
HAL Id: tel-03095670
https://theses.hal.science/tel-03095670

Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Jigsaw Puzzles with Deep Learning for Heritage
Marie-Morgane Paumard

To cite this version:
Marie-Morgane Paumard. Solving Jigsaw Puzzles with Deep Learning for Heritage. Machine Learning
[cs.LG]. CY Cergy Paris Université, 2020. English. �NNT : �. �tel-03095670�

https://theses.hal.science/tel-03095670
https://hal.archives-ouvertes.fr

SOLVING JIGSAW PUZZLES
WITH DEEP LEARNING

FOR HERITAGE

F

Marie-Morgane Paumard

December 14th, 2020

A dissertation submitted for the degree of
Doctor of Philosophy from CY Cergy Paris University

École doctorale nº405 EM2PSI
Économie, Management, Mathématiques, Physique & Sciences Informatiques

David Picard Senior Research Scientist, École des Ponts ParisTech Supervisor
Hedi Tabia Full Professor, Université d’Évry Co-Supervisor
Vivien Barrière Associate Professor, CY Cergy Paris Université Advisor

Aurélie Bugeau Associate Professor, Université de Bordeaux Reviewer
Vincent Lepetit Senior Research Scientist, École des Ponts ParisTech Reviewer
Vicky Kalogeiton Associate Professor, École Polytechnique Examiner
Blaise Hanczar Full Professor, Université d’Évry Examiner
Nicolas Thome Full Professor, Conservatoire national des arts et métiers Examiner

Colophon This document was typeset in LATEX, using the beau-
tiful tufte-latex class1 and a hand-made overlay inspired by 1 tufte-latex is based on on the work

of the famous statistician Edward Tufte.Aaron Turon’s thesis, Understanding and expressing scalable concurrency.
Firmin Didot’s GFS Didot acts as the typeface. The bibliography is
typeset using biblatex.

Copyright © 2020 Marie-Morgane Paumard

First printing, October 2020

i

Acknowledgements
Avant toute chose, j’aimerai exprimer ma gratitude envers tous ceux qui ont contribué à cette thèse.
Je remercie les membres de mon jury : Aurélie Bugeau, Vincent Lepetit, Vicky Kalogeiton, Blaise

Hanczar et Nicolas Thome, pour avoir généreusement offert leurs temps et leurs conseils. Je garde un
excellent souvenir de ma soutenance et c’est en grande partie grâce à vous tous.
Ma seconde pensée va à David Picard : son soutien sans faille, son humilité, ses connaissances, sa

sollicitude, sa manière de pousser ses doctorants à se surpasser, sa grandeur d’âme, font de lui un
directeur de thèse exceptionnel. Dix pages ne suffiraient pas à dresser un portrait fidèle ni à exprimer ma
reconnaissance pour tout ce qu’il m’a apporté.
Viennent ensuite mon co-directeur de thèse, Hedi Tabia, et mon encadrant, Vivien Barrière, qui ont

toujours répondu présents quand j’ai eu besoin d’eux. D’autres, nombreux, ont contribué directement à
cette thèse : pour leurs conseils bienveillants, Eduardo Valle et Vincent Lepetit ; pour m’avoir permis
de découvrir tant de choses sur le patrimoine, la Fondation des Sciences du Patrimoine, et notamment
Anne-Julie Etter et Emmanuel Poirault ; pour ce projet si enrichissant, l’équipe du projet ARCHEPUZ’3D,
et en particulier Michel Jordan et Thomas Sagory ; pour leur assistance efficace, Laurent Protois, Annick
Bertinotti et Isabelle Simunic. Je remercie également tous les permanents des équipes du laboratoire ETIS
et d’IMAGINE, avec qui j’ai toujours eu des discussions plaisantes et intéressantes.
Durant ces trois années, j’ai été merveilleusement bien entourée par mes camarades de laboratoire.

Je peine à mesurer cette chance que d’avoir pu rencontrer tant d’êtres exceptionnels, que ce soit par
leurs nombreux talents, leur conversation plaisante ou leur admirable caractère : Pierre Jacob, M. Amine
Khelif, Diogo C. Luvizon, Alexandre Marcastel, Juline Camps, Habiba Ladhiri, Louis Desportes, Marwa
Dammak et Louis Annabi à ETIS, ainsi qu’Abderahmane Bedouhene, Thomas Belos, Victor Besnier,
Robin Champenois, Philippe Chiberre, François Darmon, Théo Deprelle, Yuming Du, Rahima Djahel,
Thibault Groueix, Shell Xu Hu, Timothée Lacroix, Pierre-Alain Langlois, Thomas Luka, Tom Monnier,
Giorgia Pitteri, Xuchong Qiu, Michaël Ramamonjisoa, Clément Riu, Othman Sbai, Xi Shen, Yang Xiao à
IMAGINE, ainsi que Thomas Robert, au LIP6.
Pendant mon parcours, j’ai également rencontré des femmes de sciences admirables. Par leur talent, leur

passion et leur dévouement à la recherche, certaines sont pour moi un exemple à suivre : Gentiane Venture,
E. Veronica Belmega, Iryna Andriyanova, Inbar Filjacob, Marwa Chafii et Geneviève Pinçon. D’autres
m’ont offert une oreille attentive et un soutien inconditionnel : mes co-lauréates du Prix L’Oréal-UNESCO
Jeune Talent 2020 m’aident à combler mon manque de confiance en moi et j’espère entretenir une amitié
durable avec chacune de ces jeunes femmes merveilleuses.
Ensuite, je remercie les professeurs et encadrants qui m’ont encouragée à poursuivre dans la recherche,

sans lesquels mon parcours aurait été bien différent. Par ordre chronologique : Laurent Guitard, David
Pichardie, David Cachera, Luc Bougé, Clément Moulin-Frier, Pierre Rouanet, Pierre-Yves Oudeyer, Gentiane
Venture, Olivier Sigaud, Jérôme Lesueur, Julie Iem et Claire Ripault-Blandin. Mes études m’ont permis de
rencontrer beaucoup de futurs chercheurs et c’est également grâce à leur exemple que j’ai effectué mon
doctorat : la promotion Info 2013 de l’ENS Rennes et la promotion #3 de PSL-ITI.
Enfin, sans le support de ma famille et de mes amis, il m’aurait été très difficile de compléter cette

thèse. Je remercie mes parents pour leur éducation, leur amour et pour m’avoir offert un excellent cadre
pour la fin de mon doctorat en confinement, ma mamie qui avait tant envie de me voir docteure, ainsi que
mes grands-parents maternels, mon frère, ma sœur et ma belle-famille pour leur soutien ; mes élèves de
la danse pour me donner la chance de partager ma passion et pour croire autant en moi ; mes meilleurs
amis pour être toujours disponibles pour moi et mon fiancé, Jules Brochard, pour avoir pris si bien soin
de moi tout en menant ses propres travaux de doctorat, pour être à mes côtés et m’aimer autant.

ii

Résumé
L’objectif de cette thèse est de développer des méthodes sémantiques de réassemblage dans le cadre
compliqué des collections patrimoniales, où certains blocs sont érodés ou manquants.
Le remontage de vestiges archéologiques est une tâche importante pour les sciences du patrimoine :

il permet d’améliorer la compréhension et la conservation des vestiges et artefacts anciens. Certains
ensembles de fragments ne peuvent être réassemblés grâce aux techniques utilisant les informations de
contour et les continuités visuelles. Il est alors nécessaire d’extraire les informations sémantiques des
fragments et de les interpréter. Ces tâches peuvent être accomplies automatiquement grâce aux techniques
d’apprentissage profond couplées à un solveur, c’est-à-dire un algorithme de prise de décision sous
contraintes.
Cette thèse propose deux méthodes de réassemblage sémantique pour fragments 2D avec érosion, ainsi

qu’un jeu de données et des métriques d’évaluation.
La première méthode, Deepzzle, propose un réseau de neurones auquel succède un solveur. Le

réseau de neurones est composé de deux réseaux convolutionnels siamois entraînés à prédire la position
relative de deux fragments : il s’agit d’une classification à neuf classes. Le solveur utilise l’algorithme de
Dijkstra pour maximiser la probabilité jointe. Deepzzle peut résoudre le cas de fragments manquants et
surnuméraires, est capable de traiter une quinzaine de fragments par puzzle, et présente des performances
supérieures à l’état de l’art de 25 %.
La deuxième méthode, Alphazzle, s’inspire d’AlphaZero et de recherche arborescente Monte Carlo

(MCTS) à un joueur. Il s’agit d’une méthode itérative d’apprentissage profond par renforcement : à
chaque étape, on place un fragment sur le réassemblage en cours. Deux réseaux de neurones guident le
MCTS : un prédicteur d’action, qui utilise le fragment et le réassemblage en cours pour proposer une
stratégie, et un évaluateur, qui est entraîné à prédire la qualité du résultat futur à partir du réassemblage
en cours. Alphazzle prend en compte les relations entre tous les fragments et s’adapte à des puzzles de
taille supérieure à ceux résolus par Deepzzle. Par ailleurs, Alphazzle se place dans le cadre patrimonial :
en fin de réassemblage, le MCTS n’accède pas à la récompense, contrairement à AlphaZero. En effet, la
récompense, qui indique si un puzzle est bien résolu ou non, ne peut être qu’estimée par l’algorithme, car
seul un conservateur peut être certain de la qualité d’un réassemblage.

Mots-clés Apprentissage profond, apprentissage par renforcement, décision par parcours de graphe,
recherche arborescente Monte Carlo, puzzles, sciences du patrimoine.

i i i

Abstract
This thesis aims to develop semantic methods of reassembly in the complicated framework of heritage
collections, where some blocks are eroded or missing.
The reassembly of archaeological remains is an essential task for heritage sciences: it improves the

understanding and conservation of ancient vestiges and artifacts. However, some sets of fragments cannot
be reassembled with techniques using contour information or visual continuities. It is then necessary to
extract semantic information from the fragments and to interpret them. These tasks can be performed
automatically thanks to deep learning techniques coupled with a solver, i.e., a constrained decision-making
algorithm.
This thesis proposes two semantic reassembly methods for 2D fragments with erosion, as well as a new

dataset and evaluation metrics.
The first method, Deepzzle, proposes a neural network followed by a solver. The neural network is

composed of two Siamese convolutional networks trained to predict the relative position of two fragments:
it is a 9-class classification. The solver uses Dijkstra’s algorithm to maximize the joint probability. Deepzzle
can address the case of missing and supernumerary fragments. It can process about 15 fragments per
puzzle and outperforms state of the art by 25%.
The second method, Alphazzle, is based on AlphaZero and single-player Monte Carlo Tree Search

(MCTS). It is an iterative method that uses deep reinforcement learning: at each step, a fragment is
placed on the current reassembly. Two neural networks guide MCTS: an action predictor, which uses
the fragment and the current reassembly to propose a strategy, and an evaluator trained to predict the
quality of the future result from the current reassembly. Alphazzle considers the relationships between all
fragments and adapts to puzzles larger than those solved by Deepzzle. Moreover, Alphazzle is compatible
with constraints imposed by a heritage framework: at the end of reassembly, MCTS does not access the
reward, unlike AlphaZero. Indeed, the reward, which indicates if a puzzle is well solved or not, can only
be estimated by the algorithm because only a conservator can be sure of a reassembly quality.

Keywords Deep learning, reinforcement learning, decision theory with graph traversal, single-player
Monte Carlo Tree Search, jigsaw puzzles, heritage.

iv

Publications
This dissertation draws heavily on earlier work and writing in the following papers:

Journals

] [PPT20] Marie-Morgane Paumard, David Picard, and Hedi Tabia (2019). Deepzzle: Solving Visual
Jigsaw Puzzles with Deep Learning. In IEEE Transactions on Image Processing (TIP);

] Marie-Morgane Paumard (2020). Remonter un site archéologique à partir de fragments : cas du
sanctuaire des Vaux de la Celle (fr). In Technè (forthcoming publications);

Refereed conferences

] Marie-Morgane Paumard, David Picard, and Hedi Tabia (2020). Solving Jigsaw Puzzle with Deep
Monte-Carlo Tree Search. In submission;

] [PPT18a] Marie-Morgane Paumard, David Picard, and Hedi Tabia (2018). Image Reassembly Combining
Deep Learning and Shortest Path Problem. In Proceedings of the European Conference on Computer
Vision (ECCV);

] [PPT18b] Marie-Morgane Paumard, David Picard, and Hedi Tabia (2018). Jigsaw Puzzle Solving Using
Local Feature Co-Occurrences in Deep Neural Networks. In Proceedings of the IEEE International
Conference on Image Processing (ICIP);

Non-refereed conference

] Marie-Morgane Paumard, David Picard, and Hedi Tabia (2019). L’apprentissage profond pour le
réassemblage d’images patrimoniales (fr). In proceedings of the Colloque francophone de traitement du
signal et des images (GRETSI).

https://hal.archives-ouvertes.fr/hal-02494602v1
https://hal.archives-ouvertes.fr/hal-02494602v1
https://hal.archives-ouvertes.fr/hal-01869765v2
https://hal.archives-ouvertes.fr/hal-01869765v2
https://hal.archives-ouvertes.fr/hal-01820489v2
https://hal.archives-ouvertes.fr/hal-01820489v2
https://hal.archives-ouvertes.fr/hal-02466564v1
https://hal.archives-ouvertes.fr/hal-02466564v1

v

Artwork 1: Oedipus and the Sphinx, Gus-
tave Moreau, 1864, from the MET Open
Collections.

https://www.metmuseum.org/art/collection/search/437153

Contents

I PROLOGUE 1

1 OVERVIEW 2
1.1 Reassembly for heritage . 2
1.2 Main contributions . 3

1.2.1 Pairwise comparison: Deepzzle . 3
1.2.2 Iterative solving: Alphazzle . 3
1.2.3 Other contributions . 4

1.3 Organization of the dissertation . 4

2 INTRODUCTION TO THE PUZZLE-SOLVING TASK 6
2.1 Terminology . 6
2.2 Type of tasks . 6
2.3 Evaluation . 7
2.4 Applications of reassembly . 8

2.4.1 The case of archaeology . 8

3 MODERN PUZZLE-SOLVING METHODS 9
3.1 Introduction . 9
3.2 Solving from the content . 9
3.3 Solving from the contour . 10
3.4 Mixed methods . 11
3.5 Conclusion . 12

4 ON THE DATASETS 13
4.1 Requirements for the dataset . 13
4.2 The datasets . 14

4.2.1 The MET dataset . 14
4.2.2 Other datasets . 15

II PAIRWISE COMPARISON WITH DEEP LEARNING 17

5 PUZZLE-SOLVING WITH DEEP LEARNING 18
5.1 Introduction . 18
5.2 Pairwise comparison . 18
5.3 Global comparison . 19
5.4 Permutations . 19
5.5 Comparison . 20

6 DEEPZZLE 22
6.1 Introduction . 22
6.2 Method overview . 23
6.3 Problem formulation . 23

vii

6.4 Pairwise comparison step . 25
6.4.1 Feature extractor . 25
6.4.2 Combination layer . 26

6.5 Reassembly step . 27
6.5.1 Greedy solver . 27
6.5.2 Graph-based reassembly . 28
6.5.3 Cuts in the graph . 32

6.6 Experiments . 33
6.6.1 Training procedure . 33
6.6.2 Reassembly metrics . 34
6.6.3 Dataset . 34

7 DEEPZZLE’S RESULTS 36
7.1 Benchmarks and comparisons . 36

7.1.1 Neural network scores . 36
7.1.2 Reassembly scores . 38

7.2 Advanced reassembly tasks . 40
7.2.1 Reassembly with unknown center . 40
7.2.2 Reassembly with missing and additional fragments 40

7.3 Impact of data on reassemblies . 44
7.3.1 Other datasets . 44
7.3.2 MET: Reassembly depending on the type of object 46
7.3.3 MET: Reassembly from texts . 47
7.3.4 Reassembly from patchworks . 49

III ITERATIVE SOLVING WITH DEEP REINFORCEMENT LEARNING 51

8 ON ALPHAZERO 52
8.1 Introduction . 52
8.2 Monte Carlo Tree Search . 52

8.2.1 MCTS and the game of go . 52
8.2.2 Advances in MCTS . 53
8.2.3 Single-player MCTS . 53

8.3 Deep reinforcement learning and MCTS . 54
8.3.1 Two-player games . 54
8.3.2 Single-player games . 55

9 ALPHAZZLE 56
9.1 Prologue . 56
9.2 Overview . 57

9.2.1 Simplified framework for two-player games with deep reinforcement learning . . . 57
9.2.2 AlphaZero algorithm . 57
9.2.3 Interaction between MCTS and the neural network 58
9.2.4 Jigsaw puzzle rules and formalization . 58

9.3 Monte Carlo Tree Search . 60
9.3.1 Two-player MCTS algorithm . 60
9.3.2 Selection . 62
9.3.3 Expansion . 62
9.3.4 Simulation . 63

viii

9.3.5 Backpropagation . 63
9.3.6 Solving a puzzle with our MCTS . 63

9.4 Deep Reinforcement Learning . 65
9.4.1 Pre-training 𝑃 . 66
9.4.2 Pre-training 𝑉 . 66
9.4.3 MCTS-based fine-tuning . 67

9.5 Experiments . 67
9.5.1 Training procedure . 67
9.5.2 Reassembly metrics . 67
9.5.3 Dataset . 67

10 ALPHAZZLE’S RESULTS 69
10.1 Pre-training results . 69

10.1.1 Architectures comparison . 69
10.1.2 Settings comparison . 69

10.2 MCTS performance . 72
10.2.1 MCTS meta-parameter optimization . 72
10.2.2 Influence of 𝑃 and 𝑉 on MCTS . 72

10.3 Reassembly results . 73
10.3.1 Quantitative analysis . 74
10.3.2 Qualitative analysis . 74

10.4 Results optimization . 75
10.4.1 Order of the fragments . 75
10.4.2 Action choice from MCTS output . 76
10.4.3 Comparison with other methods . 77
10.4.4 Impact of fine-tuning . 77
10.4.5 Combination of the best parameters . 78

IV EPILOGUE 79

11 CONCLUSION 80
11.1 Looking back . 80
11.2 Looking ahead . 81

11.2.1 On heritage . 81
11.2.2 Short-term projects . 81
11.2.3 Optimizing Deepzzle . 81
11.2.4 Improving Alphazzle . 82
11.2.5 New horizons . 82

REFERENCES 84

V GENERAL APPENDIX 91

A INTRODUCTION TO DEEP LEARNING 92
A.1 Prologue . 92
A.2 Context . 92

A.2.1 What is learning ? . 92
A.2.2 Machine learning . 92
A.2.3 Deep learning . 93

ix

A.2.4 Computer Vision . 93
A.3 Supervised deep learning for computer vision . 94

A.3.1 Solving a task . 94
A.3.2 Structuring of a neural network . 94
A.3.3 Learning process . 96

A.4 Deep reinforcement learning . 97

B INTRODUCTION TO DECISION THEORY 98
B.1 Prologue . 98
B.2 Complex problems . 98
B.3 Main classes of methods . 98
B.4 Puzzle-solving notations and formulation . 99

VI TECHNICAL APPENDIX 101

C ON THE GRAPHS SIZES 102
C.1 Graphs without extra-fragments . 102
C.2 Graphs with extra-fragments . 103

D ALPHAZZLE EXTENDED RESULTS 104

List of Artworks
1 Oedipus and the Sphinx, Gustave Moreau . v
2 Bourdois shelter’s frieze (detail) . 5
3 Two Men Contemplating the Moon, Caspar David Friedrich 12
4 The Princesse de Broglie, Jean Auguste Dominique Ingres 35
5 Old Plum, Kano Sansetsu . 55
6 The Dance Class, Edgar Degas . 68
7 Landscape with Stars, Henri-Edmond Delacroix . 83

List of Figures

1.1 The lapidary of the Taillebourg cellar . 2
1.2 The ruins of the Vaux-de-la-Celle’s Gallo-Roman temple 2

2.1 A virtual object completion . 6
2.2 Some input fragments for contour reassembly . 6
2.3 A rotation prediction task . 7
2.4 A reassembly with missing pieces . 7
2.5 A shifted reassembly . 7
2.6 A skull reassembly . 8
2.7 A pair of matching blocks from Vaux-de-la-Celle . 8

3.1 A content-based solver’s input . 9
3.2 An artifact reassembly . 10
3.3 A contour-based puzzle . 11

4.1 Some images from the MET dataset . 14
4.2 A puzzle preparation . 15
4.3 Some images from ImageNet . 15
4.4 Some images from the bas-reliefs dataset . 16
4.5 Some images from Roc-aux-Sorciers . 16
4.6 Some images from Vaux-de-la-Celle . 16

5.1 A pairwise comparison task . 18
5.2 An alternative to erosion . 19
5.3 A complex permutation task . 20

6.1 A task submitted to Deepzzle . 22
6.2 Outline of Deepzzle . 23
6.3 Neural network architecture . 25
6.4 Graph with 3 fragments . 29
6.5 Graph with unknown central fragment . 32
6.6 Graph allowing empty positions . 32
6.7 Graph cut without reordering . 33
6.8 Graph cut with reordering . 33
6.9 Some effects of almost perfect metric . 34

7.1 Validation accuracy — Comparison of our architecture and Doersch et al.’s 36
7.2 A reassembly . 38
7.3 An almost-perfect reassembly . 38
7.4 Reassembly — Comparison of computation time for various cut values 39
7.5 An erroneous reassembly with unknown center . 40
7.6 Some reassemblies with missing fragments . 42
7.7 Some reassemblies with extra fragments . 43
7.8 Some reassemblies from various datasets . 45
7.9 Some reassemblies with texts . 48

xii

7.10 Some reassemblies from patchwork images . 50

8.1 A SameGame board . 53
8.2 AlphaGo beats the grandmaster Lee Sedol . 54
8.3 A 15-puzzle . 55

9.1 A task submitted to Alphazzle . 56
9.2 Outline of Alphazzle . 58
9.3 Outline of MCTS . 61
9.4 Outline of MCTS, applied to puzzles . 65

10.1 Some reassemblies with and without one inversion . 71
10.2 Some reassemblies . 75

A.1 A neural network . 95
A.2 Standard architectures for computer vision . 96

List of Tables

5.1 Comparison of the tasks addressed by the literature . 21

6.1 Architecture of the feature extraction network . 26
6.2 Reassembly — Theoretical comparison of greedy and Dijkstra’s 32
6.3 Experimental settings summary . 34

7.1 Validation accuracy — Comparison between the setups . 37
7.2 Validation accuracy — Comparison between the fusion strategies 37
7.3 Validation accuracy — Comparison between the number of classes 37
7.4 Validation accuracy — Comparison with greedy algorithm 38
7.5 Reassembly — Comparison with [NF16] . 39
7.6 Reassembly — Comparison with unknown center . 40
7.7 Reassembly — Comparison with missing and outsider fragments 41
7.8 Reassembly — Comparison between datasets . 44
7.9 Reassembly — Comparison between image types . 46
7.10 Reassembly — Comparison between on image type, with extra-fragments 46

9.1 Experimental settings summary . 67

10.1 Validation accuracy — Comparison between the architectures 69
10.2 Validation accuracy — Comparison between the settings . 69
10.3 Validation accuracy — Comparison on complete puzzles . 71
10.4 Reassembly — Comparison of MCTS meta-parameters . 72
10.5 Reassembly — Comparison between endgame reward . 72
10.6 Reassembly — Comparison of MCTS with and without neural networks 73
10.7 Reassembly — Comparison between MCTS and greedy neural networks 73
10.8 Reassembly — Comparison between the settings . 74
10.9 Reassembly — Distribution of errors . 74
10.10Reassembly — Comparison of the order of fragments . 76
10.11 Reassembly — Comparison between 𝑄(𝑎|𝑠𝑡) and 𝑁(𝑎|𝑠𝑡) 76
10.12 Reassembly — Comparison with other methods . 77
10.13 Reassembly — Comparison of fine-tuning epochs . 77
10.14Reassembly — Comparison of different settings, with finetuning 78
10.15 Reassembly — Combination of the best parameters . 78

D.1 Validation accuracy — Comparison between settings . 104
D.2 Validation accuracy — Comparison between partial reassemblies 105
D.3 Reassembly — Comparison of the meta-parameters . 106
D.4 Reassembly — Comparison with 1,000 simulations and 𝐶 = 1 107
D.5 Reassembly — Comparison with 1,000,000 simulations and 𝐶 = 0.1 107

List of Terms and Acronyms
glossary

Puzzle-solving A subtask of the reassembly task that aims to find the fragments’ coarse positioning. 6

Reassembly (a ~) Any output of a puzzle-solving algorithm. 6, 7

Solution The intended reassembly. 6

acronyms

ADI Autodidactic Iteration. 55

ExIt Expert Iteration. 54

FEN Feature Extraction Networks. 25, 26, 33, 34

MCTS Monte-Carlo Tree Search. 5, 52, 53

MET Metropolitan Museum of Art. 4, 14

MSE Mean squared error. 66

NMCS Nested Monte-Carlo Search. 54

NMCTS Nested Monte-Carlo Tree Search. 54

NRPA Nested Rollout Policy Adaptation. 54

PUCB Predictor + Upper Confidence Bound. 62

PUCT Predictor + Upper Confidence Bound for Tree. 62, 63, 67, 81

R2 Ranked-Rewards. 55

RANSAC Random Sample Consensus. 9

SGD Stochastic Gradient Descent. 33, 34

SP-MCTS Single-Player MCTS. 53

UCB Upper Confidence Bounds. 53, 62

UCT Upper Confidence Bounds for Trees. 62

WRN WideResNet. 66

Part I

PROLOGUE

1
Overview

Chapter 2]

1.1 reassembly for heritage

The problem of reassembly is shared by many archaeological sites. Anastylosis is the archaeological term that
refers to the reconstruction of a monu-
ment using the original material. Learn
about it on Wikipedia.

When many fragments are discovered, archaeologists face a gigantic
3D jigsaw puzzle with damaged or even missing pieces. For instance,
the sculpted ceiling of the prehistoric rock-shelter of Roc-aux-Sorciers
(Angles-sur-l’Anglin, Vienne, France) collapsed into a thousand
pieces (Figure 1.1).

Figure 1.1: The lapidary of the Taille-
bourg cellar. © G. Pinçon, Ministry of
Culture (France), C. Archambeau.

Roc-aux-Sorciers was occupied by the Magdalenians 16,000 years
ago and is composed of two distinct sections: the Bourdois shelter, a
classic rock-shelter site beneath a slight overhang, and the Taillebourg
cave, a typical vestibule. Both are entirely sculpted, but only the
Bourdois shelter’s frieze has been preserved, while the cave’s bas-
reliefs are scattered in a multitude of pieces. The research directed
by Geneviève Pinçon focuses on the parietal art and the material
culture (mostly jewelry and tools)1 and studies the normative system 1 Le Roc-aux-Sorciers: art et parure du

Magdalénien (fr), under the direction of
G. Pinçon (catalog).

of animal representation, the cave as a habitat, the relationship to
art, and the function and activities associated with the tools. If the
Taillebourg cave were rebuilt, many questions would be answered. To
this end, 3D geomorphological reconstructions and blocks digitization
are in progress. Some reassembly tests have been carried out on joints
identified by archaeologists, but the complexity of the calculations
impedes the ceiling reconstruction.

Figure 1.2: The ruins of the Vaux-de-la-
Celle Gallo-Roman temple.

Another famous archaeological monument to be rebuilt is the
temple of the Vaux-de-la-Celle Gallo-Roman sanctuary (Genainville,
Val d’Oise, France). The site consists of a two-cella temple’s ruins
(Figure 1.2) surrounded by a circulation gallery, a theatre that can
accommodate up to 8,000 people, and four sacred basins. The
first fanum2 is dated to the middle of the 1st century CE, and the

2A fanum is a Gallo-Roman temple.architectural ensemble was built in the second half of the 2nd century.
During the 3rd century, the site was gradually abandoned. Therefore,
the carved blocks of the temple served as a limestone quarry until
the modern era. They are now gathered in the reserves of the Musée
archéologique du Val-d’Oise, for their reassembly. About sixty blocks
have been digitized through photogrammetry and 3D scan.
Many other reconstruction projects are conducted all around the

world. To name a few, we mention Angkor Wat (Cambodia), Djoser
funerary complex (Egypt), Huaca Pucllana (Peru), Notre-Dame-de-
Paris (France), Parthenon (Greece), and Troy’s Odeion (Turkey).

https://en.wikipedia.org/wiki/Anastylosis
https://en.wikipedia.org/wiki/Anastylosis
https://www.catalogue-roc-aux-sorciers.fr
https://www.catalogue-roc-aux-sorciers.fr

3

In most cases, software has been developed to help the conservators
find the match between blocks. Usually, the search for correspon-
dences is done manually or is semi-automated3. Such software seeks 3Manually means that the conserva-

tors make the matches by themselves.
Semi-automated means that the conser-
vators pick plausible matches from the
software-generated proposals.

to associate the contours or the blocks’ visual continuities, which
is sometimes enough to obtain a coherent reconstruction. However,
some reassemblies depend on the painted or carved representations’
semantics4, and no software can manage them yet. Understanding 4We can distinguish three levels of re-

assembly abilities. The first one is based
solely on visual clues, such as patterns.
The second one is based on the seman-
tics, which means that the reassembly
should be plausible, such as placing the
sky above the ground. The last one uses
logic to create pertinent stories, such as
cooking before eating.

semantics appears to be the next milestone in reassembly algorithms.
In recent years, deep-learning-based algorithms learned to use

semantic features to perform different tasks, and they are now be-
ginning to perform easy 2D reassemblies from square fragments
[DGE15, NF16]. We, too, focus on solving a 2D square jigsaw puz-
zle. We motivate this choice in Section §4.1. The long-term goal
is to develop a versatile method that can reassemble artifacts and
monuments without relying on expert knowledge.

1.2 main contributions

This dissertation aims to improve state-of-the-art reassembly methods
along with two approaches: first, by comparing all the blocks to a
significant block, ordering them by probable positions, and thus
minimizing the joint probability to compose a reassembly. Second, by
iteratively placing one block after another to use all the placed blocks
to build a better reassembly. To that end, we design two algorithms:

1.2.1 Pairwise comparison: Deepzzle

While iterative solving is probably the closest to how we solve a puzzle,
the pairwise comparison is what we would be doing if our executive
memory was limited. It consists of comparing every fragment to every
other fragment, so we only see two fragments simultaneously. Then,
we assess all the pairs’ relevance, and we deduce the reassembly from
the pairs sorted with respect to this metric.
Doersch et al.5 proposed the first evaluation of the fragments 5 [DGE15] C. Doersch, A. Gupta, and

A.A. Efros, Unsupervised visual repre-
sentation learning by context prediction.

pairs with deep learning. We extended their work with a reassembly
ability. Our contribution includes:

] A refined neural network architecture and merging function;

] Three reassembly solving methods (greedy, exact and heuristic);

] Various results such as solving 3×3 puzzles with missing or extra
fragments, or fragments photographed under different lightning.

In the rest of this dissertation, we refer to this method as Deepzzle.

1.2.2 Iterative solving: Alphazzle

Iterative solving consists of recursively comparing a fragment to the
current partial reassembly, from which we place the fragment and

https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1505.05192

4

update the reassembly. It is what most people do when solving a
jigsaw puzzle. We propose the first puzzle-solving method based on
such iterative solving. We take our inspiration from AlphaZero6, and 6 [SHS+17] D. Silver et al., Mastering

Chess and Shogi by Self-Play with a
General Reinforcement Learning Algo-
rithm.

we introduce some significant changes. Our contribution includes:

] A deep MCTS that proceeds visual features;

] A reassembly method that estimates the game reward, because it
cannot be accessed directly;

] Extended results on bigger puzzles such as 5×5 puzzles.

In the rest of this dissertation, we refer to this method as Alphazzle.

1.2.3 Other contributions

Our other contribution includes:

] Few metrics assessing the pairs and the reassembly quality;

] A new dataset of 14,000 heritage images;

] An open-source code7. 7 GitHub repositories for Deepzzle and
Alphazzle.

1.3 organization of the dissertation

Chapter 2 gives an overview of the puzzle-solving task. After
presenting the terminology, we list the jigsaw puzzle-solving tasks’
variations, e.g., solving with missing fragments. We discuss the
metrics used to evaluate the output of the algorithms. The last
section deals with the applications of puzzle-solving across various
research areas, especially in heritage.

Chapter 3 presents the computer-vision-based methods to make
reassemblies from fragments without relying on deep learning.

Chapter 4 introduces the datasets we use. We start by explaining our
choices on the fragments’ shape and detailing the requirements
for building the dataset. Then, we present the MET dataset, on
which we trained our neural networks. Last, we introduce the
datasets we used for fine-tuning and evaluating our models.

The rest of the dissertation is composed of the two proposed ap-
proaches:

Pairwise comparison with deep learning

Chapter 5 draws up a state of the art of puzzle-solving with deep
learning. It introduces the two major methods for puzzle-solving:
the pairwise comparison and the permutations. We highlight their
strengths and weaknesses and justify our algorithm design.

Chapter 6 describes Deepzzle, our method for pairwise comparison
puzzle-solving.

https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://github.com/mmPaumard/Deepzzle
https://github.com/mmPaumard/Alphazzle

5

Chapter 7 walks through Deepzzle’s major results, as well as the
extensive results on some peculiar tasks and heritage datasets.

Iterative solving with deep reinforcement learning

Chapter 8 introduces Monte-Carlo Tree Search (MCTS) for (deep)
reinforcement learning. We focus on single-player games.

Chapter 9 details Alphazzle, our method for iterative puzzle-solving
relying on deep reinforcement learning.

Chapter 10 brings together our results.

Finally, the dissertation concludes with Chapter 11, which sum-
marizes the contributions and suggests a few additional research
ideas.

General appendices

Appendix A is an introduction to deep learning.

Appendix B provides basic knowledge on decision science.

Artwork 2: Detail of the Bourdois shel-
ter’s frieze, © G. Pinçon, A. Frich.

2
Introduction to the puzzle-solving task

[Chapter 1 Chapter 3]
Synopsis This chapter describes what is the puzzle-solving task §2.1,
draws up a task typology §2.2, and presents the metrics to evaluate
the correctness of a reassembly §2.3. Last, it lists the applications of
reassembly §2.4.

2.1 terminology

Figure 2.1: A virtual object completion.
© D. Tsiafaki et al. [TKAM15].

First and foremost, we can divide the reassembly task into two
stages: the coarse positioning, which we call puzzle-solving, and
the precise reassembly of the blocks. The latter includes feature
correspondence refinement, matching [OBA20] and object completion,
such as extrapolation and inpainting [MRS10, TKAM15] (Figure 2.1).
As this task does not require semantics understanding and can be
performed more easily by human experts—provided that the coarse
positioning is known—we decide to focus on puzzle-solving solely.

In the remainder of this dissertation, we used puzzle-solving to
describe the task and reassembly to describe the output of the puzzle
solvers. We call solution the correct reassembly, i.e., the reassembly
that we aim to compute.

2.2 type of tasks

There is no standard puzzle-solving task, and all authors propose
their variation. In this subsection, we present all the parameters and
variations that we have read about1: 1Most articles mentioned are presented

in Chapter 3.

Figure 2.2: Some input fragments for a
child Buddha reassembly from contours.
© K. Zhang et al. [ZYM+15].

Fragments shape: The standard task for contour-based solving implies
various size 2D or 3D fragments (Figure 2.2), while content-based
solving tends to remove the fractures by cutting all pieces square to
focus on the content solely. Gur and Ben-Shahar [GBS17] introduce
a variation on the standard square shape and solve “brick wall”
jigsaw puzzles (rectangles of the same height but various length),
using a similar pipeline to Paikin and Tal [PT15].

Fragments quantity: The content-based methods can solve puzzles of
several thousand pieces, while the contour-based methods use a
few dozen fragments in 3D and a hundred or so in 2D.

Binding puzzle sizes: Sometimes, the puzzle size and shape are known,
which implies that the fragments cannot be placed out of the puz-

7

zle. The size can be strongly binding, which means that the first
fragment’s correct place is unique, or lightly binding, which means
that the placed fragments can be moved within the puzzle borders.
In contrast, when the puzzle sizes are unknown, each fragment
can be placed anywhere.

Rotation: In the case of square fragments, they can be well-oriented
[SDN13] or require rotation to solve the puzzle [Gal12, SHC14].
Some authors address the case of known position but unknown
rotation, as pictured in Figure 2.3. When the fragments are not
square, the rotation value has to be found by the algorithm.

Figure 2.3: Example of input in the case
the position is known but the rotation
is unknown. © A.C. Gallagher [Gal12].

Anchor piece: Anchor piece refers to the recommended first fragment.
Usually, it comes with strongly binding puzzle sizes, and the solver
is given the anchor piece position.

Erosion: Erosion refers to the reduction and smoothing of borders
so that fractured regions cannot be of use anymore. It can be as
light as a few pixels removal [DTS18] or very strong as half of the
fragment size suppression.

Figure 2.4: Example of reassembly with
missing pieces, on a large 22k pieces
puzzle. © G. Paikin and A. Tal [PT15].

Missing fragments: Sometimes, all the fragments to complete the puz-
zle are not available [PT15, SF17] (Figure 2.4). Inpainting and
other objects completion techniques can be used to complete the
obtained partial reassembly.

Mixed fragments: Some work tackle mixed fragments originating from
several objects. The algorithms have to exclude irrelevant frag-
ments to solve the puzzle. Other algorithms can solve several
puzzles from mixed input, such as [SHC14].

2.3 evaluation

We introduce three standard metrics to evaluate a reassembly quality:

Solved puzzles: This measure indicates the percentage of correctly
solved puzzles. A puzzle is correctly solved when all its fragments
are placed in the right position.

Well-placed fragments: This metric shows the average percentage of
correctly placed fragments per puzzle. Note that in the case of no
missing nor mixed fragmented, the number of mistakes must be
null or strictly greater than 1.

Figure 2.5: Example of a shifted solu-
tion: solved puzzle and well-placed frag-
ments return 0% while correct neigh-
bors metric is close to 100%. © D.
Sholomon et al. [SDN13].

Correct neighbors: This metric computes the fraction of correct pair-
wise adjacencies. It can work with cardinal neighbors only (up,
down, right, left), full neighbors (cardinal neighbors and intercar-
dinal neighbors), and extended neighbors (all fragments within a
given range. The correct neighbors metric is usually higher than
the well-placed fragments. As the only relative metric, it is very
effective in the case where all fragments are shifted in one direction
(Figure 2.5).

8

In some papers, other metrics have been introduced to counteract
some data bias. For instance, the almost-perfectly solved puzzles metric
is a solved puzzles metric that allows the inversion of almost identical
fragments. Their similarity can be easy to compute (e.g., pixel-wise
comparison) or rely on more advanced concepts (e.g., on the features).

2.4 applications of reassembly

Reassembly is a very specific problem, and its impact is fairly limited
to niche applications. These applications include, among other things:

] archaeology, such as the reconstruction of ancient artifacts;

] cryptography, such as attack encrypted images [CKK17];

] forensic medicine, such as skull assembly (Figure 2.6) [YWLM11];

] forensic science, such as shredded documents reconstruction;

] genome biology, such as assembly of DNA or RNA [HF18];

] medicine, such as reassembly of fractured bones for surgery. Figure 2.6: Example of skull reassembly.
© K. Zhang et al. [ZYM+15].

2.4.1 The case of archaeology

The case of automatic reassembly is extensively studied to restore
cultural sites and objects, as Rasheed and Nordin highlight in their
surveys [RN15a, RN15b]. It is indeed a crucial task for heritage
sciences as it improves the understanding and conservation of these
sites. For example, it enables to counter the effect of erosion or
prevent material damages. Because of their size, some archaeological
ensembles require automatic assembly.

Figure 2.7: A digitized pair of matching
blocks from a statuary group preserved
in the Musée archéologique départemental
du Val-d’Oise (Guiry-en-Vexin), from the
Vaux-de-la-Celle temple.

The first pitfall encountered by conservators is the digitization
of fragments. In some cases, the fragments are well-labeled in
museum collections and light enough to be handled. In other cases,
they remained on the archaeological site or are too big to be easily
digitized. It is the case of Roc-aux-Sorciers ceiling blocks that are
mostly still on site. Regarding the Vaux-de-la-Celle temple, some
blocks are located in a museum and have been digitized, as blocks
of Figure 2.7. In any case, scanning and cleaning the dataset takes a
long time and should be cautiously planned.
Restoring archaeological vestiges requires to address a variety of

tricky issues. Examples are the fragments’ non-square shape, the
very different sizes of the fragments, the fading of the fragments
contours and colors, the missing fragments, the mixture of fragments
from different objects, and the continuity of the space of the relative
transformations between a couple of fragment.

3
When puzzles meet computer vision

[Chapter 2 Chapter 4]
Synopsis This chapter walks through state-of-the-art in automatic
reassembly when no artificial intelligence is involved. The first jigsaw puzzles are credited to

John Spilsbury, who invented them in
1767. They were used as an educative
tool for children and only emerged for
adults around 1900 (source).

3.1 introduction

In this chapter, we present many puzzle-solving methods that do not
rely on artificial intelligence. They operate on either 3D blocks or 2D
patches. Among puzzle-solvers, most state-of-the-art methods fall
into one of these two categories: some exploit the content of each
patch (such as colors or patterns) in §3.2, while other focus on the
contours of the patches in §3.3. As one might guess, a few methods
combine the two ways of extracting pertinent features in §3.4. Based
on the features, the reassembly algorithm produces a coarse or precise
reassembly. The algorithms include greedy algorithms, graph models,
combinatorial solvers, iterative reassembly, and human expert advice.
Appendix B provides an introduction to such algorithms.
We conclude this chapter with a short discussion on the reassembly

methods presented above in §3.5, planting the seeds of the following
chapters.

3.2 solving from the content

Figure 3.1: Example of input for a
content-based solver. © D. Bridger et al.
[BDT20].

The colors and patterns constitute the content of the 2D patches, plus
depth in the case of carved 3D blocks, from which one can extract the
salient curves. These characteristics make it possible to solve a puzzle
thanks to the identification of visual continuities. Most content-based
approaches use 2D square patches as input and colors as features,
which is the case of the research presented below:

Son et al.1 compute all the merged pair of patches’ dissimilarity 1 [SHC14] K. Son, J. Hays, and D.B.
Cooper, Solving Square Jigsaw Puzzles
with Loop Constraints.

ratio for every possible configuration. They extended their work in
[SHC+16], where they reduce the dependency on dissimilarity and
instead exploit the consensus, as in Random Sample Consensus
(RANSAC)2 [FB81]. For the reassembly step, they present an 2 RANSAC on Wikipedia.

algorithm that solves puzzles in a bottom-up fashion: from the
initial pair of patches, it iteratively assembles them into pairs
of pairs, and so forth until no pair can be merged. Then, the
algorithm proceeds top-down and merge all the structures.

Similarly, Paikin and Tal3 propose a compatibility metric based on 3 [PT15] G. Paikin and A. Tal, Solv-
ing Multiple Square Jigsaw Puzzles with
Missing Pieces.

https://www.puzzlewarehouse.com/history-of-puzzles/
https://link.springer.com/content/pdf/10.1007/978-3-319-10599-4_3.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-10599-4_3.pdf
https://en.wikipedia.org/wiki/Random_sample_consensus
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Paikin_Solving_Multiple_Square_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Paikin_Solving_Multiple_Square_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Paikin_Solving_Multiple_Square_2015_CVPR_paper.pdf

10

both the dissimilarity between the patches and the compatibility
inspired by the “best buddies” metric, introduced in [PSBS11].
Paikin and Tal propose a greedy placement algorithm that itera-
tively selects and places the best candidate. They take special care
in selecting the first piece, as it impacts all the following stages.
Note that there is no constraint on the shape of the puzzle, so that
the first piece is always well-placed.4 4More detail on this idea in Chapter 9.

Gallagher5 builds his solution on the Mahalanobis distance6, which 5 [Gal12] A.C. Gallagher, JigsawPuzzles
with Pieces of Unknown Orientation.
6Mahalanobis distance on Wikipedia.

gives importance to the local gradients near a patch’s borders. He
casts his puzzle problem into a tree and uses Kruskal’s algorithm7

7Kruskal’s algorithm on Wikipedia.variant to find the minimal spanning tree.

Sholomon et al.8’s work is inspired by [TFSM02]. They both pro- 8 [SDN13] D. Sholomon, O. David, and
N.S. Netanyahu, A Genetic Algorithm-
Based Solver for Very Large Jigsaw Puz-
zles.

pose a genetic algorithm9 that merges two wrongly-solved parents

9 Genetic algorithms on Wikipedia.

into a child while trying to minimize dissimilarity. Sholomon et
al.’s fitness function is computed from the pairwise compatibility,
i.e., two pieces’ likelihood to be adjacent.

3.3 solving from the contour

Figure 3.2: An artifact reassembly. © Q.-
X. Huang et al. [HFG+06].

The contour refers to fractured surfaces: 3D broken objects exhibit
fractured and intact surfaces (Figure 3.2), while 2D objects are sup-
posed to have only fractures (Figure 3.3). When an object is fully
reassembled, no fracture should remain, and only its original contours
can be observed. The literature on contour-based solving appears to
be much more abundant than on content-based solving. We carefully
select what seems to be the most important papers and present them
below:

Huang et al.10 address 3D broken artifacts reassembly by segment- 10 [HFG+06] Q.-X. Huang et al., Re-
assembling Fractured Objects by Geo-
metric Matching.

ing the surfaces into a set of faces. They then extract their features
and proceed to pairwise matching: they analyze all the potential
correspondences to select the valid ones and represent the merging
with sub-graphs. Finally, they merge the sub-graphs and obtain a
reassembly.

Zhang et al.11 present two approaches, which can be used together 11 [ZYM+15] A. Zhang et al., 3D Frag-
ment Reassembly using Integrated Tem-
plate Guidance and Fracture-Region
Matching.

or separately depending on the context. In the first approach, a
general template of the artifact to rebuild is provided, and their
algorithm matches the features. The second approach identifies
the fractured regions and extracts boundary curves and feature
regions, rather than feature points. They use a graph model to
find the best reassemblies. Note that other work features boundary
curves matching for 2D puzzles, such as [ZZZH06].

Papaioannou et al.12’s pipeline starts by preprocessing all the 3D 12 [PSA+17] G. Papaioannou et al., From
Reassembly to Object Completion - A
Complete Systems Pipeline.

meshes to discriminate potentially fractured regions from intact
surfaces. When some fragments have no or very small usable
contact surface, they are submitted to users that find and extract
features curves. They are used to find continuity, making this

https://core.ac.uk/download/pdf/205610993.pdf
https://core.ac.uk/download/pdf/205610993.pdf
https://en.wikipedia.org/wiki/Mahalanobis_distance
https://en.wikipedia.org/wiki/Kruskal’s_algorithm
http://www.icst.pku.edu.cn/zlian/docs/20181023155105693483.pdf
http://www.icst.pku.edu.cn/zlian/docs/20181023155105693483.pdf
http://www.icst.pku.edu.cn/zlian/docs/20181023155105693483.pdf
https://en.wikipedia.org/wiki/Genetic_algorithm
https://www.researchgate.net/profile/Qixing_Huang2/publication/333161346_Reassembling_Fractured_Objects_by_Geometric_Matching/links/5cde36ce299bf14d959f80bd/Reassembling-Fractured-Objects-by-Geometric-Matching.pdf
https://www.researchgate.net/profile/Qixing_Huang2/publication/333161346_Reassembling_Fractured_Objects_by_Geometric_Matching/links/5cde36ce299bf14d959f80bd/Reassembling-Fractured-Objects-by-Geometric-Matching.pdf
https://www.researchgate.net/profile/Qixing_Huang2/publication/333161346_Reassembling_Fractured_Objects_by_Geometric_Matching/links/5cde36ce299bf14d959f80bd/Reassembling-Fractured-Objects-by-Geometric-Matching.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/Zhang_3D_Fragment_Reassembly_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/Zhang_3D_Fragment_Reassembly_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/Zhang_3D_Fragment_Reassembly_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/Zhang_3D_Fragment_Reassembly_ICCV_2015_paper.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/Repair_final_low.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/Repair_final_low.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/Repair_final_low.pdf

11

combined approach a mixed-method (see §3.4). The next step
is the computation of the pairwise scores of fractured regions.
Last, a combinatorial solver selects the best matches and build the
reassembly. Papaioannou et al.’s pipeline encompasses other steps,
such as multi-part refinement and completion.

Figure 3.3: A contour-based puzzle.
© E. Sizikova and T. Funkhouser
[SF17].

Sizikova and Funkhouser13 propose a genetic algorithm. They

13 [SF17] E. Sizikova and T. Funkhouser,
Wall Painting Reconstruction Using a
Genetic Algorithm.

provide pairwise matches and single fragments as input, which
are called clusters. Their algorithm alternates between selection
and recombination phases until convergence. The fitness function
used for selection ranks the current clusters by size, diversity, and
estimated correctness. The recombination creates new clusters
from two-parent clusters. They either share a common fragment
a set of spanning matches.

3.4 mixed methods

Finally, some work exploits both the contour and the content.

Tsamoura and Pitas14 identify the similarities between fragments 14 [TP09] E. Tsamoura and I. Pitas, Au-
tomatic color based reassembly of frag-
mented images and paintings.

colors with a content-based image retrieval system. It allows them
to reduce the computational burden of the second step, which
is the discovery of matching couples contour segments of adja-
cent image fragments based on the Smith-Waterman algorithm15. 15 Smith-Waterman algorithm on

Wikipedia.Then, they use the iterative closest point algorithm to align the
image fragments16. Last, they reassemble all fragments, using an 16 Iterative closest point on Wikipedia.

alignment angle to solve conflicts.

Zhang and Li17 introduce a method based on both fragment shapes 17 [ZL14] K. Zhang and X. Li, A graph-
based optimization algorithm for frag-
mented image reassembly.

and patterns. They approximate polygons from the fragments
contour and match them in pairs. Each matching is associated
with a score based on the contour and the colors of the patches.
Last, they apply a graph optimization algorithm that selects the
edges that maximize compatibility rather than the highest scores
to reassemble the whole image.

Derech et al.18 propose to match overlapping fragments rather 18 [DTS18] N. Derech, A. Tal, and I.
Shimshoni, Solving Archaeological Puz-
zles.

than searching valid continuities. To do so, they extrapolate the
fragments and superpose the extrapolation, looking for a match.
Then, they solve the puzzle one piece after another: they use the
current reassembly to place the next fragment. They also consider
a slight erosion of the fragments borders and tackle it by using
inpainting techniques.

Savelonas et al.19 propose a setup that separates fractures from 19 [SAPM17] M.A. Savelonas et al., Ex-
ploiting Unbroken Surface Congruity for
the Acceleration of Fragment Reassem-
bly.

intact surfaces. Then, salient curves are extracted from the intact
facets. A heuristic is then used to compare each pair of fragments,
looking for the number of features and the surface’s geometric
texture. After this initial test, they look for matches of the plausible
pairs, using either fractures or curves. They construct a graph and
use Kruskal’s algorithm to obtain complete reassembly.

https://esizikova.github.io/files/gch16.pdf
https://esizikova.github.io/files/gch16.pdf
https://www.cct.lsu.edu/~kzhang/papers/Automatic_Color_Based_Reassembly.pdf
https://www.cct.lsu.edu/~kzhang/papers/Automatic_Color_Based_Reassembly.pdf
https://www.cct.lsu.edu/~kzhang/papers/Automatic_Color_Based_Reassembly.pdf
https://en.wikipedia.org/wiki/Smith-Waterman_algorithm
https://en.wikipedia.org/wiki/Smith-Waterman_algorithm
https://en.wikipedia.org/wiki/Iterative_closest_point
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.683.4733&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.683.4733&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.683.4733&rep=rep1&type=pdf
https://arxiv.org/pdf/1812.10553.pdf
https://arxiv.org/pdf/1812.10553.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/GCH2017.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/GCH2017.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/GCH2017.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/GCH2017.pdf

12

3.5 conclusion

This chapter presented the most popular methods to solve puzzles
with computer vision without deep learning. The main criticism of
such approaches is that they rely solely on local information. As such,
they do not achieve a global understanding of the images’ content,
which can lead to incorrect reassemblies.
However, these algorithms provide both goals and benchmarks to

help us design deep learning-driven approaches.

Artwork 3: Two Men Contemplating the
Moon, Caspar David Friedrich, ca. 1825-
30, from the MET Open Collections.

https://www.metmuseum.org/art/collection/search/438417
https://www.metmuseum.org/art/collection/search/438417

4
On the datasets

[Chapter 3 Chapter 5]
Synopsis This chapter lists the input data requirements in §4.1 and
introduces the datasets we use to train (§4.2.1) and test (§4.2.2) our
neural networks.

4.1 requirements for the dataset

To reassemble an object using only the semantics, we need to prevent
our neural networks from using visuals cues such as fractures regions
and color continuities. Hence, all the fragments should be similar in
shape and size and cropped enough to break continuities. To a certain
extent, the erosion can conceal the original fragment shape, and so
this square-patch hypothesis is consistent with the archaeological
setting in which we operate.
Although we ought to reconstruct monuments from blocks, we

do not need to feed our neural networks with 3D images. Indeed,
the semantic information is often only present on one side of the
fragment, so using 3D blocks turns out to be inefficient because the
deep learning algorithm would need to extract the pertinent face’s
data. If we want to keep the depth information, it is better to project
the block onto a 2.5D1 picture. For example, Roc-au-Sorcier data 1We use the adjective 2.5D to describe

any 2D image that uses grey-level to
depict the depth.

benefits from 2.5D because the color contrast of the blocks is very
low. Last, when significant information is sculpted on two faces, i.e.,
for an outside corner block of the Vaux-de-la-Celle’s temple, placing
the faces side by side (i.e., flattening) preserve the geometry of the
sculpted representations.
Inspired by previous work such as Doersch et al.2, we opt for 3×3 2 [DGE15] C. Doersch, A. Gupta, and

A.A. Efros, Unsupervised visual repre-
sentation learning by context prediction.

jigsaw puzzles with square 2D fragments spaced by an important
margin representing the erosion.

However, we do not train our neural networks on the 2D images
from Roc-aux-Sorciers and Vaux-de-la-Celle, for three reasons. First,
Doersch et al. also highlight in [DGE15] an important issue shared
by most standard datasets: the color deformations induced by the
camera lens. They find out that the green channel is shrunk towards
the center of the pictures, and their first neural network relied on that
information to correctly reassemble the images. They recommend
using pictures taken for a high-quality camera with no lens aberration,
at least for the training set, and we do not have such a camera at our
disposal.

https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1505.05192

14

Second, training a neural network requires a large amount of data,
and the hundred of fragments from each site is not nearly enough
to obtain accurate predictions from the network.
Third, we do not have enough examples of correct reassemblies to

do supervised learning: among the blocks, only a few combinations
have been identified by archaeologists and conservators. We would
need thousands of validated combinations for the training and val-
idation sets. As we cannot break artifacts to obtain more pairs of
known reassemblies3, using the Roc-aux-Sorciers and Vaux-de-la- 3 An alternative is to virtually break 3D-

scans into pieces which allows augment-
ing our dataset, provided that we prefer
to work on scanned data rather than on
photographs.

Celle blocks’ images for training is incompatible with the supervised
learning we planned.

Puzzle-solving can be seen as a self-
supervised task: labels (i.e., the patches
positions) are given to the neural net-
work, but they are generated along with
the patches.

For these three reasons, we build our main dataset from pictures
without lens-induced flaws. We find out that most of the museums’
open-access photographs datasets are made through a high-quality
scanning procedure and meet our quality and quantity criteria. Last,
we can divide the images into parts virtually, which give us the labels.

4.2 the datasets

4.2.1 The MET dataset

We introduce the met dataset in our first article4. This dataset is 4 [PPT18b] M.-M. Paumard, D. Picard,
and H. Tabia, Jigsaw puzzle solving us-
ing local feature co-occurrences in deep
neural networks.

made of open-access photographs from the Metropolitan Museum
of Art (MET). It provides images taken with ultra-high-resolution
cameras5 that avoid the lens bias mentioned above (§4.1) that comes 5A museum without walls: How the

Met is bringing its ancient collection on-
line, Mashable.com, © R. Kraus, 2018.

with the popular computer vision datasets.

Figure 4.1: Images from the MET
dataset.

The dataset pictures (Figure 4.1) fall into three main categories,
similar in size: artifacts, engravings and texts, and paintings. An
artifact may be a piece of clothing, a piece of tableware, a pottery
plate, a carved flint, or a sculpture. As the artifact pictures display
a uniform background, the background fragments are expected to
be misplaced. The paintings are mostly portraits and landscapes.
The engravings include of geometric engravings (around 20% of the
dataset), illustrated engravings (13% of the dataset) and printed texts

https://mashable.com/article/the-met-museum-api
https://mashable.com/article/the-met-museum-api
https://mashable.com/article/the-met-museum-api

15

(less than 1% of the dataset). A fifth of the dataset is composed of
black and white images.

Figure 4.2: Example of puzzle prepara-
tion from an image of the MET dataset.

The dataset is made of 10000 training images and 2000 validation
images. Patches coordinates are provided as well for replication
purposes, but they can be randomly extracted from images at each
step of the learning process if the user prefers. We prepare the
patches following the procedure exposed by Doersch et al. [DGE15].
Each image from the training set is resized and square-cropped so
that its size is 398×398 pixels. We divide it into 9 parts separated by
a 48-pixels gap, mimicking the fragments’ erosion. Each fragment is
of size 96×96 pixels, and we randomly jitter its location by ±7pixels
in each direction, as illustrated in Figure 4.2.

4.2.2 Other datasets

We apply our methods to four other datasets: the well-known Ima-
geNet, a self-made bas-reliefs dataset, and two small validation set of
pictures from our archaeological sites.

ImageNet ImageNet [DDS+09] is a large visual dataset used in
visual object recognition. It has continued to evolve since 2009 and
now contains millions of hand-annotated images [RDS+15]. The
images have been collected through the web, and they depict real-life
situations and objects in their environment (Figure 4.3).

Figure 4.3: Images from ImageNet.

We use the data used for Large Scale Visual Recognition Challenge
2012 (ILSVRC2012), which contains 1,200,000 training images and
150,000 validation images.

Bas-relief We propose a dataset made of bas-reliefs found on the
internet. It is made of 100 fine-tuning images and 87 validation
images. Figure 4.4 shows some pictures from this dataset. Most of
the images display low contrast and similar hue.

16

Figure 4.4: Images from the bas-reliefs
dataset.

Roc-aux-Sorciers We crop 20 square puzzles from the Bourdois
shelter’s frieze of Roc-aux-Sorciers (Figure 4.5).

Figure 4.5: Images from Roc-aux-
Sorciers.

Vaux-de-la-Celle From the 3D-scans of 60 Vaux-de-la-Celle’s
blocks, we extract the most important face and make 2D renderings
under 14 different lighting. Figure 4.6 illustrates the light variation
for three 2D-renders.

Figure 4.6: Images from Vaux-de-la-
Celle.

Part II

PAIRWISE COMPARISON WITH DEEP
LEARNING

5
Puzzle-solving with deep learning

[Chapter 4 Chapter 6]
Synopsis This chapter introduces the methods that rely on deep
learning to solve puzzles. After introducing the three types of methods
in §5.1, we detail each of them in §5.2-5.4.

5.1 introduction

In Chapter 3, we presented state-of-the-art methods to solve puzzles
without relying on deep learning. We now present those that do. If
the reader is unfamiliar with deep learning research, we recommend
reading Appendix A first.

In 2015, Doersch et al.1 introduced a pretext task2 for classification 1 [DGE15] C. Doersch, A. Gupta, and
A.A. Efros, Unsupervised visual repre-
sentation learning by context prediction.

2A pretext task is what we use to pre-
train a neural network. It allows it
to discover visual features in a self-
supervised learning setup, which helps
it to perform better at another task.
We detailed why puzzle-solving is self-
supervised in §4.1.

and detection. They endow a neural network with a sense of spatial
semantics by training it to solve 3×3 puzzles, i.e., square puzzles
with one central fragment and eight lateral fragments. Their neural
network is trained to predict the relative position of a lateral fragment
compared to the central fragment (Figure 5.1). Because Doersch et
al. only care about the tasks that follow the pretext task, they
settle for classifying the positions rather than proceeding to complete
reassembly.

Figure 5.1: Example of pairwise com-
parison task. © Doersch et al. [DGE15].

Doersch et al. brought the puzzle-solving task to the deep learning
community and inspired many works. Some also regard it as a pretext
task, while others tackle the reassembly problem as a whole. Another
line of comparison emerged through state of the art, concerning the
objective of the neural networks, which can either be:

Pairwise comparison: The neural network predicts the position of a
fragment in relation to another fragment (§5.2);

Global comparison: The neural network predicts the position of a
fragment compared to the placed fragments (Chapter 9);

Permutation: Given all the fragments, the neural network predicts a
permutation that gives a correct reassembly (§5.4).

5.2 pairwise comparison

The pairwise comparison3 has been introduced by Doersch et al. in 3 See §5.1 for a brief explanation of Do-
ersch et al.’s method.[DGE15] and strongly inspired our work [PPT18a, PPT18b, PPT20]

as well as Ostertag and Beurton-Aimar’s [OBA20] and Bridger et
al.’s [BDT20]. In both cases, the reassembly is obtained from a

https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1505.05192

19

decision algorithm4. The reassembly algorithm makes its choice 4 Appendix B is an introduction to deci-
sion science.based on each pair of fragments’ relative position, which has been

predicted by the neural network.

Ostertag and Beurton-Aimar5 study reassembly for ostraca6. Their 5 [OBA20] C. Ostertag and M. Beurton-
Amar, Matching ostraca fragments using
a siamese neural network.
6An ostracon is a piece of pottery.

dataset is composed of square ostraca images, which they cut into 9
same-sized fragments. As a continuation of their work in [PAJ19],
they use a 2D Siamese neural network to evaluate the matching
possibilities of each couple of fragments. They predict whether
the second fragment goes up, down, left, right, or is not adjacent
to the first one. The reassembly step constructs a graph through
iterative addition of small fragments, which is very similar to our
greedy algorithm (§6.5). They do not use erosion, but they create
oblique fractures between the pair of fragments. In detail, they
concatenate two adjacent fragments, draw a random oblique line
between the fragments, and cut the fragments in such a way that
each contain the pixels of “its side” of the oblique line (Figure 5.2).
The pixels of the “other side” are replaced with fully transparent
black pixels. They reach 96% on the pairing task; we suspect
their neural network to look for matching based on the oblique
rather than on the content or the semantics. They do not give any
score on reassembly, describing their results as “poor.”

Figure 5.2: The oblique fracture men-
tioned in [OBA20]. © Ostertag and
Beurton-Aimard [OBA20].

Bridger et al.7 use a small erosion that allows them to inpaint 7 [BDT20] D. Bridger, D. Danon, and A.
Tal, Solving jigsaw puzzles with eroded
boundaries.

the erosion area of each couple of pieces in order to classify their
relation (up, down, right, left, not adjacent). The fragments are
not compared to a central fragment. Then, they apply the greedy
placement algorithm presented in [PT15]8. 8 Read about [PT15] in §3.2.

5.3 global comparison

We introduced iterative solving with deep learning in our article
[PPT21]. Chapters 9 and 10 describe it in detail.

5.4 permutations

The permutation-based methods do not compare the lateral fragments
to a central one. They solve puzzles by finding the correct permutation
to perform on the fragments. Such methods are end-to-end: no
reassembly algorithm is required to solve the puzzle. The standard
setup introduced in [NF16, NVFP18] is a classification problem, were
each permutation (usually 9!) is a class. The high number of classes
induces a tremendous computation time. The authors avoid this
issue by restricting the number of possible reassemblies, which causes
most of them to be unattainable.

Noroozi and Favaro9 solve 3×3 jigsaw puzzles and use the puzzle- 9 [NF16] M. Noroozi and P. Favaro, Un-
supervised learning of visual represen-
tations by solving jigsaw puzzles.

solving as a pretext task. The neural network receives the 9 pieces
as an input and predicts the correct fragments permutation among
10 to 1000 combinations. While preserving their architecture,

https://www.sciencedirect.com/science/article/abs/pii/S0167865520300118
https://www.sciencedirect.com/science/article/abs/pii/S0167865520300118
https://arxiv.org/abs/1912.00755
https://arxiv.org/abs/1912.00755
https://arxiv.org/pdf/1603.09246.pdf
https://arxiv.org/pdf/1603.09246.pdf
https://arxiv.org/pdf/1603.09246.pdf

20

they complicate the resolution task in their extension article10 10 [NVFP18] M. Noroozi et al., Boost-
ing Self-Supervised Learning via Knowl-
edge Transfer.

by replacing one or two fragments of the puzzle by fragments
extracted from a random image. This setup is not equivalent to
solving puzzles with two missing and two outsider fragment, as
the two outsider fragments cannot be labeled as outsiders.

Santa Cruz et al.11 propose an architecture that order an image 11 [SCFCG17] R. Santa Cruz et al., Deep-
PermNet: Visual Permutation Learning.sequence, which serves as a pretext task. For instance, they order a

set of faces by their expressions and solve 3×3 jigsaw puzzles. They
introduce a Sinkhorn layer that transforms the predictions into
a permutation matrix. Their architecture achieves better results
than [DGE15, NF16] on the usual classification tasks. However,
they do not evaluate their architecture on the puzzle-solving task.

Figure 5.3: Example of permutation
task with inpainting and colorization.
© Kim et al. [KCYK18].

Kim et al.12 tackle the case of discoloration with one missing

12 [KCYK18] D. Kim et al., Learning
Image Representations by Completing
Damaged Jigsaw Puzzles.

fragment. Based on inpainting and colorization techniques, they
restore the images (Figure 5.3). For the reassembly, they use a
network similar to Noroozi et al.’s [NF16] in which they input a
white fragment, representing the missing tile. They provide no
insight into the effectiveness of their architecture for the reassembly.

Wei et al.13 propose a permutation method that partially relies on 13 [WXR+19] C. Wei et al., Iterative Re-
organization with Weak Spatial Con-
straints: Solving Arbitrary Jigsaw Puz-
zles for Unsupervised Representation
Learning.

pairwise comparisons. Their neural network outputs a cost made
of two terms: one that gives the relative position (among 9) of
every couple of fragment, and one that measures how likely a
fragment is located in each position. This last term is obtained from
the concatenation of all the features that feed a fully-connected
layer that outputs the matrix of fragment-position scores. Then,
a permutation is obtained from the cost function. It is applied,
and the new reassembly is re-evaluated, iteratively until a stop
criterion is reached. This method is still limited in terms of puzzle
size, and solving 4×4 is too resource-costly. Nonetheless, Wei et al.
have been able to solve 3×3×3 puzzles.

5.5 comparison

Table 5.1 shows the reassembly tasks14 addressed by each mentioned 14 See §2.2 to review the reassembly
tasks.article. We detail our work from [PPT18a, PPT18b, PPT20, PPT21]

in the next chapters and only present other author’s work. The Table
details the maximum quantity of fragments used as input, the puzzle’s
binding size (if any), the available permutations15, the percentage of 15 The available permutations column

indicates the number of puzzles that
can be solved and is explained in §5.4.

erosion, and the maximum number of missing and extra fragments.
Note that all methods except Doersch et al.’s compute a reassembly;
some aim to improve the reassembly quality while others only focus
on the tasks for which the puzzle-solving is a pretext task.
The pairwise comparison-based methods exhibit strengths and

weaknesses as opposed to permutation-based methods. In the first
case, it is possible to work with missing or extra fragments. In the
case of permutations, the neural network makes its predictions based
on all the fragments, rather than a couple of fragments.

https://openaccess.thecvf.com/content_cvpr_2018/papers/Noroozi_Boosting_Self-Supervised_Learning_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Noroozi_Boosting_Self-Supervised_Learning_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Noroozi_Boosting_Self-Supervised_Learning_CVPR_2018_paper.pdf
https://arxiv.org/pdf/1704.02729.pdf
https://arxiv.org/pdf/1704.02729.pdf
https://arxiv.org/pdf/1802.01880.pdf
https://arxiv.org/pdf/1802.01880.pdf
https://arxiv.org/pdf/1802.01880.pdf
https://arxiv.org/pdf/1812.00329.pdf
https://arxiv.org/pdf/1812.00329.pdf
https://arxiv.org/pdf/1812.00329.pdf
https://arxiv.org/pdf/1812.00329.pdf
https://arxiv.org/pdf/1812.00329.pdf

21

Article Type
Quantity

of fragments
Binding
puzzle size

Available
permutations Erosion

Missing
fragments

Extra
fragments

[DGE15] Pairwise 9 3×3 All (9!) 50% - -
[PPT18b] Pairwise 9 3×3 All (9!) 50% No No
[PPT18a] Pairwise 9 3×3 All (9!) 50% 7 No
[PPT20] Pairwise 9 (12 seen) 3×3 All (9!) 50% 7 3
[OBA20] Pairwise 9 3×3 All (9!) No* No No
[BDT20] Pairwise 150 No All 7-14% No No
[PPT21] Global 9 5×5 All (25!) 10-30% No No
[NF16] Permutation 9 3×3 1000 17% No No
[NVFP18] Permutation 9 3×3 1000 17% 2 2
[SCFCG17] Permutation 4 2×2 All (4!) No No No
[KCYK18] Permutation 8+1 3×3 All (9!) No 1 No
[WXR+19] Permutation 9 3×3(×3) All 30% No No

Table 5.1: The reassembly task ad-
dressed by each presented article. (*)
indicates the oblique fracture with no
erosion; see the in-text explanation.

6
Deepzzle

[Chapter 5 Chapter 7]
Synopsis This chapter explains Deepzzle, our jigsaw puzzles solver
relying on the pairwise comparison. It starts with an overview §6.2
and a mathematical formulation §6.3 of the puzzle-solving task, and
then it details the pairwise comparison §6.4 and the reassembly §6.5
steps. The last section gives a description of our experiments and
metrics §9.5.

6.1 introduction

In this chapter, we present Deepzzle, a method to solve 3×3 jigsaw
puzzles (Figure 6.1) with the pairwise comparison. We place our
work in an archaeological context, with heavily eroded fragments.

Figure 6.1: A task submitted to Deepz-
zle.

Among our contributions, we propose two extensions of the stan-
dard 3×3 problem introduced by Doersch et al. [DGE15]. First, we
deal with missing fragments and outsider fragments, which are fre-
quent in archaeology. In this case, we allow fragments to be unused
and positions to be unfilled. Second, we consider the case where the
central fragment is unknown. In this case, we compute the relative
positions supposing that each fragment is the central one.

Sources We walk through the following articles, presenting most of
our contributions1: 1 The results are discussed in Chapter 7.

] Jigsaw Puzzle Solving Using Local Feature Co-Occurrences in Deep
Neural Networks;

] Image Reassembly Combining Deep Learning and Shortest Path Problem;

] Deepzzle: Solving Visual Jigsaw Puzzles with Deep Learning.

https://hal.archives-ouvertes.fr/hal-01820489v2
https://hal.archives-ouvertes.fr/hal-01820489v2
https://hal.archives-ouvertes.fr/hal-01869765v2
https://hal.archives-ouvertes.fr/hal-02494602v1

23

6.2 method overview

Figure 6.2 illustrates our puzzle-solving process, inspired by Doersch
et al. [DGE15]. A neural network predicts the relative position of
each couple of central-lateral fragments. The probabilities are used
to build a graph that serves to identify the best reassembly.

Figure 6.2: Outline of Deepzzle. From
a set of pieces (a) made of a central
fragment (in red) and lateral fragments,
we pick a lateral fragment (in green).
We extract its features (b) and predict its
place among the eight lateral positions
and the outsider class (c). Then, we
build the graph of the prediction (d)
in which each line matches a fragment.
The reassembly (e) is computed from
the shortest path in the graph.

Our method addresses the following settings:

] The puzzle size is 3×3;

] The algorithm is explicitly given a central fragment;

] The algorithm solves complete puzzles (9 fragments) and puzzles
with missing fragments;

] The algorithm solves puzzle with no or several added fragments. In
this last case, the available relative positions (i.e. classes) represent
the 4 cardinal position, the 4 intercardinal2 position, and the 2 The intercardinal positions are: left-

top, right-top, left-bottom, and right-
bottom.

non-adjacency of the fragments.

We also solve puzzles with unknown central fragment: we predict
all the combinations for each fragment made central, and we select
the best reassembly among them.

6.3 problem formulation

Puzzle-solving identifies the most probable reassembly, i.e., the re-
assembly that satisfies as many relative position predictions as pos-
sible. In this section, we present the optimization problem we use
to solve 3×3 jigsaw puzzles. We also justify we can use the pairwise
comparison to the central fragment to solve a puzzle.

Notations We introduce 𝑃𝑟 a probability and 𝑥𝑖,𝑗 ∈ [0, 1] the affec-
tation of the fragment 𝑖 ∈ [0 . . 𝑓] at the position 𝑗 ∈ [0 . . 𝑝], where
𝑓 is the number of lateral fragments and 𝑝 the number of available
position, i.e., classes. Therefore, 𝑝 ∈ [8, 9], where 9 applies to the case
when added fragments are permitted.
We define position 0 as the central position and fragment 0 as the

central fragment. We then introduce 𝑥𝑐 = 𝑥0,0, the placement of the
central fragment at the central position.

24

We want to find the maximum joint probability of placing all frag-
ments:

max𝑃𝑟(𝑥𝑐, 𝑥1,1, 𝑥1,2, … , 𝑥2,𝑗1
, … , 𝑥𝑓,𝑝).

Because each fragment can occupy only one position, we simplify
the latter equations and introduce 𝑥𝑖 ∈ [1 . . 𝑝] the chosen affectation
of the fragment 𝑖:

max𝑃𝑟(𝑥𝑐, 𝑥1, 𝑥2, … , 𝑥𝑓). (6.1)

The constraint on the single fragment per position is then:

∀𝑖, 𝑗 ∈ [1 . . 𝑓]2s.t.𝑥𝑖 ≠ 9, 𝑥𝑖 ≠ 𝑥𝑗.

As the predictions of the positions of the lateral fragments depend
on the central fragment, we extract the central fragment 𝑥𝑐 from 𝑃𝑟.
We use Bayes rule:

𝑃𝑟(𝑥𝑐, 𝑥1, … , 𝑥𝑓) = 𝑃𝑟(𝑥1 … 𝑥𝑓|𝑥𝑐) × 𝑃𝑟(𝑥𝑐).

We assume 𝑃𝑟(𝑥𝑐) = 1. To ease the notation, we drop the term |𝑥𝑐
in the further equations while keeping in mind that 𝑥𝑐 conditions all
probabilities.
We now restate the previous equation with Bayes rule, to expose

that assembling the puzzle is an iterative process where fragments
are selected and placed sequentially. As such, the probability of a
reassembly depends on the probabilities of placing the last fragment,
knowing that all previous fragments are placed:

𝑃𝑟(𝑥𝑓 … 𝑥1) = 𝑃𝑟(𝑥𝑓|𝑥𝑓−1 … 𝑥1) × 𝑃𝑟(𝑥𝑓−1 … 𝑥1). (6.2)

To obtain a tractable approximation, we suppose that 𝑥𝑖 follows the
Markov Chain:

𝑃𝑟(𝑥𝑓|𝑥𝑓−1 … 𝑥1) = 𝑃𝑟(𝑥𝑓|𝑥𝑓−1). (6.3)

Unrolling the recursion of Equation 6.2 leads to:

𝑃𝑟(𝑥1 … 𝑥𝑓) = ∏
𝑖∈[2. .𝑓]

𝑃𝑟(𝑥𝑖|𝑥𝑖−1) × 𝑃𝑟(𝑥1).

To further simplify the problem, we make the approximation that 𝑥𝑖
and 𝑥𝑖−1 are independent:

𝑃𝑟(𝑥𝑖|𝑥𝑖−1) = 𝑃𝑟(𝑥𝑖), (6.4)

which leads to:
𝑃𝑟(𝑥1 … 𝑥𝑓) = ∏

𝑖∈[1. .𝑓]
(𝑃𝑟(𝑥𝑖)).

This approximation allows using pairwise relationships to solve a
puzzle. Without this approximation, the neural network architecture
would be significantly more complex as it would require to compare
all the fragments. Such architecture would be less adaptable to
missing and outsider fragments.

25

In turns, it means we want to solve the following optimization
problem:

max𝑃𝑟(𝑥1, … 𝑥𝑓) = max∏
𝑖

𝑃𝑟(𝑥𝑖), (6.5)

which is equivalent to:

max log𝑃𝑟(𝑥1, … 𝑥𝑓) = max∑
𝑖

log𝑃𝑟(𝑥𝑖). (6.6)

6.4 pairwise comparison step

In order to solve the optimization problem of Equation 6.6, we
need an estimator of 𝑃𝑟(𝑥𝑖|𝑥𝑐). We cast the problem of estimating
𝑃𝑟(𝑥𝑖|𝑥𝑐) as a classification problem that can easily be solved by a
deep convolutional neural network. The neural network has two
inputs, corresponding to the central fragment and the lateral fragment,
and its outputs correspond to the possible positions of the fragment
𝑖. To optimize this network, we use a categorical cross-entropy. The
architecture we propose is directly derived from the independence
approximation made in Equation 6.4.

Figure 6.3: Full network architecture
for 8 classes. FEN: Feature Extrac-
tor Network. CL Combination Layer.
FC: Fully Connected. BN: Batch-
Normalization. R: ReLU activation. S:
Softmax activation.

More specifically, each fragment goes through a Siamese network
(Figure 6.3) called the Feature Extraction Networks (FEN). It per-
forms the same features extraction, thanks to shared weights. Then,
the features of the fragments are merged in the Combination Layer
(CL). Finally, three fully-connected (FC) layers followed by a batch-
normalization and an activation (ReLU for the first two and softmax
to ensure probabilities for the last layer) predicts the relative position.
The neural network is trained at once using stochastic gradient

descent on batches of fragments pairs. Its output consists of a fully
connected layer with 𝑝 neurons followed by a softmax activation,
corresponding to the 𝑝 possible relative locations’ probabilities. We
propose three output sizes:

] 𝑝 = 8, the number of lateral positions;

] 𝑝 = 9, the number of lateral positions plus the outsider class;

] 𝑝 = 1, a Boolean that is true when the fragments are adjacent.

6.4.1 Feature extractor

We use a convolutional neural network to compute the features
associated with the fragments. Our architecture takes inspiration

26

Layer Shape # parameters

Input 96 × 96 × 3 0
Conv+BN+ReLU 96 × 96 × 32 1k
Maxpooling 48 × 48 × 32 -
Conv+BN+ReLU 48 × 48 × 64 19k
Maxpooling 24 × 24 × 64 -
Conv+BN+ReLU 24 × 24 × 128 74k
Maxpooling 12 × 12 × 128 -
Conv+BN+ReLU 12 × 12 × 256 296k
Maxpooling 6 × 6 × 256 -
Conv+BN+ReLU 6 × 6 × 512 1.2M
Maxpooling 3 × 3 × 512 -
Fully Connected+BN 512 2.4M

Table 6.1: Architecture of the Fea-
ture Extraction Network with 8 output
classes. Conv: 3×3 convolution, BN:
Batch-Normalization, ReLU: ReLU acti-
vation.

from VGG [SZ14] and is composed of a sequence of 3 × 3 convolutions
followed by batch-normalizations [IS15], ReLU activations [NH10]
and max-poolings. The full architecture is shown on Table 6.1.
The feature extraction network is inspired by VGG [SZ14] with a

fully connected layer that allows preserving the spatial layout of the
input fragment. We did not append a global pooling layer [LCY13]
to the FEN, and thus spatial information is preserved, which we
believe is essential for the relative position prediction.
We also tried other models based on more recent architectures

such as Resnet [HZRS16], but we empirically found that they were
underperforming compared to the simpler architecture. It can be
explained by the fact that, contrary to full images, fragments do not
contain as much semantic information and thus require less involved
features.

6.4.2 Combination layer

These features obtained from the FEN are combined through a com-
bination layer. In [DGE15], the authors propose to concatenate both
features in the combination layer. The output of the concatenation
layer is, therefore:

𝑦𝐶𝐿 = 𝑥1 + 𝑥2,

where 𝑦𝐶𝐿 is the output of the concatenation layer and 𝑥1 and 𝑥2
the outputs of the FEN.
In such a formulation, the cross-covariance between the features of

both fragments is neglected. Indeed, the output of the convolutional
neural network can be viewed as localized pattern activations. The
relative position’s prediction depends on the conjunction of specific
patterns occurring at specific positions in the first fragment and
specific patterns occurring at specific positions in the second fragment.
It can be argued that a sufficiently deep multi-layer perceptron can
model these cross-covariances, but it seems easier to model them
directly.
In [LRM15], the authors suggest modeling these co-occurrences

27

of patterns using a bilinear model, which can be computed using
the Kronecker product of the feature vectors. They report improved
accuracy on fine-grained classification. Therefore, we implemented
an alternative combination layer with the Kronecker product ⊗:

𝑦𝐶𝐿 = 𝑥1 ⊗ 𝑥2.

However, using the Kronecker product leads to high dimensional
features that are intractable in practice. To overcome this burden, the
authors of [GBZD16] propose to use random projections combined
with the Hadamard product3 to approximate the bilinear model. 3 The Hadamard product is also known

as “element-wise product.” Hadamard
product on Wikipedia.

This strategy is further extended in [KOL+16], where the projections
are trained in true deep learning fashion. We implemented another
possible combination layer:

𝑦𝐶𝐿 = 𝑥1 ∘ 𝑥2,

where ∘ is the Hadamard product. As we said, it is an approximation
of the Kronecker product; therefore, we expect to get lower scores
but better computing time.
Alternatively, a factorization based on the Tucker decomposition

is also proposed in [BYCCT17], which allows controlling the rank of
the considered co-occurrences.

6.5 reassembly step

We present three reassembly methods to solve Equation 6.6 with the
probabilities predicted by the deep neural network: a greedy solver,
an exact solver relying on Dijkstra’s algorithm, and a heuristic.
We consider the case where the central fragment is known, with no

missing or added fragment. We feed the reassembly algorithm with 𝑌,
the 8×8 predictions matrix obtained through the last fully-connected
layer of the neural network. Each cell contains 𝑥𝑖,𝑗, i.e., the odds
that the corresponding lateral fragment (the row of the matrix) has a
specific relation (the columns) with the central fragment. Henceforth,
the sum of each row values is 1.
Appendix B gives an introduction to the assignment problem,

standard algorithms, performance, and complexity.

6.5.1 Greedy solver

The puzzle-solving problem is an assignment problem where we
have to pick 8 values from the matrix (only one per row/column)
such that their sum is maximized. We iteratively pick the maximum
value and remove its corresponding row and column until all the
positions are filled. In the rare case that two cells contain the exact
same maximum float, we select the one from the first row. Therefore,
the order of the fragments’ impact on the solution we obtain can be
approximated as null. We prove later that it is not the case for the
heuristic.
Algorithm 1 presents the outline of the greedy solver:

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

28

Algorithm 1: Greedy algorithm outline.
1: procedure Greedy(𝑌)
2: 𝑟𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 ← [0] × 8
3: while 0 ∈ 𝑟𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 or 𝑌 ≠ ∅ do
4: 𝑚𝑎𝑥_𝑓𝑟𝑎𝑔, 𝑚𝑎𝑥_𝑝𝑜𝑠 ← argmax(𝑌)
5: 𝑟𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦[𝑚𝑎𝑥_𝑝𝑜𝑠] ← 𝑚𝑎𝑥_𝑓𝑟𝑎𝑔
6: 𝑌 .pop_row(𝑚𝑎𝑥_𝑓𝑟𝑎𝑔)
7: 𝑌 .pop_column(𝑚𝑎𝑥_𝑝𝑜𝑠)
8: end while
9: return 𝑟𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦
10: end procedure

where 𝑌 is the predicted values matrix containing 𝑥𝑖,𝑗. We store the
solution in the size-8 array 𝑟𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦. Each of its cell corresponds
to a position, starting from the upper-left corner. Figure 4.2 shows
the correspondence between positions and 𝑟𝑒𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 cells.

Complexity The complexity of the greedy solver is 𝒪(𝑓 × 𝑝2): the
while loop repeats 𝑝 times or less (𝒪(𝑝)), the argmax operation
requires to browse 𝑌 entirely (as 𝑌 is of size 𝑓 ×𝑝, we have 𝒪(𝑛 ≤ 𝑓 ×𝑝)
and the two pop operations are in constant time (𝒪(1)).

Performance The greedy algorithm amplifies the neural network’s
mistakes. It offers no performance guarantee if it makes at least
one mistake, i.e., if it assigns a fragment’s best score to a wrong
position. In the worst case, no fragment is well placed (except for the
central fragment). However, if the neural network correctly predicts
each fragment’s class, the greedy solver always obtains the correct
reassembly.

Central fragment If the central fragment is unknown, we compare
all the pairs of fragments and apply 9 times the reassembly algo-
rithm, for different central fragment each time. We score to all the
reassemblies with the sum of 𝑥𝑖,𝑗 for the chosen (𝑖, 𝑗), and we keep
the reassembly with the maximal score.

Missing and extra fragments The greedy solver can manage missing
or extra fragments4, but not both of them at the same time. Indeed, 4 Reminder: with added fragments, we

predict the relation among 9 classes.if we have 4 lateral fragments (i.e., 4 missing fragments) and 4 extra
fragments, the greedy solver will place the 8 fragments and not the 4
correct ones. We add a preliminary step to the greedy algorithm to
circumvent this problem: we remove all the rows where the maximal
probability is in the 9th “not related” column.

6.5.2 Graph-based reassembly

Dijkstra’s5 ,6 shortest path algorithm [D+59] is an alternative to the 5Wikipedia article on Pr. Edsger Wybe
Dijkstra.
6 Pronounce day-kstra, like may.

greedy solver that comes with performance guarantee. It finds the

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

29

best path between two nodes in a graph, and it is a precursor of the
A* algorithm. Among other topics, Appendix B gives an introduction
to graph traversal algorithms, also known as graph search algorithms.
We present the two steps of our graph-based reassembly algorithm:

1. We first build a graph that contains all the reassembly path, i.e.,
all the consecutive actions that can lead to a complete reassembly.
The nodes of the graph contain the action of placing a fragment
in a position. The graph is similar to a tree of consecutive actions,
where all the leaves are linked to the endgame state 𝑇7 (Figure 7 𝑇 stands for target, and 𝑆 designates

the source of the shortest path.6.4).

2. From the graph, we apply Dijkstra’s algorithm to find the best
path from the empty puzzle situation to the endgame state.

Figure 6.4: Graph obtained with 3 frag-
ments and 3 positions.

Graph building Given a set of fragments and empty positions, there
are many ways to reach a chosen solution, which is uselessly time-
consuming for Dijkstra’s algorithm. To avoid such redundancy, we
set the order of the fragments: we place the first fragment first, then
the second fragment, and so forth. The fragments’ order does not
matter because the predictions of the position only depend on the
central fragment, not on the already placed fragments. We could
have set the order of the positions, but it would have been more
complicated in the case of extra fragments.
To build the graph of the reassembly paths, we design a recursive

algorithm. Starting from an empty puzzle 𝑆, we decide where to place
the first fragment 𝑖. We model this decision by 𝑝 nodes connected
to 𝑆. The negative logarithm of the classification scores weights the
edges. Then, each node is connected to the remaining positions
that can be attributed to the second fragment, and so on. The last
fragment is placed in the last remaining position, and it is connected
to the end of the graph 𝑇. These last edges are given a null weight.
In other words, the depth of the graph corresponds to fragments,
and the width is the available positions.

Algorithms 2 and 3 detail how the graph 𝐺 is built. The first one
introduces the initialization step that launches the recurrence:

Algorithm 2: Initialization of the graph
building.1: procedure Construct_edges(𝑌)

2: 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠 ← [1 . . 𝑝]
3: 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠 ← [𝑆]
4: 𝑓𝑟𝑎𝑔 ← 1
5: 𝐺 ← Add_edge(𝑌 , 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠, 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠, 𝑛𝑒𝑥𝑡)
6: return 𝐺
7: end procedure

where 𝐺 is a list (dictionary) of edges. Each edge is described by the
current fragment, the position of the previous fragment, the position
of the current fragment, and the cost of the edge:

30

] The current fragment refers to the fragment added to the graph,
which corresponds to its row number. We use None to describe
the last row’s current fragment.

] The position of the previous fragment is the last item of the
𝑢𝑠𝑒𝑑_𝑝𝑜𝑠 array that tracks down all the positions filled from the
current path. We note it: 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠[−1].

] The position of the current fragment is either part of 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠
array or 𝑇.

] The cost of the edge is the negative logarithm of the classification
scores stored in 𝑌. The cost of those that go to 𝑇 is null.

For instance, the first edge that is appended to 𝐺 with Add_children
is 𝑆—1, which means the first fragment is placed on the empty state
𝑆, in position 1 (Figure 6.4). We note it: (1, 𝑆, 1, 𝑌 [0, 0]).
Algorithm 3 presents a recursive method that append edges to 𝐺.

Algorithm 3: Adding edges in the
graph.1: procedure Add_edge(𝑌 , 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠, 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠, 𝑓𝑟𝑎𝑔)

2: 𝐺 ← []
3: if 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠 is empty then
4: 𝐺.append(None, 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠[−1], 𝑇, 0)
5: return 𝐺
6: end if
7: for 𝑝𝑜𝑠 in 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠 do
8: 𝐺.append(𝑓𝑟𝑎𝑔, 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠[−1], 𝑝𝑜𝑠, 𝑌 [𝑓𝑟𝑎𝑔 − 1, 𝑝𝑜𝑠 − 1])
9: 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠.pop(𝑝𝑜𝑠)
10: 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠.append(𝑝𝑜𝑠)
11: 𝐺.append(Add_edge(𝑌 , 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠, 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠, 𝑓𝑟𝑎𝑔 + 1))
12: end for
13: return 𝐺
14: end procedure

Dijkstra In order to find the most likely reassembly, we compute
the shortest path from 𝑆 to 𝑇 to minimize the sum of the weights
between visited nodes, which corresponds to the solution of Equation
6.6.
The path’s length equals the sum of the its edges weights. In

brief, Dijkstra’s algorithm always explores the edge that minimizes
the path’s weight, as described in Algorithm 4:

where:

] 𝑃 is a list of the explored nodes, i.e., those whose distance to 𝑆 is
shorter than the distance between 𝑆 and 𝑇;

] 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 is a dictionary that indicates for each node of 𝑃 its
best parent;

] 𝑠𝑐𝑜𝑟𝑒𝑠 is a list that groups all the shortest distance to 𝑆 for each

31

Algorithm 4: Shortest path.
1: procedure Dijkstra(𝐺, 𝑆, 𝑇)
2: 𝑃 ← []
3: 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 ← [𝑁𝑜𝑛𝑒]×nb_nodes(𝐺)
4: 𝑠𝑐𝑜𝑟𝑒𝑠 ← [+∞]×nb_nodes(𝐺)
5: 𝑠𝑐𝑜𝑟𝑒𝑠[𝑆] ← 0
6: while 𝑇 not in 𝑃 do
7: 𝑛 ← Find_nodes(𝐺, 𝑃 , 𝑠𝑐𝑜𝑟𝑒𝑠)
8: 𝑃.append(𝑛)
9: Update(𝑛, 𝑠𝑐𝑜𝑟𝑒𝑠, 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠)
10: end while
11: 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ ← Get_path(𝑃 , 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠)
12: return 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ
13: end procedure

node. Therefore:

𝑠𝑐𝑜𝑟𝑒𝑠[𝑖] =𝑠𝑐𝑜𝑟𝑒𝑠[𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]]+
𝑠𝑐𝑜𝑟𝑒𝑠[𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]]]+
… + 𝑠𝑐𝑜𝑟𝑒𝑠[𝑆];

] Find_node is a method that find the best node 𝑛 to add to 𝑃, which
has the lowest 𝑠𝑐𝑜𝑟𝑒𝑠 while not being part of 𝐺;

] Update is an in-place method that update the 𝑠𝑐𝑜𝑟𝑒𝑠 and 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠
of each child node of 𝑛, only if the new 𝑠𝑐𝑜𝑟𝑒𝑠 are better.

] Get_path is a method that goes up the list of 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 to find
the shortest path.

Complexity The size of the resulting graph is |𝑁| = 2+∑𝑓−1
𝑙=0 ∏𝑓

𝑘=𝑙+1 𝑘
for the number of nodes and |𝐸| = |𝑁| − 2 + 𝑛𝑜𝑑𝑒𝑠(𝑓 − 1) for the
number of edges, with 𝑓 the number of fragments and 𝑝 the num-
ber of positions. See details in Appendix C. With 8 fragments and
positions, this corresponds to |𝐸| ≈ 1.5 × 105 and |𝑁| ≈ 105.
The complexity of graph building algorithm is 𝒪(|𝐸|), because

each time the for loop is called, an edge is added.
The complexity of Dijkstra’s algorithm is 𝒪((|𝐸| + |𝑁|) ∗ |𝑁| + 𝑝).

In the worst case, the while loop is applied |𝑁| times; the Find_node
loops through the elements of 𝐺\𝑃 (i.e., 𝒪(|𝑁|); the Update edits
the score for all the children of the current node, which is |𝐸|
in the worst case; the Get_path selects 𝑝 fragments. We use a
more effective version of Dijkstra’s algorithm, whose complexity is
𝒪(|𝐸| + |𝑁|𝑙𝑜𝑔(|𝑁|) + 𝑝) ≃ 𝒪(|𝐸| + |𝑁|𝑙𝑜𝑔(|𝑁|)). Because we use a
tree-shaped graph, our worst case complexity is lower that Dijkstra’s.

Performance Dijkstra’s algorithm ensures we will find the best path,
which was not the case with the greedy algorithm. It corrects the
neural network’s local mistakes and obtains the best average score,
as illustrated in Table 6.2.

32

Positions

Fragments #1 #2 #3

#1 0.4 0.4 0.2
#2 0.7 0.2 0.1
#3 0.1 0.5 0.4

Greedy score 0.466

Positions

Fragments #1 #2 #3

#1 0.4 0.4 0.2
#2 0.7 0.2 0.1
#3 0.1 0.5 0.4

Dijkstra score 0.5

Table 6.2: Toy example that illustrates
the performances of the greedy algo-
rithm versus Dijkstra’s.

Figure 6.5: Graph with unknown cen-
tral fragment.

Central fragment If we do not know the central fragment, we
perform the central fragment selection as a first step. The first
expansion from S consists of all the possible cases where each fragment
is used as the central fragment. The corresponding sub-graphs are
built using Algorithm 2. The resulting graph’s size is unchanged,
except we have 𝑛 + 1 fragments, with 𝑛 the number of the fragment
to be assigned to a relative position. With 𝑛 = 8, we obtain |𝐸| ≈
1.3 × 106 and |𝑁| ≈ 106. We show in Figure 6.5 a simplified example
with 3 fragments and 2 relative positions.

Missing fragments Our standard algorithm can build graphs with
missing fragments without requiring any change. The only difference
is that the number of rows will be inferior to the number of positions.
Details on |𝑁| and |𝐸| are given in Appendix C.

Extra fragments We now consider the case where we have more
than 8 fragments, coming from various sources. It implies that any
fragment can be discarded (i.e., placed at Ø position). We construct
a graph allowing such configurations. A simplified example of the
graph is shown in Figure 6.6.

Figure 6.6: Graph allowing empty po-
sitions.

|𝑁| and |𝐸| are described in Appendix C. In the case of 10 frag-
ments and 8 relative positions, the size of the graph is |𝐸| = 5 ⋅ 109

and |𝑁| = 4 ⋅ 108.

The graph building algorithm is similar to the Algorithm 3, as
detailed in Algorithm 5:

6.5.3 Cuts in the graph

To tackle the graph method’s complexity, we cut the branches that
display a weight lower than a threshold 𝜃. Such branches correspond
to a low placement probability, which in turn produces a low reassem-
bly probability due to the multiplicative property of Equation 6.5.
Cutting improves our computation time significantly and the number
of fragments we can take into account. If the value of a relative
position prediction comes under a specific threshold, the branch is
not connected to the trunk T (see Figure 6.7).

33

Algorithm 5: Graph building with
empty positions.1: procedure Add_edge(𝑌 , 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠, 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠, 𝑓𝑟𝑎𝑔)

2: 𝐺 ← []
3: if 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠 is empty or 𝑓𝑟𝑎𝑔 > 𝑝 then
4: 𝐺.append(None, 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠[−1], 𝑇 , 0)
5: return 𝐺
6: end if
7: for 𝑝𝑜𝑠 in 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠 ∪ Ø do
8: if 𝑝𝑜𝑠 in 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠 then
9: 𝐺.append(𝑓𝑟𝑎𝑔, 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠[−1], 𝑝𝑜𝑠, 𝑌 […])
10: 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠.pop(𝑝𝑜𝑠)
11: else
12: 𝐺.append(𝑓𝑟𝑎𝑔, 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠[−1], Ø, 0)
13: end if
14: 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠 ← 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠 ∪ 𝑝𝑜𝑠
15: 𝐺.append(Add_edge(𝑌 , 𝑒𝑚𝑝𝑡𝑦_𝑝𝑜𝑠, 𝑢𝑠𝑒𝑑_𝑝𝑜𝑠, 𝑓𝑟𝑎𝑔 + 1))
16: end for
17: return 𝐺
18: end procedure

Figure 6.7: Graph with a cut of the frag-
ment C for positions 1 and 2, without
reordering.

Figure 6.8: Graph with a cut of the
fragment C for positions 1 and 2, with
reordering.

As the shortest path starts from the trunk 𝑇 and not from 𝑆, the
graphs on Figures 6.7 and 6.8 are equivalent. However, the latest is
quicker to build, as it is smaller than the others. Thus, the sooner
the cuts occur, the better it is. This observation leads to a reordering
of the graph rows: the first fragments we place are these that allow
the most of cuts.

6.6 experiments

6.6.1 Training procedure

We program the neural network with Keras and TensorFlow libraries.
We train it before proceeding to the reassembly stage, which relies

on the trained classifiers with either 2, 8, and 9 outputs. We run
a grid search on the following hyper-parameters: optimizer (SGD
versus Adam), learning rate, momentum, and FEN output size. The
loss function is the categorical cross-entropy.
We introduce the following training setups:

] MET setup: We train and evaluate the network on MET;

] ImageNet setup: We train and evaluate the network on ImageNet;

] Transfer setup: We train the network ImageNet, then we fine-tune
and evaluate it on MET.

We compare the accuracy of our FEN standard architecture pre-
sented in Table 6.1 with Resnet [HZRS16] and our implementation of
Doersch et al.’s [DGE15], which has fewer parameters (we reduced
the fully connected layers from 4,000 to 512 neurons).
Table 6.3 shows the standard parameters for our experiments.

34

FEN output size 512
Optimizer SGD
Learning rate 0.1
Momentum 0.9

Table 6.3: Summary of the experiments
parameters.

6.6.2 Reassembly metrics

We introduced the evaluation metrics in §2.3. For Deepzzle, we use
the solved puzzles and the well-placed fragments metrics. We do not
count the correct neighbors because all our fragments are placed in
relation to the central fragment only.
We introduce one last metric, which is the almost-perfect solved

puzzles. In numerous images of the dataset, we have few indistin-
guishable background fragments (see Figure 6.9), which lead to
a random prediction that scores poorly with the previous metrics.
However, we look for a visually plausible solution rather than the
exact one: some archaeological puzzles contain similar fragments that
can often be swapped, e.g., the limestone blocks of a Roman temple.

Figure 6.9: Selection of the best thresh-
old for the almost-perfect metric. The
red outline shows the fragments that
are misplaced. The case described by
the third image is typical: the upper
fragments are so similar that they are
swapped. The values below the reassem-
blies are the difference between the pre-
diction and the solution.

We consider as successful any reassembly where similar fragments
are swapped. Then, we introduce a metric that reflects this objective
of visually acceptable reassembly. It evaluates the number of almost
correct reassemblies by measuring the similarity between fragments 𝑖1
and 𝑖2. We use the Frobenius norm || ⋅ ||𝐹 and introduce a threshold 𝜃,
so that if ||𝑖1 − 𝑖2||𝐹 < 𝜃, we consider the fragments similar. Therefore,
when two similar fragments are swapped, the puzzle is still considered
correctly reassembled if the norm of the difference between the
fragment of the solution and the fragment of the predicted reassembly
is below a threshold.
In Figure 6.9, we show an example of the threshold values based

on the fragments that are misplaced. We performed a statistical
analysis and set the threshold to 𝜃 = 20, as this value confuses most
of the similar fragments without allowing wrong switches.

6.6.3 Dataset

We train our neural network on ImageNet [DDS+09] (1,181,167 training
images and 100,000 validation images) or MET (10,000 training
images and 4,000 validation images). At each epoch, we use different

35

crop within the images, making unique puzzles, and the provided
coordinates for the reassembly phase. We consider a single pair of
fragments per image. We normalize the values between -1 and 1.

Artwork 4: The Princesse de Broglie, Jean
Auguste Dominique Ingres, 1851–1853,
from the MET Open Collections.

https://www.metmuseum.org/art/collection/search/459106

7
Deepzzle’s results

[Chapter 6 Chapter 8]
Synopsis This chapter presents the results we obtained with Deepz-
zle. We start by analyzing the neural network and the reassembly
algorithms §7.1, and we continue with the reassembly score on the
major tasks §7.2. Section §7.3 examines the scores we obtain for
various data, notably heritage datasets.

7.1 benchmarks and comparisons

This section compares the effects of parameters on the neural network
(architectures, setups, merging function, and classes quantity) and
on the reassembly (algorithms, branch-cut).

7.1.1 Neural network scores

Doersch versus ours Figure 7.1 shows the evolution of the validation
accuracy while training on ImageNet, for our implementation of
Doersch et al.’s architecture and ours, based on VGG. It outperforms
the 40% reported in [DGE15], achieving 57% accuracy on ImageNet.
Our own architecture reaches 64.6%, which significantly outruns
[DGE15]’s scores by a 25% margin.

Figure 7.1: Validation accuracy scores
— Comparison of our architecture and
Doersch et al.’s.

37

Setups Table 7.1 compares the validation accuracy of the three setups
on the 8-classes task with concatenation. It shows that learning to
predict the relative position is easier on ImageNet dataset. We assume
it is mostly due to the solid background of many MET images (Figure
6.9), which makes impossible to correctly place some fragments.
Another reason may be that the network trained on ImageNet learns
the lens aberrations, making the puzzles easier to solve, but the high
score on the Transfer setup discards this hypothesis: the MET puzzles
do not contain lens aberrations, so if the network was relying on
these, it could not have reached the obtained accuracy.

MET ImageNet Transfer

48.9% 64.6% 59.7%

Table 7.1: Validation accuracy scores —
Comparison between the setups.

Merging function Table 7.2 reports the validation accuracy for dif-
ferent merging functions on the 8-classes problem on the ImageNet
setup. The Kronecker product obtains slightly better results than
the concatenation. In comparison, the low-rank approximation of
Hadamard product [KOL+16] yields lower results, which implies that
the full covariances are needed to obtain the best performances.

Fusion Accuracy

Concatenation 64.6%
Kronecker product 66.4%
Hadamard product 59.2%

Table 7.2: Validation accuracy scores —
Comparison between the three fusion
strategies.

Classes number Last, Table 7.3 compares the validation accuracy
with extra-fragments for different neural network. In this experiment,
we use the Kronecker product.
In Deepzzle, enabling extra-fragments implies 9 classes, which

is equivalent to filter the extra-fragments (with a binary classifier)
before applying the 8-classes classifier. For the binary classification
problem, we set the proportion of extra-fragments to 50%. We obtain
92.5% accuracy, which means that deciding whether two fragments
belong to the same image seems an easy problem. For the 8-classes
problem, we obtain 66.4% accuracy. Therefore, the combination of
the filter and the 8-classes neural networks leads to an accuracy of
61.4%. Finally, the joint classification problem achieves 64.2% (the
proportion of fragment belonging to the same image was set to 70%),
which indicates that solving the joint problem is slightly easier than
solving the sequence of simpler problems.

Neural network Accuracy
Binary classifier 92.5%
8-classes 66.4%
9-classes 64.2%

Table 7.3: Validation accuracy scores —
Comparison of the 2-classes, 8-classes
and 9-classes problems on ImageNet.

38

7.1.2 Reassembly scores

On the standard 3×3 task, we solved perfectly 44.4% of the puzzles,
for 89.9% of well-placed fragments. Those scores are our reassembly
baseline for the 8-classes neural network.
The fragment-wise score is much better than the 66% accuracy of

the neural network, so we argue that the reassembly step removes
some classifier’s uncertainty. This hypothesis is corroborated by the
scores of the task with missing fragments (see below, Table 7.4):
because we have less fragments, we cannot rely on already placed
fragments to determine the positions of the fragments for which we
hesitate.

Figure 7.2: A typical reassembly.

Figure 7.2 is a perfect illustration of the kind of results we achieved.
We made a thorough analysis of it to expose the “reasoning” of
Deepzzle: Most of the fragments share color and shape continuity with
respect to the central fragment, except the two top corner fragments
that display similar probabilities to be in any of the top position.
Indeed, the middle-top fragment shares a part of the left green
curtain. The top-right fragment is placed last: it displays a uniform
probability for every top position, as its primary color is not part of
the central fragment. It is placed correctly because other fragments
have been assigned to their correct location before, thanks to their
higher probability.

Figure 7.3: An almost-perfect reassem-
bly. The yellow outline indicates almost-
perfectly placed fragments.

We also illustrate the effects of the almost-perfect metric in Figure
7.3. In this puzzle, most of the painting fragments are neutral
background fragments: finding which fragment goes where is a
random guess. Thanks to the metric, the reassembly is correct.

Greedy We first compare the greedy algorithm to the graph-based
algorithm on the MET dataset with the 8-classes classifier. The
scores are presented in Table 7.4 and show that, on average, only 2
fragments are swapped per image. Dijkstra’s algorithm leads to a
general 3% puzzle-wise improvement over the greedy-algorithm.

Algorithm Task Puzzle-wise Fragment-wise
Greedy Standard 41.0% 87.7%
Graph-based Standard 44.4% 89.9%
Greedy Missing fragments 26.5% 80.5%
Graph-based Missing fragments 29.5% 82.4%
Greedy Unknown center 36.2% 69.5%
Graph-based Unknown center 39.2% 71.1%

Table 7.4: Reassembly scores — Com-
parison with the greedy algorithm.

It appears that missing fragments increase the difference between
well-placed fragments and well-solved puzzles: some easy fragments
that help remove uncertainties may have been missing. Last, the
scores of the task with an unknown center display a bigger difference
between the fragment-wise and puzzle-wise scores, which indicates
that the average number of misplaced fragments is higher, probably

39

because some puzzles are shifted. We detail those scores in §7.2.

End-to-end We perform a comparison between our method and the
first permutation-based method, from Noroozi and Favaro [NF16].
We reproduce their setup and apply it to the MET dataset for 10,
100, and 1000 permutations. We use our architecture to extract
the features of each fragment, i.e., before the feature merging. To
compare with our method, we cut the tree so that the authorized
paths correspond to the allowed permutations. We use our 8-classes
network, and we use graph solving for an unknown central fragment.
The results are exposed in Table 7.5.

Available permutations

10 100 1000 9!

Noroozi and Favaro 86.6% 69.3% 51.6% -
Ours with unknown center 91.5% 81.7% 64.8% 39.2%

Table 7.5: Puzzle-wise reassembly
scores — Comparison with Noroozi and
Favaro [NF16].

We observe that our process greatly surpasses Favaro and Noroozi’s
in reassembly scores. As we apply pairwise comparison on the input
fragments, we can see it as a subtask of the permutation classification.
We better guide the learning process. Moreover, we recall that our
method offers two other benefits over Favaro and Noroozi’s: it covers
all the possible permutations and handles outsider fragments.

Branch-cut evaluation We evaluate the trade-off between accuracy
and computational time for different threshold values in our branch
cut strategy in Figure 7.4. As a baseline, solving a full 3×3 puzzle
takes about 20,000 s. Setting the threshold 𝜃 to 0.01 allows us to
gain an order of magnitude without any loss of accuracy. Setting 𝜃
to 0.05 leads to a gain of 3 orders of magnitude, or about 20s per
reassembly, with a marginal loss of accuracy. We consequently use a
threshold of 0.05 in the following experiments.

Figure 7.4: Reassembly scores — Com-
parison of the reassembly time for vari-
ous cut values.

40

7.2 advanced reassembly tasks

This section analyzes our results on the advanced reassembly tasks
our method can address, which are the problems of an unknown
central fragment, missing fragments, and extra fragments. We start
with the unknown center.

7.2.1 Reassembly with unknown center

Table 7.6 compares the reassembly score with and without known
central fragment. In the second case, the algorithm has to perform
many reassemblies for each fragment being assumed center; then it
has to select the best reassembly based on the reassembly score. We
use the same 8-classes architecture, with a Kronecker product. We
observe a 5% drop of the reassembly accuracy.

Puzzle-wise Fragment-wise

Center known 44.4% 89.9%
Center unknown 39.2% 71.1%

Table 7.6: Reassembly scores — Com-
parison of for known and unknown cen-
tral fragment.

As mentioned before, some reassemblies obtained from an un-
known central fragment are shifted, which means that most neighbors
are correct while the fragments’ positions are all wrong. Another type
of result is illustrated on Figure 7.5. It shows that some fragments
of the reassembly are well-placed despite a wrongly-placed center.

(a) (b)

Figure 7.5: Example of a wrong re-
assembly with unknown center. The
red outline shows the fragments that
are misplaced — Fig. (a) shows the
expected outcome, and Fig. (b) the pre-
dicted result.

7.2.2 Reassembly with missing and additional fragments

Quantitative scores Table 7.7 presents all the reassembly scores for
0 to 7 missing fragments and 0 to 3 extra fragments. We use the
almost-perfect metric rather than the puzzle-wise metric, except on
the first line, and a 9-classes neural network, trained with a 10%
probability to sample an additional fragment.
The middle section of the table indicates how many puzzles turn

to (almost-)perfect reassemblies. The bottom section displays the
number of well-placed fragments and empty tiles. We draw the

41

Number of extra fragments
0 1 2 3

Puzzle-wise 0 22.1% 18.4% 16.8% 15.4%

Number of
missing
fragments

Almost perfect
puzzle-wise

0 24.7% 19.9% 18.3% 16.9%
1 20.8% 12.9% 11.3% 11.0%
2 21.1% 10.6% 8.8% 8.3%
3 22.6% 12.0% 9.8% 6.5%
4 24.9% 12.2% 8.4% 6.8%
5 31.1% 16.6% 10.9% 8.3%
6 43.4% 22.7% 13.9% 10.6%
7 64.0% 33.7% 21.0% 13.0%

Number of
missing
fragments

Fragment-wise

0 64.6% 62.8% 60.9% 60.3%
1 61.6% 59.4% 57.9% 57.0%
2 61.1% 57.8% 55.7% 55.4%
3 63.0% 59.6% 57.3% 54.6%
4 66.9% 62.0% 58.3% 56.0%
5 72.4% 66.9% 62.2% 59.3%
6 80.0% 73.5% 67.5% 62.0%
7 82.0% 81.1% 73.6% 67.6%

Table 7.7: Reassembly scores with miss-
ing and outsider fragments.

following conclusions:

] On the standard task: We obtain 64.6% of well-placed fragments
for only 24.7% of almost-correctly solved puzzles. It means that
we often make a few errors in the reassemblies. We evaluated
the correctly-placed fragment among the not solved puzzle to
strengthen our observation and obtained an average score of 55%.

] On the task difficulty: According to the tables, we obtain the best
scores when no fragment is missing or when many fragments are
missing. First, when we have all the pieces, we can discriminate
similar fragments and select the best one for each location by
optimizing the full reassembly. When there are several missing
fragments, there is much less information available to assess which
one goes where. On the other end of the spectrum, when almost
every fragment is missing, the odds we sample the most ambiguous
image fragment are low.

] On the almost-perfect puzzle-wise metric: The almost-perfect
metric improves the score by 2.1% on the standard task (no missing
nor extra fragment). Overall, we observe a gain of at least 1.5%
over the standard puzzle-wise metric, which indicates that our
dataset contains at least 2.1% of highly similar fragments1. 1 An approximation of 4% seems reason-

able because two equivalent fragments
have half chances to be well-placed.] On the effect of extra-fragments: The results indicate that the

more we consider external fragments, the lower the number of
almost-perfect reassemblies is, as the number of possible solutions
increases.

42

] On the 7-missing fragments puzzles: We observe that, when we
only have to place one fragment, we obtain roughly 64% images
solved for 82% correctly-placed fragments. It is because the central
fragment is always well-placed, which raises the fragment-wise
score.

] On the number of classes: The results obtained by the 9-classes
classifier are less precise by 20% than the reassemblies given by
the 8-classes classifier (Table 7.6). However, the accuracies of the
networks are similar. We come with two ideas that may explain
the loss of precision during the 9-classes reassembly: Dijkstra may
exclude correct fragments or the neural network give a similar
score to the lateral positions classes, and so Dijkstra does not place
them well.

Reassemblies with missing fragments Figure 7.6 shows puzzles with
four or five missing fragments. Most of the time, the remaining
fragments are placed correctly. When a mistake occurs, it usually
respects the picture’s semantics, as we can see in the central puzzle
of Figure 7.6.

Figure 7.6: Reassemblies with missing
fragments.

Reassemblies with extra-fragments Figure 7.7 exhibits five puzzles
with extra-fragments, their reassemblies and their solutions. We
made a qualitative analysis on about twenty puzzles, and picked a
correct reassembly (a) and four wrong reassemblies to illustrate our
point. We conclude the following:

] Overview: At first glance, the algorithm tends to replace miss-
ing fragments by outsider fragments (puzzles (b) and (d)). This
observation fits with our analysis of Table 7.7. The switch of
missing fragments by extra fragments is especially common for
background fragments from clothing, shards, and sculptures pho-
tographs (puzzle (b)). Two other categories of images are prone to
be reassembled with outsiders fragments: texts (puzzle (d)) and
engravings. Conversely, paintings are less exposed to this effect
(puzzles (a) and (e)), especially when the additional fragments
come from non-painting images. When there are no missing
fragments (puzzle (e)), most of the reassemblies errors are due to

43

(a) (b) (c) (d) (e)

Figure 7.7: Various reassemblies with
outsider fragments. The first row con-
tains the input fragments. The first
(top left) emplacement is reserved for
the central fragment. The second row
shows the predicted reassemblies. The
last row displays the solutions. The red
outline indicates wrongly placed frag-
ments. The yellow outline shows the
almost-perfectly placed fragments.

misplacing the image’s fragments rather than the replacement of
a correct fragment by an additional fragment.

] Puzzle (b) is a typical example of what wrong reassemblies look
like: two missing fragments were replaced by similar outsider
fragments that contain a mostly-beige background.

] The shard of puzzle (c) is almost-perfectly reassembled, as only
background fragments were to be placed.

] Puzzle (d) illustrates the reassembly of a text when another text is
the source of the outsider fragments. We obtain poor results (only
one fragment is correctly placed), but the text’s spatial coherence
is respected. The title is positioned on the top of the image. The
fragment that contains the end of the subtitle is at the right of
the other title fragment. The end of the text is also placed on
the bottom. The italic closing formula is on the right of the
other bottom fragment. Finally, the algorithm uses the outsider
fragment that contains a left margin at the left of the central
fragment. However, the algorithm cannot distinguish between the
French and Italian languages, which suggests the convolutional
architecture cannot learn fine-grain details. It illustrates a limitation
of Deepzzle: the input resolution is too small to allow the neural
network to capture such details and produce precise alignment.

44

Deepzzle is intended to solve coarse alignments and thus works
best for puzzles with large visual features and sufficient image
resolution.

] Puzzle (e) is an example of reassembly with a relatively high
number of fragments. The algorithm swapped the cloudy sky
fragments. As they are too different pixel-wise, even the almost-
perfect metric does not grant the correct reassembly label. Note
that to a human eye, the computed reassembly looks realistic with
the cloudy sky reversal.

Note on the computing time Thanks to the cutting strategy, we were
able to compute reassemblies from a set of 17 fragments quickly.
We spend approximately one hour on constructing the graph and
applying the shortest path algorithm. Without it, processing more
than 3 outsiders fragment could take several months.

7.3 impact of data on reassemblies

In this last section of Deepzzle’s result, we present our work applied
to some specific datasets. We apply Deepzzle to the datasets we
mentioned in Chapter 4. Then, we deepen our research on MET,
dividing it into three categories (paintings, artifacts, and engravings,
including texts) and detailing our results on MET’s texts and MET-
based patchworks datasets.

7.3.1 Other datasets

Table 7.8 shows the reassembly scores we obtained on other dataset
and Figure 7.8 shows two reassemblies for each dataset. We run
the experiment under the 8-classes architecture, with fine-tuning for
ImageNet and Bas-reliefs datasets, as they contain enough data to
allow it.

Dataset Puzzle-wise Fragment-wise

ImageNet 48% 78%
Bas-reliefs 40% 61%
Vaux-de-la-Celle (3D scans) 28% 63%
Roc-aux-Sorciers 0% 31%

Table 7.8: Reassembly scores on various
datasets.

Without surprise, the scores on ImageNet are higher than the
scores on MET. Puzzles (a) and (b) illustrate the type of reassemblies
Deepzzle achieves on ImageNet.
Next puzzles, (c) and (d) are from the bas-relief dataset. According

to Table 7.8, they are usually well solved, and their scores are close to
the MET dataset’s scores. We note that the main issue of puzzle (d)
is due to similar patterns. It suggests we should improve the almost-

45

(a) (b) (c) (d)

(i) (j) (k) (l)

Figure 7.8: Predicted reassemblies (odd
rows) and their solutions (even rows)
for various datasets. The red outline
shows the fragments that are misplaced.

perfect metric to be able to accept the current top-row reassembly,
for example, by using a deep classifier rather than a distance.
From Vaux-de-la-Celle’s blocks dataset, we picked the puzzles (i)

and (j) that are representative of the average problem. Well-solved
puzzles are rare, but most fragments are usually well-placed.
Last, puzzle (k) is from our dataset made of Roc-aux-Sorciers’s

photographs. It contains 20 images, and Deepzzle did not solve any
of them. We suspected the low contrast and uniform shades, so we
try some more contrasted puzzles made from the bas-relief of Roc-
aux-Sorciers, like puzzle (l). In this last puzzle, all the fragments are
misplaced; we obtain similar reassemblies from the few high-contrast
parietal bas-reliefs we tried, which invalidates our hypothesis.

46

7.3.2 MET: Reassembly depending on the type of object

In Table 7.9, we compare the reassembly scores for the three major
types of images of our dataset (artifacts, engraving and texts, and
painting), on the standard 9-fragments task. The types of images
are almost homogeneously distributed.

Type of image Puzzle-wise Fragment-wise

Artifact 38.2% 70.6%

Engraving and texts 25.5% 68.0%

Painting 12.1% 56.2%

Dataset 24.7% 64.6%

Table 7.9: Reassembly scores depending
on image type.

The puzzle-wise score of paintings is surprisingly low. It means
it is harder to reassemble painting puzzles despite their semantic
consistency. As the fragments-wise score is not as low as we can
expect based on the image reassembly score, we conclude that most of
the paintings’ reassemblies only had very few misplaced fragments.
On the contrary, the artifacts score well, primarily because of the

almost-perfect metric: the artifacts always have a neutral background
(see puzzles (b) and (c) from Figure 7.7).

Table 7.10 describes the scores obtained with two additional fragments
extracted from various types of images. In this experiment, there are
no missing fragments.

Image Extra fragments Puzzle-wise Fragment-wise

Artifact Artifact 33.0% 69.2%

Artifact Engraving 32.7% 69.9%

Artifact Painting 31.9% 69.5%

Engraving Artifact 22.2% 67.2%

Engraving Engraving 14.1% 63.3%

Engraving Painting 21.4% 67.0%

Painting Artifact 11.5% 54.9%

Painting Engraving 12.5% 56.7%

Painting Painting 11.1% 54.6%

Dataset 17.3% 60.9%

Table 7.10: Reassembly scores depend-
ing on image type, with extra-fragments.

When the image is of an artifact, we obtain the best results on the
puzzle-wise score compared to another artifact image. Interestingly,
the best fragment-wise score is obtained when adding two fragments
from an engraving (or texts): we suppose Deepzzle can easily discard
them, while it “doubts” more when the extra fragments come from
another artifact (probably with similar background).

47

When trying to reassemble an engraving (or a text), the best
score goes to the artifact additional fragments, closely followed by
the painting fragments. The main reason is that engraving or text
are monochromatic images, while photographs of paintings and
artifacts usually come in various colors. Thus, it is more difficult to
discriminate against the outsider fragments when they come from
another engraving or text. It is also why the additional fragments of
the engraving score well for the artifacts and the paintings.
Last, the results for paints are homogeneous regardless of the type

of fragment added.

7.3.3 MET: Reassembly from texts

In this section, we analyze in detail the reassemblies of texts shown
in Figure 7.9. We aim to gain insights into the patterns used by the
neural network to make its text-based predictions. We select thirty
text pictures from the MET dataset. In this sample, we obtained 24%
of perfect reassemblies and 68% of well-placed fragments, which is
consistent with Table 7.9. We made the following observations:

] Puzzle (a) is a perfect example of confident reassembly: most
fragments positions are predicted with a confidence score superior
to 70%. In this image, the only fragments whose correct class is
not the most confident are the upper right fragments (24% for the
upper right position, against 36% for the bottom left position).

] The central fragments of puzzles (b) and (c) contains clues about
how to solve the puzzle. Looking at the central fragment of puzzle
(b), we have an image on top that probably stretches out over
the top fragments. We also have text at the bottom left and at
the bottom right of the central fragment, with a space between
them. By extending all of these structures, one can easily solve
the puzzle. Each relative prediction is correctly predicted with
confidence over 50%.

] Puzzles (d), (i), (j), (k) and (l) shows a central text fragment. In
puzzles (d) and (i), the lateral fragments contains text and margin
in the four directions, and are well reassembled. Puzzle (j) is
perfectly reassembled by chance, as the left and right fragments
vertical position display very close classifications scores. Puzzles
(k) and (l) contains the same puzzle, with a vertical shift.

] Puzzle (k) is interesting, as most title fragments were placed
at the bottom of the puzzle. These two fragments are similar
text fragments because there is no space between the top of the
fragments and the horizontal ornamentation. We suppose this
similarity is the cause of the misplacement. On the contrary, the
upper left fragment contains space before the frieze: then, it cannot
continue the text. The correct position of the title in puzzle (l)
supports this idea. Looking to first predicted class scores in puzzles

48

(a) (b) (c) (d)

(i) (j) (k) (l)

(q) (r) (s) (t)

Figure 7.9: Predicted reassemblies (odd
rows) and their solutions (even rows)
for texts. The red outline shows the
fragments that are misplaced.

49

(k) and (l), we observe a strong vertical arrangement with close
position scores (with a difference lower than 5% between the
vertical positions scores).

] In puzzle (q), the reassembly display mistakes on similar frag-
ments. In puzzle (r), the position of the fragments that display the
bookbinding are correctly predicted (the first classes are at 75%
and 77% respectively). The fragments are placed correctly in the
horizontal axis, but the right and left upper fragment are unluckily
swapped (their scores for the various top positions classes are
around 30%).

] Puzzles (s) and (t) illustrates that texts and ornaments are not
distinguished by the neural network. When the fragments are
well placed, it is because of its white space.

In summary, text reassembly primarily uses borders, margins, and
frames. They often identify the fragments being part of the same
column (and, more rarely, the fragments from the same row).

7.3.4 Reassembly from patchworks

In archaeology, the fragments are photographed independently. The
puzzles to solve are made of several tiles coming from different
cameras and shooting angles. Merged into one 2D-puzzle, they show
slight variations of colors and proportions. We produce 30 patchwork
puzzle made from different photographs of some MET paintings, and
we solve them (Figure 7.10). We observed a decrease of 1% on the
number of well-placed fragments, compared to the corresponding
MET images. It means that our neural network is not biased by
overfitting on the camera parameters.

50

(a) (b) (c) (d)

Figure 7.10: Reassemblies from patch-
work images. The first row shows the
patchwork images from which the frag-
ments were extracted. The second row
displays the reassemblies for the patch-
work fragments. The third row con-
tains the reassemblies of the MET image
(without patchwork). The red outline
shows the fragments that are misplaced.

Part III

ITERATIVE SOLVING WITH DEEP
REINFORCEMENT LEARNING

8
On AlphaZero

[Chapter 7 Chapter 9]
Synopsis This chapter presents Monte-Carlo Tree Search (MCTS)
coupled with reinforcement learning §8.2 and deep reinforcement
learning §8.3.

8.1 introduction

In Chapter 5, we presented methods for puzzle-solving with deep
learning. We introduced three paradigms: pairwise comparison,
global comparison, and permutation, and we described their strengths
and weaknesses. Briefly, pairwise comparisons obtain better scores
than “one-shot” permutation methods, which are limited in the
number of classes (Table 7.5). Repeated permutation methods like
Wei et al.’s [WXR+19]1 combine the best of both worlds, but are 1 [WXR+19] has been introduced in

§5.4.much slower. Last, global comparison methods are very similar
to human’s puzzle-solving techniques. They consist of placing the
fragments iteratively on a grid where the previous fragments are
already placed. However, to our knowledge, there are no publications
on this subject. We make the hypothesis that they are very efficient,
and we develop a model to confirm or invalidate this assumption in
Chapter 9.
Our preliminary experiments with a convolutional neural network

were unsuccessful because the global comparison task requires fore-
casting to make the right decision. Rather than opting for a recursive
model such as RNN [RM87] or LSTM [HS97], we cast this task as
a planning problem, and thus apply a model-based reinforcement
learning2 framework. 2We introduced reinforcement learning

in Appendix A.One of the most famous model-based algorithms is AlphaZero
[SHS+17]. It combines neural networks with Monte-Carlo Tree Search
(MCTS) algorithms and brilliantly defeated human players on complex
board games. In this section, we present AlphaZero, Monte-Carlo
Tree Search, and the research on those topics.

8.2 monte carlo tree search

8.2.1 MCTS and the game of go

The game of Go has long been a challenge for artificial intelligence
because of its 10170 legal configurations. It is a two-player, perfect-
information, deterministic board game with two basic rules. At the

53

end of the game, the score 𝑟 is deduced from the state 𝑠 of the board.
It can be a tie (𝑟 = 0), a win for the first player (𝑟 = +1) or a loss
for the first player (𝑟 = −1).
Since 2006, the programming of Go has made significant progress,

in particular thanks to the MCTS method. It is a heuristic search
algorithm in a tree, like Dijkstra’s algorithm3. It was introduced 3Dijkstra’s algorithm has been intro-

duced in §6.5by [Cou06] for Go game [GW06] and proven to be guaranteed to
converge [KS06]. Shortly after, algorithms using both MCTS and
reinforcement learning emerged:

Silver4, the future lead researcher on AlphaGo, worked on MCTS 4 [Sil09] D. Silver, Reinforcement learn-
ing and simulation-based search.and reinforcement learning. He proposed a 9×9 Go solver.

Browne et al.5, followed by Vodopivec et al.6 a few years later, 5 [BPW+12] C.B. Browne et al., A sur-
vey of Monte Carlo tree search methods.

6 [VSS17] T. Vodopivec, S. Samothrakis,
and B. Šter, On Monte Carlo Tree Search
and Reinforcement Learning.

propose a survey of the relations between MCTS and reinforcement
learning, and some enhancements on the method.

MCTS, coupled with reinforcement learning, is now widely adopted
in various fields.

8.2.2 Advances in MCTS

To depict the trending lines of research on improving MCTS, we
select a few papers among recent work. Efroni et al. [EDSM19] show
that some standard tree search implementations are not guaranteed
to converge; they proposed an enhancement of MCTS that uses the
optimal tree path values. Kartal et al. [KHLT19] focus on sample
inefficiency of MCTS. Takada et al. [TIY19] propose an algorithm
where the policy function is trained directly from the game results
without the search probabilities. Wu et al. [WWL+19] filters the low-
quality moves, which echoes our work on Deepzzle branch-cut §6.5.

8.2.3 Single-player MCTS

Puzzle-solving is a single-player game, but MCTS is designed for two
agents: it is legitimate to question whether MCTS can be applied in
this case.

Figure 8.1: Example of SameGame
board. © Swell-Foop.

As Seify pointed out in his master thesis7, deterministic single- 7 [Sei20] A. Seify, Single-agent optimiza-
tion with Monte-Carlo Tree Search and
deep reinforcement learning.

player games are equivalent to a two-player game where the sec-
ond player always pass. He lists some differences that must be
addressed when designing a single-player MCTS. Taking the example
of SameGame8 (Figure 8.1), he argues single-player games reward 8 SameGame is a tile-matching puzzle

game where the player tries to remove
every tile.

are not bounded (or even non-losable), while MCTS is adapted for
rewards among {−1, 0, 1}. He also explains why standard MCTS
parallelization is unsuitable for one-player games. Consequently,
some authors optimized MCTS to address single-agent problems:

Schadd et al.9 introduced Single-Player MCTS (SP-MCTS), which 9 [SWTU12] M.P.D. Schadd et al., Single-
Player Monte-Carlo Tree Search for
SameGame.

improves among other things the performances of UCB10. They

10We present UCB it in Chapter 9.
create a tree per move rather than a tree per game and change
MCTS selection formula to compensate for the non-adverse aspect.

https://dl.acm.org/doi/book/10.5555/1834781
https://dl.acm.org/doi/book/10.5555/1834781
https://ieeexplore.ieee.org/document/6145622
https://ieeexplore.ieee.org/document/6145622
https://pdfs.semanticscholar.org/3d78/317f8aaccaeb7851507f5256fdbc5d7a6b91.pdf
https://pdfs.semanticscholar.org/3d78/317f8aaccaeb7851507f5256fdbc5d7a6b91.pdf
https://era.library.ualberta.ca/items/d4a0e7f0-12c5-4a88-9e79-39538bff4ce4/view/2c7e669e-07b9-4fa0-a4cc-d03800e4a11b/Seify_Arta_202001_MSc.pdf
https://era.library.ualberta.ca/items/d4a0e7f0-12c5-4a88-9e79-39538bff4ce4/view/2c7e669e-07b9-4fa0-a4cc-d03800e4a11b/Seify_Arta_202001_MSc.pdf
https://era.library.ualberta.ca/items/d4a0e7f0-12c5-4a88-9e79-39538bff4ce4/view/2c7e669e-07b9-4fa0-a4cc-d03800e4a11b/Seify_Arta_202001_MSc.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.704.5554&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.704.5554&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.704.5554&rep=rep1&type=pdf

54

Baier and Winands propose a recursive MCTS that solves single-
players games such as Bubble Breaker, NMCTS algorithm [BW12].
It is based on NMCS [Caz09], which also inspired Rosin NRPA
[Ros11b] that was able to solve Morpion Solitaire and construct
crossword puzzles.

Orseau et al.11 introduce two tree search algorithms for single- 11 [OLLW18] L. Orseau et al., Single-
agent policy tree search with guarantees.player games. The first one is adapted for “needle-in-a-haystack”

problems, i.e., problems for which the number of correct solutions
is very limited. It derivates from Levin’s search [Lev73]. The
second one is well-suited for problems where many paths lead to
a goal.

Seify and Buro12 proposes a variant of MCTS which is adapted with 12 [SB20] A. Seify and M. Buro, Single-
Agent Optimization Through Policy It-
eration Using Monte-Carlo TreeSearch.

games with unbounded rewards. Like Schadd [SWTU12], they
propose a variant of the MCTS selection formula. Their algorithm
also parallelizes well.

8.3 deep reinforcement learning and mcts

Figure 8.2: The match between grand-
master Lee Sedol, right, and AlphaGo.
© Lee Jin-man/AP.

8.3.1 Two-player games

Model-based deep reinforcement learning has boomed since 2016.
In most research, the model is learned [RWR+17, NKFL18, BHT+18],
but some authors propose methods where the model, usually MCTS,
is given to the algorithm:

Silver et al. introduced AlphaGo13 in 2015. It managed to beat a 13 [SHM+16] D. Silver et al., Mastering
the game of Go with deep neural net-
works and tree search.

professional human player for the first time (Figure 8.2. AlphaGo
combines MCTS with neural networks, which predict a policy and
a value estimate of the state, i.e., an estimate of the future reward.

Silver et al. improved their algorithm and named it AlphaGo Zero
[SSS+17]. They were able to remove prior knowledge of the rules
and data from human games, so their algorithm explored original
ideas and ultimately beat AlphaGo. Moreover, AlphaGo Zero uses
a more efficient search algorithm and merges the redundant part
of AlphaGo’s neural networks into a two-headed network.

AlphaZero14 follows AlphaGo Zero and tackles many two-player 14 [SHS+17] D. Silver et al., Mastering
chess and shogi by self-play with a gen-
eral reinforcement learning algorithm.

turn-based board games such as chess and shogi. The main
difference between the two versions is that AlphaZero’s neural
network is updated continually.

Anthony et al.15 developed ExIt algorithm, which is a similar 15 [ATB17] T. Anthony, Z. Tian, and D.
Barber, Thinking fast and slow with
deep learning and tree search.

alternative to AlphaZero. They start with a policy-only neural
network, which they replace with a two-headed network when
the data generated through games is of sufficient quality.

MuZero16 is the last version of AlphaGo. It surpasses AlphaZero’s 16 [SAH+19] J. Schrittwieser et al., Mas-
tering atari, go, chess and shogi by plan-
ning with a learned model.

performance on Go and atari games and matches it on the easiest
games like chess and shogi. Briefly, MuZero is compatible with

http://papers.nips.cc/paper/7582-single-agent-policy-tree-search-with-guarantees.pdf
http://papers.nips.cc/paper/7582-single-agent-policy-tree-search-with-guarantees.pdf
https://arxiv.org/pdf/2005.11335.pdf
https://arxiv.org/pdf/2005.11335.pdf
https://arxiv.org/pdf/2005.11335.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15780-s16/www/AlphaGo.nature16961.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15780-s16/www/AlphaGo.nature16961.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15780-s16/www/AlphaGo.nature16961.pdf
https://arxiv.org/pdf/1712.01815.pdf
https://arxiv.org/pdf/1712.01815.pdf
https://arxiv.org/pdf/1712.01815.pdf
https://arxiv.org/pdf/1705.08439.pdf
https://arxiv.org/pdf/1705.08439.pdf
https://arxiv.org/pdf/1911.08265.pdf
https://arxiv.org/pdf/1911.08265.pdf
https://arxiv.org/pdf/1911.08265.pdf

55

single-agent games, has not a perfect knowledge of the ruleset, and
separates the representation of the current step from its dynamics
and the predictions.

Figure 8.3: Example of 15-puzzle.

8.3.2 Single-player games

Applying AlphaZero or ExIt to one-player games with sparse-reward
environments such as jigsaw puzzle or Rubik’s cube is challenging:
a randomly initialized policy will be unlikely to encounter the only
rewarding state. In the worst case, the state’s value estimate is
biased or divergent, and the policy will not converge to the optimal
policy. We present some single-player games solvers that use deep
reinforcement learning and tree search:

Arfaee et al.17 proposed in 2011 to combine a neural network with
17 [AZH11] S.J. Arfaee, S. Zilles and R.C.
Holte, Learning heuristic functions for
large state spaces.the tree search algorithm IDA*18.
18 IDA* is a depth-limited version of
depth-first search algorithms. Read
more about it on Wikipedia

Laterre et al.19 proposed R2, an algorithm for single-player games.

19 [LFJ+18] A. Laterre, Y. Fu, M.K.
Jabril, et al., Ranked reward: enabling
self-play reinforcement learning for com-
binatorial optimization.

It addresses the issue of unbounded reward with a relative perfor-
mance metric.

McAleer et al.20 proposed DeepCube, a solver for the Rubik’s

20 [MASB18] S. McAleer, F. Agostinelli,
A. Shmakov and P. Baldi, Solving the
Rubik’s cube with Approximate Policy
Iteration.

cube. They pre-train a two-headed neural network and call this
procedure ADI. After the network is trained, it is combined with
MCTS to effectively solve the Rubik’s cube21.

21 Rubik’s cube is close to our problem
because there are only one correct solu-
tion and many ways to reach it; it differs
because it knows the solution

Agostinelli et al.22 continued the work of McAleer et al. and pro-

22 [AMSB19] F. Agostinelli, S. McAleer,
A. Shmakov and P. Baldi, Solving the
Rubik’s cube with deep reinforcement
learning and search.

posed DeepCubeA. In brief, they replaced MCTS with a weighted
A* search. Their algorithm solves Rubik’s cube, but also 8-puzzle
(also known as gem puzzle and mystic square) (Figure 8.3).

Artwork 5: Old Plum, Kano Sansetsu,
1646, from the MET Open Collections.

http://www2.cs.uregina.ca/~zilles/jabbariZH11.pdf
http://www2.cs.uregina.ca/~zilles/jabbariZH11.pdf
https://en.wikipedia.org/wiki/Iterative_deepening_A*
https://arxiv.org/pdf/1807.01672.pdf
https://arxiv.org/pdf/1807.01672.pdf
https://arxiv.org/pdf/1807.01672.pdf
https://openreview.net/pdf?id=Hyfn2jCcKm
https://openreview.net/pdf?id=Hyfn2jCcKm
https://openreview.net/pdf?id=Hyfn2jCcKm
https://www.ics.uci.edu/~fagostin/assets/files/SolvingTheRubiksCubeWithDeepReinforcementLearningAndSearch_Final.pdf
https://www.ics.uci.edu/~fagostin/assets/files/SolvingTheRubiksCubeWithDeepReinforcementLearningAndSearch_Final.pdf
https://www.ics.uci.edu/~fagostin/assets/files/SolvingTheRubiksCubeWithDeepReinforcementLearningAndSearch_Final.pdf
https://www.metmuseum.org/art/collection/search/44858

9
Alphazzle

[Chapter 8 Chapter 10]
Synopsis This chapter walks through Alphazzle, our jigsaw puzzle
solver relying on a global comparison. We present the interaction
between MCTS and the neural networks in §9.2, and we examine
each component in more detail in §9.3 and §9.4.

9.1 prologue

In this chapter, we present Alphazzle, a method to solve jigsaw
puzzles (Figure 9.1) with a global comparison. Its design meets two
purposes. First, to compensate for the weaknesses of Deepzzle: the
comparison to the central fragment only and the puzzle size limited
to 3×3. Second, we build on AlphaZero because it is widely known
and serves as an excellent baseline to prove the interest of global
comparison.

Figure 9.1: Example of a 4 × 4 jigsaw
puzzle with iterative solving.Among our contributions, we introduce a new deep reinforcement

learning-based method to reassemble numerous fragments. The
major challenge is that the ground-truth reward is not available
to MCTS. We show how to estimate it from the visual input with
neural networks. This constraint is induced by the puzzle-solving
task and dramatically adds to the task complexity (and interest!).
We perform an in-deep ablation study that shows the importance of
MCTS and the neural networks working together, and we solve up
to 25-fragments puzzles, which significantly outperforms state of the
art. We achieve excellent results and get exciting insights into the
combination of search algorithms and visual feature learning.

Sources The work presented in this chapter is under review:

] Solving Jigsaw Puzzle with Deep Monte-Carlo Tree Search.

57

9.2 overview

In this section, we focus on the interaction between MCTS and the
neural network. We start by presenting two-player games with deep
reinforcement learning, which allows us to detail the notations, and
AlphaZero, which gives an overview of the interactions between the
tree search and the deep learning. Then, we introduce the rules of
the jigsaw puzzle game. These two pieces of knowledge allow us to
explain how puzzle-solver works by comparing it with AlphaZero.

9.2.1 Simplified framework for two-player games with deep reinforcement learning

Two agents (𝑔1, 𝑔2) play a turn-based game. The game is defined by
a set of hard-coded rules, which includes the initial board state 𝑠0,
the available actions given a current state 𝑠𝑡, the end game criteria,
and the scoring function 𝑟(𝑠𝑡_𝑚𝑎𝑥) ∈ {−1, 0, 1} (i.e., the reward), that
is computed at the end of the game 𝑡_𝑚𝑎𝑥. If the score is null, there
is a tie; if 𝑟(𝑠𝑡_𝑚𝑎𝑥) = +1, agent 𝑔1 won the game, and vice versa.
Note that 𝑡_𝑚𝑎𝑥 varies between two games.
At each turn 𝑡, one of the agents chooses the available action 𝑎𝑡

that is presumed to minimize the opponent’s final gain: 𝑔1 aims to
maximize 𝑟(𝑠𝑡_𝑚𝑎𝑥) and 𝑔2 wants to minimize it. As one agent does
not control the other’s actions, it has to plan what can happen next
and predict the reward.
The next action choice is based on policy 𝜋𝜃(𝑎𝑡|𝑠𝑡), where 𝜃 are

the parameters of the neural network 𝑃 that returns the policy. As
some games’ duration can be very long, getting samples of games
and associated rewards is not feasible in a reasonable amount of time.
Therefore, having an estimator of the value function is a must. The
value function is the sum of expected rewards values, given a current
state 𝑠𝑡: 𝑣(𝑠𝑡) = E(𝑟(𝑠𝑡_𝑚𝑎𝑥)|𝑠𝑡). Consequently, there is a neural
network 𝑉 in charge of learning 𝑣(𝑠𝑡), and guiding the optimization
of 𝜃. Such an architecture is reminiscent of actor-critic models. In
practice, 𝑃 and 𝑉 share many layers and parameters, and the earlier
AlphaGo has even 3 distinct policy networks for the different stages
of the game (opening, middle-game, and endgame).

9.2.2 AlphaZero algorithm

AlphaZero adds to the framework presented above a planning al-
gorithm, MCTS, which explores many compelling actions’ further
effects. The planning helps to foresee the changes in the environment
induced by the other agent’s actions. Instead of selecting the action
𝑎𝑡 that maximizes 𝑣(𝑠𝑡) according to 𝑉 and 𝑃, the agent performs
simulations of what could happen according to its action. Therefore,
it can select its action based on the value of the most promising
explored state.
MCTS returns the policy 𝜋𝑀𝐶𝑇 𝑆(𝑎𝑡|𝑠𝑡). During inference, the agent

58

selects the best action; then, the second agent applies MCTS from
the state 𝑠𝑡+1. During the learning phase, an exploration trade off
is provided to the agent, and the neural networks are engaged in
reinforcement learning, playing until the accuracy is acceptable.

9.2.3 Interaction between MCTS and the neural network

Figure 9.2: Alphazzle outline.

Our core algorithm (Figure 9.2) reproduces AlphaZero. After
initializing the state, MCTS explores many partial reassemblies and
returns a policy 𝜋𝑀𝐶𝑇 𝑆(𝑎𝑡|𝑠𝑡). Then, the agent chooses (one of)
the most promising action. The state is updated, i.e., the fragment
is added to the current reassembly. We start again from MCTS
exploration, except that the root node is 𝑠𝑡+1. When one of the
endgame criteria is validated, the game ends.

9.2.4 Jigsaw puzzle rules and formalization

A single agent plays the game.

States The current (board) state 𝑠𝑡 is described by the ordered set of
fragments to place and the current partial reassembly, obtained from
the already placed fragments. The observable state only contains the
next fragment to place 𝑥𝑓,𝑡 and the partial reassembly 𝑥𝑟,𝑡.

Actions The available actions 𝐴𝑡 are those that assign the next
fragment to any empty position. When the agent performs action
𝑎𝑡 ∈ 𝐴𝑡, the fragment is added to the partial reassembly and the state
is updated to 𝑠𝑡+1. Note that the environment is deterministic, so we
know exactly what 𝑠𝑡+1 is from 𝑠𝑡 and 𝑎𝑡.

59

It is equivalent to having an unordered set of fragments in 𝑠𝑡 and
letting MCTS selects which fragments to place where. The width of
the tree increases strongly, but the ratio of correct paths is unchanged.
We choose to fix the fragments’ order to reduce the tree size. The
downside is that, as some orders as easier to solve than others,
finding a correct reassembly may be more difficult with our setup.
To compensate for this, we solve several times the same puzzle with
different fragments’ orders.

Initialization At first, 𝑥𝑟,𝑡=0 is the zero matrix. Its size is fixed and
depend on the number of fragments, on their size, and on the gap
between fragments size. To differentiate black fragments from empty
locations, we also initialize to −1 a dictionary 𝑑𝑡 which matches the
positions 𝑗 ∈ [0 . . 𝑝] in the reassembly to the indexes of the fragments
𝑖 ∈ [0 . . 𝑓], where 𝑓 is the number of lateral fragments and 𝑝 the
number of position.

Endgame The game ends when all the positions are filled up:

∀𝑗 ∈ [0 . . 𝑝], 𝑑𝑡𝑚𝑎𝑥
[𝑗] ≠ −1,

or as soon as all the fragments are placed:

𝐴𝑡𝑚𝑎𝑥
= ∅, i.e., 𝑥𝑓,𝑡𝑚𝑎𝑥

= 𝑁𝑜𝑛𝑒.

Consequently, the depth of the tree spanning the action space is
bounded by min(𝑝, 𝑓), which is not the case for AlphaZero’s games,
as games of variable length can be generated.

Reward We have several choices for the reward. As mentioned
in §2.3, we can use three metrics to evaluate how correct the game
is: the percentage of correct neighbors, the percentage of well-placed
fragments and the solved puzzle. All of them are bounded by one,
so we do not face unbounded reward described in §8.2.3, like in
SameGame. Therefore, most of the suggested MCTS single-player
optimizations in §8.2 are no longer required.
We opt for the binary solved puzzle reward: we expect this reward

encourages MCTS to focus on the solution and discards all wrong
reassemblies, even those with a high percentage of correct neighbors.
The downside is the wrong reassemblies are considered as equivalent,
i.e., they are not ordered. Therefore, if we want MCTS to return the
three best reassemblies, we will get only the best one and return two
other reassemblies, which probably will not be the second and third
best.
We endow Alphazzle’s MCTS with two reward modes:

] The first one is based on ground-truth: if the final reassembly
dictionary equals the solution dictionary, then 𝑟(𝑠𝑡𝑚𝑎𝑥

) = 1, else
𝑟(𝑠𝑡𝑚𝑎𝑥

) = 0.

] The second one is based on an automatic assessment of the realism
of the reassembly. In the real world, archaeological puzzles do not

60

come with their solution, so experts must evaluate if the reassembly
is correct. An alternative would be to broke artifacts: in this way,
we would know the ground-truth solution and could evaluate our
reassembly quality. Unsurprisingly, archaeologists did not choose
this option. Compared to AlphaZero and other deep reinforcement
learning algorithms, this is new. We describe this reward mode as
“the (ground-truth) reward is not available to MCTS.”

To assess whether a puzzle is correctly reassembled (second mode),
we need an evaluator who has learned how to classify the correct
reassembly. Fortunately, this is the goal of 𝑉, as we will discuss in
§9.4. Therefore, we use the neural network 𝑉 to predict the value
function and compute the reward, which brings to mind inverse
reinforcement learning [AN04].

9.3 monte carlo tree search

9.3.1 Two-player MCTS algorithm

As we already know, MCTS visits 𝑁𝑣𝑖𝑠𝑖𝑡𝑠 nodes from the current state
𝑠𝑡, and returns 𝑎𝑡, the most promising action for the step 𝑡. The
current player applies it. Then, MCTS explores 𝑁𝑣𝑖𝑠𝑖𝑡𝑠 nodes, starting
from 𝑠𝑡 + 1 and returns 𝑎𝑡+1, and so on until the end of the game.
The possible states are represented with a tree, whose branches

are the actions. At the beginning of MCTS, there is only one node,
𝑠𝑡.
Each node is associated with an agent, the number of visits, and

the number of simulations from that node that led to the agent’s
victory. Each row of the tree represents a turn, and so is associated
with a different agent. The number of visits to a node is the sum
of the visits of its children. The number of wins of a node is the
number of visits minus the sum of its children’s wins.
After 𝑁𝑣𝑖𝑠𝑖𝑡𝑠 nodes visited, MCTS returns the policy 𝜋𝑀𝐶𝑇 𝑆(𝑎𝑡|𝑠𝑡).

MCTS applies the four following steps 𝑁𝑣𝑖𝑠𝑖𝑡𝑠 times:

1. Selection MCTS selects a node with potential children (or an
endgame). The selection is based on a strategy 𝑈(𝑎𝑡|𝑠𝑡), derived
from 𝜋𝜃(𝑎𝑡|𝑠𝑡), and introduces a trade-off between exploitation and
exploration.

2. Expansion MCTS initializes the child(ren) node(s) of the selected
node and selects one of them.

3. Simulation MCTS executes a random game from the child’s state,
to the end game. It obtains a reward.

4. Backpropagation MCTS backpropagates the (inverse) reward and
updates all the upstream nodes expectation.

These steps are shown in Figure 9.3, which illustrates the process
with values.

61

Figure 9.3: Steps of Monte Carlo tree
search. In this example, the reward ob-
tained after the simulation phase is 0.
Each line corresponds to an agent. Each
node is associated with two numbers:
the first one indicates the sum of win-
ning simulations for the current agent,
and the second, the total visits.

62

9.3.2 Selection

The Selection phase enables picking a node among the leaves1 ac- 1 By leaves, we mean the nodes that have
at least one unvisited child.cording to a vector 𝑈(𝑎|𝑠𝑡), named from Upper Confidence Bounds

(UCB). It assigns values to each available action from the state 𝑠𝑡.
We apply the best action according to 𝑈(𝑎|𝑠𝑡) recursively until a leaf
state is reached. Note if the leaf has children already, the Selection
algorithm can either stop or selects a child.
In 2006, Kocsis and Szepesvári proposed Upper Confidence Bounds

for Trees (UCT) [KS06], a selection strategy derived from UCB
[ACBF02]. It states:

∀𝑎 ∈ 𝐴𝑡, 𝑈(𝑎|𝑠𝑡) = 𝑄(𝑎|𝑠𝑡) + 𝐶 ⋅ √ log𝑁(𝑠𝑡)
𝑁(𝑎|𝑠𝑡)

, (9.1)

where 𝐴𝑡 is the set of available actions at step 𝑡, 𝑄(𝑎|𝑠𝑡) is the expected
value of the available actions (Equation in §9.3.5), 𝐶 is the exploration
trade-off constant, 𝑁(𝑠𝑡) is the number of visits to the node associated
with 𝑠𝑡, 𝑁(𝑎|𝑠𝑡) is the number of times the available actions have
been taken from the state 𝑠𝑡. Note that ∀𝑎 ∈ 𝐴𝑡, 𝑁(𝑎|𝑠𝑡) = 𝑁(𝑠𝑡+1|𝑎).
This strategy 𝑈 has been adapted to single-player games by Schadd

et al. [SWTU12]:

∀𝑎 ∈ 𝐴𝑡, 𝑈𝑆𝑃(𝑎|𝑠𝑡) = 𝑈(𝑎|𝑠𝑡) + 𝑊 ⋅ 𝑄𝑚𝑎𝑥(𝑎|𝑠𝑡) + 𝜎(𝑎𝑡|𝑠𝑡).

They made two modifications on 9.1:

] 𝑊 ⋅ 𝑄𝑚𝑎𝑥(𝑎|𝑠𝑡) is a fraction of the maximum value obtainable
from the action 𝑎 applied from 𝑠𝑡. This term indicates that it
is relevant to focus not only on 𝑄(𝑎|𝑠𝑡), the average value that
can be obtained from 𝑎, but also on the maximum value that
can be derived from it. This is possible because there are no
opponents2. Schadd et al. set 𝑊 = 0.02. Jacobsen et al. [JGT14] 2 In two-player games, if the first player

chooses the action that has a bad average
but a maximum value, the second player
will steer the game so that the maximum
value is not reached.

recommend using (1 − 𝜆) ⋅ 𝑄(𝑎|𝑠𝑡) + 𝜆 ⋅ 𝑄𝑚𝑎𝑥(𝑎|𝑠𝑡) rather than
𝑄(𝑎|𝑠𝑡) + 𝑊 ⋅ 𝑄𝑚𝑎𝑥(𝑎|𝑠𝑡).

] 𝜎(𝑎𝑡|𝑠𝑡) is the standard deviation estimate. This term is pertinent
in case of game with unbounded rewards.

AlphaGo [SHM+16] introduced Predictor + Upper Confidence
Bound for Tree (PUCT), derived from PUCB [Ros11a]:

∀𝑎 ∈ 𝐴𝑡, 𝑈(𝑎|𝑠𝑡) = 𝑄(𝑎|𝑠𝑡) + 𝐶 ⋅ 𝜋𝜃(𝑎|𝑠𝑡) ⋅
√𝑁(𝑠𝑡)

1 + 𝑁(𝑎|𝑠𝑡)
, (9.2)

where 𝜋𝜃(𝑎|𝑠𝑡) is the policy returned by the neural network 𝑃 that
predicts the actions.
In Alphazzle, we mostly use Equation 9.2. We also implemented

this equation in which we replaced 𝑄(𝑎|𝑠𝑡) by Jacobsen et al.’s term.

9.3.3 Expansion

The Expansion phase occurs after the Selection and enables appending
one or several nodes to the tree. An example of an Expansion strategy
is to select an unexplored node randomly.

63

In AlphaZero, one node is expanded at each iteration. The ex-
panded node is obtained from the best 𝑈(𝑎|𝑠𝑡). Indeed, in PUCT, the
predictors allows 𝑈(𝑎|𝑠𝑡) to select an unexplored node. Therefore it
is used for both the Selection and Expansion phases.
In Alphazzle, we use AlphaZero Expansion.

9.3.4 Simulation

The Simulation phase aims to find a possible value obtained from
the expanded node. The objective is to make (more) accurate this
node’s value and its predecessors during the Backpropagation phase.
An example of a Simulation strategy is to select actions randomly
until an endgame is reached. In most cases, however, a handmade
policy guides the Simulation. For example, Schadd et al. [SWTU12]
propose two policies for SameGame, which promotes the creation of
large groups of color.
In AlphaZero, Silver et al. replace the Simulation phase with

a neural network 𝑉, which predicts the expected value from the
expanded node. When their MCTS reach an endgame node, the
ground-truth reward is returned.
In Alphazzle, we use AlphaZero Simulation, except that the endgame

ground-truth reward may be replaced by the predicted reward3, de- 3We introduced the predicted reward
in §9.2.4.pending on our experimental settings.

9.3.5 Backpropagation

The Backpropagation phase updates 𝑄(𝑎|𝑠𝑡), 𝑁(𝑎|𝑠𝑡) and 𝑁(𝑠𝑡) of
each node visited.
Given 𝑣(𝑠𝑡) the value of the leaf node, we initialize 𝑄(𝑎|𝑠𝑡) = 𝑣(𝑠𝑡),

𝑁(𝑎|𝑠𝑡) = 1 at the first visit of the node. At each next visit, we
perform the update:

𝑄(𝑎|𝑠𝑡) ←𝑁(𝑎|𝑠𝑡) ⋅ 𝑄(𝑎|𝑠𝑡) + 𝑣(𝑠𝑡)
𝑁(𝑎|𝑠𝑡) + 1

,

𝑁(𝑎|𝑠𝑡) ←𝑁(𝑎|𝑠𝑡) + 1,
𝑁(𝑠𝑡) ←𝑁(𝑠𝑡) + 1.

9.3.6 Solving a puzzle with our MCTS

In Algorithm 6, we present the algorithm that initializes MCTS, up-
dates it and returns the policy 𝜋𝑀𝐶𝑇 𝑆(𝑎𝑡|𝑠𝑡). We detail Update_mcts
below. The other functions are:

] Init_mcts creates an object 𝑡𝑟𝑒𝑒 with a single node which cor-
responds to 𝑠𝑡, and initializes dictionaries indexed by 𝑠𝑡 that
contains the node-related values: 𝑄(𝑎|𝑠𝑡), 𝑁(𝑎|𝑠𝑡), 𝑁(𝑠𝑡), 𝑃(𝑎|𝑠𝑡),
and 𝑠𝑐𝑜𝑟𝑒𝑠(𝑠𝑡).

] Zero_if_not_max is called during the inference phase (i.e., when

64

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is False) and sets all values of 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑐𝑜𝑟𝑒𝑠 to zero,
except its maximum.

] Divide_by_sum takes a list of values and returns the list of values
divided by the sum of the values.

Algorithm 6: MCTS launcher.
1: procedure Get_�_mcts(𝑠𝑡)
2: 𝑡𝑟𝑒𝑒 ← Init_mcts(𝑠𝑡)
3: for 𝑁𝑣𝑖𝑠𝑖𝑡𝑠 do
4: 𝑡𝑟𝑒𝑒, _ ← Update_mcts(𝑡𝑟𝑒𝑒, 𝑠𝑡)
5: end for
6: 𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝑡𝑟𝑒𝑒.𝑠𝑐𝑜𝑟𝑒𝑠[𝑠𝑡]
7: if 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is False then
8: 𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑐𝑜𝑟𝑒𝑠 ← Zero_if_not_max(𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑐𝑜𝑟𝑒𝑠)
9: end if
10: 𝑝𝑜𝑙𝑖𝑐𝑦 ← Divide_by_sum(𝑛𝑒𝑥𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑐𝑜𝑟𝑒𝑠)
11: return 𝑝𝑜𝑙𝑖𝑐𝑦
12: end procedure

We propose two ways of computing 𝑡𝑟𝑒𝑒.𝑠𝑐𝑜𝑟𝑒𝑠, the list of scores
for each action available for 𝑠𝑡:

] We use 𝑡𝑟𝑒𝑒.𝑠𝑐𝑜𝑟𝑒𝑠(𝑠𝑡) = 𝑄(𝑎|𝑠𝑡), because 𝑄(𝑎|𝑠𝑡) is the list of
expected values of actions 𝑎. Therefore, the optimal action should
be the the one with the highest Q-value.

] As in AlphaZero, we use 𝑁(𝑎|𝑠𝑡), because the most visited nodes4 4 The number of visits depends on
𝑄(𝑎|𝑠𝑡).are more trusted than a newly visited node with higher Q-value.

In Algorithm 7, we explain Update_mcts, in the case where we use
the predicted reward rather than the ground-truth reward.

Algorithm 7: MCTS updater.
1: procedure Update_mcts(𝑡𝑟𝑒𝑒, 𝑠𝑡)
2: if Is_endgames(𝑠𝑡) then
3: return 𝑡𝑟𝑒𝑒, V.predict(𝑠𝑡)
4: end if
5: if Is_not_visited(𝑠𝑡) then
6: 𝑡𝑟𝑒𝑒.𝑃 [𝑠𝑡] ←P.predict(𝑠𝑡)
7: return 𝑡𝑟𝑒𝑒, V.predict(𝑠𝑡)
8: end if
9: 𝑎 ← max𝑎 Get_U(s𝑡, 𝑡𝑟𝑒𝑒)
10: 𝑠𝑡+1 ← Update_state(𝑠𝑡, 𝑎)
11: 𝑡𝑟𝑒𝑒, 𝑣 ← Update_mcts(𝑡𝑟𝑒𝑒, 𝑠𝑡+1)
12: 𝑡𝑟𝑒𝑒 ← Backpropagation(𝑡𝑟𝑒𝑒, 𝑣)
13: return 𝑡𝑟𝑒𝑒, 𝑣
14: end procedure

We detail the functions introduced in Algorithm 7:

] Is_endgames returns True if 𝑠𝑡 validates an endgame criteria.

65

] Is_not_visited returns True if 𝑠𝑡 is not in the tree.

] V.predict and P.predict returns the predictions of the neural net-
works 𝑉 and 𝑃.

] Get_U computes 𝑈(𝑎|𝑠𝑡).

] Update_state executes the actions 𝑎 from state 𝑠𝑡 and returns the
obtained state 𝑠𝑡+1.

] Backpropagation applies the backpropagation equations and up-
dates the tree values.

In Figure 9.4, we shows our MCTS applied to a 2×2 jigsaw puzzle.
We display the value of 𝑣(𝑠𝑡), the expectation of finding the solution
from each state 𝑠𝑡.

Figure 9.4: Example of MCTS simula-
tions applied to puzzles. In this example,
the states are clearly shown, as well as
the state of the value function, which
is the expectation to find the correct re-
assembly from the current node.

9.4 deep reinforcement learning

Like McAleer et al. suggested in [MASB18], we pre-train our neural
networks on handcrafted tasks. We expect such pre-training enables
them to be more accurate. After the pre-training, we integrate them
into our MCTS algorithm. Then, we may fine-tune them after MCTS
solved several puzzles.
Note that another difference with AlphaZero is that our 𝑃 and 𝑉

use visual inputs and thus have to extract meaningful information
from these noisy signals. In contrast, AlphaZero directly uses the
board state, which is a clean semantic input. For that reason, we use
two image datasets: one for training 𝑃 and 𝑉 and one for evaluating
our algorithm.

66

9.4.1 Pre-training 𝑃

The neural networks 𝑃 predicts the best actions from a fragment’s
image and a partial reassembly image. We generate inputs from
our puzzle dataset: we make correct partial reassemblies and select
fragments to place among the remaining fragments. Note that 𝑃 is
not trained on wrong partial reassemblies, because there may be no
correct answer for the fragment to place (i.e., its position is already
taken).
The neural network 𝑃 is trained using categorical cross-entropy to

predict the fragment position, outputting an estimate ⃗𝑝𝑠 of the policy.

Architecture We use two architectures for the features extractor
part of 𝑃: a WideResNet (WRN) [ZK16] initialized with random
weights and a ResNet [HZRS16] pre-trained on ImageNet. Most of
our experiments ran on WRN, because it was what we implemented
first5. 5We implemented WRN to be able to

evaluate our trained neural network on
few-shot tasks and compare it easily
with other WRN trained on different
tasks.

Each input goes through the same feature extractor, thanks to
shared weights. Then, each goes to a different multi-layer perceptron
made of 6 (2 for ResNet) successive fully-connected layers of size 512,
alternating with ReLU functions. The two outputs are concatenated
and given to a shallower perceptron that predicts the fragment posi-
tion (2 fully-connected layers, a ReLU between them, and a softmax
at the end). The classes correspond to the puzzle positions, and 𝑃 is
trained by sampling random partial reassemblies.

9.4.2 Pre-training 𝑉

The neural networks 𝑉 predicts the expected reward value that can
be reached from the state 𝑠𝑡. Therefore, its input is a reassembly,
either partial or complete. When the reassembly is complete, or when
only one fragment is remaining, 𝑉 predicts the reward: 0 if there is
at least a mistake6 and 1 otherwise. When the reassembly is partial, 6 If 𝑝 = 𝑓, the minimal number of mis-

take is 2.𝑉 is trained to predict 0 if there is at least a mistake. If the partial
reassembly is correct, it can lead to wrong and correct reassemblies;
therefore we train 𝑉 to predict:

𝑣(𝑠𝑡) = 0.5 + 0.5 ⋅ 𝑖
𝑓 − 1

, (9.3)

where 𝑓 is the number of fragments, and 𝑖 is the number of well-
placed fragments in state 𝑠𝑡. We choose this value over the expectation
because it indicates the confidence in the prediction: an empty puzzle
predicted value is 0.5, because we have no information.
The neural network 𝑉 is trained using MSE loss. Its architecture

borrows the WRN (or ResNet) from 𝑃, followed by an MLP.

67

9.4.3 MCTS-based fine-tuning

Finally, we introduce the optional fine-tuning of 𝑃 and 𝑉 that could
occur while solving puzzles.
This mining of training examples is akin to active learning, where

the learning focuses on more important examples. Indeed, during
the first training, reassemblies are sampled uniformly, while it is
not the case of the nodes explored by MCTS. Thus, we suggest that
fine-tuning the networks on the nodes that are likely to be visited.
This process differs from AlphaZero: in a two-player game, there
is always a set of actions that led to victory and thus can be used
to reinforce the 𝑃𝑉 network, especially because 𝑉 has access to the
ground truth at terminal nodes.
We use the states obtained from all the choices made after the

policy 𝜋𝑀𝐶𝑇 𝑆(𝑎𝑡|𝑠𝑡). In AlphaZero, the neural networks learn to
reproduce actions that lead to the victory of an agent. In our case, we
cannot deploy such learning from the opponent; therefore, we learn
the ground-truth for 𝑃 (even if the position is already occupied) and
the value from Equation 9.3 for 𝑉.

9.5 experiments

9.5.1 Training procedure

We program the neural networks with PyTorch library. Table 9.1
shows the standard parameters for our experiments.

Feature extraction WRN
Optimizer Adam
Learning rate 0.001

Fragment size 40
Fragment per size 3
Space size 4

Selection PUCT
Reward Predicted
Action choice 𝑁(𝑎|𝑠𝑡)

Table 9.1: Summary of the experiments
parameters.

9.5.2 Reassembly metrics

We introduced the metrics in §2.3. For Alphazzle, we use the solved
puzzles, the well-placed fragments and the correct neighbors metrics.

9.5.3 Dataset

We train our neural network on MET (10,000 training images and
2,000 validation images). At each epoch, we use different crops
within the images. We consider a single pair of input per image for

68

the pre-training, and all chosen pairs per image for the fine-tuning.
We normalize the values between -1 and 1 for WRN and accordingly
to PyTorch documentation for ResNet.

Artwork 6: The Dance Class, Edgar De-
gas, 1874, from the MET Open Collec-
tions.

https://pytorch.org/docs/stable/torchvision/models.html
https://www.metmuseum.org/fr/art/collection/search/438817

10
Alphazzle results

[Chapter 9 Chapter 11]
Synopsis This chapter presents the results obtained from training 𝑃
and 𝑉 §10.1, and optimizing MCTS §10.2. Last, we discuss the results
on the reassembly §10.3 and introduce some optimization §10.4.

10.1 pre-training results

This section presents our pre-training results for 𝑃 and 𝑉, for ResNet
and WideResNet. Then, we compare the settings, i.e., the number
of fragments, their size, the space between them, and the impact of
some fragments placed on the partial reassemblies.

10.1.1 Architectures comparison

Table 10.3 shows the performance of our two architectures:

Network P (%) V (%)

WideResNet 69.91 88.46
ResNet 50.71 78.73

Table 10.1: Validation accuracy scores
— Comparison between ResNet and
WideResNet, on 100 epochs.

We observe that ResNet displays lower performance than WideRes-
Net; therefore, we rely on WideResNet for our next experiments.

10.1.2 Settings comparison

Table 10.21 shows the impact of settings on neural networks: 1 Table 10.2 is an excerpt of Table D.1.

Fragment per side Space size (px) Hints P (%) V (%)

3 0 0 69.56 90.07
3 4 0 69.91 88.46
3 10 0 67.39 87.15
3 20 0 61.34 85.79
4 4 0 37.65 92.64
4 4 8 52.02 99.09
5 4 0 19.15 94.25

Table 10.2: Validation accuracy scores
— Comparison between the settings.

First of all, we note it is easier for 𝑉 to scout mistakes in the
reassembly than for 𝑃 to predict the action.

70

Fragment per side Increasing the number of fragments in a puzzle
does not profoundly impact the performance of 𝑉 but leads to a drop
in performance for the network 𝑃, which is not compensated when
training with already placed fragments. In Table D.1, 6×6 puzzles
reach a validation accuracy of 3.43% for 𝑃 and of 64.47% for 𝑉.

Space size Increasing the size of the space between the fragments
makes the puzzles slightly more complicated, by a few percent for
𝑃 and 𝑉. It means our neural networks successfully learn to solve
puzzles without relying on continuities.

Fragment size We ran very few experiments on the fragment size.
Note that on 96×96 fragments, the space size is half the fragment size.
Therefore, we should compare the results to the 40×40 fragments
spaced by 20 pixels. According to Table D.1, bigger fragments lead to
-5% accuracy for 𝑃 and 𝑉, probably because our architecture is not
well suited for larger fragments, or at least not well tuned for them.

Placed fragments The placed fragments, or “hints”, are the minimal
number of placed fragments in the reassembly when training or
evaluating the networks. For 𝑃, they are the well-placed fragments;
for 𝑉, correct reassemblies alternates with reassemblies that can
lead to a wrong reassembly. The impact of hints on results allows
studying how our neural networks behave on easier tasks. For
example, when we give 8 hints to a neural network that solves the
4×4 puzzle, we theoretically approximate the 3×3 puzzle difficulty,
but the performance is lower on 𝑃.
We also consider a central hint to compare with Deepzzle. When

there are 8 hints, it means that there is only one fragment to place
in the case of 3×3 puzzles. The results show that the neural network
𝑃 successfully learned to place the fragments in empty positions.
However, it did not reach 100% because some background fragments
are as black as empty spaces. Inspired by AlphaGo’s data structure,
we proposed to append a 4th channel to the images that allow
differentiating empty spaces and black fragments. We did not see any
visible improvement of the validation accuracy, but the computing
time has become slightly longer.
We ran more experiments to analyze the impact on hints. We

present the results in Table D.2. In this Table, contrarily to the
previous one, the validation hints does not indicate the minimal
number of hints, but their exact number.
Giving hints makes the neural networks perform better in solving

easy puzzles (with as many or more hints). However, the validation
accuracy we obtain dropped significantly on puzzles with fewer hints
than during the training: we obtain 11.34% ≃ 1/9 on empty reassembly
if we train 𝑃 to place only the last fragment. Note that the standard
𝑃 network trained with no hint can correctly predict the position of
the first fragment 46.97% of the time.

71

If we study the impact of hints on specific partial reassembly, for
every amount of fragments placed, we see that performance on easy
puzzles (i.e., when most fragments are placed) are equivalent for
various minimal numbers of training hints. It means that using
specialized neural networks2 for the last steps brings no substantial 2As suggested in earlier versions of

AlphaGo, with their different 𝑃 net-
works for opening, middle-game, and
endgame.

gain. A neural network which has not been trained on difficult
partial reassemblies performs worse than a neural network trained
on all type of partial reassemblies. However, it will still be better
than random on puzzles slightly more difficult than those on which
it learned. Last but not least, 𝑉 displays bad accuracies on the
most challenging reassemblies. It is because it learns to express its
uncertainty about the puzzles: it makes soft guesses over the class.

Accuracy of 𝑉 on complete puzzles Table 10.3 shows the results
obtained for complete reassemblies, i.e., the predicted reward for the
endgame, under various errors distribution:

Well-placed fragments D* 9 <7 7 6

V (%) 96.77 92.87 99.74 58.51 85.83

Table 10.3: Validation accuracy scores of
𝑉 — Comparison on complete puzzles.
D* is the usual distribution: half correct
reassemblies, half with mistake.

On average, on our pre-training distribution, we obtain 96.77%.
Half of this distribution are perfect reassemblies (i.e., 9 well-placed
fragments), the other half are reassemblies with any number of
mistakes (i.e., <7 well-placed fragments).
Interestingly, it is difficult for 𝑉 to evaluate puzzles with only one

inversion, but as soon as three fragments are inverted, the precision
goes back up.
Figure 10.1 shows an example of a two-fragments inversion:

(a) (b)
Figure 10.1: Comparison of a correct
reassembly and a incorrect one with one
inversion — Fig. (b) has two misplaced
fragment, the central one and the right
one.

Figure 10.1 illustrates the difficulty of the task: (b) may seem
correct. Moreover, many images from MET have a plain background
and interchangeable fragments, but our metric does not take it into
account.

72

10.2 mcts performance

In this section, we compare various settings, and we study the impact
of neural networks, especially of the endgame reward, on MCTS.

10.2.1 MCTS meta-parameter optimization

We analyze the number of visits 𝑁𝑣𝑖𝑠𝑖𝑡𝑠
3 to run before selecting the 3 For 3×3 puzzles, the algorithms need

at least 105 simulations to explore all the
branches if no exploitation occurs.

action, and the trade-off 𝐶 between exploration and exploitation. We
want to select the best configuration for the reassembly task.
Table 10.44 presents some results on meta-parameters: 4 Table 10.4 is an excerpt of Table D.3.

𝑁𝑣𝑖𝑠𝑖𝑡𝑠 10 102 103 103 103 103 104 105 106

𝐶 1 1 0.01 0.1 1 10 1 1 1

Fragment accuracy (%) 49.0 54.5 48.8 55.0 55.6 52.2 57.9 58.0 65.6
Puzzle accuracy (%) 12 15 10 14 15 13 17 22 30

Solving time (s/puzzle) 1 4 8 9 16 25 84 685 7200

Table 10.4: Reassembly scores — Com-
parison of MCTS meta-parameters.We obtain the best score with a high number of simulations and

𝐶 = 1. Running many simulations increases the computation time
drastically, although results are always better with more simulations.
Note that high exploration (when 𝐶 > 1) also has a non-negligible
computational cost as more new states have to be analyzed by the
neural networks. For that reason, we use 103 simulations and 𝐶 = 1
in the following experiments.

10.2.2 Influence of 𝑃 and 𝑉 on MCTS

We compare the endgame reward type, the behavior of MCTS deprived
of 𝑃 or 𝑉, and the behavior of 𝑃 and 𝑉 without MCTS.

Predicted reward versus ground-truth reward We analyze the
results obtained for the two types of endgame reward in Table 10.5:

Reward Fragment-wise (%) Neighbor-wise (%) Puzzle-wise (%)

Ground-truth 78.14 79.92 70.55
Predicted 55.63 58.93 14.55

Table 10.5: Reassembly scores — Com-
parison between endgame reward.Scores drop by 20% for fragment-wise and neighbor-wise metrics,

and by 55% for the reassemblies, which is a significant difference.
We assume that this is due to the accuracy issue of 𝑉 on complete

puzzles. On the one hand, with ground-truth reward, if MCTS finds
a path with 𝑟(𝑎, 𝑠) = 1, it is the correct reassembly, and so MCTS will
select it. On the other hand, with predicted reward, MCTS may find
paths with 𝑟(𝑎, 𝑠) = 1, but that leads to wrong reassemblies.
This experience allows us to better grasp the difficulties related to

73

the use of a predicted reward.

Deactivation of 𝑃 and 𝑉 To measure the importance of 𝑃 and 𝑉 for
MCTS, we compare the impact of deactivating them, i.e., replacing 𝑃
by a unit vector or 𝑉 by a constant. Table 10.6 displays the results:

P ✓ ✓ ✓ ✓
V (endgame) ✓ ✓ ✓ ✓
V (during game) ✓ ✓ ✓ ✓

Fragment accuracy (%) 55.63 53.64 49.00 45.01 54.17 14.47 51.47 11.23
Puzzle accuracy (%) 14.55 14.65 11.10 9.20 12.25 0.00 10.50 0.00

Table 10.6: Reassembly scores — Com-
parison of MCTS with and without 𝑃 or
𝑉.It appears that MCTS can cope with the absence of either 𝑃 or

𝑉, but not the lack of both. We note that deactivating 𝑃 has more
impact than replacing 𝑉 by 1 during the game.
If we keep 𝑃 and 𝑉 but stop predicting the reward from the

middle-game (second column), the results are close to the baseline.
However, if we remove 𝑃 or 𝑉 and the middle-game predictions,
the results drop. Especially if we remove 𝑃, we are not able to
reassembly any puzzle. On the contrary, if we only deactivate 𝑉 for
the endgame reward and predict 1, the neural network still picks
pertinent reassemblies, although it considers them all equivalent.

Greedy neural networks Last, we compare our results with a base-
line that uses a greedy exploitation by taking the argmax of 𝑃 or 𝑉
at each step, without MCTS. We show the results in Table 10.7:

Reward Fragment-wise (%) Puzzle-wise (%)

MCTS 55.63 14.55
Greedy 𝑃 42.0 6.0
Greedy 𝑉 44.0 8.6

Table 10.7: Reassembly scores — Com-
parison with and without MCTS.

When 𝑃 solves a puzzle by itself, it is shown pairs of fragments
and partial reassemblies, starting from the empty reassembly. Then,
the fragments are placed according to 𝑃’s predictions, updating the
reassembly. Without MCTS, the results’ quality drops, which shows
the importance of exploring alternative reassemblies with MCTS.
Similarly, 𝑉 evaluates all the partial reassemblies that can be ob-

tained from the current state. Then, it selects the action leading to
the best reassembly according to its predictions. It is interesting to
see that 𝑉 is a better action predictor than 𝑃 alone, which already
appeared in Table 10.6.

10.3 reassembly results

This section presents our results for the standard experiment, as
described in Table 9.1.

74

10.3.1 Quantitative analysis

Table 10.8, an excerpt of Table D.4, presents some reassembly scores:

Configuration Reassembly scores
Fragment
size (px)

Fragment
per side

Space size
(px)

Hints
P – V

Hints
reassembly

Fragment-
wise (%)

Puzzle-
wise (%)

Reassemblies
done in 24h

40 3 4 0-0 0 55.63 14.55 2000
40 3 4 0-0 1 60.94 20.65 2000
40 3 4 0-0 1 (central) 62.33 22.45 2000
40 3 10 0-0 0 48.59 7.15 2000
40 3 20 0-0 0 45.91 6.80 2000
40 4 4 0-0 0 29.08 0.00 407
40 5 4 0-0 0 15.68 0.00 203

Table 10.8: Reassembly scores with
1,000 simulations and 𝐶 = 1.

It covers three comparisons. First, we compare the baseline perfor-
mance to a one-hint puzzle. The central hint is similar to Deepzzle
configuration. We note that when the hint is central, the puzzle is
slightly easier to solve (2%) than when the hint is lateral—in both
cases, having a hint improves the performance by +5%.
Second, we see that space has a great influence on our reassembly

(-10%), while it has a limited impact on the neural networks’ vali-
dation scores (Table 10.2). In Table D.5, we present our results for
40×40 fragments and 96×96 fragments, with large space and more
simulations. Interestingly, the reassemblies with bigger fragments are
more accurate than the one with 40×40, whereas the neural networks’
scores are lower.
Last, the reassembly of 4×4 and 5×5 puzzles takes time (in a day,

we were able to compute 407 4×4 puzzles and 203 5×5 puzzles).

Table 10.9 presents the errors distribution, depending on how many
fragments are well-placed. Note that having a single mistake (i.e., 8
well-placed fragments for a 3×3 puzzle) is impossible.

Number of well-placed fragments
0 1 2 3 4 5 6 7 8 9

2.98 6.53 10.53 9.98 11.48 18.08 7.43 18.38 (impossible) 14.55

Table 10.9: Reassembly scores — Distri-
bution of errors.

It is rare to have wrongly placed all fragments. Most of the time,
two or four fragments are swapped.

10.3.2 Qualitative analysis

Figure 10.2 is made of typical reassemblies and their solutions (except
for Puzzles (a) and (g) that are correct reassemblies):

75

(a) (b) (c) (d) (e) (f)

(g)

Figure 10.2: The two left images are
examples of correct reassemblies. On the
right, the first row shows some failure
reassemblies made MCTS; their solution
is below.

At first glance, we observe that most of the 3×3 reassemblies we
made feature many well-placed fragments. Indeed, on such a setup,
puzzles with at most 2 mistakes represent more than 30% of the
results (Table 10.9).

] Puzzles (a) and (g) are correct reassemblies. While (g) is more
difficult than (a), they both cannot be wrong but visually correct.

] In contrast, Puzzle (b) is visually correct, but the rows are inverted.

] Puzzle (c) features an error of 𝑉: the head and the tail are swapped,
despite being placed during the last steps.

] Puzzle (d) illustrates how a misplaced first fragment (the cleavage)
alters the rest of the puzzle.

] Puzzles (e) and (f) illustrate how complex the task is for bigger
puzzles and show some well-assembled background or bodies
fragments. Corrects fragments are grouped, and we obtain better
scores with the neighbor-wise metric rather than the fragment-wise
metric.

10.4 results optimization

In this section, we present some optimization we made on Alphazzle:
the strategy for selecting an action from MCTS output, the impact of
changing the order of the fragments given to MCTS, and the impact
of fine-tuning. Last, we present results in comparison with Noroozi
and Favaro [NF16] and Deepzzle.

10.4.1 Order of the fragments

We expect the order of the fragments fed to MCTS to have a con-
sequent impact on the reassembly score, and run an experiment to
validate our hypothesis.

76

Table 10.10 details the impact of making several attempts to solve
a puzzle, with different input fragments reordering:

Best attempt Worst attempt

Number
of attempt

Fragment-
wise (%)

Puzzle-
wise (%)

Fragment-
wise (%)

Puzzle-
wise (%)

Reassemblies
done in 24h

1 55.63 14.55 - - 2000
5 64.49 42.33 24.20 0.90 2000
10 68.98 44.59 33.48 3.43 466
20 70.62 41.69 36.04 1.80 222

Table 10.10: Reassembly scores — Im-
pact of the order of fragments.

We find out that solving 10 times the same puzzle while reordering
the fragments and letting 𝑉 selecting its favorite leads to a gain of
14% on fragments reassembly score and 30% on puzzle reassembly
score. To compare, if we always select the worst reassembly on 10
attempts, we obtain 33.48% and 3.43%, which was lucky compared
to the worst attempt we made on the 5 attempts test.
However, the possibility of changing the order of the fragments

goes hand in hand with an increase in computing time, limiting the
number of reassemblies we made.
When we use multiple fragments order during the inference, we

select the best solution according to 𝑉 rather than the true best solution.
Therefore, the final scores may be lower than those displayed in Table
10.10.

10.4.2 Action choice from MCTS output

MCTS returns the policy 𝜋𝑀𝐶𝑇 𝑆(𝑎𝑡|𝑠𝑡). To select the action to perform,
we use 𝑁(𝑎|𝑠𝑡). If we replace it by 𝑄(𝑎|𝑠𝑡), we observe a slight
improvement from 55.63% to 58.11% for fragments accuracy, and
from 14.55% to 16.75% for puzzles accuracy.
Table 10.11 shows the impact of using 𝑄𝑠(⋅) rather than 𝑁𝑠(⋅) to

compute the policy vector ⃗𝜋𝑠. The other parameters are the number
of hints in the reassembly and the number of attempts.

𝑁(𝑎|𝑠𝑡) 𝑄(𝑎|𝑠𝑡)

Fragment
per side

Hints
reassembly

Number
of attempts

Fragment-
wise (%)

Puzzle-
wise (%)

Fragment-
wise (%)

Puzzle-
wise (%)

3 0 1 55.63 14.55 58.11 16.75
3 0 10 64.49 42.33 72.28 39.56
3 1 (central) 10 80.66 45.95 82.47 51.50

4 0 10 35.32 0.74 32.49 0.76
5 0 10 15.92 0.00 14.04 0.00

Table 10.11: Reassembly scores — Im-
pact of 𝑄(𝑎|𝑠𝑡).We observe that on 3×3 puzzles, 𝑄(𝑎|𝑠𝑡) is better than 𝑁(𝑎|𝑠𝑡).

77

Note that the puzzles are not identical from one generation to another,
which explains why 𝑄(𝑎|𝑠𝑡) may have a lower puzzle-wise score. On
bigger puzzles, it is better to prefer 𝑁(𝑎|𝑠𝑡).

10.4.3 Comparison with other methods

Table 10.12 displays the puzzle-wise score for different reassembly
algorithms:

Number of available permutations, i.e., terminal nodes.
Algorithm 10 102 103 9! ≃ 106 16! ≃ 1013 25! ≃ 1025

Noroozi and Favaro [NF16] 86.6 69.3 51.6 overflow overflow overflow
Deepzzle, without central fragment 91.5 81.7 64.8 39.2 overflow overflow
Alphazzle, without central fragment n/a n/a n/a 39.56 0.76 0.0

Deepzzle, with central fragment n/a n/a n/a 44.4 overflow overflow
Alphazzle, with central fragment n/a n/a n/a 51.50 0.0 0.0

Table 10.12: Reassembly scores — Com-
parison with the literature, with one cen-
tral fragment already placed, 1000 sim-
ulations and 10 attempts.

We make 10 attempts before selecting which reassembly is correct,
and we use 𝑄(𝑎|𝑠𝑡). We did not implement a way to limit the
available permutations; therefore, we do not compare to the lowest
numbers of available permutations.
With a central fragment, we outperform [PPT20] by 7% on the

puzzle accuracy.
In terms of computational cost, our method greatly outperforms

[CDB+19, NF16, PPT20]. Not only do we address all possible 𝑛!
permutation, but we can propose reassemblies to 4 × 4 and 5 × 5
puzzles in a few hours, whereas state of the art cannot rely on deep
learning to solve such puzzles.

10.4.4 Impact of fine-tuning

Table 10.13 shows the fine-tuning results on various epochs sizes:

Fine-tuning epoch 0 1 3 5 7 10 15 20

Fragment accuracy (%) 55.63 52.79 53.63 54.36 53.92 54.63 54.49 56.72
Puzzle accuracy (%) 14.55 17.35 18.25 20.05 20.40 20.00 20.30 23.10

Table 10.13: Reassembly scores — De-
tail on fine-tuning accuracy for 3 × 3
puzzles with 500 puzzles generated per
iteration.

Note that we make 100 simulations rather than 1000, leading
MCTS to make more mistakes, which should provide more relevant
training samples. We use 𝑁(𝑎|𝑠𝑡) and only make one attempt to
generate 500 training puzzles and evaluate the validation images’
results.
After a few epochs, we significantly improve the puzzle reassembly

scores by almost 9%. Strangely, the fragment accuracy stays the same.
It means that on average, fine-tuning improves easy puzzle up to the
point where the reassembly is correct while it has a negative impact

78

on challenging puzzles.

As we build the fine-tuning dataset on the previous reassemblies
done by Alphazzle, we can choose to pick the best action from the
MCTS output (“best”), or select an action randomly, using 𝜋𝑀𝐶𝑇 𝑆 as
a probability distribution (“softmax”), to add some noise and make
our method more robust. We call the choice the “action choice”.
Table 10.14 shows the reassembly scores obtained with fine-tuning,

with a learning rate of 0.0001 and 100 simulations for MCTS:

Fragment
per side

Fine-tuning
batch size

Qt of
reassemblies
in solving

Action
choice

Fragment-
wise (%)

Puzzle-
wise (%)

Qt of
puzzles
seen

3 100 × 32 100 Best 56.44 33.00 28 000
3 100 × 32 100 Softmax 61.11 30.00 10 800
3 100 × 32 2000 Best 54.07 20.05 2 500
3 200 × 32 2000 Best 55.11 20.06 4 800
3 500 × 32 2000 Best 56.72 23.10 10 000
3 500 × 32 2000 Softmax 53.96 18.80 5 000
4 100 × 42 100 Best 23.94 0.10 2 200
4 500 × 42 2000 Best 24.51 0.35 1 000
5 100 × 52 100 Best 15.60 0.00 1 000
5 500 × 52 2000 Best 14.32 0.00 500

Table 10.14: Reassembly scores with fine-
tuning, with 100 simulations and lr =
0.0001.Thanks to fine-tuning, we have been able to reach 33% of well-

solved puzzles.
The last column detail how puzzles have been seen during training.

It allows mitigating the results for bigger batches size and bigger
puzzles.

10.4.5 Combination of the best parameters

To conclude, we combine the standard experiment with fine-tuning,
𝑄(𝑎|𝑠𝑡) and 10 attempts. Table 10.15 shows the scores we obtain:

Fragment-wise (%) Neighbor-wise (%) Puzzle-wise (%)

75.12 77.54 51.49

Table 10.15: Reassembly scores — Com-
bination of the best parameters.

Part IV

EPILOGUE

11
Conclusion

[Chapter 10 Appendix A]

11.1 looking back

Puzzle-solving with neural networks started as a simple pretext task
aiming to improve state-of-art neural networks [DGE15, NVFP18,
CDB+19, KCYK18], but is now a standalone goal, which we believe
to be very interesting for the community. Indeed, it is one of the very
few tasks that combine two traditionally opposed aspects of artifi-
cial intelligence: visual understanding and choice space exploration.
Robotics exhibits a similar positioning between these two domains,
with the differences that the choice space is much larger and that
there are many optimal action paths. In contrast, puzzle-solving
occurs in a controlled environment characterized by a narrow choice
space and a unique correct path—given an ordered set of patches.
Thus, it exhibits excellent properties to study the combination of
visual understanding with choice space exploration.
Hybrid approaches combining search algorithms and deep learning

are potent and could be applied to a wide range of domains, such
as autonomous driving. They are important globally since they
offer several advantages over using an empirical predictor alone
(neural networks or other machine learning algorithms). Namely,
they offer some level of interpretability by showing the path leading
to the selected solution. Being able to explain how the solution was
obtained is crucial in decision processes that impact people (e.g.,
healthcare admission). Successive decisions can also be constrained
by explicit rules that could prevent the system from choosing an
unfair solution based on biased empirical evidence.

In this dissertation, we obtained results that improve state of the art
in puzzle-solving thought two hybrid approaches:

] Deepzzle, which performs pairwise comparisons and minimizes
the joint probabilities with a graph-based heuristic;

] Alphazzle, which performs a global comparison and uses MCTS
to explore the consequences of its actions.

These contributions make a significant step forward in our ability to
solve puzzle automatically. Our results suggest that solving complex
decision processes by leveraging help from a deep neural network
requires more research to be used for practical applications effectively.

81

11.2 looking ahead

11.2.1 On heritage

Probably the thing we are most eagerly looking forward to is to train
our algorithms with new heritage data.
For the Taillebourg cave, our algorithms need a lot of similar data

to be able to assemble fragments, which is challenging to obtain given
the small number of known Magdalenian carved caves. Besides,
carvers of Roc-aux-Sorciers used the asperities of the wall to carve
their art; therefore, the semantics data are hard to detect on the
stones. Annotated data that highlight the semantics may be helpful,
as well as 3D scans. If no semantic annotation for fragments can
be provided, we recommend to digitize the fragments and apply
a contour-based algorithm, hoping that the erosion is low. If no
pertinent reassembly is found, a more robust solution that combines
contours, patterns, and semantics should be considered.
For Roc-aux-Sorciers, Deepzzle obtains almost state-of-the-art re-

sults on the bas-relief dataset, which is similar to the temple’s carved
blocks. On the 3D scans, the results are lower. We think that dig-
itizing (or generating) more 3D blocks is enough to obtain correct
reassemblies.

11.2.2 Short-term projects

We implemented rectangle puzzles to compare Alphazzle with Bridger
et al. [BDT20], who obtained great results on 64+ pieces jigsaw
puzzles. We also allow our algorithm to resize the partial reassemblies
to be able to process them, and we are currently training the neural
networks with such configuration. Our goal is to see if Alphazzle can
compete with the tedious greedy solver of [BDT20]. We also believe
that our algorithm should obtain better results because Bridger et al.
make a 4-classes pairwise comparison.
We also recently implemented neighbor-wise metric and updated

PUCT with [SWTU12] and [JGT14]. We are running experiments on
these two topics.

11.2.3 Optimizing Deepzzle

We have several suggestions for improving Deepzzle’s solver:

] Comparing Dijkstra’s algorithms with other tree traversal algo-
rithms1 and the greedy algorithm with the Hungarian algorithm; 1 Tree traversal on Wikipedia.

] Applying the greedy algorithm to bigger problems with many
extra-fragments;

] Designing a mega-solver that can merge several reassemblies, based
on the classifier outputs: we use the neural network to evaluate

https://en.wikipedia.org/wiki/Tree_traversal

82

many pairs of fragments and use a solver that can solve the puzzles
we obtained.

11.2.4 Improving Alphazzle

We have several suggestions for improving Deepzzle’s solver:

] Replacing the convolutionals networks by transformers2; we expect 2 Transformers [VSP+17] are build on
an attention mechanism and are very
effective for performing sequential tasks
based on what happened before, such
as completing a sentence.

transformers to be more effective to process the fragments than 𝑃
and 𝑉. Moreover, they allow unlimited number of fragments per
puzzle.

] Gaining more insight on MCTS choices by running a step by step
analysis of the tree expansion;

] Implementing an almost-perfect metric to compete more fairly
with Deepzzle, as well as missing and extra-fragments.

] Comparing the type of reward: currently, the predicted reward is
based on the solved-puzzle metric; we wonder if a reward based
on the number of well-placed fragments or well-placed neighbors
can outperform the current reward.

11.2.5 New horizons

Ultimately, the methods we have developed in this dissertation are not
the only ones with potential. Alphazzle may benefit from different
rules, such as the ability to skip (or replace) a fragment that is
challenging to place. Another pertinent rule would be to authorize
for shifting the placed fragments within the puzzle size: if we place
the central fragment on top, we want to shift it rather than have to
go back up the tree.
A second method worth exploring is building a regressor that

predicts the relative position in terms of coordinates rather than
classes. It would allow us to place fragments at their exact position
and make it easier to dispense with the fragments’ fixed size. However,
our toy implementation with triplet loss was unsuccessful; we expect
making such method work would require a lot of research and effort.

83

“Thence we came forth to rebehold the stars.”
– Dante Alighieri, Divine Comedy, Inferno, Canto XXXIV

Artwork 7: Landscape with Stars, Henri-
Edmond Delacroix, ca. 1905, from the
MET Open Collections.

https://www.metmuseum.org/art/collection/search/459189

References
[ACBF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine learning, 47(2-3):235–256, 2002.

[AMSB19] Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. Solving the rubik’s
cube with deep reinforcement learning and search. Nature Machine Intelligence, 1(8):356–363,
2019.

[AN04] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.
In Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[ATB17] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning
and tree search. In Advances in Neural Information Processing Systems, pages 5360–5370, 2017.

[AZH11] Shahab Jabbari Arfaee, Sandra Zilles, and Robert C Holte. Learning heuristic functions for
large state spaces. Artificial Intelligence, 175(16-17):2075–2098, 2011.

[BDT20] Dov Bridger, Dov Danon, and Ayellet Tal. Solving jigsaw puzzles with eroded boundaries.
2020.

[BHT+18] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Advances in
Neural Information Processing Systems, pages 8224–8234, 2018.

[Bot10] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

[BPW+12] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in games, 4(1):1–43, 2012.

[BW12] Hendrik Baier and Mark HM Winands. Nested monte-carlo tree search for online planning
in large mdps. In ECAI, volume 242, pages 109–114, 2012.

[BYCCT17] Hedi Ben-Younes, Rémi Cadene, Matthieu Cord, and Nicolas Thome. Mutan: Multimodal
tucker fusion for visual question answering. In Proceedings of the IEEE international conference
on computer vision, pages 2612–2620, 2017.

[Caz09] Tristan Cazenave. Nested monte-carlo search. In Twenty-First International Joint Conference on
Artificial Intelligence, 2009.

[CDB+19] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi.
Domain generalization by solving jigsaw puzzles. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2229–2238, 2019.

[CKK17] Tatsuya Chuman, Kenta Kurihara, and Hitoshi Kiya. Security evaluation for block scrambling-
based etc systems against extended jigsaw puzzle solver attacks. In 2017 IEEE International
Conference on Multimedia and Expo (ICME), pages 229–234. IEEE, 2017.

[Cou06] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72–83. Springer, 2006.

85

[D+59] Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

[DGE15] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning
by context prediction. In Proceedings of the IEEE International Conference on Computer Vision,
pages 1422–1430, 2015.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[DTS18] Niv Derech, Ayellet Tal, and Ilan Shimshoni. Solving archaeological puzzles. arXiv preprint
arXiv:1812.10553, 2018.

[EDSM19] Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. How to combine tree-search
methods in reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 3494–3501, 2019.

[FB81] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981.

[Fuk80] Kunihiko Fukushima. Neocognitron: A self-organizing neural network for a mechanism of
pattern recognition unaffected by shift in position. BiologicalCybernetics, 1980.

[Gal12] Andrew C Gallagher. Jigsaw puzzles with pieces of unknown orientation. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pages 382–389. IEEE, 2012.

[GBS17] Shir Gur and Ohad Ben-Shahar. From square pieces to brick walls: The next challenge in
solving jigsaw puzzles. In Proceedings of the IEEE International Conference on Computer Vision,
pages 4029–4037, 2017.

[GBZD16] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 317–326,
2016.

[GW06] Sylvain Gelly and Yizao Wang. Exploration exploitation in go: Uct for monte-carlo go. 2006.

[HF18] Yaser Hashem and Joachim Frank. The jigsaw puzzle of mrna translation initiation in
eukaryotes: A decade of structures unraveling the mechanics of the process. Annual review of
biophysics, 47:125–151, 2018.

[HFG+06] Qi-Xing Huang, Simon Flöry, Natasha Gelfand, Michael Hofer, and Helmut Pottmann. Re-
assembling fractured objects by geometric matching. In ACM SIGGRAPH 2006 Papers, pages
569–578. Association for Computing Machinery, 2006.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[HSS12] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, 14(8), 2012.

86

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[IL67] Alexey. G. Ivakhnenko and Valentin G. Lapa. Cybernetics and Forecasting Techniques. 1967.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[JGT14] Emil Juul Jacobsen, Rasmus Greve, and Julian Togelius. Monte mario: platforming with mcts.
In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pages
293–300, 2014.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[KCYK18] Dahun Kim, Donghyeon Cho, Donggeun Yoo, and In So Kweon. Learning image representa-
tions by completing damaged jigsaw puzzles. In 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 793–802. IEEE, 2018.

[KHLT19] Bilal Kartal, Pablo Hernandez-Leal, and Matthew E Taylor. Action guidance with mcts for
deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 15, pages 153–159, 2019.

[KOL+16] Jin-Hwa Kim, Kyoung-Woon On, Woosang Lim, Jeonghee Kim, Jung-Woo Ha, and Byoung-Tak
Zhang. Hadamard product for low-rank bilinear pooling. arXiv preprint arXiv:1610.04325,
2016.

[KS06] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European
conference on machine learning, pages 282–293. Springer, 2006.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

[LCY13] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

[Lev73] Leonid Anatolevich Levin. Universal sequential search problems. Problemy peredachi informatsii,
9(3):115–116, 1973.

[LFJ+18] Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen, David Kas, Karl
Hajjar, Torbjorn S Dahl, Amine Kerkeni, and Karim Beguir. Ranked reward: Enabling self-
play reinforcement learning for combinatorial optimization. arXiv preprint arXiv:1807.01672,
2018.

[LRM15] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for fine-
grained visual recognition. In Proceedings of the IEEE international conference on computer vision,
pages 1449–1457, 2015.

87

[MASB18] Stephen McAleer, Forest Agostinelli, Alexander Shmakov, and Pierre Baldi. Solving the rubik’s
cube with approximate policy iteration. In International Conference on Learning Representations,
2018.

[MRS10] Nicolas Mellado, Patrick Reuter, and Christophe Schlick. Semi-automatic geometry-driven
reassembly of fractured archeological objects. 2010.

[NF16] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving
jigsaw puzzles. In European Conference on Computer Vision, pages 69–84. Springer, 2016.

[NH10] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning (ICML-10),
pages 807–814, 2010.

[NKFL18] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 7559–7566. IEEE,
2018.

[NVFP18] Mehdi Noroozi, Ananth Vinjimoor, Paolo Favaro, and Hamed Pirsiavash. Boosting self-
supervised learning via knowledge transfer. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9359–9367, 2018.

[OBA20] Cecilia Ostertag and Marie Beurton-Aimar. Matching ostraca fragments using a siamese neural
network. Pattern Recognition Letters, 2020.

[OLLW18] Laurent Orseau, Levi Lelis, Tor Lattimore, and Théophane Weber. Single-agent policy tree
search with guarantees. In Advances in Neural Information Processing Systems, pages 3201–3211,
2018.

[PAJ19] Antoine Pirrone, Marie Beurton Aimar, and Nicholas Journet. Papy-s-net: A siamese network
to match papyrus fragments. In Proceedings of the 5th International Workshop on Historical
Document Imaging and Processing, pages 78–83, 2019.

[PPT18a] Marie-Morgane Paumard, David Picard, and Hedi Tabia. Image reassembly combining deep
learning and shortest path problem. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 153–167, 2018.

[PPT18b] Marie-Morgane Paumard, David Picard, and Hedi Tabia. Jigsaw puzzle solving using local
feature co-occurrences in deep neural networks. In 2018 25th IEEE International Conference
on Image Processing (ICIP), pages 1018–1022. IEEE, 2018.

[PPT20] Marie-Morgane Paumard, David Picard, and Hedi Tabia. Deepzzle: Solving visual jigsaw
puzzles with deep learning and shortest path optimization. IEEE Transactions on Image
Processing, 29:3569–3581, 2020.

[PPT21] Marie-Morgane Paumard, David Picard, and Hedi Tabia. Solving jigsaw puzzle with deep
monte-carlo treesearch. 2021.

[PSA+17] Georgios Papaioannou, Tobias Schreck, Anthousis Andreadis, Pavlos Mavridis, Robert Gregor,
Ivan Sipiran, and Konstantinos Vardis. From reassembly to object completion: A complete
systems pipeline. Journal on Computing and Cultural Heritage (JOCCH), 10(2):1–22, 2017.

[PSBS11] Dolev Pomeranz, Michal Shemesh, and Ohad Ben-Shahar. A fully automated greedy square
jigsaw puzzle solver. In CVPR 2011, pages 9–16. IEEE, 2011.

88

[PT15] Genady Paikin and Ayellet Tal. Solving multiple square jigsaw puzzles with missing pieces. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4832–4839,
2015.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[RM87] David E. Rumelhart and James L. McClelland. Learning Internal Representations by Error
Propagation, pages 318–362. 1987.

[RN15a] Nada A Rasheed and Md Jan Nordin. A survey of classification and reconstruction methods
for the 2d archaeological objects. In 2015 International Symposium on Technology Management
and Emerging Technologies (ISTMET), pages 142–147. IEEE, 2015.

[RN15b] Nada A Rasheed and Md Jan Nordin. A survey of computer methods in reconstruction of 3d
archaeological pottery objects. International Journal of Advanced Research, 3(3):712–714, 2015.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychological review, 65(6):386, 1958.

[Ros11a] Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and
Artificial Intelligence, 61(3):203–230, 2011.

[Ros11b] Christopher D Rosin. Nested rollout policy adaptation for monte carlo tree search. In Ijcai,
pages 649–654, 2011.

[RWR+17] Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yu-
jia Li, et al. Imagination-augmented agents for deep reinforcement learning. In Advances in
neural information processing systems, pages 5690–5701, 2017.

[SAH+19] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265,
2019.

[SAPM17] Michalis A. Savelonas, Anthousis Andreadis, Georgios Papaioannou, and Pavlos Mavridis.
Exploiting unbroken surface congruity for the acceleration of fragment reassembly. In GCH,
pages 137–144, 2017.

[SB20] Arta Seify and Michael Buro. Single-agent optimization through policy iteration using
monte-carlo tree search. arXiv preprint arXiv:2005.11335, 2020.

[SCFCG17] Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and Stephen Gould. Deeppermnet:
Visual permutation learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3949–3957, 2017.

[SDN13] Dror Sholomon, Omid David, and Nathan Netanyahu. A genetic algorithm-based solver for
very large jigsaw puzzles. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2013.

89

[Sei20] Arta Seify. Single-agent optimization with monte-carlo tree search and deep reinforcement
learning. Master’s thesis, 2020.

[SF17] Elena Sizikova and Thomas Funkhouser. Wall painting reconstruction using a genetic
algorithm. Journal on Computing and Cultural Heritage (JOCCH), 11(1):1–17, 2017.

[SHC14] Kilho Son, James Hays, and David B Cooper. Solving square jigsaw puzzles with loop
constraints. In European Conference on Computer Vision, pages 32–46. Springer, 2014.

[SHC+16] Kilho Son, James Hays, David B Cooper, et al. Solving small-piece jigsaw puzzles by growing
consensus. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1193–1201, 2016.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.
Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484,
2016.

[SHS+17] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[Sil09] David Silver. Reinforcement Learning and Simulation-Based Search. PhD thesis, 2009.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. Nature, 550(7676):354–359, 2017.

[SWTU12] Maarten PD Schadd, Mark HM Winands, Mandy JW Tak, and Jos WHM Uiterwijk. Single-
player monte-carlo tree search for samegame. Knowledge-Based Systems, 34:3–11, 2012.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[TFSM02] Fubito Toyama, Yukihiro Fujiki, Kenji Shoji, and Juichi Miyamichi. Assembly of puzzles
using a genetic algorithm. In Object recognition supported by user interaction for service robots,
volume 4, pages 389–392. IEEE, 2002.

[TIY19] Kei Takada, Hiroyuki Iizuka, and Masahito Yamamoto. Reinforcement learning to create
value and policy functions using minimax tree search in hex. IEEE Transactions on Games,
12(1):63–73, 2019.

[TKAM15] Despoina Tsiafaki, Anestis Koutsoudis, Fotis Arnaoutoglou, and Natasa Michailidou. Virtual
reassembly and completion of a fragmentary drinking vessel. Virtual Archaeology Review,
7(15):67–76, 2015.

[TP09] Efthymia Tsamoura and Ioannis Pitas. Automatic color based reassembly of fragmented
images and paintings. IEEE Transactions on Image Processing, 19(3):680–690, 2009.

90

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[VSS17] Tom Vodopivec, Spyridon Samothrakis, and Branko Ster. On monte carlo tree search and
reinforcement learning. Journal of Artificial Intelligence Research, 60:881–936, 2017.

[WWL+19] I-Chen Wu, Ti-Rong Wu, An-Jen Liu, Hung Guei, and Tinghan Wei. On strength adjustment
for mcts-based programs. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 1222–1229, 2019.

[WXR+19] Chen Wei, Lingxi Xie, Xutong Ren, Yingda Xia, Chi Su, Jiaying Liu, Qi Tian, and Alan L
Yuille. Iterative reorganization with weak spatial constraints: Solving arbitrary jigsaw puzzles
for unsupervised representation learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1910–1919, 2019.

[YWLM11] Zhao Yin, Li Wei, Xin Li, and Mary Manhein. An automatic assembly and completion
framework for fragmented skulls. In 2011 International Conference on Computer Vision, pages
2532–2539. IEEE, 2011.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[ZL14] Kang Zhang and Xin Li. A graph-based optimization algorithm for fragmented image
reassembly. Graphical Models, 76(5):484–495, 2014.

[ZYM+15] Kang Zhang, Wuyi Yu, Mary Manhein, Warren Waggenspack, and Xin Li. 3d fragment
reassembly using integrated template guidance and fracture-region matching. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2138–2146, 2015.

[ZZZH06] Liangjia Zhu, Zongtan Zhou, Jingwei Zhang, and Dewen Hu. A partial curve matching
method for automatic reassembly of 2d fragments. In Intelligent Computing in Signal Processing
and Pattern Recognition, pages 645–650. Springer, 2006.

Part V

GENERAL APPENDIX

A
Introduction to deep learning

[Chapter 11 Appendix B]

A.1 prologue

Artificial intelligence’s overall ambition is to imitate natural intelli-
gence in terms of input understanding, knowledge reasoning, learning,
planning, and decision-making. Examples of tasks include driving
autonomous cars, retrieving faces in images, or successfully under-
standing human speech. In all these three tasks, state-of-the-art
results have been achieved through deep learning methods.
In this chapter, we put deep learning for computer vision into

context §A.2, we explain its mechanisms §A.3 and introduce rein-
forcement learning §A.4.

A.2 context

A.2.1 What is learning ?

Learning is the process of acquiring new knowledge, whether in
terms of skills, behaviors, or understandings. Humans, animals, some
plants, and some machines exhibit learning abilities. Most of the
time, learning occurs through repeated experiences.
When an algorithm improves automatically from experience, we

refer to it as machine learning.

A.2.2 Machine learning

Machine learning proposes methods to create models that can learn
how to perform a single task with varying degrees of success. Then,
the task can be performed on new data (generalization).
The learning efficiency depends on many parameters, particularly

the number of repetitions, the relevance of the dataset, and the
model’s descriptivity.
Machine learning approaches are traditionally divided into three

broad categories:

Supervised learning The algorithm is given couples of inputs and their
desired outputs. It learns the function mapping inputs to outputs.
When the outputs are not labeled manually but generated by the
algorithm prior to learning, it is often called self-supervised learning.
Deepzzle, from Chapter 6, is self-supervised.

93

Unsupervised learning The algorithm is given inputs and learns to
extract structure in the data. For instance, it can group similar
data together.

Reinforcement learning The algorithm interacts with an environment
with which it can interact. It is provided with an objective, and
the interactions that contribute to its achievement are rewarded.
It learns to maximize the reward. Alphazzle, from Chapter 9, uses
reinforcement.

The machine learning toolbox includes, among others, decision
trees, support vector machines, genetic algorithms, and of course,
artificial neural networks.
Deep learning is part of machine learning methods: it is based on

artificial neural networks aggregated into several layers.

A.2.3 Deep learning

Deep neural networks have been researched from 1967 [IL67]. First
algorithms have been based on perceptron architecture [Ros58], and
they have rapidly evolved thanks to a series of innovations. To name
but a few: convolutional neural networks, their architectures [Fuk80,
LBD+89, KSH12, HZRS16], backpropagation [RHW86, LBBH98],
regularization techniques like dropout [SHK+14], batch-normalisation
[IS15], or data augmentation, and large annotated datasets such as
ImageNet ([RDS+15]).
Too computationally expensive, deep neural networks were not

democratized until 2012. This year, they won ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), anchoring the start of a “deep
learning revolution” that transformed the artificial intelligence field.
One reason for this popularity is deep neural networks’ ability to
extract features without a human’s need, unlike traditional machine
learning.
Deep learning models can solve tasks on various types of data, such

as images (computer vision), languages (natural language processing),
signals, and structured data. As puzzle-solving depends on computer
vision, we focus on it in the following.

A.2.4 Computer Vision

Computer vision is a research field at the crossroads of artificial
intelligence, neurobiology, and signal (image) processing. It focuses
on the automatic processing of images, 3D rendering, and videos.
Our human brain is hardwired to process any visual information
because we rely on semantics efficiently. We perceive objects and
can even deduce events (the road is darker than usual; hence, it is
wet; thus, it rained). In the “eyes” of a computer, images are only a
sequence of color pixels1, no more, no less. They must be interpreted 1A pixel is a tuple of three values: red,

green, and blue.in order to provide artificial intelligence with visual capacities similar

94

to ours. To that end, computer vision relies on various techniques
such as deep learning.
The jigsaw puzzle-solving task is an exotic example of a com-

puter vision task. Some common tasks include image labeling, image
retrieval, object tracking in video, face identification, 3D scene re-
construction, visual quality inspection, medical image interpretation,
video annotation, species identification, people counting, pose esti-
mation, robot control, autonomous driving, image restoration, photo
editing, “in the style of” artwork generation, etc.

A.3 supervised deep learning for computer vision

A deep learning algorithm is made of many components, which we
detail below. We focus on the classification task applied to images.

A.3.1 Solving a task

In the beginning, there is a task, i.e., a question that we want to solve
automatically for each element of a dataset. For instance, we want
to classify all images of a dataset in cat and dog categories. In this
case, the images are the inputs of the algorithm, and the classification
is the task. The algorithm will then learn to map each input to an
answer: its answer is the output. Solving a task, i.e., applying an
already-trained algorithm to data, is referred to as inference.
Once we have determined the task, we need to choose a simple data

structure to represent the answer. For cats and dogs classification, the
most straightforward output is a binary variable that is True when
the picture is classified as a cat picture. To capture the incertitude, we
can opt for an output that ranges from 0 to 1: a value of 0.2 means
that the chances that the picture represents a dog are 80%. If we
want to recognize more categories of animals, i.e., classes, the answers
would be structured as a vector that sums to one. Some algorithms
have many classes, and others have none (such as regression task or
unsupervised-learning).

A.3.2 Structuring of a neural network

The universal approximation theorem states that we can approximate
any continuous function with a deep neural network, for inputs
within a specific range. In other words, it can solve complex tasks
from raw data, such as pixels.
To complete a task, a deep neural network learns to regroup pixels

and extract significant visual features that enable solving the task.
For instance, studying the sky’s color does not discriminate between
dogs and cats, while comparing their ears’ shape helps. Each feature
is a non-linear combination of other features (or pixels).
In a neural network, each neuron computes a feature. They all apply

a non-linear function 𝑓𝑤,𝑏() on their input, which is characterized by

95

weights 𝑤 and a bias 𝑏. Together, all the weights and the biases are
the parameters of the neural network.
From an input 𝑥𝑖, a neuron outputs a feature 𝑓𝑤,𝑏(𝑤 ⋅ 𝑥𝑖 + 𝑏). We

organize neurons through layers and link them together. Among all
the ways of connecting artificial neurons, i.e., architectures, some have
been thoroughly tested and approved. Examples are fully-connected
feed-forward networks, recurrent neural networks, auto-encoders,
and convolutional networks. Figure A.1 presents a deep feed-forward
network composed of 5 layers (one input layer for the pixels, three
hidden layers and a 3-classes output layer).

Figure A.1: A deep fully-connected
neural network architecture. © Lucy
Reading-Ikkanda, Quanta Magazine.For the sake of illustration, the picture shows 6 neurons by layer,

whereas there are usually hundreds or even thousands of neurons
per layer. A binary value is attributed to each neuron: it indicates
whether the neuron is activated.

Convolutional Neural Networks The most common architecture
for extracting features from pixels is convolutional neural networks.
Similarly to the visual cortex, a convolutional neural network naturally
detects contours in the first layer, assembles them in textures in the
second layer, and the next layers forms shapes and objects.
A convolution is an operation that applies a filter to all the patches

of an image and retains spatial information. The filter is specific to a
pertinent feature and returns a value indicating its intensity within
a patch. In the case of a convolutional layer, the number of filters
is the number of neurons, since each neuron performs a different
convolution on the layer’s input. The neurons’ parameters form
convolution filters.
Usually, convolutions layers alternate with pooling layers. Their

96

goal is to bring the features closer: if we use the same-sized filter,
it can be perceived and be applied to “bigger” elements. To put it
simply, if 10×10 pixels are seen from an 100×100 image, the filter only
sees a tenth of it. If we apply a pooling that reduced the image size
by a factor 10, the filter now sees all the images at once.
The standard architecture for visual object classification starts with

several convolutional layers and pooling layers, to which we append
a fully-connected network that proceeds to the classification. Figure
A.2 shows some standard architectures [LBBH98, KSH12, SZ14].
VGG-16 inspires Deepzzle.

Figure A.2: Some standard architectures
for computer vision. © T. Robert.

A.3.3 Learning process

We have seen that a neural network can extract features through its
neurons. Their parameters determine which features are perceived.
Therefore, we want to optimize the parameters so that the perceived
features allow us to solve the task. However, at first, the parameters
are randomly initialized. The parameters optimization is called fitting.
The principle of supervised learning is as follows: we have many

examples of inputs 𝑥, and we know their desired outputs 𝑦, their
classes, which are associated with them. If we feed the neural network
with the inputs, we can observe the outputs ̂𝑦 and compare it to 𝑦.
We call ̂𝑦 the prediction and 𝑦 the (ground-truth) labels associated
with the inputs.
We measure the error between 𝑦 and ̂𝑦 with a loss function ℒ. The

objective is to find weights and bias that minimize the loss. We apply
a gradient descent [RHW86, Bot10, HSS12, DHS11, KB14] and update
them in a direction that decrease the loss value: 𝑤 ← 𝑤 − 𝜆∇𝑤ℒ(̂𝑦, 𝑦)
and 𝑏 ← 𝑏 − 𝜆∇𝑏ℒ(̂𝑦, 𝑦).
When recursively applied to a neural network, this method is

called (gradient) back-propagation [RHW86]. Based on the chain-
rule, we iteratively compute the updated weights and biases of the
whole network.
Progressively, over many repetitions of this fitting process, we

converge towards a local minimum of the loss function.

97

A.4 deep reinforcement learning

Deep reinforcement learning occurs when an algorithm learns to
make a decision that affects its environment. It is not provided with
labels but rewards, and it has to deduce how to maximize them. We
note that this goal is much more abstract than the goal of supervised
learning. In this last case, we know we should reduce the loss to 0;
in reinforcement, the algorithm does not know how much reward it
can obtain for its actions.
Another difference is in the way of apprehending the results. A

supervised model produces outputs that do not affect the environment;
most of the time, they even are independent. A deep reinforcement
model makes sequential decisions that impact its environment: each
decision depends on the current state of the environment, which is
the consequence of the actions previously taken. Due to the changing
environment, input data must be generated after each action.
The goal of reinforcement learning is to produce a policy 𝜋𝜃(𝑎|𝑠),

which is a probability distribution over the actions 𝑎 ∈ 𝐴, given the
current environment state 𝑠 ∈ 𝑆. The policy can be represented in
different ways, such as a Gaussian process or neural network. In
this latter case, it is called deep reinforcement learning, and 𝜃 are the
network’s parameters.
Each action 𝑎𝑡 is rewarded by the environment depending on the

state, with 𝑡 the step. The reward is 𝑟(𝑠𝑡, 𝑎𝑡). Therefore, a reinforce-
ment learning algorithm is willing to find the optimal parameters 𝜃⋆

in such a way that 𝜃⋆ = argmax𝜃 E ∑𝑡 𝑟(𝑠𝑡, 𝑎𝑡)
Usually, the environment is not determined solely by the actions,

and the future state 𝑠𝑡+1 is obtain through a probability distribution
𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). All these components define a Markovian decision
process 𝑀 = {𝑆, 𝐴, 𝑝, 𝑟}.
Four types of algorithms optimize the reward: policy gradients

methods, value-based methods, actor-critic methods, and model-
based methods. As a planning algorithm, Monte-Carlo Tree Search
is often considered as part of model-based methods.

B
Introduction to decision theory

[Appendix A Appendix C]

B.1 prologue

Decision theory, also known as decision science, is another branch of
artificial intelligence that studies how to optimize decisions mathemat-
ically. This research field is structured in overlapping themes, such
as game theory, operational research, systems engineering, business
intelligence, financial engineering, management science, and applied
mathematics. All of these themes have strong ties to analytics and
computer science.

B.2 complex problems

Operation research addresses most optimization and decision prob-
lems, as long as it is complex enough to benefit from operation
research tools. A problem is complex when it is combinatorial,
stochastic, or competitive:

Combinatorial problem The problem includes a large number of permis-
sible solutions, among which an optimal or near-optimal solution is
sought. If the number of inputs increases, the number of solutions
faces a combinatorial explosion. Consequently, a combinatorial
problem cannot be solved by a simple enumeration of possible
solutions.

Stochastic problem The problem consists of finding an optimal solution
to a problem that arises in uncertain terms.

Competitive problem The problem consists of finding an optimal solu-
tion to a problem whose terms depend on the interrelation between
one’s actions and those of other decision-makers.

Puzzle-solving is a combinatorial problem, like the traveling sales-
man problem and the knapsack problem.

B.3 main classes of methods

Heuristics and metaheuristics A heuristic is a technique that finds an
approximate solution by trading optimality for speed.

Tree and graph tranversal These classes of methods refers to the pro-
cess of visiting the edges of a graph in order to find an optimal

99

solution to a problem, such as enumeration, shortest-path, mini-
mal spanning tree, and coloring. Some algorithms examples are
Branch and Bound, Dijkstra’s algorithm, Kruskal’s algorithm, and
A*.

Dynamic programming It is a technique that solves overlapping recur-
sive sub-problems, for example, with functional programming and
memoization.

Constraint programming It is a programming paradigm that states the
constraints and specifies the method to be used to solve them. Stan-
dard methods include chronological backtracking and constraint
propagation.

Other methods draw upon polynomial algorithms, stochastic pro-
cesses, linear and non-linear optimization, linear complementarity
methods, and computer simulation.

B.4 puzzle-solving notations and formulation

We use the same notations as those introduced in §6.3.
A jigsaw puzzle is an assignment problem where each fragment

𝑖 ∈ [0 . . 𝑓] has to be associated with a position 𝑗 ∈ [0 . . 𝑝].
We note the binary assignment variable 𝑥𝑖,𝑗. It is equal to 1 if

fragment 𝑖 is is placed at position 𝑗. We define position 0 as the
central position and fragment 0 as the central fragment, and introduce
𝑥𝑐 = 𝑥0,0 = 1, the placement of the central fragment at the central
position.
Last, we introduce 𝑃𝑟(𝑖, 𝑗|0), the probability of placing fragment

𝑖 in position 𝑗, given that fragment 0 is central. In Deepzzle, 𝑃𝑟 is
evaluated by the neural network.
The assignment problem objective is:

max
𝑥𝑖,𝑗

∑
𝑖,𝑗

𝑃(𝑖, 𝑗|𝑥𝑐) ⋅ 𝑥𝑖,𝑗 (B.1)

under the constraints:

∀𝑗 ≥ 1,
𝑓

∑
𝑖=1

𝑥𝑖,𝑗 = 1 , (B.2)

∀𝑖 ≥ 1,
𝑝

∑
𝑗=1

𝑥𝑖,𝑗 = 1 , (B.3)

∀𝑖 ≥ 1, 𝑗 > 1, 𝑥𝑖,𝑗 ∈ {0, 1}. (B.4)

Only one fragment can occupy a position (Equation B.2) and a
fragment can be placed only once (Equation B.3).
Then, if we allow the puzzle to be uncompleted (i.e. some positions

are not used), we replace the constraint B.2 with:

∀𝑗 ≥ 1,
𝑓

∑
𝑖=1

𝑥𝑖,𝑗 ≤ 1. (B.5)

100

Similarly, if we have supernumerary fragments (i.e. some frag-
ments are not used), we replace the constraint B.3 with:

∀𝑖 ≥ 1,
𝑝

∑
𝑗=1

𝑥𝑖,𝑗 ≤ 1. (B.6)

Finally, if we do not know which fragment is the central fragment,
we have to solve the extended assignment problem where one frag-
ment has to be assigned to the central position and the remaining
fragment are assigned to the relative positions. This leads to the
following problem:

max
𝑐,𝑥𝑖,𝑗

∑
𝑖≠𝑐,𝑗

𝑃(𝑖, 𝑗|𝑐) ⋅ 𝑥𝑖,𝑗 (B.7)

under the following constraints:

∀𝑐, 𝑗,
𝑓

∑
𝑖≠𝑐,𝑖=0

𝑥𝑖,𝑗 ≤ 1;

∀𝑖 ≠ 𝑐,
𝑝

∑
𝑗=0

𝑥𝑖,𝑗 ≤ 1;

∀𝑖, 𝑗, 𝑥𝑖,𝑗 ∈ {0, 1};
∀𝑐, 𝑗 ≥ 1, 𝑥𝑐,0 = 1 and 𝑥𝑐,𝑗 = 0.

Part VI

TECHNICAL APPENDIX

C
On the graphs sizes

[Appendix B Appendix D]
Let 𝐺 be the graph of the reassembly paths for a puzzle with 𝑓

lateral fragments and 𝑝 available positions. We define |𝑁| the number
of node and |𝐸| the number of edges of 𝐺. 𝐺 is similar to a tree of
height 𝑓 + 1 (for the source 𝑆) whose all leaves are linked together to
the target 𝑇, so the height of 𝐺 is 𝑓 + 2. We number the lines from 0
for the source, so each intermediate lines number correspond to the
fragment number and the last line number is 𝑓 + 1.
We start by calculating 𝑛𝑜𝑑𝑒𝑠(𝑙), the number of nodes for the

𝑙-th line of 𝐺, because |𝑁| = ∑𝑓+1
𝑙=0 𝑛𝑜𝑑𝑒𝑠(𝑙). |𝐸| can be easily de-

duced from |𝑁|: for each couple of lines 𝑚 that groups 𝑙 and 𝑙 + 1,
𝑒𝑑𝑔𝑒𝑠(𝑚) = 𝑛𝑜𝑑𝑒𝑠(𝑙 + 1), with the exception of the last line where
𝑒𝑑𝑔𝑒𝑠(𝑓 + 1) = 𝑛𝑜𝑑𝑒𝑠(𝑓).

C.1 graphs without extra-fragments

The extra-fragments are disabled, which means we have either the
same number of fragments and positions 𝑓 = 𝑝 or missing fragments
𝑓 < 𝑝. The tree is balanced, which means each node of line 𝑙 has
𝑝 − 𝑙 children, except for the last one line or two. Therefore, we have
the following equations:

𝑓 < 𝑝

⎧{{
⎨{{⎩

𝑛𝑜𝑑𝑒𝑠(0) = 1;
∀𝑙 ∈ [1 . . 𝑓], 𝑛𝑜𝑑𝑒𝑠(𝑙) = (𝑝 − 𝑙 + 1) × 𝑛𝑜𝑑𝑒𝑠(𝑙 − 1);
𝑛𝑜𝑑𝑒𝑠(𝑓 + 1) = 1.

and:

𝑓 = 𝑝

⎧{{{
⎨{{{⎩

𝑛𝑜𝑑𝑒𝑠(0) = 1;
∀𝑙 ∈ [1 . . 𝑓 − 1], 𝑛𝑜𝑑𝑒𝑠(𝑙) = (𝑝 − 𝑙 + 1) × 𝑛𝑜𝑑𝑒𝑠(𝑙 − 1);
𝑛𝑜𝑑𝑒𝑠(𝑓) = 𝑛𝑜𝑑𝑒𝑠(𝑓 − 1);
𝑛𝑜𝑑𝑒𝑠(𝑓 + 1) = 1.

We now calculate |𝑁|:

⎧{{
⎨{{⎩

𝑓 < 𝑝 |𝑁| = 2 +
𝑓

∑
𝑙=1

𝑛𝑜𝑑𝑒𝑠(𝑖);

𝑓 = 𝑝 |𝑁| = 2 +
𝑓−1

∑
𝑙=1

𝑛𝑜𝑑𝑒𝑠(𝑖) + 𝑛𝑜𝑑𝑒𝑠(𝑓 − 1).

103

In the case where 𝑓 = 𝑝 , we have:

|𝑁| = 2 +
𝑓−1

∑
𝑙=0

𝑓

∏
𝑘=𝑙+1

𝑘.

We calculate |𝐸|:
|𝐸| = |𝑁| − 2 + 𝑛𝑜𝑑𝑒𝑠(𝑓).

C.2 graphs with extra-fragments

When the extra-fragments are enabled, the tree is no longer balanced
and grows quickly at the right. Once again, we separate two cases:
𝑓 ≤ 𝑝 and 𝑓 > 𝑝 .

Once again, we calculate the number of node per line:

𝑓 ≤ 𝑝

⎧
{
{
⎨
{
{
⎩

𝑛𝑜𝑑𝑒𝑠(0) = 1;

∀𝑙 ∈ [1 . . 𝑓], 𝑛𝑜𝑑𝑒𝑠(𝑙) =
𝑙−1
∑
𝑘=0

(𝑙 − 1
𝑘

) ⋅ 𝐴(𝑘 + 1);

𝑛𝑜𝑑𝑒𝑠(𝑓 + 1) = 1;

and

𝑓 > 𝑝

⎧{{{{{
⎨{{{{{⎩

𝑛𝑜𝑑𝑒𝑠(0) = 1;

∀𝑙 ∈ [1 . . 𝑝], 𝑛𝑜𝑑𝑒𝑠(𝑙) =
𝑙−1
∑
𝑘=0

(𝑙 − 1
𝑘

) ⋅ 𝐴(𝑘 + 1);

∀𝑙 ∈ [𝑝 + 1 . . 𝑓], 𝑛𝑜𝑑𝑒𝑠(𝑙) =
𝑝

∑
𝑘=0

(𝑙 − 1
𝑘

) ⋅ 𝐴(𝑘 + 1);

𝑛𝑜𝑑𝑒𝑠(𝑓 + 1) = 1;

where:
⎧{
⎨{⎩

𝐴(1) = 𝑝 + 1;

∀𝑘 ∈ [2 . . 𝑓], 𝐴(𝑘) = (𝑝 − 𝑘 + 2) ⋅
𝑝

∏
𝑖=𝑝−𝑘+2

𝑖.

We calculate |𝑁|:

⎧
{{
⎨
{{
⎩

𝑓 ≤ 𝑝 |𝑁| = 2 +
𝑓

∑
𝑙=1

𝑙−1
∑
𝑘=0

(𝑙 − 1
𝑘

) ⋅ 𝐴(𝑘 + 1);

𝑓 > 𝑝 |𝑁| = 2 +
𝑝

∑
𝑙=1

𝑙−1
∑
𝑘=0

(𝑙 − 1
𝑘

) ⋅ 𝐴(𝑘 + 1) +
𝑓

∑
𝑙=𝑝+1

𝑝

∑
𝑘=0

(𝑖
𝑘
) ⋅ 𝐴(𝑘 + 1).

We calculate |𝐸|:
|𝐸| = |𝑁| − 2 + 𝑛𝑜𝑑𝑒𝑠(𝑓).

D
Alphazzle extended results

[Appendix C Appendix D]

Configuration Validation accuracy
fragment
size (px)

fragment
per side

Space size
(px)

Hints
training

Hints
validation P (%) V (%)

40 3 0 0 0 69.56 90.07
40 3 4 0 0 69.91 88.46
40 3 10 0 0 67.39 87.15
40 3 20 0 0 61.34 85.79

40 3 4 0 4 79.43 95.51
40 3 4 0 8 99.29 97.93
40 3 4 1 (central) 1 (central) 73.99 92.34
40 3 4 2 2 71.82 93.35
40 3 4 4 0 65.52 86.36
40 3 4 4 4 79.98 95.77
40 3 4 4 8 99.74 95.48
40 3 4 6 6 87.50 97.53
40 3 4 8 0 29.35 70.96
40 3 4 8 4 42.59 82.11
40 3 4 8 8 99.49 88.45

40 4 4 0 0 37.65 92.64
40 4 4 4 4 48.54 98.24
40 4 4 8 8 52.02 99.09
40 4 4 12 12 72.53 99.04
40 4 20 0 0 39.67 90.47
40 5 4 0 0 19.15 94.25
40 5 4 10 10 23.79 99.50
40 6 4 0 0 3.43 64.47

96 3 48 0 0 56.55 80.54
96 3 48 1 (central) 1 (central) 60.89 73.08
96 3 48 2 2 67.24 88.00
96 3 48 4 4 75.30 90.02

Table D.1: Validation accuracy for 𝑃 and
𝑉 on various configurations.
] Return to §10.1.

105

Configuration Validation accuracy
Fragment
size (px)

Fragment
per side

Space size
(px)

Hints
training

Hints
validation P (%) V (%)

40 3 4 0 0 fragment 46.97 50.00
40 3 4 0 1 fragment 51.96 69.35
40 3 4 0 2 fragments 56.25 85.78
40 3 4 0 3 fragments 57.71 88.91
40 3 4 0 4 fragments 63.45 90.57
40 3 4 0 5 fragments 69.10 92.64
40 3 4 0 6 fragments 77.37 96.02
40 3 4 0 7 fragments 85.33 96.97
40 3 4 0 8 fragments 99.49 99.29
40 3 4 0 9 fragments — 96.77
40 3 4 4 0 fragment 39.61 50.00
40 3 4 4 1 fragment 46.98 70.97
40 3 4 4 2 fragments 52.77 86.49
40 3 4 4 3 fragments 58.62 88.71
40 3 4 4 4 fragments 63.61 91.33
40 3 4 4 5 fragments 70.46 93.19
40 3 4 4 6 fragments 76.46 96.37
40 3 4 4 7 fragments 84.53 97.88
40 3 4 4 8 fragments 99.65 98.94
40 3 4 4 9 fragments — 98.23
40 3 4 8 0 fragment 11.34 50.00
40 3 4 8 1 fragment 11.99 50.00
40 3 4 8 2 fragments 11.74 52.47
40 3 4 8 3 fragments 16.78 57.86
40 3 4 8 4 fragments 17.79 66.73
40 3 4 8 5 fragments 23.18 75.30
40 3 4 8 6 fragments 30.79 79.99
40 3 4 8 7 fragments 49.54 82.66
40 3 4 8 8 fragments 99.39 86.59
40 3 4 8 9 fragments — 91.23

Table D.2: Validation accuracy for all
type of partial reassemblies.
] Return to §10.1.

106

Game meta-parameters Reassembly scores

NumSim 𝐶
Fragment-
wise (%)

Puzzle-
wise (%)

Computation time
(s per puzzle)

10 0.001 45.86 9 0.39
10 0.01 46.49 9 0.44
10 0.1 50.02 12 0.63
10 1 48.99 12 0.98
10 10 45.36 10 1.02
10 100 45.47 9 1.03
100 0.001 45.3 7 1.13
100 0.01 47.67 10 1.39
100 0.1 52.77 12 2.01
100 1 54.46 15 4.15
100 10 48.04 11 5.33
100 100 45.6 9 5.46
1000 0.001 47.11 10 7.30
1000 0.01 48.83 10 7.59
1000 0.1 55.03 14 8.97
1000 1 55.63 15 15.97
1000 10 52.23 13 25.11
1000 100 47.28 11 28.06
10000 0.001 49.43 9 63.11
10000 0.01 50.38 10 63.68
10000 0.1 58.09 17 69.78
10000 1 57.94 17 84.92
10000 10 55.07 15 116.92
10000 100 49.09 11 131.44
100000 0.001 50.57 12 620.69
100000 0.01 57.89 18 615.55
100000 0.1 61.01 21 643.01
100000 1 57.99 22 685.84
100000 10 56.97 17 766.22
100000 100 53.91 16 889.22
1000000 0.001 49.49 9 6545.73
1000000 0.01 67.68 27 6547.18
1000000 0.1 76.77 36 6547.00
1000000 1 65.56 30 7200.40
1000000 10 68.89 30 7202.50
1000000 100 53.33 10 7201.70

Table D.3: Grid search on the game
meta-parameters.
] Return to §10.2.

107

Configuration Reassembly scores
Fragment
size (px)

Fragment
per side

Space size
(px)

Hints
P – V

Hints
reassembly

Fragment-
wise (%)

Puzzle-
wise (%)

Qt of
reassemblies

40 3 4 0-0 0 55.63 14.55 2000
40 3 4 0-0 1 60.94 20.65 2000
40 3 4 0-0 1 (central) 62.33 22.45 2000
40 3 10 0-0 0 48.59 7.15 2000
40 3 10 0-0 1 52.71 11.35 2000
40 3 10 0-0 1 (central) 52.99 11.15 2000
40 3 20 0-0 0 45.91 6.80 2000
40 3 20 0-0 1 50.24 10.85 2000
40 3 20 0-0 1 (central) 50.68 11.10 2000
40 4 4 0-0 0 29.08 0.00 407
40 4 4 0-0 1 (central) 32.47 0.16 528
40 4 4 0-0 8 50.01 5.40 639
40 4 20 0-0 0 23.42 0.00 440
40 4 20 0-0 8 41.60 0.00 2000
40 5 4 0-0 0 15.68 0.00 203
40 5 4 0-0 1 (central) 16.46 0.00 206
40 5 4 0-0 10 28.46 0.00 495
40 5 4 0-0 15 36.67 0.95 1363
40 5 4 10-10 10 32.10 0.00 493
40 5 4 10-10 15 42.67 1.20 1497

96 3 48 0-0 15 11.03 0.00 2000

Table D.4: Reassembly scores with 1,000
simulations and 𝐶 = 1.
] Return to §10.3.

Configuration Reassembly scores
Fragment
size (px)

Fragment
per side

Space size
(px)

Hints
P – V

Hints
reassembly

Fragment-
wise (%)

Puzzle-
wise (%)

Qt of
reassemblies

40 3 20 0 0 0 48.38 7.69 52
40 3 20 0 0 1 51.35 4.62 65
40 3 20 0 0 1 (central) 44.62 4.60 65
96 3 48 0 0 0 51.36 11.32 53
96 3 48 0 0 1 50.56 14.93 67
96 3 48 0 0 1 (central) 58.40 19.40 67

Table D.5: Reassembly scores with
1,000,000 simulations and 𝐶 = 0.1.
] Return to §10.3.

	I PROLOGUE
	OVERVIEW
	Reassembly for heritage
	Main contributions
	Organization of the dissertation

	INTRODUCTION TO THE PUZZLE-SOLVING TASK
	Terminology
	Type of tasks
	Evaluation
	Applications of reassembly

	MODERN PUZZLE-SOLVING METHODS
	Introduction
	Solving from the content
	Solving from the contour
	Mixed methods
	Conclusion

	ON THE DATASETS
	Requirements for the dataset
	The datasets

	II PAIRWISE COMPARISON WITH DEEP LEARNING
	PUZZLE-SOLVING WITH DEEP LEARNING
	Introduction
	Pairwise comparison
	Global comparison
	Permutations
	Comparison

	DEEPZZLE
	Introduction
	Method overview
	Problem formulation
	Pairwise comparison step
	Reassembly step
	Experiments

	DEEPZZLE’S RESULTS
	Benchmarks and comparisons
	Advanced reassembly tasks
	Impact of data on reassemblies

	III ITERATIVE SOLVING WITH DEEP REINFORCEMENT LEARNING
	ON ALPHAZERO
	Introduction
	Monte Carlo Tree Search
	Deep reinforcement learning and MCTS

	ALPHAZZLE
	Prologue
	Overview
	Monte Carlo Tree Search
	Deep Reinforcement Learning
	Experiments

	ALPHAZZLE’S RESULTS
	Pre-training results
	MCTS performance
	Reassembly results
	Results optimization

	IV EPILOGUE
	CONCLUSION
	Looking back
	Looking ahead

	REFERENCES
	V GENERAL APPENDIX
	INTRODUCTION TO DEEP LEARNING
	Prologue
	Context
	Supervised deep learning for computer vision
	Deep reinforcement learning

	INTRODUCTION TO DECISION THEORY
	Prologue
	Complex problems
	Main classes of methods
	Puzzle-solving notations and formulation

	VI TECHNICAL APPENDIX
	ON THE GRAPHS SIZES
	Graphs without extra-fragments
	Graphs with extra-fragments

	ALPHAZZLE EXTENDED RESULTS

