, 2016.

J.-C. Hiitter and P. Rigollet. Minimax rates of estimation for smooth optimal transport maps.
arXiv preprint arXiw:1905.05828, 2019.

A. Janssen and T. Pauls. How do bootstrap and permutation tests work? The Annals of
statistics, 31(3):768-806, 2003.

R. Jiang, A. Pacchiano, T. Stepleton, H. Jiang, and S. Chiappa. Wasserstein fair classification.
arXiv preprint arXiw:1907.12059, 2019.

J. E. Johndrow and K. Lum. An algorithm for removing sensitive information: application
to race-independent recidivism prediction. The Annals of Applied Statistics, 13(1):189-220,
2019.

F. Kamiran and T. Calders. Classifying without discriminating. In 2009 2nd International
Conference on Computer, Control and Communication, pages 1-6. IEEE, 2009.

F. Kamiran and T. Calders. Classification with no discrimination by preferential sampling. In
Proc. 19th Machine Learning Conf. Belgium and The Netherlands, pages 1-6. Citeseer, 2010.

F. Kamiran and T. Calders. Data preprocessing techniques for classification without discrimi-
nation. Knowledge and Information Systems, 33(1):1-33, 2012.

181



F. Kamiran, T. Calders, and M. Pechenizkiy. Discrimination aware decision tree learning.
In 2010 IEEE International Conference on Data Mining, pages 869-874, Dec 2010. doi:
10.1109/ICDM.2010.50.

F. Kamiran, A. Karim, and X. Zhang. Decision theory for discrimination-aware classification.
In 2012 IEEFE 12th International Conference on Data Mining, pages 924-929. IEEE, 2012.

T. Kamishima, S. Akaho, and J. Sakuma. Fairness-aware learning through regularization ap-
proach. In 2011 IEEE 11th International Conference on Data Mining Workshops, pages
643-650. IEEE, 2011.

T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma. Fairness-aware classifier with prejudice
remover regularizer. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 35-50. Springer, 2012.

I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1991.

M. Kearns, S. Neel, A. Roth, and Z. S. Wu. Preventing fairness gerrymandering: Auditing
and learning for subgroup fairness. In International Conference on Machine Learning, pages
2564-2572, 2018.

N. Kilbertus, M. Rojas-Carulla, G. Parascandolo, M. Hardt, D. Janzing, and B. Schélkopf.
Avoiding discrimination through causal reasoning. In Advances in Neural Information Pro-
cessing Systems, pages 656—666, 2017.

M. P. Kim, A. Ghorbani, and J. Zou. Multiaccuracy: Black-box post-processing for fairness in
classification. In Proceedings of the 2019 AAAI/ACM Conference on Al, Ethics, and Society,
pages 247-254, 2019.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.611},
2013.

J. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent trade-offs in the fair determination
of risk scores. arXiv preprint arXiv:1609.05807, 2016.

A. Komiyama, J.and Takeda, J. Honda, and H. Shimao. Nonconvex optimization for regression
with fairness constraints. In International conference on machine learning, pages 2737-2746,
2018.

M. J. Kusner, J. Loftus, C. Russell, and R. Silva. Counterfactual fairness. In Advances in Neural
Information Processing Systems, pages 4066-4076, 2017.

P. Lahoti, K. P. Gummadi, and G. Weikum. ifair: Learning individually fair data representa-
tions for algorithmic decision making. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 1334-1345. IEEE, 2019.

T. Le Gouic and J.-M. Loubes. Existence and consistency of wasserstein barycenters. Probability
Theory and Related Fields, 168(3-4):901-917, 2017.

T. Le Gouic and J.-M. Loubes. Computing the price for fairness in a regression framework.
arXiv preprint arXiw:2005.11720, 2020.

M. Ledoux. Sur les déviations modérées des sommes de variables aléatoires vectorielles
indépendantes de méme loi. In Annales de 'IHP Probabilités et statistiques, volume 28,
pages 267-280, 1992.

182



Y. L’Horty, M. Bunel, S. Mbaye, P. Petit, and L. du Parquet. Discriminations dans l'acces a la
banque et a I'assurance.

Z. Li, A. Perez-Suay, G. Camps-Valls, and D. Sejdinovic. Kernel dependence regularizers and
gaussian processes with applications to algorithmic fairness. arXiv preprint arXiv:1911.04322,
2019.

J. R. Loftus, C. Russell, M. J. Kusner, and R. Silva. Causal reasoning for algorithmic fairness.
arXiv preprint arXiw:1805.05859, 2018.

K. Lum and J. Johndrow. A statistical framework for fair predictive algorithms. ArXiv e-prints,
Oct. 2016.

D. Madras, E. Creager, T. Pitassi, and R. Zemel. Learning adversarially fair and transferable
representations. arXiv preprint arXiv:1802.06309, 2018a.

D. Madras, T. Pitassi, and R. Zemel. Predict responsibly: improving fairness and accuracy by
learning to defer. In Advances in Neural Information Processing Systems, pages 6147—6157,
2018b.

J. Mary, C. Calauzenes, and N. El Karoui. Fairness-aware learning for continuous attributes
and treatments. In International Conference on Machine Learning, pages 43824391, 2019.

P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab., 18:
1269-1283, 1990.

P. Massart. Concentration inequalities and model selection, volume 6. Springer, 2007.

N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on bias and
fairness in machine learning. arXiv preprint arXiv:1908.09635, 2019.

G. Mena and J. Niles-Weed. Statistical bounds for entropic optimal transport: sample complex-
ity and the central limit theorem. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 4543-4553. Curran Associates, Inc., 2019.

A. K. Menon and R. C. Williamson. The cost of fairness in binary classification. In Conference
on Fairness, Accountability and Transparency, pages 107-118, 2018.

M. Mercat-Bruns. Discrimination at Work. University of California Press, 2016.

Q. Mérigot, A. Delalande, and F. Chazal. Quantitative stability of optimal transport maps and
linearization of the 2-wasserstein space. arXiv preprint arXiv:1910.05954, 2019.

T. M. Mitchell et al. Machine learning, 1997.

G. Montavon, K.-R. Miiller, and M. Cuturi. Wasserstein training of restricted boltzmann ma-
chines. In Advances in Neural Information Processing Systems, pages 3718-3726, 2016.

S. B. Morris and R. E. Lobsenz. Significance tests and confidence intervals for the adverse
impact ratio. Personnel Psychology, 53(1):89-111. doi: 10.1111/j.1744-6570.2000.tb00195.x.

A. Munk and C. Czado. Nonparametric validation of similar distributions and assessment of
goodness of fit. J. R. Stat. Soc. Ser. B Stat. Methodol., 60:223-241, 1998.

183



R. Nabi and I. Shpitser. Fair inference on outcomes. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

H. Narasimhan. Learning with complex loss functions and constraints. In International Confer-
ence on Artificial Intelligence and Statistics, pages 1646-1654, 2018.

J. Niles-Weed and P. Rigollet. Estimation of wasserstein distances in the spiked transport model.
arXiv preprint arXiw:1909.07513, 2019.

A. Noriega-Campero, M. A. Bakker, B. Garcia-Bulle, and A. Pentland. Active fairness in
algorithmic decision making. In Proceedings of the 2019 AAAI/ACM Conference on Al,
Ethics, and Society, pages 77-83, 2019.

V. Noroozi, S. Bahaadini, S. Sheikhi, N. Mojab, and P. S. Yu. Leveraging semi-supervised
learning for fairness using neural networks. arXiv preprint arXiv:1912.13230, 2019.

L. Oneto and S. Chiappa. Fairness in machine learning. In Recent Trends in Learning From
Data, pages 155-196. Springer, 2020.

L. Oneto, M. Donini, A. Elders, and M. Pontil. Taking advantage of multitask learning for fair
classification. In Proceedings of the 2019 AAAI/ACM Conference on Al, Ethics, and Society,
pages 227-237, 2019.

F. Pasquale. The black box society. Harvard University Press, 2015.

D. Pedreschi, S. Ruggieri, and F. Turini. Measuring discrimination in socially-sensitive decision
records. In Proceedings of the 2009 SIAM international conference on data mining, pages
581-592. SIAM, 2009.

D. Pedreschi, S. Ruggieri, and F. Turini. A study of top-k measures for discrimination discovery.
In Proceedings of the 27th Annual ACM Symposium on Applied Computing, pages 126-131.
ACM, 2012.

D. Pedreshi, S. Ruggieri, and F. Turini. Discrimination-aware data mining. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 560-568, 2008.

A. Pérez-Suay, V. Laparra, G. Mateo-Garcia, J. Muiioz-Mari, L. Gémez-Chova, and G. Camps-
Valls. Fair kernel learning. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 339-355. Springer, 2017.

G. Peyré, M. Cuturi, et al. Computational optimal transport. Foundations and Trends® in
Machine Learning, 11(5-6):355-607, 2019.

N. Quadrianto and V. Sharmanska. Recycling privileged learning and distribution matching for
fairness. In Advances in Neural Information Processing Systems, pages 677—688, 2017.

S. T. Rachev. The Monge-Kantorovich problem on mass transfer and its applications in stochas-
tics. Teor. Veroyatnost. i Primenen., 29:625-653, 1984. ISSN 0040-361X.

S. T. Rachev. Probability metrics and the stability of stochastic models, volume 269. John Wiley
& Son Ltd, 1991.

184



M. Raghavan, S. Barocas, J. Kleinberg, and K. Levy. Mitigating bias in algorithmic hiring:
Evaluating claims and practices. In Proceedings of the 2020 Conference on Fairness, Ac-
countability, and Transparency, FAT* ’20, page 469-481, New York, NY, USA, 2020. Associ-
ation for Computing Machinery. ISBN 9781450369367. doi: 10.1145/3351095.3372828. URL
https://doi.org/10.1145/3351095.3372828.

J. Ramsay and B. Silverman. Functional data analysis. Springer series in statistics, pages 10-18,
2005.

I. Redko, A. Habrard, and M. Sebban. Theoretical analysis of domain adaptation with optimal
transport. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 737-753. Springer, 2017.

A. Rezaei, R. Fathony, O. Memarrast, and B. Ziebart. Fairness for robust log loss classification.

D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. arXiv preprint
arXw:1505.05770, 2015.

P. A. Riach and J. Rich. Field experiments of discrimination in the market place. The economic
journal, 112(483):F480-F518, 2002.

M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?” explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1135-1144, 2016.

P. Rigollet and J. Weed. Entropic optimal transport is maximum-likelihood deconvolution.
Comptes Rendus Mathematique, 356(11-12):1228-1235, 2018.

T. Rippl, A. Munk, and A. Sturm. Limit laws of the empirical wasserstein distance: Gaussian
distributions. Journal of Multivariate Analysis, 151:90-109, 2016.

L. Risser, Q. Vincenot, N. Couellan, and J.-M. Loubes. Using wasserstein-2 regularization to
ensure fair decisions with neural-network classifiers. arXiv preprint arXiv:1908.05783, 2019.

R. T. Rockafellar and R. J.-B. Wets. Variational analysis. grundlehren series (fundamental
principles of mathematical sciences), vol. 317, 1998.

A. Romei and S. Ruggieri. A multidisciplinary survey on discrimination analysis. Knowl. Eng.
Rew., 29:582-638, 2014a.

A. Romei and S. Ruggieri. A multidisciplinary survey on discrimination analysis. The Knowledge
Engineering Review, 29(5):5827638, 2014b. doi: 10.1017/S0269888913000039.

R. Rothmann, J. Krieger-Lamina, and W. Peissl. Credit scoring in Osterreich, 07 2014.

R. Samworth and O. Johnson. Convergence of the empirical process in mallows distance, with
an application to bootstrap performance. arXiv preprint math/0406603, 2004.

G. Schiebinger, J. Shu, M. Tabaka, B. Cleary, V. Subramanian, A. Solomon, J. Gould, S. Liu,
S. Lin, P. Berube, et al. Optimal-transport analysis of single-cell gene expression identifies
developmental trajectories in reprogramming. Cell, 176(4):928-943, 2019.

M. Serrurier, J.-M. Loubes, and E. Pauwels. Fairness with wasserstein adversarial networks.
Technical report, working paper or preprint, 2019.

185


https://doi.org/10.1145/3351095.3372828

P. W. Shor. Random planar matching and bin packing. PhD thesis, Massachusetts Institute of
Technology, Department of Mathematics, 1985.

G. Shorack. Probability for Statisticians. Springer, 2000.

Y. R. Shrestha and Y. Yang. Fairness in algorithmic decision-making: Applications in multi-
winner voting, machine learning, and recommender systems. Algorithms, 12(9):199, 2019.

R. B. Siegel. Race-conscious but race-neutral: The constitutionality of disparate impact in the
roberts court. Ala. L. Rev., 66:653, 2014.

C. Simoiu, S. Corbett-Davies, S. Goel, et al. The problem of infra-marginality in outcome tests
for discrimination. The Annals of Applied Statistics, 11(3):1193-1216, 2017.

M. Sommerfeld and A. Munk. Inference for empirical Wasserstein distances on finite spaces. J.
R. Stat. Soc. Ser. B Stat. Methodol., 80:219-238, 2018.

J. Song, P. Kalluri, A. Grover, S. Zhao, and S. Ermon. Learning controllable fair representations.
arXiv preprint arXiw:1812.04218, 2018.

T. Speicher, H. Heidari, N. Grgic-Hlaca, K. P. Gummadi, A. Singla, and M. B. Weller, A.and Za-
far. A unified approach to quantifying algorithmic unfairness: Measuring individual &group
unfairness via inequality indices. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery € Data Mining, pages 22392248, 2018.

D. Steinberg, A. Reid, S. O’Callaghan, F. Lattimore, L. McCalman, and T. Caetano. Fast fair re-
gression via efficient approximations of mutual information. arXiv preprint arXiv:2002.06200,
2020.

C. D. Sutton. Classification and regression trees, bagging, and boosting. Handbook of statistics,
24:303-329, 2005.

M. Talagrand and J. Yukich. The integrability of the square exponential transportation cost.
Ann. App. Probab., pages 1100-1111, 1993.

C. Tameling, M. Sommerfeld, and A. Munk. Empirical optimal transport on countable metric
spaces: Distributional limits and statistical applications. arXiv preprint arXiv:1707.00973,
2017.

Z. Tan, S. Yeom, M. Fredrikson, and A. Talwalkar. Learning fair representations for kernel
models. arXiv preprint arXiw:1906.11813, 2019.

G. Torrisi. Asymptotic analysis of the optimal cost in some transportation problems with random
locations. Stochastic Processes and their Applications, 122(1):305-333, 2012.

A. Van der Vaart and J. Wellner. Weak convergence and empirical processes. 1996.
A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 1998.

S. Verma and J. Rubin. Fairness definitions explained. In 2018 IEEE/ACM International
Workshop on Software Fairness (FairWare), pages 1-7. IEEE, 2018.

C. Villani. Topics in Optimal Transportation. Graduate studies in mathematics. American
Mathematical Soc., 2003. ISBN 9780821833124. URL https://books.google.es/books?
1d=GqRXYFxe010C.

186


https://books.google.es/books?id=GqRXYFxe0l0C
https://books.google.es/books?id=GqRXYFxe0l0C

C. Villani. Optimal transport: old and new. Springer Verlag, 2009.

B. Winrow and C. Schieber. The disparity between disparate treatment and disparate impact:
An analysis of the ricci case. Academy of Legal, Ethical and Regulatory Issues, page 27, 2009.

B. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro. Learning non-discriminatory
predictors. arXiv preprint arXiw:1702.06081, 2017.

L. Wu. Large deviations, moderate deviations and lil for empirical processes. The Annals of
Probability, 22(1):17-27, 1994.

G. Yona and G. Rothblum. Probably approximately metric-fair learning. In International
Conference on Machine Learning, pages 5680-5688, 2018.

M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi. Fairness beyond disparate
treatment & disparate impact: Learning classification without disparate mistreatment. In
Proceedings of the 26th International Conference on World Wide Web, pages 1171-1180. In-
ternational World Wide Web Conferences Steering Committee, 2017a.

M. B. Zafar, I. Valera, M. Rodriguez, K. Gummadi, and A. Weller. From parity to preference-
based notions of fairness in classification. In Advances in Neural Information Processing
Systems, pages 229-239, 2017b.

M. B. Zafar, 1. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness constraints: A
flexible approach for fair classification. Journal of Machine Learning Research, 20(75):1-42,
2019.

M. Zehlike, P. Hacker, and E. Wiedemann. Matching code and law: achieving algorithmic
fairness with optimal transport. Data Mining and Knowledge Discovery, 34(1):163-200, 2020.

R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair representations. In
International Conference on Machine Learning, pages 325-333, 2013.

B. H. Zhang, B. Lemoine, and M. Mitchell. Mitigating unwanted biases with adversarial learning.
In Proceedings of the 2018 AAAI/ACM Conference on Al, Ethics, and Society, pages 335-340,
2018.

X. Zhang and M. Liu. Fairness in learning-based sequential decision algorithms: A survey. arXiv
preprint arXiw:2001.04861, 2020.

I. Zliobaite. On the relation between accuracy and fairness in binary classification. arXiv preprint
arXiv:1505.05723, 2015.

187



