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Chapter 0

General introduction

Mathematical context. In mathematics a dynamical system describes the evolution of a
point (usually called the state of the system) in an appropriate set following an evolution rule
(known as the dynamics of the system). Dynamical systems are of many different natures and
they can be categorized in different classes such as: continuous systems versus discrete systems,
deterministic systems versus stochastic systems, etc. A continuous system is a dynamical sys-
tem in which the state evolves in a continuous way in time (for instance, ordinary differential
equations, evolution partial differential equations, etc.), while a discrete system is a dynamical
system in which the state evolves in a discrete way in time (for instance, difference equations,
quantum differential equations, etc.). A control system is a dynamical system in which a con-
trol parameter influences the evolution of the state. Optimal control theory is concerned with
optimal control problems which consist of guiding a control system from some initial state to a
desired final state while minimizing a given cost and being subject to some constraints. In the
literature note that the control parameter is often taken to be permanent in the sense that its
value can be modified at any instant in time. As an example, a continuous optimal permanent
control problem in which the dynamics is described by a general nonlinear ordinary differential
equation is given by

minimize g(x(T )),

subject to x : [0, T ]→ Rn, u : [0, T ]→ Rm,

ẋ(t) = f(x(t), u(t), t), a.e. t ∈ [0, T ],

x(0) = x0,

u(t) ∈ U, a.e. t ∈ [0, T ],


(OCP)

where the cost function g : Rn → R and the dynamics f : Rn × Rm × [0, T ] → Rn are of
sufficient regularity and where x0 ∈ Rn, T > 0, m, n ∈ N∗ and U is a nonempty subset of Rm.
In Problem (OCP), x is the state function (also called trajectory) and u is the control function
(also called control). In this general introduction we have chosen to consider a basic framework
for Problem (OCP), but later in this manuscript we will consider more general problems with
terminal state constraints, total cost in Bolza form, free final time problems, etc. It is usual to
define the Hamiltonian H : Rn × Rm × Rn × [0, T ] → R associated to Problem (OCP) by the
formula H(x, u, p, t) := 〈p, f(x, u, t)〉Rn for all (x, u, p, t) ∈ Rn × Rm × Rn × [0, T ].

Established in [Pontryagin et al. 1962] by Pontryagin et al. at the end of the 1950’s, the
Pontryagin maximum principle (in short, PMP) is the milestone of optimal control theory. It
provides first-order necessary optimality conditions. Roughly speaking, given a solution (x, u)
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to Problem (OCP), the PMP states that there exists an adjoint vector p : [0, T ]→ Rn such that
the following conditions hold:

(i) Adjoint equation: p satisfies

− ṗ(t) = ∇1H(x(t), u(t), p(t), t), (1)

for almost every t ∈ [0, T ];

(ii) Transversality condition on the adjoint vector: p satisfies

p(T ) = −∇g(x(T )); (2)

(iii) Hamiltonian maximization condition: the condition

u(t) ∈ arg max
ω∈U

H(x(t), ω, p(t), t), (3)

holds true for almost every t ∈ [0, T ].

The proof of the PMP follows from considering needle-like perturbations (which are per-
turbations of constant value over a small interval of time) of the optimal control. Then, by
considering the corresponding perturbation on the cost function, one is able to define in a
backward way in time the adjoint vector from the transversality condition and satisfying the
adjoint equation, and finally obtain the Hamiltonian maximization condition. We mention here
that, within the above framework of the PMP, the Hamiltonian function H : [0, T ] → R is
defined by H(t) := H(x(t), u(t), p(t), t) for almost all t ∈ [0, T ]. In that context, the conti-
nuity of the Hamiltonian function is a very well-known fact (see, e.g., [Fattorini 1999, Theo-
rem 2.6.3 p.73]). As a well known application of the PMP, if the Hamiltonian maximization
condition allows to express the optimal control as a function of the augmented state-costate
vector, then the PMP induces the so-called indirect numerical method which consists in numer-
ically solving the boundary value problem satisfied by the augmented state-costate vector via a
shooting method. Indirect numerical methods are opposed to direct numerical methods which
consist in a full discretization of Problem (OCP) resulting in a constrained finite-dimensional
optimization problem that can be numerically solved from various standard optimization algo-
rithms and techniques. Soon afterwards and even nowadays, the PMP has been adapted to
many situations, for control systems of different natures, with various constraints, etc. Several
versions of the PMP were derived for discrete optimal permanent control problems concern-
ing discrete control systems in which the dynamics is described by a difference equation (see,
e.g., [Boltyanskii 1978, Halkin 1966, Holtzman & Halkin 1966]). In these discrete versions of the
PMP, the historical Hamiltonian maximization condition does not hold in general (see a coun-
terexample in [Boltyanskii 1978, Examples 10.1-10.4 p.59-62]) since one can no longer consider
needle-like perturbations in the discrete setting. In that context, only basic convex pertur-
bations of the optimal control can be considered and therefore one can only obtain a weaker
condition known as a nonpositive Hamiltonian gradient condition (see, e.g., [Boltyanskii 1978,
Theorem 42.1 p.330]). Note that some appropriate convexity conditions on the dynamics have
been considered in order to recover the Hamiltonian maximization condition in the discrete case
(see, e.g., [Holtzman & Halkin 1966]).
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In this manuscript we are interested in sampled-data control systems in which the state
evolves continuously in time while the control evolves discretely in time. More precisely
the value of the control is authorized to be modified only at a finite number N ∈ N∗ of
times ti ∈ [0, T ] called sampling times, and remains frozen elsewhere. Therefore sampled-data
controls are modelled by piecewise constant functions respecting the partition of the interval
[0, T ] defined by the sampling times. Sampled-data control systems, which have the peculiar-
ity of presenting a mixed continuous/discrete structure, are often considered in scientific and
engineering applications since in practice any control algorithm has to be implemented in dis-
crete time while the state evolves continuously in time. They have been considered as models
mostly in Engineering implemented by digital controllers which have a finite precision (see,
e.g., [Santina & Stubberud 2005, Volz & Kazda 1966]). Sampled-data control systems are also
used in Automation, notably in model predictive control algorithms in which the control value at
each sampling time is chosen as the first value of a finite sequence of control values optimizing the
given cost on a fixed finite horizon (see, e.g., [Grüne & Pannek 2017]). Numerous texts and arti-
cles have developed control theory for sampled-data control systems (see, e.g., [Ackermann 1985,
Aström 1963, Aström & Wittenmark 1997, Fadali & Visioli 2013, Landau & Zito 2006] and ref-
erences therein). For instance, global controllability for sampled-data control systems has
been investigated in [Grasse & Sussmann 1990]. Optimal sampled-data control problems
have been investigated in the literature with different approaches. One approach has been
to apply H2-H∞ optimization theory (see [Biryukov 2016, Chen & Francis 1996]) where the
closed-loop transfer matrix under the H2- and H∞- norms is taken as the criterion. An-
other approach involves the Karush-Kuhn-Tucker necessary conditions and dynamic program-
ming (see [Bini & Buttazzo 2014]). However one should note that the aforementioned re-
sults are not formulated in terms of a PMP. Recently, Bourdin and Trélat have obtained
in [Bourdin & Trélat 2016] a version of the PMP for general nonlinear optimal sampled-data
control problems. In that sampled-data control framework, as in the purely discrete case ad-
dressed in the previous paragraph, the usual Hamiltonian maximization condition does not hold
in general (for the same reason), and has to be replaced by a weaker condition known as a
nonpositive averaged Hamiltonian gradient condition (see [Bourdin & Trélat 2016, Theorem 2.6
p.62]) given by

〈∫ ti+1

ti

∇2H(x(t), ui, p(t), t) dt, ω − ui
〉
Rm
≤ 0, (4)

for all ω ∈ U and all i = 0, . . . , N − 1, where ui stands for the value of the optimal
sampled-data control frozen on the sampling interval [ti, ti+1). Note that the PMP stated
in [Bourdin & Trélat 2016, Theorem 2.6 p.62] considers the more general framework of time
scale calculus and a version which does not take into account such a generality, and therefore
closer to the considerations of this manuscript, can be found in [Bourdin & Trélat 2015, The-
orem 1 p.81] or [Bourdin & Trélat 2016, Theorem 1.1 p.55]. We emphasize that this PMP is
only concerned with optimal sampled-data control problems in which the sampling times ti are
fixed, without running inequality state constraints and with a smooth cost function g. As a
continuation of the previously mentioned works, the main objective of this PhD thesis is to de-
rive first-order necessary optimality conditions in the form of a PMP for optimal sampled-data
problems which answer the following questions:
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(i) What additional optimality conditions, if any, are necessary if one can freely choose the
sampling times ti?

(ii) What form does the PMP take in the presence of running inequality state constraints?

(iii) What form does the PMP take when the cost function g is nonsmooth?

The rest of this general introduction is devoted to the contributions of this manuscript which
will answer these three main questions.

Contributions of Chapter 2. The first contribution of this manuscript, given in Chap-
ter 2, is to answer Queston (i) and to derive a PMP for optimal sampled-data control prob-
lems with free sampling times. We mention that optimal sampling times problems have al-
ready been investigated in the literature but never from a PMP point of view until the pa-
per [Bourdin & Dhar 2019] presented in Chapter 2 of this manuscript. For example many
authors considered the related problem of finding the optimal fixed sampling period (or uni-
form time step) such as in [Levis & Schlueter 1971, Melzer & Kuo 1971]. Nonuniform sampling
partitions have also been studied but in specific cases such as for the linear-quadratic integra-
tor in [Schlueter 1973]. In [Schlueter & Levis 1973] the optimal sampled-data control problem
is transformed into a purely discrete one by integrating the state over the sampling intervals
and then is treated as an usual optimization problem. In Chapter 2 of this manuscript we
present a PMP for general nonlinear optimal sampled-data control problems with free sam-
pling times. Similarly to the PMP derived in [Bourdin & Trélat 2015, Theorem 1 p.81] or
[Bourdin & Trélat 2016, Theorem 1.1 p.55] for fixed sampling times, by considering convex per-
turbations of the optimal sampled-data control, we obtain a first-order necessary optimality con-
dition described by a nonpositive averaged Hamiltonian gradient condition (see Inequality (4)).
Since the optimal sampled-data control is constant over the semi-open intervals [ti, ti+1), one
can see that the Hamiltonian function H is continuous over these intervals. However, when con-
sidering fixed sampling times, the Hamiltonian function is not continuous over [0, T ] in general
since it may admit discontinuities at the sampling times ti (see Section 2.3 for an example). On
the other hand, when considering free sampling times, we get in Chapter 2 a new and additional
necessary optimality condition in the PMP called the Hamiltonian continuity condition given
by

H(x(ti), ui−1, p(ti), ti) = H(x(ti), ui, p(ti), ti), (5)

for all i = 1, . . . , N − 1. It follows that the continuity of the Hamiltonian function is recovered
in the case of optimal sampled-data controls with optimal sampling times. The Hamiltonian
continuity condition is obtained by considering special needle-like perturbations at the sampling
times of the optimal sampled-data control (see Section 2.4.1.4 in Chapter 2 for details). We
emphasize that the optimal sampled-data control problems with free sampling times which we
consider in Chapter 2 have general terminal state constraints of the form h(x(0), x(T )) ∈ S.
Therefore, the strategy adopted in order to obtain a PMP is to penalize the distance to the
state constraints in a corresponding cost functional and then to apply the Ekeland variational
principle [Ekeland 1974, Theorem 1.1 p.324]. This leads us to consider a sequence of sampled-
data controls converging to the optimal one. A first difficulty emerges in the fact that the
associated sampling times do not necessarily converge to the optimal sampling times. Indeed
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a degenerate situation can occur if the optimal sampled-data control is constant over two con-
secutive sampling intervals. As a consequence, another obstacle is the possible phenomenon of
accumulation of sampling times. These two difficulties are overcome by introducing a technical
control set which guarantees that the sampling times produced by the Ekeland variational prin-
ciple, firstly, remain unchanged for the ones corresponding to the consecutive sampling intervals
on which the optimal sampled-data control is constant (avoiding thus the first difficulty) and,
secondly, are contained in disjoint intervals for the others (avoiding thus the second difficulty).
For more details on this technical control set we refer to Section 2.4.2 in Chapter 2. A final
obstacle lies in the non-convexity of the set of piecewise constant functions with a fixed number
N of sampling times. Therefore the standard procedure of considering convex perturbations of
the control (as in [Bourdin & Trélat 2016, Lemma 4.17 p.84]) has to be adapted by considering
convex perturbations respecting the same N -partition. We refer to the proof of Lemma 2.4.7
for details. Based on the Hamiltonian continuity condition (see Equality (5)), we are able to
construct a shooting method which we use to solve two linear-quadratic optimal sampled-data
control problems in Section 2.3 and to determine the corresponding optimal sampling times.

Contributions of Chapter 3. The next contribution of this manuscript, presented in Chap-
ter 3, is a PMP for optimal sampled-data control problems in the presence of running in-
equality state constraints as given in the work [Bourdin & Dhar 2020] which provides an an-
swer to Question (ii). Recall that an important part of optimal control theory is concerned
with state constrained optimal control problems in which the state is restricted to a certain
region of the state space. Indeed it is often undesirable and even inadmissible in scientific
and engineering applications that the state crosses certain limits imposed in the state space
for safety or practical reasons. Many examples can be found in mechanics and aerospace en-
gineering (e.g., an engine may overheat or overload). State constrained optimal control prob-
lems are also encountered in management and economics (e.g., an inventory level may be lim-
ited in a production model). We refer to [Bonnard et al. 2003, Cots 2017, Kim et al. 2011,
van Keulen et al. 2014, Van Reeven et al. 2016] and references therein for other examples. A
first version of the PMP for continuous optimal permanent control problems with running state
constraints was obtained by Gamkrelidze [Gamkrelidze 1960] (see also [Pontryagin et al. 1962,
Theorem 25 p.311]) under some special assumptions on the structure of the optimal process.
Later, these assumptions were somewhat excluded by Dubovitskii and Milyutin in the seminal
work [Dubovitskii & Milyutin 1965, Section 7 p.37]. The contributions of Dubovitskii and Mi-
lyutin include, notably, general Lagrange multiplier rules for abstract optimization problems and
the so-called method of v-change of time variable in view of generating needle-like variations
by passing to a smooth control system (see more details in [Dmitruk 2009, Section 4]). Other
methods have been developed in the literature in order to establish versions of the PMP for
state constrained optimal control problems, such as the smoothly-convex structure of the con-
trolled system in [Ioffe & Tihomirov 1979], the application of the Ekeland variational principle
in [Vinter 2010], etc. A comprehensive survey [Hartl et al. 1995] of this field of research has
been given in 1995 by Hartl, Sethi and Vickson.

Before being considered in the work [Bourdin & Dhar 2020] presented in Chapter 3 of this
manuscript, to the best of our knowledge, optimal sampled-data control problems had never
been investigated in the presence of running state constraints. In this work, the first objective
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was to bridge this gap in the literature by establishing a PMP for general nonlinear optimal
sampled-data control problems in the presence of running inequality state constraints. Precisely,
the running inequality state constraints are given in the form hj(x(t), t) ≤ 0 for all t ∈ [0, T ]

where the function h = (hj)j=1,...,q : Rn × [0, T ] → Rq is of sufficient regularity and q ∈ N∗.
In contrast to optimal sampled-data control problems with terminal state constraints (studied
for example in Chapter 2 and which can be seen as finite-dimensional optimization problems),
note that such problems can be seen as semi-infinite-dimensional optimization problems since
the presence of running inequality state constraints imposes an infinite number of constraints
(one at each instant of time). Similarly to Chapter 2, our strategy for obtaining the PMP in
Chapter 3 is to penalize the distance to the state constraints in a corresponding cost functional
and then to apply the Ekeland variational principle. To this aim, we invoke results on renorming
Banach spaces in order to ensure the regularity of distance functions in the infinite-dimensional
context (see Section 1.3.2 in Chapter 1 for details). Moreover, since the running inequality state
constraints are described as constraints in the space of continuous functions, we obtain Lagrange
multipliers which belong exactly to the dual space of continuous functions. Then, thanks to the
Riesz representation theorem, these Lagrange multipliers are characterized by Borel measures
associated to functions of bounded variation. Therefore, we obtain that, in the PMP for general
nonlinear optimal sampled-data control problems in the presence of running inequality state
constraints, the adjoint equation and transversality condition on the adjoint vector have to be
replaced by a Cauchy-Stieltjes problem given by−dp = ∇1H(x, u, p, ·)−

∑q
j=1∇1hj(x, ·) dηj over [0, T ],

p(T ) = −∇g(x(T )),
(6)

where the Lagrange multipliers (dηj)j=1...q are finite nonnegative Borel measures associated to
monotonically increasing functions of bounded variation (ηj)j=1...q satisfying the complementary
slackness condition given by ∫ T

0
hj(x(t), t) dηj(t) = 0, (7)

for each j = 1, . . . , q. Since we found that the adjoint vector is in general (only) of bounded vari-
ation, one would expect to encounter some difficulties when implementing an indirect numerical
method due to the possible jumps and singular part of the adjoint vector lying on parts of the
optimal trajectory in contact with the boundary of the restricted state space. However, in our
context of sampled-data controls and in contrary to the permanent control case, we found that
the optimal trajectories have a common behavior which allows us to overcome these difficulties.
Precisely, when we began studying optimal sampled-data control problems in the presence of
running inequality state constraints in the work [Bourdin & Dhar 2020], we first numerically
solved some simple problems using direct methods. Notably we observed that, in each problem,
the optimal trajectory “bounces” against the boundary of the restricted state space, touching the
state constraints at most at the sampling times. This behavior was the second major focus of the
work [Bourdin & Dhar 2020] presented in Chapter 3 and is referred to as the bouncing trajec-
tory phenomenon. Precisely, we proved that, under certain general hypotheses, any admissible
trajectory (associated to a sampled-data control) necessarily bounces on the running inequality
state constraints and, moreover, the rebounds occur at most at the sampling times (and thus
are in a finite number and at precise instants). Taking advantage of this bouncing trajectory
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phenomenon we are able to use the PMP derived in the work [Bourdin & Dhar 2020] in order
to implement an indirect numerical method which we use to numerically solve some simple ex-
amples of optimal sampled-data control problems with running inequality state constraints (see
Section 3.4.1).

Contributions of Chapter 4. Chapter 4 is devoted to obtaining a PMP for optimal sampled-
data control problemswith nonsmooth Mayer cost functions. Precisely, contrary to Chapters 2
and 3, the Mayer cost function g : Rn → R is taken to be (only) locally Lipschitz that is, at
each point x ∈ Rn, there exists a neighborhood of x on which g is Lipschitz continuous. Let
us first mention that a vast literature is already dedicated to nonsmooth optimal control theory
(nonsmooth cost functions arising in several natural contexts such as the minimization of a
norm associated to a trajectory). We recall that, in the PMP for optimal permanent control
problems with nonsmooth Mayer cost functions, the transversality condition on the adjoint
vector is usually replaced by

− p(T ) ∈ ∂g(x(T )). (8)

where ∂g(x(T )) stands for the subdifferential (to be specified later) of g at x(T ) (see,
e.g, [Vinter 2010, Theorem 6.2.3]). Several methods have been explored in order to estab-
lish PMPs for nonsmooth optimal permanent control problems. We can cite for example the
method of quadratic inf-convolution in [Clarke 2008, Section 2.1 page 4] or the application of a
nonsmooth Lagrange multiplier rule in [Vinter 2010, Theorem 5.6.2]. Most of the proofs found
in the literature involve regularization methods. On the contrary, in the work [Adly et al. 2020]
presented in Chapter 4, we were interested in developing a proof which directly follows from the
tools of nonsmooth analysis (as presented in Section 1.4 of Chapter 1). Our investigation led
us to consider the existence of a universal selection in the subdifferential of g at x(T ) which de-
scribes the transversality condition on the adjoint vector. Then, in the work [Adly et al. 2020],
we determined the existence of such a universal selection by establishing a more general result
asserting the existence of a universal separating vector for a given compact convex set. From the
application of this result, which is called universal separating vector theorem (see Theorem 4.2.1
in Chapter 4 for details), we were able to derive a PMP for optimal permanent control prob-
lems with nonsmooth Mayer cost functions by a novel approach. Finally we applied again the
universal separating vector theorem to obtain a PMP for optimal sampled-data control prob-
lems with nonsmooth Mayer cost functions which was the initial motivation of our work by
answering Question (iii). We obtained that the necessary optimality conditions are the non-
positive averaged Hamiltonian gradient condition (see Inequality (4)), the adjoint equation (see
Equation (1)) and the transversality condition on the adjoint vector described by an inclusion
in the subdifferential of g at x(T ) (see Equation (8)). We emphasize that our novel approach
in [Adly et al. 2020] for obtaining this PMP was also based on the combination of implicit spike
variations and packages of needle-like perturbations of the optimal control.

Organization of the manuscript. This manuscript is composed of 4 chapters. Chapter 1
is devoted to the preliminary notions required throughout this manuscript in order to describe
optimal sampled-data control problems. Precisely, we define the functional spaces to be encoun-
tered in optimal sampled-data control problems which include absolutely continuous functions,
piecewise constant functions and functions of bounded variation. We also recall some results
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on the regularity of distance functions in order to handle the state constraints in the optimal
sampled-data control problems investigated in Chapters 2 and 3. Finally, we give recalls on non-
smooth analysis which will be used when considering optimal sampled-data control problems
with nonsmooth Mayer cost functions in Chapter 4.

Chapter 2 is devoted to a PMP for optimal sampled-data control problems with free sampling
times (see Theorem 2.2.1). We also give a discussion on the continuity of the Hamiltonian
function in Section 2.2.3 . In Section 2.3 we numerically solve two simple linear-quadratic
optimal sampled-data control problems and we compare the two following situations: fixed
sampling times versus free sampling times. Finally Section 2.4 is devoted to the detailed proof
of Theorem 2.2.1.

In Chapter 3, we obtain a PMP for general nonlinear optimal sampled-data control problems
in the presence of running inequality state constraints (see Theorem 3.2.1). In Section 3.3
we give heuristic descriptions and a sufficient condition for observing the bouncing trajectory
phenomenon. In Section 3.4 we propose an indirect method for numerically solving optimal
sampled-data control problems with running inequality state constraints based on Theorem 3.2.1
and with the aid of the bouncing trajectory phenomenon. Then we illustrate this method and
highlight the bouncing trajectory phenomenon by numerically solving three simple examples.
Finally Section 3.5 is devoted to the proof of Theorem 3.2.1.

Chapter 4 is devoted to obtaining a PMP for optimal sampled-data control problems with
nonsmooth Mayer cost functions. We first present the problematic of universal separating vector
which gives the context of the universal separating vector theorem (see Theorem 4.2.1). Sec-
tion 4.2 is dedicated to the universal separating vector theorem obtained in [Adly et al. 2020]
along with its proof. In Section 4.3, we show that it provides an alternative proof of a PMP for
nonsmooth optimal permanent control problems with nonsmooth Mayer cost functions which
makes direct use of the tools of nonsmooth analysis presented in Chapter 1. Finally Section 4.4
is devoted to a PMP for optimal sampled-data control problems with nonsmooth Mayer cost
functions which was not presented in [Adly et al. 2020] whose proof again applies the universal
separating vector theorem.

Finally, in the general conclusion of this manuscript, we review the outcome of the investiga-
tions undertaken during this PhD thesis. I also provide several possible perspectives including
further personal research projects to be undertaken in the field of optimal sampled-data control
theory.



Chapter 1

Preliminaries and notations

This chapter is devoted to the preliminary notions required throughout this manuscript in order
to describe optimal sampled-data control problems. In Section 1.1 we define the functional
spaces which describe the state functions and control functions to be encountered in optimal
sampled-data control problems in Chapters 2, 3 and 4. Thus Section 1.1 will be devoted to
basic results on absolutely continuous functions and piecewise constant functions. In Chapter 3
we consider optimal sampled-data control problems in the presence of running inequality state
constraints which entails that the corresponding adjoint vectors are not absolutely continuous
in general but (only) of bounded variation. Thus, in Section 1.2, we give recalls on functions of
bounded variation. Afterwards, in Section 1.3, we recall some results on the regularity of distance
functions in order to handle the state constraints in the optimal sampled-data control problems
investigated in Chapters 2 and 3. Finally Section 1.4 is devoted to recalls on nonsmooth analysis
which will be used when considering optimal sampled-data control problems with nonsmooth
Mayer cost functions in Chapter 4.

1.1 Basic functional framework

In this section we give recalls on the basic functional spaces to be used throughout this
manuscript. For optimal sampled-data control problems the state function (or trajectory) is
absolutely continuous whereas the control function is only piecewise constant. Therefore in Sec-
tion 1.1.1 we give some recalls on absolutely continuous functions and in Section 1.1.2 we give
some recalls on piecewise constant functions. We now begin with the definitions of some other
common functional spaces.

Let n ∈ N∗ be a fixed positive integer and let T > 0 be fixed throughout this chapter. We denote
by:

- L1([0, T ],Rn) the Lebesgue space of integrable functions defined on [0, T ] with values in
Rn, endowed with its usual norm ‖ · ‖L1 ;

- L∞([0, T ],Rn) the Lebesgue space of essentially bounded functions defined on [0, T ] with
values in Rn, endowed with its usual norm ‖ · ‖L∞ ;

- C([0, T ],Rn) the space of continuous functions defined on [0, T ] with values in Rn, endowed
with the standard uniform norm ‖ · ‖∞;

- BF([0, T ],Rn) the space of bounded functions defined on [0, T ] with values in Rn, endowed
with the standard uniform norm ‖ · ‖∞.
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1.1.1 Absolutely continuous functions

In optimal control theory, it is usual to consider that the state function is absolutely continuous.
We recall that a function x : [0, T ] → Rn is said to be absolutely continuous on [0, T ] if for
every ε > 0 there exists some δ > 0 such that

∑
j∈J ‖x(bj) − x(aj)‖Rn < ε for any finite

collection of disjoint subintervals {(aj , bj)}j∈J of [0, T ] satisfying
∑

j∈J bj − aj < δ. We denote
by AC([0, T ],Rn) the space of absolutely continuous functions. Moreover we have the following
proposition which gives a characterisation of absolutely continuous functions.

Proposition 1.1.1. Let t0 ∈ [0, T ] and let x : [0, T ]→ Rn. Then x ∈ AC([0, T ],Rn) if and only
if both of the following conditions are satisfied:

(i) x is differentiable almost everywhere on [0, T ] and ẋ ∈ L1([0, T ],Rn);

(ii) It holds that

x(t) = x(t0) +

∫ t

t0

ẋ(s) ds,

for all t ∈ [0, T ].

From Proposition 1.1.1 and the fundamental theorem of calculus we deduce the following result
on the absolute continuity of primitives.

Proposition 1.1.2. Let t0 ∈ [0, T ] and let y ∈ L1([0, T ],Rn). Let x be the function defined
on [0, T ] by

x(t) =

∫ t

t0

y(s) ds,

for all t ∈ [0, T ]. Then x ∈ AC([0, T ],Rn) and ẋ = y almost everywhere on [0, T ].

1.1.2 Piecewise constant functions

In this manuscript we are interested in sampled-data control systems in which the value of
the control is authorized to be modified only a finite number of times and remains frozen else-
where. For this reason, the control function is described as a piecewise constant function. Thus,
this section is devoted to some recalls on piecewise constant functions which will be necessary
throughout this manuscript.

For all N ∈ N∗, the set of all N -partitions of the interval [0, T ] is defined by

PTN := {T = {ti}i=0,...,N | 0 = t0 < t1 < . . . < tN−1 < tN = T}.

Then, for all N ∈ N∗ and all T = {ti}i=0,...,N ∈ PTN , the set of all piecewise constant functions
over [0, T ] respecting the N -partition T is defined by

PCT([0, T ],Rm) := {u ∈ L∞([0, T ],Rm) | ∀i = 0, . . . , N − 1,

∃ui ∈ Rm, u(t) = ui a.e. t ∈ [ti, ti+1]}.
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In this paper, as usual in the Lebesgue space L∞([0, T ],Rm), two functions in PCT([0, T ],Rm)

which are equal almost everywhere on [0, T ] will be identified. Precisely, if u ∈ PCT([0, T ],Rm),
then u is identified to the function

u(t) =

{
ui if t ∈ [ti, ti+1), i ∈ {0, . . . , N − 2},
uN−1 if t ∈ [tN−1, tN ],

for all t ∈ [0, T ]. Note that PCT([0, T ],Rm) is a linear subspace of L∞([0, T ],Rm).

Remark 1.1.1. Note that the inclusion PCT
′
([0, T ],Rm) ⊂ PCT([0, T ],Rm) holds true for all

M , N ∈ N∗ and all T′ ∈ PTM , T ∈ PTN such that T′ ⊂ T and M ≤ N .

Finally, for all N ∈ N∗, the set of all piecewise constant functions over [0, T ] respecting at least
one N -partition is defined by

PCN ([0, T ],Rm) :=
⋃
T∈PTN

PCT([0, T ],Rm).

Note that PCN ([0, T ],Rm) is included in L∞([0, T ],Rm), but it is not a linear subspace, neither a
convex subset. This will present a challenge in order to obtain optimality conditions in Chapter 2
when we consider convex perturbations of the optimal sampled-data control.

Remark 1.1.2. Similarly to Remark 1.1.1, note that PCM ([0, T ],Rm) ⊂ PCN ([0, T ],Rm) for
all M , N ∈ N∗ such that M ≤ N .

1.2 Functions of bounded variation and Cauchy-Stieltjes prob-
lems

This section is devoted to recalls on functions of bounded variation and Cauchy-Stieltjes prob-
lems needed in Chapter 3. In Chapter 3, the optimal sampled-data control problems are subject
to running inequality state constraints which are described by constraints in the space of con-
tinuous functions. Therefore we obtain Lagrange multipliers which belong exactly to the dual
space of continuous functions. Then, thanks to the Riesz representation theorem, the Lagrange
multipliers are characterized by measures associated to functions of bounded variation. Finally
adjoint vectors are defined as solutions to Cauchy-Stieltjes problems associated to these mea-
sures. We begin this section with recalls on functions of bounded variation in Section 1.2.1. We
then recall Riemann-Stieltjes integrals in Section 1.2.2 which will be instrumental to describe
Cauchy-Stieltjes problems in Section 1.2.3.

1.2.1 Functions of bounded variation

In this section we give recalls on functions of bounded variation which will be encountered
in Chapter 3. We refer to standard references and books such as [Bachman & Narici 2000,
Burk 2007, Carothers 2000, Faraut 2012, Wheeden & Zygmund 2015] for some more details. Let
q ∈ N∗ be a fixed positive integer. We recall that a function η : [0, T ] → Rq is said to be of
bounded variation on [0, T ] if the total variation given by the formula

V (η) := sup
{ti}i

{∑
i

‖η(ti+1)− η(ti)‖Rq
}
,
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with the supremum taken over all finite partitions {ti}i of the interval [0, T ], is finite. In what
follows we denote by BV([0, T ],Rq) the space of all functions of bounded variation on [0, T ] with
values in Rq. A function η ∈ BV([0, T ],Rq) is said to be normalized if η(0) = 0Rq and η is
right-continuous on (0, T ). We denote the subspace of BV([0, T ],Rq) of all normalized functions
of bounded variation by NBV([0, T ],Rq). We are now in position to state an important theorem
on the decomposition of functions of bounded variation which will be essential to the content of
Chapter 3.

Theorem 1.2.1. Let η ∈ BV([0, T ],Rq). Then η admits a unique decomposition η = ηac +

ηsc + ηsa where ηac ∈ AC([0, T ],Rq) is absolutely continuous, ηsc ∈ C([0, T ],Rq) is singularly
continuous (i.e, ˙ηsc ≡ 0 a.e. on [0, T ]) and where ηsa defined by ηsa(t) =

∑
t≤s η(s+)− η(s−) is

a saltus function.

Proof. We refer to [Carothers 2000, Corollary 20.17 p. 373] for a proof in the case q = 1.

1.2.2 Riemann-Stieltjes integrals

In this section our aim is to recall some notions on integration with respect to measures associated
to functions of bounded variation. Recall that the Riemann-Stieltjes integral defined by∫ T

0
z(t) dη(t) := lim

∑
i

(η(ti+1)− η(ti))z(ti),

exists in Rn for all z ∈ C([0, T ],Rn) and all η ∈ BV([0, T ],R), where the limit is taken over all fi-
nite partitions {ti}i of the interval [0, T ] whose length tends to zero. We recall that the dual space
C([0, T ],Rn)∗ of C([0, T ],Rn) is the space of continuous linear functionals from C([0, T ],Rn) to R.
In the sequel we use the bracket notation 〈ϕ, z〉C∗×C := ϕ(z) ∈ R for all ϕ ∈ C([0, T ],Rn)∗ and
all z ∈ C([0, T ],Rn). We can now state the classical Riesz representation theorem which gives a
description of the dual space of C([0, T ],R) in terms of Riemann-Stieltjes integrals.

Theorem 1.2.2. (Riesz representation theorem). Let ϕ ∈ C([0, T ],R)∗. There exists a
unique η ∈ NBV([0, T ],R) such that

〈ϕ, z〉C∗×C =

∫ T

0
z(t) dη(t),

for all z ∈ C([0, T ],R). Moreover, 〈ϕ, z〉C∗×C ≥ 0 for all z ∈ C([0, T ],R+) if and only if
η ∈ NBV([0, T ],R) is monotonically increasing on [0, T ].

We refer to [Limaye 1996, Theorem 14.5 p.245-246] for a complete proof of Theorem 1.2.2.
In Chapter 3 we will make use of the following weaker result for which we provide a complete
proof.

Proposition 1.2.1. Let ϕ ∈ C([0, T ],R)∗ such that 〈ϕ, z〉C∗×C ≥ 0 for all z ∈ C([0, T ],R+).
Then there exists η ∈ NBV([0, T ],R) such that η is monotonically increasing on [0, T ] and

〈ϕ, z〉C∗×C =

∫ T

0
z(t) dη(t),

for all z ∈ C([0, T ],R). Moreover ϕ = 0C([0,T ],R)∗ if and only if η = 0NBV([0,T ],R).
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Proof. For the ease of notations, in this proof, we denote by C := C([0, T ],R), C∗ :=

C([0, T ],R)∗, BF := BF([0, T ],R) and BF∗ := BF([0, T ],R)∗. Moreover, we denote the dual
bracket between the spaces BF([0, T ],R)∗ and BF([0, T ],R) by 〈ϕ, z〉BF∗×BF := ϕ(z) ∈ R for all
ϕ ∈ BF([0, T ],R)∗ and all z ∈ BF([0, T ],R).

If ϕ = 0C∗ it suffices to consider η = 0NBV([0,T ],R). From now on let ϕ ∈ C∗ be different
from 0C∗ and let 1 ∈ C denote the constant function equal to 1 on [0, T ]. Since 〈ϕ, z〉C∗×C ≥ 0

for all z ∈ C([0, T ],R+) it holds that 〈ϕ, ξ〉C∗×C ≤ 〈ϕ,1〉C∗×C for all ξ ∈ C such that ‖ξ‖∞ ≤ 1.
Thus ‖ϕ‖C∗ ≤ 〈ϕ,1〉C∗×C ≤ ‖ϕ‖C∗ and we obtain that ‖ϕ‖C∗ = 〈ϕ,1〉C∗×C. From the
Hahn-Banach theorem (see [Brezis 2011, Corollary 1.2 p.3]) there exists ϕ̃ ∈ BF∗ such that ϕ̃
extends ϕ up to BF and ‖ϕ̃‖BF∗ = ‖ϕ‖C∗ . Moreover ‖ϕ̃‖BF∗ = 〈ϕ̃,1〉BF∗×BF. We wish
to prove that 〈ϕ̃, z〉BF∗×BF ≥ 0 for every z ∈ BF([0, T ],R+). Let z ∈ BF([0, T ],R+) such
that z 6= 0BF. We define ξ := 2

‖z‖∞ z − 1. Then ξ ∈ BF and ‖ξ‖∞ ≤ 1. Thus we obtain the
inequality, −〈ϕ̃, ξ〉BF∗×BF ≤ |〈ϕ̃, ξ〉BF∗×BF| ≤ ‖ϕ̃‖BF∗‖ξ‖∞ ≤ 〈ϕ̃,1〉BF∗×BF. We conclude that
〈ϕ̃, z〉BF∗×BF = ‖z‖∞

2 (〈ϕ̃, ξ〉BF∗×BF + 〈ϕ,1〉BF∗×BF) ≥ 0.

Let us define η(t) := 〈ϕ̃,1(0,t]〉BF∗×BF for all t ∈ [0, T ]. Clearly η(0) = 0. Moreover
since 1(0,t] − 1(0,s] ∈ BF([0, T ],R+) for all 0 ≤ s ≤ t ≤ T and since 〈ϕ̃, z〉BF∗×BF ≥ 0 for
every z ∈ BF([0, T ],R+) it follows that η is monotonically increasing on [0, T ] and different
from 0NBV([0,T ],R). Furthermore η ∈ BV([0, T ],R) with V (η) = η(T ) − η(0). We wish to prove
that 〈ϕ, z〉C∗×C =

∫ T
0 z(t) dη(t) for all z ∈ C. Now let z ∈ C and ε > 0. Since z is uniformly

continuous on [0, T ] there exists δ > 0 such that ‖ϕ‖∞|z(t) − z(s)| ≤ ε
2 for all (t, s) ∈ [0, T ]2

such that |t− s| ≤ δ. Let {ti}i be a partition of [0, T ] such that ti+1 − ti ≤ δ and such that∣∣∣∣∣
∫ T

0
z(t) dη(t)−

∑
i

z(ti)(η(ti+1)− η(ti))

∣∣∣∣∣ ≤ ε

2
.

We define u :=
∑

k z(ti)1(ti,ti+1] ∈ BF. By construction 〈ϕ̃, u〉BF∗×BF =
∑

k z(ti)(η(ti+1)−η(ti)).
Thus it holds that∣∣∣∣∫ T

0
z(t) dη(t)− 〈ϕ, z〉C∗×C

∣∣∣∣
≤
∣∣∣∣∫ T

0
z(t) dη(t)− 〈ϕ̃, u〉BF∗×BF

∣∣∣∣+ |〈ϕ̃, u〉BF∗×BF − 〈ϕ, z〉C∗×C| ≤ ε.

As ε > 0 can be taken to be as small as desired, it holds that
∫ T
0 z(t) dη(t) = 〈ϕ, z〉C∗×C

for all z ∈ C. Moreover η(T ) = η(T ) − η(0) =
∫ T
0 dη(t) = 〈ϕ, 1〉C∗×C = ‖ϕ‖∞ 6= 0.

Thus η 6= 0BV([0,T ],R).

Finally we prove that η can be taken to be right-continuous on (0, T ). Since η is monotonically
increasing on [0, T ], the right-sided η(t+) exists and η(t+) = inf{η(γ) | t < γ < T} for all 0 <

t < T . Furthermore it holds that 0 ≤ η(s) ≤ η(s+) ≤ η(t) ≤ η(t+) ≤ η(T ), for all 0 ≤ s < t ≤ T .
Let us define

ν(t) :=


0 if t = 0,

η(t+) if 0 < t < T,

η(T ) if t = T.
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Then it follows that ν is monotonically increasing. We wish to prove that ν is right-continuous
on (0, T ), that is, lims→t+ ν(s) = ν(t) for all t ∈ (0, T ). By construction it holds that

lim
s→t+

ν(s) = lim
s→t+

η(s+) = lim
s→t+

inf{η(γ) | s < γ < T} = inf{η(γ) | t < γ < T} = η(t+) = ν(t),

for all t ∈ (0, T ). Thus ν ∈ NBV([0, T ],R). Let us check that
∫ T
0 z(t) dη(t) =

∫ T
0 z(t) dν(t) for

all z ∈ C. Since η and ν are monotonically increasing they can differ only at discontinuity points
of η (which are at most countable), we consider a sequence of partitions ({t`k}k)` of [0, T ] such
that no partition{t`k}k contains a discontinuity point of η and the length of the partitions tends
to zero as ` tends to +∞. Therefore∫ T

0
z(t) dη(t) = lim

`→∞

∑
k

z(t`k)(η(t`k+1)−η(t`k)) = lim
`→∞

∑
k

z(t`k)(ν(t`k+1)−ν(t`k)) =

∫ T

0
z(t) dν(t),

as was to be shown.

We now give some recalls about the Lebesgue-Stieltjes integral. If η ∈ NBV([0, T ],R) is
monotonically increasing on [0, T ], η induces a finite nonnegative measure defined by dη((a, b]) :=

η(b) − η(a) on the intervals (a, b] ⊂ [0, T ] for all 0 ≤ a ≤ b ≤ T . Using the Carathéodory
extension theorem this measure is extended over the Borel algebra of [0, T ] and denoted by
dη. Furthermore for all z ∈ C([0, T ],R) the Riemann-Stieltjes integral of z with respect to dη
coincides with the Lebesgue-Stieltjes integral of z with respect to dη. Finally, the following
Fubini-type formula holds:∫ T

0

∫ t

0
z(t, s) ds dη(t) =

∫ T

0

∫ T

s
z(t, s) dη(t) ds,

for all z ∈ L∞([0, T ]2,R) such that z is continuous in its first variable.

We conclude this section by defining some notations for integrals with respect to bounded
variations which will be needed in Chapter 3. Let q ∈ N∗. For all (ηj)j=1,...,q ∈ NBV([0, T ],Rq)
such that ηj is monotonically increasing for all j = 1, . . . , q and for all z = (zj)i=j,...,q ∈ Cq, we
denote by ∫ T

0
〈z(t), dη(t)〉C∗×C :=

q∑
j=1

∫ T

0
zj(t) dηj(t) ∈ R.

Let r ∈ N. We denote by

∫ T

0
A(t)× dη(t) :=

 q∑
j=1

∫ T

0
akj(t) dηj(t)


k=1,...,r

∈ Rr,

and ∫ T

0
〈y(t), A(t)× dη(t)〉C∗×C :=

∫ T

0
〈A(t)> × y(t), dη(t)〉C∗×C ∈ R,

for all continuous matrices A(·) = (akj(·))kj : [0, T ]→ Rr×q and all y ∈ C([0, T ],Rr).
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1.2.3 About Cauchy-Stieltjes problems

We now give a short recap on linear Cauchy-Stieltjes problems which will be used to describe
adjoint vectors in Chapter 3. Let A ∈ L∞([0, T ],Rn×n), B ∈ L∞([0, T ],Rn×n) and let Cj ∈
C([0, T ],Rn) and ηj ∈ BV([0, T ],R) for every j = 1, . . . , q. We say that x ∈ L∞([0, T ],Rn) is
a solution to the forward linear Cauchy-Stieltjes problem (FCSP) given by{

dx = (A× x+B) dt+
∑q

j=1Cj dηj over [0, T ],

x(0) = x0,
(FCSP)

where x0 ∈ Rn is fixed, if x satisfies the integral representation

x(t) = x0 +

∫ t

0

(
A(t)× x(t) +B(t)

)
dt+

q∑
j=1

∫ t

0
Cj(t) dηj(t),

for a.e. t ∈ [0, T ]. Similarly we say that p ∈ L∞([0, T ],Rn) is a solution to the backward linear
Cauchy-Stieltjes problem (BCSP) given by{

−dp = (A× p+B) dt+
∑q

j=1Cj dηj over [0, T ],

p(T ) = pT ,
(BCSP)

where pT ∈ Rn is fixed, if p satisfies the integral representation

p(t) = pT +

∫ T

t

(
A(t)× p(t) +B(t)

)
dt+

q∑
j=1

∫ T

t
Cj(t) dηj(t),

for a.e. t ∈ [0, T ]. From usual contraction mapping techniques, one can easily prove that Prob-
lems (FCSP) and (BCSP) both admit a unique solution. Moreover, from standard identifications
in L∞([0, T ],Rn), these solutions both belong to BV([0, T ],Rn) and the above integral represen-
tations are both satisfied for all t ∈ [0, T ]. We refer to [Bourdin 2016, Appendices C and D] and
references therein for details.

1.3 Regularity of distance functions

Regularity results for distance functions are required in Chapters 2 and 3 in order to handle
state constraints. Indeed our strategy is to penalize the distance to the state constraints in a
corresponding cost functional and then to apply the Ekeland variational principle. In particular,
in the case of terminal state constraints, we are only concerned with the regularity of distance
functions in finite dimensions. Thus Section 1.3.1 is devoted to recalls on convex analysis in order
to ensure the regularity of the distance function in the finite-dimensional case. In Chapter 3
we also penalize the running inequality state constraints. However, in this case, the running
inequality state constraints are described by constraints in the space of continuous functions.
Therefore, Section 1.3.2 is devoted to renorming Banach spaces and techniques required in order
to ensure the regularity of distance functions in the infinite-dimensional context.
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1.3.1 The finite-dimensional case

This section is devoted to recalls on the regularity of distance functions in the finite-dimensional
case which will be used in order to handle terminal state constraints in Chapter 2. Let S ⊂ Rn
be a nonempty closed convex subset. We denote by dS : Rn → R+ the standard distance
function to S defined as dS(z) := infz′∈S ‖z − z′‖Rn for all z ∈ Rn. We recall that, for all
z ∈ Rn, there exists a unique element PS(z) ∈ S (called the projection of z onto S) such that
dS(z) = ‖z − PS(z)‖Rn . It can easily be shown that the map PS : Rn → S is 1-Lipschitz
continuous. Moreover it holds that 〈z − PS(z), z′ − PS(z)〉Rn ≤ 0 for all z ∈ Rn and all z′ ∈ S.
The normal cone to S at a given z ∈ S is defined by

NS[z] := {z′ ∈ Rn | ∀z′′ ∈ S, 〈z′, z′′ − z〉Rn ≤ 0}.

In particular, it is a closed convex cone containing 0Rn . We end this subsection by recalling
the three following useful lemmas.

Lemma 1.3.1. It holds that z − PS(z) ∈ NS[PS(z)] for all z ∈ Rn.

Lemma 1.3.2. Let (zk)k∈N be a sequence in Rn converging to some point z ∈ S and let (ζk)k∈N
be a sequence in R+. If ζk(zk − PS(zk)) converges to some z ∈ Rn, then z ∈ NS[z].

In the next lemma we give a result on the regularity of the distance function which will be
used in Section 2.4.3 of Chapter 2.

Lemma 1.3.3. The map
d2
S : Rn −→ R+

z 7−→ d2
S(z) := dS(z)2,

is differentiable on Rn, and its differential Dd2
S(z) at every z ∈ Rn can be expressed as

Dd2
S(z)(z′) = 2〈z − PS(z), z′〉Rn ,

for all z′ ∈ Rn.

1.3.2 The infinite-dimensional case

This section is devoted to recalls on the regularity of distance functions in the infinite-dimensional
context which will be used in order to handle running inequality state constraints in Chapter 3.
In the infinite-dimensional setting, renorming Banach spaces is required to obtain results on the
regularity of distance functions. Let (Z, ‖ · ‖) be a normed space. We recall that the dual space
of (Z, ‖ · ‖), which we denote by Z∗ := L((Z, ‖ · ‖),R), is the space of linear continuous forms
on (Z, ‖ · ‖). We recall that Z∗ can be endowed with the dual norm ‖ · ‖∗ defined by

‖ · ‖∗ : Z∗ −→ R+

z∗ 7−→ ‖z∗‖∗ := sup
z∈Z
‖z‖≤1

|〈z∗, z〉Z∗×Z |.

In this situation we denote by (Z∗, ‖ · ‖∗) := dual(Z, ‖ · ‖). We recall the following proposition
on renorming separable Banach spaces.
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Proposition 1.3.1. Let (Z, ‖·‖) be a separable Banach space and let (Z∗, ‖·‖∗) = dual(Z, ‖·‖).
Then there exists a norm N on Z equivalent to ‖ · ‖ such that:

(i) N ∗ is equivalent to ‖ · ‖∗;

(ii) N ∗ is strictly convex;

where (Z∗,N ∗) = dual(Z,N ).

Proof. We refer to [Li & Yong 1995, Theorem 2.18 p.42] or to [Bourdin 2016, Proposition 4 p.16]
for a complete proof.

Let F : Z → R be a convex function. Throughout this manuscript we denote the Moreau
subdifferential of F at a point z ∈ Z by the set

∂F (z) := {z∗ ∈ Z∗ | 〈z∗, z′ − z〉Z∗×Z ≤ F (z′)− F (z) for all z′ ∈ Z}.

We recall that a function F : Z → R is said to be strictly Hadamard-differentiable at a point z ∈
Z with the strict Hadamard derivative DF (z) ∈ Z∗ if

lim
z′→z
t↘0

[
sup
z′′∈K

∣∣∣∣F (z′ + tz′′)− F (z′)

t
− 〈DF (z), z′′〉Z∗×Z

∣∣∣∣] = 0,

for every compact set K ⊂ Z. We refer to [Mordukhovich 2006b, p.312-313] for more details
on the Hadamard derivative. Finally we denote by dS : Z → R the distance function to a
nonempty subset S ⊂ Y defined by dS(z) := infz′∈S ‖z − z′‖ for all z ∈ Z, and by d2

S : Z → R
the squared distance function defined by d2

S(z) := dS(z)2 for all z ∈ Z. We conclude this section
by recalling the following proposition on the regularity of distance functions which will be used
in Section 3.5.1 of Chapter 3.

Proposition 1.3.2. Let (Z, ‖ · ‖) be a normed space. Let S ⊂ Z be a nonempty closed convex
subset and let us assume that ‖ · ‖∗ is strictly convex, where (Z∗, ‖ · ‖∗) := dual(Z, ‖ · ‖). Then
it holds that:

(i) dS is convex and 1-Lipschitz continuous;

(ii) dS is strictly Hadamard-differentiable on Z \ S with ‖DdS(z)‖∗ = 1 and ∂dS(z) =

{DdS(z)} for all z ∈ Z \ S;

(iii) d2
S is strictly Hadamard-differentiable on Z \ S with Dd2

S(z) = 2dS(z)DdS(z) for all z ∈
Z \ S;

(iv) d2
S is Fréchet-differentiable on S with Dd2

S(z) = 0Z∗ for all z ∈ S.

Proof. The proof of (i) is a standard result. We refer to [Mordukhovich 2006b, Theorem 3.54
p.313] and [Bourdin 2016, Appendix B.2] for the proof of (ii). The proofs of (iii) and (iv) are
straightforward.
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1.4 Some basics of nonsmooth analysis

Our aim here is to recall some basic notions and results from nonsmooth analysis. These notions
will be essential in Chapter 4 where we will consider optimal sampled-data control problems
with nonsmooth cost functions. We refer to [Clarke et al. 1998, Section 1 in Chapter 2] for more
details on the definitions and propositions presented in this subsection. A function ϕ : Rn → R
is said to be locally Lipschitz if, at each point x ∈ Rn, there exists a neighborhood of x on
which ϕ is Lipschitz continuous. In that context the Clarke generalized directional derivative of
ϕ at a given point x ∈ Rn in a given direction v ∈ Rn is defined by

ϕ◦(x; v) := lim sup
y→x
η↓0

ϕ(y + ηv)− ϕ(y)

η
.

Then the Clarke subdifferential of ϕ at a point x ∈ Rn is defined as the set

∂ϕ(x) := {y ∈ Rn | ∀v ∈ Rn, 〈y, v〉Rn ≤ ϕ◦(x; v)}.

Here we have kept the same notation for the Clarke subdifferential as for the Moreau subd-
ifferential since for convex functions the two notions coincide. Note that there exist several
different notions of subdifferential in the literature such as the proximal subdifferential, the Dini
subdifferential, the limiting subdifferential, etc. (see [Clarke 2001] for more details). However
in this manuscript we will only make use of the Clarke subdifferential and thus avoid any pos-
sible conflict of notation. The next propositions are direct consequences of [Clarke et al. 1998,
Propositions 1.1 and 1.5 in Chapter 2].

Proposition 1.4.1. Let ϕ : Rn → R be locally Lipschitz. It holds that ϕ◦(x; v) is finite for
all x, v ∈ Rn. Furthermore, for every x ∈ Rn, the function ϕ◦(x; ·) is positively homogeneous
and Lipschitz continuous.

Proposition 1.4.2. Let ϕ : Rn → R be locally Lipschitz and x ∈ Rn. It holds that ∂ϕ(x) is a
nonempty compact convex set of Rn. Furthermore, for every v ∈ Rn, there exists ζv ∈ ∂ϕ(x)

such that
ϕ◦(x; v) = 〈ζv, v〉Rn = max

ζ∈∂ϕ(x)
〈ζ, v〉Rn .



Chapter 2

Optimal sampled-data control problems
with free sampling times

This chapter is based on the article “Continuity/constancy of the Hamiltonian function in a
Pontryagin maximum principle for optimal sampled-data control problems with free sampling
times” by L. Bourdin and G. Dhar (see [Bourdin & Dhar 2019]). An additional numerical
example is presented in this chapter which was not found in the paper [Bourdin & Dhar 2019]
(see Section 2.3). Several proofs that had been omitted in the paper [Bourdin & Dhar 2019] are
also provided in this chapter (see Section 2.4).

2.1 Introduction

This chapter is concerned with necessary optimality conditions for optimal sampled-data con-
trol problems where one is allowed to optimize the sampling times of the optimal control as
well as the control values. Before giving a formal definition of optimal sampled-data control
problems we give some recalls on terminology used to describe usual optimal control problems.
To begin with, a control system is a dynamical system in which a control parameter influences
the evolution of the state. An optimal control problem consists of determining a control which
allows to steer the state of a control system from a specified configuration to some desired target
while minimizing a given criterion. Established in [Pontryagin et al. 1962] by Pontryagin et al.
at the end of the 1950’s, the Pontryagin maximum principle (in short, PMP) is the milestone
of optimal control theory. It provides first-order necessary optimality conditions for optimal
control problems in which the dynamics is described by a general nonlinear ordinary differential
equation. Roughly speaking, the classical PMP ensures the existence of an adjoint vector such
that the optimal control satisfies the so-called Hamiltonian maximization condition. Soon after-
wards and even nowadays, the PMP has been adapted to many situations, for control systems of
different natures, with various constraints, etc. It is not the aim of the present chapter to give a
state of the art. Nevertheless we precise that several versions of the PMP were derived for dis-
crete optimal control problems in which the dynamics is described by a difference equation (see,
e.g., [Boltyanskii 1978, Halkin 1966, Holtzman & Halkin 1966]). In these discrete versions of the
PMP, the historical Hamiltonian maximization condition does not hold in general (see a coun-
terexample in [Boltyanskii 1978, Examples 10.1-10.4 p.59-62]) and has to be replaced by a weaker
condition known as a nonpositive Hamiltonian gradient condition (see, e.g., [Boltyanskii 1978,
Theorem 42.1 p.330]). Note that some appropriate convexity conditions on the dynamics have
been considered in order to recover the Hamiltonian maximization condition in the discrete case
(see, e.g., [Holtzman & Halkin 1966]).

In the classical optimal control theory the control is often taken to be permanent in the
sense that its value can be modified at any instant in time. In this chapter we are inter-



20 Chapter 2. Optimal sampled-data control problems with free sampling times

ested in sampled-data control systems in which the state evolves continuously in time while
the control evolves discretely in time. More precisely the value of the control is authorized
to be modified only a finite number of times. The times in which the control can be modi-
fied are usually called the sampling times. Note that sampled-data control systems have the
peculiarity of presenting a mixed continuous/discrete structure. They have been considered
as models mostly in Engineering implemented by digital controllers which have a finite preci-
sion (see, e.g., [Santina & Stubberud 2005, Volz & Kazda 1966]). Numerous texts and articles
have developed control theory for sampled-data control systems (see, e.g., [Ackermann 1985,
Aström 1963, Aström & Wittenmark 1997, Fadali & Visioli 2013, Landau & Zito 2006] and ref-
erences therein). For instance, global controllability for sampled-data control systems has been
investigated in [Grasse & Sussmann 1990]. Sampled-data control systems are used in Automa-
tion, notably in model predictive control algorithms in which the control value at each sampling
time is chosen as the first value of a finite sequence of control values optimizing the given
cost on a fixed finite horizon (see, e.g., [Grüne & Pannek 2017]). Optimal sampled-data control
problems have been investigated in the literature with different approaches. One approach
has been to apply H2-H∞ optimization theory (see [Biryukov 2016, Chen & Francis 1996])
where the closed-loop transfer matrix under the H2- and H∞- norms is taken as the crite-
rion. Another approach involves the Karush-Kuhn-Tucker necessary conditions and dynamic
programming (see [Bini & Buttazzo 2014]). However one should note that the aforementioned
results are not formulated in terms of a PMP. Recently Bourdin and Trélat have obtained
in [Bourdin & Trélat 2016] a version of the PMP for general nonlinear optimal sampled-data
control problems. In that sampled-data control framework, as in the purely discrete case ad-
dressed in the previous paragraph, the usual Hamiltonian maximization condition does not
hold in general and has to be replaced by a weaker condition known as a nonpositive averaged
Hamiltonian gradient condition (see [Bourdin & Trélat 2016, Theorem 2.6 p.62]). Note that the
PMP enunciated in [Bourdin & Trélat 2016, Theorem 2.6 p.62] is actually stated in the more
general framework of time scale calculus and a version which does not take into account such
a generality, and therefore closer to the considerations of the present chapter, can be found
in [Bourdin & Trélat 2015, Theorem 1 p.81] or [Bourdin & Trélat 2016, Theorem 1.1 p.55]. Un-
fortunately this PMP is only concerned with fixed sampling times, and thus it does not take
into account the possibility of free sampling times that can be chosen from a given interval.
The main objective of the paper [Bourdin & Dhar 2019] in collaboration with Bourdin, whose
content is presented in this chapter, was to fill this gap in the literature by deriving a PMP for
general nonlinear optimal sampled-data control problems with free sampling times. We men-
tion that optimal sampling times problems have already been investigated in the literature but,
to the best of our knowledge, never from a PMP point of view. For example many authors
consider the related problem of finding the optimal fixed sampling interval (or time step) such
as in [Levis & Schlueter 1971, Melzer & Kuo 1971]. Nonuniform sampling partitions have also
been studied but in specific cases such as for the linear-quadratic integrator in [Schlueter 1973].
In [Schlueter & Levis 1973] the optimal sampled-data control problem is transformed into a
purely discrete one by integrating the state over the sampling intervals and then is treated as
an usual optimization problem.

The main theoretical result of the paper [Bourdin & Dhar 2019] (presented in Theorem 2.2.1
in Section 2.2.2 of the present chapter) is a PMP for nonlinear optimal sampled-data control
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problems with free sampling times. Similarly to the PMP derived in [Bourdin & Trélat 2015,
Theorem 1 p.81] or [Bourdin & Trélat 2016, Theorem 1.1 p.55] for fixed sampling times, we
obtain a first-order necessary optimality condition described by a nonpositive averaged Hamil-
tonian gradient condition (see Inequality (2.2)). Furthermore, from the freedom of choosing
sampling times, we get a new and additional necessary optimality condition (see Equality (2.3))
which happens to coincide with the continuity of the Hamiltonian function. In an autonomous
context, even the constancy of the Hamiltonian function can be derived. We refer to Section 2.2.3
for a detailed discussion on the continuity/constancy of the Hamiltonian function. Moreover,
in case of additional constraints on the size of sampling intervals (in practice one can expect a
minimum size for instance), the continuity of the Hamiltonian function is replaced by a weaker
inequality (see Remarks 2.2.14 and 2.2.15 for details).

We must remark that in the classical case of optimal permanent control problems, the (abso-
lute) continuity of the Hamiltonian function is a very well-known fact (see, e.g., [Fattorini 1999,
Theorem 2.6.3 p.73]). With the help of two simple linear-quadratic examples, we show in
Section 2.3 that this classical property does not hold in general for optimal sampled-data con-
trol problems with fixed sampling times (see Figures 2.1 and 2.3). On the other hand, the
present work proves that this continuity property is recovered when considering optimal sam-
pling times, which is illustrated with the same aforementioned linear-quadratic examples (see
Figures 2.2 and 2.4). In the second linear-quadratic example, which is autonomous, even the
constancy of the Hamiltonian function is obtained when considering optimal sampling times
(see Figure 2.4). Furthermore the linear-quadratic examples developed in Section 2.3 allow us
to prove the interest of our main result since it is numerically solved by using, on one hand,
the Riccati theory developed in [Bourdin & Trélat 2017, Theorem 2 and Corollary 1 p.276] and,
on the other hand, a shooting method based on the Hamiltonian continuity condition derived
in Theorem 2.2.1. We conclude this paragraph by mentioning that, in the context of hybrid
optimal control problems, a similar Hamiltonian continuity condition at crossing times (resp.
at switching times) can be found in [Haberkorn & Trélat 2011, Remark 1.3] by Haberkorn and
Trélat (resp. in [Sussmann 1999, Definition 13] by Sussmann under the name of Hamiltonian
value condition). Nevertheless, due to the nature of the sampling times and of the sampled-data
controls considered in the present chapter, our main result (in particular the nonpositive aver-
aged Hamiltonian gradient condition) cannot, to the best of our knowledge, be seen as a direct
consequence of the works [Haberkorn & Trélat 2011, Sussmann 1999].

In this paragraph our aim is to give some details about the strategy adopted in the pa-
per [Bourdin & Dhar 2019] and the major difficulties encountered. The proof of our main result
is detailed in Section 2.4 and, similarly to [Bourdin & Trélat 2016, Theorem 2.6 p.62], it is based
on the classical Ekeland variational principle [Ekeland 1974, Theorem 1.1 p.324]. This leads us
to consider a sequence of sampled-data controls converging in L1-norm to the optimal one. A
first difficulty emerges in the fact that the associated sampling times do not necessarily converge
to the optimal sampling times. Indeed a degenerate situation can occur if the optimal control is
constant over two consecutive sampling intervals. Moreover another obstacle is the possible phe-
nomenon of accumulation of sampling times. These two difficulties are overcome by introducing
a technical control set (see Section 2.4.2) which guarantees that the sampling times produced
by the Ekeland variational principle, firstly, remain unchanged for the ones corresponding to the
consecutive sampling intervals on which the optimal control is constant (avoiding thus the first
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difficulty) and, secondly, are contained in disjoint intervals for the others (avoiding thus the sec-
ond difficulty). We refer to Proposition 2.4.7 for details. A final obstacle lies in the non-convexity
of the set of N -piecewise constant functions (where N ∈ N∗ is fixed). Therefore the standard
procedure of considering convex L∞-perturbations of the control (as in [Bourdin & Trélat 2016,
Lemma 4.17 p.84]) has to be adapted by considering convex L∞-perturbations respecting the
same N -partition.

This chapter is organized as follows. Section 2.2 is dedicated to the main result of the
paper [Bourdin & Dhar 2019] (see Theorem 2.2.1). The optimal sampled-data control problem
considered is presented in detail in Section 2.2.1 (see Problem (OSCP)). The corresponding
Pontryagin maximum principle (Theorem 2.2.1) is stated in Section 2.2.2 and a list of general
comments is given. Finally Section 2.2.3 is devoted to a discussion on the continuity/constancy of
the Hamiltonian function. In Section 2.3 we numerically solve a simple linear-quadratic optimal
sampled-data control problem and we compare the two following situations: fixed sampling
times versus free sampling times. As expected from our main result, the Hamiltonian function
admits discontinuities in the first case (see Figure 2.1), while it does not in the second case (see
Figure 2.2). Finally Section 2.4 is devoted to the detailed proof of Theorem 2.2.1.

2.2 Main result and comments

This section is devoted to the main result of the paper [Bourdin & Dhar 2019]. In Section 2.2.1
we present the optimal sampled-data control problem. In Section 2.2.2, the corresponding Pon-
tryagin maximum principle, which constitutes our main result, is stated. A list of general
comments is in order. Section 2.2.3 is devoted to a discussion on the continuity/constancy of
the Hamiltonian function.

2.2.1 The optimal sampled-data control problem: terminology and assump-
tions

Let m, n, j, N ∈ N∗ be four positive integers fixed in the whole chapter. In the present chapter
we focus on the general optimal sampled-data control problem (OSCP) given by

minimize g(x(0), x(T ), T ) +

∫ T

0
L(x(t), u(t), t) dt,

subject to T > 0 fixed or free,

T = {ti}i=0,...,N ∈ PTN fixed or free,

x ∈ AC([0, T ],Rn), u ∈ PCT([0, T ],Rm),

ẋ(t) = f(x(t), u(t), t), a.e. t ∈ [0, T ],

h(x(0), x(T ), T ) ∈ S,

ui ∈ U, for all i = 0, . . . , N − 1.



(OSCP)

A solution to Problem (OSCP) is a quadruple (T,T, x, u) which satisfies all above constraints
and which minimizes the cost among all quadruples satisfying these constraints. Our aim in this
section is to fix the terminology and the assumptions associated to Problem (OSCP).
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In Problem (OSCP), x is the state function (also called trajectory) and u is the
control function. In the classical literature about the Pontryagin maximum principle
(see, e.g., [Bressan & Piccoli 2007, Cesari 1983a, Hiriart-Urruty 2008, Pontryagin et al. 1962,
Sethi & Thompson 2000, Trélat 2005, Vinter 2010] and references therein), the control u usu-
ally can be any function in L∞([0, T ],Rm), satisfying the constraint u(t) ∈ U for almost every
t ∈ [0, T ]. In that case we say that the control is permanent in the sense that its value can be
modified at any time t ∈ [0, T ]. In the present chapter, the control u is constrained to be a piece-
wise constant function respecting at least oneN -partition, whereN ∈ N∗ is fixed. In other words,
the value of the control is authorized to be modified at most N−1 times. In that situation we say
that the control is nonpermanent. The standard terminology adopted in the literature is to say
that the control u in Problem (OSCP) is a sampled-data control (see, e.g., [Bini & Buttazzo 2014,
Bourdin & Trélat 2015, Bourdin & Trélat 2016, Bourdin & Trélat 2017] and references therein).

In Problem (OSCP), the final time T > 0 can be fixed or not. In the case where the final
time is free, it becomes a parameter to optimize. Similarly the N -partition T = {ti}i=0,...,N can
be fixed or not in Problem (OSCP). For i = 1, . . . , N − 1, the elements ti of T are called the
sampling times because they correspond to the times in which the value of the sampled-data
control u can be modified. We distinguish two situations:

(i) If the N -partition is fixed in Problem (OSCP), we say that the sampling times ti are
fixed and Problem (OSCP) is an optimal sampled-data control problem with fixed sampling
times;

(ii) If the N -partition is free in Problem (OSCP), we say that the sampling times ti are free
and they become N − 1 parameters to optimize. In that case, Problem (OSCP) is said to
be an optimal sampled-data control problem with free sampling times.

In this chapter we consider the following regularity and topology assumptions:

- the functions g : Rn×Rn×R+ → R and L : Rn×Rm×R+ → R, that describe respectively
the Mayer cost g(x(0), x(T ), T ) and the Lagrange cost

∫ T
0 L(x(t), u(t), t) dt, are of class C1;

- the set S ⊂ Rj is a nonempty closed convex subset of Rj and the function h : Rn × Rn ×
R+ → Rj , that describes the terminal state constraint h(x(0), x(T ), T ) ∈ S, is of class C1;

- the set U ⊂ Rm, that describes the control constraint ui ∈ U, is a nonempty closed convex
subset of Rm;

- the dynamics f : Rn×Rm×R+ → Rn, that drives the state equation ẋ(t) = f(x(t), u(t), t),
is of class C1. In particular, for every compact subset K ⊂ Rn × Rm × R+, there exists
a nonnegative constant CK ≥ 0 such that ‖∇1f(x, u, t)‖Rn×n ≤ CK, ‖∇2f(x, u, t)‖Rn×m ≤
CK for all (x, u, t) ∈ K, and such that

‖f(x2, u2, t)− f(x1, u1, t)‖Rn ≤ CK(‖x2 − x1‖Rn + ‖u2 − u1‖Rm), (2.1)

for all (x1, u1, t), (x2, u2, t) ∈ K. Throughout this chapter, we use the notation ∇ to denote
the derivative of a mapping with respect to a variable.

Since the total cost g(x(0), x(T ), T ) +
∫ T
0 L(x(t), u(t), t) dt considered in Problem (OSCP) is

written as the sum of a Mayer cost and a Lagrange cost, it is said to be of Bolza form.
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Remark 2.2.1. In Problem (OSCP), since the N -partition depends on the final time, note
that the problem has no sense if the final time is free while the N -partition is fixed. This
case will not be treated. In order to deal with it, one should introduce a different framework
that can handle partitions that are independent of the final time. It was not the aim of the
paper [Bourdin & Dhar 2019] in which the objective was to focus on the free sampling times
case.

Remark 2.2.2. In the free sampling times case, Problem (OSCP) can be rewritten by re-
moving the third line, and by replacing “ u ∈ PCT([0, T ],Rm)” in the fourth line by “ u ∈
PCN ([0, T ],Rm)”.

Remark 2.2.3. Let (T,T, x, u) be a solution to Problem (OSCP). One can easily deduce,
respectively from Remarks 1.1.1 and 1.1.2, that:

- if the sampling times are fixed in Problem (OSCP) and u ∈ PCT
′
([0, T ],Rm) for some

T′ ∈ PTM with M ≤ N such that T′ ⊂ T, then the quadruple (T,T′, x, u) is a solution to
the same problem as Problem (OSCP) replacing N by M and T by T′. A similar remark
was already done in [Bourdin & Trélat 2016, Remark 3 p.60];

- if the sampling times are free in Problem (OSCP) and u ∈ PCT
′
([0, T ],Rm) for some

T′ ∈ PTM with M ≤ N , then the quadruple (T,T′, x, u) is a solution to the same problem
as Problem (OSCP) replacing N by M .

Remark 2.2.4. If the final time is fixed in Problem (OSCP), one can directly consider that
the two functions g and h are both independent of T , and we directly write the Mayer cost as
g(x(0), x(T )) and the terminal state constraint as h(x(0), x(T )) ∈ S.

Remark 2.2.5. Let (T,T, x, u) be a quadruple satisfying all constraints of Problem (OSCP).
From the state equation and since u is a piecewise constant function, it is clear that x is not
only absolutely continuous but also piecewise smooth of class C1 over the interval [0, T ], in the
sense that x is of class C1 over each interval [ti, ti+1].

Remark 2.2.6. A Filippov-type theorem for the existence of a solution to Problem (OSCP)
in case of fixed sampling times was derived in [Bourdin & Trélat 2016, Theorem 2.1 p.61]. The
paper [Bourdin & Dhar 2019] focuses only on necessary optimality conditions and thus it was not
our aim to discuss the extension of the previously mentioned result to the case of free sampling
times. Nevertheless we precise that, in the context of free sampling times, one would likely be
faced with the same difficulty encountered in the proof of Theorem 2.2.1 developed in Section 2.4.
Precisely, considering a minimizing sequence of sampled-data controls would lead to a sequence
of partitions and thus to the possibility of accumulation of sampling times. As a consequence, a
cautious and rigorous mathematical treatment would be required in order to give a meaning to
the limit of the sequence of sampled-data controls when accumulations of sampling times appear.
Moreover, note that the standard Filippov’s theorem is usually established in case of permanent
controls, that is, with controls that belong to the infinite dimensional space L∞([0, T ],Rm), while
the sampled-data control framework considered here (with fixed or free sampling times) can be
seen as a finite dimensional optimization problem. This fundamental difference could potentially
lead to existence results in case of sampled-data controls without the convexity assumption made
on the augmented velocity set in the case of permanent controls.
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2.2.2 Pontryagin maximum principle and general comments

We recall that the main objective of the paper [Bourdin & Dhar 2019] was to state a Pon-
tryagin maximum principle for Problem (OSCP). As mentioned in the previous section,
one of the novelties of Problem (OSCP) with respect to the classical literature is to con-
sider sampled-data controls. Note that this framework was already considered by Bour-
din and Trélat in [Bourdin & Trélat 2015, Bourdin & Trélat 2016] in which a Pontryagin
maximum principle was already established. However, in contrary to the framework con-
sidered in [Bourdin & Trélat 2015, Bourdin & Trélat 2016], the sampling times ti in Prob-
lem (OSCP) are not necessarily fixed and can be free. Hence the major contribution of the
paper [Bourdin & Dhar 2019] was to state a Pontryagin maximum principle that can handle,
not only sampled-data controls, but also free sampling times. In that particular case, a new
necessary optimality condition is derived (see Equality (2.3) in Theorem 2.2.1 below). This
additional necessary optimality condition happens to coincide with the continuity of the Hamil-
tonian function. A discussion devoted to this phenomenon is provided in Section 2.2.3. Before
recalling our main result, we first need to recall the following definitions.

Definition 2.2.1 (Hamiltonian). The Hamiltonian H : Rn × Rm × Rn × R × R+ → R asso-
ciated to Problem (OSCP) is defined by H(x, u, p, p0, t) := 〈p, f(x, u, t)〉Rn + p0L(x, u, t), for
all (x, u, p, p0, t) ∈ Rn × Rm × Rn × R× R+.

Definition 2.2.2 (Submersiveness). We say that the function h is submersive at a
point (x1, x2, t) ∈ Rn × Rn × R+ if its differential at this point, that is, if

Dh(x1, x2, t) =
(
∇1h(x1, x2, t) ∇2h(x1, x2, t) ∇3h(x1, x2, t)

)
∈ Rj×(2n+1),

is surjective.

We are now in a position to recall the main result established in the paper
[Bourdin & Dhar 2019].

Theorem 2.2.1 (Pontryagin maximum principle). Let (T,T, x, u) be a solution to Prob-
lem (OSCP). If h is submersive at (x(0), x(T ), T ), then there exists a nontrivial couple
(p, p0) ∈ AC([0, T ],Rn)× R− such that:

(i) Adjoint equation: p (which is called the adjoint vector or the costate) satisfies

−ṗ(t) = ∇1H(x(t), u(t), p(t), p0, t),

for almost every t ∈ [0, T ];

(ii) Transversality conditions on the adjoint vector: p satisfies

−p(0) = p0∇1g(x(0), x(T ), T ) +∇1h(x(0), x(T ), T )> ×Ψ,

p(T ) = p0∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> ×Ψ,

where Ψ ∈ Rj is such that −Ψ ∈ NS[h(x(0), x(T ), T )] (where NS[h(x(0), x(T ), T )] stands
for the normal cone of S at h(x(0), x(T ), T ) defined in Section 1.3);
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(iii) Nonpositive averaged Hamiltonian gradient condition: the condition〈∫ ti+1

ti

∇2H(x(t), ui, p(t), p
0, t) dt, ω − ui

〉
Rm
≤ 0, (2.2)

is satisfied for all ω ∈ U and all i = 0, . . . , N − 1;

(iv) If moreover the sampling times are free in Problem (OSCP): the optimal sampling
times ti satisfy the Hamiltonian continuity condition

H(x(ti), ui−1, p(ti), p
0, ti) = H(x(ti), ui, p(ti), p

0, ti), (2.3)

for all i = 1, . . . , N − 1;

(v) If moreover the final time is free in Problem (OSCP): the optimal final time T
satisfies the transversality condition

−H(x(T ), uN−1, p(T ), p0, T ) = p0∇3g(x(0), x(T ), T ) +∇3h(x(0), x(T ), T )> ×Ψ,

where Ψ ∈ Rj is introduced in the transversality conditions on the adjoint vector.

Section 2.4 is dedicated to the proof of Theorem 2.2.1. A list of comments is in order. We
just point out, as detailed in Remark 2.2.12 below, that the submersion property considered in
Theorem 2.2.1 is not restrictive. The reader who is interested in the continuity/constancy of the
Hamiltonian function may jump directly to the specific Section 2.2.3.

Remark 2.2.7. The nontrivial couple (p, p0) in Theorem 2.2.1, which is a Lagrange multiplier,
is defined up to a positive multiplicative scalar. In the normal case p0 6= 0, it is usual to normalize
the Lagrange multiplier so that p0 = −1.

Remark 2.2.8. Let us consider the framework of Theorem 2.2.1. One can easily see that the
couple (x, p) satisfies the Hamiltonian system

ẋ(t) = ∇3H(x(t), u(t), p(t), p0, t), −ṗ(t) = ∇1H(x(t), u(t), p(t), p0, t),

for almost every t ∈ [0, T ].

Remark 2.2.9. Our strategy in Section 2.4 in order to prove Theorem 2.2.1 is based on the
Ekeland variational principle [Ekeland 1974, Theorem 1.1 p.324]. It requires the closedness of
U in order to define the corresponding penalized functional on a complete metric set (see details
in Section 2.4.3). The closure of U is thus a crucial assumption in our strategy. On the other
hand, the convexity of U is also an essential hypothesis for our strategy in order to consider
convex L∞-perturbation of the control (see the proof of Lemma 2.4.7).

Remark 2.2.10. The nonpositive averaged Hamiltonian gradient condition in Theorem 2.2.1
(see Inequality (2.2)) can be rewritten as∫ ti+1

ti

∇2H(x(t), ui, p(t), p
0, t) dt ∈ NU[ui],
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for all i = 0, . . . , N − 1. We deduce that

ui = projU

(
ui +

∫ ti+1

ti

∇2H(x(t), ui, p(t), p
0, t) dt

)
,

for all i = 0, . . . , N − 1, where projU stands for the classical projection operator onto U. In
particular, if U = Rm (that is, if there is no control constraint in Problem (OSCP)), then the
nonpositive averaged Hamiltonian gradient condition can be rewritten as∫ ti+1

ti

∇2H(x(t), ui, p(t), p
0, t) dt = 0Rm ,

for all i = 0, . . . , N − 1.

Remark 2.2.11. In this remark, for simplicity, we suppose that the final time is fixed in Prob-
lem (OSCP). Our aim here is to describe some typical terminal state constraint h(x(0), x(T )) ∈ S

and the corresponding transversality conditions on the adjoint vector derived in Theorem 2.2.1:

- If the terminal points are fixed in Problem (OSCP) (that is, x(0) = x0 and x(T ) = xf ),
one may consider j = 2n, h as the identity function and S = {x0}×{xf}. In that case, the
normal cone to S is the entire space, and thus the transversality conditions on the adjoint
vector in Theorem 2.2.1 do not provide any additional information.

- If the initial point is fixed (that is, x(0) = x0) and the final point x(T ) is free in Prob-
lem (OSCP), one may consider j = 2n, h as the identity function and S = {x0} ×Rn. In
that case, the nontriviality of the couple (p, p0) and the second transversality condition on
the adjoint vector in Theorem 2.2.1 imply that p0 6= 0 (which we normalize to p0 = −1,
see Remark 2.2.7) and p(T ) = −∇2h(x(0), x(T )).

- If the initial point is fixed (that is, x(0) = x0) and the final point x(T ) is subject
to inequality constraints h`(x(T )) ≥ 0 for ` = 1, . . . , nh, for some nh ∈ N∗, one
may consider j = n + nh, h : Rn × Rn → Rn+nh given by h(x1, x2) := (x1, h

′(x2))

where h′ = (h1, . . . , hnh) : Rn → Rnh and S = {x0} × (R+)nh. If h′ is of class C1

and the differential Dh′(x2) ∈ Rnh×n is surjective at any point x2 ∈ h′−1((R+)nh), then
the second transversality condition on the adjoint vector in Theorem 2.2.1 can be written
as p(T ) = p0∇2g(x(0), x(T )) +

∑nh
`=1 λ`∇h`(x(T )), for some λ` ≥ 0 satisfying moreover

the slackness condition λ`h`(x(T )) = 0, for all ` = 1, . . . , nh.

- If there is no Mayer cost (that is, g = 0) and the periodic condition x(0) = x(T ) is
considered in Problem (OSCP), one may consider j = n, h : Rn × Rn → Rn given by
h(x1, x2) := x2 − x1 and S = {0Rn}. In that case the transversality conditions on the
adjoint vector in Theorem 2.2.1 yield that p(0) = p(T ).

We point out that, in all examples above, the submersiveness condition is satisfied.

Remark 2.2.12. Let (T,T, x, u) be a solution to Problem (OSCP). If the submersion property
is not satisfied, one can easily go back to the submersive case by noting that (T,T, x, u) is also a
solution to the same problem as Problem (OSCP) replacing j by j̃ := 2n + 1, h by the identity
function h̃ and S by the singleton S̃ := {x(0)} × {x(T )} × {T}. With this new problem the
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submersion property is obviously satisfied and Theorem 2.2.1 can be applied. However, with this
new problem, the normal cone to S̃ is the entire space, and thus the transversality conditions
on the adjoint vector and on the final time do not provide any information. In other words, if
the submersion property is not satisfied, then Theorem 2.2.1 is still valid by removing the two
items (ii) and (v).

Remark 2.2.13. Following the proof of Theorem 2.2.1 in Section 2.4, one can easily see that
the theorem is still valid for a quadruple (T,T, x, u) which is solution to Problem (OSCP) in
(only) a local sense to be precised.

Remark 2.2.14. In the case of free sampling times in Problem (OSCP), one may be interested
by the additional constraint ti+1 − ti ≥ δmin for all i = 0, . . . , N − 1, for some δmin > 0 fixed.
Following the proof of Theorem 2.2.1 in Section 2.4, one can easily see that Equality (2.3) is
preserved for all i ∈ {1, . . . , N−1} such that min(ti−ti−1, ti+1−ti) > δmin, but has to be replaced
by the weaker condition

H(x(ti), ui−1, p(ti), p
0, ti) ≤ H(x(ti), ui, p(ti), p

0, ti),

for all i ∈ {1, . . . , N − 1} such that ti − ti−1 = δmin and ti+1 − ti > δmin, and by the weaker
condition

H(x(ti), ui−1, p(ti), p
0, ti) ≥ H(x(ti), ui, p(ti), p

0, ti),

for all i ∈ {1, . . . , N − 1} such that ti− ti−1 > δmin and ti+1− ti = δmin. However, if ti− ti−1 =

ti+1 − ti = δmin, then no necessary optimality condition on ti can be derived from our strategy
in Section 2.4.

Remark 2.2.15. Remark 2.2.14 can be easily adapted to the case of the additional constraint
ti+1 − ti ≤ δmax for all i = 0, . . . , N − 1, for some δmax > 0 fixed. One can also obtain a similar
remark as in Remark 2.2.14 by considering the additional constraint δmin ≤ ti+1 − ti ≤ δmax for
all i = 0, . . . , N − 1, for some 0 < δmin < δmax fixed.

Remark 2.2.16. This comment highlights several research perspectives.

(i) In the context of linear-quadratic problems, the authors of [Bourdin & Trélat 2017] prove
that the optimal sampled-data controls (with fixed sampling times) converge pointwisely to
the optimal permanent control when the lengths of sampling intervals tend uniformly to
zero. The convergence of the corresponding costs and the uniform convergence of the cor-
responding states and costates are also derived. An interesting research perspective would
be to get similar convergence results in the context of the present work. Several directions
can be investigated: nonlinear dynamics, terminal state constraints, free sampling times
(whereas sampling times are fixed in [Bourdin & Trélat 2017]). In context of free sampling
times, a wonderful challenge would be to study the asymptotic behavior when letting N tend
to +∞ (which is a weaker condition than the uniform convergence to zero of the lengths
of sampling intervals).

(ii) In view of initializations of numerical algorithms, it would be relevant to get theoretical
results about the distribution of optimal sampling times with respect to N and/or with
respect to the data (cost, dynamics, constraints) of the considered problem.
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(iii) Last (but not least) a relevant research perspective would concern the extension of the
present chapter to the more general framework in which the values of the free sampling
times ti intervene explicitly in the cost to minimize and/or in the dynamics. Let us take this
occasion to mention the paper [Bakir et al. 2020] in which the authors derive Pontryagin-
type conditions for a specific problem from medicine that can be written as an optimal
sampled-data control problem in which the sampling times ti are free and intervene explicitly
in the expression of the dynamics. We precise that, even in this very particular context,
giving an expression of the necessary optimality conditions in an Hamiltonian form still
remains an open mathematical question.

Remark 2.2.17. In this chapter, as explained in the Introduction, the proof of Theorem 2.2.1
is based on the Ekeland variational principle [Ekeland 1974]. Let us note that an alternative
proof of Theorem 2.2.1 can be obtained by adapting a remarkable technique exposed in the pa-
per [Dmitruk & Kaganovich 2011] by Dmitruk and Kaganovich that consists of mapping each
sampling interval [ti, ti+1] to the interval [0, 1]. In that situation, the free sampling times ti
play the role of free terminal states which lead, through the application of the classical PMP, to
transversality conditions which exactly coincide with the Hamiltonian continuity condition (2.3),
while the values ui of the sampled-data control play the role of parameters which lead, through the
application of a “PMP with parameters” (see, e.g., [Bourdin & Trélat 2013, Remark 5 p.3790]),
to a necessary optimality condition written in integral form which exactly coincides with the
nonpositive averaged Hamiltonian gradient condition (2.2).

2.2.3 Continuity/constancy of the Hamiltonian function

This section is devoted to a discussion on the continuity/constancy of the Hamiltonian function.
We first recall the definition of the Hamiltonian function within the framework of Theorem 2.2.1.

Definition 2.2.3 (Hamiltonian function). With the framework of Theorem 2.2.1, the corre-
sponding Hamiltonian function H : [0, T ]→ R is defined by

H(t) := H(x(t), u(t), p(t), p0, t),

for all t ∈ [0, T ].

Remark 2.2.18. If the final time is free in Problem (OSCP), note that the transversality con-
dition on the optimal final time T in Theorem 2.2.1 can be rewritten as

−H(T ) = p0∇3g(x(0), x(T ), T ) +∇3h(x(0), x(T ), T )> ×Ψ,

since u(T ) = uN−1.

Remark 2.2.19. In the classical case of optimal permanent control problems, we recall that
the (absolute) continuity of the Hamiltonian function H is a very well-known fact (see, e.g.,
[Fattorini 1999, Theorem 2.6.3 p.73]). Moreover it holds that

Ḣ(t) = ∇5H(x(t), u(t), p(t), p0, t),

for a.e. t ∈ [0, T ].
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Let us consider the framework of Theorem 2.2.1. Similarly to the trajectory x (see Re-
mark 2.2.5), it can easily be seen from the adjoint equation that the adjoint vector p is not only
absolutely continuous but also piecewise smooth of class C1 over the interval [0, T ], in the sense
that p is of class C1 over each interval [ti, ti+1]. Since moreover u is piecewise constant, it is
clear that the Hamiltonian function H is piecewise smooth of class C1 over [0, T ], in the sense
that H is of class C1 over each semi-open interval [ti, ti+1) for i = 0, . . . , N − 2 and over the
closed interval [tN−1, tN ]. Moreover, since the couple (x, p) satisfies the Hamiltonian system (see
Remark 2.2.8), it clearly holds that

Ḣ(t) = ∇5H(x(t), u(t), p(t), p0, t),

over each semi-open interval [ti, ti+1) for i = 0, . . . , N −2 and over the closed interval [tN−1, tN ].

However, in contrary to the couple (x, p), the Hamiltonian function H is not continuous
over [0, T ] in general. It may admit a discontinuity at each sampling times ti. We provide an
example of this phenomenon in Section 2.3 (see Figure 2.1 in which the sampling times are fixed).
Nevertheless, if the sampling times are free in Problem (OSCP), Equality (2.3) in Theorem 2.2.1
implies that the optimal sampling times ti satisfy

lim
t→ti
t<ti

H(t) = H(x(ti), ui−1, p(ti), p
0, ti) = H(x(ti), ui, p(ti), p

0, ti) = H(ti),

for all i = 1, . . . , N−1, which correspond exactly to the continuity ofH at each optimal sampling
time ti. In that situation we conclude that the Hamiltonian function H is continuous over the
whole interval [0, T ]. The following result summarizes the previous remarks.

Proposition 2.2.1. Let us consider the framework of Theorem 2.2.1. Then, the Hamiltonian
function H is piecewise smooth of class C1 over the interval [0, T ], in the sense that H is of
class C1 with the derivative

Ḣ(t) = ∇5H(x(t), u(t), p(t), p0, t), (2.4)

over each semi-open interval [ti, ti+1) for i = 0, . . . , N−2 and over the closed interval [tN−1, tN ].
Moreover:

(i) If the sampling times are fixed in Problem (OSCP), then H may admit a discontinuity at
each sampling time ti.

(ii) If the sampling times are free in Problem (OSCP), then the Hamiltonian function H is
continuous at each optimal sampling time ti. In that case, H is continuous over the whole
interval [0, T ].

Proposition 2.2.1 is illustrated with a simple linear-quadratic example numerically solved in
the next Section 2.3 (see Figures 2.1 and 2.2).

We conclude this section by discussing the case where Problem (OSCP) is autonomous,
in the sense that the dynamics f and the Lagrange cost function L are independent of the
variable t. In that case, the Hamiltonian H is also independent of the variable t. In that
situation, from Equality (2.4), we deduce that the Hamiltonian function H is constant over
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each semi-open interval [ti, ti+1) for i = 0, . . . , N − 2 and over the closed interval [tN−1, tN ]. If
moreover the sampling times are free in Problem (OSCP), we deduce from Proposition 2.2.1
that the Hamiltonian function H is constant over the whole interval [0, T ]. In the next section,
a simple autonomous linear-quadratic example is solved which illustrates the constancy of the
Hamiltonian function in the case of free sampling times (see Figure 2.4).

2.3 Numerical illustrations with two simple linear-quadratic ex-
amples

Our aim in this section is to illustrate our discussion in Section 2.2.3 about the continu-
ity/constancy of the Hamiltonian function. Bourdin and Trélat have recently extended in
[Bourdin & Trélat 2017, Section 3 p.275] the classical Riccati theory to the sampled-data control
framework. In particular they provide in [Bourdin & Trélat 2017, Theorem 2 and Corollary 1
p.276] a numerical way to compute the optimal sampled-data control for linear-quadratic prob-
lems in the case of fixed sampling times. We adapt this method along with the Hamiltonian
continuity condition given by Equation (2.3) in order to numerically solve two simple linear-
quadratic examples with free sampling times.

2.3.1 Example illustrating the continuity of the Hamiltonian function

We focus in this section on the following unidimensional linear-quadratic optimal sampled-data
control problem (OSCPlq) given by

minimize x(1)2 +

∫ 1

0
3x(t)2 + u(t)2 dt,

subject to T = {ti}i=0,...,N ∈ P1
N free,

x ∈ AC([0, 1],R), u ∈ PCT([0, 1],R),

ẋ(t) = x(t)− u(t) + t, a.e. t ∈ [0, 1],

x(0) = −4,


(OSCPlq)

with different values of N ∈ N∗. Note that Problem (OSCPlq) satisfies all the assumptions of
Section 2.2.1 with the final time T = 1 being fixed.

For the needs of this section, for all N -partitions T ∈ P1
N , we will denote by (OSCPlq-T)

the same problem as Problem (OSCPlq) replacing “free” by “fixed”, that is, Problem (OSCPlq-T)

corresponds to Problem (OSCPlq) but with the fixed partition T. As recalled in the beginning of
the section, [Bourdin & Trélat 2017, Theorem 2 and Corollary 1 p.276] allows us to numerically
compute, for all N -partitions T ∈ P1

N , the optimal cost (denoted by CT) and the Hamiltonian
function (denoted byHT) corresponding to Problem (OSCPlq-T). Hence, in order to numerically
solve Problem (OSCPlq) (with free sampling times), we can follow two different methods:

(i) Firstly we directly minimize the optimal cost mapping T 7−→ CT (using the MATLAB
function fmincon).
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(ii) Secondly, following the Hamiltonian continuity conditions (2.3) in Theorem 2.2.1, we apply
a shooting method (based on the MATLAB function fsolve) on the Hamiltonian disconti-
nuities mapping given by

T = {ti}i=0,...,N 7−→
(
HT(ti)− lim

t→ti
t<ti

HT(t)
)
i=1,...,N−1

.

Both methods yield the same optimal sampling times. Hence Problem (OSCPlq) is numerically
solved and we present hereafter some numerical simulations for different values of N . In partic-
ular we compare the results with the fixed uniform partition case (see Table 2.1). As expected,
one can clearly observe that the optimal cost CT is lower for the optimal sampling times than
for the fixed uniform partition.

N Fixed uniform partition CT Optimal sampling times CT

2 T = {0, 0.5, 1} 46.6828 T = {0, 0.3592, 1} 46.0285

4 T = {0, 0.25, 0.5, 0.75, 1} 44.5131 T = {0, 0.1574, 0.3544, 0.6163, 1} 44.3159

8
T = {0, 0.125, 0.25, 0.375,

0.5, 0.625, 0.75, 0.875, 1} 43.9704
T = {0, 0.0744, 0.1567, 0.2487,

0.3529, 0.4729, 0.6140, 0.7847, 1} 43.9191

Table 2.1: Comparison of optimal costs CT (fixed uniform partition versus optimal sampling
times).
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Figure 2.1: The case N = 4 of Problem (OSCPlq) with fixed uniform partition.

In Figure 2.1 (with N = 4 and fixed uniform partition), as expected from Section 2.2.3, we
observe that the Hamiltonian function H is continuous over each semi-open interval [ti, ti+1) for
i = 0, 1, 2 and over the closed interval [t3, t4]. However, since the uniform partition is not optimal
in that situation, the Hamiltonian function H has discontinuities at each ti. On the contrary, in
Figure 2.2 (with N = 4 and optimal sampling times), we observe that the Hamiltonian function
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Figure 2.2: The case N = 4 of Problem (OSCPlq) with optimal sampling times.

H is continuous over the whole interval [0, 1]. These numerical results are coherent with the
discussion addressed in Section 2.2.3.

2.3.2 Autonomous example illustrating the constancy of the Hamiltonian
function

We will focus in this section on the following unidimensional autonomous linear-quadratic opti-
mal sampled-data control problem (OSCPalq) given by

minimize
5

2
x(1)2 +

∫ 1

0
x(t)2 +

5

2
u(t)2 dt,

subject to T = {ti}i=0,...,N ∈ P1
N free,

x ∈ AC([0, 1],R), u ∈ PCT([0, 1],R),

ẋ(t) = x(t)− 10u(t), a.e. t ∈ [0, 1],

x(0) = −4,


(OSCPalq)

with different values of N ∈ N∗. Note that Problem (OSCPalq) satisfies all the assumptions of
Section 2.2.1 and of Theorem 2.2.1, with the final time T = 1 being fixed.

Problem (OSCPalq) is numerically solved and we present hereafter some numerical simu-
lations for different values of N . In particular we compare the results with the fixed uniform
partition case (see Table 2.2). As expected, one can clearly observe that the optimal cost CT is
lower for the optimal sampling times than for the fixed uniform partition.

In Figure 2.3 (with N = 4 and fixed uniform partition), as expected from Section 2.2.3
since the problem is autonomous, we observe that the Hamiltonian function H is constant over
each semi-open interval [ti, ti+1) for i = 0, . . . , 2 and over the closed interval [t3, t4]. However,
since the uniform partition is not optimal in that situation, the Hamiltonian function H has
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N Fixed uniform partition CT Optimal sampling times CT

2 T = {0, 0.5, 1} 4.2607 T = {0, 0.2013, 1} 3.3128

4 T = {0, 0.25, 0.5, 0.75, 1} 3.3139 T = {0, 0.072, 0.176, 0.3641, 1} 3.0284

8
T = {0, 0.125, 0.25, 0.375,

0.5, 0.625, 0.75, 0.875, 1} 3.0518
T = {0, 0.0318, 0.0685, 0.1121,

0.1657, 0.2352, 0.3341, 0.5055, 1} 2.9765

Table 2.2: Comparison of optimal costs CT (fixed uniform partition versus optimal sampling
times).
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Figure 2.3: The case N = 4 of Problem (OSCPalq) with fixed uniform partition.

discontinuities at each ti. On the contrary, in Figure 2.4 (with N = 4 and optimal sampling
times), we observe that the Hamiltonian function H is constant over the whole interval [0, 1].
These numerical results are coherent with the discussion addressed in Section 2.2.3.

To conclude this section, note that the above numerical results emphasize the effectiveness
of our two methods in order to compute the optimal sampling times of a simple linear-quadratic
example. Numerous perspectives can be investigated by using other methods than the Riccati
theory from [Bourdin & Trélat 2017, Section 3 p.275] and by considering more sophisticated
problems such as nonlinear multidimensional problems, handling terminal state and/or control
constraints, with or without free final time, etc.
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Figure 2.4: The case N = 4 of Problem (OSCPalq) with optimal sampling times.

2.4 Proof of the Theorem 2.2.1

This section is devoted to the detailed proof of Theorem 2.2.1. Our proof is based on the
sensitivity analysis of the state equation in Section 2.4.1 and on the application of the Ekeland
variational principle in Section 2.4.3 in the case L = 0 (without Lagrange cost). In Section 2.4.2
we introduce a technical control set which guarantees that we can extract a subsequence from
the sequence of sampled-data controls produced by the Ekeland variational principle which
converges almost everywhere to the optimal sampled-data control with, moreover, the sampling
times converging to the optimal sampling times (see Proposition 2.4.7 for details). The case
L 6= 0 (with the Lagrange cost) is treated afterwards in Section 2.4.4.

2.4.1 Sensitivity analysis of the state equation

In this section we focus on the Cauchy problem given by{
ẋ(t) = f(x(t), u(t), t), a.e. t ≥ 0,

x(0) = x0,
(CP)

for any (u, x0) ∈ L∞(R+,Rm)×Rn. We first recall some definitions and results from the classical
Cauchy-Lipschitz (or Picard-Lindelöf) theory.

Definition 2.4.1. Let (u, x0) ∈ L∞(R+,Rm) × Rn. A (local) solution to the Cauchy prob-
lem (CP) is a couple (x, I) such that:
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(i) I is an interval such that {0}  I ⊂ R+;

(ii) x ∈ AC([0, t],Rn), with ẋ(t) = f(x(t), u(t), t) for almost every t ∈ [0, t], for all t ∈ I;

(iii) x(0) = x0.

Let (x1, I1) and (x2, I2) be two (local) solutions to the Cauchy problem (CP). We say that
(x2, I2) is an extension (resp. strict extension) to (x1, I1) if I1 ⊂ I2 (resp. I1  I2) and
x2(t) = x1(t) for all t ∈ I1. A maximal solution to the Cauchy problem (CP) is a (local) solution
that does not admit any strict extension. Finally a global solution to the Cauchy problem (CP)
is a solution (x, I) such that I = R+. In particular a global solution is necessarily a maximal
solution.

Lemma 2.4.1. Let (u, x0) ∈ L∞(R+,Rm)×Rn. Any (local) solution to the Cauchy problem (CP)
can be extended into a maximal solution.

Lemma 2.4.2. Let (u, x0) ∈ L∞(R+,Rm) × Rn. A couple (x, I) is a (local) solution to the
Cauchy problem (CP) if and only if:

(i) I is an interval such that {0}  I ⊂ R+;

(ii) x ∈ C(I,Rn);

(iii) x satisfies the integral representation x(t) = x0 +
∫ t
0 f(x(s), u(s), s) ds for all t ∈ I.

Proposition 2.4.1. For all (u, x0) ∈ L∞(R+,Rm) × Rn, the Cauchy problem (CP) admits a
unique maximal solution denoted by (x(·, u, x0), I(u, x0)). Moreover the maximal interval I(u, x0)

is semi-open and we write I(u, x0) = [0, t(u, x0)) where t(u, x0) ∈ (0,+∞]. Furthermore, if
t(u, x0) < +∞, that is, if the maximal solution (x(·, u, x0), I(u, x0)) is not global, then x(·, u, x0)
is not bounded over I(u, x0) = [0, t(u, x0)).

Remark 2.4.1. Let (u, x0) ∈ L∞(R+,Rm)×Rn. The maximal solution (x(·, u, x0), I(u, x0)) to
the Cauchy problem (CP) coincides with the maximal extension (see Lemma 2.4.1) of any other
local solution.

Our aim in the next subsections is to study the behaviour of x(·, u, x0) with respect to
perturbations on the control u and on the initial condition x0 in order to later quantify the
change of the cost function with respect to these perturbations.

2.4.1.1 A general continuity result

Let (u, x0) ∈ L∞(R+,Rm)×Rn. In the sequel, for the ease of notations, we denote by ‖ · ‖L∞ :=

‖ · ‖L∞(R+,Rm) and we introduce two sets:

(i) For all R ≥ ‖u‖L∞ and all 0 < t < t(u, x0), we denote by

K((u, x0), (R, t)) := {(y, v, t) ∈ Rn × BRm(0Rm , R)× [0, t] | ‖y − x(t, u, x0)‖Rn ≤ 1}.

Firstly note that K((u, x0), (R, t)) is convex with respect to its first two variables. Secondly,
since x(·, u, x0) is continuous over [0, t], then K((u, x0), (R, t)) is a compact subset of
Rn×Rm×R+. Thus we denote by CK((u, x0), (R, t)) ≥ 0 the Lipschitz constant of f over
the compact subset K((u, x0), (R, t)) (see Inequality (2.1) in Section 2.2.1).
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(ii) For all R ≥ ‖u‖L∞ and all 0 < t < t(u, x0), we denote by

V((u, x0), (R, t), ε)

:=
{

(u′, x′0) ∈
(

BL1(u, ε) ∩ BL∞(0L∞ , R)
)
× BRn(x0, ε)

∣∣∣ u′ = u over [t,+∞)
}
,

for all ε > 0, which can be seen as a neighborhood of the couple (u, x0) in the L1([0, t],Rm)×
Rn-space. The second part of the above definition, imposing that u′ = u over [t,+∞),
allows us in the sequel to endow the above set with the L1([0, t],Rm)× Rn-distance.

In the next proposition we state a continuous dependence result for the trajectory x(·, u, x0)
with respect to the couple (u, x0). Note that the proof has been omitted in the paper
[Bourdin & Dhar 2019] but it is provided in this manuscript.

Proposition 2.4.2. Let (u, x0) ∈ L∞(R+,Rm)×Rn. For all R ≥ ‖u‖L∞ and all 0 < t < t(u, x0),
there exists ε > 0 such that

∀(u′, x′0) ∈ V((u, x0), (R, t), ε), t(u′, x′0) > t.

Moreover, considering the L1([0, t],Rm)× Rn-distance over the set V((u, x0), (R, t), ε), the map

(u′, x′0) ∈ V((u, x0), (R, t), ε) 7−→ x(·, u′, x′0) ∈ C([0, t],Rn),

is Lipschitz continuous and

(x(t, u′, x′0), u
′(t), t) ∈ K((u, x0), (R, t)),

for a.e. t ∈ [0, t] and for all (u′, x′0) ∈ V((u, x0), (R, t), ε).

Proof. Let R ≥ ‖u‖L∞ and 0 < t < t(u, x0). In this proof, for the ease of notations, we denote
by K := K((u, x0), (R, t)) and by CK := CK((u, x0), (R, t)). We fix a constant 0 < ε < 1 such
that ε(1 + CK)eCKt < 1. Let (u′, x′0) ∈ V((u, x0), (R, t), ε) and let us introduce the set

A := {t ∈ [0, t(u′, x′0)) ∩ [0, t] | ‖x(t, u′, x′0)− x(t, u, x0)‖Rn > 1}.

By contradiction let us assume that A 6= ∅ and let t̄ := inf A. From the definition of t̄, there
exists a monotonically decreasing sequence (tk)k∈N in A which converges to t̄. Since x(·, u, x0)
and x(·, u′, x′0) are continuous, it holds that ‖x(t̄, u′, x′0)−x(t̄, u, x0)‖Rn ≥ 1. Moreover t̄ > 0 since
‖x(0, u′, x′0)− x(0, u, x0)‖Rn = ‖x′0 − x0‖Rn ≤ ε < 1. Therefore ‖x(t, u′, x′0)− x(t, u, x0)‖Rn ≤ 1

for all t ∈ [0, t̄). It follows that (x(t, u′, x′0), u
′(t), t) ∈ K for a.e. t ∈ [0, t̄). From the integral

representations of x(·, u, x0) and x(·, u′, x′0), it holds that

x(t, u′, x′0)− x(t, u, x0) = x′0 − x0 +

∫ t

0
f(x(s, u′, x′0), u

′(s), s)− f(x(s, u, x0), u(s), s) ds,

for all t ∈ [0, t̄]. Therefore we get from the Lipschitz continuity of f over K that

‖x(t, u′, x′0)− x(t, u, x0)‖Rn

≤ ‖x′0 − x0‖Rn + CK

∫ t

0
‖x(s, u′, x′0)− x(s, u, x0)‖Rn + ‖u′(s)− u(s)‖Rm ds

≤ ε(1 + CK) + CK

∫ t

0
‖x(s, u′, x′0)− x(s, u, x0)‖Rnds,
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for all t ∈ [0, t̄]. Thus ‖x(t, u′, x′0) − x(t, u, x0)‖Rn ≤ ε(1 + CK)eCKt < 1 for all t ∈ [0, t̄] from
the Gronwall lemma. This gives us a contradiction at t = t̄ and so A = ∅. We conclude
that x(·, u′, x′0) is bounded over [0, t(u′, x′0)) ∩ [0, t] which implies from Proposition 2.4.1 that
τ(u′, x′0) > t. Moreover, since τ(u′, x′0) > t and A = ∅, we deduce that (x(t, u′, x′0), u

′(t), t) ∈ K

for a.e. t ∈ [0, t]. Thus we get from the Lipschitz continuity of f over K that

‖x(t, u′, x′0)− x(t, u, x0)‖Rn

≤ ‖x′0 − x0‖Rn + CK‖u′ − u‖L1 + CK

∫ t

0
‖x(s, u′, x′0)− x(s, u, x0)‖Rn ds,

for all t ∈ [0, t]. The Gronwall lemma leads to

‖x(t, u′, x′0)− x(t, u, x0)‖Rn ≤ (‖x′0 − x0‖Rn + CK‖u′ − u‖L1)eCKt,

for all t ∈ [0, t], which completes the proof.

Remark 2.4.2. Let (u, x0) ∈ L∞(R+,Rm) × Rn. Let R ≥ ‖u‖L∞ and 0 < t < t(u, x0). Let
ε > 0 given in Proposition 2.4.2. Let (uk, x0,k)k∈N be a sequence in V((u, x0), (R, t), ε) and
let (u′, x′0) ∈ V((u, x0), (R, t), ε). From Proposition 2.4.2, if (uk, x0,k) converges to (u′, x′0) in
L1([0, t],Rm) × Rn, then the sequence (x(·, uk, x0,k))k∈N uniformly converges to x(·, u′, x′0) over
[0, t].

2.4.1.2 Perturbation of the control

In the next proposition we state a differentiability result for the trajectory x(·, u, x0) with respect
to a convex L∞-perturbation of the control u. Note that the proof had been omitted in the
paper [Bourdin & Dhar 2019] but is provided in this manuscript.

Proposition 2.4.3. Let (u, x0) ∈ L∞(R+,Rm)×Rn and 0 < t < t(u, x0). Let v ∈ L∞(R+,Rm)

be fixed. We consider the convex L∞-perturbation given by

uv(·, α) :=

{
u+ α(v − u) over [0, t),

u over [t,+∞),

for all 0 ≤ α ≤ 1. Then:

(i) there exists 0 < α0 ≤ 1 such that t(uv(·, α), x0) > t for all 0 ≤ α ≤ α0;

(ii) the map
α ∈ [0, α0] 7−→ x(·, uv(·, α), x0) ∈ C([0, t],Rn),

is differentiable at α = 0 and its derivative is equal to wv being the unique solution (that
is global) to the linear Cauchy problem given by

ẇ(t) = ∇1f(x(t, u, x0), u(t), t)× w(t)

+∇2f(x(t, u, x0), u(t), t)× (v(t)− u(t)), a.e. t ∈ [0, t],

w(0) = 0Rn .
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Proof. First of all note that the variation vector wv is global since the corresponding Cauchy
problem is linear. Let R := max{‖u‖L∞ , ‖v‖L∞}. For the ease of notations we denote by
K := K((u, x0), (R, t)) and by CK := CK((u, x0), (R, t)) (see the beginning of Section 2.4.1.1 for
these two notations). From Proposition 2.4.2, there exists ε > 0 such that t(u′, x′0) > t for all
(u′, x′0) ∈ V((u, x0), (R, t), ε). Let us take 0 < α0 ≤ 1 small enough such that α0‖v − u‖L1 ≤ ε.
Then it holds that ‖uv(·, α)− u‖L1 ≤ α‖v − u‖L1 ≤ ε and ‖uv(·, α)‖L∞ ≤ R for all 0 ≤ α ≤ α0.
It follows that (uv(·, α), x0) ∈ V((u, x0), (R, t), ε) and t(uv(·, α), x0) > t for all 0 ≤ α ≤ α0.
The first item of Proposition 2.4.3 is proved. Since (uv(·, α), x0) ∈ V((u, x0), (R, t), ε) for all
0 ≤ α ≤ α0 and uv(·, α) converges to u in L1([0, t],Rm) as α tends to zero, we know from
Proposition 2.4.2 that x(·, uv(·, α), x0) converges uniformly to x(·, u, x0) over [0, t] as α tends to
zero and that (x(t, uv(·, α), x0), uv(t, α), t) ∈ K for a.e. t ∈ [0, t] and for all 0 ≤ α ≤ α0. Now let
us define the function

χ(t, α) :=
x(t, uv(·, α), x0)− x(t, u, x0)

α
− wv(t),

for all t ∈ [0, t] and all α ∈ (0, α0]. We will prove that χ(·, α) uniformly converges to the zero
function on [0, t] as α tends to 0. From the integral representation of χ(·, α), it holds that

χ(t, α) =

∫ t

0

f(x(s, uv(·, α), x0), uv(s, α), s)− f(x(s, u, x0), u(s), x0)

α

−∇1f(x(s, u, x0), u(s), s)× wv(s)−∇2f(x(s, u, x0), u(s), s)× (v(s)− u(s)) ds,

for all t ∈ [0, t] and all α ∈ (0, α0]. Expanding this expression using Taylor’s theorem with
integral remainder, we obtain

χ(t, α) =

∫ t

0

(∫ 1

0
∇1f(?αθs) dθ

)
× χ(s, α) ds

+

∫ t

0

(∫ 1

0
∇1f(?αθs)−∇1f(x(s, u, x0), u(s), s) dθ

)
× wv(s) ds

+

∫ t

0

(∫ 1

0
∇2f(?αθs)−∇2f(x(s, u, x0), u(s), s) dθ

)
× (v(s)− u(s)) ds,

for all t ∈ [0, t] and all α ∈ (0, α0], where

?αθs := (x(s, u, x0) + θ(x(s, uv(·, α), s)− x(s, u, x0)), u(s) + θ(uv(s, α)− u(s)), s) ∈ K,

since K is convex with respect to its first two variables. From the Triangle inequality, it holds
that

‖χ(t, α)‖Rn ≤ Φ(α) + CK

∫ t

0
‖χ(s, α)‖Rn ds,

for all t ∈ [0, t] and all α ∈ (0, α0], where the term Φ(α) is defined to be:

Φ(α) : =

∫ t

0

∫ 1

0
‖∇1f(?αθs)−∇1f(x(s, u, x0), u(s), s)‖Rn×n dθ‖wv(s)‖Rn ds

+

∫ t

0

∫ 1

0
‖∇2f(?αθs)−∇2f(x(s, u, x0), u(s), s)‖Rn×m dθ‖v(s)− u(s)‖Rm ds,
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for all 0 ≤ α ≤ α0. From the Gronwall lemma, it holds that

‖χ(t, α)‖ ≤ Φ(α)eCKt,

for all t ∈ [0, t] and all α ∈ (0, α0]. Since the estimate on the right-hand side is in-
dependent of t, we only need to prove that Φ(α) tends to 0 as α tends to 0. Since
?αθs ∈ K, it holds that ‖∇1f(?αθs) − ∇1f(x(s, u, x0), u(s), s)‖Rn×n ≤ 2CK and ‖∇2f(?αθs) −
∇2f(x(s, u, x0), u(s), s)‖Rn×n ≤ 2CK for a.e. s ∈ [0, t] and for all θ ∈ [0, 1] and all α ∈ (0, α0].
Moreover, since ∇1f and ∇2f are continuous, since x(·, uv(·, α), x0) uniformly converges to
x(·, u, x0) over [0, t] and since uv(s, α) converges to u(s) for a.e. s ∈ [0, t] as α tends to 0, we get
from the Lebesgue dominated convergence theorem that Φ(α) tends to 0 as α tends to 0. The
proof is complete.

We conclude this section by a technical lemma on the convergence of the variation vectors.
This result is needed in the proof of our main result (see Section 2.4.3.2). Note that the proof
had been omitted in the paper [Bourdin & Dhar 2019] but is provided in this manuscript.

Lemma 2.4.3. Let (u, x0) ∈ L∞(R+,Rm) × Rn. Let R ≥ ‖u‖L∞ and 0 < t < t(u, x0).
We take ε > 0 as in Proposition 2.4.2. Let (uk, x0,k)k∈N be a sequence of elements in
V((u, x0), (R, t), ε) such that x0,k converges to x0 and uk(t) converges to u(t) for a.e. t ∈
[0, t]. Let (vk)k∈N be a sequence in L∞([0, t],Rm) converging in L1([0, t],Rm) to some v ∈
L∞([0, t],Rm). Finally let wkvk be the unique solution (that is global) to the linear Cauchy prob-
lem given by

ẇ(t) = ∇1f(x(t, uk, x0,k), uk(t), t)× w(t)

+∇2f(x(t, uk, x0,k), uk(t), t)× (vk(t)− uk(t)), a.e. t ∈ [0, t],

w(0) = 0Rn ,

for all k ∈ N. Then the sequence (wkvk)k∈N uniformly converges to wv over [0, t] where wv is
defined as in Proposition 2.4.3.

Proof. First of all, for all k ∈ N, note that the variation vector wkvk is global since the correspond-
ing Cauchy problem is linear. For the ease of notations, we denote by K := K((u, x0), (R, t))

and by CK := CK((u, x0), (R, t)) (see the beginning of Section 2.4.1.1 for these two notations).
From the integral representations of wkvk and wv, it holds that

wkvk(t)− wv(t) =

∫ t

0
∇1f(x(s, uk, x0,k), uk(s), s)× (wkvk(s)− wv(s)) ds

+

∫ t

0

[
∇1f(x(s, uk, x0,k), uk(s), s)−∇1f(x(s, u, x0), u(s), s)

]
× wv(s) ds

+

∫ t

0

[
∇2f(x(s, uk, x0,k), uk(s), s)−∇2f(x(s, u, x0), u(s), s)

]
× (v(s)− u(s)) ds

+

∫ t

0
∇2f(x(s, uk, x0,k), uk(s), s)× (vk(s)− v(s) + u(s)− uk(s)) ds,

for all t ∈ [0, t] and all k ∈ N. From Proposition 2.4.2, it holds that (x(s, uk, x0,k), uk(s), s) ∈ K

and thus ‖∇1f(x(s, uk, x0,k), uk(s), s)‖Rn×n ≤ CK and ‖∇2f(x(s, uk, x0,k), uk(s), s)‖Rn×m ≤ CK
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for a.e. s ∈ [0, t] and all k ∈ N. From the Triangle inequality, it holds that

‖wkvk(t)− wv(t)‖Rn ≤ Γk + CK

∫ t

0
‖wkvk(s)− wv(s)‖Rn ds,

for all t ∈ [0, t] and all k ∈ N, where the term Γk is defined to be

Γk : = CK

∫ t

0
‖vk(s)− v(s)‖Rm + ‖u(s)− uk(s)‖Rm ds

+

∫ t

0
‖∇1f(x(s, uk, x0,k), uk(s), s)−∇1f(x(s, u, x0), u(s), s)‖Rn×n‖wv(s)‖Rn ds

+

∫ t

0
‖∇2f(x(s, uk, x0,k), uk(s), s)−∇2f(x(s, u, x0), u(s), s)‖Rn×m‖v(s)− u(s)‖Rm ds.

From the Gronwall Lemma, we obtain that

‖wkvk(t)− wv(t)‖Rn ≤ Γke
CKt,

for all t ∈ [0, t] and all k ∈ N. Since the estimate on the right-hand side is independent of t, we
only need to prove that Γk tends to 0 as k tends to +∞. This can be done with the Lebesgue
dominated convergence theorem, similarly to the end of the proof of Proposition 2.4.3.

2.4.1.3 Perturbation of the initial condition

In the next proposition we prove a differentiability result for the trajectory x(·, u, x0) with respect
to a simple perturbation of the initial condition x0. Note that the proof had been omitted in
the paper [Bourdin & Dhar 2019] but is provided in this manuscript.

Proposition 2.4.4. Let (u, x0) ∈ L∞(R+,Rm)× Rn and 0 < t < t(u, x0). Let y ∈ Rn be fixed.
Then:

(i) there exists α0 > 0 such that t(u, x0 + αy) > t for all 0 ≤ α ≤ α0;

(ii) the map
α ∈ [0, α0] 7−→ x(·, u, x0 + αy) ∈ C([0, t],Rn),

is differentiable at α = 0 and its derivative is equal to wy the unique solution (that is
global) to the linear homogeneous Cauchy problem given by{

ẇ(t) = ∇1f(x(t, u, x0), u(t), t)× w(t), a.e. t ∈ [0, t],

w(0) = y.

Proof. First of all note that the variation vector wy is global since the corresponding Cauchy
problem is linear. Let R := ‖u‖L∞ . For the ease of notations we denote by K := K((u, x0), (R, t))

and by CK := CK((u, x0), (R, t)) (see the beginning of Section 2.4.1.1 for these two nota-
tions). From Proposition 2.4.2, there exists ε > 0 such that t(u′, x′0) > t for all (u′, x′0) ∈
V((u, x0), (R, t), ε). Let us take α0 > 0 small enough such that α0‖y‖Rn ≤ ε. Then it holds
that ‖x0 + αy − x0‖Rn ≤ α‖y‖Rn ≤ ε for all 0 ≤ α ≤ α0. It follows that (u, x0 + αy) ∈
V((u, x0), (R, t), ε) and t(u, x0+αy) > t for all 0 ≤ α ≤ α0. The first item of Proposition 2.4.4 is
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proved. Since (u, x0+αy) ∈ V((u, x0), (R, t), ε) for all 0 ≤ α ≤ α0 and since x0+αy converges to
x0 as α tends to zero, we know from Proposition 2.4.2 that x(·, u, x0 + αy) converges uniformly
to x(·, u, x0) over [0, t] as α tends to zero and that (x(t, u, x0 +αy), u(t), t) ∈ K for a.e. t ∈ [0, t]

and for all 0 ≤ α ≤ α0. Now let us consider the function given by

χ(t, α) :=
x(t, u, x0 + αy)− x(t, u, x0)

α
− wy(t),

for all t ∈ [0, t] and all α ∈ (0, α0]. We will prove that χ(·, α) uniformly converges to the zero
function on [0, t] as α tends to 0. From the integral representation of χ(·, α), it holds that

χ(t, α) =

∫ t

0

f(x(s, u, x0 + αy), u(s), s)− f(x(s, u, x0), u(s), s)

α

−∇1f(x(s, u, x0), u(s), s)× wy(s) ds,

for all t ∈ [0, t] and all α ∈ (0, α0]. Expanding this expression using Taylor’s theorem with
integral remainder, we obtain

χ(t, α) =

∫ t

0

(∫ 1

0
∇1f(?αθs) dθ

)
× χ(s, α) ds

+

∫ t

0

(∫ 1

0
∇1f(?αθs)−∇1f(x(s, u, x0), u(s), s) dθ

)
× wy(s) ds,

for all t ∈ [0, t] and all α ∈ (0, α0], where

?αθs := (x(s, u, x0) + θ(x(s, u, x0 + αy)− x(s, u, x0)), u(s), s) ∈ K,

since K is convex with respect to its first two variables. From the Triangle inequality, it holds
that

‖χ(t, α)‖Rn ≤ Φ(α) + CK

∫ t

0
‖χ(s, α)‖Rn ds,

for all t ∈ [0, t] and all α ∈ (0, α0], where the term Φ(α) is defined to be:

Φ(α) :=

∫ t

0

∫ 1

0
‖∇1f(?αθs)−∇1f(x(s, u, x0), u(s), s)‖Rn×n dθ‖wy(s)‖Rn ds.

From the Gronwall lemma, it holds that

‖χ(t, α)‖Rn ≤ Φ(α)eCKt,

for all t ∈ [0, t] and all α ∈ (0, α0]. Since the estimate on the right-hand side is independent of t,
we only need to prove that Φ(α) tends to 0 as α tends to 0. This can be done with the Lebesgue
dominated convergence theorem, similarly to the end of the proof of Proposition 2.4.3.

We conclude this section by a technical lemma on the convergence of the variation vectors.
This result is needed in the proof of our main result (see Section 2.4.3.2). Note that the proof of
this result was omitted in the paper [Bourdin & Dhar 2019] but is included in this manuscript.
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Lemma 2.4.4. Let (u, x0) ∈ L∞(R+,Rm)×Rn. Let R ≥ ‖u‖L∞ and 0 < t < t(u, x0). We take
ε > 0 as in Proposition 2.4.2. Let (uk, x0,k)k∈N be a sequence of elements in V((u, x0), (R, t), ε)

such that x0,k converges to x0 and uk(t) converges to u(t) for a.e. t ∈ [0, t]. Let y ∈ Rn be fixed.
Finally let wky be the unique solution (that is global) to the linear homogeneous Cauchy problem
given by {

ẇ(t) = ∇1f(x(t, uk, x0,k), uk(t), t)× w(t), a.e. t ∈ [0, t],

w(0) = y,

for all k ∈ N. Then the sequence (wky)k∈N uniformly converges to wy over [0, t] where wy is
defined as in Proposition 2.4.4.

Proof. First of all, for all k ∈ N, note that the variation vector wky is global since the correspond-
ing Cauchy problem is linear. For the ease of notations we denote by K := K((u, x0), (R, t)) and
by CK := CK((u, x0), (R, t)) (see the beginning of Section 2.4.1.1 for these two notations). From
the integral representations of wky and wy, it holds that

wky(t)− wy(t) =

∫ t

0
∇1f(x(s, uk, x0,k), uk(s), s)× (wky(s)− wy(s)) ds

+

∫ t

0
(∇1f(x(s, uk, x0,k), uk(s), s)−∇1f(x(s, u, x0), u(s), s))× wy(s) ds,

for all t ∈ [0, t] and all k ∈ N. From Proposition 2.4.2, it holds that (x(s, uk, x0,k), uk(s), s) ∈ K

and thus ‖∇1f(x(s, uk, x0,k), uk(s), s)‖Rn×n ≤ CK for a.e. s ∈ [0, t] and all k ∈ N. From the
Triangle inequality, it holds that

‖wky(t)− wy(t)‖Rn ≤ Γk + CK

∫ t

0
‖wky(s)− wy(s)‖Rn ds,

for all t ∈ [0, t] and all k ∈ N, where the term Γk is defined to be:

Γk :=

∫ t

0
‖∇1f(x(s, uk, x0,k), uk(s), s)−∇1f(x(s, u, x0), u(s), s)‖Rn×n‖wy(s)‖Rn ds.

From the Gronwall lemma, we obtain

‖wky(t)− wy(t)‖Rn ≤ Γke
CKt,

for all t ∈ [0, t] and all k ∈ N. Since the estimate on the right-hand side is independent of t, we
only need to prove that Γk tends to 0 as k tends to +∞. This can be done with the Lebesgue
dominated convergence theorem, similarly to the end of the proof of Proposition 2.4.3.

2.4.1.4 Perturbation of a switching time

Let us introduce the following notion of switching time for a control u ∈ L∞(R+,Rm).

Definition 2.4.2 (Switching time). Let u ∈ L∞(R+,Rm). We say that r > 0 is a switching
time of u if there exist 0 < ηr ≤ r and u(r−), u(r+) ∈ Rm such that:

(i) u = u(r−) almost everywhere over [r − ηr, r);
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(ii) u = u(r+) almost everywhere over [r, r + ηr).

This notion is particularly relevant when dealing with piecewise constant controls as in
Problem (OSCP). Indeed, let u ∈ L∞(R+,Rm) such that u ∈ PCT([0, t],Rm) for some t > 0,
N ∈ N∗ and T = {ti}i=0,...,N ∈ PtN . Then ti is a switching time of u with u(t−i ) = ui−1,
u(t+i ) = ui and ηti = min(ti − ti−1, ti+1 − ti) > 0 for every i ∈ {1, . . . , N − 1}.

In the next proposition we prove a differentiability result for the trajectory x(·, u, x0) with
respect to a perturbation of a switching time of the control u.

Proposition 2.4.5. Let (u, x0) ∈ L∞(R+,Rm) × Rn and 0 < t < t(u, x0). Let 0 < r < t be a
switching time of u and let µ ∈ {−1, 1}. We consider the perturbation

uµr (·, α) :=


u(r−) over [r − ηr, r + µα),

u(r+) over [r + µα, r + ηr),

u otherwise,

for all 0 ≤ α ≤ ηr
2 . Then:

(i) there exists 0 < α0 ≤ ηr
2 such that t(uµr (·, α), x0) > t for all 0 ≤ α ≤ α0;

(ii) for any 0 < λ ≤ t− r fixed, the map

α ∈ [0, α0] 7−→ x(·, uµr (·, α), x0) ∈ C([r + λ, t],Rn),

is differentiable at α = 0 and its derivative is equal to wµr being the unique solution (that
is global) to the linear homogeneous Cauchy problem given by

ẇ(t) = ∇1f(x(t, u, x0), u(t), t)× w(t), a.e. t ∈ [r, t],

w(r) = µ
(
f(x(r, u, x0), u(r−), r)− f(x(r, u, x0), u(r+), r)

)
.

Proof. We only prove the case µ = 1 (the proof for the case µ = −1 is similar). First of
all note that the variation vector wµr is global (in the sense that it is defined over the whole
interval [r, t]) since the corresponding Cauchy problem is linear. Let R := ‖u‖L∞ . For the
ease of notations we denote by K := K((u, x0), (R, t)) and by CK := CK((u, x0), (R, t)) (see
the beginning of Section 2.4.1.1 for these two notations). From Proposition 2.4.2, there exists
ε > 0 such that t(u′, x′0) > t for all (u′, x′0) ∈ V((u, x0), (R, t), ε). Let us take 0 < α0 ≤ ηr

2

small enough such that r + α0 < t and 2Rα0 ≤ ε. Then it holds that uµr (·, α) = u over
[t,+∞), ‖uµr (·, α) − u‖L1 ≤ 2Rα ≤ ε and ‖uµr (·, α)‖L∞ ≤ R for all 0 ≤ α ≤ α0. It follows
that (uµr (·, α), x0) ∈ V((u, x0), (R, t), ε) and t(uµr (·, α), x0) > t for all 0 ≤ α ≤ α0. The first
item of Proposition 2.4.4 is proved. Since (uµr (·, α), x0) ∈ V((u, x0), (R, t), ε) for all 0 ≤ α ≤ α0

and uµr (·, α) converges to u in L1([0, t],Rm) as α tends to zero, we know from Proposition 2.4.2
that x(·, uµr (·, α), x0) converges uniformly to x(·, u, x0) over [0, t] as α tends to zero and that
(x(t, uµr (·, α), x0), u

µ
r (t, α), t) ∈ K for a.e. t ∈ [0, t] and for all 0 ≤ α ≤ α0. Now let us define the

function

χ(t, α) :=
x(t, uµr (·, α), x0)− x(t, u, x0)

α
− wµr (t),
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for all t ∈ [r, t] and all α ∈ (0, α0]. Let 0 < λ ≤ t−r be fixed. We will prove that χ(·, α) uniformly
converges to the zero function on [r + λ, t] as α tends to 0. From the integral representation of
χ(·, α), it holds that

χ(t, α) = χ(r + α, α) +

∫ t

r+α

[
f(x(s, uµr (·, α), x0), u(s), s)− f(x(s, u, x0), u(s), s)

α

−∇1f(x(s, u, x0), u(s), s)× wµr (s)

]
ds,

for all t ∈ [r + α, t] and all α ∈ (0, α0]. Expanding this expression using Taylor’s theorem with
integral remainder, we obtain

χ(t, α) = χ(r + α, α)+

∫ t

r+α

∫ 1

0
∇1f(?αθs) dθ × χ(s, α) ds

+

∫ t

r+α

(∫ 1

0
∇1f(?αθs)−∇1f(x(s, u, x0), u(s), s) dθ

)
× wµr (s) ds,

for all t ∈ [r + α, t] and all α ∈ (0, α0], where

?αθs := (x(s, u, x0) + θ(x(s, uµr (·, α), x0)− x(s, u, x0)), u(s), s) ∈ K,

since K is convex with respect to its first two variables. From the Triangle inequality it holds
that

‖χ(t, α)‖Rn ≤ ‖χ(r + α, α)‖Rn + Φ(α) + CK

∫ t

r+α
‖χ(s, α)‖Rn ds,

for all t ∈ [r + α, t] and all α ∈ (0, α0], where the term Φ(α) is defined to be:

Φ(α) :=

∫ t

r

∫ 1

0
‖∇1f(?αθs)−∇1f(x(s, u, x0), u(s), s)‖Rn×n dθ‖wµr (s)‖Rn ds.

From the Gronwall lemma, it holds that

‖χ(t, α)‖Rn ≤ (‖χ(r + α, α)‖Rn + Φ(α))eCKt,

for all t ∈ [r + α, t] and all α ∈ (0, α0]. Since we only want to prove the uniform convergence of
χ(·, α) to the zero function on [r+λ, t] as α tends to 0 and since the estimate on the right-hand
side is independent of t, we only need to prove that χ(r+ α, α) tends to 0Rn and Φ(α) tends to
0 as α tends to zero. The convergence of Φ(α) can be obtained with the Lebesgue dominated
convergence theorem. Now let us prove that χ(r + α, α) tends to 0Rn as α tends to zero.
Since x(r, uµr (·, α), x0) = x(r, u, x0) and from the integral representations of x(·, uµr (·, α), x0) and
x(·, u, x0), it holds that

χ(r + α, α) =

∫ r+α

r

f(x(s, uµr (·, α), x0), u
µ
r (s, α), s)− f(x(s, u, x0), u(s), s)

α
ds− wµr (r + α)

=

∫ r+α

r

f(x(s, uµr (·, α), x0), u(r−), s)− f(x(s, u, x0), u(r+), s)

α
ds− wµr (r + α)

=

∫ r+α

r

f(x(s, u, x0), u(r−), s)− f(x(s, u, x0), u(r+), s)

α
ds− wµr (r + α)

+

∫ r+α

r

f(x(s, uµr (·, α), x0), u(r−), s)− f(x(s, u, x0), u(r−), s)

α
ds,
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for all α ∈ (0, α0]. Let us deal with the three terms above. Since the first above integrand is
continuous, it is clear that r is a Lebesgue point and we get that

lim
α→0

∫ r+α

r

f(x(s, u, x0), u(r−), s)− f(x(s, u, x0), u(r+), s)

α
ds

= f(x(r, u, x0), u(r−), r)− f(x(r, u, x0), u(r+), r) = wµr (r).

Secondly, from the continuity of wµr , we know that wµr (r + α) tends to wµr (r) as α tends to 0.
Finally, using the Lipschitz continuity of f over K, we get that∥∥∥∥∫ r+α

r

f(x(s, uµr (·, α), x0), u(r−), s)− f(x(s, u, x0), u(r−), s)

α
ds

∥∥∥∥
Rn

≤ CK

α

∫ r+α

r
‖x(s, uµr (·, α), x0)−x(s, u, x0)‖Rn ds ≤ CK‖x(·, uµr (·, α), x0)−x(·, u, x0)‖C([0,t],Rn).

Since x(·, uµr (·, α), x0) converges uniformly to x(·, u, x0) over [0, t] as α tends to 0, the proof is
complete.

We conclude this section by a technical lemma on the convergence of the variation vectors.
This result is needed in the proof of our main result (see Section 2.4.3.2).

Lemma 2.4.5. Let (u, x0) ∈ L∞(R+,Rm) × Rn. Let R ≥ ‖u‖L∞ and let 0 < t < t(u, x0).
We take ε > 0 as in Proposition 2.4.2. Let (uk, x0,k)k∈N be a sequence of elements in
V((u, x0), (R, t), ε) such that x0,k converges to x0 and uk(t) converges to u(t) for a.e. t ∈ [0, t].
Let 0 < r < t be a switching time of u and rk be a switching time of uk for all k ∈ N. Let us
assume that rk converges to r and that uk(r−k ) and uk(r+k ) converge respectively to u(r−) and
u(r+). Finally let µ ∈ {−1, 1} and let wµ,krk be the unique solution (that is global) to the linear
homogeneous Cauchy problem given by

ẇ(t) = ∇1f(x(t, uk, x0,k), uk(t), t)× w(t), a.e. t ∈ [rk, t],

w(rk) = µ
(
f(x(rk, uk, x0,k), uk(r

−
k ), rk)− f(x(rk, uk, x0,k), uk(r

+
k ), rk)

)
,

for all k ∈ N. Then, for any 0 < λ ≤ t − r fixed, the sequence (wµ,krk )k∈N uniformly converges
to wµr over [r + λ, t], where the variation vector wµr is defined as in Proposition 2.4.5.

Proof. First of all, for all k ∈ N, note that the variation vector wµ,krk is global (in the sense that
it is defined over the whole interval [rk, t]) since the corresponding Cauchy problem is linear.
In this proof we denote by K := K((u, x0), (R, t)) and by CK := CK((u, x0), (R, t)) (see the
beginning of Section 2.4.1.1 for these two notations). From Proposition 2.4.2, it is clear that
‖∇1f(x(t, uk, x0,k), uk(t), t)‖Rn×n ≤ CK for a.e. t ∈ [0, t] and all k ∈ N. From the integral
representation of wµ,krk , it holds that

wµ,krk (t) = wµ,krk (rk) +

∫ t

rk

∇1f(x(s, uk, x0,k), uk(s), s)× wµ,krk (s) ds,

for all t ∈ [rk, t] and all k ∈ N. We deduce that

‖wµ,krk (t)‖Rn ≤ ‖wµ,krk (rk)‖Rn + CK

∫ t

rk

‖wµ,krk (s)‖Rn ds,
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and, from the Gronwall lemma, that ‖wµ,krk (t)‖Rn ≤ ‖wµ,krk (rk)‖RneCKt for all t ∈ [rk, t] and all
k ∈ N. From Proposition 2.4.2, we know that x(rk, uk, x0,k) converges to x(r, u, x0) and, from
the continuity of f and the hypotheses, it is clear that wµ,krk (rk) tends to w

µ
r (r). We deduce that

there exists a constant C ≥ 0 such that ‖wµ,krk (t)‖Rn ≤ C for all t ∈ [rk, t] and all k ∈ N. Now we
define rk := max(rk, r) for all k ∈ N. Note that rk tends to r. From the integral representations
of wµ,krk and wµr , it holds that

wµ,krk (t)− wµr (t) = wµ,krk (rk)− wµr (rk) +

∫ t

rk

∇1f(x(s, uk, x0,k), uk(s), s)× (wµ,krk (s)− wµr (s)) ds

+

∫ t

rk

(∇1f(x(s, uk, x0,k), uk(s), s)−∇1f(x(s, u, x0), u(s), s))× wµr (s) ds,

for all t ∈ [rk, t] and all k ∈ N. From the Triangle inequality, it holds that

‖wµ,krk (t)− wµr (t)‖Rn ≤ ‖wµ,krk (rk)− wµr (rk)‖Rn + Γk + CK

∫ t

rk

‖wµ,krk (s)− wµr (s)‖Rn ds,

for all t ∈ [rk, t] and all k ∈ N, where the term Γk is defined to be:

Γk :=

∫ t

r
‖∇1f(x(s, uk, x0,k), uk(s), s)−∇1f(x(s, u, x0), u(s), s)‖Rn×n‖wµr (s)‖Rn ds.

From the Gronwall lemma, we obtain

‖wµ,krk (t)− wµr (t)‖Rn ≤ (‖wµ,krk (rk)− wµr (rk)‖Rn + Γk)e
CKt,

for all t ∈ [rk, t] and all k ∈ N. Since we only want to prove the uniform convergence of wµ,krk
to wµr on [r+ λ, t] (and since rk converges to r) and since the estimate on the right-hand side is
independent of t, we only need to prove that ‖wµ,krk (rk)− wµr (rk)‖Rn and Γk converge to 0 as k
tends to +∞. The convergence of Γk can be obtained with the Lebesgue dominated convergence
theorem. Now let us prove that ‖wµ,krk (rk) − wµr (rk)‖Rn tends to 0 as k tends to +∞. It holds
that

‖wµ,krk (rk)− wµr (rk)‖Rn

≤ ‖wµ,krk (rk)− wµ,krk (rk)‖Rn + ‖wµ,krk (rk)− wµr (r)‖Rn + ‖wµr (r)− wµr (rk)‖Rn ,

for all k ∈ N. Let us deal with the three terms above. Firstly, from the integral representation
of wµ,krk , it holds that

‖wµ,krk (rk)− wµ,krk (rk)‖Rn ≤
∫ rk

rk

‖∇1f(x(s, uk, x0,k), uk(s), s)‖Rn×n‖wµ,krk (s)‖Rn ds

≤ CKC(rk − rk),

for all k ∈ N. Secondly we have already mentioned that wµ,krk (rk) tends to wµr (r) as k tends
to +∞. Thirdly we use the continuity of wµr to conclude the proof.
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2.4.2 A technical control set

In this section our aim is to introduce a technical control set which guarantees that the sampling
times produced by the Ekeland variational principle in the next Section 2.4.3, firstly, remain
unchanged for the ones corresponding to the consecutive sampling intervals on which the optimal
control is constant and, secondly, are contained in disjoint intervals for the others. In particular,
Proposition 2.4.7 guarantees that from any sequence of sampled-data controls which belong to
the aforementioned technical control set and which converges in the L1-norm, one can extract a
subsequence which converges almost everywhere with, moreover, the sampling times converging
as well. We begin by introducing the following notions.

Let t > 0 and N ∈ N∗ be fixed. For all T = {ti}i=0,...,N ∈ PtN and u ∈ PCT([0, t],Rm), we
denote by

‖T‖ := min{ti+1 − ti | i = 0, . . . , N − 1} > 0,

and we define the set

PtN,(u,T) :=

{
T′ = {t′i}i=0,...,N ∈ PtN | ∀i = 1, . . . , N − 1, |t′i − ti| ≤ δ{ui−1 6=ui}

‖T‖
4

}
,

where δ{ui−1 6=ui} = 1 if ui−1 6= ui, and δ{ui−1 6=ui} = 0 otherwise. In particular, if T′ =

{t′i}i=0,...,N ∈ PtN,(u,T), it holds that

0 = t′0 < t1 −
‖T‖

4
≤ t′1 ≤ t1 +

‖T‖
4

< t2 −
‖T‖

4
≤ t′2 ≤ t2 +

‖T‖
4

< . . .

. . . < tN−2 −
‖T‖

4
≤ t′N−2 ≤ tN−2 +

‖T‖
4

< tN−1 −
‖T‖

4
≤ t′N−1 ≤ tN−1 +

‖T‖
4

< t′N = t,

with t′i = ti for all i ∈ {1, . . . , N − 1} such that ui−1 = ui. Hence, for all T′ = {t′i}i=0,...,N ∈
PtN,(u,T), the elements t′i = ti remain unchanged when u is constant over two consecutive sampling
intervals [ti−1, ti) and [ti, ti+1) and all the elements t′i live in intervals which are (strictly) disjoint.
Finally we introduce the following technical control set

PCN,(u,T)([0, t],Rm) :=
⋃

T′∈Pt
N,(u,T)

PCT
′
([0, t],Rm). (2.5)

Of course note that T ∈ PtN,(u,T) and thus u ∈ PCN,(u,T)([0, t],Rm). Also note that the in-
clusion PtN,(u,T) ⊂ P

t
N holds and thus PCN,(u,T)([0, t],Rm) is included in PCN ([0, t],Rm) ⊂

L∞([0, t],Rm), but is not a linear subspace, neither a convex subset.

Lemma 2.4.6. Let t > 0 and N ∈ N∗. Let T = {ti}i=0,...,N ∈ PtN and u ∈ PCT([0, t],Rm).
Then T is the unique element T′ ∈ PtN,(u,T) such that u ∈ PCT

′
([0, t],Rm).

Proof. Let T′ = {t′i}i=0,...,N ∈ PtN,(u,T) be such that u ∈ PCT
′
([0, t],Rm). Let us assume by

contradiction that T′ 6= T. Let i ∈ {1, . . . , N − 1} such that ti /∈ T′. Necessarily it holds that
ui−1 6= ui and there exists j ∈ {i−1, i} such that t′j < ti < t′j+1. Since u ∈ PCT

′
([0, t],Rm), there

exists c ∈ Rm such that u(t) = c for a.e. t ∈ [t′j , t
′
j+1]. Since u(t) = ui−1 for a.e. t ∈ [ti−1, ti] and

u(t) = ui for a.e. t ∈ [ti, ti+1], we deduce that c = ui−1 and c = ui which raises a contradiction
since ui−1 6= ui. The proof is complete.
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Proposition 2.4.6. Let t > 0 and N ∈ N∗. Let T = {ti}i=0,...,N ∈ PtN and u ∈ PCT([0, t],Rm).
The set PCN,(u,T)([0, t],Rm) is a closed subset of L1([0, t],Rm).

Proof. Let (uk)k∈N be a sequence in PCN,(u,T)([0, t],Rm) converging in L1([0, t],Rm) to some
u′ ∈ L1([0, t],Rm). Our aim is to prove that u′ ∈ PCN,(u,T)([0, t],Rm). The proof is divided in
three steps.

First step: Let Tk = {ti,k}i=0,...,N ∈ PtN,(u,T) be a partition associated to uk for all k ∈ N. It
holds for all k ∈ N that

0 = t0,k < t1 −
‖T‖

4
≤ t1,k ≤ t1 +

‖T‖
4

< t2 −
‖T‖

4
≤ t2,k ≤ t2 +

‖T‖
4

< . . .

. . . < tN−2 −
‖T‖

4
≤ tN−2,k ≤ tN−2 +

‖T‖
4

< tN−1 −
‖T‖

4
≤ tN−1,k ≤ tN−1 +

‖T‖
4

< tN,k = t,

and ti,k = ti for all i ∈ {1, . . . , N − 1} such that ui−1 = ui. Extracting a finite number of
subsequences (that we do not relabel), we know that, for all i ∈ {0, . . . , N}, ti,k converges to
some t′i satisfying

0 = t′0 < t1 −
‖T‖

4
≤ t′1 ≤ t1 +

‖T‖
4

< t2 −
‖T‖

4
≤ t′2 ≤ t2 +

‖T‖
4

< . . .

. . . < tN−2 −
‖T‖

4
≤ t′N−2 ≤ tN−2 +

‖T‖
4

< tN−1 −
‖T‖

4
≤ t′N−1 ≤ tN−1 +

‖T‖
4

< t′N = t,

and t′i = ti for all i ∈ {1, . . . , N − 1} such that ui−1 = ui. Hence we have obtained a partition
T′ := {t′i}i=0,...,N ∈ PtN,(u,T).

Second step: Extracting a subsequence (that we do not relabel) from the partial converse
of the Lebesgue dominated convergence theorem, we know that uk(t) converges to u′(t) for a.e.
t ∈ [0, t]. We introduce the subset A of [0, t] of full measure defined by

A := {t ∈ [0, t] | uk(t) converges to u′(t)},

and the subset B of [0, t] of full measure defined by B := ∩k∈NBk where

Bk :=
N−1⋃
i=0

{t ∈ [ti,k, ti+1,k) | uk(t) = ui,k},

for all k ∈ N.

Third step: Let i ∈ {0, . . . , N−1} and let t ∈ (t′i, t
′
i+1)∩(A∩B). For k ∈ N sufficiently large,

it holds that t ∈ (ti,k, ti+1,k). Since t ∈ A∩B, we know that uk(t) = ui,k which converges to u′(t).
Since the convergence of ui,k to u′(t) is independent of the choice of t ∈ (t′i, t

′
i+1) ∩ (A ∩B), we

deduce that u is equal almost everywhere over [t′i, t
′
i+1] to a constant. Since the last sentence is

true for every i ∈ {0, . . . , N − 1}, we conclude that u′ ∈ PCT
′
([0, t],Rm) ⊂ PCN,(u,T)([0, t],Rm).

The proof is complete.

Proposition 2.4.7. Let t > 0 and N ∈ N∗. Let T = {ti}i=0,...,N ∈ PtN and u ∈ PCT([0, t],Rm).
Let (uk)k∈N be a sequence in PCN,(u,T)([0, t],Rm) converging in L1([0, t],Rm) to u. Let Tk =

{ti,k}i=0,...,N ∈ PtN,(u,T) be a partition associated to uk for all k ∈ N. Then there exists a
subsequence of (uk)k∈N (that we do not relabel) such that:
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(i) uk(t) converges to u(t) for a.e. t ∈ [0, t];

(ii) ti,k converges to ti for all i = 0, . . . , N ;

(iii) ui,k converges to ui for all i = 0, . . . , N − 1.

Proof. Following exactly the same steps as in the proof of Proposition 2.4.6 (replacing u′ by
u), we construct a partition T′ = {t′i}i=0,...,N ∈ PtN,(u,T) such that u ∈ PCT

′
([0, t],Rm). From

Lemma 2.4.6, it implies that T′ = T. From the construction of T′, we conclude that, up to
subsequences (which we do not relabel), ti,k converges to ti for all i = 0, . . . , N . Let us prove
the last statement. Let us consider the sets A and B defined in the proof of Proposition 2.4.6
and let us introduce the subset B′ of [0, t] of full measure defined by

B′ :=

N−1⋃
i=0

{t ∈ [ti, ti+1) | u(t) = ui}.

Let i = 0, . . . , N − 1 and let t ∈ (ti, ti+1) ∩ (A ∩ B ∩ B′). For k ∈ N sufficiently large, it holds
that t ∈ (ti,k, ti+1,k). Moreover, since t ∈ A ∩ B ∩ B′, we know that uk(t) = ui,k converges to
u(t) = ui. Since the last statement is true for all i = 0, . . . , N − 1, the proof is complete.

2.4.3 Application of the Ekeland variational principle in the case L = 0

We are now in a position to give a proof of Theorem 2.2.1 based on the following simplified
version of the Ekeland variational principle (see [Ekeland 1974, Theorem 1.1 p.324]).

Proposition 2.4.8 (Ekeland variational principle). Let (E,dE) be a complete metric set. Let
J : E → R+ be a continuous nonnegative map. Let ε > 0 and λ∗ ∈ E such that J (λ∗) ≤ ε.
Then there exists λε ∈ E such that dE(λε, λ

∗) ≤
√
ε, and −

√
ε dE(λ, λε) ≤ J (λ)−J (λε) for all

λ ∈ E.

We first apply the Ekeland variational principle in the case where L = 0 in Problem (OSCP)
(with no Lagrange cost). The case L 6= 0 (with Lagrange cost) is treated in the next Sec-
tion 2.4.4. In this section we will also assume that the final time and the N -partition are free
in Problem (OSCP) (the two simpler cases where only the final time is fixed, and where both of
them are fixed can both be treated in very similar ways).

Let (T,T, x, u) be a solution to Problem (OSCP). In the sequel we will consider that u ∈
L∞(R+,Rm) by considering the extension{

u over [0, T ),

uN−1 over [T,+∞).

In particular, using the notations of Section 2.4.1, note that x = x(·, u, x(0)) and that
τ(u, x(0)) > T . In the rest of the proof we fix some t0, t such that

t0 := T − T − tN−1
3

and T < t < min

(
T +

T − tN−1
3

, t(u, x(0))

)
.

In particular it holds that tN−1 < t0 < T < t < t(u, x(0)). Replacing tN = T by tN = t, it holds
that T ∈ PtN and, with the above extension of u, it holds that u ∈ PCT([0, t],Rm). We conclude
by noting that, with the new value of ‖T‖, it holds that tN−1 + ‖T‖

4 < t0.
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2.4.3.1 Fix R ∈ N such that R ≥ ‖u‖L∞

In this section we fix R ∈ N such that R ≥ ‖u‖L∞ and we denote by

VRε :=
{

(u′, x′0) ∈ V((u, x(0)), (R, t), ε) | u′ ∈ PCN,(u,T)([0, t],Rm)

with u′(t) ∈ U for a.e. t ∈ [0, t]
}
,

where ε > 0 is given in Proposition 2.4.2. We endow the set VRε × [t0, t] with the L1([0, t],Rm)×
Rn × R-distance. Endowed with this distance, it can be seen from Proposition 2.4.6, from the
closedness assumption on U and from the partial converse of the Lebesgue dominated conver-
gence theorem that VRε × [t0, t] is a complete metric set.

Let us consider a sequence (εk)k∈N converging to zero such that 0 <
√
εk < ε for all k ∈ N.

Then we define the penalized functional J Rk : VRε × [t0, t]→ R+ by

J Rk (u′, x′0, T
′)

:=

√(
g(x′0, x(T ′, u′, x′0), T

′)− g(x(0), x(T ), T ) + εk

)+2
+ d2

S

(
h(x′0, x(T ′, u′, x′0), T

′)
)
,

for all (u′, x′0, T
′) ∈ VRε × [t0, t] and all k ∈ N.

Since g, h and d2
S are continuous and from Proposition 2.4.2, it follows that J Rk is a continuous

nonnegative map over VRε × [t0, t] for all k ∈ N. Furthermore it is clear that J Rk (u, x(0), T ) = εk
for all k ∈ N. Therefore, from the Ekeland variational principle (see Proposition 2.4.8), we
conclude that there exists a sequence (uk, x0,k, Tk)k∈N ⊂ VRε × [t0, t] such that

dL1([0,t],Rm)×Rn×R((uk, x0,k, Tk), (u, x(0), T )) ≤
√
εk, (2.6)

and

−
√
εk dL1([0,t],Rm)×Rn×R((u′, x′0, T

′), (uk, x0,k, Tk)) ≤ J Rk (u′, x′0, T
′)− J Rk (uk, x0,k, Tk), (2.7)

for all (u′, x′0, T
′) ∈ VRε × [t0, t] and all k ∈ N.

By contradiction let us assume that there exists (u′, x′0, T
′) ∈ VRε × [t0, t] such that

J Rk (u′, x′0, T
′) = 0. In particular we have 0 < T ′ ≤ t. Let us denote by x′ = x(·, u′, x′0) ∈

AC([0, T ′],Rn). Since u′ ∈ PCN,(u,T)([0, t],Rm), there exists T′ = {t′i}i=0,...,N ∈ PtN,(u,T)
such that u′ ∈ PCT

′
([0, t],Rm). Since T′ = {t′i}i=0,...,N ∈ PtN,(u,T), we know that t′N−1 ≤

tN−1 + ‖T‖
4 < t0 ≤ T ′ ≤ t. Then, replacing t′N = t by t′N = T ′, we get that T′ ∈ PT ′N and

u′ ∈ PCT
′
([0, T ′],Rm). Moreover it holds that ẋ′(t) = f(x′(t), u′(t), t) and u′(t) ∈ U for almost

every t ∈ [0, T ′]. Since J Rk (u′, x′0, T
′) = 0, we deduce moreover that h(x′(0), x′(T ′), T ′) ∈

S. Thus the quadruple (T ′,T′, x′, u′) satisfies all constraints of Problem (OSCP) and thus
g(x′(0), x′(T ′), T ′) ≥ g(x(0), x(T ), T ) from optimality of the quadruple (T,T, x, u). This raises
a contradiction with the equality J Rk (u′, x′0, T

′) = 0. We conclude that J Rk (u′, x′0, T
′) > 0 for

all (u′, x′0, T
′) ∈ VRε × [t0, t].

From the above paragraph we can correctly define the couple (ψ0R
k , ψRk ) ∈ R× Rj as

ψ0R
k :=

−1

J Rk (uk, x0,k, Tk)

(
g(x0,k, x(Tk, uk, x0,k), Tk)− g(x(0), x(T ), T ) + εk

)+
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and

ψRk :=
−1

J Rk (uk, x0,k, Tk)

(
h(x0,k, x(Tk, uk, x0,k), Tk)− PS(h(x0,k, x(Tk, uk, x0,k), Tk))

)
,

for all k ∈ N. Note that ψ0R
k ∈ R− and −ψRk ∈ NS[PS(h(x0,k, x(Tk, uk, x0,k), Tk))] from

Lemma 1.3.1 for all k ∈ N.

Since (uk, x0,k, Tk) ∈ VRε × [t0, t], we know that uk ∈ PCN,(u,T)([0, t],Rm) for all k ∈ N. Let
us denote by Tk = {ti,k}i=0,...,N ∈ PtN,(u,T) a partition associated to uk for all k ∈ N. Moreover,
from Inequality (2.6), the sequence (uk)k∈N converges to u in L1([0, t],Rm). Thus we can extract
from Proposition 2.4.7 a subsequence (which we do not relabel) such that uk(t) converges to
u(t) for almost every t ∈ [0, t], ti,k converges to ti for all i = 0, . . . , N and ui,k converges to ui
for all i = 0, . . . , N − 1. From Inequality (2.6), we know that x0,k and Tk converge respectively
to x(0) and T . From Proposition 2.4.2, we deduce that x(Tk, uk, x0,k) converges to x(T ) and
thus h(x0,k, x(Tk, uk, x0,k), Tk) converges to h(x(0), x(T ), T ) ∈ S. Finally, from the definition
of J Rk , it is clear that |ψ0R

k |2 + ‖ψRk ‖2Rj = 1 for all k ∈ N. By a compactness argument, we can
extract subsequences (which we do not relabel) such that ψ0R

k converges to some ψ0R ∈ R− and
ψRk converges to some ψR ∈ Rj which satisfies −ψR ∈ NS[h(x(0), x(T ), T )] from Lemma 1.3.2.
Note that |ψ0R|2 + ‖ψR‖2Rj = 1.

2.4.3.2 Crucial inequalities depending on R fixed in the previous section

In this section we will use Inequality (2.7) along with the perturbations defined in Section 2.4.1 to
obtain four crucial inequalities (depending on R fixed in the previous section). The perturbations
will be considered on uk, x0,k, ti,k, but also on Tk.

Lemma 2.4.7. Let v ∈ PCT([0, t],Rm) taking values in U ∩ BRm(0Rm , R). Then the inequality〈
ψ0R∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> × ψR, wv(T )

〉
Rn
≤ 0, (2.8)

where wv is defined in Proposition 2.4.3, holds true.

Proof. The proof is divided in three steps.

First step: For all k ∈ N, let us define

vk(t) := vi if t ∈ [ti,k, ti+1,k) for some i ∈ {0, . . . , N − 1},

for all t ∈ [0, t). Then vk ∈ PCTk([0, t],Rm) for all k ∈ N and, since ti,k converges to ti for all
i = 0, . . . , N , it is clear that the sequence (vk)k∈N converges to v in L1([0, t],Rm). It is also true
that vk takes its values in U ∩ BRm(0Rm , R) for all k ∈ N.

Second step: Let us fix k ∈ N. We define as in Proposition 2.4.3 the convex perturbation

uk,vk(·, α) :=

{
uk + α(vk − uk) over [0, t),

uk = u over [t,+∞),

for all 0 ≤ α ≤ 1. First of all, note that uk,vk(·, α) ∈ PCTk([0, t],Rm) ⊂ PCN,(u,T)([0, t],Rm)

and, since U is convex, that uk,vk(·, α) takes its values in U for all 0 ≤ α ≤ 1. Moreover, it holds
that ‖uk,vk(·, α)‖L∞ ≤ R and

‖uk,vk(·, α)− u‖L1 ≤ ‖uk,vk(·, α)− uk‖L1 + ‖uk − u‖L1 ≤ α‖vk − uk‖L1 +
√
εk.
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Since
√
εk < ε, it follows that there exists 0 < α0 ≤ 1 small enough such that (uk,vk(·, α), x0,k) ∈

VRε for all α ∈ [0, α0]. From Inequality (2.7) we obtain

−
√
εk‖uk,vk(·, α)− uk‖L1 ≤ J Rk (uk,vk(·, α), x0,k, Tk)− J Rk (uk, x0,k, Tk),

and thus

−
√
εk‖vk − uk‖L1

≤ 1

J Rk (uk,vk(·, α), x0,k, Tk) + J Rk (uk, x0,k, Tk)
×
J Rk (uk,vk(·, α), x0,k, Tk)

2 − J Rk (uk, x0,k, Tk)
2

α
,

for all α ∈ (0, α0]. Taking the limit as α tends to 0 and using the definitions of ψ0R
k and ψRk , we

obtain from Proposition 2.4.3 that〈
ψ0R
k ∇2g(x0,k, x(Tk, uk, x0,k), Tk) +∇2h(x0,k, x(Tk, uk, x0,k), Tk)

> × ψRk , wkvk(Tk)
〉
Rn

≤
√
εk‖vk − uk‖L1 .

where wkvk is defined in Lemma 2.4.3.

Third step: We take the limit of the above inequality as k tends to +∞. Since g and h are
both of class C1 and from the uniform convergence of (wkvk)k∈N to wv over [0, t] (see Lemma 2.4.3),
it holds that 〈

ψ0R∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> × ψR, wv(T )
〉
Rn
≤ 0.

The proof is complete.

Lemma 2.4.8. Let y ∈ Rn be fixed. Then the inequality〈
ψ0R∇1g(x(0), x(T ), T ) +∇1h(x(0), x(T ), T )> × ψR, y

〉
Rn

+
〈
ψ0R∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> × ψR, wy(T )

〉
Rn
≤ 0, (2.9)

where wy is defined in Proposition 2.4.4, holds true.

Proof. The proof is divided in two steps.

First step: Let us fix k ∈ N. It holds that

‖x0,k + αy − x(0)‖Rn ≤ α‖y‖Rn + ‖x0,k − x(0)‖Rn ≤ α‖y‖Rn +
√
εk,

for all α ≥ 0. Since
√
εk < ε, it follows that there exists 0 < α0 ≤ 1 small enough such that

(uk, x0,k + αy) ∈ VRε for all 0 ≤ α ≤ α0. From Inequality (2.7) we obtain

−
√
εk‖x0,k + αy − x0,k‖Rn ≤ J Rk (uk, x0,k + αy, Tk)− J Rk (uk, x0,k, Tk),
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and thus

−
√
εk‖y‖Rn

≤ 1

J Rk (uk, x0,k + αy, Tk) + J Rk (uk, x0,k, Tk)
×
J Rk (uk, x0,k + αy, Tk)

2 − J Rk (uk, x0,k, Tk)
2

α
,

for all α ∈ (0, α0]. Taking the limit as α tends to 0 and using the definitions of ψ0R
k and ψRk , we

obtain from Proposition 2.4.4 that〈
ψ0R
k ∇1g(x0,k, x(Tk, uk, x0,k), Tk) +∇1h(x0,k, x(Tk, uk, x0,k), Tk)

> × ψRk , y
〉
Rn

+
〈
ψ0R
k ∇2g(x0,k, x(Tk, uk, x0,k), Tk) +∇2h(x0,k, x(Tk, uk, x0,k), Tk)

> × ψRk , wky(Tk)
〉
Rn

≤
√
εk‖y‖Rn ,

where wky is defined in Lemma 2.4.4.

Second step: We take the limit of the above inequality as k tends to +∞. Since g and h are
both of class C1 and from the uniform convergence of (wyk)k∈N to wy over [0, t] (see Lemma 2.4.4),
it holds that〈

ψ0R∇1g(x(0), x(T ), T ) +∇1h(x(0), x(T ), T )> × ψR, y
〉
Rn

+
〈
ψ0R∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T, u, x(0)), T )> × ψR, wy(T )

〉
Rn
≤ 0.

The proof is complete.

Lemma 2.4.9. Let i ∈ {1, . . . , N − 1} such that ui−1 6= ui and let µ ∈ {−1, 1}. Then the
inequality 〈

ψ0R∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> × ψR, wµti(T )
〉
Rn
≤ 0, (2.10)

where wµti is defined in Proposition 2.4.5, holds true.

Proof. The proof is divided in two steps.

First step: Since ti,k converges to ti and since ti − ‖T‖4 ≤ ti,k ≤ ti + ‖T‖
4 , we fix k ∈ N

sufficiently large in order to guarantee that ti− ‖T‖8 ≤ ti,k ≤ ti+
‖T‖
8 . Since uk ∈ PCTk([0, t],Rm),

the point ti,k is a switching time of uk with ηti,k = min(ti,k − ti−1,k, ti+1,k − ti,k) > 0. We define
the perturbation uµk,ti,k(·, α) as

uµk,ti,k(·, α) :=


uk(t

−
i,k) = ui−1,k over [ti,k − ηti,k , ti,k + µα),

uk(t
+
i,k) = ui,k over [ti,k + µα, ti,k + ηti,k),

uk otherwise,

for all 0 ≤ α ≤
ηti,k
2 . Considering Ti,αk the N -partition given by

0 = t0,k < t1,k < . . . < ti−1,k < ti,k + µα < ti+1,k < . . . < tN−1,k < tN,k = t,
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it is clear that uµk,ti,k(·, α) ∈ PCT
i,α
k ([0, t],Rm) for all 0 ≤ α ≤

ηti,k
2 . Since ti− ‖T‖8 ≤ ti,k ≤ ti+

‖T‖
8 ,

then ti− ‖T‖4 ≤ ti,k+µα ≤ ti+ ‖T‖4 and thus Ti,αk ∈ P
t
N,(u,T) and u

µ
k,ti,k

(·, α) ∈ PCN,(u,T)([0, t],Rm)

for small enough 0 ≤ α ≤
ηti,k
2 . Note that uµk,ti,k(·, α) takes its values in U for all 0 ≤ α ≤

ηti,k
2 .

It holds that ‖uµk,ti(·, α)‖L∞ ≤ R and

‖uµk,ti(·, α)− u‖L1 ≤ ‖uµk,ti(·, α)− uk‖L1 + ‖uk − u‖L1 ≤ 2Rα+
√
εk,

for all 0 ≤ α ≤
ηti,k
2 . Since

√
εk < ε, we conclude that there exists 0 < α0 ≤

ηti,k
2 small enough

such that (uµk,ti(·, α), x0,k) ∈ VRε for all 0 ≤ α ≤ α0. From Inequality (2.7) we obtain

−
√
εk‖uµk,ti(·, α)− uk‖L1 ≤ J Rk (uµk,ti(·, α), x0,k, Tk)− J Rk (uk, x0,k, Tk),

and thus

− 2R
√
εk

≤ 1

J Rk (uµk,ti(·, α), x0,k, Tk) + JRk (uk, x0,k, Tk)
×
J Rk (uµk,ti(·, α), x0,k, Tk)

2 − JRk (uk, x0,k, Tk)
2

α
,

for all α ∈ (0, α0]. Taking the limit as α tends to 0 and using the definitions of ψ0R
k and ψRk , we

obtain from Proposition 2.4.5 that〈
ψ0R
k ∇2g(x0,k, x(Tk, uk, x0,k), Tk) +∇2h(x0,k, x(Tk, uk, x0,k), Tk)

>×ψRk , w
µ,k
ti,k

(Tk)
〉
Rn
≤ 2R

√
εk,

where wµ,kti,k is defined in Lemma 2.4.5.

Second step: We take the limit of the above inequality as k tends to +∞. Since g and h are
of class C1 and, since ti < t0, from the uniform convergence of (wµ,kti,k)k∈N to wµti over [t0, t] (see
Lemma 2.4.5), it holds that〈

ψ0R∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> × ψR, wµti(T )
〉
Rn
≤ 0.

The proof is complete.

Lemma 2.4.10. The equality〈
ψ0R∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> × ψR, f(x(T ), uN−1, T )

〉
Rn

+ ψ0R∇3g(x(0), x(T ), T ) +∇3h(x(0), x(T ), T )> × ψR = 0, (2.11)

holds.

Proof. The proof is divided in two steps.

First step: Let µ ∈ {−1, 1}. Since (Tk)k∈N converges to T ∈ (t0, t), then Tk ∈ (t0, t) for
k ∈ N sufficiently large. Let us fix such an integer k ∈ N. Thus there exists α0 > 0 small enough
such that (x0,k, uk, Tk + µα) ∈ VRε × [t0, t] for all 0 ≤ α ≤ α0. From Inequality (2.7) we obtain

−
√
εk |Tk + µα− Tk| ≤ J Rk (uk, x0,k, Tk + µα)− J Rk (uk, x0,k, Tk),
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and thus

−
√
εk ≤

1

J Rk (uk, x0,k, Tk + µα) + J Rk (uk, x0,k, Tk)
×
J Rk (uk, x0,k, Tk + µα)2 − J Rk (uk, x0,k, Tk)

2

α
,

for all α ∈ (0, α0]. Taking the limit as α tends to 0 and using the definitions of ψ0R
k and ψRk ,

we obtain from the differentiability of x(·, uk, x0,k) at Tk (since uk is constant over the interval
[t0, t] ⊂ [tN−1,k, tN,k] and since Tk ∈ (t0, t)) that

µ
〈
ψ0R
k ∇2g(x0,k, x(Tk, uk, x0,k), Tk) +∇2h(x0,k, x(Tk, uk, x0,k), Tk)

> × ψRk

, f(x(Tk, uk, x0,k), uk(Tk), Tk)
〉
Rn

+ µψ0R
k ∇3g(x0,k, x(Tk, uk, x0,k), Tk) + µ∇3h(x0,k, x(Tk, uk, x0,k), Tk)

> × ψRk ≤
√
εk,

where uk(Tk) = uN−1,k.

Second step: We take the limit of the above inequality as k tends to +∞. Let us recall that
uN−1,k converges to uN−1. Furthermore, since f is continuous, since g and g are of class C1,
and since uk(Tk) converges to u(T ) from Proposition 2.4.7, it holds that

µ
〈
ψ0R∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> × ψR, f(x(T ), uN−1, T )

〉
Rn

+ µψ0R∇3g(x(0), x(T ), T ) + µ∇3h(x(0), x(T ), T )> × ψR ≤ 0.

Since µ can be chosen arbitrarily in {−1, 1}, the proof is complete.

2.4.3.3 Crucial inequalities letting R go to +∞

In the previous section we have obtained Inequalities (2.8), (2.9) and (2.10) and Equality (2.11)
which are valid for R ∈ N being fixed such that R ≥ ‖u‖L∞ . In particular Inequality (2.8) is
satisfied only for v ∈ PCT([0, t],Rm) taking values in U∩BRm(0Rm , R). Our goal in this section
is to get rid of the dependence in R. From the equality |ψ0R|2 + ‖ψR‖2Rj = 1 (see the end
of Section 2.4.3.1), we can extract subsequences (that we do not relabel) such that (ψ0R)R∈N
converges to some ψ0 in R and (ψR)R∈N converges to some ψ in Rj when R → ∞. It clearly
holds that |ψ0|2 + ‖ψ‖2Rj = 1 and, since R− and NS[h(x(0), x(T ), T )] are closed, that ψ0 ∈ R−
and −ψ ∈ NS[h(x(0), x(T ), T )].

Now let us fix v ∈ PCT([0, t],Rm) taking values in U. Considering R ∈ N large enough in
order to get that R ≥ ‖u‖L∞ and R ≥ ‖v‖L∞ , we know from Lemma 2.4.7 that Inequality (2.8)
is satisfied. Taking the limit as R tends to +∞ we conclude that

〈ψ0∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> × ψ,wv(T )〉Rn ≤ 0. (2.12)

Similarly, letting R go to +∞ in Inequalities (2.9) and (2.10) and in Equality (2.11), we get that

〈ψ0∇1g(x(0), x(T ), T ) +∇1h(x(0), x(T ), T )> × ψ, y〉Rn

+ 〈ψ0∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> × ψ,wy(T )〉Rn ≤ 0,
(2.13)
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for any y ∈ Rn, that

〈ψ0∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> × ψ,wµti(T )〉Rn ≤ 0, (2.14)

for any i ∈ {1, . . . , N − 1} such that ui−1 6= ui and any µ ∈ {−1, 1}, and that

〈ψ0∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> × ψ, f(x(T ), uN−1, T )〉Rn

+ψ0∇3g(x(0), x(T ), T ) +∇3h(x(0), x(T ), T )> × ψ = 0.
(2.15)

2.4.3.4 End of the proof

Now we can end the proof of Theorem 2.2.1 (in the case L = 0) with the introduction of the
adjoint vector p. Before coming to this point, let us first define p0 := ψ0 and Ψ := ψ. In
particular note that p0 ∈ R−, that Ψ ∈ Rj is such that −Ψ ∈ NS[h(x(0), x(T ), T )] and that
|p0|2 + ‖Ψ‖2Rj = 1.

We define the adjoint vector p ∈ AC([0, T ],Rn) as the unique solution (that is global) to the
backward linear Cauchy problem given by{

ṗ(t) = −∇1f(x(t), u(t), t)> × p(t), a.e. t ∈ [0, T ],

p(T ) = p0∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> ×Ψ.

From the Duhamel formula, recall that

p(t) = Φ(T, t)> ×
(
p0∇2g(x(0), x(T ), T ) +∇2h(x(0), x(T ), T )> ×Ψ

)
,

for all t ∈ [0, T ], where Φ(·, ·) : [0, T ]2 → Rn×n stands for the state transition matrix associated
to the matrix function t 7→ ∇1f(x(t), u(t), t). We refer to [Sontag 1998, Appendix C.4] for more
details on state-transition matrices.

Adjoint equation and transversality condition on the adjoint vector. From the above
definition of the adjoint vector p, it is clear that the adjoint equation in Theorem 2.2.1 and the
transversality condition p(T ) = p0∇2g(x(0), x(T ), T ) + ∇2h(x(0), x(T ), T )> × Ψ are satisfied.
Moreover, from the Duhamel formula, it holds that wy(T ) = Φ(T, 0) × y and thus Inequal-
ity (2.13) can be rewritten as

〈p0∇1g(x(0), x(T ), T ) +∇1h(x(0), x(T ), T )> ×Ψ + p(0), y〉Rn ≤ 0,

for all y ∈ Rn. Thus we conclude that the transversality condition −p(0) =

p0∇1g(x(0), x(T ), T ) +∇1h(x(0), x(T ), T )> ×Ψ holds.

Nonpositive averaged Hamiltonian gradient condition. Let us fix ω ∈ U and i ∈
{0, . . . , N − 1}. Let us consider v ∈ PCT([0, T ],Rm) defined by

v(t) :=

{
ω if t ∈ [ti, ti+1),

u(t) otherwise,



58 Chapter 2. Optimal sampled-data control problems with free sampling times

for all t ∈ [0, T ]. From the Duhamel formula given by

wv(T ) =

∫ T

0
Φ(T, t)×∇2f(x(t), u(t), t)× (v(t)− u(t)) dt,

Inequality (2.12) can be rewritten as∫ T

0

〈
∇2f(x(t), u(t), t)> × p(t), v(t)− u(t)

〉
Rm

dt ≤ 0,

that is 〈∫ ti+1

ti

∇2H(x(t), ui, p(t), p
0, t) dt, ω − ui

〉
Rm
≤ 0.

Transversality conditions on the optimal sampling times. Let us fix some i ∈
{1, . . . , N − 1} and µ ∈ {−1, 1}. If ui−1 = ui, then the transversality condition (2.3) in Theo-
rem 2.2.1 is obviously satisfied. Now let us assume that ui−1 6= ui. From the Duhamel formula
given by

wµti(T ) = µΦ(T, ti)×
(
f(x(ti), ui−1, ti)− f(x(ti), ui, ti)

)
,

Inequality (2.14) can be rewritten as

µ〈p(ti), f(x(ti), ui−1, ti)− f(x(ti), ui, ti)〉Rn ≤ 0.

Since µ can be arbitrarily chosen in {−1, 1} and from the definition of the Hamiltonian H, we
get that

H(x(ti), ui−1, p(ti), p
0, ti) = H(x(ti), ui, p(ti), p

0, ti).

Transversality condition on the optimal final time. Equality (2.15) can be directly
rewritten as

−H(x(T ), uN−1, p(T ), p0, T ) = p0∇3g(x(0), x(T ), T ) +∇3h(x(0), x(T ), T )> ×Ψ.

Nontriviality of the couple (p, p0). Let us assume by contradiction that the couple (p, p0)

is trivial. Then p(0) = p(T ) = 0Rn and p0 = 0. We get from the transversality conditions on
the adjoint vector and on the optimal final time that Dh(x(0), x(T ), T )> × Ψ = 0R2n+1 . From
the submersion property, we deduce that Ψ = 0Rj which raises a contradiction with the equality
|p0|2 + ‖Ψ‖2Rj = 1.

2.4.4 The case L 6= 0

In the previous section we have proved Theorem 2.2.1 in the case L = 0 (without Lagrange cost).
This section is dedicated to the case L 6= 0. Let (T,T, x, u) be a solution to Problem (OSCP)
(with L 6= 0) and let us assume that h is submersive at (x(0), x(T ), T ). Let us define

X(t) :=

∫ t

0
L(x(s), u(s), s) ds,



2.4. Proof of the Theorem 2.2.1 59

for all t ∈ [0, T ]. One can easily see that the augmented quadruple (T,T, (x,X), u) is a solution
to the augmented optimal sampled-data control problem of Mayer form given by

minimize g̃((x,X)(0), (x,X)(T ), T ),

subject to T > 0 fixed or free,

T = {ti}i=0,...,N ∈ PTN fixed or free,

(x,X) ∈ AC([0, T ],Rn+1), u ∈ PCT([0, T ],Rm),

˙(
x

X

)
(t) =

(
f(x(t), u(t), t)

L(x(t), u(t), t)

)
, a.e. t ∈ [0, T ],

h̃((x,X)(0), (x,X)(T ), T ) ∈ S̃,

ui ∈ U, for all i = 0, . . . , N − 1,



(OSCPaug)

where g̃ : Rn+1 × Rn+1 × R+ → R is defined by

g̃((x1, X1), (x2, X2), t) := g(x1, x2, t) +X2,

for all ((x1, X1), (x2, X2), t) ∈ Rn+1×Rn+1×R+, where h̃ : Rn+1×Rn+1×R+ → Rj+2 is defined
by

h̃((x1, X1), (x2, X2), t) := (h(x1, x2, t), X1, X2),

for all ((x1, X1), (x2, X2), t) ∈ Rn+1 × Rn+1 × R+ and where

S̃ := S× {0} × R.

Since h is submersive at (x(0), x(T ), T ), note that h̃ is submersive at ((x,X)(0), (x,X)(T ), T )

and thus Theorem 2.2.1 can be applied to Problem (OSCPaug) (which has no Lagrange cost).
We deduce the existence of a nontrivial augmented couple ((p, q), p0) ∈ AC([0, T ],Rn+1) × R−
satisfying all necessary conditions listed in Theorem 4.3.1 adapted to the augmented Prob-
lem (OSCPaug). In particular we get that q̇ = 0, q(T ) = p0 and thus q(t) = p0 for all t ∈ [0, T ].
The rest of the proof is straightforward from all necessary conditions provided in Theorem 2.2.1
(in the case of a Mayer problem).





Chapter 3

Optimal sampled-data controls with
running inequality state constraints

This chapter is based on the article “Optimal sampled-data controls with running inequality state
constraints: Pontryagin maximum principle and bouncing trajectory phenomenon” by L. Bourdin
and G. Dhar (see [Bourdin & Dhar 2020]).

3.1 Introduction

In this chapter we derive a Pontryagin maximum principle for general nonlinear optimal sampled-
data control problems in the presence of running inequality state constraints as given in the
work [Bourdin & Dhar 2020]. Recall that the Pontryagin maximum principle (in short, PMP)
which was established in [Pontryagin et al. 1962] by Pontryagin et al. at the end of the 1950’s,
is the milestone of optimal control theory. As a well known application, if the Hamiltonian max-
imization condition allows to express the optimal control as a function of the augmented state-
costate vector, then the PMP induces the so-called indirect numerical method which consists in
numerically solving the boundary value problem satisfied by the augmented state-costate vector
via a shooting method. Indirect numerical methods are opposed to direct numerical methods
which consist in a full discretization of the optimal control problem resulting into a constrained
finite-dimensional optimization problem that can be numerically solved from various standard
optimization algorithms and techniques.

An important generalization of the PMP concerns state constrained optimal control problems
in which the state is restricted to a certain region of the state space. Indeed it is often un-
desirable and even inadmissible in scientific and engineering applications that the state crosses
certain limits imposed in the state space for safety or practical reasons. Many examples can
be found in mechanics and aerospace engineering (e.g., an engine may overheat or overload).
We refer to [Bonnard et al. 2003, Cots 2017, Chertovskih et al. 2018, Chertovskih et al. 2020,
Kim et al. 2011, van Keulen et al. 2014, Van Reeven et al. 2016] and references therein for other
examples. State constrained optimal control problems are also encountered in management
and economics (e.g., an inventory level may be limited in a production model). We refer
to [Cho et al. 1993, Maurer et al. 2005, Puchkova et al. 2014, Sethi & Thompson 2000] and ref-
erences therein for other examples. A first version of the PMP for optimal control problems
with running inequality state constraints was obtained by Gamkrelidze [Gamkrelidze 1960]
(see also [Pontryagin et al. 1962, Theorem 25 p.311]) under some special assumptions on
the structure of the optimal process. Later, these assumptions were somewhat excluded
by Dubovitskii and Milyutin in the seminal work [Dubovitskii & Milyutin 1965, Section 7
p.37]. The contributions of Dubovitskii and Milyutin in the development of the PMP
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constraints

for optimal control problems with various constraints, in the 1960’s and later years, have
been the subject of a survey written by Dmitruk [Dmitruk 2009] in 2009. These contri-
butions include, notably, general Lagrange multiplier rules for abstract optimization prob-
lems and the so-called method of v-change of time variable in view of generating needle-like
variations by passing to a smooth control system (see more details in [Dmitruk 2009, Sec-
tion 4]). These approaches have been revisited in a book of lectures on extremum prob-
lems written by Girsanov [Girsanov 1972] in 1972, and extended recently in a series of pa-
pers by Dmitruk and Osmolovskii [Dmitruk & Osmolovskii 2014, Dmitruk & Osmolovskii 2017,
Dmitruk & Osmolovskii 2018, Dmitruk & Osmolovskii 2019] with applications to various opti-
mal control problems such as with integral equations, state constraints, mixed state-control
constraints, etc. Other methods have been developed in the literature in order to establish ver-
sions of the PMP for state constrained optimal control problems, such as the smoothly-convex
structure of the controlled system in [Ioffe & Tihomirov 1979], the application of the Ekeland
variational principle in [Vinter 2010], etc. A comprehensive survey [Hartl et al. 1995] of this
field of research has been given in 1995 by Hartl, Sethi and Vickson. Note that the PMP for
optimal control problems is more intricate in the presence of running inequality state constraints
because the adjoint vector is not absolutely continuous in general (while it is in the state un-
constrained case), but (only) of bounded variation (see Section 1.2 for recalls on functions of
bounded variation). Therefore theoretical and numerical difficulties may arise due to the possi-
ble pathological behavior of the adjoint vector which consists in jumps and singular part lying
on parts of the optimal trajectory in contact with the boundary of the restricted state space. As
a consequence a wide portion of the literature is devoted to the analysis of the costate’s behavior
and some constraint qualification conditions have been established in order to ensure that the
adjoint vector has no singular part (see, e.g., [Bettiol & Frankowska 2008, Bonnard et al. 2003,
Dmitruk 2009, Hartl et al. 1995, Jacobson et al. 1971, Maurer 1977]). We briefly conclude this
paragraph by mentioning that the related theme of state constrained discrete optimal control
problems has also been investigated in the literature (see, e.g., [Cots et al. 2018, Proposition 2
p.13]).

Before being presented in the work [Bourdin & Dhar 2020], to the best of our knowledge,
optimal sampled-data control problems had never been investigated in the presence of state con-
straints. In the work [Bourdin & Dhar 2020] presented in this chapter, the first objective was to
bridge this gap in the literature by establishing a PMP for general nonlinear optimal sampled-
data control problems in the presence of running inequality state constraints (see Theorem 3.2.1
in Section 3.2). In contrast to the previous chapter in which we considered optimal sampled-data
control problems with terminal state constraints (which can be seen as finite-dimensional opti-
mization problems), note that such problems can be seen as semi-infinite-dimensional optimiza-
tion problems since the presence of running inequality state constraints imposes an infinite num-
ber of constraints (one at each instant of time). In the work [Bourdin & Dhar 2020], in the same
spirit as Bourdin and Trélat in [Bourdin & Trélat 2016] and the paper [Bourdin & Dhar 2020]
presented in Chapter 2, our proof is based on the Ekeland variational principle. Similarly to
the PMP derived in [Bourdin & Trélat 2016, Theorem 2.6 p.62] for state unconstrained opti-
mal sampled-data control problems, we obtained a first-order necessary optimality condition
described by a nonpositive averaged Hamiltonian gradient condition. Moreover, as in the case
of optimal permanent control problems with running inequality state constraints, we found that
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the adjoint vector is in general (only) of bounded variation. Therefore one would expect to
encounter the same difficulties as in the permanent control case when implementing an indirect
numerical method due to the possible jumps and singular part of the adjoint vector. However,
in our context of sampled-data controls, we found that the optimal trajectories have a com-
mon behavior which allows us to overcome these difficulties. Precisely, when we began studying
optimal sampled-data control problems in the presence of running inequality state constraints
in the work [Bourdin & Dhar 2020], we first numerically solved some simple problems using
direct methods. Notably we observed that, in each problem, the optimal trajectory “bounces”
against the boundary of the restricted state space, touching the state constraint at most at the
sampling times. This behavior was the second major focus of the work [Bourdin & Dhar 2020]
and is referred to as the bouncing trajectory phenomenon. We proved that, under certain gen-
eral hypotheses, any admissible trajectory necessarily bounces on the running inequality state
constraints and, moreover, the rebounds occur at most at the sampling times (and thus are in
a finite number and at precise instants). We refer to Section 3.3 for details. Inherent to this
behavior, the singular part of the adjoint vector derived in our PMP vanishes and its discontinu-
ities are reduced to a finite number of jumps which occur exactly at the sampling times. Taking
advantage of these informations, we are able in Section 3.4 to implement an indirect numerical
method which we use to numerically solve three simple examples of optimal sampled-data con-
trol problems with running inequality state constraints. We take this occasion to mention that a
similar trajectory phenomenon has already been observed in the literature on state constrained
optimal permanent control problems. Precisely, Milyutin provides an example in his doctoral
dissertation [Milyutin 1966] in 1966 (see also [Dmitruk 2009, p.940]) in which the optimal tra-
jectory touches the state constraint a countably infinite number of times before landing on it.
As a consequence, in that example, the corresponding adjoint vector admits a countably infinite
number of jumps. This example was also given independently by Robbins [Robbins 1980] in
1980.

This chapter is organized as follows. In Section 3.2 we first present the optimal sampled-
data control problem with running inequality state constraints considered in this work (see
Problem (OSCPsc)) accompanied by some background on sampled-data controls and a list of
comments. The corresponding Pontryagin maximum principle is stated thereafter (see Theo-
rem 3.2.1) and a list of general comments follows. In Section 3.3 we give heuristic descriptions
and a sufficient condition for observing the bouncing trajectory phenomenon. In Section 3.4 we
propose an indirect method for numerically solving optimal sampled-data control problems with
running inequality state constraints based on our main result and with the aid of the bouncing
trajectory phenomenon. Then we illustrate this method and highlight the bouncing trajectory
phenomenon by numerically solving three simple examples. Finally Section 3.5 is devoted to the
proof of the main result (Theorem 3.2.1).

3.2 Main result and comments

This section is dedicated to the statement of the main result of the work [Bourdin & Dhar 2020].
In Section 3.2.1 below, we introduce the general optimal sampled-data control problem with
running inequality state constraints considered in [Bourdin & Dhar 2020], and we fix the termi-
nology and assumptions used all along this chapter. In Section 3.2.2 we state the corresponding
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Pontryagin maximum principle (see Theorem 3.2.1) and a list of comments follows.

3.2.1 A general optimal sampled-data control problem with running inequal-
ity state constraints

Let n, m, q, N ∈ N∗ be four fixed positive integers. Let us fix a positive real number T > 0,
as well as an N -partition T = {ti}i=0,...,N of the interval [0, T ]. In the present chapter we focus
on the general optimal sampled-data control problem with running inequality state constraints
given by

minimize g(x(T )) +

∫ T

0
L(x(t), u(t), t) dt,

subject to x ∈ AC([0, T ],Rn), u ∈ PCT([0, T ],Rm),

ẋ(t) = f(x(t), u(t), t), a.e. t ∈ [0, T ],

x(0) = x0,

hj(x(t), t) ≤ 0, for all t ∈ [0, T ] and all j = 1, . . . , q,

ui ∈ U, for all i = 0, . . . , N − 1.



(OSCPsc)

A couple (x, u) is said to be admissible for Problem (OSCPsc) if it satisfies all its constraints.
A solution to Problem (OSCPsc) is an admissible couple (x, u) which minimizes the Bolza cost
given by g(x(T )) +

∫ T
0 L(x(t), u(t), t) dt among all admissible couples.

Throughout the chapter we will make use of the following regularity and topology assump-
tions:

- the functions g : Rn → R and L : Rn × Rm × [0, T ] → R, that describe respectively the
Mayer cost g(x(T )) and the Lagrange cost

∫ T
0 L(x(t), u(t), t) dt, are of class C1;

- the dynamics f : Rn × Rm × [0, T ] → Rn, that drives the state equation ẋ(t) =

f(x(t), u(t), t), is continuous and of class C1;

- the function h = (hj)j=1,...,q : Rn× [0, T ]→ Rq, that describes the running inequality state
constraints hj(x(t), t) ≤ 0, is continuous and of class C1 in its first variable;

- the set U ⊂ Rm, that describes the control constraint u(t) ∈ U, is a nonempty closed
convex subset of Rm;

- the initial condition x0 ∈ Rn is fixed.

Note that we make use of the same regularity and topology assumptions for the dynamics f
and for the control constraint set U as those introduced in Section 2.2.1 of Chapter 2. This will
allow us to use results from the sensitivity analysis given in Section 2.4.1 from Chapter 2 later
when we discuss the proof of the main result of this chapter (see Section 3.5 for details).

Optimal sampled-data control problems have been investigated in the literature
(see, e.g., [Aström 1963, Bini & Buttazzo 2014, Bourdin & Dhar 2019, Bourdin & Trélat 2015,
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Bourdin & Trélat 2016, Bourdin & Trélat 2017]) with general terminal constraints on x(0)

and x(T ), free final time, free sampling times, etc. Before being presented in the
work [Bourdin & Dhar 2020], to the best of our knowledge, running inequality state constraints
had never been investigated with sampled-data controls. The aim of [Bourdin & Dhar 2020]
was to fill this gap in the literature, and thus we focused on the running inequality state con-
straints hj(x(t), t) ≤ 0 in Problem (OSCPsc). As a consequence, for the sake of simplicity, we
took the decision not to consider general terminal constraints in Problem (OSCPsc). Indeed we
only considered the basic case in which the initial condition x(0) = x0 is fixed and the final
condition x(T ) is free. Similarly we also chose to consider that the final time T > 0 and the
partition T = {ti}i=0,...,N are fixed. If the reader is interested in techniques allowing to handle
general terminal constraints, free final time, free sampling times, etc., we refer to the references
mentioned above.

Remark 3.2.1. This comment highlights some research perspectives.

(i) Existence theorems for optimal permanent control problems with running inequality state
constraints can be found in a text by Clarke (see [Clarke 1990, Theorem 5.4.4 p.222]).
Furthermore, existence theorems for related problems such as optimal permanent control
problems with state constraints where the constraint is given as an inclusion into a gen-
eral subset of the state space can be found in works of Cesari (see [Cesari 1983a, Theo-
rem 9.2.i p.311]) and Rockafellar (see [Rockafellar 1972, Theorem 2 p.696]). A Filippov-
type theorem for the existence of a solution to Problem (OSCPsc) without running in-
equality state constraints was derived in [Bourdin & Trélat 2016, Theorem 2.1 p.61]. The
work [Bourdin & Dhar 2020] presented in this chapter only focuses on necessary optimal-
ity conditions and thus was not concerned with the extension of the previously mentioned
result to the case with running inequality state constraints. Existence theorems for op-
timal sampled-data control problems with running inequality state constraints will not be
presented in this chapter, however they constitute an interesting perspective for further
research.

(ii) In the paper [Bourdin & Dhar 2019] presented in Chapter 2 we consider optimal sampled-
data control problems with free sampling times and obtain a corresponding necessary opti-
mality condition which happens to coincide with the continuity of the Hamiltonian function.
It would be relevant to extend the scope of Problem (OSCPsc) to study optimal sampling
times in the presence of running inequality state constraints.

(iii) Several papers in the literature consider optimal permanent control problems with con-
straints of different natures, for instance with state constraints where the constraint is
given as an inclusion into a general subset of the state space (see, e.g., [Cesari 1983a,
Rockafellar 1972]) or with mixed state-control constraints of the form h(x(t), u(t), t) ≤ 0

(see, e.g., [Dmitruk & Osmolovskii 2014, Hartl et al. 1995]). A possible challenge would
be to extend Problem (OSCPsc) to the previous mentioned contexts.

(iv) As addressed in Chapter 2 (see Remark 2.2.16), a last (but not least) a relevant research
perspective would concern the extension of Problem (OSCPsc) to the more general frame-
work in which the values of the sampling times ti intervene explicitly in the cost to minimize
and/or in the dynamics.
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3.2.2 Pontryagin maximum principle

The main objective of the work [Bourdin & Dhar 2020] was to derive a Pontrya-
gin maximum principle for Problem (OSCPsc). Let us recall here that establish-
ing a consensual version of the Pontryagin maximum principle for optimal perma-
nent control problems in the presence of running inequality state constraints still
constitutes a wonderful mathematical challenge. We refer to the Introduction for a
brief bibliographic recap and we refer to [Aronna et al. 2016, Arutyunov et al. 2011,
Bonnans & de la Vega 2010, Bonnans et al. 2013, Bonnans & Hermant 2009,
Bonnans & Hermant 2009, Dmitruk & Osmolovskii 2014, Dmitruk & Osmolovskii 2017,
Dmitruk & Osmolovskii 2019, Vinter 2010] for recent contributions with various generaliza-
tions.

The novelty of the work [Bourdin & Dhar 2020] presented in this chapter was to deal with
nonpermanent controls, precisely, with sampled-data controls. As given in Definition 2.2.1 we
recall that the HamiltonianH : Rn×Rm×Rn×R×[0, T ]→ R associated with Problem (OSCPsc)
is defined by H(x, u, p, p0, t) := 〈p, f(x, u, t)〉Rn + p0L(x, u, t), for all (x, u, p, p0, t) ∈ Rn ×Rm ×
Rn ×R× [0, T ]. We also refer to Section 1.2.2 for recalls on functions of bounded variations (in
particular, the spaces BV([0, T ],Rq) and NBV([0, T ],Rq)) and on Cauchy-Stieltjes problems. We
now state the main result of the work [Bourdin & Dhar 2020] which was given by the following
theorem.

Theorem 3.2.1 (Pontryagin maximum principle). Let (x, u) be a solution to Problem (OSCPsc).
Then there exists a nontrivial couple (p0, η), where p0 ≤ 0 and η = (ηj)j=1,...,q ∈ NBV([0, T ],Rq),
such that the nonpositive averaged Hamiltonian gradient condition〈∫ ti+1

ti

∇2H(x(t), ui, p(t), p
0, t) dt, ω − ui

〉
Rm
≤ 0, (3.1)

holds for all ω ∈ U and all i = 0, . . . , N − 1, where the adjoint vector p ∈ BV([0, T ],Rn) (also
called costate) is the unique solution to the backward linear Cauchy-Stieltjes problem given by

−dp =
(
∇1f(x, u, ·)> × p+ p0∇1L(x, u, ·)

)
dt−

∑q
j=1∇1hj(x, ·) dηj over [0, T ],

p(T ) = p0∇g(x(T )).
(3.2)

Moreover the complementary slackness condition:

ηj is monotonically increasing on [0, T ] and
∫ T

0
hj(x(t), t) dηj(t) = 0, (3.3)

is satisfied for each j = 1, . . . , q.

Section 3.5 is dedicated to the detailed proof of Theorem 3.2.1. A list of comments is
presented hereafter.

Remark 3.2.2. The nontrivial couple (p0, η) provided in Theorem 3.2.1, which corresponds
to a Lagrange multiplier, is defined up to a positive multiplicative scalar. In the normal case
p0 6= 0 it is usual to normalize the Lagrange multiplier so that p0 = −1. The case p0 = 0 is
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usually called the abnormal case. We observe that, if the running inequality state constraints
are never activated (that is, if hj(x(t), t) < 0 for all t ∈ [0, T ] and all j = 1, . . . , q), then the
case is normal. Outside of this trivial situation, sufficient conditions ensuring normality is a
difficult topic which has been widely developed in the literature on constrained optimal perma-
nent control problems (see, e.g., [Bettiol & Frankowska 2007, Clarke 1976, Malanowski 2003,
Rampazzo & Vinter 1999] and references therein). To the best of our knowledge, the extension
of such results to the present sampled-data control setting is an open challenge in the literature,
and thus perspectives for further research works are possible in that direction. Since it is not our
aim in this chapter to discuss this point in more depth, we will opt in practice (as in Examples 1,
2 and 3 in Section 3.4) for proofs by contradiction in order to show that the case is normal.

Remark 3.2.3. If there is no running inequality state constraint in Problem (OSCPsc), that is,
considering hj = −1 for all j = 1, . . . , q for example, then Theorem 3.2.1 recovers the standard
Pontryagin maximum principle for optimal sampled-data control problems obtained for example
in [Bourdin & Trélat 2015, Bourdin & Trélat 2016] or as in the paper [Bourdin & Dhar 2019]
in the case of fixed sampling times (see Theorem 2.2.1 in Chapter 2).

Remark 3.2.4. This comment echoes the Remark 2.2.13 given in Chapter 2 regarding Prob-
lem (OSCP). Following the proof in Section 3.5, one can easily see that Theorem 3.2.1 is still
valid for a couple (x, u) which is a solution to Problem (OSCPsc) in (only) a local sense to
be precised. For the ease of statement, we took the decision to establish Theorem 3.2.1 for a
couple (x, u) which is a solution to Problem (OSCPsc) in a global sense.

Remark 3.2.5. In the context of Theorem 3.2.1 and using the definition of the Hamiltonian,
note that the state equation can be written as

ẋ(t) = ∇3H(x(t), u(t), p(t), p0, t),

for a.e. t ∈ [0, T ], and that the adjoint equation can be written as

−dp = ∇1H(x, u, p, p0, ·) dt−
q∑
j=1

∇1hj(x, ·) dηj ,

over [0, T ].

Remark 3.2.6. It is frequent in the literature (see, e.g., [Vinter 2010, Theorem 9.3.1]) to find
the adjoint vector p ∈ BV([0, T ],Rn) written as the sum p = p1 + p2 where p1 ∈ AC([0, T ],Rn)

is the unique solution to the backward linear Cauchy problemṗ1(t) = −∇1H(x(t), u(t), p(t), p0, t), a.e. t ∈ [0, T ],

p1(T ) = p0∇g(x(T )),

and where p2 ∈ BV([0, T ],Rn) is defined by

p2(t) := −
q∑
j=1

∫ T

t
∇1hj(x(s), s) dηj(s),

for all t ∈ [0, T ]. This decomposition easily follows from the integral representation of the
solutions to backward linear Cauchy-Stieltjes problem recalled in Section 1.2.
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Remark 3.2.7. In the context of Theorem 3.2.1, note that the complementary slackness condi-
tion implies that, for all j = 1, . . . , q, the function ηj remains constant on any open subinter-
val (t1, t2) ⊂ {t ∈ [0, T ] | hj(x(t), t) < 0} with t1 < t2. Denoting by dηj the finite nonnegative
Borel measure associated with ηj (see Section 1.2 for more details), we deduce that

supp(dηj) ⊂ {t ∈ [0, T ] | hj(x(t), t) = 0},

for all j = 1, . . . , q, where supp(dηj) stands for the classical notion of support of the measure
dηj.

Remark 3.2.8. Note that the necessary optimality conditions of Theorem 3.2.1 are not of in-
terest when the running inequality state constraints are degenerate. For example this can occur
in the case q = 2 if the optimal trajectory x activates the two running inequality state con-
straints at some time t = t with moreover ∇1h1(x(t), t) = −∇1h2(x(t), t). In that context,
taking (p, p0) = (0BV, 0) and the measures dη1 and dη2 being both the Dirac measure concen-
trated at t = t, we obtain that the triplet (p, p0, dη) satisfies all conditions of Theorem 3.2.1
which thus provides no additional information. We refer to [Vinter 2010, Remark (b) p.330] for
a similar remark in the classical case of permanent controls.

Remark 3.2.9. In the classical case of state unconstrained optimal permanent control problems,
the Pontryagin maximum principle induces an indirect numerical method based on the resolution
by a shooting method of the boundary value problem satisfied by the augmented state-costate
vector (see, e.g., [Trélat 2005, p.170-171] for details). Recall that:

(i) In the presence of state constraints, the indirect numerical method can be adapted. How-
ever, some theoretical and numerical difficulties may appear due to the possible pathological
behavior of the adjoint vector (see Section 3.4 for more details).

(ii) The indirect numerical method has also been adapted to the case of (state unconstrained) op-
timal sampled-data control problems in [Bourdin & Trélat 2015, Bourdin & Trélat 2016],
and also in case of free sampling times in [Bourdin & Dhar 2019] as presented in Chap-
ter 2.

Before being presented in the work [Bourdin & Dhar 2020], to the best of our knowledge, the
indirect numerical method had never been adapted to optimal sampled-data control problems in
the presence of running inequality state constraints. This gap was filled in the literature by
using the Pontryagin maximum principle derived in Theorem 3.2.1. Of course, in the context
of Theorem 3.2.1, it might be possible that the adjoint vector p ∈ BV([0, T ],Rn) is pathological
and/or admits an infinite number of discontinuities, but it is shown in Sections 3.3 and 3.4
that, under certain (quite unrestrictive) hypotheses, the implementation of the indirect numerical
method is simplified due to the particular behavior of the optimal trajectory (called the bouncing
trajectory phenomenon).

Remark 3.2.10. This comment echoes Remark 2.2.17 given in Chapter 2 regarding an alter-
native technique of proof for a PMP for optimal sampled-data control problems. In this chapter,
as explained in the Introduction, the proof of Theorem 3.2.1 is based on the Ekeland variational
principle [Ekeland 1974]. Let us note that an alternative proof of Theorem 3.2.1 can be ob-
tained by adapting a remarkable technique exposed in the paper [Dmitruk & Kaganovich 2011]
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by Dmitruk and Kaganovich that consists of mapping each sampling interval [ti, ti+1] to the in-
terval [0, 1] and by taking the values ui of the sampled-data control to be additional parameters.
Then, through the application of the Pontryagin maximum principle for optimal permanent con-
trol problems with running inequality state constraints (see, e.g., [Bourdin 2016, Theorem 1]
and [Vinter 2010, Theorem 9.5.1 p. 339-340]), one obtains the adjoint equation (3.2) and com-
plementary slackness condition (3.3) given in Theorem 3.2.1. Moreover the application of a
“Pontryagin maximum principle with parameters” (see, e.g, [Bourdin & Trélat 2013, Remark 5
p.3790]) leads to a necessary optimality condition written in integral form which coincides with
the nonpositive averaged Hamiltonian gradient condition (3.1).

3.3 Bouncing trajectory phenomenon

When we undertook to study optimal sampled-data control problems in the presence of running
inequality state constraints in the work [Bourdin & Dhar 2020], one of our first actions was to
numerically solve some simple problems using a direct method (see Section 3.4 for some details
on direct methods in optimal control theory). On this occasion we observed that the optimal
trajectories returned by the algorithm had a common behavior with respect to the running
inequality state contraints. Precisely the optimal trajectories were “bouncing” on them. We
refer to Figure 3.3 and Section 3.4 for some examples illustrating this observation which we refer
to as the bouncing trajectory phenomenon. Actually, when dealing with sampled-data controls
and running inequality state constraints, the bouncing trajectory phenomenon concerns, not
only the optimal trajectories, but all admissible trajectories.

In this section our aim is to give a detailed description of this new observation which was; to
the best of our knowledge, first expounded in the work [Bourdin & Dhar 2020] (which does
not appear in general in the classical theory, that is, with permanent controls). Precisely
in [Bourdin & Dhar 2020] we showed that, under certain hypotheses, an admissible trajectory
of Problem (OSCPsc) necessarily bounces on the running inequality state constraints and, more-
over, the activating times occur at most at the sampling times ti (and thus in a finite number
and at precise instants). As detailed later in Section 3.4, this feature presents some benefits
from a numerical point of view.

In Section 3.3.1 below we initiate an heuristic discussion allowing to understand why, usu-
ally, the admissible trajectories of Problem (OSCPsc) bounce on the running inequality state
constraints and, moreover, at most at the sampling times ti. Then we provide in Section 3.3.2
a mathematical framework and rigorous justifications which allow us to specify a sufficient con-
dition ensuring this behavior (see Proposition 3.3.1).

Throughout this section, for simplicity, we will assume that q = 1, that is, there is only one
running inequality state constraint in Problem (OSCPsc) denoted by h(x(t), t) ≤ 0. Nevertheless
the results and comments of this section can be extended to multiple running inequality state
constraints, that is, for q ≥ 2. Furthermore we will assume that the dynamics f and the running
inequality state constraint function h are of class C∞ in all variables. In particular note that
any admissible trajectory of Problem (OSCPsc) is thus piecewise smooth of class C∞, in the
sense that it is of class C∞ over each sampling interval [ti, ti+1].
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3.3.1 Expected behavior of an admissible trajectory

We start this section by recalling some standard terminology from [Hartl et al. 1995, p.183]
or [Sethi & Thompson 2000, p.105]. Let x be an admissible trajectory of Problem (OSCPsc).
An element t ∈ [0, T ] is called an activating time if it satisfies h(x(t), t) = 0. An interval [t1, t2] ⊂
[0, T ], with t1 < t2, is called a boundary interval if h(x(t), t) = 0 for all t ∈ [t1, t2]. Note that
any point of a boundary interval is an activating time, while the reverse is not true in general.
In what follows, we say that the trajectory x exhibits the bouncing trajectory phenomenon if the
set of activating times contains no boundary interval.

Our aim in this section is to give some heuristic descriptions (and illustrative figures) of the
main reason why a bouncing trajectory phenomenon is common when dealing with sampled-
data controls in the presence of running inequality state constraints (see (i) below) and why,
moreover, the activating times occur at most at the sampling times ti only (see (ii) below). The
mathematical framework and rigorous justifications will be provided in Section 3.3.2.

(i) In the classical theory (that is, with permanent controls), a boundary interval may cor-
respond to a feedback control, that is, to an expression of the control as a function of
the state. Such an expression usually leads to a nonconstant control. More generally,
a running inequality state constraint usually cannot be activated by a trajectory on an
interval [t1, t2], with t1 < t2, on which the associated (permanent) control is constant.
We refer to Figure 3.1 for an illustration. Therefore, since we deal with piecewise con-
stant controls in Problem (OSCPsc), one should expect that an admissible trajectory of
Problem (OSCPsc) does not contain any boundary interval and thus exhibits a bouncing
trajectory phenomenon. In order to guarantee the validity of this remark, it is sufficient to
make an assumption on f and h which prevents the existence of an admissible trajectory
x of Problem (OSCPsc) and an interval [t1, t2] ⊂ [0, T ], with t1 < t2, for which ϕ(`)(t) = 0

for all ` ∈ N and all t ∈ [t1, t2], where ϕ is defined by ϕ(t) := h(x(t), t) for all t ∈ [t1, t2].
This will be done in Section 3.3.2 (see Hypothesis (H1)).

running inequality
state constraint

x

Usually the control is not
constant along a bound-
ary interval

Figure 3.1: In the classical theory (that is, with permanent controls), a boundary interval is
usually associated with a nonconstant control

(ii) Let t ∈ [0, T ] be a left isolated (resp. right isolated) activating time of an admissible
trajectory x of Problem (OSCPsc). In what follows we denote by u the corresponding
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control. Let us assume that t is not a sampling time, that is, t ∈ (ti, ti+1) for some i ∈
{0, . . . , N − 1}. Usually the trajectory x “hits" (resp. “exits") the running inequality state
constraint transversally at t. Since the control value u(t) = ui is fixed all along the sampling
interval [ti, ti+1], the trajectory x then “crosses" the running inequality state constraint
immediately after t (resp. immediately before t), which contradicts the admissibility of x.
We refer to Figure 3.2 for an illustration. Hence, in order to preserve the admissibility of
x, we understand that the control value must change at t, that is, since u is a sampled-
data control, that t must be one of the sampling times ti. From this simple heuristic
discussion, one should expect that an admissible trajectory of Problem (OSCPsc) has no
left or right isolated activating time outside of the sampling times ti. In order to guarantee
the validity of this remark, it is sufficient to make an assumption on f and h which prevents
the existence of an admissible trajectory of Problem (OSCPsc) which “hits" or “exits" the
running inequality state constraint tangentially. This will be done in Section 3.3.2 (see
Hypothesis (H2)). Actually our Hypothesis (H2) will even guarantee that an admissible
trajectory of Problem (OSCPsc) has no activating time outside of the sampling times ti.

running inequality
state constraint

x

Usually the tra-
jectory “hits" the
running inequal-
ity state constraint
transversally

Keeping the same
control value u(t) =

ui, the trajectory
“crosses" the running
inequality state con-
straint

tti ti+1

Figure 3.2: Illustration of a trajectory x hitting transversally the running inequality state con-
straint at some left isolated activating time t which belongs to the interior (ti, ti+1) of a sampling
interval.

We conclude from (i) and (ii) that one should expect the admissible trajectories of Prob-
lem (OSCPsc) to exhibit the bouncing trajectory phenomenon and, moreover, so that the acti-
vating times occur at most at the sampling times ti (and thus in a finite number and at precise
instants). We refer to Figure 3.3 for an illustration of this feature. Note that, even if activating
times are sampling times, the reverse is not true in general.

We conclude this section by mentioning that the above descriptions are only heuristic and, of
course, one can easily find counterexamples in which the behavior of Figure 3.3 is not observed.
Nonetheless we emphasize that the bouncing trajectory phenomenon is quite ordinary when
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running inequality
state constraint

x

ti−2 ti−1 ti ti+1ti−3 ti+3ti+2

Figure 3.3: Illustration of the expected behavior of an admissible trajectory x of Prob-
lem (OSCPsc).

dealing with sampled-data controls and running inequality state constraints, as guaranteed by
the mathematical justifications provided in Section 3.3.2 below and as illustrated by the examples
numerically solved in Section 3.4.

3.3.2 A sufficient condition for the bouncing trajectory phenomenon

Our aim in this section is to provide a rigorous mathematical framework describing the heuristic
discussion provided in the previous Section 3.3.1. In particular we will formulate a sufficient
condition (see Proposition 3.3.1 below) ensuring the bouncing trajectory phenomenon and that
the rebounds occur at most at the sampling times ti.

To this aim, and similarly to [Hartl et al. 1995, p.183], we introduce the functions h[`] :

Rn × Rm × [0, T ]→ R defined by the induction{
h[0](y, ω, t) := h(y, t),

∀` ∈ N, h[`+1](y, ω, t) := 〈∇1h
[`](y, ω, t), f(y, ω, t)〉Rn +∇3h

[`](y, ω, t),

for all (y, ω, t) ∈ Rn × Rm × [0, T ]. We introduce the subset

M := {(y, t) ∈ Rn × ([0, T ] \ T) | h(y, t) = 0},

and we denote by

`′(y, ω, t) := min{` ∈ N | h[`](y, ω, t) 6= 0} ∈ N∗ ∪ {+∞},

for all (y, t) ∈M and all ω ∈ U. Finally we introduce the set

U(y,t) := {ω ∈ U | `′(y, ω, t) is finite and even},

for all (y, t) ∈M. We now state the main result of this section.

Proposition 3.3.1. Assume that q = 1 and that f and h are of class C∞ in all their variables.
If the hypotheses

∀(y, t) ∈M, ∀ω ∈ U, `′(y, ω, t) < +∞, (H1)

and
∀(y, t) ∈M, ∀ω ∈ U(y,t), h[`

′(y,ω,t)](y, ω, t) > 0, (H2)
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are both satisfied, then the activating times of an admissible trajectory x of Problem (OSCPsc) are
sampling times. In particular x exhibits the bouncing trajectory phenomenon and the rebounds
occur at most at the sampling times ti (and thus in a finite number and at precise instants).

Proof. Let (x, u) be an admissible couple of Problem (OSCPsc). Let t ∈ [0, T ] be an activating
time and assume by contradiction that t ∈ (ti, ti+1) for some i = 0, . . . , N − 1. In particular we
have (x(t), t) ∈M. Since ui ∈ U, from Hypothesis (H1), we know that `′ := `′(x(t), ui, t) < +∞
and it holds that h[`′](x(t), ui, t) 6= 0. From Taylor’s theorem it holds that

h(x(t+ ε), t+ ε) = ε`
′

(
h[`
′](x(t), ui, t)

`′!
+R(ε)

)
,

for all ε ∈ R such that t+ ε ∈ (ti, ti+1), where the remainder term R satisfies limε→0R(ε) = 0.
Thus there exists ε̄ > 0 such that (t − ε̄, t + ε̄) ⊂ (ti, ti+1) and h(x(t′), t′) has the same sign
than (t′ − t)`′h[`′](x(t), ui, t) for all t′ ∈ (t − ε̄, t + ε̄) with t′ 6= t. We now distinguish two
cases: `′ odd and `′ even. If `′ is odd, then there clearly exists t′ ∈ (t − ε̄, t + ε̄) with t′ 6= t

such that h(x(t′), t′) > 0 which raises a contradiction with the admissibility of (x, u). If `′ is
even, then ui ∈ U(x(t),t) and, from Hypothesis (H2), it holds that h[`′](x(t), ui, t) > 0. We easily
deduce that there exists t′ ∈ (t− ε̄, t+ ε̄) with t′ 6= t such that h(x(t′), t′) > 0 which raises the
same contradiction. The proof is complete.

Remark 3.3.1. We emphasize that Hypotheses (H1) and (H2) are assumptions which guarantee
the validity of the arguments presented heuristically in the items (i) and (ii) of Section 3.3.1.

In the context of Proposition 3.3.1, it is ensured that an admissible trajectory of Prob-
lem (OSCPsc) activates the running inequality state constraint at most at the sampling times ti
(and thus in a finite number and at precise instants). We will see in Section 3.4 below that
this bouncing trajectory phenomenon (with localized rebounds) presents some benefits from a
numerical point of view. Taking this advantage we will numerically solve some simple examples
in which Hypotheses (H1) and (H2) are both satisfied and we will observe optimal trajectories
bouncing on the running inequality state constraint considered.

3.4 Numerical experiments

Two predominant kinds of numerical methods are known in classical optimal control theory
(that is, with permanent controls) without running inequality state constraints. The first kind
is usually called direct numerical methods and they consist in making a full discretization of the
optimal control problem which results in a constrained finite-dimensional optimization problem
that can be numerically solved from various standard optimization algorithms and techniques.
The second strategy is called indirect numerical methods because they are based on the Pontrya-
gin maximum principle. Precisely, if the Hamiltonian maximization condition allows to express
the optimal control u as a function of the state x and of the (absolutely continuous) adjoint
vector p, then the indirect numerical methods consist in the numerical resolution by a shooting
method of the boundary value problem satisfied by the augmented state-costate vector (x, p).
We emphasize that neither direct nor indirect methods are fundamentally better than the other.
We refer for instance to [Trélat 2005, p.170-171] for details and discussions on the advantages
and drawbacks of each kind of methods.
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In the presence of running inequality state constraints, direct numerical methods can be
adapted easily. On the contrary, solving optimal permanent control problems with running
inequality state constraints might be more intricate when using indirect numerical methods.
Indeed, in that situation, the adjoint vector p is not absolutely continuous in general, but (only)
of bounded variation. From the Lebesgue decomposition (see Theorem 1.2.1 in Chapter 1), we
can write

p = pac + psc + ps,

where pac is the absolutely continuous part, psc is the singularly continuous part and ps is
the saltus (or pure jump part) of p. From the complementary slackness condition, it is well
known that the adjoint vector p is absolutely continuous on intervals with no activating time
of the optimal trajectory x. On the other hand, on boundary intervals, the adjoint vector p
may have an infinite number of unlocalized jumps or a pathological behavior due to its sin-
gular part. As a consequence, an important part of the literature is devoted to the analysis
of the costate’s behavior and some constraint qualification conditions have been established.
We refer for instance to [Bettiol & Frankowska 2008, Bonnard et al. 2003, Hartl et al. 1995,
Jacobson et al. 1971, Maurer 1977].

In this chapter we have presented a Pontryagin maximum principle (Theorem 3.2.1) given
in the work [Bourdin & Dhar 2020] and our aim in this section is to propose an indirect method
for numerically solving optimal sampled-data control problems with running inequality state
constraints as seen in the work [Bourdin & Dhar 2020]. As in the classical theory (with perma-
nent controls), it appears that the adjoint vector obtained in Theorem 3.2.1 is (only) a function
of bounded variation and we will a priori encounter the same difficulties outlined above. Nev-
ertheless, as detailed in Section 3.3, we have proved in Proposition 3.3.1 that, under (quite
unrestrictive) Hypotheses (H1) and (H2), the optimal trajectory x of Problem (OSCPsc) acti-
vates the running inequality state constraint at most at the sampling times ti. As detailed in
Section 3.4.1 below, it follows that the corresponding adjoint vector p has no singular part and
admits a finite number of jumps which are localized at most at the sampling times ti. Taking
advantage of these informations, we will propose in Section 3.4.1 a simple indirect method in
order to numerically solve optimal sampled-data control problems with running inequality state
constraints of the form of Problem (OSCPsc) under Hypotheses (H1) and (H2).

In Sections 3.4.2, 3.4.3 and 3.4.4, this indirect method is implemented in order to numerically
solve three simple examples. We precise that the parameters of these examples have been chosen
in order to obtain figures which illustrate and highlight the bouncing trajectory phenomenon
and the jumps of the adjoint vector. Furthermore note that the numerical results returned
by the indirect method suggests the convergence of the optimal sampled-data controls to the
optimal permanent control as N tends to +∞. This provides a very interesting perspective
to investigate in future works. We mention that such a result has already been established
in [Bourdin & Trélat 2017] in the case of unconstrained linear-quadratic problems.

We conclude this paragraph by noting that the indirect numerical method proposed in Sec-
tion 3.4.1 (and its implementation in Sections 3.4.2, 3.4.3 and 3.4.4) is based on the assumption
that there exists a solution to Problem (OSCPsc). This question of existence has not been
addressed in the present chapter and constitutes an open question for future works (see Re-
mark 2.2.16 for more details).
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3.4.1 A shooting function for an indirect method

In this section our aim is to provide an indirect method, based on the Pontryagin maximum
principle given in Theorem 3.2.1, which allows to numerically solve some optimal sampled-data
control problems with running inequality state constraints. This numerical method can be
implemented in the normal case as well as in the abnormal case (in the sense of Remark 3.2.2).

Let (x, u) be a solution to Problem (OSCPsc). We denote by p0, η, p the elements provided
by the Pontryagin maximum principle given in Theorem 3.2.1. As explained at the beginning
of Section 3.4, the adjoint vector p may have a pathological behavior which would imply some
theoretical and/or numerical difficulties. Our aim in the sequel is to take advantage of Proposi-
tion 3.3.1 established in Section 3.3. To this aim, we assume in the sequel that q = 1, that f and h
are of class C∞ in all variables and that Hypotheses (H1) and (H2) are satisfied. As a conse-
quence, it follows from Proposition 3.3.1 that x activates the running inequality state constraint
at most at the sampling times ti. From the complementary slackness condition in Theorem 3.2.1,
we deduce that η admits exactly (N + 1) nonnegative jumps localized exactly at the sampling
times ti, and that η remains constant over (t0, t1) and over all [ti, ti+1) with i = 1, . . . , N − 1.
In what follows we denote the nonnegative jumps of η as follows:

η[0] := η(t+0 )− η(t0) = η(t+0 ), η[1] := η(t1)− η(t+0 )

and ∀i = 2, . . . , N, η[i] := η(ti)− η(ti−1).

From the adjoint equation in Theorem 3.2.1, it follows that the adjoint vector p has no singular
part, that it admits (N+1) jumps localized exactly at the sampling times ti, and that p remains
absolutely continuous over (t0, t1) and over all [ti, ti+1) with i = 1, . . . , N − 1. Moreover, from
the integral representation of p, the jumps of the adjoint vector are given by

p[0] := p(t+0 )− p(t0) = η[0]∇1h(x(t0), t0)

and ∀i = 1, . . . , N, p[i] := p(ti)− p(t−i ) = η[i]∇1h(x(ti), ti).

The general indirect numerical method proposed in this chapter is based on the shooting
map (

xT , (η
[i])i=0,...,N

)
7−→

(
x(0)− x0,

(
η[i]h(x(ti), ti)

)
i=0,...,N

)
,

where:

(i) we provide a guess of the final value x(T ) = xT and of the nonnegative jumps η[i] for
all i = 0, . . . , N ;

(ii) we compute p(T ) = p0∇g(x(T ));

(iii) we numerically solve the state and adjoint equations in a backward way (from t = T

to t = 0), by using the nonpositive averaged Hamiltonian gradient condition in order to
compute the control values ui for all i = 0, . . . , N − 1;

(iv) we finally compute x(0)− x0 and η[i]h(x(ti), ti) for all i = 0, . . . , N .
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As illustrations of the above indirect numerical method, we solve three simple examples in
Sections 3.4.2, 3.4.3 and 3.4.4 below. We precise that we used the MATLAB function fsolve
in order to find the zeros of the above shooting function. We also mention that we used the
basic forward Euler method in order to numerically solve the state and adjoint equations (but
numerous other approaches can be considered, such as Runge-Kutta methods for example).
Finally we emphasize that the numerical results obtained and presented hereafter have all been
confirmed by direct numerical approaches (using a basic forward Euler discretization of the whole
problem resulting into a constrained finite-dimensional optimization problem solved numerically
by the MATLAB function fmincon).

3.4.2 Example 1: a problem with a parabolic running inequality state con-
straint

We first consider the following optimal sampled-data control problem with running inequality
state constraint given by

minimize
∫ 4

0
x(t) +

1

4
u(t)2 dt

subject to x ∈ AC([0, 4],R), u ∈ PCT([0, 4],R),

ẋ(t) = u(t), a.e. t ∈ [0, 4],

x(0) = 6,

1
2(t− 2)2 + 2− x(t) ≤ 0, for all t ∈ [0, 4],

ui ∈ [−3,+∞), for all i = 0, . . . , N − 1,



(E1)

for fixed uniform N -partitions T of the interval [0, 4] with different values of N ∈ N∗. This sim-
ple problem coincides with a calculus of variations problem (with running inequality state con-
straints on the trajectory and its derivative, and also constraining the derivative to be piecewice
constant).

Let us check that Problem (E1) satisfies Hypotheses (H1) and (H2). To this aim we follow
the notations introduced in Section 3.3.2. For all (y, t) ∈ M and all ω ∈ [−3,+∞) it holds
that h[2](y, ω, t) = 1 and so Hypothesis (H1) is satisfied. We deduce that, for all (y, t) ∈ M
and all ω ∈ U(y,t), we have `′(y, ω, t) = 2 and h[`

′(y,ω,t)](y, ω, t) = 1 > 0, so Hypothesis (H2)
is satisfied as well. We conclude from Proposition 3.3.1 that all admissible trajectories activate
the running inequality state constraint at most at the sampling times ti.

In what follows we assume that there exists an optimal couple (x, u) for Problem (E1) and
we denote by p0, η, p the elements provided by the Pontryagin maximum principle given in
Theorem 3.2.1. Let us check that the case is normal (in the sense of Remark 3.2.2). Assume by
contradiction that p0 = 0. We have the adjoint equation −dp = dη over [0, 4] with p(4) = 0.
Therefore p(t) =

∫ 4
t dη(s) = η(4) − η(t) for all t ∈ [0, 4]. Then, from the nontriviality of

the couple (p0, η), it follows that η 6= 0NBV([0,T ],R) and thus, from the complementary slackness
condition, we deduce that x necessarily activates the running inequality state constraint. Let t̄ ∈
[0, 4] denote the first activating time. From Proposition 3.3.1, we know that t̄ = t̂i for some î ∈
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{0, . . . , N}. Since x(0) = 6, we have î ≥ 1. It follows that p(t) > 0 for all t ∈ [0, t1). Finally,
from the nonpositive averaged Hamiltonian gradient condition at i = 0, it follows that u0 ≥ ω

for all ω ∈ [−3,+∞) which is absurd.

From the previous paragraph, we normalize p0 = −1 (see Remark 3.2.2). Since we are in the
context of Proposition 3.3.1, we can now apply the shooting method detailed in Section 3.4.1.
As expected, we observe in Figure 3.4 (with N = 5) that the optimal trajectory returned by
the algorithm activates the running inequality state constraint at most at the sampling times ti
(represented by dashed lines). As also expected, the jumps of the adjoint vector occur at the same
activating times. Figures 4.3 and 3.6 continue to illustrate this bouncing trajectory phenomenon
for larger values of N (respectively with N = 10 and N = 40). Furthermore, in Figures 3.4,
4.3 and 3.6, we observe that the adjoint vector has no jump at sampling times which are not
activating times.
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Figure 3.4: Example 1 with N = 5.

Remark 3.4.1. Actually, in that simple Example 1, the state and adjoint equations are very
simple and can be solved explicitly. As a consequence, the shooting map can even be expressed
in the closed form given by

(
xT , (η

[i])i=0,...,N

)
7−→(

xT − x0 −
N−1∑
i=0

ui(ti+1 − ti),
(
η[i]
[1

2
(ti − 2)2 + 2− xT +

N−1∑
k=i

uk(tk+1 − tk)
])

i=0,...,N−1

)
,

where

ui = max

{
2

(
ti + ti+1

2
− T +

N∑
k=i+1

η[k]

)
,−3

}
,

for all i = 0, . . . , N − 1.
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Figure 3.5: Example 1 with N = 10.

0 0.5 1 1.5 2 2.5 3 3.5 4
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Optimal trajectory x

Running state constraint

0 0.5 1 1.5 2 2.5 3 3.5 4

-3

-2

-1

0

1

2

3
Optimal sampled-data control u

0 0.5 1 1.5 2 2.5 3 3.5 4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
Adjoint vector p

Figure 3.6: Example 1 with N = 40.
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3.4.3 Example 2: an optimal consumption problem with an affine running
inequality state constraint

The second example is the optimal sampled-data control problem with running inequality state
constraint given by

minimize
∫ 12

0
(u(t)− 1)x(t) dt

subject to x ∈ AC([0, 12],R), u ∈ PCT([0, 12],R),

ẋ(t) = u(t)x(t), a.e. t ∈ [0, 12],

x(0) = 1,

x(t)− 10t− 2 ≤ 0, for all t ∈ [0, 12],

ui ∈ [0, 1], for all i = 0, . . . , N − 1,



(E2)

for fixed uniform N -partitions T of the interval [0, 12] with different values of N ∈ N∗. This
problem corresponds to a classical optimal consumption problem (see, e.g., [Evans 2013, p.5])
revisited with sampled-data controls and running inequality state constraint.

Let us check that Problem (E2) satisfies Hypotheses (H1) and (H2). To this aim we follow the
notations introduced in Section 3.3.2. Let us assume by contradiction that there exist (y, t) ∈M
and ω ∈ [0, 1] such that `′(y, ω, t) = +∞. Then it follows that h[0](y, ω, t) = h[1](y, ω, t) =

h[2](y, ω, t) = 0. From h[0](y, ω, t) = 0, it holds that y > 0 and, from h[1](y, ω, t) = 0, it holds
that ω > 0. Therefore h[2](y, ω, t) = ω2y > 0 which raises a contradiction. Thus Hypothesis (H1)
is satisfied. From a similar reasoning, we prove that Hypothesis (H2) is also satisfied. We
conclude from Proposition 3.3.1 that all admissible trajectories activate the running inequality
state constraint at most at the sampling times ti.

In what follows we assume that there exists an optimal couple (x, u) for Problem (E2) and
we denote by p0, η, p the elements provided by the Pontryagin maximum principle given in
Theorem 3.2.1. Note that necessarily x(t) > 0 for all t ∈ [0, 12]. Let us check that the case is
normal (in the sense of Remark 3.2.2). Assume by contradiction that p0 = 0. We have the adjoint
equation dp = dη over [0, 12] with p(12) = 0. Therefore p(t) = −

∫ 12
t dη(s) = η(t) − η(12) for

all t ∈ [0, 12]. Then, from the nontriviality of the couple (p0, η), it follows that η 6= 0NBV([0,T ],R)
and thus, from the complementary slackness condition, we deduce that x necessarily activates
the running inequality state constraint. Let t̄ ∈ [0, 12] denote the first activating time. From
Proposition 3.3.1, we know that t̄ = t̂i for some î ∈ {0, . . . , N}. Since x(0) = 1, we know that
î ≥ 1. It follows that p(t) < 0 for all t ∈ [0, t̂i). Finally, since x(t) > 0 for all t ∈ [0, 12]

and from the nonpositive averaged Hamiltonian gradient condition at i = 0, . . . , î − 1, we get
that u0 = . . . = uî−1 = 0, which gives x(t) = 1 for all t ∈ [0, t̄]. This raises a contradiction
since x(t̄) = 10t̄+ 2 > 1.

From the previous paragraph, we normalize p0 = −1 (see Remark 3.2.2). Since we are in the
context of Proposition 3.3.1, we can now apply the shooting method detailed in Section 3.4.1.
In Figure 3.7 (with N = 2) we observe that the optimal trajectory returned by the algorithm
activates the running inequality state constraint at most at the sampling times ti (represented
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by dashed lines). Figures 3.8 and 3.9 continue to illustrate this bouncing trajectory phenomenon
for larger values of N (respectively with N = 4 and N = 6). Furthermore, in Figures 3.8 and
3.9, we observe that the adjoint vector has no jump at sampling times which are not activating
times.
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Figure 3.7: Example 2 with N = 2.
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Figure 3.8: Example 2 with N = 4.
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Figure 3.9: Example 2 with N = 6.

3.4.4 Example 3: a two-dimensional problem with a linear running inequality
state constraint

As a third and last example we consider the optimal sampled-data control problem with running
inequality state constraint given by

minimize
∫ 2

0
x2(t) +

1

4
u(t)2 dt

subject to x ∈ AC([0, 2],R2), u ∈ PCT([0, T ],R),

˙(
x1
x2

)
(t) =

(
x2(t)− u(t)

x1(t) + x2(t) + u(t)

)
, a.e. t ∈ [0, 2],

(
x1
x2

)
(0) =

(
0.05

−0.1

)
,

x1(t)− 16x2(t)− 2 ≤ 0, for all t ∈ [0, 2],

ui ∈ [−0.1,+∞), for all i = 0, . . . , N − 1,



(E3)

for fixed uniform N -partitions T of the interval [0, 2] with different values of N ∈ N∗. This
problem constitutes a two-dimensional problem with a linear running inequality state constraint.

Let us check that Problem (E3) satisfies Hypotheses (H1) and (H2). We denote by y :=

(y1, y2) ∈ R2 and we follow the notations introduced in Section 3.3.2. Let us assume by con-
tradiction that there exist (y, t) ∈ M and ω ∈ [−0.1,+∞) such that `′(y, ω, t) = +∞. Then it
follows the system of linear equalities given by

h[0](y, ω, t) = y1 − 16y2 − 2 = 0,

h[1](y, ω, t) = −16y1 − 15y2 − 17ω = 0,

h[2](y, ω, t) = −15y1 − 31y2 + ω = 0,
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which has a unique solution given by (y1, y2, ω) = 1
9(2,−1,−1) which raises a contradiction

since ω ∈ [−0.1,+∞). Thus Hypothesis (H1) is satisfied. If h[0](y, ω, t) = h[1](y, ω, t) = 0 for
some (y, t) ∈ M and some ω ∈ [−0.1,+∞), it follows that −15y1 − 31y2 = 2 + 17ω. Therefore
h[2](y, ω, t) = −15y1−31y2 +ω = 2+18ω ≥ 0.2 > 0. Thus Hypothesis (H2) is also satisfied. We
conclude from Proposition 3.3.1 that all admissible trajectories activate the running inequality
state constraint at most at the sampling times ti.

In what follows we assume that there exists an optimal couple (x, u) for Problem (E3) and
we denote by p0, η, p the elements provided by the Pontryagin maximum principle given in
Theorem 3.2.1. Let us check that the case is normal (in the sense of Remark 3.2.2). Assume by
contradiction that p0 = 0. From the previous paragraph, we know that x activates the running
inequality state constraint at most at the sampling times ti. From the complementary slackness
condition in Theorem 3.2.1, we deduce that η admits exactly (N+1) nonnegative jumps localized
exactly at the sampling times ti, and that η remains constant over (t0, t1) and over all [ti, ti+1)

with i = 1, . . . , N−1. Similarly to Section 3.4.1, we denote by η[i], for all i = 0, . . . , N , the N+1

jumps of η. From the nontriviality of the couple (p0, η), we know that the jumps η[i] are not all
zero. Since the initial condition x(0) does not activate the running inequality state constraint,
we know that η[0] = 0. Now take î ∈ {1, . . . , N} such that η [̂i] > 0 is the last nonzero jump of η.
On the other hand, since p(T ) = 0R2 and from the adjoint equation considered over the time
interval [t̂i, T ], we obtain that p(t̂i) = 0R2 . From the adjoint equation considered over the time
interval [t̂i−1, t̂i], we obtain that

p(t−
î

) = p(t̂i)− η
[̂i]

(
1

−16

)
= η [̂i]

(
−1

16

)
,

and p(t) = e(t−t̂i)A × p(t−
î

) for all t ∈ [t̂i−1, t̂i) where

A :=

(
0 −1

−1 −1

)
.

We get that∫ t̂i

t̂i−1

∇2H(x(s), uî−1, p(s), p
0, s) ds =

∫ t̂i

t̂i−1

p2(s)− p1(s) ds =

∫ t̂i

t̂i−1

〈
p(s),

(
−1

1

)〉
R2

ds

= η [̂i]

〈∫ t̂i

t̂i−1

e(s−t̂i)A ds×
(
−1

16

)
,

(
−1

1

)〉
R2

= η [̂i]
〈
A−1 ×

(
Id2 − e−(t̂i−t̂i−1)A

)
×
(
−1

16

)
,

(
−1

1

)〉
R2

.

The sign of this term is independent of the value of η [̂i] > 0. We compute numerically the
above term with different positive values of t̂i− t̂i−1 belonging to (0, 2] (in particular 2

4 ,
2
5 and 2

8

which are the values used in the next paragraph) and we always obtain a positive value which
raises a contradiction with the nonpositive averaged Hamiltonian gradient condition provided
in Theorem 3.2.1.

From the previous paragraph, we normalize p0 = −1 (see Remark 3.2.2). Since we are in the
context of Proposition 3.3.1, we can now apply the shooting method detailed in Section 3.4.1.
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In Figure 3.10 (with N = 4) we observe as expected a bouncing trajectory phenomenon. Fig-
ures 3.11 and 3.12 give illustrations for larger values of N (respectively with N = 5 and N = 8).
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Figure 3.10: Example 3 with N = 4.
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Figure 3.11: Example 3 with N = 5.

3.5 Proof of Theorem 3.2.1

This section is dedicated to the detailed proof of Theorem 3.2.1. In the whole section we will
assume that L = 0 in Problem (OSCPsc) (the case L 6= 0 can be treated similarly as in Sec-
tion 2.4.4 in Chapter 2). Our method of proof is similar to the one followed in Section 2.4 of
Chapter 2 and we will use results from the sensitivity analysis given in Section 2.4.1. Precisely,
the Ekeland variational principle is applied in Section 3.5.1 on an appropriate penalized func-
tional in order to derive a crucial inequality (see Inequality (3.8)) and we conclude the proof of
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Figure 3.12: Example 3 with N = 8.

Theorem 3.2.1 in Section 3.5.2 by introducing an appropriate adjoint vector p.

We first remark that the running inequality state constraints in Problem (OSCPsc) can be
written as h(x) ∈ S where:

• h : C([0, T ],Rn)→ C([0, T ],Rq) is defined as h(x) := h(x, ·) for all x ∈ C([0, T ],Rn). Note
that h is of class C1 with Dh(x)(x′) = ∇1h(x, ·)× x′ for all x, x′ ∈ C([0, T ],Rn);

• S := C([0, T ], (R−)q) where R− := (−∞, 0]. We emphasize that S ⊂ C([0, T ],Rq) is a
nonempty closed convex cone of C([0, T ],Rq) with a nonempty interior.

Recall that (C([0, T ],Rq), ‖ · ‖∞) is a separable Banach space. Applying Proposition 1.3.1 in
Chapter 1, we endow C([0, T ],Rq) with an equivalent norm ‖ · ‖Cq such that the associated
dual norm ‖ · ‖C∗q is strictly convex. We denote by dS : C([0, T ],Rq) → R the 1-Lipschitz
continuous distance function to S (see Section 1.3 for details). Then, from Proposition 1.3.2, we
know that dS and d2

S are strictly Hadamard-differentiable on C([0, T ],Rq) \ S with Dd2
S(x) =

2dS(x)DdS(x) and ‖DdS(x)‖C∗q = 1 for all x ∈ C([0, T ],Rq) \ S, and that d2
S is Fréchet-

differentiable on S with Dd2
S(x) = 0C([0,T ],Rq)∗ for all x ∈ S.

3.5.1 Application of the Ekeland variational principle

Let (x, u) ∈ AC([0, T ],Rn) × PCT([0, T ],Rm) be a solution to Problem (OSCPsc). Recall that
in the sensitivity analysis given in Section 2.4.1 in Chapter 2, the Cauchy problem (CP) is
considered over R+ and a global solution is defined over all of R+. In contrast, the state
equation given in Section 3.2.1 is defined over the compact interval [0, T ]. It can be shown that
the results given in Section 2.4.1 hold for the state equation given in Section 3.2.1 by the same
techniques. We also remark that, in contrast to Chapter 2, the optimal sampled-data control
problem with running inequality state constraints considered in Section 3.2.1 has a fixed initial
condition x(0) = x0. For this reason in the sequel, we simply denote by x(·, u′) := x(·, u′, x0)
for all u′ ∈ PCT([0, T ],Rm). In what follows we consider the positive real number ε > 0 given
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by Proposition 2.4.2 and we introduce the set

Vε := {u′ ∈ BL∞(u, ε) | u′ ∈ PCT([0, T ],Rm) and u′(t) ∈ U for all t ∈ [0, T ]}.

From the closedness assumption on U, one can easily prove that (Vε, ‖ · ‖L∞) is a complete
metric set. Let us choose a sequence (εk)k∈N such that 0 <

√
εk < ε for all k ∈ N and

satisfying limk→∞ εk = 0. We introduce the penalized functional

Jk : Vε −→ R+

u′ 7−→ Jk(u′) :=

√√√√((g(x(T, u′))− g(x(T )) + εk

)+)2

+ d2
S

(
h(x(·, u′))

)
,

for all k ∈ N. From Proposition 2.4.2 in Chapter 2, note that Jk is correctly defined for all k ∈ N.
Also, from Proposition 2.4.2 and from the continuities of g, h and d2

S (see Proposition 1.3.2 in
Chapter 1), it follows that Jk is continuous as well for all k ∈ N. Note that Jk is nonnegative
and, since the constraint h(x) ∈ S is satisfied, it holds that Jk(u) = εk for all k ∈ N. Therefore,
from the Ekeland variational principle (see Proposition 2.4.8 in Chapter 2), we conclude that
there exists a sequence (uk)k∈N ⊂ Vε such that

‖uk − u‖L∞ ≤
√
εk, (3.4)

and
−
√
εk ‖u′ − uk‖L∞ ≤ Jk(u′)− Jk(uk), (3.5)

for all u′ ∈ Vε and all k ∈ N. In particular, from Inequality (3.4), note that the sequence (uk)k∈N
converges to u in L∞([0, T ],Rm). From optimality of the couple (x, u), note that Jk(u′) > 0 for
all u′ ∈ Vε and all k ∈ N. We thus define correctly the couple (λk, ψ

∗
k) ∈ R× C∗([0, T ],Rq) as

λk :=
1

Jk(uk)

(
g(x(T, uk))− g(x(T )) + εk

)+
≥ 0,

and

ψ∗k :=


1

Jk(uk)
dS

(
h(x(·, uk))

)
DdS

(
h(x(·, uk))

)
if h(x(·, uk)) /∈ S,

0C∗q if h(x(·, uk)) ∈ S,

for all k ∈ N. From Proposition 1.3.2 it holds that |λk|2 + ‖ψ∗k‖2C∗q = 1 for all k ∈ N. As a
consequence, we can extract subsequences (which we do not relabel) such that (λk)k∈N converges
to some λ ≥ 0 and (ψ∗k)k∈N weakly∗ converges to some ψ∗ ∈ C∗([0, T ],Rq). In particular it holds
that |λ|2 + ‖ψ∗‖2C∗q ≤ 1. At this step note that we cannot ensure that the couple (λ, ψ∗) is not
trivial. The nontriviality is guaranteed by the next proposition.

Proposition 3.5.1. The couple (λ, ψ∗) ∈ R× C∗([0, T ],Rq) is nontrivial and it holds that

〈ψ∗, ψ − h(x)〉C∗q×Cq ≤ 0, (3.6)

for all ψ ∈ S.
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Proof. Let k ∈ N be fixed. From Proposition 1.3.2, if h(x(·, uk)) /∈ S, then DdS(h(x(·, uk))) ∈
∂dS(h(x(·, uk))). Hence, if h(x(·, uk)) /∈ S, it holds that〈

DdS

(
h(x(·, uk))

)
, ψ − h(x(·, uk))

〉
C∗q×Cq

≤ dS(ψ)− dS

(
h(x(·, uk)

)
≤ 0,

for all ψ ∈ S. As a consequence, in both cases h(x(·, uk)) ∈ S and h(x(·, uk)) /∈ S, it holds that〈
ψ∗k, ψ − h(x(·, uk))

〉
C∗q×Cq

≤ 0, (3.7)

for all ψ ∈ S. Using Proposition 2.4.2 and taking the limit as k tends to +∞, we get Inequal-
ity (3.6). Now let us prove that the couple (λ, ψ∗) ∈ R×C∗([0, T ],Rq) is nontrivial. Since S has
a nonempty interior, there exists ξ ∈ S and δ > 0 such that ξ + δψ ∈ S for all ψ ∈ BCq(0Cq , 1).
Hence we obtain from Inequality (3.7) that

δ〈ψ∗k, ψ〉C∗q×Cq ≤ 〈ψ
∗
k, h(x(·, uk))− ξ〉C∗q×Cq ,

for all ψ ∈ BCq(0Cq , 1) and all k ∈ N. We deduce that

δ‖ψ∗k‖C∗q = δ
√

1− |λk|2 ≤ 〈ψ∗k, h(x(·, uk))− ξ〉C∗q×Cq ,

for all k ∈ N. Using Proposition 2.4.2 and taking the limit as k tends to +∞, we obtain that

δ
√

1− |λ|2 ≤ 〈ψ∗, h(x)− ξ〉C∗q×Cq .

Since δ > 0, the last inequality implies that the couple (λ, ψ∗) is nontrivial which completes the
proof.

Finally, in the next result, we use Inequality (3.5) with convex L∞-perturbations (see Sec-
tion 2.4.1.2 in Chapter 2) of the control uk in order to establish a crucial inequality.

Proposition 3.5.2. The inequality

λ
〈
∇g(x(T )), wv(T )

〉
Rn

+
〈
ψ∗,∇1h(x, ·)× wv(·)

〉
C∗q×Cq

≥ 0, (3.8)

holds for all v ∈ PCT([0, T ],Rm) with values in U, where wv(·) is the variation vector defined in
Proposition 2.4.3.

Proof. Let v ∈ PCT([0, T ],Rm) with values in U. We fix k ∈ N. Since U is convex, it is clear
that the convex L∞-pertubation of the control uk associated with v, defined by uk,v(t, α) :=

uk(t) + α(v(t) − uk(t)) for all t ∈ [0, T ] and all 0 ≤ α ≤ 1, belongs to PCT([0, T ],Rm) and
takes values in U. Furthermore it holds that ‖uk,v(·, α)− u‖L∞ ≤ α‖v− uk‖L∞ + ‖uk − u‖L∞ ≤
α‖v − uk‖L∞ +

√
εk. Since

√
εk < ε, we deduce that uk,v(·, α) ∈ Vε for small enough α > 0.

From Inequality (3.5) we get that

−
√
εk ‖v − uk‖L∞ ≤

1

Jk(uk,v(·, α)) + Jk(uk)
×
Jk(uk,v(·, α))2 − Jk(uk)2

α
,
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for small enough α > 0. From Proposition 2.4.3 and from strict Hadamard-differentiability of
d2
S over C([0, T ],Rq)\S and Fréchet-differentiability of d2

S over S (see Proposition 1.3.2), taking
the limit as α tends to 0, we get that

−
√
εk ‖v − uk‖L∞ ≤

1

2Jk(uk)

[
2
(
g(x(T, uk))− g(x(T )) + εk

)+〈
∇g(x(T, uk)), wk,v(T )

〉
Rn

+
〈

2dS(h(x(·, uk)))DdS(h(x(·, uk))),∇1h(x(·, uk), ·)× wk,v(·)
〉
C∗q×Cq

]
,

with the convention that the second term on the right-hand side is zero if h(x(·, uk)) ∈ S. Using
the definition of λk and ψ∗k, we deduce that

−
√
εk ‖v − uk‖L∞ ≤ λk

〈
∇g(x(T, uk)), wk,v(T )

〉
Rn

+
〈
ψ∗k,∇1h(x(·, uk), ·)× wk,v(·)

〉
C∗q×Cq

.

We take the limit of this inequality as k tends to +∞. From the smoothness of g and h and
from Proposition 2.4.2 and Lemma 2.4.3, Inequality (3.8) is proved.

3.5.2 Introduction of the adjoint vector

We can now conclude the proof of Theorem 3.2.1 (in the case L = 0) by introducing the adjoint
vector p. We refer to Section 1.2 in Chapter 1 for notations and background concerning Stieltjes
integrations and linear Cauchy-Stieltjes problems.

Introduction of the nontrivial couple (p0, η) and complementary slackness condition.
We introduce p0 := −λ ≤ 0 and we write ψ∗ = (ψ∗j )j=1,...,q where ψ∗j ∈ C([0, T ],R)∗ for every
j = 1, . . . , q. From the Riesz representation theorem (see Proposition 1.2.2), there exists a
unique ηj ∈ NBV([0, T ],R) such that

〈ψ∗j , ψ〉C∗1×C1 =

∫ T

0
ψ(t) dηj(t),

for all ψ ∈ C1 and all j = 1, . . . , q. Furthermore ψ∗j = 0C∗1 if and only if ηj = 0NBV([0,T ],R). Thus
it follows from Proposition 3.5.1 that the couple (p0, η) is not trivial, where η := (ηj)j=1,...,q ∈
NBV([0, T ],Rq). Moreover, from Inequality (3.6) (and the fact that S is a cone containing h(x)),
one can easily deduce that 〈ψ∗j , hj(x)〉C∗1×C1 = 0, that is,∫ T

0
hj(x(t), t) dηj(t) = 0,

for all j = 1, . . . , q. Finally one can similarly deduce from Inequality (3.6) that 〈ψ∗j , ψ〉C∗1×C1 ≥ 0

for all ψ ∈ C([0, T ],R) and all j = 1, . . . , q. From Proposition 1.2.2, it follows that ηj is
monotonically increasing on [0, T ] for all j = 1, . . . , q.

Adjoint equation. We define the adjoint vector p ∈ BV([0, T ],Rn) as the unique solution to
the backward linear Cauchy-Stieltjes problem given by−dp =

(
∇1f(x, u, ·)> × p

)
dt−

∑q
j=1∇1hj(x, ·) dηj over [0, T ],

p(T ) = p0∇g(x(T )).
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From the Duhamel formula for backward linear Cauchy-Stieltjes problems and using notations
introduced in Section 1.2, it holds that

p(t) = Φ(T, t)> ×
(
p0∇g(x(T ))

)
−
∫ T

t
Φ(s, t)> ×∇1h(x(s), s)> × dη(s),

for all t ∈ [0, T ], where Φ(·, ·) : [0, T ]2 → Rn×n stands for the state-transition matrix associated
with ∇1f(x, u, ·) ∈ L∞([0, T ],Rn×n) (see [Sontag 1998, Appendix C.4] for more details on state-
transition matrices).

Nonpositive averaged Hamiltonian gradient condition. From Inequality (3.8) and using
notations introduced in Section 1.2, it holds that

λ
〈
∇g(x(T )), wv(T, u)

〉
Rn

+

∫ T

0

〈
∇1h(x(t), t)× wv(t, u), dη(t)

〉
≥ 0,

for all v ∈ PCT([0, T ],Rm) with values in U. From the definition of the variation vector wv(·, u)

and the classical Duhamel formula for standard forward linear Cauchy problems, it holds that

wv(t, u) =

∫ t

0
Φ(t, s)×∇2f(x(s), u(s), s)× (v(s)− u(s)) ds,

for all t ∈ [0, T ]. Substituting this expression into the previous inequality and using the last
Fubini formula given in Section 1.2, it follows that∫ T

0

〈
Φ(T, s)> ×

(
p0∇g(x(T ))

)
,∇2f(x(s), u(s), s)× (v(s)− u(s))

〉
Rn

ds

−
∫ T

0

〈
∇2f(x(s), u(s), s)× (v(s)− u(s)),

∫ T

s
Φ(t, s)> ×∇1h(x(t), t)> × dη(t)

〉
Rn
ds ≤ 0,

for all v ∈ PCT([0, T ],Rm) with values in U. Finally, grouping like terms, we exactly obtain∫ T

0

〈
p(t),∇2f(x(t), u(t), t)× (v(t)− u(t))

〉
Rn
dt ≤ 0,

for all v ∈ PCT([0, T ],Rm) with values in U. For all i = 0, . . . , N − 1 and all ω ∈ U, let us
consider vi,ω ∈ PCT([0, T ],Rm) with values in U as

vi,ω(t) :=

{
ω if t ∈ [ti, ti+1),

u(s) if t /∈ [ti, ti+1),

for all t ∈ [0, T ]. Substituting v by vi,ω in the above inequality and from the definition of the
Hamiltonian H, we exactly get that〈∫ ti+1

ti

∇2H(x(t), ui, p(t), p
0, t) dt, ω − ui

〉
Rm
≤ 0,

for all ω ∈ U and all i = 0, . . . , N−1. The proof of Theorem 3.2.1 is complete (in the case L = 0).
The proof in the case L 6= 0 follows from a similar argument as that given in Section 2.4.4 in
Chapter 2.



Chapter 4

A universal separating vector theorem
with applications to optimal control

problems with nonsmooth Mayer cost
functions

This chapter is based on the work “A universal separating vector theorem with application to
nonsmooth optimal control problems” by S. Adly, L. Bourdin and G. Dhar which has recently
been submitted for publication (see [Adly et al. 2020]). An additional application of the universal
separating vector theorem is given in this chapter to obtain a Pontryagin maximum principle
for optimal sampled-data control problems with nonsmooth Mayer cost functions which was not
presented in [Adly et al. 2020].

4.1 Introduction

Content of the present chapter. Our main objective in the present chapter is to establish
a Pontryagin maximum principle (in short, PMP) for optimal sampled-data control problems
with nonsmooth Mayer cost functions. To this aim, we have studied the vast literature on
nonsmooth optimal permanent control theory in which several methods have been explored in
order to establish PMPs for optimal permanent control problems with nonsmooth data. We can
cite for example the method of quadratic inf-convolution in [Clarke 2008, Section 2.1 page 4] or
the application of a nonsmooth Lagrange multiplier rule in [Vinter 2010, Theorem 5.6.2]. Most
of the proofs found in the literature involve regularization methods. On the contrary, in the
work [Adly et al. 2020], we were interested in developing a proof which directly follows from the
tools of nonsmooth analysis (as presented in Section 1.4 of Chapter 1). Our investigation led us
to consider the existence of a universal selection in the subdiffeential of the nonsmooth Mayer
cost function. In the work [Adly et al. 2020], we determined the existence of such a universal
selection by establishing a more general result asserting the existence a universal separating
vector for a given compact convex set not containing the origin. From the application of this
result, which is called universal separating vector theorem (see Theorem 4.2.1 for details), we
were able to derive a PMP for optimal permanent control problems with nonsmooth Mayer cost
functions. Note that our novel approach in [Adly et al. 2020] was also based on the combination
of implicit spike variations and packages of needle-like perturbations of the optimal control (see
Proposition 4.3.1 and Lemma 4.3.1 respectively). Finally, in this chapter, we apply again the
universal separating vector theorem to obtain a PMP for optimal sampled-data control problems
with nonsmooth Mayer cost functions which was the initial motivation of the present work and
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which was not presented in the article [Adly et al. 2020].

Brief presentation of the problematic of universal separating vector. Let n ∈ N∗ be
a positive integer fixed throughout the chapter. The aim of this paragraph is to present the
problematic of universal separating vector considered in the work [Adly et al. 2020]. For this
purpose we first introduced the following basic notion of separating vector.

Definition 4.1.1 (Separating vector). Let C ⊂ Rn be a nonempty convex set not containing the
origin 0Rn. A vector v ∈ Rn is said to be a separating vector of C if 〈c, v〉Rn < 0 for all c ∈ C.

Let C ⊂ Rn be a nonempty convex set not containing the origin 0Rn . Using the usual
terminology found in the convex analysis literature (see, e.g., [Brezis 2011, Section 1.2]), every
separating vector of C defines a hyperplane which separates C with the singleton {0Rn}. In the
work [Adly et al. 2020] we adopted the notion of separating vector (instead of separating hyper-
plane) because our problematic led us to consider convex combinations of separating vectors,
while the concept of convex combinations of separating hyperplanes would have been confusing.
Finally, since the inequality in Definition 4.1.1 is strict and its left-hand term can be arbitrarily
close to zero, note that the notion of separating vector of C is not exactly equivalent to the
standard notion of separating hyperplane of C with the singleton {0Rn} (neither in the large
sense, nor in the strict one).

Remark 4.1.1. Let C ⊂ Rn be a nonempty convex set not containing the origin 0Rn. If C
is not closed, then C may not admit any separating vector (a simple two-dimensional unclosed
counterexample is given by C := ([−1, 1] × (0, 1]) ∪ {(−1, 0)}, see Figure 4.1). Otherwise, if C
is closed, the next proposition is a direct consequence of the classical Hahn-Banach separation
theorem (see, e.g., [Brezis 2011, Theorem 1.7]).

C

Figure 4.1: Two-dimensional unclosed counterexample from Remark 4.1.1.

Proposition 4.1.1. If C ⊂ Rn is a nonempty closed convex set not containing the origin 0Rn,
then C admits at least one separating vector.

Before presenting the problematic of universal separating vector, let us start with a pre-
liminary question. Consider {Ci}i∈I being a family of nonempty closed convex sets of Rn not
containing the origin 0Rn such that their union C := ∪i∈ICi is also closed and convex. From
Proposition 4.1.1, each Ci admits a separating vector vi. Furthermore, again from Proposi-
tion 4.1.1, we know that C admits a separating vector. The preliminary question is the following:
does there exist a separating vector of C which is a convex combination of the vectors vi? This
issue is illustrated in the two-dimensional Figure 4.2 in the case where I = {1, 2}.
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C1
C2

v2

v1

αv1 + (1− α)v2?

Figure 4.2: In this two-dimensional illustration, the vectors v1 and v2 are respectively separating
vectors of the nonempty closed convex sets C1 and C2 not containing the origin 0R2 . Does there
exist a separating vector of the closed convex set C := C1 ∪ C2 which is a convex combination
of v1 and v2 (that is, which can be written as αv1 + (1− α)v2 for some α ∈ [0, 1])?

The (more general) problematic of universal separating vector is expounded as follows.
Let C ⊂ Rn be a nonempty convex set and V ⊂ Rn be a nonempty set such that, for all c ∈ C,
there exists a vector vc ∈ V which is a separating vector of the singleton {c}. Our problematic
then asks whether there exists a universal vector v in the convex envelope of V which is a sepa-
rating vector of the whole set C.1 The study of this issue was given in the work [Adly et al. 2020]
and is presented in the next Section 4.2. Despite the simplicity of the statement, and that one
might expect an easy and positive answer, it turned out that closing this mathematical challenge
was not a trivial task. In particular, we showed in the main result of the work [Adly et al. 2020]
(see Theorem 4.2.1) and with several counterexamples that the existence of such a universal
vector v in the convex envelope of V requires the compactness of C in general.

Organization of the chapter. This chapter is organized as follows. Section 4.2 is dedicated
to the universal separating vector theorem obtained in [Adly et al. 2020] along with its proof.
In Section 4.3, we show that it provides an alternative proof of a PMP for optimal permanent
control problems with nonsmooth Mayer cost functions which makes direct use of the tools
of nonsmooth analysis presented in Chapter 1. Section 4.4 is devoted to a PMP for optimal
sampled-data control problems with nonsmooth Mayer cost functions which was not presented
in [Adly et al. 2020] whose proof again applies the universal separating vector theorem. Finally
the proofs of two technical propositions are postponed to Section 4.5.

1Note that the previous preliminary question is a particular case of this general problematic, by considering
in particular V := {vi}i∈I .
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4.2 A universal separating vector theorem

This section is devoted to the universal separating vector theorem obtained in [Adly et al. 2020]
and recalled in Section 4.2.1 (see Theorem 4.2.1). This theorem is based on a compactness
assumption commented afterwards in a list of remarks with examples and counterexamples.
Then Section 4.2.2 is devoted to the proof of Theorem 4.2.1.

4.2.1 Main result and comments

For the needs of this section we recall that the convex envelope, denoted by Conv(V), of a
nonempty set V ⊂ Rn is defined as the smallest convex set of Rn containing V, and that we have

Conv(V) =

{
N∑
i=1

αivi ∈ Rn | N ∈ N∗, α = (α1, . . . , αN ) ∈ ∆N and ∀i = 1, . . . , N, vi ∈ V

}
,

where ∆N stands for the simplex defined by

∆N :=

{
α = (α1, . . . , αN ) ∈ RN+ |

N∑
i=1

αi = 1

}
.

We refer for example to [Rockafellar 1970, page 12] for more details. We are now in a position
to state the universal separating vector theorem obtained in [Adly et al. 2020]. Its proof is
postponed to the next Section 4.2.2.

Theorem 4.2.1 (A universal separating vector theorem). Let C ⊂ Rn be a nonempty compact
convex set and V ⊂ Rn be a nonempty set. Suppose that

∀c ∈ C, ∃vc ∈ ConvV, 〈c, vc〉Rn < 0,

then
∃v ∈ Conv(V), ∀c ∈ C, 〈c, v〉Rn < 0.

The conclusion of Theorem 4.2.1 can be seen as a transposition of the quantifiers in the
hypothesis. This justifies the terminology of universal separating vector used throughout this
chapter. Note that Theorem 4.2.1 is based on a compactness assumption that cannot be removed
in general, as discussed in the following list of remarks with several counterexamples.

Remark 4.2.1. This first remark discusses two trivial cases. Obviously, in the one-dimensional
setting n = 1, the compactness hypothesis on C in Theorem 4.2.1 is superfluous (since, by the
other assumptions, C is included either in R∗+ or in R∗−, and V contains at least one element
either in R∗− or R∗+ respectively). Also trivially, if V contains exactly one nonzero vector, then
the compactness hypothesis on C in Theorem 4.2.1 is superfluous.

Remark 4.2.2. In the higher-dimensional setting n ≥ 2 and when V contains at least two
different nonzero vectors, the compactness hypothesis on C in Theorem 4.2.1 cannot be removed
in general:

• a two-dimensional bounded unclosed counterexample is given by C := ([−1, 1] × (0, 1]) ∪
{(−1, 0)} with V containing v1 := (1, 0) and v2 := (0,−1). Indeed, in that situation, recall
that C has no separating vector (see Remark 4.1.1 and Figure 4.1).
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• a two-dimensional unbounded closed counterexample is given by C := {(x, y) ∈ R2 | x >
0, xy ≥ 1} with V := (0, 1]×{−1}. In that context, note that v is a separating vector of C
if and only if v ∈ R2

−\{0R2}. However Conv(V)∩ (R2
−\{0R2}) = V ∩ (R2

−\{0R2}) = ∅. We
refer to Figure 4.3 for an illustration.

C

V
v

Figure 4.3: Two-dimensional unbounded closed counterexample from Remark 4.2.2.

Remark 4.2.3. Note that the convexity (or not) of the set V does not play any role in Theo-
rem 4.2.1 since its convex envelope is considered in the conclusion of the theorem. In particular
this emphasizes that C and V do not play any symmetrical or similar roles. Nonetheless, in
the higher-dimensional setting n ≥ 2, one may wonder if the compactness hypothesis on C

in Theorem 4.2.1 could be weakened if additional assumptions were made on the set V. This
remark is dedicated to a discussion on that issue. Firstly, from the first counterexample in Re-
mark 4.2.2, the closedness of C appears clearly as a necessary assumption. As a consequence,
in the rest of this remark, we will focus on the possibility of relaxing (only) the boundedness
of C in Theorem 4.2.1. In the unbounded closed counterexample provided in Remark 4.2.2,
the associated set V is bounded and unclosed. Considering V ′ := {(x,− 1

x) | x ∈ (0, 1]} (resp.
V ′′ := {(x,−

√
x) | x ∈ [0, 1]}), we get the same counterexample but with the associated set V ′

unbounded and closed (resp. V ′′ compact). This underlines that the compactness (or not) of V
does not allow to weaken the boundedness assumption on C in Theorem 4.2.1. Finally one
might believe that the finiteness (with at least two different nonzero vectors) of V does, but the
three-dimensional unbounded closed counterexample given by

C := {(x, y, z) ∈ R3 | −1 ≤ x ≤ 1, 0 ≤ y ≤ 1, z ≥ 1, yz − (x+ 1)2 ≥ 0},

with V := {v1, v2}, where v1 := (1, 0, 0) and v2 := (0,−1, 0), proves that the boundedness of C
cannot be relaxed in Theorem 4.2.1 even if V contains exactly two different nonzero vectors.

Remark 4.2.4. In the same spirit as Remark 4.2.3, one would be eager to look for other as-
sumptions made on V which would allow to weaken the boundedness hypothesis made on C in
Theorem 4.2.1. Note that in the work [Adly et al. 2020] our aim was not to pursue our study in
that direction. Indeed, we emphasize that, in our practical applications of Theorem 4.2.1 (such
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as in Sections 4.3 and 4.4 for nonsmooth optimal control problems), it turns out that the set V
is very general and does not satisfy any interesting property a priori, while the set C is indeed
compact (see the proofs of Theorems 4.3.1 and 4.4.1 for details).

We conclude this section with the contrapositive of Theorem 4.2.1 which will play a central
role in Sections 4.3 and 4.4 where we will derive PMPs for nonsmooth optimal permanent and
sampled-data control problems.

Proposition 4.2.1 (Contrapositive of Theorem 4.2.1). Let C ⊂ Rn be a nonempty compact
convex set and V ⊂ Rn be a nonempty set. Suppose that

∀v ∈ Conv(V), ∃cv ∈ C, 〈cv, v〉Rn ≥ 0,

then
∃c ∈ C, ∀v ∈ V, 〈c, v〉Rn ≥ 0.

4.2.2 Proof of Theorem 4.2.1

This section is dedicated to the proof of Theorem 4.2.1. We proceed step by step as follows:

(i) After a technical lemma (Lemma 4.2.1), we first prove Theorem 4.2.1 in the special case
where V contains at most two vectors and n ∈ {1, 2} (see Proposition 4.2.2);

(ii) Then we prove Theorem 4.2.1 in the special case where V contains at most two vectors
and n ∈ N∗ (see Proposition 4.2.3);

(iii) Then we prove Theorem 4.2.1 in the special case where V contains a finite number N ∈ N∗
of vectors and n ∈ N∗ (see Proposition 4.2.4).

(iv) Finally Theorem 4.2.1 is proved in its entirety at the end of the section.

Let us start with the following technical lemma.

Lemma 4.2.1. Let C ⊂ R2 be a two-dimensional nonempty compact convex set not containing
the origin 0R2. Then there exist c1, c2 ∈ C such that C ⊂ {λ1c1 + λ2c2 | (λ1, λ2) ∈ R2

+\{0R2}}.

Proof. Applying Proposition 4.1.1, C admits a separating vector v ∈ R2. Note that v 6= 0R2

and let us fix some c0 ∈ C. Since C is compact and v is a separating vector of C, we are able
to define the constants

ε := min
c∈C

〈c0, v〉R2

〈c, v〉R2

and M := max
c∈C

〈c0, v〉R2

〈c, v〉R2

,

which satisfy ε ∈ (0, 1] and M ∈ [1,+∞). We now define the set

S := [ε,M ]C = {µc | µ ∈ [ε,M ], c ∈ C}.

Note that C ⊂ S and that S is a compact set. Let us prove that S is convex. Let s′, s′′ ∈ S,
and α ∈ [0, 1]. Then it holds that s′ = µ′c′ and s′′ = µ′′c′′ for some µ′, µ′′ ∈ [ε,M ] and c′,
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c′′ ∈ C. Note that αµ′ + (1 − α)µ′′ ∈ [ε,M ] and, since C is convex and αµ′

αµ′+(1−α)µ′′ ∈ [0, 1], it
holds that

(αµ′ + (1− α)µ′′)

(
αµ′

αµ′ + (1− α)µ′′
c′ +

(
1− αµ′

αµ′ + (1− α)µ′′

)
c′′
)
∈ S,

from which we conclude that αs′ + (1− α)s′′ ∈ S.

We now introduce the set T := S ∩ (c0 + L) where L := {w ∈ R2 | 〈w, v〉R2 = 0} is a line
in R2 (since v 6= 0R2) which contains the origin 0R2 . Note that T is compact and convex and,
since c0 ∈ C ⊂ S, that T is also nonempty. Then, since T is a nonempty compact convex
set included in the line (c0 + L), we deduce that T is a compact segment and, since T ⊂ S,
that T = [s1, s2] with s1, s2 ∈ S. In particular there exist µ1, µ2 ∈ [ε,M ] and c1, c2 ∈ C such
that s1 = µ1c1 and s2 = µ2c2.

We are now in a position to conclude the proof. Let c ∈ C. Consider µ :=
〈c0,v〉R2
〈c,v〉R2

∈ [ε,M ].
It holds that µc ∈ S and, since 〈µc− c0, v〉R2 = 0, that µc ∈ (c0 + L). It follows that µc ∈ T =

[s1, s2]. So there exists α ∈ [0, 1] such that µc = αs1 + (1− α)s2 and thus

c =
αµ1
µ
c1 +

(1− α)µ2
µ

c2 ∈ {λ1c1 + λ2c2 | (λ1, λ2) ∈ R2
+\{0R2}},

which completes the proof.

Remark 4.2.5. Two comments on Lemma 4.2.1:

(i) Lemma 4.2.1 is not valid without the compactness hypothesis on C. A bounded unclosed
counterexample is given by C := {(x, y) ∈ R2 | (x− 2)2 + (y − 2)2 < 1} and an unbounded
closed counterexample is given by C := {(x, y) ∈ R2 | x > 0, xy ≥ 1}.

(ii) Lemma 4.2.1 is intrinsic to the two-dimensional setting n = 2 since there is no direct
analogue in the higher-dimensional setting n ≥ 3. For example, a three-dimensional coun-
terexample is given by

C := {(x, y, z) ∈ R3 | x2 + y2 ≤ z2, 1 ≤ z ≤ 2},

for which it does not exist any c1, c2, c3 ∈ C such that C ⊂ {λ1c1 + λ2c2 + λ3c3 |
(λ1, λ2, λ3) ∈ R3

+\{0R3}}.

Proposition 4.2.2. Let n ∈ {1, 2} and C ⊂ Rn be a (one- or two-dimensional) nonempty
compact convex set and let v1, v2 ∈ Rn. Suppose that, for all c ∈ C, there exists i ∈ {1, 2} such
that 〈c, vi〉Rn < 0. Then there exists α ∈ [0, 1] such that 〈c, αv1 + (1−α)v2〉Rn < 0 for all c ∈ C.

Proof. Proposition 4.2.2 is trivial for the one-dimensional case n = 1 (since then C is included
in R∗+ or in R∗− and at least one of the vi belongs to R∗− or R∗+ respectively). In what follows we
will focus only on the two-dimensional case n = 2. It is clear from the hypothesis that C does not
contain the origin 0R2 . From Lemma 4.2.1, there exist c1, c2 ∈ C such that C ⊂ {λ1c1 + λ2c2 |
(λ1, λ2) ∈ R2

+\{0R2}}. As a consequence, in order to conclude this proof, our aim is to prove
that there exists α ∈ [0, 1] such that 〈c1, αv1 + (1−α)v2〉Rn < 0 and 〈c2, αv1 + (1−α)v2〉Rn < 0.
Up to relabelling v1 and v2, we assume in what follows that 〈c1, v1〉R2 < 0. The worst case is
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then given by 〈c2, v1〉R2 ≥ 0, 〈c2, v2〉R2 < 0 and 〈c1, v2〉R2 ≥ 0 (otherwise the proof is easily
concluded by taking α = 0 or α = 1). In the worst case let us define the function Φ : [0, 1]→ R
by Φ(γ) := 〈c2, γv1 +(1−γ)v2〉R2 for all γ ∈ [0, 1]. Note that Φ is affine with Φ(0) < 0, Φ(1) ≥ 0

and Φ(β) = 0 where

β :=
〈c2, v2〉R2

〈c2, v2〉R2 − 〈c2, v1〉R2

∈ (0, 1].

In particular Φ is negative over the interval [0, β). Now let us prove that 〈c1, βv1+(1−β)v2〉R2 <

0. Since (
1− 〈c1, v2〉R2

〈c1, v2〉R2 − 〈c2, v2〉R2

)
c1 +

〈c1, v2〉R2

〈c1, v2〉R2 − 〈c2, v2〉R2

c2 ∈ C,

and 〈(
1− 〈c1, v2〉R2

〈c1, v2〉R2 − 〈c2, v2〉R2

)
c1 +

〈c1, v2〉R2

〈c1, v2〉R2 − 〈c2, v2〉R2

c2, v2

〉
R2

= 0,

we deduce from the hypothesis that〈(
1− 〈c1, v2〉R2

〈c1, v2〉R2 − 〈c2, v2〉R2

)
c1 +

〈c1, v2〉R2

〈c1, v2〉R2 − 〈c2, v2〉R2

c2, v1

〉
R2

< 0,

which exactly corresponds to 〈c1, βv1 + (1 − β)v2〉R2 < 0 by substituting the value of β and
using the fact that 〈c2, v2〉R2 − 〈c2, v1〉R2 < 0. Consequently, there exists α ∈ [0, β) (sufficiently
close to β) such that 〈c1, αv1 + (1− α)v2〉R2 < 0 and Φ(α) = 〈c2, αv1 + (1− α)v2〉R2 < 0, which
completes the proof.

Proposition 4.2.3. Let C ⊂ Rn be a nonempty compact convex set and let v1, v2 ∈ Rn. Suppose
that, for all c ∈ C, there exists i ∈ {1, 2} such that 〈c, vi〉Rn < 0. Then there exists α ∈ [0, 1]

such that 〈c, αv1 + (1− α)v2〉Rn < 0 for all c ∈ C.

Proof. Note that v1 and v2 cannot be both the null vector. We define the (one- or two-
dimensional) space V := span{v1, v2} and the nonempty compact convex set C̃ := projV (C)

of V , where projV : Rn → V stands for the usual linear projection operator onto V . Note that,
for all c̃ ∈ C̃, there exists c ∈ C such that c̃ = projV (c) and it holds that 〈c̃ − c, vi〉Rn = 0 for
all i ∈ {1, 2}. Then, it follows from the hypothesis that, for all c̃ ∈ C̃, there exists i ∈ {1, 2}
such that 〈c̃, vi〉Rn = 〈c̃− c, vi〉Rn + 〈c, vi〉Rn < 0. From Proposition 4.2.2, there exists α ∈ [0, 1]

such that 〈c̃, αv1 + (1− α)v2〉Rn < 0 for all c̃ ∈ C̃. Now let c ∈ C. It holds that

〈c, αv1 + (1− α)v2〉Rn = 〈c− projV (c), αv1 + (1− α)v2〉Rn + 〈projV (c), αv1 + (1− α)v2〉Rn < 0,

since projV (c) ∈ C̃. The proof is thereby completed.

Proposition 4.2.4. Let C ⊂ Rn be a nonempty compact convex set and let v1, . . . , vN ∈ Rn
with N ∈ N∗. Suppose that, for all c ∈ C, there exists i ∈ {1, . . . , N} such that 〈c, vi〉Rn < 0.
Then there exists α = (α1, . . . , αN ) ∈ ∆N such that 〈c,

∑N
i=1 αivi〉Rn < 0 for all c ∈ C.

Proof. Proposition 4.2.4 is trivial for N = 1 and is true for N = 2 from Proposition 4.2.3. Now
let us proceed by induction. Assume that the result is true for N = q− 1 with q ≥ 3. We define
the set Q := {c ∈ C | 〈c, vq〉Rn ≥ 0}. If Q = ∅, then we take α1 = . . . = αq−1 = 0 and αq = 1

to conclude. Suppose now that Q 6= ∅. Then Q is a nonempty compact convex set of Rn and,
from the hypothesis, there exists i ∈ {1, . . . , q − 1} such that 〈c, vi〉Rn < 0 for all c ∈ Q. Using
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the induction hypothesis, there exists β = (β1, . . . , βq−1) ∈ ∆q−1 such that 〈c,
∑q−1

i=1 βivi〉Rn < 0

for all c ∈ Q. We define w1 :=
∑q−1

i=1 βivi and w2 := vq. Let c ∈ C. If c ∈ Q, then 〈c, w1〉Rn < 0,
otherwise c /∈ Q and 〈c, w2〉Rn < 0. Thus, applying Proposition 4.2.3, we obtain that there
exists µ ∈ [0, 1] such that 〈c, µw1 + (1 − µ)w2〉Rn < 0 for all c ∈ C. Taking αi := µβi for all
i = 1, . . . , q−1 and αq := 1−µ, it holds that 〈c,

∑q
i=1 αivi〉Rn < 0 for all c ∈ C and the induction

is complete.

We are now in a position to provide the proof of Theorem 4.2.1. From hypothesis of Theo-
rem 4.2.1, the covering of C by open sets given by

C ⊂
⋃
v∈V
{w ∈ Rn | 〈w, v〉Rn < 0},

holds true. Using the compactness of C, we can extract a finite set {v1, . . . , vN} ⊂ V withN ∈ N∗
such that

C ⊂
N⋃
i=1

{w ∈ Rn | 〈w, vi〉Rn < 0}.

From Proposition 4.2.4, there exists v ∈ Conv({v1, . . . , vN}) ⊂ Conv(V) such that 〈c, v〉Rn < 0

for all c ∈ C. The proof of Theorem 4.2.1 is complete.

Remark 4.2.6. Note that the compactness hypothesis on C has been used at several occasions in
the proof of Theorem 4.2.1 (for example in Lemma 4.2.1, which is crucial for Proposition 4.2.2,
but also in Proposition 4.2.3 in order to ensure the compactness of C̃ := projV (C) and, finally,
at the end of this subsection for extracting a finite open covering of C).

Remark 4.2.7. In this chapter, as given in the work [Adly et al. 2020], we state the universal
separating vector theorem (Theorem 4.2.1) in the finite-dimensional setting (which is sufficient
for our applications in Sections 4.3 and 4.4). A natural perspective for further research works
concerns the extension of Theorem 4.2.1 to the infinite-dimensional Hilbert or Banach setting
with a weak compactness assumption. For example, let us mention that Proposition 4.2.4 is still
valid in the Hilbert setting by assuming that C is a nonempty weakly compact convex set. The
extension of Theorem 4.2.1 in its entirety may require a new approach.

4.3 Application in optimal permanent control theory

This section is dedicated to an application of the universal separating vector theorem (Theo-
rem 4.2.1) in nonsmooth optimal permanent control theory. In Section 4.3.1, an optimal perma-
nent control problem with a nonsmooth Mayer cost function is introduced. Then a discussion is
provided in Section 4.3.2 in order to motivate the use of the universal separating vector theorem
with the aid of the tools of nonsmooth analysis presented in Section 1.4 of Chapter 1. Finally a
PMP for optimal permanent control problems with nonsmooth Mayer cost functions is recovered
in Section 4.3.3 by applying the contrapositive Proposition 4.2.1 as in [Adly et al. 2020].

4.3.1 A basic optimal permanent control problem with a nonsmooth Mayer
cost function

In what follows we fix two positive integers m, n ∈ N∗ and a positive real number T > 0. In
this section we focus on the basic optimal permanent control problem with nonsmooth Mayer
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cost function (OPCPns) given by

minimize g(x(T )),

subject to x ∈ AC([0, T ],Rn), u ∈ L∞([0, T ],Rm),

ẋ(t) = f(x(t), u(t), t), a.e. t ∈ [0, T ],

x(0) = x0,

u(t) ∈ U, a.e. t ∈ [0, T ].

(OPCPns)

In this section we will make use of the following regularity and topology assumptions:

- the function g : Rn → R that describes the Mayer cost g(x(T )) is locally Lipschitz;

- the dynamics f : Rn × Rm × [0, T ] → Rn, that drives the state equation ẋ(t) =

f(x(t), u(t), t), is continuous and of class C1;

- the set U ⊂ Rm, that describes the control constraint u(t) ∈ U, is a nonempty subset of
Rm;

- the initial condition x0 ∈ Rn is fixed.

Remark 4.3.1. Note that it is not our aim in this section to consider a very general nons-
mooth optimal permanent control problem. For instance we do not consider general terminal
state constraints, neither a free final time problem and, above all, the nonsmoothness of Prob-
lem (OPCPns) lies only in the Mayer cost function (and not in the dynamics). For complete
studies of more general nonsmooth optimal permanent control problems, we refer to standard ref-
erences such as [Clarke & Vinter 1989, Clarke 1990, Clarke et al. 1998, Mordukhovich 2006a,
Mordukhovich 2006c, Mordukhovich & Shvartsman 2013, Vinter 2010, Warga 1975] and refer-
ences therein.

As usual in optimal control theory, we recall that the (scalar) Hamiltonian function H :

Rn × Rm × Rn × [0, T ] → R associated to Problem (OPCPns) is defined by H(x, u, p, t) :=

〈p, f(x, u, t)〉Rn for all (x, u, p, t) ∈ Rn×Rm×Rn× [0, T ]. For the needs of this chapter, as given
in [Adly et al. 2020], we introduce the following unusual notion of vector Hamiltonian function
associated to Problem (OPCPns) given by H : Rn × Rm × Rn×n × [0, T ] → Rn defined by
H(x, u, P, t) := P> × f(x, u, t) for all (x, u, P, t) ∈ Rn × Rm × Rn×n × [0, T ]. Here Rn×n stands
for the set of n× n matrices and > denotes the classical transposition operation. We note that

H(x, u, P, t) =


H(x, u, p1, t)

H(x, u, p2, t)
...

H(x, u, pn, t)

 =


〈p1, f(x, u, t)〉Rn
〈p2, f(x, u, t)〉Rn

...
〈pn, f(x, u, t)〉Rn

 ,

for all (x, u, P, t) ∈ Rn × Rm × Rn×n × [0, T ], where the pi ∈ Rn stand for the columns of the
matrix P = (p1 p2 . . . pn) ∈ Rn×n.
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4.3.2 Motivation for a universal selection

For the needs of this section we refer to Section 1.4 in Chapter 1 for recalls on nonsmooth analysis
(notably when considering the Clarke generalized derivative g◦ and the Clarke subdifferential
∂g of the cost function g). Here our aim is to motivate the use of the universal separating
vector theorem (Theorem 4.2.1) in order to derive a PMP for Problem (OPCPns). For this
purpose we first need to establish two preliminary propositions which are based on standard
techniques of perturbation of the optimal control. The proof of the next proposition (which
is quite technical and thus postponed to Section 4.5) is based on the classical tool of implicit
spike variation of the optimal control (see, e.g., [Bergounioux & Zidani 1999, Bourdin 2016,
Casas 1997, Fattorini 1993, Li & Yao 1985, Li & Yong 1991, Li & Yong 1995, Yu 2013]).

Proposition 4.3.1. Let (x, u) be a solution to Problem (OPCPns). Then there exists an adjoint
matrix P ∈ AC([0, T ],Rn×n) such that:

(i) Adjoint equation: P satisfies

−Ṗ (t) = ∇1H(x(t), u(t), P (t), t),

for a.e. t ∈ [0, T ];

(ii) Transversality condition: P satisfies

−P (T ) = Idn,

where Idn ∈ Rn×n stands for the n× n identity matrix;

(iii) Integral pseudo-maximization condition: the inequality

g◦
(
x(T );

∫ T

0
H(x(t), u(t), P (t), t)−H(x(t), u′(t), P (t), t) dt

)
≥ 0,

is satisfied for all u′ ∈ L∞([0, T ],U).

Remark 4.3.2. As in classical optimal control theory where the terminology of adjoint vec-
tor is commonly used in order to designate (actually) a vector function, we decided to use the
terminology of adjoint matrix in order to designate (actually) a matrix function.

Remark 4.3.3. Note that the adjoint matrix provided in Proposition 4.3.1 is given by P (t) =

−Φ(T, t)> for all t ∈ [0, T ], where Φ(·, ·) : [0, T ]2 → Rn×n stands for the state-transition ma-
trix (or fundamental matrix solution) associated to the matrix function ∇1f(x, u, ·). We refer
to [Sontag 1998, Appendix C.4] for more details on state-transition matrices.

The next proposition follows from Proposition 4.3.1 and the application of the usual tech-
nique of needle-like perturbation of the optimal control (see, e.g., [Bourdin & Trélat 2013,
Bourdin & Trélat 2016, Cesari 1983b, Fattorini 1999, Liberzon 2012, Pontryagin et al. 1962]).

Proposition 4.3.2. Let (x, u) be a solution to Problem (OPCPns). Then the adjoint matrix P
provided in Proposition 4.3.1 is such that:



100
Chapter 4. A universal separating vector theorem with applications to optimal

control problems with nonsmooth Mayer cost functions

(iii’) Pseudo-maximization condition: the inequality

g◦
(
x(T );H(x(s), u(s), P (s), s)−H(x(s), ω, P (s), s)

)
≥ 0,

is satisfied for a.e. s ∈ [0, T ] and all ω ∈ U.

Proof. Let s ∈ [0, T ) be a Lebesgue point of the essentially bounded vector function H(x, u, P, ·)
and let ω ∈ U. We introduce the needle-like perturbation uη ∈ L∞([0, T ],Rm) of u defined by

uη(t) :=

{
ω over the interval [s, s+ η),

u(t) otherwise,

for a.e. t ∈ [0, T ] and for all η > 0 sufficiently small. Note that uη is with values in U. From the
integral pseudo-maximization condition in Proposition 4.3.1, it holds that

g◦
(
x(T );

∫ T

0
H(x(t), u(t), P (t), t)−H(x(t), uη(t), P (t), t) dt

)
≥ 0,

which gives

g◦
(
x(T );

∫ s+η

s
H(x(t), u(t), P (t), t)−H(x(t), ω, P (t), t) dt

)
≥ 0.

Since η > 0 and g◦(x(T ); ·) is positively homogeneous (see Proposition 1.4.1 in Chapter 1), we
get that

g◦
(
x(T );

1

η

∫ s+η

s
H(x(t), u(t), P (t), t)−H(x(t), ω, P (t), t) dt

)
≥ 0.

Since s is a Lebesgue point of the function H(x, u, P, ·) and since g◦(x(T ); ·) is Lipschitz contin-
uous (see Proposition 1.4.1), taking the limit η → 0+ leads to

g◦
(
x(T );H(x(s), u(s), P (s), s)−H(x(s), ω, P (s), s)

)
≥ 0,

which completes the proof.

We are now in a position to motivate the use of the universal separating vector theorem
(Theorem 4.2.1) in order to derive a PMP for Problem (OPCPns). Consider the framework of
Proposition 4.3.2.

• In the smooth case where g is continuously differentiable at x(T ), then ∂g(x(T )) =

{∇g(x(T ))} is reduced to a singleton (see [Clarke et al. 1998, Proposition 3.1 in Chap-
ter 2]). In that context we obtain from Proposition 1.4.2 and the pseudo-maximization
condition in Proposition 4.3.2 that

g◦
(
x(T );H(x(s), u(s), P (s), s)−H(x(s), ω, P (s), s)

)
=
〈
P (s)×∇g(x(T )), f(x(s), u(s), s)− f(x(s), ω, s)

〉
Rn
≥ 0,

for a.e. s ∈ [0, T ] and all ω ∈ U. Defining the adjoint vector p ∈ AC([0, T ],Rn) by
p(t) := P (t) × ∇g(x(T )) for all t ∈ [0, T ], we recover the usual necessary optimality
conditions of the classical PMP (see, e.g., [Pontryagin et al. 1962, Theorem 3 page 50])
given by:
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(i) Adjoint equation: p satisfies

−ṗ(t) = ∇1H(x(t), u(t), p(t), t),

for a.e. t ∈ [0, T ];

(ii) Transversality condition: p satisfies

−p(T ) = ∇g(x(T ));

(iii) Maximization condition: the inequality

H(x(s), u(s), p(s), s)−H(x(s), ω, p(s), s) ≥ 0,

is satisfied for a.e. s ∈ [0, T ] and all ω ∈ U.

• In the nonsmooth case, in which ∂g(x(T )) is not reduced to a singleton a priori, we obtain
from Proposition 1.4.2 and the pseudo-maximization condition in Proposition 4.3.2 that

g◦
(
x(T );H(x(s), u(s), P (s), s)−H(x(s), ω, P (s), s)

)
=
〈
P (s)× ξ(s,v), f(x(s), u(s), s)− f(x(s), ω, s)

〉
Rn
≥ 0,

for a.e. s ∈ [0, T ] and all ω ∈ U, where the selection ξ(s,ω) ∈ ∂g(x(T )) depends strongly
on the couple (s, ω). In order to follow the same strategy as above in the smooth case,
we would need the existence of a universal selection ξ ∈ ∂g(x(T )) (that is, independent of
the couple (s, ω)) such that〈

P (s)× ξ, f(x(s), u(s), s)− f(x(s), ω, s)
〉
Rn
≥ 0,

for a.e. s ∈ [0, T ] and all ω ∈ U. In such a context we would define the adjoint vec-
tor p ∈ AC([0, T ],Rn) by p(t) := P (t) × ξ for all t ∈ [0, T ] and we would recover the
necessary optimality conditions of the PMP for nonsmooth Mayer cost functions given,
for example, in [Vinter 2010, Theorem 6.2.1]. The existence of such a universal selec-
tion ξ ∈ ∂g(x(T )) is exactly the topic of the next subsection and will be obtained by
applying the universal separating vector theorem (Theorem 4.2.1). Let us precise that
in [Vinter 2010, Theorem 6.2.1] the PMP is stated in terms of the limiting subdifferential
rather than the Clarke subdifferential considered in this chapter.

4.3.3 Application of the universal separating vector theorem

In this section we will apply the universal separating vector theorem (Theorem 4.2.1) in or-
der to prove the existence of a universal selection ξ ∈ ∂g(x(T )) as explained at the end of
the previous subsection. We first start with the following technical lemma based on the tool
of package of needle-like perturbations of the optimal control (see, e.g., [Bohner et al. 2017,
Bourdin & Trélat 2017, Dmitruk & Osmolovskii 2014, Korytowski 2014]).

Lemma 4.3.1. Let (x, u) be a solution to Problem (OPCPns) and consider the framework of
Proposition 4.3.1. Let π := (s, ω, α) ∈ Lq×Ur×∆r, with q, r ∈ N∗, be a package which consists
of:
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- A q-tuple s := {si}i=1,...,q ∈ Lq such that 0 ≤ s1 < s2 < . . . < sq < T , where L ⊂ [0, T )

stands for the set of Lebesgue points of the essentially bounded vector function H(x, u, P, ·);

- A r-tuple ω := {ωji }i=1,...,q,
j=1,...,ri

∈ Ur, with ri ∈ N∗ for all i ∈ {1, . . . , q}, where r :=
∑q

i=1 ri;

- A r-tuple α := (αji )i=1,...,q,
j=1,...,ri

∈ ∆r.

Then there exists ξπ ∈ ∂g(x(T )) such that〈
ξπ,

q∑
i=1

ri∑
j=1

αji

(
H(x(si), u(si), P (si), si)−H(x(si), ω

j
i , P (si), si)

)〉
Rn

≥ 0.

Proof. We consider the package of needle-like perturbations uη ∈ L∞([0, T ],Rm) of u defined by

uη(t) :=

{
ωji over the interval [si + (j − 1)αjiη, si + jαjiη), ∀j ∈ {1, . . . , ri}, ∀i ∈ {1, . . . , q},
u(t) otherwise,

for a.e. t ∈ [0, T ] and for all η > 0 sufficiently small. Note that uη is with values in U. From the
integral pseudo-maximization condition in Proposition 4.3.1, it holds that

g◦
(
x(T );

∫ T

0
H(x(t), u(t), P (t), t)−H(x(t), uη(t), P (t), t) dt

)
≥ 0,

which gives

g◦

x(T );

q∑
i=1

ri∑
j=1

∫ si+jα
j
iη

si+(j−1)αjiη
H(x(t), u(t), P (t), t)−H(x(t), ωji , P (t), t) dt

 ≥ 0.

With the same arguments as in the proof of Proposition 4.3.2, we obtain

g◦

x(T );

q∑
i=1

ri∑
j=1

αji

(
H(x(si), u(si), P (si), si)−H(x(si), ω

j
i , P (si), si)

) ≥ 0.

Finally, from Proposition 1.4.2 in Chapter 1, there exists an element ξπ ∈ ∂g(x(T )) such that

g◦

x(T );

q∑
i=1

ri∑
j=1

αji

(
H(x(si), u(si), P (si), si)−H(x(si), ω

j
i , P (si), si)

)
=

〈
ξπ,

q∑
i=1

ri∑
j=1

αji

(
H(x(si), u(si), P (si), si)−H(x(si), ω

j
i , P (si), si)

)〉
Rn

≥ 0,

which concludes the proof.

We are now in a position to apply the universal separating vector theorem (Theorem 4.2.1)
in order to recover the following PMP for Problem (OPCPns) using only the tools of nonsmooth
analysis as presented in [Adly et al. 2020].
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Theorem 4.3.1. Let (x, u) be a solution to Problem (OPCPns). Then there exists an adjoint
vector p ∈ AC([0, T ],Rn) such that:

(i) Adjoint equation: p satisfies

−ṗ(t) = ∇1H(x(t), u(t), p(t), t),

for a.e. t ∈ [0, T ];

(ii) Transversality condition: p satisfies

−p(T ) ∈ ∂g(x(T ));

(iii) Maximization condition: the inequality

H(x(s), u(s), p(s), s)−H(x(s), ω, p(s), s) ≥ 0,

is satisfied for a.e. s ∈ [0, T ] and all ω ∈ U.

Proof. Consider the framework of Lemma 4.3.1 and let us define the set V ⊂ Rn by

V :=
{
H(x(s), u(s), P (s), s)−H(x(s), ω, P (s), s) | (s, ω) ∈ L ×U

}
.

From Lemma 4.3.1, for every v ∈ Conv(V), there exists ξv ∈ ∂g(x(T )) such that 〈ξv, v〉Rn ≥ 0.
Since ∂g(x(T )) is a nonempty compact convex set (see Proposition 1.4.2 in Chapter 1) and from
the contrapositive of the universal separating vector theorem (Proposition 4.2.1), there exists a
universal vector ξ ∈ ∂g(x(T )) such that 〈ξ, v〉Rn ≥ 0 for all v ∈ V, which gives exactly

〈ξ,H(x(s), u(s), P (s), s)−H(x(s), ω, P (s), s)〉Rn ≥ 0,

for a.e. s ∈ [0, T ] and all ω ∈ U. Then the end of the proof is similar to the discussion provided
at the end of Section 4.3.2 in the smooth case (where g is continuously differentiable at x(T )),
that is, by introducing the adjoint vector p ∈ AC([0, T ],Rn) defined by p(t) := P (t) × ξ for
all t ∈ [0, T ].

Remark 4.3.4. As mentioned in Remark 4.3.1, numerous texts in the literature are already ded-
icated to nonsmooth optimal permanent control theory, and to more general nonsmooth optimal
permanent control problems. In these references, several methods have been explored in order
to establish nonsmooth versions of the PMP. We can cite for example the method of quadratic
inf-convolution in [Clarke 2008, Section 2.1 page 4] or the application of a nonsmooth Lagrange
multiplier rule in [Vinter 2010, Theorem 5.6.2]. Our novel approach is based on the combination
of implicit spike variations and packages of needle-like perturbations of the optimal control (in
Proposition 4.3.1 and Lemma 4.3.1 respectively) and, finally, on the application of the universal
separating vector theorem (Theorem 4.2.1), precisely of its contrapositive (Proposition 4.2.1).
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4.4 Application in optimal sampled-data control theory

The aim of this section is to apply the universal separating vector theorem (Theorem 4.2.1) in
order to establish a PMP for optimal sampled-data control problems with nonsmooth Mayer cost
functions. We emphasize that such a result has not been presented in the work [Adly et al. 2020]
and, to the best of our knowledge, has not been considered elsewhere in the literature. In
Section 4.4.1, an optimal sampled-data control problem with a nonsmooth Mayer cost function
(see Problem (OSCPns)) is introduced. Then a discussion is provided in Section 4.4.2 in order
to motivate the use of the universal separating vector theorem (Theorem 4.2.1). Finally a PMP
for Problem (OSCPns) is obtained in Section 4.4.3 by applying the universal separating vector
theorem.

4.4.1 An optimal sampled-data control problem with a nonsmooth Mayer
cost function

Letm, n, N ∈ N∗ be three fixed positive integers. Let us fix a positive real number T > 0, as well
an N -partition T = {ti}i=0,...,N of the interval [0, T ]. In this section we focus on the basic non-
smooth optimal sampled-data control problem with nonsmooth Mayer cost function (OSCPns)
given by 

minimize g(x(T )),

subject to x ∈ AC([0, T ],Rn), u ∈ PCT([0, T ],Rm),

ẋ(t) = f(x(t), u(t), t), a.e. t ∈ [0, T ],

x(0) = x0,

ui ∈ U, for all i = 0, . . . , N − 1.

(OSCPns)

In this section we will make use of the following regularity and topology assumptions:

- the function g : Rn → R that describes the Mayer cost g(x(T )) is locally Lipschitz;

- the dynamics f : Rn × Rm × [0, T ] → Rn, that drives the state equation ẋ(t) =

f(x(t), u(t), t), is continuous and locally Lipschitz;

- the set U ⊂ Rm, that describes the control constraint ui ∈ U, is a nonempty convex subset
of Rm;

- the initial condition x0 ∈ Rn is fixed.

We remark, in contrast to Problem (OPCPns), the control constraint set U in Prob-
lem (OSCPns) is assumed to be convex in order to apply convex L∞-perturbations of the control
in the next section.

4.4.2 Motivation for a universal selection

In this section our aim is to motivate the use of the universal separating vector theorem (The-
orem 4.2.1) in order to derive a PMP for Probem (OSCPns). We begin with the following
preliminary proposition on optimality conditions for Problem (OSCPns) (whose proof is post-
poned to Section 4.5.3).
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Proposition 4.4.1. Let (x, u) be a solution to Problem (OSCPns). Then there exists an adjoint
matrix P ∈ AC([0, T ],Rn×n) such that:

(i) Adjoint equation: P satisfies

−Ṗ (t) = ∇1H(x(t), u(t), P (t), t),

for a.e. t ∈ [0, T ];

(ii) Transversality condition: P satisfies

−P (T ) = Idn,

where Idn ∈ Rn×n stands for the n× n identity matrix;

(iii) Integral pseudo-nonpositive averaged Hamiltonian gradient condition: the in-
equality

g◦
(
x(T );−

∫ T

0
∇2H(x(t), u(t), P (t), t)× (u′(t)− u(t)) dt

)
≥ 0,

for all u′ ∈ PCT([0, T ],U).

We are now in a position to motivate the use of the universal separating vector theorem
(Theorem 4.2.1) in order to obtain a PMP for Problem (OSCPns). Consider the framework of
Proposition 4.4.1.

• In the smooth case where g is continuously differentiable at x(T ), then ∂g(x(T )) =

{∇g(x(T ))} is reduced to a singleton (see [Clarke et al. 1998, Proposition 3.1 in Chap-
ter 2]). Let ω ∈ U and let i ∈ {0, . . . , N − 1}. Let u′ ∈ PCT([0, T ],U) be defined by

u′(t) :=

{
ω if t ∈ [ti, ti+1),

u(t) otherwise,

for all t ∈ [0, T ]. Then we obtain from Proposition 1.4.2 in Chapter 1 and the integral
pseudo-nonpositive averaged Hamiltonian gradient condition in Proposition 4.4.1 that

g◦
(
x(T );−

∫ ti+1

ti

∇2H(x(t), u(t), P (t), t) dt× (ω − ui)
)

=
〈
−
∫ ti+1

ti

∇2f(x(t), u(t), t)> × P (t)×∇g(x(T )) dt, ω − ui
〉
Rm
≥ 0,

for all ω ∈ U and i = 0, . . . , N − 1. Defining the adjoint vector p ∈ AC([0, T ],Rn) by
p(t) := P (t) × ∇g(x(T )) for all t ∈ [0, T ], we recover the usual nonpositive averaged
Hamiltonian gradient condition given by〈∫ ti+1

ti

∇2H(x(t), ui, p(t), t) dt, ω − ui
〉
Rm
≤ 0,

for all ω ∈ U and i = 0, . . . , N − 1.
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• In the nonsmooth case, ∂g(x(T )) is not reduced to a singleton a priori. Let ω ∈ U and let
i ∈ {0, . . . , N − 1}. Let u′ ∈ PCT([0, T ],U) be defined by

u′(t) :=

{
ω if t ∈ [ti, ti+1),

u(t) otherwise,

for all t ∈ [0, T ]. We obtain from Proposition 1.4.2 in Chapter 1 and the integral pseudo-
nonpositive averaged Hamiltonian gradient condition in Proposition 4.4.1 that

g◦
(
x(T );−

∫ ti+1

ti

∇2H(x(t), u(t), P (t), t) dt× (ω − ui)
)

=
〈
ξ(ω,i),−

∫ ti+1

ti

∇2H(x(t), u(t), P (t), t) dt× (ω − ui)
〉
Rm
≥ 0,

for all ω ∈ U and i = 0, . . . , N − 1, where the selection ξ(ω,i) ∈ ∂g(x(T )) depends strongly
on the couple (ω, i). In order to follow the same strategy as above in the smooth case, we
would need the existence of a universal selection ξ ∈ ∂g(x(T )) (that is, independent of the
couple (ω, i)) such that〈

ξ,−
∫ ti+1

ti

∇2H(x(t), u(t), P (t), t) dt× (ω − ui)
〉
Rn
≥ 0,

for all ω ∈ U and i = 0, . . . , N − 1. In such a context we would define the adjoint
vector p ∈ AC([0, T ],Rn) by p(t) := P (t) × ξ for all t ∈ [0, T ] and recover the usual
nonpositive averaged Hamiltonian gradient condition of the PMP for optimal sampled-
data control problems (see [Bourdin & Trélat 2016, Theorem 2.6 p.62]). The existence
of such a universal selection ξ ∈ ∂g(x(T )) will be obtained by applying the universal
separating vector theorem (Theorem 4.2.1) in the next section.

4.4.3 Application of the universal separating vector theorem

In this section we will apply the universal separating vector theorem (Theorem 4.2.1) in order to
prove the existence of a universal selection ξ ∈ ∂g(x(T )) as explained at the end of the previous
subsection. We first start with the following technical lemma.

Lemma 4.4.1. Let (x, u) be a solution to Problem (OSCPns) and consider the framework of
Proposition 4.4.1. Let π := (t, ω, α) ∈ Tq×Ur×∆r, with q, r ∈ N∗, be a package which consists
of:

- A q-tuple t := {ti}i=1,...,q ∈ Tq such that 0 ≤ t1 < t2 < . . . < tq < T ;

- A r-tuple ω := {ωji }i=1,...,q,
j=1,...,ri

∈ Ur, with ri ∈ N∗ for all i ∈ {1, . . . , q}, where r :=
∑q

i=1 ri;

- A r-tuple α := (αji )i=1,...,q,
j=1,...,ri

∈ ∆r.

Then there exists ξπ ∈ ∂g(x(T )) such that〈
ξπ,

q∑
i=1

ri∑
j=1

αji

(
−
∫ ti+1

ti

∇2H(x(t), u(t), P (t), t) dt× (ωji − ui)
)〉

Rn

≥ 0.
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Proof. We consider the perturbation u′ ∈ L∞([0, T ],Rm) of u defined by

u′(t) :=

{
ui +

∑ri
j=1 α

j
i (ω

j
i − ui) over the interval [ti, ti+1) for i = 1, . . . , q,

u(t) otherwise,

for all t ∈ [0, T ]. Note that u′ is with values in U. From the integral pseudo-nonpositive averaged
Hamiltonian gradient condition in Proposition 4.4.1, it holds that

g◦
(
x(T );−

∫ T

0
∇2H(x(t), u(t), P (t), t)× (u′(t)− u(t)) dt

)
≥ 0,

which gives

g◦

x(T );

q∑
i=1

ri∑
j=1

αji

(
−
∫ ti+1

ti

∇2H(x(t), u(t), P (t), t) dt× (ωji − ui)
) ≥ 0.

Finally from Proposition 1.4.2 in Chapter 1 there exists an element ξπ ∈ ∂g(x(T )) such that

g◦

x(T );

q∑
i=1

ri∑
j=1

αji

(
−
∫ ti+1

ti

∇2H(x(t), u(t), P (t), t) dt× (ωji − ui)
)

=

〈
ξπ,

q∑
i=1

ri∑
j=1

αji

(
−
∫ ti+1

ti

∇2H(x(t), u(t), P (t), t) dt× (ωji − ui)
)〉

Rn

≥ 0,

which concludes the proof.

We are now in a position to apply the universal separating vector theorem (Theorem 4.2.1)
in order to obtain the following PMP for Problem (OSCPns).

Theorem 4.4.1. Let (x, u) be a solution to Problem (OSCPns). Then there exists an adjoint
vector p ∈ AC([0, T ],Rn) such that:

(i) Adjoint equation: p satisfies

−ṗ(t) = ∇1H(x(t), u(t), p(t), t),

for a.e. t ∈ [0, T ];

(ii) Transversality condition: p satisfies

−p(T ) ∈ ∂g(x(T ));

(iii) Nonpositive averaged Hamiltonian gradient condition: the inequality〈∫ ti+1

ti

∇2H(x(t), ui, p(t), t) dt, ω − ui
〉
Rm
≤ 0,

is satisfied for all ω ∈ U and all i = 0, . . . , N − 1.
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Proof. Consider the framework of Lemma 4.4.1 and let us define the set V ⊂ Rn by

V :=
{
−
∫ ti+1

ti

∇2H(x(t), u(t), P (t), t) dt× (ω − ui) | (ω, i) ∈ U× {0, . . . , N − 1}
}
.

From Lemma 4.4.1, for every v ∈ Conv(V), there exists ξv ∈ ∂g(x(T )) such that 〈ξv, v〉Rn ≥ 0.
Since ∂g(x(T )) is a nonempty compact convex set (see Proposition 1.4.2 in Chapter 1) and from
the contrapositive of the universal separating vector theorem (Proposition 4.2.1), there exists a
universal vector ξ ∈ ∂g(x(T )) such that 〈ξ, v〉Rn ≥ 0 for all v ∈ V, which gives exactly〈

ξ,−
∫ ti+1

ti

∇2H(x(t), u(t), P (t), t) dt× (ω − ui)
〉
Rn
≥ 0,

for all ω ∈ U and i = 0, . . . , N − 1. Then the end of the proof is similar to the discussion
provided at the end of Section 4.4.2 in the smooth case (where g is continuously differentiable
at x(T )), that is, by introducing the adjoint vector p ∈ AC([0, T ],Rn) defined by p(t) := P (t)×ξ
for all t ∈ [0, T ].

4.5 Proofs of Propositions 4.3.1 and 4.4.1

This section is dedicated to the proof of Propositions 4.3.1 and 4.4.1. In Section 4.5.1 we first
present the sensitivity analysis of the state equation of Problem (OPCPns) under implicit spike
variation of the control. The proof of Proposition 4.3.1 is provided in Section 4.5.2. Finally the
very similar proof of Proposition 4.4.1 is given afterwards in Section 4.5.3.

4.5.1 Sensitivity analysis under implicit spike variation

In this section we focus on the Cauchy problem given by{
ẋ(t) = f(x(t), u(t), t), a.e. t ∈ [0, T ],

x(0) = x0,
(CP)

for any u ∈ L∞([0, T ],Rm). We refer to Section 2.4.1 in Chapter 2 for some notions and recalls
on the sensitivity analysis of Problem (CP). We now introduce the following notion of controls
admissible for globality.

Definition 4.5.1. A control u ∈ L∞([0, T ],Rm) is said to be admissible for globality if the
corresponding maximal solution (x(·, u), I(u)) is global, that is, if I(u) = [0, T ]. In what follows
we denote by AG ⊂ L∞([0, T ],Rm) the set of all controls admissible for globality.

We now give some recalls on implicit spike variation of a control u ∈ L∞([0, T ],Rm) starting
with the following lemma (see [Li & Yong 1995, Paragraph 3.2 page 143]).

Lemma 4.5.1. Let h ∈ L∞([0, T ],Rn). Then, for all 0 < η ≤ 1, there exists a measurable
set Qη ⊂ [0, T ], with a Lebesgue measure equal to ηT , such that

sup
t∈[0,T ]

∥∥∥∥∫ t

0

(
1− 1

η
1Qη(s)

)
h(s) ds

∥∥∥∥
Rn
≤ η,

where 1Qη denotes the indicator function of Qη.
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Let u ∈ AG and let u′ ∈ L∞([0, T ],Rm). We introduce the implicit spike variation uη ∈
L∞([0, T ],Rm) of u defined by

uη(t) :=

{
u′(t) over Qη,

u(t) otherwise,

for a.e. t ∈ [0, T ] and all 0 ≤ η ≤ 1, where Q0 := ∅ and Qη is given in Lemma 4.5.1 by
considering h(t) := f(x(t, u), u′(t), t)− f(x(t, u), u(t), t) for a.e. t ∈ [0, T ] when 0 < η ≤ 1. The
next proposition can be found in [Li & Yong 1995, Lemma 4.3 page 152].

Proposition 4.5.1. Let u ∈ AG and let u′ ∈ L∞([0, T ],Rm). Then:

(i) there exists 0 < η0 ≤ 1 such that uη ∈ AG for all 0 ≤ η ≤ η0;

(ii) the map η ∈ [0, η0] 7→ x(T, uη) ∈ Rn is differentiable at η = 0 and its derivative is equal to
w(T ), where w is the the unique maximal solution (which is global) to the linear Cauchy
problem given by{
ẇ(t) = ∇1f(x(t, u), u(t), t)× w(t) + f(x(t, u), u′(t), t)− f(x(t, u), u(t), t), a.e. t ∈ [0, T ],

w(0) = 0Rn .

4.5.2 Proof of Proposition 4.3.1

We are now in a position to give the proof of Proposition 4.3.1. Let (x, u) be a solution to
Problem (OPCPns). Let us define P (t) := −Φ(T, t)> for all t ∈ [0, T ], where Φ(·, ·) : [0, T ]2 →
Rn×n stands for the state-transition matrix (or fundamental matrix solution) associated to the
matrix function∇1f(x, u, ·) (see [Sontag 1998, Appendix C.4] for more details on state-transition
matrices). In particular the adjoint equation and the tranversality condition are satisfied. Let
us prove the integral pseudo-maximization condition. For this purpose let u′ ∈ L∞([0, T ],U).
From Proposition 4.5.1, there exists η0 > 0 such that x(T, uη) = x(T ) + ηw(T ) + ηR(η) for
all 0 ≤ η ≤ η0, where R : [0, η0] → Rn is a remainder term such that ‖R(η)‖Rn tends to 0 as η
tends to 0. Then it holds that

g◦(x(T );w(T )) = lim sup
y→x(T )
η↓0

g(y + ηw(T ))− g(y)

η

≥ lim sup
η↓0

g(x(T ) + ηR(η) + ηw(T ))− g(x(T ) + ηR(η))

η
,

= lim sup
η↓0

(
g(x(T, uη))− g(x(T ))

η
− g(x(T ) + ηR(η))− g(x(T ))

η

)
.

Since g is locally Lipschitz, the second quotient tends to zero as η tends to 0. Moreover, since uη
is with values in U and from optimality of u, it is clear that the first quotient is nonnegative.
We finally obtain that g◦(x(T );w(T )) ≥ 0. Finally recalling the Duhamel formula given by

w(T ) =

∫ T

0
Φ(T, t)×

(
f(x(t), u′(t), t)− f(x(t), u(t), t)

)
dt,

and since P (t) = −Φ(T, t)> for all t ∈ [0, T ], the integral pseudo-maximization condition is
obtained. The proof is complete.
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4.5.3 Proof of Proposition 4.4.1

We now give the proof of Proposition 4.4.1 which follows very similarly to the proof of Propo-
sition 4.3.1 in Section 4.5.2. Let (x, u) be a solution to Problem (OSCPns). We define
P (t) := −Φ(T, t)> for all t ∈ [0, T ], where Φ(·, ·) : [0, T ]2 → Rn×n stands for the state-transition
matrix associated to the matrix function ∇1f(x, u, ·). It follows that the adjoint equation and
the tranversality condition are satisfied. Let us prove the integral pseudo-nonpositive averaged
Hamiltonian gradient condition. For this purpose, let us fix u′ ∈ PCT([0, T ],U). We consider the
convex L∞-perturbation uu′(·, α) for all 0 ≤ α ≤ 1 (see Proposition 2.4.3 in Chapter 2 for recalls).
From Proposition 2.4.3, there exists α0 > 0 such that x(T, uu′(·, α)) = x(T, u)+αwu′(T )+αR(α)

for all 0 ≤ α ≤ α0, where R : [0, α0] → Rn is a remainder term such that ‖R(α)‖Rn tends to
0 as α tends to 0. Then following the same arguments as in Section 4.5.2 we obtain that
g◦(x(T );wu′(T )) ≥ 0. Finally recalling the Duhamel formula given by

wu′(T ) =

∫ T

0
Φ(T, t)×∇2f(x(t), u(t), t)× (u′(t)− u(t)) dt,

and since P (t) = −Φ(T, t)> for all t ∈ [0, T ], the integral pseudo-nonpositive averaged Hamilto-
nian gradient condition is obtained. The proof is complete.



Chapter 5

General conclusion

In this general conclusion, we begin by reviewing the outcome of the investigations conducted
in this PhD thesis. Then we give several perspectives based on the results obtained, including
some personal further research projects to be undertaken in the field of optimal sampled-data
control theory.

Outcome of our investigations. The work presented in this dissertation has provided first-
order necessary optimality conditions for optimal sampled-data control problems in the form of
a Pontryagin maximum principle (in short, PMP) in diverse contexts. In some sense, our work
is a continuation of the paper [Bourdin & Trélat 2016] in which the usual Hamiltonian maxi-
mization condition for optimal permanent control problems has to be replaced, when considering
optimal sampled-data control problems, by a weaker condition known as a nonpositive averaged
Hamiltonian gradient condition. In this PhD thesis, we have extended the PMP for optimal
sampled-data control problems to several situations, including when:

- one can freely choose the sampling times;

- there are running inequality state constraints;

- the Mayer cost function is nonsmooth.

In Chapter 2, considering that the sampling times can be freely chosen, we obtained a
new and additional necessary optimality condition in the PMP which happens to coincide with
the continuity of the Hamiltonian function. Recall that the Hamiltonian function for optimal
sampled-data control problems is not continuous in general when the sampling times are fixed.
Our result asserts that the continuity of the Hamiltonian function is recovered in the case of
optimal sampled-data controls with optimal sampling times. Finally we were able to implement
a shooting method based on this new optimality condition in order to numerically determine
the optimal sampling times in two linear-quadratic examples.

In Chapter 3, when considering running inequality state constraints, we obtained a PMP
in which the adjoint vector is a solution to a Cauchy-Stieltjes problem defined by Borel mea-
sures associated to functions of bounded variation. We also found that, under certain general
hypotheses, the admissible trajectories (associated to sampled-data controls) have a common
behavior where they “bounce” against the boundary of the restricted state space, touching the
state constraints at most at the sampling times. Taking advantage of this bouncing trajectory
phenomenon, we were able to use the PMP derived in Chapter 3 to implement an indirect
method to numerically solve some simple examples of optimal sampled-data control problems
with running inequality state constraints.
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In Chapter 4, we obtained a PMP for optimal sampled-data control problems with nonsmooth
Mayer cost functions. Precisely, the Mayer cost function is taken to be (only) locally Lipschitz.
We were interested in developing a proof which directly follows from the tools of nonsmooth
analysis, and our investigation led us to consider the existence of a selection in the subdifferential
of the nonsmooth Mayer cost function. In fact, we were able to assure the existence of this
selection by establishing a more general result asserting the existence of a universal separating
vector for a given compact convex set. From the application of this result, called universal
separating vector theorem, we obtained a PMP for optimal sampled-data control problems with
nonsmooth Mayer cost functions where the transversality conditon on the adjoint vector is given
by an inclusion in the subdifferential of the nonsmooth Mayer cost function.

Perspectives. When considering optimal sampled-data control problems with free sampling
times, the optimal cost can only remain the same or decrease as one increases the allowed number
of sampling times. On the other hand, for practical applications, one is generally limited in the
number of times one can change the value of the control and it can be cumbersome to administer
a control which takes a large number of sampling times. This leads to a natural perspective:
how to handle optimal sampled-data control problems when the cost includes a penalization on
the number of sampling times? This question is challenging since it involves an integer variable
to be optimized and as one does not a priori have an estimate on how the value of the optimal
cost changes as one increases the allowed number of sampling times.

Another possible question one can ask for optimal sampled-data control problems with free
sampling times is how to obtain necessary optimality conditions for more general dynamics, in
particular which depend on the value of the sampling times ti. As an example, this situation
arises in medical applications such as the one considered in the recent work [Bakir et al. 2020]
where one wants to find the optimal sampling times to send electrical impulses in order to
stimulate a muscle and maximize the force generated.

In our numerical simulations, we observed that when, one reduces the sampling period, the
values of the optimal sampled-data control seem to approach the values of the optimal perma-
nent control. Thus a natural perspective to investigate is whether or not one can prove the
convergence of optimal sampled-data controls to the optimal permanent control as the sam-
pling period tends to zero. As a first step towards this direction, let us mention that the
work [Bourdin & Trélat 2017] proves such convergence results in the context of unconstrained
linear-quadratic problems.

To the best of our knowledge, optimality conditions have not been considered for optimal
sampled-data control problems with nonsmooth dynamics described, for example, by differen-
tial inclusions or complementarity systems. Since nonsmooth dynamical systems are used to
model several physical systems such as electrical circuits and mechanical systems with impacts
(see [Acary & Brogliato 2008] and [Adly 2017] for some examples), one perspective is to study
optimal sampled-data control problems with nonsmooth dynamics and determine whether such
conditions can be given in the form of a PMP using the tools of nonsmooth analysis. Nonsmooth
optimal permanent control problems have been considered extensively in the literature by Bettiol,
Clarke, Frankowska, Vinter, etc. (see, e.g., [Bettiol & Frankowska 2007, Clarke & Vinter 1989,
Clarke 2001, Frankowska & Mazzola 2011, Vinter 2010]) whose works provide a basis for future
investigations in the case of sampled-data controls.
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(Cited on pages 29 and 68.)

[Dmitruk & Osmolovskii 2014] A. V. Dmitruk and N. P. Osmolovskii. Necessary conditions for
a weak minimum in optimal control problems with integral equations subject to state and
mixed constraints. SIAM J. Control Optim., vol. 52, no. 6, pages 3437–3462, 2014. (Cited
on pages 62, 65, 66 and 101.)



Bibliography 117

[Dmitruk & Osmolovskii 2017] A. V. Dmitruk and N. P. Osmolovskii. Necessary conditions for a
weak minimum in a general optimal control problem with integral equations on a variable
time interval. Math. Control Relat. Fields, vol. 7, no. 4, pages 507–535, 2017. (Cited on
pages 62 and 66.)

[Dmitruk & Osmolovskii 2018] A. V. Dmitruk and N. P. Osmolovskii. A general Lagrange mul-
tipliers theorem and related questions. In Control systems and mathematical methods in
economics, volume 687 of Lecture Notes in Econom. and Math. Systems, pages 165–194.
Springer, Cham, 2018. (Cited on page 62.)

[Dmitruk & Osmolovskii 2019] A. V. Dmitruk and N. P. Osmolovskii. Proof of the maximum
principle for a problem with state constraints by the V-change of time variable. Discrete
Contin. Dyn. Syst. Ser. B, vol. 24, no. 5, pages 2189–2204, 2019. (Cited on pages 62
and 66.)

[Dmitruk 2009] A. V. Dmitruk. On the development of Pontryagin’s maximum principle in the
works of A. Ya. Dubovitskii and A. A. Milyutin. Control Cybernet., vol. 38, no. 4A,
pages 923–957, 2009. (Cited on pages 5, 62 and 63.)

[Dubovitskii & Milyutin 1965] A. Y. Dubovitskii and A. A. Milyutin. Extremum problems in the
presence of restrictions. USSR Computational Mathematics and Mathematical Physics,
vol. 5, no. 3, pages 1–80, 1965. (Cited on pages 5 and 61.)

[Ekeland 1974] I. Ekeland. On the variational principle. J. Math. Anal. Appl., vol. 47, pages
324–353, 1974. (Cited on pages 4, 21, 26, 29, 50 and 68.)

[Evans 2013] L. Evans. An Introduction to Mathematical Optimal Control Theory Version 0.2.
2013. (Cited on page 79.)

[Fadali & Visioli 2013] M. S. Fadali and A. Visioli. Digital control engineering: Analysis and
design. Elsevier, 2013. (Cited on pages 3 and 20.)

[Faraut 2012] J. Faraut. Calcul intégral (l3m1). EDP sciences, 2012. (Cited on page 11.)

[Fattorini 1993] H. O. Fattorini. Optimal control problems for distributed parameter systems in
Banach spaces. Appl. Math. Optim., vol. 28, no. 3, pages 225–257, 1993. (Cited on
page 99.)

[Fattorini 1999] H. O. Fattorini. Infinite-dimensional optimization and control theory, volume 62
of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, 1999. (Cited on pages 2, 21, 29 and 99.)

[Frankowska & Mazzola 2011] H. Frankowska and M. Mazzola. OPtimal Synthesis And Nor-
mality Of The Maximum Principle For Optimal Control Problems With Pure State Con-
straints. In 2011 9th IEEE International Conference on Control and Automation (ICCA),
pages 945–950, 2011. (Cited on page 112.)

[Gamkrelidze 1960] R. V. Gamkrelidze. Optimal control processes for bounded phase coordinates.
Izv. Akad. Nauk SSSR. Ser. Mat., vol. 24, pages 315–356, 1960. (Cited on pages 5 and 61.)



118 Bibliography

[Girsanov 1972] I. V. Girsanov. Lectures on mathematical theory of extremum problems.
Springer-Verlag, Berlin-New York, 1972. Edited by B. T. Poljak, Translated from the
Russian by D. Louvish, Lecture Notes in Economics and Mathematical Systems, Vol. 67.
(Cited on page 62.)

[Grasse & Sussmann 1990] K. A. Grasse and H. J. Sussmann. Global controllability by nice con-
trols. In Nonlinear controllability and optimal control, volume 133 of Monogr. Textbooks
Pure Appl. Math., pages 33–79. Dekker, New York, 1990. (Cited on pages 3 and 20.)

[Grüne & Pannek 2017] L. Grüne and J. Pannek. Nonlinear model predictive control. Commu-
nications and Control Engineering Series. Springer, Cham, 2017. Theory and algorithms,
Second edition [of MR3155076]. (Cited on pages 3 and 20.)

[Haberkorn & Trélat 2011] T. Haberkorn and E. Trélat. Convergence results for smooth regular-
izations of hybrid nonlinear optimal control problems. SIAM J. Control Optim., vol. 49,
no. 4, pages 1498–1522, 2011. (Cited on page 21.)

[Halkin 1966] H. Halkin. A maximum principle of the Pontryagin type for systems described by
nonlinear difference equations. SIAM J. Control, vol. 4, no. 1, pages 90–111, 1966. (Cited
on pages 2 and 19.)

[Hartl et al. 1995] R. F. Hartl, S. P. Sethi and R. G. Vickson. A survey of the maximum princi-
ples for optimal control problems with state constraints. SIAM Rev., vol. 37, no. 2, pages
181–218, 1995. (Cited on pages 5, 62, 65, 70, 72 and 74.)

[Hiriart-Urruty 2008] J. B. Hiriart-Urruty. Les mathématiques du mieux faire, vol. 2: La com-
mande optimale pour les débutants. Collection Opuscules, 2008. (Cited on page 23.)

[Holtzman & Halkin 1966] J. M. Holtzman and H. Halkin. Discretional convexity and the maxi-
mum principle for discrete systems. SIAM J. Control, vol. 4, pages 263–275, 1966. (Cited
on pages 2 and 19.)

[Ioffe & Tihomirov 1979] A. D. Ioffe and V. M. Tihomirov. Theory of extremal problems, vol-
ume 6 of Studies in Mathematics and its Applications. North-Holland Publishing Co.,
Amsterdam-New York, 1979. Translated from the Russian by Karol Makowski. (Cited
on pages 5 and 62.)

[Jacobson et al. 1971] D. H. Jacobson, M. M. Lele and J. L. Speyer. New necessary conditions of
optimality for control problems with state-variable inequality constraints. J. Math. Anal.
Appl., vol. 35, pages 255–284, 1971. (Cited on pages 62 and 74.)

[Kim et al. 2011] N. Kim, A. Rousseau and D. Lee. A jump condition of PMP-based control for
PHEVs. Journal of Power Sources, vol. 196, no. 23, pages 10380–10386, 2011. (Cited on
pages 5 and 61.)

[Korytowski 2014] A. Korytowski. A simple proof of the maximum principle with endpoint con-
straints. Control Cybernet., vol. 43, no. 1, pages 5–13, 2014. (Cited on page 101.)

[Landau & Zito 2006] I. D. Landau and G. Zito. Digital control systems: Design, identification
and implementation. Springer, 2006. (Cited on pages 3 and 20.)



Bibliography 119

[Levis & Schlueter 1971] A. H. Levis and R. A. Schlueter. On the behaviour of optimal linear
sampled-data regulators. International Journal of Control, vol. 13, no. 2, pages 343–361,
1971. (Cited on pages 4 and 20.)

[Li & Yao 1985] X. Li and Y. Yao. Maximum principle of distributed parameter systems with
time lags. In Distributed parameter systems (Vorau, 1984), volume 75 of Lect. Notes
Control Inf. Sci., pages 410–427. Springer, Berlin, 1985. (Cited on page 99.)

[Li & Yong 1991] X. Li and J. Yong. Necessary conditions for optimal control of distributed
parameter systems. SIAM J. Control Optim., vol. 29, no. 4, pages 895–908, 1991. (Cited
on page 99.)

[Li & Yong 1995] X. Li and J. Yong. Optimal control theory for infinite-dimensional systems.
Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA,
1995. (Cited on pages 17, 99, 108 and 109.)

[Liberzon 2012] D. Liberzon. Calculus of variations and optimal control theory. Princeton
University Press, Princeton, NJ, 2012. A concise introduction. (Cited on page 99.)

[Limaye 1996] B. V. Limaye. Functional analysis. New Age International Publishers Limited,
New Delhi, second édition, 1996. (Cited on page 12.)

[Malanowski 2003] K. Malanowski. On normality of Lagrange multipliers for state constrained
optimal control problems. Optimization, vol. 52, no. 1, pages 75–91, 2003. (Cited on
page 67.)

[Maurer et al. 2005] H. Maurer, J. R. Kim and G. Vossen. On a state-constrained control problem
in optimal production and maintenance. In Optimal Control and Dynamic Games, pages
289–308. Springer, 2005. (Cited on page 61.)

[Maurer 1977] H. Maurer. On optimal control problems with bounded state variables and control
appearing linearly. SIAM J. Control Optimization, vol. 15, no. 3, pages 345–362, 1977.
(Cited on pages 62 and 74.)

[Melzer & Kuo 1971] S. M. Melzer and B. C. Kuo. Sampling period sensitivity of the optimal
sampled data linear regulator. Automatica J. IFAC, vol. 7, pages 367–370, 1971. (Cited
on pages 4 and 20.)

[Milyutin 1966] A. A. Milyutin. Extremum problems in the presence of constraints. PhD the-
sis, Doctoral Dissertation, Institute of Applied Mathematics, Moscow, 1966. (Cited on
page 63.)

[Mordukhovich & Shvartsman 2013] B. S. Mordukhovich and I. Shvartsman. Approximate max-
imum principle for discrete approximations of optimal control systems with nonsmooth
objectives and endpoint constraints. ESAIM Control Optim. Calc. Var., vol. 19, no. 3,
pages 811–827, 2013. (Cited on page 98.)

[Mordukhovich 2006a] B. S. Mordukhovich. Variational analysis and generalized differentiation.
I, volume 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences]. Springer-Verlag, Berlin, 2006. Basic theory. (Cited on
page 98.)



120 Bibliography

[Mordukhovich 2006b] B. S. Mordukhovich. Variational analysis and generalized differentiation.
II, volume 331 of Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences]. Springer-Verlag, Berlin, 2006. Applications. (Cited on
page 17.)

[Mordukhovich 2006c] B. S. Mordukhovich. Variational analysis and generalized differentiation.
II, volume 331 of Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences]. Springer-Verlag, Berlin, 2006. Applications. (Cited on
page 98.)

[Pontryagin et al. 1962] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F.
Mishchenko. The mathematical theory of optimal processes. John Wiley & Sons, Inc.,
1962. (Cited on pages 1, 5, 19, 23, 61, 99 and 100.)

[Puchkova et al. 2014] A. Puchkova, V. Rehbock and K. L. Teo. Closed-form solutions of a
fishery harvesting model with state constraint. Optimal Control Appl. Methods, vol. 35,
no. 4, pages 395–411, 2014. (Cited on page 61.)

[Rampazzo & Vinter 1999] F. Rampazzo and R. B. Vinter. A theorem on existence of neighbour-
ing trajectories satisfying a state constraint, with applications to optimal control. IMA J.
Math. Control Inform., vol. 16, no. 4, pages 335–351, 1999. (Cited on page 67.)

[Robbins 1980] H. Robbins. Junction phenomena for optimal control with state-variable inequal-
ity constraints of third order. J. Optim. Theory Appl., vol. 31, no. 1, pages 85–99, 1980.
(Cited on page 63.)

[Rockafellar 1970] R. T. Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28.
Princeton University Press, Princeton, N.J., 1970. (Cited on page 92.)

[Rockafellar 1972] R. T. Rockafellar. State constraints in convex control problems of Bolza.
SIAM J. Control, vol. 10, pages 691–715, 1972. (Cited on page 65.)

[Santina & Stubberud 2005] M. S. Santina and A. R. Stubberud. Basics of sampling and quan-
tization. In Handbook of networked and embedded control systems, Control Eng., pages
45–69. Birkhauser Boston, Boston, MA, 2005. (Cited on pages 3 and 20.)

[Schlueter & Levis 1973] R. A. Schlueter and A. H. Levis. The optimal linear regulator with
state-dependent sampling. IEEE Trans. Automatic Control, vol. AC-18, no. 5, pages
512–515, 1973. (Cited on pages 4 and 20.)

[Schlueter 1973] R. A. Schlueter. The optimal linear regulator with constrained sampling times.
IEEE Trans. Automatic Control, vol. AC-18, no. no.5, pages 515–518, 1973. (Cited on
pages 4 and 20.)

[Sethi & Thompson 2000] S. P. Sethi and G. L. Thompson. Optimal control theory. Kluwer
Academic Publishers, Boston, MA, second édition, 2000. Applications to management
science and economics. (Cited on pages 23, 61 and 70.)



Bibliography 121

[Sontag 1998] E. D. Sontag. Mathematical control theory, volume 6 of Texts in Applied Mathe-
matics. Springer-Verlag, New York, second édition, 1998. Deterministic finite-dimensional
systems. (Cited on pages 57, 88, 99 and 109.)

[Sussmann 1999] H. J. Sussmann. A maximum principle for hybrid optimal control problems. In
Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304),
volume 1, pages 425–430. Ieee, 1999. (Cited on page 21.)

[Trélat 2005] E. Trélat. Contrôle optimal. Mathématiques Concrètes. [Concrete Mathematics].
Vuibert, Paris, 2005. Théorie & applications. [Theory and applications]. (Cited on
pages 23, 68 and 73.)

[van Keulen et al. 2014] T. van Keulen, J. Gillot, B. de Jager and M. Steinbuch. Solution for
state constrained optimal control problems applied to power split control for hybrid ve-
hicles. Automatica J. IFAC, vol. 50, no. 1, pages 187–192, 2014. (Cited on pages 5
and 61.)

[Van Reeven et al. 2016] V. Van Reeven, T. Hofman, F. Willems, R. Huisman and M. Steinbuch.
Optimal control of engine warmup in hybrid vehicles. Oil & Gas Science and Technology–
Revue d’IFP Energies nouvelles, vol. 71, no. 1, page 14, 2016. (Cited on pages 5 and 61.)

[Vinter 2010] R. Vinter. Optimal control. Modern Birkhäuser Classics. Birkhäuser Boston, Inc.,
Boston, MA, 2010. Paperback reprint of the 2000 edition. (Cited on pages 5, 7, 23, 62,
66, 67, 68, 69, 89, 98, 101, 103 and 112.)

[Volz & Kazda 1966] R. A. Volz and L. F. Kazda. Design of a Digital Controller for a Tracking
Telescope. IEEE Transcations on Automatic Control, vol. AC-12, no. 4, pages 359–367,
August 1966. (Cited on pages 3 and 20.)

[Warga 1975] J. Warga. Necessary conditions without differentiability assumptions in optimal
control. J. Differential Equations, vol. 18, pages 41–62, 1975. (Cited on page 98.)

[Wheeden & Zygmund 2015] R. L. Wheeden and A. Zygmund. Measure and integral. Pure and
Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, second édition, 2015.
An introduction to real analysis. (Cited on page 11.)

[Yu 2013] H. Yu. Pontryagin’s principle of mixed control-state constrained optimal control gov-
erned by fluid dynamic systems. Numer. Funct. Anal. Optim., vol. 34, no. 4, pages
451–484, 2013. (Cited on page 99.)





Contributions in optimal sampled-data control theory with state constraints
and nonsmooth data

Abstract: This dissertation is concerned with first-order necessary optimality conditions in the form of a
Pontryagin maximum principle (in short, PMP) for optimal sampled-data control problems with free sampling
times, running inequality state constraints and nonsmooth Mayer cost functions.

Chapter 1 is devoted to notations and basic framework needed to describe the optimal sampled-data control
problems to be encountered in the manuscript.

In Chapter 2, considering that the sampling times can be freely chosen, we obtain an additional necessary
optimality condition in the PMP called the Hamiltonian continuity condition. Recall that the Hamiltonian
function, which describes the evolution of the Hamiltonian taking values of the optimal trajectory and of the
optimal sampled-data control, is in general discontinuous when the sampling times are fixed. Our result proves
that the continuity of the Hamiltonian function is recovered in the case of optimal sampled-data controls with
optimal sampling times. Finally we implement a shooting method based on the Hamiltonian continuity condition
in order to numerically determine the optimal sampling times in two linear-quadratic examples.

In Chapter 3, we obtain a PMP for optimal sampled-data control problems with running inequality state
constraints. In particular we obtain that the adjoint vectors are solutions to Cauchy-Stieltjes problems defined
by Borel measures associated to functions of bounded variation. Moreover, we find that, under certain general
hypotheses, any admissible trajectory (associated to a sampled-data control) necessarily bounces on the running
inequality state constraints. Taking advantage of this bouncing trajectory phenomenon, we are able to use the
PMP to implement an indirect numerical method which we use to numerically solve some simple examples of
optimal sampled-data control problems with running inequality state constraints.

In Chapter 4, we obtain a PMP for optimal sampled-data control problems with nonsmooth Mayer cost
functions. Our proof directly follows from the tools of nonsmooth analysis and does not involve any regularization
technique. We determine the existence of a selection in the subdifferential of the nonsmooth Mayer cost function
by establishing a more general result asserting the existence a universal separating vector for a given compact
convex set. From the application of this result, which is called universal separating vector theorem, we obtain a
PMP for optimal sampled-data control problems with nonsmooth Mayer cost functions where the transversality
conditon on the adjoint vector is given by an inclusion in the subdifferential of the nonsmooth Mayer cost function.

To obtain the optimality conditions in the form of a PMP, we use different techniques of perturbations of the
optimal control. In order to handle the state constraints, we penalize the distance to them in a corresponding cost
functional and then apply the Ekeland variational principle. In particular, we invoke some results on renorming
Banach spaces in order to ensure the regularity of distance functions in the infinite-dimensional context. Finally
we use standard notions in nonsmooth analysis such as the Clarke generalized directional derivative and the
Clarke subdifferential to study optimal sampled-data control problems with nonsmooth Mayer cost functions.

Keywords: Optimal control, sampled-data control, Pontryagin maximum principle, Ekeland variational prin-

ciple, optimal sampling times, Hamiltonian continuity, running state constraints, Cauchy-Stieltjes problems,

nonsmooth analysis, indirect numerical methods, shooting methods.



Contributions en théorie du contrôle échantillonné optimal avec contraintes
d’état et données non lisses

Résumé : L’objectif de cette thèse est d’obtenir des conditions nécessaires d’optimalité du premier ordre sous
la forme d’un principe du maximum de Pontryagin (en abrégé PMP) pour des problèmes de contrôle échantillonné
optimal avec temps d’échantillonnage libres, contraintes d’état et coûts de Mayer non lisses.

Le Chapitre 1 est consacré aux notations et espaces fonctionnels utiles pour décrire les problèmes de contrôle
échantillonné optimal qui seront rencontrés dans le manuscrit.

Dans le Chapitre 2, nous obtenons une condition nécessaire d’optimalité lorsque les temps d’échantillonnage
peuvent être choisis librement qui est appelée condition de continuité de la fonction Hamiltonienne. Rappelons
que la fonction Hamiltonienne qui décrit l’évolution du Hamiltonien avec les valeurs de la trajectoire optimale
et du contrôle échantillonné optimal est, en général, discontinue quand les temps d’échantillonnage sont fixés.
Notre résultat démontre que la continuité de la fonction Hamiltonienne est retrouvée pour les contrôles échan-
tillonnés optimaux avec temps d’échantillonnage optimaux. Pour terminer, nous implémentons une méthode de
tir basée sur la condition de continuité de la fonction Hamiltonienne pour déterminer numériquement les temps
d’échantillonnage optimaux dans deux exemples linéaires-quadratiques.

Dans le Chapitre 3, nous obtenons un PMP pour des problèmes de contrôle échantillonné optimal avec
contraintes d’état. Nous obtenons que les vecteurs adjoints sont solutions de problèmes de Cauchy-Stieltjes
définis par des mesures de Borel associées à des fonctions à variation bornée. De plus, nous trouvons que, sous
quelques hypothèses assez générales, toute trajectoire admissible (associée à un contrôle échantillonné) rebondit
nécessairement sur les contraintes d’état. Nous exploitons ce phénomène de trajectoires rebondissantes pour
implémenter une méthode indirecte qu’on utilise pour résoudre numériquement quelques exemples simples de
problèmes de contrôle échantillonné optimal avec contraintes d’état.

Dans le Chapitre 4, nous obtenons un PMP pour des problèmes de contrôle échantillonné optimal avec coûts
de Mayer non lisses. Notre preuve est uniquement basée sur les outils de l’analyse non lisse et n’utilise aucune
technique de régularisation. Nous déterminons l’existence d’une sélection dans le sous-différentiel de la fonction
de coût de Mayer non lisse en établissant un résultat plus général sur l’existence d’un vecteur séparant universel
pour les ensembles convexes compacts. En appliquant ce résultat, appelé théorème de vecteur séparant universel,
nous obtenons un PMP pour des problèmes de contrôle échantillonné optimal avec coûts de Mayer non lisses où
la condition de transversalité sur le vecteur adjoint est donnée par une inclusion dans le sous-différentiel de la
fonction de coût de Mayer non lisse.

Pour obtenir les conditions d’optimalité sous la forme d’un PMP, nous utilisons différentes techniques de per-
turbation sur le contrôle optimal. Pour traiter les contraintes d’état, nous pénalisons la distance à ces contraintes
dans une fonctionelle et nous appliquons le principe variationnel d’Ekeland. En particulier, nous invoquons des
résultats sur la renormalisation des espaces de Banach pour assurer la régularité de la fonction distance dans
les contextes de dimension infinie. Enfin nous utilisons des notions standards de l’analyse non lisse, telles que
les dérivées directionnelles généralisées de Clarke et le sous-différentiel de Clarke, pour étudier les problèmes de
contrôle échantillonné optimal avec coûts de Mayer non lisses.

Mots clés : Contrôle optimal, contrôle échantillonné, principe du maximum de Pontryagin, principe variation-

nel d’Ekeland, temps d’échantillonnage optimaux, continuité de la fonction Hamiltonienne, contraintes d’état,

problèmes de Cauchy-Stieltjes, analyse non lisse, méthodes numériques indirectes, méthodes de tir.
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