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Abstract

Cette thèse s’intéresse principalement au développement de méthodes d’optimisation
mathématique exactes pour résoudre des problèmes de tournées de véhicules dans un
réseau de distribution à deux niveaux. Dans un tel réseau, des camions circulent au
premier niveau et transportent des marchandises d’un centre de distribution vers des
dépôts intermédiaires appelés « satellites ». Au second niveau, des véhicules légers
récupèrent les marchandises aux satellites puis livrent les clients. Chaque client doit être
visité une seule fois. L’objectif du problème de tournées de véhicules sur deux niveaux
est de minimiser le coût total de transport dans un tel réseau de distribution.

Le premier chapitre présente succinctement l’algorithme de « branch-and-cut-and-price
» que nous utilisons tout au long de la thèse.

Le second chapitre s’intéresse au « Two-Echelon Capacitated Vehicle Routing Prob-
lem ». Nous présentons une nouvelle formulation du problème basée sur des routes
qui ne contient pas de variable pour determiner les quantités de marchandises livrées
aux satellites. Nous proposons une nouvelle stratégie de branchement qui permet de
significativement réduire la taille de l’arbre de branch-and-bound. Enfin et surtout, nous
présentons une nouvelle famille d’inégalités valides nommée « satellite supply inequalities
». Nous montrons que cette nouvelle famille améliore la qualité de la borne duale au
noeud racine de l’arbre de « branch-and-bound ». Les expérimentations montrent que
notre algorithme résout toutes les instances de la littérature qui contiennent jusqu’à 200
clients et 10 satellites. C’est le double de la taille des instances qui étaient résolues à
l’optimalité jusqu’ici.

La troisième chapitre s’intéresse au « Two-Echelon Vehicle Routing Problem with
Time Windows ». Ici, nous considérons une variante avec des contraintes de précédence
aux satellites : un camion doit livrer les marchandises à un satellite avant qu’elles soient
chargées dans un véhicule léger. C’est une relaxation de la variante avec synchronisation
exacte considérée dans la littérature. Nous traitons les variantes « single trip » et «
multi trip » du problème avec contraintes de précédence. Dans la seconde variante,
les véhicules légers partent d’un dépôt, récupèrent les marchandises aux satellites, puis
e�ectuent plusieurs tournées. Nous proposons une formulation basée sur les routes dont
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le nombre de contraintes de précédence croît exponentiellement en fonction du nombre
de satellites. Un algorithme basé sur une coupe minimum est proposé pour séparer ces
contraintes. Nous montrons aussi comment prendre en compte ces contraintes dans le
problème de pricing de l’algorithme de génération de colonnes. Les expérimentations
montrent que notre algorithme peut résoudre à l’optimalité des instances qui contiennent
jusqu’à 100 clients. De plus, nous montrons que la variante du problème avec contraintes
de précédence donne des résultats identiques à ceux de la variante avec synchronisation
exacte pour les instances « single trip » de la littérature.

La quatrième chapitre s’intéresse à des problèmes de tournées de véhicules contenant
des contraintes de type sac-à-dos. Nous présentons des coupes de type « route load
knapsack ». Ces coupes sont utilisées pour résoudre les trois problèmes suivants: «
Capacitated Vehicle Routing Problem with Capacitated Multiple Depots », « Location-
Routing Problem » et « Vehicle Routing Problem with Time Windows and Shifts ». Ces
problèmes apparaissent lorsque les routes au premier niveau du réseau de distribution
à deux niveaux sont fixées. Nos expérimentations permettent de trouver de nouvelles
solutions optimales.

Mot-clefs : Optimisation exacte, Génération de coupes et de colonnes, Inégalités
valides, Tournées de véhicules avec transbordement, Problèmes de tournées de véhicules
à deux niveaux.



Abstract

The main focus of this thesis is to develop mathematical optimization based exact
methods to solve vehicle routing problems in two-level distribution systems. In such
a system, the first level involves trucks that ships goods from a distribution center to
intermediate depots called satellites. The second level involves city freighters that are
loaded with goods at satellites and deliver the customers. Each customer must be visited
once. The two-echelon vehicle routing problem seeks to minimize the total transportation
cost in such a distribution system.

The first chapter gives an overview of the branch-and-cut-and-price framework that
we use throughout the thesis.

The second chapter tackles the Two-Echelon Capacitated Vehicle Routing Problem.
We introduce a new route based formulation for the problem which does not use variables
to determine product flows in satellites. We propose a new branching strategy which
significantly decreases the size of the branch-and-bound tree. Most importantly, we
suggest a new family of satellite supply inequalities, and we empirically show that it
improves the quality of the dual bound at the root node of the branch-and-bound tree.
Experiments reveal that our algorithm can solve all literature instances with up to 200
customers and 10 satellites. Thus, we double the size of instances which can be solved to
optimality.

The third chapter tackles the Two-Echelon Vehicle Routing Problem with Time
Windows. We consider the variant with precedence constraints at the satellites: products
should be delivered by an urban truck to a satellite before loading them to a city freighter.
This is a relaxation of the synchronisation variant usually considered in the literature.
We consider single-trip and multi-trip variants of this problem. In the first one, city
freighters start from satellites and do a single trip. In the second one, city freighters start
from a depot, load product at satellites, and do several trips. We introduce a route based
formulation that involves an exponential number of constraints to ensure precedence
relations. A minimum-cut based algorithm is proposed to separate these constraints.
We also show how these constraints can be taken into account in the pricing problem
of the column generation approach. Experiments show that our algorithm can solve to
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optimality instances with up to 100 customers. The algorithm outperforms significantly
another recent approach proposed the literature for the single-trip variant of the problem.
Moreover, the “precedence relaxation” is exact for single-trip instances.

The fourth chapter considers vehicle routing problems with knapsack-type constraints
in the master problem. For these problems, we introduce new route load knapsack
cuts and separation routines for them. We use these cuts to solve to optimality three
problems: the Capacitated Vehicle Routing Problem with Capacitated Multiple Depots,
the standard Location-Routing Problem, and the Vehicle Routing Problem with Time
Windows and Shifts. These problems arise when routes at first level of the two-level
distribution system are fixed. Our experiments reveal computational advantage of our
algorithms over ones from the literature.

Keywords: Exact optimization, Column and cut generation, Valid inequalities,
Vehicle routing with transshipments, Two-level vehicle routing problems.



Acknowledgements

I would like to thank Linda, my friends, and my family.

I would like to thank François Vanderbeck for all the research and job opportunities
since my master internship.

I would like to thank Rémy Dupas, Ruslan Sadykov, and Jean-Christophe Deschamps
for the supervision of my thesis.

I would like to thank Eduardo Uchoa who welcomed me three months at Universidade
Federal Fluminense (Niterói, Brazil). This stay was funded by Idex Bordeaux. I would
also like to thank all the LOGIS team who has been very nice to me. I thank Anand
Subramanian and his team who welcomed me for a week at Universidade Federal da
Paraíba (João Pessoa, Brazil) and Thibaut Vidal who invited me to spend one day at
Pontifícia Universidade Católica do Rio de Janeiro.

I would like to thank the members of the jury for the time spent reading my thesis
and all my colleagues for the nice working environment.





Table of contents

List of figures xiii

List of tables xv

Introduction 1

1 Getting started 5

1.1 Linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Integer programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 General structure of the branch-cut-and-price . . . . . . . . . . . . . . . 14

1.3.1 Cut generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Column generation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Generic BCP enhancements . . . . . . . . . . . . . . . . . . . . . 25
1.3.4 Overview of the algorithm . . . . . . . . . . . . . . . . . . . . . . 27

2 Two-Echelon Vehicle Routing Problem 31

2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Standard formulation . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Modified formulation . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Valid inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 New family of valid inequalities . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Satellite supply inequalities . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Separation of Satellite supply inequalities . . . . . . . . . . . . . . 42

2.4 Branch-cut-and-price algorithm . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.1 Pricing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.2 Column and cut generation . . . . . . . . . . . . . . . . . . . . . 46
2.4.3 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.4 Primal heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



x Table of contents

2.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.1 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.2 Experimental analysis of BCP variants . . . . . . . . . . . . . . . 48
2.5.3 Comparison with the state-of-the-art algorithm . . . . . . . . . . 50
2.5.4 Experimental results for new instances . . . . . . . . . . . . . . . 51

3 Two-Echelon Vehicle Routing Problem with Time-Windows 53

3.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Problem definition and formulation . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Standard formulation . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Modified formulation . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.3 Valid inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.4 Multi-trip variant . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Branch-cut-and-price algorithm . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.1 Pricing problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.2 TLPC separation algorithm . . . . . . . . . . . . . . . . . . . . . 71
3.3.3 The overall algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1 Literature Instances . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.2 Results for literature instances . . . . . . . . . . . . . . . . . . . . 77
3.4.3 Results for new single-trip instances . . . . . . . . . . . . . . . . . 80
3.4.4 Results for smaller multi-trip instances . . . . . . . . . . . . . . . 80
3.4.5 Results for instances with modified vehicle capacity . . . . . . . . 81

4 Location-Routing and Related Problems 83

4.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Problem definition and formulation . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.2 Robust valid inequalities . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.3 Route load knapsack cuts . . . . . . . . . . . . . . . . . . . . . . 93
4.2.4 Separation of Route load knapsack cuts . . . . . . . . . . . . . . . 95

4.3 Pricing routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Location-routing instances . . . . . . . . . . . . . . . . . . . . . 100
4.4.2 CVRP-CMD instances . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.3 VRPTW with Shifts instances . . . . . . . . . . . . . . . . . . . . 105



Table of contents xi

Conclusion and Perspectives 109

Bibliography 115





List of figures

1.1 Generic representation of a linear program . . . . . . . . . . . . . . . . . 6
1.2 Geometric representation of an integer program . . . . . . . . . . . . . . 9
1.3 Example of a branching constraint . . . . . . . . . . . . . . . . . . . . . 13
1.4 Buckets for a vertex of the bucket graph . . . . . . . . . . . . . . . . . . 19
1.5 Example of a solution to the RCESPP for the CVRP . . . . . . . . . . . 21
1.6 Example of the tracking of the resource consumption of a lm-R1C . . . . 23
1.7 Examples of cycles allowed or forbidden in a priced ng-route. . . . . . . . 24
1.8 Overview of the column-and-cut generation algorithm . . . . . . . . . . . 29

2.1 Illustration for the proof of the equivalence of two formulations for the
2E-CVRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Example of a Satellite supply inequality . . . . . . . . . . . . . . . . . . 41
2.3 Illustration of the linearization of a Satellite supply inequality . . . . . . 42
2.4 Example of a graph to separate Satellite supply inequalities . . . . . . . . 43

3.1 Examples of transfers at a satellite . . . . . . . . . . . . . . . . . . . . . 58
3.2 Example of a solution that violates a Two-level precedence constraint . . 62
3.3 Illustration for the proof of the equivalence between two formulations for

the 2E-VRPTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Example of extended graph to price second-level single-trip routes . . . . 69
3.5 Examples of extended graphs to price second-level multi-trip routes . . . 70
3.6 Instance of a graph to separate Two-level precedence cuts . . . . . . . . . 72
3.7 Overview of the results for multi-trip instances with 25, 50, and 75 customers 81

4.1 Performance profiles of BCP variants tested against Prodhon instances . 102
4.2 Performance profile for BCP variants tested against the CVRP-CMD

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3 Performance profile for BCP variants tested against the VRPTW-S instances106





List of tables

2.1 Sets of 2E-CVRP instances from the literature used for experiments . . . 48
2.2 Comparison of variants of the BCP algorithm . . . . . . . . . . . . . . . 49
2.3 Comparison of two BCP variants with the state-of-the-art exact algorithm

for the 2E-CVRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 Improved best-known solutions for the 2E-CVRP literature instances . . 51

3.1 Sets of 2E-VRPTW instances from the literature used for experiments . . 76
3.2 Comparison of our 2E-VRPTW single-trip results with literature . . . . . 78
3.3 Overview of results for 2E-VRPTW multi-trip instances . . . . . . . . . . 79
3.4 Overview of experiments on multi-trip instances . . . . . . . . . . . . . . 79
3.5 Overview of experiments on new 2E-VRPTW single-trip instances . . . . 80
3.6 Overview of results for 2E-VRPTW instances with original vehicle capacity 82
3.7 Overview of results for 2E-VRPTW instances with modified vehicle capacity 82

4.1 Hint on the validity of lifted Depot capacity cuts for the LRP . . . . . . 91
4.2 Comparison of variants of the BCP algorithm on LRP instances PPW06 . 101
4.3 Comparison of our result on LRP with literature . . . . . . . . . . . . . . 102
4.4 Performance of BCPbest on instances in the set SL19 . . . . . . . . . . . 103
4.5 Comparison of variants of the BCP algorithm on CVRP-CMD instances . 104
4.6 Comparison of variants of the BCP algorithm on VRPTW-S instances . . 106





Introduction

This thesis evaluates the performance of exact methods of mathematical optimization
to optimize vehicle routing problems in two-level distribution systems. The problem
considered in this thesis arises from city logistics whose fundamental concepts are the
consolidation of loads and the coordination of operations. The practical purpose of the
problem is to deliver customers located in city centers with low capacitated vehicles
which deteriorate as little as possible the living conditions of urban dwellers.

As noticed by Crainic (2008), freight transportation competes with people trans-
portation for the capacity of the streets, contributes to congestion, and participates in
environmental nuisances such as noise and pollution. In the urban area of Bordeaux,
a technical report from Agence d’urbanisme Bordeaux Aquitaine (2019) corroborates
these statements. They note that 40% of freight movements take place between 7 am
and 10 am which are also the rush hours of car tra�c. Moreover, they note that about
25% of pickup and delivery operations are performed by freight vehicles illegally parked.
However, the proportion of trucks with a capacity greater than 3.5 tons decreases in the
urban area. In 1994, half of the movements were performed by trucks. In 2013, it was
less than a third.

Over the years, city centers are becoming less accessible to vans and trucks whereas
electronic commerce grows and urban migration increases. Tra�c restrictions in city
centers are motivated for di�erent reasons. One reason is the architecture of the city.
Some streets may be too narrow to accommodate trucks. Other reasons are political and
their overall aim is to improve the living conditions of urban dwellers, especially improve
air quality. In that case, all types of motor vehicles may face restrictions. For instance,
the Paris city council closed to tra�c a large part of the riverside road in 2016. It was an
important arterial road that crossed Paris from east to west and it is now dedicated to
pedestrians and buses. In Barcelona, they set up small neighbourhoods with restricted
access to vehicles. Vehicles drive outside the neighbourhoods. Inside the neighbourhoods,
tra�c has given way to living places for residents with parks, playgrounds, and bicycle
lanes.
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In France, this trend is very clear after the lockdown put in place in March 2020 to
limit the spread of the coronavirus (COVID-19). Indeed, the Government of the French
Republic implemented the « Plan vélo » to prevent people from abandoning public
transportation in favor of private cars. This plan has notably resulted in the creation of
numerous cycle paths in major cities. In the urban area of Bordeaux, for instance, a few
streets have become one-way streets and the capacity of several arterial roads has been
reduced to create lanes dedicated to buses and cycles. Similar developments take place
in several European cities as mentioned by some newspapers.

These trends bring us to consider a distribution system in which trucks are banned
from the city centers. To this end, trucks ship freight from depots to intermediate
depots, called satellites, located within the urban areas. Then, smaller vehicles, called
city freighters, collect freight at satellites and deliver the customers in the city center.
City freighters can be cargo bikes or electric delivery vans for instance. This way of
transporting goods is called a two-echelon distribution system. Urban trucks operate
at the first level and city freighters at the second level. Transportation systems require
planning at the strategic level (design of the system), tactical level (vehicles routing),
and operational level (sta� work schedules). In this thesis, we focus on the tactical level.
This results in the Two-Echelon Vehicle Routing problem.

From a mathematical optimization perspective, this problem is very challenging.
In standard vehicle routing problems, routes are linked by a polynomial number of
constraints. In the case of the two-echelon distribution system, since the routes taken by
the city freighters fully depends on the routes taken by urban trucks, we will see that it
leads to an exponential number of constraints. So, there is a strong dependency between
the routes. Moreover, exact algorithms are useful as they are generally used in practice
to obtain lower bounds on the value of an optimum solution to the problem. We can
then use these bounds to evaluate the quality of heuristics.

The thesis is organized as follows. In the first chapter, we recall the main concepts of
mathematical programming and we give an overview of the branch-and-cut-and-price
framework used throughout the thesis. This framework embeds several state-of-the-art
components to solve e�ciently vehicle routing problems.

In the second chapter, we tackle the Two-Echelon Capacitated Vehicle Routing
Problem. We review the literature. We introduce a new route based formulation for
the problem which does not involve variables to determine freight flows in satellites.
We propose a new branching strategy on the number of trucks visiting satellites which
significantly decreases the size of the branch-and-bound tree. Most importantly, we
suggest a new family of valid inequalities, called satellite supply inequalities, and we
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empirically show that it improves the quality of the dual bound at the root node of the
branch-and-bound tree. Experiments reveal that our algorithm can solve all literature
instances with up to 200 customers and 10 satellites. Thus, we double the size of instances
that can be solved to optimality. This work has been presented in ROADEF 2019, Verolog
2019, and the Autumn school on Advanced BCP Tools: VRPSolver and Coluna . It has
been published in Marques et al. (2020).

The third chapter tackles the Two-Echelon Vehicle Routing Problem with Time
Windows. We consider the variant with precedence constraints at the satellites: products
should be delivered by an urban truck to a satellite before loading them to a city freighter.
This is a relaxation of the synchronization variant usually considered in the literature. We
consider single-trip and multi-trip variants of the problem with precedence constraints.
In the first variant, city freighters start from satellites and do a single trip. In the second
one, city freighters start from a depot, load product at satellites, and do several trips. We
introduce a route based formulation that involves an exponential number of constraints
to ensure precedence relations. A minimum-cut based algorithm is proposed to separate
these constraints. We also show how these constraints can be taken into account in
the pricing problem of the column generation approach. Experiments show that our
algorithm can solve to optimality instances with up to 100 customers for both single-trip
and multi-trip variants. The algorithm outperforms significantly another recent approach
proposed in the literature for the single-trip variant of the problem. At last, we show
that the “precedence relaxation” is very tight for the latter instances: all solutions can be
transformed into solutions with exact synchronization with the same cost. A part of this
work has been presented in ROADEF 2020. We will submit an article to Transportation
Science.

The fourth chapter considers mainly the location routing problem which has two
levels of decisions. First, we have to choose which depot will be open (location), and
second, we plan routes from the opened depots to deliver the customers (routing). It
is part of the work I did during my stay at Universidade Federale de Fluminense. In
this chapter, we consider vehicle routing problems with knapsack-type constraints in the
master problem. For these problems, we introduce a new family of valid inequalities
named route load knapsack cuts. We also propose a separation algorithm for these cuts.
We use these cuts to solve to optimality three problems: the Capacitated Vehicle Routing
Problem with Capacitated Multiple Depots, the standard Location-Routing Problem,
and the Vehicle Routing Problem with Time Windows and Shifts. These problems are
subproblems of two-echelon vehicle routing problems because they arise when the solution
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to the first level is fixed. Our experiments reveal the computational advantage of our
algorithms over ones from the literature. An article will be submitted.



Chapter 1

Getting started

In this chapter, we recall the main concepts of mixed-integer linear programming theory.
These are the foundations of the algorithmic framework used throughout the thesis. We
then give an overview of the framework and describe its key features.

1.1 Linear programming

Mathematical optimization seeks to reach an optimal solution among a set of solutions
to a problem. The problem is usually modelled as a mathematical program, introduced in
Kantorovich (1939) to model an economic allocation problem, that contains constraints
defining the set of feasible solutions and an objective function associating each solution
to a value telling how "good" is this solution. In the case of linear optimization, such a
program has the form :

[P1] © minimize c|x (1.1)
subject to Ax Ø b (1.2)

x Ø 0 (1.3)

where x is a vector of m real variables. Vector of costs c œ Rm, coe�cient matrix
A œ Rm◊n, and right-hand side vector b œ Rn are known. Expression (1.1) is the
objective function, expression (1.2) defines a collection of n constraints, and expression
(1.3) defines the domains of variables. A solution with the minimum objective value is
called an optimal solution.

From the geometric perspective, each constraint of the linear program is a half-space.
The intersection of these half-spaces forms a convex polyhedron which is the set of
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feasible solutions. The objective function is a hyperplane. In the case of minimization
problem, we get an optimal solution by sliding down the latter hyperplane while keeping
it intersected with the polyhedron. Figure 1.1 illustrates such an interpretation and we
clearly see that, in this example, there is a single optimal solution which is a vertex of
the polyhedron.

x1

x2

•
xú ≠c

Figure 1.1: Geometric representation of a linear program. It minimizes objective function
c. The optimal solution is xú.

As mentioned in Dantzig (1990), Dantzig proposed the simplex method to optimize
linear programs in 1947. This method is based on the geometric interpretation of a
linear program. Basically, the simplex method starts from a vertex of the polyhedron
and moves along an incident edge chosen by pivot rules. A pivot rule can consist, for
instance, in choosing an incident edge that goes to a vertex that improves the value
of the objective function. The algorithm stops when it finds a vertex corresponding to
an optimal solution. This algorithm has an exponential worst-case complexity but it
is e�cient in practice. There is another class of e�cient algorithms known as interior
point methods and proposed in Karmarkar (1984). These algorithms have polynomial
worst-case complexity for linear optimization. We will not go into details because we do
not use these methods in our work. However, it is worth mentioning them because their
complexity shows that a linear program may be solved in polynomial time.

A central concept in mathematical optimization is duality. An optimization problem
can be viewed from two perspectives: the primal problem and the dual problem. The
problem as originally formulated is usually called the primal problem. Here, problem
[P1] is the primal problem. The dual problem can be derived from the primal one by
applying a method called Lagrangian relaxation.
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The Lagrangian relaxation is a way to handle the constraints by penalizing their
violation in the objective function. Let y Ø 0 be a vector of Lagrangian multipliers that
contains one entry for each constraint. The Lagrangian function of problem [P1]

L(x, y) = c|x + y|(b ≠ Ax) = y|b + (c ≠ y|A)x (1.4)

yields a lower bound on the value of feasible solutions to [P1]. The dual Lagrangian
problem

g(y) = min
xØ0

L(x, y) = y|b + min
xØ0

{(c ≠ y|A)x} (1.5)

looks for the best solution for a given vector of Lagrangian multipliers. Given vector
y Ø 0, entries of vector c ≠ y|A are the reduced costs of variables x. The reduced cost
of a variable defines a lower bound on how much the objective function increases when
the value of the variable is incremented by one. Therefore, in the case of a minimization
problem, variables with negative reduced costs may improve the objective function. The
value of g(y) yields a lower bound on the value of the optimal solution to [P1] and to get
the best lower bound, we solve

[RP ] © max
yØ0

g(y) © max
yØ0

{y|b + min
xØ0

{(c ≠ y|A)x}} (1.6)

We note that if the coe�cient of x in (1.6) is non-negative, then the value of lower
bound g(y) is y|b; ≠Œ otherwise. From that and because an infinite lower bound is
uninformative, we obtain the following problem :

[DP1] © maximize y|b (1.7)
subject to y|A Æ c (1.8)

y Ø 0 (1.9)

Problem [DP1] is called the dual problem of [P1] and y are called dual variables.
The value of a dual variable, also called dual price, is a lower bound on how much the
objective function increases each time the right-hand side of the associated constraint
is incremented by one. Any feasible solution to [DP1] gives a lower bound, also called
dual bound, on the value of the optimal solution to [P1]. Conversely, [P1] is the primal
problem and the value of any feasible solution to [P1] is called a primal bound.
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A key point about linear optimization and duality is that, given xú optimal solution of
[P1] and yú optimal solution of [DP1], c|xú = b|yú holds. This is called strong duality.

1.2 Integer programming

Linear programming o�ers a generic way to model optimization problems in which the
decisions consist of determining amounts of uncountable things. However, we often face
problems that involve choices or indivisible things. For example, a solution stating that
a company needs 2.65 vehicles and 3.12 employees to deliver its customers cannot be
considered as feasible. Such problems are combinatorial problems and can be written as

min{c(s) | s œ S}

where c is the objective function and S is the set of feasible solutions which is often
so large that an exhaustive enumeration of solutions would take ages (combinatorial
explosion). A combinatorial problem has a valid formulation if we can describe a
polyhedron P = {x | Ax Ø b} such as

min{c|x | x œ P fl Nm} © min{c(s) | s œ S}. (1.10)

We can rewrite this problem as an integer linear program, that is a linear program in
which variables take discrete values :

[P2] © min{c|x | Ax Ø b, x œ Zm

+
}. (1.11)

Since an exhaustive enumeration of the solutions is not always possible, we need to
enumerate them in a smart way. To this end, we use the concept of relaxation which
consists in relaxing some constraints to make the problem easier to solve. We use three
types of relaxations :

• Lagrangian relaxation (presented in the previous section) that consists in penalizing
the violation of some constraints in the objective function,

• linear relaxation that consists in ignoring the integrality constraints of the variables,

• combinatorial relaxation that consists in removing di�cult constraints from the
formulation.
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Relaxing a formulation leads to an easier problem that provides a dual bound on the
optimal value. This dual bound is a useful piece of information to explore the space of
solutions in an intelligent way.

From the geometric point of view, feasible solutions to an integer program are integer
points inside the polyhedron as we can see in the left picture of figure 1.2. We note that
an optimal solution is not necessarily a vertex of the polyhedron and therefore linear
programming algorithms applied to the linear relaxation do not necessarily find a feasible
solution to the problem. However, integer optimization methods are built on top of linear
optimization methods. Therefore, the ideal formulation is the one whose polyhedron has
integer points as vertices. Given (xs)sœS the set of integer points that correspond to the
feasible solutions to S, the ideal formulation is thus the polyhedron described by the
convex combination of these feasible solutions

conv(S) =
I

ÿ

sœS

⁄sx
s |

ÿ

sœS

⁄s = 1, ⁄s Ø 0 s œ S

J

(1.12)

also known as the convex hull of the feasible solution in S. Indeed, the optimal solution
to the linear relaxation of the ideal formulation is the optimal solution to the problem.
Right picture of figure 1.2 gives an example of ideal formulation. Unfortunately, there is
no e�cient procedure to find the ideal formulation but we know ways to improve the
quality of the formulation, i.e. to make the formulation stronger, and so improve the dual
bound provided by the linear relaxation. Consequently, we look for a formulation whose
linear relaxation is as tight as possible around the convex hull of the feasible solutions.

x1

x2

xú ≠c

•
•
•
•

•
•
•

•
•
•
•
•

•
•
•
• •

•

x1

x2

xú ≠c

•
•
•
•

•
•
•

•
•
•
•
•

•
•
•
• •

•

Figure 1.2: Geometric representation of an integer program, its feasible solutions (black
dots), its linear relaxation (blue area), and its ideal formulation (green area).
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A strong formulation may involve an exponential number of constraints. These
constraints must be incrementally added in the formulation to avoid making the linear
relaxation intractable. This procedure is named cut generation and works as follows.
First, it solves (the linear relaxation of) the formulation. Second, it calls a separation
oracle that returns a certain number of constraints violated by the solution to (the linear
relaxation of) the formulation. Third, it adds the violated constraints to the formulation
and returns to the first step. Cut separation stops once the separation oracle does not
find any violated constraints or when the new constraints barely improve the dual bound.
The latter condition is also known as tailing-o� condition.

There are two types of constraints. The first type of constraints includes essential
ones. They are inherent in the definition of feasible solutions. The separation oracle must
be an exact algorithm that returns at least one violated constraint if it exists. Indeed,
if the algorithm fails to separate some essential constraints, the final solution may be
infeasible. The second type of constraints includes valid inequalities. Such constraints
strengthen the linear relaxation of the formulation without changing the set of integer
feasible solutions. In this case, the separation oracle is either an exact algorithm or a
heuristic that seeks to find violated inequalities in a reasonable time.

Example 1. (Example of valid inequalities - Chvátal-Gomory procedure).
Consider P = {q

jœJ aijxj Æ bi i œ I, x œ Z|J |
+ } with variables (xj)jœJ , and real

constants (aij)iœI,jœJ and (bi)iœI . The Chvátal-Gomory procedure uses the fact that it is
true that, for i œ I, q

jœJ aijxj Æ bi =∆ q

jœJÂaijÊxj Æ bi =∆ q

jœJÂaijÊxj Æ ÂbiÊ.
Moreover, given a vector of multipliers – œ R|I|

+ , one entry associated to each con-
straint, the combination q

jœJ

q

iœI –iaijxj Æ q

iœI –ibi leads to a valid inequality for P .
Thus, the following inequality is also valid for P .

ÿ

jœJ

E

ÿ

iœI

–iaij

F

xj Æ
E

ÿ

iœI

–ibi

F

(1.13)

Since Chvátal-Gomory procedure gives an exponential number of valid inequalities
(1.13), we must add them dynamically. We thus use cut generation.

A strong formulation may also involve an exponential number of variables. These
variables usually represent partial solutions to the problem that are assembled by the
constraints of the formulation. Similarly to cut generation, these variables must be
incrementally added to the formulation. This procedure is named column generation
and works as follows. First, the procedure solves the linear relaxation of the formulation,
called master problem, restricted to a subset of variables, also known as the restricted
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master problem. The procedure then retrieves the dual values of the constraints. Second,
given the dual values, the pricing oracle generates the partial solution that has the best
reduced cost i.e. that may improve the master’s objective the most. Third, the algorithm
adds a variable to the restricted master problem. The column is the representation of
the generated partial solution in the constraints of the master. The value of the variable
is equal to the number of times the partial solution is used. In order for the algorithm to
converge towards the optimal solution of the master, it su�ces that the pricing oracle
returns, at each iteration, a negative reduced cost partial solution if one exists. The
algorithm stops when the pricing oracle fails to generate a partial solution with negative
(positive) reduced cost in the case of a minimization (maximization) problem.

Example 2. (Example of column generation - Lagrangian relaxation and reformulation).

Consider the following integer program

[P3] © minimize c|x

subject to Ax Ø a (1.14)
Bx Ø b (1.15)

x œ Zn

+

with cost vector c œ Rn, right-hand sides a œ Rma and b œ Rmb, and coe�cient matrices
A œ Rma◊n and B œ Rmb◊n. Consider that the problem becomes much easier to solve
when constraints (1.14) are relaxed. Let Z = {x œ Zn

+
| Bx Æ b} be the set of feasible

solutions to constraints (1.15) and Q be the index-set of solutions to Z = {zq}qœQ. We
perform a Lagrangian relaxation of the di�cult constraints. Let fi Ø 0 be the vector of
Lagrangian multipliers associated to constraint (1.14), the Lagrangian relaxation of [P3]
is

[LP3] © max
fiØ0

min
qœQ

{c|zq + fi| (a ≠ Azq)} (1.16)

which linearization gives

[LP3] © max ÷

subject to ÷ Æ c|zq + fi| (a ≠ Azq) q œ Q, (1.17)
÷ œ R
fi Ø 0
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Let ⁄q be the dual variable associated to constraint (1.17). The dual problem of [LP3],
called master problem, is :

[DLP3] © min
ÿ

qœQ

c|zq⁄q

subject to
ÿ

qœQ

Azq⁄q Ø a (1.18)

ÿ

qœQ

⁄q = 1 (1.19)

⁄q Ø 0 q œ Q

The latter problem involves an exponential number of variables. Since we cannot enumerate
all the variables and put all of them in the formulation, we have to solve the formulation
by means of column generation. We note that when variables ⁄ can take only integer
values, this formulation is equivalent to [P3].

As mentioned above, a complete enumeration of the solutions to a combinatorial
problem is usually not possible. Hence, Land and Doig (1960) introduced branch-and-
bound method to search for an optimal solution by dividing the set of all feasible solutions
and pruning subsets of feasible solutions in which the optimal solution is proven to be
absent using a bounding mechanism. Such a method incrementally divides the solution
space by creating more and more subproblems that contain more and more integrality
restrictions on variables. These restrictions are known as branching constraints. However,
dividing indefinitely the solution space is equivalent to enumerate all feasible solutions.
The algorithm thus maintains a primal bound and computes, for each subproblem, a dual
bound by solving the linear relaxation of the subproblem. In the case of a minimization
problem, the algorithm prunes a subproblem when one of the three following rules is
satisfied:

• the subproblem is infeasible

• the dual bound of the subproblem is greater than the current primal bound i.e.
there is no feasible solution better than the current one in the area described by
the subproblem

• the subproblem is solved to optimality

The algorithm runs until there is no more subproblems left. The goal of these rules is to
keep only the subproblems that may contain an optimal integer solution. So, the closer
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the current primal bound and the dual bounds are, the fewer subproblems are generally
explored. Sometimes, the solution to the linear relaxation of a subproblem is integral. If
so and the value of the solution better than the current primal bound, the algorithm
updates the primal bound. But when linear relaxations rarely provide integral solutions,
it is worth running heuristics to search for a better feasible solution and potentially
decrease the number of subproblems explored.

x1

x2
x 1

Æ
5

x 1
Ø

6

•
•
•
•

•
•
•

•
•
•
•
•

•
•
•
• •

•[P2]
left

[P2]
right

[P2]

[P2]
left

[P2]
right

x1 Æ 5 x1 Ø 6

Figure 1.3: Example of a branching constraint on [P2]

The successive divisions of the solution space are usually illustrated by a binary tree
where nodes correspond to subproblems and arcs correspond to branching constraints.
The subproblem associated with a given node is the initial formulation subject to all the
branching constraints met on the path from the root node to the given node. Figure
1.3 gives an example of a branch-and-bound tree for formulation [P2]. The value zLP of
the solution to the linear relaxation of [P2], computed at the root node, provides the
dual bound that allows us to calculate the root gap. Given the value zú

IP
of the optimal

integer solution to [P2], the root gap is equal to

zú
IP

≠ zLP

zLP

(1.20)

and is an indicator of the strength of the formulation.

The branch-cut-and-price algorithm is a branch-and-bound algorithm for an integer
program that has an exponential number of variables and constraints. At each node of
the branch-and-bound tree, the corresponding subproblem is thus optimized using both
cut and column generation.
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1.3 General structure of the branch-cut-and-price

We introduce the state-of-the-art branch-cut-and-price for the Capacitated Vehicle
Routing Problem (CVRP). The structure of the algorithm mainly comes from Pecin
et al. (2017a) and Sadykov et al. (2020). This algorithm will serve us as a base for the
algorithms developed in this thesis. See also Costa et al. (2019) for a survey of the
branch-cut-and-price algorithms applied to several types of vehicle routing problems.

A complete undirected graph G = ({0} fi C, E) represents the transportation network.
Vertex 0 is the depot, C denotes a set of customers. Each customer c œ C has a demand
of dc items. The travel costs are fe for every edge e œ E. Let ”(V ) = {(u, v) œ E | u /œ
V, v œ V } be the set of incidents edges to a subset V of vertices. Given vertex v œ V , we
use ”(v) as a shorthand of ”({v}).

A fleet of U homogeneous vehicles, each of capacity Q, delivers goods to customers.
In this context, a route is an elementary cycle in G containing the depot 0 and a subset of
the customers in C. A feasible solution is a set of routes such that each customer belongs
to exactly one route and the sum of the demands of the customers in each route does not
exceed Q. The goal is to find a feasible solution that minimizes a total transportation
cost.

We model the problem using a route-based formulation. Let R be the set of all
feasible routes. Let x̃r

e
œ {0, 1, 2} be a coe�cient that is equal to the number of times

edge e œ E is traversed by the route r œ R. Let z̃r

c
= 1

2

q

eœ”(c) x̃r

e
be equal to one if route

r œ R visits customer c œ C, and 0 otherwise. Let µr be a binary variable equal to 1 if a
vehicle is assigned to route r œ R, 0 otherwise. The formulation is :

[P4] © minimize
ÿ

rœR

A

ÿ

eœE

fex̃
r

e

B

µr (1.21)

subject to
ÿ

rœR

z̃r

c
µr = 1 c œ C (1.22)

ÿ

rœR

µr Æ U (1.23)

µr œ {0, 1} r œ R (1.24)

Objective function (1.21) minimizes the total transportation cost. Constraints (1.22)
ensure that each customer is visited by exactly one route. Constraint (1.23) ensures that
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the number of routes planned does not exceed the number of vehicles. Constraints (1.24)
define domains of variables.

As the number of variables exponentially depends on the number of customers, the
LP relaxation of [P4] is solved by a column generation approach. Route variables µ are
dynamically generated by a pricing oracle. Moreover, we strengthen formulation [P4] by
adding the two families of valid inequalities presented in the following section.

1.3.1 Cut generation

Rounded Capacity Cuts (RCCs) were introduced by Laporte and Nobert (1983).
These cuts ensure that enough vehicles visit each subset of customers to satisfy their
demands. Given a subset C ™ C of customers, term

9q

cœC
dc

Q

:

is a lower bound on the
number of vehicles required to deliver the total demand of customers in C. The cuts take
the form:

ÿ

rœR

ÿ

eœ”(C)

x̃r

e
µr Ø 2

G

q

cœC dc

Q

H

, C ™ C. (1.25)

Constraints (1.25) may be separated using the CVRPSEP package (Lysgaard, 2018)
which implements the heuristic by Lysgaard et al. (2004).

Rank-one cuts (R1C) are obtained by applying the Chvátal-Gomory procedure once,
hence their name, on set-partitioning constraints (1.22) relaxed to set-packing constraints
i.e. constraints q

rœR z̃r

c
µr Æ 1, ’c œ C. We recall that Chvátal-Gomory procedure is

presented in Example 1. Given a vector – of multipliers such that –c Ø 0, c œ C, the
following rank-1 cut is valid for [P4]:

ÿ

rœR

E

ÿ

cœC
–cz̃

r

c

F

µr Æ
E

ÿ

cœC
–c

F

. (1.26)

An inequality (1.26) obtained using a vector of multipliers with l positive components
is called an l-row rank-1 cut. If all positive components of – are equal, the corresponding
inequality is called a subset-row cut. Jepsen et al. (2008) first introduced 3-row subset-row
cuts. Pecin et al. (2017a) used l-row subset-row cuts with l Æ 5. General l-row rank-1
cuts with l Æ 5 were considered by Pecin et al. (2017b). They determined all dominant
vectors of multipliers for such cuts: if an l-row rank-1 cut with l Æ 5 is violated, at least
one rank-1 cut obtained using a dominant vector of multipliers is violated. As in Sadykov
et al. (2020), the separation of l-row rank-1 cuts may be perfored by enumeration for
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l = {1, 3} and using a local search heuristic for every dominant vector of multipliers for
l = {4, 5}.

1.3.2 Column generation

Let us see now how we can solve formulation [P4] by column generation. We first
define the Resource Constrained Elementary Shortest Path Problem (RCESPP). We
then describe a labelling algorithm that e�ciently solve the RCESPP in the context of
column generation. Finally, we present how we model the pricing problem as a RCESPP
to generate the routes in R.

Resource constrained elementary shortest path problem

The Resource Constrained Elementary Shortest Path Problem (RCESPP) is defined
over a directed graph GÕ(V Õ, AÕ). Set V Õ contains two special vertices vsource and vsink.
Consider a set of resources denoted K. The passage of a path through an arc a œ AÕ

costs c̄a and consumes Ÿk

a
of resource k. Paths are subject to accumulated resource

consumption lower bound lk

v
and upper bound uk

v
defined on each vertex v œ V Õ for each

resource k œ K.
An elementary path r of length n(r) is characterized by an ordered set of vertices

V (r) = (vr

1
, vr

2
. . . vr

n(r)
) in GÕ such that vr

1
= vsource, vr

n(r)
= vsink, vr

i
œ V Õ for 1 Æ i Æ n(r),

where vertex is not visited more than once. The cost of path r is c̄(r) = qn(r)

j=2 c̄(vr
j≠1,v

r
j )

and the accumulated consumption of resource k at vertex vr

i
œ V (r) is :

qr

k
(vr

i
) =

Y

_

_

_

_

]

_

_

_

_

[

lk

v
r
1
, if i = 1

max{lk

v
r
i
, qr

k
(vr

i≠1
) + Ÿk

(vr
i≠1,v

r
i )

}, if i > 1 and k disposable

qr

k
(vr

i≠1
) + Ÿk

(vr
i≠1,v

r
i )

, if i > 1 and k non-disposable

. (1.27)

Note that the resources are disposable when a positive amount of a resource can be
consumed to satisfy bounds on accumulated resource consumption at vertices.

The problem seeks to find the elementary path r in graph GÕ, starting at vsource and
ending at vsink, that has the minimum cost and that respects accumulated consumption
bounds at vertices i.e. lk

v
Æ qr

k
(v) Æ uk

v
for all v œ V (r) and k œ K.

Labelling methods, such as Dijkstra or Bellman-Ford algorithms, are a very known
family of algorithms to solve shortest path problems (SPP). These methods are also
useful to solve the RCESPP as pricing problem of a column generation algorithm. In the
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context of a SPP, labelling algorithms build by successive adjustments a tree of partial
shortest paths to find the shortest path from the source to the sink. The root of this
tree is the source and each path in the tree from the source to a vertex of the graph
has minimum cost. To represent the tree, these methods maintain labels. The label
associated to a vertex corresponds to the shortest path from the source to the vertex
(it is a partial path except if the vertex is the sink). A label contains the cost of the
shortest path and the last arc used by the path. The latter entry allow us to build the
path by backtracking the arcs indicated by the label at each vertex.

These methods can be adapted to the RCESPP. In this case, labels also track accu-
mulated resource consumptions to ensure that partial paths respect resource constraints.
Moreover, a label at a vertex now represents a feasible path from the source to the
vertex. The labelling algorithm thus needs to store multiple labels at each vertex. In
what follows, to simplify the presentation, a label L represents the (partial) path r(L).
A label has the following information. We denote c̄(L) as the cost of path r, v(L) as the
vertex where path r ends, qk(L) as the accumulated consumption of resource k œ K at
the vertex v(L), and V (L) as the set of vertices visited by r. In the labelling algorithm,
a label has two di�erent states : unextended or extended. If a label has the first state,
the algorithm has not yet tried to extend the path described by this label. The second
state is the opposite.

The most basic labelling algorithm is the enumeration of all partial paths. However,
the number of labels would dramatically grow and the algorithm would become very
slow. We thus use dominance to avoid a complete enumeration of the labels. Dominance
consists in comparing the labels with each other to get rid of those that are proven not to
lead to an optimum path. Consider two labels L1 and L2. We say that label L2 dominates
L1 if one feasible completion of L1 is also feasible to L2, and the cost of the second
complete path is not larger than the cost of the first. A su�cient condition to get rid
of label L1 is thus : v(L1) = v(L2), c̄(L2) Æ c̄(L1), V (L2) ™ V (L1), and qk(L2) Æ qk(L1)
for all k œ K.

Algorithm 1 is a labelling algorithm. It starts at the source node and creates an
initial label Linit such that c̄(Linit) = 0, v(Linit) = vsource, qk(Linit) = 0 ’k œ K, and
V (Linit) = {vsource}. In the main iteration, the algorithm selects the label L that has the
minimum resource consumptions. Then, the algorithm tries to extend the partial path
corresponding to L along all arcs from the vertex v = v(L) to all vertices vÕ /œ V (L) not
visited by the partial path. The concatenation of L with vÕ returns a new label LÕ such
that v(LÕ) = vÕ, c̄(LÕ) = c̄(L) + c̄(v,vÕ), qk(LÕ) = max{lk

vÕ , qk(L) + Ÿk

(v,vÕ)} for k œ K, and
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Algorithm 1 Mono-directional labelling algorithm
Let Uv Ω ÿ for all v œ V Õ Û Sets of unextended labels
Let Ev Ω ÿ for all v œ V Õ Û Sets of extended labels
Insert intial label Linit in Uvsource

while
t

vœV Õ Uv ”= ÿ do Û Main iteration
Select label L in t

vœV Õ Uv

for all vÕ /œ V (L) do Û Loop of extensions
LÕ Ω concatenation(L, vÕ)
if LÕ feasible and LÕ not dominated by any label in UvÕ fi EvÕ then

Delete labels from UvÕ dominated by LÕ

Insert LÕ in UvÕ

end if

end for

Insert L in Ev Û Mark the label as extended
Delete L from Uv

end while

return label of Evsink that has minimum cost

V (LÕ) = V (L) fi {vÕ}. The new label LÕ is feasible if and only if it satisfies accumulated
resources consumptions bounds at vÕ i.e. qk(LÕ) Æ uk

vÕ for k œ K. The algorithm then
checks whether the new label LÕ is dominated by labels associated to vÕ. If it is not
the case, LÕ may be subpath of the optimum path and the algorithm gets rid of the
unextended labels associated to vÕ that are dominated by LÕ. At last, the algorithm
marks L as extended.

Algorithm 1 is called mono-directional because it starts from the vsource and extends
the labels to build paths from the source to the sink (forward sense). We use the
mono-directional algorithm to build paths from the sink to the source (backward sense)
except that label extension is done di�erently : qk(LÕ) = min{uk(vÕ), qk(L) ≠ Ÿk

(v,vÕ)}.
Given an accumulated resource consumption threshold qú defined for a resource kú œ K,
a bidirectional labelling algorithm, proposed by Righini and Salani (2006), runs the
mono-directional algorithm in forward and backward sense to get sets of forward labels
L̨ and backward labels ˛L such that qú

k
(L̨) Æ qú for L̨ œ L̨, and qú

k
( ˛L) > qú for ˛L œ ˛L.

Then, the algorithm tries to concatenate the forward partial paths with the backward
partial paths. In contrast to the labelling algorithm, the concatenation is done on a
vertex. Two labels L̨ and ˛L can be concatenated if v(L̨) = v( ˛L), qk(L̨) Æ qk( ˛L), and
V (L̨) fl V ( ˛L) = {v(L̨)}. At the end, the algorithm returns the path with smallest cost
among the concatenated ones. This technique can significantly speed up the algorithm.
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The graph is said symmetric when c̄(v,vÕ) = c̄(vÕ,v) for (v, vÕ) œ V Õ, all lower and upper
bounds on the accumulated resource consumption are the same, and Ÿk

(v,vÕ) = Ÿk

(vÕ,v)
for

v, vÕ œ V Õ and k œ K. If the graph is symmetric, the backward labelling is equivalent to
the forward labelling so the former can be skipped. As a result, the algorithm is up to
twice faster.

Bucket-graph based labelling algorithm

Dominance checks is usually the most time consuming part of the labelling algorithm
as it has quadratic complexity from the number of labels. Therefore, we use the bucket
graph based labelling algorithm, introduced in Sadykov et al. (2020), that decreases the
number of dominance checks without increasing the number of non-dominated labels.

To e�ciently perform dominance checks, labels are stored in such a way that the
algorithm can only test pairs of labels that potentially dominate each other. In the case
of the RCESPP, labels with similar accumulated resource consumptions at the same
vertex are more likely to dominate each other. Therefore, each vertex v œ V Õ is split
into buckets containing labels with similar accumulated resource consumptions. Arcs
between buckets are called bucket arcs. There is a bucket arc between two buckets if
a label in the tail bucket can be extended to a label in the head bucket. The resulting
graph is called a bucket graph. For each vertex v œ V Õ, buckets are created as follows.
Given a step-size �k for each resource k œ K, the allowed range of accumulated resource
k consumption at v is split into non-overlapping intervals of length �k. One bucket is
created for each combination of intervals from each resource. Figure 1.4 gives an example
of buckets for a given vertex in a RCESPP involving two resources.

4 6 8 10 12
0

1

2

b1 b2 b3 b4

b5 b6 b7 b8
accumulated

consumption of k2

accumulated consumption of k1

step size �k1

step size
�k2

Figure 1.4: Buckets for a vertex v of a graph with two resources K = {k1, k2}. Bounds
on accumulated resource consumption at v are [4, 12] for k1 and [0, 2] for k2. Step
sizes are �k1 = 2 and �k2 = 1. At the end, this vertex gives rise to eight buckets :
b1, b2, b3, b4, b5, b6, b7 and b8.
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The algorithm performs dominance checks twice. First, when a label is created,
the algorithm checks whether the new label is dominated by labels in the same bucket.
Second, just before the extension of a label in bucket b, the algorithm checks whether
the label is dominated by a label in other buckets. For example, given the buckets of
figure 1.4, the algorithm checks whether labels in bucket b7 are dominated by labels in
buckets b1, b5, b2, b6, and b3.

However, we keep the best costs for buckets (best cost of labels in bucket b and all
buckets down and to the left). If best cost for bucket b6 is larger than the cost of a label
in b7, a label in b7 will not be checked for dominance by labels in b5, b6, b1, b2.

Best costs for buckets are also used to speed up concatenation.

Pricing Problem for the CVRP

As mentioned above, LP relaxation of [P4] is solved by column generation and routes
variables µ are dynamically generated. We recall that a route r œ R is an elementary
cycle in graph G containing the depot 0 and a subset C of customers such that the total
demand of C does not exceed the capacity Q of a vehicle.

Let (fī, ÷̄, fl̄, ›̄) be the dual solution to the linear relaxation of [P4] restricted to a subset
of variables and constraints. Dual values correspond to constraints (1.22), (1.23), (1.25),
and (1.26) respectively. We say that a constraint is active when it has a non-zero dual
value. Let N be the set of active RCCs and let Cn be the set of customers characterizing
cut n œ N with dual value fl̄n. Let M be the set of active R1Cs and let –m be the vector
of multipliers characterizing cut m œ M that has dual value ›̄m.

Now, let us see how we can model the pricing problem of [P4] as a RCESPP. To
represent the distribution network, we set V Õ = {vsource, vsink} fi VC where vsource and vsink

represents the depot as starting and ending point of the routes in R. Set VC = {vc | c œ C}
contains one vertex for each customer. We set AÕ = ({vsource} ◊ VC) fi {(v, vÕ) | v ”=
vÕ, v, vÕ œ VC} fi (VC ◊ {vsink}). Moreover, a feasible route must deliver a subset of
customers that has a total demand less or equal than the capacity Q of a vehicle. We
can model this constraint as a resource. We set K = {1} because the capacity of the
vehicles is the only resource of the pricing problem. We define capacity consumption
on arc a œ AÕ : Ÿ1

(i,j)
= 1

2
(di + dj) so the condition for symmetric case are satisfied. For

each customer c œ C, half of the demand is consumed on the arcs entering the vertex
vc and half of the demand is consumed on the arcs leaving the vertex vc. Bounds on
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accumulated capacity consumption are defined on vertices and limit the number of items
that a vehicle can carry. Thus, for each v œ V Õ, bounds are l1

v
= 0 and u1

v
= Q.

Example 3. Consider an instance with a depot 0 and four customers C = {1, 2, 3, 4}
that ask for d1 = 3, d2 = 4, d3 = 2, and d4 = 3 items respectively. Vehicles can ship
up to Q = 10 items. On each vertex, lower and upper bounds on accumulated capacity
consumption are 0 and 10 items respectively. Figure 1.5 gives an example of a feasible
route to the instance.

vsource 0

[0, 10]

1

[0, 10]

2

[0, 10]
3

[0, 10]

4

[0, 10]
0

[0, 10]
vsink

0 1.5 5 8 9

1.5
3.5

3
1

Figure 1.5: Example of a solution to the RCESPP for the CVRP. Capacity consumptions
of edges are in green. Accumulated capacity consumptions at each vertex of the route
are in red and bounds on accumulated capacity consumptions are in blue.

The pricing oracle must return the route r œ R that has the best reduced cost. The
reduced cost of route r œ R is calculated as :

ÿ
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›̄m (1.28)

When there is no active R1C i.e. M = ÿ, the reduced cost of a route can be expressed as
a linear combination of reduced costs of the arcs. The reduced cost of an arc (i, j) œ AÕ

is:
c̄(i,j) = f(i,j) ≠ 1

2(fīi + fīj) ≠
ÿ

nœN :(i,j)œ”(Cn)

1
2 fl̄n (1.29)

We can thus directly solve the pricing problem as a RCESPP. However, the contribution
of a R1C to the reduced cost of a route cannot be expressed over the arcs because of
the rounding down operator. Each active R1C thus requires a new resource to allow
us to compute its contribution to equation (1.28) as noticed by Jepsen et al. (2008).
Given an active R1C m œ M characterized by a vector –m of multipliers, the resource
km associated to the R1C is defined as follows. Resource consumption of both forward
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and backward arcs (v, vÕ) œ AÕ is Ÿkm
(v,vÕ) = –m

vÕ if vÕ œ VC, and Ÿkm
(v,vÕ) = 0 if vÕ /œ VC. Since

this resource does not model a constraint, it does not have bounds on the accumulated
resource consumption. Given a route r œ R, its rounded down accumulated consumption
Âqr

km
(vsink)Ê of resource km is equal to the coe�cient Âq

cœC –m

c
z̃r

c
Ê of the R1C m œ M

associated to route r.
This resource is used to compute the contribution of a R1C and not to ensure that any

constraint is met. The labelling algorithm thus treats this resource di�erently. Consider
a label L and v = V (L) the vertex where it is stored. When a label L is concatenated
with vertex vÕ œ V Õ, resource consumption is qkm(LÕ) = qkm(L) + Ÿkm

(v,vÕ). However, the
labelling algorithm must take into account the contribution of a R1C as soon as the
accumulated resource consumption associated to the R1C is greater or equal to one.
Thus, if qkm(LÕ) Ø 1, then we assign following values : c̄(LÕ) Ω c̄(LÕ) + Âqkm(LÕ)Ê›̄m

and qkm(LÕ) Ω qkm(LÕ) ≠ Âqkm(LÕ)Ê. Dominance remains the same except that c(LÕ) Æ
c(L) ≠ q

mœM :qkm (LÕ)>qkm (L) ›̄m.
All theses new resources lead to more non-dominated labels and thus make the pricing

problem more di�cult. To alleviate the di�culty, we use limited memory R1Cs (lm-R1Cs)
proposed by Pecin et al. (2017a). A lm-R1C m œ M is characterized by a vector of
multipliers (–m

c
)cœC and a subset V m ™ V Õ of vertices. The subset V m is called memory

set because when a path passes by i /œ V m, the accumulated consumption of resource km

is forgotten i.e. is set to 0. Example 4 illustrates the tracking of a resource associated to
a lm-R1C.

Example 4. Consider a lm-R1C m œ M characterized by –m = (0, 0, 1

2
, 1

2
, 1

2
, 0) and

V m = {3, 4, 5}. Let km be the resource associated to m.
In figure 1.6, we see that the accumulated resource consumption is forgotten when the

route follows arc (5, 1) and leaves memory set V m.
Moreover, we see that the reduced cost is incremented when the route reaches node

3. Indeed, the accumulated resource consumption at vertex 3 is 1. Since qr

km
(3) Ø 1, the

reduced cost of the route is incremented by ›̄m and the value of qr

km
(3) decremented by 1.

In this example, we note that the contribution of this lm-R1C is Â1

2
Ê›̄m + Â1

2
+ 1

2
Ê›̄m

is equal to the contribution of a classic R1C which is Â1

2
+ 1

2
+ 1

2
Ê›̄m.

Since the resource of the lm-R1C is local to the memory set, it limits the increase in
di�culty of the pricing problem. However, this local tracking makes a lm-R1C weaker
than a R1C because a lm-R1C may have a smaller coe�cient than a R1C for a given
route. Consequently, given a R1C, several lm-R1Cs with di�erent memory sets may
be necessary to reach the same bound than we could get with full-memory R1C. This
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Figure 1.6: Example of the tracking on a route r œ R of the resource consumption of
the lm-R1C 4 with V m = V m

1
fi V m

2
. The resource consumption of edges are in black,

accumulated resource consumptions at vertices are in red, and increments to the reduced
cost are in blue.

slows down the convergence of the cut-and-column generation algorithm. Although the
algorithm needs more iterations to converge, the iterations are faster.

Relaxation of elementarity of paths

Since the elementarity constraint of the RCESPP is di�cult and can significantly slow
down the labelling algorithm, we replace it by ng-route relaxation introduced by Baldacci
et al. (2011a). This combinatorial relaxation allows a path generated by the pricing
oracle to visit a customer more than once under certain conditions. These conditions
relie on the definition of a ng-neighbourhood for each vertex representing a customer
in the graph of the pricing problem. Given a parameter n œ N, the ng-neighbourhoods
of vc œ VC, denoted as NG(vc), contains vc itself and the n customers chosen according
certain criteria. In a ng-route, a cycle starting at customer vc is allowed if and only if it
contains a customer vk such that vc /œ NG(vk).

Similarly to lm-R1Cs, we can build, for each customer c œ C, the set H(vc) = {vj œ
C | vc œ NG(vj)} of customers having vc in theirs ng-neighbourhoods. As illustrated by
figure 1.7, a cycle starting at customer vc is allowed if and only if it contains a customer
vk such that vk /œ H(vc).

Such relaxation makes the pricing problem less di�cult. Indeed, when the labelling
algorithm extends a label L along vÕ, the new label LÕ returned has V (LÕ) = (V (L) fi
{vÕ})flNG(vÕ) instead of V (LÕ) = V (L)fi{vÕ}. The former set is smaller which leads to a
stronger dominance and so less non-dominated labels. Moreover, this relaxation is strong
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Figure 1.7: Examples of cycles allowed or forbidden in a priced ng-route.

because when a path goes out of the memory of a node, the path is far from the node,
and there is little chance that the path will return to the node. As described in Roberti
and Mingozzi (2014) and Bulhoes et al. (2018), ng-neighbourhoods may be dynamically
adjusted to have even stronger dual bound while keeping the pricing algorithm fast.

Reduced cost fixing

Reduced cost fixing, introduced by Dantzig, Fulkerson, and Johnson (see Grötschel
and Nemhauser (2008)), consists in setting to zero the variables that are proven to be
absent from any improving primal solution to the problem. In our case, reduced cost
fixing is done in the pricing problem and takes place after the convergence of the column
generation. This procedure may allow the pricing problem to be solved faster.

Let R(a) be the set of routes in R that passes by the arc a œ AÕ. Given a = (v, vÕ) œ AÕ,
let c̄a

best
be the minimum reduced cost of the routes in r œ R(a). Cost c̄a

best
is found using

the bidirectional labelling algorithm, and is the sum of the best forward cost to v, the
best backward cost to vÕ, and the cost c̄a of passing by arc a. Let zLP be the value of the
solution to the restricted master (LRP4) at a given iteration of the column generation
algorithm. Let zIP be the value of the best primal bound found so far. Routes in R(a)
are absent from any improving primal solution if and only if

zLP + c̄a

best
> zIP (1.30)

Arc a is removed from the pricing graph as described by Ibaraki and Nakamura (1994)
and Irnich et al. (2010), or the bucket-based pricing graph as described in Sadykov et al.
(2020). Since the pricing graph gets smaller, the labelling algorithm is faster. Note
that the gap between zLP and zIP is also known as primal-dual gap. The smaller the
primal-gap dual is, the larger the number of arcs removed is likely to be.
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Enumeration of elementary routes

Since there is an exponential number of elementary routes, a complete enumeration of
these routes is not possible for large instances. This is why we solve the formulation [P4]
by means of column generation. However, at a given node of the branch-and-bound tree,
it is sometimes possible to enumerate only the routes that may appear in an optimal
solution of [P4] subject to some branching constraints. This procedure is simply called
enumeration of elementary routes and was introduced in Baldacci et al. (2008a). This
procedure allows reducing the size of the branch-and-bound tree because if the number
of enumerated routes is small, we can just solve [P4] and avoid branching.

Let zLP be the value of the solution to the restricted master (LRP4). Let zIP be the
best primal bound found so far. Let c̄r be the reduced cost of route r œ R calculated as
in (1.28). A route r may be part of an improving solution if and only if :

zLP + c̄r Æ zIP.

Enumeration is performed by a special labelling algorithm di�erent from the one used
for the pricing. Here domination is performed only between labels that visited the same
set of vertices. If the enumeration completes within a reasonable period of time, all the
enumerated routes are added to the restricted master, and the node is terminated by
MIP and then pruned. Otherwise, the enumeration stops. The smaller the primal-dual
gap is, the larger is the probability that enumeration will succeed.

1.3.3 Generic BCP enhancements

Following procedures can be used regardless of the pricing problem structure.

Automatic smoothing stabilization

In the column generation algorithm, the successive resolutions of the continuous
restricted master problem [LRP4] produce a sequence of dual solutions which yield dual
bounds that may erratically converge towards the optimal value of [LP4]. The goal of
stabilization techniques is to speed up the convergence of the column generation algorithm.
According to Vanderbeck (2005), there exists three types of stabilization. First one uses
a penalty function to maintain the dual solution towards a stability center, which is
the best guess of an optimal dual solution. The stability center changes throughout the
execution of the algorithm. Second type contains the smoothing techniques that compute
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the current dual solution using previous ones. Third type of methods avoids generating
extreme dual solutions.

Here, we use a stabilization technique of the second type: a smoothing stabilization
with the rule introduced by Wentges (1997). The idea of this rule is to stay close to the
dual solution fî that yields the best dual bound found so far. Given an iteration t, a dual
solution fit returned by [LRP4], a parameter — œ [0, 1], and the best dual solution fî, the
dual solution fĩt at iteration t is calculated as :

fĩt = —fî + (1 ≠ —)fit (1.31)

The pricing problem is then called with dual solution fĩt. Parameter — is dynamically
adjusted by a heuristic devised by Pessoa et al. (2018). Basically, this heuristic increases
or decreases — to get a solution fĩt closer to the convex combination of fî and fit that
yields the best dual bound at the current iteration.

Multi-phase strong branching

Once the column-and-cut generation algorithm has treated a node of the branch-and-
bound tree, branching constraints must be generated. To this end, we use the multi-phase
strong branching which is a strong branching procedure adapted to the column generation
context. This procedure was introduced by Pecin et al. (2017a). Its goal is to choose the
branching constraints that improve the most the dual bound and so to reduce the size of
the branch-and-bound tree.

The strong branching is a procedure that heuristically selects a branching constraint
that potentially gives the best progress of the dual bound. The procedure first selects
a collection of branching candidates based on their pseudo-costs. The pseudo-cost of
a candidate heuristically estimates the progress of the dual bound in both child nodes
of the branching candidate using the history of the branch-and-bound tree. Then, the
procedure evaluates the progress of the dual bound in both branches of each branching
candidate. This progress evaluation is stored in history. The candidate that has the
largest product of dual bound improvements in the branches is chosen to be the branching
constraint.

In the context of column generation, evaluating both branches of each candidate would
take too much time. Therefore, only one candidate is fully evaluated after two classifying
phases. This procedure is called multi-phase strong branching. In the first phase, the
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procedure solves the continuous relaxation of the restricted master problem for both
branches of each candidate. Few candidates with the largest product of dual bound
improvements in the branches are chosen for the next phase. In the second phase, column
generation is performed, but the pricing problem is solved with only heuristic labelling
algorithms and without cut generation. The best candidate is chosen using the same
product rule. In the third phase, the exact column and cut generation is performed in
both branches of the chosen candidate.

Primal heuristic

As previously mentioned, having a good primal bound is important for the branch-
and-bound algorithm, the reduced cost fixing procedure, and the elementary routes
enumeration procedure. Therefore, at each node of the branch-and-bound tree, we use a
primal heuristic that looks for primal solutions and tries to improve the primal bound.

In our work, we use the restricted master heuristic with a false gap enumeration. This
procedure first enumerates elementary routes using a false primal bound zIP. Value zIP

is artificially reduced until the enumeration succeeds. Then, enumerated columns with
the smallest reduced cost are temporarily added to [P4] and a MIP solver tries to find a
better feasible solution to [P4] than the best known so far.

1.3.4 Overview of the algorithm

The column and cut generation algorithm is executed at each node of the branch-
and-bound tree to optimize the restricted master problem (LRP4). Figure 1.8 gives an
overview of the algorithm.

First, (LRP4) is optimized using a LP solver. Second, automatic smoothing stabilization
adjusts the dual solution to (LRP4). Then, the pricing oracle solves the pricing problem
and returns routes that have a negative reduced cost. We use a three-stage column
generation. In the first two stages, the pricing problem is solved by a heuristic version
of the bucket-graph based labelling algorithm. This heuristic version consists in storing
only one label in each bucket of the graph. In the last stage, the pricing problem is
solved by the exact bucket-graph based labelling algorithm. If the pricing oracle does
not return any routes, then column generation has converged. After the first column
generation convergence, reduced cost fixing eliminates arcs in the pricing problem. Then,
this procedure is performed each time the primal-dual gap decreases by more than a
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given threshold. After each call to the reduced cost fixing procedure, an enumeration of
elementary routes is performed for the pricing problem. If the enumeration succeeds, the
pricing problem is solved by iterating over the enumerated routes (inspection) in future
column generation iterations. If the total number of enumerated routes is less than a
given number, all the routes are added to the formulation and the latter is solved by
the MIP solver (node is terminated by MIP). Then, cut generation is performed. Cut
generation is stopped either by tailing-o� condition or when the time spent to solve
the pricing problem is too high. Lastly, a primal heuristic seeks to improve the current
primal solution and strong branching is performed.

Throughout the thesis, we will use this branch-cut-and-price algorithm as a base. For
each problem considered in this thesis, we will introduce new families of cuts together
with their separation algorithms. We will use di�erent graphs and resources to model
the pricing problem. We will see that the pricing problem can be decomposed into
subproblems in some cases. At last, we will see that the labelling algorithm should be
modified in some cases to take into account the contribution of new valid inequalities to
the reduced cost of the routes.
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Figure 1.8: Overview of the column-and-cut generation algorithm to optimize the master
problem associated to a node of the branch-and-bound tree.





Chapter 2

Two-Echelon Vehicle Routing

Problem

In a context of economic globalization, the growth of urban population leads to an
increase in freight transportation in cities. Freight transportation may deteriorate the
quality of the urban environment with, for example, high noise levels, greenhouse gas
emissions, and decrease of air quality. Moreover, freight transportation faces several
constraints such as reduced access within cities and deliveries within time-windows. As a
result, freight distribution patterns in city logistics change (Taniguchi and Thompson,
2002). In the past, customers were delivered straight from depots located on the outskirts
of cities. Nowadays, transporters tend to use two-tier distribution systems. In the first
tier, large urban trucks ships freight from warehouses or production sites to intermediate
distribution facilities called satellites. In satellites, freight is processed and consolidated.
Freight is then loaded in small city freighters which deliver customers located in city
centers.

At the strategic level, two-tier distribution systems are considered in location-routing
problems (Crainic et al., 2011). These are integrated problems in which we take decisions
on both locating facilities and routing from open facilities. At tactical and operational
levels, locations of depots and satellites are known. We plan only routing of vehicles.
However, we should take routing decisions on both levels at the same time to devise
cost-e�ective solutions in two-tier distribution systems. Such integration gave rise to
two-echelon routing problems (Crainic et al., 2009). The first such problem proposed
in the literature by Gonzalez-Feliu et al. (2007) is the two-echelon capacitated vehicle
routing problem (2E-CVRP).

In the 2E-CVRP, we must determine the number of goods to be shipped from the
depot to the satellites and from satellites to customers, and the optimal routes connecting
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entities in each level such that vehicle capacities are not exceeded. We aim at minimizing
the sum of handling costs at satellites and transportation costs depending on the total
distance traveled by all vehicles.

Recently, several exact algorithms for the 2E-CVRP have been proposed in the
literature. The most e�cient one by Baldacci et al. (2013) is based on an enumeration of
collections of first-level routes. Thus, it can e�ciently tackle only instances with a small
number of satellites (up to six). Moreover, this algorithm solves to optimality instances
with up to 100 customers whereas the best exact algorithms for other vehicle routing
problems can handle up to 300 customers (Pecin et al., 2017a). Santos et al. (2015)
proposed the only branch-cut-and-price algorithm in the literature for the 2E-CVRP.
This algorithm can be used to solve instances with a larger number of satellites, but
experimentations show that it is less e�cient than the one of Baldacci et al. (2013).

In this chapter, we propose an improved branch-cut-and-price (BCP) algorithm for
the 2E-CVRP which is built on recent advances for the classical capacitated vehicle
routing problem (CVRP). To further improve the e�ciency of our BCP algorithm, we
propose the following problem-specific enhancements:

• A new route based formulation for the problem which does not involve variables
which explicitly define product flow in satellites. New level balancing constraints
guarantee flow conservation in satellites.

• A new family of inequalities to improve the quality of the linear programming (LP)
relaxation of the formulation. These inequalities are inspired by the depot capacity
constraints introduced for the capacitated location-routing problem by Belenguer
et al. (2011).

• A new branching strategy which uses variables defining the number of urban trucks
visiting a subset of satellites.

To improve the current primal bound, we employed a column generation based
heuristic in the course of the algorithm. Our BCP algorithm with the embedded heuristic
outperformed largely the state-of-the-art exact approach by Baldacci et al. (2013) for
the problem, since it solved to optimality all instances available in the literature with up
to 200 customers and 10 satellites.

Finally, we generated a new set of large instances for the problem to inspire further
research on the 2E-CVRP. This set involves instances with up to 300 customers and 15
satellites. These instances are derived from ones recently proposed by Schneider and
Lö�er (2019) for the capacitated location-routing problem.
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The chapter is organized as follows. Section 2.1 reviews the literature. Section 2.2
describes the standard and the new formulations of the problem. Section 2.3 introduces
the new family of satellite supply inequalities. Section 2.4 describes the proposed
branch-cut-and-price algorithm. Section 2.5 reveals and discusses the computational
results.

2.1 Literature review

Gonzalez-Feliu et al. (2007) first considered the 2E-CVRP. They proposed a freight-
flow formulation enhanced by two families of valid inequalities. Their branch-and-cut
algorithm solved to optimality instances with up to 22 customers and 2 satellites. Perboli
et al. (2011) improved these results. The authors strengthened the formulation with one
family of valid inequalities. They solved to optimality some instances with 33 customers.
Two matheuristics were also suggested. They found feasible solutions to instances up to
50 customers with 10% of average gap from the lower bound.

Later, Jepsen et al. (2013) pointed out that the formulation in Perboli et al. (2011) is
not correct for instances with more than two satellites. They proposed an alternative
formulation that combines the relaxation of the split-delivery CVRP by Belenguer et al.
(2000) for the first level and the model for the capacitated location routing problem
by Contardo et al. (2013b) for the second level. Although this formulation is an outer
approximation, its LP relaxation is stronger than the one of Perboli et al. (2011). Since
this formulation has an exponential number of constraints, the authors used a branch-
and-cut algorithm. A specialized branching scheme was employed to cut non-feasible
integer solutions. This approach solved to optimality instances with up to 50 customers
and 5 satellites. It remains the best branch-and-cut algorithm for the problem in the
literature.

Contardo et al. (2012) proposed another branch-and-cut algorithm for the two-echelon
capacitated location-routing problem. This problem is a generalization of the 2E-CVRP
in which there are several depots and opening costs for satellites. Their branch-and-cut
algorithm solved to optimality instances with up to 50 customers and 10 potential
satellites.

Santos et al. (2015) proposed the first branch-cut-and-price algorithm for the 2E-
CVRP. They considered a route based formulation strengthened by some valid inequalities
from the CVRP literature. First-level routes are enumerated whereas second-level routes
are priced by the shortest path problem with resource constraints. The pricing problem
generates non-elementarity routes. They used branching strategies in the following
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priority order: (1) branching on the number of vehicles traveling on a first-level route,
(2) branching on the number of second-level vehicles starting from a satellite, and (3)
branching on the use of an arc by a second-level route. The computational results
of Santos et al. (2015) were similar to those by Jepsen et al. (2013).

The exact approach by Baldacci et al. (2013) also uses a route based formulation. The
method is based on an intelligent enumeration of collections of first-level routes. Authors
devised lower and upper bounding procedures to limit the number of subsets which may
lead to an optimal solution. By fixing a subset of first-level routes, the problem is reduced
to the multi-depot capacitated vehicle routing problem with limited depot capacities.
The latter was solved by an adaptation of the algorithm by Baldacci and Mingozzi
(2009). Computational experiments showed that the overall approach outperforms the
one by Jepsen et al. (2013). Baldacci et al. (2013) could solve instances with up to
100 customers and 5 satellites. Their approach remains the best exact algorithm in the
literature until now. However, the fact that collections of first-level routes are enumerated
does not allow one to employ this approach for instances with 10 satellites or more.

There are several heuristic approaches for the 2E-CVRP in the literature. Hemmel-
mayr et al. (2012a) proposed an adaptive large neighbourhood search based heuristic
that works for both 2E-CVRP and the location-routing problem. It largely improved the
best feasible solutions found by Perboli et al. (2011). Moreover, the authors proposed a
new test set of instances with up to 200 customers and 10 satellites.

Zeng et al. (2014) suggested a hybrid heuristic which is composed of a greedy ran-
domized adaptive search procedure (GRASP) with a route-first cluster-second procedure
embedded in a variable neighbourhood descent (VND). Breunig et al. (2016) developed
an improved large neighbourhood-based hybrid meta-heuristic. It combines enumerative
local search with destroy-and-repair principles, as well as some tailored operators to
optimize the selections of satellites. Both these approaches improved the best-known
solutions for many instances.

Recently, two matheuristics were proposed in the literature. Wang et al. (2017)
employed a mixed-integer mathematical model for the 2E-CVRP, in which arc variables
are used for the first level, and path variables for the second level. They used variable
neighbourhood search to construct the set of second-level routes, and they then solved
the mathematical model to improve the obtained solution. The authors improved 13
best-known solutions. Finally, Amarouche et al. (2018) used a similar approach in which
a pool of routes is collected by a local search heuristic combined with a destroy-and-repair
method. Then, the route based formulation is solved with the hope to improve the best
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solution found so far. This approach improves 7 best-known solutions for the largest
instances of the 2E-CVRP.

2.2 Formulation

Let us now formally define the problem. At the first level, a set K of homogeneous urban
trucks ships freight from a depot denoted as 0 to a set S of intermediate depots, called
satellites. At the second level, a set L of homogeneous city freighters picks freight at
satellites and deliver it to a set C of customers. Each vehicle must return to the place
from where it started its tour (depot for urban trucks and satellites for city freighters).
Urban trucks have a capacity of Q1 items, and city freighters have a capacity of Q2 items.
A satellite s œ S can hold up to Ls city freighters and charges fH

s
for each processed item

of freight. Each customer c œ C asks for dc items of freight and must be visited exactly
once. At each satellite, the total amount of freight delivered by urban trucks must be
equal to the amount of freight picked by city freighters that start at this satellite. The
objective of the problem is to minimize the sum of handling costs fH and transportation
costs fT .

We use the route based formulation to model the problem. The first level is similar
to the split-delivery CVRP since several urban trucks can supply a satellite. However,
the amount of freight delivered to each satellite is not known. A complete undirected
graph G1 = (V1, E1), V1 = {0} fi S, represents the first level of the distribution system.
Let P be the set of feasible first-level routes and let z̃p

e
œ N denote the number of times

path p œ P uses edge e œ E1.
The second level corresponds to the multi-depot CVRP where depots are satellites.

Each customer is visited by one city freighter, and each satellite cannot supply more
freight than the amount delivered to it by urban trucks. This level is represented by an
undirected graph G2 = (V2, E2) where V2 = CfiS and E2 = {(i, j) | i œ SfiC, j œ C, i ”= j}.
For any satellite s œ S, let Rs be the set of feasible second-level routes starting and
finishing in s. We denote R = fisœSRs. A second-level route r œ R is described by vector
x̃r where element x̃r

e
œ N denotes the number of times route r uses edge e œ E2. We also

introduce vector ỹr where element ỹr

c
œ N denotes the number of times route r visits

customer c œ C. Given graph Gi, i = 1, 2, we denote as ”i(v) the set of edges in Ei

incident to vertex v œ Vi.
The cost of traversing edge e œ E1 fi E2 is denoted by fT

e
. From now on, we make two

assumptions. First, transportation costs fT satisfy the triangle inequality. Otherwise,
we transform the instance to an equivalent one: if the minimum cost path between two
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vertices v, vÕ passes by other vertices, we set the cost fT

(v,vÕ) to the cost of the minimum
path. The second assumption is that transportation costs are symmetric. If this is not
the case, graphs G1 and G2 become directed ones, edges become arcs, and all z̃e=(v,vÕ)

and x̃e=(v,vÕ) depending on edges are replaced by z̃a=(v,vÕ) + z̃a=(vÕ,v) and x̃a=(v,vÕ) + x̃a=(vÕ,v)

depending on arcs. All instances in the 2E-CVRP literature satisfy these two assumptions.

2.2.1 Standard formulation

We now describe the standard route based formulation for the 2E-CVRP, used in Baldacci
et al. (2013); Santos et al. (2015); Amarouche et al. (2018). Integer variable ⁄p is equal to
the number of urban trucks traveling on first-level route p œ P . We denote as Sp the set
of satellites visited by route p œ P : Sp = {s œ S : q

eœ”1(s) z̃p

e
= 2}. We denote as PS the

set of first-level routes visiting at least one satellite in S ™ S: PS = {p œ P : Sp flS ”= ÿ}.
Continuous variable wps is equal to the amount of freight that first-level route p œ P{s}

delivers to satellite s œ Sp. Binary variable µr is equal to one if and only if a city freighter
travels on second-level route r œ R. To simplify the presentation, we introduce the
continuous auxiliary variable bs that is equal to the total amount of freight delivered to
satellite s œ S.

(F1) min
ÿ

pœP

ÿ

eœE1

fT

e
z̃p

e
⁄p +

ÿ

rœR

ÿ

eœE2

fT

e
x̃r

e
µr +

ÿ

sœS
fH

s
bs (2.1)

s.t.
ÿ

rœR

ÿ

cœC
ỹr

c
µr = 1 c œ C (2.2)

ÿ

rœRs

µr Æ Ls s œ S (2.3)
ÿ

rœR

µr Æ |L| (2.4)
ÿ

pœP

⁄p Æ |K| (2.5)

ÿ

sœSp

wps Æ Q1⁄p p œ P (2.6)

bs =
ÿ

pœP{s}

wps s œ S (2.7)

bs =
ÿ

rœRs

ÿ

cœC
dcỹ

r

c
µr s œ S (2.8)

⁄p œ N p œ P (2.9)
µr œ {0, 1} r œ R (2.10)
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wps Ø 0 p œ P, s œ Sp (2.11)

Objective function (2.1) minimizes the sum of transportation and handling costs.
Constraints (2.2) ensures each customer is visited by exactly one second-level route.
Constraints (2.3), (2.4), and (2.5) are upper bounds on the number of used vehicles.
Constraints (2.6) make sure that the capacity of urban trucks is not exceeded. Constraints
(2.7) and (2.8) ensure the flow balance between the two distribution levels. Constraints
(2.9), (2.10) and (2.11) define domains of variables.

2.2.2 Modified formulation

In formulation (F1), we use variable w together with constraints (2.6) and (2.7) to ensure
the flow balance between two distribution levels. In the modified formulation, we replace
them by another set of constraints. To simplify further the presentation, we introduce
auxiliary integer variables uS that define the number of urban trucks visiting a non-empty
subset S ™ S of satellites. The modified formulation is then

(F2) min (2.1)
s.t. (2.2) ≠ (2.5), (2.8) ≠ (2.10)

uS =
ÿ

pœPS

⁄p S ™ S, S ”= ÿ (2.12)

ÿ

sœS

bs Æ Q1uS S ™ S, S ”= ÿ (2.13)

Constraints (2.12) define variables u. Level balancing constraints (2.13) replace
variables w and constraints (2.6), (2.7), (2.11). Validity of constraints (2.13) follows
from:

ÿ

sœS

bs

(2.7)=
ÿ

sœS

ÿ

pœP{s}

wps =
ÿ

pœPS

ÿ

sœSp

wps

(2.6),(2.12)

Æ Q1

ÿ

pœPS

⁄p.

We will now prove that constraints (2.13) are su�cient to guarantee the existence of
a feasible freight flow at satellites for every solution (⁄̄, µ̄) of formulation (F2). Remember
that b and u are auxiliary variables. Their values b̄ and ū can be computed from solution
(⁄̄, µ̄) using (2.8) and (2.12). The proof is illustrated in Figure 2.1.

Proposition 1. For every feasible solution (⁄̄, µ̄) to the LP relaxation of formulation
(F2) it exists a feasible solution (⁄̄, µ̄, w̄) to the LP relaxation of formulation (F1).

Proof. Given a solution (⁄̄, µ̄) and its computed values (b̄, ū), we construct a directed
graph Ḡ = (V̄ , Ā). Set V̄ of nodes contains source s̃, sink t̃, set P̄ = {p œ P : ⁄̄p > 0}
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Q1⁄̄p

b̄s1

b̄s2

b̄s3

b̄s4
s̃ t̃

P̄ S̄Ā1 Ā2 Ā3

S̄ ÕP̄ Õ

Figure 2.1: Illustration for graph Ḡ and its minimum cut in Proposition 1.

of nodes representing first-level routes in the solution, and set S̄ = {s œ S : b̄s > 0}
of nodes representing satellites used in the solution. Set Ā of arcs is the union of the
following three sets: Ā1 connects the source with P̄ , Ā2 connects P̄ with S̄, and Ā3

connects S̄ with the sink. An arc (s̃, p) in Ā1 has capacity Q1⁄̄p. An arc (p, s) belongs
to Ā2 if and only if s œ Sp and has infinite capacity. An arc (s, t̃) in Ā3 has capacity b̄s.

Let us now prove by contradiction that the maximum value of the s̃- t̃ flow in graph
Ḡ is equal to q

cœC dc = d(C). Suppose that the maximum flow is strictly less than d(C).
Let V̄ Õ be the subset of V̄ obtained from a minimum s̃-t̃ cut in Ḡ, s̃ œ V̄ Õ. Let S̄ Õ = V̄ Õ \ S̄

and P̄ Õ = V̄ Õ \ P̄ . We denote as ”(V̄ Õ) = {(v, vÕ) œ Ā | v œ V̄ Õ, vÕ ”œ V̄ Õ} the set of arcs
forming the minimum cut. From the supposition and the max-flow-min-cut theorem it
follows that the total capacity of ”(V̄ Õ) is less than d(C). Thus ”(V̄ Õ) contains at least
one arc in Ā1 and does not contain all arcs in Ā3. Therefore, the total capacity of arcs in
Ā1 fl ”(V̄ Õ) is strictly less than the total capacity of arcs in Ā3 \ ”(V̄ Õ):

ÿ

pœP̄ Õ

Q1⁄̄p <
ÿ

sœS̄Õ

b̄s. (2.14)

Set ”(V̄ Õ) does not contain any arc in Ā2 as they have infinite capacity. Thus
V̄ Õ fl P̄ fl P

S̄Õ is empty, and ⁄̄p = 0 for all p œ P
S̄Õ \ P̄ Õ. From the latter and (2.14), it

follows that q

sœS̄Õ b̄s > Q1

q

pœPS̄Õ ⁄̄p which violates constraints (2.12) and (2.13) for set
S̄ Õ of satellites. Thus (⁄̄, µ̄) is not a feasible solution to the LP relaxation of (F2) which
leads to a contradiction.

We have just proved that the maximum flow in graph Ḡ has value d(C). We now
set w̄ps equal to the flow from p œ P̄ to s œ S̄ for every (p, s) œ Ā2, and to 0 otherwise.
By construction of graph Ḡ, constraints (2.6) and (2.7) are satisfied by (⁄̄, b̄, w̄), and
(⁄̄, µ̄, w̄) is a feasible solution to the LP relaxation of (F1).
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Since the number of constraints (2.12) and (2.13) is exponential, we should generate
them dynamically. The proof of Proposition 1 gives a method to separate both integer
and fractional solutions of (F2). In the separation procedure, we search for a minimum
cut in graph Ḡ constructed from ⁄̄ and µ̄. Once set S̄ Õ of satellites is found, it is further
separated into subsets such that there is no path in P̄ visiting two satellites in di�erent
subsets. Then, we add constraints (2.12) and (2.13) for every such subset of satellites.

2.2.3 Valid inequalities

In our BCP algorithm, we use four families of valid inequalities. The first two families
were introduced in Chapter 1 : RCCs et lm-R1Cs. In this section, we present the third
family and some valid lower bounds on the number of vehicles used. To simplify the
presentation, we introduce auxiliary variables x and y:

xs

e
=

ÿ

rœRs

x̃r

e
µr, s œ S, e œ E2, ys

c
=

ÿ

rœRs

ỹr

c
µr, s œ S, c œ C.

Integer variable xs

e
is equal to the number of times edge e œ E2 is used by city freighters

started from satellite s œ S. Binary variable ys

c
is equal to one if and only if customer

c œ C is visited by a city freighter started from satellite s œ S.

Visited satellite inequalities

A customer can be visited by a route r œ Rs only if satellite s is visited by at least one
urban truck. Therefore, next visited satellite inequalities (VCI) are valid:

ys

c
Æ u{s}, c œ C, s œ S. (2.15)

Although inequalities (2.15) are rather straightforward, we did not find any work in the
literature which uses them. Separation of constraints (2.15) is performed by enumeration
of all pairs (c, s) œ C ◊ S.

Lower bounds on the number of vehicles

We define lower bounds on the number of urban trucks

ÿ

pœP

⁄p Ø
G

d(C)
Q1

H

(2.16)
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and the number of city freighters

ÿ

rœR

µr Ø
G

d(C)
Q2

H

(2.17)

Moreover, a subset S of satellites must be visited by enough urban trucks to supply
the demand that cannot be delivered from satellites in S \ S. Therefore, the next lower
bound on uS is valid :

uS Ø
G

d(C) ≠ q

sœS\S LsQ2

Q1

H

, S µ S (2.18)

Inequalities (2.18) are useful when the number of city freighters that can start from
satellites is limited (Ls < |L|, s œ S).

2.3 New family of valid inequalities

We propose a new family of satellite supply inequalities (SSI) inspired by the depot
capacity constraints introduced for the capacitated location-routing problem by Belenguer
et al. (2011). To simplify the presentation below, we denote C{ = C \ C and S{ = S \ S.
Let us introduce SSI through an example.

Example 5. Consider urban trucks with capacity Q1 = 10 and city freighters with
capacity Q2 = 6. Figure 2.2 shows a fractional solution (ū, µ̄) to the LP relaxation of
(F2). Here S = {s1, s2} and set C contains seven customers. Consider subset C of
customers with d(C) = 11. Consider also subset S = {s2} of satellites with ūS = 1.
Clearly, S can supply only demand of at most Q1ūS = 10 units and thus cannot supply
set C of customers alone. In this fractional solution, C is supplied by 1.8 city freighters
coming from S and 0.2 city freighters coming from S{. The violated SSI states that either
two or more urban trucks should visit S = {s2} or at least one city freighter coming from
satellites in S{ = {s1} should visit some customers in C:

ÿ

sœS{

ÿ

eœ”(C)

xs

e
Ø 2 · (2 ≠ uS) .

2.3.1 Satellite supply inequalities

We now define gC(u) as the function which gives a lower bound on the number of city
freighters required to cover the demand of a subset C of customers that ÂuÊ urban trucks
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C

S
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1
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3
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depot
i satellite si

d customer with demand d
0.2 vehicles
0.8 vehicles
1 vehicle

Capacities:
10 items
5 items

Figure 2.2: Example of a satellite supply inequality, violated for given S and C.

cannot supply:

gC(u) = max
I

0,

G

d(C) ≠ Q1ÂuÊ
Q2

HJ

.

Proposition 2. Given C µ C and S µ S, the following inequality is valid for the
2E-CVRP

ÿ

sœS{

ÿ

eœ”2(C)

xs

e
Ø 2 · gC(uS). (2.19)

Proof. Consider a feasible solution (x̄, b̄, ū) of formulation (F2). The following rounded
capacity inequality is satisfied by x̄ and b̄:

ÿ

sœS{

ÿ

eœ”2(C)

x̄s

e
Ø 2

G

d(C) ≠ q

sœS b̄s

Q2

H

(2.20)

From constraint (2.13) and the integrality of variable ūS, it follows

ÿ

sœS

b̄s Æ Q1ūS = Q1ÂūSÊ. (2.21)

By combining (2.20) and (2.21) we obtain that (2.19) is satisfied by x̄ and ū.

Function gC(u) is not linear and cannot be used directly. Instead, we use the piecewise
linear function, denoted as hC(u), which forms the convex hull of the epigraph of gC(u).
We denote as ũC the ordered vector of (integer) values u of extreme points of hC :

ũC =
1

ũC

0
= 0, ũC

1
, . . . , ũC

k(C)
= Ád(C)/Q1Ë

2

.

Figure 2.3 depicts an example of functions gC and hC for Q1 = 10, Q2 = 4, and
d(C) = 32. In the left plot, the epigraph of gC is the grey area. In the right plot, function
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hC is the bold line. Extreme points of hC are H0, H2, H3, H4, but not H1. Therefore,
ũC = (0, 2, 3, 4), and k(C) = 3.

0 1 2 3 4 5 u

gC(u)

0

1

2

3

4

5

6

7

8

epi gC

0 1 2 3 4 5 u

hC(u)

0

1

2

3

4

5

6

7

8
H0•

H1•

H2•

H3•
H4•

Figure 2.3: Example of functions gC (on the left) and hC (on the right).

Proposition 3. Given subsets C µ C, S µ S, and an integer 0 < k Æ k(C), the
following inequality is valid for the 2E-CVRP

ÿ

sœS{

ÿ

eœ”2(C)

xs

e
Ø 2 ·

A

hC(ũC

k≠1
) ≠ hC(ũC

k≠1
) ≠ hC(ũC

k
)

ũC

k
≠ ũC

k≠1

(uS ≠ ũC

k≠1
)
B

(2.22)

Proof. The right-hand side of each constraint (2.22) corresponds to a linear piece of
function hC . Thus the proof follows from Proposition 2 and from the fact that hC(u) Æ
gC(u) for all u Ø 0.

2.3.2 Separation of Satellite supply inequalities

Let (x̄, ū) be the values of variables x and u in a solution to the LP relaxation of (F2).
The following problem finds the most violated inequality.

max
SµS,CµC

2 · hC(ūS) ≠
ÿ

sœS{

ÿ

eœ”2(C)

x̄s

e
(2.23)

The first and second terms of the objective function are non-linear functions of C

and S. Thus enumeration of C and S is required to compute (2.23) exactly using an
integer program. Since the number of subsets is exponential, we propose a heuristic to
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separate SSI. Although the heuristic does not necessarily find the most violated inequality,
it o�ers a good trade-o� between the computational e�ort and the violation of found
inequalities. Our heuristic works with a fixed set of satellites. The following proposition
gives a dominance rule which will allow us to discard non-interesting subsets of satellites.

Proposition 4. Consider a solution (x̄, ū) to the LP relaxation of (F2) and a fixed set C

of customers. If SSI (2.22) is violated for C and a set S1 of satellites, then it is violated
for C and any set S2 ´ S1 such that ūS2 = ūS1.

Proof. The right-hand side of (2.22) is fixed for a fixed set C of customers and a fixed
value uS. Thus right-hand side of the SSIs for pairs (C, S1) and (C, S2) is the same. For
fixed values of variables x, the left-hand side of the SSI for pair (C, S2) is not larger than
one of the SSI for pair (C, S1), as S{

2
™ S{

1
. Thus the violation of the SSI for pair (C, S2)

is not smaller than one of the SSI for pair (C, S1).

To enumerate all the non-dominated sets of satellites, we first build the power set
Ū of set S̄ of satellites used in the solution. Since we look for the largest subsets of
satellites, we append all satellites in S \ S̄ to each set in Ū . Finally, we exclude from Ū
all sets S1 such that there exists S2 œ Ū with S2 ´ S1 and ūS2 = ūS1 . This is done by
the exhaustive enumeration as the cardinality of set Ū is not large for the instances of
the literature.

V̄S

S

ŪS

W̄S

3

2

1

2

3

1 2

depot
i satellite si

0.2 vehicles
0.8 vehicles
1 vehicle

Figure 2.4: Separation graph Ḡ2(S) for the fractional solution in Example 5

Given a set S œ Ū of satellites, we now look for subsets of customers that violate SSI.
We split customers in three subsets. Let ŪS µ C be the set of customers visited only by
routes started from S{, let V̄S µ C be the set of customers visited only by routes started
from S, and let W̄S = C \ (ŪS fi V̄S). Figure 2.4 illustrates the partition of customers of
Example 5. We then build graph Ḡ2(S) in the following way.
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• Graph Ḡ2(S) is the subgraph of G2 induced by vertices in ŪS fi W̄S fi S{.

• Weight of each edge e in Ḡ2(S) is equal to q

sœS{ x̄s

e
.

• Set ŪS fi S{ of vertices in Ḡ2(S) is merged into one vertex s̄ by successively
contracting all edges having two incident vertices in ŪS fi S{. Weight of each edge
(s̄, c), c œ W̄S, in final graph Ḡ2(S) is then equal to q

sœS{
q

iœŪSfiS{ x̄s

(i,c)
.

Afterward, we compute the minimum cut in Ḡ2(S). Let C̄S be the subset of vertices
obtained from the minimum cut, s̄ ”œ C̄S. First, we verify whether SSI based on set S

of satellites and set C = C̄S fi V̄S of customers is violated. Afterward, we iteratively
enlarge set C in a greedy manner and check the violation of SSI based on S and C at
each iteration. Customer cÕ to include in current set C (and exclude from W̄S) in each
iteration is

cÕ = arg max
cœW̄S

Y

]

[

q

sœS{ dcȳs

c
q

sœS{
q

iœŪ(S,C,c) x̄s

(c,i)

Z

^

\

, (2.24)

where Ū(S, C, c) = S{ fi ŪS fi W̄S \ {c}. The intuition behind (2.24) is that we try to
increase the first term of (2.23) while increasing not too much the second term. The
separation procedure is formally given in Algorithm 2.

Algorithm 2 Separation procedure for the satellites supply inequalities
We are given (⁄̄, µ̄) and computed entities P̄ , ū, x̄, ȳ
I is the set of found violated SSI
Find set Ū of non-dominated subsets of satellites
for all S œ Ū do

Find ŪS, V̄S, W̄S and build graph Ḡ2(S)
Compute the minimum cut in Ḡ2(S) and corresponding set C̄S

C Ω C̄S fi V̄S

repeat

If SSI based on S and C is violated by (ū, x̄), add the inequality to I
Find customer cÕ in W̄S using (2.24)
C Ω C fi {cÕ}
W̄S Ω W̄S \ {cÕ}

until W̄S = ÿ
end for

Return a specified number of the most violated SSI in I



2.4 Branch-cut-and-price algorithm 45

2.4 Branch-cut-and-price algorithm

Formulation (F2) together with valid inequalities (1.25), (1.26), (2.15), and (2.22) is
solved by an adaptation of the branch-cut-and-price algorithm presented in Section 1.3.4.
In this section, we describe how we model the pricing problem, the parameters of the
BCP, and the branching rules.

As the number of variables depends exponentially on the number of satellites and
customers, the LP relaxation of (F2), which we call the master problem, is solved by
the column and cut generation approach. As we consider instances with at most 15
satellites, all first-level route variables ⁄ are added to the formulation from the start of the
algorithm. All exact algorithms in the literature which use the route based formulation
for the 2E-VRP follow the same approach.

2.4.1 Pricing problem

Second-level route variables µ are dynamically generated by solving the pricing problem.
It is decomposed into |S| subproblems (SPs), one per satellite s œ S. The set of feasible
solutions to the pricing subproblem (SPs) is the set Rs of paths in graph G2. A path r

belongs to Rs if and only if :

• it starts and finishes in vertex s: q

eœ”2(s) x̃r

e
= 2;

• it does not pass through other satellites: q

eœ”2(S\{s}) x̃r

e
= 0;

• it passes through each customer at most once: ỹr

c
Æ 1, ’c œ C.

• its total delivered demand does not exceed the capacity of a city freighter: q

cœC ỹr

c
Æ

Q2.

Let fi, Â, „, fl, · , ◊, ›, and ’ be optimum dual values for the master problem restricted
to a subset of variables µ. These dual values correspond to constraints (2.2), (2.3), (2.4),
(2.8), (1.25), (1.26), (2.15), and (2.22). Let also K be the collection of active rank-1 cuts
corresponding to vectors (–k)kœK , and Ms be the collection of active SSI based on sets
(Sm, Cm)mœMs , s œ S{
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Each pricing subproblem (SPs) is solved by the bucket graph based bi-directional
labelling algorithm proposed by Sadykov et al. (2020) and presented in chapter 1.

2.4.2 Column and cut generation

We recall that we use three-stage column generation. For each subproblem, the heuristic
pricing at the first two stages generates at most 30 columns, and exact pricing at the
third stage generates at most 150 columns.

The reduced cost fixing procedure, presented in Section 1.3.2, is first performed
after the first column generation convergence, and then each time the primal-dual gap
decreases by more than 10%. Note that graph reduction is not the same in di�erent
pricing subproblems.

If the total number of routes enumerated in all subproblems by the enumeration
procedure presented in Section 1.3.2 is less than 5000, all the routes are added to
formulation (F2) and the latter is solved by the MIP solver.

We define variables u only for subsets with 5 satellites or less in order to limit the
size of the formulation and the number of candidates for branching. Moreover, we define
variables uS = t1 ≠ q

p”œPS
⁄p where t1 is the total number of urban trucks used. It allows

us to keep the coe�cient matrix sparse. Variables uS are replaced by t1 ≠ q

p”œPS
⁄p

when |S| Ø 6. In the beginning, all constraints (2.13) are added to formulation (F2) for
instances with at most 10 satellites. For other instances, only constraints (2.13) for sets
S µ S, |S| Æ 5, are added. Other constraints are dynamically separated as described in
Section 2.2.2.

In each cut generation round, we add at most 100 rounded capacity cuts (1.25), 450
rank-1 cuts (1.26), 50 VCI (2.15), and 150 SSI (2.22) to the master problem. The cut
generation is stopped either by the tailing-o� condition or when the time spent to solve
at least one pricing subproblem exceeds 1 second. The tailing-o� condition is satisfied
when after 3 cut generation rounds the primal-dual gap decreases by less than 2% per
round.

2.4.3 Branching

We perform branching on: the number of first-level routes visiting a subset of satellites
(variables u), the use of first-level routes (variables ⁄), the use of an edge in E2 (variables
x), the assignment of a customer to a satellite (variable y), the number of first-level routes
(q

pœP ⁄p), the number of second-level routes (q

rœR µr), and the number of second-level
routes started from a satellite s (q

rœRs
µr). We use a multi-phase strong branching
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procedure, similar to Sadykov et al. (2020), to choose the most promising branching
candidate.

We use the multi-phase strong branching procedure presented in Section 1.3.3. The
branching procedure first chooses at most 50 branching candidates and up to half of
the candidates are chosen according to the branching history using pseudo-costs. Three
candidates are chosen for the second phase.

2.4.4 Primal heuristic

After each node in the branch-and-bound tree, a heuristic looks for improving feasible
solutions to the 2E-CVRP. We first tried the standard restricted master heuristic Sadykov
et al. (2018) in which the MIP solver solves the current restricted master problem.
However, we have not been satisfied with the performance of this heuristic, especially
for instances with large capacity of city freighters. The reason is that sometimes only a
small part of columns in the restricted master are elementary, thus making the solution
space of the restricted master very small or even empty.

Instead, we use the heuristic based on an artificial primal bound and the elementary
route enumeration presented in Section 1.3.3. This heuristic returns 10000 elementary
routes with the smallest reduced cost and we add them to the master problem. Finally,
IBM CPLEX MIP solver tries to solve for the resulting problem within |C|/2.5 seconds.
We activate the polishing heuristic Rothberg (2007) implemented in CPLEX.

2.5 Computational results

The model and the separation algorithms for constraints (2.12), (2.13), VCI (2.15), and
SSI (2.22) were implemented in Julia 0.6 language using JuMP Dunning et al. (2017)
and LightGraphs packages. We also used:

• BaPCod C++ library Vanderbeck et al. (2019) which implements the BCP frame-
work;

• C++ code, developed by Sadykov et al. (2020), which implements the bucket
graph based labelling algorithm, bucket arc elimination procedure, elementary
route enumeration, and the separation of limited-memory rank-1 cuts;

• CVRPSEP C++ library Lysgaard (2018) which implements heuristic separation of
rounded capacity cuts;
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• IBM CPLEX Optimizer version 12.8.0 as the LP solver in column generation and
as the solver for the enumerated MIPs.

Experiments were run on a 2 Dodeca-core Haswell Intel Xeon E5-2680 v3 servers at 2.5
GHz. On each server, we solved 24 instances with up to 200 customers and up to 10
satellites that share 128Go of RAM. Larger instances having either 300 customers or 15
satellites were solved by batches of 4 instances sharing 128Go of RAM. Each instance is
solved on a single thread.

2.5.1 Instances

Table 2.1 shows the sets of instances from the literature that we used. Constraints (2.3)
limiting the number of city freighters per satellite are required only for set 4B. Therefore,
constraints (2.18) are useful only for set 4B. Set 5 duplicates each instance: the first
instance has the standard capacity of city freighters, and the second one, with su�x “b”,
has the double capacity. Only set 6B has non-zero handling costs. We do not consider
instances of set 3, proposed in Gonzalez-Feliu et al. (2007), as they are easily solved by
our algorithm and by Baldacci et al. (2013).

Table 2.1: Sets of 2E-CVRP instances from the literature used for experiments

Set # |S| |C| Notes Authors
4A 54 2, 3, 5 50 Ls < |L| Crainic et al. (2010)
4B 54 2, 3, 5 50 Crainic et al. (2010)
5 18 5, 10 100, 200 low and high Q2 Hemmelmayr et al. (2012a)
6A 27 4, 5, 6 50, 75, 100 Baldacci et al. (2013)
6B 27 4, 5, 6 50, 75, 100 fH

s
> 0 Baldacci et al. (2013)

As all instances were solved to optimality by our BCP algorithm, we generated 51
additional instances involving up to 300 customers and 15 satellites. They are based
on instances of families a, b, and c proposed by Schneider and Lö�er (2019) for the
capacitated location-routing problem. In comparison with the original instances, we
added the position of the depot, capacity of urban trucks, the number of urban trucks,
and the number of city freighters. We put the depot at location (0, 0). We set Q1 = 9 ·Q2,
|K| = Á1.75 · d(C)/Q1Ë, and |L| = Á2.5 · d(C)/Q2Ë.

2.5.2 Experimental analysis of BCP variants

In the first experiment, we compare di�erent variants of our BCP algorithm for solving
the 54 largest literature instances from sets 5, 6A, and 6B with 75, 100, and 200 customers.
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To eliminate randomness related to improvement of primal bounds, all variants were
executed without primal heuristic and with the initial primal bound equal to the optimum
solution value (plus small ‘) for each instance. We tested the following variants.

BCP0 — the base variant which uses formulation (F1), without separating VCI and SSI,
and without branching on variables u. It can be considered as a straightforward
adaptation of the BCP algorithm in Sadykov et al. (2020) for solving the 2E-CVRP.

BCP+u — the base variant with branching on variables u.

BCPbest — the best variant, which is based on formulation (F2), with VCI and SSI
separation, and with branching on variables u.

BCPbest≠u — the best variant without branching on variables u.

BCPbest-VCI — the best variant without separating VCI.

BCPbest-SSI — the best variant without separating SSI.

BCPbest-(F1) — the best variant, but based on formulation (F1).

Table 2.2 gives the comparison of the BCP variants. It contains average values for the
root gap, geometric mean values for the root solution time, the number of branch-and-
bound nodes, the geometric mean of total solution time in seconds, and the number of
instances solved within the time limit set to 3 hours. For unsolved instances, the solution
time is set to the time limit.

Table 2.2: Comparison of variants of the BCP algorithm

Root
Variant Gap (%) Time (s) Nodes Time (s) Solved
BCP0 4.29 83.6 76.0 2333.0 31/54
BCP+u 4.28 99.5 24.5 1020.5 44/54
BCPbest-(F1) 0.68 177.8 5.9 421.4 49/54
BCPbest-SSI 1.64 115.5 12.5 426.1 49/54
BCPbest-VCI 0.71 238.6 6.6 501.0 50/54
BCPbest≠u 0.67 161.2 7.0 384.7 50/54
BCPbest 0.68 159.0 6.3 361.7 51/54

We see that the base variant BCP0 is the worst as it solves only 31 out of 54 instances.
Adding branching on variables u improves significantly BCP0 as variant BCP+u solves 13
more instances. The best variant BCPbest solves 7 more instances to optimality within
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the time limit. Table 2.2 shows that all our contributions improve the e�ciency of the
BCP algorithm. The root gap decreases significantly when VCI and SSI are separated.
Although the root solution time increases when additional inequalities are separated, the
overall time decreases due to the much smaller size of the branch-and-bound tree. Thus,
branching on variables u has a small e�ect on the performance of BCPbest. However,
adding branching on variables u is the simplest way to make BCP0 much more e�cient.

2.5.3 Comparison with the state-of-the-art algorithm

Let us now compare BCP0 and BCPbest to the best exact algorithm by Baldacci et al.
(2013). For a fair comparison, we do not use initial primal bounds in this experiment.
Instead, we rely on the primal heuristic presented in section 2.4.4 to find feasible solutions.
Baldacci et al. (2013) did not set an overall time limit for their algorithm. They set a
limit on the number of collections of first-level routes considered, as well as a time limit
of 5000 seconds for solving each subproblem with fixed first-level routes. In our BCP
algorithm, we set the time limit to 10 hours.

Table 2.3 shows the summary results of this experiment. For each set of literature
instances, we give the average gap between the root dual bound and the best primal
bound found (Rg), the geometric mean of the number of branch-and-bound nodes (Nds),
the geometric mean of the solution time in seconds (t), and the number of instances
solved to optimality (Solved). For a fair comparison, the solution time of Baldacci et al.
(2013) is divided by 1.6 because of the di�erence in computer speeds. The algorithm
in Baldacci et al. (2013) was tested only on 6 out of 18 instances of set 5. It has not been
applied for instances with 10 satellites, as it is based on an enumeration of subsets of
first-level routes. Since our algorithms are free from this drawback, they were tested on
all instances of set 5.

Table 2.3: Comparison of two BCP variants with the state-of-the-art exact algorithm for
the 2E-CVRP (Baldacci et al., 2013)

BCP0 BCPbest Literature
Set Rg(%) Nds t (s) Solved Rg(%) Nds t (s) Solved t (s) Solved
4A 5.76 14.2 772 51/54 0.91 3.3 144 54/54 271 50/54
4B 4.45 12.7 550 52/54 0.98 3.6 203 54/54 232 52/54
5 5.83 222.9 20612 6/18 1.41 22.5 3215 15/18 8405 3/6
6A 7.04 99.7 2604 24/27 0.89 4.9 233 27/27 802 22/27
6B 3.15 57.8 1562 24/27 0.46 4.3 196 27/27 513 19/27

The variant BCP0 solves to optimality more instances than the best algorithm in the
literature. However, the running time of the latter is on average smaller. The variant
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BCPbest largely outperforms both other algorithms for all sets of instances. Indeed,
BCPbest solves to optimality 31 open instance within 10 hours. The remaining 3 open
instances were solved to optimality by providing the best-known solution of the literature
as initial primal bound and using a special parameterisation.

Table 2.4 shows that our BCP algorithm could improve 10 best-known solutions (BKS)
for literature instances. Their optimum solution values are given in column Opt. The
improvement (Imp) in general is small. Thus, the existing heuristics for the 2E-CVRP
have very good quality (at least when applied to literature instances).

Instance BKS Reference Opt Imp (%)
Set 5 100-5-1b 1103.55 Amarouche et al. (2018) 1099.35 0.38

100-10-3b 849.73 Amarouche et al. (2018) 848.16 0.19
200-10-1 1538.35 Amarouche et al. (2018) 1537.52 0.05
200-10-1b 1175.81 Amarouche et al. (2018) 1173.07 0.23
200-10-3 1779.68 Amarouche et al. (2018) 1177.49 0.12
200-10-3b 1196.93 Amarouche et al. (2018) 1192.35 0.38

Set 6A C-n101-4 1297.42 Wang et al. (2017) 1292.04 0.41
Set 6B B-n101-4 1500.55 Breunig et al. (2016) 1499.71 0.06

B-n101-5 1395.32 Breunig et al. (2016) 1394.79 0.04
C-n101-5 1964.63 Breunig et al. (2016) 1962.52 0.11

Table 2.4: Improved best-known solutions for the 2E-CVRP literature instances

2.5.4 Experimental results for new instances

We tested the variant BCPbest on the set of newly generated instances involving 5 – 15
satellites and 100 – 300 customers. We set the time limit to 60 hours. We gave more
time to the primal heuristic when solving the largest instances. For instances with 300
customers and 10 satellites, this time was set to 600 seconds. For instances with 15
satellites, this time was set to 4 · |C| seconds.

Out of 51 instances, our algorithm solved to optimality 23 instances, including some
instances with 300 customers or with 15 satellites. The algorithm found both dual and
primal bounds for 17 instances. The primal heuristic did not find any feasible solution
for 9 instances having 300 customers and/or 15 satellites. Only lower bounds are thus
currently known for these instances. We could not obtain dual bounds for 2 instances
because the LP solver spent more than one hour to solve the restricted master LP during
the first column generation convergence.

The main goal of this experiment was to generate instances which our best algorithm
cannot solve in a reasonable time. This goal is achieved.





Chapter 3

Two-Echelon Vehicle Routing

Problem with Time-Windows

The strong growth of home delivery services and e-commerce leads to a massive flow of
goods to the city centers. This tends to bring trucks within cities, while the latter restrict
or ban the use of polluting and large freight vehicles in city centers. In order to find
alternative solutions to direct deliveries from distribution centers to customers, multi-
echelon distribution networks were proposed by Crainic et al. (2009). The two-echelon
distribution system is the simplest structure of these distribution networks. Trucks
circulate in the first level outside the city center while small and clean vehicles are
used in the second level for last-mile delivery. Light electric freight vehicles or cargo
bikes as commonly used at this level since they are agile, quiet, emission-free, and takes
up less space than vans or trucks. The connection between the two levels is ensured
by intermediate warehouses such as Urban Consolidation Centers (UCC) (Allen et al.,
2012), which provide temporary storage and consolidate the parcels flow in the last mile
(McDermott, 1975). As the costs of these UCCs are high (Holguín-Veras et al., 2018), an
alternative is to use intermediate warehouses with limited storage space or no storage at
all. These warehouses called satellites are commonly based on existing infrastructure
such as car parks, bus depots, or some street sidewalks. In this context, synchronization
of flows at intermediate warehouses is therefore an essential feature in urban freight
transport: exact synchronization constraints are encountered in satellites, and precedence
constraints are encountered in UCCs. Time windows at customer sites are also commonly
used in practice.

In this chapter, we study the two-echelon vehicle routing problem with time windows
(2E-VRPTW), which consists in determining the number of goods to be shipped from
the distribution centers to the satellites and from satellites to customers, together with
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the optimal routes connecting entities in each level, such that vehicle capacities are not
exceeded, customer demands are satisfied, customers are delivered within their time
windows, and first-level routes precede second-level routes to do transfers at satellites.
The goal is to minimize operational and transportation costs.

Two-echelon vehicle routing with time windows has received little attention in the
literature so far. Usually, in the variants of the problem considered in the literature, exact
synchronization is required, and one forbids freight consolidation, i.e. the loading to a
city freighter from several urban trucks. Such constraints are imposed, for example, in the
papers by Grangier et al. (2016) and Dellaert et al. (2019). In contrast to these papers,
our problem variant allows for consolidation and does not require exact synchronization
for transfers because we use precedence constraints at satellites. Our case is thus suited
for practical situations with UCCs, i.e. satellites with relatively large storage capacities.
In this work, we propose the first exact algorithm for this variant of the problem. The
algorithm is based on the branch-cut-and-price (BCP) approach.

We would like to underline that our algorithm is useful both for the case with
precedence constraints and for the case with exact synchronization. Indeed, exact
algorithms are generally used in practice to obtain valid lower bounds on the value of an
optimum solution to the problem. These bounds are then used to estimate the quality
of heuristic algorithms. As the variant of the 2E-VRPTW with precedence constraints
and consolidation is a relaxation for the variant with exact synchronization, the lower
bounds obtained by our algorithm are valid for both cases. Moreover, we provide a
post-processing procedure that allows one to minimize the usage of storage in a given
solution without increasing its transportation cost.

We now summarize the main contributions of our work presented in this chapter.

• We introduce a new mixed-integer programming (MIP) formulation for the 2E-
VRPTW with precedence constraints and freight consolidation. This formulation
involves an exponential number of route variables and an exponential number of
precedence constraints. Our formulation does not involve variables which explicitly
model freight transfer at satellites. This fact greatly simplifies the following
approach to solve the formulation.

• To solve the introduced formulation to optimality, we propose a branch-cut-and-
price algorithm, which combines column and cut generation with strong branching
and an enumeration procedure for elementary routes (Baldacci et al., 2008b). Our
algorithm incorporates many advanced techniques proposed recently for tackling
classic vehicle routing problems. It includes an original separation algorithm that
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generates violated precedence constraints. We also show how precedence constraints
can be taken into account when solving the pricing problem in column generation.

• We show how to adapt our BCP algorithm for a more practically relevant variant
of the problem, in which city freighters can perform multiple trips.

• We perform extensive computational evaluation of our algorithm using literature
instances introduced by Grangier et al. (2016) and Dellaert et al. (2019). Ex-
periments reveal that it can solve to optimality single-trip instances with up to
6 distribution centers, 5 satellites and 100 customers, and multi-trip instances
with up to 8 satellites and 100 customers. Moreover, we show that: (i) virtually
all instances proposed by Dellaert et al. (2019) have optimum solutions with the
same transportation cost for both variants of the problem with precedence con-
straints and with exact synchronization; (ii) our algorithm solves to optimality 54
open instances of the single-trip 2E-VRPTW; (iii) it outperforms significantly the
algorithm proposed by Dellaert et al. (2019) on their instances.

The remaining of the paper is organized as follows. Section 3.1 reviews the literature.
MIP formulations of the problem are introduced in Section 3.2. In Section 3.3, we
describe the proposed branch-cut-and-price algorithm. In Section 3.4, we present and
discuss the computational results. The appendices with detailed results will be available
with the published paper.

3.1 Literature review

The 2E-VRPTW is a generalization of the quite well-studied two-echelon capacitated
vehicle routing problem (2E-CVRP). Several exact approaches have been proposed for
the 2E-CVRP. Branch-and-cut algorithms were suggested by Gonzalez-Feliu et al. (2007);
Perboli et al. (2011); Jepsen et al. (2013); and Contardo et al. (2012). An exact method
based on the enumeration of first-level solutions was proposed by Baldacci et al. (2013).
The first branch-cut-and-price algorithm was developed by Santos et al. (2015). Recently,
Marques et al. (2020) published an improved branch-cut-and-price algorithm which
outperforms other exact methods in the literature. Optimum solutions can now be
consistently obtained for instances with up to 200 customers and 10 satellites.

Several heuristic approaches for the 2E-CVRP have been proposed in the literature.
A large neighbourhood search-based method has been suggested by Hemmelmayr et al.
(2012b) and by Breunig et al. (2016). Zeng et al. (2014) proposed a hybrid heuristic that
combines greedy randomized adaptive search procedure and a variable neighbourhood
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descent. Matheuristics that combine local search to build routes and a route-based MIP
to derive complete solutions were employed by Wang et al. (2017) and Amarouche et al.
(2018). The latter two algorithms are the best heuristics for the problem available in the
literature until today. More details on the 2E-CVRP can be found in the survey paper
by Cuda et al. (2015).

The 2E-VRPTW and its variants are less studied than the 2E-CVRP, although the
former is more relevant in practice. Grangier et al. (2016) suggested a mathematical for-
mulation of the variant of the 2E-VRPTW with multiple trips and exact synchronization
(MT-2E-VRPTW-ES), in which freight consolidation is forbidden. A city freighter thus
receives products from only one urban truck. The authors proposed an adaptive large
neighbourhood search heuristic that embeds customized destroy and repair procedures.
Their objective function successively minimizes the number of urban trucks used, the
number of city freighters used, and the total distance traveled. They experimented with
instances involving 8 satellites and 100 customers and searched for feasible solutions
within two hours.

Dellaert et al. (2019) suggested three MIP formulations for the single-trip 2E-VRPTW
with exact synchronization (ST-2E-VRPTW-ES), in which freight consolidation is also
forbidden. First, they introduced an arc-based formulation optimized using a commercial
MIP solver. This approach could only solve instances with 15 customers within one
hour. Secondly, they proposed a “tour-tree” based formulation, in which a tour-tree is a
combination of a first-level route and the second-level routes loaded by this first-level
route. A branch-and-price algorithm was devised to tackle this formulation. Again, only
instances with up to 15 customers could be solved. Finally, the authors proposed a route
based formulation and an enumeration-based algorithm similar to the one by Baldacci
et al. (2013) to solve the ST-2E-VRPTW-ES. The method generates collections of first-
level routes, then iteratively fixes the first-level routes by choosing the most promising
collection according to a lower bound, and finally optimizes the second-level problem
as a multi-depot vehicle routing problem with time windows using a branch-and-price
algorithm. This method could solve most instances with up to 50 customers and some
instances with 100 customers.

Li et al. (2016) considered a variant of the 2E-VRPTW for linehaul delivery systems
with exact synchronization. They suggested a MIP formulation and tackled the problem
with combination of an initial Clarke-and-Wright savings heuristic and a local search. Li
et al. (2020b) studied another variant of the 2E-VRPTW with mobile satellites. The first
echelon involves vans and the second echelon involves unmanned aerial vehicles (UAV).
The vans parked at some customer locations are used as mobile satellites from which
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drones deliver other customers. They proposed a vehicle-flow formulation which involves
non-exact synchronization constraints at mobile satellites and time windows at customer
locations. Given the specific nature of the distribution with UAVs at the second level,
their model is not dedicated to achieve freight consolidation at satellites. An adaptive
large neighbourhood search (ALNS) heuristic has also been proposed, which were tested
on instances with up to 100 customers derived from the standard VRPTW benchmark. Li
et al. (2020a) considered a city logistics distribution system with on-street satellites and
time windows at customer locations, which has some similarities with the 2E-VRPTW.
Synchronization is performed at satellites where freight consolidation takes place. The
problem is formulated as a MIP, and it is optimized with a variable neighbourhood search
(VNS) heuristic. The latter was tested on instances with up to 30 on-street-satellites
and 900 customers. Nolz et al. (2020) considered two-echelon urban distribution systems
with a single capacitated city hub and exact synchronization between echelons. For
this setting, they proposed a three-phase heuristic method which uses population-based
meta-heuristics and integer programs.

Related works include models developed for certain specific application areas. Wang
and Wen (2020) focused on a variant of the 2E-VRPTW with soft time windows and a
heterogeneous fleet of vehicles for the cold chain logistics. They proposed an adaptive
genetic algorithm and optimized small instances with 2 distribution centers, 15 customers,
and 3 satellites. He and Li (2019) proposed a memetic algorithm for a multi-trip variant
of the 2E-VRPTW arising in agriculture, where second-level harvesting machines have
to visit many farmlands and unload the crop at one or many of them (i.e. satellites) into
first-level trucks. In this problem, the satellite location is changed continuously during
the working day and a non-exact synchronization between the two levels is defined by a
time window at each satellite. There is no consolidation in this model. The authors used
a set of instances with up to 250 customers.

To conclude, several variants of the 2E-VRPTW have been studied in the literature in
recent years. Nevertheless, to our knowledge, only one exact method has been proposed
so far by Dellaert et al. (2019) to the 2E-VRPTW. In this chapter, we address the lack
of exact methods by proposing an algorithm that has broader applicability than the
existing one.

3.2 Problem definition and formulation

We now formally define the problem. At the first level, a fleet U of homogeneous urban
trucks ships goods from a set D of distribution centers to a set S of satellites. The capacity
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of an urban truck is Q1 items. The tour of an urban truck starts at a distribution center,
delivers freight to some satellites, and ends at the same distribution center. The second
level involves a set F of homogeneous city freighters that ship freight from satellites to a
set C of customers. The capacity of a city freighter is Q2 items. Each customer c œ C has
an integer demand dc and must be visited by one city freighter. The latter must arrive
at the location of customer c œ C within a time window starting at time lc and ending at
time uc (waiting is possible for early arrival). Once arrived, the city freighter needs ‡c

time units to serve the customer. In the single-trip variant, a city freighter starts its tour
from a satellite, visits some customers, and ends at the same satellite. In the multi-trip
variant, a city freighter starts from a unique depot, goes to a satellite, delivers some
customers, and goes empty to a satellite to start another trip or ends at the depot.

Transfers of freight from urban trucks to city freighters take place at satellites. Vehicles
can arrive at satellite s œ S within a time window [ls, us]. In our variant, the freight
consolidation is allowed. This means that a city freighter can receive freight from several
urban trucks. Moreover, the exact synchronization of an urban truck and a city freighter
at a satellite is not required. A transfer at satellite s œ S consists of the following steps.
An urban truck arrives at the satellite, possibly waits until the beginning of time window
ls, stays during service time ‡s, and then leaves. A city freighter arrives at the satellite,
possibly waits until the start of service time of an urban truck from which the city
freighter gets its freight, stays during service time ‡s, and then leaves. Figure 3.1 depicts
examples of feasible transfers.

time

1st level

2nd level

service time of urban truck
service time of city freighter

Figure 3.1: Examples of transfers at a satellite

For the sake of clarity, we now focus on the single-trip variant of the problem.
Specificities of the multi-trip variant are discussed in Section 3.2.4.

The first-level problem is similar to the split-delivery CVRP because several urban
trucks can supply a satellite. However, the amount of freight delivered to each satellite
is not fixed. The second level problem is similar to the multi-depot CVRP with time
windows, in which satellites take the role of depots.
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The distribution system is represented by two graphs. Directed graph G1 = (V1, A1)
with V1 = D fi S and A1 = D ◊ S fi {(s, sÕ) œ S2 : s ”= sÕ} fi S ◊ D represents the first
level of the distribution system. Directed graph G2 = (V2, A2) with V2 = S fi C and
A2 = S ◊ C fi {(c, cÕ) œ C2 : c ”= cÕ} fi C ◊ S represents the second level of the distribution
system. For each arc a œ A1 fi A2, travelling cost fa and travel time ta are given.

We denote as P the set of feasible first-level routes. A route p œ P is an elementary
cycle (vp

0, vp

1, . . . , vp

n(p)
) in G1, in which vp

0 = vp

n(p)
œ D, and vp

k
œ S, 1 Æ k < n(p). We

denote as Sp the set of satellites visited by route p œ P : Sp = {vp

1, . . . , vp

n(p)≠1
} ™ S.

Since our variant allows for storage of items at satellites, there exists an optimal solution
in which each first-level route visits each satellite at most once and departs from each
node as early as possible. Let f̃p denote the cost of route p œ P , which includes the total
travel cost and the fixed cost of using an urban truck. Also let t̃p

k
denote the departure

time of route p œ P from node vp

k
, 0 Æ k Æ n(p). Without loss of generality, each value

t̃p

k
can be fixed to the earliest departure time:

t̃p

k
=

Y

_

]

_

[

‡v
p
k
, k = 0,

max
Ó

t̃p

k≠1
+ t(v

p
k≠1,v

p
k), lvp

k

Ô

+ ‡v
p
k
, 1 Æ k Æ n(p).

A first-level route p is feasible if t̃p

k
Æ uv

p
k

+ ‡v
p
k
, 1 Æ k Æ n(p). For a pair (s, t), where

s œ S and 0 Æ t Æ us, we denote as Pst, the set of first-level routes which visit satellite s

and depart from it strictly before time moment t: Pst = {p œ P : ÷k, 1 Æ k < n(p), vp

k
=

s, t̃p

k
< t}.

We denote as Rs the set of feasible second-level routes starting from satellite s. Let
also R = t

sœS Rs. A route r œ Rs is an elementary cycle (vr

0
, vr

1
, . . . , vr

n(r)
) in G2, in

which vr

0
= vr

n(r)
= s, and vr

k
œ C, 1 Æ k < n(r). Again, since our variant allows for

storage of items at satellites, there exists an optimal solution in which each second-level
route departs from each node as late as possible. Let z̃r

c
be equal to 1 if route r œ R

serves customer c œ C, and 0 otherwise. Let d̃r be the total amount of freight delivered by
route r œ R: d̃r = q

cœC dcz̃r

c
Æ Q2. Let f̃ r denote the cost of route r œ R, which includes

the total travel cost and the fixed cost of using a city freighter. Also let t̃r

k
denote the

departure time of route r œ R from node vp

k
, 0 Æ k Æ n(p). Without loss of generality,

each value t̃r

k
can be fixed to the latest departure time:

t̃r

k
=

Y

_

]

_

[

uv
r
k
, k = n(r),

min
Ó

t̃r

k+1
≠ ‡v

r
k+1

≠ t(vr
k,v

r
k+1), uv

r
k

+ ‡v
r
k

Ô

, 0 Æ k < n(r).
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A second-level route r is feasible if t̃r

k
Ø lvr

k
+ ‡v

r
k
, 0 Æ k < n(r). For a pair (s, t), where

s œ S and 0 Æ t Æ us, we denote as Rst the set of second-level routes in Rs which depart
from satellite s strictly before time moment t: Rst = {r œ Rs : t̃r

0
< t}.

A feasible solution to the problem consists of a set of feasible first-level and second-level
routes satisfying the following partitioning, precedence, and capacity constraints:

(C1) each customer is visited by exactly one second-level route,

(C2) for each satellite s œ S and each time moment 0 Æ t Æ us, the total amount of
freight, delivered to s by first-level routes in Pst, is not smaller than the total
amount of freight delivered by second-level routes in Rst,

(C3) the total amount of freight delivered by every first-level route does not exceed Q1.

The objective function is the same as the one used by Dellaert et al. (2019): we need
to minimize the sum of the total travelling cost and the total fixed cost of vehicles usage,
i.e. the total routes cost.

3.2.1 Standard formulation

Let integer variable ⁄p, p œ P , be equal to the number of urban trucks which follow
first-level route p. Let binary variable µr, r œ R, takes value 1 if a city freighter follows
second-level route r, and 0 otherwise. Let continuous variable wps, p œ P , s œ Sp, be
equal to the amount of freight that first-level route p delivers to satellite s. Then our
problem can be formulated as follows.

(F1) min
ÿ

pœP

f̃p⁄p +
ÿ

rœR

f̃ rµr (3.1)

s.t.
ÿ

rœR

z̃r

c
µr = 1 c œ C (3.2)

ÿ

pœPst

wps ≠
ÿ

rœRst

d̃rµr Ø 0 s œ S, ls < t Æ us, (3.3)

ÿ

sœSp

wps Æ Q1⁄p p œ P (3.4)

⁄p œ Z+ p œ P (3.5)
µr œ {0, 1} r œ R (3.6)

wps Ø 0 p œ P, s œ Sp (3.7)

The objective function (3.1) minimizes the total routes cost. Partitioning con-
straints (3.2), precedence constraints (3.3), and capacity constraints (3.4) correspond to
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constraints (C1), (C2), and (C3) respectively. Constraints (3.5), (3.6) and (3.7) define the
domains of variables. The number of precedence constraints (3.3) can be reduced to a finite
number while keeping the formulation valid. We define as Ts the set of all time moments
at which first-level routes leave satellite s: Ts =

Ó

t̃p

k
: p œ P, 1 Æ k < n(p), vp

k
= s

Ô

.
Then it su�ces to keep only constraints (3.3) for pairs (s, t) such that s œ S and t œ Ts.

Formulation (F1) cannot be solved directly in practice as the number of variables
and constraints is very large. Even the standard column and cut generation approach
is not suited to solve its linear programming (LP) relaxation. This is because for every
newly generated variable ⁄p, p œ P , one should also generate variables wps, s œ Sp, and
the corresponding constraint (3.4).

3.2.2 Modified formulation

In this section, we modify formulation (F1) so that dynamic generation of route variables
does not require simultaneous generation of constraints. For the modified formulation,
we are able to compute the current reduced cost of route variables. The standard column
generation procedure then can be used once the restricted set of precedence constraints is
fixed. Therefore, the precedence constraints separation procedure may alternate with the
column generation procedure. The overall columns and cut generation procedure stops
when no negative reduced columns are found and no precedence constraints are violated.

The main idea of the modified formulation is to merge constraints (3.3) and (3.4)
to remove variables w. First we need to introduce some notation. Given a time vector
· = (·s)sœS , let P (·) be the set of first-level routes which depart from a satellite s œ S
before time ·s: P (·) = {p œ P : ÷k, 1 Æ k < n(p), t̃p

k
< ·v

p
k
}. Analogously, let R(·)

be the set of second-level routes which depart from a satellite s œ S before time ·s:
R(·) = {r œ R : t̃r

0
< ·v

r
0
}. Also, let T be the cartesian product of all sets Ts, s œ S,

extended by value 0, i.e. T =◊sœS(Ts fi {0}). The modified formulation is then the
following.

(F2) min
ÿ

pœP

f̃p⁄p +
ÿ

rœR

f̃ rµr (3.8)

s.t.
ÿ

rœR

z̃r

c
µr = 1 c œ C (3.9)

ÿ

pœP (·)

Q1⁄p ≠
ÿ

rœR(·)

d̃rµr Ø 0 · œ T (3.10)

⁄p œ Z+ p œ P (3.11)
µr œ {0, 1} r œ R (3.12)
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We call constraints (3.10) two-level precedence constraints (TLPC). They replace
constraints (3.3) and (3.4). Before showing that formulation (F2) is equivalent to (F1),
we give an example of a violated TLPC.

Example 6. Consider an instance of 2E-VRPTW with one distribution center, three
satellites S = {s1, s2, s3}, and a set of customers that has a total demand of 55 items.
Capacities of vehicles are Q1 = 20 and Q2 = 13. Suppose we are given the solution
depicted by Figure 3.2. Urban truck following route p1 takes 20 units of freight from the
distribution center and delivers them to satellite s2 at time 5 and satellite s1 at time 15.
Urban truck taking route p2 delivers 20 items to s2 at time 55. Urban truck taking route
p3 delivers 15 items to s1 at time 75. City freighters taking routes r1 and r5 start from
satellite s1 at time moments 27 and 105 with loads of 10 and 13 items respectively. City
freighters taking routes r2, r3, and r4 start from s2 at time moments 40, 63, and 85 with
loads of 12, 7, 13 items respectively.

We now consider the TLPC characterized by time vector · = (70, 50, 0). This TLPC
involves routes p1, r1, and r2 arriving and leaving satellites in the gray area in Figure 3.2.
Since p1 delivers 20 items and r1, and r2 cover 22 items of demand, the solution violates
this TLPC.

s3

s2

s1

time

r1

10

r5

13
r2

12

r3

7

r4

13

p1 p2 p3

20 20 15

|
0

|
5

|
15

|
27

|
40

|
50

|
55

|
63

|
70

|
75

|
85

|
105

Figure 3.2: Example of a solution and a violated TLPC characterized by vector · =
(70, 50, 0)

We now prove that (F2) is a projection of (F1). The proof is illustrated in Figure 3.3.

Proposition 5. A solution (⁄̄, µ̄) is feasible to the LP relaxation (LF2) of formulation
(F2) if and only if there exists a feasible solution (⁄̄, µ̄, w̄) to the LP relaxation (LF1) of
formulation (F1).



3.2 Problem definition and formulation 63

Proof. Proof. To prove su�ciency (“if” part), we need to show that constraints (3.10)
are valid for (LF1). Let fix a feasible solution (⁄̄, µ̄, w̄) to (LF1). For an arbitrary time
vector · œ T , we have

ÿ

rœR(·)

d̃rµ̄r =
ÿ

sœS

ÿ

rœRs,·s

d̃rµ̄r

(3.3)

Æ
ÿ

sœS

ÿ

pœPs,·s

w̄ps Æ
ÿ

pœP (·)

ÿ

sœSp

w̄ps

(3.4)

Æ
ÿ

pœP (·)

Q1⁄̄p

Thus, (⁄̄, µ̄) is feasible to (LF2).

We now prove necessity, i.e. “only if” part. Consider a feasible solution (⁄̄, µ̄) to
(LF2). We denote as P̄ and R̄ the sets of first-level and second-level routes participating
in the solution: P̄ = {p œ P : ⁄̄p > 0} and R̄ = {r œ R : µ̄r > 0}.

We build the directed graph Ḡ = (V̄ , Ā). The set of nodes is V̄ = {s̄, t̄} fi P̄ fi R̄,
where s̄ is the source, and t̄ is the sink. Set Ā of arcs consists of three subsets. Subset
Ā1 contains, for each p œ P̄ , arc (s̄, p) with capacity Q1⁄̄p. Subset Ā2 contains arc
(p, r) œ P̄ ◊ R̄ if and only if first level route p leaves satellite s = vr

0
before or at the same

time as second-level route r. Every arc in Ā2 has infinite capacity. Subset Ā3 contains,
for each r œ R̄, arc (r, t̄) with capacity d̃rµ̄r.

Let us now prove by contradiction that the maximum flow value from s̄ to t̄ in
Ḡ is equal to q

cœC dc = d(C). Assume that the maximum flow value is strictly less
than d(C). Let V̄ Õ be the subset of V̄ obtained from a minimum s̄-t̄ cut in Ḡ, where
s̄ œ V̄ Õ. Let P̄ Õ = P̄ \ V̄ Õ and R̄Õ = R̄ \ V̄ Õ. Let ĀÕ be the set of arcs that cross the cut:
ĀÕ = {(i, j) œ Ā : i œ V̄ Õ, j ”œ V̄ Õ}. From the assumption and the max-flow-min-cut
theorem, it follows that the total capacity of arcs in ĀÕ is less than d(C). Thus ĀÕ does
not contain all arcs in Ā3 and ĀÕ contains at least one arc in Ā1. Therefore, the total
capacity of arcs in Ā1 fl ĀÕ is strictly less than the total capacity of arcs in Ā3 \ ĀÕ:

ÿ

pœP̄ Õ

Q1⁄̄p <
ÿ

rœR̄Õ

d̃rµ̄r. (3.13)

Consider now time vector ·̄ such that

·̄s =

Y

_

]

_

[

‘ + max
rœR̄ÕflRs

{t̃r

0
}, R̄Õ fl Rs ”= ÿ,

0, otherwise,
’s œ S. (3.14)

Here ‘ is a very small positive value. No first-level route P̄ \ P̄ Õ can serve second-level
route in R̄Õ, as otherwise the minumum s̄-t̄ cut would have infinite value. Thus, set P (·̄)
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does not contain any route in P̄ \ P̄ Õ, and

ÿ

pœP (·̄)

Q1⁄̄p =
ÿ

pœP̄ Õ

Q1⁄̄p

(3.13)

<
ÿ

rœR̄Õ

d̃rµ̄r Æ
ÿ

rœR(·̄)

d̃rµ̄r.

Thus, solution (⁄̄, µ̄) violates the precedence constraint (3.10) characterized by time
vector ·̄ and that contradicts the fact that this solution is feasible to (LF2). Then, our
assumption about the maximum flow value is wrong, and this value is equal to d(C). We
now set each value w̄ps, p œ P , s œ S, equal to the total flow value along all arcs (p, r)
in Ā2 such that r œ Rs, and to 0 if there are no such arcs. By construction of graph Ḡ,
constraints (3.3) and (3.4) are satisfied by solution (⁄̄, µ̄, w̄), and the latter is feasible to
(LF1).

s̄

p1

p2

p3

r1

r2

r3

r4

r5

t̄

Q1⁄̄p1

d̃r1µ̄r1

P̄ R̄
Ā1 Ā2

Ā3

R̄ÕP̄ Õ

Figure 3.3: Minimum cut in graph Ḡ based on the solution in Example 6.

The linear relaxation (LF2) is solved by the column and cut generation procedure
described in Section 3.3. To improve the lower bound for the 2E-VRPTW obtained by
this procedure, we use four families of valid inequalities, described in the next section.

3.2.3 Valid inequalities

We use the following families of valid inequalities introduced in the two previous chapters
: RCCs (1.25), lm-R1Cs (1.26), VCIs (2.15), and SSIs (2.22).
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3.2.4 Multi-trip variant

In the multi-trip variant, the first level of the distribution system stays the same but
the second level changes because city freighters can perform several trips and can visit
more than one satellite. The second level problem becomes the multi-depot multi-trip
CVRP with time windowsand it is similar to the multi-depot VRP with interdepot routes
considered by (Muter et al., 2014). We consider two graph representations of the second
level. In representation (R1) below, we do not keep track of the satellite from which the
current trip started. In representation (R2), we keep track of the latest visited satellite.
In the former, the second-level graph is smaller, but some valid inequalities described in
Section 3.2.3 cannot be used.

(R1) The second level of the distribution system is represented by directed graph
GÕ

2
= (V Õ

2
, AÕ

2
) where V Õ

2
= {0} fi S fi C, AÕ

2
= A2 fi {0} ◊ S fi C ◊ {0}, and node 0

is the depot of city freighters. A trip in graph GÕ
2

starts in a satellite s œ S, visits
some customers in C, and goes empty to a satellite sÕ œ S (possibly s = sÕ) or to
depot 0. For each arc a œ {0} ◊ S fi C ◊ {0}, its travelling cost fa and travel time
ta are given.

(R2) In this representation, each customer c œ C is represented by |S| nodes, one
per satellite, instead of one. Let Cs be the set of customer nodes for satellite
s œ S, and let Ĉ = t

sœS Cs. The second level is thus represented by directed
graph GÕÕ

2
= (V ÕÕ

2
, AÕÕ

2
), where V ÕÕ

2
= {0} fi S fi Ĉ, AÕÕ

2
= (t

sœS AÕÕ
2s

) fi {0} ◊ S, and
AÕÕ

2s
= {s} ◊ Cs fi {(c, cÕ) œ C2

s
: c ”= cÕ} fi Cs ◊ S fi Cs ◊ {0}. We say that an arc

aÕÕ œ AÕÕ
2

projects to an arc aÕ œ AÕ
2

if their tails and heads correspond to the same
satellite or customer. For an arc aÕ œ AÕ

2
, Let AÕÕ(aÕ), be the set of arcs in AÕÕ

2

projecting to arc aÕ. A trip in graph GÕÕ
2

starts in a satellite s œ S, visits some
customers in Cs, and goes empty to a satellite sÕ œ S (possibly s = sÕ) or to depot
0.

Let RÕ be the set of feasible multi-trip second-level routes. Each route consists of the
first arc going from depot 0 to a satellite s œ S, and one or several consecutive trips such
that the first trip starts at s, each other trip starts at the satellite at which the previous
trip has ended, and the last trip finishes at node 0. Let Ir, r œ RÕ, be the set of trips of a
multi-trip route. As in the single-trip case, there exists an optimal solution in which each
second-level route departs from each node as late as possible. We use the same notation
RÕ for both graph representations (R1) and (R2), as there is a bijection between feasible
routes in graphs GÕ

2
and GÕÕ

2
.
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Let z̃i

c
be equal to 1 if trip i œ Ir, r œ RÕ, serves customer c œ C, and 0 otherwise. We

have z̃r

c
= q

iœIr
z̃i

c
for a route r œ RÕ. Let ỹr

aÕ be equal to 1 if route r œ RÕ uses arc aÕ œ AÕ
2
,

if representation (R1) is used, or uses an arc in AÕÕ(aÕ) if representation (R2) is used. Let
d̃i be the total amount of freight delivered by trip i œ Ir, r œ RÕ: d̃i = q

cœC dcz̃i

c
Æ Q2.

Let t̃i and s̃i be the departure time of trip i œ Ir, and the satellite from which this trip
departs.

We denote Irs(t) as the set of trips of route r œ RÕ starting from satellite s before
time t: Irs(t) = {i œ Ir : s̃i = s, t̃i < t}. Given a time vector · = (·s)sœS and a route
r œ RÕ, let Ir(·) = fisœSIrs(·s). Then, two-level precedence constraints (3.10) can be
rewritten for the multi-depot variant of the problem:

ÿ

pœP (·)

Q1⁄p ≠
ÿ

rœRÕ

ÿ

iœIr(·)

d̃iµr Ø 0, · œ T . (3.15)

As values z̃r

c
, c œ C, and ỹr

a
, a œ A2, are defined for all multi-trip second-level routes,

valid inequalities (1.25) and (1.26) can directly be used in the multi-trip case.
The branch-cut-and-price algorithm presented in the next section has two variants for

the multi-trip case, depending on the graph representation used. If representation (R2) is
used, for a given triple (r, s, a), r œ RÕ, s œ S, a œ A2, we are able to determine value ỹr

sa
,

which is equal to 1 if an arc aÕÕ œ AÕÕ
2s

projecting to a is used by route r. Then, variables
ysa = q

rœRÕ ỹr

sa
µr are available, and we can use valid inequalities (2.22) and (2.15).

3.3 Branch-cut-and-price algorithm

To simplify presentation, we use additional auxiliary variables. Let x̃p

a
be equal to 1 if

route p œ P uses arc a œ A1, and 0 otherwise. Let ỹr

a
be equal to 1 if route r œ R uses

arc a œ A2, and 0 otherwise. Let integer variable ‹S, S ™ S, be equal to the number of
urban trucks visiting at least one satellite in S: ‹S = q

pœP : SpflS ”=ÿ ⁄p.

The LP relaxation (LF2) of formulation (F2) together with valid inequalities (1.25),
(1.26), (2.22), and (2.15) is solved by a column and cut generation approach. The first-
level and second-level route variables are generated by solving the pricing problems which
we describe in Section 3.3.1. We also show how two-level precedence constraints (3.10)
a�ect the structure of the pricing problems. In Section 3.3.2, we introduce a separation
algorithm for TLPC (3.10). We give a brief description of the remaining components of
the branch-cut-and-price algorithm in Section 3.3.3. Finally, in Section 3.3.4, we present
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the post-processing procedure that tries to exactly synchronize urban trucks and city
freighters.

3.3.1 Pricing problems

Consider formulation (LF2) with a restricted number of variables and constraints. We
denote it as (RLF2). Let (fī, ’̄, fl̄, ›̄, ÷̄, ◊̄) be an optimal dual solution of (RLF2), corre-
sponding to constraints (3.9), (3.10), (1.25), (1.26), (2.22), and (2.15) respectively. We
say that a constraint is active if its value is non-zero in the dual solution. Let E be the
set of active TLPC, and · e defines cut e œ E with dual value ’̄e. Let N be the set of
active RCC, and Cn defines cut n œ N with dual value fl̄n. Let M be the set of active
R1C, and –m defines cut m œ M with dual value ›̄m. Let H be the set of active SSI, and
(Sh, Ch, —h) defines cut h œ H with dual value ÷̄h, where —h is the coe�cient of variable
‹S in this SSI.

First level pricing problem

The reduced cost of a first-level route p œ P is equal to

ÿ

aœA1

fax̃p

a
≠

ÿ

eœE: pœP (·e)

Q1’̄e +
ÿ

hœH: SpflSh ”=ÿ
—h÷̄h +

ÿ

sœSp

ÿ

cœC
◊̄sc. (3.16)

We cannot express reduced cost (3.16) as a linear combination of reduced costs on arcs
in A1. Thus, solving the first-level pricing problem as a standard resource constrained
shortest path problem (RCSPP) is not possible. Here, we take advantage of the fact that
the number of depots and satellites in the literature instances is not large. We enumerate
all feasible first-level routes before starting the column and cut generation. However, we
cannot include all corresponding first-level route variables ⁄ to (LF2), as their number
can exceed 100,000. Instead, as proposed by Contardo and Martinelli (2014), we solve
the first-level pricing problem by inspection of enumerated routes. The reduced cost of
every enumerated route is updated based on the current dual solution, and routes with
the smallest reduced costs are selected.

Second-level single-trip pricing problem

This problem can be decomposed in |S| independent subproblems, one per satellite.
Given a satellite s œ S, the reduced cost of a second-level single-trip route r œ Rs is
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calculated as
ÿ

aœA2

faỹr

a
≠

ÿ

cœC

ÿ

aœ”
≠
2 ({c})

fīcỹ
r

a
≠

ÿ

nœN

ÿ

aœ”
≠
2 (Cn)

fl̄nỹr

a
+

ÿ

cœC

ÿ

aœ”
≠
2 ({c})

◊̄scỹ
r

a

≠
ÿ

hœH: s ”œSh

ÿ

aœ”
≠
2 (Ch)

÷̄hỹr

a
+
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(3.17)

Consider first the case without active R1Cs, i.e. M = ÿ. Reduced cost (3.17) cannot
be expressed as a linear combination of reduced costs on arcs in A2 because of the term
coming from active TLPCs. Indeed, for each e œ E, the reduced cost of path r œ Rs is
increased by ’̄ed̃r if r departs from satellite s strictly before time moment · e

s
. Therefore,

we define a graph Gs, which is extended from graph G2, to express the contribution
of TLPC to (3.17) as a linear combination of reduced costs on arcs in Gs. Then, the
second-level pricing subproblem corresponding to satellite s can be formulated as a
standard RCSPP in extended graph Gs.

Let T̄ s = (t̄s

0
, t̄s

1
, . . . , t̄s

n̄(s)
), t̄s

0
= ls + ‡s, be the ordered set of di�erent time moments

· e

s
for all e œ E, augmented by value ls + ‡s if necessary. All values · e

s
which are less than

ls + ‡s are ignored. Set of nodes in Gs is defined as Vs fi VC fi {vsource, vsink}, where node
vs

k
œ Vs, 0 Æ k Æ n̄(s), corresponds to the situation in which city freighter is available

at time t̄s

k
at satellite s, and node vC

cq
œ VC, c œ C, dc Æ q Æ Q2, corresponds to the

situation in which vehicle is coming to customer c with load q. Set of arcs in Gs is defined
as {(vsource, vs

0
)} fi As fi AsæC fi AC fi Asink. Arcs in As = {(vs

k≠1
, vs

k
)}1ÆkÆn̄(s) connect

consecutive nodes in Vs. Arcs in AsæC = {(v, vÕ)}vœVs,vÕœVC connect all satellite nodes
to all customer nodes. Arcs in AC = {(vC

c,q
, vC

cÕ,q≠dc
)}c,cÕœC, c ”=cÕ, dc+dcÕ ÆqÆQ2 interconnect

customer nodes. Finally, arcs in Asink = {(vC
c,dc

, vsink)}cœC connect customer nodes to
the sink. Each arc in AsæC project into the corresponding arc in A2 between satellite
s and a customer. Each arc in AC projects into the corresponding arc in A2 between
two customers. Each arc in Asink projects into the corresponding arc in A2 between a
customer and satellite s.

We now formulate the pricing problem as a RCSPP in graph Gs. Time is the only
resource. The time consumption of arc a in graph Gs is equal to the sum of travel time taÕ

and the service time of the satellite or customer corresponding to the tail of arc aÕ œ A2

to which a projects. If a does not project to an arc in A2, the time consumption is
zero. Bounds on the accumulated time consumption are given on nodes. These bounds
are [0, 0] for vsource, [t̄s

k
, us] for vs

k
œ Vs, [lc, uc] for nodes vC

cq
œ VC, and [ls + ‡s, us] for

vsink. The time resource is disposable, as defined by Pessoa et al. (2020): accumulated
time consumption of a path in Gs at a node v is adjusted to the lower bound on the
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accumulated time consumption at v, if the former is smaller than the latter. Figure 3.4
depicts an example of an extended graph Gs. The reduced cost of each arc a in graph
Gs is equal to the sum of the travelling cost faÕ of arc aÕ œ A2 to which a projects, the
total coe�cient of ỹr

a
in (3.17), and the contribution of TLPCs. The reduced cost of an

arc a is zero if a does not project to an arc in A2. Contribution of active TLPCs to the
reduced cost of each arc (vs

k
, vC

c,q
) œ AsæC, 0 Æ k Æ n̄(s), c œ C, dc Æ q Æ Q2, is equal to

q · q

eœE: ·e
s >t̄k

’̄e. Contribution of active TLPC to arcs which are not in AsæC is zero.

vsource

[t̄s

0
, us] [t̄s

1
, us] [t̄s

2
, us] [t̄s

3
, us]

(Vs, As)
AsæC

(VC, AC)
Asink

vsink

Figure 3.4: Example of extended graph Gs to price second-level single-trip routes

Second-level multi-trip pricing problem

This problem cannot be decomposed in subproblems. It is thus solved in one run. The
reduced cost of a second-level multi-trip route r œ RÕ is calculated as

ÿ
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ÿ
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i +

ÿ

mœM
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c
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c
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(3.18)

If the problem is solved using graph representation (R1), values ỹr

sa
are not available.

Thus, SSIs and VSIs cannot be used and the corresponding terms in (3.18) are skipped.
Similarly to the single-trip case and depending on the representation used, we extend

graph GÕ
2

or graph GÕÕ
2

to G Õ or G ÕÕ respectively. We first describe graph G Õ extended from
representation (R1). Set of nodes in G Õ is defined as t

sœS Vs fi VC fi {vsource, vsink}, where
Vs, s œ S, and VC are defined as in the single-trip case. Set of arcs in G Õ is defined as

€

sœS

1

As fi AsæC fi ACæs
2

fi AC fi Asource fi Asink,

where As, AsæC, s œ S, AC, and Asink are defined as in the single-trip case. Given
satellite s œ S, arcs in ACæs = {(vC

c,dc
, vs

0
)}cœC connect some customer nodes to the initial
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satellite s node, . Arcs in Asource = {(vsource, vs

0
)}sœS connect the source to the initial

satellite nodes. Projection of arcs in AsæC and in AC is the same as in the single-trip
case. Each arc in Asource projects into the corresponding arc in AÕ

2
between the depot

and a satellite. Each arc in Asink projects into the corresponding arc in AÕ
2

between a
customer and the depot. Figure 3.5a depicts the structure of graph G Õ.

The formulation of the RCSPP in graph G Õ is similar as the one in graph Gs. Bounds
on the accumulated time consumption are the same for nodes in t

sœS Vs fi VC. Bounds
for nodes {vsource, vsink} correspond to time window when the depot is open. The resource
consumption of arc a in graph G Õ is equal to the sum of travel time taÕ and the service
time of the satellite or customer corresponding to the tail of arc aÕ œ AÕ

2
to which a

projects. The reduced cost of each arc a in graph G Õ is equal to the sum of the travelling
cost faÕ of arc aÕ œ AÕ

2
to which a projects, the total coe�cient of ỹr

a
in (3.18), and the

contribution of TLPCs. Contribution of active TLPCs to arcs in AsæC is the same as in
the single-trip case. Contribution of active TLPCs to other arcs is zero.

vsource

(Vs1 , As1) (Vs2 , As2)

(VC, AC)

ACæs1 ACæs2

As1æC As2æC

vsink

(a) Structure of graph GÕ

vsource

(Vs1 , As1) (Vs2 , As2)

(Vs1C, As1C)(Vs2C, As2C)

As1æs1C As2æs2C

vsink

(b) Structure of graph GÕÕ

Figure 3.5: Examples of extended graphs to price second-level multi-trip routes

We now describe graph G ÕÕ extended from representation (R2). The set of nodes in
G ÕÕ is the same as in G Õ, except that customer nodes are duplicated for each satellite:
t

sœS

1

Vs fi VsC
2

fi {vsource, vsink}. Each node vsC
cq

œ VsC, s œ S, c œ C, dc Æ q Æ Q2,
corresponds to the situation in which a city freighter is coming to customer c with load
q, and the last visited satellite is s. Set of arcs in G ÕÕ is defined as

€

sœS

Q

a

€

sÕœS
AsCæs

Õ fi As fi AsæsC fi AsC fi Asæsink

R

b fi Asource,
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where As, s œ S, and Asource are defined as for graph G Õ. Given satellites s, sÕ œ S,
arcs in AsCæs

Õ = {(vsC
c,dc

, vs
Õ

0
)}cœC connect some customer nodes associated to satellite

s to the initial satellite sÕ nodes. Arcs in AsæsC = {(v, vÕ)}vœVs,vÕœVsC , s œ S, con-
nect all nodes of satellite s to all customer nodes associated to s. Arcs in AsC =
{(vsC

c,q
, vsC

cÕ,q≠dc
)}c,cÕœC, c ”=cÕ, dc+dcÕ ÆqÆQ2 , s œ S, interconnect customer nodes associated to

the same satellite s. Finally, arcs in Asæsink = {(vsC
c,dc

, vsink)}cœC, s œ S, connect customer
nodes associated to s to the sink. Projection of arcs in graph G ÕÕ to arcs in AÕ

2
is similar

to the projection of arcs in graph G Õ. Figure 3.5b depicts the structure of graph G Õ.
The formulation of the RCSPP in graph G Õ is similar to the one in graph G ÕÕ. Bounds

on the accumulated time consumption are the same for nodes in t

sœS Vs fi {vsource, vsink}.
Bounds for each customer node in VsC, s œ S, are equal to the start and the end of
time window of the corresponding customer. The time consumption of arc a in graph G ÕÕ

is equal to the sum of travel time taÕ and the service time of the satellite or customer
corresponding to the tail of arc aÕ œ AÕ

2
to which a projects. The reduced cost of each

arc a in graph G ÕÕ is equal to the sum of the travelling cost faÕ of arc aÕ œ AÕ
2

to which a

projects plus the total coe�cient of ỹr

aÕ in (3.18), the contribution of TLPC , and the
contribution of SSI and VSI. Contribution of active TLPC to arcs in AsæsC, s œ S, is
the same as in the single-trip case. Contribution of active TLPC to other arcs is zero.
Contribution of active SSI and VSI to arc a œ AsC, s œ S, is equal to the total coe�cient
of ỹr

aÕs, where aÕ the arc in AÕ
2

to which a projects.

3.3.2 TLPC separation algorithm

Given a solution to formulation (RLF2), the TLPC separation algorithm searches for
violated TLPCs. These constraints are essential to the formulation. Thus, the separation
algorithm should find a violated constraint when it exists. Our algorithm first finds
the most violated constraint, and then it tries heuristically to obtain other violated
constraints. We now present the algorithm for the single-trip case. Extension to the
multi-trip case is obvious after replacing second-level routes with second-level trips.

Our separation algorithm is based on the proof of Proposition 5. Given fractional
or integer solution (⁄̄, µ̄), we construct graph Ḡ, as described in the proof. We then
find a minimum cut in this graph. If the value of this cut is equal to d(C), then no
TLPC violated by (⁄̄, µ̄) exists, and the algorithm stops. If the value of the cut is strictly
smaller than d(C), we obtain set P̄ Õ of first-level routes and set R̄Õ of second-level routes
as defined in the proof. Vector ·̄ characterising the most violated constraint is then
calculated according to formula (3.14).
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If a violated TLPC is found, we try to obtain other violated constraints. For this,
we define the directed graph G̨ = (V̨ , Ą) that represents precedence relations between
first-level routes. Remember that P̄ = {p œ P : ⁄̄p > 0} and R̄ = {r œ R : µ̄r > 0}
are the sets of first-level and second-level routes participating in the solution. Let also
T̨ s = (̨ts

1
, t̨s

2
, . . . , t̨s

n̨(s)
) be the ordered set of di�erent time moments at which first-level

routes in P̄ depart from satellite s œ S. We have V̨ = V̨ P fi
1

fisœS V̨ s

2

, where node
v̨P

p
œ V̨ P , p œ P̄ , corresponds to a first-level route participating in the solution, and node

v̨s

k
, 1 Æ k Æ n̨(s), corresponds to a visit of a first-level route in the solution to satellite s.

Set of arcs Ą is defined as
1

fi
pœP̄

Ąp

2

fi
1

fisœSĄs

2

. Subset Ąp of arcs connects node v̨P

p

with the corresponding visits or route p to satellites: Ąp =
Ó

(v̨P

p
, v̨s

k(p,s)
), (v̨s

k(p,s)
, v̨P

p
)
Ô

sœSp
,

where k(p, s) is the index in T̨ s of the time moment when route p departs from satellite s.
Subset Ąs of arcs connects consecutive nodes corresponding to visits of routes to satellite
s in the reverse chronological order: Ąs = {v̨s

k+1
, v̨s

k
}1Æk<n̨(s). As an example, graph G̨

corresponding to Example 6 is depicted in Figure 3.6.
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Figure 3.6: Graph G̨ corresponding to Example 6

Using graph G̨, for each first-level route p œ P̄ Õ, we find set P̨ p of first-level routes in P̄

which “precede” p. Set P̨ p corresponds to all nodes in v̨P

p
which are reachable from node

v̨P

p
. In the example in Figure 3.6, we have P̨ p1 = {p1}, P̨ p2 = {p1, p2}, P̨ p3 = {p1, p3},

and P̨ p4 = {p1, p2, p4}. For each set P̨ p, p œ P̄ Õ, we then find the vector · p such that
P̄ fl P (· p) = P̨ p and set R̄ fl R(· p) is as large as possible so that the violation of the
corresponding TLPC is maximized. Component · p

s
, s œ S, of such vector · p, p œ P̄ Õ, is

calculated as · p

s
= min

Ó

us, min
pœP̄ \P̄ Õ: sœSp

{t̨s

k(p,s)
}

Ô

. For each p œ P̄ Õ we verify whether
constraint (3.10) characterized by · p is violated. All violated TLPCs are then added to
formulation (RLF2).
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3.3.3 The overall algorithm

The structure of the overall branch-cut-and-price (BCP) algorithm we use is similar to
the one presented in Section 1.3.4 with the parameters presented in Section 2.4. Thus,
we give more details only on branching strategies, which are problem-specific.

Suppose that the solution (⁄̄, µ̄) obtained by column and cut generation at a node of
the branch-and-bound tree is fractional. As described in Section 3.2.3, values x̄, ȳ, and ‹̄

are computed based on ⁄̄ and µ̄. We branch on (i) the number of urban trucks q

pœP ⁄̄p;
(ii) the number of city freighters q

rœR µ̄r or q

rœRÕ µ̄r; (iii) the number of urban trucks
visiting a subset of satellites ‹S, S ™ S; (iv) the use of first-level arcs x̄a, a œ A1, by
urban trucks; and (v) the use of second-level arcs ȳa, a œ A2 or a œ AÕ

2
, by city freighters.

In the single-trip case, we also branch on the number of city freighters starting from a
satellite q

rœR: s̃r=s µ̄r, s œ S. The multi-phase strong branching procedure, described
in Sadykov et al. (2020), selects the branching candidate.

3.3.4 Post-processing

The post-processing phase seeks to synchronize the arrival of urban trucks and city
freighters at satellites, if possible. In other words, given an optimal solution (⁄ú, µú) to
(F2), it modifies the arrival and departure times of routes such that the storage usage
while transferring the freight from urban trucks to city freighters is minimized. For the
sake of brevity, we focus on the multi-trip variant. Adjustments for the single-trip variant
are straightforward.

Let P ú = {p œ P : ⁄ú
p

Ø 1} and Rú = {r œ RÕ : µú
r

= 1}. Let also P ú
i

be the set of
routes in P ú which can serve trip i œ Ir, r œ Rú: P ú

i
= {p œ P ú : ÷k, 1 Æ k < n(p), vp

k
=

s̃i, t̃p

k
Æ t̃i}. We denote as k1(p, i) the index number of visit to satellite s̃i, i œ Ir, r œ Rú,

in route p œ P ú
i
. We also denote as k2(r, i) the index number of visit to satellite s̃i, i œ Ir,

in route r œ Rú when starting trip i.
Let binary variable ‰pji, i œ Ir, r œ Rú, p œ P ú

i
, 1 Æ j Æ ⁄ú

p
, be equal to one if trip i

is served by the j-th vehicle following first-level route p. Let variable “pji, i œ Ir, r œ Rú,
p œ P ú

i
, 1 Æ j Æ ⁄ú

p
, be equal to the fraction of the load of trip i served by the j-th

vehicle following first-level route p. Let variable �pji, i œ Ir, r œ Rú, p œ P ú
i
, 1 Æ j Æ ⁄ú

p
,

be equal to the time elapsed between the departure of the j-th vehicle on route p and
the departure of trip i in satellite s̃i, if trip i is served by this vehicle. If route r leaves
satellite s̃i before departure of the j-th vehicle on route p or trip i is not served by this
vehicle, then �pji = 0. Let variables „1≠

pjk
and „1+

pjk
be equal to the arrival and departure

times of the j-th first-level vehicle on route p œ P ú at node vp

k
œ {0} fi S, 0 Æ k Æ n(p).
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Let variable „2+

rk
be the departure time of second-level route r œ Rú at node vr

k
œ S fi C,

0 Æ k Æ n(r). The following mixed integer linear program minimizes the total time
during which satellites store freight.

(PP ) © min
ÿ
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ÿ
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ÿ

pœP
ú
i

⁄
ú
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j=1

�pji (3.19)
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p

(3.20)
ÿ

rœRú

ÿ

iœIr: pœP
ú
i

d̃i“pji Æ Q1 p œ P ú, 1 Æ j Æ ⁄ú
p
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p,j,k1(p,i)
+ (us̃i ≠ ls̃i) · (1 ≠ ‰pji) Ø 0 r œ Rú, i œ Ir, p œ P ú
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„2+

r,k2(r,i)
≠ „1≠

p,j,k1(p,i)
≠ ‡s̃i + (us̃i ≠ ls̃i) · (1 ≠ ‰pji) Ø 0 r œ Rú, i œ Ir, p œ P ú

i
, 1 Æ j Æ ⁄ú

p

(3.24)
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+ t(v

p
k≠1,v

p
k) Æ „1≠

p,j,k
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p

(3.25)

„1≠
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+ ‡v
p
k
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p,j,k
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Æ uv
p
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p œ P ú, 0 Æ k Æ n(p), 1 Æ j Æ ⁄ú
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(3.28)

lvr
k

Æ „2+

p,k
≠ ‡v

r
k

Æ uv
r
k

r œ Rú, 0 Æ k Æ n(r)
(3.29)

‰pji œ {0, 1} r œ Rú, i œ Ir, p œ P ú
i
, 1 Æ j Æ ⁄ú

p

(3.30)

0 Æ “pji Æ 1 r œ Rú, i œ Ir, p œ P ú
i
, 1 Æ j Æ ⁄ú

p

(3.31)
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�pji Ø 0 r œ Rú, i œ Ir, p œ P ú
i
, 1 Æ j Æ ⁄ú

p

(3.32)

The objective function (3.19) minimises the total number of time units during which
freight is stored at satellites. Constraints (3.20) link variables ‰ and “. Constraints
(3.21) ensure that the capacity of the first-level vehicles is satisfied. Constraints (3.22)
ensures that each trip of city freighters receives the desired amount of freight. Constraints
(3.23) compute the values of variables �: if a trip i is served by the j-th first-level vehicle
on path p, then �pji is not smaller than the di�erence between departure times of trip i

and the vehicle from satellite s̃i. In these and in the next constraints, expression (us̃i ≠ ls̃i)
acts as a big-M value. Constraints (3.24) ensures that each first-level route p arrives
and completes its service time before all departures of the second-level trip it serves.
Constraints (3.25)–(3.27) guarantee that arrival and departure times of first-level and
second-level vehicles are compatible with the visited order of nodes. Constraints (3.28)
and (3.29) ensure that all time windows are satisfied. If the optimal solution value is
zero, then we can synchronize urban trucks and city freighters, and solution (⁄ú, µú) is
feasible and optimal for the case in which satellites do not have storage. Otherwise, the
value of solution (⁄ú, µú) provides a lower bound for the case without storage.

If storage is not needed, then we can further check if freight consolidation can be
avoided, i.e. if each second-level trip can be served by only one first-level vehicle. To
do it, we should verify if there exists a feasible solution to formulation (3.21)–(3.30), in
which variables � are fixed to 0 in constraints (3.23), and variables “pji are replaced by
variables ‰pji in constraints (3.21)–(3.22).

3.4 Computational results

The implementation of the proposed algorithm was done in C++ language. We used the
following third-party libraries and codes:

• BaPCod C++ library (Vanderbeck et al., 2019) which implements the BCP frame-
work;

• C++ code, developed by Sadykov et al. (2020), which implements the bucket
graph based labeling algorithm, bucket arc elimination procedure, elementary route
enumeration, and the separation algorithm for R1Cs;

• CVRPSEP C++ library (Lysgaard, 2018) which implements heuristic separation
of RCCs;
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• IBM CPLEX Optimizer version 12.10 as the LP solver in column generation, as
the solver for the enumerated MIPs, and as the solver for the MIP post-processing.

Experiments were run on a 2 Dodeca-core Haswell Intel Xeon E5-2680 v3 servers at
2.5 GHz. Every server has 128 Go of RAM. Each instance is solved on a single thread.

3.4.1 Literature Instances

In this chapter, we experiment our algorithm on single-trip instances proposed by Dellaert
et al. (2019) and multi-trip instances proposed by Grangier et al. (2016). Three main
characteristics allow us to estimate the di�culty of an instance: the size (number of
customers, satellites, and depots), the capacity of city freighters, and the size of time
windows relative to the time horizon. Indeed, a large second-level vehicle capacity results
in large extended graphs Gs, G Õ, and G ÕÕ, used in the pricing problems. Also, wide time
windows lead to a larger number of labels in the labelling algorithm.

Instances by Dellaert et al. (2019) are divided into four classes Ca, Cb, Cc, and Cd.
They have narrow time windows: the widest time window is from 7% to 20% of the
time horizon, depending on the instance class. Instances in classes Ca, Cb, and Cd have
customers with demands 10 or 20 with city freighter capacity equal to 50. Thus, capacity
can be divided by 10. Instances in class Cc has customers with integer demands from
5 to 25, and city freighter capacity equal to 50. We put all instances by Dellaert et al.
(2019) in set D.

Instances by Grangier et al. (2016) were adapted from famous Solomon instances for
the VRPTW. We split these instances into three sets depending on their di�culty. Set G
contains 9 di�cult instances in class c1, c102, . . ., c109, which have small city freighter
capacity (the original capacity can also be divided by 10) and tight time windows. Set H
contains very di�cult instances in classes c2, r1, and rc1, which have either wide time
windows or large city freighter capacity. Set I contains “intractable” instances in classes
r2 and rc2 with wide time windows and large city freighter capacity.

Table 3.1: Sets of instances from the literature used for experiments

Set # |D| |S| |C| Di�culty Authors
D 237 2,3,6 3,4,5 15,30,50,100 easy-di�cult Dellaert et al. (2019)
G 9 1 8 100 di�cult Grangier et al. (2016)
H 28 1 8 100 very di�cult Grangier et al. (2016)
I 19 1 8 100 intractable Grangier et al. (2016)

Table 3.1 gives an overview of these instances. It contains, for each set, the number
of instances, the number of distribution centers, the number of satellites, the number of
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customers, di�culty estimation, and the authors. The number of feasible first-level routes
starting from a distribution center is bounded from above by q|S|

k=1

1

|S|
k

2

k!, where |S| is
the number of satellites. Thus instances in set D have at most 1950 feasible first-level
routes. Instances in other sets G, H, and I may have up to 109, 600 feasible first-level
routes. It is important to notice that in all literature instances, the capacity of an urban
truck is a multiple of the capacity of a city freighter.

3.4.2 Results for literature instances

We first experiment our algorithm on literature instances. We use two variants of our
BCP algorithm :

• BCPbase — the variant without separation of valid inequalities SSI and VCI (thus,
smaller graph G Õ is used when solving pricing problems for multi-trip instances)

• BCPcomplete — the variant with separation of all families of valid inequalities

Results for single-trip instances

We run our BCP algorithm on instances of set D with the time limit of 10 hours. On
each server, we optimize in parallel 12 instances that share 128 Go of RAM. Table 3.2
compares two variants of our algorithm with the one proposed by Dellaert et al. (2019).
For a fair comparison, the solution time of the latter is multiplied by 1.2 because of the
di�erence in speed between the computers used. In the table, we give average values for
instances with the same number of distribution centers, satellites, and customers: the
average root gap (RG), the geometric mean of the number of branch-and-bound nodes
(Nds), the geometric mean of total solution time in seconds (ST), and the number of
instances solved to optimality within 3 hours. For unsolved instances, the solution time
is set to 3 hours.

We first discuss the comparison between two variants of our BCP algorithm. It is
clear that the separation of SSIs and VCIs makes the algorithm more e�cient. Indeed,
these cuts improve dramatically the root gap and significantly decrease the number of
nodes in the branch-and-bound tree. Four more instances could be solved to optimality
in 3 hours, and the average solution time is several times smaller. The complete variant
of our BCP algorithm solves all but four instances within three hours. Two additional
instances are solved in 10 hours, and two instances remain open.

Both variants of our BCP algorithm outperform significantly the algorithm by Dellaert
et al. (2019). Even though we solve a relaxation of the problem solved by Dellaert
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Table 3.2: Comparison with the algorithm by Dellaert et al. (2019)

Instance BCPbase BCPcomplete Literature
|D| |S| |C| RG(%) Nds ST(s) Solved RG(%) Nds ST(s) Solved ST(s) Solved
2 3 15 0.49 1.1 1 20/20 0.00 1.0 1 20/20 0 20/20
2 3 30 2.31 3.9 6 20/20 0.12 1.7 3 20/20 14 20/20
2 3 50 0.87 4.1 17 20/20 0.27 2.5 14 20/20 715 14/20
2 3 100 0.46 51.0 532 16/20 0.33 13.1 195 18/20 7780 6/20
3 5 15 3.10 1.7 6 20/20 0.05 1.1 4 20/20 2 20/20
3 5 30 3.93 6.5 35 20/20 0.23 1.7 13 20/20 50 20/20
3 5 50 2.34 22.8 232 20/20 0.37 2.8 51 20/20 862 19/20
3 5 100 0.66 42.4 986 17/20 0.34 12.2 449 19/20 10152 3/20
6 4 15 1.19 1.1 3 17/17 0.00 1.0 3 17/17 0 17/17
6 4 30 3.15 4.4 21 20/20 0.17 1.6 9 20/20 17 20/20
6 4 50 0.89 5.3 49 20/20 0.30 2.9 33 20/20 586 18/20
6 4 100 0.39 12.4 283 19/20 0.27 7.2 215 19/20 10715 2/20

et al. (2019), our post-processing procedure shows that all our optimal solutions can be
transformed to satisfy the exact synchronization and avoid freight consolidation without
increasing the transportation cost. Thus, all our optimal solutions are also optimal for the
variant of the problem considered by Dellaert et al. (2019). We solve 54 open instances
to optimality for the first time. The best solutions we found for two instances not solved
to optimality require freight consolidation. Thus, these solutions are not feasible for the
variant considered by Dellaert et al. (2019).

Multi-trip variant

We run our BCP algorithm on multi-trip instances with the time limit of 10 hours. On
each server, we optimize 2 instances of set G that share 128 Go using BCPcomplete, and
only one instance of set H using BCPbase. Variant BCPcomplete is not suitable for instances
in set H, because graph G ÕÕ in the pricing problem becomes very large, and the pricing
problem becomes intractable. The same happens for instances in set I: even graph G Õ

used in variant BCPbase becomes too large. We fix the sizes of the fleets of urban trucks
and city freighters to sizes in the best solutions found by Grangier et al. (2016).

Table 3.3 gives an overview of our results. For each set, it contains the number of
instances solved to optimality, the number of instances for which the algorithm finds
a feasible solution without proving optimality, the number of instances for which the
algorithm does not find any solution, and the number of instances on which the algorithm
fails, i.e. the column generation does not finish when solving formulation (LF2) and a
lower bound cannot be obtained.
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Table 3.3: Overview of results for 2E-VRPTW multi-trip instances

Set Algorithm Optimal Feasible No solution Failure Total
G BCPcomplete 5 2 2 0 9
H BCPbase 3 5 17 3 28
I BCPbase 0 0 0 19 19

Since our algorithm finds optimal solutions to half of the instances of set G, it can
handle multi-trip instances with small city freighter capacity and tight time windows.
Other instances are much more di�cult for our algorithm. Indeed, BCPbase finds only 3
optimal solutions for instances in set H and fails to optimize the root node for 3 of them.
For the instances in set I, the model does not fit in the server memory.

Table 3.4: Overview of experiments on multi-trip instances

Instance Set � Consolidation BCP val Grangier et al. (2016) Gap(%)
c101 G 1478 false 1969.3 2022.4 2.70
c105 G 662 false 1873.3 1934.0 3.24
c106 G 997 false 1903.0 1945.0 2.21
c107 G 557 false 1846.4 1888.9 2.30
c108 G 756 false 1825.9 1875.3 2.71
c201 H 5763 false 1277.5 1389.3 8.75
r101 H 0 false 2298.7 2333.5 1.51
r102 H 0 false 2109.3 2136.8 1.30

Table 3.4 lists the multi-trip instances solved to optimality by our BCP algorithm. In
this table, we give the name of the instance, the set to which belongs the instance, the
objective value of the post-processing MIP, the necessity of consolidation, the optimal
value found by our algorithm, the best solution value found by Grangier et al. (2016),
and the relative gap between these two values. Only for instances r101 and r102, the
optimal solutions do not require any storage. Thus, these solutions are also optimal for
the variant, considered by Grangier et al. (2016).

Table 3.4 shows that the heuristic from Grangier et al. (2016) seems to be of a good
quality. Indeed, the total distance travelled in the optimal solutions after the relaxation
of exact synchronization is generally 2–3% lower than the one in the heuristic solutions.
However, further progress in the exact solution of the 2E-VRPTW is needed to be able
to estimate the quality of this heuristic on a larger set of instances. We also note that for
instance c201, the gap between solutions with and without synchronisation is su�ciently
large to consider the possibility to have storage at satellites, i.e. to replace satellites with
UCCs in practice.
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3.4.3 Results for new single-trip instances

As almost all single-trip literature instances were solved to optimality, here we generate
more di�cult instances. These instances are based on the multi-trip instances in sets
G and H. The fleet size is unlimited, but the cost of using an urban truck is set to 50
and the cost of using a city freighter is set to 25, as in the instances in set D. The city
freighters start and finish from a satellite, as in set D instances.

We run our algorithm with a time limit of 10 hours. On one server, two instances in
set G on one instance in set H are optimized in parallel.

Table 3.5: Overview of experiments on new 2E-VRPTW single-trip instances

Set G Set H
Multi-trip Single-trip Multi-trip Single-trip

Status BCPcomplete BCPcomplete BCPbase BCPbase BCPcomplete

Optimal 5 9 3 10 15
Feasible 2 0 5 17 10
No solution 2 0 17 1 3
Failure 0 0 3 0 0

In Table 3.5, we report the overview of results for new single-trip instances. For
comparison purposes, results for multi-trip instances are also recalled. This experiment
shows that the multi-trip variant is more di�cult than the single-trip one. Moreover, new
single-trip instances are more di�cult that instances in set D, as our algorithm solved to
optimality only half of the instances in set H.

3.4.4 Results for smaller multi-trip instances

We derive new multi-trip instances from ones in sets G, H, and I, originally based on
Solomon instances for the VRPTW. Positions of the distribution center and the satellites
follow the procedure described by Grangier et al. (2016) that we recall now. They
introduce an X/Y/M/N notation, where X and Y give the position of the distribution
center expressed as a percentage of the size map, M and N are the number of rows and
columns of a grid cutting the map in rectangles of equal sizes. Satellites are positioned
at each intersection in the grid. In our new instances, we keep the distribution center in
the same location but we change the number of customers and the number of satellites.
We have :

• 25 customers with a 50/150/2/2 configuration (4 satellites)

• 50 customers with a 50/150/2/2 configuration (4 satellites)
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• 75 customers with a 50/150/2/3 configuration (6 satellites)

The size of the vehicle fleet is unlimited. We set the cost of using an urban truck to 50
and the cost of using a city freighter to 25.

We run the variant BCPcomplete of our algorithm with the time limit of 10 hours. On
each server, we simultaneously optimize at most 24 instances with 25 customers on a
server, 12 instances with 50 customers, and 4 instances with 75 customers.
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Figure 3.7: Overview of the results for multi-trip instances with 25, 50, and 75 customers

Figure 3.7 presents an overview of the results. The columns give the results for
di�erent instance classes denoted by the instance set and the number of customers. Our
algorithm can solve the absolute majority of multi-trip instances with up to 50 customers.
Beyond that size, the e�ciency of the algorithm degrades significantly. Unsurprisingly,
instances in set I become quickly intractable, even lower bounds for some instances in
this set with 50 customers cannot be found.

3.4.5 Results for instances with modified vehicle capacity

In all instances considered above, the capacity of an urban truck is a multiple of the city
freighter capacity. In this special case, freight consolidation at satellites is not likely to
happen. Our experiments confirm this, as only for two instances freight consolidation is
required in the best-found solutions.

In this experiment, we verify whether the change of vehicle capacity increases freight
consolidation. We consider modified instances based on ones in sets D, G-75, and H-75.
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For instances in set D, the capacity of urban trucks is reduced from 200 to 180, and the
capacity of city freighters remains 50. Thus an urban truck has 3.6 times more capacity
than a city freighter. For instances in sets G and H, we change the ratios for urban truck
capacity / city freighter capacity, defined by Grangier et al. (2016). The ratio become
3.75/0.5 for instances in classes r1, c1, and rc1 (i.e. an urban truck has 7.5 times more
capacity than a city freighter). The ratio becomes 2/0.35 for instances in classes r2, c2,
and rc2 (i.e. an urban truck has 5.7 times more capacity than a city freighter). These
new instances are run in the same way as the original instances. We report an overview
of results in Tables 3.6 and 3.7.

Table 3.6: Overview of results for 2E-VRPTW instances with original vehicle capacity

Variant Synchronization No consolidation Total Optimal
Single-trip 235 235 235
Multi-Trip 2 18 20

Table 3.7: Overview of results for 2E-VRPTW instances with modified vehicle capacity

Variant Synchronization No consolidation Total Optimal
Single-trip 217 149 217
Multi-Trip 3 16 20

The first result is that about 10% of single trip instances are not solved to optimality.
Thus, new instances are more di�cult. Moreover, more than 25% of optimal single-trip
solutions involve freight consolidation. This consolidation happens mostly for large
instances with 100 customers. For multi-trip instances, it is di�cult to draw any
conclusions. Consolidation is required for 4 optimal solutions instead of 2, but this
consolidation increase is small.



Chapter 4

Location-Routing and Related

Problems

Location-routing problems (LRPs) arise when combining two classic combinatorial
optimization problems: facility location and vehicle routing. In fact, the integration of
both levels of decisions, depot location and vehicle routing, makes the LRP an interesting
model for several practical applications, from the design of telecommunications networks
to the operation of very competitive supply chains. Making decisions on the location of
depots and the routing of vehicles independently usually leads to strongly suboptimal
planning results, as observed by Salhi and Rand (1989). As a result, LRPs have been
extensively studied in the literature as the latest survey paper Schneider and Drexl
(2017) describes. The importance of LRPs is currently rising due to the surge of home
delivery services and e-commerce. In those contexts, solving LRPs help in determining
the location of urban depots from which customers would be served on vehicle routes.

This chapter mainly focuses on the Capacitated Location-Routing Problem (LRP for
short). It consists of determining the depots opened together with the optimal routes
starting and finishing at an opened depot, and visiting customers such that vehicle
capacities are not exceeded, customer demands are satisfied, and the number of goods
leaving a depot does not exceed the capacity of the depot.

The LRP is important not only from the practical point of view but also from the the-
oretical one. The LRP has the following nested knapsack structure. The set of customers
are first assigned to feasible vehicle routes that have knapsack-type vehicle capacity
constraints. Then the routes themselves are assigned to depots subject to knapsack-type
depot capacity constraints. Such a nested knapsack structure is encountered in several
problems in addition to the LRP and its variants. We mention some of these problems
in the literature review in Section 4.1.
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In this chapter, we propose a branch-cut-and-price algorithm for the LRP and some
related problems with the nested knapsack structure. The algorithm is based on an
integer programming formulation of the problem, in which each binary variable represents
a feasible route having the lower-level knapsack structure. The formulation has set-
partitioning and higher-level knapsack constraints. We show how to adapt some valid
inequalities encountered in the literature. We also present two new families of valid
inequalities. One of these families contains Route Load Knapsack Cuts (RLKCs) which
can be used to solve many problems with the nested knapsack structure using a branch-
cut-and-price algorithm. Our algorithm solves to optimality, for the first time, some of
the classic LRP instances which remained open since 1999 and 2006, and also improves
the best-known solutions for many other instances with up to 300 customers and 20
depots. Our experiments show that new families of valid inequalities make the algorithm
more e�cient. We also apply our algorithm to two related routing problems with the
nested knapsack structure. The first problem is the capacitated vehicle routing problem
with multiple capacitated depots (CVRP-CMD), encountered as a subproblem when
solving the two-echelon stochastic multi-period capacitated location-routing problem
by a logic-based Benders decomposition algorithm (Ben Mohamed et al., 2019). The
second problem is the capacitated vehicle routing problem with time windows and shifts
(VRPTW-S) proposed by Dabia et al. (2019). In the latter, the routes are assigned to
shifts. This problem has an additional knapsack-type constraint on the total amount of
freight loaded to vehicles during a shift. We computationally show that the family of
RLKCs contributes to the e�ciency of our algorithm applied to these problems.

We now describe the structure of the chapter. Section 4.1 reviews the literature on
the LRP and related problems with the nested knapsack structure. Section 4.2 gives a
route-based integer programming formulation for the LRP. We present how to adapt the
formulation to the CVRP-CMD and the VRPTW-S. We also introduce new families of
valid inequalities for the LRP and describe how to separate them. Section 4.3 presents
how to solve the pricing problem for column generation. Section 4.4 presents the results
of computational experiments for all three problems.

4.1 Literature review

The idea of combining together both levels of decision, depot location and vehicle routing,
is not new. The first exact method for the LRP is due to Laporte and Nobert (1981) in
which the authors develop a Branch-and-Cut algorithm to solve a special case of LRP
where a single depot must be opened among a list of possible depot locations. Afterward,
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Laporte et al. (1986) investigate the LRP with multi-depots to be opened and subject
to vehicle capacities. The computational results reported show that they were able to
solve instances with 8 depot locations and 20 customers. In a later work, Laporte et al.
(1988) discuss the LRP in a context of asymmetrical costs, where vehicle capacities are
replaced by constraints on the maximum length of the routes. Instances are then solved
by a Branch-and-Cut algorithm.

Belenguer et al. (2011) use a two-index formulation for the LRP. By adapting some of
the valid inequalities from the CVRP literature, together with others conceived specifically
for the LRP formulation, the authors devise a Branch-and-Cut algorithm. Their approach
can solve instances with 5 facilities and 50 customers. Contardo et al. (2013a) extend the
work of Belenguer et al. (2011) and present four di�erent arc-flow formulations for which
they derive several new families of valid inequalities, giving both heuristic and exact
separation procedures. The computation results show that a three-index flow formulation
is stronger than the two-index counterparts, however, this does not always lead to better
algorithmic performance.

The first use of column generation as an approach for tackling the LRP is due to Berger
et al. (2007). Here, the authors develop a Branch-and-Price algorithm to solve instances
with uncapacitated facilities and routes limited by a maximum length. The authors
report computational experiments on self-generated instances with 10 facilities and up to
100 customers. Some of these instances are solved to optimality within a running time
of two hours. Akca et al. (2009) give a set-partitioning formulation for the standard
capacitated version of LRP and solve it using a branch-and-price algorithm. The authors
apply three distinct heuristics to price negative reduced cost columns, calling the exact
labelling algorithm only when the heuristics fail to find such columns. They were able to
solve instances with up to 5 facilities and 40 customers.

Based on the formulation of Akca et al. (2009), Baldacci et al. (2011b) propose an
e�cient lower-bounding procedure based on dynamic programming and dual ascent
methods. Using these lower bounding procedures, the authors propose a decomposition
of the LRP into a collection of CVRP-CMD instances. The solution strategy for the
LRP consists of solving the CVRP-CMD for all the subsets of the facilities, and keeping
the solution with the smallest cost. Baldacci et al. (2011b) show that a lower bounding
procedure can significantly reduce the number of facility subsets, by identifying those
subsets that cannot lead to optimal solutions. Their algorithm clearly outperforms the
solution methods known at that time.

Inspired by Baldacci et al. (2011b), Contardo et al. (2014) develop a solution approach
based on the enumeration of subsets of facilities. Starting with a given upper bound, they
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use a Branch-and-Cut algorithm to solve the formulation proposed by Belenguer et al.
(2011), strengthened by some valid inequalities introduced in Contardo et al. (2013a),
while requiring integrality only on the facility opening variables. Then, for each subset of
facilities that may lead to an optimal solution, the linear relaxation of the corresponding
CVRP-CMD instance is solved by cut-and-column generation giving a valid lower bound
on the LRP subject to opening these facilities. Finally, they enumerate all columns
whose reduced costs are not greater that the gap between the upper and lower bounds
for the current subset of facilities. Once all the columns are enumerated, they solve the
standard set-partitioning formulation to determine the optimal integer solution, which
is done using a standard MILP solver. When compared to the work of Baldacci et al.
(2011b), this new approach is able to provide tighter lower bounds and it also solves to
optimality two of the remaining open instances.

As observed by Schneider and Drexl (2017), both the algorithms proposed by Baldacci
et al. (2011b) and Contardo et al. (2014) are very sophisticated and rely on a number of
complex algorithmic and implementation refinements. Another point worth mentioning is
that these methods exploit the fact that most of the instances then found in the literature
have a rather small number of potential facilities. Hence the enumeration of all subsets
is somewhat manageable by their approach. However, it is unlikely that these methods
could be able to deal with larger instances, such as the new benchmarks introduced by
Schneider and Lö�er (2019), containing up to 600 customers and 30 depot locations.

The LRP is also a fruitful topic for the development of both heuristics and matheuris-
tics. A majority of these methods works in a two-stage hierarchical fashion: in the first
stage, the heuristics deal with the open-facility decisions. Once these decisions are made,
the algorithms try to optimize the vehicle routing decisions. The detailed study of these
approaches is beyond the scope of present work. Only to mention few, we highlight the
works of Prins et al. (2006) where they introduce a GRASP with path relinking; Prins
et al. (2007) which present a two-stage heuristic combining Lagrangian Relaxation and
Granular Tabu Search (GTS); and Schneider and Lö�er (2019) that propose a Tree
Based Search Algorithm (TBSA) that explores the space of depot configurations in a
tree-like fashion, and then, use a GTS to solve the multi-depot vehicle routing problem.
We refer the reader to the survey of Schneider and Drexl (2017) for a complete overview
of the techniques already employed in the context of LRP.

We now review the literature on some related problems with the nested knapsack
structure. First of all, the CVRP-CDM subproblem of the LRP still has this structure. As
mentioned above, this subproblem is considered by Baldacci et al. (2011b) and Contardo
et al. (2014) when solving the LRP. To solve the CVRP-CDM, they adapt exact approaches
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for standard multi-depot vehicle routing problem with uncapacitated depots by Baldacci
and Mingozzi (2009) and Contardo and Martinelli (2014) In addition, Contardo et al.
(2014) use valid inequalities proposed by Belenguer et al. (2011) and Contardo et al.
(2013a). The CVRP-CDM is also encountered as a subproblem by Ben Mohamed et al.
(2019) when solving the two-echelon stochastic multi-period capacitated location-routing
problem using a logic-based Benders decomposition algorithm. To solve the CVRP-
CMD, the authors use the package VRPSolver Pessoa et al. (2020), which extends
the branch-cut-and-price algorithm by Sadykov et al. (2020) for a generic model that
encompasses many VRP variants. Some pre-processing of the bounds on the number of
routes that leave certain depots is performed in Ben Mohamed et al. (2019), but only
valid inequalities known for the CVRP are used.

Dabia et al. (2019) introduced the capacitated vehicle routing problem with time
windows and shifts (VRPTW-S). In this generalization of the standard vehicle routing
problem with time windows, the time horizon is divided into non-overlapping shifts.
Depending on when a route leaves from the depot, this route is assigned to one of the
shifts. The total amount of freight delivered by routes belonging to a shift is limited by
a loading capacity. Thus, the nested knapsack structure appears, as the demand of every
customer contributes to the vehicle capacity and the shift loading capacity constraints.
Dabia et al. (2019) propose a branch-cut-and-price algorithm for the VRPTW-S. Their
main contribution is new cover inequalities for the problem. These inequalities are related
to the RLKCs proposed in this chapter, as they are also derived from the higher-level
knapsack inequalities (for the shift loading capacities), and they involve route variables.
However, none of the families of cover inequalities proposed by Dabia et al. (2019) and
RLKCs is the subset of the other.

Tilk et al. (2020) introduced the last-mile vehicle routing problem with delivery
options (VRPDO), in which some requests can be shipped to alternative locations with
possibly di�erent time windows. Moreover, when delivery options share a common
location, a locker for example, capacities must be respected when assigning shipments.
Thus, we have here the double knapsack structure, as customer deliveries are subject
to both vehicle and delivery location capacities. Knapsack constraints are however not
nested: two customer deliveries by the same vehicle do not necessarily contribute to the
same higher-level knapsack constraints corresponding to the delivery location capacities.
Tilk et al. (2020) propose a branch-cut-and-price algorithm for the VRPDO which is
similar to the one for the standard VRPTW except that they use a di�erent graph to
solve the pricing problem. No specific valid inequalities based on the knapsack structure
of the problem are proposed.
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Albareda-Sambola et al. (2009) introduced the capacity and distance constrained
plant location problem. It is an extension of the discrete capacitated plant location
problem, where the customers assigned to each plant have to be packed in groups that
will be served by one vehicle each. The constraints include two types of capacity. On the
one hand, plants are capacitated and the demands of the customers are indivisible. On
the other hand, the total distance traveled by each vehicle to serve its assigned customers
in round trips plant–customer–plant is also limited. This problem also has the nested
knapsack structure. Here, however, di�erent quantities contribute to the lower-level and
higher-level knapsack constraints: plant–customer–plant distances to the former and
customer demands to the latter. The authors propose integer programming formulations
and a tabu search heuristic. Later, Fazel-Zarandi and Beck (2012) propose a logic-based
Benders decomposition algorithm for this problem.

4.2 Problem definition and formulation

In this chapter and contrary to the two previous chapters, we denote as I the set of
depots and as J the set of customers.

We now formally define the problem. The distribution network is represented by a
weighted undirected graph G = (I fi J, E fi F ). Vertices in I represent depots, J denotes
a set of customers. Edges E = J ◊ J and F = I ◊ J represent cheapest paths, with
costs c : E fi F æ R+, between pairs of vertices. Additionally, we associate capacities
W : I æ N+ with depots, demands d : J æ N+ with customers, and an opening cost
d : I æ R+ with depots. Depots have an unlimited fleet of homogeneous vehicle with
capacity Q œ Z+.

In this context, a route is an elementary cycle in G containing exactly one depot in I

and a subset of customers in J . A feasible solution is a set of routes such that: (i) each
customer belongs to exactly one route; (ii) the sum of the demands of the customers in
a route does not exceed Q; (iii) the sum of the demands of the customers in all routes
associated to depot i œ I does not exceed Wi. The goal is to find a feasible solution that
minimizes the total route cost.

4.2.1 Formulation

Let �i be the set of all routes leaving the depot i œ I and that ship at most Q items.
Given I Õ ™ I, we denote by �(I Õ) = t

iœIÕ �i the set of all routes incident to the depots
in I Õ. The set of all possible routes is denoted by �.
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Furthermore, given route Ê œ �, let b̃Ê

e
œ {0, 1, 2} be the number of times the edge
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j
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load of the route and c̃Ê = q
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e
ce as the cost of the route.

The Capacitated Location-Routing Problem (LRP) consists in finding a subset of
depots I Õ ™ I to open, and a collection of feasible routes �Õ(I Õ) ™ �(I Õ), such that every
customer of J is included in exactly one route Ê œ �Õ(I Õ) and the sum of loads of all
the routes leaving depot i œ I Õ does not exceed its capacity Wi (lower-level knapsack
constraints). The objective is to minimize the sum of opening costs and routing costs.

Let yi be a binary variable equal to 1 if the depot i œ I is opened, 0 otherwise. Let
⁄Ê be a binary variable equal to 1 if a vehicle uses route Ê, 0 otherwise. We formulate
the LRP as:

[F] © min
ÿ

iœI

fiyi +
ÿ

Êœ�

c̃Ê⁄Ê (4.1)

s.t.
ÿ

Êœ�

ãÊ

j
⁄Ê = 1 ’ j œ J (4.2)

ÿ

Êœ�i

d̃Ê⁄Ê Æ Wiyi ’ i œ I (4.3)

⁄Ê œ {0, 1} ’ Ê œ �, (4.4)
yi œ {0, 1} ’ i œ I (4.5)

(4.6)

Expression (4.1) is the objective. Constraints (4.2) ensure that each customer is
visited only once. Constraints (4.3) are the higher-level knapsack constraints and make
sure that the sum of the loads of the routes incident to a depot does not exceed the
capacity of the depot. These constraints also ensure that if the route leaves a depot,
then the depot is open. Finally, constraints (4.4) and (4.5) are domains of variables.

It is very straightforward to formulate the CVRP-CMD and the VRPTW with Shifts
from the formulation (F) of the LRP. For the CVRP-CMD, since all depots are open, we
just fix all variables y to 1. For the VRPTW with Shifts, we create a fictive depot for
each shift. Since a vehicle can start from any shift at no cost, we fix all variables y to 1.
Then, we introduce a time resource in the pricing problem like what we did in Chapter 3
for the 2E-VRPTW. The time window of a depot corresponds to the shift it is associated
to. We also define time windows for customers.
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4.2.2 Robust valid inequalities

Robust valid inequalities do not change the structure of the pricing problem as they can
be expressed using only arc variables. These inequalities change only the reduced costs
of the arcs. Some of these valid families of inequality have already been presented in
previous chapters. These are the RCCs presented in chapter 1 and the VCIs presented
in chapter 2. We also use the non-robust lm-R1Cs presented in 1.

To simplify the presentation, we use additional auxiliary variables. Let xi

e
=

q

Êœ�i
b̃Ê

e
⁄Ê be equal to 1 if the edge e œ E fi F is traversed by a route incident to

depot i œ I. Let zi

j
= 1

2

q

eœ”(j) xi

e
be equal to 1 if customer j œ J is visited by a route

starting at depot i œ I.

First family of valid inequalities is very straightforward. Since any depot chosen to be
opened must be origin of at least one valid route, the following inequalities are valid for
the LRP :

ÿ

eœ”(i)

xi

e
Ø 2yi, ’ i œ I. (4.7)

Since this family contains a little number of inequalities, we do not separate them and
add all of them to the formulation [F].

Let o = min
Ó

|I Õ| : I Õ ™ I,
q

iœIÕ Wi Ø q

jœJ dj

Ô

be a lower bound on the number of
depots opened required to cover the demand of all customers. The following inequality is
also valid for the LRP

ÿ

iœI

yi Æ o. (4.8)

This inequality is added to the formulation [F].

Depot Capacity Cuts (DCC) This family of valid inequalities comes from Belenguer
et al. (2011). If a subset if customers J Õ µ J cannot be served by a subset of depots
I Õ µ I, then at least one vehicle from a depot i œ I \ I Õ should visit J Õ. The following
valid inequalities are thus valid :

ÿ

iœI\IÕ

ÿ

eœ”(J Õ)

xi

e
Ø 2 I Õ µ I, J Õ ™ J such that

ÿ

jœJ Õ
dj >

ÿ

iœIÕ
Wi. (4.9)

Several successive lifting of the latter inequalities were performed by Belenguer et al.
(2011) and Liguori (2019). Here, we use the following depot capacity cuts (DCC) as
presented in Liguori (2019). Given I Õ µ I and J Õ µ J , let r(I Õ, J Õ) =

9

q

jœJÕ dj≠
q

iœIÕ Wi

Q

:
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be a lower bound on the number of vehicles starting from I \ I Õ required to serve the
demand of customers in J Õ. Consider a pair of depots i, iÕ œ I Õ, the following valid
inequalities are valid :

ÿ

iœI\IÕ

ÿ

eœ”(J Õ)

xi

e
⁄Ê Ø 2r(I Õ, J Õ)yi + 2r(I Õ \ {i}, J Õ)yiÕ ≠ 2r(I Õ \ {i, iÕ}, J Õ)(1 ≠ yi ≠ yiÕ)

(4.10)
ÿ

iœI\IÕ

ÿ

eœ”(J Õ)

xi

e
Ø 2r(I Õ, J Õ)yiÕ + 2r(I Õ \ {iÕ}, J Õ)yi ≠ 2r(I Õ \ {i, iÕ}, J Õ)(1 ≠ yi ≠ yiÕ)

(4.11)

In table 4.1, we report the best lower bound depending on the value of variables yi and
yiÕ . We note that both inequalities (4.10) and (4.11) have right-hand sides at most equal
to the value of the lower bounds reported in 4.1. They are thus valid for the LRP.

yi yiÕ lb on nb. of vehicles
0 0 r(I Õ \ {i, iÕ}, J Õ)
0 1 r(I Õ \ {i}, J)
1 0 r(I Õ \ {iÕ}, J)
1 1 r(I Õ, J Õ)

Table 4.1: Lower bound on the number of vehicles depending on the value of variables yi

and yiÕ for i, iÕ œ I Õ

These inequalities are separated using a heuristic that combines GRASP and local
search described in Liguori (2019).

Cover Inequalities (COV) We use cover inequalities to strengthen knapsack inequal-
ities (4.3). Using the auxiliary variables introduced above, we rewrite these constraints
as :

ÿ

jœJ

dcz
i

j
Æ Wi i œ I (4.12)

Given a depot i œ I and a subset J Õ µ J of customers such that q

jœJ Õ dj Ø Wi, the
following cover inequality

ÿ

jœJ Õ
zi

j
Æ |J Õ| ≠ 1 (4.13)

is valid for the LRP.
These inequalities are separated using the classic IP separation procedure as presented,

for instance, in Wolsey (1998). Given a solution (ȳ, z̄) to [F], the separation consists in
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solving the following LP for each depot i such that ȳi > 0.25,

min

Y

]

[

ÿ

jœJ

(1 ≠ z̄i

j
)—j |

ÿ

jœJ

dj—j Ø Wi + 1, — œ {0, 1}|J |

Z

^

\

(4.14)

where variable —j equal 1 if customer j belongs to the cover J Õ, 0 otherwise. If the value
of the optimal solution to the IP is less than 1, then the cover inequality characterized
by J Õ is violated.

Fenchel cuts (FCC) In a feasible solution to the LRP, the total capacity of the depots
open must be larger than the total demand of the customers :

ÿ

iœI

Wiyi Ø
ÿ

jœJ

dj. (4.15)

This covering constraint is strengthen using Fenchel cuts (FCC). These cuts are generated
by a separation problem instead of trying to devise a family of valid inequalities for the
problem. Separation of Fenchel cuts was studied by Boyd (1993), Boyd (1994), and used
for instance by Boccia et al. (2008) to strengthen knapsack constraints. The goal of
such a procedure is to separate valid inequalities that are valid for the convex hull of the
solutions to the set-partitioning inequality considered.

Let H = (hq)qœQ be the set of the extreme points of the convex hull of

PCOV =

Y

]

[

h |
ÿ

iœI

Wihi Ø
ÿ

jœJ

dj , h œ {0, 1}|I|

Z

^

\

(4.16)

that contains all feasible solutions to the covering constraint. Let ȳ be the solution to
the linear relaxation of [F]. Let us now check if we can express ȳ as a linear combination
of solutions in H that satisfies the covering constraint i.e. find non-negative multipliers
(‰q)qœQ such that ȳ = q

qœQ hq‰q and q

qœQ ‰q Ø 1. Therefore, we solve the following LP
:

max

Y

]

[

ÿ

qœQ

‰q |
ÿ

qœQ

hq‰q Æ ȳi, i œ I and ‰q Ø 0, q œ Q

Z

^

\

(4.17)

Let (‰ú, Âú) be the optimal primal and dual solutions to (4.17). Since strong duality
applies, q

qœQ ‰ú
q

= q

iœI ȳiÂú
i

holds. If q

qœQ ‰ú
q

< 1 and so q

iœI ȳiÂú
i

< 1, then we cannot
express ȳ as a linear combination of solutions to H that satisfies the covering constraint.
Then, the inequality q

iœI Âú
i
yi Ø 1 is valid of for PCOV. In our algorithm, we separate
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the inequality by directly solving the dual problem of (4.17) :

min
I

ȳ|Â |
ÿ

iœI

hq

i
Âi Ø 1, q œ Q and Âi Ø 0, i œ I

J

. (4.18)

Note that we can separate FCCs in such a way if we can enumerate extreme points of
(4.16). Here, since |I| Æ 20, this is the case.

4.2.3 Route load knapsack cuts

Consider the so-called master knapsack polytope:

PMKP(W ) = conv

Y

]

[

tq œ ZW

+
:

W
ÿ

q=1

q tq = W

Z

^

\

.

Next theorem characterizes the knapsack (non-trivial) facets of this polytope.

Theorem 1 (Aráoz (1974)). The coe�cient vectors › œ RW

+
of the knapsack facets ›t Æ 1

of PMKP(W ) with ›1 = 0 and ›W = 1 are the extreme points of the system of linear
constraints

›1 = 0, (4.19)
›W = 1, (4.20)

›q + ›W ≠q = 1, ’1 Æ q Æ W/2, (4.21)
›q + ›qÕ Æ ›q+qÕ , ’q + qÕ < W. (4.22)

The feasible solutions › to the system give valid inequalities ›t Æ 1 for PMKP(W ).

Constraints (4.21) and (4.22) are complementarity and superadditivity constraints.
Therefore, every coe�cient vector › is a non-decreasing function because ›q = 0 + ›q =
›1 + ›q Æ ›q+1.

Let now ◊i

q
be an integer variable indicating how many routes with a total load of

exactly q units, where 1 Æ q Æ Wi, leave depot i œ I. Variables ◊ can be expressed in
terms of variables ⁄.

◊i

q
=

ÿ

Êœ�i: d̃Ê=q

⁄Ê, ’ i œ I, 1 Æ q Æ Wi. (4.23)
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Then, the following inequalities are clearly valid for the formulation [F].

Wi
ÿ

q=1

q ◊i

q
Æ Wi yi, i œ I, (4.24)

◊i

q
= 0, i œ I, Q < q Æ Wi. (4.25)

Inequalities (4.24) and (4.25) are redundant for the linear relaxation of the formulation
[F]. However, they define an integer knapsack-like polyhedron for each depot i. Thus,
they can be used as a source of non-redundant cuts, as shown by the next theorem.

Theorem 2. Given a depot i œ I, let › œ RWi
+ be a feasible solution to the system

(4.19)–(4.22). Then the inequality

Wi
ÿ

q=1

›q ◊i

q
Æ yi (4.26)

is valid for the formulation [F].

Proof. If yi = 0, then we have ◊i

q
= 0 for all 1 Æ q Æ Wi due to (4.24). Thus,

inequality (4.26) is satisfied.
Let now yi = 1. Consider an arbitrary vector ◊̄i œ ZWi

+ which satisfies (4.24)–(4.25).
Let qÕ = Wi ≠ qWi

q=1 q ◊̄i

q
. Consider vector Â◊i œ ZWi

+ that is defined by Â◊i

q
= ◊̄i

q
for

all 1 Æ q Æ Wi such that q ”= qÕ, and Â◊i

q
= ◊̄i

q
+ 1 if q = qÕ. We have ◊̄i Æ Â◊i and

Â◊i œ PMKP(Wi). By Theorem 1, ◊̄i satisfies (4.26), and we have

Wi
ÿ

q=1

›q◊̄
i

q
Æ

Wi
ÿ

q=1

›q
Â◊i

q
Æ yi.

Thus, ◊̄i also satisfies (4.26).

Valid inequalities can also be obtained by Chvàtal-Gomory rounding of constraints (4.24).
They can be rewritten in the following form.

ÿ

Êœ�i

d̃Ê⁄Ê Æ Wiyi, i œ I. (4.27)

By applying Chvàtal-Gomory rounding of constraints (4.27) with a multiplier — œ R,
where — Ø 1/Wi, we obtain inequalities

ÿ

Êœ�i)

Â— d̃ÊÊ
Â— WiÊ

⁄Ê Æ yi, i œ I, (4.28)
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which are valid for the formulation [F].
We now define a family of Route Load Knapsack Cuts (RLKC), which forms the union

of inequalities (4.26) and (4.28). Each RLKC is characterized by a depot i œ I and a
non-decreasing and superadditive function g(q) defined for all values 0 < q Æ Q:

ÿ

Êœ�i

g(d̃Ê)⁄Ê Æ yi. (4.29)

For constraints (4.26), function g(q) = ›ÂqÊ for 1 Æ q Æ Q, and g(q) = 0 if 0 < q <

1. This function is non-decreasing and superadditive by definition of vector ›. For
constraints (4.28), function g(q) is defined as Â— qÊ/Â— WiÊ. This function is obviously
non-decreasing. Superadditivity comes from the fact that ÂqÊ + ÂqÕÊ Æ Âq + qÕÊ for all
q, qÕ œ R+. We exploit monotonicity and superadditivity of function g(q) in the pricing
algorithm below. Note, however, that inequalities (4.29) are not necessarily valid for the
formulation [F] for every non-decreasing and superadditive function g(q).

4.2.4 Separation of Route load knapsack cuts

Separation of RLKCs is done separately for each depot i œ I. For clarity, we omit index
i for the remaining of this section: we have � = �i, ◊ = ◊i, W = Wi. Let ⁄̄ be a solution
to the linear relaxation of the formulation [F]. Let �̄ be the set of routes participating in
solution ⁄̄: �̄ = {Ê œ � : ⁄̄Ê > 0}. Let also ◊̄q = q

Êœ�̄: d̃Ê=q
⁄̄Ê.

First, we separate Route Load Knapsack Cuts by Chvàtal-Gomory rounding, i.e.
constraints (4.28). We enumerate all distinct multipliers — such that there exists Ê œ �̄
for which — d̃Ê is integer. For each such multiplier —, we check whether constraint (4.28)
is violated by ⁄̄.

Secondly, we separate Route Load Knapsack Cuts in the form (4.26). It would be
possible to perform an exact separation, by solving the following LP:

z = max
I

W
ÿ

i=1

◊̄q›q subject to (4.19)–(4.22)
J

.

If z > yi, then inequality (4.26) would be violated. However, as there are W variables
and O(W 2) constraints in that LP, that would be too time-consuming for large values
of W . Also, generation of only one violated cut would be undesirable due to possible
convergence issues.

Therefore, we separate only the cuts that correspond to so-called 1/k-facets of the
master knapsack polytope. A knapsack (non-trivial) facet ›t Æ 1 is called an 1/k-facet if
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k is the smallest possible integer such that

›q œ {0/k, 1/k, 2/k, . . . , k/k} fi 1/2, 1 Æ q Æ W. (4.30)

Using both theoretical arguments and computational experiments, it was showed in Chopra
et al. (2015) that the 1/k-facets for small values of k are the most important facets for
obtaining a good approximation to PMKP(W ).

A sequence › = (›q)W

q=1
is called symmetric if the complementarities (4.21) hold. We

call ›t Æ 1 an 1/k-inequality if › is a non-decreasing symmetric sequence that satisfies
(4.19)–(4.20) and (4.30). In general, a 1/k-inequality need not be a valid inequality for
PMKP(W ). A 1/k-inequality is uniquely determined by a non-decreasing sequence (am)
where am represents the first index q with ›q Ø m/k for m œ {1, . . . , k} fi {k/2} (a0 is
not part of the sequence because it would always have value 1). Such a sequence › will
be denoted by ›k≠(am). The next theorem describes the necessary relationships between
the elements of the sequence (am) for defining the coe�cients of a 1/k-inequality ›k≠(am)

that is valid for PMKP(W ).

Theorem 3 (Chopra et al. (2015)). An 1/k-inequality ›k≠(am) satisfies (4.19)–(4.22) if
and only if

2 Æ am Æ amÕ Æ (W + 1)/2, ’m < mÕ Æ k/2, (4.31)
am + ak+1≠ÁmË = W + 1, ’m Æ k/2, (4.32)

am + amÕ Ø aÁm+mÕË ’m Æ mÕ with Ám + mÕË Æ k. (4.33)

In our separation algorithm, we enumerate non-decreasing sequences (am) satisfying
constraints (4.31)–(4.33) that correspond to 1/6-, 1/8-, or 1/10-inequalities. Let � be
the set of all possible loads of routes participating in the fractional solution: � = {q :
1 Æ q Æ W, ◊̄q > 0}.

To separate 1/6-inequalities ›6≠(am), we enumerate triples (a1, a2, a3) such that am œ �
or {W ≠ am} œ � for m = 1, . . . 3, and 2 Æ a1 Æ a2 Æ a3 Æ (W + 1)/2. Values a4, a5,
a6 are then obtained from equalities (4.32). According to constraints (4.33), for each
triple (a1, a2, a3), we verify 2a1 Ø a2, a1 + a2 Ø a3, a1 + 2a3 Ø W + 1 (obtained from
a1 + a3 Ø a4 or from a3 + a3 Ø a6), and 2a2 + a3 Ø W + 1 (obtained from a2 + a3 Ø a5

or from a2 + a2 Ø a4).
To separate 1/8-inequalities ›8≠(am), we enumerate tuples (a1, a2, a3, a4) such that

am œ � or {W ≠am} œ � for m = 1, . . . 4, and 2 Æ a1 Æ a2 Æ a3 Æ a4 Æ (W +1)/2. Values
a5, a6, a7, a8 are then obtained from equalities (4.32). According to constraints (4.33),
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for each tuple (a1, a2, a3, a4) we verify 2a1 Ø a2, a1 + a2 Ø a3, a1 + a3 Ø a4, 2a2 Ø a4,
a1 + 2a4 Ø W + 1, a2 + a3 + a4 Ø W + 1, and 3a3 Ø W + 1.

To separate 1/10-inequalities ›10≠(am), we enumerate tuples (a1, a2, a3, a4, a5) such
that am œ � or {W ≠ am} œ � for m = 1, . . . 5, and 2 Æ a1 Æ a2 Æ a3 Æ a4 Æ a5 Æ
(W + 1)/2. Values a6, a7, a8, a9, a10 are then obtained from equalities (4.32). According
to constraints (4.33), for each tuple (a1, a2, a3, a4, a5) we verify 2a1 Ø a2, a1 + a2 Ø a3,
a1 +a3 Ø a4, a1 +a4 Ø a5, 2a2 Ø a4, a2 +a3 Ø a5, a1 +2a5 Ø W +1, a2 +a4 +a5 Ø W +1,
a3 + 2a4 Ø W + 1, and 2a3 + a5 Ø W + 1.

For each sequence (am) which verifies (4.31)–(4.33), we generate sequence ›k≠(am),
and check if the corresponding inequality (4.26) is violated by ◊̄. If a positive violation is
found, the inequality is added to the restricted master problem. Some additional remarks
on this separation procedure:

• A separated valid 1/k- inequality, defined by ›k≠(am), is not necessarily a facet (it
is if and only if that vector is an extreme point of (4.19)–(4.22)). Yet, repeated
separation rounds until no violation is found leads to exactly the same bounds that
would be obtained by only separating 1/k-facets.

• The enumerative approach used in the procedure is likely to be e�ective even for
large values of W because of the typical sparsity of the fractional solution vector
(if W is large, usually |�| << W ).

• An 1/kÕ-inequality is also an 1/k-inequality if kÕ is a divisor of k. So, 1/2-, 1/3-,
1/4-, and 1/5-inequalities are also being separated by the procedure.

4.3 Pricing routes

Given a dual solution to the linear relaxation of the restricted formulation [F], the pricing
problem searches for variables ⁄Ê with a negative reduced cost. The pricing problem can
be decomposed into |I| similar subproblems, one for each depot i œ I. In this section, we
consider a pricing subproblem for a fixed depot i.

When there is neither active rank-1 cuts (1.26) nor road load knapsack cuts (4.29),
the reduced cost of variable ⁄Ê corresponding to route Ê œ �i can be expressed as the
sum of reduced costs for every edge in the graph. The reduced cost of an edge e œ E fi F

is equal to the di�erence between the edge cost ce and the current dual of the auxiliary
variables xi

e
.

The pricing problem then can be formulated as a resource-constrained elementary
shortest path problem (RCSPP) in the complete directed graph Di = ({i} fi J, A). The
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reduced cost c̄a of every arc a œ A in this graph Di is equal to the reduced cost c̄e of
the corresponding edge e in graph G. We have a single capacity resource. The resource
consumption of arc (j, jÕ) œ A is equal to 1

2
dj + 1

2
djÕ considering that di = 0. Bounds on

the accumulated resource consumption are given on vertices. These bounds are [0, Q]
for every node j œ {i} fi J . The RCSPP seeks to find an elementary cycle of minimum
reduced cost starting and finishing in node i.

The main goal of this section is to describe the modifications of the labelling algorithm
for the case with active road load knapsack cuts (4.29). The coe�cient of variable ⁄Ê

in an active RLKC “ œ � is equal to the value of a non-decreasing and superadditive
function g“(d̃Ê) of the route load d̃Ê. Thus, the total contribution of active RLKC to
the reduced cost of route Ê œ �i (taking into account that dual values for these cuts
are non-positive) is a linear combination of functions g“(d̃Ê) for all “ œ �. Such a linear
combination g(d̃Ê) is also a non-decreasing and superadditive function.

In the following, we describe the modifications to the label extension procedure,
dominance relations, and the definition of completion bounds.

In the labelling algorithm, each label L represents a partial path Ê(L) from the node
i. Let J(L) be the set of customers visited by the partial path, j(L) be the final node of
the partial path, c̄(L) be the sum of reduced costs of arcs in the partial path, and q(L)
be the total capacity resource consumption of the partial path. The algorithm consists
in an enumeration of all feasible partial paths. For that, every label L is extended by
taking each arc aÕ = (j(L), jÕ) outgoing from node j(L). After extension, a new label LÕ

is created, for which, j(LÕ) = jÕ, q(LÕ) = q(L) + 1

2
dj(L) + 1

2
dj(LÕ), and c̄(LÕ) = c̄(L) + c̄aÕ .

To avoid complete enumeration, a dominance rule is used to remove labels which
cannot lead to the minimum reduced cost path when extended. A label L dominates
label LÕ if for any partial path Ê such that union of paths Ê(LÕ) and Ê is feasible, i.e.
(Ê(LÕ), Ê) œ �, we have : (i) union of paths Ê(L) and Ê is also feasible and (ii) reduced
cost of path (Ê(LÕ), Ê) is not smaller than the reduced cost of path (Ê(L), Ê). The next
theorem gives a valid dominance rule.

Theorem 4. Given a non-decreasing function g(d̃Ê) representing the contribution of the
route load knapsack cuts to the reduced cost of a path Ê�, label L dominates label LÕ if
j(L) = j(LÕ), J(L) ™ J(LÕ), q(L) Æ q(LÕ), and c̄(L) Æ c̄(LÕ).

Proof. Consider an arbitrary partial path Ê starting at node j(L) = j(LÕ) and finishing at
node i. If path (Ê(LÕ), Ê) is feasible then path (Ê(L), Ê) is also feasible due to conditions
j(L) = j(LÕ), J(L) ™ J(LÕ), and q(L) Æ q(LÕ). The reduced cost of path (Ê(LÕ), Ê) is
not smaller than one of (Ê(L), Ê), as the total reduced costs of arcs of the former is
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not smaller due to c̄(L) Æ c̄(LÕ), and the contribution of RLKCs to the reduced cost
of (Ê(LÕ), Ê) is not smaller than the one of (Ê(L), Ê) due to q(L) Æ q(LÕ). Thus, L

dominates LÕ.

The forward-backward route symmetry is exploited in the bi-directional labelling
algorithm in the following way. Every label L is extended only if q(L) Æ Q/2. After
the label extension phase, the concatenation phase is performed, in which partial paths
corresponding to two generated labels are concatenated to form a complete path. To
speed up this concatenation phase, completion bounds are used. Given a node j œ J and
a set of labels L such that j(L) = j for all L œ L, completion bound B1(j, L) gives the
minimum reduced cost of labels in L: B1(j, L) = minLœL{c̄(L)}. Due to the fact that
function g(q) is non-decreasing, value

c̄(LÕ) + g(q(LÕ)) + B1(j, L) (4.34)

gives a valid lower bound for the reduced cost of any complete path obtained by con-
catenation of paths Ê(LÕ) and Ê(L) with j(LÕ) = j and L œ L. If value (4.34) is not
smaller than the minimum reduced cost of a complete feasible path found so far, then
concatenation of label LÕ with all labels in L may be skipped.

However, completion bounds B(j, L) may not be tight as the reduced cost of labels
does not include the contribution of RLKCs. We can reinforce completion bounds B1

by defining B2(j, L) = minLœL{c̄(L) + g(q(L))}. The total load of any concatenated
path (w(LÕ), w(L)), where j(LÕ) = j(L), is equal to q(L) + q(LÕ). Thus g(q(L) + q(LÕ)),
i.e. the contribution of RLKCs to the reduced cost of this path, is not smaller than
g(q(L))+g(q(LÕ) due to superadditivity of function g(q). Therefore, value (4.34) in which
B1 is replaced by B2 is still a valid lower bound for the reduced cost of any complete
path obtained by concatenation of paths Ê(LÕ) and Ê(L) with j(LÕ) = j and L œ L.

In the BCP approach, completion bounds are used not only in the concatenation
phase of the labelling algorithm, but also during the bucket arc elimination procedure,
as well as in the elementary route enumeration procedure. After completing the label
extension phase, completion bounds are computed for all nodes j œ J and certain values
qÕ. Given a pair (j, qÕ), set L includes all labels L such that j(L) = j and q(L) Æ qÕ.

4.4 Computational experiments

The implementation of the proposed algorithm is done in Julia 0.6, using JuMP package
Dunning et al. (2017). The separation algorithm for the RLKCs and the modification
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of the labelling algorithm for the case with active RLKCs are implemented in C++
language. We use the following third-party libraries and codes :

• BaPCod C++ library (Vanderbeck et al., 2019) which implements the BCP frame-
work

• C++ code, developed by Sadykov et al. (2020) which implements the bucket graph
based labelling algorithm, bucket arc elimination procedure, elementary route
enumeration, and the separation algorithm for R1Cs

• CVRPSEP C++ library (Lysgaard, 2018) which implements heuristic separation
of RCCs

• IBM CPLEX Optimizer version 12.10 as the LP solver in column generation

Experiments are run on a 2 Dodeca-core Haswell Intex Xeon E5-2680 v3 servers at
2.5 GHz. Every server has 128 Go of RAM. Each instance is solved using a single thread.

4.4.1 Location-routing instances

In this section we test our algorithm on literature instances of the LRP. The first set of
instances, which we denote as PPC06, is introduced by Prins et al. (2006). It contains 30
instances with 20, 50, 100, or 200 customers, and with 5 or 10 possible depot locations.
We do not consider easy instances with 20 customers. Therefore, it remains 26 instances.
The second set of instances, which we denote as TB99, is introduced by Tuzun and Burke
(1999). In this instances, depots are uncapacitated. We consider only nine instances
with 100 or 150 customers and 10 possible depot locations: P111112, P111212, P112112,
P112212, P113112, P113212, P131212, P131112, P131212, and P132112. We chose theses
instances because they are also used in Contardo et al. (2014). The third set of instances
which we denote as SL19 is introduced by Schneider and Lö�er (2019). We consider
instances with 100, 200, or 300 customers; and with 5, 10, 15, or 20 possible depot
locations.

In the first experiment, we computationally evaluate the impact of di�erent families
of cuts on the e�ciency of our algorithm. The evaluation is performed on classic LRP
instances PPW06. We test the following variants of the BCP algorithm :

• BCP0 — the base variant which can be considered as a straightforward application
of the algorithm from Sadykov et al. (2020) for the LRP. Only two families of
generic cuts are separated: rounded capacity cuts (RCC) and limited-memory
rank-1 cuts (lm-R1C).
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• BCPbest — the best variant in which all families of cuts are used. In addition to
RCCs and lm-R1Cs, we separate problem-specific RLKCs, DCCs, FCCs, COVs,
and VCIs.

• BCPbest - CUT — the best variant, but without using one family of cuts CUT, CUT
where CUT can be either RLKC, DCC, FCC, COV, or VCI.

To exclude as much as possible the randomness related to improving primal solutions, all
algorithm variants are given the initial primal bound equal to the value of the best-known
solution (among solutions found by us and solutions known in the literature). The time
limit is set to 12 hours.

Table 4.2 gives an overview of the performance of seven variants of our algorithm.
The columns give the variant, average primal-dual relative gap after solving the root
node, the geometric mean of the time needed for solving the root node (in seconds), the
average number of branch-and-bound nodes, the geometric mean of total solution time
in seconds, and the number of instances solved within the time limit. The total solution
time is equal to the time limit for the unsolved instances.

In Figure 4.1, we also give the performance profile for all the tested variants of the
BCP algorithm. The horizontal axis is logarithmic. Given a line corresponding to a
variant, each point (X, Y ) of the line says that for Y instances the solution time for this
variant is not more than X times larger than the minimum solution time for all variants.
So, the higher is the line corresponding to a variant, the more e�cient is this variant.

Table 4.2: Comparison of variants of the BCP algorithm on LRP instances PPW06

Root
Variant Gap Time (s) Nodes Time (s) Solved
BCP0 4.77% 96.9 18.6 1021.1 22/26
BCPbest - RLKC 0.53% 310.5 4.0 596.5 24/26
BCPbest - DCC 0.90% 181.1 7.9 735.9 22/26
BCPbest - FCC 0.71% 294.7 4.5 660.5 25/26
BCPbest - COV 0.52% 313.0 4.1 596.8 25/26
BCPbest - VCI 3.79% 227.3 8.3 888.7 25/26
BCPbest 0.52% 295.0 3.9 556.6 25/26

We see from the results that adding all problem-specific cuts makes the BCP algorithm
significantly more e�cient than the base variant. Among individual families of cuts,
DCCs have the most impact on the number of instances solved to optimality. VCIs have
the most impact on the average root gap and the mean total solution time. The impact
of the family FCC is smaller. The families COV and RLKC have a very small impact
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Figure 4.1: Performance profiles of BCP variants tested against Prodhon instances

both on the root gap and on the total solution time. However, the family of RLKCs
allows us to solve one more instance to optimality.

In the next experiment, we compare our algorithm BCPbest with the algorithm
by Contardo et al. (2014) on instances TB99 and PPW06. For a fair comparison, we set
the initial primal bounds to the same values as employed in Contardo et al. (2014). We
set the time limit to 30 hours. No overall time limit is set for the approach of Contardo
et al. (2014). The solution time for unsolved instances varies from around 6 hours to
around 65 hours. The comparison is presented in Table 4.3. For each algorithm, we give
the geometric mean time in seconds and the number of instances solved to optimality.
The solutions times of Contardo et al. (2014) are normalized according to the di�erence
of the processors used by them and by us.

Table 4.3: Comparison of BCPbest with Contardo et al. (2014) on instances in the sets
TB99 and PPW06

BCPbest Contardo et al. (2014)
Instance set Solved Time (s) Solved Time (s)
PPW06 23/26 1103 16/26 1218
TB99 8/9 1219 6/9 7364

We see in Table 4.3 that our algorithm is significantly more e�cient. It can solve to
optimality 9 instances more than the approach by Contardo et al. (2014). One more
instance ppw200-10-1b can be solved by our algorithm in less than 10 hours using the
best-known solution in the literature as the initial upper bounds. Another instance
ppw200-10-2 is solved to optimality in less than 12 hours using the optimal solution
value as the initial upper bound, as it can be seen from the results, presented in Table 4.2.
The only remaining instance in the set PPW06 is ppw200-10-3b. For two instances in the
set PPW06 we have improved the best-known solutions.
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Finally, we experimentally evaluate the performance of our algorithm on recently
introduced instances SL19. This is the first exact algorithm applied to these instances.
We use here as initial primal bounds the best-known solutions found by Schneider and
Lö�er (2019). The time limit is set to 30 hours. The instances are divided into groups
depending on their size, i.e. number of potential depot locations |I| and the number
of customers |J |. The results for each group of instances are shown in Table 4.4. The
columns give the size of instances, the number of instances solved to optimality, the
number of instances for which we find better feasible solutions than the best-known, and
the average improvement for these instances.

Table 4.4: Performance of BCPbest on instances in the set SL19

Instances
|I| |J | Solved Improved BKS Improvement
5 100 14/14 7/14 0.05%
10 100 13/14 5/14 0.11%
10 200 7/14 8/14 0.09%
15 200 10/20 13/20 0.12%
15 300 2/20 3/20 0.52%
20 300 3/20 3/20 0.48%

We see from Table 4.4 that our algorithm could solve to optimality all but one instance
with 100 customers, about half of instances with 200 customers, and 15% of instances
with 300 customers. Thus, we can say that instances in set SL19 are more di�cult than
other literature instances. We could improve the best known solutions for 39 instances.
The average improvement is very small for instances with up to 200 customers. The
improvement becomes significant for instances with 300 customers. The results show that
the heuristic of Schneider and Lö�er (2019) has excellent quality for instances with up
to 200 customers. This quality decreases for instances with 300 customers. The root gap
(from the best-known solution) of our BCP algorithm for the largest instances sometimes
reaches 6–8%. Whereas for instances solved to optimality a typical root gap is below
0.5% and never exceeds 2%. This shows that some best-known solutions for instances
with 300 customers may be far away from optimum ones.

4.4.2 CVRP-CMD instances

In this section, we test our algorithm against CVRP-CMD instances which arise when
solving the cut generation subproblem of the two-echelon stochastic multi-period ca-
pacitated location-routing problem by a logic-based Benders decomposition approach
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Ben Mohamed et al. (2019). We have selected 199 instances of di�erent di�culty, which
have 50 customers and from three to five depots.

In this experiment, we computationally estimate the impact of valid inequalities on
the e�ciency of the BCP algorithm. In the CVRP-CMD, all depots are considered open.
Therefore, variables y are fixed to one and valid inequalities FCC, COV, and VCI are
not useful. Thus, we test the following BCP variants.

• BCP0 — the base variant which can be considered as a straightforward application
of the algorithm from Sadykov et al. (2020) for the CVRP-CMD. Again, only RCCs
and lm-R1Cs are separated.

• BCP0+RLCK — the base variant with additional separation of RLKCs.

• BCP0+DCC — the base variant with additional separation of DCCs.

• BCPbest — the variant with separation of all valid inequalities (RCC, lm-R1C,
DCC, and RLKC).

In this experiment, to exclude the randomness related to updating upper bounds, we
use only instances that we were able to solve to optimality during preliminary tests. Thus,
only 184 instances from 199 available are used. The initial upper bound is set to the
optimum solution value augmented by a small epsilon. The time limit is set to 3 hours.
Table 4.5 presents the results for each of the four BCP variants tested. The columns
give the average relative root gap from the optimum solution value, the geometric mean
value for the root solution time, the average number of branch-and-bound nodes, the
geometric mean value for the total solution time, and the number of instances solved.

Table 4.5: Comparison of variants of the BCP algorithm on CVRP-CMD instances

Root
Variant gap time Nodes Time (s) Solved
BCP0 6.96% 18.4 122.6 1262 150/184
BCP0+RLCK 6.70% 25.7 52.1 1022 175/184
BCP0+DCC 4.89% 50.5 45.4 877 171/184
BCPbest 4.51% 71.4 24.6 754 180/184

In addition to Table 4.5, we also give the performance profiles for the four tested
BCP variants in Figure 4.2. Each line corresponds to one variant of the algorithm and
depicts the number of instances solved within a given time expressed in minutes.

Table 4.5 shows that both families DCC and RLKC have a positive and significant
impact on the e�ciency of the BCP algorithm. DCCs decrease the most the root gap,
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Figure 4.2: Performance profile for BCP variants tested against the CVRP-CMD instances

the number of nodes, and the average solution time. However, RLKCs have a larger
impact on the number of solved instances. Clearly, the best variant of the BCP algorithm
is the one which uses both families of cuts.

Among the 15 instances optimized using BCPbest with the best-known solution values
as initial upper bounds, two of them could be solved to optimality, and 13 instances
remain open. Although the CVRP-CMD is very similar to the standard multi-depot
vehicle routing problem (MDVRP), the introduction of capacities to the depot makes the
problem much more di�cult. Literature MDVRP instances with 80 customers and less
are consistently solved to optimality in seconds in the root node by Sadykov et al. (2020).
Whereas CVRP-CMD instances we consider here are usually solved in 10–15 minutes and
require many branch-and-bounds nodes to be explored. Moreover, 13 instances cannot
be solved to optimality in three hours, even using the best-known solution values as the
initial upper bounds. Root gaps are very large and may reach 15% of the optimum value.

4.4.3 VRPTW with Shifts instances

In this section, we test our BCP algorithm on the literature instances of the VRPTW
with Shifts. These instances were introduced by Dabia et al. (2019) who built them
on top of well-known Solomon instances for the VRPTW. There are instances with
three di�erent sizes: 25, 50, and 100 customers. All instances have three shifts. For
each original Solomon instance, three instances were generated with three di�erent shift
capacities. For each size and each shift capacity there are 56 instances, divided into
classes c1, c2, r1, r2, rc1, rc2. Thus, in total there are 504 instances.

Shifts in this problem are modeled as capacitated depots. Again, as in the case of
the CVRP-CMD, there is no fixed cost to “open” a shift. Therefore, variables y are fixed
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to one and valid inequalities FCC, COV, and VCI inequalities are not useful. Thus, as
in the previous section, we test four BCP variants: BCP0, BCP0+RLCK, BCP0+DCC, and
BCPbest. We run these variants of our algorithm with the best-known solution values in
the literature as initial upper bounds. The time limit is set to three hours.

Table 4.6 presents the results. The columns give the average relative root gap,
geometric mean root solution time in seconds, the average number of branch-and-bound
nodes, the geometric mean total solution time in seconds, and the number of instances
solved. We also give the performance profiles for the four tested BCP variants in
Figure 4.3. Each line corresponds to one variant of the algorithm and depicts the number
of instances solved within a given time expressed in minutes.

Table 4.6: Comparison of variants of the BCP algorithm on VRPTW-S instances

Root
Variant Gap Time (s) Nodes Time (s) Solved
BCP0 4.14% 26.4 4.9 79.1 412
BCP0+RLCK 1.62% 32.8 2.1 57.7 424
BCP0+DCC 2.79% 38.7 3.8 90.1 417
BCPbest 1.31% 42.6 2.2 70.4 431

0m 30m 60m 90m 120m 150m 180m
0

30
60
90

120
150
180
210
240
270
300
330
360
390
420

time

nb instances solved

BCP0

BCP0+RLCK

BCP0+DCC

BCPbest

Figure 4.3: Performance profile for BCP variants tested against the VRPTW-S instances

The results show that, although the separation of DCCs reduces the root gap, their
impact on the overall e�ciency of the BCP algorithm is quite limited. On the other hand,
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the impact of RLKCs is much more significant, as their separation improves the solution
time, the number of branch-and-bound nodes, and the number of solved instances. On
the performance profile, we also see that the impact of RLKCs is much larger than the
one of DCCs. Both families of cuts have some cumulative e�ect, as the variant BCPbest

solves the largest number of instances. This number (431 instances) is much larger than
the number of instances solved to optimality by Dabia et al. (2019). We cannot however
directly compare the two approaches as we used di�erent time limits and di�erent initial
upper bounds. The best-known solutions are improved for 189 out of 504 instances.
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In this thesis, we proposed and evaluated the performance of exact methods of mathe-
matical optimization on several variants of vehicle-routing problems with two levels of
decision. These problems arise from city logistics. They are hot topics in the context of
increasing modes of freight transportation, growing flows of goods to and within cities,
and restricting access to trucks of the city centers of major cities.

In Chapter 2, we proposed an improved branch-cut-and-price for the two-echelon
capacitated vehicle routing problem (2E-CVRP). Our BCP algorithm includes techniques
proposed quite recently for classic vehicle routing problems such as rounded capacity
cuts, limited-memory rank-one cuts, ng-path relaxation, enumeration of elementary
routes, and bucket-graph based labelling algorithms. Our algorithm also includes new
components specific to the problem such as a new route based formulation without
freight flow variables at satellites, a family of satellites supply inequality which can be
interpreted as an adaptation of rounded capacity cuts and depot capacity cuts, and a
new branching strategy on the number of urban trucks supplying each satellite that
significantly reduces the size of the branch-and-bound tree.

We showed that our algorithm is highly e�cient. Indeed, it solved all instances
available in the literature for the 2E-CVRP with up to 200 customers and 10 satellites,
and besides, 34 instances were solved to optimality for the first time. To inspire further
progress on solution approaches for the 2E-CVRP and related problems, we propose
a new set of 51 instances to the community. Among them, 28 instances are currently
open. Indeed, testing our algorithm on these new instances revealed that it has some
limitations. We noticed that, for the largest instances, the size of the restricted master
problem becomes so large that its resolution requires significant time. In a few extreme
cases, a modern LP solver, such as CPLEX, cannot solve it within 1 hour. Moreover,
the primal heuristic based on solving the restricted master is often ine�cient because it
cannot find improving primal solutions fast enough.
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To overcome these di�culties, we believe that first-level routes should be generated
dynamically. It is necessary if one wants to optimize instances with more than 15
satellites. Our new formulation for the problem without freight flow variables simplifies
this task. However, column generation of first-level routes is not straightforward even
for the modified formulation. A first-level route has coe�cient one in constraints (2.12)
if and only if it visits at least one satellite in a certain set. Thus, these constraints
resemble strong capacity constraints introduced in Baldacci et al. (2008b). They are
non-robust Pessoa et al. (2008), i.e. they modify the structure of the pricing problem for
the first level.

In Chapter 3, we proposed an exact approach for the two-echelon capacitated vehicle
routing problem with time windows in which freight storage and consolidation are allowed
at satellites. Our algorithm tackles two variants of the problem: when city freighters do a
single trip from a single satellite and when city freighters can do multiple trips visiting one
or several satellites. Our problem variant is a relaxation of the variant considered in the
literature. In our variant, we ensured precedence between urban trucks and city freighters
at satellites whereas variants of the literature consider an exact synchronization of the
vehicles at satellites. Similarly to Chapter 22, our approach is a branch-and-cut-and-price
that includes techniques proposed recently for the classic vehicle routing problems. Since
the problem is an extension of the 2E-CVRP, we use components that have proven to be
e�cient such as satellites supply inequalities and the branching strategy on the number
of urban trucks visiting each satellite. Our algorithm also uses new problem-specific
contributions such as an original route-based formulation with an exponential number
of variables and constraints, the separation procedure for constraints linking the two
levels, and a modification of the pricing problem structure to handle these constraints.
Moreover, our algorithm adds dynamically first-level routes to the restricted master. It
partially overcomes the main limitation of our algorithm for the 2E-CVRP.

We showed that our algorithm is e�cient for the single-trip literature instances and
some multi-trip literature instances with 100 customers. It outperforms significantly the
only existing exact algorithm for the single-trip variant of the problem. It is also the first
exact algorithm for the multi-trip variant of the problem. Moreover, we experimentally
showed that our relaxation of the exact synchronization variant is very tight on the
instances of the literature.

We propose new single-trip instances that are more di�cult than the literature
ones. The first set of instances is derived from instances of Solomon. The second set
contains instances involving urban trucks whose capacity is not multiple of city freighter
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capacity. Experimentations show that the latter property has a large impact on freight
consolidation in the single-trip case.

The first research perspective is to improve the e�ciency of our algorithm. Currently,
the main limitation of our algorithm is due to the discretization of vehicle capacity in the
pricing problem to take into account constraints linking the two distribution levels. Thus,
instances with large city freighter capacity cannot be solved e�ciently or sometimes even
cannot be fit into memory. To overcome this limitation, we need to modify the labelling
algorithm that solves the pricing problem. This algorithm should be able to work with
arcs, for which the resource consumption is variable and the reduced cost depends on
this consumption. An approach by Ioachim et al. (1998) can be useful here. Moreover,
similarly to the algorithm for the 2E-CVRP, our algorithm relies on the enumeration
of first-level routes. This enumeration is possible due to a small number of distribution
centers and satellites in all instances of the literature. However, if this number gets larger,
our approach will fail. To overcome this limitation, first-level routes should be generated
by a pricing oracle similarly to the second-level routes. We will face the same problems
as those previously described for the 2E-CVRP.

In Chapter 4, we proposed a branch-cut-and-price (BCP) algorithm for the location
routing problem (LRP) and some related problems with the nested knapsack structure.
Our main contribution consists in proposing new families of valid inequalities and
separation algorithms for them. We used four families (COV, VCI, DCC, and FCC) of
robust cuts. Only DCC was used before for the LRP. We proposed a family of Route
Load Knapsack Cuts (RLKC) that contain non-robust cuts expressed over variables of
the route-based formulation. Thus, we modified the pricing labelling algorithm which
solves the resource constrained shortest path problem (RCSPP) to take into account
the contribution of RLKCs to the reduced costs of paths. One positive result is that
the necessary modifications do not have a large impact on the e�ciency of the labelling
algorithm.

We present the results of the computational evaluation of our BCP algorithm on
literature instances of the LRP, on newly proposed instances for the related capacitated
vehicle routing problem with multiple capacitated depots (CVRP-CMD), and on literature
instances of the related vehicle routing problem with time windows and shifts (VRPTW-
S). The results show that new families of cuts have a positive e�ect on the e�ciency of
the BCP algorithm. FCCs and VCIs contribute a lot to the success of the BCP algorithm
for the LRP. RLKCs make di�erence for the CVRP-CMD and VRPTW-S. Finally, our
BCP algorithm outperforms the current state-of-the-art approach (Contardo et al., 2014)
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for the LRP, as it allows us to solve to optimality numerous test instances for the first
time. As our algorithm is not based on the enumeration of subsets of open depots, it can
be used for instances with a large number of potential depot locations.

Our experimental results show that the CVRP-CMD and the VRPTW-S remain
di�cult to solve, as our BCP algorithm cannot solve to optimality many instances with
50 customers. The main reason seems to be the quality of the linear relaxation which is
not good enough, even if the extended formulation and all families of cuts are used. One
possibility to improve the current results is to improve the separation algorithms for the
cuts proposed in this work. Moreover, experimental results reveal that the quality of
recent heuristics such as Schneider and Lö�er (2019) is very good for small and medium
LRP instances. There is still room for improvement for larger instances.

About the research perspectives, one could think of extending our algorithm for
2E-CVRP with time-windows and precedence constraints to the variant with exact
synchronization of the two distribution levels. One could also think of extending our
algorithm for 2E-CVRP to the two-echelon location-routing problem (Contardo et al.,
2012) in which satellites have predefined capacities and fixed opening costs. Our prelimi-
nary research showed that additional valid inequalities are necessary for this variant of
the problem. We ran out of time to try some components of chapter 4, such as FCC, on
this problem.

Moreover, in this thesis, our e�ort was mainly to obtain tight valid lower bounds for
the problems, and not to obtain feasible solutions. Another perspective could be to focus
on the development of e�cient heuristics for two-echelon vehicle routing problems. It
seems promising to develop matheuristics, which are based on column generation or on
branch-cut-and-price, for these problems.

Another important research direction is to be able to generate first-level routes
dynamically. It is essential if one wants to optimize larger instances or try to plan routes
for a distribution system with three or more levels. Therefore, we should carefully analyze
the two-level balancing or precedence constraints and study how the labelling algorithm
should be modified to take into account the contribution of these constraints to the
reduced cost of first-level routes.

At last, one could think of evaluating the impact of such an optimization tool on real
two-level distribution systems. This would also allow us to identify the limitations of our
models and whether our assumptions are realistic.
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Concerning the software perspectives, we saw that the exact approaches used in this
thesis combine a lot of algorithms. Some algorithms are generic to integer optimization,
others are dedicated to specific families of problems. During my thesis, I was involved
in the development of Coluna which is a framework, written in Julia, to implement
optimization methodologies based on decomposition and dynamic reformulation of mixed-
integer linear programs. Basically, the user writes the original mixed integer program
that models his problem using JuMP together with BlockDecomposition, which is a
package that extends JuMP to specify the problem decomposition. Coluna automatically
reformulates the original program following the decomposition instructions. Coluna then
calls the algorithm chosen by the user to optimize the reformulation. Coluna has been
designed to let the user build and run his own algorithm on the reformulation. Indeed,
Coluna provides some algorithms, such that column generation or cut generation, and
callbacks that the user can assemble to create his own algorithmic strategy. Preliminary
experiments on the Generalized Assignement Problem are very encouraging. In the
future, I plan to continue to contribute to the development of Coluna because I think
that the Julia language is major progress to easily develop e�cient applications and
software for optimization.

https://github.com/atoptima/Coluna.jl
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