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FOREWORD 

 

Following studies in biology carried out in Benin, then in molecular biology at the University of Evry 

Val d’Essonne, I started my training in bioinformatics and associated fields in 2014 by integrating the 

Master 1 mention bioinformatics, GENomics, Informatics and Mathematics for Health and Environment 

(GENIOMHE) of Paris-Saclay University. 

 

During this course, I realized two internships including one in Germany at the department of 

bioinformatics within the Institute for Microbiology and Genetics, a component of Georges-August 

University of Göttingen. The second internship was with the INSERM U1018, “Health across 

generations” team of Gustave Roussy Institute, directed by Dr. Gianluca Severi. Under his supervision, 

I investigated the association between circulating levels of B vitamins and DNA methylation. 

 

The “Health across generations” team conducts research projects related to the identification and 

analysis of the role of environment and lifestyle in the occurrence of women's cancers and other non-

communicable diseases through E3N, a prospective cohort of almost 100.000 women. The team has 

recently started the recruitment of their husbands (E4N-G1), children (E4N-G2) and grandchildren 

(E4N-G3).  

 

My pre-doctoral internships allowed me to gain experience in the analysis of genomics, epigenomics 

and epidemiological data and in the design of related studies. Following the obtention in july 2016 of a 

grant from the French National Institute of Cancer (INCa), I wanted to continue my research in the 

“Health across generations” team.  

 

I did my thesis under the joint supervision of Drs. Gianluca Severi and Vittorio Perduca. 

My doctoral work has been focused on the applications of genomic and epigenomic signatures to 

identify markers of exogenous exposures and elucidate their potential role in cancer aetiology. Data used 

included simulations, public repositories such as The Cancer Genome Atlas and those from to the French 

E3N prospective cohort. 

This thesis is divided into 5 chapters. After a review of the concepts related to my work, recent advances 

in the study of mutational and epigenetic signatures in tumours will be described, followed by a chapter 

covering one most the most recent developments with regards to cancer genomics. The fourth chapter 

will report the investigations performed for the identification of novel markers of exposition to endocrine 

disruptors. And finally, a summary of the findings and the research perspectives will be presented.  
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ABSTRACT 

 

 

Background: Several risks factors have been identified for cancer, and it has been estimated that more 

than 40% of cases in developed countries are preventable through the modulation of known modifiable 

risk factors. 

 

Objectives: The overall objective of this thesis was to demonstrate that the analysis of genomic and 

epigenomic data integrated with well-characterised exposure and lifestyle data may be used to identify 

markers of environmental exposures and lifestyle and may contribute to increase our understanding of 

cancer aetiology. 

 

Results: We first describe how genomic and epigenomic signatures can be used to identify markers of 

exposure and decipher the aetiology of cancer. Then, we adopt the mutational signatures framework to 

contribute to the debate about the “bad luck” hypothesis for cancer and demonstrate that tobacco-related 

mutations are more strongly correlated with cancer risk than random mutations. We introduce a 

probabilistic model for the simulation of mutational signature data and compare the performance of the 

available methods for the identification of mutational signatures using both simulated and real data. 

Additionally, we introduce a new method for the identification of such signatures. Finally, we use 

methylation array data in an epidemiological study within the E3N cohort to investigate the association 

between exposure to Brominated Flame Retardants and Per- and polyfluoroalkyl substances, two 

organic pollutants that are known endocrine disrupting chemicals, and methylation in DNA from blood. 

Overall, our study does not provide evidence of methylation alterations at the level of the whole genome, 

in regions or in single CpGs. Suggestive evidence of alterations in the methylation of genes within 

plausible biological pathways (e.g. androgen response) warrants further investigations.  

 

Conclusions: Our work on the methodological aspects of mutational signature research introduces an 

original framework for measuring the performance of tools for the identification of mutational signatures 

that may serve as reference for future methodological or applied research. Our applications of both 

mutational signature and methylome research demonstrate the usefulness of such tools to assess 

exposures and elucidate their role in cancer aetiology. 

 

Keywords : mutational signatures, DNA methylation, endocrine disruptors, epidemiology, lifestyle
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RESUME 

Contexte : Plusieurs facteurs de risque de cancer ont été identifiés et il a été estimé que plus de 40% des 

cas dans les pays développés pourraient être évités en modifiant les facteurs de risque connus 

 

Objectifs : L'objectif général de cette thèse était de démontrer que l’intégration de données génomiques 

et épigénomiques aux données détaillées sur les expositions environnementales et le mode de vie peut 

être utile pour identifier des biomarqueurs de ces facteurs et contribuer à augmenter notre connaissance 

de l'étiologie du cancer.  

 

Résultats : Dans un premier temps, nous décrivons comment les signatures génomiques et 

épigénomiques peuvent être utilisées pour identifier des marqueurs d’exposition et déchiffrer l’étiologie 

du cancer. Ensuite, nous contribuons au débat relatif à l’hypothèse de la chance dans le développement 

du cancer et démontrons que les mutations induites par le tabagisme sont plus prédictives du risque de 

cancer que les mutations aléatoires. Nous introduisons un modèle probabiliste pour la simulation de 

données mutationnelles et comparons la performance des outils d’identification de ces signatures avec 

des données réelles et simulées. De plus, nous introduisons une nouvelle méthode pour l’identification 

des signatures mutationnelles. Enfin, nous utilisons les données de méthylation de la cohorte E3N pour 

étudier le lien entre l'exposition aux retardateurs de flamme bromés et aux composés perfluorés, deux 

substances classées parmi les perturbateurs endocriniens, et la méthylation de l’ADN sanguin. 

Globalement, notre étude ne fournit aucune preuve d'altérations globales du méthylome ou d'altérations 

à l’échelle des CpGs. Cependant, certains résultats suggèrent l’existence d'altérations de la méthylation 

de gènes impliqués dans des voies biologiques (ex., la réponse aux androgènes) et nécessitent des 

recherches supplémentaires. 

 

Conclusions : Ce travail contribue à la recherche méthodologique portant sur les signatures 

mutationnelles en introduisant un protocole de mesure de performance et d’identification des signatures 

mutationnelles pouvant servir de référence à de futures études méthodologiques ou appliquées. Nos 

recherches sur les signatures mutationnelles et le méthylome démontrent l'utilité de tels outils pour 

évaluer les expositions et élucider leur rôle dans l'étiologie du cancer. 

 

Mots clés : signatures mutationnelles, méthylation de l’ADN, perturbateurs endocriniens, 

épidémiologie, mode de vie  
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This chapter serves as an introduction to most of the concepts discussed in my dissertation and will be 

divided into four sections, with the first three presenting background knowledge and recent advances 

about genomic and epigenomic signatures, and the last outlining the specific objectives and results of 

my thesis. Firstly, this introductive chapter will focus on genomics signatures, and in particular cancer 

mutational signatures, with a brief summary of concepts behind their definitions, mathematical 

modeling and identification. Next, we will discuss the best-studied epigenetic signatures, DNA 

methylation, focusing on methodological aspects and the influence lifestyle has on it. Finally, the third 

section will summarize current knowledge about brominated flame retardants and Per- and 

polyfluorinated alkylated substances, two classes of endocrine disrupting chemicals, and provide 

information about their impact on human health, as well as current developments in their molecular 

epidemiology.  

This chapter does not review any of the articles that have been published or submitted as part 
of this thesis as these will be presented in the following chapters.  
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1. GENOMIC SIGNATURES 

1.1 BEHIND THE CONCEPT OF “MUTATIONAL SIGNATURES” 

 

1.1.1	HALLMARKS	OF	CANCER	

Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health 

and modulate disease-states
1
 such as cancer which induce modifications in human genome resulting in 

an abnormal cell growth. In France, 382,000 new cases and 157,400 deaths have been observed in 2018
2
.  

Cancer encompasses more than 100 distinct diseases with diverse risk factors and epidemiology which 

originate from most of the cell types and organs of the human body and which are characterized by 

relatively unrestrained proliferation of cells that can invade beyond normal tissue boundaries and 

metastasize to distant organs
3
. This complexity points to a set of questions and investigations mainly 

related to regulatory mechanisms carcinogenesis that further lead to the identification of ten alterations 

in cell physiology that collectively dictate malignant growth and are shared by most and perhaps all 

types of human tumours
4
.  

Also known as “hallmarks of cancer”, each of these physiologic changes represents novel capabilities 

acquired during tumour development and in particular the successful breaching of anticancer defense 

mechanisms hardwired into cells and tissues. These subsequent changes may explain why cancer is 

relatively rare during an average human lifetime. Six years later after the introduction of the original 

hallmarks, a revisited version consisting in seven categories was further proposed by Fouad and Aanei
5
. 

These hallmarks were defined as acquired evolutionary, advantageous characteristics that 

complementarily promote transformation of phenotypically normal cells into malignant ones and that 

promote progression of malignant cells while sacrificing/exploiting host tissue (Figure I.1).  

 

 
 

Figure I.1. The transformation process of normal cells to malignant cells.  
Adopted from Fouad and Anei5  
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1.1.2	SOMATIC	MUTATIONS	AND	RELATED	THERORIES	
 

Somatic mutations are defined as changes in the DNA sequence that are not passed on to the offspring 

through the germline
3
. Most current approaches in cancer research are based on Somatic Mutation 

Theory (SMT) that views somatic mutations as an epiphenomenon or a post-carcinogenesis event
5,6

. 

Briefly, cellular defects (mainly through to DNA damage) induce uncontrolled cell divisions that lead 

to the development of carcinogenesis suggesting that cancer is due to the accumulation of somatic 

mutations
7
 (Figure I.2).  

 
Figure I.2. Somatic mutations leading to carcinogenesis  

Adopted from Kennedy and colleagues7 
 

Historically, the SMT was first postulated in 1914 suggesting that a combination of chromosomal 

defects should result in cancer, followed by a proposal that mutations could cause cancer.  

 

Two decades later, the understanding of the molecular structure of DNA lead to the 1-hit (mutation), 2-

hit and hyper-mutation theories First, it was postulated that a person who inherits a mutant allele (1-hit) 

must experience a second somatic mutation (2-hit) to initiate carcinogenesis before further studies 

shown that for most cancer, more mutations are required (1953-2014). In 2007, they were categorized 

in two groups termed as “drivers”, those that confer a large selective advantage for tumour development 

and progression, and “passengers”, those that confer weaker selective advantage or are truly neutral in 

that they do not affect cancer cells’ survival.  

 

Together, they both constitute a record of all cumulative DNA damage and repair activities occurred 

during the cellular lineage of the cancer cell
8
. A recent elaboration on the SMT was proposed in 2015 

by Vogelstein and Tomasetti
9
 who suggested that cancer development is an event that can be attributed 

to “bad luck” through accumulation of “enough” mutations that cause cancer.  
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This controversial claim will be discussed in chapter II and a summary of 100 years of research on the 

SMT can be found below
10

 (Figure I.3). 

 

Figure I.3. 100 years of somatic mutations theory  

Modified from Brücher and Jamall10 

 

1.1.3	BASE	SUBSTITUTIONS	AND	GENOMIC	ALTERATIONS	
 

Cancer is a complex disease that involves mutant cells originating from a DNA modification in a single 

normal cell. Such modification is then propagated through cell divisions and  accumulates with further 

DNA modifications finally leading to abnormal, cancerous cells
3
. Such somatic mutations include Single 

Nucleotide Variants (SNVs), insertions or deletions, Copy Number Variation (CNV) and chromosomal 

aberrations and are not to be confounded with those inherited and transmitted from parents (germline 

mutations). It is important to note that SNVs are different from SNPs (Single Nucleotide 

Polymorphisms). SNPs are single nucleotides substitutions expected to be present in a certain fraction 

of a given population and at the same position in both normal or cancer cells, while SNVs are only 

present in tumour cells and are likely shared in individuals with the same cancer. 

 

As previously mentioned, somatic mutations can be endogenous, thus resulting from genome instability 

or deficiency in a DNA repair mechanism, or exogenous, that is due to environmental exposure such as 

tobacco smoking or UV light. For instance, UV light is known to induce DNA damage through C>T 

substitutions and could lead to a genotoxic stress that induces genome instability, while tobacco smoking 

induces T>A mutations. 

 

With the development and the improvement of sequencing technologies collectively referred to as High-

Throughput Sequencing (HTS) and the availability of cancer exome and genome data from most human 

cancers, much has been learnt about somatic mutations.  

 

Among all of them, a particular focus has been placed on Single Base Substitutions (SBS) that have 

been classified in six types according to the mutated pyrimidine base (C or T) in a strand-symmetric 

model of mutation. Such 6 substitutions (C>A, C>G, C>T, T>A, T>C and T>G) may be further 
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classified in different types when considering the sequence pattern in which they are located (sequence 

context). For practical reasons, the sequence context is typically defined using the 5’ and 3’ bases 

proximal to the mutated base, that results in substitutions being classified in 96 types (6	∗ 4 ∗ 4) (Figure 

I.4).  

 

Figure I.4. The 96 mutations types in a trinucleotide context 
Considerations of the 6 types of base substitutions_ a DNA base is replaced by another (C>A, C>G, 

C>T, T>A, T>C and T>G) and the associated sequence context. 

It has been hypothesized that mutational processes leave specific patterns of somatic mutations, so-

called mutational signatures. To identify such patterns from the substitutions measured from cancer 

samples, computational models, such as matrix decomposition algorithms or probabilistic models, have 

been developed. The first of such methods was published in 2013 by Alexandrov and colleagues
11

, and, 

as for most of all the other models that followed, is based on the idea that a mutational signature can be 

seen as a probability distribution of the 96 types of mutations or more according to the length of the 

sequence context. Mutational signatures contribute to the total mutational burden of a cancer genome, 

commonly referred to as mutational “catalogue” or “spectrum” in the recent computational biology 

literature.  
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1.2 MATHEMATICAL MODELING OF A MUTATIONAL PROCESS  

 

1.2.1	DEFINITION	OF	MUTATIONAL	CATALOGUES,	SPECTRA	AND	SIGNATURES	
 

The mutational catalogue representing the total mutational burden of a genome (or exome) $ is defined 

as a vector (&'
(, … ,&'

+)-, where each &'
. is the number of mutations of type / found in the genome 

and K, the number of possible mutation types, is equal to 96. The superscript T denotes the transpose of 

a matrix so that vectors are thought as column vectors. In this setting, information about mutation 

locations in the sequence is lost and the catalogue is built by comparing the sequence to a reference 

sequence in order to detect mutations and then by simply counting the occurrences of each type. The 

reference sequence can either be a standard reference (e.g. the assembly GRCh38 of 2013 also known 

as hg38 or the previous one GRCh37 with reference to hg19) or a sequence from a “normal” tissue from 

the same individual (e.g. DNA from blood or from normal tissue surrounding tumours when available).  

For the purposes of the present thesis, the generic term “samples” will be used for both genomes and 

exomes as the concepts and models used may be applied to both. 

The basic idea underlying all computational models proposed is that the mutational catalogue of a 

sample results from the combination of all the mutational processes operative during lifetime, and 

therefore it can be seen as the weighted superposition of simpler mutational signatures, each uniquely 

corresponding to a specific process. The weight is larger if the process has a larger role in the final 

catalogue of mutations: for example, mutagens that last longer, are more intense, generate poorly 

repaired DNA lesions, mutate more genes, or also act as selection pressures favoring mutant cells.  

Formally, the signature of a mutational process 0  is a vector 12 = (12(, … , 12+)- , where each 12. 

represents the probability that the mutational process will induce a mutation of type /. In other words, 

12. is the expected relative frequency of type / mutations in genomes exposed to 0.  

Note that ∑ 12.+
.5( = 1 and 0 ≤ 12. ≤ 1 for all /. 

The intensity of the exposure to a mutational process 0 in a sample $ is measured by the number of 

mutations 9'2 in $ that are due to 0. For this reason, 9'2 is referred to as the “exposure” of  $  to 0. It is 

important to notice that the term “exposure” does not refer here to the exposure to a mutagen per se, 

because it also includes the likelihood that an unrepaired DNA lesion will cause a mutation. The 

expected number of mutations of type / due to the process 0 in sample $ is therefore 12.9'2. If sample 

$ has been exposed to : mutational processes, then the total number of mutations of type / is :     

        &'
. 		= ∑ 12.;

25( 9'2 + ='.,         (1) 
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where ='. is an error term reflecting sampling variability and non-systematic errors in sequencing or 

subsequent analyses.  

Matrix notation is effectively used when dealing with several samples and signatures. In this situation, 

the collection of G samples is represented by the > × @ matrix, with catalogues in columns: 

A = B
&(
( &C

( … &D
(

⋮ ⋮ ⋮
&(
+ &C

+ … &D
+
F,	Figure I5.A) 

the : signatures are represented by the > × : matrix 

G = B
1(( 1C( … 1;(

⋮ ⋮ ⋮
1(+ 1C+ … 1;+

F, Figure I.5.B) 

and the exposures by the : × @ matrix 

H = B
9(( 9C( … 9D(

⋮ ⋮ ⋮
9(; 9C; … 9D;

F. Figure I.5.C) 

Equation (1) then becomes :    A ≈ G × H										where we omitted the error term. 

 

	

 
Figure I.5. Mutational catalogue and the individual signatures contribution to it 
A) Mutational catalogue of a breast cancer genome PD4107a

12
. B) The catalogue is the result of the 

linear combination of COSMIC signatures 2, 3 and 8 with some additional noise. C) Relative burden of 

each signature.   
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1.2.2	DECIPHERING	THE	SIGNATURES	OF	MUTATIONAL	PROCESSES:	DE	NOVO	VS.	REFITTING	
 

De novo signature extraction methods aim at estimating G  and H  given A . Non-negative matrix 

factorization (NMF) is an appealing solution to this unsupervised learning problem, because, by 

definition, all involved matrices are non-negative. NMF was popularized in 1999 by Lee and Seung and 

has become a widely used tool for the analysis of high dimensional data, mainly image processing or 

recognition and text mining. 

In the context of mutational signatures, NMF identifies two matrices G and H that minimize the distance 

between A  and G × H . In particular, NMF finds an approximated solution to the non-convex 

optimization problem:  

KL$&M0NOP, ROP||A − G × H||UC ,  (2) 

where the Frobenius matrix norm of the error term is considered.  

We recall that the Frobenius norm of a matrix is simply the square root of the sum of the squares of all 

the matrix elements.  

NMF requires the number of signatures :, an unknown parameter, to be predefined or estimated. An 

approach for selecting this parameter consists in obtaining a factorization of A for several of its values 

and then choosing the best : with respect to some performance measure such as the reconstruction error 

or the overall reproducibility. NMF is at the core of the Wellcome Trust Sanger Institute (WTSI) 

Mutational Signature Framework, the first published method for signature extraction
11

. An alternative 

to numerical approaches based on NMF is given by statistical modelling and algorithms. With these 

latter approaches, the number of mutations of a given type can be modelled by a Poisson distribution 

&'
. ∼ WXY12.

;

25(

9'2Z 

where mutational processes are assumed to be mutually independent.  

This latter independence hypothesis simplifies the mathematics but does not necessarily hold in practice, 

where mutation processes are likely to interfere with each other (e.g. distinct defective DNA repair 

processes). In order to estimate H and G, it has been proposed to consider H as latent data and G as a 

matrix of unknown parameters and to apply an expectation-maximization algorithm
13

 or use Bayesian 

approaches
14

. One important advantage of statistical approaches is the availability of model selection 

techniques for the choice of :.  

The refitting approaches consider that the signatures G are known and the goal is to estimate H given A 

and G. Refitting can be done for individual mutational catalogues (i.e. individual samples) and, from a 

linear algebra perspective, can be seen as the problem of projecting a catalogue living in the K-

dimensional vector space (the space spanned by all mutation types) onto its subset of all linear 
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combinations of the given mutational signatures having non-negative coefficients (the cone spanned by 

the given signatures).   

A current practice consists in first performing a de novo extraction of signatures followed by a 

comparison of the newly identified signatures with the reference signatures (e.g. the COSMIC signatures 

introduced in the next section) by means of a similarity score, typically cosine similarity ranging from 

0 (completely different) to 1 (identical)
10,11

. A “novel” signature is considered to reflect a specific 

reference signature if the similarity is larger than a fixed cut-off. If similarity is observed with more than 

one reference signature, the one with the largest value of similarity is chosen (Figure I.6).  

 
Figure I.6. Comparison of newly identified signatures with COSMIC signatures 

 

 

Signatures a-g were identified in a de novo extraction using the maftools
16

 R package from the The 

Cancer Genome Atlas lung adenocarcinoma cohort which include 563 cancer genomes at the date of 

selection. The novel signatures were then compared to the 30 signatures validated in the COSMIC 

database in terms of cosine similarity. Each signature is then assigned to the most similar COSMIC 

signature provided that their cosine similarity is above a fixed threshold. For instance, signature f is 

matched to signature 5 at a cut-off of 0.75 but is considered as a completely new signature if the cut-off 

is at 0.80. Also note that a unique assignment can be controversial: for instance, signature g is similar 

both to signatures 12 and 26 (Figure I.7). 

This assignment step crucially depends on the choice of the cut-off ℎ that has been so far inconsistent 

in the literature with some studies using a value of 0.75
17

 whereas others 0.80
18,19

. Another difficulty is 

that different signatures might have very close cosine similarity, as it happens also between COSMIC 

signatures, so that a unique assignment is not always possible. This shows that mutational signatures are 

a useful mathematical construct that, however, might have biological ambiguous meaning. 
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Figure I.7. Cosine similarity plot of COSMIC signatures  
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1.3 COSMIC: CATALOGUE OF SOMATIC MUTATIONS IN CANCER  

 

The Catalogue Of Somatic Mutations In Cancer (COSMIC) available at http:// 

cancer.sanger.ac.uk/cosmic/signatures, is the world’s largest and most comprehensive resource for 

exploring the impact of somatic mutations in human cancer. Built in 2004, the database and website 

have been developed to store somatic mutation data in a single location and display the data and other 

information related to human cancer.  

In addition to coding mutations, COSMIC covers all the genetic mechanisms by which somatic 

mutations promote cancer (Figure I.8). In parallel, the Cancer Gene Census (CGC) describes a curated 

catalogue of genes driving every form of human cancer using the ten hallmarks as proposed by Hanahan 

and Weinberg
4
. 

 
Figure I.8. Overview of COSMIC tools  

Adopted from COSMIC 
 

Data within COSMIC are updated constantly and released on a regular, three-monthly cycle, 

guaranteeing four releases per year
20

. As example, one of the last updates (Table I.1, August 2018) 

includes almost 6 million coding mutations across 1.4 million tumour samples.  

 

Table I.1. Total contents in version 86 of the COSMIC database (August 2018). 

Adopted from Tate and colleagues20 
 

1 391 372  Tumour samples  

5 977 977  Coding Mutations  

26 251  Manually Curated Publications  

19 368  Gene Fusions  

35 480  Whole Genomes/Exomes across 457 studies/papers  

1 179 545  Copy Number Variants  

9 147 833  Gene Expression Variants  

7 879 142  Differentially Methylated CpGs  

19 721 019  Non-coding Variants  
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The application of the mutational signature’s framework to tens of thousands of genomes and exomes 

from 40 different cancers types from large data repositories such as TCGA (The Cancer Genome Atlas), 

has led to the identification of 30 mutational signatures (Figure I.9) characterized by a unique probability 

profile across the 96 mutation types. These validated mutational signatures are listed in a repertory on 

the COSMIC website and have been widely used as references (Mutational signatures v2).  

 

 

Figure I.9. Patterns of mutational signatures (v2 – March 2015): 30 SBS 

Adopted from COSMIC 
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More recently, Alexandrov et al. have introduced an updated set of signatures identified from an even 

larger collection of both exome and whole-genome sequences (including the sequences from the 

PanCancer Analysis of Whole Genomes  also known as PCAWG project) using two different methods 

(a new version of the original framework and a Bayesian alternative
21

). The new repertory includes 49 

mutational signatures (Mutational signatures v3, Figure I.10) based on SBS as in the previous version, 

and also mutational signatures built in the context of other types of mutations such as Double Base 

Substitutions or DBS (11 signatures), clustered based substitutions (4 signatures) and small insertions 

and deletions (17 signatures). 

 

 
 

Figure I.10. Patterns of mutational signatures (v3 – May 2019) : 49 SBS 

Adopted from COSMIC
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1.4 EXPERIMENTAL VALIDATION OF MUTATIONAL SIGNATURES  

 

Since the publication of the first work about mutational signatures in 2013
11

, multiple algorithms have 

been developed, leading to similar but not identical results, a source of concern for researchers interested 

in this type of analysis. Conceptually, this is not surprising: mutational signatures are naturally defined 

in terms of non-negative matrix factorization, a well-known ill-posed problem (a unique solution does 

not exist). Although this limitation has cast doubts on the biological validity of mutational signatures, 

this has been somehow validated using experimental and computational approaches by Zou and 

colleagues
22

. Sufficiently detailed tumour catalogues and mutagen spectra might yield patterns that are 

unique to a tumour type or mutagen, and therefore become “true” signatures that allow backward 

inference from the tumour to the mutagen. Mutational signatures data in combination with 

epidemiological information may provide useful insights to identify the causes of cancer
23,24

.  The utility 

of the current models of substitution mutational signatures is also shown in a recent experimental work 

based on a human induced pluripotent stem cell (iPSC) line that provides evidence for the possibility to 

identify the agents responsible for some specific mutational signatures
25

. In such work, Kucab and 

colleagues compared iPSCs treated and untreated with 79 known or suspected environmental 

carcinogens and identified specific substitution mutational signatures for around half of such 

carcinogens. Some of such signatures were similar to those identified in human tumour DNA.  
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2. EPIGENOMIC SIGNATURES 

2.1 INTRODUCTION TO EPIGENETICS 

	
	
2.1.1	OVERVIEW	
 

The word “epigenetics” literally means “in addition to changes in the genetic sequence” 
26

. Epigenetics 

thus encompasses a wide range of mechanisms at the molecular level that can influence gene expression 

without involving changes to the underlying DNA sequence. As a matter of fact, even if every cell in a 

given individual contains the same DNA sequence, the molecular pattern leading to gene expression and 

protein synthesis is different. For instance, brain and lung cells are characterized by different 

physiological mechanisms and thus require different patterns of gene expression.  

 

Reflecting how cells translate the information contained in the genetic sequence, are common to many 

organisms and is essential to their physiological functions. Aberrant modifications of epigenetic 

processes may have major adverse health and behavioral effects. Indeed, one of the most interesting fact 

of epigenetics is that its marks or states in cells change in response to outside influences. Studying 

epigenetic processes may therefore be helpful in addressing key questions such as: why are some foods 

good for our health while others are unhealthy particularly for groups of individuals? How does physical 

activity exert beneficial effects on several health outcomes? How do particular environmental exposures 

or psycho-social stress exert their detrimental effects on health? 

 

Epigenetics is essentially additional information layered on top of the genetic sequence of the four 

nucleotides that makes up our DNA. Important modifications are the addition of molecules (methyl 

groups) or proteins (called histones) to the DNA sequence. Sometimes, epigenetic modifications are 

stable and passed on to future generations. Though DNA sequence is fairly permanent, and as previously 

mentioned, epigenetic modifications in other instances are dynamic and change in response to 

environmental stimuli. Thus, epigenetic is the study of mitotically heritable yet potentially reversible, 

molecular modifications to DNA and chromatin without alteration to the underlying DNA sequence
27

. 

 

There are multiple epigenetics mechanisms that may play a role in gene regulation machinery but the 

most studied and well-known remain histone modifications and DNA methylation. These are two 

process crucial to normal development and differentiation of distinct cell lineages in the adult organism, 

that if modified by exogeneous influences, and, as such, can contribute to or be the result of 

environmental alterations of phenotype or pathophenotype
28

. Other modifications include RNA 
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regulations, such as long non-coding RNAs that play an essential role in imprinting and X-chromosome 

inactivation or small non-coding RNAs known for their effects on transcriptional gene silencing. 

 

Today, a wide variety of illnesses, behaviors, and other health indicators already have some level of 

evidence linking them with epigenetic mechanisms, including cancers of almost all types, cognitive 

dysfunction, and respiratory, cardiovascular, reproductive, autoimmune, and neurobehavioral illness
26

. 

Also, it is increasingly recognized that epigenetic marks (methylation cytosines residues on DNA, post-

translational modification of histone tails and microRNA expression) provide a mechanistic link 

between environment, nutrition and disease.  

	
	
2.1.2	DNA	METHYLATION	AND	EPIGENETIC	MECHANISMS	
 

Molecular mechanisms of DNA methylation 

From a molecular point of view, DNA methylation is a biochemical process that refers to the catalytic 

addition of a methyl (-CH3) group to the fifth carbon position of a DNA base, usually a cytosine residue 

that is followed on the same strand by guanine, what is also known as CpG site (Figure I.11). In human 

genomes, CpGs dinucleotides are asymmetrically distributed and often concentrated in dense regions 

mostly unmethylated, called CpGs Islands (CGIs) that span the promoter of approximately one-half of 

all genes
29

.  

 
Figure I.11. DNA methylation 

Credits to LabRoots 

Approximately 80% of CpG dinucleotides outside of promoter regions are methylated under normal 

physiologic circumstances. Genome-wide decreases in methylation, or hypomethylation, are most 

functionally relevant when they occur in coding regions of genes, leading to alternative versions or 

levels of messenger RNA. In the other hand, the addition of methyl groups, or hypermethylation, can be 

highly specific to a particular gene with hypermethylation of CpG islands in the promoter region of a 

gene, known to result in transcriptional silencing of the gene, and subsequent loss of protein 

expression
30

. 

 

The enzymes that play a key role in methylation processes are called the DNA methyltransferases 

(DNMTs), with three of them DNMT1, DNMT3a and DNMT3b responsible of the establishment of 
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DNA methylation by catalyzing the transfer of a methyl group by the primary methyl donor named S-

Adenosyl-l-Methionine (SAM) (Figure I.12). 

 

DNMT1 is the most abundant methyltransferase in somatic cells and is responsible for the maintenance 

of DNA methylation during DNA synthesis for copying the original DNA methylation pattern to the 

newly formed strands. DNMT3a and DNMT3b are known to perform de novo methylation during 

embryonic development.  

 

 
Figure I.12. Micronutrient donors involved in one-carbon metabolism and subsequently in DNA 
methylation (one-carbon metabolism) 
Adopted from Mahmoud and Ali31 
 
 
The role of DNA methylation 

Over the last decades, several discoveries have been made about DNA methylation and how important 

it is for a number of cellular or developmental processes including embryonic development, X-

chromosome inactivation, genomic imprinting, gene suppression, carcinogenesis and chromosome 

stability by silencing repetitive elements, and in maintaining tissue-specific and appropriate patterns of 

gene expression through cell division
32–34

. 

One major role of DNA methylation related to genome stability is structural and involves chromosomal 

and chromatin structure. Chromatin is a complex of DNA and proteins localized in the nucleus of 

eukaryotic cells that play major roles in various metabolic processes such transcription, replication or 

DNA repair. Chromatin can be divided into euchromatin and heterochromatin. As an example, 

alterations of heterochromatin through global hypomethylation is known to be a prerequisite for genome 

instability, which has been frequently reported to be associated with aging
35,36

 (mainly due to telomeric 

chromosomal regions that represent regions of repetitive nucleotides at the end of chromosomes, known 
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to be a hallmark of senescence
37

) and certain pathology such as cardiovascular
38,39

 or 

neurodegenerative
40,41

 diseases and cancer
42

.  

 

Traditionally, cancer has been viewed as a disease driven by accumulation of mutations with this 

paradigm now expanded to incorporate disruption of epigenetic regulatory mechanisms
43

. As example, 

studies on molecular mechanisms underlying the role of DNA methylation in gene expression identified 

how epigenetic DNA modifications modulate the Transcription Factors (TFs) binding site to DNA for 

activation or repression of transcription (Figure I.13). It is now known that mutations on Tumour 

Suppressor Genes (TSG) or oncogenes (genes that can potentially lead to cancer) cause either loss or 

gain of function and abnormal expression. TSGs are genes usually silenced in cancerous cells due to 

hypermethylation in their promoter region and it is widely accepted that this phenomenon lead to 

tumourigenesis
44

. In a translational approach, hypermethylation of CpG promoter which is visible during 

early stages of some cancers such as colon cancer has the potential to serve as a biomarker of the 

disease
45

. 

 
Figure I.13. Effect of DNA methylation on gene expression  
Credits to Daniela Furrer, Laval University 
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2.2 PROFILING DNA METHYLATION  

	
2.2.1	METHODOLOGICAL	ASPECTS	
 

Methods to analyze genome-wide DNA methylation patterns is still evolving and a wide range have 

been developed to generate quantitative and qualitative information on DNA methylation (Figure I.14). 

 

 
Figure I.14. Evolution of next-generation sequencing-based techniques applied to DNA 
methylation profiling.  
Adopted from Barros-Silva and colleagues46 
 
 
Generally, all of the methods include two procedures: the methylation-dependent pretreatment 

(including enzyme digestion, affinity enrichment or bisulfite conversion
47

) of the DNA and the 

following analytical step. 

  

Then, the methods can be viewed according to the type of DNA methylation measured (global or 

sequence-specific) and the pre-treatment (Figure I.15). 

 
Figure I.15. Main DNA methylation techniques according to the type of DNA methylation 
measured (global or sequence-specific) and the principle of DNA methylation discrimination 

Adopted from Zafon and colleagues48
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Methods related to global methylation can be subdivided into those measuring the DNA methylation of 

the entire genome and those measuring the DNA methylation of a compartment of the genome used as 

surrogate reporter of the genome (e.g., repeat sequences such as LINE-1 and Alu elements, which 

comprise 20% and 10% of the human genome, respectively). Sequence-specific methods can also be 

subdivided into those that are genome-wide (mostly based on bead arrays or NGS) and those measuring 

specific regions of interest (mostly based on polymerase chain reaction)
48

.  

 

Recently, with the third-generation sequencing (Nanopore-Seq), sequencers allow for direct read of 

different modifications on DNA bases without DNA amplification or chemical labelling. Although these 

technologies are still in the development phase, they seem promising for future methylome profiling 

analysis. 

	
The array-based methods and specifically the Illumina EPIC array used in the studies presented in the 

second part of the thesis, are methods based on bisulfite conversion of DNA and fall under the category 

“BeadArray”.	

	
2.2.2	BETA-VALUES	AND	M-VALUES	IN	MICROARRAY	ANALYSIS	
 

The microarray-based Infinium methylation assay by Illumina is one platform for low-cost high-

throughput methylation profiling. Briefly, to estimate the methylation status, the Illumina Infinium assay 

utilizes a pair of probes (a methylated probe and an unmethylated probe) to measure the intensities of 

the methylated and unmethylated alleles at the interrogated CpG site. The methylation level is then 

estimated based on the measured intensities of this pair of probes.  

 

To date, two methods have been proposed to measure the methylation level. The first one is called Beta-

value, ranging from 0 to 1, which has been widely used to measure the percentage of methylation. The 

Beta-value is the ratio of the methylated probe intensity over the overall intensity (sum of methylated 

and unmethylated probe intensities) and is defined using the following formula:  

\9]K^ = 	
max	(b^,cdefg, 0)

&Khib^,j2cdefg, 0k + maxib^,cdefg, 0k + 	l
 

where y i,menty and y i,unmenty  are the intensities measured by the ith methylated and unmethylated probes, 

respectively. a is a constant offset and is generally equal to 100. 

 

 The second method is the log2 ratio of the intensities of methylated probe versus unmethylated probe 

as shown in the following equation:  

A^ = 	 mn$C(
maxib^,cdefg, 0k + 	l
&Khib^,j2cdefg, 0k + 	l

) 
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M-values are related to beta-value through the following logit transformation: 

\9]K^ = 	
2pq

2pq	 + 1
;A^ = 	 mn$C(

\9]K^
1 −	\9]K^

) 

 

Beta-values have a more intuitive biological interpretation (it corresponds roughly to the percentage of 

a site that is methylated) but their distribution is not normal and is not homoscedastic (for high and low 

values of betas, the standard deviation is lower than for intermediate values). The distribution of M-

values is closer to the normal and it is homoscedastic. Thus, M-values are therefore to be preferred for 

example in linear regression when methylation is the dependent variable.  



 

 
51 

2.3 HOW DOES LIFESTYLE INFLUENCE DNA METHYLATION  

 

The property of environmental factors to induce epigenetics modifications highlight how and why 

monozygotic twins are not completely identical.  

Exposure and lifestyle factors that modify the human epigenome are referred to as “epigenetic agents” 

and include behaviors, nutrition, chemicals and industrial pollutants that result in distinct gene 

expression profile. For example, nutrition is a key environmental exposure from gestation to death that 

impacts our health by influencing epigenetic phenomena. Recent epidemiological data suggest that the 

increased incidence of cancer observed in the developed world since the 1960s may partly be due to 

exposure to Endocrine-Disrupting Chemicals (EDCs), to which humans and wildlife are exposed daily 

from multiple sources
49

. The implication of other epigenetic agents such as tobacco, alcohol and obesity, 

in multifactorial diseases have been addressed through epidemiological studies that have shown 

association between gene-specific DNA methylation patterns and cancer incidence
31,50–52

. 

Smoking is a major risk factor for tobacco related cancers and many studies have been conducted in 

order to identify functional consequences of tobacco exposure and tobacco-related cancers metabolic 

alterations. Altered methylation levels in thousands of CpG sites have been found to be associated with 

smoking and smoking duration and intensity
53

. In case–control studies nested within prospective 

cohorts, some of these alterations have been found to be associated with lung-cancer risk even after 

adjustment for reported history of cigarette smoking
54

. 

With regards of the impact of diet on DNA methylation, and with consideration of one-carbon 

metabolism, it has been reported that diet containing high concentrations of choline and betaine is 

associated with reduced breast cancer mortality
55

 and primary liver cancer
56

.  Strong evidence shows 

that a dietary pattern inspired by Mediterranean Diet (MD) principles is associated with numerous health 

benefits, by increasing life expectancy with mainly protective effects on cardiovascular diseases and 

certain types of cancer
57

. The MD is not only a dietary pattern but also embodies social behavior and a 

way of life. Although different countries in the Mediterranean region have their own diets, they share 

the following pattern such as high consumption of extra virgin olive oil, legumes and nuts,  unrefined 

cereals, fruits and vegetables, moderate consumption of dairy products, mainly cheese or yogurt, fish 

and wine and low consumption of meat and meat products. As DNA methylation is modulated by diet, 

a few studies investigated whether adherence to MD is associated with changes in DNA methylation 

from peripheral blood cells with results suggesting that MD is associated with changes in the 

epigenome
58

. 

However, “nutritional epigenetics” is a recent field of interest and the current knowledge about the 

precise effects of bioactive food components on epigenome and their potential association with the 

phenotype is limited.
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3. ENDOCRINE DISRUPTORS 

 

Endocrine Disrupting Chemicals (EDCs) are “exogenous substances or mixtures that alter the 

function(s) of the endocrine system, causing adverse health effects in an intact organism, its progeny, or 

(sub)populations”
59

. Such broad class of chemicals includes a variety of substances that are produced 

through components such as industrial solvents, food packaged, commercial household products 

(including stain- and water-repellent fabrics, polishes, waxes, paints, cleaning products), workplace 

(production facilities or industries such as chrome plating, electronics manufacturing or oil recovery) 

and that are released in the environment.  

 

The effect of such substances on biological systems and their widespread presence in the environment, 

including in food, have led to growing concerns about the impact of EDC exposure on population health 

in industrialized countries. EDCs were indeed identified as “Substances of Very High Concern” by the 

Regulation (EC) No 1907/2006 of the European Parliament but the assessment of the health effects of 

specific EDCs is complex due to the vast number of such substances and their heterogeneity. In this 

research project we will focus on Brominated Flame Retardants (BFRs) and Per- and polyfluoroalkyl 

substances (PFASs), two classes of the broad group of EDCs called Persistent Organic Pollutants that 

have the characteristic of persisting in the environment for a long period of time and may therefore pose 

a hazard to human health.   

3.1 INTRODUCTION TO PERSISTENT ORGANIC POLLUTANTS   

 

	
Persistent Organic Pollutants (POPs) are EDCs of global concern due to their potential for long-range 

transport, persistence in the environment, ability to biomagnify and bioaccumulate in ecosystems that 

means they gradually accumulate in living organisms, as well as their action on the environment, on 

biological systems and in humans and other animals. Humans are widely exposed to these chemicals in 

a variety of ways but, due to their bioaccumulation, the most important route is through diet and, in 

particular, the consumption of foods of animal origin.  POPs can also be found in the air and products 

used in our daily lives such as pesticides or solvents.  Exposure to POPs can increase cancer risk, may 

lead to reproductive disorders, and some of these substances may increase the risk of birth defects 

through their genotoxic action. 

 

Due to their bioaccumulation in the environment and the corresponding effect on human health, the 

international community has called for actions to reduce and eliminate production, use and releases of 

these substances through two international legally binding instruments: 
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è The global Stockholm Convention on POPs, opened for signatures in May 2001 and entered 

into force on 17 May 2004; 

è The Protocol to the regional UNECE Convention on Long-Range Transboundary Air 

Pollution (CLRTAP) on POPs, opened for signatures in June 1998 and entered into force 

on 23 October 2003. 

BFRs and PFASs are two large families of environmental EDCs, for which the long-term health effects 

remain unclear and not well characterized. 

3.1.1	BROMINATED	FLAME	RETARDANTS	(BFRS)	
 

Flame Retardants (FRs) are a group of chemicals used to reduce the flammability of combustible 

materials such as plastics, roots or textiles. The most abundantly used FRs contain bromine and 

compounds of this family are known as BFRs. They are added to a wide variety of consumer goods, 

including electronics, furniture, building materials, and automobiles, to make them less flammable. 

Depending on their mode of incorporation into the polymers, BFRs can be classified as additive (the 

most frequently detected in environment due to their potential to leak from treated consumer products), 

reactive, or polymeric. 

The most investigated additive BFRs are Polybrominated diphenyl ethers (PBDEs), polybrominated 

biphenyls (PBBs) and Hexabromocyclododecane (HBCDs). Each class may include multiple congeners 

(chemical substances with similar structure, origin or function) and their chemical structure and the main 

physicochemical properties of these compounds are presented in Figure I.16 and Table I.2. 

 

 

 

 

 

a. PBDEs (209 congeners) 

 

 

 

 

 

 

 

 

 

b. PBBs (209 congeners) 

 

 

 

 

 

 

 

 

 

 

c. HBCDs (3 congeners) 

Figure I.16. Chemical structures of major BFRs compounds 
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Table I.2. Physicochemical properties of PBBs, PBDEs, and HBCDs 

Adopted from The Handbook of Environmental Chemistry60 
 

Chemical Acronym Formula Molecular 
Mass 

Melting 
point 
(°C) 

Decomposition 
point (°C) 

Solubility 
H2O 
(µg/L25°C) 

Log Kow 

PBBs beta-BB C12H4Br 627.4 124–248 300–400 11 7.20 

 octa-BB C12H2Br8 785.2 200–250 435 30–40 5.53 

 nona-BB C12HBr9 864.1 220–290 435 Insoluble  

 deca-BB C12Br10 943.0 380–386 395 > 400 <30 8.58 

PBDEs tetra-BDE C12H6Br4O 485.8 82.3 - 4.7 5.87–6.16 

 penta-BDE C12H5Br5O 564.7 81.0 >200 4.4 6.64–6.97 

 octa-BDE C12H2Br8O 801.5 200 - - 8.35–8.90 

 deca-BDE C12Br10O 959.2 290–306 >320 20–30 9.97 

HBCD a-HBCD C12H18Br6 641.7 179–181 >190 48.8 5.07 

 b-HBCD   170–172  14.7 5.12 

 g-HBCD   207–209  2.1 5.47 

 

Source of human exposure 
 

PBDEs can be found in plastics, textiles, electronic castings and circuitry; HBCDs in thermal insulation 

in the building industry while PBBs are used in consumer appliances, textiles and plastic foams (EFSA). 

BFRs have the tendency to be extremely stable and persistent in the environment, having long half-lives 

in soils, sediments, air, or biota
61

. Because of their tendency to accumulate in living organisms, these 

chemicals are detected in foods, mainly fish, but also meat and dairy products.  

 

The potential for organic compounds to bioaccumulate and widespread in the environment is a direct 

consequence of their physicochemical properties such as lipophilicity and resistance to degradation. One 

way to obtain an estimate of the human exposure to environmental contaminants is through biomarkers 

and specifically by measuring the presence of chemical compounds in storage tissues (adipose tissue, 

hair, nails) in blood (i.e. levels in plasma and serum) and in excreted liquids (i.e. urine and breast milk).  

 

BFRs are known to be extremely lipophile, this degree of bioaccumulation depending on a number of 

parameters including their molecular weight and octanol-water partition coefficient (Log KOW) which 

represents a measure of the tendency of a compound to move from the aqueous phase into lipids. The 

half-life of BFRs appears to be related to the number of bromine atoms per molecule. For instance, the 

average half-life of BDE-47, BDE-99 and BDE-153 are respectively 1.8 years (1.4 - 2.4), 2.9 years (1.8 

- 4.0) and 6.5 years (3.6 - 12,4)
62

. Authors also reported half-life of 64 days (range 22-210 days) for 

HBCDs. 

 

Being excreted in breast milk, BFRs represent a significant exposure for infants and small children and 

may have a significant impact on their health.  
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Children, as well as adults are also mainly exposed through indoor air inhalation and dermal contact but 

it has been reported that dust ingestion was the dominant exposure pathway for most studied BFRs 

(compared to indoor inhalation and dermal contact), especially for infants and toddlers who have higher 

exposures than older children
63

. In the same study, findings reveal that the highest indoor house dust 

concentrations of PBDEs are found in North America and for BDE-209 in Europe and China (Figure 

I.17). 

 

 

 

Figure I.17. Worldwide distribution of median PBDEs congeners indoor house dust concentrations  
A) BDE-47 (ng/g). B)  BDE-209 (ng/g). 

Adapted from Malliari and Kantzi63 
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Effects on human health 

In terms of toxicity, particularly neurotoxicity, most studies have been conducted using animal models 

such as mice or zebrafish. Mice exposed on postnatal day (PND) 10 (i.e. the peak of the brain growth 

spurt) to PBDEs or HBCDs develop permanent aberrations in spontaneous behavior and habituation 

(decrement in response as a result of repeated stimulation not due to peripheral process like receptor 

adaptation or muscular fatigue) capability, and changes in the development of neuromotor systems
64,65

.  

 

In zebrafish, it has been shown that BDE-209 congener affects expression of neurological pathways and 

alters the behavior of larvae, whereas parental chronic low dose exposure affects growth and 

reproduction and elicits neurobehavioral alterations in offspring
66

.  The exposure to BDE-47 and its 

metabolite 6-OH-BDE-47 also affects the locomotion behavior of both larval and juvenile zebrafish
67

. 

Several studies about the effects on reproduction have also been conducted using animal models. 

Pregnant rats were exposed to BDE-47 from gestation day 8 until PND 21 and male reproductive 

outcomes were analyzed on PND 120 in offspring
68

. Exposed animals had significantly smaller testes, 

displayed decreased sperm production per testis weight, had significantly increased percentage of 

morphologically abnormal spermatozoa, and showed an increase in spermatozoa head size. Also, 

perinatal BDE-47 exposure led to significant changes in testes transcriptome, including suppression of 

genes essential for spermatogenesis and activation of immune response genes. 

 

Even if BFRs are excreted through breast milk and that therefore breastfeed infants are exposed to BFRs, 

the epidemiological evidence that exposure to human milk containing background levels of such 

chemicals would pose a serious health hazard is limited and insufficient
69

. One study reported a 

correlation between infant weight at birth and length at birth with the levels of PBDEs congeners (47, 

99, 100 and 153) in Northern Tanzania
70

. Another study conducted in China in term of occurrence and 

temporal trends showed that daily dietary BFRs intake for nursing infants is much higher than that for 

adults
71

. As for the assessment of the potential effects on health, the current scientific literature is 

contradicting. For example, in the same study, the risk assessment evaluated using the Margin Of 

Exposure (MOE) approach (a tool used by risk assessors to consider possible safety concerns arising 

from the presence in food and feed of substances which are both genotoxic _they may damage DNA_ 

and carcinogenic) concluded that dietary BFRs intake for nursing infants was unlikely to pose significant 

health risks while a study of BFRs in placental tissues suggest a potential alteration of thyroid hormone 

function
72

. 

 

Additionally, as conducted by Leonetti and colleagues
72

, most studies related to health issues in 

association with PBDEs are related to a possible disruption of thyroid hormones
73–75

, mainly due to the 
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similarity in chemical structures of PBDEs and thyroid hormones triiodothyronine (T3) and thyroxin 

(T4), and thus the potential for PBDEs to mimic and disrupt homeostatic conditions
60

.  

 

Finally, recent studies have suggested that BFRs could play a role in the epidemic of type 2 diabetes 

(T2D). A study using the E3N prospective cohort of French women was conducted to evaluate the 

association between dietary exposure to BFRs and T2D risk.  Findings suggest an association (positive 

linear trend) between dietary exposure to HBCDs and T2D risk starting from the 2
nd

 quintile group (HR: 

1.18; 95% CI: 1.06–1.30) to the 5th quintile group (HR: 1.47; 95% CI: 1.29-1.67) when compared to 

the 1st quintile group. Authors also found positive although non-linear associations between dietary 

exposure to PBDE and T2D risk, with an increased HR only for the 2nd and 4th vs. 1st quintile groups 

(HR: 1.12; 95% CI: 1.02–1.24, and HR: 1.20; 95% CI: 1.08–1.34, respectively)
76

. 

 

Because of the threat POPs, including BFRs, may pose to human health and the environment, such 

substances are regulated under the Stockholm Convention that was adopted in 2001 including 152 

signatories and 183 parties. The effectiveness of this Convention, whose broad aim is to protect human 

health and the environment by controlling the releases of POPs, has been evaluated in several studies. 

A time series analysis of atmospheric POP concentrations from 15 monitoring stations in North America 

and Europe concluded that a decade of air monitoring data has not been sufficient for detecting general 

and statistically significant effects of the Stockholm Convention
77

.  

 

Results suggest that the observed changes are the result of national regulations enforced prior to the 

implementation of the Stockholm Convention, rather than to the enforcement of the provisions laid out 

in the Convention. Other studies on BFRs showed a decrease in the detected levels that may be 

associated with the implementation of the Stockholm Convention. For example, a Californian study 

published in 2015 found significant declines of some PBDEs congeners levels in breast milk between 

2003-2005 and 2009-2012 (from 67.8ng/g lipid to 41.5ng/g lipid)
78

. Another study conducted in China 

with -47, -99 and -100 congeners showed significant relative decreases in the human milk levels with 

an average of 45%, 48%, and 46% decrease from 2007 to 2011, for the three congeners respectively
79
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3.1.2	PER-	AND	POLYFLUORINATED	ALKYLATED	SUBSTANCES	(PFASS)	
 

Per- and polyfluoroalkylated substances (PFASs) are a vast group of chemicals widely found in a large 

range of products used by consumers and industry. Most of them are impermeable to grease, water and 

oil. For this reason, they are used for many different applications including in stain- and water-resistant 

fabrics and carpeting, cleaning products, paints and fire-fighting foams, as well as in limited, authorized 

uses in cookware and food packaging and processing (U.S Food and Drug Administration). 

 

Among all PFASs, the perfluorooctanoic acid (PFOA) and the perfluorooctanesulfonic acid, also known 

as perfluorooctanesulfonate (PFOS), have been the most widely used and are therefore the object of 

monitoring and research on their effects on human health and the environment. PFOA and PFOS are 

very persistent in the environment and in the human body and there is evidence that exposure to such 

substances can lead to adverse human health effects. Tolerable weekly intakes of PFOA and PFOS set 

up to 6 ng·kg
−1

·bw·week
−1

 (based on the daily calculated intakes resulting in a critical serum 

concentrations and outcomes, the weight and the half-life of the contaminant
80

) and 

13 ng·kg
−1

·bw·week
−1

, respectively (EFSA). The chemical structure and the main physicochemical 

properties of these compounds are described in Figure I.18 and Table I.3. 

 

 

 
 

a. PFOA 

 

 

 
 

b. PFOS 

 

 

Figure I.18. Chemical structures of major PFASs compounds 

 

 

Table I.3. Physicochemical properties of PFOA and PFOS 
 

Chemical Formula Molecular 
Mass 

Melting 
point (°C) 

Decomposition 
point (°C) 

Solubility  
H2O (g/L) 

Log Kow 

PFOA C7HF15O 414.07 55–56 - 3.4 4.59 

PFOS C8F17SO3H  500.1 > 400 - 0.57 5.26 
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Source of human exposure 
 
People can be exposed to PFASs through various ways, notably food that may be contaminated by 

contaminated soil and water used to grow the food or from food packaging. The widespread use of 

PFASs and their ability to remain intact in the environment mean that over time PFASs levels from past 

and current uses can result in increasing levels of environmental contamination.  (Figure I.19).  

 
 

 

Figure I.19. The occurrence of perfluoroalkyl acids in the global environment (including air, water, 
sediment and fish) 
Adapted from Liu and colleagues81

 

In France, for example, Bach and colleagues
82

 performed a study that estimated the extent of 

contamination with PFASs of the river Orge. They estimated that 4295 kg of PFHxA, 1487 kg of 

6:2FTSA, 965 kg of PFNA, 307 kg of PFUnDA, and 14 kg of PFOA were discharged in the river by 

two facilities in 2013.  It was found that chlorination (a method of water treatment) had no removal 

efficiency and even if the total PFASs concentrations were high in the treated water, ranging from 86 to 

169 ng/L, they did not exceed the currently available guideline values. 

 

Workers exposed professionally to PFASs have higher levels of PFASs exposure than a non-

occupationally exposed group
83

. In a retrospective U.S study of an aging population, findings showed 

that participants with high cumulative workplace exposure (work in occupations and industries known 

to use PFASs) had 34% higher serum PFOS levels compared to participants without occupational 

exposure, adjusted for age, sex and income and serum PFOS levels were 26% higher for participants 

with longer occupational exposure durations
84

.  
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To determine whether bladder cancer is associated with exposure to (PFOS) in an occupational cohort, 

a study among former employees of a facility of PFOS production was conducted
85

. Eleven cases of 

primary bladder cancer were identified from the surveys and compared with employees in the lowest 

cumulative exposure category, the relative risk of bladder cancer was 0.83 (95% CI = 0.15–4.65), 1.92 

(95% CI = 0.30–12.06), and 1.52 (95% CI = 0.21–10.99) with a cumulative exposure of 1, 1–5, 5–10, 

and >10 years. 

As for BFRs, PFASs can also be found in blood and breast milk with known adverse effects of prenatal 

exposure to PFASs in developmental outcomes in offspring
86,87

. In the meantime, significant correlation 

was found between the parity of mothers and PFASs concentrations in human milk and  it was reported 

that primiparas showed higher PFASs levels in human milk than multiparas in France, Italy, and 

Belgium
88

.  

 

In contrast to BFRs and most other POPs, they do not tend to accumulate in fat tissues but bind to serum 

albumin and other cytosolic proteins and accumulate mainly in the liver, the kidneys, and bile 

secretion
83

. They are considered as amphiphilic (molecules having a polar water-soluble group 

attached to a water-insoluble hydrocarbon chain) compounds
84

 and their half-life in human serum was 

respectively set 5.4 and 3.8 years for PFOS and PFOA in 2007
89

 while findings from a more recent study 

(2018) indicates a decrease from 3.4 and 2.7 years respectively
90

. 

 

Effects on human health 

PFOS and PFOA have been associated with liver enlargement in rodents and nonhuman primates in 

addition to hepatocellular adenomas in rats and a number of short-term studies in rats and mice have 

shown that PFOS and PFOA are capable of inducing peroxisome (organelle involved in catabolism of 

very long chain fatty acids) proliferation through the activation of PPAR-α (peroxisome proliferator–

activated receptor-alpha) known to be involved in tumour (primarily liver) induction by a number of 

nongenotoxic carcinogens in the rodents
91

. 

 

In term of reproduction, a study reveals that zebrafish embryos exposed to 16 μM PFOS during a 

sensitive window of 48-96 hour post-fertilization (HPF) disrupted larval morphology at 120 HPF and 

malformed zebrafish larvae were characterized by uninflated swim bladder, less developed gut, and 

curved spine
92

. Additionally, whole genome microarray was used to identify the early transcripts 

dysregulated following PFOS exposure and a total of 1278 transcripts were significantly misexpressed 

(p<0.05) while 211 genes were changed at least two-fold upon PFOS exposure in comparison to the 

vehicle-exposed control group. Chronic exposition to PFOS have also been reported to reduce sperm 

quality and expression of key genes involved in hormone pathways
93

. 
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Due to their persistence, as well as ubiquity in the environment caused by long-range transport, current 

evidence suggests that the bioaccumulation of certain PFASs may cause serious health conditions in 

humans.  

 

Recently, in a case-control study nested in the French E3N cohort PFASs (PFOA and PFOS) circulating 

levels were differentially associated with breast cancer risk
94

. Findings showed a positive linear 

associations between PFOS concentrations and the risk of ER+ (3rd quartile: OR = 2.22 [CI = 1.05–

4.69]; 4th quartile: OR = 2.33 [CI = 1.11–4.90]) and PR+ tumours (3rd quartile: OR = 2.47 [CI = 1.07–

5.65]; 4th quartile: OR = 2.76 [CI = 1.21–6.30]). When considering receptor-negative tumours, only the 

2nd quartile of PFOS was associated with risk (ER−: OR = 15.40 [CI = 1.84–129.19]; PR−: OR = 3.47 

[CI = 1.29–9.15]). While there was no association between PFOA and receptor-positive BC risk, the 

2nd quartile of PFOA was positively associated with the risk of receptor-negative tumours (ER−: OR = 

7.73 [CI = 1.46–41.08]; PR −: OR = 3.44 [CI = 1.30–9.10]). 

 

Earlier in 2017, in a case control study of Inuit women from Greenland, significant, positive associations 

between breast cancer risk and both of them with other classes of PFASs (PFHpA, 

PFDA,PFUnA,PFDoA) were also observed
95

 while in the California Teacher Study, a similar 

retrospective case-control study in which PFASs levels for cases were measured after diagnosis
96

. 

Overall, these results are limited but suggestive that exposure to PFASs may increase breast cancer risk 

though further studies are necessary to strengthen the evidence. 

 

The epidemiological evidence on PFASs exposure as a risk factor for diabetes is limited and inconsistent 

although the availability of supporting data and studies. Regarding T2D, a prospective cohort study 

identified an association between PFOA with incident diabetes and microvascular disease and the results 

suggest that exercise and diet may attenuate the diabetogenic association of PFASs
97

. Some of them 

report positive associations
98,99

 while others report inverse
100

 or null associations
101

.  
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3.2 PERSISTENT ORGANIC POLLUTANTS AND DNA METHYLATION 

  

For the purpose of this section, the term “POPs” will refer not only to BFRs and PFASs but also to other 

pollutants. We are interested in studies focusing on DNA methylation. 

 

Effect of POPs on DNA methylation is not completely established even if alterations of epigenetics 

mechanisms are known to be linked to environmental exposures with adverse health effects. Also, most 

of published studies were focused on prenatal and early-life exposures which can be explained by the 

fact that the epigenome undergoes extensive reprogramming throughout fetal development at gametogenesis and 

early embryo preimplantation, representing vulnerable stages to environmental exposure
102

 (Figure I.20). 

Additionally, POPs can cross the placenta and reach the newborn through breast milk. Generally, in these studies, 

only global methylation is evaluated.  

 

 
 

Figure I.20. Susceptibility windows of DNA-methylation due to environmental pollutants 
Adapted from Alvarado-Cruz and colleagues102 

 

As previously reported in the section related to DNA methylation, Alu and LINE-1 elements are widely used as 

markers of global methylation. Alu elements (repetitive elements that comprise approximatively 10 % of 

the human genome), have wide-ranging influences on gene expression and contribute to genome 

evolution and gene regulation
103

. They belong to a class of retroelements termed SINEs (Short 

INterspersed elements) and are primate specific. These elements are non-autonomous, in that they 
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acquire trans-acting factors for their amplification from the only active family of autonomous human 

retroelements: LINE-1 that represents around 20 % of the human genome. 

 

In a birth cohort from Mexico, findings suggested that co-effect of DDT (dichlorobiphenyl trichloroethane) 

and PBDEs exposure induce global hypomethylation
104

. This result was confirmed in another independent 

study
105

.  

 

Regarding PFASs, a study of 363 mother-infants suggested that prenatal PFOS exposure may be 

associated to Alu DNA hypomethylation in cord blood
106

 while another study from a US-based 

population found that in utero PFOA exposures also induce global hypomethylation in cord blood
107

. 

On the other hand, using Luminometric Methylation Assay (LUMA),  which is a method that allows to 

capture DNA methylation using restriction enzymes and Pyrosequencing
108

, no association was found 

between DNA methylation and BDE-47 congener. However, in the same study, global hypermethylation 

was found to be associated with high serum levels of some POPs in contradiction to a previously 

mentioned study and others that used different design. 

 

A study conducted within the British Birth Cohort examined association between BDE-47 congener 

from maternal blood and methylation Tumour Necrosis Factor alpha (TNFα) promoter in cord blood. 

TNFα is a cytokine that plays important roles in inflammation and metabolism mechanisms. Results 

showed that a decrease of TNFα methylation is associated with an increase in TNFα protein level in 

cord blood and provided evidence that in utero exposure to PBDEs may epigenetically reprogram the 

offspring’s immunological response through promoter methylation of a proinflammatory gene
109

. 

Finally, some studies suggest that POPs are potential germline epimutagens and could be tied to 

preconception exposure
110–112

.
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4. SUMMARY AND OBJECTIVES 

 

 

Mutational signatures 

Mutational signatures refer to patterns in the occurrence of somatic mutations that might be uniquely 

ascribed to particular mutational process. Tumours mutation catalogues can reveal mutational signatures 

but are often consistent with the mutation spectra produced by a variety of mutagens. To date, after the 

analysis of tens of thousands of exomes and genomes from about 40 different cancer types, tens of 

mutational signatures characterized by a unique probability profile across the 96 trinucleotide-based 

mutation types have been identified, validated and catalogued. 

After the introduction of the original framework for the formal definition and analysis of mutational 

signatures, several other mathematical methods and computational tools have been proposed to detect 

mutational signatures and estimate their contribution to a given catalogue as well as their potential 

association with an endogenous or exogeneous exposures.  

In termed of association between mutational signatures and environmental exposures, most findings 

were mainly related to UV light, tobacco consumption or aristolochic acid. 

 

Epigenetic signatures of Persistent Organic Pollutants  

Epigenetics is defined as the study of mitotically heritable yet potentially reversible, molecular 

modifications to DNA and chromatin without alteration to the underlying DNA sequence. DNA 

methylation, one of the most studied epigenetics marks is known to be dynamic in response to 

environmental stimuli and have been associated with a wide range of environmental exposure and 

multifactorial disease. 

POPs are organic compounds that are widespread in the environment. Because of their persistence, they 

are able to bioaccumulate with major impacts on human health. 

 

Regarding’s epigenetic signatures and particularly DNA methylation, and with regards to the existing 

literature that supports the role of POPs-associated methylation as a potential mediator of POP-

associated health effects in humans, more research is required as most of conducted studies were focused 

on LINE-1 or Alu elements as marks of global methylation. 
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Objectives and results 

This thesis has two main objectives: 

1. Mutational signatures: review contributions to epidemiology and evaluate existing methods 

è We review the existing literature related to mutational signatures linked to environmental 

exposures and lifestyle and their implication in the development of lung adenocarcinoma 

(Papers 1 and 2, published). 

è We introduce a probabilistic model for simulating mutational signatures and catalogues and 

conduct an original empirical comparison of the performance of developed tools for 

mutational signatures analysis (Paper 3, published). 

2. Epigenetic signatures of POPs: study of the association between two important families of 

EDCs and DNA methylation using the French prospective E3N cohort 

è We evaluate the association between BFRs and DNA methylation (Paper 4, submission in 

progress). 

è We evaluate the association between PFASs and DNA methylation (Paper 5, submission in 

progress) 
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CHAPTER I I :  

  

E N V I R O N M E N T  A N D  L I F E S T Y L E  

I N F L U E N C E  O N  M O L E C U L A R  F E A T U R E S  
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In this chapter, we describe how recent advances in the study of mutational and epigenetic signatures in 

tumours provide new opportunities to understand the role of the environment and lifestyle in cancer 

development. In the first part of the chapter, that is the object of our recent publication in the journal 

Current Opinions in Oncology
113

, we discuss how such recent advances in the study of mutational and 

epigenetic signatures may be applied to the study of the etiology of cancer and we provide some 

interesting examples. In the second part of the chapter, that has been presented in a separate publication 

that has attracted media coverage (https://www.inserm.fr/actualites-et-evenements/actualites/non-

cancer-est-pas-principalement-hasard), we extend the application of mutational signatures to contribute 

to the debate around the “bad luck” hypothesis related to cancer development (incorrectly popularized 

as “2/3 of cancers are due to errors in DNA replication during cell division and therefore to intrinsic 

and unpreventable causes”). In such work we introduce an analysis showing that smoking-induced 

mutations are more predictive of cancer risk than the lifetime number of stem cell divisions. 

 

Contribution 
Co-author, contributed to the review and the figures, read and approved the final reports. 
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1. ENVIRONMENTAL EXPOSURES ASSOCIATED 

MUTATIONAL AND EPIGNETICS SIGNATURES 

 

Cancer-related mutational events have been investigated for decades and, in more recent years, 

numerous epigenetic hallmarks of cancer have been identified but only with the recent development of 

high throughout sequencing and the resulting wider availability of genomic sequences and epigenomic 

data from thousands of cancer exomes and genomes have made possible to identify numerous distinct 

mutational and epigenetic signatures some of which have been associated to environmental exposures, 

carcinogens and factors related to lifestyle.  

1.1THE EXOGENEOUS CAUSES OF MUTATIONAL SIGNATURES 

 

The idea that carcinogens leave fingerprints is not novel
114

. The notion that exposure to ultraviolet 

radiation (UV) caused predominantly the transition cytosine to thymine (C > T) and tobacco smoke 

predominantly caused the transversion cytosine to adenine (C > A) has been established experimentally 

several decades ago
115

, well before the development of sequencing technologies. However, the 

generation of a large number of tumour sequences (cancer exomes or whole genomes) and the 

development of appropriate mathematical methods greatly improved the capacity to identify such 

fingerprints
116

. While initially some of the mutational signatures have been linked to specific factors 

only on the basis of biological prior knowledge of their mutational effects
117

, more recently experimental 

studies and studies that coupled individual information about environmental exposures and lifestyle with 

tumour sequencing data are providing useful information to establish the causes of some signatures. In 

the following paragraphs of this section, we review some examples of exposures proposed as the origin 

of specific mutational signatures. 

	
1.1.1	TOBACCO	
 

To investigate mutational signatures in tobacco-related cancers, Alexandrov and colleagues studied the 

cancer genomes from 2 490 smokers and 1 063 never smokers
118

. For each cancer, they extracted a list 

of mutational signatures and estimated their contributions to the complete mutational catalogue. By 

comparing the mutational signatures identified in cancer genomes in smokers and non-smokers, they 

found that signatures 2,4,5,13, and 16 in COSMIC were more prevalent in smokers than in non-smokers. 

Signature 4, for example, appears to be a strong signature related to exposure to tobacco smoke as it is 

observed in tumours strongly associated with tobacco smoking (e.g. lung squamous cell carcinomas, 

lung adenocarcinomas, larynx and liver cancers) and its prevalence is higher in smokers than in non-

smokers. Signature 4 was associated with pack-years smoked and it was not found in tumour tissues 

from organs not directly exposed to tobacco smoke. Notably, this signature is mostly characterized by 

C > A transversions, an observation consistent with previous knowledge about the mutagenic effects of 



 

 
72 

tobacco smoke, and its mutation profile is very close to that caused by exposure to some chemicals 

present in tobacco smoke such as benzo[a]pyrene that earlier experimental studies have demonstrated 

to be a carcinogen
119

.  

 

1.1.2	AFLATOXIN	B1	
 

Another interesting example of exposure linked to specific mutational signatures is exposure to aflatoxin 

B1 (AFB1), a common contaminant in a variety of foods such as peanuts, corn and grains that represents 

a major public health problem in some regions of Africa and Asia as it strongly increases the risk of 

hepatocellular carcinoma (HCC), especially when associated with hepatitis B. An interesting study that 

investigated mutational signatures in human cell lines and liver cancers in mice exposed to AFB1and 

corroborated the results with analyses of signatures extracted from human HCC genomes from a 

geographical region in which exposure to AFB1 is well documented, provided strong support to the 

likely link between exposure to AFB1 and signature 24
120

. Such signature has been found only in the 

genome of HCCs.  

 

1.1.3	IONIZING	RADIATION	
 

The tumourigenic effect of ionizing radiation particularly in the context of the iatrogenic effects of 

cancer treatment is also an interesting application of mutational signatures. Analyses of the genome of 

12 second malignancies associated with radiation treatment of primary tumours identified two genomic 

imprints or signatures not present in cancers not exposed to ionizing radiation
121

. These signatures, being 

characterized by small deletions occurring with similar density across the genome as well as by balanced 

inversions, are not captured by the common methods to extract mutational signatures based on base 

substitutions.  To overcome the scarcity of genomic sequences for radiotherapy-induced cancers, it was 

proposed to conduct combined analyses of mutational catalogues from ionizing radiation-induced 

cancers in human tumour sequences and in tumour sequences from mice models
122

. This type of analysis 

identified two signatures linked to ionizing radiation that had not been previously identified and may 

represent a useful approach also for other exposures.  

	
1.1.4	UV	LIGHT	
 

The typical C > T transitions induced by exposing experimental systems to UV light, are characteristic 

of signature 7 that is found in melanomas and head and neck cancers. These observations have led to 

propose UV light as the cause of signature 7
117

. 
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1.1.5	ARISTOLOCHIC	ACID	
 

Aristolochic Acid (AA) is a natural compound contained in plants from the Aristolochiaceae family 

used in some herbal remedies or traditional medicines. AA is a known nephrotoxic phytochemical 

causing endemic nephropathy and a carcinogen that was previously associated with urothelial cancers 

of the upper urinary tract. A study based on urothelial tumours from 15 patients with endemic 

nephropathy identified signature 22 and linked it to AA exposure
123

. An important aspect of this study 

is that it demonstrates that such signature can be observed with exome sequencing of DNA from 

formalin-fixed paraffin-embedded tumour samples even at low sequencing coverage (less than 10X). 

Signature 22 is mostly characterized by A > T or T > A transversions that were found in experimental 

studies based on human renal cells exposed to AA
124

 and in a series of urothelial cancers in patients with 

a documented exposure to AA
125

. Evidence of exposure to AA was found in the genomes of a minority 

of bladder cancers (4 out of 110 tumour samples) from Singapore and China
126

 and, interestingly, in 11 

of 93 HCCs, a type of cancer not known to be associated with exposure to AA
124

. The presence of the 

AA-related signature was found also in clear cell renal cell carcinomas
127,128

; with a particularly high 

prevalence in cases from regions in Romania where Balkan Endemic Nephropathy is prevalent and due 

to widespread exposure to AA
129

. These studies do not refer explicitly to specific COSMIC signatures, 

but their results are consistent with the proposed link between COSMIC signature 22 and exposure to 

AA.  
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1.2 EXPOSURES RELATED EPIGENETICS SIGNATURES IN TUMOUR 

TISSUE 

	

As previously described in chapter I, DNA methylation is an epigenetic mechanism consisting in the 

addition of a methyl group to the cytosine base of the CpG nucleotides of the DNA sequence. DNA 

methylation modulates gene expression by influencing DNA transcription and it is involved in many 

biological processes, including the response of cells to external stress. Modifications of physiologic 

DNA methylation patterns are associated with the development of many diseases, including cancer for 

which altered DNA methylation has been observed in early stages of carcinogenesis and for many cancer 

types
130

. Features common to many cancer tissues are global hypomethylation, which causes genome 

instability
131

, and hypo- or hypermethylation of specific loci, causing overexpression of oncogenes and 

under expression of tumour suppression genes.  

Many studies have been conducted to identify methylation signatures of risk that may be used for 

primary prevention or methylation markers to detect cancer in early stages and contribute to secondary 

prevention. Such efforts have been supported by the increasing availability of a variety of molecular 

techniques able to profile whole genome methylation or identify differentially methylated regions
132

. As 

far as methylation markers of risk are concerned, of particular interest are the studies that established a 

relationship between some environmental and lifestyle factors and in particular cigarette smoking and 

the levels of methylation in DNA from blood. The methylation levels of thousands of CpG sites have 

been found to be altered in smokers compared with non-smokers and such alterations appear to be 

associated with smoking duration and intensity
133,134

. There is strong evidence from analyses of tobacco-

related alterations of methylation of blood DNA from former smokers that for some CpGs methylation 

levels reverse in a few years after quitting smoking to the levels observed in non-smokers while for other 

CpGs the alterations are observed even decades after quitting smoking. 

The study conducted by Alexandrov and colleagues that scrutinized tobacco-related mutational 

signatures in 5 243 tobacco-related cancers, also analyzed methylation profiles of tumours to assess the 

presence of the tobacco-related methylation signatures that have been identified in DNA from blood
118

. 

Average differences in DNA methylation larger than 5% between smokers and lifelong-nonsmokers 

were observed in tumour tissue of lung adenocarcinomas cases and oral cancer cases, but not in tumour 

tissues of other smoking-related cancer types. The main differences were observed for lung 

adenocarcinomas where in smokers 369 CpGs were hypomethylated and 65 hypermethylated; for oral 

cancer only 8 differentially methylated CpGs were observed, 5 of whom were hypomethylated. 

Interestingly, none of these CpGs are among those found to be differentially methylated in blood or 

buccal cells of smokers and non-smokers.  

In another study a tobacco-related methylation index was estimated in cancer and surrounding normal 

tissue of various cancer types including lung cancer. The DNA methylation-based index associated with 
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exposure to cigarette smoking was developed from 1 501 differentially methylated CpGs in DNA from 

epithelial buccal cells of smokers and non-smokers
135

. The methylation index was then calculated using 

methylome data separately for normal and cancer tissue and it was found to be extremely accurate in 

discriminating between normal and cancer tissue for lung cancer and other cancer types; the index was 

also able to discriminate between lung lesions that regressed from those that progressed. 

 

Stueve and colleagues searched for methylation signatures associated with tobacco smoke in normal 

tissue surrounding tumour tissue in 237 lung cancer cases using methylation data generated with the 

Infinium HumanMethylation450 Bead Chip array and identified 7 CpGs in which hypomethylation was 

associated with cigarette smoking
136

. For all these CpGs the association between hypomethylation and 

cigarette smoking was confirmed with TCGA methylation data. Five of the 7 CpGs corresponded to 

CpGs for which tobacco-related hypomethylation had been previously observed in DNA from peripheral 

blood. Notably, for one the 7 CpGs (i.e. cg05575921) an association between hypomethylation and lung 

cancer risk independent of the exposure to tobacco smoke had been previously reported
53,54

.  

 

In an analysis using a line of epithelial cells exposed to cigarette smoke condensate (CSC) aimed at 

understanding the possible functional consequences of hypomethylation at the identified CpGs, induced 

gene expression was evaluated in the 1Mb window flanking the CpGs. Hypomethylation levels in four 

CpGs were associated with induced expression of the genes AHRR, CYP1B1, ENTPD2 in the CSC 

exposed cell line. Such observation, confirmed in the TCGA data from lung cancer, is particularly 

interesting as in the promoters of the AHRR, CYP1B1, and ENTPD2 genes are present binding sites for 

the aryl hydrocarbon receptor (AHR), a transcription factor involved in detoxification and bioactivation 

of pro-carcinogens in tobacco smoke, suggesting a possible pathway linking smoking induced 

methylation to lung cancer. Interestingly, in addition to the observed association with tobacco-induced 

hypomethylation at specific loci, Stueve and colleagues noticed that increased expression of the AHRR 

and, to a lesser extent, CYP1B1 genes was also associated with the tobacco-related C > A substitutions
25

. 

 

The debate about the interpretation of the associations between cigarette smoking, alterations of DNA 

methylation and lung cancer risk, is still open as results from a recent Mendelian randomization study 

would not be consistent with the hypothesis of a causal link between the tobacco-related alterations in 

methylation levels and lung cancer risk
137

.   
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2. EXPOSURE TO SMOKING, LUNG ADENOCARCINOMA 

DEVELOPMENT AND THE “BAD” LUCK CANCER THEORY 

Lung cancer is the third most common cancer worldwide and it is well-established that tobacco smoke 

is the main cause. Smoking is also a major cause of other cancers such as cancers of the bladder, oral 

and nasal cavity, oropharynx, larynx, kidney, bowel, oropharynx, stomach, liver, esophagus and 

pancreas
138

.   

In 2017, it was estimated that over 90% of lung cancer cases among men and over 80% of cases among 

women worldwide are attributable to tobacco use (WCRF). A study conducted in France in 2015 

attributed 20% of new cancers cases (68 680) to tobacco consumption (Figure II.1)
139

.  

 
 

Figure II.1. Number of new cancer cases attributable to lifestyle and environmental factors 
among adults aged 30 and over in France, 2015  
Adopted from IARC139

. 
  



 

 
77 

2.1 THE “BAD LUCK” DEBATE: STEM CELL DIVISIONS, DRIVER 

MUTATIONS AND CANCER RISK 

 

Since 2015, Tomasetti and Vogelstein have
 
published a number of papers

9,140–143
 in which they studied 

factors influencing the development of cancer and, in particular, the role of unavoidable stochastic 

factors that were then popularized as “bad luck”. Their starting point is the strong correlation (RC ≅

2/3) observed between the lifetime cancer risk for different types of tissues and the total number of 

lifetime stem-cell divisions (LSCD) in such tissues as estimated by a mathematical method they 

developed. They advanced the thesis that the cause for this correlation are the driver gene mutations that 

randomly occur during these divisions and that represent the necessary events leading to cancer. By 

observing that on average tissues with a higher number of lifetime stem-cell divisions present a higher 

cancer risk they suggested that an intrinsic and unavoidable stochastic risk factor has a major role in 

cancer development.  

As LSCDs are not relevant for this thesis, the mathematical model developed by Tomasetti and 

Vogelstein for estimating the total number of LSCD in a tissue and its limitations will not be discussed 

in detail. Here, we simply recall that this model depends on two parameters: the number s of stem cells 

found in fully developed tissues and the total number d of divisions each of these cells undergo in the 

lifetime of an individual. After estimating LSCD for 25 different tissues for which parameter estimates 

are available, the two authors showed that the observed correlation between lifetime cancer risk (CR) in 

the US and the LSCD is 0.81 which implies that the proportion of the variation of log(CR) explained by 

log(LSCD) is R
2
=0.66 [=0.81

2
]. They found similar correlations using CR figures from 68 different 

countries.  

Unfortunately, this result was misrepresented as if “2/3 of new cancer cases” were due to “bad luck”. 

This provocative interpretation is wrong because 2/3 refers to cancer risk in tissue types and therefore it 

says nothing about the probability of an individual to develop cancer. Moreover, it is not possible to 

interpret this correlation as a measure of the fraction of risk attributable to some risk factor
144

. These 

results and their misinterpretation by some of the media sparked a debate about the role of randomness 

in cancer; several authors expressed serious concerns about the potential danger that inaccurate 

interpretation and dissemination of such statistical findings could bring to primary prevention
140

. 

In a subsequent paper published in 2017, the two authors provided a clearer conceptual distinction 

between the proportion of preventable cancers and the proportion of driver mutations due to 

environmental factors and, using cancer genome sequences and epidemiological data, estimated the 

proportions of driver gene mutations due to environmental (E), hereditary (H) and replicative factors 

(R), the latter being intrinsic random factors. In particular, they estimated the number of mutations due 

to R from genomic sequences from “unexposed” individuals, while genomic sequences from exposed 

individuals were used to estimate the total number of mutations. Even though in principle partitioning 
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causes in this way is inaccurate and unrealistic as R is likely to be modulated by the environment or the 

genetic background, this approach has the advantage of establishing a quantifiable link between the 

proportion of preventable cancers and the proportion of driver mutations due to E through a model 

relating them to the relative risk and the prevalence of the environmental factor E. To understand this, 

Tomasetti and Vogelstein proposed the conceptual example illustrated in Figure II.2, where three driver 

mutations are the necessary condition to develop cancer. Consider a cohort of 20 individuals with cancer, 

where all individuals have the three mutations and all but two are exposed to a carcinogenic exposure, 

such as cigarette smoking.  

 

Figure II.2. Mutation aetiology in lung adenocarcinoma 
Modified from Tomasetti and colleagues143.  

In the example depicted in the figure, driver mutations due to the environment E are in grey and those 

due to intrinsic random factors (replications, R) are in yellow, so that E accounts for 21/60=35% of the 

driver mutations in the population and R for 39/60=65% of them. Even though intrinsic random factors 

have thus a predominant role,  18/20=90% of new cases could be prevented by eliminating 

environmental factors: if we removed E, all grey mutations would disappear and only two individuals 

would remain with all the three mutations, all due to intrinsic random factors, that would lead to cancer.  

This illustration shows that chance might have a large role in the appearance of deleterious mutations 

and yet the majority of cases could be prevented by eliminating exposure. As a matter of fact, even if 

cancer is known to be caused by uncontrolled cell divisions, the main biological cause of the disease 

remains poorly understood. As argued by Kelly-Irving and colleagues
145

, random occurrences of 

mutations do not equate to random occurrences of cancer and mutation is a necessary, but not sufficient 

condition for the development of cancer. 

To put this debate into context, we note that in addition to the somatic mutation theory previously 

discussed in chapter I (accumulation of somatic mutations in oncogenes and tumour suppressor genes 

leading to cancer development), a stem cell division theory of cancer (SCDTC) has been advanced more 
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recently. According to such theory, the risk of developing cancer is not only increased by mutagenic 

factors, but also by any factor that promotes the accumulation of cell divisions in stem cells by acting 

on the stem cell or on the stem cell environment such as physiological changes in the levels of hormones 

and growth factors, cell death occurring during physiological tissue renewal, cell death (or cellular 

damage) occurring during pathological conditions (e.g. tissue injury, inflammation and infection), and 

exposure to non-mutagenic environmental factors
 26

  (Figure II.3).  

 

 

 

Figure II.3. Somatic mutation and stem cell division theories of cancer   

Adopted from Lòpez-Làzaro146 
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2.2 PREDICTING LUNG CANCER RISK VIA EXTRINSINC MUTATIONS 

 

Wu and colleagues proposed an alternative method to estimate the proportions of mutations due to 

intrinsic and extrinsic factors that is based on mutational signatures 
147

. As COSMIC signature 1 

correlates with age at cancer diagnosis, Wu and colleagues used the ratio between the number of 

mutations associated with such signature and the total mutation burden as a proxy for the proportion of 

intrinsic mutations. Using this approach, they estimated that the vast majority of mutations (70%-90%) 

is due to extrinsic factors in most cancer types, a result that contradicts the findings of the 2017 paper 

by Tomasetti and Vogelstein. 

 

We adopted a similar approach based on the use of mutational signatures to address the issue of “bad 

luck” and preventable cancers. Collaborators used genome sequences data and extracted mutational 

signatures obtained from previous research
118

, to estimate mutation rates caused by tobacco smoking in 

different tissue types.  

 

We then compared such estimated mutation rates to cancer incidence hazard ratios and mortality rates 

in smokers and non-smokers in the same tissues. As shown in Table II, the correlation between mutation 

rates in smokers and cancer incidence hazard ratios for smokers relative to non-smokers is much more 

evident than the association of the latter with the stem cell lifetime divisions estimated by Tomasetti and 

Vogelstein.  

 

In particular, the correlation between the cancer incidence hazard ratio for smokers relative to non-

smokers and the mutation rates (per pack-year) in smokers is strong (ρ=0.93, p=2× 10
−2

). The 

correlation becomes negative and weaker (ρ=-0.65, p=2.3× 10
−1

) when we compare the cancer 

incidence hazard ratio for smokers with the cumulative stem cell divisions (Table II).   

 

The pattern for former smokers is similar, with a strong correlation between the cancer incidence hazard 

ratios and mutation rates per pack-year (ρ=0.91, p=3× 10
−2

), while cumulative stem cell divisions are 

only weakly negatively correlated with cancer hazard ratios (ρ=-0.58, p=3.1× 10
−1

). Similar findings 

are obtained when mortality rates are used instead of cancer incidence rates, although none of the 

correlation coefficients were significantly different from zero (all p>1× 10
−1

).  

 

Our results reinforce the findings from Little and colleagues
148

 that using data taken from the 2015 

Science paper of Tomasetti and Vogelstein concluded that stem cell divisions are poorly predictive of 

smoking-related risk.   
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Table II. Comparison between mutation rates, cumulative stem cell lifetime divisions, hazard 
ratios (HR) for cancer in smokers and mortality rates in smokers and never smokers, for the 
cancer sites for which information was available in all sources 

Adopted from Perduca and colleagues24 
 

 

Cancer site  

Mutation 

rates in 

smokers 
a
 

Cumulative 

stem cell 

lifetime 

divisions 
b
 

Incidence 

HR for 

smoking 

men 
c
 

Incidence 

HR for 

former 

smoking 

men 
c
 

Mortality rates 

smokers with 

≥25 

cigarettes/day 

/non-smokers 
d
 

Lung adenocarcinoma

       

150.5   9.272 x 10
9 e

 23.30 5.28 415.2 / 16.9 

Larynx         137.7  3.186 x 10
10

 
f
 13.24 3.51 17.3 / 0  

Pharynx        38.5 NA 6.67 2.06 19.4 / 0 

Bladder         18.3  NA 3.84 2.15 51.4 / 13.7 

Esophagus (squamous)

        

N.S. 1.203 x 10
9 

 
 

3.94  1.26 50.0 / 5.7 

Liver         6.4  2.709 x 10
11 

 2.92  2.09 31.3 / 4.4 

Pancreas 

adenocarcinoma

        

N.S. 3.428 x 10
11 

 
 

1.62 

  

0.89 52.9 / 20.6 

a Statistically significant average number of somatic substitutions per genome per pack-year118 
b Cumulative number of divisions of stem cells per lifetime. From Tomasetti and Vogelstein9 
c HRs relative to non-smokers. From Agudo and colleagues149 
d Cumulative mortality rate per 100,000 persons per year150 
e Cumulative number of divisions of stem cells per lifetime9 
f Adenocarcinoma (same rate in smokers and non-smokers)  
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3. CONCLUSION 

 

Understanding how cancer develops is crucial for improving prevention strategies. It is well accepted 

that carcinogens leave fingerprints (traces of past events, including the action of environmental factors). 

The mutational and epigenetic profile of a cancer genome result respectively from the superposition of 

all the traces, or signatures, left by mutational processes and the alteration of methylation levels due to 

environmental, lifestyle (and random) factors. Both types of signatures represent promising areas of 

research that are likely to continue to contribute novel insights into the nature of cancer and the processes 

that lead to it. Such gains in new knowledge are likely to accelerate when epidemiological studies are 

going to routinely collect and sequence DNA from tumour tissue allowing the analysis of mutational 

signatures and the linking of such signatures to epidemiological data.  

According to the prevailing model of carcinogenesis, cancer is primarily caused by the accumulation of 

genetic mutations. However, it is increasingly accepted that the accumulation of somatic mutations alone 

cannot explain the development of cancer. Evidence is accumulating that genetic and non-genetic 

mechanisms such as epigenetic alterations and environmental factors may influence stem-cell divisions 

and therefore cancer development. In this respect, it would be very interesting to try to estimate the 

effect of such factors on the number of lifetime stem cell divisions. This would require building a model 

for estimating the fraction of such events over the total number of events required for cancer 

development. Other events or conditions that may play an important role but have not yet been 

considered in the model of cancer development are disrupted or inefficient DNA repair mechanisms, 

that may be limited to some organs, and dysfunctions of immune surveillance.  
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CHAPTER I I I :  

C O M P U T A T I O N A L  T O O L S  T O  D E T E C T  

S I G N A T U R E S  O F  M U T A T I O N A L  P R O C E S S  
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This chapter will cover one of the most recent developments with regards to cancer genomics: the 

identification of mutational signatures from cancer genomes that may be linked to specific exogenous 

and endogenous factors responsible for the development of cancer. This field is growing rapidly and is 

leading to strong collaborations between quite diverse disciplines and in particular genomics, 

bioinformatics, biostatistics and epidemiology. Major international projects such as Mutograph funded 

by CRUK are collecting at the same time extensive epidemiological data as well as tumour DNA that is 

then sequenced in order to try to link mutational signatures to specific exposures. In this work we 

focused on the large number of analytical methods and tools that have been developed in the last few 

years to extract and identify mutational signatures from sequencing data from tumour DNA. We 

introduce a probabilistic model for simulating mutational catalogues and we exploit it to produce an 

original empirical comparison of the performance of most of the currently available tools for the analysis 

of mutational signatures. 

 
Contribution  
First author, discussed the analytical strategy with the supervisors, conducted statistical analyses, wrote 

the first draft of the manuscript and replied to reviewers’ comments. 
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1. CONTEXT 

 

After the introduction of the original framework for the identification of mutational signatures, several 

other mathematical methods and computational tools have been proposed for their detection and for the 

estimation of their contribution to a given catalogue. As reported in chapter I, these methods can be 

grouped in two categories with different goals. The first class of methods aims to discover novel 

signatures while the second class aims to detect the known and validated mutational signatures in the 

mutational catalogue of a given sample. The approaches used in the first class are referred to as “de 

novo” (or “signature extraction”) while those in the second class as “refitting” (or “signature fitting”).  

All methods have been implemented in open source tools, mainly R packages, but some of them are 

available through command line, the Galaxy project or a web interface. 

Signatures identified with de novo methods can be compared to reference signatures (for instance those 

listed in COSMIC) through measures such as cosine
16

 or bootstrapped cosine similarity
15

, which is a 

distance metric between two non-zero vectors. In this step of the analysis, extracted signatures are 

matched to the most similar reference signature, provided that their similarity is greater than a fixed 

threshold. 

To date, more than twenty methods with similar aim (minimize the distance between original mutational 

catalogue and the estimated one) are available. However, no systematic evaluation of the performance 

of these methods has been conducted and the issue of the choice of an appropriate cosine similarity 

threshold when matching a newly extracted signature to the most similar counterpart in a reference set 

has not been addressed yet. 
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2. OVERVIEW OF AVALAIBLE TOOLS FOR MUTATIONAL 

SIGNATURE ANALYSIS 

 

A similar number of de novo and refitting methods exist and all of them are available as open source 

tools, mainly as R packages, or web interfaces (Table III). The typical input of these tools is a file 

including the mutation counts but some tools derive the mutation counts from ad-hoc input files that 

may include for each individual a list of mutated bases, their position within the genome and the 

corresponding bases from a reference genome. The typical format of such input files is MAF, Variant 

Call Format (VCF) or less common formats such as (Mutation Position Format) MPF and Mutation 

Feature Vector Format (MFVF).   

For biologists or those who are not familiar with programming, a set of tools were also developed and 

provided with user-friendly interfaces. Some tools include additional features such as the possibility to 

search for specific patterns of mutations (e.g. APOBEC-related mutations
16

) and differential analysis
151

. 
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Table III. Available tools for the detection of mutational signatures. 
 

 

Software 
 

Available platform/model 
 

Input files 
 

Additional features 
 

de novo approaches 
WTSI11 

 

MATLAB/ NMF  - Original framework 

- An improved version has been recently 

implemented in SigProfiler 

EMu13 

https://github.com/andrej-fischer/EMu 

Command line/EM algorithm - Mutation counts file 

- With respect to other tools, the counts 

file is transposed (the rows correspond to 

the samples) 

- Opportunity matrix 

- Selection of the optimal number of signatures 

 

SomaticSignatures152 

https://bioconductor.org/packages/release/bioc/html/S

omaticSignatures.html 

R/NMF and PCA Variant Call Format - Group-wise comparisons 

- Genomic visualization  

- Hierarchical clustering  

pmsignature153 

https://github.com/friend1ws/pmsignature 

R/mixed-membership model - Mutation Position Format                -

Mutation Feature Vector Format 

- Reduction of complexity 

- Mutation types defined by one or two flanking 

bases 

- Selection of the optimal number of signatures 

- Transcriptional strand bias  

- Background signature 

bayesNMF21,154–156   

https://github.com/jburos/bayesNMF 

https://software.broadinstitute.org/cancer/cga/msp 

R/Bayesian NMF Mutation counts file - Selection of the optimal number of signatures 

- Data pre-treatment with the function 

get.lego96.hyper reduces the influence of 

hypermutated catalogues 

signeR151 

https://bioconductor.org/packages/release/bioc/html/s

igneR.html 

R/Bayesian NMF Variant Call Format - Opportunity matrix  

- Selection of the optimal number of signatures 

- Group-wise comparison (differential analysis) 

mutSignatures157 

https://cran.r-

project.org/web/packages/mutSignatures/index.html 

R/NMF Mutation counts file -  R-based implementation of WTSI11 

 

maftools16 

https://bioconductor.org/packages/release/bioc/html/

maftools.html 

R-Bioconductor /NMF - Mutation Annotation  

- Format 

- Genomic visualization 

- Cosine similarity  

- Selection of the optimal number of signatures 

- Group-wise comparisons (differential 

analysis) 

- APOBEC enrichment analysis 

Continued on the following page   
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Helmsman158 

https://github.com/carjed/helmsman 

Python/ NMF and PCA  - Variant Call Format 

- Mutation Annotation Format 

- Able to run in parallel and designed for large 

datasets 

- Connection to external packages (in R) 

- may generate mutational catalogues from 

sequence data 

SignatureAnalyzer21 

https://www.synapse.org/#!Synapse:syn11801492 

 

R/ Bayesian NMF Mutation counts file - Automatic selection of the optimal number of 

signatures 

- Sparse signature profiles and contributions 

SigProfiler11,21 

https://fr.mathworks.com/matlabcentral/fileexchange/

38724-sigprofiler 

Matlab/ NMF Mutation counts file - Further development of the original 

framework 

- Two steps: 1) extraction of a minimal set of 

signatures, 2) estimation of their contributions 

to individual samples  

SparseSignatues159 

https://bioconductor.org/packages/release/bioc/html/S

parseSignatures.html 

R/ NMF with Lasso-penalized cost 

function  

Mutation counts file - Integration of DNA replication error signature  

- Sparse signature matrix 

- Number of signatures estimated with cross-

validations 

- Scalable to large datasets  

Refitting approaches 
deconstructSigs160 

https://github.com/raerose01/deconstructSigs 

R/linear regression Mutation counts file - Opportunity matrix 

Qpsig161 

https://f1000researchdata.s3.amazonaws.com/supple

mentary/8918/0d25c07c-16ba-4b14-91e7-

71749dcbbdd5.pdf 

R/quadratic programming Mutation counts file  

SignatureEstimation162 

https://www.ncbi.nlm.nih.gov/CBBresearch/Przytyck

a/index.cgi\#signatureestimation 

 

R/quadratic programming and 

simulated alienation 

Mutation counts file  

MutationalPatterns163 

http://bioconductor.org/packages/release/bioc/html/M

utationalPatterns.html 

R/Non-Negative Least Squares Mutation counts file - Also de novo identification 

- Cosine similarity comparison 

- Strand bias analyses 

- Enrichment and depletion 

YAPSA164 

http://bioconductor.org/packages/release/bioc/html/Y

APSA.html 

R/Linear Combination 

Decomposition 

Mutation counts file - Cut-off for normalized exposure 

- Enrichment and depletion 

decompTumor2Sig165 

https://github.com/rmpiro/decompTumor2Sig 

R/quadratic programming - Variant Call Format 

- Mutation Position Format             - 

Mutation Feature Vector Format 

- Converts a set of “Alexandrov’s signatures”8 

to “Shiraishi’s signatures”153 

- Decomposes a mutational catalogue in 

“Shiraishi’s signatures” 

Continued on the following page  
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MutationalCone [Appendix 2] R/cone projection Mutation counts file - Fast in comparison to others refitting tools 

Sigfit166 

https://github.com/kgori/sigfit 

R/ Bayesian NMF Mutation counts file - Provides a new model for combining de novo 

and refitting approaches 

- Possible application to indel or rearrangement 

count data 

- Also implements EMu13 model and allows 

conversion to genome-or exome- relative 

signatures 

Pipelines and web-interfaces 
Mutspec167 

https://toolshed.g2.bx.psu.edu/repository/view_reposi

tory?id=f5c1f75e9fb33f8e 

Galaxy pipeline/NMF Variant Call Format - de novo identification 

- Includes MS analysis in mouse cancer 

MutaGene168 

https://www.ncbi.nlm.nih.gov/research/mutagene/ 

Web-interface TCGA and ICGC data - Refitting and de novo identification 

- Clustering of samples according to mutational 

profiles 

- Identification of potential driver’s mutations 

mSignatureDB15 

http://tardis.cgu.edu.tw/msignaturedb/ 

Web-interface - Variant Call Format 

- Mutation Annotation Format 

- TSV 

- Refitting and de novo identification 

- Bootstrapped cosine similarity 

- Comparison with either hg19 or hg38 

Mutalisk169 

http://mutalisk.org 

Web-interface Variant Call Format - Refitting and de novo identification 

- Transcriptional strand bias  

- Localization of kaetegis 

- Histones modifications  

- Cosine similarity comparison 

MuSiCa170 

http://bioinfo.ciberehd.org:3838/MuSiCa/ 

Web-interface - Variant Call Format 

- Mutation Annotation Format 

- TSV 

- Excel 

- Refitting and de novo identification 

- Cosine similarity 

- Samples classification 
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2.1 DE NOVO APPROACHES 
 

Most tools that have been developed to identify mutational signatures were based on decomposition 

algorithms including NMF or a Bayesian version of NMF. The original method developed by 

Alexandrov et al. was based on NMF and was implemented in MATLAB11 and is available also as an R 

package developed independently157. An updated and elaborated version named SigProfiler, was 

proposed recently for extracting a minimal set of signatures and estimating their contribution to 

individual samples21. The latter article also discusses an alternative method based on Bayesian NMF, 

called SignatureAnalyzer, that led to the identification of 49 reference signatures. Another tool that 

utilizes NMF is maftools that is one of the few de novo tools that allows systematic comparison with the 

30 validated signatures in COSMIC by computing cosine similarity and assigning the identified 

signatures to the COSMIC one with the highest cosine similarity16. 

Other tools such as SomaticSignatures152 or the recent Helmsman158 allows the identification of 

mutational signatures through Principal Component Analysis (PCA) in addition to NMF. For the sake 

of our formal comparison of the tools’ performance, we have only tested NMF implementations because 

in PCA the factors are orthogonal and the values inside the matrix can potentially be null or negatives, 

which is a deviation from the paradigm postulating that catalogues are the superposition of positively 

weighted signatures. However, PCA could be a promising way to explore complex situations in which 

mutational processes interfere with each other (e.g. relatively error free repair processes competing with 

error prone repair processes). Developed in the Python language, Helmsman allows the rapid and 

efficient analysis of mutational signatures directly from large sequencing datasets with thousands of 

samples and millions of variants.  

 

SparseSignatures159 proposes an improvement of the traditional NMF algorithm based on two 

innovations, namely the default incorporation of a background signature due to DNA replication errors 

and the enforcement of sparsity in identified signatures through a Lasso penalty. This latter feature 

allows the identification of signatures with well-differentiated profiles, thus reducing the risk of 

overfitting.  

In addition to decomposition methods, an approach based on the Expectation Maximization (EM) 

algorithm has been proposed to infer the number of mutational processes operative in a mutational 

catalogue and their individual signatures. This approach is implemented in the EMu tool13, where the 

underlying probabilistic model assumes that input samples are independent and the number of 

mutational signatures is estimated using the Bayesian Information Criterion (BIC). Another tool that 

uses a probabilistic model named mixed-membership model is pmsignature153. This tool utilizes a 
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flexible approach that at the same time reduces the number of estimated parameters and allows to modify 

key contextual parameters such as the number of flanking bases.  

The latter feature may be particularly useful as the standard and most commonly used methods based 

on trinucleotides may not be the most adequate to detect specific mutational processes that lead to larger-

scale substitution patterns. Evaluating the impact of limiting to trinucleotides or estimating the gain in 

performance associated with the extension of the context sequence to two flanking bases, is difficult and 

beyond the scope of our work. However, it is worth noting that trinucleotide-based methods have been 

able to identify several signatures associated with defective DNA mismatch repair and microsatellite 

instability (i.e. signatures 6, 14, 15, 20, 21, 26 and 44 of COSMIC v3)21.  It is important to note that for 

the purpose of the comparison with the other tools, the number of flanking bases was set to one, and 

therefore we considered 96 mutation types. 

EMu, signeR and pmsignature (and the refitting tool deconstructSigs) have been designed to take into 

account the distribution of triplets in a reference exome or genome, for example from a sequence of 

normal tissue in the same individual. This is done by “normalizing” the input mutational catalogues with 

respect to the distribution of triplets in the reference exome or genome using an “opportunity matrix”.  

2.2 REFITTING WITH KNOWN MUTATIONAL SIGNATURES 
 

 In addition to the identification of novel mutational signatures, scientists are often interested in 

evaluating whether a signature observed in an individual tumor belongs to an established set of 

signatures (e.g. the COSMIC signatures). This task is performed by “refitting tools” that aim to search 

for the “best” combination of established signatures that explains the observed mutational catalogue by 

projecting the latter into the multidimensional space of all non-negative linear combinations of the ! 

established signatures.  

 

The deconstructSigs160 tool searches for the best linear combination of the established signatures through 

an iterative process based on multiple linear regression aimed at minimizing the distance between the 

linear combination of the signatures and the mutational catalogue. All the other tools minimize the 

distance through equivalent approaches based on quadratic programming161,162,165, non-negative least 

square163 linear combination decomposition 164 and simulated annealing162.  
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2.3 COMBINING DE NOVO AND REFITTING PROCEDURE 
 
Sigfit166 is a recently introduced R package for Bayesian inference based on two alternative probabilistic 

models. The first of such models is a statistical formulation of classic NMF where signatures are the 

parameters of independent multinomial distributions and catalogues are sampled according to a mixture 

of such distributions with weights given by the exposures, while the second model is a Bayesian version 

of the EMu model.  An interesting innovation of Sigfit is that it allows the fitting of given signatures 

and the extraction of undefined signatures in the same Bayesian process. As argued by the authors, this 

unique feature might be helpful in cases where the small sample of catalogues makes it difficult to try 

to identify new signatures or when the aim is to study the heterogeneity between the primary tumor and 

metastasis in terms of the signatures they show.  

In this work, we empirically evaluate the methods that have been already presented in a peer review 

published paper to date and for which an implementation in R is available. To this aim, we adopt the 

COSMIC set as reference for the analysis of simulated and real mutational catalogues because we 

evaluate tools that were developed at the time when COSMIC was the only available database of 

reference.  
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3. MATERIALS AND EXPERIMENTAL SETTINGS 

3.1 THE CANCER GENOME ATLAS 

In order to evaluate the performance of the available algorithms on real data, exome sequences from 

The Cancer Genome Atlas (TCGA) repository (https://cancergenome.nih.gov/) were used for four 

cancer types:  breast cancer, lung adenocarcinoma, B-cell lymphoma, and melanoma. 

Mutation Annotation Format (MAF) files with the whole-exome somatic mutation datasets from these 

cohorts were downloaded from the portal gdc.cancer.gov on 6 March 2018. Data were annotated with 

MuSE171 and the latest human reference genome (GRCh38). Mutational catalogues from these cohorts 

were obtained by counting the number of different mutation types using maftools16. The distribution of 

the number of mutations for each sample and separately for each cancer type is depicted in Figure III.1.  

According to the COSMIC website, 13 and 7 signatures have been found for breast cancer and lung 

adenocarcinoma respectively, 6 for B-cell lymphomas and 5 for melanoma.  

 

Figure III.1. Barplot with the number of mutations in each sample in four TCGA cohorts. Each 
bar represents a sample, with the number of mutations shown in the y-axis. 

3.2 OUR ORIGINAL REFITTING TOOL: MUTATIONALCONE 
 

We propose an alternative implementation of the decomposition performed by Huang162 or 

Huebschmann164 based on a simple geometric framework. Finding the linear decomposition of the input 

catalogue "  on a set of given signatures minimizing the distance can be seen as the problem of 

projecting " on the geometric cone whose edges are the reference signatures. We propose to solve this 

problem by applying the very efficient R package called coneproj 172. More details about our algorithm, 

which we called MutationalCone, together with the R code implementing it, can be found in Appendix 

2.   



 

 
96 

3.3 SIMULATION OF A MUTATIONAL CATALOGUE 
 

The first key assumption of our original model for the simulation of mutational catalogues is that the 

number of mutations in a sample # that are induced by process $ follows a zero-inflated Poisson (ZIP) 

distribution. According to this two-component mixture model, %&' is either 0 with probability ( or is 

sampled according to a Poisson distribution )(+) with total probability 1 − (. Such a model depends 

on two parameters: the expectation +  of the Poisson component, and the probability (  of extra 

“structural” zeros. The ZIP model allows for frequent zeroes and is therefore more suitable for modelling 

a heterogeneous situation where some samples are not exposed to a given mutational process (%&' = 0) 

while some others are (%&' > 0). Realistically, the mutation counts due to process $ in each of the 2 

samples, %3', … , %6', are assumed to be independent and identically distributed according to a ZIP model 

where the expectation of the Poisson component is specific to $: 

%&' ∼ 89:(+', (), for all 	$ = 1,… ,!. 

Note that the expected number of mutations in sample # due to process $ is (1 − ()+'. This flexibility 

given by process-specific average counts is the second important characteristic of the model and reflects 

the possibility that the mutagenic actions of different processes are intrinsically different with respect to 

their intensity. Obviously, it would have been possible to do one step further and allow for parameters 

+',&  specific to both processes and samples, thus representing the realistic situation in which the 

exposures of different samples to the same process have different duration or intensity (e.g. 

smokers/non-smokers). However, this would have resulted in too many parameters to tune, thus making 

it difficult to interpret the results of our simulation study. For the same reason we considered one fixed 

value of (. 

The parameter +' depends on both the average total number < of mutations in a sample and the relative 

contribution of $ . We therefore imposed the parameterization +'(1 − () = ='< , where ='  is the 

average proportion of mutations due to the process $.  

When taking a unique value of < , this model produces realistic simulations even though it 

underrepresents extreme catalogues with very large or small total numbers of mutations (Figure III.2 

(c)). While considering a specific value of < for each sample, or group of samples, would definitely 

make it possible to obtain a more realistic distribution of simulated catalogues Figure III.2 (b)) such 

multidimensional parameter would complicate unnecessarily the empirical assessment of mutational 

signature detection methods by introducing too many specifications. Therefore, a unique <  was 

considered for each set of simulations. This formulation allows to study empirically the performance of 

a given signature detection method as a function of the average number of mutations < while fixing the 

average proportion of mutations due to each mutational process =', according to different profiles that 
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mimic real cancer catalogues. Interestingly, the ZIP model appeared to be more appropriate to represent 

mutational catalogues than the pure Poisson model used in previous publications 13,151 (Figure III.2  (d))).  

 

Figure III.2. Simulations of 563 lung adenocarcinoma catalogues according to different models 

(a) Real catalogues from the TCGA lung adenocarcinoma cohort. (b)-(c) Catalogues sampled from the 

ZIP model described in the main text. The relative contribution =' of each signature $ is the mean of 

the relative contributions of $  in all samples as estimated by maftools. In (b) simulated and real 

catalogues are in a 1 to 1 correspondence: for each simulated sample #, the total number of mutations 

<& in the corresponding real catalogue is taken. In (c) all samples are simulated according to < = 306, 

the average total number of mutations in the real data. The latter example illustrates the parametric 

model used for the simulation study. (d) Catalogues sampled according to the Poisson model %&' ∼

:(+'), where +'  is the mean number of mutations due do to $ in the real samples as estimated by 

maftools. 
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We adopted the following simulation protocol: 

1. We chose ! signatures from the COSMIC database, thus obtaining the matrix :. 

2. For each sample # and process $, we sampled %&' from a ZIP distribution with parameters 

+' = ='</(1 − ()	and ( and obtained A. Here =', < and ( are fixed parameters to set. 

3. Then, we computed the product : × A. In order to obtain the final simulated catalogue ", 

some noise was added to the latter matrix by taking C&
D ∼ )E(: × A)&DF. 

Four alternative sets of simulated catalogues were generated, referred to as Profiles 1, 2, 3 and 4, each 

set mimicking a particular cancer: breast cancer, lung adenocarcinoma, B-cell lymphoma and 

melanoma. In order to do so, for each tumour type, we applied MutationalCone to the corresponding 

TCGA datasets and we calculated the mean contribution across all samples of each signature known to 

contribute to the specific cancer type ='. Signatures with =' = 0 do not contibute to the final catalogue 

and were not in the matrix P. Figure III.3 depicts the resulting four sets of configurations (=3, … , =G) 

used for the simulations. Profiles 3 and 4 are characterized by one dominant signature, Profiles 2 by two 

signatures with similar large contributions and Profile 1 by several signatures with small effects.  

Four different configurations (=3, … , =HI)  were considered for simulating realistic data. Each 

configuration represents the average share of mutations due to the different COSMIC signatures and 

was chosen to mimic real exposure profiles for four cancer types: estimates were obtained from Breast 

Cancer (Profile 1), Lymphoma (Profile 2), Lung Adenocarcinoma (Profile 3) and Melanoma (Profile 4) 

TCGA cohorts. 

The relative frequency of structural zero contributions to the catalogues was fixed to ( = 0.6 in all 

simulations. This value was chosen because it leads to a small number of hypermutated catalogues, as 

it is often encountered in practice. Finally, the number of < was set from as little as 10 to as much as 

100,000 mutations. This allowed us to study the performance of methods on a large spectrum of 

catalogues: from a limited number of mutations as in exomes, to a very large number, as in whole cancer 

genome sequences. 

For each of the four tumor types and for each value of <, a catalogue matrix was simulated with 2 

samples. 
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Figure III.3. Choice of parameters KL in the simulations.  

Profiles 1-4 respectively mimic real exposure profiles for four cancer types and estimates were obtained 
from Breast Cancer (Profile 1), Lymphoma (Profile 2), Lung Adenocarcinoma (Profile 3) and Melanoma 
(Profile 4) TCGA cohorts. 
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4. COMPARISON OF ALGORITHMS PERFORMANCE 

All methods for identifying signatures find solutions to the minimization problem (2). A straightforward 

way to measure the accuracy of the reconstructed catalogue is, therefore, to calculate the Frobenius norm 

of the reconstruction error 

||" − "̂ ||OP = QQ(
G

'R3

6

&R3

C&
D − Ĉ&

D
)P, 

where "̂ = :̂ × Â is the matrix of catalogues reconstructed from the estimated signature and exposure 

matrices. Some of the algorithms involve stochastic steps such as resampling and/or random draws of 

initial parameters. For these algorithms, one simple way to assess the robustness of the estimates is to 

look at the variability of the reconstruction error when the same catalogues are analyzed several times 

with the same algorithm.  

 

With regards to bayesNMF, it is known that the performance of its principal function might be poor in 

presence of hypermutated catalogues that mask the detection of signals from less mutated catalogues. 

For this reason, we pre-treated the catalogues to be analyzed by this tool and replaced hypermutated 

catalogues by synthetic non-hypermutated catalogues to maintain the original mutational distribution 

catalogues using the standalone get.lego96.hyper  function that can be found in the bayesNMF script.  

In order to make decisions about whether an extracted signature is the same as validated signatures (e.g. 

COSMIC signatures) a cut-off for cosine similarity needs to be defined. We applied six different cut-

offs (0,0.75,0.8,0.85,0.9,0.95) and considered as “new” all identified mutational signatures for which 

the maximal cosine similarity is lower than the cut-off value.  

4.1. SPECIFICITY AND SENSITIVITY FOR DE NOVO EXTRACTION AND 
ASSIGNMENT 

 

In most applications, signature extraction is done in two steps: first, signatures are found using a de novo 

extraction tool and then for the extracted signatures a cosine similarity with each of the COSMIC 

signatures is calculated. In order to measure the performance of both these steps combined, simulated 

catalogues were used, and false and true positive rates and false and true negative rates were computed. 

In a simulated catalogue, the set of true signatures S3, … , SG  that do contribute to the catalogue are 

known, thus allowing the comparison of the latter to the estimated signatures ŜTU , … , ŜTV. Note that, for 

the sake of simplicity, we set the number of signatures to be found to be equal to the number of signatures 

used to simulate the catalogues, and thus we do not address questions about model selection 

performance. 
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Estimated signatures that belong to the set of “true signatures” are considered as true positives, while 

all “true signatures” that are not extracted count as false negatives. False positives are all estimated 

signatures that do not have a match in the set of “true signatures”. This can happen for two reasons: the 

estimated signature is assigned to a COSMIC signature not used to build the catalogue, or it is not 

sufficiently similar to any COSMIC signature. This last situation usually takes place when setting a very 

high cosine similarity threshold ℎ. In this case, signatures that have maximal cosine similarity lower 

than the cutoff, will be termed as “new”. Finally, true negatives are all COSMIC signatures not used for 

the simulation, nor estimated. From these four measures, we compute specificity (number of true 

negatives divided by the total number of negatives) and sensitivity (number of true positives divided by 

the total number of positives).   

In this empirical study, for each simulation setting described in the Simulated data section (that is for 

each profile given by a choice of proportions (=3, … , =G) and for a choice of total number of mutations 

<) 50 replicates were built, each made of a matrix of 2 samples. Signatures are then extracted from all 

replicates with a given tool. Then, extracted signatures are compared to the COSMIC signatures using 

a cosine similarity threshold ℎ. Finally, we computed specificity and sensitivity and obtained Monte-

Carlo estimates based on the means over all replicates. 

4.2 BIAS OF REFITTING PROCEDURES 

 

Refitting algorithms assume that the matrix of signatures is known and return the exposure estimates 

%̂&
'

, i.e. estimates of the contribution of each signature %&'. A simple way to assess the performance of 

the refitting method is then to look at the bias of such estimates, by comparing them to the true exposures. 

In order to do so, we simulated 50 replicates each consisting of one lung adenocarcinoma-mimicking 

catalogue # (Profile 3) with an average number of mutations set to < = 10X.  

Then, for each process $, we obtained Monte-Carlo estimates of the bias A[%̂&
'
] − %&' by averaging the 

differences %̂&
'
− %&' over all replicates. A global measure of performance that considers all exposure 

estimates is given by the mean squared error (MSE), that is the expected value of the loss function 

∑ (HI
'R3 %̂&

'
− %&')P. We obtained Monte-Carlo estimates of the MSE by averaging the loss function values 

across all 50 replicates and calculated asymptotic confidence intervals. 
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5. FINDINGS 

5.1 PERFORMANCE OF DE NOVO TOOLS 
	
5.1.1	FROBENIUS	NORM	
 
Figure III.4 shows the distribution of the reconstruction error when a given computational tool is applied 

several times to the same real trinucleotide matrix. Reconstruction errors show limited variability due 

to stochastic steps in the algorithms and no variability whatsoever for maftools.  All methods under 

evaluation are roughly equivalent in terms of their ability to properly reconstruct the initial matrix of 

mutational catalogues. This is not surprising, given that all methods are meant to solve the optimization 

problem given in equation (2).  

 

In general, the error value appears to depend on the cancer dataset. This is expected because the fours 

datasets differ with regards to the number of samples, their total number of mutations and the number 

of operating mutational signatures, making the decomposition more or less difficult. 

 

Results show that the performance of each method improves after pre-treating the samples, 

especially for Melanoma and Breast cancer datasets that are characterized by a few samples 

with an extremely high number of mutations. For the Melanoma dataset, the gain in 

performance is considerable for bayesNMF and maftools. 

 

Each program under evaluation is applied 50 times on the same matrix of real catalogues shown in 

Figure III.1; boxplots represent the distribution of the squared Frobenius distance between the original 

catalogue and its reconstruction. Boxplots look like flat segments because of the scale of the y-axis. 

Each catalogue was analyzed with or without data pre-treatment with the standalone bayesNMF function 

get. lego96.hyper.  
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Figure III.4. Reconstruction errors and their variability due to stochastic steps in the algorithms 
with and without pre-treatment to moderate the effect of hypermutated samples. 
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5.1.2	CONFUSION	MATRICES	
 

Realistic simulations were used to evaluate the performance of each method for de novo extraction 

followed by a classification step in which the extracted signatures are assigned to the most similar 

COSMIC signature.  

Figures III.5 and III.6, respectively show the specificity and sensitivity of such two-stage procedure as 

functions of the number of samples 2 in each catalogue and the cosine similarity cut-off ℎ, while Figures 

III.7 and III.8 show the specificity and sensitivity as functions of the number of mutations in each 

catalogue and ℎ.  

We do not see very large differences in the tools’ specificity with respect to the number of samples 

(Figure III.5). For Profiles 2, 3 and 4 the specificity of all methods is close to 1 even for small sample 

sizes, while for Profile 1, that is characterised by small contributions from several signatures (Figure 

25), the specificity is close to 1 starting from 50 samples. The sensitivity of most of the algorithms 

increases with the sample size (Figure III.6) and this trend is more evident for Profile 1. Methods based 

on NMF (maftools, SomaticSignatures, mutSignatures) have lower sensitivity, while methods based on 

probabilistic models perform better, with the notable exception of signeR. Most of the differences 

between tools are observed for Profile 4, with some methods (Emu, bayesNMF, pmisignature) having a 

sensitivity close to 1 and the others having lower and more variable sensitivities.  
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Figure III.5.  Simulation study: specificity of extraction methods and mapping on COSMIC 
signatures as the number of analyzed catalogues and the cosine cut-off h vary.  

 

Specificity is estimated from 50 replicates each made of 2 genomes. The average number of mutations 

in each catalogue is < = 10,000. The model used to simulate realistic replicates according to the four 

Profiles and the estimation methods are described in the section Data and experimental settings. 
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Figure III.6. Simulation study: sensitivity of extraction methods and mapping on COSMIC 
signatures as the number of analyzed catalogues and the cosine cut-off h vary.  

 

Sensitivity is estimated from 50 replicates each made of 2 genomes. The average number of mutations 

in each catalogue is < = 10,000. The model used to simulate realistic replicates according to the four 

Profiles and the estimation methods are described in the section Data and experimental settings. 
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Specificity increases with the average number of mutations (Figure III.7). For Profiles 2,3 and 4 it is 

close to 1 starting from as low as 1000 mutations, while for Profile 1 it is only for at least 10,000 

mutations that we observe a specificity close to 1 for most of the methods, with the notable exception 

of bayesNMF that performs well even for lower numbers of mutations. Sensitivity increases with the 

average number of mutations with a large variability according to the cancer profile and method (Figure 

III.8). Sensitivity is high for cancer profiles characterized by one predominant signature (Profiles 3 and 

4) or two strong signatures (Profile 2) but may become relatively low for datasets characterized by small 

contributions by several signatures (Profiles 1). This indicates that signatures that act together with other 

signatures and have small effects may be more difficult to identify. 

Specificity and sensitivity slightly deteriorate for higher cut-off values. This is expected because by 

setting a higher cut-off, the number of found signatures that are not similar enough to COSMIC 

signatures increases. Because these estimated signatures are considered as novel, they are false positives 

(that is found signatures not used for simulations), leading to a greater number of false positives and 

therefore to a lower specificity. Moreover, if the cut-off is too stringent, the number of false negatives 

will be high because some signatures used for the simulations are correctly found but do not score a high 

enough cosine similarity and therefore count as false negatives. This will make the resulting sensitivity 

low. 
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Figure III.7.  Simulation study: specificity of extraction methods and mapping on COSMIC 
signatures as the average number of mutations and the cosine cut-off h vary.  

 

Specificity is estimated from 50 replicates each made of 2 = 30 catalogues. The model used to simulate 

realistic replicates according to the four Profiles and the estimation methods are described in the section 

Data and experimental settings. 
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Figure III.8.  Simulation study: sensitivity of extraction methods and mapping on COSMIC 
signatures as the average number of mutations and the cosine cut-off h vary.  

 

Sensitivity is estimated from 50 replicates each made of 2 = 30 catalogues. The model used to simulate 

realistic replicates according to the four Profiles and the estimation methods are described in the section 

Data and experimental settings.   
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Methods were also evaluated with regards to running time. Figure III.9 show the running time when 

tools are applied to real lung datasets with a varying number of samples. While all methods show a fast-

growing running time with increasing number of samples, SomaticSignatures and maftools are much 

faster than the others for more than 100 samples, making it possible to analyse large number of samples 

in few seconds.  For example, for two hundred samples, the slowest method (signeR), the running time 

is 913.72s while for the fastest (maftools), the value is 5.97s. 

 

 

Figure III.9. Running times of de novo tools. Methods were applied to subsets of the TCGA Lung 
cohort of different sizes.  

The y-axis is in logarithmic scale. 

 

5.2 PERFORMANCE OF REFITTING TOOLS 
 

The distribution of the differences between the estimated and true contributions of all $ signatures 

%&3, … , %&HI  for the different refitting methods under evaluation is shown in Figure III.10. Sample 

catalogues were simulated mimicking Lung cancer profiles (Profile 3), with signatures 1,2,4,5,6, 13 and 

17 actually contributing as shown in Figure III.1. All methods give almost identical results. 

By comparison with the true exposure profile given in Figure III.10, it is clear that all refitting methods 

provide good estimates of the contributions of all but signatures 4,5 and, 17 and to a lesser extent 

signature 6. Moreover, all methods correctly estimate a zero contribution for signatures 3 and 16 even 

though these are very similar to signature 5, Figure I.7. 
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Figure III.10.  Simulation study: bias of the estimates of each signature contribution for several 
refitting methods.  
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For each signature, the bias estimates are obtained by averaging the exposure estimates across 50 

samples. Mean square errors, together with 95% confidence intervals, are reported on the top of each 

plot. Simulations were done according to the model described in the Data and experimental settings 

section. 

Interestingly, signatures 2 and 13 (both attributed to APOBEC activity) are in general well identified by 

all methods. This finding is in line with previous claims about the stability of these two signatures.    

In terms of running time, deconstructSigs and SignatureEstimation based on simulated annealing are 

more than two orders of magnitude slower than the other methods (Figure III.11).  All other methods 

run in a fraction of second. As expected, the running time increases linearly with the number of samples. 

MutationalCone, our custom implementation of the solution to the optimization problem solved by 

YAPSA and MutationalPatterns outperforms all other methods. The second fastest method is 

SignatureEstimation based on Quadratic Programing. As example, for two hundred samples, the 

execution time of deconstrucSigs is 86.148s and for MutationalCone is 0.028s. 

 

 

 
 
Figure III.11. Running times of refitting tools. Methods were applied to subsets of the TCGA 
Lung cohort of different sizes.  
 
The y-axis is in logarithmic scale. 
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6. CONCLUSION 
 

In this work, we complement and expand a recent review of the available methods to identify mutational 

signatures173 and we compare their performance using both real world TCGA data and simulated data. 

The results of the work presented in this chapter can lead to a better understanding of the strengths and 

limitations of each method as well as to the identification of the key parameters influencing their 

performance, namely the number of mutations and the “complexity” of the contributing signatures.  

 

We have demonstrated that it is mainly sensitivity and not as much specificity that significantly 

decreases when underlying signatures are more “complex”. An intuitive reason for this result is that a 

signature with low impact is difficult to detect and therefore will be wrongly considered as a “negative”; 

several such signatures will then imply a large number of false negatives, i.e. low sensitivity. Indeed, 

recent evidence shows that the majority of cancers harbor a large number of mutational signatures 21 and 

therefore belong to the latter scenario.  

 

With regards to the mutation number, we observe that with the number of mutations that could be found 

in some cancer exomes the performance is generally poor (i.e. low specificity and sensitivity). This 

problem is likely to be mitigated if counts were normalized by the expected number of each type’s 

trinucleotides in the analyzed region under healthy condition, that is if an opportunity matrix was 

provided. We do not address this important aspect in our comparison study as only a few methods can 

incorporate opportunity matrices.  

 

Additionally, we showed that when comparing identified signatures with COSMIC signatures, the 

choice of a cosine similarity cut-off has a relatively small impact on the overall performance. If the aim 

is to identify novel signatures it would be preferable to choose a lower value (0.75 or less). On the 

contrary, if the aim is to assess the presence of known signatures in mutational catalogues (cancer 

genomes or exomes), we recommend turning to refitting methods. For well-studied cancers, refitting 

approaches are a faster and more powerful alternative to de novo methods, even with just one input 

sample. As the COSMIC database has been built and validated by analyzing tens of thousands of 

sequences of most cancer types, we recommend borrowing strength from previous studies and using 

refitting tools when performing standard analysis not aimed at the discovery of new signatures.   

 

Our simulation study seems to indicate that de novo probabilistic methods EMu and bayesNMF have an 

overall better performance as they achieve better sensitivity and specificity with a fair running time. 

However, in order to assess the robustness of new results, due to the variability of outcomes and the 



 

 
114 

presence of hypermutated samples, we recommend to systematically perform a sensitivity analysis based 

on the application of one or more alternative methods based on different algorithms. 

 

Our analysis also reveals that if the dataset under consideration contains catalogues with a very large 

number of mutations, all methods achieve better performance by replacing such outliers with the 

bayesNMF pre-treatment function get. lego96.hyper. Interestingly, the mutation profiles of the synthetic 

datasets simulated with our ZIP model resemble the profiles of datasets after such pre-treatment   

 

Not all the de novo methods we evaluated offer the possibility to automatically choose the number of 

signatures to be found. For instance, the popular SomaticSignatures only provides a graphical 

visualization of the residual sum of squares for several choices of the number of signatures; the user can 

choose the optimal number by identifying the inflexion point. For this reason, we did not address this 

crucial aspect in our empirical assessment. Similarly, we only considered mutation types defined by the 

trinucleotide motifs, as currently only pmsignature153 can consider more than one flanking base on each 

side of the substitution. 

 

Finally, we  introduced a new simulation model based on the zero-inflated Poisson distribution that 

allows for sparse contribution of signatures and thus makes it possible to build mutation count data that 

are more realistic than the pure Poisson model previously considered13,151.  
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CHAPTER IV:  

A S S O C I A T I O N  B E T W E E N  P E R S I S T E N T  
O R G A N I C  P O L L U T A N T S  A N D  D N A  

M E T H Y L A T I O N  
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As previously described in Chapter I, PFASs and BFRs have been classified as POPs for their tendency 

to be extremely stable and persistent in the environment, having long half-lives in soils, sediments, air, 

or biota61. Human exposure to PFASs and BFRs is mainly attributable to the diet and in particular to 

foods of animal origin. Overall, diet accounts for over 90% of a person’s POPs body burden and Human 

Biomonitoring (HBM) studies have revealed that PFASs and BFRs are ubiquitously present in the blood 

of populations of Western countries174,175. 

Emerging evidence suggests that exposure to EDCs can influence epigenetic changes such as DNA 

methylation. However, this evidence is mainly based on studies of exposure to compounds such as 

phthalates or bisphenol A, and very few studies are available on the epigenetic effects of exposure to 

PFASs and BFRs.  In addition, most of them investigated effects on global DNA methylation while 

studies focusing on specific genomic regions and single CpGs are lacking. 

In this chapter, using data from a French prospective cohort, we aimed to determine in which way DNA 

methylation could be used as a biomarker of exposure to BFRs or PFASs. For each pollutant, estimation 

from dietary exposure and measure of circulating levels in blood were explored. 
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1. MATERIALS: THE E3N PROSPECTIVE COHORT 

1.1 PRESENTATION OF THE COHORT 
 
E3N, the Étude Épidémiologique auprès de femmes de la Mutuelle Générale de l’Éducation Nationale 

(MGEN) is an ongoing French prospective cohort study investigating risk factors (lifestyle, nutritional, 

hormonal and genetics) associated with health outcomes (cancer or non-communicable diseases) in 

women. This cohort is run by the INSERM (National Institute for Health and Medical Research) “Health 

across generations” team at the Gustave Roussy Institute in Villejuif, France.  

 

E3N started in 1990 and involves around 98.995 French women born between 1925 and 1950, who were 

living in metropolitan France at inclusion and were insured by the MGEN, a national health insurance 

scheme for workers in the French education system, a large part of whom are teachers. At the time of 

its creation in 1990, it was the largest epidemiological cohort study in France. In 1993 it joined other 

European cohorts to establish the European Prospective Investigation into Cancer and Nutrition (EPIC) 

study, a consortium of prospective cohort studies coordinated by the International Agency for Research 

on Cancer (IARC) of which E3N became the French component. The aim of EPIC is to investigate the 

relationship between the diet, lifestyle, nutritional and metabolic characteristics on cancer and other 

chronic diseases. 

 

Initiated by Dr Françoise Clavel-Chapelon, the E3N study received ethical approval from the The French 

National Commission for Computed Data and Individual Freedom (Commission Nationale Informatique 

et Libertés, CNIL). 

 

1.2 EPIDEMIOLOGICAL DATA COLLECTED IN E3N 
	
1.2.1	DATA	COLLECTION	
 
During the inclusion phase to establish the cohort, between January 1989 and 1990, 500 000 women 

were invited to join in the study and 20% of them agreed to participate by signing an informed consent 

and completing a baseline questionnaire. The date of completion of the baseline questionnaire as 

indicated by the participants was considered as the date of recruitment. 

 

Since then the cohort has been followed-up through self-administered questionnaires sent approximately 

every two years. Up to 2018, twelve questionnaires have been sent to the E3N women (Figure IV.1). 

The questionnaires include questions on anthropometry (e.g. weight, height, waist circumference), 

lifestyle (e.g. tobacco and alcohol consumption), socio-demographic factors (educational level, 

profession), hormonal factors (e.g. age at menarche and at menopause, use of hormone replacement 
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therapy or oral contraceptives), reproductive factors (e.g. age at first birth and parity), family history of 

cancer, use of various medications as well as questions on personal history of various diseases (e.g. 

cancer, myocardial infarction, stroke and others). Several questions on menopause, anthropometry and 

tobacco smoking, and about the diagnosis of cancer and other diseases were repeated for each 

questionnaire.  

 

Between 1994 and 1999, a biological bank was created with the collection of blood samples donated by 

approximately 25 000 E3N participants while between 2009 and 2011, about 47 000 saliva samples were 

further collected from women who had not donated blood samples in order to have the possibility to 

perform genotyping of around three quarters of the entire cohort 
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Figure IV.1. Calendar of self-administrated questionnaires in E3N 
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1.2.2	DIETARY	QUESTIONNAIRE	
 

In E3N, detailed information on dietary habits was collected twice through two extensive food frequency 

questionnaires for the third and eight follow-ups (Q3, in 1998 and Q8 in 2005). The two questionnaires 

included respectively 238 questions on frequency of consumption of specific foods, selected on the basis 

of the French meal pattern.  

 

The first food frequency questionnaire (FFQ) was sent to 93 055 women and had a response of 82% 

(76 208) while the second was sent to 93 121 women with a response of 77% (71 788). For each FFQ, 

questions concerned foods and drinks across eight consumption occasions from breakfast to after-dinner 

snacks and were designed to assess the habitual diet of the previous year. 

 

The questionnaire was structured into two parts with the first one related to the quantification of food 

consumption and the second one describing the qualitative aspects of different food items within each 

food group. Based on 66 food groups, the quantitative section described the habitual frequency and 

portion sizes consumed using an album including 42 food groups while the rest were estimated in natural 

units (e.g. number of eggs, tablespoons). 

 

The second part of the questionnaire contained qualitative questions concerning food items within each 

food group listed in the first part of the questionnaire with study subjects asked to score their relative 

consumption frequency (never, 1-3 times/month or 1-7 times/week) for each food item within the group.  

 

1.2.3	THE	E3N-TDS2	DATABASE	ON	INDIVIDUAL	EXPOSURE	TO	CONTAMINANTS	
 

The Second French Total Diet Study (TDS2), conducted in 2006 by the French Agency for Food, 

Environmental, and Occupational Health (ANSES), assessed exposure to more than 400 contaminants 

in a large number of foods representative of the French diet in order to assess the risks of exposure to 

chemical substances in relation to public health. Another main objective of the study was to provide 

scientific information that would enable authorities to control and regulate chemical products and the 

safety of food product
176

. Briefly, data on consumption trends and eating habits from the second French 

individual food consumption survey (INCA2) as well as data from a 2004 purchase panel of French 

households (SECODIP) were used to identify the core foods to be sampled.  

Finally, 186 core foods on a national scale and 70 core foods on a regional scale were selected according 

to (1) consumption data for adults and children, (2) their consumer rates, and (3) contribution 

to exposure to one or more contaminants of interest
176

. 

 

Thus, between 2007 and 2009, in eight greater regions of the French metropolitan territory, a total of 20 

280 different food products were purchased to make up the 1352 composite samples of core foods to be 
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analyzed for additives, environmental contaminants, pesticide residues, trace elements and minerals, 

mycotoxins and acrylamide. A total of 445 different chemical were analyzed in the food samples and 

results of the study are publicly available online (data.gouv.fr). 

 

To estimate the individual dietary exposure to chemical substances for each E3N participant, food items 

reported in the TDS2 study have been matched to those of the E3N food questionnaire leading to the 

E3N-TDS2 database (Mancini and colleagues, paper in progress). 

Individual estimates of dietary exposure to BFRs and PFASs for each E3N participant were available 

from previous work coordinated by Francesca Mancini
76

 in the context of research programs on type 2 

diabetes and hormone-related cancer (e.g. project ED-Cancer funded by INSERM Plan Cancer).  In 

brief, estimates of consumption of each food item obtained through the first E3N food frequency 

questionnaire were coupled with data from the ANSES survey of levels of BFRs and PFAS measured 

in the corresponding food item. 

 

Estimation of dietary exposures to BFRs and PFASs in E3N cohort was based on data from the dietary 

questionnaire completed by E3N participants in 1993. The validity and reproducibility of the 

questionnaire have been previously described by van Liere and colleagues
177

 and was designed to 

estimate food consumption over the previous year for a set of 238 food items consumed on eight 

occasions from breakfast to dinner snack.  

 

Through the merging of the E3N food frequency questionnaire and the TDS2 contamination database a 

E3N-TDS2 database has been created which allowed to estimate the individual dietary exposure to 

HBCDs congeners (HBCDalpha, HBCDbeta and HBCDgamma), PBDEs congeners (BDE-47, BDE-

99, BDE-100, BDE-153, BDE-154, BDE-183 and BDE-209), PFOA and PFOS for each woman in E3N 

cohort.  

For food items with values of contamination below the Limit Of Detection (LOD), a value of ½ LOD 

was assigned and exposure estimates used for our analyses is expressed in ng/kg body weight (BW)/day.  
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1.3 MEASUREMENT OF CIRCULATING LEVELS OF BFRS AND PFASS 

 

In addition to the estimates of dietary exposure to BFRs and PFASs obtained for all E3N cohort 

participants that completed the food frequency questionnaire, circulating levels of BFRs and PFAS were 

measured in a case-control study of 200 breast cancer cases and 200 controls nested within E3N using 

blood samples. 

 

1.3.1	DESIGN	OF	THE	CASE-CONTROL	STUDY	
 

For the nested case-control study on breast cancer, only women that provided blood samples, filled the 

dietary questionnaire (Q3), and participated in the follow-up after blood collection were considered. 

Those with any type of prevalent cancer at Q3 and missing values for matching criteria (such as age, 

BMI, menopausal status) were excluded. Women diagnosed with breast cancer (both in situ or invasive) 

after 1993 (Q3) and up to the end of 2014 (Q11) who donated a blood sample were considered as cases. 

Controls were selected from women without a diagnosis of cancer at the date of diagnosis of the 

corresponding case.  

 

Finally, a total of 197 case-control pairs nested within the E3N cohort were matched on age at blood 

collection (± 2 and 3 years) , BMI (< vs. ≥ 25kg/m²), menopausal status, date (± 3 months) and 

department of residence at blood collection (grouping of 75, 77, 78, 91, 92, 93, 94, 95 / 10, 89 / 01, 73, 

74 / 42, 43 / 27, 76 / 02, 60 / 13, 30, 84). 

 

 

1.3.2	CIRCULATING	LEVELS	OF	BFRS	
 

Circulating levels of BFRs for the 197 breast cancer cases and 197 controls in E3N have been measured 

in plasma samples by the LABERCA laboratory (Oniris Nantes, FRANCE). Methodologies applied to 

isolate, detect, and quantify the PBDE congeners (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, 

BDE-154) and PBB-153 have been described by Cariou and colleagues
178

. In summary, plasma samples 

were first submitted to a liquid/liquid extraction with pentane and the resulting extracts were weighed 

to measure fat content using an enzymatic method (Biolabo; Maizy, France) before reconstitution in 

hexane for further purification. Then, determinations were performed using gas chromatography 

(Agilent 7890A) coupled to high-resolution mass spectrometry (GC-HRMS) on double sector 

instruments (JEOL MS 700D and 800D) after electron impact ionization (70 eV), operating at 10 000 

resolutions (10% valley) and in the single ion monitoring (SIM) acquisition mode. Finally, as describe 

by Akins and colleagues, the total plasma lipid (TPL) levels were calculated by combining the 

concentration of phospholipids (PHO), triacylglycerides (TAG), total cholesterol (t.CHO) and free 

cholesterol (f.CHO) as follows: TPL=1.677*(t.CHO-f.CHO)+f.CHO+TAG+PHO)
179

.  

All the analyses have been conducted in an ISO 17025:2005 accredited laboratory. 
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For BDE-47, BDE-99, BDE-100, BDE-153, PBB-153, all samples have been quantified – i.e. none was 

below the LOD. For those samples for which levels were below the LOD (1 sample for BDE-28 and 99 

samples for BDE-154) the measure has been replaced by ½ LOD. 

 

1.3.3	CIRCULATING	LEVELS	OF	PFASS	
 

Circulating levels of PFOA and PFOS for 388 women in the breast cancer case-control study nested in 

E3N have been measured in serum samples using liquid chromatography coupled to tandem mass 

spectrometry (LC–MS/MS) as detailed in a previous publication
94

.  

Briefly, the quantification was achieved according to the isotopic dilution method (i.e., using 
13

C labeled 

analogous as internal standards) and the lipid content was determined with enzymatic kits (Biolabo, 

Maizy, France) independently for phospholipids (PL), triglycerides (TG), total cholesterol (TC) and free 

cholesterol (FC). Total serum lipids (TSL) were estimated using the Akins and colleague’s formula as 

described in the previous section. 

All the protocol wad based on a fully validated (2002/657/CE decision) and accredited methods (ISO 

17025 standard) and all samples had levels above the LOD. 

 

1.4 ASSESSING DNA METHYLATION IN E3N 

 

In the same breast cancer case-control study in which circulating levels of BFRs and PFAS were 

measured, the Illumina® Infinium HumanMethylation EPIC array on DNA extracted from buffy coat 

samples were used to assess DNA methylation at more than 850 000 CpG sites across the genome.  

DNA extraction, bisulfite conversion of the extracted DNA, quality control analyses, the running of the 

methylation assays as well as the methylation data pre-processing were performed at the Italian Institute 

of Genomic Medicine (IIGM) in Turin, Italy according to manufacturers’ protocols and procedures 

developed by IIGM for previous studies on DNA methylation
180,181

. 

 

Genomic DNA was extracted from buffy coats using the QIAsymphony DNA Midi Kit (Qiagen, Hilden, 

Germany). Five hundred nanograms (1 microgram for a few samples) of DNA were bisulphite-converted 

using the EZ-96 DNA Methylation-Gold™ Kit (Zymo, California, USA) and hybridized to Infinium 

Human Methylation EPIC BeadChips (Illumina, California, USA). Each chip was subsequently scanned 

using the Illumina HiScanSQ system, and sample quality was assessed using control probes on the 

microarrays. Raw intensity data were finally exported from Illumina GenomeStudio (version 2011.1). 

Samples were distributed into 96-well plates and processed in chips of 12 arrays (8 chips per plate) with 

case–control pairs arranged randomly on the same chip. 
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Data pre-processing was carried out using an in-house software written for the R statistical computing 

environment
180

. 

 

For each sample and each probe, measurements were set to missing if obtained by averaging intensities 

over less than three beads, or if averaged intensities were below detection thresholds estimated from 

negative control probes. Background subtraction (to remove background noise) and dye bias correction 

(for probes using the Infinium II design) were also performed. The resulting subset of 867 867 CpG loci 

was selected for further analyses, and among these, probes with missing values in more than 5% of the 

samples were excluded from the analyses, leaving 805 837 probes. Samples with more than 5% of non-

detected probes were also excluded from the analysis. The final dataset included one hundred and sixty-

eight case-control pairs the passed the pre-processing step for which and included methylation measures 

for 805 837 CpGs. 
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2. STATISTICAL ANALYSES 

 

Statistical analyses were based on the objectives described in Chapter I and were performed using the R 

3.5.X software. 

2.1. DESCRIPTIVE STATISTICS 

 

2.1.1	MEDIAN,	FREQUENCY	AND	OTHER	BASICS	STATISTICS	
 

For the description of the study samples, basic statistics were used such as frequency, mean, standard 

deviation (SD), and median value. In all analyses presented in this chapter, independent variables (e.g. 

levels of exposure to BFRs and PFAS) were categorical and chi-square tests were used in order to 

compare some characteristics of the participants, which helped identify potential confounding factors to 

be considered in further analyses. 

 

 

2.1.2	QUANTILE-QUANTILE	PLOT	

The quantile-quantile (Q-Q) plot is graphical technique generally used to determine if two data sets 

come from populations with a common distribution. It is a scatterplot created by plotting two sets of 

quantiles against one another. If both sets of quantiles came from the same distribution, the points will 

form a line that’s roughly straight.  

 

2.2 ASSOCIATION MEASURES 

Linear mixed models (LME) are an extension of the simple linear model to allow for the inclusion of 

both fixed and random effects that contribute linearly to the response function. Such models are 

particularly useful when there is non-independence in the data as it is the case for the DNA methylation 

measures that may vary according to technical factors such as chip and plate that are hierarchically 

organized (Figure IV.2).  
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Figure IV.2. Organization of chips within plate 

Lme have been widely used in many research areas, especially in the area of psychometrics, sociology 

and biomedical research, to analyze longitudinal and clustered data. Like other statistical models, these 

models describe a relationship between a response variable and some regressors that have been measured 

or observed along with the response.  

2.2.1	FIXED	VS.	RANDOM	EFFECTS	
 

The core of mixed models is that they incorporate both fixed and random effects. Fixed effects are 

variables that we are particularly interested in as we expect they will have an effect on the 

dependent/response variable. In our case, we are interested in making conclusions about whether POPs 

are associated with DNA methylation and therefore POPs will be considered as fixed effect variables.  

 

Random effects are usually grouping factors for which we are trying to control as we know they may 

impact on the outcome but in which, in general, we are not particularly interested. 

 

For example, for the methylation analyses in our study, DNA samples were placed on four plates and, 

as expected, the measured levels of methylation appear to be quite different across plates, especially 

between plates 1-2 and 3-4. Variation across plates is often observed in studies based on methylation 

arrays for various reasons (e.g. in our study for the last two plates 1µg of DNA was used instead of 

500ng). However, since beta-values are a ratio between the methylated signal and the total signal this is 

unlikely to influence the results. Plate is therefore considered as a random effect, and as they may contain 

up to 96 samples in a same experiment, the sample position within the plate is also considered as a 

nested random effect.  

Chip position Chip barcode

Plate
Sam

ple
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Indeed, different random effects can be crossed or nested according to their relationship. For example, 

if the observations are grouped by a factor g2, which is nested within another factor g1, then the third 

formula in Table IV.1 can be used to model variation in the intercept with the lme4 R package, while if 

the data are grouped by fully crossing two factors, g1 and g2, then the fourth formula in Table IV.1 may 

be used. 

 

Table IV.1. Examples of random effects mixed-effects model formulas used in the lme4 R package.  
Adopted from Bates and colleagues182 
 

The names of grouping factors are denoted g, g1, and g2, and covariates and a priori known offsets as x 

and o. 

Formula Alternative Meaning 
(1 | g) 1 + (1 | g) Random intercept with fixed 

mean 

0 + offset(o) + (1 | g) -1 + offset(o) + (1 | g) Random intercept with a priori 

means 

(1 | g1/g2) (1 | g1) +(1 | g1: g2) Intercept varying among g1 and 

g2 within g1 

(1 | g1) + (1 | g2) 1 + (1 | g1) + (1 | g2) Intercept varying among g1 and 

g2 

x + (x | g) 1 + x + (1 + x | g) Correlated random intercept 

and slope 

x + (x || g) 1 + x + (1 | g) + (0 + x | g) Uncorrelated random intercept 

and slope 

 

 

2.2.2	MATHEMATICAL	DEFINITION	OF	A	LINEAR	MIXED	EFFECTS	MODELS	
 

For each probe, we considered mixed-effect models of the type 

!"#$ = α + β)*"#$
) + β+*"#$

+ + ⋯β-*"#$
- + .#$ + .$ + ϵ"#$ 

Where 

è !"#$ is the methylation level of individual 0 whose sample has been analyzed on chip 1 of 

plate 2. 

è *"#$)  is the EDCs level of individual 012; similarly, *"#$
+ , … , *"#$

-
 are the values of the other 

fixed effects for this individual (age, BMI, etc)   

è β), … , β-are the coefficients of the fixed effects. α is the fixed intercept. 

è .#$ is the random intercept effect accounting for the average methylation level of chip 1 in 

plate 2. .$ is the random intercept effect accounting for the average methylation level of 

plate 2.  

è ϵ"#$ is the random error of individual 012
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The hypothesis in the model are: 

- .#$ ∼ 6(0, 9+) for each 12 

- .# ∼ 6(0, ;+) for each 1 

- <"#$ ∼ 6(0, =+) for each 012 

- .#$and .#and <"#$uncorrelated. 

 

We remind that because there are 4 plates, with 8 chips each, and each chip carries 12 samples, in 

principle we have 2 ∈ {1,4, } 1 ∈ {1, … ,8},  2 ∈ {1,… ,12}. 

We fitted the model above with the formula:  

 

DNA methylation ~ ED + Covariates (Age, BMI, etc.), random=~1|Plate/Chip 

where the random term (~1|Plate/Chip) allows us to control batch effects (source experimental 

variability) by means of a random intercept with two levels of clustering. 

 

2.2.3	STATISTICAL	MODELING	
 

For the present work, only data from the controls (women that have not been diagnosed at the date of 

diagnosis of the matched case) have been analyzed because they are more representative of the full 

cohort and to avoid selection bias due to conditioning on the case-control status (a colliding variable).  

We assessed the association between dietary exposure and circulating levels of BFRs and PFAS with 

DNA methylation levels both at the global level, in specific genomic regions and for each CpG site 

independently. For each CpG, we computed β-values, that represent the ratio of the methylated probe 

intensity over the overall intensity (sum of methylated and unmethylated probe intensities). The M-

values were then calculated as log2[β-value/(1–β-value)] and used as dependent variables in the 

regression model
183

. Global methylation was defined as the mean of M-values across all CpG sites across 

all the genome. Additionally, methylation levels were computed by genomic region defined according 

to the CpG position (e.g. in CpG Island/Shore or Shelf/Other and according to genomic regulatory 

features – i.e. in promoter regions or outside them).  

Further details on the statistical methods and study populations related to the specific investigations 

performed will be described in the corresponding relevant sections. 

 

 

2.2.4	FALSE	DISCOVERY	RATE	
 

In modern omics research, tens of thousands of tests are conducted simultaneously, increasing the 

likelihood of obtaining false positives. Several statistical techniques have been developed to prevent this 
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multiple testing problem, controlling for different types of errors, including the Family Wise Error Rate 

(FWER) and the False Discovery Rate. 

 In omics association studies, the FDR, defined as the expected proportion of false positives among all 

rejections of the null hypothesis is often preferred over the FWER, the probability to obtain at least one 

false positive, because it leads to less conservative decision rules.  

According to the Benjamini and Hochberg procedure
184

, the FDR can be controlled at the desired level 

a  by adjusting each test p-value as follows: 

- order all p-values in ascending order F()) ≤ F(+) ≤ ⋯F(H), where I is the number of tests 

- define the adjusted p-value 

F(")
JK =

F(")
0
m 

By rejecting all the null hypothesis from tests having adjusted p-values less than a, the FDR is controlled 

at the threshold a. Note that the Bonferroni correction for the control of the FWER is less conservative 

than the Benjami-Hochberg procedure because FJMNO = FI > FJK. We controlled the FDR at the 

threshold α = 	0.05	by computing BH adjusted p-values with the p. adjust function in the stats R 

package. 

 

2.2.5	MISSING	DATA	
 

When data for a variable were missing in less than 5% of samples, missing values were imputed 

to the modal category of the variable. For missing variables collected through several 

questionnaires within the E3N cohort, imputation is performed using information provided in 

the previous questionnaire.  

 

2.3 GENE SET ENRICHMENT ANALYSIS 

	
2.3.1	OVERVIEW	
 

Gene Set Enrichment Analysis
185

 (GSEA) is a computational method that determines whether an a priori 

defined set of genes shows statistically significant, concordant differences between a biological state 

(e.g. a alternative phenotype) or correlation with a quantitative “phenotype” (e.g. BFRs levels). 

 GSEA produces a ranked list of genes sets based on an enrichment score. The GSEA method can 

be summarized as follows: 

 

è For each gene in the full list, the difference between its average methylation levels 

according to the categories of a categorical variable (e.g. case/control phenotype) is 

measured through appropriate test statistics (usually Kolmogorov-Smirnov-like 
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statistics). If the association of interest is with a continuous “phenotype” (e.g. BFR 

level) its correlation with the average methylation level of each gene is calculated.  

 

è For each gene set, an enrichment score (ES) is computed by walking down the full list 

of genes, increasing a running-sum statistic when a gene is in the set and decreasing it 

for genes not in the set. 

 

è The significance level of the ES (nominal p-value) is assessed using an empirical test 

based on the permutations of the “phenotype” variable. This allows to simulate the null 

distribution of the ES while preserving the complex structure of the methylation data.  

 

è P-values are adjusted for multiple hypothesis testing. The ES of each gene set is first 

normalized to account for the size of the set, yielding a normalized enrichment score (NES). 

The proportion of false positives is controlled by calculating the FDR corresponding to each 

NES, the so-called Q-value (in this context, the FDR is the estimated probability that a set 

with a given NES represents a false discovery. Q-values are estimated using a method that 

improves the Benjamini-Hochberg procedure, by comparing the tails of the observed and 

null distributions for the NES). 

 

In its standard procedure, if more than one beta-value is associated with a gene name, the median 

methylation is used. Differential methylation with respect to quantitative “phenotypes” is 

determined using Pearson correlation.  

 

In this context, an FDR of 0.25 or 0.3 is generally used rather than the more classic 0.05. An FDR of 

25% indicates that the result is likely to be valid 3 out of 4 times, which is reasonable in the setting of 

exploratory discovery where one is interested in finding candidate hypothesis to be further validated as 

a result of future research. Given the lack of coherence in most expression datasets and the relatively 

small number of gene sets being analyzed, using a more stringent FDR cutoff may lead you to overlook 

potentially significant results.  

 

2.3.2	THE	MOLECULAR	SIGNATURE	DATABASE	
 

The Molecular Signatures Database
186

 (MSigDB) is a collection of annotated gene sets for use with 

GSEA software. The last version v7.0 updated in August 2019 include 22596 gene sets in the Molecular 

Signatures Database (MSigDB) are divided into 8 major collections, and several sub-collections 

(Appendix 3).  
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3. METHYLATION SIGNATURES OF BROMINATED FLAME 

RETARDANTS 

3.1 APPROACHES 

 

3.1.1	ASSOCIATION	BETWEEN	DIETARY	EXPOSURE	TO	BFRS	AND	DNA	METHYLATION	

In this analysis, women with aberrant energy intake (e.g. 1% and 99% extremes of the energy 

intake/energy expenditure ratio) were excluded (n=6). Basal metabolic rate (BMR), based on age, sex 

and weight (self-reported in kg), multiplied by 1.55 was used to estimate a woman's energy intake. Then, 

our final dataset for the association between dietary exposure to BFRs and methylation M-values 

consisted of a subset of 162 women with methylation data on 805.837 CpGs. 

We explored the association between dietary exposure to BFRs and DNA methylation (PBDEs, HBCDs 

and each congener independently) through linear mixed-effects models with DNA methylation as 

dependent variable (either global methylation, or “regional” methylation or single probes), quartiles of 

BFRs as explanatory variable and plate and chips as random effects. Additionally, models were fitted 

with adjustment for age at blood collection (categorical, below or above the median), parity and total 

breastfeeding duration (no children or no breastfeeding, at least 1 child and ≤6 months breastfeeding, at 

least 1 child and >6 months breastfeeding), BMI (£25 kg/m
2
,>25 kg/m

2
) and adherence scores to the 

healthy dietary pattern and the Western dietary pattern (as categorical variables, below or above the 

median) both derived from principal components analysis (PCA), as previously described by Edefonti 

and colleagues
187

. 

 

The exposure to BFRs estimated from food, was obtained on the basis of the dietary history of women 

in the cohort over the previous year through the response to the dietary questionnaires. Dietary patterns 

are potential confounders because they are associated with both "exposure" to BFRs (or rather the proxy 

used in our analyzes, which is calculated precisely from diet), and potentially methylation. For this 

reason, we adjust for dietary patterns. 

 

3.1.2	ASSOCIATION	BETWEEN	CIRCULATING	LEVELS	OF	BFRS	AND	DNA	METHYLATION	
 

For the analyses of BFRs (PBDEs congeners: BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-

183 and BDE-209) blood levels, that we conducted separately to the analyses of dietary exposure to 

BFRs, data were available for a slightly larger sample of women (N=168). For such analyses we used 

models similar to those used for the analyses of dietary exposure with the exception that adherence 

scores to the healthy dietary pattern and the Western dietary pattern were not included in the models 

adjusted for the covariates. 
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3.1.3	ENRICHMENT	ANALYSIS	

To determine whether any gene set or biological pathway is overrepresented in the list of genes whose 

DNA methylation are associated with circulating levels or dietary exposure to BFRs, we performed two 

separate gene set enrichment analyses
185

: (1) genes near CpG sites located in promoter region in which 

the association between circulating levels of BFRs and CpG site methylation levels are significant 

(unadjusted p-value < 5%) and (2) genes near CpG sites located in promoter region in which the 

association between dietary exposure to BFRs and CpG site methylation levels are significant 

(unadjusted p-value < 5%).  

In the present study, we conducted GSEA analysis using GSEA_4.0.1 and the hallmark gene set
188

 v7.0 

processed in the MSigDB database, which is a collection of 50 gene sets that represent specific and well-

defined biological states or processes and display coherent expression. 

The enrichment would be considered ‘significant’ when the FDR<0.3. GSEA’s parameters of 

“Enrichment statistic” was set to the “classic” item, and the parameter of “Metric for ranking genes” 

was set to “Pearson”. 1000 permutations were carried out to evaluate the FDR and the p-value of the 

enrichment score with permutation type set to the “gene_set”.  

Description of gene sets identified in these analyses are available in Appendix 4. 

3.2 FINDINGS 

	
3.2.1	BASELINE	CHARACTERISTICS	OF	THE	STUDY	POPULATION	
 

The baseline characteristics of the study participants are summarized in Table IV.2. To study the 

association between BFRs and methylation of DNA from blood, data were available from 168 women 

for circulating levels of BFRs and from 162 women for the dietary exposure to these compounds. 

Median age of the study participants was 56.1 years and most of them had a healthy body mass index 

with only one quarter of them being overweight or obese. About 43% of them are nulliparous or never 

breastfed, 40% had at least one child but breastfed for less than 6 months and 17% had breastfed for 

more than 6 months. 

From the detailed data from the food frequency questionnaire completed in 1993, between 2 and 5 years 

before the blood collection, dietary patterns were identified including a “healthy” dietary pattern and a 

“Western” dietary pattern
189

. In our study population around half of the women had a “healthy” diet and 

half adhered to a Western diet with a small overlap between the two groups.   
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Table IV.2. Baseline characteristics of the study population 

 

 BFRs Circulating 
levels 

(N = 168) 

Dietary exposure 
to BFRs 

(N = 162) 
   
Age (%)   

      <56.1 83 (49.4) 79 (48.8) 
      >56.1 85 (50.6) 83 (51.2) 

Body Mass Index (%)   
      <25 124 (73.8) 121 (74.7) 
      >25 44 (26.2) 41 (25.3) 

Score of adherence to the healthy dietary pattern (%)   
      Above median  88 (54.3) 
      Below median  74 (45.7) 

Score of adherence to the Western dietary pattern (%)   
      Above median  81 (50.0) 
      Below median  81 (50.0) 

Parity and total breastfeeding duration (%)   
      Nulliparous or never breastfeed 73 (43.5) 70 (43.2) 
      Parous and breastfeed for less than 6 months 68 (40.5) 65 (40.1) 
      Parous and breastfeed for more than 6 months 27 (16.1) 27 (16.7) 

The levels of dietary exposure to BFRs estimated in our study population are presented in Table IV.3. 

For PBDEs congeners, the highest dietary exposure is due to BDE-47 and BDE-209 with minimum and 

maximum daily intakes for these congeners ranging from 0.038 to 0.445 ng/kg BW/day and from 0.1 to 

0.823 ng/kg BW/day.  

Consistently with the estimated dietary exposures, BDE-47 is also the predominant PBDE congener in 

terms of plasma concentrations with a median concentration of 0.588 ng/g of lipids and a large variation 

in levels across women (min-max: 0.17 to 10.984 ng/g of lipids).  The plasma concentrations of BDE-

209 were not measured. Another PBDE that we observe in high concentrations in plasma is BDE-153 

for which, on the contrary, the estimated dietary exposure is relatively low (median 0.130 ng/kg 

BW/day, min-max: 0.004-0.032 ng/kg BW/day). For the only polybrominated biphenyl studied (PBB-

153), we find relatively high concentrations with a median level of 0.318 ng/g of lipids (min-max: 0.115 

and 10.936 ng/g of lipids).   
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Table IV.3. Distribution of BFRs concentrations in plasma (ng/g of lipids) and estimated dietary 
exposure to BFRs (ng/kg BW/day) in our study population (N=168 and N=162 respectively) 
 

BFRs compounds Circulating levels Estimated dietary exposures 
  Min. Median Mean Max. Min. Median Mean Max. 

HBCDalpha     
0.054 0.177 0.183 0.499 

HBCDbeta     
0.004 0.012 0.012 0.027 

HBCDgamma     
0.009 0.027 0.028 0.055 

BDE-28 0.006 0.039 0.057 0.567 0.001 0.006 0.007 0.030 

BDE-47 0.170 0.588 0.843 10.984 0.038 0.112 0.125 0.445 

BDE-99 0.036 0.133 0.201 4.116 0.017 0.048 0.049 0.109 

BDE-100 0.043 0.174 0.247 2.844 0.007 0.021 0.025 0.099 

BDE-153 0.219 0.535 0.582 2.317 0.004 0.013 0.014 0.032 

BDE-154 0.006 0.029 0.038 0.282 0.004 0.013 0.015 0.054 

BDE-183     
0.005 0.020 0.021 0.049 

BDE-209     
0.100 0.311 0.340 0.823 

PBDEs     
0.195 0.579 0.597 1.395 

HBCDs     
0.079 0.216 0.223 0.572 

PBB-153 0.115 0.318 0.431 10.936         

For hexabromocyclododecanes (HBCDs), dietary exposure was estimated for three congeners with a 

predominant exposure to the “alpha” congener (median 0.177 ng/kg BW/day, min-max: 0.054-0.499 

ng/kg BW/day). Circulating levels of HBCDs were not measured.  

When we compared the different congeners to evaluate their correlation (Figure IV.3) we found that for 

plasma concentrations most correlations are generally weak or moderate (between 0.3 and 0.8) with the 

exception of plasma concentrations of BDE-47 that are strongly correlated with BDE-99, BDE-100 and 

BDE-154 (correlations ³ 0.85) and for BDE-100 that is strongly correlated with BDE-154 (correlation 

= 0.85). The correlation between congeners is generally weak or moderate also for the estimates of 

dietary exposure (between 0.2 and 0.8) with some exceptions, notably between BDE-28, BDE-47, BDE-

100, and BDE-154 that are virtually perfectly correlated (correlations ³ 0.99). Interestingly enough, the 

latter very strong correlation is observed for their plasma concentrations only between BDE-47 and 

BDE-100 (correlation = 0.93) while between the other congeners correlations of their plasma 

concentrations are weaker (between 0.5 and 0.85).  
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Figure IV.3. Correlation between the different BFRs congeners for blood concentrations 
A) and estimated dietary exposure B) separately. 

 

Even more interestingly, when we compared dietary exposure estimates and measured circulating levels 

for the 6 PBDEs congeners for which both were available, we found that correlations between the two 

are very weak and not statistically significant (Table IV.4). 

 

Table IV.4. Correlations between dietary exposure estimates and circulating levels of PBDEs 
congeners (N=162) 
 

Circulating  
levels 

Dietary 
exposure 

Pearson 's correlation 

Estimates p-value 
BDE-28 BDE-28 0.063 0.421 
BDE-47 BDE-47 0.117 0.137 
BDE-99 BDE-99 0.087 0.267 

BDE-100 BDE-100 0.140 0.073 
BDE-153 BDE-153 0.147 0.061 
BDE-154 BDE-154 0.107 0.173 

 

 

3.2.2	EPIGENOME-WIDE	ASSOCIATION	STUDY:	BFRS	AND	METHYLATION	OF	BLOOD	DNA	
 

For the analyses of the association between BFRs and methylation levels of DNA from blood, we first 

estimated the association for each individual CpGs (N = 805 837) separately for the estimated dietary 

exposure to each BFR and for plasma concentrations of each BFR. To take into account the impact of 
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multiple tests on the level of statistical significance, we assigned such level using the False Discovery 

Rate (FDR) approach (FDR q-value < 5%) 

The quantile-quantile plots with the observed p-values plotted against the expected p-values under the 

null hypothesis of no association show no evidence of association with circulating levels of BFRs 

(Figure IV.4) or dietary exposure to BFRs (Figure IV.5) for any of the CpGs with a tendency, for some 

of the congeners, towards deflation (higher, closer to one, observed p-values relative to expected p-

values under the null hypothesis of no association). 

 

Figure IV.4. Quantile-quantile plot for the association between circulating levels of BFRs and 
DNA methylation at 805 837 CpGs sites (N=168) 
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Figure IV.5. Quantile-quantile plot for association between estimated dietary exposure to BFRs 
and DNA methylation at 805.837 CpGs sites (N=162) 

For each congener, the top 10 CpG sites (i.e. selected on the basis of the smallest p-values) are shown 

in Appendices 5-8 Interestingly, there is quite a clear tendency in the direction of associations that is 

distinctly different for dietary exposure to BFRs and plasma concentrations. Most of the regression 

coefficients are positive for the estimated dietary exposure to BFRs (i.e. higher exposure levels would 

be associated with higher methylation levels) while they are negative for plasma concentrations (i.e. 

higher levels would be associated with lower methylation levels).  

Despite this interesting tendency, the estimated associations are weak, and none passes the threshold of 

genome-wide statistical significance. For plasma concentrations, the top CpGs are cg23619365 (b = -

0.4, P = 5.7 × 10
−7

); cg10270519 (b =1.7, P = 1.8 × 10
−6

) and cg26264999 (b = 0.3, P = 7.0 × 10
−7

) for 

BDE-154, PBB-153 and BDE-153 respectively. 
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For the estimated dietary exposures, the top CpGs are cg06409164 (b =0.2, P = 1.5 × 10
−7

); 

cg15267844(b =1.3, P = 2.4 × 10
−7

) and cg06409164 (b =0.2, P = 4.4 × 10
−7

) for BDE-209, total PBDEs 

and HBCDgamma respectively. 

 

Notably, when we compared the top CpGs across the different congeners we found that  cg06409164, a 

CpG located in the body of the gene PARK7 (Parkinsonism associated deglycase) known to be involved 

in Parkinson’s disease, that show a positive association with BDE-209 and HBCDgamma, additionally 

show a positive association with HBCDbeta (b =1.3, P = 2.4 × 10
−7

) and PBDEs (b =0.1, P = 2.4 × 

10
−5

).  

 

 

3.2.3	BFRS	AND	GLOBAL	OR	REGIONAL	METHYLATION		

On the basis of the tendencies observed in the directions of the weak associations for the individual 

CpGs we calculated an indicator of global DNA methylation equal to the medians in the M-values across 

all CpGs. The distribution of such indicators of global methylation showed a median value of 0.63 ± 

0.005. Plasma concentrations were inversely associated with global methylation for all BFRs except 

BDE-99 but they were statistically significant only for BDE-153 (coefficient b = -0.009, p-value = 4 × 

10
−2

). In contrast to the results for plasma concentrations, the associations between estimated dietary 

exposures and global methylation were positive for all congeners with statistically significant 

associations for HBCDbeta (b = 0.008, p=2.2 × 10
−2

), BDE-209 (b = 0.007, p=3.9 × 10
−2

) and PBDEs 

(b = 0.007, p=4 × 10
−2

)  (Table IV.5). 

  



 

 
141 

Table IV.5. Linear mixed effect models for circulating levels or dietary exposure to BFRs and 
genome-wide methylation M-value of 805 837 CpGs 
 
		 Circulating	levels	 Dietary	exposure	

	 Coefficientsa	 CI	 p	 Coefficientsb	 CI	 p	
HBCDalpha	 	   0.005	 -0.003	–	0.012	 0.227	
HBCDbeta	 	   0.008	 0.001	–	0.005	 0.022	

HBCDgamma	 	   0.006	 -0.001	–	0.012	 0.099	
BDE-28	 -0.008	 -0.018	–	0.003	 0.165	 0.004	 -0.003	–	0.011	 0.265	
BDE-47	 -0.008	 -0.021	–	0.006	 0.261	 0.003	 -0.004	–	0.010	 0.381	
BDE-99	 	0.002	 -0.018	–	0.022	 0.826	 0.006	 -0.001	–	0.012	 0.108	
BDE-100	 -0.010	 -0.025	–	0.005	 0.182	 0.005	 -0.003	–	0.012	 0.216	
BDE-153	 -0.009	 -0.017	–	-0.000	 0.042	 0.005	 -0.002	–	0.012	 0.184	
BDE-154	 -0.001	 -0.010	–	0.008	 0.830	 0.003	 -0.004	–	0.010	 0.406	
BDE-183	 	   0.001	 -0.006	–	0.008	 0.722	
BDE-209	 	   0.007	 0.000	–	0.013	 0.039	

PBDEs	 	   0.007	 0.000	–	0.014	 0.040	

HBCDs	 	   0.005	 -0.003	–	0.012	 0.228	
PBB-153	 -0.026	 -0.010	–	0.008	 0.128	 		 		 		

aEstimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI and 

parity/total breastfeeding duration as fixed effects                       
bEstimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, 

parity/total breastfeeding duration, adherence scores to the healthy and Western dietary pattern as fixed effects  

 

To explore whether BFRs are associated with altered methylation levels in specific genomic locations 

selected for relevant functional or spatial characteristics, we used the manifest file provided by Illumina 

to classify CpGs according to their position relative to CpGs islands (Island/Shore or Shelf/Other), 

regulatory features (Promoter or Other) and transcription start sites, TSS (TSS1500: within 1500 bps of 

a transcription start site or TSS200: within 200 bps of a transcription start site). 

Overall, consistently with the results for global methylation also the analyses by genomic regions show 

mostly negative associations for plasma concentrations and positive associations for estimated dietary 

exposures to BFRs (Table IV.6 and IV.7 for plasma concentrations and Table IV.8 and IV.9 for the 

estimated dietary exposures). All the estimated associations are at most weak and mostly non-

significantly different from the null hypothesis of no association. The strongest evidence of association 

is between dietary exposure to BDE-209 and methylation levels in promoter regions or shelf regions 

within promoters (coefficient b = 0.012, p-value = 3 × 10
−3

) and between dietary exposure to PBDEs 

and methylation levels in CpG islands and shores (coefficient b = 0.010, p-value = 5 × 10
−3

).
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Table IV.6. Linear mixed effect models for circulating levels of BFRs and median M-values across regions defined on the basis of their position relative 
to CpG islands and across functional genomic regions 
  Island	or	Shore	 Shelf	or	None	 Promoter	 Other  
 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	
BDE-28	 -0.003	 -0.014	–	0.009	 0.666	 -0.013	 -0.030	–	0.005	 0.158	 -0.011	 -0.024	–	0.002	 0.086	 -0.006	 -0.017	–	0.005	 0.285	
BDE-47	 -0.007	 -0.021	–	0.008	 0.378	 -0.011	 -0.033	–	0.011	 0.327	 -0.008	 -0.024	–	0.009	 0.365	 -0.008	 -0.022	–	0.006	 0.273	
BDE-99	 -0.006	 -0.027	–	0.016	 0.604	 0.009	 -0.024	–	0.041	 0.600	 -0.002	 -0.026	–	0.023	 0.902	 -0.001	 -0.022	–	0.020	 0.917	
BDE-100	 -0.010	 -0.026	–	0.006	 0.211	 -0.013	 -0.038	–	0.011	 0.288	 -0.012	 -0.030	–	0.007	 0.211	 -0.011	 -0.027	–	0.004	 0.151	
BDE-153	 -0.011	 -0.020	–	-0.002	 0.015	 -0.011	 -0.025	–	0.003	 0.134	 -0.010	 -0.020	–	-0.000	 0.044	 -0.011	 -0.020	–	-0.002	 0.015	
BDE-154	 -0.004	 -0.014	–	0.006	 0.410	 0.001	 -0.014	–	0.016	 0.932	 -0.009	 -0.020	–	0.002	 0.109	 -0.002	 -0.012	–	0.008	 0.668	
PBB-153	 -0.043	 -0.078	–	-0.007	 0.019	 -0.017	 -0.072	–	0.038	 0.541	 -0.033	 -0.073	–	0.008	 0.115	 -0.034	 -0.069	–	0.001	 0.059	

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI and parity/total breastfeeding duration as fixed effects  
 
 
Table IV.7. Linear mixed effect models for dietary exposure to BFRs and median M-values across regions defined on the basis of their position relative 
to CpG islands and across functional genomic regions 
  Island	or	Shore	 Shelf	or	None	 Promoter	 Other 

 
 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	
HBCDalpha	 0.001	 -0.007	–	0.009	 0.731	 0.009	 -0.003	–	0.021	 0.149	 0.005	 -0.004	–	0.014	 0.289	 0.005	 -0.003	–	0.012	 0.254	
HBCDbeta	 0.007	 -0.001	–	0.014	 0.078	 0.012	 0.001	–	0.023	 0.034	 0.008	 -0.000	–	0.016	 0.063	 0.008	 0.001	–	0.015	 0.026	
HBCDgamma	 0.008	 0.001	–	0.015	 0.026	 0.007	 -0.004	–	0.018	 0.192	 0.010	 0.002	–	0.018	 0.015	 0.007	 -0.000	–	0.014	 0.052	
BDE-28	 0.008	 0.001	–	0.016	 0.025	 0.003	 -0.009	–	0.015	 0.645	 0.008	 -0.001	–	0.016	 0.069	 0.006	 -0.001	–	0.014	 0.111	
BDE-47	 0.007	 -0.000	–	0.014	 0.057	 0.002	 -0.010	–	0.013	 0.753	 0.007	 -0.001	–	0.015	 0.082	 0.005	 -0.002	–	0.012	 0.185	
BDE-99	 0.006	 -0.001	–	0.014	 0.078	 0.008	 -0.003	–	0.019	 0.161	 0.008	 -0.000	–	0.016	 0.057	 0.006	 -0.001	–	0.014	 0.074	
BDE-100	 0.008	 0.000	–	0.015	 0.045	 0.004	 -0.007	–	0.016	 0.470	 0.007	 -0.001	–	0.015	 0.104	 0.006	 -0.001	–	0.014	 0.106	
BDE-153	 0.008	 0.000	–	0.016	 0.045	 0.007	 -0.005	–	0.019	 0.272	 0.010	 0.001	–	0.019	 0.027	 0.007	 -0.001	–	0.014	 0.093	
BDE-154	 0.008	 0.000	–	0.015	 0.049	 0.002	 -0.010	–	0.014	 0.786	 0.007	 -0.002	–	0.015	 0.109	 0.005	 -0.002	–	0.013	 0.176	
BDE-183	 0.003	 -0.004	–	0.010	 0.416	 0.002	 -0.009	–	0.014	 0.658	 0.005	 -0.003	–	0.013	 0.248	 0.001	 -0.006	–	0.008	 0.712	
BDE-209	 0.009	 0.002	–	0.015	 0.013	 0.009	 -0.001	–	0.020	 0.078	 0.012	 0.004	–	0.019	 0.003	 0.008	 0.001	–	0.015	 0.023	
PBDEs	 0.010	 0.003	–	0.018	 0.005	 0.008	 -0.003	–	0.020	 0.138	 0.010	 0.002	–	0.019	 0.013	 0.010	 0.002	–	0.017	 0.009	
HBCDs	 0.001	 -0.007	–	0.009	 0.836	 0.010	 -0.003	–	0.023	 0.119	 0.005	 -0.005	–	0.014	 0.325	 0.004	 -0.004	–	0.012	 0.300	

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, parity/total breastfeeding duration, adherence scores to the healthy and 
Western dietary pattern as fixed effects  
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Table IV.8. Linear mixed effect models for circulating levels of BFRs and median M-values across regions defined on the basis of their position relative 
to CpG islands and across functional genomic regions. 
 

  TSS1500 or TSS200 Promoter 
 Island or Shore Shelf or None Island and Shore  Shelf or None 
 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	

BDE-28	 -0.001	 -0.014	–	0.012	 0.860	 -0.012	 -0.027	–	0.003	 0.112	 -0.006	 -0.023	–	0.011	 0.504	 -0.015	 -0.028	–	-0.002	 0.026	
BDE-47	 -0.006	 -0.023	–	0.011	 0.483	 -0.012	 -0.032	–	0.007	 0.200	 -0.009	 -0.031	–	0.013	 0.420	 -0.007	 -0.025	–	0.010	 0.409	
BDE-99	 -0.006	 -0.031	–	0.019	 0.622	 0.003	 -0.025	–	0.032	 0.815	 -0.006	 -0.039	–	0.026	 0.705	 0.001	 -0.025	–	0.026	 0.957	
BDE-100	 -0.009	 -0.028	–	0.009	 0.332	 -0.015	 -0.036	–	0.006	 0.159	 -0.012	 -0.036	–	0.012	 0.322	 -0.012	 -0.031	–	0.007	 0.215	
BDE-153	 -0.011	 -0.022	–	-0.001	 0.032	 -0.012	 -0.024	–	0.000	 0.054	 -0.012	 -0.026	–	0.001	 0.072	 -0.010	 -0.020	–	0.000	 0.061	
BDE-154	 -0.004	 -0.015	–	0.007	 0.452	 -0.002	 -0.015	–	0.011	 0.749	 -0.009	 -0.024	–	0.005	 0.213	 -0.009	 -0.021	–	0.002	 0.106	
PBB-153	 -0.047	 -0.088	–	-0.006	 0.023	 -0.021	 -0.068	–	0.027	 0.392	 -0.052	 -0.106	–	0.001	 0.055	 -0.024	 -0.066	–	0.018	 0.262	

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI and parity/total breastfeeding duration as fixed effects  
 
 
Table IV.9. Linear mixed effect models for dietary exposure to BFRs and median M-values across regions defined on the basis of their position relative 
to CpG islands and across functional genomic regions. 
  TSS1500 or TSS200 Promoter 

 Island or Shore Shelf or None Island and Shore  Shelf or None 
 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	 Coefficients*	 CI	 p	

HBCDalpha	 0.000	 -0.009	–	0.009	 0.977	 0.007	 -0.003	–	0.018	 0.183	 0.002	 -0.010	–	0.013	 0.778	 0.007	 -0.002	–	0.016	 0.138	
HBCDbeta	 0.007	 -0.001	–	0.015	 0.106	 0.011	 0.002	–	0.021	 0.022	 0.008	 -0.003	–	0.019	 0.133	 0.008	 -0.001	–	0.017	 0.073	
HBCDgamma	 0.009	 0.001	–	0.017	 0.023	 0.008	 -0.002	–	0.017	 0.106	 0.012	 0.002	–	0.022	 0.023	 0.009	 0.001	–	0.017	 0.032	
BDE-28	 0.010	 0.002	–	0.018	 0.016	 0.004	 -0.006	–	0.014	 0.447	 0.013	 0.003	–	0.024	 0.015	 0.005	 -0.004	–	0.013	 0.274	
BDE-47	 0.009	 0.000	–	0.017	 0.041	 0.003	 -0.007	–	0.013	 0.575	 0.012	 0.001	–	0.022	 0.032	 0.005	 -0.003	–	0.014	 0.232	
BDE-99	 0.007	 -0.001	–	0.015	 0.083	 0.009	 -0.001	–	0.018	 0.076	 0.010	 -0.000	–	0.021	 0.056	 0.007	 -0.001	–	0.016	 0.103	
BDE-100	 0.009	 0.001	–	0.017	 0.035	 0.005	 -0.005	–	0.015	 0.341	 0.012	 0.001	–	0.022	 0.034	 0.004	 -0.004	–	0.013	 0.30	
BDE-153	 0.009	 0.000	–	0.018	 0.040	 0.007	 -0.003	–	0.018	 0.163	 0.011	 -0.000	–	0.023	 0.055	 0.010	 0.001	–	0.019	 0.038	

BDE-154	 0.002–49	 0.001	–	0.018	 0.033	 0.003	 -0.007	–	0.013	 0.577	 0.012	 0.001	–	0.023	 0.034	 0.004	 -0.004	–	0.013	 0.316	
BDE-183	 0.005	 -0.003	–	0.013	 0.245	 0.003	 -0.006	–	0.013	 0.494	 0.006	 -0.004	–	0.017	 0.231	 0.004	 -0.004	–	0.013	 0.340	
BDE-209	 0.009	 0.001	–	0.017	 0.023	 0.010	 0.001	–	0.019	 0.025	 0.012	 0.002	–	0.022	 0.021	 0.012	 0.004	–	0.020	 0.003	
PBDEs	 0.011	 0.003	–	0.019	 0.007	 0.009	 -0.001	–	0.019	 0.067	 0.013	 0.003	–	0.024	 0.015	 0.009	 0.001	–	0.018	 0.030	
HBCDs	 -0.001	 -0.010	–	0.009	 0.914	 0.008	 -0.003	–	0.019	 0.145	 0.000	 -0.012	–	0.013	 0.956	 0.007	 -0.002	–	0.017	 0.135	

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, parity/total breastfeeding duration, adherence scores to the healthy and 
Western dietary pattern as fixed effects  
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3.2.4	BFRS	AND	METHYLATION	ALTERATION	IN	SPECIFIC	PATHWAYS:	GENE	SET	ENRICHMENT	
ANALYSES	
 

The gene set enrichment analyses that we performed to identify specific pathways in which gene 

belonging to such pathway are differentially methylated according to the levels of BFRs, provide 

evidence for altered methylation in pathways that are distinct for plasma concentrations and estimated 

dietary exposure (Table IV.10).  

For plasma concentrations three of the four gene sets identified are positively enriched: BDE-47 is 

associated with gene enrichment of “DNA repair” and “IL6-JAK-STAT3 signaling” and BDE-154 with 

“androgen response”. Positive enrichment means that the levels of DNA methylation of the genes 

included in the gene set are positively correlated with the plasma concentrations of the corresponding 

BFRs. These results suggest that plasma concentrations of BFRs may be associated with increased 

methylation levels in genes in pathways involved in signaling in processes such as immune response 

and cell cycle regulation (“IL6-JAK-STAT3”), androgen response and DNA repair. The negative 

correlation between plasma concentrations of BDE-28 and methylation levels in genes in the gene set 

“MYC targets” is of particular interest as MYC is a proto-oncogene. 

For dietary exposures to BFRs the three gene sets identified do not overlap with those identified for 

plasma concentrations: HBCDalpha and total HBCDs are associated with negative enrichment of the 

gene set “Apoptosis” and HBCDbeta with negative enrichment of “TNFalpha signaling via NK-kB” that 

includes genes regulated by the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) 

in response to tumour necrosis factor (TNFalpha), a potent cytokine and critical regulator of apoptosis, 

inflammation, and immunity via control of the transcription factor NF-κB. On the contrary, BDE-183 is 

associated with positive enrichment of the gene set “Hypoxia” including genes involved in the response 

to low levels of oxygen.   
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Table IV.10. Gene set enrichment analysis results for genes that are positively or negatively correlated to BFRs exposure 
Only gene sets for which the FDR q-value < 0.3 are provided. 
 

		 Circulating	levels	 Dietary	exposure	
	 Gene	set	(number	of	genes	identified)	 ES	 p	 FDR		 Gene	set	(number	of	genes	identified)	 ES	 p	 FDR		

HBCDalpha	 	    APOPTOSIS (25) -0.301 0.007 0.139 
HBCDbeta	 	    TNFA_SIGNALING_VIA_NFKB (46) -0.233 0.011 0.179 
HBCDgamma	 	    

 
   

BDE-28	 MYC_TARGETS_V1 (57) -0.212 0.007 0.197  
   

BDE-47	 DNA_REPAIR (28) 0.269 0.021 0.198  
   

IL6_JAK_STAT3_SIGNALING (17) 0.362 0.011 0.204  
   

BDE-99	 	    
 

   

BDE-100	 	    
 

   

BDE-153	 	    
 

   

BDE-154	 ANDROGEN_RESPONSE (30) 0.260 0.025 0.263  
   

BDE-183	 	    HYPOXIA (24) 0.271 0.047 0.290 
BDE-209	 	    

 
   

PBDEs	 	    
 

   

HBCDs	 	    APOPTOSIS (33) -0.269 0.013 0.251 
PBB-153	 		 		 		 		 		 		 		 		
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4. METHYLATION SIGNATURES OF PER- AND 
POLYFLUORINATED ALKYLATED SUBSTANCES 

4.1 APPROACHES 
 
4.1.1	ASSOCIATION	BETWEEN	DIETARY	EXPOSURE	TO	PFASS	AND	DNA	METHYLATION	

As conducted for BFRs, women with aberrant energy intake (e.g. 1% and 99% extremes of the energy 

intake/energy expenditure ratio) were excluded (n=6) and our final dataset for the association between 

DNA methylation and dietary exposure to PFASs consisted of a subset of 162 women with methylation 

data on 805.837 CpGs. 

Then, we explored the association between DNA methylation and dietary exposure to PFASs (PFOA 

and PFOS) through several linear mixed-effects models with DNA methylation as dependent variable 

(either global methylation, or “regional” methylation or single probes), quartiles of PFASs as 

explanatory variable with plate and chips considered as random effects. Additionally, to what have been 

done for BFRs, models were fitted with adjustment for lipids (categorical, below or above the median).  

 

Models were adjusted for dietary patterns as they are potential confounders because they are associated 

with both "exposure" to PFASs (or rather the proxy used in our analyzes, which is calculated precisely 

from diet), and potentially methylation. In the same logic, we decided to adjust for lipids for which two 

approaches are generally used in the literature; those using measurements in "ng/g of lipids" and in 

"ng/ml of serum/plasma". If the majority of the authors agree on the use of "ng/g of lipids" for BFRs, in 

particular because of their lipophilic characteristics, the proposals are rather divergent compared to 

PFASs. Rather, these substances tend to accumulate in tissues such as the liver, and some studies suggest 

a disruption of the lipid regulatory mechanisms190,191. 

 

These adjustments were discussed and defined with Francesca Mancini, the team's coordinator of 

research on food contaminants, in accordance with the literature and the approaches used for previous 

studies / explorations on the same exposure data for BFRs. and to PFASs. 

 
4.1.2	ASSOCIATION	BETWEEN	CIRCULATING	LEVELS	OF	PFASS	AND	DNA	METHYLATION	
 
For the analyses of PFASs (PFOA and PFOS) blood levels, that we conducted separately to the analyses 

of dietary exposure to PFASs, data were available for a slightly larger sample of women (N=166). For 

such analyses we used models similar to those used for the analyses of dietary exposure with the 

exception of the adherence scores to the healthy dietary pattern and the Western dietary pattern that were 

not included in the models adjusted for the covariates. 
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4.1.3	ENRICHMENT	ANALYSIS	
 

To determine whether any gene set or biological pathway is overrepresented in the list of genes whose 

DNA methylation are associated with circulating levels or dietary exposure to PFASs, we performed 

GSEA using an approach similar to the one used in the analyses conducted for BFRs: (1) genes near 

CpG sites located in promoter region in which the association between circulating levels of PFASs and 

CpG site methylation levels are significant and below 5% and (2) genes near CpG sites located in 

promoter region in which the association between dietary exposure to PFASs and CpG site methylation 

levels are significant and below 5%.  

4.2 FINDINGS 
	
4.2.1	BASELINE	CHARACTERISTICS	OF	THE	STUDY	POPULATION	
 

The baseline characteristics of study participants are summarized in Table IV.11. To study the 

association between PFASs and methylation of DNA from blood, data were available from 166 women 

for circulating levels of PFASs and from 162 women for the dietary exposure to these compounds. 

Median age of the study participants was 56.1 years and most of them had a healthy body mass index 

with only one quarter of them being overweight or obese. About 43% of them are nulliparous or never 

breastfed, 40% had at least one child but breastfed for less than 6 months and 16.5% had breastfed for 

more than 6 months. 

From the detailed data from the food frequency questionnaire completed in 1993, between 2 and 5 years 

before the blood collection, dietary patterns were identified including a “healthy” dietary pattern and a 

“Western” dietary pattern189. In our study population around half of the women had a “healthy” diet and 

half adhered to a Western diet with a small overlap between the two groups.  
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Table IV.11. Baseline characteristics of the study population 
 

  

Circulating levels  
(n = 166) 

Dietary    
exposure 
(n = 162) 

Age (%)  
 

      <56.1 81 (48.8) 79 (48.8) 
      >56.1 85 (51.2) 83 (51.2) 
Body Mass Index (%)  

 
      <25 122 (73.5) 121 (74.7) 
      >25 44 (26.5) 41 (25.3) 
Score of adherence to the healthy dietary pattern (%)  

 
      Above median  87 (53.7) 
      Below median  75 (46.3) 
Score of adherence to the Western dietary pattern (%)  

 
      Above median  82 (50.6) 
      Below median  80 (49.4) 
Parity and total breastfeeding duration (%)  

 
      Nulliparous or never breastfeed 73 (44.0) 70 (43.2) 
      Parous and breastfeed for less than 6 months 66 (39.8) 65 (40.1) 
      Parous and breastfeed for more than 6 months 27 (16.3) 27 (16.7) 
Lipids  

 
      Above median 86 (51.8) 84 (51.9) 
      Below median 80 (48.2) 78 (48.1) 

The levels of dietary exposure to PFASs estimated in our study population are presented in Table IV.12. 

For circulating levels of PFOA, the median concentration is 6.83 ng/mL (min-max: 1.287 to 17.685 

ng/L), while for PFOS the median of concentration is 17.32 ng/mL (min-max: 6.612 to 59.119 ng/mL  

The median dietary exposure to PFOS and to PFOA was respectively 0.443 ng/kg BW/day (min-max: 

0.108 to 1.441 ng/kg BW/day) and 0.132 ng/kg BW/day (min-max: 0.132 to 1.342 ng/kg BW/day) 

respectively.   

Table IV.12. Distribution of PFASs concentrations in serum (ng/mL) and estimated dietary 
exposure to PFASs (ng/kg BW/day) in our study population (N=168 and N=162 respectively) 
 

PFASs compounds Circulating levels Dietary exposures 
  Min. Median Mean Max. Min. Median Mean Max. 
PFOA 1.287 6.831 7.263 17.685 0.108 0.443 0.486 1.441 
PFOS 6.612 17.320 18.694 59.119 0.132 0.506 0.530 1.342 
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Additionally, strong correlations were observed between dietary intakes of PFOA and PFOS (0.94) 

while a moderate value is observed for the correlation between circulating levels of PFOA and PFOS 

(0.54) (Table IV.13). 

Table IV.13. Correlation between the different PFASs congeners for blood concentrations and 
estimated dietary exposure separately 
 

      Pearson 's correlation 
      Estimates p 

Circulating levels PFOA PFOS 0.535 < 0.001 
Dietary exposure PFOA PFOS 0.84 < 0.001 

With the regards to the correlation between these compounds estimated from diet in comparison to 

circulating levels, inverse and weak correlations are observed (Table IV.14) with regard to PFOA (p = 

1.2 × 10
−2

2) and PFOS (p = 5.78× 10
−2

). 

Table IV.14. Correlation between dietary exposure estimates and circulating levels of PFASs 
congeners (N = 162) 
 
 

 

	
4.2.2	EPIGENOME-WIDE	ASSOCIATION	STUDY:	PFASS	AND	METHYLATION	OF	BLOOD	DNA	

For the analyses of the association between PFASs and methylation levels of DNA from blood, we first 

estimated the association for each individual CpGs (N = 805 837) separately for the estimated dietary 

exposure to each PFAS and for plasma concentrations of each PFAS. To take into account the impact 

of multiple tests on the level of statistical significance, we assigned such level using the False Discovery 

Rate (FDR) approach (FDR q-value < 5%).  

The quantile-quantile plots with the observed p-values plotted against the expected p-values under the 

null hypothesis of no association show no evidence of association with circulating levels of PFASs 

(Figure IV.6 A)) or dietary exposure to PFASs (Figure IV.6 B)) for any of the CpGs with a tendency, 

for some of the congeners, towards deflation (higher, closer to one, observed p-values relative to 

expected p-values under the null hypothesis of no association). 

Circulating  
levels 

Dietary 
exposure 

Pearson 's correlation 
Estimates p 

PFOA PFOA -0.198 0.012 
PFOS PFOS -0.044 0.578 
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Figure IV.6. Quantile-quantile plot for association between circulating levels of PFASs and dietary 
exposure to PFASand DNA methylation at 805.837 CpGs sites  
A) circulating levels of PFASs. B) dietary exposure to PFASand DNA methylation at 805.837 CpGs 
sites 
For each congener, the top 10 CpG sites (i.e. selected on the basis of the smallest p-values) are shown 
in Appendices 9 and 10. 

 Interestingly, there is quite a clear tendency in the direction of associations that is distinctly different 

for dietary exposure to PFASs and plasma concentrations. Most of the regression coefficients are 

positive for the estimated dietary exposure to PFASs (i.e. higher exposure levels would be associated 

with higher methylation levels) while they are negative for plasma concentrations (i.e. higher levels 

would be associated with lower methylation levels).  

Despite this interesting tendency, the estimated associations are weak, and none passes the threshold of 

genome-wide statistical significance. For plasma concentrations, the top CpGs are, cg06874740 (b = -

0.37, p = 1.42 × 10
−6

) and cg15913831 (b = -0.401, p = 8.8 × 10
−7

) for PFOA and PFOS respectively. 

For the estimated dietary exposures, the top CpGs are cg08255137 (b = 0.2, p = 1.49 × 10
−7

) and 

cg25246012 (b = 0.255, p = 7.5 × 10
−7

) for PFOA and PFOS respectively. 

 
4.2.3	PFASS	AND	GLOBAL	OR	REGIONAL	METHYLATION		

On the basis of the tendencies observed in the directions of the weak associations for the individual 

CpGs we calculated an indicator of global DNA methylation equal to the medians in the M-values across 

all CpGs. The distribution of such indicators of global methylation showed a median value of 0.63 ± 

0.005. Plasma concentrations were inversely associated with global methylation for PFOA (b = -0.003, 

p = 3.26 × 10
−1

) and PFOS (b = -0.001, p = 7.18 × 10
−1

) (Table IV.15). 
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In contrast to the results for plasma concentrations, the associations between estimated dietary exposures 

and global methylation were positive for both PFOA (b = 0.001, p = 7.73 × 10
−1

) and PFOS (b = 0.002, 

p = 5.87 × 10
−1

). 

Table IV.15. Linear model for circulating levels or dietary exposure to PFASs and genome-wide 
methylation of 805.837 CpGs 
 

		 Circulating	levelsa	 Dietary	exposureb	
	 Coefficientsa	 CI	 p	 Coefficientsb	 CI	 p	

PFOA	 -0.003	 -0.010	–	0.003	 0.326	 0.001	 -0.005	–	0.007	 0.773	
PFOS	 -0.001	 -0.008	–	0.006	 0.718	 0.002	 -0.005	–	0.009	 0.587	

aEstimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, 
parity/total breastfeeding duration and lipids as fixed effects  
bEstimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, 
parity/total breastfeeding duration, adherence scores to the healthy and Western dietary pattern and lipids as fixed effects  

Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects 

and age, BMI, parity/total breastfeeding duration, adherence scores to the healthy and Western dietary 

pattern and lipids as fixed effects. 

To explore whether PFASs are associated with altered methylation levels in specific genomic locations 

selected for relevant functional or spatial characteristics, we used the manifest file provided by Illumina 

to classify CpGs according to their position relative to CpGs islands (Island/Shore or Shelf/Other), 

regulatory features (Promoter or Other) and transcription start sites, TSS (TSS1500: within 1500 bps of 

a transcription start site or TSS200: within 200 bps of a transcription start site). 

Overall, consistently with the results for global methylation also the analyses by genomic regions show 

mostly negative associations for plasma concentrations and positive associations for estimated dietary 

exposures to BFRs (Table IV.16 and IV.17 for plasma concentrations and Table IV.18 and IV.19 for the 

estimated dietary exposures). All the estimated associations are at most weak and mostly non-

significantly different from the null hypothesis of no association.  

Overall, we observed inverse and non-significant associations between circulating levels of PFASs and 

methylation at CpGs in all genomic regions except those located in or near a CGI without difference for 

PFOA or PFOS respectively in regard to TSS1500 or TSS200 (b =  0.002, p=5.77 × 10
−1

; b =  0.005, 

p=2.93 × 10
−1)  or Promoter region (b =  0.004, p=4.81 × 10

−1
; b =  0.005, p=3.75 × 10

−2
 ).We observed 

positive association between PFOS and DNA methylation in or near the CGI (b = 0.008, p=3.8 × 10
−2

) 

which remain significant (Table IV.19) within TSS1500 or TSS200 (b = 0.009, p=4.7 × 10
−2

). 

Additionally, we also observe positive association between Promoter (b = 0.009, p=4.8 × 10
−2

) and Shelf 

or others region (b = 0.02, p=4.9 × 10
−2

).
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Table IV.16. Linear mixed effect models for circulating levels of PFASs and median M-values across regions defined on the basis of their position 
relative to CpG islands and across functional genomic regions. 
 
  Island	or	Shore	 Shelf	or	None	 Promoter	 Other  

 Coefficients	 CI	 p	 Coefficients	 CI	 p	 Coefficients	 CI	 p	 Coefficients	 CI	 p	

PFOA	 0.001	 -0.006	–	0.008	 0.816	 -0.007	 -0.017	–	0.004	 0.211	 -0.000	 -0.008	–	0.008	 0.985	 -0.003	 -0.010	–	0.004	 0.426	
PFOS	 0.003	 -0.005	–	0.010	 0.477	 -0.005	 -0.016	–	0.007	 0.430	 -0.000	 -0.009	–	0.008	 0.915	 0.000	 -0.007	–	0.008	 0.993	

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, parity/total breastfeeding duration and lipids as fixed effects  
 
 
Table IV.17. Linear mixed effect models for dietary exposure to PFASs and median M-values across regions defined on the basis of their position 
relative to CpG islands and across functional genomic regions. 
 
  TSS1500 or TSS200 Promoter 

 Island or Shore Shelf or None Island and Shore  Shelf or None 

 Coefficients	 CI	 p	 Coefficients	 CI	 p	 Coefficients	 CI	 p	 Coefficients	 CI	 p	

PFOA	 0.002	 -0.006	–	0.010	 0.577	 -0.005	 -0.015	–	0.004	 0.243	 0.004	 -0.007	–	0.015	 0.481	 -0.002	 -0.011	–	0.006	 0.557	
PFOS	 0.005	 -0.004	–	0.013	 0.293	 -0.004	 -0.014	–	0.006	 0.424	 0.005	 -0.006	–	0.017	 0.375	 -0.004	 -0.013	–	0.005	 0.435	

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, parity/total breastfeeding duration, adherence scores to the healthy and 
Western dietary pattern and lipids as fixed effects  
 
 
Table IV.18. Linear mixed effect models for circulating levels of PFASs and median M-values across regions defined on the basis of their position 
relative to CpG islands and across functional genomic regions. 
 

  Island	or	Shore	 Shelf	or	None	 Promoter	 Other  
 Coefficients	 CI	 p	 Coefficients	 CI	 p	 Coefficients	 CI	 p	 Coefficients	 CI	 p	
PFOA	 0.002	 -0.005	–	0.008	 0.604	 0.003	 -0.014	–	0.020	 0.738	 0.003	 -0.004	–	0.011	 0.399	 0.002	 -0.005	–	0.008	 0.608	
PFOS	 0.008	 0.000	–	0.016	 0.038	 0.020	 0.000	–	0.040	 0.049	 0.009	 0.000	–	0.018	 0.048	 0.005	 -0.003	–	0.013	 0.211	

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, parity/total breastfeeding duration and lipids as fixed effects  
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Table IV.19. Linear mixed effect models for dietary exposure to PFASs and median M-values across regions defined on the basis of their position 
relative to CpG islands and across functional genomic regions. 
  TSS1500 or TSS200 Promoter 

 Island or Shore Shelf or None Island and Shore  Shelf or None 

 Coefficients	 CI	 p	 Coefficients	 CI	 p	 Coefficients	 CI	 p	 Coefficients	 CI	 p	

PFOA	 0.001	 -0.007	–	0.009	 0.773	 0.002	 -0.006	–	0.011	 0.585	 0.001	 -0.009	–	0.011	 0.803	 0.004	 -0.003	–	0.012	 0.261	
PFOS	 0.009	 0.000	–	0.018	 0.047	 0.002	 -0.008	–	0.013	 0.679	 0.011	 -0.000	–	0.023	 0.057	 0.008	 -0.001	–	0.017	 0.084	

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, parity/total breastfeeding duration, adherence scores to the healthy and 
Western dietary pattern and lipids as fixed effects 
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4.2.4	PFASS	AND	METHYLATION	ALTERATIONS	IN	SPECIFIC	PATHWAYS:	GENE	SET	ENRICHMENT	
ANALYSIS		
 

The gene set enrichment analyses that we performed to identify specific pathways in which gene 

belonging to such pathway are differentially methylated according to the levels of PFASs, provide 

evidence for altered methylation in pathways that are distinct for plasma concentrations and estimated 

dietary exposure (Table IV.20).  

For plasma concentrations five of the six gene sets identified are positively enriched: PFOA is associated 

with gene enrichment of “Myc_targets_v2” and “Hypoxia” while PFOS with “Il2_Stat5 signaling”, 

“cholesterol homeostasis”, “inflammatory response” and “fatty acid metabolism”.  

Positive enrichment means that the levels of DNA methylation of the genes included in the gene set are 

positively correlated with the plasma concentrations of the corresponding PFASs. These results suggest 

that plasma concentrations of PFASs may be associated with increased methylation levels in genes in 

pathways involved in processes such as immune and inflammatory response; cholesterol and fatty acid. 

The negative correlation between plasma concentrations of PFOA and methylation levels in genes in 

the gene set “Hypoxia” is of particular interest as it represents a set of genes up-regulated in response to 

low oxygen levels. 

For dietary exposures to PFASs, particularly PFOA, the only gene set identified do not overlap with 

those identified for plasma concentrations which is associated with negative enrichment of the gene set 

“Apoptosis”. 

Table IV.20. Gene set enrichment analysis results for genes that are positively or negatively 
correlated to PFASs exposure (FDR < 0.3) 
Only gene sets for which the FDR q-value < 0.3 are provided. 
 

		 Circulating	levels	 Dietary	exposure	

	 Gene	set	 ES	 P	 FDR		 Gene	set	 ES	 P	 FDR		

PFOA	 MYC_TARGETS_V2 (22) 0.333 0.016 0.266                APOPTOSIS (28) -0.313 0.003 0.063 
HYPOXIA (49) -0.206 0.019 0.269 

PFOS	

IL2_STAT5_SIGNALING (56) 0.191 0.030 0.184     

CHOLESTEROL_HOMEOSTASIS (25) 0.279 0.031 0.198     

INFLAMMATORY_RESPONSE (33) 0.251 0.035 0.221     

FATTY_ACID_METABOLISM (37) 0.240 0.033 0.277 		 		 		 		
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5. CONCLUSION 

5.1 METHYLATION SIGNATURES OF BROMINATED FLAME RETARDANTS 
 

BFRs exposure has become an increasingly important global public health given contamination in the 

environment, their tendency to bioaccumulate in human tissue and their effects on biological systems 

that are yet to be fully elucidated. Our hypothesis is that, among other impacts on humans, BFRs may 

alter methylation levels in human DNA and through such alterations BFRs would exert multiple actions 

on human health. To test some aspects of this hypothesis, we used blood DNA from a sample of 162-

168 women from our prospective E3N cohort. Individual CpG analyses and analyses of global and 

regional DNA methylation did not provide convincing evidence of associations with BFRs plasma 

concentrations or dietary exposure to BFRs.  

The results obtained from the gene enrichment analyses are interesting as they show that exposure to 

BFRs may alter the levels of circulating DNA methylation in specific pathways. Plasma concentrations 

and dietary exposure to BFRs appear to be associated with DNA methylation alterations in different 

pathways. While for BFRs circulating levels the identified gene sets enriched are involved in 

embryological development, regulation of extracellular matrix, acute phase response, cell cycle 

regulation and DNA repair mechanisms, for dietary exposure they are related to immune response, 

hypoxia and apoptosis. These results are somehow broadly consistent with the capacity of BFRs to alter 

the endocrine system, influence the immune response and impact on the reproductive system in humans 

and provide support to previous reports that indicate that individual PBDEs and their mixtures can shift 

cytokine production to a more pro-inflammatory phenotype192,193 and lead to adverse effects on the 

reproductive development194,195. 

The different results for BFRs plasma concentrations and the estimated dietary exposures may be 

explained by the fact that the two estimates of exposure to BFRs are quite distinct. One, obtained from 

food frequency questionnaires data in 1993 as well as levels of contaminants from the ANSES survey, 

is an estimate of the exposure through diet, the main source of exposure, while the other is a direct 

measure of circulating levels in blood samples collected a few years after the questionnaire (1995-1998). 

It is important to note that circulating levels of BFRs are determined by a complex interplay of factors 

including exposure from multiple sources (e.g. diet, dust or other environmental sources) but also from 

the rate of elimination of BFRs through human matrices, in particular, through breastfeeding.  

To our knowledge, this is the first epigenome-wide association study of BFRs and DNA methylation. 

As mentioned earlier (see chapter I) previous studies showed that endocrine disruptors such as phthalates 
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or bisphenols were associated with hypomethylation, but such studies focused on repetitive genomic 

elements that were used as markers of global methylation (i.e. Alu and LINE-1). Our study measured 

DNA methylation in a more systematic manner with coverage of almost 1 million individual CpGs 

representing more than 90% of all CpGs – i.e. a coverage 6 times greater than the coverage of studies 

that used Alu and LINE-1 elements. 

The main limitations of our study include the cross-sectional nature of the measures in blood (i.e. BFRs 

plasma concentrations and DNA methylation were measured from the same blood samples) and the 

relatively limited sample size. Also, we cannot exclude that BFRs influence DNA methylation in other 

target tissues that were not available for this study. 

In conclusion, our study found no evidence of association between BFRs exposure and moderate or 

strong global or single CpG alterations in circulating DNA methylation. The suggestive evidence of 

association between BFRs exposure and DNA methylation alterations in specific gene pathways warrant 

replication in independent studies but it is intriguing as it might reflect a more complex action of this 

class of substances. 

5.2 METHYLATION SIGNATURES OF PER- AND POLYFUORINATED 
ALKYLATED SUBSTANCES  
 

As BFRs, PFASs exposure is a worldwide concern and we hypothesize that PFAs may alter levels in 

human DNA and through such alterations PFASs would exert multiple actions on human health. To test 

some aspects of this hypothesis, we used blood DNA from a sample of 162-166 women from our 

prospective E3N cohort.  

Individual CpG analyses and analyses of global and regional DNA methylation did not provide 

convincing evidence of associations with PFASs plasma concentrations or dietary exposure to PFASs.  

The results obtained from the gene enrichment analyses are interesting as they show that exposure to 

PFASs may alter the levels of circulating DNA methylation in specific pathways. Plasma concentrations 

and dietary exposure to PFASs appear to be associated with DNA methylation alterations in different 

pathways. While for PFASs circulating levels the identified gene sets enriched are involved immune 

and inflammatory response, cholesterol homeostasis and fatty acid metabolism for dietary exposure they 

are related to apoptosis.  

These results are somehow broadly consistent with the capacity of PFASs, particularly 

PFOS  to activate nuclear receptors such as PPAR-α and induce peroxisome proliferation91  and 

influence the immune response or disrupt lipid metabolism and hepatotoxicity196–198. 
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Similarly, the different results for PFASs plasma concentrations and the estimated dietary exposures 

may be explained by the fact that the two estimates of exposure to PFASs are quite distinct. It is also 

important to note that circulating levels of PFASs are determined by a complex interplay of factors 

including exposure from multiple sources (e.g. diet, dust or other environmental sources) but also from 

the rate of elimination of PFASs through human matrices.  

To our knowledge, this is the first epigenome-wide association study of PFASs and DNA methylation. 

As mentioned earlier, a study showed that prenatal exposure to PFOS was associated with 

hypomethylation, but it was focused on repetitive genomic elements that were used as markers of global 

methylation (i.e. Alu and LINE-1)106. Our study measured DNA methylation in a more systematic 

manner with coverage of almost 1 million individual CpGs representing more than 90% of all CpGs – 

i.e. a coverage 6 times greater than the coverage of studies that used Alu and LINE-1 elements. 

The main limitations of our study include the cross-sectional nature of the measures in blood (i.e. PFASs 

plasma concentrations and DNA methylation were measured from the same blood samples) and the 

relatively limited sample size. Also, we cannot exclude that PFASs influence DNA methylation in other 

target tissues such as liver that were not available for this study. 

In conclusion, our study found no evidence of association between PFASs exposure and moderate or 

strong global or single CpG alterations in circulating DNA methylation. Additionally, the suggestive 

evidence of association between PFASs exposure and DNA methylation alterations in specific gene 

pathways warrant replication in independent studies but it is intriguing as it might reflect a more complex 

action of this class of substances. 
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1. SYNTHESIS 
 

1.1 GENOMIC SIGNATURES 
 
The research about mutational signatures is very active and in rapid development both in terms of new 

methods to analyze cancer genomic sequences and extract mutational signatures and in terms of the 

application of such methods with the aim to elucidate the etiology of cancer. An interesting example of 

current projects based on the application of mutational signatures is the Mutograph project 

(https://www.mutographs.org) funded by a major grant from CRUK and coordinated by the Sanger 

Institute in Cambridge, UK and the International Agency for Research on Cancer in Lyon, France.  

 

This ambitious project aims to greatly extend our knowledge of the causes of several cancer types 

including bladder, colorectal, esophageal and kidney cancer by collecting and sequencing thousands of 

tumour samples, extracting the corresponding mutational signatures and link them to epidemiological 

data that will be collected from the participating patients. In parallel to such large applied projects, 

methodological research has grown extensively with an increasing number of methods to identify 

mutational signatures published in recent years and preprints about new methods regularly published on 

bioRxiv.org; we have focused on this extensive methodological work to produce a systematic review of 

the methods available at the time of the submission of our article, assess them and formally compare 

their performance.  

 

The results of our study can be helpful to guide researchers through the planning of mutational signature 

analysis and provide a more solid methodological base for current projects such as Mutograph and future 

ones that are currently being planned. In particular, we showed that the performance of de novo methods 

depends on the complexity of the analyzed sequences, the number of mutations and to a lesser degree 

the number of samples analyzed. It was somehow expected that the performance of the methods for a 

cancer in which multiple, concomitant, signatures are present is poorer than for a cancer with a single 

or predominant signature, particularly when the concomitant signatures are similar and have a low 

contribution. 

 

Additionally, we introduced a new simulation model of mutational signature data based on the zero-

inflated Poisson distribution that allows for sparse contribution of signatures and thus makes it possible 

to build mutation count data that are more realistic than the pure Poisson model previously 

considered13,151. Finally, we improve the implementation of one of the most popular methods for 

signature refitting. Our method, called MutationalCone, proved to be the fastest refitting tools available 

to date.  
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1.2 EPIGENOMIC SIGNATURES 
 
On September 3rd, 2019, Santé Publique France (SPF), the national public health agency in France 

published the results of a biomonitoring studies related to the presence of around 70 biomarkers 

including bisphenols, phthalates, BFRs, PFASs and others endocrine disruptors in the body of French 

citizens (Esteban, 2014-2016).  

 

As revealed by these studies, these pollutants are omnipresent in the body of children and adults, with 

levels higher in the former than in the latter, findings that could be explained by dust ingestion or a high 

level of exposition in comparison to the body max.  

 

With regards to BDE-47, one of the most predominant BFRs congeners observed in wildlife, mean 

concentrations (0.24 ng/g of lipids, N = 742) in selected the population was below the one observed in 

our study (0.843ng/g of lipids, N = 168). For PFOA and PFOS, observed mean were respectively, 

2.08µg/L and 4.03µg/L for 744 adults aged from 18 to 74. As for BFRs, these values of SPF were below 

the one observed in our study. However, we should point out that our samples represent only a subset 

of women and their blood samples were collected in the 90s, almost 10 years before the Stockholm 

Convention and the associated regulations related to these compounds.  

 

More generally, their studies reinforce the need of characterization of EDCs health ‘impact. The aim of 

our study was to identify potential novel methylation markers of exposure to BFRs and PFASs; however 

we did not find evidence of moderate or strong associations between the two classes of EDCs that we 

investigated and methylation of DNA from blood neither at the global, genome-wide levels, at regional 

level (e.g. promoter regions or CpG islands) or at the level of single CpGs. 

 

The suggestive evidence of alterations in the methylation of genes in specific biological pathways, some 

with plausible links with the known biological activity of PFAS and BFRs warrant further investigations 

in independent studies.  
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2. RESEARCH PERSPECTIVES 

2.1 GENOMIC SIGNATURES 
 
As argued in the section about simulated data, the simulation model that we proposed underrepresents 

the few samples with extremely large total mutation counts. Because catalogues of this type might 

hamper the detection of signals from less mutated samples in the same dataset173, it is likely that our 

results slightly overestimate the methods’ performance in the presence of hypermutated samples. 

However, our main objective was the comparison of the different methods, and this is not affected by 

this systematic bias. In our model, a larger number of hypermutated catalogues could be obtained by 

lowering the value of !, the parameter that controls the relative frequency of structural zeroes in the 

zero-inflated Poisson model.  

 

As discussed, it would have been possible to consider even more realistic models, however these would 

have led to results that depend on too many parameters thus making the interpretation harder. For 

instance, the zero inflated negative binomial model is a more flexible model and looks a promising 

method to build realistic synthetic samples, including hypermutated ones. We leave this interesting 

perspective to future work. Alternative models that were recently proposed are based on the negative 

binomial distribution159 and on the Dirichlet distributions for the exposures and signatures and the 

multinomial distribution for the catalogues166.  

 

We suggest that developers should assess their new methods on simulations based on realistic models 

such as ours or the latter. The advantage of simulations over real data is that the underlying model 

generating the synthetic data is known and can be compared to the estimation provided by the method 

being evaluated. For this reason, we decided not to simulate catalogues from real data using the 

bootstrap: this would have produced almost real samples but without the possibility to evaluate the 

performance of methods according to different parametric scenarios. We strongly believe that the 

mutational signature research could benefit from the development of public realistic datasets that can be 

used to benchmark old and new detection tools, our model is a first step in this direction. 

2.2 EPIGENOMIC SIGNATURES 
 
Given the limited sample size of in our study, it would be interesting to include additional data to study 

the relation between DNA methylation and BFRs or PFAS. In our work we avoided selection bias by 

considering only controls data from a case-control breast cancer study nested in the E3N cohort. One 

possibility that would allow to gain power would be to fully exploit the available data by including case 

data as well. In this case, selection bias could be avoided by carefully weighing cases and controls in 

order to have a more representative sample of the population. A formal a weighting scheme has been 
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recently proposed in the biostatistics literature in the context of the linear model199, careful 

methodological consideration will be necessary before applying it to the mixed-effects models we used.    

 

As BFRs and PFAS they are not the only compounds that may disrupt the endocrine system, comparative 

studies related to others well characterized compounds such as phthalates or bisphenol are needed, 

mainly to identify methylation markers involved in EDCs exposure. Additionally, other exposures, such 

as indoor air or dust may be considered and explored, mainly for children who are more vulnerable. 

 

Transgenerational cohorts such as the extension to the E4N cohort that is being established with the 

recruitment of children and grandchildren of the E3N women, will offer an interesting opportunity to 

study various relationships within families that share common genetics and environments. Some studies 

suggest the presence of gender differences with regards to PFASs exposition200,201.Then the effect of the 

dietary pattern and source of exposition to EDCs could be analyzed in the partners or offspring of E3N 

women to determine the concordance.  
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3. IMPLICATION IN PUBLIC HEALTH 
 

As chronic diseases were becoming the leading causes of death by the middle 20th century, large-scale 

epidemiological studies were created to elucidate the aetiology of these diseases. Over more than half a 

century of research on the epidemiology of chronic diseases, has allowed to acquire extensive 

knowledge about why such diseases, to develop and identify their leading causes. Despite such major 

advances, the aetiology of several cancer types remains elusive and the recent debate about cancer and 

“bad luck” and the misunderstandings about the (large) extent of preventability of cancer risk to 

undermine the effort and achievements of several decades of epidemiological research.  

 

Additionally, environmental exposures such as new chemicals introduced by the industry continue 

to emerge, contaminate and accumulate in the environment: that may pose risks related to chronic 

disease. These challenges require novel approaches that may take advantage of recent major advances 

in the analyses of biological samples with technologies such as DNA sequencing and “omics” (e.g. 

microarrays). It is becoming increasingly evident that environmental exposures and factors related 

to lifestyle may leave molecular fingerprints in various tissues that may be detected 

when adequate biological samples and relevant technology are available and that may provide 

meaningful information about the role of such factors on chronic diseases. Our findings are consistent 

with this general assumption and provide general support for the usefulness of studying molecular 

signatures to shed light on poorly understood or misunderstood aspects of cancer etiology.  

 

We have shown for example that in realistic scenarios and under certain conditions most available 

methods to extract mutational signatures can accurately identify mutational signatures. With such, we 

have produced information that is going to be useful to guide the choice of analytical tools in important 

projects such as the landmark international consortium Mutographs that aims to “uncover some of the 

unknown causes of cancer through tell-tale signatures in DNA. Through the use 

of mutational signatures, we have also contributed to clarify some controversial aspects of cancer 

aetiology (i.e. the relative role of modifiable factors and chance) to which even the lay public has been 

exposed in recent years. 

	
In addition to highlighting the potential of such novel molecular approaches to the study of chronic 

disease epidemiology, our work has contributed also to identify some limitations of such approach. Our 

analytical work on the methods of detection of mutational signatures, for example, has shown that there 

are scenarios for which it may be difficult to detect some of the signatures. One of these scenarios is 

when a tumour includes several mutational signatures each with a small contribution.  
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The public health implications of the results of our study on the two classes of endocrine disruptors may 

be difficult, partly because of the limited sample size and the possibility that such contaminants do not 

act through methylome changes or because blood may not be the target tissue of such action.  

However, the suggestive evidence of methylome alterations in some key biological pathways, if 

confirmed in independent studies, may contribute to uncover potential effects on public 

health previously unknown or only suspected.	
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1. INTRODUCTION 
 

La compréhension des mécanismes à l’origine du développement d’un cancer ou toute autre maladie 

multifactorielle est essentielle pour améliorer les stratégies de prévention. À ce jour, plusieurs études 

ont estimé que 40% des cas de cancers observés dans les pays développés peuvent être évités en 

considérant les facteurs de risques connus.  De même, la communauté scientifique reconnait que les 

expositions environnementales et le mode de vie peuvent laisser des empreintes sur l’ADN (mutations 

et modifications épigénétiques). Le profil mutationnel et épigénétique d'un génome résulte 

respectivement de la superposition de toutes les traces, ou signatures, laissées par des processus 

mutationnels et l'altération des niveaux de méthylation due à des facteurs environnementaux et liés au 

mode de vie (et à des facteurs aléatoires). La nature des données épigénétiques et génomiques étant 

différente (par exemple, la méthylation de l'ADN est une variable continue), des modèles mathématiques 

spécifiques sont nécessaires pour étudier ces deux types de signatures. Ainsi, au cours de ma thèse, j’ai 

étudié les approches statistiques permettant d’identifier les signatures mutationnelles ; et l’impact des 

perturbateurs endocriniens dans les altérations épigénétiques, un travail nécessaire pour répondre 

comprendre et caractériser l’effet des perturbateurs endocriniens sur la méthylation et plus globalement, 

sur la santé. 

1.1 LES SIGNATURES MUTATIONNELLES 
 

Les cancers résultent de diverses modifications de l’ADN comme le single nucleotide variants (ou SNV, 

à ne pas confondre avec SNP), insertions/délétions (ou indels), etc. ; qui se produisent généralement 

pendant de longues années et qui sont par la suite visibles dans l’ADN des cellules cancéreuses. 

Une signature génomique (ou mutationnelle) généralement notée P est définie comme étant une 

distribution de probabilité sur un domaine de types de mutation présélectionnés. Le domaine le plus 

utilisé est constitué de 96 substitutions (K=96), en considérant uniquement un nucléotide de part et 

d’autre de la base mutée, on parle alors de trinucléotide.  

De même, au cours de son développement, un génome cancéreux g est exposé à différents processus 

mutationnels à diverses intensités. Cela se traduit par un vecteur d'exposition E dont les entrées 

correspondent au nombre de mutations causées en g par chaque signature mutationnelle n. Le catalogue 

mutationnel M de g peut alors être vu comme une superposition linéaire des n signatures avec des poids 

donnés par les entrées du vecteur d’exposition E, celles-ci étant généralement 

représentatives d’exposition environnementale. 

À ce jour, plus de trente signatures mutationnelles caractérisées par un profile unique des 96 types de 

mutations ont été identifiées et référencées dans la base de données COSMIC (http:// 

cancer.sanger.ac.uk/cosmic/signatures). 
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1.2 LA METHYLATION DE L’ADN  
 

L'épigénome représente l’ensemble des mécanismes moléculaires impliqués dans la régulation de 

l’expression des gènes qui peut être influencée par l’environnement ou le mode de vie sans altération de 

la séquence d’ADN. Par exemple, il existe une association entre la méthylation (qui varie selon le statut 

tabagique) de certaines cytosines et le risque de cancer du poumon53. D’un point de vue moléculaire, la 

méthylation de l’ADN (l’une des marques épigénétique) consiste à l’ajout d’un groupement méthyl (-

CH3) sur un substrat, généralement une cytosine C. Au cours de ces dernières décennies, plusieurs 

découvertes ont été faites sur la méthylation de l’ADN et son importance pour un certain nombre de 

processus cellulaires ou de développement tels que le développement embryonnaire, l’inactivation des 

chromosomes X ou encore la carcinogenèse. 

 À titre d’exemple, les études portant sur les mécanismes moléculaires sous-jacents au rôle de la 

méthylation de l’ADN dans l’expression des gènes ont démontré comment les modifications 

épigénétiques modulent le site de liaison des facteurs de transcription à l’ADN dans les mécanismes 

d’activation ou d’inhibition de la transcription des gènes, et donc de la synthèse des protéines associées.  

1.3 LES POLLUANTS ORGANIQUES PERSISTANTS  
 

Les perturbateurs endocriniens sont des substances exogènes qui altèrent la ou les fonctions du système 

endocrinien, entraînant des effets néfastes sur la santé d'un organisme, voire de sa descendance. Cette 

large classe de produits chimiques comprend une variété de substances présentes dans des composants 

tels que les solvants industriels, les emballages alimentaires et les produits ménagers commerciaux. Leur 

effet sur les systèmes biologiques et leur présence répandue dans l'environnement, y compris dans les 

aliments, ont suscité des préoccupations croissantes quant à l'impact de leur exposition sur la santé des 

populations dans les pays industrialisés.  

Dans ce projet de recherche, nous nous concentrerons sur les retardateurs de flamme bromés (BFRs) et 

les substances perfluoroalkylées et polyfluoroalkylées (PFASs), deux familles de composés connues 

pour perturber le système endocrinien et classées comme polluants organiques persistants, de par leur 

capacité à persister dans l'environnement pendant une longue période et du risque accru qu’elles 

représentent pour la santé humaine. 

1.4 OBJECTIFS  
 
Après l’introduction en 2013, du Framework définissant et contextualisant une signature mutationnelle, 

plusieurs modèles mathématiques et outils informatiques ont été proposés pour les détecter et estimer 

leur contribution à un catalogue donné, de même que leur association potentielle à une exposition 

endogène ou exogène. Ce projet avait pour objectif (1) d’examiner les contributions des signatures 
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mutationnelles et épigénétiques dans la conduite d’études épidémiologiques ; ce qui nous a également 

permis de (2) démontrer que les mutations induites par le tabagisme peuvent prédire le risque de certains 

cancers associés. Par la suite, (3) nous avons effectué une comparaison empirique sur la performance 

des outils développés pour l'analyse des signatures mutationnelles afin d’évaluer les méthodes 

existantes. Cela a demandé le développement d’un modèle probabiliste pour la simulation de catalogues 

mutationnelles réalistes sur lesquels évaluer les méthodes existantes. 

Dans un second temps, et en considération de la littérature qui suggère que la méthylation joue un rôle 

médiateur résultant des effets des perturbateurs endocriniens sur la santé, nous nous sommes intéressés 

à leur potentielle association avec la méthylation de l’ADN. Nous avons donc conduit deux études afin 

de déterminer si la méthylation pouvait être utilisée comme biomarqueur de l’exposition aux BFRs (4) 

puis aux PFASs (5) en utilisant les estimations alimentaires et les mesures sanguines obtenues à partir 

d’une sous-population de l’étude E3N.  
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2. MATERIELS ET METHODES 

2.1 IDENTIFICATION DES SIGNATURES MUTATIONNELLES 
	
2.1.1	APERÇU	DES	METHODES	EXISTANTES	
 

La plupart des outils développés pour l’identification des signatures mutationnelles sont basées sur 

l’algorithme NMF16,152 (non-negative matrix factorization) ou une version bayésienne151,154 de celui-ci. 

D’autres outils sont basés sur des modèles probabilistes tels que l’algorithme EM13. L’objectif de toutes 

ces méthodes est de décomposer un catalogue mutationnel M en deux matrices P et E, dont les entrées 

sont non-nulles et non-négatives  (à l’exception des méthodes utilisant l’ACP152); les signatures 

mutationnelles résultant des colonnes de la matrice P peuvent être alors comparées à celles référencées 

dans la base données COSMIC. On parle alors d’approches de novo. 

 

En plus de vouloir identifier de nouvelles signatures mutationnelles, les scientifiques peuvent avoir pour 

intérêt, l’identification de signatures déjà existantes.  On parle alors d’approches de refitting, qui 

regroupe un ensemble d’outils dont l’objectif est de trouver la meilleure combinaison de toutes les 

signatures existantes pouvant expliquer un catalogue mutationnel.  

À ce jour, seul un modèle a été développé afin de combiner les deux approches166. 

 

Notre implémentation d’une méthode de refitting : MutationalCone 

Dans le contexte des méthodes de refitting, nous proposons une implémentation alternative de la 

méthode proposée par Huang162 ou Huebschmann164 sur la base d'un cadre géométrique simple. En effet, 

trouver la décomposition linéaire du catalogue en entrée sur un ensemble de signatures données de façon 

à minimiser la distance entre le catalogue et une telle combinaison linéaire peut être vu comme le 

problème de projection sur le cône géométrique dont les arrêtes sont les signatures de référence. Nous 

proposons de résoudre ce problème en appliquant le package R nommé coneproj172. Les détails de 

l’implémentation de cet algorithme (MutationalCone), ainsi que le code R correspondant se trouvent 

dans l’Annexe 2. 

	
2.1.2	SIMULATION	D’UN	CATALOGUE	MUTATIONNEL	
 
En parallèle, nous proposons également un modèle de simulation en partant du principe que le nombre 

de mutations induites suit une distribution de type Zero-inflated Poisson (ZIP). L’avantage de ce modèle 

est qu’il autorise un nombre important d’entrées nulles, ce qui correspond mieux à une modélisation 

hétérogène dans laquelle tous les échantillons ne sont pas exposés aux mêmes processus. 
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2.1.3	LA	BASE	DE	DONNEES	TCGA	

En plus d’évaluer les méthodes avec des données simulées, nous avons utilisés des données réelles 

d’exomes de la base de données TCGA pour 4 types de pathologies : cancers du sein et du poumon, 

lymphome et mélanome. 

 

2.1.4	ÉVALUATION	DE	LA	PERFORMANCE	DES	METHODES	

Toutes les méthodes d'identification de signatures ont pour objectif de minimiser la distance entre le 

catalogue réel et le produit résultant de sa décomposition. Dans un premier temps, et en utilisant les 

données réelles, on peut se baser sur l'erreur de reconstruction en calculant la norme de Frobenius de la 

différence entre la matrice avec le catalogue en entrée M et la reconstruction PxE. Par la suite, nous 

proposons de calculer des mesures telles que la sensibilité et la spécificité en comparant les signatures 

utilisées pour des simulations et celles obtenues avec les approches de novo. Nous simulons alors des 

données selon des différents valeurs de paramètres tels que le nombre de mutations et le nombre 

d’échantillons dans un catalogue ; les catalogues étant simulés de façon à ressembler aux catalogues des 

cancers sélectionnés dans TCGA. Enfin, pour évaluer les méthodes dites de refitting, nous comparons 

les biais obtenus par les méthodes en comparant l’estimation de la contribution d’une signature avec sa 

contribution réelle. Les méthodes sont également évaluées à l’égard du temps de calcul. 

2.2 ASSOCIATION ENTRE PERTUBATEURS ENDOCRINIENS ET 
METHYLATION DE L’ADN 
	
2.2.1	LA	COHORTE	E3N	
 
E3N (Étude Épidémiologique auprès de femmes de la Mutuelle Générale de l’Education Nationale 

(MGEN)), est une cohorte prospective de 98 995 femmes assurées par la MGEN, dans le cadre d’un 

programme national de l’assurance maladie. Initiée en 1990, elle a pour objectif principal d’examiner 

les associations entre la mode de vie et les facteurs hormonaux, et génétiques avec le cancer et les autres 

maladies non-transmissibles.  

	
2.2.2	COLLECTION	DES	DONNEES	
 
Des auto-questionnaires (Q1-Q11) sont envoyés aux participantes tous les 2-3 ans afin de collecter les 

données relatives à leur état de santé et mode de vie. Il existe également une banque 

biologique constituée avec des échantillons sanguins collectés entre 1994 et 1999 chez environ 25 000 

participantes (taux de participation ~40%) et salivaires collectés entre 2009 et 2011 chez 47 000 femmes 

(taux de participation ~70%). De plus, les données de la MGEN sont disponibles depuis 

2004 et fournissent des informations sur les remboursements des médicaments des femmes E3N. 
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Les données alimentaires sont disponibles grâce à deux questionnaires portant sur les habitudes 

alimentaires des années antérieures envoyés en 1993 et en 2005. L’estimation de l’exposition alimentaire 

aux BFRs et aux PFASs ont par la suite été basées sur le questionnaire alimentaire envoyé en 1993 en 

utilisant la base de données TDS2 qui regroupe plus de 20 000 produits alimentaires servant de support 

pour l’identification de 1352 composés. 

 

2.2.3	MESURE	DU	NIVEAU	CIRCULANTS	DES	BFRS	ET	DES	PFASS	
 
Les niveaux circulants des BFRs et des PFASs d’environ 200 cas et 200 témoins du cancer du sein ont 

été mesurés par le laboratoire LABERCA (Oniris Nantes, FRANCE) en utilisant les protocoles adaptés 

selon la norme ISO. Ces femmes ont été appariés sur la base de l’âge, l’IMC, le statut ménopausique et 

le département de résidence au prélèvement sanguin.  

 

2.2.4	METHYLATION	DE	L’ADN	
 
La puce illumina HumanMethylation EPIC a été utilisée pour mesurer le niveau de plus de 850 K CpGs 

le long du génome. L’extraction de l’ADN, le protocole de conversion, le contrôle qualité et le 

prétraitement ont été réalisé par l’Italian Institute of Genomic Medicine (IIGM).  

	
2.2.5	GENE	SET	ENRICHMENT	ANALYSIS	
 
GSEA185 est une méthode qui permet de déterminer si un ensemble de gènes présente des différences 

concordantes avec un état biologique, ex. un phénotype binaire ou une corrélation avec un phénotype 

quantitatif, ex. niveau de BFRs. Dans le cadre de cette thèse, il s’agit d’évaluer la corrélation entre la 

méthylation des CpGs localisés dans les régions promotrices de gènes et le niveau des différents 

perturbateurs endocriniens étudiés. 

 
2.2.6	ANALYSES	STATISTIQUES	
 
Dans le cadre de cette thèse, seuls les témoins de l’enquête cas/témoins nichée dans la cohorte ont été 

considérés afin d’éviter le biais de sélection consistant à étudier l’association entre méthylation et 

exposition conditionnellement au statut cas/contrôle, un effet potentiellement commun à ces deux 

variables. L’association entre BFRs ou PFASs et méthylation de l’ADN a été évalué à l’égard des CpGs 

pris individuellement, de leur niveau moyen sur des régions, et du niveau moyen global. 

Les populations finales de l’étude sur l’association entre les BFRs et les PFASs et la méthylation de 

l’ADN variaient entre 162 et 168 femmes. Les quartiles d’exposition alimentaires ou de mesures des 

niveaux circulants ont été étudiés en relation avec niveau de méthylation de l’ADN en utilisant divers 

modèles linéaires à effet mixtes. En fonction du modèle, les facteurs d’ajustements prenaient en compte 

l’âge, l’IMC, la parité/durée cumulée d’allaitement, le score d’adhérence au régime alimentaire 

méditerranéen ou occidental et le taux total de lipides.  
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3. RESULTATS  

3.1 EXPOSITIONS ENVIRONMENTALES ASSOCIEES AUX SIGNATURES 
MOLECULAIRES 
 
3.1.1	EXPOSITIONS	ENVIRONMENTALES	ASSOCIEES	AUX	SIGNATURES	MUTATIONNELLES	ET	
EPIGENETIQUES	
 
Dans un premier temps, nous avons effectué une revue de littérature portant sur les associations connues 

entre exposition environnementales et signatures mutationnelles ou épigénétiques. 

Les rayons ultraviolets (UV) sont connus pour induire des transitions de type C > T tandis que le 

tabagisme induit majoritairement des transversions C > A. Cela a pu être prouvé expérimentalement, et 

le principe selon lequel les carcinogènes laissent des empreintes a pu être confirmé avec la disponibilité 

des données d’exomes et de génomes de multiples cancers. 

À titre d’exemple, une étude118 portant sur 2490 fumeurs et 1063 non-fumeurs, a permis d’identifier une 

prévalence plus importante de signatures mutationnelles chez les fumeurs en comparaisons des non-

fumeurs. De même, elle a permis d’identifier la signature mutationnelle 4 comme résultant de 

l’exposition au tabagisme avec une fraction considérable chez les fumeurs pour les cancers du poumon 

du larynx et du foie ; la signature 4 étant majoritairement constituée de transversions C>A. 

Plus généralement, en termes d'association entre les signatures mutationnelles et les expositions 

environnementales, la plupart des autres études portent sur l’acide aristolochique127, l’aflatoxine B1120, 

les rayons UV11 et les radiations121,122. 

Par ailleurs, il existe une association entre la méthylation (qui varie selon le statut tabagique) de 

certaines cytosines et le risque de cancer du poumon. Il a par exemple été démontré qu’il existe des 

différences supérieures à 5% entre le niveau de méthylation dans les tissus tumoraux de fumeurs en 

comparaison des non-fumeurs118.  

	
3.1.2	TABAGISME,	CANCER	DU	POUMON	ET	LA	ROLE	DE	LA	CHANCE	DANS	LE	DEVELOPEMENT	DU	
CANCER	
 
Le cancer du poumon est le 3ème cancer au monde et plusieurs études ont permis de démontrer que le 

tabagisme en est la cause principale. 

Depuis 2015, Tomasetti et Vogelstein ont publiés un certain nombre d’articles qui ont contribué du fait 

d’une certaine ambiguïté, à la diffusion de l’idée, fausse, selon laquelle 2/3 des nouveaux cas de cancers 

résulteraient du hasard. Leur modèle, qui se base notamment sur l’estimation du nombre de divisons de 

cellules souches (LSCD), leur a permis de déterminer qu’aux États-Unis, mais également dans 68 autres 

pays, le LSCD de 25 types de tissus corrèle bien avec le risque de développer un cancer (CR) dans ces 

mêmes tissus. En particulier, la variation du log (CR) expliquée par le log (LSCD) serait de R2 = 0.66.  
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Bien que cette mesure de corrélation ne soit déterminante sur la probabilité de développer un cancer, 

elle a été interprétée comme une mesure de la proportion de nouveaux cancers dus à la malchance. En 

2017, les auteurs ont clarifié leurs propos en effectuant une distinction claire entre la proportion de 

cancers évitables dus à l’exposition environnementale et la proportion de mutations déterminantes 

causées par des facteurs environnementaux, l’hérédité ou des facteurs stochastiques incontrôlables 

(notamment les erreurs lors de la réplication de l’ADN).  Cependant, ce modèle présente également des 

failles puisque les mutations sont nécessaires ; mais pas suffisantes pour aboutir au développement du 

cancer. 

 

Certains chercheurs ont proposé une alternative pour estimer le nombre de mutations due à des facteurs 

endogènes ou exogènes en se basant sur les signatures mutationnelles147. Étant donné que la signature 

COSMIC 1 est corrélée à l'âge de diagnostic du cancer, ses chercheurs ont utilisé le ratio entre le nombre 

de mutations associées à cette signature et le nombre total de mutations totale en tant proxy de la 

proportion de mutations intrinsèques. En utilisant cette approche, ils ont estimé que la grande majorité 

des mutations (70% à 90%) est due à des facteurs extrinsèques dans la plupart des types de cancer, ce 

qui contredit les conclusions de Tomasetti et Vogelstein. En utilisant une approche similaire, nous avons 

comparé le nombre le nombre de mutations dues au tabagisme dans plusieurs tissus, à l’incidence et au 

taux de mortalité de multiples cancers associés au tabagisme chez les fumeurs et les non-fumeurs.  

 

Nos résultats démontrent ainsi que le nombre de mutations est plus prédictif du risque de cancer que le 

nombre de divisions cellulaires. 

3.2 PERFORMANCE DES ALGORITHMES D’IDENTIFICATION DES 
SIGNATURES MUTATIONNELLES  
 
En considérant les données réelles, on remarque que l’erreur de reconstruction des différentes méthodes 

dépend du type de cancer, ce qui est attendu puisque ces jeux de données varient à l’égard du nombre 

d’échantillons, de mutations et du nombre de signatures. Plus généralement, toutes les méthodes sont 

rigoureusement équivalentes dans leur capacité à reconstruire le catalogue mutationnel initial. 

 

Nous n’observons pas de larges différences pour la spécificité à l’égard du nombre d’échantillon dans 

le catalogue. Il faut cependant noter que la sensibilité augmente avec le nombre d’échantillons ; 

notamment dans le cas où plusieurs signatures contribuent au profil mutationnel d’un catalogue. Par 

ailleurs, les méthodes basées sur la NMF ont une sensibilité moindre tandis que celles basées sur les 

modèles probabilistes donnent de meilleurs résultats. 

La sensibilité augmente avec le nombre de mutations et pour la majorité des cas, une moyenne de 1000 

mutations sont nécessaires pour qu’elle avoisine 1. Plus généralement, elle est élevée pour les cancers 
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ayant une mutation prédominante et faible en cas de signature concomitantes. Des résultats comparables 

sont observés pour la spécificité.  

 

En simulant un catalogue de cancer du poumon, et en appliquant les méthodes de refitting, nous nous 

apercevons qu’elles donnent de bonnes estimations de la contribution de la majorité des signatures. En 

termes de temps de calcul, l’algorithme que nous proposons, MutationalCone s’avère être le plus rapide. 

3.3 ASSOCIATION ENTRE PERTUBATEURS ENDOCRINIENS ET 
METHYLATION DE L’ADN 

Les analyses individuelles CpG par CpG et les analyses de la méthylation de l'ADN aux niveaux global 

et régional n'ont pas fourni de preuve convaincante d'associations avec les concentrations plasmatiques 

des BFRs/PFASs ou l'exposition alimentaire aux BFRs/PFASs. Les résultats de l’analyse GSEA sont 

tout de même intéressants car ils suggèrent que l'exposition aux BFRs ou aux PFASs peuvent modifier 

les niveaux de méthylation de l'ADN de gènes impliqués dans des voies biologiques spécifiques.  

 
3.3.1	ASSOCIATION	ENTRE	BFRS	ET	METHYLATION	DE	L’ADN	

Les concentrations plasmatiques et l'exposition alimentaire aux BFRs semblent être associées à des 

altérations de la méthylation de l'ADN dans différentes voies métaboliques. Tandis que pour les niveaux 

circulants, les groupes de gènes identifiés sont impliqués dans l’embryogénèse, la régulation de la 

matrice extracellulaire et du cycle cellulaire et les mécanismes de réparation de l'ADN, les expositions 

alimentaires sont associées à des voies telles que la réponse immunitaire, à l'hypoxie et à l'apoptose. 

Ces résultats sont globalement compatibles avec la capacité des BFRs à modifier le système endocrinien, 

influencer la réponse immunitaire et impacter le système reproducteur. 

 
3.3.2	ASSOCIATION	ENTRE	PFASS	ET	METHYLATION	DE	L’ADN	

Tout comme les BFRs, les concentrations plasmatiques et l'exposition alimentaire aux PFASs semblent 

être associées à des altérations de la méthylation de l'ADN dans différentes voies. Tandis que pour les 

niveaux circulants, les groupes de gènes identifiés sont impliqués dans la régulation de l’homostase du 

cholestérol et le métabolisme des acides gras, les expositions alimentaires sont principalement associées 

à l’apoptose. 

Ces résultats sont globalement compatibles avec la capacité des PFASs à influencer la réponse 

immunitaire et à leurs propriétés hépatotoxiques.  
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4. DISCUSSION ET CONCLUSION 

4.1 EXPOSITIONS ENVIRONMENTALES ASSOCIEES AUX SIGNATURES 
MOLECULAIRES 
 

Le profil mutationnel et épigénétique d'un génome cancéreux résulte respectivement de la superposition 

de toutes les traces, ou signatures, laissées par des processus mutationnels et de l'altération des niveaux 

de méthylation dues à des facteurs environnementaux, de style de vie (et aléatoires). Ces deux types de 

signatures représentent des domaines de recherche prometteurs susceptibles de continuer à apporter de 

nouvelles connaissances sur la nature du cancer et les processus qui y conduisent. Ces avancées dans les 

nouvelles connaissances vont probablement s'accélérer lorsque des études épidémiologiques vont 

collecter et séquencer systématiquement l'ADN du tissu tumoral, permettant ainsi l'analyse des 

signatures mutationnelles et la mise en relation de ces signatures avec des données épidémiologiques. 

Selon le modèle dominant de cancérogenèse, le cancer est principalement causé par l'accumulation de 

mutations génétiques. Cependant, il est de plus en plus admis que l'accumulation de mutations 

somatiques ne peut à elle seule expliquer le développement d'un cancer. Les preuves s'accumulent et il 

est reconnu que les mécanismes génétiques ou non génétiques tels que les altérations épigénétiques et 

les facteurs environnementaux peuvent influencer les divisions des cellules souches et donc le 

développement du cancer. À cet égard, il serait très intéressant d'essayer d'estimer l'effet de tels facteurs 

sur le nombre de divisions de cellules souches au cours de la vie. Cela nécessiterait la construction d'un 

modèle permettant d'estimer la fraction de tels événements par rapport au nombre total d'événements 

nécessaires au développement du cancer. D'autres événements ou conditions pouvant jouer un rôle 

important mais qui n'ont pas encore été pris en compte dans le modèle de développement du cancer sont 

les mécanismes de réparation de l'ADN et les dysfonctionnements de la surveillance immunitaire. 

4.2 PERFORMANCE DES ALGORITHMES D’IDENTIFICATION DES 
SIGNATURES MUTATIONNELLES 

La recherche sur les signatures mutationnelles est très active et se développe rapidement, à la fois en ce 

qui concerne les nouvelles méthodes d'analyse des séquences génomiques du cancer, mais également, 

l'application de ces méthodes dans le but d'élucider l'étiologie du cancer. 

Les résultats des travaux menés portant sur la comparaison des méthodes d’identification des signatures 

mutationnelles permettent de mieux comprendre les forces et les limites de chaque méthode, ainsi que 

l’identification les paramètres clés qui influent leurs performances, à savoir le nombre de mutations et 

la « complexité » des facteurs contributifs, notamment les signatures. 

De même, notre étude semble indiquer que les méthodes probabilistes de novo EMu et bayesNMF ont 

globalement une meilleure performance car elles permettent d’obtenir une sensibilité et une spécificité 
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meilleures avec un temps de calcul raisonnable. Cependant, afin d'évaluer la robustesse des nouveaux 

résultats, en raison de la variabilité des résultats et de la présence d'échantillons hypermutés notamment, 

nous recommandons d'effectuer systématiquement une analyse de sensibilité basée sur l'application 

d'une ou de plusieurs méthodes alternatives basées sur différents algorithmes. 

Plus généralement, si l’objectif est d’évaluer la présence de signatures connues dans des catalogues de 

mutations (génomes ou exomes de cancer), nous recommandons de passer aux méthodes de refitting. 

Pour les cancers bien étudiés, elles constituent une alternative plus rapide et plus puissante que les 

méthodes de novo. Comme la base de données COSMIC a été construite et validée en analysant des 

dizaines de milliers de séquences de la plupart des types de cancer, il est recommandé de s’appuyer sur 

les études précédentes et d’utiliser des outils de refitting pour réaliser une analyse standard ne visant pas 

la découverte de signatures de novo. 

Par ailleurs, nous avons introduit un nouveau modèle de simulation de données de signatures 

mutationnelles basé sur une distribution de Poisson (ZIP) qui permets d’obtenir des simulations plus 

réalistes que celles récemment proposées dans la littérature.  De même, nous avons proposé une version 

améliorée des modèles de refitting existants, et notre méthode, appelée MutationalCone, s’est révélée 

être l’outil de ce type le plus rapide disponible à ce jour. 

4.3 ASSOCIATION ENTRE PERTUBATEURS ENDOCRINIENS ET 
METHYLATION DE L’ADN 

Le 3 septembre 2019, Santé Publique France, l'agence nationale de santé publique en France, a publié 

les résultats d'une étude de biosurveillance liée à la présence d'environ 70 biomarqueurs, notamment des 

bisphénols, des phtalates, des BFRs, des PFASs et d'autres perturbateurs endocriniens dans l'organisme 

des Français (Esteban, 2014-2016).Comme le révèle l'étude, ces polluants sont omniprésents dans le 

corps des enfants et des adultes, avec des niveaux plus élevés chez les enfants, ce qui pourrait s'expliquer 

par l'ingestion de poussière ou par un niveau d'exposition élevé par rapport au poids de leur corps. Cela 

ne fait donc que refléter l’importance d’étudier l’impact de telles molécules sur la santé. 

Le but de notre étude était d’identifier de nouveaux marqueurs d’exposition aux BFRs et aux PFASs. 

Cependant, nous n'avons trouvé aucune preuve d'association modérée ou forte entre ces deux classes de 

perturbateurs endocriniens et la méthylation de l'ADN sanguin, que ce soit au niveau global, à l'échelle 

du génome, régional (par exemple, les régions promotrices aux ilôts de CpG), ou des CpGs pris 

individuellement. 

À notre connaissance, il s'agit de la première étude d'association à l'échelle de l'épigénome des BFRs ou 

des PFASs et de la méthylation de l'ADN. Les études antérieures portaient sur des éléments génomiques 

répétitifs utilisés comme marqueurs de la méthylation globale (à savoir Alu et LINE-1), et ont démontrés 
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que des perturbateurs endocriniens tels que les phtalates ou les bisphénols étaient associés à une 

hypométhylation. Notre étude a mesuré la méthylation de l’ADN de manière plus systématique avec 

une couverture de près d’un million de CpG représentant plus de 90% de tous les CpG - soit une 

couverture six fois supérieure à la couverture des études utilisant des éléments Alu et LINE-1. 

Les principales limites de notre étude incluent la nature transversale des mesures dans le sang (c'est-à-

dire que les concentrations plasmatiques des BFRs ou des PFASs et la méthylation de l'ADN ont été 

mesurées à partir des mêmes échantillons de sang) et la taille relativement limitée des populations 

étudiées. En outre, nous ne pouvons pas exclure que la possibilité que les BFRs ou les PFASs influencent 

la méthylation de l'ADN dans d'autres tissus non disponibles pour cette étude. 

En conclusion, notre étude n'a trouvé aucune preuve d'association entre l'exposition aux BFRs ou aux 

PFAS et des altérations modérées ou fortes de la méthylation des CpG pris globalement ou 

individuellement dans l’ADN circulant. Les associations observées entre l'exposition aux BFRs ou aux 

PFASs et les altérations de la méthylation de l'ADN dans des voies biologiques spécifiques méritent 

d'être répliquées dans des études indépendantes puisqu’elles pourraient refléter une action plus 

complexe de cette classe de substances. 
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Appendix 2. MutationalCone implementation 
 

We report here the R code implementing our original method for signature refitting.  

Let # be the linear subspace of ℝ% spanned by the reference signatures. Our function MutationalCone()  

projects the input mutational catalogue onto the cone in # spanned by the reference signatures with the 

very fast coneproj R package (https://cran.r-project.org/web/packages/coneproj). Because projections 

are simply calculated as scalar products, this function requires the user to specify an orthonormal basis 

of # toghether with the components of the reference signatures with respect to it. These two input 

matrices can be calculated with the function SignatureSubspace() once and for all, before iterating 

MutationalCone() on all catalogues. SignatureSubspace() finds an orthonormal basis of #  with the 

Gram-Schmidt algorithm. 

SignatureSubspace <- function(signatures){ 
  # signatures: (K,N)-matrix with reference signatures in columns (e.g.     # 
COSMIC signatures) 
  # with K = number of mutation types (e.g. 96), N = number of reference    # 
signatures 
     
  # Orthonormalization of the subspace generated by reference signatures  
  S <- signatures  
  S.qr <- qr(S) 
  Q <- qr.Q(S.qr) # orthonormal basis of the subspace 
  R <- qr.R(S.qr) # components of the reference signatures in the orthonormal 
basis 
  return(list(Q=Q, R=R)) 
} 
 
MutationalCone <- function(catalogue, Q, R){ 
  # catalogue: vector of length K with the mutational catalogue,  
  # Q: matrix with the orthonormal basis of the subspace generated     
  # by the reference signatures in columns 
  # R: matrix with the components of the reference signatures wrt    
  # the orthonormal basis in columns. Q and R are found with                # 
SignatureSubspace() 
 
  require(coneproj) 
   
  # Projection of the catalogue onto the subspace generated by 
  # reference signatures  
  proj.subspace <- t(Q) %*% catalogue  
   
  # Projection onto the cone spanned by the signatures 
  weights <- as.vector(coneB(y=as.vector(proj.subspace),delta=R)$coefs) 
  return(weights) 
}
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Appendix 3. Overview of gene sets in MSigDB  
http://software.broadinstitute.org/gsea/msigdb/collections.jsp 
 

H: hallmark gene sets 
(browse 50 gene sets) 

Hallmark gene sets summarize and represent specific well-defined biological states or processes and display coherent expression. 
These gene sets were generated by a computational methodology based on identifying overlaps between gene sets in other MSigDB 
collections and retaining genes that display coordinate expression. details 

C1: positional gene sets 
(browse 299 gene sets) 

Gene sets corresponding to each human chromosome and each cytogenetic band that has at least one gene. details 

C2: curated gene sets 
(browse 5501 gene sets) 

Gene sets curated from various sources such as online pathway databases, the biomedical literature, and knowledge of domain 
experts. The gene set page for each gene set lists its source. The C2 collection is divided into two sub-collections: CGP and CP.   

CGP: chemical and genetic 
perturbations 
(browse 3302 gene sets) 

Gene sets represent expression signatures of genetic and chemical perturbations. A number of these gene sets come in pairs: 
xxx_UP (and xxx_DN) gene set representing genes induced (and repressed) by the perturbation. 

CP: Canonical pathways 
(browse 2199 gene sets) 

Gene sets from pathway databases. Usually, these gene sets are canonical representations of a biological process compiled by 
domain experts. 

CP:BIOCARTA: BioCarta gene sets 
(browse 289 gene sets) 

Gene sets derived from the BioCarta pathway database. 

CP:KEGG: KEGG gene sets 
(browse 186 gene sets) 

Gene sets derived from the KEGG pathway database. 

CP:PID: PID gene sets 
(browse 196 gene sets) 

Gene sets derived from the PID pathway database. 

CP:REACTOME: Reactome gene sets 
(browse 1499 gene sets) 

Gene sets derived from the Reactome pathway database. 

C3: motif gene sets 
(browse 831 gene sets) 

Gene sets representing potential targets of regulation by transcription factors or microRNAs. The sets consist of genes grouped by 
short sequence motifs they share in their non-protein coding regions. The motifs represent known or likely cis-regulatory elements 
in promoters and 3'-UTRs. The C3 collection is divided into two sub-collections: MIR and TFT details 

MIR: microRNA targets 
(browse 221 gene sets) 

Gene sets that contain genes sharing putative target sites (seed matches) of human mature miRNA in their 3'-UTRs. 

TFT: transcription factor targets 
(browse 610 gene sets) 

Gene sets that share upstream CIS-regulatory motifs which can function as potential transcription factor binding sites. Based on 
work by Xie et al. 2005 

Continued on the following page  
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C4: computational gene sets 
(browse 858 gene sets) 

Computational gene sets defined by mining large collections of cancer-oriented microarray data. The C4 collection is divided into 
two sub-collections: CGN and CM. details 

CGN: cancer gene neighborhoods 
(browse 427 gene sets) 

Gene sets defined by expression neighborhoods centered on 380 cancer-associated genes. This collection is described 
in Subramanian, Tamayo et al. 2005 

CM: cancer modules 
(browse 431 gene sets) 

Gene sets defined by Segal et al. 2004. Briefly, the authors compiled gene sets ('modules') from a variety of resources such as 
KEGG, GO, and others. By mining a large compendium of cancer-related microarray data, they identified 456 such modules as 
significantly changed in a variety of cancer conditions. 

C5: GO gene sets 
(browse 9996 gene sets) 

Gene sets that contain genes annotated by the same GO term. The C5 collection is divided into three sub-collections based on GO 
ontologies: BP, CC, and MF. details 

BP: GO biological process 
(browse 7350 gene sets) 

Gene sets derived from the GO Biological Process Ontology. 

CC: GO cellular component 
(browse 1001 gene sets) 

Gene sets derived from the GO Cellular Component Ontology. 

MF: GO molecular function 
(browse 1645 gene sets) 

Gene sets derived from the GO Molecular Function Ontology. 

C6: oncogenic signatures 
(browse 189 gene sets) 

Gene sets that represent signatures of cellular pathways which are often dis-regulated in cancer. The majority of signatures were 
generated directly from microarray data from NCBI GEO or from internal unpublished profiling experiments involving perturbation 
of known cancer genes. details 

C7: immunologic signatures 
(browse 4872 gene sets) 

Gene sets that represent cell states and perturbations within the immune system. The signatures were generated by manual curation 
of published studies in human and mouse immunology. details 

`	
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Appendix 4. Description of hallmarks associated with BFRs or PFASs exposure 
 
 

Gene set Description 
ANDROGEN_RESPONSE Genes defining response to androgens 

APOPTOSIS Genes mediating programmed cell death (apoptosis) 
 by activation of caspases 

CHOLESTEROL_HOMEOSTASIS Genes involved in cholesterol homeostasis 

DNA_REPAIR Genes involved in DNA repair 

FATTY_ACID_METABOLISM Genes encoding proteins involved in metabolism  
of fatty acids 

HYPOXIA Genes up-regulated in response to low oxygen  
levels (hypoxia) 

IL2_STAT5_SIGNALING 
Genes up-regulated by STAT5 in response to IL2  
stimulation 

IL6_JAK_STAT3_SIGNALING Genes up-regulated by IL6 via STAT3 
 e.g. during acute phase response 

INFLAMMATORY_RESPONSE Genes defining inflammatory response 

MYC_TARGETS_V1 A subgroup of genes regulated by MYC - version 1 

MYC_TARGETS_V2 A subgroup of genes regulated by MYC - version 2 

TNFA_SIGNALING_VIA_NFKB Genes regulated by NF-kB in response to TNF 
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Appendix 5. Top 20 CpGs associated with dietary exposure to HBCDs congeners  
 

  Probes Coefficients* SE P 

HBCDalpha 

cg27595499 -0,2760762 0,05816591 6,50904E-06 
cg07390488 0,24457846 0,05346267 1,29971E-05 
cg05133593 0,26558025 0,06013522 2,42746E-05 
cg14401140 0,4976144 0,1128951 2,51051E-05 
cg00770317 0,56135797 0,12873052 3,01393E-05 
cg27661315 0,41997914 0,09668882 3,22008E-05 
cg07142556 0,29012627 0,06736854 3,71439E-05 
cg20189913 0,33286699 0,07742552 3,82096E-05 
cg02370023 0,28719499 0,06787434 4,95276E-05 
cg09345606 -0,3623646 0,08594503 5,24379E-05 
cg20320200 0,15395841 0,03653598 5,29078E-05 
cg23956068 0,36902208 0,08768005 5,39506E-05 
cg25769013 0,31804512 0,07572767 5,57955E-05 
cg13279940 0,5621625 0,13453731 6,04856E-05 
cg07787543 -0,2842825 0,0680523 6,07315E-05 
cg07884019 -0,2701917 0,06490753 6,41878E-05 
cg05169756 0,33368971 0,08026058 6,54403E-05 
cg07829740 0,34311475 0,08282472 6,92111E-05 
cg18675735 0,42777874 0,1035916 7,27175E-05 
cg04156077 2,10044806 0,5127395 8,22392E-05 

HBCDbeta 

cg18404184 0,3834896 0,06996678 2,88166E-07 
cg02786218 0,23479543 0,04483681 8,34626E-07 
cg00825491 0,20337156 0,03908586 9,63578E-07 
cg06019792 0,15252194 0,03014283 1,77213E-06 
cg06409164 0,1984154 0,04060276 3,65679E-06 
cg20189913 0,35113083 0,07246902 4,34053E-06 
cg01454153 -0,3997916 0,08343325 5,40751E-06 
cg19788036 0,33911074 0,07084019 5,51418E-06 
cg15267844 1,17891241 0,24750664 6,0782E-06 
cg22500518 0,15701139 0,03365453 9,03712E-06 
cg17232357 0,1589013 0,03433133 1,04843E-05 
cg06210526 -0,5255223 0,11451435 1,2272E-05 
cg03772491 0,14651673 0,03192809 1,22808E-05 
cg04695063 0,19459668 0,04257474 1,32083E-05 
cg19947484 0,18671063 0,04094203 1,37634E-05 
cg11593179 0,2341994 0,05205816 1,7566E-05 
cg11048101 0,82583464 0,18484974 1,98628E-05 
cg15032048 0,26068104 0,05836155 1,99366E-05 
cg10941185 0,20092138 0,04545865 2,39464E-05 
cg11085508 0,31127961 0,07055069 2,46798E-05 
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HBCDgamma 

cg06409164 0,2061523 0,03818988 4,14578E-07 
cg17562250 0,29351139 0,05759655 1,52172E-06 
cg18404184 0,33956167 0,06722252 1,83814E-06 
cg08685384 0,15303902 0,03092416 2,82497E-06 
cg11948159 0,21965814 0,04656777 7,33548E-06 
cg18493250 0,24804296 0,0530769 8,75405E-06 
cg00825491 0,17494655 0,03755575 9,29836E-06 
cg15267844 1,09585877 0,23533895 9,36617E-06 
cg23806034 0,135452 0,02917427 9,89527E-06 
cg11048101 0,80641673 0,17484133 1,11873E-05 
cg22711299 0,30495955 0,0672754 1,53434E-05 
cg06384026 0,15275811 0,03396177 1,76257E-05 
cg07913620 0,25900233 0,05779446 1,88104E-05 
cg11702456 0,27860728 0,06230638 1,95553E-05 
cg19788036 0,302456 0,06765352 1,96252E-05 
cg13421489 0,04811064 0,01085596 2,28622E-05 
cg19526199 -0,4068794 0,09198272 2,36155E-05 
cg08445278 0,20454323 0,04699345 3,11029E-05 
cg25304608 0,16170754 0,03731143 3,34195E-05 
cg21662240 0,47488652 0,10983435 3,47777E-05 

HBCDs 

cg25769013 0,37908579 0,07699725 3,14123E-06 
cg20189913 0,37333789 0,07972669 8,42636E-06 
cg07390488 0,25767529 0,05519859 8,93697E-06 
cg12000297 0,80574196 0,17273487 9,06523E-06 
cg02370023 0,3189253 0,07005543 1,42024E-05 
cg23956068 0,41035208 0,09035225 1,48236E-05 
cg07142556 0,31570191 0,06976916 1,5841E-05 
cg05133593 0,27998831 0,06216846 1,72294E-05 
cg27595499 -0,2739161 0,06088536 1,75605E-05 
cg22989447 0,42564279 0,09468147 1,77947E-05 
cg14652403 0,20668853 0,04664839 2,29476E-05 
cg04156077 2,30773125 0,52531633 2,6587E-05 
cg07829740 0,3754783 0,08562843 2,74333E-05 
cg15267844 1,20162834 0,27564012 3,02927E-05 
cg00770317 0,58130742 0,1335935 3,12567E-05 
cg19389613 -0,2456931 0,05703641 3,69874E-05 
cg18675735 0,46033789 0,10706749 3,81624E-05 
cg04277282 0,2398269 0,05591038 3,96585E-05 
cg05169756 0,35425044 0,08330199 4,56647E-05 
cg10836258 0,27148176 0,06386742 4,5996E-05 

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, 
parity/total breastfeeding duration, adherence scores to the healthy and Western dietary pattern as fixed effects  
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Appendix 6. Top 20 CpGs associated with dietary exposure to PBDEs congeners  
 

    
  Probes Coefficients* SE P 

BDE-28 

cg02874371 0,63060434 0,1270389 2,65332E-06 
cg22855255 0,24835987 0,05197901 5,7187E-06 
cg02466588 0,26346077 0,0573153 1,19072E-05 
cg20136236 0,28976953 0,06328276 1,27806E-05 
cg03801924 -0,2933135 0,06479058 1,57066E-05 
cg13062913 0,20185849 0,0447471 1,67334E-05 
cg15424250 0,18542467 0,04119381 1,73954E-05 
cg24679242 0,32749441 0,07318109 1,92838E-05 
cg02447557 0,33412354 0,07533846 2,25744E-05 
cg15134456 -0,345273 0,0780331 2,3499E-05 
cg13223537 -0,2744715 0,06215535 2,4321E-05 
cg10009007 -0,3154531 0,07185485 2,68873E-05 
cg25780498 0,34592269 0,07887102 2,73314E-05 
cg17862113 0,17750777 0,04061364 2,90023E-05 
cg03507241 0,24400807 0,05607367 3,12268E-05 
cg06924602 -0,3437152 0,07899194 3,12622E-05 
cg08351563 -0,3935994 0,09087029 3,37502E-05 
cg00678890 0,25551947 0,05913703 3,51626E-05 
cg25132878 0,27326286 0,06349789 3,7583E-05 
cg19944002 -0,2673953 0,0621455 3,76937E-05 

BDE-47 

cg20136236 0,29821485 0,06217601 5,30773E-06 
cg19720347 0,11989333 0,02511697 5,82914E-06 
cg18538510 0,22225298 0,04792463 1,01086E-05 
cg25683662 0,23241462 0,0510195 1,40376E-05 
cg23706176 -0,2836156 0,06357924 2,03988E-05 
cg03940874 -0,3720182 0,0834923 2,08115E-05 
cg18349130 -0,2593741 0,05825947 2,11132E-05 
cg08351563 -0,3974474 0,08947593 2,19658E-05 
cg13062913 0,19536953 0,04436356 2,54925E-05 
cg25197238 0,18088281 0,04129988 2,79963E-05 
cg01102638 0,39152512 0,09009864 3,19653E-05 
cg17741837 0,57537073 0,13331069 3,5817E-05 
cg02874371 0,54652215 0,12777539 4,15681E-05 
cg02380813 0,24057125 0,0564808 4,45052E-05 
cg09285095 0,28814335 0,06769421 4,49837E-05 
cg18787229 0,21345459 0,05064749 5,27816E-05 
cg03801924 -0,2707463 0,06431054 5,3696E-05 
cg01518607 0,30928869 0,07355488 5,47462E-05 
cg17256404 0,21813041 0,05195872 5,61567E-05 
cg01383890 0,23749504 0,05659204 5,64831E-05 

 cg03243551 0,29297613 0,0606766 4,65078E-06 
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BDE-99 

cg12809314 0,35816084 0,07630751 8,06203E-06 
cg10009007 -0,3287514 0,07020614 8,42849E-06 
cg20189913 0,32939542 0,07051444 8,82344E-06 
cg22857777 0,14351029 0,03078702 9,18395E-06 
cg22788368 0,25824114 0,055488 9,46144E-06 
cg26671685 0,77246414 0,16744097 1,11393E-05 
cg05637795 0,14929357 0,03282772 1,4469E-05 
cg19486875 0,16877637 0,03720143 1,51127E-05 
cg05134987 0,48245701 0,10647776 1,54621E-05 
cg01992382 0,40500369 0,08964232 1,6283E-05 
cg16834823 0,38341855 0,0853086 1,78675E-05 
cg24015654 -0,2168261 0,04829003 1,81808E-05 
cg11712934 0,27007556 0,06020563 1,84839E-05 
cg15670585 0,12113519 0,02706113 1,91907E-05 
cg05575043 0,33734257 0,07573865 2,09495E-05 
cg25769013 0,30573859 0,06885379 2,20991E-05 
cg08439122 0,20502268 0,0462413 2,26815E-05 
cg25161161 0,33497904 0,07568143 2,33642E-05 
cg21169617 0,23813056 0,05423803 2,68529E-05 

BDE-100 

cg20136236 0,30023388 0,06319181 6,38312E-06 
cg22855255 0,24659666 0,05211227 6,8999E-06 
cg17080882 0,24684448 0,0540564 1,34355E-05 
cg19720347 0,11565438 0,0258721 1,96582E-05 
cg08500500 0,32711072 0,07357879 2,16436E-05 
cg14102355 0,63115141 0,1436603 2,6553E-05 
cg05764121 -0,3325359 0,0757127 2,6686E-05 
cg02874371 0,56817291 0,12936611 2,66963E-05 
cg15134456 -0,341506 0,07825177 2,97364E-05 
cg22788368 0,2451431 0,05644348 3,22576E-05 
cg15424250 0,17980455 0,04145155 3,29445E-05 
cg23706176 -0,2806779 0,06484336 3,41283E-05 
cg25780498 0,34100604 0,079297 3,80375E-05 
cg02447557 0,3257715 0,07579895 3,84086E-05 
cg10009007 -0,3090468 0,07220673 4,11221E-05 
cg21226850 -0,2888084 0,06760066 4,23609E-05 
cg25683662 0,22550677 0,05279827 4,25507E-05 
cg24714511 0,19803863 0,04677432 4,90325E-05 
cg01414857 0,27549107 0,06508573 4,92523E-05 
cg24679242 0,31203071 0,07385352 5,07237E-05 
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BDE-153 

cg27268574 0,2090347 0,04232729 2,94911E-06 
cg15851014 0,28348095 0,05892163 4,99409E-06 
cg02884197 0,68616238 0,14309896 5,33566E-06 
cg05155449 0,23479678 0,04934279 6,19518E-06 
cg25561579 -0,4650648 0,09804318 6,58606E-06 
cg09125532 0,2768987 0,05862835 7,15919E-06 
cg03819515 0,20288978 0,04373719 1,00564E-05 
cg15842366 0,22981696 0,04966191 1,05195E-05 
cg00745323 0,5802423 0,12627952 1,19926E-05 
cg13066682 0,10391439 0,02269445 1,27867E-05 
cg03920024 0,2037169 0,0449072 1,51383E-05 
cg06384026 0,17004806 0,03752264 1,54119E-05 
cg19283806 0,19561402 0,04318171 1,55259E-05 
cg22788368 0,27158873 0,06028324 1,71271E-05 
cg27273140 0,31594558 0,07023583 1,75972E-05 
cg00770317 0,5710177 0,12702525 1,78098E-05 
cg06019792 0,14494261 0,03228171 1,81916E-05 
cg13411554 0,40328735 0,08993179 1,85946E-05 
cg05575043 0,36486911 0,08196911 2,11754E-05 
cg14310021 0,34857493 0,07837547 2,14932E-05 

BDE-154 

cg20136236 0,31566702 0,06451262 3,56173E-06 
cg02466588 0,26914733 0,0585902 1,20492E-05 
cg19720347 0,11978778 0,02629885 1,40678E-05 
cg23706176 -0,299949 0,06594772 1,44406E-05 
cg25683662 0,24050749 0,05325315 1,63923E-05 
cg13062913 0,20758365 0,04596771 1,64213E-05 
cg09285095 0,31591895 0,06996678 1,64595E-05 
cg15134456 -0,357945 0,07938927 1,68905E-05 
cg25780109 -0,2374963 0,05280793 1,76663E-05 
cg06924602 -0,3601048 0,08071305 2,0341E-05 
cg03801924 -0,2962424 0,06648033 2,07811E-05 
cg03940874 -0,3868402 0,08688416 2,10869E-05 
cg07710843 0,13800372 0,03136877 2,59363E-05 
cg10009007 -0,3223394 0,07355106 2,76953E-05 
cg00678890 0,26559988 0,06062325 2,7843E-05 
cg07212852 0,20085233 0,04590962 2,85218E-05 
cg18256856 -0,2737652 0,0627909 3,02295E-05 
cg16712094 0,18233599 0,04197076 3,21087E-05 
cg16684691 -0,2653881 0,06121593 3,32542E-05 
cg22855255 0,23352503 0,05396112 3,42467E-05 
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BDE-183 

cg20453042 0,28894084 0,06143405 7,75413E-06 
cg26079864 0,53359048 0,11452357 9,26457E-06 
cg21555123 0,44533854 0,09588594 9,83167E-06 
cg17562250 0,27404726 0,0594459 1,12886E-05 
cg06384026 0,15588329 0,03442006 1,5598E-05 
cg24421265 0,29204936 0,06470844 1,65875E-05 
cg03017264 0,32615244 0,07288842 1,93174E-05 
cg21937462 0,20279726 0,04538176 1,97775E-05 
cg14310021 0,31767976 0,0717454 2,32091E-05 
cg22091565 0,33048967 0,07494362 2,49019E-05 
cg20117519 0,25544695 0,05826218 2,74902E-05 
cg06343669 0,20553723 0,04694638 2,81723E-05 
cg22477463 0,1885924 0,04364593 3,51411E-05 
cg18493250 0,23497298 0,05441117 3,548E-05 
cg16999243 0,37454034 0,08705677 3,77627E-05 
cg03214444 0,26499655 0,06175615 3,9427E-05 
cg08172479 0,34744245 0,08125458 4,17652E-05 
cg25612362 0,27317798 0,06391537 4,20725E-05 
cg24143894 -0,1908371 0,04488941 4,58972E-05 
cg07399928 -0,1851624 0,04368671 4,82007E-05 

BDE-209 

cg06409164 0,20777551 0,03692273 1,507E-07 
cg16801491 0,15600333 0,03072433 1,64551E-06 
cg22356428 0,33393421 0,06721413 2,60557E-06 
cg09852107 0,17899416 0,03647161 3,35159E-06 
cg21732776 0,1280721 0,02612976 3,4415E-06 
cg00524486 0,177526 0,03660673 4,26443E-06 
cg11702456 0,28783891 0,06000574 5,29566E-06 
cg18404184 0,30980144 0,06601597 8,08901E-06 
cg23806034 0,13056654 0,02823759 1,068E-05 
cg08343644 0,2066366 0,04483999 1,13665E-05 
cg05858126 0,16638051 0,03641219 1,32792E-05 
cg02542953 0,22820754 0,05009261 1,40205E-05 
cg21074797 0,1348953 0,03041447 2,25507E-05 
cg01454153 -0,3409681 0,07732544 2,49333E-05 
cg13421489 0,04602489 0,01052124 2,85747E-05 
cg14142521 0,22692452 0,05190067 2,88183E-05 
cg13347784 0,22293208 0,05101471 2,90797E-05 
cg16658412 0,30796697 0,07062347 3,01431E-05 
cg24443559 -0,4620042 0,10599929 3,03927E-05 
cg06735008 0,16896987 0,038869 3,17625E-05 
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PBDEs 

cg15267844 1,31128929 0,23781993 2,49402E-07 
cg01992382 0,46057057 0,08884528 1,04631E-06 
cg27268574 0,19660031 0,03944644 2,43925E-06 
cg16834823 0,41747647 0,08532947 3,57032E-06 
cg21800373 0,19165485 0,03994762 5,27838E-06 
cg15851014 0,26307125 0,05517024 5,95054E-06 
cg14816748 0,12498225 0,02651435 7,43126E-06 
cg01454153 -0,3811482 0,08163465 8,90812E-06 
cg18404184 0,32407271 0,07034682 1,14361E-05 
cg10097464 0,13932414 0,03064174 1,45218E-05 
cg08196740 0,32369745 0,07125401 1,47547E-05 
cg16801491 0,15134915 0,03346368 1,59771E-05 
cg27273140 0,29494422 0,0656216 1,78582E-05 
cg26982927 0,15698867 0,03515689 2,00373E-05 
cg19523085 0,28208358 0,06321382 2,0275E-05 
cg06409164 0,18024596 0,04079722 2,41131E-05 
cg21677976 0,1205776 0,02730967 2,43873E-05 
cg21158631 -0,1985752 0,04501489 2,47588E-05 
cg12058762 -0,2500471 0,05682622 2,58548E-05 
cg04397883 0,1443038 0,03293205 2,77664E-05 

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, 
parity/total breastfeeding duration, adherence scores to the healthy and Western dietary pattern as fixed effects  
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Appendix 7. Top 20 CpGs associated with circulating levels of PBDEs congeners  
 

 Probes Coefficients* SE P 

BDE-28 

cg23420164 -0,2480649 0,05271463 7,16025E-06 
cg27128905 0,39274559 0,08465726 9,39769E-06 
cg16461251 0,38116388 0,08351035 1,27293E-05 
cg22151707 -0,1485734 0,03349703 2,12911E-05 
cg07298985 0,81786762 0,18690116 2,69141E-05 
cg04929015 -0,2811104 0,06425435 2,7017E-05 
cg07476726 -0,535364 0,12284623 2,88734E-05 
cg20051358 1,08979167 0,25067525 3,00926E-05 
cg09277673 0,40127965 0,09234823 3,03448E-05 
cg10885779 -0,3204275 0,07382872 3,096E-05 
cg09509943 -0,9432584 0,21737605 3,10633E-05 
cg20966800 0,40698813 0,09403046 3,24291E-05 
cg15892864 0,77520664 0,1791093 3,24466E-05 
cg06085579 -0,2666868 0,06213819 3,73598E-05 
cg20848377 -0,3297637 0,07686684 3,76168E-05 
cg12382431 -0,2709357 0,06371479 4,35222E-05 
cg00475558 0,62239699 0,14645903 4,39754E-05 
cg12818517 -0,2014182 0,04746664 4,50493E-05 
cg12073886 -1,345902 0,31843216 4,8037E-05 
cg16935217 -0,3325964 0,07881674 4,93032E-05 

BDE-47 

cg25492247 -0,3549654 0,0719646 2,78789E-06 
cg06663935 0,79638576 0,16308674 3,43022E-06 
cg14858675 0,61882096 0,12693491 3,54867E-06 
cg16871475 1,25345544 0,26117573 4,86851E-06 
cg05315595 0,53403063 0,11226077 5,79855E-06 
cg14817226 0,55530163 0,1181225 7,30084E-06 
cg20933239 0,91541783 0,20278887 1,55663E-05 
cg05404233 -0,3139767 0,06987338 1,69035E-05 
cg17834252 1,02249767 0,2296412 1,98913E-05 
cg12664613 1,61948854 0,36592081 2,21174E-05 
cg05646885 -0,322256 0,07335574 2,51636E-05 
cg25270424 0,6722481 0,15473918 3,04508E-05 
cg06335706 -1,4600644 0,33885602 3,49789E-05 
cg07725224 -0,5892405 0,13789287 4,01572E-05 
cg14344448 1,55153413 0,36400354 4,1861E-05 
cg15483273 1,03307519 0,24323478 4,43832E-05 
cg13414654 0,4888586 0,11683446 5,65073E-05 
cg14414338 0,9341759 0,22473219 6,27064E-05 
cg00548060 0,91630623 0,22078582 6,43056E-05 
cg00550498 -0,5286578 0,12740336 6,44823E-05 
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BDE-99 

cg17834252 1,64650697 0,33588278 3,16955E-06 
cg26384906 1,10319631 0,22899613 4,51288E-06 
cg14858675 0,84698098 0,18956568 1,871E-05 
cg09961427 1,72459837 0,38958654 2,20345E-05 
cg26893502 0,7930509 0,18042547 2,4928E-05 
cg23916205 -1,12991 0,25731432 2,53514E-05 
cg21549415 0,71708498 0,16396238 2,71754E-05 
cg16327497 -1,2065562 0,27596634 2,73207E-05 
cg00576250 -0,5844777 0,1344277 3,00371E-05 
cg00923230 1,20729663 0,28066411 3,59753E-05 
cg06913229 0,73902334 0,17203868 3,68067E-05 
cg00125706 1,82664363 0,43363405 5,0733E-05 
cg16065213 0,7844213 0,18650565 5,20156E-05 
cg17394189 0,58825976 0,14016873 5,38545E-05 
cg14876453 0,71310607 0,17020217 5,53214E-05 
cg10629020 0,92963355 0,22189281 5,53631E-05 
cg07303829 0,91414105 0,21863986 5,71927E-05 
cg12306307 0,63257923 0,15141244 5,789E-05 
cg14344448 2,26199962 0,54374082 6,19421E-05 
cg06116862 -0,6194192 0,14926485 6,44045E-05 

BDE-100 

cg02560273 0,93391074 0,21455732 2,94746E-05 
cg26086226 -0,3257132 0,07629806 4,08169E-05 
cg01854076 -0,6541958 0,1537598 4,31316E-05 
cg20933239 0,95013432 0,22457423 4,72736E-05 
cg06587659 0,47492326 0,11245544 4,86751E-05 
cg05295388 -0,3988937 0,09461484 5,00448E-05 
cg18114881 0,41884747 0,09968469 5,28501E-05 
cg27098663 0,84292321 0,20070138 5,32224E-05 
cg16269526 -0,4085236 0,09756023 5,58218E-05 
cg20778915 -1,6178867 0,38655261 5,62438E-05 
cg08254954 -0,412025 0,09871802 5,88005E-05 
cg14817226 0,54852447 0,13168204 6,06717E-05 
cg14414338 1,01894608 0,24711523 7,11816E-05 
cg00906720 0,97251775 0,23643694 7,39588E-05 
cg13569417 -0,3625949 0,08818535 7,43746E-05 
cg25270424 0,70441484 0,17166607 7,6747E-05 
cg02464768 -0,434168 0,10592133 7,80389E-05 
cg02191044 -1,0770415 0,26400757 8,39326E-05 
cg10317119 -1,2804846 0,31455255 8,67383E-05 
cg14167109 -0,3702399 0,09142379 9,38597E-05 
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BDE-153 

cg26264999 0,32542382 0,06197149 7,09263E-07 
cg09502865 -0,4949217 0,10118062 3,31333E-06 
cg26189873 -0,5429099 0,11522019 6,98242E-06 
cg20919227 -0,1864994 0,04014459 9,1543E-06 
cg05652609 -0,3459365 0,07521218 1,1043E-05 
cg26421947 -0,2048363 0,04500554 1,34082E-05 
cg05959392 -0,4960297 0,1094352 1,44551E-05 
cg18707191 0,46644004 0,10460164 1,93759E-05 
cg26678852 -0,2889081 0,06558038 2,39698E-05 
cg00370229 -0,5226897 0,119254 2,61786E-05 
cg05088151 -0,2356791 0,05395334 2,77428E-05 
cg01054559 -0,3079039 0,07106326 3,18583E-05 
cg09020104 -0,255701 0,05921644 3,37408E-05 
cg18669948 -0,3103499 0,07280857 4,18397E-05 
cg08282540 -0,2588862 0,06102845 4,52762E-05 
cg06742440 -0,3089802 0,07287375 4,56468E-05 
cg26006682 0,31806093 0,0750475 4,59656E-05 
cg18806716 -0,3637523 0,08630393 5,02737E-05 
cg18834833 0,55411033 0,13156179 5,08537E-05 
cg06496222 -0,2463751 0,05943837 6,55741E-05 

BDE-154 

cg23619365 -0,4420582 0,08341133 5,73362E-07 
cg00540558 -0,1396153 0,02786476 2,00359E-06 
cg01850798 0,4595655 0,09666969 5,8727E-06 
cg05913250 -0,3341413 0,07286428 1,16705E-05 
cg08733086 -0,2446154 0,05474102 1,86665E-05 
cg01405329 -0,2040126 0,04592366 2,07085E-05 
cg18114881 0,26520525 0,05979697 2,13185E-05 
cg07414863 0,47921031 0,10851527 2,29833E-05 
cg15939915 -0,2443034 0,05661021 3,40756E-05 
cg06476663 0,35203766 0,08160229 3,42709E-05 
cg13576217 0,51645646 0,11989593 3,51512E-05 
cg00007226 -0,1403701 0,03296274 4,25065E-05 
cg26005485 -0,3416935 0,08028976 4,29502E-05 
cg25270424 0,43559195 0,10284165 4,64216E-05 
cg18764771 -0,6448172 0,1522716 4,65839E-05 
cg04290133 0,2938759 0,06955027 4,82732E-05 
cg11688495 0,52754818 0,12502036 4,93356E-05 
cg11028409 -0,2148517 0,05115706 5,32309E-05 
cg11204953 -0,3184451 0,07604012 5,57244E-05 
cg03260790 -0,2653897 0,06360838 5,91399E-05 

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI and 
parity/total breastfeeding duration as fixed effects  
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Appendix 8. Top 20 CpGs associated with circulating levels of PBB-153 
 
 

Probes Coefficients* SE P 
cg23619365 -0,4420582 0,08341133 5,73362E-07 
cg00540558 -0,1396153 0,02786476 2,00359E-06 
cg01850798 0,4595655 0,09666969 5,8727E-06 
cg05913250 -0,3341413 0,07286428 1,16705E-05 
cg08733086 -0,2446154 0,05474102 1,86665E-05 
cg01405329 -0,2040126 0,04592366 2,07085E-05 
cg18114881 0,26520525 0,05979697 2,13185E-05 
cg07414863 0,47921031 0,10851527 2,29833E-05 
cg15939915 -0,2443034 0,05661021 3,40756E-05 
cg06476663 0,35203766 0,08160229 3,42709E-05 
cg13576217 0,51645646 0,11989593 3,51512E-05 
cg00007226 -0,1403701 0,03296274 4,25065E-05 
cg26005485 -0,3416935 0,08028976 4,29502E-05 
cg25270424 0,43559195 0,10284165 4,64216E-05 
cg18764771 -0,6448172 0,1522716 4,65839E-05 
cg04290133 0,2938759 0,06955027 4,82732E-05 
cg11688495 0,52754818 0,12502036 4,93356E-05 
cg11028409 -0,2148517 0,05115706 5,32309E-05 
cg11204953 -0,3184451 0,07604012 5,57244E-05 
cg03260790 -0,2653897 0,06360838 5,91399E-05 

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI and 
parity/total breastfeeding duration as fixed effects  
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Appendix 9. Top 20 CpGs associated with dietary exposure to PFASs congeners 
 

  Probes Coefficients* SE P 

PFOA 

cg08255137 0,20567259 0,03613532 1,1497E-07 
cg10871333 -0,3064394 0,06400266 5,54774E-06 
cg02180424 0,2009751 0,04248686 7,01513E-06 
cg15922246 0,2273075 0,0500071 1,47227E-05 
cg14555350 -0,1658028 0,0370293 1,92473E-05 
cg06715097 0,21920051 0,04932363 2,19472E-05 
cg24389037 -0,3149413 0,07115659 2,35549E-05 
cg03908904 0,22117985 0,0499879 2,36807E-05 
cg10600883 0,18811957 0,04266611 2,51609E-05 
cg27386241 -0,1896615 0,04303511 2,5355E-05 
cg06243540 -0,1465799 0,0334049 2,73152E-05 
cg04857037 0,25487801 0,0587751 3,33334E-05 
cg09366122 -0,3009101 0,06939115 3,33416E-05 
cg04553364 0,2889483 0,06665006 3,34869E-05 
cg00665829 0,18256573 0,04224766 3,53387E-05 
cg03276982 0,30820609 0,07139854 3,59721E-05 
cg03766453 0,29571099 0,06874285 3,81047E-05 
cg17504767 0,21152493 0,04940865 4,1227E-05 
cg24399204 0,22618765 0,05289321 4,19941E-05 
cg09096400 0,52861322 0,12370773 4,25149E-05 

PFOS 

cg25246012 0,25537909 0,04852336 7,55282E-07 
cg06710082 0,48885907 0,09480325 1,1912E-06 
cg10887021 0,19783827 0,03952889 2,26023E-06 
cg20865068 0,34203764 0,070178 3,89782E-06 
cg24957950 0,35242622 0,07436145 6,76125E-06 
cg19685604 0,72017012 0,15239096 7,14388E-06 
cg08255137 0,20912258 0,0443093 7,32565E-06 
cg21701531 0,2439632 0,05199228 8,18161E-06 
cg27365571 -0,3980988 0,08549246 9,45E-06 
cg23065364 0,32714851 0,07149197 1,30419E-05 
cg07370894 0,22939177 0,05039726 1,43669E-05 
cg08196740 0,35521113 0,07922926 1,88192E-05 
cg08072310 0,2364219 0,05325372 2,23446E-05 
cg03305491 0,40733691 0,09240203 2,52392E-05 
cg02099337 0,43509947 0,09929013 2,7945E-05 
cg14831549 0,34321396 0,07909341 3,29688E-05 
cg03670164 0,28358487 0,06535769 3,30175E-05 
cg08897422 -0,2830722 0,06585254 3,85636E-05 
cg17716817 -0,3965728 0,0923 3,88621E-05 
cg01399598 -0,2476177 0,05786606 4,154E-05 

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, 
parity/total breastfeeding duration, adherence scores to the healthy and Western dietary pattern and lipids as fixed effects  
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Appendix 10. Top 20 CpGs associated with circulating levels of PFASs congeners 
 

  Probes Estimates SE P 

PFOA 

cg06874740 -0,3702503 0,07266008 1,42218E-06 
cg20828052 0,34523909 0,06963986 2,55848E-06 
cg22860137 0,28511531 0,061776 1,05184E-05 
cg25308242 -0,4746924 0,1040587 1,30504E-05 
cg07025343 0,22795511 0,05137169 2,14153E-05 
cg00115821 -0,3205085 0,07291123 2,52145E-05 
cg10319829 -0,451338 0,10393392 3,10589E-05 
cg21142798 -0,1780092 0,04128497 3,50115E-05 
cg22176913 -0,5007996 0,11629426 3,57526E-05 
cg21499763 0,59313379 0,13777815 3,59362E-05 
cg09386054 -0,2471439 0,05779932 4,02134E-05 
cg00834779 0,31723332 0,07422656 4,05315E-05 
cg10852320 0,17668753 0,0417673 4,7919E-05 
cg21207741 0,15340701 0,03639024 5,06865E-05 
cg14443515 0,19931513 0,04729464 5,09352E-05 
cg07290048 0,63716666 0,15137772 5,19591E-05 
cg15476918 -0,1937254 0,04612828 5,38579E-05 
cg08285915 -0,254341 0,0605676 5,39443E-05 
cg14143723 -0,3606977 0,08602272 5,52422E-05 
cg07775917 -0,2086231 0,04987982 5,75025E-05 

PFOS 

cg15913831 -0,4015721 0,07712468 8,80964E-07 
cg15507385 0,29495348 0,05676706 9,23702E-07 
cg03202077 0,24260447 0,04689932 1,02021E-06 
cg03158314 -0,2236273 0,04628049 4,32653E-06 
cg22176017 0,17837159 0,03718905 5,01577E-06 
cg02793158 -0,3055703 0,06488142 7,16528E-06 
cg02071825 0,25872771 0,05507853 7,53305E-06 
cg05064673 0,34213082 0,07287844 7,6226E-06 
cg07736327 0,43255907 0,09259885 8,37979E-06 
cg06432204 0,23448868 0,05084579 1,06703E-05 
cg13097573 0,25652278 0,05571483 1,10009E-05 
cg18091163 0,36649984 0,08069343 1,41341E-05 
cg04258138 -0,368994 0,08130744 1,43406E-05 
cg06795069 0,21256984 0,04728207 1,69896E-05 
cg19227131 -0,3260888 0,07287069 1,84596E-05 
cg11279918 0,32182499 0,07282285 2,29975E-05 
cg22369048 0,17628328 0,03994003 2,35088E-05 
cg00187055 -0,2857061 0,06478674 2,38583E-05 
cg03698009 0,34504101 0,07832047 2,42788E-05 
cg11742103 0,56161816 0,12760596 2,46935E-05 

*Estimates from linear mixed effect models, one for each congener, with plate and chip as random effects and age, BMI, 
parity/total breastfeeding duration and lipids as fixed effects 
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Title: Applications of genomic and epigenomic signatures to identify markers of exogenous exposures and elucidate their 
potential role in cancer aetiology. 

Context and aim: Several risks factors have been identified for cancer, and it has been estimated that more than 40% of 
cases in developed countries are preventable through the modulation of known modifiable risk factors. The overall 
objective of this thesis was to demonstrate that the analysis of genomic and epigenomic data integrated with well-
characterised exposure and lifestyle data may be used to identify markers of environmental exposures and lifestyle and 
may contribute to increase our understanding of cancer aetiology. 
Results: We first describe how genomic and epigenomic signatures can be used to identify markers of exposure and 
decipher the aetiology of cancer. Then, we adopt the mutational signatures framework to contribute to the debate about the 
“bad luck” hypothesis for cancer and demonstrate that tobacco-related mutations are more strongly correlated with cancer 
risk than random mutations. We introduce a probabilistic model for the simulation of mutational signature data and 
compare the performance of the available methods for the identification of mutational signatures using both simulated and 
real data. Additionally, we introduce a new method for the identification of such signatures. Finally, we use methylation 
array data in an epidemiological study within the E3N cohort to investigate the association between exposure to Brominated 
Flame Retardants and Per- and polyfluoroalkyl substances, two organic pollutants that are known endocrine disrupting 
chemicals, and methylation in DNA from blood. Overall, our study does not provide evidence of methylation alterations 
at the level of the whole genome, in regions or in single CpGs. Suggestive evidence of alterations in the methylation of 
genes within plausible biological pathways (e.g. androgen response) warrants further investigations.  
Conclusion: Our work on the methodological aspects of mutational signature research introduces an original framework 
for measuring the performance of tools for the identification of mutational signatures that may serve as reference for future 
methodological or applied research. Our applications of both mutational signature and methylome research demonstrate 
the usefulness of such tools to assess exposures and elucidate their role in cancer aetiology. 
 
Keywords : mutational signatures, DNA methylation, endocrine disruptors, epidemiology, lifestyle 

Titre : Utilisation des signatures génomiques et épigenomiques dans le but d’identifier des marqueurs d’expositions 
exogènes et d’évaluer leur rôle dans l’étiologie du cancer. 

Contexte et objectif : Plusieurs facteurs de risque de cancer ont été identifiés et il a été estimé que plus de 40% des cas 
dans les pays développés pourraient être évités en modifiant les facteurs de risque connus. L'objectif général de cette thèse 
était de démontrer que l’intégration de données génomiques et épigénomiques aux données détaillées sur les expositions 
environnementales et le mode de vie peut être utile pour identifier des biomarqueurs de ces facteurs et contribuer à 
augmenter notre connaissance de l'étiologie du cancer.  
Résultats : Dans un premier temps, nous décrivons comment les signatures génomiques et épigénomiques peuvent être 
utilisées pour identifier des marqueurs d’exposition et déchiffrer l’étiologie du cancer. Ensuite, nous contribuons au débat 
relatif à l’hypothèse de la chance dans le développement du cancer et démontrons que les mutations induites par le 
tabagisme sont plus prédictives du risque de cancer que les mutations aléatoires. Nous introduisons un modèle probabiliste 
pour la simulation de données mutationnelles et comparons la performance des outils d’identification de ces signatures 
avec des données réelles et simulées. De plus, nous introduisons une nouvelle méthode pour l’identification des signatures 
mutationnelles. Enfin, nous utilisons les données de méthylation de la cohorte E3N pour étudier le lien entre l'exposition 
aux retardateurs de flamme bromés et aux composés perfluorés, deux substances classées parmi les perturbateurs 
endocriniens, et la méthylation de l’ADN sanguin. Globalement, notre étude ne fournit aucune preuve d'altérations globales 
du méthylome ou d'altérations à l’échelle des CpGs. Cependant, certains résultats suggèrent l’existence d'altérations de la 
méthylation de gènes impliqués dans des voies biologiques (ex., la réponse aux androgènes) et nécessitent des recherches 
supplémentaires. 
Conclusion : Ce travail contribue à la recherche méthodologique portant sur les signatures mutationnelles en introduisant 
un protocole de mesure de performance et d’identification des signatures mutationnelles pouvant servir de référence à de 
futures études méthodologiques ou appliquées. Nos recherches sur les signatures mutationnelles et le méthylome 
démontrent l'utilité de tels outils pour évaluer les expositions et élucider leur rôle dans l'étiologie du cancer. 
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