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0.1 Introduction

Les systèmes avec un grand nombre de particules en interaction sont omniprésents dans la na-
ture. Des petites aux grandes échelles nous pouvons citer les liquides[1] et solutions électro-
lytiques [2] ; le transport en milieu con�né dans des nanotubes [3, 4] , zéolites [5–7] et micro-
canaux [8–10] ; les systèmes biologiques comme les colonies de bactéries[11–13] et les moteurs
moléculaires [14] ; ou encore les foules de piétons[15–17] , nuages d'oiseaux[18] et troupeaux
de moutons [19] . Alors que les systèmes sans interaction (gaz parfait, phonons dans les solides,
etc.) sont bien connus [20–23] , la caractérisation de l'in�uence des interactions est un enjeu
fondamental de la physique statistique moderne. Nous nous intéresserons particulièrement aux
systèmes hors d'équilibre, c'est-à-dire ceux pour lesquels de l'énergie est injectée, soit à grande
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échelle (par exemple via un champ électrique extérieur), soit à l'échelle des particules (matière
active). Indépendamment des détails du système, nous nous poserons deux questions génériques
qui structureront notre approche. Quelles sont les observables pertinentes pour caractériser les
systèmes en interaction ? Et quel type de théorie nous donnera ces observables?

Cette thèse est divisée en deux parties. La première concernera les systèmes en �le et en parti-
culier le processus symétrique d'exclusion. Nous verrons que ces systèmes présentent un compor-
tement anormal de sous-diffusion lié à de fortes contraintes géométriques. Alors que la littérature
s'est principalement focalisée sur les conséquences de ces contraintes sur une seule particle, notre
but sera de les caractériser à l'aide d'observables à plusieurs points : corrélations et réponse à un
forçage local. Nous utiliserons deux types d'approches : une approche exactement soluble à haute
densité, et des équations hydrodynamiques valables à toute densité. La deuxième partie s'inté-
ressera à des systèmes bidimensionnels forcés et actifs : le mélange binaire forcé et les particules
browniennes actives. Les questions ouvertes sous-jacentes sont le problème de l'alignement pour
des populations entraînées dans des directions différentes, et l'étude d'un liquide actif dans sa
phase homogène. Nous montrerons que le comportement collectif de ces systèmes peut être étu-
dié à travers la structure spatiale des fonctions de corrélation de paire, qui sont anisotropes, ainsi
que par leur décroissance à grande distance. Notre approche sera basée sur l'équation de Dean,
une équation exacte pour le champ �uctuant de densité, mais dif�cile à manipuler. Nous la linéa-
riserons autour d'un pro�l uniforme [2,24,25] et obtiendrons ainsi des résultats analytiques dans
une limite de faible interaction.

0.2 Systèmes en �le et processus symétrique d'exclusion

La première partie de cette thèse est consacrée aux systèmes en �le (single-�le systems) et en parti-
culier au processus symétrique d'exclusion (symmetric exclusion process, SEP). Les systèmes en �le
(Chap. 2) correspondent à des particules diffusives dans une géométrie quasi-unidimensionnelle
où elles ne peuvent pas se dépasser. L'ordre des particules est donc conservé à tout temps. Ex-
périmentalement, ce type de géométrie a été observé dans des zéolites[5–7] , des systèmes de
colloïdes [8–10] ou des nanotubes de carbone[3, 4] . Une particularité importante des systèmes
en �le est que le mouvement X( t ) d'une particule donnée est sous-diffusif, avec une variance
hX( t )2i / t 1=2 (au lieu de t pour un mouvement diffusif). Ceci est une conséquence de fortes
corrélations spatiales, essentiellement ignorées jusque-là, que nous chercherons à caractériser.

Un modèle de système en �le très étudié historiquement [26,27] est le processus symétrique
d'exclusion (Fig. 0.1 avec p1 = p� 1 = 1=2). La solution complète pour la loi à un point n'a été
trouvée que récemment [28, 29] . Le problème général de la caractérisation des corrélations du
SEP reste ouvert, les résultats connus se concentrant sur les corrélations à deux points (souvent à
l'ordre le plus bas) de modèles plus restrictifs[30–34] . De plus, très peu de travaux s'intéressent
aux corrélations dans un système avec une ou plusieurs particules biaisées alors que ces obser-
vables permettent de discuter l'existence de théorèmes de �uctuation-dissipation généralisés[35] .
Ici, nous obtenons des résultats explicites sur les corrélations du SEP et sur les effets collectifs en
présence de particules biaisées.

Nous nous intéresserons dans un premier temps à la limite dense du SEP, en utilisant une
approche exacte. Nous étudierons les effets collectifs et les corrélations aussi bien dans le SEP
habituel qu'en présence d'une ou plusieurs particules biaisées. Dans un deuxième temps, nous
développerons des approches hydrodynamiques pour le champ de densité du SEP. Celles-ci per-
mettrons en outre d'étendre certains résultats à des systèmes en �le arbitraires. Nous mettrons
en lumière une transition de déliaison qui se produit entre deux particules forcées dans une géo-
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Figure 0.1 : Processus simple d'exclusion (SEP) avec une particule biaisée (en bleu). Le biais sur
la particule est s1 = p1 � p� 1.

métrie en �le. Puis nous développerons une nouvelle approche hydrodynamique pour des pro�ls
généralisés permettant d'obtenir une caractérisation complète à un point dans certaines limites.

0.2.1 Processus symétrique d'exclusion à haute densité

Nous étudions dans un premier temps le cas du SEP avecN particules marquées (tagged particles,
TP) et éventuellement biaisées (Fig. 0.1, une particule biaisée). Nous appelons� la densité, c'est-
à-dire la fraction de sites occupés. Notre approche à haute densité (� ! 1) repose sur l'étude
des marches aléatoires des lacunes (sites vides), que l'on considérera comme indépendantes dans
cette limite dense [36–39] .

a) Méthode

L'observable clé dans un SEP oùN particules sont marquées est la fonction génératrice des cumu-
lants associés aux déplacementsYi ( t ) de ces particules marquées (TP).

 ( t )(k) � ln


ei [ k1Y1( t )+ ���+ kN YN ( t )]

�
�

1X

p1= 0

. . .
1X

pN= 0

( ik1)p1 . . . ( ikN )pN

p1! . . . pN !
� (N)

p1,...,pN
( t ) (0.1)

Le développement en puissances dek donne les cumulants àN points � (N)
p1,...,pN

(déplacements,
variances, corrélations, etc.). Nous cherchons à déterminer à haute densité � = 1 � � 0 avec
� 0 faible. Nous montrons que les sites vides, qui sont en faible nombre, peuvent être considérés
comme des marcheurs aléatoires indépendants[36–39] . Dès lors, l'étude se restreint au problème
où un seul site du système est vide. Si cette unique lacune est initialement à la positionZ, nous
considérons la probabilité p( t )

Z (Y1, . . . , YN ) d'observer des déplacementsYi à l'instant t . À haute
densité, la fonction génératrice [Éq. (0.1)] peut alors s'exprimer simplement en fonction de cette
quantité :

lim
� 0! 0

 ( t )(k)

� 0
=

X

Z =2f X0
i g

€
p̃( t )

Z (k) � 1
Š

, (0.2)

où p( t )
Z (k) =

P
Y1,...YN

ei (k1Y1+ ���+ kN YN ) p( t )
Z (Y1, . . . , YN ) est une transformée de Fourier etX0

i est la
position initiale de la TP i .

Le problème à haute densité se ramène donc à l'étude d'une unique lacune, considérée comme
un marcheur aléatoire, qui génère les déplacements desN particules marquées. Cette étude sera
effectuée, que les TP soient biaisées ou non, grâce à des résultats standards sur les marches aléa-
toires [40] : probabilité de premier passage d'une marche de Polya, probabilité de premier passage
avec sites absorbants, etc.
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b) Résultats à une seule particule

Le cas d'une unique TP biaisée (Fig. 0.1 et Chap. 3) est celui de la référence[38] . Nous retrouvons
le résultat de temps long pour la fonction génératrice,

lim
� 0! 0

 ( t )(k)

� 0
�

t !1

v
t 2t

�
(cosk � 1 + issink), (0.3)

où s = p1 � p� 1 est le biais de la TP. Tous les cumulants se comportent ent 1=2, en particulier le
déplacement hY1i est sous-balistique et la variancehY2

1 i � h Y1i 2 est sous-diffusive. En étudiant
les propriétés de la marche aléatoire d'une unique lacune en temps continu, nous étendons cette
formule à temps arbitraire, ce qui constitue un nouveau résultat,

lim
� 0! 0

 ( t )(k)

� 0
= te� t [ I0( t ) + I1( t )]( cosk � 1 + issink), (0.4)

où I0 et I1 sont des fonctions de Bessel modi�ées. Cette expression décrit, comme attendu, une
transition entre un régime en t à temps faible (mouvement balistique, diffusion normale) et le
régime en t 1=2 à temps long.

Nous nous intéressons également au cas de conditions initiales trempées (quenched initial
conditions) où le système est initialement dans une con�guration typique, correspondant à un
pro�l de densité uniforme à grande échelle [41] , et non dans une con�guration d'équilibre. Nous
obtenons alors l'expression de la fonction génératrice Q à temps long,

lim
� 0! 0

 ( t )
Q (k)

� 0
�

t !1

p
2t

Z 1

0

dzlog
�
1 + p1

�
eik � 1

�
erfcz

� �
1 + p� 1

�
e� ik � 1

�
erfcz

�
. (0.5)

Ce nouveau résultat a une structure similaire à celui du cas sans biais dans la limite opposée de
basse densité[41] . Le déplacement de la TP est le même que dans le cas de conditions initiales
d'équilibre : � (1)

1,Q = � (1)
1 = � 0

p
2t=� . Par contre, nous trouvons une différence d'un facteur

p
2

pour la variance d'une particule non biaisée, � (1)
2,Q = � 0

p
t=� au lieu de � (1)

2 = � 0

p
2t=� pour

le cas d'équilibre. Cette différence est habituellement interprétée comme la signature d'effets de
mémoire à temps long dans les systèmes en �le[35,41] . De plus, contrairement au cas d'équilibre,
la variance d'une particule biaisée dépend du biais.

c) Loi de probabilité à N points du processus symétrique d'exclusion dense

Notre but étant d'étudier les effets collectifs dans le SEP, intéressons-nous maintenant au cas
de N TP non biaisées (Chap. 4, Fig. 0.2). Un résultat structurant pour la suite est qu'à densité
arbitraire les TP se comportent à temps long comme une seule particule : les cumulants àN points
[Éq. (0.1)] sont égaux aux cumulants à un seul point,

lim
t !1

� (N)
p1,...,pNp

t
= lim

t !1

� (1)
p1+ ���+ pNp

t
. (0.6)

Notre approche basée sur les lacunes nous permet d'aller plus loin à haute densité et d'ob-
tenir l'évolution à temps intermédiaire, c'est-à-dire la transition entre le régime où les TP sont
indépendantes et le régime de temps long. NotonsL la distance initiale entre les TP extrémales,
� = t=L2 le temps relatif à une échelle diffusive et � (n)

i = ( Li + � � � + Li+ n� 1)=L les rapports de
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Figure 0.2 : N particules marquées dans le SEP. L'évolution temporelle de divers cumulants
[Éq. (0.1)] pour des paramètres� 0 = 0.002, L = 12 et N = 2,3, 4. Les cumulants sont divi-

sés par la variance� (1)
2 = � 0

q
2t
� . La ligne noire est la prédiction de l'équation (0.8).

longueurs, avecLi la distance initiale entre TP i et TP i + 1. L'expression explicite de la fonction
génératrice à N points que nous trouvons dans la limite dense est

lim
� 0! 0
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� 0
�

t !1
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� (cos(ki + � � � + ki+ n) � 1) , (0.7)

avecg(u) = e� u2
�

p
� uerfcu. Une conséquence importante est que les cumulants pairs àN points

(c'est-à-dire � (N)
p1,...,pN

avec p1 + � � � + pN pair) véri�ent une forme d'échelle universelle,

lim
� 0! 0

� (N)
pair( t )

� 0
�

t !1

v
t 2t

�
g

•
1

p
2�

‹
. (0.8)

Cette forme remarquable ne dépend ni du nombre de TP, ni de la con�guration initiale, ni de
l'ordre du cumulant. À temps long devant l'échelle diffusive, nous retrouvons comme attendu
les cumulants à un seul point [Éq. (0.3)] . Notons que des formules très proches ont été obtenues
pour la corrélation � (2)

1,1 à partir de l'équation d'Edwards-Wilkinson [30] et dans lerandom average

process[33] . Le fait que pour N � 3 TP seule l'échelle diffusive la plus grande (t=L2) intervient, et
non les échelles intermédiaires (t=L2

1, etc.), est non trivial et il serait intéressant de voir comment
ces échelles intermédiaires interviennent à densité arbitraire.

d) Coopérativité et compétition entre traceurs biaisés

Nous poursuivons notre objectif d'étudier les effets collectifs dans le SEP en regardant maintenant
le cas deN TP biaisées dans le SEP (Chap. 5). En plus des corrélations, nous nous intéressons
aussi aux fonctions de réponse.
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Figure 0.3 : Deux particules biaisées dans le SEP (TP 1 en rouge, TP 2 en bleu). (a) Seule la TP 2 est
biaisée (biaiss2). Les déplacements des deux TP sont tracés en fonction det=L2 pour L = 10,50 et
s2 = � 0.2,0.8 (symboles différents). Les lignes noires en pointillés sont les prédictions de (0.11).
(b) Les deux TP sont biaisées dans des directions différentes.� 0 = 0.01, s1 = � 0.6, s2 = 0.8 et
L = 50, 200 (cercles, triangles). Les vitesses mises à l'échelle[Éq. (0.12)] sont tracées en fonction
de t=L2. Les lignes noires sont les prédictions analytiques. On observe les régimes limites de
l'équation (0.13).

À haute densité et à temps long, lesN particules sont liées entre elles par le bain : elles se
comportent comme une unique particle. Si l'on note Z = ( Y1 + � � � + YN )=N le déplacement du
centre de masse, on obtient

� (N)
p1,...,pN

�
t !1



Zp1+ ���+ pN

�
c , (0.9)

où h�i c est une autre notation pour les cumulants. Le centre de masse, lui, se comporte comme
une particule effective de biais S lié aux biais individuels si ,

lim
� 0! 0

hZ( t )2ni c

� 0
�

t !1
lim

� 0! 0

hZ( t )2n+ 1i c

� 0S
�

t !1

v
t 2t

�
. (0.10)

Nous verrons que l'on peut associer une force à chaque biais et que la force effective sur le centre
de masse est la somme des forces sur chacune des particules.

Regardons le cas de deux TP et intéressons-nous d'abord à la situation où une seule des deux
(la deuxième) est biaisée (Fig. 0.3a). Dans ce cas, la TP 1 est entraînée par la TP 2 avec une
dépendance en temps que nous déterminons. En particulier, les cumulants impairs s'écrivent

lim
� 0! 0

hY2p+ 1
1 ( t )i c

� 0
�

t !1
s2

v
t 2t

�
g

•
L

p
2t

‹
, lim

� 0! 0

hY2p+ 1
2 ( t )i c

� 0
�

t !1
s2

v
t 2t

�
, (0.11)

où g est la fonction introduite précédemment et L la distance initiale entre les TP. À temps court
seule la TP 2 bouge alors qu'à temps long les deux TP bougent de manière identique. Cette pré-
diction est en accord avec les simulations numériques du SEP, pour les déplacements moyens
des particules (Fig. 0.3a). La similarité de structure entre hY1i dans (0.11) et hY1Y2i dans (0.8)
correspond à une relation de �uctuation-dissipation généralisée [35] . Notons que nous obtenons
également des expressions explicites pour tous les cumulants croisés des deux particules.

Finalement, considérons deux TP de biais respectifss1 et s2 (Fig. 0.3b) et voyons comment
elles interagissent entre elles. Pour des questions de commodité, nous dé�nissons les vitesses
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mises à l'échelle

Aj ( t ) =

p
2� t
� 0

dhYj i

d t
. (0.12)

Dans les limites de temps faible et de temps long, elles véri�ent

Aj ( t ) �
t � L2

sj Aj ( t ) �
t � L2

S =
s1 + s2

1 + s1s2
, (0.13)

où sj est le biais de la TPj et S le biais effectif mentionné plus haut. Nous obtenons des expressions
explicites pour A1 et A2 qui interpolent entre ces deux régimes limites, et nous les comparons à des
simulations dans le cas de biais opposés (Fig. 0.3b). Nous observons un effet de compétition entre
les deux particules, la plus biaisée des deux entraîne l'autre à temps long. Dans le cas de biais de
même signe, nous montrons un effet de coopération entre les deux particules : elles bougent plus
vite à temps long que si elles étaient seules.

0.2.2 Approche hydrodynamique

L'approche que nous venons de développer donne des résultats analytiques précis pour le SEP
dense. Mais elle reste spéci�que à la limite de haute densité et ne s'intéresse qu'au SEP. Pour com-
bler ces deux restrictions, nous développons maintenant une approche hydrodynamique, c'est-
à-dire basée sur des équations macroscopiques valides à grande distance et à temps long. Nous
dérivons ces équations dans le cas du SEP où elles sont valides à toute densité et nous montrons
qu'elles peuvent s'étendre, au moins en partie, à des systèmes en �le plus généraux.

a) Transition de déliaison

Nous avons vu précédemment qu'à haute densité plusieurs particules biaisées ne se séparent ja-
mais. Il est légitime de se demander ce qu'il en est à densité arbitraire. Nous décrivons le SEP à
l'aide d'un pro�l de densité continu � ( x, t ) qui obéit à une équation de diffusion. Les TP, qui ont
pour positions moyennesX̄i ( t ), imposent des conditions aux limites de �ux nul pour le bain. De
plus, le mouvement des TP est déterminé entièrement par le champ de densité devant et derrière
elles par l'équation

dX̄i ( t )

d t
= p+ i

�
1 � � (X̄+

i , t )
�

� p� i

�
1 � � (X̄+

i , t )
�

, (0.14)

où p+ i et p� i correspondent respectivement aux probabilités de saut de la TPi vers la droite
et vers la gauche. À temps long, le champ de densité véri�e une loi d'échellex �

p
t et les

mouvements des TP véri�ent X̄i ( t ) = O( t 1=2) (en particulier les vitesses s'annulent à temps long).
L'équation (0.14) devient un bilan de forces :

P(� (X+
i )) � P(� (X�

i )) = f i . (0.15)

Les forcesf i = log(p+ i =p� i ) correspondent à un bilan détaillé, et P(� ) = � log(1� � ) est l'équation
d'état du SEP. En appliquant notre approche pour une seule TP, nous retrouvons le résultat des
références[42, 43] : le déplacement est sous-balistiqueX̄1( t ) / t 1=2 avec un préfacteur donné
par une équation implicite.

Le cas central de notre approche est celui de deux TP subissant des forces opposées de même
intensité : f2 = � f1 = f (Fig. 0.4a). Nous mettons en lumière une transition de déliaison : en
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Figure 0.4 : Transition de déliaison dans le SEP (densité� 1 = 0.5). (a) Forces opposées. Dé-
placement X̄2( t ) pour les simulations numériques dans les trois régimes de l'équation (0.16). Les
pointillés noirs sont les prédictions à grand temps. Du rouge au bleu,L = 10, 20,50,100, 200,500.
(b) Forces arbitraires. Les points noirs correspondent aux simulations où l'on observe un état lié,
les points creux aux états où les particules se séparent. La ligne noire est la prédiction de la
frontière.

dessous d'une certaine force les TP restent à une distance �nie, alors qu'au-dessus d'une certaine
force elles se séparent et bougent chacune avec une dépendance en tempst 1=2. De manière remar-
quable, le bilan des forces (0.15) permet de montrer que la force critique est la pression d'équilibre
du système à sa densité moyenne� 1 : fc = P(� 1 ). Le régime critique est lui caractérisé par une
dépendance en tempst 1=4. Pour résumer, nous trouvons les comportements suivants

X̄2( t ) = � X̄1( t ) /
t !1

8
><

>:

t 0 si f < P(� 1 )

t 1=4 si f = P(� 1 )

t 1=2 si f > P(� 1 )

(0.16)

avec des préfacteurs que nous déterminons. En particulier nous caractérisons l'approche de la
transition pour f ! P(� 1 ) � (divergence de la distance) et pour f ! P(� 1 )+ (préfacteur qui
s'annule). La comparaison avec les simulations numériques est donnée en �gure 0.4a. Dans le cas
de deux forces arbitraires, nous sommes en mesure d'établir le diagramme de phase présenté en
�gure 0.4b. Notre approche s'étend également au cas deN TP avec des forces arbitraires. Nous
montrons qu'elles peuvent soit toutes rester liées, soit se séparer en deux groupes.

Nos résultats sont basés principalement sur le bilan des forces (0.15). Nous montrons que
celui-ci peut être généralisé pour un système en �le quelconque avec une équation d'étatP(� ).
La transition de déliaison est donc présente dans tous les systèmes en �le. Nous le véri�ons numé-
riquement pour deux modèles suggérés dans des articles expérimentaux le gaz de bâtons durs[9]
et le gaz de particules ponctuelles avec interactions dipôle-dipôle[10] . Nous approche est donc
robuste, et la transition de déliaison devrait être observable dans des systèmes expérimentaux.
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Figure 0.5 : Pro�ls généralisés dans le SEP à basse densité (� = 0.1). Les symboles correspondent
à des simulations numériques aux tempst = 30,100, 300,1000, 3000,10000 (du bleu au rouge).
Les pointillés noirs sont les prédictions asymptotiques de l'équation (0.23) avec une correction
d'un facteur (1 � � ).

b) Pro�ls généralisés

Nous venons de voir qu'établir des équations hydrodynamiques pour le champ de densité du SEP
permet de caractériser le déplacement de particules biaisées dans celui-ci. Nous tentons mainte-
nant d'obtenir les cumulants d'ordre supérieur (variance, etc.) par une approche similaire. Nous
nous restreignons à une seule TP, éventuellement biaisée, dont la fonction caractéristique du dé-
placement Xt est  (� , t ) = lnhe� Xt i .

Le nombre d'occupation � r du site r dans le SEP vaut� r = 0 si le site est vide et� r = 1 si le
site est occupé par une particule. Les pro�ls que nous regardions pour la transition de déliaison
étaient du type h� Xt + r i . Nous dé�nissons maintenant les pro�ls généralisésw̃r comme le couplage
entre le champ de densité et le déplacement de la TP,

w̃r (� , t ) =
h� Xt + r e� Xt i

he� Xt i
=

1X

n= 0

� n

n!
h� Xt + r Xn

t i c. (0.17)

Ces pro�ls généralisés génèrent les cumulantsh� Xt + r Xn
t i c couplant l'occupation dans le référentiel

de la TP au déplacement de celle-ci. Leur intérêt vient en particulier du fait que l'équation (0.14)
peut être généralisée et que la fonction génératrice peut être exprimée en fonction dew̃� 1,

d 

d t
= p+ 1(e� � 1)(1 � w̃1) + p� 1(e� � � 1)(1 � w̃� 1). (0.18)

Les pro�ls généralisés véri�ent une équation avec des termes diffusifs, et des équations aux limites
sur w̃� 1. Ces équations ne sont pas fermées : elles impliquent des termes de corrélation du type
h� Xt + 1� Xt + r e� Xt i . Nous sommes particulièrement intéressés par la limite de temps long, dans
laquelle les pro�ls généralisés véri�ent la loi d'échelle

w̃r (� , t ) � � �
t !1

�
•

� , v =
r

p
2t

‹
, (0.19)

et dans laquelle d 
d t � t � 1=2 ! 0. Un résultat important en lui-même est l'obtention des équations

hydrodynamiques suivantes,

� 00(v) + 2(v + b� )� 0(v) + � (v) = 0, (0.20)

� 0(0� ) + 2b� 1

�
� + � (0� )

�
= 0, (0.21)

p1(e� � 1)[ 1 � � � � (0+ )] + p� 1(e� � � 1)[ 1 � � � � (0� )] = 0, (0.22)
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avec� le signe dev et b� (� ) � lim t !1  (� , t )=[
p

2t (e�� � 1)] . Le terme � (v) implique des corré-
lations d'ordre supérieur. Nous ne connaissons pas d'expression fermée dans le cas général mais
certains cas particuliers importants peuvent être résolus.

Le premier cas est celui de l'ordre� 0 dans lequel il n'y a pas de termes d'ordre supérieur. Nous
retrouvons les résultats pour la moyenne du déplacement présentés dans la partie sur la transition
de déliaison. De la même manière l'ordre� 1 dans le cas non biaisé (p� 1 = 1=2) peut être résolu

et redonne la solution bien connue pour la variance [27] , hX2
t i � 1� �

�

q
2t
� . Nous montrons que

cette dernière est associée à des pro�lsh� Xt + r Xt i � (1 � � ) erfc( r =
p

2t )=2 ( r > 0).
Dans la limite de haute densité, � (v) est négligeable par rapport aux autres termes. Les pro-

�ls sont parfaitement déterminés à tous les ordres en présence d'un biais et nous retrouvons la
fonction génératrice de l'équation (0.3) (et même celle à tout temps de l'équation (0.4)). Dans
la limite opposée, de basse densité, nous dévoilons une relation de fermeture pour� (v). Nous
obtenons alors la solution suivante pour les pro�ls, qui est un résultat majeur donné par notre
approche,

� (v ¿ 0, � ) �
� ! 0

�
� � erfc [ � (v + � )]

� � 1=2e� � 2 � � erfc(� � )
(0.23)

avec� (� ) = lim t !1 (2t ) � 1=2� � 1 (� , t ) et � = lim t !1 (2t ) � 1=2 d 
d� . L'équation (0.22) donne une

solution implicite pour les cumulants du déplacement de la particule. Cette solution correspond à
celle des références[41,44,45] . Les pro�ls généralisés de simulations numériques à basse densité
sont donnés dans la �gure 0.5.

Finalement, nous montrons que notre approche dans le cas sans biais, à l'ordre� 1 des pro-
�ls (qui correspond à la variance de la TP) peut être étendue à un système en �le caractérisé
par ses deux coef�cients d'hydrodynamique �uctuante [45–47] : le coef�cient de diffusion D(� )
et la mobilité � (� ). En conclusion, notre approche hydrodynamique est prometteuse et devrait
constituer le sujet d'études futures.

0.3 Corrélations de systèmes bidimensionnels forcés et actifs

Dans la partie précédente, nous avons mis en évidence l'importance d'étudier les corrélations des
systèmes en �le pour caractériser leur comportement anormal, en particulier dans des cas hors
d'équilibre. En théorie des liquides à l'équilibre [1] (dimension deux ou plus), l'aspect central des
observables à deux points, et surtout des corrélations de paireg(r ), est également bien connu.
Nous montrons maintenant que ces mêmes observables sont cruciales pour la caractérisation de
systèmes hors d'équilibre.

La deuxième partie de cette thèse est dédiée à l'étude des corrélations dans des systèmes bidi-
mensionnels en interaction, en particulier le mélange binaire forcé et les particules browniennes
actives. Le mélange binaire forcé, dans lequel deux espèces sont entraînées dans des directions
opposées, présente un alignement des particules de même espèce[48, 49] . L'existence ou non
d'une transition d'alignement reste débattue [50,51] et nous apportons un angle de ré�exion en
caractérisant la structure spatiale des corrélations. Les particules browniennes actives, un mo-
dèle minimal de particules autopropulsées, sont très étudiées notamment pour la séparation de
phase induite par la motilité qui s'y produit à haute activité [52,53] . Les corrélations de paire ont
surtout été regardées du point de vue de leur composante isotrope ou de leur caractérisation à
courte portée [54–57] . Nous proposons ici de caractériser analytiquement leur structure à grande
distance dans la phase homogène ; celle-ci se révèle être surprenante.
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Nous expliquons brièvement notre approche commune à tous les systèmes étudiés avant d'ex-
pliciter les résultats obtenus, les plus notables étant les formes d'échelle trouvées pour la structure
spatiale des corrélations.

0.3.1 Systèmes étudiés

Nous analysons les corrélations dans trois systèmes différents de particules en interaction en
dimension 2 ou plus. Le premier est un simple liquide passif (Chapitre 8), dans lequelN particules
diffusives ayant des positionsXi ( t ) interagissent par un potentiel de paire V(r). Les équations de
Langevin associées s'écrivent

dXi

d t
= �

NX

j= 1

r i V(Xi ( t ) � X j ( t )) + � i ( t ), (0.24)

avec� un bruit blanc Gaussien de covarianceh� �
i ( t )� �

j ( t 0)i = 2D0� i , j �
� ,� � ( t � t 0) et de moyenne

nulle. Dans ce qui suit, les équations pour un liquide passif ne seront pas explicitées. Elles corres-
pondent à celles du mélange binaire pour une unique espèce en l'absence de forces, ou à celles
des particules browniennes actives en l'absence d'activité.

Le deuxième système étudié est un mélange binaire de particules forcées (noté BM,binary
mixture, cf. chapitre 9). Les particules sont divisées en deux espèces. Les particules de l'espèce 1
subissent une force extérieureF1 = F alors que les particules de l'espèce 2 ne subissent aucune
force, F2 = 0. Les équations de Langevin correspondent à l'équation (0.24) avec l'ajout d'un terme
F� i

où � i 2 f 1, 2g est l'espèce de la particulei .
Le dernier système est une assemblée de particules browniennes actives (ABP,active Brownian

particles), un système clé de l'étude de la matière active (Chapitre 10). Chaque particule a une
position Xi ( t ) et une orientation � i ( t ) et se dirige à une vitesse constanteU dans la direction
donnée par son orientation. De plus, les particules subissent une diffusion translationnelle avec un
coef�cient D0, une diffusion rotationnelle avec un coef�cient Dr et interagissent via un potentiel
de paire V(r). Les équations de Langevin sont

dXi

d t
= Uê� i ( t ) �

X

j6= i

r i V(Xi ( t ) � X j ( t )) + � i ( t ),
d� i

d t
= � i , (0.25)

avec �̂ i explicité précédemment et � i un bruit blanc gaussien de covarianceh� i ( t )� j ( t 0)i =
2Dr � i , j � ( t � t 0). e� est le vecteur unitaire du plan qui est positionné à un angle � par rapport à
l'axe horizontal.

0.3.2 Méthode

Nous détaillons maintenant la méthode qui nous permettra d'étudier les trois systèmes dé�nis
précédemment. Dans chaque cas, nous pouvons dé�nir un champ de densité qui est la somme
des fonctions de Dirac associées aux particules. Pour le mélange binaire, ce champ� BM

� est dé�ni
pour chaque espèce� = 1,2, et pour le mélange binaire f ABP est le champ de densité position-
orientation :

� BM
� (x, t ) �

X

i2T �

� (Xi ( t ) � x), f ABP(x, � , t ) =
NX

i= 1

� (Xi ( t ) � x)� (� i ( t ) � � ), (0.26)
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où T� désigne l'ensemble des particules de l'espèce� . Notre point de départ est l'équation de
Dean [58] pour les champs �uctuants de densité. Dans les deux cas précédents, elle s'écrit

@ �BM
�

@t
= �r � JBM

� ,
@f ABP

@t
(x, � , t ) = �r � JABP �

@KABP

@ �
, (0.27)

avec les �ux suivants

JBM
� = � D0r � � + � � F� � � �

qX

� = 1

r (V � � � )� 1=2
� � � , (0.28)

JABP = � D0r f � f

Z 2�

0

d� r (V � f )( � ) + f Uê� � f 1=2� , KABP = � Dr
@f

@ �
� f 1=2� . (0.29)

(g� h)(x) =
R

dyg(y)h(x � y) désigne la convolution spatiale. Les bruits spatiaux sont locaux, non
corrélés dans le temps, non corrélés entre espèces, de composantes spatiales non corrélées et de
moyenne nulle. Ils ont pour covariancesh� �

� (x, t )2i = 2D0, h� � (x, � , t )2i = 2D0 et h� (x, � , t )2i =
2Dr (les corrélations non mentionnées étant nulles). L'équation de Dean est une équation exacte
pour le champ de densité, mais elle est non-linéaire et fait intervenir un bruit multiplicatif. Pour
ces raisons, il est dif�cile d'en tirer de l'information.

Notre approximation consistera à linéariser l'équation de Dean autour d'un pro�l de densité
uniforme, comme l'ont fait les références [2,24,25] ,

� BM
� (x, t ) = �̄ � + �� BM

� (x, t ), f ABP(r, � , t ) =
�̄

2�
+ � f ABP(r, � , t ), (0.30)

avec�� BM
� � �̄ et � f ABP � �̄ . �̄ � est la densité moyenne de l'espèce� , �̄ est la densité moyenne

du système. En ne gardant que l'ordre le plus bas des perturbations, les équations de Dean (0.27)
deviennent linéaires avec un bruit additif et le champ de densité devient gaussien. Nous verrons
que cela correspond à une limite d'interactions faibles. Les équations de Dean linéarisées nous
permettent entre autres de calculer les fonctions de corrélation du système.

0.3.3 Fonctions de corrélation

Pour le mélange binaire, la corrélation h� ,� entre les espèces� et � est dé�nie par

hBM
� ,� (r) =

¬
� BM

� (r)� BM
� (0)

¶

�̄ � �̄ �
�

� � ,� � (x)

�̄ �
� 1. (0.31)

En l'absence de forçage externe, on retrouve la fonction de corrélation de paire habituelleh(r ) [1] .
Nous nous concentrerons sur le cas des corrélations stationnaires. Une fois l'équation de Dean
linéarisée, les quatre transformées de Fourier̃hBM

1,1 , h̃BM
1,2 , h̃BM

2,1 et h̃BM
2,2 sont solutions d'un système

linéaire de quatre équations. La résolution de ce système donne la solution explicite des fonctions
de corrélation en espace de Fourier. Cette solution est en accord avec des simulations de particules
molles et denses, comme montré sur la �gure 0.6. Nous en étudierons les conséquences dans la
sous-section suivante.

Dans le cas des particules browniennes actives, la corrélation entre deux particules espacées
de r et ayant des orientations � et � 0 est

CABP(r, � , � 0) =



f ABP(0, � ) f ABP(r, � 0)

�

[ �̄= (2� )] 2
�

� (r)� (� � � 0)
�̄= (2� )

� 1. (0.32)



0.3 Corrélations de systèmes bidimensionnels forcés et actifs 13

Par invariance par rotation, toute l'information est contenue dans C(r, 0, � 0). Nous nous limiterons
à la valeur moyenne sur l'orientation de la deuxième particule et étudierons la corrélation dans
le référentiel d'une particule donnée dé�nie par

BABP(r) =
1

2�

Z 2�

0

d� 0CABP(r, 0, � 0). (0.33)

En l'absence d'activité,C et B redonnent la fonction h(r) usuelle. Nous nous intéresserons tout
particulièrement à la limite de basse densité dans laquelle les effets à trois corps sont négligeables.
Dans ce cas, les corrélationsC et B sont bien décrites par les corrélations directes dans lesquelles
sont incluses uniquement les interactions à deux corps.CABP(r, � , � 0) véri�e alors l'équation sui-
vante dans l'état stationnaire,

�
2D0r 2 + Dr (@� + @� 0) + U(ê� � ê� 0) � r

�
CABP(r, � , � 0) = � 2r 2V(r). (0.34)

Cette équation, bien que linéaire, décrit une variété de comportements différents dans l'espace des
paramètres(U, D0, Dr ). Son intégration numérique est en accord avec des simulations numériques
de particules molles et diluées (Chap. 10). Nous verrons dans la sous-section suivante que l'on
peut résoudre analytiquement les trois régimes limites de faible activité (U ! 0), faible diffusion
rotationnelle ( Dr ! 0) et faible diffusion translationnelle ( D0 ! 0) et que ceux-ci correspondent
à des comportements qualitativement distincts les uns des autres (Fig. 0.7).

0.3.4 Résultats principaux

Avant de donner les résultats de notre approche pour le mélange binaire forcé et les particules
browniennes actives, intéressons-nous au cas du liquide à l'équilibre. Le point notable est que
la linéarisation de l'équation de Dean mène aux mêmes corrélations de paire qu'une approxima-
tion bien connue en théorie des liquides[1] : l'approximation de phase aléatoire (random phase
approximation, RPA, cf. appendice C). Il s'agit d'une approximation de champ moyen qui donne
de bons résultats pour un système dense avec des interactions faibles. Contrairement à la RPA,
l'équation de Dean linéarisée s'étend à des systèmes hors d'équilibre.

Pour le mélange binaire forcé, notre résultat principal est une forme d'échelle véri�ée par
les corrélations à grande distance. Notonsxk la coordonnée parallèle à la force appliquée sur
l'espèce 1, etx? le vecteur dans le plan perpendiculaire. Les corrélationsh� ,� véri�ent

h� ,� (x) �
xk!�1

Ĥ �
� ,�

F
d� 1

2

j xkj
d+ 1

2

g

‚
x?Æ
Djxkj

Œ

, (0.35)

g(u) = r 2
u

€
e� u2=2

Š
= ( u2 � d + 1)e� u2=2, (0.36)

avec d la dimension du système etĤ �
� ,� et D des coef�cients que nous déterminons analytique-

ment. Les corrélations décroissent donc en loi de puissance dans la direction du forçage, et expo-
nentiellement dans la direction perpendiculaire. De plus cette forme d'échelle est indépendante
de la forme exacte du potentiel V, à condition que celui-ci soit à courte portée. Notre prédiction
est véri�ée quantitativement dans des simulations numériques de particules molles (Fig. 0.6).
Nous verrons également que la forme d'échelle est observée pour des particules dures, c'est-à-
dire hors du régime de validité de notre approche. Nous montrerons que l'on peut l'obtenir avec
des arguments qualitatifs. Le signe des corrélations dans l'axe longitudinal (positif pourh1,2 et
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Figure 0.6 : Mélange binaire forcé (�̄ = 2, D0 = 0.2, F = 4, les deux espèces sont présentes dans les
mêmes proportions). En haut : corrélations entre espècesh2,1, et dans la même espèceh1,1. Dans
la partie supérieure les simulations numériques, dans la partie inférieure l'inversion numérique
de la solution analytique en espace de Fourier. En bas : coupes verticales deh2,1 et h1,1 issues des
simulations et mises à l'échelle. Les courbes grises sont les prédictions de l'équation (0.35).

négatif pour h2,1) montre que les particules d'une même espèce ont tendance à s'aligner, alors
que les particules d'espèces différentes s'anti-alignent.

Pour les particules browniennes actives, les corrélations dans la limite diluée et molle véri�ent
l'équation (0.34). Trois échelles de longueur ` r , ` U et ` p entrent en jeu, ainsi qu'un nombre sans
dimension Pe qui est le nombre de Péclet,

` r =
D0

U
, ` U =

v
t D0

Dr
, ` p =

U
Dr

, Pe=
U

p
D0Dr

=
` U

` r
=

` p

` U
. (0.37)

En comparant la distancer à laquelle les corrélations sont regardées (et en la supposant grande
devant la portée du potentiel de paire), nous construisons le diagramme de phases de la �gure 0.7.
Nous montrons qu'à faible activité (Pe � 1) les corrélations décroissent exponentiellement sur
une distance` U alors qu'à haute activité (Pe� 1) la décroissance est gouvernée par̀ p. Les trois
limites U ! 0, Dr ! 0 et D0 ! 0 correspondent à trois directions limites dans le diagramme
de phase. Le casU ! 0 correspond à une corrélation B(r) [Éq. (0.33)] dipolaire qui décroit
exponentiellement sur une échelle` U. Les deux autres cas correspondent à des formes d'échelle
remarquables,

B(x, y) �
Dr ! 0
r � ` r

1
y2

F

‚
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r j yj2=3
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` 1=3

p x

j yj4=3

!

, (0.38)

avec des fonctionsF et G que nous déterminons. Ces formes d'échelle sont testées numériquement
en �gure 0.7. Les deux formes correspondent à une corrélation positive pour x > 0 mais aussi,
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Figure 0.7 : Particules browniennes actives diluées. (a) Diagramme de phase : distance versus
nombre de Péclet. Les lignesr = ` r , ` U, ` p séparent les différents régimes. Les �èches rouges in-
diquent les régimes limites. Pour chacun d'entre eux les corrélationsB(r) sont esquissées (rouge :
corrélation positive, bleu : corrélation négative). (b) Coupes horizontales de la fonction de corré-
lation numérique à D0 = 0 (avec �̄ = 0.02, Dr = 0.1 et U = 10) avec les exposants d'échelle. La
courbe grise est la courbe limite provenant de l'intégration de l'équation (0.34). (c) Coupes ho-
rizontales de la fonction de corrélation numérique à Dr = 0 (avec �̄ = 0.02, D0 = 0.1 et U = 10)
avec les exposants d'échelle. La courbe grise est la prédiction analytique.

de manière surprenante, à deux ailes négatives pourx < 0 (là où l'on aurait pu s'attendre à un
seul sillage négatif). Notons que la transition entre les deux formes limites a lieu pour y � ` U.

Compressibilité, mobilité effective et vitesse effective. Disons en�n quelques mots de cer-
taines observables physiques qui peuvent être obtenues à partir des fonctions de corrélation.
Dans la partie précédente, les équations (0.14) et (0.18) relient respectivement la vitesse aux
pro�ls et la fonction génératrice des cumulants aux pro�ls généralisés. De plus, en théorie des
liquides, un résultat standard [1, 20] stipule que h(r ) donne accès à la compressibilité et, si on
connait le potentiel, à l'équation d'état. De manière similaire, la mobilité effective des particules
forcées (espèce 1) du mélange binaire (c'est-à-dire leur ralentissement par rapport à l'absence
d'interactions) peut être exprimée en fonction de la corrélation croisée h2,1. Et pour les particules
browniennes actives, la vitesse effective (c.-à-d. la vitesse à laquelle bougent les particules selon
leur orientation) est reliée au premier coef�cient de Fourier de B(r). Même si notre approche
donne principalement les formes limites à grande distance, il est notable de pouvoir obtenir les
quantités précédemment citées dans le régime où elle est aussi valide à courte distance.
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Figure 0.8 : Particules de Janus. (a) Photographie du système. L'hémisphère recouvert de titane
apparaît noir. Les positions et orientations détectées par analyse d'image sont montrées en rouge.
Les axesx et y pour la corrélation B(x, y) apparaissent en bleu. (b) Corrélation expérimentale
B(x, y). Pour x < 0, on observe les deux ailes négatives caractéristiques des particules brow-
niennes actives à haute activité.

0.3.5 Étude expérimentale de particules de Janus

Dans un dernier temps (Chap. 11), nous présentons des résultats expérimentaux obtenus lors d'un
séjour de deux mois dans le Takeuchi Lab de l'Université de Tokyo, en collaboration avec Daiki
Nishiguchi. Nous étudions des particules de Janus propulsées par un champ électrique extérieur.
Ce sont des billes de verre de diamètrea ' 3 � m dont l'un des hémisphères a été recouvert de
titane. Elles sont placées dans une solution aqueuse de chlorure de sodium introduite entre deux
électrodes créant un champ électrique vertical. Les particules sédimentent et bougentperpendi-
culairementau champ électrique dans la direction de l'hémisphère non recouvert (Figure 0.8). Le
mécanisme, nommé électrophorèse par charge induite (Induced-charge electrophoresis, ICEP), est
décrit dans l'appendice D.

Les particules de Janus sont bien décrites par le modèle des particules browniennes actives en
interaction. Nous mesurons expérimentalement la vitesseU, le coef�cient de diffusion rotation-
nelle Dr et estimons le coef�cient de diffusion translationnelle D0. La diffusion translationnelle
est faible par rapport aux autres effets, et nous montrons que le système expérimental correspond
à une limite d'activité élevée. Le nombre de Péclet est Pe' 90 et les longueurs caractéristiques
sont ` U ' 0.2a et ` r ' 20a, ce qui correspond au coin supérieur droit du diagramme de phases
de la �gure 0.7. De plus la fraction d'espace occupée par les particules est faible (� ' 0.04), ce
qui correspond au régime dans lequel ce diagramme de phases a été établi.

Nous capturons des vidéos du système et détectons les positions et orientations des particules.
Cela permet de mesurer expérimentalement les corrélationsB(x, y) dans le référentiel d'une par-
ticule (Figure 0.8). Nous retrouvons la forme caractéristique des particules browniennes actives,
avec deux ailes négatives dans le sillage de la particule. De plus, nous montrons que la corréla-
tion expérimentale est en accord qualitatif avec les simulations numériques correspondant aux
paramètres expérimentaux. Le fait que notre approche théorique prédise la forme des corrélations
expérimentales démontre la solidité de cette approche, que l'on pourrait envisager d'étendre à des
systèmes encore plus complexes : couplage orientation-vitesse, interactions d'alignement, etc.
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0.4 Conclusion

Dans cette thèse, nous montrons l'importance des observables collectives pour l'étude aussi bien
des systèmes en �le que des systèmes bidimensionnels hors d'équilibre. Dans les deux cas, nous
ouvrons de nouvelles perspectives. Caractériser les observables à plusieurs points du SEP est un
problème rarement abordé car complexe. Notre approche à haute densité nous permet d'obtenir
la loi à N points du SEP, et de caractériser les effets collectifs quand plusieurs particules sont biai-
sées. À densité intermédiaire, nous mettons en lumière et caractérisons une nouvelle transition,
qui conduit deux particules forcées à se séparer ou non selon les forces appliquées. En�n, nous
bâtissons une approche hydrodynamique pour des pro�ls généralisés qui permet d'obtenir les
cumulants d'ordre arbitraire. Cette approche se révèle fructueuse dans certaines limites et nous
espérons pouvoir l'étendre plus généralement.

Pour les systèmes bidimensionnels, notre contribution la plus importante est de caractériser
la structure spatiale des corrélations de paire entre particules, qui sont anisotropes pour les sys-
tèmes hors d'équilibre étudiés. Notre approche, valable à faible interaction, permet de mettre en
lumière des formes d'échelle pour ces corrélations. Dans le cas du mélange binaire forcé, nous
trouvons que les particules d'une même espèce ont tendance à s'aligner, avec une corrélation qui
décroît en loi de puissance dans l'axe de la force et véri�e une loi d'échelle diffusive. Pour les
particules browniennes actives, nous obtenons deux formes d'échelle distinctes à haute activité.
Plus généralement, nous établissons un diagramme de phase gouvernant la forme des corréla-
tions. La structure caractéristique à haute activité, avec deux ailes négatives, est retrouvée dans
des expériences de particules de Janus. Nous suggérons que notre approche pourrait s'étendre à
des systèmes avec des couplages plus complexes.
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Chapter 1
Global introduction

Systems with large numbers of interacting particles are ubiquitous at all length scales. One may
think about liquids [1] or electrolytic solutions [2] ; con�ned transport in nanotubes [3, 4] , ze-
olites [5–7] or microchannels [8–10] ; biological systems such as bacterial colonies[11–13] or
molecular motors [14] ; and at larger scales pedestrian crowds[15–17] or �ocks of birds or cat-
tle [18, 19] . Indeed, since interaction-free systems such as the ideal gas or phonons in crystals
appear in every textbook [20–23] , one may say that the study of interactions in many-body sys-
tems is one of the key goals of modern statistical physics. The usual distinction is made between
equilibrium and non-equilibrium systems. Equilibrium systems are those described at large scale
by thermodynamics, no external energy is injected and no net �ux of energy is observed. They
are usually thought of as being rather well understood, at least compared to non-equilibrium
systems. But tricky questions include the prediction of two-point correlations or even, as we will
see for con�ned geometries, of single-point observables. On the other hand, out-of-equilibrium
systems in which energy is injected and �uxes are observed are a very active area of research.
One reason for that is that they cannot be uni�ed under a single framework as the equilibrium
systems are with the canonical ensemble. One standard example of out-of-equilibrium system is
one where some or all the particles are driven by an external �eld, for instance an electrolytic
solution under an electric �eld. A very different example is a so-called active matter system in
which the energy is injected at the scale of the particles, for instance a colony of self-propelling
bacteria. But whatever the system, some very basic yet important questions may be asked. What
are the relevant observables to characterize the system, those who enable us to get the most in-
sight on, e.g., its collective dynamics? And then, what theoretical approach will provide us with
these observables? That is to say, how can we best describe the system? These two questions
of the observables and of the framework are common to both equilibrium and non-equilibrium
systems. And answering them may somehow help us bridge the gap between the two situations.
To give an example, it has been shown that while thermodynamic potentials are speci�c to equi-
librium systems, large-deviation functions are tools that can be extended to out-of-equilibrium
situations [59] . Throughout this thesis, even when we describe an equilibrium system we will be
careful to do it in a framework that can be extended to non equilibrium.

We �rst address the question of the relevant observables. At equilibrium, one of course wants
to characterize the thermodynamic quantities: pressure and equation of state, compressibility,
speci�c heat, etc. But these are not the only ones. In liquid theory [1] , a very important quantity
is the pair correlation function g(r ). Another interesting example of correlations are those of
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the hexatic order parameter [53] that enable one to quantify the deviations of a bidimensional
system from an hexagonal lattice. Generically, the observables associated with several points of
the system are of key interest. And even those associated with a unique microscopic particle
can be interesting: we will see that in single-�le systems a given particle undergoes a subdiffusive
motion. In out-of-equilibrium systems, the most obvious observables are the �uxes. In the regime
of small deviations from equilibrium, the response is usually linear and important results can be
obtained such as �uctuation-dissipation theorems or Onsager reciprocity relations[20, Chap. 9] .
But the question of the response is also interesting at arbitrary forcing. What is the conductivity
of an electrolytic solution with strongly interacting ions [2]? How does a driven intruder behave
in a bath that hinders its motion [24, 38]? Correlation functions, that are usually studied at
equilibrium are also of key importance in driven system [2,24] and we will emphasize this point
several times in this thesis. To summarize, correlations will be our key observables in all systems
whether at equilibrium or not; and for out-of-equilibrium systems we will also focus on response
functions.

Now, let us say a few words about some theoretical frameworks that one may develop, without
trying to be exhaustive. The �rst possibility is to exhibit an exactly solvable problem. This ap-
proach has proven to be possible for some one-dimensional systems such as interacting particles
on a line [41,44,45] or even for one-tag observables of the symmetric exclusion process[28,29] .
The framework that we will develop in Part I for the dense symmetric exclusion process falls into
this line of works. A more �exible approach, possible in arbitrary dimension, is to describe the
individual particles as a density �eld. Standard example are the Boltzmann equation [22,23] or
N-body Fokker-Planck equations[56,60] . Another notable instance, in the �eld of active matter
is the Toner and Tu hydrodynamics [61, 62] . But we also have in mind equations for a �uctuat-
ing, non deterministic, density �eld. A case in point is the Dean equation [58] which is an exact
equation for the �uctuating density �eld of interacting particles. In dimension one, we should
also mention �uctuating hydrodynamic equations [46] and the macroscopic �uctuation theory
based upon them[45] . Part II will take the Dean equation as a starting point. And the last two
chapters of Part I are devoted to the derivation of hydrodynamic equations for single-�le systems.

It is now time to state what precise systems we will describe in this thesis. We will be interested
in two different types of problems, corresponding to the two parts of this thesis. In both cases, the
key observables will be the correlation functions. And although the frameworks are different, the
reader may �nd similarities in the �eld equations written in each part. The �rst systems of interest
are single-�le systems (Part I). These systems are one-dimensional, or quasi one-dimensional, and
the particles trapped in this geometry cannot pass each other. The fact that the order of the par-
ticles is conserved at all times induces strong geometrical constraints responsible for anomalous
behaviors. Indeed, the motion of a given particle is shown to be subdiffusive with a mean-square
displacement at time t scaling as t 1=2 (instead of t for usual diffusion). Similarly, the motion
of a driven intruder is sub-ballistic, with a displacement also scaling as t 1=2. While the focus is
often put on single-tag observables, one should keep in mind that these anomalous behaviors are
closely linked to strong spatial correlations that are seldom characterized. This characterization,
and the study of the collective effects that emerge from the geometric constraints, will be our main
goal. Two kinds of approaches will be developed: �rst we show that the dense limit can be solved
exactly and then we derive hydrodynamic equations valid at arbitrary density. The second kind
of systems that we will focus on are bi-dimensional (or tri-dimensional) systems of particles in-
teracting by a pair potential (Part. II). This include usual liquids but extends to out-of-equilibrium
systems such as driven mixtures or active systems. Our work is motivated by important open
questions such as the issue of laning in oppositely driven populations, and the characterization
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of a homogeneous active liquid below motility-induced phase separation. We focus on the pair-
correlations which are anisotropic for out-of-equilibrium systems. In particular, our goal is to
probe the large-distance behavior of these correlation functions. Our starting point is the Dean
equation [58] and our approach consists in linearizing it around a uniform density pro�le. This
gives quantitative results in the limit of weakly interacting particles, but also qualitative results
holding outside this limit.

As detailed introductions will be given at the beginning of each part, and at the beginning of
each chapter, we only give a brief summary. Part I starts with an overview of single-�le systems
that recalls general results about them (Chap. 2). In the three chapters that follow, the focus is
put on the high-density limit of the symmetric exclusion process (SEP). We �rst recall and extend
the known results on the probability law of a single biased intruder in the dense SEP (Chap. 3).
We move on and use the same method to compute theN-tag probability law of the dense SEP
(Chap. 4). And introducing several biased intruders in this dense SEP, we uncover striking coop-
eration and competition effects (Chap. 5). Finally, the last two chapters are dedicated to hydro-
dynamic approaches that hold for the SEP at arbitrary density and can be extended to generic
single-�le systems. An unbinding transition is found for the displacements of two driven probes
in a single-�le system (Chap. 6). The hydrodynamic approach used to characterize the pro�les
of this unbinding transition is extended to generalized pro�les leading to a promising uni�ed
approach to compute arbitrary cumulants (Chap. 7). Part II starts by the derivation of the Dean
equation, an exact stochastic equation for the macroscopic density �eld of particles in interaction.
Linearizing this equation, we obtain an analytical expression for the pair correlation function g(r )
that corresponds to the one of the random phase approximation of liquid theory (Chap. 8). We
then show that this framework, namely the linearized Dean equation, can be extended to an
out-of-equilibrium system: a binary mixture in which different species are driven in opposite di-
rections (Chap. 9). We uncover a striking scaling form of the anisotropic pair correlations. A last
system in which our framework is applied is an assembly of active Brownian particles (ABPs), a
paradigmatic model of active matter (Chap. 10). The pair correlations are described analytically
in several limit regimes. At high activity, they exhibit a characteristic wing-like structure which
is associated with scaling forms. Finally, our �ndings on ABPs are compared to experiments of
Janus particles performed in Takeuchi laboratory (Chap. 11). A list of publications is provided at
the end of this thesis (Chap. 13).
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Chapter 2
Overview of single-�le systems
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2.1 Introduction

Single-�le systems are one-dimensional or quasi-one-dimensional systems in which particles that
are trapped cannot bypass each other. One should think of particles within a channel whose
diameter is close to the size of the particles. The particles are thus ordered and this order is
conserved at all times (Fig. 2.1a). The single-�le geometry has been found in various experimental
setups (zeolites, colloids, nanotubes) and has led to a large number of theoretical studies. The
reader may look at the review of Taloni and coworkers [63] for a quick overview.

The most salient feature of single-�le systems is the subdiffusive behavior of a tagged particle.
Let us consider a particle at positionX( t ) at time t that would be diffusive if it were alone,



[ X( t ) � X(0)] 2

�
free / t . (2.1)

If the same particle is placed in single-�le geometry with identical particles, it becomes subdiffu-
sive with a scaling



[ X( t ) � X(0)] 2

�
single-�le / t 1=2. (2.2)

This subdiffusion has been observed experimentally, is easily reproduced numerically and has
been proven rigorously in several theoretical models. However, the full extent of the collective
effects that lead to the subdiffusion and other anomalous behaviors is still not characterized. This
characterization will be the main goal of the �rst part of this manuscript.

We now review �rst the experimental setups in which the single-�le dynamics is relevant.
Then we give an overview of the main theoretical models that have been developed. Finally, we
state the importance of several-tag observables and explain our approaches to compute them.
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Figure 2.1: (a) Example of particles in single-�le geometry. (b) Symmetric exclusion process.

2.2 Experimental systems

The �rst experimental evidence of subdiffusion in a single-�le system [Eq (2.2)] , was done in
1995 for molecules diffusing within zeolites [5–7] . Zeolites are porous materials which can be
used as molecular sieves, that is to say to separate molecules based on their size. The one used
in experiments, AlP04-5, has channels of diameter 7.3 Å while the ethane molecules that diffuse
have a kinetic diameter 4.4 Å[5] . This explains why ethane molecules cannot pass each other and
are thus in single-�le geometry. The subdiffusive behavior, Eq (2.2) is probed by measuring the
signal attenuation in pulsed �eld gradient NMR. The experiments were later reproduced using
methane and carbon tetra�uoride and are backed by numerical simulations [6,7] .

Another key system in which single-�le dynamics was observed are colloids trapped in chan-
nels[8–10] . The subdiffusive, non-Fickian, behavior was �rst reported for paramagnetic polystyrene
colloids (3.6 � m) trapped in circular trenches (width: 7 � m) [10] . The mean-square displace-
ment scales with time as t 1=2 as expected from the theory and the probability distribution of the
displacement was measured. The crossover between diffusive motion at short time and subdif-
fusive motion at large time was observed later in experiments of polystyrene beads in a circular
laser channel [8] , and for weakly interacting silica colloids (1.6 � m) in a printed groove [9] . A
crucial remark is that the interactions between particles are very different between experimental
systems (long-range repulsion[8,10] , short-range attraction with hardcore exclusion [9] ) but the
subdiffusive scaling is universally observed.

In a different �eld, the single-�le geometry has recently been shown to be relevant for water
transport in single-wall carbon nanotubes [3] and carbon nanotube porins[4] of sizes 0.5� 1 nm.
Note however that this situation is quite different from the ones we presented before as a constant
�ux of water is induced and strong effects of the walls are expected. Finally, even if few studies
exist, applications of the single-�le geometry to micro and nano-�uidics, and to biodevices have
been suggested[63] .

2.3 Theoretical models in continuous space

A variety of models have been developed to account for the peculiar behavior of single-�le systems.
Before introducing the symmetric exclusion process (SEP), on which a large part of our analysis
will be built, we �rst focus on models in continuous space. The simplest one is point-like diffusive
particles on a line, with hard-core interactions between the particles (that is to say that they cannot
cross). This is the �rst model in which Eq. (2.2) was obtained: in 1965 Harris showed [40]
that the probability distribution of the rescaled displacement X( t )(2t=� ) � 1=4 of a tagged particle
converges at large time to a standard normal distribution. The propagators were computed in



2.4 Symmetric exclusion process 27

1998 [64] . But the full probability distribution of X( t ) at large time was obtained only in 2014,
by three teams using three different methods: a computation of propagators[44] , macroscopic
�uctuation theory [45] and a mapping to uninteracting particles [41] . Additionally, the two-tag
probability distribution [31] and the two-time correlations [65] of this model has been computed.

Another continuous space model that has been introduced is the random average process[32–
34] . Pointlike particles have exponential clocks making them jump towards one of their neighbors.
The displacement during a jump is a fraction of the distance between the particle and its neighbor,
drawn with a given probability law on [0, 1] . Displacements, pro�les and two-point correlations
can be derived exactly for this model for an unbiased intruder as well as a biased intruder, and
for different initial conditions. These exact results give precious insight on single-�le systems.

Finally, we note that experimental systems have been described by rather simple models.
Ref. [9] suggests that their colloids are well described by a Tonks gas[66] that is to say a gas of
interacting hard rods. Other colloids in Ref. [10] have been shown to behave as point-like particles
interacting with dipole-dipole interactions. We come back to these descriptions in Chap 6.

2.4 Symmetric exclusion process

Let us now introduce a paradigmatic model of single-�le systems on which most of this part will
focus: the symmetric exclusion process (SEP, Fig. 2.1b). Particles occupy the sites of a discrete
line and are embedded with exponential clocks of rate 1. When its clock rings, a particle tries to
jump to one of its neighboring sites (with equal probability). The jump is performed only if the
arrival site is empty. This hard-core constraint enforces the single-�le nature of the system.

The subdiffusive behavior of a tagged particle (TP) in the SEP was �rst established by Alexan-
der and Pincus [26] in 1978 by linking density �uctuations to the displacement of the TP. The
exact result was then proved by Arratia[27] in 1983: the variance of a tagged particle in the SEP
at density � is given by

hX( t )2i =
1 � �

�

v
t 2t

�
. (2.3)

However, the full probability law of such a tagged particle remained a challenge for a long time. In
2009, Derrida and Gershenfeld[67] obtained the statistics of the integrated current at the origin
of the SEP. The fourth cumulant was computed in 2014[45, 47] using macroscopic �uctuation
theory. And it is only in 2017 that Imamura, Sasamoto and Mallick [28, 29] managed to obtain
the full probability law by relying on exact results for the asymmetric exclusion process. We give
some details about their approach and their results in Appendix A.

Another line of studies focused on what happens to a single biased TP in the SEP. It is shown
that its average displacement scales with time ast 1=2. The prefactor is the solution of an implicit
equation that was �rst derived in Ref. [42] and proven rigorously in Ref. [43] . The full probability
law of a biased TP is known in the high density limit [37, 38] by an approach that we will
reproduce in Chap 3.

While studies show interest for one-tag observables, it is notable that very few of them focused
on the characterization of spatial correlations. These correlations are nonetheless crucial to un-
derstand the peculiar behavior of the SEP and the importance of the geometrical constraints.
Two-point and N-point observables will be the key quantities that we characterize in Chaps 4
and 5.
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2.5 Outline

The �rst part of this thesis can be thought of as divided into two subparts. The �rst three chapters
(Chaps 3, 4 and 5) are dedicated to the dense limit of the SEP, using a vacancy-based approach
introduced in Refs. [36–38] . On the other hand, the last two chapters of this part (Chaps 6 and 7)
are dedicated to approaches based on hydrodynamic equations. They hold for the SEP at arbitrary
density and can be partially extended to generic single-�le systems.

Chapter 3 recalls the vacancy-based approach and the results of Ref.[38] for the probabil-
ity law of a biased intruder in the SEP. Two majors extensions are given: the probability law at
arbitrary time, and the case of quenched initial conditions. Then, Chapter 4 uses the same ap-
proach to compute the N-tag probability law of the dense SEP. While we show that the large-time
behavior of N particles at any density is identical to the one of a single particle, we are crucially
able to derive the intermediate time behavior in the high density limit. In particular, we exhibit
a universal scaling for the N-tag cumulants. Finally, Chapter 5 is dedicated to the case of two
or more biased intruders in the dense SEP. We unveil a bath-mediated binding effect: the biased
intruders move as a single one at large time. Moreover, we obtain the intermediate-time behavior
and exhibit cooperativity and competition effects depending on the relative signs of the biases.

The bath-mediated binding at high density is remarkable, but at arbitrary density an even
more remarkable effect is observed: biased particles can unbind and move apart from one another.
We study this unbinding transition in Chapter 6 using a hydrodynamic approach for the density
�eld of the SEP. We fully characterize the transition and show that it holds for arbitrary single-�le
systems. This framework with hydrodynamic equations for the pro�les is extended in Chapter 7
to generalized pro�les, that is to say to correlations between the density and the displacement of
a given particle. In general, such equations are not closed but we nonetheless show that several
limits can be obtained. A tentative extension to generic single-�le systems is put forward and the
variance of a particle is recovered.
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3.1 Introduction

The anomalous behavior of the symmetric exclusion process has been known for a long time. In
1983, Arratia [27] derived the subdiffusive behavior of the mean square displacementhY2( t )i of
a TP in the SEP,

hY2( t )i �
t !1

1 � �

�

v
t 2t

�
, (3.1)

where � is the density of the system, and the time constant of a particle is set to� = 1. The
study of the higher order cumulants, in other words of the full probability distribution of Y( t ), is
more recent. It has been done �rst in the two limit cases: at high density ( � ! 1) [38] , and for
pointlike interacting particles [41, 44, 45] which corresponds to the low density limit of the SEP

29
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(� ! 0)1. But the breakthrough came in 2017, when Imamura, Sasamoto and Mallick derived
the full probability law of a tagged particle in the SEP [28,29] . We dedicate Appendix A to their
solution.

Another interesting setup is when a biased intruder (the TP) is introduced in the SEP (see
Fig. 3.1). The TP has arbitrary jump probabilities while the other particles still perform unbiased
walks with exclusion. The displacement of the TP obeyshY( t )i �

t !1
A(� )

p
t , which corresponds

to a sub-ballistic behavior. The prefactorA(� ) is the solution of an implicit equation �rst derived
phenomenologically [42] , then rigorously [43] . Higher order cumulants have been computed
only in the high density limit [38] .

In this chapter, we revisit the results of Ref. [38] for the probability distribution of a biased TP
in the SEP at high density (Fig. 3.1). The usual SEP is recovered by setting the bias to zero. The
vacancy-based approach that we use has been �rst introduced by Brummelhuis and Hilhorst[36]
and has been shown to be useful in a variety of other setups[37] such as con�ned environ-
ments [39] and comb-like stucture [68] . We introduce a technical difference: the random walks
of the vacancies are considered in continuous time instead of discrete time. This enables us to
derive new expressions valid at arbitrary time instead of large time only. Additionally, we also
obtain results for a different set of initial conditions: the so-called quenchedinitial conditions in
which the initial con�guration is frozen. In addition to these new results, this chapter paves the
way for the study of multiple TPs. This is the main focus of Part I and will be analyzed in the next
two chapters.

3.2 System

The system that we study is the symmetric exclusion process (SEP). Particles are initially posi-
tioned uniformly at random on the in�nite discrete line. The density � is the fraction of particles
compared to the number of sites: it can vary between 0 and 1. Each particle has an exponential
clock of time constant � = 1. When the clock ticks, the particle chooses to jump either to the left
(with probability 1 =2) or to the right (with probability 1 =2). If the arrival site is empty, the jump
is done. Otherwise, if the arrival site is occupied, the jump is canceled.

We consider a tagged particle (TP) and we allow it to have different jumping rates: p1 to the
right and p� 1 to the left (see Fig. 3.1). The TP is initially at the origin X( t = 0) = 0 and we study
its displacement with time Y( t ) = X( t ) � X(0). We de�ne the cumulant-generating function

 ( t )(k) � lnheikX( t ) i . (3.2)

 ( t )(k) gives us the full probability law of Y( t ). The expansion of this function in powers of k
gives the cumulants� n( t ),

 ( t )(k) �
1X

n= 1

( ik)n

n!
� n( t ). (3.3)

� 1 = hY( t )i is the average displacement,� 2 =


[ Y( t ) � h Y( t )i ] 2

�
is the variance,� 3 =



[ Y( t ) � h Y( t )i ] 3

�
,

� 4 =


[ Y( t ) � h Y( t )i ] 4

�
� 3� 2

2, etc. If Y( t ) were Gaussian (we will see that it is not), we would
have � n = 0 8 n � 3.

In this chapter, our main goal is the determination of the cumulant-generating function  ( t )(k)
and the cumulants � n( t ) in the high density limit � ! 1.

1Note that the variance of a tagged particle in the latter system is one of the �rst results derived historically [40] .
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Figure 3.1: SEP with a biased TP. The jump probabilities of the TP arep� 1 = ( 1 � s)=2 where s is
the bias.

3.3 From a single vacancy to the dense SEP

Let us consider a system of �nite sizeN in which all the sites are occupied exceptM of them.
We call these empty sitesvacancies, and their fraction � 0 = M=N = 1 � � . The high density
limit of the SEP corresponds to� 0 ! 0. Instead of looking at the motion of the particles, one can
equivalently study the motion of the vacancies. The latter perform (a priori correlated) random
walks on the line.

Our TP is initially at the origin: X( t = 0) = 0 and its displacement is Y( t ) = X( t ) � X(0).
This displacement can be said to be generated by the random walks of the vacancies: when a
vacancy crosses the TP from left to right, the TP moves to the left and vice versa. We number
the vacancies and callY j ( t ) the displacement of the TP generated by thej-th vacancy. We have
Y( t ) = Y1( t ) + � � � + Y j ( t ).

The initial positions of the vacancies are called Zj . P( t )(Yjf Zjg) is the probability of a dis-
placement Y at time t knowing the initial positions of the vacancies. Similarly, P ( t )(f Y jgjf Zjg)
is the probability that up to time t vacancies induced displacementsf Y jg of the TP knowing their
initial positions (see Fig. 3.2). By de�nition,

P( t )(Yjf Zjg) =
X

Y1,...,YM

� Y,Y1+ ���+ YM
P ( t )(f Y jgjf Zjg). (3.4)

Now, in the high density limit ( � 0 = M=N ! 0), we assume that the vacancies perform
independent random walks and interact independently with the TP. We neglect events of order
O(� 2

0) in which two vacancies interact with each other, compared to events of order O(� 0) in
which one vacancy interact with the TP. This is indeed a strong statement, but we will see that
it gives exact results in the limit � 0 ! 0. We call p( t )

Z (Y) the probability that in a system with a
single vacancy initially at Z, the TP has displacementY at time t . Our assumption leads to

P ( t )(f Y jgjf Zjg) �
� 0! 0

MY

j= 1

p( t )
Zj

(Y j ) (3.5)

with � 0 = 1 � � . Note that there are only two values of Y for which p( t )
Z (Y) is non-zero (Y = 0

and � 1 for Z · 0)). As we show in the following our problem now becomes much simpler.
Eq. (3.4) now gives

P( t )(Yjf Zjg) �
� 0! 0

X

Y1,...,YM

� Y,Y1+ ���+ YM

MY

j= 1

p( t )
Zj

(Y j ). (3.6)

We de�ne the Fourier transform p̃( t )
Z (k) =

P 1
Y= �1 eikY p( t )

Z (Y) and obtain

P̃( t )(kjf Zjg) �
� 0! 0

MY

j= 1

p̃( t )
Zj

(k). (3.7)
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Figure 3.2: The SEP can be seen in terms of random walks of vacancies (brown squares). They
are symmetric walks, except on the two sites next to the TP that we consider as defective sites.
At high density, these walks are assumed to be independent.

We consider an initial condition in which the vacancies have equal probability to be on any
site (except the origin). This corresponds to an equilibrated system and is known in the literature
as annealedinitial conditions. The cumulant-generating function of X( t ) is the logarithm of the
average of P̃( t )(kjf Zjg),

 ( t )(k) = ln P̃( t )(k), (3.8)

P̃( t )(k) �
1

(N � 1)M

X

Z1,...,ZM 6= 0

P̃( t )(kjf Zjg). (3.9)

In the limit � 0 ! 0, we obtain

P̃( t )(k) �
� 0! 0

2

4 1
N � 1

X

Z6= 0

p̃( t )
Z (k)

3

5

M

=

2

4 1 +
1

N � 1

X

Z6= 0

€
p̃( t )

Z (k) � 1
Š
3

5

M

. (3.10)

We consider the large-size limit M, N ! 1 with � 0 = M=N = 1 � � constant. We obtain an
expression for the cumulant-generating function in the high-density limit.

lim
� 0! 0

 ( t )(k)

� 0
=

X

Z6= 0

€
p̃( t )

Z (k) � 1
Š

(3.11)

Let us emphasize the meaning of this equation: the full probability law of a TP at high density is
encoded in a much simpler quantity: the propagator in a system where there is only one vacancy.

3.4 Symmetric exclusion process with a single vacancy

In this section, we consider a SEP with a single vacancy, initially at positionZ. The dynamics of
the TP, initially at zero, is entirely determined by the random walk performed by the vacancy:
when the vacancy arrives at the origin, the TP moves by one unit. We callf t

Z the probability
that the vacancy arrives at the origin for the �rst time at time t . We are able to decompose the
propagator p( t )

Z (Y) over the �rst-passage of the vacancy at the origin (see Fig. 3.3):

p( t )
Z (Y) = � Y,0

�

1 �

Z t

0

d� f (� )
Z

�

+

Z t

0

d t1p( t � t1)
� � (Y � � ) f ( t1)

Z , (3.12)

where � = sign(Z) = � 1. In the �rst term, the vacancy never touches the origin. In the second
term, the vacancy touches the origin at time t1, the TP has a movement� � and the vacancy is
now on � � with respect to the TP.
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Figure 3.3: Successive passages of a single vacancy to the origin. The random walk is symmetric
except for the two sites next to the TP. We see that the vacancy induces a motion of the TP (by
one site).

One remarks that the same procedure can be applied to the total numbern of arrivals of the
vacancy at the origin before time t . For simplicity, we write it for Z = � = � 1,

p( t )
� (Y) =

1X

n= 0

� Y,� [1� (� 1)n+ 1]

Z 1

0

d t1 . . . d tn

Z 1

0

d��

‚

t �
nX

i= 1

t i � �

Œ

�
€
1 � f (� )

� (� 1)n

Š
f ( t n)
� (� 1)n� 1 . . . f ( t2)

� � f ( t1)
� . (3.13)

We de�ne the Fourier-transform in space and Laplace transform in time by

ˆ̃pZ(k, u) �
1X

Y= �1

eikY

Z 1

0

d te� ut p( t )
Z (Y). (3.14)

Applying it to Eqs. (3.12) and (3.13), we obtain

ˆ̃pZ(k, u) =
1
u

+
•

ˆ̃p� � (k, u)ei � k �
1
u

˜
f̂Z(u), (3.15)

ˆ̃p� (k, u) =
1
u

�
1 � f̂� (u)

�
+ ei � k f̂� (u)

�
1 � f̂� � (u)

�

1 � f̂1(u) f̂� 1(u)
. (3.16)

We combine the two equations and obtain the propagator of the displacement of the TP in terms
of the �rst passage probabilities of the vacancy,

ˆ̃pZ(k, u) =
1
u

–

1 +
�
ei � k � 1

� 1 � f̂� � (u)

1 � f̂1(u) f̂� 1(u)
f̂Z(u)

™

. (3.17)

One can inject this equation into Eq. (3.11) to obtain the cumulant-generating function at high
density in terms of �rst passage quantities of a single vacancy.

The reader may have guessed that our last step consists in studying the random walk of a
single vacancy to compute f̂Z(u).

3.5 First passage quantities

We consider a SEP with only one vacancy and a TP initially at the origin. The �rst question to be
asked is: what is the random walk performed by this unique vacancy? The vacancy is surrounded
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by two particles with exponential clocks with ticking probability � ( t ) [ Laplace transform �̂ (u)]
given by

� ( t ) = e� t �̂ (u) =
1

1 + u
. (3.18)

Except when it is next to the biased TP, the vacancy thus performs a symmetric Montroll-Weiss
walk [69] with a distribution of jumping times given by � ( t ). When the TP is not biased, the
walk becomes symmetric for all sites. We �rst study this situation before accounting for defective
sites next to the TP.

3.5.1 Unbiased tagged particle

Let us call f UB
Z ( t ) the probability of �rst passage at the origin at time t of a vacancy initially at Z,

assuming that the TP is not biased (p� 1 = 1=2, s = 0). The Montroll-Weiss walk (in continuous
time) of the vacancy is linked to the associated Polya walk (in discrete time) by the formula
[Ref. [69] , Eq. (5.46)]

f̂ UB
Z (u) = F̂Z(�̂ (u)) (3.19)

where �̂ is given by Eq. (3.18), and F̂Z(� ) =
P 1

t= 0 � t FZ( t ) is the discrete Laplace transform of
the probability of �rst passage at the origin of the Polya walk starting from Z. It is known to be
given [Ref. [69] , Eq. (3.135)] by F̂Z(� ) = � j� j with � = � � 1

�
1 �

p
1 � � 2

�
. At the end of the day,

we obtain the following expression for the �rst passage probability that we study:

f̂ UB
Z (u) = � jZj , (3.20)

� = 1 + u �
Æ

u(2 + u). (3.21)

One notes that � is a solution of the equation � 2 � 2(1 + u)� + 1 = 0, this leads to the non-trivial
relation

1 + u =
1 + � 2

2�
=

1
2

�
� + � � 1

�
. (3.22)

Now that we have the expression for an unbiased TP, we turn to the case of a biased TP.

3.5.2 Biased tagged particle

We consider a unique vacancy on the site� = � 1, next to a biased TP. Two events can happen,
either the TP jumps on site� or the particle on site 2� jumps on site � . The �rst event is governed
by an exponential law of rate (inverse time) p� , while the second is associated with an exponential
clock of rate 1=2. The motion of the vacancy is thus governed by the exponential law of rate
(p� + 1=2), � V( t ) = ( p� + 1=2)e� (p� + 1=2) t . When such a jump of the vacancy occurs, there is a
probability p� =(p� + 1=2) that it is done in the direction of the TP, and (1=2)=(p� + 1=2) that it is
done in the opposite direction.

We call f� ( t ) the probability of �rst passage of the vacancy at the origin, knowing that it starts
from site � . Either it is due to the �rst jump of the vacancy at time t , or the vacancy jumps on
site 2� at time t0 < t , comes back to site� by an unbiased random walk at time t0 + t1 and then
arrives at the origin. This leads us to the relation,

f� ( t ) = p� e� (p� + 1=2) t +

Z t

0

d t0
1
2

e� (p� + 1=2) t0

Z t � t0

0

d t1 f UB
1 ( t1) f� ( t � t0 � t1). (3.23)
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We compute the Laplace transform of this equation and remember that f̂ UB
� (u) = � with � given

by Eq. (3.21). Moreover, 1 + u and � are linked by Eq. (3.22). We end up with

f̂� (u) =
p�

u + p� + 1=2 � �= 2
=

� (1 + � s)
1 + � s�

(3.24)

where s is the bias. In particular, as expected, if p� = 1=2, f̂� (u) = f̂ UB
� (u) = � .

fZ( t ) =

Z t

0

d t0 f UB
jZj� 1( t0) f� ( t � t0) (3.25)

f̂Z(u) = f̂ UB
jZj� 1( t0) f̂� (u) =

1 + � s

1 + � s�
� jZj (3.26)

with � = sign(Z).

3.6 Results

3.6.1 Exact cumulant-generating function

Inserting the �rst passage quantities computed in Eq. (3.26) into the expression of the propagator
with a single vacancy ˆ̃pZ(k, u), [Eq. (3.17)] , we obtain

ˆ̃pZ(k, u) =
1
u

�

1 +
�
ei � k � 1

� 2p�

1 + �
� jZj

�

. (3.27)

This immediately gives the solution for the cumulant-generating function [Eq. (3.11)] ,

lim
� 0! 0

ˆ (k, u)

� 0
=

1
u

2�
1 � � 2

X

� = � 1

p� (ei � k � 1). (3.28)

After some manipulation we �nd our �nal result in Laplace space,

lim
� 0! 0

ˆ (k, u)

� 0
=

cosk � 1 + issink

u3=2
p

2 + u
, (3.29)

where the bias iss= p1 � p� 1. And we are lucky that the Laplace transform can be inverted. We
�nd successively that

lim
� 0! 0

1
� 0

@  (k, t )

@t
= e� t I0( t )(cosk � 1 + issink), (3.30)

lim
� 0! 0

 (k, t )

� 0
= te� t [ I0( t ) + I1( t )]( cosk � 1 + issink), (3.31)

where I0 and I1 are modi�ed Bessel functions of the �rst kind. This is our main result and to the
best of our knowledge it has never been written like this before. This implies that we have the
full time-dependence of the even (� 2n) and odd ( � 2n+ 1) cumulants,

lim
� 0! 0

� 2n( t )

� 0
= te� t [ I0( t ) + I1( t )] lim

� 0! 0

� 2n+ 1( t )

� 0
= s te� t [ I0( t ) + I1( t )] . (3.32)

The analytical results for the cumulants � 2, � 4, � 6 and � 8 of an unbiased TP are compared to
numerical simulations on Fig. 3.4. The same is done for the cumulants� 1, � 2, � 3 and � 4 of a
biased TP on Fig. 3.5. In both cases, an excellent agreement is found at high density at all times.



36 Chapter 3. Dense symmetric exclusion process: single-tag observables

3.6.2 Short time and large time limit

At short time, we �nd that the cumulants obey

lim
� 0! 0

� 2n( t )

� 0
�

t ! 0
t lim

� 0! 0

� 2n+ 1( t )

� 0
�

t ! 0
st. (3.33)

This means in particular that the variance � 2 is diffusive, and that the displacement of a biased
TP � 1 is ballistic. These are the behaviors that can be intuitively expected.

At large time, we �nd that the cumulant-generating function satis�es

lim
� 0! 0

 (k, t )

� 0
=

v
t 2t

�
(cosk � 1 + issink) (3.34)

and the cumulants

lim
� 0! 0

� 2n( t )

� 0
�

t !1

v
t 2t

�
, lim

� 0! 0

� 2n+ 1( t )

� 0
�

t !1
s

v
t 2t

�
. (3.35)

The variance� 2 is subdiffusive, and the displacement� 1 is sub-ballistic. These expressions are in
agreement with the literature [27,28,38] .

3.6.3 Large deviation function

One can also compute the large deviation function� ( y) associated with a displacementY of the
TP. Using the Gärtner-Ellis theorem[59] linking the large deviation function to the cumulant-
generating function [Eq. (3.34)] by a Legendre transform, we write

P

‚

Y = � 0

v
t 2t

�
y

Œ

� e� � 0

q
2t
� � ( y) , (3.36)

� ( y) = sup
q2R

[ q y � (coshq � 1 + ssinhq)] . (3.37)

The symbol �̀ ' denotes asymptotic equivalence at exponential order whent ! 1 .
We solve the extremum overq and obtain e� q = � y +

p
y2 + 1 � s2, which gives us

� ( y) = 1 � s y �
Æ

y2 + 1 � s2 + y ln
”

y +
Æ

y2 + 1 � s2
—

. (3.38)

We will use this result in the next chapters.

3.7 Quenched initial conditions

In this last section, we consider a frozen initial disorder, also known in the literature as quenched
disorder. The positions of the particles are assigned initially and one averages over multiple
realizations of the evolution of the system. One then usually considers a “typical” initial condition
by averaging over all the possible initial conditions at the end of the computation.
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Figure 3.4: Time dependence of the cumulants� 2, � 4, � 6 and � 8 of an unbiased TP in the dense
SEP (� 0 = 0.1, 0.05,0.02, 0.01). The black line is the prediction from Eq. (3.32), the gray lines
are the asymptotic regimes at short and large time. We note that the higher the order of the
cumulant is, the lower � 0 should be in order to match the prediction.

3.7.1 Link with the single-vacancy case

We come back to the �nite system with N sites and M vacancies considered in section 3.3.
P( t )(Yjf Zjg) is the probability that the TP has a displacementY at time t knowing that the M
vacancies are initially at sitesf Zjg, and P̃( t )(kjf Zjg) is its Fourier transform. We de�ne a cumulant-
generating function conditioned on the initial positions of the vacancies,

 (k, t jf Zjg) � log P̃( t )(kjf Zjg). (3.39)

This object encapsulates the behavior of the system with given initial conditions. The quenched
cumulant-generating function  Q is then de�ned as the average of this quantity over the initial
positions

 Q(k, t ) �
1

(N � 1)M

X

Z1,...,ZM

 (k, t jf Zjg). (3.40)

We recall that at high density, � 0 � M=N ! 0, the propagator with M vacancies is expressed in
terms of the one with a single vacancy[Eq. (3.7)] . We quickly �nd that the high density limit of
the quenched cumulant-generating function reads

lim
� 0! 0

 Q(k, t )

� 0
=

X

Z6= 0

log p̃( t )
Z (k). (3.41)
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Figure 3.5: Time dependence of the cumulants� 1, � 2, � 3 and � 4 of a biased TP in the dense SEP
(� 0 = 0.02). The values of the bias ares = 0.2,0.5, 0.8,1. The black line is the prediction from
Eq. (3.32), the gray lines are the asymptotic regimes at short and large time.

Figure 3.6: Time dependence of the cumulants� 2 and � 4 for deterministic initial conditions at
high density (� 0 ranges from 0.02 to 0.2). The dashed gray lines are the predictions at large time
for quenched initial conditions.
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Figure 3.7: Time dependence of the �rst two cumulants � 1 and � 2 of a biased TP in the dense SEP
(� 0 = 0.05) with deterministic initial conditions. The values of the bias are s = 0.2,0.5, 0.8,1.
The dashed lines (gray on the left panel, colored on the right panel) are the large-time predictions
from Eqs. (3.46) and(3.47).

3.7.2 Result at large time

The right-hand side of Eq. (3.41) does not involve a linear combination of the p̃( t )
Z (k). As a result,

one cannot easily express the Laplace transform in time of the quenched cumulant-generating
function in terms of the Laplace transform ˆ̃pZ(k, u) given in Eq. (3.27). One needs to invert
Eq. (3.27) to obtain an expression in time.

We use the limit u ! 0 with ujZj2 kept constant. This corresponds to the limit of large time
t ! 1 with jZj=

p
t constant. As� = 1 �

p
2u + O(u), we write � jZj = ejZj ln � �

u! 0
e�j Zj

p
2u. From

Eq. (3.27), this leads us to

ˆ̃pZ(k, u) �
u! 0

1
u

+ p�

�
ei � k � 1

� e�j Zj
p

2u

u
. (3.42)

This Laplace transform can be inverted, we obtain

p̃( t )
Z (k) �

t !1
1 + p�

�
ei � k � 1

�
erfc

•
jZj

p
2t

‹
. (3.43)

One obtains an intermediate result for the quenched cumulant-generating function [Eq. (3.41)] ,

lim
� 0! 0

 Q(k, t )

� 0
�

t !1

1X

Z= 1

X

� = � 1

log
•
1 + p�

�
ei � k � 1

�
erfc

•
jZj

p
2t

‹˜
(3.44)

which by Riemann summation gives

lim
� 0! 0

 Q(k, t )

� 0
�

t !1

p
2t

Z 1

0

dzlog
�
1 + p1

�
eik � 1

�
erfcz

� �
1 + p� 1

�
e� ik � 1

�
erfcz

�
. (3.45)

The �rst two cumulants can be computed exactly,

lim
� 0! 0

� Q
1 ( t )

� 0
�

t !1
s

v
t 2t

�
, (3.46)

lim
� 0! 0

� Q
2 ( t )

� 0
�

t !1

s
t
�

�
1 + s2(1 �

p
2)

�
. (3.47)
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We note that the displacement � Q
1 is not modi�ed by the initial conditions, consistently with the

observations of Ref.[70] . On the contrary, the variance � Q
2 ( t ) is modi�ed in two striking ways.

First, contrary to the annealed initial conditions, the variance now depends on the bias s (it
actually decreases with increased bias). And secondly, in the absence of bias (s = 0), the scaling
with time is

p
t=� instead of

p
2t=� in the annealed case. This

p
2 difference is well known

and has been commented in the literature[35,41] . It is a consequence of the fact that single-�le
systems have an in�nite memory.

We performed simulations of the dense SEP with deterministic initial conditions: the vacancies
are equally spaced initially. This con�guration is the initial one for all simulations and the average
is taken only over the evolution of the system. We show on Figs. 3.6 (no bias) and 3.7 (biased
TP) that the large-time behavior of these simulations is well described by our approach.

3.7.3 Comments on the unbiased case

In the unbiased case (p1 = p� 1 = 1=2), Eq. (3.45) can be recast as

lim
� 0! 0

 Q(k, t )

� 0
�

t !1

p
2t

Z 1

0

dzlog
•
1 � sin2

•
k
2

‹
erfczerfc(� z)

˜
. (3.48)

The �rst non-zero cumulants are

lim
� 0! 0

� Q
2 ( t )

� 0
�

t !1

s
t
�

' 0.39894
p

2t (3.49)

lim
� 0! 0

� Q
4 ( t )

� 0
' � 0.02109

p
2t (3.50)

lim
� 0! 0

� Q
6 ( t )

� 0
' 0.00893

p
2t . (3.51)

These results are extremely similar to the ones found in the low-density limit (Brownian in-
teracting particles) in Ref. [41] . Indeed the authors �nd

 Q(k, t ) �
� ! 0,t !1

�
p

2t

Z 1

0

dzlog
•
1 � sin2

•
k

2�

‹
erfczerfc(� z)

˜
. (3.52)

Note that this similarity between the high and low density does not give insight into an arbitrary
density. Indeed the fourth cumulant in the quenched setting has been computed at arbitrary
density [47] and reads

� Q
4 ( t ) =

1 � �

� 3

•
2(1 � 2� )2

•
9
�

arctan
•

1

2
p

2

‹
� 1

‹
+ � (1 � � )(4 � 3

p
2)

˜ s
t
�

. (3.53)

This expression is much more complicated than the limit cases� ! 0 and � ! 1.

3.8 Conclusion

In this chapter, we saw that the probability law of the motion of a biased TP in the dense SEP can be
computed by studying the motion of a single vacancy in the SEP[Eq. (3.11)] . The latter computa-
tion can be performed using standard results on random walks. We �nd the full time-dependence
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of the cumulants of the position [Eq. (3.32)] . This interpolates between a linear dependence at
short time (isolated particle) and a dependence as t 1=2 at large time which is characteristic of
single �le systems and corresponds to the results of Ref.[38] . Furthermore our approach extends
to quenched initial conditions, and the large time quenched cumulant-generating function can be
computed [Eq. (3.45)] . Our �ndings are backed by numerical simulations.

In the next two chapters, we show that our approach extends �rst to an arbitrary number of
unbiased TPs in the dense SEP thus giving the fullN-tag probability law; and then to two (and
more) biased TPs, revealing collective effects.
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4.1 Introduction

A tagged particle (TP) in the SEP, at position X( t ) exhibits anomalous behaviors. Its motion
is subdiffusive [27] hX( t )2i /

p
t , instead of the usual diffusive scaling hX( t )2i / t . A closely

related result is the consequence of a �uctuation dissipation principle: if the TP is (weakly) biased,
its motion is sub-ballistic [42, 43] hX( t )i /

p
t , instead of a ballistic scaling hX( t )i / t . These

peculiar behaviors stem from the strong geometrical constraints of the system: the particles of
the SEP cannot bypass each other. This induces important spatial correlations in the system.
Our goal is to characterize these correlations, and thus to go beyond single-TP observables and
compute observables involving several TPs. So far, the only example of studies of correlation
functions concerns models related to but different from the SEP. In the case of point-like hard-
core particles on the line, which corresponds to the dilute limit of the SEP, a quantity related
to the two-tag probability distribution has been computed explicitely [31] . The lowest order of

43
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Figure 4.1: Symmetric exclusion process with 4 tagged particles (blue). The jump rates are 1=2
for each allowed jump. The �gure summarizes our notation for the initial distances between
particles. The zones� = 0, 1,2, 3,4 are also de�ned.

two-point correlation functions has also been derived for the random-average process[32–34] ,
which displays features similar to the SEP. Finally, the SEP is sometimes mapped on an interface
problem using a process called stochastic harmonic theory[30] leading to the Edwards-Wilkinson
equation (see Appendix B for more details). This gives a Gaussian theory from which the lowest
order two-point correlations can be extracted. Our goal is both to probe non-Gaussian behaviors
and to study N-tag correlations.

In this chapter, we consider N tagged particles in the SEP (Fig. 4.1,N = 4) and study the
full joint distribution of their displacements. We �rst give some important features at arbitrary
density: we compute an equilibrium law for the distance between two TPs and show that this
implies that the TPs have a coordinated motion at large time, moving as a single effective TP.
This helps us understand the time scales of our problem. Secondly, we focus on the dense limit
and use the vacancy-based approach introduced in the previous chapter to derive the fullN-tag
probability law of the problem. A major result is that the N-tag cumulants obey a universal scaling
irrespective of the number of particles and the order of the cumulants. A time-dependent large
deviation function is also obtained and enables us to obtain in particular the approach to the large
time regime.

The results of this chapter have been published in[P3] .

4.2 Large time behavior at arbitrary density

Our main result will be the characterization of the SEP in the high density limit. But before doing
it, we obtain some important results that hold at arbitrary density. We �rst study the probability
law of the distance between two TPs at equilibrium and obtain its expression. We then use this
stationarity to show that at large time the TPs behave as a single one and identify the time regimes
of the motion of the TPs.

4.2.1 Law of the distance between two particles

Let us consider two TPs in the SEP at density� , initially separated by a distance L. We focus on
the distribution P� of the distance � between the two TPs at large time. We will use extensively
the fact that the SEP is an equilibrium system.
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Figure 4.2: Probability law of the equilibrium distance � between two tagged particles in the
SEP with its variation with the initial distance L (from left to right) and the average density �
(� = 0.25,0.5, 0.75 from red to blue). The circles are the results of numerical simulations at time
t = 2 � 104 (which we check is enough for convergence) and the lines are the prediction from
Eq. (4.4).

The distance� is the sum of the number of particles and the number of vacancies between
the TPs. The numberk of particles is �xed initially and does not evolve; its probability law is
denoted Ppart(k). On the other hand, the number m of vacancies �uctuates at equilibrium with a
law Pvac(mjk) that depends on k. As � = k + m + 1, we can write

P� (� ) =
L� 1X

k= 0

Ppart(k)Pvac(� � k � 1jk). (4.1)

Initially there are L � 1 sites between the TPs. Initially, they are all occupied independently
with probability � . The law of k is thus binomial,

Ppart(k) =
•

L � 1
k

‹
� k(1 � � )L� 1� k. (4.2)

At equilibrium, we scan the sites between the two TPs, starting from the left TP and moving to the
right. At each site, there is a probability � (independent of the other sites) of �nding a particle.
And by de�nition the (k + 1)th particle is the right TP. The number of vacanciesm is the number
of times we failed to discover a particle. By de�nition, the number m of failures before k + 1
successes is a negative binomial law written

Pvac(mjk) =
•

m + k
m

‹
(1 � � )m� k+ 1. (4.3)

Finally, Eq. (4.1) leads to

P� (� ) =
L� 1X

k= 0

•
L � 1

k

‹•
� � 1

k

‹
� 2k+ 1(1 � � )L+ � � 2k� 2. (4.4)

This is the expression of the stationary law of the distance between two TPs initially separated
by L. This exact expression is found to be in very good agreement with numerical simulations
(Fig. 4.2).
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Large deviation function

From Eq. (4.4), one derives the generating function

G� (z) �
1X

� = 1

P� (� )z� =
•

� z

1 � (1 � � )z

˜ �
� 2z

1 � (1 � � )z
+ 1 � �

� L� 1

. (4.5)

For large initial distances, it scales as

1
L

ln G� (ev) ���!
L!1

ln

�
� 2ev

1 � (1 � � )ev
+ 1 � �

�

�  � (v). (4.6)

We de�ne the variation of distance D = � � L and its probability law Pdist(D) = P� ( L� + � ). We
apply the Gärtner-Ellis theorem of large deviations [59] and obtain

Pdist(D = Ld) � e� L� D(d) , (4.7)

� D(d) = sup
v2R

[( 1 + d) � � (v)] = sup
v2R

�

v(1 + d) � ln

�
� 2

e� v � (1 � � )
+ 1 � �

��

. (4.8)

The symbol �̀ ' denotes asymptotic equivalence at exponential order whenL ! 1 . � D is the
large deviation function associated with the distance. We are especially interested in its expression
in the high density limit � = 1 � � 0 with � 0 small. One checks that

lim
� 0! 0

� D(2� 0u)

2� 0
= � (u), (4.9)

� (u) = 1 �
p

1 + u2 + u ln
€
u +

p
1 + u2

Š
. (4.10)

Strikingly, � is the same large-deviation function as the one of an unbiased TP at high density
given by Eq. (3.36). We will check later that this expression is recovered from our high-density
computations, and in numerical simulations [see Fig. 4.5c] .

4.2.2 Cumulants at large time

Having derived the stationary law of the distance between two TPs, we now show what it implies
for the time-evolution of the probability law of N TPs.

The positions of the N TPs at time t are denoted X1( t ), . . . , XN ( t ) and their displacements
are Yi ( t ) = Xi ( t ) � X0

i with X0
i = Xi ( t = 0). We de�ne the cumulant-generating function as

 ( t )(k) � ln


ei (k1Y1+ ���+ kN YN )

�
(4.11)

It generates the N-tag cumulants � (N)
p1,...,pN

from the expansion in powers of k,

 ( t )(k) �
1X

p1= 0

. . .
1X

pN= 0

( ik1)p1 . . . ( ikN )pN

p1! . . . pN !
� (N)

p1,...,pN
. (4.12)

We give some examples:� (1)
1 = hY1i , � (1)

2 = h(� Y1)2i , � (2)
1,1 = h� Y1� Y2i , � (3)

1,1,1 = h� Y1� Y2� Y3i ,

� (4)
1,1,1,1 = h� Y1� Y2� Y3� Y4i�h � Y1� Y2ih� Y3� Y4i�h � Y1� Y3ih� Y2� Y4i�h � Y1� Y4ih� Y2� Y3i . . . with

� Yi = Yi � h Yi i . In particular, the cumulants of a single TP are � (1)
p and at large time they satisfy

� (1)
p �

t !1
Bp(� )

p
t (4.13)
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with the coef�cients Bp(� ) computed in Ref. [28] .
In this subsection, we show that the large time behavior of the N-tag cumulants is identical

to the one of the one-tag cumulants in the sense that

lim
t !1

� (N)
p1,...,pNp

t
= lim

t !1

� (1)
p1+ ���+ pNp

t
= Bp1+ ���+ pN

(� ). (4.14)

Since the cumulants are linear combinations of the moments, it is enough to show that

A(N)
p1,...,pN

� h Yp1
1 . . . YpN

N i � h Yp1+ ���+ pN
1 i = O( t 1=4) 8 p1, . . . , pN (4.15)

The key point is that while the moments of a TP scale ast 1=2, we saw in the previous subsection
that the moments of the distance have a �nite scaling at large time, that is to say1

hYp
1 i = O

�
t 1=2

�
8 p 2 N, h(Yi � Y1)pi = O

�
t 0

�
8 i � N, 8 p 2 N. (4.16)

We now give the proof of Eq. (4.15) using induction on N. The caseN = 1 is straightforward.
Now, if Eq. (4.15) holds for a given N, let us prove that it holds for N+ 1. We show thatA(N+ 1)

p1,...,pN ,q =

O( t 1=4) 8q � 0 by another induction on q. Indeed, for q = 0 we have A(N+ 1)
p1,...,pN ,0 = A(N)

p1,...,pN
=

O( t 1=4) from the inductive hypothesis on N. And if A(N+ 1)
p1,...,pN ,q0 = O( t 1=4) 8q0< q, we can write

A(N+ 1)
p1,...,pN ,q = hYp1

1 . . . YpN
N Yq

N+ 1i � h Yp1+ ���+ pN+ q
1 i (4.17)

= hYp1
1 . . . YpN

N (YN+ 1 � Y1)qi �
qX

r = 1

•
q
r

‹
(� 1) r

�
hYp1+ r

1 Yp2
2 . . . Yq� r

N+ 1i � h Yp1+ ���+ pN+ q
1 i

�
. (4.18)

The terms in the sum are of order O( t 1=4) from the inductive hypothesis on q, and the �rst term
can be bounded using the Cauchy-Schwarz inequality,

�
�hYp1

1 . . . YpN
N (YN+ 1 � Y1)qi

�
� �

r
h
�
Yp1

1 . . . YpN
N

� 2
ih(YN+ 1 � Y1)2qi =

Æ
O(t 1=2)O( t 0) = O( t 1=4).

(4.19)
This ends the proof of Eq. (4.15). We see that the key point is indeed the fact that the moments
of the distance have a well-de�ned value at large time.

We stress that Eq. (4.14) has important consequences: it means that the large-time behavior
of the N TPs is given by the one of a single TP. We now investigate the time regimes involved in
the problem.

4.2.3 Time regimes

Our goal is to compute the full probability law of the displacements P(f Yi g). We remark that each
initial length L j (see Fig. 4.1) de�nes a diffusive time scale L2

j . At short times, t � L2
j for all j ,

we expect the TPs to move independently from one another,

P(f Yi g) �
t � L2

j

NY

i= 1

P1(Yi ), (4.20)

with P1 the probability law of a single TP computed in Ref. [28] (see Appendix A).

1Actually, only the even moments (of a TP or of the distance) are non vanishing.
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On the other hand, we saw that at large time the N TPs essentially behave as a single one.
The N-tag cumulants are the same as the ones of any TP, or equivalently of the center of mass. In
large-deviation form we are allowed to write

P(f Yi = yi
p

tg) � e�
p

t � 1

€
y1+ ���+ yN

N

Š NY

i= 2

� ( yi � y1), (4.21)

where � 1 is the large-deviation function of a single TP computed in Ref.[28] .
Naturally, one wants to derive the behavior between these two extremes, that is to say the

behavior that happens for t � L2
j . If we de�ne the rescaled time � = t=L2 and the relative

distances� (1)
j = L j=L (see Fig. 4.1) we expect a large deviation principle of the type

P(f Yi = yi
p

tg) � e�
p

tK
€
f yi g,� ,f � (1)

j g
Š

(4.22)

with K to be determined.
From now on, we focus on the large density limit and unveil the behavior of the system at

times t � L2. We are able to obtain the function K involved in Eq. (4.22) and unveil a universal
scaling form shared by theN-tag cumulants.

4.3 Framework at high density

We now study the dense limit of the SEP, at density� ! 1. The framework that we use is based
on the study of the motion of the vacancies, it is an extension of section 3.3 to the case ofN TPs.
We follow the same steps. First we express theN-tag cumulant-generating function in terms of a
propagator involving a single vacancy. Then, we express this propagator in terms of �rst passage
quantities of a random walk. And �nally, the latter quantities are computed from standard results.

4.3.1 From a single vacancy to the dense SEP

We �rst consider a system of sizeN with M vacancies (empty sites) initially at positions Z1, . . . , ZM .
We want an expression for the probability that the N TPs have displacementsY = ( Y1, . . . , YN ) at
time t called P( t )(Yjf Zjg). As we did in Eq. (3.4), this probability can be decomposed over dis-
placementsYj due to the j-th vacancy,

P( t )(Yjf Zjg) =
X

Y1,...,YM

� Y,Y1+ ���+ YM P ( t )(f Yjgjf Zjg), (4.23)

where P ( t )(f Yjgjf Zjg) is the probability that vacancies initially at sites Zj induced displacements
Yj of the TPs. As in the previous chapter, we assume that in the high density limit,� 0 = M=N ! 0
the motions of the vacancies are independent from one another and interact independently with
the TPs. We state that this amounts to neglecting events of orderO(� 2

0). We thus write

P ( t )(f Yjgjf Zjg) �
� 0! 0

MY

j= 1

p( t )
Zj

(Yj ) (4.24)

where p( t )
Z (Y) is the probability that a single vacancy initially at Z creates a displacementY of the

N TPs at time t . This is the key ingredient of our approach. Injecting into Eq. (4.23) and using
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the Fourier transform

P̃( t )(kjf Zjg) �
X

Y2ZN

ei (k1Y1+ ���+ kN YN ) P( t )(Yjf Zjg), (4.25)

we obtain the decomposition

P̃( t )(kjf Zjg) �
� 0! 0

MY

j= 1

p̃( t )
Zj

(k). (4.26)

At the same time, the annealed cumulant-generating function2 is the logarithm of the Fourier
transform of the probability law,

 ( t )(k) � ln P̃( t )(k), (4.27)

P̃( t )(k) �
1

(N � 1)M

X

Z1,...,ZM =2f X0
i g

P̃( t )(kjf Zjg), (4.28)

where we perform an average over the initial conditions of the vacancies. The limit � 0 = M=N !
0 is then obtained as

P̃( t )(k) �
� 0! 0

2

4 1
N � N

X

Z6= 0

p̃( t )
Z (k)

3

5

M

=

2

4 1 +
1

N � N

X

Z6= 0

€
p̃( t )

Z (k) � 1
Š
3

5

M

(4.29)

lim
� 0! 0

 ( t )(k)

� 0
=

X

Z =2f X0
i g

€
p̃( t )

Z (k) � 1
Š

. (4.30)

This is the equivalent of Eq. (3.11) in the case of N TPs. Once again, the cumulant-generating
function of the displacements at high density is expressed only in terms of the propagator of a
single vacancy. This is a much simpler quantity and we now compute it.

4.3.2 Expression of the single-vacancy propagator

To express the single-vacancy propagatorp( t )
Z (Y), a key de�nition is the one of the “adjacent sites”,

that is to say, the ones just next to a TP at the time that we consider. The adjacent site� = + i
is the site on the right of TP i (at position Xi ( t ) + 1) while � = � i is the site on the left of TP i
(at position Xi ( t ) � 1). The positions of the adjacent sites do evolve with time, but this is not a
problem since we are only interested in the positions of the vacancies relatively to the TPs. In the
following, Greek letters � , � , � always denote adjacent sites and the sums are done implicitely on
the 2N sites� = � 1, � � �� N. To quantify the displacements of the TPs, we de�ne the vectore� with
� = � i that has all components to 0 except thei -th that is � 1: it corresponds to a displacement
� 1 of TP i . The conventions for the adjacent sites are summarized on Fig. 4.3.

Our last de�nition is f ( t )
� ,Z, with � = � i . It is the probability that, starting from Z, the vacancy

arrives for the �rst time on the position of one of the TPs at time t , this TP being TP i , and
knowing that its last site was the adjacent site � . This event induces a motion of TPi in the

2The quenched cumulant-generating function satis�es Q(k, t )=� 0 �
P

Z log p̃( t )
Z (k) (see section 3.7). As our results

will be obtained in Laplace space (in time), this expression is hard to manipulate due to the non-linearity of the
logarithm. The quenched case is left for future work.
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Figure 4.3: System with a single vacancy (brown square). The adjacent sites� = � 1, . . . , � 4 are
the sites next to the TPs. Between (a) and (b), the motion of the vacancy induced a motion of
TP 2: the adjacent sites� 2 also moved. Note that the motion of the vacancy makes the distances
between TPs change; this is the reason why we introduce the parameter� (zone where the vacancy
starts).

opposite direction (vector e� � ). We can now partition the propagator p( t )
Z (Y) over the �rst event

when one of the TPs is touched:

p( t )
Z (Y) = � Y,0

�

1 �

Z t

0

d�
X

�

f (� )
� ,Z

�

+

Z t

0

d t1

X

�

p( t � t1)
� � (Y � e� ) f ( t1)

� ,Z . (4.31)

This is the analog of Eq. (3.12) in the case of N TPs. The reader might use this relation to
understand better what our notations are. The �rst term corresponds to an absence of interaction
between the vacancy and the TPs, and the second corresponds to a motion of one of the TPs due
to an interaction. p� is an abuse of notation meaning that the vacancy starts from the adjacent
site � (we will make the same abuse of notation for f� ,� ).

As we did in Eq. (3.12) for a single TP, we can now iterate the previous relation and decompose
the motion of the TPs over all events. We write it for a vacancy that starts from the adjacent site
� .

p( t )
� (Y) =

1X

n= 0

X

� 1,...,� n

� Y,
P

i e� i

Z 1

0

d t1 . . . d tn

Z 1

0

d��

‚

t �
nX

i= 1

t i � �

Œ

�

‚

1 �
X

�

f (� )
� ,� � n

Œ

f ( t n)
� n,� � n� 1

. . . f ( t2)
� 2,� � 1

f ( t1)
� 1,� , (4.32)

with the convention � � 0 = � if n = 0. We use the Fourier-transform in space and the Laplace
transform in time,

ˆ̃pZ(k, u) �
1X

Y1,...,YN= �1

ei (k1Y1+ ���+ kN YN )

Z 1

0

d te� ut p( t )
Z (Y). (4.33)

Equations (4.31) and (4.32) then become

ˆ̃pZ(k, u) =
1
u

+
X

�

•
ˆ̃p(� )

� � (k, u)ei k�e� �
1
u

˜
f̂� ,Z(u), (4.34)

ˆ̃p� (k, u) =
1
u

¨
1X

n= 0

X

� n

‚

1 �
X

�

e� i k�e� T� ,� n
(k, u)

Œ

[ T(k, u)n] � n,�

«

(4.35)

=
1
u

¨

1 +
X

�

(1 � e� i k�e� )
•

T
1 � T

˜

� ,�
(k, u)

«

. (4.36)
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We de�ned the (2N � 2N) matrix T� ,� (k, u) = ei k�e� f̂� ,� � (u).
It now seems that we are done and can write the expression of the cumulant-generating

function from Eq. (4.30). But there is one last subtlety to examine. When the vacancy interacts
with a TP, the distance between two TPs changes by one unit3. However, the distance between
two TPs to be considered in our computation is entirely set by the initial position of the vacancy.
From Fig. 4.1, we de�ne the zone � 2 [0, N] in which the vacancy is initially situated: � = 0
(resp. N) if it is on the left (resp. right) of all TPs, � = j if it is between TPs j and j + 1. One
realizes that the relevant distance between TPsj and j + 1 is L(� )

j = L j + 1 if � 6= j (the vacancy is

added to the distance) and L( j )
j = L j (the vacancy is already here). Quantities such asf� ,� � and

T� ,� will depend on � by the intermediate of these relevant distances. In the following, for an
adjacent site � , we de�ne � (� ) = i if � = + i and � (� ) = i � 1 if � = � i (the “zone” corresponding
to site � ).

At the end of the day, the cumulant-generating function [Eq. (4.30)] can be expressed from
Eqs. (4.34)-(4.36). We obtain

lim
� 0! 0

 ( t )(k)

� 0
=

1
u

X

�

¨

(ei k�e� � 1) + ei k�e�

X

�

(1 � e� i k�e� )
•

T
1 � T

˜ (� (� ))

� ,� �
(k, u)

«

h� (u), (4.37)

h� (u) =
X

Z =2f X0
i g

f̂� ,Z(u). (4.38)

Note that f̃� ,Z is zero for all sites Z from which site � cannot be reached. Hence, the sum in the
expression ofh� is only over the sites of the zone� (� ) (see Fig. 4.1). Finally, the only quantities
to compute are f̃ (� )

� ,� (u) for all pair of adjacent sites, and h� (u) for all adjacent sites. We now
compute them using standard results on random walks.

4.3.3 Expression of the quantities of interest

We �rst state the result of the �rst passage density of a walk with an absorbing site before com-
puting f̃ (� )

� ,� (u) and h� (u).

First passage density of a walk with an absorbing site. Let us consider a random walk on
the discrete line. The probability density of being at site s at time t knowing that the walker
was initially at site s0 is denoted P(sjs0, t ). Similarly, the probability of �rst passage at site s is
denoted F(sjs0, t ). It is easy to show [69] that the Laplace transforms of these two quantities
satisfy F̂(sjs0, u) = P̂(sjs0, u)=P̂(sjs, u). We now consider the same walk with an absorbing sites1:
if the walker comes to s1, it remains there forever. The probability (resp. �rst passage probability)
of this modi�ed walk is denoted P†

s1
(sjs0, t ) (resp. F†

s1
(sjs0, t )). Considering the �rst passage of

the walker at s1, one realizes[69] that P̂†
s1

(sjs0, u) = P̂(sjs0, u) � P̂(sjs1, u) F̂(s1js0, u). At the end of
the day, one obtains an expression for the �rst passage probability of the absorbing walk in terms
of the �rst passage probability of the initial walk.

F̂†
s1

(sjs0, u) =
P̂†

s1
(sjs0, u)

P̂†
s1

(sjs, u)
=

P̂(sjs0, u) � P̂(sjs1, u) F̂(s1js0, u)

P̂(sjs, u) � P̂(sjs1, u) F̂(s1js, u)
=

F̂(sjs0, u) � F̂(sjs1, u) F̂(s1js0, u)

1 � F̂(sjs1, u) F̂(s1js, u)
(4.39)

3In the large time, large distance limit that we consider in the following, this effect plays no role. We still mention
it for completeness.
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As stated in subsection 3.5.1, the random walk that we consider for the vacancy is a Polya
walk whose �rst passage density is given by

F̂(sjs0, u) = � js� s0j , � = 1 + u �
Æ

u(2 + u). (4.40)

Expression of f̂� ,� . The �rst-passage probability of touching TP 1 starting from site � 1, or TP
N from site + N has the usual expression (no other TP can be touched).

f̂� 1,� 1(u) = f̂N,N (u) = � (4.41)

Then for 1 � � � N � 1, f̂� ,� is the �rst-passage probability of reaching TP � without touching
TP � + 1 starting from site � . One should understand that it is an application of Eq. (4.39) for
s= 0, s0 = 1 and s1 = L� . By symmetry, f̂� (� + 1),� (� + 1) has the same expression.

f̂� ,� = f̂� (� + 1),� (� + 1) =
� � � 2L� � 1

1 � � 2L�
(4.42)

Similarly, f̂� ,� (� + 1) is the �rst-passage probability of reaching TP � + 1 without touching TP �
starting from site � . It corresponds to Eq. (4.39) with s = L� , s0 = 1 and s1 = 0. By symmetry,

f̂� (� + 1),� has the same expression.

f̂� ,� (� + 1) = f̂� (� + 1),� =
� L� � 1 � � L� + 1

1 � � 2L�
(4.43)

The f̂� ,� corresponding to a pair (� , � ) not mentioned above vanish because they correspond to
situations that are impossible (another TP needs to be touched before the desired one).

Expression of h� . Finally, we need to compute the sumsh� [Eq. (4.38)] . TP 1 can be touched
from the left only for Z < 0, in this case f̂� 1,Z = � jZj . The sum h� 1, which by symmetry is the
same ash+ N is easy to compute,

h� 1(u) = h+ N (u) =
� 1X

Z= �1

� Z0
=

�
1 � �

. (4.44)

For 1 � � � N � 1, f� ,� and f� (� + 1),� (� + 1) are identical and correspond to a sum over all sites
between TP� and TP� + 1: we number them Z0= 1, . . . , L� � 1. The term for Z0 corresponds to
Eq. (4.39) with s= 0, s0 = Z0 and s1 = L� . We obtain

h+ � (u) = h� (� + 1) (u) =

L� � 1X

Z0= 1

� Z0
� � 2L� � Z0

1 � 2� L�
=

�
1 � �

(1 � � L� )(1 � � L� � 1)

1 � � 2L�
(4.45)

We remark that we recover Eq. (4.44) for � = 0 and N if we use the convention L0 = LN = 1
(see Fig. 4.1).

Everything is now done to obtain the solution of the cumulant-generating function from
Eq. (4.37).



4.4 Results at high density 53

4.4 Results at high density

In this section, we state the main results of the chapter. After writing the expression of the N-tag
cumulant-generating function, we derive two important consequences: the universal scaling of
the cumulants and the time-dependent large-deviation function.

4.4.1 Cumulant-generating function

We use a symbolic computation software (Mathematica) to inject the results of subsection 4.3.3
into the expression of the cumulant-generating function (4.37). We obtain,

lim
� 0! 0

ˆ (k, u)

� 0
=

1
u(1 � � 2)

N� 1X

n= 0

N� nX

i= 1

� L n
i

§
2� (1 � � Li � 1)(1 � � Li+ n) cos(ki + � � � + ki+ n)

+ ( 1 � � )Qn(ki , . . . , ki+ n) + Ci ,n

ª
. (4.46)

� = 1 + u �
p

u(2 + u), and Ci ,n are constants enforcing that the brackets vanish whenk = 0, so
that ˆ (k = 0) = 0. The sum of lengthsL n

i is given by

L n
i = Li + � � � + Li+ n� 1 (4.47)

with the convention L0 = LN = 1 (see Fig. 4.1). And Qn are terms that will not contribute to
the asymptotic scaling, we write only the �rst two

Q2(k1, k2) = � L1
�
eik1 + e� ik2

�
, (4.48)

Q3(k1, k2, k3) = � L1
�
eik1 + e� ik2

�
+ � L2

�
eik2 + e� ik3

�
+ � L1+ L2

�
ei (k1+ k2) + e� i (k2+ k3) + 2cosk2

�
.

(4.49)

We want to consider the limit of large time, that is to say the limit of Laplace parameter u ! 0.
We rescale the Laplace variableu by setting ũ = uL2 with L = L1 + � � � + LN the initial distance
between the extremal TPs. We consider the limitu ! 0 with ũ kept constant. One notes that

� � L �
u! 0

e� �
p

2ũ (4.50)

so that when we keep only the dominant order, Eq. (4.46) simpli�es into

lim
� 0! 0

ˆ (k, u = L2ũ)

� 0
�

u! 0

L3

p
2ũ3=2

N� 1X

n= 0

N� nX

i= 1

�
e�

p
2ũ � (n)

i � e�
p

2ũ � (n+ 1)
i � 1 � e�

p
2ũ � (n+ 1)

i + e�
p

2ũ � (n+ 2)
i � 1

�

� (cos(ki + � � � + ki+ n) � 1) . (4.51)

We de�ned � (n)
i = L n

i =L = [ Li + � � � + Li+ n� 1] =L with � (0)
i = 0 and the convention L0 = LN =

+ 1 (see Fig. 4.1). The following continuous inverse Laplace transform is known,

ĥ(u) =
e� �

p
2u

u3=2
, h( t ) = 2

s
t
�

g
•

�
p

2t

‹
, (4.52)

g(w) = e� w2
�

p
� w erfc(w). (4.53)
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The function g corresponds to a Gaussian integrated twice (that is to say the integral of an error
function). At the end of the day, Eq. (4.51) can be Laplace-inverted. The limit u ! 0 with ũ = uL2

constant becomes a limit t ! 1 with constant rescaled time � = t=L2. Our �nal result is,

lim
� 0! 0

 ( t )(k)

� 0
�

t !1

v
t 2t

�

N� 1X

n= 0

N� nX

i= 1

2

4 g

 
� (n)

ip
2�

!

� g

 
� (n+ 1)

i � 1p
2�

!

� g

 
� (n+ 1)

ip
2�

!

+ g

 
� (n+ 2)

i � 1p
2�

! 3

5

� (cos(ki + � � � + ki+ n) � 1) . (4.54)

This is the main result of this chapter. Even if we got rid of the very short time effects, we notice
that this expression is still time-dependent, with the parameter � = t=L2. We now state two
important consequences of this result.

4.4.2 Universal scaling of the cumulants

The N-tag cumulants are obtained from the characteristic function [Eq. (4.12)] . For simplicity,
we will focus on the ones involving all the N TPs,� (N)

p1,...,pN
with pi 6= 0 for all i . Other cumulants

can be obtained by tagging less particles4. Eq. (4.54) can be written as

lim
� 0! 0

 ( t )(k)

� 0
�

t !1

v
t 2t

�
g

•
1

p
2�

‹
[ cos(k1 + � � � + kN ) � 1] + . . . (4.55)

where the dots represent only cumulants involving less thanN particles. All the odd cumulants
� (N)

odd( t ) = � (N)
p1,...,pN

with p1 + � � � + pN odd vanish as one expects for a system with no bias.

A striking feature is that all the even N-tag cumulants (� (N)
even( t ) = � (N)

p1,...,pN
with p1 + � � � + pN

even) are equal and satisfy the following universal scaling form

lim
� 0! 0

� (N)
even( t )

� 0
=

v
t 2t

�
g

•
1

p
2�

‹
+ o(

p
t ), (4.56)

with g was de�ned in Eq. (4.53). This expression returns the expected large time behavior: as
stated in Eq. (4.14), the N-tag cumulant eventually behaves as a one-tag cumulant (expression
given in Eq. (3.35)). This prediction for arbitrary cumulants of an arbitrary number of TPs is in
very good agreement with numerical simulations of the SEP (Fig. 4.4a, 2 to 4 TPs).

The scaling of Eq. (4.56) was known before for the correlation � (2)
1,1 between two TPs in two

contexts. The �rst one is the Edwards-Wilkinson equation, which is seen as the Gaussian limit
of the SEP at any density (see Appendix B for details); this equation indeed predicts[30] � (2)

1,1 =

� (2)
2 g

�
(2� ) � 1=2

�
. Second, a similar scaling involving the function g and a rescaled timet=L2 has

been found for the correlation � (2)
1,1 of the random average process[33] . Note however that in our

case, the scaling holds for arbitrary cumulants of an arbitrary number of TPs. It is also universal
with respect to the initial positions of the TPs (at �xed total distance L). In particular, the only
time-scale involved is � = t=L2. The other time-scalest=L2

j , with L j the distances between two
individual TPs, play no role. We however believe that it is a feature of high density and the
arbitrary cumulants at arbitrary density should involve all the time scales.

4Note that tagging a particle that we do not look at is not neutral since it changes the initial conditions (the
occupation of the given sites is imposed).
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Figure 4.4: (a) Time evolution of various cumulants associated with 2 to 4 TPs, rescaled by
the variance of a single TP,� (1)

2 = � 0

p
2t=� . The colored lines are the results of numerical

simulations with � 0 = 0.002 and initial total distance L = 12. The dashed black line is the
universal prediction from Eq. (4.56). (b) Time evolution of the variance of the center of mass of
2 and 3 TPs (� 0 = 0.002, L = 24). From blue to red: 2 TPs, 3 TPs with � (1)

1 = 1=6, 3 TPs with

� (1)
1 = 1=2. The dashed black lines are computed from Eq. (4.54).

While the N-tag cumulants are universal, the cumulants� (N)
C M,p of the center of mass ofN TPs,

de�ned as

 ( t )
•

k
N

, . . . ,
k
N

‹
� ln

D
eik

€
Y1+ ���+ YN

N

ŠE
�

1X

p= 1

( ik)p

p!
� (N)

C M,p, (4.57)

explicitely depend on the number of TPs and on their initial positions. One has to compute these
cumulants directly from Eq. (4.54). This prediction is in very good agreement with the numerical
simulations (Fig. 4.4b).

4.4.3 Time-dependent large deviation function

The last observable we want to look at is the N-tag large deviation function that is to say the
generalization of Eq. (3.36) to the case ofN tagged particles. First, we rewrite formally Eq. (4.54)
as5

 (� i s, t ) � lnhes�Yi �
t !1

� 0
p

t � (s, � ), (4.58)

� (s, � ) =

v
t 2

�

N� 1X

n= 0

N� nX

i= 1

2

4 g

 
� (n)

ip
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!

� g

 
� (n+ 1)

i � 1p
2�

!

� g

 
� (n+ 1)

ip
2�

!

+ g

 
� (n+ 2)

i � 1p
2�

! 3

5

� [ cosh(si + � � � + si+ n) � 1] . (4.59)

The Gärtner-Ellis theorem [59] states that a large deviation function for the probability law
can be obtained as the Legendre transform of the rescaled characteristic function. In our case,

5A careful reader will note that we exchange the limits � 0 ! 0 and t ! 1 without attempting to provide a
justi�cation.
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Figure 4.5: Numerical simulations relying on the dynamics of the vacancies for two TPs at pa-
rameters � 0 = 0.01 and L = 103. (a) Joint probability distribution of the displacements (Y1, Y2)
at time t = 5 � 106. Bottom left: simulations, top right: prediction from Eq. (4.60). (b) Rescaled
marginal distribution of the displacement of the center of mass at times t = 1 � 106, 5 � 106, 2 � 107

(recaled times � = 1,5, 20, from red to blue). The colored circles come from the simulations
while the colored lines are computed from Eq. (4.60). The black line is the asymptotic prediction
from Eq. (4.62). (c) Rescaled marginal distribution of the distance at the same times as (b). The
black line is the asymptotic prediction from Eq. (4.63). In (b) and (c), we took the square of the
horizontal parameter for better readability and to see the deviations from gaussianity (straight
lines).
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we obtain the following expression for the joint probability distribution of the displacements.

P
�
f Yi = � 0

p
t yi g, �

�
�

t !1
e� � 0

p
tK(f yi g,� ) , (4.60)

K(f yi g, � ) = sup
s2RN

–
NX

i= 1

si yi � � (s, � )

™

. (4.61)

K(f yi g, � ) is the N-tag large deviation function that depends on the rescaled time� = t=L2. The
symbol �̀ ' denotes asymptotic equivalence at exponential order. While the extremum could be
written in terms of a set of implicit equations, this would not give more insight than numerically
solving for the extremum. We perform numerical simulations relying on the random walks of the
vacancies6 and �nd a good agreement with our prediction for the joint probability law of two
TPs at intermediate time (Fig. 4.5a).

In the case N = 2 TPs, it is especially interesting to look at the marginal distributions of
the displacement of the center of massYCM = ( Y1 + Y2)=2 and of the variation of distance D =
(Y2 � Y1)=2. The large time limit ( � ! 1 ) of these two marginal laws can be computed, we
obtain

lim
� !1

PCM

‚

YCM = � 0

v
t 2t

�
y

Œ

� e� � 0

q
2t
� � ( y) (4.62)

lim
� !1

Pdist (D = 2� 0 Ld) � e� 2� 0 L� (d) (4.63)

with the large deviation function � given by Eq. (4.10). These two results are consistent with the
large deviation functions found previously for a single TP[Eq. (3.36)] and the distance[Eq. (4.9)] .
Note that Eqs. (4.60)-(4.61), with respectively s2 = s1 = s=2 and s2 = � s1 = s=2 enable to quantify
the deviations from these asymptotic laws at intermediate times. We check the predictions of these
deviations in Fig. 4.5b-c and �nd a good agreement.

4.5 Conclusion

We started by showing that in the SEP at arbitrary density, the distance between two particles has
an equilibrium probability distribution. This implies that an arbitrary number of tagged particles
behave as a single one at large time, in the sense that theN-tag cumulants are equal to the
single-tag cumulants [Eq. (4.14)] . The relevant timescales are the squares of the initial lengths
between particles: below these the TPs are independent of one another, and above they move as
a single one. We then determined the intermediate time regime in the high density limit. The
method of Chap. 3 was extended to an arbitrary number of TPs. TheN-tag cumulant-generating
function was obtained [Eq. (4.54)] . Our main result is that all cumulants for an arbitrary number
of TPs obey a universal scaling form involving only the initial distance between the extreme TPs
[Eq. (4.56)] . Finally, we were also able to write the N-tag probability distribution in terms of a
time-dependent large deviation function [Eq. (4.60)] .

In the next chapter, we study the case of several biased tagged particles. The method is very
similar but leads to much more tedious computations. We uncover collective effects between
biased TPs that we call cooperativity and competition.

6Continuous-time simulations of the particles are too costly to obtain good statistics for rare events.
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5.1 Introduction

In the previous chapter, we provided the N-tag probability law of the dense symmetric exclusion
process, which is an equilibrium system. But as we stated in Chap. 3, we are also interested in
out-of-equilibrium effects that occur when one of the particles is biased. Known results for this
situation are scarce and include notably the average displacement of the biased intruder[42,43]
and the higher-order cumulants in the dense limit (Ref. [38] and Chap. 3). In particular correla-
tions in a system with a biased intruder were seldom looked at. A notable exception is the work
done on the random average process[33, 34] , in which two-tag observables were computed in
the presence of a biased intruder. However, two-tag correlations have been shown to be crucial to
check whether generalized �uctuation-dissipation relations hold for given initial conditions [35] 1.

1The authors compare the displacement of an unbiased TP behind a biased TP to the correlations between these two
TPs if they are both unbiased. The �uctuation-dissipation relation holds for equilibrium initial conditions but not for
deterministic initial conditions that exhibit ageing. The method relies, among other things, on the Edwards-Wilkinson

59
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Figure 5.1: SEP with two biased TPs. The jump probabilities of TPi are p� i = ( 1 � si )=2 where si

are the biases.L denotes the initial distance between the TPs.

In this chapter, we investigate the probability law of two or more biased TPs in the dense SEP and
bring to light striking collective effects mediated by the bath.

The system that we consider is shown on Fig. 5.1. Two biased tagged particles (TPs) are
introduced in the SEP. Their jump rates to the left and right are respectively p� i and p+ i , with
p+ i + p� i = 1. The biases aresi = 2p+ i � 1. We focus on the dense limit of the SEP already explored
in the last two chapters and provide detailed computations leading to the full determination of the
probability law of the displacements of the two TPs. The case of three or more TPs is tractable and
very similar but the computations are heavier and rely a lot on a symbolic computation software.

We describe three main effects between the TPs; all of them are effects mediated by the bath
(the other particles of the SEP). The �rst is bath-mediated binding: an arbitrary number of biased
TPs move together at large time in the sense that the single-particle cumulants are equal to the
ones of the center of mass, with the center of mass being described as a particle with an effective
bias. Then, we study bath-mediated entrainment: when a single TP is biased we show that an
unbiased TP follows it with a time-dependence that we describe. Finally, we study bath-mediated
cooperativity and competition, that is to say the effects that two biased TPs in the SEP have over
each other. In other words, what is the time-dependence of the cumulants before reaching the
�nal state described by bath-mediated binding? Results for the motion of three TPs are presented
at the end of this chapter (section 5.5).

The results of this chapter have been published in[P4] .

5.2 Framework

We use the vacancy-based approach described in the previous two chapters. We see that the
expression of the cumulant-generating function in terms of the properties of a single random
walker is identical to the one found in the previous chapter. The difference is that, because of
the biases, these properties have more complicated expressions. We state them and give the full
result for the cumulant-generating function of two biased TPs.

5.2.1 Reminder of the previous chapter

In the previous chapter we studied N unbiased TPs in the dense SEP. In section 4.3, we showed
that the cumulant-generating function of the TPs can be expressed in terms of the propagator of
a single vacancy in the SEP[Eq. (4.30)] . The same reasoning holds for biased TPs and we write,

 ( t )(k) � ln


ei (k1Y1+ k2Y2)

�
(5.1)

lim
� 0! 0

 ( t )(k)

� 0
=

X

Z =2f 0,Lg

€
p̃( t )

Z (k) � 1
Š

(5.2)

equation (Appendix B).
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where p̃( t )
Z (k) is the Fourier transform of the probability of the displacements of the TPs if there

is a single vacancy in the system, initially at Z. Moreover, following the computations of sub-
section 4.3.2, this probability can be expressed in terms of the �rst-passage propagatorsf� ,Z

associated with the motion towards an adjacent site andf� ,� associated with the motion between
two adjacent sites. We recall Eqs. (4.37)-(4.38),

lim
� 0! 0

 ( t )(k)

� 0
=

1
u

X

�

¨

(ei k�e� � 1) + ei k�e�

X

�

(1 � e� i k�e� )
•

T
1 � T

˜ (� (� ))

� ,� �
(k, u)

«

h� (u), (5.3)

h� (u) =
X

Z =2f X0
i g

f̂� ,Z(u), (5.4)

with T� ,� (k, u) = ei k�e� f̂� ,� � (u). The goal is now to compute the f̂� ,� � and h� in the case of biased
TPs.

5.2.2 Computation of the �rst-passage probabilities

We restrict ourselves to the case of two TPs but the results easily extend toN TPs.

“Outside quantities”

When one starts from adjacent site� 1, the only reachable adjacent site is� 1 (the same holds for
+ 2), f̂� 1,� 1(u) and f̂2,2(u) are identical to the case of a single biased TP given by Eq (3.26),

f̂� 1,� 1(u) = �
1 � s1

1 � s1�
, f̂2,2(u) = �

1 + s2

1 + s2�
, (5.5)

with p� i = ( 1 � si )=2. Similarly, the sums h1 and h� 1 are computed from Eq (3.26) by summing
on Z from 1 to in�nity,

h� 1(u) =
f̂� 1,� 1(u)

1 � �
, h2(u) =

f̂2,2(u)

1 � �
. (5.6)

“Inside quantities”

We now compute the quantities related to sites+ 1 and � 2. A TP starting from one of these sites
may touch either of the two. We recall the expressions of f̂1,1 = f UB

same and f̂1,� 2 = f UB
cross in the

unbiased case[Eqs (4.42)-(4.43) ] ,

f̂ UB
same(u, L) =

� � � 2L� 1

1 � � 2L
, f̂ UB

cross(u, L) =
� L� 1 � � L+ 1

1 � � 2L
. (5.7)

As the TPs are biased, these expressions will be used for the sites next to the adjacent sites, that
is to say for a distance L � 2. Our computations are similar to the ones of Eq. (3.23) and the
reader may re-read the arguments involved there. Starting from site+ 1, there are three solutions
to touch TP 1: the walker immediately performs a jump to the left, or it �rst jumps to the right
before coming back �rst to site 1 and �nishing its motion on TP 1, or it �rst jumps to the right
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before �rst touching site � 2 and �nishing its motion on TP 1. This leads us to the following
decomposition for f1,1,

f1,1( t , L) = p1e� (p1+ 1=2) t0

+

Z t

0

d t0
1
2

e� (p1+ 1=2) t

Z t � t0

0

d t1 f UB
same( t1, L � 2) f1,1( t � t0 � t1, L)

+

Z t � t0

0

d t1 f UB
cross( t1, L � 2) f� 2,1( t � t0 � t1, L). (5.8)

In Laplace space, this gives

f̂1,1(u) = 2p1U1 + U1 f̂ UB
same(u, L � 2) f̂1,1(u) + U1 f̂ UB

cross(u, L � 2) f̂1,� 2(u) (5.9)

with U� = ( 2u + 2p� + 1) � 1. Similar arguments can be made for f̂1,� 2, f̂� 2,� 2 and f̂� 2,1, leading
to the following system of 2 � 2 equations with 2 � 2 unknowns, where the unbiased quantities
are taken for L � 2.

8
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>>:
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(5.10)
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Next, f̂1,Z can be decomposed on the �rst adjacent site (+ 1 or � 2) that is touched,

f̂1,Z = f̂1,1 F̂†
L� 1(1jZ) + f̂1,� 2 F̂†

1 ( L � 1jZ) =

�
� Z� 1 � � 2L� Z� 3

�
f̂1,1 +

�
� L� Z� 1 � � L+ Z� 3

�
f̂1,� 2

1 � � 2(L� 2)

(5.12)
� where F† is given by Eq. (4.39). Finally, the sumsh1 and h� 2 are expressed as
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L� 1X
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(1 � � )(1 � � 2(L� 2))

�
f̂1,1 + f̂1,� 2
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, (5.13)

h� 2(u) �
L� 1X

Z= 1

f̂� 2,Z =
(1 � � L� 2)(1 � � L� 1)

(1 � � )(1 � � 2(L� 2))

�
f̂� 2,� 2 + f̂� 2,1

�
. (5.14)

Equations (5.5), (5.6), (5.11), (5.13) and (5.14) provide all the quantities needed to compute
the cumulant-generating function from Eq. (5.3).
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5.3 Bath-mediated binding

Before examining in detail the case of N = 2 biased TPs, we put forward a striking result that
holds for an arbitrary number of TPs2. We already saw in the previous chapter (subsection 4.2.2
and large time limit of Eq. (4.56)) that in the SEP with no biases, N TPs behave as a single one
at large time. The same holds forN biased TPs in the dense SEP. We denoteZ =

P N
j= 1 Yj=N the

displacement of the center of mass. At large time, arbitrary N-tag cumulants are equal to the
cumulants of Z, 


Yq1
1 . . . YqN

N

�
c �

t !1



Zq1+ ���+ qN

�
c . (5.15)

And the center of mass behaves as an effective particle with an effective biasS given by

S =

Q N
i= 1(1 + si ) �

Q N
i= 1(1 � si )

Q N
i= 1(1 + si ) +

Q N
i= 1(1 � si )

. (5.16)

That is to say that the odd and even cumulants ofZ at high density read

lim
� 0! 0

hZ( t )2ni c

� 0
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t !1
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� 0! 0

hZ( t )2n+ 1i c

� 0S
�

t !1

v
t 2t

�
. (5.17)

(See (3.35) for the expression of the cumulants of a single biased particle.) The expression of the
effective bias looks complicated at �rst sight. However it becomes much simpler if one associates
a force f j to each biassj using detailed balance3,

ef i =
1 + si

1 � si
, si = tanh

•
f i

2

‹
. (5.18)

In the same way, we de�ne an effective force F from the effective bias S, which satis�es S =
tanh(F=2). Eq. (5.16) is then rewritten as

F =
NX

i= 1

f i . (5.19)

The effective force on the center of mass is simply the sum of the forces on all the particles.
Eq. (5.15) holds for arbitrary cumulants, a special case is that the displacements of all the TPs

are identical at large time,
hY1i �

t !1
. . . �

t !1
hYN i . (5.20)

We will see in the next chapter that this result actually holds at an arbitrary density, assuming
that the TPs do not separate from one another (at high density, particles never separate).

The bath mediating binding of arbitrary particles is a very important feature of the high-
density SEP. At small times, the TPs are expected to move according to their own biases while at
large time they move together with an effective bias. It is important to keep this fact in mind in
the analysis of two biased TPs that comes now.

2We checked this result with Mathematica up to N = 5, we know that it holds in the unbiased system and we will
see in the next chapter that it holds at arbitrary density for the �rst cumulant. We do not attempt to provide a clean
proof but we are very con�dent that the result holds at arbitrary N.

3One considers a biased particle between two possible sites. The jump rates are(1 � si )=2. The difference in energy
between the two states is de�ned asa fi =kBT with a the lattice spacing and a Boltzmann weight is associated with this
energy. Detailed balance, i.e. equality of the �uxes between the two sites, can then be written. Here we considera = 1
and kBT = 1.
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5.4 Behavior of two biased tagged particles

5.4.1 Full result for two tagged particles

We now focus on the case of two TPs with biasess1 and s2, initially separated by a distance L
(Fig. 5.1) and write the two-point cumulant-generating function. Although the result is a bit
tedious to write, it is important to have the precise expressions for the analysis in the next sub-
sections.

We use Eq. (5.3) along with the results of subsection 5.2.2 to obtain an expression for the
cumulant-generating function via a symbolic computation software. From the previous chapter,
we know that we should use a rescaled time� = t=L2: the Laplace variable is written u = ũ=L2

with u going to zero at constant ũ. The result reads

lim
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i (ũ) sinki

� ª
, (5.21)

with functions K̂ that we will give later. This is the analog of Eq. (4.51) for biased particles. The
full structure in (k1, k2) is thus determined. One notes thatK̂e,2 gives the even two-tag cumulants
and K̂o,2 the odd two-tag cumulants. Similarly, (K̂e,1

i + K̂e,2) and (K̂o,1
i + K̂o,2) correspond respec-

tively to the even and odd one-tag cumulants associated with TPi . The inverse Laplace transform
gives the following structure in time,

1
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This is the analog of Eq. (4.54). Please note thatK(� ) is related to but not equal to the inverse
Laplace transform of K̂(ũ). From the previous expression one can deduce all the cumulants (i =
1, 2), including those of the variation of distance D = Y2 � Y1.
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We notice that all the cumulants scale as the square root of (rescaled) time. To be fully explicit, we
now give the expressions of the quantitiesK̂(ũ) and K(� ) �rst in the case where a single particle
is biased (s1 = 0, s2 6= 0) and then in the general case of two biases (s1, s2 6= 0). The Laplace space
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quantities are �rst given.

Cases1 = 0, s2 6= 0 Cases1, s2 6= 0

K̂e,2(ũ) v (1 + s1s2)v=d2
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2ũ and d2 = 1 + s1s2v2. And then, the time-dependent quantities.
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The function g is the one we already encountered in the absence of bias and the functionsG� ,� ,

are in�nite sums of g taken with different arguments.
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The time evolution of the cumulants is given by Eqs. (5.23), (5.24). We note that at small � ,
G� ,� , = � while at large � , G� ,� , = ( � + � +  )=(1 + s1s2). For instance, the odd cumulants of

TP 1, and in particular its displacement, are given by(Ko,1
1 + Ko,2) which corresponds to(� , � ,  ) =

(s1, s1s2 + s2, � s1s2). This implies the following behaviors at short and large times,
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This is in full agreement with the bath-mediated binding that we described in the previous section.
We should say a few words about the probability law of the distance between the two TPs.

At intermediate time, it is fully characterized by the cumulants given in Eq. (5.25). And at large
time, one obtains a stationary distribution characterized by

hD2ni c

� 0 L
�

t !1

2 + s2 � s1

1 + s1s2
,

hD2n+ 1i c

� 0 L
�

t !1

s2 � s1 � 2s1s2

1 + s1s2
. (5.30)

Having put forward the analytical results, we now investigate the two cases of one and two
biased particles and describe the behavior of the system.
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5.4.2 Bath-mediated entrainment

We �rst look at the case of a single biased TP (s2 6= 0) followed by an unbiased TP (s1 = 0),
initially at a distance L (see Figure 5.2, top). This corresponds to the perturbation induced by
a biased tracer in a quiescent medium. The behavior of TP 2 is given by the single-TP results
[Eq. (3.35)] and the one of TP 1 is computed from Eq. (5.24).

lim
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The behavior of the unbiased TP (TP 1) is very interesting. We recover that the cumulants of
TP 1 are identical to those of TP 2 at large timet � L2, a fact that we already know from bath-
mediated binding. But we also get the time evolution of these cumulants over the time scaleL2.
The intermediate-time behavior of the average displacement, and other odd cumulants of TP 1,
is given by the same function g involved in the correlation of two unbiased TPs, Eq. (4.56). A
consequence of that is the existence of the generalized �uctuation-dissipation relation,

lim
f2! 0

2 hY1 ( f1 = 0, f2)i

f2
= hY1Y2i c( f1 = f2 = 0), (5.34)

with f i = tanh(si =2) the forces that we introduced before. The behavior of an unbiased TP
following a TP with a small bias is related to the correlations of the TPs if none of them is biased.
This relation has been shown to hold in the opposite limit of a dilute SEP (� ! 0) [35] with
equilibrium initial conditions.

The variance of TP 1 and the other even cumulants are remarkable in that while they depend
on the bias s2 at intermediate time, this dependence disappears at large time. The �rst two
cumulants of both TPs are compared to numerical simulations in Fig. 5.2a-b and a very good
agreement is found.

We also look at the dynamics of the two-TP cumulants. The even ones� e = hYp
1 Yq

2 i c with
p + q even are all equal and so are the odd ones� o = hYp

1 Yq
2 i c with p + q odd (p, q � 1). Their

expressions are deduced from Eq. (5.23),
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A comparison with numerical simulations is done in Fig. 5.2c. It is remarkable that the even
cumulants are unchanged in the presence of a single bias (Eq. (4.56) is the expression without
any bias). The expression of the odd cumulants is also simple and is identical to the one of the
cumulants of TP1. We note that both the expression of the two-point correlation function (5.35)
and of the average displacement of the unbiased TP (5.33) are very similar to those obtained in
the random average process[32,33] , which points towards their universality.

A last observable is the law of the distance between the two TPs which is computed from
Eq (5.25). The law at intermediate time, and the asymptotic distribution at large time, are shown
on Fig. 5.2d to be in very good agreement with numerical simulations.
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Figure 5.2: Bath-mediated entrainment. Only the right TP is biased. The fraction of vacancies
is � 0 = 0.01. (a) Average displacementsY1 (red) and Y2 (blue) are a function of rescaled time.
Different symbols correspond to L = 10,50 and s2 = � 0.2, 0.8. The dashed black lines are the
predictions from Eqs. (5.31) and (5.32). (b) Variances of the displacement of TP 1 (red) and
TP 2 (blue) for L = 10, s2 = 0.8 (circle) and s2 = � 0.8 (triangles). The dashed black lines
are the predictions from Eqs. (5.31) and (5.33). (c) Rescaled cumulants hY1Y2i c (brown) and
hY1Y2i c (purple) for the same parameters as (a). The dashed black line is the prediction from
Eq. (5.35). (d) Probability law of the variation of distance D = Y2 � Y1 at times 10,102, 103, 104

(green to black) for L = 10, s2 = 0.8 and � 0 = 0.05. The squares come from the simulations, the
colored lines are predictions computed from Eq. (5.25) and the dashed black line is the asymptotic
prediction at large time [Eq. (5.30)] .



68 Chapter 5. Dense symmetric exclusion process: cooperativity and competition effects

5.4.3 Bath-mediated cooperativity and competition

We now turn to the general case in which both TPs are biased (see Figure 5.3, top), with biases
s1 and s2. We show that depending on the relative signs of the biases, the TPs may either “coop-
erate” or “compete”. The dynamics of effective interactions between the TPs can be analyzed by
introducing the rescaled instantaneous velocities

Aj ( t ) =

p
2� t
� 0

dhYj i

d t
. (5.36)

The interest of this quantity lies in the bath-mediated binding that we uncovered in Eq. (5.17). At
short times, the TPs move according to their own biases while at large time they move together
with an effective bias. This implies that the rescaled instantaneous velocities have the following
limits,

Aj ( t ) �
t � L2

sj Aj ( t ) �
t � L2

S =
s1 + s2

1 + s1s2
. (5.37)

Moreover, the full time dependence is obtained from Eqs. (5.24) and (5.28) and reads
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‹
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with

H� ,� , (u) =
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¦
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©
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The rescaled velocities computed in numerical simulations are plotted on Fig. 5.3 for two situa-
tions. In (a i), the two TPs have same-sign biases and they cooperate. At large time, they move to-
gether faster than any of the two would do if it were alone, in agreement with the bath-mediated
effect we described before. Note that such an accelerated dynamics has been numerically ob-
served in two-dimensional systems[71] . At intermediate times, we also unveil an overshoot of
the rescaled velocity of the trailing TP. On Fig. 5.3 (a ii), we show the case of opposite biases
in which the TPs compete, and the most biased one “wins” at large time. The dynamics is well
described by our approach and we note that the velocity of the less biased TP changes sign at a
given time t � (gray square). We come back to this effect at the end of this subsection.

As always, it is crucial to characterize the two-TP cumulants, the even and odd ones� e =
hYp

1 Yq
2 i c and � o = hYp

1 Yq
2 i c with p+ q respectively even and odd. The even ones are all equal and

so are the odd ones. They are computed from Eq. (5.23) and we �nd
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g†(u) = ( 1 + s1s2)
1X

n= 0

(� s1s2)n g([ 2n + 1]u), (5.41)

with g given by Eq. (5.26). While the structure is similar to the case of a single bias[Eq. (5.35)] ,
we note that the scaling function has changed and now depends on the biases. Two-point cumu-
lants, as well as variances, are plotted on Fig. 5.3 (b i) and (b ii).
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Figure 5.3: Cooperativity and competition ( � 0 = 0.01). Left, (a i) and (b i), two TPs moving with
identical biases s1 = s2 = 0.8. Right, (a ii) and (b ii), two TPs moving with biases in opposite
directions s1 = � 0.6 and s2 = 0.8. The rescaled velocitiesAi [Eq. (5.36)] are plotted in (a i)
and (a ii) for two distances L = 50 (circles) and 200 (triangles). The insets show the average
displacementshYi i =(� 0 L) as a function of the rescaled time� . At short time the rescaled velocities
are s1 and s2 while at large time they have the common value S = ( s1 + s2)=(1+ s1s2). The dashed
black lines are the predictions from Eq. (5.38). The varianceshY2

i i c and the cumulants hY1Y2i c

and hY1Y2
2 i c are plotted in (b i) and (b ii) with the dashed black lines being the predictions from

Eqs. (5.24) and (5.40). In the right �gures, (a ii) and (b ii), the velocity changes sign at a rescaled
time � � corresponding to the gray square in (a ii) and in the inset of (b ii). The inset of (b ii) is
the prediction for the U-turn time � � as a function of s1=s2 for s2 = 0.8 with dashed black lines
showing the asymptotic behaviors.



70 Chapter 5. Dense symmetric exclusion process: cooperativity and competition effects

U-turn time

We consider two TPs with biasess2 > 0 and � s2 < s1 < 0 (Fig. 5.3, right) and characterize the
U-turn time t � of TP 1, that is to say the time at which its velocity changes sign. The rescaled
U-turn time � � = t=L2 is the point at which A1(� ) given by Eq. (5.38) vanishes, that is to say the
solution of

Hs1,s2(1+ s1),� s1s2
(1=

p
2� � ) = 0, (5.42)

with H given in Eq. (5.39). This equation should be solved numerically in the general case but
we can give explicitely the limit s1=s2 ! 0 and s1=s2 ! � 1.

When s1=s2 is small, � � is small so(� � ) � 1=2 is large. We can keep only the �rst two terms in
the sum:

A1(� � ) � s1 + s2(1 + s1)e� 1
2� � � s1 + s2e� 1

2� � = 0 (5.43)
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And when s1=s2 approaches� 1, we write s1 = � s2(1 � � ) with � � 1 and look for � � satisfying
(2� � ) � 1 = �� with � depending only on s2. The expansion ofA1(� � ) at order � gives
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�
s2
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This eventually leads to

� � �
s1=s2!� 1

�
(1 + s2)2

2(1 � s2)

�
1

1 + s1
s2

. (5.46)

The numerical resolution of the implicit equation (5.42) for the U-turn time, as well as the asymp-
tots (5.44) and (5.46) are shown in the inset of Fig. 5.3 (b ii).

5.5 Extension to three tagged particles

To conclude this chapter, we study the case of three TPs with biasess1, s2, s3. We denote L1 =
X0

2 � X0
1 and L2 = X0

3 � X0
2 and L = L1 + L2 the initial distance between the TPs. The method is

very similar to the case of two TPs. Most computations are done with the help of Mathematica.
The explicit result for the Laplace transform of the cumulant-generating function, in terms of

the rescaled variableũ = uL2 is
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One notes that the structure is very similar to the one without biases[Eq (4.51)] , with the addition
of sine terms that correspond to the odd cumulants. The quantitiesK̂� ,n, that are related to the
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cumulants, read

K̂� ,n(ũ) =
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with v1 = e� ( L1=L)
p

2ũ, v2 = e� ( L2=L)
p

2ũ. For completeness, we give the twelve 3� 3 matrices Q of
coef�cients.
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One remarks that Qo = SQe with S the effective bias for the TPs that are involved[Eq. (5.16)] .
The Laplace transform (5.47) can be inverted numerically to obtain the time evolution of the
cumulants. We show on Fig. 5.4 that the dynamics on three TPs with different biases that we
observe in numerical simulations is highly non-trivial and is very well described by our approach.

One notices that the sum of all the coef�cients of the matrices Q1 and Q2 is zero. This means
that for ũ ! 0, (5.47) simpli�es into
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� 0! 0

ˆ (k, u)

� 0
�

u! 0

1
p

2u3

§
cos(k1 + k2 + k3) � 1 +

s1 + s2 + s3 + s1s2s3

1 + s1s2 + s1s3 + s2s3
sin(k1 + k2 + k3)

ª
.

(5.55)
The interpretation is that at large time, the three TPs move together as a single effective TP
with effective bias S = s1+ s2+ s3+ s1s2s3

1+ s1s2+ s1s3+ s2s3
. This is exactly the bath-mediated binding effect that we

described in section 5.3.

We do not attempt to write the full result for N TPs with arbitrary biases(s1, . . . , sN ). But the
structure in k is quite clear: the generalization of Eq. (5.47) (which is by the way the generaliza-
tion of Eq.(4.51)) reads
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(5.56)



72 Chapter 5. Dense symmetric exclusion process: cooperativity and competition effects

Figure 5.4: Displacements of three TPs with biasess1 = 0.9, s2 = 0.3 and s3 = � 0.6 with initial
total distance L = X0

3 � X0
1 = 60 and X0

2 � X0
1 = 45. The fraction of vacancies is� 0 = 0.01. The

colored lines and circles correspond to numerical simulations while the dashed black lines are
the theoretical predictions coming from the inversion of Eq. (5.47). (a) Displacements of the TPs
with respect to rescaled time. (b) Rescaled velocities[Eq. (5.36)] of the TPs. The dynamics of the
TPs is highly non-trivial and is well captured by our approach. For instance, the second TP �rst
moves to right according to its own bias, then it moves to the left because of TP 3, and �nally it
moves to the right at large time when all TPs move together.

The expressions ofK̂�
i ,n are generalizations of Eq. (5.48). The result whenu � L� 2, which corre-

sponds to very large times (larger than the square of all the distances involved), is

lim
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As we explained in section 5.3, this means that all the TPs behave as a single one at large time.
The effective biasS is given by Eq. (5.16).

5.6 Conclusion

We studied the case of biased tagged particles in the dense SEP. Our main result is that all the TPs
move as a single one at large time[Eq. (5.15)] , we call this effect bath-mediated binding. The
effective TP undergoes an effective force which is the sum of the forces on all the TPs. We unveil
the intermediate time behavior of two biased TPs. First, in the case of a single bias, the unbiased
particle follows the biased one. The time dependence that we describe leads to a generalized
�uctuation-dissipation relation. Then, in the case of two biases, we uncover a cooperativity effect
if the biases have the same sign, and a competition effect when they have opposite signs. The
dynamics is non-trivial and well described by our approach. Finally, we showed that results can
also be obtained for three particles with arbitrary biases.

The bath mediated effect that we described is striking but we now show that it is a feature of
the high density limit. At intermediate density, we shall develop an hydrodynamic approach and
uncover an unbinding transition. Below a certain force the TPs remain bound but at high force
they move apart from one another.
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6.1 Introduction

In the previous chapter, we studied biased intruders in the high density SEP. We derived the full
probability law of two biased tagged particles. Among other effects, we uncovered bath-mediated
binding, that is to say that biased TPs move together at large time. All single-tag cumulants are
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equal as stated in Eq. (5.17). A natural question is: what happens at arbitrary density? Do biased
TPs still move together at large time, even if the system is not dense? Or can they separate in
a certain regime? Our approach to answer these questions will be completely different from the
one we used at high density.

While computing full N-tag probability laws at arbitrary density seems out of reach, we can
still focus on the displacements of the particles (�rst cumulants). The known solution for the
displacement of a single TP in the SEP[42, 43] involves hydrodynamic equations for the den-
sity �eld of the system. We �rst rephrase these equations in a language that should be familiar
to physicists: advection-diffusion equation, no-�ux boundary conditions and force balance. We
check that the equations return the displacement of a single biased TP.

Next, we show that our hydrodynamic approach extends to the case of two biased TPs, �rst
in the case of opposite biases, then for arbitrary biases. The crucial result is that, depending
on the magnitude of the drive the two TPs may either remain at �nite distance at large time,
or separate from one another with time dependence t 1=2. This is a sharp transition that we
call the unbinding transition. We characterize the critical forcing and show that the transition
is associated with the divergence of a quantity (�nal distance between TPs) when approached
from below, and to another quantity (distance over square-root of time) that becomes non-zero
only above the transition with a critical exponent that we give. The critical regime is shown to
be associated with a distance between particles scaling with time ast 1=4. We also compute the
phase diagram associated with the forces on the TPs. Furthermore, the description extends to an
arbitrary number of biased TPs and we show that the TPs either remain all bound or separate into
two groups.

Last but not least, the unbinding transition is not speci�c to the symmetric exclusion process: it
is observable in arbitrary single-�le systems with a critical force related to the equilibrium pressure
of the system. We focus numerically on two models that have been shown to be relevant in
experiments with colloidal systems: the gas of hard rods[9] and the gas of pointlike particles with
dipole-dipole interactions [10] . The transition does occur at the predicted point. The unbinding
transition is thus robust and should be observable in experiments.

The results of this chapter have been published in[P2] .

6.2 Hydrodynamic equations

We consider the same system as in the previous chapter: an arbitrary number of biased TPs in
the SEP, but this time at arbitrary density. We introduce the characteristic time � of the particles
(previously we considered � = 1). The particles of the bath have jump rates 1=(2� ) to the left
and to the right, and the i -th tagged particle has ratesp+ i =� for a jump to the right and p� i =�
for a jump to the left (Fig. 6.1a). The novelty is that we adopt a continuous description. The
particles of the bath are described by a density �eld � ( x, t ) where x is the position in space and
t is the time (Fig. 6.1b). The average density is now denoted� 1 . We consider only the average
positions of the TPs (over both the initial conditions for the bath and the evolution of the system)
that we denote X̄i ( t ) � h Xi ( t )i . Higher-order cumulants are the subject of the next chapter.

We will describe the system by three hydrodynamic equations: a diffusion equation for the
density �eld; no �ux boundary conditions at the positions of the TPs; and an equation linking
the displacement of a TP to the density �eld. Our approach is similar to the ones adopted in
Refs.[42,43] . Note that in the next chapter, we will extend this approach to so-called generalized
pro�les.
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Figure 6.1: (a) Symmetric exclusion process with two biased TPs. The time constant for
jumps is denoted � and the lattice step is a. (b) Description in terms of a continuous medium
(gray) characterized by a density � ( x, t ). The forces on the TPs are given by detailed balance:
ea fi =(kBT) = p+ i =p� i .

6.2.1 Density �eld

In the SEP, the dynamics of the bath is known to be diffusive. The diffusion coef�cient is D = a2=2�
where a is the step of the lattice and � the typical time for jumps. The density �eld satis�es

@ �

@t
(x, t ) = D

@2�

@x2
( x, t ). (6.1)

It is instructive to write the density �eld in the referential frame of the TP i . We write,

� �
i ( x, t ) = � (X̄i ( t ) + x, t ) (6.2)

where X̄i ( t ) is the (average) position of TP i . The change of variables leads to

@ ��i
@t

(x, t ) = D
@2� �

i

@x2
( x, t ) + Vi

@ ��i
@x

(x, t ) = �
@J�

i

@x
(x, t ), (6.3)

J�
i ( x, t ) = � D

@ ��i
@x

(x, t ) � Vi �
�
i ( x, t ), (6.4)

where Vi = dX̄i
d t is the (average) velocity of TP i . J�

i is the current in the referential frame of the
TP.

6.2.2 Boundary condition on a tagged particle

The TPs act on the density �eld as walls. In the reference frame of a TP, the �ux vanishes at the
position of the TP. This means that,

J�
i (0� ) = 0, (6.5)

D
@ ��i
@x

(0� , t ) = � V� � (0� ). (6.6)

The casesx = 0+ and x = 0� need to be considered independently as the density may be discon-
tinuous at the position of a TP.
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6.2.3 Displacement of a tagged particle

Our last equation is about the velocity Vi of a TP. The jumps of TPi to the right happen with rate
p+ i and are performed only if the site directly to the right is empty. This happens with probability
(1 � � (X̄+

i , t )) . And mutatis mutandis for jumps to the left. Consequently, the velocity of TP i can
be expressed as

Vi �
dX̄i ( t )

d t
= p+ i

�
1 � � (X̄+

i , t )
�

� p� i

�
1 � � (X̄�

i , t )
�

. (6.7)

6.2.4 Displacement at large time and pressure of the SEP

At large time, as seen in the previous chapter, the displacements will be sub-ballistic:X̄i ( t ) /
p

t .
This means that the velocitiesVi vanish at large time. Thus, Eq. (6.7) becomes

1 � � (X̄+
i , t )

1 � � (X̄�
i , t )

=
p� i

p+ i
. (6.8)

Considering jumps between two neighboring sites, we can associate energies with the two
positions. Using detailed balance, we are able to de�ne a forcef i from the jump rate. f i satis�es

p+ i

p� i
= exp

•
a fi
kBT

‹
, (6.9)

where a is the step of the lattice and T the temperature.
A simple computation in the microcanonical ensemble1 shows that the equilibrium pressure

of the SEP is given by

P(� ) = �
kBT

a
log(1 � � ). (6.10)

This leads us to rewrite Eq. (6.8) as

P(� (X̄+
i )) � P(� (X̄�

i )) = f i . (6.11)

This is a force balance: the difference between the pressure applied on the right and the one
applied on the left is equal to the force on the particle. This mechanical equilibrium holds only
because the velocity of a TP vanishes at large time.

6.3 Single driven particle

Let us now study the case of a single particle. We will recover the results of Refs.[42,43] for the
displacement of a biased particle in the SEP at arbitrary density.

6.3.1 Self-similar equations

We make the assumption that the density �eld in the referential frame of the TP has a diffusive
self-similar scaling and write,

� �
1( x, t ) = �

•
x

p
4Dt

‹
. (6.12)

1For a �nite SEP of length L and step a with N particles, the number of available states is
 (N, L) =
� L=a

N

�
, the

entropy is S(N, L) = kB ln 
 (N, L) and �nally the pressure is P = T @S
@L

�
�
N

. The density is � = aN=L.
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Looking at the diffusion equation (6.3), we �nd that the proper scaling for the velocity V1( t ) is
t � 1=2. We write,

V1( t ) = A

v
t D

t
(6.13)

with A a constant which depends only on the average density� 1 . The bulk equation (6.3) and
the boundary equation (6.6) become

� 00(u) + 2(u + A)� 0(u) = 0, (6.14)

� 0(0� ) = � 2A� (0� ). (6.15)

6.3.2 Resolution

The integration of the bulk equation (6.14) gives

� 0(u) = � 0(0)eA2
e� (u+ A)2

. (6.16)

We integrate a second time, separatingu > 0 and u < 0. We use the fact that the density goes to
� 1 at large distance and we remember the boundary equation (6.15).

� (u ¿ 0) = � 1 � � 0(0� )
p

�
2

eA2
erfc(� (u + A)) (6.17)

= � 1 � A� (0� )
p

� eA2
erfc(� (u + A)) (6.18)

This solution for u = 0� can be written as

� (0� ) = � 1 g(� A) (6.19)

g(A) =
1

1 �
p

� AeA2 erfcA
, (6.20)

�nally giving the solution for the scaled density pro�le � (u) in terms of A,

� (u ¿ 0) = � 1 + � 1

p
� AeA2

erfc(� (u + A))

1 �
p

� AeA2 erfc(� A)
. (6.21)

We recall that the density in front of and behind the TPs satis�es Eq. (6.8) at large time. We
thus obtain the following implicit equation for A,

1 � � 1 g(A)

1 � � 1 g(� A)
= exp

•
�

a f

kBT

‹
. (6.22)

The large time behavior of the position of the TP isX̄1( t ) = 2A
p

Dt. This solution is the one found
in Refs. [42,43] . We note that there is no explicit formula.

6.3.3 Results at small force or high density

At small force, or at high density, the displacement is very small (i.e. A � 1). The function g can
be expanded asg(A) � 1 +

p
� A. Taking the logarithm of Eq. (6.22), one obtains

� 2
p

�
� 1

1 � � 1
A= �

a f

kBT
. (6.23)
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Figure 6.2: Numerical results for the positions X1( t ) and X2( t ) of two biased TPs in the SEP at
density � 1 = 0.5. The blue curves correspond to forces for which the TPs remain bound while
the red curves correspond to an unbound situation. The dashed black lines are the theoretical
predictions from Eqs. (6.28), (6.32), (6.46), (6.51). (a) Opposite forces f2 = � f1 = f . Blue:
f = 0.5. Red: f = 1.5. (b) Arbitrary forces f1 and f2. Blue: f1 = 0, f2 = 1 (prediction only on
the asymptotic scaling). Red: f1 = � 1, f2 = 2.

And �nally, we obtain an explicit expression in the limit considered:

X̄1( t ) �
t !1

1 � � 1

� 1

a f

kBT

v
t Dt

�
. (6.24)

In particular, this is consistent with the high-density result found in Ref. [38] .
The case of a single driven TP contains all the ingredients that we will use to study the

case of multiple driven TPs: in particular the equation of state (6.10) that leads to the force
balance (6.11), and the expression of the density in front of and behind a TP moving as

p
t

[Eq. (6.19)] .

6.4 Two particles driven by opposite forces

6.4.1 Qualitative behaviors

In this section, we study the central case of this chapter on the unbinding transition. We look at
two TPs biased in opposite directions by equal magnitude forces:f2 = � f1 = f > 0. Initially, the
TPs are separated by a distanceL. On Fig. 6.2a, we show numerically that for a small force f , the
two TPs remain at a �nite distance at large time while for a large force f they eventually separate
and move apart from one another.

We now investigate this unbinding transition. We characterize the bound regime (f small), the
unbound regime ( f large), give the expression of the critical force fc and characterize the critical
regime ( f = fc). We will see that the bound regime corresponds to a force balance[Eq. (6.11)]
that can be satis�ed without net motions of the TPs and with homogeneous density pro�les. On
the other hand, the unbound regime corresponds to TPs moving as

p
t and creating non-stationary

density pro�les in front of them.
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6.4.2 Bound regime and critical force

We �rst investigate the case where the TPs remain at a constant distance at large time. The
number of particles between the two TPs is �xed, at large time the density between the two TPs
becomes uniform and we call it � in . The density outside the TPs is� 1 , it is also uniform. We saw
previously that the velocity equation becomes the force balance (6.11) at large time. We write it
for the TP on the right (by symmetry, the same is given by the other TP) and obtain

P(� 1 ) � P(� in) = f . (6.25)

One notes that asP(� in) > 0, this force balance can only hold for f < P(� 1 ). This immedi-
ately gives the critical force

fc = P(� 1 ) = �
kBT

a
log(1 � � 1 ). (6.26)

The critical force is the pressure of the bath at density� 1 . The interpretation is that for forces
below this pressure, the bath can “retain” the TPs while above this pressure it cannot. An impor-
tant remark is that in the high density regime � 1 ! 1 studied in the previous chapter, the critical
force diverges. As we saw, there is no transition in this regime and the TPs always remain bound.
This is interpreted by the fact that the bath can always exert a high enough pressure for the TPs
to stay together. For a density� 1 < 1, Eq. (6.26) gives the maximum force under which the TPs
remain bound.

In the bound regime, for the SEP, the force balance (6.25) gives the expression of� in ,

� in = 1 � exp
•

�
a[ P(� 1 ) � f ]

kBT

‹
. (6.27)

And the �nal distance between the TPs is expressed by using the conservation of the number of
particles,

X̄1
2 � X̄1

1

L
=

� 1

� in
=

� 1

1 � exp
€
� a[ P(� 1 )� f ]

kBT

Š, (6.28)

with L the initial distance between the TPs. This expression is used for the prediction of Fig. 6.3a
at f = 0.5 and for the theoretical expression of Fig. 6.3b for f < P(� 1 ).

When f becomes close toP(� 1 ), � in is small so P(� in) ' P0(0)� in and the �nal distance
becomes,

X̄1
2 � X̄1

1

L
=

� 1

� in
�

f ! P(� 1 ) �

� 1 P0(0)

P(� 1 ) � f
(6.29)

where P0(0) = kBT=a corresponds to the ideal gas result. In other words the approach of the
transition is associated with a divergence of the �nal distance between the TPs as( fc � f ) � 1 (see
Fig. 6.3b).

6.4.3 Unbound regime

On the other hand, when f > P(� 1 ), we expect the TPs to move apart from one another sym-
metrically, with a time scaling similar to a single driven TP [Eq. (6.13)] ,

X̄2( t ) �
t !1

� X̄1( t ) �
t !1

A
p

4Dt. (6.30)
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The density in front of TP 2 is then given by Eqs. (6.19)-(6.20),

� (X̄+
2 ) = � 1 g(A). (6.31)

As the TPs separate, the density inbetween them vanishes,� (X+
2 ) = 0. Finally, the force bal-

ance (6.11) gives an implicit equation for A,

P(� 1 g(A)) = f . (6.32)

This implicit equation provides the prediction at f = 1.5 in Fig. 6.3a and the theoretical expression
in Fig. 6.3b for f > P(� 1 ). When the force is close to the critical force, the prefactorA is small,
so g(A) ' 1 +

p
� A and P(� 1 g(A)) � P(� 1 ) '

p
� AP0(� 1 ). This gives,

A=
X̄2( t )
p

4Dt
�

f ! P(� 1 ) �

1
p

�

f � P(� 1 )

P0(� 1 )
(6.33)

with P0(� 1 ) = kBT=[ a(1� � 1 )] . In other words, Avanishes at the transition asA/ [ f � P(� 1 )]
(see Fig. 6.3b).

6.4.4 Critical regime

We now study the critical regime f = P(� 1 ) and try to obtain the expression of the displacement
X̄2( t ). As X̄2( t ) � t 0 below the transition and X̄2( t ) � t 1=2 above the transition, we may assume
that at the transition X̄2( t ) = C t with 0 <  < 1=2. Our goal is to determine the exponent  and
the prefactor C.

The starting point of our analysis is the force balance (6.11) that still applies here because the
velocity V2 � t  � 1 vanishes at large times. We write

P(� 1 ) = P(� + ) � P(� � ), (6.34)

with P(X̄�
2 ) = � � , P(X̄+

2 ) = � + and f2 = P(� 1 ). The quantities to compute are � � and � + .
Since the TPs do separate ( > 0), the density between them vanishes at large time, that is to say
� � ( t ) � 1. On the other hand, since the prefactorA in Eq. (6.31) vanishes at the approach of the
transition, the density �eld in front of TP 2 is only weakly modi�ed, � + ( t ) = � 1 + �� + ( t ) with
�� + ( t ) � 1. We introduce the small parameters that we just saw in Eq. (6.34) and �nd

P0(0)� � ( t ) = P0(� 1 )�� + ( t ). (6.35)

The precise determination of � � ( t ) and �� + ( t ) will give us both the scaling and the prefactor of
the behavior of X̄2( t ) = C t . Writing the conservation of the number of particles between the
TPs, we readily obtain

� � ( t )

� 1
=

L
X2( t ) � X1( t )

'
L

2C
t �  . (6.36)

The determination of � + ( t ) is less straightforward. We need to go back to Eqs. (6.3) and
(6.6) for the density �eld � �

2( x, t ) in the referential frame of TP 2. Since the velocity is assumed
to decay faster than t � 1=2, the term V2@x � �

2 is negligible in the diffusion equation. And as we said
before, � �

2(0+ , t ) ' � 1 . The equations to be considered are

@ ��2
@t

(x, t ) = D
@2� �

2

@x2
( x, t ), (6.37)

D
@ ��2
@t

(0+ , t ) = � � 1 V2( t ). (6.38)
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Figure 6.3: Opposite forces f2 = � f1 = f at density � 1 = 0.5. (a) Caracterization of the
displacement averageX̄2( t ) in the three regimes: bound ( f = 0.5), critical ( f = P(� 1 ) �
0.69) and unbound ( f = 1.5). From red to blue, L = 10, 20,50, 100,200, 500. The average
is performed on about 50 simulations with the same parameters. The dashed black lines are
the predictions from Eqs. (6.28), (6.32), (6.42). (b) Final distance between the TPs below the
transition (left), and separation above the transition (right). The circles and squares are the
results of numerical simulations. The lines are the predictions from Eqs. (6.28), (6.32).

This is a diffusion equation for the half line x > 0 with an injection � 1 V2 at the origin. The
solution is expressed in terms of the Green function of the problem,

� �
2( x, t ) = � 1 + � 1

Z t

0

V2( t 0)G(x, t � t 0), (6.39)

G(x, t ) =
1

p
� Dt

e� x2

4Dt . (6.40)

As V2( t ) = dX̄2=d t =  C t � 1, the density in front of the TP is � + ( t ) = � �
2(0+ , t ),

� + ( t ) =
 C� 1p

� D

Z t

0

t 0 d t0

p
t � t 0

=
 C b � 1

p
� D

t  � 1=2 (6.41)

with b = B(1=2,  ) where B is the beta function. This is the result we needed.
We now inject Eqs. (6.36) and (6.41) into Eq. (6.35). This gives �  =  � 1=2 that is to say

 = 1=4 which is between 0 and 1=2 as expected. The prefactorC is also computed from this
equation. At the end of the day, the average displacement under the critical force is

X̄2( t ) �
t !1

v
u
t 2

p
�

b1=4

v
t P0(0)L

P0(� 1 )
(Dt)1=4 ' 0.82

v
t P0(0)L

P0(� 1 )
(Dt)1=4. (6.42)

The t 1=4 dependence and the prefactor are in agreement with numerical simulations (Fig. 6.3a).

6.5 Two particles driven by arbitrary forces

The unbinding transition is also observed in numerical simulations for arbitrary forces f1 and f2
as shown on Fig. 6.2. We now characterize the bound and unbound regimes and obtain a phase
diagram (Fig. 6.5).
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Figure 6.4: Arbitrary forces on two TPs with constant sum F = f1 + f2. The critical difference
of forces � fc = f c

2 � f c
1 is given by Eq. (6.48). (a) Separation of the TPs below and above

the transition. Left: �nal distance, right: prefactor of the separation. The symbols come from
numerical simulations while the lines are the theoretical prediction from Eqs (6.47) and (6.51).
(b) Motion of the two TPs and of the center of mass (c.m.). The symbols are the numerical
simulations and the lines: are the predictions.

6.5.1 Bound regime

We �rst assume that the TPs move together. Their scalings at large time are identical and are
given by Eq. (6.13),

X̄1( t ) �
t !1

X̄2( t ) �
t !1

A
p

4Dt, (6.43)

with A to be determined. We write the force balances[Eq (6.11)] for the two TPs,

P(� in) � P(� 1 g(� A)) = f1, (6.44)

P(� 1 g(A)) � P(� in) = f2, (6.45)

and we sum them into
P(� 1 g(A)) � P(� 1 g(� A)) = f1 + f2 = F. (6.46)

We see that this corresponds to the implicit equation (6.22) for a single TP driven by a force
F = f1 + f2. The two TPs thus behave as a single TP with an effective force being the sum of the
two forces. The solution for the prefactor A common to the two TPs is given by the resolution of
Eq. (6.46). OnceAis known, the density � in and the �nal distance between the TPs are determined
as

P(� in) = P(� 1 g(A)) � f2
X̄1

2 � X̄1
1

L
=

� 1

� in
, (6.47)

with L the initial distance between the TPs. A comparison with numerical results is given in
Fig. 6.4. The �nal distance between the TPs diverges at the approach of the transition.

6.5.2 Transition and phase diagram

To investigate the onset of the transition, we consider a total sum of forcesF = f1+ f2 and vary the
difference � f = f2 � f1. The coef�cient A thus remains constant. The transition happens when
the force balance (6.44) is broken (P(� in) < 0 is impossible) that is to say f1 < � P(� 1 g(� A)) .
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Figure 6.5: Phase diagrams at densities� 1 = 0.25,0.5, 0.75 (left to right). The numerical sim-
ulations leading to a bound con�guration are denoted by �lled circles and the unbound con�gu-
rations correspond to open circles. The black line is the theoretical boundary from Eq. (6.48).

Equivalently, since f1 + f2 is constant, this corresponds to the point at which Eq (6.45) is broken,
which means f2 > P(� 1 g(A)) . In particular an unbound con�guration always corresponds to
f1 < 0 and f2 > 0: if the forces have the same sign, the TPs are bound. The critical difference of
forces at constantF = f1 + f2 is

� fc(F) = P(� 1 g(A(F))) + P(� 1 g(� A(F))) , (6.48)

with A(F) given by Eq (6.46).
From this relation, one can build a phase diagram in the plane( f1, f2) to predict if the TPs are

bound or unbound. This is done in Fig. 6.5 and checked against numerical simulations.

6.5.3 Unbound regime

Let us now consider that the TPs unbind at large time, that is to say their positions satisfy,

X̄1( t ) �
t !1

A1

p
4Dt, X̄2( t ) �

t !1
A2

p
4Dt, (6.49)

with A1 < A2. The density between the TPs vanishes,� in = 0. The outside quantities are given
by Eqs. (6.19)-(6.20),

� (X̄�
1 ) = � 1 g(� A1), � (X̄+

2 ) = � 1 g(A2). (6.50)

The force balances for the two TPs thus read,

� P(� 1 g(� A1)) = f1, P(� 1 g(A2)) = f2. (6.51)

These are the implicit equations giving the coef�cients A1 and A2. The predictions, compared to
numerical simulations, are plotted in Fig. 6.4. We remark that the motion of the center of mass
vanishes at large difference of forces.

6.6 Arbitrary number of driven particles

Our approach extends to the case of an arbitrary numberN of TPs driven by forcesf1, . . . , fN . As
in the case of two TPs, we observe two possibilities: the TPs either stay together (Fig. 6.6a) or
separate into two groups (Fig. 6.6b).



84 Chapter 6. Unbinding transition in single-�le systems

Let us explain why there can be at most two groups if all forces are non zero. Imagine TPi
seeing its left neighbor TPi � 1 moving to the left and its right neighbor TP i + 1 moving to the
right (with time dependence t 1=2). The density vanishes both on the left and on the right of TP
i . If the force f i is non zero, the TP thus moves ballistically in the direction of the force until it
catches up with one of its two neighbors. In a con�guration where the leftmost TP moves as t 1=2

to the left and the rightmost TP as t 1=2 to the right, all TPs will move with one of the two, except
non-driven TPs that happen to be between the two groups.

The question now is whether there is one or two groups of TPs. To answer this, we consider
the set of effective forces(Fi

1, Fi
2) with

Fi
1 =

iX

j= 1

f j Fi
2 =

NX

j= i+ 1

f j (6.52)

for 1 � i < N. This corresponds to separating the TPs in two groups(1, . . . , i ) and (i + 1, . . . , N).
One then puts the points (Fi

1, Fi
2) in the phase diagram (Fig. 6.5) as shown on Fig. 6.6c. If all

the points lie in the bound region, the TPs stay together (Fig. 6.6c). Realizing that the densities
between the TPs are homogeneous at large time and summing the force balances, we obtain the
implicit equation for the displacement coef�cient,

X̄1( t ) �
t !1

. . . �
t !1

X̄N ( t ) �
t !1

A
p

4Dt, (6.53)

P(� 1 g(A)) � P(� 1 g(� A)) = F =
NX

i= 1

f i . (6.54)

If one or more points are in the unbound regime of the phase diagram, the system separates
for the most unstable point that is to say the largest � Fi = Fi

2 � Fi
1 (Fig. 6.6b). In this case, the

density between the two groups vanishes at large time, and the prefactorsA1 and A2 are given by

X̄1( t ) �
t !1

. . . �
t !1

X̄i ( t ) �
t !1

A1

p
4Dt (6.55)

X̄i+ 1( t ) �
t !1

. . . �
t !1

X̄N ( t ) �
t !1

A2

p
4Dt (6.56)

and satisfy

� P(� 1 g(� A1)) = Fi
1, P(� 1 g(A2)) = Fi

2. (6.57)

These two implicit equations give the prefactors for the motions of the two TPs.

6.7 Continuous systems

The approach that we developed for the SEP relies on the force balance (6.11). Actually, this force
balance is not speci�c to the SEP and can be written for any single-�le system. Let us consider a
generic system with a density �eld � ( x, t ) and an intruder at position X̄( t ) driven by a force f .
Since the velocity still vanishes at large time (X̄( t ) / t 1=2), we may write

P(� (X̄1)) � P(� (X̄� )) = f . (6.58)

P(� ) is the equilibrium pressure of the system at density� , that is to say the equation of state.
For the SEP, it is given by Eq. (6.10). Our analysis of the unbinding transition applies. In the
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Figure 6.6: Five TPs submitted to arbitrary forces at density� 1 = 0.5. (a) and (b) Simula-
tions (colored lines) and predictions (dashed black lines) in two con�gurations. (a) At forces
(1, 1, � 1, � 1, 1), the TPs all move together. (b) At forces (1, � 1, � 1, 1, 1), the TPs separate into
two groups. (c) Phase diagram at� = 0.5. All the divisions of case (a) — corresponding to panel
(a) — are in the bound regime while one division of case (b) is in the unbound regime (TPs (1,
2, 3) and TPs (4, 5)). This implies that the TPs stay together in case (a) and separate in case (b).

case of two TPs with opposite forces we predict a transition at a forcefc = P(� 1 ) where � 1

is the average density of the system. In the following we also generalize the other equations, in
particular the diffusion equation of the density �eld.

We focus on two models of continuous single-�le systems that were shown to be relevant in
experiments. The �rst one is the gas of hard rods, also known as Tonks gas[66] in which Brownian
rods of size a are placed on a line and cannot overlap each other. This model has been shown
to be in quantitative agreement with diffusion experiments in a quasi-one-dimensional colloidal
suspension[9] . The pressure of the hard rod gas is known to be given[66] by

PHR(� ) =
kBT�

1 � a�
. (6.59)

As expected, the pressure diverges at the densitya� 1 at which no space remains.
The second model is the one of point-like diffusive particles interacting via a repulsive dipole-

dipole interaction given by the potential U(r ) = A=r 3. This corresponds to the experiments of
Ref. [10] of paramagnetic colloids in a magnetic �eld. The pressure of this gas is not known.
However, at low density one can perform a virial expansion [20] leading to

Pdip(� ) ' kBT�
�
1 + 1.35�� + 1.40(�� )2

�
, (6.60)

with the characteristic scale of the interaction � = [ A=(kBT)] 1=3.
We consider two TPs driven away from one another by antisymmetric forcesf2 = � f1 = f

as we did in section 6.4. For both models, we predict an unbinding transition at a critical force
fc = P(� 1 ) with � 1 the average density of the system. Below the critical force, the particles
remain at a �nite distance at large time, while above the critical force they move in opposite
directions as

p
t . We check this in numerical simulations in Fig. 6.7.
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In the bound regime, the �nal distance between the two TPs is still given by the conservation
of the number of particles between the TPs,

X̄1
2 � X̄1

1

L
=

� 1

� in
(6.61)

with L the initial distance between the TPs. � in is the density between the TPs, it satis�es the
force balance P(� in) = P(� 1 ) � f . For the Tonks gas,� in = [ a + kBT=(P(� 1 ) � f )] � 1. At the
approach of the transition, the �nal distance diverges as

X̄1
2 � X̄1

1

L
�

f ! P(� 1 ) �

� 1 P0(0)

P(� 1 ) � f
. (6.62)

The characterization of the unbound regime runs into the dif�culty that the diffusion coef-
�cient of continuous models is density-dependent. The diffusion equation for the density �eld
� ( x, t ) reads

@ �

@t
(x, t ) =

@
@x

•
D(� ( x, t ))

@ �

@x
(x, t )

˜
, (6.63)

with D(� ) the diffusion coef�cient at density � . In the absence of hydrodynamic interactions, it
is given by

D(� ) = � 0P0(� ), (6.64)

with � 0 the mobility of the particles [9] . We thus only consider small displacementsX̄=
p

t � 1
for which the density �eld is only weakly perturbed. In this case, we write D(� ) ' D(� 1 ).
Eq. (6.33) obtained for the SEP is still valid, the displacement of TP 2 is given by

X̄2( t ) �
t !1

f � P(� 1 )

P0(� 1 )

v
t 4D(� 1 ) t

�
. (6.65)

Last, in the critical case, the density �eld is indeed weakly perturbed. Eq. (6.42) holds with
D = D(� 1 ). The predictions of the three regimes are compared in Fig. 6.7 for the two models
considered.

6.8 Conclusion

We developed an hydrodynamic approach of the density �eld of the SEP. It is based on three
equations: a diffusion equation for the density �eld, a no-�ux boundary condition at the position
of the TPs, and an equation linking the displacement of the TP to the density �eld. At large time,
the last one turns into a force balance. We used this approach to investigate the behavior of two
TPs driven apart from one another and unveiled an unbinding transition: at small forces the TPs
stay at a constant distance from one another while at large forces they separate and move ast 1=2.
The critical force is the equilibrium pressure of the bath and the critical regime is characterized
by a behavior in t 1=4. The approach works for arbitrary forces and we found a phase diagram.
Furthermore, in the case of an arbitrary number of driven TPs, we found that there are at most
two groups of TPs moving together. Importantly, our approach extends to arbitrary single-�le
systems. The critical force is still the equilibrium pressure of the bath, and we checked that the
predicted unbinding transition occurs in numerical simulations. We are thus con�dent that this
transition should be observable in experimental systems, e.g. colloids.
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Figure 6.7: Simulations of continuous systems. (a) Hard rods. (b) Dipole-dipole interactions
(1=r 3). The density is � 1 = 0.2 for both graphs and the forces on the two TPs are antisymmetric.
The results for the displacement of the right TP are given in the three regimes below, at and above
the critical force ( P(� 1 ) = 0.2 in (a) and P(� 1 ) ' 0.265 in (b)). The dashed lines are the
theoretical predictions given in section 6.7.

An important point of this chapter is that the average displacement of a TPX̄( t ) is coupled
with the deterministic density �eld � ( x, t ). Hence, an hydrodynamic description of the �eld gives
the behavior of the average displacement. In the next chapter, we show that this can be extended
to higher-order cumulants of the displacement. They are coupled with what we call generalized
pro�les that is to say correlations between the �uctuating density �eld and the displacement. De-
riving hydrodynamic equations for these generalized pro�les thus gives hope to compute arbitrary
cumulants of the SEP.
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Figure 7.1: Symmetric exclusion process with one biaised particle (blue). The bias on the particle
is s= p1 � p� 1.

7.1 Introduction

Predicting the properties of a TP in the SEP beyond the variance (at any density) is an impor-
tant challenge for which only few methods are available. The only method giving the full so-
lution [28, 29] is quite convoluted and is based on Bethe Ansatz results for the ASEP (see Ap-
pendix A). Another method giving the second and fourth cumulants of the SEP[45,47] is the so-
called macroscopic �uctuation theory (MFT). It starts from the �uctuating hydrodynamics equa-
tions �rst derived by Spohn [46] and expands them using a path-integral formalism. A strength
of this method is that it allows to get rid of the microscopic details of the system and to have an
hydrodynamic formalism focusing from the start on the observables at large time and large dis-
tance. However, the fact that the position of a tagged particle is obtained only implicitly in terms
of the density �eld seems to make the computations tedious: they have not been performed above
the fourth cumulant.

In this section, we build upon the framework of the previous chapter and extend it to compute
the cumulant-generating function. The pro�les become generalized pro�les, and the average
displacement is replaced by the characteristic function. As before, the tagged particle is coupled
with the density �eld of the bath: we adopt a Lagrangian description for this particle. And the
bath is considered in the reference frame of the TP: this is similar to an Eulerian speci�cation
for a �ow �eld. This difference of description between the TP and the bath seems to us natural
for the study of single-tag observables of the SEP. Our approach starts from the master equation
of the problem [37, 46] and is exact. But in the general case, the equations are not closed. The
challenge is thus to �nd the regimes in which the equations are or can be closed.

We �rst recall the master equation of the SEP and use it to derive exact microscopic equations.
We then look at large distance and large time and obtain exact hydrodynamic equations. These
equations can be solved exactly for the lowest-order cumulants at any density, and for all cumu-
lants in the limits of both high and low density. Finally, we show that the approach extends to
arbitrary single-�le processes for which we compute the variance of a particle. This topic of this
chapter is still under work. The presentation may be quite technical but it should not distract the
reader from the main point which is that we build a new approach based on generalized pro�les
that gives the probability law of an intruder as a byproduct.

7.2 Master equation for the SEP with one tagged particle

We consider the usual symmetric exclusion process. Particles jump to the left and to the right with
rates 1=2 with exclusion. We introduce a tagged particle (TP) with asymmetric jump rates: p1 to
the right and p� 1 to the left (Fig. 7.1). The TP is initially at the origin, and its position at time t
is denoted Xt . We de�ne the occupation � r ( t ) of each site r 2 Z of the line at time t as� r ( t ) = 1
if the site is occupied and � r ( t ) = 0 if the site is empty. The system is entirely determined by its
con�guration (X, � ) with � = f � r gr 2Z . We now show that the rules enforced on the system lead
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naturally to a master equation, already derived in Refs. [37,46] .
We denote P(X, � , t ) the probability that the system is in the con�guration (X, � ) at time t .

During a small time interval � t , this con�guration can change for two reasons.

• A bath particle performs a jump to the left or to the right. This happens with probability
� t =2. We call � r,+ the con�guration � in which the occupations of sites r and r + 1 are
exchanged. One realizes that all the possible jumps of the bath particles correspond to
exchanges between con�gurations� and � r,+ , for r 6= X, X � 1. Indeed these con�gurations
are different only if exactly one of the two sites is occupied: this corresponds to an allowed
jump.

• The TP jumps to the left (probability p� 1� t ) or to the right (probability p1� t ). This hap-
pens only if the site of arrival is empty, that is to say if 1 � � X� 1 = 1.

One can then write the following equation for the evolution of the system between t and t + � t .

P(X, � , t + � t ) � P(X, � , t ) =
X

r 6= X,X� 1

� t
2

”
P(X, � r,+ , t ) � P(X, � , t )

—

+ � t
X

� = � 1

p� � t
¦

(1 � � X)P(X � � , � , t ) � (1 � � X+ � )P(X, � , t )
©

(7.1)

The �rst term corresponds to the diffusion of the bath, and the second to the motion of the TP.
Finally, the master equation veri�ed by our system is

@t P(X, � , t ) =
1
2

X

r 6= X,X� 1

”
P(X, � r,+ , t ) � P(X, � , t )

—

+
X

� = � 1

p�

¦
(1 � � X)P(X � � , � , t ) � (1 � � X+ � )P(X, � , t )

©
. (7.2)

This master equation will be crucial for the derivations of microscopic equations for integrated
quantities, such ashXt i or h� r i . Doing so is the goal of the next section.

7.3 Exact microscopic equations

7.3.1 De�nitions

The �rst key observable is the cumulant-generating function  (� , t ) of the position Xt of the TP,

 (� , t ) � ln


e� Xt

�
. (7.3)

We changed variable� = iu compared to the previous chapters. The expansion in powers of�
gives the cumulants of the position,

 (� , t ) =
1X

n= 0

� n

n!
� n( t ). (7.4)

The �rst cumulants read � 1 = hXt i , � 2 = h(� Xt )
2i , � 3 = h(� Xt )

3i , � 4 = h(� Xt )
4i � 3h(� Xt )

2i
with � Xt = Xt � h Xt i .



92 Chapter 7. Symmetric exclusion process: single-tag observables from generalized pro�les

The second observable is the generalized pro�lew̃r (� , t ) in the reference frame of the TP
de�ned as

w̃r (� , t ) �
h� Xt + r e� Xt i

he� Xt i
. (7.5)

Its expansion in powers of � gives the joint cumulants of Xt and � Xt + r .

w̃r (� , t ) =
1X

n= 0

� n

n!
h� Xt + r (Xt )

ni c � kr + � g̃r +
� 2

2
h̃r +

� 3

6
m̃r + . . . (7.6)

with the �rst orders given by kr = h� Xt + r i , g̃r = h�� Xt + r � Xt i , h̃r =


�� Xt + r (� Xt )

2
�
, m̃r =


�� Xt + r (� Xt )
3
�

� 3


�� Xt + r � Xt

� 

(� Xt )

2
�
, with �� Xt + r = � Xt + r � h � Xt + r i . The order 0, kr is

simply the pro�le in the reference frame of the TP, the higher order are generalizations involving
the displacement of the TP.

The de�nition of w̃r (7.5) may look unfamiliar. However, one can write the two-point char-
acteristic function

ln


e� Xt + �� Xt + r

�
= ln



e� Xt

�
+ �

h� Xt + r e� Xt i

he� Xt i
+ O(� 2) =  (� , t ) + � w̃r (� , t ) + O(� 2). (7.7)

w̃r is the �rst order in � of this characteristic function. Since � 2
Xt + r = � Xt + r , this �rst order

encodes all the couplings between� Xt + r and Xt .

7.3.2 Equation for the cumulant-generating function

We want to obtain an equation for the cumulant-generating function  (� , t ) [Eq. (7.3)] from
the master equation (7.2). We start by computing the time derivative of the moment-generating
function he� Xt i from the master equation.

@t he� Xt i �
X

X,�

e� X@t P(X, � ) (7.8)

=
X

� = � 1

p�

X

X,�

¦
(1 � � X)P(X � � , � , t )e�� e� (X� � ) � (1 � � X+ � )P(X, � , t )e� X

©
(7.9)

=
X

� = � 1

p� (e�� � 1)


(1 � � X+ � )e� Xt

�
(7.10)

The summation is performed on all positions X and all con�gurations � . The “diffusive” term of
the master equation vanishes by reordering the summation on� and the “TP” term is expressed

via a shift X 7! X + � . The time derivative of  (� , t ) = lnhe� Xt i then follows

@t  =
@t he� Xt i

he� Xt i
= p1(e� � 1)(1 � w̃1) + p� 1(e� � � 1)(1 � w̃� 1), (7.11)

with w̃r de�ned in Eq. (7.5). This is an exact equation which links the time derivative of the
cumulant-generating function to the values of the generalized pro�les w̃r at sites� 1 with respect
to the TP. At order � , one recovers the velocity equation,

@t hXt i = p1(1 � k1) � p� 1(1 � k� 1) (7.12)

with kr = h� Xt + r i . This exact equation intuitively means that the velocity is equal to the rate of
allowed jump to the right minus the rate of allowed jump to the left.
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7.3.3 Equation for the generalized pro�les

We de�ne wr = h� Xt + r e� Xt i , such that w̃r = wr =he� Xt i . A rather tedious computation from the
master equation (7.2) gives,

@t wr �
X

X,�

� X+ r e� X@t P(X, � ) (7.13)

=
1
2

X

�

(1 � � r,� � )r � wr +
X

�

p�

�
e��



(1 � � Xt + � )� Xt + r + � e� Xt

�
�



(1 � � Xt + � )� Xt + r e� Xt

�	

(7.14)

with r � wr = wr + � � wr and the convention � Xt
= 0. The �rst term comes from the “diffusive”

term of the master equation, and the second term from the “TP” term. Importantly, one notices
that this is not a closed equation on wr : it involves the correlations h� Xt + � � Xt + r e� Xt i .

The time derivative of the generalized pro�les w̃r can be computed as

@t w̃r =
@t wr

he� Xt i
� w̃r @t  , (7.15)

with @t  given by Eq. (7.11). The result is

@t w̃r =
1
2

X

�

(1 � � r,� � )r � w̃r +
X

�

p�

�
e�� C̃� ,r + � � C̃� ,r � (e�� � 1)(1 � w̃� )w̃r

	
, (7.16)

C̃� ,r (� , t ) �



(1 � � Xt + � )� Xt + r e� Xt

�

he� Xt i
. (7.17)

Eq. (7.16) is not a closed equation since it involves the correlationsC̃� ,r . Moreover, it appears
unattractive at �rst sight. We now put forward a rewriting of the correlations that we claim to be
relevant and that should clarify the situation.

7.3.4 Decoupling approach

We �rst write the key expression of our approach that we call a “decoupling approach”. Then, we
derive the new equations. Finally, we try to get some insight into what this decoupling approach
means.

The key point is to de�ne new correlations f� ,r as

f� ,r (� , t ) �

¨
C̃� ,r � (1 � w̃� )w̃r � � if � r > 0

C̃� ,r � (1 � w̃� )w̃r if � r < 0
(7.18)

with the convention w̃0 = 0. We note that the subtracted term is asymmetric depending on the
relative signs of � and r . Our insight is that f� ,r should vanish in some limit cases that we detail
in the following.

Introducing the expression into Eq. (7.16), we obtain the following equation

@t w̃r =
1
2

X

�

(1 � � r,� � )r � w̃r � B� r � � w̃r +
X

�

p�

�
e�� f� ,r + � � f� ,r

	
, (7.19)
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with � the sign of r and B� a (time-dependent) coef�cient closely linked to the time-derivative of
the cumulant-generating function [Eq. (7.11)] ,

B� (� , t ) � p� (1 � w̃� ) � p� � e� �� (1 � w̃� � ) =
@t  

e�� � 1
. (7.20)

In particular B� has the same time dependence as@t  . Eq. (7.19) is the central equation of this
chapter. Before detailing its implications, we offer some insight into Eq. (7.18).

Remark. When we introduced our decoupling approach, we had in mind the pro�les h� Xt + r i

and the order � (0) of the correlations f� ,r that we call f (0)
� ,r . We remind the reader of the fact

that � r can take only two values: 0 and 1. Let us analyze what it means to have a vanishing
correlation f (0)

1,r .

0 = f (0)
1,r � h (1 � � X+ 1)� X+ r i � h 1 � � X+ 1ih� X+ r � 1i (7.21)

, P[( � X+ 1 = 0) \ (� X+ r = 1)] = P[ � X+ 1 = 0] P[ � X+ r � 1 = 1] (7.22)

, P[ � X+ r = 1j� X+ 1 = 0] = P[ � X+ r � 1 = 1] (7.23)

The probability that site r with respect to the TP is occupied knowing that site 1 is empty is equal
to the probability that site r � 1 is occupied. In particular, one checks that this holds if the law
of the distance between successive particles follows a geometric distribution. This is valid for the
SEP at equilibrium because the density follows a product measure[72] . For the case of a biased
intruder, f (0)

1,r quanti�es the deviation from this relation. And f� ,r at any order in � investigates
how the couplings of the displacement Xt with the �eld modify this relation.

7.3.5 Final equations

We now summarize the four equations that we found and will investigate in the following.

@t w̃r =
1
2

� w̃r � B� r � � w̃r +
X

�

p�

�
e�� f� ,r + � � f� ,r

	
(7.24)

@t w̃� =
1
2

r � w̃� + B� w̃� + p� e�� f� ,2� � p� � f� � ,� (7.25)

lim
r !�1

w̃r = � (7.26)

@t  = p1(e� � 1)(1 � w̃1) + p� 1(e� � � 1)(1 � w̃� 1) (7.27)

with r � w̃r = w̃r + � � w̃r and � w̃r = w̃r + 1 + w̃r � 1 � 2w̃r . The coef�cient B� is linked to @t  by
B� = @t  = (e�� � 1). The correlations f� ,r are de�ned in Eq. (7.18).

Let us emphasize the meaning of the different equations. Eq. (7.24) is the bulk equation for
the generalized pro�les. It is valid for r 6= � 1, and � = � 1 denotes the sign ofr . It is remarkable
that the generalized velocity @t  is involved (by the coef�cient B� ). Eq. (7.25) is the boundary
equation, it details what happens at sites� = � 1. Eq. (7.26) is the large distance behavior: the
generalized pro�les de�ned by Eq. (7.5) should converge at large distance to the average density
� of the system. Finally, Eq. (7.27) links the generalized velocity (derivative of the cumulant-
generating function) to the generalized pro�les at sites � 1.

The system of equations (7.24)-(7.27) is exact, but it is not closed since it involves the corre-
lations f� ,r . One would require a closure relation on these correlations to solve the system. In the
following, we will show that in some limit cases, such a relation is either unnecessary (f� ,r � 0)
or can be explicitly provided.
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7.4 Exact hydrodynamic equations

The goal of this section is to study the equations (7.24)-(7.27) in the large time limit t ! 1 ,
with a diffusive scaling r �

p
t on the positions. We �rst write the time scalings of the different

functions involved. Then we derive the hydrodynamic (large time and large distance) equations.
And �nally, we show that at order 0 we recover the hydrodynamic equation for the pro�le that
we studied in Chap 6.

7.4.1 Scalings

From the previous chapters, we know that in the SEP, the cumulant-generating function (� , t )
scales as

p
t . We write

@t  (� , t ) =
A(� )
p

2t
+ O( t � 1). (7.28)

This immediately implies the following time scalings of B� 1,

B� (� , t ) = �
b� (� )
p

2t
+ O( t � 1) (7.29)

with b� (� ) = � A(� )=(e�� � 1). The sign � is a convention adapted to the equations that we will
derive.

From our intuition from Chap 6, and numerical simulations, we state that the pro�les w̃r

follow a diffusive scaling at large time,

w̃r (� , t ) = � + �
•

r
p

2t
, �

‹
+ O( t � 1=2). (7.30)

From Eq. (7.26), lim v!�1 � (v, t ) = 0.
One has the insight that the correlations f� ,r (� , t ) also need to satisfy a diffusive scaler �

p
t .

In numerical simulations, we see that there is no term of order t 0 and that the �rst term is of order
t � 1=2. We write the following expansion,

f� ,r (� , t ) =
1

p
t

F�

•
r

p
2t

, �
‹

+
1
t

G�

•
r

p
2t

, �
‹

+ O( t � 3=2). (7.31)

Now that we have the scaling forms, we can study Eqs. (7.24)-(7.27) in this limit.

7.4.2 Derivation of the equations

We separate the relations into two categories, those which come from a vanishing quantity, and
the hydrodynamic equations.

Vanishing quantities. From the scalings of Eqs. (7.28)-(7.30), we see that the left-hand side of
Eq. (7.27) scales ast � 1=2 while the right-hand side scales ast 0. At large time, this imposes the
relation

p1(e� � 1)[ 1 � � � � (0+ )] + p� 1(e� � � 1)[ 1 � � � � (0� )] = 0. (7.32)

This is a generalization of the “force balance” written in Chap 6.
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Similarly, the left-hand side of Eq. (7.24) scales ast � 1, while the right-hand side has a term
of order t � 1=2 that must be vanishing. This imposes,

p1(e� � 1)F1(v) + p� 1(e� � � 1)F� 1(v) = 0, (7.33)

p� 1F� 1(v) = p1e� F1(v). (7.34)

This symmetry relation, similar in spirit to Eq. (7.32), is one of the major advantages of the
de�nition of f� ,r [Eq. (7.18)] .

Hydrodynamic equations. We can now write the scaling limit of the bulk equation (7.24) from
the scalings (7.30)-(7.31).

� v� 0(v) =
1
2

� 00(v) + b� � 0(v) +
X

�

� p� e�� F0
� (v) +

X

�

p� (e�� � 1)G� (v) (7.35)

Note that the second order in time of the development of f� ,r is needed.
Similarly, the boundary equation (7.25) gives

0 =
�

2
� 0(0� ) + � b� [ � + � (0� )] . (7.36)

It is striking that the correlation terms vanish because of the symmetry (7.34).
Finally we can write the large-time and large-distance equations, that we call the hydrody-

namic equations. They correspond to Eqs. (7.24)-(7.27) at large time.

� 00(v) + 2(v + b� )� 0(v) + 2p1(e� � 1)F0
1(v) + 2

X

�

p� (e�� � 1)G� (v) = 0, (7.37)

� 0(0� ) + 2b� [ � + � (0� )] = 0, (7.38)

lim
v!�1

� (v) = 0, (7.39)

p1(e� � 1)[ 1 � � � � (0+ )] + p� 1(e� � � 1)[ 1 � � � � (0� )] = 0. (7.40)

We used the symmetry relation (7.34) in the bulk equation. These equations are exact. Solving
them requires a closure relation on F� (v) and G� (v).

That being said, at the order � 0, one realizes that the correlations play no role at all. And if
there is no bias (p1 = p� 1 = 1=2), the equations at order � 1 also do not involve correlations. We
now investigate the equations obtained in these two cases and the solution they give.

7.5 Lowest orders

We expand the generalized pro�les in power of � , � (v, � ) = � 0(v) + � � 1(v) + O(� 2). � 0 is the
large time and large distance limit of the pro�les kr = h� Xt + r i , and � 1 the limit shape of the
�rst order pro�les g̃r = h� Xt + r Xt i � h � Xt + r ihXt i . We focus on the equations obtained for� 0 from
Eqs. (7.37)-(7.40), and then those for � 1 in the absence of bias.

7.5.1 Density pro�le (order 0)

Remarkably, at order � 0, the bulk equation (7.37) does not involve the correlations,

� 00
0 (v) + 2(v + A0)� 0

0(v) = 0 (7.41)
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with

A0 = b(0)
� =

@t hXi
p

2t
. (7.42)

Furthermore, the boundary equation (7.38) and the velocity equation (7.40) give

� 0
0(0� ) + 2A0[ � + � 0(0� )] = 0, (7.43)

p1

�
1 � � � � 0(0+ )

�
+ p� 1

�
1 � � � � 0(0� )

�
= 0. (7.44)

We realize that Eqs. (7.41), (7.43) and (7.44) are those that we studied in chapter 6 on the
unbinding transition [Eqs. (6.14), (6.15) and (6.7) with � 0 = � � � ] . Their solution is given in
subsection 6.3.2 and reads

� 0(v ¿ 0) = �

p
� A0eA2

0 erfc(� (v + A0))

1 �
p

� A0eA2
0 erfc(� A0)

. (7.45)

Finally, hX( t )i = A0
p

2t with A0 satisfying the implicit equation

1 � � g(A0)

1 � � g(� A0)
=

p� 1

p1
(7.46)

with g(A0) =
”
1 �

p
� A0eA2

0 erfcA0

—� 1
. This solution is the known solution of Refs. [42, 43] . As

we showed in the previous chapter, it is the basis of our analysis of the unbinding transition.

Symmetric TP in a step density pro�le

Remarkably our approach extends to a step density pro�le. Let us consider that initially, h� X0+ r i ( t =
0) = � � for r ¿ 0. This is the con�guration studied by Imamura and coworkers [28,29] . In this
case, it is not hard to show that one can de�ne

w̃r ( t ) �
t !1

� � + �
•

r
p

2t

‹
(7.47)

with � = sign(r ), and that the boundary equation (7.38) and velocity equation (7.40) become

� 0(0� ) + 2b� [ � � + � (0� )] = 0, (7.48)

p1(e� � 1)[ 1 � � + � � (0+ )] + p� 1(e� � � 1)[ 1 � � � � � (0� )] = 0. (7.49)

The bulk equation (7.37) and the large distance limit (7.39) are left unchanged.
Solving the equations at order � 0, one obtains successively,

� 0(v ¿ 0) = � A0[ � � + � 0(0� )]
p

� eA2
erfc(� (v + A0)) , (7.50)

� � + � 0(0� ) = � � g(� A0), (7.51)

g(A0) =
1

1 �
p

� A0eA2
0 erfcA0

. (7.52)

We consider the velocity equation (7.49) at order � 0 and we restrict ourselves to the symmetric
casep1 = p� 1 = 1=2,

� + g(A0) � � � g(� A0) = 0. (7.53)
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Finally, using the relation erfc(� x) = 2 � erfc x, we obtain the following implicit equation on A0,

2A0� + = ( � � � � + )

�
e� A2

0

p
�

� A0 erfcA0

�

. (7.54)

The average position of the TP ishX( t )i = A0
p

2t . As expected, this result is the one ob-
tained in Ref. [28] . Additionally, our approach gives the pro�le in the reference frame of the
TP, h� Xt + r i ( t ) � � � + � 0( r =

p
2t ) with

� 0(v ¿ 0) =
�

p
� A0eA2

0 erfc[ � (v + A0)]

1 �
p

� A0eA2
0 erfc(� A0)

. (7.55)

Note that hydrodynamic equations similar to ours were already provided in Ref. [43] in the
case of an arbitrary initial density pro�le.

7.5.2 First order without bias

In this subsection, we assume that the TP is unbiased:p1 = p� 1 = 1=2. Let us expand the
correlations [Eq. (7.18)] in powers of � : f� ,r (� , t ) = f (0)

� ,r ( t ) + � f (1)
� ,r ( t ) + . . . , and similarly

F� (v, � ) = F(0)
� (v) + � F(1)

� (v) + . . . and G� (v, � ) = G(0)
� (v) + � G(1)

� (v) + . . . .
It has been shown that the product measures are invariant measures for the SEP[72] . This

means that starting from the equilibrium state (annealed initial conditions), the average den-
sity is h� i ( t )i = � and the equal time correlations between occupations vanish:h� i ( t )� j ( t )i =
h� i ( t )ih� j ( t )i = � 2 for arbitrary i 6= j at arbitrary time. From the de�nition (7.18), this im-
plies f (0)

� ,r ( t ) = 0 and thus F(0)
� (v) = G(0)

� (v) = 0. This has the remarkable consequence that the
bulk equation (7.37) in the hydrodynamic limit can be written exactly at order � without any
correlation term,

� 00
1 (v) + 2v� 0

1(v) = 0. (7.56)

We used the fact that in the symmetric case,hX( t )i = 0 thus b(0)
� = 0. We remark that the exact

microscopic equation (7.24) at order � involves f (1)
� ,r (the correlation between � X+ � , � X+ r and X)

which does not vanish. The microscopic equation at order 1 is not closed.
We now de�ne the variance � 2( t ) and its rescaling at large time �̂ 2,

� 2( t ) � h X2( t )i � h X( t )i 2 �
t !1

�̂ 2

p
2t . (7.57)

One checks that the order 1 ofb� is b(1)
� = �̂ 2=2. The boundary equation (7.38) at order � reads

� 0
1(0� ) + � �̂ 2 = 0. (7.58)

And the velocity equation (7.39), expanded at order � 2 gives

� 1(0+ ) � � 1(0� ) = 1 � � . (7.59)

We are now ready to obtain the solution for � 1(v) and �̂ 2. Equations (7.56) and (7.58), with
the addition of the large distance limit [Eq. (7.39)] give

� 1(v ¿ 0) = �
p

�
2

� 0
1(0� ) erfc(� v) = �

p
�

2
� �̂ 2 erfc(� v). (7.60)
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As � 1(v) = � � 1(� v), Eq. (7.59) gives � (0+ ) = � � (0� ) = ( 1 � � )=2.
Finally the order 1 pro�les, de�ned as



� Xt + r Xt

�
�



� Xt + r

�
hXt i �

t !1
� 1

•
r

p
2t

‹
(7.61)

are given by

� 1(v ¿ 0) = �
1 � �

2
erfc(� v), (7.62)

and the variance is,

�̂ 2 =
1 � �

�
1

p
�

, � 2 =
1 � �

�

v
t 2t

�
. (7.63)

This last result is the well-known result �rst found by Arratia [27] . To the best of our knowledge,
the order 1 pro�les have not been investigated before. The result of Eq. (7.62), which can be
checked in numerical simulations, is new.

A natural question is whether similar results exist at higher orders. We now show that it is
indeed the case in both the limits of high and low density.

7.6 High density

7.6.1 Scalings and equations

In the high density limit � ! 1, the cumulant-generating function is expected to scale as(1 � � ).
We write

 (� , t ) �
� ! 1

(1 � � ) � (� , t ), B� (� , t ) �
� ! 1

(1 � � ) �B� (� , t ) = ( 1 � � )
@t

� (� , t )

e�� � 1
, (7.64)

with � and �B� independent of the density � .
The �uctuations of occupation �� r = � r � h � r i also scale as(1 � � ). Thus, the generalized

pro�les w̃r scale as(1 � � ) while the correlations f� ,r (between � X+ � and � X+ r ) scale as(1 � � )2.

w̃r �
� ! 1

� + ( 1 � � ) �wr = 1 + ( 1 � � )( �wr � 1), (7.65)

f� ,r = O[( 1 � � )2] . (7.66)

When all the scalings are written, the microscopic equations (7.24)-(7.27) become a closed
system independent of� ,

@t �wr =
1
2

� �wr (7.67)

@t �w� =
1
2

r � �w� + �B� ( t ) (7.68)

lim
r !�1

�wr = 0 (7.69)

@t
� = p1(e� � 1)(1 � �w1) + p� 1(e� � � 1)(1 � �w� 1). (7.70)
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7.6.2 Microscopic solution

We de�ne the Laplace transform

�wr (u) =

Z 1

0

e� ut �wr ( t )d t . (7.71)

The bulk and boundary equations become,

1
2

[ �wr + 1(u) + �wr � 1(u)] � (1 + u) �wr (u) = 0 (7.72)

1
2

�w2� (u) �
•

1
2

+ u
‹

�w� (s) + � �B� (u) = 0. (7.73)

The equation � 2 � 2(1 + u)� + 1 = 0 has two solutions, but only one satis�es the condition
� r !

r !1
0 imposed by Eq. (7.69). The solution of Eq. (7.72) is

�wr (u) =  � (u)� j r j , (7.74)

� = 1 + u �
Æ

(1 + u)2 � 1, (7.75)

where � is the sign of r . Injecting this expression into the boundary equation (7.73), we obtain
(recall that � 2 � 2(1 + u)� + 1 = 0)

 � (u) =
2�B� (u)

(1 + 2u)� � � 2
=

2�B� (u)

1 � �
=

2
1 � �

(@t
� )(u)

e�� � 1
. (7.76)

We �nally use the velocity equation (7.70) and obtain

(@t
� )(u) =

1
u

�
p1(e� � 1) + p� 1(e� � � 1)

�
�

2(p1 + p� 1)�

1 � �
(@t

� )(u), (7.77)

(@t
� )(u) =

1
u

1 � �
1 + �

[ cosh� � 1 + issinh � ] =
1

p
u(2 + u)

[ cosh� � 1 + issinh � ] , (7.78)

with the bias s= p1 � p� 1. This expression can be inverted into

@t
� ( t ) = e� t I0( t ) [ cosh� � 1 + issinh � ] . (7.79)

We have recovered, by a completely different method, the full solution found by the vacancy
approach in Eq. (3.30). As expected, the large time limit is

@t
� ( t ) �

t !1

1
p

2� t
[ cosh� � 1 + issinh � ] . (7.80)

We also obtain the full solution for the generalized pro�les �wr ,

�wr (u) =
1
u

2
1 + �

�
p� � e� �� p� �

�
� j r j . (7.81)

The small u behavior at constant r
p

u gives the large time behavior at constantr =
p

t ,

�wr (u) �
u! 0

�
p� � e� �� p� �

� e�j r j
p

2u

u
(7.82)

�wr ( t ) �
t !1

�
p� � e� �� p� �

�
erfc

•
j r j

p
2t

‹
. (7.83)

As expected, the orders� 0 and � 1 are consistent with the results at arbitrary density found above.
The �rst three orders of the pro�les are checked against numerical simulations in Fig. 7.2
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Figure 7.2: Generalized pro�les of the symmetric high density SEP (� = 0.95). The symbols
correspond to numerical simulations at times t = 0.3, 1,3, 10,30,100, 300 (blue to red). Left:
non-rescaled pro�les compared to the numerical inversion of Eq. (7.81) (colored lines). Right:
rescaled pro�les compared to the prediction from Eq. (7.83) (dashed black line).

7.7 Low density limit

7.7.1 Scalings and equations

At �rst sight, the low density limit ( � ! 0) is harder to de�ne than the high density limit. The
reason for that is that it corresponds to a continuous limit. It only makes sense with a rescaling
of both space and time: we consider the limit � ! 0 at constant rescaled positionz and constant
rescaled time � with

z = � r, � = � 2 t . (7.84)

Note that z is a continuous variable. Since space is rescaled, the displacement of the TP should be
considered asXt = X̂t =� , with X̂t constant. The factorse� Xt of the generating functions should

thus be written e�̂ X̂t : the limit of low density is taken at constant rescaled generating parameter

�̂ =
�
�

. (7.85)

We can immediately write the scaling limit of the cumulant-generating function  (� , t ) = lnhe� Xt i ,

 (� , t ) �
� ! 0

ˆ 
•

�̂ =
�
�

, � = � 2 t
‹

, (7.86)
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with ˆ independent of � . The parametersB� involved in the equation become

B� (� , t ) �
@t  

e�� � 1
�

� ! 0

� 2@�
ˆ 

�� �̂
= �� B̂(�̂ , � ) (7.87)

with B(�̂ , � ) = @�
ˆ (�̂ , � )=�̂ . We want to consider the general case of a biased TP with jump

probabilities p� = 1� � s where � 1 � s � 1 is the bias. The displacement of a unique particle on a
discrete line scales asXt � st. In the continuous limit, we expect a scaling X̂� � S� with X̂ = � X
and � = � 2 t . This means that in the low density limit, the bias should scale with the density as

s �
� ! 0

� S. (7.88)

S is an unbounded force in the continuous limit.
Let us now investigate the scalings ofw̃r de�ned in Eq. (7.5) and f� ,r de�ned in Eq. (7.18). At

low density, we expect the �uctuations of occupation to scale like the density, �� r = � r � h � r i /
� . One checks that such �uctuations are involved once in w̃r and twice in f� ,r . This leads us to
the following scalings,

w̃r (� , t ) �
� ! 0

� Ŵ
•

�̂ =
�
�

, z = � r, � = � 2 t
‹

(7.89)

f� ,r (� , t ) �
� ! 0

� 2F̂ �

•
�̂ =

�
�

, z = � r, � = � 2 t
‹

(7.90)

with Ŵ and F̂ � independent of � .
Once the scalings are stated, the equations (7.24)-(7.27) can be written in the limit � ! 0,

in the symmetric case p1 = p� 1 = 1=2. The bulk equation (7.24) scales as� 3, the boundary
equation (7.25) and the velocity equation (7.27) both scale as � 2. We remark that the bias is
not directly involved in the bulk and boundary equations. The continuous equations in the low-
density limit are

@� Ŵ(�̂ , z, � ) =
1
2

@2
z Ŵ + B̂@zŴ +

1
2

�
@zF̂ 1 � @zF̂ � 1 + �̂

�
F̂ 1 � F̂ � 1

�	
, (7.91)

0 =
1
2

@zŴ(� , 0� , � ) + B̂Ŵ(0� ) +
1
2

�
F̂ 1(0� ) � F̂ � 1(0� )

�
, (7.92)

lim
z!�1

Ŵ(�̂ , z, � ) = 1, (7.93)

@�
ˆ (�̂ , � ) =

1
2

�̂ 2 �
1
2

�̂
�
Ŵ(� , 0+ , � ) � Ŵ(� , 0� , � )

�
+ �̂ S. (7.94)

As usual, this set of equations is not closed and we need an expression for the correlationŝF � .
We will see in the following that we are able to solve this issue at large time in the symmetric
case.

7.7.2 Large time behavior

We now write the large time scalings (� ! 1 ) of the quantities involved in Eqs. (7.91)-(7.94).
They are a particular case of the expressions of subsection 7.4.1. The time derivative of the
cumulant-generating function, and the quantity B̂ obey

@�  (�̂ , � ) �
� !1

Â(�̂ )
p

2t
B̂(�̂ , � ) =

@�  (�̂ , � )

�̂
�

� !1

� (�̂ )
p

2t
. (7.95)
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The generalized pro�les Ŵ and the correlations F̂ � obey

Ŵ(�̂ , z, � ) = 1 + �̂
•

�̂ ,
z

p
2�

‹
+ O(� � 1=2) (7.96)

F̂ � (�̂ , z, � ) =
1

p
�

F̂�

•
�̂ ,

z
p

2�

‹
+

1
�

Ĝ�

•
�̂ ,

z
p

2�

‹
+ O(� � 3=2). (7.97)

We remark that the scaling variable can be written in the original set of variables, v = z=
p

2� =
r =

p
2t . Another important remark is that the “symmetry relation” (7.34) still holds and gives in

this particular case (� = � �̂ ),
F̂1(�̂ , v) = F̂� 1(�̂ , v). (7.98)

The large time limit of Eqs (7.91)-(7.94) can now be stated. It is a particular case of Eqs. (7.37)-
(7.40).

�̂ 00(v) + 2(v + � )�̂ 0(v) + �̂
�
Ĝ1(v) � Ĝ� 1(v)

�
= 0, (7.99)

�̂ 0(0� ) + 2�
�
1 + �̂ (0� )

�
= 0, (7.100)

lim
v!�1

� (v) = 0, (7.101)

�̂ (0+ ) � �̂ (0� ) = �̂ + 2S. (7.102)

Surprisingly, the leading order of F̂ � disappears. The only remaining correlation isĜ1 � Ĝ� 1. We
now provide a closure relation on this term when S = 0 and show that it leads to the known result
for the cumulant-generating function.

7.7.3 Closure relation and solution in the symmetric case

We consider the case of an unbiased particle (S = 0) and we put forward the following closure
relation

Ĝ1(�̂ , v) � Ĝ� 1(�̂ , v) = 2
d�

d�̂
�̂ 0(v). (7.103)

We are able to check this relation numerically at the �rst two lowest orders in �̂ (Fig. 7.4). Even
though we have no simple interpretation for the moment, we claim that this closure relation gives
the correct result both for the cumulant-generating function and for the generalized pro�les.

The immediate implication is that Eq. (7.99) becomes closed,

�̂ 00(v) + 2(v + � )�̂ 0(v) = 0, (7.104)

with � the (rescaled) derivative of the cumulant-generating function with respect to its parameter,

� � � + �̂
d�

d�̂
=

d

d�̂
(�̂� ) =

1
p

2�

d ˆ (�̂ , � )

d�̂
. (7.105)

Now, the equations (7.104), (7.100) and (7.101) can be solved without much dif�culty and
one obtains

�̂ (v ¿ 0) =
� �

� � 1=2e� � 2 � � erfc(� � )
erfc(� (v + � )) . (7.106)

And �nally, Eq. (7.102), with S = 0, leads us to an implicit equation for � and � ,

�
•

erfc(� )

� � 1=2e� � 2 � � erfc(� )
+

erfc(� � )

� � 1=2e� � 2 + � erfc(� � )

‹
= �̂ . (7.107)
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Since� and � are expressed in terms of the cumulant-generating function, the latter is now fully
characterized. More precisely, we de�ne the cumulants � n and the rescaled cumulants�̂ n as

 (� , t ) �
1X

n= 1

� n

n!
� n( t ) ˆ (�̂ , � ) �

1X

n= 1

�̂ n

n!
�̂ n

p
2� . (7.108)

Since the two expressions are equal, we have� n( t ) = � 1� n �̂ n
p

2t . From their de�nitions, the
expansions of� and � in powers of �̂ also give the rescaled cumulants,

� �
1

p
2�

ˆ (�̂ , � )

�̂
=

1X

n= 0

�̂ n

(n + 1)!
�̂ n+ 1, � �

1
p

2�

d ˆ (�̂ , � )

d�̂
=

1X

n= 0

�̂ n

n!
�̂ n+ 1. (7.109)

These expressions can be injected into Eq (7.107) to obtain the cumulants order by order,

�̂ 2 =
1

p
�

, �̂ 4 =
3(4 � � )

� 3=2
, (7.110)

�̂ 6 =
15(68 � 30� + 3� 2)

� 5=2
, �̂ 8 =

21(10912 � 6840� + 1320� 2 � 75� 3)

� 7=2
. (7.111)

The cumulants are� n( t ) = � 1� n �̂ n
p

2t . These are exactly the coef�cients known in the literature
for interacting point-like particles on a line [41, 44, 45] , a model which is equivalent to the low
density SEP.

Furthermore, a lengthy and tricky computation shows that Eq. (7.107) is equivalent to the
parametrization obtained by Sadhu and Derrida [41] :

� =
�

2

€Æ
h(� � ) �

Æ
h(� )

Š�
erfc(� )
p

h(� )
+

erfc(� � )
p

h(� � )

�

(7.112)
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t h(� � )

h(� )
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v
t h(� )

h(� � )

™
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with h(� ) =
R1

� d y erfc( y). The �rst equation is an implicit equation on � (which is the same
quantity as in our approach) and the second one gives the expression of the cumulant-generating
function.

At the end of the day, we have found a new approach that starts from the master equation
and we offered a closure relation. This approach enables us to recover the known results for the
cumulants of the low density SEP. But importantly, we also obtain expressions for the generalized
pro�les,

w̃r (� , t ) �
1X

n= 0

� n

n!
h� Xt + r (Xt )

ni c �
� ! 0
t !1

� �̂
•

�̂ =
�
�

, v =
r

p
2t

‹
�

1X

n= 0

� n

n!
� 1� n �̂ (n)(v) (7.114)

where h�i c is a multi-variable cumulant. From Eq. (7.106), the lowest orders are

�̂ (1)(v) =
1
2

erfc v, (7.115)

�̂ (2)(v) =
1
2

erfc v � 2
e� v2

�
, (7.116)

�̂ (3)(v) =
3

� 3=2

”
(2v �

p
� )e� v2

+
p

� erfc v
—

, (7.117)

�̂ (4)(v) = �
1

2� 2

”
(128 � 24� + 24

p
� v + 32v2)e� v2

+ 3� (� � 8) erfc v
—

. (7.118)

We are able to check these expressions in numerical simulations.
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Figure 7.3: Rescaled generalized pro�les of the low density SEP (� = 0.1). The cumulants
come from the expansion (7.114). The symbols are the results of numerical simulations att =
30, 100,300, 1000,3000, 10000 (blue to red). The dashed black lines are the predictions from
Eqs. (7.115)-(7.117) with a correcting factor 1 � � = 0.9. We indeed expect such a factor to hold
at arbitrary density for the pro�les, in the same way that it holds for the cumulants [28] . The
density � = 0.1 is a compromise to have a reasonable time scale for convergencetconv � � � 2. The
simulation corresponds to a system of size 5000 (500 particles), 109 repetitions were performed.

Figure 7.4: Correlations of the low density SEP, f� ,r (� , t ) = � f (1)
� ,r ( t ) + ( � 2=2) f (2)

� ,r ( t ) + . . .
[Eq. (7.18)] . The parameters, including the times corresponding to the colors, are the same
as Fig. 7.3. (a) and (b) Rescaled �rst and second orders of the correlations. Sincef1,r (� ) =
f� 1,� r (� � ), the symmetry relation (7.98) is veri�ed numerically at large time ((anti-)symmetry
between v > 0 and v < 0). (c) and (d) Rescaled difference f1,r � f1,r for the �rst and second
orders. From the symmetry (7.98) this difference is of order t � 1. The dashed black lines are
the predictions corresponding to the closure relation (7.103) with the second cumulant given by
Eq. (7.110) and the pro�les by Eqs. (7.115)-(7.116) (with the 1 � � prefactor used in Fig. 7.3).
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7.8 Variance of generic single-�le processes

Let us now turn to generic single-�le processes. We say a few words about the �uctuating hy-
drodynamics framework, �rst introduced by Spohn [46] and used for instance in Refs.[45, 47] .
Any single-�le system may be described at large distance and large time by two coef�cients only,
the diffusion coef�cient D(� ) and the mobility � (� ). These coef�cients may be computed from
the microscopic details [46] and are related to �uxes at the macroscopic level. For the SEP, the
diffusion coef�cient is D(� ) = 1=2 and the mobility is � (� ) = � (1 � � ). The �uctuating hydro-
dynamics equation for the density �eld � ( x, t ) at large distance and large time is

@ �

@t
(x, t ) =

@
@x

”
D(� )� ( x, t ) +

Æ
� (� )� ( x, t )

—
(7.119)

where � ( x, t ) is a local unitary Gaussian noise. The positionXt of a tagged particle initially at
the origin is expressed implicitly using the conservation of the number of particles on the right:

Z 1

Xt

d x� ( x, t ) =

Z 1

0

d x� ( x, 0). (7.120)

We now suggest that our approach of subsection 7.5.2 can be extended for a generic single-
�le system characterized by its diffusion coef�cient and its mobility. We focus on a single TP
which is not biased. We de�ne the generalized pro�le of order 1 as the correlation between the
displacement of the TP and the density �eld in the reference frame of the TP,

g̃( x, t ) � h � (Xt + x)Xt i � h � (Xt + x)ihXt i . (7.121)

At large time, this pro�le is assumed to scale as

g̃( x, t ) �
t !1

� 1

•
x

p
2t

‹
. (7.122)

Without attempting to provide a rigorous derivation, we postulate that � 1 follows the hydro-
dynamic equations below, that are similar to Eqs. (7.37)-(7.40).

D(�̄ )� 00
1 (v) + v� 1(v) = 0, (7.123)

D(�̄ )� 0
1(0� ) = � �̄ �̂ 2, (7.124)

� 1(�1 ) = 0, (7.125)

� 1(0+ ) � � 1(0� ) =
� (�̄ )

2�̄ D(�̄ )
, (7.126)

with �̄ the average density of the system, and�̂ 2 = hX2
t i =

p
2t . By symmetry, the last equation

gives � 1(0+ ) = � � 1(0� ) = � (�̄ )=(4�̄ D(�̄ )) . The solution of the bulk and boundary equations is
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. (7.127)

Finally, from the value of � 1(0� ), the pro�le reads

� 1(v ¿ 0) = �
� (�̄ )

4�̄ D(�̄ )
erfc

�
� v

p
2D(�̄ )

�

(7.128)
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and the solution for the variance is found to be

hX2
t i = �̂ 2

p
2t =

� (�̄ )

�̄ 2

v
t t

� D(�̄ )
. (7.129)

This result is the known result of Ref. [45] for the variance of a generic single-�le system.
Further work should attempt to make sense rigorously of the hydrodynamic equations (7.123)-

(7.126) for the pro�les of order 1. Another interesting point would be to generalize the full
hydrodynamic equations (7.37)-(7.40) (at all orders) to generic single-�le systems.

7.9 Conclusion

Obtaining the probability law of a tagged particle in the SEP at arbitrary density, or in a given
single-�le system, is a hard problem that has been tackled so far using macroscopic �uctuation
theory [45,47] or Bethe Ansatz methods[28,29] . In this chapter, we introduced a new approach
relying on generalized density pro�les, that is to say correlations between the displacement of the
TP and the density �eld in the reference frame of the TP. The interest of these generalized pro�les
lies in the fact that their values around the origin give the cumulant-generating function of the
displacement of the TP[Eq. (7.11)] . Moreover, starting from the master equation of the problem,
one can derive a bulk and a boundary equations for the generalized pro�les. These equations are
not closed and involve higher order correlations. We used a decoupling approach to write these
correlations in a way that creates an “advection” term in the equations with a coef�cient B� closely
related to the cumulant-generating function. In some limit cases, the remaining correlations,
called f� ,r , either vanish or can be determined. In addition to the microscopic equation, we also
wrote exact hydrodynamic equations valid at large distance and large time that immediately focus
on the anomalous large-time features.

The �rst cases in which the correlations vanish are the lowest orders of the generalized pro-
�les. For the density pro�le related to a biased TP, we recover (and prove) the equations that were
studied in the previous chapter and that give the displacement of the TP. For an unbiased TP, the
correlations involved for the order 1 of the pro�les also vanish and we recover the well-known
result for the variance of the SEP at arbitrary density. A case that can be solved completely is the
SEP at high density: the correlations vanish at all orders at any time and we obtain the cumulant-
generating function derived in Chap. 3. The low-density case can also be solved by postulating
a closure relation at large time. We recover the known result for the cumulant-generating func-
tion and obtain analytical expression for the generalized pro�les at all orders. Finally, one can
postulate generic hydrodynamic equations for the order 1 pro�les of single-�le systems. These
equations enable to recover the variance of an arbitrary single-�le system.

We believe that the approach introduced in this chapter can be the starting point of further
studies. It would be interesting to investigate the meaning and the justi�cation of several points,
namely the decoupling approach and the closure relation found at low density. Another goal
would be to �nd the expressions of the generalized pro�les that are associated with the generating
function of a TP in the SEP found by Imamura, Sasamoto and Mallick[28,29] . The extension to
generic single-�le systems also needs further work (justi�cation, and equations at higher orders).
Finally, it would be interesting to investigate if our approach also extends to the problem of several
TPs studied in the previous chapters.



108 Chapter 7. Symmetric exclusion process: single-tag observables from generalized pro�les



Part II

Correlations of driven and active
bidimensional systems

109





Introduction

The �rst part of this thesis was dedicated to the study of correlations in single-�le systems and in
particular in the SEP. We highlighted the fact that such observables give us key insights into the
anomalous behavior of such systems in which the motion of any given particle is highly dependent
on what the others do. The importance of correlations is of course not limited to one-dimensional
systems. Indeed a large part of liquid theory[1] is dedicated to the characterization of the pair cor-
relation function g(r ). This function has the advantage of being experimentally measurable and
can be related to macroscopic observables such as the compressibility and the pressure. We will
see in this part that such correlation functions can also be used to characterize out-of-equilibrium
systems where particles are driven.

The two major cases that we consider are driven binary mixtures (DBMs) in which two species
of particles are driven in opposite directions by an electric �eld, and active Brownian particles
(ABPs) that self-propel along their orientation, which is diffusive. In both cases, we will see that
the correlation function becomes anisotropic: one writes g(xk, x? ) with xk and x? the directions
respectively parallel and perpendicular to the motion of the particles. Two questions arise. What
is the spatial structure of the correlations? And how do the correlations decay at large distance?
The spatial structure is a key indicator of the collective effects in the system. For DBMs we show
that the structure is an indication of “laning”: particles of the same species tend to align with each
other. And for ABPs, we uncovered a striking winged shape at high activity. The matter of the
decay of the correlations is well known in equilibrium statistical physics for phase transitions [20] .
For instance the correlation C(r, T) of the Ising model at temperature T decays exponentially
with a correlation length � below (or above) the critical temperature while it exhibits a scale-free
power-law decay at the critical temperature

CIsing( r, T 6= Tc) / e� r =� , CIsing( r, T = Tc) / r � d+ 2� � .

These two scalings are typical of what one could call normal (exponential) and anomalous (al-
gebraic) behaviors of the correlation function. In the two driven systems that are considered, we
will uncover interesting power-law decays of the correlations. Moreover, we will see that these
anomalous decays are associated with scaling forms in the structure of the correlationsg(xk, x? ).

The starting point of our approach is the Dean equation[58] , an exact equation for the density
�eld of pairwise interacting particles. As it is non-linear and involves multiplicative noise, it is
dif�cult to deal with. But we will see that it can be linearized around a homogeneous density
pro�le. This gives results valid in a weak-interaction limit and we will see that some of these
results can be generalized to arbitrary interactions.
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In Chapter 8, we introduce our framework for a passive liquid. We derive the Dean equa-
tion [58] for the density �eld and linearize it around a homogeneous density. This enables us to
obtain an expression for the pair correlation g(r ). This expression is identical to the one obtained
with the well-known random phase approximation [1] .

Chapter 9 focuses on a �rst instance of out-of-equilibrium system: a driven binary mixture in
which particles belonging to two different species are driven in opposite directions by an external
electric �eld. A Dean equation can be computed and linearized. This gives anisotropic pair
correlations, both intra-species and inter-species, that are quantitatively correct in a regime of
weak interactions. Our main �nding is that these pair correlations satisfy a scaling form which
has a diffusive scaling and is associated with a power-law decay in the direction of the drive.
Numerical simulations show that these scalings and the associated function still hold outside of
the validity regime of our theory.

The next instance of out-of-equilibrium system is active Brownian particles (ABPs), a paradig-
matic model of active matter that we study in Chapter 10. These interacting particles self-propel
at a constant velocity along their orientation and undergo both translational and rotational diffu-
sion. As in the previous chapter, a Dean equation is computed and linearized. In addition to this
weak interaction limit, we focus on a dilute system. This enables us to obtain a linear equation sat-
is�ed by the two-point position-orientation correlation functions. A numerical resolution of this
equation is in agreement with the numerical simulations. At high activity, a striking non-trivial
winged structure is observed for the correlations. Furthermore the equation leads to analytical
results in the three limits of small velocity, rotational diffusion and transitional diffusion. Strik-
ingly the two limits of high activity (low rotational diffusion and low translation diffusion) give
rise to two distinct scaling forms for the correlations that both describe a type of wings and agree
with the numerical simulations.

Finally, Chapter 11 is dedicated to the experiments performed in Takeuchi laboratory in the
University of Tokyo. Electrophoretic Janus particles, which are a good experimental realization
of active Brownian particles are created and observed with a microscope equipped with a camera.
The experimental pair correlation functions are computed and the winged structure characteristic
of the high activity regime are observed. Although a quantitative agreement is out-of-reach, these
�ndings prove that the theory developed in Chapter 10 gives a very good insight into the system.
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8.1 Introduction

The aim of statistical physics is, if we quote the title of a standard textbook by Balian [22] , to
go “From Microphysics to Macrophysics”1. That is to say to explain the macroscopic properties
of a system from its microscopic statistics or laws of motion. Standard examples for classical
and quantum interacting systems, and the study of phase transitions can be found in classic text-
books [20–23] . Historically, the focus was put on the limit cases of solid and gas states. Solids
in which a strong potential energy maintains the atoms in a crystalline structure, are usually ap-
proached �rst as an assembly of independent quantum harmonic oscillators (Einstein model),
with the addition of the Debye approximation at low temperature (Ref. [21] , complément III.E).
Deviations, in particular due to the crystalline structure, are computed with respect to this ref-
erence state. On the other hand, in gases it is the kinetic energy that is dominant, and in �rst
approximation the interactions are neglected, leading to the well-known ideal gas [20, 21] . A
possible re�nement is to derive the van der Waals equation from carefully chosen approximations
(Ref. [23] , 5.3) from which one may explain the liquid-gas transition. A more general approach

1Original French title: Du microscopique au macroscopique.
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is to perform an expansion at small density � known as the virial expansion [1,20,23] in which
the pressureP is found to be given by

P
kBT

= � + B2(T)� 2 + B3(T)� 3 + . . . (8.1)

where the coef�cients Bn can be expressed in terms of the pair potentialV(r ).
Liquid theory, in which roughly speaking, kinetic and potential energy have the same order

of magnitude, remained a challenge for a long time2. A key point was to obtain a quantitative
prediction for the pair correlation g(r ) of a given liquid. The remarkable book by Hansen and Mc-
Donald presents the advances in the domain[1] . Most of the framework is based on a density �eld
theory of which we give some crumbs in Appendix C. The virial expansion and other diagramatic
expansions are relevant. But important cases include carefully drafted closure relations such as
the random-phase approximation (RPA, see Appendix C), or the Percus-Yevick approximation that
is successful for strong repulsive short-range potentials.

The approach of Hansen and McDonald (Ref.[1] , chap 2), based on statistical ensembles,
holds for equilibrium systems. To compute the correlations in an out-of-equilibrium system (or
to compute time correlations of equilibrium systems), one needs to start from the microscopic
dynamics of the system. In this chapter, we follow the approach of Dean[58] and derive an exact
stochastic equation for the density �eld of a liquid system. The price to pay for the exactness of
the Dean equation is that it is non-linear and involves a multiplicative noise. Both problems can
be removed by resorting to an approximation of linearization. We show that this approximation
gives a prediction for the pair correlations that is identical to the RPA.

A crucial point to keep in mind is that we will see in the next chapters that our approach
extends for out-of-equilibrium systems, something that is unreachable by usual density functional
theory.

8.2 Exact Dean equation for interacting passive particles

8.2.1 Coupled Langevin equations

We follow closely the original derivation of Dean [58] of a stochastic equation for the density �eld
of interacting particles, starting from microscopic equations. We consider a �uid composed of N
identical particles in dimension d (in this section, the reader may assume thatd = 3). Particle i
is at position Xi ( t ) at time t and is subjected to several effects listed below.

• Particles are subjected to thermal noise. We model it by a Gaussian white noise with a
diffusion constant D0. Formally, N d-dimensional independent Gaussian noisesf � i ( t )gN

i= 1
are associated with the particles and their �rst two moments are given by

h� �
i ( t )i = 0, (8.2)

h� �
i ( t )� �

j ( t 0)i = 2D0� i , j �
� ,� � ( t � t 0), (8.3)

where i , j are particle indices, � , � 2 f 1, . . . , dg denote spatial coordinates,� i , j and � � ,� are
Kronecker deltas and� ( t ) is the Dirac delta function.

2And at that time the LPTMC was called LPTL (Laboratoire de Physique Théorique des Liquides).
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• Particles interact with each other via an arbitrary spatial potential V(x) = V(kxk) that is
assumed to be isotropic and to satisfyr V(0) = 0. The total interaction energy of the system
is

Eint =
NX

i= 1

i � 1X

j= 1

V(Xi � X j ) (8.4)

and the force acting on particle i is (�r i Eint ), with r i the gradient with respect to Xi .

• For completeness, we consider an external forcing �eld ' (x) that varies in space but is
the same for all particles and is independent of time. The resulting force on particle i is
(�r i ' (Xi )) . We will drop this term in the next section.

• For simplicity, the mobility (velocity to force ratio) is set to 1 for all the particles.

At the end of the day, the time evolution of the positions f Xi ( t )g of the particles is given by
the following N coupled Langevin equations.

dXi

d t
= �

NX

j= 1

r i V(Xi ( t ) � X j ( t )) � r i ' (Xi ) + � i ( t ) (8.5)

We used the assumptionr V(0) = 0 to include the term i in the sum. The equations (8.5) are the
basis for numerical simulations of the system.

For the following computation it is convenient to use stochastic calculus within the Itô for-
malism [73] . De�ning the Wiener process Bi ( t ) as

Bi ( t ) =

Z t

0

� i ( t )d t , (8.6)

we are able to rewrite Eq. (8.5) in terms of differential elements,

dXi = �

 
NX

j= 1

r i V(Xi ( t ) � X j ( t )) + r i ' (Xi )

!

d t + dBi , (8.7)

(dXi )
2 = ( dBi )

2 = 2D0d t. (8.8)

8.2.2 Derivation of the Dean equation

A key step is to de�ne the local �uctuating density � (x, t ) of the �uid at position x at time t . We
write � (x, t ) as the sum of localized densities� i (x, t ) associated with each particle,

� (x, t ) �
NX

i= 1

� i (x, t ), � i (x, t ) � � (Xi ( t ) � x). (8.9)

� (x) is the Dirac delta function. Our goal is to compute the time evolution of � (x, t ). Using the
theory of distributions, we consider a test function f that is smooth and decays fastly. We can
write

f (Xi ( t )) =

Z

dx f (x)� i (x, t ). (8.10)
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Moreover, the Itô formula [73] reads

d f (Xi ) = r f � dXi +
1
2

r 2 f (dXi )
2 (8.11)

with the gradient and Laplacian terms

[ r f ]( Xi ( t )) =

Z

dx [ r f (x)] � i (x, t ), [ r 2 f ]( Xi ( t )) =

Z

dx [ r 2 f (x)] � i (x, t ). (8.12)

Using Eqs. (8.7), (8.8) and (8.11), we obtain

d
d t

f (Xi ( t )) =

Z

dx � i (x, t )

(

r f �

 

�
NX

j= 1

r V(x � X j ( t )) � r ' (x) + � i ( t )

!

+ D0r 2 f

)

, (8.13)

and after some integrations by parts,

d
d t

f (Xi ( t )) =

Z

dx f (x, t )

8
><

>:
r

2

4 � i (x, t )

 
NX

j= 1

r V(x � X j ( t )) + r ' (x)

! 3

5

� r [ � i (x, t )� i ( t )] + D0r 2� i (x, t )

9
>=

>;
. (8.14)

On the other hand, we can simply differentiate � with respect to time in the integral.

d
d t

f (Xi ( t )) =

Z

dx f (x)
@ �i
@t

(x, t ). (8.15)

As f is an arbitrary test function, we obtain an equality between distributions,

@ �i
@t

= r

2

4 � i (x, t )

 
NX

j= 1

r V(x � X j ( t )) + r ' (x)

! 3

5 � r [ � i (x, t )� i ( t )] + D0r 2� i (x, t ). (8.16)

One notes that using the de�nition of � (x),

NX

j= 1

r V(x � X j ( t )) =

Z

dy� (y)r V(x � y) = ( r V � � )(x) = r (V � � )(x) (8.17)

with `� ' denoting the spatial convolution. We can now sum over i and obtain

@ �

@t
= r [ � (x, t )r (V � � )(x, t ) + � (x, t )r ' (x)] + D0r 2� (x, t ) �

NX

i= 1

r [ � i (x, t )� i ( t )] . (8.18)

We de�ne a global Gaussian noise �eld � (x, t ) satisfying h� (x, t )i = 0 and

h� � (x, t )� � (x0, t 0)i = 2D0� � ,� � (x � x0)� ( t � t 0). (8.19)



8.2 Exact Dean equation for interacting passive particles 117

Dean remarked [58] that
”
�

P N
i= 1 � i (x, t )� i ( t )

—
is a Gaussian noise that has the same mo-

ments as
�
� (x, t )1=2� (x, t )

�
. We can substitute one noise for the other. At the end of the day,

we obtain the so-called Dean equation that we choose to write as a conservation equation for the
�eld � ,

@ �

@t
= �r � J(x, t ), (8.20)

J(x, t ) = � D0r � (x, t ) � � (x, t )r (V � � )(x, t ) � � (x, t )r ' (x) + � (x, t )1=2� (x, t ), (8.21)

h� (x, t )� (x0, t 0)i = 2D0� (x � x0)� ( t � t 0). (8.22)

This equation is the starting point of our approach. Although we will not use this form in the
following, we remark that the �ux J(x) can be written in terms of a functional H[ � ] of the density,

J(x) = � � (x)r
� H[ � ]

�� (x)
+ � (x)1=2� (x), (8.23)

H[ � ] = D0

Z

dx � (x) log � (x) +
1
2

Z

dx dy � (x)V(x � y)� (y) +

Z

dx � (x)' (x). (8.24)

The Dean equation (8.20) is exact but the price to pay for this consists in two major technical
dif�culties. The �rst one concerns the multiplicative noise (

p
� � ). Although it is well de�ned in

the Itô framework this noise is hard to handle. The second and perhaps more important problem
is that the term � r [ V � � ] is non-linear in the density. This implies that marginal laws for the
density pro�le, the two-point correlations, etc. all involve higher-order correlations. This hier-
archy of equations, that is expected for usual liquids, cannot be closed without resorting to an
approximation.

8.2.3 Hierarchy of equations

We de�ne the average density pro�le �̄ (x, t ) = h� (x, t )i . From the Dean equation (8.20), it
satis�es the equation

@�̄

@t
= D0r 2 �̄ + r [ r ' (x)�̄ (x)] + r

Z

dy r V(x � y)Ce(x, y, t ) (8.25)

which is not closed as it involves the two-point correlations Ce(x, y, t ) = h� (x, t )� (y, t )i . Similarly,
using the Itô convention and the symmetry x $ y, these two-point correlations satisfy

@Ce(x, y)

@t
= 2D0r 2

x [ Ce(x, y) � � (x � y)�̄ (x)] + r x [ r ' (x)Ce(x, y)] + r y [ r ' (y)Ce(x, y)]

+ 2r x

Z

dz r xV(x � z) h� (x)� (y)� (z)i . (8.26)

This equation is also not closed since it involves the three-point correlation function. In fact a
hierarchy of equations can be generated and the derivative of then-point correlation involves
the (n + 1)-point correlation. This is very similar to the BBGKY hierarchy in usual density �eld
theory [1,20] .

We shall now put forward our approximation of linearization of the Dean equation. This will
enable us to obtain a linear equation with additive noise for which the equations of the correlations
will be closed.



118 Chapter 8. Framework for a passive liquid

8.3 Linearization of the Dean equation

8.3.1 Linear limit

We pointed out that the Dean equation is non-linear, with multiplicative noise. Here, we simplify
the problem by linearizing around an homogeneous and constant density�̄ . We write the density
�eld as

� (x, t ) � �̄ + �̄ 1=2� (x, t ). (8.27)

Our equations will be considered in the large density regime �̄ ! 1 . We wrote that the �uctu-
ations scale as�̄ 1=2, so that there are no density-dependent factors in Eq. (8.29). From now on,
we assume that there is no external �eld3: ' (x) = 0.

The scalings in�̄ in Eq. (8.20) need to be consistent. This leads us to consider an interaction
potential V(x) that decays with the density �̄ as

V(x) � D0
v(x)
�̄

. (8.28)

The diffusion coef�cient D0 is here so that v(x) describes the ratio of the potential over the tem-
perature, which is physically relevant.

Ultimately, the limit we consider is a limit of large density, �̄ ! 1 , at constant v(x) that is to
saysmall interactions(V ! 0). The reader may draw a parallel with the well-known Curie-Weiss
model for interacting spins. In this mean-�eld limit of the Ising model, all spins interact with each
other – as it is the case for our particles at very high density. And the coupling constant decays
with the number of spins – as does our potential with increased density. A consequence of the
linear limit is that the �eld � (x, t ) becomes Gaussian: we can also call it aGaussian limit.

8.3.2 Linearized Dean equation

Introducing Eqs. (8.27) and (8.28) into the Dean equation (8.20) and keeping only the terms of
order �̄ 1=2, one obtains the following equation.

@ �

@t
(x, t ) = D0r 2� (x, t ) + D0r 2[ v � � ]( x, t ) � r � � (x, t ), (8.29)

h� (x, t )� (x0, t 0)i = 2D0� (x � x0)� ( t � t 0). (8.30)

This is the linearized Dean equation from which we will derive the correlations. The Gaussian
noise � is the same as before, but it now appears as an additive noise. Furthermore, the equation
is now linear in � . One notes that � is a Gaussian �eld. We build on this remark below.

We de�ne the Fourier transform f̃ (k) of a function f (x) as

f̃ (k) =

Z

dxe� i k�x f (x), f (x) =
1

(2� )d

Z

dkei k�x f̃ (k). (8.31)

We write Eq (8.29) in Fourier space,

@˜�

@t
(k, t ) = � k2D0[ 1 + ṽ(k)] ˜� (k, t ) + �̃ (k, t ), (8.32)

with � (k, t ) a Gaussian noise of vanishing average and of correlation

h�̃ (k, t )�̃ (k0, t 0)i = 2(2� )d D0k2� (k + k0)� ( t � t 0). (8.33)
3The linearization around an homogeneous density is not adapted to the problem with an external �eld. One should

try to linearize around the non-interacting pro�le �̄ exp(� ' (x)=D0).
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8.3.3 Correlations

The �eld � (x) satis�es the linear equation with additive noise (8.29). It is a Gaussian �eld, hence
it is fully characterized by its average h� (x, t )i = 0, and its correlations h� (x, t )� (x0, t 0)i .

Convergence to equilibrium. In Fourier space, the equation on the average reads

@h˜� (k, t )i

@t
= � D0k2[ 1 + ṽ(k)] h˜� (k, t )i . (8.34)

The equilibrium solution is h˜� (k, t )i eq = 0, giving h� (x, t )i = 0. On average, the �uctuations of
density vanish, which is what we expect. If we start from an inhomogeneous density �eld, we
see that the convergence towards equilibrium of a given wave vectork is associated with a decay
rate k2D0[ 1 + ṽ(k)] = k2[ D0 + �̄ Ṽ(k)] .

Equal-time correlations. Let us look at the equal-time two-point correlations C (x, x0, t ) =
h� (x, t )� (x0, t )i . We study the evolution of its Fourier transform C̃ (k, k0, t ) during a time step
� t using the Itô formalism.

C̃ (k, k0, t + � t ) = C̃ (k, k0, t ) + h� ˜� (k, t ) ˜� (k0, t )i + h˜� (k, t )� ˜� (k0, t )i + h� ˜� (k, t )� ˜� (k0, t )i ,
(8.35)

where � ˜� (k, t ) is the change of ˜� (k, t ) during � t . The computation yields

h� ˜� (k, t ) ˜� (k0, t )i = � k2� tD0[ 1 + ṽ(k)] C̃ (k, k0, t ), (8.36)

h� ˜� (k, t )� ˜� (k0, t )i = h�̃ (k, t )�̃ (k0, t )i � t = 2(2� )d D0k2� (k + k0)� t . (8.37)

We deduce that the time evolution of C̃ is governed by

@t C̃ (k, k0, t ) = �
�
k2D0(1 + ṽ(k)) + k02D0(1 + ṽ(k0))

�
C̃ + 2(2� )d D0k2� (k + k0). (8.38)

This closed equation corresponds to the linearized version of Eq. (8.26).
We use the invariance by translation and write the pair correlations in terms of the usual

function h(x) [1] ,

h(x, t ) =
h� (0, t )� (x, t )i � �̄� (x)

�̄ 2
� 1 =

C (0, x, t ) � � (x)
�̄

. (8.39)

The � (x) term corresponds to the correlation of a given particle with itself. In Fourier space,

h̃(k, t ) =
1
�̄

�
C̃ (k, � k, t )

(2� )d
� 1

�

, (8.40)

so that the time evolution and the equilibrium solutions are

@t h̃(k, t ) = � 2k2
�
[ D0 + �̄ Ṽ(k)] h̃(k, t ) + Ṽ(k)

�
, (8.41)

h̃eq(k) =
� Ṽ(k)

D0 + �̄ Ṽ(k)
. (8.42)

This result for the pair correlations is the one obtained in liquid theory [1] using the so-called
Random-Phase Approximation (RPA), which is also a mean-�eld approximation. In Appendix C,
we detail the steps leading to Eq. (8.42) from the RPA applied to liquid theory.
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Two-time correlations. For a complete characterization of the Gaussian process, we de�ne
the two-time correlations

h� (x, � ) �
h� (0, 0)� (x, � )i

�̄ 2
�

� (x)� (� )
�

� 1, (8.43)

where we assume that the system is equilibrated at time 0. One shows that the time evolution of
the Fourier transform is given by

@� h̃� (k, � ) = � D0k2[ 1 + ṽ(k)] h̃� (k, � ). (8.44)

Using the equilibrium solution at � = 0, the solution is

h� (k, � ) = h̃eq(k)e� D0k2[ 1+ ṽ(k)] � =
� Ṽ(k)

D0 + �̄ Ṽ(k)
e� k2[ D0+ �̄ Ṽ(k)] � . (8.45)

Each mode decays with the rate associated with the convergence to equilibrium.

8.3.4 Numerical simulations

Our result for the pair correlation function can be checked against numerical simulations of the
coupled Langevin equations (8.5) (without external �eld) using Brownian dynamics. We use the
following isotropic soft-sphere potential,

V(x) =

¨
�
2 (a � k xk)2 if kxk < a

0 otherwise.
(8.46)

This is the potential we will use throughout Part II, it is convenient for several reasons. The
fact that it has a �nite range allows one to implement ef�cient simulations (the computation
of the interactions has a complexity scaling linearly with the number of particles). It is also a
bounded potential which enables us to probe both the weak-interaction and strong-interaction
limits. Furthermore, the Fourier transform of V(x) can be expressed analytically in dimensions 2
and 3 and is also �nite. The expressions for a = � = 1 are

Ṽ2D(k) =
�
k2

[ � J1(k)H0(k) � � J0(k)H1(k) � 2J2(k)] , (8.47)

Ṽ3D(k) =
4�
k5

(2k + k cosk � 3 sink), (8.48)

where Jn and Hn are respectively Bessel and Struke functions. The values at 0 arẽV2D(0) = �= 12,
Ṽ3D(0) = �= 15.

We work in a dimensionless system of units by setting� = 1, a = 1 and the mobility to 1. At
high enough density, the pair correlation function is described quantitatively by the theoretical
expression of Eq. (8.42) as shown on Fig. 8.1.

8.3.5 Compressibility and pressure

In a statistical approach, the pressureP is de�ned as a derivative of the free energy of the system
with respect to the volume V. It corresponds both to the thermodynamic pressure and to the
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Figure 8.1: Pair correlation function of soft spheres in dimension 2 at density �̄ = 2, with diffusion
coef�cient D0 = 0.5. (a) h(x) from the simulations (top, 2000 particles) and from the theory from
Eq. (8.42) (bottom). (b) Radial component of h(x) = h(kxk) (red: simulations, black: theory).

pressure applied on the boundaries of a box. The isothermal compressibility� T is the thermody-
namic quantity quantifying the relative variation of volume associated with a change of pressure
at constant temperature,

� T � �
1
V

@V
@P

�
�
�
�
T

. (8.49)

Remarkable results of liquid theory state that both the isothermal compressibility and the pressure
can be expressed in terms of the pair correlationh(r) as4

�̄ kBT� T = 1 + �̄

Z

dr h(r), (8.50)

P
kBT

= �̄ �
�̄ 2

2dkBT

Z

dr r
dV
dr

h(r). (8.51)

See for instance Ref.[1] , Eqs. (2.5.22) and (2.6.12); or Ref. [20] , Eq. (7.21) and Exercise 7.1.
One notes that, contrary to the pressure, the expression of the compressibility does not involve
the shape of the potential. This opens the door to an experimental estimate of the compressibility
from the measurement of the pair correlation function 5. Note that the pressure equation holds
only because we consider pairwise interactions (for three body interactions we would need three-
point correlations and so on). This is also be true for the similar expressions that we derive in the
next chapters for the effective mobility in binary mixtures and the effective velocity of ABPs .

Let us now see what are the expressions obtained from Eqs. (8.50) and (8.51) in our linearized
framework (which gives the results of the RPA approximation). We note that, from the Einstein
relation with the mobility set to unity, the diffusion coef�cient is D0 = kBT. The compressibility
equation (8.50) involves only the Fourier transform at the origin h̃(0). From Eq. (8.42), we obtain

�̄ kBT� T =

�

1 +
�̄ Ṽ(0)

kBT

� � 1

. (8.52)

4The potential V(r) = V(r ) is assumed to be isotropic so that
R

dr r dV
dr = 0. One can put either h(r) or g(r) in the

pressure equation.
5The structure factor, which is the Fourier transform of the pair correlations, can be measured by neutron scattering.
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The correction compared to non-interacting particles is given by the ratio of the “average strength”
of interactions �̄

R
dr V(r) over the temperature.

In the same spirit, the pressure equation (8.51) can be rewritten in Fourier space. From
Eq. (8.42), we obtain

P
kBT

= �̄ +
1

2d

Z
dk

(2� )d

�
�̄ Ṽ(k)

kBT

� �
�̄ W̃(k)

kBT

� �

1 +
�̄ Ṽ(k)

kBT

� � 1

(8.53)

where W̃(k) is the d-dimensional Fourier transform of r dV
dr . The correction to the ideal gas is

expressed in terms of the ratio of the potential and the temperature �̄ Ṽ(k)=(kBT).

8.4 Conclusion

The goal of this chapter was to introduce the framework used in the next two chapters, in the
simple case of a passive liquid. We derived the Dean equation and showed that it is hard to deal
with it as it is. In particular, it gives rise to a hierarchy of equations for the correlation functions.
What can be done is to linearize it around an homogeneous density pro�le. The equations then
become linear and the density �eld becomes Gaussian. The pair correlations can be computed
and one recovers the result of the random phase approximation of liquid theory. This prediction
is in quantitative agreement with numerical simulations of dense soft spheres.

In the next two chapters, the framework is extended to two out-of-equilibrium systems: driven
binary mixtures and active Brownian particles.



Chapter 9
Binary mixture

Contents

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.2 Theoretical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.2.1 Coupled Langevin equations for driven systems . . . . . . . . . . . . . . . . . . 124
9.2.2 Exact Dean equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.2.3 Linearized Dean equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.3 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.3.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.3.2 Linear equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.3.3 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.4 Long distance scaling of the correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.4.1 Soft short-range potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.4.2 Discontinuity at small wave number . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.4.3 Scaling form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.4.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.4.5 Universality of the scaling form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.5 Effective mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.5.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.5.2 Link with the correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.5.3 Linearized approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.1 Introduction

In the previous chapter, we introduced a framework based on a linearization of the Dean equa-
tion. This enabled us to recover a well-known approximation of liquid theory. We now reveal
the full strength of our approach, namely that it can be extended to out-of-equilibrium systems.
Indeed previous studies used a similar framework to probe several systems with external forces: a
single driven intruder in a quiescent bath [24] , an electrolytic solution in which corrections to the
conductivity are computed [2] , and a system made of two parallel plates with charged particles
in which attractive Casimir forces are evidenced[25] . In this chapter, we aim at characterizing

123
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the correlations in a binary mixture of driven particles (Fig. 9.1). A fraction of the particles are
driven by an external force while the others are not driven. Or alternatively, the populations of
particles are driven in opposite directions.

This is very reminiscent of pedestrian crowds moving oppositely in a corridor in which collec-
tive behavior emerges as people self-organize in lanes moving in a given direction[16] . Under-
standing such processes is crucial to understand how to design buildings that can be evacuated
as fast as possible[15] . The formation of lanes is a robust feature of systems of oppositely driven
agents. In physics experiments, it was shown to occur for instance in driven oppositely charged
colloids [48] as well as in plasmas[49] . The nature of laning is still debated theoretically, even
with very simple dynamics. A German group �rst concluded, using numerical simulations, that
there was a phase transition between a disordered state at small forces and a `laned' state at high
forces [50] . But ten years later, with increased computational power, they discovered that there
was only a smooth crossover between the two regimes[51] : the lanes were shown to be of �nite
size with an exponential scaling with respect to the force. Other numerical simulations in a con-
�ned system (narrow channel) concluded that there was a reentrant laning transition in such a
system[74] . An effort to obtain theoretical results was made in Ref. [60] by using a numerical
integration of a closure of the many-body Smoluchowski equation. A good agreement was found
with numerical simulations, in particular the strong anisotropy of the pair correlation functions.
The authors argue that the correlations decay as a power-law along the direction of the force
(with an exponent between 1 and 2) and that this divergence may be related to a true phase
transition (no characteristic length). However their approach is limited to small forces and they
argue that more work should be done to characterize the decay of the correlations.

In this chapter, we use the framework introduced previously to characterize analytically the
correlations of driven binary mixtures with arbitrary forcing. We indeed �nd that they decay alge-
braically along the force, with an exponent 3=2 in dimension 2 (exponent (d + 1)=2 in dimension
d). This exponent is associated with a scaling function which is related to a diffusion equation.
This scaling function is shown to be robust and holds for numerical simulations outside of the
validity regime of our approximation, for dilute and hard particles. A by-product of our approach
is the computation of the effective mobility of the particles.

The results of this chapter have been published in[P1] .

9.2 Theoretical approach

9.2.1 Coupled Langevin equations for driven systems

We consider a system similar to subsection 8.2.1 with external forces applied on the particles.
N particles in dimension d have positionsf Xi ( t )g at time t . They undergo thermal noise with

diffusion constant D0: � i ( t ) is a Gaussian white noise having zero average and correlation

h� �
i ( t )� �

j ( t 0)i = 2D0� i , j �
� ,� � ( t � t 0). (9.1)

The interaction between particles is modeled by an isotropic pair potential V(x) = V(kxk). As
before, the mobility is set to one.

The novelty is that each particle belongs to one ofq species. All particles of species� 2
f 1, . . . , qg undergo the same external forceF� . The species of particlei is denoted � i 2 f 1, . . . , qg.

The setup that we have in mind is q = 2 with F1 = F and F2 = 0: this corresponds to an
external (electric) �eld to which only some of the particles are sensitive. A sketch of the system is
provided in Fig. 9.1. Alternatively, one may take F1 = F and F2 = � F, a setup in which particles
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Figure 9.1: Picture of the binary mixture we consider. Red particles (species 1) are driven to the
right by a force F1 = F = Fxk while the blue ones (species two) are not drivenF2 = 0. All particles
are diffusive and interact via a pairwise potential.

are driven in opposite directions, e.g. because they have opposite charges. But one should note
that our theoretical framework also applies to a variety of other setups, for instance q = 2 with
F1 = Fex and F2 = Fey , or q = 3 with F1 = F, F2 = � F and F3 = 0. Actually, for two species we
will show that only the difference of forces F1 � F2 matters1.

The coupled Langevin equations that we consider are

dXi

d t
= F� i

�
X

j6= i

r i V(Xi ( t ) � X j ( t )) + � i ( t ). (9.2)

The main remark is that because of the forces, the system is out of equilibrium. Nevertheless, it
admits a steady state, and it is this steady state that we want to characterize. Our approach relies
on obtaining equations for the density �elds of each species.

9.2.2 Exact Dean equation

Our �rst step is to de�ne a local �uctuating density for each species � ,

� � (x, t ) �
X

i2T �

� (Xi ( t ) � x) (9.3)

where T� is the set of particles belonging to species� . The average over space of� � (x) is denoted
�̄ � . The total average density is�̄ =

P
� �̄ � , and we de�ne the fraction of particles � as � � =

�̄ � =�̄ . Starting from Eq. (9.2), we can adapt the derivation of subsection 8.2.2 to separate the
density �elds � � that undergo respective forcesr � = F� and are coupled by the pair potential
V(x). We obtain the following set of Dean equations for the �uctuating densities � � ,

@ ��
@t

= �r � J� (x, t ), (9.4)

J� (x, t ) = � D0r � � (x, t ) + � � F� � � � (x, t )
qX

� = 1

r (V � � � )(x, t ) + � � (x, t )1=2� � (x, t ). (9.5)

f � � g are q independent Gaussian white noises having zero average and correlations

h� � (x, t )� � (x0, t 0)i = 2D0� � ,� � (x � x0)� ( t � t 0). (9.6)

1As a side remark, the authors of Ref.[75] showed that diagonal patterns emerge for populations driven in perpen-
dicular directions on a lattice. These diagonals correspond to the direction “F1 � F2”.
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As pointed out in the previous chapter, the Dean equations are exact, but very hard to tackle as
they are non-linear with multiplicative noise. We shall resort to a linearization approximation to
obtain analytical results.

9.2.3 Linearized Dean equation

Our approximation, which we detailed in the previous chapter, consists in linearizing around
homogeneous and constant densities�̄ � for all species.

� � (x, t ) � �̄ � + �̄ 1=2
� � � (x, t ). (9.7)

�̄ � is assumed to be large, and we check afterwards that� � is of order 1.
Keeping only the leading order terms, we obtain the following linearized Dean equations,

@ ��
@t

(x, t ) = D0r 2� � (x, t ) � F� � r � � + D0

X

�

(� � � � )1=2r 2[ v � � � ]( x, t ) � r � � � (x, t ), (9.8)

h� � (x, t )� � (x0, t 0)i = 2D0� � ,� � (x � x0)� ( t � t 0). (9.9)

In Fourier space, they read

@˜�

@t
(k, t ) = � D0k2

X

�

Ã� ,� (k) ˜� � (k, t ) + �̃ � , (9.10)

with the q � q matrix Ã having components de�ned by

A� ,� (k) = � � ,�

•
1 + i

f � � k

k2

‹
+

p
� � � � ṽ(k). (9.11)

f � = F� =D0 is the Péclet number associated with a species. In Fourier space, the correlations of
the Gaussian white noises�̃ � are

h�̃ � (k, t )�̃ � (k0, t 0)i = 2(2� )d D0k2� � ,� � (k + k0)� ( t � t 0). (9.12)

Now having a linear equation, we are able to obtain analytical results for key observables.
We �rst focus on the correlation functions of the system and derive a scaling form. Then, we
obtain insights into the effective mobility of the particles which characterizes the opposition to
the motion of a particle due to the particles of other species.

9.3 Correlation functions

9.3.1 De�nition

The correlation function h� ,� characterizes the relative disposition of particles of species� and
� . If a particle � is at the origin, where are the particles � ? We use the invariance by translation
and de�ne

h� ,� (x) =

� •
� � (x)

�̄ �
� 1

‹ �
� � (0)

�̄ �
� 1

��

� � � ,�
� (x)
�̄ �

. (9.13)

�̄ � is the average density of species� . The last term subtracts the self-contribution of a given
particle.
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For the analysis of the linearized Dean equations (9.8), it will be also useful to de�ne

C� ,� (x) =


� � (x)� � (0)

�
, (9.14)

which is related to h� ,� by

h� ,� (x) = [ C� ,� (x) � � � ,� � (x)] =
Æ

�̄ � �̄ � . (9.15)

9.3.2 Linear equation

We analyze the variation of C� ,� (k, t ) between times t and t + � t using Itô calculus as we did
in subsection 8.3.3. The linearized Dean equation (9.8) leads to the following time evolution for
the matrix C(k, t ) �

�
C� ,� (k, t )

�
� ,� ,

@t C̃(k, t ) = D0k2
�
2I � Ã(k)C̃(k, t ) � C̃(k, t )Ã� (k)

�
, (9.16)

with A de�ned in Eq. (9.11) and ` � ' denoting the complex conjugate. We used the property
A(� k) = A� (k). We focus on the stationary solution Cstat(k, t ), it satis�es the linear equation

Ã(k)C̃stat(k, t ) + C̃stat(k, t )Ã� (k) = 2I . (9.17)

This is a set ofq2 linear equations for the variables
€
Cstat

� ,�

Š

� ,� = 1,...,q
2. For 1 � � , � � q,

�

2 + i
k � (f � � f � )

k2

�

C̃stat
� ,� (k) + ṽ(k)

qX

 = 1

€p
� � �  Cstat

 ,� (k) + Cstat
� , (k)

p
�  � �

Š
= 2� � ,� . (9.18)

One can use a symbolic computation software to solve for this set of equations. We now give
the result in two speci�c cases: passive particles (f � = 0), and two species (q = 2).

9.3.3 Resolution

From now on, we consider only the equilibrium correlation functions, we drop the superscript
`stat': C = Cstat. We �rst focus on the trivial case of passive particles that amounts to our study in
the previous chapter. Then, we investigate the case of two species, for which we will obtain our
main results.

Passive interacting species

At equilibrium, when all the forces are equal to zero, the matrix A writes

A� ,� (k) = � � ,� +
p

� � � � ṽ(k) (9.19)

A(k) = I + ṽ(k)jTihTj. (9.20)

We de�ne the unit vector jTi = (
p

� 1, . . . ,
p

� p)T using quantum mechanics notations for simplic-
ity. Any orthogonal basis (jTi , . . . ) is an eigenbasis ofA. As A is real, the equation (9.17) admits
a simple solution: C̃ is the inverse of A,

C̃(k) = A� 1(k) = I �
ṽ(k)

1 + ṽ(k)
jTihTj. (9.21)

2Using the symmetry C̃stat
� ,� = ( C̃stat

� ,� ) � , there are only q(q + 1)=2 independent equations.
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Figure 9.2: Pair correlation functions h2,1 and h1,1 in dimension 2. The parameters are �̄ =
2, D0 = 0.2, F = 4 and the fractions of particles are � 1 = � 2 = 0.5. Throughout this chapter the
pair potential is the soft-sphere potential V(r ) = ( 1 � r )2=2 for r < 1. The top panel shows the
results of the numerical simulations (N = 8 � 104 particles). The bottom panel is the numerical
inversion of Eq. (9.29).

That is to say,

C̃� ,� (k) = � � ,� �

p
� � � � ṽ(k)

1 + ṽ(k)
. (9.22)

Using Eq. (9.15), we obtain the pair correlations h� ,� : for all � and � ,

h̃� ,� (k) =
� Ṽ(k)

D0 + �̄ Ṽ(k)
. (9.23)

The pair correlation is independent of the species considered and is the equilibrium result we
found for passive particles[Eq. (8.42)] .

Two driven species

When we turn on the forces, the matrix A [Eq. (9.11)] is no longer a real matrix. Furthermore,
the terms � � ,� k � f � and

p
� � � � cannot be diagonalized in the same basis. We have no choice but

to solve the set of linear equations (9.18). For q = 2 species, it reads

8
>><

>>:

2(1 + � 1 ṽ)C̃1,1 +
p

� 1� 2 ṽ(C̃1,2 + C̃2,1) = 2€
2 + ṽ + i k�(f1� f2)

k2

Š
C̃1,2 +

p
� 1� 2 ṽ(C̃1,1 + C̃2,2) = 0

€
2 + ṽ � i k�(f1� f2)

k2

Š
C̃2,1 +

p
� 1� 2 ṽ(C̃1,1 + C̃2,2) = 0

2(1 + � 2 ṽ)C̃2,2 +
p

� 1� 2 ṽ(C̃1,2 + C̃2,1) = 2.

(9.24)

A crucial point is that the forces f1 and f2 appear only as the differencef1 � f2. We de�ne

� f = kf1 � f2k (9.25)

kk =
k � (f1 � f2)

kf1 � f2k
(9.26)

k? = k �
k � (f1 � f2)

kf1 � f2k
(9.27)

so that k � (f1 � f2) = kk� f . kk is the component of k parallel to the direction of the difference of
forces.
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The system (9.24) can be solved by hand, or with a computer algebra system. It yields

C̃ =

–

(1 + ṽ)(2 + ṽ)2 + ( 1 + � 1 ṽ)(1 + � 2 ṽ)
k2

k � f 2

k4

™� 1

0

B
@

(1 + � 2 ṽ)
•
(2 + ṽ)2 +

k2
k � f 2

k4

˜
�

p
� 1� 2 ṽ(2 + ṽ)

€
2 + ṽ � i

kk� f
k2

Š

�
p

� 1� 2 ṽ(2 + ṽ)
€
2 + ṽ + i

kk� f
k2

Š
(1 + � 1 ṽ)

•
(2 + ṽ)2 +

k2
k � f 2

k4

˜

1

C
A . (9.28)

This can be recast in terms of pair correlation functions[Eq. (9.15)] .

h̃ =
� ṽ
�̄

–

(1 + ṽ)(2 + ṽ)2 + ( 1 + � 1 ṽ)(1 + � 2 ṽ)
k2

k � f 2

k4

™� 1

(

(2 + ṽ)2I +

 
(1 + � 2 ṽ)

k2
k � f 2

k4 � (2 + ṽ)i
kk� f

k2

(2 + ṽ)i
kk� f

k2 (1 + � 1 ṽ)
k2

k � f 2

k4

!)

. (9.29)

The inverse Fourier transform of this result can be performed numerically. We �nd a very good
agreement with data from simulations (Figs. 9.2 and 9.4). The cross-species correlationsh2,1

are negative in the longitudinal direction ( xk < 0) while the inter-species correlations h1,1 are
positive along this direction. This shows a tendency of the particles to align with others of the
same species and to anti-align with particles of a different species.

Vanishing fraction of driven particles

An interesting special case is when there are only few biased particles in a bath of unbiased
particles. This corresponds tof2 = 0 (thus � f = f1) with � 1 ! 0 (thus � 2 ! 1). In this case, one
is mostly interested in the cross correlationsh2,1. They read

h̃2,1 =
� ṽ

�̄ (1 + ṽ)

(2 + ṽ)
”
(2 + ṽ) + i

kk� f
k2

—

(2 + ṽ)2 +
k2

k � f 2

k4

=
1
�̄

•
2 + ṽ
1 + ṽ

‹
� k2 ṽ

(2 + ṽ)k2 � ikk� f
. (9.30)

In Ref. [24] , the authors studied the pro�le induced by a unique driven intruder using the same
approach as us. Their result[Eq. (55)] has the same structure as Eq. (9.30). The only difference
is the factor (2 + ṽ)=(1 + ṽ) that comes from the fact that their observable (the pro�le) and ours
(the pair correlation) are different even in the absence of forces.

9.4 Long distance scaling of the correlations

9.4.1 Soft short-range potential

We assume that the integral over space of the potentialV is �nite,

�
�
�
�

Z

dr V(r)

�
�
�
� < 1 . (9.31)
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Physically, this means thatV is both (a) short-ranged and (b) soft. (a) The potential should have a
�nite range ( V(r) = 0 for krk > a), an exponential decay at large distance, or a fast algebraic de-
cay V(r) �

r !1
r � � with � > d (d is the dimension of the physical space). In particular, the results

that we will derive do not hold for long-range potentials such as electrostatic interactions [2] .
(b) The potential should have a �nite value at r = 0, or diverge slower than r � d. This excludes
hard potentials, such as the Lennard-Jones potential, for which no weak-interaction limit can be
de�ned. Note however that we will see that some of our large-distance results hold for hard
particles, in which case such potentials may be considered.

In the following, we will denote

v0 =
�̄

D0

Z

dr V(r) =
�̄ Ṽ(0)

D0
(9.32)

the rescaled integral of the potential over space.

9.4.2 Discontinuity at small wave number

We now turn back to the correlations in a driven binary mixture [Eq. (9.29)] and we look for a
scaling form at large distance, that is to say small wave numberk. In agreement with the previous
paragraph, we make the substitution ṽ(k) 7! v0 which corresponds to the limit k ! 0.

The correlations between speciesh2,1, and within the same speciesh1,1 thus read

h̃2,1 = � A
� k2(� k2 + ikk� f )

� 2k4 + � 2k2
k � f 2

, h̃1,1 = A
� 2k4 +  2

2k2
k � f 2

� 2k4 + � 2k2
k � f 2

(9.33)

with k2 = k2
k + k2

? [Eqs. (9.26), (9.27) ] and the numerical factors are

A=
v0

�̄ (1 + v0)
,  2 = ( 1 + � 2v0)1=2, � = 2 + v0, � =

�

1 +
� 1� 2v2

0

1 + v0

� 1=2

. (9.34)

As h1,2 and h2,2 have the same phenomenology thanh2,1 and h1,1, we do not consider them.

One soon realizes that the limits kk ! 0 and k? ! 0 either do not commute ( h̃1,1) or lead to
different scalings (h̃2,1), namely

h̃2,1(kk = 0, k? ) �
k? ! 0

� Ak2
? , h̃2,1(kk, k? = 0) �

kk! 0

� i � A
� 2� f

kk, (9.35)

h̃1,1(kk = 0, k? ) �
k? ! 0

A, h̃1,1(kk, k? = 0) �
kk! 0

A
 2

2

� 2
. (9.36)

This non-commutativity of the limits when k ! 0 hints at a slow decay of the correlations at large
distance. Indeed a fast (exponential) decay would imply a regularity of the Fourier transform at
the origin. The regime of small k is linked to the large-distance regime in real space, we thus
expect the behavior at large distance to be dominated by the singularity aroundk = 0 that we
now characterize.

Looking at the limits of h̃2,1, one sees that the following “balance” should hold when k ! 0:
kk � k2

? . We keep only the singular part of the correlations, the one that is responsible for the
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singularity at the origin. We write k2 = k2
k + k2

? ' k2
? and obtain

h̃s
2,1(kk, k? ) = � A

� k2
? (� k2

? + ikk� f )

� 2k4
? + � 2k2

k � f 2
, h̃s

1,1 = A
� 2k4

? +  2
2k2

k � f 2

� 2k4
? + � 2k2

k � f 2
. (9.37)

We prefer to recast these expressions under the equivalent formulations below.

h̃s
2,1(kk, k? ) = �

A�
2� � f

�
(1 � � � 1)G(kk, k? ) + ( 1 + � � 1)G(� kk, k? )

�
(9.38)

h̃s
1,1(kk, k? ) =

A
� 2

�
 2

2 + � 2(� 2 �  2
2)

�
G̃(kk, k? ) + G̃(� kk, k? )

�	
(9.39)

G̃(kk, k? ) =
� k2

?
D
2 k2

? + ikk

(9.40)

The coef�cient D, that will later be interpreted as a diffusion coef�cient is

D =
2�

� � f
. (9.41)

We now give the space dependence of the functionG(kk, k? ) that will lead to a scaling form for
the correlations.

9.4.3 Scaling form

All we need is to compute the inverse Fourier transform of G̃(kk, k? ). We �rst de�ne the coordi-
nates respectively parallel and perpendicular to the direction of the difference of forces3,

xk =
r � (F1 � F2)

kF1 � F2k
, x? = r �

r � (F1 � F2)

kF1 � F2k
. (9.42)

Using the residue theorem �rst, and then a Gaussian integral, we compute the inverse Fourier
transform of Eq. (9.40).

G(xk, x? ) =

Z
dk?

(2� )d� 1
ei x? �k? (� k2

? )

Z 1

�1

dkk

2�
ei xkkk

D
2 k2

? + ikk

(9.43)

= � ( xk)

Z
dk?

(2� )d� 1
ei x? �k? (� k2

? )e� 1
2 Dxkk2

? (9.44)

G(xk, x? ) =
� ( xk)

(2� )
d� 1

2

�
Dxk

� � d+ 1
2 g

‚
x?Æ
Djxkj

Œ

(9.45)

where � is the Heaviside step function,D is given by Eq. (9.41), and the function g is the second
derivative of a Gaussian,

g(u) = r 2
u

€
e� u2=2

Š
= ( u2 � d + 1)e� u2=2. (9.46)

We note that G is the solution of the diffusion equation
� @G

@xk
( xk, x? ) = D

2 r 2
? G(xk, x? )

G(xk = 0, x? ) = r 2
? � (x? )

(9.47)

3One should actually choose a coordinate systemr = ( x1, . . . , xd) such that xk = x1, x? = ( x2, . . . , xd).
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for xk � 0. This diffusion equation induces the scalingsx? =xk and x � (d+ 1)=2
k . We will come back

later on the intuitive meaning of this equation.
We have argued that the large-distance behavior of the correlations stems from their singular

parts [Eqs. (9.38) and (9.39)] . Now, from Eq. (9.45), we are able to write the scaling form obeyed
by the correlations at large distance, which is the main result of this chapter.

h� ,� (x) �
xk!�1

hs
� ,� (x) �

xk!�1

H �
� ,�

j xkj
d+ 1

2

g

‚
x?Æ
Djxkj

Œ

. (9.48)

+̀ ' corresponds to the wake in front of a particles while �̀ ' is the wake behind it. The prefactors

scale with the forces as� f
d� 1

2 ,

H �
2,1 =

1
�̄

v0�
d� 1

2 (1 + � � 1)

2d+ 1�
d� 1

2 (1 + v0)(2 + v0)
d� 1

2

� f
d� 1

2 , (9.49)

H+
2,1 =

1
�̄

v0�
d� 1

2 (1 � � � 1)

2d+ 1�
d� 1

2 (1 + v0)(2 + v0)
d� 1

2

� f
d� 1

2 , (9.50)

H+
1,1 = H �

1,1 = �
1
�̄

(1 � � 1)v2
0 [ 1 + ( 1 � � 1)v0] �

d� 5
2

2d+ 1�
d� 1

2 (1 + v0)(2 + v0)
d� 1

2

� f
d� 1

2 . (9.51)

The pro�le has an algebraic (power-law) decay in the longitudinal direction, but decays expo-
nentially in the transverse direction. This behavior can be probed in numerical simulations by
analyzing cuts at a constantxk. We �nd a very good agreement on Fig. 9.3, we stress that there
is no free parameter in our prediction.

As a side remark, we note that when � 2 ! 0, we have H �
2,1 = 0 and H+

2,1 = 0. The only
algebraic effect is a wake in the cross correlations forxk < 0. This corresponds to the case of a
unique driven intruder studied in Ref. [24] .

9.4.4 Numerical simulations

To check our �ndings, we performed numerical simulations of stochastic molecular dynamics in
dimension 2. N particles of two species are placed uniformly at random in a periodic box of size
L =

p
N=�̄ where �̄ is the density. Particles are separated into two species: species 1 undergoes a

force F1 > 0 (to the right) while species 2 is not driven ( F2 = 0). We use the following soft-sphere
potential,

V(x) =

¨
1
2 (1 � k xk)2 if kxk � 1

0 otherwise
(9.52)

where both the particle radius and the strength of the potential are set to 1. The evolution of the
system is simulated according to the Langevin equations (9.2) using a constant time step� t . The
noises� i are simulated by drawing Gaussian numbers of variance 2D0� t at each step.

After a certain time (of the order of 2), the system reaches its stationary state and we start
to measure the correlation functions by using bins of resolution 0.1. More details are given in
the supplementary materials of [P1] . The comparison of the correlations with the inverse Fourier
transform of Eq. (9.29) is shown in Fig. 9.2. And the scaling form of the cuts [Eq. (9.48)] is
checked in Fig. 9.3. Both show a very good agreement of our theory with numerical simulations
at a high density �̄ = 2.
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Figure 9.3: Scaling form for the pair correlation functions h2,1 and h1,1. Top: simulation data of
Fig. 9.2 (�̄ = 2, D0 = 0.2, F = 4, � 1 = � 2 = 0.5), the dashed lines correspond to the cuts shown in
the bottom. Bottom: rescaled cuts of the correlations. The gray line corresponds to the prediction
from Eq. (9.48) without any ajusted factor.

Simulations in dimension 3 were also performed. Results are shown in Fig. 9.4. They are
consistent with our �ndings: the comparison with the numerical inverse Fourier transform is good
and the collapse ofh2,1 is convincing. To obtain a better agreement between the simulations and
the theory one should perform larger-scale simulations. The number of particles (N = 104 at a
density �̄ = 1) induces a system sizeL � 22 which is comparable to our range of observation, so
�nite-size effects play a role.

9.4.5 Universality of the scaling form

Simulations outside the validity regime of the approach

When the linearization of the Dean equation is valid (high density, weak interactions), we found
analytically that the correlations obey a scaling form at large distance

h�
� ,� ( xk, x? ) �

xk!�1

H� ,�

j xkj
d+ 1

2

g

‚
x?Æ
Djxkj

Œ

, (9.53)

g(u) = r 2
u

€
e� u2=2

Š
= ( u2 � d + 1)e� u2=2, (9.54)

where d is the dimension and g is the second derivative of a Gaussian[Eq. (9.46)] . Furthermore,
we obtained expressions for the prefactorsD and H �

� �
.

A natural question to ask is whether the scaling form (9.53) still holds outside of the validity
regime of our approach. To check this, we perform numerical simulations of dilute particles with
hard interactions [Fig. 9.5] . The correlations h2,1 and h1,1 look qualitatively very similar to the
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Figure 9.4: Pair correlation functions h2,1 and h1,1 in dimension 3. The parameters are�̄ = 1, D0 =
0.1, F = 2 and the fractions of particles are� 1 = � 2 = 0.5. Top: the upper panel shows the results
of the numerical simulations ( N = 1 � 104 particles). The lower panel is the numerical inversion
of Eq. (9.29). Bottom: rescaled cuts of the correlation functions. The gray line corresponds to
the prediction from Eq. (9.48) without any ajusted factor. Unfortunately, the system size is too
small to obtain good results (length : (N=�̄ )1=3 � 22).

ones obtained in the dense and soft regime that we studied previously. Moreover, using cuts at
�xed xk, we observe that we obtain a collapse with the exponents predicted by Eq. (9.53) and
the scaling function g. The width and the height are ajusted by hand. The width is found to be
identical for h2,1 and h1,1.

Qualitative argument

This suggested universality of the scaling form is remarkable. We shall now suggest a simple
explanation based on the diffusion equation (9.47). Let us consider a unique point-like intruder
driven at a constant speedU1 = U1ek in a quiescent diffusive bath of initial density �̄ . This is a toy
model for a vanishing fraction of driven particles ( � 1 ! 0, force F1) with the other particles not
submitted to any force (F2 = 0). The position of the intruder is given by Xk = U1 t and X? = 0.
The density in front of the intruder is left unperturbed: � ( xk > Xk, x? ) = �̄ .

The key point is the perturbation induced by the intruder at xk = Xk. It needs to be local
(the intruder is point-like), radially symmetric (dependant only on the norm kx? k) and most
importantly conservative: if the �eld represents particles, those that are pushed away by the
intruder need to be somewhere else (on the sides of the intruder). The perturbation that satis�es
these conditions is the second derivative of a Dirac function. � ( xk = X�

k , x? ) � �̄ = Ar 2
? � (x? ).

One checks that this corresponds to a depletion atx? = 0 and an accumulation of particles at
kx? k = 0+ .

The density �eld obeys a diffusion equation @t � = D� r 2� . As a consequence, the density �eld
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in the referential frame of the intruder, � � ( xk, x? ) � � (Xk + xk, x? ) reaches a time-independent
stationary state satisfying

0 = D�
€
@2

k + r 2
?

Š
� � ( xk, x? ) + U1@k� � ( xk, x? ). (9.55)

� � is the analog of h2,1 in our minimal model. We are interested in scalings at large distance:
one notices that we should haver 2

? � @k. Since at large distance, the lowest order of derivatives
should dominate, we neglect the diffusion in the parallel direction and write

� @k� � ( xk, x? ) �
D�

U1
r 2

? � � ( xk, x? ), (9.56)

with the boundary condition at xk = 0� ,

� � ( xk = 0� , x? ) � �̄ = Ar 2
? � (x? ). (9.57)

Eqs. (9.56) and (9.56) correspond to the diffusion equation (9.47) that we obtained previously.
Its solution is indeed the scaling form

� � ( xk < 0, x? ) �
1

j xkj
d+ 1

2

g

‚ v
t U1

2D�

x?Æ
jxkj

Œ

. (9.58)

The factor x? =
Æ

jxkj is the usual self-similar ratio for diffusion. The decay exponent j xkj
d+ 1

2 stems
from the second derivative of a Dirac function as initial condition. The reader is perhaps more

familiar with the exponent j xkj
d� 1

2 associated with a Dirac initial condition. Similarly the shape
g, second derivative of a Gaussian, is the analog of the Gaussian function associated with a Dirac
initial condition.

To summarize, we found the scaling form (9.53) with minimal ingredients. Our argument
explains well the scaling of h2,1 for xk < 0. In reality, we considered a non-vanishing fraction of
particles driven at constant force (instead of constant velocity), and the reference particle is also
diffusing. All these differences affect only the prefactors involved. The scaling forh1,1 can be
thought of as correlations between the same species mediated by inter-species correlations. And
the scaling of h2,1 for xk > 0 is due to the fact that particles “align”: what is seen is the wake
created by the other particles of the same species.

Note on a model of active binary mixtures

Finally, let us note that Bain and Bartolo studied a model of active binary mixtures in dimension
two [76] (our system could be called “passive binary mixtures”). Each point-like particle has
an orientation which de�nes its direction of motion at constant speed, and wants to move to-
wards either the left or the right. Particles interact via pairwise repulsive torques. In this system,
the authors found a phase transition between two states: an homogeneous state and a phase
separated state. The phase separated state is argued to be speci�c of activity. But a striking
feature is that the correlations in the homogeneous state between left-moving and right-moving
particles gl r ( xk, x? ), and between particles of the same kindgl l ( xk, x? ), obey the scaling form:

g� ,� ( xk, x? ) � x � 3=2
k C

€
x? =x1=2

k

Š
. This behavior is very similar to Eq. (9.53). It is striking that

the scaling exponents that we found can be reproduced in a purely deterministic active model
with no temperature.
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Figure 9.5: Pair correlation functions in dimension 2 for dilute and hard particles. The parameters
are �̄ = 0.2, T = 0.001, F = 0.02, � 1 = � 2 = 0.5. Top: correlation functions from the simulations.
Bottom: rescaled cuts of the correlations at constantxk using the exponents from Eq. (9.48). The
gray curves correspond to the scaling function (9.40) with adjusted horizontal and vertical factors.
The agreement is perfect: this hints at a universality of the scaling form that we found.

9.5 Effective mobility

9.5.1 De�nition

We consider the Langevin equation (9.2) in the case ofq = 2 species with only the �rst one
undergoing a force: F1 6= 0, F2 = 0. The average velocityV1 of particles of species 1 is de�ned as

V1 �
1
N1

X

i2T 1

hXi i . (9.59)

By symmetry, it has to be in the direction of the force F1. We call the proportionality coef�cient
� eff the effective mobility,

V1 � � effF1. (9.60)

The effective mobility quanti�es the hindering of the motion of a particle due to the presence of
the other particles. In the absence of interactions (potential V(x) = 0), it is simply the mobility,
we previously set it to one: � eff = 1. In an electrolytic solution, the effective mobility is closely
linked to the conductivity of the solution [2] .

The velocity V1 can be computed from the Langevin equation (9.2),

V1 = F1 �
1
N1

*
X

i2T 1

X

j6= i

r i V(Xi ( t ) � X j ( t ))

+

. (9.61)
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Figure 9.6: Mobility � eff = 1 � � 2K. (a) Value of K for �̄ = 2, D0 = 0.2, F = 4 as a function
for the proportion of driven particles � 1. The blue circles correspond to simulations, while the
black triangles are the predictions from Eq. (9.69). (b) We choose to impose�̄ = 10D0 = 5F with
� 1 = 0.5, so that our prediction for �̄ K is constant [Eq. (9.69)] ; it corresponds to the black line.
The blue circles are the values corresponding to numerical simulations for various densities. We
see that our approach leads to quantitative results at high density.

This can be projected along the direction of the force and leads to

� eff = 1 �
1

N1F1

*
X

i2T 1

X

j6= i

@kV(Xi ( t ) � X j ( t ))

+

. (9.62)

@k denotes the derivative along the direction of the force. The absence of interactions (V = 0)
indeed gives � eff = 1. We shall now see that the term involving the potential can be expressed
exactly in terms of the correlations.

9.5.2 Link with the correlation functions

Remembering the de�nition of the densities [Eq. (9.3)] and using the invariance by translation,
one transforms Eq. (9.62) into

� eff = 1 �
1

�̄ 1F1

Z

dx @kV(x) h� 1(x)� 1(0) + � 1(x)� 2(0)i . (9.63)

And, from the de�nition of h� ,� [Eq. (9.13)] , we have

h� � (x)� � (0)i = �̄ � �̄ �

�
1 + h� ,�

�
+ �̄ � � � ,� � (x). (9.64)

We inject this into the expression of� eff. We use the facts that@kV(0) = 0 and that @kV(x)h1,1(x)
is an even function (particles of the same species do not slow down each other). Our �nal relation
is

� eff = 1 �
�̄ 2

F1

Z

dx @kV(x)h1,2(x). (9.65)

Let us stress that this is an exact relation between the effective mobility and the cross-correlations
h1,2. It is an analog, for binary mixtures, of the pressure equation (8.51) that we studied in the
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case of passive liquids. We prefer to rewrite it as

� eff = 1 � � 2K, (9.66)

K =
�̄

F1

Z

dx @kV(x)h1,2(x). (9.67)

� 2 is the fraction of non-driven particles hindering the motion of the others, and it can be shown
(see[P1] ) that K is symmetric with respect to the fraction of driven particles: K(� 1, � 2 = 1� � 1) =
K(� 2, � 1). Note that K can also be written as an integral in Fourier space,

K = �
�̄

F1

Z
dk

(2� )d
ikkṼ(k)h̃1,2(k). (9.68)

9.5.3 Linearized approximation

We use our results for the correlations in the linearized approximation (9.29) and inject them
into (9.66). We obtain � eff = 1 � � 2K with

K =
1
�̄

Z
dk

(2� )d

ṽ2(2 + ṽ)k2
k k2

(1 + ṽ)(2 + ṽ)2 + ( 1 + � 1 ṽ)(1 + � 2 ṽ)
k2

k f 2

k4

, (9.69)

and f = F=D0. This expression can be integrated numerically and compared to numerical simu-
lations (Fig. 9.6). In subsection 8.3.1, we explained that our approximation is valid for a dense
system with weak interactions, �̄ ! 1 with �̄ V(x) constant. In numerical simulations, the po-
tential strength is set to one: the regime of weak interactions corresponds to largeD0 and F (with
constant F=D0). For this reason, in Fig. 9.6b we choose�̄= D0 constant and F=D0 constant with �̄
that varies. With this, �̄ K remains constant. We are able to check that we obtain a quantitative
agreement between the theory and the simulations in the right end of Fig. 9.6b, this corresponds
indeed to the regime of high density and weak interactions. This �gure justi�es our choice of
density �̄ = 2 in the other �gures. Fig. 9.6a �nally shows that a correct dependence of the mo-
bility on the tracers' fraction is predicted by our approach in its validity regime (even if some
discrepancies are observed).

9.6 Conclusion

In this chapter, we studied a driven binary mixture: a system where some particles are driven by
an external �eld and some are not (or equivalently, are driven in the opposite direction). We used
the framework based on the linearized Dean equation that we introduced in the previous chapter.
It gives us access to the pair correlations in a regime of weak interactions (that corresponds in
this case to a high density). We uncovered a universal scaling form satis�ed by both the inter-
species and the intra-species correlations. The scaling form is associated with an algebraic decay
( x � (d+ 1)=2

k ) along the drive and with a diffusive scaling in the perpendicular direction. It can be
explained by simple arguments and was found to hold in numerical simulations outside of the
validity regime of our approach. Finally, we computed the effective mobility of the particles and
showed that it gives quantitative results in the validity regime of the linearization.

While the study of linear perturbations around an homogeneous pro�le will not give a de�ni-
tive answer on the existence of a laning transition, we can nevertheless make a few comments.
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The most simple one is that particles of the same species are positively correlated along the drive,
while particles of different species are negatively correlated in this direction. Hence, there is some
kind of “laning”. One strength of our approach is that it holds for arbitrary forces (and not only
small forces). And nothing in our results hints that a transition may occur at a given force. This is
in agreement with simulations of very large systems[51] that point towards a smooth crossover
towards lanes. Moreover, we do �nd a power-law decay of the correlations along the drive as
was hinted at in Ref. [60] but this does not seem to be associated with a phase transition. These
long-range correlations hold for any external force (and not at a given critical point).

In the next chapter, we study a different system, in the �eld of active matter: active Brownian
particles.
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10.1 Introduction

In the previous chapter, we studied the pair correlations of an out-of-equilibrium system composed
of particles driven by an external electric �eld. We uncovered a power-law decay associated with
a scaling form. We now focus on a paradigmatic model of active matter: active Brownian particles

141
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(ABPs) and conduct a similar analysis that will lead us to exhibit similar scaling forms in some
limit regimes.

Let us recall a few things about active matter, a �eld that has received a lot of attention in the
past twenty years. In some out-of-equilibrium systems, such as driven binary mixtures considered
previously, energy is injected at large scale via an external potential. On the contrary, in active
matter systems, energy is injected at the scale of the particles: this means that each particle has
its own motor which enables it to self-propel. Usual examples in the living world include �ocks
of birds [18] , herds of sheeps[19] and crowds of humans [17] at the macroscopic scale; and
bacteria [11–13] and microtubules [14] at the microscopic scale. In all these systems, the main
goal is to understand how a collective dynamics emerges from local rules governing the motion
of individuals. To get a better insight into this issue, various experimental model systems have
been introduced to study active matter in laboratory under controlled conditions. In Chapter 11,
we will compare our theoretical results to experiments of electrophoretic Janus particles [77–
80] . Other examples of arti�cial active matter systems include catalytic Janus particles[81–83] ,
Quincke rollers [84,85] , vibrated polar disks [86] and interacting hexbugs [87] .

Active matter systems are very diverse and so are their theoretical descriptions. Broadly speak-
ing one distinguishes between systems with and without alignment. One of the most popular
models that incorporate alignment is the Vicsek model [88] in which self-propelled point-like
particles align with their neighbors (with noise). This model exhibits a transition towards or-
dered collective motion and shows giant number �uctuations in this ordered phase [89] . It is a
paradigmatic model of active polar liquids, which can be described at large scale by Toner and Tu
hydrodynamics [61,62] . Note that alignment effects are not always explicit and can also take the
form of velocity-orientation couplings [87, 90] . On the other hand, some systems do not show
alignment and their collective effects are a mere consequence of self-propulsion. Two models
of such systems, that were shown to be closely related[91, 92] , are active Brownian particles
(ABPs) described below, and run-and-tumble particles that move at constant speed in a constant
direction with reorientations happening at exponentially distributed times. These models show
an effective attraction between particles leading to a phase separation that we describe below.

The central model of this chapter is active Brownian particles (see Fig. 10.1). Each particle is
embedded with an orientation and moves at constant velocity along it. Moreover, the orientation
is diffusive and a translational noise is added to the position of the particle. The propagator of an
isolated particle is known in dimensions 2 and 3 [93,94] , but the most characteristic behaviors oc-
cur for interacting ABPs. At high activity (large velocity), it has been shown that the system spon-
taneously separates into two phases of large and small density[52] . This phenomenon is called
motility-induced phase separation (MIPS) and is a very important feature of the system. The pres-
sure of ABPs has been shown to be a state function[95] and this fact has been used recently to
compute the phase diagram (density versus activity) of active Brownian hard spheres[53] . This
bridges the gap between melting (passive hard spheres) and MIPS (highly active hard spheres).
The homogeneous phase of ABPs has received comparatively few attention so far. Nevertheless,
focusing on dilute and soft ABPs we will show that this phase is very different from an equilibrium
liquid.

Our main goal is the computation of the pair correlations of soft ABPs, and in particular of
their spatial structure. Some studies approximate the activity as a colored noise and switch to
the model of active Ornstein-Uhlenbeck particles for which the velocity autocorrelation decays
exponentially [54, 55, 96] . This approach gives the angular average of the pair correlations but
crucially misses the spatial structure. A second framework consists in starting from the many-
body Smoluchowski equation, writing a closure relation and solving numerically the nonlinear
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equations obtained[56,57,97] . This provides quantitative results for the effective velocity (which
is linked to the correlations) but does not characterize analytically the pair correlations.

In this chapter, we use the method introduced previously (linearization of the Dean equation)
to obtain analytical results for the pair correlations of dilute and soft active Brownian particles.
We derive a closed equation satis�ed by these correlations and solve it in the three limits of low
activity, low rotational diffusion and low translational diffusion. The �rst one is associated with
an exponential decay, but the other two limits reveal scaling forms striking both in their overall
shape (structure with wings) and in their decay exponents. Overall, the picture can be uni�ed
on a phase diagram (Fig. 10.6) which enables us to predict the structure of the correlations for a
given set of parameters.

The results of this chapter have been published in[P5] .

10.2 Theoretical approach

10.2.1 Coupled Langevin equations for active Brownian particles

We consider interacting active Brownian particles in dimension 2 (see Fig. 10.1). Each particle is
characterized by a couple position-orientation (Xi , � i ). Due to an internal mechanism, particles
move with a velocity of constant norm U and direction given by the orientation. This orientation
is assumed to be diffusive with a rotational diffusion constant Dr . We also consider translational
diffusion with a diffusion constant D0. As in the two previous chapters, particles interact via a
pair potential V(r) that we assume to be isotropic. The positionsXi and the orientations � i obey
the following coupled Langevin equations.

dXi

d t
= Uê� i ( t ) �

X

j6= i

r i V(Xi ( t ) � X j ( t )) + � i ( t ), (10.1)

d� i

d t
= � i , (10.2)

where ê� is the unit vector making an angle � with the horizontal axis. The noises � and � are
Gaussian white noises with zero average and correlations

h� �
i ( t )� �

j ( t 0)i = 2D0� i , j �
� ,� � ( t � t 0), (10.3)

h� i ( t )� j ( t 0)i = 2Dr � i , j � ( t � t 0). (10.4)

Remark: arbitrary dimension

We chose to consider a system in dimension 2 but nothing prevents us from studying an arbitrary
dimension d (in particular d = 3). In this case, the orientation ê� is replaced by a vector ŝ
living on S , the unit sphere embedded in d-dimensional space. One should make the following
substitutions in the computations that come later.

• The orientation becomes a Brownian process on the sphereS .

• 2 � factors are replaced byjS j , the area of the sphereS .

• The �rst (resp. second) derivative with respect to � becomes the gradientr S (resp. the
Laplacian r 2

S ) on the sphere S .
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Figure 10.1: Sketch of active Brownian particles. A given particle is at position Xi and has an
orientation � i . It moves at velocity U along its orientation and undergoes rotational and transla-
tional diffusion with respective coef�cients Dr and D0. The particles interact by a pair potential
V(r).

• Fourier series are generalized into spherical harmonics which are the eigenvectors of the
Laplacian r 2

S . The lowest eigenvectors (equivalent to the order 1 of Fourier series) are the
vectors of the unit sphere: for ŝ 2 S , r 2

S ŝ = � (d � 1)ŝ. There are d linearly independent
unit vectors, those of the canonical basis.

10.2.2 Exact Dean equation

We de�ne the density f (x, � , t ) in the phase space(x, � ) as

f (x, � , t ) =
NX

i= 1

1X

m= �1

f i (x, � + 2m� , t ) (10.5)

with the individual densities

f i (x, � , t ) = � (Xi ( t ) � x)� (� i ( t ) � � ). (10.6)

We consider a smooth and fastly decaying test function' (r, � ). By de�nition of f i ,

' (Xi ( t ), � i ( t )) =

Z

dr

Z 1

�1

d� f i (r, � , t )' (r, � ). (10.7)

Then, the time derivative of ' (Xi ( t ), � i ( t )) can be written in two different ways:

d
d t

' (Xi ( t ), � i ( t )) =

Z

dx

Z 1

�1

d�
@f i

@t
(x, � , t )' (x, � ) (10.8)

=

Z

dx

Z 1

�1

d� f i (x, � , t )( d t) � 1d' (x, � ). (10.9)

The differential d' is given by the Itô formula [73] ,

d' = r ' � dXi +
@ '

@ �
d� i +

1
2

r 2' (dXi )
2 +

1
2

@2'

@ �2
d� 2

i +
@

@ �
r ' � dXi d� i (10.10)

= r ' �

(

�r i

X

j

V(Xi � X j ) + Uê� i

)

d t + D0d tr 2' + Dr d t
@2'

@ �2
. (10.11)



10.2 Theoretical approach 145

The differentials dXi and d� i are computed from Eqs. (10.1) and (10.2) (we assumedr V(0) =
0). Performing the necessary integrations by parts and recalling that the function ' is arbitrary,
one obtains

@f i

@t
= D0r 2 f i + Dr

@2 f i

@2�
+ r

 

f i

NX

j= 1

r V(x � X j ( t ))

!

� Ue� � r f i �
p

2D0r f i � � i �
p

2Dr
@

@ �
( f i � i ).

(10.12)
Using Eq. (10.5) and rearranging the noises like Dean[58] , we �nally obtain the following

Dean equation for f (x, � , t ),

@
@t

f (x, � , t ) = �r J(x, � , t ) �
@

@ �
K(x, � , t ). (10.13)

J and K are currents re�ecting the conservation of the number of particles. They read

J(x, � , t ) = � D0r f (x, � , t ) � f (x, � , t )

Z 2�

0

d� (r V � f )(x, � , t ) + f (x, � , t )Uê�

� f 1=2(x, � , t )� (x, � , t ) (10.14)

K(x, � , t ) = � Dr
@

@ �
f (x, � , t ) � f 1=2(x, � , t )� (x, � , t ). (10.15)

As usual, the spatial convolution is( f � g)(x) =
R

dx0f (x0) g(x � x0). � and � are Gaussian white
noises with zero average and correlations

h� � (x, � , t )� � (x0, � 0, t 0)i = 2D0� �� � (x � x0)� (� � � 0)� ( t � t 0), (10.16)

h� (x, � , t )� (x0, � 0, t 0)i = 2Dr � (x � x0)� (� � � 0)� ( t � t 0). (10.17)

10.2.3 Linearized Dean equation

As usual, the Dean equation is non linear with multiplicative noise. We linearize it around an
homogeneous pro�le as done in the previous chapters. Let us denote�̄ the average density of
particles. One sees that the average over space off (x, � , t ) is �̄= (2� ). The linearization reads

f (r, � , t ) =
�̄

2�
+

v
t �̄

2�
� (r, � , t ). (10.18)

The �eld � is assumed to be of order 1 in�̄ . We also scale the potential with �̄ and write

V(r) �
v(r)
�̄

. (10.19)

At the lowest order, the Dean equation (10.12) becomes linear with additive noise.

@ �

@t
=

�

D0r 2 + Dr
@2

@ �2
� Uê� � r

�

� +
1

2�

Z 2�

0

d� 0(r 2v � � )( � 0) + r � � +
@ �
@ �

. (10.20)

We de�ne the Fourier transform ˜� (k, � , t ) =
R

dx e� i k�x� (x, � , t ) and obtain

@˜�

@t
=

�
� D0k2 + Dr @

2
� � iUk � ê�

�
˜� �

k2 ṽ(k)
2�

Z 2�

0

d� 0 ˜� (k, � 0) + �̃ (k, � ) + @� �̃ . (10.21)

In Fourier space, the noises have the following covariances

h�̃ (k, � , t )�̃ (k0, � 0, t 0)i = 2(2� )2D0k2� (k + k0)� (� � � 0)� ( t � t 0) (10.22)

h̃� (k, � , t )�̃ (k, � , t )i = 2(2� )2Dr � (k + k0)� (� � � 0)� ( t � t 0). (10.23)
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10.3 Correlations

10.3.1 De�nitions

Our system is invariant by translation, we de�ne the correlation of the density �eld f between
point (0, � ) and point (r, � 0) as

C(r, � , � 0) �



f (0, � ) f (r, � 0)

�

[ �̄= (2� )] 2
�

� (r)� (� � � 0)
�̄= (2� )

� 1. (10.24)

The second term is the correlation of a given particle with itself and the third is the r ! 1 limit.
By rotational invariance, all the information is contained in C(r, 0, � 0). Our key observable will
be the integration of this function with respect to � 0.

B(r) =
1

2�

Z 2�

0

C(r, 0, � 0)d� 0. (10.25)

Intuitively B(r) is the density seen by a given particle in its reference frame. One should note that
with our convention, the correlations without self-propulsion ( U = 0, passive system) read

C(r) = B(r) = h(r) (10.26)

with the usual de�nition of the pair correlation h(r).
Due to our de�nition of the linearized Dean equation, it is also useful to de�ne the correlation

of the �eld � between coordinates(r1, � 1) and (r2, � 2),

C (r1, r2, � 1, � 2, t ) � h � (r1, � 1, t )� (r2, � 2, t )i . (10.27)

C(r, � , � 0) is then given by

C(r, � , � 0, t ) =
1
�̄

�
C (0, r, � , � 0, t ) � � (r)� (� � � 0)

	
. (10.28)

10.3.2 Full equation in the linearized regime

We use Itô calculus to compute the time evolution of C [Eq. (10.27)] .

C (r1, r2, � 1, � 2, t + � t ) � C (r1, r2, � 1, � 2, t ) =

h� (r1, � 1, t )�� (r2, � 2, t )i + h�� (r1, � 1, t )� (r2, � 2, t )i + h�� (r1, � 1, t )�� (r2, � 2, t )i , (10.29)

where �� (r, � , t ) is the variation of the �eld during � t . It is given by the linearized Dean equa-
tion (10.20). Computing the different terms from the linearized Dean equation (10.20), one
shows that

@t C (r1, r2, � 1, � 2) =
�
D0(r 2

1 + r 2
2) + Dr (@� 1

+ @� 2
) � U(ê� 1

� r 1 + ê� 2
� r 2)

�
C (r1, r2, � 1, � 2)

+
1

2�

Z 2�

0

d� 0
�
r 2

1v � C (r1, r2, � 0, � 2) + r 2
2v � C (r1, r2, � 1, � 0)

�

+
�
2D0r 1r 2 + 2Dr @� 1

@� 2

�
� (r1 � r2)� (� 1 � � 2). (10.30)
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We immediately use the invariance of the system by translation and write the equation in
terms of C(r, � , � 0) [Eq. (10.28)] ,

@t C(r, � , � 0) =
�
2D0r 2 + Dr (@� + @� 0) + U(ê� � ê� 0) � r

�
C(r, � , � 0) + 2r 2V(r)

+
�̄

2�

Z 2�

0

d� 00r 2v �
�
C(r, � , � 00) + C(r, � 00, � 0)

�
. (10.31)

In the following, we are only interested in the stationary correlations. They satisfy the follow-
ing linear partial differential equation.

�
2D0r 2 + Dr (@� + @� 0) + U(ê� � ê� 0) � r

�
Cstat(r, � , � 0)

+
�̄

2�

Z 2�

0

d� 00r 2v �
�
Cstat(r, � , � 00) + Cstat(r, � 00, � 0)

�
= � 2r 2V(r). (10.32)

Note that due to the term ê� � r , it is not possible to write a closed equation for B(r).

10.3.3 Equation for the direct correlation functions

At low enough density, the three-body effects encoded in the term involving a convolution with
the potential can be neglected. We consider thedirect correlation functions Cd(x, � , � 0, t ) that
describe only the two-body effects. They are solution of the time-dependent equation

@t Cd(x, � , � 0) =
�
2D0r 2 + Dr (@� + @� 0) + U(ê� � ê� 0) � r

�
Cd(x, � , � 0) + 2r 2V(x). (10.33)

Their stationary value satis�es
�
2D0r 2 + Dr (@� + @� 0) + U(ê� � ê� 0) � r

�
Cstat

d (r, � , � 0) = � 2r 2V(r), (10.34)

and their integral over � 0 is called Bd(r),

Bd(r) =
1

2�

Z 2�

0

Cd(r, 0, � 0)d� 0. (10.35)

Note that Eqs. (10.33) and (10.34), which are the analogs of Eqs. (10.31) and (10.32), are our
de�nitions of the direct correlation functions.

We shall now explain our choice of words “direct correlation functions”. Let us consider the
passive caseU = 0 in which Cstat(r, � , � 0) = Bstat(r)=(2� ). Eq. (10.34) enables us to write the
potential v in terms of Bstat. Performing the substitution into Eq (10.32) one obtains

Bstat(r) = Bstat
d (r) + ( Bstat

d � Bstat)( r). (10.36)

This is the well-known Ornstein-Zernike equation [1] that relates the correlations B to the direct
correlations Bd. Moreover, for a passive system, the stationary solution is

Bpassive
d (x) = �

�̄ V(x)

D0
. (10.37)

This is the usual random phase approximation for the direct correlation functions [1] . Our def-
inition of Bd in the active case is consistent with the usual one for liquids. We also claim that it
has the same intuitive meaning: removing the term r 2V � C amounts to neglecting the part of
the correlations between two particles that is mediated by a third one: hence we consider only
the correlations that involve interactions directly between two particles. Three-body effects are
neglected.
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10.3.4 Change of variables and numerical integration

We consider the time-dependent equation (10.33) for the direct correlations Cd,

@t Cd(r, � , � 0) =
�
2D0r 2 + Dr (@� + @� 0) + U(ê� � ê� 0) � r

�
Cd(r, � , � 0) + 2r 2V(r). (10.38)

In polar coordinates, we write r = r e� . The latter equation depends on four coordinates (plus
time): ( r, � , � , � 0). By performing a rotation of angle � , the symmetries enable one to reduce the
problem to three parameters ( r, � , � ),

� = � � � , � = � 0� � . (10.39)

We write x = r e� = ( x, y), Cd is then a function only of x and � . Its time evolution is given by

@t Cd(x, � ) =
•
2D0r 2 + Dr L angles+ U

•
(1 � cos� )

@
@x

� sin �
@

@y

‹˜
Cd(x, � ) + 2r 2V(x),

(10.40)

r 2 =
@2

@x2
+

@2

@y2
, (10.41)

L angles =

�

y2 @2

@x2
+ x2 @2

@y2
� 2x y

@2

@x@y
� x

@
@x

� y
@

@y

�

+ 2
•

� y
@

@x
+ x

@
@y

‹
@

@ �
+ 2

@2

@ �2
.

(10.42)

It is important to note that Bd [Eq. (10.35)] is given by the integration over � ,

Bd(x) =
1

2�

Z 2�

0

d� Cd(x, � ). (10.43)

Starting from Cd(x, � , t = 0) = 0, one can numerically integrate Eq. (10.40) using carefully
chosen steps� t , � x and � � for the time, position and angle. At large time, we reach the
stationary solution. In Fig. 10.2, we are able to compare this numerical result for Bd(r) to the
correlations obtained in numerical simulations of the coupled Langevin equations at low density
� = 0.05. The very good agreement comforts us in the theoretical study in Eq. (10.34) for the
direct correlations functions.

We now study the direct correlation function in the three regimes U ! 0, Dr ! 0 and D0 ! 0
in which the equation is tractable. This will lead us to a complete phase diagram (Fig. 10.6) for
the structure of the correlations.

10.4 Low activity

We now consider the case of weak activity:U �
p

D0Dr . This is the only case in which we are able
to solve for the correlations [Eq. (10.32)] and not only for the direct correlations [Eq. (10.34)] .

We attempt to solve Eq. (10.32) perturbatively in the activity U. In Fourier space it reads,

�
� 2D0k2 + Dr (@� + @� 0)

�
C̃(k, � , � 0) �

k2 �̄ Ṽ

2�

Z 2�

0

d� 00
�
C̃(k, � , � 00) + C̃(k, � 00, � 0)

�

= 2k2Ṽ � iUk � (ê� � ê� 0)C̃(k, � , � 0), (10.44)

with C that is expanded in powers of U as

C(x, � , � 0) = C(0)(r) + UC(1)(r, � , � 0) + U2C(2)(r, � , � 0) + . . . (10.45)

We now solve order by order.
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Figure 10.2: Comparison between numerical simulations ofB(r) (top) and numerical integration
of Eq. (10.40) for the direct correlations Bd(r) (bottom). Throughout this chapter we consider
the soft-sphere potential V(r ) = � (1 � r )2=2 if r < 1, with � = 1. The parameters are�̄ = 0.05,
D0 = 0.1, U = 10 and from (a) to (d), Dr = 10,1, 0.1,0.01. When Dr becomes smaller, wings
appear. Our theoretical description will account for these wings.

10.4.1 Perturbative expansion

Order 0. The passive correlation (U = 0) does not depend on the angles, we immediately obtain

C̃(0)(k) =
� Ṽ(k)

D0 + �̄ Ṽ(k)
. (10.46)

This is the usual RPA solution that we studied in the previous chapters[Eq. (8.42)] .

Order 1. Now, we write Eq. (10.44) at order one,

�
� 2D0k2 + Dr (@� + @� 0)

�
C̃(1)(k, � , � 0) �

k2 ṽ
2�

Z 2�

0

d� 00
�
C̃(1)(k, � , � 00) + C̃(1)(k, � 00, � 0)

�

= � ik � (ê� � ê� 0)C̃(0)(k), (10.47)

with ṽ = �̄ Ṽ. We plug in the following Ansatz

C̃(1)(k, � , � 0) = ik � (ê� � ê� 0) D̃(1)(k), (10.48)
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and quickly obtain

D̃(1)(k) =
C̃(0)(k)

(2D0 + ṽ(k)) k2 + Dr
. (10.49)

Note that the underlying structure in real space is

C(1)(r, � , � 0) = ( e� � e0
� ) � r D(1)(r). (10.50)

Order 2. The order 2 of Eq. (10.44) leads to

�
� 2D0k2 + Dr (@� + @� 0)

�
C̃(2)(k, � , � 0) �

k2 ṽ
2�

Z 2�

0

d� 00
�
C̃(2)(k, � , � 00) + C̃(2)(k, � 00, � 0)

�

= 2k2 [ 1 � ê� � ê� 0] D̃(1)(k). (10.51)

As we are in dimension 2, ê� � ê� 0 = cos(� � � 0). We use the following Ansatz,

C̃(2)(k, � , � 0) = D̃(2)
a (k) + D̃(2)

b (k) ê� � ê� 0. (10.52)

After injecting it into the equation, D(2)
a and D(2)

b can be expressed in terms ofD(1) as

D(2)
a (k) =

� D̃(1)(k)
D0 + ṽ(k)

, D(2)
b (k) =

k2D̃(1)(k)
D0k2 + Dr

. (10.53)

Higher orders. The development can be pushed to higher orders. The complexity increases
fastly with the apparition of harmonics [ ê� � ê� 0] n = cosn(� � � 0). This is not very insightful and
we will not detail it here. The complexity of the results that we will �nd at high activity will
convince the reader that no simple development exists at an arbitrary order.

Result up to order 2. To summarize, the structure up to order 2, in Fourier space and in real
space, is

C̃(k, � , � 0) =
�
C̃(0)(k) + U2D̃(2)

a (k)
�

+ iUk � (ê� � ê� 0) D̃(1)(k) + U2 (ê� � ê� 0) D̃(2)
b (k), (10.54)

C(r, � , � 0) =
�
C(0)(r) + U2D(2)

a (r)
�

+ U(ê� � ê� 0) � r D(1)(r) + U2 (ê� � ê� 0) D(2)
b (r), (10.55)

B(r = ( x, y)) =
�
C(0)(r) + U2D(2)

a (r)
�

+
U
2�

@
@x

D(1)(r) (10.56)

with

C̃(0)(k) =
� Ṽ(k)

D0 + �̄ Ṽ(k)
, (10.57)

D̃(1)(k) =
� Ṽ(k)

[ D0 + �̄ Ṽ(k)][( 2D0 + �̄ Ṽ(k)) k2 + Dr ]
, (10.58)

D(2)
a (k) =

Ṽ(k)

[ D0 + �̄ Ṽ(k)] 2[( 2D0 + �̄ Ṽ(k)) k2 + Dr ]
, (10.59)

D(2)
b (k) =

� k2Ṽ(k)

[ D0k2 + Dr ][ D0 + �̄ Ṽ(k)][( 2D0 + �̄ Ṽ(k)) k2 + Dr ]
. (10.60)
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Similarly for the direct correlations,

Cd(r, � , � 0) =
”
C(0)

d (r) + U2D(2)
d,a(r)

—
+ U(ê� � ê� 0) � r D(1)

d (r) + U2 (ê� � ê� 0) D(2)
d,b(r), (10.61)

Bd(r = ( x, y)) = 2�
”
C(0)

d (r) + U2D(2)
d,a(r)

—
+ 2� U

@
@x

D(1)
d (r) (10.62)

with

C̃(0)
d (k) =

� Ṽ(k)
D0

D̃(1)
d (k) =

� Ṽ(k)
D0(2D0k2 + Dr )

(10.63)

D(2)
d,a(k) =

Ṽ(k)

D2
0 (2D0k2 + Dr )

, D(2)
d,b(k) =

� k2Ṽ(k)
D0(2D0k2 + Dr )( D0k2 + Dr )

. (10.64)

We remark that the modi�cation of the polar part of the correlations occurs at the �rst order

in the velocity
€
U@x D(1)

d (r)
Š

while by symmetry U $ � U, the isotropic part h( r ) is modi�ed

only at the second order in the velocity
€
U2D(2)

d,a(r)
Š
. Furthermore, the correction to this isotropic

part is found to be positive. This is consistent with the effective attractive interactions between
particles that have been found by other approaches[96] .

10.4.2 Large distance behavior

The large distance limit corresponds to the limit k ! 0. The Fourier transform of the potential is
approximated by its value at 0. We make the substitution Ṽ(k) 7! Ṽ(0). This leads us to

D̃(1)(k) �
� Ṽ(0)

D0 + �̄ Ṽ(0)

1

(2D0 + �̄ Ṽ(0)) k2 + Dr
(10.65)

and similar expressions for the other quantities. We recall the following Fourier transform, in
dimension 2,

G̃(k) =
1

k2 + � � 2
, G(r) =

1
2�

K0

•
krk
�

‹
(10.66)

where K0 is a modi�ed Bessel function of the second kind. This gives

D(1)(r) �
r !1

1
2�

� Ṽ(0)

(D0 + �̄ Ṽ(0))( 2D0 + �̄ Ṽ(0))
K0

‚
krk

p
2` 0

U

Œ

(10.67)

with the typical length

` 0
U =

v
u
t D0 + �̄ Ṽ(0)=2

Dr
. (10.68)

Finally, the large distance behavior of the correlations can be written as

B(r, � ) � Bpassive( r, � ) = B0( r ) + B1( r ) cos� , (10.69)

B0( r ) �
r !1

U2 1
2�

Ṽ(0)

(D0 + �̄ Ṽ(0))2(2D0 + �̄ Ṽ(0))
K0

‚
r

p
2` 0

U

Œ

, (10.70)

B1( r ) �
r !1

U
p

Dr
1

2�
Ṽ(0)

(D0 + �̄ Ṽ(0))( 2D0 + �̄ Ṽ(0)) 3=2
K1

‚
r

p
2` 0

U

Œ

. (10.71)
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Similarly, the large distance behavior of the direct correlations is

Bd( r, � ) � Bpassive( r, � ) = Bd,0( r ) + Bd,1( r ) cos� , (10.72)

Bd,0( r ) �
r !1

U2 Ṽ(0)

4� D3
0

K0

�
r

p
2` U

�

, (10.73)

Bd,1( r ) �
r !1

U
p

Dr
Ṽ(0)

2�
p

2D3=2
0

K1

�
r

p
2` U

�

, (10.74)

with ` U =
p

D0=Dr . We perform simulations at low density � = 0.05 and intermediate den-
sity � = 0.5. The results are shown on Fig. 10.3. At low density, the correlations and direct
correlations are identical and our prediction agrees well with the data from simulations. At in-
termediate density, only the prediction for the correlations matches the simulations. This is the
expected behavior: the direct correlations give a good prediction at low density.

We now study two cases which correspond to a high activity: vanishing rotational diffusion
and vanishing translational diffusion.

10.5 Vanishing rotational diffusion

10.5.1 Expression of the direct correlations

After having studied the case of small activity, we now turn to another special case, namely the
case of vanishing rotation diffusion: Dr = 0. Even with this simpli�cation, Eq. (10.32) for the
correlations is not tractable. Instead we study Eq. (10.34) for the direct correlations which is
valid at low density. This equation is very easy to solve in Fourier space in the caseDr = 0. We
obtain

�
2D0r 2 + U(ê� � ê� 0) � r

�
Cd(r, � , � 0) = � 2r 2V(r), (10.75)

C̃d(k, � , � 0) =
� 2k2Ṽ(k)

2D0k2 � iUk � (e� � e� 0)
. (10.76)

This result is reminiscent of the case of the binary mixture studied in the previous chapter. One
should in particular remember the result for a small fraction of driven particles [Eq. (9.30)] . Here
we �nd a “difference of forces”

� F(� , � 0) = U(e� � e� 0). (10.77)

This interpretation is reasonable because whenDr = 0, the orientation of the particles never
changes. We can pretend handwavingly that we have an in�nity of species corresponding to all
orientations. Then the correlation Cd(� , � 0) between two species in the dilute limit may be the
same as the one of a binary mixture with forcesF1 = Ue� and F2 = Ue0

� .

10.5.2 Result for the integrated direct correlations

We now want to consider the integration of Eq. (10.76) over the orientation � 0 of the second
particle. We introduce the relevant length scale

` r =
D0

U
. (10.78)
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Figure 10.3: Pair correlation functions at small activity. The dashed green lines correspond to
predictions for the correlation function [Eqs. (10.69)-(10.71) ] while the solid gray line are pre-
dictions for the direct correlation functions [Eqs. (10.72)-(10.74) ] . (a) Simulation result for the
correlations B(r) with parameters D0 = 0.1, Dr = 0.5, U = 0.05. (b) Black line: cut of the cor-
relations at r = r0 = 1.5. Comparison with the predictions of cosine functions. (c.i) Rescaled
�rst Fourier component B1( r ) of B(r). � = 0.05, D0 = 0.1; dashed lines U = 0.05, solid lines
U = 0.1; from blue to red Dr = 0.1,0.2, 0.5,1. (c.ii) Rescaled excess isotropic part ofB(r) for the
same parameters. (d.i) and (d.ii) are the same as (c.i) and (c.ii) with � = 0.5 and D0 = 0.2. We
note that at low density (case c), both predictions match well the simulation data while at higher
density (case d) the discrepancy between the correlation and direct correlation matters and only
the �rst one matches the simulations.
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Performing the integration, we obtain

B̃d(k) �
1

2�

Z 2�

0

d� C̃d(k, 0, � 0) = �
k2Ṽ(k)

� D0

Z 2�

0

d

2k2 � i ` � 1
r kx + i ` � 1

r k cos
(10.79)

=
� 2k2Ṽ(k)

D0

Æ
(2k2 � i ` � 1

r kx)2 + ` � 2
r k2

=
� 2k2Ṽ(k)

D0

q
4k4 � 4i ` � 1

r k2kx + ` � 2
r k2

y

. (10.80)

As we are interested only in the large distance scaling, we consider the limitk ! 0. As usual,
the potential Ṽ(k) is replaced by its value atk = 0. We look closely at the relative scalings ofkx

and ky in Eq. (10.80) and �nd that k2kx � k2
y . This means that ky decays faster thankx . Thus

k2 � k2
x , and �nally k3

x � k2
y . Our expression simpli�es into

B̃d(k) �
k! 0

� 2Ṽ(0)k2
x

D0

q
` � 2

r k2
y � 4i ` � 1

r k3
x

. (10.81)

This expression will soon give us a scaling form in real space, with relative scalingsx3 � y2. The
�rst step is to Fourier invert it with respect to ky ,

Bd(kx , y) =
� 2Ṽ(0)` r

� D0
k2

x K0

€
j yj

q
� 4i ` r k3

x

Š
(10.82)

with K0 the modi�ed Bessel function of order 2 and index 0 1. We can now compute the inverse
Fourier transform with respect to kx , Bd( x, y) = ( 2� ) � 1

R
dkx eik x x Bd(kx , y). We perform the

following changes of variables: q = � (` r y2)1=3kx and w = x(` r y2) � 1=3. At the end of the day,
we obtain the scaling form,

Bd( x, y) � �
Ṽ(0)
D0

1
y2

F

‚
x

` 1=3
r j yj2=3

Œ

(10.83)

F(w) = �
1

� 2

Z 1

�1

e� iqwq2K0(2
Æ

iq3)dq. (10.84)

The relative scalings of x and y are x � j yj2=3. In Fig. 10.4, we compare this scaling form to
numerical simulations at a density �̄ = 0.05. We �nd a very good agreement both in the collapse
of the cuts, and of the scaling function F that is plotted without adjusting any parameter.

10.5.3 Remark on the behavior below the characteristic length

We now make a short remark on the correlations below the length ` r . We consider Eq. (10.76)
and expand it in the regime k � ` � 1

r (that is to say r � ` � 1
r ). We obtain

C̃d(k) = �
k2Ṽ(k)

D0

1

1 � i k�(e� � e� 0)
2` r k2

� �
k2Ṽ(k)

D0

•
1 +

ik � (e� � e� 0)

2` r k2
+ . . .

‹
. (10.85)

This can be rewritten as

Cd(r, � , � 0) � C(0)
d (r) + U(ê� � ê� 0) � r D(1)

d (r) (10.86)

1One notes that
p

ik3 = jkj3=2(1 � i )=2 for sign k = � 1. The Bessel functionK0 is analytical on C n (�1 , 0] so the
expression is well de�ned (except in kx = 0).
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Figure 10.4: (a) Pair correlation function B(r) at Dr = 0 and small density � = 0.05. The other
parameters areD0 = 0.1 and U = 10. We observe two negative wings along the vertical axis (for
x < 0). (b) Rescaled horizontal cuts for y from 2.5 to 10.5. The gray line is the prediction from
Eq. (10.84) without any adjustment.

with

C̃(0)
d (k) =

� Ṽ(k)
D0

, D̃(1)
d (k) =

� Ṽ(k)

2D2
0 k2

. (10.87)

The reader checks that this corresponds (up to orderU) to the result in the low activity limit
[Eq. (10.61)] for distances much below` U =

p
D0=Dr , i.e. ` � 1

U k � 1. In other words, the regime
U ! 0 and the regime Dr = 0 share the same dipolar correlation when one looks below the typical
lengths that are respectively ` U and ` r . This fact will be useful to establish a phase diagram in
section 10.7.

10.6 Vanishing translational diffusion

The last limiting case that we study is when the translational diffusion vanishes: D = 0. As in the
previous section (Dr = 0), we focus on the direct correlations Cd which satisfy Eq. (10.34),

�
(@2

� + @2
� 0) + ` p(ê� � ê� 0) � r

�
Cd(r, � , � 0) = �

2
Dr

r 2V(r). (10.88)

` p = U=Dr is the usual persistence length of active Brownian particles.
As usual, we focus on large distances compared to the potential range, and replace the Fourier

transform of the potential Ṽ(k) by Ṽ(0). We obtain the following equation,

�
(@2

� + @2
� 0) + i ` pk � (ê� � ê� 0)

�
C̃d(k, � , � 0) =

2k2Ṽ(0)
Dr

. (10.89)

In the following, we study its behavior for distances above the persistence length (̀ pk � 1) and
below the persistence length (̀ pk � 1).
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10.6.1 Above the persistence length

The solution of Equation (10.89) can be expanded in powers of` pk. One checks that the following
expression satis�es Eq. (10.89) up to the second order ink (which is the order of the right-hand
side),

C̃d(k, � , � 0) =
� Ṽ(0)

Dr

¦
1 + i ` pk � (ê� � ê� 0) + ` 2

pk2ê� � ê� 0 + O
�
(` pk)3

� ©
. (10.90)

In real space, this corresponds to a Dirac function and derivatives of a Dirac function. One should
prove that the expansion in Fourier space converges, and that the functionC̃d(k, � , � 0) is thus
analytical. This would imply that the derivatives r 2n

k C̃d(k, � , � 0) are well de�ned for all integers
n. Then, their inverse Fourier transforms r2nCd(r, � , � 0) decays at in�nity,

lim
r!1

�
�r2nCd(r, � , � 0)

�
� = 0, 8 n 2 N. (10.91)

In other words, one would prove that Cd(r, � , � 0) is a fastly decaying function. The same holds
for Bd(r).

Aside from the mathematical details, the reader should focus on the physical conclusion: the
correlation decays fastly (most likely exponentially) on a length scale given by the persistence
length ` p, which is the only length scale of the problem. Indeed, for displacements much larger
than the persistence length, active Brownian particles behave as standard random walkers: the
memory due to the activity is lost.

We shall now see that a very interesting behavior occurs for distances below the persistence
length.

10.6.2 Below the persistence length

We consider distances beloẁ p but still large compared to a particle diameter (so that the poten-
tial ṽ(k) is approximated by v0). For the moment, we �x the vector k and focus on the angles.
We de�ne the angles  and  0 in the referential frame of k, k � ê� = k cos and k � ê� 0 = k cos 0,
where k is the norm of k. Eq. (10.89) reads

”
(@2

 + @2
 0) + i ` pk(cos � cos 0)

—
C̃d(k,  ,  0) =

2k2Ṽ(0)
Dr

, (10.92)

and we study it in the regime ` pk � 1. A numerical resolution at constant k shows that C̃d(k,  ,  0)
concentrates around the two points ( ,  0) = ( 0,0) and (� , � ). We focus on(0,0) around which
the equation reads

•
(@2

 + @2
 0) �

i
2

` pk( 2 �  02)
˜

C̃d(k,  ,  0) =
2Ṽ(0)

Dr
k2. (10.93)

We realize that we can inject the following scalings

C̃d(k,  ,  0) �
` pk� 1

2Ṽ(0)
Dr

(` pk)3=2H̃
�
 (` pk)1=4,  0(` pk)1=4

�
. (10.94)

From Eq. (10.92), the function H̃(u, v), for u and v unbounded, is independent of k and is the
solution of the linear partial differential equation

•
@2

u + @2
v �

i
2

�
u2 � v2

� ˜
H̃(u, v) = 1. (10.95)
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The scaling for B̃d is

B̃d(k,  ) =
1

2�

Z 2�

0

d 0C̃d(k,  ,  0) �
` pk� 1

Ṽ(0)
� Dr

(` pk)5=4H̃B

�
 (` pk)1=4

�
, (10.96)

HB(u) =

Z 1

�1

dv H(u, v). (10.97)

Using the same reasoning around = � , one checks that

B̃d(k, � �  ) �
` pk� 1

Ṽ(0)
� Dr

(` pk)5=4H̃ �
B

�
(� �  )( ` pk)1=4

�
, (10.98)

with H �
B the complex conjugate of HB. We now switch from polar coordinates (k,  ) to cartesian

coordinates (kx , ky).

kx = k cos '

¨
+ k if  ' 0

� k if  ' �
ky = k sin  '

¨
k if  ' 0

k(� �  ) if  ' �
(10.99)

The case ' 0 corresponds tokx > 0, and  ' � to kx < 0. Using the two expressions Eqs (10.96)
and (10.98), we obtain a scaling form for the Fourier transform B̃d,

B̃d

�
kx ¿ 0, ky

�
=

Ṽ(0)
� Dr

(` pjkx j)5=4H̃ �
B

‚
ky

` 1=4
p jkx j3=4

Œ

(10.100)

with H+
B = HB used whenkx > 0 and H �

B = H �
B used whenkx < 0. Finally, we perform the Fourier

inversion

Bd( x, y) =
1

2�

Z

dkx eik x x 1
2�

Z

dkyeik y y B̃d

�
kx , ky

�
. (10.101)

Performing �rst the integral over ky , then the one over kx and using the appropriate changes of
variables, we obtain a scaling form for Bd( x, y),

Bd( x, y) =
Ṽ(0)
� Dr

` 4
p

y4
G

 
` 1=3

p x

j yj4=3

!

, (10.102)

G(w) =
1

2�

Z 1

0

dzeiwzz2H+
B (z3=4) +

1
2�

Z 0

�1

dzeiwzz2H �
B (jzj3=4) (10.103)

= 2Re

�Z 1

0

dzeiwzz2H
�
z3=4, 0

�
�

(10.104)

where Re denotes the real part. H �
B is the inverse Fourier transform of H̃ �

B , one checks that
H �

B (a) = ( H+
B ) � (� a) = ( H+

B ) � (a) (by parity of HB). H(a, b) is the inverse Fourier transform of
H̃(u, v), which is the solution of Eq. (10.95),

H(a, b) =
1

(2� )2

Z

dudvei (au+ bv) H̃(u, v). (10.105)

Interestingly, H(a, b) satis�es a Green's function problem,

i
2

�
@2

a � @2
b

�
H(a, b) � (a2 + b2)H(a, b) = � (a)� ( b). (10.106)

The main result of this section on vanishing translational diffusion is the scaling form given by
Eqs. (10.102) and (10.103). This scaling form is valid for distances smaller than the persistence
length ` p = U=Dr . We are able to observe it in our simulations as shown on Fig. 10.5.
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Figure 10.5: (a) Pair correlation function B(r) at D0 = 0 and small density � = 0.05. The other
parameters areDr = 0.1 and U = 10. The persistence length` p = 100 is much larger than our
observation range. We see two negative wings forx < 0. (b) Rescaled horizontal cuts for y from
3 to 6. The gray line is the asymptotic behavior of the numerical integration of Eq. (10.40).

10.7 Phase diagram

Let us summarize the last three sections. Correlations of active Brownian particles, at a large
distance compared to the particles' radius, are governed by three parameters: the activityU, the
rotational diffusion Dr and the translational diffusion D0. These parameters can be combined into
three length scales,

` U =

v
t D0

Dr
, ` r =

D0

U
, ` p =

U
Dr

, (10.107)

and one dimensionless number that we call the Péclet number

Pe�
U

p
D0Dr

=
` p

` U
=

` U

` r
=

v
u
t ` p

` r
. (10.108)

When Pe< 1, the order of the length scales is` p < ` U < ` r , while when Pe > 1 the order is
` r < ` U < ` p. This allows us to plot a phase diagram on Fig. 10.6. We plot a rescaled distance
r =`U versus the Péclet number. The lines separating the domains arer = ` r , r = ` U and r = ` p.
We note that for spherical particles undergoing thermal noise, one expects the rotational diffusion
coef�cient and the translational diffusion coef�cient to be linked by a simple constant, D0 � a2Dr

(with a the diameter of a particle, a = 1 in this chapter). This leads to ` U � 1 and means that
only the upper half of the phase diagram is observable for such particles.

We studied previously the three limit cases,U ! 0, Dr ! 0 and D0 ! 0, in which only one of
the length scales matters. We recall our results below and show that each case corresponds to a
domain of our phase diagram.

• The case U ! 0 is the limit Pe ! 0 in the phase diagram of Fig. 10.6. The relevant length
scale is` U. We showed in Eqs. (10.72)-(10.74) that the direct correlations Bd have a dipolar
contribution and a positive isotropic contribution. Both decay exponentially over the length
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Figure 10.6: Phase diagram of the direct correlations of ABPs. Horizontal axis: Péclet number,
vertical axis: rescaled distance. The limiting lines arer = ` r , r = ` U and r = ` p; they correspond
to the crossovers between the regimes. The limit behaviorsDr , U, D0 ! 0 discussed in the text
correspond to directions along these lines. Two scaling forms are found at high Péclet number,
the limit between the two is at r = ` U. The light blue arrows correspond to the parameters
of Fig. 10.2a-d at distance r = 1 to 10 (in units of particle diameter). The dark blue arrow
corresponds to the experiments of Chap. 11.

scale` U. Note that the same holds for the full correlations B [Eqs. (10.69)-(10.71) ] with a

modi�ed length scale ` 0
U =

Æ
(D0 + �̄ Ṽ(0)=2)=Dr in which the potential plays a role.

• The case Dr = 0 corresponds to the limit Pe ! 1 at constant ` r = D=U. The direct
correlations Bd exhibit wings characterized by Eqs (10.83)-(10.84). The scaling is x �
` 1=3

r j yj2=3, it corresponds to wings elongated in the vertical direction. The wings decay
algebraically at large distance, asj yj � 2 (note that ` U = + 1 when Dr = 0). Below ` r , a
dipole identical to the domain U ! 0 is found. The “dipole” domain on Fig. 10.6 can be
extended to Pe> 1 with r < ` r .

• The case D0 = 0 corresponds to the limit Pe! 1 at constant persistence length̀ p = U=Dr .
We note that ` U = 0. Below the persistence length, we found wings with the scaling x �
` � 1=3

p j yj4=3 [Eqs. (10.102)-(10.103)] . These wings are found for distances smaller than the
persistence length` p. We argued previously that the correlation decays fastly to 0 when
the distance is larger than the persistence length.

An interesting remark is that the interface between the Dr ! 0 and the D0 ! 0 regime happens
when x � ` 1=3

r j yj2=3 � ` � 1=3
p j yj4=3, that is to say at j yj � ` U. The line r = ` U thus corresponds to

the boundary between the two domains in Fig. 10.6.
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Figure 10.7: Dilute hard particles in the limit cases Dr = 0 and D0 = 0. The pair potential is
V(r ) = � (1 � r )2=2 for r < 1, with � = 50 instead of 1 in the previous �gures. (a) No rotational
diffusion ( Dr = 0). Correlations B(r) at density � = 0.05 with D0 = 0.1 and U = 10 (similar to
Fig. 10.4). (b) Rescaled horizontal cuts of the previous correlations with the exponents predicted
by Eq. (10.83). (c) No translational diffusion ( D0 = 0). Correlation B(r) at density � = 0.02
with Dr = 0.1 and U = 10 (similar to Fig. 10.5). (d) Rescaled horizontal cuts of the previous
correlations with the exponents predicted by Eq. (10.102). We note that (a) and (c) exhibit a
non-trivial structure at short range due to the hard interactions.

At the end of the day, the study of the three limiting cases (U, Dr , D0 ! 0) enables us to char-
acterize the direct correlations of active Brownian particles, at larger distances than the potential
range. Three lengths scales come into play and their relative values delimit domains correspond-
ing to different behaviors. Our most striking results are the two scaling forms found at high Péclet
number. Overall, our results are summarized in the phase diagram of Fig. 10.6.

10.8 Hard interactions

The framework used in this part is based on a linearization of the Dean equation. This approach is
valid for weak interactions. Consequently in Figs. 10.2, 10.4 and 10.5 we used sets of parameters
for which the particles are able to interpenetrate: velocity U = 10 with strength of the potential
� = 1. We were able to test our predictions quantitatively.

Now, one should remember that in the previous chapter on driven binary mixtures, we re-
alized that our scaling form also holds for hard particles, outside of the validity regime of our
approximation (Fig. 9.5). Presently, we perform numerical simulations of dilute and hard active
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Brownian particles (potential strength � = 50) in the limit cases Dr = 0 and D0 = 0 (Fig. 10.7) and
attempt to recover the predictions of Eqs. (10.83) and (10.102). We indeed �nd a good collapse
of the correlations with the predicted exponents and this leads us to state that these exponents
are robust.

However, the limit curves are different from our predictions in the weak interaction regime.
And while our approach gave us the good short-range structure of the correlations of weakly
interacting particles (Fig. 10.2), we notice that we cannot grasp the short-range structure for
strong interactions with our linear equations. A last remark is that in Fig. 10.7c-d, we needed to
consider a density � = 0.02 to obtain a good collapse. The reason for that is that at� = 0.05
three-body effects were most likely present, leading to a deviation of our scaling form. Hence,
the regime of “low density” depends on the interactions considered.

10.9 Effective velocity

An isolated active Brownian particle moves at a constant velocityU. However, in the presence of
other particles, one expects a slow-down of the particles due to the interactions. This is similar to
what has been argued in the case of the binary mixture where the motion of a species is hindered
by the other species. Here, we expect each particle to move at an effective velocityUeff < U along
its orientation. This effective velocity has been found to be crucial to compute the pressure in
a system of interacting active Brownian particles [95] . We �rst show that the effective velocity
is closely linked to the correlations and explain what kind of insight we can expect from our
approach.

We consider the system ofN interacting ABPs de�ned in subsection 10.2.1 and de�ne the
effective velocity as the average of the components of the velocities of the particles along their
orientation,

Ueff =
1
N

NX

i= 1


dXi

d t
� ê� i

·
. (10.109)

We use the Langevin equation (10.1) and remember the de�nitions of the density �eld f
[Eq. (10.5)] and of the correlations C [Eq. (10.24)] and B [Eq. (10.24)] . The potential V is
isotropic ( r V is an even function of r), and our two-dimension space can be considered in polar
coordinates (r, � ). The computation leads us to

Ueff = U �
1
N

X

i , j



ê� i

� r i V(Xi � X j )
�

(10.110)

= U �
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(10.111)
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= U +
�̄

2�

Z 1

0

r d r

Z 2�

0

d�

Z 2�

0

d� cos(� � � )V0( r )B(r, � � � ). (10.113)

At the end of the day, we obtain an expression of the effective velocity in terms of the potential
and the correlations,

Ueff = U + �̄

Z 1

0

dr rV 0( r )B1( r ), (10.114)
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with B1 the �rst coef�cient of the Fourier component of B(r, � ) (polar coordinates),

B1( r ) =
1

2�

Z 2�

0

d� B(r, � ) cos� . (10.115)

Eq. (10.114) is yet another example of relations such as the compressibility equation (8.50), the
pressure equation (8.51) and the effective mobility relation (9.66). For a repulsive potential, we
have V0( r ) < 0 and B1( r ) > 0 so that Ueff < U.

Note that Eq. (10.114) requires the quantitative knowledge of B1 for distance at which the po-
tential does not vanish. For instance, if we consider the soft-sphere potential used in simulations,
VSS( r ) = ( 1 � r )2=2 for r � 1, the effective velocity reads

USS
eff = U � �̄

Z 1

0

dr r 2B1( r ), (10.116)

so that we need to know preciselyB1 for r < 1. Our approach gives quantitative scaling forms at
large distance but should give precise results at short distance for very soft particles only. We can
nevertheless write the result of B1 at low density and low activity from Eq. (10.62),

B1( r ) �
�̄ ! 0
U! 0

U
p

Dr

2�
p

2D3=2
0

Z

dr0 K1

�

r0

v
t Dr

2D0

�

V( r ê0 � r0). (10.117)

In these limits, we obtain a very simple dependence of the effective velocity in the velocity and
density, Ueff = U(1� � �̄ ). This linear scaling with the density has been postulated more generally
in Ref. [52,95] . Note however that at higher density, we expect density-dependent terms such as
D0 + �̄ Ṽ(k), so the picture remains unclear.

Even if our approach may not be precise enough at short distance to obtain quantitatively the
effective velocity, we wanted to emphasize that this quantity can be directly computed from the
knowledge of the correlations.

10.10 Conclusion and possible extensions

The approach that we developed in the previous chapter for passive liquids and driven binary
mixtures has been extended to a paradigmatic model of active matter: active Brownian particles.
The linearized Dean equation gives a limit of small interactions. In addition to that, we simplify
the problem by looking at low density systems for which we can focus on two-body effects and
compute the direct correlation functions. We show that they satisfy a linear equation [Eq. (10.34)]
that can be numerically integrated. Its solution is in good agreement with numerical simulations
(Fig. 10.2). Furthermore, we investigate the three limit regimes of vanishing activity, rotational
diffusion and translational diffusion. In the low activity limit, we �nd that the correlation is
dipolar (cos � dependence on the angle) and decays exponentially at large distance with a typical
length that we characterize. In the regime of low rotational diffusion, we uncover a �rst scaling
form for the correlation B(r). It shows negative wings behind a particle and is associated with a
power-law decay at large distance. Finally, the regime of low translational diffusion gives another
scaling form that holds below the persistence length (the correlations decay exponentially above
it). Our results are summarized by the phase diagram of Fig. 10.6 in which the distance r is
compared to the three typical length scales of the problem. This phase diagram enables us to
predict the structure of the correlations for a given set of parameters.
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Active Brownian particles are a minimal model of active matter. Indeed, the particles interact
only by spatial interactions. The orientation of a particle evolves completely independently of the
other particles. More realistic descriptions involve alignment interactions, or velocity-orientation
couplings. It would be interesting to see up to which point our approach and our results can
be generalized. At the level of the results, we found one scaling form in the correlations of
binary mixtures (previous chapter); and two distinct scalings for correlations of active Brownian
particles. Moreover, Ref. [76] uncovers the scalings associated with binary mixtures for a model
of active particles. We suspect that the existence of scaling functions in correlations of active
matter may be quite generic and we believe that this needs further investigation. At the level of
the method, the description of a model in terms of coupled Langevin equations is quite standard.
And it is likely that in a variety of cases, one can write a Dean-like stochastic equation for the
density �eld. Then, our linearization approximation enables us to get an insight into the pair
correlations. We would be interested in adding, for instance, velocity-orientation couplings and
see what can be said on pair-correlation functions within our framework.

In the next chapter, we study an experimental system that can be modeled as an assembly of
active Brownian particles: electrophoretic Janus particles. We measure the experimental correla-
tions and compare them to the theory we developed in the present chapter.
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Chapter 11
Experimental study of Janus

particles
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11.1 Introduction

Janus particles refer to arti�cial micrometric spherical particles having two hemispheres made of
different materials (Fig. 11.1a). When energy is brought into the system, this asymmetry induces
a self-propulsion of the particles. As the energy is injected at the local scale, such systems are cen-
tral instances of arti�cial active matter setups. One should distinguish between different types of
Janus particles. A popular type are catalytic Janus particles[81–83] in which the propulsion is
enabled by the dismutation of hydrogen peroxyde which is catalyzed by only one of the two hemi-
spheres. They have been used, among other things, to check theoretical results for independent
active Brownian particles, such as the intermediate scattering function[83] or the sedimentation
behavior close to a wall [ 81,82] .

Here we focus on electrophoretic Janus particles, also called “Janus particles fueled by an AC
electric �eld” [77–80] . These particles are made of two hemispheres with different polarizabili-
ties. When an external electric �eld is applied, the particles move perpendicularlyto the electric
�eld with a velocity that scales as the square of the amplitude of the �eld. The propulsion mech-
anism, called induced-charge electrophoresis, is detailed in Appendix D. We emphasize that it
is not usual electrophoresis in which particles move along the �eld with a velocity proportional
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to its amplitude. Such motion was �rst observed for an electric �eld parallel to the sedimenta-
tion plane [77] (only two directions of motion are allowed) but was then studied mostly for a
vertical electric �eld [79, 80] giving an isotropic bidimensional system. At low frequency, elec-
trophoretic Janus particles exhibit no attractive interactions [79] and we will describe them as
active Brownian particles. Note however that at high frequencies, strong collective effects such
as self-assembly[78] and chain formation [80] are reported.

In this chapter, we present experiments performed in Takeuchi lab, the University of Tokyo in
October and November 2019 in collaboration with Daiki Nishiguchi and with the help of Junichiro
Iwasawa. The setup was originally developed in Sano laboratory[79, 80] . We �rst detail the
experimental system before modeling it as an assembly of interacting active Brownian particles.
Finally, the experimental correlations are measured and are shown to be consistent with the results
of Chap 10: the depletion wings are indeed observed.

The results of this chapter have been published in[P5] .

11.2 Experimental setup

The experimental setup is very close to the one presented in Ref.[80] . Electrophoretic Janus
particles are prepared starting from spherical silica beads of diametera = 3.17 � 0.32 � m. One
hemisphere is coated by depositing a layer of titanium (thickness 35 nm) using an evaporator with
an electron beam. It has been observed that the experiments are more robust if both hemispheres
have the same surface properties. For this reason we additionally evaporate a thin layer (thickness
15 nm) of silica on top of titanium using thermal evaporation. See Fig. 11.1a for a sketch of a
Janus particle.

The Janus particles are put in a sodium chloride solution of concentration 10� 4 molL� 1. The
velocity of the Janus particles has been shown to be strongly dependent on the ion concentra-
tion [77, 80] . Using a �xed concentration enables us to obtain reproducible results and to min-
imize the temporal variation of the system. The solution is sandwiched between two horizontal
ITO electrodes separated by a 50� m spacer. Indium tin oxide (ITO) electrodes are transparent
conductive layers deposited on glass plates so that one can observe the system through the elec-
trodes. Janus particles sediment on the bottom electrode: the system is effectively bi-dimensional.
A vertical electric �eld is applied to the sample. We tried several frequencies and amplitudes. In
this chapter, we focus on a representative set of parameters: the frequency isf = 5 kHz and the
amplitude of the �eld is 2 � 106 Vpp m� 1 (voltage applied between the electrodes: 10 Vpp

1). At
this frequency, the particles exhibit a motion in the direction of the uncoated hemisphere due to
a mechanism called induced-charge electrophoresis (see details in Appendix D).

We captured videos of the system with an inverted microscope equipped with a grayscale
CMOS camera. To increase the contrast between the two hemispheres of the particles, we used a
green �lter. The resolution of the images is 3000 � 2400 pixels and the framerate is 10 fps. The
system was monitored for 14 minutes (8400 frames).

Let us now say a few words about the image processing. The particles are detected as circles
with the Hough Circle Transform algorithm implemented in the OpenCV library [98] . The centers
of the circles give the positions of the particles. Then, we compute the center of mass of the pixels
within each circle, with the weights being the values of the pixels. We de�ne the orientation of
a given particle as the direction of the vector between the center of mass and the center of the
circle. We will see later that this procedure gives an angular precision of about 13°. A view of the

1Vpp: Volt peak-to-peak.
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Figure 11.1: (a) Schematic picture of a Janus particle. The light side is uncoated (silica only)
while the dark side is coated �rst with titanium, then with silica. The arrow denotes the direction
of motion. (b) Image of the experimental system. The red dots are the detected positionsXi of
the particles and the red arrows the detected orientations � i of the particles. The blue axes are
the reference frame in which we compute the correlations.

system, with the positions and orientations that we obtain, is shown in Fig. 11.1b.

11.3 Description as active Brownian particles

The experimental system that we consider does not exhibit polar alignment between particles[79]
and we neglect the hydrodynamic interactions between the particles. We thus assume that our
system can be described by the model of active Brownian particles studied in Chap 10, that is to
say by the Langevin equations (10.1) and (10.2),

dXi

d t
= Uê� i ( t ) �

X

j6= i

r i V(Xi ( t ) � X j ( t )) + � i ( t ),
d� i

d t
= � i , (11.1)

where Xi ( t ) are the positions of the particles and � i ( t ) their orientations (Fig. 11.1b). The
Gaussian white noises have variancesh� �

i ( t )� �
j ( t 0)i = 2D0� i , j �

� ,� � ( t � t 0) and h� i ( t )� j ( t 0)i =

2Dr � i , j � ( t � t 0). Our goal is to measure the parameters of the model in the experiments.
Note that we are not concerned about the exact potential V as long as it can be assumed

to be pairwise, isotropic and short-ranged with a characteristic distancea which is the particle
diameter. We observe that the potential consists mainly of hard-core exclusion forr < a but we
do not exclude more complicated effects when particles are close from one another.

11.3.1 Estimate of the parameters

Let us investigate the parameters in the experiments, focusing on a single sample (�eld frequency
5 kHz, �eld amplitude 2 � 106 Vpp m� 1).

Particle diameter and density. The resolution of the images was measured to be 0.12� mpx� 1.
The diameter of a particle a = 3.17 � 0.32 � m appears on the images asa ' 26 px. Moreover, we
count on average 487 particles in a 3000� 2400 image. The average density� a2 is thus given
by � a2 ' 487 26

3000
26

2400 ' 0.05. At this point, we can assume that we are in a low density regime.
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Velocity. We use the Python package Trackpy[99] to obtain the trajectories of the particles.
The average velocity can be estimated by two methods. The �rst one relies on obtaining the
instantaneous velocities from a Savitzky–Golay �lter [100] applied on the trajectories. This gives
an average velocityU = 56 � 7 px s� 1, the standard deviation being given for different particles
(Fig. 11.2a). The velocity in the ABP model is thus taken to be U ' 6.7 � m s� 1, about two
particle diameters per second. The second method involves the computation of the mean square
displacement h� X2i as a function of time (Fig. 11.2b). We expect h� X2i = U2(� t )2. A least-
square �t of a quadratic function [100] , taking into account the error bars on different particles,
gives U = 56 � 2 pxs� 1. This is consistent with the previous result. Considering the most precise
of the two measurements, we will use a velocity U = 6.7 � 0.3 � ms� 1. We can compute a typical
time associated with the collision between two particles [ U2� ] � 1=2 ' 2 s. Below this time scale,
we assume that the interactions play no role.

Rotational diffusion. The simplest way of measuring the rotational diffusion Dr is to look at
the mean square angle as a function of time. One expects

h� � 2i = � 2
err + 2Dr � t (11.2)

at short time (before collisions). This method has also the advantage of giving us the typical error
� err made on the detection of the orientations. From Fig. 11.2d, we obtain Dr ' 0.12 s� 1 and
� err ' 0.22 rad that is to say that we make a detection error of about 13°. Another method is to
compute the velocity autocorrelation. For an isolated ABP (V = 0 in Eq. (11.1)), one easily shows
that the correlation of the velocity �X between times t and t + � t decays exponentially with � t ,

h�X( t ) � �X( t + � t )i = U2e� Dr � t . (11.3)

We plot the velocity autocorrelation in Fig. 11.2c and focus on the short time regime (t < 2 s,
before interactions come into play). We �nd Dr ' 0.11 s� 1, consistently with the previous result.

Translational diffusion. The translational diffusion is small compared to the other effects2 (ve-
locity and rotational diffusion). It is hard to evaluate experimentally. We use a theoretical estimate
based on the Stokes-Einstein relation,

D0 =
kBT

6�� (a=2)�
. (11.4)

� = 1.0 � 10� 3 Pa s� 1 is the viscosity of water, T ' 300 K is the temperature, and � is a correction
factor due to the proximity of the bottom electrode. Assuming that Faxen's law [101] is approx-
imately valid for a distance to the wall of the order of a, and that the diffusion in the vertical
direction is negligible, we obtain � ' 3. The computation leads to

D0 ' 0.05 � m2 s� 1 ' (0.07a)2=s. (11.5)

D0=a2 is indeed small compared toU=a and Dr . The fact that the thermal diffusion is negligible
compared to the rotational diffusion is closely linked to our choice of diameter a ' 3 � m: indeed
for much smaller diameters the thermal diffusion would be important and particles would swim
upwards, something that we want to avoid.

2At the length scalea of a particle, we compare the inverse timesD0=a2, U=a and Dr . By small translational diffusion
we mean D0=a2 � Dr and D0=a2 � U=a.
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Figure 11.2: Determination of the experimental parameters. 670 particles are tracked for 35
frames on average. (a) Histogram of the average velocities of the particles, the vertical black
line is the mean. (b) Mean square displacement. Error bars show the distribution over different
particles. (c) Velocity autocorrelation. (d) Mean square angle. (No error bars are given for
the last two observables since we consider all available data points for detected trajectories of
heterogeneous lengths.)

11.3.2 Péclet number and characteristic lengths

In Chap 10, we saw that the strength of the activity can be quanti�ed by the Péclet number
[Eq. (10.108)] . We can compute it in the experiments,

Pe�
U

p
D0Dr

' 87. (11.6)

This means that the experiments are performed in a high activity regime (right end of the phase
diagram of Fig. 10.6).

Furthermore, we can obtain the values of the characteristic length scales de�ned in Eq. (10.107).
The length ` r that corresponds to the theoretical correlations turning from dipole to wings (Fig. 10.6)
is

` r �
D0

U
' 7 nm ' 0.002a. (11.7)

This implies that wings should be observed in the experimental correlations. Then, the length` U

that delimits the two theoretical wing regimes (Fig. 10.6) is

` U �

v
t D0

Dr
' 0.7 � m ' 0.2a. (11.8)
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U ' 6.7 � ms� 1 Dr ' 0.12 s� 1 D0 ' 0.05 � m2 s� 1

a = 3.17 � m � a2 ' 0.05 Pe' 9 � 101

` r

a
' 0.002

` U

a
' 0.2

` p

a
' 2 � 101

Figure 11.3: Table of experimental parameters corresponding to a model of active Brownian parti-
cles. The velocityU and the rotational diffusion coef�cient Dr are both computed by two different
methods. The translational diffusion coef�cient is estimated theoretically. As the accuracy of this
estimate is hard to assess, and as we are interested only in orders of magnitude, we chose to give
a single signi�cant digit for the estimates of the Péclet number Pe and the three characteristic
length ` r , ` U and ` p.

This means that the wings in the correlations should be curved. Finally, the persistence length,
which is a key parameter of active Brownian particles and encodes the spatial memory of the
particles is

` p �
U
Dr

' 56 � m ' 18a. (11.9)

This means that the particles keep a memory of their orientations for distances roughly equal to
20 times the particle diameter. Below this distance, the winged shape of the correlations should
be observable (Fig. 10.6). A summary of all experimental parameters and characteristic lengths is
given in Fig. 11.3. The point corresponding to these parameters is shown in the phase diagram of
Fig. 10.6. It lies in the upper-right corner, the one that corresponds to low translational diffusion.

11.4 Results for the correlations

We now turn to the main results of this chapter: the experimental correlations. Their de�nition
is given by Eq. (10.25),

B(r) =
1

2�

Z 2�

0

C(r, 0, � 0)d� 0, C(r, � , � 0) �



f (0, � ) f (r, � 0)

�

[ �̄= (2� )] 2
�

� (r)� (� � � 0)
�̄= (2� )

� 1, (11.10)

where the density �eld f (r, � ) is the probability that there is a particle at position r with orienta-
tion � . We assume that our experimental system is translationally invariant over the �eld of view
of the camera.

11.4.1 Computation

We �rst detect the positions 3 and orientations of all particles on every frame as explained in
section 11.2. For each particle far enough from the edges of the image (that is to say at a distance
larger than the range of observation for the correlations), we consider every other particle and
compute its position in the reference frame of the �rst one. We put the results in bins of size

3Unfortunately the detected positions are discrete (indexed by the pixels). This induces an artefact in the corre-
lations. To avoid this, we add a Gaussian noise of standard deviation one pixel to the position of each particle. This
noise is smaller than the precision of the detection and regularizes the correlations.
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Figure 11.4: Experimental correlations [ (a), (b), (c) ] compared to numerical simulations with
parameters � = 0.05 and � : D : Dr : U = 50 : 0.05 : 1 : 20 [ (d), (e), (f) ] . (a) Experimental cor-
relation B(r). The axes are given in units of particle diameter. The horizontal colored lines show
the cuts. (b) Horizontal cuts of the correlation function. (c) Horizontal cuts of the correlation
function with exponents corresponding to the scaling form of the D0 = 0 regime. (d), (e) and (f)
are the equivalent of (a), (b) and (c) for numerical simulations.
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� x = � y = 0.1a. We process all the frames and normalize the bins. The result is shown in
Fig. 11.4a and we now comment it.

11.4.2 Comments

The most important comment is that we experimentally observe two depletion wings in the corre-
lations behind the particle, as expected from the phase diagram (Fig. 10.6) at high Péclet number.
Our observation zone isa � r � 6a. Looking at the parameters (Fig. 11.2), this corresponds to
the upper right corner of the phase diagram. The depletion wings are seen clearly by taking
horizontal cuts of the correlation function (Fig. 11.4b-c).

We perform numerical simulations of harmonic spheres with parameters close to the experi-
mental ones (shown on Fig. 11.4d-f), in particular the potential strength ( � = 50) is high enough
so that the particles barely overlap. The numerical and experimental correlations are very similar
both visually and in the shape of the cuts. The main discrepancy is the sign of the correlation
at ( x, y) ' (� a, 0) (negative in the experiments, positive in the simulations); we may attribute
it to non-trivial interactions between Janus particles when they touch each other. Overall, the
experiments are still well described by the numerics.

We already noted that the thermal diffusion is weak compared to the other effects. According
to the phase diagram (Fig. 10.6), we are in the zone where the correlations may follow a scaling
law

B(x, y) �
1
y4

Gexp

•
x

y4=3

‹
. (11.11)

It is thus reasonable to rescale the cuts with these exponents as done in Fig. 11.4c and f. The
experimental statistics are insuf�cient to conclude on the existence or not of a scaling form. We
also remark that the collapse does not hold for the numerical simulations. This is most likely due
to three-body effects that occur for hard particles if the density is insuf�ciently low (see discussion
of section 10.8). Overall, we are very satis�ed to �nd the non-trivial shape with negative wings
in the experiments and to have a qualitative agreement with numerical simulations.

11.5 Conclusion

In this chapter, we presented experiments of electrophoretic Janus particles performed in Takeuchi
laboratory. These asymmetrically-coated particles are placed in a vertical electric �eld and exhibit
a motion perpendicularto the electric �eld. That is to say that their direction of motion is isotropic
on top of the glass plate on which they sediment. Janus particles are well described by the model
of active Brownian particles. We were able to measure the parameters and showed that the
experiments correspond to a regime of high activity. The computation of the correlations shows
the characteristic negative wings behind a particle that were obtained for ABPs at high activity (see
for instance Fig. 10.2c-d). Moreover, the structure of the correlations is in qualitative agreement
with numerical simulations performed with the experimental set of parameters.

This chapter, and the previous chapter, highlight the importance of looking at the pair corre-
lations of active matter systems, both in theoretical models and in experiments. We believe that
it would be important to measure the experimental correlations in other experimental systems
that may be described by active Brownian particles as well as in experimental systems that exhibit
alignment interactions or velocity-orientation couplings.
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Conclusion

In this thesis, we investigated the correlations of interacting systems, mostly out of equilibrium.
We used various frameworks: exactly solvable one-dimensional models, hydrodynamic equations
valid at large distance and large time, and linearized Dean equations. The thesis was divided
into two parts in which we investigated two different types of systems. The �rst one focused on
single-�le systems and in particular N-point observables with or without biases. The second part
concentrated on driven and active bidimensional systems with an emphasis on the behavior of
the correlation functions at large distance.

Single-�le systems (Chap. 2) are de�ned by the fact that particles in a channel cannot pass
each other. This induces a subdiffusive behavior of a given particle, and a sub-ballistic motion
for a driven intruder. The paradigmatic model that we studied is the symmetric exclusion process
(SEP) in which particles on a discrete line jump to neighboring sites with hard-core exclusions.
We focused �rst on the dense limit, which can be solved exactly by studying the motion of the
vacancies. We �rst recovered known results for the cumulant-generating function of a driven
tagged particle (TP) in the dense SEP at large time, and extended the formula to arbitrary time,
and to quenched initial conditions (Chap. 3). We then focused on N unbiased TPs in the SEP
to probe collective effects (Chap. 4). At large time, the N TPs behave as a single one, in the
sense that theN-tag cumulants are equal to the one-tag cumulants. At high density, we uncover
a universal scaling form at intermediate time shared by the N-tag cumulants, independently of
the number of particles, the order of the cumulants and the initial con�guration. The analysis is
then extended to several biased TPs at high density (Chap. 5) and we observe strong collective
effects. First, all the TPs behave as a single effective TP at large time, in particular they all move
together independently of their biases. For two TPs, this breaks down to several situations that
we characterize analytically: (i) if only one TP is biased the other one is entrained, (ii) if the two
TPs are biased in the same direction they cooperate and move faster than if they were alone, and
(iii) if the two TPs are biased in opposite directions they compete and the direction of motion at
large time is given by the most biased one. A natural question is what happens to this binding
between TPs at arbitrary density. We answer this question using a hydrodynamic approach for the
density pro�le of the SEP (Chap. 6) and uncover an unbinding transition. At small forces (small
biases), two TPs remain bound together as in the high density case. But at high forces, they
separate and move away from one another with a time dependencet 1=2. The critical case, which
for antisymmetric forces happens at the equilibrium pressure of the system, is characterized by
a motion as t 1=4. Our approach, �rst written for the SEP, extends to arbitrary single-�le systems
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and the unbinding transition should be observable in experimental systems. Finally, we tried to
extend the hydrodynamic approach to generalized pro�les, that is to say correlations between the
density �eld and the displacement of a TP (Chap. 7). These generalized pro�les are directly linked
to the cumulant-generating function of the displacement of the TP: obtaining them gives the full
probability law of this displacement. While in the general case, the hydrodynamic equations are
not closed, we exhibit several cases in which they are: in particular the high and low density limits
of the SEP. We believe that this framework that we introduced is powerful and will be the subject
of future works. Overall, we have characterized the anomalous behavior of single-�le systems,
and in particular of the SEP. Our key results were aboutN-tag observables and we uncovered
binding and unbinding effects between TPs. We also obtained explicit expressions for the strong
spatial correlations responsible for the anomalous behaviors.

In the second part of this thesis, correlations were discussed for bidimensional interacting
systems. The goal was no longer to probe any anomalous behavior, but to exhibit the spatial
structure of the pair-correlations which gives a key insight into out-of-equilibrium systems. After
stating some results for a passive liquid (Chap. 8), we considered two out-of-equilibrium systems:
a driven binary mixture (Chap. 9) and an assembly of active Brownian particles (Chap. 10). In
each case, we started from the microscopic Langevin equations and derived the Dean equation
for the �uctuating density �eld of the system. The Dean equation is exact but it is non-linear with
multiplicative noise, which makes it hard to handle. We thus linearize it around an homogeneous
density pro�le. This corresponds to a limit of weak interactions. The equation becomes linear and
the density �eld becomes Gaussian. The correlations can then be obtained either explicitly or as
the solution of a linear equation involving the pair potential. For the passive liquid, this approach
returns the result of the random phase approximation, a mean-�eld closure relation used in liquid
theory. The correlations of the driven binary mixture are de�ned between particles of the same
species and between particles of different species. They are strongly anisotropic with a power-law
decay in the longitudinal direction (exponent � (d + 1)=2 in dimension d) and an exponential de-
cay in the transverse direction. We uncover a diffusive scaling form associated with these decays,
and this form is shown to also hold for hard particles (which is outside the validity regime of our
theory). Qualitatively, the correlation along the longitudinal axis is positive for particles of the
same species and negative for particles of different species. This shows a tendency of particles
to align with same-species particles. In the case of active Brownian particles, our approach gives
us a linear equation for the correlations in the reference frame of a given particle. This equation
can be solved numerically and the limit regimes can be solved analytically. At low velocity, the
correlation function has a dipolar shape associated with an exponential decay. At low rotational
diffusion, we uncover a scaling form for the correlations ( x � y2=3). And at low translational
diffusion, another scaling form ( x � y4=3) is found for distances under the persistence length.
Both scaling forms have a characteristic structure with two negative wings behind the particle. All
these results are summarized in a phase diagram enabling one to determine the structure of the
correlations from the parameters. Finally, we compare the latest results to experiments of Janus
particles. We show that the experiments can be described by active Brownian particles in the high
activity regime. The experimental correlations exhibit the characteristic winged shape and are in
agreement with numerical simulations performed with the experimental set of parameters. Over-
all, we stressed the importance of the spatial structure of the correlations in out-of-equilibrium
systems of interacting particles. We believe that the scaling forms may be a generic feature of
the correlations of these systems and suggest that it would be interesting to look for it both in
theoretical models, numerical simulations and experiments of systems exhibiting various features
(e.g. alignment interactions or velocity-orientation couplings).
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The work of this thesis leaves space for further studies. We now list a few directions that
could be investigated. The characterization of the dense SEP is almost complete, but a key point
is missing: correlations at different times. One should investigate whether the vacancy-based
approach can giveN-point and M-time observables. This would mean no less than having a full
characterization of the stochastic process and would be a major result. Second, we believe that
a lot of insight can be gained from hydrodynamic equations for the generalized pro�les. A few
questions are: Is there a closure relation at arbitrary density that enables to recover the results of
Ref. [28]? Can one build a framework for the generalized pro�les of arbitrary single-�le systems
at any order? Can one extend the framework to obtain two-point (and N-point) observables? As
for bidimensional interacting systems, we already stressed the possible extensions. Our frame-
work starts from the microscopic Langevin equations and is quite generic. We believe that it
can be applied to systems with more complexity such as those with alignment interactions or
velocity-orientation couplings. Furthermore, we stressed that it would be interesting to probe
experimentally or numerically the spatial structure of the correlations in these systems.
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Appendix A
Full single-tag probability law of the

SEP

We devote the appendix to the solution of the full probability law of a tagged particle (TP) in
the symmetric exclusion process (SEP) found by Imamura, Sasamoto and Mallick. The large-time
results were �rst published in Ref. [28] . Latter, the method and the arbitrary time results were
detailed in Ref. [29] . The system considered is the usual SEP, with exponential rate 1 foreach jump
(not each particle, this induces a difference of time by a factor 2 compared to our results). A TP
is initially placed at the origin, the goal is to compute the full probability law of its displacement
X( t ), in particular the cumulative distribution P[ X( t ) � x] . See Fig. A.1 for details.

We brie�y expose the method, without details on the computation. Then we state the results.
And �nally, we show that we recover known results in both the high density and low density
limits.

A.1 Method

A.1.1 Mapping to an interface problem

The �rst step of the computation is to offer a mapping of the SEP onto an interface problem. We
de�ne the occupation of site i at time t as � i ( t ) = 1 if the site is occupied, 0 if the site is empty.
And we denote Q(0, t ) the “current” at the origin, that is to say the number of particles that have
jumped from site 0 to site 1 before time t minus the number of particles that have jumped from

Figure A.1: One TP in the SEP. The density (fraction of occupied sites) is� . The TP is initially at
site 0. The occupation of site i at time t is � i ( t ) = 1 if the site is occupied, � i ( t ) = 0 otherwise.
Note that the convention of Imamura et al. is an exponential rate equal to 1 for each jump.
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1 to 0. We de�ne an interface N(x, t ) as

N(x, t ) = Q(0, t ) +

8
><

>:

P x
i= 1 � i ( t ) if x > 0

0 if x = 0
P 0

i= x+ 1 � i ( t ) if x < 0

. (A.1)

The reader checks that, roughly speaking, the displacementX( t ) of the TP is the value of x for
which N(x, t ) increases from 0 to 1. More precisely, one shows that the cumulative distribution
function of X( t ) satis�es

P[ X( t ) � x] = P[ N(x, t ) > 0] . (A.2)

Knowing the probability law of N(x, t ) is enough to determine the one of X( t ).

A.1.2 Tau-moments of the ASEP

Imamura et al. consider an auxiliary problem: the asymmetric simple exclusion process (ASEP),
in which all particles on the line are biased. When their exponential clocks tick they move to the
right with probability p and to the left with probability q. Like in the SEP, exclusions are enforced.
For the ASEP, one can de�ne an interfaceNASEP( x, t ) like in Eq. (A.1).

One de�nes � = p=q. The � -moment of order n of the ASEP ish� nNASEP( x,t ) i where the average
is taken both on the initial conditions and on the evolution of the system. Note that the � -moments
give no information for the SEP (� = 1). Recent techniques based on the Bethe Ansatz allow one
to obtain a expression for the � -moments of the ASEP. The reader should look at the original
article [29] for the method and computation.

The striking feature is that the limit � ! 1 enables us to compute the moments ofN(x, t ) of
the SEP. More precisely, if one sets� = 1 � � , the n-th moment of N(x, t ) is shown to be given by

hN(x, t )ni = lim
� ! 0


�
1 � � NASEP( x,t )

� n�

� n
. (A.3)

One can �nally use Eq. (A.2) to obtain all the desired information about the probability law of
X( t ).

A.1.3 Large deviation functions at large time

One can show that the position X( t ) of the TP, N(x, t ) and their characteristic functions follow
large deviation principles at large time ( t ! 1 ). One writes

P
•

Xtp
4t

= � �
˜

� e�
p

t � (� ) hesXt i � e�
p

tC(s) (A.4)

P
•

N(x, t )
p

t
= q

˜
� e�

p
t � (� ,q) he� N(x,t ) i � e�

p
t � (� ,� ) (A.5)

with the scaling variable � = x=
p

4t . C(s) is the rescaled cumulant-generating function of the
position of the TP. The following Legendre transforms hold:

C(s) = min
�

(2s� + � (� )) , � (� , q) = max
�

(� (� , � ) + � q) . (A.6)

From Eq. (A.2), one shows that the link between N(x, t ) and X( t ) boils down to

� (� ) = � (� , q = 0). (A.7)
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At the end of the day, the rescaled cumulant-generating functionC(s) is expressed in terms of the
large deviation function � (� , � ) as

C(s) = min
�

max
�

[ 2s� + � (� , � )] . (A.8)

A.2 Results

A.2.1 Arbitrary time

The main result of Imamura et al. is the expression of the characteristic function ofN(x, t ). For
sign(x) = � 1, they obtain

loghe� N(x,t ) i =
1X

n= 1

(� 1)n� 1! n

n
I n( x, t ) � x log[1 + � � (e� � � 1)] (A.9)

! = � + (e� � 1) + � � (e� � � 1) + 2� + � � (e� � 1)( e� � � 1) (A.10)

I n( x, t ) = Tr
�
(Kx,t )

n
�

=

I

C0

. . .

I

C0

‚
nY

i= 1

d� i

2� i

Œ

Kx,t (� 1, � 2) . . . Kx,t (� n, � 1) (A.11)

Kx,t (� 1, � 2) =
� j xj

1 et (� 1+ 1=� 1� 2)

� 1� 2 + 1 � 2� 2
(A.12)

with C0 a contour in the complex plane around zero small enough as to include no other pole. At
the mathematical level, the structure of he� N(x,t ) i is a Fredholm determinant.

One can in principle obtain information on the law of X( t ) using Eq. (A.2).

A.2.2 Large time

The previous result at arbitrary time is hard to tackle. It takes a simpler form at large time ( t ! 1
with x=

p
t = const). One �rst shows that

I n(�
p

4t , t ) �
t !1

s
t
n

� (� �
p

n), � (� ) =

Z 1

�

du erfcu. (A.13)

Then Eq. (A.9) leads to (for x > 0)

� (� , � ) � lim
t !1

loghe� N(x,t ) i

�
p

t
=

1X

n= 1

(� 1)n� 1

n
! n 1

p
n

� (�
p

n� ) + 2� log[1 + � + (e� � 1)] . (A.14)

The �nal result (for � ¿ 0) is

� (� , � ) =
1X

n= 1

(� 1)n� 1

n3=2
! nA(

p
n� ) + � log

1 + � + (e� � 1)

1 + � � (e� � � 1)
(A.15)

A(� ) = � + � (� ) =
e� � 2

p
�

+ � (1 � erfc � ). (A.16)
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The large time limit of the cumulants of X( t ) is deduced from Eq. (A.8). The �rst two non-zero
cumulants read

hX( t )2i cp
4t

�
t !1

1 � �

�
p

� ,
(A.17)

hX( t )4i cp
4t

�
t !1

1 � �

� 3
p

�

•
1 �

�
4 � (8 � 3

p
2)�

�
(1 � � )

12
�

(1 � � )2
˜

. (A.18)

Please note that the convention here is rate 1 for jumps both to the left and to the right instead
of jumping with rate 1 and then choosing the direction. One should divide the time by 2 to �nd
results consistent with ours.

A.3 High density limit

In this section we study the high density limit: � + = � � = 1 � � 0 with � 0 ! 0. We simplify the
expression (A.15) when � 0 ! 0, noting that � (rescaled displacement) should scale as� = � 0 �̃ .

lim
� 0! 0

� (� , � 0 �̃ )

� 0
= �

1
p

�
(cosh� � 1) + 2� �̃ (A.19)

We solve for the extremum (A.8):

@ �

@ �

�
�
�
�
� � ,� �

= � 2s
@ �

@ �

�
�
�
�
� � ,� �

= 0, (A.20)

� � = � s, �̃ � =
sinh � �

p
�

= �
sinhs
p

�
. (A.21)

From Eq. (A.8), we �nally obtain

lim
� 0! 0

C(s)
� 0

= �
1

p
�

(coshs� 1) . (A.22)

With a change of notation, this is what we �nd with our vacancy-based method [Eq. (3.34)] .

A.4 Low density limit

We simplify the expression (A.9) when � ! 0,

� (� , � ) = � 2� (cosh� � 1) A(� ) + ��
�
e� � e� �

�
(A.23)

� (� , � ) = � �
�
(e� � 1)h(� ) + ( e� � � 1)h(� � )

�
. (A.24)

We introduced h(� ) =
R1

� du erfcu = A(� ) � � and h(� � ) = A(� ) + � . Our goal is to solve both

extrema in Eq. (A.8). We �rst write @ �
@ � = 0 and obtain

e� �
=

v
t h(� � )

h(� )
. (A.25)

One checks that this implies

� (� � , � ) = �
” Æ

h(� ) �
Æ

h(� � )
—2

. (A.26)
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We then solve for the extremum over � , @ �
@ � = � 2s, this gives us

� 2s= �
�
(e� �

� 1) erfc(� � ) � (e� � �
� 1) erfc(� � � )

�
(A.27)

� 2s= �
€Æ

h(� � � ) �
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h(� � )
Š�

erfc(� � )

v
t 1

h(� � )
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v
t 1
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. (A.28)

Noting that � = 1
2 [ h(� � ) � h(� )] = 1

2 [
p

h(� � ) �
p

h(� )][
p

h(� � ) +
p

h(� )] , we obtain

� 2s� � =
�

2

” Æ
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Æ
h(� � � )

—2
–

erfc(� � )

v
t h(� � � )
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+ erfc(� � � )

v
t h(� � )

h(� � � )
+ 2

™

(A.29)

(We used erfc� + erfc(� ) = 2.)
At the end of the day, C(s) = 2s� � + � (� � , � � ). Our �nal expression is

C(s) = �
�

2

” Æ
h(� � ) �

Æ
h(� � � )

—2
–

erfc(� � )

v
t h(� � � )

h(� � )
+ erfc(� � � )

v
t h(� � )

h(� � � )

™

, (A.30)

with � � the solution of Eq. (A.28)
Equations (A.28) and (A.30) are the ones found by Sadhu and Derrida for interacting Brown-

ian particles on a line (Eq. (42a) and (42b) of Ref. [41] ). Interacting Brownian particles on a line
are equivalent to the limit � ! 0 of the SEP. This solution is also equivalent to the results found
by other methods in Refs.[44,45] .
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Appendix B
Edwards-Wilkinson equation and

symmetric exclusion process

The Edwards-Wilkinson (EW) equation [102] for a function h(z, t ) is the stochastic equation

@h
@t

(z, t ) = D
@2h
@z2

(z, t ) + � (z, t ) (B.1)

with a Gaussian noise� (z, t ) satisfying

h� (z, t )i = 0, (B.2)

h� (z, t )� (z0, t 0)i = 2� � (z � z0)� ( t � t 0). (B.3)

It is usually interpreted as a model of interface growth: h is the height of the interface at
point z, D accounts for some elasticity. Here we choose to de�ne the EW equation in dimen-
sion 1+ 1 but the physical space can be of any dimension (see Ref.[102] for results in 2 and 3
dimensions).

The EW equation is a simpli�ed version of the Kardar-Parisi-Zhang (KPZ) equation[102] in
which one adds a non-linearity (@zh)2. Note that it has been argued that the KPZ equation is a
mapping for the asymmetric exclusion process[103] .

A crucial remark about the EW equation is that, as it is linear with a Gaussian noise, the �eld
h(z, t ) is Gaussian. It is enough to compute the averagehh(z, t )i and the two-point correlation
hh(z, t )h(z0, t 0)i to know the full process. In particular, if a model is mapped to the EW equation,
one should not expect to gain information beyond these two quantities.

We shall now look at the link between the symmetric exclusion process (SEP) and the EW
equation and explain what kind of insight we gain by studying the EW equation.

B.1 Link with the symmetric exclusion process

In this section we introduce a mapping used for instance in Refs.[30, 103] . Let us consider the
symmetric exclusion process (SEP) (see Chapter 2). We label the particles:z = 0 is the closest
particle to the origin, z = 1 the particle to its right, and so on (with negative indices for particles
on the left). The displacement of particle z at time t is denoted Xz( t ). Alternatively, we de�ne a
displacement �eld

h(z, t ) � Xz( t ), (B.4)

185



186 Appendix B. Edwards-Wilkinson equation and symmetric exclusion process

the variable z in h(z, t ) can now be continuous.
It is standard to assume (see Ref.[103] and Appendix B) that the displacement �eld h(z, t ) is

diffusive and obeys the Edwards-Wilkinson equation (B.1), with the same diffusion coef�cient as
the one of the density of the SEP,

D =
1
2

. (B.5)

The only thing that remains to be set is the amplitude of the noise. It is adjusted[103] by matching
the variance



[h(0, t ) � h(0, 0)] 2

�
with its known expression [27] ,



[ h(0, t ) � h(0, 0)] 2

�
� h [ X0( t ) � X0(0)] 2i =

1 � �

�

v
t 2t

�
. (B.6)

Anticipating on our computation [Eq. (B.23)] , we set

� =
1
4

1 � �

�
(B.7)

where � is the average density of the SEP. We shall see that these simple assumptions allow us to
derive results for the SEP that should hold in the Gaussian limit.

One should remain careful about the fact that z is not a coordinate in physical space, but a
continuous analog of the indices of the particles. However, in the high density limit ( � ! 1), z
should be rather close to the spatial coordinate.

B.2 Quenched correlations

We start from the EW equation (B.1) and assume that at time 0, the interface is �at: h(z, t = 0) =
0. This immediately implies hh(z, t )i = 0 at all positive times. From the point of view of the set,
we took “quenched” (i.e. frozen) initial conditions.

The general solution of the EW equation is the convolution of the noise with the Green function
of the diffusion equation.

h(z, t ) =

Z t

0

d t1

Z 1

�1

dz1
� (z1, t1)

p
2� D( t � t1)

e�
(z� z1)2

4D( t � t1) . (B.8)

We de�ne the two-point correlation function (from a �at initial state)

c0(z, t , � ) � h h(0, t )h(z, t + � )i . (B.9)

It can be computed from Eqs (B.3) and (B.8),

c0(z, t , � ) =
�

� D

Z t
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Z 1
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� (z� z1)2

4D( t+ � � t1) e
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1
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(B.10)
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with g(u) = e� u2
�

p
� uerfc(u).

In particular, the variance and the equal-time correlation read

hh(0, t )2i = �

v
t 8t

� D
, hh(0, t )h(z, t )i = �

v
t 8t

� D
g

•
jzj

p
8Dt

‹
. (B.13)

In the language of the SEP, we predict

hX2
0 ( t )i quenched =

1 � �

�

s
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, hX0( t )Xn( t )i quenched =
1 � �
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. (B.14)

The two-time correlation at the same point yields

hh(0, t )h(0, t + � )i = �

v
t 2

� D

Z t + �= 2

�= 2

ds
p

s
=

2�
p

� D

� p
t + � + t �

p
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, (B.15)

which means for the SEP,

hX0( t1)X0( t2)i quenched =
1 � �

�
1

p
2�

€p
t1 + t2 �

Æ
j t2 � t1j

Š
(B.16)

This time scaling is the one found in Ref. [41] for point-like particles (low density limit of the
SEP).

B.3 Annealed correlations

In the last section, we computed the correlations starting from an initially �at pro�le. We now
want to do the same starting from the equilibrium state. For the SEP, this means that we take
“annealed” initial conditions.

We consider an initial condition at t = � T: h(z, t = � T) = 0 and de�ne the correlations of
displacements between time 0 andt or t + � ,

cT (z, t , � ) � h [h(z, t + � ) � h(z, 0)] [ h(0, t ) � h(0, 0)] i . (B.17)

The limit T ! 1 (initial condition at t = �1 ) corresponds to a system that is equilibrated at
time 0. Our observable will be c1 (z, t , � ).

We expand the product in cT and �nd that, by de�nition of c0,

cT (z, t , � ) = c0(z, T + t , � ) � c0(z, T, t + � ) � c0(z, T, t ) + c0(z, T,0) (B.18)
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The integrals involving T in both bounds vanish when T ! 1 and we obtain

c1 (z, t , � ) = �
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In particular, the variance and the pair correlations at equal time are



[h(0, t ) � h(0, 0)] 2

�
= 4�

s
t

� D
, (B.23)

h[h(z, t ) � h(z, 0)] [ h(0, t ) � h(0,0)] i = 4�

s
t

� D
g

•
jzj

p
4Dt

‹
, (B.24)

In the language of the SEP, we predict

hX2
0 ( t )i annealed =
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, hX0( t )Xn( t )i annealed =
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The variance is the well-known result [ 27] : this justi�es our expression of � [Eq. (B.7)] . Further-
more, at high density, n is approximately the initial distance between two particles: the expression
of the two-point correlation matches our computation at high density.

One notices a
p

2 difference between quenched and annealed initial conditions. This factor
shows that the system has in�nite memory [35,41] .

The two-time correlation at the same point is
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which means for the SEP,

hX0( t1)X0( t2)i annealed =
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�
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p
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€p
t1 +

p
t2 �

Æ
j t2 � t1j

Š
. (B.28)

This time scaling is again the one found in Ref.[41] for point-like particles. It corresponds to a
fractional Brownian motion.

B.4 Localized force

We now add a forcing f on the interface at point 0. The EW equation with forcing is

@h
@t

(z, t ) = D
@2h
@z2

(z, t ) + � f � (z) + � (z, t ), (B.29)

with � the mobility, � the Dirac delta function, and � is the Gaussian noise given by Eq. (B.3).
The average ofh does not depend on the noise, and thus is independent of the initial condi-

tions. We use the Fourier transformh̃(k, t ) =
R

dze� ikzh(z, t ) and obtain the following equation

@h̃h(k, t )i
@t

= � Dk2h̃h(k, t )i + � f . (B.30)

Setting the initial condition h(z, t = 0) = 0, the solution is

h̃h(k, t )i =
� f

Dk2

€
1 � e� Dk2 t
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. (B.31)
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Back to real space,

hh(z, t )i f = � f

s
t

� D
g

•
jzj

p
4Dt

‹
. (B.32)

(the indice f denotes the forcing). This is the results we found at high density for the entrainment
at small force.

This result is very similar to the pair correlations starting from equilibrium initial conditions
[Eq. (B.24)] . Indeed we �nd the following �uctuation-dissipation result linking the pair correla-
tions at equilibrium to the response at a given point to a force applied at another point.

c1 (z, t , 0) = 4�
hh(z, t )i f

� f
. (B.33)

One may now introduce two forces, one at position 0 and the other at position L. The equation
is
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(z, t ) = D
@2h
@z2

(z, t ) + � f1� (z) + � f2� (z � L) + � (z, t ), (B.34)

and its average solution is
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This is similar to the result we found for the SEP at high density, but here we only have the linear
behavior in the forces f1 and f2 (small forces) and not the full structure.
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Appendix C
Random phase approximation in

liquid theory

In this appendix, we focus on standard liquid theory as detailed in the book of Hansen and Mc-
Donald [1] . Our goal is not to give detailed proofs of the results but rather to highlight the main
steps leading to the Random Phase Approximation results.

C.1 Thermodynamic potentials

We consider a liquid composed ofN particles of massm, having impulsions f p i g and positions
f r i g. Particles i and j interact via a pair potential V(r i , r j ), and we consider an external potential
' (r). The energy of the system reads

H (f p i , r i g) =
NX

i= 1

p2
i

2m
+

X

i6= j

V(r i , r j ) +
NX

i= 1

' (r i ). (C.1)

We use the grand canonical ensemble,� = 1=(kBT) is the inverse temperature (with T the
temperature and kB the Boltzmann constant) and � is the chemical potential. Standard com-
putations give the following results for the grand potential 
 and the grand partition function
� .

� =
1X

N= 0

1
N!

1
� 3N

Z

dr1 . . . drN

–
NY

i= 1

e� [ � � ' (r i )]

™

e� �
P

i6= j V(r i ,r j ) , (C.2)


 = �
1
�

ln � , (C.3)

with the de Broglie thermal wavelength � =
p

(� h2)=(2� m) (h is the Plank constant). We see
that the quantity  (r) = � � ' (r) naturally appears, we call it the intrinsic chemical potential.

One may ask what is the conjugated quantity associated with (r). To answer this question,
we de�ne the �uctuating local density � (r) and the average local density� (1)(r) by

� (r) �
NX

i= 1

� (r � r i ), (C.4)

� (1)(r) � h � (r)i . (C.5)
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The average potential energy due to the external �eld is then given by
R

� (1)(r)� (r)dr. Thus,
in�nitesimal changes of entropy ( � S), number of particles ( � N) and external potential ( �' (r))
induce a change of internal energy

� U = T� S+

Z

� (1)(r)�� (r)dr + �� N. (C.6)

(We include the con�nement in the external potential so as not to consider the volume.) Using
the well know relation 
 = U � TS� � N, we obtain

� 
 = � S� T +

Z

� (1)(r)�� (r)dr � N�� = � S� T �

Z

� (1)(r)� (r)dr. (C.7)

At the end of the day, 
 is a functional of the intrinsic chemical potential  (r) and the conjugated
quantity associated with  (r) is � (1)(r).

We now de�ne the intrinsic free energy F by the Legendre transform

F [ T, � (1) ] � 
 [ T,  ] +

Z

dr � (1)(r) (r). (C.8)

(The reader should think of this relation as the analog of F = 
 + N� .) F is a functional of � (1) .
For an ideal gas, the intrinsic free energy is

F id [ T, � (1) ] = kBT
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� (1)(r)
�
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�
� 3� (1)(r)

�
� 1

�
dr, (C.9)

and we de�ne the excess intrinsic free energy as

F ex[ T, � (1) ] � F [ T, � (1) ] � F id [ T, � (1) ] . (C.10)

C.2 Correlation functions and Ornstein-Zernike equation

We �rst de�ne correlations of the �uctuations of the density �eld

H(n)(r1, . . . , rn) �

®
nY

i= 1

�
� (r i ) � � (1)(r i )

�
¸

. (C.11)

In particular, H(2) is related to the usual pair correlation function h(2) by

H(2)(r, r0) = � (1)(r)� (1)(r0)h(2)(r, r0) + � (1)(r)� (r � r0). (C.12)

A very interesting result [ 1] is that the correlation functions H(n) can be expressed as func-
tional derivatives of the grand potential 
 with respect to the intrinsic chemical potential  (r).

H(n)(r1, . . . , rn) = � �
� n


� (�  (r1)) . . . � (�  (rn))
(C.13)

Similarly, Hansen and McDonald de�ne the so-called direct correlation functions as functional
derivatives of the excess intrinsic free energyF ex with respect to the density pro�le � (1)(r).

c(n)(r1, . . . , rn) � � �
� nF ex

�� (1)(r1) . . . �� (1)(rn)
(C.14)
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Having all these de�nitions, one manages [1] to link the correlations of order 2 to the direct
correlations of order 2. This is the Ornstein-Zernike equation:

h(2)(r, r0) = c(2)(r, r0) +

Z

c(2)(r, r00)� (1)(r00)h(2)(r00, r0)dr00 (C.15)

The standard view on this equation is to say that the total correlation between two particles
h(2)(r, r0) is the sum of a direct contribution c(2)(r, r0) and a contribution mediated by a third
particle (at position r00). Hence, the name “direct correlation” for c(2)(r, r0).

In the case of an homogeneous and isotropic �uid, � (1)(r) = �̄ , h(2)(r, r0) = h(r � r0) =
h(kr � r0k) and c(2)(r, r0) = c(r � r0) = c(kr � r0k). The Ornstein-Zernike equation becomes

h(r) = c(r) + �̄

Z

c(r � r0)h(r0)dr0, (C.16)

h̃(k) =
c̃(k)

1 � � c̃(k)
, (C.17)

using the Fourier transform h̃(k) =
R

dre� i k�rh(r). If one has an expression for the direct correla-
tions functions (or at least a closure relation), one readily obtains the pair correlation function.

The next subsection is dedicated to perturbative theory and in particular to the random phase
approximation.

C.3 Random phase approximation

Starting from the expression of the grand potential (C.2), one shows that its functional derivative
with respect to the interaction potential V (keeping T and  constant) leads to the two-point
correlation � (2)(r, r0) � h � (r)� (r0)i ,

� (2)(r, r0) = 2
� 


� V(r, r0)
. (C.18)

Using Eq. (C.8), this translates into

� (2)(r, r0) = 2
� F

� V(r, r0)
= 2

� F ex

� V(r, r0)
. (C.19)

Starting from the ideal gas1 (V = 0, F ex = 0), we gradually turn on the potential: we apply
� V(r, r0) for 0 � � � 1. The integration of Eq. (C.19) leads to the following expression for the
excess intrinsic free energy,

F ex[ � (1) ] =
1
2

Z 1

0

d�

ZZ

drdr0� (2)(r, r0; � )V(r, r0), (C.20)

with � (2)(r, r0; � ) the two-point correlation corresponding to a potential � V. Note that this equa-
tion is exact.

At this level, the so-calledrandom phase approximation(RPA) is a mean-�eld (or decoupling)
approximation. We write

� (2)(r, r0; � ) � h � (r)� (r0)i (� ) � h � (r)ih� (r0)i � � (1)(r)� (1)(r0), (C.21)

1More generally, one may do perturbations around any reference potential. See Ref.[1] .
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which leads us to

F ex[ � (1) ] �
1
2

Z

drdr0V(r, r0)� (1)(r)� (1)(r0). (C.22)

A crucial point is that the density pro�le � (1) does not depend on the interaction potential.
It is now easy to compute the two-point direction correlation function de�ned in Eq. (C.14).

c(2)(r, r0) � � �
� 2F ex

�� (1)(r)�� (1)(r0)
� � � V(r, r0). (C.23)

Within the RPA, the direct correlation function is simply given by the interaction potential.
At the end of the day, for an homogeneous isotropic �uid, we can use the Ornstein-Zernike

relation (C.17) to obtain the correlations in Fourier space within the RPA.

c̃(k) = � � Ṽ(k), (C.24)

h̃(k) �
� Ṽ(k)

kBT + � Ṽ(k)
. (C.25)

This last result is identical to the result from the linearized Dean equation [Eq. (8.42)] . (As the
mobility was set to one, the diffusion coef�cient is D0 = kBT.)

It is remarkable that in the simple case of a passive �uid, we could link our approximation of
linearization of the Dean equation to a well-known approximation of liquid theory: the random
phase approximation.



Appendix D
Theory of electrophoretic Janus

particles

In this appendix, we present the basics of the theory explaining the motion of the Janus particles
studied in Chap 11. We �rst review some electrokinetic phenomena before investigating the one
involved in the motion of electrophoretic Janus particles: induced-charge electrophoresis (ICEP).
We �nally present the dependence of the velocity of the particles on the frequency of the electric
�eld. At high frequency, a mechanism different from ICEP leads to a velocity reversal. Note that
the theoretical motivation often comes from experimental setups [77–80] .

D.1 Electrokinetic phenomena

Before explaining the motion of Janus particles, we recall some basics about electrokinetic phe-
nomena (Ref. [104] , chap. 14.23). Then, we turn to induced-charge electrokinetic phenom-
ena [105,106] which provide the framework to understand the motion of Janus particles.

In all the phenomena described below, the system will consist of an electrolytic solution (typi-
cally salted water) submitted to an electic �eld (typically a difference of potential applied between
two electrodes). When an intruder is introduced, it is typically of nanometric to micrometric di-
mensions. Before going into the details of the phenomena, we recall that in an electrolytic so-
lution close to a charged surface, oppositely charged ions accumulate close to the surface[104] .
This accumulation, known as the electric double layer (EDL), has a thickness given by the Debye
length,

� D =

 
X

j

q2
j n0

j

� kBT

! � 1=2

(D.1)

where the sum j is on the species of ions. qj and n0
j are respectively the charge and the con-

centration of species j , and � is the dielectric constant of the �uid. For a monovalent salt at
concentration C (in mol L � 1) in water, � D = 0.304=

p
C nm.

Electrophoresis 1. (See Fig. D.1b.) The simplest situation is a charged intruder in the solution
(for instance a charged colloid). In this case, the intruder moves towards the oppositely charged

1The suf�x -phoresis denotes the motion of particles due to a force. The word osmosis denotes the motion of a
�uid. Both have etymologies from ancient Greek.
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electrode. It is slowed down by a friction force due to the ions of the �uid. This phenomenon is
known as electrophoresis and is the basis of some micro�uidic separation techniques.

Electro-osmosis. (See Fig. D.1a.) Suppose now that the walls of the system (perpendicular
to the electrodes) are charged (in practice they are made of a material that has surface charges).
An electric double layer (EDL) appears close to the surface. This EDL is dragged by the electric
�eld perpendicular to the surface. This creates a motion not only of the ions but also of the �uid
around them. This �ow is known as electro-osmosis. For a charged intruder in a tiny channel with
charged walls, the interplay between electrophoretic and electro-osmotic effects is non-trivial.

Induced-charge electro-osmosis (ICEO). (See Fig. D.1c.) More recently, the focus has been
put on electrokinetic phenomena with dielectric intruders [105,106] . Let us consider a dielectric
intruder �xed in an electrolytic solution, with an external electric �eld pointing upwards. The
intruder becomes polarized: positive charges accumulate on its top, and negative charges on its
bottom. The EDL is thus made of negative ions on top, and positive ions below the intruder.
Finally, this EDL is dragged by the electric �eld: negative ions want to move downwards and
positive ions want to move upwards. This creates a quadrupolar �ow around the intruder.

Induced-charge electrophoresis (ICEP). (See Fig. D.1d.) We can �nally explain the main
mechanism for the propulsion of Janus particles. We consider the previous situation with two
major differences: (i) the intruder is allowed to move, and (ii) the intruder is composed of two
hemispheres, with the frontier aligned with the electric �eld. One hemisphere (the left one) is
insulating and cannot be polarized, the other (the right one) is metallic and can be polarized. The
discussion of ICEO �ow holds only for the metallic hemisphere. The EDL around it is dragged by
the electric �eld and creates an ICEO �ow directed towards the right. This symmetry breaking
thus pushes the particle to the left. This motion is called induced-charge electrophoresis (ICEP).
ICEP is the main propulsion mecanism of the Janus particles that we studied in Chapter 11.

D.2 Induced-charge electrophoresis

Let us now detail a bit the theory of induced-charge electrophoresis, relying mainly on the compu-
tation of Squires and Bazant[105] . We focus only on the main features obtained from dimensional
analysis arguments. In usual electro-osmosis, ions close to a charged wall move due to a parallel
electric �eld of strength E (Fig. D.1a). This induces a �ow of the �uid whose typical velocity us

is given by the balance between the drag due to the electric �eld and the viscous force. This is
the Smoluchowski slip velocity

us = �
��
�

E, (D.2)

where � is the viscosity of the �uid, � its dielectric constant and � is the voltage difference across
the EDL. � is known as the zeta potential, it is proportional to the surface charge of the wall and
depends on the concentration of ions in the solution.

We now look at induced electrophoretic effects. In this case, the intruder of sizea is polarized
by the electric �eld E. The zeta potential is no longer independent of the electric �eld. By di-
mensional analysis, one �nds that � � Ea. This means that the typical velocity of ICEP (or ICEO)
is

U0 =
� aE2

�
. (D.3)

In particular, it depends quadratically on the applied electric �eld. This square dependence is
indeed observed in the experiments[77] . The exact prefactors for the motion of a half-coated
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Figure D.1: (a) Electro-osmosis. A negatively charged wall induces a layer of positive ions that
are driven by the external electric �eld. This creates a �ow. (b) Electrophoresis. A positively
charged particle is driven by the external electric �eld. Note that the negative EDL is driven and
creates an electro-osmotic �ow in the opposite direction. This hinders the motion of the particle.
(c) ICEO. A �xed dielectric particle is polarized by the external �eld. The EDLs on both sides
of the particles are driven towards the opposite sides. This creates a dipolar �ow of the �uid.
(d) ICEP. A dielectric particle can be polarized only on one side. This creates an asymmetric �ow
that induces a motion in the direction of its unpolarized side. This is of course a limit case, it is
enough for the two sides to have different polarizabilities to induce a motion of the particle. In
our experiments, the most polarizable side is the one coated with titanium.

cylinder (i.e. U = 2U0=(3� )) and a half-coated sphere (i.e. U = 9U0=64) can be obtained by
computing the steady state of the EDL and the zeta potential in both geometries[105] . In terms
of directions, a particle with one coated and one uncoated hemisphere will move towards the
uncoated hemisphere (Fig. D.1d).

One may wonder why we considered only particles in the “left-right” con�guration in which
the boundary between the two hemispheres is aligned with the electric �eld (and thus the motion
is perpendicular to the electric �eld). The reason is that this is the stable con�guration. Indeed, if
the boundary between the hemispheres makes an angle with the electric �eld, the particle will
have an angular velocity � [ 105] given by

� / �
U0

a
sin(2 ). (D.4)

Hence the “left-right” con�gurations (  = 0 or � ) are stable and the “fore-aft” con�gurations
( = � �= 2) are unstable.
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D.3 Frequency dependence

The discussion above was made assuming that the electric �eld was constant in time (DC). How-
ever, experimentally such a �eld would heat up the sample and make the experiment fail. Ex-
periments are performed using an alternative (AC) �eld of frequency f . The discussion above
remains valid as long as the EDL is able to charge faster than the electric �eld. Indeed since the
effect is induced, the EDL needs to change sign when the �eld changes sign. The typical time
scale for the charge of the EDL is given by[105,107]

� c =
� Da

Ds
(D.5)

where � D is the Debye length,a is the particle diameter and Ds the diffusivity of the ions. Taking
a salt concentration 10� 4 mol L� 1 leading to � D ' 0.3=

p
10� 4 � 30 nm, a diameter a = 3 � m,

and a diffusivity 2 Ds ' 10� 9 m2 s� 1, the typical time is � c ' 10� 4 s.
It has been shown[107] that (under some assumptions) the ICEP velocity decays with the

frequency as

UICEP( f ) /
K

K2 + ( A� c f )2
(D.6)

with K / a=� D and A a constant.
For frequencies much larger than � � 1

c , one could expect the Janus particles to exhibit no
motion. However, it has been observed experimentally[78, 80] that the particles still move but
in the opposite direction, that is to say in the direction of their metallic hemisphere (instead of
the direction of the glass hemisphere). This velocity reversal has been explained by a mechanism
called self-dielectrophoresis [107] . Usual dielectrophoresis (DEP) is the fact that a dielectric
particle in a non-uniform electric �eld gets polarized and exhibits a motion towards the region
of high electric �eld. In the case of Janus particles, numerical simulations show that gradients of
electric �eld are created at the level of the particle at high frequency. These local gradients can
induce a velocity scaling with the frequency as

UDEP( f ) / �
(� c f )2

K2 + ( A� c f )2
(D.7)

where the minus sign denotes a direction opposite to the ICEP motion. Balancing the two velocity

expressions, one �nds a velocity reversal at fcr / Ds=
q

a� 3
D consistently with the experiments.

In our experiments f < � � 1
c , the particles move in the direction of the glass hemisphere and

we expect their motion to be mostly due to ICEP.

2Tabulated in standard handbooks
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