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01. 
Journal 01: Engineering Applications of Artificial Intelligence (To be submitted) 

IOHMM for Estimating the Remaining Useful Life of an Aircraft Engine Under 

Multiple Operating Conditions  

Kamrul Islam Shahin1, Christophe Simon2, Philippe Weber3 
Keywords: Input Output Hidden Markov Model, Degradation, Diagnostic, Prognostic, RUL. 

Abstract: This paper proposes an Input-Output Hidden Markov Model (IOHMM) to describe how the remaining useful life 

(RUL) of aircraft gas turbine engines can be estimated under multiple operating conditions. The PHM data challenge 2008 is 

used to design the system with the IOHMM. In this paper, multiple inputs and multiple outputs are considered through the 

proposed model. The thermodynamic simulation model generated the data of all sensors as a function of variations of flow and 

the efficiency of the modules concerned. The exponential rate of flow variation and efficiency loss was established in each data 

set, starting at a randomly selected initial deterioration setpoint. The data set is in two parts: the training set and the testing set. 

The training set is used to estimate the model parameters. Well-known algorithms dedicated to Hidden Markov Model (HMM) 

are adapted to train IOHMM. Finally, the learned model is applied to the testing set for predicting the RUL of the system. 

Prognostic RUL considering both the offline and online operations is presented with a numerical example (Shahin, 2020). 

Résumé : Ce document propose un modèle de Markov caché à entrées-sorties (IOHMM) pour décrire comment la durée de vie 

résiduelle (RUL) des moteurs à turbine à gaz d'avion peut être estimée avec de multiples conditions de fonctionnement. Les 

données du PHM data challenge 2008 sont utilisées pour concevoir le modèle d’estimation par IOHMM. Dans ce document, 

de multiples entrées et sorties sont prises en compte par le modèle proposé. Dans le PHM data challenge 2008, un modèle de 

simulation thermodynamique a généré les données de tous les capteurs en fonction des variations de débit, des conditions de 

vol et de l'efficacité des modules concernés. Le taux exponentiel de variation du débit et de perte d'efficacité a été établi dans 

chaque ensemble de données, en partant d'un point de consigne de détérioration initiale choisi au hasard. L'ensemble de données 

se compose de deux parties : l'ensemble d’apprentissages et l'ensemble de tests. L'ensemble d’apprentissages est utilisé pour 

estimer les paramètres du modèle. Notre contribution porte sur l’adaptation d’algorithmes bien connus dédiés au modèle de 

Markov caché (HMM) pour leur application au PHM data challenge. Enfin, le modèle appris est appliqué à l'ensemble de tests 

pour prédire le RUL du système. Un exemple numérique de pronostic RUL prenant en compte à la fois le fonctionnement en 

ligne et hors ligne est présenté.  

02. 
Journal 02: Reliability Engineering & System Safety, 2020 (To be submitted) 

Bootstrap-IOHMM to Manage Remaining Useful Life Considering Multiple 

Operating Conditions 

Kamrul Islam Shahin1, Christophe Simon2, Philippe Weber3 

Keywords: System health, PHM, Input Output Hidden Markov Model, Degradation design, RUL, Condition monitoring. 

Abstract: Online remaining useful life (RUL) assessment is a significant asset in prognostic and health management systems 

(PHM) in many industrial domains where safety, reliability and cost reduction are of high importance. To reduce the cost, one 

solution is to repair/replace the system before an unexpected failure which usually handled by setting a maintenance window 

according to the estimated RUL. However, it is not easy to predict the breakdown state of a system if it has multiple operating 

conditions, because system degradation varies with the dynamics of the operations. So, the current estimated RUL could be 

different than estimated RUL in the future due to the different operating conditions. That is why online RUL assessment is a 

very important and much more effective approach on condition-based maintenance which could be done using the new meas-

urement that comes from the system each time. This paper presents an Input-Output Hidden Markov Model (IOHMM) that 

estimates the online RUL based on available measurements. The model then learns the impact of the operating condition on 

the RUL and offers to manage it by changing the corresponding operating conditions. A reference managing algorithm is 

presented to match the estimated RUL to a given target RUL. The well-known algorithms are used in the model training and 

diagnostic application which are adapted from HMM to IOHMM. A numerical application is given where a bootstrap method 
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applied to show the importance of good prediction from a limited number of data sequences. Since degradation is a slow 

process, it’s difficult to have enough data sequences having full information that covers till the system failure. Therefore, the 

bootstrap is an interesting method to train the IOHMM model by resampling with replacement. 

Résumé : L'évaluation en ligne de la durée de vie résiduelle (RUL) est un enjeu majeur pour les systèmes de pronostic et de 

gestion de la santé (PHM) dans de nombreux domaines industriels où la sécurité, la fiabilité et la réduction des coûts sont de 

grande importance. Pour réduire les coûts, une solution consiste à réparer/remplacer le système avant une panne imprévue, ce 

qui est généralement fait en fixant une fenêtre de maintenance en fonction d’une estimation de la durée de vie restante. Cepen-

dant, il est difficile de prévoir l'état de santé d'un système si celui-ci est soumis à plusieurs conditions de fonctionnement, car 

la dégradation du système varie en fonction de la dynamique de commande. Ainsi, la valeur estimée de la RUL pourrait être 

différente en raison des différences de conditions de fonctionnement. C'est pourquoi l'évaluation en ligne de la RUL est une 

approche très efficace pour la maintenance basée sur l'état de santé estimée en utilisant chaque nouvelle mesure sur le système. 

Cet article présente un modèle de Markov caché (Input-Output Hidden Markov Model, IOHMM) qui estime en continu la RUL 

en ligne sur la base des mesures disponibles. Dans un premier temps, le modèle apprend l'impact de la condition de fonction-

nement sur l’évolution de la RUL et propose de la gérer en changeant les conditions de fonctionnement correspondantes. Un 

algorithme de gestion de référence est présenté pour faire correspondre la RUL estimée à une RUL cible donnée. Des versions 

adaptées d’algorithmes bien connus sont utilisées dans la phase d’apprentissage et de diagnostic du modèle. Une application 

numérique est donnée où une méthode Bootstrap est appliquée pour montrer l'importance d'une bonne prédiction à partir d'une 

quantité limitée de séquences de données. En effet, comme la dégradation est un processus lent, il est difficile d'avoir suffisam-

ment de séquences de données ayant des séquences d’information complètes c’est-à-dire jusqu'à la défaillance du système. 

Ainsi, le Bootstrap est une méthode intéressante pour entraîner le modèle IOHMM par rééchantillonnage avec remplacement.  

03. 
Journal 03: Engineering Applications of Artificial Intelligence, 2020 (To be submitted) 

Estimating Remaining Useful Life of Flow Distribution Systems Under Missing 

Data Challenges  

Kamrul Islam Shahin1, Christophe Simon2, Philippe Weber3 

Keywords: FDS, System health, IOHMM, Input Output Hidden Markov Model, Missing data, RUL. 

Abstract: This paper presents an IOHMM based method that monitors health states of structured systems under missing data 

challenges. Since the structured systems have multiple subsystems/components in which any of them could have produced data 

sequences that contain missing elements. The missing data is important to handle in order to have a good estimation of the 

component's health states. Otherwise, it would lead us to have the wrong idea/prediction of the system's health conditions. The 

proposed model diagnosed each of the components by overcoming this challenge individually. After that, the health states over 

the system are estimated based on the estimated health condition of all components. Then, an algorithm is presented which 

constructs the individual models (for the components) to a single model that represents the entire system. Finally, the con-

structed model is used to prognostic the remaining useful life of the system based on the estimated health states of the system. 

The model considers operating conditions in the diagnostic and prognostic algorithms. A numerical application is presented 

which is simulated following subpart of a water distribution network in Barcelona City. 

Résumé : Ce document présente une méthode basée sur l'IOHMM qui permet de surveiller l'état de santé de systèmes structurés 

en présence de données manquantes. En effet, les systèmes structurés comportent de multiples sous-systèmes/composantes 

dans lesquels n'importe lequel d'entre eux peut produire des séquences de données contenant des éléments manquants. Il est 

important de traiter les données manquantes afin d'avoir une bonne estimation des états de santé des composants. L’absence de 

données dans certaines séquences conduit généralement à une moins bonne estimation des états de santé du système monitoré. 

Le modèle proposé permet de diagnostiquer l’état de chacun des composants pour l’étendre à celui du système. Le passage des 

modèles individuels d’évolution de l’état de santé à celui du système est automatisé, ce qui nous permet l’estimation en ligne 

de la RUL du système structuré. Le modèle tient compte des conditions de fonctionnement dans les algorithmes de diagnostic 

et de pronostic. Une application numérique basée sur une portion du réseau de distribution d'eau de la ville de Barcelone est 

présentée.  
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04. 
Conference paper 01: ESREL, 2019  

Estimating IOHMM Parameters to Compute Remaining Useful Life of System 

Kamrul Islam Shahin1, Christophe Simon2, Philippe Weber3 

Keywords: Health assessment, Input Output Hidden Markov Model, PHM, RUL, Degradation, Operating conditions. 

Abstract: This paper is about Input-Output Hidden Markov Model (IOHMM) to compute the remaining useful life (RUL) of a 

system with different operating conditions. Well-known algorithms dedicated to Hidden Markov Model (HMM) are extended 

to IOHMM. The processing to compute the RUL considering further operating conditions are proposed through an application 

example.  In this paper, a single input, and multiple outputs IOHMM is considered, but can be generalized to multiple inputs 

easily. 

Résumé : Cet article porte sur le modèle de Markov caché à entrées-sorties (Input-Output Hidden Markov Model - IOHMM) 

pour calculer la durée de vie résiduelle (RUL) d'un système avec différentes conditions de fonctionnement. Des algorithmes 

bien connus dédiés au modèle de Markov caché (HMM) sont étendus au modèle IOHMM. Le traitement permettant de calculer 

la RUL en tenant compte des conditions d'exploitation ultérieures est proposé à l'aide d'un exemple d'application. Dans ce 

document, une seule entrée et plusieurs sorties IOHMM sont considérées, mais cela peut être facilement généralisé à plusieurs 

entrées indépendantes.  

05. 
Conference paper 02: CIGI QUALITA, 2019  

Input-output hidden Markov model for diagnosis of complex systems 

Kamrul Islam Shahin1, Christophe Simon2, Philippe Weber3 

Keywords: Complex system, degradation, health assessment, operating conditions, IOHMM, parameter learning. 

Abstract: Prognosis system state of degradation and estimating its remaining useful life requires the system health assessment. 

For a correct prognostic, a good diagnostic as health assessment is required. Complex systems are difficult to manage for 

modeling reasons considering complexity, environmental and operational conditions. This paper deals with a stochastic model 

for generic modeling purposes and considers operating conditions in order to determine the system health. The proposed model 

is an Input-Output Hidden Markov Model that is able to model a degradation process of complex systems given operational 

conditions and allows assessing the system health. Well-known algorithms dedicated to HMM are adapted to IOHMM for 

multiple observation sequences and inputs. 

 

Résumé : Le pronostic de l'état de dégradation d’un système et l'estimation de sa durée de vie résiduelle nécessitent une éva-

luation de son état de santé. Pour un pronostic correct, un bon diagnostic de l’état de santé du système est nécessaire. Les 

systèmes complexes sont difficiles à gérer pour des raisons de modélisation tenant compte de la complexité, des conditions 

environnementales et opérationnelles. Ce document traite d'un modèle stochastique à des fins de modélisation générique et 

prend en compte les conditions d'exploitation afin de déterminer l'état de santé du système. Le modèle proposé est un modèle 

de Markov caché à entrée-sortie capable de modéliser un processus de dégradation de systèmes complexes dans des conditions 

opérationnelles données et permet d'évaluer l'état de santé du système. Des algorithmes bien connus dédiés au HMM sont 

adaptés à l'IOHMM pour des séquences d'observation avec des entrées multiples. 

06. 
Conference paper 03: IFAC, 2020 

Bootstrap Confidence Interval on IOHMM Parameters for System Health 

Diagnostic Under Multiple Operating Conditions 

Kamrul Islam Shahin1, Christophe Simon2, Philippe Weber3 

Keywords: System health, PHM, Input Output Hidden Markov Model, Condition based diagnostics, Degradation design, 

Condition monitoring. 

Abstract: The operating conditions have an important impact on system degradation. This paper uses the Input-Output Hidden 

Markov Model to represent the system degradation having multiple operating conditions. In this paper the bootstrap method is 

applied to estimate the model parameters and applied to diagnostic system health. Parameters of the model are computed with 

95% confidence intervals. The uncertainty about multiple data sequences and degradation speed is handled in the proposed 
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model. A numerical application is given to explain the methodologies used to estimate the model parameters and the system 

health diagnostic. 

 

Résumé : Les conditions de fonctionnement ont un impact important sur la dégradation d’un système. Cet article utilise le 

modèle de Markov caché à entrée-sortie pour représenter la dégradation d’un système ayant des conditions de fonctionnement 

multiples. Dans cet article, la méthode Bootstrap est appliquée pour estimer les paramètres du modèle et appliquée pour dia-

gnostiquer la santé du système. Les paramètres du modèle sont calculés avec des intervalles de confiance de 95%. L'incertitude 

concernant les séquences de données multiples et la vitesse de dégradation est traitée dans le modèle proposé. Une application 

numérique est donnée pour expliquer les méthodologies utilisées pour estimer les paramètres du modèle et diagnostiquer l'état 

du système. 

07. 
Conference paper 04: MED, 2020 

Input-Output Hidden Markov Model for System Health Diagnosis Under Missing 

Data 

Kamrul Islam Shahin1, Christophe Simon2, Philippe Weber3, Didier Theilliol4 

Keywords: degradation, parameter learning, sensor saturation, health assessment, incomplete information. 

Abstract: Sensor data can be used to diagnose the system's health. A challenge comes when the data contain missing or invalid 

data. It is common that sensors misread for various reasons. So, data contain missing measurements and sensor saturation. The 

main contribution in this paper is to implement a method based on the Input-Output Hidden Markov Model that trains the 

model using the missing measurements and sensor saturation, then diagnoses the system health at given operating conditions. 

Usually, if a data set contains some sequences with missing elements then they can be excluded from the analysis. It cleans the 

data set but reduces its size. This strategy knows as list-wise or case-wise deletion is less suitable for real application cases. 

The proposed method includes the sequences with missing data into the analysis by generating the missing elements to complete 

the sequence. The maximum likelihood is applied to estimate IOHMM parameters that offer substantial improvements over 

list-wise deletion. A numerical application with simulated data sets illustrates the method. 

 

Résumé : Les données des capteurs peuvent être utilisées pour diagnostiquer l’état de santé d’un système. Un défi se pose 

lorsque les données contiennent des données manquantes ou censurées. En effet, il est fréquent que des capteurs fassent une 

mauvaise lecture pour diverses raisons. Ainsi, les données contiennent des mesures manquantes ou une saturation des capteurs 

à censurer. La principale contribution de cet article est de mettre en œuvre une méthode basée sur le modèle de Markov caché 

à entrée-sortie qui estime les paramètres du modèle en utilisant les mesures manquantes et la saturation des capteurs, puis 

diagnostique la santé du système dans des conditions de fonctionnement données. La censure des données a le désavantage de 

réduire le volume de données utiles, mais agit sur la qualité d’estimation. Cette stratégie, connue sous le nom de suppression 

par liste ou par cas, est moins adaptée aux cas d'application réels. La méthode proposée consiste à inclure les séquences com-

portant des données manquantes dans l'analyse en générant les éléments manquants pour compléter la séquence. La probabilité 

maximale est appliquée pour estimer les paramètres IOHMM qui offrent des améliorations substantielles par rapport à la sup-

pression par liste. Une application numérique avec des ensembles de données simulées illustre la méthode. 

08. 
Conference paper 05: ESREL, 2020 

Input-Output Hidden Markov Model to Manage the Remaining Useful Life of 

System Under Missing Data 

Kamrul Islam Shahin1, Christophe Simon2, Philippe Weber3 

Keywords: Degradation, Diagnostic, Prognostic, IOHMM, Operating Condition, Managing RUL. 

Abstract: This paper proposes a statistical model for diagnostic and prognostic system health by using the sensor data. 

Sometimes sensor misreads the observation for various reasons which contains one or more holes in the measured data and 

sensor saturation. The main contribution in this paper is to estimate and manage the remaining useful life (RUL) of the system 

considering multiple operating conditions under missing data. A recursive technique based on Input-Output Hidden Markov 

Model is proposed in this article for identifying the missing measurements or sensor saturation (ROSS) then predict the system 

failure at given operating conditions. An optimization performs based on the production speed that controls the operating 

conditions to manage the RUL. An example is given where the model parameters are estimated from the data set that has about 

13% of missing data. The well-known algorithms are adapted in the model training and application. 
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Résumé : Cet article propose un modèle statistique pour le diagnostic et le pronostic de l’état de santé d’un système en utilisant 

les données des plusieurs capteurs. Parfois, le capteur interprète mal l'observation pour diverses raisons, ce qui entraîne l’ab-

sence de données. La principale contribution de cet article est d'estimer et de gérer la durée de vie résiduelle (RUL) d’un 

système en tenant compte des multiples conditions de fonctionnement malgré des données manquantes. Une technique récur-

sive basée sur le modèle de Markov caché à entrées-sorties est proposée dans cet article pour identifier les mesures manquantes 

ou la saturation du capteur (ROSS) puis prédire la défaillance du système dans des conditions de fonctionnement données. Une 

optimisation s'effectue sur la base d’entrées qui contrôle les conditions de fonctionnement afin de gérer la RUL. Un exemple 

est donné où les paramètres du modèle sont estimés à partir de l'ensemble de données qui comporte environ 13% de données 

manquantes. Les algorithmes connus sont adaptés dans la phase d’apprentissage et de test du modèle. 

09. 
Conference paper 06: ESREL, 2020 

Estimating the Remaining Useful Life of a Flow Distribution System 

Kamrul Islam Shahin1, Christophe Simon2, Philippe Weber3 

Keywords: IOHMM, degradation, flow distribution system, remaining useful life, health assessment. 

Abstract: Flow distribution systems (FDS) are widely used in many industrial processes when it is necessary to distribute 

products in several ways and then to collect them into one or several discharge destinations, such as water supply, heat supply, 

electricity supply network, etc. The maintenance decisions on a flow distribution system are challenging because the 

degradation of individual components is independent and not fully detectable. It can lead to inaccurate diagnostic and 

prognostic results. Industrial systems are often equipped with multiple sensors on each component to collect the efficient 

information that helps computing the remaining life of the system (RUL). As multiple data are captured, it is a multiple output 

system. This paper proposes an Input-Output Hidden Markov Model (IOHMM) for RUL assessment to maintenance aid 

decision-making of a multi-component flow distribution system. The components are considered independently for the 

diagnostic and prognostic of their health conditions and thus of the system. The goal of this paper is to find the best path to 

know the health conditions of the components for supplying the demand to the destination. The study offers an optimal solution 

in two steps to keep the system alive longer while it can fulfil customer needs. The first step is the independent monitoring of 

all components to determine the most appropriate supply planning strategy. The second step is to identify all the possible routes 

where the flow gets through different components for discharging to the destinations. This aims to benefit such as the alternative 

flow paths or the target maintenance activities at the system level. The operating conditions are considered as inputs for each 

of the components independently. 

 

Résumé : Les systèmes de distribution de flux (FDS) sont largement utilisés dans de nombreux processus industriels lorsqu'il 

est nécessaire de distribuer des produits selon plusieurs chemins puis de les collecter vers une ou plusieurs destinations de rejet, 

comme l'approvisionnement en eau, l'approvisionnement en chaleur, le réseau d'alimentation électrique, etc. Les décisions de 

maintenance d'un système de distribution de flux sont difficiles à prendre, car la dégradation des différents composants est 

indépendante et n'est pas entièrement détectable. Elle peut conduire à des résultats de diagnostic et de pronostic inexacts. Les 

systèmes industriels sont souvent équipés de plusieurs capteurs sur chaque composant afin de collecter les informations effi-

caces qui permettent de calculer la durée de vie résiduelle d’un système (RUL). Comme de multiples données sont saisies, il 

s'agit d'un système à sorties multiples. Ce document propose un modèle de Markov caché à entrées-sorties (IOHMM) pour 

l'évaluation de la RUL afin d'aider à la prise de décision en matière de maintenance d'un système de distribution de flux à 

composants multiples. Les composants sont considérés indépendamment pour le diagnostic et le pronostic de leur état de santé 

et donc du système. L'objectif de ce document est de trouver le meilleur moyen de connaître l’état de santé des composants 

pour fournir la demande à la destination. L'étude propose une solution optimale en deux étapes pour maintenir le système en 

vie aussi longtemps que nécessaire pour répondre à la demande client. La première étape est le contrôle indépendant de tous 

les composants afin de déterminer la stratégie de planification de l'approvisionnement la plus appropriée. La deuxième étape 

consiste à identifier tous les itinéraires possibles où le flux passe par différents composants pour être déchargé vers la destina-

tion. Cela vise à obtenir des avantages tels que les voies de flux alternatives ou le ciblage des activités de maintenance au niveau 

du système. Les conditions d'exploitation sont considérées comme des entrées indépendantes pour chacun des composants. 

10. 
Conference paper 07: ESREL, 2020 

Online Remaining Useful Life Management Considering Operating Conditions to 

Match the Given Maintenance Date 

Kamrul Islam Shahin1, Christophe Simon2, Philippe Weber3 
Keywords: RUL, Input Output Hidden Markov Model, IOHMM, Online assessment, PHM, Condition monitoring. 

Abstract: Online remaining useful life (RUL) is a major challenge of prognostic and health management systems (PHM) in 

many industrial domains where safety, reliability and cost reduction are of high importance. To reduce the cost, one solution is 
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to match the maintenance date with the estimated remaining life of the system. This prediction of the RUL allows fixing time 

in the future to organize a maintenance action which can be called maintenance time-window. Nevertheless, the RUL can 

change due to the different dynamics of the operating conditions over the operation time. It may shift the maintenance window 

into another time. System health should be updated when new measurements come in analysis and the prognostic shows an 

updated RUL. Thus, the online RUL prediction is a much more effective approach on condition-based maintenance. This paper 

presents an Input-Output Hidden Markov Model (IOHMM) that estimates the online prognostic based on passed to current 

measured data from the system which is used to manage the RUL that corresponds to a target remaining time. A reference 

manager is designed to figure out the next input condition according to the new measurements in order to reschedule the 

maintenance time window. An example is shown in which well-known algorithms dedicated to HMM are adapted to IOHMM 

for online prognostic when the system emits a new observation. 

 

Résumé : La durée de vie résiduelle en ligne (RUL) est un défi majeur des systèmes de pronostic et de gestion de la santé 

(PHM) dans de nombreux domaines industriels où la sécurité, la fiabilité et la réduction des coûts sont d'une grande importance. 

Pour réduire les coûts, une solution consiste à faire correspondre la durée de vie résiduelle estimée avec la date de maintenance 

du système. Cette prédiction de la RUL permet de fixer un délai dans le futur pour organiser une action de maintenance que 

l'on peut appeler fenêtre temporelle de maintenance. Néanmoins, la RUL peut changer en raison de la dynamique différente 

liée aux conditions de fonctionnement au cours de la période d'exploitation. En contrôlant ces conditions, il est possible de faire 

correspondre les temps pour opérer une maintenance. L’état de santé du système doit être mis à jour à chaque nouvelle mesure 

ainsi que le pronostic de la RUL. Ainsi, le pronostic en ligne permet d’élaborer une approche plus efficace dans la maintenance 

basée sur l'état de santé du système. Cet article présente un modèle de Markov caché (Input-Output Hidden Markov Model, 

IOHMM) qui estime le pronostic en ligne sur la base des données mesurées du système qui sont utilisées pour gérer la RUL et 

la faire correspond à un temps restant cible. Un gestionnaire de référence est conçu pour déterminer la prochaine condition 

d'entrée en fonction des nouvelles mesures afin de reprogrammer la fenêtre de temps de maintenance. Un exemple est montré 

dans lequel des algorithmes bien connus dédiés au HMM sont adaptés au IOHMM pour le pronostic en ligne lorsque le système 

émet une nouvelle observation. 

11. 
Conference paper 08: Congrès Lambda Mu, 2020 

Modèle IOHMM pour le diagnostic et le pronostic de Systèmes 

Kamrul Islam Shahin1, Christophe Simon2, Philippe Weber3 
Keywords: dégradation, état de santé, condition opérationnelle. 

Abstract: In this paper, we propose to exploit an advanced form of Hidden Markov Model (HMM) to represent the process of 

evolution of the health status of a system. This type of model is of several interests. It corresponds well to the principle of 

evolution of a complex element (health status) which is not directly observable, but through observation variables. Its stochastic 

nature allows uncertainty to be taken into account: observation noise (data uncertainty), evolution processes that are more 

complex than imagined (model uncertainty). In this context, dynamic Bayesian networks and in particular the 2 Time slices 

Bayesian Networks are particularly well suited to represent an HMM conditioned by states of operational conditions and thus 

form an advanced class of HMM, the Input-Output HMM (IOHMM). 

 

Résumé : Dans cet article, nous proposons d’exploiter une forme évoluée de modèle de Markov caché (HMM) pour représenter 

le processus d’évolution de l’état de santé d’un système. Ce type de modèle présente plusieurs intérêts. Il correspond bien au 

principe d’évolution d’un élément (état de santé) complexe et non observable directement, mais au travers de variables 

d’observation. Sa nature stochastique permet la prise en compte de l’incertitude : bruit d’observation (incertitude de données), 

processus d’évolution plus complexe qu’imaginé (incertitude de modèle). Dans ce contexte, les réseaux bayésiens dynamiques 

et notamment les 2 Time slices Bayésien Networks sont particulièrement bien appropriés pour représenter une HMM 

conditionnée par des états de conditions opérationnelles et ainsi formé une classe évoluée de HMM, les Input-Output HMM 

(IOHMM). 
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Notations and acronyms 
 

𝑆 = {𝑠1, 𝑠2, 𝑠3, ⋯ , 𝑠𝑁} are hidden states. 

𝑁 is the number of states in the model. 

𝑋 = {𝑋(1), 𝑋(2), … , 𝑋(𝐿)} are state sequences. 

𝐿 is the number of sequences. 

𝐴 = (𝑎𝑖𝑗)𝑖𝑗
 is state transition matrix. 

𝐴̂  is the estimated transition matrix. 

𝑉 = {𝑣1, 𝑣2, 𝑣3,⋯ , 𝑣𝑀} are observation symbols. 

𝐶𝑣𝑚
 is the count of 𝑣𝑚 observation. 

𝑀 is the number of observation symbols for an output. 

𝐵 = (𝑏𝑗𝑙)𝑗𝑙
 is the state emission matrix.  

𝜋 is the initial state distribution.  

𝛬 is the HMM.  

𝛬̂ is the IOHMM  

𝑌 = {𝑌(1), . . , 𝑌(𝐿)} are the set of data observation sequence 𝑌 

𝑌̅ 
 = {𝑌̅ 

(1), . . . , 𝑌̅ 
(𝐿)} are the set of observation sequence with missing elements 

𝒴 = {𝑌  
1, 𝑌  

2, . . . , 𝑌  
𝑄} is the set of outputs. 

𝑞, (1 ≤ 𝑞 ≤ 𝑄) is the number of outputs.  

𝐾𝑙 is the length of observation sequence Y(l). 

𝑈 = {𝑈(1), 𝑈(2), . . . , 𝑈(𝐿)} are input sequences. 

𝑈̅ = {𝑈̅(1), 𝑈̅(2), . . . , 𝑈̅(𝐿)} are input sequences with missing elements. 

𝑢 = input id. 

𝑑, (1 ≤ 𝑑 ≤ 𝐷) block of missing elements in data sequences  

𝑝  is the number of operating conditions. 

𝑅𝐴̂𝑝 matrix ration in the input sequence 

𝐶𝑝 
is the count of 𝑝th matrix. 

𝐶𝐼 is the confidence interval. 

ℕ is the set of strict positive integers. 

𝛼(𝑋𝑘) is the forward auxiliary variable. 

𝛽(𝑋𝑘) is the backward auxiliary variable. 

𝜔𝑘(𝑗), 𝜀𝑘(𝑖, 𝑗) are the Baum Welch auxiliary variables. 

𝛾(𝑋𝑘) is the forward Viterbi auxiliary variable. 

δ(𝑋𝑘) is the backward Viterbi auxiliary variable. 

𝐶 is a threshold value to stop prognosis computation 

𝑆𝑐𝑖 is the penalty score of model performance 
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Modèle graphique probabiliste appliqué au diagnostic de l'état 

de santé des systèmes, au pronostic et à l'estimation de la 

durée de vie résiduelle 
 

Mots-clés : Évaluation de la santé, Diagnostic, Pronostic, RUL, Gestion des RUL, PHM, Conception de la 

dégradation, Condition de fonctionnement, Système complexe, Système structuré, Évaluation en ligne, Modèle 

de Markov caché entrée-sortie, Apprentissage des paramètres, Données manquantes 

Résumé de thèse 

Cette thèse contribue au développement des recherches dans le domaine du Pronostic et Health 

Management : gestion de l’état de santé des systèmes complexes. Dans un contexte de management 

opérationnel et de sûreté de fonctionnement des systèmes, nous proposons d’étudier comment la 

modélisation par un Modèle Graphique Probabiliste Dynamique (MGPD) permet le diagnostic de l’état 

de santé courant d’un système, le pronostic de cet état et de l’évolution des dégradations, ainsi que 

l’estimation de sa durée de vie résiduelle en fonction de ses conditions opérationnelles.  

La dégradation des composants est en général inconnue et nécessite un arrêt du système pour être 

observée. Cependant, cela est difficile, voire impossible, durant l’exploitation du système. Néanmoins, 

un ensemble de grandeurs observables sur le système ou le composant peut caractériser le niveau de 

dégradation et faciliter l’estimation de la durée de vie résiduelle du composant et du système. 

Les MGPD offrent une approche adaptée à la modélisation de l’évolution de l’état de santé des systèmes 

et des composants. Récemment, l’utilisation de HMM (Hidden Markov Model) ou de HSMM (Hidden 

Semi-Markov Model) pour modéliser un processus non observable de dégradation et le relier à des 

observations de leurs conséquences a déjà été exploitée avec des résultats intéressants. Toutefois, la non-

prise en compte des conditions opérationnelles, influant sur les processus de dégradation, limite la 

performance de ces outils. Les algorithmes d’apprentissage et d’inférence rendent exploitables ces 

modèles complexes pour une exploitation dans une problématique de pronostic. 

Il s’agit dans cette thèse de transposer et de capitaliser l’expérience de ces travaux antérieurs dans un 

contexte de pronostic sur la base d’un MGPD plus efficace compte tenu des connaissances disponibles 

sur le système. Nous étendons la modélisation classique des modèles de la famille des HMM vers les 

IOHMM pour permettre une propagation temporelle de l’incertitude afin de résoudre le problème de 

pronostic de l’état de santé et de l’estimation de la durée de vie résiduelle. Cette recherche comprend 

l’extension des algorithmes d’apprentissage et d’inférence appliqués aussi bien dans le cas d’un 

composant que pour un système structuré. Les variantes du modèle HMM sont proposées pour intégrer 

le contexte opérationnel dans le pronostic. 

Cette thèse a pour but de contribuer à lever les verrous scientifiques suivants : 

- Considérer l'état de santé quelle que soit la complexité du système par un modèle stochastique 

et apprendre les paramètres du modèle à partir des mesures disponibles sur le système. 

- Établir un diagnostic de l’état de santé du système et le pronostic de son évolution en intégrant 

plusieurs conditions opérationnelles. 

- Estimer la durée de vie résiduelle des composants et des systèmes structurés (série, parallèle) à 

partir de ses composants. 

L’enjeu est majeur, car le pronostic de la dégradation des composants du système permet de définir des 

stratégies soit de pilotage soit de maintenance par rapport à la durée de vie résiduelle du système. Cela 

permet la réduction de la probabilité d’occurrence d’un arrêt pour cause de dysfonctionnement du 

système, soit en ajustant la vitesse de dégradation pour s’accorder à un plan de maintenance préventif, 

soit en planifiant les interventions de maintenance de manière proactive.  
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Dynamic Probabilistic Graphical Model applied to the system 

health diagnosis, prognosis, and the remains useful life 

estimation 

 
Keywords: Health assessment, Diagnostic, Prognostic, RUL, RUL Management, PHM, Degradation design, 

Operating Condition, Complex system, Structured System, Online assessment, Input Output Hidden Markov 

Model, Parameter learning, Missing data 

 

 

Thesis abstract 

This thesis contributes to prognosis and health management for assessing health condition of complex 

systems. In the context of operational management and operational safety of systems, we propose to 

investigate how Dynamic Probabilistic Graphical Modelling (DPGM) can be used to diagnose the 

current health state of systems, prognostic the future health state, and the evolution of degradation, as 

well as estimate its remaining useful life based on its operating conditions.  

System degradation is generally unknown and requires shutting down the system to be observed. 

However, this is difficult or even impossible during system operation. Though, a set of observable 

quantities on a system or component can characterize the level of degradation and help to estimate the 

remaining useful life of components and systems. 

The DPGM provides an approach suitable for modelling the evolution of the health state of systems and 

components. Recently, interesting results have been obtained by using HMM (Hidden Markov Model) 

or HSMM (Hidden Semi-Markov Model) to model unobservable degradation processes and to relate 

them to observations of their consequences. However, the performance of these models is limited 

because they are not able to consider the operational conditions that affect degradation processes. 

Learning and inference algorithms allow these complex models to be used for prediction problems. 

The aim of this thesis is to transpose and capitalize on the experience of these previous works in a 

prognostic context on the basis of a more efficient DPGM taking into account the available knowledge 

on the system. We extend the classical HMM family models to the IOHMM to allow the time 

propagation of uncertainty to address prognostic problems. This research includes the extension of 

learning and inference algorithms. Variants of the HMM model are proposed to incorporate the 

operating environment into the prognosis. 

The aim of this thesis is to contribute to solving the following scientific locks: 

- Considering the state of health whatever the complexity of the system by a stochastic model 

and learning the model parameters from the available measurements on the system. 

- Establish a diagnosis of the state of health of the system and the prognosis of its evolution by 

integrating several operational conditions. 

- Estimate the remaining useful life of components and structured systems with series and 

parallel components. 

This is a major challenge because the prognosis of the degradation of system components makes it 

possible to define strategies for either control or maintenance in relation to the residual life of the system. 

This allows the reduction of the probability of occurrence of a shutdown due to a system malfunction 

either by adjusting the degradation speed to fit in with a preventive maintenance plan or by proactively 

planning maintenance interventions. 
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Résumé étendu en français  
 

Dans le contexte de l'évolution industrielle actuelle, l'un des plus grands défis est de maintenir les 

systèmes avec un niveau important de sécurité, de fiabilité et de disponibilité. Cette évolution se place 

dans le cadre de ce qui est désigné aujourd’hui par plusieurs termes : Industrie du futur (IdF), Industrie 

4.0, la quatrième évolution de l'industrie, Partenariat de fabrication avancée, Made in China 2025, Usine 

du Futur … Ce concept d'évolution industrielle est basé sur l'innovation et la technologie numérique 

avec l'excellence opérationnelle révélant le potentiel de transformation et d'amélioration de la 

performance industrielle (Iung, 2018). Pour des raisons de clarté, nous utiliserons le vocable Usine du 

Futur dans le reste du document.  

De nos lectures, nous avons isolé quatre grands principes qui aident l'industrie à identifier et à mettre en 

œuvre différents scénarios pour cette évolution – « révolution » (Hermann et Otto, 2016) : 

• Le premier principe est l'interconnexion entre les différents composants d'un système complexe 

via l'Internet des Objets (Bonner, 2018). Un système complexe est défini comme un système ou 

une machine qui comporte plusieurs composants ou sous-systèmes qui fonctionnent dans 

plusieurs conditions de fonctionnement. 

• Le deuxième principe est la transparence de l'information, qui fait référence à la capacité de 

fournir aux utilisateurs du système une grande quantité d'informations qui l’aide à prendre des 

décisions liées au fonctionnement du système (Bonner, 2018). 

• Le troisième principe est celui de l'assistant technologique qui collecte et observe les 

informations sur le système pour aider les utilisateurs/opérateurs à prendre des décisions et à 

résoudre des problèmes urgents de fonctionnement (Gronau, 2016). Pour cela, il est important 

que les utilisateurs du système soient constamment conscients de la détérioration de l’état de 

santé du système et de l’impact de cette dégradation sur différents indicateurs comme les taux 

de production, les activités de maintenance, les pannes du système ou les arrêts imprévus. En 

effet, la dégradation de l’état de santé peut causer des dommages aux opérateurs et augmenter 

les coûts de maintenance. 

• Le quatrième principe est la prise de décision décentralisée, c'est-à-dire la capacité d’un système 

à prendre ses propres décisions et à les exécuter seul (Gronau, 2016). Le système fonctionne en 

autonomie en tenant compte des différentes anomalies, telles que les interférences, les objectifs 

contradictoires ou une planification automatique qui fixe le temps pour différentes actions à 

entreprendre pendant le fonctionnement du système. 

Comme on le voit dans ces 4 principes fondamentaux de l’Usine du Futur, l’essentiel repose sur la 

disponibilité d’informations instantanées, notamment les conditions opérationnelles des sous-systèmes 

interconnectés, les états de fonctionnement, les technologies de l’information utilisées dans le système 

…  

Dans ce contexte et de notre point de vue, il est important de maintenir les systèmes industriels sous 

surveillance constante pour aider les utilisateurs à prendre des décisions éclairées 24 heures sur 24, 7 

jours sur 7. L'utilisateur a besoin de toutes les informations pertinentes sur le fonctionnement du 

système, sur son état de santé, et sur sa fiabilité. Il y a là d’ailleurs un paradigme à résoudre entre la 

masse d’information et la pertinence de ces informations. 

Si nous focalisons notre propos sur notre domaine de recherche et vis-à-vis des 4 grands principes que 

nous avons relevés, l’état de santé d’un système est donc une information essentielle pour la prise de 

décision. Toutefois, c’est un concept assez difficile à appréhender et impossible à mesurer. En revanche, 

il peut être déterminé, estimé, en observant le comportement du système (symptômes) et en appliquant 
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des techniques de diagnostic sur la base des observations issues des capteurs et autres éléments 

technologiques, implémentés sur le système, susceptibles de fournir des informations d’intérêt. 

Dans le cadre de l’Usine du Futur, c’est plus que l’état de santé du système qui nous intéresse, mais son 

évolution et la projection de cette évolution dans le futur. Sur la base de cette information estimée, il 

devient envisageable de pronostiquer la durée de vie utile restante ou résiduelle que l’on connait sous le 

vocable de RUL. Ces informations de durée peuvent aider à planifier proactivement la maintenance 

préventive pour réduire les coûts de maintenance, résoudre les problèmes de conformité, définir les 

activités attribuées automatiquement, augmenter la vitesse de production et à terme les bénéfices. 

La 4e révolution ‘Usine du Futur’ propose donc de moderniser l'outil de production et d'augmenter la 

diffusion des technologies numériques au sein de l'entreprise, pour accompagner une évolution de la 

gamme et une personnalisation toujours plus grande des produits. Partout dans le monde, les industriels 

mettent en œuvre le concept de l’Usine du Futur dans leurs entreprises et la tendance se développe 

progressivement. L’Usine du Futur devient la principale préoccupation et le principal concept de profit 

manufacturier et de politique commerciale pour la prochaine génération d'industries. 

En conséquence, les systèmes se complexifient progressivement avec les interconnexions entre leurs 

sous-systèmes intégrants des conditions de fonctionnement compliquées voir complexes. Différents 

sous-systèmes et composants du système deviennent dépendants les uns des autres pour la fabrication 

des produits. C'est le cas des systèmes de fabrication, où la disponibilité de l'infrastructure, l'évolution 

des objectifs et la maintenance du système deviennent chaque jour un défi pour répondre aux besoins 

de nos sociétés modernes.  

Par conséquent, l’étude de la disponibilité et de la maintenance des systèmes est désormais un axe de 

recherche de plus en plus fort. De plus, au niveau mondial, un grand nombre de systèmes encore en 

service depuis de nombreuses années approchent désormais de leur fin de vie et nécessitent donc un 

entretien régulier voir de plus en plus fréquent à défaut d’une rénovation complète. Pour répondre à ces 

exigences, les stratégies de maintenance doivent être améliorées et notamment les techniques de 

maintenance prévisionnelle/conditionnelle.  

Étant donné que des actions de maintenance sont prises avant qu'une défaillance du système ne 

survienne, les décisions de maintenance ont un impact sur la sécurité du système et le travail des 

opérateurs. Cela peut conduire à des coûts importants. Par conséquent, afin de définir les plans de 

maintenance et optimiser la disponibilité du système, nous devons mettre en place un système de gestion 

et de pronostic de l’état de santé des systèmes industriels (PHM). Ce type d’étude vise à réduire les coûts 

de maintenance et d'assurer une haute fiabilité/disponibilité du système. D'un point de vue économique, 

l'étude des méthodes de PHM est une question extrêmement importante pour les industriels afin de rester 

compétitif sur le marché. 

Dans les applications PHM, le pronostic a besoin du diagnostic puisqu’il faut définir l’état courant afin 

de projeter son évolution dans le futur. Le diagnostic doit donc étudier la dégradation du système. Cette 

dégradation du système est un processus dynamique qui décrit les dommages sur le service fourni par 

le système pendant sa durée de vie. Ce processus dynamique est complexe, d’une part parce qu’il est 

caché, est non mesurable (il n’y a pas de capteur d’état de santé) et d’autre part parce que sa dynamique 

dépend de facteurs internes et externes qui ont un impact sur l’état de santé du système. La complexité 

vient également du fait que plusieurs modes de dégradation opèrent de manière concourante, mais que 

nous ne pouvons en observer que les conséquences. Les causes majeures de la dégradation de l’état de 

santé sont l’usure de pièces ou de composants du système, les accidents, le manque d'entretien … Les 

impacts de ces raisons diffèrent en fonction des différentes conditions telles que les conditions de 

fonctionnement ou condition opérationnelles, les conditions environnementales, etc.  

Dans ce travail de thèse, nous étudions la dégradation d'un système complexe compte tenu des conditions 

de fonctionnement. Si l'on ne considère aucune exception (accident, erreurs système / pièce, etc.), et 

aucune variation des conditions de fonctionnement alors le processus de dégradation peut être 
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raisonnablement compliqué à comprendre et à modéliser en faisant l’hypothèse qu’il n’y a qu’une seule 

dynamique. Sinon, la dégradation aura plusieurs dynamiques ou plusieurs comportements lorsque 

différentes variétés de conditions de fonctionnement sont appliquées au système. La complexité de 

modélisation du processus de dégradation est alors plus importante.  

Dans cette thèse, nous considérons un processus complexe de dégradation. Aussi, pour proposer une 

solution plus globale, il faut tenir compte de l’existence des différentes conditions de fonctionnement 

ayant un impact sur la dégradation des systèmes (Shahin, 2019a). Ces conditions de fonctionnement que 

nous regroupons sous le vocable de conditions opérationnelles sont, soit de conditions 

environnementales (non contrôlé), soit des conditions opératives (contrôlé). L’estimation du niveau de 

dégradation courant, le résultat de la phase de diagnostic doit donc tenir compte non seulement de l’état 

passé, mais aussi des conditions opérationnelles passées et courantes. Cette phase de diagnostic n’en est 

alors que plus difficile. De fait, la phase de pronostic doit certes tenir compte de l’état de santé estimé 

courant, mais aussi des conditions opérationnelles futures. La RUL estimée à chaque instant est donc 

dépendante des conditions opérationnelles, ce qui constant un challenge difficile (Shahin, 2019b).  

Dans cet objectif, il existe historiquement deux grandes approches pratiquées pour la gestion de l’état 

de santé des systèmes (PHM) : l'approche basée sur les modèles et l'approche basée sur les données.  

• L'approche basée sur les modèles, également connue sous le nom d'approche physique, utilise 

un modèle mathématique dynamique du système qui exploite directement les processus 

physiques qui affectent la santé du composant ou du système (Skormin, 1994).  

• Alors qu’une approche basée sur les données permet la construction du modèle de dégradation 

en utilisant des données d'observation collectées à partir de capteurs installés sur le système. 

Cette approche est généralement préférée lorsque les modèles de système ne sont pas 

disponibles ou pas assez robustes (Namburu, 2007).  

Les deux approches ont leurs avantages et leurs inconvénients (effort de modélisation, précision, 

connaissances, etc.). De nombreux chercheurs les ont utilisés ensemble pour surmonter leurs 

inconvénients et tirer parti de leurs avantages (Liao et Köttig, 2014). Ils ont défini cette combinaison 

comme l'approche hybride. Cependant, nous avons décidé d'utiliser l'approche basée sur les données 

pour sa diversité, sa flexibilité et ses avantages qui facilitent la réalisation de l'objectif de notre 

recherche. Alors que l'approche basée sur un modèle nécessite les informations physiques du système, 

cette thèse propose des méthodes de diagnostic et de pronostic à partir de l'approche basée sur les 

données lorsque les informations physiques ne sont pas suffisantes ou ne sont pas disponibles. 

L'approche basée sur les données convient parfaitement à un système complexe qui comporte plusieurs 

composants avec un comportement non linéaire. Cette approche nous permet de traiter la grande 

dimension des données pour prédire la dégradation de plusieurs composants. 

Différents types de modèles peuvent être adaptés dans le cadre des approches basées sur les données. 

Les modèles les plus populaires et les plus fréquemment utilisés sont soit déterministes, soit 

stochastiques. Le modèle déterministe fournit les sorties qui sont entièrement déterminées par les 

paramètres et les conditions initiales sans tenir compte du caractère aléatoire. En revanche, un modèle 

stochastique est un outil d'estimation dont l'analyse se concentre sur une séquence aléatoire 

d'observations. Il traite les propriétés stochastiques des variables aléatoires et gère les conditions de 

fonctionnement. Cette approche gère également les incertitudes des données en raison de ses propriétés 

aléatoires et d'approximation, qu’il est difficile de gérer pour le modèle déterministe. Par conséquent, le 

modèle stochastique nous semble intéressant pour atteindre l'objectif de cette thèse.  

 

Il existe plusieurs modèles stochastiques que l'on peut trouver dans la littérature et qui peuvent être 

construits rapidement à faible coût. Les modèles les plus utilisés sont les modèles de réseau bayésien, 

les modèles de logique floue, les modèles de réseau neuronal et les modèles de Markov. Le réseau 

bayésien est un modèle graphique probabiliste qui utilise l'inférence bayésienne pour le calcul des 
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probabilités. Le réseau bayésien offre une base mathématique solide et est présenté graphiquement de 

sorte que chaque variable peut être directement connectée entre elles. C'est l'une des méthodes de 

modélisation les plus populaires dans le domaine de recherche actuel. Cependant, l'une des principales 

limites des réseaux bayésiens est le traitement des variables dynamique. Les réseaux bayésiens 

dynamiques ne peuvent traiter les variables continues que de manière limitée (Friedman et Goldszmidt, 

1996; Jensen, 2001 ; Weber et Simon 2016). Un autre modèle populaire est la logique floue qui 

fonctionne selon le raisonnement humain. Il est populaire pour sa flexibilité dans l'utilisation de 

mathématiques simples pour des systèmes non linéaires, intégrés et complexes. Le développement de 

règles floues et de fonctions d'appartenance est fastidieux, et la sortie floue peut être interprétée de 

diverses manières, ce qui rend l'analyse difficile. De plus, le développement d'un système flou nécessite 

une grande quantité de données et d'expertise. Dans ce cas, le réseau de neurones offre une excellente 

solution alternative. La base mathématique du réseau de neurones nous permet de gérer une grande 

quantité de données et d'entrées non linéaires. Ce modèle est flexible et bien adapté à une utilisation 

pour les problèmes de régression et de classification. Pourtant, comme ce modèle repose sur une grande 

quantité de données d'entraînement, il peut conduire à des problèmes d’apprentissage en cas de données 

insuffisantes (Yi, 2018). De plus, c’est un modèle de type boîte noire, il ne donne aucune information 

sur la mesure dans laquelle une variable affecte les autres variables ni sur la façon dont la couche cachée 

représente l'évolution de la probabilité ou de la dégradation. Ainsi, pour les cas où le concept de boîte 

noire ne suffit pas ou ne constitue pas une solution efficace, les modèles markoviens peuvent être une 

excellente alternative. Le modèle de Markov ou modèle de Markov caché (HMM) permet non seulement 

d'observer les états cachés et leur vraisemblance, mais permet également d'accéder et de modifier les 

valeurs pendant l'apprentissage et à tout moment. Un HMM peut être vu comme un observateur de l’état 

caché du système. 

Le HMM a été introduit par Baum au début des années 1970 (Baum et Petrie, 1966) et (Rabiner, 1989) 

a proposer une modélisation HMM pour la première fois dans une application de reconnaissance de la 

parole. Il a ensuite été utilisé dans les défis PHM. Les deux problèmes : la reconnaissance de la parole 

et l’estimation de la dégradation des systèmes industriels sont en fait très similaires, c'est pourquoi le 

HMM est étudié dans le domaine PHM. Le HMM est un modèle populaire pour la modélisation de 

données de séries chronologiques. Nous nous intéressons à un système stochastique, dans lequel 

l'évolution des états est aléatoire et cachée ou inconnue. Un HMM est bien adapté à l'objectif de notre 

thèse, car il permet le calcul d’une distribution jointe prenant en compte une série temporelle de 

distributions conditionnelles. 

Cependant, le HMM ne permet aucune entrée dans le modèle alors que notre objectif est de considérer 

les conditions de fonctionnement comme une entrée. Par conséquent, cette thèse propose d’étudier une 

version avancée de HMM appelée modèle de Markov caché d'entrée-sortie (IOHMM). Un IOHMM 

surmonte une partie de la limitation d’un HMM et permet de commuter les modèles en fonction des 

conditions de fonctionnement répertoriées dans les données. L'IOHMM est introduit en 1995 (Bengio 

et Frasconi, 1995). Il a été utilisé dans diverses applications (Hu, 2015; Just, 2004), mais à notre 

connaissance, il n'est pas encore utilisé dans des problématiques de PHM. Une discussion sur les bases 

du modèle HMM et IOHMM est donnée dans cette thèse. Nous développerons les équations et les 

algorithmes permettant l’estimation des modèles IOHMM, qui sont présentés et illustrés par des 

exemples appliqués au PHM. 

 

Les problèmes de diagnostic et de pronostic de systèmes complexes intégrant de multiples conditions 

de fonctionnement peuvent être classés en trois problèmes majeurs : 

1. Considérer l'état de santé quelques soit la complexité du système par un modèle stochastique et 

apprendre les paramètres du modèle à partir des mesures du système. 

Des informations sur l'état de santé se trouvent dans l'ensemble de données. La question qui se 

pose est la qualité de cet ensemble de données, est-il bon ou mauvais ? Existe-t-il suffisamment 
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d'informations dans les données pour estimer les paramètres du modèle ? Comment l’apprentis-

sage gère-t-il les séries de données incomplètes ou les données manquantes ? Ce sont des ques-

tions critiques qui constituent l'incertitude des données. Il existe plusieurs autres incertitudes qui 

doivent être prises en compte dans la formalisation des modèles. Par exemple, le nombre de 

paramètres du modèle. Il n'existe pas de méthode pour fixer le nombre approprié de paramètres 

des modèles que nous allons utiliser. La quantité limitée de données est également un problème 

important dans le cadre PHM, à relier au nombre de paramètres à estimer dans le modèle. Ha-

bituellement, une petite quantité de données limite le nombre de paramètres. Alors, comment le 

modèle gère-t-il une petite quantité de données pour analyser un système complexe ? Plusieurs 

modèles peuvent-ils être utilisés pour représenter la complexité d'un système, et comment faire 

confiance à ces modèles ? Pouvons-nous prouver que le modèle est suffisamment bon pour le 

système ? Le modèle nous permet-il de gérer plusieurs conditions de fonctionnement ? Nous 

présentons des réponses à ces questions dans cette thèse, où l'approche proposée prend en 

compte les différentes incertitudes des données, des paramètres du modèle et des conditions de 

fonctionnement. Dans notre proposition, nous appliquons la méthode Bootstrap-IOHMM pour 

analyser la confiance sur les paramètres estimés lorsque le modèle prend en compte plusieurs 

conditions de fonctionnement et des sorties mesurables des systèmes. Une technique pour déci-

der du nombre de paramètres est donnée. Enfin, plusieurs méthodes de validation croisée sont 

appliquées pour valider le modèle pour une petite quantité de données. 

 

2. Diagnostic et pronostic de la santé du système dans plusieurs conditions de fonctionnement. 

Le pronostic nécessite dans un premier temps de diagnostiquer l'état de santé du système. Il 

existe une corrélation entre les deux estimations (pronostic et diagnostic) qui seront effectuées 

dans notre proposition via le même modèle. Un autre défi pour le pronostic de l’état de santé du 

système concerne les conditions d'exploitation futures. Même si nous diagnostiquons l'état de 

santé actuel, nous devons tenir compte des futures conditions d'exploitation pour déterminer les 

futurs états de santé. La question que nous nous sommes posée est : comment le modèle peut-il 

gérer les conditions de fonctionnement si elles sont inconnues ? Étant donné que le fonctionne-

ment futur des systèmes dépend de nombreux enjeux (vitesse de production, délais, date de 

maintenance, etc.), les conditions de fonctionnement peuvent changer plusieurs fois dans le fu-

tur. C'est une question importante qui est prise en compte dans notre proposition. Cela implique 

également de vérifier si le modèle proposé est capable de gérer les conditions de fonctionnement 

pour calculer les RUL du système. Ces problèmes sont pris en compte dans la solution proposée, 

et le modèle proposé nous permet également de faire des diagnostics / prédictions hors ligne et 

en ligne. 

 

3. Pronostic le RUL pour les systèmes structurés à partir de ses composants pour étudier la dégradation 

du système dans son ensemble. 

Habituellement, les chercheurs se concentrent sur un composant. Le composant est lui-même 

un système complexe de dégradation, car plusieurs phénomènes sont en jeu (électriques, méca-

niques, chimiques, etc.). Il peut aussi être complexe, car le concepteur du modèle a un point de 

vue global (de nombreux composants pour un sous-système), mais le défi est de s'approcher 

d'un niveau de complexité acceptable et de combiner des modèles pour gérer des systèmes plus 

grands en connaissant leur structure fonctionnelle. Alors, la question est de savoir comment 

construire le modèle d’un système à partir des modèles de dégradation des composants. Nous 

proposons, à partir du diagnostic des composants, de les combiner pour diagnostiquer l'état de 

santé global du système. Nous avons supposé que les composants n’interagissent pas les uns 

avec les autres, mais comme ils font partie du système, leur état de santé représente l’intégrité 

du système. Nous proposons de définir l'état de santé du système en fonction de l'état de santé 

des composants et calculer la RUL du système. 
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Le manuscrit est organisé en 6 chapitres : 

Après avoir présenté le concept général de PHM, le chapitre 1 passe en revue les approches de PHM et 

les modèles correspondants de la littérature existante. Ce chapitre étudie les avantages et les 

inconvénients des différentes approches et des principales méthodes existantes. Ensuite, une technique 

de modélisation est choisie en la comparant avec des modèles trouvés dans la littérature. Le modèle est 

sélectionné en tenant compte de sa capacité, de sa flexibilité et de son adaptabilité. Toutes ces 

considérations, ainsi que les caractéristiques du système étudié pour permettre de justifier les méthodes 

retenues et utilisées dans cette thèse.  

Le chapitre 2 décrit le contexte du modèle stochastique. Il décrit la chaîne de Markov, la modélisation 

par HMM, puis IOHMM avec leurs composants, propriétés et fondements mathématiques. La différence 

entre la chaîne de Markov, HMM et IOHMM est définie dans ce chapitre. Les jalons de HMM et trois 

problèmes de base sont également expliqués. Différents algorithmes tels que les algorithmes Baum-

Welch, Forward-Backward et Viterbi qui sont dédiés à HMM sont décrits dans ce chapitre. 

Le chapitre 3 illustre la première contribution de cette thèse. L'algorithme de Baum-Welch et 

l'algorithme Forward-Backward sont adaptés à la modélisation par IOHMM pour considérer plusieurs 

entrées et sorties dans le modèle. L'incertitude des données (c'est-à-dire les données manquantes, etc.) 

et l'incertitude sur les paramètres du modèle (c'est-à-dire le nombre de paramètres, etc.) sont gérées dans 

l'apprentissage du modèle. La méthode Bootstrap est mise en œuvre pour évaluer la confiance dans 

l'estimation des paramètres. Les paramètres sont estimés avec des intervalles de confiance à 95%, une 

valeur moyenne et des erreurs standard.  

Le chapitre 4 présente la deuxième contribution de cette thèse. L’algorithme de Viterbi est adapté au 

modèle IOHMM pour diagnostiquer la santé du système à partir des données d’observation et des 

conditions opérationnelles. Puis, les algorithmes pour le pronostic sont appliqués pour prédire l’état de 

santé du système et la RUL. Les pronostics en ligne et hors ligne sont réalisés dans de multiples 

conditions de fonctionnement. Pour gérer l'incertitude sur les conditions opérationnelles futures 

inconnues, la simulation de Monte-Carlo est appliquée pour simuler les conditions d'exploitation. Trois 

applications simulées (numériques) sont présentées pour valider les algorithmes proposés, la méthode 

Bootstrap et le traitement des données manquantes. Une méthode est mise en œuvre pour gérer les 

problèmes numériques dans le modèle. 

Le chapitre 5 présente la troisième contribution de cette thèse qui est la mise en œuvre des algorithmes 

d’apprentissage et de pronostic sur les données du défi PHM en 2008. La méthode proposée permet de 

pronostiquer un moteur d'avion dans de multiples conditions de fonctionnement. L'analyse en 

composantes principales (ACP) est appliquée à la préparation des données. Différentes incertitudes 

(données, conditions d'exploitation, etc.) et défis mentionnés au chapitre 4 sont traités dans la 

démonstration. Une expérimentation est réalisée pour gérer la taille du modèle en fonction des 

conditions de fonctionnement données. La fonction de distribution de probabilité a été mise en œuvre 

pour gérer l'incertitude de l'estimation de la RUL. Enfin, trois techniques de validation croisée (leave-p-

out, leave-one-out, and k-fold) ont été appliquées pour valider les performances du modèle avec des 

scores prometteurs d'erreur quadratique (RSE) et d'erreur quadratique moyenne (MSE). 

Le chapitre 6 décrit la quatrième contribution de cette thèse qui est la proposition d’une méthodologie 

pour pronostiquer l’état de santé d’un système structuré qui a plusieurs sous-systèmes ou composants. 

Chacun des composants est représenté par un HMM qui est estimé et diagnostiqué séparément. Un 

algorithme est développé pour diagnostiquer l'ensemble du système en utilisant le diagnostic de tous les 

composants. Après cela, un HMM est construit à partir des paramètres estimés de tous les HMM pour 

estimer le RUL pour l'ensemble du système. Un exemple numérique est donné pour démontrer une 

application réelle : le réseau d'eau potable (DWN) dans la ville de Barcelone. 

Enfin, tous les travaux de la thèse sont résumés dans la conclusion, et les perspectives sont présentées 

dans le dernier chapitre.  
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Introduction 
 

In the context of the current industrial evolution, one of the biggest challenges is maintaining systems 

with safety, reliability, and availability. This evolution has been called by several terms: Industry of the 

Future (IoF), Industry 4.0, the fourth evolution of industry, the Advanced Manufacturing Partnership, 

Made in China 2025, the Factory of Future (FoF). This concept of evolution is based on innovation and 

digital technology with operational excellence revealing the potential for industry performance 

transformation and enhancement (Iung, 2018). This book defines it as the Factory of the Future or FoF. 

There are four main principles that support the industry in identifying and implementing different 

scenarios for this advancement (Hermann and Otto, 2016): 

The first principle is the interconnection between the various components of a complicated system 

via the Internet of Things (Bonner, 2018). A complicated system defines such a system or machine 

that has multiple components or subsystems within it that operate through multiple operating 

conditions.  

The second principle is information transparency, which refers to the ability to provide the operator 

with a vast amount of information that helps the operator to make decisions related to the operation 

(Bonner, 2018). 

The third principle is the technological assistant, which collects and observes information about the 

system to support humans in making decisions and solving urgent problems (Gronau, 2016). It is 

important for human workers to be constantly aware of deteriorating system health during operations 

to support human workers' monitoring of several activities such as operating conditions, production 

rates, maintenance activities, system failures/unplanned shutdowns, which can cause harm to the 

human workers and increase maintenance costs.  

The fourth principle is decentralized decision-making, i.e. the system is able to make its own 

decisions and execute them on its own (Gronau, 2016). The system operates itself by considering 

different anomalies, such as interference, conflicting goals, or automatic scheduling which fixes the 

time for different actions to be taken during system operations.  

The principles of FoF rely on instant information such as operational information of interconnected 

subsystems, information of technologies that used in the system, information of various components, 

etc. One of the importance is keeping the industrial systems under continues monitoring to help the user 

to various operational decisions around the clock. The user needs all information about the system's 

function and corresponding health status. System health state can be found out by observing system 

behaviour and apply diagnostics and prognostics techniques on the observations. Moreover, prognostic 

remaining useful life can help auto-scheduling in potential maintenance for reducing maintenance costs, 

satisfying legal compliance issues, setting automatically allocated activities, increasing production 

speed, and profits. 

FoF offers modernizing the production tool and increasing the dissemination of digital technologies 

within enterprise, to support a range evolution and ever greater customization of products. In all over 

the world, the industrialists are implementing the FoF concept in their industries and the tendency is 

growing progressively. FoF becoming the major concern and leading concept of manufacturing profit 

and business policy for the next generation of industry.  
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In consequences, the systems are becoming complicated gradually with the interconnections between 

their subsystems with complicated operating conditions. Different subsystems and components of the 

system are becoming reliant to each other for manufacturing the cumulative productions. This is the 

case of complex operating systems, where the availability of infrastructure, changing aspect, and system 

maintenance are becoming challenging every day to meet the needs of our modern societies. Therefore, 

the study of the system’s availability and system’s maintenance are now an increasingly high demand 

in research area. Furthermore, a large number of systems that have been in service worldwide for many 

years is now nearing the end of their life and therefore require regular maintenance and therefore require 

more and more frequent servicing. To meet these requirements, maintenance strategies should be 

improved. Since maintenance actions are taken before a system failure occurs, significant economic 

losses and decisions on maintenance strategies appear to have an impact on system safety and human 

co-working. Therefore, in order to define the maintenance plans and optimize system availability, we 

need to study the Predictive and Health Management System (PHM). This study will help to reduce 

maintenance costs and ensure high reliability of the system. From an economic point of view, PHM 

study is an extremely important issue for manufacturers that affect the quality of industry’s image in the 

market.  

In PHM applications, prognostic needs the diagnostic; and diagnostic needs to study the degradation of 

the system. Degradation is a damaging process of the system over the service it gives in its lifetime. The 

degradation process itself complex because it is hidden, and many constraints impact on the system’s 

health to get affected. The impacts of these reasons differ based on different conditions such as operating 

conditions, environmental conditions, etc. This thesis studies the degradation of a complex/complicated 

system considering the operating conditions. If we consider no exception (accident, system/part errors, 

etc.), and no variation of operating condition on the degradation, then it is reasonably less complicated 

to understand and to model the degradation because it will have only one dynamic. Otherwise, 

degradation will have more dynamics or behaviours when there are different varieties of operating 

conditions applied to the system. The more the operating conditions applied, the more the degradation 

gets difficult to study. This thesis studies the degradation under multiple operating conditions  to propose 

a global solution of health assessment for those system that have different dynamics in their operations 

(Shahin, 2019a). The estimated degradation allows to diagnostic of the current health states of the system 

at the given observation data. The prognostic method then uses this information to predict the future 

health state of the system. The proposed prognostic method estimates the remaining useful life (RUL) 

or Remaining Lifetime (RL) of the system from any time to the end of the useful life of the system 

(Shahin, 2019b). The considered time stands between the starting time of the system until it fails. 

Historically, there are two main approaches practiced in PHM society: model-based approach and data-

driven approach. The model-based approach, which is also known as the physical approach uses a 

dynamic mathematical model of the system that directly exploits the physical processes that affect the 

health of the component (Skormin, 1994). Instead, the data-driven approach allows the degradation 

model construction by using observation data collected from installed sensors on the system. This 

approach is usually preferred when system models are not available or not robust enough (Namburu, 

2007). Both approaches have their advantages and disadvantages (modelling effort, accuracy, 

knowledge, etc.). Many researchers used them together to overcome their disadvantages and get all their 

benefits (Liao and Köttig, 2014). They defined this combination as the hybrid approach. However, we 

decided to use the data-driven approach for its diversity, flexibility, and advantages which make it easier 

to accomplish the goal of this research. While the model-based approach requires the physical 

information of the system, this thesis offers diagnostic and prognostic methods based on the data-driven 

approach when the physical information is not necessary or available. The data-driven approach is a 

good fit for such a complex system that has multiple components with nonlinear behaviour. This 

approach allows us to deal with the high dimension of data for predicting the degradation of multiple 

components. 

Different types of models can be adapted under the data-driven approaches. The most popular and 

frequently used models are stochastic. A stochastic model is an estimation tool whose analysis focuses 
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on a random sequence of observations. It deals with the stochastic properties of random variables and 

manages operating loads according to the operating conditions. Thus, the uncertainty of the operating 

conditions can be handled by the stochastic models. This approach also manages the data uncertainties 

because of its randomness and approximation properties. On the other hand, it is difficult for the 

deterministic model to manage the randomness of variables. Therefore, the stochastic model seems to 

be fit for achieving the objective of this thesis. Additionally, the algorithms behind stochastic models 

are comparatively less complicated to adapt and use. It allows us to include variables into the 

mathematical formulas as well. 

There are several stochastic models that can be found in the literature which can be built quickly at low 

cost. Mostly used models are the Bayesian network models, Fuzzy Logic models, Neural Network 

models and Markov models. The Bayesian network is a probabilistic graphical model that uses Bayesian 

inference for probability computation. The Bayesian network offers a strong mathematical foundation 

and is presented graphically so that each variable can be directly connected to each other. It is one of 

the popular model structures or methods in the current research field. However, one of the main 

limitations of Bayesian networks is the discrete treatment of continuous variables. Though, it can only 

deal with continuous variables in a limited way (Friedman and Goldszmidt, 1996; Jensen, 2001; Weber 

and Simon, 2016). Another popular model is the Fuzzy logic that works following human reasoning. It 

is popular for its flexibility in using simple mathematics for nonlinear, integrated, and complex systems. 

The development of fuzzy rules and membership functions is cumbersome, and the fuzzy output can be 

interpreted in various ways, which makes analysis difficult. In addition, developing a fuzzy system 

requires a large amount of data and expertise. In this case, the Neural network offers a great alternative 

solution. The mathematical foundation of the Neural network allows us to handle a large amount of 

nonlinear data and inputs. This model is flexible to use for both regression and classification problems. 

Yet, since this model relies on a large amount of training data, it can lead to overfitting and 

generalization problems (Yi, 2018). Furthermore, it works like a black box, so it does not give any 

information about how much the independent variable affects the dependent variable, nor how the entire 

hidden layer of likelihood evolution is developed. Thus, for those cases in which the black box concept 

is not enough or an effective solution, Markovian models can be a great alternative. The Markov model 

or Hidden Markov Model (HMM) not only allows to observe the hidden states and their likelihood but 

also gives access and change the values during training at any time.  

HMM was introduced by Baum in the early 1970s (Baum and Petrie, 1966), and (Rabiner, 1989) used 

it for the first time in an application for recognition of speech. It was later used in PHM challenges. Two 

problems are similar and close to recognizing speech and degradation that is why the HMM is 

investigated in the PHM domain. HMM is a popular model for time series data modelling. We are 

interested in a stochastic system, in which state evolution is random and hidden or unknown. HMM is 

well fit for the objective of this thesis which allows the joint distribution to be factored into a series of 

conditional distributions.  

However, the HMM does not allow any input to the model while our goal is to consider the operating 

conditions as input. Therefore, this thesis offers the advanced version of HMM called the Input-Output 

Hidden Markov Model (IOHMM). IOHMM overcomes some the limitation of HMM and allows to 

switch the models according to the given input operating conditions. IOHMM is being introduced in 

1995 (Bengio and Frasconi, 1995). Since it has been used in various applications (Hu, 2015; Just, 2004) 

but in our knowledge, it is not yet being used in PHM. A brief discussion about the basics of the model 

is given in this book in which the difference between several versions of HMMs along with the benefit 

of IOHMM is presented with examples and application to PHM. 
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Research questions 

The issues in diagnostic and prognostic of complex systems under multiple operating conditions can be 

categorized by three major problems: 

1. Considering health state with whatever the system complexity is by a stochastic model and learn 

model parameters from system measurements. 

Information on health status can be found in the data set. But now, the question comes, what to say 

about this data set, is it good or bad? Is there enough information in the data to train the model? 

How does the model handle incomplete data series or missing data? These are sensitive issues need 

to be studied even under the data uncertainty. There are several other uncertainties that need to be 

taken into account in model training. For example, fixing the number of model parameters. It is a 

difficult task to fix the appropriate number of model parameters. Limited data is also an important 

issue in which the number of parameters is relevant. Usually, a small set of data limits the number 

of parameters. Several models can be used to represent the complexity of a system, how can we 

compute the confidence in these models? Can we prove that the recommended model is good enough 

for the system? Does the model allow us to manage multiple operating conditions at a given input 

sequence? We present a solution for these issues in this book, where the proposed approach takes 

into account the different uncertainties of the data, model parameters, and operating conditions. In 

our proposal, we apply the Bootstrap-IOHMM method to analyse the confidence of the estimated 

parameters when the model takes into account multiple operating conditions and measurable outputs 

of systems. A technique to decide the number of parameters is given in the following chapter. Lastly, 

several cross-validation methods are applied to validate the model for a small amount of dataset. 

2. Diagnostic and prognostic of the system health under multiple operating conditions. 

Prognostics the health states require diagnosing the current health status of the system. There is a 

correlation between the two estimations that need to be done through the same model structure 

because we cannot use the model to predict future health states if we do not learn the model from 

previous health states. Another challenge for the prognostic system's health is the future operating 

conditions. Even if we diagnose the current state of health, we need to consider the future operating 

conditions to determine future health states. The question is, how does the model manage the 

operating condition if it is unknown? Since the future operation of systems depends on many issues 

(production speed, deadlines, reaching maintenance dates, etc.), the operating conditions may 

change several times in the future. It is an important issue that is taken into account in our solution. 

However, this implies that there is a relationship between operating conditions and predictive 

degradation which leads to another important question of whether the proposed model capable of 

managing operating conditions to manage RUL of the system to reach a given date (maintenance 

date, etc.) before a failure occurs. These problems are considered in the proposed solution, and the 

model also allows us to make offline and online diagnoses/predictions. 

3. Prognostic the RUL for structured systems from its components to study the entire system reli-

ability.   

Usually, researchers focus on a component. The component itself has a complex degradation process 

because it can degrade in materials, electrical, mechanical, chemical, etc. It can also be complex 

because the model designer has a global point of view (many components for a sub-system) but the 

challenge is to go close to an acceptable level of complexity and to combine models to handle bigger 

systems knowing their functional structure. So, the question is how to do that? Well, one solution 

can be diagnosed the components separately then combine them together to diagnosis the global 

health state of the system. We assumed the components do not interact with each other, but since 

they are part of the system, so their health states represent the system’s health. We present a solution 

for these issues in this book to define the health state of the system given the health state of the 

components. 



5 
 

The manuscript is organized in 6 chapters:  

After introducing the general concept of PHM, Chapter 1 reviews PHM approaches and corresponding 

models from the existing literature. This chapter studies the advantages and disadvantages of different 

approaches and the main existing methods. Then a modelling tool is defined by comparing with 

comparable models found in the literature. The model is selected under consideration of its capability, 

flexibility, and adaptability. All these considerations together with the characteristics of the system 

studied to make it possible to justify the selected methods used in this book.  

Chapter 2 describes the background of the stochastic model. It describes Markov chain, HMM, and then 

IOHMM with their components, properties, and mathematical foundations. The difference between 

Markov chain, HMM, and IOHMM are drawn in this chapter. The milestones of HMM and three basic 

problems are explained as well. Different algorithms such as the Baum-Welch, the Forward-Backward, 

and the Viterbi algorithms that are dedicated to HMM are described in this chapter. 

Chapter 3 illustrates the first contribution of this thesis. Baum welch algorithm and the forward-

backward algorithm are adapted to IOHMM for considering multiple inputs and outputs in the model. 

The data uncertainty (i.e. missing data, etc.) and the uncertainty about model parameters (i.e. number of 

parameters, etc.) are handled in model training. The Bootstrap method is implemented for developing 

confidence in parameter estimation. The parameters are estimated with 95% confidence intervals, mean 

value, and standard errors. Then, the mean values are used to construct the models to use in the 

diagnostic and prognostic health state of the system.  

Chapter 4 presents the second contribution of this thesis. The Viterbi algorithm is adapted to the model 

to diagnostic system’s health at given observation data. Later, the prognostic algorithms are applied to 

predict the RUL. Online and offline prognostic are made under multiple operating conditions. To prevent 

the uncertainty of future operations at unknown operating conditions, the Monte Carlo simulation is 

applied to simulate the operating conditions. Three simulated (numerical) applications are presented to 

validates the adapted algorithms, bootstrap method, and missing data handling, and a method is studied 

to manage the numerical problems in the model. 

Chapter 5 demonstrates the third contribution of this thesis which is an application given by the PHM 

challenge in 2008. The proposed method is used to prognostic an aircraft engine under multiple 

operating conditions. Principle component analysis (PCA) is applied to data preparation. Different 

uncertainties (data, operating conditions, etc.) and challenges mentioned in chapter 4 are handled in the 

demonstration. An experiment is done to manage the model size according to the given operating 

conditions. The probability distribution function (PDF) was implemented to deal with the uncertainty of 

RUL estimation. Lastly, three cross-validation techniques (leave-p-out, leave-one-out, and k-fold) were 

applied to validate the model performance with promising scores of root square error (RSE) and mean 

square error (MSE).  

Chapter 6 describes the fourth contribution of this thesis in which the proposed methodologies to 

prognostic the structured system that has multiple subsystems or components. Each of the components 

is represented by an IOHMM which is learned and diagnosed separately. Then, an algorithm is 

developed to diagnose the entire system by using the diagnostics of all the components. After that, the 

model is built from the estimated parameters of all the IOHMMs to estimates the RUL for the whole 

system. A numerical example is given to demonstrate a real application: drinking water network (DWN) 

in Barcelona city. 

Finally, all the work in the thesis is summarized in the conclusion, and the perspectives are given which 

will be considered for future works. 
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Chapter 1 
State of the Art: The generalities of maintenance, diagnostic, 

prognostic and PHM 
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1 State of the Art   

  
Prognosis and Health Management (PHM) is a multidisciplinary field with evolving capabilities and 

needs. It uses the real-time information of health states of subsystems and components to provide 

actionable knowledge that enables intelligent decisions to improve performance, safety, reliability, 

mission criticality, and economic viability among others (Saxena, 2010). The goal of PHM is to provide 

decision support, i.e. actionable information to support decision making (Kalgren, 2006).  

PHM of a component or system involves diagnostics and prognostics activities. The diagnostic is the 

process of detecting the health states at the considering time, while prognostic is the process of 

predicting future states mainly through the remaining useful life (RUL) based on the diagnostic (Ly, 

2009). Prognostic performs by understanding that the system will fail after a period of degradation or 

will not satisfy its mission, and if it is measured, it can be used to prevent system failure and minimize 

operating costs (Tian, 2012). Essentially, PHM is a method of assessing system reliability to predict the 

probable failures (Sun, 2010) which reduces the time for planning maintenance (Banks and Merenich, 

2007).  

1.1 Maintenance  

Maintenance can be defined as "all technical, administrative and management actions during the life 

cycle of an asset, intended to maintain it or restore it to a state in which it can perform the required 

function” (Chebel-Morello, 2010). The goal of maintenance is to preserve or restore the functionality of 

systems and products throughout their life cycle. Most maintenance is either completely reactive or blind 

preventive maintenance (Djurdjanovic, 2003). The oldest maintenance strategy is fixing after the 

breakdown which leads to the problems of unplanned downtime, potentially serious safety violations, 

and potentially significant damage to the manufacturing equipment. The next natural step is to monitor 

and maintain the system at predetermined intervals (preventive maintenance), which is often costly 

(Kothamasu, 2006). The development of reliability engineering in the 1950s led to the introduction of 

time-based maintenance (TBM) based on increasing failures over time (Takata, 2004). Then, in the 

1970s, the development of machine diagnostics led to the concept of condition-based maintenance 

(CBM) (Ahmad and Kamaruddin, 2012; Jardine, 2006; Latrous, 2018; etc.), where preventive actions 

are based on detected failure symptoms. Nowadays, to minimize the probability of failure, downtime, 

and maintenance costs, we use of diagnostics and prognostics activities to predict the RUL of the system 

(Kothamasu, 2006).  

Figure 1 is a general flowchart of the PHM system development which is adapted from (Vogl, 2019). 

This figure is divided into two processes, (a) general PHM system development process and (b) essential 

PHM system process. The general process begins with a cost and reliability analysis to identify the 

components to be monitored. The data management system is then initialized so that maintenance data 

can be collected, processed, visualized, and archived. Once measurement techniques are established, 

diagnostic and prognostic methods are developed and tested to ensure that the desired objectives are 

achieved. Finally, the system gets validated and verified through an iterative process of training and 

testing modules prior to the final deployment of the system. After that, the general PHM process emerges 

with the essential steps of the PHM process. The next section discusses the essential aspects of the PHM 

process where different steps of diagnostics and prognostics act and reach the conclusion to plan the 

maintenance. 
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Fig. 1: General PHM system development process (a) and essential PHM system process (b) 

Different challenges and needs of the essential PHM process are shown in Fig. 1 (b), as discussed in this 

section.  

1.2 Degradation 

Degradation of a system is a process of lowering the health condition of the system to a less respective 

state. It is also known as a downcast state. In the case of a stochastic process that characterizes the 

physical deterioration (if observable), the prognostic models will obviously affect the prediction of 

remaining useful life, and therefore influence the decision of the maintenance strategy and its economic 

performance. It can be classified based on whether the degradation states are discrete or continuous. 

There are several methods applied to model degradation (e.g. Chen, 2019; El Hajj, 2016; Hao, 2019; 

Oumouni, 2019; Saxena, 2019; etc.). However, in the scenario with discrete states, Markov chain models 

(Bloch-Mercier, 2002; Chen, 2003; Xiang, 2012; Yeh, 1997) are often adopted. After specifying the 

probability transition matrix among all states, these models can be used to compute the time-to-failure 

distribution from any state. The Markov chain models are particularly useful when the degradation states 

of the system cannot be precisely measured. That is why, a roughly presumed category (e.g. good, 

moderate, bad, etc.) is usually assumed as different health states of the system (Fig. 2). After this 

discretization, the remaining useful life may depend only on this granularity. 
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Fig. 2: Health degradation of systems 

Great reviews on degradation process have been done in (Knights, 2004; Schmittinger and Vahidi, 2008; 

Wu, 2008; Yousfi-Steiner, 2009, 2008). They are relative to various fields: component degradation, 

water management, contamination (CO poisoning, presence of impurities initiating chemical attacks), 

reactant gas starvation or thermal management (influence of freezing or elevated temperature). If the 

degradation is not properly monitored and estimated, then it can lead to inaccurate diagnostics and 

prognostics information so thus the inefficient maintenance planning. 

1.3 Diagnostic 

The collected data represents deferent point of view of systems. In this book, we consider the data that 

is collected from sensors where the data provides information about the damage level of the health 

conditions or the degradation. The health condition is defined as an observed variable that changes from 

good state to bad state over the lifecycle of the system. The data represents the symptoms of abnormality 

of the system compared to the performance over time. The goal is to estimate the current condition of 

health according to the symptoms. Diagnosis of damage level for the system’s health requires several 

features that apply to the system (or component) usage information and a diagnostic search strategy that 

can match the observed symptoms and the known set of possible states. Furthermore, the results of 

diagnostic are needed for developing probable failure detection (prognostics) so that system breakdowns 

are avoided. The ability to right diagnosis is challenging due to the data uncertainties, lack of information 

(Patrick, 2009), dependence on environmental and operating conditions, and uncertainties in 

maintenance schedules. 

In this section, a description of some requirements that the diagnostic process has to be considered in 

order to be used in prognostic applications. For a machine learning model to be useful in solving system 

health diagnostic, the following features are required to be considered: good performance, dealing with 

missing data, dealing with data uncertainty, the ability to deal with multiple operating conditions, the 

transparency knowledge, and the ability of the diagnostics algorithm to reduce the tests necessary to 

obtain reliable information.  

a. Good performance: The algorithm must be able to extract meaningful information from the 

available data. The diagnostic accuracy for new measurements should be as high as possible. In 

most learning problems, the different approaches (leave-p-out, leave-one-out, k-fold, etc.) used 

by the selected algorithm may be a good solution, as one approach may be significantly better 

than the other (Michie, 1994). Therefore, in terms of performance criteria, these approaches can 

hardly be excluded. Instead, several learning methods should be tested on the available data and 

the use of the few methods with the best-estimated performance should be considered in appli-

cation development. 
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b. Dealing with missing data: In health diagnosis very often the sequences of system’s records 

lack certain data. The algorithms must be able to appropriately deal with such incomplete se-

quences of data elements.  

c. Dealing with data uncertainty: Sensor data typically suffer from uncertainty and errors. There-

fore, the selected algorithm must have effective means for handling the uncertainties (e.g. noise 

or error in data).  

d. Operating conditions: Operating conditions define the operational context of the system or 

components based on various circumstances or requirements. A system may have multiple op-

erating conditions, for which the system undergoes various dynamic degradations.  

e. Transparency of diagnostic knowledge: The generated knowledge and the explanation of de-

cisions should be transparent to the agents (e.g. operator, other methods, etc.). The knowledge 

should be able to analyzed and understandable. Ideally, the generated knowledge provides a 

novel point of view on the given problem and may reveal new interrelations and regularities by 

the operator to the next operations, as well as the prognostic method to the next predictions, etc.  

f. Reduction of the number of tests: In PHM practice, the collection of data is often expensive 

and time-consuming. Therefore, it is desirable to have a classifier that can reliably diagnose 

with a small amount of dataset. However, the process of prediction can be done by using the 

subsets of data several times which may be an effective solution. Some methods are themselves 

able to select an appropriate subset of data, e.g. the bootstrap method where the data selection 

is done randomly during the learning process. 

Diagnostics are vital to successful prognostics, as acceptable prognostic approaches begin with robust 

diagnostic since the uncertainty in estimating the health state of the system affects any future predictions 

(Hess, 2006; Patrick, 2009). Challenges to diagnostics exist in the problems of validation and 

confirmation for the false alarms. The cause of such false alarms is one of the main challenges of PHM 

systems. Furthermore, systems can be complex and have multiple operating conditions. Therefore, 

diagnostic and prognostic methods must be able to handle different uncertainties (e.g. operating 

conditions, data, etc.). Otherwise, these uncertainties can lead to high false alarm rates, inaccurate 

predictions, and consequently, wrong decisions (Hess, 2006). 

1.4 Prognostic 

Global performance requirements have led industries to enhance their ability to predict degradation 

phenomena and failures. This is largely due to the realization of prognostic capabilities, which appear 

to be a key process in the move from "failure to repair" to "predictive to prevention" strategies (Fig. 3) 

which improves system reliability, availability, and safety while reducing costs and downtime. 

However, prognostic is even more challenging than diagnosis, which mainly explains why prognosis is 

an underdeveloped component of PHM systems (Belkacem, 2017; Patrick, 2009). Some failures are 

occasional and therefore difficult to predict (Sun, 2010). Hence, there is still no universally accepted 

method of prognostics (Lee, 2011). Despite being a very challenging part of PHM, it is also one of the 

most beneficial aspects of industry 4.0’s perspectives (Hess, 2006). 

 

Fig. 3: Anticipating instead of repairing (Jouin, 2013) 



14 
 

Although, there are some different points of view in the literature. The prognostics can be defined as 

“prognostics” by the International Organization for Standardization (ISO) which is the estimation of 

time to failure currently or in future (ISO13381-1, 2004). In this view, prognostics is also referred to as 

"system life prediction" because it is a process that aims to predict the Remaining Useful Life (RUL) of 

systems under current health states and future operating conditions (Fig. 4).  

 

Fig. 4: RUL illustration (Jouin, 2013) 

RUL prediction considered for nearly half of all PHM data challenge applications due to their 

importance in assisting with maintenance planning and health management (Kononenko, 2001). In 

practical applications, it is common to view health assessment as a critical step in support of RUL 

prediction, which aims to estimate the remaining operating time of a system before its health deteriorates 

to a threshold that indicates system failure or unacceptable production quality.  

RUL prediction is essentially a conditional-based estimation to make better-informed maintenance 

decisions. Without a corresponding measure of uncertainty, the RUL has little value (Engel, 2000; 

Sandborn and Wilkinson, 2007). Thus, RUL estimation is a "recognized challenge" in the PHM system 

(Ly, 2009). Indeed, few PHM methods produce continuous real-time RUL estimations (Patrick, 2009) 

and improve the prediction based on new measurements. Furthermore, systems can be complex with 

perhaps thousands of subsystems and various operating conditions which make it more difficult to 

predict the reliability and performance of the system (Lee, 2011). Therefore, the prognostic algorithms 

must be able to adapt these characteristics to provide high-quality performance. Since the prediction of 

unknown future is inherently uncertain, it should be viewed as a probabilistic process, where the 

predicted RUL is represented by a probability density function (PDF). The PDF will then be used to 

inform the maintenance engineer about the turnaround time based on the required maintenance process. 

The limitation of prognostic is that there will always be a constraint to the accuracy and precision of 

condition-based RUL estimation due to the inherent uncertainty in predicting the future. Failure 

mechanisms have a certain amount of physical randomness and environmental conditions that increase 

the inherent error of the prediction process due to imperfections in sensor data, pre-processing, feature 

extraction, and failure prediction methods (Engel, 2000). In fact, prognostic may not be feasible due to 

the highly unpredictable nature of failure modes (Roemer, 2001). Multiple failures can also complicate 

RUL prediction (Engel, 2000). 

In the following sections of this chapter, the most popular and best-performing methodologies in the 

field of prognostics and health management are identified. Section 2.1 describes the modelling 

approaches used in this field or relative research for over 50 years. Section 2.2 presents the different 

types of models developed using the methods identified in the previous section and their performance, 

this section presents why stochastic models are chosen to achieve the objectives of this thesis. Section 

2.3 reviews several stochastic models, which are listed based on optimal performance. Finally, the 

proposed modelling tool is selected to design such a system that provides the opportunity to practice the 

proposed methodology. 
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1.5  PHM approaches 

Machine learning methods and algorithms have been intensively studied at PHM over many years. 

Several researchers are studying several strategies to implement these algorithms through PHM (Kumar, 

2008; Lamoureux, 2015; Lee, 2014; Saxena, 2010; Uckun, 2008). These algorithms can be divided into 

three main categories: (1) physics or model-based methods, (2) data-based methods, and (3) hybrid 

methods. Another approach built on expert knowledge can be found in the literature called experience-

based approach. However, only the most common methods are discussed in this book. Finally, after 

understanding the advantages and disadvantages of each approach, a statistic method is selected for 

accomplishing the objective of the study. 

1.5.1 Model-based prognostic approaches 
Model-based approaches, also known as physical approaches, are one of the commonly used approaches 

for failure analysis and identification applications. The approaches utilize a dynamic mathematical 

model of the system that directly exploits the physical processes that affect the health of the components. 

The results are used in intelligent monitoring systems that work well under any load, including steady-

state and transient conditions and unanticipated operating conditions and regimes (Skormin, 1994). 

These approaches provide good results for early fault detection by monitoring physically important 

parameters. The behaviour of the system degradation process leading to prognostics that are described 

by mathematical models in which the equation is derived from the physical system. 

Mathematical models are combined with parameter identification and prediction of future health 

evolution. Model-based prediction methods commonly used in the literature are the Paris-Erdogan law 

(Irwin and Paris, 1971; Paris and Erdogan, 1963) and the Forman law (Forman, 1972). Some recent 

applications of model-based bearings and batteries are given in (Hu, 2019; Sierra and Goebel, 2020; 

Wang, 2020). Hu proposed methods for near degradation and RUL estimation, and Wang and Sierra 

proposed methods for state estimation and prediction applied to battery life. Many other applications, 

such as fault prediction for electro-hydraulic drives (Dalla Vedova, 2020) and prediction algorithms for 

electromechanical flight control drives (Di Rito, 2018), are proposed through model-based approaches. 

A model-based approach for lithium-ion cells is presented in (Daowd, 2010), where the degradation 

model of the equivalent battery circuit is adapted. (Tagade, 2016) have developed an improved Particle 

Filtering (PF) algorithm to display battery status estimation for different driving cycle protocols. In 

(Eker, 2015), a physics-based model for filter clogging phenomena was presented. An overview of 

forecasts based on dynamic system models is presented in (Ekanayake, 2019), where different opinions 

on advantages and disadvantages are described.  

Advantages and disadvantages 

From a lot of papers on the subject, several pros and cons of using a model-based approach can be 

drawn. For instance, less interest in historical knowledge (data), and false alarm rates can be adjusted. 

Although model-based approaches can provide relatively accurate predictive results. It is very 

challenging to drive models from real physical systems due to their complexity and the random 

degradation behaviour of components which is a complex process with concurrent form. In some cases, 

it may not be a viable solution in industrial applications due to the uniqueness of the failure mode or the 

dynamic evolution of the damage, and the specific theoretical knowledge of the physical system. The 

main model-based prediction tools studied in the literature are presented in Table 1 below with their 

areas of application, advantages, and disadvantages. 
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Table 1: Model-based prognostics tools and their advantages and disadvantages. 

Prognostic tools Advantages  Disadvantages  Application References 
Paris’ law (PL) -Model parameters are 

adaptable for conditional 

changes 

-Linear correlation with 

defect size and vibration 

RMS level 

-Empirical determination 

of material constants are 

needed 

-Bearings, 

gearbox, fatigue 

crack propagation 

 

(Ding, 2018; 

Pugno, 2006; Xu, 

2012) 

Forman law (FL) -Links both monitored data 

and crack growth physics to 

life models 

- Poor results for 

complex systems 

 

-Fatigue crack 

propagation 

 

(Nelson, 1982) 

Fatigue spall 

initiation/progression 

model (FSI/P) 

-Calculates time up to 

initiation and from initiation 

up to failure 

-Damage is cumulative 

-Many parameters to be 

determined 

 

- Bearings, fatigue 

crack 

propagation 

 

(Kotzalas and 

Harris, 2001; 

Sadeghi, 2009) 

Kalman Filter (KF) -Estimates current/future 

states 

-Estimation error is 

corrected with the latest 

measurement 

-System/measurement 

model need to be defined 

-Sensitive to noise 

-Applicable to linear 

systems with Gaussian 

noise 

- Gearbox 

bearings, PEMFC, 

batteries 

 

(Aidala, 1979; 

Chen, 2019; Sun, 

2011) 

Particle Filter (PF) -Applicable to non-linear 

systems with non-Gaussian 

noise 

-Better accuracy 

-Avoids degeneracy 

problem by resampling 

-System/measurement 

model need to be defined 

-High dimensional data 

increases computational 

cost 

 

-PEMFC, 

batteries, filter 

clogging, fatigue 

crack 

propagation 

(Cheng, 2017; 

Schwunk, 2013; 

Sreenuch, 2015) 

 

The degradation processes of subsystems and components in systems may differ from those of other 

systems, which limits the applicability of physical models to system-wide predictions. Thus, another 

approach is widely used in PHM, the data-based approach. Due to its scalability, flexibility, and quick 

implementation, data based PHM has clearly become a necessity for the next industrial revolution. 

1.5.2 Data driven prognostic approaches 
The data-driven approaches are other popular approaches that allows the use of observational data 

collected from sensors to build degradation models. These approaches are often preferred when the 

system model is not available or robust enough. For example, the underlying physics is too complex to 

model, but the observational data can be used for systematic monitoring (Namburu, 2007). Different 

parameters such as vibration, temperature, velocity, and pressure are continuously collected to detect 

any changes in the normal operating conditions of any system. These parameters can be analysed by 

observing and collecting data from the daily operation of the system as soon as a new data set arrives at 

the monitoring centre. The mathematical foundation of modelling the system is designed from this data, 

that notifies the monitoring and diagnostic-based decision-making activities. Different PHM activities 

such as prognostics, RUL, diagnostics, and maintenance related literature are given below.  

Several prognostics applications have recently been proposed (Balali, 2019; Elattar, 2019), where 

distributed electrical systems (Balali, 2019) and safety-critical systems (Elattar, 2019) are monitored 

through data-driven approaches. In (Khumprom and Yodo, 2019), a data-driven prediction strategy for 

aero-engine degradation prediction is proposed, and  (Wang, 2019) combines this strategy with another 

class of deep learning approach for predicting the prognosis of the system battery. Different data-driven 

remaining life estimators for cutting tools (Liu, 2019) and bearings (Zhu, 2020) have recently been 

proposed, in which Zhu considers remaining life estimators for various operating conditions in his 

algorithm. Many authors used this approach in combination with several other methods to have different 

perspectives. In (Ellefsen, 2019), the authors combined a data-driven labelling approach with a novel 

deep network structure for residual lifetime prediction. Liu proposed an approach based on this method 

covering several detections and data recovery technique (Liu, 2019). Mosallam combined this approach 

with a Bayesian approach in (Mosallam, 2016) for direct RUL prediction. 
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Several degradation models based on data-driven approaches have recently been proposed. Severson 

proposed a method for predicting cell lifecycle before capacity degradation (Severson, 2019). (Wu, 

2008) proposed a degradation model as a time-fault prediction data-driven method for rolling body 

bearings in motors. In (Ma, 2018), the authors provided another method for fuel cell degradation 

prediction. They combine a data-driven approach with a deep learning approach. A data-driven approach 

is presented in (Esmaeili, 2019) for predicting the effect of temperature on the relative permeability of 

oil and water. 

Furthermore, predictions of degradation data for miniature light bulbs were studied by modelling the 

trend and seasonal components of the time series analysis technique (Huang, 2010). Other interesting 

applications can be mentioned, where the authors used the data-driven approach to obtain a better result. 

For example, in (Hu, 2012), a dataset-based prognostic approach was proposed, which combines several 

algorithms using different sum-weighted functions for accurate predictions. (Liu, 2007) developed a 

new prediction algorithm, called Correspondence Matrix (MM), with a long prediction horizon. The 

non-parametric statistical method of Gaussian process regression (GPR) has been adopted for the 

prediction of nuclear power plants (Baraldi, 2015). In (Yu, 2011), Gaussian Mixture (GM) has been 

integrated into the feature extraction methodology for diagnosing bearing damage. An off-line 

methodology for structural health prediction was proposed in (Hu, 2012). 

A review on degradation estimation based on the data-driven predictive model approach is given by 

(Balali, 2020). The author reviews the general data-driven approaches for the most important 

degradation-based reliability estimation models proposed by several researchers during the last few 

decades. Many other scientists have given their discussions and reviews on diagnostics and prognostics 

applications based on these approaches. For example (Heidary, 2018) reviews various pitting corrosion 

degradation models for PHM analysis of oil and gas pipelines. In (Wu, 2016; Li et al. 2019), the authors 

reviewed different data-driven methodologies for estimating the lifetime prediction of lithium-ion 

batteries. (Zhang, 2019) review this approach for predictive maintenance of industrial equipment. 

Another important review on system hardware diagnostics by different approaches where some 

important work based on the data-driven approaches is discussed. The necessity of these approaches is 

highlighted, and some applications are given as examples. The key features along with its advantages 

and disadvantages are presented hereafter. 

Advantages and disadvantages 

The data-driven approaches show the importance of research experience. It may not always be the best 

in all cases, but it allows business leaders to evaluate success in some cases. Data can be an important 

resource for improving decision-making, communication, and productivity. We see some of the 

advantages and disadvantages of these approaches, categorized by the forecasting tools and applications 

in Table 2. 

Data uncertainty is one of the major challenges in data driven approaches. Data required to be good 

qualitative and should be degradation trend for designing an effective model. The data driven algorithms 

are difficult to adjust for false alarms to misdetection rate. However, by understanding its limitations, 

this approach can provide more practical and available solutions for diagnosing and predicting complex 

systems rather than building physical models. Various algorithms can be easily combined to enhance 

the results such as multicomponent degradation, or overall system’s degradation. 

Table 2: Data-driven prognostics tools and their advantages and disadvantages. 

Prognostics 

Tools 
Advantages Disadvantages Application References 

ARIMA Models -Applicable to linear 

systems with 

stationary behavior 

-Uses less amount of data 

-Short term prediction 

-Not useful for non-

stationary 

processes 

Rotating 

machinery 

(Wen-ping and Peng, 

2004; Wu, 2007; 

Zhou, 2020) 

Match Matrix 

(MM) 
-Deals with high 

dimensional data 

-Needs sufficient historical 

data 

Rotating 

machinery 

(Li, 2018)  
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-Provides long term 

prediction 

-Suitable for non-

stationary processes 

-Data should have 

degradation trend 

Gaussian 

Mixture (GM) 

-Many Gaussian functions 

can be used to 

approximate an arbitrary 

distribution and accuracy 

-Initialization methods are 

important in parameter 

optimization  

-Determining number of 

mixtures is difficult 

Bearings, CNC 

machines 

(Kong, 2017; 

Nelwamondo, 2006; 

Yu, 2011) 

Gaussian 

Process 

Regression 

(GPR) 

-Adaptable to 

environment and can 

learn from experience 

-Needs covariance function 

determination 

-Suitable for Gaussian likely 

hood 

Nuclear power 

plants, 

batteries 

(Baraldi, 2015; 

Richardson, 2017; 

Yang, 2018) 

Artificial Neural 

Networks 

(ANN) 

-Applicable for complex 

systems and which have 

non-linear behavior 

-Adaptable to the system 

-Network structure is not 

determinable 

-Needs resources for 

computation 

Bearings, 

batteries, 

Turnout point 

machines 

(Michalak, 2019; 

Sharma, 2019; Wu, 

2018; Zhang, 2019) 

Fuzzy Logic 

(FL) 
-Inputs can be imprecise 

noisy/incomplete 

-Appropriate for complex 

systems 

-Needs rule development 

based on expert knowledge 
Bearings (Du, 2020; Rehman, 

2019) 

Bayesian 

Networks (BN) 

-The number of structure 

parameters are reduced by 

conditional probability 

distribution 

-Visualizes variable pair 

dependency links 

-Has complex and costly 

learning 

-Prior knowledge is needed 

Bearings (Lu, 2020) 

 

1.5.3 Hybrid approaches  
As discussed in the previous sections, both model-based and data-based prognostic approaches have 

their advantages and limitations. The hybrid approaches are such approaches that aim to integrate the 

advantages of different approaches and minimize their limitations to better estimate health status and 

predict RULs at the system and component level. None of the approaches proposed in the literature is 

superior to others but is suitable for a practicable problem. It is therefore important to note that the 

advantages of the forecasting approach can only be determined on a case-by-case basis. In (Liao and 

Köttig, 2014), the author presented a comprehensive literature review that aims to develop a hybrid 

prediction method by combining the advantages of different prediction methods. They used the hybrid 

predictive approach as a case study to validate and develop its potential benefits in degradation 

applications. He divided the prediction models based on experience, data and physics, and proposed 

different combinations of mixed prediction methods. 

1. experience based plus data driven 

2. experience based plus physical based or model based 

3. data driven plus physical based 

4. more than one different data driven models  

5. experience based plus data driven plus physical based 

(Satish and Sarma, 2005) proposed an economic method of predicting bearing failure using a 

combination of ANN (artificial neural networks) and fuzzy logic, and (Swanson, 2001), proposed a 

hybrid approach using Kalman Filter (KF) and fuzzy logic algorithms to solve the crack propagation 

problem. In (Gebraeel, 2004), an RNA (recurrent neural networks) based hybrid bearing damage 

prediction method was proposed. The authors collected vibration signals from 25 accelerated bearing 

tests and trained 25 ANNs to predict bearing failure times. Then, the remaining life is predicted by 

weighting the output of ANN. Peng, in (Peng and Dong, 2011) proposed a hybrid approach of HMM 

and grey model to predict pump wear. (Gu, 2010) also studied the gray prediction model for electronic 

prediction and integrated the gray prediction model with the HMM (Hidden Markov Model) RUL 

prediction algorithm and integrated it with the aging factor for asset prediction. (Kumar, 2008) proposed 

a hybrid approach based on data and model for electronic prediction. (Hong-feng, 2012), proposed a 
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fusion framework to prognostic and health management of systems by using data and model-based 

approaches. 

1.5.4 Conclusion  
The systems to be monitored are mainly complex systems with multiple components where each of the 

components has multiple operating conditions which are one of the main reasons for their health 

degradation in different dynamics. System monitoring is defined as monitoring the health states of the 

system in this book which is a difficult challenge due to the uncertainties of diagnostics and prognostics. 

This section has presented different PHM approaches which are classified into three main groups: 

model-based, data-driven, and hybrid approaches. 

- The model-based approaches are used based on the system’s physical degradation phenomena. 

These methods are generally good, efficient, and give the best results. However, they are com-

plicated to implement and are mainly applied only to simple systems. In order to model complex 

systems, this approach does not perform reasonably while considering uncertainties. 

- The data-driven approaches consist of analyzing data to estimate the state of degradation and 

then predict the remaining useful life span of the system. The performance of these methods 

depends on the quality and quantity of the data. These methods are applicable to complex sys-

tems and give comparatively good results than the model-based approaches. They are able to 

adapt the environmental conditions and learn from experience. The uncertainty can be charac-

terized in terms of the instants of a probability density function through this approach. In this 

book, the data-driven approaches are chosen to practice the PHM activities of system health. 

We want to propose a diagnostic and prognostic method without having a deep knowledge of 

the physical condition of the system. The scope of the approach allows us to model systems 

with multiple components and nonlinear behavior. The proposed method should deal with the 

high dimension but less amount of data for predicting the degradation of multiple components. 

These are the major reasons why the data-driven approaches are suitable and appropriate ap-

proaches. 

- The last group is the hybrid approaches which basically combine both the approaches for keep-

ing their benefits. 

In the next section, this chapter presents different types of PHM models in details which are developed 

based on the data-driven approach. For example, deterministic models, stochastic or probabilistic 

models, etc. A brief review of these models along with their advantages and disadvantages are given 

with examples. 

 

1.6 Model types 

In the PHM application, several models under the data-driven and stochastic approaches are used to 

derive a posterior distribution of the hidden and random variables from the observations to calculate the 

expectations associated with this distribution. However, since this is often difficult to compute, an 

approximation scheme must be used. Deterministic approximation models and statistical approximation 

models are alternative techniques to methods based on numerical sampling of time series data. This 

section will present the advantages and disadvantages of both to help in selecting models according to 

the objectives of the thesis. 

1.6.1 Deterministic models 
The output produced by the deterministic model is determined entirely by the parameter values and 

initial conditions, without considering any approximation or randomness. It uses posterior distributions 

that are analytically approximate. The approximated distributions are factual in convenient expressions 

such as Gaussian, almost never leads to accurate results (Bishop, 2006).  
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Recently, several researchers used deterministic models in diagnostics and prognostics-based 

applications such as a deterministic based prognostic method for the pyramidal tract (Rosenstock, 2017), 

predicting remaining useful life of bearing applying deterministic extended Kalman filter (Shen, 2019), 

computer-aided diagnostic systems or fault tolerance control with diagnostic results (Schuh and Lunze, 

2016; Zafar and Khan, 2019), and failure or first fault diagnosis of various systems (Chen, 2019; Shao, 

2019; Wang, 2019). Some authors mixed deterministic model with other techniques to improve results. 

(Zheng, 2015) proposes a prognostic method for lithium-ion batteries by using Bayesian approach based 

deterministic model. In (Bayraktaroglu and Orailoglu, 2002), the authors offer a cost-effective 

diagnostic method where they used a scan based deterministic model. Ma, (2010) reviewed the 

deterministic machine availability and Garcia gives a survey (Garcia and Frank, 1997) about 

deterministic nonlinear observer-based approaches. Another review (Sun, 2013) is interesting where the 

authors described deterministic approximate Bayesian learning. Propagation expectations (Minka, 2001) 

extend the assumed density filtering in the batch case, including iterative improvements to the 

approximate posterior. In some probabilistic models, their performance is significantly higher than that 

of the assumed density filtering method and some other approximate methods (Kuss, 2006; Minka, 

2001). Propagation of beliefs (Pearl, 1988) provides an effective framework for the precise derivation 

of posterior boundary distributions in a tree structure probability graph model. It comes in various 

algorithmic formulations and the most advanced treatment of which is the sum-product algorithm for 

graphical representation of the factors (Barber, 2012; Bishop, 2006). 

Advantages and disadvantages 

In this section, we described the deterministic approximation models using a selection of literature, 

considering that it is not possible or necessary to mention all deterministic approximation techniques to 

date. The review gives an overall idea of the pros and cons of the deterministic model based on different 

applications. Deterministic models have the advantage of helping to avoid the arbitrary selection of 

performance and provide the necessary theoretical basis for studying the relative importance of various 

factors that affect the outcome results. It has done a relatively good job of identifying the necessary and 

sufficient conditions. The deterministic model tends to rely on a categorical dependent variable, which 

depends on Boolean logic to classify all cases into a single cell in a table. It is generally quick and easy 

to apply but it gets unwieldy in a large dataset. It does not allow for a greater variety of variables. Since 

deterministic models do not consider the randomness of variables, it is difficult to cover different 

uncertainties. Then again, if the data set happens to be stochastic then it tends toward stochastic 

modelling, not deterministic. When we are using data series, it is for following the evolution and predict 

the future valuations. Stochastic models can be a good option to overcome these limitations by making 

predictions from probability distributions using statistical methods. The next section details the 

stochastic model and its advantages over deterministic models.  

1.6.2 Stochastic models 

The stochastic model is such a model whose analysis focuses on a process involving a random sequence 

of observations, each of which is considered a sample of an element in the probability distribution. It is 

also known as a probability model and generally consists of three elements: deterministic parameters, 

variables including latent and stochastic parameters, and observable variables that jointly specify the 

probability distribution (Sun, 2013). However, there is an essential difference between probabilistic and 

stochastic models. A probabilistic model is a relatively broad concept that incorporates random variables 

and probability distributions into a model of an event or phenomenon. The most probable results are 

independent in this model where the past results do not affect current probabilities. For example, 

winning lottery numbers are designed to be completely independent of each other. Today’s numbers are 

determined by the same probability distributions as yesterday, but with no memory of past results. On 

the other hand, the stochastic model calculates the likelihood of the occurrence of certain events during 

the system execution which changes over time are described by its past plus the probability of future 

changes (Kwiatkowska, 2007). Statistics play an important role in this process where the frequency of 

past events is studied. For example, tomorrow's stock price is its current price plus an unknown change. 

This unknown change is usually small enough to make tomorrow's situation reasonably predictable. 
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Stochastic model has been used for a long time in various applications based on time series data. For 

example, Hikaru, (1973) applied the model to predict sulfuric oxides based on a time series data set. 

Finzi, (1980) used another time series model with pollutants and meteorological variables for a single 

point multivariate study, and Murray, (1982) performed statistical modelling of the visibility sulfate 

history database using time series analysis for Salt Lake City. There are also authors who have applied 

Markov, fuzzy, and neural network methods to model different statistical applications. For example, 

North, (1984) developed a Markov model based on the rising and falling phases of the daily threshold 

of the carbon monoxide concentration series. Raimondi, (1997) proposed an air pollution model that 

takes into account model uncertainty and describes the daily dynamics of the variable Dose Area Product 

(DAP). Drozdowicz, (1997) proposed a neural network-based model for predicting carbon monoxide 

concentrations in urban areas of the city of Rosario. The theory is concerned with the decision-making 

process regarding human health assessment. 

In the last 15 years, stochastic models have been applied for different diagnostics and prognostics 

applications in industrial context. For example, Gebraeel, (2008) developed a predictive degradation 

model for calculating and updating residual lifetime distributions in time-varying environments. He, 

(2009) provided stochastic modelling of damage physics using state indicators for prediction of 

mechanical components. (Bian, 2013) described a stochastic approach for prediction in continuously 

changing environments. Bian also studied the stochastic modelling of real-time prognostic predictions 

for multi-component systems with degradation rate interactions. In (Le Son, 2013), the author provides 

a detailed review of the remaining lifetime estimates based on stochastic deterioration models. Mainly 

based on this review and the above literature, the advantages and disadvantages of the stochastic model 

are listed below. 

Advantages and disadvantages 

Advantages: 

• Stochastic can take into account stochastic properties of random disturbance variables; thus, it 

adjusts control actions properly. 

• It allows to include variables into the formula of optimizing problems. 

• It can be formulated in a distributed manner and thus the computational results can be split 

among several solvers. 

• It does not require to have expert knowledge about the system (observed data and survey in-

formation can be useful). 

• It requires comparatively less data and low costly than deterministic models. 

Disadvantages: 

• Sometimes it relies on historical consumption data. 

• Maybe render incorrect result due to the false alarms in data. 

• Prevent measures that may have no impact. 

 

1.6.3 Hybrid models 
Hybrid models use both deterministic and stochastic assets to maintain their merits and avoid their 

limitations. It attempts to model the system through one structure with both elements in a given situation. 

Some works based on hybrid models in different fields are given below.  

Pakniyat et al (2016) described optimal control of deterministic and stochastic hybrid systems in theory 

and applications. In (Alwan, 2018), the authors provide a detailed overview of the mixed systems theory 

of deterministic and stochastic concepts. Yang et al (2017) propose a combination of these two models 

for vibration analysis of uncertainty structures. Pierro et al (2017) propose a model based on both the 

model structures for solar power prediction. In (Popescu, 2016), Popescu et al (2016) provides a hybrid 

deterministic along with stochastic X-ray transmission simulation for advanced detector noise models 
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for transmission computed tomography. A Hybrid Monte Carlo method (HMC) is presented by Shen 

(Shen, 2018) where the authors investigate the HMC based statistical inversion approach and suggests 

that it raises more efficiency in dealing with the increased complexity and uncertainty faced by the geo-

steering problems.  

The hybrid models can be built by combining determinism with randomness and/or some other 

technique depending on the problem. Although the hybrid model provides a dual nature that guarantees 

improved performance, it is not easy to implement. Engineers cannot rely on data alone, but also need 

to have a good understanding of physical systems. So, it is a complex, costly development project. 

1.6.4 Conclusion 
In this section, different model structures are discussed. These structures have some unique and useful 

features that address specific problem issues. They also have some limitations. One model cannot cover 

another’s usability. Although hybrid models are used to maximize the effectiveness of deterministic and 

stochastic models, this is only for specific cases. In this thesis, we decided to practise a stochastic model 

structure to provide a general solution to a similar problem that follows the objectives of the thesis. It is 

easier to use stochastic models to deal with the uncertainties of modelling the degradation of systems 

(data, operating conditions, etc.) Stochastic models are an interesting fitting method for dealing with 

probabilities and random numbers where different methods (e.g. Monte Carlo, etc.) can be used to 

constrain the number of states in a data set. There are several stochastic models that can be found in the 

literature. In this book, only the popular and commonly used models are reviewed. 

1.7 Stochastic models 

Over the past few decades, several stochastic models have been applied to predictive and health 

management systems. All models offer different benefits of uses along with some disadvantages. Some 

alternative models with recent works are described in this section.  

1.7.1 Fuzzy Logic models 
Fuzzy logic is a generalization of standard logic, where the truth of a concept can be anywhere between 

0.0 and 1.0. It is the fuzzy set theory proposed by Lotfi Zadeh in (Lotfi Zadeh, 1965). However, the 

study of fuzzy logic began in the 1920s, and in the 1960s, Dr. Lotfi Zadeh of the University of California, 

Berkeley, first introduced the concept of fuzzy logic as infinite value logic which is now largely 

developed in many fields (Pelletier, 2000). It is a popular model structure for its simplicity and 

flexibility. It can handle problems with imprecise and incomplete data. It uses simple mathematics for 

nonlinear, integrated and complex systems. 

Recently, several researchers used this logic to diagnostics and prognostics applications systems. Cosme 

et al (2018) proposed a prognostic approach based on interacting multiple model filters and fuzzy 

systems. In (Jiang, 2019), the author described a novel ensemble fuzzy model for degradation 

prognostics of rolling element bearings. Kang researched on Remaining Useful Life Prognostics based 

on Fuzzy Evaluation-Gaussian Process Regression Method in (Kang, 2020). Škrjanc et al (2019) given 

a detailed overview in his survey which is evolving fuzzy and neuro-fuzzy approaches in clustering, 

regression, identification and classification.  

The Fuzzy logic sometimes works with Neural Networks as it mimics how a person would make 

decisions, only much faster. A brief overview of Neural Networking models is given below. 

1.7.2 Neural Networking models 

Neural networking is another popular detection technique that can be used for similar perspectives (of 

using Fuzzy logic) in which it works by simulating a huge number of interconnected processing units 

that resemble abstract versions of neurons.  

The Neural network is a model that has specialized algorithms to identify the underlying relationships 

in a set of data by mimicking the processes of the human brain. An artificial neural network is consisting 
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of neurons or nodes in the modern sense of solving artificial intelligence problems. A brief overview of 

recent forecasting efforts to date using NN and ANN is provided below. 

The preliminary theoretical base for modern neural networks was proposed by Alexander Bain et al 

(1873) and William James et al (1890). After that, it has been used in many applications in different 

fields. Recently, several PHM applications are found in the literature that has been proposed using this 

model structure. Li et al (2018) offered a prognostic technique by using deep convolution neural 

networks. The author used neural networking based deep learning method on the popular C-MAPSS 

dataset (Saxena, 2008) for predicting the RUL of aero-engine units accurately. Palau et al (2018) 

proposed a recurrent neural networking model for real-time distributed collaborative prognostics. The 

author demonstrates the basic implementation of real-time distributed collaborative learning, where 

collaboration limited to sharing trajectories to failure in real-time among clusters of similar assets. In 

(Khera, 2018), the author offers the ANN for prognostics of aluminum electrolytic. The training is done 

off-line with experimental data using the back-propagation learning algorithm. Further, the weighted 

ANN is used to estimate the equivalent series resistance of the system. Guo et al (2017) developed a 

recurrent neural network-based health indicator for remaining useful life prediction of bearings. He used 

a feature extraction method to map the classical time and frequency domain features with diversity 

ranges to some target features ranging from 0 to 1.  

A couple of survey papers (Yi, 2018; Marugán, 2018) presented a detailed overview of neural network 

applications in the PHM domain. Marugán et al (2018) present an exhaustive review of artificial neural 

networks used in wind energy systems. He identified the methods most employed for different 

applications and demonstrates that Artificial Neural Networks can be an alternative to conventional 

methods in many cases. Yi, (2018) provide a brief review of the PHM for special vehicles where he 

highlighted the neural networking technologies behind the prognostic applications with their benefits. 

Recently, bidirectional Long Short-Term Memory (BiLSTM) approach for Remaining Useful Life 

(RUL) estimation is proposed in (Wang, 2018) which benefits of taking sequence data in bidirectional. 

The neural network model is flexible in both regression and classification problems. A well-trained 

neural network model is quite fast at prediction. The mathematical basis behind the model allows for 

the processing of non-linear data along with any number of inputs and layers. However, since this model 

structure relies on a large amount of training data, it can lead to overfitting and generalization problems. 

Another important limitation is that it is a black box process. It is impossible to know how much the 

independent variable affects the dependent variable, or how the entire hidden layer of likelihood 

evolution proceeds. Therefore, in cases where the black box concept is inefficient and ineffective, the 

Markov model can be an alternative good choice.  

1.7.3 Markov Models 
The Markov Model (MM) is a stochastic tool used to model a system with random variations. It assumes 

that future state depends only on the current state and not on previous events (Gagniuc, 2017). Among 

Markov models that can be used to represent the states of an autonomous systems, Markov chains and 

Hidden Markov Models are well used in the PHM domain. 

In Markov Model, the states are fully observable. On the other hand, in the Hidden Markov models, the 

states are hidden and partially observable. The HMM is another generation of Markov model which was 

proposed by Baum in the early 1970s (Baum, 1966) and was first used in speech recognition applications 

by Rabiner et al (1989). Later HMM-based applications, using actual data collected from complex 

systems became a very common practice in PHM. For example, (Kumar, 2018; Dong, 2007; Basia, 

2019; etc.) proposed the application of HMM for the diagnostics system’s health. In (Chinnam, 2003), 

the authors describe a technique for autonomous diagnosis and prognosis through a competitive 

learning-driven HMM-based clustering technique.  

Several other forms of HMM have been proposed in the literature. For example, (Dong, 2007) proposed 

Hidden Semi-Markov models (HSMM) for a diagnostic and prognostic framework that monitors the 

condition of hydraulic pumps. HSMM has the same structure as HMM except that the hidden part is 
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semi-Markov rather than Markov. The author modified the forward-backward algorithm to estimate the 

HMM parameters. Another application based on the Hierarchical Hidden Markov Model (HHMM) for 

predicting the health state of drilling rigs was proposed in (Camci, 2006). HHMM is derived from the 

HMM in which, each state is considered to be a self-contained probabilistic model. More precisely, each 

state of the HHMM is itself an HMM. Fernández et al (2018) proposed a prediction technique based on 

the Multilayer Hidden Markov Model (MLHMM) for diagnosing the bearing failure. MLHMM is a 

generalization of HMM that is tailored to accommodate longitudinal data from multiple individuals 

simultaneously. Some researchers have combined HMM with different tactics such as Mixture of 

Gaussian HMM used in (Tobon-Mejia, 2012) for bearing degradation modeling and RUL estimation. 

The Gaussian hybrid model and parallel calculations are combined in (Wang, 2018) for health estimation 

and prognosis prediction of turbofan engines. A Hierarchical Dirichlet Process-Hidden Markov Model 

(HDP-HMM) is described for prognostic mechanical equipment (Wang, 2019), etc. These advanced 

forms of HMMs, and their combinations, make better RUL predictions than traditional HMMs. 

All these HMM-based applications and studies are very interesting and proven methods in PHM 

applications. Nevertheless, none has integrated operating conditions in their models whereas it seems 

clear that operating conditions influence the state dynamics. They tried different forms of HMM and 

mixed it with other techniques to produce better results, but these models cannot be used to integrate 

operating conditions because these models do not allow any input. However, in (Le, 2016), a Multi-

Branch HMM (MBHMM) is proposed to consider the operating conditions for estimating RUL of 

systems. This is an innovative proposal, but the author did not use the operating conditions as inputs. 

The authors classify the observations according to the operating conditions and train different HMMs 

consequently then fuse them into one model. The operating conditions can be switched at any time 

during the operation, but no switching control is established in (Le, 2016).  

However, despite the input condition, the HMM proves acceptability and applicability in PHM 

applications for long times. The Hidden Markov model not only allows us to observe hidden states and 

their likelihoods, but we can also change the values during the process, as necessary. This model 

structure also has a strong mathematical basis and can handle different uncertainties (data, models, etc.) 

well.  

HMMs can be considered the simplest dynamic Bayesian network (DBN), which is an advanced class 

of BN. HMMs have been shown to produce solutions equivalent to DBN. In this book, MM, HMM, and 

other versions of HMM are usually represented in a DBN form.  

1.7.4 Conclusion 
As part of predictive maintenance, information on the current health state of systems and its projection 

into the future are the main support for orienting the service of maintenance. This information can allow 

be used to make maintenance decisions through diagnostic and prognostic processes. Therefore, we have 

chosen to focus our work on the design of an approach that characterizes diagnostic-prognostic coupling 

degradation. This chapter has detailed the issues related to PHM approaches and models that highlight 

the question of optimizing diagnostics and prognostics activities.  

By detailing the existing PHM approaches, the reason for selecting a data-driven approach is given 

which leads to the development of predictive maintenance policies and presented the advantages that 

these policies can bring to industrialists. We have precisely defined diagnostics, prognostics, RUL, and 

the degradation complexity related to the operating conditions and data uncertainties. After reviewing 

the advantages and disadvantages of different approaches the data-driven is chosen because of its ability 

and scope of handling complex systems under different uncertainties.  

After that, different types of model are reviewed to select the delicate model type since the data-driven 

offers several i.e. deterministic, stochastic, etc. These types have their own benefits and limitations due 

to the specific problem issues. Since the goal of this thesis is to propose a solution to the PHM society 

that concerns randomness and explicit assumptions, a stochastic model type is being preferred instead 
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of a deterministic model. A stochastic model allows the assumptions to be tested by a variety of 

techniques. 

There are many stochastic models (e.g. neural network, Markov models, etc.) that are practiced in the 

PHM applications. Sometimes, fuzzy logic works with neural networks, but they rely on a large amount 

of training data which can be caused for overfitting problems. Observing internal factors is also hard to 

follow in these models. Especially the neural network, which is a black-box process that does not allow 

us to see how the hidden layer evaluates in time. However, our case study includes not only observe the 

inside likelihood evaluation but also modify the value at any time instants during the process. HMM is 

fairly fitting to our case study which can be trained by comparably less amount of data than the other 

models. HMM has a solid statistical foundation and efficient learning algorithms. It allows for consistent 

handling of insertion and deletion penalties in the form of locally teachable methods.  

We have exposed several versions of HMM in this chapter (HMM, HSMM, MBHMM, HHMM, etc.). 

All versions are dedicated to specific cases of problems. Yet, none of them has taken into account the 

operating conditions as input. However, because of the property of HMMs, it is also impossible to 

consider inputs into the model. The state of the HMM explains the level of health and the dynamic of 

its evolution. As the HMM is unique, the dynamic is also unique and is not influenced by any condition. 

Hence, considering operating conditions as inputs is not possible by HMM. Therefore, we proposed the 

Input-Output Hidden Markov Model (IOHMM) which is more general version of HMM. The specificity 

of IOHMM is that it allows an input. So, the operating conditions can be introduced into the model. This 

model is defined in (Bengio, 1995) where the author explains the scope and the ability of this model and 

its strong relation with ANN. Since then, it has been used in several fields (Just, 2004; Hu, 2015) but, 

as far as we know, it has not been applied to the PHM field before our proposal. Moreover, the learning 

of model parameters has not been completely solved for each inputs and outputs structure. 

IOHMM takes the operating conditions as inputs and switches the model at the given input sequence at 

each time instant. Therefore, IOHMM deals better with the time series problem of long-term 

dependencies than standard HMMs (Bengio, 1995). It has a faster training process that uses the entire 

dataset along with the operating conditions to learn the models in one go. No data classification is 

required because the proposed method switches the operating conditions corresponding to the given 

dataset during the training session. This is a time-consuming approach and more realistic compared to 

MBHMM. That is why IOHMM assesses more practical degradation and prognostic that close to reality. 

The background of IOHMM is described in the next chapter.  
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2 Background of the Model from MC to 

IOHMM 
 

As we conclude in the previous chapter, data-driven models are chosen for the purpose of diagnostic-

prognostic systems, mainly because the expert knowledge required to build this model is less important 

than for physical models. Moreover, this model allows computing online diagnostics from system 

behaviour by consuming all data available.  

In this context of data-driven models, stochastic models are specifically of interest because they can 

handle our inability to define a complex problem such as system health evolution or system state 

degradation. Nevertheless, by using these models, it relies on an efficient algorithm to estimate the 

model parameters. Hidden Markov Models use some well-known algorithm for training a model from a 

sequence of data but does not take into consideration operating conditions. As each probabilistic 

structure e.g. Markov Chain, HMM ... requires an adapted algorithm, then modifying the probabilistic 

structure needs to adapt the algorithms to be employed in learning, diagnosing, and prognostic the health 

state of the modelled system. These algorithms enter the scope of Machine Learning. 

2.1 Markov Chain notations 

Markov Chain (MC) gives the probability of sequences of random states, each of which can take values 

from a given set. It assumes future states based on the current state of matters. The states before the 

current one has no influence on the future, except through the present state (Keselj, 2009). Let’s assume 

a system being assumed as in one of the states, {𝑠1, 𝑠1, . . . , 𝑠𝑁}, 𝑁 is the number of states. We denote the 

time instants associated with the state transitions as (𝑋1, 𝑋2, . . . , 𝑋𝐾), where 𝑋1 holds a state at the first 

time-instant and 𝑋𝐾 holds a state at the last time instant. If the current time instant defined as 𝑘 where 

1 ≤ 𝑘 ≤ 𝐾 then the current transition probability would be: 

𝑃(𝑋𝑘 = 𝑠𝑗|𝑋𝑘−1 = 𝑠𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑁 

with the state transition properties of ∑ 𝑎𝑖𝑗
𝑁
𝑗 = 1, 𝑎𝑖𝑗 represents the transition probabilities from state 𝑠𝑖 

to 𝑠𝑗. The initial state distribution is defined as 𝜋 = 𝑃(𝑋1 = 𝑠𝑖).  

An MC with two states and the transitions are shown in Fig. 5.  

 

Fig. 5: Two-state Markov chain {𝑠1, 𝑠2} 
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The MC assigns a probability to a sequence of health states of systems. The healthy state is defined as 

“𝑠1”, and degraded state is defined as “𝑠2” which is the final state of this model. The states are 

represented as nodes and the probability transitions as edges. The transition probabilities of a state must 

sum to 1 as it represents the transition matrix. A transition matrix, also called stochastic matrix, 

probability matrix, substitution matrix, or Markov matrix, is a square matrix used to characterize 

transitions for a finite Markov chain. The elements of the matrix must be real numbers in the closed 

range [0, 1]. Each of the rows represents the transitions from a state to other states along with itself. That 

is why the sum of each row is 1.  

According to the Fig.5, the transition matrix 𝐴 of the model is: 

(
𝑎11 𝑎12

𝑎21 𝑎22
) = (

1 − 𝑔 𝑔
ℎ 1 − ℎ

) 

In summary, the basic Markov model is a state diagram with transition probabilities. At each time step, 

the model undergoes a transition that changes its state so that the modelling system follows a state 

evolution pattern.   

A Markov model is specified by the following components:  

𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝐾) 
The state sequence, each one drawn from the variable  
𝑆 = 𝑠1, 𝑠2, . . . , 𝑠𝑁; 𝑁 is number of hidden states 

𝐴 = (𝑎11𝑎12. . . 𝑎𝑛1. . . 𝑎𝑛𝑛) 
The transition probability matrix, each 𝑎𝑖𝑗 representing the probability 

of transiting from state i to state j, s.t. ∑ 𝑎𝑖𝑗
𝑁
𝑗 = 1  ∀𝑖 

𝜋 = {𝜋1, 𝜋2, . . . , 𝜋𝑁} 
The initial probability distribution over states. 𝜋 is the probability that 
the Markov chain will start in state i. Some states j may have 𝜋𝑖 = 0, 

meaning that they cannot be initial states. Also ∑ 𝜋𝑖
𝑁
𝑖 = 1 

 

2.2 Hidden Markov Model 

The systems generally produce observable emissions that can be characterized by signals (temperature, 

vibrations, sound signals, etc.). In the last decades, research in artificial intelligence has focused on how 

to characterize such signals. Among the many methods for modelling such real phenomena, HMMs 

have proven to be particularly effective. It is a Markov chain in which the states are no longer directly 

observable. That is why it called the hidden states which can be observed by the observations. The 

hidden states and the observations are linked to each other in a probabilistic way. The Hidden Markov 

Model considers observation data where the probability distribution of the observed symbol depends on 

the underlying state.  

The HMM is showed in Fig. 6 is the simplest two times dynamic Bayesian network. 

 

 
Fig. 6: Three state HMM with four observation symbols 

 

Variable 𝑋 is state sequence, 

each one drawn from the 

variable 𝑆 = {𝑠1, 𝑠2, 𝑠3} 
 

Variable 𝑌  is observation 

sequence, each one drawn from 

the emitted symbol 𝑉 =
{𝑣1, 𝑣2, 𝑣3, 𝑣4}  
 

Variable 𝑘 is the time instant. 
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2.2.1 HMM Structure  
2.2.1.1 Definitions 

Initial probabilities  

It is the probability of being in a state at the beginning (𝑘 = 1) is given by 𝜋 = 𝑃(𝑋1 = 𝑠𝑖) with 1 ≤ 𝑖 ≤ 𝑁. 

Transition probabilities 

It is the probability of transiting from one state to the other states.  

The states are hidden where each one of them can be drawn from the variable 𝑆 = {𝑠1, 𝑠2, 𝑠3, ⋯ , 𝑠𝑁}. HMM 
evolves in a sequence of states 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝐾) where each takes value from 𝑆. 𝐴 = (𝑎𝑖𝑗) denotes the 

state transition probability matrix where 𝑎𝑖𝑗 = 𝑃(𝑋𝑘 = 𝑠𝑗|𝑋𝑘−1 = 𝑠𝑖) is the transition probability from state 

𝑋𝑘−1 = 𝑠𝑖 to state 𝑋𝑘 = 𝑠𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑁 and 𝑘 ∈ ℕ is a strict positive integer and represents a discrete time 

instant. 𝑎𝑖𝑗 represents the probability of all the transitions from state 𝑖 to state 𝑗, so the summation of 𝑎𝑖𝑗 

for each state 𝑗 is 1.  

The dimension of the transition matrix is 𝑁 by 𝑁. 

Emission probabilities 

It is the probability of observed emission 𝑌𝑘 given the state 𝑋𝑘.  

Let us assume the hidden states emit a total of 𝑀 possible symbols as 𝑉 = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑀}. The 
observation sequence 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝐾) with the same length as the state sequence where each time 
instant the variable contains one of the symbols from 𝑉. The variable 𝐵 = (𝑏𝑗𝑚) denotes the state emission 

probability matrix, where 𝑏𝑗𝑚 = 𝑃(𝑌𝑘 = 𝑣𝑚|𝑋𝑘 = 𝑠𝑗) is the emission probabilities of state 𝑋𝑘 = 𝑠𝑗with 1 ≤

𝑚 ≤ 𝑀. 𝑏𝑗𝑚 represents the probability of all possible emissions of output state 𝑠𝑗, so the summation of 𝑏𝑗𝑚 

for each state 𝑗 is 1.  

The dimension of the emission matrix is 𝑁 by 𝑀. 

According to the Fig. 6, the transition matrix 𝐵 of the HMM is: 

(
𝑏11 𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33 𝑏34

) 

Now, if we denote the HMM model by 𝛬, then the triplet 𝛬 = (𝐴, 𝐵, 𝜋) completely defines the model.  

2.2.1.2 Absorbent state 

It is such a state which does not have any transition paths to other states but itself. Once the model reaches 
this state, it cannot come out of that, it stays in the state forever. An HMM can have more than one 
absorbent state but, in this book, the model considers only one absorbent state which is called the final 
state or the breakdown state. In Fig. 7, the node 𝑠3 represents the final state of an HMM.  

 

Fig. 7: HMM with one final state 
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The transition matrix of the HMM showed in Fig. 7 is: 

(

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1
) 

2.2.1.3 Left-right model 

The left-right model is a specific type of HMM where there are no transitions from a higher indexed state 
to a lower indexed state. That means there is no back transitions. It also called the Bakis model (Yuan, 
2018). The degradation process of a system always evolves towards bad states. By means of which, if a 
system goes from any state 𝑠𝑖 to another state 𝑠𝑗 where 𝑖 <= 𝑗, then it cannot go back to the previous state 

𝑠𝑖. The transition will only happen when from left to right graphically.  

The corresponding HMM can be presented as Fig. 8. 

 

Fig. 8: Left-right model HMM model 

In this model, the state transit to the next states and itself. For example, the transitions from state 𝑠2. 

There are two transitions that happened from this state, 𝑠2 to 𝑠3 which is defined as 𝑎23, and to itself 

which is defined as 𝑎22, but there is no transition from 𝑠2 to 𝑠1 neither from 𝑠3 to 𝑠2 or 𝑠1.  

The transition matrix for this HMM is: 

(

𝑎11 𝑎12 𝑎13

0 𝑎22 𝑎23

0 0 𝑎33

) 

2.2.1.4 HMM components 

The HMM is specified by the following components:  

𝐾 The length of the sequence 

𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝐾) The state sequence  

𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁} The set of hidden states 

𝑁 The number of hidden states 

𝐴 = (𝑎11𝑎12. . . 𝑎𝑛1. . . 𝑎𝑛𝑛) The transition probability matrix, 𝑎𝑖𝑗 represents the probability of 

transiting from state i to state j, s.t. ∑ 𝑎𝑖𝑗
𝑁
𝑗 = 1  ∀𝑖 

𝑌 = (𝑌1, 𝑌2, . . . , 𝑌𝐾) The observation sequence 

𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑀} The set of observation symbols 

𝑀 The number of observation symbols 

𝐵 = 𝑏𝑗𝑚 The sequence of observation likelihoods which is also called emission 
probabilities, each expressing the probability of an observation 𝑌𝑘 

being generated from a state j, ∑ 𝑏𝑗𝑚
𝑀
𝑚 = 1  ∀𝑚 
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𝜋 = {𝜋1, 𝜋2, . . . , 𝜋𝑁} The initial probability distribution over states. 𝜋 is the probability that 
the Markov chain will start in state i. Some states j may have 𝜋𝑖 = 0, 

meaning that they cannot be initial states. Also ∑ 𝜋𝑖
𝑁
𝑖 = 1 

 

2.2.1.5 Three basic problems of HMM 

Given such a hidden Markov model 𝛬 = (𝐴, 𝐵, 𝜋) where the observation sequence is 𝑌 and state 

sequence is 𝑋, HMM can be used to solve three types of problems: 

1) The learning problem: Learn the parameters of the model 𝛬 = (𝐴, 𝐵, 𝜋) from the observation 

sequences. The problem is how to adjust the HMM parameters, so the given observation set is 

represented by the model in the best way. The Baum Welch algorithm which is a class of 

Expectation Maximization (EM) algorithm can be used to solve the learning problem.  

2) The evaluation problem: It is also called the likelihood problem. The probability to emitting 

an observation sequence 𝑌 given the model 𝛬 = (𝐴, 𝐵, 𝜋) i.e. 𝑃(𝑌|𝛬). A sim0ple probabilistic 

argument can be used as a solution, but the computation complexity, in this case, is big (orders 

𝐾𝑁𝐾). That is why the forward-backward (FB) algorithm is being used in this book to reduce 

the complexity as 𝐾𝑁2.  

3) The decoding problem: The most likely sequence of hidden states 𝑃(𝑋) which generated the 

observation sequence 𝑌. This solution depends on the way of how the “most likely state 

sequence” is defined. One approach can be to find the most likely state 𝑋𝑘 at time 𝑘 and to 

concatenate all such ‘𝑋𝑘’s, but sometimes it does not provide a physically meaningful state 

sequence. Therefore, the Viterbi (Vt) algorithm is an alternative option to using which 

overcomes such a problem and finds the whole state sequence with maximum likelihood.  

The mathematical foundation of the algorithms (EM, FB, Vt) is given below. 

2.2.2 The Forward-backward (FB) algorithm 

Forward and backward algorithms are widely used in HMM problems. They can efficiently compute the 

probability of a sequence being generated by an HMM. Therefore, they assume that the model 𝛬 =
(𝐴, 𝐵, 𝜋) is known. If the observed sequence of variables 𝑌 is given, then the algorithm can calculate 

𝑃(𝑋|𝑌) according to the following recursion using the forward-backward algorithm: 

Given the transition probabilities 𝐴 = 𝑃(𝑋𝑘|𝑋𝑘−1), the emission probabilities 𝐵 = 𝑃(𝑌𝑘|𝑋𝑘), and the 

initial distribution 𝜋 = 𝑃(𝑋1 = 𝑠𝑖), the forward algorithm can be derived as a function of 𝑋𝑘 where 

𝑃(𝑋𝑘|𝑌) is proportional to the joint distribution of 𝑃(𝑋, 𝑌). 

 𝑃(𝑋𝑘|𝑌)  ∝  𝑃(𝑋, 𝑌)  

 𝑃(𝑋𝑘|𝑌)  =  𝑃(𝑋𝑘 , 𝑌1:𝑘)𝑃(𝑌𝑘+1:𝐾|𝑋𝑘, 𝑌1:𝑘)  

 

If 𝑌𝑘+1:𝐾 is conditionally independent on 𝑌1:𝑘: 

 𝑃(𝑋𝑘|𝑌)  =  𝑃(𝑋𝑘 , 𝑌1:𝑘)𝑃(𝑌𝑘+1:𝐾|𝑋𝑘)  

 

Finally, a recursion has formalized for both forward and backward processes to reduce the computational 

complexity of the algorithm: 

2.2.2.1 Forward auxiliary variable 

 𝛼(𝑋𝑘) =  𝑃(𝑋𝑘 , 𝑌1:𝑘)  

 

where 𝑃(𝑋𝑘 , 𝑌1:𝑘) is a joint probability of observation Y is from time instant 1 to 𝑘 and hidden 

state 𝑋 is at time instant 𝑘, given the model 𝛬 = (𝐴, 𝐵, 𝜋). 
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Computational structure:  

 

Fig. 9: Forward computation 

According to the forward structure shown in Fig. 9, the variable 𝑋𝑘−1 can be introduced into the equation 

as: 

 𝑃(𝑋𝑘 , 𝑌1:𝑘) = ∑ 𝑃(𝑋𝑘 , 𝑋𝑘−1, 𝑌1:𝑘)
𝑠𝑁

𝑋𝑘−1=𝑠1

  

After factorizing the equation, it becomes: 

 𝑃(𝑋𝑘 , 𝑌1:𝑘) = ∑ 𝑃(𝑌𝑘|𝑋𝑘, 𝑋𝑘−1, 𝑌1:𝑘−1)𝑃(𝑋𝑘|𝑋𝑘−1, 𝑌1:𝑘−1)𝑃(𝑋𝑘−1, 𝑌1:𝑘−1)
𝑠𝑁

𝑋𝑘−1=𝑠1

  

Applying Markovian properties as if 𝑌𝑘 is conditionally independent of both 𝑋𝑘−1 and 𝑌1:𝑘−1, then given 

𝑋𝑘 the equation would be: 

 𝑃(𝑋𝑘 , 𝑌1:𝑘) = ∑ 𝑃(𝑌𝑘|𝑋𝑘)𝑃(𝑋𝑘|𝑋𝑘−1, 𝑌1:𝑘−1)𝑃(𝑋𝑘−1, 𝑌1:𝑘−1)
𝑠𝑁

𝑋𝑘−1=𝑠1

   

 Similarly, if 𝑋𝑘 is conditionally independent on 𝑌1:𝑘−1, given 𝑋𝑘−1, then: 

 𝛼(𝑋𝑘) = ∑ 𝛼(𝑋𝑘−1)𝑃(𝑌𝑘|𝑋𝑘)𝑃(𝑋𝑘|𝑋𝑘−1)
𝑠𝑁
𝑋𝑘−1=𝑠1

, followed: 𝛼(𝑋𝑘) =  𝑃(𝑋𝑘 , 𝑌1:𝑘)   

  

o Basis: at time step 𝑘 = 1 

 𝛼(𝑋1) = 𝑃(𝑌1|𝑋1)𝑃(𝑋1)   

o Recursion: when 2 ≤ 𝑘 ≤ 𝐾 

 𝛼(𝑋𝑘) = ∑ 𝛼(𝑋𝑘−1)𝑃(𝑋𝑘|𝑋𝑘−1)𝑃(𝑌𝑘|𝑋𝑘)
𝑠𝑁

𝑋𝑘−1=𝑠1

 (1)  

 

2.2.2.2 Backward auxiliary variable 

The backward algorithm is similar to the forward algorithm except it starts from the last time instant and 

calculates in reverse.  

In backward computation, the probability variables use a different indexing following the transition 

probabilities as 𝐴 = 𝑃(𝑋𝑘+1|𝑋𝑘), the emission probabilities 𝐵 = 𝑃(𝑌𝑘+1|𝑋𝑘+1), and the initial 

distribution 𝜋 = 𝑃(𝑋1 = 𝑠𝑖 = 1), ∀𝑖 the backward algorithm can be derived as a function of 𝑋𝑘 where 

𝑃(𝑋𝑘|𝑌) is proportional to the joint distribution of 𝑃(𝑋, 𝑌). 

 𝛽(𝑋𝑘) = 𝑃(𝑌𝑘+1:𝐾|𝑋𝑘)   

where 𝑃(𝑌𝑘+1:𝐾|𝑋𝑘) is the probability of observation 𝑌𝑘+1:𝐾 from time 𝑘 + 1 to 𝐾 given the hidden state 

𝑋 at time 𝑘 and the model 𝛬 = (𝐴, 𝐵, 𝜋). 
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Computational structure: 

 

Fig. 10: Backward computation 

According to the forward structure shown in Fig. 10, the variable 𝑋𝑘+1 can be introduced into the 

equation as: 

 𝑃(𝑌𝑘+1:𝐾|𝑋𝑘) = ∑ 𝑃(𝑌𝑘+1:𝐾 , 𝑋𝑘+1|𝑋𝑘)
𝑠𝑁

𝑋𝑘+1=𝑠1

   

After factorizing the equation: 

 𝑃(𝑌𝑘+1:𝐾|𝑋𝑘) = ∑ 𝑃(𝑌𝑘+2:𝐾|𝑌𝑘+1, 𝑋𝑘+1, 𝑋𝑘)𝑃(𝑌𝑘+1|𝑋𝑘+1, 𝑋𝑘)𝑃(𝑋𝑘+1|𝑋𝑘)
𝑠𝑁

𝑋𝑘+1=𝑠1

   

By applying the Markovian properties, it comes:   

If 𝑌𝑘+2 is conditionally independent on 𝑋𝑘 and 𝑌𝑘+1, given 𝑋𝑘+1, then: 

 𝑃(𝑌𝑘+1:𝐾|𝑋𝑘) = ∑ 𝑃(𝑌𝑘+2:𝐾|𝑋𝑘+1)𝑃(𝑌𝑘+1|𝑋𝑘+1, 𝑋𝑘)𝑃(𝑋𝑘+1|𝑋𝑘)
𝑠𝑁

𝑋𝑘+1=𝑠1

   

 Similarly, if 𝑌𝑘+1 is conditionally independent on 𝑋𝑘, given 𝑋𝑘+1, then: 

 𝛽(𝑋𝑘) = ∑ 𝛽(𝑋𝑘+1)𝑃(𝑌𝑘+1|𝑋𝑘+1)𝑃(𝑋𝑘+1|𝑋𝑘)
𝑠𝑁

𝑋𝑘+1=𝑠1

   

 followed:  𝛽(𝑋𝑘) = 𝑃(𝑌𝑘+1:𝐾|𝑋𝑘). 

o Basis: at time step 𝐾 

 𝛽(𝑋𝐾 = 𝑠𝑖) = (

 1 
1
. .
1

)    

where 𝛽(𝑋𝐾 = 𝑠𝑖) is a column vector having all hidden state distribution as 1 for 1 ≤ 𝑖 ≤ 𝑁. 

o Recursion: when (𝐾 − 1) ≤ 𝑘 ≤ 1 

 𝛽(𝑋𝑘) = ∑ 𝛽(𝑋𝑘+1)𝑃(𝑌𝑘+1|𝑋𝑘+1)𝑃(𝑋𝑘+1|𝑋𝑘)
𝑠𝑁

𝑋𝑘+1=𝑠1

 (2)  

On the basis of this forward-backward algorithm, we can use Eq. 3 to calculate the probability that the 

HMM will generate a sequence of observations. 

 𝑃(𝑌𝑘|𝛬) = ∑ 𝛼𝑖(𝑘) 𝛽𝑖(𝑘)
𝑁

𝑖=1
; ∀𝑘 (3)  
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2.2.3 The Baum Welch algorithm 
The Baum Welch algorithm first described in the late 1960s by Lloyd R. Welch and Leonard E. Baum 

[Baum 1960]. However, it is used in the 1980s for the first time in speech recognition. One of the 

problems of HMM is to determine that Λ = (𝐴, 𝐵, 𝜋) knows the sequence of observations Y. It is a search 

for which parameters to maximize P(Y| Λ). In this case, the Baum-Welch algorithm is used. It is a 

dynamic programming type of expectation-maximization algorithm. The expectation step computes the 

expected state occupancy count and the expected state transition count based on current probabilities of 

A and B. The maximization step uses the expected counts from E-step and update the probabilities of A 

and B. It can eventually converge to a local minimum. 

The EM algorithm uses the FB algorithm to solve this problem in an iterative way. It starts with an initial 

probability of the parameters and adjusts the parameters iteratively.  

The maximization problem is algorithmically complex. Using the previous algorithm, we use Eq. 4 to 

calculate the probability of HMM 𝛬 generating all Y sequences.  

 𝑃(𝑌𝑘|𝛬) = ∑ 𝛼𝑖(𝑋𝑘) 𝛽𝑖(𝑋𝑘)
𝑁

𝑖=1
; ∀𝑘 (4)  

The probability of being in state 𝑖 at time 𝑘 and in 𝑗 at time 𝑘 + 1 given the observed sequence 𝑌 and 

the parameters of HMM 𝛬: 

 𝜀𝑘(𝑖, 𝑗) =
𝛼𝑖(𝑋𝑘). 𝑎𝑖𝑗 . 𝑏𝑗𝑘. 𝛽𝑗(𝑋𝑘+1)

𝑃(𝑌 |𝛬)
 (5) 

The auxiliary variable 𝜀𝑘(𝑖, 𝑗) is defined by Eq. 5, where i, j represents the hidden state and emission 
symbols, respectively. 

Finally, 𝜀𝑘(𝑖, 𝑗) is being used to update the parameters according to the following algorithm. 

o Initial state probability: 

𝜋𝑖 = 𝜀1(𝑖, 𝑗), where 1 ≤ 𝑖 ≤ 𝑁 

o Transition probability:  

 
𝑎𝑖𝑗 = 

∑ 𝜀𝑘(𝑖, 𝑗) 𝐾−1
𝑘=1

∑ ∑ 𝜀𝑘(𝑖, 𝑗) 𝑁
𝑗=1  

𝐾−1

𝑘=1

 
(6)  

o Emission probability:  

 
𝑏𝑗𝑘 = 

∑ 𝜀𝑘(𝑖, 𝑗) 𝐾
𝑘=1

∑ ∑ 𝜀𝑘(𝑖, 𝑗) 𝑁
𝑗=1  

𝐾

𝑘=1

 
(7)  

Repeat these steps until the changes between the two results converge. 

2.2.4 The Viterbi algorithm 
The Viterbi algorithm is also a well-known dynamic programming algorithm named after Andrew 

Viterbi, who proposed it in 1967 as a decoding algorithm for the first time. The algorithm computes 

𝑃 (𝑋1:𝑘|𝑌1:𝑘), the maximum likelihood state sequence 𝑋1:𝑘 from the given observations 𝑌1:𝑘 which is 

useful for determining the most probable system state. It is given by the most probable value of 

𝑃(𝑋𝑘|𝑌1:𝑘) at the current time 𝑘. Nevertheless, the Viterbi algorithm computes the maximum likelihood 

path of 𝑃(𝑋1:𝑘|𝑌1:𝑘), which contains the probability of 𝑃(𝑋𝑘|𝑌1:𝑘) as well. That is why this algorithm is 

chosen for diagnosing. There is a strong relationship between these two probabilities. This algorithm 

computes the value of 𝑃(𝑋1:𝑘, 𝑌1:𝑘) from the maximum values of the previous state distribution, the state 

transition, and the maximum emission of the current state. Since the computation is done by all the 
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maximum values, it gives the maximum distribution at the last time instant of the path as well which 

represents the current health states of the system (level of degradation). The maximum probability in 

the distribution represents the most probable health condition at the current time. 

The mathematical foundation is given below: 

We know that 𝑃(𝑋|𝑌)  ∝  𝑃(𝑋, 𝑌) 

 𝑚𝑎𝑥(𝑋1:𝑘) 𝑃 (𝑋|𝑌) =  𝑚𝑎𝑥(𝑋1:𝑘) 𝑃 (𝑋, 𝑌)  

• basis:  𝜔(𝑋1)  =  𝑃(𝑋1, 𝑌1) 

maximizations of a single number: 𝜔(𝑋2)  =  𝑚𝑎𝑥(𝑋1) 𝑃(𝑋1:2, 𝑌1:2) 

maximizations of the recursive: 𝜔(𝑋𝑘)  =  𝑚𝑎𝑥(𝑋1:𝑘−1) 𝑃(𝑋1:𝑘, 𝑌1:𝑘) 

based on the conditional independency:  

 𝑚𝑎𝑥(𝑋1:𝑘−1)𝑃(𝑋1:𝑘, 𝑌1:𝑘) =  𝑚𝑎𝑥(𝑋1:𝑘−1) 𝑃(𝑌𝑘|𝑋𝑘)𝑃(𝑋𝑘|𝑋𝑘−1)𝑃(𝑋1:𝑘−1, 𝑌1:𝑘−1)   

 = 𝑚𝑎𝑥(𝑋𝑘−1) 𝑃(𝑌𝑘|𝑋𝑘)𝑃(𝑋𝑘|𝑋𝑘−1)𝑚𝑎𝑥(𝑋1:𝑘−2)𝜔(𝑋𝑘−1)   

• So, the recursion: 

 𝜔(𝑋𝑘) = 𝑚𝑎𝑥(𝑋𝑘−1) 𝑃(𝑌𝑘|𝑋𝑘)𝑃(𝑋𝑘|𝑋𝑘−1)𝑚𝑎𝑥(𝑋1:𝑘−2)𝜔(𝑋𝑘−1)  (8) 

This algorithm finds 𝑁 paths starting from each of the initial states. Finally, it gives the max path that 
holds the maximum distribution of the last state.  

As can be seen that the Viterbi algorithm along with the Baum Welch and the forward-backward 

algorithms are dedicated to HMM where the input is not considered. These algorithms provide solutions 

in terms of the HMM, not the IOHMM. Only one variable (𝑃(𝑋𝑘|𝑋𝑘−1) 𝑜𝑟 𝑃(𝑋𝑘+1|𝑋𝑘)) is considered 

where there is no conditioning on the input variables, which requires ad hoc modifications for 

application to the IOHMM. 

2.3 Input-Output Hidden Markov Model 

A system can have several input conditions which cannot be modeled by the classic HMM. That is why 
the IOHMM is being selected as the modeling tool in this book because it allows the model to consider 
the inputs. The IOHMM is an advanced version of HMM which allows the model to consider inputs.  

 

Fig. 11: Input output Hidden Markov Model 

The variables 𝑋 are hidden states sequence where each one drawn from the states as 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁};. 
The variables 𝑌 is the sequence of observations where each one drawn from the emitted symbol as 

𝑉 = {𝑣1𝑌
, 𝑣2𝑌

, . . . , 𝑣𝑀𝑌
}. The variable 𝑈 is the input sequence that contains the ids as  

𝑈 = {𝑢 
1𝑢 

2. . . 𝑢 
𝑝} of the input conditions.  
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The IOHMM provides multiple transitions matrices corresponding to the number of operating conditions 
presented as p by the Fig. 11. In our hypothesis, the inputs are currently considered independent to each 
other. Therefore, multiple inputs with several modes can be manage only one variable U which holds the 
index of the operating conditions and selects only one among them at each time instant for the transition 
from state i to j. So, the transition probability becomes conditioned by U as (𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1). 

Multiple outputs can also be considered by this model in which it provides multiple emission matrices 
corresponding to the number of outputs presented as q. The outputs are also considered to be independent 

in this thesis. So, the model computes the emission probability as 𝑃(𝑌𝑘
𝑞
|𝑋𝑘) for 1≤ 𝑞 ≤ 𝑄. 

An input-output hidden Markov model is specified by the following components:  

𝐾 The length of the sequence 

𝑈 = {𝑢 
1𝑢 

2. . . 𝑢 
𝑝} The input sequences. 

𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝐾) The state sequence 

𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁} The set of hidden states 

𝑁 The number of hidden states 

𝐴𝑝 = (𝑎11
𝑝

𝑎12
𝑝

. . . 𝑎𝑛1
𝑝

. . . 𝑎𝑛𝑛
𝑝

)   The transition probability matrix, 𝑎𝑖𝑗
𝑝

 representing the probability of 

moving from state i to state j, s.t. ∑ 𝑎𝑖𝑗
𝑝𝑁

𝑗 = 1  ∀𝑖 and p fixed; 𝑝 is the 

index of transition matrices 

𝑃 The number of transition matrices 

𝑌𝑞
 = (𝑌1

𝑞
, 𝑌2

𝑞
, . . . , 𝑌𝐾

𝑞
) The observation sequence, each one drawn from the emitted symbols 

𝑉 = 𝑣1, 𝑣2, . . . , 𝑣𝑀;  The symbol set is dedicated to the output so each 

output has its one symbol set whose size can be different? 

𝑄 The number of emitted outputs  

𝑉 = {𝑣1𝑌
, 𝑣2𝑌

, . . . , 𝑣𝑀𝑌
} The set of observation symbols 

𝑀𝑌 The number of observation symbols of output Y.  

𝐵𝑞 = 𝑏𝑗𝑘
𝑞

 
 The sequence of observation likelihoods which is also called 

emission probabilities, each expressing the probability of an 

observation 𝑌𝑘 being generated from a state j;  

𝜋 = {𝜋1, 𝜋2, . . . , 𝜋𝑁} The initial probability distribution states. 𝜋 is the probability that the 

Markov chain will start in state i. Some states j may have 𝜋𝑖 = 0, 

meaning that they cannot be initial states. Also ∑ 𝜋𝑖
𝑁
𝑖 = 1  

 

2.4 Conclusion 

This chapter discusses the basic background of the model. It explains the evolution of the model from 

MC to HMM and then to IOHMM with several examples. Three algorithms (forward-backward, Baum 

Welch, Viterbi) are derived to solve three problems of HMM. However, the goal is to solve these 

problems through IOHMM by considering the input conditions into the model. So, in the next chapter, 

these algorithms are adapted from the IOHMM perspective and applied to prognostic applications. 
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Chapter 3 
The First Contribution: Learning Model Parameters 
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3 The First Contribution: Learning Model 

Parameters 
 

Three major contributions of the thesis are addressed in this book. The first contribution concerns the 

IOHMM parameter learning which covers the system designing along with algorithms adaptations 

and different training constraints. 

The IOHMM represents a system degradation process that degrades considering multiple operating 

conditions. The model parameters should be learned from multiple outputs observations on which the 

degradation process has some effect. As the IOHMM is an extended version of HMM model, the 

proposed learning method is based on the well-known Baum-Welch and forward-backward algorithms. 

There are several important issues of model training explained in this chapter. A numerical application 

is made at the end to show and discuss the performance of the proposed method. Based on the key issues 

given in the introduction chapter, I subdivided them into several questions:  

▪ IOHMM learning algorithms adaptation concerning: 

o Multiple operating conditions as multiple inputs 

o Multiple outputs 

o Multiple sequences 

▪ Handling uncertainties in model training: 

o Numerical problems  

o The number of hidden states 

o Missing data 

o Small dataset 

▪ Numerical applications  

o Modeling under multiple operating conditions 

o Modeling under missing data 

o Modeling by using the bootstrap method which is useful to provide confidence over the 

parameter estimation and give a reasonable result for small datasets. 

One of the major contributions is adapting the learning algorithms from HMM to IOHMM by 

introducing some new variables into the formula (Eq.1 to Eq.8) to consider the operating conditions as 

multiple inputs and the multiple emitted outputs. 
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3.1 The learning algorithms adaptation  

As the Baum-Welch algorithm uses the Forward-Backward as a product, it is necessary to first adapted 

this product to consider the different issues. 

3.1.1 Multiple input conditions 

Let us consider an IOHMM with one input with several conditions (modes) and only one output and let 

us develop the improvement of the forward algorithm first then on the backward algorithm. 

Forward algorithm with inputs 

Let us recall the general formula of forward algorithm which is dedicated to HMM is represented as the 

auxiliary variable 𝛼(𝑋𝑘). 

 𝛼(𝑋𝑘) = ∑ 𝛼(𝑋𝑘−1)𝑃(𝑋𝑘|𝑋𝑘−1)𝑃(𝑌𝑘|𝑋𝑘)𝑠𝑁
𝑋𝑘−1=𝑠1

   

In this equation, 𝑃(𝑋𝑘|𝑋𝑘−1) is the transition probability from 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑋𝑘−1 to 𝑠𝑡𝑎𝑡𝑒 𝑋𝑘 at time 

instant 𝑘. 𝑃(𝑌𝑘|𝑋𝑘) stands as the probability of emitting the observation 𝑌𝑘 given the state 𝑋𝑘 at the 

same time 𝑘. This formula does not consider the input, so a new variable needs to be added here 

representing the input. This adaptation is proposed by Bengio in (Bengio et Frasconi, 1995) where he 

explained the corresponding forward and backward algorithm considering the input. There are two 

limitations of this version of adaptation: (1) the author did not give any explanation about considering 

multiple observation sequences for the outputs, and (2) this algorithm cannot consider multiple outputs 

which is one of the major issues of our hypothesis. However, inspired by Bengio’s work, our 

contribution and hypothesis are given in the following explanations. 

If a system has multiple operating conditions, then it degrades in different dynamics. That means the 

state transition happens according to the operating conditions. A new variable 𝑈 is introduced into the 

equation to represent multiple inputs as given by Fig. 12. 

Xk-1 Xk

Yk-1 Yk

Uk-1

 

Fig. 12: 2TBN representation of 1 input-1 output IOHMM 

The transition from 𝑋𝑘−1 to 𝑋𝑘 jointly depends on both 𝑋𝑘−1 and 𝑈𝑘−1, written as 𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1). 

The variable 𝑈 representing the state of the input condition, selects an identity number of operating 

conditions following the given input sequence at each time instant.  

Forward algorithm with inputs 

So, the new version of the forward formula considers the input which is represented by Eq.9: 

 

 𝛼(𝑋𝑘) = ∑ 𝛼(𝑋𝑘−1)𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1)𝑃(𝑌𝑘|𝑋𝑘)
𝑠𝑁
𝑋𝑘−1=𝑠1

  (9) 
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Backward algorithm 

Similarly to the forward algorithm, the backward algorithm mainly based on an auxiliary variable 

𝛽(𝑋𝑘) should also consider the transition probability with a joint probability of 𝑋𝑘 and 𝑈𝑘, written as 

𝑃(𝑋𝑘+1|𝑋𝑘 , 𝑈𝑘). 

So, based on Eq. 2, the new version of backward formula presented by Eq.10: 

 𝛽(𝑋𝑘) = ∑ 𝛽(𝑋𝑘+1)𝑃(𝑋𝑘+1|𝑋𝑘, 𝑈𝑘)𝑃(𝑌𝑘+1|𝑋𝑘+1)
𝑠𝑁
𝑋𝑘+1=𝑠1

  (10) 
 

The input allows to switch the operating conditions between one-another following the given input 

sequence. For example, if a system has 2 operating conditions, then 𝑈𝑘 indicates the respective model 

for the given operating condition at any time instant k for the next transition. The variable 𝑈𝑘 contains 

the ids (i.e. 𝑢1, 𝑢2) of the models (Models 01 and 02) see in Fig. 13. 

 

Fig. 13: Switching between two operating conditions  

[𝑢1 and 𝑢2 are the identity of operating conditions 1 and 2] 

3.1.2 Multiple inputs case 
The multiple inputs case means that several inputs influence the transition between hidden states. These 

input conditions model the operating and operational conditions. The operating conditions refer to the 

control inputs whereas the operational conditions refer to the environmental conditions.  

Considering these input conditions, the case of independence between conditions can be considered as 

shown in Fig. 14: 

 

Fig. 14: DBN representing multiple inputs IOHMM with independent inputs (left) and dependent 

inputs (right) 

In many industrial cases, the control inputs are considered as independent and already known. So, this 

assumption is made to develop the consideration of inputs into Eq. 2 and 3. If the input conditions 𝑈1 

to 𝑈𝑙  are considered independent with their own number of states then the DBN representation of Fig. 

14 (left) can be reduced to Fig. 12 by considering only one input conditions whose states is the cartesian 

products of the states of all inputs. Therefore, the number of states is increased exponentially which 

induces the increase of the number of transition matrices accordingly. 
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In this thesis, the inputs are assumed independent. However, as future work the dependence between 

input conditions can be considered. 

In conclusion, the solution of the multiple inputs case is given by Eq. 9 and 10 by considering that a 

fictive input replaces all the inputs considering the cartesian product of all states. In all the rest of the 

book, only one input is considered. 

3.1.3 Multiple sequences case 
Systems can be monitored by observing the emitted outputs of the system. A sensor can be installed on 

a system to observe an output that provides a single data sequence which is just one representation of 

the system’s degradation. Likewise, multiple sensors can be used to monitor similar systems for 

collecting multiple sequences. Multiple sensors provide multiple sequences of observations that make a 

confident statement of the system’s degradation. Finally, all the sequences are used to model the system 

or similar kind of systems (Fig. 15). 

 
 Fig. 15: Multiple sequence of vibration readings 

 

here 𝐿 is the number of 

sensors that produce 𝐿 

number of observation 

sequences of vibration 

reading. 

 

The length can be different 

for each sequence.   

3.1.4 Multiple outputs cases 
Alternatively, the better option is to observe multiple outputs (i.e. vibration, temperature, speed, etc.) 

simultaneously for a better system-modelling. In this case, each of the outputs produces multiple 

observation sequences. Let us assume, this time the system is monitored by observing its vibration and 

the temperature both (Fig. 16). So, two sets of observation sequences can be used to model the same 

system instead of one output show in Fig. 15. In this book, the outputs are considered as independents. 

However, as future work the dependence between the outputs, and with inputs can be considered. 

 
Fig. 16: Multiple outputs case 

 

 

here 𝐿 number of sensors 

are used to observe both the 

outputs which have the 

same number of sequences.   

 

The length of the 

conjugative sequences for 

the outputs should be the 

same. For example, 𝑆𝑒𝑞_𝑖 
for both outputs have the 

same length for 1 ≤ 𝑖 ≤ 𝐿. 
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In the case of multiple outputs, the emission probability 𝑃(𝑌𝑞|𝑋) can be used to represent the 

distribution for observing the output q. So, the forward algorithm 𝛼(𝑋𝑘) can be written as following: 

Let’s consider the case of two independent outputs (Y1 and Y2). So, the Eq. 2 becomes:  

𝛼(𝑋𝑘) = ∑ 𝛼(𝑋𝑘−1)𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1)
𝑠𝑁
𝑋𝑘−1=𝑠1

𝑃(𝑌𝑘
1|𝑋𝑘)𝑃(𝑌𝑘

2|𝑋𝑘)  

If we consider 𝑄 number outputs, then it becomes: 

 𝛼(𝑋𝑘) = ∑ 𝛼(𝑋𝑘−1)𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1)
𝑠𝑁
𝑋𝑘−1=𝑠1

𝑃(𝑌𝑘
1|𝑋𝑘)𝑃(𝑌𝑘

2|𝑋𝑘)…𝑃(𝑌𝑘
𝑄|𝑋𝑘)    

Forward algorithm with multiple outputs 

It can be generalized as Eq.11: 

 𝛼(𝑋𝑘) = ∑ 𝛼(𝑋𝑘−1)𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1)
𝑠𝑁
𝑋𝑘−1=𝑠1

∏ 𝑃(𝒴𝑘|𝑋𝑘)
𝑄
𝑞=1   (11) 

here 𝒴 is the set of outputs. 𝒴 = {𝑌  
1, 𝑌  

2, . . . , 𝑌  
𝑄} 

 

This is a complete version of forward algorithm considering multiple inputs and multiple outputs. 

Backward algorithm with multiple outputs 

 Similarly, to the forward algorithm, the backward algorithm is also adapted as Eq.12: 

 𝛽(𝑋𝑘) = ∑ 𝛽(𝑋𝑘+1)𝑃(𝑋𝑘+1|𝑋𝑘, 𝑈𝑘)𝑠𝑁
𝑋𝑘+1=𝑠1

∏ 𝑃(𝒴𝑘+1|𝑋𝑘+1)
𝑄
𝑞=1   (12) 

here 𝒴 is the set of outputs. 𝒴 = {𝑌  
1, 𝑌  

2, . . . , 𝑌  
𝑄} 

 

This is a complete version of backward algorithm considering multiple inputs and multiple outputs. 

3.1.5 Normalization 

The values in the 𝛼 and 𝛽 tables can come very close to zero. Multiplying them together can cause the 

risk of exceeding the precision of the floating-point number and getting the results in a number which 

is smaller than what the proposed model is capable of the store. In this case, a normalization is used in 

the equations by scaling to guarantee good numerical properties. 

Equation 13 represents the scaled forward algorithm: 

 
𝛼(𝑋𝑘) =

∑ 𝛼(𝑋𝑘−1)𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1)
𝑠𝑁
𝑋𝑘−1=𝑠1

 ∏ 𝑃(𝒴𝑘|𝑋𝑘)𝑄
𝑞=1

∑ ∑ 𝛼(𝑋𝑘−1)𝑃(𝑋𝑘|𝑋𝑡 , 𝑈𝑘−1)
𝑠𝑁
𝑋𝑘−1=𝑠1

𝑠𝑁

𝑋𝑘=𝑠1

∏ 𝑃(𝒴𝑘|𝑋𝑘)
𝑄
𝑞=1

 
 (13) 

Equation 14 represents the scaled backward algorithm: 

 
𝛽(𝑋𝑘) =

∑ 𝛽(𝑋𝑘+1)𝑃(𝑋𝑘+1|𝑋𝑘, 𝑈𝑘)𝑠𝑁
𝑋𝑘+1=𝑠1

∏ 𝑃(𝒴𝑘+1|𝑋𝑘+1)
𝑄
𝑞=1

∑ ∑ 𝛽(𝑋𝑘+1)𝑃(𝑋𝑘+1|𝑋𝑘, 𝑈𝑘)∏ 𝑃(𝒴𝑘+1|𝑋𝑘+1)
𝑄
𝑞=1

𝑠𝑁

𝑋𝑘+1=𝑠1

𝑠𝑁

𝑋𝑘=𝑠1

 
(14) 

There is another popular approach which is the log space. It turns the multiplications into additions and 

thus avoids too small values.  

Forward algorithm for IOHMM  

 𝑙𝑜𝑔 𝛼(𝑋𝑘) = ∑ {𝑙𝑜𝑔 𝛼(𝑋𝑘−1) + 𝑙𝑜𝑔 𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1)
𝑠𝑁

𝑋𝑘−1=𝑠1
+ 𝑙𝑜𝑔 ∏ 𝑃(𝒴𝑘|𝑋𝑘)}

𝑄
𝑞=1   

(15) 

Backward algorithm for IOHMM 

 𝑙𝑜𝑔 𝛽(𝑋𝑘) = ∑ {𝑙𝑜𝑔 𝛽(𝑋𝑘+1) + 𝑙𝑜𝑔 𝑃(𝑋𝑘+1|𝑋𝑘, 𝑈𝑘) + 𝑙𝑜𝑔
𝑠𝑁

𝑋𝑘+1=𝑠1
∏ 𝑃(𝒴𝑘+1|𝑋𝑘+1)

𝑄
𝑞=1 }  

(16) 
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Equation (15) and (16) are the complete adaptation of forward-backward algorithm for IOHMM which 

are used in the Baum Welch algorithm to learn the model parameters.  

3.1.6 The Baum Welch adaptation 
The adapted Baum-Welch algorithm uses the adapted forward-backward algorithm (Eq. 15 and 16) 

through the expectation and maximization steps for learning the IOHMM parameters 𝛬 = (𝐴𝑝, 𝐵𝑞 , 𝜋) 

(cf. chapter 2). This algorithm also requires some initial values for variables 𝜋, 𝐴𝑝, and 𝐵𝑞 to run the 

learning process. This initialization would be better if it follows the system nature, otherwise, random 

values could also be chosen.    

Baum Welch algorithm for IOHMM 
Following the classical Baum Welch variables given by Eq.4 and 5, the probability of being in state 

j at time k given multiple observed sequences (𝑌1, . . . , 𝑌𝑞) and the parameters of  𝛬 is given below:  

 𝜔𝑘(𝑖) =
𝛼𝑖(𝑋𝑘)𝛽𝑖(𝑋𝑘)

𝑃(𝑌1, . . . , 𝑌𝑞|𝛬)
   

The probability of being in state 𝑖 and 𝑗 at time 𝑘 and 𝑘 + 1 given the observed sequences of 

(𝑌1, . . . , 𝑌𝑞), the input operating conditions 𝑈 and the parameters of 𝛬 is given in the equation below:   

 𝜀𝑘(𝑖, 𝑗) =
𝛼𝑖(𝑋𝑘). 𝑎𝑝(𝑈𝑘−1)𝑖𝑗. 𝑏

𝑞
𝑗. 𝛽𝑗(𝑋𝑘+1)

𝑃(𝑌1, . . . , 𝑌𝑞|𝛬)
   

Parameters updating: 

Initial state probability: 

 𝜋̂𝑖 = 𝜀1(𝑖, 𝑗), where 1 ≤ 𝑖 ≤ 𝑁 (17) 

Transition probabilities: 

 𝑎̂
𝑝
𝑖𝑗 =

∑ 𝜀𝑘(𝑖, 𝑗).
𝐾−1
𝑘=1 1𝑈𝑘−1=𝑝

∑  𝐾−1
𝑘=1 𝜔𝑘(𝑗). 1𝑈𝑘−1=𝑝

 (18) 

where 1𝑈𝑘−1=𝑝 = {
1 𝑖𝑓 𝑈𝑘−1 = 𝑝
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

Emission probabilities: 

 𝑏̂
𝑞
𝑗𝑘 =

∑  𝐾
𝑘=1 𝜔𝑘(𝑗). 1𝑌𝑘

𝑞
=𝑣𝑚

∑  𝐾
𝑘=1 𝜔𝑘(𝑗)

 (19) 

where 1𝑌𝑘
𝑞
=𝑣𝑚

= {
1 𝑖𝑓 𝑌𝑘

𝑞
= 𝜈𝑚

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

Repeat these steps until the changes between the two results converge. 

 

 

In this section, the classical forward-backward algorithms are adapted in several versions to integrate 

multiple inputs, outputs, normalization, and numerical solution. The Baum welch algorithm is also 

adapted from the classical HMM to the IOHMM version where the parameters get updated according to 

the given inputs. Finally, the parameters of the model are estimated as 𝛬 = (𝐴̂𝑝, 𝐵̂𝑞 , 𝜋̂) which completely 

represents the IOHMM.  
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3.2 Numerical Illustration (IOHMM learning) 

To show the proposed methodology a numerical application is simulated. The application is assumed to 

have such complexity that covers several challenges to explore the importance of the proposed methods. 

Different uncertainties are handled in the model training (e.g. data uncertainty, small dataset, missing 

data, model size, operating conditions, etc.). The numerical problems are handled by scaling the small 

values and applied the logarithm method. The training is also done by using the bootstrap method which 

is useful to provide confidence over the parameter estimation and give a reasonable result for small 

datasets.  

This application assumed to have two observation outputs and one operating condition with two 

operating modes. For example, if the speed of a system considered an operating condition then two 

operating modes can be the high and the low speed. Two operating modes provide two stochastic 

matrices to describe two different transition probabilities for the system’s degradation. The degradation 

of the system assumed to have three hidden states (good, moderate, bad) in simulations for easy and 

simple computation. Each of the states emits two outputs with two probabilities which are represented 

by two emission matrices. There are three discrete variables considered as the emitted symbols.  

The goal is to use a simulated dataset and training the model to estimate the parameters of the model 

considering different issues of uncertainties and constraints. The training is done in three different 

phases to solve different issues.  

- Modeling under multiple operating conditions and output observations. It is the classical 

problem in which the dataset assumed as a complete dataset that does not have any incomplete 

or missing data sequences. The adapted algorithms (Eq. 1 to Eq. 5) are used in this training 

phase. 

- Modeling under missing data. The missing data is a typical challenge in a data-driven 

approach. In this phase, a solution is proposed to handle the dataset with missing elements. The 

adapted algorithms are modified again in this phase for managing the missing data. 

- Use the bootstrap method for having the confidence over the estimated model. Bootstrap 

method can provide a scale of confidence for the estimated parameters even from a small amount 

of data. Usually, the data amount is small for diagnostic and prognostic applications. In this 

phase, the bootstrap method is implemented to train the model from a small data amount.     

3.2.1 Modeling under multiple operating conditions 
This is the classical model training considering multiple operating conditions and multiple outputs where 

the dataset is complete. The model provides two transition matrices for two operating conditions and 

two emission matrices for two observation outputs. 

3.2.1.1 Data preparation  

A simulator is developed based on the IOHMM concept to simulate the data sequences using a given 

model structure. For the sake of illustration, a structure is given below in which the attributes can be 

different based on different applications. Later, the estimated parameters are compared with the given 

model structure. 

Given model architecture: 

• Data unit: discrete 

• Model type: left-right model   

• The number of input states: two 

• The number of hidden states: three (assumed as “good”, “moderate”, and “bad”) 
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• The number of observation symbols: three  

Transition matrices: the parameters are chosen randomly by conditioning the diagonal values bigger 

compared to other parameters because the matrix represents the left-right type respect to the system 

degradation nature. Usually, systems temp to stay on a health state during a long-time step compared to 

transition in the final state. 

Transition matrices: 

𝐴1 = (
0.9788 0.0212 0

0 0.9516 0.0484
0 0 1

) 

𝐴2 = (
0.8443 0.1557 0

0 0.7899 0.2101
0 0 1

) 

Emission matrices: (selected randomly) 

𝐵1 = (
0.8980 0.0513 0.0507
0.0534 0.8980 0.0486
0.0499 0.0505 0.8996

), 𝐵2 = (
0.7981 0.1520 0.0499
0.2017 0.7488 0.0495
0.1007 0.0495 0.8498

) 

Initial state distribution: (assumed as in good health) 

𝜋 = (1    0    0) 

The training sequence is defined as it has the failure measurements at the end of the sequence. Two sets 

of observation sequences (𝑌1, 𝑌2) and one set of input sequences are simulated which correspond to the 

state sequences. The state sequences are also simulated for result comparison purpose.  

The simulator initializes the distribution from the first state according to 𝜋. The method takes the initial 

state as 𝑋1 = 𝑠1 and simulates the emission distributions 𝑃(𝑌1
1|𝑋1 = 𝑠1) and 𝑃(𝑌2

1|𝑋1 = 𝑠1) for the 

two outputs 𝑌1 and 𝑌2. After that, it takes the transition probability as 𝑃(𝑋2|𝑋1 = 𝑠1,  𝑈1). The 

observations at time 𝑘 + 1 are simulated following the same process. These steps are repeated to 

simulate a state sequence as 𝑋 and a single sequence of observations for each output 𝑌1 and 𝑌2. The 

length is chosen randomly between 180 to 250 for having a different length for the sequences of 

corresponding 𝑋, 𝑌1, and 𝑌2. A different range can be chosen for the length. The important issue is to 

have at least one failure information per sequence. 

3.2.1.2 Application properties  

Issue of resolution: The smaller is the time window covered by the sequence the better the resolution 

is (the resolution for detecting the state of health improves during implementation). However, this is 

only possible to the extent that there is sufficient information in the order of possible state detection. 

Observation sequences that are too short can lead to false alarms or misclassifications (Baruah, 2005). 

In this study, it is assumed that a resolution of one failure state (the first) is acceptable.  

The number of health states: The degradation mechanism of a system has several distinct health states 

prior to reaching the failure state. Any number of hidden states that more than one can be set for the 

simulation. The important issue is to justify the selection of more or less hidden states. In our thesis, 

three health states are defined along with the failure state. The initial state, labelled as ‘good’, is a period 

during which the system assumed has no degradation. The second state, labelled as ‘moderate, is a period 

that indicates a slight degradation but still intolerance. The third state labelled as ‘bad’, is defined as the 

final state which about to shut down the system. It is also defined as the breakdown state or failure state. 

Preparing training and testing data sets: About 100 data sequences are simulated where each one of 

them assumes to end up when the system gets a failure. This is the training set that is used in IOHMM 

training to estimates the parameters. Another data set is simulated having 100 data sequences where 
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each one of them stopped a prior time earlier than the failure. This is the test set used in 

diagnostic/prognostic application and model validations.  

Choice of IOHMM type: An ergodic model is most appropriate for imposing the enforcement of a 

strict left-right state transition constraint that may impair its ability to model the time series data. It is 

called the Bakis model (Yuan, 2018). If a system physically degrades as a left-right process, then 

modelling the observation through the left-right HMM (LR-HMM) will lead to better generalizations 

(Baruah, 2005).  

Iteration: The Baum Welch algorithm rotates the training process several times starting from different 

initial states to ensure a good result of convergence towards a locally optimal solution. The given 

application sets the iteration by a given number. The number could be different corresponding to the 

complexity of the model.   

3.2.1.3 Result 

Since this is a simulated application from a given model structure, so the original number of hidden 

states is known. However, in real case, it is unknown. So, the experiment starts the model training with 

the minimum two states and gradually does the next training with a different number of states. The 

model is trained several times with different numbers of hidden states by assuming the original model 

structure is unknown. The same dataset is being used in all cases.  

Selects the number of hidden states: 

The degradation requires at least two hidden states (good and bad) to represent itself from good health 

state to bad health state. That is why this experiment starts with two hidden states. Nevertheless, there 

is no limitation in choosing the number of hidden states. The more the states the more accurate the 

degradation speed would be. However, noted that, a greater number of states makes the model more 

complex to estimate.  

We decided to consider 4 models for the same system and compare them to decide which one is enough 

and suitable for the system. Every model learns one initial distribution, two transition matrices, and two 

emission matrices because the system has two inputs operating conditions and two observation outputs. 

However, in Table 3, only the first transition matrix and the first emission matrix of each model are 

presented to explain the solution. Other matrices can also be used to come up with a similar conclusion.  

Table 3: Learning parameters of different matrices 

Model Transition matrices Emission matrices  

Here 𝐴12 and 𝐵12 

are the estimated 

parameters of the 

first matrices of 2 

states IOHMM. 

 

Similarly, 𝐴13 

and 𝐵13 are from 

3 states IOHMM 

and so on. 

2 

states- 

Model 

𝐴12 =  

(
0.9867 0.0133

0 1.0000
) 

𝐵12 = 

(
1 0 0
0 0.75 0.25

) 

3 

states- 

Model 

𝐴13 =  

(
0.9807 0.0193 0

0 0.9699 0.0301
0 0 1.0000

) 

𝐵13 = 

(
0.86 0.14 0
0 1 0
0 0 1

) 

4 

states- 

Model 

𝐴14 =  

(

0.9801 0.0199 0 0
0 0.9856 0.0144 0
0 0 𝟏. 𝟎𝟎𝟎𝟎 0
0 0 0 𝟏. 𝟎𝟎𝟎𝟎

) 

𝐵14 = 

(

0.86 0.14 0
0 1 0
0 0 1
0 0 1

) 
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5 

states- 

Model 

𝐴15 =  

(

 
 

0.9858 0.0142 0 0 0
0 0.8547 0.1453 0 0
0 0 0.9948 0.0052 0
0 0 0 0.9227 0.0773
0 0 0 0 1.0000)

 
 

 

𝐵15 = 

(

 
 

1 0 0
𝟎 𝟏 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏
𝟎 𝟎 𝟏)

 
 

 

 

This experiment is done in the following three procedures: 

• Look-out the transition parameters 

• Look-out the emission parameters 

• Compare by model-performance 

1) Look-out the transition parameters: The proposed method is performing as a left-right model 

where no back transition is considered. We choose to model a system according to the left-right model 

which tends to stay in a healthy state with a higher probability then goes into the next state. In this case, 

the model follows a diagonal pattern having the maximum probability than the other parameters of the 

matrix because usually the health stays at one state long time compared to transfer into the next state. 

For example, the transition matrix 𝐴13 which is learned from a 3-state model where all the diagonal 

parameters (1,1), (2,2), and (3,3) have the max-probabilities about 97%, 98%, and 100%. Another 

important issue is, if any state carries a 100% probability, then it is considered as breakdown state. It is 

also called an absorbent state from which there is no transition to any other state but itself. We considered 

only one absorbent state in the model.  

Now, if we look at another transition matrix 𝐴14, we find two parameters (3,3) and (4,4) holding 100% 

probabilities. By means of which, it has two absorbing states which are not acceptable as we defined to 

consider only one per model. So, the first absorbent state (3,3) can be chosen as the breakdown state 

because the model gets into this state first then there is no way of transiting to the state (4,4). So, agreeing 

to these insignificance parameters of the matrix, 𝐴14  is not the elegant model to represent the system. 

2) Look-out the emission parameters: Sometimes a transition matrix carries all the parameters with a 

significant probability. So, it is not possible to define the model is suitable or not such as matrix 𝐴15. 

This matrix has all the parameters according to the left-right model and with the diagonal pattern holding 

the maximum probabilities. In this case, we can investigate the corresponding emission matrix 𝐵15. 

There is a strong relationship between the transition matrix and the emission matrix of the same model 

structure. According to the emission matrices (𝐵12, 𝐵13) from the other two models, the parameters in 

diagonal are holding the maximum probabilities in the matrix. In the matrix 𝐵12, the parameter (1,1) 

carries 1, which means the probability of 1st state emits the 1st symbol is 100%. Another parameter (2,2) 

carries 0.75 means the 2nd state emits the 2nd symbol with a probability of 75%. 𝐵13 is similarly holding 

the maximum probability in the diagonal positions.  

The experience from different emission matrices and their nature says that there is a tendency of having 

the maximum probability of 1st state emits the 1st symbol, 2nd state emits the 2nd symbol, and so on. 

That means the probability of 𝑛𝑡ℎ state emits the 𝑚𝑡ℎ symbol (when 𝑛 = 𝑚) is usually higher than 

emitting the other symbols. However, if we see the emission matrix 𝐵15, then we can notice the 

parameters are quite unusual then other emission matrices. Here, the 3rd state mostly emits 2nd symbol 

and the 5th state mostly emits 3rd symbol where 𝑛 ≠ 𝑚, which is fairly different than what we learned 

earlier.  

There is another way of explaining this issue which is the repeated parameters in the consecutive rows 

in the emission matrix. In matrix B5, there is a strong confusion between hidden states 2 and 3 and 

hidden states 4 and 5. It is not satisfying because finally we cannot know which hidden state is active. 
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The 2nd row and the 3rd row are having a 100% probability of emitting the same (2nd) symbol, which is 

usually meant to be in 2nd row. Similarly, the 4th and the 5th rows are having a 100% probability of 

emitting the 3rd symbol, which is usually meant to show by the 3rd row. So, it works as the 3 states 

model. 

So, according to this explanation, the 2nd and 3rd rows can be aggregated as state-2, and the 4th and 5th 

rows as state-3. Therefore, the modified matrix becomes a 3 by 3 matrix which presents the highest 

probability of 𝑛𝑡ℎ state emits the 𝑚𝑡ℎ, where 𝑛 = 𝑚. That means, corresponding to some insignificance 

parameters of emission matrix 𝐵15, this system can be represented by a 3-state model rather than by 5-

state model.   

3) Compare by model-performance: This technique performs based on the performance of the models. 

It compares the model performances to select the better one among them all. The most probability of 

generating observation sequence 𝑃(𝑌|𝛬) is selected as a suitable model for the system and the dimension 

of the transition matrix as the number of hidden states. A test sequence is selected to test the results. The 

model is considered the best which generates the sequence with maximum likelihood.  

The IOHMM with three states provides better performance compared to other models. Noted that, the 

first two techniques of this experiment are also indicated that a 3-state model is suitable to represent the 

system.  

The estimated transition parameters are: 

𝐴̂1 = (
0.9807 0.0193 0

0 0.9699 0.0301
0 0 1.0000

) 

𝐴̂2 = (
0.8514 0.1486 0

0 0.7901 0.2099
0 0 1

) 

This technique can be applied to those models which cannot be decided from the first two techniques. 

The estimated emission parameters are: 

𝐵̂1 = (
0.8977 0.0512 0.0511
0.0557 0.8964 0.0479
0.0500 0.0505 0.8995

) 

𝐵̂2 = (
0.7977 0.1523 0.0500
0.2038 0.7470 0.0492
0.1006 0.0494 0.8500

) 

The estimated initial state distributions are: 

𝜋̂  = (1    0    0) 

Remark: a higher number of states for a small margin of performance is better not to consider for 

avoiding the computational complexity problem, which is called “Occam’s Razor” (Thorburn, William 

M et al 1918).  

3.2.1.4 Limitation 

1) The Baum Welch algorithm uses the forward algorithm repeatedly, which can be a time-consuming 

process for a large data amount.  

2) The data set is simulated as complete sequences where no data element is missing. For missing data 

sets the learning algorithms need to be adapted.  
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3.2.2 Modeling under missing data 

Phase two covers the limitation of the first phase which is considering the missing data in model training. 

It is usual that the sensors sometimes misread the observation for different reasons. Misreading 

observation contains both the missing measurement and sensor saturation. The main contribution in this 

phase is to present a technique based on the IOHMM adapted algorithms that handles the missing data. 

Typically, if a dataset contains data sequences with some missing elements, the sequences can be 

excluded from the analysis. As a result, the data set becomes smaller which may lose some valuable 

information. This strategy is known as list-wise deletion or case-wise deletion (Allison, 2001), but it is 

less suitable for a small amount of dataset. The method followed in this section includes the missing 

data sequences into the analysis by simulating the missing portion of the sequence to produce a complete 

set of data. A technique such as the maximum likelihood is applied to estimate IOHMM parameters that 

offer substantial improvements over list-wise deletion. 

3.2.2.1 Missing Data 

A sensor may miss measurements in periodic segments such as all the sensors stopped at the same time 

for an accident or mechanical issues. Sometimes sensors could misread the measurements for a random 

time segment. One or more sensors could stop measuring data for several time periods.  

Data units as zero: 

Let’s assume a system is observed by three sensors: one sensor collects the input measurements 

represented by 𝑈 and the other two sensors collect two output measurements as 𝑌 
1 and 𝑌 

2. A clean data 

sequence means there is no missing data in the entire sequence. A missing data sequence means that at 

least one data unit in the sequence is missing or contains an unreadable data unit (see Fig. 17: The 

missing data replaced by zero).  

 

Fig. 17: The missing data replaced by zero 

[X-axis: sequence length, Y-axis: discrete symbols] 

An unreadable data unit could be some form of noisy or strange reading than the usual signal which 

does not give any information. For simple computation purposes in this work, a missing or abnormal 

data unit is replaced by “zero” which is out of the symbol list. 

About 50% of complete sequences are transformed to missing data sequences through a converter. The 

amount of data elements and the index/indexes of removing the data are selected randomly. Some 

sequences have multiple missing windows/blocks. The converter takes each (complete) sequence and 

converts to missing data sequence according to two parameters: number of blocks, number of elements 

in each block.  
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Figure 18 gives an example of a complete sequence and a transformed sequence with sequence length 

of about 200 Data unit.  

The number of blocks can be chosen randomly as 1 ≤ 𝑑 ≤ 𝐷 

The number of elements in a block is also a random selection as 1 ≤ 𝐵𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 ≤ 𝐾, 𝐾 is the sequence 

length.  

 

Fig. 18: The missing data conversion 

[X-axis: sequence length, Y-axis: discrete symbols] 

A data set could have one or more sequences with missing data in different cases in terms of different 

sensors failure. All possible cases for the three sensors are shown in Table 4.  

Table 4: Different Cases of Data Unit 

 

Case 
Missing data combination Description 

1 𝑈̅𝑘, 𝑌̅𝑘
1, 𝑌̅𝑘

2 All three sequences have missing data 

2 𝑈̅𝑘, 𝑌̅𝑘
1, 𝑌𝑘

2 The input and the first output sequence has missing data, 

but the second output sequence has full length of clean 

data. 

3 𝑈̅𝑘, 𝑌𝑘
1, 𝑌̅𝑘

2 Only the first output sequence has full length of clean data  

4 𝑈̅𝑘, 𝑌𝑘
1, 𝑌𝑘

2 Only the input sequence has some missing data 

5 𝑈𝑘, 𝑌̅𝑘
1, 𝑌̅𝑘

2 Only the input sequence has the full length of clean data 

6 𝑈𝑘, 𝑌̅𝑘
1, 𝑌𝑘

2 Only the first output sequence has some missing data 

7 𝑈𝑘, 𝑌𝑘
1, 𝑌̅𝑘

2 Only the second output sequence has some missing data 

8 𝑈𝑘, 𝑌𝑘
1, 𝑌𝑘

2 No sequence has any missing data 

 

The data sequences having missing elements are defined as 𝑈̅ (missing input), 𝑌̅ 
1 (missing first output) 

and 𝑌̅ 
2 (missing second output). 

The IOHMM is trained in two parts. The first part only considers the case-8 where the sequences have 

no missing data (clean data set). In the second part, the model considers the rest of the cases (1 to 7) to 
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get trained again. Case 4, 6, and 7 are less complex than cases 2, 3, and 5 because only one sensor gives 

the missing data in these cases. Case 1 is the most complex and less efficient because it has all the 

sequences with missing data.  

3.2.2.2 Methodologies to handle the missing data 

The model trains by using the missing data apply the Eq. 20 to Eq. 25 which are a slightly modified 

version of Eq. 11 and 12.  

The forward algorithm for missing data: 

The forward equation of IOHMM can be adapted to cover all the cases of Table 4. For example, Case 

4: the input 𝑈𝑘 is absent, but the outputs are available at time 𝑘: 

 𝛼(𝑋𝑘) = ∑ ∑ 𝛼(𝑋𝑘−1) 𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1 = 𝑝 )𝑃(𝒴𝑘|𝑋𝑘)𝑃(𝑈 = 𝑝)𝑃
𝑝=1

𝑠𝑁
𝑋𝑘−1=𝑠1

  (20) 
 

 
here 𝑃(𝑈 = 𝑝) is the weight of using the 𝑝th matrix over the inputs: 

𝑃(𝑈 = 𝑝) =
𝐶𝑝 

(𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝th matrix)

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑈
 

In the Case 5: when two output’s observations are missing, but the input is available. It can be handled 
in two approaches: replacing the emission probability by one or considering emitted symbol weight. 

Approach one: Replacing the emission probability by one: 

 𝛼(𝑋𝑘) = ∑ 𝛼(𝑋𝑘−1)𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1)
𝑠𝑁
𝑋𝑘−1=𝑠1

  (21) 
 

This method is used when any sequence shows zero elements (zero as missing data). The emission 

probabilities are missing because both the emitting outputs are missing so, the probability is assumed as 

𝑃(𝒴𝑘|𝑋𝑘)=1, it is removed from the equation. However, if one of the emitted outputs has a non-zero 

element let’s say the first output (𝑌𝑘
1) then the probability of 𝑃(𝑌𝑘

1|𝑋𝑘) is selected from the 

corresponding emission matrix but not the 𝑃(𝑌𝑘
2|𝑋𝑘) since the second output (𝑌𝑘

2) is zero, so 𝑃(𝑌𝑘
2|𝑋𝑘) 

is considered as 1.   

When one output observation is absent while the other output observation and the input are available:  

 𝛼(𝑋𝑘) = ∑ 𝛼(𝑋𝑘−1)𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1)
𝑠𝑁
𝑋𝑘−1=𝑠1

𝑃(𝒴𝑘|𝑋𝑘) for 𝒴𝑘 ≠ 0. (22) 

 

 

Similar approach is applicable when 𝑌𝑘
1 is zero but 𝑌𝑘

2 is nonzero, 𝑃(𝑌𝑘
2|𝑋𝑘) selects from the emission 

matrix and 𝑃(𝑌𝑘
1|𝑋𝑘) considered as 1.  

Approach two: Considering emitted symbol weight 

Another approach is considering the missing output observation to compute the emission probability by 

summing over all possible emitted symbols, weighted by their appearance probability in the training 

observation sequences. This approach simulates the probable emission distribution for the missing 

window according to existing data for computing the state transition:  

 𝛼(𝑋𝑘) = ∑ ∑ 𝛼(𝑋𝑘−1)
𝑀
𝑚=1

𝑠𝑁
𝑋𝑘−1=𝑠1

𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1) 𝑃(𝒴𝑘 = 𝑣𝑚|𝑋𝑘)𝑃(𝒴 = 𝑣𝑚)  (23) 

here 𝑣𝑚 is an emitted symbol could be 1 to M, and 𝑃(𝑌 
𝑞 = 𝑣𝑚) is the symbol weight by their 

probability in the training observations.  

The variable probability 𝑃(𝒴 = 𝑣𝑚) represents the weight of the emitted symbols as: 
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𝑃(𝒴 = 𝑣𝑚) =
𝐶𝑣𝑚

(𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 𝑣𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝒴
 

Equation (20) and (23) together cover all the missing cases of three sensors mentioned earlier. Likewise, 

the backward algorithm, the Baum Welch algorithm, and the Viterbi algorithm are also modified to deal 

with the missing data. The modification of these three algorithms is shown only for case-1 (most 

complex one).  

The backward algorithm: 

𝛽(𝑋𝑘) == ∑ ∑  𝑀
𝑚=1 ∑ 𝛽(𝑋𝑘+1)𝑃(𝑋𝑘+1|𝑋𝑘, 𝑈𝑘 = 𝑝 )𝑑𝑝 

𝑃
𝑝=1

𝑠𝑁
𝑋𝑘+1=𝑠1

𝑃(𝒴𝑘 = 𝑣𝑚|𝑋𝑘)𝑃(𝒴 = 𝑣𝑚)  (24)  

The Baum Welch algorithm 

 𝜀𝑘(𝑖, 𝑗) ==
∑  𝑀

𝑚=1 𝑆 × 𝑃(𝒴𝑘 = 𝑣𝑚|𝑋𝑘)𝑃(𝒴 = 𝑣𝑚)

𝑃(𝒴1:𝑘|𝛬)
 (25)  

where, 𝑆 = ∑ 𝛼𝑖(𝑋𝑘). 𝑎𝑝(𝑈𝑘 = 𝑝 )𝑖𝑗. 𝑏
𝑞
𝑗𝑘. 𝛽𝑗(𝑋𝑘+1)𝑃(𝑈 = 𝑝) 𝑃

𝑝=1   

3.2.2.3 Flow chart of model training under missing data 

To use the adapted methods considering the cases of missing data summarized in Table 4, the model 

flowchart is proposed in Fig. 19 where four phases are of main concern.  

 

Fig. 19: The model flowchart 
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Phase one: all the data sequences are separated in half. The first half as the sequences to convert as 

missing data sequences and the second half as the sequences keep as complete and clean sequences.  

Phase two: the model gets training in two steps. The first step is done in this phase. Only the complete 

sequences are used to training the model by applying the classical algorithms of IOHMM (Eq.15 to 

Eq.19). The initial parameters are taken as the random values corresponding to the left-right property. 

Phase three: in this phase, the separated sequences are converted to missing data sequences.  

Phase four: in the final phase, the second step of model training is done by using the missing data 

sequences. In this step of training, the initial parameters are not taken randomly but the estimated 

parameters of the first step. This is how the model ensures to use all the available sequences in model 

training. 

The data preparation and the corresponding results are presented in the following sections.  

3.2.2.4 Data generation   

A random set of 60 clean and complete data sequences are simulated from the given model structure. 

After that, 30 random sequences are converted into missing data sequences by randomly removing some 

elements from several indexes. A total of about 12.81% of data elements are removed from the training 

data sets where each of the sequences can miss the data in a bulk of one or more times. The goal is to 

compare the model performance between the results produced by using the clean data set and missing 

data set.  

The output of the examination is presented in two steps:  

Step one: use only 30 clean data sequences and apply Eq. 15 to 19 for parameter estimation. 

Step two: use estimated results of the first phase as the initial parameters in the second phase and apply 

two different approaches on the other 30 sequences having missing elements for the final parameter 

estimation. 

• Approach one: considering emission probability as 1 (i.e. Eq. 22) based on different cases of 

missing output data.  

• Approach two: computes the emission probability based on all the possible emitted symbols, 

weighted by their probability (i.e. Eq. 23). 

 

3.2.2.5 Result 

Table 5 presents the nonzero estimated parameters of the transition matrices. Three cases (1, 2, 6) are 

examined where one or more sensor data assumed to be missing some measurements and case 8 with 

all clean data sequences as a reference. The missing data set is formatted according to the cases 

represented in Table 4. Case 6 is selected from the simplest cases (4, 6, 7) where at least one sensor is 

set to produce the missing data. Case 2 is selected from a little bit more complex cases (2, 3, 5) where a 

minimum of two sensors produce the missing data. Case 1 is the most complex case where all three 

sensors may produce the missing data. Finally, the original model parameters are also given in the last 

column of the table for comparison purposes.  

Table 5:  Model parameters from the first approach 

Paramet

er 

Case 1 Case 2 Case 6 Case 8 Original Case 2 

(listwise) 

Transition Matrix 𝑨̂ 
𝟏 

𝑨̂𝟏𝟏
𝟏  0.9801 0.9801 0.9798 0.9793 0.9788 0.9803 

𝑨̂𝟏𝟐
𝟏  0.0199 0.0199 0.0202 0.0207 0.0212 0.0197 

𝑨̂𝟐𝟐
𝟏  0.9687 0.9682 0.9670 0.9689 0.9516 0.9723 
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𝑨̂𝟐𝟑
𝟏  0.0313 0.0318 0.0330 0.0311 0.0484 0.0377 

𝑨̂𝟑𝟑
𝟏  1 1 1 1 1 1 

Transition Matrix 𝑨̂ 
𝟐 

𝑨̂𝟏𝟏
𝟐  0.8643 0.8543 0.8613 0.8434 0.8443 0.8617 

𝑨̂𝟏𝟐
𝟐  0.1357 0.1457 0.1387 0.1566 0.1557 0.1383 

𝑨̂𝟐𝟐
𝟐  0.7969 0.7769 0.7929 0.7869 0.7899 0.7944 

𝑨̂𝟐𝟑
𝟐  0.2031 0.2231 0.2071 0.2131 0.2101 0.2056 

𝑨̂𝟑𝟑
𝟐  1 1 1 1 1 1 

D_Error 0.0908 0.0818 0.0728 0.0434 - 0.0882 

 

D_Error represents the error distance of the estimated parameters from the original parameters. 

According to the error score, Case-8 has the lowest error (0.0434) that means the better parameters 

compared to others because this case uses the maximum information in the training as it does not have 

any missing data. Similarly, case 6 gives a better result than case 2 and case 2 gives better result than 

case 1 corresponding to the amount of missing data consideration. Case 1 has the maximum missing 

data elements, so it has the maximum error score (0.0908).  

All the parameters shown in table 5 are estimated by applying the first approach (eliminating emission 

probability). This is less complicated to implement compared to the second approach which considers 

the emitted symbols weighted by their probability. However, the second approach is a complex 

implementation but gives a better result such as 𝑃(𝒴|𝛬𝑐=2) = 6.0𝑒−128  for case 2, while eliminating 

the emission probability gives less probability as 3.5𝑒−128. However, if an application requires only the 

max path but does not care about the distribution 𝑃(𝒴|𝛬 ), then the first approach is suitable because in 

several experiments give the same max path and show that it is a time-consuming approach.  

The second approach is examined for case 2 for giving a solution that covers all the challenges of other 

cases. The input (𝑈̅) and the first output (𝑌̅ 
1) sequences are having some missing data but the second 

output (𝑌  
2) has the clean data sequences. Two different results are produced based on this case. The 

first one is shown by column 3 that has the distance error of 0.0818 which is the result by considering 

both complete and incomplete sequences. On the other hand, the second result is produced by 

considering the list-wise (Allison, 2001) approach where the model is trained only by the complete 

sequences.  It provides a distance error of 0.0882 (in the last column) which show an improvement of 

considering the incomplete sequence with missing data elements.  

However, in this case 2, there are three discrete symbols (𝑣1, 𝑣2, 𝑣3) in the missing data sequences of 𝑌̅ 
1 

and their prior distribution weights is 𝑃(𝑌 
𝑞 = 𝑣1) = 0.19, 𝑃(𝑌 

𝑞 = 𝑣2) = 0.14, and 𝑃(𝑌 
𝑞 = 𝑣3) =

0.67. Now, this information is used in the model training by using (12) and for estimating the model 

parameters.  

The estimated transition parameters of IOHMM considering the 𝛬𝑐=2 (case 2): 

The estimated transition parameters for case 2 are:  

𝐴̂1 = (
0.9793 0.0207 0

0 0.9689 0.0311

0 0 1
) 

𝐴̂2 = (
0.8434 0.1566 0

0 0.7869 0.2131

0 0 1
) 

𝐴̂1 is the low-stress model where the mean transition probability from the first state to the last state is  
(0.0207 + 0.0311)/2 = 0.0259. 
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𝐴̂2 is the high-stress (i.e. high speed) model transitions where the mean transition probability from the 
first state to the last state is  (0.1566 + 0.2131)/2 = 0.1849. It goes to high degradation faster than 

matrix 𝐴̂1. Therefore, the mean time to reach the final state is lower than using the matrix 𝐴̂1. 

3.2.2.6 Discussion  

Missing data is a common problem in modern statistical research. It appears in analyzing sensor 
measurements where data get missing due to many reasons. 

The size of the dataset is an important issue in statistical applications such as prognostic and health 
management of the system. Unfortunately, the sample size is not large in this domain because the 
degradation is a slow process and the observation sequences require to have at least one failure 
measurement. Therefore, a few amounts of missing data can reduce the effectiveness of the result.  

Although, the missing can be random in size and index in the sequence, yet the sequence is not empty. 
There are still some data available inside the sequences which could be useful. Therefore, the proposed 
method can be a useful solution that does not compromise to lose any information from the available data 
elements in the sequences.  

3.2.2.7 Limitations  

The algorithm would be less efficient for too much missing data, because there is a possibility of losing 
a significant amount of information if missing data amount is huge. 

 

3.2.3 Modeling by using the bootstrap method 
The bootstrap method is a sampling technique used to estimate IOHMM parameters by sampling a 

dataset with replacement. This method used to estimate measures of accuracy, such as confidence 

intervals, the sample mean, standard deviation, variance, etc. Because of the replacing technique this 

method also provides a good result for a small dataset compared to the classical method.  

Resampling with replacement selects a subset from the original sample randomly for training the model. 

After that, it returns to the subset into the sample again for another selection. Resampling size can be 

equal to the sampling size which may have some repeated dataset. This technique maintains data 

structure but reshuffles values, extrapolating to the data population. This repeated process uses the new 

sample to generate the sampling distribution of the mean. Bootstrapping is useful for estimating 

IOHMM parameters when the data amount is small, data pollution is unknown, data are non-normal, or 

have unknown statistic properties, etc. The method provides standard calculations such as 95% 

confidence intervals or the coefficient of variation, etc. 

3.2.3.1 Bootstrap properties  

Confidence interval (CI): Confidence interval estimated from observed statistical data, which may 

contain an unknown population parameter. The CI communicates the accuracy of a probabilistic 

estimate. It expresses a range in which it is fairly certain that the population parameter is present. The 

range-width depends on the variation within the population of interest and the sample size (Efron, 1986). 

Population variation: If all values in a large data population are almost the same, then the sample also 

has a small variation. It gives a small confidence interval. On the other hand, more varied data will lead 

to more varied samples, which makes less sure that the sample average is close to the population mean. 

That means the CI is large in this case. The greater variation of the data leads to a wider CI. 

Sample size: The sample size also affects the width of a confidence interval. Small samples differ more 

from each other and have less information. There is more variation due to a sampling error. The CI may 

be larger. On the other hand, larger samples will be more similar. The effect of the sampling error is 

less, and the information is more. The confidence interval may be smaller in this case (Efron, 1986). 

Calculating confidence intervals: The confidence interval calculation (for a mean uses) the Eq. 26: 
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 𝐶𝐼 = 𝑋̅ ± 𝑡
𝑠

√𝑛
 (26)  

here 𝑋̅ is the sample mean, 𝑡 is the t-distribution which depends on the sample size and the chosen level 

of confidence, 𝑠 is the sample standard deviation and 𝑛 is the sample size.  

Sample: A sample is a selection of observations from the population of interest. The selection criterion 

is random, convenient, systematic, clustered, layered, etc. 

Sampling error: A sample is only a selection of objects from the population. It will never be a perfect 

representation of the population. Different samples of the same population will yield different results. 

This is called sampling error or sampling variation. There will always be a sampling error (Efron, 1986). 

The sample means: Defined as the average of observations in the sample of the population. The sample 

mean is considered as the estimate of the population mean.  

Sample standard deviation: It is the average distance of the sample data from the sample mean. 

3.2.3.2 Data preparation  

To demonstrate the bootstrap method, a set of training sequences are simulated from the same given 

model structure that has been used in the first two phases. About 1000 training sequences and another 

1000 testing sequences are simulated to train the model and test the model performance. Because of the 

big data amount, we decided to fix a small resampling size (30 sequences) to have a fair analysis of the 

poor quantity of data. We randomly select these sequences from the main dataset and apply the bootstrap 

method on it which takes a total of 1000 iterations and store the measurements of confidence intervals, 

standard error, bounds, and mean. 

3.2.3.3 Result  

Figure 20 shows the confidence interval for each parameter (total of 36 parameters) of transition and 

emission matrices. The X-axis of each rectangle represents the probabilities, and the Y-axis represents 

the boot execution number. 

 

Fig. 20: Distribution of matrices parameters 
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Both the transition matrices are having some zeros on corresponding parameters. These parameters did 

not get any transition probability during the training following the nature of the system. The left-right 

model is used in data simulation as mentioned earlier. This is the reason why the transition matrices 

have zeros on (2,1), (3,1), (3,2) position (Fig. ).  

 

Fig. 21: Parameter distribution for the first transition matrix. 

The green circle on the position (3,3) presents the absorbent state with a 100% probability. Besides these 

four, all the other parameters are estimated with a 95% confidence interval (see Table 6:  Bootstrap 

parameters). This table shows all the parameters (transition parameters, emission parameters, and the 

initial state distributions) of the model. The row represents different information (lower bound, higher 

bound, mean, standard error) about a parameter. Parameters having zero value are ignored in the table. 

Table 6:  Bootstrap parameters 

Parameter Lower 

bound 

Higher 

bound 

CI 

Mean 

Standard 

Error 

Original 

Distribution 

Transition Matrix 𝑨̂ 
𝟏 

𝑨̂𝟏𝟏
𝟏  0.9783 0.9791 0.9787 1.96 × 10−4 0.9788 

𝑨̂𝟏𝟐
𝟏  0.0209 0.0217 0.0213 1.96 × 10−4 0.0212 

𝑨̂𝟐𝟐
𝟏  0.9508 0.9523 0.9515 3.91 × 10−4 0.9516 

𝑨̂𝟐𝟑
𝟏  0.0477 0.0492 0.0485 3.91 × 10−4 0.0484 

𝑨̂𝟑𝟑
𝟏  1 1 1 0 1 

Transition Matrix 𝑨̂ 
𝟐 

𝑨̂𝟏𝟏
𝟐  0.8428 0.8477 0.8453 0.0012 0.8443 

𝑨̂𝟏𝟐
𝟐  0.1523 0.1572 0.1547 0.0012 0.1557 

𝑨̂𝟐𝟐
𝟐  0.7861 0.7916 0.7889 0.0014 0.7899 

𝑨̂𝟐𝟑
𝟐  0.2084 0.2139 0.2111 0.0014 0.2101 

𝑨̂𝟑𝟑
𝟐  1 1 1 0 1 

Emission Matrix 𝑩̂ 
𝟏 

𝑩̂𝟏𝟏
𝟏  0.8970 0.8984 0.8977 3.70 × 10−4 0.8980 

𝑩̂𝟏𝟐
𝟏  0.0506 0.0517 0.0512 2.82 × 10−4 0.0513 

𝑩̂𝟏𝟑
𝟏  0.0506 0.0517 0.0511 2.80 × 10−4 0.0507 

𝑩̂𝟐𝟏
𝟏  0.0524 0.0591 0.0557 17 × 10−4 0.0534 
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𝑩̂𝟐𝟐
𝟏  0.8929 0.8999 0.8964 18× 10−4 0.8980 

𝑩̂𝟐𝟑
𝟏  0.0470 0.0487 0.0479 4.32 × 10−4 0.0486 

𝑩̂𝟑𝟏
𝟏  0.0498 0.0501 0.0500 0.89 × 10−4 0.0499 

𝑩̂𝟑𝟐
𝟏  0.0503 0.0507 0.0505 1.07 × 10−4 0.0500 

𝑩̂𝟑𝟑
𝟏  0.8993 0.8998 0.8995 1.29 × 10−4 0.9000 

Emission Matrix 𝑩̂ 
𝟐 

𝑩̂𝟏𝟏
𝟐  0.7966 0.7988 0.7977 5.57 × 10−4 0.8000 

𝑩̂𝟏𝟐
𝟐  0.1513 0.1533 0.1523 5.25 × 10−4 0.1500 

𝑩̂𝟏𝟑
𝟐  0.0496 0.0505 0.0500 2.33 × 10−4 0.0500 

𝑩̂𝟐𝟏
𝟐  0.2011 0.2065 0.2038 14× 10−4 0.2000 

𝑩̂𝟐𝟐
𝟐  0.7444 0.7497 0.7470 14× 10−4 0.7500 

𝑩̂𝟐𝟑
𝟐  0.0486 0.0498 0.0492 3.05 × 10−4 0.0500 

𝑩̂𝟑𝟏
𝟐  0.1003 0.1009 0.1006 1.47 × 10−4 0.1000 

𝑩̂𝟑𝟐
𝟐  0.0493 0.0496 0.0494 0.87 × 10−4 0.0500 

𝑩̂𝟑𝟑
𝟐  0.8096 0.8502 0.8499 1.60 × 10−4 0.8500 

Initial state distribution 

𝝅 (1) 0.9761 0.9917 0.9839 0.0040 1 

𝝅 (2) 0.0083 0.0239 0.0161 0.0040 0 

𝝅 (3) 0 0 0 0 0 

 

Total standard error in matrix 𝐴̂ 
1 is 11.74 × 10−4, matrix 𝐴̂ 

2 is 52 × 10−4, matrix 𝐵̂ 
2 is 51.894 × 10−4, 

matrix 𝐵̂ 
2 is 48.139 × 10−4, and initial state distribution is 80 × 10−4. Matrix 𝐴̂ 

2 comparably has a 

larger standard error than the matrix 𝐴̂ 
1 because of the amount of training data dedicated to each matrix. 

𝐴̂ 
2 is trained with about 20% data while 80% data are used to train matrix 𝐴̂ 

1.  

Now, if the matrices are organized with the mean values then we find the estimated parameters of 

IOHMM as following: 

• Estimated transition parameters:  

𝐴̂1 = (
0.9787 0.0213 0

0 0.9515 0.0485
0 0 1

) 

𝐴̂1 is the lowest stressed (e.g. low speed) model transitions where the mean transition probability from 
the first state to the last state is  (0.0213 + 0.0485)/2 = 0.0349. The lowest stressed model is 
defined as the model which gives the maximum mean time to reach the final state compared to the 
other models.  

𝐴̂2 = (
0.8453 0.1547 0

0 0.7889 0.2111
0 0 1

) 

𝐴̂2 is the highest stressed (e.g. high speed) model transitions where the mean transition probability from 
the first state to the last state is  (0.1547 + 0.2111)/2 = 0.1829. The highest stressed model is defined 
as the model which gives the minimum mean time to reach the final state compared to the other models. 

• Estimated emission parameters: 

𝐵̂1 presents emission probabilities for the first output sequences (e.g. temperature) and 𝐵̂2 is for second 

output (e.g. vibration). 

𝐵̂1 = (
0.8977 0.0512 0.0511
0.0557 0.8964 0.0479
0.0500 0.0505 0.8995

), 𝐵̂2 = (
0.7977 0.1523 0.0500
0.2038 0.7470 0.0492
0.1006 0.0494 0.8499

) 

• Initial state distribution: (estimated as in good health) 

𝜋 = (0.9839    0.0161    0) 
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Comparison between the estimated and the original parameters  

Figure 22 presents the distance between the estimated parameters and the original parameters used in 

data simulation. The parameters estimated twice, with bootstrap and without bootstrap method. 

 

Fig. 22: Different parameters of learned and original models 

Only the non-zero parameters are highlighted in the figure where the transition and the emission 

parameters are compared. The blue box represents the CI bounds where the red line inside the box 

represents the median and the star symbol represents the original parameters. The CI median is the 

estimated median using the bootstrap-IOHMM method. Another circle is inside each box which 

represents the second estimated parameters (without bootstrap) but with all the data.  

The probability distributions of the parameters are given in table 7 where just one matrix (𝐴̂1) is 

presented to give a benchmarking between the original parameters with the estimated parameters. The 

second column in the table is the CI mean written as the parameters with bootstrap. Both the estimated 

parameters are very close to the original parameters. However, the parameters with the bootstrap method 

are marginally better than the parameters that came from the training without bootstrap. 

Table 7: Benchmarking parameters 

Para-

meters 

Confidence Interval 

bound 

Results 

With 

bootstrap 

Results 

Without bootstrap 

(Same data size) 

Original 

𝐴̂11
1  [0.9783, 0.9791] 0.9787 0.9847 0.98 

𝐴̂12
1  [0.0209, 0.0217] 0.0213 0.0153 0.02 

𝐴̂22
1  [0.9508, 0.9523] 0.9515 0.9472 0.95 

𝐴̂23
1  [0.0477, 0.0492] 0.0485 0.0528 0.05 

𝐴̂33
1  1 1 1 1 

D_Error - 0.0056 0. 0150 - 

D_Error (Distance Error) = ∑ ∑ √(𝐴𝑐𝑑
𝑝

− 𝐴̂𝑐𝑑
𝑝

)2𝑁
𝑑=1

𝑁
𝑐=1  
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3.2.3.4 Discussion 

The bootstrap-IOHMM is being used because of its accuracy and control over the error rate. The 

bootstrap is a globally accepted method for its simplicity. It is a straightforward way to obtain standard 

error and confidence intervals which provide meaning over the distribution, coefficients, and abound of 

probability. Most of the accuracy and maintenance related problems use this method rather than the 

standard assumption to check and control the stability of the results. This is asymptotically more accurate 

than the standard ranges obtained using sample dispersion and normal assumptions. Bootstrapping is 

also a convenient method to avoid the cost of repeating the experiment to obtain other sample data sets. 

That is why the proposed method with bootstrapping is a smart choice for a problem with limited data 

sequences. 

3.2.3.5 Limitation 

The bootstrap does not provide a general finite sample guarantee. The result may depend on the 
representative data sample. It can be time-consuming depending on the sampling size.  

 

3.3 Conclusion 

This section described the modelling of systems by IOHMM. The Baum Welch and the forward-

backward algorithms are adapted to learn the model parameters considering different data uncertainties 

and model uncertainties.  

Three simulated applications are shown to explain three major issues of the training. The first application 

demonstrates the adaptations of the algorithms considering multiple operating conditions and their impact 

on health’s degradation of systems. Multiple observation outputs are also integrated into this application.  

Three techniques are proposed here to handle the uncertainty of model size such as fixing an appropriate 

number of hidden states of the model. The second application describes the data uncertainty of missing 

data. A different version of the adapted algorithms is used which are dedicated to handling the data 

sequences having missing elements into the model training to extract as much information as possible 

even from the incomplete sequences. The third application is about the bootstrap method implementation. 

This method incorporated with the proposed model to determine the parameter estimation with a 

confidence interval. A benchmarking is given where the results are compared between the original 

parameter, parameters with bootstrap, and parameters without bootstrap. The result of the bootstrap 

method is promising which is accepted by a number of researchers with their reviews and examinations 

through several conferences.  

The next section is about the second contribution of the thesis where the proposed methodologies are 

used in diagnostics and prognostics applications. 
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4 The Second Contribution: Diagnostic and 

Prognostic 
 

 

The second contribution of the thesis is presented in this chapter which answers the second research 

question mentioned in the introduction. This contribution concerns about diagnostics and prognostics 

algorithms in order to estimate the remaining useful life (RUL) of systems under multiple operating 

conditions. RUL is a major challenge of prognostic and health management systems (PHM) in many 

industrial domains where safety, reliability, and cost reduction are of high importance. To reduce the cost, 

one solution is to match the maintenance date with the estimated remaining life of the system. The RUL 

prediction allows fixing time to organize a maintenance action which can be called maintenance time-

window. Nevertheless, the RUL can change due to different dynamics of operating conditions over the 

system’s run-time. That is why the distribution over the health state needs to be updated in a continuous 

process according to new measurements. Therefore, the online RUL prediction is a much more effective 

approach in condition-based maintenance. In this chapter, we described both the online and offline RUL 

estimation by using IOHMM. The diagnostic and the prognostic methodologies are described first, then 

the simulated application is given to demonstrate the methodologies.   

Key issues: 

▪ Diagnostic: predict the current health state of the system by applying the Viterbi algorithm 

which is adapted from HMM to IOHMM. 

▪ Prognostic: predict the probable failure state. After that, compute the mean time between the 

current time to the failure time which defined as RUL. Two methods are demonstrated:  

o Numerical integration  

o Matrix computation   

▪ Prediction types 

o Offline prediction: does not apply the new measurements into the analysis. 

o Online prediction: consider the new measurements to update the predictions. 

▪ Handling uncertainties in RUL estimation 

o Future operating conditions: operating conditions that comes after the diagnostics 

which can be given or unknown.   

o RUL computation: the uncertainty about the RUL prediction is handled by applying the 

system RULs are predicted applying the probability distribution function (PDF) along 

with the Monte Carlo simulation. 

▪ Numerical applications 

o Diagnostic and prognostic under multiple operating conditions 

o Managing RUL by managing the operating conditions to reach a given target  
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4.1 Diagnostic  

 
In the scientific literature of control theory community, the diagnostic is the detection and isolation of 
system faults. In our context, it is the evaluation (computation or estimation) of the current health situation 
of a monitored system. This is a prerequisite dependence for future performance estimation and effective 
RUL computation of the system health. Diagnostic is challenging while the system degrades along with 
multiple operating conditions. There are several diagnostic applications in the literature, but they are less 
concerned about the operating conditions. Moreover, they are more particularly designed to control 
problems as health management. In addition, there is a strong relation between the model dedicated to 
diagnosing the system health and those to prognose the health evolution (Michel, 2018). 

In this section, we proposed a solution to diagnose the health state of a system by considering multiple 
operating conditions and their effects on the degradation evolution and based on IOHMM. After that, we 
proposed to compute the mean time RUL to help organizing the maintenance schedule (which is out of 
the scope of the thesis).  

The Viterbi algorithm adaptation 

The Viterbi algorithm is dedicated to HMM and should be adapted to IOHMM. It computes the maximum 
likelihood sequence of hidden states according i.e. in determining the current health situation given the 
observations. The adaptation means integrating the input sequences into the algorithm. 

The work of adaptation is done in three steps:  

- Integrating multiple outputs 

- Integrating multiple inputs 

- Integrating a backward computation  

Integrating multiple outputs  

The algorithm (Eq.8) can be developed to integrate multiple outputs from classical formula: 𝑃(𝑋𝑘|𝒴𝑘)  ∝
 𝑃(𝑋𝑘 ,𝒴𝑘), where 𝑋𝑘 is the health state and 𝒴𝑘 is multiple observations vector at time 𝑘. This adaptation 

is explained in the forward-backward algorithm section in this chapter. Because of the similarities 
between these two algorithms a similar procedure is followed to integrate multiple outputs in the Viterbi 
algorithm.  

Basis: 𝛾(𝑋1)  =  𝑃(𝑋1, 𝒴1) 

Maximization of the recursion: 𝛾(𝑋𝑘)  =  𝑚𝑎𝑥(𝑋1:𝑘−1) 𝑃(𝑋1:𝑘, 𝒴1:𝑘 ) 

 𝛾(𝑋𝑘) = 𝑚𝑎𝑥(𝑋𝑘−1) 𝑃(𝒴𝑘|𝑋𝑘)𝑃(𝑋𝑘|𝑋𝑘−1)𝛾(𝑋𝑘−1) (27)  

Integrating multiple inputs 

In this step, the variable 𝑈 is introduced in the Eq.27 as 𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1) for selecting each of the 
transitions based on operating conditions according to the given input.  

No transition is considered before the initial state, therefore the input 𝑈 is initiated at time 𝑘 = 2 as 𝑈𝑘−1. 
Then, Eq. 27 becomes: 

 𝛾(𝑋𝑘) = 𝑚𝑎𝑥(𝑋𝑘−1) 𝑃(𝒴𝑘|𝑋𝑘)𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1)𝛾(𝑋𝑘−1) (28)  

Integrating a backward computation 

The classical Viterbi algorithm computes the max path by the default formula 𝜔(𝑋𝑘) (Eq. 28) which 
computes the max path through a forward pass. In this section, we extend the algorithm for computing 
the max path through a backward pass along with the forward pass. The modification ensures to avoid 
the misleading computation of state distribution over the given sequence. 
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The modification is done in three phases: 

1. A state distribution 𝑃(𝑋𝑘|𝛬̂) is generated given the observations 𝒴1:𝑘 and the state distribution 

𝑃(𝑋𝑘−1|𝛬̂). 

2. The method updates the previous state-distributions 𝑃(𝑋𝑘−1:1|𝛬̂, 𝑋𝑘) based on the generated 

𝑃(𝑋𝑘|𝛬̂) and the given observations 𝒴1:𝑘−1. 

3. Finally, it updates the state distribution 𝑃(𝑋𝑘|𝛬̂) again by using the updated state distribution 

𝑃(𝑋𝑘−1|𝛬̂) and the given observations 𝒴1:𝑘. 

The state distributions are generated using the adapted Viterbi algorithm by following these three phases. 

• Basis: δ (𝑋𝐾 = 𝑠𝑖) = (1; 1; . . . ; 1) 

   𝐾 is final index (end of the sequence), 𝑠𝑖 is hidden states. 

Viterbi Algorithm for IOHMM 

• Recursive:  

 δ(𝑋𝑘)  = 𝑚𝑎𝑥(𝑋𝑘−1) 𝑃(𝒴𝑘|𝑋𝑘+1)𝑃(𝑋𝑘+1|𝑋𝑘, 𝑈𝑘)δ(𝑋𝑘+1) (29) 
 

The evaluation of the Viterbi is computed by multiplying Eq. 28 and Eq. 29. 

 𝑚𝑎𝑥 𝑃(𝒴1:𝑘|𝛬̂) = 𝛾(𝑋1:𝑘) δ(𝑋1:𝑘);  (30)  

This is the final version (Eq. 30) of the adapted Viterbi algorithm that computes the maximum distribution 
for each of the hidden states under the consideration of multiple inputs and multiple outputs.  

The Viterbi algorithm computes the max path with the state probability of 𝑃(𝑋1:𝑘|𝒴
1:𝑘) where the current 

health state probability 𝑃(𝑋𝑘|𝒴
1:𝑘) = 𝛾(𝑋

1:𝑘
) δ(𝑋

1:𝑘
) also exists, which can be extracted as the health 

diagnostic given the observation 𝒴1:𝑘 which is used to prognostic system health. 

 

4.2 Prognostic: RUL prediction  

The prognostic is an estimation of future health conditions based on the current health state given by the 
hidden states and the future operating conditions. Two techniques are used to predict the RUL of the 
system. The first one is the meantime RUL by using a cumulative summation formula (a numerical 
integration) with monte Carlo simulation and the second one is a direct computation.  

▪ The first technique: numerical integration 

The mean value of RUL is defined as the mean time between the current time and the first time reaching 
the final state (absorbent state). The RUL can be computed with future inputs given operating conditions 
(case 2) or without inputs when the operating condition is not given or unknown (case 1).  

Case 1 : The expected RUL at time 𝑘 when there is no input is given can be estimate by the following 
formula:   

 𝑅𝑈𝐿𝑘 = ∑  
+∞

𝑡=𝑘+1
{(1 − 𝑃(𝑠𝑚)) ∗ (𝑡 + 1) − (1 − 𝑃(𝑠𝑚)) ∗ (𝑡)} (31) 

 

here 𝑘 is the final index of the given sequence assumed as the current time, 𝑃(𝑠𝑚) is the probability of 
being in the absorbing state for 𝑘 + 1 ≤ 𝑡 < +∞. The computation stops until the changes between the 
two results converge. 

Case 2: The expected RUL with a given input sequence. In this case, the operating condition for the 
future operation is known. So according to a given input sequence 𝑈𝑘+1:+∞, the formula would be:  

 𝑅𝑈𝐿𝑘 = ∑  
+∞

𝑡=𝐾+1
{(1 − 𝑃(𝑠𝑚|𝑈𝑘)) ∗ (𝑡 + 1) − (1 − 𝑃(𝑠𝑚|𝑈𝑘)) ∗ (𝑡)} (32)  
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Since the given sequence comes with a fixed length there is possibility that the system does not fails but 
the sequence get finished. In that case, the model repeats the sequence and continues the operation until 
the two consecutive results does come into a given threshold.   

Eq. 31 and Eq. 32 is a discrete probability distribution integral formula for computing the meantime from 
any time 𝑘 towards infinity. The RUL is predicted applying the probability distribution function (PDF) 
in which the unknown operating conditions are simulated through the Monte-Carlo simulation along with 
the weight (𝑃(𝑈 = 𝑝)) of the operating conditions. The PDF requires the current health state as an initial 
distribution, the HMM, final state to reach and the number of iterations to compute the RUL. 

▪ The second technique: matrix computation 

The prognostic by an HMM consists of characterizing the moment when the undesirable hidden state or 
defining an unacceptable level of performance is reached, knowing that the current state is defined by 
Eq.30. Several techniques can be used for this purpose. A formal calculation using Eq. 33 will give the 
meantime to reach the unacceptable state which is absorbent. 

 
𝑴𝑻𝑹𝑼𝑳 =

𝒅𝒆𝒕|
𝟎 𝑷(𝑿𝒌)

𝟏           𝑨∗|

𝒅𝒆𝒕|𝑨∗|
 = 

𝒅𝒆𝒕|
𝟎 𝑷(𝑿𝒌)

𝟏           𝑷(𝑿𝒌|𝑿𝒌−𝟏)
|

𝒅𝒆𝒕|𝑷(𝑿𝒌|𝑿𝒌−𝟏)|
 

(33)  

 

This formula is adapted from the concept of computing the meantime to failure (MTTF) from the Mar-

kov chain by (Amiri, 2014) which uses the determinant of the transition matrix. 

Here, 𝑨∗ represents the transition matrix 𝑨 but without the final state. The parameter for the final state is 

not considered because the objective of prognostic RUL is to determine the duration between the current 

time and the time instant when the model first time gets to the final state. The model does not require to 

find out how long the system stays on the final state for RUL prediction. The probability 𝑷(𝑿𝒌) is the 

current health state distribution comes from the diagnostic. 

4.3 Offline and Online Operation 

There are two types of operation which can follow in PHM applications: offline and online operations. 
The offline operation uses the existing observations and gives the results. This operation does not update 
the prediction for any new measurements. On the other hand, the principle of online operations is updating 
the predictions based on new measurements that come from the system.  

Offline operation: Offline operation means that data from 𝒴1:𝐾 is known and the model can define the 
states 𝑋1:𝐾

  given the observations from 𝒴1:𝐾.  

Online operation: Online operation is the online prognostic based on the online diagnostic at time instant 
K (the last information which addressed as the current time) then predict the 𝑅𝑈𝐿𝑘

 . Each new observation 
𝑘 helps revising the computations. 

 
4.4 Application 
For the sake of illustration, two applications are simulated to design a system with multiple operating 
conditions (𝐴𝑝) and multiple emitted outputs (𝒴). The goal is to demonstrate the diagnostic and prognostic 
methodologies under multiple operating conditions. Two applications are simulated which focus on two 
important issues of prognostic applications.  

▪ The first application is about diagnostic and prognostic the health state of the system and predicts 
the RUL under multiple operating conditions.  

▪ The second application demonstrates how the predicted RUL can be managed by controlling the 
estimated operating conditions.    

4.4.1 The first application: Diagnostic and prognostic under multiple operating conditions 
This application simulated following the same procedure that mentioned in the previous section (4.1.2). 

Moreover, the bootstrap method is being used here to learn the model parameters. Since the learning 

steps are explained earlier, this section skips the model learning and uses the estimated parameters 

directly to the diagnostic application and continues to the prognostic part.  



75 
 

4.4.1.1 Data simulation 

The sampling data are generated for a system while the system is assumed as to have three operating 

conditions and two outputs. Let us assume the system degradation has three hidden states and the 

observation symbols are also three without loss of generality. The corresponding transition matrices 

according to the input modes are:  

𝐴1 = (
0.98 0.02 0
0 0.99 0.01
0 0 1

) 

𝐴2 = (
0.90 0.10 0
0 0.96 0.04
0 0 1

) 

𝐴3 = (
0.95 0.05 0
0 0.98 0.02
0 0 1

) 

 

The model type is chosen as a left-right model because the system degradation does not go back from 

one state to its previous state. We also put a zero on (1,3) because normally degradation speed goes from 

1 to 2 to 3, but this is possible to have some transition from 1 to 3 as well. In that case, it would be a 

non-zero parameter.  

The emission matrices are: 

𝐵1 = (
0.90 0.08 0.02
0.03 0.90 0.07
0.01 0.09 0.90

) 

𝐵2 = (
0.99 0.01 0.00
0.01 0.98 0.01
0.01 0.02 0.97

) 

Initial state distribution: 𝜋 = (1    0    0), the system starts from a good health.  

About 100 complete data sequences are generated as the training set, and another 100 sequences as the 

testing set. After that, the data set is used in IOHMM training through the bootstrap method for 

estimating the parameters with a 95% confidence interval.  

4.4.1.2 Estimated parameters  

The IOHMM learns three models based on three operating condition modes applying the bootstrap 

method. The model estimates the transition parameters as well as the emission and the initial parameters.  

The estimated transition matrices are:  

𝐴̂1 = (
0.9781 0.0219 0

0 0.9917 0.0083
0 0 1.0000

) 

𝐴̂2 = (
0.9129 0.0871 0

0 0.9506 0.0494
0 0 1.0000

) 

𝐴̂3 = (
0.9429 0.0571 0

0 0.9706 0.0294
0 0 1.0000

) 

 

here, 𝐴̂1 represents the low stress model and 𝐴̂2as high stress. These matrices are constructed from the 
confidence intervals mean values. 
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The estimated emission matrices are:  

𝐵̂1 = (
0.9070 0.0930 0

0 0.9350 0.0650
0 0 1.0000

) 

𝐵̂2 = (
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

) 

The estimated initial distributions are: 

𝜋̂  = (1.0000    0.0000    0.0000) 

4.4.1.3 Diagnostic 

The testing data sequences for one input, and two outputs are randomly selected from the test set (shown 

in the first two graph of the Fig. 23) and used to demonstrate the offline and the online diagnostic 

performances (shown in the last two graph of the Fig. 23). We can see the difference between the two 

results. The online prediction is unusual at the beginning when the model has a few data, but the 

prediction becomes good when the model gets more data later.  

After that, the same sequence is cut down at time instant 𝑘 = 130 to predict the expected 𝑅𝑈𝐿𝑘=130 at 

assuming the current time 𝑘 = 130. 

y-axis: discrete 

symbols 

 

y-axis: input 

ids 

 

y-axis: state 

distribution 

 

y-axis: state 

distribution 

x-axis: length of the sequence (for all graphs) 

Fig. 23: Diagnostic over the time from starting point to breakdown 

Degradation level of the system health can be obtained from the estimated max path. The current health 

state of the system at time 𝑘 = 130 is estimated as the distribution of 𝑃(𝑋𝑘=130) = 

(8.7 × 10−149; 2.7 × 10−25; 0). These are the raw values from the Viterbi calculation. The diagnostic 

is defined by scaling the result to 1 such as (0;  1;  0) following the maximum value in the distribution. 

The result denotes that the system is at state 2 (partially degraded). This information is required in the 

next step in the application: the prognostic.  



77 
 

4.4.1.4 Prognostic 

The prognostic usually depends on the diagnostic, but in this section, a couple of examples are given to 

explain that the prognostic not only depends on the diagnostic but also on the future operating 

conditions. By means of which, it depends on how the system is going to be operated in the future. 

Systems can have multiple operating conditions with several modes. In this section, a discussion about 

one input with multiple modes is given. The aim is to predict the RUL of the system based on the current 

health state (𝑃(𝑋𝐾)) and future operating conditions.  

There are two possibilities for the future operating conditions. Either it is given or unknown. However, 

this chapter gives two solutions for these two cases:  

1. Prognostic for the unknown input sequence 

2. Prognostic for a known input sequence  

Prognostic for the unknown input sequence 

In this case, the diagnostic is estimated according to the given observations and input sequences but the 

operating condition for future operation could be unknown. Therefore, the probable operating conditions 

are simulated by Monte-Carlo simulation by using the weight of the operating conditions 𝑃(𝑈 = 𝑝) in 

the training set. The same formula was used to calculate the weights for the missing data is used here as 

well: 

𝑃(𝑈 = 𝑝) =
𝐶𝑝 

(𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝th matrix)

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑈
 

here 𝑃(𝑈 = 𝑝) is the weight of using the 𝑝th matrix over the inputs: 

In the illustration, the highest and the lowest stressed operating conditions are represented by two 

transition matrices 𝐴̂2 and 𝐴̂1. The weight of these operating conditions can be calculated from the input 

sequences used in model training. Since the future operating conditions are not certain, one possible way 

to solve this problem by assuming the system will be operated by the similar operating conditions as 

previously used. Therefore, the operating conditions are simulated according to their weights by 

applying the Monte Carlo simulation. The weight is calculated following the Eq. 34 and uses it into the 

future state evolution for each time instant following the Eq. 35. 

𝑅𝐴̂
𝑝
=

𝐶𝐴̂
𝑝

𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 
 (34) 

here 𝑅𝐴̂𝑝 is the weight ratio of operating condition 𝐴̂𝑝, 𝑝 is the id of the operating condition, and 𝐶𝐴̂𝑝 

is the count of the operating condition triggered in the input sequences. 

𝑃(𝑋𝑘+1) = ∑ 𝑃(𝑋𝑘)𝑃(𝑋𝑘+1|𝑋𝑘, 𝐴̂
𝑝
) ∗ 𝑅𝐴̂

𝑝
𝑃

𝒑=𝟏
 (35) 

Figure 24 presents the meantime RUL which is computed using all the estimated parameters and the 

current health state distribution. This method uses Eq. 35 to estimate the meantime RUL, which is about 

79 days (time unit is considered as day). The upper and lower limits are obtained corresponding the 

fixed inputs as lower and higher stressed models. 



78 
 

 

Fig. 24: Mean time RUL for unknown inputs 

The low stressed model (𝐴̂1) is defined to have the weight probability as 𝑅𝐴̂1 = 100% and the high-

stressed model (𝐴̂2) as 𝑅𝐴̂2 = 0%. In this case, the estimated RUL is the highest (about 119 days). After 

that, the method defines the weight of the high-stressed model (𝐴̂2) as 𝑅𝐴̂2 = 100% and the low stressed 

model (𝐴̂1) as 𝑅𝐴̂1 = 0%.  In this case, the estimated RUL is the lowest (about 33 days). These two 

results (119, 33) represent the bound of the RUL. So, all possible RUL falls into this range (33-119 

days) since the process (Eq. 19) is monotonous.  

Remarks: the results are presented in a probabilistic point of view in which the RUL is predicted through 

a probability distribution function in order to handle RUL prediction uncertainty.   

The bounds are illustrated to represent the nearest breakdown with high pressured operating conditions 

(minimum RUL) and low pressured operating conditions (lowest pressured) (maximum RUL). This 

information is useful for regulating future operations to delay the possible breakdown point. An example 

of the given input sequence is discussed in the next section. 

Prognostic for a known input sequence 

This a situation when the future operation conditions are known. An input sequence would be given to 

prognostic system health. The given input sequence has a fixed length which means a fixed time of 

(future) operation, but the principle of estimating the meantime RUL is quite different. As mentioned 

earlier, a system breakdown can happen anytime. It cannot be said that the system will get into the final 

state according to the given length. So, the RUL cannot be computed in a fixed time length. In this case, 

a similar solution can be proposed following the Eq. 32. 

The only difference is assigning the weight-ratio of operating conditions 𝑅𝐴̂𝑝 which is computed from 

the given input sequence for future operations, not from that sequence used in model training. So, the 

ratio is now different which gives a different meantime RUL of 67 days (see Fig .25) while for unknown 

input, it was 79 days. 
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Fig. 25: Result for given input sequence 

4.4.1.5 Conclusion  

This application uses the IOHMM model to estimate the RUL under multiple operating conditions. The 

model training has done through the bootstrap method applying the adapted Baum Welch and forward-

backward algorithms. Then, the estimated model is used in diagnostic and prognostic system health to 

demonstrate how the RUL can be estimated considering the uncertainties in the degradation process. A 

new concept of forward-backward Viterbi algorithm is proposed to diagnosis the system health. 

Prognosis estimation and the meantime RUL are computed by considering the unknow operating 

conditions.   

4.4.2 The second application: Managing the RUL 
RUL changes during the operation of a system because of several dynamics of operating conditions. As 
the high-stressed condition reduces RUL, the low stressed condition makes the system lasts long. If a 
system has multiple operating conditions with different varieties of operating stress then, the system 
degrades in different dynamics. Sometimes, the system degrades typically sometimes not. A high 
degradation can happen when the system increases the stress of the operating condition. There is a relation 
between the degradation speed and the operating conditions. So, by controlling the operating conditions, 
we can manage the production speed as well as the degradation speed. This application subsection 
illustrates the RUL management by online assessment considering multiple operating conditions.   

The graphical representation of online RUL assessment is shown in Fig.26. The IOHMM takes the same 

input 𝑈𝑘−1 of the system and the corresponding output 𝒴1:𝑘 to diagnostic the health state 𝑋̂𝑘 at the 

current time 𝑘. After that, it estimates the 𝑅𝑈̂𝐿𝑘 and the reference manager (RM) compares it with the 

target RUL to decide the next input 𝑈𝑘 to the system (cf. Fig. 26). 

The RM applies the algorithm (Algo 3) to manage the input for matching the target RUL.  

If the estimated RUL is less than the target RUL at time k then, the system should be operated with 
(comparatively) low-stressed condition at k+1. Noted that, if there are several low-stressed operating 
conditions available then the RM selects the one that produces maximum production. The algorithm is 
specially designed not only to match the target RUL but also to maximize production.  
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Fig. 26: Online RUL management 

However, if the estimated RUL is greater than the target RUL then, the next operating condition selects 
comparatively a high stress model, otherwise it selects the low stress model. For example, if the target 
RUL stands between estimated RUL by using the model 𝐴 

1 and 𝐴 
2 then the RM selects the low stressed 

model (𝐴 
1) until the target RUL gets into the next part: estimated RUL from 𝐴 

2 and 𝐴 
3. In this case, the 

RM selects comparatively the low stress model (𝐴 
2) and continues the process to match the given RUL 

until the model gets to the breakdown state. 

Algo 3: RUL Managing Algorithm: Reference manager RUL matching 
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4.4.2.1 Data preparation 

This application is simulated to represent a system that has three operating conditions (inputs) and one 
output. It allows us to manage the RUL by managing the operating conditions using by the estimated 
IOHMM. Each of the data sequences assumed to be started in a good health state and finished at a 
breakdown state.  

The parameters used in the simulation are:  

Transition matrices: 

𝐴1 = (
0.99 0.01 0
0 0.95 0.05
0 0 1

), 𝐴2 = (
0.98 0.02 0
0 0.94 0.06
0 0 1

), 𝐴3 = (
0.99 0.01 0
0 0.90 0.1
0 0 1

) 

 
Two data sets (train set and tests set) are generated for estimating the model parameters and testing the 
model characteristics .  

Emission matrices:  

𝐵1 = (
0.99 0.01 0 0
0.30 0.70 0 0
0.01 0.80 0.15 0.04

) 

 
Initial state distribution: (assumed as in good health) 

𝜋 = (1    0    0) 
 

4.4.2.2 Results 

Estimated Parameters 

IOHMM learns three transition matrices according to three operating conditions.  

The estimated matrices are: 

𝐴̂1: (
0.9923 0.0077 0

0 0.9478 0.0522
0 0 1

) 

𝐴̂2: (
0.9904 0.0096 0

0 0.942 0.058
0 0 1

) 

𝐴̂3: (
0.9901 0.0099 0

0 0.909 0.091
0 0 1

) 

The model also learns the emission matrix:  

𝐵̂1: (
0.9998 0.0002 0 0
0.2951 0.7049 0 0
6.4e−31 0.8161 0.1436 0.0402

) 

The estimated initial state distribution: 

𝜋̂  = (1    0    0) 

Diagnostic and prognostic 

A random data sequence is selected from the test set and split a prior time earlier than the breakdown 
point (end of the sequence). The current health states of the system are estimated as 𝑃(𝑋𝑘) 
=(7.08 × 10−10    0.7871    6.23 × 10−04), where 𝑘 is the current time. The diagnostic is defined as 
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(0    1    0) following the maximum value in the distribution (scaled to 1). It denotes the system health is 
at state 2 (partially degraded). The estimated diagnostic is used to estimate and manage the RUL. 

There are two steps in this part of the application: the offline prognostic which is required to decide either 
reaching the target RUL is possible or not, and the online prognostic which executes the RUL managing 
algorithm. 

Step 01: Offline Prognostic 

The prognostic is performed offline and showed the result at the current time k from the estimated 
diagnostic 𝑃(𝑋𝑘).The challenge comes when the system does not have the operating conditions for future 
operations to manage the model switching. That means there is no information about the switching of 
operating conditions during the system runtime. However, at least four different RULs at the current time 
can be computed based on the available information. Three of them (𝐴1 = 159 𝑑𝑎𝑦𝑠, 𝐴2 = 131 𝑑𝑎𝑦𝑠,
𝐴3 = 122 𝑑𝑎𝑦𝑠) come from the estimated models separately (see Table 8), where 𝐴1 is the lowest 
stressed operation, 𝐴2 is the medium stressed operation and 𝐴3 is the highest stressed operation.   

Table 8: Different RULs 

No Model Name Estimated RUL 

1 𝐴̂1 159 days 

2 𝐴̂2 131 days 

3 𝐴̂3 122 days 

4 Previous Conditions 147 days 

 
The IOHMM also computes the RUL (147 days) using the existing operating condition which is used in 
the training dataset. This is applicable when the system does not require to change its operation but simply 
follows the same operating condition that is used from the beginning. This table shows several 
possibilities for the system being alive according to different operating conditions.  

The bound can be defined as [122-159 days]. If the target RUL is inside these limits, then the managing 
algorithm proceeds to execute. The target RUL is the time that the system should reach before it goes 
into the breakdown state. In this application, the target RUL is set as 150 days which is inside the bound. 
So, RUL management can apply to match the date. 

Step 02: Online Prognostic 

There are two different techniques that can be followed to manage the operating conditions online to 
match the target RUL. One is simulating the future operating condition by Monte Carlo simulations 
considering the weight of operating conditions. Another one is to use the proposed RUL managing 
algorithm (Algo. 03). This algorithm manages operating conditions by switching them to match the 
predicted RUL with the target date. This algorithm intends to use the highest stressed operating conditions 
until it covers the target value instead of using the weight of the models. It is more realistic in the sense 
of following the operation on the real system.  

Figure 27 represents online estimated RUL from the new measurements coming from the system. Three 
operating conditions and the previous operating condition are used separately to predict the RUL online. 
Whenever a new measurement comes IOHMM diagnostic the current health and uses the state 
distribution to estimate the RUL. The computation continuous until the system gets into the breakdown 
state. The first evolution in the figure comes from the lowest operating condition represented by a matrix 
𝐴1 which is the highest limit for the online RUL prediction.  

Similarly, 𝐴3 produces RUL with the minimum limits because it is the highest stress model. Essentially, 
all combinations of the operating condition should estimate the RUL that stays over this limit. For 

example, 𝐴2 and the previous input condition provide the RULs that stand inside the limit. Noted that, 
both the horizontal and vertical axis are represented as days. 
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Fig. 27: Online RUL of several operating conditions [y-axis: days; x-axis: days] 

This figure explains the evolution of the RUL given the time and the input mode. For instance, at time 50 
if the input mode is 3 until the breakdown then the RUL is 122 days whereas if the input mode is 1 until 
the breakdown then the RUL is 159 days. At time 51, the diagnostic and the RUL are revised according 
to the new observations and so on until the breakdown. 

As mentioned earlier, the simulated data sequences end up at breakdown state. That is why different 
operating conditions estimate a similar RUL at the end of the sequence where the system is really close 
to the breakdown time. Even though the estimated RULs are different at the beginning of the sequence, 
but they are intended to finish at breakdown state when the measurements indicate the probable 
breakdown state. 

Managing RUL is an extended process of an online RUL estimator where the operating conditions change 
at each time instant to get one step closer to the target RUL. Figure 28 represents the result of applying 
the RUL management algorithm to test the model performance to match the target RUL (150 days). The 
model predicts the RUL at each time instant k and compares if the RUL reaches 150 days or not. If the 
estimated RUL does not reach the target then, the model applies the lowest stressed operating conditions 
to increase the probable RUL and cross over 150 days. Noted that, if the RUL shows more than 150 days 
then, the highest operating conditions can be chosen to increase the production speed. This is how the 
operating conditions can be switched between the lowest and highest stress to manage the RUL and match 
the target date. For example, whenever the target RUL gets closer to one of the three estimated RULs, 
the reference manager changes the operating condition to the corresponding once.  

 

Fig. 28: Online RUL matching with the target RUL [y-axis: days; x-axis: days] 
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Figure 28 highlights four indexes (20, 29, 98, 141) between the starting point to the end where the target 
RUL indicates to change the operating conditions. However, the model changes the operating condition 
only twice: from the lowest condition to the medium condition at index 20 and from the medium condition 
to the highest condition at index 29. The model did not change the operating condition at index 98 and 
141 because all three estimated RULs at these two indices are almost the same which get into the 
breakdown state at the same time. 

This algorithm can be modified to use instead of low production for a high cost as well. Either way, the 

user would be benefited to match any target RUL in the limit. This could be such an important use for 

rescheduling the maintenance window of a system under multiple operating conditions. 

4.4.2.3 Discussion 

RUL assessment has been the subject of extensive studies to determine its performance reliability, 
production safety, system maintenance, etc. It becomes encouraging interest in condition-based 
maintenance (CBM) (Do, 2015, Hong, 2014) and prognostic and health management (PHM) (Lee, 2014, 
Esteves et a. 2015). Online RUL assessment gets in-depth research for a decade, now it is a growing 
interest in monitoring the online health condition and the production safety of the system (Niu, 2017). 
Many industrial domains are putting high importance on the recursive RUL assessment for reliability and 
cost reduction of system maintenance.  

Matching the maintenance date with the estimated RUL would be a good solution to reduce the 
maintenance cost (Khelif, 2014). The proposed method allows us to predict the RUL considering the 
operating conditions separately (Fig. 27) which lets the model decide the next operation for reaching the 
target. The reference manager (see in Fig. 26) compares the prediction with the target at each time instant 
to decide the next operating condition for immediate time instant. The reference manager handles the 
uncertainty of changing the RUL which can be different in each time instant. The RUL can move in a 
different time (forward or backward) compared to the target for several reasons. That is why the proposed 
model continuously tries to get informed about the system's health by diagnosing online. RUL 
management mostly relies on the current health condition; therefore, the degradation assessment should 
be updated when a new measurement comes into the analysis (Zhou, 2018). Degradation is not reversible 
and not directly measurable online, so this model analysis the observation of the system performance 
online which is used to model the degradation.  

To assess the non-measurable degradation of the system by using observations, the proposed model is a 
fitting match. This model can be useful to schedule the maintenance window according to any given date 
that stands in the RUL prediction bound. 

 

4.5 Conclusion 

 
Maintenance scheduling is a complex task due to the uncertainties of system degradation. System 
degradation itself is a complex process that includes multiple uncertainties (data uncertainty, model 
uncertainty, environmental conditions, etc.). It is even more difficult when the system degrades under 
multiple conditions. A model needs to be designed with such a capability that can handle these 
uncertainties and predict the degradation with good accuracy. Only good model of the degradation can 
provide good diagnosis and prediction, which is essential for maintenance planning. 

The key issue in scheduling a decent and effective maintenance action is frequently monitoring the health 
states of the system. In order to monitor the health state of the system, the operating conditions need to 
be identified and then, the degradation of the system requires to be estimated considering the operating 
conditions in real time. Finally, if the estimated RUL does not cover the target, it should be adjusted to 
match the target by managing the operating conditions.  

An IOHMM-based model is presented where the proposed methodology identifies the model parameters 
according to operating conditions. Well-known algorithms (i.e. BW, FB, Viterbi) are adapted to train the 
model and apply for diagnostics of the system in real time to compute the probabilities distribution over 
the health states of the system. The model updates the diagnostic results based on the observations from 
the beginning of the life of the system until the last new measurements observed on the system. 
Afterwards, we propose equations to predict the RUL of the system based on the updated degradation 
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through an online process. A reference manager is demonstrated that compares the estimated RUL with 
the maintenance window. It manages the operating conditions by switching the operating conditions to 
keep the RUL at a level that meets the target. 

Several applications are simulated in this chapter to demonstrate the adapted algorithms and the 
prognostic methodologies. The RUL is estimated based on the current health state of a system and the 
operating conditions. The probable evolution of degradation would follow a similar nature in the nearest 
past which is hidden information in the observation data. That is why it is intended to estimate the system 
damage over time from its observed data come from the sensor installed on the system. However, it is 
difficult to estimate the RUL due to the stochastic nature of deterioration phenomena. Existing solutions 
deal with high computational complexity, which increases the difficulty in real-time condition monitoring 
with high accuracy.  

Nowadays users want to control a system life cycle for adjusting its manufacture and energy consumption 
by proactive strategies. Therefore, information about the RUL would be great to deal with it. The RUL 
estimation can be good if it includes accuracy and precision, which can be done by considering the 
uncertainties in which the degradation depends on. Even though the measurements are crucial information 
to know about the hidden degradation but only the observation cannot provide all those hidden issues in 
the data which are generated from different uncertain sources. It is meaningless to estimate RUL without 
considering these uncertainties such as the operating conditions. If the operation comes with several 
dynamics then, it needs to be tracked down for better understanding the system behavior. The number of 
conditions and the dynamics of usability could be used to diagnostic the system’s health state. There is 
no information about operating conditions or the observations for prognostic, so, another uncertainty 
needed to be treated about the prognostic without any observations. The uncertainty about the future 
operating conditions is handled by providing two different solutions for known inputs and for unknown 
inputs. This model provides a possible limit for the future health transformation of the system from low 
degradation to high degradation. This method can be used to estimate the RUL of structured system 
multiple components. Each of the components can be modeled and diagnosed separately then combining 

their health state together to predict the RUL of the entire system.  
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The Third Contribution: Estimating RUL of Aircraft 
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5 The Third Contribution: Estimating RUL of 

Aircraft  
 

 

In the previous chapter, we have developed two main contributions on PHM by considering inputs in 

HMM algorithms in order to provide a tool (IOHMM) able to estimate parameters from data, manage 

uncertainties and diagnose and prognose the RUL of a system modelled by an IOHMM. Some 

illustrations are provided on a toy system to show the behaviour of our algorithms and the benefits but 

also the limitations. 

This chapter is dedicated to a real application based on an aircraft engine through the dataset from the 

PHM data challenge 2008. We first describe the dataset then we define the health parameter modelling 

by IOHMM and finally we discuss the performance evaluation. The methods described here were 

applied to the 2008 PHM Challenge, an IEEE-sponsored competition to evaluate prognostic models (Le, 

2016; Le Son, 2012). The dataset is suitable for tracking and predicting the progression of damage in 

the system because the data set contains the measurement which starts from a different initial health 

conditions to system failure. It has 3 input parameters and provides measurements from 21 output 

sensors (Saxena, 2008). It contains the data corresponding to 218 turbines from the initial moment to 

the time of failure, which can be used in the learning of the model leads to the construction as 𝛬 = 

(𝐴,𝐵,𝜋,U). Another set of data was dedicated to test and evaluate the model performance. It also contains 

the data from the same turbines but is randomly truncated before failure. These data were created from 

a simulation of NASA's Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) model 

(Saxena, 2008).  

 

5.1 C-MAPSS 

C-MAPSS is a simulating tool used to simulate a realistic large commercial aircraft engine model of the 

90,000 lb thrust class and the package includes an atmospheric model capable of simulating operations 

with (i) altitudes ranging from sea level to 40,000 ft, (ii) Mach numbers from 0 to 0.90, and (iii) sea-

level temperatures from –60 to 103 °F (Saxena, 2008). The kit also includes a power management system 

that allows the engine to be operated over a wide range of thrusts throughout flight conditions. The 

engine has three high-limit regulators for managing the speed, High-Pressure Turbine (HPT), and the 

High-Pressure Compressor (HPC). Figure 29 represents the engine with the main elements and Fig. 30 

shows the flowchart of how various modules are assembled in the simulation.  
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Fig. 29: Aircraft engine simulated for the PHM challenge by 2008 

 

Fig. 30: The different modules and their connections such as modelled in the simulation 

This simulator has 14 inputs (Table 9) that allow the user to simulate the effects of component failure 

and deterioration of the five rotating engine components (e.g., fan, LPC, HPC, HPT, and LPT). The 

outputs include a variety of sensor responses and operability margins.  

Table 9: C-MAPSS inputs to simulate various degradation of the five rotating components 

Name  Symbol  

Fuel flow  Wf  

Fan efficiency modifier  fan_eff_mod  

Fan flow modifier  fan_flow_mod  

Fan pressure-ratio modifier  fan_PR_mod  

LPC efficiency modifier  LPC_eff_mod  

LPC flow modifier  LPC_flow_mod  

LPC pressure-ratio modifier  LPC PR_mod  

HPC efficiency modifier  HPC_eff_mod 

HPC flow modifier  HPC_flow_mod  

HPC pressure-ratio modifier  HPC_PR_mod  
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HPT efficiency modifier  HPT_eff_mod  

HPT flow modifier  HPT_flow_mod  

LPT efficiency modifier  LPT_eff_mod  

HPT flow modifier  LPT_flow_mod 

Out of the 58 different outputs provided by the model, a total of 21 variables (Table 10) were provided 

to the participants of the competition. These variables are sensor measurements of temperature, pressure, 

velocity, etc. for 218 independently identical units (Saxena, 2008). 

Table 10: C-MAPSS outputs to measure system response 

Symbol  Description  Unit 

T2   Total temperature at fan inlet °R 

T24  Total temperature at LPC outlet °R 

T30  Total temperature at HPC outlet °R 

T50 Total temperature at LPT outlet °R 

P2 Pressure at fan inlet psia 

P15 Total pressure in bypass-duct psia 

P30 Total pressure at HPC outlet psia 

Nf Physical fan speed rpm 

Nc Physical core speed rpm 

epr Engine pressure ratio (P50/P2) -- 

Ps30 Static pressure at HPC outlet psia 

phi Ratio of fuel flow to Ps30 pps/psi 

NRf Corrected fan speed rpm 

NRc Corrected core speed rpm 

BPR Bypass Ratio -- 

farB Burner fuel-air ratio -- 

htBleed Bleed Enthalpy -- 

Nf_dmd Demanded fan speed rpm 

PCNfR_dmd Demanded corrected fan speed rpm 

W31 HPT coolant bleed lbm/s 

W32 LPT coolant bleed lbm/s 

 

5.2 Model Structure 

Model structure needs to be defined first before training the IOHMM with the dataset. In this section, 

we define the number of hidden states, the number of observation symbols, the number of operating 

conditions, etc.  

5.2.1 The operating conditions 
The important requirement for the degradation modelling process is the availability of a suitable system 

model that allows input variations of health-related parameters and recording of the resulting output 

sensor measurements. In the PHM challenge data, there are three input parameters (Altitude, Mach 

number, and Throttle Resolver Angle) used to set the operating conditions (Le, 2015). The operational 

conditions for all engines can be clustered into six different regimes (Fig. 31a). The six dots are six 

highly concentrated clusters that contain thousands of sample points each (Saxena, 2008). C-MAPSS 

simulated the data through these 6 different operating conditions at altitudes ranging from sea level to 

42K, Mach numbers from 0 to 0.84, and Throttle Resolver Angle (TRA) from 20 to 100 (see Table 11). 

As mentioned in chapter 4, different models can be estimated according to the operating conditions, which 
provide different dynamics of the degradation process. Even if IOHMM model can handle any input 
conditions, the more mode we have, the more parameters should be estimated. We also know that the 
estimation accuracy depends on the quality of data and on its amount.  
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Fig. 31a: Six conditions (Saxena, 

2008) 

 
Fig. 31b: Five conditions 

 
Fig. 31c: Four conditions 

 
Fig. 31d: Three conditions 

 
Fig. 31e: Two conditions 

Fig. 31: Operating setting of all engines are clustered in different conditions 

Here, we considered up to six operating conditions in five groups and observe the model performance in 
different combinations. Table 11 shows the values of input considerations according to the groups.  

Table 11: Different operating conditions 

Input parameters Group 1 Group 2 Group 3 Group 4 Group 5 

Altitudes 
Mach 

Numbers 
TRA 

Six 

Conditions 

Five 

Conditions 

Four 

Conditions 

Three 

Conditions 

Two 

Conditions 

25K 0.62 80 1 1 1 1 

1 
20K 0.70 0 2 

2 2 
2 35K 0.84 60 3 

42K 0.84 40 4 3 3 

20K 0.25 20 5 4 
4 3 2 

0 K 0 100 6 5 

5.2.2 Degradation indicator 
To create an IOHMM describing the degradation of the engine, it is necessary to have the indicators of 
its degradation. Based on the available measurements (up to 21 measurements) nothing can define that 
each of them contains an indication of the degradation. To identify data that show a potential degradation 
indication and to reduce the size of data, we applied  a Principal Component Analysis (PCA) on the 
dataset to find the indicators.  

PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of 
potentially correlated variables (entities each with different numerical values) into a set of linearly 
uncorrelated variable values called principal components. Each of the observation sequences gives an 
indicator of the degradation of the engine. Figure 32 shows the difference between the original data and 
the PCA results.  

These are the scaled representation of the sequences as polynomial fitting from coefficients in a least-
squares sense. This fitting and scaling transformation improves the numerical properties of the 
polynomial and the IOHMM algorithms. 
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Fig. 32a. Original observations of sensor 11   Fig. 32b. A unit from the PCA results  

Fig. 32: Difference between the original data and the PCA results  
IOHMM performs well if the observation sequences are in the increasing form or if the observations are 
significant (different). The increasing form is expected because it means that something changes in a monotonous 

way (Fig. 32b). The original data (Fig. 32a) is difficult to model as it is not in exponential form.  

Figure 33 represents the original data sequences of 21 sensors (/turbines).  

 
Fig. 33: The selected original sensor 

measurements 
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These data are evaluated through the PCA method for having a set of indicators (Fig. 34). Working with 
all sensors means estimating a lot of parameters which means having a large amount of data. The behavior 
of some sensor outputs does not look like what we expect (i.e. global increasing/decreasing values). To 
increase the efficiency of data, we want to reduce the number of outputs that is why the PCA is computed 
to select significant indicators which are a combination of sensor data. To define an IOHMM for modeling 
the degradation of the aircraft engine, it is necessary to have the degradation indicators from the raw 
sensor data. Usually, the data should indicate the degradation of systems as increasing or decreasing 
graphical view. Otherwise, it is difficult to model the degradation with the IOHMM. For example, the 
given dataset (Fig. 33) shows the sequences are not monotonic. The behavior of these sequences does not 
look like what we expect (i.e. global increasing/decreasing values). That is why, to find out the monotonic 
indicator and to increase the efficiency of data, the PCA to this dataset. 

Figure 34 represents the evaluated datasets with a coefficient response from the PCA results. The 
IOHMM is trained from these datasets and learn the parameters and applied to estimate the remaining 
useful life of the aircraft engine.   

Fig. 34: Measurements after applying PCA 

The following sections explain how the identified indicator from an original sequence used to define the 
hidden states and the emitted symbols. Noted that, the high order of units contains the most interesting 
coefficients of degradation. Usually, the first order (Unit 1) of PCA results contains the most coefficients 
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that relates the inputs and the corresponding outputs. However, in our objective, we are looking for the 
relation between the inputs and the degradations that represented by the outputs. This is not exactly the 
same as usual which can be found in the higher order (i.e. Unit 6-9 or 11 e.t.c.). 

5.2.3 Emitted symbols 
We decided to use four discrete  symbols to classify the indicators come from the observation sequences 
of turbine 11. A total of 218 indicators are obtained from 218 sequences of this turbine. The classification 
depends on the data amount and enough information in the data. The thresholds are defined based on the 
amount of data dedicated to each threshold, because the parameter estimation requires enough data and 
information. The threshold is adjusted by evolving the best response to the amount of data and the 
estimated parameters.  

This classification is necessary because the IOHMM usually works with discrete data units. Therefore, 
continuous data sequences are converted to discrete data sequences (Fig. 35).  

 

Fig. 35: Defining observation symbols on the indicators 

Any one of the units (in Fig. 34) can be used to train the model. However, unit 11 is chosen because it 
gives the best RUL prediction performance compared to other units.  

5.2.4 Defined IOHMM  
The model structure is defined in this chapter by describing the inputs, outputs, and health states.  

The defined structure of the proposed IOHMM has:   

▪ Data unit: discrete. The continuous data are converted into discrete format in two steps: (1) 

finding the indicators from the data, and (2) classifying the indicators by different discrete sym-

bols) 

▪ The number of discrete symbols: four. The number of symbols can be increased based on the 

amount of data dedicated to the threshold of classification.  

▪ The number of outputs: considered one output. This chapter focuses on the real situations to 

model the system by formatting the raw data, dealing with the operating conditions, and the 

number of hidden states of the system. One output has 218 data sequences which is enough to 

demonstrate each part of the model. However, multiple outputs produce better results, but it is 

a time-consuming process. Once the demonstration succeed multiple outputs can be adapted as 

well.   

▪ Model type: left-right, also known as Bakis model (Yuan, 2018) 

▪ The number of hidden states: three (good, moderate, bad). This is an initial setup which changed 

during the training session to compare with different numbers of hidden states.   

▪ The number of transition matrices: six (according to group 1 in table 11) 

▪ The initial state: state 1 (assumed as good) 

▪ The results: all the results are presented as a statistical point of view 
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This model is designed to represent the aircraft engine with several operating condition modes. The model 
has been trained several times by assigning the operating conditions from different groups (mentioned 
earlier) to investigate if the operating conditions can be reduced without compromising the model 
performance. The performance of the model is evaluated based on several error rates defined below.  

5.3 Model evaluation 

The IOHMM is being trained under each of the operating conditions by the groups shown in Table 11. 
Estimated parameters from different training are compared and the model performance is evaluated. A 
benchmarking between HMM and different versions of IOHMM is presented in the result section. The 
best model is selected to perform the RUL prediction for the aircraft engine.  

The model performance is evaluated by the score following Eq. 36.  It is the score given in (K Le Son, 
2013) to benchmark the methods. The lower is the score the better is the method. The score 𝑆𝑐 is 
asymmetric that penalized the late predictions more than early prediction, and is defined as follows: 

 𝑆𝑐 = ∑𝑆𝑐𝑖

218

𝑖=1

 (36) 

here 𝑆𝑐𝑖 is the penalty score for unit 𝑖, computed as follows: 

𝑆𝑐𝑖 = {
𝑒−𝑑𝑖/13 − 1, 𝑑𝑖 ≤ 0

𝑒𝑑𝑖/10 − 1, 𝑑𝑖 > 0
 

here 𝑑𝑖 = 𝑅𝑈̂𝐿(𝑖) − 𝑅𝑈𝐿(𝑖) is the estimation error; 𝑅𝑈̂𝐿(𝑖) and 𝑅𝑈𝐿(𝑖)  are the estimated and the real 
RUL values respectively of unit 𝑖. The acceptable window of estimation is presented in Fig. 36. An 
estimate of late failure (distance 10 units from original RUL) is more dangerous where the error 𝑑𝑖 
positive and the early failure estimation (distance 13 units to the original RUL) is considered as the 
negative 𝑑𝑖.  

 

Fig. 36: Metrics of performance assessment 

In this book, an interval [-10, +13] set by (Ramasso, 2013) is considered to assess the model performance 
(Fig 36). The prediction errors fall within this interval considered as the correct predictions. The errors 
which are less than the lower limit of the interval (-10) is considered as late prediction and greater than 
the higher limit (+13) are considered as early predictions. This interval is considered a serious condition 
compared to the literature (Goebel, 2005), but it can be differed according to the system complexity and 
prediction sensitivity. The penalty score function according to the Eq. 36 is given by the Fig. 37. 

 

Fig. 37: Penalty Score function following Eq. 36 
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Some papers use two other criteria to compare the precision of methods, the root squared error (RSE) and 
the mean squared error (MSE), as defined below.  

The root squared error (RSE): 

 𝑅𝑆𝐸 = √∑𝑑𝑖
2

218

𝑖=1

 (37)  

 The mean square error (MSE): 

 𝑀𝑆𝐸 = ∑
𝑑𝑖

2

218

218

𝑖=1

 (38)  

These two accuracies are also like 𝑆, the lower the value is, the more accurate the performance is. In this 
chapter, we have used all three criteria to assess the model performances and create a benchmark between 
them. Moreover, the score 𝑆 is  used in the cross-validations to validate the estimated IOHMM by using 
the given data sets where the real failure time assumes as the length of the sequence. The cross-validation 
process is described hereafter. 

5.4 Cross Validation 

Model validation is a task which confirms the results of a model are sufficiently accurate to the results of 
the original data-generating process or not. The Cross-validation is experimented to analyse whether the 
predictive performance of the model deteriorates significantly when applied to new relevant data. This is 
also called rotation estimation (Geisser, 2017) which is a procedure to evaluate how the results of a 
statistical analysis will be generalized to an independent data set. There are three popular cross-validation 
methods are used in several papers. In this chapter, we applied all three methods to show the belief over 
the model performance: 

1. Leave-p-out (LPO): this validation use p observation sequences as the validation data set and the 

rest as the training data set (Celisse, 2014). It is a one-time training and testing performance evalu-

ation.  

2. Leave-one-out (LOO): this is a particular case of leave-p-out cross-validation with p = 1. A random 

data sample is set aside for testing, and the model is trained with the remaining data. This method 

can be performed several times to produce a mean-performance RUL prediction.  

3. k-fold cross-validation: in k-fold cross-validation, the training sample is divided into k equal size of 

groups. This technique repeated k times with k observation sequences as the validation data set and 

remaining observations as the training data set. It is similar to the leave-p-out validation, where the 

only difference is it performs k times. One group is selected as a validation data set and the rest as 

training data set, then a different group gets selected as a validation data set until all the groups get 

selected as a validation data set. k=10 is a commonly used case (McLachlan, 2005), but in general, 

k remains unfixed.  
The first two are exhaustive cross-validation methods and the third validation is a non-exhaustive method 
which can be addressed as an approximation of leave-p-out cross-validation. 

5.5 Results 

The numerical results are given by using the 218 sequences from the unit 11 from the PCA output. 

5.5.1 Parameter Learning 
This section covers the model training considering the uncertainties about the model size and operating 
conditions. At first, the model is being trained with six operating conditions to fix the appropriate number 
of parameters to represent the system. Once the model size is fixed, we train the model several times by 
reducing the number of operating conditions and evaluate if the performance is good enough or not.    

5.5.1.1 Number of Hidden States 

The number of hidden states is not easy to decide while the states are unknown. Nevertheless, as 
mentioned earlier (in chapter 4) that, at least two states required to model the degradation of systems. The 
more the parameters are, the accurate  the representation is. However, we are bounded to make the decision 
because too many parameters make the model complex which is difficult to learn.  
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We have experimented with an analysis to fix the suitable number of hidden states from multiple 
selections of choices. The procedures are already explained with a simulated application in chapter 4. 
Nevertheless, this time the method is applied to a real application to justify its impact.  

Only one pair of transition and emission matrices of each model for each version of the models is 
highlighted in Table 12.  

Table 12: Learning parameters of different Matrices 

Model Transition matrices Emission matrices 

2 states- 

Model 

𝐴̂12  = (
0.9901 0.0099

0 1.0000
) 𝐵̂12= 

(
0.95 0.05 0
0 0.0.98 0.02

) 

3 states- 

Model 
𝐴̂13 = (

0.9711 0.0289 0
0 0.9556 0.0444
0 0 1.0000

) 
𝐵̂13= 

(
0.94 0.06 0
0 0.99 0.01
0 0 1

) 

4 states- 

Model 𝐴̂14 = (

0.9923 0.0067 0 0
0 0.9728 0.0272 0
𝟎 𝟎 𝟏. 𝟎𝟎𝟎𝟎 𝟎
0 0 0 1.0000

) 

𝐵̂14= 

(

0.95 0.05 0
0 0.99 0.01
𝟎 𝟎 𝟏
𝟎 𝟎 𝟏

) 

5 states- 

Model 

𝐴̂15 

=

(

 
 

0.9934 0.0066 0 0 0
0 0.9661 0.0339 0 0
0 0 0.9805 0.0195 0
0 0 0 0.9748 0.0252
0 0 0 0 1.0000)

 
 

 

𝐵̂15= 

(

 
 

0.99 0.01 0
𝟎 𝟏 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏
𝟎 𝟎 𝟏)

 
 

 

 

here 𝐴̂12 and 𝐵̂12 are the estimated parameters of the first matrices of 2 states IOHMM. Similarly, 𝐴̂13 

and 𝐵̂13 are from 3 states IOHMM and so on. 

The selection technique is done in three steps. The idea was to design a method to compare the 
performances of the models and selects the best performer for prognostics. However, it could be a time-
consuming process in the sense of the number of models and their run times. That is why some quick 
investigations are applied to reduce some models based on the parameter’s nature and inconvenience. 
These investigations are already discussed in chapter 4. 

Look-out the transition parameters 

It is an investigation on the estimated transition matrices to identify if there is any insignificant parameter 
exists or not. For example, there is no transition from state three to other states in the matrix A4. The third 

row represents all the possible transitions from state three to others. The parameter 𝐴̂14 (3,3) is holding 

a 100% transition probability, so it is an absorbent state. However, there is another parameter 𝐴̂14 (4,4) 
is also an absorbent state. The proposed model does not consider two absorbent states in the same 

transition matrix as it is explained before. Therefore, parameter 𝐴̂14 (4,4) and the corresponding row and 
column are removed from the matrix. This problem can be identified in another way which is studying 

the corresponding emission parameters. Noted that, the emission matrix 𝐵̂14 is repeating the same 
parameters (3rd and 4th rows). It is an indication that corresponding transition parameters are needed to be 
adjusted. In this case, for example, removing the fourth row, which makes the matrix as a 3-by-3 
dimension. 
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Look-out the emission parameters 

It is an investigation on the emission matrices based on the relation between the state and the emitted 
symbols. The parameters are modified/removed if there is more than one state holding similar properties 

as we mentioned in the previous section. For example, the emission matrix 𝐵̂15 contains two repeating 
cases with the parameters (row-3 and 4) and (row 5 and 6). These (transition) parameters are adjusted by 
merging the repeated rows together. Therefore, the size of the matrix became from a 5-by-5 to a 3-by-3 
dimension.  

These two steps provide a common indication about the model size which is 3-by-3. Even though matrix 

𝐴̂14 and 𝐴̂15 were estimated as four and five dimensions of sizes but after reconsidering the significance 
of the parameters with the transition and emission properties both of them suggest that the engine can be 

represented by state models. However, there are two more models (𝐴̂12 and 𝐴̂13) are available that 
contain all the transition and emission parameters as an acceptable format. So, these two are checked 
through the final step.      

Compare by model-performance 

The remaining models after applying the first two steps are treated through this step which is based on 
the model performances. A performance evaluating method is developed which evaluates the model 
performance by using the Eq. 36. The once gives the lowest score is the best model.  

The matrix 𝐴̂13 has been selected for further experiments based on the performance evaluation.   

5.5.1.2 Estimated Parameters 

Once the number of hidden states is fixed, now the first step is to fix the number of operating conditions 
for the model. Saxena already suggested that the possible number of operating conditions for the engine 
is six (Saxena, 2008). This experiment to demonstrate if the number of operating conditions can be 
reduced without compromising the model performance. The grouping between the operating conditions 
is mentioned in Table 11. A different number of operating conditions (from zero to six) are applied to the 
model training and the estimated models are evaluated through the performance evaluator by the group. 
The parameters are shown by the group below. 

 
HMM (IOHMM with no conditions): 

The IOHMM with zero operating condition is equivalent to an HMM. So, the model learned with one 
transition matrix and one emission matrix. Initial distribution is also learned from the training, but only 
the transition matrix is presented below: 

𝐴̂ = (
0.9906 0.0094 0

0 0.9330 0.0670
0 0 1.0000

) 

IOHMM (with conditions): Only the transition matrices from each group are presented below. 

• IOHMM (six operating conditions represented by six models): 

𝐴̂1

= (
0.9923 0.0077 0

0 0.9482 0.0518
0 0 1.0000

) 

Model one 

𝐴̂2

= (
0.9888 0.0112 0

0 0.9368 0.0632
0 0 1.0000

) 

Model two 

𝐴̂3

= (
0.9896 0.0140 0

0 0.9398 0.0602
0 0 1.0000

) 

Model three 

𝐴̂4

= (
0.9918 0.0082 0

0 0.9454 0.0546
0 0 1.0000

) 

Model four 

𝐴̂5

= (
0.9910 0.0090 0

0 0.9124 0.0876
0 0 1.0000

) 

Model five 

𝐴̂6

= (
0.9893 0.0107 0

0 0.9072 0.0928
0 0 1.0000

) 

Model six 
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• IOHMM (five operating conditions represented by five models): 

𝐴̂1

= (
0.9923 0.0077 0

0 0.9482 0.0518
0 0 1.0000

) 

Model one 

𝐴̂2

= (
0.9892 0.0108 0

0 0.9384 0.0616
0 0 1.0000

) 

Model two 

𝐴̂3

= (
0.9918 0.0082 0

0 0.9454 0.0546
0 0 1.0000

) 

Model three 

𝐴̂4 

= (
0.9910 0.0090 0

0 0.9124 0.0876
0 0 1.0000

) 

Model four 

𝐴̂5 

= (
0.9892 0.0108 0

0 0.9072 0.0928
0 0 1.0000

) 

Model five 

 

• IOHMM (four operating conditions represented by four models): 

𝐴̂1 = (
0.9922 0.0078 0

0 0.9483 0.0517
0 0 1.0000

) 

Model one 

𝐴̂2 = (
0.9923 0.0077 0

0 0.9482 0.0518
0 0 1.0000

) 

Model two 

𝐴̂3 = (
0.9918 0.0082 0

0 0.9458 0.0542
0 0 1.0000

) 

Model three 

𝐴̂4 = (
0.9902 0.0098 0

0 0.9094 0.0906
0 0 1.0000

) 

Model four 

 

• IOHMM (three operating conditions represented by three models): 

𝐴̂1

= (
0.9922 0.0078 0

0 0.9483 0.0517
0 0 1.0000

) 

Model one 

𝐴̂2

= (
0.9904 0.0096 0

0 0.9420 0.0580
0 0 1.0000

) 

Model two 

𝐴̂3

= (
0.9901 0.0099 0

0 0.9090 0.0910
0 0 1.0000

) 

Model three 

 

• IOHMM (two operating conditions represented by two models): 

𝐴̂1 = (
0.9923 0.0077 0

0 0.9477 0.0523
0 0 1.0000

) 

Model one 

𝐴̂2 = (
0.9903 0.0097 0

0 0.9304 0.0696
0 0 1.0000

) 

Model two 

 
The IOHMM performed separately by using all these five groups with different operating conditions. An 
HMM is also used to prognostic system health, where the operating conditions are ignored, to compare 
with the other results. Next section explains the diagnostic and the prognostic results where the simplest 
operating conditions (group 5) are applied. Later, all the groups are compared by their performances 
based on the estimated prognostic.  

5.5.2 Diagnostic: current health state estimation   
The given sequence is used to demonstrate the diagnostic and prognostic performance. The cross-
validation methods are applied where the estimated model is performed several times on randomly 
selected sequences. One example is given in Fig. 38 where the diagnostic result is given which is 
estimated from a given sequence: 
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Fig. 38: Estimated diagnostic given a test sequence 

The sequence is cut downed at the time instant k = 98. The diagnostic result shows that the system was 
in the first state at the beginning. Then, at k = 60 it transits to the second state and stays until the time 

instant k = 98 with the distribution as 𝑃(𝑋𝑘=98) = (7.2 × 10−132  5.6 × 10−15  0) based on the given 
sequence. After scaling by 1 it can be written as (0  1  0) which implies that the system partially degraded. 
The goal is to identify the time to go into the final state which is defined as the RUL that predicted in the 
next section. 

 

5.5.3 Prognostic: the meantime RUL estimation  
The meantime RUL is predicted according to the current health state and the operating condition. The 
future operating conditions for the engine are assumed as in two possibilities. The first possibility is that 
the operating conditions are unknown for future operations. Equation (15) is used to solve this problem 
by following the old operating conditions that have been applied so far. The second possibility is 
predicting the RUL at the given operating conditions. Both the cases are presented where the predicted 
RUL for unknown operating conditions is 96 days (Fig. 39), and the predicted RUL for a given operating 
condition is 82 days (Fig. 40).  

 

Fig. 39: Mean time RUL for unknown inputs 
 

Fig. 40: Mean time RUL for known inputs 

 
This figure represents the computing process for explain the accuracy. IOHMM also provides different 
RUL by using the operating conditions separately. The predicted RUL using the most stressful model is 
addressed as the lowest limit (as 42 days) and the lowest stressful operating condition as the highest RUL 
prediction limit (as 131 days).  

The same process is followed by each group of operating conditions and the model training. Finally, a 
benchmarking between the model performances is given in the next section. 
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5.5.4 Benchmarking Between Different Models  
A benchmark between HMM and different versions of IOHMM is presented concerning the score, RSE, 
and MSE by using the Eq.36, 37,  and 38. The scores decrease while the number of conditions increases 
(shown in Table 13).  

Table 13: Different model performances 

ID Model (Condition) Score RSE MSE Number of 

parameters 

1 HMM (condition = 0) 18.01 31.88 32.79 24 

2 IOHMM (conditions = 3) 17.32 31.15 31.30 42 

3 IOHMM (conditions = 4) 17.30 31.11 31.23 51 

4 IOHMM (conditions = 5) 17.31 31.12 31.23 60 

5 IOHMM (conditions = 6) 17.29 31.11 31.22 69 

 

The performance for an HMM is shown in this table as Score = 18.01, RSE = 31.88, MSE = 32.79. This 
model is equivalent to the IOHMM with no operating condition which provides the largest scores among 
the other IOHMMs except the model with condition 2. The IOHMM with 2 operating conditions is 
ignored because the classification shows insignificant results. 

The classification is done based on the nearest neighbor’s property but (particularly) the group number 5 
does not strictly follow that. As a result, the learning algorithms get to learn a model by considering data 
that represents different dynamics of system behaviors. This is the fact when the unfamiliar data are given 
to test the classification was not accurate nor the performance is. It shows an unusual score which is worse 
than the HMM model.  

IOHMM with six operating conditions estimates the RUL with the best scores (Score = 17.29, RSE = 
31.11, MSE = 31.22). This experiment indicates that the more conditions give better results. However, it 
is also noted that the model complexity is proportional to the number of parameters of the model. 
Moreover, the amount of data is also an important fact since more parameters required a larger amount 
of data. That is why the model is chosen depending on the performance as well as the number of 
parameters following the Occam’s razor principle (A Baker, 2007). For example, IOHMM with four 
operating conditions could be a good choice. It has about 26% less parameters and good accuracy (Score 
= 17.30, RSE = 31.11, MSE = 31.23 vs Score = 17.29, RSE = 31.11, MSE = 31.22) which is very close 
to the model with six conditions. 

This experiment shows that IOHMM models allow different regimes to consider as different operating 
conditions of the system. IOHMM allows learning all the parameters of the model through a single 
training session. Several modes of IOHMM give promising RUL estimating performances than a standard 
HMM. Compared to the performance and the number of hidden states, the IOHMM with four operating 
conditions seems to be the best fit for representing the engine. This model can be used to further analysis 
of the dataset by compare the test set results performance with existing results. 

 

5.5.5 Cross Validations  
This section validates the selected IOHMM by the cross-validation methods. This experiment justifies 
the selected model by assessing its performance of estimated RUL compared to the known RUL by Eq.36. 
218 sequences of the selected unit are used in these validations. Three different training techniques are 
applied to these methods.  

Leave P Out (LPO): in this method, the training has done 10 times. In each training, a random set of (P  
= 5) sequences are selected for testing and the rest of 213 are used to train the model. The number of 
training and the size of P can be chosen differently.  

Leave One Out (LOO): in this method, the training has done 50 times. In each training, a random sequence 
is selected for testing and the rest of 217 are used to train the model. The number of training can be chosen 
differently. 



103 
 

k-fold: in this method, the training has done 5 times. In each training, a random set of (one fifth of 218) 
sequences are selected for testing and the rest of the sequences are used to train the model. The number 
of training can be chosen differently.  

The results from these methods are stored as early, on-time, and late predictions. 

Table 14 shows the model performance by applying three cross-validations: LPO, LOO, k-fold (cf. 
section 5.4). The validation shows very few late predictions (6%) compared to the summation of on-time 
and early predictions. The late prediction contains the biggest penalty then the early predictions. If the 
early prediction considered as acceptable then, the proposed model enhances the RUL prediction 
performance up to 95% (LPO: 41+54). 

Table 14: Cross validation results 

Method ID Method 
RUL Prediction 

Early On-time Late 

1 LPO 41% 54% 5% 

2 LOO 55% 39% 6% 

3 k-fold 54% 40% 6% 

 

5.6 Conclusion  

This chapter describes how to model the health degradation of aircraft engines by IOHMM under multiple 
operating conditions. The reason for selecting this application is that it covers most of the objectives that 
we have proposed. This is an application where the given dataset represents the degradation of the aircraft 
under multiple combinations of operating conditions. To consider the degradation with different 
uncertainties under multiple operating conditions, the IOHMM is one of the ideal modeling tools to 
design the aircraft and apply the diagnostic and prognostic algorithms. An open data challenge is taken 
into account in this chapter for estimating RUL of the system from several settings of operating 
conditions.  

The difference between the application of this chapter and the previous chapter (chapter 4) is the data set. 
In chapter 4, all the applications were simulated where the data were ready to train the model (IOHMM) 
for degradation representation. Nevertheless, it is not that easy in real cases where the data comes as raw 
elements from the sensor readings. Therefore, it requires to prepare for use in training and testing 
purposes. Usually, the original dataset does not have the indicator of degradation. In this chapter, a 
detailed explanation of data preparation for system modeling is given step by step with examples. The 
PCA method is applied to identify the indicators from each of the sequences. Then a set of thresholds is 
defined to classify the indicators by assigning the discrete symbols.  

Another difference is that multiple outputs were not used in this application. The reason for that, the PCA 
method uses all the outputs to provide results where the coefficient of the outputs already exists. However, 
more than one output can be considered but the main concern of this chapter is to demonstrate the open 
challenge application simulating degradation under multiple (inputs) operating conditions.  

Several versions of IOHMM are designed considering a different number of health states and operating 
conditions for the best fitting model to the engine. The model is validated by three cross-validations: 
LPO, LOO, and k-fold methods with a maximum of 6% late predictions. Three similar learning 
techniques are applied to these three validations procedures where the training set is used to train the 
model and test the results together. That is why no test set is used in this chapter. The model is trained by 
using the training set to have separated one/more randomly selected sequence/s for testing purposes. This 
repeatedly applied to provide confidence over the model performance.  

The adapted Baum Welch and forward-backward algorithms are used to learn the IOHMM. Then the 
learned IOHMM is used in online and offline health prediction. A benchmarking of performance 
assessment between the HMM and several versions of IOHMM is presented with the error rate (the root 
squared error and the mean squared error). This comparison helps to decide the suitable number of 
operating conditions for modeling the degradation of the system. 
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6 The Fourth Contribution: Estimating RUL 

of Structured Systems 
 

 

In most of the works in the literature, the prognostic is dedicated to an entity (component, subsystem, 

system) considered as a whole. Nevertheless, systems are more a combination of components following 

a particular structure for a functional purpose. So, the systems are structured, and their health evolution 

modelling can be handled following this structure as it is usually done in reliability analysis.  

Such systems are widely used in many industrial processes when it is necessary to distribute products 

in several ways and then to collect them into one or several discharge destinations. For example, flow 

distribution systems (FDS) like water supply, heat supply, electricity supply, etc. The maintenance 

decisions for the FDSs are challenging because the degradation of individual components is independent 

and not fully detectable. In this chapter, we propose a perspective methodology to prognostic the 

degradation of a structured system by diagnosis each of the components individually and constructing a 

model that represents the entire system health evolution. This is a perception of answering the third 

question of the thesis: Prognostic the RUL for structured systems from their components to study the 

entire system health evolution. 

This chapter uses the previous IOHMM for RUL assessment to maintenance aid decision-making of a 

multi-component flow distribution system. As the main structures are series or parallel, the methodology 

is built on these two structures of connected components. Nevertheless, industrial systems are often 

equipped with multiple sensors to monitor outputs of components to collect the efficient information 

that helps to prognostic the RUL. These sensors can be real or virtual (Albertos, 2002). As multiple data 

are captured, it is a multiple output system. Moreover, the components or subsystems under study are 

driven by several inputs in several modes, it is then a multiple inputs system. Thus, IOHMM are 

considered better to estimate the components RUL than HMM. If an IOHMM focuses on a system sub-

element, then the question of combination is the key point of our proposition. To demonstrate the 

proposed methodologies, a real system [Esrel 2011 Barcelona process] with simulated data is used. All 

the paths from sources to a destination are considered alternative options to supply the demands.  

The proposal offers a solution in two steps. The first step is the independent path monitoring to determine 

the most appropriate supply planning strategy. The second step is to identify all the possible routes 

where the flow gets through different components for discharging to the destinations. It allows the 

system to select alternative paths to supply the flow. The operating conditions are considered as common 

inputs for all the components. Once all the model trainings are done, a big model is constructed from 

these model parameters to represent the entire system.   

 

6.1 Model construction for prognosing the system RUL 

As IOHMM are a particular combination of HMM, let us handle the problem by starting with HMM 

only. The main goal is to build a prognostic model of the whole system from the model of its components 

following the functional structure of the system. Nevertheless, let us recall some important notions from 

previous chapters. The learning and the diagnostic steps are based on a complete IOHMM model, but 

the prognostic part uses only the hidden Markov part. It means that a complete IOHMM can be built for 
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each component or sub-system, but a combination of their hidden part is enough to estimate the system 

RUL. 

Back from the previous chapters, the health state evolution of each system component 𝐶𝑖 can be 

modelled by an IOHMM Λ𝑖 = (𝐴𝑖 , 𝐵𝑖, 𝜋𝑖) where 𝐴𝑖 is the transition matrices defined given the input 

modes and 𝐵𝑖 is a set of emission matrices according to the number of outputs. So, the health state 

evolution of the system should be modelized accordingly i.e. finding the function 𝑓 for multiple 

components: 

Λ = 𝑓(Λ1, Λ2, . . . , Λ𝑖) 

Let us recall the notation of Λ𝑖 = (𝐴𝑖, 𝐵𝑖, 𝜋𝑖): 

𝐴𝑖 = {𝐴𝑖
1, . . . , 𝐴𝑖

𝑃𝑖  } 

where 𝐴𝑖
1 is the transition matrix of the hidden part given that the input 𝑈1 is in mode 1: 𝑈1 = 1 and 𝐴𝑖

𝑃𝑖 

is the transition matrix given that the input 𝑈𝑖 is in mode 𝑃𝑖: 𝑈1 = 𝑃𝑖 

So, if we consider two components then we should consider two IOHMM to define the function 𝑓. 
Function 𝑓 depends on the structure of the system with the two components i.e. series or parallel. It is 

possible to cover multiple components of a single path by applying the construction policy of two 

components. The goal is to find a model that represents the health states of the path. An iterative 

construction process can be applied to the components where each step considers first two components 

and then construct them into one model. After that, the same process can be applied to the constructed 

model with the model for the next component. This process continuous until the final model is built. 

6.1.1 Series structure of two components with HMM models 

For the sake of clarity, let us start with two HMM i.e. without considering inputs. The functional 

structure of the system is given by Fig. 41 which represents the Reliability Bloc Diagram (RBD). 

C1 C2

 

Fig. 41: RBD of a two components series system 

Let us consider that 𝐶1 has hidden states 𝑆1 = {S1
1, … , S1

N}. The evolution of the health state of the 

component 𝐶1 is given by the BAKIS (Yuan, 2018) model λ1 = (𝐴1, 𝐵1, 𝜋1) with the transition matrix: 

 

𝐴1 =

[
 
 
 
 
1 − ∑ 𝛼 

1𝑗𝑁
𝑗=2 𝛼 

12 ⋯ 𝛼 
1𝑁

0 1 − ∑ 𝛼 
2𝑗𝑁

𝑗=3 ⋯ ⋮

0 0 ⋯ 𝛼 
(𝑁−1)𝑁

0 0 0 1 ]
 
 
 
 

  (39) 

 

The main goal is to estimate the RUL which only needs the computation of the diagnostic and the 

transition matrix of the system. The diagnostic is computed from the health states condition of 

components, so there is not a necessity to construct the emission matrices for the RUL estimation. 

Therefore, just transition matrices are constructed. 

Respectively, the health state evolution of component 𝐶2 described by the hidden heath state 𝑺2 =

{S2
1, … , S2

M} is given by: 

 

𝐴2 =

[
 
 
 
 
1 − ∑ 𝛽 

1𝑗𝑀
𝑗=2 𝛽 

12 ⋯ 𝛽 
1𝑀

0 1 − ∑ 𝛽 
2𝑗𝑀

𝑗=3 ⋯ ⋮

0 0 ⋯ 𝛽 
(𝑁−1)𝑀

0 0 0 1 ]
 
 
 
 

  (40) 



110 
 

Based on the state of each component, the state of the series system can be given based on the cardinal 

product of component states. So, if 𝐶1 has 𝑁 states and 𝐶2 has 𝑀 states then the series systems S has 

𝑁 × 𝑀 possible states: 

𝑺S = 𝑺1 × 𝑺2 = {{S1
1S2

1}, {S1
1S2

2}… , {S1
1S2

M}, {S1
2S2

1},… , {S1
2S2

𝑀}, {S1
3S2

1},⋯ , {S1
NS2

M}} 

To define the hidden Markov model of the two components series system, the transition from one state 

to the other should follow the functional structure. In a series system, some states are not accessible 

since at least one of the components is in its absorbent state. The transition matrix of the whole system 

is defined by Eq. 41:  

 

𝐴𝑆 =

[
 
 
 
 
 
 
 
 
 
 
− 𝛽 

12 … 𝛽 
1𝑀 𝛼 

12 … 0 𝛼 
13 … 0

0 − … 𝛽 
2𝑀 0 … 0 0 … 0

0 0 − … … … … … … …
0 0 0 − 0 … 𝛼 

12 0 … 𝛼 
1𝑁

0 0 0 0 − … 𝛽 
2𝑀 𝛼 

23 … 0

0 0 0 0 0 − 𝛽 
𝑥𝑀 0 … 0

0 0 0 0 0 0 − 0 … 𝛼 
2𝑁

0 0 0 0 0 0 0 − … …
0 0 0 0 0 0 0 0 − …
0 0 0 0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 
 
 
 

 (41) 

This is a stochastic matrix so, the diagonal is: (1- summation of all distribution on the corresponding the 

same row), as ∑ 𝑎𝑖𝑗
𝑁
𝑗 = 1  ∀𝑖. 

For the sake of illustration, we provide an example with two components having 3 hidden states each 

and following the BAKIS model (Yuan, 2018) structure. The transition matrices for two components 

are defined as:  

Component 𝐶1: (
1 − ∑ 𝛼 

1𝑗3
𝑗=2 𝛼 

12 𝛼 
13

0 1 − 𝛼 
13 𝛼 

13

0 0 1

); Component 𝐶2: (
1 − ∑ 𝛽 

1𝑗3
𝑗=2 𝛽 

12 𝛽 
13

0 1 − 𝛽 
13 𝛽 

13

0 0 1

) 

Based on these two transitions matrices, the Markov chain of the (two components) series system is 

given by Fig. 42. 

 

Fig. 42: Transition graph of two series components. 

As we can see on Fig. 42, the states of the whole system are reduced from the cartesian product of states. 

S33 is not defined because there is no possibility to jump from any state to S33. The first component 

that joins his state S3 stops the whole system. 
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So, following Eq. 41 and the previous remark, the transition matrix is: 

 

𝐴𝑆 =

(

 
 
 
 
 
 

− β12 α12 0 β13 α13 0 0

0 − 0 α12 β23 0 0 0

0 0 − β12 0 α23 0 0

0 0 0 − 0 0 β23 α23

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 )

 
 
 
 
 
 

  

By merging the absorbing states: 

 

𝐴̃1 =

(

  
 

× β12 α12 0 𝛽13 + 𝛼13

0 × 0 α12 β23

0 0 × β12 α23

0 0 0 × β23 + α23

0 0 0 0 1 )

  
 

 

 

(42) 

Noted that the constructed matrix shows that the number of health states for the whole system is five 

(𝑠11, 𝑠12, 𝑠21,𝑠22, 𝑠𝑓) even though the components are assumed to have three hidden states.  

6.1.2 Series structure of two components with IOHMM models 

If we consider that two components degrade with regards to inputs, the HMM models are replaced by 

IOHMM. The evolution of the health state of component 𝐶1 is given by the following IOHMM model 

 Λ1 = (𝐴1, 𝐵1, 𝜋1) with 𝐴1 = {𝐴1
1, . . . , 𝐴1

𝑃} considering the 𝑃 modes of the input: 

 

𝐴1
𝑝

=

[
 
 
 
 1 − ∑ 𝛼𝑝

1𝑗𝑁
𝑗=2 𝛼𝑝

12 ⋯ 𝛼𝑝
1𝑁

0 1 − ∑ 𝛼𝑝
2𝑗𝑁

𝑗=3 ⋯ ⋮

0 0 ⋯ 𝛼𝑝
(𝑁−1)𝑁

0 0 0 1 ]
 
 
 
 

  (43a) 

 

The hidden states of 𝐶1 are 𝑆1 = {S1
1, … , S1

N}. 

Respectively, the health state evolution of component 𝐶2 is defined by the IOHMM  Λ2 = (𝐴1, 𝐵1, 𝜋1) 

with 𝐴2 = {𝐴2
1 , . . . , 𝐴2

𝑄
} considering the Q modes of the input follows: 

 

𝐴2
𝑞

=

[
 
 
 
 1 − ∑ 𝛽𝑞

1𝑗𝑀
𝑗=2 𝛽𝑞

12 ⋯ 𝛽𝑞
1𝑀

0 1 − ∑ 𝛽𝑞
2𝑗𝑀

𝑗=3 ⋯ ⋮

0 0 ⋯ 𝛽𝑞
(𝑁−1)𝑀

0 0 0 1 ]
 
 
 
 

  (43b) 

 

The hidden states of 𝐶2 are 𝑺2 = {S2
1, … , S2

M} 

To build the model of a series system of two components, the methodology follows exactly the same 

procedure but given that each transition matrix is selected among the set 𝐴1
𝑝

 (resp. 𝐴2
𝑞

) by the input mode 

p (resp. q) then the transition matrix becomes as presented by Eq.44: 
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𝐴𝑆
𝑝𝑞

=

[
 
 
 
 
 
 
 
 
 
 
 
− 𝛽𝑞

12 … 𝛽𝑞
1𝑀 𝛼𝑝

12 … 0 𝛼𝑝
13 … 0

0 − … 𝛽𝑞
2𝑀 0 … 0 0 … 0

0 0 − … … … … … … …
0 0 0 − 0 … 𝛼𝑝

12 0 … 𝛼𝑝
1𝑁

0 0 0 0 − … 𝛽𝑞
2𝑀 𝛼𝑝

23 … 0

0 0 0 0 0 − 𝛽𝑞
𝑥𝑀 0 … 0

0 0 0 0 0 0 − 0 … 𝛼𝑝
2𝑁

0 0 0 0 0 0 0 − … …
0 0 0 0 0 0 0 0 − …
0 0 0 0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 
 
 
 
 

  (44) 

 

For the sake of illustration, an example is given to explain the series structure of two components with 

IOHMM models. The system is assumed to have 3 hidden states. Figure 43 represents the system which 

assumed to have the inputs 𝑈𝐶1 and 𝑈𝐶2 with two operating modes (1 & 2) for each. The variable 𝑈𝐶1 

is the input for component 𝐶1, and 𝑈𝐶2 is for component 𝐶2. 

 

Fig. 43: Two components in a series system with separated inputs 

The transition matrices for the components are defined according to the operating conditions as follows. 

The IOHMM model of component 𝐶1 provides two transition matrices (𝐴1
1, 𝐴1

2) for two modes according 

to U1: (Here, matrix 𝐴𝑗
𝑝

 represents the first component transition probabilities where  𝑝 is the id of the 

operating condition and 𝑗 is the id of the component.) 

𝐴1
1: (

1 − ∑ 𝛼1
1𝑗3

𝑗=2 𝛼1
12 𝛼1

13

0 1 − 𝛼1
13 𝛼1

13

0 0 1

) represented by input mode 𝑝 = 1. 

𝐴1
2: (

1 − ∑ 𝛼2
1𝑗3

𝑗=2 𝛼2
12 𝛼2

13

0 1 − 𝛼2
13 𝛼2

13

0 0 1

) represented by input mode 𝑝 = 2. 

Component 𝐶2 provides two transition matrices (𝐴2
1 , 𝐴2

2) for two modes: 

Matrix number one 𝐴2
1: (

1 − ∑ 𝛽1
1𝑗3

𝑗=2 𝛽1
12 𝛽1

13

0 1 − 𝛽1
13 𝛽1

13

0 0 1

) represented by input mode 𝑞 = 1. 

Matrix number two 𝐴2
2: (

1 − ∑ 𝛽2
1𝑗3

𝑗=2 𝛽2
12 𝛽2

13

0 1 − 𝛽2
13 𝛽2

13

0 0 1

) represented by input mode 𝑞 = 2. 
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If the system applies separate operating conditions to the components then, the operating modes between 

two components follow a set of combinations. For example, the operating modes for two components 

(𝑝, 𝑞) provide 4 combinations:  

• (𝑝 = 1, 𝑞 = 1), both components are on the first mode of their dedicated operating conditions.  

• (𝑝 = 1, 𝑞 = 2), the first component is on the first mode and the second component is on the 

second mode of the dedicated operating conditions.  

• (𝑝 = 2, 𝑞 = 1), the first component is on the second mode and the second component is on the 

first mode of the dedicated operating conditions.  

• (𝑝 = 2, 𝑞 = 2), both components are on the second mode of their dedicated operating 

conditions.  

The IOHMM (transition matrices) can be constructed according to the modes of the operating conditions 

which led us to apply the HMM construction methods. So, corresponding to the system presented in Fig 

43, it gives two constructed transition matrices for two operating modes of this system. 

• Constructed matrix for mode one 𝐴𝑆
11: (construction of matrices 𝐴1

1 and 𝐴2
1) 

                          𝑠11                  𝑠12                      𝑠21                       𝑠22          𝑠13  𝑠31  𝑠23 𝑠32 

𝑠11

𝑠12

𝑠21

𝑠22

𝑠13

𝑠31

𝑠23

𝑠32

  

(

 
 
 
 
 
 

1 − (𝑉𝑠11) 𝛽1
12 𝛼1

12 0 𝛽1
13 𝛼1

13 0 0

0 1 − (𝛼1
12 + 𝛽1

23) 0 𝛼1
12 𝛽1

23 0 0 0

0 0 1 − (𝛽1
12 + 𝛼1

23) 𝛽1
12 0 𝛼1

23 0 0

0 0 0 1 − (𝛽1
23 + 𝛼1

23) 0 0 𝛽1
23 𝛼1

23

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 )

 
 
 
 
 
 

 

[here, 𝑉𝑠11 = 𝛽1
12 + 𝛼1

12 + 𝛽1
13 + 𝛼1

13].  

The system gets out of order if any one of these two components fails. Therefore, it does not get into the 

state 𝑠33.  So, the matrix is constructed as 8-by-8 dimension where four states (𝑠11, 𝑠12, 𝑠21, 𝑠22) are 

considered as working states, and other four states (𝑠13, 𝑠31, 𝑠23, 𝑠32) as the breakdown states. The matrix 

can be represented as a 5-by-5 matrix instead of 8-by-8 by replacing all the breakdown states as one 

state: 

𝐴𝑆
11

=  

(

  
 

1 − (𝛽1
12 + 𝛼1

12 + 𝛽1
13 + 𝛼1

13) 𝛽1
12 𝛼1

12 0 𝛽1
13 + 𝛼1

13 

0 1 − (𝛼1
12 + 𝛽1

23) 0 𝛼1
12 𝛽1

23

0 0 1 − (𝛽1
12 + 𝛼1

23) 𝛽1
12 𝛼1

23

0 0 0 1 − (𝛽1
23 + 𝛼1

23) 𝛽1
23 + 𝛼1

23 

0 0 0 0 1 )

  
 

 

This is (𝐴𝑆
11) the transition matrix that represents the entire system for the given operating condition 

with operating mode one.   

• Constructed matrix for mode two 𝐴𝑆
22: (construction of matrices 𝐴1

2 and 𝐴2
2) 

𝐴𝑆
22

=  

(

  
 

1 − (𝛽2
12 + 𝛼2

12 + 𝛽2
13 + 𝛼2

13) 𝛽2
12 𝛼2

12 0 𝛽2
13 + 𝛼2

13 

0 1 − (𝛼2
12 + 𝛽2

23) 0 𝛼2
12 𝛽2

23

0 0 1 − (𝛽2
12 + 𝛼2

23) 𝛽2
12 𝛼2

23

0 0 0 1 − (𝛽2
23 + 𝛼2

23) 𝛽2
23 + 𝛼2

23 

0 0 0 0 1 )
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This is (𝐴𝑆
22) the transition matrix that represents the entire system for the given operating condition 

with operating mode two.   

These two transition matrices (𝐴𝑆
11, 𝐴𝑆

22) can be used to predict the RUL of the series system with two 

components. The combination of model construction depends on the number of input modes. Similar 

approach can be extendable for handling multiple components with series connection. The next section 

explains model construction of the parallel components system. 

6.1.3 Parallel structure of two components with HMM models 
A parallel structured system with two components is presented in this section to explain how two HMMs 

can be constructed for parallel connection. Like the series system, here the explanation is also given 

starting by two HMM i.e. without considering inputs, then with input as IOHMM.  

A system is presented in Fig. 44 as the RBD where two components (𝐶1, 𝐶2) are parallel connected. 

Since there are no inputs, HMM is sufficient to represent the evolution of their health state.  

 

 

 

 

Fig. 44: RBD of a two components parallel system 

The evolution of the health state of these two components are the same as it described in the series 

system (Eq. 39 and 40).  

𝐴1 =

[
 
 
 
 
1 − ∑ 𝛼 

1𝑗𝑁
𝑗=2 𝛼 

12 ⋯ 𝛼 
1𝑁

0 1 − ∑ 𝛼 
2𝑗𝑁

𝑗=3 ⋯ ⋮

0 0 ⋯ 𝛼 
(𝑁−1)𝑁

0 0 0 1 ]
 
 
 
 

  

𝐴2 =

[
 
 
 
 
1 − ∑ 𝛽 

1𝑗𝑀
𝑗=2 𝛽 

12 ⋯ 𝛽 
1𝑀

0 1 − ∑ 𝛽 
2𝑗𝑀

𝑗=3 ⋯ ⋮

0 0 ⋯ 𝛽 
(𝑁−1)𝑀

0 0 0 1 ]
 
 
 
 

  

 

𝐶1, given by λ1 = (𝐴1, 𝐵1, 𝜋1), 

The hidden states are 𝑆1 = {S1
1, … , S1

N}. 

 

𝐶2, given by λ1 = (𝐴1, 𝐵1, 𝜋1), 

The hidden states are 𝑆2 = {S2
1, … , S2

M} 
Based on the state of each component, the state of the parallel system can also be given by the cardinal 

product of component states. So, if 𝐶1 has N states and 𝐶2 has M states then the series systems S has 

NxM possible states: 

𝑺S = 𝑺1 × 𝑺2 = {{S1
1S2

1}, {S1
1S2

2}… , {S1
1S2

M}, {S1
2S2

1},… , {S1
2S2

𝑀}, {S1
3S2

1},⋯ , {S1
NS2

M}} 

In a parallel system, there is only one state which is absorbent state. Therefore, the constructed transition 

matrix of the whole system would be: 

 

𝐴𝑆 =

[
 
 
 
 
 
 
 
 
 
 
− 𝛽 

12 … 𝛽 
1𝑀 𝛼 

12 … 0 𝛼 
13 … 0

0 − … 𝛽 
2𝑀 0 … 0 0 … 0

0 0 − … … … … … … …
0 0 0 − 0 … 𝛼 

12 0 … 𝛼 
1𝑁

0 0 0 0 − … … 𝛼 
23 … … 

0 0 0 0 0 − … 0 … 𝛽 
1𝑀

0 0 0 0 0 0 − 0 … 𝛼 
2𝑁

0 0 0 0 0 0 0 − … …
0 0 0 0 0 0 0 0 − 𝛽 

2𝑀

0 0 0 0 0 0 0 0 0 1 ]
 
 
 
 
 
 
 
 
 
 

 (45) 

𝐶1 

𝐶2 
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An example is given to explain the construction and the evolution of the states of the parallel system. 

For the sake of illustration, a parallel system with 2 components having 3 hidden states each, following 

the BAKIS model structure. The transition matrices for the two components are defined as:   

For the component 𝐶1: (
1 − ∑ 𝛼 

1𝑗3
𝑗=2 𝛼 

12 𝛼 
13

0 1 − 𝛼 
13 𝛼 

13

0 0 1

) 

For the component 𝐶2: (
1 − ∑ 𝛽 

1𝑗3
𝑗=2 𝛽 

12 𝛽 
13

0 1 − 𝛽 
13 𝛽 

13

0 0 1

) 

Based on these matrices, the Markov chain of the system is given by Fig. 45. 

 

Fig. 45. Transition graph of two parallel components 

Figure 45 represents the state transitions of the whole system based on the cartesian product of 

component states. The system stops only when both components join their state S3ie when the Markov 

chain reaches state S33. So, following Eq. 45 and the previous remark, the transition matrix is: 

𝐴𝑆 =

(

 
 
 
 
 
 
 

× β12 α12 0 β13 α13 0 0 0

0 × 0 α12 β23 0 0 0 0

0 0 × β12 0 α23 0 0 0

0 0 0 × 0 0 β23 α23 0

0 0 0 0 × 0 α12 0 α13

0 0 0 0 0 × 0 β12 β13

0 0 0 0 0 0 × 0 α23

0 0 0 0 0 0 0 × β23

0 0 0 0 0 0 0 0 1 )

 
 
 
 
 
 
 

 

6.1.4 Parallel structure of two components with IOHMM models 
Since the degradation of a component considering the input suggests using IOHMM instead of HMM, 

the evolution of the health state of the components are unchanged as it described in a series system (Eq. 

43a and 43b) as:  

𝐴1
𝑝

=

[
 
 
 
 1 − ∑ 𝛼𝑝

1𝑗𝑁
𝑗=2 𝛼𝑝

12 ⋯ 𝛼𝑝
1𝑁

0 1 − ∑ 𝛼𝑝
2𝑗𝑁

𝑗=3 ⋯ ⋮

0 0 ⋯ 𝛼𝑝
(𝑁−1)𝑁

0 0 0 1 ]
 
 
 
 

  

𝐴2
𝑞

=

[
 
 
 
 1 − ∑ 𝛽𝑞

1𝑗𝑀
𝑗=2 𝛽𝑞

12 ⋯ 𝛽𝑞
1𝑀

0 1 − ∑ 𝛽𝑞
2𝑗𝑀

𝑗=3 ⋯ ⋮

0 0 ⋯ 𝛽𝑞
(𝑁−1)𝑀

0 0 0 1 ]
 
 
 
 

  

 

𝐶1, given by λ1 = (𝐴1, 𝐵1, 𝜋1), 

The hidden states are 𝑆1 = {S1
1, … , S1

N}. 

 

𝐶2, given by λ2 = (𝐴2, 𝐵2, 𝜋2), 

The hidden states are 𝑆2 = {S2
1, … , S2

M} 
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To build the model of a parallel system of two components, the methodology follows the similar 

procedure but given that each transition matrix is selected among the set A1 (resp. A2) by the input 

mode p (resp. q) then Eq. 45 becomes: 

𝐴𝑆
𝑝𝑞

=

[
 
 
 
 
 
 
 
 
 
 
 
− 𝛽𝑞 

12 … 𝛽𝑞
1𝑀 𝛼𝑝

12 … 0 𝛼𝑝
13 … 0

0 − … 𝛽𝑞
2𝑀 0 … 0 0 … 0

0 0 − … … … … … … …
0 0 0 − 0 … 𝛼𝑝

12 0 … 𝛼𝑝
1𝑁

0 0 0 0 − … … 𝛼𝑝
23 … … 

0 0 0 0 0 − … 0 … 𝛽𝑞 
1𝑀

0 0 0 0 0 0 − 0 … 𝛼𝑝
2𝑁

0 0 0 0 0 0 0 − … …
0 0 0 0 0 0 0 0 − 𝛽𝑞 

2𝑀

0 0 0 0 0 0 0 0 0 1 ]
 
 
 
 
 
 
 
 
 
 
 

  

 

To explain the parallel structured system, the same example of two components is taken into account 

but with parallel connection. 

Constructed matrix 𝐴𝑆
11 for mode one: (construction of matrices 𝐴1

1 and 𝐴2
1) 

    𝑠11 𝑠12 𝑠21 𝑠22 𝑠13 𝑠31 𝑠23 𝑠32 𝑠33 

𝐴𝑆
11 =

𝑠11

𝑠12

𝑠21

𝑠22

𝑠13

𝑠31

𝑠23

𝑠32

𝑠33

 

(

 
 
 
 
 
 
 

− 𝛽1
12 𝛼1

12 0 𝛽1
13 𝛼1

13 0 0 0

0 − 0 𝛼1
12 𝛽1

23 0 0 0 0

0 0 − 𝛽1
12 0 𝛼1

23 0 0 0

0 0 0 − 0 0 𝛽1
23 𝛼1

23 0

0 0 0 0 − 0 𝛼1
12 0 𝛼1

13

0 0 0 0 0 − 0 𝛽1
12 𝛽1

23

0 0 0 0 0 0 − 0 𝛼1
23

0 0 0 0 0 0 0 − 𝛽1
23

0 0 0 0 0 0 0 0 1 )

 
 
 
 
 
 
 

 

There is only one state (𝑠33) is the breakdown states when both components are failed. This is (𝐴𝑆
11) the 

transition matrix that represents the parallel system (shown Fig. 44) for the given operating condition 
with the first mode.  

• Constructed matrix 𝐴𝑆
22 for mode two: (construction of matrices 𝐴1

2 and 𝐴2
2) 

     𝑠11 𝑠12 𝑠21 𝑠22 𝑠13 𝑠31 𝑠23 𝑠32 𝑠33 

𝐴𝑆
11 =

𝑠11

𝑠12

𝑠21

𝑠22

𝑠13

𝑠31

𝑠23

𝑠32

𝑠33

 

(

 
 
 
 
 
 
 

− 𝛽2
12 𝛼2

12 0 𝛽2
13 𝛼2

13 0 0 0

0 − 0 𝛼2
12 𝛽2

23 0 0 0 0

0 0 − 𝛽2
12 0 𝛼2

23 0 0 0

0 0 0 − 0 0 𝛽2
23 𝛼2

23 0

0 0 0 0 − 0 𝛼2
12 0 𝛼2

13

0 0 0 0 0 − 0 𝛽2
12 𝛽2

23

0 0 0 0 0 0 − 0 𝛼2
23

0 0 0 0 0 0 0 − 𝛽2
23

0 0 0 0 0 0 0 0 1 )

 
 
 
 
 
 
 

 

(𝐴𝑆
22) is the transition matrix that represents the health evolution of the parallel system (Fig. 44) for the 

second mode of the input 𝑈.   
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These two matrices (𝐴𝑆
11, 𝐴𝑆

22) are the final version of the transition matrices that defines the hidden 

process of the IOHMM which models a two components parallel system health evolution. It can be used 

by the prognostic algorithm (Eq. 33) to estimate the RUL.  

6.1.5 A drinking water network illustration  
The proposed method can also be used for complex structures that contain both the series and parallel 

components in the same path. For example, a flow distribution system (FDS) can be described which 

has several components in both connections (series and parallel). For this purpose, we present a subpart 

of the drinking water network (DWN) of Barcelona city which given by Fig. 46. 

 

Fig. 46: The considered part of the Barcelona DWN 

A DWN is a network that considers sources (supplying water), sinks (water demand points), and 

pipelines that link sources to sinks. It also contains active elements like pumps and valves. The network 

covers a territorial extension of 425km2, with a total pipe length of 4,470 km. Every year, it supplies 

237.7hm3 of drinking water to a population of over 2.8 million inhabitants. The network has a 

centralized tele-control system, organized in a two-level architecture. At the upper level, a supervisory 

control system installed in the control centre of AGBAR is in charge of controlling the whole network 

by taking into account operational constraints and consumer demands.  
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The components (sources, sinks, tanks, and pipelines) that presented in Fig. 46 are considered perfectly 

reliable and without degradation. Only the active elements are subjected to degradation according to 

time and inputs. One source (AportLL1) of water and one sink (C100CFE) is considered (see Fig. 46). 

To supply the sink C100CFE, the source is needed through the DWN. So, from the structural point of 

view, the system should be considered as a series-parallel system because it is a parallel structure of 2 

series paths where the paths are the active components from source to the sink. 

Starting from the source and following the pipelines to the sink, two paths should be enumerated as 

follows: 

Path 1: {AportLL1, iSJDSub, iSJD50, iRelieu} or {AportLL1, P3, P8, P5} 

Path 2: {AportLL1, iSJDSub, iSJD10, iCornella50, iRelieu} or {AportLL1, P3, P9, P7, P5} 

If we ignore the source and the reservoir from Fig. 46, then it highlights only the components (pumps) 

which given by Fig. 47a. So, the first path contains three components and the second path contains four 

components.  

 

Fig. 47: The steps of model constructions 

Figure 47 represents the steps of how more than two components of a system can be constructed through 

the techniques of two components constructions. For an easy explanation, let us assume the components 

are modelled by HMM with three hidden states for each.  

- In the first step (Fig.47b), two models: p9, p7 are (series) constructed as a single model. Assume 

a new component as p10 came out of this construction (Fig. 47c). The number of hidden states 

of the new model is 3 × 3 = 9. 

- In the second step (Fig.47d), two models: p8, p10 are (parallel) constructed as another single 

model. Assume another new component as p11 came out of this construction (Fig. 47e) which 

makes a series system with three components. The number of hidden states of this model is 

3 × 9 = 27. 
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- In the third step (Fig.47f), two models: p3, p11 are (series) constructed as another single model. 

Assume the new component as p12 came out of this construction (Fig. 47g). The number of 

hidden states of this model is 3 × 27 = 81. 

- In the final step (Fig.47h), two models: p5, p12 are (series) constructed as the final model. This 

is the entire system presented as a single component p13 (Fig. 47g) which has a total number of 

(3 × 81) 243 hidden states. 

Now, this is the final version of the model that represents the entire system with 243 hidden states. The 

constructed matrix for the model is given below: 

 

Here, 𝑆1 represents the 3 hidden states of components p5, 𝑆2 represents the 81 hidden states of the 

component p12. However, the number of hidden states can be reduced by the absorbent states and 

merging technique described by the Eq.42. However, this was an example of five components system 

which can be adapted to model systems with any number of components. An algorithm can be developed 

following the construction methods presented in this chapter. The major challenge of this method is the 

number of hidden states which increases by the multiplication of the number of hidden states of each 

components.  

6.1.6 Diagnostic 

Once the construction is done, the IOHMM uses the constructed matrices to predict the future health 

state of the system. However, the model needs the diagnostic of the system as well for prognostic the 

future health states. The diagnostic of the system is computed from the estimated diagnostics of all 

components applying the Eq. 46.  

 𝑃(𝑆 = 𝑆𝑖𝑗) = 𝑃(𝐶1 = 𝑆𝑖) × 𝑃(𝐶2 = 𝑆𝑗), for ∀ i, j (46) 

Though, the health states of the system are estimated by path-wise, the diagnostic can be predicted 

considering each of the paths separately.  

The prediction is made in two steps.  

Step 01: All the components of a path are diagnosed separately by the Viterbi algorithm.   

Step 02: Diagnostic the system health by following the path using Eq. 46. 
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Once the diagnostic is done, the prognostic algorithm uses it to estimate the RUL based on the operating 

conditions. Finally, one path among all is getting selected which gives the maximum RUL compared to 

other paths.  

A simulated application is given in the next section to demonstrate the proposed methodology of 

estimating the RUL of a structured system. 

6.2 Application 

This application is dedicated to illustrating our proposed methodology. For this purpose, we focus on 

the first construction part which is represented by the Fig 47.b. Following that, a series structured system 

(Fig.48) is simulated that has two components with a serial connection. 

C1 C2

 

Fig. 48: Series component system 

Despite keeping the same number of hidden states for each component as three, some other elements 

need to be assumed in order to simulate the application. Each component is assumed to have two outputs 

and one input (operating condition) with two modes. The operating condition provides two transition 

matrices, and the outputs provide two emission matrices for each component. There are four discrete 

symbols considered in the emitted observation sequences. However, the outputs could have a different 

number of discrete symbols as well. This assumption can vary depending on different application 

scenarios. 

 

6.2.1 Data simulation 
Two sets of training sequences are simulated for two components. All the transition matrices that are 

used in data simulations are 3-by-3 matrices corresponding to three hidden states. The transition matrices 

are sup-triangular matrices because of the BAKIS property.  

The initial state distributions are assumed as 𝜋 = (1    0    0), which represents the components are in 

good health state at the beginning. The sequences are generated as complete form with no missing data 

consideration. The length of the sequence is selected randomly between 250 to 300 for each. The length 

can be longer.  

About 1000 training data sequences are generated where each one of them assumed to have information 

about system failure. Another dataset (1000 sequences) is generated for testing purposes.  

 

6.2.2 Model Learning  
The IOHMM learns two models for each of the components according to the number of operating 

conditions. The training is done following the methodologies (Eq. 15 to Eq. 19) described in chapter 4. 

So, the number of learned models is two for each component.  

For the 1st operating condition 

Two transition matrices (𝐴̂1
1, 𝐴̂2

1) learned from two components.  

• Transition parameters for component 𝐶1:  

𝐴̂1
1 = (

0.9585 0.0415 0
0 0.9499 0.0501
0 0 1

) 
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• Transition parameters for component 𝐶2:  

𝐴̂2
1 = (

0.9818 0.0182 0
0 0.9738 0.0262
0 0 1

) 

 

The constructed transition matrix for the system is: 

         𝑠11     𝑠12         𝑠21         𝑠22        𝑠𝑓 

𝐴̃1 =

𝑠11

𝑠12

𝑠21

𝑠22

𝑠𝑓

  

(

 
 

× 0.0182 0.0415 0 0
0 × 0 0.0415 0.0262
0 0 × 0.0182 0.0501
0 0 0 × 0.0763
0 0 0 0 1 )

 
 

 

 

The diagonal of the matrix (𝐴̃1) is calculated as [1 - (sum of all probabilities on the same row)] because 

of the stochastic property. For example, (𝑠11, 𝑠11) = 1- (0.0182 + 00415) = 0.9403. The probabilities of 

getting into the last state (𝑠𝑓) are ignored because the method for the RUL estimation stops when the 

model reaches the final states for the first time. Therefore, the matrix is formatted stochastic without the 

last state. 

The final version of the matrix 𝐴̃1 with diagonal distributions:  

   𝑠11         𝑠12         𝑠21         𝑠22        𝑠𝑓 

𝑠11

𝑠12

𝑠21

𝑠22

𝑠𝑓

  

(

 
 

0.9403 0.0182 0.0415 0 0
0 0.9323 0 0.0415 0.0262
0 0 0.9317 0.0182 0.0501
0 0 0 0.9237 0.0763
0 0 0 0 1 )

 
 

 

 
 
For the 2nd operating condition 

• Transition parameters for component 𝐶1:  

𝐴̂1
2 = (

0.9151 0.0849 0
0 0.9048 0.0952
0 0 1

) 

• Transition parameters for component 𝐶2:  

𝐴̂2
2 = (

0.9088 0.0912 0
0 0.9018 0.0982
0 0 1

) 

The constructed transition matrix for the system is: 

          𝑠11     𝑠12         𝑠21         𝑠22        𝑠𝑓 

𝐴̃2 =

𝑠11

𝑠12

𝑠21

𝑠22

𝑠𝑓

  

(

 
 

× 0.0912 0.0849 0 0
0 × 0 0.0849 0.0982
0 0 × 0.0912 0.0952
0 0 0 × 0.1934
0 0 0 0 1 )

 
 

 

 

The diagonal of the matrix (𝐴̃2) is also computed following the same formula: [1 - (sum of all 

probabilities on the same row)].  
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The final version of the matrix 𝐴̃2 with diagonal distributions:  

      𝑠11         𝑠12         𝑠21         𝑠22        𝑠𝑓 

𝑠11

𝑠12

𝑠21

𝑠22

𝑠𝑓

  

(

 
 

0.8239 0.0912 0.0849 0 0
0 0.8169 0 0.0849 0.0982
0 0 0.8136 0.0912 0.0952
0 0 0 0.8066 0.1934
0 0 0 0 1 )

 
 

 

Now the constructed matrices (𝐴̃1and 𝐴̃2) are ready for use in the prognostic algorithm. However, the 

algorithm requires the current health state of the system which can be estimated from the diagnostic of 

the components by applying the proposed algorithm (Algo. 02). The next section presents the diagnostic 

results. 

 

6.2.3 Diagnostic 

The components 𝐶1 and 𝐶2 are diagnosed separately under the operating conditions at the given test 

sequences. One sequence for each component is selected randomly from the test set. The estimated 

diagnostics applied the Viterbi algorithm are given below:  

The current health states distribution of 𝐶1: (𝑠1= 0.05; 𝑠2= 0.57; 𝑠3= 0.00), which is mainly partially 

degraded into second state. 

The current health states distribution of 𝐶2: (𝑠1= 0.00; 𝑠2= 0.42; 𝑠3= 0.03), which is partially degraded 

into second state. These are the raw values that are not scaled to one. The scaled values are: 

For 𝐶1: (𝑠1= 0.08; 𝑠2= 0.92; 𝑠3= 0.00), and for 𝐶2: (𝑠1= 0.00; 𝑠2= 0.93; 𝑠3= 0.07) 

Following the maximum value in the distribution, both the components are at state 2 (moderate state). 

A cumulative degradation is presented in Table 15 for the entire system applying Eq. 46. 

Table 15: Computed cumulative degradation 

Component 1 

state 

Component 2 

state 

System 

state 

Diagnostic:  

state by state 

𝑠1= 0.08 𝑠1= 0.00 𝑠11 𝑠1 × 𝑠1= 0.0000 

𝑠1= 0.08 𝑠2= 0.93 𝑠12 𝑠1 × 𝑠2= 0.0744 

𝑠2= 0.92 𝑠1= 0.00 𝑠21 𝑠2 × 𝑠1= 0.0000 

𝑠2= 0.92 𝑠2= 0.93 𝑠22 𝑠2 × 𝑠2= 0.8556 

𝑠1= 0.08 𝑠3= 0.07 𝑠13 𝑠1 × 𝑠3= 0.0056 

𝑠3= 0.00 𝑠1= 0.00 𝑠31 𝑠3 × 𝑠1= 0.0000 

𝑠2= 0.92 𝑠3= 0.07 𝑠23 𝑠2 × 𝑠3= 0.0644 

𝑠3= 0.00 𝑠2= 0.93 𝑠32 𝑠3 × 𝑠2= 0.0000 

 

So, the diagnostic of the system is (𝑠11= 0.0000; 𝑠12= 0.0744; 𝑠21= 0.0000; 𝑠22= 0.8556; 𝑠13= 0.0056; 

𝑠31= 0.0000; 𝑠23= 0.0644; 𝑠32= 0.0000), where the summation of the distribution is one. However, since 

“𝑠13, 𝑠31, 𝑠23, 𝑠32” states merged in 𝑠𝑓 and we are only considering the working states, the diagnostic 

vector for the entire system would be (𝑠11= 0.00; 𝑠12= 0.0744; 𝑠21= 0.00; 𝑠22= 0.8556). This is the 

distributions of the current health state of the system which indicates that the system is in state 𝑠22 that 

is not the final state. That means the system is still has some useful life remain. 

6.2.4 Prognostic 
The prognostic algorithm performs only if the system is still on working state. Since the current health 

state of the system is estimated as a working state, the prognostic algorithm (Eq. 17) is used to predict 

RUL predictions. 
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6.2.4.1 Offline prognostic 

Since there is no input sequence for switching the future operating conditions, the vector of future state 

transition can be estimated twice following the two operating modes. This is the case when the IOHMM 

acts like the classical HMM because no input sequence is given to switch the models for further 

computation.  

The difference between the two operating conditions is the stress level. The low-stress condition 

(operating condition 1) gives about 73 days of RUL (at the current time) while the high-stress condition 

(operating condition 2) gives about 28 days for the same system. This is an offline prognostic in which 

the prediction is done once at the current time to define the RUL bound. So, [28, 73] can be defined as 

the approximate bounds for the future RUL prediction of the system according to the current health 

states. That means, all the possible combinations of operating conditions would provide the meantime 

RUL between 28 and 73 days. 

6.2.4.2 Online prognostic 

The RUL is updated according to the change’s aspects of health states over the run-time. This is defined 

as online prognostic. 

For functioning the online prognostic, the diagnostic is also estimated online in which the current health 

states of the system are updated for a new observation. Two sequences are randomly selected from the 

simulated datasets for online diagnostic.  

The estimated RULs are stored in a vector to use in the online prognostics. The vector is being used to 

predict the RUL that presented in Fig. 49.  

 

Fig. 49: Online RUL estimation of the FDS 

The lowest stressed operating condition shows the RUL which is always higher (the strait blue line) than 

the RUL coming from the highest stressed operating condition (the dotted red line). This graph can be 

used as the bound of online RUL estimation.  

This is an example where the experiment showed that, once the model construction is done it can be 

used to offline and online prognostic as like the general application scenario given in chapter 4. 

Similarly, this concept can be applied to such complicated systems considering multiple components in 
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series and parallel connections with the uncertainties, e.g. the data uncertainties (small amount, missing 

data, etc.), the operating conditions uncertainties (given operating conditions, unknown operating 

conditions, etc.), model uncertainties (model size or the number of hidden states), etc. All these 

uncertainties considered while the individual components are diagnosed. Once the diagnostic is done, 

the model construction then performs according to the operating conditions and the connections between 

the components. And finally, the RUL estimation can be done by using the proposed methodology.  

6.3 Conclusion 

RUL assessment of a structured system provides information of different paths to supply the demand to 

the destination by considering the less degradation corresponding to the other paths. It also allows us to 

take maintenance decisions to prevent the unexpected failure of any component. Some industries often 

want to observe all the components independently by installing multiple sensors on each component 

(Xi, 2019). In this contribution, all the system components are observed individually to prognostic the 

overall system’s health which lets us monitor the components individually as well as the entire system.  

However, it is not an easy task to prognostic health states of structured systems with multiple 

components. Multiple components work together as a system in which each of them has its own 

degradation. Therefore, gaining knowledge about the health condition of the system is difficult 

especially under multiple operating conditions. In this chapter, a method based on IOHMM is proposed 

to model such a structured system with input conditions. The main challenges for predicting RUL of the 

structured system has been explained with examples.  

All the components are modelled by separate IOHMMs and diagnosed following the adapted algorithms 

proposed in chapter 4. The components are assumed as independent of each other. That is why the 

current health states of the components are predicted separately and used them to compute the health 

state of the entire system. An algorithm is proposed to diagnostic structured system based on the 

diagnostic of its components.  

The models for each component are stored and constructed together which represents the system and 

used to prognostic system health. The construction is done by (supplying) path-wise because this kind 

of system has multiple paths to supply the same demand. Each of the paths may contain multiple 

components with series or parallel connections or both. The model construction is different for series 

and parallels connected components. The construction of both connections is described with two systems 

(series system and parallel system).  

Finally, the constructed model is being used to prognostic the RUL of the system given the operating 

condition. Prognostic health states of the structured system considering multiple components are useful 

to make a maintenance planning. This is one of the most appropriate approaches for maintenance 

planning where the components get monitored individually (Verbert, 2017).  

To adapt for the real case of DWN, a numerical application is presented as FDS which has serially 

connected components. However, the proposed method can be applied to the parallel system 

components as well. As future work, this method can be extended to a larger network of structure system 

that has more components with both the serial and parallel connections.  
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Conclusion 
 

 

The work presented in this thesis is a contribution to the system health state diagnostic, prognostic and 

Residual Useful Life estimation of components and structured systems by using a dynamic probabilistic 

graphical model. The thesis work is in the class of data-driven based model and more particularly in an 

advanced form of Hidden Markov Model to consider data series, i.e. Input-Output Hidden Markov 

Models. 

More specifically, our contributions focus on the introduction of operating conditions into the model to 

estimate the system health state subjected to different dynamics of degradation. The basic algorithms 

are adapted to consider these operating conditions as inputs, therefore multiple outputs and multiple 

inputs sequences are used to estimate the parameters of IOHMM. The model is then used to compute a 

probability distribution according to the time that is considered in this work as the diagnostic and the 

prognostic of the system health state. The computation of the RUL from the model considering the input 

conditions is then proposed. At last, the work concerned the passage from the component level to the 

system level for the prognostic of the system RUL.  

In the introduction of the thesis, we have defined our work in the context of Prognostics and Health 

Management which is part of the concept of Factory of Future. We briefly justified our choice of 

stochastic models and data-driven approaches then exhibited 3 research questions: 

1. Considering health state of a system with whatever the system complexity is by a stochastic 

model and learn model parameters from system measurements. 

2. Diagnostic and prognostic of the system health under multiple operating conditions. 

3. Prognostic the RUL for structured systems from its components to study the entire system 

reliability.   

The first chapter is concentrated on the state of the art. We recalled some key notions like maintenance, 

degradation, diagnostic and prognostic. The chapter showed a large panel of works concerning the 

prognostic methodologies. The main classes of PHM approaches and the model types are also reviewed 

to justify more deeply our choice of stochastic models. It gives arguments to our choice of a data-driven 

method and more specifically the Hidden Markov Model-based approaches. It defines the limitations of 

existing HMM-based RUL estimators and indicates a way out from that by proposing the IOHMM. 

The second chapter was dedicated to providing the main mathematical background of Hidden Markov 

Model and the well-known algorithms to train (estimate the parameters of the model) and use HMM. 

This chapter defines the notation used in the following chapters. 

The third chapter described our first contribution on algorithms adaptation for several cases. We 

considered first the case of multiple input conditions and the impact on the algorithms based on the 

mathematical formulations. Then we considered the case of multiple sequences of data. To complete the 

contribution, we adapted the previous algorithms to the case of multiple outputs. Numerical illustrations 

are provided considering a well-managed case of data that we produce. We discuss the definition of the 

model structure according to the data and the definition of the number of health states to be considered 

in the model. This section highlights that the model structure needs to be adapted to the information 
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given by the data set and it cannot model behaviours of the system that are not enough represented in 

data. We also considered the case of missing data in order to be close to a real industrial situation. In 

addition, we introduced a bootstrap learning approach to provide a level of credibility of the estimated 

model.  

Three numerical applications were presented to demonstrate the IOHMM learning algorithms to 

highlight three challenges in the training. The first application is shown to represent the complete data 

set where the observation sequences are clean if there is no missing data available. The second 

application was presented focusing on handling the missing data in the training sequences. The third 

application was presented to learn the model parameters by using the bootstrap method which estimates 

each of the parameters of the model with 95% confidence intervals. All three applications are simulated 

from given model structures which compared with the result of the model in the application section. 

The fourth chapter was dedicated to our second contribution concerning the diagnostic and the 

prognostic with IOHMM models. We described how to diagnose the health state of the system or 

component from the observations with or without missing data. We also described different approaches 

to compute the health state evolution and the Residual Useful Life considering multiple operating 

conditions. Two applications were provided to illustrate first the diagnostic and prognostic under 

multiple conditions and secondly an illustration of input management process to simply control the RUL 

to match a maintenance time window. 

The fifth chapter concerned a practical contribution based on the PHM Challenge 2008. As the data of 

the PHM challenge cannot be used directly by the stochastic model, a preparation step has been realized 

before training the model. Some issues about the model structure and parameter estimations were 

discussed. The diagnostic and Meantime RUL estimations were provided, scored and discussed. 

The sixth chapter concerned our answer to the third research question: How to prognostic the health 

state of a system from the health state and model of its components. The chapter has described how the 

structure of a system defines the way is it possible to combine the components' IOHMM model. We 

focused on series and parallel structures but the IOHMM model can have any number of hidden states, 

observation states and input modes. The system model built serves to compute the system health state 

by diagnosing the components but « prognosing » the system. The combination of all the degraded states 

of the components result in a large number of states to define the global system. All these states are used 

to define the dimension of several matrixes according to the inputs (operating condition of the system) 

but these large matrixes are obtained by mathematical computations. Thereafter, the RUL computation 

is based on the combination of the component’s degradations with respect to the parallel and series 

structure of the global model.  
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Perspectives 
 

The work accomplished can be consolidated in the future along with several appearances. The main 

perspectives are listed out upon the short term and long-term basis. 

Short-term perspectives: 

• Managing the operating conditions on real applications to control the production speed and cost. 

This perspective falls in the control theory area. Computing the RUL will serve to control the 

system through techniques like Model Predictive Control (Sun, 2015) or controlling systems by 

extremum seeking algorithms (Rotea, 2000). 

• Practice alternative learning approaches and report the pro and cons for each of their strategy 

and performance. We currently adapted well-known historical algorithms, but other learning 

algorithms can give interesting results in the context of IOHMM. For instance, metaheuristics 

applied to HMM (Aupetit, 2005) can be extended to IOHMM. 

• Control the prediction error obtained by several techniques to improve parameter learning 

algorithms. The focus would be on minimizing the prediction error (Dragomir, 2008). This 

control of the prediction error seems essential because it would allow us to validate our work 

on a real system and address the time implementation constraint. 

Long-term perspectives: 

• Since the prior knowledge is a key depending issue for maintenance scheduling/rescheduling, 

this approach can be applied to manage the system maintenance. This idea relies on some works 

of the lab managed by Pr. B. Iung, Pr. Levrat, or Dr. Do (Nguyen, 2018; Thomas, 2009). We 

showed that the RUL can be partially managed by tuning the inputs. This is perhaps a way of 

joining an opportune and predictive maintenance with input management. 

• Develop approaches that can overcome the discrete data conversion from continuous data. In 

other words: improving learning models in the presence of the original signal data. The 

discretization of continuous physical data to match discrete state of our model can be discussed 

hardly. It has been really developed in the thesis accepted in the application to the PHM 

challenge. Some works as (Turin W., 2012; Jie Zhou and Xinyuan Song 2020) concern 

continuous HMM. The dependence of the hidden process to environmental conditions remains. 

A possible and interesting work concerns the development of continuous IOHMM. 

• Actually, we have considered only the causal dependence between the hidden states and the 

observation states. This assumption in the model structure simplified all the equations used all 

along the thesis. Nevertheless, in order to be more general, we should consider a possible 

dependency between the inputs and the outputs. It will amplify the mathematical model 

complexity but will better represent real systems and fewer assumptions. 

• Contrary to (Le https://hal.archives-ouvertes.fr/hal-01027509), we considered a Markovian 

model even if we introduce the input to condition the Hidden Process. Markovian property is a 

strong assumption and implies that state distribution follows exponential laws. This assumption 

takes us away a bit from reality. Nevertheless, it is possible to increase the number of hidden 

states (fictive states) to lower this. Unfortunately, more hidden states, means more data required 

to train models and more uncertainty in parameters estimation, diagnostic and prognostic. A 

perspective is to combine Input-Output principle with Hidden semi-Markov Models to build 

IOHsMM.  
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Appendixes 

 

Diagnosis performance for IOHMM: [Shahin 2019a] 

 

Diagnostic and prognostic by monte Carlo simulation: [Shahin 2020a] 
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Learning Parameters: [Shahin 2020b] 

 

 

Diagnostic with bootstrap: [Shahin 2020b] 
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Estimated RUL Using Different Models: [Shahin 2020c] 

No Model Name Estimated mean RUL 

1 Matrix 𝐴1 1960 days 

2 CI lower limit (𝐴1) 1931 days 

3 CI upper limit (𝐴1) 1995 days 

4 Matrix 𝐴2 373 days 

5 CI lower limit (𝐴2) 346 days 

6 CI upper limit (𝐴2) 403 days 

7 Combined (𝐴1 & 𝐴2) 1017 days 

 
 

Different RULs using different operating conditions: monte Carlo simulation: [Shahin 2020c] 
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Distribution over the estimated RUL: [Shahin 2020c] 

 

Different RULs at time k [Shahin 2020e] 

No Model Name Estimated RUL 

1 𝐴̂1 159 days 

2 𝐴̂2 131 days 

3 𝐴̂3 122 days 

4 Previous Conditions 147 days 

 

Online RUL matching with the target RUL [Shahin 2020e] 
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The sequence with missing data to diagnostic system health [Shahin 2020f] 

 

 

Diagnostic under missing data: [Shahin 2020f] 
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Modèle graphique probabiliste appliqué au diagnostic de l'état 

de santé des systèmes, au pronostic et à l'estimation de la 

durée de vie résiduelle 
 

Mots-clés : Évaluation de la santé, Diagnostic, Pronostic, RUL, Gestion des RUL, PHM, Conception de la 

dégradation, Condition de fonctionnement, Système complexe, Système structuré, Évaluation en ligne, Modèle 

de Markov caché entrée-sortie, Apprentissage des paramètres, Données manquantes 

Résumé de thèse 

Cette thèse contribue au développement des recherches dans le domaine du Pronostic et Health 

Management : gestion de l’état de santé des systèmes complexes. Dans un contexte de management 

opérationnel et de sûreté de fonctionnement des systèmes, nous proposons d’étudier comment la 

modélisation par un Modèle Graphique Probabiliste Dynamique (MGPD) permet le diagnostic de l’état 

de santé courant d’un système, le pronostic de cet état et de l’évolution des dégradations, ainsi que 

l’estimation de sa durée de vie résiduelle en fonction de ses conditions opérationnelles.  

La dégradation des composants est en général inconnue et nécessite un arrêt du système pour être 

observée. Cependant, cela est difficile, voire impossible, durant l’exploitation du système. Néanmoins, 

un ensemble de grandeurs observables sur le système ou le composant peut caractériser le niveau de 

dégradation et faciliter l’estimation de la durée de vie résiduelle du composant et du système. 

Les MGPD offrent une approche adaptée à la modélisation de l’évolution de l’état de santé des systèmes 

et des composants. Récemment, l’utilisation de HMM (Hidden Markov Model) ou de HSMM (Hidden 

Semi-Markov Model) pour modéliser un processus non observable de dégradation et le relier à des 

observations de leurs conséquences a déjà été exploitée avec des résultats intéressants. Toutefois, la non-

prise en compte des conditions opérationnelles, influant sur les processus de dégradation, limite la 

performance de ces outils. Les algorithmes d’apprentissage et d’inférence rendent exploitables ces 

modèles complexes pour une exploitation dans une problématique de pronostic. 

Il s’agit dans cette thèse de transposer et de capitaliser l’expérience de ces travaux antérieurs dans un 

contexte de pronostic sur la base d’un MGPD plus efficace compte tenu des connaissances disponibles 

sur le système. Nous étendons la modélisation classique des modèles de la famille des HMM vers les 

IOHMM pour permettre une propagation temporelle de l’incertitude afin de résoudre le problème de 

pronostic de l’état de santé et de l’estimation de la durée de vie résiduelle. Cette recherche comprend 

l’extension des algorithmes d’apprentissage et d’inférence appliqués aussi bien dans le cas d’un 

composant que pour un système structuré. Les variantes du modèle HMM sont proposées pour intégrer 

le contexte opérationnel dans le pronostic. 

Cette thèse a pour but de contribuer à lever les verrous scientifiques suivants : 

- Considérer l'état de santé quelle que soit la complexité du système par un modèle stochastique 

et apprendre les paramètres du modèle à partir des mesures disponibles sur le système. 

- Établir un diagnostic de l’état de santé du système et le pronostic de son évolution en intégrant 

plusieurs conditions opérationnelles. 

- Estimer la durée de vie résiduelle des composants et des systèmes structurés (série, parallèle) à 

partir de ses composants. 

L’enjeu est majeur, car le pronostic de la dégradation des composants du système permet de définir des 

stratégies soit de pilotage soit de maintenance par rapport à la durée de vie résiduelle du système. Cela 

permet la réduction de la probabilité d’occurrence d’un arrêt pour cause de dysfonctionnement du 

système, soit en ajustant la vitesse de dégradation pour s’accorder à un plan de maintenance préventif, 

soit en planifiant les interventions de maintenance de manière proactive.  
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Thesis abstract 

This thesis contributes to prognosis and health management for assessing health condition of complex 

systems. In the context of operational management and operational safety of systems, we propose to 

investigate how Dynamic Probabilistic Graphical Modelling (DPGM) can be used to diagnose the 

current health state of systems, prognostic the future health state, and the evolution of degradation, as 

well as estimate its remaining useful life based on its operating conditions.  

System degradation is generally unknown and requires shutting down the system to be observed. 

However, this is difficult or even impossible during system operation. Though, a set of observable 

quantities on a system or component can characterize the level of degradation and help to estimate the 

remaining useful life of components and systems. 

The DPGM provides an approach suitable for modelling the evolution of the health state of systems and 

components. Recently, interesting results have been obtained by using HMM (Hidden Markov Model) 

or HSMM (Hidden Semi-Markov Model) to model unobservable degradation processes and to relate 

them to observations of their consequences. However, the performance of these models is limited 

because they are not able to consider the operational conditions that affect degradation processes. 

Learning and inference algorithms allow these complex models to be used for prediction problems. 

The aim of this thesis is to transpose and capitalize on the experience of these previous works in a 

prognostic context on the basis of a more efficient DPGM taking into account the available knowledge 

on the system. We extend the classical HMM family models to the IOHMM to allow the time 

propagation of uncertainty to address prognostic problems. This research includes the extension of 

learning and inference algorithms. Variants of the HMM model are proposed to incorporate the 

operating environment into the prognosis. 

The aim of this thesis is to contribute to solving the following scientific locks: 

- Considering the state of health whatever the complexity of the system by a stochastic model 

and learning the model parameters from the available measurements on the system. 

- Establish a diagnosis of the state of health of the system and the prognosis of its evolution by 

integrating several operational conditions. 

- Estimate the remaining useful life of components and structured systems with series and 

parallel components. 

This is a major challenge because the prognosis of the degradation of system components makes it 

possible to define strategies for either control or maintenance in relation to the residual life of the system. 

This allows the reduction of the probability of occurrence of a shutdown due to a system malfunction 

either by adjusting the degradation speed to fit in with a preventive maintenance plan or by proactively 

planning maintenance interventions. 
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