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Résumé

Les spécifications basées sur les schémas-blocs et machines à états sont utilisées pour la
conception de systèmes de contrôle-commande, particulièrement dans le développement
d’applications critiques. Des outils tels que Scade et Simulink/Stateflow sont équipés de
compilateurs qui traduisent de telles spécifications en code exécutable. Ils proposent des
langages de programmation permettant de composer des fonctions sur des flots, tel que
l’illustre le langage synchrone à flots de données Lustre.
Cette thèse présente Vélus, un compilateur Lustre vérifié dans l’assistant de preuves

interactif Coq. Nous développons des modèles sémantiques pour les langages de la chaîne
de compilation, et utilisons le compilateur C vérifié CompCert pour générer du code
exécutable et donner une preuve de correction de bout en bout. Le défi principal est
de montrer la préservation de la sémantique entre le paradigme flots de données et le
paradigme impératif, et de raisonner sur la représentation bas niveau de l’état d’un
programme.

En particulier, nous traitons le reset modulaire, une primitive pour réinitialiser des sous-
systèmes. Ceci implique la mise en place de modèles sémantiques adéquats, d’algorithmes
de compilation et des preuves de correction correspondantes. Nous présentons un nouveau
langage intermédiaire dans le schéma habituel de compilation modulaire dirigé par
les horloges de Lustre. Ceci débouche sur l’implémentation de passes de compilation
permettant de générer un meilleur code séquentiel, et facilite le raisonnement sur la
correction des transformations successives du reset modulaire.

Mots clés : langages synchrones à flots de données, Lustre, Scade, compilation vérifiée,
sémantique mécanisée, Vélus, assistants de preuve interactifs, Coq, reset modulaire
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Abstract

Specifications based on block diagrams and state machines are used to design control
software, especially in the certified development of safety-critical applications. Tools
like SCADE and Simulink/Stateflow are equipped with compilers that translate such
specifications into executable code. They provide programming languages for composing
functions over streams as typified by dataflow synchronous languages like Lustre.
In this thesis we present Vélus, a Lustre compiler verified in the interactive theorem

prover Coq. We develop semantic models for the various languages in the compilation
chain, and build on the verified CompCert C compiler to generate executable code
and give an end-to-end correctness proof. The main challenge is to show semantic
preservation between the dataflow paradigm and the imperative paradigm, and to reason
about byte-level representations of program states.
We treat, in particular, the modular reset construct, a primitive for resetting subsys-

tems. This necessitates the design of suitable semantic models, compilation algorithms
and corresponding correctness proofs. We introduce a novel intermediate language into
the usual clock-directed modular compilation scheme of Lustre. This permits the im-
plementation of compilation passes that generate better sequential code, and facilitates
reasoning about the correctness of the successive transformations of the modular reset
construct.

Keywords: synchronous dataflow languages, Lustre, Scade, verified compilation, mecha-
nized semantics, Vélus, interactive theorem provers, Coq, modular reset
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Chapter 1
Introduction

Vélus is a verified prototype compiler, for a synchronous dataflow language with constructs
from Lustre [Caspi, Pilaud, et al. (1987)] and Scade [Colaço, Pagano, and Pouzet (2017)].
The main goal in the development of Vélus is to provide an end-to-end proof of correctness
in an Interactive Theorem Prover (ITP) from the synchronous dataflow paradigm to the
imperative one. This involves specifying the syntax, type systems and clock systems
of the source and several intermediate languages, mechanizing their semantic models,
implementing the compilation passes that successively transform programs from one
language to another, and finding invariants and proofs to establish the corresponding
correctness results. We use the Coq ITP [The Coq Development Team (2019)] and extend
the proof of correctness to the machine level by building on top of the verified CompCert
C compiler [Leroy (2009b)].
This thesis presents, in particular, novel extensions to the original Vélus compiler

to incorporate the modular reset construct [Hamon and Pouzet (2000)]. We build on
earlier work to formalize the semantics of this construct in Coq. We introduce a novel
intermediate language to compile it effectively and show how to adapt existing invariants
and proofs to re-establish the end-to-end correctness result.

1.1 Synchronous dataflow languages

1.1.1 Background

Synchronous programming is a paradigm that was developed in the 1980s concomitantly
with the growing importance of real-time embedded software. Such systems run in
interaction with the environment, are subject to strict non functional constraints like
bounded time and memory resources and are often safety-critical. They belong to the
class of reactive systems, as named by Harel and Pnueli (1985), that defines systems that
“continuously react to their environment at a speed determined by this environment”
[Halbwachs (1993)]. In contrast with the standard approach based on asynchronous
execution and interleaving, synchronous languages build on two key concepts: synchrony
and deterministic concurrency.

The synchrony hypothesis assumes that synchronous programs “produce their outputs
synchronously with their inputs, their reaction taking no observable time” [Benveniste
and Berry (1991)]. This simplifying premise decouples the specification of programs logic
from the need to ensure that implementations meet real-time constraints. It permits
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Chapter 1 Introduction

node euler(x0, u: float64) returns (x: float64);
let
x = x0 fby (x + 0.1 * u);

tel

node ins(gps, xv: float64) returns (x: float64; alarm: bool);
var k: int;

let
x = merge alarm ((0. fby x) when alarm)

(euler((gps, xv) when not alarm));
alarm = (k >= 50);
k = 0 fby (k + 1);

tel

Lustre

Listing 1.1: A simple inertial navigation system

reasoning in a discrete model of time where events are totally ordered relative to one
another [Benveniste, Caspi, et al. (2003)]. In this model, concurrency, that is, parallel
composition, is simply the conjunction of synchronous sub-systems.

The implementation of these fundamental concepts gave independently birth to three
early languages: Esterel [Boussinot and de Simone (1991); Berry and Gonthier (1992);
Berry (2000a,b, 2002)], imperative, event-driven and control-oriented, Signal [Benveniste
and Le Guernic (1990); Benveniste, Le Guernic, and Jacquemot (1991); Le Guernic
et al. (1991)], declarative and geared towards the specification of whole systems, and
Lustre [Caspi, Pilaud, et al. (1987); Halbwachs, Caspi, et al. (1991); Halbwachs (2005);
Jahier, Raymond, and Halbwachs (2019)], declarative, time-driven and dataflow-oriented.
Besides adopting the synchronous model, all share two major traits: (1) they have a
mathematical model, and (2) their implementation must satisfy strong memory and time
constraints. The combination of these two aspects results from the twofold origin of the
synchronous languages, inspired both by control theory and computer science, and from
their targeted application domain. New ideas were introduced in later languages such
as Scade [Colaço, Pagano, and Pouzet (2017)], Argos [Maraninchi (1991); Maraninchi
and Rémond (2001)], Reactive C [Boussinot (1991)], Lucid Synchrone [Pouzet (2006)],
ReactiveML [Mandel and Pouzet (2005); Mandel, Pasteur, and Pouzet (2015)], Zelus
[Bourke and Pouzet (2013); Bourke, Colaço, et al. (2015)] or SCCharts [von Hanxleden
et al. (2014)].

1.1.2 Lustre

Lustre was inspired by the dataflow programming language Lucid [Wadge and Ashcroft
(1985)] and by Kahn process networks [Kahn (1974)]. A Lustre program operates on
streams, that is, infinite sequences of values. The basic unit of a Lustre program is called
a node. A node defines a function of streams via a set of equations. Equations equate
variables to expressions, and are to be understood as “temporal invariants” [Halbwachs

2
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(2005)], in the sense that the equation x = e is interpreted as the formula ∀n, xn = en.
Throughout this dissertation, we will refer to the example Lustre program in listing 1.1.
The euler node receives two input streams x0 and u, an initial quantity and a derivative,
respectively, and outputs stream x, representing an approximate quantity defined by a
single equation that implements the forward Euler scheme xn+1 = xn+0.1un. Arithmetic
operators operate point-wise on streams: x + y defines the stream x0 + y0 · x1 + y1 · · · .
The fby operator is an initialized delay operator: x fby y defines the stream x0 ·y0 ·y1 · · · .
A fby whose first argument is a constant represents a unit delay in control theory, or a
register in synchronous circuits.1

Once a node is declared, it can be instantiated in other nodes. In the example, the
ins node composes an instance of euler, initialized from a gps input and fed a stream
of displacement values xv, with a local counter k used to signal an alarm when the
resulting odometric approximation is judged outdated. The order of the equations is
inconsequential. The when operator samples a stream: x when y defines the sub-stream
of x determined by whether y is true or not. In the example, the arguments of the euler
instance are sampled when alarm is false, consequently the instance is not activated
when the alarm condition occurs. The x output is defined using a merge operator that
combines complementary streams into a faster one.2 The effect here is to freeze the value
of x when alarm occurs. With sampling comes the notion of clock. A clock is an abstract
representation of a timescale, that is, a stream of booleans indicating when the values of
another stream are present or absent.

The semantics of a node can be represented as a chronogram, that is, a grid associating
each variable with a row representing a stream of values. Below is an example of such a
chronogram for the ins node, where holes represent absence of value.

gps 5. 5. 5. · · · 5. 5. 5. 5. · · ·
xv 20. 30. 10. · · · 60. 60. 50. 70. · · ·
k 0 1 2 · · · 49 50 51 52 · · ·
alarm F F F · · · F T T T · · ·
0. fby x 0. 7. 10. · · · 36. 42. 42. 42. · · ·
(0. fby x) when alarm · · · 42. 42. 42. · · ·
euler(gps, xv) 7. 10. 11. · · · 42. 48. 53. 60. · · ·
euler(gps, xv) when not alarm 7. 10. 11. · · · 42. · · ·
x 7. 10. 11. · · · 42. 42. 42. 42. · · ·

The Lustre language finds an industrial application in the SCADE3 tool-set used
for developing safety-critical embedded software. SCADE evolved from the graphical
syntax that it initially provided over a Lustre kernel towards a high-level language, a

1In this dissertation, we do not treat the uninitialized delay operation pre x, that defines the stream
nil · x0 · x1 · · · , where nil denotes an undefined value, nor the initialization operation x -> y, that
defines the stream x0 · y1 · y2 · · · . Indeed, x fby y defines the same stream as x -> pre y, with the
advantage of avoiding the complications related to possibly undefined values.

2We do not treat current x, that oversamples x, because it can introduce uninitialized values.
3www.ansys.com/products/embedded-software/ansys-scade-suite
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Figure 1.1: SCADE graphical representation

programming environment and a qualified code generator known as KCG. Released
in 2008, the major version SCADE 6 enrich its kernel with more complex features,
inspired by concepts from Esterel and Lucid Synchrone, among others. SCADE provides
two syntaxes: a Lustre-like syntax, the Scade language [Colaço, Pagano, and Pouzet
(2017)] and a graphical syntax [Dormoy (2008)]. Graphical representation is pervasive
in synchronous languages and in model-based development in general. In particular,
the SCADE graphical syntax can be compared to that of Simulink4 which is the de
facto standard tool for non-critical model-based development. The SCADE graphical
counterpart of the euler node in listing 1.1 is shown in figure 1.1a: each block represents
an operator, and each wire represents a stream. There is a multiplication block, an
addition block and a fby block. On the graphical view of the ins node in figure 1.1b,
there is again a block for each operator, plus a block instantiating the euler node.

1.1.3 A brief history of the compilation of Lustre

The generation of sequential code from Lustre code has been thoroughly studied from
the beginnings of the language. The general idea is to generate a transition function that
is repeatedly executed to compute the successive synchronous steps of the system. There
are two main approaches to generate such a function.

1. Single-loop compilation is the simplest technique. The idea is to sequentialize the
calculations of the variables of the program, in an infinite loop that alternates reads
of inputs, calculation of a step of the system, and writes to outputs. Control is
realized by tests.

2. Finite automaton generation is based on the idea of reducing the number of condi-
tional structures in the generated code. It works by identifying a subset of state

4www.mathworks.com/products/simulink.html

4

https://www.mathworks.com/products/simulink.html


1.1 Synchronous dataflow languages

variables from which a finite state automaton can be constructed, whose states and
transitions encode control, avoiding unnecessary tests.

An important orthogonal question is whether and when to inline node instantiations.
This is not just a question of executable performance. It determines, in fact, which source
programs can be compiled. Consider the following example, due to Gonthier (1988).

node two_copies(w, x: int)
returns (y, z: int)

let
y = w;
z = x;

tel

Lustre

two_copies
c a

a b

w y

x z

The two_copies node simply transmits its two inputs and can be sequentialized either
as the sequence of assignments y := w; z := x or as z := x; y := w. This node
cannot be modularly compiled into a single function because in an instantiation like
(a, b) = two_copies(c, a), shown graphically above on the right, the first output
must be calculated before it can be provided as the second input, forbidding the second
choice of sequentialization. It means that a static scheduling cannot be found for a node
independently of the context of its instantiation.
In his thesis, Plaice (1988) presents the compiler LUSTRE-V2, which generates a

finite automaton from a Lustre program. The compiler builds on the approach of [Caspi,
Pilaud, et al. (1987)] which, in turn, was inspired by the compilation of Esterel. Plaice
remarks that generating a finite automaton produces more efficient code than generating
a sequential transition function per node, in particular because the latter generates
unnecessary tests at each cycle to distinguish the initial state. He describes a data-driven
algorithm that generates the automaton forward by firstly inlining all node instantiations
and enumerating a set of boolean variables representing the state vector of the program.
To avoid an explosion in the size of the automaton, minimisation techniques are applied
afterward, but in some cases the minimal automaton may be excessively large compared
to the source program. Moreover, it may be infeasible to generate the initial automaton
which can be very large.

The problem of combinatorial explosion in the size of the generated automaton is
studied by Raymond (1991) in his thesis. He proposes a new version of the compiler,
LUSTRE-V3, which directly produces a minimal automaton, with new heuristics to
choose the set of enumerated control variables based on binary decision diagrams. The
approach defines a demand-driven algorithm to generate a minimal automaton that works
backward from the outputs of the program. A comparison of execution time and code
size between single-loop compilation, data-driven and demand-driven approaches appears
in [Halbwachs, Raymond, and Ratel (1991)]. Raymond notes that inlining all node
instantiations is the first source of combinatorial explosion and advocates for separate
compilation. Indeed, in prior work [Raymond (1988)], he presents a method to rewrite a
Lustre program into a network of finite automata, following a static analysis that avoids
the problem exemplified by Gonthier’s two_copies program.

5
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Right from the beginnings of SCADE in the mid-nineties, it appeared that modular
compilation was mandatory, despite its relative inefficiency. As it is an industrial tool
that targets critical embedded systems, it cannot rely on the generation of finite automata
because of the loss of traceability between source programs and generated code, and
because of the complexity of the generation process. The choice in the SCADE code
generator was thus to generate a single main loop, and a step function per node, even if
that meant proscribing causal loops like the one in Gonthier’s example. In Scade, each
feedback loop must cross an explicit delay, but inlining can be requested explicitly by the
programmer. Starting from 1999, the prototype compiler ReLuC of Jean-Louis Colaço
developed as a reference compiler for future versions of Scade implements a simpler
and more efficient compilation method than earlier versions of Scade. This method is
formalized in [Biernacki et al. (2008)] and relies on source-to-source transformations
and compilation toward a minimal kernel on which several static analysis are defined
(initialization, causality, clocking and typing). The code generator for the latest version
of SCADE, SCADE 6, follows these principles.

Rather than generate a single step function per node, an alternative modular approach
is to decompose a node into sets of step functions with associated scheduling constraints.
This avoids the restrictions that Scade imposes on feedback loops. Lublinerman, Szegedy,
and Tripakis (2009) formalize this problem as optimal graph clustering and show that
it is NP-complete using a reduction of the clique cover problem. They propose a
SAT-solver-based iterative algorithm to found the optimal number of functions and
the scheduling constraints. Several trade-offs between modularity (number of interface
functions generated), reusability (usability in different contexts), and code size are studied.
Pouzet and Raymond (2009) give an equivalent formalization of the problem as an optimal
static scheduling problem. They propose a solution that simplifies the problem over
an input / output dependency relation inspired from [Raymond (1988)]. They define a
polynomial algorithm that is able to find optimal solutions in most cases and otherwise
give a lower start bound to use iterative SAT-solver-based solutions like the one of
[Lublinerman, Szegedy, and Tripakis (2009)].
In this work, we focus on the single-loop modular compilation scheme described in

[Biernacki et al. (2008)]. This is the simplest scheme, and the basis of the current Scade
code generator. Technically, it is also well suited to induction-based proof techniques.

1.2 Verified compilation

Compilers are complex programs and, as such, particularly prone to bugs. Compiler
correctness is an old topic that dates back to the first published pen-and-paper proof of
McCarthy and Painter (1967). Dave (2003) surveys about one hundred articles about
compiler verification. Since then, some promising achievements have been made: a
byte-code compiler from a subset of Java to a subset of the Java Virtual Machine [Klein
and Nipkow (2006)] verified in the Isabelle ITP, the Verisoft project [Leinenbach, Paul,
and Petrova (2005)] and its compiler for a subset of C verified in Isabelle, the C compiler
CompCert [Blazy, Dargaye, and Leroy (2006); Leroy (2006, 2009b)], verified in Coq,
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Pilsner [Neis et al. (2015)], a compositional compiler for an ML-like language verified in
Coq, the CakeML project [Kumar et al. (2014); Tan et al. (2016)] and its compiler for a
subset of Standard ML verified in HOL4. The different techniques used in these various
endeavours can be summarized in the three following categories, that may be combined.

1. Verified compilers are proved correct directly: if compilation succeeds, the correctness
proof provides a formal guarantee that the semantics is preserved.

2. Verified validators, following the translation validation approach [Pnueli, Siegel, and
Singerman (1998)], check after the compilation that the semantics of the source
and generated programs coincide.

3. Certifying compilers, following the proof-carrying code approach [Necula (1997)],
generate both compiled code and a proof, or certificate, checked by an independent
verified checker, that the code satisfies a given specification.

Our main challenge is to pass from a dataflow semantics to an imperative one. This
distinguishes our work from other verified compilers that either treat imperative languages
like C (CompCert) or that normally require a managed runtime like ML (CakeML). In the
following, we present some existing works on the formalization and verified compilation
for synchronous languages, then describe our approach.

1.2.1 Existing approaches for synchronous languages
Several synchronous languages have been formalized in ITPs, including synchronous
circuits in Coq [Paulin-Mohring (1996); Coupet-Grimal and Jakubiec (1999)], a variant
of Esterel in HOL [Schneider (2001)], a shallow embedding of Lucid Synchrone in Coq
[Boulmé and Hamon (2001)] and Kahn networks in Coq [Paulin-Mohring (2009)]. There
are many partial formalizations of Simulink and its Statecharts-like graphical formalism
Stateflow. Hamon and Rushby (2004) and Hamon (2005) formalize the semantics
of Stateflow and show that it is essentially an imperative language with a graphical
syntax. Several other works propose formalizations, but that are oriented towards formal
verification of Simulink/Stateflow continuous-time models. None of these works treats
code generation.
There are several proposals around verified compilation for synchronous languages.

An unpublished report about the development of a Scade 3 compiler verified in Coq
focuses on semantics and clocking [Giménez and Ledinot (2000)]. The GeneAuto project
aimed at developing a qualified code generator from a subset of Simulink and showed the
correctness of the scheduling of dataflow equations in Coq [Toom, Näks, et al. (2008);
Toom, Izerrouken, et al. (2010); Izerrouken (2011)]. In his PhD thesis, Auger (2013)
describes the development of a Lustre compiler with reset partially verified in Coq, based
on a semantic model for finite lists rather than for streams. Recent work introduces a
compilation pass from Signal to an intermediate representation verified in Coq [Yang
et al. (2016)]. There is ongoing unpublished work by Gérard Berry and Lionel Rieg to
verify the translation of Esterel to digital circuits in Coq. None of these works gives an
end-to-end proof of correctness for the generation of executable code. Several passes of
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the Lustre compiler of Shi, Gan, et al. (2017) and Shi, Zhang, et al. (2019) have been
verified in Coq. Their dataflow semantics is defined sequentially in an imperative fashion,
which makes reasoning on dataflow transformations like scheduling difficult. They do not
support the reset operator. Finally, their proof states the correctness of the execution
only for a finite number of steps.

Translation validation is another approach that was applied to synchronous languages,
firstly by Pnueli, Strichman, and Siegel (1998). Starting from the initial proposal of
[Pnueli, Strichman, and Siegel (1999)], recent work integrate this technique into Signal
compilers. It has also been applied to a subset of Simulink [Ryabtsev and Strichman
(2009)]. Translation validation can provide formal guarantees as strong as verified
compilation if the validators are formally verified, but this is not the case for recent work
on Signal.

1.2.2 Our approach
For safety-critical software, the most dreaded compiler bugs are those that are silently
introduced by the compiler into code generated from a correct source. Studies [Eide
and Regehr (2008); Yang et al. (2011); Le, Afshari, and Su (2014)] have shown various
crashes or miscompilations in C compilers. Yet, the motivations for formalizing C and
verifying a C compiler do not transfer automatically to languages like Lustre and Scade
which benefit from a mathematical model that C lacks. Moreover, the code generator
that SCADE embeds, KCG, is qualified under the avionic norms DO-178B (1992) and
its replacement DO-178C (2012), among others. Qualification is a rigorous process that
gives strong correctness guarantees in practice. Qualification and formal correctness are
distinct topics, as Halbwachs (2005) writes:

Let’s say at once that such a qualification has nothing to do with formal
proof of the compiler, but is rather a matter of design process, test coverage,
quality of the documentation, requirements traceability, etc.

Thus our goal is not to propose a replacement for Scade but rather to experiment with
mechanized verification. We consider this approach as a complement to qualification,
that raises interesting scientific questions but whose efficiency and industrial applicability
remains uncertain.

What is a correct compiler? The standard notion of compiler correctness asserts that
a compiler is correct if any property that holds on the source program also holds on
the compiled program. This property, called refinement [Abadi and Lamport (1988)], is
usually stated in terms of semantics preservation: observable behaviors of the compiled
program must also be observable behaviors of the source program. Leroy (2009b) gives a
well summarized overview of the notions of semantic preservation and associated proof
techniques.
The observable behavior of a Lustre program S is the list of streams ys obtained by

feeding the main node of S with a given list of input streams xs. The generated program
runs in an infinite loop alternating the consumption of inputs and the production of
outputs. Such operations are observable through an infinite sequence of events, that is, a
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S C

xs,ys T

Lustre
semantics

compilation

“sameness”

Assembly
semantics

Figure 1.2: The overall schema of the correctness result

trace T recording the values read or written. We state the correctness of our compiler
as a simulation [Lynch and Vaandrager (1994)] from the source semantics to the target
semantics5. The correctness proof consists in establishing (1) that such a trace T exists
and (2) that it represents the same behavior as the pair of lists of streams (xs,ys).
This is described schematically in figure 1.2 in the form of a simulation diagram. The
hypotheses are on the left of the dashed line, while the proof obligations are on the right.

Remark that this simulation result is the reverse of refinement: it states that observable
behaviors of the source program are also observable behaviors of the compiled program.
Nonetheless, the two directions are equivalent provided that the target semantics is
deterministic, which is the case here, and this direction is easier to prove than the
converse.

1.3 The modular reset
The ability to reinitialize the state of a node is important for modular programming.

Consider the example in listing 1.2a that implements a general counter. Listing 1.2b,
inspired from [Caspi, Pilaud, et al. (1987)], is a rewriting of the counter node with
an additional input stream reset that indicates when the counter must restart. This
node can then be instantiated, for example, by the equation n = counter(0, 1, r).
Unfortunately, this non-modular rewriting approach generates poor imperative code. A
modular approach was expressed by Caspi (1994, §4.1) with block diagrams. Hamon and
Pouzet (2000) introduced a modular reset construct in Lucid Synchrone, that was later
adapted for SCADE. In Scade, one writes n = (restart counter every r)(0, 1) in
a modular way, using the counter version of listing 1.2a. The syntax expresses that
the counter instance is reset every time r is true. A similar feature, called Resettable
Subsystem,6 exists in Simulink.

In control system design, sophisticated applications are often best expressed using
5There is an unfortunate diversity in the terminology used for qualifying such simulation results.
For example, in the verified micro-kernel sel4 [Klein, Elphinstone, et al. (2009)], the term forward
simulation is used to mean a simulation from a concrete model to an abstract model, while in
CompCert [Leroy (2009a)], it is used to mean a simulation from source (abstract) semantics to target
(concrete) semantics. Despite this difference in terminology, both works refer to the same notion of
refinement. In this dissertation we will only use the unqualified term of simulation, specifying the
direction to avoid the confusion.

6mathworks.com/help/simulink/ug/reset-block-states-in-a-subsystem.html
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node counter(init, incr: int)
returns (n: int);

let
n = init fby (n + incr);

tel

Lustre

(a) Without reset

node counter(init, incr: int; reset: bool)
returns (n: int);

let
n = if reset then init else init fby (n + incr);

tel

Lustre

(b) With reset

Listing 1.2: The counter node

x

alarmxv

gps

ins

INS

f alse alarm

xgps

GPS

<NAV>

1

s

1

s

a

Figure 1.3: A SCADE graphical representation of a state machine

node nav(gps, xv: float64; s: bool) returns (x: float64; alarm: bool);
var c: bool; r: bool;

let
(x, alarm) = merge c (gps when c, false)

((restart ins every r) ((gps, xv) when not c);
c = true fby (merge c (not s when c) (s when not c));
r = false fby (s and c);

tel

Lustre

Listing 1.3: Simplified compilation of a state machine
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state machines, or automata. Hierarchical state machines have been introduced by
Harel (1987) with the StateCharts formalism. Maraninchi (1991, 1992) designed the
Argos language that gives a synchronous interpretation of the composition of automata.
Later, ideas from Argos were adapted to propose an extension of a kernel of Lustre with
state machines, within the mode-automata formalism [Maraninchi and Rémond (1998,
2003)]. Finally, building on these ideas, Colaço, Pagano, and Pouzet (2005) and Colaço,
Hamon, and Pouzet (2006) propose a conservative modular extension of Lustre with state
machines, with associated compilation techniques. This extension exploits the modular
reset construct to reset states on entry and has been adapted to Scade.
Continuing our previous example, figure 1.3 presents a graphical representation of a

state machine representing a simple embedded navigation system. An s input toggles
between two modes: GPS, where the x output position is defined directly by the gps
signal; and INS, where the ins node is instantiated to approximate the position. The
signal s represents the loss of the GPS signal, that could occur, for example, inside a
tunnel. When entering a mode, the fbys and node instances within must be reinitialized.
While fbys are reinitialized by adding conditionals, treating node instances modularly
requires a modular reset construct. A simplified compilation of the example state machine
is shown in listing 1.3. Sampling and merging operators are used to encode the different
states, or modes, and the transitions between them. We do not describe in detail the
equations that define the clocks c and r: c is true when the GPS mode is active and
false when the INS mode is active, and r is true only at the instant that follows an entry
into INS mode. This last stream is used by the restart operator to reinitialize the ins
node instance in a modular way.
We propose an original formalization of this operator and show that it is suitable for

verifying compiler correctness. Our approach builds on the idea that the modular reset
can be expressed recursively. Caspi and Pouzet (1997, §A.1) gave a formalization in a
co-iterative Kahn semantics, that was later adapted in [Hamon and Pouzet (2000)] where
a node instantiation “acts as a totally new function” whenever it is reset; the authors
remark that this can be given a recursive interpretation. This idea is exploited by [Cohen,
Gérard, and Pouzet (2012)] for the generation of parallel code from Lustre. Auger (2013)
adapts unpublished work [Auger et al. (2012)], that builds on similar ideas, to give a
mechanized formalization of the modular reset in Coq.

1.4 Vélus: an overview
The Vélus compiler is written in Coq with the exception of the lexer, the main application,
the intermediate printers and the validated scheduling pass which are written in OCaml.
It follows the modular approach of [Biernacki et al. (2008)]. We focus on dataflow
synchronous languages and their compilation, and therefore take advantage of the
abstract low-level machine model provided by CompCert and its verified algorithms for
producing assembly code. The reason for choosing Coq over other ITPs is that CompCert
is written in Coq. All passes are verified in the sense that their correctness is stated and
proved within Coq. Figure 1.4 gives an overview of the compiler architecture, and we
briefly describe its elements below.
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Figure 1.4: The architecture of Vélus

parsing reads a source file as an unannotated abstract syntax tree. It is handled by the
Menhir [Pottier and Régis-Gianas (2018)] tool with the --coq option. With this
flag, the generated parser comes with a Coq proof of correctness [Jourdan, Pottier,
and Leroy (2012)].

elaboration implements type checking and clock checking. It turns raw syntax trees into
Lustre programs annotated with types, clocks and related predicates. It is not yet
complete, and is thus dashed in figure 1.4.

normalization is a source-to-source transformation that rewrites a Lustre program into
a normalized form to prepare for further compilation to imperative code. This pass
has been studied in previous work by Auger (2013) and is not yet implemented in
Vélus.

transcription transforms normalized Lustre code into NLustre whose abstract syntax
encodes the normalized form. This pass is not yet complete.

n-elaboration bypasses elaboration, normalization and transcription to directly produce
annotated NLustre code from manually normalized Lustre programs.

i-translation represents the first change of paradigm: the code is translated from NLustre
to Stc which is a transition system language introduced in this dissertation, and
where synchronous reactions are modeled as transitions between states.

scheduling of dataflow equations in order to determine the order of future generated
imperative instructions is performed on Stc: this allows, in particular, to schedule
modular reset equations independently.

12
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Figure 1.5: Simulation diagrams composition

s-translation is the second and final change of paradigm: we generate imperative Obc
code, Obc being a lightweight object-like imperative language.

fusion optimization aims at reducing the amount of conditional statements introduced
by the translation of clocked equations.

argument initialization is a stage where the compiler adds initialization values and
validity assertions to ensure that function calls arguments are always initialized (as
required by Clight but not otherwise guaranteed by the compilation scheme).

generation of Clight code, a C-like language from the frontend of CompCert, is the last
pass of Vélus which relies on CompCert for the rest of the compilation chain.

To verify that the generated assembly code correctly implements the source language
semantics, we establish relations for each transformation, like the one presented in
figure 1.2, and compose them, as shown in figure 1.5.

We organized the development to mirror as much as possible the architecture pictured
in figure 1.4. In appendix A, we outline concrete details of this organization.
Figure 1.6 on the next two pages shows hows the Vélus compiler transforms a simple

Lustre program. The example uses the counter node of listing 1.2a with shorter names
to save space. The counter_rst node uses the modular reset construct to restart the
counter every time r is true. The first transformation is normalization, which we perform
here manually. Two equations are introduced to define the fby with a constant value and
an initialization clock i that is tested at each cycle to detect the initial instant. The next
transformation, i-translation, produces Stc code where nodes have become systems. State
is made explicit: state variables are distinguished with the init keyword and sub-systems
are declared with the keyword sub. Stc is a language that defines transition systems. A
system has one default transition that is defined by declarative equations that we call
transition constraints, and an implicit reset transition that reinitializes state variables to
their initial values. At the level of transition constraints, reset and default transitions
are made distinct. The scheduling transformation orders the transition constraints in
anticipation of the next transformation, s-translation, where each system is translated
into a class, with a step method corresponding to the default transition and a reset

13
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node counter(n0, k: int) returns (n: int);
let

n = n0 fby (n + k);
tel

node counter_rst(n0: int; r: bool)
returns (n: int);

let
n = (restart counter every r) (n0, 1);

tel

Lustre

node counter(n0, k: int) returns (n: int);
var i: bool; pn: int;

let
i = true fby false;
pn = 0 fby (n + k);
n = if i then n0 else pn;

tel

node counter_rst(n0: int; r: bool)
returns (n: int);

let
n = (restart counter every r) (n0, 1);

tel

NLustre

system counter {
init i = true, pn = 0;
transition(n0: int, k: int) returns (n: int)
{

next i = false;
next pn = n + k;
n = if i then n0 else pn;

}
}

system counter_rst {
sub n: counter;
transition(n0: int, r: bool) returns (n: int)
{
n = counter<n,1>(n0, 1);
reset counter<n> every (. on r);

}
}

Stc

system counter {
init i = true, pn = 0;
transition(n0: int, k: int) returns (n: int)
{
n = if i then n0 else pn;
next i = false;
next pn = n + k;

}
}

system counter_rst {
sub n: counter;
transition(n0: int, r: bool) returns (n: int)
{

reset counter<n> every (. on r);
n = counter<n,1>(n0, 1);

}
}

Stc

manual
normalization

i-translation

scheduling

Figure 1.6 (I): Successive transformations of an example Lustre program
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class counter {
state i: bool;
state pn: int;

step(n0: int, k: int) returns (n: int) {
if state(i) { n := n0 }
else { n := state(pn) };
state(i) := 0;
state(pn) := n + k

}

reset() {
state(i) := 1;
state(pn) := 0

}
}

class counter_rst {
instance n: counter;

step(n0: int, r: bool) returns (n: int) {
if r { counter(n).reset() } else { };
n := counter(n).step([n0], 1)

}

reset() {
counter(n).reset()

}
}

Obc

struct counter { _Bool i; int pn; };
struct counter_rst { struct counter n; };

int fun$counter$step
(struct counter *self, int n0, int k)

{
register int n;
if ((*self).i) { n = n0; }
else { n = (*self).pn; }
(*self).i = 0;
(*self).pn = n + k;
return n;

}

void fun$counter$reset(struct counter *self)
{
(*self).i = 1;
(*self).pn = 0;
return;

}

int fun$counter_rst$step
(struct counter_rst *self, int n0, _Bool r)

{
register int n;
register int step$n;
if (r) { fun$counter$reset(&(*self).n); }
step$n = fun$counter$step(&(*self).n, n0, 1);
n = step$n;
return n;

}

void fun$counter_rst$reset
(struct counter_rst *self)

{
fun$counter$reset(&(*self).n);
return;

}

struct counter_rst self$;
int volatile n$;
int volatile n0$;
_Bool volatile r$;

int main(void)
{

register int n;
register int n0;
register _Bool r;
fun$counter_rst$reset(&self$);
while (1) {
n0 = builtin volatile load int32(&n0$);
r = builtin volatile load int8u(&r$);
n = fun$counter_rst$step(&self$, n0, r);
builtin volatile store int32(&n$, n);

}
}

Clight

s-translation

generation

Figure 1.6 (II): Successive transformations of an example Lustre program
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method corresponding to the implicit reset transition. The transition constraints are
translated into imperative statements, that is, sequences of assignments to variables
or state variables, conditionals and method calls. The final transformation (fusion
optimization and argument initialization do not change the Obc code in this example)
produces Clight code. The state is held by structures passed by reference, and the entry
point of the program is defined by an infinite single loop that alternates reads of inputs,
calculation of outputs by the main step transition function, and writes to outputs. From
this point, CompCert compilation function is applied to produce assembly code, that we
do not show here.

1.5 Organization

Chapter 2 presents the formalization of the Lustre dialect treated by Vélus. In particular,
we give a semantics to the modular reset construct. We motivate the need for two
equivalent semantics for the normalized NLustre language, based on whether streams are
represented coinductively or as functions from N to values.

Chapter 3 diverges from the usual modular compilation scheme: before being translated
to imperative code, the NLustre program is transformed into the Stc intermediate
transition system language. We show the interest of this approach, in terms of semantic
reasoning and efficiency of the generated code.

Chapter 4 describes the first step into the imperative paradigm. Stc code is translated
into Obc code where each node is represented as a class that encapsulates its state and
two methods that act on this state: a step method that implements one step of the
execution and a reset method that reinitializes the state. Before being translated, the
dataflow equations are scheduled to fix the imperative sequential order of execution. We
describe how the generated Obc code is optimized.

Chapter 5 presents how we extend correctness to the machine level by using CompCert.
The low-level memory model of CompCert is intricate and we use Separation Logic to
facilitate the proof of correctness of the translation from Obc to Clight.

Figure 1.5 gives references to the various chapters and sections where the corresponding
proofs are described.

1.6 Remarks

About proofs Every lemma, corollary or theorem presented in this dissertation is proved
in Coq. Thus I do not provide detailed descriptions of the proofs in this dissertation. A
version with outlines of the proofs can be found at:

www.leliobrun.net/files/thesis-with-proofs.pdf
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1.6 Remarks

Source code Besides lemmas, every definition that appears in the text is associated
with a reference to the actual development, indicating the corresponding file and line
numbers. In the electronic PDF version, these references are links to files in the following
public repository:

github.com/INRIA/velus/tree/lelio-thesis

Common notations Throughout this dissertation, we use some common notations. To
indicate a list, we use the bold face x. The empty list is written ε, and h · t is the
consing operation of the head h to the tail t. We also write [h] for the singleton h · ε.
When relevant, we use the ellipsis notation x1 · · ·xn where xi is the standard projection
notation, and the range notation (xi)i∈[1,n]. Since we work a lot with composite lists, we
may write, for example, xy for the list of tuples xy1

1 · · ·xynn . Finally, we write x+ y for
the concatenation of the two lists x and y.
Let E be an environment that maps identifiers to elements of a given type A, we

write E(x) to describe the lookup operation. In particular we write E(x) = a to mean
that x is bound to a in E. We write x /∈ E to mean that x does not appear in E.
We use the symbol .= as a general convention to designate the result of such partial
operations but environments have a special treatment for convenience. We will also
write E{x 7→ a} for the standard update operation, and ∅ for the empty environment.
These notations extend to lists: E(x) is the list E(x1) · · ·E(xn), and E{x 7→ a} is the
environment E{x1 7→ a1} · · ·{xn 7→ an}.
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Related publications

[Bourke, Brun, Dagand, et al. (2017)] This work presents the first version of Vélus on
which I started my work, without modular reset
and coinductive-based semantics. Chapter 5 de-
scribes in detail the generation of Clight code from
Obc code that the article briefly presents.

[Bourke, Brun, and Pouzet (2018)] This work presents the initial version of the for-
malization of the semantics of the modular reset
further described in chapter 2.

[Bourke, Brun, and Pouzet (2020)] This work presents the second version of Vélus, in
which the compilation chain is adapted to handle
the modular reset in a way that is described in
chapters 3 and 4 with the addition of Stc.
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Chapter 2
Mechanized formalization of Lustre
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In this chapter we present the formalization of the Lustre dialect used in Vélus. In
section 2.1 we will explain how the formalization is made abstract over the operators of
the target language, and how absence and streams are modeled. Section 2.2 presents the
syntax and the formal coinductive-based semantics of Lustre. In particular, we show how
to give a semantics to the modular reset construct.
After the elaboration stage that produces annotated Lustre code, the first code

transformation pass is normalization, needed for the sequential code generation modular
approach that we follow. In section 2.3 we focus on NLustre (for normalized Lustre)
which is a syntactic variant of Lustre. NLustre is given two provably equivalent semantics:
the first models streams coinductively while the second models streams as functions from
natural numbers to values. The former is used to prove correct the transcription pass
that transforms a normalized Lustre program into an NLustre program, and the latter is
used for further compilation correctness proofs.
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Table 2.1: Abstract notations

Coq name notation
type τ
const c

true_val T
false_val F
sem_const c JcK

unop �
binop ⊕

sem_unop op v t = Some v' JopKτ v
.= v′

sem_binop op v1 t1 v2 t2 = Some v' JopKτ1×τ2 v1 v2
.= v′

type_unop op t = Some t' ` op : τ → τ ′

type_binop op t1 t2 = Some t' ` op : τ1 × τ2 → τ ′

2.1 Preliminary definitions

Before presenting the semantic model of Lustre, we describe several fundamental modeling
choices, namely on the integration of values, types and operators from the underlying
target language, the representation of presence and absence, and the modeling of streams.

2.1.1 Abstraction layer

In Lustre, the definition of constants, types and operators depend on the target language
[Caspi, Pilaud, et al. (1987)]. We follow the same approach in Vélus, where the target
language is made abstract throughout most of the development. The front-end, that is, the
lexer and parser, are not abstracted, but directly adapted from those used by CompCert
(see appendices B and C). In principle, it should be possible to instantiate our development
for a different target language, though we are not aware of any suitable formalization.
To achieve this abstraction, we use functors over a signature, the abstraction layer, that
abstracts the constants, types and operators of the target language. Each development
unit—be it a function implementing a pass of the compiler, a correctness proof, or an
internal library—is encapsulated within a functor over this signature, instantiated in only
one place for the Clight code generation pass.

The key parameters of this signature, named OPERATORS, are shown in listing 2.1. The
parameters val, type and const represent, respectively, the semantic values, the types,
and the constants of the target language. Note that val and type contain booleans. The
parameters unop and binop represent, respectively, unary operators and binary operators.
More generally, generic operators with parametric arity could have been used instead of
hard-coded unary and binary arity, but this approach, taken initially, was abandoned for
the sake of simplicity. The function type_const gives the type of an arbitrary constant,
init_type gives a constant inhabiting a type, which is needed to initialize variables, and
sem_const is a total function defining the semantics of a constant. The sem_unop and
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(* Types *)

Parameter val : Type.
Parameter type : Type.
Parameter const : Type.

(* Booleans *)

Parameter true_val : val.
Parameter false_val : val.
Axiom true_not_false_val : true_val <> false_val.

Parameter bool_type : type.

(* Constants *)

Parameter type_const : const -> type.
Parameter sem_const : const -> val.
Parameter init_type : type -> const.

(* Operations *)

Parameter unop : Type.
Parameter binop : Type.

Parameter sem_unop : unop -> val -> type -> option val.
Parameter sem_binop : binop -> val -> type -> val -> type -> option val.

(* Typing *)

Parameter type_unop : unop -> type -> option type.
Parameter type_binop : binop -> type -> type -> option type.

Coq (src/Operators.v:18–49)

Listing 2.1: Key parameters of the OPERATORS signature
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sem_binop functions give the semantics of the application of an operator. Note that both
functions are partial: they return an optional value, and have to be given not only their
evaluated arguments but also the types of these arguments. Indeed, citing CompCert’s
documentation [Leroy (2019)]:

Most C operators are overloaded (they apply to arguments of various types)
and their semantics depend on the types of their arguments. [. . .] Since
operators are overloaded, the result [of an operator application] depends both
on the static types of the arguments and on their run-time values.

The semantics of operators is partial because some operations can fail or yield an
undefined behavior in C. For example, the integer division-by-zero is undefined behavior,
as well as the less known division of the smallest signed integer by minus one.1 While
partiality is something that we want to be able to model, to allow the possibility to target
complex non-total operators, we could have chosen to forbid overloading and to only
allow type-specific operators. Finally, type_unop and type_binop are responsible for
resolving (partially again) the result type of an operator application, given the argument
types. Table 2.1 lists useful corresponding notations that will be used throughout this
dissertation.
Besides the aforementioned parameters, the signature also contains various axioms

about well-typing and decidability. An axiom in a signature is a fact for modules that use
the signature and a proof obligation for modules that implement it. To explain how the
development is affected by the way the abstraction layer is set up, we take a toy example
in appendix D. This example, that also serves as an introduction to useful Coq basics,
is very simple but the whole Vélus development relies on exactly the same model: each
unit is enclosed in a functor with an argument for each unit it depends on. The caveat
is that it is rather cumbersome to duplicate the dependence graph into the call graph
when the number of dependencies and separate libraries grows. Indeed some functors
having more than 15 parameters, it becomes quite tedious to maintain and modify, but
otherwise works well in practice.

2.1.2 Absent and present values

As we have seen, in Lustre, a synchronous value is either present or absent at each instant.
This principle is the base of the clock system and at the core of the semantics of the
language. We will write ‹v› to designate the present value v, and ‹ › to represent the
absence of value. Note that, as explained, v is an abstract value to be implemented by
the target language semantics: the type val is provided by the abstraction layer.

In the Coq implementation we define value as an inductive type with two constructors:
absent for ‹ › and present v for ‹v›.

1The operation indeed overflows [Seacord (2018)], which is also undefined behavior.
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Inductive value :=
| absent
| present (v: val).

Coq (src/Operators.v:175–177)

2.1.3 Modeling infinite sequences

Lustre is a language of streams, that is, infinite sequences, of present or absent values.
Mathematically, a sequence can be defined as a function. For infinite sequences, the
domain of such a function is the set of natural numbers N. In Coq, when faced with the
task of formalizing a system based on infinite sequences, there are two main choices:

1. using Coq’s functions over nat, which is the set of Peano natural numbers, or

2. using coinductive definitions, which allow to describe and reason about infinite
objects.

In Vélus we did both. Indeed, in the early life of the project, the choice was made to
use functions, for three reasons. First by elimination: proofs about coinductive objects
can involve technical difficulties, namely the guardedness condition on proof terms and
a lack of dedicated tactics. Secondly, functions are well-known objects that are rather
easy to use and reason about in Coq. Lastly, this choice allows to describe the dataflow
synchronous semantics in a practical way inspired by the initial formalization [Caspi,
Pilaud, et al. (1987)]: as a generalization of an instantaneous behavior. The problem is
that the definition of this semantics is rather cumbersome and somewhat different from
modern presentations [Colaço and Pouzet (2003); Auger et al. (2012)].

The decision is thus to somehow hide this particular semantics by restricting it to the
internal passes—that is, those involving NLustre, presented in section 2.3—while giving
the Lustre frontend a semantics based on coinductive streams, that is easier to read and
closer to the literature. Still the notoriously hard proof-handling of coinduction remains,
as we will see.

2.1.3.1 Indexed streams in Coq

A stream of elements of type A can be represented as a function N→ A, that we term
an indexed stream. In Coq:

Definition stream A := nat -> A.
Coq (src/IndexedStreams.v:42)

We use the usual function application notation s n to designate the nth element of the
stream s.
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2.1.3.2 Coinductive streams in Coq

As Bertot (2005) notes, the addition of coinductive types has been studied during the first
half of the nineties. For example, [Leclerc and Paulin-Mohring (1994); Paulin-Mohring
(1996)] use an encoding in Coq of coinductive types based on greatest fixpoints to model
infinite streams. Native coinduction support was finally added to Coq by Giménez (1996),
based on his extension of the Calculus of Inductive Constructions (CIC) [Giménez (1995)].

Thus in our implementation, we base our definitions on the standard library Streams2
which defines the coinductive type Stream as follows.

CoInductive Stream : Type :=
Cons : A -> Stream -> Stream.

Coq

That is, an infinite stream of elements of type A is made by infinitely consing values of
type A. The library also provides the projections hd to access the head, that is, the first
element of a stream, and tl to access the tail, that is, the stream after the head. We
will write x · s to designate the stream whose head is x and tail is s. Also, Str_nth n s,
where n is a natural number, that we write sn in this dissertation and s # n in our Coq
development, accesses the nth element of the stream s.

2.1.3.3 Equality

What does it mean for two infinite objects to be equal? This question has to be tackled
whatever model we choose, be it functions or coinductive streams. Indeed, even if
functions are not formally considered infinite objects, we can still ask: what does it
mean for two functions to be equal? The intuitive answer, for both models, is a kind of
pointwise equality, or more precisely observational equality. We say that two functions
are observationally equal if they have the same graph, that is, if their graphs are equal.
Two streams are observationally equal if their elements are pairwise equal.

Now one may think that observational equality implies equality, but not in type theory.
For example, the following assertion of “Leibniz equality”—that is, syntactic equality
modulo reduction—cannot be proved in Coq:

λx. 2× x = λx. x+ x

However, those two functions are observationally equal. In Coq, observational equality
does not imply Leibniz equality, at least not without including the axiom of functional
extensionality. The FunctionalExtensionality3 library provides this axiom, stated for the
more general case of dependent functions:

2coq.inria.fr/stdlib/Coq.Lists.Streams.html
3coq.inria.fr/stdlib/Coq.Logic.FunctionalExtensionality.html
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Axiom functional_extensionality_dep : forall {A} {B : A -> Type},
forall (f g : forall x : A, B x),

(forall x, f x = g x) -> f = g.

Coq

We prefer not to use this axiom in Vélus—as it could lead to inconsistency—and choose
to use the observational equality as the default equality for infinite objects. That is, our
definitions and proofs are based on observational equality rather than Leibniz equality.

For indexed streams, observational equality, written s1 ≈ s2, means pointwise Leibniz
equality.

Definition 2.1.1 (eq_str, src/IndexedStreams.v:49)

s1 ≈ s2 ↔ ∀n, s1 n = s2 n

For coinductive streams, observational equality, also named bisimilarity, is defined in
the Streams library.

CoInductive EqSt (s1 s2: Stream) : Prop :=
eqst :

hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.

Coq

It is also essentially Leibniz equality applied pointwise, although the predicate itself is
defined coinductively. We will write s1 ≡ s2 to indicate that the coinductive streams s1
and s2 are bisimilar.

2.2 Lustre
In this section we present the Lustre dialect used in Vélus. We describe the syntax and
the semantics of the language, and particularly focus on the semantics of the modular
reset.

2.2.1 Abstract syntax
In figure 2.1, we present the—lightly sugared—syntax of Lustre as it is defined the
Vélus development. This syntax is parameterized over the abstraction layer described
before. Hence, c, �, ⊕ and τ represent the abstracted constants, unary operators, binary
operators and types respectively, as summarized in table 2.1 on page 22. The category x
represents identifiers, which we define as positive integers. We use standard notations: e+

is a non-empty sequence e · · · e; e+
, is a non-empty sequence separated by “,” e, · · · ,e;

[e] is either e or nothing.
Note that we focus here on a dialect that is closer to Scade 6 [Colaço, Pagano, and Pouzet

(2017)] than to early Lustre [Caspi, Pilaud, et al. (1987)], see figure 2.2. In particular we

27

https://github.com/INRIA/velus/tree/lelio-thesis/src/IndexedStreams.v#L49


Chapter 2 Mechanized formalization of Lustre

e ::= expression
| c (constant)
| xa (variable)
| (� e)a (unary operator)
| (e ⊕ e)a (binary operator)
| (e+, fby e+, )a

+, (unit delay)
| (e+, when (x = b))la (sampling)
| (merge x e+, e+, )la (merging)
| (if e then e+, else e+, )la (conditional)
| (x(e+,))a

+, (application)
| ((restart x every e)(e+,))a

+, (modular reset)

a ::= τ , nck single flow annotation

la ::= τ+, nck synchronized flows annotation

nck ::= named clocks
| ck (regular clock)
| (x : ck) (stream clock)

eq ::= x+, = e+, equation

d ::= xτ,ck variable declaration

n ::= (node|function) x(d+,) returns (d+,) node
[var d+];
let
eq+;

tel

g ::= n+ program

Figure 2.1: The Lustre abstract annotated syntax

LUSTRE SCADE 6current

op

pre
->

when

merge
restart

Figure 2.2: Operators origins [Colaço, Pagano, and Pouzet (2017)]
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drop the operators pre and current as they cause problems with initialization. More
precisely, pre is not yet treated since extra formalization and proofs are required to
ensure that it is used correctly [Colaço and Pouzet (2004)]. As a replacement, we focus on
the fby and merge operators. For convenience, we use a special notation for the sampling
operation: the concrete code e when x is written e when (x = true) and e whenot x, or
e when not x are written e when (x = false). The same convention is used for clocks.
Named clocks are introduced to track dependencies that occur with nested node

applications. This is beyond the scope of this work, so we omit the details. More
generally, we postpone the description of the clocks ck, as a simpler clock system will be
explained later, for the normalized form NLustre.
Remark also that there exist two types of annotations in our syntax: the single flow

annotation (a) and the synchronized multiple flows annotation (la). This distinction is
used to annotate lists of sub-expressions. The single flow annotation is simply a pair of a
type and a named clock and is used to annotate sub-expressions that do not need to be
synchronized on the same clock. The multiple synchronized flows annotation pairs a list
of types with a single clock: it is used to annotate a list of sub-expressions that must be
on the same clock.
We will use the notations n.name, n.in, n.out, n.vars, n.eqs to indicate, respectively,

the name, the input variables, output variables, local variables and equations of the
node n.
In the following, we present the implementation of selected parts of the abstract

syntax of Lustre in the Coq development. Recall that the syntax definitions and—unless
specified—every piece of Coq development of Vélus is parameterized over the OPERATORS
signature described in section 2.1.1. Consequently, every occurrence of const, unop,
binop and type refers to this abstract signature.

Expressions Listing 2.2a presents the implementation of expressions: the inductive type
exp corresponds to e in figure 2.1. The Ewhen constructor possesses a boolean parameter
which is used to distinguish between when if the parameter is true and when not otherwise.
The modular reset, as it shares most of its syntax with the regular application, is not
given its own constructor. Rather, we add an optional expression parameter to the Eapp
constructor signaling the presence of a reset. We work with possibly empty lists because
they are easier to manipulate, and use independent predicates to ensure that they are
not empty.

Equations The implementation of equations shown in listing 2.2b is straightforward:
an equation pairs a list of variables and a list of expressions.

Nodes The abstract syntax for a node is defined using a dependent record, as shown in
listing 2.2c. Such records have three main advantages:

1. We can refer to their elements using named fields.

2. Fields may be propositions that refer to other fields.
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Definition ann : Type := (type * nclock)%type.
Definition lann : Type := (list type * nclock)%type.

Inductive exp : Type :=
| Econst : const -> exp (* constant *)
| Evar : ident -> ann -> exp (* variable *)
| Eunop : unop -> exp -> ann -> exp (* unary operator *)
| Ebinop : binop -> exp -> exp -> ann -> exp (* binary operator *)

| Efby : list exp -> list exp -> list ann -> exp (* unit delay *)
| Ewhen : list exp -> ident -> bool -> lann -> exp (* sampling *)
| Emerge : ident -> list exp -> list exp -> lann -> exp (* merging *)
| Eite : exp -> list exp -> list exp -> lann -> exp (* conditional *)

| Eapp : ident -> list exp -> option exp -> list ann -> exp. (* application / reset *)

Coq (src/Lustre/LSyntax.v:44–58)

(a) Expressions

Definition equation : Type := (list ident * list exp)%type.

Coq (src/Lustre/LSyntax.v:64)

(b) Equations

Record node : Type :=
mk_node {

n_name : ident; (* name *)
n_hasstate : bool; (* statefulness *)
n_in : list (ident * (type * clock)); (* inputs *)
n_out : list (ident * (type * clock)); (* outputs *)
n_vars : list (ident * (type * clock)); (* local variables *)
n_eqs : list equation; (* equations *)

n_ingt0 : 0 < length n_in;
n_outgt0 : 0 < length n_out;
n_defd : Permutation (vars_defined n_eqs)

(map fst (n_vars ++ n_out));
n_nodup : NoDupMembers (n_in ++ n_vars ++ n_out);
n_good : Forall ValidId (n_in ++ n_vars ++ n_out)

/\ valid n_name
}.

Coq (src/Lustre/LSyntax.v:157–173)

(c) Nodes

Listing 2.2: Implementation of Lustre
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3. When building an object of record type, Coq allows omitting some of the fields, if
they can be inferred or left as a proof obligation using the Coq Program standard
library [Sozeau (2007, 2008)].

The boolean field n_hasstate encodes the statefulness of a node: it is false for nodes
that are purely combinatorial and true for nodes that may be stateful, that is, that may
contain fby’s or recursively stateful node instances. For now, this distinction is not used
in Vélus.
Using dependent records means that we can encode some basic well formedness

predicates directly with the node definition. Namely that a node has at least one input,
n_ingt0; at least one output, n_outgt0; that equations define all outputs and local
variables, n_defd (the vars_defined function gathers variables from the left-hand sides);
that input, local and output variable declarations do not overlap and are unique, n_nodup
(the NoDupMembers predicate ensures that an association list has no duplicates relative to
the keys, that is, the list represents a map); and that the name of a node and its variable
declarations are valid identifiers, n_good (an identifier is valid if it is not a reserved
keyword and if it does not use reserved special characters).

2.2.2 Formal semantics
2.2.2.1 Synchronous streams operators

To formalize the semantics of Lustre, it is usual [Caspi and Pouzet (1998); Colaço and
Pouzet (2003); Auger et al. (2012)] to define synchronous streams operators specifying
the behavior of the primitive constructs of the language. The first operator defines the
stream associated to a constant.

Definition 2.2.1 (const, src/CoindStreams.v:290)

const (true · bs) c , ‹JcK› · const bs c
const (false · bs) c , ‹ › · const bs c

To indicate when the stream is present or absent, the operator takes a clock stream
argument, that is, a stream of booleans giving the tempo. The constant c is evaluated using
the semantics for constants provided by the abstraction layer (the function sem_const in
listing 2.1 on page 23) and written JcK.
Figure 2.3 displays the semantics of the other operators. Note that as they are all

partially defined—they impose stream synchronization—we decide to define them as
relations rather than as functions, hence the inference rules. This is, I think, easier to
define because it avoids optional result or error monad, easier to reason about because
unwanted cases just do not exist, and more elegant. To make the predicates easier to
read, we add the .= symbol in front of their last arguments. This symbol has no formal
value. Moreover, all of these are defined in Coq as coinductive predicates, a fact which
we represent using doubled horizontal lines in the style of [Leroy and Grall (2009)], to
distinguish from the presentation of inductive predicates with single-lined inference rules.
Thus the definitions all follow the same pattern: there is one inference rule by definition
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case, each one stating that the relation holds for consed streams, given that it holds
coinductively for their tails.

Figure 2.3a shows how unary and binary operators semantics are lifted up to pointwise
application on streams of values. The notation �↑τ is to be read “the lifting of the unary
operator � for type τ”. Taking the binary operation case, the operation is defined on only
two cases: either (1) all heads are absent, and the relation must hold for the tails, either
(2) all heads are present, the relation must hold for the tails and the result value must
be the the result of the semantics of the operator on the two input values. Taking the
usual addition operator on 32-bit integers, for example, the rule formalizes the following
example, where white spaces represent absence of value.

x 1 2 3 4 5 · · ·
y 2 4 6 8 10 · · ·

x+ y 3 6 9 12 15 · · ·

Figure 2.3b describes the synchronous streams operator responsible for specifying the
conditional behavior. In Lustre, the conditional branching construct can be seen as a
multiplexer applied point-wise. Hence, it behaves as a ternary operator, as shown on the
chronogram below.

c T T F T F · · ·
x 1 2 3 4 5 · · ·
y 2 4 6 8 10 · · ·

if c then x else y 1 2 6 4 10 · · ·

Figures 2.3c and 2.3d show the behavior of the synchronous operators we will use
to define the semantics of the temporal operators when and merge. The subtlety is
the boolean parameter of the when operator: it represents the distinction between the
complementary behaviors of when, when it is true, and when not otherwise. Consider
the b = true case, the result stream is the sampled version of the first stream operand,
according to the boolean values of the second. Thus the result stream has present values
only when the variable stream outputs true boolean values, and absent values everywhere
else. The merge operator takes two complementary streams as second and third operands
and combines them according to its first stream operand to output a stream that combines
the complementary values. The behavior of the synchronous operators for when and
merge is illustrated below.

c T T F T F · · ·
x 1 2 3 4 5 · · ·
y 2 4 6 8 10 · · ·

u = x when c 1 2 4 · · ·
v = y when not c 6 10 · · ·

merge c u v 1 2 6 4 10 · · ·

The behavior of the operator describing the semantics of the fby unit delay, as presented
in [Colaço and Pouzet (2003)], is more involved. As shown in figure 2.3e, it can be seen
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�↑τ xs .= vs

�↑τ (‹ › · xs) .= ‹ › · vs

�↑τ xs .= vs J�Kτ x
.= v

�↑τ (‹x› · xs) .= ‹v› · vs

⊕↑τ1×τ2xs ys .= vs

⊕↑τ1×τ2 (‹ › · xs) (‹ › · ys) .= ‹ › · vs

⊕↑τ1×τ2xs ys .= vs J⊕Kτ1×τ2 x y
.= v

⊕↑τ1×τ2 (‹x› · xs) (‹y› · ys) .= ‹v› · vs

(a) Unary and binary operators lifting
(lift1, src/CoindStreams.v:293 and lift2, src/CoindStreams.v:305)

ite cs ts fs .= vs

ite (‹ › · cs) (‹ › · ts) (‹ › · fs) .= ‹ › · vs

ite cs ts fs .= vs

ite (‹T› · cs) (‹v› · ts) (‹f› · fs) .= ‹v› · vs

ite cs ts fs .= vs

ite (‹F› · cs) (‹t› · ts) (‹v› · fs) .= ‹v› · vs

(b) Conditional (ite, src/CoindStreams.v:351)

whenb xs cs .= vs

whenb (‹ › · xs) (‹ › · cs) .= ‹ › · vs

whenb xs cs .= vs val-to-bool c
.= ¬b

whenb (‹x› · xs) (‹c› · cs) .= ‹ › · vs

whenb xs cs .= vs val-to-bool c
.= b

whenb (‹v› · xs) (‹c› · cs) .= ‹v› · vs

(c) Sampling operator (when, src/CoindStreams.v:317)

Figure 2.3 (I): The semantic synchronous streams operators
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merge xs ts fs .= vs

merge (‹ › · xs) (‹ › · ts) (‹ › · fs) .= ‹ › · vs

merge xs ts fs .= vs

merge (‹T› · xs) (‹v› · ts) (‹ › · fs) .= ‹v› · vs

merge xs ts fs .= vs

merge (‹F› · xs) (‹ › · ts) (‹v› · fs) .= ‹v› · vs

(d) Merging operator (merge, src/CoindStreams.v:334)

fby1 v xs ys .= vs

fby1 v (‹ › · xs) (‹ › · ys) .= ‹ › · vs

fby1 y xs ys .= vs

fby1 v (‹x› · xs) (‹y› · ys) .= ‹v› · vs

fby xs ys .= vs

fby (‹ › · xs) (‹ › · ys) .= ‹ › · vs

fby1 y xs ys .= vs

fby (‹x› · xs) (‹y› · ys) .= ‹x› · vs

(e) Unit-delay operator (fby1, src/Lustre/LSemantics.v:45 and fby, src/Lustre/LSemantics.v:56)

Figure 2.3 (II): The semantic synchronous streams operators
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CoInductive when (b: bool)
: Stream value -> Stream value -> Stream value -> Prop :=

| WhenA:
forall xs cs rs,

when b xs cs rs ->
when b (absent · xs) (absent · cs) (absent · rs)

| WhenPA:
forall x c xs cs rs,

when b xs cs rs ->
val_to_bool c = Some (negb b) ->
when b (present x · xs) (present c · cs) (absent · rs)

| WhenPP:
forall x c xs cs rs,

when b xs cs rs ->
val_to_bool c = Some b ->
when b (present x · xs) (present c · cs) (present x · rs).

Coq (src/CoindStreams.v:317–332)

Listing 2.3: The synchronous stream operator for the when construct

as a state machine with two states: the initial state is described by the fby synchronous
operator, and the other one by fby1. At the first occurrence of present values on the
operands of the fby, the state machine outputs the initial value found on the first operand
and switches once and for all to the state described by fby1. This operator implements
the delay implied by the fby using its first operand as a memory. Note that besides
providing an initial value, the second operand is constrained to remain synchronous with
the third one. Note that the only role of the second parameter, the initial stream, is
then to guarantee the synchronization. The overall behavior is displayed in the example
below.

x 1 2 3 4 5 · · ·
y 2 4 6 8 10 · · ·

x fby y 1 2 4 6 8 · · ·

As an example of the implementation, listing 2.3 presents the Coq definition of the
when operator. Compare to figure 2.3c: the operator is defined as a coinductive relation
that has one constructor per valid case.

2.2.2.2 Semantics of Lustre

Now that we have defined the synchronous stream operators that define the behavior
of the core constructs of Lustre, we can give a semantics to the language. The first
challenge is to formalize the chronograms seen until now. We choose to represent such
grids with a stream environment, that we call a history. A history is a partial map from
identifiers to streams of present and absent values. Thus for a node to have a semantics,
there must exist a history that associates every variable with a stream (row) in a way
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that satisfies all the equations of the node. The semantics of equations and expressions is
parameterized by the base clock of the enclosing node, that is, the fastest clock at which
the node is activated. This choice is to express the semantics of constants without having
to rely on the semantics of their clock annotations. Indeed this way, a constant is always
evaluated on the base clock. In other semantics presented in the literature [Caspi and
Pouzet (1998); Colaço and Pouzet (2003); Auger et al. (2012)], constants are annotated
with their clock and the semantics is based on these annotations. In our case, elaboration
automatically adds when’s to constants if required. Our approach has the advantage of
formally separating clocking, typing and semantics. Therefore we omit the annotations
in the semantic rules.
Figure 2.4a shows the semantics for expressions. We write G,H, bs ` e ⇓ s to mean

that in the program G, under the history H and with base clock bs the expression e
is associated to the list of streams s. Note that the semantics is not presented in a
constructive fashion: it rather imposes constraints on the history rather than describing
how to build it. This is why the semantics rules are inductive, not coinductive: they
follow the structure of a term and use the coinductive operators already introduced. This
design is mainly to formalize the semantics independently of the order of the equations of
a node. Moreover it allows for easy isolation and case analysis (inversion) of predicates.

We now describe each rule. A constant c is associated with a single stream calculated
from the base clock using the function const defined before.

A variable x is associated with any stream bisimilar to the one specified for x in H. In
this particular context, the notation H(x) thus designates a lookup modulo bisimilarity.
This helps writing more readable and concise rules.

An operator application is evaluated using the lifting operators presented in the
previous section, provided that the expression operands are recursively associated with
single streams. The function types retrieves the list of types that annotates an expression.

Given the synchronous streams operators fby, when, merge and ite, the corresponding
semantics rules are straightforward. We lift semantic predicates and synchronous stream
operators to lists, writing:

• G,H, bs ` e ⇓ s as a shorthand for ∀i, G,H, bs ` ei ⇓ ui ∧ s = concatu (recall
that the semantics associates an expression with a list of streams, so each ui is a
list, hence the concat)

• fby s0 s
.= vs for ∀i, fby s0i si

.= vsi

• whenb s u
.= vs for ∀i, whenb si u

.= vsi

• merge s ts fs .= vs for ∀i, merge s tsi fsi
.= vsi

• ite s ts fs .= vs for ∀i, ite s tsi fsi
.= vsi

The semantics of a node application uses a dedicated predicate G ` f (xs) ⇓ ys
presented in figure 2.4c. The predicate relates input streams xs to output streams ys.
We write node(G, f) .= n to mean that the node n appears with the name f in the
program G: it is a lookup of f in G. The predicate is defined internally in terms of a
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s ≡ const bs c
G,H, bs ` c ⇓ [s] G,H, bs ` x ⇓ [H(x)]

G,H, bs ` e ⇓ [s] types e = [τ ] �↑τ s
.= vs

G,H, bs ` � e ⇓ [vs]

G,H, bs ` e1 ⇓ [s1] G,H, bs ` e2 ⇓ [s2]
types e1 = [τ1] types e2 = [τ2] ⊕↑τ1×τ2s1 s2

.= vs
G,H, bs ` e1 ⊕ e2 ⇓ [vs]

G,H, bs ` e0 ⇓ s0 G,H, bs ` e ⇓ s fby s0 s
.= vs

G,H, bs ` e0 fby e ⇓ vs

G,H, bs ` e ⇓ s whenb s (H(x)) .= vs
G,H, bs ` e when (x = b) ⇓ vs

G,H, bs ` et ⇓ ts G,H, bs ` ef ⇓ fs merge (H(x)) ts fs .= vs
G,H, bs ` merge x et ef ⇓ vs

G,H, bs ` e ⇓ [s] G,H, bs ` et ⇓ ts G,H, bs ` ef ⇓ fs ite s ts fs .= vs
G,H, bs ` if e then et else ef ⇓ vs

G,H, bs ` e ⇓ xs G ` f (xs) ⇓ ys
G,H, bs ` f(e) ⇓ ys

(a) Expressions without modular reset (sem_exp, src/Lustre/LSemantics.v:80)

Figure 2.4 (I): The semantics of Lustre

37

https://github.com/INRIA/velus/tree/lelio-thesis/src/Lustre/LSemantics.v#L80


Chapter 2 Mechanized formalization of Lustre

G,H, bs ` e ⇓ H(x)
G,H, bs ` x = e

(b) Equations (sem_equation, src/Lustre/LSemantics.v:152)

node(G, f) .= n H(x) = xs H(y) = ys
∀eq ∈ n.eqs, G,H, base-of xs ` eq

G ` f (xs) ⇓ ys
where

n.in = xτx,ckx

n.out = yτy,cky

(c) Nodes (sem_node, src/Lustre/LSemantics.v:159)

Figure 2.4 (II): The semantics of Lustre

history H that must match the input and output streams and satisfy the constraints given
by the semantics of the equations. Importantly, the universal quantification over n.eqs is
invariant under permutation of n.eqs. In other words, the semantics of a node does not
depend on the order of its equations. The base clock used to defined the semantics of
the equations is obtained from the input streams with the function base-of. The boolean
stream base-of xs is the base clock for the node activation: it is true only when at least
one input is present, that is, not absent.

Definition 2.2.2 (clocks_of, src/CoindStreams.v:368)

base-of xs , existsB (‹ › 6=B) (map hd xs) · base-of (map tl xs)

The semantics of an equation is given by a third dedicated sequent presented in
figure 2.4b: it simply constrains the history to bind the left-hand side variables to streams
resulting from the semantics of the right-hand side expressions. Note that the three
presented sequents for expressions, equations and nodes are mutually recursive.

2.2.2.3 The modular reset

The rules presented in the previous subsection are an original formalization of Lustre in
a proof assistant (we make several different choices to [Auger (2013)]), but they more or
less directly implement the standard rules (see, for example, [Colaço and Pouzet (2003)]).
In this section, we present a new way to formalize the modular reset in a “predicate
style”—whether in an ITP or not.
As already explained in the introduction, the intuitive behavior of the reset is highly

imperative: it effectively restarts a dataflow node by recursively resetting all fbys to their
initial values. A node instantiation of f(x) reset by a boolean expression r is written
(restart f every r)(x), following the Scade syntax. The challenge is to give a formal
dataflow semantics within an ITP.
Our starting point is the recursive intuition expressed by the program in listing 2.4

[Hamon and Pouzet (2000)]—not valid in actual Lustre because of forbidden recursion.
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2.2 Lustre

node true_until(r: bool) returns (c: bool)
let
c = true -> if r then false else (pre c);

tel

node reset_f(x: int; r: bool) returns (y: int)
var c: bool;

let
c = true_until(r);
y = merge c (f(x when c)) (reset_f((x, r) when not c));

tel

Lustre

Listing 2.4: A (forbidden) recursive specialized reset node [Hamon and Pouzet (2000)]

The application reset_f(x, r) behaves as f(x) until r is true for the first time, then
it recursively behaves as reset_f(x', r') where x' and r' are x and r taken starting
from this very instant. This behavior is illustrated on the example below.

x x0 x1 x2 x3 x4 x5 x6 · · ·
r F F T F F T F · · ·
c T T F F F F F · · ·

x when c x0 x1 · · ·
f(x when c) y0 y1 · · ·

x′ x2 x3 x4 x5 x6 · · ·
r′ T F F T F · · ·
c′ T T T F F · · ·

x′ when c′ x2 x3 x4 · · ·
f(x′ when c′) y2 y3 y4 · · ·

x′′ x5 x6 · · ·
r′′ T F · · ·
c′′ T T · · ·

x′′ when c′′ x5 x6 · · ·
f(x′′ when c′′) y5 y6 · · ·

...
reset_f (x, r) y0 y1 y2 y3 y4 y5 y6 · · ·

With this idea, a new instance of the node f comes into being on an accordingly sampled
input each time r is true. Each of theses instances is activated only on the temporal
window from when the instant r is true until just before the next instant where r is true,
and forever if r is never true again. As a consequence of the semantics of the fby, and
because all node signals are absent when all the inputs are, each such instance begins
in its initial state, that is, all its fbys have their initial values. This is precisely what
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models the imperative reset: instead of resetting the current instance itself, we simply
start a new instance.
Rather than try to express this recursion directly in Coq, we take another approach:

we formalize the semantics of the reset by infinitely unrolling the recursion. We define
a special mask operator that filters its input by defining a window where its input is
transmitted directly, and outside of which its value is absent.
Definition 2.2.3 (mask, src/CoindStreams.v:378)

mask0
true·rs (x · xs) , always-absent

mask0
false·rs (x · xs) , x ·mask0

rs xs
mask1

true·rs (x · xs) , x ·mask0
rs xs

maskk+1
true·rs (x · xs) , ‹ › ·maskkrs xs

maskk+1
false·rs (x · xs) , ‹ › ·maskk+1

rs xs

Where always-absent , ‹ › · always-absent

The mask operator has three parameters: an instance number k, a reset stream rs and a
stream to filter, xs. Intuitively, maskkrs xs counts at each instant n the number of reset
ticks on the boolean stream rs seen so far and compares the result to k: if equal then
it outputs the (absent or present) value of the stream xs at n, otherwise it outputs ‹ ›.
Below is shown the behavior of mask on the previous example, count r being the number
of true ticks seen so far on the boolean stream r.

x x0 x1 x2 x3 x4 x5 x6 · · ·
r F F T F F T F · · ·

count r 0 0 1 1 1 2 2 · · ·

mask0
r x x0 x1 · · ·

f(mask0
r x) y0 y1 · · ·

mask1
r x x2 x3 x4 · · ·

f(mask1
r x) y2 y3 y4 · · ·

mask2
r x x5 x6 · · ·

f(mask2
r x) y5 y6 · · ·

...
(reset f every r)(x) y0 y1 y2 y3 y4 y5 y6 · · ·

We use the mask operator to formalize the semantics of the modular reset. First, recall
the rule for the node application equation:

G,H, bs ` e ⇓ xs G ` f (xs) ⇓ ys
G,H, bs ` f(e) ⇓ ys

The rule for application with reset is very similar, we keep the predicate on the inputs of
f . Additionally we have to give a semantics to the reset condition and to replace the
premise on node application:
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G,H, bs ` er ⇓ [s] bools-of s
.= r

G,H, bs ` e ⇓ xs ∀k, G ` f
(

maskkr xs
)
⇓ maskkr ys

G,H, bs ` (restart f every er)(e) ⇓ ys
We simply use a universal quantifier to denote the unrolling of instances. Each instance’s
output is fully specified using the mask operator, where we write maskkr xs as a shorthand
for maskkr xs1 · · ·maskkr xsi. The boolean reset stream is obtained using the bools-of
relation, which specifies the transformation of a stream of values into a stream of Coq
booleans.
Definition 2.2.4 (bools_of, src/CoindStreams.v:371)

bools-of vs .= bs val-to-bool v
.= b

bools-of (v · vs) .= b · bs
The overall result is consequently constrained as shown on the chronogram above:

when the kth instance is applied to the k-masked inputs, its outputs are the k-masked
part of the overall outputs. This approach works very well in Coq and is modular: the
use of a universal quantifier allows for reasoning inductively about instances. Moreover,
the semantics of the rest of the language is independent of our formalization of the reset
operator.

This approach differs from the semantics proposed by Hamon and Pouzet (2000), where
clocks are modeled as pairs of boolean streams indicating the presence and the resetting.
The semantics of the fby is adapted to take this “semantic wire” into account, where our
model treats the reset orthogonally.
In the formalization given in [Caspi and Pouzet (1997)], the Kahn semantics are

defined co-iteratively using a transition function and an explicit state. For the reset, the
transition function explicitly reinitializes the state whenever a reset occurs. Our solution
does not expose state.

Our model resembles the semantics of Auger (2013, Figure 5.7, Every rule), but as his
models treats lists rather than streams, the recursion is unrolled only for a finite number
of instances, using an explicit sequencing operator to build the input and output lists of
values.

2.3 NLustre: normalized Lustre
We present NLustre, an intermediate Lustre language that encodes the normalized form
necessary for further compilation. We describe two semantic models based on the two
models of streams: a coinductive semantics where streams are defined coinductively as
in our formalization of Lustre, and an indexed semantics where streams are modeled
as functions. The former is used to prove the correctness of the transcription pass that
transforms a normalized Lustre program into an NLustre program, while the latter is used
to prove the correctness of the i-translation pass that transforms an NLustre program
into an Stc program.
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2.3.1 Normalization and transcription

Normalization is a standard stage in the modular approach for compiling Lustre. The
aim is to rewrite the code into a form that can be directly translated into imperative
code. This objective is mainly realized by identifying the state of a node by introducing
specific equations for stateful computations, that is, for unit delays and consequently, by
recursion, for node instantiations. Extracting the state facilitates both the scheduling of
dataflow equations and their compilation to imperative code.

As stated by Auger et al. (2012, Remark 1), normalization can be implemented in two
ways: by a source-to-source transformation along with a dedicated invariant, or by a
translation towards a dedicated intermediate language. In Vélus, we choose to mix both
approaches. The normalization process is a source-to-source transformation in Lustre,
which has yet to be implemented and proved correct. Then, the normalized code is
translated directly into NLustre, which encodes in its syntax the invariants obtained by
normalization. Hence, we keep the advantages of both approaches: the correctness proof
itself is easier since the semantics remains the same, but we use a simpler language with
simpler semantics for the subsequent compilation pass.
As already mentioned, currently, normalization is not implemented. Consequently,

Lustre code that is not in normalized form is simply rejected by the compiler, and only
the transcription pass, that generates NLustre code from Lustre code is implemented.
A version of the transcription without modular reset was proved correct by Jeanmaire
(2019) during his Master’s internship. We present nonetheless briefly the goals of the
normalization pass, so as to provide the context necessary to understand the overall
compilation scheme. As explained, the main objective is to unveil the basic equations
that define the state of the node and to untangle conditional statements. Ultimately, the
clock-directed compilation scheme recursively associates persistent variables to represent
the delays of a node. Normalization achieves five goals, whose motivation details will
become clearer in the next chapters. We describe them referring to the normalization in
listing 2.5b of our Lustre example repeated in listing 2.5a.

1. Normalization extracts the equations whose compilation requires the introduction
of persistent state. Consequently, the delays have to be named: the fby opera-
tor must appear only at top-level in the equations. Consider, for example, the
expression (0. fby x) at line 9 in listing 2.5a, normalization introduces the local
variable px that is defined by the equation at line 16 in listing 2.5b. The same holds
recursively for node instantiations, in order to identify sub-states: the expression
euler((gps, xv) when not alarm) at line 10 is given its own equation defining
the fresh variable xe at line 14.

2. The compilation scheme uses clocks as guards: each equation is turned into a
statement that is executed only when its associated clock is true. Operations that
introduce branching, that is, the merge and conditional if/then/else operations,
must also only occur at the top of expressions. For example, the merge expression
at line 20 is extracted to a dedicated equation at line 25.
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1 node euler(x0, u: float64) returns (x: float64);
2 let
3 x = x0 fby (x + 0.1 * u);
4 tel
5
6 node ins(gps, xv: float64) returns (x: float64; alarm: bool);
7 var k: int;
8 let
9 x = merge alarm ((0. fby x) when alarm)

10 (euler((gps, xv) when not alarm));
11 alarm = (k >= 50);
12 k = 0 fby (k + 1);
13 tel
14
15 node nav(gps, xv: float64; s: bool) returns (x: float64; alarm: bool);
16 var c: bool; r: bool;
17 let
18 (x, alarm) = merge c (gps when c, false)
19 ((restart ins every r) ((gps, xv) when not c);
20 c = true fby (merge c (not s when c) (s when not c));
21 r = false fby (s and c);
22 tel

Lustre

(a) Before

1 node euler(x0, u: float64) returns (x: float64);
2 var i: bool; px: float64;
3 let
4 i = true fby false;
5 x = if i then x0 else px;
6 px = 0.0 fby (x + 0.1 * u);
7 tel
8
9 node ins (gps: float64, xv: float64) returns (x: float64, alarm: bool)

10 var k: int32, px: float64, xe: float64 when not alarm;
11 let
12 k = 0 fby k + 1;
13 alarm = (k >= 50);
14 xe = euler(gps when not alarm, xv when not alarm);
15 x = merge alarm (px when alarm) xe;
16 px = 0. fby x;
17 tel
18
19 node nav (gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool)
20 var r: bool, c: bool, cm: bool, insr: float64 when not c, alr: bool when not c;
21 let
22 (insr, alr) = (restart ins every r)(gps when not c, xv when not c);
23 x = merge c (gps when c) insr;
24 alarm = merge c (false when c) alr;
25 cm = merge c (not s when c) (s when not c);
26 c = true fby cm;
27 r = false fby (s and c);
28 tel

Lustre

(b) After

Listing 2.5: Normalization of the example
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3. To simplify the initialization of the state of a node, expressions at left of a fby
operator are required to be constants rather than arbitrary expressions. The
idea of the transformation is that the expression e0 fby e can be rewritten into
if (true fby false) then e0 else (c fby e) where c is any constant of the
right type. This expression is then normalized following the first point. The
equation at line 3 is hence normalized into the three equations at lines 4–6.

4. An output variable must not be defined directly with a fby, that is it cannot be
transformed into a persistent variable.

5. Finally, the reset condition expression of a node application with modular reset
must be a variable, to facilitate compilation.

2.3.2 Abstract syntax

Figure 2.5 shows how the syntax of NLustre enforces the normal form:

• Two classes of expressions are defined: basic expressions which may not contain
merge or if/then/else constructs, and control expressions which may.

• Stateful operations are available only at toplevel. Equations are divided into three
main categories: basic equations, node instantiations with or without reset, and
fby equations.

• Unit delay definitions are normalized: only constants can appear on the left of a
fby.

• Except for node instantiation equations, the left-hand sides of equations are not
lists anymore.

• The condition of a node application with reset is a variable rather than an expression.

Furthermore, the language remains annotated with (1) types, because every intermediate
language is parameterized over the abstraction layer (see section 2.1.1), and (2) clocks,
at equation level, following [Biernacki et al. (2008)] and to give a deterministic semantics
to fby equations, as we will see. Additionally, the reset variable condition of a node
application with modular reset is annotated with its clock: this is to avoid an unnecessary
lookup in further code generation.
The Coq implementation is similar of that of Lustre described in section 2.2.1. List-

ings 2.6a and 2.6b show the implementation of expressions and control expressions as
inductive types. The three kinds of equations are also represented as an inductive type,
as shown by listing 2.6d. Finally, nodes are modeled as before using the dependent record
presented in listing 2.6e. Compared to the predicates for a Lustre node, note the extra
condition that forbids defining an output variable directly with a fby.
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e ::= expression
| c (constant)
| xt (variable)
| (� e)τ (unary operator)
| (e ⊕ e)τ (binary operator)
| e when (x = b) (sampling)

ce ::= control expression
| merge x ce ce (merging)
| if e then ce else ce (conditional)
| e (simple expression)

ck ::= clock
| • (base clock)
| ck on (x = b) (sub-clock)

eq ::= equation
| x =ck ce (basic equation)
| x =ck c fby e (fby equation)
| x+, =ck x(e+,) (node instantiation)
| x+, =ck (restart x every xck)(e+,) (modular reset)

d ::= xτ,ck variable declaration

n ::= node x(d+,) returns (d+,) node
[var d+, ]
let
eq+;

tel

g ::= n+ program

Figure 2.5: The NLustre abstract syntax
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Inductive exp : Type :=
| Econst : const -> exp
| Evar : ident -> type -> exp
| Ewhen : exp -> ident -> bool -> exp
| Eunop : unop -> exp -> type -> exp
| Ebinop : binop -> exp -> exp -> type -> exp.

Coq (src/CoreExpr/CESyntax.v:23–28)

(a) Expressions

Inductive cexp : Type :=
| Emerge : ident -> cexp -> cexp -> cexp
| Eite : exp -> cexp -> cexp -> cexp
| Eexp : exp -> cexp.

Coq (src/CoreExpr/CESyntax.v:32–35)

(b) Control expressions

Inductive clock : Type :=
| Cbase : clock (* base clock *)
| Con : clock -> ident -> bool -> clock. (* subclock *)

Coq (src/ClockDefs.v:22–24)

(c) Clocks

Inductive equation : Type :=
| EqDef : ident -> clock -> cexp -> equation
| EqApp : list ident -> clock -> ident -> list exp -> option (ident * clock) -> equation
| EqFby : ident -> clock -> const -> exp -> equation.

Coq (src/NLustre/NLSyntax.v:35–38)

(d) Equations

Record node : Type :=
mk_node {

n_name : ident; (* name *)
n_in : list (ident * (type * clock)); (* inputs *)
n_out : list (ident * (type * clock)); (* outputs *)
n_vars : list (ident * (type * clock)); (* local variables *)
n_eqs : list equation; (* equations *)

n_ingt0 : 0 < length n_in;
n_outgt0 : 0 < length n_out;
n_defd : Permutation (vars_defined n_eqs)

(map fst (n_vars ++ n_out));
n_vout : forall out, In out (map fst n_out) ->

~ In out (vars_defined (filter is_fby n_eqs));
n_nodup : NoDupMembers (n_in ++ n_vars ++ n_out);
n_good : Forall ValidId (n_in ++ n_vars ++ n_out) /\ valid n_name

}.
Coq (src/NLustre/NLSyntax.v:74–90)

(e) Nodes

Listing 2.6: Implementation of NLustre syntax
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2.3.3 NLustre code elaboration

In the Vélus compiler, the lexing and parsing stages (see appendices B and C) transform
a Lustre source file into a raw abstract syntax tree (AST), without type and clock
annotations (see src/Lustre/Parser/LustreAst.v). As Lustre elaboration, normalization
and transcription are not complete yet, we directly elaborate NLustre code from manually
normalized Lustre source code. The n-elaboration stage implements type-checking and
clock-checking that enrich the AST with type and clock annotations. Since the syntax of
nodes in Coq embeds some well-formedness invariants, elaboration must check them too.
Type checking and clock checking are done simultaneously, because it is not only more
efficient but also simplifies the proofs. The whole process, implemented by a function
named n-elab (elab_declarations, src/NLustre/NLElaboration.v:2672), is not described
in this dissertation.

2.3.4 Clock system

The clock system is a static calculus ensuring that a program can be executed syn-
chronously [Caspi, Pilaud, et al. (1987); Caspi and Pouzet (1996)]. The idea is to
statically reject programs that would not have a semantic model due to incorrect combi-
nations of present and absent values, for example, those where a merge would have two
stream arguments that are present at the same time. Each construct is associated with a
clock, that gives its execution tempo, that is, it specifies the instant when the construct is
absent or present. Consider the category ck in figure 2.5: a clock is either the base clock
denoted •, that is, the fastest pace at which the node is activated, or a sub-clock that
indicates sampling on a condition variable. The corresponding implementation appears
in listing 2.6c.

The clock system is shown in figure 2.6. Figure 2.6a presents the clocking of expressions.
The rules are parameterized over a clocking environment Ω that maps identifiers to clocks.
We write Ω ` e :: ck to mean that under the clocking environment Ω, the expression e
has clock ck. A constant always has the base clock. The clock of a variable is looked up
in the environment. Unary and binary operations have the same clock as their operands.
A sub-clock is introduced by the sampling when construct: the sub-expression and the
condition variable must have the same clock.

The clocking rules of control expressions are shown in figure 2.6b. A merge expression
on variable x has clock ck if the two sub-expressions have complementary sub-clocks
deriving from ck with condition x, that must have clock ck. A conditional construct
has the same clock as its branches. The clock of a basic expression does not change
when it becomes a control expression. For example, consider line 15 in listing 2.5b, the
replacement merge alarm px xe would not be well-clocked, because px is on the base
clock •, while the operator expects an expression on clock • on (alarm = true).

Figure 2.6c presents the rules for equations. Unlike expressions, equations are annotated
with their activation clock. One goal of the calculus is thus to check that the clocks of
the left-hand side and of the right-hand side of an equation match the annotation. This
is what the rules for basic and fby equations implement. For a node instantiation, the
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Ω ` c :: • Ω ` x :: Ω(x)
Ω ` e :: ck

Ω ` � e :: ck
Ω ` e1 :: ck Ω ` e2 :: ck

Ω ` e1 ⊕ e2 :: ck

Ω ` e :: ck Ω(x) = ck
Ω ` e when (x = b) :: ck on (x = b)

(a) Expressions (wc_exp, src/CoreExpr/CEClocking.v:41)

Ω(x) = ck Ω c̀ et :: ck on (x = true) Ω c̀ ef :: ck on (x = false)
Ω c̀ merge x et ef :: ck

Ω c̀ e :: ck Ω c̀ et :: ck Ω c̀ ef :: ck
Ω c̀ if e then et else ef :: ck

Ω ` e :: ck
Ω c̀ e :: ck

(b) Control expressions (wc_cexp, src/CoreExpr/CEClocking.v:64)

Ω(x) = ck Ω c̀ e :: ck
G,Ω ` x =ck e

Ω(x) = ck Ω ` e :: ck
G,Ω ` x =ck c fby e

node(G, f) .= n σ(x) var= e σ(y) = z

Ω ` e :: σck [ckx] Ω(z) = σck [cky]
G,Ω ` z =ck f(e)

where
n.in = xτx,ckx

n.out = yτy,cky

node(G, f) .= n σ(x) var= e σ(y) = z

Ω ` e :: σck [ckx] Ω(z) = σck [cky] Ω(r) = ckr
G,Ω ` z =ck (restart f every rckr)(e)

where
n.in = xτx,ckx

n.out = yτy,cky

(c) Equations (wc_equation, src/NLustre/NLClocking.v:52)

Figure 2.6 (I): The clock system of NLustre
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rule is more involved. The idea is to exhibit a substitution σ, a map from identifiers to
identifiers, that is used to instantiate the formal declared clocks of the node interface
with the actual inferred clocks of the arguments and defined variables, following [Bourke
and Pouzet (2019)]. This encodes within Coq the generalization/substitution mechanism
of the clock calculus described in [Colaço and Pouzet (2003)]. The rule uses the following
two definitions. The first definition extends the substitution lookup to expressions: if the
substitution maps a declaration x in the node interface to a variable y in the context of
the instantiation, then the corresponding argument expression must be the variable y;
otherwise any argument expression is acceptable.

Definition 2.3.1 (SameVar, src/CoreExpr/CEClocking.v:31)

σ(x) = y

σ(x) var= yτ
x 6∈ σ

σ(x) var= e

The second definition is a function that applies the substitution to a formal clock. We
write σck [ck ′

]
to designate the clock derived from ck ′ by substituting variables with σ

and replacing the base clock by ck.

Definition 2.3.2 (instck, src/ClockDefs.v:27)

σck [•] , ck
σck [ck ′ on (x = b)

]
, σck [ck ′

]
on (σ(x) = b)

Both definitions are lifted to lists: σ(x) var= e stands for ∀i, σ(xi)
var= ei; and σck [ck′

]
for ∀i, σck [ck ′i

]
. The rule for the node application with modular reset only adds the

requirement that the clock annotation of the reset variable match its declared clock in
the environment. As an example, consider the node interface:

node f(a : bool; b : int when a) returns (x : int on y; y : bool)
and the equation:
u, v = f(w, (10 when i) when w);

Assume that the variables v and w are declared with clock ck = • on (i = true),
and u with clock ck on (v = true). That is, we consider a clocking environment
Ω = {i :: •, v :: ck, w :: ck, u :: ck on (v = true)}. Hence the clock annotation of this
equation is ck. The second two antecedents of the node instantiation rule constrain σ to
contain the substitution {a 7→ w, x 7→ u, y 7→ v}. The fourth antecedent ensures that the
arguments are well-clocked, relative to the substitution:

1. The expression w must have clock σck [•], that is, ck. We do have Ω(w) = ck.

2. The expression (10 when i) when w must have clock σck [• on (a = true)], that is,
ck on (w = true), since σ(a) = w. Using the clocking rule for constants and when
expressions, this is also verified.

The last antecedent ensures that the clocks of right-hand side variables are correctly
instantiated:
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Ω ` •
Ω(x) = ck Ω ` ck
Ω ` ck on (x = b)

(d) Clocks (wc_clock, src/Clocks.v:90)

` Ω , ∀x, Ω(x) = ck → Ω ` ck

(e) Environments (wc_env, src/Clocks.v:101)

G,Ω ` n.eqs ` Ω
` ∅{x 7→ ckx} ` ∅{x 7→ ckx}{y 7→ τy}

G `wc n
where

n.in = xτx,ckx

n.out = yτy,cky

n.vars = zτz,ckz

Ω = ∅{x 7→ ckx}{y 7→ cky}{z 7→ ckz}

(f) Nodes (wc_node, src/NLustre/NLClocking.v:79)

Figure 2.6 (II): The clock system of NLustre

1. We do have Ω(u) = ck on (v = true), and σck [• on (y = true)] = ck on (v = true),
since σ(y) = v.

2. We do have Ω(v) = ck, and σck [•] = ck.

To extend the clock calculus to nodes, we introduce the notion of clock consistency,
as shown in figure 2.6d. The idea is to verify that the declared clocks of the interface
of a node are well defined. The base clock is consistent. A sub-clock is consistent if its
sampling variable is associated to the parent clock in the environment and if this parent
clock is consistent. In figure 2.6e we define a clocking environment to be consistent if
all clocks that appear in it are consistent. Finally, as shown in figure 2.6f, a node is
well-clocked if all its equations are well-clocked under the consistent clocking environment
obtained from the input, output and local variable declarations of the node. Moreover
we also require that the environments obtained from input declarations and from input
and output declarations are consistent. A program is well-clocked if all of its nodes are
well-clocked.

NLustre is also given a type system. In Vélus, well typing is only used to prove the
correctness of the Clight code generation pass. Type systems are not central to this
dissertation, but the reader may refer to appendix E.2 for the details.

2.3.5 The coinductive semantics
The coinductive semantics of NLustre is similar to the one of Lustre described in
section 2.2.2. The corresponding inference rules are shown in figure 2.7. Most synchronous
operators are reused, namely, const, the lifting of unary and binary operations, when,
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s ≡ const bs c
H, bs ` c ⇓ s H, bs ` x ⇓ H(x)

H, bs ` e ⇓ s �↑type e s
.= s′

H, bs ` � e ⇓ s′

H, bs ` e1 ⇓ s1 H, bs ` e2 ⇓ s2
⊕↑type e1×type e2s1 s2

.= s′

H, bs ` e1 ⊕ e2 ⇓ s′
H, bs ` e ⇓ s whenb s (H(x)) .= s′

H, bs ` e when (x = b) ⇓ s′

(a) Expressions (sem_exp, src/NLustre/NLCoindSemantics.v:112)

H, bs c̀ et ⇓ st H, bs c̀ ef ⇓ sf merge (H(x)) st sf
.= s

H, bs c̀ merge x et ef ⇓ s

H, bs ` e ⇓ s H, bs c̀ et ⇓ st H, bs c̀ ef ⇓ sf ite s st sf
.= s

H, bs c̀ if e then et else ef ⇓ s
H, bs ` e ⇓ s
H, bs c̀ e ⇓ s

(b) Control expressions (sem_cexp, src/NLustre/NLCoindSemantics.v:139)

Figure 2.7 (I): The coinductive semantics of NLustre

merge and ite. The exception is fby: here, the initial value of a unit delay is given by a
constant. This difference greatly simplifies the semantics of the fby construct in NLustre.
Indeed this operator can now be defined directly as a total function:

Definition 2.3.3 (fby, src/NLustre/NLCoindSemantics.v:177)

fby v0 (‹ › · xs) , ‹ › · fby v0 xs
fby v0 (‹x› · xs) , ‹v0› · fby x xs

2.3.5.1 Expressions

Figure 2.7a shows the semantics judgment for simple expressions: we write H, bs ` e ⇓ s
to state that under the history H and with base clock bs the expression e is associated
with the stream s. The function type retrieves the type annotation of an expression.
Figure 2.7b presents the semantics of control expressions. We write H, bs c̀ e ⇓ s to
distinguish control expressions from simple expressions. Compared to the rules presented
in figure 2.4a on page 37, there is no G parameter since in normalized form, node
instantiations no longer appear at expression level. The rules are also simpler in the
sense that normalized expressions cannot be lists and consequently are associated with
single streams instead of lists of streams. Nonetheless, the behavior formalized by the
rules is essentially the same as for Lustre.
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bs′ ≡ bs

H, bs ` • ⇓ bs′

H, bs ` ck ⇓ true · bck H(x) ≡ ‹v› · xs
val-to-bool v

.= b tlH, tl bs ` ck on (x = b) ⇓ bs′

H, bs ` ck on (x = b) ⇓ true · bs′

H, bs ` ck ⇓ true · bck H(x) ≡ ‹v› · xs
val-to-bool v

.= ¬b tlH, tl bs ` ck on (x = b) ⇓ bs′

H, bs ` ck on (x = b) ⇓ false · bs′

H, bs ` ck ⇓ false · bck H(x) ≡ ‹ › · xs tlH, tl bs ` ck on (x = b) ⇓ bs′

H, bs ` ck on (x = b) ⇓ false · bs′

(c) Clocks (sem_clock, src/NLustre/NLCoindSemantics.v:62)

H, bs (̀c) e ⇓ ‹v› · s H, bs ` ck ⇓ true · bs tlH, tl bs
!̀(c) e :: ck ⇓ s

H, bs (̀c) e :: ck ⇓ ‹v› · s

H, bs (̀c) e ⇓ ‹ › · s H, bs ` ck ⇓ false · bs tlH, tl bs (̀c) e :: ck ⇓ s

H, bs (̀c) e :: ck ⇓ ‹ › · s

(d) Clocked (control) expressions (sem_annot, src/NLustre/NLCoindSemantics.v:159)

Figure 2.7 (II): The coinductive semantics of NLustre
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2.3.5.2 Clocking constraints

Before presenting the semantics of equations, we must first introduce some details about
clock annotations. As noted earlier, the left-hand side of a fby equation in NLustre is
a constant. This has a non trivial consequence on the associated semantic rule. To see
why, consider the following equation:
x = true fby (not x);

In Lustre, the true expression denotes a stream whose clock is obtained from the
expression. Here it is the base clock since there is no when. Consequently, the associated
stream is always present with the boolean value T. Now, the same equation is also valid
in NLustre. But in NLustre, the constant true does not yield a stream, therefore one
can no longer give a unique clock to the stream associated to x. The solution to the
resulting introduction of non-determinism is explained in [Caspi and Pouzet (1997), §4.3]:
the semantics must rely on clocks. Here, the variable x is a declared variable, so its clock
is statically known and available locally since fbys in NLustre only appear at equation
level and equations are annotated with their clock. Therefore, in NLustre the semantics
relies on clock annotations, unlike in Lustre.
Figure 2.7c presents the semantics of clocks. The base clock • is associated with the

base stream parameter of the semantics (up to bisimilarity). The semantics for sampled
clocks ensures that the sampling variable x yields a present value if and only if the
sampled clock ck is true. Indeed, it means that x must have clock ck. This is guaranteed
by the clocking rule for when (see figure 2.6a on page 48). The overall sub-clock is
associated with a boolean stream which is false when ck is false, and true only if ck is
true and the sampling condition is met. Note that the rules for subclocks are corecursive:
they are instantiated on the tail of the base stream and on the tail of the history to
constrain the tail of the overall result stream. We overload the tl notation for streams to
histories—which are environments of streams—in the following way: we write tlH for
the environment resulting from the composition tl ◦H.
Figure 2.7d shows how the semantics for clocks and for (control) expressions are

combined to enforce clocking constraints on the semantics of (control) expressions. The
rules ensure that an expression evaluated stream yields present values if and only if its
annotated clock yields true values. In Lustre this relation is a property of the semantics.
Here, it is directly encoded in our semantics rules but “discharged” by the proof of
correctness for the transcription pass. The theorem was shown by Jeanmaire (2019),
again without reset.

2.3.5.3 Equations and nodes

Figure 2.7e shows the dedicated semantics rules for each kind of equation. A basic
equation x =ck e has a semantics if its left-hand side and its right-hand side are evaluated
to the same stream (up to bisimilarity). The left-hand side x is looked-up in the history H,
while the right-hand side expression e is constrained together with the clock annotation
ck, as described in the previous section. This may seem odd: we just explained that we
need clock annotations to give the rhythm of a fby equation, but do we need it for a basic
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H, bs `c e :: ck ⇓ H(x)
G,H, bs ` x =ck e

H, bs ` e :: ck ⇓ s H(x) ≡ fby JcKs
G,H, bs ` x =ck c fby e

H, bs ` e ⇓ xs H, bs ` ck ⇓ base-of xs G ` f (xs) ⇓ H(x)
G,H, bs ` x =ck f(e)

H, bs ` e ⇓ xs H, bs ` ck ⇓ base-of xs
bools-of (H(y)) .= rs ∀k, G ` f

(
maskkrs xs

)
⇓ maskkrs H(x)

G,H, bs ` x =ck (restart f every y)(e)

(e) Equations (sem_equation, src/NLustre/NLCoindSemantics.v:187)

node(G, f) .= n H(x) ≡ xs H(y) ≡ ys bs = base-of xs
respects-clockH bs Γ ∀eq ∈ n.eqs, G,H, bs ` eq

G ` f (xs) ⇓ ys
where

n.in = xτx,ckx

n.out = yτy,cky

Γ = ∅{x 7→ ckx}

(f) Nodes (sem_node, src/NLustre/NLCoindSemantics.v:216)

Figure 2.7 (III): The coinductive semantics of NLustre

equation? Ideally the clocking constraints, the consistency of the synchrony, should be a
consequence of the semantics and of a well clocking static predicate. But, by using clock
annotations for one kind of equation, we already lose the independence of the semantics:
we embedded this particular synchrony result directly into the semantics. As we need
this result anyway, we might as well embed it further, that is for other kind of equations.
This is essentially a matter of design choice, as NLustre is an intermediate language
whose semantics is essentially used for internal proofs and the Lustre semantics is already
shown to satisfy the property. Similarly, a fby equation has a semantics if the left-hand
side variable is associated in the history with a stream that is bisimilar to the stream
obtained using the fby function on the stream associated with the delayed expression.
For a node application with or without reset, the input expressions are associated with a
list of streams that must be related by the semantics of the node with streams associated
with the left-hand side variables in the history (up to bisimilarity). Note that the clock
annotation must correspond to the actual clock of activation of the node. The only
particularity for the node application with reset is the use of the mask operator, exactly
as described in section 2.2.2.3 for Lustre.
As for Lustre, the node instantiation semantics uses a dedicated sequent presented

in figure 2.7f. In comparison to the judgment in figure 2.4c on page 38, we just add
the respects-clock predicate, which embeds the clocking constraints, as we have seen for
expressions, at the node input level. It expresses the alignment between the streams
resulting from the evaluation of the input variables and of their clock annotations. We
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give its formal definition below.

Definition 2.3.4 (sem_clocked_var, src/NLustre/NLCoindSemantics.v:98)

respects-clockH bs xck , (∀xs, H(x) ≡ xs → ∃bs, H, bs ` ck ⇓ bs
∧ clock-aligned xs bs)

∧ ∀bs, H, bs ` ck ⇓ bs → ∃xs, H(x) ≡ xs
where

clock-aligned vs bs

clock-aligned (‹v› · vs) (true · bs)

clock-aligned vs bs

clock-aligned (‹ › · vs) (false · bs)

Having respects-clockH bs xck means that x has a semantics xs if and only if ck has a
semantics bs such that xs and bs are clock aligned. That is, as we previously saw for the
expressions, xs yields present values if and only if bs yields true values.

2.3.6 The indexed semantics
Having presented the coinductive semantics for NLustre, used to show the correctness
of the transcription pass (Lustre to NLustre), we now present the indexed semantics
used for the proof of correctness described in the next chapter. In the indexed model,
streams are represented as functions from natural numbers to values. The main idea of
the model is to describe the instantaneous behavior of the expressions, and to generalize
it over multiple instants at the equation level. Therefore, with chronograms in mind, we
give a specification to each column in the semantics of expressions, and the semantics for
equations “glues” the columns into a grid. In changing from the coinductive semantics to
the indexed semantics, we reflect a first step of compilation from a model where each
variable is associated with a stream—a row of a chronogram—towards a sequential model
where calculation is performed on a state cycle-by-cycle—the columns of a chronogram.
In this way, the coinductive semantics facilitates the proof of transcription while the
indexed semantics facilitates the proof of the generation of imperative code.

2.3.6.1 Instantaneous semantics

To describe the semantics at one particular instant, we have to consider the current value
of the base clock stream b, and a slice R of the history. This slice is an environment
mapping identifiers to absent or present values. As outlined above, using indexed streams
and an instantaneous environment is fundamental in this approach: the idea is to reason
instant-by-instant as easily as possible. The inference rules are presented in figure 2.8.
Although there are no surprises compared to the behavior modeled by the coinductive
semantics presented in section 2.3.5, we give a short explanation of the rules. The main
difference is the absence of extra synchronous stream operators: here their behavior is
directly inlined in the rules.
Figure 2.8a shows the inference rules for the instantaneous semantics of expressions.

We write R, b ` e ↓ v to mean that in the environment R, with current base clock value b,
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R, true ` c ↓ ‹JcK› R, false ` c ↓ ‹ › R, b ` x ↓ R(x)

R, b ` e ↓ ‹ve› J�Ktype e ve
.= v

R, b ` � e ↓ ‹v›
R, b ` e ↓ ‹ ›
R, b ` � e ↓ ‹ ›

H, bs ` e1 ⇓ ‹v1› H, bs ` e2 ⇓ ‹v2›
J⊕Ktype e1×type e2 v1 v2

.= v

R, b ` e1 ⊕ e2 ↓ ‹v›
H, bs ` e1 ⇓ ‹ › H, bs ` e2 ⇓ ‹ ›

R, b ` e1 ⊕ e2 ↓ ‹ ›

R, b ` e ↓ ‹v› R(x) = ‹vx› val-to-bool vx
.= k

R, b ` e when (x = k) ↓ ‹v›

R, b ` e ↓ ‹v› R(x) = ‹vx› val-to-bool vx
.= ¬k

R, b ` e when (x = k) ↓ ‹ ›
R, b ` e ↓ ‹ › R(x) = ‹ ›
R, b ` e when (x = k) ↓ ‹ ›

(a) Expressions (sem_exp_instant, src/CoreExpr/CESemantics.v:93)

R(x) = ‹T› R, b c̀ et ↓ ‹v› R, b c̀ ef ↓ ‹ ›
R, b c̀ merge x et ef ↓ ‹v›

R(x) = ‹F› R, b c̀ et ↓ ‹ › R, b c̀ ef ↓ ‹v›
R, b c̀ merge x et ef ↓ ‹v›

R(x) = ‹ › R, b c̀ et ↓ ‹ › R, b c̀ ef ↓ ‹ ›
R, b c̀ merge x et ef ↓ ‹ ›

R, b ` e ↓ ‹T› R, b c̀ et ↓ ‹vt› R, b c̀ ef ↓ ‹vf ›
R, b c̀ if e then et else ef ↓ ‹vt›

R, b ` e ↓ ‹F› R, b c̀ et ↓ ‹vt› R, b c̀ ef ↓ ‹vf ›
R, b c̀ if e then et else ef ↓ ‹vf ›

R, b ` e ↓ ‹ › R, b c̀ et ↓ ‹ › R, b c̀ ef ↓ ‹ ›
R, b c̀ if e then et else ef ↓ ‹ ›

R, b ` e ↓ s
R, b c̀ e ↓ s

(b) Control expressions (sem_cexp_instant, src/CoreExpr/CESemantics.v:143)

Figure 2.8 (I): Instantaneous semantics of NLustre
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R, b ` • ↓ b
R, b ` ck ↓ true R(x) = ‹v› val-to-bool v

.= k

R, b ` ck on (x = k) ↓ true

R, b ` ck ↓ true R(x) = ‹v› val-to-bool c
.= ¬k

R, b ` ck on (x = k) ↓ false
R, b ` ck ↓ false R(x) = ‹ ›
R, b ` ck on (x = k) ↓ false

(c) Clocks (sem_clock_instant, src/CoreExpr/CESemantics.v:65)

R, b (̀c) e ↓ ‹v› R, b ` ck ↓ true
R, b (̀c) e :: ck ↓ ‹v›

R, b (̀c) e ↓ ‹ › R, b ` ck ↓ false
R, b (̀c) e :: ck ↓ ‹ ›

(d) Clocked (control) expressions (sem_annotated_instant, src/CoreExpr/CESemantics.v:189)

Figure 2.8 (II): Instantaneous semantics of NLustre

the expression e evaluates to v. A constant is present and has the value assigned by
the target language semantics when b is true, and is absent otherwise. A variable x is
evaluated to the value it is bound to in R, provided that x actually belongs to the domain
of R. Unary and binary operations simply use the abstracted semantics for operators
when their operands are present. If the operands are absent then the overall result is
also absent. A sampled expression e when (x = k) is absent if e and x are also absent.
If e and x are both present, then the sampled expression depends on the present value
of x, that must be a boolean, and on k. If x evaluates to k, then the overall expression is
evaluated to the present value of e, otherwise it is absent.

Figure 2.8b shows the instantaneous semantics of the control expressions. Again,
we write R, b c̀ e ↓ v to distinguish control expressions from regular expressions. The
merging operation is defined if its expression operands are complementary: if one is
present, the other one has to be absent. The choice is made using the boolean value
of the condition variable. The semantics of the conditional is similar except that the
operands must both be present or absent at the same time.

As explained before, the semantics of NLustre relies on clock annotations at equation
level to ensure clocking constraints. Figure 2.8c shows the instantaneous semantics of
clocks. The base clock • always evaluates to the current value b of the base stream clock.
The semantics for sampled clocks ensures that the condition variable x is present if and
only if the sampled clock ck is recursively evaluated to true. The sampled clock is then
evaluated to false when ck is false and to true only if ck is true and the condition on x is
met.

The semantics for expressions and clocks are combined in figure 2.8d to ensure instan-
taneous clock alignment between a (control) expression and its clock annotation.
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H, bs `c e :: ck �� H∗(x)
G,H, bs ` x =ck e

H, bs ` e :: ck �� s H∗(x) ≈ fby JcKs
G,H, bs ` x =ck c fby e

H, bs ` e �� xs H, bs ` ck �� base-of xs G ` f (xs) �� H∗(x)
G,H, bs ` x =ck f(e)

H, bs ` e �� xs H, bs ` ck �� base-of xs
bools-of (H∗(y)) .= rs ∀k, G ` f

(
maskkrs xs

)
�� maskkrs H∗(x)

G,H, bs ` x =ck (restart f every y)(e)

(a) Equations (sem_equation, src/NLustre/NLIndexedSemantics.v:70)

node(G, f) .= n H∗(x) ≈ xs H∗(y) ≈ ys
respects-clockH bs Γ ∀eq ∈ n.eqs, G,H, bs ` eq

G ` f (xs) �� ys
where

n.in = xτx,ckx

n.out = yτy,cky

Γ = ∅{x 7→ ckx}
bs = base-of xs

(b) Nodes (sem_node, src/NLustre/NLIndexedSemantics.v:99)

Figure 2.9: Indexed semantics of NLustre

58

https://github.com/INRIA/velus/tree/lelio-thesis/src/NLustre/NLIndexedSemantics.v#L70
https://github.com/INRIA/velus/tree/lelio-thesis/src/NLustre/NLIndexedSemantics.v#L99


2.3 NLustre: normalized Lustre

2.3.6.2 Stream semantics

Once the instantaneous semantics is defined, we can derive the stream semantics by a
simple generalization. Unlike the coinductive semantics, the history H we use here is
not an environment of streams but a stream of environments. Again, this choice follows
from the slicing idea described before: having a stream of instantaneous environments
facilitates instant-by-instant reasoning on a set of equations.
We lift the previous definitions as follow:

H, bs (̀c) e �� s , ∀n, H n, bs n (̀c) e ↓ s n

H∗(x) , λn. (H n)(x)

Thus, we write H, bs (̀c) e �� s to mean that under the stream of environments H and
base clock stream bs the (control) expression e is associated with the stream s. The
notation H∗(x) represents the stream of successive values associated to x in the stream of
environments H. As for other lookup notations, we use it for clarity of the presentation
while ignoring partiality.

Figure 2.9a gives the semantics for equations. The structure of the rules is all but
identical to that of the coinductive semantics rules presented in figure 2.7e on page 54.
The main difference is that the semantics of a node does not use lists of streams of values
but instead streams of lists of values. Again this choice reflects the instant-by-instant
behavior that we model: slicing a stream of lists is simpler than slicing every stream
of a list of streams. Therefore the overloadings of notations for lists do not have the
same meanings as before. While H, bs ` e ⇓ xs was a shorthand for ∀i, H, bs ` ei ⇓ xsi,
now H, bs ` e �� xs is a shorthand for ∀n i, H n, bs n ` ei ↓ (xs n)i. Similarly, while we
wrote H(x) as a shorthand for the list of streams H(x1) · · ·H(xi), we now write H∗(x)
as a shorthand for the stream of lists λn. (H n)(x1) · · · (H n)(xi). Working in a proof
assistant like Coq helps to track such tedious but inevitable details.

The operators base-of, bools-of and fby are re-defined. The first two are equivalent to
their coinductive counterparts: base-of computes the compound clock stream which is
true whenever at least one element of the given list is present and bools-of projects a
stream of values into a stream of Coq booleans.

Definition 2.3.5 (clock_of, src/CoreExpr/CESemantics.v:281)

base-of-now v , existsB (‹ › 6=B) v
base-of vs , λn. base-of-now (vs n)

Definition 2.3.6 (bools_of, src/CoreExpr/CESemantics.v:284)

bools-of xs .= rs ↔ ∀n, if rs n then (xs n = ‹T›) else (xs n = ‹F› ∨ xs n = ‹ ›)

Compare with definitions 2.2.2 and 2.2.4 on page 38 and on page 41.
The new fby definition is more intricate than the straightforward coinductive defini-

tion 2.3.3 on page 51 and uses an auxiliary function hold.
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Definition 2.3.7 (fby, src/NLustre/NLIndexedSemantics.v:59)

hold v0 vs 0 , v0

hold v0 vs (n+ 1) , if (vs n = ‹v›) then v else hold v0 vs n

fby v0 vs , λn. if (vs n = ‹ ›) then ‹ › else ‹ hold v0 vs n›
Basically the fby definition just describes the reaction to absence and presence, the
actual recursive behavior is implemented by the hold function. In fact, this hold function
describes the content of a memory register : indeed it could be seen as yielding the stream
of successive values—without presence nor absence—that a register corresponding to a
fby-defined variable will take. Its behavior is to output its first argument at the first
instant, then at each instant the previous present value of its second argument. If the
previous value is absent, then the register just holds its value, without updating it. The
following chronogram gives a visual intuition.

y 2 4 6 8 10 · · ·

hold J1K y 1 1 1 2 4 6 6 6 8 · · ·
fby J1K y .= 1 2 4 6 8 · · ·

1 fby y 1 2 4 6 8 · · ·

The auxiliary definitions introduced for the modular reset, explained in section 2.2.2.3,
are adapted in the indexed model. This means rewriting the mask operator, this time in
a more intuitive way than for its coinductive definition 2.2.3 on page 40.

Definition 2.3.8 (mask, src/IndexedStreams.v:217)

count rs n , if rs n then c+ 1 else c
where c = if (n = 0) then 0 else count rs (n− 1)

maskkrs xs , λn. if (count rs n = k) then xs n else absent-list ‖xs 0‖

Where absent-list i , ‹ › · · · ‹ ›︸ ︷︷ ︸
i

The definition uses the auxiliary count function which calculates the cumulative sum of
the values on the rs clock stream. This auxiliary function encodes the intuition that was
given to explain the coinductive version of mask (see the associated chronogram page 40).
The subtlety compared with the coinductive version of mask is the output in the case
where k 6= count rs n: here we deal with streams of lists instead of lists of streams, as
explained before. The opaque output must thus be a list of absent values. Since this
operator is only used in the context of the semantics rules, we know that the stream of
lists xs has the same length at each instant. That is, we have:

∀i j, ‖xs i‖ = ‖xs j‖

Thus we arbitrarily choose the length of the list at the first instant. We could have taken
the length at the current instant n but that is slightly less convenient in the proofs.
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Finally, figure 2.9b gives the semantics of nodes: again, there are no structural
differences with the coinductive version. The coinductive definition 2.3.4 on page 55 of
respects-clock is re-defined as follow:

Definition 2.3.9 (sem_clocked_var, src/CoreExpr/CESemantics.v:233)

respects-clock-nowR b xck , R, b ` ck ↓ true ↔ ∃v, R(x) = ‹v›
∧ R, b ` ck ↓ false ↔ R(x) = ‹ ›

respects-clockH bs , ∀n, respects-clock-now (H n) (bs n)

2.4 Relating the coinductive and indexed semantics
Now that NLustre is given two different semantics, a coinductive one for the correctness
of the transcription pass and an indexed one for further compilation, we have to show
that the former is included in the latter. First we have to set up a way of comparing
coinductive streams with indexed streams. We do so by defining a straightforward notion
of equivalence between the two kinds of streams.

Definition 2.4.1 (Observational equivalence)
A coinductive stream u is observationally equivalent to an indexed stream v, written
u ∼ v, if and only if

∀n, un = v n

We also need a version for comparing lists of coinductive streams with indexed streams
of lists.

Definition 2.4.2 (Generalized observational equivalence)
A list of coinductive streams u is observationally equivalent to an indexed stream of
lists v, written u ∼ v, if and only if

∀nk, (uk)n = (v n)k
Then we want to prove that the indexed semantics of NLustre is included in the coinductive
semantics.

Lemma 2.4.1
Given a program G, a name f , two lists of coinductive streams of values xs and ys such
that G ` f (xs) ⇓ ys, then there exist two indexed streams of lists of values xs′ and ys′
such that G ` f (xs′) �� ys′, xs ∼ xs′, and ys ∼ ys′.

Even if the result is not needed in our compilation correctness proof, we also show the
converse: the coinductive semantics of NLustre is included in the indexed semantics.

Lemma 2.4.2
Given a program G, a name f , two streams of lists of values xs and ys such that
G ` f (xs) �� ys, then there exist two lists of coinductive streams of values xs′ and ys′
such that G ` f (xs′) ⇓ ys′, xs′ ∼ xs, and ys′ ∼ ys.

We describe the proofs over the following two sections.
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2.4.1 From the coinductive semantics to the indexed semantics

The inclusion result is presented in lemma 2.4.1 in an existential manner. For the proof,
we define a function that translates coinductive streams into indexed streams and use it
to provide witnesses for the existential variables. The function ensures the observational
equivalence, and we show that it is a morphism with respect to the two semantics.

First we define the function that translates a single coinductive stream into an indexed
stream.

Definition 2.4.3 (tr_Stream, src/NLustre/NLCoindToIndexed.v:65)

to-idx s , λn. sn

We lift this definition to the translation of lists of coinductive streams into streams of
lists.

Definition 2.4.4 (tr_Streams, src/NLustre/NLCoindToIndexed.v:69)

to-idx s , λn. (to-idxx n)x∈s

Finally, we propose a function hist-to-idx for translating a history. This function
transforms an environment of coinductive streams of values into an indexed stream of
environments of values. Building such a stream is straightforward: at each instant, we
extract a snapshot of the history by indexing all streams appearing in it. The definition
can be written as follows, using function composition, if we represent the environments
as functions.4

Definition 2.4.5 (tr_History, src/NLustre/NLCoindToIndexed.v:75)

hist-to-idxH , to-idx ◦H

We must now show that the semantics is preserved by our family of functions. In
other words, we must show that these functions are morphisms with respect to the two
semantics, for each syntactic class of NLustre: expressions, control expressions, equations
and nodes. Eventually, the main result states that to-idx is a morphism with respect to
the two semantics for a node.

Theorem 2.4.3 (implies, src/NLustre/NLCoindToIndexed.v:660)
Given a program G, a name f , two lists of coinductive streams of values xs and ys such
that G ` f (xs) ⇓ ys, then

G ` f (to-idx xs) �� to-idxys
4Internally, as mentioned already, environments are modeled as trees, but in this dissertation we prefer
the representation as functions for convenience.
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Lemma when_spec:
forall k xs cs rs,
when k xs cs rs <->
(forall n,

(xs # n = absent
/\ cs # n = absent
/\ rs # n = absent)

\/
(exists x c,

xs # n = present x
/\ cs # n = present c
/\ val_to_bool c = Some (negb k)
/\ rs # n = absent)

\/
(exists x c,

xs # n = present x
/\ cs # n = present c
/\ val_to_bool c = Some k
/\ rs # n = present x)).

Coq (src/CoindStreams.v:479–497)

Listing 2.7: Inversion result for the coinductive when operator

The proof follows by mutual induction over nodes and equations, using intermediate results
about expressions and control expressions. In the following, we detail a complication
that seems unavoidable and some results of interest.
The technical complication comes from the different nature of the hypotheses and of

the goals in the proofs of some intermediate results. Consider the following intermediate
result stating the semantics preservation for expressions.

Lemma 2.4.4 (sem_exp_impl, src/NLustre/NLCoindToIndexed.v:277)
Given a coinductive history H, a base clock stream bs, an expression e and a coinductive
stream s such that H, bs ` e ⇓ s, then hist-to-idxH, to-idx bs ` e �� to-idx s.

In the coinductive semantics, e is evaluated using coinductive operators like the syn-
chronous streams operator when, for example. As we saw in section 2.2.2.1, such operators
constrain their input and output streams by constraining their heads and then passing
coinductively into their tails. However, we saw that the indexed semantics is a lifting of an
instantaneous behavior. Eventually, we are left with a coinductive hypothesis specifying
coiteratively the semantics of e while we have to show that the instantaneous behavior
of e holds for all instants n. In Coq, we cannot directly do a proof by coinduction here,
since the result we want to prove is not coinductive, only the hypothesis is. I solved this
problem by stating intermediate results giving a generalized instantaneous equivalent
specification of each coinductive synchronous stream operator and judgment. These
results can be seen as independent inversion lemmas. For example, consider the Coq
lemma presented in listing 2.7: it simply expresses the coinductive behavior of the when
operator in terms of instantaneous behavior. It states that the relation when k xs cs rs
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is equivalent to the given instant-by-instant specification: at each instant n, either the
three streams are absent, or the value of the output stream rs is given by sampling xs
according to cs. It is proved by induction on n without any difficulty and can be used as
an inversion result in the proof of lemma 2.4.4, by induction over the kinds of expressions.

Interestingly, as the fby operator is a total function in both semantics, we can directly
state the following result.

Lemma 2.4.5 (fby_impl, src/NLustre/NLCoindToIndexed.v:374)
Given a coinductive stream of values s and a constant v0,

to-idx (C.fby v0 s) ≈ I.fby v0 (to-idx s)

where C.fby is the Coinductive operator, and I.fby the Indexed one.

Another point of interest is the conversion of the mask operator, involved in the proof of
preservation for the semantics of the modular reset. Recall the intricacy of the coinductive
definition of mask, given in definition 2.2.3 on page 40. This kind of coinductive definition
is rather unpractical in the proofs, so the idea is to give the operator a specification
following the intuitive behavior, as does its definition in the indexed model. The point is
to define a coinductive version of count and use it to state the specification.

Definition 2.4.6 (count, src/CoindStreams.v:392)

count-from c (r · rs) , c′ · count-from c′ rs
where c′ = if r then c+ 1 else c

count rs , count-from 0 rs

We define count-from to count coinductively the number of true ticks, starting from an
initial number. Then count is a simple specialization that we can use to express the
specification of the coinductive mask operator.

Lemma 2.4.6 (mask_nth, src/CoindStreams.v:419)
Given a natural number k, a boolean coinductive stream rs and a coinductive stream of
values s, then for all instants n,(

maskkrs s
)
n

= if ((count rs)n = k) then xsn else ‹ ›

This specification result is very similar to the indexed definition 2.3.8 on page 60. Now
we use this similarity to show the following correspondence.

Lemma 2.4.7 (mask_impl, src/NLustre/NLCoindToIndexed.v:561)
Given a natural integer k, a boolean coinductive stream rs and list of coinductive streams
of values xs,

to-idx
(
C.maskkrs s

)
s∈xs
≈ I.maskkto-idx rs (to-idx xs)
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2.4.2 From the indexed semantics to the coinductive semantics
The proof of semantics inclusion in the other direction essentially follows the same
structure as the preceding proof: we define morphisms to pass from the indexed model
to the coinductive model. We first define a function that translates an indexed stream
into a coinductive stream.5

Definition 2.4.7 (tr_stream, src/NLustre/NLIndexedToCoind.v:74)

to-coind-fromn s , s n · to-coind-from (n+ 1) s
to-coind s , to-coind-from 0 s

Building a list of coinductive streams from a stream of lists is more intricate than in
the original direction. This is expected: while passing from lists of coinductive streams
to indexed streams of lists is simply slicing, we need a well-formedness property on the
length of the lists to go the other way. The idea follows three steps:

1. find a way to extract each kth indexed stream from a stream of lists,

2. translate each of those obtained streams into coinductive streams, and,

3. gather them into the resulting list.

The first step is to define the following function to extract the kth stream from a
stream of lists s.

Definition 2.4.8 (streams_nth, src/NLustre/NLIndexedToCoind.v:82)

streams-nth k s , λn. (s n)k

The subtlety in Coq is that the indexing operation on a list will fail if the index is out
of bounds, so we have to provide a default value for the operation to be total. This
detail is ignored in this dissertation but in the development we give up polymorphism for
simplicity and specify the absent value as the default.
Secondly, we can combine to-coind-from and streams-nth to define a function which

translates the kth stream of a stream of lists s into a coinductive stream.

Definition 2.4.9 (nth_tr_streams_from, src/NLustre/NLIndexedToCoind.v:87)

nth-to-coind-fromn s k , to-coind-fromn (streams-nth k s)

Finally, we need a way to build a list of each kth translated stream. We begin by
defining a function that builds a list of streams by iterating a function over a range of
integers [0,m).6

5Implemented in Coq with a CoFixpoint.
6In Coq, we use the standard library function seq.
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Definition 2.4.10 (seq_streams, src/NLustre/NLIndexedToCoind.v:77)

seq-streams f m , (f k)k∈[0,m)

Then we can use seq-streams with nth-to-coind-from as an iterator function to build the
function. We need to provide an upper bound m for the integer range, so we use the
length of the list in the stream at a given instant n. As mentioned, we will need the
well-formedness property on the lengths of the lists in the stream s:

∀i j, ‖s i‖ = ‖s j‖

Definition 2.4.11 (tr_streams, src/NLustre/NLIndexedToCoind.v:97)

to-coind-fromn s , seq-streams (nth-to-coind-fromn s) ‖s n‖
to-coind s , to-coind-from 0 s

The function for translating a history, that is, a stream of environments, into an
environment of streams is also not trivial to define in Coq: we must reconstruct (1) coin-
ductive streams from values found in sliced instantaneous environments, and (2) a domain
of definition from sliced domains. The idea to solve the second point is to rely on the
semantics constraints to ensure that the domains remain consistent at each instant. This
way it suffices to use the domain of a given environment at a given instant, for example,
the very first instant n = 0. The first problem is solved by performing lookups at each
instant into the corresponding environment: here again thanks to the semantics con-
straints, we can deduce that the lookup cannot fail. In this dissertation, these technical
details are hidden behind the convenient function composition notation.

Definition 2.4.12 (tr_history_from, src/NLustre/NLIndexedToCoind.v:105)

hist-to-coind-fromn H , (to-coind-fromn) ◦H∗
hist-to-coindH , hist-to-coind-from 0 H

The structure of the proof is essentially the converse of that of section 2.4.1. We show
that the previous functions are morphisms with respect to the two semantics, for each
syntactic class and arrive at the following result: to-coind is a morphism with respect to
the two semantics of a node.

Theorem 2.4.8 (implies, src/NLustre/NLIndexedToCoind.v:1116)
Given a program G, a name f , two streams of lists of values xs and ys such that
G ` f (xs) �� ys, then

G ` f (to-coind xs) ⇓ to-coind ys

As before, the proof follows by mutual induction on equations and nodes, using inter-
mediate results on expressions and control expressions, sometimes requiring proofs by
coinduction. In the following we outline some difficulties and interesting results.
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Lemma when_inv:
forall H b e x k es,
CESem.sem_exp b H (Ewhen e x k) es ->
exists ys xs,

CESem.sem_exp b H e ys
/\ CESem.sem_var H x xs
/\
(forall n,

(exists sc xc,
val_to_bool xc = Some k
/\ ys n = present sc
/\ xs n = present xc
/\ es n = present sc)

\/
(exists sc xc,

val_to_bool xc = Some (negb k)
/\ ys n = present sc
/\ xs n = present xc
/\ es n = absent)

\/
(ys n = absent
/\ xs n = absent
/\ es n = absent)).

Coq (src/NLustre/NLIndexedToCoind.v:417–439)

Listing 2.8: Inversion result for the semantics of the when construct
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To prove some intermediate results we must solve a difficulty, arguably more in-
volved than for the converse proof. Consider again the intermediate inclusion result for
expressions.

Lemma 2.4.9 (sem_exp_impl, src/NLustre/NLIndexedToCoind.v:630)
Given an environment stream H, a base clock stream bs, an expression e and an indexed
stream of values s such thatH, bs ` e �� s, then hist-to-coindH, to-coind bs ` e ⇓ to-coind s.

This time when doing an induction on the expression e, we are left with some coinductive
sub-goals, while the hypotheses are not coinductive. Precisely, recall that the hypothesis
H, bs ` e �� s actually stands for ∀n, H n, bs n ` e ↓ s n. Thus when dealing with
constructs like the when, for example, one cannot perform inversion (elimination) on
the hypothesis directly. In other words, from the indexed semantics of an expression
e when x, one cannot exhibit the indexed streams associated with the semantics of the
sub-expressions e and x. Yet, to pass the induction, we actually need these streams, so
that we can use the induction hypothesis on the sub-expressions. Intuitively, it seems
obvious that exhibiting sub-streams from the semantics of an expression is possible, but
the practical details are not trivial. Consider, for example, the particular intermediate
result we want to prove for the semantics of the when construct, shown in listing 2.8.
The lemma simply states in an inversion-like fashion the specification of the behavior of
the constructs as described by the instantaneous semantics. That is, if we know that
the indexed semantics for the expression Ewhen e x k associates a stream es to it, then
we can exhibit two indexed sub-streams ys and xs that are associated by the semantics
to the sub-expressions e and x respectively. Moreover, these streams are constrained
according to the semantics for the when operator. To prove this intermediate lemma, we
would like to have the following general result:

∀H bs e s,
(∀n, ∃v, H n, bs n ` e ↓ v) → ∃s, ∀n, H n, bs n ` e ↓ s n

That is, if the instantaneous semantics associates a value to an expression e at each
instant, then there exists a stream s that is associated to e by the stream semantics. This
is clearly an instance of the axiom of functional choice:

∀R, (∀x, ∃y, R x y) → ∃f, ∀x, R x (f x)

There are two obvious solutions to this goal. The first is to apply the axiom of functional
choice, but, in Coq, this means importing a non-trivial axiom, as it is not a property
of the core theory. We preferred not to do this. The second solution is to explicitly
describe how to calculate the instantaneous values needed to build the witness stream. In
other words, the solution is to construct the choice function, which is what we did. It is
possible to design an interpreter for NLustre, at least for the expressions. This interpreter
precisely follows the instantaneous semantics rules described in section 2.3.6.1 to produce
instantaneous values—the absent value being used as default value to make it total. The
interpreter is proved complete, in the sense that it produces the value expected by the

68

https://github.com/INRIA/velus/tree/lelio-thesis/src/NLustre/NLIndexedToCoind.v#L630


2.4 Relating the coinductive and indexed semantics

semantics. For example, consider the instantaneous interpreter interp-nowe that produces
values for expressions, we show that the instantaneous interpreter for expressions is
correct.

Lemma 2.4.10 (interp_exp_instant_complete, src/CoreExpr/CEInterpreter.v:173)
Given a value environment R, a base clock b, an expression e and a value v such that
R, b ` e ↓ v, then v = interp-noweR b e.

We lift the instantaneous interpreter to define an interpreter giving streams of values.
For example, we can define the following stream interpreter for expressions:

Definition 2.4.13 (interp_exp, src/CoreExpr/CEInterpreter.v:273)

interpeH bs e , λn. interp-nowe (H n) (bs n) e

Now we can use this interpreter as a choice function to prove the result expressed by
listing 2.8 without relying on an external axiom. The same technique works to obtain
similar results for the other operators and to complete the proof of lemma 2.4.9.

Interestingly, for the fby operator, the correspondence result which is the converse
of the one presented in the previous section, relies on the following intermediate result
where the indexed hold operator appears.

Lemma 2.4.11 (fby_impl_from, src/NLustre/NLIndexedToCoind.v:819)
Given an indexed stream of values s and a constant v0, then, for all instants n,

to-coind-fromn (I.fby v0 s) ≡ C.fby (hold v0 s n) (to-coind-fromn s)

This result emphasizes the fact that the hold function is fundamental to both semantics:
it explicitly encodes the register-like nature of the fby operator.
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From dataflow nodes to transition systems
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Once a Lustre program is in normalized form, that is, translated into NLustre, the com-
pilation to imperative code follows relatively straightforward techniques. The challenge
in a verified compiler is to reason formally about the change from a dataflow model
constraining streams to an imperative model that describes a sequence of calculations
and memory updates.

We introduce a novelty in the usual modular compilation scheme of Lustre. Before being
translated to imperative code, the NLustre program is transformed into an intermediate
transition system language, called Stc, for Synchronous Transition Code. This language
is designed to allow better code optimization when the modular reset is used.

3.1 Motivation

3.1.1 Syntactic granularity

The next step in the modular compilation approach is normally to schedule the dataflow
equations and then to generate imperative code directly from NLustre. To explain why we
introduce a new intermediate language, we anticipate a little the next chapter. The idea
of the compilation scheme is to associate each node of a program with a persistent state
and methods that act on its state: (1) a reset method that is responsible for setting the
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node driver(gps, xv, yv: float64; r: bool)
returns (x, y: float64);
var alarmx, alarmy: bool;

let
x, alarmx = (restart ins every r)(gps, xv);
y, alarmy = (restart ins every r)(gps, yv);

tel

NLustre

(a) NLustre example with two resets

step(gps, xv, yv: float64, r: bool)
returns (x, y: float64)
var alarmx, alarmy: bool

{
if r { ins(x).reset(); } else { };
x, alarmx := ins(x).step(gps, xv);
if r { ins(y).reset(); } else { };
y, alarmy := ins(y).step(gps, yv);

}

Obc

(b) Direct translation into Obc

if r { ins(x).reset() } else { };
if r { ins(y).reset() } else { };
y, alarmy := ins(y).step(gps, yv);
x, alarmx := ins(x).step(gps, xv)

Obc

(c) Better desired code

if r {
ins(x).reset();
ins(y).reset();

} else { };
x, alarmx := ins(x).step(gps, xv);
y, alarmy := ins(y).step(gps, yv);

Obc

(d) Better optimized code

Figure 3.1: Scheduling and compiling the modular reset

initial state of the node, and (2) a step method that implements a step of the synchronous
execution of the node, updating the state of the node for the next instant. Scheduling is
necessary to sequentialize correctly the generated imperative calculations.

Consider the node driver in figure 3.1a, that uses the ins node from our running
example. The ins node is instantiated twice and both instances are reset by the variable r.
If we generate Obc imperative code (presented in the next chapter) directly from this
NLustre node, which is already well scheduled (there are no data dependencies between
the equations), we obtain the Obc step method in figure 3.1b. Two instance variables
that designate sub-states are introduced: ins(x) and ins(y). Each node instantiation
equation with reset is translated into a sequence of two instructions: a guarded call to
the reset method, then a call to the step method of the corresponding instance. The
problem is that this code is not optimal since the conditional calls to the reset methods
cannot be fused together. Indeed we would want the instructions to be sequentialized
as in figure 3.1c, allowing further fusion optimization (described in the next chapter) to
produce the code shown in figure 3.1d.

Our solution to this problem is the introduction of an intermediate language where
the modular resets appear independently from instantiations, while keeping a declarative
presentation. The idea is to have a semantics that still does not depend on the order of
equations while allowing a finer scheduling that takes resets into account.
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3.1.2 Semantic granularity

Besides the performance issue raised by the compilation of the modular reset, we failed
anyway to directly adapt the proofs between NLustre and Obc [Bourke, Brun, Dagand,
et al. (2017)] to handle this construct. Intuitively, the reason is that the NLustre semantic
models are not fine enough to allow establishing a correspondence to track the changes
to the persistent state when a reset occurs. Indeed, while it is straightforward to describe
in an imperative paradigm (“reset then step”), it is not trivial to model in a synchronous
dataflow paradigm where reactions are atomic (“reset-step”).

Thus the second fundamental goal of the new intermediate language is to describe what
we call transient states, that is, states that a node may reach during a single time-step,
but that are not observable from the outside.

3.2 From NLustre to Stc

The goal of the Stc language is to increase the granularity in both the syntax and
semantics. In the syntax, it allows considering node instantiations and resets as separate
constructs. In the semantics, it exposes transient states. The solution proposed here can
be considered a proof-of-concept developed to solve our particular issues. But we would
expect the model to generalize to support reasoning about modes and scheduling policies
in the spirit of [Caspi, Colaço, et al. (2009)].

The dataflow semantics of NLustre is based on composing stream functions, and con-
suming and producing streams. In contrast, Stc is based on composing state transitions,
and consuming and producing values. Given input values at a given instant, a transition
imposes constraints between two states and determines output values. Individual transi-
tions are either composed in sequence, encoding a reset followed by a step, or in parallel,
to encode simultaneous constraints. Composite transitions are built-up recursively from
transitions on local state memories. Each composite transition is synchronous: seen from
outside, it is a single atomic constraint between two states.

Before presenting the syntax, we show in listing 3.1b the result of translating the
NLustre running example recalled in listing 3.1a. The translation function will be detailed
later. Note the appearance of the distinction between regular variables and state variables
with the keywords init and next, the appearance of sub-instance variables with the
keyword sub, and the separation of the node instantiation with reset of ins in the node
nav into two distinct transition constraints. To simplify the translation and the proof,
we avoid generating fresh identifiers, and instead reuse variable names from NLustre
equations to name instances. In particular, remark how the single NLustre condition
variable r is combined with the (implicit) clock of the source equation.
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Chapter 3 From dataflow nodes to transition systems

node euler(x0, u: float64) returns (x: float64);
var i: bool; px: float64;
let

i = true fby false;
x = if i then x0 else px;
px = 0.0 fby (x + 0.1 * u);

tel

node ins (gps: float64, xv: float64) returns (x: float64, alarm: bool)
var k: int32, px: float64, xe: float64 when not alarm;

let
k = 0 fby k + 1;
alarm = (k >= 50);
xe = euler(gps when not alarm, xv when not alarm);
x = merge alarm (px when alarm) xe;
px = 0. fby x;

tel

node nav (gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool)
var r: bool, c: bool, cm: bool, insr: float64 when not c, alr: bool when not c;

let
(insr, alr) = (restart ins every r)(gps when not c, xv when not c);
x = merge c (gps when c) insr;
alarm = merge c (false when c) alr;
cm = merge c (not s when c) (s when not c);
c = true fby cm;
r = false fby (s and c);

tel

NLustre

(a) Before

Listing 3.1 (I): Translation of the example
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system euler {
init i = true, px = 0.;
transition(x0: float64, u: float64) returns (x: float64)
{

next i = false;
x = if i then x0 else px;
next px = x + 0.1 * u;

}
}

system ins {
init k = 0, px = 0.;
sub xe: euler;
transition(gps: float64, xv: float64) returns (x: float64, alarm: bool)

var xe: float64 when not alarm;
{

next k = k + 1;
alarm = (k >= 50);
xe = euler<xe,0>(gps when not alarm, xv when not alarm);
x = merge alarm (px when alarm) xe;
next px = x;

}
}

system nav {
init c = true, r = false;
sub insr: ins;
transition(gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool)

var cm: bool, insr: float64 when not c, alr: bool when not c;
{

(insr, alr) = ins<insr,1>(gps when not c, xv when not c);
reset ins<insr> every (. on r);
x = merge c (gps when c) insr;
alarm = merge c (false when c) alr;
cm = merge c (not s when c) (s when not c);
next c = cm;
next r = s and c;

}
}

Stc

(b) After

Listing 3.1 (II): Translation of the example
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Chapter 3 From dataflow nodes to transition systems

tc ::= transition constraint
| x =ck ce (basic constraint)
| next x =ck e (next constraint)
| x∗, =ck x<x,k>(e+,) (default transition)
| reset x<x> every ck (reset transition)

d ::= xτ,ck variable declaration

s ::= system x { system
[sub (xx)+, ]
[init (xc,ck)+, ]
transition(d+,) returns (d∗,) [var d+, ]
{
tc+;

}
}

p ::= s+ program

Figure 3.2: The Stc abstract syntax

3.2.1 Syntax of Stc

Figure 3.2 presents the syntax of Stc. Expressions and control expressions are shared with
NLustre: this allows to simplify both the translation function and its proof of correctness.
As explained, a system only possesses two transitions: an explicit default transition,
which is defined by a list of transition constraints, and an implicit reset transition. In
this language, state variables and instances are made explicit in the syntax through
the init and sub declarations, respectively. Transition constraints, as for dataflow
equations in NLustre, are annotated with their activation clock. Standard variables
are constrained by basic constraints and state variables by next constraints. A default
transition x =ck f<i, k>(e) constrains the state of the instance i declared with system f .
The integer parameter k equals 1 if the list of transition constraints also contains a reset
transition on the same instance i and 0 otherwise. Its precise role will be explained later.
A state variable is declared at system level with its initial value as a constant, and a
sub-system instance is declared with its system name.

Listing 3.2 shows the Coq implementation of systems. We do not show the implemen-
tation of transition constraints, as it is very similar to that of listing 2.6d on page 46 for
NLustre equations. Again, we use a dependent record to model the syntactic elements
of a system together with some syntactic invariants. As for NLustre, an Stc default
transition must have at least one input (s_ingt0); the declarations of a system must
be unique (s_nodup and s_nodup_init_subs); the sub-instance variables, state vari-
ables and non-input variables appearing in the transition constraints must be declared
(s_subs_calls_of, s_inits_in_tcs, and s_vars_out_in_tcs); the reset transitions are
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Record system :=
System {

s_name : ident; (* name *)
s_in : list (ident * (type * clock)); (* inputs *)
s_vars : list (ident * (type * clock)); (* local variables *)
s_inits: list (ident * (const * clock)); (* state variables *)
s_subs : list (ident * ident); (* sub-instances *)
s_out : list (ident * (type * clock)); (* outputs *)
s_tcs : list trconstr; (* transition constraints *)

s_ingt0 : 0 < length s_in;

s_nodup : NoDup (map fst s_in ++ map fst s_vars ++
map fst s_out ++ map fst s_inits);

s_nodup_inits_subs : NoDup (map fst s_inits ++ map fst s_subs);

s_subs_calls_of : Permutation s_subs (calls_of s_tcs);

s_inits_in_tcs : Permutation (map fst s_inits) (inits_of s_tcs);
s_vars_out_in_tcs : Permutation (map fst s_vars ++ map fst s_out) (variables s_tcs);

s_reset_incl : incl (resets_of s_tcs) (calls_of s_tcs);
s_reset_consistency: reset_consistency s_tcs;

s_good : Forall ValidId (s_in ++ s_vars ++ s_out)
/\ Forall ValidId s_inits
/\ Forall ValidId s_subs
/\ valid s_name

}.
Coq (src/Stc/StcSyntax.v:95–123)

Listing 3.2: Implementation of Stc systems
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i-treq (x =ck e) , [x =ck e]
i-treq (x =ck c fby e) , [next x =ck e]

i-treq (ε =ck f(e)) , ε
i-treq (i · x =ck f(e)) , [i · x =ck f<i, 0>(e)]

i-treq
(
i · x =ck (restart f every rckr)(e)

)
, [reset f<i> every (ckr on (r = true)) ;

i · x =ck f<i, 1>(e)]

Figure 3.3: Translation of NLustre equations
(translate_eqn, src/NLustreToStc/Translation.v:57)

always associated with corresponding default transitions (s_reset_incl); the transition
constraints are reset consistent (s_reset_consistency, see below); and the identifiers
are valid (s_good).
We introduce the notion of reset-consistency that expresses the expected meaning of

the integer parameter k of default transitions.

Definition 3.2.1 (reset_consistency, src/Stc/StcSyntax.v:69)
A list of transition constraints tc is reset-consistent if for each default transition
(- = -<i, k>(-)) in tc, a reset transition (reset -<i> every -) appears in tc if and only if
k = 1.

3.2.2 The translation function

The translation of an NLustre program into Stc is relatively direct. In particular because
expressions and control expressions are unchanged. Two major modifications are made:
state variables and instances are distinguished in declarations (but not in expressions),
and node instantiations with reset are split into distinct reset and default transitions.

Programs are translated node-by-node by a function named i-tr. A node n is translated
into a system s with the same name by a function called i-trnode. A declaration is added
to s.inits for each fby equation and to s.subs for each node instantiation, with or without
reset, using the first defined variable as an instance identifier. For instance names, as
mentioned, it avoids handling fresh identifiers. The n.in and n.out declarations are
transferred, respectively, to s.in and s.out without modification, and n.vars is filtered
into s.vars by removing variables defined by fby equations. The translation to the
transition constraints s.tcs is defined by concat-map i-treq n.eqs. In the Coq development,
the function i-trnode translates a dependent record representing an NLustre node into a
dependent record representing an Stc system. As already explained, we use the Program
library that allows us to omit the dependent predicates while writing the function, and to
prove them interactively to complete the definition. Some of these obligations are almost
trivial but others require intricate reasoning and intermediate results. Unfortunately, a
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3.2 From NLustre to Stc

Ω(x) = ck Ω c̀ e :: ck
P,Ω ` x =ck e

Ω(x) = ck Ω ` e :: ck
P,Ω ` next x =ck e

system(P, f) .=
(
s, P ′

)
σ(x) var= e σ(y) = z

Ω ` e :: σck [ckx] Ω(z) = σck [cky]
P,Ω ` z =ck f<i, k>(e)

where
s.in = xτx,ckx

s.out = yτy,cky

Ω ` ck
P,Ω ` reset f<i> every ck

Figure 3.4: The clock system of Stc: transition constraints

classical pitfall with ITPs, these difficult-to-prove results are also not very interesting, so
I do not go further into details.

The translation function for equations i-treq is shown in figure 3.3. It maps an equation
into a list of transition constraints. Basic equations are translated directly, as are fby
equations but with the elision of the initial constant, which is shifted to the corresponding
declaration of x in s.inits. Node instantiations without reset are translated into default
transitions; the existence of at least one defined variable is guaranteed by a syntactic
predicate, presented earlier (see listing 2.6e on page 46). Each node instantiation with
reset is translated into two transitions on the same instance: a default transition and a
reset transition.

3.2.3 Clock system of Stc

We present the clock system of Stc, directly adapted from the clock system of NLustre
presented in section 2.3.4. Figure 3.4 presents the clocking rules for the transition
constraints: expressions and control expressions keep the same rules as for NLustre. As
they are very similar to the clocking rules for NLustre (see figure 2.6c on page 48), we do
not go into details. Notice that the rule for the reset transition only requires that the
clock condition is consistent. For other transition constraints, it can be shown that the
consistency of the clock annotations is a property of the clock calculus. The clocking
rules for systems and programs are essentially the same as for NLustre.
The type system of Stc is presented in appendix E.3.

3.2.4 Semantics of Stc

The semantics of Stc defines a notion of state. We model states by memory trees that
are recursively defined by the following generic record type.
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S S′

S[insr] I[insr] S′[insr]

I[insr][xe] I ′[xe] S′[insr][xe]

nav
default

ins
reset

ins
default

∼∼∼

euler
default

initial

initial

S S′

S[insr] I[insr] S′[insr]

I[insr][xe] I ′[xe] S′[insr][xe]

nav
default

∼∼∼

ins
default

∼∼∼

euler
default

Figure 3.5: Example transition diagrams

Definition 3.2.2 (memory, src/VelusMemory.v:39)

memoryα , ⦃ values : envα ; instances : env (memoryα) ⦄

We will write M(x) to denote the lookup of the identifier x in the values environment
field of the memory tree M , and M [x] to denote the lookup of x in the instances field.
Similarly M(x 7→ v) represents the updating operation on the values field of M , and
M [x 7→Mx] the updating operation on its instances field. For both update operations, if
the identifier x is not already defined, the binding is added.

The main feature of Stc is the introduction of transient states. Consider the translation
of the running example in listing 3.1b. The corresponding states and transitions are
depicted in figure 3.5. The activation of the default transition of the system nav constrains
a start state S and an end state S′. In the top diagram, the reset condition r is true, so
the reset transition of ins is taken. It constrains the sub-state S[insr] and a transient

80

https://github.com/INRIA/velus/tree/lelio-thesis/src/VelusMemory.v#L39


3.2 From NLustre to Stc

sub-state I[insr]. This sub-state is recursively constrained by the reset transition to
contain the initial values of the memory tree for ins. In the bottom diagram, r is false,
so the reset transition of ins is not taken, and the transient state I[insr] must simply
be unchanged from the start state S[insr]. In both diagrams, the activated default
transition of ins constrains the transient state I[insr] with the global sub-state S′[insr].
Similarly, the scheme for this default transition introduces another transient state I ′[xe].
As the euler system does not have a reset transition constraint, this transient state is
always observationally equal to the sub-state I[insr][xe], which is recursively initial.

There are three important things to understand about this model:

1. The scheme presented in the example diagrams in figure 3.5 can be repeated an
arbitrary number of times within any default transition, following the structure of
the sub-systems. Consequently, in this model, a single time-step can be subdivided
an arbitrary number of times, modeling the simultaneity of an ordered sequence of
events.

2. The transient states are only exposed in the internals of a system. From the outside,
the activation of the default transition of a system is atomic.

3. The positions of states that a transition constrains are fixed: a reset transition
always constrains a start state with a transient state, while a default transition
always constrain a transient state with an end state.1

Before presenting the formal rules, we stress a fundamental property that we want
the semantics to satisfy. So far, the presented dataflow semantic models are constraints
systems: the semantics are not operational in the sense that the environment is not built
sequentially, transition constraint by transition constraint—or equation by equation for
Lustre or NLustre. Rather, the semantics are relational and constrain the environment
to satisfy the semantics of the transition constraints independently of their order. The
fact that the semantics does not depend on the order of the equations is a strength of
these models: it facilitates reasoning and makes the proof of semantics preservation by
scheduling trivial. Another consequence is that these systems of constraints are convenient
when working in Coq: the manipulated data structures are only loosely specified, which
makes the reasoning about them very flexible. The drawback is that having only a loose
specification on the domain of these structures makes it difficult to state correspondences
between states. Eventually it is easier to state these correspondences as an observational
one-to-one equivalence, defined below.

1This loss of generality is assumed: we wanted a working model to fit our needs and to simplify the
formalization and its presentation. The language could potentially be extended to allow multiple,
ordered transitions within a system and the semantic model would then involve a corresponding
number of successive transient states.
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Definition 3.2.3 (equal_memory, src/VelusMemory.v:105)
We define the observational equivalence between two memory trees M and M ′ by the
following relation.2

∀x, M(x) = M ′(x) ∀i, M [i] ∼∼∼M ′[i]
M ∼∼∼M ′

Figure 3.6 shows the semantic rules for Stc. As mentioned, unlike NLustre, Stc is not a
language of streams but one of values. Since Stc and NLustre share the same expressions,
we can directly reuse the instantaneous semantics defined in section 2.3.6.1. This choice
permits a lightweight formalization of Stc in Coq: we reuse many existing definitions and
lemmas.
Figure 3.6a presents the semantics of transition constraints. It is parameterized by a

program P , an environment of values R, a base clock b, and three memory trees: a start
state S, a transient state I and an end state S′.
A basic constraint does not impose anything on the states, it only ensures that the

value for x in the environment coincides with the value of the expression e.
A next constraint specifies the value that the state variable x will take in the end

state: if the constraint is activated, the state variable is updated with the value of
the expression e, otherwise the value in the start state is maintained. If the transition
constraint is activated, the current value of the state variable in the environment is taken
from the start state, otherwise, it is absent.

A default transition constrains the transient sub-state I[i] and an end sub-state S′[i],
using the dedicated predicate shown in figure 3.6b. The input expressions are evaluated
to a list of values and the environment is constrained to hold the output values for the
defined variables. The role of the parameter k becomes clearer: if it equals 0, meaning
that no reset transition is present then we need a way to ensure that the transient
sub-state is always (observationally) equal to the start sub-state.3

For a reset transition, we have to consider two cases. If the reset transition is activated
then we constrain the transient sub-state to be initial, that is, it must contain the
declared initial values of its state variables (recursively). The initial-state predicate will
be presented shortly. If it is not activated, then we constrain the transient sub-state
to be copied from the start sub-state. Our model can be compared to the semantics
of Auger (2013, Figure 8.8, rules EqAppAbs and EqAppPres). This semantics for a
version of NLustre, defined at a single instant, constrains two memories for tracking the
pre- and post-states of fbys and node instantiations, and introduces for the reset an
intermediate memory that must equal either an initial memory or the existing instance
memory according to the reset stream.

The semantics of a system is shown in figure 3.6b. The system lookup in the program
is different from NLustre: we write system(P, f) .= (s, P ′) to mean that the system s

2The way the relation is depicted could be misleading for identifiers that are not in the domains. Recall
that, for the sake of simplicity, we omit the details on failing lookups, so assume that the relation
implies that the domains are exactly the same.

3This is an ad-hoc way of simulating the presence of a reset transition that never fires.
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R, b c̀ e :: ck ↓ R(x)
P,R, b, S, I, S′ ` x =ck e

R, b ` e :: ck ↓ ‹v› R(x) = ‹S(x) › S′(x) = v

P,R, b, S, I, S′ ` next x =ck e

R, b ` e :: ck ↓ ‹ › R(x) = ‹ › S′(x) = S(x)
P,R, b, S, I, S′ ` next x =ck e

R, b ` e ↓ v R, b ` ck ↓ base-of-now v
k = 0 → I[i] ∼∼∼ S[i] P, I[i] , S′[i] ` f (v) � R(x)

P,R, b, S, I, S′ ` x =ck f<i, k>(e)

R, b ` ck ↓ true initial-stateP f I[i]
P,R, b, S, I, S′ ` reset f<i> every ck

R, b ` ck ↓ false I[i] ∼∼∼ S[i]
P,R, b, S, I, S′ ` reset f<i> every ck

(a) Transition constraints (sem_trconstr, src/Stc/StcSemantics.v:89)

system(P, f) .=
(
s, P ′

)
R(x) = xs R(y) = ys

respects-clock-nowR b Γ
s-closedP f S s-closedP f I s-closedP f S′

∀tc ∈ s.tcs, P,R, b, S, I, S′ ` tc
P, S, S′ ` f (xs) � ys

where

s.in = xτx,ckx

s.out = yτy,cky

Γ = ∅{x 7→ ckx}
b = base-of-now xs

(b) Systems (sem_system, src/Stc/StcSemantics.v:121)

P, S, S′ ` f (xsn) � ysn P, S′ ` f (xs)
n+1	 ys

P, S ` f (xs)
n	 ys

(c) Loop (loop, src/Stc/StcSemantics.v:210)

Figure 3.6: Semantics of Stc
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exists with name f in the program P and that P ′ is the list of system declarations
that come after it. This is to ensure the well-foundedness of recursive predicates. As
for NLustre, the local environment R is constrained to hold the values for the inputs
and outputs of the node, and the inputs are constrained to be clock-aligned with their
declared clocks. Along with R, the local start state S, transient state I and end state S′
are constrained by the semantics of each transition constraint of the system. The order
of these constraints is immaterial. The s-closed predicate restrains the domains of the
memory trees S, I and S′.

Definition 3.2.4 (state_closed, src/Stc/StcSemantics.v:50)

system(P, f) .=
(
s, P ′

)
∀x v, S(x) = v → x-,- ∈ s.inits ∀iSi, S[i] = Si → ∃g, ig ∈ s.subs ∧ s-closedP ′ g Si

s-closedP f S

The statement s-closedP f S expresses that each variable in the values field of the tree S
appears as a state variable declaration of the system f , and that each sub-instance of the
tree S corresponds to a sub-system declaration in f and is also recursively closed. This
predicate facilitates stating and reasoning about memory equivalence. Without it, an
equivalence between two memories would be relative to a domain—the state variables
and instance variables that are constrained—which changes as one descends into the tree.
Including it in the intermediate model captures a property of the system that is exploited
and transmitted by later proofs.

Now we can explain the initial-state predicate.

Definition 3.2.5 (initial_state, src/Stc/StcSemantics.v:73)

system(P, f) .=
(
s, P ′

)
∀xc,ck ∈ s.inits, S(x) = JcK

∀ig ∈ s.subs, initial-stateP ′ g S[i]
initial-stateP f S

Whereas s-closedP f S expresses the inclusion of the domain of S in the domain of the
declarations of f , initial-stateP f S expresses the converse. A tree S is initial if and only
if all state variables of f appear in S with their initial values and all sub-systems of f
correspond to initial sub-trees in S.

Finally, figure 3.6c presents the coinductive rule implementing the endless iteration of
a system. At a given instant n, the system f is activated between an entry state S and a
local end state S′, taking its input and output values from the streams xs and ys. The
loop is repeated at the next instant n+ 1 with S′ as the start state.

3.3 Correctness
Even before the introduction of the modular reset in Vélus, a direct proof between
NLustre and Obc could not be done, because the statement of the desired result is too
weak to be proved directly by induction. To solve this issue, an alternative memory
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semantics for NLustre was proposed in [Bourke, Brun, Dagand, et al. (2017)]. This model
exposes the state of a node in the semantics, that is, its state variables (variables defined
by a fby equation) and its sub-instances (the sub-parts of the state for instantiated child
nodes). Hence we were able to do the proof in two steps:

1. A proof of correctness between the indexed semantics of NLustre and its memory
semantics. This step is relatively easy: for a node it boils down to showing the
existence of a memory satisfying the memory semantics, with the same input and
output streams as the standard semantics.

2. A much more involved proof of correctness between the memory semantics and the
generated imperative Obc code.

We adapt this approach for the proof between NLustre and Stc. We begin by presenting
the memory semantics of NLustre and its extension to handle the modular reset.

3.3.1 The memory semantics for NLustre
3.3.1.1 The memory model and the modular reset

The main idea of the memory semantic is to expose the state of the nodes. In a sense, it
reflects the syntactic exposition of state performed by the normalization pass. In this
model, the semantics is additionally parameterized by a stream of memory trees. The
semantic model constrains the leaves of successive memory trees to reflect the successive
values to be memorized (without absence) when implementing the fbys. The sub-trees
of the memories are recursively constrained by the node instantiations.
As explained, the introduction of this alternative semantics allowed Bourke, Brun,

Dagand, et al. (2017) to complete the correctness proof between NLustre and Obc in two
steps. The challenge concerning is to adapt this model to take the modular reset into
account.

A flawed approach: explicitly resetting the memory
To explain the ideas behind the memory model, let us consider the simple example
below.4

node nat(i: int) returns (x: int)
let
x = 0 fby (x + 1);

tel

Lustre

The node nat simply outputs the sequence of successive integers. We show its behavior on
the chronogram below, where b denotes the activation clock of the node and M represents
its associated memory.

4Note that in Vélus, nodes must have at least one input to give the base clock. Also in NLustre an
output cannot be defined by a fby equation, but this is not relevant for this simple example.
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b T T T F T T T · · ·

M(x) 0 1 2 3 3 4 5 · · ·
x 0 1 2 3 4 5 · · ·

x+ 1 1 2 3 4 5 6 · · ·
nat(i) 0 1 2 3 4 5 · · ·

The value of x at each instant is obtained from the memory content M(x), according
to the clock. Observe that the memory is causal: for each instant n > 0, the content
of M depends only on values of x+ 1 at instants strictly before n. This property is a
consequence of the semantics of fby. Indeed, we can verify that for each instant, the
value for M is obtained from preceding instants. In particular, at the fifth instant, it is
the absence of x at the fourth instant which constrains the value to be maintained in the
memory.
This causality property is essential to the proof of correctness of imperative code

generation: it allows to formulate a state correspondence just before the current reaction.
That is, at the end of the previous reaction, when the update is performed in the
imperative code, the memory is guaranteed to contain the values available for the current
reaction.
Directly extending this model with the modular reset breaks the causality property,

and the proof of correctness. The modular reset we want to formalize is strong, meaning
that the state of the reset node is actually reinitialized at the very same instant the reset
condition is true.5 Consequently, if we define the memory behavior of the reset naively as
depicted below, the memory is not causal anymore: its content can be modified without
delay by a reset.

b T T T F T T T · · ·
r F F F T F F · · ·

M(x) 0 1 2 3 0 1 2 · · ·
x 0 1 2 0 1 2 · · ·

x+ 1 1 2 3 1 2 3 · · ·
(restart nat every r)(i) 0 1 2 0 1 2 · · ·

Here the reset fires just after the absence, to show the consequence on the crucial memory
invariant that the memory is left unchanged when the node is not activated. This is not
true anymore, because at the fifth instant after the absence of the fourth instant, the
reset reinitializes the memory. Thus this model complies with the fact that the value of
x coincides with the value in M(x), but not with the fact that the values in the memory
are the values before the current reaction. In particular, the value of M(x) at the fifth
instant is 0, which matches the expected value of x, but the value at the end of the
previous reaction should be 3. Practically, this is a matter of constraint conflict: one
constraint says what the next value should be, and another (later) one says that it should
be reset.

5We borrow the terminology from state machines, where a strong transition is taken immediately, while
a weak transition is delayed.
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A causal model with strong reset
The solution to the causality problem raised by the modular reset is to re-establish the
delayed behavior of the memory, in order to keep the properties of the memory. With
this approach, the effect of the reset on the memory is delayed by one instant, as shown
below.

b T T T F T T T · · ·
r F F F T F F · · ·

M(x) 0 1 2 3 3 1 2 · · ·
x 0 1 2 0 1 2 · · ·

x+ 1 1 2 3 1 2 3 · · ·
(restart nat every r)(i) 0 1 2 0 1 2 · · ·

Here we can check the fact that each value of M(x) actually depends on previous values
of x+ 1, and that the causality property holds. In particular, the essential property that
the memory is left unchanged when the node is not activated is now ensured. There is
still an inevitable discontinuity in the model: the value of x at the fifth instant does
not match the value of M(x) anymore. This is not a problem though, given the way we
define the formal semantics, as described in the next section.

3.3.1.2 Formal rules

The essence of the memory model is to expose the state of the nodes, thus only the
semantics of equations differs from the standard indexed semantics presented in sec-
tion 2.3.6.2. We only deal with indexed streams and not with coinductive streams from
now on. Thus, since there is no longer any risk of ambiguity between the indexing
notations for coinductive streams and that for indexed streams, we will use the former
notation xsn in place of the latter xs n since it is more readable. In particular, we will
keep the lambda notation for building streams, so we may mix notations as in λn. xsn
to designate λn. (xs n). Figure 3.7a shows this new semantics of the equations. The
judgments now have an additional parameter M which is a stream of memory trees.
A basic equation has exactly the same semantics as in the standard model (see

figure 2.9a on page 58), since it does not involve the state.
The semantics for an equation x = c fby e is the core of the model. It is not given

by a synchronous stream operator fby anymore but by a set of constraints on the memory
streamM . First, the expression e is associated with a stream s. The second antecedent of
the rule constrains the initial content of the memory stream to be equal to the semantics
of the constant c. Then, the third antecedent constrains both the current slice of the
stream of environments H and the next slice of the stream of memories M . At each
instant n, there are two cases: (1) if s is absent, then x is absent and the memory stutters:
its current value is held for the next instant (n+ 1), or (2) if s is present with value v,
then x is given the current value from the memory, and the memory content is updated
to v for the next instant.
For a node instantiation, the only change is to expose the corresponding instance in

the memory tree. A convenient way to do this is to name it after the first variable of the
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H, bs `c e :: ck �� H∗(x)
G,H, bs,M ` x =ck e

H, bs ` e :: ck �� s

M0(x) = JcK ∀n,
{
Hn(x) = ‹ › ∧Mn+1(x) = Mn(x) if sn = ‹ ›
Hn(x) = ‹Mn(x) › ∧Mn+1(x) = v if sn = ‹v›
G,H, bs,M ` x =ck c fby e

H, bs ` e �� xs H, bs ` ck �� base-of xs G,M∗[i] ` f (xs) �� H∗(x)
G,H, bs,M ` i · x =ck f(e)

H, bs ` e �� xs H, bs ` ck �� base-of xs bools-of (H∗(y)) .= rs
∀k, ∃Mk, G,Mk ` f

(
maskkrs xs

)
�� maskkrs (H∗(x)) ∧ m-maskedkrs (M∗[i]) Mk

G,H, bs,M ` i · x =ck (restart f every y)(e)

(a) Equations (msem_equation, src/NLustre/NLMemSemantics.v:141)

node(G, f) .= n H∗(x) ≈ xs H∗(y) ≈ ys
respects-clockH bs Γ m-closedM n.eqs

∀eq ∈ n.eqs, G,H, bs,M ` eq
G,M ` f (xs) �� ys

where

n.in = xτx,ckx

n.out = yτy,cky

Γ = ∅{x 7→ ckx}
bs = base-of xs

(b) Nodes (msem_node, src/NLustre/NLMemSemantics.v:176)

Figure 3.7: Memory semantics of NLustre
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left-hand side of the equation. We know that this variable is uniquely defined from the
syntactic requirements on nodes, and we know that it exists since in Vélus, nodes must
have at least one output. Indeed, in our setup, nodes without output make no sense
practically.6 We write M∗[i] as a shorthand for λn.Mn[i], for the stream of sub-memories
associated with the instance named i.
The corresponding mutually inductive rule for the semantics of a node is shown in

figure 3.7b. It is more or less a direct adaptation of the standard rule (see figure 2.9b
on page 58). We keep the crucial property that the semantics for a node is independent
from the order of its equations. There is an additional antecedent, though, requiring
that for any identifier defined in the values field there is a corresponding fby equation,
and that any identifier defined in the instances field is the first variable in some node
instantiation with or without reset.

Definition 3.3.1 (memory_closed, src/NLustre/NLMemSemantics.v:134)

m-closedM eq , ∀n, (∀x, (∃v, Mn(x) = v) → x = - fby - ∈ eq)
∧ ∀i, (∃Mi, Mn[i] = Mi) → i · - = -(-) ∈ eq

Compared to the definition 3.2.4 on page 84 of s-closed, there are two differences:

1. In Stc, state variables and instances are retrieved in the s-closed predicate via
their explicit declarations within the enclosing system, but here we use the list of
equations of the node.

2. Unlike the s-closed predicate, m-closed is not recursive. The fact that a whole
memory M is closed is thus ensured here by the semantics itself, by recursively
imposing m-closed at each level of M . This is an arbitrary choice.

The rule for the modular reset also uses the first defined variable as an instance
name. As for the coinductive and indexed standard semantics models, we use a universal
quantification together with the mask operator to model the idea of shifting to a fresh
instance whenever a reset occurs. Here, each instance k must have its own memory Mk,
that satisfies a recursive invocation of the rule for nodes. These local memories are, in
turn, combined to constrain the overall memory of the instance, that is, to constrain
M∗[i]. To do this, we adapt the masking idea used for input and output streams, to
guarantee the causality property discussed in 3.3.1.1 and avoid conflicting constraints at
instants of reset. We introduce the following predicate:

Definition 3.3.2 (memory_masked, src/NLustre/NLMemSemantics.v:107)

m-maskedkrs M N , ∀n, count rs n = (if rsn then k + 1 else k) → Mn = Nn

This predicate differs from mask in a rather subtle way. First, it is a predicate, rather
than a function. Indeed, while an instance k can satisfy the semantics rule for nodes by
producing absent outputs before and after its interval of activation, the treatment of

6They would if we handled side-effects, but this is not the case.
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r F F F T F F F T F F · · ·

(restart nat every r)(i) 0 1 2 0 1 2 3 0 1 2 · · ·
M(x) 0 1 2 3 1 2 3 4 1 2 · · ·

count r 0 0 0 1 1 1 1 2 2 2 · · ·

nat(mask0
r i) 0 1 2 · · ·

M0(x) 0 1 2 3 3 3 3 3 3 3 · · ·

nat(mask1
r i) 0 1 2 3 · · ·

M1(x) 0 0 0 0 1 2 3 4 4 4 · · ·

nat(mask2
r i) 0 1 2 · · ·

M2(x) 0 0 0 0 0 0 0 0 1 2 · · ·
...

Figure 3.8: Masking with memories explained on an example

memories is more intricate. Even when not activated, constant memories must satisfy the
stuttering property, that is, their contents must be held. This is ensured by the memory
semantics for fbys. Second, the masking for streams lets the underlying stream values
appear until just before the next reset. On the contrary, the masking for memories lets
the underlying memory content appear until the very instant of reset. This is to ensure
the causality property on the memory stream.
This will become clearer by studying the trace of the previous nat example depicted

in figure 3.8. The count r row gives the active instance over time, below it are presented
both the Mk(x) values and the result of the application of nat on a masked input7 for
k = 0, 1, and 2. The dotted lines correspond to stream masking. The dashed lines show
the intervals selected by the m-masked predicate. Note the stuttering of the instances’
memory streams and the shift between the intervals selected by stream masking and by
memory masking.

3.3.1.3 Properties of the memory model

From the standard indexed semantics to the memory semantics
The fundamental property that the memory model satisfies is that it is implied by the
standard indexed model. The crucial step is to prove the result at the level of equations.

7Recall that in this example, the i input only serves to give the activation tempo.
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Lemma 3.3.1 (sem_msem_eq, src/NLustre/NLMemSemantics.v:639)
Given a program G, a base clock stream bs, an environment stream H, an equation eq
such that G,H, bs ` eq, and the induction hypothesis for nodes:

∀f xs ys, G ` f (xs) �� ys → ∃M, G,M ` f (xs) �� ys

Furthermore, assume the following induction hypothesis for a list of equations eqs and a
stream of memories M :

1. the variables defined by the equations eqs and the equation eq are distinct,

2. m-closedM eqs, and

3. ∀eq ′ ∈ eqs, G,H, bs,M ` eq ′.

Then there exists a new memory stream M ′ such that:

1. ∀eq ′ ∈ eq · eqs, G,H, bs,M ′ ` eq ′, and

2. m-closedM ′ (eq · eqs).

The proof is by cases on the four possibilities for eq. In each case, one has to construct a
witness for the new memory stream M ′. The reset case i ·x =ck (restart f every y)(e)
is arguably one of the most problematic proof obligations in Vélus, in terms of logical
principles. As for the node instantiation case, we would like to exhibit a well-defined Mi
in order to give the witness M ′ = λn.Mn[i 7→ Min]. The problem is to build that Mi,
such that, according to the reset rule for in figure 3.7a,

∀k, ∃Mk, G,Mk ` f
(

maskkrs xs
)
�� maskkrs ys and m-maskedkrs Mi Mk

Now, consider the two involved hypotheses.

1. The node induction hypothesis:
∀f xs ys, G ` f (xs) �� ys → ∃M, G,M ` f (xs) �� ys

2. The result of the inversion of G,H, bs ` i · x =ck (restart f every y)(e):
∀k, G ` f

(
maskkrs xs

)
�� maskkrs ys

By combining these two hypotheses, we deduce the following:

∀k, ∃Mk, G,Mk ` f
(

maskkrs xs
)
�� maskkrs ys

We must construct the function Mi from the potentially infinite sequence of instance
memory streams Mk, whose existence of each is given by the combined hypothesis above.
One way to solve the problem is to postulate a function F = λ k.Mk allowing us to
choose the kth instance’s memory stream Mk. To account for the masking predicate
m-masked, a good choice for Mi would be the following:

Mi = λn. (F (if rsn then count rs n− 1 else count rs n))n
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That is, Mi is composed of the Mk memory streams, chosen by F according to the
cumulative number of reset ticks at an instant n. So clearly the proof boils down to
constructing F . Unfortunately, our proof obligation here is another instance of the axiom
of functional choice:

∀R, (∀x, ∃y, R x y) → ∃f, ∀x, R x (f x)

Using this axiom is the only way I found to solve the problem. Still, the trick used in
section 2.4.1 could be repeated here: indeed, it should be possible to define an interpreter
at equations/nodes level for the memory model that would build both the environment
stream and the memory stream. We could then use it to explicitly construct the choice
function F . The definition of this interpreter is current work in the project and beyond
the scope of this thesis.
To prove the result at node level, we proceed by induction on the program. This

induction relies on the following ordering predicate.

Definition 3.3.3 (Ordered_nodes, src/NLustre/NLOrdered.v:50)

NL-Ordered ε

NL-OrderedG ∀n′ ∈ G, n.name 6= n′.name
∀f, - = [restart] f [every -](-) ∈ n.eqs → f 6= n.name ∧ ∃n′, node(G, f) .= n′

NL-Ordered (n ·G)

The statement NL-OrderedG expresses that (1) all nodes in G are uniquely defined,
(2) recursion is forbidden, and (3) each node instantiation in an enclosing node corresponds
to a later declaration in the program. This unusual order is more convenient in proofs
simply implies that the parsed program has to be reversed before further compilation.

Theorem 3.3.2 (sem_msem_node, src/NLustre/NLMemSemantics.v:772)
Given a well-ordered program G, a name f , and two streams of lists of values xs and ys
such that G ` f (xs) �� ys, then

∃M, G,M ` f (xs) �� ys

Determinism of the initial memory
Now we can state a property ensuring a kind of determinism of the memory semantics
relative to the initial memory. That is, we show that the initial content of the memory only
depends on the node itself. We follow the same scheme described in the previous section,
combining an induction on the program G and an intermediate result on equations.

Lemma 3.3.3 (msem_eqs_same_initial_memory, src/NLustre/NLMemSemantics.v:813)
Given a program G, a list of equations eqs, two base clock streams bs and bs′, two
environment streams H and H ′, and two memory streams M and M ′ such that:

1. the variables defined by the equations eqs are distinct,

92

https://github.com/INRIA/velus/tree/lelio-thesis/src/NLustre/NLOrdered.v#L50
https://github.com/INRIA/velus/tree/lelio-thesis/src/NLustre/NLMemSemantics.v#L772
https://github.com/INRIA/velus/tree/lelio-thesis/src/NLustre/NLMemSemantics.v#L813


3.3 Correctness

2. ∀eq ∈ eqs, G,H, bs,M ` eq and G,H ′, bs′,M ′ ` eq,

3. m-closedM eqs and m-closedM ′ eqs.

and assuming the induction hypothesis:

∀f xs ys xs′ ys′MM ′, G,M ` f (xs) �� ys → G,M ′ ` f
(
xs′
)
�� ys′ → M0 ∼∼∼M ′0

Then M0 ∼∼∼M ′0.

Theorem 3.3.4 (same_initial_memory, src/NLustre/NLMemSemantics.v:914)
Given a well-ordered program G, a name f , four streams of lists of values xs, ys,
xs′ and ys′, and two memory streams M and M ′ such that G,M ` f (xs) �� ys and
G,M ′ ` f (xs′) �� ys′, then

M0 ∼∼∼M ′0

Initial memory until the first presence
Another important property that we show about the memory model is the persistence of
the initial memory until the first activation of the considered node.

Theorem 3.3.5 (msem_node_absent_until, src/NLustre/NLMemSemantics.v:1076)
Given a well-ordered program G, a name f , a natural integer n0, two streams of lists of
values xs and ys, and a memory stream M such that G,M ` f (xs) �� ys and where for
all instants strictly before n0, all values in xs are absent, then

∀n ≤ n0, Mn
∼∼∼M0

Equivalence of the semantic models
It is rather easy to show the reverse inclusion of the semantic models.

Lemma 3.3.6 (msem_sem_node_equation, src/NLustre/NLMemSemantics.v:1130)
For a program G,

• Given a name f , two streams of lists of values xs and ys, and a memory stream M
such that G,M ` f (xs) �� ys, then

G ` f (xs) �� ys

• Given a base clock stream bs, an environment stream H, a memory stream M , and
an equation eq such that G,H, bs,M ` eq, then

G,H, bs ` eq

The equivalence of the two models follows directly from theorem 3.3.2 and lemma 3.3.6.

Theorem 3.3.7 (equivalence, src/NLustre/NLMemSemantics.v:1173)
Given a well-ordered program G, a name f , two streams of lists of values xs and ys, then

G ` f (xs) �� ys ↔ ∃M, G,M ` f (xs) �� ys
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3.3.2 The proof of correctness

The proof of correctness of the i-tr translation function between NLustre and Stc consists
in showing that the semantics of the source program is preserved. The memory semantics
for NLustre allows us to directly state a correspondence between the memory stream M
of NLustre and the memory states S and S′ of Stc.
The first step is to show that the NLustre memory stream is indeed initial, in the

terms of Stc, at the very first instant.

Lemma 3.3.8 (msem_node_initial_state, src/NLustreToStc/Correctness.v:135)
Given a well-ordered program G, a name f , two streams of lists of values xs and ys, and
a memory stream M such that G,M ` f (xs) �� ys, then initial-state (i-trG) f M0.

The following two lemmas transfer key properties from NLustre to Stc. First, the well-
ordering is preserved by the i-translation, this is a basis to prove more involved properties
about translated programs. The well-ordering predicate of is extended straightforwardly
for Stc.

Definition 3.3.4 (Ordered_systems, src/Stc/StcOrdered.v:32)

Stc-Ordered ε

Stc-OrderedP ∀s′ ∈ P, s.name 6= s′.name
∀if ∈ s.subs, f 6= s.name ∧ ∃s′ P ′, system(P, f) s′P ′

Stc-Ordered (s · P )

This predicate expresses exactly the same kind of properties than those of the well-
ordering predicate for NLustre of definition 3.3.3 on page 92. The only difference is that
here again we directly use the declarations of the sub-systems of a considered system
rather than a scan of the equations of the considered node.

Lemma 3.3.9 (Ordered_nodes_systems, src/NLustreToStc/Correctness.v:65)
Given a well-ordered program G, the translated program i-trG is well-ordered.

Second, the memory semantics of a node, by ensuring the m-closed predicate at each
depth level in the structure of the program guarantees the s-closed property on the
translated node.

Lemma 3.3.10 (msem_node_state_closed, src/NLustreToStc/Correctness.v:359)
Given a well-ordered program G, a name f , two streams of lists of values xs and ys and
a memory stream M such that G,M ` f (xs) �� ys, then ∀n, s-closed (i-trG) f Mn.

Then, we follow the classical proof scheme to show the correctness theorem. We start
by proving an intermediate result for a single equation. The goal is to exhibit a transient
state I that satisfies the Stc semantics of the translated equation and also those of already
translated equations. This lemma and its proof are very similar in spirit to lemma 3.3.1
and its proof.
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Lemma 3.3.11 (equation_correctness, src/NLustreToStc/Correctness.v:389)
Given a well-ordered program G, a base clock stream bs, an environment stream H,
a memory stream M , a clocking environment Ω such that respects-clock bs H Ω, a
well-clocked equation eq such that G,H, bs,M ` eq, and the node induction hypothesis:

∀f xs ysM, G,M ` f (xs) �� ys → ∀n, i-trG,Mn,Mn+1 ` f (xsn) � ysn

Let tcs be a list of transition constraints, subs a list of sub-systems declarations and I a
memory stream such that:

1. the variables defined by the transition constraints tcs and the equation eq are
distinct,

2. at each instant the values field of I is empty and its sub-instances are closed relative
to the declarations in subs, and

3. ∀n, ∀tc ∈ tcs, i-trG,Hn, bsn,Mn, In,Mn+1 ` tc.

Then there exists a new memory stream I ′ such that:

1. ∀n, ∀tc ∈ (i-treq eq + tcs) , i-trG,Hn, bsn,Mn, I
′
n,Mn+1 ` tc, and

2. at each instant the values field of I ′ is empty and its sub-instances are closed relative
to the declarations in subs.

We directly generalize the result to a list of equations.

Corollary 3.3.11.1 (equations_correctness, src/NLustreToStc/Correctness.v:579)
Given a well-ordered program G, a base clock stream bs, an environment stream H, a
memory stream M , a clocking environment Ω such that respects-clock bs H Ω, a list
of well-clocked equations eqs such that the variables defined by the equations eqs are
distinct and ∀eq ∈ eqs, G,H, bs,M ` eq, and the node induction hypothesis:

∀f xs ysM, G,M ` f (xs) �� ys → ∀n, i-trG,Mn,Mn+1 ` f (xsn) � ysn

Then there exists a memory stream I such that:

1. ∀n, ∀tc ∈ (concat-map i-treq eq) , i-trG,Hn, bsn,Mn, In,Mn+1 ` tc, and

2. at each instant the values field of I is empty and its sub-instances are closed relative
to the declarations in subs.

We can finally state the main correctness result.

Theorem 3.3.12 (correctness, src/NLustreToStc/Correctness.v:628)
Given a well-ordered and well-clocked program G, a name f , two streams of lists of values
xs and ys, and a memory stream M such that G,M ` f (xs) �� ys, then

∀n, i-trG,Mn,Mn+1 ` f (xsn) � ysn
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This result states that, at each instant, the default transition of the translated node
constrains the current memory of the node and its next memory, consuming and producing,
respectively, the current values of the input and output streams. We use it to show
semantics preservation of the repeated activation of the default transition of the translated
node, starting from the initial state.

Corollary 3.3.12.1 (correctness_loop, src/NLustreToStc/Correctness.v:678)
Given a well-ordered and well-clocked program G, a name f , two streams of lists of values
xs and ys, and a memory stream M such that G,M ` f (xs) �� ys, then

initial-state (i-trG) f M0 and i-trG,M0 ` f (xs)
0	 ys
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After having introduced explicit manipulation of the state in the transformation to Stc,
we turn to the problem of fixing the execution order of the operations, and assignments,
necessary to calculate the behaviour described by the original program. The target
language Obc represents the first step into the imperative paradigm. Obc is a version of
the imperative object-oriented language used in the clock-directed modular compilation
scheme [Biernacki et al. (2008)]. In this approach, each node is modularly translated
into a class with fields for state variables and sub-instances, and two methods: a step
method that calculates a single cycle of the original node, and a reset method that is
used whenever the node state has to be (re)initialized. Within a node, equations are
scheduled to fix the evaluation order and then translated into a sequence of conditional
statements whose guards reflect the activation clocks of the dataflow equations.
The translation from Stc to Obc is all but identical to the standard scheme, whose

verification is described in [Bourke, Brun, Dagand, et al. (2017)]. Only minor adaptations
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are required to treat the distinction between reset and default transitions. To understand
the need for scheduling, we begin by describing the Obc language. Then we explain how to
schedule the Stc transition constraints in order to generate a correct imperative program.
The translation function from Stc to Obc and its proof of correctness are described in
the two subsequent sections. Last, we present the fusion optimization performed on
generated Obc programs.

4.1 Obc: Object Code language

4.1.1 Syntax of Obc

Figure 4.1 presents the syntax of Obc. Working from the bottom up, an Obc program is
a list of classes. Each class has its own state variables declared with their names and
types, sub-instances ic, each declared with its name i and class c, and a list of methods.
Each method has a name, a list of input parameters, a list of output parameters and
a list of local variables. The body of a method is a single statement. A statement is
an assignment to a (local or output) variable of an expression; an assignment to a state
variable; a conditional branching statement; a method call x := ic.f(e) specifying the
list of variables x to receive the results, if any, a class name c, an instance variable i, a
method name f and a list of expressions e for the inputs; the sequence of two statements
or a no-operation statement. An expression is a constant, a standard variable, a state
variable, a unary or binary operation or a validity assertion. A validity assertion is a
syntactic decoration that is used in method call arguments to indicate that the enclosed
expression is initialized. This will be explained later.

Listing 4.1 shows the Coq implementation of Obc syntax for methods and classes. Both
are implemented using dependent records, allowing the direct embedding of syntactic
properties into the syntax itself. We ensure that input, local and output variables of
methods are uniquely declared (m_nodupvars), as well as state variable and sub-instance
(c_nodup) and methods (c_nodupm). As usual, identifiers must be valid (m_good and
c_good).

The type system of Obc is described in appendix E.4.

4.1.2 Semantics of Obc

The semantics of Obc is defined, as for the other languages, as a relation, but this time
the semantics is not by constraints. It is a classical big-step operational semantics—or
natural semantics, as introduced by Kahn (1987).

The notion of variable validity is introduced in Obc to mediate between presence
and absence in the dataflow model and the undefinedness of variables in the imperative
model. Bourke, Brun, Dagand, et al. (2017) propose a semantics for expressions that
relates them directly to values. This approach is not sufficient to handle nodes inputs
with different clocks. Indeed, the method calls generated for such nodes may involve
expressions containing variables that have not been written to because the corresponding
streams are absent at particular instants in the source dataflow program. Thus the
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e ::= expression
| c (constant)
| xt (variable)
| state(x)t (state variable)
| (� e)t (unary operation)
| (e ⊕ e)t (binary operation)
| [x]t (validity assertion)

s ::= statement
| x := e (assignment)
| state(x) := e (state assignment)
| if e { s } else { s } (conditional)
| [x+, :=] xx.x(e∗,) (method call)
| s ; s (sequence)
| skip (no-operation)

d ::= xτ variable declaration

m ::= x(d+,) returns (d+,) method
[var d+, ]
{

s
}

cls ::= class x { class
[state d+, ]
[instance (xx)+, ]
m∗

}

p ::= cls∗ program

Figure 4.1: The Obc abstract syntax
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Record method : Type :=
mk_method {

m_name : ident;
m_in : list (ident * type);
m_vars : list (ident * type);
m_out : list (ident * type);
m_body : stmt;

m_nodupvars : NoDupMembers (m_in ++ m_vars ++ m_out);
m_good : Forall ValidId (m_in ++ m_vars ++ m_out)

}.
Coq (src/Obc/ObcSyntax.v:60–70)

(a) Methods

Record class : Type :=
mk_class {

c_name : ident;
c_mems : list (ident * type);
c_objs : list (ident * ident); (* (instance, class) *)
c_methods : list method;

c_nodup : NoDup (map fst c_mems ++ map fst c_objs);
c_nodupm : NoDup (map m_name c_methods);
c_good : Forall (fun xt => valid (fst xt)) c_objs /\ valid c_name

}.
Coq (src/Obc/ObcSyntax.v:160–170)

(b) Classes

Listing 4.1: Implementation of Obc syntax
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4.1 Obc: Object Code language

semantic model of Obc is extended by Bourke and Pouzet (2019) to account for undefined
values in the semantics and to indicate explicitly in the sub-expressions when a variable is
valid, that is, guaranteed to be defined. The importance of this feature to the generation
of Clight will be explained with more details later.

Before presenting the semantic rules, it is necessary to introduce the following notations.

1. We write bvc to indicate that the value v is defined, and b c to indicate the undefined
value. In the implementation, we use the standard option type.

2. We keep the notations me(x 7→ v) and me[x 7→ mex] to denote the update operation
in the values and instances fields, respectively, of a memory tree me. Recall that
we use the notation ve{x 7→ v} to denote the update operation in a standard
environment ve, that is, a map from identifiers to values.

3. We use the notation ve{x 7→ v} to denote the update operation for when v is either
defined or undefined:

ve{x 7→ bvc} , ve{x 7→ v}
ve{x 7→ b c} , ve

4. Recall that, for the sake of simplicity, we have chosen not to emphasize the partiality
of maps. For example, when we write ve(x) = v to state that v is bound to x in ve,
we assume that x is in the domain of ve. That is, this functional notation itself
has a sense only on the actual domain of definition. Now that we need to treat
partiality more precisely, we will write ve((x)) = v, with double parentheses, in
order to explicitly represent failure:

ve((x)) ,
{
b c if x 6∈ ve
bve(x) c otherwise

The semantics of expressions is shown in Figure 4.2a. We write me, ve ` e

V

v to state
that in the memory tree me and value environment ve, the expression e evaluates to
a defined or undefined value v. An Obc constant always evaluates to a defined value,
calculated through the abstracted semantics for constants. A variable is looked up in the
environment: if the lookup succeeds, then the variable is evaluated to the corresponding
defined value, otherwise it evaluates to the undefined value. Consequently the semantics
of a variable is always defined, even if the value of the variable is not. A state variable
should always be defined in the memory tree. Its value is simply looked up in the values
field of me. Its semantics is not defined if the variable is not in the domain of me,
unlike for standard variables. The semantics of unary and binary operations is defined
recursively. The semantics of these operations on undefined values is not defined. Indeed,
the undefined value is not propagated through expressions: only a variable can evaluate
to an undefined value. In contrast to the rule for a “naked” variable, the semantics of a
variable wrapped in a validity assertion is only defined when the variable has a value in
the environment ve.
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me, ve ` c

V

bJcKc me, ve ` x

V

ve((x)) me, ve ` state(x)
V

bme(x)c

me, ve ` e

V

bvec J�Ktype e ve
.= v

me, ve ` � e

V

bvc

me, ve ` e1

V

bv1c me, ve ` e2

V

bv2c J⊕Ktype e1×type e2 v1 v2
.= v

me, ve ` e1 ⊕ e2

V

bvc

me, ve ` [x]

V

bve(x)c

(a) Expressions (exp_eval, src/Obc/ObcSemantics.v:88)

Figure 4.2 (I): Semantics of Obc

Statements update the state of the program. Their semantics is presented in figure 4.2b.
We write p,me, ve ` s

V

(me′, ve′) to state that, in the program p, the statement s
updates the memory me and the environment ve to me′ and ve′, respectively. A variable
assignment updates the content of the environment with the value of the expression,
provided that it is defined. Similarly, an assignment to a state variable updates the
corresponding field of the memory. A conditional statement is evaluated to the result
of the recursive evaluation of one of its branches, according to the value of the first
expression. The sequence and no-operation statements semantics is self-explanatory.
After the evaluation of its arguments to defined or undefined values v, a call to a method
named f on an instance i of class name c is defined using a mutually inductive semantic
predicate. This predicate, described in details later, evaluates the call itself, updating
the sub-memory of the instance if it exists or the empty memory if it does not exist (yet)
to a new memory me′i resulting from the call, and producing a list of return values w.
We define the following function, responsible for extracting a sub-memory.

Definition 4.1.1 (instance_match, src/Obc/ObcSemantics.v:48)

sub i me ,
{
{∅} if i 6∈ me.instances

me[i] otherwise

The memory before the call is updated with the produced sub-memory me′i, while the
environment is updated with left-hand side variables associated to the returned values w.
The returned values, as well as the input values, may be undefined.

Figure 4.2c presents the predicate responsible for evaluating a method call. First
the program p is searched for a class cls together with the class declarations that come
before p′.1 Then we check that the method name f corresponds to an actual method m
in the list of methods cls.methods of the class cls. The statement m.body constituting

1As usual in the implementation, the list is in reverse order of declaration.
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me, ve ` e

V

bvc
p,me, ve ` x := e

V

(me, ve{x 7→ v})
me, ve ` e

V

bvc
p,me, ve ` state(x) := e

V

(me(x 7→ v) , ve)

me, ve ` e

V

bTc p,me, ve ` st

V (
me′, ve′

)
p,me, ve ` if e { st } else { sf }

V (
me′, ve′

)
me, ve ` e

V

bFc p,me, ve ` sf

V (
me′, ve′

)
p,me, ve ` if e { st } else { sf }

V (
me′, ve′

)
p,me, ve ` s1

V

(me1, ve1) p,me1, ve1 ` s2

V

(me2, ve2)
p,me, ve ` s1 ; s2

V
(me2, ve2)

p,me, ve ` skip

V

(me, ve)

me, ve ` e
V

v p, sub i me ` c.f (v)
wV

me′i
p,me, ve ` x := ic.f(e)

V (
me
[
i 7→ me′i

]
, ve{x 7→ w}

)
(b) Statements (stmt_eval, src/Obc/ObcSemantics.v:115)

class(p, c) .=
(
cls, p′

)
method(cls, f) .= m

p′,me,∅{x 7→ v} ` m.body

V (
me′, ve′

)
ve′((y)) = w

p,me ` c.f (v)
wV

me′
where

m.in = xτx

m.out = yτy

(c) Method calls (stmt_call_eval, src/Obc/ObcSemantics.v:145)

p,me ` c.f (xsn)
ysnV

me′ p,me′ ` c.f (xs)
n+1

ys

p,me ` c.f (xs)
n

ys

(d) Loop (loop_call, src/Obc/ObcSemantics.v:161)

Figure 4.2 (II): Semantics of Obc

103

https://github.com/INRIA/velus/tree/lelio-thesis/src/Obc/ObcSemantics.v#L115
https://github.com/INRIA/velus/tree/lelio-thesis/src/Obc/ObcSemantics.v#L145
https://github.com/INRIA/velus/tree/lelio-thesis/src/Obc/ObcSemantics.v#L161


Chapter 4 Generation of imperative code

the body of the method is evaluated starting from the provided memory and a fresh
environment created by binding the formal parameters m.in of m to the list of defined or
undefined values v. The evaluation of the body produces an updated sub-memory me′
and a new environment ve′ from which the output parameters m.out are looked up to
retrieve the list of defined or undefined return values w.

Finally, figure 4.2d presents a coinductive predicate that co-iterates a method call over
streams of input and output (defined or undefined) values.

4.2 Scheduling the transition constraints of Stc

While the order of transition constraints in an Stc system is unimportant from a semantic
point-of-view, the translation presented in the next section works syntactically to produce
Obc statements where the order of evaluation is significant, as we have seen. Thus,
translation is preceded by a scheduling pass that orders the transition constraints to
ensure the correctness of the generated Obc code and also the efficacy of the subsequent
fusion optimization. The fact that our semantic models for Lustre, NLustre and Stc do
not depend on the order of the dataflow equations / transition constraints is fundamental:
it makes verifying the correctness of the scheduling trivial.

In the usual modular compilation scheme, Lustre equations are scheduled so that the
variables defined by basic equations and node instantiations are written before being read,
and the variables defined by fby equations are read before being written. Additionally,
the scheduler tries to group together equations with similar clock annotations and
control expressions to maximize the later fusion of adjacent conditional statements. Here,
scheduling is adapted readily to Stc. Listing 4.2b shows the result of scheduling on the
running example recalled in listing 4.2a.

We adapt the approach of Auger et al. (2012) and Bourke, Brun, Dagand, et al. (2017),
which applies a heuristic implemented in OCaml to find a suitable ordering, a sorting
function in Coq whose output is guaranteed to be a permutation of its input, and a
verified translation validator to establish the required well-scheduling predicate or signal
an error. The only non-trivial change for Stc is to ensure that reset transitions are
executed before corresponding default transitions, reflecting the hard-coded scheduling
policy in the semantics of Stc (see section 3.2).

4.2.1 The well-scheduling predicate

Before presenting the well-scheduling predicate, we first need to define some useful sets.2
Note that for all the sets we define, we overload the notation for lists in the natural way,
that is, we write S(a) for the set ⋃a∈a S(a). We begin by defining the set of free variables
of a transition constraint.3

2In this presentation, we use the usual set notation for readability but the actual Coq implementation
uses inductive relations for convenient reasoning.

3We do not give the definitions of the set of free variables of clocks, expressions and control expressions;
they are unsurprising.
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system euler {
init i = true, px = 0.;
transition(x0: float64, u: float64) returns (x: float64)
{

next i = false;
x = if i then x0 else px;
next px = x + 0.1 * u;

}
}

system ins {
init k = 0, px = 0.;
sub xe: euler;
transition(gps: float64, xv: float64) returns (x: float64, alarm: bool)

var xe: float64 when not alarm;
{

next k = k + 1;
alarm = (k >= 50);
xe = euler<xe,0>(gps when not alarm, xv when not alarm);
x = merge alarm (px when alarm) xe;
next px = x;

}
}

system nav {
init c = true, r = false;
sub insr: ins;
transition(gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool)

var cm: bool, insr: float64 when not c, alr: bool when not c;
{

(insr, alr) = ins<insr,1>(gps when not c, xv when not c);
reset ins<insr> every (. on r);
x = merge c (gps when c) insr;
alarm = merge c (false when c) alr;
cm = merge c (not s when c) (s when not c);
next c = cm;
next r = s and c;

}
}

Stc

(a) Before

Listing 4.2 (I): Scheduling of the example
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system euler {
init i = true, px = 0.;
transition(x0: float64, u: float64) returns (x: float64)
{
x = if i then x0 else px;
next i = false;
next px = x + 0.1 * u;

}
}

system ins {
init k = 0, px = 0.;
sub xe: euler;
transition(gps: float64, xv: float64) returns (x: float64, alarm: bool)

var xe: float64 when not alarm;
{
alarm = (k >= 50);
next k = k + 1;
xe = euler<xe,0>(gps when not alarm, xv when not alarm);
x = merge alarm (px when alarm) xe;
next px = x;

}
}

system nav {
init c = true, r = false;
sub insr: ins;
transition(gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool)

var cm: bool, insr: float64 when not c, alr: bool when not c;
{

reset ins<insr> every (. on r);
next r = s and c;
(insr, alr) = ins<insr,1>(gps when not c, xv when not c);
cm = merge c (not s when c) (s when not c);
x = merge c (gps when c) insr;
alarm = merge c (0 when c) alr;
next c = cm;

}
}

Stc

(b) After

Listing 4.2 (II): Scheduling of the example
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Definition 4.2.1 (Is_free_in_tc, src/Stc/StcIsFree.v:33)

Free (x =ck e) , Free (ck) ∪ Free (e)
Free (next x =ck e) , Free (ck) ∪ Free (e)

Free (reset f<i> every ck) , Free (ck)
Free (x =ck f<i, k>(e)) , Free (ck) ∪ Free (e)

We also define the set of defined variables, that is, the set of standard variables or state
variables that appear on the left-hand sides of transition constraints.

Definition 4.2.2 (Is_defined_in_tc, src/Stc/StcIsDefined.v:35)

Def (x =ck e) , {x}
Def (next x =ck e) , {x}

Def (reset f<i> every ck) , ∅
Def (x =ck f<i, k>(e)) , {x}

Then, we define the set of standard variables that appear on the left-hand side of—non
next—transition constraints.

Definition 4.2.3 (Is_variable_in_tc, src/Stc/StcIsVariable.v:30)

Var (x =ck e) , {x}
Var (next x =ck e) , ∅

Var (reset f<i> every ck) , ∅
Var (x =ck f<i, k>(e)) , {x}

Finally, we define the set of sub-instances that appear with a parameter indicating their
level in a transition constraint. The level indicates the position in the scheduling policy:
here our ad-hoc model fixes the reset transition to have level 0 and the default transition
to have level 1, but we wanted to prepare scheduling for a more general model.

Definition 4.2.4 (Is_sub_in_tc, src/Stc/StcSyntax.v:46)

Sub (x =ck e) , ∅
Sub (next x =ck e) , ∅

Sub (reset f<i> every ck) , (i, 0)
Sub (x =ck f<i, k>(e)) , (i, 1)

The well-scheduling predicate itself is shown in figure 4.3. It is relative to a list of
inputs ins and a set of state variables regs, that are both readily constructed for a
system s from, respectively, s.in and s.inits. Note that the transition constraints must be
sorted in the reverse order of their realization in the generated code, as it simplifies the
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WellSchins
regs ε

WellSchins
regs tcs ∀x ∈ Free (tc) ,

{
x 6∈ Def (tcs) if x ∈ regs
x ∈ Var (tcs) ∪ ins otherwise

∀ (i, k) ∈ Sub (tc) k′,
(
i, k′

)
∈ Sub (tcs) → k′ < k

WellSchins
regs (tc · tcs)

Figure 4.3: Well-scheduled Stc transition constraints (Is_well_sch,
src/Stc/StcWellDefined.v:49)

definition of the predicate. The empty list is well scheduled. For tc · tcs, tcs must be well
scheduled, and for every free variable x in tc, if x is a state variable, then it must not be
defined in tcs—variables defined by nexts must be read before being written,—otherwise,
x must be defined by a basic or default transition constraint, or as an input—other
variables must be written before being read. Finally if tc is a transition on i then tcs
cannot contain another transition on i with a greater or equal level. In our model with
only reset and default transitions, this boils down to forbidding the presence of a default
transition on i in tcs if tc is a reset transition on i.

4.2.2 The verified scheduling validator

The approach that we take for scheduling the transition constraints is that of translation
validation. To prove a function in an ITP, there are two basic approaches:

1. Write the function within the ITP and prove that the function respects a specifica-
tion.

2. Implement the function in another language and write a verified validator in the
ITP, that returns true on the result of the function if and only if that result satisfies
the specification.

These two approaches give the same confidence for the result, so the choice depends,
among other criteria, on what is easier to implement and prove.

Usually in Vélus, we adopt the first technique: the translation functions of most passes
are directly proved in Coq. This is because the compilation scheme is simple enough
so that it is particularly suitable to be implemented in Gallina, the purely functional
language of Coq, and because we do not know how the translation validation approach
could be adapted to these passes. Now, the scheduling function is precisely a counter-
example: the scheduling problem is NP-complete and we want to implement a heuristic
which is easier to do in OCaml, whereas a validator for the well-scheduling predicate is
rather straightforward to write in Coq and not difficult to prove.
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1 Definition check_var (defined: PS.t) (variables: PS.t) (x: ident) : bool :=
2 if PS.mem x mems then negb (PS.mem x defined) else PS.mem x variables.
3

4 Definition sub_tc (tc: trconstr) : option (ident * nat) :=
5 match tc with
6 | TcReset i _ _ => Some (i, 0)
7 | TcCall i _ _ _ _ _ => Some (i, 1)
8 | _ => None
9 end.

10

11 Definition check_sub (i: ident) (k: nat) (ik': ident * nat) : bool :=
12 negb (ident_eqb (fst ik') i) || Nat.ltb (snd ik') k.
13

14 Definition check_tc (tc: trconstr) (acc: bool * PS.t * PS.t * PNS.t)
15 : bool * PS.t * PS.t * PNS.t :=
16 match acc with
17 | (true, defs, vars, subs) =>
18 let b := PS.for_all (check_var defs vars) (free_in_tc tc PS.empty) in
19 let defs := ps_adds (defined_tc tc) defs in
20 let vars := ps_adds (variables_tc tc) vars in
21 match sub_tc tc with
22 | Some (i, k) =>
23 (PNS.for_all (check_sub i k) subs && b, defs, vars, PNS.add (i, k) subs)
24 | None => (b, defs, vars, subs)
25 end
26 | acc => acc
27 end.
28

29 Definition is_well_sch_tcs (args: list ident) (tcs: list trconstr) : bool :=
30 fst (fst (fst (fold_right check_tc
31 (true, PS.empty, ps_from_list args, PNS.empty)
32 tcs))).

Coq (src/Stc/StcSchedulingValidator.v:64–95)

Listing 4.3: The scheduling validator (mems is a global section variable)

4.2.2.1 Implementation

Basically the validator is a direct implementation of the well-scheduling predicate as it
is presented in figure 4.3. Listing 4.3 presents the Coq implementation: it fits in only
about 35 lines of code. The function well_sch at line 29 folds the check_tc function
backwards over the list of transition constraints. The check_tc function (line 14) takes
a single transition constraint tc and checks that it is well-scheduled with regard to the
accumulator acc. This accumulator is a 4-tuple composed of a boolean holding the result
of the validation so far and the sets of defined variables, standard variables and pairs of
instances variables and levels of already processed transition constraints.4 If the boolean

4These sets are implemented using the MSetPositive (coq.inria.fr/library/Coq.MSets.MSetPositive.
html) library for the first two and MSetList (coq.inria.fr/library/Coq.MSets.MSetList.html) for the
last one. Thus PS.t designates a set of positive integers—whose type ident is an alias to—while
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is true, we begin (line 18) to check that all the free variables of the transition constraints
respect the scheduling rules, using the function check_var. This function (line 1) checks
that an identifier is not in the set of defined variables if it is a state variable and that it
is in the set of standard variables otherwise. Compared to the corresponding antecedent
in figure 4.3, note that the inputs are not present: this is because they are directly
included in the set of standard variables. Then (lines 19 and 20), we update the defined
and standard variables sets with the corresponding variables of the current transition
constraint, for the next iteration of the fold. The last step is to check that no reset
transition can occur after a default transition. The sub_tc function (line 4) determines
the instance and level of the transition, if it is a default or reset transition. In that case,
we additionally check that no transition occurs in the sub-instances set with the same
instance name and a greater level, using the function check_sub5 (line 11) and update
the sub-instances set.

4.2.2.2 Proof of correctness

The validator must be verified, that is, we have to prove that it respects the specification
given by the well-scheduling predicate. We establish the following theorem, that states
that the validator is a decision procedure for the well-scheduling predicate.

Theorem 4.2.1 (well_sch_spec, src/Stc/StcSchedulingValidator.v:384)
Given a list of inputs ins, a set of state variables regs and a list of transition constraints tc,
then

is-well-sch-tcs regs ins tc = true ↔ WellSchregs
ins tc

4.2.3 The external scheduler

4.2.3.1 The Coq interface

The idea is to provide a generic way to use an external scheduler, written in OCaml,
that interfaces with the Coq development. Thus the Coq functors responsible for the
scheduling stage are parameterized over a module containing a single function schedule
whose declaration is given in listing 4.4a. This function takes the name of the Stc system
(only used for error reporting) and the list of transition constraints to be scheduled,
and returns a list of positive integers that give the absolute position of each transition
constraint in the ordering.

This external scheduler function is used within the schedule_tcs Coq function shown
in listing 4.4b. The function ocombine combines the list of positives resulting from the
call to the external scheduler Sch.schedule with the initial list of transition constraints
giving a list of pairs, or failing with None if the lists are of different lengths. This

PNS.t denotes a set of positive * nat pairs.
5The Coq functions negb, ident_eqb and Nat.ltb are respectively the boolean negation, the boolean
equality between two positive and the boolean less-than comparison.
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4.2 Scheduling the transition constraints of Stc

Parameter schedule : ident -> list trconstr -> list positive.

Coq (src/Stc/StcSchedule.v:66)

(a) The parameterized scheduling function

Definition schedule_tcs (f: ident) (tcs: list trconstr) : list trconstr :=
let sch := Sch.schedule f tcs in
match ocombine sch tcs with
| None => tcs
| Some schtcs => map snd (SchSort.sort schtcs)
end.

Coq (src/Stc/StcSchedule.v:153–158)

(b) The scheduling wrapper

Listing 4.4: The Coq interface

composite list is then reverse-sorted6 with the Mergesort7 from the standard library,
using comparison on the first positive projection of the pairs. Once the composite list is
sorted, the now sorted list of transition constraints is obtained by stripping away the
positive indexes.
We show the following property.

Lemma 4.2.2 (schedule_tcs_permutation, src/Stc/StcSchedule.v:160)
The list of scheduled transition constraints is a permutation of the initial list of transition
constraints.

We directly extend the scheduling function to systems and programs and show that
scheduling preserves the semantics. We write schP to designate the scheduled program
obtained from P by scheduling the transition constraints of all its system declarations.

Theorem 4.2.3 (scheduler_sem_system, src/Stc/StcSchedule.v:416)
Given a program P , a name f , two lists of values xs and ys and two states S and S′
such that P, S, S′ ` f (xs) � ys, then

schP, S, S′ ` f (xs) � ys

We directly deduce the preservation of the looping semantics.

Corollary 4.2.3.1 (scheduler_loop, src/Stc/StcSchedule.v:433)
Given a program P , a name f , two streams of lists of values xs and ys and a states S
such that for all instants n, P, S ` f (xs)

n	 ys, then

schP, S ` f (xs)
n	 ys

6We want the transition constraints in descending order to match the specification of the well-scheduling
predicate.

7coq.inria.fr/library/Coq.Sorting.Mergesort.html
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4.2.3.2 The OCaml implementation

The algorithm used to sort the transition constraints of Stc is a direct adaptation of
the topological sort variant used in [Bourke, Brun, Dagand, et al. (2017)]. The OCaml
implementation is about 400 lines of code (LoC) (src/Stc/stclib.ml), that is, about ten
times larger than the Coq checker, confirming our choice of the translation validation
approach. The algorithm is a variant of the well-known topological sort algorithm [Kahn
(1962)] that uses a particular queue structure based on activation clock sub-dependencies.
A heuristic tries to group together transition constraints that are on the same clock,
in order to maximize the fusion optimization that we describe later. Essentially this
optimization tries to fuse adjacent conditionals statements on the same guard, in order
to reduce the number of branching constructs in the generated code.
To cope with reset and default transitions scheduling, the only modification is in the

construction of the dependency graph where we add a dependency edge from a default
transition to a reset transition on the same instance. The core of the algorithm does not
change.

4.3 Translating Stc to Obc
The translation function, named s-tr, generates an Obc class for each Stc system. The
class has the same name as the system, a register field for each system state variable,
an instance field for each sub-system declaration and two methods reset and step. The
step method is obtained by translating the system transition constraints into guarded
assignments, with NLustre/Stc control expressions translated into conditional statements
and expressions into Obc expressions.
We will now explain in detail the formal definitions of the translation functions. To

facilitate the understanding, we rely on the running example recalled in listing 4.5a and
its translation in listing 4.5b.

In figure 4.4a, we can see how the bodies of the reset and step methods are generated.
The body of the reset method is the composition of two statements: (1) a sequence
of assignments to the declared state variables with their initial constant values, and
(2) a sequence of calls to the reset methods of the declared sub-systems. Consider the
generated reset method for the class ins, at line 29 in listing 4.5b: the state variables k
and px are assigned with their initial values declared at lines 12 in the original Stc
program in listing 4.5a, then the reset method of the sub-instance xe, corresponding to
the Stc sub-system declared at line 13, is called.

The body of the step method is obtained by sequencing—in reverse order for consistency
with the scheduling pass—the list of translated transition constraints s.tcs of a system s.
The folded function translates a single transition constraint with s-tr-tc and composes the
result before the accumulated result of previous translations. The two parameters regs
and Ω are instantiated with, respectively, the names of the state variable declarations
of s and the clocking environment obtained from the input, output and local variable
declarations. They are used in the translation of expressions.

Figure 4.4b presents the translation of a single transition constraint. The function has a
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1 system euler {
2 init i = true, px = 0.;
3 transition(x0: float64, u: float64) returns (x: float64)
4 {
5 x = if i then x0 else px;
6 next i = false;
7 next px = x + 0.1 * u;
8 }
9 }

10

11 system ins {
12 init k = 0, px = 0.;
13 sub xe: euler;
14 transition(gps: float64, xv: float64) returns (x: float64, alarm: bool)
15 var xe: float64 when not alarm;
16 {
17 alarm = (k >= 50);
18 next k = k + 1;
19 xe = euler<xe,0>(gps when not alarm, xv when not alarm);
20 x = merge alarm (px when alarm) xe;
21 next px = x;
22 }
23 }
24

25 system nav {
26 init c = true, r = false;
27 sub insr: ins;
28 transition(gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool)
29 var cm: bool, insr: float64 when not c, alr: bool when not c;
30 {
31 reset ins<insr> every (. on r);
32 next r = s and c;
33 (insr, alr) = ins<insr,1>(gps when not c, xv when not c);
34 cm = merge c (not s when c) (s when not c);
35 x = merge c (gps when c) insr;
36 alarm = merge c (0 when c) alr;
37 next c = cm;
38 }
39 }

Stc

(a) Before

Listing 4.5 (I): Translation of the example
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1 class euler {
2 state i: bool;
3 state px: float64;
4
5 step(x0: float64, u: float64) returns (x: float64) {
6 if state(i) { x := x0 } else { x := state(px) };
7 state(i) := false;
8 state(px) := x + 0.1 * u
9 }

10
11 reset() { state(i) := true; state(px) := 0. }
12 }
13
14 class ins {
15 instance xe: euler;
16 state k: int32;
17 state px: float64;
18
19 step(gps: float64, xv: float64) returns (x: float64, alarm: bool)
20 var xe: float64
21 {
22 alarm := state(k) >= 50;
23 state(k) := state(k) + 1;
24 if alarm { } else { xe := euler(xe).step([gps], [xv]) };
25 if alarm { x := state(px) } else { x := xe };
26 state(px) := x
27 }
28
29 reset() { state(k) := 0; state(px) := 0.; euler(xe).reset() }
30 }
31
32 class nav {
33 instance insr: ins;
34 state c: bool;
35 state r: bool;
36
37 step(gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool)
38 var cm: bool, insr: float64, alr: bool
39 {
40 if state(r) { ins(insr).reset() } else { };
41 state(r) := s and state(c);
42 if state(c) { } else { insr, alr := ins(insr).step([gps], [xv]) };
43 if state(c) { cm := not s } else { cm := s };
44 if state(c) { x := gps } else { x := insr };
45 if state(c) { alarm := false } else { alarm := alr };
46 state(c) := cm
47 }
48
49 reset() { state(c) := true; state(r) := false; ins(insr).reset() }
50 }

Obc

(b) After (skip statements are not printed)

Listing 4.5 (II): Translation of the example
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reset-body s , reset-inits s.inits ; reset-subs s.subs

where
reset-inits inits , fold-l

(
λ st xc,ck . st ; state(x) := c

)
inits skip

reset-subs subs , fold-l
(
λ st if . st ; if.reset()

)
subs skip

step-body s , fold-l (λ st tc. s-tr-tcregs
Ω tc ; st) s.tcs skip

where
s.inits = ycy,cky

regs = set-of-listy

Ω = fold-l
(
λΩ xt,ck .Ω{x 7→ ck}

)
(s.in + s.vars + s.out) ∅

(a) Generation of the special reset and step methods bodies
(reset_method, src/StcToObc/Translation.v:154 and

step_method, src/StcToObc/Translation.v:121)

Figure 4.4 (I): Translation of Stc to Obc

case for each of the four forms of transition constraint. Each case applies the ctrl function
to transform the clock annotation ck into a nesting of conditional statements that will
control the activation of an assignment or method call. A basic transition constraint is
translated into an assignment of the translation of its expression to a standard variable.
For example, the basic transition constraint at line 17 is translated into the assignment at
line 22. A next transition constraint is translated into an assignment of the translation
of its expression to a state variable. A default transition is translated into a call to the
step method of the corresponding instance whose class is taken from the name of the
Stc system. In the example, the default transition at line 19 is translated into the step
method call at line 24 wrapped into a conditional introduced by the ctrl function since
the original transition constraint is activated only when alarm is false. A reset transition
is translated into a call to the reset method. For example, the reset transition at line 31
is translated into the conditional reset method call at line 40. In the translation of the
arguments of a method call, we do not directly use s-tr-exp but rather s-tr-arg generalized
to lists. This function adds validity assertions around standard variables with the same
clock as the transition constraint. We know that such variables are defined when the
method is called. This detail has no impact on the correctness proof between Stc and
Obc: it is in anticipation of the correctness proof between Obc and Clight. Note, though,
that this function is responsible for the addition of the clocking environment parameter Ω.

Control expressions are translated by the s-tr-cexp function shown in figure 4.4c, which
takes a variable to be assigned as first parameter. This variable is taken from the left-
hand side of a basic transition constraint, the only kind of transition constraint to allow
control expressions on the right-hand side. The merge and if/then/else constructs are
translated into conditional statements, propagating recursively the assignment variable
through both branches until a simple expression is translated and assigned to the variable.
For example, the basic transition constraint at line 35 is translated into the conditional
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s-tr-tcregs
Ω (x =ck e) , ctrlregs ck (s-tr-cexpregs(x, e))

s-tr-tcregs
Ω (next x =ck e) , ctrlregs ck (state(x) := s-tr-expregs e)

s-tr-tcregs
Ω (x =ck f<i, k>(e)) , ctrlregs ck

(
x := if.step( s-tr-argregs

Ω (ck, e) )
)

s-tr-tcregs
Ω (reset f<i> every ck) , ctrlregs ck

(
if.reset()

)
ctrlregs • s , s

ctrlregs (ck on (x = true)) s , ctrlregs ck
(
if

(
s-tr-varregs xbool

)
{ s } else { skip }

)
ctrlregs (ck on (x = false)) s , ctrlregs ck

(
if

(
s-tr-varregs xbool

)
{ skip } else { s }

)
s-tr-argregs

Ω (ck, e) ,
{
[x]τ if e = xτ ∧ x 6∈ regs ∧ Ω(x) = ck
s-tr-expregs e otherwise

(b) Transition constraints (translate_tc, src/StcToObc/Translation.v:93)

s-tr-cexpregs(x, merge y et ef ) , if
(
s-tr-varregs ybool

)
{ s-tr-cexpregs(x, et) }

else { s-tr-cexpregs(x, ef ) }

s-tr-cexpregs(x, if e then et else ef ) , if (s-tr-expregs e) { s-tr-cexpregs(x, et) }

else { s-tr-cexpregs(x, ef ) }

s-tr-cexpregs(x, e) , x := s-tr-expregs e

(c) Control expressions (translate_cexp, src/StcToObc/Translation.v:67)

s-tr-varregs xt , if x ∈ regs then state(x)τ else xτ

s-tr-expregs c , c

s-tr-expregs xτ , s-tr-varregs xt

s-tr-expregs (� e)τ , (� s-tr-expregs e)τ

s-tr-expregs (e1 ⊕ e2)τ , (s-tr-expregs e1 ⊕ s-tr-expregs e2)τ

s-tr-expregs (e when (x = b)) , s-tr-expregs e

(d) Expressions (translate_exp, src/StcToObc/Translation.v:58)

Figure 4.4 (II): Translation of Stc to Obc
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at line 44. In particular, notice how the body of the step method of the nav class reveals
the need for the fusion optimization further described in section 4.5: the translation
generates a lot of successive conditionals that have the same guard, because of the heavy
use of sampling and merging operations in the original Lustre source node (encoding a
state machine).

Figure 4.4d presents the translation of expressions. The only technicality is the explicit
distinction between standard variables and state variables in Obc. The s-tr-var function
makes the choice according to membership in the set of state variables regs. Note that
when conditions are outright dropped since conditional activation is now addressed at
the statement level.

4.4 Translation correctness
In this section we describe the proof of translation correctness, that is, the proof of
semantics preservation between an Stc system and its translation in Obc.

First, we present a fundamental property of the semantic model of Stc that is crucial
to further proofs. Then we show the definition of correspondence predicates that relate
an Stc state with an Obc state. The proof of correctness is split in two sub-sections: first
we state the correctness result for a call to the generated reset method, then for the step
method.

4.4.1 Fundamental property of Stc
The Obc conditional statements introduced by the ctrl function ensure that the expressions
and assignment statements generated for a transition constraint are only executed when
the associated Stc clock is true. In particular, for default transitions, this means that the
corresponding instance field in the generated code is not changed when the clock is false.
We must thus show that this is the behaviour specified by the Stc semantics. We do this
by following the same proof scheme as for theorems 3.3.4 and 3.3.5 on page 93 for the
NLustre memory semantics.
We first show an intermediate result on transition constraints.

Lemma 4.4.1 (sem_trconstrs_absent_states, src/Stc/StcSemantics.v:636)
Given a program P , a list of transition constraints tcs, an environment R, and Stc states
S, I and S′ such that:

1. S and S′ are closed relative to the state variables and instances appearing in tcs,

2. if a default transition on any instance i appears in tcs with parameter k, then
k = 1 if and only if a reset transition on i also appears,

3. ∀tc ∈ tcs, P,R, false, S, I, S′ ` tc, and
assuming the system induction hypothesis:

∀f xs ys S S′,
(
P, S, S′ ` f (xs) � ys ∧ (∀v ∈ xs, v = ‹ ›)

)
→ S′ ∼∼∼ S

then S′ ∼∼∼ S.
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We extend the intermediate result from lists of transition constraints to systems.

Theorem 4.4.2 (sem_system_absent, src/Stc/StcSemantics.v:768)
Given a well-ordered program P , a name f , lists of values xs and ys such that all values
in xs are absent, and memory trees S and S′ such that P, S, S′ ` f (xs) � ys, then
S′ ∼∼∼ S, and all values in ys are absent.

4.4.2 State correspondence relations
As usual when stating a proof of correctness for a compilation function between two
languages, a state correspondence relation must be defined. In the proof for Stc code
generation, this relation was direct since the same objects are used to describe states in
both languages. Here, although the objects are still essentially the same (environments
and memory trees), the respective semantics of the two languages do not constrain them
in the same way. Hence, the relation is more involved, in particular to handle transient
states.

We must relate present and absent values in Stc to defined or undefined values in Obc.
We use two distinct relations. First we define a predicate that equates a present value
with a defined value but allows absent to be related to any value. That is, when a value
is absent in Stc, there is no constraint on the corresponding value in Obc.

Definition 4.4.1 (eq_if_present, src/StcToObc/Correctness.v:42)

‹v› ‹=› bvc ‹ › ‹=› v

The second relation, stronger, is a direct function.

Definition 4.4.2 (value_to_option, src/StcToObc/Correctness.v:51)

‹v›bc , bvc
‹ ›bc , b c

The state correspondence is organized around two key predicates. The first one
compares an Stc environment R with an Obc memory tree me and environment ve. It
uses the relation ‹=› only to require the correspondence for present values in R.

Definition 4.4.3 (equiv_env, src/StcToObc/Correctness.v:57)

R
D⇐==⇒

regs
(me, ve) , ∀x ∈ D, R(x) ‹=›

{
me((x)) if x ∈ regs
ve((x)) otherwise

The predicate has a parameter regs which is a set of state variables to determine where
the variable is to be constrained: in the values field of the memory tree me or in the
environment ve. The D parameter specifies the variables that are constrained, we exploit
it in inductive proofs to gradually expand the domain of the correspondence relation.

The next predicate relates the Stc states S, I and S′ to an Obc memory tree me.
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Definition 4.4.4 (Memory_Corres, src/StcToObc/StcMemoryCorres.v:45)

(
S, I, S′

) tcs
W≡V me , ∀x, me((x)) =

{
S′((x)) if (next x = -) ∈ tcs
S((x)) otherwise

∧ ∀i, me[[i]] b∼∼∼c



S[[i]] if (reset -<i> every -) 6∈ tcs
∧ (- = -<i, ->(-)) 6∈ tcs

I[[i]] if (reset -<i> every -) ∈ tcs
∧ (- = -<i, ->(-)) 6∈ tcs

S′[[i]] if (- = -<i, ->(-)) ∈ tcs

The predicate is parameterized by a list of transition constraints tcs. The idea is to
relate me to the Stc specification under the assumption that it results from executing the
Obc code generated for the constraints in tcs. A variable x is defined in me if and only
if it is defined with the same value in either S′, if tcs contains the corresponding next
constraint, or S otherwise. We use the double parentheses to explicitly take failure into
account: it expresses the “if and only if” part. Similarly, an instance is defined in me if
and only if it is defined with an equivalent value either in S, if tcs contains neither the
corresponding reset or default transition, in I, if tcs contains the reset transition but not
the default transition, or in S′, if tcs contains the default transition. Here we extend the
double parentheses notation to brackets to model failure in the same way. Consequently,
we use the notation b∼∼∼c to lift the memory equivalence in the following way.

Definition 4.4.5 (orel, src/Common/Common.v:1019)

b c b∼∼∼c b c
M ∼∼∼M ′

bMc b∼∼∼c bM ′c

4.4.3 The reset method call
A reset method comprises two phases. The first, generated by reset-inits, initializes state
variables to their initial values. The second, generated by reset-subs, resets sub-instances
by calling their generated reset methods. To reason about a call to a reset method and
state properties about it, we focus on this composite nature.
We introduce the following specification function to describe the expected state of

the memory after having initialized the state variables declarations given by an inits
parameter.

Definition 4.4.6 (add_mems, src/StcToObc/Correctness.v:315)

add-inits inits me , fold-l
(
λme xt,c.me(x 7→ JcK)

)
inits me

We can now state the correctness of the Obc statement generated by reset-inits.

Lemma 4.4.3 (reset_mems_spec, src/StcToObc/Correctness.v:385)
Given a program p, a memory tree me, an environment ve and a list of state variables
declarations inits, then p,me, ve ` reset-inits inits

V

(add-inits inits me, ve)
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Then we can extend the specification to the statement generated by the reset-body
function which combines the results of reset-inits and reset-subs.
Lemma 4.4.4 (translate_reset_comp, src/StcToObc/Correctness.v:397)
Given a program p, a system s, memory trees me and me′ and environments ve and ve′,
then p,me, ve ` reset-body s

V

(me′, ve′) if and only if:
• p,me, ve ` reset-inits s.inits

V

(add-inits s.inits me, ve)

• p, add-inits s.inits me, ve ` reset-subs s.subs

V

(me′, ve′).
We state the correctness result for a call to a reset method.
Theorem 4.4.5 (reset_spec, src/StcToObc/Correctness.v:700)
Given a well-ordered program P containing a system s with name f , then for any memory
tree me there exists a memory tree me′ such that:

1. s-trP,me ` f.reset (ε)
εV

me′

2. initial-stateP f me′

3. if s-closedP f me then s-closedP f me′

4.4.4 The step method call
The proof of correctness for the step method is more involved than for the reset method.
We describe it over the next few pages. We start with the correctness for expressions,
extend it for the special case of transition arguments, present the invariants and reasoning
for transition constraints and then extend the results to systems.

4.4.4.1 Expressions

Since Obc code is only executed when the source corresponding clock is true, we restrict
ourselves to the case where the base clock is indeed true. The idea is to assume that the
correspondence relation holds for all the free variables in an expression and then to show
that the same result is obtained by both Stc and Obc.
Lemma 4.4.6 (exp_correct, src/StcToObc/Correctness.v:201)
Given an expression e, a value v, a set of state variables regs, an Stc environment R, a
memory tree me and an environment ve such that R Free(e)⇐===⇒

regs
(me, ve) and R, true ` e ↓ ‹v›,

then me, ve ` s-tr-expregs e

V

bvc.
For control expressions, the correctness result involves the semantics of statements

since control expressions are translated into conditional statements.
Lemma 4.4.7 (cexp_correct, src/StcToObc/Correctness.v:233)
Given a control expression e, a value v, a set of state variables regs, an Stc environment R, a
memory tree me and an environment ve such that R Free(e)⇐===⇒

regs
(me, ve) and R, true c̀ e ↓ ‹v›,

then for any program p and variable x,
p,me, ve ` s-tr-cexpregs(x, e)

V

(me, ve{x 7→ v}).
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noops • e noops ck c noops ck xτ
noops ck e

noops (ck on (x = b)) (e when (y = b))

Figure 4.5: Normalization condition between an argument and its clock
(noops_exp, src/CoreExpr/CESyntax.v:47)

4.4.4.2 Default transitions arguments

The correctness lemma 4.4.6 about expressions is rather restricted: it only holds when
the base clock is true and the expression has a present value in Stc. This suffices for
basic, next and reset transition constraints. For the first two since their translations into
Obc give guarded (state) assignments and translated (control) expressions are only ever
evaluated when they would have a present value in the original Stc constraint, and for the
last one since it contains no expression. But for default transitions, the arguments can be
on different clocks, that is, a Stc system can be instantiated on values that may be absent
when the transition clock is true. This is the very reason why the semantics of Obc
takes undefined values into account. But, as we saw, the possibility of being undefined is
limited to variables, that is, when the variable x is not defined, the expression x has a
semantics, but 3 / x does not. Now consider the following Stc default transition:
y = f<i,0>(ck, (3 when ck) / x)

Assume that y and ck are on the base clock, and x is on clock ck. The translation to
Obc involves two cases. First, if x is not a state variable then we obtain:
y := (i:f).step(ck, 3 / x)

When ck is false, the Stc transition constraint has a semantics since 3 / x evaluates to
the absent value, but the Obc statement does not, since 3 / x has no meaning when x is
not defined. Thus it is impossible to show translation correctness in this case. Second, if
x is a state variable:
y := (i:f).step(ck, 3 / state(x))

This time when ck is false, the Obc expression 3 / state(x) has a semantics in general
since a state variable is always defined given that its previous value is available in the
memory. But, what if this previous value is zero? Then the expression has no meaning
either, and a division by zero that never occurs in the source semantics does occur in the
generated code, making it not possible to show translation correctness in this case either.
Figure 4.5 presents the normalization condition,8 introduced in [Bourke and Pouzet

(2019)] that the arguments passed to a NLustre node instantiation must meet to avoid
the problem described above. It relates an expression passed as an argument to the
corresponding clock declaration in the instantiated node. Any expression on the base
clock is accepted since the base clock is the fastest execution clock of the instantiated
node. A constant is always defined, and so is a variable. Finally, a sampled expression
is recursively checked: for each level of sampling present in the node declaration, there
must be a corresponding level of sampling in the argument expression. This condition

8Here presented as an inductive relation for legibility, it is implemented as a Coq recursive function.
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eliminates all the expressions that can lead to unmeaningful computations in the generated
imperative code and suffices to prove the corresponding obligations in the correctness
proof.

This syntactic condition is checked on the source NLustre program and readily propa-
gated trough the translation to Stc and the scheduling of Stc transition constraints.

Lemma 4.4.8 (translate_normal_args, src/NLustreToStc/NL2StcNormalArgs.v:57)
Given an NLustre program G that respects the normalization condition on node instanti-
ation arguments, then so does the translation to Stc i-trG.

Lemma 4.4.9 (scheduler_normal_args, src/Stc/StcSchedule.v:478)
Given an Stc program P that respects the normalization condition on default transition
arguments, then so does the scheduled program P .

Then, we can state and prove a dedicated correctness result for arguments of default
transitions that accounts for absent/undefined values.

Lemma 4.4.10 (TcCall_check_args_translate_arg, src/StcToObc/Correctness.v:848)
Given a well-clocked default transition x =ck f<i, k>(e) respecting the normalization
condition on its arguments, a list of present or absent values v, a set of state variables regs,
a clocking environment Ω, an Stc environment R, a memory tree me and an environment
ve such that:

1. R Free(ck)∪Free(e)⇐=========⇒
regs

(me, ve),

2. ∀x ∈ regs, ∃v, me(x) = v,

3. R, b ` ck ↓ true, and

4. R, true ` e ↓ v,

then9 there exists a list of defined or undefined values w such that v ‹=› w and
me, ve ` s-tr-argregs

Ω (ck, e)

V

w.

This result is a generalization of an intermediate result about a single expression verifying
the normalization condition, rather than a list. The first hypothesis, as for the previous
results on expressions and control expressions, guarantees the correspondence for variables
and state variables between R and the pair (me, ve). The second one expresses that all
variables in regs are defined in me. The third one ensures that ck is true, that is, the
transition is activated. Finally, the last hypothesis is the main one: all the Stc argument
expressions have a semantics that is not constrained to present values.

This lemma shows the importance of the ‹=› relation: while we might expect the witness
list to be vbc, this would contradict the semantics in the case of state variables. Consider,
for example, the following Stc default transition, which respects the normalization
condition on the arguments of default transitions:

9Under additional omitted clocking constraints, notably on Ω.
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y = f<i,0>(ck, x)
Assume as before that y and ck are on the base clock and that x is on clock ck. Then, if
x is a state variable, the following Obc code is generated:
y := (i:f).step(ck, state(x))

If ck is false, then the Stc variable x is evaluated to the absent value ‹ ›, but the state
variable state(x) is not evaluated to the undefined value b c = ‹ ›bc, but rather to the
previous value available in the memory.

4.4.4.3 Transition constraints

Transition constraints are translated into conditional statements guarded by the source
clock by the ctrl function (see figure 4.4b on page 116). We show the following two key
results that relate the semantics of clocks in Stc to the execution of such statements. The
first one expresses the fact that the conditional statement is not executed when the clock
is false.

Lemma 4.4.11 (stmt_eval_Control_absent’, src/StcToObc/Correctness.v:293)
Given a clock ck, a statement s, a set of state variables regs, an Stc environment R, a mem-
ory tree me and an environment ve such that R Free(ck)⇐===⇒

regs
(me, ve) and R, true ` ck ↓ false,

then for any program p, p,me, ve ` ctrlregs ck s

V

(me, ve).

The second result expresses the converse: the conditional statement is executed when
the clock is true.

Lemma 4.4.12 (stmt_eval_Control_present’, src/StcToObc/Correctness.v:301)
Given a clock ck, a statement s, a base clock b, a set of state variables regs, an Stc
environment R, memory trees me and me′, environments ve and ve′ and a program p

such that R Free(ck)⇐===⇒
regs

(me, ve); R, true ` ck ↓ true; and p,me, ve ` s

V

(me′, ve′); then
p,me, ve ` ctrlregs ck s

V

(me′, ve′).

The proof of the correctness result for transition constraints is rather complex. We have
to show both the preservation of the semantics and the preservation of the correspondence
predicates. The sequential nature of Obc makes it impossible to reason about a single
transition constraint and then to generalize to a list of transition constraints. Indeed,
the memory correspondence given by definition 4.4.4 on page 119 is relative to a list
of transition constraints, since it reflects the successive execution of the sequence of
generated statements. Hence we start by considering the head element tc in a list of
transition constraints tcs. We want to show that, starting from an Obc program state
(me, ve) in correspondence with an Stc environment R and states S, I and S′, relative
to the list tcs, we can expose a new pair (me′, ve′) that is the result of executing the
translated tc statement, and that the new pair remains in correspondence with R, S, I,
and S′. While the environment correspondence for standard variables remains relatively
easy to prove, the memory correspondence requires more work. We start by stating
intermediate results tailored to each kind of transition constraint, in case of activation
and non-activation.
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Memory correspondence results
For the following lemmas (4.4.13 to 4.4.19) we fix an Stc state (S, I, S′) and an Obc
memory tree me, and we make the hypothesis that the correspondence holds between
them, relative to a given list of transition constraints tcs.

Hypothesis 4.4.1

(
S, I, S′

) tcs
W≡V me

All the results show the preservation of the correspondence by the addition of a transition
constraint on top of tcs. They are proved by systematic inspection of the involved
definitions and simple applications of the hypotheses. Most hypotheses are relevant pieces
of the Stc semantics of the added transition constraint.

The first result states that the memory correspondence is preserved by the addition of
a basic transition constraint, activated or not, as it does not modify the memory.

Lemma 4.4.13 (Memory_Corres_Def, src/StcToObc/StcMemoryCorres.v:69)

Given a basic transition constraint x =ck e, we have (S, I, S′)
(x=cke)·tcs
W≡≡≡≡≡V me.

For a next transition constraint, there are two cases. Either the transition constraint
is activated, that is, S′ holds the next value for the defined state variable, and we show
the correspondence with an updated memory tree; or it is not activated, that is, the
value in S is repeated in S′ and the memory tree is not changed.

Lemma 4.4.14 (Memory_Corres_Next_present, src/StcToObc/StcMemoryCorres.v:93)
Given a next transition constraint next x =ck e and a value v such that S′(x) = v, then

(S, I, S′)
(next x=cke)·tcs
W≡≡≡≡≡≡≡≡≡V me(x 7→ v).

Lemma 4.4.15 (Memory_Corres_Next_absent, src/StcToObc/StcMemoryCorres.v:130)
Given a next transition constraint next x =ck e, if S′((x)) = S((x)), then

(S, I, S′)
(next x=cke)·tcs
W≡≡≡≡≡≡≡≡≡V me.

In the case of default and reset transitions, additional hypotheses on the presence
of transitions on the same instance in the list of transition constraints are needed in
some cases to properly apply hypothesis 4.4.1. These hypotheses are later discharged by
reasoning from the well-scheduling predicate and some syntactic invariants.

For a default transition on an instance i, if the transition is activated, then the corre-
spondence must hold for the memory tree updated with a sub-tree that is observationally
equivalent to the corresponding sub-state in S′. If the transition is not taken, that is, the
sub-state in S′ is observationally equivalent to the sub-state in I, then the correspondence
holds for an unchanged memory tree. A bit more work and some extra hypotheses are
needed in this case to show that me[[i]] b∼∼∼c S′[[i]], since the presence of a reset transition
on i in the list of transition constraints tcs has an impact on the conclusion obtained
from hypothesis 4.4.1.
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Lemma 4.4.16 (Memory_Corres_Call_present, src/StcToObc/StcMemoryCorres.v:232)
Given a default transition x =ck f<i, k>(e) and a memory tree mei, if mei ∼∼∼ S′[i], then

(S, I, S′)
(x=ckf<i,k>(e))·tcs
W≡≡≡≡≡≡≡≡≡≡≡V me[i 7→ mei].

Lemma 4.4.17 (Memory_Corres_Call_absent, src/StcToObc/StcMemoryCorres.v:271)
Given a default transition x =ck f<i, k>(e), if S′[i] ∼∼∼ I[i]; I[i] ∼∼∼ S[i] whenever k = 0;
(- = -<i, ->(-)) 6∈ tcs; and (reset -<i> every -) ∈ tcs if and only if k = 1, then

(S, I, S′)
(x=ckf<i,k>(e))·tcs
W≡≡≡≡≡≡≡≡≡≡≡V me.

Finally, for a reset transition on an instance i, the reasoning is similar to that of default
transitions. If the transition is taken, then the correspondence must hold for the memory
tree updated with a sub-tree that is observationally equivalent to the corresponding
sub-state in the transient state I. If the transition is not taken, that is, the sub-state in
I is observationally equivalent to the sub-state in S, then the correspondence holds for
an unchanged memory tree.

Lemma 4.4.18 (Memory_Corres_Reset_present, src/StcToObc/StcMemoryCorres.v:158)
Given a reset transition reset f<i> every ck and a memory tree mei, if mei ∼∼∼ I[i] and

(- = -<i, ->(-)) 6∈ tcs, then (S, I, S′)
(reset f<i> every ck)·tcs
W≡≡≡≡≡≡≡≡≡≡≡≡≡≡V me[i 7→ mei].

Lemma 4.4.19 (Memory_Corres_Reset_absent, src/StcToObc/StcMemoryCorres.v:199)
Given a reset transition reset f<i> every ck, if I[i] ∼∼∼ S[i] and (reset -<i> every -) 6∈

tcs, then (S, I, S′)
(reset f<i> every ck)·tcs
W≡≡≡≡≡≡≡≡≡≡≡≡≡≡V me.

Correctness results for transition constraints
The overall correctness result uses the already presented proof scheme: an induction
on the program and the application of intermediate results on transition constraints
that themselves use the induction hypothesis for the case of default transitions. Thus,
before presenting these intermediate results, we fix the correctness induction hypothesis—
that has exactly the same shape as the final correctness result—that holds for a given
well-ordered Stc program P .

Hypothesis 4.4.2 (Induction hypothesis)
Given a name f , a list of values xs which are not all absent, a list of values ys, two states
S and S′ such that P, S, S′ ` f (xs) � ys, a list of defined or undefined values xs′ such
that xs ‹=› xs′ and a memory tree me ∼∼∼ S, then there exists a memory tree me′ ∼∼∼ S′

such that s-trP,me ` f.step (xs′)
ysbcV

me′.

This correctness hypothesis states that if the Stc system named f in P has a semantics
relating the states S and S′ as well as the lists of present or absent values xs and ys,
then we can expose a memory tree that is observationally equivalent to the state S′, and
the result of executing the corresponding translated step method on a memory tree that
is observationally equivalent to the state S, with inputs related to xs by the ‹=› relation
and producing defined or undefined values that are directly mapped from ys.
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Lemma 4.4.20 (trconstr_cons_correct, src/StcToObc/Correctness.v:903)
Given a well-clocked transition constraint tc that respects the normalization condition,
Stc states S, I and S′, an Stc environment R, a set of state variables regs, a clocking
environment Ω, a memory tree me, an environment ve, a list of additional transition
constraints tcs and a list of input names ins such that:

1. P,R, true, S, I, S′ ` tc,

2. R Free(tc)⇐===⇒
regs

(me, ve),

3. (S, I, S′)
tcs
W≡V me,

4. the transition constraints in tc · tcs are well-scheduled,

5. the list of transition constraints tc · tcs is reset-consistent (see definition 3.2.1 on
page 78),

6. standard variables defined by tc · tcs and ins are mutually distinct,

7. standard and state variables defined by tc · tcs are all distinct,

8. any identifier x defined in ve is either in ins or defined by tcs,

9. for all reset transitions (reset f<i> every -) in tc · tcs, we have s-closedP f S[i],
and

10. for all reset transitions (reset f<i> every -) in tc · tcs, we have s-closedP f I[i],

then (some hypotheses being omitted, notably clocking constraints, for the sake of brevity)
there exists a memory tree me′ and an environment ve′ such that:

1. (semantics preservation) s-trP,me, ve ` s-tr-tcregs
Ω tc

V

(me′, ve′),

2. (environment correspondence) ∀x ∈ Var (tc) , ve′((x)) = R(x)bc, and

3. (memory correspondence) (S, I, S′)
tc·tcs
W≡≡V me′.

A clarification: why is the second conclusion not R Free(tc)⇐===⇒
regs

(me′, ve′)? That is, why
is the correspondence predicate not preserved for the new pair (me′, ve′)? The answer
lies in the differences in the semantics of Stc and Obc for state variable definition /
assignment. Consider the transition constraint next x = x + 1 and its translation into
the Obc statement state(x) := state(x) + 1. The Stc semantics (see figure 3.6a
on page 83) constrains R to associate x to the previous value held for x in S. The
correspondence predicate before executing the Obc statement guarantees the consistency
for the free variables, in this case, x: its value is in me (since it is a state variable).
Now, at the end of the execution, the memory tree is updated with the next value,
giving me′ = me(x 7→ me(x) + 1). Obviously me′ is no longer in correspondence with R
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for x. Thus we propagate a correspondence relation that restricts the correspondence to
standard variables that are defined by tc. Indeed, in Obc, state variables are not bound
in the environment ve anyway, and what we want to ensure after the generated statement
executes, is that the variable assignment is consistent with the equational definition of
the source transition constraint. State variable correspondence is expressed by the third
conclusion.
Now we want to generalize the result to a list of transition constraints by induction.

Unfortunately one hypothesis, needed to discharge the environment equivalence hypothesis
of lemma 4.4.20 when we apply it in the induction step, is too weak for the induction.
This hypothesis states that the set of state variables regs is included in the set of state
variables defined by a next transition constraint in the list of transition constraints.
We apply a simple trick to solve this technicality, and state a stronger invariant which
is inductive. The idea is to cut the list of transition constraints into the appending
tcs = tcs1 + tcs2 and to perform the induction on tcs2.

Lemma 4.4.21 (trconstrs_app_correct, src/StcToObc/Correctness.v:1204)
Given lists of transition constraints tcs1 and tcs2 that respect the normalization condition,
Stc states S, I and S′, an Stc environment R, a set of state variables regs, a clocking
environment Ω, a memory tree me ∼∼∼ S, an environment ve, and a list of input names ins
such that:

1. ∀tc ∈ (tcs1 + tcs2) , P,R, true, S, I, S′ ` tc,

2. each identifier in regs is defined by a next transition constraint in tcs1 + tcs2,

3. no identifier in ins is defined in tcs1 + tcs2, ins is exactly the domain of ve and
present values in R for identifiers in ins coincide with those in ve, and

4. straightforward extensions of hypotheses 4 to 7, 9 and 10 from lemma 4.4.20 to the
list tcs1 + tcs2,

then there exists a memory tree me′ and an environment ve′ such that:

1. s-trP,me, ve ` fold-l (λ st tc. s-tr-tcregs
Ω tc ; st) tcs2 skip

V

(me′, ve′),

2. ∀x ∈ Var (tcs2) , ve′((x)) = R(x)bc, and

3. (S, I, S′)
tcs2
W≡V me′.

We deduce the correctness result for a list of transition constraints directly by instanti-
ating lemma 4.4.21 with tcs1 = ε.

Corollary 4.4.21.1 (trconstrs_correct, src/StcToObc/Correctness.v:1295)
Given a list of well-clocked transition constraints tcs that respects the normalization
condition, Stc states S, I and S′, an Stc environment R, a set of state variables regs,
a clocking environment Ω, a memory tree me ∼∼∼ S, an environment ve, and a list of
input names ins such that ∀tc ∈ tcs, P,R, true, S, I, S′ ` tc, then (again, omitting some
common hypotheses for clarity) there exists a memory tree me′ and an environment ve′
such that:
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1. s-trP,me, ve ` fold-l (λ st tc. s-tr-tcregs
Ω tc ; st) tcs skip

V

(me′, ve′),

2. ∀x ∈ Var (tcs) , ve′((x)) = R(x)bc, and

3. (S, I, S′)
tcs
W≡V me′.

4.4.4.4 Systems

We extend the semantics preservation result to systems by induction on the program P ,
fixed from the induction hypothesis 4.4.2 on page 125 through corollary 4.4.21.1. In order
to satisfy the hypothesis in the inductive case, we need a way to pass from the memory
correspondence tailored for lists of transition constraints to the plain observational
equivalence between memory trees. We can show that under some structural hypotheses,
we can deduce the latter from the former.

Lemma 4.4.22 (Memory_Corres_equal_memory, src/StcToObc/Correctness.v:1340)
Given a program P ; a list of transition constraints tcs; states S, I and S′; a memory
tree me; a list of state variables inits and a list of sub-systems declarations subs
corresponding, respectively, to the state variables and instances appearing in tcs; assuming
that (S, I, S′)

tcs
W≡V me, S and S′ are closed relative to inits and subs, and no reset

transition appears in tcs without an associated default transition, then me ∼∼∼ S′.

Now we can prove the correctness of translation of an Stc system.

Theorem 4.4.23 (correctness, src/StcToObc/Correctness.v:1427)
Given a well-clocked and well-scheduled program P that respects the normalization
condition, a name f , a list of values xs that are not all absent, a list of values ys, states
S and S′ such that P, S, S′ ` f (xs) � ys, a list of defined or undefined values xs′ such
that xs ‹=› xs′ and a memory tree me ∼∼∼ S, then there exists a memory tree me′ such
that

s-trP,me ` f.step
(
xs′
) ysbcV

me′ and me′ ∼∼∼ S′

We can then deduce the correctness of the endless execution of the translated step
method call after a call to the reset method.

Corollary 4.4.23.1 (correctness_loop_call, src/StcToObc/Correctness.v:1564)
Given a well-clocked and well-scheduled program P that respects the normalization
condition, a name f , a stream of lists of values xs that at each instant are not all absent,
a stream of lists of values ys, a state S such that initial-stateP f S and P, S ` f (xs)

0	 ys,
a stream of lists of defined or undefined values xs′ such that at each instant n, xsn ‹=› xs′n,
then there exists a memory tree me such that:

1. me ∼∼∼ S

2. s-trP, {∅} ` f.reset (ε)
εV

me

3. s-trP,me ` f.step (xs′)
0 (

λn. ysbcn
)
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4.5 Obc fusion optimization
The translation of Stc to Obc generates code with needlessly many conditional statements.
The fusion optimization is a pass that is used to fuse adjacent conditionals that have
the same guard expression. It is effective because the scheduling pass is designed to
group transition constraints with identical or related clocks and guards from which the
conditionals are generated. Incorporating this optimization directly into the translation
pass would complicate both compilation and proof, so it is a separate source-to-source
transformation, as in [Biernacki et al. (2008)].
For example, the result of fusion on the running example, recalled in listing 4.6a, is

shown in listing 4.6b. Note that the two successive conditionals in the step method of the
ins class have been fused into one, and similarly for the four successive conditionals in
the step method of the nav class. Remark that we do not optimize useless copies in Vélus.
For instance, we could eliminate the cm variable from the step method of nav. This
optimization is common in Lustre compilers and will be considered in future work. In
this particular case, though, the register allocation from CompCert does further optimize
this code.

4.5.1 The optimization function
The optimization can be described in terms of two functions.

Definition 4.5.1 (fuse, src/Obc/Fusion.v:84)

fuse-stmt (s1 ; s2) , zip s1 s2

fuse-stmt s , s

zip (if e { t1 } else { f1 }) (if e { t2 } else { f2 }) , if e { zip t1 t2 }

else { zip f1 f2 }

zip (s1 ; s2) t , s1 ; zip s2 t

zip s (t1 ; t2) , zip (zip s t1) t2
zip skip t , t

zip s skip , s

zip s t , s ; t

The fuse-stmt function operates on a composition of two statements by calling zip to fuse
them. The zip function implements the actual optimization, by trying to fuse its two
arguments. When it encounters two conditionals on the same guard expression, it fuses
them into a single conditional and recursively optimizes in the branches. For sequential
compositions, it simply acts recursively. There are two further remarks to make.

1. The second rule of zip seems to lack a recursive call, one would expect

zip (s1 ; s2) t , zip s1 (zip s2 t)
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class euler {
state i: bool;
state px: float64;

step(x0: float64, u: float64) returns (x: float64) {
if state(i) { x := x0 } else { x := state(px) };
state(i) := false;
state(px) := x + 0.1 * u

}

reset() { state(i) := true; state(px) := 0. }
}

class ins {
instance xe: euler;
state k: int32;
state px: float64;

step(gps: float64, xv: float64) returns (x: float64, alarm: bool)
var xe: float64

{
alarm := state(k) >= 50;
state(k) := state(k) + 1;
if alarm { } else { xe := euler(xe).step([gps], [xv]) };
if alarm { x := state(px) } else { x := xe };
state(px) := x

}

reset() { state(k) := 0; state(px) := 0.; euler(xe).reset() }
}

class nav {
instance insr: ins;
state c: bool;
state r: bool;

step(gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool)
var cm: bool, insr: float64, alr: bool

{
if state(r) { ins(insr).reset() } else { };
state(r) := s and state(c);
if state(c) { } else { insr, alr := ins(insr).step([gps], [xv]) };
if state(c) { cm := not s } else { cm := s };
if state(c) { x := gps } else { x := insr };
if state(c) { alarm := false } else { alarm := alr };
state(c) := cm

}

reset() { state(c) := true; state(r) := false; ins(insr).reset() }
}

Obc

(a) Before

Listing 4.6 (I): Fusion of the example
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class euler {
state i: bool;
state px: float64;

step(x0: float64, u: float64) returns (x: float64) {
if state(i) { x := x0 } else { x := state(px) };
state(i) := false;
state(px) := x + 0.1 * u

}

reset() { state(i) := true; state(px) := 0. }
}

class ins {
instance xe: euler;
state k: int32;
state px: float64;

step(gps: float64, xv: float64) returns (x: float64, alarm: bool)
var xe: float64

{
alarm := state(k) >= 50;
state(k) := state(k) + 1;
if alarm { x := state(px) } else {
xe := euler(xe).step([gps], [xv]);
x := xe

};
state(px) := x

}

reset() { state(k) := 0; state(px) := 0.; euler(xe).reset() }
}

class nav {
instance insr: ins;
state c: bool;
state r: bool;

step(gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool)
var cm: bool, insr: float64, alr: bool

{
if state(r) { ins(insr).reset() } else { };
state(r) := s and state(c);
if state(c) {
cm := not s;
x := gps;
alarm := false

} else {
insr, alr := ins(insr).step([gps], [xv]);
cm := s;
x := insr;
alarm := alr

};
state(c) := cm

}

reset() { state(c) := true; state(r) := false; ins(insr).reset() }
}

Obc

(b) After

Listing 4.6 (II): Fusion of the example
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Indeed, with the actual definition we have:

(if e { a } else { b };
if e { c } else { d });

if e { f } else { g }

Obc

fuse-stmt−−−−−→ if e { a } else { b };
if e { zip c f } else { zip d g }

Obc

The first conditional is not fused with the subsequent ones. But, in fact, we do not
generate code with this form: statement composition always occurs to the right.
We take advantage of this particularity to save an extra recursive call and the
associated proof effort.

2. The third rule makes two recursive calls, as expected, but the outer one is not on a
syntactically smaller first argument, as are the other recursive calls. Coq rejects
such definitions because they are not supported by the syntactic criterion used
to check well foundedness. The classical nested fixpoints approach does not apply
either, so we choose to implement zip as two distinct fixpoints.

We will write fuse p to designate the program obtained from p by applying fuse-stmt in
all methods of all of its classes.

Parts of the example (see the NLustre original program in listing 2.5b on page 43)
can be re-used to highlight the need for independent scheduling of the modular reset,
mentioned in section 3.2. Consider the following driver node that simply instantiate
twice the ins node with reset.

node driver(gps, xv, yv: float64; r: bool) returns (x, y: float64);
var alarmx, alarmy : bool;

let
x, alarmx = (restart ins every r)(gps, xv);
y, alarmy = (restart ins every r)(gps, yv);

tel

Lustre

Without the introduction of Stc and its independent reset construct, we would generate
the following Obc code, translating an NLustre node instantiation with reset directly
into a sequence of a guarded reset method call and a step method call.

step(gps: float64, xv: float64, yv: float64, r: bool) returns (x: float64, y: float64)
var alarmx: bool, alarmy: bool

{
if r { ins(x).reset(); } else { };
x, alarmx := ins(x).step([gps], [xv]);
if r { ins(y).reset(); } else { };
y, alarmy := ins(y).step([gps], [yv]);

}

Obc
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Since the fusion optimization only fuses adjacent conditionals and does not reorder
statements, it will not change this program. We can see, however, that reordering is
possible without changing the overall effect of the method. The fact that the translation
from NLustre to Stc introduces distinct transition constraints for resetting and stepping
allows the subsequent scheduling pass to group the reset transition constraints together,
as in the following Stc default transition.

transition(gps: float64, xv: float64, yv: float64, r: bool) returns (x: float64, y: float64)
var alarmx: bool, alarmy: bool;

{
reset(ins<x>) every (. on r)
reset(ins<y>) every (. on r)
(y, alarmy) = ins<y>(gps, dy)
(x, alarmx) = ins<x>(gps, xv)

}

Stc

This transition is then translated into the following Obc step method.

step(gps: float64, xv: float64, yv: float64, r: bool) returns (x: float64, y: float64)
var alarmx: bool, alarmy: bool

{
if r { ins(x).reset() } else { };
if r { ins(y).reset() } else { };
y, alarmy := ins(y).step([gps], [yv]);
x, alarmx := ins(x).step([gps], [xv])

}

Obc

This code will be optimized:

step(gps: float64, xv: float64, yv: float64, r: bool) returns (x: float64, y: float64)
var alarmx: bool, alarmy: bool

{
if r {

ins(x).reset();
ins(y).reset()

} else { };
y, alarmy := ins(y).step([gps], [yv]);
x, alarmx := ins(x).step([gps], [xv])

}

Obc

4.5.2 Correctness of the optimization
In general the fusion optimization does not preserve the semantics of an arbitrary program,
as shown on the example below:

if x { x := false } else { x := true };
if x { s1 } else { s2 }

Obc

fuse-stmt−−−−−→ if x { x:= false; s1 }
else { x := true; s2 }

Obc
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Fusible-stmt (x := e) Fusible-stmt (state(x) := e) Fusible-stmt (x := ic.f(e))

Fusible-stmt skip
Fusible-stmt s1 Fusible-stmt s2

Fusible-stmt (s1 ; s2)

Fusible-stmt s1 Fusible-stmt s2
∀x ∈ Free (e) , ¬MayWrite s1 x ∧ ¬MayWrite s2 x

Fusible-stmt (if e { s1 } else { s2 })

Figure 4.6: The “fusible” predicate on Obc statements (Fusible, src/Obc/Fusion.v:250)

MayWrite (x := e) x MayWrite (state(x) := e) x
x ∈ x

MayWrite (x := ic.f(e)) x

MayWrite s1 x ∨ MayWrite s2 x

MayWrite (s1 ; s2) x
MayWrite s1 x ∨ MayWrite s2 x

MayWrite (if e { s1 } else { s2 }) x

Figure 4.7: The “may write” predicate on Obc statements
(Can_write_in, src/Obc/ObcInvariants.v:33)
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In this section we show that it does for the code generated from Stc.
We define a Fusible-stmt predicate, presented in figure 4.6, that is, a sufficient condition

for an Obc statement for its semantics to be preserved by the fusion optimization. The
interesting case is that for a conditional: a conditional is eligible for fusion if its branches
are and if every free variable of the guard is never written in the branches.
To express the fact that a variable may—we say may because of conditionals—be

written in a statement, we introduce the MayWrite predicate presented in figure 4.7. The
variable x may be written by an assignment to x (regular assignment, state variable
assignment or method call assignment). It may be written in a sequence of two statements
if it may be written in one of them. Finally, it may be written in a conditional if it may
be written by one of its branches.
We write Fusible p to express the fact that the whole program p is eligible for fusion,

that is, that the body of each method of each class satisfies Fusible-stmt.
We start by showing that zip preserves the Fusible-stmt predicate.

Lemma 4.5.1 (zip_free_write, src/Obc/Fusion.v:373)
Given statements s1 and s2 such that Fusible-stmt s1 and Fusible-stmt s2, then
Fusible-stmt (zip s1 s2)

Then we can show that zip preserves the semantics relative to the sequential composition.

Lemma 4.5.2 (fuse’_Comp, src/Obc/Fusion.v:438)
Given statements s1 and s2 such that Fusible-stmt s1 and Fusible-stmt s2, then for any
program p, memory tree me and environment ve, p,me, ve ` zip s1 s2

V

(me, ve) if and
only if p,me, ve ` s1 ; s2

V
(me, ve).

It follows directly that the fusion optimization on a statement preserves the semantics
provided that the statement is eligible for fusion.

Corollary 4.5.2.1 (fuse_Comp, src/Obc/Fusion.v:457)
Given a statement s such that Fusible-stmt s, then for any program p, memory tree me and
environment ve, p,me, ve ` fuse-stmt s

V

(me, ve) if and only if p,me, ve ` s

V

(me, ve).

We can now show that the optimization on a program preserves the semantics of a
method call.

Lemma 4.5.3 (fuse_call, src/Obc/Fusion.v:468)
Given a program p such that Fusible p, a class name c, a method name f , memory trees me
and me′ and lists of defined or undefined values v and w such that p,me ` c.f (v)

wV

me′

then fuse p,me ` c.f (v)
wV

me′.

We extend this result to the looping execution of a method call.

Corollary 4.5.3.1 (fuse_loop_call, src/Obc/Fusion.v:505)
Given a program p such that Fusible p, a class name c, a method name f , a memory tree
me, streams of lists of defined or undefined values xs and ys and an integer n such that

p,me ` c.f (xs)
n

ys then fuse p,me ` c.f (xs)
n

ys.
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4.5.3 Eligibility of generated Obc code for fusion optimization
To show that the fusion optimization preserves the semantics of the generated code, it
suffices to prove that this code is eligible for fusion. During the generation of Obc code,
statements are produced from both control expressions and transition constraints.

The translation of control expressions is parameterized by the variable to be assigned:
we show that the generated statement is fusible if this variable is not free in the expression.

Lemma 4.5.4 (Fusible_translate_cexp, src/StcToObc/Stc2ObcInvariants.v:69)
Given a control expression e, a variable x 6∈ Free (e) and a set of state variables regs, then
Fusible-stmt (s-tr-cexpregs(x, e)).

For transition constraints, guards are recursively added by the ctrl function, following
the structure of the clock annotation of the transition constraint. We show that this
function preserves the Fusible-stmt predicate provided that no free variable of the clock
is written in the enclosed statement.

Lemma 4.5.5 (Fusible_Control, src/StcToObc/Stc2ObcInvariants.v:92)
Given a statement s, a clock ck and a set of state variables regs such that Fusible-stmt s
and for all variables x ∈ Free (ck), ¬MayWrite s x, then Fusible-stmt (ctrlregs ck s).

We state that the translation of a list of transition constraints produces a fusible
statement, provided that it is well-scheduled and well-clocked. We do not present this
intermediate result, but note that it is proved by induction on the list of transition
constraints, using lemmas 4.5.4 and 4.5.5. Eventually we prove that the translation of an
Stc program generates an Obc program that is eligible for the fusion optimization.

Theorem 4.5.6 (ClassFusible_translate, src/StcToObc/Stc2ObcInvariants.v:204)
Given a well-clocked and well-scheduled program P , we have Fusible (s-trP ).
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Even though Obc is much more operational than the dataflow semantics of Lustre, it is
still quite far from the level of detail needed to execute on a real machine. In particular,
Obc does not treat data representation, stacking needed for function calls, or generation
of assembly instructions for a given architecture. All these issues are not specific to the
compilation of Lustre, and they are already addressed by CompCert, that we interface
with: (1) we generate Clight abstract code and let the algorithms of CompCert do the
remaining of the compilation to assembly code, and (2) we chain the proofs of Vélus and
CompCert together to get an end-to-end correctness proof.
In this chapter we present the generation of Clight code from Obc code. We begin

by describing the argument initialization transformation, which is necessary prior to
generating Clight code. Then, we present the Clight language and the generation function.
In order to present the proof of correctness, we describe a subset of the formal semantic
model of Clight. We present in the fourth section, how we use separation logic (SL) in
the proof of correctness, described in the last section. The main challenge is to establish
a correspondence between the tree-shaped memory model of Obc and the intricate
machine-level memory model of CompCert.
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NoNakedVars (x := e) NoNakedVars (state(x) := e) NoNakedVars skip

∀e ∈ e, e is not a variable
NoNakedVars (y := ic.f(e))

NoNakedVars s1 NoNakedVars s2

NoNakedVars (s1 ; s2)

NoNakedVars s1 NoNakedVars s2

NoNakedVars (if e { s1 } else { s2 })

Figure 5.1: The NoNakedVars predicate (No_Naked_Vars, src/Obc/ObcInvariants.v:175)

5.1 Obc argument initialization

We have seen the introduction of validity assertions in Obc (section 4.1.2). These
assertions are used to denote that the value of a variable is guaranteed to be defined at a
given point in a program. In Obc, a method may be invoked even if some arguments
(variables only) are undefined, but method calls will be translated into Clight function
calls in which, as we will see, all arguments must be defined.
The Obc code generated from Stc already contains validity assertions for argument

variables known to be defined at call time (see the s-tr-arg function, section 4.3 on
page 112). Now the idea is to wrap all other variable arguments with validity assertions,
which in turn have to be justified by initializing those variables before the call.

Bourke and Pouzet (2019) present the corresponding compilation pass and its proof of
correctness in detail, so I will only present the key aspects here. A recursive function
is introduced to add validity assertions and initialization assignments. This function
implements a compromise between adding useless initialization assignments and the
minimal number of assignments to perform.

We prove that the code produced by the argument initialization function satisfies the
predicate NoNakedVars shown in figure 5.1. This predicate simply expresses that no
variable appears as an argument of a method call. It is generalized to methods, classes
and programs: we write init-args p to designate the program obtained from p by applying
the argument initialization function to the bodies of the methods of all of its classes. The
NoNakedVars predicate is used in the correctness proof of the Clight generation function
to show that the arguments of method calls are always defined.
We must also show that the argument initialization function preserves the semantics.

Unlike earlier source-to-source transformations, namely, the scheduling of Stc transition
constraints and fusion optimization, the values of variables in the transformed program
may differ from those in the original one. That is, at a given point in the program, the
environment can be more defined than the environment of the source program. Thus,
Bourke and Pouzet (2019) introduce a refinement relation between environments.
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NoOverwrites (x := e) NoOverwrites (state(x) := e) NoOverwrites skip

NoOverwrites (x := ic.f(e))
NoOverwrites s1 NoOverwrites s2

NoOverwrites (if e { s1 } else { s2 })

NoOverwrites s1 NoOverwrites s2
∀x, MayWrite s1 x → ¬MayWrite s2 x ∀x, MayWrite s2 x → ¬MayWrite s1 x

NoOverwrites (s1 ; s2)

Figure 5.2: The NoOverwrites predicate (No_Overwrites, src/Obc/ObcInvariants.v:138)

Definition 5.1.1 (refines, src/Environment.v:907)

ve2 w ve1 , ∀x v, ve1(x) = v → ve2(x) = v

We say that ve2 refines ve1 and write ve2 w ve1 if any variable defined in ve1 is also
defined in ve2 with the same value, leaving the possibility for variables not defined in
ve1 to be defined in ve2 with any values. The notation differs slightly from that used in
[Bourke and Pouzet (2019)], v, because this way operands in ve2 w ve1 are in the same
order than in the sentence “ve2 refines ve1”.

This relation is used to define a notion of semantic refinement for statements. Intuitively
we want to express that the statement t resulting from the argument initialization
transformation applied to a statement s produces an environment that refines the
environment produced by s: additional variable assignments performed by t do not
matter as long as all variables defined by s are defined by t with the same values.

Definition 5.1.2 (stmt_refines, src/Obc/Equiv.v:224)

s2 wp1,p2
P s1 , ∀me me′ve1 ve2 ve′1,

P ve1 ve2 →
ve2 w ve1 →
p1,me, ve1 ` s1

V (
me′, ve′1

)
→

∃ve′2 w ve′1, p2,me, ve2 ` s2

V (
me′, ve′2

)
This definition uses a precondition P , needed for the proof of semantics preservation.

This semantic refinement relation is extended to methods, classes and programs, and
Bourke and Pouzet (2019) eventually show that the arguments initialization function
init-args preserves the semantics relative to program refinement, under a well-chosen
precondition and three additional hypotheses: (1) well-typing, (2) the methods do not
assign to their inputs, and (3) the program is in a kind of static single assignment
form (SSA). The third hypothesis is expressed using a NoOverwrites predicate, shown in
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figure 5.2. This predicate ensures that, in a sequential composition s1 ; s2, if a variable
may be written in s1, it is never written in s2, and likewise for s2 and s1.
It can be shown that program refinement implies method call semantics preservation

in the strict sense, expressing that a method call with refined inputs (more defined) in
a refined program produces refined outputs. We specialize this result to the case of
generated Obc code where both the inputs and outputs of a method call are defined.

Theorem 5.1.1 (stmt_call_eval_add_defaults, src/Obc/ObcAddDefaults.v:1994)
Given a well-typed SSA program p whose method inputs are never assigned, a class
name c, a method name f , memory trees me and me′ and lists of defined values written

bvc and bwc such that p,me ` c.f (bvc)
bwcV

me′, then init-args p,me ` c.f (bvc)
bwcV

me′.

The result extends to the looping execution of a method.

Corollary 5.1.1.1 (loop_call_add_defaults, src/Obc/ObcAddDefaults.v:2016)
Given a well-typed SSA program p whose method inputs are never assigned, a class
name c, a method name f , a memory tree me, streams of lists of defined values written

bxsc and bysc and an integer n such that p,me ` c.f (bxsc)
n

bysc, then

init-args p,me ` c.f (bxsc)
n

bysc.

5.2 From Obc to Clight

5.2.1 Clight overview

Clight [Blazy and Leroy (2009)] is “a simplified version of CompCert C where all
expressions are pure and assignments and function calls are statements, not expressions”
[Leroy (2019)]. We use it as our target language for the following reasons:

1. Its memory model and its semantics are precise, low-level and close enough to the
machine to reason about executable code.

2. It is very close to C [Kernighan and Ritchie (1988)], to which compilation from
Lustre is well-known.

3. It is part of the frontend of CompCert: as such, its semantics is fully specified in
Coq, and we can rely on both the compilation algorithms of CompCert and their
proof of correctness for the remaining of the compilation chain.

The abstract syntax of the subset of Clight used for code generation is presented in
figure 5.3. The class of expressions1 comprises four forms of constants, local variables,
temporary variables, unary and binary operations, pointer dereference, adress-of operation,
and field access. Temporary variables are a special class of local variables which do not
reside in memory—i.e., registers. They are declared in the concrete syntax with the

1compcert.inria.fr/doc/html/compcert.cfrontend.Clight.html#expr
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e ::= expression
| i | l | f | d (constants (int, long, float, double))
| x (local variable)
| x (temporary variable)
| �C a (unary operation)
| a ⊕ a (binary operation)
| *a (pointer dereference)
| &a (address-of operator)
| a.x (field access)

a ::= eτ (typed expression)
| τ(a) (type cast)

s ::= statement
| a = a (assignment)
| x = a (assignment to a temporary variable)
| if (a) {s} else {s} (conditional)
| [x =] a(a∗,) (function call)
| s ; s (sequence)
| skip (do nothing)
| return [a] (return statement)
| loop {s} {s} (infinite loop)
| x = vload(κ,a:τ) (volatile read)
| vstore(κ,a:τ,a:τ) (volatile write)

d ::= τ x variable declaration

ds ::= struct x {d∗;} structure declaration

df ::= τ x(d∗,) {(register d)∗; d∗; s} function declaration

p ::= ([volatile] d)∗; ds∗; df ∗ program

Figure 5.3: Clight subset abstract syntax
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register keyword, we distinguish them by adding an overbar. The class of annotated
expressions comprises expressions annotated with their types and explicit type casts. In
the following, we will write ae->x as an abbreviation for (*ae).x.

For statements2, Clight distinguishes two kinds of assignments with different semantics:
(1) assignment of an r-value to an l-value, (2) assignment of an r-value to a temporary
variable. In addition, the return value of a function call can only be assigned to a single
temporary variable. Clight does not provide for-loops or while-loops, but only an infinite
loop, loop {s1} {s2}, which executes s1 then s2 forever. In the full language, there
is a break statement which can be used to interrupt infinite loops, but we do not need
it, since the only loop we generate is the main one which is never interrupted. Finally,
we use two compiler builtin operations: a load from a volatile variable and a store to
a volatile variable. Both take a parameter κ, a memory chunk, that is, an annotation
“indicating the type, size and signedness of the chunk of memory being accessed” [Leroy
(2019)]. Both also have additional type annotations that indicate statically how the
parameters must be cast before the call.
A Clight program is a list of declarations: global variables, possibly with volatile

attribute (and initialization data, that we omit here), structures and functions. A program
must have an entry point, usually named main. A function declaration consists of a
return type, a name, formal parameters, local—temporary and classic—variables, and a
body as a single statement.

5.2.2 Generation function
We present the translation function before presenting the semantics of the target language.
This is for two reasons: first, the C language is sufficiently well-known for the syntax of
Clight to be understood intuitively, and second, our presentation of the intricate and
complex mechanized semantics of Clight will be restricted to the subset that we use.

Obc and Clight are both sequential imperative languages, so compilation can translate
the former’s control structures fairly directly. Some care is needed, however, to implement
encapsulation and multiple return values of Obc. The state of a Lustre node instance
is represented in Clight as a structure generated from the instantiated Obc class. The
structure has the same name as the class, and fields for register and instance fields of the
class. Obc methods are translated, in general, into void functions with two additional
parameters:

1. A self pointer toward the structure representing the object on which the method is
called. This is standard way of implementing objects in C.

2. An out pointer toward a special structure used as an output parameter to store
the return values of the call. The structure has one field for each output parameter
of the translated method.

As we will see in the next section, method input declarations are encoded as declarations
of temporaries. The body of a method is translated into a Clight statement preceded by a

2compcert.inria.fr/doc/html/compcert.cfrontend.Clight.html#statement
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list of temporary variables declarations corresponding to the local variables of the method,
and followed by a return statement. As a specialization to generate more idiomatic code,
the out pointer and the output structure type declaration are omitted if the method
returns a single value or no value at all. In the first case, the corresponding function is not
void but rather returns a value using a single additional temporary variable declaration.

Recall the Obc running example in listing 5.1a, we present its translation into Clight
code in three steps. First, listing 5.1b shows the declarations of the various structures:
euler, ins and nav are the structure types that represent the state of the corresponding
Obc classes, while fun$ins$step and fun$nav$step are the structure types to hold
the return values of the functions generated from the step methods of the classes ins
and nav—such a structure is not needed for euler since its step method produces only
one output. Listing 5.1c shows the translation of the methods of the classes. Note the
temporary declaration at line 2 corresponding to the unique output of the generated
function for the step method of the euler class. In contrast, at line 16, see how the
alarm output of the step method of the ins class is assigned through the use of the out
pointer. On lines 45 and 46, we can observe the special sequence of assignments that
occurs after a call to a function with multiple return values.

A simplified abstract version of the generation algorithm—in particular, we omit some
type annotation details—is presented in figure 5.4. The translation of expressions by the
gen-exp function in figure 5.4a is rather direct. A variable is translated using gen-var. If
it is a local variable or the only output variable, then it is translated into a temporary
variable, otherwise, it is accessed through the output structure out. A state variable
is translated into a field access on the self pointer representing the state. A type cast
operation, considered as an unary operation in Vélus, is distinguished from regular Clight
unary operations and translated into a Clight type cast towards the type annotation τ of
the whole expression: well-typing will ensure that τ ′ = τ anyway. Translation of other
unary and binary operations is direct. Finally, validity assertions are dropped.
The translation of statements by gen-stmt in figure 5.4b is also rather direct as the

control flow is preserved. As for expressions, the only complication comes from the
handling of multiple return values. First, assign works like gen-var, but for generating
assignments. Second, it complicates method call translation, by funcall. There are three
cases, that we illustrate using the running example in listings 5.1a and 5.1c.

1. If the method has no output, the call is translated into a function call without
return value. Nonetheless, this cannot happen in Obc code that we generate.

2. If the method has a unique output, we use an intermediate fresh temporary variable
to store the result, and the call is followed by an assignment to the appropriate
local variable or output field. For example, the call at line 25
xe := euler(xe).step([gps], [xv]);

is translated into the sequence at lines 19 and 20
step$x = fun$euler$step(&self->xe, gps, xv);
xe = step$x;

143



Chapter 5 Generation of Clight code

1 class euler {
2 state i: bool;
3 state px: float64;
4
5 step(x0: float64, u: float64) returns (x: float64) {
6 if state(i) { x := x0 } else { x := state(px) };
7 state(i) := false;
8 state(px) := x + 0.1 * u
9 }

10
11 reset() { state(i) := true; state(px) := 0. }
12 }
13
14 class ins {
15 instance xe: euler;
16 state k: int32;
17 state px: float64;
18
19 step(gps: float64, xv: float64) returns (x: float64, alarm: bool)
20 var xe: float64
21 {
22 alarm := state(k) >= 50;
23 state(k) := state(k) + 1;
24 if alarm { x := state(px) } else {
25 xe := euler(xe).step([gps], [xv]);
26 x := xe
27 };
28 state(px) := x
29 }
30
31 reset() { state(k) := 0; state(px) := 0.; euler(xe).reset() }
32 }
33
34 class nav {
35 instance insr: ins;
36 state c: bool;
37 state r: bool;
38
39 step(gps: float64, xv: float64, s: bool) returns (x: float64, alarm: bool)
40 var cm: bool, insr: float64, alr: bool
41 {
42 if state(r) { ins(insr).reset() } else { };
43 state(r) := s and state(c);
44 if state(c) {
45 cm := not s;
46 x := gps;
47 alarm := false
48 } else {
49 insr, alr := ins(insr).step([gps], [xv]);
50 cm := s;
51 x := insr;
52 alarm := alr
53 };
54 state(c) := cm
55 }
56
57 reset() { state(c) := true; state(r) := false; ins(insr).reset() }
58 }

Obc

(a) Before

Listing 5.1 (I): Translation of the example
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struct euler {
_Bool i;
double px;

};

struct ins {
int k;
double px;
struct euler xe;

};

struct nav {
_Bool c;
_Bool r;
struct ins insr;

};

struct fun$ins$step {
double x;
_Bool alarm;

};

struct fun$nav$step {
double x;
_Bool alarm;

};

Clight

(b) After: structure declarations

Listing 5.1 (II): Translation of the example
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1 double fun$euler$step(struct euler *self, double x0, double u) {
2 register double x;
3 if (self->i) { x = x0; } else { x = self->px + 0.1 * u; }
4 self->i = 0;
5 self->px = x;
6 return x;
7 }
8 void fun$euler$reset(struct euler *self) {
9 self->i = 1;

10 self->px = 0;
11 return;
12 }
13
14 void fun$ins$step(struct ins *self, struct fun$ins$step *out, double gps, double xv) {
15 register double step$x; register double xe;
16 out->alarm = self->k >= 50;
17 self->k = self->k + 1;
18 if (out->alarm) { out->x = self->px; } else {
19 step$x = fun$euler$step(&self->xe, gps, xv);
20 xe = step$x;
21 out->x = xe;
22 }
23 self->px = out->x;
24 return;
25 }
26 void fun$ins$reset(struct ins *self) {
27 self->k = 0;
28 self->px = 0;
29 fun$euler$reset(&self->xe);
30 return;
31 }
32
33 void fun$nav$step(struct nav *self, struct fun$nav$step *out, double gps, double xv, _Bool s) {
34 struct fun$ins$step out$insr$step;
35 register _Bool cm; register double insr; register _Bool alr;
36 if (self->r) { fun$ins$reset(&self->insr); }
37 self->r = s & self->c;
38 if (self->c) {
39 cm = !s;
40 out->x = gps;
41 out->alarm = 0;
42 } else {
43 fun$ins$step(&self->insr, &out$insr$step, gps, xv);
44 insr = out$insr$step.x;
45 alr = out$insr$step.alarm;
46 cm = s;
47 out->x = insr;
48 out->alarm = alr;
49 }
50 self->c = cm;
51 return;
52 }
53 void fun$nav$reset(struct nav *self) {
54 self->c = 1;
55 self->r = 0;
56 fun$ins$reset(&self->insr);
57 return;
58 }

Clight

(c) After: functions

Listing 5.1 (III): Translation of the example
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gen-var xτ ,

{
xτ if ‖outs‖ ≤ 1 ∨ x 6∈ outs
(out->x)τ otherwise

gen-exp c , ctype-const c

gen-exp xτ , gen-var xτ

gen-exp (state(x)τ ) ,
(
self->x

)τ
gen-exp

(
τ ′(e)

)τ , τ( gen-exp e)

gen-exp
(
�C e

)τ
,
(
�C gen-exp e

)τ
gen-exp (e1 ⊕ e2)τ , (gen-exp e1 ⊕ gen-exp e2)τ

gen-exp [x]τ , gen-var xτ

(a) Translation of expressions (translate_exp, src/ObcToClight/Generation.v:88)

assign(x, a) ,
{
x = a if ‖outs‖ ≤ 1 ∨ x 6∈ outs
out->x = a otherwise

funcall(ε, c, i, f,a) , fc(&self->i,a)
funcall([x] , c, i, f,a) , x′ = fc(&self->i,a);

assign
(
x, x′

)
funcall(x, c, i, f,a) , fc(&self->i, &if ,a);

assign(x, if.y) where
class(p, c) .=

(
cls, p′

)
method(cls, f) .= m

m.out = yτy

gen-stmt (x := e) , assign(x, gen-exp e)
gen-stmt (state(x) := e) , self->x = gen-exp e

gen-stmt (if e { st } else { sf }) , if ( gen-exp e) { gen-stmt st } else { gen-stmt sf }

gen-stmt (x := ic.f(e)) , funcall(x, c, i, f, gen-exp e)
gen-stmt (s1 ; s2) , gen-stmt s1 ; gen-stmt s2

gen-stmt skip , skip

(b) Translation of statements (translate_stmt, src/ObcToClight/Generation.v:167)

Figure 5.4: Translation function from Obc to Clight (p and outs represent the Obc program
and the outputs of the translated Obc method)

147

https://github.com/INRIA/velus/tree/lelio-thesis/src/ObcToClight/Generation.v#L88
https://github.com/INRIA/velus/tree/lelio-thesis/src/ObcToClight/Generation.v#L167


Chapter 5 Generation of Clight code

struct nav self$;
double volatile x$;
_Bool volatile alarm$;
double volatile gps$;
double volatile xv$;
_Bool volatile s$;

int main(void) {
struct fun$nav$step out$step;
register double gps;
register double xv;
register _Bool s;
fun$nav$reset(&self$);
while (1) {
gps = builtin volatile load float64(&gps$);
xv = builtin volatile load float64(&xv$);
s = builtin volatile load int8u(&s$);
fun$nav$step(&self$, &out$step, gps, xv, s);
builtin volatile store float64(&x$, out$step.x);
builtin volatile store int8u(&alarm$, out$step.alarm);

}
}

Clight

Listing 5.2: Generated entry point of the example

3. If the method has several outputs, then we use an additional locally declared output
structure passed to the callee as a return pointer parameter, and the call is followed
by a sequence of assignments from the fields of the structure, named according to
the corresponding output declarations, to the proper locations. The implicit lifting
of assign works as a fold left. For example, the call at line 49
insr, alr := ins(insr).step([gps], [xv]);

is translated into the sequence at lines 43 to 45
fun$ins$step(&self->insr, &out$insr$step, gps, xv);
insr = out$insr$step.x;
alr = out$insr$step.alarm;

After translating the Obc classes one-by-one into a lists of structure and function
definitions, the generation pass, named gen in the following, produces a global entry point.
The resulting “main” function implements the general reactive scheme for a specific Lustre
node, whose name, designated main-node in the following, is a parameter of the generation
function. This name is nav in listing 5.2 which shows the generation of the global volatile
input and output variables and of the entry point from the original Obc example program.
The body of the entry point is shown in figure 5.5, where smain and rmain designate the
step and reset methods, respectively, of the main class that corresponds to the main node.
First, the function corresponding to rmain, named resetmain-node, is called on a globally
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main-body , resetmain-node(&self);
main-loop

main-loop , loop { main-loop-body }

main-loop-body , read ;
step-call ;
write ;

Where, given smain.in = x1
τx1 · · ·xiτ

x
i ,

read , x1 = vload(κτ
x
1 ,&x1);

· · ·
xi = vload(κτ

x
i ,&xi)

step-call ,


stepmain-node(&self, x1, · · · , xi) if smain.out = ε

y = stepmain-node(&self, x1, · · · , xi) if smain.out =
[
yτ

y]
stepmain-node(&self, &outstep, x1, · · · , xi) otherwise

write ,



skip if smain.out = ε

vstore(κτy,&y,y) if smain.out = [yτy ]

vstore(κτ
y
1 ,&y1,outstep.y1);

· · ·
vstore(κτ

y
j ,&yi,outstep.yi)

if smain.out = y1
τy1 · · · yjτ

y
j

Figure 5.5: Generation of the entry point body (main_body,
src/ObcToClight/Generation.v:389)
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declared self structure. Then, the infinite main loop alternates (1) a sequence of volatile
loads from globally declared input variables into local temporaries, (2) a call to the main
step function, named stepmain-node, with these temporaries as inputs, and (3) a sequence
of volatile stores to globally declared output variables. Note that we omit the second
statement of the loop construct since we do not use it—it is actually skip. The call to
the main step function is also subject to the technicalities around the handling of return
values.

5.3 Clight semantics
CompCert provides two semantic variants for Clight based on whether function parameters
are considered as local variables3 (Clight1) or as temporary variables4 (Clight2). Since
we never need to take the address of a function parameter, we use the Clight2 variant, as
it has one less level of indirection, which facilitates reasoning about programs.
CompCert also provides two styles of semantics: a small-step continuation-based

operational semantics5 and a big-step operational semantics6. The latter is described in
[Blazy and Leroy (2009)] and proved sound with respect to the former. In the correctness
proofs for the reset and step functions, we choose to work with the big-step semantics
because (1) the generated code for these functions always terminates and never diverges,
and (2) it is easier to reason between two big-step semantics. In the original version
of CompCert, the big-step semantics, unlike the small-step one, is only defined for the
Clight1 variant, but we adapted it to handle the Clight2 variant as well.
In the correctness proof of the entry point and thus of the overall program, we must,

however, reason with the small-step semantics because the big-step one is not fine-grained
enough to describe the observable behavior of the generated program. A generated Clight
program runs forever, but the big-step semantics for programs cannot distinguish between
divergence (“at some point, the program runs forever without doing any I/O” [Leroy
(2019)]) and reactive divergence (“the program performs infinitely many I/O operations
separated by finite amounts of internal computations”).
Regardless of the variant and style, a single model is used to describe the state of a

program’s memory. The memory model is described in [Leroy and Blazy (2008)]. A
memory state M is a collection of contiguous blocks, each identified by an integer b.
Within a block, byte offsets δ within a fixed range are mapped to values. Hence, a
memory M is a (partial) mapping from locations (b, δ) to values. Table 5.1 lists the basic
memory operations that CompCert defines. Note that the alloc function never fails as
CompCert models an infinite memory.

5.3.1 Big-step semantic rules for code generated from Obc classes
The big-step semantic rules for Clight are parameterized by:

3compcert.inria.fr/doc/html/compcert.cfrontend.Clight.html#function_entry1
4compcert.inria.fr/doc/html/compcert.cfrontend.Clight.html#function_entry2
5compcert.inria.fr/doc/html/compcert.cfrontend.Clight.html
6compcert.inria.fr/doc/html/compcert.cfrontend.ClightBigstep.html
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Table 5.1: Operations over memory states [Blazy and Leroy (2009); Leroy (2019)]

alloc(M, i, j) = (M ′, b) Allocates a fresh block of bounds [i, j) and returns the updated
memory and the identifier of the allocated block.

free(M, b, i, j) .= M ′ Deallocates the range of offsets [i, j) in the block b and returns,
if the addresses are freeable, the updated memory.

load(κ,M, l) .= v Reads a quantity of consecutive bytes (as determined by the
memory chunk κ) starting from the location l and returns, if
the addresses are readable, the value read.

store(κ,M, l, v) .= M ′ Writes the value v as a quantity of consecutive bytes (as
determined by κ) at location l and returns, if the addresses
are writable, the updated memory.

• a global environment G that maps global variables to locations (with zero offset),
function pointers to function definitions and structure names to their definitions,

• a local environment E that maps local variables to memory locations and types,

• a temporary environment L that directly maps temporaries to values, and

• a memory M .

We only present the semantics rules required for the subset of Clight used by the
generation function, and, to further simplify the presentation, our rules are often combi-
nations of the actual rules described in [Blazy and Leroy (2009)],7 from which we keep the
notations. Since we use only a restricted syntax subset of Clight, we only use an adapted
relevant subset of the semantics rules. We present rules for the following restrictions of
the subset of Clight presented in figure 5.3:

e ::= c | x | x->x | &x | &(x->x) | x.x | �C e | e ⊕ e

s ::= x->x = a | x = a | if (a) {s} else {s} | [x =] x(a∗,) | s ; s | skip | return [a]

A generated expression is a constant, a temporary, an indirect field access on a temporary
(the self pointer or the out pointer), a reference to a local output structure, a reference to
an indirect field access on a temporary (a sub-state reference), a field access on a variable
(a local output structure), or a unary or binary operation. A generated statement is an
assignment to an indirect field access on a temporary, an assignment to a temporary, a
conditional, a function call where the function expression is a variable, a sequence, the
no-operation statement, or a return statement.
Adapting the notation of [Blazy and Leroy (2009)], we write G,E,L ` a,M ⇒ v to

denote that in the global environment G, environment E, temporary environment L
and memory M , the expression a evaluates to a value v. The rules for the evaluation of
generated expressions in r-value position are shown in figure 5.6a. A constant is evaluated
using the dedicated constant semantics (e.g, rules (5) and (6) in [Blazy and Leroy (2009),

7Note that at the time, no temporaries were used.
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G,E,L ` c,M ⇒ JcK G,E,L ` x,M ⇒ L(x)

temp-ind-field-loc(G,L, x, y) .= l load
(
κtype(x->y),M, l

) .= v

G,E,L ` x->y,M ⇒ v

E(x) = (b, typex)
G,E,L ` &x,M ⇒ Vptr (b, 0)

temp-ind-field-loc(G,L, x, y) .= l

G,E, L ` &(x->y),M ⇒ Vptr l

E(x) = (b, struct s) typex = struct s comp(G, s) .= ϕ

field-offset(G, y,ϕ) .= δ load
(
κtype(x.y),M, (b, δ)

) .= v

G,E,L ` x.y,M ⇒ v

G,E,L ` a,M ⇒ va eval-unop
(
�C , va, type a,M

) .= v

G,E,L ` �C a,M ⇒ v

G,E,L ` a,M ⇒ va cast(va, type a, τ,M) .= v

G,E,L ` τ(a),M ⇒ v

G,E,L ` a1,M ⇒ v1 G,E,L ` a2,M ⇒ v2
eval-binop(G,⊕, v1, type a1, v2, type a2,M) .= v

G,E,L ` a1 ⊕ a2,M ⇒ v

(a) Expression evaluation

L(x) = Vptr (b, δx) typex = struct s*
comp(G, s) .= ϕ field-offset(G, y,ϕ) .= δy

temp-ind-field-loc(G,L, x, y) .= (b, δx + δy)

(b) Location of an indirect field access on a temporary

Figure 5.6 (I): Big-step semantics of Clight
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Fig. 6, p. 9]). A temporary is simply looked up in the temporary environment. An
indirect field access on a temporary is evaluated using temp-ind-field-loc, that we describe
in the next paragraph, to get back the corresponding memory location, and load to return
the stored value in the memory (rule (8)). The address of a variable x is evaluated
to a pointer to the block associated with x in the environment (rules (9) and (1)). A
reference to an indirect field access on a temporary is evaluated to a pointer to the
location given by temp-ind-field-loc (rule (9)). A field access on a variable is evaluated
to a value loaded from the location calculated by combining the block identifier looked
up in E and the offset obtained by field-offset (rules (8), (3) and (1)). Unary, cast
and binary operations recursively evaluate their arguments and use dedicated partial
semantics functions, respectively eval-unop, cast and eval-binop (rules (10), (14) and (11)
respectively). All these functions take the memory M as parameter, and eval-binop takes
the global environment G as additional parameter to handle pointers.

Figure 5.6b presents a relation—we use our partiality notation—that we define to
obtain the location of an indirect field access on a temporary x->y. This relation is
a combination of formal semantic rules ((3), (8) and (2), plus a rule for temporaries
evaluation) that evaluates x->y to a location. The block identifier b is obtained by
looking up x in the temporary environment, verifying that the obtained value is a pointer
to a location (b, δx). The offset is the sum of δx and δy, the relative offset of the field y in
structure s (field-offset is described in [Blazy and Leroy (2009), §3.2, p 10]). The comp
function retrieves the field declarations ϕ from the global declaration of s.

We write G,E,L ` s,M t==⇒ out, L′,M ′ to denote that in the global environment G,
environment E, temporary environment L, the statement s terminates its execution in
an updated temporary environment L′ and memory M ′, with outcome out, producing
an event trace t. There are only three possible outcomes in our subset of the semantics:
Normal, the statement has terminated normally, Return, a function body has terminated,
and Return (v, τ), similarly but the result of the function is the value v with type τ . The
semantics for generated statements is presented in figure 5.6c. An assignment of an
expression to an indirect field access on a temporary updates the memory by storing
the properly cast value of the evaluated expression to the appropriate location given
by temp-ind-field-loc (rule (20) in Fig. 8, p. 11). An assignment to a temporary simply
updates the temporary environment with the result of the evaluated expression. A
conditional statement recursively executes one of its branches according to the boolean
projection of the evaluated condition. The projections are realized by the is-true and
is-false predicates presented in [Blazy and Leroy (2009), §3.2, p. 11], that take M as
additional parameter again for handling pointers. A function call is evaluated in several
steps (rules (30) in Fig. 10, p. 13, (8), and (1)). The function variable f is not defined in
the environment E but associated in the global environment G with a block identifier b
(function pointer), which is in turn resolved in G to a function definition Fd. The type of
f is checked against the prototype of Fd that must be a function type, composed of a list
of argument types τargs, a return type τres and a calling convention cc. The arguments
are evaluated and cast to the corresponding types in τ args. Then, the call is evaluated
using a dedicated mutually defined judgment presented later in figure 5.6d, producing
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temp-ind-field-loc(G,L, x, y) .= l G,E, L ` a,M ⇒ va

cast(va, type a, type (x->y) ,M) .= v store
(
κtype(x->y),M, l, v

) .= M ′

G,E,L ` x->y = a,M ε==⇒ Normal, L,M ′

G,E,L ` a,M ⇒ v

G,E,L ` x = a,M ε==⇒ Normal, L{x 7→ v} ,M

G,E,L ` a,M ⇒ v is-true(v, type a,M) G,E,L ` s1,M
t==⇒ out, L′,M ′

G,E,L ` if (a) { s1 } else { s2 },M t==⇒ out, L′,M ′

G,E,L ` a,M ⇒ v is-false(v, type a,M) G,E,L ` s2,M
t==⇒ out, L′,M ′

G,E,L ` if (a) { s1 } else { s2 },M t==⇒ out, L′,M ′

f 6∈ E symbol(G, f) .= b funct(G, b) .= Fd
type f = type-of-fundef Fd = τargs, τres, cc

G,E,L ` τargs(a),M ⇒ vargs G ` Fd (vargs) ,M
t==⇒ v,M ′

G,E,L ` [x =]f(a),M t==⇒ out,
{
L{x 7→ v} if x is given
L otherwise

,M ′

G,E,L ` s1,M
t1==⇒ Normal, L1,M1 G,E,L1 ` s2,M1

t2==⇒ out, L2,M2

G,E,L ` s1 ; s2,M
t1+t2===⇒ out, L2,M2

G,E,L ` s1,M
t==⇒ out, L′,M ′ out 6= Normal

G,E,L ` s1 ; s2,M
t==⇒ out, L′,M ′

G,E,L ` skip,M ε==⇒ Normal, L,M

G,E,L ` return,M ε==⇒ Return, L,M

G,E,L ` a,M ⇒ v

G,E,L ` return a,M ε==⇒ Return (v, type a) , L,M

(c) Statement evaluation

Figure 5.6 (II): Big-step semantics of Clight
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alloc-vars(G,M,Fd.vars)
.= (E,M1)

L = ∅{Fd.temps 7→ Vundef}{Fd.params 7→ vargs}
all names in Fd.params are distinct all names in Fd.vars are distinct

names in Fd.vars and Fd.temps do not overlap
function-entry(Fd,vargs,M) .= (E,L,M1)

function-entry(Fd,v!args,M) .= (E,L,M1)
G,E,L ` Fd.body,M1

t==⇒ out, L′,M2 M2, out, Fd.return#v free-env(M2, E) .= M ′

G ` Fd (vargs) ,M
t==⇒ v,M ′

(d) Function call evaluation

Figure 5.6 (III): Big-step semantics of Clight

the overall trace t, the overall updated memory M ′ and a return value v. If a return
temporary is supplied, the temporary environment is updated with the return value. A
sequence of statements is executed recursively: either the first part terminates normally
producing an intermediate state from which the second is executed, or it does not and the
execution is interrupted. The skip statement does nothing, while the return statement
yields a Return outcome with an optional pair of an evaluated value and a type.

Figure 5.6d gives two dedicated rules used for function call evaluation (rule (32) in
Fig. 10, p. 13). The first presents a function-entry predicates that defines how the memory
and environments are allocated at the entry of a function. The memory M is updated by
the function alloc-vars that allocates blocks (using alloc) for each local variable declaration
in the function definition Fd. It returns the allocated memory M1 and the corresponding
environment E. The temporary environment is created in two steps: first the register
declarations are all bound to the undefined value Vundef, then the formal parameters
are bound to the values vargs since we use the variant where parameters are temporaries.
Finally, function-entry also ensures that no duplicates are found in the variable names.
The second rule defines the evaluation of a function: the body of the function is evaluated
in the state given by function-entry, the return value is computed from the return type of
the function and the outcome of its body evaluation (we use the notation M, out, τ#v of
[Blazy and Leroy (2009), Fig.10, p. 13]), and the blocks in the environment E that were
allocated for the local variables are freed by free-env (using free).

5.3.1.1 Semantic rules for the generated program

The generated main function requires three additional statements:
s ::= . . . | x = vload(κ,&x) | vstore(κ,&x,a) | loop {s}

The volatile load and store operations always take the address of a global volatile variable,
and we elide the type annotations, since we ensure that the types are the same for the
formal and actual parameters of these operations.
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y 6∈ E symbol(G, y) .= b volatile(G, b) = true w
κ'
G
v

G,E,L ` x = vload(κ,&y),M [Evload(κ,y,0,w)]=========⇒ Normal, L{x 7→ vκ} ,M

y 6∈ E symbol(G, y) .= b volatile(G, b) = true G,E,L ` a,M ⇒ v w
κ'
G
vκ

G,E,L ` vstore(κ,&y,a),M [Evstore(κ,y,0,w)]==========⇒ Normal, L,M

Figure 5.7: Volatile load and store operations evaluation

The statements we consider in the previous section do not produce events. Indeed, the
only observable events in the generated program are produced by the volatile operations
whose semantics is shown in figure 5.7. In both cases, the variable that is being read or
written must be globally declared with the volatile attribute. The operation produces
a single event Evload or Evstore parameterized by the chunk, the address (global name
and offset) and the value being read or stored. The carried value is an event value
w, that is, to simplify, the subset of standard values minus the undefined value and
pointers that do not address global variables. We use the notation w κ'

G
v to denote the

correspondence between the standard value v and the event value w (see eventval_match,
CompCert/common/Events.v:269). This relation ensures a kind of well-typing property by
using the type information of the chunk κ. We also write vκ to model the normalization
that may occur when reading a stored value, depending on the chunk and on the type of
the value (see load_result, CompCert/common/Values.v:910).
As previously explained, to treat the infinite evaluation of the main loop of the

generated program, we use the small-step semantics. The small-step semantics of Clight
in CompCert is formalized as a state-transitions system that consists of a step relation,
an initial state, a final state and a global environment. The rules that we present here
are adapted from those of Cminor, that is, the next intermediate language after Clight in
CompCert, and presented in [Appel and Blazy (2007); Leroy (2009a)], from which we
keep the notations. We give the rules for the evaluation of the statements that we use
in figure 5.8a. A Clight regular state, written S(Fd, s, k, E, L,M), comprises the current
function Fd, the current statement s, a continuation k, an environment E, temporary
environment L and memory M . We do not present the continuation system in detail, but
simply note that s ; k reads “continue with s, then do as k” [Leroy (2009a)], which is
enough to understand the first three rules that we use for sequences and loops. The last
rule asserts a transition between a call state, written C(Fd,vargs, k,M)—that comprises
the function Fd to be called, the list of argument values vargs, a continuation k and a
memory M—and the regular state built from the body of the function and the allocated
environments and memory.

Figure 5.8b presents the rules defining the reflexive transitive closure and the rule for
infinite reactive execution. In [Appel and Blazy (2007); Leroy (2009a)], T is a finite
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G ` S(Fd, (s1 ; s2) , k, E, L,M) ε−−→ S(Fd, s1, (s2 ; k) , E, L,M)

G ` S(Fd, skip, (s ; k) , E, L,M) ε−−→ S(Fd, s, k, E, L,M)

G ` S(Fd, loop { s }, k, E, L,M) ε−−→ S(Fd, s, (loop { s } ; k) , E, L,M)

function-entry(Fd,vargs,M) .= (E,L,M1)
G ` C(Fd,vargs, k,M) ε−−→ S(Fd, Fd.body, k, E, L,M1)

(a) Selected rules for statement evaluation

G ` S ε−−→∗ S
G ` S t1−−→ S1 G ` S1

t2−−→∗ S2

G ` S t1+t2−−−→∗ S2

G ` S t−−→∗ S′ t 6= ε G ` S′ T−−→ ∞

G ` S t++T−−−−→ ∞

(b) Reflexive transitive closure and infinite reactive transition

G ` S t1−−→∗ S1 G ` S1
t2−−→ S2

G ` S t1+t2−−−→∗ S2

G ` S t−−→∗ S′ G ` S′ T−−→ ∞

G ` S t++T−−−−→ ∞

(c) Additional rules

initial-state(P, S) globalenv(P ) ` S T−−→ ∞
P ⇓ Reacts(T )

G = globalenv(P ) initmem(P ) .= M
symbol(G,P.main) .= b funct(G, b) .= Fd type-of-fundef Fd = ε, int, ccdefault

initial-state(P, C(Fd, ε, stop,M))

(d) Programs

Figure 5.8: Small-step semantics of Clight
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or infinite trace, while here it may only be infinite. Indeed, T is akin to an infinite
stream, in the sense that it must be productive. This leads to a different definition of the
relation G ` S T−−→ ∞: in the current development of CompCert, the finite prefix trace t
is checked to be non empty to ensure that the resulting concatenated infinite trace is
productive. This permits the distinction between divergence, where an infinite trace is
not produced, and reactive divergence, where an infinite trace is produced.
Figure 5.8c presents additional rules, that are derived in CompCert as lemmas. The

first one asserts that the reflexive transitive closure can also be derived with a step on
the right rather than on the left. The second one is like the definition rule of the infinite
reactive execution, without the constraint on the productivity.

The presented small-step rules are not sufficient for the whole generated program. We
instead use the big-step rules presented in the last section for all of the proof except the
execution of the main function. We rely on the fact that the big-step semantics is sound
with respect to the small-step semantics.

Lemma 5.3.1 (exec_stmt_steps, CompCert/cfrontend/ClightBigstep.v:494)
Given a global environment G, a statement s, an environment E, two temporary envi-
ronments L and L′, two memories M and M ′, a trace t and an outcome out such that
G,E,L ` s,M t==⇒ out, L′,M ′, then, for any function Fd and continuation k, there exists
a state S such that G ` S(Fd, s, k, E, L,M) t−−→∗ S and S is a regular state on Fd that
is compatible with out, E, L′ and M ′.

Finally, figure 5.8d gives the rule for the infinite reactive execution of a program. The
globalenv and initmem functions are described in [Leroy and Blazy (2008), Fig.5, p. 8]:
globalenv builds a global environment from a given program, and initmem constructs an
initial memory for executing the given program. The initial state is a call state on the
main entry point of the program with no input values, the initial continuation stop and
the initial memory.

5.3.2 Interfacing Vélus with CompCert

Recall that Vélus is entirely parameterized over an abstraction layer consisting of values,
types and operators (see section 2.1.1). Before translating Obc code to Clight code, this
abstraction layer must be instantiated with definitions from Clight.

Listing 5.3 shows the instantiations for values and types. Values are directly instantiated
with CompCert values. CompCert values (see val, CompCert/common/Values.v:36)
comprise the undefined value, machine integers, floating-point numbers and pointers to
memory locations. We have already seen some of them in the presented semantic rules.
Types are not directly instantiated with Clight types, as they are too rich: we do not
need the void, pointer, array, structure or function types in the models of NLustre, Stc,
and Obc. Hence we define our own set of types and a conversion function cltype to
translate them to Clight types. Our types comprise only integer and floating-point types.
This function was ignored when presenting the Clight generation function, and will often
be in the following to facilitate the presentation.
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Definition val: Type := Values.val.

Inductive type : Type :=
| Tint: Ctypes.intsize -> Ctypes.signedness -> type
| Tlong: Ctypes.signedness -> type
| Tfloat: Ctypes.floatsize -> type.

Definition cltype (ty: type) : Ctypes.type :=
match ty with
| Tint sz sg => Ctypes.Tint sz sg Ctypes.noattr
| Tlong sg => Ctypes.Tlong sg (Ctypes.mk_attr false (Some (Npos 3)))
| Tfloat sz => Ctypes.Tfloat sz Ctypes.noattr
end.

Coq (src/ObcToClight/Interface.v:39–53)

Listing 5.3: Instantiation of values and types

We saw in the generation function (see figure 5.4a) that Vélus unary operators are
instantiated with Clight unary operators and the type cast operator, while Vélus binary
operators are directly instantiated with Clight binary operators. The corresponding
semantic functions are instantiated in the following way, safely providing the empty
memory and empty global environment as additional parameters of the CompCert
functions:

J�CKτ v = eval-unop
(
�C , v, cltype τ,∅

)
J⊕Kτ1×τ2 v1 v2 = eval-binop(∅,⊕, v1, cltype τ1, v2, cltype τ2,∅)

For a type cast, the function is instantiated by the corresponding semantic rule in
figure 5.6a. We follow the same approach for the typing functions of the operators.

5.4 Separation logic and key invariants

The central challenge in reasoning about the correctness of Clight generation is the
change of memory model. In Obc, the memory is modeled as a tree of environments
where the separation of individual values is manifest. In contrast, Clight has a memory
model that maps addresses to the bytes that comprise values, and the details of type
sizes, alignment, and aliasing through pointers cannot be ignored. We apply SL [Ishtiaq
and O’Hearn (2001); Reynolds (2002)] to cope with these complications which otherwise
quickly overwhelm the proof effort. We use an SL library that is already designed within
CompCert for the correctness of one of its backend passes.
SL is an extension of Floyd-Hoare logic [Floyd (1967); Hoare (1969)] that facilitates

reasoning about programs that manipulate pointers and complex data-structures. The
main innovation is the separating conjunction operator ∗, that enables to write program
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assertions like {x 7→ v ∗ y 7→ w} that describes a memory state where the variable x
holds the address of a memory location where the value v is stored, and separately where
the variable y holds the address of a memory location where the value w is stored. The
“and separately” differs from a classical “and” in that it asserts that both components
describe distinct areas of the memory: the bytes comprising the values of x and y are
distinct. A second operator, the separating implication −−∗ [O’Hearn and Pym (1999)], or
“magic wand”, is sometimes useful. The assertion P −−∗ Q means that given a separate
memory area satisfying P , the combined memory area satisfies Q.

A dedicated rule, called frame rule, is added to the logic to extend local reasoning on a
statement to a larger separate context by stating that unmentioned area in the memory
remains unchanged:

{P} s {Q}
{P ∗R} s {Q ∗R}

where no free variable in R is modified by the statement s

O’Hearn (2019) gives an introduction and overview of SL.

5.4.1 Separation Logic in CompCert
Citing its documentation [Leroy (2019)], the SL that CompCert provides “is not a full-
fledged separation logic because there is no program logic (Hoare triples) to speak of.
Also, there is no general frame rule; instead, a weak form of the frame rule is provided
by the lemmas that help us reason about the logical assertions.” A memory assertion is
composed of four components, gathered in a Coq dependent record:

1. A predicate over the memory, that is, the logical content of the assertion.

2. The memory footprint of the assertion, that is, the set of locations it concerns.

3. A proof that the logical content is invariant under changes to locations outside the
footprint, thus capturing the essence of the frame rule.

4. A proof that the blocks of the footprint are allocated.

Following CompCert notation, we write M � P to designate the predicate of the memory
assertion P , applied to the memory M , and we add the notation LP M to designate its
footprint. In typical SL presentations, one writes s, h � P where s is a store mapping
identifiers to values (containing addresses), and h is a heap mapping addresses to values.
In the CompCert SL library however, only the heap is used, therefore assertions do not
mention identifiers but only memory locations, that is, addresses. The CompCert library,
that we slightly modify, builds on this definition to define useful SL operators and special
assertions:

implication The usual implication is lifted over memory assertions and adjusted to
account for footprints. We write P _ Q if and only if, for any memory M,
M � P → M � Q and LQM ⊆ LP M. The associated equivalence is written P ] Q.
Implication is shown to be a reflexive and transitive relation, while the equivalence
is shown to be an equivalence relation.
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Table 5.2: Memory permissions in CompCert [Leroy (2019)]

free store load pointer comparison
Freeable X X X X
Writable X X X
Readable X X
Nonempty X
Empty

separating conjunction We write P ∗Q to designate the memory assertion such that:
1. ∀M, M � P ∗Q ↔ (M � P ∧ M � Q ∧ LP M ∩ LQM = ∅)
2. LP ∗QM = LP M ∪ LQM

We see here that the CompCert model for memory assertion allows to model the
separating conjunction without explicitly exposing heaplets, that is, separated parts
of the memory, like other mechanizations of SL do [Klein, Kolanski, and Boyton
(2012); Appel, Dockins, et al. (2014)].

pure assertion A pure assertion is a memory assertion that ignores the memory. We
write pure(P ) where P is a predicate to designate the memory assertion such that:
1. ∀M, M � pure(P ) ↔ P

2. L pure(P ) M = ∅

range CompCert allows to assert that a range of consecutive bytes in the memory is
allocated with a given permission8 and unspecified content. We write b : [i, j)p,
where b is a block identifier, p a permission and i, j are integers, for the memory
assertion such that:
1. ∀M, M � b : [i, j)p ↔ 0 ≤ i ∧ j ≤ 2N

∧ ∀δ ∈ [i, j), the location (b, δ) has permission p
where N is the target architecture word size.

2. Lb : [i, j)pM = {(b′, δ) | b = b′ ∧ δ ∈ [i, j)}
Table 5.2 lists the permissions, or access rights, that CompCert defines, with the
memory operations that they allow. In the following, we will write b : [i, j) for a
range of bytes with freeable permission.

contains CompCert provides a way to assert that a memory area with a given permission9
contains a value with a given specification. We write l : P pκ where l = (b, δ) is
a memory location, κ is a memory chunk, P is a predicate over values and p a
permission, for the memory assertion such that:

8For any permission in the original version of CompCert.
9Only Freeable in the original version.
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1. ∀M, M � (b, δ) : P pκ ↔ 0 ≤ δ ∧ δ + |κ| ≤ 2N

∧ ∀δ′ ∈ [δ, δ + |κ|),
(
b, δ′

)
has permission p

∧ δ is properly aligned relative to κ
∧ ∃v, load(κ,M, (b, δ)) .= v ∧ P v

where |κ| is the size information of the chunk κ.
2. L (b, δ) : P pκ M = {(b′, δ′) | b = b′ ∧ δ′ ∈ [δ, δ + |κ|)}

CompCert provides several results giving a SL specification to the memory operations
of table 5.1 on page 151.

Lemma 5.4.1 (alloc_rule, CompCert/common/Separation.v:411)
Given two memories M and M ′, two integer bounds 0 ≤ i and j ≤ 2N , a block b and an
assertion R, such that alloc(M, i, j) = (M ′, b) and M � R, then M ′ � b : [i, j) ∗R.

Lemma 5.4.2 (free_rule, CompCert/common/Separation.v:427)
Given a memory M , two integer bounds i and j, a block b and an assertion R, such that
M � b : [i, j) ∗ R, then there exists a memory M ′ such that free(M, b, i, j) .= M ′ and
M ′ � R.

Lemma 5.4.3 (load_rule, CompCert/common/Separation.v:584)
Given a memory M , a location l, a chunk κ, a permission p that is at least readable
and a value specification P such that M � l : P pκ , then there exists a value v such that
load(κ,M, l) .= v and P v holds.

Lemma 5.4.4 (store_rule, CompCert/common/Separation.v:604)
Given a memory M , a location l, a chunk κ, a permission p that is at least writable, a
value v, value specifications P and P ′ and an assertion R such that M � l : P pκ ∗R and
P ′ vκ, then there exists a memoryM ′ such that store(κ,M, l, v) .= M ′ andM ′ � l : P ′pκ∗R.

All these results except the load-related one include an additional assertion R: this
implements the “weak form of the frame rule”. With a separate frame rule, those lemmas
could be written in the usual SL triplet-style as axioms, assuming in-place modification
of the memory and abusing the notation:

{emp} alloc(i, j) {λ b. b : [i, j)} {b : [i, j)} free(b, i, j) {λ (). emp}

{l : P pκ} load(κ, l) {λ v. pure(P v) ∗ l : P pκ}
if p is at least readable

{pure
(
P ′ vκ

)
∗ l : P pκ} store(κ, l, v) {λ (). l : P ′pκ}

if p is at least writable

5.4.2 Vélus extensions

To fit our needs, we extend the SL library of CompCert with additional operators and
abbreviations:
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empty heap (sepemp, src/ObcToClight/MoreSeparation.v:644)
We define the shorthand emp , pure(>). We also show that emp is a neutral
element for the separating conjunction ∗.

false assertion (sepfalse, src/ObcToClight/MoreSeparation.v:739)
The bold shorthand ⊥ , pure(⊥) simply asserts contradictory cases in memory
assertions.

separating implication (sepwand, src/ObcToClight/MoreSeparation.v:98)
We write P −−∗ Q for the assertion such that:
1. ∀M, M � P −−∗ Q ↔ ∀M ′ invariant on LP −−∗ QM relative to M,

M ′ � P → M ′ � Q

∧ LP −−∗ QM is allocated
2. LP −−∗ QM = LQM \ LP M

generalized separating conjunction (sepall, src/ObcToClight/MoreSeparation.v:803)
Given a list a = a1 · · · an of elements of type A and a function P from A to memory
assertions, we define ∗a P , a1 ∗ · · · ∗ an.

We show the fundamental property about separating implication.

Lemma 5.4.5 (sep_unwand, src/ObcToClight/MoreSeparation.v:182)
Given two assertions P and Q such that the membership of LP M is decidable, then
P ∗ (P −−∗ Q) _ Q.

5.4.3 Separation invariants for the proof of correctness
The proof of correctness at method-execution level is based on a state correspondence
predicate that relates an Obc state and a Clight state. The correspondence uses SL to
relate the tree-like Obc model with explicit separation of data to the contiguous blocks
memory model of Clight.

Given a complete Obc state, that is, a program p, a class cls with name c, a method m,
a memory tree me and an environment ve, and a complete Clight state, that is, a global
environment G, a location lself = (bself, δself) that contains the current state values (the
pointer self ), an optional pair bcoout of a block identifier and the fields of the structure
that holds the output values (the out pointer if it exists), an environment E and a
temporary environment L, there are four elements that we want to relate:

1. the state of the class cls and the data stored at lself,

2. the output values of m and the corresponding output representation in Clight
(nothing if there are no output, a temporary if there is only one and the structure
otherwise),

3. the output values of sub-instance method calls appearing in the body of m with
local output structures or temporary declarations,
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4. local variables of m in the Obc environment and corresponding variables in the
Clight temporary environment.

5.4.3.1 Definitions

Most of the correspondence predicates rely on a relation between a defined or undefined
value in Obc and a value in Clight. The idea is to use this relation as a specification for
variables found in the memory. When a variable is undefined in Obc, its value in Clight
is unconstrained, otherwise it has the same value in Clight. We denote this predicate
with the notation dve where v is a defined or undefined value.

Definition 5.4.1 (match_value, src/ObcToClight/SepInvariant.v:51)

db ce v
v′ = v⌈
bv′c

⌉
v

Class state correspondence
The following predicate relates the memory tree me for a class with name c in Obc and
the block holding the corresponding state in Clight at location lself. It iterates through the
program p until it finds the class named c and constructs a separating conjunction over
state variables and recursively over sub-instances. That is, it follows the tree structure
and asserts at the leaves that the Clight memory contains corresponding values.

Definition 5.4.2 (staterep, src/ObcToClight/SepInvariant.v:73)
We define the memory assertion s-reppG c me lself by cases on p as follows:

s-repcls·p′

G c me lself ,

∗cls.regs
r-repG cls me lself ∗∗

cls.insts
i-repp

′

G cls me lself if cls.name = c

s-repp
′

G c me lself otherwise
s-repεG c me lself , ⊥

where

r-repG cls me (bself, δself) ,

λxτ .

{
(bself, δself + δx) : dme((x))ewritable

κτ if field-offset(G, x, fields cls) .= δx

⊥ otherwise

i-reppG cls me (bself, δself) ,

λ ic
′
.

{
s-reppG c

′ (sub i me) (bself, δself + δi) if field-offset(G, i, fields cls) .= δi

⊥ otherwise

The r-rep function asserts the correspondence for state variables within the mem-
ory tree. For each state variable of the current class, it ensures that a value is
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found at the proper address, using the offset in the structure, given by field-offset
applied to a list of fields calculated from the class definition by fields (make_members,
src/ObcToClight/Generation.v:279). This value must be equal to the one found in the
Obc memory tree if it is defined and unconstrained otherwise. Since the overall state
structure is stored in a static variable, the expected permission is writable rather than
freeable.
The i-rep function asserts the correspondence for sub-trees. For each sub-instance of

the current class, it recursively asserts s-rep at the proper offset in the structure.
Figure 5.9 shows the s-rep instantiation on the running example. In figure 5.9a, the

me tree on the left represents the memory tree of an instance of the class nav. Thin
edges represent the state variables, while thick edges represent sub-instances. On the
right is a representation of the memory layout of the generated Clight structure at
location (bself, δself). Each field is accessed through a relative offset: given a class cls
named c, we write δcx for the offset calculated by field-offset(G, x, fields cls). The Obc tree
and the Clight memory are related by the s-rep predicate, shown by gray dashed arrows.
The displayed equation recursively unveils this correspondence, descending the tree on
the left and adding offsets on the right—we omit the p and G parameters for clarity. The
final result is a set of primitive separated conjuncts asserting correspondence with the
values in the tree. This set of conjuncts together with the memory layout they specify is
shown in figure 5.9b, where we write b = bself, δself = 0, since a global variable holds the
main structure, and assume a 64 bit architecture. The gray area represents the memory
locations that are allocated and specified by the separating assertions, and the white
area is padding, that ensures correct alignment.
We combine s-rep with an assertion that the pointer self is declared as a temporary

parameter. We also ensure that the size of the structure corresponding to the class
cls does not exceed the maximum machine integer, but we omit this constraint in this
presentation.
Definition 5.4.3 (selfrep, src/ObcToClight/SepInvariant.v:1276)

self-reppG cls me L lself , pure(L(self) = Vptr lself) ∗ s-reppG cls.name me lself

Output correspondence
To define the predicate relating the output values of method m with the values held in a
local structure, we start by defining a generic memory assertion to put local variables in
correspondence with the fields of a structure.
Definition 5.4.4 (fieldsrep, src/ObcToClight/SepInvariant.v:592)
Given an Obc environment ve, a list of structure fields ϕ and a block identifier b, we
define the following memory assertion:

fs-repG ve ϕ b ,∗
ϕ

f-repG ve ϕ b

where

f-repG ve ϕ b , λxτ .

{
(b, δx) : dve((x))eκτ if field-offset(G, x,ϕ) .= δx

⊥ otherwise
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(a) The recursive behavior
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(b, 0) : dme((c))ewritable
uint8

(b, 1) : dme((r))ewritable
uint8

(b, 8) : dme[insr] ((k))ewritable
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uint8
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float64

(b) Memory layout on a 64 bit architecture

Figure 5.9: The s-rep predicate on the example
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The f-rep function is similar to r-rep, but there is no initial offset in the location (it is
zero), and it uses the environment ve to give a specification on the memory variable.
Moreover, the accessed memory must be freeable rather than only writable.

If m has only one output however, the value is stored in a temporary. In this case, we
relate local variables of m with the temporaries of the corresponding Clight function.

Now we can define the memory assertion asserting the correspondence for the outputs
of the considered method m.

Definition 5.4.5 (outputrep, src/ObcToClight/SepInvariant.v:1184)

out-repG cls m ve L bcoout ,

emp if m.out = ε

pure(dve((x))eL(x)) if m.out = [xτ ]

pure(L(out) = Vptr (bout, 0))
∗ pure(comp(G, fc)

.= ϕout)
∗ fs-repG ve ϕout bout

if 1 < ‖m.out‖ and bcoout = Some (bout,ϕout)

⊥ otherwise

This function produces different assertions according to the number of outputs of m:

• If m has no output, there is no correspondence; the memory assertion is simply the
empty heap.

• If m has a unique output xτ then we assert the correspondence between the local
Obc variable x and the Clight temporary x.

• If m has strictly more than one output, then we ensure that (1) the output pointer
parameter out is declared as a temporary, (2) the corresponding structure is globally
declared and (3) the structure pointed to by the pointer out is in correspondence
with the according output values in ve.

In the third case, the output structure is named fc: for simplicity, it has the same name
as the generated function corresponding to m. In the actual development, we use the
special symbol ‘$’ to create fresh unique names. In particular, each method named f of
a class named c is translated into a function named fun$c$f , and the same name is used
for a corresponding output structure declaration.

One limitation of the CompCert SL library is that we cannot define existential memory
assertions. Indeed, in the third case above, rather than provide an optional parame-
ter bcoout from the outside, we would have preferred that bout and ϕout were existentially
quantified within the definition.
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Sub-instances outputs correspondence
Our handling of multiple outputs in Clight necessitates that we maintain a correspondence
between multiple output values returned by method calls appearing in the body of m
and Clight output structures declared in the environment E (see item 3 on page 148
about the translation of function calls).

Definition 5.4.6 (subrep, src/ObcToClight/SepInvariant.v:835)

os-repGm E ,∗
mult-outsm

o-repGE

where

o-repGE , λx
τ .

{
fs-repG∅ ϕ b if E(x) = (b, τ) ∧ τ = struct s ∧ comp(G, s) .= ϕ

⊥ otherwise

The idea is to assert that for each sub-call in m with strictly more than one output, there
exists a corresponding output structure s and a local Clight variable that points to an
instance of it in the memory with unspecified content—the content is only specified after
a method call. We use the function mult-outs to retrieve the names and types of these
(fresh) local variables. The function satisfies the following property.

xτ ∈ mult-outsm ↔ ∃i c′ f ′, y := ic′
.f ′(-) appears in m with 1 < ‖y‖

∧ x = if ′

∧ τ = struct f ′c′

The os-rep predicate asserts that memory is allocated with enough room to hold the
return values of sub-calls. The fs-rep function does not account for fields alignment,
consequently it only asserts that a relevant data area is allocated, but it does not assert
anything about necessary padding area. This is a problem, not because the padding is
ever read or written, but rather because we must prove that the whole structure can
be freed when the enclosing function returns. Technically, we must justify the free-env
predicate in the rule shown in figure 5.6d on page 155, which requires invoking the “free
rule” (lemma 5.4.2 on page 162), which, in turn, requires “ownership” of that area of
memory as expressed in a memory assertion. This is also the reason we extend the
SL library of CompCert with a separating implication operator. We define a memory
assertion that asserts the allocation of enough room to hold a whole structure.

Definition 5.4.7 (subrep_range, src/ObcToClight/SepInvariant.v:870)

os-rangeGE ,∗
bindingsE

λ (x, (b, τ)) . b : [0, sizeof(G, τ))

The function bindings turns an environment into the corresponding association list.
Now we can define a memory assertion that uses the separating implication to express

ownership over the locations used to store field values (os-repG f E) and keep the
possibility of relinquishing this ownership to assert ownership over the whole range
(os-rangeGE), without ever having to detail exactly where the padding is.
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Definition 5.4.8 (outputsrep, src/ObcToClight/SepInvariant.v:1293)

outs-repGm E , os-repG f E ∗ (os-repG f E −−∗ os-rangeGE)

In the actual development we add an additional pure assertion ensuring that variables of
the domain of E are all of the form out$-$-, to make sure that generated function names,
of the form fun$-$- cannot be found in E (see the rule for function calls in figure 5.6c).

Local variables correspondence
The last correspondence is between local Obc variables that are not outputs, and Clight
temporaries. The corresponding memory assertion is entirely pure since temporaries are
directly bound to values.

Definition 5.4.9 (varsrep, src/ObcToClight/SepInvariant.v:1057)

vars-repm ve L , pure(∀xτ ∈ m.in +m.vars, dve((x))eL(x))

The correspondence predicate
The whole state correspondence predicate can then be defined as a memory assertion by
separately combining all the independent assertions.

Definition 5.4.10 (match_states, src/ObcToClight/SepInvariant.v:1298)

match-statepG cls m (me, ve) (E,L) lself bcoout , self-reppG cls me L lself

∗ out-repG cls m ve L bcoout

∗ outs-repGm E

∗ vars-repm ve L

This memory assertion is the key invariant of the correctness proof: it provides all the
information needed while ensuring the separation in the Clight side.

5.4.3.2 Properties

Loading operations
We use s-rep and fs-rep to prove dedicated extensions of the “load rule” (lemma 5.4.3 on
page 162) for looking up values of expressions like self->x, out->x or i.x in the memory.

Lemma 5.4.6 (staterep_deref_mem, src/ObcToClight/SepInvariant.v:455)
Given a program p containing a class cls named c, a memory tree me and a memoryM such
that M � s-reppG c me (bself, δself), then, for any state variable declaration xτ ∈ cls.regs,
load(κτ ,M, (bself, δself + field-offset(G, x, fields cls))) .= me(x).

Lemma 5.4.7 (fieldsrep_deref_mem, src/ObcToClight/SepInvariant.v:595)
Given a memoryM , a list of fields ϕ, and a block identifier b such thatM � fs-repG ve ϕ b,
then, for any field xτ ∈ ϕ, load(κτ ,M, (b, field-offset(G, x,ϕ))) .= ve(x).
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Storing operations
Similarly, we specialize the “store rule” (lemma 5.4.4 on page 162) for the s-rep invariant.
As storing operation updates the memory, so we must show the preservation of the
invariant used as an hypothesis.

Lemma 5.4.8 (match_states_assign_state_mem, src/ObcToClight/SepInvariant.v:1465)
Given a program p, a name c, a memory tree me, a memory M , a global environment G,
a temporary environment L, a location (bself, δself) and an assertion R such that M �
s-reppG c me (bself, δself) ∗ R, then, for any state variable declaration xτ ∈ cls.regs and
value v of type τ , there exists a memory M ′ such that:

1. store(κτ ,M, (bself, δself + field-offset(G, x, fields cls)) , v) .= M ′, and

2. M � s-reppG c me(x 7→ v) (bself, δself) ∗R,

In practice, we lift this result over the match-state predicate, as it prevents tedious
reasoning with the frame rule, and as assignments to state variables always occur in a
context where match-state holds anyway.

The second type of assignment is to an output variable of m.

Lemma 5.4.9 (outputrep_assign_gt1_mem, src/ObcToClight/SepInvariant.v:1378)
Given a class cls, a method m, an environment ve, a memory M , a global environment
G, a temporary environment L, an optional pair of a structure location and fields bcoout
and an assertion R such that M � out-repG cls m ve L bcoout ∗ R, if m has strictly
more than one output, then there exist a block identifier bout and fields ϕout such that
bcoout = Some(bout,ϕout), and, for any output declaration xτ ∈ m.out and value v of type
τ , there exist a memory M ′ such that:

1. store(κτ ,M, (bout, field-offset(G, x, fields cls)) , v) .= M ′, and

2. M ′ � out-repG cls m ve{x 7→ v} L bcoout ∗R

Allocating operations
We also extend the “allocation rule” (lemma 5.4.1 on page 162) to show that the memory
allocated at function entry corresponds with the output structure declarations used for
sub-calls with strictly more than one output. The following lemma relies on several
technical results that are not presented.

Lemma 5.4.10 (alloc_result, src/ObcToClight/SepInvariant.v:1687)
Given a memory M and a memory assertion R such that M � R, then there exist an
environment E and a memory M ′ such that, for any method m,
alloc-vars(G,M,mult-outsm) .= (E,M ′) and M ′ � outs-repGm E ∗R.

Now we generalize this extended allocation rule to function entry specifications. The
idea is to show that starting from an accordingly specified pre-call memory state, a
function is entered with a memory state that satisfies match-state. The following result
has two different cases, depending on the way outputs are handled. If the source Obc
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method has zero or one output, then we only need a pre-call memory that satisfies only
s-rep (the self pointer), otherwise we also need an assertion fs-rep (the out pointer). For
this particular result, we must require that p is well-typed and successfully translated into
a generated Clight program P, with associated global environment GP = globalenv(P).

Lemma 5.4.11 (function_entry_match_states, src/ObcToClight/SepInvariant.v:1761)
Given a class cls named c, declared in p, having a method m named f ; a list of values
v whose types are input types of m; a memory tree me and a function definition Fd
generated from m, then:

• If m has zero or one output, then, for any memory M, memory assertion R and
location l such that M � s-reppGP

c me l ∗ R, there exist an environment Ef , a
temporary environment Lf and a memory Mf such that:

1. function-entry(Fd, (Vptr l) · v,M) .= (Ef , Lf ,Mf )

2. Mf � match-statepGP
cls m

(
me,∅

{
m.in1 7→ v

})
(Ef , Lf ) l None ∗R

• If m has strictly more than one output, then, for any memory M, memory asser-
tionR, location l, block identifier b and structure fieldsϕ such that comp(GP , fc)

.= ϕ
and M � s-reppGP

c me l ∗ fs-repGP ∅ ϕ b ∗ R, there exist an environment Ef , a
temporary environment Lf and a memory Mf such that:

1. function-entry(Fd, (Vptr l) · (Vptr (b, 0)) · v,M) .= (Ef , Lf ,Mf )

2. Mf � match-statepGP
cls m

(
me,∅

{
m.in1 7→ v

})
(Ef , Lf ) l (Some(b,ϕ))∗R

Freeing operation
Finally, we extend the “free rule” (lemma 5.4.2 on page 162).

Lemma 5.4.12 (free_exists, src/ObcToClight/SepInvariant.v:1036)
Given a memory M , a global environment G, an assertion R and an environment E such
thatM � os-rangeGE ∗R, then there exists a memoryM ′ such that free-env(M,E) .= M ′

and M ′ � R.

5.5 Correctness of the generation function
The proof of correctness of the generation of Clight code is the longest of the whole Vélus
development. It is divided in four steps:

1. Static structural properties about the generated program upon success of the
generation function, involving results about generated functions, structures or
global variables.

2. State correspondence predicates defined as memory assertions.

3. Correctness at the level of execution of a method in a given class.

4. Correctness of the behavior of the whole generated program.
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As for previous passes, the first step will not be discussed since the structural properties
follow more or less directly from the generation function definition. The second step
was presented in section 5.4.3. The last two steps are the subjects of the two following
sections, where we assume that the translation of a well-typed Obc program p succeeds,
generating a Clight program P with associated global environment GP = globalenv(P).

5.5.1 Local correctness
The two following sections describe the intermediate results concerning generated expres-
sions, assignments and function call evaluation. We assume in these two sections that p
contains a class cls with a method m. Moreover, we fix me, ve,M , E, L, lself = (bself, δself),
bcoout and R such that the following hypothesis holds.

Hypothesis 5.5.1

M � match-statepGP
cls m (me, ve) (E,L) lself bcoout ∗R

The idea is to work in the context of Obc and Clight states that are in correspondence.
We first show that the value of an Obc expression is correctly calculated by the Clight
expression generated from it. We then extend this result for statements.

5.5.1.1 Expressions

Locations of indirect field accesses
The following two lemmas ensure the evaluation of fields accesses of out and self pointers
to memory locations.
The first one below guarantees that whenever out-rep holds, then for any output

variable x of the Obc method, the Clight expression out->x evaluates to a valid memory
location. The states bound by hypothesis 5.5.1 are not used here because of assignments
to output fields that can occur after a function call. Indeed, in this particular case, as we
will see later, the generic predicate match-state does not hold.

Lemma 5.5.1 (evall_out_field, src/ObcToClight/Correctness.v:230)
Given an environment ve1, a temporary environment L1, a memory M1 and a memory
assertion R1 such that M1 � out-repGP cls m ve1 L1 bcoout ∗ R1, assume that m has
strictly more than one output, then there exist a block identifier bout and structure
fields ϕout such that bcoout = Some (bout,ϕout), and, for any output variable xτ ∈ m.out,
temp-ind-field-loc(GP , L1, out, x) .= (bout, field-offset(GP , x,ϕout)).

The second lemma below guarantees that for any Obc state variable x in the current
method, the Clight expression self->x evaluates to a valid memory location under
hypothesis 5.5.1.

Lemma 5.5.2 (evall_self_field, src/ObcToClight/Correctness.v:336)
For any state variable xτ ∈ cls.regs,
temp-ind-field-loc

(
GP , L, self, x

) .= (bself, δself + field-offset(GP , x, fields cls)).
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Local variables
The following results relate variable values in Obc to the evaluation of these variables in
Clight.

Lemma 5.5.3 (eval_out_field, src/ObcToClight/Correctness.v:252)
Assume that m has strictly more than one output, then, for any output variable xτ ∈
m.out, GP , E, L ` out->x,M ⇒ ve(x).

Corollary 5.5.3.1 (eval_var, src/ObcToClight/Correctness.v:297)
For any declaration xτ that belongs to the input, output or local variable declarations
of m, GP , E, L ` gen-var xτ ,M ⇒ ve(x).

State variables
The following lemma guarantees that for any Obc state variables x with value in me, the
Clight expression self->x evaluates to the same value.

Lemma 5.5.4 (eval_self_field, src/ObcToClight/Correctness.v:358)
For any state variable declaration xτ ∈ cls.regs, GP , E, L ` self->x,M ⇒ me(x).

General expressions
Now that translated variables are shown to evaluate correctly, we can proceed to state
the general theorem about the correct evaluation of the translation of an Obc expression.

Theorem 5.5.5 (expr_correct, src/ObcToClight/Correctness.v:406)
Given a well-typed Obc expression e and a value v such that me, ve ` e

V

bvc, then

GP , E, L ` gen-exp e,M ⇒ v

We generalize this result to the evaluation of a list of translated expressions as function
parameters with type casts.

Corollary 5.5.5.1 (exprs_correct, src/ObcToClight/Correctness.v:446)
Given a list of well-typed expressions e and a list of values v such that me, ve ` e

V

bvc,
then

GP , E, L ` (type e) ( gen-exp e),M ⇒ v

5.5.1.2 Statements

At the end of this section, we present the correspondence theorem for statements generated
from Obc statements. We work towards this result by first presenting the three main base
cases needed to prove it by induction: (1) assignments to local variables, (2) transfers of
outputs after a function call, and (3) function calls themselves.
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Local variable assignments
We show a key invariant preservation result for assignments generated by the assign
function (see figure 5.4b on page 147). We do not use the whole match-state assertion, but
rather a stripped-down version mentioning only out-rep for assignments to output variables,
and vars-rep for assignments to unique output or other local variables. Consequently,
we state the following result in a different context than that of hypothesis 5.5.1. If the
defining expression evaluates to a value v in Clight, the lemma below states that the
generated assignment to x evaluates to give a new state that corresponds to a suitably
updated Obc environment.

Lemma 5.5.6 (exec_assign, src/ObcToClight/Correctness.v:480)
Given an environment ve1, a memory M1, a temporary environment L1, a memory
assertion R1, a variable declaration xτ of method m, a Clight expression a of type τ and
a value v of type τ such that:

1. M1 � out-repGP cls m ve1 L1 bcoout ∗ vars-rep cls ve1 L1 ∗R1, and

2. GP , E, L1 ` a,M1 ⇒ v,

then there exist a memory M ′ and a temporary environment L′ such that:

1. GP , E, L1 ` assign(x, a) ,M1
ε==⇒ Normal, L′,M ′

2. M ′ � out-repGP cls m ve1{x 7→ v} L′ bcoout ∗ vars-rep cls ve1{x 7→ v} L′ ∗R1

For this lemma, the vars-rep component of the invariant is not used to prove the semantic
evaluation of the statement; we only use it to show that it is preserved by evaluation of
the statement.

Transfers of output variables after a function call
When a method named f ′ of a sub-instance i has strictly more than one output, the
generation function adds a sequence of special assignments after the function call to copy
the values of the output structure to the appropriate locations. As those statements do
not appear in the source Obc program, we need to adapt our invariants. Looking at the
definition 5.4.6 on page 168 of os-rep that appears in the outs-rep part of match-state,
recall that the idea is to assert that for each pair (i, f ′) there exists a locally declared
structure whose address is held by a local variable if ′ and whose content is not specified.
We express this assertion using fs-rep with an empty environment. After the function call,
this environment should associate the output parameters of the Obc method to the values
returned by that method, the fs-rep assertion then guarantees that the fields of the Clight
output structure contain the same values. After a function call with multiple outputs,
match-state does not hold since the output variables in Obc are updated directly, but
the corresponding variables in Clight are not. We re-establish match-state by reasoning
that the sequence of Clight assignments after the function call correctly transfers the
values defined by fs-rep before we weaken the fs-rep assertion by forgetting its content.
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For the following two lemmas, assume that there exist:

1. a callee method m′ with name f ′ and strictly more than one output, of a class with
name c′ that is declared in p,

2. an Obc environment vef ′ representing the return environment of the method m′
after the call,

3. a Clight variable if ′ and a block identifier b such that E
(
if ′
)

= (b, struct f ′c′),
that is, if ′ holds the address of the corresponding output structure, and

4. structure fields ϕ of the output structure such that comp(GP , f
′
c′) .= ϕ.

We begin by proving an intermediate result that states the correctness of the evaluation
of a field access to the output structure when the content of the structure is known.

Lemma 5.5.7 (eval_inst_field, src/ObcToClight/Correctness.v:592)
Given a memory M1, a temporary environment L1 such that M1 � fs-repGP vef ′ ϕ b,
then, for any output declaration xτ ∈ m′.out, GP , E, L1 ` if ′.x,M1 ⇒ vef ′(x).

Now we can show that the sequence of assignments after a function call preserves the
specialized invariant.

Lemma 5.5.8 (exec_funcall_assign, src/ObcToClight/Correctness.v:669)
Given a memoryM1, a memory assertion R1, a list of values v that are well-typed relative
to the output types of m′ such that:

1. vef ′(y) = v, where m′.out = yτ and

2. M1 � fs-repGP vef ′ ϕ b

∗ out-repGP cls m ve L bcoout

∗ vars-repm ve L
∗R1

then, for any list x of local variables of m, there exist a memory M ′ and a temporary
environment L′ such that:

1. GP , E, L ` assign
(
x, if ′.y

)
,M1

ε==⇒ Normal, L′,M ′

2. M ′ � fs-repGP vef ′ ϕ b

∗ out-repGP cls m ve{x 7→ v} L′ bcoout

∗ vars-repm ve{x 7→ v} L′

∗R1
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Function calls
The main challenge in reasoning about the correctness of function calls is to formulate a
lemma that can be proved by mutual induction over the Obc semantics. In particular, as
we have to handle three distinct cases relative to the number of outputs of the method
being called, the induction hypothesis is a bit involved. The following definition is not the
induction hypothesis per se, but rather a specification on the execution of a call. Indeed,
it does not mention the semantics of Obc function calls but directly states the expected
execution of a call and the expected state after the call, given a state on function entry
(as given by lemma 5.4.11 on page 171).

Definition 5.5.1 (call_spec, src/ObcToClight/Correctness.v:706)
Given a class cls, a method m, lists of values v and w and memory trees me and me′,
the predicate call-spec(cls,m,v,w,me,me′) is defined as follows.
For any location l, memory M and memory assertion R, there exists a function defini-
tion Fd generated from m, and:

• If m has no output and M � s-reppGP
cls.name me l ∗ R, then there exists a

memory M ′ such that:
1. GP ` Fd ((Vptr l) · v) ,M ε==⇒ Vundef,M ′

2. M ′ � s-reppGP
cls.name me′ l ∗R

• If m has only one output and M � s-reppGP
cls.name me l ∗ R, then there exist a

memory M ′ and a value r such that:
1. GP ` Fd ((Vptr l) · v) ,M ε==⇒ r,M ′

2. w = [r]
3. M ′ � s-reppGP

cls.name me′ l ∗R

• If m has strictly more than one output, and given a block identifier b and structure
fields ϕ such that comp(GP , fc)

.= ϕ where f and c are the names of m and cls,
respectively, and M � s-reppGP

cls.name me l ∗ fs-repGP ∅ ϕ b ∗R, then there exist a
memory M ′ and an environment vef such that:

1. GP ` Fd ((Vptr l) · (Vptr (b, 0)) · v) ,M ε==⇒ Vundef,M ′

2. vef (y) = w where m.out = yτ

3. M ′ � s-reppGP
cls.name me′ l ∗ fs-repGP vef ϕ b ∗R

Let us explain each case. The first two are similar: when the method has zero or one
output, we do not use an output structure, therefore we only need s-rep. The idea is
to recursively select the sub-structure in the memory which is in correspondence with
the sub-tree me, and to assert that the invariant is preserved by the call, with updated
M ′ and me′. In both cases, the first value passed to the call is a pointer towards the
sub-structure. In the second case, the function does return a value that must equal the
single Obc return value. In the third case, when m has strictly more than one output, in
addition to s-rep, we must ensure that memory for the output structure is allocated—even
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if its contents are unspecified. Then, after the call, the state representation is updated,
and the output structure is constrained to contain the Obc return values w.

Now, recall the match-state context given by hypothesis 5.5.1 and assume additionally
that there exists a callee method m′ named f ′ of a class cls′ named c′ that is declared
in p, and that ic′ is the corresponding sub-instance declaration of cls. We express the
correctness result for the whole translation of a method call (see the funcall function in
figure 5.4b on page 147), using call-spec as the induction hypothesis.

Lemma 5.5.9 (exec_binded_funcall, src/ObcToClight/Correctness.v:748)
Given a list x of local variables of m with the same types as the outputs of m′, a list of
values v, a list of values w well-typed relative to the outputs of m′, a memory tree me′i
and a list of Clight expressions a with the same types as the inputs of m′, such that
GP , E, L ` (type a) (a),M ⇒ v and call-spec

(
cls′,m′,v,w, (sub i me) ,me′i

)
holds, then,

under some extra well-typing and well-formedness constraints, there exist a memory M ′
and a temporary environment L′ such that:

1. GP , E, L ` funcall(x, c′, i, f ′,a) ,M ε==⇒ Normal, L′,M ′

2. M ′ � match-statepGP
cls m (me[i 7→ me′i] , ve{x 7→ w}) (E,L′) lself bcoout ∗R

5.5.1.3 General statements

Now that all key intermediate results have been presented (expressions, assignments and
function calls evaluation), we can show the main correctness result. In other correctness
proofs, for instance from NLustre to Stc and from Stc to Obc, we proceed in two steps:
(1) we show the correctness of the evaluation of statements under the hypothesis that its
calls are correct, then (2) we show the correctness of calls by induction on the program
using the correctness result on statements. While sometimes a bit cumbersome, this
scheme usually works well. But not for the generation of Clight, because the translation
function is not recursive and is monadic. While in Lustre, NLustre, Stc and Obc, a
program is a bare list of nodes, systems and classes, respectively, the Clight generation
function produces a list of function and structure declarations plus a main entry point, so
it is not possible to reason directly by induction on the program being translated. Still,
we adapt the same idea: using the well-formedness predicate that specifies the order of
declarations in the translated Obc program p, we apply a mutual induction scheme on
both the semantics of statements and of method calls on suffixes of p. In the development,
the Coq mutual induction scheme that we use requires that both parts are stated as a
single conjunction. We fix the following hypothesis (both statements are satisfied by any
Obc program processed by the argument initialization pass described in section 5.1).

Hypothesis 5.5.2
Assume that p satisfies the NoNakedVars predicate and that any Obc method call on
defined values only returns defined values.
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Theorem 5.5.10 (mutual_correctness, src/ObcToClight/Correctness.v:1011)

• Given a program p′ that is a suffix of p, a class cls declared in p that has a method
m, a statement s that occurs in the body of m, environments ve and ve′, memory
trees me and me′, a memory M , a memory assertion R, an environment E, a
temporary environment L, a location lself and an optional pair bcoout of a block
identifier and structure fields such that:
1. p′,me, ve ` s

V

(me′, ve′)
2. M � match-statepGP

cls m (me, ve) (E,L) lself bcoout ∗R
Then there exist a memory M ′ and a temporary environment L′ such that:

1. GP , E, L ` gen-stmtp,m.out s,M
ε==⇒ Normal, L′,M ′

2. M ′ � match-statepGP
cls m (me′, ve′) (E,L′) lself bcoout ∗R

• Given a program p′ that is a suffix of p, a class cls of name c declared in p that
has a method m of name f , a list of values v that are well-typed relative to the
input types of m, a list of values w, and memory trees me and me′ such that

p′,me ` c.f (bvc)
bwcV

me′, then call-spec(cls,m,v,w,me,me′) holds.

We then directly deduce the main correctness result.

Corollary 5.5.10.1 (stmt_call_correctness, src/ObcToClight/Correctness.v:1267)
Given a class cls named c, declared in p, and that has a method m named f , a list of
values v that are well-typed relative to the input of m, a list of values w, and memory
trees me and me′ such that

p,me ` c.f (bvc)
bwcV

me′

then
call-spec

(
cls,m,v,w,me,me′

)
5.5.2 Program correctness

In this section, we present the specifications and proofs for the generated main function
that resets the global program state and then repeatedly reads input values, passes them
to the step function, and writes the resulting output values. By virtue of the generation
function, we know that there exists a class cmain named main-node in p, and that this
class has two methods smain and rmain named step and reset respectively.

5.5.2.1 Volatile operations

The volatile reads of inputs and writes of outputs are the only operations in the generated
program that produce events. We start by defining the result traces that correspond to
the execution of the read and write statements described in figure 5.5 on page 149.
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Definition 5.5.2 (load_events, src/Traces.v:70)
Given a list ins = x1

τx1 · · ·xiτ
x
i , and list of values v = v1 · · · vi,

read-tracev ins , Evload
(
κτ

x
1 , x1, 0, event-val v1

)
· · · Evload

(
κτ

x
i , xi, 0, event-val vi

)
Definition 5.5.3 (store_events, src/Traces.v:71)
Given a list outs = y1

τy1 · · · yjτ
y
j , and a list of values w = w1 · · ·wj ,

write-tracew outs , Evstore
(
κτ

y
1 , y1, 0, event-valw1

)
· · · Evstore

(
κτ

y
j , yj , 0, event-valwj

)
Each function maps values and variable declarations to a list of events. The event-val

function translates a standard value into an event value, such that event-val v
κ'
G
v holds

for any G—we do not need the global environment since we do not deal with pointer
values here—provided that v is well-typed relative to the type information of κ. Recall
(see section 5.3.1.1) that we write w κ'

G
v to denote the correspondence between the

standard value v and the event value w.
We show that the execution of the read and write statements yields the corresponding

traces. We begin with the volatile loads, which produce the expected trace whatever the
memory state.

Lemma 5.5.11 (exec_read, src/ObcToClight/Correctness.v:1391)
Given a list of values v that are well-typed relative to the inputs of smain, an environment
E, a temporary environment L and a memory M , then
GP , E, L ` read,M

read-trace v smain.in============⇒ Normal, L{x 7→ v} ,M , where smain.in = xτ .

The volatile writes occur after the call to the main step function and their correctness
relies on the program state at this point. We have to distinguish the cases where smain
has zero, one, or strictly more than one output. In the last case, recall that a structure
type named stepmain-node is globally declared and that the main function declares a local
variable outstep with this type.

Lemma 5.5.12 (exec_write, src/ObcToClight/Correctness.v:1513)
Given a list of values w that are well-typed relative to the outputs of smain, an environment
E, a temporary environment L and a memory M such that:

• If smain has one output yτ , then there exists a single value w such that w = [w]
and L(y) = w.

• If smain has strictly more than one output then there exist an environment ve,
a block identifier b and structure fields ϕ such that comp(GP , stepmain-node)

.= ϕ,
E(outstep) = (b, struct stepmain-node), M � fs-repGP ve ϕ b and ve(y) = w where
smain.out = yτy .

Then GP , E, L ` write,M
write-tracew smain.out=============⇒ Normal, L,M .
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E ` Fstep (xs) ,M ′
n+1

ys
GP ` Fstep (Vptr (bself, 0) · xsn) ,M ε==⇒ Vundef,M ′

E ` Fstep (xs) ,M
n

ys
if ‖smain.out‖ = 0

E ` Fstep (xs) ,M ′
n+1

ys
GP ` Fstep (Vptr (bself, 0) · xsn) ,M ε==⇒ w,M ′ ysn = [w]

E ` Fstep (xs) ,M
n

ys
if ‖smain.out‖ = 1

E ` Fstep (xs) ,M ′
n+1

ys symbol(GP , stepmain-node)
.= ϕ

E(outstep) = (b, struct stepmain-node)
GP ` Fstep (Vptr (bself, 0) · Vptr (b, 0) · xsn) ,M ε==⇒ Vundef,M ′

M ′ � fs-repGP ve ϕ b ve(y) = w

E ` Fstep (xs) ,M
n

ys

if ‖smain.out‖ > 1,
where smain.out = yτ

Figure 5.10: Big-step looping predicate

5.5.2.2 Evaluation of the main loop

For the correctness of the body of the main function, we introduce a coinductive predicate
that specifies the looping execution of the main step function. We use the same style
of looping semantic judgments in Stc (figure 3.6c on page 83) and Obc (figure 4.2d on
page 103). We use this predicate for the intermediate correctness results as it can be
directly related to the looping execution semantics of Obc.

Assume, as a property of the generation function that there exists a Clight function Fstep,
named stepmain-node, that corresponds to the translation of the method smain. Similarly,
assume that the variable self is globally declared, that is, there exists a block identifier bself
such that symbol(GP , self) .= bself. The predicate is presented under these assumptions

in figure 5.10. We write E ` Fstep (xs) ,M
n

ys to mean that, in the context of the
environment E, the function Fstep is executed repeatedly, taking successive inputs from
the stream of lists of values xs from instant n onwards and constraining the stream ys of
lists of outputs values from instant n onwards. Depending on the number of outputs of
smain, the predicate specifies, the memory state after each call.

We show that this predicate simulates one step of the main loop body, that we designate
main-loop-body, described in figure 5.5 on page 149, with the according trace obtained
from the concatenation of the trace of the loads with the trace of the stores. In the
following, we fix xs and ys as two streams of lists of values that are well-typed (at each
instant) relative to the input and output types of smain respectively.
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Lemma 5.5.13 (exec_body, src/ObcToClight/Correctness.v:1700)
Given an integer n, an environment E, a memory Mn and a temporary environment Ln

such that E ` Fstep (xs) ,Mn
n

ys, then there exist a temporary environment Ln+1 and
a memory Mn+1 such that:

1. GP , E, L
n ` main-loop-body,Mn tn==⇒ Normal, Ln+1,Mn+1

where tn = read-trace xsn smain.in + write-trace ysn smain.out

2. E ` Fstep (xs) ,Mn+1
n+1

ys

We must use the small-step semantics of Clight (presented in section 5.3.1.1), to show
that generated programs diverge reactively. We coinductively define a function that
builds an infinite trace from input and output streams of lists of values and input and
output variable declarations.

Definition 5.5.4 (mk_trace, src/Traces.v:120)
Given a natural integer n, two streams of lists of values xs and ys and two lists of
variable-type declarations ins and outs,

trace-stepn xs ys ins outs , read-trace xsn ins + write-trace ysn outs
++ trace-stepn+1 xs ys ins outs

provided that read-trace xsn ins + write-trace ysn outs 6= ε.

The condition on read-trace and write-trace ensures that the infinite trace is productive. To
fulfill this requirement, we need to prove that ∀n, ‖xsn‖ = ‖ins‖, ∀n, ‖ysn‖ = ‖outs‖,
and that ins and outs are not simultaneously empty.

We show that the looping predicate represents the infinite execution of the main loop,
using the small-step semantics. This is important for the final proof.

Lemma 5.5.14 (reactive_loop, src/ObcToClight/Correctness.v:2006)
Given a natural number n, an environment E, and a memory Mn such that

E ` Fstep (xs) ,Mn
n

ys, then for any function Fd, temporary environment Ln and
continuation k,

GP ` S(Fd,main-loop, k, E, Ln,Mn) Tn−−→ ∞

where Tn = trace-stepn xs ys (smain.in) (smain.out).

5.5.2.3 Correctness of the main entry point body

In addition to the previous assumptions on Fstep, xs, ys, self and bstep, we will assume
that Freset is the Clight generated function named resetmain-node that corresponds to the
rmain method. We also fix a context where the main step method is executed repeatedly
on the streams xs and ys and on a memory tree me0 that is initialized by a unique call
to the main reset method.
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Hypothesis 5.5.3

1. p,∅ ` main-node.reset (ε)
εV

me0

2. p,me0 ` main-node.step (bxsc)
0
bysc

Finally, we also assume a Clight environment Emain, a temporary environment Lmain and
a memory Mmain that represent the state at the entry of the main entry point of the
Clight program. We specify this state according to the number of outputs of the smain
method. If it has zero or one output then we only assert s-rep for the global self variable,
and if it has strictly more than one output we add a fs-rep assertion that corresponds to
the locally declared structure named outstep.

Hypothesis 5.5.4

• If smain has zero or one output, then Mmain � s-reppGP
main-node ∅ (bself, 0).

• Otherwise, there exist a block identifier b and structure fields ϕ such that:
1. comp(GP , stepmain-node)

.= ϕ

2. E(outstep) = (b, struct stepmain-node)
3. Mmain � s-reppGP

main-node ∅ (bself, 0) ∗ fs-repGP ∅ ϕ b

We begin by showing that the main reset call in the body of the main entry point
function, as shown in figure 5.5 on page 149, evaluates correctly and initiates the looping
execution of the main step function.

Lemma 5.5.15 (exec_reset, src/ObcToClight/Correctness.v:1948)
There exists a memory M0 such that:

1. GP , Emain, Lmain ` resetmain-node(&self),Mmain
ε==⇒ Normal, Lmain,M

0

2. E ` Fstep (xs) ,M0
0

ys

5.5.2.4 Correctness of the generated program

We know, as a property of the generation function, that the main entry point of the
generated program P exists, that is, there is a block identifier bmain and a function
definition Fmain such that symbol(G,P.main) .= bmain and funct(G, b) .= Fmain. Using
the semantics of Clight programs (figure 5.8d on page 157), to show that P diverges
reactively producing an infinite trace T , we must show that there exists a memory Minit
that satisfies the two following antecedents, where Cmain = C(Fmain, ε, stop,Minit):

1. initial-state(P, Cmain)

2. GP ` Cmain
T−−→ ∞
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To show the existence of Minit , we show the following intermediate result that addi-
tionally specifies the memory.

Lemma 5.5.16 (init_mem, src/ObcToClight/SepInvariant.v:1977)
There exists a memory Minit such that initmem(P) .= Minit and
Minit � s-repGP

G p main-node ∅(bself, 0).

As a direct consequence, we know that the witness Minit of lemma 5.5.16 satisfies the
memory initialization predicate. For the sake of simplicity, we exhibit the existential
witnesses progressively, whereas we cannot in the Coq proof.

Corollary 5.5.16.1 (initial_state_main, src/ObcToClight/Correctness.v:2051)
initial-state(P, Cmain) holds.

We must still prove the reactive divergence of the call to the main entry point
function, that is, GP ` Cmain

T−−→ ∞. To show the correctness of the trace, we want
T = T 0 = trace-step0 xs ys smain.in smain.out. The first step is the entry step into the
actual main function.

Lemma 5.5.17 (main_entry, src/ObcToClight/Correctness.v:1340)
There exist an environment Emain, a temporary environment Lmain, and a memory Mmain
such that function-entry(Fmain, ε,Minit)

.= (Emain, Lmain,Mmain) and they satisfy hypothe-
sis 5.5.4.

Finally, we show the correctness result for the whole generated program, in a context
that satisfies hypotheses 5.5.2 and 5.5.3 on page 177 and on the preceding page.

Theorem 5.5.18 (correctness, src/ObcToClight/Correctness.v:2105)
Given xs and ys, two streams of lists of values that are well-typed (at each instant)
relative to the input and output types of smain, respectively, and a memory tree me0 such
that:

1. p,∅ ` main-node.reset (ε)
εV

me0

2. p,me0 ` main-node.step (bxsc)
0
bysc

Then we have
P ⇓ Reacts

(
trace-step0 xs ys smain.in smain.out

)

183

https://github.com/INRIA/velus/tree/lelio-thesis/src/ObcToClight/SepInvariant.v#L1977
https://github.com/INRIA/velus/tree/lelio-thesis/src/ObcToClight/Correctness.v#L2051
https://github.com/INRIA/velus/tree/lelio-thesis/src/ObcToClight/Correctness.v#L1340
https://github.com/INRIA/velus/tree/lelio-thesis/src/ObcToClight/Correctness.v#L2105




Chapter 6
Conclusion

The previous chapters have presented a sequence of languages, semantic models, compi-
lation passes, and correctness results. We now describe how they are combined to give
an end-to-end correctness proof (section 6.1), before summarizing the presented work
(section 6.2) and outlining future possibilities (section 6.3).

6.1 End-to-end correctness

6.1.1 The compilation function

The overall compilation function combines the individual transformations described
in previous chapters and integrates a CompCert function that compiles Clight into
assembly code. The elaboration pass, the scheduling validator, and the CompCert
function may all fail in one way or another. This possibility is treated formally by an
error monad (res, CompCert/common/Errors.v:46). A result, of type resA, is either
OK r where r is of type A, or an error Error—actually the Error constructor carries an
error message that we omit for simplicity. We use the following notations, inspired
from the programming language Haskell, for the usual monadic binding, mapping and
sequencing operators. Their roles is essentially to propagate Error. The binding operator
>>= : resA → (A → resB) → resB takes a result and applies a partial function on it.
The mapping operator <$> : resA→ (A→ B) applies a total function on a result. The
sequencing operator >> : resA → resB → resB sequentializes partial operations. It is
defined with the >>= operator.

OK r >>= f , f r

Error >>= f , Error

OK r <$> f , OK (f r)
Error <$> f , Error

r1 >> r2 , r1 >>= λ -. r2

We combine the source transformations described in the previous chapters and recalled
in figure 6.1 into a monadic compilation function. The compilation function takes a list
of parsed raw declarations and the name of the main node, and returns the elaborated
NLustre program and the generated assembly program, in the error monad.
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Definition 6.1.1 (compile, src/Velus.v:80)

compileD f , n-elabD >>= λ {G | H} . OKG (n-elaboration, §2.3.3)
<$> i-tr (i-translation, §3.2.2)
<$> sch>>= is-well-sch (scheduling, §4.2.3)
<$> s-tr (s-translation, §4.3)
<$> fuse (fusion optimization, §4.5.1)
<$> init-args (argument initialization, §5.1)
>>= gen f (generation, §5.2.2)
>>= cl-to-asm (compilation)
<$> λP. (G,P )

The n-elab function produces an NLustre program G from the list of declarations D, with
a proof H that G is well-typed, well-clocked, and respects the normalization condition on
the arguments of node instantiations. The i-tr function transforms the elaborated NLustre
program into an Stc program, that is scheduled by the external scheduler sch whose result
is validated by the is-well-sch function presented below. The s-tr function transforms the
scheduled Stc program into an imperative Obc program, that is optimized by the fuse
function that fuses adjacent conditionals. The init-args function ensures that no method
is called on an undefined variable, then the Obc program is translated into Clight by
the gen function. The rest of the compilation is carried out by the cl-to-asm function
(transf_clight2_program, src/ClightToAsm.v:31) which is an extension of CompCert.
The compile function returns both the elaborated program G and the compiled assembly
program P .
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The is-well-sch function lifts the test is-well-sch-tcs (listing 4.3 on page 109) into the
error monad, generalizing over the whole program.
Definition 6.1.2 (is_well_sch, src/Velus.v:54)

is-well-sch-system r s , r >> if is-well-sch-tcs (set-of-listy) x s.tcs then OK() else Error

where s.in = xτx,ckx and s.inits = ycy,cky

is-well-schP , fold-l is-well-sch-system P (OK())>> OKP

6.1.2 The proof of correctness
For the compile function to be correct, the generated assembly program must run forever
and produce an infinite trace that alternates volatile load and store events that correspond
to the values in the input and output streams of the main node in the source NLustre
program.
To prove this, we first define a function that builds an infinite trace from a node and

its input and output coinductive streams.
Definition 6.1.3 (trace_node, src/Correctness.v:131)
Given a natural number i, a node n and lists of coinductive streams of values xs and ys,

trace-nodei xs ys n , trace-stepi (to-idx xs) (to-idxys) xτx yτy

where n.in = xτx,ckx and n.out = yτy,cky

This function uses trace-step (definition 5.5.4 on page 181), that builds an infinite
trace from indexed streams of lists of values and variable declarations, and to-idx
(definition 2.4.4 on page 62) that turns a list of coinductive streams into an indexed
stream of lists. The definition, as for trace-step, needs additional hypotheses, namely
‖xs‖ = ‖n.in‖, ‖ys‖ = ‖n.out‖ and n.in, and n.out are not both empty, which is
guaranteed by syntactic invariants.
We define a predicate that relates a node, its input and output streams, and a given

infinite trace.
Definition 6.1.4 (bisim_IO, src/Correctness.v:176)

node(G, f) .= n ‖xs‖ = ‖n.in‖ ‖ys‖ = ‖n.out‖
trace-node0 xs ys n ≡ T

bisim-IOG f xs ys T
Now we can state the ultimate correctness theorem.

Theorem 6.1.1 (correctness, src/Correctness.v:468)
Given a list of declarations D, a node identifier f , lists of streams of values xs and ys,
an NLustre program G and an assembly program P such that compileD f = OK (G,P ),
the values in xs are well-typed relative to the input declarations of the node named f ,
and G ` f (‹xs›) ⇓ ‹ys›, then there exists an infinite trace of events T such that

P ⇓asm Reacts(T ) and bisim-IOG f xs ys T
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Proof. Inversion on the compilation hypothesis suffices to show that each pass succeeds.
Let n be the main node such that node(G, f) .= n, n.in = xτx,ckx its input declarations
and n.out = yτy,cky its output declarations. We then proceed step-by-step, as represented
in figure 6.2.

1. We apply theorem 2.4.3 (page 62) to deduce the indexed semantics of the node.

G ` f (‹ to-idx xs›) �� ‹ to-idxys›

2. Theorem 3.3.2 (page 92) gives a memory stream M such that the NLustre memory
semantics holds.

G,M ` f (‹ to-idx xs›) �� ‹ to-idxys›

3. The first compilation step is i-translation, that is, translation to Stc. We apply
corollary 3.3.12.1 (page 96) to obtain thatM0 is initial with respect to the semantics
of Stc, and that the semantics of the repeated activation of the default transition
of the translated node is preserved.

initial-state (i-trG) f M0

i-trG,M0 ` f (‹ to-idx xs›)
0	 ‹ to-idxys›

4. Corollary 4.2.3.1 (page 111) ensures that scheduling preserves the semantics. An
intermediate result ensures that initial-state is preserved by scheduling. Moreover,
another intermediate result shows that the scheduled program sch (i-trG) is indeed
well-scheduled, since is-well-sch succeeds.

initial-state (sch (i-trG)) f M0

sch (i-trG),M0 ` f (‹ to-idx xs›)
0	 ‹ to-idxys›

5. The next pass is s-translation, that is, translation to Obc. Corollary 4.4.23.1
(page 128) shows the existence of a memory tree me0 ∼∼∼M0 that is produced by an
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initial call to the reset method of the translated class, and such that the semantics
of the endless repeated execution of the step method is preserved.

s-tr (sch (i-trG)), {∅} ` f.reset (ε)
εV

me0

s-tr (sch (i-trG)),me0 ` f.step (b to-idx xsc)
0
b to-idxysc

6. We apply lemma 4.5.3 and corollary 4.5.3.1 (page 135) to show that the fusion
optimization preserves the Obc semantics.

fuse (s-tr (sch (i-trG))), {∅} ` f.reset (ε)
εV

me0

fuse (s-tr (sch (i-trG))),me0 ` f.step (b to-idx xsc)
0
b to-idxysc

7. The semantics preservation for the argument initialization is given by theorem 5.1.1
and corollary 5.1.1.1 (page 140). These results need the hypotheses that the Obc
program is in SSA form and that its methods inputs are never assigned. A first
intermediate result ensures the former for the translation of any well-scheduled Stc
program, and another one ensures the latter for the translation of any Stc program.
These hypotheses are proved to be preserved by the fusion optimization, so they
are satisfied.

init-args (fuse (s-tr (sch (i-trG)))), {∅} ` f.reset (ε)
εV

me0

init-args (fuse (s-tr (sch (i-trG)))),me0 ` f.step (b to-idx xsc)
0
b to-idxysc

8. The next pass is the generation of Clight code. Let Pcl be the generated program.
We apply theorem 5.5.18 (page 183) to obtain an infinite trace that corresponds to
the execution of the generated Clight program.

Pcl ⇓ Reacts
(

trace-step0 (to-idx xs) (to-idxys) xτx yτy

)
9. The correctness lemma about cl-to-asm, that compiles the Clight program Pcl

into the assembly program P , states that it preserves the reactive behavior of the
program (reacts_trace_preservation, src/ClightToAsm.v:224).

P ⇓asm Reacts
(

trace-step0 (to-idx xs) (to-idxys) xτx yτy

)
Now that we have a witness for the trace T , it remains to show that it satisfies bisim-IO.
All antecedents are discharged easily but for the bisimilarity obligation. We must show
that trace-node0 xs ys n ≡ trace-step0 (to-idx xs) (to-idxys) xτx yτy . Even if it seems
to be a direct consequence of the definition 6.1.3 of trace-node, we need an intermediate
result shown by coinduction to get around difficulties about proof irrelevance, since
trace-node and trace-step have non-represented parameters that are proofs.
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6.2 Summary

In chapter 2, we presented the formalization of the Lustre dialect treated by Vélus, and
in particular, the formalization of the semantics of the modular reset. Our model of
the modular reset requires only one additional semantic rule. We also presented two
equivalent semantic models for NLustre, the normalized version of Lustre, based on two
representations for streams: as coinductive objects, and as functions.
Chapter 3 introduced the Stc language that permits improved code generation and

facilitates semantic reasoning after the addition of the modular reset. In Stc, a node is
translated into a system that has a state and transitions. The proof of correctness from
NLustre to Stc is based on a third semantic model for NLustre where the state of a node
is made explicit.

In Chapter 4, we described the generation of imperative Obc code. Each Stc system is
translated into an Obc class with fields and two methods step and reset. Before being
translated, the Stc transition constraints are scheduled to fix the sequential order of
execution in the generated imperative code. We showed how to optimize the generated
Obc code to reduce the number of conditionals.
Chapter 5 presented the generation of Clight. The proof of correctness relies on

separation logic to relate the tree-like memory model of Obc with the realistic low-level
memory model that is used in CompCert.

Finally, in the previous section, we showed how we combine everything to establish an
end-to-end correctness proof for a compilation function from NLustre to assembly code.
This function is extracted from Coq to OCaml and integrated into a compiler from a
normalized dialect of Lustre with modular reset to an executable binary.

6.3 Outlook

This thesis shows the feasibility of a verified compiler for a subset of Lustre with modular
reset. Its components also have value individually. Our ideas and definitions may provide
a useful starting point for formalizing other reactive languages in an ITP. The semantic
rule for the reset construct is novel and interesting independently of the Coq development.
The intermediate language Stc seems to be a useful compromise between NLustre and Obc
for expressing and reasoning about optimizations. Like Lustre, it provides a language
modeling transition systems with function abstraction and composition, but it also
explicitly specifies the manipulation of states. The integration of Clight into all our
languages and the techniques used to compile Obc into Clight could serve as a model for
other verified compilers.

The Vélus experiment continues. In the short term, we aim to complete the elaboration
and transcription passes and to implement normalization. Optimization and efficiency of
generated code has always been part of the design of Lustre [Halbwachs, Raymond, and
Ratel (1991); Gérard et al. (2012)] and synchronous languages in general. Beside the
fusion optimization that we implement, some other optimizations could be formalized and
added on dataflow and imperative programs, for instance, dead-code elimination, common
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sub-expression elimination, and copy elimination. An interesting question is to determine
which optimizations can be left to CompCert and whether optimizations performed
upstream in a synchronous compiler interfere with those implemented downstream in
CompCert. The way we handle multiple outputs in the translation from Obc to Clight
makes the compilation function and its correctness proof rather intricate: we could
investigate another common approach where outputs are stored in the same structure
that holds the state of the node. Additionally, remark that the correctness result of
theorem 6.1.1 is conditioned by the existence of a semantics for the NLustre node. Ideally,
we would like a stronger statement where the existence of the semantics is deduced from
the well-formedness analyses; this question is the subject of ongoing research. Moreover,
our final theorem states a simulation from the source NLustre semantics to the target
Assembly semantics, but to achieve refinement, we need the converse direction. It can
be shown, provided the source program has a semantics, that if the target semantics is
deterministic, then refinement can be deduced. In our case, the Assembly semantics of
CompCert is deterministic, so it only remains to solve the problem of the existence of
the semantics for an NLustre program.

A longer term goal is to mechanize the syntax, semantics, and compilation algorithms
for state machines. The modular reset is a prerequisite for compiling state machines, but
we also need variant types and switch expressions [Colaço, Pagano, and Pouzet (2005)].
Such additions will require generalizations of the type systems, the semantic models and
the compilation algorithms. Other features provided by compilers like SCADE [Colaço,
Pagano, and Pouzet (2017)] and Heptagon [Delaval et al. (2017)], which support far
richer languages than our compiler, could also be investigated:

• The distinction between nodes that have a state and purely combinatorial functions
is only a matter of specializing the compilation algorithms. Purely combinatorial
functions can be compiled without requiring a local state and methods.

• Adding the pre construct requires implementing an initialization analysis to ensure
that a value is only used when it is defined [Colaço and Pouzet (2004)]. The ->
operator requires the introduction of initial states per clock.

• Arrays [Gérard et al. (2012)], whose integration into Vélus seems difficult both in
terms of semantics and of code optimization.

• Activation conditions could be given a semantics in Lustre and compiled into
NLustre using the when, fby and merge operators.

• We could adapt the Lustre semantics to handle the generalized 3-arguments fby
of Scade. Its efficient compilation into NLustre would require arrays and index
manipulations (using chained fby equations would give the same effect but may
induce excessive copying).

• Parametricity of nodes, that allows a node to take static parameters, requires
specific work.
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Table 6.1: Lines of Coq code in Vélus (comments and blanks excluded)

compilation specification proofs other total
Lustre 2071 2071
CoreExpra 2204 2204
NLustre 567 4360 3621 8548
Stc 65 2708 750 3523
Obc 105 2555 2352 5012
NLustre to Stc 71 1553 1624
Stc to Obc 137 2590 2727
Obc to Clight 434 2052 5097 7583
Commonb 59 3825 388 4605 8877
Total 1438 (3%) 19775 (47%) 16351 (39%) 4605 (11%) 42169
a The common expression kernel language between NLustre and Stc.
b End-to-end compilation, common specifications and standard library extensions.

• Records could be implemented with variant types, but they require work to adapt
the type systems, find a way to model in-place modifications and to compile them
efficiently into Clight.

• External calls could be used to implement abstract data types. CompCert handles
external calls and we could take inspiration from the way it models them.

• Side effects would require our semantic models to be adapted to take effects into
account. How to do this is unclear and it may be preferable to maintain a purely
functional language.

The experiment of using translation validation in combination with fully verified
algorithms to implement scheduling in Stc shows the applicability of this approach. In
particular it could be applied to type and clock checking, that are currently part of
elaboration, making this pass very intricate. In general, we learned that simplicity is a
valuable goal when working in an ITP.

Finally, we hope that our formalization could be used to do Lustre program verification
directly in Coq. The idea would be to adapt our framework in order to be able to state
properties on the source Lustre programs and use our verified algorithms to show the
preservation of these properties on generated code.

The executable algorithms in Vélus are neither large nor complicated, yet a lot of
effort was required to prove them correct. Table 6.1 gives an overview of the size of the
Coq code base of Vélus: of roughly 42 000 lines of Coq code, only 3% define compilation
algorithms, the rest are used for specification (e.g., syntax, semantics, type and clock
systems, syntactic predicates) and correctness proofs. In CompCert, the compilation
algorithms make up 14% of the code base [Leroy (2009b)]. There is thus room for
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improvement in Vélus, bearing in mind, however, that one of the main challenges is to
specify and relate fundamentally different semantic paradigms.
Kästner et al. (2018) report on a promising experiment on integrating CompCert

into a safety-critical industrial application. The beneficial outcome of the experiment
both in terms of confidence in the generated code and of performance shows that the
approach of verified compilation may be worth the effort. But the rationale for a verified
compiler for C does not transfer automatically to a verified compiler for Lustre. Our
work does not address the question of apply ITP-based formal methods in the context
of the development of certified application such as SCADE. This is an important and
interesting topic in itself.
The goal of mechanizing a compiler and its end-to-end correctness proof in an ITP

imposed a discipline that led us to take a fresh look at questions that are otherwise
easily overlooked and to develop the key contributions of this thesis. First, to reason
effectively about the modular reset, we had to design a semantic rule that is suitable
for reasoning within an ITP, well suited for compilation correctness proofs, and simpler
than previous models. Second, to generate reasonable code, we had to introduce a novel
intermediate language and formulate a suitable semantic model. Third, to connect the
proofs to CompCert, we had to to propose a solution for relating an abstract tree-like
memory model with a machine-level memory model. Implementing a verified compiler
in an ITP is difficult, time-consuming and fastidious, but it is also a fruitful source of
challenges and ideas.
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Appendix A
Vélus source files

CompCert/ the CompCert development

extraction/ the directory concerning the code extraction process
extracted/ the directory to which the OCaml code is extracted
Extraction.v the Coq file driving the extraction process

src/ the directory containing the actual Coq development of Vélus
Common/ some common definitions and lemmas

CommonList.v additional results over the Coq standard library for lists
CommonTactics.v common tactics
Common.v gathering both files above plus some additional definitions

and lemmas
CompCertLib.v some definitions and results over CompCert internal stan-

dard library
Lustre/ the Lustre frontend language

Parser/ lexing and parsing
LustreParser.vy §Cthe verified Menhir parser
LustreAst.v the raw abstract syntax
LustreLexer.mll §Bthe Ocamlyacc lexer
Relexer.ml conversion of tokens for the incremen-

tal version of the parser used for errors
messages

LSyntax.v §2.2.1the abstract syntax of Lustre
LTyping.v §E.1typing rules
LClocking.v clocking rules
LSemantics.v §2.2.2coinductive semantics of Lustre
Lustre.v meta-library, gathering everything about Lustre
lustrelib.ml OCaml generic printer for Lustre

CoreExpr/ the core expression language (shared by NLustre and Stc)
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CESyntax.v§2.3.2 abstract syntax
CEIsFree.v free variables
CETyping.v§E.2 typing rules
CEClocking.v§2.3.4 clocking rules
CESemantics.v§2.3.6 instantaneous and indexed semantics
CEInterpreter.v§2.4.1 a correct interpreter
CEClockingSemantics.v enforcing synchronous execution
CEProperties.v additional properties
CoreExpr.v meta-library
coreexprlib.ml OCaml generic printer for CoreExpr

NLustre/ the normalized Lustre intermediate language
NLSyntax.v§2.3.2 abstract syntax
NLElaboration.v elaboration of NLustre code
NLOrdered.v enforcing the order of node declarations
Memories.v variables defined by a fby

IsDefined.v variables defined by a set of equations
IsVariable.v defined variables not defined by a fby

IsFree.v free variables
NoDup.v unicity of the left-hand side of the equations
NLNormalArgs.v§4.4.4.2 normalization condition on nodes’ arguments
NLTyping.v§E.2 typing rules
NLClocking.v§2.3.4 clocking rules
NLIndexedSemantics.v§2.3.6 instantaneous and indexed semantics
NLMemSemantics.v§3.3.1 alternative semantics bringing up node instances

and state variables and the proof that it contains
the standard semantics

NLClockingSemantics.v enforcing synchronous execution
NLCoindSemantics.v§2.3.5 alternative coinductive streams semantics
NLCoindToIndexed.v§2.4.1 the indexed semantics encompasses the coinductive

one
NLIndexedToCoind.v§2.4.2 vice versa
NLustre.v meta-library
nlustrelib.ml OCaml generic printer for NLustre
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Stc/ the intermediate transition system language
StcSyntax.v §3.2.1abstract syntax
StcOrdered.v enforcing the order of declarations
StcIsInit.v state variables
StcIsVariable.v defined variables which are not state variables
StcIsDefined.v defined variables
StcIsFree.v free variables
StcIsSystem.v called blocks
StcTyping.v §E.3typing rules
StcClocking.v §3.2.3clocking rules
StcSemantics.v §3.2.4instantaneous transition semantics
StcClockingSemantics.v enforcing synchronous execution
StcWellDefined.v §§4.2.1 and 4.4.4.2well scheduled, ordered and normalized programs
StcSchedule.v §4.2.3.1scheduler specification
StcSchedulingValidator.v §4.2.2verified scheduling validator
Stc.v meta-library
stclib.ml OCaml generic printer and external scheduler for

Stc
Obc/ the intermediate imperative language

ObcSyntax.v §4.1.1abstract syntax
ObcInvariants.v §§4.5.2 and 5.1syntactic invariants
ObcAddDefaults.v §5.1argument initialization
Fusion.v §4.5fuse adjacent conditionals on the same guard
ObcTyping.v §E.4typing rules
ObcSemantics.v §4.1.2operational big-step style semantics
Equiv.v §5.1quotient set of programs by semantics equivalence
Obc.v meta-library
obclib.ml OCaml generic printer for Obc

NLustreToStc/ translation from NLustre to Stc
Translation.v §3.2.2i-translation
NL2StcTyping.v typing preservation
NL2StcClocking.v clocking preservation
NL2StcNormalArgs.v §4.4.4.2normalization results preservation
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Correctness.v§3.3.2 correctness of the translation
StcToObc/ translation from Stc to Obc

Translation.v§4.3 s-translation
Stc2ObcTyping.v typing preservation
Stc2ObcInvariants.v§4.5.3 various syntactic invariants preservation
StcMemoryCorres.v§4.4.2 correspondence between Stc state and Obc state
Correctness.v§4.4 correctness of the translation

ObcToClight/ interface with CompCert and Clight code generation
Interface.v§5.3.2 instantiation with types, operators and values from Com-

pCert
Generation.v§5.2.2 generation of Clight code
GenerationProperties.v properties of the generation function
MoreSeparation.v§5.4.2 some definitions over the internal SL library of CompCert
SepInvariant.v§5.4.3 SL assertions to describe the state of a Clight program
Correctness.v§5.5 correctness of the generation function
interfacelib.ml OCaml instantiated printers and printer for Clight

ClockDefs.v basic definitions around clocks
Clocks.v lemmas and properties about clocks
Ident.v identifier specification and properties
Environment.v a library extending the standard maps with positive keys of Coq
VelusMemory.v a library defining a generic tree-based memory model
CoindStreams.v streams of A as coinductive sequences of A
IndexedStream.v streams of A as functions from N to A (indexed streams)
Operators.v specification of values, types and operators
Traces.v§5.5.2.1 specification and definitions around traces of a Clight program
Instantiator.v instantiate the various functors
ClightToAsm.v compilation of Clight to Assembly (CompCert extension)
Velus.v§6.1.1 gathering all passes together
Correctness.v§6.1.2 end-to-end proof of correctness
veluscommon.ml shared OCaml definitions: generic printers for operators and

types, conversion between Coq and OCaml integers
veluslib.ml OCaml implementation of side-effect procedures used in the compi-

lation chain (e.g. command-line flags handling, printers)
velusmain.ml the main driver of the compiler
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Vélus lexical conventions

Below are the main lexical conventions used by Vélus, with the only difference with
CompCert being the impossibility of using the character $ in identifier_nondigit, as we
use it as an internal separator in generated Clight code. References to relevant sections
of the ISO C 99 standard are indicated.

Identifiers §6.4.2.1
digit ::= 0. . . 9

nondigit ::= _ | a. . . z | A. . . Z

identifier_nondigit ::= nondigit

identifier ::= identifier_nondigit (identifier_nondigit | digit)∗

Note that the standard allows universal_character_name (see below) to be used in
identifier_nondigit but CompCert does not.1 Vélus follows CompCert on this point.

White-space characters §6.4
whitespace ::= ␣ | \t | \n | \012 | \r

The \012 character denotes the form feed in OCaml syntax. In the standard, the vertical
tab is mentioned instead of the carriage return character.

Integer constants §6.4.4.1
nonzero_digit ::= 1. . . 9

decimal_constant ::= nonzero_digit digit∗

octal_digit ::= 0. . . 7

octal_constant ::= 0 octal_digit∗

hex_prefix ::= 0x | 0X

hex_digit ::= 0. . . 9 | A. . . F | a. . . f

hex_constant ::= hex_prefix hex_digit+

unsigned_suffix ::= u | U
1The relevant line is actually commented out in CompCert sources (CompCert/cparser/Lexer.mll).
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long_suffix ::= l | L

long_long_suffix ::= ll | LL

integer_suffix ::= unsigned_suffix [long_suffix]
| unsigned_suffix long_long_suffix
| long_suffix [unsigned_suffix]
| long_long_suffix [unsigned_suffix]

integer_constant ::= decimal_constant [integer_suffix]
| octal_constant [integer_suffix]
| hex_constant [integer_suffix]

Floating constants §6.4.4.2
sign ::= - | +

digit_sequence ::= digit+

floating_suffix ::= f | l | F | L

fractional_constant ::= [digit_sequence] . digit_sequence
| digit_sequence .

exponent_part ::= e [sign] digit_sequence
| E [sign] digit_sequence

decimal_floating_constant ::= fractional_constant [exponent_part] [floating_suffix]
| digit_sequence exponent_part [floating_suffix]

hex_digit_sequence ::= hex_digit+

hex_fractional_constant ::= [hex_digit_sequence] . hex_digit_sequence
| hex_digit_sequence .

binary_exponent_part ::= p [sign] digit_sequence
| P [sign] digit_sequence

hex_floating_constant ::= hex_prefix hex_fractional_constant
binary_exponent_part [floating_suffix]

| hex_prefix hex_digit_sequence
binary_exponent_part [floating_suffix]

floating_constant ::= decimal_floating_constant
| hex_floating_constant

Character constants §6.4.4.4
simple_escape_sequence ::= \ (’ | " | ? | \ | a | b | e | f | n | r | t | v)

octal_escape_sequence ::= \ (octal_digit
| octal_digit octal_digit
| octal_digit octal_digit octal_digit)
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hex_escape_sequence ::= \x hex_digit+

hex_quad ::= hex_digit hex_digit hex_digit hex_digit

universal_chararcter_name ::= \u hex_quad
| \U hex_quad hex_quad

escape_sequence ::= simple_escape_sequence
| octal_escape_sequence
| hex_escape_sequence
| universal_character_name

char ::= escape_sequence
| any character different from ’, \n and \

char_literal ::= [L]’char+’

Note that the escape sequence \e, which represents the escape character, is non-standard
but is supported in e.g. GCC or Clang.

Comments §6.4.9
Vélus supports Scade-like comments, that is single line -- comments and multi-lines /* -
*/ comments.2 In addition, to be the most general possible, to C-like comment single line
// comments and OCaml-like nested multi-lines comments (* - *) are also supported.

2Contrary to C and Scade, multi-lines comments can be nested.
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Appendix C
The Lustre parser of Vélus

Below is a textual version of the parser used for Vélus, where some rules (lists, options)
have been inlined.1

Constants
bool_constant ::= true

| false

constant ::= CONSTANT
| bool_constant

Expressions
Expressions are parsed in the same way as in CompCert, reflecting the ISO C 99 standard,
with some operators renamed and Vélus-specific operators and constructs added.

primary_expression ::= ID
| constant
| ( expression+

, )

postfix_expression ::= primary_expression
| ID ( expression+

, )
| ( restart ID every expression ) ( expression_list )

unary_expression ::= postfix_expression
| unary_operator cast_expression
| # ( expression+

, )

unary_operator ::= -
| lnot
| not

cast_expression ::= unary_expression
| ( cast_expression : type_name )

multiplicative_expression ::= cast_expression+
fby

| multiplicative_expression * cast_expression+
fby

| multiplicative_expression / cast_expression+
fby

| multiplicative_expression mod cast_expression+
fby

1The corresponding LATEX code used here is obtained through the Obelisk tool I developed during my
PhD: github.com/Lelio-Brun/Obelisk.
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additive_expression ::= multiplicative_expression
| additive_expression + multiplicative_expression
| additive_expression - multiplicative_expression

shift_expression ::= additive_expression
| shift_expression lsl additive_expression
| shift_expression lsr additive_expression

when_expression ::= shift_expression
| when_expression when ID
| when_expression when not ID
| when_expression whenot ID

relational_expression ::= when_expression
| relational_expression < when_expression
| relational_expression > when_expression
| relational_expression <= when_expression
| relational_expression >= when_expression

equality_expression ::= relational_expression
| equality_expression = relational_expression
| equality_expression <> relational_expression

exclusive_OR_expression ::= equality_expression+
land

| exclusive_OR_expression lxor equality_expression+
land

| exclusive_OR_expression xor equality_expression+
land

expression ::= logical_AND_expression+
or

| if expression then expression else expression
| merge ID primary_expression primary_expression
| merge ID ( true -> expression )

( false -> expression )

ID represents a token carrying an identifier as described in the appendix B, translated
into a Coq positive using a CompCert internal function.2

Variable declarations
Variable are declared along with a type annotation type_name taken among the supported
type names and an optional clock annotation.

var_decl ::= ID+
, : type_name declared_clock

local_var_decl ::= var var_decl+; ;

type_name ::= int8 | int16 | int32 | int | int64
| uint8 | uint16 | uint32 | uint | uint64

2The OCaml function intern_string in the file CompCert/lib/Camlcoq.ml
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| float32 | float | float64 | real
| bool

declared_clock ::= ε
| when ID
| when not ID
| whenot ID
| :: clock

clock ::= .
| clock on ID
| clock onot ID

local_decl ::= local_var_decl

Equations, nodes and programs
A Lustre program is a list of nodes3. A node consists in a list of equations, which bind
expressions to patterns. Optionally, some assertions can be provided for testing purposes.

equation ::= ID+
, = expression ;

| ( ID+
, ) = expression ;

equations ::= ε
| equations equation
| equations assert expression ;

node_or_function ::= node
| function

declaration ::= node_or_function ID ( var_decl∗; ) [;]
returns ( var_decl∗; ) [;]
local_decl∗
let equations tel [;]

program ::= declaration+ EOF
| EOF

3Actually a list of nodes or functions, where a function is a purely combinatorial node, i.e, a node
without fby. Said differently, a node is a stateful function.
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Appendix D
Functorizing the development

Let Foo be a typed language that we want to formalize, containing only constants and
binary operations, with the following syntax:

e ::= c constant
| e ⊕ e operator

Assume that Foo is parametric over a simple abstraction layer, that we implement as a
module signature OPERATORS in the file Operators.v (note that here, we do not require
the semantics of operators to be type-dependent):

Module Type OPERATORS.
Parameter const: Type.
Parameter val: Type.
Parameter type: Type.
Parameter binop: Type.
Parameter type_const: const -> type.
Parameter sem_const: const -> val.
Parameter sem_binop: binop -> val -> val -> option val.
Parameter type_binop: binop -> type -> type -> option type.

End OPERATORS.
Coq (toy/Operators.v)

First, let us describe the abstract syntax of the language in a FooSyntax.v file. As we
want it to be parametric, we encapsulate the definitions in a functor parameterized by
the OPERATORS signature. Unfortunately, because of restrictions of the module system
of Coq, we have to reflect the dependency graph of each abstracted functor directly
in its call-graph. Consequently, we have to explicitly define both a signature and an
actual functor for each unit. Fortunately in Coq a module signature can contain actual
implementations, so at the end the actual functor can just include directly the signature.

Require Import Operators.

Module Type FOOSYNTAX (Import Op: OPERATORS).

Inductive expr: Type :=
| Econst: const -> expr
| Eop: binop -> expr -> expr -> expr.
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End FOOSYNTAX.

Module FooSyntaxFun (Op: OPERATORS) <: FOOSYNTAX Op.
Include FOOSYNTAX Op.

End FooSyntaxFun.

Coq (toy/FooSyntax.v)

The syntax is defined using the inductive Coq definition expr, made of two constructors
Econst for the constants and Eop for operator applications. The typeof definition is a
function used to retrieve the type of an expression: it uses the parameter type_const
to get the type of a constant or returns the type annotation in case of an operator
application.

Hence, consider the following typing rules, which judge whether that an expression is
well typed:

WTconst

` c : ιc

WTop
` e1 : t1 ` e2 : t2 ` ⊕ : t1 × t2 → t

` e1 ⊕ e2 : t

We can formalize these rules the same way in Coq, using a functor:

Require Import Operators FooSyntax.

Module Type FOOTYPING
(Import Op: OPERATORS)
(Import Syn: FOOSYNTAX Op).

Inductive wt: expr -> type -> Prop :=
| WTconst: forall c, wt (Econst c) (type_const c)
| WTop: forall op e1 e2 t1 t2 t,

wt e1 t1 ->
wt e2 t2 ->
type_binop op t1 t2 = Some t ->
wt (Eop op e1 e2) t.

End FOOTYPING.

Module FooTypingFun
(Op: OPERATORS)
(Syn: FOOSYNTAX Op) <: FOOTYPING Op Syn.

Include FOOTYPING Op Syn.
End FooTypingFun.

Coq (toy/FooTyping.v)

The well typedness is encoded by the inductive predicate wt with one case per syntactic
class of expr, which is made accessible by instantiating the functor FooSyntaxFun defined
in the imported library FooSyntax (the above file FooSyntax.v) with the Op parameter.
The predicate wt is a relation between expressions (expr) and types (type), that is a
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pair (e, t) belongs to the relation when one of the constructors can be applied to it and
its antecedents are satisfied. The constructors of wt can express arbitrarily complex
logical content. Here WTconst simply states that a constant is always well typed with
type type_const c, implementing ιc. And the chain of implications stated by WTop is to
be read as a list of premises before the last arrow—saying in order that e1 is well typed,
e2 is well typed, the return type of the operator can be resolved given the types of its
operands—and a conclusion after.1
Now consider the semantics of the language, given by the following inference rules

(where the symbol .= is used to denote the result of a partial function):

Sconst

` c ⇓ JcK

Sop
` e1 ⇓ v1 ` e2 ⇓ v2 J⊕K v1 v2

.= v

` e1 ⊕ e2 ⇓ v

And their implementation in Coq:

Require Import Operators FooSyntax.

Module Type FOOSEMANTICS
(Import Op: OPERATORS)
(Import Syn: FOOSYNTAX Op).

Inductive sem: expr -> val -> Prop :=
| Sconst: forall c, sem (Econst c) (sem_const c)
| Sop: forall op e1 e2 v1 v2 v,

sem e1 v1 ->
sem e2 v2 ->
sem_binop op v1 v2 = Some v ->
sem (Eop op e1 e2) v.

End FOOSEMANTICS.

Module FooSemanticsFun
(Op: OPERATORS)
(Syn: FOOSYNTAX Op) <: FOOSEMANTICS Op Syn.

Include FOOSEMANTICS Op Syn.
End FooSemanticsFun.

Coq (toy/FooSemantics.v)

The implementation is very similar to the one for typing: the semantic judgments are
modeled by the sem inductive predicate relating expressions to values, sem_const c im-
plementing the constant interpretation JcK and sem_binop op implementing the operator
semantics J⊕K.
Now, one can try to prove a progress-like [Pierce (2002)] result like:

∀e t, ` e : t → ∃v ` e ⇓ v
1Indeed, recall that A → B → C ↔ A ∧ B → C
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We need both semantics and typing to state the lemma, so in Coq, we write the following
in a separate FooProgress.v file:

Require Import Operators FooSyntax FooTyping FooSemantics.

Module Type FOOPROGRESS
(Import Op: OPERATORS)
(Import Syn: FOOSYNTAX Op)
(Import Typ: FOOTYPING Op Syn)
(Import Sem: FOOSEMANTICS Op Syn).

Section Progress.
Hypothesis binop_progress:

forall op e1 e2 t1 t2 t v1 v2,
wt e1 t1 ->
wt e2 t2 ->
sem e1 v1 ->
sem e2 v2 ->
type_binop op t1 t2 = Some t ->
exists v, sem_binop op v1 v2 = Some v.

Lemma foo_progress:
forall e t, wt e t -> exists v, sem e v.

Proof.
induction 1.
- exists (sem_const c). constructor.
- destruct IHwt1 as (v1 & ?), IHwt2 as (v2 & ?).

edestruct (binop_progress op e1 e2 t1 t2) as (v & ?); eauto.
exists v. econstructor; eauto.

Qed.
End Progress.

End FOOPROGRESS.

Module FooProgressFun
(Op: OPERATORS)
(Syn: FOOSYNTAX Op)
(Typ: FOOTYPING Op Syn)
(Sem: FOOSEMANTICS Op Syn) <: FOOPROGRESS Op Syn Typ Sem.

Include FOOPROGRESS Op Syn Typ Sem.
End FooProgressFun.

Coq (toy/FooProgress.v)

We proceed as before, importing relevant library and instantiating according functors
with the Op parameter. The lemma is placed into a section in which an hypothesis named
binop_progress is stated. This hypothesis basically extends the progress result to the
operators, allowing to prove the relevant case when doing the induction in the proof of
the lemma. The section mechanism is often used in the development of Vélus because it
helps to organize the content and reduces code duplication when several lemmas share
the same hypotheses. The bunch of code between the Proof and Qed keywords is a proof
script. It consists of tactics applications that are used to build the corresponding proof
term.
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Finally, to instantiate the abstraction layer, one needs only to provide a module giving
a concrete implementation of the signature OPERATORS and instantiate the cascade of
functors. For example:

Require Import Operators FooSyntax FooTyping FooSemantics FooProgress.
Open Scope bool_scope.

Module Op <: OPERATORS.
Inductive const_ind: Type :=
| Cnat: nat -> const_ind
| Cbool: bool -> const_ind.
Definition const := const_ind.
Definition val := const.
Inductive type_ind: Type :=
| Tnat
| Tbool.
Definition type := type_ind.
Inductive binop_ind: Type :=
| Plus
| Or.
Definition binop := binop_ind.
Definition type_const (c: const) : type :=

match c with
| Cnat _ => Tnat
| Cbool _ => Tbool
end.

Definition sem_const (c: const) : val := c.
Definition sem_binop (op: binop) (v1 v2: val) : option val :=

match op, v1, v2 with
| Plus, Cnat n1, Cnat n2 => Some (Cnat (n1 + n2))
| Or, Cbool b1, Cbool b2 => Some (Cbool (b1 || b2))
| _, _, _ => None
end.

Definition type_binop (op: binop) (t1 t2: type) : option type :=
match op, t1, t2 with
| Plus, Tnat, Tnat => Some Tnat
| Or, Tbool, Tbool => Some Tbool
| _, _, _ => None
end.

End Op.

Import Op.
Module Import Syn := FooSyntaxFun Op.
Module Import Typ := FooTypingFun Op Syn.
Module Import Sem := FooSemanticsFun Op Syn.
Module Import Prog := FooProgressFun Op Syn Typ Sem.

Coq (toy/FooInstantiate.v)

Notice that the implementation of Op is a bit verbose: const, type and binop are just
aliases to their actual inductive definitions; this is because Coq will not instantiate a
parameter by an inductive definition. With such an implementation of the abstraction
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layer it becomes possible to, for example, prove the progress-like lemma as we stated it
the first time. Here is the actual proof script, for the interested reader:

Require Import Operators FooSyntax FooTyping FooSemantics FooProgress.
Open Scope bool_scope.

Module Op <: OPERATORS.
Inductive const_ind: Type :=
| Cnat: nat -> const_ind
| Cbool: bool -> const_ind.
Definition const := const_ind.
Definition val := const.
Inductive type_ind: Type :=
| Tnat
| Tbool.
Definition type := type_ind.
Inductive binop_ind: Type :=
| Plus
| Or.
Definition binop := binop_ind.
Definition type_const (c: const) : type :=

match c with
| Cnat _ => Tnat
| Cbool _ => Tbool
end.

Definition sem_const (c: const) : val := c.
Definition sem_binop (op: binop) (v1 v2: val) : option val :=

match op, v1, v2 with
| Plus, Cnat n1, Cnat n2 => Some (Cnat (n1 + n2))
| Or, Cbool b1, Cbool b2 => Some (Cbool (b1 || b2))
| _, _, _ => None
end.

Definition type_binop (op: binop) (t1 t2: type) : option type :=
match op, t1, t2 with
| Plus, Tnat, Tnat => Some Tnat
| Or, Tbool, Tbool => Some Tbool
| _, _, _ => None
end.

End Op.

Import Op.
Module Import Syn := FooSyntaxFun Op.
Module Import Typ := FooTypingFun Op Syn.
Module Import Sem := FooSemanticsFun Op Syn.
Module Import Prog := FooProgressFun Op Syn Typ Sem.

Lemma type_binop_inv:
forall op t1 t2 t,

type_binop op t1 t2 = Some t ->
t1 = t /\ t2 = t.

Proof.
intros * Tbop.

212



destruct op, t1, t2; simpl in *;
inversion_clear Tbop; auto.

Qed.

Lemma sem_binop_inv:
forall op v1 v2 v,
sem_binop op v1 v2 = Some v ->
match v with
| Cbool _ => exists b1 b2, v1 = Cbool b1 /\ v2 = Cbool b2
| Cnat _ => exists n1 n2, v1 = Cnat n1 /\ v2 = Cnat n2
end.

Proof.
intros * Sop.
destruct op, v1, v2; simpl in *;
inversion_clear Sop; eauto.

Qed.

Lemma type_nat_not_bool:
forall e,
wt e Tnat ->
forall b, ~ sem e (Cbool b).

Proof.
induction e; intros * WT ? Sem.
- destruct c.

+ inversion Sem.
+ inversion WT.

- inversion WT as [|???????? Tbop];
inversion Sem as [|???????? Sop]; subst.

apply type_binop_inv in Tbop as (?&?); subst.
apply sem_binop_inv in Sop as (?&?&?&?); subst.
eapply IHe1; eauto.

Qed.

Lemma type_bool_not_nat:
forall e,
wt e Tbool ->
forall n, ~ sem e (Cnat n).

Proof.
induction e; intros * WT ? Sem.
- destruct c.

+ inversion WT.
+ inversion Sem.

- inversion WT as [|???????? Tbop];
inversion Sem as [|???????? Sop]; subst.

apply type_binop_inv in Tbop as (?&?); subst.
apply sem_binop_inv in Sop as (?&?&?&?); subst.
eapply IHe1; eauto.

Qed.

Lemma binop_progress:
forall op e1 e2 t1 t2 t v1 v2,
wt e1 t1 ->
wt e2 t2 ->
sem e1 v1 ->
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sem e2 v2 ->
type_binop op t1 t2 = Some t ->
exists v, sem_binop op v1 v2 = Some v.

Proof.
intros * WT1 WT2 S1 S2 Tbop.
destruct op, t1, t2; inversion Tbop; subst.
- destruct v1, v2; simpl; eauto;

match goal with H: sem _ (Cbool _) |- _ => contradict H end;
apply type_nat_not_bool; auto.

- destruct v1, v2; simpl; eauto;
match goal with H: sem _ (Cnat _) |- _ => contradict H end;
apply type_bool_not_nat; auto.

Qed.

Theorem progress:
forall e t, wt e t -> exists v, sem e v.

Proof.
apply foo_progress, binop_progress.

Qed.

Coq (toy/FooInstantiate.v),firstline=44
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Appendix E
Type systems

E.1 Lustre

The type system of Lustre formalized in Vélus is shown in figure E.1. This type system
is well understood. While higher-order polymorphic variants have been formalized
[Colaço, Girault, et al. (2004); Colaço, Pagano, and Pouzet (2005)] we focus on a simpler
monomorphic first order setup à la ML. We use the standard inference rules layout, for
example, the judgment Γ ` a reads “under the typing environment Γ, the construct a
is well typed”. As our Lustre internal dialect is annotated, the type system presented
here does not describe directly a type inference algorithm: it is strictly speaking a type
checking calculus, that is a predicate asserting the well-typedness of a construct relatively
to its type annotation.

Figure E.1a present the typing of clocks and named clocks. The base clock • is always
well typed, while a sub-clock is well typed if its parent clock is well typed and if its
condition variable has type bool (the boolean type that the abstraction layer must
provide, see section 2.1.1) in the environment.

Figure E.1c introduces the type system for expressions. A constant is always well typed.
A variable is well typed if it is bound to its type annotation in the environment and if its
clock annotation is well typed. Here, and in all the other rules, we require that the clock
annotation be well typed. Unary and binary operations are well typed if their operands
are, if their type annotations match with the input signature of the operator and if
the type annotation of the whole expression matches with the output signature of the
operator. The operator types takes an expression and strips its annotation into a list of
types. Refer to table 2.1 on page 22 for the type resolution of operators. A fby expression
is well typed if both its operands are and if their types match with the type annotation
of the expression. Several notations are lifted to lists in an intuitive way. Γ `α a is a
shortcut for ∀a ∈ a, Γ `α a. For types, types e indicates the flattened concatenation of
all the types of all the expressions in e. Γ(x) = τ expresses that each element of x is
bound in Γ to the element of τ of the same rank, assuming that both lists have the same
length. A sampling when expression is well typed if the condition variable is a boolean,
its sampled expression is well typed, and if its types match with the type annotation
of the whole expression. The typing of the merge operation operation is similar. The
hypotheses for the well typing of a conditional expression are almost the same as for
a merging operation, except that the variable is replaced by a single expression which
must also have a boolean type. For a node instantiation to be well typed, the arguments
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Γ ` •
Γ(x) = bool Γ ` ck

Γ ` ck on (x = b)

(a) Clocks
(wt_clock, src/Lustre/LTyping.v:44)

Γ ` ck
Γ ` (x : ck)

(b) Named clocks
(wt_nclock, src/Lustre/LTyping.v:52)

G,Γ ` c
Γ(x) = τ Γ ` nck

G,Γ ` xτ,nck
G,Γ ` e types e = [τe] ` � : τe → τ Γ ` nck

G,Γ ` (� e)τ,nck

G,Γ ` e1 G,Γ ` e2
types e1 = [τ1] types e2 = [τ2] ` ⊕ : τ1 × τ2 → τ Γ ` nck

G,Γ ` (e1 ⊕ e2)τ,nck

G,Γ ` e0 G,Γ ` e types e = types e0 = τ Γ ` nck
G,Γ ` (e0 fby e)a

where a = (τ,nck)

Γ(x) = bool G,Γ ` e types e = τ Γ ` nck
G,Γ ` (e when (x = b))τ ,nck

Γ(x) = bool G,Γ ` et G,Γ ` ef
types et = types ef = τ Γ ` nck
G,Γ ` (merge x et ef )τ ,nck

types e = [bool] G,Γ ` e G,Γ ` et G,Γ ` ef
types et = types ef = τ Γ ` nck
G,Γ ` (if e then et else ef )τ ,nck

G,Γ ` e node(G, f) .= n types e = τx τ = τy Γ ` nck
G,Γ ` (f(e))a

where
a = (τ,nck)
n.in = xτx,ckx

n.out = yτy,cky

G,Γ ` er types er = [bool]
G,Γ ` e node(G, f) .= n types e = τx τ = τy Γ ` nck

G,Γ ` ((restart f every er)(e))a
where

a = (τ,nck)
n.in = xτx,ckx

n.out = yτy,cky

(c) Expressions (wt_exp, src/Lustre/LTyping.v:57)

Figure E.1 (I): The type system of Lustre
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G,Γ ` e Γ(x) = types e

G,Γ ` x = e

(d) Equations (wt_equation, src/Lustre/LTyping.v:260)

∅{x 7→ τx} ` ckx ∅{x 7→ τx}{y 7→ τy} ` cky
Γ ` ckz G,Γ ` n.eqs

G `wt n
where

n.in = xτx,ckx

n.out = yτy,cky

n.vars = zτz,ckz

Γ = ∅{x 7→ τx}{y 7→ τy}{z 7→ τz}

(e) Nodes (wt_node, src/Lustre/LTyping.v:271)

`wt ε

`wt G G `wt n ∀n′ ∈ G, n.name 6= n′.name
`wt n ·G

(f) Programs (wt_global, src/Lustre/LTyping.v:278)

Figure E.1 (II): The type system of Lustre

must all be well typed, the instantiated node must exist in the program, and the call
input and output type signatures must match the static declaration type signatures. The
type checking of a modular reset simply adds to the node instantiation that the reset
expression must be well typed and of boolean type.

In sub-figure E.1d, we see that the typing of an equation is straightforward: an equation
is well typed if its right hand-side expressions are all well typed and if the variables of the
left hand-side are bound to the types of the expressions. The typing of a node, presented
in sub-figure E.1e, is more intricate. The input, output and local variables clocks have to
be type-checked, but with different typing environments. Input clocks are type-checked
over input variables, no matter the order. Then output clocks are typed-checked over
input and output variables, and finally local clocks are type-checked over all variables, as
well as the equations. A program is well typed as described by the sub-figure E.1f if all
of its nodes are well typed and have distinct names.
Even if I will not reproduce all the Coq definitions implementing this type system,

I still give a piece of it on the listing E.1: the typing of a when expression. This piece of
Coq code shows the definition of the constructor wt_Ewhen of the inductive predicate
wt_exp. This predicate is defined in a section in which two variables G of type global (a
program G of category g in the sub-figure E.1c) and vars of type list (ident * type)
(a typing environment Γ) are defined and act as implicit parameters for all subsequent
definitions, including wt_exp which appears here as a unary predicate over expressions.
Note that Γ is implemented as an association list, because it is the simplest map data
structure possible and that we do not need performance here since this code is purely
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typeof e2 = [ty2] ->
type_binop op ty1 ty2 = Some ty ->
wt_nclock nck ->
wt_exp (Ebinop op e1 e2 (ty, nck))

| wt_Efby: forall e0s es anns,

Coq (src/Lustre/LTyping.v:77–82)

Listing E.1: Well typing of a Lustre when expression

specification: it is not extracted nor compiled to executable code in the Vélus compiler.
Now, let us explain part by part the definition of wt_Ewhen, compared to the relevant
typing judgment of the sub-figure E.1c:

Forall wt_exp es implements G,Γ `e e using the Forall predicate from the List1 Coq
standard library which is satisfied if its first predicate argument is satisfied by every
elements of its second list argument.

typesof es = tys corresponds to types e = t. The typesof function uses the flat_map
function from the standard library to lift over the function typeof which strips the
annotation of an expression to the list of its types (both of them are defined in the
file src/Lustre/LSyntax.v).

In (x, bool_type) vars is a simple lookup in the association list vars, implementing
Γ(x) = bool. We use the In standard predicate which is satisfied when its first
argument actually appears in its second list argument. The type bool_type is the
one defined in the OPERATORS signature (see section 2.1.1).

wt_nclock nck encodes the antecedent Γ `nck nck asserting that the clock nck is well
typed. It uses the inductive predicate wt_nclock defined above in the file and
implementing the rules of figure E.1b.

wt_exp (Ewhen es x b (tys, nck)) corresponds to the conclusion of the correspond-
ing rule, G,Γ `e (e when (x = b))τ ,nck , stating that the when expression is well
typed.

E.2 NLustre
The type system of NLustre is shown as inductive rules on figure E.2. As for Lustre,
NLustre is an annotated language, in consequence the well-typed predicate simply checks
that the type annotation is consistent. Figures E.2a and E.2b present the type system
for expressions an control expressions. Compared to the typing of Lustre expressions
(see figure E.1c), the rules are much simpler: (1) expressions are not annotated with

1coq.inria.fr/library/Coq.Lists.List.html
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E.2 NLustre

Γ ` c Γ ` xΓ(x)
Γ ` e ` � : type e→ τ

Γ ` (� e)τ

Γ ` e1 Γ ` e2 ` ⊕ : type e1 × type e2 → τ

Γ ` (e1 ⊕ e2)τ
Γ(x) = bool Γ ` e
Γ ` e when (x = b)

(a) Expressions (wt_exp, src/CoreExpr/CETyping.v:44)

Γ(x) = bool Γ c̀ et Γ c̀ ef type et = type ef

Γ c̀ merge x et ef

type e = bool Γ ` e Γ c̀ et Γ c̀ ef type et = type ef

Γ c̀ if e then et else ef

Γ ` e
Γ c̀ e

(b) Control expressions (wt_cexp, src/CoreExpr/CETyping.v:71)

Γ(x) = type e Γ c̀ e Γ ` ck
G,Γ ` x =ck e

Γ(x) = type-const c = type e Γ ` e Γ ` ck
G,Γ ` x =ck c fby e

node(G, f) .= n type e = τx Γ(z) = τy Γ ` e Γ ` ck
G,Γ ` z =ck f(e)

where
n.in = xτx,ckx

n.out = yτy,cky

node(G, f) .= n type e = τx Γ(z) = τy Γ ` e
Γ(r) = bool Γ ` ckr Γ ` ck

G,Γ ` z =ck (restart f every rckr)(e)
where

n.in = xτx,ckx

n.out = yτy,cky

(c) Equations (wt_equation, src/NLustre/NLTyping.v:45)

Figure E.2: The type system of NLustre
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Γv(x) = type e Γv + Γsv c̀ e Γv + Γsv ` ck
P,Γv,Γsv ` x =ck e

Γsv(x) = type e Γv + Γsv ` e Γv + Γsv ` ck
P,Γv,Γsv ` next x =ck e

system(P, f) .=
(
s, P ′

)
type e = τx Γv(z) = τy

Γv + Γsv ` e Γv + Γsv ` ck
P,Γv,Γsv ` z =ck f<i, k>(e)

where
s.in = xτx,ckx

s.out = yτy,cky

system(P, f) .=
(
s, P ′

)
Γv + Γsv ` ck

P,Γv,Γsv ` reset f<i> every ck

Figure E.3: Typing rules for transition constraints (wt_trconstr, src/Stc/StcTyping.v:42)

clocks anymore, (2) node instantiations do not appear at expression level anymore, and
(3) expression can not be lists anymore.

Figure E.2c shows the typing of equations. As NLustre equations are annotated with
their activation clocks, contrary to Lustre, the clocks are type-checked at this level, with
exactly the same typing rules as for Lustre (see figure E.1a).
The well-typing predicate for a single node is similar to Lustre: it boils down to

checking that all the equations of the node are well-typed, using the input, output and
local variables declarations as typing environment.

The typing for a program is exactly identical as for Lustre, ensuring that each node in
the program is well-typed and that all nodes in the program have distinct names.

E.3 Stc

The type system of NLustre is directly adapted to Stc, in particular because expressions
are shared between the two languages. The only major difference is that two environments
are used for the typing: Γv for standard variables and Γsv for state variables. The reason
is to anticipate the translation to imperative Obc code so as to facilitate the well-typing
preservation proof.
Figure E.3 presents the well-typing rules of Stc transition constraints. As they are

highly similar with the rules for NLustre equations, we do not repeat here the explanations
already given.
The well-typing predicate for a system is similar to the well-typing predicate of an

NLustre node: all transition constraints must be well-typed, using the input, output and
local variables declarations as typing environment for variables and the state variables
declarations as typing environment for state variables.
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E.4 Obc

Γv,Γsv ` c Γv,Γsv ` xΓv(x) Γv,Γsv ` state(x)Γsv(x)

Γv,Γsv ` e ` � : type e→ τ

Γv,Γsv ` (� e)τ

Γv,Γsv ` e1 Γv,Γsv ` e2
` ⊕ : type e1 × type e2 → τ

Γv,Γsv ` (e1 ⊕ e2)τ Γv,Γsv ` [x]Γv(x)

(a) Expressions (wt_exp, src/Obc/ObcTyping.v:50)

Γv(x) = type e

p,Ei,Γv,Γsv ` x := e
Γsv(x) = type e

p,Ei,Γv,Γsv ` state(x) := e

Γv,Γsv ` e type e = bool p,Ei,Γv,Γsv ` s1 p,Ei,Γv,Γsv ` s2

p,Ei,Γv,Γsv ` if e { s1 } else { s2 }

Ei(i) = c class(p, c) .=
(
cls, p′

)
method(cls, f) .= m

all names in z are distinct
Γv(z) = τy type e = τx Γv,Γsv ` e

p,Ei,Γv,Γsv ` z := ic.f(e)
where

m.in = xτx

m.out = yτy

p,Ei,Γv,Γsv ` s1 p,Ei,Γv,Γsv ` s2

p,Ei,Γv,Γsv ` s1 ; s2 p,Ei,Γv,Γsv ` skip

(b) Statements (wt_stmt, src/Obc/ObcTyping.v:73)

Figure E.4: Type system of Obc

E.4 Obc
The type system of Obc is rather straightforward, yet as the approach is different from
what is done for Stc and NLustre, it is more informative. As for the type system of
Stc, the typing of annotated expressions shown in figure E.4a uses two different typing
environments Γv and Γsv for variables and state variables respectively.
Figure E.4b gives the typing rules for statements. They are all self-explanatory but

the rule for method calls. Indeed, compared to the typing rule for Stc default transitions
or NLustre node instantiations, we have more structural antecedents:

1. we require the defined variables to be all distinct, and

2. an additional parameter Ei, that holds the sub-instances declarations, is used to
check that the pair (i, c) is declared.

Both properties were guaranteed syntactically in upstream languages. Apart from the
fact that those languages were designed at relatively distant times, one of the reason is
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that the structures of systems or nodes in Stc and NLustre, that is lists of transition
constraints or equations, are easier to analyze and reason about that arbitrarily nested
composed statements in Obc.

To type programs, we introduce the typing of methods and classes.

Definition E.4.1 (wt_method, src/Obc/ObcTyping.v:106)
Given a program p, a sub-instances declarations environment Ei, a typing environment
for state variables Γsv and a method m, we define:

p,Ei,Γsv ` m , p,Ei,Γv,Γsv ` m.body

Where Γv = m.in +m.vars +m.out.

Definition E.4.2 (wt_class, src/Obc/ObcTyping.v:112)
Given a program p and a class cls, we define:

p ` cls , ∀m ∈ cls.methods, p, cls.insts, cls.regs ` m
∧ ∀ (i, c) ∈ cls.insts, ∃cls′ p′, class(p, c) .=

(
cls′, p′

)
A method is well-typed under p, Ei and Γsv when its body is well-typed under the same
parameters plus a typing environment consisting of its input, local and output variables
declarations. A class is well-typed under p if (1) all its methods are well-typed using its
sub-instances declarations and registers declarations as sub-instances environment and
state variable typing environment, and (2) all classes of its declared sub-instances appear
in p. Finally, as for other languages, a program is well-typed if all classes in the program
are well-typed and have distinct names.
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RÉSUMÉ

Les spécifications basées sur les schémas-blocs et machines à états sont utilisées pour la conception de systèmes
de contrôle-commande, particulièrement dans le développement d’applications critiques. Des outils tels que Scade et
Simulink/Stateflow sont équipés de compilateurs qui traduisent de telles spécifications en code exécutable. Ils proposent
des langages de programmation permettant de composer des fonctions sur des flots, tel que l’illustre le langage synchrone
à flots de données Lustre.
Cette thèse présente Vélus, un compilateur Lustre vérifié dans l’assistant de preuves interactif Coq. Nous développons
des modèles sémantiques pour les langages de la chaîne de compilation, et utilisons le compilateur C vérifié CompCert
pour générer du code exécutable et donner une preuve de correction de bout en bout. Le défi principal est de montrer
la préservation de la sémantique entre le paradigme flots de données et le paradigme impératif, et de raisonner sur la
représentation bas niveau de l’état d’un programme.
En particulier, nous traitons le reset modulaire, une primitive pour réinitialiser des sous-systèmes. Ceci implique la mise
en place de modèles sémantiques adéquats, d’algorithmes de compilation et des preuves de correction correspondantes.
Nous présentons un nouveau langage intermédiaire dans le schéma habituel de compilation modulaire dirigé par les
horloges de Lustre. Ceci débouche sur l’implémentation de passes de compilation permettant de générer un meilleur
code séquentiel, et facilite le raisonnement sur la correction des transformations successives du reset modulaire.

MOTS CLÉS

langages synchrones à flots de données, Lustre, Scade, compilation vérifiée, sémantique mécanisée, Vélus,
assistants de preuve interactifs, Coq, reset modulaire

ABSTRACT

Specifications based on block diagrams and state machines are used to design control software, especially in the certified
development of safety-critical applications. Tools like SCADE and Simulink/Stateflow are equipped with compilers that
translate such specifications into executable code. They provide programming languages for composing functions over
streams as typified by dataflow synchronous languages like Lustre.
In this thesis we present Vélus, a Lustre compiler verified in the interactive theorem prover Coq. We develop semantic
models for the various languages in the compilation chain, and build on the verified CompCert C compiler to generate
executable code and give an end-to-end correctness proof. The main challenge is to show semantic preservation between
the dataflow paradigm and the imperative paradigm, and to reason about byte-level representations of program states.
We treat, in particular, the modular reset construct, a primitive for resetting subsystems. This necessitates the design of
suitable semantic models, compilation algorithms and corresponding correctness proofs. We introduce a novel interme-
diate language into the usual clock-directed modular compilation scheme of Lustre. This permits the implementation of
compilation passes that generate better sequential code, and facilitates reasoning about the correctness of the successive
transformations of the modular reset construct.

KEYWORDS

synchronous dataflow languages, Lustre, Scade, verified compilation, mechanized semantics, Vélus, interac-
tive theorem provers, Coq, modular reset
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