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Résumé

Introduction

L’étude de la convection naturelle en milieu confiné fait encore l’objet de nombreuses
recherches, tant numériques qu’expérimentales. Dans ce type de problème, les dif-
férents modes de transfert de chaleur (convection, conduction, rayonnement) peu-
vent intervenir de manière couplée. Cependant, lorsque le transport radiatif est con-
sidéré, un problème particulier se pose lorsque le fluide absorbe et émet un ray-
onnement infrarouge. Il est alors nécessaire de prendre en compte une source de
chaleur interne au milieu, résultant de la différence entre l’énergie rayonnante ab-
sorbée et émise par chaque élément de volume. De nombreuses études ont étudié
ce phénomène dans une cavité différentiellement chauffée (Yücel, Acharya, and
Williams [1], Tan and Howell [2], Colomer et al. [3], Colomer, Consul, and Oliva
[4], Soucasse et al. [5], Billaud, Saury, and Lemonnier [6]). Le problème d’un apport
de chaleur placé dans un environnement confiné a également retenu l’attention de
nombreux chercheurs, soit avec une source ponctuelle (Tetsu, Itsuki, and Haruo [7],
Urakawa, Morioka, and Kiyota [8], Xin et al. [9], Hernandez [10], etc.) ou avec obsta-
cles solides de taille finie (Kuznetsov and Sheremet [11], Kuznetsov and Sheremet
[12], Paroncini and Corvaro [13], Kuznetsov, Maksimov, and Sheremet [14], Souayeh
et al. [15], Gibanov and Sheremet [16],Iyi, Hasan, and Penlington [17], Rahmati and
Tahery [18] etc.), mais dans la plupart des cas, la source de chaleur est placée dans
le fluide, sans aucun contact avec les murs. Ici, nous abordons le cas d’un obstacle
chauffant placé au fond de la cavité. Cela constitue une nouvelle configuration in-
téressante.

Tout d’abord, concernant la convection naturelle à l’intérieur d’une cavité con-
tenant un obstacle opaque, Kuznetsov and Sheremet [12] ont étudié les effets du
nombre de Grasshof (105− 107) sur le mouvement du fluide et ont conclu à l’influence
de ce paramètre sur le champ thermique dans l’enceinte. Kuznetsov and Sheremet
[11] ont étudié la même configuration, mais avec une plage différente du nombre de
Grasshof (107− 109) et ont souligné que, lorsque ce nombre augmente, l’écoulement
et le processus de transfert de chaleur sont stabilisés. Paroncini and Corvaro [13],
Kuznetsov, Maksimov, and Sheremet [14], Souayeh et al. [15], Gibanov and Sheremet
[16], Iyi, Hasan, and Penlington [17],Rahmati and Tahery [18] ont étudié différents
écoulements convectifs de manière numérique et expérimentale avec l’influence de
la numéro de Rayleigh. Ils ont rapporté que l’augmentation de ce paramètre inten-
sifie le mouvement du fluide et augmente le transfert de chaleur par processus con-
vectif. De plus, l’étude sur la taille de l’obstacle chaud de Paroncini and Corvaro [13]
a souligné que, lorsque la hauteur de l’obstacle est la moitié de la cavité, le transfert
de chaleur convectif est le pire parmi les cas analysés. En outre, Bouafia and Daube
[19] ont examiné les comportements instables dans cette configuration à différents
rapports d’aspect de l’enceinte et ont conclu que le mécanisme de l’instabilité était
dû au cisaillement lorsque ce paramètre vaut 1 et 2. Pour un rapport d’aspect plus
élevé (4) , le principal mécanisme était les instabilités de flottabilité. Hernandez [10]
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a étudié une cavité carrée avec une source de chaleur attachée au sol. Ses résultats
indiquent que le comportement instable était dû à la vitesse horizontale élevée juste
au-dessus de l’obstacle.

Ensuite, le problème de la convection naturelle combinée au rayonnement de
surface a été étudié par Sun, Chénier, and Lauriat [20], Martyushev and Sheremet
[21], Saravanan and Sivaraj [22], Patil, Sharma, and Velusamy [23], Miroshnichenko,
Sheremet, and Chamkha [24]. Ils ont conclu que l’augmentation de l’émissivité ren-
force le mouvement du fluide près de la paroi, intensifie le transfert radiatif mais
réduit le transport convectif. Sun, Chénier, and Lauriat [20] ont également signalé
que le rayonnement de surface ralentit la transition vers l’instabilité à l’intérieur de
la cavité.

Jusqu’à présent, une revue détaillée de littérature a montré que la convection
naturelle couplée au rayonnement volumique n’étaient pas encore prise en compte
dans la configuration d’une cavité contenant un obstacle. De plus, le coefficient
d’absorption qui varie avec le nombre d’ondes, la fraction molaire du composant
absorbant et la température du milieu pose également un problème remarquable.
Notre objectif est donc d’étudier ce couplage (à la fois en convection thermique pure
et double convection) à l’intérieur d’une cavité cubique dont les parois horizontales
sont adiabatiques et les parois verticales isothermes. Un obstacle cubique est situé
au centre de plancher. Il est opaque et sa surface est uniformément maintenue à une
température supérieure à celle des parois de la cavité. L’étude comprend, dans un
premier temps, une analyse des phénomènes en gaz transparent (convection ther-
mique et panache confiné en double diffusion: cas aidant et cas opposant). Une
première approche des gaz participants est ensuite effectuée en supposant que le
mélange absorbant est gris. La dernière approche - et la plus importante - est la sim-
ulation en gaz réel. Concrètement, on considère les mélanges air− H2O et air−CO2
avec une concentration prescrite d’espèces absorbantes à la surface de l’obstacle et
une concentration nulle sur les parois verticales de la cavité. Nous analysons les
résultats par comparaison avec les cas transparents, mais aussi en examinant dans
quelle mesure les observations faites avec le modèle des gaz gris restent pertinentes.

Ce manuscrit est divisé en six chapitres. Premièrement, le présent chapitre présente
la motivation de la thèse, ses objectifs et une revue de bibliographie sur certaines
recherches connexes des dernières décennies. Ensuite, dans le deuxième chapitre,
nous fournissons plus de détails sur les modèles mathématiques ainsi que sur les
méthodes numériques utilisées dans cette étude. Ensuite, le chapitre trois présen-
tera Code Saturne, l’outil de simulation CFD utilisé tout au long de notre travail et
la mise en œuvre de notre propre modèle SLW dans le module radiatif intégré de ce
code. Nous présentons également quelques tests de validation pour évaluer la préci-
sion de nos calculs dans des configurations de plus en plus complexes. Le quatrième
chapitre contient les résultats et l’analyse de la convection thermique combinée au
rayonnement dans un gaz gris ainsi que dans un mélange gazeux réel. Ensuite, le
chapitre cinq se concentrera sur les effets du rayonnement dans de nombreuses situ-
ations typiques de convection de double diffusion, coopérante ou opposée, dans un
mélange de gaz gris ou réels. Pour terminer, le chapitre de conclusion synthétisera
les principaux résultats de cette étude et fournira des perspectives pour les travaux
futurs.
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Methodologie

Modèle mathématique

Les hypothèses utilisées dans ce travail sont les suivantes :

• L’écoulement dans la cavité est tridimensionnel et laminaire.

• Le fluide est considéré comme newtonien et incompressible.

• Les surfaces actives (parois verticales de l’enceinte et surfaces extérieures de
l’obstacle) sont noires par rapport au rayonnement tandis que les surfaces adi-
abatiques (plafond et plancher de l’enceinte) sont purement réfléchissantes.

• Les variations de température et de concentration à l’intérieur de la cavité sont
suffisamment faibles pour permettre l’approximation de Boussinesq. Par con-
séquent, les variations des propriétés du fluide sont ignorées, sauf pour la den-
sité dans l’expression de la pousée d’Archimède.

• La dissipation visqueuse et le travail de pression sont négligées.

• Les effets de Soret et de Dufour sont négligés.

Équations de la dynamique des fluides

Plusieurs équations de conservation régissent les mouvements d’écoulement et
les processus de transfert dans l’enceinte. Elles expriment un équilibre local en ter-
mes de masse, de quantité de mouvement, d’énergie et de composition au sein du
fluide.

• Équation de continuité

∇ · u = 0 (1)

• Équation de quantité de mouvement

ρ0
∂u
∂t

+ ρ0u ·∇u = −∇p + ρ0(βT(T0 − T) + βC(C0 − C))g + µ∇2u (2)

Le terme source ρ0(βT(T0 − T) + βC(C0 − C))g représente la force de flotta-
bilité qui met le fluide en mouvement (exprimée ici sous l’approximation de
Boussinesq).

• Équation dénergie

ρ0Cp
∂T
∂t

+ ρ0Cpu ·∇T = λ∇2T −∇ · q (3)

• Équation de conservation de la concentration

∂C
∂t

+ u ·∇C = D∇2C (4)
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Toutes les équations de conservation sont couplées : le champ dynamique influ-
ence le transport des quantités scalaires (T et C) qui, à leur tour, entraînent l’écoulement
par les effets de la flottabilité. De plus, dans le cas du mélange binaire, la concen-
tration a un effet direct sur le champ thermique puisqu’elle modifie les propriétés
d’absorption-émission du milieu. Par conséquent, la source radiative dans le bilan
énergétique est impactée.

Équation de transfert radiatif

La cavité est remplie d’un milieu gazeux semi-transparent à l’équilibre thermo-
dynamique local, qui absorbe et émet le rayonnement en tout point de l’espace. La
luminance Iη(s, Ω)1 représente le flux radiatif (par unité d’angle solide et par unité
de nombre d’onde) qui se propage au point s dans la direction Ω au nombre d’onde
η. Dans un milieu non diffusant, le changement local de luminance est décrit par
l’équation de transfert radiatif.

Ω ·∇Iη(s, Ω) = −κη(s)Iη(s, Ω) + κη(s)Ibη(T(s)) (5)

La solution dépend de trois coordonnées de position, de deux variables de direction
(deux angles polaires ou deux cosinus de direction) et du nombre d’ondes. La lumi-
nance totale peut être trouvée par intégration sur l’ensemble du spectre.

I(s, Ω) =
∫ ∞

0
Iη(s, Ω)dη (6)

Le terme −∇ · q qui apparaît dans l’équation d’énergie est la divergence totale du
flux radiatif. Ce flux peut être calculé à partir de la luminance totale par l’expression :

q(s) =
∫ 4π

0
I(s, Ω)ΩdΩ =

∫ 4π

0

∫ ∞

0
Iη(s, Ω)ΩdηdΩ (7)

Conditions aux limites
Toutes les surfaces de l’obstacle2 sont portées à une température et une concentra-
tion constantes et uniformes :
En ce qui concerne la cavité, les parois verticales sont uniformément maintenues à
une température et une concentration constantes. Les parois horizontales sont adia-
batiques, imperméables et supposées se comporter comme des surfaces entièrement
réfléchissantes.

Modèle de rayonnement

Méthode des ordonnées discrètes

Dans les problèmes couplés impliquant le rayonnement, nous devons résoudre
le problème du transfert radiatif en plus des équations de conservation. Historique-
ment, plusieurs méthodes ont été développées pour atteindre cet objectif.
Dans la présente étude, nous avons utilisé la méthode des ordonnées discrètes pour
nos calculs radiatifs en raison de son bon compromis entre la précision et le coût de
calcul et de sa facilité d’implantation dans de nombreux codes CFD. En particulier,
Code Saturne, un code CFD open-source développé par EDF, offre un module DOM

1s est la vecteur de position le long du chemin optique
2excepté la surface en contact avec le sol de la cavité
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radiatif déjà intégré.

Méthode SLW

Chaque fois que l’on considère le rayonnement gazeux, il faut tenir compte du
comportement spectral réel des propriétés d’absorption des fluides. À cette fin,
divers modèles de gaz ont été introduits avec différents niveaux de complexité,
d’exigences de calcul et de précision. Ces modèles peuvent être classés en trois
groupes principaux comme suit :

• Modèle raie par raie

• Modèles de bandes

• Modèles globales

Dans le modèle raie par raie et les modèles de bande, les propriétés radiatives sont
évaluées sur chaque raies ou sur un intervalle donnée de nombres d’onde. D’autre
part, les modèles globaux déterminent les caractéristiques radiatives sur l’ensemble
du spectre.

Mise en œuvre du modèle de gaz SLW
Le modèle SLW (un modèle global) implique un nombre fini de gaz gris (Ng) et un
gaz transparent. Le coefficient d’absorption du gaz jth est calculé comme suit

κj = N ·Y · Cj (8)

où Cj est la section efficace d’absorption. Connaissant N et Y, le problème restant est
de déterminer Cj.

Calculs de la fonction de distribution du corps noir de la ligne d’absorption et
des poids des gaz gris

Les poids associés à chaque gaz gris sont calculés à partir de la fonction de
distribution globale du coefficient d’absorption pondéré par la fonction de Planck
(ALBDF). Cette fonction est évaluée comme l’intégrale de la fonction de Planck cal-
culée à une température de source Tb sur les intervalles de nombres d’onde de telle
que la section efficace d’absorption Cη(φg) à un état thermodynamique du gaz φg est
inférieure à une valeur spécifiée de C.

Le poids du gaz gris jth aj correspond à la différence de l’ALBDF aux deux sec-
tions d’absorption supplémentaires qui définissent le jme intervalle [C̃j−1,C̃j]

Code Saturne et Calcul du Rayonnement

Code Saturne

Toutes les équations de notre problème ont été résolues en utilisant Code Saturne
version 5.0.4 (Archambeau, Méchitoua, and Sakiz [25]), un logiciel open source de
calcul CFD développé par EDF. Un module radiatif intégré est disponible, dans
lequel nous avons implémenté nos propres données pour l’intégration directionnelle
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et un module spécifique pour le rayonnement gazeux selon le modèle SLW.

Mécanique des fluides

Code Saturne utilise une méthode de volumes finis pour résoudre les équations
régissant le mouvement des fluides et le transfert de chaleur et de masse. Pour
l’équation de quantité de mouvement, le logiciel recourt à l’algorithme SIMPLEC.
Différentes discrétisations dans l’espace et dans le temps sont disponibles.

Discrétisation temporelle
Le schéma temporel est implémenté dans Code Saturne est un schéma θ avec:

{
θ = 1 pour un schéma d’Euler implicite de premier ordre,
θ = 1

2 pour le schéma Crank-Nicolson de second ordre.
(9)

Il existe deux options pour définir le pas temporel: constant ou variable. Dans ce
dernier cas, le code calcule automatiquement après chaque itération le pas de temps
qui satisfait au critère CFL.

Discrétisation spatiale
Code Saturne propose différents schémas de premier ordre (Upwind) et de second
ordre (Centré ou Second-Order-Linear-Upwind (SOLU)) pour la discrétisation spa-
tiale et. Dans cette étude, nous avons sélectionné le schéma de second ordre centré.

Méthode des ordonnées discrètes

La méthode des ordonnées discrètes (DOM) a été utilisée pour résoudre l’équation
de transfert radiatif correspondant à chaque gaz gris du modèle SLW. Cette méthode
consiste à remplacer les intégrales angulaires par une sommation sur un ensemble
de directions discrètes telles que:

∫ 4π

0
f (Ω)dΩ ≈

M

∑
m=1

ωm f (Ωm) (10)

où M désigne le nombre de directions et ωm est le poids attribué à l’élément m. Par
conséquent, la distribution du rayonnement incident et du flux radiatif est approx-
imée par:

GP
η =

∫ 4π

0
IP
η (Ω)dΩ ≈

M

∑
m=1

ωm IP
η,m(Ω) (11)

qP
m =

∫ 4π

0
IP
η (Ω)ΩdΩ ≈

M

∑
m=1

ωm IP
η,m(Ω)Ωm (12)

où P désigne ici le centre d’un volume de contrôle.
Il existe plusieurs façons de définir les ensembles de directions discrètes. Un aperçu
plus général de ce problème se trouve dans [26]. Nous avons sélectionné ici la
quadrature symétrique de niveau SN en utilisant l’ensemble de données amélioré
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suggéré par [27].

Critères de convergence

Code Saturne n’a pas de critère intégré pour déterminer la convergence de la solu-
tion. Au lieu de cela, il est conseillé de surveiller l’évolution temporelle des vari-
ables considérées à différentes positions dans le champ d’écoulement pour décider
si le calcul atteint un état stationnaire (EDF [28]). L’utilisateur peut arrêter le cal-
cul chaque fois qu’il trouve les résultats acceptables ou le code s’exécutera jusqu’à
atteindre le nombre maximal de pas de temps déclaré. De plus, les conservations
du flux de chaleur et de masse peuvent être un critère pour tester l’atteinte d’un
régime stationaire car les flux totaux qui arrivent aux parois actives de la cavité (à
faible valeur de température et de concentration) doivent être les mêmes que ceux
qui sortent des surfaces de l’obstacle (à des valeurs élevées de température et de
concentration).

Validation du Code

Dans cette section, Code Saturne et son modèle radiatif amélioré sont validés en
convection thermique pure et en convection de double diffusion couplée au rayon-
nement. les comparaisons avec les travaux de De Vahl Davis [29], Colomer et al. [30]
et Fusegi and Hyun [31], Yücel, Acharya, and Williams [1] et Laouar-Meftah [32],
Billaud, Saury, and Lemonnier [6] et Soucasse, Rivière, and Soufiani [33], Sezai and
Mohamad [34], Cherifi [35], Sun, Chénier, and Lauriat [20] Paroncini and Corvaro
[13] donnent un bon accord entre les résultats.

Couplage convection naturelle-rayonnement

Un premier ensemble de résultats concerne la convection thermique pure. Dans
cette configuration, le fluide est de composition homogène et l’écoulement n’est régi
que par les gradients de température.

Dans cette partie, nous analysons tout d’abord l’effet du rayonnement sur la
structure de l’écoulement et le transfert de chaleur de manière simple, en supposant
que le milieu remplissant la cavité est gris et possède des propriétés radiatives uni-
formes. Différentes valeurs du coefficient d’absorption κ sont considérées et l’opacité
du milieu est caractérisée par l’épaisseur optique τ = κL liée à la taille de la cavité,
L. Tous les calculs ont été effectués à Ra = 5 · 106, Pr = 0, 71 et θ0 = 11, 1. Les parois
chaude et froide sont noires et les parois adiabatiques sont purement réfléchissantes.
De ce fait, il n’y a pas de couplage radiatif-convectif lorsque τ = 0 (milieu trans-
parent). Ce cas limite sert de référence pour déterminer les effets du rayonnement
sur l’écoulement.Nous avons réalisé des calculs avec plusieurs valeurs de l’opacité:
τ = 0.1; 0.2; 0.5; 1; 2.

Ensuite, nous considérons la présence d’un composant absorbant-émettant (H2O)
dilué à différentes concentrations dans un gaz transparent (air sec). Le spectre d’absorption
réel de la vapeur d’eau doit être pris en compte pour permettre des simulations réal-
istes. À cette fin, et suite à la discussion présentée au chapitre 2, nous avons recours
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au modèle SLW associé à l’approche de "Rank correlattion". Concernant les condi-
tions limites, les surfaces de l’obstacle sont fixées à Th = 580K 3, les parois verticales
sont uniformément maintenues à Tc = 530K tandis que le plafond et le sol sont sup-
posés parfaitement réfléchissants (ε = 0) et adiabatiques.

Les comparaisons entre les résultats obtenus et la référence transparente ont mis
en évidence les phénomènes suivant :

• Le rayonnement a tendance à accélérer de manière non uniforme les couches
limites de la cavité et de l’obstacle intérieur. Il fait met en mouvement certaines
parties du fluide qui étaient stagnantes dans le cas transparent. L’écoulement
du panache et sa recirculation interfèrent et créent les modèles d’écoulement
de cisaillement.

• Le rayonnement modifie partiellement le gradient thermique près des parois
de la cavité : les valeurs du nombre de Nusselt convectif sont augmentées
dans la moitié supérieure et diminuées dans la moitié inférieure. Cependant,
à la surface horizontale de l’obstacle, le gradient thermique est renforcé.

• Le rayonnement modifie la stratification thermique à l’extérieur du panache et
uniformise légèrement la température moyenne.

• le rayonnement réduit le transfert thermique total, en particulier la partie con-
vective sur les parois verticales et l’échange radiatif entre la surface supérieure
de l’obstacle et les murs de la cavité.

• Tous ces effets augmentent lorsque le milieu devient plus opaque (dans la
gamme étudiée des épaisseurs optiques et de la fraction molaire).

• En outre, dans le cas du gaz gris, lorsque l’épaisseur optique du milieu est
unitaire, le rayonnement mène à un écoulement périodique. Ce mécanisme est
dû à l’instabilité de cisaillement créée par l’interférence du panache ascendant
et des couches limites s’écoulant vers le bas. Enfin, à τ = 2, l’écoulement
devient totalement turbulent à Ra = 5 · 106.

Couplage convection de double diffusion-rayonnement

En convection de double diffusion, il existe deux gradients qui pilotent l’écoumenent
: le gradient thermique et le gradient de concentration. L’ampleur relative des effets
de ces deux gradients est définie par le rapport de flottabilité de masse/thermique
N : son signe caractérise la coopération (> 0) ou l’opposition (< 0) de la conduite
induite.

Dans le cadre de ce travail, nous avons effectué des calculs en convection de dou-
ble diffusion, y compris des cas où le rayonnement gazeux est pris en compte. Des
prédictions sans rayonnement (fluide transparent) sont également fournies pour dif-
férents rapports de masse/flottabilité thermique et servent de valeurs de référence
mettant en évidence l’influence du transfert radiatf sur la structure d’écoulement et
le transfert de chaleur et de masse. Tous les calculs sont effectués à Ra = 5.106,
Le = 1, pour un recouvrement parfait des couches limites thermiques et de con-
centration, Pl = 4.43 · 10−3 et θ0 = 11.1. Concernant les conditions limites, une

3Sauf celle du fond qui est en contact avec le sol de la cavité
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forte concentration de l’espèce absorbante est appliquée sur toutes les surfaces de
l’obstacle (Ch), et une concentration nulle (Cl = 0) le long des parois verticales de la
cavité. L’émissivité des surfaces limites (y compris l’obstacle) est fixée à l’unité, sauf
le plafond et le plancher, qui sont considérés comme parfaitement réfléchissants.
Pour chaque rapport de force, des calculs sont réalisés à différent opacités: τ =0.1;
0.2; 0.5; 1 et 2.

• Écoulement aidant

A N = 1, l’introduction de rayonnement gazeux n’affecte pas beaucoup le
champ de concentration. Il accélère légèrement les couches limites mais réduit
la vitesse maximale à l’intérieur du panache. Concernant le champ thermique,
le rayonnement volumique tend à homogénéiser le milieu. Il diminue la tem-
pérature dans la moitié supérieure de la cavité et redistribue les isothèmes
(passant d’une stratification presque verticale à une stratification horizontale).
L’augmentation de l’opacité du milieu renforce ces effets.
A N = 2, les mêmes tendances sont observées mais leur amplitude est réduite.

• Écoulement opposant

A N = −1, pour un milieu transparent, aucun écoulement ne se produit à
l’intérieur de la cavité en raison de la symétrie parfaite des gradients ther-
mique et de concentration. Mais, avec le rayonnement, cet équilibre est rompu
et de nouveaux mouvements de fluides s’établissent. L’écoulement dans la
partie inférieure de la cavité est dominé par le gradient de masse pour toutes
les épaisseurs optiques considérées. Plus haut, le gradient thermique régit le
flux. Pour des valeurs de 0 à 1, le rayonnement intensifie le panache ther-
mique. Cependant, à τ = 1, l’augmentation de la concentration dans l’axe du
panache limite le mouvement vertical et provoque son étalement. À τ = 2, ces
changements se renforcent, entraînant la séparation entre le panache et une
zone de fluide presque immobile au centre de la cavité. En ce qui concerne
le champ thermique, la prise en compte du rayonnement gazeux a réduit la
température dans les régions proches des parois verticales de l’obstacle. Au-
dessus du niveau de l’obstacle, la température est généralement réduite par
rapport au cas transparent. Cependant, elle augmente avec l’opacité, sauf une
légère diminution au centre de la cavité lorsque τ = 2. En ce qui concerne le
champ de concentration, les tendances d’altération sont les mêmes que pour
le champ thermique à l’exception d’une légère augmentation de cette quantité
près des parois verticales froides dans la partie inférieure de l’enceinte.

A N = −2, la domination du gradient de masse sur le thermique, le rayon-
nement gazeux affecte la dynamique, la thermique et le champ de concentra-
tion de la même manière que pour N = −1 mais avec une amplitude plus
faible.

Un autre cas considéré est le couplage entre la convection de double diffusion et
le rayonnement du mélange de gas réél (air− H2O et air− CO2). L’obstacle étant à
la fois source de chaleur et de polluant, selon le mélange appliqué, nous avons deux
types d’écoulements : opposant et aidant. La vapeur d’eau, dont on sait qu’elle est
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plus légère que l’air, crée un gradient de masse qui a la même direction que le gradi-
ent de température. Ces deux gradients provoquent donc des écoulements de même
sens (cas aidant). Dans le cas du mélange air − CO2, nous avons des écoulements
opposant provoqués par deux gradients agissant en directions opposés car la den-
sité molaire de CO2 est plus grande que celle de l’air sec. Les parois verticales de la
cavité sont maintenues à Tc = 530K, Cl = 0 et pour l’obstacle, elles sont Th = 580K et
Ch

4. Toutes les parois actives sont supposées noires alors que les parois adiabatiques
sont totalement réfléchissantes. Les principales conclusions issues de résultats de
simulations sont :

• Mélange air− H2O

Lorsque le rayonnement est pris en compte, aucun changement significatif
n’est constaté par rapport au cas transparent, sauf dans le champ thermique.
Le rayonnement tend à réduire la température du fluide dans la moitié supérieure
de la cavité (où l’émission domine sur l’absorption). Cet effet augmente avec
la fraction molaire de vapeur d’eau dans le mélange. Le rayonnement diminue
également le transfert thermique total à l’intérieur de la cavité en raison de la
diminution du transport convectif près des parois verticales et de l’atténuation
du transfert radiatif par l’effet d’absorption. Le transfert de masse semble être
inchangé en raison de la structure dynamique préservée.

• Mélange air− CO2

Le rayonnement tend à ralentir les couches limites (parois verticales de la cav-
ité, surfaces latérales de l’obstacle) dans la partie inférieure de l’enceinte. Plus
haut, il renforce le gradient thermique, crée un panache qui remplace le flux
descendant dans l’enceinte observé dans le cas transparent. En outre, le rayon-
nement réduit la température dans la région proche de la paroi verticale dans
la partie basse de la cavité. En revanche, il augmente le niveau de température
dans la partie supérieure. Il renforce le panache thermique qui amène plus de
fluide fortement chargé vers les régions élevées de la cavité, augmentant ainsi
la concentration à ces niveaux. La présence de rayonnement réduit le transfert
thermique total (par convectif près des parois verticales et transport radiatif le
long de la surface supérieure de l’obstacle). De plus, elle diminue légèrement
le transfert de masse.

4Ch dépend de la fraction molaire de référence fixée dans le milieu.



xv

Contents

Acknowledgements iii

Résumé v

1 Introduction 1
1.1 Context and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Bibliography review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Natural convection with the consideration of radiation . . . . . 3
1.3.2 Combined double diffusive convection and radiation . . . . . . 5
1.3.3 Enclosures with an obstacle or a heat source . . . . . . . . . . . 6

1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Methodology 9
2.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Main assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Fluid Dynamics Equations . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Radiative transfer equation . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Heat and Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Gas Radiation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Resolution Methods of Radiative Transfer Equation . . . . . . . 13
2.2.2 Gas models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2.1 Line by Line model . . . . . . . . . . . . . . . . . . . . 17
2.2.2.2 Band models . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2.3 Global models . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 The SLW gas model . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3.1 Calculation of the absorption coefficients . . . . . . . . 19
2.2.3.2 Calculations of Absorption line black body distribu-

tion function and the weights of gray gases . . . . . . 20
2.2.4 Implementation of SLW model in the radiative transfer equation 22

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Code Saturne and Radiative Calculation 29
3.1 Code Saturne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Computational Fluid Dynamic . . . . . . . . . . . . . . . . . . . 29
3.1.2 Discrete Ordinate Method in Code Saturne . . . . . . . . . . . . 30
3.1.3 Encountered Difficulties and Applied Modifications . . . . . . . 32
3.1.4 Implementation of SLW model . . . . . . . . . . . . . . . . . . . 34
3.1.5 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Code Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Differentially heated cavity . . . . . . . . . . . . . . . . . . . . . 36

3.2.1.1 Pure Thermal Convection . . . . . . . . . . . . . . . . . 37



xvi

3.2.1.2 Pure Thermal Convection coupled with radiation . . . 37
3.2.1.3 Double diffusive convection without radiation . . . . 38
3.2.1.4 Double diffusive convection coupled with radiation . 39

3.2.2 Cavity with a hot obstacle located inside . . . . . . . . . . . . . 39
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Coupling between Pure Thermal Convection and Radiation 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Convergence on spatial grid . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Convergence on angular discretization . . . . . . . . . . . . . . 45
4.1.3 Convergence on the number of gray gases for the SLW model . 48

4.2 Coupling with radiation in the gray gas assumption . . . . . . . . . . . 49
4.2.1 Steady flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Unsteady flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Coupling between Pure Thermal Convection and Radiation in a Real
Gas mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Velocity and thermal fields . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Double Diffusive Convection Coupled to Gas Radiation 79
5.1 Gray gas model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Mass-to-Thermal Buoyancy ratio N = 1 . . . . . . . . . . . . . . 80
5.1.2 Mass-to-Thermal Buoyancy ratio N = 2 . . . . . . . . . . . . . . 92
5.1.3 Mass-to-Thermal Buoyancy ratio N = −1 . . . . . . . . . . . . . 104
5.1.4 Mass-to-Thermal Buoyancy ratio N = −2 . . . . . . . . . . . . . 116
5.1.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Real gas mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.1 Air− H2O mixture . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.1.1 Velocity, thermal and concentration fields . . . . . . . 130
5.2.1.2 Heat and Mass Transfer . . . . . . . . . . . . . . . . . . 140

5.2.2 Air− CO2 mixture . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.2.2.1 Mixture at xCO2 = 0.10 . . . . . . . . . . . . . . . . . . 144
5.2.2.2 Mixture at xCO2 = 0.20 . . . . . . . . . . . . . . . . . . 150
5.2.2.3 Heat and Mass Transfer . . . . . . . . . . . . . . . . . . 154

5.2.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 General Conclusion 159

A Calculation of the physical properties of a binary mixture 163

B Implantation of our model in Code Saturne 165
B.1 Change in the directions set . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.2 Insertion of our code into the radiative module of Code Saturne . . . . 165

C Calculation of the Q-criterion 183

Bibliography 185



xvii

List of Figures

1.1 Problem configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 SLW calculation diagram for jth gray gas (from Solovjov, Webb, and
André [146]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Schematic representation of the Reference Approach (from Solovjov,
Webb, and André [147]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Schematic representation of the Rank Correlated (from Solovjov et al.
[141]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Presentation of step scheme for calculation of intensity at one face . . . 30
3.2 2D - Square Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 2D - Radiant flux at the cold wall, opposed to the hot wall with κ = 0.25 33
3.4 2D - Radiant flux at the cold wall, opposed to the hot wall with κ = 1 . 34
3.5 Implantation of SLW model in the Code Saturne . . . . . . . . . . . . . 35
3.6 Differentially heated cavity . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Calculation domain (Paroncini and Corvaro [13]) . . . . . . . . . . . . . 40
3.8 Domain of calculation (Ra = 2 · 105, Pr = 0.71) . . . . . . . . . . . . . . 41

4.1 Median plane (Y = 0.5) and crosslines used for the results display . . . 43
4.2 Temperature T−Tre f

Th−Tc
distribution in the median plane (Y = 0.5) with

different mesh sizes: transparent medium. . . . . . . . . . . . . . . . . . 44
4.3 Temperature T−Tre f

Th−Tc
distribution in the median plane (Y = 0.5) for the

gray medium at τ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Profiles of temperature T−Tre f

Th−Tc
and vertical velocities w

Ure f
at different

crosslines in the median plane (Y = 0.5). . . . . . . . . . . . . . . . . . . 47
4.5 Profiles of temperature and vertical velocities at different crosslines in

the median plane (Y = 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Temperature T−Tre f

Th−Tc
distribution in the median plane (Y = 0.5) for dif-

ferent fluid opacities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Temperature T−Tre f

Th−Tc
profiles at different Z-crosslines in the median

plane (Y = 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.8 Temperature T−Tre f

Th−Tc
profiles at different X-crosslines in the median

plane (Y = 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9 Distribution of radiative source term in the median plane (Y = 0.5) at

different optical thicknesses. Sources are normalized by 4σT4
re f /L. . . . 52

4.10 Velocity field on the median plane (Y = 0.5) for different fluid opaci-
ties. Velocities are normalized by Ure f . . . . . . . . . . . . . . . . . . . . 53

4.11 Flow lines5 on the median plane (Y = 0.5) for different fluid opacities. 54
4.12 Profiles of vertical velocities w

Ure f
at different Z-crosslines in the me-

dian plane (Y = 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xviii

4.13 Profiles of horizontal velocities u
Ure f

at different X-crosslines in the me-
dian plane (Y = 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.14 Representation of the Q-criterion at Q = 0.02 in the cavity. Values are
normalized by U2

re f /L2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.15 Isovalue lines at Q = −0.02 in the median plane (Y = 0.5). Values are

normalized by U2
re f /L2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.16 Considered points for tracking the time evolution of temperature. . . . 58
4.17 Time evolution of temperature T−Tre f

Th−Tc
at the center point of the cavity

P3: (X, Y, Z) = (0.5, 0.5, 0.5) at different optical thicknesses. . . . . . . . 58
4.18 Power spectrum of the temperature signal at the point P3: (X, Y, Z) =

(0.5, 0.5, 0.5) at τ = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.19 Time evolution and power spectrum of the temperature signal at the

point P1: (X, Y, Z) = (0.2, 0.5, 0.2) in temporal range [5000:5800] at
τ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.20 Time evolution and power spectrum of the temperature signal at the
point P2: (X, Y, Z) = (0.5, 0.5, 0.3) in temporal range [5000:5800] at
τ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.21 Time evolution and power spectrum of the temperature signal at the
point P3: (X, Y, Z) = (0.5, 0.5, 0.5) in temporal range [5000:5800] at
τ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.22 Time evolution and power spectrum of the temperature signal at the
point P4: (X, Y, Z) = (0.8, 0.5, 0.8) in temporal range [5000:5800] at
τ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.23 Flow lines in the median plane (Y = 0.5) at different instants over one
period (T1 = 72) at τ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.24 Negative values of Q-criterion in the median plane (Y = 0.5) at dif-
ferent instants over one period (T1 = 72) at τ = 1 (Black: 0; Red: -0.1;
Blue: -0.2; Orange: -0.4; Purple: -1; Green: -2). Values are normalized
by U2

re f /L2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.25 Temperature field T−Tre f
Th−Tc

at an instant in the median plane (Y = 0.5). . . 63

4.26 2D-contours of temperature T−Tre f
Th−Tc

in the median plane of the cavity
(Y = 0.5) at different mole fractions of water vapor. . . . . . . . . . . . 65

4.27 Temperature T−Tre f
Th−Tc

profiles along different Z-crosslines in the median
plane (Y = 0.5) at different concentration of water vapor. . . . . . . . . 66

4.28 Distribution of radiative source term in the median plane (Y = 0.5)
at different mole fractions of water vapor. Sources are normalized by
4σT4

re f /L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.29 Profiles of vertical velocities w

Ure f
at different Z-crosslines in the me-

dian plane (Y = 0.5) at different concentration of water vapor. . . . . . 69
4.30 Profiles of horizontal velocities u

Ure f
at different X-crosslines in the me-

dian plane (Y = 0.5) at different concentration of water vapor. . . . . . 70
4.31 Velocity field in the median plane (Y = 0.5) at different mole fractions

of water vapor. Velocities are normalized by Ure f . . . . . . . . . . . . . 71
4.32 Flow lines in the median plane (Y = 0.5) at different mole fractions of

water vapor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.33 Representation of Q-criterion at Q = 0.02 in the cavity at different

mole fractions of water vapor. Values are normalized by U2
re f /L2. . . . 73

4.34 Local convective Nusselt number along the vertical centerline of any
lateral wall of the cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



xix

4.35 Local convective Nusselt number along vertical center line of each
lateral surfaces of the obstacle. . . . . . . . . . . . . . . . . . . . . . . . 75

4.36 Local convective Nusselt number along horizontal centerline of the
obstacle top surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Thermal field T−Tre f
Th−Tc

in the median plane of the cavity (Y = 0.5) for
different fluid opacities: cooperating cases, N = 1. . . . . . . . . . . . . 81

5.2 Temperature T−Tre f
Th−Tc

profiles along Z-crosslines in the median plane
(Y = 0.5): cooperating flow, N = 1 . . . . . . . . . . . . . . . . . . . . . 82

5.3 Temperature T−Tre f
Th−Tc

profiles along different X-crosslines in the median
plane (Y = 0.5): cooperating flow, N = 1 . . . . . . . . . . . . . . . . . . 83

5.4 Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 1, τ = 0.1. Sources are normalized by 4σT4

re f /L. 83
5.5 Distribution of radiative source term in the median plane (Y = 0.5):

cooperating case, N = 1, τ = 0.2. Sources are normalized by 4σT4
re f /L. 84

5.6 Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 1, τ = 0.5. Sources are normalized by 4σT4

re f /L. 84
5.7 Distribution of radiative source term in the median plane (Y = 0.5):

cooperating case, N = 1, τ = 1. Sources are normalized by 4σT4
re f /L. . 85

5.8 Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 1, τ = 2. Sources are normalized by 4σT4

re f /L. . 85
5.9 Vector field in the median plane of the cavity (Y = 0.5) for different

fluid opacities: cooperating case, N = 1. Velocities are normalized by
Ure f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.10 Vertical velocity w
Ure f

profiles along different Z-crosslines in the me-
dian plane (Y = 0.5): cooperating case, N = 1. . . . . . . . . . . . . . . 87

5.11 Horizontal velocity u
Ure f

profiles along different X-crosslines in the me-
dian plane (Y = 0.5): cooperating case, N = 1. . . . . . . . . . . . . . . 88

5.12 Iso-surface of the Q-criterion at the value 0.01 in the cavity. Values are
normalized by U2

re f /L2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.13 Concentration field C−Cre f
Ch−Cl

in the median plane of the cavity (Y = 0.5)
for different fluid opacities: cooperating case, N = 1. . . . . . . . . . . 90

5.14 Concentration C−Cre f
Ch−Cl

profiles along different Z-crosslines in the me-
dian plane (Y = 0.5): cooperating case, N = 1. . . . . . . . . . . . . . . 91

5.15 Concentration C−Cre f
Ch−Cl

profiles along different X-crosslines in the me-
dian plane (Y = 0.5): cooperating case, N = 1. . . . . . . . . . . . . . . 91

5.16 Velocity vectors in the median plane of the cavity (Y = 0.5) for differ-
ent fluid opacities: cooperating case, N = 2. Velocities are normalized
by Ure f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.17 Vertical velocity w
Ure f

profiles along different Z-crosslines in the me-
dian plane (Y = 0.5): cooperating case, N = 2. . . . . . . . . . . . . . . 94

5.18 Horizontal velocity u
Ure f

profiles along different X-crosslines in the me-
dian plane (Y = 0.5): cooperating case, N = 2. . . . . . . . . . . . . . . 94

5.19 Iso-surface of the Q-criterion at the value 0.01 in the cavity. Values are
normalized by U2

re f /L2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.20 Thermal field in the median plane of the cavity (Y = 0.5) for different

fluid opacities: cooperating case, N = 2. . . . . . . . . . . . . . . . . . . 97



xx

5.21 Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 2, τ = 0.1. Sources are normalized by 4σT4

re f /L. 98
5.22 Distribution of radiative source term in the median plane (Y = 0.5):

cooperating case, N = 2, τ = 0.2. Sources are normalized by 4σT4
re f /L. 98

5.23 Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 2, τ = 0.5. Sources are normalized by 4σT4

re f /L. 99
5.24 Distribution of radiative source term in the median plane (Y = 0.5):

cooperating case, N = 2, τ = 1. Sources are normalized by 4σT4
re f /L. . 99

5.25 Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 2, τ = 2. Sources are normalized by 4σT4

re f /L. . 100

5.26 Temperature T−Tre f
Th−Tc

profiles along different Z-crosslines in the median
plane (Y = 0.5): cooperating case, N = 2. . . . . . . . . . . . . . . . . . 100

5.27 Temperature T−Tre f
Th−Tc

profiles along different X-crosslines in the me-
dian plane (Y = 0.5): cooperating case, N = 2. . . . . . . . . . . . . . . 101

5.28 Concentration field in the median plane of the cavity (Y = 0.5) for
different fluid opacities: cooperating case, N = 2. . . . . . . . . . . . . 102

5.29 Concentration C−Cre f
Ch−Cl

profiles along different Z-crosslines in the me-
dian plane (Y = 0.5): cooperating case, N = 2. . . . . . . . . . . . . . . 103

5.30 Concentration C−Cre f
Ch−Cl

profiles along different X-crosslines in the me-
dian plane (Y = 0.5): cooperating case, N = 2. . . . . . . . . . . . . . . 103

5.31 Velocity vectors in the median plane (Y = 0.5) of the cavity for differ-
ent fluid opacities: opposing case, N = −1. Velocities are normalized
by Ure f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.32 Vertical velocity w
Ure f

, temperature T−Tre f
Th−Tc

, concentration C−Cre f
Ch−Cl

and di-
mensionless buoyancy source term profiles along different Z-crosslines
in the median plane (Y = 0.5): opposing case, N = −1. . . . . . . . . . 107

5.33 Horizontal velocity u
Ure f

, temperature T−Tre f
Th−Tc

and concentration C−Cre f
Ch−Cl

profiles along different X-crosslines in the median plane (Y = 0.5):
opposing case, N = −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.34 Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −1, τ = 0.1. Sources are normalized by 4σT4

re f /L. 109
5.35 Distribution of radiative source term in the median plane (Y = 0.5):

opposing case, N = −1, τ = 0.2. Sources are normalized by 4σT4
re f /L. 109

5.36 Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −1, τ = 0.5. Sources are normalized by 4σT4

re f /L. 110
5.37 Distribution of radiative source term in the median plane (Y = 0.5):

opposing case, N = −1, τ = 1. Sources are normalized by 4σT4
re f /L. . 110

5.38 Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −1, τ = 2. Sources are normalized by 4σT4

re f /L. . 111

5.39 Thermal field T−Tre f
Th−Tc

in the median plane (Y = 0.5) for different fluid
opacities: opposing case, N = −1. . . . . . . . . . . . . . . . . . . . . . 112

5.40 Distribution of concentration C−Cre f
Ch−Cl

in the median plane (Y = 0.5) for
different fluid opacities: opposing case, N = −1. . . . . . . . . . . . . . 113

5.41 Vertical velocities w
Ure f

across the mid-height plane (Z = 0.5) for dif-
ferent fluid opacities: opposing case, N = −1. . . . . . . . . . . . . . . 114



xxi

5.42 Iso-surface of the Q-criterion at the value 0.002 in the cavity for differ-
ent fluid opacities: opposing case, N = −1. Values are normalized by
U2

re f /L2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.43 Velocity vectors in the median plane (Y = 0.5) for different fluid opac-

ities: opposing case, N = −2. Velocities are normalized by Ure f . . . . . 117
5.44 Vertical velocity w

Ure f
profiles along different Z-crosslines in the me-

dian plane (Y = 0.5): opposing case, N = −2. . . . . . . . . . . . . . . . 118
5.45 Horizontal velocity u

Ure f
profiles along different X-crosslines in the me-

dian plane (Y = 0.5): opposing case, N = −2. . . . . . . . . . . . . . . . 119
5.46 Thermal field T−Tre f

Th−Tc
in the median plane (Y = 0.5) for different fluid

opacities: opposing case, N = −2. . . . . . . . . . . . . . . . . . . . . . 120
5.47 Temperature T−Tre f

Th−Tc
profiles along different Z-crosslines in the median

plane (Y = 0.5): opposing case, N = −2. . . . . . . . . . . . . . . . . . . 121
5.48 Temperature T−Tre f

Th−Tc
profiles along different X-crosslines in the median

plane (Y = 0.5): opposing flow, N = −2. . . . . . . . . . . . . . . . . . . 122
5.49 Distribution of radiative source term in the median plane (Y = 0.5):

opposing case, N = −2, τ = 0.1. Sources are normalized by 4σT4
re f /L. 122

5.50 Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −2, τ = 0.2. Sources are normalized by 4σT4

re f /L. 123
5.51 Distribution of radiative source in the median plane (Y = 0.5): oppos-

ing case, N = −2, τ = 0.5. Sources are normalized by 4σT4
re f /L. . . . . 123

5.52 Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −2, τ = 1. Sources are normalized by 4σT4

re f /L. . 124
5.53 Distribution of radiative source term in the median plane (Y = 0.5):

opposing case, N = −2, τ = 2. Sources are normalized by 4σT4
re f /L. . 124

5.54 Concentration C−Cre f
Ch−Cl

field in the median plane (Y = 0.5) for different
fluid opacities, N = −2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.55 Concentration C−Cre f
Ch−Cl

profiles along different Z-crosslines in the me-
dian plane (Y = 0.5): opposing case, N = −2. . . . . . . . . . . . . . . . 126

5.56 Concentration C−Cre f
Ch−Cl

profiles along different X-crosslines in the me-
dian plane (Y = 0.5): opposing case, N = −2. . . . . . . . . . . . . . . . 126

5.57 Iso-surface of the Q-criterion at the value 0.002 in the cavity for differ-
ent fluid opacities: opposing case, N = −2. VValues are normalized
by U2

re f /L2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.58 Thermal field T−Tre f
Th−Tc

in the median plane of the cavity (Y = 0.5) at
different mole fractions of water vapor. . . . . . . . . . . . . . . . . . . 130

5.59 Temperature T−Tre f
Th−Tc

profiles along different Z-crosslines in the median
plane (Y = 0.5) at different average mole fractions of water vapor. . . . 131

5.60 Temperature T−Tre f
Th−Tc

profiles along different X-crosslines in the median
plane (Y = 0.5) at different average mole fractions of water vapor. . . 132

5.61 Distribution of radiative source term in the median plane (Y = 0.5)
at different mole fractions of water vapor. Sources are normalized by
4σT4

re f /L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.62 Concentration C−Cre f
Ch−Cl

field in the median plane of the cavity (Y = 0.5)
at different mole fractions of water vapor. . . . . . . . . . . . . . . . . . 135

5.63 Concentration C−Cre f
Ch−Cl

profiles along different Z-crosslines in the me-
dian plane (Y = 0.5) at different average mole fractions of water vapor. 136



xxii

5.64 Concentration C−Cre f
Ch−Cl

profiles along different X-crosslines in the me-
dian plane (Y = 0.5) at different average mole fractions of water va-
por. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.65 Velocity vector in the median plane of the cavity (Y = 0.5) at different
mole fraction of water vapor. Velocities are normalized by Ure f . . . . . 138

5.66 Vertical velocities w
Ure f

profiles at different Z-crosslines in the median
plane (Y = 0.5) at different average mole fractions of water vapor. . . 139

5.67 Horizontal velocities u
Ure f

profiles at different X-crosslines in the me-
dian plane (Y=0.5) at different average mole fractions of water vapor.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.68 Local convective Nusselt number along a vertical centerline of any

lateral wall of the cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.69 Local convective Nusselt number along a vertical center line of each

lateral surfaces of the obstacle. . . . . . . . . . . . . . . . . . . . . . . . 141
5.70 Local convective Nusselt number along an horizontal centerline of the

obstacle top surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.71 Time evolution of temperature at the center point of the cavity (X, Y, Z) =

(0.5, 0.5, 0.5) at xCO2=0.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.72 Flow lines on the median plane of the cavity (Y = 0.5) at different

instants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.73 Time evolution and power spectrum of the temperature signal at the

point (X, Y, Z) = (0.5, 0.5, 0.5) in temporal range [400 : 3000] at xCO2 =
0.10: transparent medium. . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.74 Thermal field T−Tre f
Th−Tc

of the cavity (Y = 0.5) at different instants. . . . . 147

5.75 Temperature T−Tre f
Th−Tc

profile at Z = 0.5 in the median plane at t = 775 . . 148

5.76 Temperature T−Tre f
Th−Tc

profile at Z = 0.1 in the range X = [0.35 : 0.65] at
t = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.77 Distribution of radiative source term in the median plane (Y = 0.5) at
xCO2 = 0.10. Sources are normalized by 4σT4

re f /L . . . . . . . . . . . . . 149
5.78 Velocity vector in the median plane of the cavity (Y = 0.5) at xCO2 =

0.20. Velocities are normalized by Ure f . . . . . . . . . . . . . . . . . . . 150

5.79 Vertical velocity w
Ure f

, temperature T−Tre f
Th−Tc

and concentration C−Cre f
Ch−Cl

pro-
files along different Z-crosslines in the median plane (Y = 0.5) at
xCO2 = 0.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.80 Horizontal velocity u
Ure f

, temperature T−Tre f
Th−Tc

and concentration C−Cre f
Ch−Cl

profiles along different X-crosslines in the median plane (Y = 0.5) at
xCO2 = 0.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.81 Thermal field T−Tre f
Th−Tc

in the median plane of the cavity (Y = 0.5) at
xCO2 = 0.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.82 Distribution of radiative source term in the median plane (Y = 0.5) at
xCO2 = 0.20. Sources are normalized by 4σT4

re f /L . . . . . . . . . . . . . 153

5.83 Concentration field C−Cre f
Ch−Cl

in the median plane of the cavity (Y = 0.5)
at xCO2 = 0.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.84 Iso-surface of the Q-criterion at the value 0.01 in the cavity at xCO2 =
0.20. Values are normalized by U2

re f /L2 . . . . . . . . . . . . . . . . . . 154



xxiii

List of Tables

3.1 Integrated wall flux, κ = 0.25, quadrature S8 . . . . . . . . . . . . . . . . 34
3.2 Integrated wall flux, κ = 1, quadrature S8 . . . . . . . . . . . . . . . . . 34
3.3 Mean Nusselt number on the hot wall . . . . . . . . . . . . . . . . . . . 37
3.4 Mean Nusselt Number on the hot wall (Pr = 0.71) . . . . . . . . . . . . 37
3.5 Mean Nusselt number on the hot wall (Pr = 0.71, Pl = 0.02, θ0 = 1.5,

εi = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Radiative boundary conditions and radiative properties of the medium 38
3.7 Mean convective Nusselt number on the hot wall (air− H2O mixture,

Ra = 106, Pr = 0.707) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Mean Nusselt number on the hot wall (Ra = 107, Le = 1 and Pr = 0.71) 38
3.9 Mean convective Nusselt number on the hot wall for an air − CO2

mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.10 Mean Sherwood number on the hot wall for an air− CO2 mixture . . . 39
3.11 Mean convective Nusselt number on the hot wall for an air − H2O

mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.12 Mean Sherwood number on the hot wall for an air− H2O mixture . . . 39
3.13 Mean Nusselt number on the lateral wall of the heated obstacle . . . . 40
3.14 Mean Nusselt number on different walls (Ra = 2 · 105, Pr = 0.71) . . . 41

4.1 Maximum horizontal and vertical velocities for different mesh sizes. . 44
4.2 Mean Nusselt numbers at the bounding surfaces of the enclosure. . . . 45
4.3 Mean Nusselt numbers at the bounding surfaces of the hot source. . . 45
4.4 Mean convective and radiative Nusselt numbers over the vertical sur-

faces of the enclosure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Mean convective and radiative Nusselt numbers at a lateral wall of

the obstacle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Description of the cases of calculation. . . . . . . . . . . . . . . . . . . . 64
4.7 Average convective and total Nusselt number along any vertical wall

of the cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.8 Average convective and total Nusselt number along any vertical wall

of the obstacle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.9 Average convective and total Nusselt number along horizontal upper

wall of the obstacle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Configuration parameters: air− H2O mixture. . . . . . . . . . . . . . . 129
5.2 Average convective and total Nusselt numbers on any vertical cavity

wall: double diffusive convection and radiation in an air−H2O mixture.142
5.3 Average convective and total Nusselt numbers on any obstacle verti-

cal surface: double diffusive convection and radiation in an air−H2O
mixture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4 Average convective and total Nusselt numbers on the obstacle hori-
zontal surface: double diffusive convection and radiation in an air−
H2O mixture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



xxiv

5.5 Averaged Sherwood number on any cavity lateral wall: double diffu-
sive convection and radiation in an air− H2O mixture. . . . . . . . . . 143

5.6 Averaged Sherwood number on any obstacle vertical wall: double
diffusive convection and radiation in an air− H2O mixture. . . . . . . 143

5.7 Averaged Sherwood number on the obstacle horizontal wall: double
diffusive convection and radiation in an air− H2O mixture. . . . . . . 143

5.8 Configuration parameters: air− CO2 mixture . . . . . . . . . . . . . . . 144
5.9 Average convective and total Nusselt number on active walls of the

cavity and of the obstacle for double diffusive convection and radia-
tion in the air− CO2 mixture at xCO2 = 0.20 . . . . . . . . . . . . . . . . 154

5.10 Averaged Sherwood number on active walls of the cavity and of the
obstalce for double diffusive convection in the air − CO2 mixture at
xCO2 = 0.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.1 Changes in the S8 quadrature . . . . . . . . . . . . . . . . . . . . . . . . 165



xxv

List of Symbols

A area of the considered surface m2

aj weight of jth gray gas

cp specific heat J · kg−1 ·K−1

C concentration mol ·m−3

Ch high concentration mol ·m−3

Cl low concentration mol ·m−3

Cj jth absorption cross section m2 ·mol−1

D mass diffusivity m2 · s−1

g gravitional acceleration vector: 9.81 m · s−2

G incident radiation W ·m−2

I radiative intensity W ·m−2 · sr−1

l obstacle size m

L cavity size m

Le Lewis number Le = α
D

n unit normal vector

N mass to thermal buoyancy ratio N = βC(Ch−Cl)
βT(Th−Tc)

Ng number of gray gases

Nuc convective Nusselt number Nuc =
L

∆T
∂T
∂x

Nur radiative Nusselt number Nur =
Lqnet

λ∆T

Nut total Nusselt number Nut = Nuc + Nur

P absolute pressure Pa

Pl Planck number Pl = λ
4σT3

re f L

Pr Prandlt number Pr = ν
α

qr radiative flux vector W ·m−2

qinc incident radiative flux W ·m−2

s unit vector on a propagation direction of radiation

t time s



xxvi

tre f reference time tre f =
L2

α
√

Ra

Tc absolute temperature at cold surfaces K

Th absolute temperature at hot surfaces K

Tre f reference temperature Tre f = (Th + Tc)/2 K

Ra Rayleigh number Ra = gβT∆TL3

αν

u, v, w velocity component m · s−1

Ure f reference velocity Ure f = α
√

Ra
L m · s−1

Ux normalized velocity component Ux = u
Ure f

Uy normalized velocity component Uy = v
Ure f

Uz normalized velocity component Uz =
w

Ure f

R ideal gas constant: 8.3144621 J ·K−1 ·mol−1

x, y, z Cartersian coordinate m

X, Y, Z normalized coordinate X = x
L , Y = y

L , Z = z
L

xCO2 , xH2O molar fraction of C02 and H2O in the mixture

∆C concentration difference mol ·m−3

∆T temperature difference K

α thermal diffusivity m2 · s−1

βC mass expansion coefficient m3 ·mol−1

βT thermal expansion coefficient K−1

ε emissivity

κ absorption coefficient m−1

λ thermal conductivity W ·m−1 ·K−1

µ dynamic viscosity m2 · s

η wavenumber cm−1

ν kinematic viscosity Pa · s−1

ρ density kg ·m−3

τ optical thickness

Ω solid angle sr

Ωm mth discrete direction

σ Stefan Boltzmann constant: 5.670367× 10−8 W ·m−2 ·K−4



1

Chapter 1

Introduction

1.1 Context and Configuration

Natural convection flows are sensitive to the effects of volume radiation in the pres-
ence of infrared active gases. This is appearent in particular in mixtures where an
absorbing component diffuses into a transparent gas. While several studies have
investigated this phenomenon in differentially heated cavities, in single and double
diffusion, the case of a heating and diffusing obstacle placed on the floor constitutes
a new worthy configuration of interest. Very schematically, it mimics the combustion
of an object in the center of a room. The release of heat and the injection of pollut-
ing infrared active gases generate a confined buoyant plume due to the combined
effects of thermal and concentration gradients. Moreover, radiative absorption and
emission within the fluid depends on the gas composition, strongly influences the
temperature distribution and, in turn, alters the flow motion.

The configuration under consideration in this thesis is illustrated in figure 1.1.
It deals with a cubical cavity of size L = 0.25m having adiabatic horizontal walls,
while the vertical ones are maintained at a constant and uniform temperature (Tc).
A small solid cube of size l = 0.05m is located at the center of the bottom wall. It
creates an opaque obstacle whose surfaces are set uniformly at a higher temperature
than the walls (Th > Tc).

Figure 1.1: Problem configuration



2 Chapter 1. Introduction

The enclosure is filled with either dry air or a binary mixture involving an ab-
sorbing component, depending on the case study. In pure thermal convection, the
medium is homogeneous in composition and the temperature difference between
the obstacle and the cavity walls generates a natural convection flow. In double-
diffusive cases, a concentration gradient is prescribed within the enclosure: it creates
additional buoyancy forces that may either cooperate or oppose to those of thermal
origin, depending on the molar weight of the injected species. The highest value Ch
of this component is uniformly fixed at the obstacle surfaces and the lowest concen-
tration Cl is prescribed along the active (cold) walls of the enclosure.

1.2 Objective of the thesis

Our goal is to study the natural convection flows generated in the configuration de-
scribed above in the presence of volume radiation within the gas. These flows are,
by nature, complex, especially in double diffusion where the cooperating/opposing
configurations can generate original structures, and this even in the absence of ra-
diative participation.

Transparent medium

The study will therefore include, firstly, an analysis of the phenomena in a transpar-
ent gas (confined double diffusion plume: co-operating and opposite case). This first
approach can be carried out using a dimensionless formulation: this will highlight
the characteristic parameters of the configuration (in particular, the definition of the
Rayleigh number). The results will concern the dynamic, thermal and mass fields in
laminar regime and at steady state, for different values of the mass-to-thermal buoy-
ancy ratio. Steady state solutions are mainly considered, but unsteady behaviors can
be reached in some typical cases. This series of calculations will provide reference
results when dealing with cases involving radiative effects.

Gray gas

A first approach to participating gases can be carried out by assuming that the ab-
sorbing mixture is gray. This amounts to working with a hypothetical medium
whose opacity can be freely varied, which is advantageous for a parametric study.
It is also possible, at this stage, to maintain a formulation in non-dimensional quan-
tities. The idea is to reproduce some simulations, already carried out without radi-
ation, with a gas whose reference optical thickness varies from 0 (transparent case)
to a few units (2, in general). This approach is expected to reveal major trends in the
influence of radiation on the flow behavior and on heat and mass transfers.

Real gases

The last - and the most important - part is the simulation of real gas flows. Con-
cretely, we will consider air − H2O and air − CO2 mixtures with a prescribed con-
centration of absorbing species at the surfaces of the obstacle and a zero concen-
tration on the vertical walls of the cavity. Cases with water vapor will give rise to
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cooperating flows, those with CO2 to opposing flows. Concentrations will be varied
in situations where thermal diffusion dominates, mass diffusion dominates, or both
phenomenons are equivalent.

We will analyse the results by comparison with the cases involving a transparent
gas.

1.3 Bibliography review

1.3.1 Natural convection with the consideration of radiation

The first work about the coupling of natural convection and radiation was per-
formed by Goody [36] with the gray gas assumption in the framework of Rayleigh-
Bernard configuration in the stellar atmospheres. The authors concluded that the
fluid radiation delays the trigger of the instability by decreasing the thermal strati-
fication and damping the temperature fluctuations. Bdéoui and Soufiani [37] have
extended this problem to the real gas mixture using a rigorous linearisation of the
radiative source term and the same conclusion was found.

In recent decades, many researchers have given more attention to the configu-
ration of the differentially heated enclosure. They considered the effects of surface
radiation (transparent gas) as well as volume radiation from a participating fluid.

Concerning surface radiation, the coupling of convection with radiative trans-
port is indirectly created through the boundary conditions of a prescribed flux on
the bounding surfaces. In this framework, Behnia, Reizes, and De Vahl Davis [38]
have investigated the coupled process within a rectangular cavity. The horizontal
walls were assumed to be adiabatic, a vertical wall was opaque and maintained at
high temperature (150◦C) while the other was semi-transparent and was exchanging
with the outer environment (kept at 20◦C) by convection and radiation. The results
obtained in the range of Rayleigh number [104 − 3 · 105] showed that surface radia-
tion accelerates the fluid motion and this effect increases with this parameter.

Wang, Xin, and Le Quéré [39] considered the natural convection-radiation cou-
pling inside a rectangular cavity filled with air. All the walls had the same emissivity.
The results showed that the radiation of adiabatic wall lowers the average temper-
ature of top wall while increasing the temperature of the bottom wall. This reduces
the thermal stratification of the fluid inside the cavity and the influence of the ra-
diation was still found significant at low temperature and with weak emissivities.
It was also observed that the radiative coupling lower the critical Rayleigh number
beyond which the unsteady solutions occur.

Regarding the volume radiation effects within the fluid, Lauriat [40] has investi-
gated the coupled transfer in a vertical tall cavity (whose height to width ratio was
varied between 5 and 20) filled with a gray gas. The computations were performed
at different opacities and Rayleigh numbers. The predictions of the radiant field was
achieved using the P1 method. The results showed that, in convective regime, the
radiation of gray gas increases the velocities in boundary layers and decreases the
vertical thermal stratification.
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The same observations were reported by Yücel, Acharya, and Williams [1] while
considering a square cavity whose walls are black and with the optical thickness
varying between 0.2 and 5. The Rayleigh number was 5 · 106. In addition, the
authors concluded that volume radiation warms up the center of the cavity and,
through that, alters the thermal field.

Similarly, Tan and Howell [2] have addressed the effects of volume radiation on
natural convection inside a 2D cavity at different Ra in the range of [103 − 105] and
Pr = 0.72. The sensitivity to the parameters that characterize radiation (wall emis-
sivity, optical thickness, Planck number and albedo) has been analyzed and it was
found that all of them, except the albedo, significantly affect the heat transfer.

Other works by Han and Baek [41] and Lari et al. [42] in the same framework
provided similar conclusions.

Colomer et al. [3] have extended the calculation of coupled natural convection
and radiation of a gray gas from a bi-dimensional enclosure to a cubical cavity. The
results showed that the radiation increases the 3-D effects at the intermediate optical
thickness. In addition, with a constant Rayleigh number, the heat flux at the hot wall
decreases as the optical thickness increases.

Later, Colomer, Consul, and Oliva [4] as well as Lari et al. [43] have studied the
coupled natural convection and radiation using different approaches for modeling
the real gas mixtures. The authors concluded that the use of the gray gas approxi-
mation overestimates the radiative transfer and the fluid circulation of real gas mix-
tures.

Regarding real gas mixtures, Soucasse et al. [5] have studied natural convection
in a cubical cavity filled with an air/H2O/CO2 mixture. The results showed that
radiative transfer homogenizes the thermal field and accelerates the vertical bound-
ary layer. This steady state problem was later extended to the weakly turbulent and
unsteady regime in Soucasse et al. [44]. The authors reported a transition to the un-
steadiness at Ra = 3 · 108 and, beyond this value, volume radiation intensifies the
turbulent fluctuations and decreases the thermal stratification in the center of the
cavity.

Recently, Billaud, Saury, and Lemonnier [6] have considered the case of a differ-
entially heated cubical enclosure filled with humid air and have varied the cavity
size. They used the Discrete Ordinates Method associated with the SLW model for
the calculation of radiative source term within the fluid. All the simulations were
performed at Ra = 106 and Pr = 0.71. The results showed that the thermal field
and velocities field depend on the cavity length even when keeping the Ra-value
constant. More generally, radiation was found to accelerate the global circulation in
the enclosure to limit the stagnant core region of the cavity.

Beside the numerical works, there exist a few experimental studies by Fusegi and
Farouk [45] and Clergent [46], for instance, for the coupled natural convection and
radiation in a differentially heated cavity. In order to prevent the condensation of
water vapor, the gas used in these experiments is usually carbon dioxide or ammo-
nia. An interferometry method has been used for the measurement of temperature.
Because of the difficulty of setting the boundary conditions and fluid characteristics
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as precisely as in the numerical calculations, the comparisons between numerical
and experimental results are delicate.

1.3.2 Combined double diffusive convection and radiation

Several studies dealing with the coupling of double diffusive convection and the ra-
diation have been performed. Borjini et al. [47] have investigated the case of a square
cavity filled with a gray gas whose absorption coefficient was assumed independent
of the concentration of the absorbing component. The calculations have been per-
formed at Ra = 105, Le = 2 and Pr = 13.6. Different optical thicknesses have been
considered. The results showed that the radiation alters the flow structure inside the
cavity.

Rafieivand [48] and Mezrhab et al. [49] were the first to report results in a more
realistic case for a differentially heated square cavity filled with a binary gas mixture,
still considered as a gray gas, whose radiative properties were depending on the lo-
cal concentration of the absorbing component. The calculations were performed at
Ra = 5 · 106, Pr = 0.71 and different values of the mass-to-thermal buoyancy ratio.
They showed that radiation could either alter or eliminate the vertical stratification
of density, which may drive the oscillatory behavior in unsteady state.

Meftah et al. [50], Laouar-Meftah et al. [51] extended the previous study to real
gas mixtures such as air− H2O and air− CO2 at different mole fraction. They used
the SLW model to determine the fluid radiative properties as function of the local
thermodynamic state. Their results show that radiation breaks the centro-symmetry
of the thermal field, concentration field and flow structure compared to the trans-
parent cases. It was also pointed out that the fluid is accelerated in both the vertical
and horizontal boundary layers when thermal and concentration gradients cooper-
ate. On the other hand, gas radiation has little influence on mass transfer, but due to
the homogenization of the temperature field, the vertical thermal stratification de-
creases and thus reduces the convective transfer. Moreover, the radiative transfer
between the two active walls also decreases because of the absorption by the partic-
ipating gas. For these two reasons, the global heat transfer is lowered.

Ibrahim and Lemonnier [52] studied the transient processes in 2D-configurations
filled with a N2 − CO2 mixture with the Rayleigh number up to 1.5 · 109. They re-
ported that radiation, for cooperating flows, stabilizes the fluid motion and slightly
accelerates the transition to the steady state. Conversely, for opposing flows, it de-
lays the achievement of the steady state and may even promote the development of
thermalsolutal instabilities.

The work of Cherifi et al. [53] is an extension to a 3-D configuration of the study
by Laouar-Meftah et al. [51]. The authors investigated only the cooperating flow.
The results showed that radiation slightly affects the fluid motion near the trans-
verse walls. The radiation also breaks the symmetry of thermal and concentration
field as well as flow structure compared to a transparent medium. The total heat
transfer is reduced while the influence of radiation on mass transfer is not sensible.
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1.3.3 Enclosures with an obstacle or a heat source

First of all, concerning the natural convection inside a cavity containing and opaque
obstacle within it, Paroncini and Corvaro [13] published a study based on numeri-
cal calculations and experiments inside a square cavity with an obstacle located on
its floor. Regarding the experimental approach, the authors used the PIV (Parti-
cle Image Velocimetry) method for the detection of flow structures (velocity field,
stream function and velocity vector distribution) and an interferometry technique
to evaluate heat transfer, and especially the local and mean Nusselt numbers. The
investigation were performed for Rayleigh numbers ranging from 3 · 104 to 3.5 · 105.
The results showed that the Nusselt number increases with this parameter. Besides
it was found that among the three considered heights of the hot source: 0, 0.25 and
0.5 (compared to the cavity size), when the size of the heated obstacle reaches one
half of the cavity, the convective heat transfer is the worst while the height of one
fourth the cavity length gives the best performance.

Gibanov and Sheremet [16] have investigated the natural convection in a 3-D
enclosure with a heat source of triangular cross section on its floor. The authors
performed the numerical simulations for the Rayleigh number in the interval [104 −
106]. They observed that the increase in Rayleigh number leads to the decrease of
the thermal boundary layer while intensifying the convective flow.

Mousa [54] has modeled the natural convection inside a differentially heated
square cavity containing an adiabatic obstacle. The calculations have been run for
Pr = 0.71 and the Rayleigh number ranging in [102 : 107]. The results have been
considered with respect to the aspect ratio between the obstacle and cavity size. It is
reported that as the aspect ratio increases, the heat transfer rate decreases at Rayleigh
number in [102 : 104], augments for the Ra values in [105 : 106] and seems to be main-
tained at Ra = 107.

Raji et al. [55] have considered the effect of the subdivision of an obstacle on the
natural convection in a square cavity. The investigation was performed for different
values of Rayleigh number in [103 − 108] with different numbers of sub-obstacles.
The results showed that the increase in the number of blocks reduced the heat trans-
fer and fluid motion.

Kuznetsov and Sheremet [11] have investigated the natural convection inside a
rectangular cavity with a local heating on a vertical wall. The calculations were per-
formed at Pr = 0.71, Gr = 107 − 109. The results showed that the heat transfer
was increased with greater Grashof numbers. The authors have also considered the
problem of conjugate heat transfer in a closed domain with a locally lumped heat-
release source at Pr = 0.71 and Gr = 105 − 107. The results reported in the work
by Kuznetsov and Sheremet [12] pointed out that as the Grashof number increases,
the structure of central vortex, which drives the formation of the temperature profile
inside the room, changes in the manner that its center shifts toward the right part
of calculation domain. An experimental research on convective heat transfer has
been conducted by Kuznetsov, Maksimov, and Sheremet [14] in the configuration of
a closed parallelepiped containing a local energy source.

Kuznetsov and Sheremet [56] have simulated a typical element of electronic equip-
ment by a 3-D gas filled cavity surrounded by thick solid walls that contains a local
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heat source located on its floor. This configuration has one vertical wall with variable
thermal physical properties, which is in contact with outer environment. The others
are insulated. The authors have investigated the convective process inside the cavity
with respect to the variation in intensity of the heat source and to the environment
conditions. It was shown a destabilizing role of the heat source on the flow structure
and a significant effect of external conditions on the hydrodynamic and heat transfer
in the system.

Souayeh et al. [15] have studied the unsteady natural convection within a square
cavity containing an obstacle at Rayleigh number in the range [5 · 105 − 107]. The
authors observed the slight decrease in the extreme values of the stream function,
which was explained by the appearance of a small are of re-circulation occurring at
the horizontal wall of the obstacle.

Bouafia and Daube [19] have studied the natural convection for large temper-
ature gradients within a rectangular cavity with an inner square solid body. The
effects of the aspect ratio as well as of the Rayleigh numbers have been investigated.
The results showed that, for any considered values of the aspect ratio, the steady
flow can be obtained at a low enough Rayleigh number; for sufficiently large values
of Rayleigh number, a periodical flow always appears, but the transition to unsteadi-
ness occurs in different manners depending on the aspect ratio.

Hernandez [10] has studied the natural convection generated by a heat source
placed at the center of the bottom of a rectangular cavity. The computation were
carried out at different values of Rayleigh number : 104, 5 · 104, 105. The author con-
cluded that the unsteadiness of the flow in high aspect ratio cavity at high Rayleigh
number and low Prandlt number come from the shear instability of the interaction
between ascending and descending fluid layers.

Concerning the coupled natural convection and surface radiation, Sun, Chénier,
and Lauriat [20] have studied the coupling of natural convection and surface radi-
ation inside a square cavity with an obstacle at its center. The results showed that
surface radiation stabilizes the fluid motion inside the cavity. The range of Rayleigh
number in which the transition between steady and oscillatory flows appears was
shifted from Rac1 = 2 · 105 and 1.7 · 105 < Rac2 < 1.75 · 105 for pure natural convection
to Rac1 = 3.15 · 105 and 2.85 · 105 < Rac2 < 2.9 · 105. The authors have also investigated
the effects of the inner body size and pointed out that at the aspect ratio between the
obstacle and the cavity of A = 0.8, the conduction dominates the heat transfer pro-
cess in the enclosure.

Patil, Sharma, and Velusamy [23] have investigated the combined natural con-
vection and surface radiation in an enclosure containing a protrusion. The studies
on the protrusion shape and position and surface emissivity have been performed
for Rayleigh numbers in range of 103-106 with surface emissivity values varying in
[0; 1]. The results showed that the surface radiation did not much alter the velocity
field but it changes noticeably the wall temperature: it partially increases this quan-
tity at the bottom wall and decreases this parameter at the top temperature.

Martyushev and Sheremet [21] have investigated the effect of surface radiation
on the natural convection in an enclosure with a local energy source. In their works,
different sizes of the hot obstacle and different positions have been considered. The
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calculations have been performed at Ra = 106 and Pr = 0.7 while the emissivities
of the active surfaces are set to 0 ≤ ε < 1. The results pointed out that the increase
in the emissivity leads to intensify the radiative transfer but reduce the convective
Nusselt number. Besides, the increase in the length of the energy source induces the
slow down of the arrival at a steady state.

Very recently, Ying Wang [57] has considered a confined thermal plume inside
an air-filled cubical cavity containing a line heat source. The simulations have been
performed at Ra in the interval [106 − 109]. The impacts of gas radiation on the
flow have been taken into account using a gray gas assumption and the SLW model
(for predicting the radiative properties of an air − H2O mixture). The results have
reported that volume radiation stabilizes the plume, delays the transition to the in-
stability. It also homogenizes the thermal field.

1.4 Thesis organization

This manuscript is divided into six main chapters. Firstly, the present chapter in-
troduces the motivation of the thesis, its objectives and a bibliography review about
some related researches in the recent decades. Then, in the second chapter, we pro-
vide more details about the mathematical models as well as the numerical methods
used in this study. Chapter three will introduce Code Saturne, the CFD simulation
tool used all along our work and the implementation of our own SLW model into
the built-in radiative module of this code. We also present some validation tests for
assessing the accuracy of our calculations in configurations with an increasing de-
gree of complexity. The fourth chapter contains the results and analysis about the
combined thermal convection and radiation in a gray gas as well as in a real gas mix-
ture. Then, chapter five will focus on the radiation effects in many typical situations
of double diffusive convection, either cooperating or opposing, in gray or real gas
mixture. To end with, the concluding chapter will synthesize the main results of this
study and provide perspectives for future works.
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Chapter 2

Methodology

In this chapter, we present the mathematical model of the double diffusive convec-
tion and the method for solving the radiative transfer equation. We recall that the
studied configuration is illustrated in figure 1.1. It deals with a cubical cavity con-
taining an obstacle (diffusion source of heat and pollutant) located on its floor. The
enclosure is filled with dry air or a binary mixture involving an absorbing-emitting
component.

2.1 Mathematical model

2.1.1 Main assumptions

• The flow in the cavity is three-dimensional, laminar.

• The fluid is considered as Newtonian and incompressible.

• The active surfaces (vertical walls of the enclosure and outer surfaces of the ob-
stacle) are black with respect to radiation while the adiabatic surfaces (ceiling
and floor of enclosure) are purely reflective.

• The variations in temperature and concentration within the cavity are weak
enough to allow the Boussinesq approximation. Consequently, the variations
of the fluid properties are ignored, except for density in the buoyancy force
expression, which is written as:

ρ(T, C) = ρ0[1− βT(T − T0)− βC(C− C0)] (2.1)

Here, ρ0 is the density of the mixture in an average state (T0, C0) and βT, βC
denote, respectively, the thermal and concentration expansion coefficients:

βT = −1
ρ
(

∂ρ

∂T
)P,C (2.2)

βC = −1
ρ
(

∂ρ

∂C
)P,T (2.3)

• The viscous dissipation and pressure work are negligible.

• Soret and Dufour effects are negligible.
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2.1.2 Fluid Dynamics Equations

Several conservation equations govern the flow motions and the transfer processes
in the enclosure. They express a local balance in mass, momentum, energy and com-
position within the fluid:

• Continuity equation
Since density variations are neglected, the total mass conservation reads:

∇ · u = 0 (2.4)

• Momentum equation

ρ0
∂u
∂t

+ ρ0u ·∇u = −∇p + ρ0(βT(T0 − T) + βC(C0 − C))g + µ∇2u (2.5)

The source term ρ0(βT(T0−T)+ βC(C0−C))g accounts for the buoyancy force
that sets the fluid into motion (here expressed under the Boussinesq approxi-
mation).

• Energy equation

ρ0Cp
∂T
∂t

+ ρ0Cpu ·∇T = λ∇2T −∇ · q (2.6)

The divergence term −∇ · q is the internal radiative source resulting from the
difference between the absorbed and emitted radiant energy in each elemen-
tary volume of fluid.

• Concentration equation
In this study, we only consider binary mixtures. A component (which absorbs
and emits radiation) diffuses into a transparent gas. Its concentration obeys a
conservation equation that, under the Boussinesq approximation, is expressed
as :

∂C
∂t

+ u ·∇C = D∇2C (2.7)

All the conservation equations are coupled: the dynamic field influences the trans-
port of scalar quantities (T and C) which, in turn, drive the flow through the buoy-
ancy effects. Moreover, the concentration has a direct effect on the thermal field
since it changes the absorption-emission properties of the medium. Therefore, the
radiative source in the energy balance is impacted.

2.1.3 Radiative transfer equation

The cavity is filled with a semi-transparent gaseous medium at local thermodynamic
equilibrium, which absorbs and emits radiation at any point in space. The spectral
radiation intensity Iη(s, Ω)1 represents the radiant flux (per unit solid angle and per
unit wavenumber) that propagates at point s = (x, y, z) in the direction Ω at the

1s is the position vector
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wavenumber η. In a non-scattering medium, the local change of intensity is de-
scribed by the radiative transfer equation:

Ω ·∇Iη(s, Ω) = −κη(s)Iη(s, Ω) + κη(s)Ibη(T(s)) (2.8)

where κη(s) is the local spectral absorption coefficient defined as κη(s) = N(s) X(s)
Cη(φ(s)). In this expression, Cη(φ(s)) is the spectral absorption cross section, which
depends on the local thermodynamic state, φ(T, P, C), X(s) the mole fraction and
N(s) the molar density of the absorbing species (Denison and Webb [58]). The radia-
tive intensity depends on three position coordinates, two direction variables (either
two polar angles or two direction cosines) and the wavenumber. The total intensity
can be found by integration over the whole spectrum as:

I(s, Ω) =
∫ ∞

0
Iη(s, Ω)dη (2.9)

The term −∇ · q which appears in the energy equation is the total divergence of the
radiative flux. This flux can be calculated from the total intensity by the expression:

q(s) =
∫ 4π

0
I(s, Ω)ΩdΩ =

∫ 4π

0

∫ ∞

0
Iη(s, Ω)ΩdηdΩ (2.10)

and, as a result:

−∇ · q(s) =
∫ ∞

0

∫ 4π

0
(Ω ·∇Iη(s, Ω))dΩdη

=
∫ ∞

0

∫ 4π

0

(
κη(s)Iη(s, Ω)− κη(s)Ibη(T(s))

)
dΩdη

=
∫ ∞

0

∫ 4π

0
κη(s)Iη(s, Ω)dΩdη − 4π

∫ ∞

0
κη(s)Ibη(T(s))dη

(2.11)

2.1.4 Boundary conditions

Conservation equations

All the surfaces of the obstacle2 are set at constant and uniform temperature and
concentration:

T = Th

C = Ch
(2.12)

Regarding the cavity:

• Vertical walls are uniformly maintained at constant temperature and concen-
tration:

T = Tc

C = Cl
(2.13)

• Horizontal walls are adiabatic, impermeable and assumed to behave as fully
reflective surfaces:

∂T
∂z

= 0 at z = 0, L (2.14)

2Except the surface in contact with the floor of the cavity
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∂C
∂z

= 0 at z = 0, L (2.15)

Zero velocities are applied to all the walls of the cavity and all the surfaces of the
obstacle.

Radiative Transfer Equation

To solve the radiative transfer equation, we need to input the intensity coming
from the bounding walls towards the fluid. This intensity is prescribed for all di-
rection Ω pointing inward to the cavity such that Ω · n > 0 where n is the local
unit vector3 on the boundary limit. Assuming gray diffuse surfaces, the boundary
condition reads:

Iη(s, Ω
(Ω·n>0)

) = εIbη(T(s)) + (1− ε)qinc
η (2.16)

where:
qinc

η =
∫

Ω·n<0
Iη(s, Ω)|Ω · n|dΩ (2.17)

In this study, the surfaces of the obstacle and the vertical walls of the cavity are black
(ε = 1) and the horizontal walls of the enclosure are purely reflective (ε = 0).

2.1.5 Heat and Mass Transfer

To investigate the thermal and mass wall fluxes, we calculate the Nusselt and Sher-
wood numbers4. Their local values are defined as follows:

• The local convective Nusselt number refers to the ratio of convective to con-
ductive heat transfer at a boundary in a fluid:

NuC =
L

∆T
|∂T
∂x
|x=0,L

5 (2.18)

• The local radiative Nusselt number represents the ratio of radiative to conduc-
tive heat transfer at a bounding wall of the enclosure:

NuR =
L

λ∆T
|qnet

r,x |x=0,L (2.19)

where qnet
r,x = ε(σT(s)4 − qinc(s)) at x = 0, L

• The local total Nusselt number adds up the contribution of convective and
radiative transfer:

NuT = NuC + NuR (2.20)
3n is the vector pointing into the medium that it is the inner vector for the cavity walls and the outer

vector at the surface of the obstacle.
4This quantities are considered only at the active surfaces which consist of: the lateral walls of the

cavity, the vertical and top walls of the obstacle.
5This expression holds for the walls that are normal to the x-direction of the cavity. For the other

bounding surfaces of the enclosure and the obstacle, it needs to be changed to adapt the normal vector
and the positions of the walls.
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• The local Sherwood number refers to the ratio of convective mass transfer to
diffusive mass transport:

Sh =
L

∆C
| ∂C

∂x
|x=0,L (2.21)

Integrating these quantities over the bounding walls yields the following mean val-
ues:

• Mean convective Nusselt number:

NuC =
L

A · ∆T

∫
A
| ∂T

∂x
| dA (2.22)

where A is area of the considered surface.

• Mean radiative Nusselt number:

NuR =
L

A · ∆T

∫
A
| qnet

r | dA (2.23)

• Mean total Nusselt number:

NuT = NuC + NuR (2.24)

• Mean Sherwood number:

Sh =
L

A · ∆C

∫
A
| ∂C

∂x
| dA (2.25)

2.2 Gas Radiation Model

2.2.1 Resolution Methods of Radiative Transfer Equation

In coupled problems involving radiation transport, we have to solve the radiative
transfer problem in addition to the conservation equations. Historically, several
methods have been developed to achieve this goal. We just present here a short
overview of the most popular approaches, and we refer the reader to the main text-
books in this domain for a complete survey (Modest [59], Lewis and Miller [60] for
instance):

• Multiflux models.
This method was first introduced in the pioneering works of Schuster [61] and
Schwarzschild [62]. It is based on a division of the angular space, where the
radiation intensity is considered as uniform in each discrete solid angles. The
most popular approach remains the two-flux method for 1-D problems, in
which the direction space is splitted into only two solid angles (one in each
coordinate direction) over which the radiant intensities are assumed constant.
The RTE is thus reduced to two differential equations. Recently, Dombrovsky,
Randrianalisoa, and Baillis [63],[64] have applied this approach for the identi-
fication of the radiative properties of absorbing and scattering media and ra-
diative properties of highly scattering dispersed materials in combination with
a Monte Carlo method. This two-flux approximation was in the past extended
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to four-flux (Vargas [65], Maheu, Letoulouzan, and Gouesbet [66], Maheu and
Gouesbet [67]) and six-flux models (Brucato et al. [68], Puma and Brucato [69])
models for solving multi-dimensional problems.

• Spherical Harmonics Approximation : PN
The PN method was first proposed by Jeans [70] in the domain of the astro-
physics and was further developed in the field of neutronics. It consists in de-
veloping the radiative intensity on a basis of orthogonal functions truncated at
the order N: the spherical harmonics associated with the Legendre polynomi-
als PN (Shen [71], Weisstein [72]). High order PN approximations for radiative
transfer in arbitrary geometries were introduced by Bayazitoilu and Higenyi
[73], Mengüç and Viskanta [74]. Practice shows that order 1 can give good re-
sults in certain configurations and that moving to higher orders increases con-
siderably the computational cost for a moderate gain in accuracy. This method
(P1 or differential approximation, Modest [59]) has the advantage of the sim-
plicity and the compatibility with standard methods for the solution of the
energy equation. But in the optical thin limit, errors appear while treating the
radiative flux coming from the bounding surfaces. A modification has been
proposed by Olfe [75] to eliminate this error. Radiation coming from walls is
calculated separately with an accurate method and the P1-approximation only
applies to radiation originating from medium emission. Modest [76] has ex-
tended this modified version to three-dimensional and linear-anisotropically
scattering media with reflecting boundaries.

• Discrete Ordinate Method : DOM
The method was introduced by Chandrasekhar [77] in the field of astrophysics.
Then, Lee [78], Lathrop [79] and Carlson [80] used the DOM to solve neutron
transport problem. After that, Fiveland [81], Fiveland [82], Fiveland [83], Tru-
elove [84], Truelove [85] have adapted the method to the solution of radiative
heat transfer. Jamaluddin and Smith [86] applied the DOM for the heat transfer
problem in an axisymmetric cylindrical enclosures, while Kim and Baek [87]
used this approach in analysis of combined conductive and radiative transfer
in a two-dimensional rectangular enclosure. Colomer et al. [3] have investi-
gated the combined radiation and natural convection in a three dimensional
cavity working with the DOM. Overall, the principle of the discrete-ordinate
method is to replace the angular integrals by a numerical quadrature formula:

∫ 4π

0
f (Ω)dΩ ≈

M

∑
m=1

ωm f (Ωm) (2.26)

The selections of set of directions and weights is in general constrained by the
need of preserving the symmetry of radiant propagation. Different quadra-
tures have been introduced by Lee [78], Lathrop and Carlson [88], Truelove
[84], Fiveland [81], Thurgood [89], Koch et al. [90] and Balsara [27], among
others.

The solutions from the DOM are affected by two types of inaccuracies: false
scattering and ray effect, which are caused by the spatial and angular dis-
cretization errors respectively. The false scattering is similar to the ’numeri-
cal diffusion’ in CFD calculations. It is related to the interpolation schemes
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that are involved by the method. The first order upwind scheme (STEP) cre-
ates false diffusion (however, this problem can be reduced by using a fine spa-
tial discretization), while the second order DIAMOND scheme may produce
negative intensities and thus fluctuations in radiative flux. A solution for this
problem is to use high order bounded schemes such as the CLAM scheme
(Coelho [91]). In order to reduce the ’ray effect’, Ramankutty and Crosbie [92],
Ramankutty and Crosbie [93] introduced a modified version of the DOM for
treating separately the radiation coming from surfaces and medium in two and
three dimensional problem respectively. In a recent past, this approach has also
been considered for the radiative transfer problems with irregular geometries
by Amiri, Mansouri, and Coelho [94].

Besides, for treating complex configurations, different structured and unstruc-
tured grid procedures such as block off, embedded boundaries, body-fitted
structure, body-fitted unstructured, multi-block, local grid refinement have
been proposed and then reported by Coelho [95]. Recently, different spatial
schemes in discrete ordinates method using 3D unstructured mesh have been
compared by Joseph et al. [96], while, the block-off and embedded boundary
procedure have been used to mesh the irregular enclosures with Cartesian grid
by Aghanajafi and Abjadpour [97]. In addition, Le Hardy et al. [98] have de-
velopped specific numerical algorithms for handling specular reflection when
solving 3D radiative transfer equation using DOM.

• Finite Volume Method : FVM
Raithby and Chui [99] first introduced this method for predicting the radiant
heat transfer in enclosures with participating media. Other researches in the
same frame work were introduced by Chui, Raithby, and Hughes [100] for
radiative problems in cylindrical enclosures. In this method, the RTE is in-
tegrated over the space and the solid angle like in Discrete ordinates method.
The main difference between these two methods regards the angular discretiza-
tion (Coelho [95]). In the DOM, integrals over solid angles are replaced by the
quadratures while, in the FVM, the RTE is integrated over a solid angle, of-
ten referred to as a control angle, ∆Ω which arises from the discretization of
the entire spherical solid angle. Hunter and Guo [101] have compared these
two methods over the problems of radiative transfer problem in cylindrical
geometries and concluded that with the same grid size and number of discrete
direction, the DOM is more efficient than the FVM (less memory used and
faster calculation).

• Zonal Method : ZM
Zonal method was first introduced in radiative heat transfer by Hottel and
Cohen [102]. In this method, the surface and the volume of an enclosure are
divided into a number of zones, each assumed to have a uniform distribu-
tion of temperature and radiative properties. The direct exchange areas (fac-
tors) between the surface and volume elements are evaluated and the total ex-
change areas are determined using matrix inversion techniques (Viskanta and
Mengüç [103]). Since this method was first introduced for an absorbing, emit-
ting and non-scattering gray gas with constant absorption coefficient, Hottel
and Sarofim [104] improved it to relax this last restriction. Recently, Ebrahimi
et al. [105] have used the zonal method to calculate radiative heat transfer in
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industrial furnaces using a simplified numerical integration to evaluate the
exchange areas. The advantage of Zonal Method is its simplicity for the adap-
tation of different sets of boundary conditions but it is difficult to apply it to
complex geometries. Moreover, the calculation of the direct exchange area may
require a high computational cost.

• Monte Carlo Method : MCM
The method was initially developed in the context of nuclear transport. Its first
application to the thermal radiation problems is due to Fleck Jr [106] and How-
ell and Perlmutter [107]. In this approach, the method consists in simulating a
finite number of photon histories through the use of random number genera-
tor (Lewis and Miller [60]). In its standard form, photo bundles are traced in a
forward direction but, in case radiation comes to a small area, it may become
inefficient. Collins et al. [108] have introduced a new approach called ’Back-
ward Monte Carlo’ based on the review of Case [109]. Modest [110] recently
published his research about Backward Monte Carlo in a scattering media and
show that this backward method become inefficient when the scattering coef-
ficient increases. The Monte Carlo method can easily handle anisotropically
scattering media, complex geometries and spectral aspects. Its accuracy regu-
larly serves as reference for other calculation tools. Its main drawback is the
large computational time needed to achieve the results.

Recently, Fournier et al. [111] have presented the problem of combined heat
transfer using a single Monte Carlo algorithm. It is then applied in complex
geometry problems by Ibarrart et al. [112] and Caliot et al. [113].

• Discrete Transfer Method: DTM
This method was first introduced in the work by Lockwood and Shah [114]. It
is similar to the ray tracing method in choosing a set of directions along which
the propagation of radiation is computed. The ray from each point of a sur-
face is traced in a given direction through the medium until it meets another
surface. Henson and Malalasekera [115] have compared the DTM and Monte
Carlo for radiative heat transfer in three-dimensional, non homogeneous, scat-
tering media and pointed out the good agreement between the two methods.
Selçuk and Kayakol [116] have compared the DTM and DOM for radiative
transfer calculation in rectangular furnaces and the results showed that S4-
approximation and DT64 (64 rays per wall node) give good predictions of flux
density and radiative energy source term compared to the exact solutions, but
DOM consumes about 3 orders of magnitude less CPU times than the DTM.
This method, however, carries the advantage of easily treating the irregular
geometries but, like the DOM, it may suffer from ’ray effect’, an error linked
to the angular discretization. Cumber [117] and Cumber [118] have proposed
some modifications for this method while Coelho and Carvalho [119] have de-
veloped a conservative formulation of DTM. Heugang, Kamdem Tagne, and
Pelap [120] have performed the calculations of radiative heat transfer through
anisotropically scattering media and showed that DTM can correctly deal with
this problem, but a finer angular discretization is necessary when the scatter-
ing anisotropy is strong.

Some years ago, Feldheim and Lybaert [121] have developped a DTM ap-
proach for the radiative transfer equation in a gray medium on unstructured
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triangular meshes. It was validated and found to perform well on pure radia-
tive as well as combined heat transfer problems.

Coelho et al. [122] solved the radiation problem in 2-D enclosures with an obsta-
cle using DTM, DOM, FVM, MC, ZM. They found that DOM and FVM are the most
efficient in terms combined accuracy and computational cost.

In the present study, we have used the Discrete Ordinate Method for our radia-
tive calculations because of its good compromise between the accuracy and com-
putational cost and its easy implantation in many CFD codes. In particular, Code
Saturne, an open-source CFD code developed by EDF (Archambeau, Méchitoua,
and Sakiz [123]), offers an already integrated radiative DOM module. More details
about the Discrete Ordinate Method are provided in the next chapter along with the
description of its implementation in the Code Saturne code.

2.2.2 Gas models

Whenever gas radiation is considered, the actual spectral behavior of the fluid ab-
sorption must be accounted for. To that end, various gas models have been intro-
duced with different levels of complexity, computational requirements and accuracy.
These models can be classified into three main groups as:

• Line by Line model

• Band models

• Global models

2.2.2.1 Line by Line model

The Line by line model is considered as the most accurate. It is constructed by dis-
cretizing the absorption spectrum into discrete values (up to one million) so that the
full spectral dynamics of the gas mixture can be recovered. As a result, the radiative
transfer equation must be solved as many times as there are discrete κ-values. It
therefore requires a huge computational time. This is why it remains in practice not
affordable in coupled problems (where radiation is calculated iteratively at each time
step), but this method serves as a reference for assessing the accuracy of simplified
models.

2.2.2.2 Band models

In the band models, the spectral domain is divided into intervals of a given size and
the radiative properties of the gas are evaluated over each of them. There are mainly
two groups of band models depending on the width of the spectral band: the nar-
row band and wide band models.

The Narrow Band Models are constructed by selecting a band size, which is
narrow enough to keep the Planck function constant. There still are two main ap-
proaches: Statistical Narrow Band (SNB) and k-distribution. The SNB model was
first introduced by Goody [124] and Godson [125]. In this method, the radiative
properties of the gas (transmissivity or emissivity) are calculated by adopting a sta-
tistical model to describe the distribution of line intensities, widths and spacing.
Therefore, this approach is not compatible with some methods of solution of the
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RTE, such as P1 or DOM, which requires explicit values of the absorption coeffi-
cients (Taine and Soufiani [126]). The k-distribution model was first reported in
Kondratyev [127]. It is based on the observation that the absorption coefficients κ
attains the same value k over a narrow spectral range. These identical quantities
are, therefore, reordered as an increasing function of k with respect to the reordered
artificial wave number g6 to reduce the repetition of computations with the same
values of κ (Modest [59]). To deal with nonhomogeneous gases, the correlated-k dis-
tributions has been introduced by Goody et al. [128] Lacis and Oinas [129] and Fu
and Liou [130]. The term ’correlated’ indicates a hypothesis that the heterogeneities
of the medium (temperature, in particular) are treated by assuming that the spectra
between different state are correlated. The k-distribution differs from the SNB by the
fact that it directly provides a (reordered) absorption coefficient representation and,
therefore, can be used with any arbitrary RTE solver (including P1, DOM, FVM,...).

The Wide Band Models consider the bands whose spectral range is adjusted
to the width of the physical absorption bands of the component. In principle, wide
band correlations are found by integrating narrow band results across an entire band
Modest [59]. The most popular model is the exponential wide band, which was ini-
tially presented by Edwards [131] and its applications to radiative transfer problems
have been discussed by Ströhle and Coelho [132]. This method is less accurate than
the narrow band ones, but it allows significant reductions in calculation time.

2.2.2.3 Global models

In the line by line model and the band models, one considered the radiative proper-
ties over each line of the spectral representation or a specified interval of wavenum-
bers. On the other hand, the global models find the radiative characteristic over the
entire gas spectrum.

The simplest model of this group is the gray gas model in which the absorption
coefficient is assumed to be constant over the whole spectrum. With only one value
of local absorption coefficient κa, the radiative transfer equation can be directly ex-
pressed in total quantities and no further spectral integration is needed.

Another model of this group is the weighted-sum-of-gray-gases (WSGG). This
model was first introduced by Hottel and Sarofim [104] in the frame of the zonal
method. Its principle is to replace the continuous spectral absorption coefficient by
a finite set of values (each of them being related to a gray gas) with their associated
weights. Modest [133] applied this method for the solution of the radiative trans-
fer equation with the assumption of spatially constant absorption coefficients for all
gray gases, but letting their weights vary with temperature. The radiative parame-
ters (absorption coefficients and their associated weights) were originally identified
by making the total emissivity ε ≈ ∑n

j=1 aj · (1− e−κj L) fit the experimental data.

Based on the same idea as the WSSG model, Denison and Webb [58] have pre-
sented the Spectral Line-Based Weighted-sum-of-gray-gases models (SLW). The weights
of the gray gases are now determined by using the global distribution function of
the absorption coefficient weighted by the Planck function. This distribution func-
tion was calculated directly from high resolution spectral databases. Similar to SLW,

6g indicates the fraction of spectrum where κη ≤ k
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the Absorption Distribution Function model (ADF) (Pierrot et al. [134]) and Full
Spectrum K-distribution model (FSK) (Modest and Zhang [135], Modest and Mehta
[136]) have been reported. These three methods have differences in the way of calcu-
lating the gas radiative properties, but their relationship has been brought out in the
article of Solovjov and Webb [137]. Recently, Solovjov, Lemonnier, and Webb [138]
introduced the SLW-1 model such that the calculations is now performed by using
only one gray (optimized) gas and one transparent component.

Goutiere, Liu, and Charette [139] and Goutière, Charette, and Kiss [140] through
their works about the comparisons of the different gas models, showed that the SLW
provides the best compromise between the accuracy and the computational cost.
The SLW model is therefore, chosen for the calculations of radiative properties of
the gas mixtures in all the simulations presented in this thesis.

Recently, the SLW model in non uniform media has been developped using dif-
ferent novel approaches: the Rank Correlated (RC) ([141]), Scaled (SC) (Solovjov et
al. [142]) and Locally Correlated (LC) (Solovjov et al. [143]) models.

2.2.3 The SLW gas model

In this section, the SLW model will be described in more details for isothermal, ho-
mogeneous as well as non-isothermal, non-uniform media.

2.2.3.1 Calculation of the absorption coefficients

The SLW model involves a set of finite number (Ng) gray gases and one clear (trans-
parent) gas. The absorption coefficient of jth gas is calculated as:

κj = N · X · Cj (2.27)

where Cj is the absorption cross section, N is molar density and X the mole fraction.
Knowing N and X, the remaining problem is to determine Cj.

The wavenumber range under consideration prescribes an overall absorption
cross section interval [Cmin,Cmax]. The Ng gray gases discretize this range into several
intervals ∆j such that, for the jth gray gas:

∆j = η : C̃j−1 < Cη(φg) < C̃j : gray gas intervals

∆0 = η : Cη(φg) ≤ C̃0 = Cmin : clear gas intervals
(2.28)

where C̃j−1 and C̃j are discrete values of C defined over [Cmin,Cmax]. They are termed
the supplemental cross sections.

The value of Cj can be arbitrarily chosen in the interval [C̃j−1,C̃j] for calculating
the absorption coefficient κj.
In all our simulations, and following the classical approach, the supplemental values
were defined as:

C̃j = Cmin(Cmax/Cmin)
j/Ng (2.29)

Cj =
√

C̃j−1C̃j (2.30)



20 Chapter 2. Methodology

The resulting set of local absorption coefficients, was therefore obtained as:

κj = NXCj = NX
√

C̃j−1C̃j : with j=1,...,Ng

κ0 = 0 for the clear gas
(2.31)

2.2.3.2 Calculations of Absorption line black body distribution function and the
weights of gray gases

The weights associated with each gray gas are calculated from the global distribution
function of the absorption coefficient weighted by the Planck function: it is named
the absorption line black body distribution function (ALBDF) in the seminal work
by Denison and Webb [144]. This function is evaluated as the integral of the Planck
function calculated at a source temperature Tb over the wavenumber intervals such
that the absorption cross section Cη(φg) at a gas thermodynamic state φg

7 is below a
prescribed value of C, namely:

F(C, φg, Tb) =
1

Eb(Tb)

∫
η:Cη(φg)<C

Ebη(Tb)dη

=
π

σT4
b

∫
η:Cη(φg)<C

Ibη(Tb)dη
(2.32)

where Ebη(Tb) is the Planck spectral emissive power emitted by a blackbody at
temperature Tb and Eb is the total blackbody emissive power given by the Stefan-
Boltzmann Law.

The ALBDF is determined by performing integrations over the whole spectrum
at high resolution (line by line) at different pressures, temperatures and composi-
tions. The resulting data are made available for the main participating species (H2O,
CO2, CO) either as mathematical correlations or in look-up tables. The most re-
cent contribution is reported in Pearson et al. [145] based on HITEMP-2010 spectral
database. The main features of two methods are shortly introduced below:

Mathematical correlations

• For air− H2O mixtures:

Fw(C, Tg, Tb, Xw) =
1
2

tanh[Pw(Tg, Tb, ξ − ξp)] +
1
2

(2.33)

7φg = (X, P, Tg) where Tg is the gas temperature, Y the molar fraction, and P the total pressure.
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where :

Pw(Tg, Tb, ξ − ξp) =
3

∑
l=0

3

∑
m=0

3

∑
n=0

blmn

(
Tg

2500

)n(
Tb

2500

)m

(ξ − ξp)
l

ξp =
3

∑
l=0

3

∑
m=0

3

∑
n=0

ulmn

(
TgTb

25002

)n

ξmψl+1
w

ψw =
1

10
ln(100pe)

pe = (1 + 8.17Xw)p

ξ = ln(C) with 1 · 10−4 ≤ C ≤ 60

[
m2

mol

]

Here, Fw denotes the approximation of the ALBDF when considered partici-
pating species is water vapor and Pw is a temporary variable.

• For air− CO2 mixtures:

Fc(C, Tg, Tb) =
1
2

tanh[Pc(Tg, Tb, ξ − ξp)] +
1
2

(2.34)

where :

Pc(Tg, Tb, ξ − ξp) =
3

∑
l=0

3

∑
m=0

3

∑
n=0

dlmn

(
Tg

2500

)n(
Tb

2500

)m

(ξ − ξp)
l

ξp =
3

∑
l=0

3

∑
m=0

3

∑
n=0

vlmn

(
TgTb

25002

)n

ξmψl+1
c

ψw =
1

10
ln(100p)

ξ = ln(C) with 1 · 10−4 ≤ C ≤ 600

[
m2

mol

]

Here, Fc denotes the approximation of the ALBDF when considered participating
species is CO2 and Pc is a temporary variable.
The parameters blmn, ulmn, dlmn, vlmn are tabulated in the work by Pearson et al. [145].

Look-up table
The tabulated approach consists in storing the ALBDF values obtained discrete value
of the cross sections C, temperature T, pressure P and composition X. In more
details, these tabulations are made: every 100K for T between 300 and 3000K; for
70 values of C between 10−4 and 103 m2/mol; for 10 values of P in the range of
[0.1− 50] atm and in the case of air − H2O mixture, for 9 discrete values of molar
fraction between 0 and 1. All this tabulated data were assembled by V.P. Solovjov
and are available at http://albdf.byu.edu. Then, through the interpolations over
P, X (for air − H2O mixture only), C, Tb and Tg, the value of F at local conditions
(φg = (X, P, Tg)) and for a given black body temperature Tb are determined.

http://albdf.byu.edu
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The weight of the jth gray gas aj corresponds to the difference in the ALBDF at
the two supplemental absorption cross sections that define the jth interval [C̃j−1,C̃j]:

aj = F(C̃j, φg, Tb)− F(C̃j−1, φg, Tb) : for j = 1,...,Ng

a0 = F(C̃0, φg, Tb)
(2.35)

where Tb = Tg, the gas temperature, in a uniform medium and Tb = Tw at the bound-
aries (Tw, is the wall temperature). The determination of these quantities for non-
uniform gases will be described in the following section.

Figure 2.1: SLW calculation diagram for jth gray gas (from Solovjov, Webb, and André
[146])

2.2.4 Implementation of SLW model in the radiative transfer equation

We consider the spectral integration of the monochromatic RTE over the wavenum-
ber ranges corresponding to the jth gray gas:∫

∆j

Ω ·∇Iη(s)dη =
∫

∆j

(−κj Iη(s) + ajκj Ibη)dη (2.36)
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∆j = [ai,j(s); bi,j(s)] is the wavenumber intervals also defined in (2.28). Applying the
Leibnitz formula to the left hand side term in the equation (2.36), yields:

Ω ·∇
∫

∆j(s)
Iη(s, Ω)dη

=
∫

∆j(s)
Ω ·∇Iη(s, Ω)dη

+ ∑
i

{
Iη [s, η = bi,j(s), Ω]Ω ·∇bi,j(s)− Iη [s, η = ai,j(s), Ω]Ω ·∇ai,j(s)

}
︸ ︷︷ ︸

Leibnitz terms

(2.37)

For an isothermal, homogenous medium, the Leibnitz terms in the equation
(2.37) are null because all the wavenumber intervals ∆j are identical (therefore, Ω ·
∇ai,j(s) = 0 and Ω ·∇bi,j(s) = 0).

For non-isothermal and/or non-homogeneous media, the Leibnitz terms are no
longer null and vary with the position s. Their evaluation at each point of the do-
main and for each gray gas would require a huge calculation effort.

A first option is to simply neglect these terms when solving the RTE. But it leads
to significant errors in predicting the radiative quantities when large temperature
and concentration gradients are present (like in combustion problems, for instance).

Another approach is to select the wavenumber intervals such that they do not
depend on the locations: ∆j(s) = ∆j = const. This idea is related to the assump-
tion of an "ideal spectrum behavior" proposed in Denison and Webb [144]. The
main hypothesis can be summarized as follows: consider a reference state φre f =
(Pre f , Tg = Tre f , Xre f ) and a local state φloc = (Ploc, Tg = Tloc, Xloc). The interval over
which Cη(φre f ) remains below a fixed value Cre f is the same as the interval over
which the cross section Cη(φloc), at local state, remains below a value Cloc when the
black body temperature is the same. In other words:

η : Cη(φre f ) < Cre f = η : Cη(φloc) < Cloc (2.38)

This equality assumes that the gas spectrum of the related species is correlated,
in the sense that there exist some relation linking the spectra at different conditions.
This approximation leads to the equality of the values of the ALBDF calculated for a
fixed source temperature Tb=Tre f

F(Cloc, φloc, Tb = Tre f ) = F(Cre f , φre f , Tb = Tre f ) (2.39)

The cross section valid in the local state Cloc can therefore be deduced from the
reference value Cre f by inverting the equation (2.39): Cloc = C(Fre f , φloc, Tb = Tre f )
where C(F, φ, Tb) is the distribution function of cross section with respect to F, that
is the reciprocal function of F and where Fre f = F(Cre f , φre f , Tb = Tre f ).

The above assumption is referred to as the Reference Approach (RA). More re-
cent implementations of the SLW model include the Rank Correlated (RC) ([141]),
Locally Correlated (LC) (Solovjov et al. [143]) and Scaled approaches (SC) (Solovjov
et al. [142]). We will here focus on the RA-SLW and RC-SLW taking advantage of the
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explanations given by Solovjov et al. [141] and Solovjov, Webb, and André [147]:

Reference Approach
This approach involves different steps that may be summarized as follow:

1. Choose a reference state: φre f = Tre f , Xre f , pre f

2. At reference state, chose the set of the reference supplemental cross sections
C̃re f

j using (2.29).

3. Solve the following implicit equation to determine the local supplemental cross
sections C̃loc

j

F(C̃re f
j , φre f , Tb = Tre f ) = F(C̃loc

j , φloc, Tb = Tre f ) (2.40)

4. Use equation (2.30) with the determined supplemental cross section for the cal-
culation the local gray gas absorption coefficients:

κj(s) = NlocXlocCloc
j = N(s)X(s)

√
C̃loc

j C̃loc
j−1 (2.41)

5. Calculate the local weights attributed to the jth gray gas:

aj(s) = aloc
j = F(C̃re f

j , φre f , Tb = Tloc)− F(C̃re f
j−1, φre f , Tb = Tloc) (2.42)

In case of boundaries emitting at the temperature Tw, it is advised to set the
black body temperature equal to these wall temperature (Solovjov, Webb, and
André [146])

aj(Tw) = F(C̃re f
j , φre f , Tb = Tw)− F(C̃re f

j−1, φre f , Tb = Tw) (2.43)
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Figure 2.2: Schematic representation of the Reference Approach (from Solovjov, Webb,
and André [147])

Rank Correlated Approach
In this approach, Solovjov et al. [141] suggest a modification of the assumption
of “ideal spectrum” or “correlated spectrum” discussed above. They consider a
less restrictive assumption of rank correlation regarding the relationship between
absorption spectra at different thermodynamic states. The main hypothesis un-
derlying this approach can be summarized as follows. Consider a fixed value of
the ALBDF at a fixed black body temperature Tb: the wavenumber intervals ∆1
= η : Cη(φ1) < C(F, φ1, Tb) and ∆2=η : Cη(φ2) < C(F, φ2, Tb) are the same. This ex-
pression is assumed to be correct for any two thermodynamic states, thus, ∆1 = ∆2 =
constant (see figure 2.3) for a given value of F at a fixed Tb. It ensures the elimination
of the Leibnitz term in equation (2.37). It can be observed that we no longer need
to specify any reference state, but only a black body source temperature Tb. More-
over, the process involves a discretization of the ALBDF in the interval of [Fmin, Fmax]
rather than of the absorption cross section. The following algorithm can therefore be
used:
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Figure 2.3: Schematic representation of the Rank Correlated (from Solovjov et al. [141])

1. Arbitrarily subdivide the ALBDF in the range [Fmin, Fmax] into the discrete val-
ues: Fre f

j and the supplemental values F̃re f
j such that Fmin ≤ F̃re f

j ≤ Fmax for

j = 0, 1, ..., n and F̃re f
j−1 ≤ Fre f

j ≤ F̃re f
j with j = 1, 2, ..., n. With a large num-

ber of gray gases N, even simple uniform subdivision is likely satisfactory for
accurate results (Webb, Solovjov, and André [148]). However, for a small num-
ber of gray gases, a more efficient discretization can be achieved by using the
Gauss-Legendre quadrature nodes and weights. Firstly, the positive abscissas
xj > 0 and the corresponding weights wj, j = 1, 2, ..., n of Gauss-Legendre
quadrature for integration over the interval [-1,1] are calculated. And then, we
can determine the reference values of ALBDF Fre f

j and supplemental reference

values F̃re f
j in interval [Fmin, Fmax] (Solovjov, Webb, and André [147]) such that:

Fre f
j = Fmin + xj(Fmax − Fmin)

F̃re f
j = Fmin + (Fmax − Fmin)

j

∑
k=1

wk

F̃re f
0 = Fmin

(2.44)

with j = 1, 2, ..., Ng
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2. Use the inverse ALBDF to find the values of local absorption cross sections and
also local supplemental absorption cross sections:

Cloc
j = C(Fre f

j , φloc, Tre f )

C̃loc
j = C(F̃re f

j , φloc, Tre f )
(2.45)

3. Calculate the local gray gas absorption coefficients:

κloc
j = NlocXlocCloc

j

κloc
0 = 0

(2.46)

4. Calculate the local corresponding weights of local gray gas absorption coeffi-
cients with the help of the ALBDF at local cross sections C̃loc

j :

aloc
j = F(C̃loc

j , φloc, Tloc)− F(C̃loc
j−1, φloc, Tloc) : with j = 1,2,...,Ng

aloc
0 = F(C̃loc

0 , φloc, Tloc)
(2.47)

Applying the newly calculated radiative properties to eq. (2.36) yields the radia-
tive transfer equations for jth gray gas written as :

Ω ·∇Ij(s) = −κj Ij(s) + ajκj Ib(s) (2.48)

where
∫

∆j
Ω ·∇Iηdη = Ω ·∇Ij

Consequently, the total intensity and radiative source term are given by the fol-
lowing expressions:

I(s, Ω) =
Ng

∑
j=1

Ij(s, Ω) (2.49)

∇ · q =
Ng

∑
j=1

(4πajκj Ib(s)− κjGj(s)) (2.50)

where Gj(s) =
∫ 4π

0 Ij(s, Ω)dΩ is the incident radiation in the case of jth gray gas.

2.3 Conclusion

In this chapter, the mathematical basis of the study was presented. Besides, we
have shortly described the methods of resolution for the RTE and the Discrete Or-
dinates Method (DOM) has been selected as the solver for our simulations. Finally,
we have mentioned some existed gas models and focused on the formation of the
SLW method with the center of interest was the Reference Approach and the Rank
Correlated for the treatment of non-isothermal, non-homogeneous medium.
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Chapter 3

Code Saturne and Radiative
Calculation

3.1 Code Saturne

In this section, we introduce the resolution of the governing equations of our prob-
lem. For this purpose, we have used Code Saturne version 5.0.4 [123], an open source
software for CFD calculation developed by EDF. A built-in radiative module is avail-
able, in which we have implemented our own data for directional integration and
gas radiation modeling.

3.1.1 Computational Fluid Dynamic

Code Saturne uses a finite volume method to solve the governing equations of fluid
motion and heat and mass transfer. For the momentum equations, Code Saturne
uses an algorithm of type prediction-correction called SIMPLEC, which stands for
Semi-Implicit Methods for Pressure Linked Equations Consistent. Different dis-
cretizations in space and in time are also available.
Time stepping
The time scheme is used in Code Saturne is a θ − scheme with:{

θ = 1 for an implicit first order Euler scheme,
θ = 1

2 for second order Crank-Nicolson scheme.
(3.1)

In our study, we have used the implicit first order backward Euler scheme1 2.
Code Saturne provides two options for the temporal step: constant or variable (where
the code automatically calculates the time step after each iteration that satisfy the
CFL criterion).
Spatial discretization
In the finite volume approach, the equations are integrated over each cell. Using the
Green Theorem, the volume integrations become surface integrations. We, therefore,
need only to calculate the face gradients of each variables. Code Saturne proposes
different schemes of first order (Upwind) and second order (Centered or Second-
Order-Linear-Upwind (SOLU)) for spatial discretization. In this study, we have se-
lected the centered second order.

1This is the default scheme in Code Saturne and it was validated to be suitable for our calculations.
2This choice can be questioned when unsteady behaviors are addressed. In that case, a specific

convergence steady was conducted to ensure that the selected time step was appropriate.
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3.1.2 Discrete Ordinate Method in Code Saturne

A set of discrete directions with associated weights has to be specified. For each of
these directions, the radiative transfer equation (2.8) is solved over the entire spatial
domain. Integrating this equation on a control volume centered at the grid node P,
yields : ∫

CV
Ω ·∇IP

η (Ω)dV = −
∫

CV
κP

η IP
η (Ω)dV +

∫
CV

κP
η IP

bηdV (3.2)

Applying the Green theorem to the left hand side of this expression with the
assumption that the variables on the right hand side remains constant within the
control volume, gives:∫

A
Ω · nIP

η (Ω) = −VκP
η IP

η (Ω) + VκP
η IP

bη (3.3)

where A and V denote, respectively, the surface and the volume of the elementary
cell while n is the outer unit vector normal to a cell face.

Approximating the integral over the boundaries of the control volume by a dis-
crete sum, yields:

F

∑
f=1

Ω · n f I f
η (Ω)A f = −VκP

η IP
η (Ω) + VκP

η IP
bη (3.4)

Here, f denotes a cell face with its area A f , F is the total number of cell faces of the

control volume and I f
η (Ω) is the mean monochromatic radiation intensity in a cell

face f along the direction Ω.

An interpolation is needed to relate I f
η (Ω) to the unknown IP

η (Ω). Different
schemes may be applied but the implemented radiative module of Code Saturne
resorts to the first order step scheme. It approximates the face value I f

η (Ω) by the
center value of the upstream control volume. For instance, for a face f1 where the
outer unit normal vector n1 is such as Ω · n1 < 0, the scheme prescribes I f1

η (Ω) =

IU
η (Ω). Conversely, for the face f2 where Ω · n2 > 0, the I f2

η (Ω) is set to IP
η (Ω) (see

figure 3.1).

Figure 3.1: Presentation of step scheme for calculation of intensity at one face
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Inserting this interpolation into equation (3.4) gives:(
F

∑
f=1

(Ω·n f>0)

Ω · n f A f + κP
η V

)
IP
η (Ω) =

F

∑
f=1

(Ω·n f<0)

|Ω · n f |IU
η A f + VκP

η IP
bη (3.5)

and solving this equation makes the whole intensity field - attached to one given
direction - available at all the grid points. To further obtain the discrete values of
incident radiation and radiative flux, each nodal intensity must be integrated over
all the directions in space (4π sr). The DOM, in this situation, replaces the angular
integrals by a summation over a set of discrete directions such as:

∫ 4π

0
f (Ω)dΩ ≈

M

∑
m=1

ωm f (Ωm) (3.6)

where M denotes the number of directions in the set and ωm is the weight attributed
to the mth element. Consequently, the distribution of incident radiation and radiative
flux are approximated by:

GP
η =

∫ 4π

0
IP
η (Ω)dΩ

≈
M

∑
m=1

ωm IP
η (Ωm)

(3.7)

qP
m =

∫ 4π

0
IP
η (Ω)ΩdΩ

≈
M

∑
m=1

ωm IP
η (Ωm)Ωm

(3.8)

There are several ways to define the discrete direction sets. We will here focus on the
quadrature available in Code Saturne and the ones we have introduced to improve
this part of the code. A more general overview on this problem can be found in Koch
and Becker [26].

• The first (and more classic) set is the Level Symmetric quadrature SN . It was
introduced for radiative transfer by Lee [149]. Different sets of directions and
weights were later introduced, for example, by Lathrop and Carlson [88] and
Fiveland [150]. The principle of this quadrature scheme is to apply strict rules
of symmetry in order to equally treat all the directions of propagation. These
rules prescribe that, if Ωm, characterized by the direction cosines value (µm,ηm,ξm)
is in the quadrature:

i. all the direction (±µm,±ηm,±ξm) are also in the discrete ordinates set and
have the same weight.

ii. all the directions coming from a permutation of (µm,ηm,ξm) are also in the
quadrature and are assigned the same weight.

However, the customary choice of discrete ordinates has to preserve the ze-
roth, first and second moments of integration of the intensity over the whole
direction range (Modest [59]). Fiveland [82] and Truelove [84] have studied
different direction sets and they pointed out the requirement of satisfying, in
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addition, the first moments over a half range of direction to avoid biasing the
evaluation of wall fluxes.

• The TN quadrature set is due to Thurgood [89]. The basic idea of this scheme
is to divide the unit sphere into spherical triangles. For each triangle, an as-
sociated direction is defined from the center of the sphere to the center of the
triangle region. The quadrature weight are calculated according to the spher-
ical triangle areas. The order N refers to the number of subdivisions of the
edges of the principal triangle.

• The LC− 11 quadrature set. Based on the fundamentals of Sobolev [151], Lebe-
dev [152] proposed quadrature schemes which are rotational invariant to the
group of regular polyhedrons and are capable to exactly integrate the spherical
harmonics functions Yn(Ω) up to the order of N on the unit sphere (N = 11
for the LC-11 quadrature). Quadratures of that type are developed so that the
spherical harmonics of order N = 11, 15 can be integrated exactly. All the
weights are identical while the directions can be adjusted.

• The DCT − 020− 2468 quadrature set is one of the DCT (Double Cyclic Trian-
gles) quadrature schemes. It has been designed to provide as many degrees
of freedom as possible for satisfying additional moment conditions (Koch et
al. [90]), (Koch and Becker [26]). The naming convention of these quadrature
schemes is DCTxyz − abcd... where x, y, z denote respectively the number of
non-degenerated tuples 3, the number of single degenerated tuples and the
number of double degenerated tuples; abcd... denotes the moment conditions
that are satisfied by the quadrature.

3.1.3 Encountered Difficulties and Applied Modifications

The SN quadrature set implemented in the version 5.0.4 of Code Saturne comes from
the selection of Lathrop and Carlson [88] and Fiveland [81]. We have assessed the
accuracy of these implementations by comparisons in a test case where the exact
(analytical) solution is available. We have also input in the code more recent values
of the S8 and S12 sets based on the modifications proposed by Balsara [27].

As a benchmark, we have considered the radiative equilibrium in a 2-D square
cavity of size 1m× 1m (see Figure 3.2). The walls are black, one of them (hot wall)
is heated up to 1000K while the others are uniformly set at 500K (cold walls). The
medium inside the cavity is homogeneous and gray. The evaluation criterion used
here is the distribution of the radiative net flux on the cold wall facing the hot wall.
It is known to be the most sensitive result. We have also checked the integral value
of this flux over the entire wall. The reference solution is taken from Crosbie and
Schrenker [153] who have provided a semi-analytical solution to this problem. The
calculations are run with Code Saturne and, for sake of comparison, with a home-
made code using the discrete ordinates in 2-D geometries. Two different values of
the gray absorption coefficient were considered κ = 0.25m−1 and κ = 1.0m−1. The
results and comparisons are illustrated in the figures below (3.3 and 3.4).

It appears that the S8 quadrature implemented in Code Saturne leads to erro-
neous results (at least, in the version we have used). Indeed, none of the calculations

3A tuple is the arrangement of six nodal points on an octant



3.1. Code Saturne 33

returns the correct reference distribution, but this is a well-known bias of the DOM
named "ray-effect". It is due to the discrete representation of the direction space, and
these errors are attached to the choice of the quadrature set. However, it is known
that the integrated flux (over the entire wall) is preserved when using the SN data:
therefore, our results must match the exact (reference) value. This is true for our SN
set (based on Balsara data), both for the homemade code or after implementation in
Code Saturne (see table 3.1 and 3.2). Conversely, the built-in S8 quadrature in Code
Saturne returns erroneous values. This is probably due to some inaccuracies when
inputting the related data in the code. Note that:

− The other quadrature (S4, S6, ...) implemented in Code Saturne give satisfac-
tory results.

− The correct S8 set (based of Fiveland data) returns results close to what is ob-
tained with the Balsara set.

Figure 3.2: 2D - Square Cavity
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Figure 3.3: 2D - Radiant flux at the cold wall, opposed to the hot wall with κ = 0.25
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κ = 0.25
Integration Relative difference (%)

Crosbie 0.342532207
Code 2D 0.343785469 0.3658

Code Saturne Fiveland 0.315125699 8.001
Code Saturne Balsara 0.345137495 0.7606

Table 3.1: Integrated wall flux, κ = 0.25, quadrature S8
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Figure 3.4: 2D - Radiant flux at the cold wall, opposed to the hot wall with κ = 1

κ = 1
Integration Relative difference (%)

Crosbie 0.215529801
Code 2D 0.21866138 1.4529

Code Saturne Fiveland 0.205275837 4.7575
Code Saturne Balsara 0.217682182 0.9986

Table 3.2: Integrated wall flux, κ = 1, quadrature S8

These comparisons led us to choose the quadratures of Balsara [27] in all our cal-
culations (mainly S8).

3.1.4 Implementation of SLW model

Dealing with a non-gray gas mixture requires a spectral model to account for the
variation of the absorption coefficient in the medium. To that end, we have im-
planted the SLW model, which is described in the previous chapter, in the radiative
module of Code Saturne. This implementation is presented in the diagram below:
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Figure 3.5: Implantation of SLW model in the Code Saturne

This general diagram describes how SLW model interacts with other components
of Code Saturne. All these processes can be summarized as:

1. The values of concentration and temperature coming from the conservation of
species equation and the energy equation are input for the SLW model.

2. The choice of the number of gray gases Ng (user input) and the tabulated data
of the ALBDF are then used for determining the local radiative properties: the
absorption coefficient and the corresponding weights for each gray gas.

3. The radiative properties are transferred to the module solving the radiative
transfer equation using the Discrete Ordinate method. The solution is repeated
for each gray gas and the integrations are performed over all directions to get
the incident radiation and radiant flux. Then, these quantities are summed up
over all the gray gases and are assembled to get the radiative source (diver-
gence of the total radiative flux).

4. This radiative source is then injected into the right hand side of the energy
equation.

In more details, for implanting SLW model into the built-in radiative module of
Code Saturne (which contains tens of source files and hundreds of subroutines), we
firstly had to find out the data-flow between these files for determining the location
where our own model can be inserted. Next, the extraction of the inputs (from the
conservation equations) had to be performed. Besides, a new library was created
to store all the new variables and information related to SLW model. Finally, the
subroutines for calculating the radiative properties had to be added. The highest
difficulty of this implantation was to insert our own data without breaking the co-
herence of the built-in module. More details on the implementation are given in
appendix B .

3.1.5 Convergence criteria

Code Saturne has no criteria to determine the convergence of the solution in term of
variable residuals. Instead, it is advised to monitor the time evolution of the consid-
ered variables at different positions in the flow field to decide whether the calcula-
tion reaches a steady state (EDF [28]). The user can stop the computation whenever
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he finds the results stable enough or the code will run until it attains the declared
number of time-steps. Besides, the conservations of the heat and mass flux can be a
criterion for the consideration of a steady solution where the total fluxes arriving at
the cavity walls have to be the same as those coming from the obstacle surfaces.

In our study, the convergence of the solution is qualitatively monitored by ob-
serving the temporal evolutions of the variables (temperature, concentration, veloc-
ity components) at different points inside the cavity. Quantitatively, the convergence
is evaluated by the balance of the heat exchange between the hot source and the cav-
ity active walls, which is written as:

|∑ f∈F1
Nut

f S f −∑ f∈F2
Nut

f S f |
∑ f∈F2

Nut
f S f

≤ 10−3 (3.9)

where F1 and F2 are the active walls of the enclosure and the hot source respectively,
S f being the surface area.

3.2 Code Validation

3.2.1 Differentially heated cavity

In this section, Code Saturne and its improved radiative model is validated by the
simulations of both pure thermal convection and double diffusive convection cou-
pled with radiation in a differentially heated cavity (see figure 3.6).

(a) 2D

(b) 3D

Figure 3.6: Differentially heated cavity
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3.2.1.1 Pure Thermal Convection

First, we have performed the calculation of natural convection at different Rayleigh
numbers while keeping the Prandlt number at 0.71. There is no radiation (transpar-
ent medium, non-emitting walls). Our calculations are run using an uniform grid of
80× 80 cells. Many reference results are available (Le Quéré [154], Tric, Labrosse,
and Betrouni [155],...). Here, the solutions are compared to the data provided by
De Vahl Davis [29] and are presented below. A good agreement is found between
our works and this reference.

Ra Our work De Vahl Davis [29] (Relative Difference %))
103 1.113 1.117 (0.36)
104 2.235 2.238 (0.13)
105 4.507 4.509 (0.04)
106 8.816 8.817 (0.01)

Table 3.3: Mean Nusselt number on the hot wall

Regarding 3-D cases, we have performed calculations in the configurations stud-
ied by Colomer et al. [30] and Fusegi and Hyun [31]. An uniform 813 grid has been
used. The computations have been run at Pr = 0.71. A good agreement is observed
between our results and these references (see table 3.4).

Ra Our work Colomer[30] Fusegi[31]
104 2.059 2.030 (1.42%) 2.100 (1.95 %)
105 4.365 4.334 (0.71 %) 4.361 (0.09%)
106 8.717 8.862 (1.63%) 8.770 (0.60 %)

Table 3.4: Mean Nusselt Number on the hot wall (Pr = 0.71)

3.2.1.2 Pure Thermal Convection coupled with radiation

We now present the comparisons between our computations and those of Yücel,
Acharya, and Williams [1] and Laouar-Meftah [32] for coupled thermal convection
and radiation in a gray gas inside a 2D differentially heated square cavity. In [1], the
authors have used a non-uniform 502 grid (but they did not specify which type) and
performed the calculations at different values of the overall optical thickness τ = κ · L
(L is the cavity size and κ the gray absorption coefficient). The Rayleigh number was
fixed at 5 · 106 with Pr = 0.72 and the Planck number defined as Pl = λ

4σLT3
0

is set
to Pl = 0.02. The dimensionless temperature θ0 defined as T0/∆T was 1.5 while the
emissivities (εi) of the bounding walls were set at 1. In our work, a non-uniform 812

grid like in reference [32] but with a different function for nodal distribution has been
used: it is a tangent hyperbolic function in [32] while we used a cosine hyperbolic
one. The results are listed in table 3.5. They show that the difference between our
calculations and the reference does not exceed 4 %. This difference may come from
the different interpolation schemes used in the DOM (Lathrop scheme in [32], STEP
scheme in our study)
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τ SN
Convective Nusselt Total Nusselt

Our work Ref.[1] Ref.[32] Our work Ref.[1] Ref.[32]
0.2 S4 36.01 37.40 37.40 46.50 46.11 46.05
1 S8 31.88 31.25 31.25 39.38 38.93 38.81
5 S4 24.58 23.64 23.57 31.47 31.76 31.59

Table 3.5: Mean Nusselt number on the hot wall (Pr = 0.71, Pl = 0.02, θ0 = 1.5, εi = 1)

For coupling thermal convection and radiation in a real gas (that is, accounting
for the real absorption spectrum of the medium), we have performed different vali-
dation tests in a 3-D differentially heated cavity. We have re-produced the works of
Billaud, Saury, and Lemonnier [6] by considering a cubic enclosure filled with hu-
mid air (air− H2O mixture). Different case studies based on the radiative behavior
of the bounding walls and the medium are performed. They are described in the
table 3.6. Our calculations have been carried out using a non-uniform 913 grid like
in reference [6]. Our results are also compared with the data obtained by Soucasse,
Rivière, and Soufiani [33] and presented in table 3.7. The comparisons show a fairly
good agreement between our predictions and the two references.

Case A B C D
Isothermal walls ε = 1 ε = 1 ε = 1 ε = 1
Adiabatic walls ε = 0 ε = 0 ε = 1 ε = 1

Gas nature Transparent Participating Transparent Participating

Table 3.6: Radiative boundary conditions and radiative properties of the medium

Case Our work Billaud[6] Soucasse[33]
A 8.64 8.65 (0.11 %) 8.64 (0.0 %)
B 7.24 7.42 (2.42 %) 7.55 (4.10 %)
C 7.93 8.10 (2.09 %) 8.47 (6.37 %)
D 8.48 8.01 (5.86 %) 8.48 (0.0 %)

Table 3.7: Mean convective Nusselt number on the hot wall (air− H2O mixture,
Ra = 106, Pr = 0.707)

3.2.1.3 Double diffusive convection without radiation

We now simulate a double diffusive convection flow in a cubic enclosure with op-
posing temperature and concentration gradients. The calculations are performed at
Ra = 107, Le = 1, Pr = 0.71 and different mass-to-thermal buoyancy ratios. No
radiation is included at this stage, neither from the fluid (transparent), nor from the
surfaces. The results are compared to the works of Sezai and Mohamad [34].

N Our work Sezai and Mohamad [34] Relative difference (%)
-0.01 16.35 16.27 0.5
-0.5 13.57 13.53 0.3
-0.9 8.64 8.64 0.0
-1.5 13.58 13.54 0.3

Table 3.8: Mean Nusselt number on the hot wall (Ra = 107, Le = 1 and Pr = 0.71)
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Calculations were performed over a grid of 803 uniform cells. The comparisons
in table 3.8 shows a good agreement with the results of the reference [34]: the maxi-
mum difference in Nusselt number is less than 0.5%.

3.2.1.4 Double diffusive convection coupled with radiation

We now address the coupling of double diffusive convection and radiation in a real
gas whose radiative properties are evaluated by SLW model. The comparisons of
the Nusselt and Sherwood numbers between our results and the work by Cherifi
[35] are performed and reported below for air − CO2 and air − H2O mixtures at
different concentration x. A non-uniform grid generated from a cosine function was
used in the calculations of the reference [35]. In our computations, the mesh is 81×
81× 81 with a nonuniform distribution along each edge whose density is given by
a hyperbolic tangent function.

xCO2 Our work Cherifi [35] Relative difference (%)
0.05 14.66 14.60 0.41
0.11 15.66 15.65 0.06
0.20 17.11 17.16 0.29

Table 3.9: Mean convective Nusselt number on the hot wall for an air− CO2 mixture

xCO2 Our work Cherifi [35] Relative difference (%)
0.05 19.53 19.38 0.77
0.11 21.65 21.44 0.98
0.20 23.96 23.77 0.80

Table 3.10: Mean Sherwood number on the hot wall for an air− CO2 mixture

xH2O Our work Cherifi [35] Relative difference (%)
0.05 15.65 15.78 0.82
0.11 16.51 16.75 1.43
0.20 18.17 18.03 0.77

Table 3.11: Mean convective Nusselt number on the hot wall for an air− H2O mixture

xH2O Our work Cherifi [35] Relative difference (%)
0.05 15.82 15.74 0.5
0.11 16.85 16.79 0.35
0.20 19.15 19.02 0.68

Table 3.12: Mean Sherwood number on the hot wall for an air− H2O mixture

In all cases, our results coincide with the reference within a tolerance of 1.5%.

3.2.2 Cavity with a hot obstacle located inside

Our purpose is now to test the ability of our simulation code to handle geometries
involving obstacles. The first validation test considers a 2-D square cavity with a
heat source located at the center of the bottom wall (see figure 3.7). The enclosure
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has the dimension of 0.05× 0.05 m2. The heat source is 0.01m wide and 0.025m high.
The enclosure is filled by dry air (transparent) and the Prandtl number is set to 0.71.
The heat source is maintained at Th = 301.16K while two lateral walls of cavity are
prescribed at Tc = 291.16K. The remaining surfaces of the enclosure are adiabatic.
The tests are performed with different Rayleigh numbers, using a 1003 uniform grid
and the results are compared to the experiments and the simulations of Paroncini
and Corvaro [13].

Figure 3.7: Calculation domain (Paroncini and Corvaro [13])

Ra Reference[13] (exp) Reference[13] (num) Our work
1.02 · 105 10.49 10.46 10.42
1.21 · 105 10.96 10.96 10.96
1.48 · 105 11.46 11.58 11.61
1.68 · 105 11.89 11.99 12.04
1.93 · 105 12.34 12.45 12.52
2.11 · 105 12.71 12.76 12.84

Table 3.13: Mean Nusselt number on the lateral wall of the heated obstacle

The comparisons show a good agreement with the reference, the maximum dif-
ference being less than 1% when comparing the two numerical simulations. Dif-
ference are larger with respect to measured quantities (but this is also true in the
reference work). Some thermal leakage through the plexiglas plates (imperfect insu-
lation) may explain these variations.



3.3. Conclusion 41

Figure 3.8: Domain of calculation (Ra = 2 · 105, Pr = 0.71)

The second validation test considers a hot obstacle located at the center of a 2-D
square cavity (see figure 3.8). Now, two vertical walls of the cavity are kept adiabatic
while the horizontal one are maintained at a constant lower temperature compared
to the isothermal heated obstacle. The enclosure is filled with dry air. The simulation
is run at a Rayleigh number of Ra = 2 · 105 and a Prandlt number of Pr = 0.71. The
comparisons with the results of Sun, Chénier, and Lauriat [20] reported in table 3.14
point out that our code can efficiently handle this type of configuration, both for the
flow description and thermal transport (the maximum difference is less than 0.5%).

Our work Reference [20] Relative difference (%)
Side A’B’ or C’D’ 3.7129 3.7174 0.121

Side A’D’ (bottom) 5.6527 5.6347 0.319
Side B’C’ (top) 9.4989 9.4614 0.396

Bottom wall 2.5342 2.5346 0.015
Top Wall 6.4966 6.4778 0.290

Table 3.14: Mean Nusselt number on different walls (Ra = 2 · 105, Pr = 0.71)

3.3 Conclusion

In this section, we have described the Discrete Ordinates Method and the improve-
ments we have brought to its implementation in Code Saturne. We have also de-
tailed the introduction of the SLW model in this code.

Different validation tests in differentially heated cavity (thermal or double dif-
fusive convection with/without radiation) as well as the configuration of the cavity
with an obstacle located inside have been performed. The comparisons between our
predictions and different references point out that:

• Code Saturne can accurately handle the calculation of thermal convection or
double diffusive convection.

• The built-in radiative module of Code Saturne is reliable after the correction of
some flaws that are present in version 5.0.4.
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• Our implemented SLW model is able to predict the radiation effects with a
satisfactory accuracy in configuration involving real gases.
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Chapter 4

Coupling between Pure Thermal
Convection and Radiation

A first set of results concerns pure thermal convection. In this configuration, the
fluid is homogeneous in composition and the flow is only governed by the temper-
ature gradients.

4.1 Introduction

We firstly present the cross section planes and the crosslines used to display the
results. The dimensionless temperature, concentration and velocity fields are plotted
in the median vertical plane of the cavity (Y = 0.5 or y = 0.125m) (see figure 4.1). We
also consider the profiles of these quantities along different crosslines in the plane
Y = 0.5:

• Z-lines: Z = 0.1, Z = 0.5, Z = 0.8

• X-lines: X = 0.2, X = 0.5, X = 0.8

(a) Plane under
consideration (Y = 0.5)

(b) Crosslines in the plane
Y = 0.5

Figure 4.1: Median plane (Y = 0.5) and crosslines used for the results display

All the results presented hereafter are normalized using the reference tempera-
ture Tre f =

Th+Tc
2 , the reference length L, the reference velocity Ure f = α

√
Ra
L and the

reference time L2

α
√

Ra
(where α = λ

ρ0Cp
is the thermal diffusivity).
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4.1.1 Convergence on spatial grid

Before conducting original simulations, we have analyzed the convergence of results
with respect to the spatial meshing, the angular discretization and the number of
gray gases (spectral divisions) in the SLW model. We have run different tests, but we
only present here those concerning a case of natural convection at Ra = 5 · 106, Pr =
0.71, T0 = 555K and ∆T = 50K with black active walls and purely reflective adiabatic
walls. Three uniform grids of different size have been considered: 80× 80× 80 (803),
100× 100× 100 (1003) and 120× 120× 120 (1203).

(a) 803 (b) 1003

(c) 1203

Figure 4.2: Temperature
T−Tre f
Th−Tc

distribution in the median plane (Y = 0.5) with different
mesh sizes: transparent medium.

Mesh umax (m/s) wmax (m/s)
803 0.191 0.339
1003 0.191 0.342
1203 0.191 0.342

Table 4.1: Maximum horizontal and vertical velocities for different mesh sizes.
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Mesh Front wall Back wall Left wall Right wall
803 1.690 1.690 1.690 1.690
1003 1.682 1.682 1.682 1.682
1203 1.681 1.681 1.681 1.681

Table 4.2: Mean Nusselt numbers at the bounding surfaces of the enclosure.

Mesh Front wall Back wall Left wall Right wall Top wall
803 38.664 38.664 38.664 38.664 14.343
1003 38.508 38.508 38.508 38.508 14.166
1203 38.492 38.492 38.492 38.492 14.132

Table 4.3: Mean Nusselt numbers at the bounding surfaces of the hot source.

From the result displayed above, we consider that the simulations are converged
with respect to the spatial meshing when using a 100× 100× 100 grid. Therefore,
we have selected this mesh for our subsequent calculations.

4.1.2 Convergence on angular discretization

When radiation is present, the sensitivity of the results to the angular discretization
needs to be assessed. To that end, we consider the coupling of natural convection
and radiation in a gray gas at Ra = 5 · 106, Pr = 0.71 and θ0

1 = 11.1 with an optical
thickness of τ = 0.5. Different orders of the level symmetric quadrature SN are
tested: S6, S8, S12. The corresponding results in terms of temperature and velocity
are displayed in figures. 4.3-4.4 and in table 4.2.

1θ0 is defined as T0
Th−Tc

. This dimensionless parameter relates the absolute temperature T0 (which
governs the radiation problem) to the temperature difference (which drives the convection motion)
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(a) S6 (b) S8

(c) S12

Figure 4.3: Temperature
T−Tre f
Th−Tc

distribution in the median plane (Y = 0.5) for the gray
medium at τ = 0.5.
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SN Convective Nusselt number Radiative Nusselt number
S6 0.976 11.073
S8 0.989 11.055
S12 0.995 11.053

Table 4.4: Mean convective and radiative Nusselt numbers over the vertical surfaces of
the enclosure.

The comparisons presented above confirm that, with a S8 quadrature set only (80
directions), we can obtain the results with a good accuracy. This was confirmed for
other optical thicknesses ranging from 0.1 to 2. Consequently, we have selected this
discrete directions set for our following calculations.

4.1.3 Convergence on the number of gray gases for the SLW model

The tests are performed for the case of coupling natural convection and radiation
in a real (non gray) gas mixture air − H2O at concentration xH2O = 0.20. For the
radiative calculations, we have used the rank-correlated approach, as described in
Chapter 2. The results are displayed below (figure 4.5 and table 4.5):
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Ng Convective Nusselt number Radiative Nusselt number
5 36.59 211.34
11 36.68 211.15

Relative Difference (%) 0.24 0.09

Table 4.5: Mean convective and radiative Nusselt numbers at a lateral wall of the
obstacle.

The comparisons show that using only 5 gray gases in the SLW model is enough,
in this type of problem, to achieve an acceptable level of accuracy within a very
affordable computational cost. Concretely, the simulations are run on one core of
Intel(R) Xeon(R) CPU E5-2620 @ 2GHz. With 11 gases, it needs 182 hours of CPU
time while with 5 gases, it reduces to 103 hours (56 % compared to the 11 gas model)
to reach the same physical simulation time.

4.2 Coupling with radiation in the gray gas assumption

In this part, we analyze the effect of radiation on the flow structure and heat trans-
fer in a simple manner, by assuming that the medium filling the cavity is gray and
has uniform radiative properties. This assumption allow us to study adimension-
ally the effect of gas radiation on the flow structure and heat transfer via the non-
dimensional optical thickness. This parameter is defined as τ = κL related to the
cavity size, L and the absorption coefficient κ. Different fluid opacities may be con-
sidered by changing the optical thickness values.

All calculations were performed at Ra = 5 · 106 and Pr = 0.71 and θ0 = 11.1. The
emissivity of the hot and cold walls is 1 and of the adiabatic surface is 0.

As the adiabatic walls are assumed to be purely reflective, there is no radiative-
convective coupling when τ = 0 (transparent medium). This limiting case serves as
the reference for determining the radiation effects on the flow field.

4.2.1 Steady flows
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(a) Transparent medium (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

Figure 4.6: Temperature
T−Tre f
Th−Tc

distribution in the median plane (Y = 0.5) for different
fluid opacities.

Figure 4.6 displays the thermal fields in the median plane (Y = 0.5) for different
case studies ranging from a transparent medium to an optical thickness of τ = 0.5.
All these configurations lead to a steady state solution. Further increasing τ may
yield periodic flows, as will be described in the next paragraph (4.2.2).

It is observed in figure 4.6 a nearly vertical stratification in absence of radiation
on both sides of the cavity. But this distribution is broken when the radiative effects
are introduced. The hot surfaces of the obstacle radiate toward the absorbing fluid
between the heater and the cold wall of the enclosure (see figure 4.7 a). At medium
and high levels (Z = 0.5, 0.8) (see figure 4.7 b,c), radiation cools down the fluid,
since the gas in this region emits more than it absorbs. This is demonstrated by the
negative values of the radiative source term (see figure 4.9 b,d,f). And the higher op-
tical thickness, the stronger the radiation effects are. Overall, the radiative transport
levels the temperature field in the cavity, at least in the range of opacities we have
investigated.
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Figure 4.7: Temperature
T−Tre f
Th−Tc

profiles at different Z-crosslines in the median plane
(Y = 0.5).
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(a) τ = 0.1:
Emission dominates

(b) τ = 0.1:
Absorption dominates

(c) τ = 0.2:
Emission dominates

(d) τ = 0.2:
Absorption dominates

(e) τ = 0.5:
Emission dominates

(f) τ = 0.5:
Absorption dominates

Figure 4.9: Distribution of radiative source term in the median plane (Y = 0.5) at
different optical thicknesses. Sources are normalized by 4σT4

re f /L.
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(a) Transparent medium (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

Figure 4.10: Velocity field on the median plane (Y = 0.5) for different fluid opacities.
Velocities are normalized by Ure f .

Figure 4.10 represents the velocity vectors in the mid-depth plane (Y = 0.5) for
different values of the optical thickness. It is shown that, as the opacity increases, the
fluid is more accelerated, inside the plume and next to the cavity surfaces. It is also
observed the broadening of the plume and of the vertical boundary layers near the
cavity walls when the radiation effects is considered (compared to the transparent
cases). Besides, we observe that the plume at τ = 0.1 and τ = 0.2 keeps the same
cone shape. However, as the τ = 0.5, the structure of the plume changes: it is
compressed at medium altitude and takes the form of an hourglass. The reason is
that, when the optical thickness increases, the temperature in the lower part of the
cavity increases (see figure 4.8 a) due to the absorption effect (see figure 4.9 f). As a
result, the fluid in this region is pushed up, and then collides with the downward
boundary layers near the cavity vertical wall.
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(a) Transparent medium (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

Figure 4.11: Flow lines2 on the median plane (Y = 0.5) for different fluid opacities.

Regarding the flow structure, there are three spirals, which are associated to low
velocities and cannot be found in the vector field above, on each side of the cavity
(see figure 4.11 a) when the medium is transparent. However, when the medium
participates to radiation, the number of spirals decreases (see figure 4.11 b,c,d). The
profiles of vertical velocities at different Z-levels (figure 4.12) reveal that the fluid
that was stagnant in the transparent case is now moving. As a consequence, the as-
cending plume and the descending movement along the cavity walls interfere and
create a shear flow. Besides, we also observe the broadening of the obstacle vertical
boundary layers (figure 4.12 a). As the optical thickness increases, this effect is ac-
centuated and at τ = 0.5, these boundary layers broaden enough to reach the cavity
lateral walls and even block the downward flow (slow down and redirect). In ad-
dition, the mass transport driven by the plume is increased, causing an acceleration
of the return stream along the ceiling (mainly) and the floor (to a lesser extent) (see
figure 4.13 a).

2These flow lines represent the trajectory of fluid particles uniformly placed in the plane Y = 0.5.
Each of them is generated by integration of velocity values.
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Figure 4.12: Profiles of vertical velocities w
Ure f

at different Z-crosslines in the median
plane (Y = 0.5).
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(a) Transparent medium (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

Figure 4.14: Representation of the Q-criterion at Q = 0.02 in the cavity. Values are
normalized by U2

re f /L2.

For further analyzing the flow structure, we investigate the Q-criterion3, which
is used as a method to identify the swirl zones within the fluid (where Q > 0). Q < 0
stands for the regions where the deformation dominates over the rotation. Concern-
ing the 3-D structures, we observe that the swirl takes place in the area between the
plume flow and its re-circulation along the cavity walls. Looking closely at figure
4.14, which represents the iso-surfaces at Q = 0.024, we denote an expansion of the
surfaces as the opacity increases. This means that the trend of auto-rotation domi-
nates over deformation, becoming a global effect rather than a local phenomenon as
it can be seen in figure 4.14 a. This explains the disappearance of the spiral flows.
We have also considered the distribution of negative values of Q plotted in the me-
dian plane (Y = 0.5) (see figure 4.15). The differences observed in the patterns of the
Q = −0.02 iso-value lines for different fluid opacities result from the interference of
the upward plume and downward boundary layers where, literally, the deformation
dominates over rotation.

3See appendix C for the definition of the Q-criterion.
4This value was found to produce the best illustration of the modifications in the flow structure.
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(a) Transparent medium (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

Figure 4.15: Isovalue lines at Q = −0.02 in the median plane (Y = 0.5). Values are
normalized by U2

re f /L2.

4.2.2 Unsteady flows

The two cases τ = 1 and τ = 2 are now considered. The case τ = 1 leads to an
unsteady laminar flow (see figure 4.17 a), while the other produces turbulent results
(see figure 4.17 b). The turbulent behavior can also be demonstrated by the observa-
tion of the spectrum analysis where we do not found any dominant frequency (see
figure 4.18). We only investigate here the case at τ = 1.
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Figure 4.16: Considered points for tracking the time evolution of temperature.
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Figure 4.17: Time evolution of temperature
T−Tre f
Th−Tc

at the center point of the cavity P3:
(X, Y, Z) = (0.5, 0.5, 0.5) at different optical thicknesses.

Figure 4.18: Power spectrum of the temperature signal at the point P3:
(X, Y, Z) = (0.5, 0.5, 0.5) at τ = 2

When τ = 1, the periodical fluctuations are evidenced on the time evolution of
temperature at different positions in the median plane of the cavity (see figure 4.16).
The Fast Fourier Transform has been performed to determine the frequencies of the
oscillations and then plotted in the figures below (figures 4.19-4.22).
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(a) Time evolution of
temperature

(b) Power spectrum

Figure 4.19: Time evolution and power spectrum of the temperature signal at the point
P1: (X, Y, Z) = (0.2, 0.5, 0.2) in temporal range [5000:5800] at τ = 1.

(a) Time evolution of
temperature

(b) Power spectrum

Figure 4.20: Time evolution and power spectrum of the temperature signal at the point
P2: (X, Y, Z) = (0.5, 0.5, 0.3) in temporal range [5000:5800] at τ = 1.
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(a) Time evolution of
temperature

(b) Power spectrum

Figure 4.21: Time evolution and power spectrum of the temperature signal at the point
P3: (X, Y, Z) = (0.5, 0.5, 0.5) in temporal range [5000:5800] at τ = 1.

(a) Time evolution of
temperature

(b) Power spectrum

Figure 4.22: Time evolution and power spectrum of the temperature signal at the point
P4: (X, Y, Z) = (0.8, 0.5, 0.8) in temporal range [5000:5800] at τ = 1.

At point P2 (see figure 4.20), the Fourier analysis yields a fundamental frequency
f = 0.028 and its two harmonics f2 = 2 f and f3 = 3 f . On the other hand, at point P1
(see figure 4.19), P3 (see figure 4.21) and P4 (see figure 4.22), it reduces to f1 = 0.014.



4.2. Coupling with radiation in the gray gas assumption 61

However, the frequency of 0.028 is present at all the considered positions, even when
it is not the fundamental one. It may refer to a global phenomenon while other iden-
tified frequencies belong to the local fluctuations.

(a) t0 (b) t0 + 0.15T1 (c) t0 + 0.35T1

(d) t0 + 0.43T1 (e) t0 + 0.50T1 (f) t0 + 0.68T1

(g) t0 + 0.83T1 (h) t0 + 0.93T1 (i) t0 + T1

Figure 4.23: Flow lines in the median plane (Y = 0.5) at different instants over one
period (T1 = 72) at τ = 1.

The figures 4.23 show the flow lines at different instants over one oscillation pe-
riod recorded at P3. It is observed the appearance and vanishing of the two small
eddies right above the upper surface of the obstacle. This process is periodically re-
peated with a frequency that is exactly the fundamental one f1 returned by the FFT.
We, therefore, may conclude that this phenomenon drives the fluctuations of tem-
perature considered at P3. A similar conclusion was reported by Souayeh et al. [15]
for the results in a square cavity with a hot obstacle located on its floor. In addition,
Bouafia and Daube [19] have pointed out that this type of unsteadiness is due to
the shear instabilities, which occur in the zones of high velocity gradient within the
primary flow.
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However, differing from these two references, in our results, it is also observed
the deformation of two large flow cells on both sides of the plume and, in addition,
the appearance and vanishing of the small vortices near the vertical walls of the cav-
ity (below the large cells). This alteration may explain the local frequencies found in
the signal recorded at P1, P3, P4.

(a) t0 (b) t0 + 0.15T1 (c) t0 + 0.35T1

(d) t0 + 0.43T1 (e) t0 + 0.50T1 (f) t0 + 0.68T11

(g) t0 + 0.83T1 (h) t0 + 0.93T1 (i) t0 + T1

Figure 4.24: Negative values of Q-criterion in the median plane (Y = 0.5) at different
instants over one period (T1 = 72) at τ = 1 (Black: 0; Red: -0.1; Blue: -0.2; Orange: -0.4;

Purple: -1; Green: -2). Values are normalized by U2
re f /L2.

Figure 4.24 displays the Q distribution recorded at P3 in the mid-depth plane
(Y = 0.5) with six iso-values at different instants within one period. We here con-
sider the evolution of the rate of shear strain which is represented by the negative
values of Q. It is observed the formation and the deformation of the bubble zones
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where the rate of strain dominates over the vorticity. This demonstrates the shear
instability which occurs due to the interference of a continuous fluid at two veloc-
ities. In addition, this process repeats periodically with exactly the fundamental
frequency that is found from Fourier Transform process.

Figure 4.25: Temperature field
T−Tre f
Th−Tc

at an instant in the median plane (Y = 0.5).

For further discussing, we observe that in figure 4.25 there are not any core hori-
zontally stratification of the fluid density (equivalently represented by temperature
stratification), which following Le Quéré and Behnia [156] is the structure that can
sustain the internal gravity waves (with the fundamental frequency f is smaller than
the cut-off Brunt-Väisälä one fBV). We therefore conclude that the fluctuation prop-
agating inside the cavity cannot be related to either the internal gravity waves or the
traveling waves (where f > fBV).

As a conclusion, the radiation with an opacity at τ = 1 has changed the distri-
bution of the temperature field in the cavity. This alters the dynamic field which
experiences shear instabilities in the zones of high velocity gradient. It induces the
deformations of fluid circulations in the areas right above the hot obstacle, next to
the vertical walls of the enclosure and between the upward plume and downward
boundary layers flow, which are repeated periodically. Furthermore, increasing the
fluid opacity (τ = 2) leads to a turbulent flow.

4.3 Coupling between Pure Thermal Convection and Radia-
tion in a Real Gas mixture

We now move from a fictitious gas to a real air − H2O mixture. It involves an
absorbing-emitting component (H2O) diluted at different concentrations into a trans-
parent gas (dry air). The actual absorption spectrum of water vapor must be consid-
ered to allow realistic simulations. To that end, and following the discussion pre-
sented in Chapter 2, we resort to the SLW model associated to the rank correlated
approach. Concerning the boundary conditions, the obstacle surfaces are consid-
ered as black (ε = 1) and prescribed at Th = 580K 5, the vertical walls are also black
(ε = 1) and uniformly maintained at Tc = 530K, while the ceiling and the floor are
assumed perfectly reflective (ε = 0) and adiabatic.
The characteristic parameters of the simulations are presented in the table below

5Except the bottom one, which is in contact with the floor of the cavity
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(Table 4.6):

x (%) Ra Pr Pl
5 4.663 · 106 7.251 · 10−1 4.394 · 10−3

10 4.693 · 106 7.351 · 10−1 4.392 · 10−3

20 4.753 · 106 7.553 · 10−1 4.389 · 10−3

Table 4.6: Description of the cases of calculation.

In the range of Rayleigh numbers under consideration, the flow remains lami-
nar and it always reaches a steady state. Unlike with the gray gas assumption, the
radiative properties now depends on the local temperature inside the cavity. There-
fore, the absorption coefficient is not uniform and thus we cannot use a single (gray)
non-dimensional number τ to fully characterize each configuration.

In each case, the results are compared to the reference (transparent) values, which
are generated using the same gas mixture, but without including any radiation ef-
fects in volume.

4.3.1 Velocity and thermal fields

Figures 4.26 display the thermal field in the median plane (Y = 0.5) in both cases of
transparent and participating media at different concentration of water vapor. The
most sensitive effect of radiation (at these concentrations) is a slight broadening of
the temperature contours in the lower half of the cavity (Figures 4.26 b,d,f). The radi-
ant flux coming from the hot surfaces of the obstacle heats up the medium between
the heater and the vertical walls of the cavity. As a result, the nearly vertical thermal
stratification in absence of radiation is broken. The air (outside the thermal plume),
therefore, slightly becomes more uniform in temperature.
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(a) xH2O = 0.05:
Transparent medium

(b) xH2O = 0.05:
Participating medium

(c) xH2O = 0.10:
Transparent medium

(d) xH2O = 0.10
:Participating medium

(e) xH2O = 0.20:
Transparent medium

(f) xH2O = 0.20
:Participating medium

Figure 4.26: 2D-contours of temperature
T−Tre f
Th−Tc

in the median plane of the cavity
(Y = 0.5) at different mole fractions of water vapor.
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(a) xH2O = 0.05 : Z = 0.8 (b) xH2O = 0.10 : Z = 0.8 (c) xH2O = 0.20 : Z = 0.8

(d) xH2O = 0.05 : Z = 0.5 (e) xH2O = 0.10 : Z = 0.5 (f) xH2O = 0.20 : Z = 0.5

(g) xH2O = 0.05 : Z = 0.1 (h) xH2O = 0.10 : Z = 0.1 (i) xH2O = 0.20 : Z = 0.1

Figure 4.27: Temperature
T−Tre f
Th−Tc

profiles along different Z-crosslines in the median
plane (Y = 0.5) at different concentration of water vapor.
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As a whole, radiation does not significantly change the thermal profile along
the centerline (Z = 0.5) (see figures 4.27 d,e,f) and in the lower half of the cavity
(Z = 0.1) (see figures 4.27 g,h,i). But at a higher position (Z = 0.8) (see figures 4.27
a,b,c), a slight decrease of temperature in the re-circulation zone between the plume
and the wall boundary layer can now be observed. In this region of low convective
transport, the gas radiates toward the cold surfaces and the colder parts of the fluid
(it emits more than it absorbs): this results in a negative radiative source within the
fluid (see figures 4.28 a,c,e).
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(a) xH2O = 0.05:
Emission dominates

(b) xH2O = 0.05:
Absorption dominates

(c) xH2O = 0.10:
Emission dominates

(d) xH2O = 0.10:
Absorption dominates

(e) xH2O = 0.20:
Emission dominates

(f) xH2O = 0.20:
Absorption dominates

Figure 4.28: Distribution of radiative source term in the median plane (Y = 0.5) at
different mole fractions of water vapor. Sources are normalized by 4σT4

re f /L.
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(a) xH2O = 0.05 : Z = 0.8 (b) xH2O = 0.10 : Z = 0.8 (c) xH2O = 0.20 : Z = 0.8

(d) xH2O = 0.05 : Z = 0.5 (e) xH2O = 0.10 : Z = 0.5 (f) xH2O = 0.20 : Z = 0.5

(g) xH2O = 0.05 : Z = 0.1 (h) xH2O = 0.10 : Z = 0.1 (i) xH2O = 0.20 : Z = 0.1

Figure 4.29: Profiles of vertical velocities w
Ure f

at different Z-crosslines in the median
plane (Y = 0.5) at different concentration of water vapor.

Moreover, the change in the thermal field alters the buoyancy forces in the cavity.
Consequently, the vertical velocities slightly increase near the lateral walls and sig-
nificantly near the plume flow (see figure 4.29). The two boundary layers (climbing
along the obstacle, descending along the wall) now interfere and create a shear flow
in this region.
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(a) xH2O = 0.05 : X=0.2 (b) xH2O = 0.10 : X=0.2 (c) xH2O = 0.20 : X=0.2

Figure 4.30: Profiles of horizontal velocities u
Ure f

at different X-crosslines in the median
plane (Y = 0.5) at different concentration of water vapor.

Another change in the fluid motion can be found in the profiles of horizontal ve-
locities along the vertical cross-sections, which are displayed in figure 4.30 a. Com-
pared to the transparent case, the fluid near the ceiling and the floor of the enclosure
is accelerated. This is due to an increase in the mass flow driven by the plume. These
alterations of the velocity field are enhanced when the medium becomes more ab-
sorbing: compare figures 4.29 b,e,h and 4.30 b (xH2O = 0.10) versus 4.29 c,f,i and 4.30
c (xH2O = 0.20).

Figure 4.31 represents the velocity vectors in the mid-depth plane (Y = 0.5) for
three concentrations of the absorbing component. They display the typical patterns
explaining the formation of the plume. The fluid is accelerated along the lateral
surfaces of the hot body, goes up and then combines above the top surface of the
obstacle. Here, the fluid between the plume and its surrounding is pushed upward
by the buoyancy force created by the temperature difference. The hot fluid moves
along the ceiling of the enclosure and then flows down near the cold walls. Besides,
it is clearly observed that the plume broadens and the boundary layers near vertical
walls get thicker when the radiation effects are present (compared to the transparent
cases).
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(a) xH2O = 0.05:
Transparent medium

(b) xH2O = 0.05:
Participating medium

(c) xH2O = 0.10:
Transparent medium

(d) xH2O = 0.10:
Participating medium

(e) xH2O = 0.20:
Transparent medium

(f) xH2O = 0.20:
Participating medium

Figure 4.31: Velocity field in the median plane (Y = 0.5) at different mole fractions of
water vapor. Velocities are normalized by Ure f .
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(a) xH2O = 0.05:
Transparent medium

(b) xH2O = 0.05:
Participating medium

(c) xH2O = 0.10:
Transparent medium

(d) xH2O = 0.10:
Participating medium

(e) xH2O = 0.20:
Transparent medium

(f) xH2O = 0.20:
Participating medium

Figure 4.32: Flow lines in the median plane (Y = 0.5) at different mole fractions of
water vapor.
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Similar modifications in dynamic and thermal field were reported by Billaud,
Saury, and Lemonnier [6] for a differentially heated cavity: gas radiation was found
to accelerate the global circulation and to set into motion some parts of the fluid that
were stagnant in the transparent case.

(a) xH2O = 0.05:
Transparent medium

(b) xH2O = 0.05:
Participating medium

(c) xH2O = 0.10:
Transparent medium

(d) xH2O = 0.10:
Participating medium

(e) xH2O = 0.20:
Transparent medium

(f) xH2O = 0.20:
Participating medium

Figure 4.33: Representation of Q-criterion at Q = 0.02 in the cavity at different mole
fractions of water vapor. Values are normalized by U2

re f /L2.
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Regarding the 3-D structure of the flow, figures 4.33 represent the distributions
of the Q inside the cavity. As in the previous section (gray gas), we observe that the
iso-surfaces Q = 0.02 extends when the fluid opacity - linked to the concentration
of water vapor - increases. The spirals observed in the figures 4.32 now disappear
gradually as the medium becomes more absorbing.

4.3.2 Heat Transfer

(a) xH20 = 0.05 (b) xH20 = 0.10 (c) xH20 = 0.20

Figure 4.34: Local convective Nusselt number along the vertical centerline of any lateral
wall of the cavity.

The plots in the figure 4.34 clearly show that the convective Nusselt number
along the centerline of any vertical wall of the enclosure is decreased close to the
roof of the cavity and increased elsewhere. The reason is that, in the upper part, the
fluid was cooled down (figures 4.28 a,c,e) before reaching the lateral walls. On the
other hand, in the lower part, absorption dominates over the emission (figures 4.28
b,d,f), thus, the medium is heated up and the thermal gradient is increased. How-
ever, the increased part does not compensate the decreased one. Therefore, overall,
the average convective Nusselt number over the vertical wall of the enclosure is re-
duced (see table 4.7).

This decreasing trend in the local convective Nusselt number is also found when
considering the vertical hot surfaces of the obstacle. This is illustrated in figure 4.35.
The reason is that the thermal gradient is reduced when radiation is considered.
Indeed, the fluid is warmed up (by absorption) along the floor of the enclosure before
arriving at the vertical hot surfaces of the obstacle. Consequently, the average values
of NuC displayed in table 4.9 are decreased when the radiation is taken into account.
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(a) xH20 = 0.05 (b) xH20 = 0.10 (c) xH20 = 0.20

Figure 4.35: Local convective Nusselt number along vertical center line of each lateral
surfaces of the obstacle.

(a) xH20 = 0.05 (b) xH20 = 0.10 (c) xH20 = 0.20

Figure 4.36: Local convective Nusselt number along horizontal centerline of the
obstacle top surface.

However, it is observed that the convective transfer along the horizontal upper
surface of the obstacle increases. When radiation is present, the fluid layer near the
hot surfaces becomes cooler due to emission (it is evidenced by the negative values
of the radiative source in the figures 4.28. Consequently, the thermal gradient in this
region is enhanced, which induces the increase in local values of Nusselt number
with the appearance of the radiation (figure 4.36). This explains the higher average
convective Nusselt number obtained in table 4.9.
The values of average convective Nusselt number and average total Nusselt number,
which are defined as Nu = 1

A

∫
A Nu(s)dA, are presented in the tables below:

xH2O(%) Convective Nusselt number Total Nusselt number
Transparent Participating Transparent Participating

5 1.67 1.34 12.47 12.38
10 1.67 1.27 12.48 12.33
20 1.68 1.24 12.50 12.26

Table 4.7: Average convective and total Nusselt number along any vertical wall of the
cavity.

Regarding the total heat transfer, tables 4.7, 4.8 and 4.9 reveal that, compared to
the transparent cases, the average total Nusselt number along any black surfaces is
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xH2O(%) Convective Nusselt number Total Nusselt number
Transparent Participating Transparent Participating

5 38.28 37.09 252.07 250.25
10 38.34 36.75 252.19 249.31
20 38.57 36.59 252.59 247.93

Table 4.8: Average convective and total Nusselt number along any vertical wall of the
obstacle.

xH2O(%) Convective Nusselt number Total Nusselt number
Transparent Participating Transparent Participating

5 14.12 14.50 239.91 238.26
10 14.17 14.90 240.03 236.92
20 14.30 15.85 240.34 234.74

Table 4.9: Average convective and total Nusselt number along horizontal upper wall of
the obstacle.

decreased. This, along the vertical walls, is due to the drop off in the convective
Nusselt number. In addition, the attenuation of radiative transfer by the absorb-
ing medium also contributes to the reduction of total thermal transport, especially,
when considering this quantity along the upper surfaces of the obstacle, where the
convective transfer is accelerated.

4.4 Conclusions

In this chapter, we have presented our calculation of pure thermal convection cou-
pled to gas radiation in a cavity (size L = 0.25m) containing a hot source (size
l = 0.05m). Firstly, the sensitivities of the results with respect to spatial discretiza-
tion, angular discretization and spectral divisions have been studied in order to se-
lect the most suitable computation settings for subsequent calculations. In more de-
tails, the simulations have been performed using a 1003 uniform grid, the S8 quadra-
ture for the discrete direction set and the SLW model (associated with RC approach)
with 5 gray gases.

Next, the computations on the thermal convection in the enclosure filled by gray
gas (at different opacities) or real gas (SLW model) (at different molar fraction of
water vapor) mixtures have been investigated. The comparisons between obtained
results and the reference pointed out the influences of radiation effects:

• Radiation tends to non-uniformly accelerate the boundary layers along the
cavity wall and the hot inner obstacle. It also makes moving some parts of
the fluid that were stagnant in the transparent cases. The plume flow and its
recirculation interfere and create shear flow patterns.

• Radiation partly modifies the thermal gradient near the bounding surfaces of
the cavity: the convective Nusselt values are increased in the upper half and
decreased in the lower half. However, at the horizontal surface of the obstacle,
this thermal gradient is strengthened.
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• Radiation modifies the nearly vertical thermal stratification outside the plume
and slightly uniformizes the medium temperature.

• In real gases, radiation reduces the total thermal transfer, especially the convec-
tive part on the vertical walls and the radiative exchange between the upper
surface of the obstacle and the ones of the cavity.

• All these effects increase when the medium becomes more absorbing (in the
considered range of optical thicknesses and molar fraction).

• Besides, in the case of a gray gas, when the optical thickness of the medium
is unity, radiation makes the flow depart from the steadiness and reach a un-
steady regime. This mechanism is due to the shear instability created by the
interference of ascending plume and the boundary layers flowing downward.
It is worth mentioning that, at τ = 2, the flow becomes totally turbulent at
Ra = 5 · 106.
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Chapter 5

Double Diffusive Convection
Coupled to Gas Radiation

In double diffusive convection, there are two gradients that govern the flow: the
thermal and the concentration ones. The relative magnitude of the induced driving
forces is defined by the mass-to-thermal buoyancy ratio N:

N =
βC∆C
βT∆T

(5.1)

where ∆C = Ch − Cl , ∆T = Th − Tc. Its sign characterizes the cooperating (> 0) or
opposing (< 0) effects of these two gradients.

In the frame of this work, we have performed some calculations in double dif-
fusive convection including cases where gas radiation is accounted for. Predictions
without radiation (transparent fluid) are also provided at different mass-to-thermal
buoyancy ratios and serve as reference for highlighting the influence of radiant
transport on the flow characteristics.

5.1 Gray gas model

All the calculations are performed at Ra = 5.106, Le = 1 (allowing a perfect overlap
of the thermal and concentration boundary layers), Pl = 4.43 · 10−3 and θ0 = 11.1.
A high concentration of the absorbing species is prescribed on all the surfaces of
the obstacle (Ch), and a null concentration (Cl = 0) along the vertical walls of the
cavity. The emissivity of the bounding surfaces (including the obstacle) are set to
unity except the ceiling and the floor, which are considered as perfectly reflecting.
In all subsequent computations, the absorption coefficient is made proportional to
the local concentration. We will therefore consider that :

κ(C∗) = κ0
C∗

Cre f
(5.2)

where C∗ is a dimensional value and κ0 and Cre f = Ch+Cl
2 are the reference absorp-

tion coefficient and reference concentration, respectively. Using the dimensionless
quantity C = (C∗ − Cre f )/(Ch − Cl) in (5.2) yields:

κ(C) = κ0 · (2C + 1) (5.3)
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All the results presented hereafter are normalized using the reference temperature
Tre f = Th+Tc

2 , the reference concentration Cre f = Ch+Cl
2 the reference length L, the

reference velocity Ure f = α
√

Ra
L and the reference time L2

α
√

Ra
.

5.1.1 Mass-to-Thermal Buoyancy ratio N = 1

We assume that the fluid supplied by the (hot) obstacle and removed by the (cold)
cavity walls is lighter than the main component of the mixture. Differences in con-
centration then create a convective motion in the same direction as those induced
by the thermal gradient (cooperative action) and the magnitude of these two effects
(mass and thermal) are similar (N = 1 and Le = 1).
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.1: Thermal field
T−Tre f
Th−Tc

in the median plane of the cavity (Y = 0.5) for different
fluid opacities: cooperating cases, N = 1.

Figures 5.1 a-f describe the thermal field in the median plane of the cavity (Y =
0.5) for different fluid opacities ranging from a transparent medium (τ = 0) to τ = 2.
At low value of τ (optically thin limit), a nearly vertical stratification is established
between the plume and the boundary layers along the cavity walls. No obvious
change in this pattern occurs below τ = 0.2 or even τ = 0.5. That was already
observed in the case of combined radiation and pure thermal convection (homoge-
neous mixture). As the optical thickness goes beyond unity, we clearly recognize
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the transformation of the thermal field. Moreover, the temperature profiles along
different horizontal crosslines (see figure 5.2) prove that the temperature at medium
(Z = 0.5) and high levels (Z = 0.8) decreases significantly when radiation is taken
into account. The vertical temperature distributions plotted in figure 5.3 confirm this
trend. The hot fluid carried by the plume emits towards the cold walls and, there-
fore, its temperature decreases with respect to the transparent case. The amplitude
of this phenomenon, which is also illustrated by figures 5.4-5.8, increases with the
optical thickness, at least in the range of values we have investigated1. On the other
hand, the lower part of the cavity (Z = 0.1) is mainly driven by the two differentially
heated surfaces (the obstacle and the cold walls): it is less sensitive to gas radiation.
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(c) Z = 0.8

Figure 5.2: Temperature
T−Tre f
Th−Tc

profiles along Z-crosslines in the median plane
(Y = 0.5): cooperating flow, N = 1

1If we increase the fluid opacity, we will ultimately find an opaque situation, where there are no
more radiative effects.
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Figure 5.3: Temperature
T−Tre f
Th−Tc

profiles along different X-crosslines in the median plane
(Y = 0.5): cooperating flow, N = 1

(a) Emission dominates (b) Absorption dominates

Figure 5.4: Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 1, τ = 0.1. Sources are normalized by 4σT4

re f /L.
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(a) Emission dominates (b) Absorption dominates

Figure 5.5: Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 1, τ = 0.2. Sources are normalized by 4σT4

re f /L.

(a) Emission dominates (b) Absorption dominates

Figure 5.6: Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 1, τ = 0.5. Sources are normalized by 4σT4

re f /L.
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(a) Emission dominates (b) Absorption dominates

Figure 5.7: Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 1, τ = 1. Sources are normalized by 4σT4

re f /L.

(a) Emission dominates (b) Absorption dominates

Figure 5.8: Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 1, τ = 2. Sources are normalized by 4σT4

re f /L.

Figure 5.4, 5.5, 5.6, 5.7, 5.8 display the values of the radiative source term in the
median plane (Y = 0.5) of the cavity. We recall that negative values correspond to
the regions where the fluid emits more than it absorbs and conversely for positive
values. The observed distributions are representative of double diffusive convection
because of the concentration-dependent absorption coefficient. There are regions
where κ is very low (even 0), and where radiation, consequently, has little effects on
the fluid. This phenomenon distinguishes the combined radiation - double diffusive
convection from radiation and pure thermal convection.
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.9: Vector field in the median plane of the cavity (Y = 0.5) for different fluid
opacities: cooperating case, N = 1. Velocities are normalized by Ure f .
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The velocity vectors in figure 5.9 illustrate the impacts of radiation on the fluid
motion. There are no significant changes in the flow structure, but a slight broad-
ening of the plume is observed at τ = 2. The horizontal profiles of vertical velocity
in the median plane display more clearly the difference. At low altitude (Z = 0.1)
(see figure 5.10 a), the fluid near the obstacle and the vertical walls of the cavity
is accelerated while, at intermediate and high altitudes (Z = 0.5; 0.8) (see figures
5.10 b,c), the only evident change is the drop of the maximum velocity (the peak of
the profiles). This is due to the decrease of temperature in the plume, which alters
the buoyancy source. Besides, the profile of horizontal velocity along the vertical
crossline (X = 0.2) (see figure 5.11 a) proves that the boundary layers near the floor
and the ceiling of the enclosure are also accelerated. The circulation near the bottom
brings cooled fluid from the cavity wall to the region between the obstacle and the
enclosure (near the floor). The fluid is further heated up by the radiation coming
from the hot cube. At a higher opacity, the radiative effects dominate over the con-
vective transfer and the fluid, in this region, becomes warmer (but not as much as in
the thermal convection case). Simultaneously, the medium close to the ceiling emits
more than it absorbs, and, thus, becomes cooler. These two tendencies explain the
typical distribution of the thermal field mentioned above.
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Figure 5.10: Vertical velocity w
Ure f

profiles along different Z-crosslines in the median
plane (Y = 0.5): cooperating case, N = 1.
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Figure 5.11: Horizontal velocity u
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plane (Y = 0.5): cooperating case, N = 1.
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.12: Iso-surface of the Q-criterion at the value 0.01 in the cavity. Values are
normalized by U2

re f /L2.
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Figure 5.12 represents the iso-surfaces of value 0.01 of the Q inside the cavity. It
can be observed that, when the optical thickness is one or more, several of these iso-
surfaces disappear. This illustration gives a better view of the changes experienced
by the flow structure depending on the fluid opacity.

(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.13: Concentration field C−Cre f
Ch−Cl

in the median plane of the cavity (Y = 0.5) for
different fluid opacities: cooperating case, N = 1.

Concerning the concentration field, no significant differences are found in the
calculations with and without the radiative effects (see figure 5.13). This observation
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still holds when considering the concentration profiles along different cross lines (see
figures 5.14 and 5.15). The reason is that gas radiation does not directly influence the
concentration field, but only through the dynamic field and, as presented above,
radiation does not significantly alter the flow structure.
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Figure 5.14: Concentration C−Cre f
Ch−Cl

profiles along different Z-crosslines in the median
plane (Y = 0.5): cooperating case, N = 1.
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Figure 5.15: Concentration
C−Cre f
Ch−Cl

profiles along different X-crosslines in the median
plane (Y = 0.5): cooperating case, N = 1.
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5.1.2 Mass-to-Thermal Buoyancy ratio N = 2

In this case, the temperature and concentration gradients still cooperate (N > 0) but
the mass driving force dominates over the thermal one (N > 1).
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.16: Velocity vectors in the median plane of the cavity (Y = 0.5) for different
fluid opacities: cooperating case, N = 2. Velocities are normalized by Ure f .
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Compared to the reference results (transparent case), the flow field in partici-
pating medium at different opacities has no evident change when we consider the
velocity vectors (see figure 5.16). It is observed in all the plots a motionless volume
of fluid between the ascending plume and the descending boundary layers along
the cavity walls.
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Figure 5.17: Vertical velocity w
Ure f

profiles along different Z-crosslines in the median
plane (Y = 0.5): cooperating case, N = 2.
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Figure 5.18: Horizontal velocity u
Ure f

profiles along different X-crosslines in the median
plane (Y = 0.5): cooperating case, N = 2.
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However, some differences are found when considering the dynamic profiles
along the horizontal cross lines: a slight decrease of the maximum velocity at medium
and high levels (Z = 0.5 and Z = 0.8) and a weak acceleration of the fluid near the
cavity walls and the hot body surfaces (Z = 0.1). It can also be seen in the repre-
sentation of the Q-criterion (see figure 5.19) that the flow structure is preserved at
all the optical thicknesses, except a stretching of the iso-surface at mid-height of the
enclosure (see figure 5.19). The reasons for this unchanged flow structure is that the
mass gradient governs the fluid motion. Therefore, radiation, which primarily acts
on the temperature field, has a weak impact on the dynamic field.
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.19: Iso-surface of the Q-criterion at the value 0.01 in the cavity. Values are
normalized by U2

re f /L2.
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.20: Thermal field in the median plane of the cavity (Y = 0.5) for different fluid
opacities: cooperating case, N = 2.

Although the dynamic is not significantly altered, radiation, as usual, plays an
important role in redistributing the thermal energy. Due to emission, the fluid at
medium (Z = 0.5) and high (Z = 0.8) positions (see figures 5.21 a, 5.22 a, 5.23 a, 5.24
a and 5.25 a) reduces its temperature level (see figure 5.26 b,c) while the boundary
layers around the obstacle at low altitude (Z = 0.1) are warmed up (see figure 5.26 a)
by absorption (see figures 5.21 b, 5.22 b, 5.23 b, 5.24 b and 5.25 b). These two effects
create the typical structure of the thermal field (see figure 5.20) already found when
N = 1.
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(a) Emission dominates (b) Absorption dominates

Figure 5.21: Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 2, τ = 0.1. Sources are normalized by 4σT4

re f /L.

(a) Emission dominates (b) Absorption dominates

Figure 5.22: Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 2, τ = 0.2. Sources are normalized by 4σT4

re f /L.
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(a) Emission dominates (b) Absorption dominates

Figure 5.23: Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 2, τ = 0.5. Sources are normalized by 4σT4

re f /L.

(a) Emission dominates (b) Absorption dominates

Figure 5.24: Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 2, τ = 1. Sources are normalized by 4σT4

re f /L.
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(a) Emission dominates (b) Absorption dominates

Figure 5.25: Distribution of radiative source term in the median plane (Y = 0.5):
cooperating case, N = 2, τ = 2. Sources are normalized by 4σT4

re f /L.
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Figure 5.26: Temperature T−Tre f
Th−Tc

profiles along different Z-crosslines in the median
plane (Y = 0.5): cooperating case, N = 2.
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Figure 5.27: Temperature T−Tre f
Th−Tc

profiles along different X-crosslines in the median
plane (Y = 0.5): cooperating case, N = 2.
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.28: Concentration field in the median plane of the cavity (Y = 0.5) for different
fluid opacities: cooperating case, N = 2.
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There is no obvious change in the concentration field when the radiation effects
are taken into account. C is stratified nearly vertically along the plume boundaries
(see figure 5.28). The almost unchanged structure of its distribution is confirmed
when plotting different profiles along the horizontal and vertical crosslines at vari-
ous positions in the cavity (see figures 5.29 and 5.30).
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Figure 5.29: Concentration
C−Cre f
Ch−Cl

profiles along different Z-crosslines in the median
plane (Y = 0.5): cooperating case, N = 2.
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Figure 5.30: Concentration
C−Cre f
Ch−Cl

profiles along different X-crosslines in the median
plane (Y = 0.5): cooperating case, N = 2.
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5.1.3 Mass-to-Thermal Buoyancy ratio N = −1

We now assume that the fluid supplied by the (hot) obstacle and removed by the
(cold) cavity walls is heavier than the main component of the mixture. In the spe-
cific case where N = −1, the thermal and mass buoyancy forces have exactly the
same magnitude (|N| = 1), but act in opposite directions (N < 0). Literally, the mo-
mentum source created by the temperature and concentration gradients cancel each
other2 (since Le = 1). As a result, the fluid remains motionless. However, this holds
for a transparent medium only. When volume radiation is taken into account, the
similarity of temperature and concentration distributions is broken. A flow structure
is then established.

2The nondimensional buoyancy source term in the momentum equation is ρ0gβT∆T(NC + T).
When Le = 1, the conservation of species and the energy equation are identical and share the same
boundary conditions. Therefore, the nondimensional T and C-fields are identical and, when N = −1,
the buoyancy force goes to zero.
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.31: Velocity vectors in the median plane (Y = 0.5) of the cavity for different
fluid opacities: opposing case, N = −1. Velocities are normalized by Ure f .
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Figure 5.31 represents the velocity field in the mid-depth plane (Y = 0.5) of the
cavity. Because radiation has broken the symmetry between the thermal and con-
centration fields, the fluid is now set into motion. Investigation of the velocity pro-
files (see figures 5.32 a,b,c and 5.33 a) reveals that, in the lower part of the cavity
(Z = 0.1), the flow is dominated by the mass gradient. It descends along the obsta-
cle (at high concentration) and climbs along the cavity walls (at low concentration).
These two motions are well separated. In addition, there exists at all opacities a
thermal boundary sublayer along the hot source vertical walls. On the other hand,
a thermally driven motion prevails in the upper part of the cavity (Z = 0.8). We
recognize an ascending plume in the center and descending boundary layers along
the lateral cold walls. However, at τ = 1, an increase in concentration on the plume
axis tends to limit the vertical movement and causes the plume to spread. From
τ = 2, the flow dynamic is very attenuated (at the limit, if the opacity were infinite,
one would retrieve the motionless solution of the transparent case). At intermediate
levels (Z = 0.5), the situation is more complex. At low opacities (τ = 0.1, 0.2), there
simultaneously exists a thermally driven flow (above the hot obstacle) and a mass
governed one (ascending boundary layers along the cavity walls). At τ = 0.5 and
1, the flow is totally driven by the thermal gradient (ascending plume and descend-
ing boundary layers along the cold walls). Moreover, the thermal plume expands
as the opacity increases from 0.1 to 1 (see figures 5.31 b-e). At τ = 1, the intensi-
fication of the mass force slows down the plume and tends to separate it into two
parts (see figures 5.31 e and 5.32 b). At τ = 2, this separation is complete and the
hot fluid is pushed toward the side walls. Near these surfaces, the fluid temperature
is increased but it drops at the center of the cavity. This alters the thermal buoy-
ancy force and thus, can explain the typical pattern of the velocity field. However,
temperature and concentration act together on the flow. We therefore consider the
dimensionless buoyancy source term3 plotted at different levels (figures 5.32 j,k,l).
At Z = 0.5 we observe that, for τ = 2, this quantity raises up near the vertical walls
and then drops in the center, which more clearly demonstrates the formation of the
fluid movements. The increase of the Boussinesq source can be explained by a lo-
cally dominant thermal effect induced by radiative absorption (see figure 5.38 b for
positive radiative source term).

3This quantity is defined as βT(Th − Tc)(NC + T).
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(l) Z = 0.8: Buoyancy
source term

Figure 5.32: Vertical velocity w
Ure f

, temperature
T−Tre f
Th−Tc

, concentration
C−Cre f
Ch−Cl

and
dimensionless buoyancy source term profiles along different Z-crosslines in the median

plane (Y = 0.5): opposing case, N = −1.
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Figure 5.33: Horizontal velocity u
Ure f

, temperature
T−Tre f
Th−Tc

and concentration
C−Cre f
Ch−Cl

profiles along different X-crosslines in the median plane (Y = 0.5): opposing case,
N = −1.

Introducing gas radiation dramatically changes the thermal field, due to the ap-
pearance of convective motions. In the lower part of the cavity (Z = 0.1), near the
obstacle (figure 5.32 d), the temperature is reduced as the opacity increases (5.33
b). Indeed, although the mass driven flow is slightly accelerated (which can brings
more fluid at high temperature from the obstacle to the cavity walls), the radiative
emission always dominates over absorption. This effect becomes stronger with the
optical thickness (see figures 5.34 a, 5.35 a, 5.36 a, 5.37 a and 5.38 a for negative
values of radiative source term). It explains the cooling down of the medium. How-
ever, at intermediate and high levels (figure 5.32 e,f), an opposite trend is observed.
The temperature augments as the fluid opacities varies from 0.1 to 1 (even though
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when compared to the transparent case, it is still decreased for all considered τ).
This change is more obvious inside the plume. There, the fluid absorbs more than it
emits (see figures 5.34 b, 5.35 b, 5.36 b and 5.37 b), in addition, the plume is spread
up. These two processes warm up the medium. However, at τ = 2, this tendency is
reversed. At Z = 0.8, temperature is decreased compared to the solution at τ = 1
(see figure 5.32 f). This is due to the damping of the plume motion. At Z = 0.5, ther-
mal level is almost risen up except a drop off in the center. Here, the typical upward
circulation brings more hot fluid toward side walls but the amount sent to the center
of the enclosure is cut down(see figures 5.31 f and 5.32 b).

(a) Emission dominates (b) Absorption dominates

Figure 5.34: Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −1, τ = 0.1. Sources are normalized by 4σT4

re f /L.

(a) Emission dominates (b) Absorption dominates

Figure 5.35: Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −1, τ = 0.2. Sources are normalized by 4σT4

re f /L.
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(a) Emission dominates (b) Absorption dominates

Figure 5.36: Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −1, τ = 0.5. Sources are normalized by 4σT4

re f /L.

(a) Emission dominates (b) Absorption dominates

Figure 5.37: Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −1, τ = 1. Sources are normalized by 4σT4

re f /L.
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(a) Emission dominates (b) Absorption dominates

Figure 5.38: Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −1, τ = 2. Sources are normalized by 4σT4

re f /L.
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.39: Thermal field
T−Tre f
Th−Tc

in the median plane (Y = 0.5) for different fluid
opacities: opposing case, N = −1.
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The evolution of concentration field displays the same trends as for temperature
except at the bottom of the cavity near the vertical cold walls. Here the values of C
increase compared to the transparent case (see figures 5.32 g and 5.33 d). This is due
to the acceleration of the mass driven flow, which inputs more highly concentrated
fluid from the obstacle surfaces (see figure 5.33 a).

(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.40: Distribution of concentration
C−Cre f
Ch−Cl

in the median plane (Y = 0.5) for
different fluid opacities: opposing case, N = −1.
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.41: Vertical velocities w
Ure f

across the mid-height plane (Z = 0.5) for different
fluid opacities: opposing case, N = −1.

Figure 5.41 displays the vertical velocity distribution across the mid-height hori-
zontal plane (Z = 0.5). It more clearly illustrate the flow structure, and especially the
redistribution of the vertical movements that ensures the mass conservation. Close
to its origin, the plume displays a quasi square cross section but turned by 45◦ with
respect to the obstacle geometry. This pattern is generated by the fluid input due to
the ascending boundary layers along the obstacle verticle surfaces and by the inter-
actions with recirculation flows in the corners of the cavtiy.
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The flow structure is also illustrated when considering the Q-criterion (see figure
5.42). New iso-surfaces of Q = 0.002 (for instance) appear and are transformed as
the medium becomes more absorbing.

(a) τ = 0.1

(b) τ = 0.2 (c) τ = 0.5

(d) τ = 1 (e) τ = 2

Figure 5.42: Iso-surface of the Q-criterion at the value 0.002 in the cavity for different
fluid opacities: opposing case, N = −1. Values are normalized by U2

re f /L2.
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5.1.4 Mass-to-Thermal Buoyancy ratio N = −2

In this section, we assume that N = −2. We therefore consider the case where the
mass driven force dominates over the thermal one (|N| > 1). These two forces still
act in opposite directions (N < 0).
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.43: Velocity vectors in the median plane (Y = 0.5) for different fluid opacities:
opposing case, N = −2. Velocities are normalized by Ure f .
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When the medium is transparent (see figure 5.43 a), the convective motion is
fully driven by the concentration gradient. Near the hot obstacle, the fluid at high
concentration is heavier and, therefore, flows downward. Close to the cavity verti-
cal walls, the cold fluid at low concentration is pushed upward because the opposite
trend induced by temperature is too weak. These two motions create a global clock-
wise circulation in the left part of the enclosure (and counterclockwise in the right).
As the opacity increases up to τ = 0.5, the flow structure changes. In higher parts
of the cavity (Z = 0.8), for τ between 0.1 and 0.2, the dynamic structure is preserved
(ascending boundary layers near the vertical walls and descending flow in the cen-
ter) except a slight slow down (see figure 5.44 c). From τ = 0.5, the fluid motion is
increasingly dominated by the thermal gradient. And at τ = 1; 2, we clearly observe
an ascending plume in the center and the descending movements near the cavity
lateral walls. These two motions interfere and create a shear flow pattern. It can also
be noted an acceleration of the fluid circulation near the ceiling (see figure 5.45 a).
At Z = 0.5, the tendency is the same as at Z = 0.8 except that, at τ = 1, in the region
close to the cold walls, there are upward motions instead of downward flows (see
figure 5.44 b). This can be explained by the formation of new thermally driven flows
above the obstacle. However, in the lower part of the cavity, there is no significant
change except a slight slow down of the fluid near the bottom of the enclosure (see
figure 5.45 a). The flow, in this region, is governed by the mass gradient for all the
considered optical thicknesses.
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Figure 5.44: Vertical velocity w
Ure f
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plane (Y = 0.5): opposing case, N = −2.
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.46: Thermal field
T−Tre f
Th−Tc

in the median plane (Y = 0.5) for different fluid
opacities: opposing case, N = −2.
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As the medium opacity increases, the transformations of the thermal patterns
from nearly horizontal lines to inclined and vertical ones are clearly displayed and
still denote the development of a thermal plume inside the cavity (see figure 5.46).
In addition, the temperature profiles at different positions show that, at low level
(Z = 0.1), the medium is less homogeneous in temperature: the fluid is more cooled
down near the cavity walls and more warmed up around the obstacle (see figure
5.47 a). The fluid at intermediate and high altitude (Z = 0.5; 0.8) also gets warmer
with the increase of the opacity (see figures 5.47 b,c). On the other hand, radiation
has little effect in the upper part of the cavity (see figures 5.49-5.53). However, at in-
termediate altitude, the radiative absorption dominates over the emission with the
increase of the optical thickness (see figures 5.49 b-5.53 b): here, the fluid is warmed
up (see figure 5.48 b for positive radiative source term). This increases the thermal
gradient, which counters, then dominates over the concentration gradient and, fi-
nally, generates the thermal plume. This flow brings the fluid at high temperature to
the layers near the ceiling and the vertical walls of the enclosure, which explain the
increase of thermal level in these regions.
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Figure 5.47: Temperature
T−Tre f
Th−Tc

profiles along different Z-crosslines in the median
plane (Y = 0.5): opposing case, N = −2.
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Figure 5.48: Temperature
T−Tre f
Th−Tc

profiles along different X-crosslines in the median
plane (Y = 0.5): opposing flow, N = −2.

(a) Emission dominates (b) Absorption dominates

Figure 5.49: Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −2, τ = 0.1. Sources are normalized by 4σT4

re f /L.
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(a) Emission dominates (b) Absorption dominates

Figure 5.50: Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −2, τ = 0.2. Sources are normalized by 4σT4

re f /L.

(a) Emission dominates (b) Absorption dominates

Figure 5.51: Distribution of radiative source in the median plane (Y = 0.5): opposing
case, N = −2, τ = 0.5. Sources are normalized by 4σT4

re f /L.
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(a) Emission dominates (b) Absorption dominates

Figure 5.52: Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −2, τ = 1. Sources are normalized by 4σT4

re f /L.

(a) Emission dominates (b) Absorption dominates

Figure 5.53: Distribution of radiative source term in the median plane (Y = 0.5):
opposing case, N = −2, τ = 2. Sources are normalized by 4σT4

re f /L.
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(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.54: Concentration
C−Cre f
Ch−Cl

field in the median plane (Y = 0.5) for different fluid
opacities, N = −2.

There are no significant changes in the concentration field as the optical thickness
remains below τ = 0.5 (see figures 5.54 and 5.55). At low level (Z = 0.1) the concen-
tration increases near the obstacle surfaces and decreases near the vertical walls (see
figure 5.55 a). This alteration is strengthened with the increases in opacity. How-
ever, an opposite trend is observed in the upper half of the cavity: the concentration
is augmented near the cold surfaces as the medium becomes more absorbing (see
figure 5.55 b,c). These changes come from the transformation in the flow structure.
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Indeed, the thermally driven flow brings more fluid at high concentration from the
region above the obstacle upward. Besides, the slow down of the fluid motion along
the bottom results in a drop of concentration near the vertical walls in the lower half
of the enclosure.
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Figure 5.55: Concentration
C−Cre f
Ch−Cl

profiles along different Z-crosslines in the median
plane (Y = 0.5): opposing case, N = −2.
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The alterations in flow structures are also illustrated in figure 5.57, which dis-
plays the iso-surfaces of the Q-criterion. The formation and expansion of the new
iso-surfaces are easily observed, showing the stronger impact of the radiative effects
with the increase of opacity.

(a) Transparent gas (b) τ = 0.1

(c) τ = 0.2 (d) τ = 0.5

(e) τ = 1 (f) τ = 2

Figure 5.57: Iso-surface of the Q-criterion at the value 0.002 in the cavity for different
fluid opacities: opposing case, N = −2. VValues are normalized by U2

re f /L2.
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5.1.5 Synthesis

In this chapter, we analyze the influences of the radiation of a gas mixture on the
double diffusive convection, using the gray gas assumption. The calculations were
performed at different mass-to-thermal buoyancy ratios (N = −2;−1; 1; 2) (which
describes the flow characteristics: cooperating or opposing and mass driven or ther-
mally governed) and different values of the optical thickness defined as τ = κ0× L
(τ = 0.1; 0.2; 0.5; 1; 2). The comparisons between the obtained results and the ref-
erence solutions (transparent case) reveal the transformations inside the enclosure
which are summarized as:

• Cooperating flow

At N = 1, introducing gas radiation does not significantly affect the concentra-
tion field. It slightly accelerates the boundary layers but reduces the maximum
velocity inside the plume. Volume radiation tends to thermally homogenize
the medium. It decreases the temperature in the upper half of the cavity and
redistributes the iso thermal patterns (from nearly vertical stratification into
horizontal one). Increasing the opacity of the medium strengthens these ef-
fects.
At N = 2, the same modifications take place but with weaker magnitudes.

• Opposing flow

At N = −1, for a transparent medium, no flow occurs in the cavity due to
the perfect symmetry of the thermal and concentration gradients. But with
radiation, this balance is broken and new fluid motions are established. The
movement in the lower part of the cavity is dominated by the mass gradient
for all the considered optical thicknesses but, at medium and high levels, the
thermal gradient governs the flow. For τ between 0 and 1, radiation intensifies
the thermal plume. However at τ = 1, the increase of concentration in the
axis of the plume limits the vertical motion and causes it to spread. At τ = 2,
these changes are strengthened, resulting in the plume separation with a zone
of nearly motionless fluid in the center of the cavity. In addition, gas radia-
tion reduces the temperature in the regions near the obstacle vertical surfaces.
Above the source, temperature is generally reduced compared to transparent
case, it increases with the opacity except in the center of the enclosure at τ = 2.
The alteration of the concentration field are the same as for the thermal one
except a slight increase of this quantity near the vertical cold walls in the lower
part of the cavity.

At N = −2, gas radiation affects the dynamic, the thermal and the concen-
tration field in the same manner as for N = −1 with the changes in optical
thicknesses (in the participating mediums). However, the temperature and
concentration fields are reduces at the intermediate and high levels when com-
paring to the transparent case.
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5.2 Real gas mixtures

This section deals with the coupling of double diffusive convection and radiation
in real gas mixtures (dry air and an absorbing-emitting component, which can be
viewed as a pollutant). The physical properties of the fluid depend on its com-
positions and are calculated using the expressions detailed in appendix A. In this
study, we consider either air− H2O or air−CO2 mixtures. Depending on the added
component, this leads to two types of flow: opposing or cooperating. Water vapor,
which is lighter than air, creates a mass driven force acting in the same direction as
the thermal one (cooperating case). On the other hand, the air− CO2 mixture yields
opposing flows caused by two counter-direction forces as the molar mass of CO2 is
larger than that of dry air. Regarding the boundary conditions, we recall that the
cavity vertical walls are maintained at Tc = 530K and Cl = 0 while the obstacle sur-
faces are set to Th = 580K and a given concentration of pollutant Ch. All the active
walls are black and the adiabatic ones are purely reflective.

5.2.1 Air− H2O mixture

As presented above, this mixture generates a cooperating flow in the cavity. The
characteristic non-dimensional numbers related to this configuration are listed in ta-
ble 5.1. All the values are comparable to those of the gray case (§5.1). However,
the Lewis number is now about 0.8 and the mass boundary layers are then expected
to be slightly thicker than the thermal ones. The average mole fraction of pollutant
(here H2O) is defined as:

x =
Cre f ∗ R ∗ Tre f

P
(5.4)

where R is universal gas constant and P is the pressure (here 1 atm). We recall that
Cre f =

Ch+Cl
2 , or, when Cl = 0 (as it is assumed here), Ch/2.

The x-parameter is given three different values 5%, 10% and 20%. It leads to three
different types of flow: temperature driven (N < 1), balanced thermal and mass
effects (N ≈ 1) and mass driven (N > 1).

x (%) N RaT Pr Le Pl
5 0.426 4.663 · 106 0.725 0.833 4.394 · 10−3

10 0.87 4.693 · 106 0.735 0.824 4.392 · 10−3

20 1.81 4.753 · 106 0.755 0.808 4.389 · 10−3

Table 5.1: Configuration parameters: air− H2O mixture.
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5.2.1.1 Velocity, thermal and concentration fields

(a) xH2O = 0.05:
Transparent medium

(b) xH2O = 0.05:
Real gas

(c) xH2O = 0.10:
Transparent medium

(d) xH2O = 0.10:
Real gas

(e) xH2O = 0.20:
Transparent medium

(f) xH2O = 0.20:
Real gas

Figure 5.58: Thermal field
T−Tre f
Th−Tc

in the median plane of the cavity (Y = 0.5) at different
mole fractions of water vapor.

Figure 5.58 represents the thermal field in the median plane (Y = 0.5) in both
cases of transparent and participating media at different average mole fractions of
water vapor. Gas radiation does not induce any significant change, except a slight
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expansion between the iso lines (in the region between the plume and the cold walls)
at xH2O = 0.20 (see 5.58 f). This illustrate a slight thermal homogenization of the
fluid.

(a) xH2O = 0.05 : Z=0.8 (b) xH2O = 0.10 : Z=0.8 (c) xH2O = 0.20 : Z=0.8

(d) xH2O = 0.05 : Z=0.5 (e) xH2O = 0.10 : Z=0.5 (f) xH2O = 0.20 : Z=0.5

(g) xH2O = 0.05 : Z=0.1 (h) xH2O = 0.10 : Z=0.1 (i) xH2O = 0.20 : Z=0.1

Figure 5.59: Temperature
T−Tre f
Th−Tc

profiles along different Z-crosslines in the median
plane (Y = 0.5) at different average mole fractions of water vapor.

The temperature profiles along horizontal and vertical crosslines (see figures 5.59
and 5.60) confirms the above observation. Indeed, at Z = 0.8 (figures 5.59 a,b,c), the
presence of the radiation decreases the temperature for all the average mole frac-
tions (it explains the thermal homogenization inside the cavity). This evidences the
domination of radiative emission in these regions (see figures 5.61 a, 5.61 c and 5.61
e). The plots along vertical lines (see figure 5.60) carries the same information. In the
lower half of the enclosure, the thermal structure does not experience any remark-
able alterations.
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(a) xH2O = 0.05 : X=0.2 or
0.8

(b) xH2O = 0.10 : X=0.2 or
0.8

(c) xH2O = 0.20 : X=0.2 or
0.8

(d) xH2O = 0.05 : X=0.5 (e) xH2O = 0.10 : X=0.5 (f) xH2O = 0.20 : X=0.5

Figure 5.60: Temperature
T−Tre f
Th−Tc

profiles along different X-crosslines in the median
plane (Y = 0.5) at different average mole fractions of water vapor.
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(a) xH2O = 0.05:
Emission dominates

(b) xH2O = 0.05:
Absorption dominates

(c) xH2O = 0.10:
Emission dominates

(d) xH2O = 0.10:
Absorption dominates

(e) xH2O = 0.20:
Emission dominates

(f) xH2O = 0.20:
Absorption dominates

Figure 5.61: Distribution of radiative source term in the median plane (Y = 0.5) at
different mole fractions of water vapor. Sources are normalized by 4σT4

re f /L.
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The distribution of the radiative source term (see figure 5.61) shows that radia-
tion affects the fluid in the upper half of the cavity, inside the plume and in a limited
region around the hot vertical surfaces. In particular, there is no significant radiative
effect near the vertical bounding walls in the lower half of the cavity (which differs
from the homogeneous cases). This explains the unchanged thermal distribution in
this region.
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(a) xH2O = 0.05:
Transparent medium

(b) xH2O = 0.05: Real gas

(c) xH2O = 0.10:
Transparent medium

(d) xH2O = 0.10: Real gas

(e) xH2O = 0.20:
Transparent medium

(f) xH2O = 0.20: Real gas

Figure 5.62: Concentration
C−Cre f
Ch−Cl

field in the median plane of the cavity (Y = 0.5) at
different mole fractions of water vapor.

Figures 5.62 displays the concentration distribution in the median plane (Y =
0.5) of the cavity. This field essentially remains insensitive to gas radiation.
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(a) xH2O = 0.05 : Z=0.8 (b) xH2O = 0.10 : Z=0.8 (c) xH2O = 0.20 : Z=0.8

(d) xH2O = 0.05 : Z=0.5 (e) xH2O = 0.10 : Z=0.5 (f) xH2O = 0.20 : Z=0.5

(g) xH2O = 0.05 : Z=0.1 (h) xH2O = 0.10 : Z=0.1 (i) xH2O = 0.20 : Z=0.1

Figure 5.63: Concentration
C−Cre f
Ch−Cl

profiles along different Z-crosslines in the median
plane (Y = 0.5) at different average mole fractions of water vapor.
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(a) xH2O = 0.05 : X=0.2 or
0.8

(b) xH2O = 0.10 : X=0.2 or
0.8

(c) xH2O = 0.20 : X=0.2 or
0.8

(d) xH2O = 0.05 : X=0.5 (e) xH2O = 0.10 : X=0.5 (f) xH2O = 0.20 : X=0.5

Figure 5.64: Concentration
C−Cre f
Ch−Cl

profiles along different X-crosslines in the median
plane (Y = 0.5) at different average mole fractions of water vapor.
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(a) xH2O = 0.05:
Transparent medium

(b) xH2O = 0.05: Real gas

(c) xH2O = 0.10:
Transparent medium

(d) xH2O = 0.10: Real gas

(e) xH2O = 0.20:
Transparent medium

(f) xH2O = 0.20: Real gas

Figure 5.65: Velocity vector in the median plane of the cavity (Y = 0.5) at different mole
fraction of water vapor. Velocities are normalized by Ure f .
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Figure 5.65 represents the velocity field in the median plane (Y = 0.5) of the
cavity. A global circulation is established within the enclosure, combining a climb-
ing plume above the hot obstacle and descending boundary layers along the verti-
cal walls. Including gas radiation does not significantly change these distributions
(compared to the transparent cases).

(a) xH2O = 0.05 : Z=0.8 (b) xH2O = 0.10 : Z=0.8 (c) xH2O = 0.20 : Z=0.8

(d) xH2O = 0.05 : Z=0.5 (e) xH2O = 0.10 : Z=0.5 (f) xH2O = 0.20 : Z=0.5

(g) xH2O = 0.05 : Z=0.1 (h) xH2O = 0.10 : Z=0.1 (i) xH2O = 0.20 : Z=0.1

Figure 5.66: Vertical velocities w
Ure f

profiles at different Z-crosslines in the median plane
(Y = 0.5) at different average mole fractions of water vapor.

Cinematic profiles along horizontal and vertical crosslines (see figure 5.66 and
5.67) show that, in the transparent cases, as the proportion of water vapor increases,
the magnitude of the velocity also augments. However, introducing gas radiation
does not impact the flow characteristics. At low molar fraction of water vapor, al-
though the thermally driven force dominates over the mass one, the change in the
temperature is too weak to bring any significant alteration to the momentum source
and, in turn, to the dynamical structure. As xH2O rises up to 0.10 and then 0.20, the
domination of the thermally induced force decreases and that of mass origin now
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prevails. Consequently, gas radiation has weaker and weaker impact on the dy-
namic structure in the enclosure.

(a) xH2O = 0.05 : X=0.2 (b) xH2O = 0.10 : X=0.2 (c) xH2O = 0.20 : X=0.2

Figure 5.67: Horizontal velocities u
Ure f

profiles at different X-crosslines in the median
plane (Y=0.5) at different average mole fractions of water vapor.

5.2.1.2 Heat and Mass Transfer

(a) xH20 = 0.05 (b) xH20 = 0.10 (c) xH20 = 0.20

Figure 5.68: Local convective Nusselt number along a vertical centerline of any lateral
wall of the cavity.

Figure 5.68 displays the distribution of the convective Nusselt number along the
center line of any vertical wall of the cavity. It is observed that gas radiation re-
duces this parameter. Indeed, although the dynamic structure remains unchanged
at all the considered mole fractions, the temperature of the fluid close to the vertical
boundaries is reduced by emission. It decreases the thermal gradient and this effect
gets stronger as the quantity of water vapor increases.
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(a) xH20 = 0.05 (b) xH20 = 0.10 (c) xH20 = 0.20

Figure 5.69: Local convective Nusselt number along a vertical center line of each lateral
surfaces of the obstacle.

In contrast to the homogeneous case, the convective Nusselt number slightly
increases along the vertical hot surfaces when radiation is taken into account (see
figure 5.69). In this region, the thermal gradient augments due to emission of the
gas layers close to the hot surfaces (which reduces the fluid temperature).

(a) xH20 = 0.05 (b) xH20 = 0.10 (c) xH20 = 0.20

Figure 5.70: Local convective Nusselt number along an horizontal centerline of the
obstacle top surface.

On the horizontal hot surface, the convective Nusselt number augments when
gas radiation is considered (see figure 5.70) since the nearby fluid is cooled down by
emission (as evidenced by negative values of radiative source in figures 5.61 a,c,e).
As a result, the thermal gradient is enhanced, inducing a higher value of the convec-
tive Nusselt number.

The values of averaged convective Nusselt numbers and average total Nusselt
numbers4, which are defined as Nu = 1

A

∫
A Nu(s)dA, are listed in the tables below:

4These parameters are defined in chapter 2
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x(%) Convective Nusselt number Total Nusselt number
Transparent Participating Transparent Participating

5 1.82 1.56 12.62 12.59
10 1.96 1.53 12.77 12.71
20 2.20 1.55 13.02 12.92

Table 5.2: Average convective and total Nusselt numbers on any vertical cavity wall:
double diffusive convection and radiation in an air− H2O mixture.

x(%) Convective Nusselt number Total Nusselt number
Transparent Participating Transparent Participating

5 41.77 42.07 255.56 255.29
10 45.27 45.67 259.12 258.45
20 50.93 51.55 264.95 263.64

Table 5.3: Average convective and total Nusselt numbers on any obstacle vertical
surface: double diffusive convection and radiation in an air− H2O mixture.

x(%) Convective Nusselt number Total Nusselt number
Transparent Participating Transparent Participating

5 14.72 15.65 240.51 239.27
10 15.32 17.19 241.18 238.88
20 16.63 19.82 242.67 238.33

Table 5.4: Average convective and total Nusselt numbers on the obstacle horizontal
surface: double diffusive convection and radiation in an air− H2O mixture.

Regarding the transparent cases, tables 5.2, 5.3 and 5.4 show that, as the propor-
tion of water vapor increases, the mean convective Nusselt number is risen up along
all active surfaces. This comes from the speed up of the fluid motion as mentioned
above. When gas radiation takes place, although the dynamic structure remains un-
changed, the convective thermal transport is now altered. At the vertical cold walls,
this quantity is dramatically reduced (see figure 5.68) and keeps almost the same
value for all the considered molar fractions (the reason is the stronger and stronger
radiative emission in the upper part of the cavity as the quantity of water vapor
increases, which lessens the thermal gradient). At the hot surfaces, the convective
transport is pulled up (by an increase of the thermal gradient due to emission). Be-
sides, radiative transfer is attenuated by the absorption of the medium. These effects
induce the drop of the average total Nusselt numbers.

Regarding mass transfer, the average Sherwood number, which is defined as
Sh = 1

A

∫
A Sh(s)dA is insensitive to radiation (see tables 5.5, 5.6 and 5.7), since radia-

tive transport has no significant impact on the flow structure (see figures 5.66 and
5.67).
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x(%) Sherwood number
Transparent Real gas mixture

5 1.785 1.783
10 1.906 1.905
20 2.106 2.104

Table 5.5: Averaged Sherwood number on any cavity lateral wall: double diffusive
convection and radiation in an air− H2O mixture.

x(%) Sherwood number
Transparent Real gas mixture

5 41.144 41.204
10 44.081 44.081
20 48.850 48.812

Table 5.6: Averaged Sherwood number on any obstacle vertical wall: double diffusive
convection and radiation in an air− H2O mixture.

x(%) Sherwood number
Transparent Real gas mixture

5 13.769 13.731
10 14.283 14.246
20 15.239 15.198

Table 5.7: Averaged Sherwood number on the obstacle horizontal wall: double
diffusive convection and radiation in an air− H2O mixture.
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5.2.2 Air− CO2 mixture

We now turn to a case of the double diffusive convection coupled to gas radiation
in an air− CO2 mixture. As introduced in the beginning of the chapter, this combi-
nation generates opposite flows inside the cavity. The characteristic dimensionless
numbers related to this configuration are listed in the table 5.8. The average mole
fractions of the CO2 are still defined as x =

Cre f ∗R∗Tre f
P and are given two different

values: 10% and 20% . It leads to two types of fluid motion: balanced thermal and
mass effects (|N| ≈ 1) and mass governed (|N| > 1).

x (%) N Ra Pr Le Pl
10 -1.102 5.269 · 106 0.716 1.282 4.338 · 10−3

20 -2.100 5.958 · 106 0.717 1.204 4.284 · 10−3

Table 5.8: Configuration parameters: air− CO2 mixture

The case with 5% concentration of CO2 is not studied here. It was found to gen-
erate a non-symmetric flow (in presence of radiation) in a symmetric configuration.
Its characteristics deserve a more focused study.

5.2.2.1 Mixture at xCO2 = 0.10
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(b) Air− CO2 mixture at
xH2O = 0.10

Figure 5.71: Time evolution of temperature at the center point of the cavity
(X, Y, Z) = (0.5, 0.5, 0.5) at xCO2=0.10

In the transparent case, we receive an unsteady signal in the cavity, which is
illustrated by the time evolution of the temperature at the center point ((X, Y, Z) =
(0.5, 0.5, 0.5)) (see figure 5.71a). However when radiation is introduced, the flow
converges again towards a steady state.
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(a) Tranparent medium:
t = 1

(b) Participating medium:
t = 1

(c) Tranparent medium:
t = 666

(d) Participating medium:
t = 666

Figure 5.72: Flow lines on the median plane of the cavity (Y = 0.5) at different instants.

In this configuration, the temperature diffuses faster than the pollutant (Le > 1).
Therefore, close to the vertical surfaces of the obstacle, the fluid is initially heated
more quickly than loaded in CO2. As a result, in the transparent case at t = 1, the
buoyancy force of mass origin is less dominant than the thermal one in these regions
(the large thermally driven flow cells with the small mass governed ones in the cor-
ners are presented in the figure 5.72 a). As time elapses, the mass driven motion
dominates but only weakly (|N| = 1.102) (for instance, see figure 5.72 c at t = 666).
The fluid circulations driven by these two effects unpredictably interact and create
the fluctuations inside the cavity. Simultaneously, in the upper part of the enclosure,
the increase of concentration in the plume axis also restraints the vertical motion and
this contributes to the observed oscillation.
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(a) Time evolution of
temperature

(b) Power spectrum

Figure 5.73: Time evolution and power spectrum of the temperature signal at the point
(X, Y, Z) = (0.5, 0.5, 0.5) in temporal range [400 : 3000] at xCO2 = 0.10: transparent

medium.

Several authors have found a similar flow pattern in differentially heated cavi-
ties (N = −1.102 and Le = 1.282), namely a large thermal recirculation in the center,
and mass driven cells in the corners ([157], [158], [159]). Such configurations are
likely to yield oscillatory solutions attributed to the thermosolutal instability. This
phenomenon is induced by a local and abrupt variation in fluid density caused by
a uniform "bubble" bursting in temperature or concentration (see figure 5.74). Com-
pared to their works, we observe the similar patterns in our configuration: large
thermally induced flow cells above the obstacle and the mass driven ones in the
lower part of the cavity. On the other hand, the spectrum analysis of the temperature
signal in temporal range [400 : 3000] shows that there are many frequencies which
govern the fluctuations in the cavity (see figure 5.73). They come from the periods
which are comparable to the time scale of thermal diffusion through the temperature
boundary layer thickness (δt), δt

α . This parameter corresponds to the dense zone of
the temperature contours ([158]) (see figure 5.74). For instance, the thermal bound-
ary layer thickness determined at t = 775 is δt = 0.066(m) (mean value of boundary
layer thicknesses determined from two cavity vertical walls which are represented in
the figure 5.75). The frequency calculated from this value is comparable to the most
significant one observed in the figure 5.73 b: f = 0.00615. However, the plot of the
thermal field at different instants in figure 5.74 do not show any periodic behavior.
We, therefore, conclude that the flow inside the cavity is turbulent with a dominant
frequency, which could be related to the thermosolutal instability rather than other
mechanisms.
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(a) Transparent medium:
t = 764

(b) Tranparent medium:
t = 766

(c) Tranparent medium:
t = 769

(d) Tranparent medium:
t = 771

(e) Tranparent medium:
t = 773

(f) Tranparent medium:
t = 775

(g) Tranparent medium:
t = 777

(h) Tranparent medium:
t = 780

(i) Tranparent medium:
t = 782

(j) Tranparent medium:
t = 784

(k) Tranparent medium:
t = 786

(l) Tranparent medium:
t = 789

Figure 5.74: Thermal field
T−Tre f
Th−Tc

of the cavity (Y = 0.5) at different instants.
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Figure 5.75: Temperature
T−Tre f
Th−Tc

profile at Z = 0.5 in the median plane at t = 775

When gas radiation is introduced, initially at t = 1, we do not find the same
structure as in the transparent case (see figure 5.72 b). Radiation, in this situation,
decreases the temperature of the fluid layers along the vertical surfaces of the obsta-
cle (see figure 5.76) due to the domination of emission, see figure 5.77 a for negative
values of radiative source. Consequently, it reduces the thermal force near these
walls and indirectly, intensifies the concentration one. As a result, we clearly ob-
serve the domination of the mass driven flow around the obstacle, while the ther-
mally induced circulation occurs in the rest of the enclosure (see figure 5.72 b). As
time elapses, the mass origin effect completely dominates in the lower part of the
cavity (for instance, see figure 5.72 d for flow lines at t = 666). But in the upper part,
the mass force (due to the increase of the concentration in the plume axis) is now
balanced by the thermal one. The reason is the enhancement of the temperature by
absorption (see figure 5.77 b for positive values of radiative source) which increases
the thermal gradient. We, therefore, conclude that, radiation stabilizes the flow.

Figure 5.76: Temperature
T−Tre f
Th−Tc

profile at Z = 0.1 in the range X = [0.35 : 0.65] at t = 1
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(a) Emission dominates (b) Absorption dominates

Figure 5.77: Distribution of radiative source term in the median plane (Y = 0.5) at
xCO2 = 0.10. Sources are normalized by 4σT4

re f /L
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5.2.2.2 Mixture at xCO2 = 0.20

(a) Transparent medium (b) Real gas

Figure 5.78: Velocity vector in the median plane of the cavity (Y = 0.5) at xCO2 = 0.20.
Velocities are normalized by Ure f

Figure 5.78 displays the velocity field in the median plane of the enclosure (Y =
0.5). In both cases, the flow is driven by the mass gradient (fluid circulations in the
lower half of the cavity). For better analyzing the change in the dynamic structure,
we investigate the velocities profiles along the different crosslines (see figures 5.79
a,b,c and 5.80 a). At low level (Z = 0.1), there exists a nearly motionless zone, which
separates the descending boundary layers along the obstacle and those ascending
along the cavity walls. As radiation is considered, the same situation is found ex-
cept a slight decrease of vertical velocity in the region close to the obstacle (see fig-
ure see figures 5.79 a). Indeed, the presence of radiation increases temperature (by
absorption). Therefore, the thermal gradient is strengthened and weakens the dom-
ination of mass effect, resulting in the slow down of the fluid circulation near the
bottom (see figure 5.80 a). At intermediate altitude (Z = 0.5), in the transparent
medium, although we can see a complex flow with a weak thermal plume in the
center and upward boundary layers near the cold walls, mass gradient still governs
the fluid motions. As radiation is taken into account, the impact of thermal gradient
increases and exceeds the mass one (due to radiative absorption). The changes are
obvious (compared to the velocity magnitude in this region): the significant decel-
eration of the fluid layers next to the cold walls and a stronger thermal plume (see
5.79 b). At high level (Z = 0.8), this tendency is more pronounced (see 5.79 c). We
also observe the acceleration of the boundary layer at the ceiling, while it was nearly
an unmoving region in the transparent medium (see figure 5.80 a). When radiation
is considered, the mass driven flow is totally replaced by the thermal one (upward
plume and downward bounding layers). However, these changes are not significant
when comparing to the velocity magnitude in the lower part of the enclosure.
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(a) Z = 0.1: Vertical
velocity

(b) Z = 0.5: Vertical
velocity

(c) Z = 0.8: Vertical
velocity

(d) Z = 0.1: Temperature (e) Z = 0.5: Temperature (f) Z = 0.8: Temperature

(g) Z = 0.1: Concentration (h) Z = 0.5: Concentration (i) Z = 0.8: Concentration

Figure 5.79: Vertical velocity w
Ure f

, temperature
T−Tre f
Th−Tc

and concentration
C−Cre f
Ch−Cl

profiles
along different Z-crosslines in the median plane (Y = 0.5) at xCO2 = 0.20
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Here (Z = 0.1), radiation makes the temperature decrease near the bounding
vertical and bottom walls but slightly increase near the obstacle lateral surfaces (see
figures 5.79 d, 5.80 b). In details, the fluid close to the cold walls emits more than
it absorbs (see figure 5.82 a for negative values of radiative source term), therefore,
reduces its thermal levels. At intermediate and high level (Z = 0.5; 0.8), compared
to the transparent case, the temperature is marginally leveled up (see figures 5.79 e,f
and 5.80 c). The reason is that the domination of radiative absorption over emission
in the region above the obstacle (see figure 5.82 b for positive values of radiative
source term) strengthens the thermal plume which brings more fluid at high tem-
perature toward the ceiling of the cavity.

(a) X = 0.2

(b) X = 0.2 (c) X = 0.5

(d) X = 0.2 (e) X = 0.5

Figure 5.80: Horizontal velocity u
Ure f

, temperature
T−Tre f
Th−Tc

and concentration
C−Cre f
Ch−Cl

profiles along different X-crosslines in the median plane (Y = 0.5) at xCO2 = 0.20
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(a) Transparent medium (b) Real gas

Figure 5.81: Thermal field
T−Tre f
Th−Tc

in the median plane of the cavity (Y = 0.5) at
xCO2 = 0.20

(a) Emission dominates (b) Absorption dominates

Figure 5.82: Distribution of radiative source term in the median plane (Y = 0.5) at
xCO2 = 0.20. Sources are normalized by 4σT4

re f /L

(a) Transparent medium (b) Real gas

Figure 5.83: Concentration field
C−Cre f
Ch−Cl

in the median plane of the cavity (Y = 0.5) at
xCO2 = 0.20



154 Chapter 5. Double Diffusive Convection Coupled to Gas Radiation

Regarding the concentration distribution, the slow down of the mass driven flow
in the lower part of the cavity (Z = 0.1) induces a slight decrease of this quantity
near the cavity vertical walls (see figure 5.79 g). However, in the upper part, the
enhancement of the thermal plume carries more high loaded fluid upward, resulting
in the increase of the concentration in these regions (see 5.79 h,i). The redistribution
of this field is also illustrated in figure 5.83.

(a) Transparent gas (b) Real gas

Figure 5.84: Iso-surface of the Q-criterion at the value 0.01 in the cavity at xCO2 = 0.20.
Values are normalized by U2

re f /L2

The Q-criterion illustrated in figure 5.84 shows that the presence of radiation
does not significantly modify the dynamic structure in the cavity.

5.2.2.3 Heat and Mass Transfer

Position Convective Nusselt number Total Nusselt number
Transparent Participating Transparent Participating

Cavity lateral wall 1.41 0.77 12.49 12.28
Obstacle vertical wall 27.22 27.84 246.46 241.66

Obstacle horizontal wall 32.46 33.50 264.01 262.33

Table 5.9: Average convective and total Nusselt number on active walls of the cavity
and of the obstacle for double diffusive convection and radiation in the air− CO2

mixture at xCO2 = 0.20

Table 5.9 represents the mean convective and total Nusselt numbers on the active
walls of the cavity and of the obstacle. When radiation is accounted for, the mean
convective Nusselt number decreases at the cavity walls. Conversely, it slightly in-
creases on the hot source surfaces. We recall that the fluid near the cold walls is
cooled down by emission, resulting in a decrease of the thermal gradient. On the
hot source horizontal surface, the average convective quantity is slightly augmented
(radiative emission lowers the temperature of the nearby fluid). Besides, the radia-
tive transfer is attenuated by absorption of the medium. Concerning the average
total Nusselt number, this quantity is lessened on all the active surfaces.
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Position Sherwood number
Transparent Real gas mixture

Cavity lateral wall 1.75 1.70
Obstacle vertical wall 34.68 33.53

Obstacle horizontal wall 36.40 35.84

Table 5.10: Averaged Sherwood number on active walls of the cavity and of the
obstalce for double diffusive convection in the air− CO2 mixture at xCO2 = 0.20

Introducing gas radiation slightly decreases the mass transfer inside the cavity
(see table 5.10). Indeed, although the thermal plume is reinforced in the upper part
of the cavity, which can raise up the concentration transport, it does not compensate
for the reduction in this quantity due to the slow down of the mass driven flow in
the lower part of the enclosure.

5.2.3 Synthesis

This section presents the study of the double diffusive convection coupled to the
radiation of a real gas mixture in a cavity hosting a hot obstacle. The composition
involves either H2O or CO2 which respectively induces cooperating or opposing
flows in the enclosure. The computations are carried out at different average mole
fractions of the absorbing species. The comparisons between the obtained results
and the reference solutions (transparent case) reveal the impacts of gas radiation of
the flow structure and heat and mass transfer, which are summarized as below:

• Air− H2O mixture
The presence of radiation does not influence the dynamic structure inside the
cavity at all the considered average mole fractions. Consequently, the concen-
tration field is found unchanged compared to the transparent case. However,
gas absorption lessens the thermal level at the intermediate and high level of
the enclosure.

Regarding the transport processes, radiation slightly reduces the convective
transfer on the bounding walls of the cavity. But it marginally increases this
quantitiy on the vertical surfaces of the obstacle and more significantly on the
hot upper face. Besides, radiative transfer is attenuated by absorption through
the medium, especially between the upper surface of the obstacle and the cav-
ity walls. In turn, the total heat transfer is lessened. Because the dynamic
behavior is not much altered when radiation is accounted for, the mass trans-
fer in the enclosure remains nearly unchanged.

• Air− CO2 mixture
In this configuration, at xCO2 = 0.10, in transparent medium, the turbulent
flow occurs with a domninant frequency which maybe due to the thermoso-
lutal instability in a transparent medium. However, when the gas radiation,
the fluid motion is stabilized. Radiation increases the thermal gradient which
balance the effect of the concentration one in the plume region.
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At xCO2 = 0.20, gas radiation tends to slow down the mass driven flow in the
lower part of the cavity but intensifies the thermal plume in the upper part.
In addition, it also alters the thermal field: a slight increase of temperature is
observed at intermediate and high levels and around the obstacle but a drop is
found near the region close to the lower part of the vertical walls. The modifi-
cation tendency in the concentration field is found similar for the thermal field
except a slight augmentation of this quantity near the floor. Besides, introduc-
ing radiation reduces the total thermal transfer: the convective part near the
vertical walls and the radiative transport along the obstacle upper surface. It
also slightly decreases the mass transfer.
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5.3 Conclusion

In this chapter, we analyze the influences of radiation of a gas mixture on the double
diffusive convection, using the gray gas assumption and real gas model. The com-
parisons between the obtained results and the reference solutions (transparent case)
reveal the transformations inside the enclosure which are summarized as:

• Cooperating flow

Introducing gas radiation does not significantly affect the concentration field.
It slightly accelerates the boundary layers but reduces the maximum veloc-
ity inside the plume. Volume radiation tends to thermally homogenize the
medium. It decreases the temperature in the upper half of the cavity.

Radiation slightly reduces the convective Nusselt number on the bounding
walls of the cavity. But it marginally increases these quantities on the verti-
cal surfaces of the obstacle and significantly augments those on the hot upper
face. Besides, radiative transfer is attenuated by absorption of the medium,
especially between the upper surface of the obstacle and ones of the cavity. In
turn, the total heat transfer is lessened. Because the dynamic behavior is not
much altered when radiation is accounted for, the mass transfer in the enclo-
sure remains nearly unchanged.

All these effects are strengthened when the medium becomes more absorbing
(in the considered range of optical thicknesses and molar fraction).

• Opposing flow

Generally, the movement in the lower part of the cavity is dominated by the
mass gradient but at medium and high levels, the thermal one governs the
flow. Radiation also intensifies the thermal plume. However, the increase of
concentration in the axis of the plume limits the vertical motion and causes it
to spread. In addition, gas radiation reduces the temperature in the regions
near the obstacle vertical surfaces. Above the source, temperature is gener-
ally reduced compared to transparent case. The alteration of the concentration
field are the same as for the thermal one except a slight increase of this quan-
tity near the vertical cold walls in the lower part of the cavity. These effects are
reinforced with the optical thickness.

Particularly, in the air−CO2 mixture, at xCO2 = 0.10, radiation plays the role of
stabilization of the unsteadiness found in the cavity when medium is consid-
ered transparent (due to the thermosolutal instability rather than other mech-
anisms).

Introducing radiation reduces the total thermal transfer: the part by convective
process near the vertical walls and the radiative transport along the obstacle
upper surface. In addition, it slightly decreases the mass transfer.
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Chapter 6

General Conclusion

In this thesis, we have numerically studied the influence of the radiation of gray gas
and real gas mixture on the pure thermal as well as double diffusive natural convec-
tion. The considered configuration is a 3D cavity containing a small cubical obstacle
located on its floor. This object is prescribed at a high temperature and high concen-
tration in species while the vertical walls of the enclosure are set at low temperature
and low concentration. The other horizontal surfaces of the cavity and the floor of
the obstacle are assumed adiabatic and impermeable. In addition, the active walls
are considered black while the rest are perfectly reflective. The enclosure is filled
with either a gray gas or a binary real gas mixture (air− H2O or air− CO2).

Due to the moderate variation in temperature and concentration, the convective
fluid motion inside the cavity is simulated using the Boussinesq approximation. The
fluid motion as well as the mass and thermal transport are simultated by Code Sat-
urne v5.0.4. In addition, the radiative transfer equation is solved using the built-in
Discrete Ordinates module of this code. However, some improvements in the gener-
ation of direction sets and a new SLW model for real gas mixtures have been added.
The compatibility and ability of the Code Saturne and our own model have been
validated with the previous results given in the references.

Different calculations on the coupled of thermal or double diffusive convection
with radiation of gray gas medium or real gas mixtures have been performed. Con-
cerning the thermal convention cases, different gray gases at various opacities and
an air− H20 mixture at three different molar fractions (5%, 10% and 20%) of the wa-
ter vapor have been accounted for. While for double diffusive situations, depending
on the mass to thermal buoyancy ratio (N), the fluid motions inside the cavity can
be classed into opposing or cooperating flows. Like in the thermal convection, the
calculation on the gray gas at several optical thicknesses and on real gas mixtures
(air − H2O and air − CO2) at different average mole fractions have been studied.
The main influences of gas radiation on natural convection are summarized as:

Coupling thermal convection and radiation

Generally, in the steady results using either gray gas assumption or real gas model,
introducing radiation non-uniformly accelerates the boundary layers of the enclo-
sure and of the hot obstacle. It also makes moving some parts of the motionless fluid
observed in the transparent cases. The thermal plume and its recirculation interfere
and create shear flow patterns. In addition, radiation reduces the temperature in the
upper half of the cavity, while, in the lower part, it lessens this quantity inside the
plume but slightly increases around. The heat transfer is also impacted by radiation.
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At the cold walls, the convective Nusselt numbers are risen up in the upper part but
dropped off in the lower half. At the obstacle horizontal surface, this quantity is sig-
nificantly increased. In turn, the total thermal transfer is reduced, especially the part
by convective process on the vertical walls and by the radiative attenuation due to
absorption along the obstacle upper surface. These impacts are enhanced with the
optical thickness. Particularly, in gray gas simulations, when the optical thickness
of the medium is unity, radiation yeilds a periodic flow. Its mechanism is due to
the formation and vanishing of small vortices right above the hot upper surface of
the obstacle and of the fluid flow cells in the regions next to the vertical walls of the
enclosure. Then, at τ = 2, the circulation becomes turbulent at Ra = 5 · 106.

Coupling double diffusive convection and radiation

Concerning the cooperating flows, in a gray gas mixture, the presence of volume ra-
diation slightly accelerates the boundary layers but reduces the maximum velocity
inside the plume. It tends to lower the temperature in the upper part of the cavity,
and thus, homogenizes the thermal field but a higher mass-to-thermal buoyancy ra-
tio has an opposite effect. In all considered cases, the concentration field remains in-
sensitive to radiation. In a real gas mixture (air− H2O), the alteration of the thermal
distribution is similar as for gray gas. However, these changes do not bring any no-
table modifications to the dynamic and the concentration fields. Consequently, the
total heat exchange is reduced, while the mass transfer remains unchanged, com-
pared to the transparent medium.

Regarding the cooperating flows in gray gas mixtures, firstly, at N = −1, radia-
tion breaks the perfect symmetry between the thermal and the concentration fields.
It sets the stagnant fluid (in transparent case) into motion with a mass driven move-
ment in the lower part and a thermal one in the upper part of the cavity. With the
increase of the optical thickness, radiation intensifies the thermal plume. However,
the increase of concentration in the axis of the plume limits the vertical motion and
causes it to spread. In addition, gas radiation reduces the temperature in the regions
near the obstacle lateral surfaces. Above the source, the temperature is generally
reduced compared to the transparent case. The concentration field is modified in
the same manner as the thermal one, except a slight increase of this quantity near
the vertical cold walls in the lower part of the cavity. At N = −2, gas radiation still
affects the dynamic, the thermal and the concentration field, but with a weaker am-
plitude because of the domination of the mass gradient. In the air− CO2 mixture, at
xCO2 = 0.10, accounting for radiation stabilizes the flow, which, in the transparent
case, was turbulent (with a dominant frequency which maybe due to the thermoso-
lutal instability). At xCO2 = 0.20, the modifications tendencies are similar as in a gray
gas mixture when mass forces dominate: a slight reinforcement of thermal plume
but a slow down of mass driven motion. Concerning the heat and mass transfer,
considering gas radiation slightly lessens these quantities.

Perspective

The performed studies reveal the effects of a gas radiation on flow structures and on
heat and mass transfer. In perspective, the following points maybe considered:
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• Gas mixture with more than two components: In real context of a combus-
tion, the diffusing gas mixture contains many components that can absorb
and emit radiation. Therefore, it is necessary to study simultaneously the ef-
fects of a multi-component gas mixture to the flow structure and heat transfer.
This would involve a modification of the gas radiation model to include more
than one absorbing species, through the multiplication method, for instance
Solovjov and Webb [160].

• Turbulence regime. With larger temperature gradients or in larger enclosures,
the Rayleigh number increases, turning the flow to transition or fully turbu-
lent behaviors. The influences of gas radiation may switch on the flow char-
acteristics (threshold values of Ra, for instance) and the turbulent quantities
(intensities, frequencies, correlations) are remarkable problems. The question
of a proper modeling of the turbulent-radiation interation may also arise.

• Ambient environment. These computations can be applied for the configura-
tion containing a lower value of the reference temperature, of the temperature
difference and of the average mole fraction of pollutant, which simulates the
realistic conditions in the building environment. At room temperature, the
concentration of radiant species are low (H2O, especially) but may have a sig-
nificant role over large distances (several meters).

• Non-Boussinesq simulations. For highly anisothermal and heterogeneous gas
mixtures, the thermo-physical properties may significantly vary from one point
to another. A non-Boussinesq model is then necessary to correctly simulate the
flow behavior. A low Mach model could be implemented.

• Varying the cavity parameters. Cavity size, ratio between the enclosure and
the obstacle are key parameters, as well as the surface emissivities.

• Experimental approach. For evaluating the results of the numerical researches,
the realistic way is the comparison with experiments. The results from the
experiments can help validating the numerical studies. It however remains a
challenge to build a device where gas concentration may be prescibed at the
boundaries.

• Parallel calculation. The radiative transfer equation can be independently solved
for each gray gas and each discrete direction and then, the values of radiative
source term (at each cell) and of the incident flux (at each boundary control
surface) are summed up. Therefore, these calculations can be simultaneously
carried out with the help of parallel computing libraries (OpenMP, Cuda,...). A
pioneering work in that field was performed by Cadet [161].
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Appendix A

Calculation of the physical
properties of a binary mixture

This appendix is using material originating from S.Laouar-Meftah’s PhD thesis [32].
The thermal physical properties of the air − CO2 or air − H2O mixtures are calcu-
lated at Tre f and Cre f (the total pressure P is constant and equals the atmosphere
pressure) by using the perfect gas law which are described below. In which, the in-
dex i designates a pure absorbing component of the mixture (CO2 or H2O) whose
thermal physical properties at reference state (Tre f , Cre f ) are given as below:

• Molar density of mixture

M = (1− xi)Mair + xi Mi (A.1)

xi and Mi stand for respectively the molar fraction and molar density of ab-
sorbing component i of the mixture.

• Mass fraction of the absorbing component i of the mixture

yi = xi
Mi

M
(A.2)

• Density of the mixture

ρ0 =
PM

RTre f
(A.3)

• Specific heat of the mixture

Cp = (1− yi)Cp,air + yiCp,i (A.4)

• Coefficients of thermal and mass expansion
Thermal expansion coefficient:

βT = − 1
ρ0

( ∂ρ

∂T

)
P,C
≈ 1

Tre f
(A.5)

Mass expansion coefficient:

βC = − 1
ρ0

( ∂ρ

∂C

)
P,T
≈ Mair −Mi

ρ0
(A.6)
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• Thermal conductivity and dynamic viscosity of the mixture
The thermal conductivity (λ) and dynamic viscosity (µ) of the mixture are es-
timated by the formula of Wilke-Wassiljewa ([162]):

f =
(1− xi) fair

(1− xi)φair,air + xiφair,i
+

xi fi

(1− xi)φi,air + xiφi,i
(A.7)

where
φair,air = φi,i = 1 (A.8)

φair,i =

[
1 +

(
fair
fi

)0.5(Mair
Mi

)0.25]2

[
8
(

1 + Mair
Mi

)]0.5 (A.9)

φi,air =

[
1 +

(
fi

fair

)0.5( Mi
Mair

)0.25]2

[
8
(

1 + Mi
Mair

)]0.5 (A.10)

and with f is λ or µ
In addition, the thermal diffusivity (α) and kinematic viscosity (ν) are obtained
from the expressions:

α =
λ

ρ0Cp
(A.11)

ν =
µ

ρ0
(A.12)

• Mass diffusivity of a species into the environment (in this case CO2/H2O into
air) is calculated by the expression of Fuller and al ([162]):

Di(T, P)
Di(T1, P1)

=
P
P1

( T
T1

)1.75
(A.13)

where i is either CO2 or H2O and, T1 = 317K, P1 = 1 atm, DCO2 = 1.77× 10−5

m2/s and DH2O = 2.88× 10−5 m2/s
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Appendix B

Implantation of our model in Code
Saturne

We here refer to Code Saturne version 5.0.4.

B.1 Change in the directions set

Subroutine: cs_rad_transfer_dir(void) in file cs_rad_transfer_dir.c
In this file, we have changed the values associated to discrete directions and

their weights for the S8 quadrature by the ones provided in Balsara [27]. They are
presented below:

Parameter Old value New value
vec[0] 0.1422555 0.1691276797
vec[1] 0.5773503 0.5773502692
vec[2] 0.8040087 0.7987881413
vec[3] 0.9795543 0.9709745908

weight[0] 0.0992284 0.1598388991
weight[1] 0.1712359 0.146138939
weight[2] 0.4617179 0.173346115

Table B.1: Changes in the S8 quadrature

B.2 Insertion of our code into the radiative module of Code
Saturne

First, we list here our own developed codes. They are motivated by the works of V
P Solojov and D Lemonnier.

file: user.h: new library to declare new variables and functions.

#ifndef __USER__

#define __USER__

#include "cs_defs.h"

#include "stdio.h"

BEGIN_C_DECLS

int speca; // 1: H20 2:CO2

int Nggmax; // Number of gray gas
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int P1;

cs_real_t Ru ; //universal gas constant

cs_real_t xaref ; // reference molar fraction

cs_real_t Tref ; // reference temperature

cs_real_t P ; // Normalized pressure

cs_real_t *ka; // reference absorption coeffiecient

cs_real_t *xa; // cell center molar fraction for first absorbant

↪→ component

cs_real_t *xa1;

cs_real_t kmin; // min absorption cross section

cs_real_t kmax; // max absorption cross section

cs_real_t *xabd; // boundary molar fraction for first absorbant

↪→ component

cs_real_t *xabd1;

cs_real_t *tempbd; // boundary temperature

cs_real_t Nref; // reference molar density

cs_real_t C[71]; // discrete absorption cross section for tabulated

↪→ data

cs_real_t PP[10]; // discrete pressure for tabulated data

cs_real_t T[28]; // discrete temperature for tabulated data

cs_real_t YY[9]; // discrete molar fraction for tabulated data

cs_real_t Fdata1[500976]; // Storage of ALBDF

cs_real_t Fdata2[500976];

cs_real_t Fdata3[55664];

cs_real_t Fdata4[55664];

cs_real_t xgs[100]; // parameter of gaussian quadrature

cs_real_t wgs[100];

// initialize required data for SLW model

void setup_uservalue(void);

// locate index of a value of an array

int locate(cs_real_t xx[],

int n,

cs_real_t x);

// Generate parameter of gaussian quadrature

void gauss(int Ngmax,

cs_real_t x[],

cs_real_t w[]);

// Import necessary spectral data

void data_read(cs_real_t Fdata1[],

cs_real_t Fdata2[],

int molecule,

int P1);
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// Initialize discrete values of concentration, pressure, temperature

↪→ and molar fraction

void data_set(void);

// Calculate ALBDF at a thermodynamic state of a binary air-absorbnant

↪→ component mixture

cs_real_t FCC(cs_real_t Cabs,

cs_real_t Tg,

cs_real_t Tb,

cs_real_t Y,

cs_real_t P,

int P1,

int molecule,

cs_real_t C[],

cs_real_t Fdata1[],

cs_real_t Fdata2[]);

// Calculate ALBDF for general case.

cs_real_t FMIX(cs_real_t Cabs,

cs_real_t Tg,

cs_real_t Tb,

cs_real_t Y1,

cs_real_t Y2,

cs_real_t P,

int P1,

cs_real_t C[]);

// Determine the absorption cross section equivalent to a ALBDF value

↪→ at a thermaldynamic state

cs_real_t CFMIX(cs_real_t F,

cs_real_t Tg,

cs_real_t Tb,

cs_real_t Y1,

cs_real_t Y2,

cs_real_t P,

int P1,

cs_real_t C[]);

// SLW model based on Rank-Correlated associated to the lookup table

↪→ method

void SLW_RC_LBL(cs_real_t tempk[],

cs_real_t tempbd[],

int Ngmax,

cs_real_t Tref,

cs_real_t Y1REF,

cs_real_t Y2REF,

cs_real_t Y1LOC[],

cs_real_t Y2LOC[],

cs_real_t Y1FLOC[],

cs_real_t Y2FLOC[],

unsigned long n_cells,
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unsigned long n_faces,

cs_real_t kgi[],

cs_real_t agi[],

cs_real_t agbi[]);

END_C_DECLS

#endif

************************************************************************
file: user.c: an user file to store user defined functions.

#include "cs_defs.h"

#include "stdio.h"

#include "math.h"

#include "user.h"

#include "bft_error.h"

#include "bft_mem.h"

#include "bft_printf.h"

// This function defines the necessary parameters for SLW model

void setup_uservalue(void){

speca = 2; // 1: H2O 2: CO2

Nggmax = 5;// Number of gray gas

P = 1; // Normalized pressure

Ru = 8.31451; // Universal gas constant

Tref = 555.0; // Reference temperature

xaref = 0.10; // Initial mole fraction

}

// LOOK-UP TABLE METHOD

// determine the location of a value in a sorted list

int locate(cs_real_t xx[],

int n,

cs_real_t x){

unsigned long ju,jm,jl;

int ascnd;

int j;

jl = 0;

ju = n+1;

ascnd = (xx[n] >= xx[1]);

while (ju-jl > 1){

jm = (ju+jl)/2;

if (x >= xx[jm] == ascnd)

jl = jm;

else

ju = jm;

}

if (x == xx[0]) j = 0;
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else if (x == xx[n]) j = n-1;

else j = jl;

return j;

}

// Gaussian quadratures with order of Ngmax

void gauss(int Ngmax,

cs_real_t x[],

cs_real_t w[]){

int m,i,j,n;

double z1,z,zm,pp,p2,p3,p1,x2,x1,xm,xl;

double eps = 3e-14;

double pi = 2.0*asin(1.0);

x1 = -1.0;

x2 = 1.0;

n = 2*Ngmax;

m = (n+1)/2;

xm = 0.5*(x2+x1);

xl = 0.5*(x2-x1);

for (i = 1; i <= m; i++)

{

z=cos(pi*(i-0.25)/(n+0.5));

do{

p1=1.0;

p2=0.0;

for ( j = 1; j <= n; j++)

{

p3=p2;

p2=p1;

p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;

}

pp=n*(z*p1-p2)/(z*z-1.0);

z1=z;

z=z1-p1/pp;

}while(fabs(z-z1)>eps);

x[i]=xm-xl*z;

x[n+1-i]=xm+xl*z;

w[i]=2.0*xl/((1.0-z*z)*pp*pp);

w[n+1-i]=w[i];

}

for ( i = 1; i <= n; i++)

{

x[i]=x[n/2+i];

w[i]=w[n/2+i];

}
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}

// import data to temporary arrays

void data_read(cs_real_t Fdata1[],

cs_real_t Fdata2[],

int molecule,

int P1){

FILE *f1;

FILE *f2;

unsigned long n,i;

if (molecule == 1){

if (P1 == 0){

f1 = fopen("/ALBDF_DATA/h2o_p0_1.txt","r");

f2 = fopen("/ALBDF_DATA/h2o_p0_25.txt","r");

}

if (P1 == 1){

f1 = fopen("/ALBDF_DATA/h2o_p0_25.txt","r");

f2 = fopen("/ALBDF_DATA/h2o_p0_5.txt","r");

}

if (P1 == 2){

f1 = fopen("/ALBDF_DATA/h2o_p0_5.txt","r");

f2 = fopen("/ALBDF_DATA/h2o_p1.txt","r");

}

if (P1 == 3){

f1 = fopen("/ALBDF_DATA/h2o_p1.txt","r");

f2 = fopen("/ALBDF_DATA/h2o_p2.txt","r");

}

if (P1 == 4){

f1 = fopen("/ALBDF_DATA/h2o_p2.txt","r");

f2 = fopen("/ALBDF_DATA/h2o_p4.txt","r");

}

if (P1 == 5){

f1 = fopen("/ALBDF_DATA/h2o_p4.txt","r");

f2 = fopen("/ALBDF_DATA/h2o_p8.txt","r");

}

if (P1 == 6){

f1 = fopen("/ALBDF_DATA/h2o_p8.txt","r");

f2 = fopen("/ALBDF_DATA/h2o_p15.txt","r");

}

if (P1 == 7){

f1 = fopen("/ALBDF_DATA/h2o_p15.txt","r");

f2 = fopen("L/ALBDF_DATA/h2o_p30.txt","r");

}

if (P1 > 7){

f1 = fopen("/ALBDF_DATA/h2o_p30.txt","r");

f2 = fopen("/ALBDF_DATA/h2o_p50.txt","r");

}

for (i = 0; i < 500976; i++){

fscanf(f1,"%lf",Fdata1+i);

fscanf(f2,"%lf",Fdata2+i);

}

fclose(f1);
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fclose(f2);

}

if (molecule == 2){

if (P1 == 0){

f1 = fopen("/ALBDF_DATA/co2_p0_1.txt","r");

f2 = fopen("/ALBDF_DATA/co2_p0_25.txt","r");

}

if (P1 == 1){

f1 = fopen("/ALBDF_DATA/co2_p0_25.txt","r");

f2 = fopen("/ALBDF_DATA/co2_p0_5.txt","r");

}

if (P1 == 2){

f1 = fopen("/ALBDF_DATA/co2_p0_5.txt","r");

f2 = fopen("/ALBDF_DATA/co2_p1.txt","r");

}

if (P1 == 3){

f1 = fopen("/ALBDF_DATA/co2_p1.txt","r");

f2 = fopen("/ALBDF_DATA/co2_p2.txt","r");

}

if (P1 == 4){

f1 = fopen("/ALBDF_DATA/co2_p2.txt","r");

f2 = fopen("/ALBDF_DATA/co2_p4.txt","r");

}

if (P1 == 5){

f1 = fopen("/ALBDF_DATA/co2_p4.txt","r");

f2 = fopen("/ALBDF_DATA/co2_p8.txt","r");

}

if (P1 == 6){

f1 = fopen("/ALBDF_DATA/co2_p8.txt","r");

f2 = fopen("/ALBDF_DATA/co2_p15.txt","r");

}

if (P1 == 7){

f1 = fopen("/ALBDF_DATA/co2_p15.txt","r");

f2 = fopen("/ALBDF_DATA/co2_p30.txt","r");

}

if (P1 > 7){

f1 = fopen("/ALBDF_DATA/co2_p30.txt","r");

f2 = fopen("/ALBDF_DATA/co2_p50.txt","r");

}

for (i = 0; i < 55664; i++){

fscanf(f1,"%lf",Fdata1+i);

fscanf(f2,"%lf",Fdata2+i);

}

fclose(f1);

fclose(f2);

}

}

// import data

void data_set(void){
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for (int i = 0; i < 71; i++)

{

double ii = i;

C[i] = 1e-4*pow((1000/1e-4),(ii/(70)));

}

/

T[0] = 300.0;

for (int i = 1; i < 28; i++)

{

T[i] = T[i-1] + 100;

}

YY[0] = 0; YY[1] = 0.05; YY[2] = 0.1; YY[3] = 0.2; YY[4] = 0.3;

YY[5] = 0.4; YY[6] = 0.6; YY[7] = 0.8; YY[8] = 1.0;

PP[0] = 0.1; PP[1] = 0.25; PP[2] = 0.5; PP[3] = 1; PP[4] = 2;

PP[5] = 4; PP[6] = 8; PP[7] = 15; PP[8] = 30; PP[9] = 50;

P1 = locate(PP,9,P);

data_read(Fdata1,Fdata2,1,P1);

data_read(Fdata3,Fdata4,2,P1);

gauss(Nggmax-1,xgs,wgs);

}

// Multi interpolation for calculation of ALBDF

cs_real_t FCC(cs_real_t Cabs,

cs_real_t Tg,

cs_real_t Tb,

cs_real_t Y,

cs_real_t P,

int P1,

int molecule,

cs_real_t C[],

cs_real_t Fdata1[],

cs_real_t Fdata2[]){

int i,j,k,l,m;

cs_real_t F;

cs_real_t Fint[16];

if (Cabs < C[0]) Cabs = C[0];

if (Cabs > C[70]) Cabs = C[70];

if (Tg < 300) Tg = 300;

if (Tg > 3000) Tg = 3000;

if (Tb < 300) Tb = 300;

if (Tb > 3000) Tb = 3000;

m = locate(T,27,Tg);

l = locate(T,27,Tb);

k = locate(C,70,Cabs);
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if (molecule == 1){

YY[0] = 0; YY[1] = 0.05; YY[2] = 0.1; YY[3] = 0.2; YY[4] = 0.3;

YY[5] = 0.4; YY[6] = 0.6; YY[7] = 0.8; YY[8] = 1.0;

j = locate(YY,8,Y);

i = j*55664+m*1988+l*71+k;

Fint[0]=Fdata1[i]+(Fdata2[i]-Fdata1[i])*(P-PP[P1])/(PP[P1+1]-PP[P1]);

Fint[1]=Fdata1[i+55664]+(Fdata2[i+55664]-Fdata1[i+55664])*(P-PP[P1])

↪→ /(PP[P1+1]-PP[P1]);

Fint[2]=Fdata1[i+1]+(Fdata2[i+1]-Fdata1[i+1])*(P-PP[P1])/(PP[P1+1]-PP

↪→ [P1]);

Fint[3]=Fdata1[i+55665]+(Fdata2[i+55665]-Fdata1[i+55665])*(P-PP[P1])

↪→ /(PP[P1+1]-PP[P1]);

Fint[4]=Fdata1[i+71]+(Fdata2[i+71]-Fdata1[i+71])*(P-PP[P1])/(PP[P1

↪→ +1]-PP[P1]);

Fint[5]=Fdata1[i+55735]+(Fdata2[i+55735]-Fdata1[i+55735])*(P-PP[P1])

↪→ /(PP[P1+1]-PP[P1]);

Fint[6]=Fdata1[i+72]+(Fdata2[i+72]-Fdata1[i+72])*(P-PP[P1])/(PP[P1

↪→ +1]-PP[P1]);

Fint[7]=Fdata1[i+55736]+(Fdata2[i+55736]-Fdata1[i+55736])*(P-PP[P1])

↪→ /(PP[P1+1]-PP[P1]);

Fint[8]=Fdata1[i+1988]+(Fdata2[i+1988]-Fdata1[i+1988])*(P-PP[P1])/(PP

↪→ [P1+1]-PP[P1]);

Fint[9]=Fdata1[i+57652]+(Fdata2[i+57652]-Fdata1[i+57652])*(P-PP[P1])

↪→ /(PP[P1+1]-PP[P1]);

Fint[10]=Fdata1[i+1989]+(Fdata2[i+1989]-Fdata1[i+1989])*(P-PP[P1])/(

↪→ PP[P1+1]-PP[P1]);

Fint[11]=Fdata1[i+57653]+(Fdata2[i+57653]-Fdata1[i+57653])*(P-PP[P1])

↪→ /(PP[P1+1]-PP[P1]);

Fint[12]=Fdata1[i+2059]+(Fdata2[i+2059]-Fdata1[i+2059])*(P-PP[P1])/(

↪→ PP[P1+1]-PP[P1]);

Fint[13]=Fdata1[i+57723]+(Fdata2[i+57723]-Fdata1[i+57723])*(P-PP[P1])

↪→ /(PP[P1+1]-PP[P1]);

Fint[14]=Fdata1[i+2060]+(Fdata2[i+2060]-Fdata1[i+2060])*(P-PP[P1])/(

↪→ PP[P1+1]-PP[P1]);

Fint[15]=Fdata1[i+57724]+(Fdata2[i+57724]-Fdata1[i+57724])*(P-PP[P1])

↪→ /(PP[P1+1]-PP[P1]);

Fint[0]=Fint[0]+(Fint[1]-Fint[0])*(Y-YY[j])/(YY[j+1]-YY[j]);

Fint[1]=Fint[2]+(Fint[3]-Fint[2])*(Y-YY[j])/(YY[j+1]-YY[j]);

Fint[2]=Fint[4]+(Fint[5]-Fint[4])*(Y-YY[j])/(YY[j+1]-YY[j]);

Fint[3]=Fint[6]+(Fint[7]-Fint[6])*(Y-YY[j])/(YY[j+1]-YY[j]);

Fint[4]=Fint[8]+(Fint[9]-Fint[8])*(Y-YY[j])/(YY[j+1]-YY[j]);

Fint[5]=Fint[10]+(Fint[11]-Fint[10])*(Y-YY[j])/(YY[j+1]-YY[j]);

Fint[6]=Fint[12]+(Fint[13]-Fint[12])*(Y-YY[j])/(YY[j+1]-YY[j]);

Fint[7]=Fint[14]+(Fint[15]-Fint[14])*(Y-YY[j])/(YY[j+1]-YY[j]);

Fint[0]=Fint[0]+(Fint[1]-Fint[0])*(Cabs-C[k])/(C[k+1]-C[k]);
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Fint[1]=Fint[2]+(Fint[3]-Fint[2])*(Cabs-C[k])/(C[k+1]-C[k]);

Fint[2]=Fint[4]+(Fint[5]-Fint[4])*(Cabs-C[k])/(C[k+1]-C[k]);

Fint[3]=Fint[6]+(Fint[7]-Fint[6])*(Cabs-C[k])/(C[k+1]-C[k]);

Fint[0]=Fint[0]+(Fint[1]-Fint[0])*(Tb-T[l])/(T[l+1]-T[l]);

Fint[1]=Fint[2]+(Fint[3]-Fint[2])*(Tb-T[l])/(T[l+1]-T[l]);

F=Fint[0]+(Fint[1]-Fint[0])*(Tg-T[m])/(T[m+1]-T[m]);

}

if (molecule>1)

{

i=m*1988+l*71+k;

// Interpolate in P

Fint[0]=Fdata1[i]+(Fdata2[i]-Fdata1[i])*(P-PP[P1])/(PP[P1+1]-PP[P1]);

Fint[1]=Fdata1[i+1]+(Fdata2[i+1]-Fdata1[i+1])*(P-PP[P1])/(PP[P1+1]-PP

↪→ [P1]);

Fint[2]=Fdata1[i+71]+(Fdata2[i+71]-Fdata1[i+71])*(P-PP[P1])/(PP[P1

↪→ +1]-PP[P1]);

Fint[3]=Fdata1[i+72]+(Fdata2[i+72]-Fdata1[i+72])*(P-PP[P1])/(PP[P1

↪→ +1]-PP[P1]);

Fint[4]=Fdata1[i+1988]+(Fdata2[i+1988]-Fdata1[i+1988])*(P-PP[P1])/(PP

↪→ [P1+1]-PP[P1]);

Fint[5]=Fdata1[i+1989]+(Fdata2[i+1989]-Fdata1[i+1989])*(P-PP[P1])/(PP

↪→ [P1+1]-PP[P1]);

Fint[6]=Fdata1[i+2059]+(Fdata2[i+2059]-Fdata1[i+2059])*(P-PP[P1])/(PP

↪→ [P1+1]-PP[P1]);

Fint[7]=Fdata1[i+2060]+(Fdata2[i+2060]-Fdata1[i+2060])*(P-PP[P1])/(PP

↪→ [P1+1]-PP[P1]);

// Interpolate in C

Fint[0]=Fint[0]+(Fint[1]-Fint[0])*(Cabs-C[k])/(C[k+1]-C[k]);

Fint[1]=Fint[2]+(Fint[3]-Fint[2])*(Cabs-C[k])/(C[k+1]-C[k]);

Fint[2]=Fint[4]+(Fint[5]-Fint[4])*(Cabs-C[k])/(C[k+1]-C[k]);

Fint[3]=Fint[6]+(Fint[7]-Fint[6])*(Cabs-C[k])/(C[k+1]-C[k]);

// Interpolate in Tb

Fint[0]=Fint[0]+(Fint[1]-Fint[0])*(Tb-T[l])/(T[l+1]-T[l]);

Fint[1]=Fint[2]+(Fint[3]-Fint[2])*(Tb-T[l])/(T[l+1]-T[l]);

// Interpolate in Tg

F=Fint[0]+(Fint[1]-Fint[0])*(Tg-T[m])/(T[m+1]-T[m]);

}

return F;

}

// General function for calling the interpolation for each component

cs_real_t FMIX(cs_real_t Cabs,
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cs_real_t Tg,

cs_real_t Tb,

cs_real_t Y1,

cs_real_t Y2,

cs_real_t P,

int P1,

cs_real_t C[]){

cs_real_t F1,F2;

cs_real_t CC1,CC2;

cs_real_t Y;

cs_real_t F;

int molecule;

if (speca == 1) // H2O

{

molecule =1;

Y=Y1;

F1=FCC(Cabs,Tg,Tb,Y,P,P1,molecule,C,Fdata1,Fdata2);

F=F1;

}

if (speca==2) // CO2

{

molecule=2;

Y=Y2;

F2=FCC(Cabs,Tg,Tg,Y,P,P1,molecule,C,Fdata3,Fdata4);

F=F2;

}

return F;

}

// inverse for determing Cross section from F

cs_real_t CFMIX(cs_real_t F,

cs_real_t Tg,

cs_real_t Tb,

cs_real_t Y1,

cs_real_t Y2,

cs_real_t P,

int P1,

cs_real_t C[]){

cs_real_t CFF,FMIN,FMAX,FAVE,FF1,FF2;

unsigned long jl,jm,ju,jf;

int ascnd;

// Determine the minimum and maximun value of F based of given value of

↪→ C

FMIN = FMIX(C[0],Tg,Tb,Y1,Y2,P,P1,C);

FMAX = FMIX(C[70],Tg,Tb,Y1,Y2,P,P1,C);

if (F < FMIN) CFF = 0.0;

else if (F > FMAX) CFF = C[70];
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else {

jl = 0;

ju = 71;

ascnd = (FMAX >= FMIN);

while(ju-jl > 1){

jm = (ju+jl)/2;

FAVE = FMIX(C[jm],Tg,Tb,Y1,Y2,P,P1,C);

if (F >= FAVE == ascnd)

jl = jm;

else

ju = jm;

}

if (F == FMIN) jf = 0;

else if (F == FMAX) jf = 69;

else jf = jl;

FF1 = FMIX(C[jf],Tg,Tb,Y1,Y2,P,P1,C);

FF2 = FMIX(C[jf+1],Tg,Tb,Y1,Y2,P,P1,C);

if((FF2-FF1) > 0.0)

CFF = C[jf] + (F-FF1)/(FF2-FF1)*(C[jf+1]-C[jf]);

else

CFF = C[jf];

}

return CFF;

}

// Calculate the absorption coefficent and the weights

void SLW_RC_LBL(cs_real_t tempk[],

cs_real_t tempbd[],

int Ngmax,

cs_real_t Tref,

cs_real_t Y1REF,

cs_real_t Y2REF,

cs_real_t Y1LOC[],

cs_real_t Y2LOC[],

cs_real_t Y1FLOC[],

cs_real_t Y2FLOC[],

unsigned long n_cells,

unsigned long n_faces,

cs_real_t kgi[],

cs_real_t agi[],

cs_real_t agbi[]){

// Declear local variables

cs_real_t Cmin = 1e-4;

cs_real_t Cmax = 600.0;

cs_real_t CTREF[Ngmax];

cs_real_t FTREF[Ngmax];

cs_real_t FCREF[Ngmax];

cs_real_t *CTLOC;
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cs_real_t *CCLOC;

cs_real_t *FTLOC;

cs_real_t *CTLOC2;

cs_real_t *FTLOC2;

cs_real_t ftwg[Ngmax];

cs_real_t Fmin = 0.0;

cs_real_t Fmax = 1.0;

// Allocate memory for dynamic variables

BFT_MALLOC(CTLOC,n_cells*Ngmax,cs_real_t);

BFT_MALLOC(CCLOC,n_cells*Ngmax,cs_real_t);

BFT_MALLOC(FTLOC,n_cells*Ngmax,cs_real_t);

BFT_MALLOC(CTLOC2,n_faces*Ngmax,cs_real_t);

BFT_MALLOC(FTLOC2,n_faces*Ngmax,cs_real_t);

for (int j = 0; j < Ngmax; j++)

{

ftwg[j]=0.0;

}

for (int j = 1; j < Ngmax; j++)

{

for (int i = 1; i <= j; i++)

{

ftwg[j]=ftwg[j]+wgs[i];

}

}

// Generate F~ values based on Gaussian quadrature.

for (int j = 0; j < Ngmax; j++)

{

FTREF[j]=Fmin+(Fmax-Fmin)*ftwg[j];

CTREF[j]=CFMIX(FTREF[j],Tref,Tref,Y1REF,Y2REF,P,P1,C);

}

for (int j = 1; j < Ngmax; j++)

{

FCREF[j]=Fmin+(Fmax-Fmin)*xgs[j];

}

//

for (int iel = 0; iel < n_cells; iel++)

{

for (int j = 0; j < Ngmax; j++)

{

double FR=FTREF[j];

CTLOC[iel+j*n_cells]=CFMIX(FR,tempk[iel],Tref,Y1LOC[iel],Y2LOC[iel

↪→ ],P,P1,C);

}

}
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for (int iel = 0; iel < n_cells; iel++)

{

for (int j = 0; j < Ngmax; j++)

{

if (CTLOC[iel+j*n_cells]<Cmin)

{

CTLOC[iel+j*n_cells]=Cmin;

}

FTLOC[iel+j*n_cells]=FMIX(CTLOC[iel+j*n_cells],tempk[iel],tempk[

↪→ iel],Y1LOC[iel],Y2LOC[iel],P,P1,C);

}

}

for (int ifac = 0; ifac < n_faces; ifac++)

{

for (int j = 0; j < Ngmax; j++)

{

double FR=FTREF[j];

CTLOC2[ifac+j*n_faces]=CFMIX(FR,tempbd[ifac],Tref,Y1FLOC[ifac],

↪→ Y2FLOC[ifac],P,P1,C);

}

}

for (int ifac = 0; ifac < n_faces; ifac++)

{

for (int j = 0; j < Ngmax; j++)

{

if (CTLOC2[ifac+j*n_faces]<Cmin)

{

CTLOC2[ifac+j*n_faces]=Cmin;

}

FTLOC2[ifac+j*n_faces]=FMIX(CTLOC2[ifac+j*n_faces],tempbd[ifac],

↪→ tempbd[ifac],Y1FLOC[ifac],Y2FLOC[ifac],P,P1,C);

}

}

// absorption coefficent and weights for gray gases

for (int j = 1; j < Ngmax; j++)

{

for (int iel = 0; iel < n_cells; iel++)

{

if (speca==1)

{

kgi[iel+j*n_cells] = P*101325/Ru/tempk[iel]*Y1LOC[iel]*

↪→ CCLOC[iel+j*n_cells];

}

if (speca==2)

{

kgi[iel+j*n_cells] = P*101325/Ru/tempk[iel]*Y2LOC[iel]*CCLOC[iel

↪→ +j*n_cells];
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}

// weights at cells

agi[iel+j*n_cells] = FTLOC[iel+j*n_cells]-FTLOC[iel+(j-1)*n_cells

↪→ ];

}

// weights at boundary faces

for (int ifac = 0; ifac < n_faces; ifac++)

{

agbi[ifac+j*n_faces] = FTLOC2[ifac+j*n_faces]-FTLOC2[ifac+(j-1)*

↪→ n_faces];

}

}

// for clear gas

for (int iel = 0; iel < n_cells; iel++)

{

kgi[iel] = 0.0;

agi[iel] = FTLOC[iel];

}

for (int ifac = 0; ifac < n_faces; ifac++)

{

agbi[ifac] = FTLOC2[ifac];

}

BFT_FREE(CTLOC);

BFT_FREE(CCLOC);

BFT_FREE(FTLOC);

BFT_FREE(CTLOC2);

BFT_FREE(FTLOC2);

}

For the purpose of the implementation of our SLW model into Code Saturne, we
have modified some built-in subroutines and inserted our self developed code. This
procedure are presented in the following:

• In file cs_rad_transfer_options.c, in function cs_rad_transfer_options(void):
set rt_params− > imoad f = 1;
i f (rt_params− > imoad f == 1)rt_params− > nwsgg = Nggmax;
and call new two function:
setup_uservalue();
data_set();

• In file cs_rad_transfer_solve.c, in function cs_rad_transfer_solve(), add the fol-
lowing code before solving the RTE:

BFT_MALLOC(ka,nwsgg,cs_real_t);

BFT_MALLOC(xa,n_cells_ext,cs_real_t);

BFT_MALLOC(xa1,n_cells_ext,cs_real_t);

BFT_MALLOC(xa2,n_cells_ext,cs_real_t);
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cs_field_t *f_conc = NULL;

f_conc = cs_field_by_name("concentration");

for(cs_lnum_t iel = 0; iel < n_cells; iel++){

xa[iel] = f_conc->val[iel]*Ru*Tref/P/101325.0;

xa1[iel] = 0.0;

xa2[iel] = 0.0;

}

cs_real_t xa1ref = 0.0;

cs_real_t xa2ref = 0.0;

//

// calculation of weights at boundaries

cs_real_t *xabd;

cs_real_t *tempbd;

BFT_MALLOC(tempbd,n_b_faces,cs_real_t);

BFT_MALLOC(xabd1,n_b_faces,cs_real_t);

BFT_MALLOC(xabd,n_b_faces,cs_real_t);

BFT_MALLOC(xabd2,n_b_faces,cs_real_t);

cs_field_t *f_b_temp = NULL;

cs_field_t *f_b_conc = NULL;

f_b_temp = cs_field_by_name("boundary_temperature");

f_b_conc = cs_field_by_name("boundary_concentration

↪→ ");

for (cs_lnum_t ifac = 0; ifac < n_b_faces; ifac++){

tempbd[ifac] = f_b_temp->val[ifac] ;

xabd[ifac] = f_b_conc->val[ifac]*Ru*Tref/P/101325.0;

xabd1[ifac]=0.0;

xabd2[ifac]=0.0;

}

if (speca==1) {

SLW_RC_LBL(tempk,tempbd,nwsgg,Tref,xaref,xa1ref,

↪→ xa2ref,xa,xa1,xa2,xabd,xabd1,xabd2,n_cells,

↪→ n_b_faces,kgi,agi,agbi);

}

else if (speca == 2) {

SLW_RC_LBL(tempk,tempbd,nwsgg,Tref,xa1ref,xaref,

↪→ xa2ref,xa1,xa,xa2,xabd1,xabd,xabd2,n_cells,

↪→ n_b_faces,kgi,agi,agbi);

}

SLW_RC_LBL(tempk,tempbd,nwsgg,Tref,xa1ref,xaref,

↪→ xa2ref,xa1,xa,xa2,xabd1,xabd,xabd2,n_cells,

↪→ n_b_faces,kgi,agi,agbi);
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and the following lines at the end of the function:

BFT_FREE(ka);

BFT_FREE(xa);

BFT_FREE(xa1);

BFT_FREE(xa2);

BFT_FREE(xabd);

BFT_FREE(xabd1);

BFT_FREE(xabd2);

BFT_FREE(tempbd);.
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Appendix C

Calculation of the Q-criterion

The tensor of velocity gradient ∇v can be written as:

∇v =
1
2
(∇v + (∇v)T) +

1
2
(∇v− (∇v)T)

= S + Ω
(C.1)

where S = 1
2 (∇v + (∇v)T) is rate of strain tensor and Ω = 1

2 (∇v− (∇v)T) is
known as vorticity tensor.
Noting that:

∇v =


∂u
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∂v
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We further obtain:
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∂x

1
2 (

∂u
∂y + ∂v

∂x )
1
2 (

∂u
∂z +

∂w
∂x )

1
2 (

∂u
∂y + ∂v

∂x )
∂v
∂y

1
2 (

∂v
∂z +

∂w
∂y )

1
2 (

∂u
∂z +

∂w
∂x )

1
2 (

∂v
∂z +

∂w
∂y )

∂w
∂z

 (C.3)
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 (C.4)

The quantity Q is defined as second invariant of ∇v (Hunt, Wray, and Moin [163])
and written as:

Q =
1
2
((∇ · v)2 − tr((∇v)2)) (C.5)

For an incompressible flow, ∇ · v = 0. Thus:

Q = −1
2

tr((∇v)2)

=
1
2
(‖Ω‖2 − ‖S‖2)

(C.6)

• If Q > 0, the vorticity magnitude is greater than rate of shear strain. This
characterizes the presence of rotation (Jeong and Hussain [164]).

• If Q < 0, the shear strain rate dominates over the vorticity magnitude and this
denotes stretching pattern.

The Q values are then calculated using the filter Gradient Of Unstructured DataSet
in Paraview.





185

Bibliography

[1] A Yücel, S Acharya, and M L Williams. “Natural convection and radiation in
a square enclosure”. In: Numerical Heat Transfer 15.2 (1989), pp. 261–278.

[2] Z Tan and J R Howell. “Combined radiation and natural convection in a two-
dimensional participating square medium”. In: International Journal of Heat
and Mass Transfer 34.3 (1991), pp. 785–793.

[3] G Colomer et al. “Three-dimensional numerical simulation of convection and
radiation in a differentially heated cavity using the discrete ordinates method”.
In: International Journal of Heat and Mass Transfer 47.2 (2004), pp. 257–269.

[4] G Colomer, R Consul, and A Oliva. “Coupled radiation and natural convec-
tion: Different approaches of the SLW model for a non-gray gas mixture”. In:
Journal of Quantitative Spectroscopy and Radiative Transfer 107.1 (2007), pp. 30–
46.

[5] L Soucasse et al. “Numerical study of coupled molecular gas radiation and
natural convection in a differentially heated cubical cavity”. In: Computational
Thermal Sciences: An International Journal 4.4 (2012).

[6] Y Billaud, D Saury, and D Lemonnier. “Numerical investigation of coupled
natural convection and radiation in a differentially heated cubic cavity filled
with humid air. Effects of the cavity size”. In: Numerical Heat Transfer, Part A:
Applications 72.7 (2017), pp. 495–518.

[7] F Tetsu, M Itsuki, and U Haruo. “Buoyant plume above a horizontal line heat
source”. In: International Journal of Heat and Mass Transfer 16.4 (1973), pp. 755–
768.

[8] K Urakawa, I Morioka, and M Kiyota. “Swaying motion of the buoyant plume
above a horizontal line heat source”. In: Proc. 1st ASME-JSME Thermal Eng.
Conf. 1983, pp. 215–220.

[9] S Xin et al. “Numerical simulations of natural convection around a line-source”.
In: International Journal of Numerical Methods for Heat & Fluid Flow 14.7 (2004),
pp. 830–850.

[10] R H Hernandez. “Natural convection in thermal plumes emerging from a sin-
gle heat source”. In: International Journal of Thermal Sciences 98 (2015), pp. 81–
89.

[11] G V Kuznetsov and M A Sheremet. “Two-dimensional problem of natural
convection in a rectangular domain with local heating and heat-conducting
boundaries of finite thickness”. In: Fluid Dynamics 41.6 (2006), pp. 881–890.

[12] G V Kuznetsov and M A Sheremet. “Conjugate heat transfer in a closed do-
main with a locally lumped heat-release source”. In: Journal of Engineering
Physics and Thermophysics 79.1 (2006), pp. 57–64.

[13] M Paroncini and F Corvaro. “Natural convection in a square enclosure with
a hot source”. In: International journal of thermal sciences 48.9 (2009), pp. 1683–
1695.



186 Bibliography

[14] G V Kuznetsov, V I Maksimov, and M A Sheremet. “Natural convection in a
closed parallelepiped with a local energy source”. In: Journal of Applied Me-
chanics and Technical Physics 54.4 (2013), pp. 588–595.

[15] B Souayeh et al. “Prediction of unsteady natural convection within a square
cavity containing an obstacle at high Rayleigh number value”. In: Interna-
tional Letters of Chemistry, Physics and Astronomy 55 (2015), p. 19.

[16] N S Gibanov and M A Sheremet. “Effect of the buoyancy force on natural
convection in a cubical cavity with a heat source of triangular cross-section”.
In: IOP Conference Series: Materials Science and Engineering. Vol. 124. 1. IOP
Publishing. 2016, p. 012057.

[17] D Iyi, R Hasan, and R Penlington. “Numerical simulation of 2D turbulent
natural convection of humid air in a cavity filled with solid objects”. In: Pro-
cedia engineering 56 (2013), pp. 538–543.

[18] A R Rahmati and A A Tahery. “Numerical study of nanofluid natural convec-
tion in a square cavity with a hot obstacle using lattice Boltzmann method”.
In: Alexandria engineering journal 57.3 (2018), pp. 1271–1286.

[19] M Bouafia and O Daube. “Natural convection for large temperature gradi-
ents around a square solid body within a rectangular cavity”. In: International
Journal of Heat and Mass Transfer 50.17-18 (2007), pp. 3599–3615.

[20] H Sun, E Chénier, and G Lauriat. “Effect of surface radiation on the break-
down of steady natural convection flows in a square, air-filled cavity con-
taining a centered inner body”. In: Applied Thermal Engineering 31.6-7 (2011),
pp. 1252–1262.

[21] S G Martyushev and M A Sheremet. “Surface radiation influence on the regimes
of conjugate natural convection in an enclosure with local energy source”. In:
Thermophysics and Aeromechanics 20.4 (2013), pp. 417–428.

[22] S Saravanan and C Sivaraj. “Surface radiation effect on convection in a closed
enclosure driven by a discrete heater”. In: International Communications in
Heat and Mass Transfer 53 (2014), pp. 34–38.

[23] S Patil, A K Sharma, and K Velusamy. “Conjugate laminar natural convection
and surface radiation in enclosures: Effects of protrusion shape and position”.
In: International Communications in Heat and Mass Transfer 76 (2016), pp. 139–
146.

[24] I Miroshnichenko, M Sheremet, and A Chamkha. “Turbulent natural convec-
tion combined with surface thermal radiation in a square cavity with local
heater”. In: International Journal of Numerical Methods for Heat & Fluid Flow
28.7 (2018), pp. 1698–1715.

[25] F Archambeau, N Méchitoua, and M Sakiz. “Code Saturne: A Finite Volume
Code for the Computation of Turbulent Incompressible Flows, Industrial Ap-
plications”. In: International Journal on Finite Volumes 1 (2004).

[26] R Koch and R Becker. “Evaluation of quadrature schemes for the discrete or-
dinates method”. In: Journal of Quantitative Spectroscopy and Radiative Transfer
84.4 (2004), pp. 423–435.

[27] D Balsara. “Fast and accurate discrete ordinates methods for multidimen-
sional radiative transfer. Part I, basic methods”. In: Journal of Quantitative
Spectroscopy and Radiative Transfer 69.6 (2001), pp. 671–707.

[28] EDF. Code_Saturne version 5.0.0 practical user’s guide. 2017.



Bibliography 187

[29] G De Vahl Davis. “Natural convection of air in a square cavity: a bench mark
numerical solution”. In: International Journal for numerical methods in fluids 3.3
(1983), pp. 249–264.

[30] G Colomer et al. “Three-dimensional numerical simulation of convection and
radiation in a differentially heated cavity using the discrete ordinates method”.
In: International Journal of Heat and Mass Transfer 47.2 (2004), pp. 257–269. ISSN:
00179310. DOI: 10.1016/S0017-9310(03)00387-9.

[31] T Fusegi and J M Hyun. “Laminar and transitional natural convection in an
enclosure with complex and realistic conditions”. In: International Journal of
Heat and Fluid Flow 15.4 (1994), pp. 258–268.

[32] S Laouar-Meftah. “Modélisation de la convection naturelle de double diffu-
sion dans un mélange de gaz absorbant et émettant le rayonnement”. PhD
thesis. 2010.

[33] L Soucasse, P Rivière, and A Soufiani. “Natural convection in a differentially
heated cubical cavity under the effects of wall and molecular gas radiation
at Rayleigh numbers up to 3× 109”. In: International Journal of Heat and Fluid
Flow 61 (2016), pp. 510–530.

[34] I Sezai and A A Mohamad. “Double diffusive convection in a cubic enclosure
with opposing temperature and concentration gradients”. In: Physics of Fluids
12.9 (2000), pp. 2210–2223.

[35] M Cherifi. “Modelisasion de la convection de double diffusio en presence
de rayonnement dans une cavite 3D en regime instationaire”. PhD thesis.
University of Boumerdes, 2017.

[36] RM Goody. “The influence of radiative transfer on cellular convection”. In:
Journal of Fluid Mechanics 1.4 (1956), pp. 424–435.

[37] F Bdéoui and A Soufiani. “The onset of Rayleigh–Bénard instability in molec-
ular radiating gases”. In: Physics of Fluids 9.12 (1997), pp. 3858–3872.

[38] M Behnia, J A Reizes, and G De Vahl Davis. “Combined radiation and natural
convection in a rectangular cavity with a transparent wall and containing
a non-participating fluid”. In: International Journal for Numerical Methods in
Fluids 10.3 (1990), pp. 305–325.

[39] H Wang, S Xin, and P Le Quéré. “Étude numérique du couplage de la con-
vection naturelle avec le rayonnement de surfaces en cavité carrée remplie
d’air”. In: Comptes Rendus Mécanique 334.1 (2006), pp. 48–57.

[40] G Lauriat. “Combined radiation-convection in gray fluids enclosed in vertical
cavities”. In: Journal of Heat Transfer 104.4 (1982), pp. 609–615.

[41] C Y Han and S W Baek. “The effects of radiation on natural convection in a
rectangular enclosure divided by two partitions”. In: Numerical Heat Transfer:
Part A: Applications 37.3 (2000), pp. 249–270.

[42] K Lari et al. “Combined heat transfer of radiation and natural convection in a
square cavity containing participating gases”. In: International Journal of Heat
and Mass Transfer 54.23-24 (2011), pp. 5087–5099.

[43] K Lari et al. “Numerical study of non-gray radiation and natural convection
using the full-spectrum k-distribution method”. In: Numerical Heat Transfer,
Part A: Applications 61.1 (2012), pp. 61–84.

https://doi.org/10.1016/S0017-9310(03)00387-9


188 Bibliography

[44] L Soucasse et al. “Transitional regimes of natural convection in a differentially
heated cubical cavity under the effects of wall and molecular gas radiation”.
In: Physics of Fluids 26.2 (2014), p. 024105.

[45] T Fusegi and B Farouk. “A computational and experimental study of natu-
ral convection and surface/gas radiation interactions in a square cavity”. In:
Journal of Heat Transfer (Transactions of the ASME (American Society of Mechani-
cal Engineers), Series C);(United States) 112.3 (1990).

[46] Y Clergent. “Influence du rayonnement thermique sur les écoulements de
convection Naturelle en Espace Confiné”. PhD thesis. Toulouse 3, 2000.

[47] M N Borjini et al. “Effect of radiative heat transfer on the three-dimensional
Boyancy flow in cubic enclosure heated from the side”. In: International Jour-
nal of Heat and Fluid Flow 29.1 (2008), pp. 107–118.

[48] M Rafieivand. “Etude numérique de la convection de double diffusion en
présence de rayonnement en cavité rectangulaire/par Mehrdad Rafieivand”.
PhD thesis. Poitiers, 1999.

[49] A Mezrhab et al. “Numerical study of double-diffusion convection coupled
to radiation in a square cavity filled with a participating grey gas”. In: Journal
of Physics D: Applied Physics 41.19 (2008), p. 195501.

[50] S Meftah et al. “Coupled radiation and double diffusive convection in nongray
air-CO2 and air-H2O mixtures in cooperating situations”. In: Numerical Heat
Transfer, Part A: Applications 56.1 (2009), pp. 1–19.

[51] S Laouar-Meftah et al. “Gas radiation effects on opposing double-diffusive
convection in a non-gray air–H2O mixture”. In: International Journal of Ther-
mal Sciences 77 (2014), pp. 38–46.

[52] A Ibrahim and D Lemonnier. “Numerical study of coupled double-diffusive
natural convection and radiation in a square cavity filled with a N2–CO2 mix-
ture”. In: International Communications in Heat and Mass Transfer 36.3 (2009),
pp. 197–202.

[53] M Cherifi et al. “Interaction of radiation with double-diffusive natural con-
vection in a three-dimensional cubic cavity filled with a non-gray gas mix-
ture in cooperating cases”. In: Numerical Heat Transfer, Part A: Applications
69.5 (2016), pp. 479–496.

[54] M M Mousa. “Modeling of laminar buoyancy convection in a square cav-
ity containing an obstacle”. In: Bulletin of the Malaysian Mathematical Sciences
Society 39.2 (2016), pp. 483–498.

[55] A Raji et al. “Effect of the subdivision of an obstacle on the natural convection
heat transfer in a square cavity”. In: Computers & Fluids 68 (2012), pp. 1–15.

[56] G V Kuznetsov and M A Sheremet. “On the possibility of controlling ther-
mal conditions of a typical element of electronic equipment with a local heat
source via natural convection”. In: Russian Microelectronics 39.6 (2010), pp. 427–
442.

[57] Y Wang. “Simulations numériques de panaches thermiques dans une cavité
confinée en présence de couplage convection-rayonnement volumique”. PhD
thesis. La Rochelle, 2020.

[58] M K Denison and B W Webb. “An absorption-line blackbody distribution
function for efficient calculation of total gas radiative transfer”. In: Journal of
Quantitative Spectroscopy and Radiative Transfer 50.5 (1993), pp. 499–510.



Bibliography 189

[59] M F Modest. Radiative heat transfer. Academic press, 2013.

[60] E E Lewis and W F Miller. “Computational methods of neutron transport”.
In: (1984).

[61] A Schuster. “Radiation through a foggy atmosphere”. In: The astrophysical
journal 21 (1905), p. 1.

[62] K Schwarzschild. “On the equilibrium of the sun’s atmosphere”. In: Nachrichten
von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Math.-phys.
Klasse, 195, p. 41-53 195 (1906), pp. 41–53.

[63] L Dombrovsky, J Randrianalisoa, and D Baillis. “Modified two-flux approx-
imation for identification of radiative properties of absorbing and scatter-
ing media from directional-hemispherical measurements”. In: JOSA A 23.1
(2006), pp. 91–98.

[64] L A Dombrovsky, K Ganesan, and W Lipinski. “Combined two-flux approx-
imation and Monte Carlo model for identification of radiative properties of
highly scattering dispersed materials”. In: Computational Thermal Sciences: An
International Journal 4.4 (2012).

[65] W E Vargas. “Generalized four-flux radiative transfer model”. In: Applied op-
tics 37.13 (1998), pp. 2615–2623.

[66] B Maheu, J N Letoulouzan, and G Gouesbet. “Four-flux models to solve the
scattering transfer equation in terms of Lorenz-Mie parameters”. In: Applied
optics 23.19 (1984), pp. 3353–3362.

[67] B Maheu and G Gouesbet. “Four-flux models to solve the scattering transfer
equation: special cases”. In: Applied optics 25.7 (1986), pp. 1122–1128.

[68] A Brucato et al. “Estimating radiant fields in flat heterogeneous photoreactors
by the six-flux model”. In: AIChE journal 52.11 (2006), pp. 3882–3890.

[69] G L Puma and A Brucato. “Dimensionless analysis of slurry photocatalytic
reactors using two-flux and six-flux radiation absorption–scattering models”.
In: Catalysis Today 122.1-2 (2007), pp. 78–90.

[70] J H Jeans. “The Equations of Radiative Transfer of Energy”. In: Monthly No-
tices of the Royal Astronomical Society 78.1 (Nov. 1917), pp. 28–36. ISSN: 0035-
8711. DOI: 10.1093/mnras/78.1.28. eprint: http://oup.prod.sis.lan/
mnras/article-pdf/78/1/28/4067064/mnras78-0028.pdf. URL: https:
//doi.org/10.1093/mnras/78.1.28.

[71] J Shen. “Efficient spectral-Galerkin method I. Direct solvers of second-and
fourth-order equations using Legendre polynomials”. In: SIAM Journal on
Scientific Computing 15.6 (1994), pp. 1489–1505.

[72] Eric W Weisstein. “Legendre polynomial”. In: (2002).

[73] Y Bayazitoilu and J Higenyi. “Higher-order differential equations of radiative
transfer: P3 approximation”. In: AIAA Journal 17.4 (1979), pp. 424–431.

[74] M P Mengüç and R Viskanta. “Radiative transfer in axisymmetric, finite cylin-
drical enclosures”. In: ASME Journal of Heat Transfer 108 (1986), pp. 271–276.

[75] D B Olfe. “A modification of the differential approximation for radiative
transfer.” In: AIAA Journal 5.4 (1967), pp. 638–643.

[76] M F Modest. “Modified differential approximation for radiative transfer in
general three-dimensional media”. In: Journal of Thermophysics and Heat Trans-
fer 3.3 (1989), pp. 283–288.

https://doi.org/10.1093/mnras/78.1.28
http://oup.prod.sis.lan/mnras/article-pdf/78/1/28/4067064/mnras78-0028.pdf
http://oup.prod.sis.lan/mnras/article-pdf/78/1/28/4067064/mnras78-0028.pdf
https://doi.org/10.1093/mnras/78.1.28
https://doi.org/10.1093/mnras/78.1.28


190 Bibliography

[77] S Chandrasekhar. “Radiative Transfer Dover Publications Inc”. In: New York
(1960).

[78] C E Lee. The discrete Sn approximation to transport theory. Tech. rep. Los Alamos
Scientific Lab., N. Mex., 1961.

[79] K D Lathrop. “Use of discrete-ordinates methods for solution of photon trans-
port problems”. In: Nuclear Science and Engineering 24.4 (1966), pp. 381–388.

[80] B G Carlson. “Transport theory-the method of discrete ordinates”. In: Com-
puting methods in reactor physics (1968).

[81] W A Fiveland. “Discrete-ordinates solutions of the radiative transport equa-
tion for rectangular enclosures”. In: Journal of heat transfer 106.4 (1984), pp. 699–
706.

[82] W A Fiveland. “Discrete ordinate methods for radiative heat transfer in isotrop-
ically and anisotropically scattering media”. In: Journal of Heat Transfer (Trans-
actions of the ASME (American Society of Mechanical Engineers), Series C);(United
States) 109.3 (1987).

[83] W A Fiveland. “Three-dimensional radiative heat-transfer solutions by the
discrete-ordinates method”. In: Journal of Thermophysics and Heat Transfer 2.4
(1988), pp. 309–316.

[84] J S Truelove. “Discrete-ordinate solutions of the radiation transport equa-
tion”. In: Journal of Heat Transfer (Transcations of the ASME (American Society
of Mechanical Engineers), Series C);(United States) 109.4 (1987).

[85] J S Truelove. “Three-dimensional radiation in absorbing-emitting-scattering
media using the discrete-ordinates approximation”. In: Journal of quantitative
spectroscopy and radiative transfer 39.1 (1988), pp. 27–31.

[86] A S Jamaluddin and P J Smith. “Predicting radiative transfer in axisymmetric
cylindrical enclosures using the discrete ordinates method”. In: Combustion
Science and Technology 62.4-6 (1988), pp. 173–186.

[87] T Y Kim and S W Baek. “Analysis of combined conductive and radiative
heat transfer in a two-dimensional rectangular enclosure using the discrete
ordinates method”. In: International journal of heat and mass transfer 34.9 (1991),
pp. 2265–2273.

[88] K D Lathrop and B G Carlson. Discrete ordinates angular quadrature of the neu-
tron transport equation. Tech. rep. Los Alamos Scientific Lab., N. Mex., 1964.

[89] C P Thurgood. “A critical evaluation of the discrete ordinates method using
HEART and T (N) quadrature.” In: (1994).

[90] R Koch et al. “Discrete ordinates quadrature schemes for multidimensional
radiative transfer”. In: Journal of Quantitative Spectroscopy and Radiative Trans-
fer 53.4 (1995), pp. 353–372.

[91] P J Coelho. “The role of ray effects and false scattering on the accuracy of
the standard and modified discrete ordinates methods”. In: ICHMT DIGITAL
LIBRARY ONLINE. Begel House Inc. 2001.

[92] M A Ramankutty and A L Crosbie. “Modified discrete ordinates solution of
radiative transfer in two-dimensional rectangular enclosures”. In: Journal of
Quantitative Spectroscopy and Radiative Transfer 57.1 (1997), pp. 107–140.

[93] R A Ramankutty and A L Crosbie. “Modified discrete-ordinates solution of
radiative transfer in three-dimensional rectangular enclosures.” In: Journal of
Quantitative Spectroscopy and Radiative Transfer 60 (1998), pp. 103–134.



Bibliography 191

[94] H Amiri, S H Mansouri, and P J Coelho. “Application of the modified dis-
crete ordinates method with the concept of blocked-off region to irregular
geometries”. In: International Journal of Thermal Sciences 50.4 (2011), pp. 515–
524.

[95] P J Coelho. “Advances in the discrete ordinates and finite volume methods
for the solution of radiative heat transfer problems in participating media”.
In: Journal of Quantitative spectroscopy and Radiative transfer 145 (2014), pp. 121–
146.

[96] D Joseph et al. “Comparison of three spatial differencing schemes in discrete
ordinates method using three-dimensional unstructured meshes”. In: Inter-
national journal of thermal sciences 44.9 (2005), pp. 851–864.

[97] C Aghanajafi and A Abjadpour. “Discrete ordinates method applied to ra-
diative transfer equation in complex geometries meshed by structured and
unstructured grids”. In: Journal of the Brazilian Society of Mechanical Sciences
and Engineering 38.3 (2016), pp. 1007–1019.

[98] D Le Hardy et al. “Specular reflection treatment for the 3D radiative transfer
equation solved with the discrete ordinates method”. In: Journal of Computa-
tional Physics 334 (2017), pp. 541–572.

[99] G D Raithby and E H Chui. “A finite-volume method for predicting a radi-
ant heat transfer in enclosures with participating media”. In: Journal of heat
transfer 112.2 (1990), pp. 415–423.

[100] E H Chui, G D Raithby, and P M J Hughes. “Prediction of radiative transfer
in cylindrical enclosures with the finite volume method”. In: Journal of Ther-
mophysics and Heat transfer 6.4 (1992), pp. 605–611.

[101] B Hunter and Z Guo. “Comparison of the discrete-ordinates method and the
finite-volume method for steady-state and ultrafast radiative transfer analy-
sis in cylindrical coordinates”. In: Numerical Heat Transfer, Part B: Fundamen-
tals 59.5 (2011), pp. 339–359.

[102] H C Hottel and E S Cohen. “Radiant heat exchange in a gas-filled enclo-
sure: Allowance for nonuniformity of gas temperature”. In: AIChE Journal
4.1 (1958), pp. 3–14.

[103] R Viskanta and M P Mengüç. “Radiation heat transfer in combustion sys-
tems”. In: Progress in Energy and Combustion Science 13.2 (1987), pp. 97–160.

[104] H C Hottel and A F Sarofim. “Radiative Transfer”. In: New York (1967), pp. 20–
24.

[105] H Ebrahimi et al. “Zonal modeling of radiative heat transfer in industrial
furnaces using simplified model for exchange area calculation”. In: Applied
Mathematical Modelling 37.16-17 (2013), pp. 8004–8015.

[106] J A Fleck Jr. The calculation of nonlinear radiation transport by a Monte Carlo
method. Tech. rep. Lawrence Radiation Lab., Univ. of California, Livermore,
1961.

[107] J R Howell and M Perlmutter. “Monte Carlo solution of thermal transfer
through radiant media between gray walls”. In: Journal of heat transfer 86.1
(1964), pp. 116–122.

[108] D G Collins et al. “Backward Monte Carlo calculations of the polarization
characteristics of the radiation emerging from spherical-shell atmospheres”.
In: Applied Optics 11.11 (1972), pp. 2684–2696.



192 Bibliography

[109] K M Case. “Transfer problems and the reciprocity principle”. In: Reviews of
modern physics 29.4 (1957), p. 651.

[110] M F Modest. “Backward Monte Carlo simulations in radiative heat transfer”.
In: Journal of heat transfer 125.1 (2003), pp. 57–62.

[111] R Fournier et al. “Radiative, conductive and convective heat-transfers in a
single Monte Carlo algorithm”. In: Journal of Physics: Conference Series. Vol. 676.
1. 2016, art–012007.

[112] L Ibarrart et al. “Combined conductive-convective-radiative heat transfer in
complex geometry using the Monte Carlo method”. In: 2018.

[113] C Caliot et al. “Combined conductive-radiative heat transfer analysis in com-
plex geometry using the Monte Carlo method”. In: (2019).

[114] F C Lockwood and N G Shah. “A new radiation solution method for incor-
poration in general combustion prediction procedures”. In: Symposium (inter-
national) on combustion. Vol. 18. 1. Elsevier. 1981, pp. 1405–1414.

[115] J C Henson and W M G Malalasekera. “Comparison of the discrete transfer
and Monte Carlo methods for radiative heat transfer in three-dimensional
nonhomogeneous scattering media”. In: Numerical Heat Transfer, Part A Ap-
plications 32.1 (1997), pp. 19–36.

[116] N Selçuk and N Kayakol. “Evaluation of discrete ordinates method for radia-
tive transfer in rectangular furnaces”. In: International journal of heat and mass
transfer 40.2 (1997), pp. 213–222.

[117] P S Cumber. “Improvements to the discrete transfer method of calculating
radiative heat transfer”. In: International Journal of Heat and Mass Transfer 38.12
(1995), pp. 2251–2258.

[118] P S Cumber. “Application of adaptive quadrature to fire radiation modeling”.
In: Journal of heat transfer 121.1 (1999), pp. 203–205.

[119] P J Coelho and M G Carvalho. “A conservative formulation of the discrete
transfer method”. In: Journal of Heat Transfer 119.1 (1997), pp. 118–128.

[120] S Heugang, H T Kamdem Tagne, and F Pelap. “A Discrete Transfer Method
for Radiative Transfer through Anisotropically Scattering Media”. In: Amer-
ican Journal of Heat and Mass Transfer Vol. 3 (Nov. 2016), pp. 396–411. DOI:
10.7726/ajhmt.2016.1022.

[121] V Feldheim and P Lybaert. “Solution of radiative heat transfer problems with
the discrete transfer method applied to triangular meshes”. In: Journal of Com-
putational and Applied Mathematics 168.1-2 (2004), pp. 179–190.

[122] P J Coelho et al. “Modelling of radiative heat transfer in enclosures with
obstacles”. In: International Journal of Heat and Mass Transfer 41.4-5 (1998),
pp. 745–756.

[123] F Archambeau, N Méchitoua, and M Sakiz. “Code Saturne: A finite volume
code for the computation of turbulent incompressible flows-Industrial appli-
cations”. In: (2004).

[124] R M Goody. “A statistical model for water-vapour absorption”. In: Quarterly
Journal of the Royal Meteorological Society 78.338 (1952), pp. 638–640.

[125] W L Godson. “The computation of infrared transmission by atmospheric wa-
ter vapor”. In: Journal of Meteorology 12.3 (1955), pp. 272–284.

https://doi.org/10.7726/ajhmt.2016.1022


Bibliography 193

[126] Jean Taine and Anouar Soufiani. “Gas IR Radiative Properties: From Spec-
troscopic Data to Approximate Models”. In: ed. by J P Hartnett et al. Vol. 33.
Advances in Heat Transfer. Elsevier, 1999, pp. 295 –414. DOI: https://doi.
org/10.1016/S0065-2717(08)70306-X. URL: http://www.sciencedirect.
com/science/article/pii/S006527170870306X.

[127] “Edited by”. In: Radiation in the Atmosphere. Ed. by K Y Kondratyev. Vol. 12.
International Geophysics. Academic Press, 1969, p. iii. DOI: https://doi.
org/10.1016/S0074-6142(08)62788-6. URL: http://www.sciencedirect.
com/science/article/pii/S0074614208627886.

[128] R Goody et al. “The correlated-k method for radiation calculations in nonho-
mogeneous atmospheres”. In: Journal of Quantitative Spectroscopy and Radiative
Transfer 42.6 (1989), pp. 539–550.

[129] A A Lacis and V Oinas. “A description of the correlated k distribution method
for modeling nongray gaseous absorption, thermal emission, and multiple
scattering in vertically inhomogeneous atmospheres”. In: Journal of Geophysi-
cal Research: Atmospheres 96.D5 (1991), pp. 9027–9063.

[130] Q Fu and K N Liou. “On the correlated k-distribution method for radiative
transfer in nonhomogeneous atmospheres”. In: Journal of the Atmospheric Sci-
ences 49.22 (1992), pp. 2139–2156.

[131] D K Edwards. “Molecular gas band radiation”. In: Advances in heat transfer.
Vol. 12. Elsevier, 1976, pp. 115–193.

[132] J Ströhle and P J Coelho. “On the application of the exponential wide band
model to the calculation of radiative heat transfer in one-and two-dimensional
enclosures”. In: International Journal of Heat and Mass Transfer 45.10 (2002),
pp. 2129–2139.

[133] M F Modest. “The weighted-sum-of-gray-gases model for arbitrary solution
methods in radiative transfer”. In: Journal of heat transfer 113.3 (1991), pp. 650–
656.

[134] L Pierrot et al. “A fictitious-gas-based absorption distribution function global
model for radiative transfer in hot gases”. In: Journal of Quantitative Spec-
troscopy and Radiative Transfer 62.5 (1999), pp. 609–624.

[135] M Modest and H Zhang. “The Full-Spectrum Correlated-k Distribution for
Thermal Radiation From Molecular Gas-Particulate Mixtures”. In: Journal of
Heat Transfer 124 (Feb. 2002), p. 30. DOI: 10.1115/1.1418697.

[136] M Modest and R Mehta. “Full spectrum k-distribution correlations for CO 2
from the CDSD-1000 spectroscopic databank”. In: International Journal of Heat
and Mass Transfer - INT J HEAT MASS TRANSFER 47 (May 2004), pp. 2487–
2491. DOI: 10.1016/j.ijheatmasstransfer.2003.11.028.

[137] V P Solovjov and B W Webb. “Global Spectral Methods in Gas Radiation:
the Exact Limit of the SLW Model and its Relationship to the ADF and FSK
Methods”. In: Journal of Heat Transfer 133 (Apr. 2011), pp. 042701–1. DOI: 10.
1115/1.4002775.

[138] V P Solovjov, D Lemonnier, and B W Webb. “The SLW-1 model for effi-
cient prediction of radiative transfer in high temperature gases”. In: Journal of
Quantitative Spectroscopy and Radiative Transfer 112 (May 2011), pp. 1205–1212.
DOI: 10.1016/j.jqsrt.2010.08.009.

https://doi.org/https://doi.org/10.1016/S0065-2717(08)70306-X
https://doi.org/https://doi.org/10.1016/S0065-2717(08)70306-X
http://www.sciencedirect.com/science/article/pii/S006527170870306X
http://www.sciencedirect.com/science/article/pii/S006527170870306X
https://doi.org/https://doi.org/10.1016/S0074-6142(08)62788-6
https://doi.org/https://doi.org/10.1016/S0074-6142(08)62788-6
http://www.sciencedirect.com/science/article/pii/S0074614208627886
http://www.sciencedirect.com/science/article/pii/S0074614208627886
https://doi.org/10.1115/1.1418697
https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.028
https://doi.org/10.1115/1.4002775
https://doi.org/10.1115/1.4002775
https://doi.org/10.1016/j.jqsrt.2010.08.009


194 Bibliography

[139] V Goutiere, F Liu, and A Charette. “An assessment of real-gas modelling in
2D enclosures”. In: Journal of Quantitative Spectroscopy and Radiative Transfer
64.3 (2000), pp. 299–326.

[140] V Goutière, A Charette, and L Kiss. “Comparative performance of nongray
gas modeling techniques”. In: Numerical Heat Transfer: Part B: Fundamentals
41.3-4 (2002), pp. 361–381.

[141] V P Solovjov et al. “The rank correlated SLW model of gas radiation in non-
uniform media”. In: Journal of Quantitative Spectroscopy and Radiative Transfer
197 (2017), pp. 26–44.

[142] V P Solovjov et al. “The Scaled SLW model of gas radiation in non-uniform
media based on Planck-weighted moments of gas absorption cross-section”.
In: Journal of Quantitative Spectroscopy and Radiative Transfer 206 (2018), pp. 198–
212.

[143] V P Solovjov et al. “Locally Correlated SLW Model for Prediction of Gas Ra-
diation in Non-Uniform Media”. In: (June 2019).

[144] M K Denison and B W Webb. “k-distributions and Weighted-Sum-of-Gray-
Gases-A hybrid model”. In: International Heat Transfer Conference Digital Li-
brary. Begel House Inc. 1994.

[145] J T Pearson et al. “Efficient representation of the absorption line blackbody
distribution function for H2O, CO2, and CO at variable temperature, mole
fraction, and total pressure”. In: Journal of Quantitative Spectroscopy and Radia-
tive Transfer 138 (2014), pp. 82–96.

[146] V P Solovjov, B W Webb, and F André. “Radiative properties of gases”. In:
Handbook of Thermal Science and Engineering (2018), pp. 1069–1141.

[147] V P Solovjov, B W Webb, and F André. “Radiative Properties of Gases”. In:
Handbook of Thermal Science and Engineering. Cham: Springer International
Publishing, 2018, pp. 1069–1141. ISBN: 978-3-319-26695-4. DOI: 10.1007/978-
3-319-26695-4_59. URL: https://doi.org/10.1007/978-3-319-26695-
4_59.

[148] B W Webb, V P Solovjov, and F André. “An exploration of the influence
of spectral model parameters on the accuracy of the rank correlated SLW
model”. In: Journal of Quantitative Spectroscopy and Radiative Transfer 218 (2018),
pp. 161–170.

[149] C E Lee. “The discrete Sn approximation to transport theory”. In: (June 1961).

[150] W A Fiveland. “The selection of discrete ordinate quadrature sets for anisotropic
scattering”. In: Fundamentals of Radiation Heat Transfer 160 (1991), pp. 89–96.

[151] S L Sobolev. “On mechanical quadrature formulae on the surface of a sphere”.
In: Sibirskii Matematicheskii Zhurnal 3.5 (1962), pp. 486–496.

[152] V I Lebedev. “Quadratures on a sphere”. In: USSR Computational Mathematics
and Mathematical Physics 16.2 (1976), pp. 10 –24. ISSN: 0041-5553. DOI: https:
//doi.org/10.1016/0041-5553(76)90100-2. URL: http://www.sciencedirect.
com/science/article/pii/0041555376901002.

[153] A L Crosbie and R G Schrenker. “Radiative transfer in a two-dimensional
rectangular medium exposed to diffuse radiation”. In: Journal of quantitative
spectroscopy and radiative transfer 31.4 (1984), pp. 339–372.

[154] P Le Quéré. “Accurate solutions to the square thermally driven cavity at high
Rayleigh number”. In: Computers & Fluids 20.1 (1991), pp. 29–41.

https://doi.org/10.1007/978-3-319-26695-4_59
https://doi.org/10.1007/978-3-319-26695-4_59
https://doi.org/10.1007/978-3-319-26695-4_59
https://doi.org/10.1007/978-3-319-26695-4_59
https://doi.org/https://doi.org/10.1016/0041-5553(76)90100-2
https://doi.org/https://doi.org/10.1016/0041-5553(76)90100-2
http://www.sciencedirect.com/science/article/pii/0041555376901002
http://www.sciencedirect.com/science/article/pii/0041555376901002


Bibliography 195

[155] E Tric, G Labrosse, and M Betrouni. “A first incursion into the 3D structure of
natural convection of air in a differentially heated cubic cavity, from accurate
numerical solutions”. In: International Journal of Heat and Mass Transfer 43.21
(2000), pp. 4043–4056.

[156] P Le Quéré and M Behnia. “From onset of unsteadiness to chaos in a differ-
entially heated square cavity”. In: Journal of fluid mechanics 359 (1998), pp. 81–
107.

[157] J Chang and T F Lin. “Unsteady thermosolutal opposing convection of liquid-
water mixture in a square cavity—II. Flow structure and fluctuation anal-
ysis”. In: International journal of heat and mass transfer 36.5 (1993), pp. 1333–
1345.

[158] T Nishimura, M Wakamatsu, and A M Morega. “Oscillatory double-diffusive
convection in a rectangular enclosure with combined horizontal temperature
and concentration gradients”. In: International Journal of Heat and Mass Transfer
41.11 (1998), pp. 1601–1611.

[159] A Ibrahim. “Couplage de la convection naturelle et du rayonnement dans les
mélanges gazeux absorbants-émettants”. PhD thesis. 2010.

[160] Vladimir P Solovjov and Brent W Webb. “An efficient method for model-
ing radiative transfer in multicomponent gas mixtures with soot”. In: J. Heat
Transfer 123.3 (2001), pp. 450–457.

[161] L Cadet. “Étude du couplage convection-rayonnement en cavité différen-
tiellement chauffée à haut nombre de Rayleigh en ambiances habitables”.
PhD thesis. La Rochelle, 2015.

[162] B E Poling, J M Prausnitz, and J O’Connell. The properties of gases and liquids.
New York: McGraw-Hill, 2001. ISBN: 0070116822 9780070116825 0071189718
9780071189712. URL: http://www.worldcat.org/search?qt=worldcat_org_
all&q=0070116822.

[163] J CR Hunt, A A Wray, and P Moin. “Eddies, streams, and convergence zones
in turbulent flows”. In: (1988).

[164] J Jeong and F Hussain. “On the identification of a vortex”. In: Journal of fluid
mechanics 285 (1995), pp. 69–94.

http://www.worldcat.org/search?qt=worldcat_org_all&q=0070116822
http://www.worldcat.org/search?qt=worldcat_org_all&q=0070116822






ÉTUDE NUMÉRIQUE DE LA CONVECTION NATURELLE COUPLÉE AU
RAYONNEMENT GAZEUX DANS UN CAVITÉ CONTENANT UN OBSTACLE

ACTIF

Notre objectif est d’étudier numériquement des écoulements de convection na-
turelle en milieu confiné, le fluide étant un mélange gazeux incluant des composants
absorbants (CO2, H2O). On considère pour cela une cavité cubique avec une source
localisée sur le plancher chauffant le fluide et diffusant un polluant participant au
rayonnement. Nos calculs sont réalisés avec le code CFD Code Saturne, dans lequel
nous avons implanté nos propres données pour la méthode des ordonnées discrètes
(nouvelles quadratures) et pour modéliser le rayonnement des gaz (méthode SLW
dans l’approche « rank-correlated »). En convection naturelle thermique pure les
résultats montrent que le rayonnement du gaz modifie légèrement la structure de
l’écoulement et la distribution de température. Il réduit les échanges convectifs en-
tre le fluide et les parois de l’enceinte ainsi que l’échange radiatif entre la surface
supérieure de l’obstacle et celles de la cavité. En double-diffusion, dans le cas aidant,
le rayonnement du gaz tend à homogénéiser le champ thermique, accélère légère-
ment les couches limites pariétales, mais réduit la vitesse maximale à l’intérieur
du panache. Par contre, il affecte peu le champ de concentration. Dans le cas op-
posant, le rayonnement intensifie le panache thermique qui se développe au-dessus
de l’obstacle. Il réduit la température dans les régions proches des surfaces verticales
de l’obstacle. Le champ de concentration montre les mêmes tendances d’altération
que le champ thermique.

Mots clés: Analyse numérique, Chaleur–Convection, Gaz–Écoulement, Couche
limite, Modélisation CFD, Rayonnement thermique, Transfert de chaleur.

NUMERICAL STUDY OF NATURAL CONVECTION COUPLED TO GAS
RADIATION IN A CAVITY CONTAINING AN ACTIVE OBSTACLE

Our objective is to study numerically natural convection flows in an enclosure,
the fluid being a gaseous mixture including absorbent components (CO2, H2O). For
this purpose, we consider a cubic cavity with a source located on the floor, heating
the fluid and diffusing a pollutant participating to radiation. Our calculations are
performed with the CFD software Code Saturne, in which we have implemented
our own data for the discrete ordinates method (new quadratures) and for modelling
gas radiation (SLW method in the rank-correlated approach). In pure thermal natu-
ral convection, the results show that gas radiation slightly changes the flow structure
and the temperature distribution. It reduces the convective exchanges between the
fluid and the walls of the enclosure as well as the radiative exchange between the
upper surface of the obstacle and the cavity boundaries. In double diffusion, in the
aiding case, gas radiation tends to homogenize the thermal field and slightly accel-
erates the parietal boundary layers, but reduces the maximum velocity within the
plume. On the other hand, it has little effect on the concentration field. In the oppos-
ing case, the radiation intensifies the thermal plume above the obstacle. It reduces
the temperature in regions close to the vertical surfaces of the obstacle. The concen-
tration field shows the same modification trends as the thermal field.

Keywords: Numerical analysis, Heat–Convection, Gas flow, Boundary layer,
Computational fluid dynamics, Heat–Radiation and absorption, Heat–Transmission.
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