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Abstract

Network science has emerged over the last decade as a field of interest for

understanding behaviors and has been the core of many advances in the field

of machine learning. Indeed, data mining algorithms were destined for structu-

red/relational data while many datasets exist that require graph representation

such as social networks, networks generated by textual data, 3D protein struc-

tures and chemical compounds, etc. It is henceforth of crucial importance to be

able to extract information from graphs in an effective and efficient way.

In this thesis we aim to capitalize on the combinatorial properties of graphs to

provide meaningful substructures and decompositions, namely studying graph

degeneracy. As degeneracy and admissibility are notions already thoroughly

studied in the field of theoretical graph combinatorics and analysis, they star-

ted to appear in data mining frameworks, such as the k-core and its variants.

These applications have already proven to be state-of-the-art methods in seve-

ral unsupervised learning scenarios and are considered as milestones in graph

mining, for community detection, anomaly and fraud detection, and finding in-

fluential spreaders.

In the first part of the thesis, we study edge-degeneracy, which is the edge

counterpart of the classic degeneracy. We use a cops and robbers game where

the cops are blocking edges of a graph, while the robber occupies its vertices, to

extract as the capture cost of the robber the hierarchy of invariants that is the k-

edge-degeneracy. We then provide equivalent definitions and prove a min-max

theorem that supports this equivalence. Furthermore, as a consequence of this

theorem, we can identify the computational complexity of s-edge-degeneracy :

it can be computed in polynomial time when s ∈ {1, 2,∞}, while for all other

values of s, deciding whether its value is at most k is an NP-complete problem.

Finally we prove as well a structural theorem for the∞-edge-degeneracy, called

edge-admissibility, stating that a graph with bounded edge-admissibility can be

reconstructed in a specific way from graphs with almost-edge-bounded degree.
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The second part of the thesis aims to propose a unified degeneracy and

admissibility framework. We propose a way to generate degree as well as

connectivity degeneracy and admissibility hierarchies from eight different graph

metrics ; among them, four are vertex driven metrics and the other four are

edge driven ones. We provide as well adapted orderings comparing degree and

connectivity based degeneracies. From these decompositions we choose to ap-

ply directly to real-world graphs the most promising one, i.e. k-edge-connectivity

degeneracy. As we proved some conditions on the complexity of algorithms

computing it, we designed such an algorithm to find the k-edge-connectivity

cores of a graph. As the edge connectivity counterpart of the k-core has bet-

ter connectivity properties, it is only natural to wonder if it can outperform it in

standard tasks where the k-core and its variants are competitive. Unfortunately,

even though we proved that our algorithm is polynomial in terms of computa-

tional complexity, the results were not convincing enough regarding the gain of

performance for tasks such as finding dense subgraphs and better influential

spreaders compared to the loss in runtime, as for large networks the algorithm

could run in days compared to seconds for the k-core.

Facing these results, two conclusions lead us to our next contribution. Even

though there are theoretical advantages for using the edge-degeneracy, when

applied to real-world datasets, the difference with the k-core is not very signi-

ficant. Moreover, the k-core is a very efficient and effective method. Hence,

capitalizing on those observations we tackled another field of application of

graph learning where degeneracy was never tested : graph similarity. The pro-

blem of accurately measuring the similarity between graphs is at the core of

many applications in a variety of disciplines. Most of the existing methods for

graph similarity, focuses either on local or on the global properties of graphs.

However, even if graphs seem very similar from a local or a global perspective,

they may exhibit different structures at different scales. We provide a general

framework that uses the k-core decomposition of a graph to produce a hierar-

chy of nested subgraphs where we apply state of the art kernels. We were also
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able to provide a theoretical guarantee in the means of a probabilistic inequa-

lity, depending on the k-core of the graph and the eigenvalues of the kernel

matrix, that if satisfied it is almost certain that the k-core version of the kernel

will outperform the original one.

Finally, in the last part of the thesis, since the results of our previous contri-

bution were very encouraging, we thought about taking another step forward

into tackling a core framework in machine learning, bringing the k-core to the

deep learning field. Indeed, as a neural network is a multipartite graph, we

wanted to analyze directly its structure to extract meaningful information from

the learning itself of these algorithms. We first provided an adapted version of

the k-core for the graph, extracted from the neural network. Hence, conside-

ring it as a complete weighted multipartite graph, we designed a hypergraph

version of the k-core. Precisely, the obtained bipartite graph is a representa-

tion of a hypergraph : the nodes on one side are the hyperedges, on the other

side, the hypernodes and the links enhance which hypernode belongs to which

hyperedge. Equipped with the latter representation, we were able to run this hy-

percore to several neural network architectures. More specifically, applications

to convolutional neural networks and multi-layer perceptrons for image recog-

nition, after a very small training, were derived. Finally, we used the information

provided by the core numbers of the neurons to re-initialize the weights of the

neural network to give a more specific direction for the gradient optimization

scheme. This method was able to outperform the original architectures with

state-of-the-art initialization methods for most of the activation fonctions.
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Résumé

L’analyse des réseaux est apparue au cours de la dernière décennie comme

un domaine d’intérêt pour la compréhension de comportements et a été au

cœur de nombreuses avancées en apprentissage automatique. En effet, les

algorithmes de fouille de données étaient destinés à des données structurées/

relationnelles, alors que de nombreux ensembles de données nécessitent une

représentation par graphe, tels que par exemples les réseaux sociaux, les

réseaux générés par des données textuelles, les structures protéiques en trois

dimensions, les composés chimiques, etc. Il est désormais d’une importance

cruciale de pouvoir extraire l’information des graphes de manière efficace et

efficiente.

Dans cette thèse, nous visons à capitaliser sur les propriétés combinatoires

des graphes pour fournir des sous-structures et des décompositions significa-

tives, notamment en étudiant la dégénérescence des graphes. En effet, comme

la dégénérescence et l’admissibilité sont des notions déjà bien étudiées dans le

domaine de la combinatoire théorique et l’analyse des graphes, elles ont com-

mencé à apparaı̂tre dans les cadres d’exploration de données, comme le k-core

et ses variations. Ces applications se sont déjà révélées être des méthodes à

l’état de l’art dans plusieurs scénarios d’apprentissage non supervisés et sont

considérées comme des étapes importantes dans l’exploration des graphes,

pour la détection des communautés, la détection des anomalies et des fraudes,

et la recherche de sources d’influences.

Dans la première partie de la thèse, nous étudions la dégénérescence d’arêtes,

qui est analogue à la dégénérescence classique. Nous utilisons un jeu de po-

liciers et de voleurs, où les policiers bloquent les arêtes d’un graphe, tandis

que le voleur occupe ses sommets, et ainsi extraire comme coût de capture du

voleur la hiérarchie d’invariants, qui est la k-arête-dégénérescence. Nous four-

nissons ensuite des définitions équivalentes et prouvons un théorème min-max

qui soutient cette équivalence. En outre, grâce à ce théorème, nous pouvons

identifier la complexité de calcul de la dégénérescence de s-arête : elle peut

être calculée en temps polynomial lorsque s ∈ {1, 2,∞}, tandis que pour toutes
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les autres valeurs de s, décider si sa valeur est au plus k est un problème NP-

complet. Enfin, nous démontrons également un théorème structurel pour la

∞-arête-dégénérescence, appelée arête-admissibilité, selon lequel un graphe

avec arête-admissibilité limité peut être reconstruit d’une manière spécifique, à

partir de graphe avec degré d’arêtes quasiment borné.

La seconde partie de la thèse se voue à proposer un cadre unificateur pour,

à la fois, la dégénérescence et l’admissibilité. Nous proposons une méthode

pour générer les hiérarchies de dégénérescence de connectivité et de degré

tirés de huit métriques de graphes ; parmi elle, quatre découlent de métriques

de nœuds et les quatre autres découlent de métriques d’arêtes. Nous propo-

sons de plus un ordre de comparaison entre les dégénérescence de degré

et de connectivité. Parmi ces décompositions, nous choisissons d’appliquer la

hiérarchie la plus prometteuse à des problématiques réelles, i.e. la k-arête-

connectivité dégénérescence. Ayant prouvé certaines conditions sur la com-

plexité des algorithmes l’évaluant, nous désignons donc un tel algorithme ren-

voyant la décomposition en cores de k-arête-connectivité du graphe. La deuxième

partie de la thèse vise à appliquer directement aux graphes du monde réel la

k-arête-dégénérescence. Comme nous avons démontré certaines conditions

sur la complexité des algorithmes qui la calculent, nous avons conçu un algo-

rithme similaire pour trouver les k-arêtes-cores d’un graphe. Étant donné que

l’analogue en termes d’arêtes du k-core a de meilleures propriétés de connec-

tivité, il est donc naturel de vérifier si cette première est capable de dépasser la

performance des k-core et ses variantes, dans les taches classiques où brillent

ces derniers. Malheureusement, même si nous avons prouvé que notre algo-

rithme est polynomial en termes de complexité de calcul, les résultats n’ont

pas été assez convaincants. En particulier, en ce qui concerne le gain de per-

formance pour des tâches telles que la recherche de sous-graphes denses ou

des meilleurs influenceurs, mais aussi en terme de temps d’exécution, où pour

les grands réseaux, l’algorithme pourrait fonctionner en quelques jours au lieu

de quelques secondes pour le k-core.

Face à ces résultats, deux conclusions nous amènent à notre prochaine

contribution. Malgré les avantages théoriques à l’utilisation de la dégéné-
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rescence d’arêtes, lorsqu’elle est appliquée à des ensembles de données réelles,

la différence avec le k-core n’est pas très significative. De plus, la méthode k-

core est très efficace et efficiente. C’est pourquoi, en capitalisant sur ces obser-

vations, nous avons abordé un autre domaine d’application de l’apprentissage

des graphes où la dégénérescence n’a jamais été testée : la similarité des

graphes. Le problème de la mesure précise de la similarité entre les graphes

est au cœur de nombreuses applications dans diverses disciplines. La plupart

des méthodes existantes pour la similarité des graphes se concentrent soit sur

les propriétés locales, soit sur les propriétés globales des graphes. Cependant,

même si les graphes semblent très similaires d’un point de vue local ou glo-

bal, ils peuvent présenter des structures différentes à des échelles différentes.

Nous fournissons un cadre général qui utilise la décomposition en k-core d’un

graphe pour produire une hiérarchie de sous-graphes imbriqués, où nous ap-

pliquons des noyaux de l’état de l’art. Nous avons également pu fournir une

garantie théorique dans les moyens d’une inégalité probabiliste, en fonction du

k-core du graphe et des valeurs propres de la matrice du noyau, que si elle est

satisfaite, il est presque certain que la version k-core du noyau surpassera la

version originale.

Enfin, dans la dernière partie de la thèse, et au regard des résultats très

encourageants de cette dernière contribution, nous avons pensé à faire un

pas de plus pour aborder un cadre de base dans l’apprentissage automatique,

en portant le k-core au domaine de l’apprentissage profond. En effet, comme

un réseau de neurones est un graphe multipartie, nous voulons analyser di-

rectement sa structure pour en extraire des informations significatives de l’ap-

prentissage même de ces algorithmes. Nous avons d’abord fourni une version

adaptée du k-core pour le graphe extrait du réseau de neurones. Comme il

s’agit d’un graphe multipartie complet et pondéré, nous avons conçu une ver-

sion du k-core adapté aux hypergraphes. En effet, un graphe bipartie est une

représentation d’un hypergraphe : les nœuds d’un côté étant les hyperarêtes,

de l’autre côté, les hypernœuds et les liens montrant quel hypernœud appar-

tient à quelle hyperarête. Nous avons ensuite pu faire fonctionner cet hypercore

sur plusieurs architectures de réseaux de neurones, et plus spécifiquement sur
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des réseaux neuronaux convolutifs et des perceptrons multicouches pour la

reconnaissance d’images après un très petit temps d’entraı̂nement. Pour finir,

nous avons ensuite utilisé les informations fournies par l’hypercore d’apparte-

nance des neurones pour réinitialiser les poids du réseau de neurones afin

de donner une direction plus spécifique au schéma d’optimisation du gradient.

Cette méthode a permis de surpasser les architectures originales grâce à des

méthodes d’initialisation pour la plupart des fonctions d’activation.
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CHAPITRE 1

Introduction

Networks are already ubiquitous as data form from many disciplines. Rela-

tionship Networks are the most obvious domain where graph data shines, as

they provide meaningful information to model and understand social interac-

tions. Indeed the need to analyse academic collaborations [Tang et al., 2008],

e-mail exchange networks and in a more general fashion, social network ana-

lysis [Leskovec et al., 2009], is at the core of graph mining, with the rise of

social media over the past decade. Moreover information networks such as hy-

perlink structure of the Web and blog networks [Leskovec et al., 2009], have

already proven their effectiveness in a plethora of applications to ease the na-

vigation through these structures for instance. Among this set of applications

of graph analysis, which even extends to data that does not inherently contain

any graph structure, consider for example, text data transformation to graph of

terms, where term proximity(ies) represents relationship(s) in the graph [Rous-

seau and Vazirgiannis, 2013]. Biological applications also contribute to a large

part of graph analysis. Indeed, in neuroscience, where precise relations such as

protein-protein interactions, or for seizure detection [Wang et al., 2017], graph

representations are omnipresent. In a more straightforward way, graphs have

been widely used as molecule modeling for biological compound classification
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and brain network understanding [de Vico Fallani et al., 2014]. The later known

to have inspired the design of the first multilayer perceptron [LeCun et al., 2015].

The aforementioned network designs and domains of application call for

structures that are not governed by randomness. Indeed social networks, as

well as protein-protein interaction graphs [Faloutsos et al., 1999], tend to follow

a power-law degree distribution. The underlying inhomogeneity of the edge dis-

tribution needs for denser parts in the graph and a variance in the connectivity

within the graph that highlights meaningful substructures.

Network Science has already tackled efficiently many of the above problems

and took interest in all of those applications, providing efficient algorithms for

data that requires all the more computational power. These algorithms come

usually either from random graph theory such as Markov chains, for example

the pagerank algorithm [Page et al., 1999], or from graph combinatorics which

will be the main focus of our work. In this sense, the k-core decomposition,

introduced in [Seidman, 1983a] and inherited from the latter field, is proved to

be a major tool in several graph mining tasks.

Most of the research conducted on the degeneracy concepts proved to pro-

vide state-of-the art frameworks. Indeed, k-truss decomposition, introduced

in [Cohen, 2008, Wang and Cheng, 2012], and D-core decomposition, intro-

duced in [Giatsidis et al., 2011], are based on triangle cohersiveness for the

former and on an adaptation to directed graphs of the k-core decomposition for

the latter. Both of these structural decompositions became milestones in their

given fields of applications, namely for community detection, finding influential

spreaders and measuring collaboration quality. It is important, though, to high-

light that all these frameworks capitalize on the vertex degrees of the graph,

meaning that we only look at the vertex degree density.

Moreover, a natural assumption will be to look at edge degree of the nodes

to provide a degeneracy type decomposition. As our aim is, at first, to try to

unify degeneracy frameworks not only by applying it to new types of graphs,

which will still be some of our concern, but as well to learn structural properties
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that have for the edge and connectivity based counterparts of the degeneracy.

1.1 Thesis Statement and Research Drives

In this dissertation we will provide new graph decompositions, models and

tools for several domains of application, in the twofold scope of both unsuper-

vised and supervised learning. We will build those models in order to :

— Analyze edge degree-based graph decomposition in undirected graphs

with possible parallel edges. Also to attempt to find similar theoretical pro-

perties that exist for the vertex degree degeneracy analogues.

— Next we try to unify and order the degree degeneracy hierarchies, connec-

tivity degeneracy hierarchies and their admissibility analogues. We also

investigate the possible use of an edge-connectivity degeneracy for tradi-

tional graph degeneracy related tasks, as described previously.

— In the last two chapters we first manage to apply degeneracy framework to

classic supervised learning frameworks, namely graph kernels and neural

networks, and achieve state-of-the-art performance as well as designing a

degeneracy framework adapted to hypergraphs and bipartite graphs.

An independent branch of research on graph searching is the Cops and Rob-

ber games, defined in [Nowakowski and Winkler, 1983] and since then, many

versions of this game have been proposed. This game consists in cops and rob-

bers being two entities moving under certain constraints over a graph, where

the cops try to block the robber, under given conditions depending on the game

setting. As stated previously and at least for the first part of the thesis, our work

is based on the k-core decomposition and more precisely on its edge counter-

part. Indeed, we first study the edge degeneracy in an adapted version of cops

and robbers game. As an independent branch of research on the graph sear-

ching domain, Cops and Robber games, defined in [Nowakowski and Winkler,

1983], exist in many different variations. In general this game consists in cops

and robbers being two entities moving under certain constraints over a graph,

where the cops try to block the robber, under given conditions depending on the
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game setting. Under our perspective and version for this game, our study sub-

sequently leads to some structural results, both on the edge degeneracy and

on algorithm complexity to find it. More importantly, we prove an edge analogue

theorem to Dvorak’s result for degeneracy in [Dvořák, 2012] are proposed.

As a consequence, a unified generator for degeneracy and admissibility hie-

rarchies is proposed. We also provide general ordering properties between de-

generacy and admissibility hierarchies. It was first driven by the results of [Ri-

cherby and Thilikos, 2011] and then generalized, thanks to previous results to

most of the degeneracy and admissibility types.

In this way, the driving force of this dissertation relies on mathematical re-

sults, coming from combinatorics as well as statistics. Justifying and supporting

both our models and results are a response to well known needs in several Net-

work Science related problems.

Finally, another major interest of our work is the adaptation of degeneracy to

more ’exotic’ graph structures. As mentioned before, degeneracy frameworks

exist for undirected, directed, weighted and unweighted graphs. In Spite of it, a

widely used structure, that surprisingly is among the latter recall but has not so

far dragged interest or has any adapted decomposition suited, is the bipartite

graph. Indeed, bipartite graphs are very present in many real-world applica-

tions, in recommendation systems for instance, but lack fast and efficient de-

composition algorithms such as the k-core. Though k-core can be applied to a

bipartite graph : it is still an undirected graph with the only property of having

two separate sets of nodes that do not have intercommunication. Unfortunately,

the decomposition will not be meaningful. Considering for instance recommen-

dation systems, we would be interested in a decomposition on only one set of

the graph, ranking only customers or only products. Moreover, neural networks

are also aggregations of bipartite graphs, hence we are very interested into

analysing dynamics of the gradient descent in terms of edge weights. All these

observations reinforce and highlight the need to have an adapted degeneracy

framework.
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1.2 Outline of the Thesis and Contributions

The rest of the dissertation is organized as follows. In Chapter 3 we will study

the s-edge-degeneracy, first as a tool for an adapted search game of cops and

robbers. This study will help us providing complexity results to compute the

s-edge-degeneracy, motivating us to try to implement this framework in Chap-

ter 4. In the second part of Chapter 3 we will prove, among other results, a

structural theorem for graphs with bounded∞-edge-admissibility.

Next, in Chapter 4, we will first expand the results of [Richerby and Thilikos,

2011], on degree degeneracy and admissibility hierarchies, to connectivity de-

generacy and admissibility for their vertex and edge versions. This could be

mostly achieved thanks to the results obtained in Chapter 3. In the second part

of this chapter we will showcase applications of the 1-edge-connectivity de-

generacy, namely for the application of k-edge-connectivity cores, and design

an efficient algorithm to compute it. Unfortunately, this decomposition is not

relevant enough, for a variety of reasons that will be developed when applied

without refining to real world datasets. On the other hand, the edge-connectivity

core decomposition in most of the studied cases is very similar, if not identical,

to the one produced with the k-core.

Capitalizing on the latter observation, k-core in real-world datasets has very

good connectivity properties. Hence, the rest of the dissertation focuses on

using the k-core decomposition in supervised learning framework, knowing that

it is not interesting to use more complex decompositions due to the computa-

tional complexity trade-off.

In Chapter 5, we use k-core decomposition to refine graph kernel outputs by

comparing cores of graphs and by summing the resulting kernels. We also

prove that we can predict if our framework can outperform the original kernel

used on the whole graphs without the k-core decomposition. As our framework

outperforms significantly state-of-the-art kernels, we are all the more motivated

to generalize degeneracy frameworks to further advanced architectures, i.e.

neural networks.

Thus, in the last chapter and before concluding this dissertation, we propose in
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Chapter 6, a k-core version for bipartite graphs. This specific design is built to

suit neural network architectures, considered as containing blocks of bipartite

graphs, i.e. pairs of layers convolutional or not. This decomposition is then used

to reinitialize the weights of the network after a small period of pretraining, in

order to adapt the weights to the corrections, given by the learning process.

This method is meant to be used in any architecture as it can be applied to any

pair of layers contained in it. In the end, we manage to outperform the standard

initialization method, as well as having a faster convergence during the gradient

descent.

Finally, we will conclude by detailing our contributions and sharing insights on

perspectives, as the two last parts of the thesis open many directions for very

exciting future research.

6



7



CHAPITRE 2

Basic Notations and Definitions

In this chapter, we provide the basic notations, definitions and material that

will be used through this dissertation. We will provide notation details for the dif-

ferent types of graphs that will be mentioned and some main concepts that will

frequently appear. A particular attention will be given to the degeneracy frame-

work and definitions that constitutes the central component of the dissertation.

In the next chapters we will add definitions needed for the given chapter.

2.1 Graphs, Notations and Types

A graph, or network is a representation of entities with some relationships.

These relationships can differ a lot depending on a domain of application and

this will be described more specifically with the presentation of the datasets

used in the different chapters for model evaluation. As a general convention

of notation a graph G is defined by its set of nodes V (G), and edges E(G).

Moreover, the number of nodes in a graph is equal to n = |V (G)| and the

number of edges is m = |E(G)|. Also a graph can be directed, undirected,

bipartite, multipartite, can have weighted or unweighted edges, and nodes can

have labels or attributes. We will also work in the last chapter with hypergraphs

where the hyperedges can contain several nodes.
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Definition 2.1.1 (Directed and Undirected Graph). In a directed graph GD =

(V,E), every edge (i, j) ∈ E links node i to node j (ordered pair of nodes). An

undirected graph is a directed graph where, if (i, j) ∈ E then (j, i) ∈ E.

Definition 2.1.2 (Bipartite Graph). A bipartite graph is a graph whose vertices

can be divided into two disjoint and independent sets U and V such that every

edge connects a vertex in U to one in V . Edges and nodes of a bipartite graph

can also have weights and/or attributes.

Definition 2.1.3 (Hypergraph). A hypergraph is a generalization of graph in

which an edge can join any number of vertices. It can be represented as H =

(V,EH) where V is the set of nodes, and EH is the set of hyperedges, i.e. a set

of subsets of V . Therefore EH is a subset of P(V ).

Definition 2.1.4 (Incidence graph). An incidence graph is a bipartite graph

where one set of the bipartite graph represents the edges of the initial graph,

and the other independent set of nodes of the bipartite graph represents the

nodes of the graphs. A link exists in this incidence graph if and only if a node

belongs to an edge within the original graph.

Definition 2.1.5 (Path). A path is defined as a sequence of nodes v1, v2, . . . , vk,

with the property that every consecutive pair of nodes vi, vi+1 in the sequence

is connected by an edge.

Definition 2.1.6 (Tree). A tree is an undirected graph in which any two ver-

tices are connected by exactly one path, or equivalently a connected acyclic

undirected graph.

Definition 2.1.7 (Complete Graph). A graph G = (V,E) is called complete, if

every pair of distinct nodes is connected by a unique edge. The complete graph

of n nodes has m =
(
n
2

)
edges.

Definition 2.1.8 (Clique). A clique is defined as a subset of the nodes of a

graph, such that its induced subgraph is complete. A k-clique is a clique of size

k.

Definition 2.1.9 (θk graph). The θk graph is a graph with two nodes and k

parallel edges.
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FIGURE 2.1: All graphlets and their automorphism orbits of size 2 to 5. Moreover G2, G8, G29
are also cliques of size 3, 4 and 5. G0 is also a θ1-graph

Definition 2.1.10 (Graphlet). A graphlet is a denomination for a small subgraph

of a large network parametrized by its size. A network can contain many gra-

phlets of different sizes (see Figure 2.1).

2.2 Graph Functions and Properties

In this section we provide definitions of functions and concepts that will be

used and mentioned throughout this dissertation.

Definition 2.2.1 (Connectedness). Let G = (V,E) be an undirected graph two

nodes i, j ∈ V are called connected if there is a path in G from node i to node

j.

Definition 2.2.2 (Induced Subgraph). Let G = (V,E) be any graph, and let

S ⊆ V be any subset of vertices of G. Then the induced subgraph G[S] is the

graph whose vertex set is S and whose edge set consists of all of the edges in

E that have both endpoints in S.
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FIGURE 2.2: 5-clique sum of graphs G1 and G2.

Definition 2.2.3 (submodular function [Schrijver, 2003]). If Ω is a finite set, a

submodular function is a set function f : 2Ω → R, where 2Ω denotes the power

set of Ω , which satisfies one of the following equivalent conditions.

— For every X, Y ⊆ Ω with X ⊆ Y and every x ∈ Ω \ Y we have that f(X ∪
{x})− f(X) ≥ f(Y ∪ {x})− f(Y ).

— For every S, T ⊆ Ω we have that f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

— For every X ⊆ Ω and x1, x2 ∈ Ω\X such that x1 6= x2 we have that f(X ∪
{x1}) + f(X ∪ {x2}) ≥ f(X ∪ {x1, x2}) + f(X).

Definition 2.2.4 (Clique-Sum Figure 2.2). LetG1 andG2 be two graphs with two

cliques K1 ⊆ V (G1) and K2 ⊆ V (G2) of the same size. Graph G is a clique-sum

of G1 and G2 if it can be obtained by identifying K1 and K2, and then removing

some of the edges of the clique.

2.2.1 Degeneracy and k-core Decomposition

The k-core decomposition of graphs is a powerful tool for network analysis

and it is commonly used as a measure of importance and well connectedness

for vertices in a broad spectrum of applications. The study of k-core decompo-

sition and degeneracy goes back to the 60s. More specifically, the first definition
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FIGURE 2.3: Example of core decomposition of graph.

of a concept related to k-core (coloring number) was given by Erdős and Haj-

nal [Erdős and Hajnal, 1966]. The degeneracy of a graph was later defined by

Lick and White [Lick and White, 1970]. The notion of k-core was first introdu-

ced by Seidman [Seidman, 1983a] to study the cohesion of social networks. In

recent years, the k-core decomposition has been established as a standard tool

in many application domains such as in network visualization [Alvarez-Hamelin

et al., 2006], in protein function prediction [Wuchty and Almaas, 2005] and in

graph clustering [Giatsidis et al., 2014]. More formally, let G be a graph and G′ a

subgraph of G induced by a set of vertices S. Then, G′ is defined to be a k-core

of G, denoted by Ck, if it is a maximal subgraph of G in which all vertices have

degree at least k. Hence, if G′ is a k-core of G, then ∀v ∈ S, dG′(v) ≥ k. Each

k-core is a unique subgraph of G, and it is not necessarily connected. The core

number c(v) of a vertex v is equal to the highest-order core that v belongs to. In

other words, v has core number c(v) = k, if it belongs to a k-core but not to any

(k + 1)-core. The degeneracy δ∗(G) of a graph G is defined as the maximum k

for which graph G contains a non-empty k-core subgraph, δ∗(G) = maxv∈V c(v).

Furthermore, assuming that C = {C0, C1, . . . , Cδ∗(G)} is the set of all k-cores,

then C forms a nested chain :

Cδ∗(G) ⊆ . . . ⊆ C1 ⊆ C0 = G
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Since the k-cores of a graph form a nested chain of subgraphs, the k-core

decomposition is a very useful tool for discovering the hierarchical structure of

graphs. Figure 2.3 depicts an example of a graph and its corresponding k-core

decomposition. As we observe, the degeneracy of this graph is δ∗(G) = 3 ; thus,

the decomposition creates four nested k-core subgraphs, with the 3-core being

the maximal one. The nested structure of the k-core subgraphs is indicated

by the dashed lines. Furthermore, the color on the nodes indicates the core

number c of each vertex.

The popularity of the k-core decomposition stems mainly from the fact that it

can be computed in linear time [Matula and Beck, 1983,Batagelj and Zaveršnik,

2011]. The algorithm for performing the k-core decomposition of a graph is illus-

trated in Algorithm 2. The algorithm runs in O(n+m) time. The underlying idea

Algorithm 1 k-core Decomposition

1: procedure k-CORE(G)
2: Input : A graph G = (V,E)
3: Output : A set of k-cores C
4:
5: C = {V }
6: k = minv∈V d(v)
7: for i = 1 to n do
8: Let v be the vertex with the smallest degree in G
9: if d(v) > k then

10: add V to C
11: k = d(v)
12: end if
13: V = V \ {v}
14: end for
15: end procedure

is that we can obtain the i-core of a graph if we recursively remove all vertices

with degree less than i and their incident edges from the graph until no other

vertex can be removed. Since higher-order cores are nested within lower-order

cores, we compute k-cores sequentially from k = 0 to k = δ∗(G). Therefore,

at each iteration, the algorithm removes the lowest degree vertex and sets its

core number accordingly.

13



FIGURE 2.4: The set C represents the top k-core, versus the T set representing the top k-truss

2.2.2 Extensions of the Decomposition

In the literature there is a research effort to introduce new graph decompo-

sitions inspired by the degeneracy framework. This is as well one of our main

concerns throughout the whole thesis. One of those decompositions that is

worth mentioning is the k-truss decomposition. It is in fact the k-core decompo-

sition of the line graph studied, i.e a k-truss in a graph is a subset of the graph

such that every edge in the subject is supported by at least k2 other edges that

form triangles with that particular edge Figure 2.4. In other words, every edge

in the truss must be part of k2 triangles made up of nodes that are part of the

truss.

2.3 Comments and Precisions

The previously defined concepts and objects will be widely used, at least for

a majority of them, in the rest of the dissertation. It is important to note that

we will work exclusively on undirected graphs, that will have some given pro-

perties depending on the application. As shown in the previous section, k-core

as it is defined is applied to undirected graphs, but can also work in the same

manner on edge weighted graphs, where nodes have weighted degree. Moreo-

ver, for bipartite graphs, k-core decomposition is known to work poorly as we
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might need a core decomposition on only one side of the bipartite graph (this

will be extensively studied in Chapter 6). Finally, except for Chapter 5, where

k-core decomposition is used as a tool, capitalizing on the properties we learnt

in the previous sections. The focus of our work will be, in Chapter 3, to study

and explain theoretical properties on the degeneracy and generalised concepts

of degeneracy, namely the s-degeneracy. This motivates then our main goal,

that is building equivalent theoretical results, and unify degree degeneracy and

connectivity degeneracy hierarchies under a single framework that ease the

generation of such decompositions. We then experiment on one of these de-

compositions, namely the 1-edge-connectivity degeneracy, comparing it to the

k-core and k-truss decompositions, on real-world scenarios (studied in Chap-

ter 4).

It is important, to avoid any further confusion, to distinguish s-degeneracy

and k-core, i.e. the k-core framework corresponds to the 1-degeneracy. This

will be extensively developed in Chapter 3 and after this chapter we will only

deal with k-core, k-truss, or the later defined k-edge-connectivity core.
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CHAPITRE 3

Edge Degeneracy : Algorithmic and Structural Results

After introducing the graph concepts and definitions revolving around dege-

neracy, specifically the k-core and k-truss, we will develop in this chapter the

edge equivalents, namely the s-edge-degeneracy and admissibility. In order to

add an applicative context and justify the need for edge alternatives of dege-

neracy we will introduce an adapted search game and try to provide search

strategies based on these edge degeneracy hierarchies.

We consider a cops and robber game where the cops are blocking edges

of a graph, while the robber occupies its vertices. At each round of the game,

the cops choose some set of edges to block and right after the robber is obli-

ged to move to another vertex traversing at most s unblocked edges (s can

be seen as the speed of the robber). Both parts have complete knowledge of

the opponent’s moves and the cops win when they occupy all edges incident

to the robbers position. We introduce the capture cost on G against a rob-

ber of speed s. This defines a hierarchy of invariants, namely δ1
e , δ

2
e , . . . , δ

∞
e ,

where δ∞e is an edge-analogue of the admissibility graph invariant, namely

the edge-admissibility of a graph. We prove that the problem asking whether

δse(G) ≤ k, is polynomially solvable when s ∈ {1, 2,∞} while, otherwise, it is

NP-complete. Our main result is a structural theorem for graphs of bounded
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edge-admissibility. We prove that every graph of edge-admissibility at most k

can be constructed using (≤ k)-edge-sums, starting from graphs whose all ver-

tices, except possibly from one, have degree at most k. Our structural result is

approximately tight in the sense that graphs generated by this construction al-

ways have edge-admissibility at most 2k−1. Our proofs are based on a precise

structural characterization of the graphs that do not contain θr as an immersion,

where θr is the graph on two vertices and r parallel edges.

3.1 Introduction

All graphs in this chapter are undirected, finite, loopless, and may have pa-

rallel edges. We denote by V (G) the set of vertices of a graph G, while we

denote by E(G) the multi-set of its edges. We also use the term s-path of G for

a path of G that has length at most s.

A (k, s)-hide out in a graph G is a subset S of its vertices such that, for each

vertex v ∈ S, it is not possible to block all s-paths from v to the rest of S by less

than k vertices, different than v. The s-degeneracy of a graph G, has been intro-

duced in [Richerby and Thilikos, 2011] as the minimum k for which G contains a

(k, s)-hide out. s-degeneracy defines a hierarchy of graph invariants that, when

s = 1, gives the classic invariant of graph degeneracy [Matula, 1968, Bodlaen-

der et al., 2006, Kirousis and Thilikos, 1996] and, when s = ∞, gives the pa-

rameter of ∞-admissibility that was introduced by Dvořák in [Dvořák, 2013]

and studied in [Dvořák, 2012,Kierstead and Trotter, 1991,Nešetřil and de Men-

dez, 2009, Chen and Schelp, 1993, Nesetril and de Mendez, 2012, Weißauer,

2019,Grohe et al., 2015].

In this chapter we introduce and study the edge analogue of the above hie-

rarchy of graph invariants, namely the s-edge-degeneracy hierarchy. The new

parameter results from the one of s-degeneracy if we replace (k, s)-hide outs

by (k, s)-edge hide outs where we ask that, for each vertex v of S, it is not pos-

sible to block all s-paths from v to the rest of S by less than k edges. It follows

that the value of s-edge-degeneracy may vary considerably than the one of s-

degeneracy. For instance, consider the graph θk consisting of two vertices and
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k parallel edges between them. It is easy to see that, for every positive integer

s, the s-degeneracy of θk is 2, while it s-edge-degeneracy is k (the two vertices

form a (k, s)-edge hideout). In other words, s-edge-degeneracy can be seen as

an alternative way to extent the notion of degeneracy using edge separators

instead of vertex separators.

In Subsection 3.3.1 we introduce two alternative definitions for s-edge- de-

generacy, apart from the one using (k, s)-edge hide outs. The first is in terms

of a graph searching game and the second is in terms of graph layouts. Next,

we prove a min-max theorem supporting the equivalence of the three defini-

tions. As a consequence of this theorem, we can identify the computational

complexity of s-edge-degeneracy : it can be computed in polynomial time when

s ∈ {1, 2,∞}, while for all other values of s, deciding whether its value is at most

k is an NP-complete problem.

Our next step is to provide a structural theorem for the∞-edge-degeneracy

that, from now on, we call∞-edge-admissibility. For∞-degeneracy (also known

as∞-admissibility), Dvořák proved the following structural characterization [Dvořák,

2012, Theorem 6].

Proposition 3.1.1. For every k, there exist constants dk, ck and ak such that

every graph G with ∞-admissibility at most k can be constructed by applying

(≤ ck)-clique sums starting from graphs where at most dk vertices have degree

at least ak.

In the above proposition the (≤ k)-clique sum operation receives as input

two graphs G1 and G2 such that each Gi contains a clique Ki with vertex set

{vi1, . . . , viρ}, ρ ≤ k. The outcome of the operation is the graph occurring if we

identify v1
j and v2

j for j ∈ {1, . . . , ρ} and then remove some of the edges between

the identified vertices. While the constants of Proposition 3.1.1 where not spe-

cified in [Dvořák, 2012], an alternative proof was recently given by Weißauer

in [Weißauer, 2019] where dk = k, ck = k, and ak = 2k(k − 1).

In Section 3.4 we provide a counterpart of Proposition 3.1.1 for the∞-edge-

admissibility that is the following
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Theorem 3.1.2. For every k, every graph G with∞-edge-admissibility at most

k can be constructed by applying (≤ k)-edge sums starting from graphs where

at most one vertex has degree at least k + 1.

Observe that Theorem 3.1.2 occurs from Proposition 3.1.1 if we replace∞-

admissibility by ∞-edge-admissibility, if, instead of clique sums, we consider

edge sums, and if we set dk = 1, ck = k, and ak = k + 1. The (≤ k)-edge

sum operation (the definition is postponed to Subsection 3.4.1) was defined

in [Wollan, 2015] (see also [Giannopoulou et al., 2015]) and can be seen as the

edge-counterpart of clique sums.

The proof of our structural theorem is derived by a precise structural charac-

terization of the graphs where each pair of vertices is separated by a cut of size

at most k. We prove that these graphs are exactly those that can be construc-

ted using (≤ k)-edge sums from graphs where all but one of their vertices

have degree at most k. This directly implies our structural theorem for∞-edge-

admissibility, as every pair of two vertices linked by k+ 1 pairwise edge-disjoint

paths is a (k + 1,∞)-edge hide out.

Our last result is that the converse of the structural characterization in Theo-

rem 3.1.2 holds in an approximate way : if G can be constructed using (≤ k)-

edge sums from graphs where all but one of their vertices have degree at most

k, then the ∞-edge-admissibility of G is at most 2k − 1. This suggests that

our decomposition theorem is indeed the correct choice for the parameter of

∞-edge admissibility.

3.2 Basic Definitions

Sets and integers. Given a non-negative integer s, we denote by N≥s the set of

all non-negative integers that are not smaller than s. We also denote N+
≥s =

N≥s ∪ {∞}. Given two integers p ≤ q, we set [p, q] = {p, p + 1, . . . , q} and given

a k ∈ N≥0 we define [k] = [1, k]. Given a set A, we use 2A for the set of all its

subsets, we define
(
A
2

)
:= {S | S ∈ 2A and |S| = 2}, and, given a k ∈ N≥0 we

denote by A(≤k) the set of all subsets of A that have size at most k. A near-

partition of a set A is a collection of pairwise disjoint sets whose union is A. A
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bipartition of A, |A| ≥ 2 is a near-partition of A into two non-empty sets.

Graphs. All graphs in this chapter are undirected, finite, loopless, and may have

parallel edges. We denote by V (G) the set of vertices of a graph G while we

use E(G) for the multi-set of its edges. Given a graph G and a vertex v, we

define EG(v) as the multi-set of all edges of G that are incident to v. We define

the neighborhood of v as NG(v) = (
⋃
e∈EG(v) e) \ {v}, the edge-degree of v as

degG(v) = |EG(v)|. We also define ∆(G) = max{degG(v) | v ∈ V (G)}. Given a

F ⊆ E(G), we define G \ F = (V (G), E(G) \ F ).

Given a tree T and two vertices a, b ∈ V (T ) we define aTb as the path of T

connecting a and b. Let G be a graph and let S1, S2 ⊆ V (G) where S1 ∩ S2 = ∅.
We define

EG(S1, S2) = {e ∈ E(G) | e ∩ V1 6= ∅ and e ∩ V2 6= ∅}.

A cut of a graph G is any bipartition (X,X) of its vertices. The edges of a cut

(X,X) is the set E(X,X) while the size of (X,X) is equal to |E(X,X)|. Given

two distinct vertices x and y of G, an (x, y)-cut of G is a cut (X,X) of G such

that x ∈ X and y ∈ X.

We define the function ρ : 2V (G) → N such that ρ(X) = |EG(X, V (G) \X)|. It

is easy to see that ρ is a submodular function, ie.,

∀X, Y ∈ 2V (G) ρ(X ∩ Y ) + ρ(X ∪ Y ) ≤ ρ(X) + ρ(Y ). (3.1)

Given a graph G and two distinct x, y ∈ V (G), we call an (x, y)-s-path every

s-path in G starting from x and finishing on y. We also use the term (x, y)-

path as a shortcut for (x, y)-∞-path. We define the function cutG,s :
(
V (G)

2

)
→

N≥0 so that cutG,s(x, y) is equal to the minimum size of a F ⊆ E(G) such

that G \ F does not contain any (x, y)-s-path. The complexity of computing

cutG,s(x, y) is provided by the next proposition (see [Baier et al., 2006,Mahjoub

and McCormick, 2010, Itai et al., 1982]).

Proposition 3.2.1. If s ∈ {1, 2,∞}, then the problem that, given a graph G, a

k ∈ N, and two distinct vertices a and b of G, asks whether cutG,s(a, b) ≤ k is
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polynomially solvable, while it is NP-complete if s ∈ N≥4.

3.3 Graph Searching and s-edge-degeneracy

3.3.1 A Search Game

The study of graph searching parameters is an active field of graph theory.

Several important graph parameters have their search-game analogues that

provide useful insights on their combinatorial and algorithmic properties. (For

related surveys, see [Fomin and Thilikos, 2008, Bienstock, 1991, Fomin and

Petrov, 1996,Alspach, 2004,Alpern and Gal, 2003].)

We introduce a graph searching game, where the opponents are a group

of cops and a robber. In this game, the cops are blocking edges of the graph,

while the robber resides on the vertices. The first move of the game is done

by the robber, who chooses a vertex to occupy. Then, the game is played in

rounds. In each round, first the cops block a set of edges and next the robber

moves to another vertex via a path consisting of at most s unblocked edges.

The robber cannot stay put and he/she is captured if, after the move of the

cops, all the edges incident to his/her current location are blocked. Both cops

and robbers have full knowledge of their opponent’s current position and they

take it into consideration before they make their next move. We next give the

formal definition of the game.

The game is parameterized by the speed s ∈ N+
≥1 of the robber. A search

strategy on G for the cops is a function f : V (G)→ 2E(G) that, given the current

position x ∈ V (G) of the robber in the end of a round, outputs the set f(v) of

the edges that should be blocked in the beginning of the next round. The cost

of a cop strategy f is defined as cost(f) = max{|f(v)| | v ∈ V (G)}, i.e., the

maximum number of edges that may be blocked by the robbers according to f .

An escape strategy on G for the robber is a pair R = (vstart, g) where vstart is

the vertex of robber’s first move and g : 2E(G)×V (G)→ V (G) is a function that,

given the set F of blocked edges in the beginning of a round and the current

position x of the robber, outputs the vertex u = g(F, v) where the robber should

move. Here the natural restriction for g is that there is an s-path from v to u in
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G \ F . Clearly, if F is the set of edges that are incident to v, then g(F, v) should

be equal to v and this expresses the situation where the robber is captured.

Let f and R = (vstart, g) be strategies for the cop and the robber respecti-

vely. The game scenario generated by the pair (f,R) is the infinite sequence

v0, F1, v1, F2, v2, . . . , where v0 = vstart and for every i ∈ N≥1, Fi = f(vi−1) and

vi = g(Fi, vi−1). If vi = vi−1 for some i ∈ N≥1, then (f,R) is a cop-winning pair,

otherwise it is a robber-winning pair.

The capture cost against a robber of speed s in a graphG, denoted by ccs(G)

is the minimum k for which there is a cop strategy f , of cost at most k, such

that for every robber strategy R, (f,R) is a cop-winning pair.

3.3.2 A Min-max Theorem For s-edge-degeneracy

Definition 3.3.1 (edge-separator and support). Let G be a graph, x ∈ V (G),

S ⊆ V (G) \ {x}, and s ∈ N+
≥1. We say that a set A ⊆ E(G) is an (s, x, S)-edge-

separator if every s-path of G from x to some vertex in S, contains some edge

from A.

We define suppG,s(x, S) to be the minimum size of an (s, x, S)-edge-separator

in G.

Let G be a graph and let L = 〈v1, . . . , vr〉 be a layout (i.e. linear ordering) of

its vertices. Given an i ∈ [r], we denote L≤i = 〈v1, . . . , vi〉. Given an s ∈ N+
≥1,

we define the s-edge-support of a vertex vi in L as suppG,s(vi, L≤i−1).

Definition 3.3.2 (s-edge-degeneracy). The s-edge-degeneracy of L, is the maxi-

mum s-edge-support of a vertex in L. The s-edge-degeneracy of G, denoted by

δse(G) is the minimum s-edge-degeneracy over all layouts of G.

Definition 3.3.3 ((k, s)-edge-hide-outs). Let s ∈ N+
≥1 and k ∈ N. A (k, s)-

edge-hide-out in a graph G is any set R ⊆ V (G) such that, for every x ∈ R,

suppG,s(x,R \ {x}) ≥ k.

A (k, s)-edge-hide-out S is maximal if there is no other (k, s)-edge-hide-out

S ′ with S ( S ′. It is easy to verify that every graph contains a unique maximal

(k, s)-edge-hide-out.
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(k, s)-edge-hide-outs can be seen as obstructions to small s-edge-degeneracy.

In particular we prove the following min-max theorem, characterizing the search

game that we defined in Subsection 3.3.1.

Theorem 3.3.4. Let G be a graph and let s ∈ N+
≥1 and k ∈ N. The following

three statements are equivalent.

(1) ccs(G) ≤ k, i.e., there is a cop strategy f on G of cost less than k, such

that for every robber strategy R on G, (f,R) is cop-winning.

(2) G has no (k + 1, s)-edge-hide-out.

(3) δse(G) ≤ k.

Démonstration. (1 )⇒ (2). We prove that the negation of (2) implies the nega-

tion of (1). Suppose that S is a (k+ 1, s)-edge-hide-out of G. We use S in order

to build an escape strategy R = (vstart, g) on G as follows : Let vstart be any

vertex in S. Let now v ∈ S and F ∈ 2E(G). If |F | > k, then g(v, F ) = v. We next

define g(v, F ) for every F ∈ E(G)≤k. As S is a (k+ 1, s)-edge-hide-out of G, we

know that suppG,s(v, S\{v}) ≥ k+1, therefore there is an s-path from v to some

vertex u ∈ S \ {v} that avoids all edges in F . We define g(v, F ) = u. Notice now

that if f is a cop strategy on G of cost at most k, and v0, F1, v1, F2, v2, . . . , is the

game scenario generated by the pair (f,R), then vi−1 6= vi for every i ∈ N≥1.

This means that R is a robber-winning strategy against any cop strategy of cost

at most k, therefore ccs(G) ≥ k + 1.

(2 ) ⇒ (3). Let n = |V (G)|. As G has no (k + 1, s)-edge-hide-out, it follows that

for every R ⊆ V (G) there is a vertex v ∈ R, such that suppG,s(v,R \ {v}) ≤ k.

We pick such a vertex for every R ⊆ V (G) and we denote it by v(R). We now

set Vn = V (G), vn = v(Vn), and for i ∈ 〈n − 1, . . . , 1〉 we set Vi = Vi+1 \ {vi+1},
vi = v(Vi). We now set L = 〈v1, . . . , vn〉 and observe that for every i ∈ [n],

suppG,s(vi, L≤i−1) = suppG,s(vi, Vi−1) ≤ k. Therefore, the s-edge-degeneracy

of L is at most k, hence δse(G) ≤ k.

(3 ) ⇒ (1). Suppose now that L = 〈v1, . . . , vn〉 is a layout of V (G) such that,

for every i ∈ [n], suppG,s(vi, L≤i−1) ≤ k. We use L to build a cop strategy

f : V (G) → 2E(G) as follows. Let i ∈ [n] and let Fi be an (s, vi, L≤i−1)-edge-

separator of G. We define f by setting f(vi) = Fi. This means that if at some
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point the robber occupies vertex vi, then there is no s-path in G \ Fi from vi

to L≤i−1. As a consequence of this, no matter what the robber strategy R =

(vstart, g) is, it should hold that g(vi, Fi) ∈ L≥i. Therefore if x0, F1, x1, F2, x2, . . . ,

is the game scenario generated by the pair (f,R), then xi = xi−1 for some

i < n.

3.3.3 The Complexity of s-edge-degeneracy, for Distinct Values of s

We now combine Proposition 3.2.1 with the min-max theorem of the previous

subsection in order to identify the computational complexity of δse for different

values of s. Our main result is the following.

Theorem 3.3.5. If s ∈ {1, 2,∞}, then the problem that, given a graph G and a

k ∈ N, asks whether δse(G) ≤ k, is polynomially solvable, while it is NP-complete

if s ∈ N≥4.

Démonstration. Notice first that checking whether δse(G) ≤ k can be done by

the algorithm check s-edge degeneracy in 3. Indeed, if the maximal (k+ 1, s)-

edge-hideout S is non-empty then the above algorithm will report that δse(G) > k

after visiting, in line 3, every vertex not in S, as, by the maximality of S, for every

S ′ ) S there is a vertex x ∈ S ′ \ S where suppG,s(x, S
′ \ {x}) ≤ k. On the other

hand, if S is empty, then the procedure will produce a layout L = 〈v1, . . . , vn〉
with s-edge-degeneracy at most k.

Clearly, check s-edge degeneracy runs in polynomial time if checking whe-

ther suppG,s(x, S \{x}) ≤ k can be done in polynomial time, which is equivalent

to checking whether cutG′,s(x, x′) ≤ k where G′ is the graph obtained by G af-

ter we identify all vertices of S \ {x} to a single vertex x′. As this is possible

for s ∈ {1, 2,∞}, due to Proposition 3.2.1, the polynomial part of the theorem

follow.

It now remains to prove that checking whether δse(G) ≤ k is an NP-hard

problem when s ∈ N≥4. For this we will reduce the problem of checking whether

cutG,s(a, b) ≤ k to the problem of checking whether δse(G) ≤ k and the result

will follow from the hardness part of Proposition 3.2.1.

Let Ts = (G, a, b, k) be a quadruple where G is a graph on n vertices, k ∈
N≥0, and a, b two distinct vertices of G. We construct the graph GTs as follows :
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Algorithm 3 An algorithm checking whether δse(G) ≤ k.

1: procedure CHECK EDGE-DEGENERACY(G,k)
2: Input : a graph G and an integer k ∈ N≥0
3: Output : a report on whether δse(G) ≤ k
4:
5: n← |V (G)|, S ← V (G)
6: for i = n to 1 do
7: if there is an x ∈ S with suppG,s(x, S \ {x}) ≤ k then
8: vi ← x
9: else

10: report that “δse(G) > k” and stop
11: . S is the maximal (k + 1, s)-edge-hideout of G,
12: . witnessing that δse(G) > k, because of Theorem 3.3.4.
13: end if
14: V = V \ {v}
15: end for
16: Output “δse(G) ≤ k, witnessed by layout L = 〈v1, . . . , vn〉.
17: end procedure

Take k + n+ 1 copies G1, . . . , Gk+n+1 of G and identify all a’s of these copies to

a single vertex that we call again a, while we set B := {b1, . . . , bk+n+1} where

bi is the copy of b in Gi. Next, we add n new vertices C = {c1, . . . , cn} and, for

every (i, j) ∈ [n] × [k + n + 1], we add the edge ei,j = cibj. The construction of

GTs is completed by subdividing each edge ei,j s− 1 times.

For every (i, j) ∈ [n] × [k + n + 1], we denote by Pi,j the (ci, bj)-s-path that

replaces ei,j after this subdivision. Also we set

Pj = {Pi,j | i ∈ [n]}, for j ∈ [k + n+ 1],

Qi = {Pi,j | j ∈ [k + n+ 1]}, for i ∈ [n],

and P =
⋃
j∈[k+n+1]Pj.

For the correctness of the reduction, it remains to prove the following.

δse(GTs) ≤ k + n ⇐⇒ cutG,s(a, b) ≤ k (3.2)

We first claim that, for every j ∈ [k + n+ 1],

cutG,s(a, b) = cutGTs ,s
(a, bj). (3.3)

To see (3.3) observe that none of the (bj, a)-s-paths of GTs contains any vertex
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outside Gj, therefore cutGTs ,s
(a, bj) = cutGj ,s(a, bj) = cutG,s(a, b).

We first prove the (⇒) direction of the (3.2). For this we assume that cutG,s(a, b) ≥
k + 1 and we show that GTs contains a (k + n + 1, s)-edge-hide-out, which, by

Theorem 3.3.4, yields δse(GTs) ≥ k + n + 1. We claim that S := C ∪ B ∪ {a}
is a (k + n + 1, s)-edge-hide-out of GTs. As cutG,s(a, b) ≥ k + 1 ≥ 1, we know

that for each j ∈ [k + n + 1] there is a (bj, a)-s-path, say Rj, in GTs whose in-

ternal vertices are not vertices of any path in P . Moreover, every two paths in

R := {Rj | j ∈ [k + n + 1]} have only one vertex, that is a in common. The

fact that |R| = k + n + 1 implies that cutGTs ,s
(a,B) ≥ k + n + 1. Therefore, as

cutGTs ,s
(a, S \ {a}) ≥ cutGTs ,s

(a,B), we have that

cutGTs ,s
(a, S \ {a}) ≥ k + n+ 1. (3.4)

Consider now the vertex bj, for some j ∈ [k + n + 1], and notice that that

cutGTs ,s
(bj,W ∪ {a}) ≥ cutGTs ,s

(a, bj) + |Pj|. Combining this with (3.3) and the

fact that |Pj| = n, we obtain that cutGTs ,s
(bj,W ∪ {a}) ≥ cutG,s(a, b) + n ≥

k + n+ 1. As cutGTs ,s
(bj, S \ {bj}) ≥ cutGTs ,s

(bj,W ∪ {a}), we have that

∀j ∈ [k + n+ 1] cutGTs ,s
(bj, S \ {bj}) ≥ k + n+ 1. (3.5)

Consider now the vertex ci, for some i ∈ [n]. Notice that cutGTs ,s
(ci, B) ≥

|Qi| = k + n+ 1. As cutGTs ,s
(ci, S \ {ci}) ≥ cutGTs ,s

(ci, B) we obtain that

∀i ∈ [n] cutGTs ,s
(ci, S \ {ci}) ≥ k + n+ 1. (3.6)

It now follows from (3.4), (3.5), and (3.6), that S is an (k+n+1, s)-edge-hide-out

of GTs, as required.

We now prove the (⇐) direction of (3.2). The assumption that cutG,s(a, b) ≤
k implies that cutGTs ,s

(a, bj) ≤ k, because of (3.3). Therefore there is a set Fj
of edges in Gi that blocks every (bj, a)-s-path of GTs.

Let L = 〈v1, . . . , v`〉 be any layout of the vertices of GTs where

L≤k+2n+2 = 〈a, c1, . . . , cn, b1, . . . , bk+n+1〉 (3.7)
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In order to prove that δse(GTs) ≤ k + n it suffices to show that, for each h ∈ [`],

suppG,s(vh, L≤h−1) ≤ k + n. (3.8)

Notice that the vertices of L≤k+2n+2 are the vertices of S = W ∪ B ∪ {a}. As

each other vertex v ∈ V (G)\S, has degree at most n−1 inGTs, we directly have

that (3.8) holds when h ∈ [k+2n+3, `]. Let now vh = bj for some j ∈ [k+n+1].

Let F ∗j be the edges incident to bj that are edges of the paths in Pj. Observe

that Fj ∪ F ∗J blocks in GTs all the s-paths from L≤h−1 to bj. As all the edges

in Fj ∪ F ∗J have some endpoint in L≥h and |Fj| + |F ∗j | ≤ k + n, we conclude

that (3.8) holds when h ∈ [n + 2, k + 2n + 2]. Let now vh = ci, i ∈ [n]. Notice

that the distance in GTs between ci and any vertex in {a} ∪ (W \ {ci}) is bigger

than s, therefore suppG,s(vh, L≤h−1) ≤ |Fj|+ |F ∗j | ≤ k + n and (3.8) holds when

h ∈ [2, n + 1]. Finally (3.8) holds trivially when h = 1. This completes the proof

of (3.2), and the theorem follows.

3.4 A structural Theorem for Edge-admissibility

This section is dedicated to the statement and proof of our structural charac-

terization for δ∞e .

3.4.1 Basic Definitions

Edge-admissibility.

Definition 3.4.1 (∞-admissibility). The ∞-admissibility of a graph G is the mi-

nimum k for which there exists a layout L = 〈v1, . . . , vn〉 of V (G) such that for

every i ∈ [n] there are at most k vertex-disjoint, except for vi, paths from vi to

L≤i−1 in G.

If in this definition we replace “vertex-disjoint” by “edge-disjoint” (and we ob-

viously drop the exception of vi) we have an edge analogue of the admissibility

invariant that, because of Menger’s theorem is the same invariant as δ∞e . This

encourages us to alternatively refer to δ∞e (G) as the∞-edge-admissibility of the

graph G.
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The purpose of this section is to give a structural characterization for graphs

of bounded edge-admissibility. For this we need first a series of definitions.

Definition 3.4.2 (Immersion). Given a graph G and two incident edges e and

f of G (i.e., edges with a common endpoint) the result of lifting e and f in G is

the graph obtained from G after removing e and f and then adding the edge

formed by the symmetric difference of e and f . We say that a graph H is an

immersion of a graph G, denoted by H ≤ G, if a graph isomorphic to H can be

obtained from some subgraph of G after a series of liftings of incident edges.

Given a graph H, we define the class of H-immersion free graphs as the

class of all graphs that do not contain H as an immersion.

Definition 3.4.3 (Edge sums). Let G1 and G2 be graphs, let v1, v2 be vertices

of V (G1) and V (G2) respectively such that k = degG(v1) = degG(v2), and

consider a bijection σ : EG1(v1) → EG2(v2), where EG1(v1) = {ei1 | i ∈ [k]}.
We define the k-edge sum of G1 and G2 on v1 and v2, with respect to σ, as the

graph G obtained if we take the disjoint union of G1 and G2, identify v1 with v2,

and then, for each i ∈ {1, . . . , k}, lift ei1 and σ(ei1) to a new edge ei and remove

the vertex v1.

We say that G is a (≤ k)-edge sum of G1 and G2 if either G is the disjoint

union of G1 and G2 or there is some k′ ∈ [k], two vertices v1 and v2, and a

bijection σ as above such that G is the k′-edge sum of G1 and G2 on v1 and v2,

with respect to σ.

v1 v2 2

4
3

1
2

4
3

1
2

4
3

1
2

4
3

1

G1 G2

FIGURE 3.1: The graphs G1 and G2 and the graph created after the edge-sum of G1 and G2.

Let G be some graph class. We recursively define the (≤ k)-sum closure of G,

denoted by G(≤k), as the set of graphs containing every graph G ∈ G that is the

(≤ k)-edge sum of two graphs G1 and G2 in G where |V (G1)|, |V (G2)| < |V (G)|.
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A graphG is almost k-bounded edge-degree if all its vertices, except possibly

from one, have edge-degree at most k. We denote this class of graphs by Ak.
The rest of this section is devoted to the proof of the the following result.

Theorem 3.4.4. For every graph G and k ∈ N≥0, if G has edge-admissibility at

most k, then G can be constructed by almost k-bounded edge-degree graphs

after a series of (≤ k)-edge sums, i.e.,G ∈ A(≤k)
k . Conversely, for every k ∈ N≥1,

every graph in A(≤k)
k has edge-admissibility at most 2k − 1.

3.4.2 A Structural Characterizations of θk-immersion Free Graphs

Recall that given a k ∈ N≥1, θk is the graph with two vertices and k parallel

edges between them. In this subsection we prove that θk-immersion free graphs

are exactly the graphs in A(≤k)
k (Theorem 3.4.11).

We need some more definitions in order to translate edge-sums to their de-

composition equivalent that will be more easy to handle.

Definition 3.4.5 (Tree-partitions). A tree-partition of a graph G is a pair D =

(T,B) where T is a tree and B = {Bt | t ∈ V (T )} is a near-partition of V (G). We

refer to the sets in B as the bags ofD. Given a tree-partitionD = (T,B) ofG and

an edge e ∈ E(T ), we define crossD(e) = EG(V1, V2), where Vi =
⋃
t∈V (Ti)

Bt,

for i ∈ [2] and T1 and T2 are the two connected components of T \ e.

For each t ∈ V (T ), we define the t-torso of D as follows : Let T1, . . . , Tqt be

the connected components of T \ t and let t1, . . . , tqt be the neighbors of t in T

such that ti ∈ V (Ti). We set B̄i =
⋃
h∈V (Ti)

Bh, for i ∈ [qt]. Νext, we define the

graph Zi as the graph obtained from G if, for every i ∈ [qt], we identify all the

vertices of B̄i to a single vertex zi (maintaining the multiple edges created after

such an identification). We call Zt the t-torso of D or, simply a torso of D. We

call the new vertices z1, . . . , zqt satellites of the torso Zt. For each i ∈ [qt], we say

that zi represents the vertex ti in T and subsumes the connected component

Ti of T \ t. For an example of a tree-partition, see Figure 3.2.

Let D = (B, T ) be a tree-partition of a graph G. The adhesion of D = (T,B)

is max{|crossD(e)| | e ∈ E(T )} (the adhesion of the tree-partition of Figure 3.2

is 3). The strength of D = (T,B) is min{∆(Zt) | t ∈ V (T )} (in the tree-partition
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FIGURE 3.2: A graph G, a tree-partition of G with adhesion 3, and the torso Zt of the vertex t.

of Figure 3.2 the red numbers are the values of ∆(Zt) for each node of the tree

T ).

Observe that if D has strength at least k + 1, then every torso of D contains

a vertex of degree at least k + 1.

Notice that each graph G, where ∆(G) ≤ k, has a tree-partition (T,B) where

both adhesion and strength are at most k : let T be a star with center r and

|V (G)| leaves `1, . . . , `|V (G)|, consider a numbering v1, . . . , v|V (G)| of V (G), and

then set Br = ∅, while B`i = {vi}, i ∈ [|V (G)|].

The next observation follows directly from the definitions and provides a

“translation” of edge-sums in terms of tree-partitions.

Observation 3.4.6. Let G be a graph class and let k ∈ N. The class G(≤k)

contains exactly the graphs that have a tree-partition of adhesion at most k

whose torsos are graphs in G.

Lemma 3.4.7. Let k ∈ N≥0 and let G be a graph and D = (T,B) be a tree-

partition of G of adhesion at most k. If θk+1 ≤ G, then there is a t ∈ V (T ) such

that θk+1 ≤ Zt.
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Démonstration. Observe that if θk+1 ≤ G,then there are two vertices x and y in

G that are connected by k + 1 pairwise edge-disjoint (x, y)-paths, P1, . . . , Pk+1

in G. As D has adhesion at most k, there is some t ∈ V (T ) such that x, y ∈ Bt.

Let T1, . . . , Tqt be the connected components of T \ t and let z1, . . . , zqt be the

satellites of the t-torso Zt of D. Let i ∈ [k] and notice that, among the edges of

the (x, y)-path Pi, those missing from Zt are those that do not have endpoints

in Bt. Notice also that for every j ∈ [qt] the edges of Pi with both endpoints in⋃
t′∈V (Tj) Bt′ appear as consecutive edges in Pi. We now contract each such set

of edges to the vertex zj for each j ∈ [qt] and observe that the resulting path P ′i
is a path of Zt. Observe that P ′1, . . . , P ′k+1 are pairwise edge-disjoint (x, y)-paths

of Zt and we conclude that θk+1 ≤ Zt as required.

Let D = (T,B) be a tree-partition of a graph G and k ∈ N≥0. We say that a

torso Zt of D is

— k-splittable : if it contains a cut (X,X) of size smaller than or equal to k

where both X and X contain some vertex of degree at least k + 1.

— k-overloaded : if at least two of its vertices have degree at least k + 1.

Given a tree-partition D = (T,B), we define

w(D) =
∑
t∈V (T )

(sD(t)− 1)

where sD(t) is the number of vertices in Bt that have degree at least k + 1.

Observation 3.4.8. Let G be a graph, k ∈ N≥0, and D be a tree-partition of

G that has strength at least k + 1. Then w(D) > 0 iff some of its torsos are

k-overloaded.

Given a k ∈ N≥0, we say that a tree-partition D = (B, T ) is k-tight if, its

adhesion is at most k and its strength is at least k + 1.

Lemma 3.4.9. For every graph G and k ∈ N≥0, if D is a k-tight tree-partition of

G with a k-splittable torso, then there is a k-tight tree-partition D′ of G where

w(D′) < w(D).

Démonstration. Let Zt be a splittable torso of D and let Lt = {z1, . . . , zqt} be the

satellite vertices of Zt. We denote by t1, . . . , tqt be the vertices of T represented
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by z1, . . . , zqt respectively. Also we denote by T1, . . . , Tqt the connected compo-

nents of T \ t that are subsumed by z1, . . . , zqt, respectively. Let also Qt be the

vertices of Zt that have degree at least k + 1. As the adhesion of D is at most

k, it follows that each vertex in Lt has degree at most k. Therefore, Qt ⊆ Bt.

We now construct a tree-partition D′ of G. As Zt is k-splittable, there is a cut

(X,X) of Zt, of size at most k and two vertices x, y where degZt
(x),degZt

(y) ≥
k + 1, and x ∈ X and y ∈ X. We set Q(x)

t = Qt ∩ X and Q
(y)
t = Qt ∩ X and

keep in mind that x ∈ Q(x)
t and y ∈ Q(y)

t . Note that there is a set I ⊆ [qt] such

that X ∩ Zt = {zi | i ∈ I} and X ∩ Zt = {zi | i ∈ [qt] \ I}. We construct the tree

T ′ as follows : we start from T \ t, then add two new adjacent vertices tx and

ty, make tx adjacent with all vertices in {ti | i ∈ I} and make ty adjacent with

all vertices in {ti | i ∈ [qt] \ I}. We also define B′ = {B′h | h ∈ V (T ′)} such that

if h ∈ V (T ) \ {t}, then B′h = Bh. Finally, set B′tx = Bt ∩ X and B′ty = Bt ∩ X.

Observe that

— if e = txty, then |crossD′(e)| = cutZt(X,X) ≤ k,

— if e = tyti, i ∈ [qt] \ I, then |crossD′(e)| = |crossD(tti)| ≤ k,

— if e = txti, i ∈ I, then |crossD′(e)| = |crossD(tti)| ≤ k, and

— if e ∈ E(T ′) \ E(T )|, then |crossD′(e)| = |crossD(e)| ≤ k.

From the above, we deduce that the adhesion of D′ is at most k.

Let now v ∈ V (T ′). As D has strength at least k + 1, then for each h ∈
V (T ) \ {t} there is a vertex in B′h that has degree at least k + 1. This, together

with the fact that x ∈ B′tx and y ∈ B′ty implies that D′ has strength at least k+ 1.

Therefore D′ is k-tight.

We finally observe the following :

— sD′(tx) = |Q(x)
t |,

— sD′(ty) = |Q(y)
t |, and

— if t ∈ V (T ′) \ {tx, ty}, then sD′(t) = sD(t)

From the above, (sD′(tx)−1)+(sD′(tx)−1) = |Qt|−2 = (sD(t)−1)−1, therefore

w(D′) < w(D) as required.
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Given a tree T and two members a, a′ of E(T ) ∪ V (T ) we define aTa′ as

the unique path in T starting from a and finishing on a′. Also, given a vertex

t ∈ V (T ) we define its status of t as

status(T, t) =
∑

t′∈V (T )

|E(tT t′)|, (3.9)

i.e., the sum of all the lengths of all the paths from t to the rest of the vertices

of T .

Let (X,X) and (Y, Y ) be two cuts of a graph G. We say that the cuts (X,X)

and (Y, Y ) are parallel if X ⊆ Y , or X ⊆ Y , or X ⊆ Y , or Y ⊆ X.

Lemma 3.4.10. Let k ∈ N≥0. If G is a θk+1-immersion free graph with at least

one vertex of degree at least k + 1, Then G has a k-tight tree-partition where

each torso has exactly one vertex of degree greater than k.

Démonstration. Notice thatG has at least one k-tight tree-partition that consists

of a single bag containing all the vertices of G. Among all k-tight tree-partitions

of G, consider the set D containing every k-tight tree-partition of G, where w(D)

takes the minimum possible value, say `. From Observation 3.4.8 it is enough

to prove that ` = 0, i.e., the tree-partitions in D contain no k-overloaded torsos.

Assume, towards a contradiction, that ` > 0. Consider two vertices x and y, of G

each of degree at least k+1, that belong to the same bag of some tree-partition

of D. Among all tree-partitions in D containing x, y in the same bag, say Bt, we

choose D = (T,B) to be one where status(T, t) is minimized.

As θk+1 6≤ G, the graph G contains some (x, y)-cut (X,X) of size at most k.

Let Sx,y be the set of all such cuts.

We say that an edge e ∈ E(T ) is crossed by (X,X) if the cut of G corres-

ponding to crossD(e) and the cut (X,X) are not parallel. As both x and y have

degree at least k + 1, there should be two edges ex and ey in crossD(e) such

that ex ⊆ X and ey ⊆ X.

Let (X,X) ∈ Sx,y. Let e = t′t′′ be an edge of E(T ) that is crossed by (X,X).

We make the convention that, whenever we consider such an edge, we assume

that |E(tT t′′)| < |E(tT t′)|, i.e., t′′ is closer to t than t′, in T . We say that such an

edge e is (X,X)-extremal for (T, t) if there is no other edge e′ 6= e of T that is
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crossed by (X,X) and such that e ∈ E(e′Tt). We denote by extr(X,X) the set

of edges of T that are (X,X)-extremal for (T, t). Notice that extr(X,X) should

be non-empty, as otherwise (X,X) should induce a cut of Zt, therefore Zt would

be k-splittable and this, due to Lemma 3.4.9, would contradict the minimality of

w(D). We next define the cost of the cut (X,X) as

costT,t(X,X) =
∑

t′t′′∈extr(X,X)

|E(tT t′)|.

We now pick the (x, y)-cut (X,X) ∈ Sx,y as one of minimum possible cost, in

other words, cost(X,X) = min{cost(X ′, X ′) | (X ′, X ′) ∈ Sx,y}.
Let e = t′t′′ be an (X,X)-extremal edge of T . Let (A,A) be the cut of G

whose edges are crossD(e) and w.l.o.g., we assume that x, y ∈ A. Recall that

ρ(X) = ρ(X) ≤ k and ρ(A) = ρ(A) ≤ k. (3.10)

We next claim that

ρ(A ∩X) = |E(A ∩X,A ∪X)| > k. (3.11)

To see (3.11), notice that if this is not the case, then (A ∩ X,A ∪ X) ∈ Sx,y,
because x ∈ A∩X and y ∈ A∪X. Notice that if t = t′, then extr(A∩X,A∪X) =

extr(X,X) \ {t′′t′} while if t∗ is the unique neighbor of t′ in the path joining t′

and t, then extr(A ∩ X,A ∪ X) = extr(X,X) \ {t′′t′} ∪ {t′t∗}. In both cases,

cost(A ∩ X,A ∪ X) = cost(X,X) − 1, a contradiction to the minimality of the

choice of (X,X). Working symmetrically on A, instead of A, it follows that

ρ(A ∩X) = |E(A ∩X,A ∪X)| > k. (3.12)

By the submodularity of ρ, we have that

ρ(A ∩X) + ρ(A ∪X) ≤ ρ(X) + ρ(A). (3.13)

ρ(A ∩X) + ρ(A ∪X) ≤ ρ(X) + ρ(A). (3.14)

Combining now (3.10), (3.11), and (3.13) and (3.10), (3.12), and (3.14) we
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FIGURE 3.3: A visualization of the proof of Lemma 3.4.10.

have that ρ(A ∪X) ≤ k and ρ(A ∪X) ≤ k which can be rewritten

ρ(A ∩X) ≤ k and ρ(A ∩X) ≤ k. (3.15)

Note that the vertices of Bt′ that have degree at least k + 1 should all be in

exactly one of A ∩ X and A ∩ X. Indeed, if this is not correct, then Zt′ should

be k-splittable and this, due to Lemma 3.4.9, would contradict the minimality of

w(D). W.l.o.g. we assume that Q = Bt′ ∩A∩X contains only vertices of degree

at most k.

Let z1, . . . , zqt′ be the satellites of Zt′ and let ti be the vertex of T represented

by zi, i ∈ [qt′ ], assuming, w.l.o.g., that z1 represents t′′ in T (that is t1 = t′′). Let

also Ti be the connected component of T \ t′ subsumed by zi, for i ∈ [qt′ ]. As

t′t′′ ∈ extr(X,X), there is some non-empty I ⊆ [2, qt′ ] such that⋃
i∈I

⋃
s∈V (Ti)

Bs = (A ∩X) \Bt′ and
⋃

i∈[2,qt′ ]\I

⋃
s∈V (Ti)

Bs = (A ∩X) \Bt′ . (3.16)

We now add the set Q to Bt′′ and remove it from Bt′, and also remove from T

all edges in {tit′ | i ∈ I} and add the edges {tit′′ | i ∈ I} to get T ′ (in Figure 3.3,
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the new edge is depicted by the dashed edge). Observe that D′ = (T ′,B) is

a tree-partition of G with adhesion at most k and where all its nodes contain

some vertex of degree at least k + 1. Therefore D′ is k-tight. Notice that, by the

construction of T ′, status(T ′, t) < status(T, t) a contradiction to the minimality

of status(T, t) in the choice of D = (T,B).

Theorem 3.4.11. For every graph G and k ∈ N, G is θk+1-immersion free if and

only if G ∈ A(≤k)
k .

Démonstration. We prove first “only if” direction. If G has no vertices of degree

at least k + 1, then G ∈ Ak and the result follows trivially. If G has at least one

vertex of degree at least k+ 1, then, because of Lemma 3.4.10, G has a k-tight

tree-partition of adhesion at most k and whose torsos belong to Ak. Then, from

Observation 3.4.6, G ∈ A(≤k)
k .

We next prove the “if” direction. Suppose that G ∈ A(≤k)
k , therefore, from

Observation 3.4.6, G has a tree-partition D of adhesion at most k whose torsos

are all inAk. As none of the torsos ofD contains θk+1 as an immersion, because

of Lemma 3.4.7, the same holds for G and we are done.

As mentioned by one of the reviewers, Theorem 3.4.11 can alternatively be

proved by a suitable application of the theorem of Gomory and Hu [Gomory

and Hu, 1961] (see also [Diestel et al., 2019] and [DeVos et al., 2013]).

3.4.3 An Upper Bound to Edge-admissibility

In this subsection we prove that θk+1-immersion free graphs have edge-

admissibility at most 2k− 1. In the end of this section, this will serve for proving

Theorem 3.4.4.

Carving decompositions. Given a tree T we denote by L(T ) the set of all the

vertices of T that have degree at most 1 and we call them the leaves of T .

Definition 3.4.12 (Rooted tree and Binary rooted tree). A rooted tree is a pair

T = (T, r) where T is a tree and r ∈ V (T ).

A binary rooted tree is a rooted tree T = (T, r) where all its non-leaf vertices

have exactly two children.
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If v ∈ V (T ), we define desclT(v) as the set containing every leave ` of T

such that v ∈ V (rT`).

Let G be a graph and S ⊆ V (G).

Definition 3.4.13 (Rooted carving decomposition). A rooted carving decompo-

sition of G is a pair (T, σ) consisting of a rooted binary tree T = (T, r) and a

function σ : V (G)→ L(T ).

We stress that σ is not a bijection, i.e., we permit many vertices of G to be

mapped to the same leaf of T . The weight of a vertex t in V (T )\L(T ) is defined

as

w(t) = |EG(S1, S2)|

where Si = σ−1(desclT(ti)), i ∈ [2] and t1, t2 are the children of t in T . For

every edge e = tt′ of E(T ), where t′ is a child of t, we define cut(e) as the set

EG(V1, V2) where V1 = σ−1(desclT(t′)) and V2 = V (G) \ V1. We also define the

weight of e = tt′ as w(e) = |cut(e)|.

Lemma 3.4.14. LetG be a graph and k ∈ N≥1. If θk+1 � G, then δ∞e (G) ≤ 2k−1.

Démonstration. We show that ifG is θk+1-immersion free, thenG cannot contain

a (2k,∞)-edge-hideout and therefore, from Theorem 3.3.4, δ∞e (G) ≤ 2k − 1.

Suppose to the contrary that S, |S| ≥ 2, is a (2k,∞)-edge-hideout of G. We

build a rooted carving decomposition of G by applying the following procedure :

Step 1. Consider (T, σ) where T = (T, v), T consists of only one vertex, that is

the root r, and σ(v) = r for all v ∈ V (G).

Step 2. Let ` be a vertex of T where |σ−1(`) ∩ S| ≥ 2. If no such vertex exists,

then stop.

Step 3. Pick, arbitrarily, two distinct vertices x1 and x2 in σ−1(`)∩ S. Notice that

G contains a (x1, x2)-cut (X1, X2) of at most k edges where xi ∈ X i, i ∈ [2],

otherwise, from Menger’s theorem there are k + 1 pairwise edge disjoint paths

from x1 to x2 in G, which implies the existence of θk+1 as an immersion in G,

a contradiction. We now add in T two new vertices `1 and `2 make them the

children of ` and update σ so that the vertices in X i ∩ σ−1(`) are now mapped

in `i, i ∈ [2], i.e. we remove from σ (t, σ−1(`)) and we add (t1, X
1 ∩ σ−1(`)) and

(t2, X
2 ∩ σ−1(`)).

38



Step 4. Go to Step 2.

Let (T, σ) be the rooted carving decomposition produced by the above pro-

cedure. By the construction of (T, σ), each vertex of T has weight at most k

and for each leaf ` ∈ L(G), |σ−1(`) ∩ S| = 1. We construct a path P of T by

applying the following procedure.

Step 1. Let P be the path of T consisting of r and one (arbitrarily chosen), say

t′, of the children of r (i.e., P is just an edge). Notice that w({r, t′}) = w(r) ≤
k ≤ 2k − 1 (recall that k ≥ 1).

Step 2. Let e be the the last edge of P (starting from r) and let t be its endpoint

that is also an endpoint of P (different than r). If t is a leaf of T , then stop.

Step 3. Let t1 and t2 be the children of t and let ei = tti, i ∈ [2]. We partition the

edges of cut(e) into two sets, namely F1 and F2 so that Fi contains edges with

an endpoint in desclT(ti), i ∈ [2]. Notice that cut(ei) = Fi∪EG(σ−1(desclT(t1)), σ−1(desclT(t2))),

therefore, for i ∈ [2],

w(ei) = |cut(ei)| = |Fi|+ |w(t)|. (3.17)

As w(e) ≤ 2k − 1, one, say F1, of F1, F2 should have at most k − 1 edges. By

applying (3.17) for i = 1, we obtain that |w(e1)| ≤ k−1+w(t) ≤ 2k−1. We now

extend P by adding in it the vertex t1 and the edge e1 and we update e := e1.

Step 4. Go to Step 2.

We just constructed a path P in T between r and a leaf of ` of T such that

for every edge e ∈ E(P ), w(e) ≤ 2k − 1. Notice that σ−1(`) contains exactly

one vertex, say x, of S. Moreover, if f is the edge of T that is incident to `,

then ρ(σ−1(`)) = w(f) ≤ 2k − 1, as f is an edge of P (the last one). This

implies that there is a set of 2k− 1 edges blocking every path from x to S \ {x}.
Therefore, suppG(∞, x, S \ {x}) ≥ 2k − 1, contradicting to the fact that S is a

(2k,∞)-edge-hideout of G.

Observation 3.4.15. If H and G are graphs then H ≤ G⇒ δ∞e (H) ≤ δ∞e (G).

Démonstration. Suppose that H ≤ G and that k ≤ δ∞e (H). From Theorem 3.3.4

H contains a (k,∞)-edge-hide-out S ⊆ V (H). Because of Menger’s theorem,
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Structural Theorems
6≤ Topological Minor+ 6≤ Immersion+

Clique-Sum Edge-Sum
[Grohe et al., 2011] [Wollan, 2015]

Clique Exclusion Almost-embedded Almost-bounded-
Almost-bounded-degree degree

Vertex Edge
[Dvořák, 2012] [Limnios et al., 2019]

Bounded Admissibility Almost-bounded- Almost-bounded-
degree degree

TABLE 3.1: Structural Theorems sorted by application and graph property.

for every vertex v ∈ S there are at least k + 1 pairwise edge-disjoint paths from

v to vertices of S \ {v}. Notice that these paths also exist in G as the “inverse”

of the lift operation does not alter the paths from a vertex of S to the rest of

the vertices of S. These paths, again using Menger’s theorem, imply that S

is also a (k + 1,∞)-edge-hide-out of G, therefore, again from Theorem 3.3.4,

k ≤ δ∞e (G).

We are now ready to give the proof of Theorem 3.4.4.

Proof of Theorem 3.4.4. For the first part of the theorem, observe that δ∞e (θk+1) =

k + 1, therefore, from Observation 3.4.15, θk+1 � G. Using now the “only if” di-

rection of Theorem 3.4.11 we obtain that G ∈ A(≤k)
k , as required.

For the second part of the theorem, let G ∈ A(≤k)
k , which by the “if” direc-

tion of Theorem 3.4.11 implies that θk+1 � G. Using now Lemma 3.4.14, we

conclude that δ∞e (G) ≤ 2k − 1.

3.5 Conclusion

In this chapter, we managed to study as thoroughly as possible edge-degeneracy,

and we are able to draw many interesting properties and observations. First

it is important to position us toward the existing structural theorems concer-

ning clique exclusion and bounded admissibility that enable us to decompose a

graph in almost-bounded-degree graphs. We managed to provide an equivalent

result to [Dvořák, 2012] for the edge-admissibility for the graph decomposition

using edge-sums Table 3.1.
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Finally, in the first part of this chapter, the main result, which motivates us to

use edge degeneracy as a new tool for graph decomposition, is the complexity

argument. Indeed we proved that, as for the s-degeneracy can be computed in

polynomial for s ∈ {1, 2, 3, 4,∞}, the s-edge-degeneracy can be as well com-

puted in polynomial time for s ∈ {1, 2,∞}.
Hence in the next chapter we will study how to design an efficient algorithm

for the edge-connectivity degeneracy, and try to compete and compare to k-

core mainly and to k-truss for the given application.
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CHAPITRE 4

Degeneracy Hierarchy Generators and Efficient Algorithm for

Edge Connectivity Degeneracy

In the previous chapter, beyond the structural theorem proven and the com-

plexity guarantees, we set a solid ground to study edge-based degeneracies. It

is important to mention that, in Chapter 3, every degeneracy concept is based

on the layout of min-max definitions. We showed as well, in Theorem 3.3.4, the

equivalent max-min definition for the s-edge-degeneracy, for every path length

s, via edge-hideouts. Hence, we have so far equivalent definitions and proper-

ties for both s-degeneracy and s-edge-degeneracy.

Therefore, both degeneracy and edge-degeneracy, respectively denoted by

δ and δe, are defined by means of layouts and are characterized as degree

degeneracies. Nevertheless, there exists another degeneracy type that can be

defined, derived through the connectivity degeneracy and the edge-connectivity

degeneracy, respectively denoted by λ and λe. Indeed, instead of defining the

degeneracy using layouts and hideouts, we can have the same properties when

defining connectivity-degeneracy using carving decompositions and block num-

bers.

Thus, we will first provide all the needed definitions for theses hierarchy
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types, and then study the relationships between degeneracy and connectivity

degeneracy. Finally, we propose an efficient algorithm to compute the λse-edge-

connectivity degeneracy, for the particular value of s = 1. This could be done

mainly thanks to the relationships issued between δse and λse and clever use of

the Karger-Stein algorithm [Karger and Stein, 1996] for minimal cuts. Lastly, in

order to evaluate the quality of one of the connectivity degeneracies issued, we

will study interesting properties of the produced decomposition and comment

on the observed results on applications where traditional degeneracies shines.

4.1 Introduction

Edge-connectivity degeneracy was already the focus of data mining appli-

cations in the litterature. Indeed, both [Zhou et al., 2012] and [Dory, 2018] ca-

pitalized on the very interesting structural properties of the k-edge-connected

subgraphs, providing more expressive subgraphs than standard vertex dege-

neracy. More generally, in graph theory, connectivity is a fundamental subject

and has applications in a variety of traditional areas. Indeed, a wide range of its

application is observed in research fields, such as network reliability analysis,

VLSI chip design, transportation planning.

We remind that a k-edge-connected graph is a connected graph that cannot be

disconnected by removing less than k edges. Similarly, a k-vertex-connected

graph is a connected graph that cannot be disconnected by removing less than

k vertices.

In this chapter we will start by redefining both the results and the hierar-

chy, used and proved in [Richerby and Thilikos, 2011] for vertex degeneracy,

and complete these with the results from Chapter 3. Hence, we manage to

provide a complete analysis and ordering of the hierarchies based on layouts

and hideouts min-max, as well as equivalent max-min definitions. For every

degeneracy type, be edge or vertex one, we have an associated admissibi-

lity that we will define properly for any path length s. Note that in the previous

chapter, we were interested only in the∞-degeneracy type. Also, no proposed
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FIGURE 4.1: λ1e(G) = 3 in blue, δ1(G) in green

definition was independent of the degeneracy one, since ∞-degeneracy and

∞-admissibility are equal thanks to Menger’s min-max theorem. This is also

true for the edge version of both the degeneracy and the admissibility.

More importantly we provide a generator for the following eight different hierar-

chies of invariants, that we shall name :

1. s-degeneracy and associated s-admissibility

2. s-edge degeneracy and associated s-edge admissibility

3. s-connectivity degeneracy and associated s-connectivity admissibility

4. s-edge-connectivity degeneracy and associated s-edge-connectivity ad-

missibility

The first point was thoroughly investigated in [Richerby and Thilikos, 2011],

also, we already studied extensively the second one in the first chapter of our

dissertation, and the third one will only be defined, not studied as it was in-

vestigated in [Kirousis and Thilikos, 1996]. Our work, especially in the practical

second part of this chapter, will focus on the edge-connectivity degeneracy.

In the first part of this chapter though, we will carefully define these hierar-

chies, and provide as much background information and knowledge as pos-

sible, that can link them and generalize their design.
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4.2 Preliminary Definitions

All graphs in this chapter are undirected, unweighted, loopless and may

contain parallel edges as the graphs in Chapter 3.

As we explained previously, we will need some further definitions to unroll

our work in this chapter, motivated by the need of a general definition for s-

admissibility. So we shall retrace the notions defined in the previous chapter

and plug the general admissibility definition to it.

4.2.1 s(-edge)-degeneracy and s(-edge)-admissibility

We remind that the s(-edge)-degeneracy of a graph G, is roughly defined

as the largest minimal (e)sepG,s(x, S), where (e)sepG,s(x, S) is the s(-edge)-

support of a vertex x in G defined in Subsection 3.3.2, over all layouts in G

(see Subsection 3.3.2 for a more detailed definition). Additionally, define the

(e)pathG,s(x, S) to be the maximum number of (edge-)paths in G starting from

x and sinking in S for a given layout L.

So far all (edge-)degeneracies were defined using (e)sep. So, replacing

(e)sep by (e)path in the definition of the s(-edge)-degeneracy, we obtain the

s(-edge)-admissibility as follows :

s(-edge)-admissibility. Let G be a graph and let L = 〈v1, . . . , vr〉 be a layout (i.e.

linear ordering) of its vertices. Given an i ∈ [r], we denote L≤i = 〈v1, . . . , vi〉. Gi-

ven an s ∈ N+
≥1, the s(-edge)-admissibility of L, is the maximum (e)pathG,s(v, L≤i)

of a vertex v in L. The s(-edge)-admissibility of G, denoted by αs(e)(G) is the mi-

nimum s(-edge)-admissibility over all layouts of G.

Hence, we can build four different hierarchies with the same procedure by

picking one of the following graph metrics from the following set :

M = {sepG,s,esepG,s,pathG,s,epathG,s} (4.1)
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FIGURE 4.2: The 6-outer vertices form a 5-block

4.2.2 k-blocks and Carving Decompositions

We shall define some concepts we are not familiar with yet, starting with the

k(-edge)-block.

Definition 4.2.1 (k(-edge)-block). A k(-edge)-block in a graph G is a maximal

set of at least k vertices no two of which can be separated in G by deleting

fewer than k vertices for the k-block, k edges for the k-edge-block analogue.

The (edge-)block number G is the maximum integer k for which G contains a

k(-edge)-block.

We have as well to define a carving decomposition of a graph, i.e. we de-

fined in Subsection 3.4.3, Definition 3.4.13, the rooted carving decomposition

to be a pair (T, σ) consisting of a rooted binary tree T = (T, r) and a function

σ : V (G) → L(T ), we also remind that given L(T ) is the set of leaves of T .

More generally a carving decomposition is a pair (T, σ) where T is a tree not

necessarily rooted or binary and σ a separation function.
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v

L1

FIGURE 4.3: Example of carving decomposition rooted binary tree, in vertices in green belong
to I(T ) whereas the red ones are the leaves.

4.2.3 s(-edge)-connectivity Degeneracy and s(-edge)-connectivity Admis-

sibility

In order to build the connectivity degeneracy framework, we need metrics

equivalent toM. Indeed, now that we are not working with layouts anymore but

with carving decompositions, i.e. trees, we need the metrics inM to be adapted

from single vertex sourced to ”from bags to bags”. This means that our new set

M(c) contains the following metrics :

M(c) = {sep(c)
G,s,esep(c)

G,s,path(c)
G,s,epath(c)

G,s}, (4.2)

where (e)sep(c)
G,s(X1, X2) is the minimum number of edges/vertices needed to

remove in order to separate the set of nodesX1 fromX2. Similarly, (e)path(c)
G,s(X1, X2)

is the maximum number of (edges-)paths that connects the set of nodes X1 to

the set X2.

Min-max Definition for Connectivity Degeneracy and admissibility Let (T, σ) be a

carving decomposition and consider the set M(c) as previously defined. For

now on, we make the assumption that every tree is binary and rooted. Define

also (T ) = V (T ) \ L(T ). Moreover, if v ∈ I(T ), consider both L1(v) and L2(v),
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the sets leaves issued by v (see Figure 4.3). Then, for a given carving decom-

position (T, σ), we have the two following functions :

∀µ ∈M(c), ∀v ∈ I(T ) : costµ(v) = µ

(
σ−1
(
L1(v)

)
, σ−1

(
L2(v)

))
(4.3)

and,

widthµ(T, σ) = max{costµ(v)|v ∈ I(T )}. (4.4)

Finally we can define the s(-edge)-connectivity degeneracy, denoted by λs(e),

as the minimum widthµ(T, σ) over all rooted carving decompositions with µ =

(e)sep(c)
G,s ; and equivalently, the s(-edge)-connectivity admissibility, denoted γs(c)

as the minimum widthµ with µ = (e)path(c)
G,s.

Max-min Equivalence for the Connectivity Degeneracy. As for the degree degene-

racy, there exists a max-min version of the previous definition. Indeed as we

showed in Subsection 3.3.2, there are two ways to define degree degeneracy.

The first one corresponds to a min-max definition with layouts, whereas the

other one is a max-min characterization by means of hideouts.

In the connectivity framework, this equivalence exists as well, where k-blocks,

defined in Definition 4.2.1, are used instead of hideouts. Indeed, consider S ⊆
V (G), so that :

cost∗µ(S) = min{µ(X1, X2)|X1, X2 ⊆ S : X1 ∪X2 = S,X1 ∩X2 = ∅}. (4.5)

If cost∗µ(S) ≤ k for a given µ = (e)sep(c)
G,s, therefore, S is a k(-edge)-block.

Then, using the proof of Lemma 3.4.14, s(-edge)-connectivity degeneracy is

defined as the maximum cost∗µ(S) for every subset S of V (G), given that |S| > 1.

Now that the various degeneracy hierarchies are defined in a unified way, the

subsequent analysis will focus on deriving properties to link the latter notions.
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Also, we show that most of the properties for a given hierarchy can be inherited

by another one.

4.3 Connectivity Degeneracy versus Degree Degeneracy

This section derives a unified framework for generating degeneracy hierar-

chies, based on both degree or connectivity measures. The proposed design

is applied on both graphs and multigraphs, i.e. graph containing parallel edges.

Finally, a classification, as well as an ordering of the hierarchies, will be develo-

ped. The goal of this work is to provide as many generic properties as possible,

to render feasible the usage of whichever degeneracy concept we might find

interest in. Precisely, the latter choice can be mainly driven by the applications

at stake. For instance, we will propose in the following section, an in-depth ap-

plication to edge-connectivity. We will highlight that, when some hierarchies are

ordered, these comparisons can lead to very useful heuristics in the design of

algorithms to find such degeneracy decompositions.

4.3.1 Degeneracy Hierarchies Generator

We will start by presenting a degeneracy generator, using the sets M and

M(c). As we saw in the previous section, letting s vary in the s-degeneracy

and s-edge-degeneracy, provides us two hierarchy of invariants, i.e. δs and δse.

Additionally, consider both the s-admissibility and the s-edge-admissibility as

defined in Subsection 4.2.1, respectively defined by αs and αse.

Hence, similarly to connectivity analysis, both connectivity degeneracies λs

and λse, have its corresponding connectivity admissibility γs and γse .

Following the previous section, it is possible to build the latter hierarchies, from

M andM(c), with the procedure below :

∀µ ∈M, ∀s ∈ N≥1 : δµ = min
∀L

max
vi∈L

i∈{1,...,n}

µ(vi, L≤i), (4.6)

where L is a layout in G. And for the connectivity analogue, given a carving

decomposition :

50



∀µ ∈M(c), ∀s ∈ N≥1 : λµ = min
∀(T,σ)

max
v∈I(T)

µ

(
σ−1
(
L1(v)

)
, σ−1

(
L2(v)

))
(4.7)

where (T, σ) chosen among all the rooted carving decompositions of G.

Now, thanks to Equation 6.1 and Equation 4.7, we are able to generate any

of the previously mentioned hierarchies with this min-max routine.

It remains to analysis the common properties and possible relationships. In fact

we will first present the ordering of the degree vertex degeneracy and admissi-

bility, and try to extend it to the connectivity hierarchies.

4.3.2 s-degeneracy and s-admissibility Comparison

In [Richerby and Thilikos, 2011], the authors worked on the first degree de-

generacy hierarchies presented, i.e. vertex s-degeneracy and admissibility. Let

us remind the following results and inequalities. By construction we have first :

δ1 ≤ δ2 ≤ · · · ≤ δ∞ (4.8)

α1 ≤ α2 ≤ · · · ≤ α∞. (4.9)

Then, for s from 1 to 3 and for s = ∞ (proved in [Richerby and Thilikos,

2011]) we have the following relationship between the two hierarchies :

δ1

=

≤ δ2

=

≤ δ3

=

≤ . . .

≤

≤ δ∞

=

(4.10)

α1 ≤ α2 ≤ α3 ≤ · · · ≤ α∞. (4.11)

In Chapter 3, this relationship was proved to hold as well for the edge coun-

terpart of the degree degeneracy, for s =∞. Hence, as this result is known for

s from 1 to 2 [Exoo, 1983], similarly :
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δ1
e

=

≤ δ2
e

=

≤ . . .

≤

≤ δ∞e

=

(4.12)

α1
e ≤ α2

e ≤ · · · ≤ α∞e . (4.13)

It is clear that it is sufficient to only use δ∞e instead of defining the general

concept of admissibility in the latter section.

Finally, such properties are of interest as well for the connectivity hierarchies.

Unfortunately, most of these results are unknown so far, but we are confident

to conclude with the same tools and techniques used to prove the relationship

between Equation 4.12 and Equation 4.13. So far we can ensure the following

result :

λ1
e

=

≤ λ2
e ≤ λ3

e ≤ · · · ≤ λ∞e

=

(4.14)

γ1
e ≤ γ2

e ≤ γ3
e ≤ · · · ≤ γ∞e . (4.15)

Remark : We are convinced that this type of relationship is true for every

hierarchy defined so far but the proofs are left for future work resulting in the

following conjecture.

Conjecture 4.3.1. Considering the hierarchy of invariants λs/αs and λse/αse, na-

mely the s-connectivity degeneracy/admissibility and the s-edge-connectivity

degeneracy/admissibility. The following orderings hold :

λ1

=

≤ λ2

=

≤ λ3

=

≤ . . .

≤

≤ λ∞

=

(4.16)

γ1 ≤ γ2 ≤ γ3 ≤ · · · ≤ γ∞. (4.17)

λ1
e

=

≤ λ2
e

=

≤ . . .

≤

≤ λ∞e

=

(4.18)

γ1
e ≤ γ2

e ≤ · · · ≤ γ∞e . (4.19)
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4.3.3 Relation Between Degree and Connectivity

Now that we have a comparison of every degeneracy hierarchy compared

with its analogue admissibility, this section attempts to put in relation connecti-

vity and degree degeneracy.

First a straightforward result coming from Lemma 3.4.14 is the following in-

equality.

Corollary 4.3.2. For every undirected, loopless, unweighted, with potential pa-

rallel edges graph G we have :

λ
∞
e (G) ≤ δ∞e (G) ≤ 2λ∞e (G)(4.20)

Moreover we can prove easily that this result is true for s = 1, i.e. we have

the following theorem :

Theorem 4.3.3. For every undirected, loopless, unweighted, with potential pa-

rallel edges graph G we have :

λ1
e(G) ≤ δ1

e(G) ≤ 2λ1
e(G) (4.21)

Démonstration. Proving that δ1
e(G) ≤ 2λ1

e(G) is as well a direct result from the

proof of Lemma 3.4.14. For the first inequality in Equation 4.21 suppose there

exists a layout Lopt of G such as δ1
e(G) = max

vi∈Lopt

esep1,Lopt
(vi, Lopt≤i

) = k. Sup-

pose now the argmax of this formula is vm . There exists a tree Tm with root

vm such that width(Tm, σ) = esep(c)
(1,Lopt)

({vm}, Lopt \ vm) = k by construction of

vm. Hence, as λ1
e(G) is the minimum value of the width over all possible carving

decompositions, λ1
e(G) ≤ k, thus λ1

e(G) ≤ δ1
e(G).

Finally we managed to show that we can rank degeneracies. Here we can

notice as well that the δ1
e(G) decomposition corresponds to the well known k-

core decomposition [Seidman, 1983b]. Hence we can use this theorem the

other way around to bound the λ1
e degeneracy in real world scenarios using the
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k-core algorithm, i.e., δ1
e(G)/2 ≤ λ1

e(G) ≤ δ1
e(G). Thus, in the following section,

we provide an algorithm to find λ1
e using what we learnt so far, and evaluate this

degeneracy compared to the known ones.

4.4 Algorithm Design for k-Edge-Connectivity Degeneracy

For now on we will refer to the δ1
e = δ∗ degeneracy decomposition as the

k-core decomposition, and similarly denote λ1
e = λ∗ degeneracy as the k-edge-

connectivity degeneracy decomposition, or k-edge-connectivity cores.

Edge-connectivity degeneracy has already drown interest from its own, i.e.

papers like [Zhou et al., 2012] or lately [Dory, 2018], provide algorithmic me-

thods to evaluate λ∗ and the corresponding subgraph. These papers propose

methods with low complexity, the first for standard computing, inO(hl|E|) where

h, l � |V (G)|, and the second proposes an algorithm in sublinear time using

distributed computing. Although having interesting and rather efficient methods

to compute the top edge-connectivity core, none of these papers bothered to

try applying it to real world applications. They stopped to comparing runtimes

with other papers providing exact or approximations of the edge-connectivity

core.

Our goal here is to design thanks to Equation 4.21 and another theorem

presented later an algorithm that is competitive with the one from [Zhou et al.,

2012], since we do not work with distributed methods. And want to investigate if

the edge-connectivity degeneracy outperforms k-core frameworks and the like

in classic tasks for these decompositions.

4.4.1 Properties and Heuristics

Let’s start with an alternative definition for λ∗ using minimal cuts from [Bol-

lobás, 2013].

Definition 4.4.1. Let G be a graph. We define the edge-connectivity degene-
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racy of G as a follows :

λ∗(G) = max{λ(H) | H ⊆ G}.

where λ(H) = min{cut(X1, X2)|X1∪X2 = V (H), X1∩X2 = ∅} giving the minimal

cut in H.

Following this definition we will not need carving decompositions or k-blocks

to compute λ∗. Minimal cuts, as a k-edge-connected graph can not be split by a

minimal cut of size less than k. A naive way would then be to check the minimal

cut between every pair of nodes to find λ∗.

Unfortunately, computing minimal cuts in a graph can be done in O(n2 log(n))

with the Karger-Stein algorithm [Karger and Stein, 1996], which means that

finding the edge-connectivity core can be done in O(n2(m + n log(n))) with an

adapted algorithm from [Yan et al., 2005], which is terrible. Especially if we

compare to the algorithm from [Zhou et al., 2012], where the complexity of its

algorithm is O(n2 log(n)).

The major problem of this method is the need to compute minimal cut algo-

rithm in the whole graph. Thankfully thanks to Equation 4.21 we know that we

do not need to look at the whole graph to find λ. We also have the following

theorem from [Menger, 1927] up our sleeve that we will benefit from :

To tackle the problem of computing naively the mincut algorithm between

every pair of nodes in a graph. We need to find some heuristic to explore only

a small part of the graph. Indeed such a heuristic can be found thanks to Equa-

tion 4.21 and the following theorem.

Theorem 4.4.2. Let G be a graph and let C = {C1, . . . , Cr} be a collection of

vertex disjoint connected subgraphs of G. Let also G′ be the graph obtained if

we contract inG all edges in the graphs in C. IfG′ is d-edge connected and each

graph in C is d-edge connected or a single vertex, then G contains a subgraph

that is d-edge connected.

Consider now a graphG, following Equation 4.21, the top k-edge-connectivity
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core is somewhere between δ∗(G)/2 and δ∗(G). Therefore, a first search crite-

rion would be to look for the top k-edge-connectivity core in subgraphs between

the δ∗/2-core and δ∗-core of a graph. This key step leads to computing minimal

cuts in subgraphs that are consistently smaller than the original graph. This

trick enables us to reduce drastically the complexity of the method using mini-

mal cuts to O(n3
k/2 log3(nk/2)) in the worst cases, and in the best cases nk � n

making the method very fast.

4.4.2 Algorithm Design

Algorithm 4 Contraction Algorithm
1: procedure CONTRACT(G,nodes)
2: Input G : Undirected Graph, nodes : Nodes from a subgraph to contract
3: Output G : Transformed Graph with contracted subgraph
4:
5: sinknode = nodes[0]
6: for node ∈ nodes[1 :] do
7: G.neighbors[sinknode]+ = G.neighbors[node]
8: G.remove(node)
9: end for

10: end procedure

Although the previous reduction is a very efficient way to reduce the com-

putational cost, the worst case scenario being having to look up to the δ∗/2-

core remains expensive. This subgraph can contain a third of the nodes in

some cases which is not an interesting improvement anymore. Hence thanks

to a recursive application of the contraction algorithm 4 and the previous trick,

we are able to propose an algorithm that runs, in the worst case scenario, in

O(k
2
n2
k/2 log2(nk/2)) for finding the top k-edge-connectivity core.

k-edge-connectivity core finding procedure. Let k = δ∗(G). First, k/2 ≤ λ∗(G) ≤ k.

For every z ∈ [k/2, k] (starting from k), the z-edge-connectivity core can be

found using the procedure :

— Initialisation : Set found = FALSE.

— Step 1 : Let Ak be the k-core of G.
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— Step 2 : Run the Karger-Stein algorithm on Ak in order to find an edge cut

of size < z. If no such set is found, then it is known that λ∗(Ak) ≥ z ⇒
λ∗(G) ≥ z. If such a cut is found for some S ⊆ V (Ak), set found = TRUE,

A
(1)
k = Ak[S] and A(2)

k = Ak \S. Recursively run the Karger-Stein algorithm

on A(1)
k and A(2)

k . When this recursion finishes one obtains a partition of Ak
into sets S = {S1, . . . , Sq}, where each Si either is a singleton or induces a

z-edge-connected subgraph in Ak.

— Step 3 : If S is not trivial, it is known that λ∗(Ak) ≥ z ⇒ λ∗(G) ≥ z. Then,

construct G′ by contracting all non-trivial Si’s. Denote by G′ the resulting

graph. Notice that, by Theorem 4.4.2, λ∗(G′) ≥ z ⇔ λ∗(G) ≥ z. Then set

G := G′, found := TRUE and go to step 1.

— Step 4 : If S is trivial and found = TRUE, use the essential singletons in S
to build the z-edge core partition and stop.

— Step 5 : If S is trivial and found = FALSE, set k := k − 1 and go to step 1.

Remark : This algorithm is guaranteed to terminate thanks to Equation 4.21.

It is important to note that this algorithm can be used not only to find the

k-edge-connectivity core, but also the remaining decomposition of the edge-

connectivity core. Indeed, it can be achieved by contracting the previous core

found in the initial graph and searching for the top k-edge-connectivity core in

this new graph. Of course, the more k will be close to 0, the higher the com-

plexity.

4.5 Experiments

In this section we will investigate possible use of the edge-connectivity cores

and compare the obtained carving decomposition tree to the k-core nested

decomposition. We will at first show the inherent difference between the k-

edge-connectivity core and the k-core decomposition. In the second part, we

will discuss the results on seeding spreading processes, to compare to similar

frameworks such as k-truss decomposition.
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FIGURE 4.4: Khaufold graph edge-connectivity carving tree decomposition. Every circle repre-
sents a subgraph, and is logarithmically proportional to its size. A connection means that it
is contained in the subgraph above. A particular color represents a given k-edge-connectivity
core, where λ∗(G) = 8 in darker green up to 0 in red corresponding to the whole graph.

4.5.1 Tree-like Decomposition versus Nested One

It is known that the k-core decomposition, as shown in Figure 2.3, provides

a linear nested layout decomposition of the graph. Briefly, for a given connec-

ted component, the k-core is a subgraph of the k − 1-core, and so on. Also,

every core is a connected component nested in the previous one. This is not

necessarily the case for the k-edge-connectivity cores, as shown in Figure 4.4.

Unfortunately this figure is quite rare i.e. in the real world datasets, especially

the ones without parallel edges do not present this kind of tree-like carving.

Most of the real datasets have linear layouts, that is almost the same as the
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one provided by the k-core decomposition.

4.5.2 Epidemic Models

As k-truss decomposition shined in finding influential spreaders in epidemic

models, we first wanted to compare our framework to k-core and k-truss in this

domain. It was also emphasised by Figure 4.4, that some nodes situated in the

joints of the trees, i.e. that have lots of close connections to other leafs, may

be very efficient spreaders. It is fairly obvious that seeding an infection in any

k-edge-connectivity core ensures a very fast spreading of this infection within

the given leaf it has been implanted in. A natural selection for spreads will then

be nodes that are on bridges between these leafs and also contained in the

most connected ones. Hence we will evaluate the spreaders with one of the

mostly studied epidemic models, the Susceptible-Infected-Recovered (SIR)

model [Barrat et al., 2008]. The compartmental model assumes a population

of N individuals, divided into three states :

S I R
β γ

1− β 1− γ

1. Susceptible (S) : The individual is not yet infected, thus being susceptible

to the epidemic.

2. Infected (I) : The individual has been infected with the disease and it is

capable of spreading the disease to the susceptible population.

3. Recovered (R) : After an individual has experienced the infectious period, it

is considered as removed from the disease and it is not able to be infected

again or to transmit the disease to others (immune to further infection or

death).

Moreover, an infected node can infect a neighbor with probability β at each

time step. The infected node can also recover with probability γ. For our expe-

riments those two constants are fixed for each given dataset. We choose β to
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be close to the epidemic threshold given by τ = 1/λ1 where λ1 is the largest

eigenvalue of the given graph adjacency matrix, γ is arbitrarily set to 0.8.

4.5.3 Datasets

We evaluate our spreaders on two graph datasets, where both are undirec-

ted with no parallel edges. The first one, Email-Enron is a collaboration network

of email exchanges within the Enron Corporation. The second one, Wiki-vote

contains the voting data from the Wikipedia website. Statistics for both datasets

are detailed in Table 4.1. Moreover, for each dataset, we selected the best fit

from the influential spreaders in the set T from the deepest core of each me-

thod. For our method, as already mentioned, each node from a given core is

connected to the others by at least k edge independent paths. We chose the

ones that have the more edges pointing outside the given cores.

Network Name Nodes Edges δ∗ Tmax λ∗ |T | β

EMAIL-ENRON 33, 696 180, 811 43 22 43 45 0.01
WIKI-VOTE 7, 066 100, 736 53 23 53 50 0.009

TABLE 4.1: Datasets used for the experiments, δ∗ is the top k for the k-core decomposition,
Tmax and λ∗ the corresponding ones for the k-truss and the k-edge-connectivity cores. |T | is
the number of influential spreaders initially selected from each method and β is the infection
probability.

As we saw, the cores produced by the edge-connectivity have a lot of very

interesting properties, such as the ability to produce very good spreaders.

Nevertheless, another application of this work can focus on influence maxi-

misation problems. For instance, one can find a sufficiently dense/big core

and try a greedy algorithm in order to find the most influential nodes in those

subgraphs (lets say one for each disconnected subgraph). The underlying in-

tuition being that a main influential node, will influence very quickly the rest

of the subgraph and hence locally maximise the influence.

4.5.4 Results

As explained in the previous sections, a comparison of the selected sprea-

ders from the k-edge-connectivity core to the ones from the k-core and the
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Time Step
Method 2 4 6 8 10 Final step Max step

edge core 21.47 115.13 350.13 428.23 250.93 2, 647.74 28
EMAIL- truss 8.44 46.66 204.08 418.77 355.84 2, 596.52 33
ENRON core 4.78 31.97 152.55 367.28 364.13 2, 465.60 37

top degree 6.89 34.13 155.48 360.89 357.08 2, 471.67 36

edge core 5.15 12.15 24.72 40.96 52.74 626.09 34
WIKI- truss 2.92 6.92 15.27 28.73 42.46 560.66 52
VOTE core 1.92 4.78 10.65 20.66 32.40 466.01 57

top degree 2.43 5.46 12.05 23.05 35.55 502.88 62

TABLE 4.2: Cumulative number of infected nodes per step of the SIR model using β close to the
epidemic threshold of each graph and γ = 0.8. The Final step column shows the total number
of infected nodes at the end of the process (Max step column).

k-truss of each graph, was performed. First, by results in Table 4.2, it is clear

that the seeders extracted from the edge-connectivity core infect way faster and

spread quickly through the network. Indeed, at every time step of the spreading

process we outperform the other degeneracy frameworks.

Unfortunately, even if the results here are very good, we must give some clarifi-

cations and drawbacks to our experiments. As it was explained in the previous

section, the choice of our spreaders is not just taking random nodes from the

top k-edge-connectivity core, there were some characteristics, problem spe-

cific, to choose the spreaders among the nodes available. Moreover, the fact

that we only have two datasets is due to two main reasons. The first one, as it

was developed in Subsection 4.5.1, both the tree carving decomposition of the

k-edge-connectivity core and the layout of the k-core were almost the same.

This is mainly due to the fact that meaningful graph datasets with sets of parallel

edges, where the k-edge-connectivity degeneracy really shines are hard to find.

On the other hand, our method is computationally very expensive, way more

than the k-core and k-truss method. Not only that, as we said, the decompo-

sition for most datasets the k-edge-connectivity decomposition is very close, if

not the same, as the one issued from the k-core. Even in cases like 4.5 where

it looks like there is an important difference between the two decompositions,

looking closer we see that it does not provide tremendous information : here
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FIGURE 4.5: Size (top graph) and ε density (bottom graph) comparison of the edge-connectivity
core decomposition (in red) versus the k-core decomposition (in blue), note that it starts at the
42 core instead of 43 which is the top core of the k-core because both cores are the same for
k = 43.

the top k-edge-connectivity core and the top k-core are the same. And even

taking a lower k for the edge-connectivity core will be the same as taking the

top k-core, but with a tremendous computational cost in addition to it. Hence

we ask ourselves why use the edge-connectivity core and not the k-core.

4.6 Conclusion

In this Chapter, we managed to gather and unify degree degeneracy hierar-

chies, connectivity degeneracy hierarchies and their corresponding admissibi-

lity hierarchies. Hence we are able to generate them with a simple framework of

min-max definitions with the four graph metrics we presented. Moreover as we
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started giving inequalities and properties ordering degeneracy and correspon-

ding admissibility in Chapter 3, we extended this knowledge and saw that the

properties and hierarchies proposed follow all the same behaviour and have re-

lationships that can be generalized. It was also very interesting to see that one

can benefit from the other in order to provide bounds for a given connectivity

or degree degeneracy. Capitalizing on this knowledge we started to study the

edge-connectivity degeneracy as it was the most natural candidate to produce

exploitable graph decompositions.

Unfortunately the study of edge-connectivity cores proved to be less im-

pacting than what we expected. Even Though we managed to provide a very

efficient algorithm, both real-world dataset structure and density caused our

method to perform poorly. The fact, though, that the edge-connectivity core

decompositions were very close to the ones provided by the k-core decom-

position, gives us more information and motivation to stick with the k-core. In-

deed, thanks to [Batagelj and Zaveršnik, 2011] providing a very fast algorithm

for k-core decomposition (complexity of O(n log(n))), and the fact that for most

graphs, the k-core decomposition has properties from edge-connectivity dege-

neracy, i.e. not splittable by k size minimal cuts. We can assume that using

the k-core decomposition as an approximation to the edge-connectivity dege-

neracy is an acceptable solution.

Hence, in the following chapters of this dissertation, we will use directly k-

core or variants of it for given graph structures to tackle the upcoming problems.

As for these problems, k-core was almost exclusively used in an unsupervised

learning scope. Usually making for a very good feature, or subgraph extraction.

We want to see if this framework can be plugged to supervised learning rou-

tines, and one of the first ones we wanted to evaluate it is in graph kernels, as

it is a milestone in graph classification.
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CHAPITRE 5

A Degeneracy Framework for Graph Similarity

The problem of accurately measuring the similarity between graphs is at the

core of many applications in a variety of disciplines. Most existing methods for

graph similarity focus either on local or on global properties of graphs. Howe-

ver, even if graphs seem very similar from a local or a global perspective, they

may exhibit different structure at different scales. In this chapter, we present

a general framework for graph similarity which takes into account structure at

multiple different scales.

The proposed framework capitalizes on the k-core decomposition of graphs

in order to build a hierarchy of nested subgraphs. We apply the framework

to derive variants of four graph kernels, namely graphlet kernel, shortest-path

kernel, Weisfeiler-Lehman subtree kernel, and pyramid match graph kernel.

Nevertheless, we provide a performance criterion that enable us to predict if

the core-kernel variant of a given kernel is able to out-perform the latter.

The framework though is not limited to graph kernels, but can be applied to

any graph comparison algorithm. The proposed method is then evaluated on

several benchmark datasets for graph classification. In most cases, the core-

based kernels achieve significant improvements in terms of classification accu-
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racy over the base kernels, while their time complexity remains very attractive.

5.1 Introduction

Graphs are well-studied structures which are utilized to model entities and

their relationships. In recent years, graph-based representations have become

ubiquitous in many application domains. For instance, social networks, pro-

tein and gene regulatory networks, and textual documents are commonly re-

presented as graphs. Furthermore, in the past years, graph classification has

arisen as an important topic in many domains such as in Computational Bio-

logy [Schölkopf et al., 2004], in Chemistry [Mahé and Vert, 2009] and in Natural

Language Processing [Nikolentzos et al., 2017a]. For example, in Chemistry,

we are often interested in predicting the mutagenicity of a chemical compound

by comparing its graph representation with other compounds of known functio-

nality.

So far, kernel methods have emerged as one of the most effective tools for

graph classification, and have achieved state-of-the-art results on many graph

datasets [Shervashidze et al., 2011]. Once we define a positive semidefinite

kernel function for the input data, a large family of learning algorithms called

kernel methods [Smola and Schölkopf, 1998] become available. In more details,

kernels are functions that correspond to a dot product in a reproducing kernel

Hilbert space, and which measure the similarity between two objects. Kernel

functions do not require their inputs to be represented as fixed-length feature

vectors, and they can also be defined on structured data such as graphs, trees

and strings. Hence, kernel methods provide a flexible framework for performing

graph classification.

Most graph kernels in the literature are instances of the R-convolution fra-

mework [Haussler, 1999]. These kernels decompose graphs into their substruc-

tures and add up the pairwise similarities between these substructures. Speci-

fically, there are kernels that compare graphs based on random walks [Gärtner

et al., 2003, Vishwanathan et al., 2010, Sugiyama and Borgwardt, 2015], sub-
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trees [Gärtner et al., 2003,Mahé and Vert, 2009], cycles [Horváth et al., 2004],

shortest paths [Borgwardt and Kriegel, 2005], and small subgraphs [Sherva-

shidze et al., 2009, Kriege and Mutzel, 2012]. Recently, there was a surge of

interest in kernels that are built upon global properties of graphs [Johansson

et al., 2014, Johansson and Dubhashi, 2015, Nikolentzos et al., 2017b]. In ge-

neral, these approaches embed the vertices of each graph in a vector space,

and then compare graphs based on these embeddings.

Most existing graph kernels can thus be divided into two classes. The first

class consists of kernels that compare local substructures of graphs (i.e. trees,

cycles, graphlets), while the second class includes kernels that capture global

properties of graphs and are sensitive to the large scale structure of graphs.

Some examples of the second class are the random walk based kernels, and

the kernels that compare graphs based on the embeddings of their vertices.

Therefore, existing graph kernels focus mainly on either local or global proper-

ties of graphs. In practice, it would be desirable to have a kernel that can take

structure into account at multiple different scales [Kondor and Pan, 2016]. Two

well-known kernels that account for that are the Weisfeiler–Lehman subtree

kernel [Shervashidze et al., 2011] and the propagation kernel [Neumann et al.,

2016]. However, both approaches assume node-labeled graphs. Recently, the

multiscale Laplacian kernel was introduced to effectively compare structure at

different scales [Kondor and Pan, 2016], while some neural network architec-

tures were also designed to address the same problem [Dai et al., 2016].

In this chapter, we propose a framework for comparing structure in graphs

at a range of different scales. Our framework is based on the k-core decom-

position which is capable of uncovering topological and hierarchical properties

of graphs. Specifically, the k-core decomposition builds a hierarchy of nested

subgraphs, each having stronger connectedness properties compared to the

previous. By measuring the similarity between the corresponding according to

the hierarchy subgraphs and combining the results, we can build more accurate

measures of graph similarity.
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More specifically, the contributions of this chapter are threefold :

— We propose a general framework that allows existing graph similarity al-

gorithms to compare structure in graphs at multiple different scales. The

framework is based on the k-core decomposition of graphs and is appli-

cable to any graph comparison algorithm.

— We demonstrate our framework on four graph kernels, namely the graphlet

kernel, the shortest path kernel, the Weisfeiler-Lehman subtree kernel, and

the pyramid match kernel.

— We evaluate the proposed framework on several benchmark datasets from

bioinformatics, chemoinformatics and social networks. In most cases, the

variants obtained from our framework achieve significant improvements

over the base kernels.

The rest of this chapter is organized as follows. Section 5.2 introduces some

preliminary concepts and gives details about graph degeneracy and the k-core

decomposition. Section 5.3 provides a detailed description of our proposed fra-

mework for graph similarity. Section 5.4 evaluates the proposed framework on

several standard datasets.

5.2 Preliminaries

In this section, we first define our notation, and we then introduce the concepts

of k-core and degeneracy. We also give details about the algorithm that extracts

the k-cores of a graph.

5.2.1 Definitions and Notations

Let G = (V,E) be an undirected and unweighted graph consisting of a set

V of vertices and a set E of edges between them. We will denote by n the

number of vertices and by m the number of edges. The neighbourhood N (v) of

vertex v is the set of all vertices adjacent to v. Hence, N (v) = {u : (v, u) ∈ E}
where (v, u) is an edge between vertices v and u of V . We denote the degree
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of vertex v by d(v) = |N (v)|.

Given a subset of vertices S ⊆ V , let E(S) be the set of edges that have

both end-points in S. Then, G′ = (S,E(S)) is the subgraph induced by S. We

use G′ ⊆ G to denote that G′ is a subgraph of G. The degree of a vertex v ∈ S,

dG′(v), is equal to the number of vertices that are adjacent to v in G′.A labeled

graph is a graph with labels on vertices and/or edges.

In this chapter, we will consider two types of graphs : (1) unlabeled graphs

and (2) graphs with labeled vertices. For the second type of graphs, given a set

of labels L, ` : V → L is a function that assigns labels to the vertices of the

graph.

5.2.2 Base Kernels

A graph kernel is a symmetric, positive semidefinite function on the set of

graphs G. Once we define such a function k : G × G → R on the set G, it is

known that there exists a map φ : G → H into a Hilbert space H, such that :

k(Gi,Gj) = 〈φ(Gi), φ(Gj)〉H

for all Gi, Gj ∈ G where 〈., .〉H is the inner product in H. Roughly speaking, a

graph kernel is a function that measures the similarity of two graphs.

Our framework will be applied on the following graph kernels :

— graphlet kernel (GR) [Shervashidze et al., 2009] : The graphlet kernel

counts identical pairs of graphlets (i.e. subgraphs with k nodes where k ∈
3, 4, 5) in two graphs.

— shortest path kernel (SP) [Borgwardt and Kriegel, 2005] : The shortest

path kernel counts pairs of shortest paths in two graphs having the same

source and sink labels and identical length.

— Weisfeiler-Lehman subtree kernel (WL) [Shervashidze et al., 2011] : The

Weisfeiler-Lehman subtree kernel for a number of iterations counts pairs
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of matching subtree patterns in two graphs, while at each iteration updates

the labels of the vertices of the two graphs.

— pyramid match graph kernel (PM) [Nikolentzos et al., 2017b] : The py-

ramid match graph kernel first embeds the vertices of the input graphs in

a vector space. It then partitions the feature space into regions of increa-

singly larger size and takes a weighted sum of the matches that occur at

each level.

5.3 Degeneracy Framework

In this Section, we propose a new framework for graph similarity that is based

on the concept of k-core, and we show how existing graph kernels can be

plugged into the framework to produce more powerful kernels.

5.3.1 Core-based Graph Kernels

We next propose a framework for obtaining variants of existing graph ker-

nels. Since the framework utilizes the k-core decomposition, we call the emer-

ging kernels core variants of the base kernels. The proposed framework allows

the comparison of the structure of graphs at multiple different scales as these

are expressed by the graphs’ k-cores.

The intuition of using the k-core algorithm to decompose a graph is that in-

ternal cores are more important compared to external cores. Hence, they are

more likely to reveal information about the class label of the graph compared to

external cores. This is by no means implausible since internal cores correspond

to subgraphs of high density. As mentioned above, the k-core decomposition is

typically used to identify areas of increasing connectedness inside the graph. In

almost all graphs, density is an indication of importance [Lee et al., 2010]. For

example, in protein-protein interaction networks, dense subgraphs may corres-

pond to protein complexes. Hence, we expect that by decomposing graphs into

subgraphs of increasing importance, we will be able to capture their underlying

structure, and compare them effectively.
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We next introduce the degeneracy framework for deriving core variants of

existing kernels.

Definition 5.3.1. Let G = (V,E) and G′ = (V ′, E ′) be two graphs. Let also k be

any kernel for graphs. Then, the core variant of the base kernel k is defined as

kc(G,G
′) = k(C0, C

′
0) + k(C1, C

′
1) + . . .+ k(Cδ∗min

, C ′δ∗min
) (5.1)

where δ∗min is the minimum of the degeneracies of the two graphs, and C0, C1, . . . , Cδ∗min

and C ′0, C
′
1, . . . , C

′
δ∗min

are the 0-core, 1-core,. . ., δ∗min-core subgraphs of G and

G′ respectively.

In the following, we will prove the validity of the core variants produced by

our framework.

Theorem 5.3.2. Let the base kernel k be any positive semidefinite kernel on

graphs. Then, the corresponding core variant kc of the base kernel k is positive

semidefinite.

Démonstration. Let φ be the feature mapping corresponding to the base kernel

k

k(G,G′) = 〈φ(G), φ(G′)〉

Let gi(·) be a function that removes from the input graph all vertices with core

number less than i and their incident edges. Then, we have

k(Ci, C
′
i) =

〈
φ(gi(G)), φ(gi(G

′))
〉

Let us define the feature mapping ψ(·) as φ(gi(·)). Then we have

k(Ci, C
′
i) = 〈ψ(G), ψ(G′)〉

hence k is a kernel on G and G′ and kc is positive semidefinite as a sum of

positive semidefinite kernels.
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Given two graphs G,G′ and a base kernel k, the steps of computing the core

variant of k are given in Algorithm 5.

Algorithm 5 Core-based Kernel

1: procedure CORE-KERNEL(G,G′)
2: Input : A pair of graphs G and G′

3: Output : Result of the kernel function val
4:
5: val = 0
6: δ∗min = min

(
δ∗(G), δ∗(G′)

)
7: Let Ci, C

′
i be the i-cores of G,G′, for i = 0, . . . , δ∗min

8: for i = δ∗min to 0 do
9: val = val + kernel(Ci, C

′
i)

10: end for
11: end procedure

The above definition provides a framework for increasing the expressive po-

wer of existing graph kernels.

In contrast to other existing frameworks, the proposed framework is not limi-

ted to R-convolution kernels [Yanardag and Vishwanathan, 2015] or to node-

labeled graphs [Shervashidze et al., 2011]. Furthermore, it should be mentio-

ned that the proposed framework is not even restricted to graph kernels, but can

be applied to any algorithm that compares graphs. Hence, it can serve as a ge-

neric tool applicable to the vast literature of graph matching algorithms [Conte

et al., 2004].

5.3.2 Computational Complexity

The proposed framework takes into account structure at different scales, yet

it remains an interesting question how it compares to base kernels in terms of

runtime complexity.

Its computational complexity depends on the complexity of the base kernel

and the degeneracy of the graphs under comparison. More specifically, given

a pair of graphs G,G′ and an algorithm A for comparing the two graphs, let OA
be the time complexity of algorithm A.

Let also δ∗min = min
(
δ∗(G), δ∗(G′)

)
be the minimum of the degeneracies of

the two graphs. Then, the complexity of computing the core variant of algorithm

A is Oc = δ∗minOA. It is well-known that the degeneracy of a graph is upper
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bounded by the maximum of the degrees of its vertices and by the largest ei-

genvalue of its adjacency matrix λ1. Since in most real-world graphs it holds

that λ1 � n, it also holds that δ∗max � n, and hence, the time complexity added

by the proposed framework is relatively low.

Moreover some base kernels, one might be able to exploit the fact that high-

order cores are contained into lower-order cores in order to perform some com-

putations only once instead of repeating them for all cores. One example of

such a base kernel is the graphlet kernel. Given two cores of a graph Ci and Cj
with i < j, all the graphlets found in Cj will also be present in Ci.

5.3.3 Dimensionality Reduction Perspective

The k-core decomposition can also be seen as a method for performing

dimensionality reduction on graphs. Given the i-cores Ci, i = 1, . . . , δ∗(G) of

a graph G, each core Ci can be considered as an approximation of the graph

where features of low importance (i.e. vertices belonging to low-order cores and

their incident edges) have been removed from the graph. The approximation er-

ror can be computed by the Frobenius norm of the difference of the adjacency

matrices of the two graphs er = ||A− Ai||F where A,Ai are the adjacency ma-

trices of graph G and its i-core respectively.

In cases where the input graphs are very large, the running time of high-

complexity algorithms is prohibitive. For example, computing the shortest path

kernel on the D&D dataset takes almost 1 hour. In such cases, we can take

advantage of the k-core decomposition to effectively prune a large number of

vertices from the input graphs by retaining only their high-order cores. Then,

it may be possible to employ a high-complexity algorithm. For example, by re-

placing the graphs contained in the D&D dataset with their 3-cores, we ma-

naged to compute the core variant of the shortest path kernel in less than 5

minutes and to achieve accuracy comparable to the best performing algorithms

(avg. acc = 77.92).
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5.4 Experiments and Evaluation

In this section, we first describe the datasets that we used for our experi-

ments. We next give details about the experimental settings. We last report on

the performance of the base kernels and the core variants.

5.4.1 Datasets

We evaluated the proposed framework on standard graph classification da-

tasets derived from bioinformatics and chemoinformatics (MUTAG, ENZYMES,

NCI1, PTC-MR, D&D), and from social networks (IMDB-BINARY, IMDB-MULTI,

REDDIT-BINARY, REDDIT-MULTI-5K, REDDIT-MULTI-12K) 1. Note that the so-

cial network graphs are unlabeled, while all other graph datasets come with

vertex labels.

5.4.2 Experimental Setup

To perform graph classification, we employed a C-Support Vector Machine

(SVM) classifier and performed 10-fold cross-validation. The whole process was

repeated 10 times for each dataset and each method. The parameter C of the

SVM was optimized on the training set only.

All kernels were written in Python 2. The parameters of the base kernels and

their corresponding core variants were selected using cross-validation on the

training dataset. We chose parameters for the graph kernels as follows. For the

graphlet kernel, on labeled graphs, we count all connected graphlets of size 3

taking labels into account, while on unlabeled graphs, we sample 500 graphlets

of size up to 6. For the Weisfeiler-Lehman subtree kernel, we chose the number

of iterations h from {4, 5, 6, 7}. For the pyramid match kernel, the dimensionality

of the embeddings d was chosen from {4, 6, 8, 10}, while the number of levels L

was chosen from {2, 4, 6}.

1. The datasets and statistics are available at https ://ls11-www.cs.tu-
dortmund.de/staff/morris/graphkerneldatasets

2. Code available at https ://www.lix.polytechnique.fr/ nikolentzos/code/core framework.zip
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We report in Table 5.1 average prediction accuracies and standard devia-

tions. Core variants with statistically significant improvements over the base

kernels are shown in bold as measured by a t-test with a p value of ≤ 0.05.

We also report in Table 5.2 the time required for computing the kernel matrix of

each core variant relative to the time required for computing the kernel matrix

of its base kernel as measured on a 3.4GHz Intel Core i7 with 16Gb of RAM.

5.4.3 Results

We begin our experiments by comparing the base kernels with their core

variants. Table 5.1 demonstrates that the proposed framework improves the

classification accuracy of every base kernel on almost all datasets.

More specifically, the core variants outperformed their base kernels on 37 out

of the 40 experiments. It should be mentioned that the difference in performance

between the core variants and their base kernels was larger on the social inter-

action datasets compared to the bioinformatics and chemoinformatics datasets.

The obtained results confirm our intuition that the densest areas of graphs

are the most important. Furthermore, the results show that the hierarchy of

nested subgraphs generated by the k-core decomposition allows existing al-

gorithms to compare structure in graphs at multiple different scales. On most

datasets, the increase in performance of the GR, SP and PM kernels due to the

use of the proposed framework is very large.

Specifically, core GR improved by more than 10% the accuracy attained by

the GR kernel on 4 datasets. Conversely, core WL yielded in general only

slightly better accuracies compared to its base kernel. The WL kernel builds

a summary of the neighborhood of each vertex.

Our intuition is that the local neighborhood of a vertex in a k-core is not dra-

matically different from its neighbourhood in the graph. Hence, for small values

of the parameter h of WL, the summaries that are generated in a k-core are

very similar to those generated in the whole graph and do not thus provide

much additional information.
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MUTAG ENZYMES NCI1 PTC-MR D&D
IMDB IMDB REDDIT REDDIT REDDIT

BINARY MULTI BINARY MULTI-5K MULTI-12K

SP 1.69X 2.52X 1.62X 1.65X 3.00X 12.42X 17.34X 1.04X 1.05X 1.18X

GR 1.85X 2.94X 1.75X 1.50X 3.44X 7.95X 8.20X 2.24X 2.37X 2.80X

WL 1.76X 2.77X 1.68X 1.62X 3.34X 7.13X 6.84X 1.52X 1.58X 1.54X

PM 1.87X 2.79X 1.68X 1.50X 3.67X 6.92X 6.33X 1.90X 1.98X 1.96X

δ∗ave 2.00 2.98 1.98 1.73 3.96 9.15 8.15 2.33 2.27 2.24

TABLE 5.2: Comparison of running times of base kernels vs their core variants. The values
indicate the relative increase in running time when compared to the corresponding base kernel.
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FIGURE 5.1: Degree distribution of D&D (left) and REDDIT-BINARY (right) datasets. Both axis
of the right figure are logarithmic.

In terms of runtime, we can observe that in most cases, the extra compu-

tational cost required to compute the core variant of a kernel is negligible. We

computed the average degeneracy δ∗ave of the graphs contained in each dataset

(shown in Table 5.2), and we observed that the running time is very related to

its value. On the IMDB-BINARY and IMDB-MULTI datasets, computing the core

variant requires more than 6 times the time of computing the base kernels. Ho-

wever, even that increase in running time is by no means prohibitive. It is also

interesting to note that the extra computational cost comes with a significant

improvement in accuracy.

We next investigate why the core variants lead to greater improvements on

the social interaction datasets compared to the bioinformatics and chemoinfor-

matics datasets. We attribute this difference in the behavior of the core variants

to the underlying structure of the two types of graphs.

Figure 5.1 illustrates the degree distribution of the D&D and REDDIT-BINARY

datasets. We observe that the latter follows the well-known power-law distri-

77



0510152025

k

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ac
cu

ra
cy

GR

Core GR

FIGURE 5.2: Classification accuracy of the graphlet kernel (GR) and its core variant (core GR)
on the IMDB-BINARY dataset for the whole range of k-cores.

bution while the former does not. We should mention that we have observed

almost identical behavior on the other bioinformatics/chemoinformatics and so-

cial interaction datasets, and the plots were omitted for illustration purposes.

We can safely assume that the higher-order cores of the graphs of the REDDIT-

BINARY dataset capture the most informative areas of the graph. Conversely,

in graphs with structure similar to that of the graphs of the bioinformatics data-

sets, many nodes may end up sharing the exact same core number due to the

coarse granularity of the k-core decomposition (leading to small degeneracies).

Finally, we compare the core GR kernel with its base kernel on the whole

range of k-cores on the IMDB-BINARY dataset. For k ∈ {0, . . . , 29}, we com-

pute the GR kernel and its core variant, perform graph classification, and com-

pare the achieved classification accuracies. The obtained results are shown in

Figure 5.2. We can see that for k < 20, core GR systematically leads to better

accuracies compared to its base kernel. The same behavior was also obser-

ved on most of the remaining datasets. An interesting observation is that for

some k, by retaining only the internal k-cores of the graphs, we can get better

classification accuracies compared to the 0-cores (i.e. the input graphs).
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5.5 Conclusion

In this chapter, we defined a general framework for improving the perfor-

mance of graph comparison algorithms. The proposed framework allows exis-

ting algorithms to compare structure in graphs at multiple different scales. The

conducted experiments highlight the superiority in terms of accuracy of the core

variants over their base kernels at the expense of only a slight increase in com-

putational time. Moreover our method is available and implemented in the Gra-

Kel Library [Siglidis et al., 2020] as an easy plug and play method.

Finally, graph kernels capitalized greatly on the k-core decomposition, as

every kernel on a different level takes advantage on comparing dense sub-

graphs. In this framework though, k-core decomposition was used as means of

preprocessing in a way. The gain in performance though is ensured intuitively

by the fact that the feature space induced by the core kernel variant contains

the initial feature space of the original kernel.

As we want to go even further and see how the degeneracy framework could

impact learning in deep learning, and try, as we did with core kernel, to input

degeneracy as a valid and high performing tool in deep learning. It has already

been used to scale auto-encoders for link prediction in graphs [Salha et al.,

2019a] and we already experimented with graph metrics and algorithms to learn

hidden set representations successfully with neural networks in [Skianis et al.,

2020] using bipartite matching. But we want to provide an adaptation of the

k-core decomposition to fit directly most of the neural network architectures.
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CHAPITRE 6

Hcore-Init : Graph Degeneracy based Neural Network

Initialization

In the previous chapter we applied successfully the k-core framework to

graph kernels. Successfully indeed due to the accuracy improvement over the

benchmark datasets at the expense of a slight increase in computational run-

time. There, our framework can be characterized as a preprocessing method

for graph kernels. Hence we want to go even further and try to apply k-core fra-

mework or variants to the learning method itself. As we can not do this directly

to kernel SVM a natural candidate are Neural Network architectures.

Neural networks have become a very popular tool for many machine lear-

ning task, as in recent years we witnessed many novel architectures, learning

and optimization techniques for deep learning. Capitalizing on the fact that neu-

ral networks inherently constitute multipartite graphs among neuron layers, we

aim to analyze directly their structure to extract meaningful information that can

improve the learning process. To our knowledge graph mining techniques for

enhancing learning in neural networks have not been thoroughly investigated.

In this chapter we propose an adapted version of the k-core structure for the

complete weighted multipartite graph extracted from a deep learning architec-

ture. As a multipartite graph is a combination of bipartite graphs, that are in
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turn the incidence graphs of hypergraphs, we design k-hypercore decomposi-

tion, the hypergraph analogue of k-core degeneracy.

We applied k-hypercore to several neural network architectures, more spe-

cifically to convolutional neural networks and multilayer perceptrons for image

recognition tasks after a very short pretraining. Then we used the information

provided by the hypercore numbers of the neurons to re-initialize the weights of

the neural network, thus biasing the gradient optimization scheme. Extensive

experiments proved that k-hypercore outperforms the state-of-the-art initializa-

tion methods.

6.1 Introduction

During the last decade deep learning has been intensely in the focus of

the research community. Its applications on a huge variety of scientific and

industrial fields highlighted the need for new approaches at the level of neu-

ral network design. Researchers have studied until today different aspects of

the Neural Network (NN) architectures and how these can be optimal for va-

rious tasks, i.e the optimization method used for the error backpropagation, the

contribution of the activation functions between the NN layers or normalization

techniques that encourage the loss convergence, i.e batch normalization, dro-

pout layer, etc.

Weight initialization is one of the aspects of NN model design that contribute

the most to the gradient flow of the hidden layer weights and by extension to the

ability of the neural network to learn. The main focus on the matter of weight ini-

tialization ( [Glorot and Bengio, 2010], [He et al., 2015]) is the observation that

weights among different layers can have a high variance, making the gradients

more likely to explode or vanish.

Neural Networks capitalize on graph structure by design (see Figure 6.1).

Surprisingly there has been very few work analyzing them as a graph with edge

and/or nodes attributes. Recent work [Skianis et al., 2020] introduces graph
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FIGURE 6.1: Simplified Neural Network representations as graphs (from https://www.

asimovinstitute.org/author/fjodorvanveen/)
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metrics to produce latent representation sets capitalising on bipartite matching

directly implemented in the neural network architecture, which proved to be a

very powerful method. Also the work by C. Morris analyzes the expressivity

of Graph Neural Networks using the Weisfeiler-Leman isomorphism test [Mor-

ris et al., 2019]. Our interest lies in trying to refine the optimization scheme

by capitalizing on graph metrics and decompositions. One natural candidate

was the k-core decomposition [Seidman, 1983a]. Indeed this decomposition

method, being very efficient (O(n log(n)) in the best cases [Batagelj and Za-

versnik, 2003]), performs very well in state-of-the-art frameworks for enhancing

supervised learning methods [Nikolentzos et al., ]. Providing key subgraphs,

and also extracting very good features.

Unfortunately, in the case of a graph representing a neural network, k-core

might lack some features. As a matter of fact, graphs extracted from NNs consti-

tute multipartite complete weighted graphs, in the case of an Multilayer Percep-

tron and almost complete for Convolutional Neural Networks. As we saw dif-

ferent k-core variants for different types of graphs, such as the k-truss [Rossi

et al., 2015] counting triangles, the D-core [Giatsidis et al., 2013] for directed

graphs, were designed this past decade. A natural thought was then to design

our own version of the k-core for our precise graph structure.

Hence our contributions are the following :

— We provide a unified method of constructing the graph representation of

a neural network as a block composition of the given architecture (see

Figure 6.3). This is achieved by transforming each part of the network

(i.e linear or convolutional layers, normalization/dropout layers and pooling

operators) into a subgraph. Having this graph representation, it is possible

to apply different types of combinatorial algorithms to extract information

from the graph structure of the network.

— Next we design a new degeneracy framework, namely the k-hypercore,

extending the concept of k-core to bipartite graphs by considering that

each pair of layers of the neural network, constituting a bipartite graph, is
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the incidence graph of a hypergraph (see Figure 6.2).

— we propose a novel weight initialization scheme, Hcore-init by using the

information provided by the weighted version of the k-hypercore of a NN

extracted graph, to re-initialize the weights of the given neural network, in

our case, a Convolutional neural network and a Multilayer Perceptron. Our

proposal clearly outperforms traditional initialization methods on classical

deep learning tasks.

The rest of this chapter is organized as follows, first some preliminary defini-

tions and overview of the state of the art methods in neural network initialization

methods. Then we provide the methodology which allows us to transform neural

networks to edge weighted graphs. Further on, we proceed to the main contri-

bution of the chapter being the definition of the hypercore degeneracy and the

procedure which produces our initialization method. Finally we test our method

on several image classification datasets, comparing it the main initialization me-

thod used in neural networks.

6.2 Preliminaries

In deep neural networks, weight initialization is a vital factor of the perfor-

mance of different architectures [Mishkin and Matas, 2015]. The reason is that

an appropriate initialization of the weights of the neural network can avert the

explosion or vanishing of the layer activation output values.

6.2.1 Initialization Methods

Glorot Initialization

One of the most popular initialization methods is Glorot initialization [Glorot

and Bengio, 2010]. According to that, the weights of the network are initiali-

zed by drawing them from a normal distribution with E[W ] = 0 and Var(wi) =

1/fanin, where fanin is the number of incoming neurons. Also, more generally,

we can define variance with respect to the number of outgoing neurons as :

Var(wi) = 1/(fanin + fanout), where fanout is the number of neurons that the

output is directed to.
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He Initialization

Although Glorot initialization method manages to maintain the variance of

all layers equal, it assumes that the activation function is linear. In most of the

cases of non-linear activation function that Glorot initialization is used, the hy-

perbolic tangent activation is employed. The need for taking into account the

activation function for the weight initialization led to the He Initialization [He

et al., 2015]. According to this method, in the case that we employ ReLU ac-

tivation functions, we initialize the network weights by drawing samples from a

normal distribution with zero mean : E[W ] = 0 and variance that depends on

the order of the layer : Var[W ] = 2/(nl), where l is the index of the l-th layer and

n the number of neurons in the given layer.

One main assumption for weight initialization is that the mean of the random

distribution used for initialization needs to be 0. Otherwise, the calculation of

the variances presented above could not be done and we won’t be able to have

a fixed way to initialize the variance.

Since in our work we want to capitalize on the k-hypercore decomposition to

bias those distributions we will have to face the fact that we might not be able

to control the variance of the weights we initialize. Thankfully the fact that the

initial distribution has 0 mean will ensure that our method respects as well this

condition on every layer of the neural network.

Moreover, since the k-hypercore decomposition is defined over hypergraphs,

let us remind some properties of hypergraphs and its relations with bipartite

graph.

6.2.2 Hypergraphs and Bipartite Graphs

A hypergraph is a generalization of graph in which an edge can join any

number of vertices. It can be represented and we keep this notation for the rest

of the chapter as H = (V,EH) where V is the set of nodes, and EH is the set of

hyperedges, i.e. a set of subsets of V . Therefore EH is a subset of P(V ).

86



FIGURE 6.2: Hypergraph and the corresponding incidence graph

Moreover a bipartite graph is the incidence graph of a hypergraph [Pisanski

and Randic, 2000]. Indeed, a hypergraph H may be represented by a bipartite

graph G as follows : the sets X and E are the partitions of G, and (x1, e1) are

connected with an edge if and only if vertex x1 is contained in edge e1 in H.

Conversely, any bipartite graph with fixed parts and no unconnected nodes in

the second part represents some hypergraph in the manner described above.

Hence, we can consider that every pair of layers in the neural network can be

viewed as a hypergraph, where the left layer represent the hyperedges and the

right the nodes (see Figure 6.2).

6.3 Graph Extraction from Neural Network Architecture

We will now describe how we map the two classic neural network architec-

tures we investigate to graphs, and more specifically to a collection of bipartite

ones. Also, from now on, we are going to refer to a fully-connected neural net-
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FIGURE 6.3: Illustration of the transformation of a CNN to graph.
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work as FCNN and to a convolutional neural network as CNN [Krizhevsky et al.,

2012].

6.3.1 Fully-Connected Neural Networks

Let a FCNN F with L hidden layers, ni, i = 1, .., L number of hidden units

per layer and Wi ∈ Rni,ni+1 the weight matrix of the links between the units of

the layers i and i+ 1.

We define the graph GF = (V,E,W ) as the graph representation of the

FCNN F , where the set of nodes V corresponds to the
∑L

i=1 ni number of hid-

den units of F , the set of edges E contains all the links of unit pairs across

the layers of F and the edge weight matrix W corresponds to the link weight

matrices Wi, i = 1, ..., L−1. We note that the graph representation GF does not

take into account any activation functions σ used in F .

Remark. It is easy to see that GF is a k-partite graph (i.e a graph whose

vertices can be partitioned into k independent sets) and more specifically a

union of L− 1 complete bipartite graphs.

6.3.2 Convolutional Neural Networks

After showing the correspondence between a FCNN F and its graph repre-

sentation GF , we are ready to define the graph representation of a CNN layer.

Let a CNN layer C. The convolutional layer is characterized by the input infor-

mation that has I input channels where each channel provides n × n features

(i.e an 24 × 24 image characterized by the 3 RGB channels), the output infor-

mation that has O output channels, where each channel has m × m features

and the matrix of the convolutional kernel F ∈ Rw×h×I×O, where w, h are the

width and height of the kernel.

In order to define the graph GC = (V,E,W ) as the graph representation of

the CNN C, we have to flatten the 3 and 4-dimensional input, output, and filter

matrices correspondingly. Specifically, the GC is a bipartite graph, where the
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first partition of nodes P1 is the flattened input information of the CNN layer

( |P1| = I × n × n ) , the second partition of nodes P2 is the flatten output

information (|P2| = O ×m×m).

6.4 Weight Initialization Based on Hcore

As degeneracy frameworks have proven to be very efficient at extracting in-

fluential individuals in a network [Al-garadi et al., 2017], we are motivated to

consider structural information provided by the hcore decomposition of the net-

work to identify “influential” neurons.

Assuming a neural network graph, we provide a definition of degeneracy

specifically for hypergraphs, where standard k-core does not apply.

Definition 6.4.1 (Hypercore). Given a hypergraph H = (V,EH) We define the

(k, l)-hypercore as a maximal connected subgraph of H in which all vertices

have hyperdegree at least k and all hyperedges have at least l incident nodes.

As for now on, we will refer to the (k, 2)-hypercore as the k-hcore and simi-

larly, the hcore number of the node will be the largest value of k for which the

given node belongs to the k-hcore.

This provides a hypergraph decomposition and in our case a decomposition

of the right handside of the studied bipartite graph (see Figure 6.4), as we do

not care about the hcore of the hyperedges.

Since we deal with edge-weighted bipartite graphs, we will use the weighted

degree to define the hcore ranking of the nodes given the following weighted-

hypercore definition.

Definition 6.4.2 (Weighted-hypercore). Given an edge weighted hypergraph

H = (V,EH), we define the (k, l)-weighted-hypercore as a maximal connected

subgraph of H in which all vertices have hyper-weighted-degree at least k and

all hyperedges have at least l incident nodes.

Again, we will refer to the (k, 2)-weighted-hypercore as k-WHcore. Now that

we have this weighted version, we need to define a way to initialize the weights

90



FIGURE 6.4: Example of a k-hcore decomposition of a hypergraph

Algorithm 6 Hcore decomposition algorithm

1: procedure HCORE(G, rnodes)
2: Input G : bipartite graph, rnodes : right layer nodes
3: Output hcore : dictionary of hcore values
4:
5: hcore← dict((node, 0) for node in rnodes)
6: tokeep← rnodes
7: while tokeep 6= ∅ do
8: state← True
9: while state == True do

10: state← False
11: tokeep← []
12: for node ∈ rnodes do
13: if G.degree(node) > k then
14: tokeep.append(node)
15: else
16: hcore[node] = k
17: graph.remove[node]
18: state← True
19: end if
20: end for
21: for node ∈ G.nodes \ rnodes do
22: if G.degree(node) = 1 then
23: G.remove(node)
24: end if
25: end for
26: end while
27: k ← k + 1
28: end while
29: end procedure
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of the neural network. Indeed, since the WHcore is a value given to the nodes

of the network and not the edges, being the weights we aim to initialize. The

WHcore shows us which neurons gather the more information, positive on the

one hand and negative on the other. After a quick pretraining, we learn the

weights just enough to show which neurons have a higher impact on the lear-

ning. This information is then grouped by the WHcore into influential neurons

and less influential ones.

Moreover, since weights in neural networks are sampled from centered nor-

mal law, we have positive and negative weights. Since the WHcore framework

operates on positive weighted degrees, we provide two graph representations

of the neural network, namely G+ and G−. The G+ graph is built upon the po-

sitive weights of the neural network, and the edge weights of the G− graph are

the absolute values of the negative weights of the neural network. Indeed if bet-

ween neuron xi and neuron yj, wij > 0 then we add an edge with weight wij
between node xi and yj in graph G+, otherwise we add an edge with weight

|wij| between node xi and yj to graph G−.

Remark. It is important to note that the WHcore number of a node is the

largest k in which a node is contained in the k-WHcore. Using the notations

from 4 the WHcore number of a node is a function whose definition is based on

vertex degree. It is indeed possible that two vertices of the same degree end up

to different core levels. The value of the parameter depends on the graph struc-

ture, and in particular on the interconnectivity of high degree vertices, and the

corresponding decomposition is defined using vertex layouts and the notations

from chapter 4. Hence defining the Hcore of a graph δ(H) is defined formally as

follows.

δ(H) = min
∀L

max
vi∈L

i∈{1,...,n}

µ(vi, L≤i), (6.1)

where the µ(vi, L≤i) function is the degree contribution of vi in L≤i, where

the layouts are defined over the right side nodes in the bipartite graph (on the
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vi

L≤i

µ(vi, L≤i) = 2

FIGURE 6.5: degree of the degree of vi in the given layout, note that the layout does not concern
top nodes (hyperedges).

bottom in figure 6.5). Observe that the vertex vi has degree 3 while its degree

contribution to the depicted layout of the red vertices is 2.

In order to simplify those notations for the rest of this chapter, as the degree

depends on the weights, there exists two functions g and h such that g(W,x)

outputs the weighted degree of a node x, thus being a linear combination of the

weights W . Then c(W,x) = h(g(W,x)) is the WHcore number of the node x. For

convenience, we now write c(W+, xk) = c+
k where Wk are the positive weights

of the weight matrix W .

Moreover, the following initialization schemes are done after a small amount

of pretraining of the neural network, in order to have a preliminary information

over the importance on the task of the neurons.

6.4.1 Initialization of the FCNN

The initialization then is then dependent on the architecture we are looking

at, indeed for an FCNN as the graph construction is fairly straightforward we

proceed as follows.

For every pair of layers for both positive and negative graphs, we have nodes

xi, with i ∈ {1, . . . , fanin} in the left side of the bipartite graph, and yj nodes, with

j ∈ {1, . . . , fanout} nodes on the right side. As for every node yi we compute
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their WHcore from the graph G−, c−j and from the graph G+, c+
j . Then the given

layer weights wi,j, are initialized, depending on their sign, with a normal law with

expectancy :

— for all i if wi,j ≥ 0, M =
c+j∑

1≤k≤fanout c
+
k

,

— else M =
c−j∑

1≤k≤fanout c
−
k

and with the same variance used in He initialization. We prove later that the

overall mean value of the new random variable obtained in this fashion is 0 as

well, justifying the use of the He variance to be optimal.

6.4.2 Initialization of the CNN

For the CNN, since the induced graph is more intricate and the filter weights

must follow the same distribution, the initialization framework has to be adap-

ted. We still compute the WHcore on a pair of layers but keeping the filters in

mind, the left layer nodes are x
(k)
i with i ∈ {1, . . . , n × n} the input size and

k ∈ {1, . . . , I} the number of input filters. Similarly the left layer nodes are y(k′)
j ,

where j ∈ {1, . . . ,m×m} the output size, and k′ ∈ {1, . . . , O} the output chan-

nels. We remind as well that we have two WHcores, one for the positive graph

c+ and one for then negative c−. Then for a given filter w(k,k′) its values are

initialized with the following method :

— we define f for a given filter W as m(W+) = 1
H2

∑
j c

+
j and m(W−) =

1
H2

∑
j c
−
j , if m(W+)−m(W+) > 0 then M = m(W+)

— else M = −m(W−).

Using the notations given in the previous remark we can write m in the follo-

wing general form :

m = sign(argmax(m(W+), f(W−))) max(m(W+),m(W−))

where sign(W+) = 1 and sign(W−) = −1.

This initialization is done for every filter and with variance given by the He

initialization method. Now we will prove that for the CNN the overall expectancy

of the mean value produced is indeed 0.
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Proposition 6.4.3. Let X1 and X2 two centered i.i.d. random variables with

symmetric distribution. We define X+ = max{X1, 0}, X− = max{X2, 0}, and

a real valued measurable function f : R+ → R such that E[|f(X+)|] < ∞ and

E[|f(X−)|] <∞.

Then :

— X+,X− are positive i.i.d. random variables.

— The random variable :

Z = sign
(
argmax(f(X+), f(X−))

)
max

(
f(X+), f(X−)

)
is centered, i.e. E[Z] = 0

Démonstration. We remind that the function I{x∈X} is the Euler indicator func-

tion :

I{x∈X} =

{
1 if x ∈ X
0 otherwise.

Let us proceed to evaluate the expectancy of Z provided that X+ and X−

are i.i.d. :

E[Z] = E[ZI{f(X+)>f(X−)}] + E[ZI{f(X+)≤f(X−)}] =

E[f(X+)I{f(X+)>f(X−)}]− E[f(X−)I{f(X+)≤f(X−)}] =

E[(f(X+) + f(X−))I{f(X+)>f(X−)}]− E[f(X−)].

Given the initial assumptions , we can expand the first term

E[f(X+)I{f(X+)>f(X−)}] as follows :

E[f(X+)I{f(X+)>f(X−)}] =

∫∫
f(X+)I{f(X+)>f(X−)}dP (X+)dP (X−)

As X+ and X− follow the same distribution, and f is a measurable function,

we use the Fubini theorem to intervert the integrals as follows :
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E[f(X+)I{f(X+)>f(X−)}] =

∫∫
f(X−)I{f(X−)≥f(X+)}dP (X−)dP (X+).

Now replacing this in the original equation gives us :

E[Z] =

∫∫
f(X−)I{f(X−)≥f(X+)}dP (X−)dP (X+)

+

∫∫
f(X−)I{f(X+)>f(X−)}dP (X−)dP (X+)

−E[f(X−)]

= E[(f(X−)I{f(X−)≥f(X+)}]

+E[(f(X−)I{f(X+)>f(X−)}]− E[f(X−)]

= 0

This completes our proof that Z is a centered random variable.

Notice that setting the function m = l ◦ g ◦ h we can write l ◦ g = f and

X = h(W ). As we defined previously h to be the weighted degree function of a

node :

h(W+
j ) =

∑
i

WijI{Wij>0}

h(W−
j ) =

∑
i

|Wij|I{Wij≤0}

which ensures that h(W+) and h(W−) follow the same distribution by linear

combination of absolute value of the same normal distribution. Replacing these

function in the previous proposition, i.e. f = l◦g,X+ = h(W+) andX− = h(W−)

proves that our initialization method has mean 0. This proof allows us to justify

the use of the He variance in our initialization method as it was proven to be the

optimal one.
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6.5 Experiments

We will now evaluate our proposed weight initialization method Hcore-Init in

image classification task using three standard datasets, CIFAR-10, CIFAR-100,

and MNIST. We compare Hcore-Init to the results of He initialization scheme. It

is important to stress that we do not experiment on state-of-the-art architectures

for each dataset. We want to show, as our method can be used separately

on different architecture blocks, i.e. only at the convolutional layers, or only at

the FCNN part, or both. We observe that it outperforms standard initialization

methods, regardless of the block of the architecture that is initialized. Hence in

this section, we evaluate image classification accuracy on the aforementioned

datasets with simple CNN architectures presented in this section.

6.5.1 Dataset Specifications

The CIFAR-10 and CIFAR-100 datasets are labeled subsets of the 80 mil-

lion tiny images dataset collected by Alex Krizhevsky, Vinod Nair, and Geoffrey

Hinton [Krizhevsky et al., 2009].

— The CIFAR-10 dataset consists of 60000 32×32 colour images in 10 classes,

with 6000 images per class. There are 50000 training images and 10000 test

images.

— The CIFAR-100 is just like the CIFAR-10, except it has 100 classes contai-

ning 600 images each. There are 500 training images and 100 testing images

per class.

We also test our model on the MNIST database of handwritten digits, pro-

viding a training set of 60000 examples, and a test set of 10000 examples. The

digits have been size-normalized and centered in a fixed-size image [LeCun

and Cortes, 2010].

The dataset is divided into five training batches and one test batch, each with

10000 images. The test batch contains exactly 1000 randomly-selected images

from each class. The training batches contain the remaining images in random

order, but some training batches may contain more images from one class than
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another. Between them, the training batches contain exactly 5000 images from

each class.

6.5.2 Model Setup and Baseline

Next, we present the models that were trained and evaluated for the image

classification task. We note that for every case, we compare two scenarios :

1. Initialization of the model with He initialization [He et al., 2015], training on

the train set for 150 epochs and evaluation on the test set.

2. Pretraining of the model (using He initialization) forN epochs, re-initialization

of the model with Hcore-Init, training on the train set for the rest 150 −
N epochs and evaluation on the test set. N has been set as a hyper-

parameter.

For the CIFAR-10 and CIFAR-100 datasets, we applied 2 convolutional layers

with sizes 3 × 6 × 5 and 6 × 15 × 5 respectively, where 5 is the kernel size and

the stride was set to 1. Moreover, after each convolutional layer, we applied

two 2 × 2 max-pooling operators and finally three fully connected layers with

corresponding sizes 400 × 120, 120 × 84, 84× #classes, where #classes =

10 and 100 respectively for the two datasets. Furthermore, we used ReLU as

activation function among the linear layers and tanh for the convolution layers.

For the MNIST dataset, we applied again 2 convolutional layers of size 1 ×
10×5 and 10×20×5, where again the filter size was set to 5 and the stride was

set to 1. As in the other datasets, we employed two 2×2 max-pooling operators

and we performed dropout [Srivastava et al., 2014] on the output of the 2nd

convolutional layer with probability p = 0.5. Finally, we applied 2 fully connected

layers of size 320×50 and 50×10 and ReLU as an activation function throughout

the layers.

In all cases, we employed stochastic gradient descent [Kiefer and Wolfo-

witz, 1952] with momentum set to 0.9 and learning rate set to 0.001. As we

mentioned before, we chose 2 rather simple models, as we intend to highlight

the contribution of Hcore-Init in comparison to its competitor and not to achieve

state-of-the-art results for the given datasets, which are exhaustively examined.
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6.5.3 Settings of the Weight Initialization

Next, we present the contribution of Hcore-Init to the performance of the

neural network architecture with respect to its application on different types of

layers. Specifically, we applied the configurations of the initialization methods

(a) exclusively on the set of the linear layers (b) exclusively on the set of the

convolutional layers (c) on the combined set of linear and convolutional layers

of the model.

FIGURE 6.6: Test accuracy (left) and train loss (right) on CIFAR-10 for the combined application
of the initialization on the linear and the convolutional layers. For the curves Hcore-init-x, x
stands for the number of pretraining epochs.

On Figure 6.6, we observe that for 15 pretraining epochs, the model initiali-

zed with Hcore-Init outperforms the model initialized with He initialization. It is,

also, noteworthy that the loss convergences faster when applying Hcore-Init.

This highlights empirically our initial motivation of encouraging the “important”

weights by using the graph information from the model architecture.

On Figure 6.7 and Figure 6.8, we can notice the contribution again of Hcore-

Init in the performance of the network, when the former is applied on the fully

connected and convolutional layers respectively. We can see that in both cases,

Hcore-Init with different numbers of pretraining epochs (10 and 20 correspondly)

achieves better accuracy results in comparison to He.
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FIGURE 6.7: Test accuracy and train loss on CIFAR-10 for the initialization applied only on the
linear layers.

FIGURE 6.8: Test accuracy and train loss on CIFAR-10 for the initialization applied only on the
convolutional layers.

Finally, we report the results of the experiments conducted on the 3 datasets

in Table 6.1. Those results correspond to an ablation study over the different

number of pretraining epochs as well as the different initialization scenarios,

i.e. initializing only on the linear layers, convolutional layers, and the whole ar-

chitecture. We kept for each mentioned scenario the best performance, and as
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TABLE 6.1: Top Accuracy results over initializing the full model, only the CNN and only the
FCNN for CIFAR-10, CIFAR-100, and MNIST. Hcore-Init* represent the top performance over
all the pretraining epochs configurations up to 25

CIFAR-10 CIFAR-100 MNIST
He 64.62 32.56 98, 71

Hcore-Init* 65.22 33.48 98.91

Hcore-Init-1 64.91 32.87 98.59
Hcore-Init-5 64.41 32.96 98.70

Hcore-Init-10 65.22 33.41 98.81
Hcore-Init-15 64.94 33.45 98.64
Hcore-Init-20 65.05 33.39 98.87
Hcore-Init-25 64.72 33.48 98.91

it is evident Hcore-Init* achieves the best overall accuracy. It is important to

stress that we do not necessarily need a long pretraining phase to achieve the

best results, in fact, only 10 epochs is usually more than enough to outperform

in a significant way the He initialization. We remind that this pretraining corres-

ponds to less than 10% of the total training which is proportional, in terms of

computation time, to 10% of the time to train the model. Furthermore it is inter-

esting to notice that in the early stages of pretraining we are more likely to lose

some accuracy as the gradient direction in this stage of the training might be

wrong. This justifies as well the consistency of our method.

6.6 Conclusion

In this chapter, we propose Hcore-Init, a novel initialization method appli-

cable on the most common blocks of neural network architectures, i.e. convo-

lutional and linear layers. This method capitalizes on a graph representation of

the neural network and more specifically on the densest parts of it found by the

hypergraph degeneracy methods we define, providing thus a neuron ranking

for the bipartite architecture of the neural network layers. Our method, learning

with a small pretraining of the neural network, outperforms the state of the art

He initialization, under the condition that the initialization distribution has zero

expectancy. We also see that, as the sensible parameter of our method is the

number of pretraining epochs, taking 10 pretraining epochs is enough to have

outperform the initial model in all cases. We also see that with a small number
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of pretraining epochs our model loses accuracy over the He initialization me-

thod, which is also expected as the gradient descend in the early stages of the

training process they can provide wrong gradient directions and value neurons

that should not. This work is intended to be used as a framework to initialize

specific blocks in more complex architectures that might bear more information

and are more valuable for the task at hand.
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CHAPITRE 7

Conclusion

In this dissertation, we saw that degeneracy is a versatile tool, used and

refined by the graph learning community this past decade. With this in mind,

our research focus is twofold, and built upon graph degeneracy, through the

following motivations :

— Provide structural characterizations of edge-type degeneracies in order to

understand them and have a clearer view on computational complexity for

potential applications.

— Integrate degeneracy frameworks within learning algorithms and espe-

cially within deep learning architectures.

Both of these objectives require a good understanding in graph theory and

machine learning frameworks, as well as graph mining techniques. These do-

mains made this work even more exciting and lead to an interdisciplinary work,

as most of the research done in general in Machine Learning. In the following

sections we provide an overview of the contributions and we discuss future

research directions.
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7.1 Summary of Contributions

The contributions of the thesis can be summarized as follows.

Computational complexity argument for the s-edge-degeneracy. We pro-

ved in Chapter 3 that, as for the s-degeneracy can be computed in polynomial

for all path lengths s in {1, 2, 3, 4,∞}. Also, the s-edge-degeneracy can be as

well computed in polynomial time for s in {1, 2,∞}. It is important to remind that

for the other values of s, the problem, and it is the case for the vertex degene-

racy as well, is NP-complete.

Structural theorem for edge-admissibility. In Chapter 3 we also were able

to position the proven result toward the existing structural theorems concerning

clique exclusion and bounded admissibility. And, that enabled us to decom-

pose a graph in almost-bounded-degree graphs. Additionally a main result was

to provide an equivalent result to [Dvořák, 2012] for the edge-admissibility.

Indeed, every graph with bounded edge-admissibility can be decomposed in

edge-sums of almost-bounded-edge-degree graphs.

Unification of the degree degeneracy, connectivity degeneracy and ad-

missibility framework. In Chapter 4 we gathered degree and connectivity de-

generacy hierarchies as well as the corresponding admissibility hierarchies. We

proposed a general framework based on four metrics adapted to the degree

and connectivity frameworks, such that every one of those graph metrics can

output a given hierarchy, throughout a min-max procedure. Furthermore, using

results from Chapter 3, we were able to provide order relationships, first bet-

ween degeneracy and corresponding admissibility, next between connectivity

degeneracy and degree degeneracy.
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Efficient algorithm for edge-connectivity degeneracy. We capitalize mainly

on the previous contribution, especially on the orderings provided between

connectivity and degree degeneracy, and on the contraction theorem of Men-

ger. In the second part of Chapter 4 we designed an efficient algorithm to com-

pute the edge-connectivity degeneracy decomposition. Unfortunately, even if

the algorithm runs with a complexity of O(k
2
n2
k/2 log2(nk/2)), in the worst case

scenario where nk/2 is way smaller than n. We saw that in real world datasets,

λ∗-edge-connectivity core was very close if not the same with the δ∗-core. This

motivated us for the rest of the dissertation to use only degree-degeneracy.

k-core framework for graph kernels and performance criterion. In Chap-

ter 5 we proposed a framework for including k-core decomposition into the

graph kernel routine. Indeed, the proposed method is based on applying the

k-core decomposition algorithm to the graphs in the dataset we aim to classify.

Then, on the obtained subgraph-based structure, we were able to apply the

chosen kernel via this decomposition. Once this is done, we sum the kernel

matrices obtained for each core to form the final core-kernel. Finally, this fra-

mework outperformed on almost every situation its classic kernel analogue, at

the expense of only a slight increase in computational time.

Hypergraph degree degeneracy definition and algorithm design. In the last

part of this dissertation the contributions are twofold. First, in Chapter 6, we

define a framework for degeneracy on hypergraphs. Not only this definition is

novel, but is we use it to find core decompositions for bipartite graphs, as inci-

dence graphs of hypergraphs. Moreover we provide a very efficient algorithm

to find this bipartite graph decomposition. Indeed, the algorithm proposed has

a complexity comparable to k-core algorithm and we might be able to adapt the

optimal algorithm from [Batagelj and Zaveršnik, 2011].
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Fast converging re-initialization method for neural networks. The second

and final contribution of our thesis from Chapter 6 was, capitalizing on the hy-

pergraph core framework previously described, a re-initialization method for

neural networks. More specifically, we computed the weighted hypercore of the

graph extracted from the studied neural network after a short period of pretrai-

ning and we reinitialize according to the weights of the neural network. This is

done by pair of layers, i.e. we are able to apply this framework to every kind

of architecture using convolution and linear layers. We provide a framework as

generalized as possible but it also outperforms standard initialization and the

gradients convergence is faster.

7.2 Future Directions of Research

We discuss in this section the future research interests and directions. We

can highlight from every section exciting work that remains to be investigated

as well as less related topics that were studied within our research.

First as Chapter 4 has inherited results from Chapter 3 there are many ques-

tions that remained unanswered. As pointed out in Chapter 4, there is room for

thorough work to prove for the connectivity degeneracy framework the corres-

ponding results found for degree degeneracy. We would also like to investigate

vertex connectivity degeneracy as the decompositions produced with this de-

generacy are overlapping. Hence very interesting for the major problem that is

overlapping clustering.

Moreover our main priority in future work relies on the domain of application

tackled in Chapter 6. Indeed using the graph structure of a neural network to

acquire information on the learning process is a problem, gathering all the more

interest from the machine learning and graph related communities.

Our first exploration direction is a direct consequence of our work, i.e. try to

investigate how graph metrics impact learning of a neural network. Precisely,

what it means at a neuron level to have high degree, pagerank, core and so

on. In fact, seeing how efficiently a naive application of an adapted degeneracy
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performed we are very excited to see how neural network gradient variations

can be reflected in graph metrics.

The last point worth exploring in the future, is, instead of modeling a single undi-

rected graph at a given moment during the learning, we shall extract a directed

graph, showing not only the gradient correction as weights in one direction but

also the backpropagation, and eventually studying flows in this graph.

7.3 Epilogue

Research on graphs has proven to be a very exciting domain of research,

and many problems have caught up our interest. Working throughout this dis-

sertation was truly a precious experience and attempting to help research move

forward brought a rough sense of satisfaction. It also showed that even on

known work, we can still always find room for improvement and novel research.
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96(1) :572–582.

[Mishkin and Matas, 2015] Mishkin, D. and Matas, J. (2015). All you need is a

good init. arXiv preprint arXiv :1511.06422.

[Morris et al., 2019] Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,

J. E., Rattan, G., and Grohe, M. (2019). Weisfeiler and leman go neural :

Higher-order graph neural networks. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 33, pages 4602–4609.

[Nesetril and de Mendez, 2012] Nesetril, J. and de Mendez, P. O. (2012). Spar-

sity - Graphs, Structures, and Algorithms, volume 28 of Algorithms and com-

binatorics. Springer.

116



[Neumann et al., 2016] Neumann, M., Garnett, R., Bauckhage, C., and Kers-

ting, K. (2016). Propagation kernels : efficient graph kernels from propagated

information. Machine Learning, 102(2) :209–245.
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Titre : Etude de Dégénérescence de Graph appliqué à l’Apprentissage Automatique Avancé et Résultats Théoriques
relatifs

Mots clés : Dégénérescence de Graph, Combinatoire, Théorie des Graphes, Réseaux de Neuronnes, Exploration
de Graphe

Résumé : L’extraction de sous-structures significatives a
toujours été un élément clé de l’étude des graphes. Dans
le cadre d’apprentissages automatiques, supervisés ou non,
ainsi que dans l’analyse théorique des graphes, trouver des
décompositions spécifiques et des sous-graphes denses est pri-
mordiale dans de nombreuses applications comme entre autres
la biologie ou les réseaux sociaux.
Dans cette thèse, nous cherchons à étudier la dégénérescence
des graphes, en partant d’un point de vue théorique, et en nous
appuyant sur nos résultats pour trouver les décompositions les
plus adaptées aux tâches à accomplir.C’est pourquoi, dans la
première partie de la thèse, nous travaillons sur des résultats
structurels des graphes à arête-admissibilité bornée, prouvant
que de tels graphes peuvent être reconstruits en agrégeant
des graphes à degré d’arête quasi-borné.Nous fournissons
également des garanties de complexité de calcul pour les
différentes décompositions de la dégénérescence, c’est-à-dire
si elles sont NP-complètes ou polynomiales, selon la lon-
gueur des chemins sur lesquels la dégénérescence donnée est
définie.
Dans la deuxième partie, nous unifions les cadres de
dégénérescence et d’admissibilité en fonction du degré et de
la connectivité. Dans ces cadres, nous choisissons les plus ex-
pressifs, d’une part, et les plus efficaces en termes de calcul
d’autre part, à savoir la dégénérescence 1-arête-connectivité

pour expérimenter des tâches de dégénérescence standard,
telles que la recherche d’influenceurs.
Suite aux résultats précédents qui se sont avérés peu perfor-
mants, nous revenons à l’utilisation du k-core mais en l’intégrant
dans un cadre supervisé, c’est-à-dire les noyaux de graphes.
Ainsi, en fournissant un cadre général appelé core-kernel, nous
utilisons la décomposition k-core comme étape de prétraitement
pour le noyau et appliquons ce dernier sur chaque sous-graphe
obtenu par la décomposition pour comparaison. Nous sommes
en mesure d’obtenir des performances de l’état de l’art sur la
classification des graphes au prix d’une légère augmentation du
coût de calcul.
Enfin, nous concevons un nouveau cadre de dégénérescence
des degrés s’appliquant simultanément pour les hypergraphes
et les graphes biparties, dans la mesure où ces derniers sont
les graphes d’incidence des hypergraphes. Cette décomposition
est ensuite appliquée directement à des architectures de
réseaux de neurones pré-entrainés comme elles induisent des
graphes biparties et utilisent le noyau des neurones pour
réinitialiser les poids des réseaux de neurones. Ce cadre est
non seulement plus performant que les techniques d’initialisa-
tion de l’état de l’art, mais il est également applicable à toute
paire de couches de convolution et linéaires, et donc applicable
à tout type d’architecture.

Title : Graph Degeneracy Studies for Advanced Learning Methods on Graphs and Theoretical Results

Keywords : Graph Degeneracy, Combinatorics, Graph Theory, Neural Networks, Graph Mining

Abstract : Extracting Meaningful substructures from graphs
has always been a key part in their study. In machine learning
frameworks, supervised or unsupervised, as well as in theore-
tical graph analysis, finding dense subgraphs and specific de-
compositions is a primordial task.
In this thesis we aim at studying graph degeneracy, starting from
a theoretical point of view, and building upon our results to find
the most suited decompositions for the tasks at hand. Hence
the first part of the thesis we work on structural results in graphs
with bounded edge admissibility, proving that such graphs can
be reconstructed by aggregating graphs with almost-bounded-
edge-degree. We also provide computational complexity gua-
rentees for the different degeneracy decompositions, i.e. if they
are NP-complete or polynomial, depending on the length of the
paths on which the given degeneracy is defined.
In the second part we unify the degeneracy and admissibility
frameworks based on degree and connectivity. Within those fra-
meworks we pick the most expressive, on the one hand, and
computationaly efficient on the other hand, namely the 1-edge-

connectivity degeneracy, to experiment on standard degeneracy
tasks, such as finding influencial spreaders.
Following the previous results that proved to perform poorly we
go back to using the k-core but plugging it in a supervised fra-
mework, i.e. graph kernels. Thus providing a general framework
named core-kernel, we use the k-core decomposition as a pre-
processing step for the kernel and apply the latter on every sub-
graph obtained by the decomposition for comparison. We are
able to achieve state-of-the-art performance on graph classifi-
cation for a small computational cost trade-off.
Finally we design a novel degree degeneracy framework simul-
taneously for hypergraphs and on bipartite graphs as they are
hypergraphs incidence graphs. This decomposition is then ap-
plied directly to pretrained neural network architectures as they
induce bipartite graphs and use the coreness of the neurons
to re-initialize the neural network weights. This framework not
only outperforms state of the art initialization techniques but is
also applicable to any pair of layers convolutional and linear thus
being applicable however needed to any type of architecture.
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