N
N

N

HAL

open science

Task Mapping and Load-balancing for Performance,
Memory, Reliability and Energy

Changjiang Gou

» To cite this version:

Changjiang Gou. Task Mapping and Load-balancing for Performance, Memory, Reliability and En-
ergy. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Lyon; East China normal

university (Shanghai), 2020. English. NNT: 2020LYSENO047 . tel-03064581

HAL Id: tel-03064581
https://theses.hal.science/tel-03064581
Submitted on 14 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03064581
https://hal.archives-ouvertes.fr

UNIVERSITE
DE LYON
I . T

ENS DE LYON

EIR:

Numéro National de Thése : 2020LYSEN047

THESE pE DOCTORAT bpE L’UNIVERSITE DE LYON
i opérée par
I’Ecole Normale Supérieure de Lyon
en cotutelle avec

East China Normal University

Ecole Doctorale N°512 :
Ecole doctorale Informatique et Mathématiques de Lyon

Spécialité : Informatique

Soutenue publiquement le 25/09,/2020, par :
Changjiang GOU

Task Mapping and Load-balancing for
Performance, Memory, Reliability and Energy

Allocation de taches et équilibrage de charge pour les performances, la mémoire, la
fiabilité et I’énergie

Devant le jury composé de :

Olivier Beaumont Directeur de recherche INRIA, INRIA Bordeaux Sud-Ouest Rapporteur

Jean-Marc Nicod Professeur, FEMTO-ST, ENSMM, Besancon Rapporteur
Florina Ciorba Assistant professor, Université de Basel, Suisse Examinatrice
Fanny Dufossé CR INRIA, Université Grenoble Alpes Ezaminatrice
Alix Munier Professeure, Sorbonne Université, Paris Ezxaminatrice
Anne Benoit Maitresse de conférences, ENS de Lyon, LIP Directrice
Mingsong Chen Professeur, East China Normal University, Chine Co-tuteur

Loris Marchal CR CNRS, LIP Co-encadrant

Abstract

This thesis focuses on multi-objective optimization problems arising when running scientific
applications on high performance computing platforms and streaming applications on em-
bedded systems. These optimization problems are all proven to be NP-complete, hence our
efforts are mainly on designing efficient heuristics for general cases, and proposing optimal
solutions for special cases.

Some scientific applications are commonly modeled as rooted trees. Due to the size of
temporary data, processing such a tree may exceed the local memory capacity. A practical
solution on a multiprocessor system is to partition the tree into many subtrees, and run
each on a processor, which is equipped with a local memory. We studied how to partition
the tree into several subtrees such that each subtree fits in local memory and the makespan
is minimized, when communication costs between processors are accounted for.

Then, a practical work of tree scheduling arising in parallel sparse matrix solver is
examined. The objective is to minimize the factorization time by exhibiting good data
locality and load balancing. The proportional mapping technique is a widely used approach
to solve this resource-allocation problem. It achieves good data locality by assigning the
same processors to large parts of the task tree. However, it may limit load balancing in
some cases. Based on proportional mapping, a dynamic scheduling algorithm is proposed.
It relaxes the data locality criterion to improve load balancing. The performance of our
approach has been validated by extensive experiments with the parallel sparse matrix direct
solver PASTIX.

Streaming applications often appear in video and audio domains. They are character-
ized by a series of operations on streaming data, and a high throughput. Multi-Processor
System on Chip (MPSoC) is a multi/many-core embedded system that integrates many
specific cores through a high speed interconnect on a single die. Such systems are widely
used for multimedia applications. Lots of MPSoCs are batteries-operated. Such a tight
energy budget intrinsically calls for an efficient schedule to meet the intensive computation
demands. Dynamic Voltage and Frequency Scaling (DVFS) can save energy by decreasing
the frequency and voltage at the price of increasing failure rates. Another technique to
reduce the energy cost and meet the reliability target consists in running multiple copies
of tasks. We first model applications as linear chains and study how to minimize the en-
ergy consumption under throughput and reliability constraints, using DVFS and duplication
technique on MPSoC platforms.

Then, in a following study, with the same optimization goal, we model streaming ap-
plications as series-parallel graphs, which are more complex than simple chains and more
realistic. The target platform has a hierarchical communication system with two levels,
which is common in embedded systems and high performance computing platforms. The
reliability is guaranteed through either running tasks at the maximum speed or triplication
of tasks. Several efficient heuristics are proposed to tackle this NP-complete optimization
problem.

Résumé

Cette thése se concentre sur les problémes d’optimisation multi-objectifs survenant lors de
I’exécution d’applications scientifiques sur des plates-formes de calcul haute performance et
des applications de streaming sur des systémes embarqués. Ces problémes d’optimisation
se sont tous avérés NP-complets, c’est pourquoi nos efforts portent principalement sur la
conception d’heuristiques efficaces pour des cas généraux et sur la proposition de solutions
optimales pour des cas particuliers.

Certaines applications scientifiques sont généralement modélisées comme des arbres en-
racinés. En raison de la taille des données temporaires, le traitement d’une telle arborescence
peut dépasser la capacité de la mémoire locale. Une solution pratique sur un systéme mul-
tiprocesseur consiste a partitionner ’arborescence en plusieurs sous-arbres, et a exécuter
chacun d’eux sur un processeur, qui est équipé d’une mémoire locale. Nous avons étudié
comment partitionner I'arbre en plusieurs sous-arbres de sorte que chaque sous-arbre tienne
dans la mémoire locale et que le makespan soit minimisé, lorsque les cotits de communication
entre les processeurs sont pris en compte.

Ensuite, un travail pratique d’ordonnancement d’arbres apparaissant dans un solveur
de matrice clairsemée paralléle est examiné. L’objectif est de minimiser le temps de fac-
torisation en présentant une bonne localisation des données et un équilibrage de charge.
La technique de cartographie proportionnelle est une approche largement utilisée pour ré-
soudre ce probléme d’allocation des ressources. Il réalise une bonne localisation des données
en affectant les mémes processeurs a de grandes parties de 'arborescence des taches. Cepen-
dant, cela peut limiter 1’équilibrage de charge dans certains cas. Basé sur une cartographie
proportionnelle, un algorithme d’ordonnancement dynamique est proposé. Il assouplit le
critére de localisation des données pour améliorer ’équilibrage de charge. La performance
de notre approche a été validée par de nombreuses expériences avec le solveur direct a
matrice clairsemée paralléle PaStiX.

Les applications de streaming apparaissent souvent dans les domaines vidéo et audio.
Ils se caractérisent par une série d’opérations sur le streaming de données et un débit élevé.
De tels systéemes sont largement utilisés pour les applications multimédias. De nombreux
MPSoC fonctionnent sur piles. Un budget énergétique aussi serré nécessite intrinsequement
un calendrier efficace pour répondre aux demandes de calcul intensives. La mise a 1’échelle
dynamique de la tension et de la fréquence (DVFS) peut économiser de ’énergie en dimin-
uant la fréquence et la tension au prix d’'une augmentation des taux de défaillance. Une
autre technique pour réduire le cotiit énergétique et atteindre I'objectif de fiabilité consiste
a exécuter plusieurs copies de taches. Nous modélisons d’abord les applications sous forme
de chaines linéaires et étudions comment minimiser la consommation d’énergie sous des
contraintes de débit et de fiabilité, en utilisant DVFS et la technique de duplication sur les
plates-formes MPSoC.

Ensuite, dans une étude suivante, avec le méme objectif d’optimisation, nous modélisons
les applications de streaming sous forme de graphes série-paralléle, plus complexes que de
simples chaines et plus réalistes. La plate-forme cible dispose d’'un systéme de communi-
cation hiérarchique a deux niveaux, ce qui est courant dans les systémes embarqués et les
plates-formes informatiques hautes performances. La fiabilité est garantie par l’exécution
des taches a la vitesse maximale ou par la triplication des taches. Plusieurs heuristiques
efficaces sont proposées pour résoudre ce probléme d’optimisation NP-complet.

Acknowledgements

First of all, I would like to express my gratitude to Anne Benoit and Loris Marchal. They
are my colleges, supervisors and friends. Their expertise guides me in the scheduling field.
Often searching the key words given by them saved me a great amount of time. Working
with them is really a great pleasure. Discussion with them really helps me focus on the
crucial points in the research work. Just list some highlights that I kept in mind. In the
first version of our journal paper, I designed the experiments in a very natural and intuitive
way: select a heuristic for the first step, then select a heuristic for the second step, and finally
compare their performance. Anne asked me why I choose them and if there is any other
way to organise it, if there is a better baseline heuristic. Finally we redo the experiments
in a different way and dug more information. It changed my stereotype of the experiments
section. It’s not that easy and straightforward. Taking more parameters into consideration
and conducting it in a different way can give us more insights. Through the work about
energy minimization under throughput and reliability constraints, Loris and I deduced the
period formula on the whiteboard together. In the validation phase, I always try to make
it more precise. Then in the next discussion, Loris had to explain me why we should not
make it too complex even though it can be more precise. It’s the first time in my life that
I had the feeling that the models are developed by us. There are many moments like this,
I am impressed by their way of handling the hard problems and making things progress.

Many thanks to Prof. Mingsong Chen, my co-advisor from East China Normal Univer-
sity, for his constant support on many topics, like the research directions, courses to take.
His wise suggestions improved greatly several works of this thesis.

Thanks for Mathieu Faverge from INRIA Bordeaux and Grégoire Pichon, the young
star of our team. We had a nice co-work about improving load-balancing and data locality.
Grégoire gave me lots of useful tips on using PlaFRIM and interpreting experiments results.
With his help, I can focus on the scheduling side. At the beginning of this cooperation, I
misunderstood the models and hence all algorithms developed didn’t meet our expectations.
I felt helpless and had no idea what to do. Things get better after I spent one week
visiting Mathieu at Bordeaux. It’s the extensive discussion that makes the program progress
towards a promising direction. I am grateful to Matheiu for this cooperation opportunity
that improved my communication skills.

Also, T appreciate the friendly atmosphere in ROMA team. Everyone is very kind.
Sometimes, we discuss about the technical issues and look for solutions together. More
often, the topics are sports, music festivals, lumiére festivals and other things happen at
Lyon. I am surprised by Frédéric Vivien. Each time I gave him a topic, he can continue
and develop a whole story. Thanks for him, even though I understood only part of what he
said, I felt I know more about France. Last but not least, many thanks to Laetitia Lecot,
Evelyne Blesle and Marie Bozo. With their help, the administration procedures are quite
simple, and everything in the daily life at LIP is really well organised.

This Ph.D program is supported by China Scholarship Council (CSC) and PRoSFER
program.

Contents

1__Introduction| 7
[2 Partitioning tree-shaped task graphs for distributed platforms with lim- |
[1ted memory| 10
2.1 Introductionl L 10
2.2 Related workl 11
2.3 Modell 12
[2.4 Problem complexity|. 14
[2.5 Heuristic strategies| o 16
[2.5.1 Step 1: Minimizing the makespan| 16

[2.5.2 Step 2: Fitting into memory|o 19

[2.5.3 Step 3: Reaching an acceptable number of subtrees| 21

[2.6 Experimental validation through simulations 24
[2.6.1 Dataset and simulation setup| 24

[2.6.2 Step 1: Minimizing the makespan| 24

[2.6.3 Step 2: Fitting into memory| 25

[2.6.4 Step 3: Reaching an acceptable number of subtrees| 27

2.7 Chapter summary|. 34

[3 Improving mapping for sparse direct solvers: A trade-off between data |
| locality and load balancing| 35
3.1 Introductionl 35
3.2 Related workl 37
[3.3 Description ot the application| 37
[3.3.1 Coarse-grain load balancing using proportional mapping| 38

[3.3.2 Mapping refinement after the coarse-grain mappingl 39

[3.3.3 Discussion on the choice of the mapping algorithm| 40

[3.4 Proposed mapping refinement| 41
[3.5 Experimental results| o 43
[3.6 Chapter summary|. 48

[4 Reliability-aware energy optimization for throughput-constrained appli- |
L__cations on MPSoC] 50
4.1 Introductionl 50
4.2 Related worklo 51
4.3 Models and optimization problems| 0000 53
[4.3.1 Streaming applications — linear chain| 53

432 Platformso 53

[4.3.3 Failure model and duplication| 54

[4.3.4 Energy|l. 55

4.3.5 Period definition and constraintsl o000 55

[4.3.6 Optimization problem| o7

(4.4 Complexity analysis| oo 58

[4.5.2 Bounding the expected period
[4.5.3 Bounding the probability of exceeding F|
4.6 Experimental validation through simulations
[4.6.1 Multi-core embedded systems| o000
[4.6.2 Streaming applications|o Lo
4.6.3 Simulation result]o oo
[4.7 Chapter summary|.

[> Reliable and energy-aware mapping of streaming series-parallel applica- |

| tions onto hierarchical platforms|

[5.2.1 Streaming applications — SPGs|o 0oL

[5.2.3 Graph partitioning and structurerule|.
[5.2.4 Soft-errors and triplication| o000
[5.2.5 Energy|.
[5.2.6 Timing definition and constraints|
[5.2.7 Optimization problem|
[>.3 Problem complexity|. oo
[>.4 Dynamic programming on a linear chain|
[>.4.1 Case studies to show it is not optimal|.
[5.4.2 Condition for optimality|
[>.5 Heuristics for series-parallel graphs|
b.0.1 Baseline heuristic = MAXSIo 000000000
[5.5.2 Partitioning heuristic — GROUPCELL|
[5.5.3 Partitioning heuristic - BREAKFJ-DP|
[5.5.4 Mapping heuristic|.
[>.6 Experimental evaluation of the heuristics|
[5.6.1 Simulation setup|o
[H.6.2 Simulation resultslo oo
[>.7 Chapter summary|.

6 Conclusionsl
[References|

[List of publications|

97

101

108

Chapter 1

Introduction

To understand and solve complex problems, scientific computing is nowadays a critical
way for research in many fields, for instance biological, physical and social science. Some
experiments in these areas may be too long, too expensive or even too dangerous to run
in laboratory, simulations through computer software instead provide an alternative solu-
tion. Scientific computing, also known as numerical analysis, concerns about the design
and analysis of algorithms for solving mathematical problems that arise in modeling phys-
ical processes. With the ever increasing amount of datasets generated by instruments, it
demands an intensive computing power to have results with higher resolution and higher
accuracy in a reasonably short time. Achieving this goal is not trivial.

Parallel and distributed computing systems have been an essential infrastructure for sci-
entific computing for a long time. Commodity processors are grouped into clusters, then
these clusters are connected by a network to form a supercomputer, see examples listed on
Top500 [82]. Scientific computing application usually has the form of a graph: each node
represents a task, and edges among tasks represent data dependencies. Execution of such
scientific applications can be seen as a traversal of nodes. Say the execution starts from the
source node. After the execution, output of the source then will be sent to its successors.
Each successor can start its own workload after the output file is received, this process
continues toward terminal nodes. This graph exhibits which tasks can be executed simul-
taneously and which data they need to access. Since task’s size and data dependencies are
explicitly showed, task-based scheduling paradigm has been widely accepted in high perfor-
mance computing (HPC) domain. For instance, various runtime systems, e.g., StarPU [§],
Quark [93], and SuperMatrix [24] are designed based on it. Partitioning the graph and
mapping subgraphs onto clusters have the potential to reduce execution time dramatically
through executing parallel parts simultaneously. In addition, the power of CPU (Central
Processing Units) has been increased twice every 18 months in the past decades, following
Moore’s law. But memory size, speed of read from/write to different levels of memory, and
network bandwidth didn’t increase at the same rate. The gap still exists. Hence running
out of memory, low 10 bandwidth, and high-latency of data transfer between clusters could
be bottlenecks for high performance goal. Dedicated scheduling and mapping algorithms are
indispensable for running scientific applications on massively parallel computing platforms
effectively and efficiently.

Applications mentioned above are usually executed in a mode called batch. Scientists
have all the raw data, and expect a final result from the application. Applications in batch
model are lengthy but not time sensitive. On the contrary, another sort of applications,
named streaming applications, are fast and time-sensitive. Streaming data is continuously
generated from scientific programs, for instance, data flow from all four experiments in
Large Hadron Collider is anticipated to be 25GB/s [22]. Streaming applications motivate
part of this work. Streaming applications are defined as applications that process datasets
that arrive at a given rate continuously. As datasets continuously enter, the application
has to handle them in (near) real time, otherwise the system fails. A classical example is

7

self-driving cars where multiple sensors transfer datasets continuously to the central control
unit, and it has to be able to judge in a very short time if there is a collision in front of the
car or it should accelerate to avoid a congestion, otherwise it may cause an accident. The
whole application is kept running with a high throughput and has to be highly reliable.

Streaming applications are also very common in image and video processing, e.g. H264
decoder [85], MRI [52], and CT [91], computing platforms are often mobile devices in these
scenarios. It can be represented as task graphs as well. This graph provides the possibility of
automatic parallelism as it gives the compiler more room to optimize the program through
a finer grain parallelism. It favours a computing platform with many processing elements
and a desired power /performance ratio [15].

Multiprocessor System-on-Chips (MPSoC) composed of hundreds of processors cores
are adopted widely for streaming applications as it achieves an intensive computing power
without overwhelming growth in power consumption. Cores are equipped with their own
local memory and are connected tightly by an interconnection fabric in MPSoC, the real-
time performance are more likely to be guaranteed as resources conflict among tasks are
reduced and elements’ behaviors are more predictable [90]. MPSoC in mobile devices are
often battery-operated. To fit the tight energy budget and heat control, sophisticated power
management, such as Dynamic Voltage and Frequency Scaling (DVFS) is proposed to reduce
cores’ execution voltage when they are handling light-weight tasks. At the same time,
the small size of feature devices and the low operating voltage make processing elements
vulnerable to radiation-induced soft-errors. When a soft-error hits a core, the tasks running
on it need to be re-executed, which incurs further energy cost and may even violate the
throughput goal. Hence, given throughput and reliability constraints, how to achieve a fault-
tolerant schedule that minimizes the energy consumption for running streaming applications
on MPSoC platform is becoming a major challenge.

This manuscript explores task-based scheduling arising in scientific computing domain
and streaming domains. Scientific computing on large-scale parallel computing platforms
needs to fully take advantage of resources, hence workload balance, low 10 and/or memory
consumption are still of a great concern. The first part of this manuscript revisits these clas-
sical topics and proposes some promising approaches. Another subject considered is running
streaming applications on battery-operated mobile devices. Indeed, various sensors and easy
access of internet make streaming applications running on mobile devices prevalent. The
goal in designing scheduling algorithms for streaming applications is power/performance
ratio instead of performance only. The second part of this manuscript studies task-based
scheduling of streaming applications to achieve a high throughput and low energy consump-
tion. The main contributions of each chapter are summarized below.

e Chapter 2: Partitioning tree-shaped task graphs for distributed platforms with limited
memory [J1] [C4].
Under this background, the first work of this manuscript is to schedule a tree-shaped
task graph onto a homogenous parallel platform with a limited memory size. The
tree-shaped task graph comes from factorization of sparse matrix [63], in which most
of the elements are zeros. Sparse matrix arises in dealing with partial differential
equations, which are very common in scientific or engineering applications. Due to
the irregular size of edges and nodes, a different execution order of tasks may have
a huge difference on memory consumption. The traversal with minimum memory
consumption has been extensively studied and some polynomial algorithms have been
proposed by [6I] and [50]. In the case that a minimum memory consumption exceeds
local memory capability, a good way to solve this problem is to partition the tree into
many connected subtrees and map each subtree onto a processor. Chapter [2| explores
how to partition the tree such that each subtree fits into local memory and the total
execution time is minimized.

e Chapter 3: Improving mappings for sparse direct solvers: a trade-off between data

locality and load balancing [C2].

In the work mentioned in the previous chapter, we limit a processor to be assigned
to only a subtree. If a processor can be assigned to two or more subtrees, then data
transfer between them will be saved. In this chapter, we focus on mapping subtrees
onto processors with a given partition. The aim is to reduce the execution time and
keep a good data-locality instead of an acceptable memory consumption. Tree-shaped
task graphs are utilized in parallel sparse direct solvers to express parallelism. One of
the pre-processing stages of sparse direct solvers consists of mapping computational
resources (processors) to these tasks. The objective is to minimize the factorization
time by exhibiting good data locality and load balancing. The proportional map-
ping technique is a widely used approach to solve this resource-allocation problem. It
achieves good data locality by assigning the same processors to large parts of the tree.
However, it may limit load balancing in some cases. In this chapter, we propose a dy-
namic mapping algorithm based on proportional mapping. This new approach, named
Steal, relaxes the data locality criterion to improve load balancing. The heuristic we
proposed is implemented and validated in the PASTIX sparse direct solver.

Chapter 4: Reliability-aware energy optimization for throughput-constrained applica-
tions on MPSoC [C3].

This chapter aims at reaching an energy efficient, high throughput and reliability
scheduling of streaming applications that have the form of a linear chain on MPSoC.
Due to limited energy budget, it is hard to guarantee that applications on MPSoC
can be accomplished on time with a required throughput. The situation becomes even
worse for applications with high reliability requirements, since extra energy will be
inevitably consumed by task re-executions or duplicated tasks. The failure rate of
cores is modeled as a function of operating frequency/voltage. Based on Dynamic
Voltage and Frequency Scaling (DVFS) and task duplication techniques, this chapter
presents a novel energy-efficient scheduling model, which aims at minimizing the over-
all energy consumption of MPSoC applications under both throughput and reliability
constraints. The goal is to decide which tasks to duplicate, and at which frequency to
operate each task.

Chapter 5: Reliable and energy-aware mapping of streaming series-parallel applica-
tions onto hierarchical platforms |[R1, [C1].

In a following work, detailed in Chapter [, the streaming application is modeled as
a series-parallel graph (SPG), which covers a larger extent of streaming applications
than linear chains. To limit the complexity of the problem, we relax a little the relia-
bility target. Running at the maximum speed causes very few errors, which is accept-
able [64]. Indeed, as shown in Chapter 4], soft-errors not necessarily cause throughput
violation since tasks can take advantage of idle time slots and catch up later. Then
we focus on scheduling of SPG onto a platform with hierarchical communications so
that a high performance and low power budget can be met at the same time. The
question we need to answer is which tasks should be mapped onto the same core, and
onto which core, if they need to be triplicated on three different cores or running at
the maximum speed on one core.

Chapter 2

Partitioning tree-shaped task graphs for
distributed platforms with limited
memory

This study is based on a previous work [50], which studied the complexity of memory
minimizing tree traversal in a two-level memory system, and how to reduce the volume of
Input/Output in an out-of-core execution. Based on the exact in-core traversal algorithm
proposed in [50], we target a multiprocessor system in which each processor has its own local
memory. The goal is to minimize the makespan under the memory constraint. We proved
that this problem is NP-complete and proposed some heuristics. Preliminary results have
been published at PDP 2018 [C4]. Then we extended it by proposing some new heuristics.
Extensive simulations with different settings on real trees arising in the context of sparse
matrix solvers show that these new heuristics are more general, intuitive and effective than
those proposed before. The extended work has been published at TPDS [J1].

2.1 Introduction

Parallel workloads are often modeled as directed acyclic graphs of tasks. We aim at schedul-
ing some of these graphs, namely rooted tree-shaped workflows, onto a set of homogeneous
computing platforms, so as to minimize the makespan. Such tree-shaped workflows arise
in several computational domains, such as the factorization of sparse matrices [29], or in
computational physics code modeling electronic properties [57]. The vertices (or nodes)
of the tree typically represent computation tasks, and the edges between them represent
dependencies, in the form of output and input files.

In this chapter, we consider out-trees, where there is a dependency from a node to each
of its child nodes (the case of in-trees is similar). For such out-trees, each node (except the
root) receives an input file from its parent, and it produces a set of output files (except leaf
nodes), each of them being used as an input by a different child node. All its input file,
execution data and output files have to be stored in local memory during its execution. The
input file is discarded after execution, while output files are kept for the later execution of
the children.

The potentially large size of the output files makes it crucial to find a traversal that
reduces the memory requirement. In the case where even the minimum memory requirement
is larger than the local memory capacity, a good way to solve the problem is to partition the
tree and map the parts onto a multiprocessor computing system in which each processor has
its own private memory and is responsible for a single part. Partitioning makes it possible
to both reduce memory requirement and to improve the processing time (or makespan)
by doing some processing in parallel, but it also incurs communication costs. On modern
computer architectures, the impact of communications between processors on both time and
energy is non negligible, furthermore in sparse solvers it can be the bottleneck at even a

10

small core counts [76]. The problem of scheduling a tree of tasks on a single processor with
minimum memory requirement has been studied before, and memory optimal traversals
have been proposed [62, b0]. The problem of scheduling such a tree on a single processor
with limited memory is also discussed in [50]: in case of memory shortage, some input files
need to be moved to a secondary storage (such as a disk), which is larger but slower, and
temporarily discarded from the main memory. These files will be retrieved later, when the
corresponding node is scheduled. The total volume of data written to (and read from) the
secondary storage is called the Input/Output volume (or I/O volume), and the objective is
then to find a traversal with minimum I/O volume (MINIO problem).

In this work, the platform is homogeneous, as all processors have the same computing
power and the same amount of memory. In the case of memory shortage, rather than
performing 1/O operations, we send some files to another processor that will handle the
processing of the corresponding subtree. If the tree is a linear chain, this will only slow down
the computation since communications need to be paid. However, if the tree is a fork graph,
it may end up in processing different subtrees in parallel, and hence potentially reducing
the makespan. We propose to partition the tree into parts that are connected components,
such that each part corresponds to a tree (which is embedded in the whole task tree). The
time needed to execute such a part is the sum of the time for the communication of the
input file of its root and the computation time of each task in the part. The MINMAKESPAN
problem then consists in dividing the tree into parts that are connected components, each
part being processed by a separate processor, so that the makespan is minimized. The
memory constraint states that we must be able to process each part within the limited
memory of a single processor.

The main contributions of this chapter are the following:

e We formalize the MINMAKESPAN problem, and in particular we explain how to express

the makespan given a decomposition of the tree into connected components;

e We prove that MINMAKESPAN is NP-complete;

e We design several polynomial-time heuristics aiming at obtaining efficient solutions;

e We evaluate the proposed heuristics through a set of simulations.

The remainder of this chapter is organized as follows. We first give an overview of
related work in Section [2.2] Then we formalize the model in Section In Section [2.4] we
show that MINMAKESPAN is NP-complete. All the heuristics are presented in Section [2.5]
and the experimental evaluation is conducted in Section Finally, we summarize our
work in Section 2.7

2.2 Related work

As stated above, rooted trees are commonly used to represent task dependencies for scien-
tific applications. For instance, in dense linear algebra libraries such as SuperMatrix [23]
and Parallel Linear Algebra for Scalable Multicore Architectures (PLASMA) [20], the de-
pendencies between tasks are well identified, leading to an efficient asynchronous parallel
execution of tasks. However, in sparse linear algebra, scheduling trees is more difficult be-
cause of enormous tasks’ amount and their irregular weights [56]. Liu [63] gives a detailed
description of the construction of the elimination tree, its use for Cholesky and LU fac-
torizations and its role in multifrontal methods. In [61], Liu introduces two techniques for
reducing the memory requirement in post-order tree traversals. In the subsequent work [62],
the post-order constraint is dropped and an efficient algorithm to find a possible ordering
for the multifrontal method is given. Building upon Liu’s work, [50] proposed a new exact
algorithm for exploring a tree with the minimum memory requirement, and studied how to
minimize the 1/O volume when out-of-core execution is required. The problem of general
task graphs handling large data has also been identified by Ramakrishnan et al. [72], who
propose some simple heuristics. Their work was continued by Bharathi et al. [14], who

11

develop genetic algorithms to schedule such workflows.

Several recent studies have considered parallel sparse matrix solvers, and they have
investigated techniques and algorithms to reduce communication and execution times on
different systems (shared memory, distributed). Kim et al. [56] propose a two-level task
parallelism algorithm, which first partitions the tree into many subtrees, and then further
decomposes subtrees into regular fine-grained tasks. In this work, the scheduling of execut-
ing tasks of the first level is handled by OpenMP dynamically, which however may cause
an arbitrarily bad memory consumption. In a later work, Kim et al. [55] take memory
bound into consideration through Kokkos’s [37] dynamic task scheduling and memory man-
agement. Agullo et al. [2] also take advantage of two-level parallelism and discussed the
ease of programming and the performance of the program. Targeting at distributed mem-
ory systems, Sao et al. [T0] partition the tree into two levels, a common ancestor with its
children, and then replicate the ancestor to processors that are in charge of children; both
communication time and makespan are reduced by this method, at the expense of a larger
memory consumption.

Partitioning a tree, or more generally a graph into separate subsets to optimize some
metric has been thoroughly studied. Graph partitioning has various applications in par-
allel processing, complex networks, image processing, etc. Generally, these problems are
NP-hard. Exact algorithms have been proposed, which mainly rely on branch-and-bound
framework [58|, and are appropriate only for very small graphs and small number of result-
ing subgraphs. A large variety of heuristics and approximation algorithms for this problem
have been presented. Some of them directly partition the entire graph, such as spectral
partitioning that uses eigenvector from Laplacian matrix to infer the global structure of a
graph [34] 33], geometric partitioning that considers coordinates of graph nodes and pro-
jection to find an optimal bisecting plane [79, [68], streaming graph partitioning that uses
much less memory and time, applied mainly in big data processing [81]. Their results can be
iteratively improved by different types of strategies: node-swapping between adjacent sub-
graphs [54] [42] [75], graphing growing from some carefully selected nodes |31, [77], randomly
choosing nodes to visit according to transition probabilities [65]. A multi-level scheme that
consists of contraction, partitioning on the smaller graphs and mapping back to the original
graph and improvement, can give a high quality results in a short execution time [19]. For
a concise review of graph partitioning, see [19).

When focusing on trees rather than general graphs, the balanced partitioning problem
is still difficult [39]. It is APX-hard to approximate the cut size within any finite factor
if subtrees are strictly balanced, some studies hence approximate the cut size as well as
the balance, known as bicriteria-approximation [6]. When near-balance is allowed, tree
partitioning is promising. Feldmann and Foschini [40] give a polynomial-time algorithm
that cuts no more edges than an optimal perfectly balanced solution.

Compared to the classical graph partitioning studies, which tend towards balanced par-
titions (subgraphs with approximately the same weight), our problem considers a more
complex memory constraint on each component, which makes the previous work on graph
partitioning unsuitable to find a good partitioning strategy.

2.3 Model

We consider a tree-shaped task graph 7, where the vertices (or nodes) of the tree, numbered
from 1 to n, correspond to tasks, and the edges correspond to precedence constraints among
the tasks. The tree is rooted (node r is the root, where 1 < r < n), and all precedence
constraints are oriented towards the leaves of the tree. Note that we may similarly consider
precedence constraints oriented towards the root by reversing all schedules, as outlined
in [50]. A precedence constraint i — j means that task j needs to receive a file (or data) from
its parent ¢ before it can start its execution. Each task i in the rooted tree is characterized

12

by the size f; of its input file, and by the size m; of its temporary execution data (and for
the root 7, we assume that f. = 0). A task can be processed by a given processor only if all
the task’s data (input file, output files, and execution data) fit in the processor’s currently
available memory. More formally, let M be the size of the main memory of the processor,
and let S be the set of files stored in this memory when the scheduler decides to execute
task 7. Note that S must contain the input file of task 7. The processing of task i is possible
if we have:
MemReq(i) = fi +mi + Z fi <M - Z fis

jEchildren(i) JES,jF#L

where MemReq(i) denotes the memory requirement of task i, and children(i) are its children
nodes in the tree. Intuitively, M should exceed the largest memory requirement over all
tasks (denoted as MaxOutDeg in the following), so as to be able to process each task:

MaxQutDeg = max

(MemReq(i)) < M.
However, this amount of memory is in general not sufficient to process the whole tree, as
input files of unprocessed tasks must be kept in memory until they are processed.

Task i can be executed once its parent, denoted parent(i), has completed its execution,
and the execution time for task ¢ is w;. Of course, it must fit in memory to be executed.
If the whole tree fits in memory and is executed sequentially on a single processor, the
execution time, or makespan, is . w;. In this case, the task schedule, i.e., the order in
which tasks of 7 are processed, plays a key role in determining how much memory is needed
to execute the whole tree in main memory. When tasks are scheduled sequentially, such a
schedule is a topological order of the tree, also called a traversal. One can figure out the
minimum memory requirement of a task tree 7 and the corresponding traversal using the
work of Liu [62] or the work of Mathias [50]. We denote by MinMemory(T) the minimum
amount of memory necessary to complete task tree 7.

The target platform consists of p identical processors, each equipped with a memory of
size M. The aim is to benefit from this parallel platform both for memory, by allowing the
execution of a tree that does not fit within the memory of a single processor, and also for
makespan, since several parts of the tree could then be executed in parallel. The goal is
therefore to partition the tree workflow 7 into & < p parts 71,..., 7, which are connected
components of the original tree. Hence, each part 7; is itself a tree. We refer to these
connected components as subtrees of 7. Note that 7 can also be viewed as a tree made of
these subtrees. Such a partition is illustrated on Figure 2.1, where the tree is decomposed
into five subtrees: 7 with nodes 1, 2, and 3; 7 with nodes 4, 6, and 7; 73 with node 5; 74, with
node 8; and 75 with node 9. We require that each subtree 7; can be each executed within
the memory of a single processor, i.e., MinMemory(r,) < M, for 1 < ¢ < k. We are to
execute such k subtrees on k processors. Let root(7,) be the task at the root of subtree 7. If
root(ty) # r, the processor in charge of tree 7, needs to receive some data from the processor
in charge of the tree containing parent(root(7;)), and this data is a file of size fyoot(r,). This

. N
can be done within a time %”’)

of processors.
We denote by alloc(i) the set of tasks included in subtree 7, rooted in root(7,) = i, and
by desc(i) the set of tasks, not in alloc(i), that have a parent in alloc(i):

, where [is the available bandwidth between each couple

desc(i) = {j ¢ alloc(i) | parent(j) € alloc(i)}.

The makespan can then be expressed with a recursive formula. Let MS(i) denote the
time (or makespan) required to execute the whole subtree rooted in i, given a partition
into subtrees. Note that the whole subtree rooted in 7« may contain several subtrees of the
partition (it is 7 for ¢ = r). The goal is hence to express M S(r), which is the makespan

13

6 7T ()8 (15)9

Figure 2.1 — Tree partition and recursive computation of makespan.

of 7. We have (recall that f, = 0 by convention):

MS (i MS(k
+ E; Wi + kerge%z{z) ()
j€alloc(s)

We assume that the whole subtree 7, is computed before initiating communication with its
children.

The goal is to find a decomposition of the tree into k < p subtrees that all fit in the
available memory of a processor, so as to minimize the makespan M S(r). Figure[2.1{exhibits
an example of such a tree decomposition, where the horizontal lines represent the edges cut
to disconnect the tree 7 into five subtrees. Subtree 7| is executed first, after receiving its
input file of size f; = 0, and it includes tasks 1, 2 and 3. Then, subtrees 7 and 73 are
processed in parallel. The final makespan for 7 is thus:

MS(1) = I + wy + we + w3 + max(MS(4), MS(5)),

s

where MS(5) recursively calls max(MS(8), M S(9)), since 74, and 75 can also be processed
in parallel.

For convenience, we also denote by W; the sum of the weights of all nodes in the subtree
rooted in ¢ (hence, for a leaf node, W; = w;):

Jj€Echildren(z)
We are now ready to formalize the optimization problem that we consider:

Definition 1 (MINMAKESPAN). Given a task tree T with n nodes, a set of p processors
each with a fired amount of memory M, partition the tree into k < p subtrees m,..., T
such that MinMemory(r;) < M for 1 < i <k, and the makespan is minimized.

Given a tree 7 and its partition into subtrees 7; , we consider its quotient graph @) given
by the partition: vertices from a same subtree are represented by a single vertex in the
quotient tree, and there is an edge between two vertices u — v of the quotient graph if and
only if there is an edge in the tree between two vertices ¢ — j such that i € 7, and j € 7.
Note that since we impose a partition into subtrees, the quotient graph is indeed a tree.
This quotient tree will be helpful to compute the makespan and to exhibit the dependencies
between the subtrees.

2.4 Problem complexity

Theorem 1. The (decision version of) MINMAKESPAN problem is NP-complete.

Proof. First, it is easy to check that the problem belongs to NP: given a partition of the
tree into k < p subtrees, we can check in polynomial time that (i) the memory needed for

14

w; =S —a Wypy1 =0
mi=M =37 qj M1 = 5/2

Figure 2.2 — Tree of instance Z, used in the NPC proof.

each subtree does not exceed M, and that (ii) the obtained makespan is not larger than a
given bound.

To prove the completeness, we use a reduction from 2-partition [43]. We consider an
instance Z; of 2-partition: given n positive integers aq,...,a,, does there exist a subset [
of {1,...,n} such that 37, ;a; = > ;u;a; = S/2, where S = > a;. We consider the
2-partition-equal variant of the problem, also NP-complete, where both partitions have
the same number of elements (|I| = n/2, and thus, n is even). Furthermore, we assume
that n > 4, since the problem is trivial for n = 2. From Z;, we build an instance Z, of
MINMAKESPAN as follows:

e The tree 7 consists of n + 2 nodes, and it is described on Figure 2.2} it is a fork graph
(a root with n + 1 children). The weights on edges represent the size of input files f;,
and the computation time and memory requirements are indicated respectively by w;
and m; (0 <7 <n+ 1, where root = 0).

eForl<i<n, w=S—a;, mi:M—Zzzlaj, and f; = a;.
e For the last child, w,,; =0, m,1 =S5/2, and f,.1 =M — S.
e For the 1o0ot, Wyoot = 0, Myoot = 0, and freer = 0.

e The makespan bound is Cp.x = (n + 1)%

e The memory bound is M = Cpax + 5 + 1.

e The bandwidth is g = 1.

e The number of processors is p = 5 + 1.

Consider first that Z; has a solution, I, such that I C {1,...,n} and |I| = n/2 (i.e., [
contains exactly n/2 elements). We execute sequentially root and task n+ 1, plus the tasks
in /, and we pay communications and execute in parallel tasks not in I. We can execute
each of these tasks in parallel since there are n/2 4 1 processors and exactly n/2 tasks not
in /. Since we have cut nodes not in /, there remains exactly files of size S/2 in memory,
plus fo,11 = M — S, and to execute task n+ 1, we also need to accommodate mg, 1 = S/2,
hence we use exactly a memory of size M. We can then execute nodes in I starting from
the right of the tree, without exceeding the memory bound. Indeed, once task n + 1 has
been executed, there remains only some of the f; = a;’s in memory, and they fit together
with m; in memory. The makespan is therefore §.5 — ‘g for the sequential part (executing
all tasks in I), and each of the tasks not in I can be executed within a time S (since 5 = 1),
all of them in parallel, hence a total makespan of (n — 1)% + S = Chax. Hence, Z, has a
solution.

Consider now that Z, has a solution. First, because of the constraint on the makespan,
root and task n + 1 must be in the same subtree, otherwise we would pay a communication
of M — S = Chax + 1, which is not acceptable. Let I be the set of tasks that are executed
on the same subtree as root and task n+ 1. I contains at least § tasks, since the number of

15

processors is 3 + 1. If I contains more than 7 tasks, then the makespan is strictly greater
than (5 +1)S — S for the sequential part, plus S for all other tasks done in parallel, that is
(5 +1)S > Crax. Therefore, I contains exactly 7 tasks.

The constraint on makespan requires that 7.5 — Zie ; @;+S < Chax, and hence Zie ;a4 >
%. After executing root, the files remaining in memory are the files from tasks in I and f,,,1,
since other files are communicated to other processors. As long as f, ;1 is in memory, no
task of I can be executed due to the memory constraint, hence to execute task n + 1, the
memory constraint writes Zie ja; +M— S+ g < M, hence Zie s a; < % Therefore, we

must have) ., a; = %, and we have found a solution to Z;.]

2.5 Heuristic strategies

In this section, we design polynomial-time heuristics to solve the MINMAKESPAN problem.
The heuristics work in three steps: (1) partition the tree into subtrees in order to minimize
the makespan, without accounting for the memory constraint; (2) partition subtrees that
do not fit in memory, i.e., such that MinMemory(r;) > M; (3) ensure that we do have
the correct number of subtrees, i.e., merge some subtrees if there are more subtrees than
processors, or further split subtrees if there are extra processors and the makespan can be
reduced. We now detail the three steps, focusing on makespan, then memory, then number
of processors.

2.5.1 Step 1: Minimizing the makespan

In the first step, the objective is to split the tree into a number of subtrees, each processed
by a single processor, in order to minimize the makespan. We will consider the memory
constraint on each subtree at the next step (Section [2.5.2).

We first consider the case where the tree is a linear chain, and prove that its optimal
solution uses a single processor.

Lemma 1. Given a tree 7 such that all nodes have at most one child (i.e., it is a linear
chain), the optimal makespan is obtained by executing T on a single processor, and the
optimal makespan is Y, w;.

Proof. If more than one processor is used, all tasks are still executed sequentially because of
dependencies, but we further need to account for communicating the f;’s between processors.
Therefore, the makespan can only be increased. O

More generally, if the decomposition into subtrees form a linear chain, as defined below,
then the subtrees must be executed one after the other, no parallelism is exploited and
unnecessary communication may occur.

Definition 2 (Chain). Given a tree T, its partition into subtrees T; and the resulting quotient
tree QQ, a chain is a set of nodes uy, ... u, of Q such that u; is the only child of u;—y (i > 1).

Therefore, having several subtrees as a linear chain can only increase the makespan,
compared to an execution of the whole tree on a single processor.

We now propose four heuristics that aim at minimizing the makespan, and hence avoid
having linear chains of subtrees.

Two-level heuristic

The first heuristic, SPLITSUBTREES is adapted from [38], where the goal was to reduce
the makespan while limiting the memory in a shared-memory environment. It creates a
two-level partition with one connected component containing the root, executed first on a

16

Algorithm 1 SPLITSUBTREES (T, D)

for all nodes ¢ € 7 do

MS() =W; + %?
end for
PQq < {r}; (the priority queue consists of the tree root)
seqSet +
MSy = MS(r);
s < 1; (splitting rank)
while head(PQ);_1) is not a leaf do

i < popHead(PQs_1);

seqSet +— seqSet U {i} ;

PQg « PQs_1\ {i} U children(i);

if |PQ;| > p— 1 then

Let S denote the |PQs| — (p — 1) smallest nodes, in terms of W;, in PQ;
else
S =10

end if

MS; = ZiESeqSetwi + ZiESWi + makaPQs\S(MS(k));
18: s+4=s5+1;
19: end while
20: select splitting s* that leads to the smallest M S;
21: return PQ«;

e e e e T e e e T

single processor (and called the sequential set), followed by the parallel processing of p — 1
independent subtrees. In the context of shared memory, this heuristic has been proven the
two-level partition with best makespan [38, Lemma 5.1]. We adapt it to our context, in
order to take communications into account.

The SPLITSUBTREES heuristic relies on a splitting algorithm, which maintains a set of
subtrees and iteratively splits the subtree with the largest makespan. Initially, the only
subtree is the whole tree. When a subtree is split, its root is moved to the sequential set
(denoted segSet) and all its children subtrees are added to the current set of subtrees.
Algorithm [I] formalizes the heuristic, in which the current set of subtrees is stored in a
priority queue P(Q) sorted by non-increasing makespan: MS(i) = W, 4+ % (which accounts
for communications). We assume that the first element of PQ) is always the element that
has the greatest makespan.

For a given state of the algorithm (i.e., a partition of the tree between seqSet and subtrees
in PQ), we consider the following mapping: the p—1 largest subtrees in PQ (in terms of total
computation weight 1) are allocated to distinct processors, while the remaining subtrees
are processed by the same processor in charge of the sequential set. Note that all these
nodes (seqSet plus the smallest subtrees of PQ)) form a connected component of the original
tree: seqSet is a connected component containing the root, and each root of a subtree in
PQ@ has its parent in seqSet.

We iteratively consider the solutions obtained by the successive splitting operations and
finally select the one with the best makespan. We stop splitting subtrees when the largest
subtree in P() is indeed a leaf. Thus, there are at most n iterations, hence the algorithm
is polynomial. The algorithm returns the set of nodes that are the root of a subtree, which
corresponds to a cut of the tree, i.e., the set of edges that are cut to partition the tree into
subtrees.

17

Figure 2.3 — Two cases where SPLITSUBTREES is suboptimal. Dashed edges represent the
solution of SPLITSUBTREES, plain edges give the optimal partition.

Improving the SPLITSUBTREES heuristic

There are two main limitations of SPLITSUBTREES. First, it produces only a two-level
solution: in the provided decomposition, all subtrees except one are the children of the
subtree containing the root. In some cases, as illustrated on Figure [2.3] it is beneficial to
split the tree into more levels. In these examples, we have p = 7 processors. Node labels
denote their computational weights (10 for all nodes, except three of them per tree), and
there are no communication costs. The horizontal dashed lines represent the edges cut in
the solution of SPLITSUBTREES, while solid lines represent the optimal partition. On the
example of Figure (a), a two-level solution cannot achieve a makespan better than 40.
If the cut was made at a lower level, the makespan would be even greater. It is however
possible to achieve a makespan of 33 by cutting at two levels.

The second limitation is the possibly too large size of the first subtree, containing the
sequential set seqSet. Since its execution is sequential, it may lead to a large resource waste.
This is for instance the case in the example of Figure (b), where the optimal two-level
solution has a sequential set whose execution time is 31, while further parallelism could have
been used: the optimal solution cuts this sequential set in order to minimize the makespan.

To address these limitations, we design a new heuristic, IMPROVEDSPLIT (see Algo-
rithm [2)), which improves upon SPLITSUBTREES by building a multi-level solution. Since
we aim at further cutting the tree to obtain a multi-level solution, IMPROVEDSPLIT does not
set a limit on the number of subtrees in a first step, but rather tries to create as many sub-
trees as possible, while the makespan can be improved. It is initially called with T' = 7, and
first calls SPLITSUBTREES with no restriction on the number of subtrees: p is set to +oo.
Then, IMPROVEDSPLIT recursively tries to split the sequential set and the largest children
subtrees (subtrees whose roots are in PQ)), until the makespan cannot be further reduced
(again, with no restriction on the number of subtrees).

Finally, once all splits have been done, if there are more subtrees than processors, some
of them are merged with a call to MERGE (which will be explained in Section, without
accounting for the memory constraint (call with infinite memory). The use of AlreadyOptSet
ensures that IMPROVEDSPLIT is called at most once on each node. The makespan compu-
tation in the repeat loop has a complexity in O(n), and the loop has at most n iterations.
Therefore, we get a complexity in O(n?) for a call to IMPROVEDSPLIT, without the final
call to MERGE, hence a complexity in O(n?®) for the n calls. Note that MERGE does not
do anything when p = 400, since there are enough processors, and during each recursive
call to IMPROVEDSPLIT, MERGE is called with p = 400, hence has no effect. The com-
plexity of the final MERGE is in O(n?), as we do not consider the memory constraint (see
Section [2.5.3). The final complexity of IMPROVEDSPLIT is thus O(n?).

ASAP heuristic

The main idea of this heuristic is to parallelize the processing of tree 7 as soon as possible,
by cutting edges that are close to the root of the tree. ASAP uses a node priority queue PQ
to store all the roots of subtrees produced. Nodes in P are sorted by non-increasing W;’s

18

Algorithm 2 IMPROVEDSPLIT (7, p)

PQ < SPLITSUBTREES(T', +00);
AlreadyOptSet < 0;
7; is the subtree of T" rooted in i;
Tseq = T \ UiGPQ {TZ}7
Cp 0; Cremp < 0;
repeat
i < popHead(PQ); W < MS(i);
if © € AlreadyOptSet then break;
Clemp < IMPROVEDSPLIT(7;, +00); (partition subtrees of parallel parts)
Add i to AlreadyOptSet;
Recompute M S(i) with the new cut Clepp;
if MS(i) < W then C, <= C, U Clepp;
Insert ¢ into PQ) (sorted by non-increasing makespan);
: until M S(i) > W or head(PQ) =i
: Cs <= IMPROVEDSPLIT(Tyeq, +00); (partition seq. set)
: O+~ PQUC,UC ;
. if p < |C| + 1 then MERGE(T, C, p, +00);
: return C

e e o T e T e T s T e S S Y

(recall that W; is the total computation weight of the subtree rooted at node 7). Iteratively,
the heuristic cuts the largest subtree, if it has siblings, until there are as many subtrees as
processors (see Algorithm [3| for details). Therefore, it creates a multi-level partition of the
tree. It selects the partition that has the minimum makespan.

At this point, we might have chains of subtrees (as defined above), which increases
the makespan compared to a sequential execution of these subtrees. Figure provides
an example where this happens: the makespan is 11+2+12+2+10+(2+410) = 49, since the
three leaf tasks of weight 10 are executed in parallel. Four units of communication time
could however be saved by executing all other nodes on the same processor, reaching a
makespan of 45 and using only four processors.

To avoid this shortcoming, ASAP then builds the quotient tree in which, except the root,
other nodes that have no siblings are elements of chains. Their input edges are therefore
restored, i.e., subtrees are merged into a single subtree so that there are no more chains, and
therefore, this leaves some processors idle. These idle processors will be used, if possible, to
improve the makespan, during the last step of the heuristics, see Section [2.5.3]

2.5.2 Step 2: Fitting into memory

After partitioning a tree into many subtrees by SPLITSUBTREES, IMPROVEDSPLIT, or
ASAP, we propose three heuristics in this section to check each subtree’s minimum memory
requirement and further partition those such that MinMemory(r;) > M.

o
10 10 10

Figure 2.4 — Example showing that a chain always wastes processors. Node labels represent
their weight. All edges have weight 2, and p = 6. Red nodes denote subtrees’ roots as
determined by ASAP.

19

Algorithm 3 ASAP (7,p)

1: P(@) < children of the root of 7, sorted by non-increasing W;’s;
2: s = 0; Cs < {root of 7}; (s is the step)

3: Let M S, be the makespan of 7 with partition Cj;

4: repeat

5. if PQ is empty then break;

6: i« popHead(PQ);

7. insert Children(i) into PQ);

8: if 7 is not the only child of its parent then

9: s+ s+ 1;
10: Cs < Cs_1 U{i}; (the edge we just cut)
11: Let M S, be the makespan of 7 with partition Cs;
12: end if
13: until |Cy| = p;

[a—
W

. select step s* that minimizes M.S,;
. construct the quotient tree) from 7 and Cl«;
. for all nodes i of () do
if node 7 has only one child then
remove input edge of i’s child from Cl-;
end if
. end for
: return Oy

I R e e T

FIRSTFIT heuristic

We first note the proximity of this problem with the MINIO problem [50]. In this problem,
a similar tree has to be executed on a single processor with limited memory. When the
memory shortage happens, some data have to be evicted from the main memory and written
to disk. The goal is to minimize the total volume of the evicted data while processing the
whole tree. In [50], six heuristics are designed to decide which files should be evicted. In
the corresponding simulations, the FIRSTFIT heuristic demonstrated better results. It first
computes the traversal (permutation o of the nodes that specifies their execution sequence)
that minimizes the peak memory, using the provided MINMEMORY algorithm [50]. Given
this traversal, if the next node to be processed, denoted as j, is not executable due to
memory shortage, we have to evict some data from the memory to the disk. The amount
of freed memory should be at least Need(j) = (MemReq(j) — f;) — M™*" where M®®!
is the currently available memory when we try to execute node j. In that case, FIRSTFIT
orders the set S = {fi,, fi,,. .., fi;} of the data already produced and still residing in main
memory, so that o(i;) > o(iz) > -+ > o(i;), where o(i) is the step of processing node i in
the traversal (f;, is the data that will be used for processing the latest) and selects the first
data from S until their total size exceeds or equals Need(j).

We consider the simple adaptation of FIRSTFIT to our problem: the final set of data
F' that are evicted from the memory defines the edges that are cut in the partition of the
tree, thus resulting in |F| + 1 subtrees. This guarantees that each subtree can be processed
without exceeding the available memory, but may lead to numerous subtrees.

LARGESTFIRST heuristic

For our problem, we want to end up with a total of not more than p subtrees from the
original tree (one subtree per processor), and since we may have already created p subtrees
in Step 1 (Section , we do not want to create too many additional subtrees. Otherwise,
subtrees will have to be merged in Step 3 (Section , possibly resulting in an increase
of makespan. Therefore, we propose a variant of the FIRSTFIT strategy, which orders the

20

set S of candidate data to be evicted by non-increasing sizes f;, and selects the largest data
until their total size exceeds the required amount. This may result into edges with larger
weights being cut, and thus an increased communication time, but it is likely to reduce the
number of subtrees. This heuristic is called LARGESTFIRST.

IMMEDIATELY heuristic

Finally, we propose a third and last heuristic to partition a tree into subtrees that fit
into memory. As for the previous heuristic, we start from a minimum memory sequential
traversal 0. We simulate the execution of o, and each time we encounter a node that is
not executable because of memory shortage, we cut the corresponding edge and this node
becomes the root of a new subtree. We continue the process for the remaining nodes, and
then recursively apply the same procedure on all created subtrees, until each of them fit in
memory. This heuristic is called IMMEDIATELY.

2.5.3 Step 3: Reaching an acceptable number of subtrees

Now that we have first minimized the makespan, and then made sure that each subtree
fits in local memory, we need to check how many subtrees have been generated. During
this step, we either decrease the number of subtrees if it is greater than the number of
processors p, or we increase it by further splitting subtrees if we have idle processors and
the makespan may be improved.

Decreasing the number of subtrees

If there are more subtrees than processors, some of them have to be merged, and the resulted
subtrees should also fit in local memory.

For subtrees that are leaves and have only one sibling, merging only theirselves to their
parents will lead to a chain, which wastes processors. Thus, they are also merged with their
siblings. In all combinations that fit in memory, we greedily merge subtrees that lead to
the minimum increase in makespan. We compute the increase in makespan as follows. We
denote the subtree to be merged as node i of the quotient tree. Sometimes (when i is not
on the critical path), MS(i) can be increased without changing the final makespan M S(r).
We define d; as the slack in M S(7), that is, the threshold such that M.S(r) is not impacted
by the increase of M.S(i) up to MS(i) + d;. It can be recursively computed from the root:
d; = dy + MS(k) — MS(7), in which ¢ is ¢’s parent in the quotient tree and k is the sibling
of ¢ that has the maximum makespan. For the root, d, is set to 0.

We then compute the increase of makespan of merging ¢ to its parent ¢ in the quotient
tree as follows. We first estimate the increase A, of M S(t). If i is a leaf and has only one

sibling, denoted j, the increase in makespan of their parent ¢t is Ay = W; + W, — max(% +

w;, f—ﬁj + w;). For other subtrees, the makespan of ¢ before the merge is MS(t) = % + Wi +
max(MS(k), MS(i)), and after merging i to t, M S(t) = %—FWt—i-Wi—i-max(MS(k), MS(5)),
where j is the child of ¢ that has the maximum makespan. Therefore, the increase of M S(t)
is Ay = W, + max(MS(k), MS(j)) — max(MS(k), MS(i)). Finally, taking the slack into
consideration, the increase of MS(r) is A; — d;.

This algorithm is formalized as Algorithm [4] There are initially at most n subtrees, and
we decrease this number by one or two at each step, hence the algorithm runs in polynomial
time.

Increasing the number of subtrees

If there are more processors than subtrees, we may be able to further reduce the makespan
by splitting some of the subtrees. Given a tree 7 and a partition C';, SPLITAGAIN first builds

21

Algorithm 4 MERGE (1,C,p, M)

1: Construct the quotient tree () according to 7 and C

2: shortage < p — |C| — 1; (amount of processors’ shortage)

3: r < root of T;

4: while shortage > 0 do

5. for all nodes 7 of () except the root do

6: if subtree 7 is a leaf and has only one sibling then

7: A; + estimation of increase in M .S(r) if subtree i and its sibling are merged with
their parent;

8: m; < subtree made of 7, its sibling and their parent fits in memory size M;

9: else

10: A; < estimation of increase in MS(r) if merge subtree ¢ with its parent;

11: m; < subtree made of ¢ and its parent fits in memory size M;

12: end if

13: end for

14: set S« {i s.t. m; = true};

15: j < combination in S that has the minimum A;;
16: if subtree j is a leaf and has only one sibling then

17: merge subtree j and its sibling with their parent; shortage = shortage — 2;
18: else
19: merge subtree j with its parent;
shortage = shortage — 1;
20: end if

21: end while

the quotient tree () to model dependencies among subtrees, and finds its critical path. A
critical path is a set of nodes of () that defines the makespan of 7. In the example of
Figure 2.5 the critical path consists of three nodes of the quotient tree. Each subtree on
the critical path is a candidate to be cut into two (or three) parts by cutting some edges.
The set L (black nodes in Figure contains the nodes whose input edge could be cut.
If the subtree is a leaf in the quotient tree, we always split into three parts, otherwise we
would create a chain and only increase the makespan. At each step, we greedily select the
option (within nodes of L) that has the maximum potential decrease in makespan of 7. We
compute the potential makespan decrease as follows: let ¢ be the node whose input edge is
considered to be cut. It currently lies in the subtree 7; rooted at node t. After cutting the
input edge of node i, it produces a new subtree 7; of weight W;.
The makespan of 7; after cutting is given by:
fi

max(MS(t) — W;, Wy +] + rjecgz‘ll%i:n(n) MS(5)),

where M S(j) is the makespan of a subtree rooted at j before cutting any new edge. Indeed,

Figure 2.5 — Example to illustrate SPLITAGAIN: green areas surrounded with dotted line
belong to the critical path; black nodes are candidates to be cut after line [5| (set L).

22

either the critical path does not include 7;, or it now includes the communication to 7; and
the makespan of the largest children of 7; in the new quotient tree. Note that if the child of
7; that is in the critical path is also a child of 7; (for instance, in Figure , when we try to
cut the input edge of node a), the makespan will only be increased, and hence we will never
cut edge 1.

The decrease of the makespan of 7, when cutting the input edge of node ¢ is thus given

by:
fi

A; = min(W;, MS(t) — W, — 2 — MS(5)).
‘ mln(VV“ S(t) Wi ﬁ TjEC’rhIz'll%:Zn(n) S(]))

If we cut two edges in the last subtree on the critical path, say 7 and j, the makespan after

cutting is
MS(t) - W, — W, + max(% + Wi, % + W),
and the decrease of M S(t) is:

B B

This process is repeated until there are no more idle processors or no further decrease in
makespan. It is formalized in Algorithm [3]

Algorithm 5 SPLITAGAIN(T, C, p)

1: Compute the quotient tree () and its critical path CriPat;
2: n < p—1—|C|; (number of idle processors)

3: whilen > 1 do

4: L + nodes of subtrees on C'riPat;

5: Remove from L the roots of subtrees;

6: for all nodes 7 in L do

7 if 7 is in the last subtree on CriPat and n > 2 then
8: Let 7 be the largest sibling of i, in terms of W;

9: C; + input edges of nodes i and j;

10: else

11: C; < input edge of node i;

12: end if

13: A; + makespan decrease when edges in C; are cut;

14: end for
15: k< the node in L which leads to the largest Ag;
16: if A, > 0 then

17: C «+ CUCy; (cut edges in Cy)
18: n < n—|Cgl;

19: Recompute) and CriPat;

20: else

21: break;

22: end if

23: end while

23

2.6 Experimental validation through simulations

In this section, we compare the performance of the proposed heuristics on a wide range
of computing platform settings. We evaluate the results of the three stages: partition
for reducing makespan, fitting in the memory constraint and constraint on the number of
Processors.

2.6.1 Dataset and simulation setup

The dataset contains assembly trees of a set of sparse matrices obtained from the University
of Florida Sparse Matrix Collection. We selected square matrices, whose number of rows is
between 2 x 10* and 108, and whose number of non-zeros per row is at least 2.5, and the total
number of non-zeros is at most 5 x 10%. These 76 matrices were first ordered using AMD or
MeTiS, then the corresponding elimination trees were built, and relaxed node amalgamation
was performed on these trees (see [50] for more details on this construction).

To test the heuristics proposed above, we only kept trees whose MinMemory is larger
than its MaxOutDeg. This corresponds to 31 trees in the data set, coming from 22 matrices.

To compare the performance of the proposed heuristics in different environments, and
since these trees exhibit very different number of nodes (from thousands to several millions),
we have selected three different processor to node ratios (PNR): the number of processors
p can be set to 1le — 04, 0.001, or 0.01 times the tree size n (while ensuring p > 3). We also
consider three scenarios for the relative cost of computations vs. communications. Given
a tree, we select the communication bandwidth 3 such that the average communication to
computation ratio (CCR), defined as the total time for communicating all data divided by
the total computation time, is either 0.1, 1 or 10.

We consider two scenarios for the memory constraint: (i) in the loose scenario, the
memory bound for each processor is set to MinMemory, hence there is no memory con-
straint; (ii) then, the strict scenario sets the memory bound to MazOutDeg, the minimum
memory needed to process any single task. The sequential tree traversal used in FIRSTF'IT,
LARGESTFIRST and IMMEDIATELY is given by MinMem as described in [50], which has a
minimum memory cost. All codes and trees can be found on github.com/gouchangjiang.

2.6.2 Step 1: Minimizing the makespan

The results of heuristics for reducing makespan on different computing scenarios are shown
on Figure 2.6l We consider all combinations of CCRs and PNRs, and we normalize the
makespan of SPLITSUBTREES, IMPROVEDSPLIT, and ASAP to the makespan obtained
with a sequential execution of the tree, denoted by SEQUENCE. Hence, a smaller ratio
indicates a better relative performance. Note that there is no memory constraint in this
step, hence SEQUENCE returns a valid solution, using only one processor.

As expected, all heuristics are better than the reference sequential schedule SEQUENCE:
the makespan is reduced by at least 45% on more than 50% of the cases. With more proces-
sors, they behave even better than SEQUENCE, four times better on more than 50% of the
cases. Increasing the number of processors generally allows to reduce the makespan, except
for SPLITSUBTREES. All heuristics behave better than SPLITSUBTREES for all CCR values.
Also, note that IMPROVEDSPLIT always surpasses ASAP with few processors (PNR=1e—04
or 0.001).

Figure[2.6| presents the number of subtrees that are generated compared to the number of
processors provided. Only IMPROVEDSPLIT takes fully advantage of processor resources in
all cases. SPLITSUBTREES uses all processors only with few processors (PNR=1e — 04) and
not with more processors because it only splits in two levels. For instance, for PNR=0.01,
SPLITSUBTREES uses 16% of the processors on more than 50% of the cases. ASAP uses

24

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
https://github.com/gouchangjiang/MemComJournal

PNR = le-04 PNR = 0.001 PNR = 0.01

Whiih

Makespan normalized to SEQUENCE

QQ_ I I I
o 0.1 1 10
CCR
ES ASAP B8 IMPROVEDSPLIT ES SPLITSUBTREES
2 PNR = le-04 PNR = 0.001 PNR = 0.01
Q
2 & |7 |7 |7 T = T T il i
5 . L kS ,
% s T . i
2 Qf-\%_
§ : : :
far Q— . . .
NS
7
S qi’b_ ’
5 Q- 8 B 8
: ; ; ;
5 QQ_ 1 | 1 1 | 1 1 | 1
2 0.1 1 10 0.1 1 10 0.1 1 10
CCR

Figure 2.6 — Makespan (top, normalized to SEQUENCE) and number of generated subtrees
(bottom) after Step 1 with different CCRs and PNRs.

much fewer processors than IMPROVEDSPLIT, using only half of the processors in around
50% of the cases.

2.6.3 Step 2: Fitting into memory

At the end of Step 1, some subtrees may exceed the maximum available memory M when
we consider the strict memory scenario. As expected, there are less subtrees not fitting into
memory when there are many processors, since subtrees are smaller, and also when using
IMPROVEDSPLIT, since it generates more subtrees, and hence smaller subtrees. The subtrees
that do not fit into memory are further decomposed with either FIRSTFIT, LARGESTFIRST
or IMMEDIATELY, so that all subtrees fit in memory at the end of this step. We may then
have more subtrees than processors, and Step 3 will later merge subtrees if needed.

In order to assess the performance of the heuristics from Step 2, we execute them in the
strict memory scenario both on the original tree (SEQUENCE, i.e., no heuristic from Step 1 is
used) and after running the heuristics from Step 1. We report the average ratio of number
of subtrees to processors NtoP, and the average percentage of gain on execution time

MS?
ET=100x (1———2],
- (Msl)

where MS? is the makespan after Step 2 with an infinite number of processors (since

25

PNR

CCR Heuristic le-04 0.001 0.01
NtoP ET NtoP ET NtoP ET
ASAP 1.34 ™% 052 4% 042 0%
FirstFit ImprovedSplit 1.81 7% 1.10 2% 1.00 0%
SplitSubtrees 1.66 8% 0.70 0% 033 0%
Sequence 149 13% 020 13% 0.02 13%
ASAP 1.59 8% 052 4% 042 0%
. ImprovedSplit 2.03 8% 1.10 0% 1.00 0%
0.1 LargestFirst o icibtrees 1.86 10% 071 0% 033 0%
Sequence 217 13% 028 13% 0.03 13%
ASAP 597 9% 091 6% 043 2%
Immediately ImprovedSplit 555 5% 1.39 0% 1.00 0%
SplitSubtrees 513 9% 097 4% 033 0%
Sequence 6.24 18% 0.90 18% 0.09 18%
ASAP 134 7% 051 4% 040 0%
iy ImprovedSplit 181 7% 109 2% 100 0%
SplitSubtrees 1.66 8% 0.70 0% 033 0%
Sequence 1.49 13% 020 13% 0.02 13%
ASAP 1.59 8% 051 4% 040 0%
. ImprovedSplit 2.07 9% 1.10 4% 1.00 0%
I LargestFirst o Jicibtrees 1.86 10% 071 0% 033 0%
Sequence 217 13% 0.28 13% 0.03 13%
ASAP 597 9% 090 6% 041 2%
Immediately ImprovedSplit 5.61 5% 1.38 1% 1.00 0%
SplitSubtrees 5.13 9% 097 4% 033 0%
Sequence 6.24 18% 0.90 18% 0.09 18%
ASAP 1.3 6% 048 3% 034 -1%
FirstFit ImprovedSplit 1.75 10% 1.09 4% 099 0%
SplitSubtrees 1.64 7% 0.67 -1% 033 -1%
Sequence 1.49 12% 020 12% 0.02 12%
ASAP 1.97 % 048 3% 034 -1%
. ImprovedSplit 2.02 11% 1.10 7% 0.99 0%
10 LargestFirst o Jiqibtrees 1.84 10% 0.68 -1% 033 -1%
Sequence 217 12% 0.28 12% 0.03 12%
ASAP 597 8% 087 5% 035 2%
Immediately ImprovedSplit 6.08 4% 138 1% 099 0%
SplitSubtrees 5.11 8% 094 3% 0.33 0%
Sequence 624 17% 0.90 1% 0.09 1%

Table 2.1 — After Step 2, NtoP is the ratio of number of subtrees to processors, and ET is
the gain on execution time.

26

splitting subtrees in Step 2 may generate more subtrees than available processors), and
MS?' is the makespan after Step 1. If ET is positive, it means that the new makespan is
better, and the partition is feasible only if NtoP is smaller than or equal to 1.

Table presents all results, for the three heuristics of Step 2 (FIRSTFIT, LARGEST-
FIRST and IMMEDIATELY) and the four possibilities for Step 1. Overall, FIRSTFIT generates
the smallest amount of subtrees, hence there is more chance that this heuristic will succeed
to map all subtrees to processors while fitting in memory. LARGESTFIRST has close results
in terms of subtrees, and it is interesting to see that it can reduce the makespan even more
than FIRSTFIT. IMMEDIATELY generates much more subtrees, and in some cases it is able
to further decrease the makespan, but not always. The execution time of FIRSTFIT and
LARGESTFIRST could be worse than makespan of Step 1 when communication is expen-
sive (i.e. CCR=10), since creating additional subtrees to fit into memory may generate
expensive communications. In conclusion, FIRSTFIT is the best choice when processors are
limited (PNR=1e — 04), LARGESTFIRST and IMMEDIATELY are also good options when
many processors (PNR> 0.001) are available.

In the loose scenario, all subtrees fit in memory and hence Step 2 does not do anything,
and in the following, we apply LARGESTFIRST, FIRSTFIT or IMMEDIATELY for Step 2
seperately in the strict scenario.

2.6.4 Step 3: Reaching an acceptable number of subtrees

In this section, we examine the performance of MERGE and SPLITAGAIN, which are de-
signed for reducing the number of subtrees so that we have enough processors, or for further
optimizing the makespan if there are some remaining processors. As seen in Table 2.1] Im-
PROVEDSPLIT is the heuristic generating the most subtrees when combined with LARGEST-
FIRST, and hence it requires to merge some subtrees to obtain a feasible solution. The
other heuristics leave many processors idle when there are many processors (PNR=0.001 or
PNR=0.01), and we may be able to further improve the makespan by using SPLITAGAIN
in these cases.

Figure[2.7shows the performance of SPLITAGAIN or MERGE. We compare the makespan
after Step 3 to the execution time that was achieved at the end of Step 2 (with an infinite
number of processors), using LARGESTFIRST, FIRSTFIT, or IMMEDIATELY during Step 2
(strict memory scenario), with CCR=0.1. Each tile in the figure represents a testing case,
and F represents a failure, i.e., we were not able to obtain a solution with less subtrees than
processors. As expected, the less processors, the more failures we have. Since SEQUENCE
did nothing in Step 1, it starts from a sequential execution of the tree and hence it obtains
important gains in makespan after using SPLITAGAIN in Step 3. SPLITAGAIN also allows us
to improve the makespan with ASAP and SPLITSUBTREES. As noted before, IMPROVED-
SPLIT usually generates more subtrees than processors after Step 2, and hence we must
use MERGE to obtain a feasible solution, as well as for other heuristics when there are few
processors (PNR=1e-04). We observe some failures in these cases, in particular when using
IMPROVEDSPLIT, while ASAP and SEQUENCE succeed in most cases.

Overall, the failure rate after Step 3 is 7.26% when using LARGESTFIRST at Step 2.
Compared to using LARGESTFIRST, using FIRSTFIT has less cases who has an increase in
makespan (i.e., less red rectangles). The corresponding failure rate is 7.26%, the same as
using LARGESTFIRST. Using IMMEDIATELY at Step 2, as shown in Figure there are
more failures than using LARGESTFIRST or FIRSTFIT. Even using SEQUENCE at Step 1
and PNR= 0.001, it may fail. Overall, the failure rate is 14.52% for using IMMEDIATELY,
two times larger than using LARGESTFIRST.

Still in the strict memory scenario, we finally compare the makespan of all our heuristics
to FIRSTFIT, since it is a simple adaptation from [50]. Indeed, FIRSTFIT is likely to give
a feasible solution in most cases, since it consumes least processors, as shown in Table [2.1]
Furthermore, we consider the heuristic SELECT, which runs all possible heuristics at Step 1

27

Scale
0.2
04
0.8
1.0
20
4.0
I 6.0
Scale
0.2
0.4
0.8
1.0
2.0
4.0
6.0
Scale
0.2
04
0.8
1.0
2.0
4.0
I 6.0

28

A A
-O -O
o =~ o
= ~
+—
o @ e &
|||||| = R = e e © e I = = = m
I I I V4 © I | | V4 m\bu | I I
I I © W I I © =
| I ko)] | | he) —
- I I (] ﬂ - I I o —
| | | o Z = | | | o Z W J_ -_ |
| | | O 0O n | | | O O w0 | | |
I I I s K I I I ; Jas I I I
O o 1O} O =
I I I w e I I I % 3 I I I
| I < I I I
| B o 5 | B e 3 w EEEE
| | _ QO _ | | S B | _ _
i ol eEin o 2 s Bt Bl i Bl O ~ - - -
I I o = I I o =
| I = I I
| I = I |
| I < I | <
EOE OB OE 3 BB OE OB 3 ‘Il Bul Bl B
| I) I I) I I I
| I -— I | -— I I I
| I I I I I I

Processor to Node Ratio

(c) Use IMMEDIATELY at Step 2

Sog, 8oy, Sog S Lo} Sog 8 e

/ Uspy,. SPs, d) Qg Sy d) Uy, "SPg d

os@\\ o aomm _ogQE\ sy, os@.\\ o sow.m, _SQS\ N 95.\\ o aowm _SQE\ sy,
olslNaH onsuUNaH 211sNaH

Figure 2.7 — Increase or decrease of makespan after Step 3. F represents failures. CCR = 0.1.

ES ASAP BS IMPROVEDSPLIT E§ SEQUENCE ES SPLITSUBTREES ES SELECT

£ PNR = le-04 PNR = 0.001 PNR = 0.01

&

=2.0-

wn

=

(&

eld-

v-c . . .

S

:?; 10- 5 X 5) - :

g

3 .

g 0.5- | ; H H

e}

<

o H
% 0.0-

= 0.1 1 10 0.1 1 10 0.1 1 10

CCR
(a) use LARGESTFIRST at step 2.

PNR = 1e-04 PNR = 0.001 PNR = 0.01

—
(@2
1

E

F—

I

n

=

=

21.0-

=

8

=

:

S0.5-

=]

z % M “ “ “ “
o

8

go.o-

0.1 1 10 0.1 1 10 0.1 1 10
CCR
(b) use FIRSTFIT at step 2.
PNR = le-04 PNR = 0.001 PNR = 0.01

—
(S
1

—
o
1

.
(@)
1

i

0.1 1 10 0.1 1 10
CCR

(c) use IMMEDIATELY at step 2.

Makespan normalized to FIRSTFIT
o
o

il

Figure 2.8 — Final makespan (using Step 1 heuristic followed by a Setp 2 heuristic and
SPLITAGAIN/MERGE) normalized to FIRSTFIT.

29

(followed by a heuristic of Step 2 (LARGESTFIRST, FIRSTFIT or IMMEDIATELY), and then
SPLITAGAIN or MERGE), and keeps the best solution for each input tree. This allows us to
analyze whether there is at least one heuristic that outperforms others in all situations.

Figure presents the final makespan obtained after all three steps, excluding cases on
which no solution was found. Recall that failure rates can be found in Figure 2.7, We first
illustrate the results with using LARGESTFIRST at step 2. Overall, IMPROVEDSPLIT is the
best heuristic when there are a few processors (PNR=1e-04), but other heuristics outperform
it in several cases, since SELECT is even better achieving a makespan 2.5 times faster than
the reference FIRSTFIT. With more processors, ASAP is slightly better, in particular for
PNR=0.001. Skipping Step 1 (SEQUENCE) gives reasonable results as soon as there are many
processors (PNR=0.01, or even PNR=0.001), which shows that the heuristics from Step 3
(SPLITAGAIN and MERGE) are very efficient in these cases (in particular SPLITAGAIN).
With PNR=0.01, all heuristics achieve a makespan four times smaller than the reference,
in average. Note that we may get a makespan worse than the reference on some cases,
in particular with SEQUENCE and SPLITSUBTREES (1.39 or 1.26 times worse than the
makespan from FIRSTFIT), but these outlier cases are avoided by using SELECT.

When using FIRSTFIT at step 2, the biggest difference is that the makespan of SE-
QUENCE (followed by SPLITAGAIN/MERGE in step 3) is worse than using LARGESTFIRST
at step 2, when there are a few processors (PNR=1e — 04). When using IMMEDIATELY at
step 2, results are slightly different than with LARGESTFIRST, and overall, ASAP becomes
the best solution, then followed by IMPROVEDSPLIT and SEQUENCE. When there are a few
processors (PNR= 1le —04), no heuristic always win over the others, since the median of SE-
LECT is around 0.08 lower than the others. Excluding failure cases, the final makespan using
IMMEDIATELY at Step 2 is slightly better than when using LARGESTFIRST. This is more
obvious when there are few processors (PNR= le—04): compared to using LARGESTFIRST,
ASAP decreases 8% in average when using IMMEDIATELY.

Of course, SELECT is always the best pick, but it may come at the price of a higher
scheduling time, since it implies to run all four variants. We report the execution times in
Figure . To ease the reading, we plot the scheduling time (in minutes) and number of
nodes in the tree on logarithmic scale axes. We first discuss the result with using LARGEST-
FIRST at step 2. ASAP and SEQUENCE are the fastest heuristics, and it is interesting to
note that ASAP can sometimes be even faster than SEQUENCE, even though SEQUENCE
does not do anything in Step 1: the tree obtained at the end of Step 1 with ASAP has then
a faster scheduling time for Steps 2 and 3 than starting from the original tree. As expected,
IMPROVEDSPLIT takes more time than SPLITSUBTREES, since it refines the solution from
SPLITSUBTREES to cut in several levels. It has to be noted that very long scheduling times
(above 10 minutes) only happen for very large trees (above 100.000 nodes), except for a
few extreme cases. Overall, running SELECT is only slightly longer than IMPROVEDSPLIT,
since the scheduling times of all other heuristics are small in comparison to the one of IM-
PROVEDSPLIT. The same conclusion holds for the case when using FIRSTFIT at step 2.
When using IMMEDIATELY at step 2, the only difference to using LARGESTFIRST is that
SEQUENCE becomes the fastest one when PNR= 0.01. Finally, note that different processor
to node ratios (PNR) only slightly impact the scheduling time (see Figure for detailed
results).

To summarize, we recommend using SELECT with LARGESTFIRST at step 2, unless the
scheduling time is very important or the tree is very large, in which cases ASAP is a good
option for Step 1 (efficient makespan obtained with a fast execution of the heuristic).

Finally, we present results in the loose memory scenario, where the memory bound for
each processor is set to MinMemory, hence there is no memory constraint. In this case, we
only consider the use of Step 1 directly followed by Step 3. The reference heuristic becomes
SPLITSUBTREES, which was directly adapted from ideas from [3§], resulting in a two-level
split of the tree.

Figure reports the final makespan, after applying one heuristic of Step 1 followed by

30

SELECT

SPLITSUBTREES *

SEQUENCE

IMPROVEDSPLIT

ASAP -

Step2: LARGESTFIRST

(XX}

WQ#P@N

L] oJWw e e
@aratece o

® & "\ FWneomy .

oSerene @ oS e
“e ee

a8
®® © o wee
“atnd, WL, o

Qe 0000 00 ‘®>

QQ%@N WQIQN

Step2: FIRSTFIT

® Qe o L2 ose o ® @wee

® ™ AN N,

Step2: IMMEDIATELY

-« e

x@*g%

L 1) oe oo @ (1] o eo° o®
(XX] - % o ThH @™ o o0 - o O%
Suratee ‘o ®arttnee o
. " oeocay)) . " ocon
- e eneo o - e ames
L] w @ AP . o LI
el @ e @0 Cedd @e
Set o0 ® e oo ®ot o0
LI e e g LI) en o

o ompmn « carroms e
. l‘h” X (o IR [ot o .ﬂomo AL LI

NFWe® 000 000 b

'!J*.gn' (1] O

9 & wie

%o o o me

e ®PGee 00 ™

WQ%@ bQ%@N WQIQN WQ%@N
(stxe oeds-S0[) ased Yoed Jo aur) SUIMPAYDS

'""‘iﬂ. J\"' =

¥®e < ® o @eo

QQ#P@N

5
@@ P o @ VAOU
e
I

WQ o b

Tree size (log-scale axis)

Figure 2.9 — Logarithmic scheduling time in minutes of different allocation policies, all

followed by SPLITAGAIN or MERGE.

31

E3 ASAP ES IMPROVEDSPLIT E5 SEQUENCE ES SPLITSUBTREES ES SELECT

PNR = 1e-04 PNR = 0.001 PNR = 0.01

g
£ - wn
< z
- I
3
F 2
o es
~ w2
|
=
&
S A
7 -
N
2
%
<
g
? g
o0 L -
S o
~— g
g
© N
S e
(7 —
© HJ
(D) —_
E =
S o
0 P
=)
=N
=
=
O
=
O
N
g
e %
S 2
N
2
S 2
- &
< S
>
H
=
..<
&
7 -
~

Figure 2.10 — Logarithmic scheduling time in minutes of different allocation policies, all
followed by SPLITAGAIN or MERGE.

32

ES ASAP ES IMPROVEDSPLIT 5 SEQUENCE ES SPLITSUBTREES ES SELECT

n

£a)

E PNR = le-04 PNR = 0.001 PNR = 0.01
£2.0-

m

= N

21.5- iot ok 1 .
& = — l
=

El 0-

=

20.5-

=}

=]

=i

goo- 1 I 1 1 I 1 1 I 1
E 0.1 1 10 0.1 1 10 0.1 1 10
g CCR

Figure 2.11 — Final makespan of each Step 1 heuristic followed by SPLITAGAIN, normalized
to SPLITSUBTREES in the [oose memory scenario.

SPLITAGAIN. Indeed, at the end of Step 1, there are always less subtrees than processors.
With few processors (PNR=1e-04), there is little room for improvement over the two-level
partitioning of the tree. However, when the number of processors increase, SPLITAGAIN
achieves good results in using available processors to reduce the makespan, even without
going through a heuristic from Step 1 (SEQUENCE variant). Using only SPLITAGAIN on
the original tree is a good option in this case.

& | |
,;§’ | |
5 - | : Scale
“C\Q | |
('/)a g) _____________ SN SRR i e 0.2
| |
o § [I 0.4
O = | |
..(75 g$ | | 0.8
0O . Q - - - - o L B
3 g | | 1.0
S | | 2.0
QL _______ o ____ 1o ol __

\E Q | | 4.0
F - I | 6.0
<< | |

| |
| |

1e-04 0.001 0.01
Processor to Node Ratio

Figure 2.12 — Increase or decrease of makespan after Step 3, in the loose memory scenario.
CCR=0.1.

Figure shows the performance of SPLITAGAIN, after heuristics of Step 1, no heuris-
tics of Step 2 is used since the local memory is set as MinMemory. Obviously, there is no
failure case. Indeed, heuristics of Step 1 guarantee that no more subtrees are generated than
processors. Makespan is decreased by SPLITAGAIN on most cases except IMPROVEDSPLIT,
as it always takes fully advantage of processors, leaves no idle processors for improvement.

Finally, Figure reports the execution times of a heuristic of Step 1 followed by
SPLITAGAIN. SEQUENCE is the fastest one, then closely followed by ASAP. IMPROVED-

33

E3 ASAP ES IMPROVEDSPLIT F§ SEQUENCE ES SPLITSUBTREES ES SELECT

<

% PNR = le-04 PNR = 0.001 PNR = 0.01

O

g & ; :

&) . H

=~ QQ i .

Q

59 °

E)

O o

EJ -

= : :

1Y) . .

i

'E‘ 1 1 1 1 1 1
g o Q> > WO o) A O
?} CCR

Figure 2.13 — Logarithmic scheduling time in minutes of different allocation policies, all
followed by SPLITAGAIN, in the [oose memory scenario.

SPLIT still takes far more time than SPLITSUBTREES. SELECT is only slightly longer than
IMPROVEDSPLIT.

2.7 Chapter summary

We have studied a tree partitioning problem, targeting at a multiprocessor computing sys-
tem in which each processor has its own local memory. The tree represents dependencies
between tasks, and it can be partitioned into subtrees, where each subtree is executed by
a distinct processor. The goal is to minimize the time required to compute the whole tree
(makespan), given some memory constraints: the minimum memory requirement of travers-
ing each subtree should not be more than the local memory capacity. We have proved that
the problem above, MINMAKESPAN, is NP-complete, and we have designed several heuris-
tics to tackle it. We propose a three-step approach: (i) minimize the makespan; (ii) fit into
memory if needed; and (iii) make sure that we have less subtrees than processors, and use
as many processors as required to further minimize the makespan.

Extensive simulations demonstrate the efficiency of these heuristics and provide guide-
lines about the heuristics that should be used. Without memory constraint, the heuristic
from Step 3, SPLITAGAIN, is efficiently splitting the tree to minimize the makespan, and
achieves results 1.5 times better than the reference heuristic, SPLITSUBTREES, when there
are many processors available (processor to node ratio PNR> 0.001). When there are mem-
ory constraints, one must make sure that each subtree fits into memory, and the reference
heuristic is FIRSTF1T, which partitions the tree for memory. In this case, using the best
combination of a heuristic of Step 1, a heuristic to fit into memory, and finally SPLITSUB-
TREES or MERGE, allows us to drastically improve the makespan (two to four times better,
depending on the processor to node ratio). The use of ASAP in Step 1 may be selected for
a smaller scheduling time, since IMPROVEDSPLIT may lead to a smaller makespan, but at
the price of a longer scheduling time.

Building upon these promising results, an interesting direction for future work would be
to consider partitions that do not necessarily rely on subtrees, but where a single processor
may handle several subtrees. Also, this work can be extended to general directed acyclic
graphs of task, while we have restricted the approach to trees so far.

34

Chapter 3

Improving mapping for sparse direct
solvers: A trade-off between data
locality and load balancing

This work is the result of a collaboration with Grégoire Pichon, Mathieu Faverge, and Pierre
Ramet from INRIA Bordeaux to solve a task tree mapping problem, arising in a parallel
sparse matrix solver — PASTIX. The numerical factorization can be described as a traversal
of computational tree. One of the pre-processing phases is to map the nodes onto the
processors of the target architecture. In this phase, two scheduling algorithms have reverse
strengths and drawbacks. The first one, named PROPMAP, shows a good data-locality but
a bad load balance (some processors are idle sometimes). The second one, ALL2ALL, takes
fully advantage of processors but induces a large amount of data movement and a high time
complexity. Our goal is to propose a solution that reduces the idle time and preserves a
good data-locality and a low complexity.

From the perspective of scheduling, this work is about mapping a tree of tasks onto
processors in a shared memory setting and/or a distributed setting. In Chapter , the tree
is partitioned into many small-sized subtrees such as to fit the local memory capacity, and
we restrict a processor to handle only a subtree. In this work, this limit is released, a
processor can handle many subtrees. Data movements between two subtrees can be saved
if they are mapped onto the same processor. The goal in this chapter is hence to reduce
the execution time by taking fully advantage of parallel platforms (i.e., reduce idle time of
processors) and reducing the data movement between processors, since it is time expensive,
especially in a distributed setting. From the practical point of view, this work could be seen
as an application of tree scheduling in a real parallel software. The role of task trees and
how do we estimate the execution time of the solver by simulations of processing the tree
on a parallel platform are presented in detail. This work has been published at Euro-Par
2020 [C2].

3.1 Introduction

For the solution of large sparse linear systems, we design numerical schemes and software
packages for direct parallel solvers. Sparse direct solvers are mandatory when the linear
system is very ill-conditioned for example [29]. Therefore, to obtain an industrial software
tool that must be robust and versatile, high-performance sparse direct solvers are mandatory,
and parallelism is then necessary for reasons of memory capability and acceptable solution
time. Moreover, in order to solve efficiently 3D problems with several million unknowns,
which is now a reachable challenge with modern supercomputers, we must achieve good
scalability in time and control memory overhead. Solving a sparse linear system by a direct
method is generally a highly irregular problem that provides some challenging algorithmic
problems and requires a sophisticated implementation scheme in order to fully exploit the

35

Ordering |—

Symbolic Coarse | , | Precise Factorization,
factorization level | |decision Solve

Scheduling and mapping

Figure 3.1 — A workflow composed of sequential preprocessing steps, parallel factorization
and solve steps in PASTIX.

capabilities of modern supercomputers.

There are two main approaches in direct solvers: the multifrontal approach [5], 36], and
the supernodal one [46], [74]. Both can be described by a computational tree whose nodes
represent computations and whose edges represent transfer of data. In the case of the
multifrontal method, at each node, some steps of Gaussian elimination are performed on a
dense frontal matrix and the remaining Schur complement, or contribution block, is passed
to the parent node for assembly. In the case of the supernodal method, the distributed
memory version uses a right-looking formulation which, having computed the factorization
of a supernode corresponding to a node of the tree, then immediately sends the data to
update the supernodes corresponding to ancestors in the tree. In a parallel context, we can
locally aggregate contributions to the same block before sending the contributions. This can
significantly reduce the number of messages. Independently of these different methods, a
static or dynamic scheduling of block computations can be used. For homogeneous parallel
architectures, it is useful to find an efficient static scheduling.

In order to achieve efficient parallel sparse factorization, as shown in figure [3.1 we
perform the three sequential preprocessing phases:

1. The ordering step, which computes a symmetric permutation of the initial matrix
such that the factorization process will exhibit as much concurrency as possible while
incurring low fill-in.

2. The block symbolic factorization step, which determines the block data structure of
the factorized matrix associated with the partition resulting from the ordering phase.
From this block structure, one can deduce the weighted elimination quotient graph
that describes all dependencies between column-blocks, as well as the supernodal elim-
ination tree.

3. The block scheduling/mapping step, which consists in mapping the resulting blocks
onto the processors according to a 1D scheme (i.e. by supernode) for the lower part
of the tree, and according to a 2D scheme (i.e. by blocks) for the upper part of the
tree. During this mapping phase, a static optimized scheduling of the computational
and communication tasks, according to models calibrated for the target machine, can
be computed.

When these preprocessing phases are done, the computation on the actual data, that is the
numerical factorization, can start parallelly.

The optimization problem that needs to be solved at the scheduling/mapping stage is
known to be NP-hard, and is usually solved using a proportional mapping heuristic [70)].
This mono-constraint heuristic induces idle times during the numerical factorization. In
this chapter, we extend the proportional mapping and scheduling heuristic to reduce these
idle times. We first detail in Section proportional mapping heuristic with its issues
and related work, before describing the original application in the context of the PASTIX
solver [47] in Section . Then, in Section , we explain the introduced solution before
studying its impact on a large set of test cases in Section Conclusions are presented in

Section [3.6]

36

3.2 Related work

Among different mapping strategies that are used by both supernodal and multifrontal
sparse direct solvers, the subtree to subcube mapping [44] and the proportional mapping [70]
are the most popular. These approaches consist of tree partitioning techniques, where the
set of resources mapped on a node of the tree are split among disjoint subsets, each mapped
to a child subtree.

The proportional mapping method performs a top-down traversal of the elimination
tree, during which each node is assigned a set of computational resources. All the resources
are assigned to the root node, which performs the last task. Then, the resources are split
recursively following a balancing criterion. The set of resources dedicated to a node are split
among its children, proportionally to their weight or any other balancing criterion. This
recursive process ends at the leaves of the tree, or when entire subtrees are mapped onto a
single resource.

The original version of the proportional mapping [70] computes the splitting of resources
depending on the workload of each subtree, but more sophisticated metrics can also be
used. In [71], a scheduling strategy was proposed for tree-shaped task graphs. The time for
computing a parallel task (for instance at the root node of the elimination tree) is considered
as proportional to the length of the task and to a given parallel efficiency. This method
was proven efficient in [I2] for a multifrontal solver. The proportional mapping technique is
widely used because it helps reducing the volume of data transfers due to its data locality.
In addition, it allows us to exhibit both tree and node parallelism.

Note that alternative solutions to the proportional mapping have been proposed, such
as the 2D block-cyclic distribution of SUPERLU [60], or the 1D cyclic distribution of SYM-
PACK [51]. In the latter, the non load-balanced solution is compensated by a complex and
advanced communication scheme that balances the computations in the nodes to get good
performance results out of this mapping strategy.

As stated earlier, sparse direct solvers commonly use the proportional mapping heuristic
to distribute supernodes (a full set of columns, i.e., 1D distribution that share the same
row pattern) onto the processors. Note that each supernode can be split into smaller nodes
to increase the level of parallelism, which modifies the original supernodes tree structure
as shown in Figure [3.2] This heuristic provides a set of candidate processors for each
supernode, which is then refined dynamically when going up the tree, as in MUMPS [4] or
PASTIX [47], with a simulation stage that affects a single processor among the candidates,
while providing a static optimized scheduling. The proportional mapping stage, by its
construction, may however introduce idle time in the scheduling. This is illustrated on
Figure 3.3] The ten candidate processors of the root node are distributed among the two
sons of weight respectively 4 and 6. The Gantt diagram points out the issue of considering
a single criterion heuristic to set the mapping: no work is given to processor pg due to the
low level of parallelism of the right node, whereas it could benefit to the left node.

3.3 Description of the application

At a coarse-grain level, the computation can be viewed as a tree 7' whose nodes (or vertices)
represent supernodes of the matrix, and where the dependencies are directed towards the
root of the tree. A supernode is a set of contiguous columns with the same row pattern.
Because sparse matrices usually represent physical constraints and thanks to the nested
dissection used to order the matrix, nodes at the bottom of the tree are usually small and
nodes at the top are much larger. Each supernode is itself a small DAG (Directed Acyclic
Graph) of tasks as illustrated on Fig. A more refined view shows that the dependencies
between two supernodes consist of dependencies between tasks of these supernodes. Another
way to put it is that the computation is described as a DAG of tasks, tasks are partitioned
into supernodes, and the quotient graph of supernodes is the tree 7' (with some transitivity

37

edges). Note that with 1D distribution, as targetted here, the DAG within can also be seen
as a tree with dependencies toward the roots. Thus, in this study, we will use either nodes
or supernodes to denote the vertices of the tree T" as they can be used interchangeably.

This structure in two levels allows us to both reduce the cost of the analysis stage by
considering only the first level, while increasing the parallelism level during the numerical
factorization with finer grain computations.

We denote by root(T') the node at the root of tree T', and by w; the computational weight
of the node 7, for 1 < i < n: this is the total number of operations of all tasks within node 3.
Also, parent(i) is the parent of node 7 in the tree (except for the root), and child(i) are the
children nodes of i in the tree. Given a subtree T; of T" (rooted in root(13)), Wi =3 _cp w;
is the computational weight of this subtree.

As stated above, each node ¢ of the tree is itself made of n; > 1 tasks iy, ..., 4,,, whose
dependencies follow a directed acyclic graph (DAG). Each of these tasks is a linear algebra
kernel (such as matrix factorization, triangular solve or matrix product) on block matrices.
Hence, given a node i and its parent j = parent(i) in the tree, only some of the tasks of i
need to be completed before j is started, which allows some pipelining in the processing of
the tree.

When running on a parallel platform with a set P of p processors, nodes and tasks are
distributed among available processing resources (processors) in order to ensure a good load-
balancing. If node i is executed on alloc[i| = k processors, its execution time is f;(k); this
time depends on w; and on the structure of the DAG of tasks.

Following the structure of the application, the mapping is done in two phases: the first
phase, detailed in Section , consists in using the Proportional Mapping algorithm [70]
to compute a mapping of nodes to subsets of processors. The second phase, detailed in
Section [3.3.2] refines this mapping by allocating each task of a node i to a single processor
of the subset allocated to 7 in the first step.

3.3.1 Coarse-grain load balancing using proportional mapping

The proportional mapping process follows the sketch of Algorithm [6] First, all processors
are allocated to the root of the tree. Then, we compute the total weight of its subtrees (i.e.,
the sum of the weight of their nodes), and allocate processors to subtrees so that the load
is balanced. Then, we recursively apply the same procedure on each subtree.

Apart from balancing the load among branches of the tree, the proportional mapping is
known for its good data locality: a processor is allocated to nodes of a single path from a leaf
to the root node, and only to nodes on this path. Thus, the data produced by a node and
used by its parents mostly stay on a single processor, and no data transfer is made except
for the necessary redistribution of data in the upper levels of the tree. This is particularly

intra-node

dependency

inter-node

dependency

task

supernode

Figure 3.2 — Structure of the computation: tree of supernodes, each supernodes being made
of several tasks..

38

P9

Ps”
pr|
pe|
Psﬂ
Pa
p3
P‘z”
PLW
Po

Wy =5x0.8 Wy =5x12
=4 =6

Figure 3.3 — Illustration of proportional mapping: elimination tree on the left, and Gantt
diagram on the right. Based on a single weight criterion. On the left, the elimination tree
presents a single node with 10 potential candidates and two sons of respective costs of 4 and
6. On the right, the associated Gantt diagram for these two nodes with the regular weight

mapping.

Algorithm 6 Proportional mapping with integer number of processors

function PropMapInt(tree T, set P of processors):

Allocate all processors in P to the root of tree T'

For each subtree T; of T', compute its total weight W

Find subsets of processors P; such that max(W;/|P;|) is minimal and > |P;| = | P|
For each subtree T; of T', call PropMapInt(T;, P;)

interesting in a distributed context, where communications among processors are costly.

However, the mapping algorithm [7] suffers a major problem when used in a practical
context, because they forbid allocating processors to more than one child of a node. First,
some nodes, especially leaves, have very small weight and several of them should be mapped
on the same processor. Second, allocating integer numbers of processors to nodes creates
unbalanced workloads, for example, when three processors have to be allocated to two
identical subtrees. All implementations of the proportional mapping tackle this problem
(including the first one in [70]). For example, the actual implementation in PASTIX, as
sketched in Algorithm [7] allows “border processors” to be shared among branches, and keeps
track of the occupation of each processor to ensure load-balancing. It first computes the total
time needed to process the whole tree, and sets the initial availability time of each processor
to an equal share of this total time. Whenever some (fraction of a) node is allocated to a
processor, its availability time is reduced. Hence, if a processor is shared on two subtrees
Ty, T,, the work allocated by T is taken into account when allocating resources for T,. Note
also that during the recursive allocation process, the subtrees are sorted by non-increasing
total weights before being mapped to processors. This allows us to group small subtrees
together in order to map them on a single processor, and to avoid unnecessary splitting of
processors.

3.3.2 Mapping refinement after the coarse-grain mapping

After allocating nodes of the tree to subsets of processors, a precise mapping of each task
to a processor has to be computed. In PASTIX, this is done by simulating the actual
factorization, based on the prediction of both the running times of tasks and of the time
needed for data transfers. The refined mapping process is detailed in Algorithm [8] Thanks
to the previous phase, we know that each task can run on a subset of processors (the
subset associated to the node it belongs to), called candidate processors for this task. We
associate to each processor a ready queue, containing tasks whose predecessors have already
completed, and a waiting queue, with tasks that still have some unfinished predecessor. At

39

Algorithm 7 Proportional mapping with shared processors among subtrees

function ProportionalMappingShared(tree T, number of processors p):
for each processor k =1,...,p do
avail _timelk] = Y. w;/p
end for
Call PropMapSharedRec(T, 1, p)

function PropMapSharedRec(subtree T’ indices first proc, last _proc):
if last _proc = first_proc then
Map all nodes in subtree T' to processor first proc
avail _timelfirst _proc] = avail _time[first _proc] — >, w;
else
Map node 7 = root(T') to all processors in first proc, ..., last _proc
for each k = first _proc, ..., last _proc do
avail _timelk] = avail _time[k] — w,/(last _proc — first _proc)
end for
next _proc <— first _proc
Sort the subtrees of 7" by non-increasing total weight
for each subtree T; in this order do
cumul _time < 0
Wsybtree ZjGTi wj
first _proc_ for subtree < next proc
while cumul time < Wgyptree dO
new _time _share <— min(Wsypiree — cumul _time, avail _time[next proc])
cumul _time < cumul time + new time share
avail _time[next _proc] <— avail _time[next proc] — new time share
if avail _time[next proc] = 0 then next proc < next proc + 1
end while
PropMapSharedRec(T;, first _proc__for _subtree, next _proc)
end for
end if

the beginning of the simulation, each task is put in the waiting queue of all its candidate
processors (except tasks without predecessors, which are put in the ready queue of their
candidate processors). Queues are sorted by decreasing depth of the tasks in the graph
(tasks without predecessors are ordered first). The depth considered here is an estimation
of the critical path length from the task to the root of the tree T'.

A ready time is associated both to tasks and processors:

e The ready time RP[k] of processor k is the completion time of the current task being
processed by k (initialized with 0).

e The ready time RT7i| of task i is the earliest time when i can be started, given its input
dependencies. This is at least equal to the completion time of each of its predecessors,
but also takes into account the time needed for data movement, in case a predecessor
of 7 is not mapped on the same processor as 7. The ready time of tasks with non-started
predecessor is set to +oo.

3.3.3 Discussion on the choice of the mapping algorithm

Since the precise mapping of each task is only decided during the mapping refinement phase,
one can use a different mapping strategy to compute the set of candidate. One extreme
choice consists in putting all processors in the set of candidates of all tasks. This method,
called All to All mapping, has two drawbacks:

e The time needed for the simulation phase can be very long when the number of

40

Algorithm 8 Precise scheduling and mapping using simulation

for all task 7 do
If i is a leaf, put 7 in the ready queue of every processor in candidate(i), otherwise put
it in the waiting queue.

end for

while all tasks have not been mapped do
For each processor k, consider the triplet (i, k,t) where i is the first task in the ready
queue of processor k and t is the starting time of ¢ on k (t = max(RT[i], RP[k]))
Consider F, the set of all such triplets
Select the triplet (i, k,t) in F' with the smallest ¢ (if ties, choose the one with largest
depth)
Schedule task ¢ on processor k at time ¢
Update the ready times of processor k£ and of the successors of ¢ on all their candidate
processors
Update the ready queue and waiting queue of processor k, as well as of candidates
processors of successors of ¢

end while

processors and tasks are large, since its complexity is O(npC'), where C' is the size
of the largest candidate set.

e The data locality of the obtained allocation might be very bad: tasks from the same
supernode may be mapped on remote processors, inducing a large amount of data
movement and contention on communications.

The task allocation based on the proportional mapping algorithm does not have these
drawbacks: the set of candidate per task is limited, and the obtained data locality is very
good, as discussed above. However, its hard constraint on candidate set sometimes creates
load unbalance: because of the limited parallelism in some supernodes, some processors from
its allocated subset may be idle. This results in a longer time needed to process all tasks of
this supernodes, which in turn causes idle time in other branches, when the processing of
its siblings have completed but the parent supernode cannot start being processed.

3.4 Proposed mapping refinement

Our objective is to correct the potential load imbalance (and thus idle times) created by the
proportional mapping, as outlined in Section but without impacting too much the data
locality. We propose a heuristic based on work stealing [16] that extends the refined mapping
phase (see Algorithm [§]) using simulation (see Algorithm @ Intuitively, we propose that if
the simulation predicts that a processor will be idle, this processor tries to steal some tasks
from its neighbors.

In the proposed refinement, we replace the update of the ready and waiting queues of
the last line in Algorithm |8 by a call to Update Queues WithStealing (Algorithm @ For each
processor k, we first detect if k& will have some idle time, and we compute the duration d
of this idle slot. This happens in particular when the ready time of the first task in its
waiting queue is strictly larger than the ready time of the processor (RT[i] > RP[k]) and
ready queue is empty. Whenever both queues are empty, the processor will be idle forever,
and thus d is set to a large value. Then, if an idle time is detected (the ready queue is
empty and d is a positive value), a task is stolen from a neighbor processor using function
StealTuask. Otherwise, the ready and waiting queues are updated as previously: the tasks
of the waiting queue that will be freed before the processor becomes available are moved to
the ready queue.

41

Algorithm 9 Update ready and waiting queues with task stealing

function UpdateQueuesWithStealing(nb. of proc. p,switch IsSharedMem):
for k =1topdo
if waiting queue, # () then
Let 7 be the first task in waiting queue,
d <+ RT[i] — RPIk]
else
d < 400
end if
if ready queue, = () and d > 0 then
StealTask(k,p, d, IsSharedMem)
else
Let 7 be the first task in waiting _queue,
while RT[i] < RP[k| do
Move task i from waiting queue, to ready queue,
Let 7 be the first task in waiting queue,
end while
end if
end for

function StealTask(proc. k,proc. nb. p,idle time d, switch IsSharedMem.):
if IsSharedMem = false then
set S+ {k—1,k+1,k—2k+2};set S« 0
for j =1to4do
if Sk[j] > 0, Sk[j] < p, Sklj] is in the same cluster as k and |S| < 3 then
add Sk[j] to S
end if
end for
end if
if IsSharedMem = true or S is empty then
set S <= {k—1 (mod p),k+ 1 (mod p)}
end if
Build the set O with the first element of each ready queue of processors in S
Let o be the task of O with minimum RT'[0]
if RT[o] < RPlk] + d, then insert o into ready queue,

42

When stealing tasks, we distinguish between two cases, depending whether we use shared
or distributed memory. In shared memory, the two possible victims of the task stealing
operation are the two neighbors of processor k, considering that processors are arranged in
a ring. In the case of distributed memory, we first try to steal from two neighbor processors
within the same cluster, that is, within the set of processors that share the same memory.
Stealing to a distant processor is considered only when clusters are reduced to a single
element. Once steal victims are identified (set .S), we consider the first task of their ready
queues and select the one that can start as soon as possible. If the task is able to start
during the idle slot of processor & (and thus reduce its idle time), it is then copied into its
ready queue.

3.5 Experimental results

Experiments were conducted on the Plafrim[[| supercomputer, and more precisely on the
miriel cluster. Each node is equipped with two INTEL XEON E5-2680V3 12-cores running
at 2.50 GHz and 128 GB of memory. The INTEL MKL 2019 library is used for sequential
BLAS kernels. Another shared memory experiment was performed on the crunch cluster
from the LIPE], where a node is equipped with four INTEL XEON E5-4620 8-cores running
at 2.20 GHz and 378 GB of memory. On this platform, the INTEL MKL 2018 library is
used for sequential BLAS kernels. The PASTIX version used for our experiments is based
on the public git repositoryﬂ version at the tag europar2020.

In the following, the different methods used to compute the mapping are compared. All
to All, referred to as ALL2ALL, and Proportional mapping, referred to as PROPMAP, are
available in the PASTIX library, and the newly introduced method is referred to as STEAL.
When the option to limit stealing tasks into the same MPI is enabled, we refer to it as
STEALLOCAL. In all the following experiments, we compare these versions with respect to
the ALL2ALL strategy, which provides the most flexibility to the scheduling algorithm to
perform load balance, but does not consider data locality. The multi-threaded variant is
referred to as SharedMem, while for the distributed settings, pMt¢ stands for p MPI nodes
with ¢ threads each. All distributed settings fit within a single node.

In order to make a fair comparison between the methods, we use a set of 34 matrices
issued from the SuiteSparse Matrix collection [28]. The matrix sizes range from 72K to 3M
of unknowns. The number of floating point operations required to perform the LL!, LDL!,
or LU factorization ranges from 111 GFlops to 356 TFlops, and the problems are issued
from various application fields. Table lists these matrices.

Communications. We first report the relative results in terms of communications
among processors in different clusters (MPI nodes), which are of great importance for the
distributed memory version. The number and the volume of communications normalized
to ALL2ALL are depicted in Fig. One can observe that all three strategies largely
outperform the ALL2ALL heuristic, which does not take communications into account. The
number of communications especially explodes with ALL2ALL as it mainly moves around
leaves of the elimination tree. This creates many more communications with a small volume.
This confirms the need for a proportional-mapping-based strategy to minimize the number
of communications. Both numbers and volumes of communications also confirm the need
for the local stealing algorithm to keep it as low as possible. Indeed, STEAL generates 6.19
times more communications on average than PROPMAP, while STEALLOCAL is as good
as PROPMAP. Note the exception of the 24M1 case where STEAL and STEALLOCAL are

"https://wuw.plafrim.fr
Zhttp://www.ens-1lyon.fr/LIP/
3https://gitlab.inria.fr/solverstack/pastix

43

https://www.plafrim.fr
http://www.ens-lyon.fr/LIP/
https://gitlab.inria.fr/solverstack/pastix

Kind Matrix Arith. Fact. N NNZ,

PFlow 742 d LL! 742 793 18 940 627
2d/3d nd24k d LL! 72 000 28 715 634
lap120 d LL! 1 728 000 6 868 800
Bump 2911 d LL! 2911 419 65 320 659
StocF-1465 d LL! 1465 137 11 235 263
Computational fluid dynamics atmosmodl d LU 1489 752 10 319 760
atmosmodd d LU 1270 432 8 814 880
RMO7R d LU 381 689 37 464 962
Dna electrophoresis cagel3 d LU 445 315 7 479 343
dielFilterV3clx z LU 420 408 16 653 308
Electromagnetics fem hifreq circuit z LU 491 100 20 239 237
dielFilterV2clx zZ LU 607 232 12 958 252
Magnetohydrodynamics matrd d LU 485 597 24 233 141
Materials 3Dspectralwave2 z LDL" 292008 7307 376
3Dspectralwave zZ LDL" 680 943 30 290 827
boneS10 d LL! 914 898 28 191 660
Model reduction CurlCurl 3 d LDL* 1219574 7 382 096
bone010 d LL! 986 703 36 326 514
CurlCurl 4 d LDL* 2380515 14 448 191
Optimization nlpkkt80 d LDL' 1062400 14 883 536
ldoor d LL! 952 203 23 737 339
inline 1 d LL! 503 712 18 660 027
sparsine d LDIL! 50 000 1 548 988
Flan 1565 d LL! 1564 794 59 485 419
ML Geer d LU 1504 002 110 879 972
audikw 1 d LL! 943 695 39 297 771
Structural Fault 639 d LL! 638 802 14 626 683
Hook 1498 d LL! 1498 023 31 207 734
Transport d LU 1602 111 23 500 731
Emilia_ 923 d LL! 923 136 20 964 171
Geo_ 1438 d LL! 1437960 32 297 325
Serena d LL! 1391 349 32 961 525
Long Coup dt0 d LDL! 1470152 44 279 572
Cube_Coup_dt0 d LDL' 2164 760 64 685 452

Table 3.1 — Set of real-life matrices issued from The SuiteSparse Matrix Collection [2§]
(except matr5 and lap120), sorted by family and number of operations.

44

o
g

o
2

normalized to ALL2ALL
o
2

Number of communications

‘ & A ﬁ A

BN o ob oW N
MPI settings

=
%

ES ProPMAP ES STEAL EE STEALLOCAL

Volume of communications
normalized to ALL2ALL

MPI settings

Figure 3.4 — MPI communication number (top) and volume (bottom) for the three methods:
PROPMAP, STEAL, and STEALLOCAL, with respect to ALL2ALL.

identical. No local task can be stolen. These conclusions are similar when looking at the
volume of communication with a ratio reduced to 1.92 between STEAL and PROPMAP.

Data movements. Fig. depicts the number and volume of data movements normal-
ized to ALL2ALL and summed over all the MPI nodes with different MPI settings. The data
movements are defined as a write operation on the remote memory region of other cores of
the same MPI node. Note that accumulations in local buffers before send, also called fan-in
in sparse direct solvers, are always considered as remote write. This explains why all MPI
configurations have equivalent number of data movements. As expected, proportional map-
ping heuristics outperform ALL2ALL by a large factor on both number and volume, which
can have an important impact on NUMA architectures. Compared to PROPMAP, STEAL
and STEALLOCAL are equivalent and have respectively 1.38x, and 1.32x, larger number
of data movements on average respectively, which translates into 9%, and 8% of volume
increase. Note that in the shared memory case, STEALLOCAL behaves as STEAL as there
is only one MPI node.

45

Number of data movements
normalized to ALL2ALL

MPI settings

E3 ProPMAP EF STEAL BE STEALLOCAL

RN
g<
[OXaN|
23 o
B
38
TG O
I
o
EERNS
§ =i
o @‘7’ S o v\‘l

E
MPI settings

Figure 3.5 — Shared memory data movements number (top) and volume (bottom) within
MPI nodes for PROPMAP, STEAL, and STEALLOCAL, with respect to ALL2ALL.

Simulation cost. Fig. shows the simulation cost in seconds (duration of the refined
mapping via simulation) on the top, and that of PROPMAP, STEAL and STEALLOCAL with
respect to ALL2ALL on the bottom. Fig.[3.7shows the original simulated factorization time
obtained with these heuristics and a normalized version. Note that, for the sake of clarity,
some large outliers are removed from the top subfigure of Fig. As stated in Section
the ALL2ALL strategy allows for more flexibility in the scheduling, hence it results in a
better simulated time for the factorization in average. However, its cost is already 4x larger
for this relatively small number of cores. Fig. [3.6] shows that the proposed heuristics have
similar simulation cost to the original PROPMAP, while Fig. [3.7] shows that the simulated
factorization time gets closer to ALL2ALL, and can even outperform it in extreme cases.
Indeed, in the 24M1 case, STEAL outperforms ALL2ALL due to bad decisions taken by the
latter at the beginning of the scheduling. The bad mapping of the leaves is then never
recovered and induces extra communications that explain this difference. In conclusion,
the proposed heuristic, STEALLOCAL, manages to generate better schedules with a better
load-balance than the original PROPMAP heuristic, while generating small or no overhead

46

on the mapping algorithm. This strategy is also able to limit the volume of communications
and data movements as expected.

E3 ALL2ALL E3 PROPMAP E3 STEAL EE STEALLOCAL

.
S
=~
2 Y
@]
S o
£
=R
5 o
: Bl Blde fude Rlde Soiw Foo
o N) % N \
\@a@& N NS b @w NS
S
MPI settings
| \ffa_
-
@g Q-
23S
o - e
=<t .
S o 5L © — .
=+ 0 . ° ¥
=% ' R
=0 i)
2.5 ng I 1
S
- H
g 0P —
X\@@&\ ‘L@@ S S x‘ﬁ@ %@\X

MPI settings

Figure 3.6 — Final simulation cost in second (top) and simulation cost of PROPMAP, STEAL
and STEALLOCAL, normalized to ALL2ALL (bottom).

Factorization time for shared memory. Fig. [3.§ presents factorization time and its
normalized version in a shared memory environment, on both miriel and crunch machines.
Note that we present only the results for STEAL, as STEALLOCAL and STEAL behave
similarly in shared memory environment. For the sake of clarity, some large outliers are
removed from the top subfigure of Fig. 3.8 On miriel, with a smaller number of cores
and less NUMA effects, all these algorithms have almost similar factorization time, and
present variations of a few tens of GFlop/s over 500GFlop/s in average. STEAL slightly
outperforms PROPMAP, and both are slower than ALL2ALL respectively by 1% and 2%
in average. On crunch, with more cores and more NUMA effects, the difference between
STEAL and PROPMAP increases in favor of STEAL. Both remain slightly behind ALL2ALL,
respectively by 2% and 4%; indeed, ALL2ALL outperforms them since it has the greatest
flexibility, and communications have less impact in a shared memory environment.

47

E3 ALL2ALL ES ProPMAP ES STEAL EE STEALLOCAL

T

2
%

2 g 2
2 % %

.
%

Estimated factorization time

&& ‘L@@ b,“@ “&@; @}Nﬁl Q}QX
MPI settings

]
§ | \9’ L
= 3 7
a<q !
S .
= N
g2
—
o O
4543
=HSENN +
e=f=
<
=R
E5 (o
z2 Y
m I 1 1 1 1 1
5 O W \
‘&\(Z”‘e& @N\\q’ ot o \‘»@ %b}N
S

MPI settings

Figure 3.7 — Estimated factorization time in second (top), and that of PROPMAP, STEAL,
and STEALLOCAL, normalized to ALL2ALL (bottom).

3.6 Chapter summary

In this chapter, we revisit the classical mapping and scheduling strategies for sparse direct
solvers. The goal is to efficiently schedule the task graph corresponding to an elimination
tree, so that the factorization time can be minimized. Thus, we aim at finding a trade-
off between data locality (focus of the traditional PROPMAP strategy) and load balancing
(focus of the ALL2ALL strategy). First, we improve upon PROPMAP by proposing a refined
(and optimal) mapping strategy with an integer number of processors. Next, we design a
new heuristic, STEAL, together with a variant STEALLOCAL, which predicts processor idle
times in PROPMAP and assigns tasks to idle processors. This leads to a limited loss of
locality, but improves the load balance of PROPMAP.

Extensive experimental and simulation results, both on shared memory and distributed
memory settings, demonstrate that the STEAL approach generates almost the same number
of data movements than PROPMAP, hence the loss in locality is not significant, while it leads
to better simulated factorization times, very close to that of ALL2ALL, hence improving
the load balance of the schedule.

48

E3 ALL2ALL E3 PROPMAP E3 STEAL

ERS
Q
2 9 . .
% .
o A
&
. [)
= %QQ ° °
g i
S .®
= DN ° ¥ ° ° .
E o e]]
e S A A
+—
Q
&
=~ Q . .
&\,{\@\ ‘\)080
C
Machines
.
= R
o< \F
g
23
§<C s
=3
N
— QO
3y
2= A0
= £
o
S
Q% | |
=Y
&\‘\e Cﬂ\)‘ﬂ\c\ﬁ\

Machines

Figure 3.8 — Factorization time (top), and that of PROPMAP and STEAL, normalized to
ALL2ALL (bottom), on miriel and crunch. White diamonds represent mean values.

49

Chapter 4

Reliability-aware energy optimization

for throughput-constrained applications
on MPSoC

This chapter is a joint work with Mingsong Chen and Tongquan Wei from ECNU (Shanghai,
China). Compared to applications considered in previous two chapters, streaming applica-
tions in this chapter are represented as task graphs as well, but they are more time sensitive.
That is to say, the system has to run at a high speed to meet the throughput bound, oth-
erwise, the system fails. They are often running on embedded systems, which have a tight
energy budget because of their size-limited batteries. Therefore, scheduling streaming ap-
plications on these platforms brings up a multi-objective optimization problem: minimizing
energy consumption under performance and reliability constraints. We proved that variants
of this multi-criteria problem are NP-hard, and we proposed some efficient heuristics. This
work has been published at ICPADS 2018 [C3].

4.1 Introduction

Many streaming applications in areas such as Internet of Things (IoT), augmented real-
ity, and robotics, increasingly require high performance on embedded processing platforms.
The three main criteria are i) computational performance, expressed as the throughput of
the application; ii) reliability, i.e., most data sets must be successfully computed; and iii)
energy efficiency. This is mainly because: i) some applications such as audio/video coding
or deep learning-based inference are delay-sensitive, hence throughput should be properly
guaranteed; ii) emerging safety-critical applications such as self-driving vehicles and tactile
internet impose extremely stringent reliability requirements [41]; and iii) devices on which
streaming applications are running are often battery-operated, hence systems should be
energy-efficient.

In order to meet all these design constraints, MPSoC is becoming a new paradigm that
enables effective and efficient design of streaming applications. By integrating multiple
cores together with an interconnection fabric (e.g., Network-on-Chip) as communication
backbone, MPSoC (e.g., OMPA from Texas Instruments and NORMADIC from STMicro-
electronics) can be tailored as multiple application-specific processors with high throughputs
but low energy consumption [I5], 90].

As one of the most effective power management techniques, Dynamic Voltage and Fre-
quency Scaling (DVFS) has been widely used by modern MPSoCs [25]. By properly lowering
the processing voltages and frequencies of dedicatedly mapped tasks, DVFS enables stream-
ing applications to be carried out with a reduced energy consumption, while ensuring a given
throughput. However, scaling down voltages and frequencies of processors generates serious
reliability problems. Various phenomena such as high energy cosmic particles and cosmic
rays may cause the change of binary values held by transistors within CMOS processors by

20

mistake, resulting in notorious transient faults (i.e., soft errors). Along with the increasing
number of transistors integrated on a chip, the susceptibility of MPSoC to transient faults
will increase by several orders of magnitude [96]. In other words, the probability of incorrect
computation or system crashes will become higher due to soft errors.

To mitigate the impact of soft errors, checkpointing and task replication techniques have
been widely used to ensure system reliability [45] [80]. Tasks can be replicated if they do
not have an internal state, this increases their reliability as it is extremely unlikely to have
errors on two or more copies. Although checkpointing and task replication techniques are
promising on enhancing the system reliability, frequent utilization of such fault-tolerance
mechanisms is very time or resource consuming, which will in turn cost extra energy and de-
grade the system throughput. Clearly, the MPSoC design objectives (i.e., energy, reliability
and throughput) are three contradictory requirements when we need to decide the voltage
and frequency level assignments for tasks. Although there exist dozens of approaches that
can effectively handle the trade-off between energy and reliability issues, few of them con-
sider the throughput requirement in addition, see Section 4.2l Hence, given throughput and
reliability constraints, how to achieve a fault-tolerant schedule that minimizes the energy
consumption for a specific DVFS enabled MPSoC platform is becoming a major challenge
for designers of streaming applications.

To address the above problem, this chapter proposes a novel scheduling approach that
can generate energy-efficient and soft error resilient mappings for streaming applications on
a given MPSoC platform. It makes following three major contributions:

1. We propose a novel model that can formally express both performance and reliability
constraints for mapping applications on MPSoCs, by bounding the expected period
(for performance) and the probability of exceeding the target expected period (for
reliability).

2. We prove that without performance and reliability constraints, the problem is polyno-
mially tractable, whereas adding both constraints results in an NP-complete problem.

3. We design and evaluate novel task scheduling heuristics for reliability-aware energy
optimization on MPSoCs, which enforce the constraints and aim at minimizing the
energy cosumption.

The remainder of this chapter is organized as follows. Related work are discussed in Sec-
tion We then formalize the application model and optimization problem in Section [4.3]
Section studies the complexity of the problem variants, and in particular proves that the
complete version of the problem is NP-complete. To quickly achieve efficient mappings, Sec-
tion presents the details of our heuristic approaches. Section conducts the evaluation
of our approaches on both real and synthetic applications. Finally, Section concludes
and provides directions for future work.

4.2 Related work

To satisfy the intensive computing power demand, instead of increasing the frequency of
a single core, high performance is achieved in MPSoC through dozens or even hundreds of
small-sized cores, which are connected by a high-speed communication infrastructure. For
instance, AsAp2 [86] consists of 164 identical programmable processors with independent
clock domains. CoreVA-MPSoC [10] consists of a Network-on-Chip (NoC) interconnect that
couples several processor clusters. Within each cluster, several cores are tightly coupled via
a bus-based interconnect. These MPSoCs are especially designed for streaming applica-
tions, e.g., digital signal processing, multimedia processing, and autonomous navigations, in
embedded and energy-limited systems [86], [10].

o1

Throughput maximization problem has been a subject of continuing interest as the
demands for MPSoC-enabled high performance computing drastically increase. Zhang et
al. [95] optimized the throughput in disruption tolerant networks via distributed workload
dissemination, and designed a centralized polynomial-time dissemination algorithm based on
the shortest delay tree. Li et al. [59)] specifically considered stochastic characteristics of task
execution time to trade off schedule length (i.e., throughput) for energy consumption. A
novel Monte Carlo based task scheduling is developed to generate a static schedule that can
maximize the expected throughput without incurring a prohibitively high time overhead [97].
Albers et al. [3] introduced an online algorithm to further maximize throughput with parallel
schedules. Qi et at. [83] proposed two Integer Linear Programming formulations with an
explicit emphasis on avoiding potential communication contention in scheduling a DAG. In
their work, duplication of tasks allows to ease the communication overhead and to mini-
mize the schedule length. Wayne et al. [53] presented a novel simulated-annealing based
partitioning algorithm to map streaming applications onto a hierarchical MPSoC. However,
reliability issues are not considered in these works.

Reliability can be achieved by reserving some CPU time for re-executing faulty tasks
due to soft errors [96]. Marwedel et al. present a representative set of techniques in [67]
that map embedded applications onto multicore architectures. These techniques focus on
optimizing performance, temperature distribution, reliability and fault tolerance for various
models. Dongarra et al. [35] studied the problem of scheduling task graphs on a set of
heterogeneous resources to maximize reliability and throughput, and proposed a through-
put/reliability tradeoff strategy. Wang et al. [89] developed a look-ahead genetic algorithm
to optimize both the system reliability and throughput for distributed workflow application.
Wang et al. [88] proposed replication-based scheduling for maximizing system reliability.
The proposed algorithm incorporates task communication into system reliability and max-
imizes communication reliability by searching all optimal reliability communication paths
for current tasks. These works explore the reliability of heterogeneous multicore processors
from various aspects, and present efficient reliability improvement schemes, however, these
works do not investigate the energy consumed by MPSoCs, which interplays with system
reliability.

Extensive research effort has been devoted to reduce energy consumption of DVFS-
enabled heterogeneous multi-core platforms considering system reliability. Zhang et al. [94]
proposed a novel genetic algorithm based approach to improve system reliability in addi-
tion to energy savings for scheduling workflows in heterogeneous multicore systems. In [80],
Spasic et al. presented a novel polynomial-time energy minimization mapping approach
for synchronous dataflow graphs. They used task replication to achieve load-balancing on
homogeneous processors, which enables processors to run at a lower frequency and consume
less energy. Vilches et al. [87] considered mapping streaming application onto a hetero-
geneous embedded system that consists of multi-core CPU and on-chip GPU. Assigning
the same task to a CPU or a GPU leads to different execution speeds and synchronization
overheads. A two steps framework is proposed to adaptively find the optimal throughput
or energy, or a trade-off of both: a training phase followed by a running phase. The aim of
the training phase is to collect energy cost and execution speed of the basic mapping and
to decide the optimal configuration. In [69], Onnebrink et al. mapped each task to a pro-
cessing element of a heterogeneous MPSoC and selected its execution frequency so that the
energy cost is minimized under given makespan and fixed mapping constraints. In [27], Das
et al. proposed a genetic algorithm to improve the reliability of DVFS-based MPSoC plat-
forms while fulfilling the energy budget and the performance constraint. However, their task
mapping approach tries to minimize core aging together with the susceptibility to transient
errors. Haque et al. considered in [45] the problem of achieving a given reliability target
for a set of periodic real-time tasks running on a multicore system with minimum energy
consumption. The proposed framework explicitly takes into account the coverage factor of
the fault detection techniques and the negative impact of DVFS on the rate of transient

52

faults leading to soft errors.

Although above works explore various techniques to save energy, to the best of our
knowledge, none of the above works considers system throughput in addition to reliability
and energy. Our approach is thus the first attempt to model both reliability, performance
and energy for workflow scheduling in MPSoC.

4.3 Models and optimization problems

We consider the problem of scheduling a pipelined workflow onto a homogeneous multi-
core platform that is subject to failures. The goal is to minimize the expected energy
consumption for executing a single dataset, given some constraints on the expected and
worst-case throughput of the workflow. In the following subsections, we detail how to model
applications, platforms, failures, energy cost, period (which is the inverse of the throughput),
and how to formally define the optimization problem.

4.3.1 Streaming applications — linear chain

We focus on linear chain workflow applications, where task dependencies form a linear
chain: each task requests an input from the previous task, and delivers an output to the
next task. There are n tasks Ti,...,7T,,. Furthermore, the application is pipelined, i.e.,
datasets continuously enter through the first task, and several datasets can be processed
concurrently by different tasks. Such applications are ubiquitous in processing of streaming
datasets in the context of embedded systems [49].

We assume that the initial data resides in memory, and the final data stays in memory.
Task T; is characterized by a workload w;, and the size of its output file to the next task 0; ;41,
as illustrated in Fig. (except for the last task). In the example, we have wy = 2, wy = 5,
ws =4, and 012 = 3, 023 = 1. Once the first dataset reaches task 75, while it is processed
by T3, dataset 2 is transferred between Ty and T3, dataset 3 is processed by Ts, dataset 4
is transferred between 77 and T, and dataset 5 is processed by T;. At the next period, all
dataset numbers are incremented by one.

0j—1, 0j.5+1 Oj+1,j+2

"

0[2\3
\Z/

T

¥

36

Figure 4.1 — Linear chain workflow application.

4.3.2 Platforms

The target platforms are embedded systems composed of p homogeneous computing cores.
Each core can run at a different speed with a corresponding error rate and an energy con-
sumption. If task 7; is executed on a core operating at speed s(i) and if it is not subject to
a failure, it takes a time s”“gg) to execute a single dataset.

We focus on the most widely used speed model, the discrete model, where cores have a
discrete number of predefined speeds, which correspond to different voltages at which the
core can be operating. Switching is not allowed during the execution of a given task, but
two different executions of a task can be executed at different speeds. The set of speeds is

{Smin = S1,82,- -+, Sk = Smax}- Lhe continuous model is used mainly for theoretical studies,

93

and let the speed take any value between the minimum speed s.;, and the maximum
speed Spax-

All cores are fully interconnected by a NoC. The bandwidth [is the same between any
two cores, hence it takes % for task T; to communicate a dataset to task T;. ;. The NoC
enables cores to communicate simultaneously with others while they are computing, i.e.,
communications and computations can be overlapped. Therefore, while task T; is processing
dataset k, it is receiving the input for dataset k — 1 from the previous task, and sending

the output for dataset k 4+ 1 to the next task. Hence, these operations overlap, and take

i—1,i 04,i4+1

respectively a time OT and

We follow the model of [48] 7], where cores are equipped with a router, and on which
there are registers. We can use the registers to store intermediate datasets, hence having
buffers between cores. If datasets are already stored in the input buffer of a core, and if there
is empty space in the output buffer, then the core can process a dataset without having to
wait for the previous or next core.

4.3.3 Failure model and duplication

Embedded system platforms are subject to failures, and in particular transient errors caused
by radiation. When subject to such errors, the system can return to a safe state and repeat
the computation afterwards. According to the work of [98], radiation-induced transient
failures follow a Poisson distribution. The fault rate is given by:

A(s) =)\Oedﬁ,
where $ € [Smin, Smax| denotes the running speed, d is a constant that indicates the sensitivity
to dynamic voltage and frequency scaling, and \q is the average failure rate at speed spax.
Ao is usually very small, of the order of 107 per hour [7]. Therefore, we can assume that
there are no failures when running at speed sy.x. We can see that a very small decrease of
speed leads to an exponential increase of failure rate.

The failure probability of executing task 7; (without duplication) on a processor running
at speed sy is therefore f;(sp) = A(sk)y*. If an error strikes, we resume the execution by
reading the dataset again from local memory (i.e., the input has been copied before executing
the task, we re-execute the task on the copy), and this re-execution is done at maximum
speed so that no further error will strike the same dataset on this task. We assume that the
time to prepare re-execution is negligible. Still, this slows down the whole workflow since
other tasks may need to wait.

We propose to duplicate some tasks to mitigate the effect of failures and have a reliable
execution. This means that two identical copies of a same task are executed on two distinct
cores, both core running at the same speed. In this case, if a failure occurs in only one copy,
we can keep going with the successful copy. However, it may increase the energy cost and
communication cost. Similarly to one execution at the maximum speed, we assume that an
error on a duplicated task is very unlikely (i.e., at least one copy will be successful), and
hence f;(sx) = 0 if T} is duplicated.

Let m; = 1 if task T; is duplicated, and m; = 0 otherwise. Let s, be the speed at which
T; is processed. The failure probability for 7; is therefore f;(sy) = (1 —mi)A(sk)E, ie., it is
zero if the task is duplicated, and /\(sk)f—lj otherwise (the instantaneous error rate at speed
sk times the time to execute task T;).

If we do not account for communications, the expected execution time of task 7; running
at speed sy, is:

t= — 4 fi(sk) i
Sk

max

Indeed, with duplication, at least one execution will be successful, while with a single execu-
tion, if there is a failure, we re-execute the task at maximum speed and there are no further
failures.

o4

Figure 4.2 — Communications with task duplication.

If a task is duplicated, this implies that further communications may be done, but
they will occur in parallel. If 7} is duplicated, both processors p; and p; on which 7; is
executed are synchronized, and only one of them obtaining a correct result will do the
output communication (to one or two processors, depending on whether T;,; is duplicated
or not), see Fig. for different possible configurations. The synchronization cost is assumed
to be negligible.

4.3.4 Energy

We follow a classical energy model, see for instance [11], where the dissipated power for
running at speed sy, is s3, and hence the energy consumed for a single execution of task T
running at speed sj is ;"—k X 3 = w;st. We further account for possible failures and dupli-
cation, hence obtaining the expected energy consumption for 7; running at speed s, for one
dataset:

Ei(sg) = (m; + 1)wisi + fi(sk)wisfnax.

Indeed, if task T; is duplicated (m; = 1), we always pay for two executions (2w;s?) but
there is no energy consumed following a failure, while without duplication (m; = 0), we
account for the energy consumed by the re-execution in case of a failure.

We assume that the energy consumed by communications and buffers is negligible com-
pared to the energy consumed by computations, see [48]. Therefore, the expected energy
consumption of the whole workflow to compute a single dataset is the sum of the expected
energy consumption of all tasks.

4.3.5 Period definition and constraints

In this chapter, each task is mapped onto a different processor, or a pair of processors when
duplicated, and different tasks are processing different datasets. In steady-state mode, the
throughput is either constrained by the task with the longest execution time, or by the
longest communication time, which is slowing down the whole workflow. The time required
between the execution of two consecutive datasets corresponds to this bottleneck time and
is called the period. It is the inverse of the throughput.

In this work, we are given a target period P, hence the target throughput is P%‘ This
corresponds for instance to the rate at which datasets are produced. We consider two
different constraints: i) ensure that the expected period is not exceeding P;, hence the
target becomes a bound, and/or ii) ensure that the probability of exceeding the target P,
for a given dataset is not greater than proba,. This second constraint corresponds to real-
time systems, where a dataset is lost if its execution exceeds the target period P;, and the
probability proba, (0 < proba, < 1) expresses how many losses are tolerated. If proba, = 1,
there is no constraint, while proba, = 0 means that no losses are tolerated.

Recall that the objective is to minimize the expected energy consumption per dataset of
the whole workflow. Some tasks may be duplicated, and each task may run at a different
speed. The communication between two consecutive tasks 7; and 7} takes a constant time
2ntl “and it must fit within the target period. Therefore, we assume that for all 1 < i < n,

B

s < P,

95

processor

3)¢)¢)

2 [error Jre-exe|))

time

Figure 4.3 — An instance illustrates fault tolerance with buffers. Rectangles with rounded
corners represent tasks running on different processors and other rectangles between them
represent buffers. Only buffers in-use are depicted. Datasets are labeled by colors. error
and re-exe represent respectively an error happened and the re-execution afterwards. The
vertical dashed lines indicate the start or end of a period. Communication is not depicted
here.

We assume in this section that the set of duplicated tasks is know: we set m; to 0 or 1 for
each task 7;. Furthermore, let s(i) be the speed at which task T; is executed, for 1 <i < n.

In Section we first consider the case without failures and express the period in this
case. Then, we express the expected period when the platform is subject to failures. Note
that we assume that there is a sufficient number of buffers between cores, so that a failure
does not necessarily impact the period, given that the cores have access to datasets stored
in buffers, and can use empty buffers to store output datasets. Finally, we explain how to
compute the probability that a dataset exceeds the target period F;.

Period without failures

In the case without failures, the period is determined by the bottleneck task computation
or communication: Py = maxj<;<p {%, 0‘%}

We denote by L the set of tasks whose execution time is equal to Py, ie., L =
{T@|;€—l) = Pnf}. If the bottleneck time P, is achieved by a communication, this set may be
empty.

Expected period

We consider that each processor is equipped with three or more buffers, two of them holding
an input (resp. output) dataset being received (resp. sent), and the other buffers are used
for storing intermediate datasets: a buffer is filled when the task is completed, but the
following processor is not yet ready to receive the next dataset (i.e., the output buffer is still
in use). We consider the period in steady-state, after the initialization has been done, i.e.,
all processors are currently working on some datasets.

The set of tasks L is empty if the computation time for all tasks is strictly smaller than
the period P,;. When subject to a failure, tasks not in L can use data stored in buffers and
process datasets at a faster pace than the period, until they have caught up with the time
lost due to the failure.

Figure provides an example, where the task 75 running on processor 2, which is not
in L, failed on the green dataset. At the beginning of the next period, the task 73 running on
processor 3 can read the input from the buffer and it continues at a period smaller than P,
until it has caught up, and the overall period remains P.

However, errors in tasks of L are impacting the period, and therefore, if such a task is
subject to a failure, the re-execution time is added to the period. The expected period can

o6

therefore be expressed as follows:

Pey = Pug + Y Fils(0))—

1€L

(4.1)

Smax

Indeed, the period P, is achieved when there is either no failure, or a failure in a task
not in L. In case of a failure while executing a task 7; in L, the period is Pp + ;- and
this happens with a probability f;(s(i)). As discussed before, we assume that there is no
failure during re-execution, and that the probability of having two failures while executing
a single dataset is negligible.

Note that this formula also holds when some tasks are duplicated. If task ¢ € L is
duplicated (m; = 1), it will never fail and hence its period will be Py. In this case, f;(s(i)) =

0 by definition, hence the formula remains correct.

Bounding the probability of exceeding the period bound

For the second constraint, we focus on the actual period of each dataset, rather than the
expected period, and we estimate the probability at which the period of a dataset exceeds P,.
We consider that P, < P;, otherwise the bound can never be reached, and the probability
is always one.

The actual period, denoted by P,y, is a random variable that ranges from P, to

maxj<j<n (% + = > We define the set of tasks that may exceed the target period P

Sexcess: {I-ZL ’ wz + i >pt}
$(1) Smax

in case of failures:

Therefore, if a failure strikes a task in Seceess ON a given dataset, the target period B
may not be met for this dataset. An error happens on task 7 with probability f;(s(i)). Since
failures are independent, the period of a dataset will not exceed the bound if and only if no
task in the set Sexcess has a failure, i.e., this happens with a probability [[, . (1—fi(s(i))).

Hence, the probability of exceeding the bound is given by:

P(P>PB)=1- [(-fs@)= D fils(i), (4.2)

Ti esexcess Ti esexcess

considering that the failure probabilities are small, and that f;(s(7)) x f;(s(j)) = 0 for any
1 < 4,7 < n. This approximation is in line with the assumption that we do not consider
two consecutive failures in a same task.

Finally, the second constraint that we consider, after the one on the expected period
described above, is to bound the probability of exceeding the target period P; by the target
probability proba,:

P(P,t > P,) < proba,.

4.3.6 Optimization problem

The objective is to minimize the expected energy consumption per dataset of the whole
workflow, and we consider two constraints. The goal is to decide which tasks to duplicate,
and at which speed to operate each task. More formally, the problem is defined as follows:

(MINENERGY). Given a linear chain composed of n tasks, a computing platform with p ho-
mogeneous cores that can be operated with a speed within set S, a failure rate function f,
and a target period Py, the goal is to decide, for each task T;, whether to duplicate it or not
(set m; =0 orm; = 1), and at which speed to operate it (choose s(i) € S), so that the total
expected energy consumption is minimized, under the following constraints:

i) The expected period P.,, should not exceed Py;

o7

ii) The probability of exceeding the target period P; should not exceed the target probabil-
ity proba,.

Note that if there is a task k such that P, < S::X or P, < 0’“’%, then there is no solution
since the target period can never be met.

If P, is large enough, the problem will not be constrained since in all solutions, the
expected period will always be under the target period. This is the case for P, > max (-

Smin

o) and Py > max(o’“’%). In this case, each task running at the slowest possible speed,
and being re-executed after a failure, will not exceed P;,. This problem without constraints
is denoted as MINENERGY-NOC.

We also consider the particular cases where only one or the other constraint matters.
MINENERGY-PERC is the problem where we do only consider the first constraint on the
expected period (i.e., set proba, = 1), while MINENERGY-PROBAC is the problem where we

do only focus on the probability of exceeding the target period, i.e., we do not consider Pey,.

4.4 Complexity analysis

4.4.1 Without errors

When the workflow is free of errors, a task 7; running at speed s; takes exactly a time
<+, and consumes an energy of w;s2. Hence, to minimize the energy consumption, one
must use the smallest possible speed such that the target period is not exceeded, hence

%

$; = max {%:, smin} in the continuous case. Since we consider discrete speeds, the optimal

speed for task T} is therefore the smallest speed larger than or equal to %: within the set of
possible speeds. This is true for all tasks, hence the problem can be solved in polynomial
time.

4.4.2 Without constraints

We consider the MINENERGY-NOC problem, and propose the BESTENERGY algorithm
to optimally solve this problem. The idea is to use the speed that minimizes the energy
consumption for each task, since we do not have any constraint about exceeding the target
period. For each task, either we execute it at this optimal speed, or it may be even better (in
terms of energy consumption) to duplicate it and run it at the smallest possible speed Sy,-

Theorem 2. MINENERGY-NOC can be solved in polynomial time, using the BESTENERGY
algorithm, both for the discrete and for the continuous energy model.

Proof. Given a task of weight w executed at speed s without duplication, the energy con-
sumption is E(s) = w x s% + Aw?s?,,, =" The (continuous) speed that minimizes

max S

this energy consumption can be obtained by deriving E(s):

max max Smax —Smin

2
S(Smax — Smin

)\ 2.2 >\ d 2.2 Smax—S
E'(s):2ws—< O max 4 00T)>ed

s
FE'(s) is a monotonically increasing function, and we let s* be the speed such that E'(s*) = 0,
hence E(s*) is minimum.

If the task is not duplicated, for MINENERGY-NOC-CONT, the optimal speed is sqp =
max{s*, Smin}. In the discrete case MINENERGY-NOC-DISC, sqpt is simply the speed that
minimizes the energy consumption, hence sqp; = argmingeg, o {FE(s)}.

Now, if the task is duplicated, we assume that it will not be subject to error, hence the
energy consumption at speed s is 2ws?. Therefore, it is minimum when the task is executed

at the minimum speed, and the corresponding energy consumption is 2ws2, (both in the
discrete and continuous case).

o8

BESTENERGY is a greedy algorithm that sets the speed of each task at sop (not using
duplication), and then greedily assigns remaining processors to tasks that would gain most
from being duplicated (if any), see Algorithm . It is easy to see that it is optimal, since
any other solutions could only have a greater energy consumption. O]

Algorithm 10 — BESTENERGY (n,p)

1: fori=1tondo

2: Compute sqp(2) for task T;, the speed that minimizes energy consumption if 7; is not
duplicated;

3: 8 < Sopt(i), my < 0;

4 g + E(s;) — 2w;s%,, (Possible gain in energy if T; is duplicated);

5: end for

6: Sort tasks by non-increasing g;, Tj is the task with max g;;

7: Paw < p —n (Number of available processors);

8: while g; > 0 and p,, > 0 do

9: my <1, 8; < Smin, Pav < Pav — 1;

10: j < the index of next task in the sorted list;
11: end while
12: return < s;,Mm; >;

4.4.3 With the probability constraint

We now prove that the decision version of MINENERGY-PROBAC is NP-complete. In the
decision version of MINE-DEC, the goal is to find an assignment set of speeds such that
the probability of exceeding the target period P, does not exceed proba,, and such that the
energy consumption does not exceed a given energy threshold E;. The proof is based on a
reduction from the Partition problem, known to be NP-complete [43]. The idea is to have
only two possible speeds, and one must decide at which speed to operate each task. We set
as many processors as tasks, so that no duplication can be done.

Theorem 3. MINE-DEC is NP-complete, even when duplicating tasks is not possible.

Proof. We first check that MINE-DEC is in NP: given a speed for each task, it is easy to
verify in polynomial time whether the bounds on the failure probability and on the energy
consumption are satisfied.

The proof of completeness is based on a reduction from the Partition problem, known to
be NP-complete [43]. We consider an instance Z; _p,, of 2-partition: given n positive integers
ai,...,a,, does there exist a partition of {1,...,n} into two subsets I; and I, (I; U I, =
{1,...,n} and I N Iy =) such that 3, ., a; =3 _,; a; = 5/2, where S = 7" | a7

We let A = maxa;/ mina;. We build an instance Zy_yinp of MINE-DEC as follows:

e The workflow is made of n tasks, of size w; = ay,...,w, = a,, to be processed on
p = n cores (no duplication is possible).

e There are only two possible speeds, spin = $1 = 1, and Spax = S2 = 2A.
e The failure rate function for these speeds is given by f(s;) =1/S and f(s2) = 0.

e We set the target period to P, = min; w;, the bound on the probability of exceeding
P, to proba, = 1/2, and the bound on the energy to E; = 2A?(S + 1) + 5/2.

We first assume that there is a solution (I3, I3) to instance Z;_p,,. For the MINE-DEC
problem, we set all tasks T; with ¢ € I; to speed s; = 1, and all tasks T; with ¢ € I, to speed
ss = 2A. Given the target period, we check that Seccess = I1:

99

e For any task in I;, we have w;/s1 + w;/Smax > w; > minw; = F;.

e For any task in I, we have w;/ss + w;/Smax = 2w;/(2A) = w; minw;/ maxw; <
minw; = F.

Thus, the probability of exceeding P, is given by

Zf(sl)wi/sl = 1/52@02- =1/S x S/2=1/2 = proba,,

i€l i€l

which satisfies the constraint on the probability. Then, we compute the energy of the
obtained solution:

E = Z(wisf + f(s1)ws?,.) + Zwisg

i€l i€l

= S/2(1+4A%/S) + S/2-4A* = Ei,

which satisfies the bound on the energy. Hence, we have found a solution to Zs_ k-

We then assume that Z,_\ing has a solution. We denote by I; the set of tasks running
at speed s1, and by I5 the others, running at speed sy. As outlined below, only tasks in I3
contribute to the probability of exceeding P, and its bound writes:

> flsn)wi/si <1/2

i€l

With s; = 1 and f(s1) = 1/, this gives },.; w; < S/2. The bound on the energy writes:

D (wist + f(s1)wishae) + Y _wisy < 2A%(S 4 1) + /2

i€l i€l

Zwisf + Zwi/sznaX + Zwi(sg —s]) < 2A%S+1)+5/2
A i€l i€l
S+ wi/Ssha + Y wi(4A* —1) < 2A%(S 4 1) 4 S/2

i€l i€l

S wi(4A?—1) < 2A%(S+1) = S/2=) wi/Ssh,
i€lg 1€l

> wi(4A?—1) < 2A%(S+1) - S/2

icls

> wi(4A? —1) < S/2(4A% — 1) +2A°

i€ly 2A2
Zwi < S/2+—4A2—1
icls

Since 2A%/(4A%*—1) < 1 assoon as A > 1 and all w;’s are integers, this gives Y, ., w; < 5/2.
Together with .) /2, this proves that Iy, I5 is a solution to Z;_p,;, which concludes
the proof. O

4.5 Heuristics

We start with basic heuristics that will be used as baseline. Then we design heuristics
aiming at bounding the expected period, and finally heuristics for bounding the probability
of exceeding the target period. Except baseline heuristics, all others are designed in two
flavours, one for the more realistic case of discrete speed, and the other for the case of
continuous speed.

60

4.5.1 Baseline heuristics

We first outline the baseline heuristics that will serve as a comparison point, but may not
satisfy the constraints. First, the BESTENERGY algorithm described in Section is
providing a lower bound on the energy consumption, but since it means that many tasks
are running at the minimum speed, we expect the period to be large, and it may well exceed
the bound.

Another simple solution consists in having each task executed at the maximum speed $,,ax.
We refer to this heuristic as MAXSPEED (see Algorithm [11)).

Algorithm 11 — MAXSPEED (n,p)

1: fori=1ton do

2 Si ¢ Smax, M; < 0;
3: end for

4: return < s;,m; >;

The third baseline heuristic, DUPLICATEALL (see Algorithm , duplicates all tasks,
assuming that there are twice more processors than tasks (p > 2n), and the corresponding
speeds for each tasks used in this case are the ones derived in Section [£.4.1] Indeed, there
will not be any errors in this case, and we aim at respecting the target period F;.

Note that both MAXSPEED and DUPLICATEALL will always satisfy the bounds, since
there will be no errors, and hence the expected period is equal to the period without failure.
However, both heuristics may lead to a large waste of energy. They provide an upper bound
on the energy consumption when using a naive approach.

4.5.2 Bounding the expected period

In this section, we focus on the constraint on the expected period, hence targeting the
MINENERGY-PERC problem.

Heuristic THRESHOLD

The THRESHOLD heuristic aims at reaching the target expected period P; (see Algorithm
in discrete speed option. The first step consists in setting all task speeds to the smallest
speed such that “’Z < P,. If P, is still larger than F;, then one of the tasks with largest
duration (%) is duphcated this allows P, to be smaller than P, and constant from this
moment on. Note that in the special case of a communication time reaching P;, there is no
need to duplicate a task to have Py = F,.

From Equation (£.1), Pexy = Pat + > ; er fis() —-. We made sure that Py is smaller
than or equal to F;. In order to make P, < Pt, each task 7T; of L has to be either
run at a higher speed (which removes it from L), or duplicated (which sets fisuy) to 0).
We greedily duplicate tasks for which duplication costs less energy, until there remains no

Algorithm 12 — DUPLICATEALL (n,p)

1: if p > 2n then
2: fori=1tondo

3 choose s; as the smallest possible speed so that ** < %;
4 m; < 1;

5: end for
6

7

8

9

return < s;,m; >;
. else

return failure;
. end if

61

more processors. Then, we speed up other tasks. Finally, we use the same technique as
in BESTENERGY to attempt to reduce again the energy of non-duplicated tasks: if the
minimum speed s for energy consumption is larger than the actual speed s; of a task T}, its
speed is increased to s.

Algorithm 13 — THRESHOLD (n, p)

for all tasks T; do
s; < the smallest speed such that =+ < P, m; < 0;
end for '
Pav < P — n (number of available processors);
if P, > max(%) and p,, > 1 then
Select a task T} with largest duration (break tie by selecting one with smallest wy),
set my < 1 and pgy < pPaw — 1;
end if
8: if P, > F; then
9: Q@ « {tasks of L with m; = 0};
10: for all tasks 7} in) do
11: s < the smallest speed that is larger than s;;
12: gi w; * (5° + f(5)$0,4p — 257) (Possible gain in energy if 7T} is duplicated);
13: end for
14: Sort tasks of) by non-increasing g;;
15: for all task 7} in) do

=

16: if p,, > 0 then

17: mj <— 17 Pav < Pav — 17

18: else

19: s; < the smallest speed that is larger than s;;
20: end if

21: end for

22: end if

23: for all task 7; with m; = 0 do
24: Compute the speed s that minimizes F;(s);
25. if s; < s then

26: S; < S,
27 end if
28: end for

29: return < s;,m; >;

Heuristic THRESHOLDC is based on the same ideas but designed for the case when
continuous speeds are available. In the first step, tasks speeds are initialized to the speeds
which makes 1;’—; = P,. Then duplicate a specific task to make P, = P;. After it, we speed up
tasks in L or duplicate them. We proceed similarly as in THRESHOLD, except that instead
of choosing the speed which is immediately above the current one, we rather increasing the
speed by some parameter As.

This parameter should be carefully set: a too small increase of speed As will lead to a very
small gap between the actual execution time of the task and the bottleneck communication
or computation time so that in the event of a task failure, it will take many periods to catch
up and no failure should hit the same task during that time.

Heuristic CLOSER

The previous THRESHOLD or THRESHOLDC heuristic uses duplication: at least one task
is duplicated (in order to fix Py,), which requires spare processors. We propose another
heuristic that does not have this requirement. In the CLOSER heuristic (see Algorithm ,

62

after setting all task speeds to the smallest ones so that * < P, we increase the speed
of all tasks in L while P, > F; by scaling all tasks surnultaneously we set a coeflicient
and make sure that for each task, its speed is not smaller than coef x s, where s is the
initial speed of T;. The coefficient is gradually increased until P, < F;. Finally, we use the
same technique as in BESTENERGY to attempt to further reduce the energy consumption
of tasks.

Algorithm 14 CLOSER (n,p, As)

for all tasks T; do
s; < the smallest speed such that 2= < P, m; < 0;
end for '
Set coef « 1;
while P, > P, do
coef < coef + As;
for all tasks 7T} of set L do
s; < the smallest speed that is not smaller than coef x si;
end for
end while
. for all task T; do
Compute the speed s that minimizes F;(s);
if s; < s then
S; < S;
end if
. end for
: return < s;, m; >

e e e e T e T e T e T
I R A I S el =

Heuristic CLOSERC is the straightforward adaptation of CLOSER for the case of contin-
uous speeds. In a first step, tasks speeds are set as s; so that 7+ = F;. However, in Line
of its counterpart, s; is set to the speed s; which exactly equals to coef x s, instead of the
smallest discrete speed that is not smaller than coef X s.

4.5.3 Bounding the probability of exceeding F;

In this section, we design a heuristic focusing on the constraint on the probability of ex-
ceeding P;, thus for the MINENERGY-PROBAC problem.

BESTTRADE (see Algorithm aims at finding the best tradeoff between energy con-
sumption and the probability of exceeding P,. We consider for each task two critical speeds:

e s’ is the speed such that w; /s’ + w;/smax = P;; it corresponds to the minimum speed
that a task can take without belonging to the S,z cess set;

° sil = w;/P; is the minimum speed that can be assigned to a task: if it is set to a
smaller speed, its duration will always exceed the target period.

The idea of the algorithm is first to set all tasks to the smallest speeds that are not
smaller than their s’ speed. For some tasks, this might be equal to their minimum speed
(the smallest possible speed not smaller than s). In this case, there is no room for reducing
speed again without exceeding the target period. For other tasks, we sort them by non-
increasing weight: tasks with higher weights contribute the most to the energy dissipation
and are thus first slowed down: we select the task T; with the largest weight, reduce its
speed to the minimum possible speed not smaller than w;/P,. We continue with the tasks
of smaller weight, until P(P,. > P,) > proba,. At last, if P(P,y > P;) > proba,, we just
undo the last move to make P(P,e > P;) < proba,.

63

We then consider duplication: if duplicating a task T; (and setting its speed to the
smallest speed that is not smaller than s) is beneficial compared to the current solution
(and if a processor is available), the task is duplicated.

Algorithm 15 BESTTRADE (n,p)

1: We assume all weights are different (w; # w; for i # j);

2: for j=1to j=ndo

3: s < smallest possible speed not smaller than w;/(P; — w;/Smax), m; = 0;

4: end for

5: Sreduce < tasks that have possible speeds between w;/P; and w;/(P; — w;/Smax);

6: sort tasks of Sieguce Dy non-increasing weight;

7 k=1,

8: while P(P, > P,) < proba, do

9: Reduce speed of k-th task in Syegyuce to the smallest that is not smaller than wy/F;;

10 k=k+1;

11: end while

12: if P(P,e > P,) > proba, then

13: set speed of (k-1)-th task in Syeguce to the smallest that is not smaller than wy /(P —
W/ Smax);

14: end if

15: Pay <— p — n (Number of available processors);

16: for j=1to j =n do

17: sq < the smallest speed that is not smaller than w;/F;
18: if 2w;sy < w;s + fi(s;)w;sh., and pey > 0 then

19: duplicate Tj,m; = 1,5; = 54, Dav < Pav — 1;
20: end if
21: end for

As we did in BESTTRADE, for continuous speed model, we still try to keep the best
tradeoff between increase in probability and decrease in energy for BESTTRADEC, but
now cores can set speed exactly to tasks’s critical speeds. First we set all tasks’ speed to
st = w;/(P, —w;/P,). Then, tasks with higher speeds (which are the one with the highest
weights) are first slow down: we carefully decrease the speed of all faster tasks to the next
critical speed. Whenever the reduction crosses the critical speed s’ of some task T;, this task
is included in the set of tasks currently being slowed (Sexcess). We make sure that no task
is assigned a speed smaller than its sfi: such tasks are removed from Seyeess and put into
Stine, to remember that their speed cannot be reduced anymore. We stop when the target
probability is exceeded: then, all the tasks that were still in Seceess are accelerated to reach
the exact target probability. Finally, we deal with duplication as in the discrete case.

4.6 Experimental validation through simulations

In this section, we evaluate all proposed algorithms through extensive simulations on both
real applications and synthetic ones, in the case of discrete and continuous speeds. For
reproducibility purposes, the code is available at |github.com /gouchangjiang]

Given a computing platform and an application, we set the target period P; and proba-
bility proba, so that all assumptions made in the model are true:

e When all tasks are executed with the minimum speed $,,;,, the maximum failure rate is
not larger than 10~2. With such a failure rate, the failure of two copies of a duplicated
task is very unlikely, and the approximation in Equation (4.2)) holds.

64

Algorithm 16 BESTTRADEC (p,n)

1: We assume all weights are different (w; # w; for ¢ # j).
2: for j=1to j=ndo

33 sj 4 wj/(P, — w;/Smax), mj =0

4: end for

5: 14— 0; Sreduce < 07

6: Sort tasks by non-increasing weight, such that wy, > wy > ... > w,
7. while P(P,; > P,) < proba, do

8 i< i+ 1, Spipe 0

9: Put task T; into Srequce
10: Sc wi-l—l/(R; - wi+1/smax)
11: sq« w;/ P

12: for all task 7} in Sreguce do

13: if max(s., sq) < w;/P; then

14: Remove T} from Sreguce, put it in Sgine

15: Sj ’U)j/Pt

16: else

17: s; — max(s., Sq)

18: end if

19: end for
20: end while
21: Compute s such that if s; = s for tasks in Syeguee and if s; = max(s,w;/F;) for tasks in

S'tine, then we have P(P, > P;) = proba,
22: for all task T} in Syequce, task T in Spine do
23: 5 < 8,55 < max(s,w;/P)
24: end for
25: Paw < p — n; (Number of available processors)
26: for all task T; do
27: if Qwi(%)Q < w;s? + fi(s))w;s2,,. and py, > 0 then

t max

28: duplicate T;: m; < 1; 8; < w;/Py; Pay < Pav — 1
29: end if
30: end for

31: return < s;,m; > and Siequce

e When all tasks are processed with speed sp,.x, the maximum failure rate is not larger
than 10~*, which means that the failure of a task running at maximum speed is very
unlikely.

e P, should not be smaller than any task duration when running at maximum speed,
otherwise, there is no way to meet the target period: P, > max(wi)

Smax

We set P, = a+ Kk (b—a), where a = max(w; /Smax, 0;) and b = maz(w; / Smin + Wi/ Smax, 0;):
a (respectively b) is the maximal time spent on a task (either on computation or on com-
munication), when running at the maximum (resp. minimum) speed. This way, P; is never
smaller than a, which satisfies the third condition above. Similarly, we avoid the case P, > b,
in which the target is too loose, as even the minimum speed can achieve it. A small x leads
to a tighter target period. Under the above three conditions, we set x to values from 0.05
to 0.95, by increment of 0.01. The target probability is set to proba, = 0.05 for synthetic
applications and proba, = 0.01 for real applications.

We use the result of heuristic BESTENERGY described in Section [4.4.2] as a comparison
basis, as it gives the minimum energy consumption of the system without any constraint.

65

Failure rate

Possible frequency /voltage Normalized speed (x10~¢/second)

1.2 Ghz/1.3 V 1 1
987 Mhz/1.16 V 0.80 2.30
744 Mhz/1.03 V 0.61 5.29
502 Mhz/0.89 V 0.41 12.18
260 Mhz/0.75 V 0.21 28.01
66 Mhz/0.675 V 0.055 54.60

Table 4.1 — Configurations of computing platforms.

4.6.1 Multi-core embedded systems

We simulate a multi-core computing platform with 512 cores. Based on AsAP2 and Kilo-
Core, two state-of-art MPSoCs described in Section , the frequency/voltage options are
listed in Table [86], [17]. NoC enables extremely fast communications. We describe the

value of together with the output (input) file sizes o; below in the next subsection. The

Smax —S

failure rate is computed as described in Section [4.3.3[as A(s) = Aoe’max=emin . Based on the
settings in [98], we set A\g = 107% and d = 4.

4.6.2 Streaming applications

We use a benchmark proposed in [85] for testing the Streamlt compiler. It collects many
applications from varied representative domains, such as video processing, audio processing
and signal processing. The stream graphs in this benchmark are mostly parametrized,
i.e., graphs with different lengths and shapes can be obtained by varying the parameters.
Table lists some linear chain applications (or application whose major part is a linear
chain) from [85]. Some applications, such as time-delay equalization, are more computation
intensive than others.

Following the same idea, we also generated synthetic applications in order to test the
algorithms on larger applications. We generated 100 groups of linear chains. Each group
contains 3,000 linear chains with the same number of nodes, which range from 0.01p to p
from group to group by an increment 0.01p, where p is the number of cores. The weights
of the nodes w; follow a truncated normal distribution with mean value 2,000, where the
values smaller than 100 or larger than 4,000 are removed. The standard deviation is 500.
This ensures that the execution time is not too long so that failure rate is acceptable. The
communication time (%) follows a truncated normal distribution with mean value 0.001 % P,
values that are larger than P; are replaced by P;,. Here P, = a + 0.05 % (b — a).

Application Size Average node’s weight
CRC encoder 46 14.20
N-point FFT (coarse-grained) 13 1621.31
Frequency hopping radio 16 11815.81
16x oversampler 10 2157.4
Radix sort 13 179.92
Raytracer (rudimentary skeleton) 5 142.8
Time-delay equalization 27 23264.78
Insertion sort 6 475.83

Table 4.2 — Real application examples.
66

4.6.3 Simulation result

We present both results on synthetic applications and on real applications. On each plot,
we show the minimum, mean, and maximum values of each heuristic. In some cases, only
the mean is plotted to ease readability, when the minimum and maximum do not bring any
meaningful information.

Synthetic applications

Fig. [4.4) presents the results of all heuristics, both in terms of energy consumption, and in
terms of constraints, when we vary the parameter x, hence the tightness of the bound on the
expected period. On Fig. and Fig. [4.4b] the dashed lines represent the minimum, maxi-
mum and average period bound. All chains have 0.5p nodes. Apart from MAXSPEED, which
always meets the bound, and BESTENERGY, which never meets the bound, all heuristics
succeed to meet the bound on the expected period. BESTTRADE, CLOSER and DUPLI-
CATEALL are overlapped by THRESHOLD.

Fig. and Fig. show the probability of exceeding the period bound for discrete
and continuous speed option respectively, and the dashed line is the target proba,. In both
cases, DUPLICATEALL is overlapped by MAXSPEED, and only BESTTRADE succeeds to
always meet the bound. BESTENERGY may result in a probability of 0 when x = 0.95, but
for other values k, its probability is always 1, which is not depicted in the figure. When
discrete speed option is selected, CLOSER and THRESHOLD give very similar results, but
sometimes exceed the bound (when 0.4 < k < 0.8). Fig. also shows that when target
period gets larger, it’s much easier for all heuristics to meet the probability bound. Since
when k gets larger than 0.5, P is relatively large, so few tasks are in set Sexcess-

Finally, Fig. and Fig. [4.4f] depict the energy consumption, normalized by the result
of BESTENERGY. It does not include the energy cost of heuristic MAXSPEED, which is 215
times larger than BESTENERGY. CLOSER, THRESHOLD and BESTTRADE are very close
to each other in this set of simulations for discrete speed option, so some of them are over-
lapped. The most energy saving heuristic is CLOSER, then closely followed by BESTTRADE,
then THRESHOLD for continuous speed cases. DUPLICATEALL consumes significantly more
energy than the other heuristics. Fig. also demonstrates that given a larger period
target, our heuristics’ performance get close to BESTENERGY and the difference between
them is smaller in continuous speed cases. Overall, both figures show that BESTTRADE
is the best heuristic for these applications: it allows us to always meet both the expected
period bound and the probability bound, and it offers similar energy performance as other
heuristics. THRESHOLD and CLOSER are also good options, however they often exceed the
probability bound.

Fig. illustrates performance of the heuristics for energy consumption and the two
constraints, as a function of nodes to cores ratio. Given an amount of cores, a larger
ratio corresponds to chains with more nodes. k is set to 0.4 in these simulations. In
Fig. and Fig. [4.5D the dashed lines represent the minimum, maximum and average
period bound. On these figures, all heuristics except BESTENERGY always meet the target
period bound. BESTTRADE, CLOSER, DUPLICATEALL and THRESHOLD overlap, except
for their definition domain: DUPLICATEALL produces a valid allocation only for a ratio of
nodes to cores smaller than or equal to 0.5, and THRESHOLD requires to duplicate at least
one node. Only BESTTRADE and CLOSER are defined for the whole range of the ratio.

Fig. and Fig. show the probability of exceeding the period bound for discrete-
and continuous speed respectively, where the dashed line is the target probability. Only
BESTTRADE can meet the probability bound for all ratios. In the cases of discrete speed,
THRESHOLD and CLOSER give very similar results as BESTTRADE, except on large ratios
(i.e., large chains), where they exceed the bound. In the cases of continuous speed, CLOSER
can meet the probability bound when the ratio is small (i.e., small chains). The probability
for DUPLICATEALL and MAXSPEED is always zero.

67

Finally, Fig. and Fig. depict the energy consumption as a function of the chain
sizes. MAXSPEED is again too large to be included. In the cases of discrete speed, the energy
cost of BESTTRADE is the same as CLOSER and they are close to THRESHOLD. As the size of
the chains increases, the energy consumption of other heuristics get close to BESTENERGY,
and the difference between themselves also get smaller. In the cases of continuous speed,
except BESTENERGY, the most energy saving heuristic is CLOSER, then closely followed by
BESTTRADE, then THRESHOLD. Once again, Fig. shows that BESTTRADE is the best
option for all constraints.

Real applications

Fig. shows the performance of the heuristics on real applications, as a function of x. In
Fig. and Fig. [4.6D] the dashed line represents the average period bound. All heuristics
except BESTENERGY meet the period target. BESTTRADE, DUPLICATEALL, CLOSER and
THRESHOLD give very similar results and thus overlap in Fig. BESTTRADE is partially
covered by THRESHOLD and DUPLICATEALL is covered by THRESHOLD, in Fig. 4.6b]

For probability bound, as shown in Fig. and Fig. [4.6d, only BESTTRADE always
meet the target. DUPLICATEALL and MAXSPEED both give a probability of 0 as before.
CLOSER and THRESHOLD sometimes exceed the target probability by a large factor. Fi-
nally Fig. and Fig. show the energy required by each heuristics. In this setting,
BESTTRADE is the most energy saving heuristic, closely followed by CLOSER. THRESHOLD
requires more energy, and DUPLICATEALL even more. Not surprisingly, MAXSPEED is the
heuristic that costs the most energy, around 254 times larger than BESTENERGY (so it is
not included in Fig. and Fig. [£.6f). This shows that BESTTRADE is the best heuristic

also for real applications.

4.7 Chapter summary

In this chapter, we have studied the problem of optimizing the energy consumption of linear
chain applications on MPSoCs, which have both reliability and performance constraints. We
proposed a new model that allows us to change the frequency of the cores for different tasks
and to duplicate some tasks. It takes into account both the expected period, the probability
of exceeding the period and the energy efficiency. We proved that minimizing the energy
consumption is easy without performance and reliability constraints, but that the problem
becomes NP-complete when adding these constraints and when considering a discrete set
of possible speeds. We then proposed several heuristics for choosing the tasks’ processing
speed and which tasks to duplicate. One of the proposed heuristics, BESTTRADE, is able
to meet both bounds on the expected period and on the probability of exceeding the target
period, while reducing the energy consumption.

Future work will target more complex allocation schemes, in which several tasks may be
mapped on the same core, and in next chapter we will target a more complex task graph.
Based on the present results, we expect the problems to become even more complex, but we
believe that it will be possible to reuse some ideas derived from the study of linear chains.

68

60 -

W
o
1

Expected period
DO
(e}

(a) Expected period, discrete speed

<

—

(e
1

<

o

S
1

Probability of exceedé)ng the period bound
R
\\g

0.25 0.50 0.75
K

(c) Probability, discrete speed

DO w —
o o (e
1 1 !

Energy cost normalized to BESTENERGY
—_
o

o
1

(e) Energy cost, discrete speed

Expected period

o

—_

o
1

=

o

S
1

Energy cost normalized to BESTENERGY

Probability of excee(cijing the period bound
o
ot

60 -

W
o
1

)
(e}
1

0.25 0.50 0.75
K

(b) Expected period, continuous speed

o
(e}
1

- BESTTRADE
— CLOSER

— DUPLICATEALL
— MAXSPEED

THRESHOLD

0.25 0.50 0.75
K

(f) Energy cost, continuous speed

Figure 4.4 — Energy cost and constraints on synthetic applications, as a function of x.

69

604 W
I—g K’
'z 40 4
)
g
oo}
§ -
o
201
(M”WWMW
0_ ny T T T T
0.00 0.25 0.50 0.75 1.00

Ratio of node to core

(a) Expected period, discrete speed

<

o

>
1

©

o

=
1

=

=)

2
1

- ,\AAW

025 050 0.75
Ratio of node to core

<

o

S
1

Probability of exceeding the period bound

0.00 1.00

(c) Probability, discrete speed

[\)
ot
1

[\)
()
1

—
o
1

'/\/\-MM\WWWMW'

5_
0.00

Energy cost normalized to BESTENERGY
—
ot

025 050 0.75 1.00

Ratio of node to core

(e) Energy cost, discrete speed

60 -

Expected period

Probability of exceeding the period bound

Energy cost normalized to BESTENERGY

B
=)
1

DO
(e}
1

11

= < <

o o o

2 = >
1 1 1

<

o

S
1

O_ T
0.00

025 050 0.75
Ratio of node to core

1.00

(b) Expected period, continuous speed

Nk

025 050 075 1.00

Ratio of node to core

0.00

(d) Probability, continuous speed

— BESTTRADE
CLOSER
DUPLICATEALL
MAXSPEED
THRESHOLD

=
=
=]
=

[N
1

o
1

0.25 0.50 0.75 1.00

Ratio of node to core

0.00

(f) Energy cost, continuous speed

Figure 4.5 — Energy consumption and constraints on synthetic applications, as a function

of nodes to cores ratio.

200 200
< K g’
2 2
— —
o5} o5}
A, A,
e e
Q Q
3 B3]
5 5}
2100 2100 -
= =

025 050 0.75 025 050 0.75
K K
(a) Expected period, discrete speed (b) Expected period, continuous speed

<

[

<t
1

<

—

Ot
1

o

—_

o
1

je=]

—_

)
1

<

o

ot
I

<

o

ot
1

<

o

S
1

=

o

S
1

Probability of exceeding the period bound

Probability of exceeding the period bound

(c) Probability, discrete speed (d) Probability, continuous speed

|

W
(e}
1
W
(e}
1

— BESTTRADE

— CLOSER

w
o
1
w
o
1

— DUPLICATEALL

— MAXSPEED

Energy cost normalized to BESTENERGY

Energy cost normalized to BESTENERGY

20 - 20 -
THRESHOLD
] .]
10 - — 10
. ——
0- 0-
0.25 0.50 0.75 0.25 0.50 0.75
K K
(e) Energy consumption, discrete speed (f) Energy cost, continuous speed

Figure 4.6 — Energy consumption and constraints on real applications, as a function of k.

71

Chapter 5

Reliable and energy-aware mapping of
streaming series-parallel applications
onto hierarchical platforms

This chapter is a following work of the previous chapter (Chapter . The main differences
are that the task graphs of streaming applications are more general, and the computing
platform we target consists of a two-level communication system, which is very common
in embedded systems and in HPC domain. This work has been published at SBAC-PAD
2020 |R1, [C1].

5.1 Introduction

Streaming data is continuously generated from applications in high energy physics [32],
astronomy [30] and other scientific or industrial domains [26]. With the improvement of
detector resolution, it is anticipated that the data volume will dramatically increase. For
instance, the advanced light-source facility could generate 1.9 PB data each year and at
a rate of 20 GB/sec in the near future [66]. Processing these data in real-time and then
feedback key information to decision-making is critically useful, even if it demands intensive
computing power. The use of large-scale hierarchical platforms can help parallelize the
processing of this streaming data and process it in real time. This may also help reduce the
overall energy consumption resulting from the intensive computing properties, for instance
by using DVFS.

Most of the workflows corresponding to streaming applications exhibit a regular struc-
ture, such as linear chains, trees, fork-join graphs, or general series-parallel graphs. For
instance, the majority of the Streamit benchmarks [85] are series-parallel graphs. Hence, we
focus on series-parallel applications instead of linear chains. SPGs cover a far larger scope
of streaming applications, therefore our model is more general than before. The platform on
which we aim at executing such applications is a two-level platform, where several blocks,
each with several cores, are available.

To limit the complexity of the problem, the reliability target is relaxed in this study.
We consider here a reliability target not equal to 100%, but instead a small percentage of
failures is acceptable, so that tasks running at maximum speed have a sufficient reliability.
We also observe that triplicating tasks and performing a majority voting leads to a suitable
reliability. This avoids overwhelming energy-consuming on applications that do not need
an error-free level of reliability.

This chapter makes the following major contributions:

1. We propose a formal reliability and energy-aware model for multi-objective optimiza-
tion of allocation and scheduling of streaming tasks on a hierarchical platform, and
prove that the optimization problem is NP-hard;

72

2. We design a dynamic programming approach for simple linear chains of streaming
tasks, based on which allocation and scheduling heuristics for the general case can be
built;

3. Extensive simulations on real applications show that our heuristics can achieve energy
savings without degradation of performance and reliability, as compared to running
all tasks at the maximum speed.

As a following work, this chapter shares the same related work as Chapter [l please
refer to Section The rest of this chapter is organized as follows. Section formalizes
both application and platform models and defines the MINENERGY optimization problem.
Section analyzes the problem complexity. Section presents a dynamic programming-
based solution for MINENERGY when dealing with linear chain applications, and Section [5.5]
proposes heuristics for general series-parallel graphs. Section evaluates the proposed
algorithms. Finally, Section concludes the chapter and provides directions for future
work.

5.2 Model

5.2.1 Streaming applications — SPGs

The application that is to be scheduled is a streaming application: it operates on a collection
of data sets that are executed in a pipelined fashion. The period of the application, which is
the inverse of the throughput, corresponds to the time interval between the arrival of two
consecutive data sets. We assume that the period of the application (or the throughput) is
given by the application and must be enforced. This target period is denoted by F;.

We consider applications represented as a series-parallel graph G = (V, &), or SPG.
Nodes of the graph correspond to different application tasks, and are denoted by T;, with
1 < i < n, where n = |V| is the size of the graph. For each precedence constraint in the
application, say from task T; to task 7}, we have an edge L; ; € £, and we say that Tj is a
successor of T;, j € Succ(i). For 1 <i < n, w; is the computation requirement of task 77,
and for each L; ; € £, with 1 <14, j < n, o, ; is the volume of communication to be sent from
T; to T; before T; can start its computation.

An SPG is built from a sequence of compositions (parallel or series) of smaller-size SPGs,
as illustrated in Figure 5.1} The smallest SPG consists of two nodes connected by an edge.
The first node is the source of the SPG while the second is its sink. When composing two
SPGs in series, we merge the sink of the first SPG with the source of the second SPG. For
a parallel composition, the two sources are merged, as well as the two sinks. The source is
also called a fork node, and the sink a join node.

Data sets arrive at a prescribed rate F;, i.e., a new data set enters the system every B
time units, and we must therefore be able to process at a throughput of at least . We will
further discuss how to compute this processing rate in Section [5.2.6]

1
Py

5.2.2 Platforms

The computing platform targeted in this work has ¢ x p homogeneous cores. Each core
can run at a different speed, with a corresponding error rate and power consumption. We
focus on the most widely used speed model, the discrete model, where cores have a discrete
number of predefined speeds, which correspond to different voltages at which the core can
be operating. Switching is not allowed during the execution of given tasks. The set of speeds
iS {Smin = S1, 2, -+, Sk = Smax }-

The cores are organized by a hierarchical communication system. It consists in ¢ blocks,
each of them containing p computing cores that are tightly coupled by a low-latency inter-
connect fabric. To have a system with hundreds of cores, blocks are connected by the next

73

SPGy: Simplest SPG

T1 —> TQ
01,2

SPGy: Series composition of two SPG;s
T1 1 TQ > T3

Parallel composition of two SPGss,
in series with SPGy

— T2 ~
T1 - o T4 > T5
13

Figure 5.1 — SPG examples.

level network, which contains the route-tables and network parity checking logic. Compu-
tation and communication can hence process concurrently. The bandwidth between two
cores in the same block and in different blocks are denoted respectively as 31 and (5. Com-
munication among cores in the same block is cheaper than that among different blocks [21],

ie., By >> fs.

5.2.3 Graph partitioning and structure rule

In order to achieve load balance and to save communication, the application is partitioned
into several connected parts. Tasks in a part are then allocated to the same core (and a core
processes tasks from a single part), hence there is no communication cost to pay between
tasks in the same part.

For the ease of the communication pattern, since we consider series-parallel graphs
(SPGs), we aim at keeping the SPG structure when creating parts, hence the structure
rule.

Definition 3 (Structure rule). A partition of the SPG follows the structure rule if and only
if each part consists either of (i) a single task, (ii) a subgraph that is itself an SPG, or
(i11) several tasks or SP subgraphs that share the same predecessor and successor (that is,
a parallel composition of SP subgraphs).

If we consider a simple linear chain with three tasks 77, 15, T3, that is, a series composition
of these tasks, to be mapped on two cores, this rule does not allow 77 and T3 to be mapped
on the same core, while 75 is on another core. Rather, we can either keep the three tasks on
one core, or have two consecutive tasks on a core and the third task on another core. For
such linear chains, this is similar to interval mappings [13].

The rule for parallel compositions is slightly more intricate: consider for instance a simple
fork-join with source T}, and sink T}, and inner tasks 71, ..., T}, as depicted on Fig. .
Then, either all tasks of this fork-join are in a same part, or Ty, and T}y, must both be in
different parts, and none of inner tasks 77, ..., T, can be in one of these two parts. However,
several of them can be grouped in the same part, as they share the same predecessor 1%,
and the same successor Tjy,. For instance, T} and T3 can be in the same part, while all
other tasks 715, T}, ... T} can be in another part, as depicted in Fig.

A parallel composition of more complex subgraphs is depicted in Figure between
tasks T} and Tig. In the proposed partition, two subgraphs of the parallel composition are
grouped together (green partition), which is allowed as they share the same predecessor T}
and successor T15. The other subgraph of this parallel composition is split into two parts.
One of them, including 75 and 73, is made of two tasks sharing the same predecessor and

74

T’fo Tk

Figure 5.2 — Fork-join graph and a partition following the structure rule.

successor, while the other one is a SP subgraph. Note that by construction, each part of a
partition following the structure rule has either a single source vertex and sink vertex (in
the cases (i) and (ii) of the definition), or it has a single predecessor and a single successor
(case (iii)).

Figure 5.3 — SPG partition following the structure rule.

Notations. The set of task indices that are mapped onto a core v is denoted by C,,
and all these tasks are executing at the same speed S(v). Indices of tasks that are mapped
on a block d of cores is denoted as set ¢4, and it is the union of the C’s for all cores v in
block d, i.e., {3 = UyeqaCly.

The sets Source, (resp. Sink,) represent the indices of the source vertices (resp. sink
vertices) mapped on core v. There is only one source and one sink, except for parallel SPGs
mapped in a same part. Also, we define the set PredC, (resp. SuccC,), which contains
the core indices on which there are tasks that send outputs to tasks 7T;, with ¢ € Source,
(resp. receive inputs from tasks 7; with i € Sink,). By construction, either there is only
one source and one sink (|Source,| = |Sink,| = 1), or there is only one predecessor and
successor task.

5.2.4 Soft-errors and triplication

High performance computing platforms are subject to failures, and in particular transient
errors caused by radiation. In our framework, we can choose the execution speed of a
core. However, a very small decrease of speed leads to an exponential increase of failure

rate [98,99]. Indeed, as shown in Chapter [4.3.3] radiation-induced transient failures follow
a Poisson distribution, and the fault rate is given by:

Smax —S

A(s) =)\Oedsmax—Smin ,

where s € [Smin, Smax| denotes the running speed, d is a constant that indicates the sensitivity
to DVFS, and)\ is the average failure rate at speed spax. Ag is usually very small, of the
order of 107° per hour [7]. Therefore, we can assume that the application is reliable enough
when running at speed spax, and that there is no need of re-execution [9].

To save energy while having a reliable execution, we also propose a triplication of tasks:
three copies of the same task (or group of tasks) are run simultaneously, and a majority
voting determines the correct results. Such a scheme may fail only if two copies (among
the three) fail simultaneously. For example, on the processor used for the simulation (see

75

Section , and when considering that the failure rate at maximum speed is \g = 107°
faults per hour, the failure rate at minimum speed is 5.46 x 10~* per hour. Then, the
probability for at least two copies failing is: 3 x (5.46 x 107)? = 8.94 x 1077 failures
per hour, which is much smaller than the probability at maximum speed. We continue
this example below to show that in some cases, triplication succeeds to reduce the energy
consumption.

Therefore, after a partition of tasks is done (following the structure rule), in order to
have a reliable execution, either we execute a whole part on a core at maximum speed
without triplication (denoted by m; = 1 for any task 7; in the part), or we triplicate the
whole part on three different cores (denoted by m; = 3 for any task 7; in the part). In this
later case, the execution speed S(v) used by the three cores is set to the minimum speed
such that S(v)P; >), o wi, so as to minimize the energy cost while respecting period
bound. We further enforce that these three cores must be in the same block, since they
need to communicate, in particular to do the majority voting and decide which result is
correct. Note that if a part is triplicated, the majority voting occurs only for the last task
of the part.

5.2.5 Energy

We follow a classical energy model, whose power estimation error in a case study is at
most 9.4% on average, see for instance [69]. The energy consumption of executing a data
item through all tasks is composed of static part and dynamic part: £ = E, + E;. The
static component represents the idle leakage current consumption, which is modeled as
E, = I, x Vi X P, X ¢,, where Iy and V; denote the leakage current and the minimum
possible voltage of a core, and ¢, denotes the actual number of cores used, since we assume
that other cores can be switched off. Since a data item arrives every P, time units, the static
energy is consumed during a time P; for each task, on each of the ¢, cores.

For a single execution of task T} running at speed s(i), the dynamic component Ej is
related to the operating frequency and voltage, EY = Cs(i) x G = Cw;s?(i), in which
C denotes the switching capacitance. The supply voltage is scaled in almost linear fashion
with the processing frequency [45]. After taking triplication into consideration, the energy
cost of the whole application on one data item is therefore:

E=LV,Pic,+C) muwis(i),

1<i<n

where m; = 3 if Tj is triplicated, otherwise m; = 1. Following up with the previous example,
we show that triplicating a task may cost less energy than running it at the maximum speed.
We use the values used in Section Smin and sy are 1.2 Ghz and 4 Ghz respectively,
static power is 2W, C' = 1. Assume that the task’s weight is 1.2 and the period is 1 second.
The energy needed for triplicating it at sp, is 3% (2+ 1.2 % 1.2%) = 11.184W, while running
it at Smax requires 2 + 1.2 x 42 = 21.2W.

The energy cost of the communication is not negligible in our model. Within a block,
communication among processor cores is realized through a remote memory access. Com-
munication between two cores of different blocks is realized by routers on NoC. For a simple
transfer of data on edge L, ;, the energy cost can be represented by E.(L; ;) = «; ;0; j, where
«; j is the energy cost for a unit of data sending. «;; depends on where tasks are located:
if task 7; and T} are allocated onto the same core, then o;; = 0; o; ; = a3 > 0 if tasks are
allocated onto two cores of the same block; otherwise a;; = aq, and a; < s, see [02] for
details.

Also, we must consider the influence of triplication. Given L;; € £ such that «;; # 0,
i.e., T; and T} are mapped on different cores, the energy cost also depends on whether T;
and Tj are triplicated or not. First, if 7} is triplicated, it does a majority voting before the
communication occurs: two outputs from two different cores need to be sent to a core in

76

the same block, hence the energy cost is (m; — 1)aq0;; (hence this cost is null if m; = 1).
Next, the communication between 7; and 7; must be done one or three times, depending
whether T is triplicated or not, with a cost m;a; ;0; ;.

In total, the energy cost of the whole application on one data set is:

E=1I1ViPca+C Y mas’(i)+ Y ((ms = Dawog; + mjai jo;).

1<i<n L; j€€|a; ;70

5.2.6 Timing definition and constraints

The actual time spent by tasks mapped on core v is:

Z' c, Wi Ok
©) sefem-n Y ¥ %
JESinky ke Suce(j)
0j k
max Z -
ueSuceCy JESink, ,k€Source, 61}’”
0.k)
max Z —=,
uePredCy JESinky k€ Source, 6“’1)
where 3, , = 8, since communication channels are symmetrical, 3,, = £ if v and v are on
the same block, otherwise 3,, = B;. If tasks in (), are triplicated, then m; = 3, otherwise
The first term in the maximum is the execution time plus the time required for majority
voting if tasks are triplicated. Indeed, in this case, two copies of all outputs from task 77,
with j € Sink,, need to be sent to a core in the same block, since they are sent to the same
place. The communication is sequentially executed to avoid potential contention, thus the
time needed is two times (m; — 1 = 2 in this case) a single transfer. The second and third
terms are the time needed to send and receive datasets.
To execute a data item through all stages of G, the time taken is therefore:
T(G) = max T(v).

1<v<cep
In order for the mapping to be valid, this has to be less than or equal to the target period
T(G) < P.

5.2.7 Optimization problem

The objective is to minimize the expected energy consumption per dataset of the whole
workflow, while ensuring a reliable execution of the application. Hence, each task should
either be executed at maximum speed, or triplicated. The goal is hence to decide which
tasks to group in a same part, which parts to triplicate, at which frequency to operate each
part, and on which core a part should be executed. More formally, the problem is defined
as follows:

(MINENERGY) Given a series-parallel graph composed of n tasks, a computing platform
composed of ¢ blocks, each equipped with p homogeneous processor cores that can be oper-
ated with a speed within set S, an intra-block (resp. inter-block) communication bandwidth
b1 (resp. Ba, with By >> Ps), and a target period P, the goal is to partition the graph and
decide, for each part, whether to triplicate it or not, at which speed to operate it, on which
core to operate it, so that the total expected energy consumption is minimized, under the
constraint that the actual period T'(G) should not exceed the period bound Py (to ensure re-
quired performance), and that each task is either executed at mazimum speed or triplicated
(to ensure reliable execution).

77

5.3 Problem complexity

As many partitioning problems, the MINENERGY optimization problem unsurprisingly turns
out to be NP-complete. We establish its NP-completeness:

Theorem 4. The decision version of MINENERGY problem is strongly NP-complete.

Proof. First, we verify that given a mapping of the tasks on the processors, it is possible to
verify that (i) each partition follow the structure rule, (ii) the constraint on the execution
time is satisfied, and (iii) the required energy of the mapping does not exceed the bound.

To prove the problem NP-hard, we perform a reduction from 3-PARTITION, which is
known to be NP-complete in the strong sense [43]. We consider the following instance Z;
of the 3-PARTITION problem: let {ay,...,a3n} be 3m integers, and B the integer such
that Z?;”l a; = mB. We consider the variant of the problem, also NP-complete, where
Vi, B/4 < a; < B/2. To solve Z;, we need to solve the following question: does there exist a
partition of the a;’s in m subsets Sy, ..., 5, each containing exactly 3 elements, such that,
for each Sy, ZiESk a; = B? We build the following instance Z, of MINENERGY: we consider
a fork-join graph as depicted in Figure , where Wi, = Wjoin, = B, and w; = a,. The data
carried by edges are assumed of negligible size, and thus o, ; = 0 for all 7, j € £. We consider
a platform with ¢ = 1 block of p = m + 2 processors, with a set of possible speeds reduced to
a single one: Spyin = Smax = 1. The target period is P, = B. Since we consider the decision
version of MINENERGY, we set a bound on the energy: F < I x Vy(m+2)B+C(m—+2)B.

Assume first that there exists a solution to Zi, i.e., that there are m subsets Sj of 3
elements with) . s, @ = B. In this case, we build the following mapping as a solution for
Ly 1 Tho and Ty, are each mapped on a dedicated processor, while for each 1 < k < m,
the 3 tasks T; with i € Sy are mapped on a dedicated processor (no triplication is used).
On the whole, the mapping uses m + 2 processors. We verify that the computation load of
each processor is B, which ensures that both the period bound and the energy bound are
met. Besides, this mapping is similar to the one depicted in Figure and thus follows the
structure rule.

Reciprocally, assume that there exists a solution to problem Z,, that is, a mapping
of tasks that respects all bounds as well as the structure rule. We notice that the total
computation load of (m+2)B has to be perfectly balanced on the m+ 2 available processors
to reach the period bound B, and that no triplication is possible. Hence, T}, and T}, (each
of computational weight B) must be mapped on dedicated processors, while m processors
are available to compute the T;’s. Since w; > B/4, each processor can accommodate at
most 3 tasks. For each of these m processors Py, ..., P, let S; be the set of the indices of
the 3 tasks mapped on P;,. Thanks to the period bound, we know that). s, @ < B and

as Z?;nl a; = mB, we have Ziesk a; = B. Hence, the S;’s form a solution of Z;. O

Since the problem is NP-complete, we first address the easier problem of linear chain
applications in Section before designing heuristics for the general case in Section [5.5]

5.4 Dynamic programming on a linear chain

If the application is a linear chain, we propose a dynamic programming algorithm to solve
MINENERGY. According to the structure rule, the linear chain needs to be partitioned into
sub-chains, each of them being assigned to one or three distinct cores, depending whether
the sub-chain is triplicated or not. We further consider a contiguous allocation, where all
cores from a same block are assigned to connected sub-chains (forming together a larger
chain).

We consider that we have ¢* < ¢ available blocks, where the ¢* — 1 first blocks have p
cores available, and the last block has p* < p cores available. We express recursively the
minimum energy cost of scheduling tasks 77 to T; onto the remaining cores. Either all the

78

tasks form a single part, or we create a part with tasks Tj.1,...,T; and recursively partition
the first j tasks.

Initially, we call E(n, ¢, p), which partitions the whole chain with all blocks and all cores
available. The recursion then writes:

E(i,c*,p") = min {Em(l,i, ' p),
Et(lvivc*vp*)v
min {E(j,c*,p" — 1) + Ec(j,on, 1, 1) + En(j + 1,4, ¢, p"),

1<5<1

’ (5.1)
E j7 C* - 17p) + EC<j7 a27B27 1) + Em(] + 17i7 C*ap*)a

(

(
E(] C*ap* - 3) + Ec(j7 04175173) + Et(] + 1,i,C*,p*),
E(]a ¢t — Lp) + Ec(ja a27ﬁ273) + Et(] + 1,2‘,6*,]7*)}},

where E,, (i, j, ¢*, p*) (resp. Ei(i,j,c*,p*)) is the energy cost of executing tasks between
T; and T} included, at the maximum speed (resp. triplicating the tasks) if there are ¢* blocks
of cores available, the last one having p* cores available. Also, E.(j,a, 3, m) denotes the
energy cost of transferring data of size o; ;1 if T; and T}, are in different parts: o and 3 are
the energy costs of transferring a unit of data and the bandwidth respectively (their values
depend on whether tasks are in a same block or not), and m indicates whether task Tj is
triplicated or not (we pay the communication either three times, or only once).

In the recursive formula E(i,c*, p*), we consider all possible situations: either the sub-
chain T3, ..., T; is mapped in a same part, at maximum speed or triplicated (two first lines),
or we cut the chain after 7j. In this case, tasks T}1,...,7; are in a same part, triplicated
or not, and we consider whether there are in the same block as 7T} or in a different block,
hence resulting in four different cases.

It remains to express E,,, Fy, and E.. For E,,, we compute the energy cost as described

in Section [£.2.5t

+00 if D ichej Wk > PiSmax
Em(ivja C*7p*) - or p* < 1 or C>|< < 1, (52)
IV,P, + Cs?

maz Dick<j Wr otherwise.

Note that the energy cost is infinite if the period bound is not respected, or if there
is no available core (¢* < 1 or p* < 1). The expression of E; relies on sg, the minimum
speed among speeds at which the execution time of tasks between 7; and T} is not larger
than P, (see Section . We add the energy cost of the majority voting within the same
block (20110, +1), see Section The period is infinite if there are less than three cores
available, or no block left, or if the period bound cannot be matched:

+00 if Zigkﬁj Wy > Ptsmax
Et(i7j7 C*Jp*) = or p* <3dorc< 1, (53)
3(I,V,P, + Cs? > ick<; Wk) +2010; 41 otherwise.

Finally, for E., the energy is infinite if the communication time is larger than the period,
otherwise it is computed as indicated in Section [5.2.5}

+00 if 0j.j+1 > BP;,

mao; i1 otherwise.

E(j,a,8,m) = { (5.4)

5.4.1 Case studies to show it is not optimal

In this section, we provide an example to show that the method proposed above is not
optimal, because of the contiguous assignment of blocks. Consider a platform with ¢ = 2

79

blocks, each with p = 4 cores. Each core can run at a speed in set S = {1,2 4}, with the
corresponding operating voltage in set V' = {1,2,4}. The characteristics of communications
on-chip are given by ay = 1, ay = 2 (energy cost) and 51 = 2, 5 = 1 (bandwidth). The
static energy cost of a core of a period is 1P, (i.e., I,V = 1), constant C' is set to 1. The
application is a linear chain with four tasks, the task weights of T} to T are {4,4,1,1}
respectively, and the size of all edges are 0.1. The period bound is P, = 1.

The optimal partition and mapping is: break all edges, each task is a part. The first two
tasks are running at the maximum speed and are mapped onto two different blocks, each on
a core. The third and forth tasks are triplicated, they both run at speed 1 and are mapped
onto two different blocks, each task on three cores. T5 and T3 are mapped onto the same
block. Then, the energy cost is 137.1 (energy cost of running tasks are 64.1,64.1,3.9, 3.9 for
T to Ty, and communication energy cost are 0.2,0.3,0.6 between them).

The optimal partition and mapping proposed above is not a contiguous allocation, and
hence it will not be considered by the dynamic programming algorithm. Indeed, since
triplication of Ty uses 3 cores, if T3 is triplicated as well, it has to move to another block,
and the core available in the block with T will never be used. Hence, there is no core left
for T} (indeed, T3 and 77 cannot be in a same part without exceeding the period bound).
The minimum energy cost by the dynamic algorithm is 148.4, which is larger than 137.1.
It is obtained by having 77 and 75 in the first block, T3 and T} in the second block, and by
triplicating 7} only.

There are even cases where no contiguous allocation is possible, and hence the dynamic
programming algorithm fails at finding a valid mapping. Consider for instance a linear chain
application with eight tasks, all have weight 4, edges between T, and T3, Ty and T; have size
1, other edges have size 2. Other configurations are the same as before. Each task should
be mapped onto a different core and operated at maximum speed. Tasks between T3 and Ty
(both included) should be mapped onto the same block, otherwise the communication time
between them will exceed the period. Hence, the dynamic programming algorithm cannot
find the solution.

5.4.2 Condition for optimality

For tasks from T} to T}, if indices of blocks at which tasks are assigned to are monotonically
increasing or decreasing, we call this mapping monotonic. More formally, it is defined below:

Definition 4 (Monotonic mapping). In a monotonic mapping, for any tasks T; and T; with
1 <i<j<n and blocks d and f such that i € £y and j € {y, then d < f.

Lemma 2. The previous dynamic program producing E(n,c,p) finds a mapping whose
energy cost is minimal among monotonic mappings.

Proof. We prove that for any ¢, ¢*, p* withi € N, ¢* € N, p* € N, E(i, ¢*, p*) finds a mapping
whose energy cost is minimal among monotonic mappings. Then E(n, ¢, p) is naturally the
optimal solution.

We first prove that for an application composed of a single task 77, solution given by
the formula is optimal. FE(1,c*, p*) = min(E,,(1,1,c¢* p*), Ey(1,1,c*,p*)). The solution
returned is the minimum between the energy cost of running 7 at the maximum speed on
processor p* of block ¢* and that of triplicating T at the speed ss on processors p*, p* — 1,
p* —2 of block ¢*. These two situations include all possibilities: running 7 at the maximum
speed on a core or triplicating 77 at speed s, on three cores. Since cores and blocks are
homogeneous, taking any of them costs the same energy. So it takes the minimum of all
possibilities, which is apparently the optimal solution.

Then we assume that for applications that has at most k tasks, k < i — 1, E(k,d,p)
returns an optimal monotonic solution, ¢ < ¢* and p’ < p*; then we need to prove that
E(i,c*, p*) is optimal among monotonic mappings for applications that have i tasks with ¢*
block and p* cores on each block.

80

We consider an optimal monotonic mapping M, in which we assume the last edge
broken is L, ;+1, (1 < j < i —1). That is to say, tasks from T}, to T; are to be mapped
onto the same processor. Assume task 7 is assigned to block ¢;, ¢; < ¢*. Since the mapping
is monotonic, tasks between Tj,; to T; can use only block ¢; or ¢; +7, 7 =1,2,3,.... Then
we consider all possibilities of mapping.

The energy cost of tasks between 77 and Tj is denoted by Fy..

e if T,y to T; are running at the maximum speed on a processor of block ¢;, then
the energy cost of this part is F,,(j + 1,4, ¢, p’ 4+ 1), the communication energy cost
between T} and T4 is E.(aq, £1,05,4+1,1). In total, the energy cost of the application
is Ep(j + 1d,¢0,p" + 1) + Eiepr + Ee(au, B, 05511, 1);

e if T,y to T; are running at the maximum speed on a processor of block ¢, + 7, then
the energy cost of this part is E,,(j + 1,7,¢; + r, p*), the communication energy cost
between T} and T4 is E.(aq, 52,0541, 1). In total, the energy cost of the application
is B (j+ 1,0, ¢ +1r,p") + Eepp + Ec(a, B2, 05411, 1);

o if 75, to T; are triplicated on processors of block ¢;, then the energy cost of this part
is Ey(j+1,1, ¢, p' +3), plus the energy cost on communication E.(a1, 81,0jj+41,3), the
total energy cost is Ey(j + 1,4, ¢, 0" + 3) + Ejep + Ec(a1, B, 0541, 3);

e if they are triplicated on processors of block ¢; + r, the energy cost of this part is then
E(j+1,i,¢, +r,p*), the communication energy cost is E.(az, 82,0j,+1,3), plus the
energy cost of tasks between T and Tj, the total energy cost is Ey(j+ 1,4, ¢, +7,p*) +
Bt + Ec(az, B2, 0541,3).

The optimal solution is among them and it costs the least energy. As assumed above, the op-
timal solution of tasks between 7} and 7} can be represented as E(j, ¢, p'), Eep > E(j,¢,p').
The optimal solution can be rewritten as:

Eopt = min(E,,(j + 1,i,¢,p" + 1) + E(5, ¢, p') + Ee(ou, B1,0)41, 1),
En(j+ i, ¢,+7,p")+ E(,) + Eaz, B2, 05441, 1),
Ei(j+ 1,0, ¢,p" +3) + E(j, &, p) + Eean, Br, 05,11, 3),
E(j+ 14,0 +r,p")+ E(4,¢,p) + Eaz, f2,0)11,3)).

Note that cores and blocks are homogeneous and ¢; < ¢ < ¢*, p’ < p*, hence if we keep the
relative place of blocks and cores where tasks are allocated. Then it can be rewritten as:

Eop =min(E,,(j + 1,4,¢",p") + E(j, ", p" — 1) + E.(a1, b1, 0541, 1),
En(j+1,i,¢p")+ E(j, ¢ — 1,p") + Ec(az, B2,0j 41, 1),
Ey(j+1,1,¢p%) + E(j, ", p" — 3) + Ec(ou, B1, 0541, 3),
E(j+1,i,¢p") + E(j, ¢ = 1,p") + E.(a2, B2, 05 11, 3)).

Formula E(i,c*, p*) considers all situations above, and it further includes running all
tasks on one core with the maximum speed or triplicating them on three cores of the same
block, and it returns the minimum of all them, so it returns a result that is not larger than
the optimal solution, which shows that it is optimal.

m

5.5 Heuristics for series-parallel graphs

For general series-parallel graphs, we first propose a naive baseline heuristic in Section [5.5.1],
which will be used to evaluate the performance of the proposed sophisticated heuristics.
Other heuristics use a two-step approach to map the SPG onto the platform. The first

81

step is to partition the graph into many parts, and the second step is to map these parts
onto computing resources. We propose two heuristics that focus on partitioning the graph
into many parts, and select the most energy efficient way of execution, while the baseline
heuristic executes all tasks at maximum speed (Sections [5.5.2] and [5.5.3). The mapping
heuristic is described in Section [5.5.4

5.5.1 Baseline heuristic — MAXS

We first outline a baseline heuristic, MAXS, that will serve as a comparison point. It consists
in having each task executed at the maximum speed s,,.x, and then mapping greedily tasks
to cores. A set L stores a depth-first traversal of G. At each step, we pop up the first node
from L and map it onto current core v until total work load on v, ZieCu w;, is larger than
P smax. To respect the structure rule, if the node is a fork, we map the whole fork-join
onto the current core, otherwise if the workload is already too large, we map the fork onto
current core, and its successors onto other cores. We first use all cores of the current block
before using cores of the next block.

Algorithm [19] describes this heuristic. We start from the last core p on the last block c,
and move to the next core on the same block if it has any, otherwise we move to the core
p on next block ¢ — 1.

Algorithm 17 NextCore(c*, p*)

1: if p* > 1 then

2 prep—1;

3: else if ¢* > 1 then

4: =1, px < p;
5: else

6: return < 0,0,0 >;

7: end if

8: return < cx, px,) >;

Algorithm 18 MapNodesOn(T;,T;,c,v)
1: for all nodes T}, from T; to T; do
2: set my «+ 1;
3: put T} into Cy;
4: map T} onto block ¢ and core v;
5: end for

5.5.2 Partitioning heuristic — GROUPCELL

Heuristic GROUPCELL partitions the graph in a bottom-up way. It first breaks all edges,
except (i) edges that have a large communication cost that cannot be done within the period,
ie., 0;; > 1 FP;; and (ii) all edges in a parallel composition when one of the fork’s output
edges or join’s input edges is too large. Indeed, according to the structure rule, edges inside
this parallel composition should not be broken. For each resulting part, two choices are
considered: either running at maximum speed or triplicating, and the most energy efficient
choice is selected. Parts stored in vector V,,..s are those that are supposed to run at the
maximum speed, while other parts that are supposed to be triplicated are in Vi;,. For
two neighbor parts, if they are both in V,,..s, merging them will save the energy cost on
communication. We hence merge parts in V4.5 if they are neighbors and if the merged part
fits within the period bound. In this process, we respect the structure rule, i.e., the resulted
part should be either an SPG or a combination of parallel branches, see Section for

82

Algorithm 19 MAXS(G,c,p,)

1: L < a depth-first traversal of G;
20 b ;v p; Cp < 0; Trnappea < L[1];
3: while L is not empty do

4.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

T; < pop up the first element of L;
if C, # () then
if 7} is not a successor of T},,apped O Tinapped 1s a fork then
< b,v,C, > NextCore(b,v,C,);
if b < 1 then return fail;
end if
end if
if T; is a fork node then
w < sum of weight of all nodes of fork-join of Tj;
if w+ Zjer w; > PySpyax then
if wi+ 3 5c0, Wi > PiSmax then
< b,v,C, >« NextCore(b,v);
if b < 1 then return fail;
end if
MapN odesOn(T;,T;, b, v);
Tmapped <~ Ea
else
T; < join of fork-join of Tj;
MapN odesOn(T;, T;, b, v);
Tmapped — E7
remove nodes of fork-join of T} from L;
end if
else
if T} is a join node then
< b,v,C, > NextCore(b,v);
end if
if w; + Zjer w; > P;Syq, then
< b,v,C, > NextCore(b,v);
end if
if b < 1 then return fail;
MapN odesOn(T;,T;, b, v);
Tmapped <~ Ea
end if

37: end while

83

details. If the number of processors requested for the whole graph then exceeds the capacity,
we merge parts in V., starting with the one with largest input edge weight.

This heuristic is described in Algorithm [20]

Algorithm 20 GROUPCELL(G, ¢, p, P,)

1: parts < break all edges except the one whose d; ; > 81 F;
2: Vinaws < parts in parts for which running at the maximum speed costs less energy than
triplication;

3: ‘/;frip — parts\vmaxs;

4: sort Vi,qes by an non-increasing order of input edge size;

5: for i =1 t0 i = |Vjpaes| do

6: if part V,a.s[i]’s predecessor is also in V4.5 then

7: if sum of weight of V},4.s[i] and its predecessor < P;s;.x then

8: restore the broken edge between V},..4[i] and its predecessor;

9: replace V,qz5[t] by the combination of V,,..s[i] and its predecessor;
10: end if

11: end if

12: end for

13: sort Vi, by an non-increasing order of input edge size;
14: while |V,,.405| + 3|Virip| > cp do

15: part <= pop up the first element of Vi,;p;

16: merge part into its predecessor;

17: end while

18: for all part in Vi, do

19: move it into V4.5 if running at the maximum speed costs less energy;
20: end for

21: for all tasks T} in V,,,42s dO

22: set m; = 1;

23: end for

24: for all tasks 7; in V4, do

25: set m; = 3;

26: end for

5.5.3 Partitioning heuristic — BREAKFJ-DP

This second partitioning heuristic builds upon the dynamic programming algorithm that was
designed for linear chains. It partitions the graph in a top-down way. First, BREAKFJ-DP
breaks all input edges of join nodes and output edges of fork nodes so that resulting
parts are either linear chains or single nodes. Dynamic programming algorithm from Sec-
tion is then called on each of them with the same number of cores and blocks given as
BREAKFJ-DP.

Note that on a linear chain application, BREAKF J-DP is similar than calling the dynamic
programming algorithm on the whole chain, except that mapping the parts to the cores is
not done in the dynamic program but in a second step, using the mapping heuristic.

This heuristic is detailed in Algorithm [21]

5.5.4 Mapping heuristic

Once a partition has been returned by GROUPCELL or BREAKF J-DP, one still needs to map
the parts onto the cores. The mapping heuristic first maps parts that need to communicate
a large amount of data on a same block, whenever possible. In a second step, the remaining
parts are mapped to the cores following the topology of the graph: a depth-first traversal

84

Algorithm 21 BREAKFJ-DP(G, ¢, p, P,)

1: set L < all fork and join nodes of G;

2: Parts <— break output edges of fork and input edges of join in L;
3: C' « (); /*edges broken*/

4: repeat

5: part < pop up the first element of Parts;

6: < 1i,j >< source node and sink node of part;
7. < E,Cuy >« DP(i,j,c,p);

8 if F == +oo then

9: return failure;

10: end if

11: C <+ CuUCCy,;

12: until Parts is empty

of the parts is created, and parts are mapped in this order to the available cores. All cores
of the current block are used before starting using cores from a new block. Some parts may
be merged into its predecessor or its parallel part when there are no available cores.

If two parts connected by an edge with d; ; > B2 P, are mapped onto different processor
blocks, the communication time will violate the period bound, then this mapping is invalid.
MAPRANK takes this into consideration and first maps parts that need to transfer data of
size 0; j > B2 P, onto the same block. A part may have more than one edge with d; ; > B2 F,
so parts connected by these edges should all be mapped onto the same block. They are
grouped into the same vector in the first for loop of MAPRANK. These vectors are stored
in set L. If number of processors needed by a group exceeds the capacity p, we select the
part with the smallest computation weight and execute it at the maximum speed on one
processor. This process is repeated until the requirement fits the capacity. According to
their demand, parts are sequentially assigned to processors |Sets[bey]|, |Se€ts[be]| + 1 and
so on. MAPTOPOLOGY is called afterwards to map the remaining parts.

In MAPTOPOLOGY (see Algorithm , a part is at first mapped onto the same block
as its first predecessor, if it is possible. Otherwise, it will be mapped onto the block with
the closest index that has enough cores. If the input edge is too large to communicate
between two blocks, and current block does not have enough cores, MAPTOPOLOGY first
tries to move some parts already mapped onto the current block to the next block, and
then continues the mapping from the next block. If it does not work, MAPTOPOLOGY then
merges linear chains already mapped from the smallest size until there is enough space.

5.6 Experimental evaluation of the heuristics

In this section, we evaluate all proposed algorithms through extensive simulations on real
applications. For reproducibility purposes, the code is available at
lgithub.com /gouchangjiang /Stream HPC|

85

Algorithm 22 MAPRANK(G, C)

e e e e T
Ll

15:
16:

beur < ¢; L < 0);

construct quotient graph @) by breaking edges in C
initialize Sets with ¢ empty vectors;

C" «+ edges of) whose §;; > B2 P,;
fori=1toi=|C"| do

< T,,Ts >4 nodes connected by edge C'[i];
if 7}, is in L but not T, then
push T} into the same vector as T);
end if
if T is in L but not 7, then
push T}, into the same vector as T&;
end if
if neither 7}, nor T is in L then
initialize a vector with them, push it into L;
end if

end for

17: while L # () do

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

vec < pop up the first vector of L;
nbr <= > ... Mi; /*cores requested™/
if nbr > p then
sort vec by an non-decreasing order of weight;
1dx + 1,
while nbr > p do
set the node veclidz] to run on only one core;
tdx < 1dx + 1; recaculate nbr;
if idx > |vec| then return failure;
end while
end if
if p - |Sets[beur]| < nbr then bey, < bewr — 1;
for i =1 to i = |vec| do
if node vec|i] needs 3 processors then
push it into vector Sets[b.,,] three times;
else
push it into vector Sets|beyr);
end if
end for

37: end while
38: MAPTOPOLOGY(Q, Sets);

86

Algorithm 23 MAPTOPOLOGY(Q, Sets)

1: L < a depth-first traversal of Q;

2: repeat
33 Ty« popup L; b+ ¢
4: if T; has not been mapped yet then
5: if T; has a predecessor then
6: bewr < which block the first predecessor of T; mapped onto;
7: end if
8: if p — |Sets[b]| < m; and the size of first input edge is larger than Sy P; then
9: h < the index such that all input edges of Sets[b][h] are not larger than 5, P;
10: if h exists and b > 1 then
11: move elements between Sets[b][h] and the end of Sets[b] to Sets[b — 1];
12: b+ b—1;
13: else
14: while p — |Sets[b]| > m; do
15: part; < the smallest part of Sets[b] who has only one predecessor that is not
a fork;
16: merge part; to its predecessor and remove part; from Sets[b];
17: end while
18: end if
19: end if
20: while p — Sets[b] > m; and b > 1 do
21: b+ b—1;
22: end while
23: if m; == 3 and p — |Sets[b]| > 3 then
24: put part; into Sets[b] three times;
25: else
26: put part; into Sets[b];
27: end if
28: end if

29: until L is empty

87

5.6.1 Simulation setup

ID Nbr Nbr Max Max Node Min Max Min
Nodes FEdges Degree Weight Node Edge Edge
Weight Size Size

B10 80 95 2 9088 8 136 1
B11 22 38 17 272 96 257 1
B13D 66 80 2 240 12 16 2
B13G 214 313 32 36771 3 1344 1
B14 86 108 4 128 12 16 2
B15 24 38 8 4864 384 64 8
B16 197 229 2 1024 192 96 32
B20 283 469 32 4035 4 128 4
B22 20 62 2 448 192 2 1
B25 43 o4 6 1434 8 60 1
B27 85 100 8 11312 6 64 1
B2 132 177 12 44928 6 1728 1
B36 97 128 8 128 12 8 1
B37 110 140 4 128 12 8 1
B38 24 38 8 4864 384 8 1
B3 20 34 15 140 22 15 1
B40 22 36 8 138 138 8 1
B44 46 5} 2 29 6 2 1
B45 43 63 9 27648 72 468 12
B46 o4 93 12 3528 72 2592 9
B47 31 38 2 208 96 16 2
B49 180 295 32 414144 96 9216 16
B4 12 19 8 579 48 32 1
B50 165 211 32 3274750 259 140 0
B53 16 19 4 181500 24 3300 O
B56 93 67 12 5076 332 12 0
B61 44 45 2 6541490000 3 167316 1
B63 234 267 2 3336 68 256 4
B65 12 15 4 3306 8 4 1
B66 6 7 2 10 6 2 1
B67 116 151 15 9105 6 60 1
B6 170 240 8 126 14 16 2
B7 152 201 8 128 6 16 1
B9 o7 73 16 65055 251 1 0

Table 5.1 — Set of streaming apps: general SPGs.

We use a benchmark proposed in [85] for testing the Streamlt compiler. It collects many
applications from varied representative domains, such as video processing, audio processing
and signal processing. 44 applications are selected, in which 10 of them are chains, more
details can be found in table and table 5.2

We base our platform parameters on the characteristics of the Intel Skylake-SP Proces-
sor [78]: the possible core frequencies are {sp, = 1.2,2.1,2.4,2.6,3.0,3.7 = spax }, and the
idle power of each core is 2.17W. To simulate applications with various communication to
computation ratio (CCR), we choose three values of 31, leading to a CCR (defined as the to-
tal time spent on communications over the total time spent on computations) of 1074, 1073,
or 1072, while 3y = 3,/16. a; and «y are set as 0.2 and 0.8 respectively. C' in section m

88

1D Nbr Nbr Max Max Node Min Max Min
Nodes Edges Degree Weight Node Edge Edge
Weight Size Size

B19 13 13 1 2464 632 128 128
B39 4 4 1 1576 1104 1 1
B41 6 6 1 745 96 1 1
Bs4 10 10 1 11360 11 16 1
B57 13 13 1 208 96 1 1
B58 > d 1 19836 32 2 0
B5 6 6 1 265 96 16 16
B60 5 5 1 473 8 1 1
B64 29 29 1 36960 12840 1920 1080
B8 18 18 1 23 6 1 1

Table 5.2 — Set of streaming apps: linear chains.

is set as 1.

For each application, we set the period bound P, = a+ (b—a)/k. The value of a is set to
the minimum time spent on a task or a data transfer at speed 8 (a = max(w;/Smax, min(d; ;/51))),
which corresponds to a very tight period bound. On the contrary, b is set to the time needed
to process all tasks on a core at the minimum speed (b=)", ..., Wi/Smin), corresponding to
a very loose period bound. We set & to values from 2 to 10, by increments of 2. Note that
it may happen that an application cannot meet the period bound, for instance if an edge
between two tasks and the sum of computation cost of these tasks both cannot fit within F;:
in that case, all heuristics will fail to produce an appropriate mapping.

Since some heuristics mail fail to produce an acceptable mapping, for each plot described
below, we select a subset of applications on which all considered heuristics succeed to produce
a mapping, and we plot the average result of the heuristics on this common subset.

5.6.2 Simulation results
Minimum number of cores request

After removing the cases where heuristics do not find a valid solution under a given number
of blocks and cores, Fig. shows the minimum number of cores on a block requested by
each heuristic, with various number of blocks provided, s is set as 4, a median value. On
linear chains, as shown in Fig. , dynamic programming (denoted as DP), MAXS as
well as BREAKF J-DP have the same performance, they require the least number of cores.
GROUPCELL requires averagely 2.4 times more cores than DP. On general SPGs, as shown
in Fig.[5.4b] BREAKF J-DP uses far more cores than GROUPCELL and MAXS. For instance,
with CCR=1073, BREAKFJ-DP uses 5 times more cores than GROUPCELL averagely.

Energy cost

Fig. |5.5| and Fig. depict the energy cost as a function of k, where a larger x represents
a tighter period, with different number of blocks and cores given. For linear chains, see
Fig. [5.5] when 2 blocks and 2 cores on each block are given, 2, 3 and 1 applications are
considered for CCR=10"%, 1072 and 102 respectivley, since at least one heuristic fail to get
a valid mapping on other applications. The number of applications included are 10, 8, 9 for
CCR=107%, 1073 and 1072 respectivley, when 4 cores given on each block. BREAKFJ-DP
and DP reduce by 33% on average compared to MAXS, and around 60% when communi-
cations are expensive. It leads to the same conclusion when 2 blocks, each with 8 cores
are provided. BREAKFJ-DP and DP reduce the energy by 44% on average compared to

89

E3 BRrREAKFJ-DP E3 DP ES GROUPCELL ES MAXS

CCR=1e-04

= DO
ot o
| 1

Number of cores on each block
=

CCR=1e-04

w

o

o
|

[\)

o

o
|

Number of cores on each block

100- ‘ : ——
0- *.i. =N ﬁ . *-l-... *i...
1 2 3 4 5

CCR=0.001

Number of blocks
(a) linear chains

CCR=0.001

CCR=0.01

CCR=0.01

i L

Number of blocks

(b) general SPGs

Figure 5.4 — Number of cores requested by each block with different CC'R and number of
blocks provided. Note that DP is only applicable on linear chains, i.e., top figure.

90

— BREAKFJ-DP GROUPCELL DP

CCR~1e-04 CCR~0.001 CCR-0.01

Energy Normalized to MAXS

6 8 102 4 6 8 10
K

-

2 4 6 8 10 2

(a) BREAKFJ-DP, GROUPCELL and DP give the same results, hence only DP is visible, 2 cores
on each block.

CCR=1e-04 CCR=0.001 CCR=0.01

< o =
D 0] o
1 1 1

Energy Normalized to MAXS
ja=)
=

(b) BREAKFJ-DP and DP give the same results, hence only DP is visible, 4 cores on each block.

MAXS. Note that when CCR=10"*, the results only include 3 applications out of 10, since
GROUPCELL fails on other applications because of shortage of cores. For CCR=10"% and
1072, 9 applications are included.

The gains are also very impressive for general SPGs, see Fig. [5.60 When 2 blocks, each
with 128 cores given, both heuristics save more than 50% of energy in all settings, with
BREAKFJ-DP being better for tighter periods and larger CCRs. Note however that the
results for CCR=10"2 are computed only on a small subset of applications, 6 out of 34,
since the heuristics failed on the other applications: the period bound could not be met
because of the high communication cost on some edges. For CCR=10"% and 107, 31 and
32 applications are included respectively.

With 2 blocks, each has 64 cores equipped, both heuristics also save more than 50% of
energy in all settings, with BREAKF J-DP being better at least 5% in most cases. 27, 20
and 4 applications are included for CCR = 107%, 1072 and 1072 respectively, since at least
one heuristic does not return a valid mapping on other applications.

With 2 blocks, each has 32 cores equipped, BREAKF J-DP and GROUPCELL still out-
weigh MAXS by around 44% when CCR=10"*BREAKFJ-DP is still slightly better than
GROUPCELL. 17, 11 and 2 applications are included when CCR=10"%, 1073 and 102
respectively.

91

CCR~1e-04 CCR~=0.001 CCR=0.01

< = =
D 0] o
1 1 1

Energy Normalized to MAXS
)
.

9 4 6 8 102 4 6 8 102 4 6 8 10

(c) BREAKFJ-DP and DP give the same results, hence only DP is visible, 8 cores on each block.

Figure 5.5 — Energy consumption on linear chains relative to MAXS as a function of the
period bound tightness k.

— BREAKFJ-DP GROUPCELL

CCR=1e-04 CCR=0.001 CCR=0.01

= < =
t D -~
1 1 1

Energy Normalized to MAXS
)
o

9 4 6 8 102 4 6 8 102 4 6 8 10

(a) For COR = 1072, both heuristics give the same results, 4 blocks, each with 32 cores provided.

CCR=1e-04 CCR=0.001 CCR=0.01

=

ot

@)
1

malized to MAXS
(@)
4_
t

0.40 -
8
Z,
£30.35 - J
)
(=]
m
9 4 6 8 102 4 6 & 102 4 6 8 10
K

(b) 4 blocks, each with 64 cores provided.

92

CCR=1e-04 CCR=0.001 CCR=0.01

n

%

<

=0.44 -

o

o] /
Q

N0.40 -

fas]

g

3

Z0.36 -

>

=%0]

g

=]

=0.32-

2 4 6 8 102 4 6 8 102 4 6 8 10

(c) For CCR = 10~%, both heuristics give the same results, 4 blocks, each with 128 cores provided.

Figure 5.6 — Energy consumption on general SPGs relative to MAXS as a function of the
period bound tightness x.

Failure cases

We report percentage of failure cases in Fig. and Fig. Note that in total there are
34 general SPGs and 10 linear chains. On linear chains, GROUPCELL fails more than other
heuristics. GROUPCELL, DP has the same number of failure cases (around 10% when each
block has 4 or 8 cores.), they are covered by MAXS as MAXS has a slightly more failure
cases than them.

Percentage of failure cases on general SPGs are shown in Fig. BREAKFJ-DP is
the one who fails more than other heuristics since it requests more cores. As one can see
that with a larger number of cores on each block and communication is not so expensive
(CCR=10"* or 107?), percentage of failures cases of BREAKFJ-DP decrease from 0.4 to 0.2
and then to zero. The same for other heuristics, more cores on a block, on less applications
they fail. With a tight communication bandwidth (CCR=10"2) and a tight period bound
(8 < k < 10), more than 50% fail.

5.7 Chapter summary

We have addressed the problem of mapping streaming SPG applications onto a hierarchical
two-level platform, with the goal of minimizing the energy consumption, while ensuring per-
formance (a period bound should not be exceeded) and a reliable execution (each task should
either be executed at maximum speed or triplicated). We have formalized the problem and
proven its NP-completeness, and provided practical solutions building upon a dynamic pro-
gramming algorithm, which returns the optimal contiguous mapping for a linear chain.
Heuristics are proposed for general SPGs, and the BREAKF J-DP heuristic that builds upon
the DP algorithm provides significant savings in terms of energy consumption, with more
than 61% savings, in particular when the period bound is not too tight. With tighter period
bounds, we still achieve 57% savings.

However, this heuristic may fail with limited number of cores per blocks. In this case,
our GROUPCELL heuristic is an interesting alternative, with only a slightly greater energy
consumption for a reduced number of cores used. An interesting open question is whether the
proposed dynamic program is an approximation algorithm: even though it is not optimal in
the general case, it works well in practice and it would be interesting to provide a guarantee
on its performance.

93

— BREAKFJ-DP DP GROUPCELL — MAXS

CCR—=1e-04 CCR—-0.001 CCR-0.01

g

80.75-

o

=

=0.50 -

B

)

2y

_

450.20 -

S

) J
~0.00-

(a) Linear chains. 2 blocks, each with 2 cores provided. BREAKFJ-DP, DP have the same number
of failures as MAXS, hence they are covered by MAXS sometimes.

CCR=1e-04 CCR=0.001 CCR=0.01

< e
H—~ (@)
1 1

<
[\]
1

Percentage of failure cases

R

10

[\V]
W
D
(0.¢]
—
o
DO
s
D
0'e)
—
o
[\V]
W

(@)
(0.¢]

(b) Linear chains. 2 blocks, each with 4 cores provided. BREAKFJ-DP, DP and GROUPCELL have
the same number of failure cases as MAXS when CCR—1072, hence they are covered by MAXS.
BREAKF J-DP is covered by DP when CCR=1073.

94

CCR~1e-04 CCR~-0.001 CCR-0.01

< <
=~ (=]
1 1

<
[N
1

Percentage of failure cases

[\
S
D
02¢]
—

o

[\
W
D
02¢]

10

[\

ja=)
(e
1
-
-
00—

10

(c) Linear chains. 2 blocks, each with 8 cores provided. BREAKFJ-DP, DP have the same number
of failure cases as MAXS when CCR=10"*, hence they are covered by MAXS. BREAKFJ-DP and
DP are covered by GROUPCELL when CCR=1073.

Figure 5.7 — Percentage of failure cases on linear chains as a function of «.

— BREAKFJ-DP GROUPCELL — MAXS

CCR=1e-04 CCR=0.001 CCR=0.01

=
co
1

Do
W
D
(02¢]
—
o
\)
e
D
o)

Percentage of failure cases
)) =) jan)
() (\V] =~ (@)
1 1 1 1
A;_
-
m_

[\
—
o

10

(a) General SPGs. 4 blocks, each with 32 cores provided.

CCR=1e-04 CCR=0.001 CCR=0.01

Percentage of failure cases

) jan) ja=) (e
o [\ W~ D
1 1 1 1

[\D_

%_

@_

m-

H_

(e

[\:)_

’J;_

@_

m_

[\D_

-

@_

m-

10 10

(b) General SPGs. 4 blocks, each with 64 cores provided.

95

CCR=1e-04 CCR=0.001 CCR=0.01

o = o
(V) IS (@)}
1 1 1

Percentage of failure cases

e
]
1

[\
B
D
0:¢]
—
o
[\
=~
@_
o
—
o
[\
IS
D
(0:¢]

10

(c) General SPGs. 4 blocks, each with 128 cores provided. BREAKFJ-DP has the same number of
failure cases as GROUPCELL when CCR=10"% and 1073,

Figure 5.8 — Percentage of failure cases on general SPGs as a function of .

96

Chapter 6

Conclusions

In this thesis, we studied task mapping and load balancing problems in scheduling task
graphs onto modern computing platforms, ranging from system on chips to distributed
clusters. The history of using task graphs for parallel programming dates back to 1990s [73].
Relying on the explosion of computation demands and data dependencies of tasks by task
graphs, sophisticated scheduling algorithms are proposed to fully exploit parallelism, task-
based scheduling hence becomes prevalent in HPC today [84]. How to take fully advantage of
multiprocessor systems to reduce the makespan and memory consumption of a tree of tasks
is studied in Chapter 2] We then revisited in Chapter [3] a classical task-resource allocation
problem, and proposed a novel dynamic scheduling algorithm that achieves better balance
between data-locality and load-balancing. Mobile devices that are equipped with MPSoCs
are more and more common now, and streaming applications running on these platforms
demand intense computing power and real time performance. But they are often battery-
operated and size-limited, so that low power (heat) and energy consumption have to be
considered as well. We hence studied the scheduling of SPGs under a tight energy budget,
high throughput and reliability constraints in Chapter [4] and Chapter)l More detailed
conclusions are listed in following.

Chapter 2 Partitioning tree-shaped task graphs for distributed platforms with
limited memory. We studied a tree partitioning problem in Chapter 2 Computing
demands and data dependencies of tasks are exhibited explicitly through this tree-shaped
task graph. Processing the tree on one processor may exceeds local memory capacity because
of the huge size of data. Partitioning the tree into many connected subtrees, and then
processing each subtree on a processor equipped with a local memory is a feasible way to
reduce the execution time and memory requirement. We formalized this problem and proved
that it is NP-complete. Several efficient heuristics are proposed to tackle this problem in
a reasonable time. We proposed a three-steps approach: 1) heuristics at the first step are
focusing on partitioning the tree so as to reduce makespan; 2) at the second step, heuristics
further partition subtrees that do not fit into local memory into smaller ones; 3) at the final
step, some heuristics are proposed to merge smaller subtrees to form a feasible solution if
more subtrees are generated than the number of available processors; or to further decompose
subtrees to improve the makespan if there are idle processors left. Simulations on real task
trees demonstrated that our heuristics can achieve up to 4 times improvement in makespan
compared to a reference heuristic.

Chapter [} Improving mappings for sparse direct solvers: a trade-off between
data locality and load balancing. One of the pre-processing stages of sparse direct
solvers consists of mapping computational resources (processors) to nodes of elimination
trees. We revisit this problem in Chapter The objective is to minimize the factoriza-
tion time by exhibiting good data locality and load balancing. The proportional mapping
technique is a widely used approach to solve this resource-allocation problem. It achieves

97

good data locality by assigning the same processors to large parts of the elimination tree.
However, it may limit load balancing in some cases. We proposed a dynamic mapping
algorithm based on proportional mapping. This new approach relaxes the data locality
criterion to improve load balancing. Extensive experiments on a real world sparse matrix
direct solver PASTIX demonstrated that our algorithm enables a better static scheduling of
the numerical factorization while keeping good data locality.

Chapter Reliability-aware energy optimization for throughput-constrained
applications on MPSoC. Scheduling streaming applications onto a homogeneous MP-
SoC is considered in Chapter [df The streaming application is modeled as a linear chain.
Two metrics are considered in this work: 1) period bound, where data arrives continuously
at this rate, the whole system has to execute datasets in this bound to avoid congestion.
2) the probability that the actual period exceeds the target period because of soft-errors in
processors. The second metric corresponds to a real time constraint. To cope with radiation-
induced soft-errors, we proposed a new model that allows us to change the frequency of the
cores for different tasks and to duplicate some tasks. We proved that minimizing the energy
consumption is easy without performance and reliability constraints, but that the problem
becomes NP-complete when adding these constraints and when considering a discrete set of
possible speeds. Several heuristics are proposed to solve this problem, in both continuous
speed and more realistic discrete speed models. A heuristic named BESTTRADE can meet
the two bounds without high energy consumption.

Chapter Reliable and energy-aware mapping of streaming series-parallel ap-
plications onto hierarchical platforms. Chapter [5is a following work of Chapter [
In this work, streaming applications are modeled as SPGs, which are more general than
linear chains. The reliability bound is relaxed, very few errors that occur at the maximum
speed is acceptable. To meet the tight energy budget while keeping the high reliability,
triplication and majority voting is adopted in our model. We partition and map SPGs onto
a computing platform with a hierarchical communication structure. Several cores are inte-
grated by a low latency interconnect fabric in a block, and then blocks are connected by a
slower interconnection. The goal is to minimize the energy cost while meeting the period
bound and reliability bound. This problem has been proven NP-complete. Some practical
solutions building upon a dynamic programming algorithm perspectives, which returns the
optimal contiguous mapping for a linear chain are proposed.

Based on our work mentioned before, we propose some further directions for future work,
both for short-term and long-term.

Short-term perspectives

Guarantee performance of heuristics. A further work for makespan minimization
tree partition under memory constraint (Chapter [2)) is to guarantee some of the heuristics
performance and prove some approximation factors. The goal would be to show how bad
the worst case can be compared to the optimal. For instance, for the problem of partitioning
trees such that subtrees fit in local memory, a guarantee of how many subtrees the heuristic
will produce is very useful to figure out if there is a viable partition scheme with a given
number of processors. If the heuristic returns more subtrees than processors, say it returns
s subtrees, and we have p processors, according to the ratio 5 between result from heuristics
and from optimal, the number of subtrees requested by an optimal algorithm is then (=),

1
we can infer that there is no viable partition if (ﬁ) > p. At the same time, it givgs a
standard to assess the absolute performance of heuristics instead of only comparing their
performance to each other.

In Chapter [4], for each constraint, we proposed some heuristics. BESTTRADE is designed

for meeting the probability bound, but the simulation results show that it also meets the

98

period bound. Is this a coincidence? Or is it because this strategy is also reasonable for
achieving a high throughput such that the period bound could always be meet? We also
would like to propose some heuristics that consider both constraints.

Validate our method on distributed settings. At the time of writing this thesis,
PASTIX has only recently been extended to work on distributed settings, in order to assess
the performance of STEAL (or STEALLOCAL) on the numerical factorization in distributed
environments, hence performing further experiments on distributed platforms is natural
when PASTIX will have stable performance on distributed settings.

Dynamic programming for homogeneous architecture. The dynamic programming
approach proposed for scheduling applications that have the form of linear chains is optimal
for monotonic mapping (see details in Chapter . To apply dynamic programming method
on general SPGs, we have to consider the relative position of cores assigned to current
task to cores mapped to its neighbor tasks (i.e., is it on the same core or same block, or
neither) and if any of them are triplicated nor not. It makes the formula of combining
optimal solutions of sub-problems very complicated. Because of its complexity, we gave up
on applying a dynamic programming approach on general SPGs. If the computing platform
is formed through a homogeneous communication system (e.g., multi/many cores chips),
then we only need to consider if two neighbor tasks are mapped onto the same core or not.
Then with a dedicated partitioning rule, for example, a fork node should be mapped onto
the same core as its predecessor, the dynamic programming may be applicable for general
SPGs. In conclusion, we could explore a dynamic programming approach on general SPGs
for a homogeneous computing platform.

Long-term perspectives

Open problems in tree partitioning. Graph partitioning has been known as a complex
problem, extensive endeavors have been devoted to propose some efficient solutions. But still
lots of open questions are waiting for answers. While we have focused so far on partitioning
trees to optimize the execution time under memory constraints in Chapter [2| some other
optimization problems could be defined in this context:

e MINMAKESPAN: minimize the makespan, i.e., the total execution time, given a set of
p processors (i.e., we must have a number of subtrees k < p);

e MINNBSUBTREES: minimize the number of subtrees k, without considering the makespan.

We have already proved that MINMAKESPAN is NP-complete. For both problems listed
above, there is still a lot of work to do. The main research objectives can be summarized in
the following questions:

1. Without the memory constraint, i.e., when the whole tree fits in the memory M, what
is the complexity of MINMAKESPAN? Is it still an NP-complete problem?

2. Is MINNBSUBTREES a hard problem? How can we find the minimum number of
subtrees required so that each subtree fits in memory? This amounts to finding the
minimum number of processors required to execute the tree.

Taking advantage of heterogeneous MPSoC. Processing elements are homogeneous
so far in our model, they all have the same characteristics. It is anticipated that heteroge-
nous cores and accelerators are one of the key engines to achieve performance scaling and
energy efficiency [18]. Some industrial MPSoC products like Zynq UltraScale+ [I], provide
efficient power management through many power islands. Multiple power domains exist
on the chip, each with its own power management features, so a flexible block-level power

99

management can be achieved. APUs (Application Processor Units) and on chip GPUs
(Graphics Processing Units) are in full-power domain, whereas RPUs (Real-time Proces-
sor Units) are in low-power domain. PL (Programmable Logic) has its own specific power
domain. RPUs can be totally shut down, then the static power of this unused block is
eliminated. Selecting the right processing elements for different tasks plays a key role on
power optimization. Typically, APUs are favourable for data processing. RPUs can process
some real-time events with potentially lower latency and lower static power.

Some streaming applications consist of different types of tasks that exhibit different
types of operations, memory bandwidth and access patterns [00]. We expect more and
more task graphs with such details of task’s type in the near future. It would be helpful in
assigning them to the most suitable processing elements to achieve a high performance per
watt. Given task graphs with details in task’s type and a highly heterogeneous MPSoC, an
interesting direction could be energy minimization under performance constraint through
the selection of the best processing elements for each task.

100

Bibliography

1]
2l

3]

4]

[5]

(6]

17l

18]

9]

[10]

[11]

[12]

Managing power and performance with the Zynq UltraScale+ MPSoC, October 2016.

Emmanuel Agullo, George Bosilca, Alfredo Buttari, Abdou Guermouche, and Florent
Lopez. Exploiting a parametrized task graph model for the parallelization of a sparse
direct multifrontal solver. In Euro-Par 2016: Parallel Processing Workshops, pages
175-186. Springer International Publishing, 2017.

S. Albers and M. Hellwig. Online makespan minimization with parallel schedules.
Algorithmica, 78:492-520, 2017.

P. R. Amestoy, A. Buttari, I. S. Duff, A. Guermouche, J. Y. L’Excellent, and
B. Ucar. MUMPS. In David Padua, editor, Encyclopedia of Parallel Computing,
pages 1232-1238. Springer, 2011.

P. R. Amestoy, I. S. Duff, and J. Y. L’Excellent. Multifrontal parallel distributed
symmetric and unsymmetric solvers. Computer Methods in Applied Mechanics and
Engineering, 184(2):501 — 520, 2000.

Konstantin Andreev and Harald Récke. Balanced graph partitioning. In Proceedings
of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 04, pages 120-124, New York, NY, USA, 2004. ACM.

I. Assayad, A. Girault, and H. Kalla. Tradeoff exploration between reliability, power
consumption, and execution time for embedded systems. International Journal on
Software Tools for Technology Transfer, 15:229-245, 2013.

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Archi-
tectures. CCPE - Concurrency and Computation: Practice and Ezxperience, Special
Issue: Furo-Par 2009, 23:187-198, February 2011.

Guillaume Aupy and Anne Benoit. Approximation algorithms for energy,
reliability, and makespan optimization problems. Parallel Process. Lett.,
26(1):1650001:1-1650001:23, 2016.

J. Ax, G. Sievers, J. Daberkow, M. Flasskamp, M. Vohrmann, T. Jungeblut, W. Kelly,
M. Porrmann, and U. Riickert. CoreVA-MPSoC: A many-core architecture with
tightly coupled shared and local data memories. IEEE Transactions on Parallel and
Distributed Systems, 29(5):1030-1043, 2018.

H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor real-time sys-
tems. In Proc. of Int. Parallel and Distributed Processing Symp. (IPDPS), 2003.

Olivier Beaumont and Abdou Guermouche. Task scheduling for parallel multifrontal

methods. In Furopean Conference on Parallel Processing, pages 758-766. Springer,
2007.

101

[13] Anne Benoit and Yves Robert. Mapping pipeline skeletons onto heterogeneous plat-
forms. J. Parallel and Distributed Computing, 68(6):790-808, 2008.

[14] Shishir Bharathi and Ann Chervenak. Scheduling data-intensive workflows on storage
constrained resources. In Proc. of the 4th Workshop on Workflows in Support of
Large-Scale Science (WORKS’09). ACM, 2009.

[15] G. Blake, R. G. Dreslinski, and T. Mudge. A survey of multicore processors. IEEE
Signal Processing Magazine, 26(6):26-37, November 2009.

[16] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations
by work stealing. Journal of the ACM, 46(5):720-748, 1999.

[17] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, and al. KiloCore: A fine-grained 1,000-
processor array for task-parallel applications. IEEE Micro, 37:63-69, 2017.

[18] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commun.

ACM, 54(5):67-77, May 2011.

[19] Aydin Bulug, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
Recent advances in graph partitioning. In Algorithm Engineering, pages 117-158.
Springer, 2016.

[20] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack J. Dongarra. A class of par-
allel tiled linear algebra algorithms for multicore architectures. CoRR, abs/0709.1272,
2007.

[21] Vincent Cavé, Romain Clédat, Paul Griffin, Ankit More, Bala Seshasayee, Shekhar
Borkar, Sanjay Chatterjee, Dave Dunning, and Joshua Fryman. Traleika glacier: A

hardware-software co-designed approach to exascale computing. Parallel Computing,
64:33 — 49, 2017.

[22] CERN. https://home.cern/science/computing/processing-what-record.

[23] E. Chan, F. G. Van Zee, E. S. Quintana-Orti, G. Quintana-Orti, and R. van de
Geijn. Satisfying your dependencies with SuperMatrix. In 2007 IEEE International
Conference on Cluster Computing, pages 91-99, Sept 2007.

[24] Ernie Chan, Field G. Van Zee, Paolo Bientinesi, Enrique S. Quintana-Orti, Gregorio
Quintana-Orti, and Robert van de Geijn. Supermatrix: A multithreaded runtime
scheduling system for algorithms-by-blocks. In Proceedings of the 15th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 08,
pages 123-132, New York, NY, USA, 2008. Association for Computing Machinery.

[25] G. Chen, K. Huang, and A. Knoll. Energy Optimization for Real-time Multiproces-
sor System-on-chip with Optimal DVFS and DPM Combination. ACM Trans. on
Embedded Computing Systems, 13:111:1-111:21, 2014.

[26] CMS Collaboration. CMS data processing workflows during an extended cosmic ray
run. Journal of Instrumentation, 5(03):T03006-T03006, mar 2010.

[27] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele. Combined DVFS and
Mapping Exploration for Lifetime and Soft-error Susceptibility Improvement in MP-
SoCs. In Proc. of Design, Automation & Test in Europe (DATE), pages 61:1-61:6,
2014.

[28] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Softw., 38(1):1:1-1:25, December 2011.

102

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

|43

[44]

Timothy A. Davis. Direct Methods for Sparse Linear Systems. Fundamentals of
Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, 2006.

Jack Deslippe, Abdelilah Essiari, Simon J. Patton, Taghrid Samak, Craig E. Tull,
Alexander Hexemer, Dinesh Kumar, Dilworth Parkinson, and Polite Stewart. Work-
flow management for real-time analysis of lightsource experiments. In Proceedings

of the 9th Workshop on Workflows in Support of Large-Scale Science, WORKS 14,
pages 31-40. IEEE Press, 2014.

Ralf Diekmann, Robert Preis, Frank Schlimbach, and Chris Walshaw. Shape-
optimized mesh partitioning and load balancing for parallel adaptive FEM. Parallel
Computing, 26(12):1555 — 1581, 2000.

A. Dolgert, L. Gibbons, C. D. Jones, V. Kuznetsov, M. Riedewald, D. Riley, G. J.
Sharp, and P. Wittich. Provenance in high-energy physics workflows. Computing in
Science Engineering, 10(3):22-29, May 2008.

W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM
Journal of Research and Development, 17(5):420-425, Sept 1973.

W.E. Donath and A.J. Hoffman. Algorithms for partitioning graphs and computer
logic based on eigenvectors of connection matrices. IBM Technical Disclosure Bulletin,
15(3):938-944, 1972.

J. J. Dongarra, E. Jeannot, E. Saule, and Z. Shi. Bi-objective scheduling algorithms
for optimizing makespan and reliability on heterogeneous systems. In Proc. of ACM
Symposium on Parallel Algorithms and Architectures, pages 280-288, 2007.

[. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric
linear. ACM Trans. Math. Softw., 9(3):302-325, September 1983.

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: En-
abling manycore performance portability through polymorphic memory access pat-
terns. Journal of Parallel and Distributed Computing, 74(12):3202 — 3216, 2014.

Lionel Eyraud-Dubois, Loris Marchal, Oliver Sinnen, and Frédéric Vivien. Parallel
scheduling of task trees with limited memory. ACM Transactions on Parallel Com-
puting, 2(2):13, 2015.

Andreas Emil Feldmann. Fast balanced partitioning of grid graphs is hard. CoRR,
abs/1111.6745, 2011.

Andreas Emil Feldmann and Luca Foschini. Balanced partitions of trees and appli-
cations. Algorithmica, 71(2):354-376, Feb 2015.

G. P. Fettweis. The tactile internet: Applications and challenges. IEEE Vehicular
Technology Magazine, 9:64-70, 2014.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In 19th Design Automation Conference, pages 175-181, June 1982.

M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co, London (UK), 1979.

Alan George, Joseph WH Liu, and Esmond Ng. Communication results for parallel
sparse cholesky factorization on a hypercube. Parallel Computing, 10(3):287-298,
1989.

103

[45]

|46]

|47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

M. A. Haque, H. Aydin, and D. Zhu. On reliability management of energy-aware
real-time systems through task replication. IEEFE Trans. on Parallel and Distributed
Systems, 28(3):813-825, 2017.

Michael T. Heath, Esmond Ng, and Barry W. Peyton. Parallel algorithms for sparse
linear systems. SIAM Rewv., 33(3):420-460, August 1991.

P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct
Solver for Sparse Symmetric Definite Systems. Parallel Computing, 28(2):301-321,
January 2002.

J. Hu and R. Marculescu. Energy- and performance-aware mapping for regular NoC
architectures. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 24(4):551-562, 2005.

K. Huang, W. Haid, L. Bacivarov, M. Keller, and L. Thiele. Embedding Formal
Performance Analysis into the Design Cycle of MPSoCs for Real-time Streaming Ap-
plications. ACM Trans. on Embedded Computing Systems, 11:8:1-8:23, 2012.

Mathias Jacquelin, Loris Marchal, Yves Robert, and Bora Ucar. On optimal tree
traversals for sparse matrix factorization. 1In IPDPS 2011, 25th IEEE Interna-
tional Symposium on Parallel and Distributed Processing, pages 556-567, Anchorage,
Alaska, USA, 2011. IEEE Computer Society.

Mathias Jacquelin, Yili Zheng, Esmond Ng, and Katherine A. Yelick. An Asyn-
chronous Task-based Fan-Both Sparse Cholesky Solver. CoRR, 2016.

W. Jeong, P. T. Fletcher, R. Tao, and R. Whitaker. Interactive visualiza-
tion of volumetric white matter connectivity in DT-MRI using a parallel-hardware

hamilton-jacobi solver. IEEE Transactions on Visualization and Computer Graphics,
13(6):1480-1487, 2007.

W. Kelly, M. Flafkamp, G. Sievers, J. Ax, J. Chen, C. Klarhorst, C. Ragg, T. Junge-
blut, and A. Sorensen. A communication model and partitioning algorithm for stream-
ing applications for an embedded MPSoC. 1In 2014 International Symposium on
System-on-Chip (SoC), pages 1-6, Oct 2014.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49(2):291-307, 1970.

Kyungjoo Kim, H. Carter Edwards, and Sivasankaran Rajamanickam. Tacho:
Memory-scalable task parallel sparse cholesky factorization. In IPDPS Workshops,
pages 550-559. IEEE Computer Society, 2018.

Kyungjoo Kim and Victor Eijkhout. A parallel sparse direct solver via hierarchical

DAG scheduling. ACM Trans. Math. Softw., 41(1):3:1-3:27, October 2014.

Chi-Chung Lam, Thomas Rauber, Gerald Baumgartner, Daniel Cociorva, and P. Sa-
dayappan. Memory-optimal evaluation of expression trees involving large objects.
Computer Languages, Systems & Structures, 37(2):63-75, 2011.

Ailsa H Land and Alison G Doig. An automatic method for solving discrete pro-
gramming problems. 50 Years of Integer Programming 1958-2008, pages 105-132,
2010.

K. Li, X. Tang, and K. Li. Energy-efficient stochastic task scheduling on het-
erogeneous computing systems. IEEE Trans. on Parallel and Distributed Systems,
25(11):2867-2876, 2014.

104

[60]

[61]

[62]

|63]

[64]

|65]

[66]

[67]

|68

[69]

[70]

[71]

[72]

73]

[74]

[75]

Xiaoye S. Li and James W. Demmel. SuperLU DIST: A Scalable Distributed-Memory
Sparse Direct Solver for Unsymmetric Linear Systems. ACM Trans. Math. Softw.,
29(2):110-140, June 2003.

Joseph W. H. Liu. On the storage requirement in the out-of-core multifrontal method
for sparse factorization. ACM Trans. Math. Software, 12(3):249-264, 1986.

Joseph W. H. Liu. An application of generalized tree pebbling to sparse matrix fac-
torization. SIAM J. Algebraic Discrete Methods, 8(3), 1987.

Joseph W. H. Liu. The role of elimination trees in sparse factorization. SIAM Journal
on Matriz Analysis and Applications, 11(1):134-172, 1990.

Xiao Liu, Yun Yang, Dong Yuan, and Jinjun Chen. Do we need to handle every
temporal violation in scientific workflow systems? ACM Trans. Softw. Eng. Methodol.,
23(1), February 2014.

Laszl6 Lovasz. Random walks on graphs. Combinatorics, Paul erdos is eighty, 2:1-46,
1993.

Andre Luckow, George Chantzialexiou, and Shantenu Jha. Pilot-streaming: A stream
processing framework for high-performance computing, 2018.

P. Marwedel, J. Teich, G. Kouveli, L. Bacivarov, L. Thiele, and et al. Mapping of
Applications to MPSoCs. In Proc. of Int. Conf. on Hardware/Software Codesign and
System Synthesis (CODES+I1SSS), pages 109-118, 2011.

Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified geometric ap-
proach to graph separators. In Proceedings of the 32Nd Annual Symposium on Foun-
dations of Computer Science, SFCS 91, pages 538-547, Washington, DC, USA, 1991.
[EEE Computer Society.

G. Onnebrink, F. Walbroel, J. Klimt, R. Leupers, G. Ascheid, L. G. Murillo, S. Schiir-
mans, X. Chen, and Y. Harn. DVFS-enabled power-performance trade-off in MPSoC
SW application mapping. In 2017 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), pages 196-202, July
2017.

Alex Pothen and Chunguang Sun. A mapping algorithm for parallel sparse Cholesky
factorization. SIAM Journal on Scientific Computing, 14(5):1253-1257, 1993.

GN Srinivasa Prasanna and Bruce R. Musicus. Generalized multiprocessor scheduling
and applications to matrix computations. IEEE TPDS, 7(6):650-664, 1996.

Arun Ramakrishnan, Gurmeet Singh, Henan Zhao, Ewa Deelman, Rizos Sakellariou,
Karan Vahi, Kent Blackburn, David Meyers, and Michael Samidi. Scheduling data-
intensive workflows onto storage-constrained distributed resources. In CCGrid’07,
pages 401-409, 2007.

M. C. Rinard, D. J. Scales, and M. S. Lam. Jade: a high-level, machine-independent
language for parallel programming. Computer, 26(6):28-38, 1993.

E. Rothburg and A. Gupta. An efficient block-oriented approach to parallel sparse
cholesky factorization. In Proceedings of the 1993 ACM/IEEE Conference on Super-
computing, pages 503-512, 1993.

L. A. Sanchis. Multiple-way network partitioning. IEEE Trans. Comput., 38(1):62-81,
January 1989.

105

[76]

7]

78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[38]

[89]

[90]

P. Sao, X. S. Li, and R. Vuduc. A communication-avoiding 3D LU factorization
algorithm for sparse matrices. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 908-919, May 2018.

S. Schamberger. On partitioning FEM graphs using diffusion. In 18th International
Parallel and Distributed Processing Symposium, 2004. Proceedings., pages 277-286,
April 2004.

Robert Schoéne, Thomas Ilsche, Mario Bielert, Andreas Gocht, and Daniel Hacken-
berg. Energy efficiency features of the intel Skylake-SP processor and their impact on
performance. CoRR, abs/1905.12468, 2019.

H.D. Simon. Partitioning of unstructured problems for parallel processing. Computing
Systems in Engineering, 2(2):135 — 148, 1991.

J. Spasic, D. Liu, and T. Stefanov. Energy-efficient mapping of real-time applica-
tions on heterogeneous MPSoCs using task replication. In Proc. of Int. Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), Oct 2016.

[sabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed
graphs. In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12, pages 1222-1230, New York, NY,
USA, 2012. ACM.

E. Strohmaier, J. Dongarra, H. Simon, M. Meuer, and H. Meuer. Top500 lists,
https://www.top500.org/lists,/ .

Q. Tang, S. Wu, J. Shi, and J. Wei. Optimization of duplication-based schedules
on network-on-chip based multi-processor system-on-chips. IEEFE Transactions on
Parallel and Distributed Systems, 28(3):826-837, March 2017.

Samuel Thibault. On Runtime Systems for Task-based Programming on Heteroge-
neous Platforms. Habilitation a diriger des recherches, Université de Bordeaux, De-
cember 2018.

W. Thies. Language and Compiler Support for Stream Programs. PhD thesis, MIT,
Cambridge, MA, USA, 2009.

D. Truong, W. Cheng, T. Mohsenin, and et al. A 167-processor 65 nm computational
platform with per-processor dynamic supply voltage and dynamic clock frequency
scaling. In Proc. of IEEE Symposium on VLSI Circuits, pages 22-23, 2008.

A. Vilches, A. Navarro, R. Asenjo, F. Corbera, R. Gran, and M. J. Garzaran. Mapping
streaming applications on commodity multi-CPU and GPU on-chip processors. I[EEE
Transactions on Parallel and Distributed Systems, 27(4):1099-1115, April 2016.

S. Wang, K. Li, J. Mei, G. Xiao, and K. Li. A reliability-aware task scheduling
algorithm based on replication on heterogeneous computing systems. Journal of Grid
Computing, 15(1):23-39, Mar 2017.

Xiaofeng Wang, Chee Shin Yeo, Rajkumar Buyya, and Jinshu Su. Optimizing the
makespan and reliability for workflow applications with reputation and a look-ahead
genetic algorithm. Future Gener. Comput. Syst., 27(8):1124-1134, October 2011.

W. Wolf, A. A. Jerraya, and G. Martin. Multiprocessor System-on-Chip (MPSoC)
Technology. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Sys-
tems, 27(10):1701-1713, 2008.

106

[91]

[92]

(93]

[94]

[95]

[96]

[97]

98]

[99]

Fang Xu and Klaus Mueller. Real-time 3D computed tomographic reconstruction
using commodity graphics hardware. Phys Med Biol, 52(12):3405-3419, Jun 2007.

Hongzhi Xu, Renfa Li, Chen Pan, and Keqin Li. Minimizing energy consumption
with reliability goal on heterogeneous embedded systems. Journal of Parallel and
Distributed Computing, 127:44 — 57, 2019.

Asim YarKhan. Dynamic task execution on shared and distributed memory architec-
tures. PhD thesis, University of Tenessee, 2012.

L. Zhang, K. Li, C. Li, and K. Li. Bi-objective workflow scheduling of the energy con-
sumption and reliability in heterogeneous computing systems. Information Sciences,
379:241-256, 2017.

S. Zhang, J. Wu, and S. Lu. Distributed workload dissemination for makespan mini-
mization in disruption tolerant networks. IEEE Transactions on Mobile Computing,
15:1661-1673, 2016.

B. Zhao, H. Aydin, and D. Zhu. Generalized reliability-oriented energy manage-
ment for real-time embedded applications. In Proc. of Design Automation Conference
(DAC), pages 381-386, 2011.

W. Zheng and R. Sakellariou. Stochastic DAG scheduling using a Monte Carlo ap-
proach. Journal of Parallel and Distributed Computing, 73(12):1673 — 1689, 2013.

D. Zhu. Reliability-aware dynamic energy management in dependable embedded real-
time systems. ACM Trans. on Embedded Computing Systems, 10:26:1-26:27, 2011.

Dakai Zhu, R. Melhem, and D. Mosse. The effects of energy management on reliability
in real-time embedded systems. In Proceedings of the 2004 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD ’04, pages 3540, USA, 2004. IEEE

Computer Society.

107

List of publications

Articles in International Refereed Journals

[J1]

Changjiang Gou, Anne Benoit, and Loris Marchal. Partitioning tree-shaped task
graphs for distributed platforms with limited memory. IEEE Trans. Parallel Distrib.
Syst., 31(7):1533-1544, 2020.

Articles in International Refereed Conferences

C1]

C2]

|C3]

|C4]

Changjiang Gou, Anne Benoit, Mingsong Chen, Loris Marchal, and Tongquan Wei.
Reliable and energy-aware mapping of streaming series-parallel applications onto hier-
archical platforms. In 32nd IEEE International Symposium on Computer Architecture
and High Performance Computing, SBAC-PAD 2020, Porto, Portugal, September 8-
11, 2020. SBAC-PAD, IEEExplore, 2020.

Changjiang Gou, Ali Al Zoobi, Anne Benoit, Mathieu Faverge, Loris Marchal, Gré-
goire Pichon, and Pierre Ramet. Improving mapping for sparse direct solvers - A
trade-off between data locality and load balancing. In Maciej Malawski and Krzysztof
Rzadca, editors, Furo-Par 2020: Parallel Processing - 26th International Confer-
ence on Parallel and Distributed Computing, Warsaw, Poland, August 24-28, 2020,
Proceedings, volume 12247 of Lecture Notes in Computer Science, pages 167-182.
Springer, 2020.

Changjiang Gou, Anne Benoit, Mingsong Chen, Loris Marchal, and Tongquan Wei.
Reliability-aware energy optimization for throughput-constrained applications on MP-
SoC. In 24th IEEE International Conference on Parallel and Distributed Systems,
ICPADS 2018, Singapore, December 11-13, 2018, pages 577-586. IEEE, 2018.

Changjiang Gou, Anne Benoit, and Loris Marchal. Memory-aware tree partitioning on
homogeneous platforms. In Ivan Merelli, Pietro Lio, and Igor V. Kotenko, editors, 26th
Euromicro International Conference on Parallel, Distributed and Network-based Pro-
cessing, PDP 2018, Cambridge, United Kingdom, March 21-23, 2018, pages 321-324.
[EEE Computer Society, 2018.

Research Reports

[R1]

[R2]

Changjiang Gou, Anne Benoit, Mingsong Chen, Loris Marchal, and Tongquan Wei.
Reliable and energy-aware mapping of streaming series-parallel applications onto hi-
erarchical platforms. Research Report RR-9346, INRIA, June 2020.

Changjiang Gou, Ali Al Zoobi, Anne Benoit, Mathieu Faverge, Loris Marchal, Gré-
goire Pichon, and Pierre Ramet. Improving mapping for sparse direct solvers: A
trade-off between data locality and load balancing. Research Report RR-9328, Inria
Rhoéne-Alpes, February 2020.

108

[R3]

[R4]

Anne Benoit, Changjiang Gou, and Loris Marchal. Partitioning tree-shaped task
graphs for distributed platforms with limited memory. Research Report RR-9115,
Inria Grenoble Rhone-Alpes, March 2019.

Changjiang Gou, Anne Benoit, Mingsong Chen, Loris Marchal, and Tongquan Wei.
Reliability-aware energy optimization for throughput-constrained applications on MP-
SoC. Research Report RR-9168, INRIA;ECNU;Georgia Tech., April 2018.

109

	Introduction
	Partitioning tree-shaped task graphs for distributed platforms with limited memory
	Introduction
	Related work
	Model
	Problem complexity
	Heuristic strategies
	Step 1: Minimizing the makespan
	Step 2: Fitting into memory
	Step 3: Reaching an acceptable number of subtrees

	Experimental validation through simulations
	Dataset and simulation setup
	Step 1: Minimizing the makespan
	Step 2: Fitting into memory
	Step 3: Reaching an acceptable number of subtrees

	Chapter summary

	Improving mapping for sparse direct solvers: A trade-off between data locality and load balancing
	Introduction
	Related work
	Description of the application
	Coarse-grain load balancing using proportional mapping
	Mapping refinement after the coarse-grain mapping
	Discussion on the choice of the mapping algorithm

	Proposed mapping refinement
	Experimental results
	Chapter summary

	Reliability-aware energy optimization for throughput-constrained applications on MPSoC
	Introduction
	Related work
	Models and optimization problems
	Streaming applications – linear chain
	Platforms
	Failure model and duplication
	Energy
	Period definition and constraints
	Optimization problem

	Complexity analysis
	Without errors
	Without constraints
	With the probability constraint

	Heuristics
	Baseline heuristics
	Bounding the expected period
	Bounding the probability of exceeding Pt

	Experimental validation through simulations
	Multi-core embedded systems
	Streaming applications
	Simulation result

	Chapter summary

	Reliable and energy-aware mapping of streaming series-parallel applications onto hierarchical platforms
	Introduction
	Model
	Streaming applications – SPGs
	Platforms
	Graph partitioning and structure rule
	Soft-errors and triplication
	Energy
	Timing definition and constraints
	Optimization problem

	Problem complexity
	Dynamic programming on a linear chain
	Case studies to show it is not optimal
	Condition for optimality

	Heuristics for series-parallel graphs
	Baseline heuristic – MaxS
	Partitioning heuristic – GroupCell
	Partitioning heuristic – BreakFJ-DP
	Mapping heuristic

	Experimental evaluation of the heuristics
	Simulation setup
	Simulation results

	Chapter summary

	Conclusions
	References
	List of publications

