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Benoit Fuentes
Chercheur, Smart Impulse Co-directeur de thèse
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Abstract

With the increasing awareness about the problem of climate change and the high

level of energy consumption, a need for energy efficiency has emerged especially for

electric power consumptions in buildings. To spur energy savings, industrials have

been looking for measurement methods to monitor power consumptions. Appliance

load monitoring has thus become an active research field. Monitoring and under-

standing the electrical consumption of appliances can also be useful for predictive

maintenance, power quality analyses, demand forecasting or occupancy detection.

Thirty years ago, a method called Non Intrusive Load Monitoring (NILM) has been

introduced. It consists of estimating individual appliance energy consumptions from

the measurement of the total consumption of the building. Its main advantage over

traditional sub-metering methods is to use a single electric power meter at the main

breaker of the building and then use a disaggregation algorithm to separate the

contributions of each appliance.

The goal of this thesis is to address the algorithmic challenge offered by NILM.

The NILM problem can be formulated as a source separation problem, where the

sources are the individual electric consumptions and the mixed observation is simply

the sum of individual consumptions. Its main difficulties are: (i) the standardization

of the formulation, (ii) the ill-posedness of the problem, (iii) the lack of knowledge

and (iv) the machine learning algorithm design. All our contributions follow from

the principal objective that is to solve the NILM problem for huge systems such

as commercial or industrial buildings using high frequency current and voltage

measurements. However, houses and the specific equipment found inside these

buildings are not excluded of the study. This thesis is split into two parts.

In the first part, we tackle the lack of knowledge and datasets for NILM in

commercial buildings. First of all, the NILM community has mostly focused on both

residential NILM application and using low frequency data provided by power meter

installed by utility providers. To tackle the lack of knowledge on higher frequency

data and on other kind of buildings such as commercial or industrial installations,
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we propose a statistical analysis based on public and private datasets. Our study on

the rank of current matrix conducted for individual devices will serve as the base of

a new device taxonomy and to prior assumptions on the rest of this thesis. Secondly,

we address the lack of datasets especially for commercial buildings by developing

an algorithm for generating synthetic current data based on a modelization of the

current flowing through an electrical device. To encourage research on commercial

buildings we release a synthesized dataset called SHED that can be used to evaluate

NILM algorithms.

In the second part, we deal with the NILM software challenges by exploring

unsupervised source separation techniques. To overcome the unaddressed difficulties

of processing high frequency current signals that are measured in large buildings,

we propose a novel technique called Independent-Variation Matrix Factorization

(IVMF), which expresses an observation matrix as the product of two matrices: the

”signature” and the ”activation”. Motivated by the nature of the current signals, it

uses a regularization term on the temporal variations of the activation matrix and a

positivity constraint, and the columns of the signature matrix are constrained to lie in

a specific set. To solve the resulting optimization problem, we rely on an alternating

minimization strategy involving dual optimization and quasi-Newton algorithms.

IVMF is the first proposed algorithm especially designed for high frequency NILM

in huge buildings. We finally show that IVMF outperforms competing methods

(Independent Component Analysis, Semi Non-negative Matrix Factorization) on

NILM datasets.



Résumé

La prise de conscience des conséquences du réchauffement climatique a permis de

lancer un mouvement de réduction de l’utilisation d’énergie. Sans pour autant

stopper toute utilisation d’énergie, le faire de façon la plus efficace possible en

réduisant le gaspillage apparâıt comme une solution évidente. L’électricité utilisée

dans les bâtiments représente une part importante de la consommation d’énergie et

doit donc être utilisée de manière efficace. Pour cela, il est nécessaire de pouvoir

mesurer et suivre la consommation électrique de chaque appareil au sein d’un

bâtiment. Depuis 30 ans, une méthode de suivi des consommations électriques, Non

Intrusive Load Monitoring (NILM), propose à partir d’un unique compteur mesurant

la consommation totale du bâtiment, de déterminer la contribution de chaque

appareil électrique. Cette méthode est basée sur un algorithme de désagrégation des

consommations électriques et permet de s’affranchir de l’utilisation d’un compteur

de mesure pour chaque appareil électrique du bâtiment.

Cette thèse aborde les problèmes algorithmiques que présente le NILM. De manière

générale, la problématique est celle de la séparation de sources. Les différentes sources

à estimer correspondent ici à la consommation électrique des différents appareils

branchés sur un même réseau. La mesure réalisée, aussi appelée observation mélangée,

correspond à la somme de toutes les consommations. Ainsi, les principales difficultés

du NILM sont : (i) la standardisation de la formulation, (ii) le caractère mal-posé du

problème (perte d’information), (iii) les connaissances insuffisantes sur les signaux

et (iv) l’implémentation d’un algorithme d’apprentissage. L’objectif principale de

cette thèse est de traiter le NILM dans le cadre des grands bâtiments (commerciaux,

bureaux, industriels) en utilisant des mesures hautes fréquences du courant et de

la tension. Cependant les maisons individuelles et leurs propres types d’appareils

électriques ne sont pas exclus de cette étude. Cette thèse est structurée en deux

grandes parties.

Dans une première partie nous abordons le problème du manque de connaissance

des signaux de consommation électriques, à la fois ceux des grands bâtiments et ceux
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des différents appareils utilisés. La littérature concernant le NILM est principalement

orienté sur l’étude des mesures basses fréquences de consommations dans les maisons.

Nous proposons ici une analyse statistique des mesures de consommations. Nos

résultats nous permettent de proposer une nouvelle classification des appareils

électriques en fonction de leur caractéristiques de courant et également de définir des

hypothèses pour la résolution du problème de séparation des sources. Le manque de

données de consommations disponibles est également un frein pour le développement

du NILM. Pour répondre à cela nous développons un modèle génératif permettant de

simuler des données hautes fréquences de courant électrique de bâtiments. A partir

d’un nombre limité de données réelles nous réalisons des simulations de bâtiments

que nous partageons dans la base de données SHED.

Dans une seconde partie, nous abordons le problème de la séparation de source.

Grâce à nos résultats d’analyse et par manque de données, nous traitons ce problème

à l’aide de techniques d’apprentissage non-supervisées. Pour proposons une nouvelle

méthode appartenant à la famille des factorisations de matrice appelée Independent-

Variation Matrix Factorization (IVMF), qui permet d’exprimer une matrice d’observation

de courant comme le produit de deux matrices: les signatures et les activations.

IVMF est le premier algorithme décrit pour le traitement du NILM dans le cadre de

données hautes fréquences et de grands bâtiments. Enfin, nous montrons que IVMF

atteint de meilleurs résultats pour le problème du NILM que des méthodes classiques

de séparation de source comme l’Analyse en Composantes Indépendantes ou encore

la Factorisation de Matrice Semi Non-négative.
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commencer cette thèse. Ce sont surement les discussions techniques et scientifiques
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Chapter 1

Introduction

In this very first chapter, we will set the context of this thesis dissertation by

introducing the concept of Non Intrusive Load Monitoring (NILM). This active field

of research has received attention for almost 3 decades now. Let see what it is!

1.1 Context and preliminaries on electricity

To start with, we explore the reasons why NILM has emerged. Secondly we treat

the electric foundation of this method.

1.1.1 Appliance Loads Monitoring

NILM is related to the notion of monitoring electric appliances consumptions. First

of all, we review applications of monitoring the electric consumption of devices.

1.1.1.1 Applications and usage

Appliance Load Monitoring (ALM) is the first step towards energy efficiency in

electric power systems. Measuring and understanding the different electric consump-

tion in an electric network or building is essential to save energy. The first question

one should ask oneself is: which equipments consume the most and may I reduce their

consumption? The first part of the question may be answered by monitoring the con-

sumption of every devices and then computing the share of the electric consumption

across all of them. The second part of the question may also be addressed by device

monitoring looking for a better operation of the equipment: stopping heaters during

building vacancy is one example. This particular example may seem irrelevant for

a person living in his own house due to the proximity with the devices, but for an

19



20 CHAPTER 1. INTRODUCTION

energy manager in charge of saving energy in large office buildings, knowing the

operation of a particular equipment may be impossible without remotely monitoring

it. These questions and their respective answers are called energy feedbacks. The

importance and nature of the feedback needed to ensure energy savings in households

have been extensively studied. A detailed review [Ehrhardt-Martinez et al., 2010]

of more than 60 studies, reveals that direct feedbacks (provided near real-time in

contrast with indirect ones given after consumptions) of disaggregated or contextual

information can help achieving maximal savings.

Predictive maintenance or appliance’s health monitoring is the task of pre-

venting faults in devices such as induction engine in an industrial plant. Reliability

studies have been conducted to establish the prospective life or the mean time

between failures for electrical machines. To integrate individual information for a

particular motor, people have started monitoring temperature, chemicals concentra-

tion, vibration and finally electric currents. Specialists show that high frequency

spectral analysis can detect faults in rotating engines [Tavner et al., 2008]. Load

monitoring is thus a promising tool for predictive maintenance.

Power quality in electrical networks is more and more of research interest.

The quality of an alternating current network is defined by its ability to keep the

voltage stable in terms of fundamental frequency, amplitude and low distortion from

a sinusoidal waveform. With the increasing development of non-linear loads, voltage

distortions, sags or swells in networks can affect the operation of other devices

[Sivakumar et al., 2016]. Then, there is a need for reliable and accurate monitoring

of electric power systems.

From a power producer point of view, forecasting the power demand is impor-

tant to adjust production units [Hippert et al., 2001, Alfares and Nazeeruddin, 2002].

Accessing detailed information such as individual consumption via load monitoring

can simplify the forecasting problem.

A final application of load monitoring is occupancy detection in buildings. It

consists in estimating the presence or the number of persons in a building via the

electrical monitoring of certain appliances (light bulbs, computers, etc). The main

purposes of occupancy detection is efficient control of Heating Ventilation and Air-

Conditioning systems or presence detection in homes [Hattori and Shinohara, 2017].

1.1.1.2 Intrusive versus Non-Intrusive

Intrusive load monitoring refers to the technique of installing an electric meter on

every devices one needs to track. Although very accurate, this approach suffers from
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two main limitations:

(i) the economic cost of installing one meter per electric device in a building

containing ten to thousands of them,

(ii) the infrastructure complexity for centralizing all the measured data and main-

taining the quality over a long period of study.

To address these issues, researchers and industrials have come up with the idea of

estimating individual consumptions with only access to the main breaker measure-

ments (i.e. the total consumption of the network). This method is interesting as

only one meter is needed, the difficulty then lying in the estimation. Essentially this

approach trades hardware complexity and high accuracy for software complexity

and estimation. This task, named Non Intrusive Load Monitoring (NILM) has

been introduced by Massachusetts Institute of Technology and Electronic Power

Research Institute researchers G. Hart, E. Kern and F. Schweppe in a US patent

[Hart et al., 1989]. NILM and its software task are the main focus of this dissertation.

1.1.2 Physical preliminaries of electrical networks

We now recall the properties of electric networks with a focus on Alternating Current

(AC) and buildings network.

1.1.2.1 Electrical energy

We restrict our explanation to utility-scale electric power systems, it means the

power systems that buildings are connected to. From one side, electrical energy is

generated in power station by converting mechanical (hydro-electric dam), chemical

(hydrocarbons) or nuclear energies. On the other side, electrical devices are converting

electrical energy to another kind of energy (heat, light, motion). We say that they

consume the electrical energy. Physicists have defined quantities to measure the

amount of electrical energy transformed by electric devices. Electrical energy (denoted

E) is supplied by generators to the end-users by the combination of electric current

(i) and electric potential differences (u) via an electric circuit. The electric power

(p) is then the rate, per unit time, at which electrical energy is transferred by the

electric circuit. Let us denote the absolute time by τ , all these quantities are related
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by the following equations:

p(τ) = u(τ) i(τ) (1.1)

E(τ0, τ1) =

∫ τ1

τ0

p(τ)dτ (1.2)

with τ0 and τ1 referring to the time window considered for the energy calculation.

Note that, on most electric meters displaying energy, τ0 is implicitly set to the

installation time of the meter and τ1 is the current time.

1.1.2.2 Alternating current power systems

In AC power systems, the electricity generation is done by using rotating electric

generators (the first of this kind is the well known dynamo that uses electromagnetic

induction). The generated electric potential is an alternating voltage, meaning

that the voltage is alternately positive and negative. The AC power system is

favored over a Direct Current (DC) system because of transmission efficiency. As AC

voltage can be increased or decreased using transformers, it allows the transmission

of energy at high voltage which reduces the losses due to heat. The schema of a

classic electric system, given in Figure 1.1, involves a generating station, followed by

high voltage transmission lines and finally transformers distributing electricity to

individual customers. As shown in Figure 1.1, we will focus later on the electrical

network inside secondary customers buildings.

Figure 1.1: Basic structure of the US-Canada electric system (modified from

[Muir and Lopatto, 2004]): generating station → step-up transformers → high volt-

age transmission lines → step down transformers → end-users.
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We present here AC systems under perfect conditions. The first condition is the

purely periodic sinusoidal voltage whose usual shape is a sine wave with constant

frequency (f) and constant amplitude (Vpeak). However they may vary from one

country to another:

u(τ) = Vpeak sin(ωτ) (1.3)

with ω = 2πf . The most used frequencies are f = 50 or 60 Hz.

For characterizing electric systems in AC mode, one prefers using average quanti-

ties over one or several periods of the voltage. For instance, the amplitude of an AC

voltage is quantified with the Root Mean Square (RMS) value (Vrms):

Vrms(t) =

√
1

T

∫ t+T

t

u2(τ)dτ (1.4)

with t the index of period and T = 1/f is the period in seconds. Notice that, under

perfect conditions, Vpeak =
√

2Vrms. The most commonly found voltage (Vrms) values

are 120/220/230/240 V. RMS current (Irms) is defined in the same fashion.

Regarding the power consumptions, the classic quantity is the average power

(over a period), also called real power:

P(t) =
1

T

∫ t+T

t

p(τ)dτ =
1

T

∫ t+T

t

u(τ) i(τ)dτ (1.5)

Electrical engineers have furthermore introduced two complementary quantities

called apparent (S) and reactive (Q) powers, mathematically defined by:

S(t) = VrmsIrms (1.6)

S2(t) = P2(t) + Q2(t) (1.7)

Apparent power is used to design the size of conductors and transformers. Reactive

power is introduced to quantify the amount of instantaneous power (p) that disappears

when integrated over a period. It can be interpreted as some kind of power stored

in the electrical network and not consumed. Reactive power appears in electrical

network with the introduction of reactive loads such as capacitors and inductors

(these devices are studied in Chapter 2). It is a quantity of interest for power suppliers

because even if reactive power is not consumed by end-users, it is still provided

through the electrical network.
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A final characteristic of the power transmission and distribution is the use of

multiple wires or lines (as shown on Figure 1.1). Most modern power station generate

three AC voltages, called phase conductors (or just phases), with same frequency

and Vrms values relative to the same reference, called neutral (or ground depending

on the earthing system). The only difference between phases is a time lag in the

electric potentials. There is a third of period time lag between each phase conductors.

Therefore, the power delivered to an end-user come as 4 wires: 3 phase conductors

and the neutral. In perfectly balanced condition:

u1(τ) =
√

2Vrms sin(ωτ) (1.8)

u2(τ) =
√

2Vrms sin(ωτ − 2π/3) (1.9)

u3(τ) =
√

2Vrms sin(ωτ + 2π/3) (1.10)

where ui(τ) denote the potential difference between the ith phase conductor and the

neutral wire. Figure 1.2 shows the phase shift between phase line voltages.

Figure 1.2: Three-phase voltage waveforms.

The strength of this system is that if the electric equipment is connected to two

phase conductors instead of to one phase and the neutral, the voltage is multiplied

by
√

3 without affecting the voltage frequency or the voltage sinusoidal shape. Three-

phase electric power is also particularly efficient for rotating motors. For more details

on electric power systems, one can refer to [Grainger et al., 2003].

Notation and units are summarized in Table 1.1.
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Table 1.1: Physical quantities and units.

Quantity name Symbol Unit Abbreviation

current i ampere A

voltage u volt V

instant. power p watt W

real power P watt W

reactive power Q volt-ampere reactive var

apparent power S volt-ampere VA

energy E kilowatt hour kWh

1.1.2.3 Building’s electrical network

It is worth mentioning that electric power is often supplied with only one phase

and the neutral wire to small electric network such as individual houses. Unlike

residential homes, large buildings are most of the time provided with three-phase

electric power. Figure 1.3 illustrates the three-phase electric circuit of a building. In

a building, the main breaker also referred as electric panel or distribution board is a

component of an electricity supply system that divides an electrical power feed into

subsidiary circuits. The utility electric meter is traditionally placed just before the

main breaker for billing purposes. All the subsidiary circuits are then parallel circuits

only connected at the main breaker. Parallel circuits are used so that a failure on

one circuit does not affect the others. It also decreases the voltage drops of series

circuits.

1.2 Non Intrusive Load Monitoring

Non Intrusive Load Monitoring (also called Non Intrusive Appliance Load Monitoring

or Energy Disaggregation) is made of two inherent tasks:

(i) the Hardware task: designing a device capable of sensing electric quantities

in a circuit and capable of communicating its measurements to a centralized

system,

(ii) the Software task: designing an algorithm capable of estimating one or more

individual power consumptions from the measurements.
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u1main
u3mainu2main

Main Breaker
dev1 dev2

dev3

dev4

i1dev1
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Utility Meter
u3main
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Transformer

phase 1
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Figure 1.3: Schema of the the electric circuit of a building. The electric power is
provided by the nearest transformer using 4 wires: 3 phase lines and one neutral (a
ground wire may also be provided). At the entrance of the building, one may find
the power meter furnished by the utility provider and then the main circuit breaker
dispatching electric power to sub-circuit. The devices are connected in parallel and
plugged to a single phase (device 1, 2 and 4) or to the three phases (device 3).
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1.2.1 Hardware task

This section intends to introduce the hardware task of NILM by defining the physics

of electrical circuits in common buildings and by reviewing different hardware systems

available. The role of a hardware device, called meter, is to measure one or several

electrical quantities amongst the ones defined in Table 1.1. A secondary role of the

hardware device may also be to embed the NILM algorithm even if it is usually run

on a remote server. The main features of a meter are the measured quantity, the

processing, the sampling frequency and the measurements errors.

The hardware and software tasks are obviously closely linked. At the beginning

of NILM history, software solutions have adapted to the kind of data provided by

available general purpose hardwares. With the increasing interest in NILM, hardware

devices have started to incorporate specifications needed to overcome some of the

software limitations.

Power providers have installed electric meter on end-users circuit to quantify

the amount of energy consumed in order to charge fees for it. For this application,

the very first meters, called revenue meters, were simple discrete analog transducers

converting AC voltage and current to an energy index. [Hart et al., 1989] are the first

to design a NILM specific measurement apparatus . It sampled at a high frequency

(≈ 3kHz) voltage and current before digitizing it in order to compute interesting

quantities (RMS voltage and current, real and reactive power). Even if the sampling

capability of the device is at several kHz, the final output frequency was at 1 Hz.

Due to the absence of international norms, a multitude of hardware devices and

their own data format have been developed over the last three decades (type of sensor,

processing used to calculate quantities and output data formats). Notice that the

International Electrotechnical Commission (IEC) has initiated the standardization

of equipments for the measuring and the monitoring of steady state and dynamic

quantities in power distribution systems (TC 85 / WG 20). Nevertheless, one can

yet identify two categories of hardware/data format:

(i) Low Frequency (LF) data,

(ii) High Frequency (HF) data.

HF hardware or data provide information about electrical quantities at a higher

sampling rate than the voltage frequency. This includes voltage (u), current (i),

instantaneous power (p). In opposition, LF measurements represent information at

a lower sampling rate than the voltage frequency. It may be an aggregation (for
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instance integration) of HF data. It includes real (P) or reactive (Q) power, RMS

voltage (Vrms) or current (Irms) and energy (E).

With the increasing deployment of smart meters by energy providers, LF data

have been made available at a high scale. The advantage of a LF hardware is its

moderate cost and its lower need for data communication.

Conversely, HF data is only available nowadays from custom hardwares that need

to be installed on top of the energy meter. While this category of hardware is more

expensive and needs more data communication and storage, it provides also more

accurate and richer information.

1.2.2 Software task

Thirty years ago, Ed Kern suggested a very simple definition of the NILM problem

as ”a [program] that could monitor loads by identifying a signature at metering panel

level” (related in [Sultanem, 1991]). During three decades, researchers and industrials

have formulated NILM software problems according to the electric data available,

the desired quantity to be monitored and the application it was used for. As a

consequence of the multitude of choices for each item, a lot of different formulations

can be found in the literature.

1.2.2.1 Conservation of energy

Let us start our explanation with the fundamental concept behind all the NILM

formulations: the conservation of energy. Established by Kirchhoff in 1845, the

current law states that: the algebraic sum of currents in a network of conductors

meeting at a point is zero: ∑
k

ik(τ) = 0, (1.11)

where k is the index of conductors. In other words the Kirchhoff’s current law says

that for any node or junction in an electrical circuit, the sum of currents flowing

into that node is equal to the sum of currents flowing out of that node. In electrical

circuits for modern buildings, all the devices are plugged in parallel (see Figure 1.3

for an explicative schema).

The main breaker is a node where the Kirchhoff’s current law applies. This

results in the NILM equation on current:

imain(τ) =
∑
d∈D

id(τ), (1.12)
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where imain(τ) is the current at the main breaker, d is the index of an electric device

and D is the set of all the device in the electric network.

Using Equation (1.12) and the fact that all the devices share the same voltage

(potential at the main breaker - potential of the neutral wire, i.e. umain(τ) = ud(τ)),

we can establish the NILM equation on power:

pmain(τ) =
∑
d∈D

pd(τ). (1.13)

One can notice that due to the linearity of their calculation, the same equation

stands for real (P) and for reactive (Q) power and for energy (E). On the contrary,

apparent power (S) is not linear and there is thus no such conservation equations.

1.2.2.2 Formulations of the problem

In this section, we first enumerate four examples of formulation in the literature.

The most commonly used formulation of the NILM software problem is following

the lead of Hart’s definition in [Hart, 1992]. It may be expressed as:

Example 1. From the real power measurements acquired at the breaker panel of a

house at a 1 Hz sampling rate:

Pmain(t), (1.14)

estimate, the real power consumptions of the bigger equipments (Dbig) in the

house:

Pd(t) ∀ d ∈ Dbig, (1.15)

Figure 1.4 illustrates this example by showing the total power consumption and

the disaggregated loads during one day for a house.

Later on, [Lee et al., 2005] defined a NILM problem in a commercial building.

Example 2. From a transformation of current and voltage measurements, called

power harmonics, acquired at the breaker panel of a commercial building:

P
(k)
main(t) =

1

T

∫ t+T

t

i(τ)Vpeak sin(ωkτ)dτ, (1.16)

Q
(k)
main(t) =

1

T

∫ t+T

t

i(τ)Vpeak cos(ωkτ)dτ, (1.17)

and noticing that P
(1)
main(t) = Pmain(t), estimate the real power consumptions of the
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Figure 1.4: Total and disaggregated consumption for the REDD dataset
[Kolter and Johnson, 2011], house 3 on the 23rd May, 2011. Among labeled de-
vices such as dish washer, we can notice unknown or circuit level label (bathroom
gfi). The lighting label corresponds to a group of several light bulbs. A loss of data
can be observed around 9 am.
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Variable-Speed Drive (VSD) in the building:

Pvsd(t), (1.18)

such that:

Pmain(t) ≥ Pvsd(t). (1.19)

Sometimes found as a subproblem [Kelly and Knottenbelt, 2015a] or as the main

application [Tabatabaei et al., 2016], the NILM problem can be formulated as the

problem of finding which devices are active at each time step.

Example 3. From the real power measurements acquired at the breaker panel of a

house:

Pmain(t), (1.20)

estimate which equipment of a list (D) are active in the house:

1[Pd(t)>0] ∀ d ∈ D. (1.21)

As a final example, we would like to stress on a formulation where high frequency

current and voltage measurements are used to estimate real power consumption in

houses [Lange and Bergés, 2016].

Example 4. From the current and voltage measurements acquired at the breaker

panel of a house at a 12 kHz sampling rate:

imain(τ),umain(τ), (1.22)

estimate the current waveforms and the real power consumptions of all the

equipments (D) in the house:

id(τ), (1.23)

Pd(t) =
1

T

∫ t+T

t

umain(τ) id(τ)dτ ∀ d ∈ D, (1.24)

such that:

imain(τ) =
∑
d∈D

id(τ). (1.25)

To conclude on the NILM software problem, it can be seen as a source sep-

aration problem. In such a problem one intends to separate unknown sources
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from observed mixed signals. In our case the unknown sources are the individual

consumptions (either power or current signals) and the mixed observation is the

total consumption of the system (either power or current). Notice that for NILM,

the mixing process is simply the sum of the sources. The source separation is said

single channel because we dispose of only one observation signal (corresponding to

one mixing process).

In its common form, the source separation problem is referred to as blind if

it is addressed without information (on the number or the type of the sources for

instance). In this scenario the NILM software problem can be traditionally split

into two subtasks: (i) the disaggregation and (ii) the classification steps. The

disaggregation step aims at separating the total consumption into sub-components

while the classification step intends to identify a sub-component to an electric device.

However, the disaggregation and classification steps can also be merged into a single

task.

1.3 Challenges

He have just presented what is the NILM problem and we can now enter into the

details of the challenges that arise from it. We also classify the challenges as hardware

and software.

1.3.1 Hardware challenges

Data compression. An important task in the hardware design is the data com-

pression. Indeed, the amount of collected data can explode very quickly especially

for HF hardware. There is no standard compression methods for electrical measure-

ments, thus many different procedures can be found in the commercialized hardwares

or in public datasets. In this situation the most encountered techniques are lossy

compression: decimating (keeping only 1 sample every x sample) or averaging. Audio

compression methods (lossless or not) can often be found in the public NILM datasets

but a NILM specific method is still to be designed. For a complete review of the

compression methods tried in the NILM context, refer to [Kriechbaumer et al., 2019].

Cost versus resolution. The cost of hardware meters is still a problem, especially

for high resolution and high frequency meters. Indeed, NILM solutions are mostly

implemented using low frequency data from already installed utility meters as
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installing new metering devices is expensive. Then, designing low cost and high

precision (resolution and sampling frequency) hardwares is a challenge to provide

NILM algorithms with better data.

Even if these hardware challenges are interesting problems, it is beyond the scope

of this thesis.

Data collection. Another challenge that is at the intersection of hardware and

software is the dataset collection. The first public dataset for NILM has been released

in 2011, it is called REDD [Kolter and Johnson, 2011]. The authors stressed the fact

that access to massive public datasets has considerably spurred the research in other

domains (the Wall Street Journal corpus [Marcus et al., 1993] in natural language

processing; MNIST [LeCun et al., 1998] in image recognition). NILM data can be

broken down into two categories: (i) aggregated (or total) measurements at the main

breaker level and (ii) individual equipment measurements. When the individual

measurements come from the same building and at the same period as the aggregated

measurement we call it a sub-metering information or a ground truth. Even if a

dozen of NILM datasets have been released in the last decade, the community still

suffers from a lack of data. First, the quality of the dataset is still an issue since for

most of them either the sampling rate is very low or the sub-metering is incomplete.

Furthermore, datasets are acquired at different sampling rates due to the lack of

standards in the NILM measurement procedures. Secondly, the quantity of data is

very restricted. Almost all the publicly available datasets deal with household data

or equipments usually found in houses. For most of the datasets the measurements

are acquired at a limited number of houses (from one to tens). However we can

notice the release of an important dataset called Dataport of more than 1200 houses

sub-metered in the United States of America but the sampling rate is low (1 second

to 1 minute).

1.3.2 Software challenges

Standardization. As introduced in Sections 1.1.1.1 and 1.2.2, the diversity of

NILM applications and types of data induce a multitude of problem formulations.

This diversity makes it difficult for researchers from general domains such as machine

learning to tackle the NILM problem.

Ill-posed problem. All the examples presented in Section 1.2.2 are considered

as ill-posed problems since it is obvious that an infinity of solutions exists to these
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problems. This is due to the fact that the current at the main breaker is the sum

of all the currents coming from the devices. This summation creates a loss of

information and because of this, researchers have struggled to find good assumptions

and hypotheses to reduce the number of possible solutions. This challenge can

eventually be split into 2 sub-problems: (i) advancing the knowledge on electrical

devices consumptions and on buildings behavior, (ii) developing machine learning

algorithms capable of taking advantage of the data and prior assumptions.

Knowledge discovery. The literature has mainly focused on analyzing residential

buildings consumptions using low frequency power readings. It has implied a lack of

knowledge on larger systems such as commercial (office buildings, schools campus,

shopping malls, etc) or industrial buildings. The consequence of this focus is

that methods specifically designed for residential buildings perform badly when

applied to other kinds of buildings. Furthermore, high frequency current and voltage

measurements have not received a lot of attention due to acquisition difficulties even

if it is widely acknowledged that rising the sampling frequency should improve NILM

performances.

Machine learning algorithms. Choosing the algorithmic approach for solving

the NILM software problem is a real challenge. For more than 30 years, researchers

have investigated supervised and unsupervised learning techniques. The main groups

of methods are chronologically: (i) pattern recognition (or event detection), (ii)

Markovian models, (iii) matrix factorization (or dictionary learning) and finally (iv)

deep learning. The evaluation of a NILM algorithm shall take into account the

estimation precision but also its ability to process large amount of data.

1.4 Contributions

The goal of this thesis is to address the challenges offered by the NILM problem.

All the contributions follow from the principal objective that is to solve the NILM

problem for huge systems such as commercial or industrial buildings using high

frequency current and voltage measurements. However, houses and the specific

equipment we can find inside these buildings are not excluded of the study. This

thesis is articulated around three main contributions.
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Data Analyses and New Assumptions The main purpose of this work is to

answer two questions:

(i) What are the differences between residential and commercial buildings ?

(ii) What are the common and useful characteristics of electrical devices ?

The first question is addressed by gathering aggregated measurements (acquired at

the main breaker level) of residential and commercial buildings. We used both public

and private datasets with low frequency (power measurement at a 30 second sampling

rate) and high frequency (current waveforms at least at 10 kHz) measurements. In

this first analysis we show important differences between residential and commercial

buildings for the seasonality of power, the distribution of power derivatives (or

power variations) and finally in the spectral content of current waveforms. The

second question is tackled using a data analysis of high frequency measurements of

individual devices from both public and private datasets. We use the concept of

semi-nonnegative rank of a matrix. This makes it possible to introduce a low rank

assumption for individual devices current measurements. This analysis is also used

to propose a new device taxonomy for NILM applications.

SHED: a synthetic dataset We have developed a building model for high fre-

quency current waveforms and a synthetic data generation algorithm that is able to

learn parameters on real measurements and then use it to produce new realistic data.

In the light of the results obtained from our statistical analyses and by making use

of both the publicly available datasets and a private one, we conduct various experi-

ments for evaluating the quality of our new device model and building simulations.

To finally foster the NILM research for commercial buildings, we release a synthetic

dataset, called SHED1, that is generated by our algorithm.

Unsupervised learning approaches for NILM Finally, we cope with the NILM

software problem by exploring unsupervised matrix factorization techniques applied

to matrix of current waveforms. In a first part we explore existing general purpose

factorization techniques and explain their limitations to solve the NILM software

problem. In a second part, we develop a matrix factorization technique, called

Independent-Variation Matrix Factorization (IVMF), that aims at addressing NILM

in commercial buildings. The novelty of the method resides in the physically-inspired

constraints and the regularization applied to the signature and activation matrices:

1https://nilm.telecom-paristech.fr/shed/
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(i) we set linear and quadratic inequalities constraints on the signature columns;

(ii) we add a positivity constraint on the activations and a regularization over

the time variation of the activation. While the proposed optimization method

accurately captures the underlying physical behavior of current signals, the proposed

regularization function and the constraints make the problem highly non-trivial. To

solve the resulting constrained non-convex optimization problem, we develop an

alternating minimization strategy involving dual optimization, a quasi-Newton and an

accelerated proximal gradient descent algorithms. We finally investigate the behavior

and performance of our algorithm compared to two related methods (Independent

Component Analysis (ICA) and Semi Nonnegative Matrix Factorization (SNMF))

on a synthetic source separation problem and on a realistic NILM application for

commercial buildings. We show that IVMF is particularly adapted to recover positive

sources that exhibit a strong temporal dependency and sources whose variations

are independent from each other. To the best of our knowledge this constitutes the

first attempt to solve the NILM problem for commercial buildings using current

measurements factorization.

1.5 Organization of the document

The document is organized into two parts with a first part on analyzing the problem

and a second where we propose a new solution to the NILM problem.

Part I aims at analyzing data in order to find insights for simulations and for

developing NILM algorithms. This part is then made of 3 chapters:

In Chapter 2, we start with remainders of the theoretical field of network analysis

from an electrical engineering perspective. Although this field has extended records,

it is not really used in the NILM community. We then review the data analyses for

residential buildings and enumerate the few studies on commercial buildings. We

finally review simulation approaches in the NILM literature.

In Chapter 3, we use two private datasets from commercial buildings on top

of all the public datasets available to present our own data analyses. Firstly, we

analyze aggregated data from both commercial and residential buildings and present

discriminative metrics. Secondly, we study individual device consumptions using

matrix analyses techniques. This particular analysis be concluded by a new taxonomy

of the individual equipments present in buildings and a fundamental property for

future NILM algorithms: the low-rank assumption.
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In Chapter 4, we develop a physically-inspired data model that enable us to

reproduce and simulate the behavior of the electrical network of a building in a

bottom-up procedure. We finally release a new NILM dataset called SHED, made

of simulations of high frequency current data of 8 buildings along with the power

consumptions of the individual devices constituting the buildings.

Part II is dedicated to the task of solving the NILM software source separation

problem for huge systems such as commercial buildings. It is divided into 4 chapters:

In Chapter 5, we review the development history of NILM algorithms: (i) Pattern

Recognition, (ii) Markovian models and (iii) Matrix Factorization. We see that, on

top of the choice of the mathematical technique, NILM solutions differ from each

other due to the type of data used (as in put and/or output) and to the learning

strategy (supervised or unsupervised learning).

In Chapter 6, we introduce our framework of unsupervised learning technique

suing high frequency current and voltage data. We first propose a generic formulation

of the NILM software problem and instantiate the specific problem we want to solve.

Based on our low rank assumption, we set our problem as a Matrix Factorization

problem. Then, we detail the limitations for the problem of NILM of existing general

purpose techniques (Semi Nonnegative Matrix Factorization (SNMF), Independent

Component Analysis (ICA) and Sparse Coding).

In Chapter 7, to overcome the unaddressed difficulties of processing high frequency

current signals, we propose a novel technique called Independent-Variation Matrix

Factorization (IVMF), which expresses an observation matrix as the product of

two matrices: the signature and the activation. Motivated by the nature of the

current signals, it uses a regularization term on the temporal variations of the

activation matrix and a positivity constraint. The columns of the signature matrix

are constrained to lie in a specific set.

Finally, in Chapter 8, we use IVMF to solve the NILM problem on three public

datasets: 8 commercial buildings (SHED) and 2 residential houses (REDD and

BLUED). We show that IVMF outperforms competing methods such as SNMF

and ICA on the commercial buildings. Although our method has been designed for

commercial buildings, the qualitative results on residential datasets suggest that it

can also perform well on that kind of buildings.
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2018, Austin, USA. (best poster award)

(ii) Simon Henriet, Umut Şimşekli, Benoit Fuentes, Gaël Richard. Synthetic

dataset generation for non-intrusive load monitoring in commercial build-

ings. In Proceedings of the 4th ACM International Conference on Systems for

Energy-Efficient Built Environments (BuildSys), November 8-9, 2017, Delft,

Netherlands.

(iii) Simon Henriet, Umut Şimşekli, Benoit Fuentes, Gaël Richard. A Generative
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and Buildings, Elsevier, Volume 177, 15 October 2018, Pages 268-278.

(iv) Simon Henriet, Umut Şimşekli, Sergio Dos Santos, Benoit Fuentes, Gaël Richard.
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Motivations In this part, we focus on analyzing and simulating electrical measure-

ments, either from entire buildings (often called aggregated data) or from individual

devices. On the first hand, this part is of particular interest for understanding

the problem of Non Intrusive Load Monitoring (NILM). The analysis of electrical

devices and electrical network is a broader endeavour than just NILM and has been

extensively studied. However, such analyses have not been used that much in the

NILM community. Another issue with the existing studies in NILM is the focus

on residential buildings and thus on the type of equipments herein. There is also a

lack of knowledge on high frequency data from a NILM perspective mainly due to a

lack of available data. On the other hand, the biggest obstacle to the development

of NILM algorithm is the lack of data to learn algorithms. Even if unsupervised

algorithms require less data to be developed, they still need data of good quality for

evaluation purposes. Therefore, the main goals of the following chapters are:

(i) to understand the differences between small and huge buildings,

(ii) to find interesting properties of individual appliances consumptions,

(iii) to set prior information and assumptions for future unsupervised NILM algo-

rithms,

(iv) to generate synthetic datasets in order to evaluate NILM algorithms.

Organization This part is organized in 3 chapters:

In Chapter 2, we start with a recall of the theoretical field of network analysis

from an electrical engineering perspective. Although this field has extended records,

it is not really used in the NILM community. We then review the data analyses for

residential buildings and enumerate the few studies on commercial buildings.

In Chapter 3, we use two private datasets from commercial buildings on top

of all the public datasets available to present our own data analyses. Firstly, we

analyze aggregated data from both commercial and residential buildings and present

discriminative metrics. Secondly, we study individual device consumptions using

matrix analyses techniques. This particular analysis be concluded by a new taxonomy

of the individual equipments present in buildings and a fundamental property for

future NILM algorithms: the low-rank assumption.

In Chapter 4, we develop a physically-inspired data model that enable us to

reproduce and simulate the behavior of the electrical network of a building in a

bottom-up procedure. We finally release a new NILM dataset called SHED, made
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of simulations of high frequency current data of 8 buildings along with the power

consumptions of the individual devices constituting the buildings.
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approaches in the context of NILM. Indeed, it is of first importance to analyze

electric data in order to find important characteristics that will be useful either for

simulating data or for developing NILM algorithms. Then, there are two ways of

analyzing current and voltage measurements in any electric network, would it be

a simple electric device or an entire building. The first kind of analysis is called

network analysis and is model driven. It means that electrical engineer used ideal

component and Physic’s laws to analyze and understand the relationship between

physical quantities such as voltage and current. The second kind of analysis is called

data analysis and is more data driven. It means that one directly analyzes the

measured quantities and tries to infer properties, structure, laws or simple models.

In this chapter, we will review the state of the art of both methods and discuss

existing methods to simulate data.

2.1 Network analysis

In electrical engineering, the field of network analysis is devoted to finding the voltage

across, and the current through, all network components. An electronic component

is defined as a basic device that lets the current flow through it. The basis of network

analysis is to approximate the behavior of a network by replacing real components

(the ones that are manufactured) with idealized elements (the ones that Physic’s

laws can explain the behavior). Electric laws result in equations (Kirchhoff’s laws,

Ohm’s law, Norton’s theorem, Thevenin’s theorem) and mathematical tools (complex

analysis, Laplace transform, differential calculus) enable the evaluation of current

and voltage quantities in any electric network.

We briefly review the theory of network analysis and illustrate the link with

our work from the simplest case (ideal components, linear circuit) to more complex

analyses (real components, electric devices, non linear loads).

2.1.1 Resistor

The resistor is the most simple electronic component. Resistors are part of every

electrical circuit and reduce the current flows in the circuit by dissipating heat. The

relationship between the current i thats flows through a resistor and the voltage u

across it is given by Ohm’s law [Ohm, 1827]:

u(τ) = R× i(τ), (2.1)
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where R is called the resistance. If the voltage is a sine wave at 50Hz, the current

will be a similar sine wave whose amplitude will be inversely proportional to R.

(a) Heater’s switch ON (b) Zoom on one voltage period

(c) Heater’s power load

Figure 2.1: Voltage and current measurements for a heater from the PLAID dataset

[Gao et al., 2014].

Every conductive wire is equivalent to a resistor. Big electric devices, such as

heaters or incandescent light bulbs, are electrically equivalent to resistors. Figure

2.1(a) shows a heater’s switch ON. The voltage is a periodical sine wave and once

switched ON, the current looks similar. Figure 2.1(b) clearly illustrates the propor-

tional relationship between current and voltage and shows the equivalence between a

resistor and this electric heater. Finally, Figure 2.1(c) shows the instantaneous and

real power load curves. The average power (see Equation 1.5) presents a constant

shape after the switch ON. Note that this property of constant consumption has

been one of the most important assumption in the early NILM literature.
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Resistors are called linear loads. It means that the relationship between current

and voltage is linear: i = f(u) with f(x) = 1
R
x (for a resistor).

Other types of linear loads exist, namely capacitors and inductors. Both of them,

in ideal form do not dissipate energy but store it. The storing details are beyond

the topic of this manuscript. The important information is the current/voltage

relationship and its expression in an Alternating Current (AC) circuit:

(i) capacitor:

i(τ) = C
du(τ)

dτ
, (2.2)

(ii) inductor:

u(τ) = L
d i(τ)

dτ
, (2.3)

with C the capacitance and L the inductance. Due to the linearity of the

derivative operator, we can verify that inductors and capacitors are linear loads.

(a) Capacitor (C = 1F) (b) Inductor (L = 1H)

Figure 2.2: Solution of the current/voltage equations for ideal capacitors and induc-

tors.

Figure 2.2 shows the voltage/current relationship during one voltage period. The

inductor current is said to be lagging the voltage whereas the capacitor current is

leading the voltage (in advance).

When connected to a voltage or current generator, in series or in parallel, linear

loads constitute a linear circuit. There is a strong literature for analyzing linear

circuit [Chua et al., 1987]. It is driven by linear differential equations and one may

use Fourier analysis or Laplace Transform to solve it.
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2.1.2 Induction Motor

An induction motor is an electric motor made of two parts: the stator (the fixed

cage) and the rotor (the torque is produced around its axis). The induction motor

equivalent circuit is a linear circuit made of resistors and inductors: it is called the

Steinmetz equivalent circuit [Hubert, 1990] (see Figure 2.3).

(a) Steinmetz (b) Simplified circuit

Figure 2.3: Steinmetz equivalent circuit for an induction motor. The arrow on

resistors mean a variable resistor.

To solve for the total current, one can further simplify the circuit, by first finding

the equivalent impedance of the parallels inductance and resistance. Then, one can

use the series equivalent formula for 2 impedances in series. The voltage/current

equation can thus be expressed as:

u(τ) = L
d i(τ)

dτ
+R i(τ) (2.4)

D = R2
r + (Xr +Xm)2

L = Xs + (X2
rXm +XrX

2
m +R2

rXm)/D

R = Rs + (RrX
2
m)/D

This equation is typical of a LR circuit (a circuit comprised of a resistor and an

inductor). Solving this equation enables us to calculate the current response to a

sinusoidal voltage generator:

if u(τ) = Vpeak sin(ωτ), (2.5)

then i(τ) =
Vpeak
A

sin(ωτ + φ), (2.6)

with: φ = tan−1(−Lw
R

) and A−1 = R cosφ− Lw sinφ.
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Figure 2.4: Measurements of current and voltage during the operation of a fan made
of an induction motor.

Figure 2.4 clearly shows the lag due to φ. More generally, every linear circuit

can be reduced to a simple RLC circuit (resistor + inductor + capacitor). And the

response in current to a sinusoidal voltage is always a sinusoidal function at the same

frequency but with a possible time lag (φ).

2.1.3 Diode

An electric component that does not respect the linear property is called non-linear.

For instance, if a pure sine wave voltage with a 50Hz frequency (called the fundamental

frequency) is applied to that equipment, the resulting current may contain several

shifted sine waves with frequency multiples of the fundamental (100Hz, 150Hz, . . . ,

called harmonics).

A diode is such a non linear load. It is an electronic component that ideally

conducts the current only in one direction. The voltage/current relationship has

been studied and the theoretical model is given by the Shockley diode equation:

i(τ) = Is(exp(
u(τ)

nV
)− 1) (2.7)

with Is is the saturation current, n the ideality factor and V the thermal voltage.

The simulated current is given in Figure 2.5. A light-emitting diode (LED) has a

similar behavior as a diode and can emit lights when current flows through it. We

have seen that a diode only conducts current in one direction so that the LED will

produce light only during the positive voltage semi period. In order to produce light

also during the second semi period, manufacturers have designed 2 parallel circuits
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with diodes in the reverse side.

Figure 2.5: Shockley ideal diode model showing the non-linearity of the cur-
rent/voltage relationship.

Many electric devices present non-linear features. We do not intend to be

exhaustive in the listing, but we can name: switched-mode power supplies, compact

fluorescent lamps, variable-frequency drives. We have seen that we can solve the

voltage/current equation for simple ideal diodes. It becomes harder or even impossible

to analytically solve for more complex circuits. In this case, one will prefer to use

numerical solvers developed for the electric devices manufacturers.

2.1.4 Electronic loads

The difference between an electric load and an electronic load is that the former

turns electricity into an another kind of energy (heating, lighting, mechanical energy)

and the latter use electricity to a more elaborated task such as computing calculus or

printing images. Such equipments have been extensively studied in [He et al., 2012].

The front-end power circuit is the electric circuit aiming at transforming the input AC

voltage into a DC voltage used by the equipment. Depending on the average power

consumption of the appliance, this circuit usually comprises different filters (including

an electromagnetic interference filter and a rectifier), a power factor correction (PFC)

and a DC-DC converter. All those components make the overall circuit complicated

and also induce a highly non-linear current response.
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2.1.5 Electrical circuit based taxonomy

[He et al., 2012] designed a 2-level device taxonomy based on the electrical circuit

characteristics. They only focused on Miscellaneous Electric Loads (MELs) defined

as all non-mains connected electrical loads in a building, including a variety of

electric devices such as refrigerators, computers, food preparation appliances, space

heaters/fans, etc. Their taxonomy consists of a hierarchical breakdown of electrical

devices. The first level contains 7 categories depending on the different modules of

the electric circuit (resistors, inductors, rectifier, filters, converters, transformers,

etc). This level is called front-end circuit topology. The second level represents the

usage or nature of the electric device. Table 2.1 shows the repartition of MEL devices

into each level.

Table 2.1: A device taxonomy from [He et al., 2012].
Category Name Circuit modules Examples

(level 1) (level 2)
Resistive • resistors • heaters,

• coffeemakers,
• incandescent lamps.

Reactive • inductors • refrigerator
• motors • fans

• washers
Electronic • rectifier • personal computer

without PFC • filter • LED television
• DC-DC converter • game console

Electronic • rectifier + filter • cell phone chargers
with PFC • DC-DC converter • PC monitors

• PFC • scanners
Linear • transformer • battery chargers

• rectifier

Phase Angle • rectifier • light dimmers
Controlled • thyristor

Complex • mix of all categories • microwave
• laser printer
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2.1.6 Discussion

This analytic approach is precious for studying the characteristics of particular

devices in perfect operating conditions. Reading the equivalent or front-end circuits

of an electric device can help understanding its current waveforms. In opposite,

this theory can help recognizing an electric element from its current and voltage

measurements. [He et al., 2012] have based their device taxonomy on the study of

the electrical circuit of small appliances in buildings.

However, it is difficult to use this approach for studying an entire building. First

note that electrical devices may be very different from one manufacturer to an other.

So writing down the entire equivalent electric circuit may be an extremely hard task.

It would require to know in advance all the electric devices with their equivalent

electric circuit. Even if we dispose of such an equivalent circuit setting all the

parameter values (such that the electromechanical load for an induction motor, the

switch on times for lights, etc) would still be very complex, or even unfeasible.

This approach is said model-driven, it means that we analyze a building by

starting from individual components and models in order to describe the measured

quantities (voltage and current). The opposite approach, said data-driven, aims at

extracting information or structure directly from the measurements. We will explore

this latter approach in the following section.

2.2 Data analysis

In this section, we review data driven analyses. We start by listing the public datasets

available. Then we introduce the matrix representation of current and voltage

measurement. Finally, we discuss analysis on either individual device measurements

or on aggregated data (the total consumption of a system).

2.2.1 Datasets

With the increasing development of measurement devices, measuring the electric

consumptions of equipment or buildings has become easier. In the last decade,

we have witnessed the release of multiple publicly available datasets of different

quality and with different sampling strategies. The public datasets used for this

study range from low frequency to high frequency sampling and correspond to

measurements of houses (except for one which comes from an university building)

and of individual small equipments. We have selected datasets with at least a 1/30Hz



52CHAPTER 2. STATE OF THE ARTOF THE NILM PROBLEMKNOWLEDGES

sampling frequency and from each dataset the houses, buildings or devices whose

measurements last longer than a week, without distinguishing the weekdays and the

weekends. All those datasets are shown in Table 2.2.

Table 2.2: The public NILM datasets: COOLL ([Picon et al., 2016]),
WHITED ([Kahl et al., 2016]), PLAID ([Gao et al., 2014]), REDD
([Kolter and Johnson, 2011]), UK-DALE ([Kelly and Knottenbelt, 2015b]),
BLUED ([Filip, 2011]), TRACEBASE ([Reinhardt et al., 2012]), ECO
([Beckel et al., 2014]), IAWE ([Batra et al., 2013]), REFIT ([Murray et al., 2017]),
RAE ([Makonin et al., 2017]), COMBED ([Batra et al., 2014]).

Name Data Number Phases Frequency Type
COOLL current 840 1 100 kHz devices
WHITED current 1259 1 44 kHz devices
PLAID current 1074 1 30 kHz devices
REDD current 2 2/1 16.5 kHz residential
UK-DALE current 1 1 16 kHz residential
BLUED current 1 2 12 kHz residential
TRACEBASE power 1270 1 1 Hz devices
REDD power 6 2 1 Hz residential
ECO power 6 1 1 Hz residential
IAWE power 1 1 1 Hz residential
UK-DALE power 5 1 1/6 Hz residential
REFIT power 20 1 1/8 Hz residential
RAE power 1 2 1/15 Hz residential
COMBED power 1 1 1/30 Hz commercial

2.2.2 Data Representation

In this section we introduce a very important data representation for current and

voltage measurements. Recall that the digitized voltage and current waveforms are

denoted: u (τ) and i (τ), with τ the time. Since the voltage signal is supposed to be

a periodic sine wave, it is acknowledged to study the relation between current and

voltage during one voltage period. For real measurements, one classically defines

a voltage period as the time window between two zero-crossings. A zero-crossing

corresponds to the moment at which the voltage crosses zero from negative to positive

values. In perfect condition, the number of samples within a period of the voltage

sine wave is constant and noted N . The second step to transform the voltage time

serie is to construct the voltage matrix using the previously sliced voltage periods:

each voltage period (∈ RN) is put into a column of the voltage matrix. Thus the
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(a) Time serie representation (b) Matrix representation (current)

Figure 2.6: Data representations: (a) the original time serie representation of the
voltage (top) and current (bottom). The voltage zero-crossings are indicated by the
major ticks (period index). (b) illustrates the matrix representation of the current
used in the following of the dissertation. The colormap is black for positive values
and red for negative ones. Each column of (b) corresponds the original current time
serie in (a) during one voltage period. The number of rows in (b) corresponds to the
number of sampling index (minor ticks) within a period in (a).

number of columns of the voltage matrix is equal to the number of voltage period

and is denoted T . U(n, t) is an entry of the voltage matrix. Notice that, in perfect

condition we can write: τ = n+ t×N and thus U(n, t) = u(n+ t×N). This matrix

representation can thus be seen as a simple reshaping of the data. The transformation

of the current time serie into a matrix is slightly different. As the current time serie

is not periodical but only pseudo-sinusoidal (meaning that it alternates positive and

negative values), the slicing of the current serie is done according to the voltage

periods. It means that the voltage and current slices are time synchronous. Once

the current time series is sliced, each pseudo-period (∈ RN) is put into a current

matrix similarly to the voltage matrix. Formally, time series u (τ) and i (τ) are

transformed into matrices U and I, where the rows are indexed by n the sampling

index and the columns are indexed by t the period index. Figure 2.6 illustrates this

data transformation.

This matrix representation does not affect the calculation of average. It is then

given by:

P(t) =
1

N

N−1∑
n=0

U(n, t) I(n, t). (2.8)

For further details on the relation between current, voltage and power see Section

1.1.2 in the Introduction.
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It is also possible to down-sample or aggregate these current or voltage signals

by averaging several consecutive periods:

U(n, s) =
1

S

(s+1)×S−1∑
t=s×S

U(n, t), (2.9)

where S is the number of consecutive periods aggregated.

Transformation of this representation can also be conducted, such as Discrete

Fourier Transform (DFT). For instance, DFT can be calculated on each column of

this matrix representation. This matrix representation will be at the heart of our

statistical analysis of high frequency current measurements in Chapter 3 and of the

development of NILM algorithms in Chapter 6.

2.2.3 Individual device analysis

In this section we review the analysis of individual equipment measurements. We

first review two proposed device taxonomies based on data analysis. Secondly, we

discuss study of data feature extraction driven by the task of recognizing a device

from electric measurements.

2.2.3.1 Taxonomies

On a first analysis and attempt to model the power consumption of electrical devices,

[Hart, 1992] has proposed a device taxonomy of 3 types of devices: (i) ON/OFF,

(ii) Finite State Machine and (iii) continuously variable. It is purely based on the

shape of power consumption. The first category ON/OFF is comprised of devices

that have a constant consumption once switched ON. The second category, Finite

State Machine considers device with multiple states with a constant consumption for

each of the states (for example: dish washer, multiple speed fan). The third category

includes all the other equipment that have a varying consumption (motor, variable

speed drives). A fourth category is often added: (iv) still ON. It consists of devices

always ON.

Quickly after this first taxonomy, [Sultanem, 1991] developed an analysis of

electrical devices based on the high frequency current waveforms. Table 2.3 lists the

6 categories of the taxonomy.
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Table 2.3: A device taxonomy from [Sultanem, 1991].
Category Name Features Examples

(level 1) (level 2)
Resistive • zero harmonic • panel heaters,

• reactive power • cookers,
• incandescent lamps.

Pump operated • current harmonic • refrigerator
• high reactive power • deep-freeze

• washer drain pumps
Motor driven • same as pump operated • washing machine
without PFC • less switching ON • mixers

• fans
Electronically fed • current harmonic • TV

• low consumption • computers
• HiFi equipments

Electronic power control • varying consumption • halogen lights
• vacuum cleaners

Fluorescent lighting • high 3rd current harmonic
• high current/voltage shift

2.2.3.2 Feature extraction

The main question addressed in the literature using data analysis is: Is it possible to

recognize a device from its consumption measurements? Formally it is a statistical

classification problem where one disposes of observations associated to categories and

tries to figure out which category a new observation belongs to. For such a problem,

when the available database is limited, a traditional approach consists in designing

signal features that would be discriminative between categories. Such a process is

called features engineering. It consists of a first research step where one is looking

for data transformations or statistics and then applies a classification algorithm on

the resulting features. We review here the most commonly used features and their

interpretations (when one is available). A good state of the art review for NILM

classification can be found in [Sadeghianpourhamami et al., 2017]. The features can

be broken down into 2 main categories: low frequency and high frequency depending

on the sampling frequency of the input data. Low frequency features are extracted

from power or energy measurements whereas high frequency features are computed

on current and voltage waveform measurements.
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Low frequency features The most common feature family uses power consump-

tion. Power step (∆ P) is the constant amount of power that a device consumes

when it is switched on. It is meaningful only for devices that have a constant con-

sumption. ON duration and frequency of switching ON are also two features related

to the power consumptions [Powers et al., 1991, Farinaccio and Zmeureanu, 1999,

Marceau and Zmeureanu, 2000]. Although power step expresses the electric design

of an equipment, duration and frequency illustrate the operation of the appliance.

Real power features can also be augmented by reactive power to create the

P-Q features family. As the power step, the reactive step can be computed. Reac-

tive power helps differentiating two equipments with the same power consumption

[Cole and Albicki, 1998]. P-Q features are known to fail at discriminating non-linear

loads.

High frequency features High frequency measurements consist of current and

voltage time series. A common transform used is the Discrete Fourier Transform

(DFT) applied to a window of one or several voltage periods (a typical window

size is 20 ms for 50 Hz AC voltage). Harmonics values during the steady state

is a widely used feature. Approaches using up to the 7th harmonic can be found

in the literature [Nait-Meziane et al., 2016, Srinivasan et al., 2005, Sultanem, 1991,

Meziane et al., 2017]. One can also find aggregation of the harmonics vector, such

as the Total Harmonic Distortion, defined by the ratio of the energy of the first

harmonic and the energy on higher harmonics [Dong et al., 2013]. This entire family

of features may be called harmonics.

On top of this instantaneous value, [Leeb et al., 1995] also used the DFT on the

matrix representation introduced in Section 2.2.2 to characterize the time varying

loads. It thus maps the current time serie to a two-dimensional function of time

and harmonic. This approach is suitable for identifying and discriminating varying

devices.

Another interesting approach of characterizing load varying devices is the family

of wavelet features ([Chan et al., 2000, Oukrich et al., 2017]). In a similar fashion as

the Fourier Transform, Wavelet Transform represents a signal using an orthonormal

basis.

Some authors have investigated the relationship between current and voltage

through another kind of feature called U-I trajectory. It is a two-dimensional

representation of the current and voltage as a scatter plot. The scatter plot may be

transformed to a two dimension image and image processing techniques may then be
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used for the analysis ([Gao et al., 2015, De Baets et al., 2018]).

2.2.4 Aggregated data analysis

Aggregated consumption (i.e. the consumption of the entire house) has been well

studied outside the NILM community. The most important feature used for NILM

application in residential buildings is the so-called one-at-a-time feature. It states

that between two following measurements in a building, only one equipment changes

state [Hart, 1992, Kolter and Jaakkola, 2012].

In [Mei et al., 2017], Non-negative Matrix Factorization is used to model total

power consumptions using the fact the total power consumption is made of repetitive

patterns.

[Batra et al., 2014] have studied the difference between commercial and residential

buildings using the measurements from 2 buildings in an educational campus in India.

They present qualitative figures suggesting that commercial buildings consumptions

present more time dependency than residential ones. They show that the number of

events (power variations of at least 100 W) is higher in their buildings compared to

residential datasets. They conclude that the one-at-a-time hypothesis is not expected

to be valid in commercial buildings.

2.3 Simulations

In the section, we finally review approaches to simulate new data.

2.3.1 Low frequency data

Substantial efforts have been made to model electrical devices consumption and

simulate datasets in order to evaluate NILM algorithms. [Fischer et al., 2015]

used ”ON/OFF” models with a probability of a device to be switched ON de-

pending on the time of the day. Other approaches ([Buneeva and Reinhardt, 2017,

Barker et al., 2013]) defined more complicated models that can take into account

uniform randomness during operation time, multi-state devices or exponentially

decaying load curves. Even though these models are efficient for electrical devices in

residential buildings, they are too simple to be used in commercial settings which

contain smoothly varying devices. The higher complexity of commercial buildings

also implies a need for higher frequency data.
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2.3.2 High frequency data

It is worth mentioning that high frequency current measures have been studied

in several papers [Sultanem, 1991, Lee et al., 2004]. [Lam et al., 2007] used high

frequency current/voltage trajectories to classify electrical devices. Public datasets

of high frequency current measurements of residential equipments has also been

released [Gao et al., 2014, Picon et al., 2016]. Finally, [Liang et al., 2010] developed

a simulator for high frequency current measures but without considering long term

modeling of current dynamics.

2.4 Conclusion

On the first hand, we have seen that network analysis approaches are precious for

studying the characteristics of particular devices in perfect operating conditions.

Reading the equivalent or front-end circuits of an electric device can help understand-

ing its current waveforms. However, it is difficult to use this approach for studying an

entire building. On the other hand, data analysis techniques have lead to interesting

taxonomies and helped finding features useful for NILM algorithms. Finally, we have

discussed different approaches to simulate new data.

Although these study on analysis are complete for NILM in residential buildings

and especially on low frequency data such as power measurements, it is very scarce

concerning commercial buildings and high frequency data.

In the following chapter, we will develop our own data analyses for commercial

buildings data and will especially focus on high frequency current measurements. In

Chapter 4, we will propose a new generative procedure to simulate NILM datasets.
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] As previously said, there is a lack of knowledge on high frequency electric

data measured from huge systems such as commercial buildings. Analyzing data

is primordial in order to find key features that are useful for developing simulators

and NILM algorithms. Thus, in this chapter, we analyze total consumption data

(or aggregated) and individual consumptions (either power or current and voltage

measurements). We first propose a new study on comparison between residential

and commercial buildings using two private datasets in addition to public data. It

consists of both low frequency total power data (named SILF) and high frequency

total current measurements (named SIHF) from 7 commercial buildings. Finally, we

study current data from individual equipment using matrix analyses techniques in

order to extract useful properties.
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3.1 Residential versus commercial buildings

In this section, we explore the statistical differences of electrical signals in commercial

and residential buildings. Our goal is to develop quantitative metrics that can

describe electrical power signals and differentiate both types of buildings. The

physical quantities used have been defined in Section 1.1.2 and the datasets presented

in the Section 2.2.1. We study the temporal structure of the power, the distribution of

the temporal derivative of the power, and the harmonic content of current waveforms.

This will guide us to develop the tools for understanding and differentiating the

signals coming from residential and commercial buildings.

3.1.1 Power measurements (low frequency)

In this part we study the statistical properties of power measurements. A particular

attention is taken to the dynamic behavior of power changes distribution and to

seasonal effects. In order to discriminate residential from commercial buildings, we

are particularly interested in state change events (switching on or off, different speed

or heating levels) or continuous variations of electrical devices present in the building.

These events result in total current signal variations and therefore in a time-varying

power consumption. In this section, we used all the power and current datasets

presented in Table 2.2. Power values have been calculated from current and voltage

for current datasets. Power time series exhibit a temporal structure defined here

by high first-order autocorrelation 1(0.92 and 0.99 for respectively residential and

commercial buildings at 1/30 Hz, in average over all datasets). This can be explained

by the fact that, when a device is switched on it often remains active for several

periods. This motivates us to study the power derivatives (or power variations)

rather than the power consumptions:

∆ P (t) = P (t)−P (t− 1) , (3.1)

and to characterize its structure at different time scales. To enable the comparison

between buildings, the power derivative is normalized so that the mean is zero and

the standard deviation is one.

One important structure in time series is the seasonality. It is a weak assumption

1For a stationary signal xt, t = 0, . . . , T − 1, the autocorrelation at lag τ is defined as: Rτ (x) =∑T−1−τ
t=0 (xt−x̄)(xt+τ−x̄τ )√∑T−1−τ

t=0 (xt−x̄)2
√∑T−1−τ

t=0 (xt+τ−x̄τ )2
, where x̄ and x̄τ are the sample means of respectively xt and

xt+τ .
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Figure 3.1: Estimation of the 1 day lag autocorrelation for the power derivatives at
different re-sampling frequencies for all the datasets (see Table 2.2)

to state that the power consumption and thus its derivative can show daily seasonality

due to the habits of the people and time-scheduled equipments. The seasonal effect is

characterized here by the autocorrelation with a lag of 1 day of the power derivative

(presented in Figure 3.1). It first shows that the derivative of hourly aggregated

power discriminates the two kinds of buildings, since the seasonal effect is higher for

the commercial ones than for the residential ones (0.65 vs 0.18, in average over all

datasets). This can be interpreted by the fact that the consumption patterns are

more periodical in commercial buildings than in residential: (i) many equipments

are programmed and have recurrent patterns, (ii) the average behavior of occupants

is more recurrent than individual behaviors. Figure 3.1 also shows that the seasonal

effect is more intense at higher time scale.

At a 1/30 Hz sampling frequency, the power derivative has almost no temporal

structure (zero first-order autocorrelation) and can thus be studied as realizations

of independent and identically distributed random variables. It can be observed in

Figure 3.2 that the distribution of the power derivative for a residential building can be

more peaky around zero and has a heavier tail than the one of a commercial building.

In order to reflect the statistical differences between residential and commercial

buildings, we have selected three statistics that can provide an accurate summary

for these distributions: (i) the kurtosis, (ii) the entropy and (iii) the scale parameter

of Laplace distribution.

Firstly, the kurtosis is based on a scaled version of the fourth moment of a random
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Figure 3.2: Distribution of power derivatives @ 1/30Hz for all the datasets (see
Table 2.2)

variable X:

Kurt[X] =
E
[
(X − E [X])4

]
E
[
(X − E [X])2

]2 , (3.2)

where E is the mathematical expectation. In practice, we used the estimation of the

kurtosis of the power derivatives given by the SciPy library [Jones et al., 2001]. The

kurtosis has often been used as a measure of impulsiveness: impulsive signals typically

have a high kurtosis value [Liang et al., 2008]. Figure 3.3 shows a clear difference in

kurtosis for the two types of building. On one hand, high kurtosis value for residential

buildings can be explained by the low number of devices and the relative simplicity of

the devices (ON/OFF or multi-state) which result in more impulsive power derivative

signals. On the other hand, when the number of independent devices increases,

the distribution of the sum of the power derivative becomes closer to a Gaussian

distribution, as stated by the central limit theorem. It explains why kurtosis values

for commercial buildings are closer to the standard Gaussian kurtosis value (3) than

kurtosis values for residential buildings. It can however be observed that the kurtosis

for commercial buildings remains high compared to the kurtosis of the standard

Gaussian distribution, and this characteristic can still be used in NILM algorithms.

Secondly, entropy is defined as the average amount of information produced by

a stochastic source of data. It is based on the logarithm of the probability density
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(a) Kurtosis (b) Entropy

(c) Laplace scale parameter

Figure 3.3: Statistical analysis of power derivatives at a 1/30 Hz sampling frequency
for all the datasets (see Table 2.2)

(noted P ) of a random variable X:

H[X] = E [− ln(P (X))] , (3.3)

In practice, we used the estimation of the entropy of the power derivative given

by the SciPy library [Jones et al., 2001]. Figure 3.3 shows that entropy values are

higher for commercial buildings. This results from the fact that commercial datasets

contain more devices and thus more information, which is more complex to encode.

This can also come from the fact that there are much more devices with varying

power in commercial buildings than in residential ones.

Finally, we analyze the high-kurtosis of the power derivative data by using

the Laplace distribution, which is well-known for having a high kurtosis as well

and is popular for modeling non-Gaussian data [Kotz et al., 2012]. The Laplace

distribution has two parameters: a location (µ) and a scale (b). The location

parameter equals the mean of the distribution and is of less interest because it is
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0 for our normalized power derivatives. The scale parameter is proportional to the

variance of the random variable. In order to compare the datasets, we estimate

the scale parameter considering the distributions as Laplace and then compare the

estimated parameters. A maximum likelihood estimator of the scale parameter is

given by:

b̂ =
1

T

T−1∑
t=0

|xt − µ|, (3.4)

where xt represents in our case the power derivatives. As shown in Figure 3.3, the

estimated scale parameters are higher for commercial buildings. We can finally

remark that these 3 criteria promote sparseness in the data.2

3.1.2 Current measurements (high frequency)

In buildings the voltage can be considered as a pure sine wave. In the frequency

domain this is characterized by a signal with energy entirely concentrated on the

fundamental frequency. On the contrary, the current signal shows relatively important

energies on harmonic frequencies due to non linear devices present on the network.

This property can be measured with the Total Harmonic Distortion (THD). It is

based on the coefficients of the Discrete Fourier Transform (DFT) of the current

signal. The DFT and the THD are computed for every period:

THD(t) = 100×

√∑N
h=2 I(h, t)2√∑N
h=1 I(h, t)2

, (3.5)

where I(h, t) =
∑N−1

n=0 I(n, t). exp (−2jπ
N
hn) is the hth coefficient of the DFT of I(., t).

Figure 3.4 shows lower values for commercial buildings that may be explained by

an important proportion of linear induction motors (heating, ventilation or air

conditioning) which do not create current harmonics, since in these devices, the

current becomes a linear transformation of the voltage, and the voltage typically

does not contain any harmonics.

2For Laplace distributed random variable, entropy and the scale parameter are linked: H[X] =
log(2be).
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Figure 3.4: Total Harmonic Distortion of current signals for all the ”current”
datasets (see data column in Table 2.2)

3.2 The low rank assumption

In this section we study the structure and the properties of current matrices measured

from individual equipment (see Section 2.2.2 for the construction process of current

matrices). For this study we use 3 different databases: PLAID [Gao et al., 2014]

and COOLL [Picon et al., 2016] for typical equipments of residential buildings and a

private database of 12 devices measured on commercial buildings (half from an office

building and half from a shopping mall). Our goal is to find a common structure to

all the different devices in order to use it for energy disaggregation algorithms and

also for characterizing the differences between devices.

From Figure 3.5, we can first see that the current matrices are very different

from one device to another. However, we can also see that they all have a certain

structure. The columns of the matrices seems to be highly correlated and only a few

columns seems to be able to represent well the overall matrix. More formally these

remarks are related to the notion of matrix rank. In the following, we will study the

rank of these matrices and compute low-rank approximations.

A low rank approximation of a matrix may be constructed by the matrix product

of lower rank matrices. Figure 3.2 illustrates this principle.
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(a) Hairdryer (b) Micro-wave

(c) Lightings (d) Air handling unit

Figure 3.5: Current matrix measurements from 4 different devices.

Observation Low Rank Approximation

N

T

N N

K T

K

Figure 3.6: Illustration of low rank matrix approximations.
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We propose to use a matrix factorization technique called Semi Non-negative

Matrix Factorization (SNMF) [Ding et al., 2010] which aims to approximate an

observation matrix as the product of a real-valued matrix (S called signature matrix)

and a non-negative matrix (A called activation matrix): I ≈ S A. A detailed

explanation of SNMF can be found in Chapter 6, Section 6.2. For this application,

all we need to know is that SNMF is able to approximate a N × T real matrix I

as the product of lower rank matrices S (N × K) and A (K × T ), where K is a

parameter we need to fix and that gives the rank of the approximation.

Figure 3.7 shows 4 examples of low rank approximations. It shows that with only

a few columns for the signature matrix, one can get good matrix approximations.

For instance, an approximation of rank 1 means that the current matrix I is simply

made of one column signature s which is multiplied by a different amplitude at each

time step. An electric heater (made of a simple resistor) is a typical example of such

an equipment.

Our goal now is to find the lowest rank such that the approximation error is below

a certain threshold. To do so, we need to define an error metric. For measuring

the approximation error, we use the Signal to Noise Ratio (SNR) between the true

current signals and the residual given by the approximation. The SNR is formally

defined as follows:

SNR = 10× log10


∑

n,t

(
Î(n, t)

)2
∑

n,t

(
I (n, t)− Î(n, t)

)2
, (3.6)

where I (n, t) is the real current measurement and Î(n, t) is the SNMF approximation.

Figure 3.8 shows that for several device categories only one component (K = 1)

results in very high values of the SNR which means a good approximation. Figure

3.9 shows the required rank to reach a SNR value of at least 50 dB between the

model and the error). It can be noticed that devices with higher rank are for the

majority found in commercial buildings and not in residential ones (e.g. air handling

unit, lift, split, inverter).

3.3 A new device taxonomy

In this section, motivated by the result of our approximate rank analysis, we propose

a new device taxonomy. The rank and the nature of the activations (A) enable

us to classify the devices into 4 main classes. It is based on a certain definition
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(a) ”on/off”, hairdryer: rank=1 (b) multi-state, micro-wave: rank=2

(c) varying load, lightings: rank=1 (d) varying signature, air handling unit: rank=4

Figure 3.7: Learned factorizations for the 4 device classes, each of them is composed
of (top left) the observations in matrix shape (sampling index × period index), (top
right) the model reconstruction (sampling index × period index), (bottom left) the
signature matrix: each line corresponds to a column of the matrix and (bottom right)
the activation matrix: each line corresponds to a row of the matrix.

of the complexity of a device. We can say for instance that the complexity of the

device is directly linked to the rank of its approximation. A device signature matrix

is considered to be complex if it has more than one column (or equivalently one

signature component) and simple otherwise. We also take into account the shape of

the activations. It is clear that a continuously varying activation is more complex than

a constant or piecewise constant activation. Considering these two characteristics,

we propose a new device taxonomy as illustrated by Table 3.1.
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Figure 3.8: SNR values for rank 1 approximations.

Table 3.1: A new device taxonomy based on high frequency current features.

Activation
Simple Complex

Signature

Unique On/Off or Constant Varying load

Multiple Multi-state Varying signature

In the literature [Hart, 1992, Klemenjak and Goldsborough, 2016], the common

devices’ taxonomy includes only 3 classes: (i) ON/OFF or constant device, (ii)

multi-state and (iii) continuously varying. This approach is based on low frequency

features of load curves whereas we take high frequency characteristics into account.

We can see in Table 3.1, that the main difference is that the original continuously

varying class has been divided into two classes depending on the number of signatures

used to model it. Figure 3.7 illustrates the factorizations learned on our four kinds of

devices. Figure 3.7(a) shows a hairdryer with one resistive signature and a ON/OFF

like activation. The microwave in Figure 3.7(b) contains 2 different signatures which

are not activated together. The most consuming signature is the orange one which

is the second signature to activate after the switch ON. Figure 3.7(c) presents a

group of similar lights with a single signature but a very varying activation. Finally,

3.7(d) illustrates the more complex device category: varying signature. This air

handling includes a predominant signature (in green) but the other signatures have
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Figure 3.9: Minimum number of signatures to use for reaching a SNR of at least 50
dB.

non negligible activations.

3.4 Conclusion

In this section we have conducted various data analyses. We produced an extensive

data analysis on public and private datasets that showed that commercial and

residential buildings have significantly different characteristics. The study of the

power derivative distribution illustrated that the residential distributions are more

peaky at zero than the commercial ones. On top of this, we showed that the kurtosis,

the entropy and the Laplace scale parameter of the power derivative are good

discriminative indicators for residential and commercial buildings. We explained this

difference by a higher amount of devices in commercial buildings and the presence of

complex categories of devices (continuously varying equipment, multitude of similar

devices). In Chapter 4, we will use this metrics to evaluate the quality of simulations.

Furthermore, as we will see in Chapter 5, these statistical characteristics are in

contradiction with the hypothesis used for residential NILM algorithms (‘one-at-a-

time’ and ‘constant load’). In this context, detecting a single event on the power

curve is a difficult task and this explains why residential NILM algorithms usually
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fail when applied to commercial buildings. The statistical metrics used in our study

suggest that using a soft version of the ”one-at-a-time” hypothesis such as ”few at a

time” (only a few devices are responsible for the power variations at every instant)

would be more realistic. This approach will be enhance in Chapters 6 and 7 to design

new NILM algorithms.

Finally, low rank approximations of current matrices have been investigated. We

have shown that very low rank (< 5) matrices are good approximations to current

measurements. This low rank approximation has been used to propose a new device

taxonomy based on the rank and the complexity of the activation matrix. These

approximations are at the heart of both our simulators in Chapter 4 and our NILM

algorithms approach in Chapter 6.
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As already mentioned, the biggest obstacle to the development of NILM algorithms

is the lack of data to learn or evaluate them. Even if unsupervised algorithms require

less data to be developed, they still need data of good quality for evaluation purposes.

In this chapter, we develop a physically-inspired data model that will enable us to

reproduce and simulate the behavior of the electrical network of a building in a

bottom-up procedure. In our modeling strategy, we first break the overall modeling

problem into simpler subproblems by making use of the hierarchical structure that

an individual electric device belongs to a category of devices, and a building contains

73
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multiple devices that correspond to different categories. In agreement with this

taxonomy, we first develop a generative model for an individual building, and for

each building we then develop a model for each device category. These two models

are based on Kirchhoff’s current law (see physical preliminaries 1.1.2). Subsequently,

we propose a generative model for each device by imposing a low-rank structure on

the current waveforms. Finally, we use analytical tools to illustrate that our device

model fits well real current measurements.

4.1 A model of consumption for buildings

4.1.1 The building model

The model that we put forward in this section relies on several hypotheses. First,

all the electrical devices are supposed to be plugged in parallel on the network: the

current waves observed at the main breaker of the network are then the sum of the

currents of all devices. This is a direct application of the Kirchoff’s current law.

Then, the electrical network is supposed to be in ideal conditions: the voltage is

considered to be identical on each node of the network and independent from the

current. Moreover, in the following, the current signals of devices do not depend on

the current signals of other devices. This assumption only holds if the voltage signal

is purely periodic since the current waveform depends on the voltage waveform for

most devices: ∀t, Umain (n, t) = u0 (n).

Finally, for the sake of simplicity, only single-phase electrical networks are consid-

ered here, but three-phase networks can be simulated in a similar fashion.

These assumptions lead us to the following model for total current:

Imain (n, t) =
∑
c∈C

Ic (n, t) + ε(n, t) (4.1)

where Imain is the total current measured at the main node of the network, Ic is the

current signal of a category c of appliances, C is the ensemble of category indices,

and ε(n, t) is a zero-mean Gaussian noise.

4.1.2 The category model

Since the number of identical equipments can be high in large buildings (e.g. corridors

light bulb, computers or resistive heaters), it is often more important and easier to

evaluate a whole category consumption instead of each single device consumption
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(especially for specific NILM applications such as energy management). We then

define herein a category as the aggregation of one to many similar equipments:

Ic (n, t) =
∑
d∈Dc

Ic,d (n, t) (4.2)

where Ic,d is the current of device d belonging to category c. Dc corresponds to the

set of devices belonging to category c.

4.1.3 The device model

Finally, the current of a particular device is modeled using a low rank representation

introduced in Section 3.2. Let us start with a rank one formulation given as follows:

Ic,d (n, t) = sc,d (n) ac,d (t) (4.3)

where sc,d and ac,d are respectively called the current waveform signature and the

activation of device d in category c. The waveform signature corresponds to a fixed

pattern that describes the typical current response to the voltage. The activation

is a nonnegative magnitude and its nature depends on the type of devices (0 / 1

function or continuously varying). As it has been demonstrated in Section 3.2, the

current matrix rank may be greater than one. Thus, we extend our model for more

complex devices by enabling the use of more than one signature in the factorization:

Ic,d (n, t) =

Kc,d∑
k=1

Sc,d (n, k) Ac,d (k, t) (4.4)

Kc,d is the number of signatures and activations used to model device d. S and A

are now the signature matrix and the activation matrix.

To fix the inherent scale ambiguity of the multiplicative model expressed in

equation (4.4) (every scalar multiplication of a column of the signature can be

canceled out by the same scalar division of the corresponding row of the activations),

we normalize the signatures such that:

∀ c, d, k 1

N

N∑
n=1

Sc,d(n, k).u0(n) = 1 (4.5)

It has the double advantage to fix the multiplicative ambiguity and to directly link

the activations to the consumed power. Indeed, the power consumption of device d
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is given by:

Pc,d(t) =
1

N

N∑
n=1

Ic,d(n, t).u0(n)

=

Kc,d∑
k=1

Ac,d(k, t)
1

N

N∑
n=1

Sc,d(n, k).u0(n)

=

Kc,d∑
k=1

Ac,d(k, t)

(4.6)

We can notice that in the case of a device with a single component (Kc,d = 1), the

activation becomes the power consumption. Otherwise, the power equals the sum of

the activations of each component.

4.1.4 The overall model

Combining the individual models expressed in equations (4.1), (4.2) and (4.4) gives

the model for the total current:

I (n, t) =
∑
c∈C

∑
d∈Dc

Kc,d∑
k=1

Sc,d (n, k) Ac,d (k, t) + ε (n, t) . (4.7)

Finally, we obtain the following formula for the power per category:

Pc (t) =
∑
d∈Dc

Kc,d∑
k=1

Ac,d (k, t) . (4.8)

4.2 A generative procedure for dataset simulations

In order to be able to simulate new datasets, we need to solve two more problems.

First of all, the SNMF model used to estimate factors (signatures and activations) is

analytical and do not provide any generating procedure to simulate new data. Sec-

ondly, the lack of publicly available high frequency datasets of individual equipments

makes it difficult to learn both signature and activations on the same dataset. To

circumvent these issues, we first propose separate generative models for signatures

(S) and activations (A) matrices. Then, we estimate their parameters and simulate

new data independently for signatures and activations using different datasets: (i)

short high frequency current measurements for signatures and (ii) long low frequency

power measurements for activations.
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4.2.1 Signature Sampling Algorithm

In order to generate signatures, we first decompose the current waveforms that

correspond to an individual device, by using the SNMF algorithm that was defined in

Section 3.2. Then, we use the output of the SNMF algorithm for generating random

signatures. More precisely, we generate a signature Snew, by using the following

approach:

Snew(n, k) ∼ N (Ŝ(n, k), σ2) (4.9)

where N (µ, σ2) denotes the univariate Gaussian distribution with mean µ and

variance σ2, and Ŝ is estimated using the SNMF algorithm on the high frequency

current signals belonging to individual devices similarly as in Section 3.2. For this

task we use the datasets [Gao et al., 2014, Picon et al., 2016]. The variance σ2 is

chosen as an hyperparameter. Figure 3.7 shows four examples of learned signatures

for different devices.

4.2.2 Activation Sampling Algorithm

We describe here two different algorithms to simulate the activations: one for simple

activations (on/off) and one for complex activations (continuously varying devices).

4.2.2.1 Simple activations

As mentioned in Section 2, a key feature of the activations is their temporal structure.

Dinesh et al. [Dinesh et al., 2017] introduced a time-of-day usage pattern for a device

defined by the probability of being activated at different periods of the day. These

‘periods of the day’ are defined as subsets of a partition of the time. In this study, we

follow a similar procedure and partition the time in hours. For instance, one subset

(a period of the day noted Sτ ) may correspond to the slot 10 am to 11 am for every

day. The total number of subsets is hence 24.

The approach that was proposed in [Dinesh et al., 2017] assumes that the activa-

tions only depend on the time of the day, and therefore it does not take the temporal

dependence of the activations into account. We extend that approach by providing a

generative model for on/off device activations that take into account the previous

state of the device. We are considering here 0 or 1 activations and use a deterministic

switching mode 2-state Markov chain to model the device’s activation where the

transition probability is defined as:

∀τ, ∀t ∈ Sτ ,∀i, j ∈ {0, 1}2 P [a(t) = i| a(t− 1) = j] = γτ (i, j), (4.10)
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(a) TV-LCD (b) Coffee maker

Figure 4.1: Activation probabilities learned on public dataset (right) and a few hours
of the measurements (left).

where t is the time index, Sτ is a period of the day and γτ the transition matrix for

period of the day Sτ . This model enables us, first, to infer the transition probabilities

depending on the period of the day from databases and, second, to generate new

activations. Using maximum likelihood inference, the γ parameter is estimated by

the following equation:

γ̂τ (i, j) =

∑
t∈Sτ 1[a(t)=i,a(t−1)=j]

#Sτ
, (4.11)

where #Sτ is the size of subset Sτ . Intuitively, this estimation corresponds to counting

the number of ON-to-OFF and OFF-to-ON events occurring during the period of the

day Sτ . We are using the TRACEBASE dataset [Reinhardt et al., 2012]gathering

power measurements for individual devices for several days to estimate the param-

eters. Firstly, we transform the power time series into on/off time series using a

simple thresholding mechanism: x̃(t) = 1[x(t)>20]. Secondly, we estimate the model

parameters using (4.11). Finally, the learned parameters are used to generate new

data:

anew(t) ∼ Ber(γ̂τ (1, a
new(t− 1))) (4.12)

where Ber is the Bernoulli distribution (which is the natural choice in two state

Markov chains).

Figure 4.1 shows two examples of simple activations data and the learned acti-

vations parameters. The learned activations show that the probability of switching

ON is highest at 8 am and 7 pm for the TV. It also shows that for the coffee maker,

the probability of switching ON is quite high all day long and that once ON it

immediately switches OFF.
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(a) IT devices (b) Heat pump

Figure 4.2: Activation templates learned on the private dataset, the templates
correspond to one day (timestep = 30 sec): week-day (left) and day-off (right).

4.2.2.2 Complex activations

In this part, we are considering generating activations by learning ‘activation tem-

plates’ on a private dataset due to the lack of public dataset for complex devices

(load varying and signature varying, see Table 3.1). The private data is collected from

two large commercial buildings in two different cities in France. It contains 11 device

categories and is recorded during several weeks at low sampling frequency. The goal

of the templates is to catch the typical power consumption of a device category

during a period of the day and thus account for the daily seasonal effects shown in

commercial buildings (see Section 3.1). Since many equipments are programmed to

switch on or off on particular days (air handling unit, heaters) or depend on building

occupancy (computers), we distinguish the week days and the days off. In this part

the partition of the time is made with period of 30 seconds. The total number of

subsets is then 5760 (2880 periods of 30 seconds per week days and days off). In

order to compute such templates, we simply average the power consumptions of

individual devices over several weeks of data per period of the day:

â(τ) =

∑
t∈Sτ p(t)

#Sτ
(4.13)

The learned templates are illustrated in Figure 4.2. We can observe that IT devices

are switched off during day off and have smooth load curves whereas the heat pump

has a more noisy consumption.

To generate new data, we multiply a positive noise with the templates to take

the day to day variability into account:

∀τ, ∀t ∈ Sτ anew(t) = â(τ)× exp(ε(t)), (4.14)

where ε is a noise variable chosen to add variations to the templates from one day
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to another. Indeed, as we use fixed template of one day, for simulating multiple

days, one need to add variations not to have exactly the same template concatenated.

To do so we chose an AutoRegressive Moving Average (ARMA) process for the ε

noise [Box et al., 2015]. For ensuring positivity we added the exponential function.

ARMA is largely used in time series modeling because of its stationary property

and its ability to model autocorrelation at different lags. It is defined as follows:

ε(t) =
∑p

i=1 θiε(t − i) +
∑q

i=1 βiγ(t − i) + γ(t), where γ(t) is a white noise and

θ = (θ1, . . . , θp), β = (β1, . . . , βq) are respectively the autoregressive and moving

average parameters, which we consider as hyperparameters of the model.

In Section 4.1.3, we defined two kinds of devices with complex activations: (i)

single signature or (ii) multiple signatures. While the former has just been addressed,

we need to find a generative process for the latter. The proposed generative method

uses the same process as before and considers a random convex combination of the

activations. Indeed as we already of templates of global activation for the device,

all we need to do is to find a procedure to split this global activation into the

sub-activations (one for each signature):

∀τ, ∀t ∈ Sτ Anew(k, t) = â(τ)× exp(ε(t))× δ(k), (4.15)

where δ split the global activation into sub-activations. We chose to use a K-

dimensional Dirichlet-distributed random variable. Indeed this kind of random

variable is widely used to simulate random vectors whose entry sum to 1, which is

exactly our expected characteristics. The parameter of such the Dirichlet distribution

are α = (α1, . . . , αK) and controls the activation components proportion. α is

considered as an hyperparameter.

4.3 The SHED dataset

In order to enable high frequency NILM algorithm evaluation, we release a synthetic

dataset called SHED. SHED stands for a Synthetic High-frequency Energy Disag-

gregation dataset for commercial buildings. The purpose of our simulations is to

evaluate the disaggregation performance of NILM algorithms (i.e. the capability to

separate individual consumptions from a mixture).
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4.3.1 The simulations procedure

Let us start by describing how the simulations are conducted. We first start by learn-

ing the model parameters presented in Section 4.2 from public datasets of individual

equipment measurements ([Picon et al., 2016, Gao et al., 2014, Reinhardt et al., 2012])

and from one private dataset. We then simulate new current data for the different

kind of device by selecting model parameters amongst the learned ones. We have pre-

viously seen that we have 4 kind of electric devices and models: On/Off, Multi-state,

Varying load, Varying signature. Once the individual current are simulated, we use

the building model 4.1.4 to compute the total current measurement of the building.

4.3.2 The SHED dataset composition

Table 4.1: Devices used to simulate the buildings in the SHED dataset: On/Off
(A), Multi-state (B), Varying load (C), Varying signature (D).

Class A B C D Total
building 1 4 0 2 3 9
building 2 1 4 2 3 10
building 3 0 2 2 3 7
building 4 2 0 4 3 9
building 5 0 3 4 1 8
building 6 3 0 3 4 10
building 7 0 0 3 2 5
building 8 0 0 4 4 8

The SHED dataset consists of 8 buildings. For each building, it includes the

total current consumption, as well as the individual consumptions corresponding

to different categories. For buildings 1 to 6, the individual consumptions consist of

low frequency power measurements and for buildings 7 and 8 they consist of high

frequency current measurements. One current waveform is recorded at every 30

seconds and for every current waveform 200 points are sampled. Power measurements

are also sampled at 1/30Hz. The choice of the classes of the devices and the number

of categories enables us to control the complexity of each building: the buildings are

described in Table 4.1.

Figure 4.3 illustrates the power and current data of building 1 in SHED. Figure

4.3(a) shows clearly the daily recurrence of the total power, with high value during

the day and low values at night. Figure 4.3(b) is a stacked plot of individual

consumptions. It shows that certain devices have a very recurrent consumption
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(a) Total power

(b) Disaggregated power

Figure 4.3: Total and disaggregated power consumptions of buildings 1 of the SHED
dataset.

(devices 4 or 6) and others have more random one (devices 7 or 8). Finally, Figure

4.4 shows that the current waveforms may be very different during the two weeks of

data. Notably, harmonics may appear.

Detailed plots of Buildings 1 to 8 of the SHED dataset can be found in the

Appendix A.

4.3.3 Dataset quality evaluation

The quality of the device model has been evaluated in Section 3.2. We now evaluate

the total current of the building. We use the metrics introduced in Section 3.1 to

check the quality of the simulations. Figure 4.5 shows clearly that the simulated

datasets share very similar statistical properties as real commercial datasets. It

provides a strong justification that our simulations are realistic. We can however

notice that the THD values of simulations are more spread than for commercial
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Figure 4.4: Current waveforms randomly sampled for buildings 1 of the SHED
dataset.

buildings. It may be explained by the fact that the public datasets used for simulating

signatures mostly correspond to residential equipments.
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(a) Autocorrelation (b) Kurtosis

(c) Entropy (d) Laplace scale parameter

(e) THD

Figure 4.5: Quantitative evaluation of the simulated datasets: comparison of the

statistical metrics of simulations and real datasets. Every circle or square corresponds

to one building. Numbers in simulations columns correspond to building indexes in

the SHED dataset.
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4.4 Conclusion

Motivated by the lack of data for commercial buildings, we developed a generative

model for synthesizing high frequency current waveforms. Inspired by physical

realities, it is compound of three layers: devices, categories and buildings. Our

device model is based on a matrix factorization approach and a low rank assumption,

breaking down high frequency current waveforms into signatures and activations

components. The model efficiency has been validated with real data. Finally, we

proposed a simulation procedure that enables us to learn parameters on real data and

then simulate new synthetic data. Our quantitative evaluation experiments showed

that the simulated datasets share the same statistical properties as real datasets.

To enable algorithms testing and comparison, a simulated dataset called SHED is

released at https://nilm.telecom-paristech.fr/shed/.

The SHED dataset will be used in Chapter 8 for benchmarking the performance

of our different NILM algorithms.
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Motivations After having introduced the Non Intrusive Load Monitoring (NILM)

problem, analyzed the data and proposed a simulation procedure, we can now address

the task of solving the NILM software problem. A first difficulty is that the NILM

literature is scattered across a wide variety of algorithms. Secondly, the availability

of high quality data unable us to use supervised learning algorithms which have

proven to be very efficient in other domains. Thus the main goals of this part are:

(i) to review the different approaches in the NILM literature,

(ii) to develop a new unsupervised technique.

Organization This part is split into 5 chapters:

In Chapter 5, we review the development history of NILM algorithms: (i) Pattern

Recognition, (ii) Markovian models and (iii) Matrix Factorization. We see that, on

top of the choice of the mathematical technique, NILM solutions differ from each

other due to the type of data used (as in put and/or output) and to the learning

strategy (supervised or unsupervised learning).

In Chapter 6, we introduce our framework of unsupervised learning technique

suing high frequency current and voltage data. We first propose a generic formulation

of the NILM software problem and formulate the specific problem we want to solve.

Based on our low rank assumption (Section 3.2), we set our problem as a Matrix

Factorization problem. We review existing Matrix Factorization applicable to such

a structure of data (Semi Nonnegative Matrix Factorization (SNMF), Independent

Component Analysis (ICA) and Sparse Coding) and detail their limitations for the

problem of NILM.

In Chapter 7, to overcome the unaddressed difficulties of processing high frequency

current signals, we propose a novel technique called Independent-Variation Matrix

Factorization (IVMF), which expresses an observation matrix as the product of

two matrices: the signature and the activation. Motivated by the nature of the

current signals, it uses a regularization term on the temporal variations of the

activation matrix and a positivity constraint. The columns of the signature matrix

are constrained to lie in a specific subspace.

Finally, in Chapter 8, we use IVMF to solve the NILM problem on 3 public

datasets: 8 commercial buildings (SHED) and 2 residential houses (REDD and

BLUED). We show that IVMF outperforms competing methods such as SNMF

and ICA on the commercial buildings. Although our method has been designed for

commercial buildings, the qualitative results on residential datasets suggest that it

can also perform well on that kind of buildings.
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Solutions
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In this chapter we aims at reviewing the algorithms developed along the history

of NILM. As seen in the Introduction (Section 1.2.2), the general NILM software

problem can be broken down into two sub-tasks: (i) the disaggregation and (ii) the

classification. This two subproblems have often been tackled together. However,

91
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we can note that the classification problem, recognizing an electric device from its

electric consumption (or from some features) is a more general electric problem

and can be tackled outside the NILM community. In this Chapter we will focus on

disaggregation as the classification task is beyond the scope of this thesis dissertation.

During the last thirty years, researchers have addressed the NILM software

problems resulting in solutions that we will classify according to four axes:

(i) Learning strategy (supervised or unsupervised): being a general machine

learning problem, the NILM software problem can be treated either as a

supervised or as an unsupervised learning task. The main difference between

the two paradigms is that for a supervised learning task one disposes of the

expected output (called ground truth) for each input data during the learning

phase. Whereas one only considers input data for unsupervised learning tasks

and have access expected output only for evaluation purposes.

(ii) Types of building (residential, commercial, industrial, other): the type of

building considered is essential for the desired application. As presented in

Chapter 3, residential and commercial buildings are very different.

(iii) Data sampling frequency (low or high): as described in the Introduction (Section

1.2.1), the sampling frequency of the measurements is extremely important

for the considered NILM application. We consider here two categories of

measurements. Low frequency data consists of power (real and/or reactive)

measurements with a sampling frequency lower than the fundamental voltage

frequency (50 or 60Hz). High frequency data corresponds to current and voltage

waveform measurements with a sampling frequency higher than the fundamental

frequency. We can already note that low frequency data is dominant in the

literature.

(iv) The mathematical method (Pattern recognition, Hidden Markov Model, Matrix

Factorization or Deep Learning): the mathematical method used for addressing

the NILM Software problem can also be found in other types of application.

In the rest of this chapter, and with regard to the type of building, the data

sampling frequency and the learning strategy, we will present NILM solutions.
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5.1 Pattern Recognition

5.1.1 Residential Buildings

Low Frequency data The first algorithm proposed by [Hart, 1992] tried to esti-

mate the major loads power consumption from the aggregate consumption of the

house. It is based on two major assumptions:

(i) ON/OFF device model: once switched ON, a device has a constant power

consumption.

(ii) Switch Continuity Principle: in a small time interval, only a small number of

appliances is expected to change state.

Using these two hypotheses, the author has developed a total consumption model

as:

Pmain(t) =
∑
d∈D

ad(t) Pd + ε(t) (5.1)

where ad(t) is a boolean function describing the state of device d at time t (0 or 1

for switched OFF or ON), Pd is the constant power consumption of device d while

switched ON and ε is a noise or error term. Then, a two steps inference algorithm has

been designed for estimating a and Pd from Pmain. The first step is to disaggregate

the total power into individual power consumption. The disaggregation algorithm

is implemented as an unsupervised power change detection involving time serie

filtering and peak detection. For each detected power change, a vector of features is

calculated (including the active and reactive power difference). The feature vectors

are then clustered and each cluster is associated to one generic ON/OFF device. The

second step is to classify the load. This step is a supervised task, using either prior

knowledge from other buildings or using a training phase on the particular building.
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Figure 5.1: Illustration of the two assumptions used by Hart in its algorithm (Figure

from [Hart, 1992]).

[Baranski and Voss, 2004] have extended this first approach by enhancing the

device model. Due to limitations of ON/OFF models, the authors have developed

the concept of Finite State Machine already introduced (but not addressed) in

[Hart, 1992]. It consists of modeling the device power consumption as a multiple

state engine, each state having a constant power consumption. The difficulty here is

to match the different states of each device by constructing a sequence of event (ON

→ state 1 → state 2 → OFF). These sequences are constructed by maximizing a

quality criterion using a genetic algorithm.

High Frequency data The pattern recognition approach has also been extended

using higher frequency data. For instance, [Liang et al., 2010] have used current

waveforms information (harmonics, temporal waveforms, instantaneous admittance,

etc) into the feature vector associated to the events in order to better discrimi-

nate equipments. [Lam et al., 2007] have used a feature made of voltage/current

trajectory.

5.1.2 Commercial Buildings

Low Frequency data For commercial buildings, most of the proposed approaches

using event detection techniques try to solve a partial NILM Software problem,

where the consumption of only one equipment is estimated from the total con-

sumption (chillers, variable speed drive, air conditioner, lights, rooftop units).

[Norford and Mabey, 1992, Norford and Leeb, 1996] were the first to adapt pattern
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recognition using low frequency data from residential to commercial buildings. In a

first approach, they tried to estimate only one equipment from the total aggregate

by adding a filtering step to reduce the variations caused by other devices.

High Frequency data [Lee et al., 2005] have proposed extensions of this approach

using high frequency current measurements. Their method apply a Fourier transform

to current waveforms to further analyze the harmonic coefficients. They finally use

this information in their pattern recognition technique to filter the consumption of

Variable Speed Drive (a special type of motor with controlled speed).

5.1.3 Limitations

The main problem with the pattern recognitions approaches is that it fails at

estimating the consumption of all the equipment in a building. An important

limitation is the fact that it is highly dependent on the assumption that the power

consumption of devices would be constant. We have seen in Chapter 3 that this

assumption does not hold especially for big equipment found in commercial buildings.

5.2 Markovian Models

5.2.1 Low Frequency data

In the beginning of the 2010’s, [Kim et al., 2011] have started to address the NILM

software problem using stochastic approaches such as Markov Models. They have

developed a fully unsupervised method using low frequency data. The main difference

with the pattern recognition approach presented in Section 5.1, is the addition of a

hard constraint:

(i) Total power conservation: the total consumption shall be equal to the sum of

the consumptions of individual equipments.

This research line is based on the Factorial Hidden Markov Model (FHMM)

introduced by [Ghahramani and Jordan, 1996]. While conserving the Finite State

Machine model for the devices, they proposed a formulation of the NILM software

problem using FHMM. The individual consumptions are modeled as latent Hidden

Markov Models ({Pd(t)}t≥0 where d is the index of a device with a latent state

{Sd(t)}t≥0) while the observed total consumption ({Pmain(t)}t≥0)) is modeled using a

probability distribution (called the emission distribution) conditionally on the sum of
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individual consumption. To adapt to the specific NILM problem, they extended the

model in two directions: (i) state occupancy distribution and (ii) external information.

One property of Markov Chains is that the state occupancy duration is exponentially

distributed. [Kim et al., 2011] showed that in practice the duration is closer to a

Gamma distribution. To deal with this problem, Hidden Semi-Markov Models have

been developed by explicitly modeling the state duration and not only the transition

probabilities [Yu, 2010]. The second extension concerns the integration of external

information in the hidden state modeling. For instance the author insisted on the

fact that the state transition probability may depend on time of day, day of week,

or input from other sensors. They combine this two extensions in a new Markovian

model called Conditional Factorial Hidden Semi-Markov Model and they proposed a

learning procedure based on an EM algorithm and a Gibbs sampling strategy.

At the same period, [Kolter and Jaakkola, 2012] introduced the additive FHMM,

where the emission distribution is Gaussian and only depends on the sum of average

values associated to the hidden states. The Emission distribution now reads:

Pmain(t)|{Pd(t)}Dd=1
∼ N (

D∑
d=1

Pd(t), σ) (5.2)

where Pd(t) corresponds to the power consumption of a device d at time t, σ is a

model noise parameter. On top of the additive model they also proposed a difference

one being a FHMM applied to the power difference. To avoid outliers problems due

to unexpected devices and noise, they added a special latent variable taking real

values with a regularization of its variation. The joint density function is then given

by:

p({Presidual(t)}Tt=0}) ∼ exp(−λ
T−1∑
t=0

|Presidual(t)−Presidual(t− 1)|) (5.3)

The focus of their development is on inference rather than learning, in the sense

that they consider they have access to the parameter of their state models. They

have access to individual power consumption in order to learn the Hidden Markov

Models parameters. This strategy can be referred as supervised because the ground

truth is needed, at least for a pre-training step. The inference problem of estimating

of the states using the aggregated total consumption is done via a method called

Maximum A Posteriori. The idea is to find the hidden states that maximize the

state distribution conditionally on the observation and the known parameters. This
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problem is computationally expensive and there is no way to perform exact inference

without enumerating all the possible states MDT (if M is the number of state per

devices). The proposed approach is to transform the optimization problem over the

latent states into a problem over binary variables. Finally they develop an algorithm

to perform an approximate inference called AFAMAP (see Figure 5.2 for an example

of results).

Other extensions are given in [Parson et al., 2012, Johnson and Willsky, 2013,

Zhong et al., 2014, Shaloudegi et al., 2016].

Figure 5.2: AFAMAP results on the REDD dataset. On top the ground truth
an at bottom the estimated power consumption. The unassigned category rep-
resent the residual device introduced in Equation (5.3). Illustration taken from
[Kolter and Jaakkola, 2012]

.

5.2.2 High Frequency data

[Lange and Bergés, 2018] introduced the use of FHMM on high frequency data.

Instead of using low frequency power measurements (P), they used high frequency

instantaneous power measurements (p). Contrary to the previously mentioned
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FHMM approach, they used an unsupervised strategy, where parameters of the

hidden individual consumptions are learned directly on the total consumption.This

learning problem is known to be difficult due to the exponential number of possible

states. They used a variational method to address this problem. The variational

distribution is chosen to be a neural network function.

5.2.3 Limitations

We would like to point out that there is no trace of an application of FHMM to

commercial buildings data (either low or high frequency). This is obviously due to

the fact that FHMM models the power consumption as M -state Markov Chains

which is not realistic at all.

It is however interesting that this important limitation has been addressed in

[Kolter and Jaakkola, 2012] by considering a residual device that can model the

residuals consumption. Although this residual device has been introduced to handle

a certain noise in the measurement or in the model, we will further show that it can

be much more interesting than this. In Chapter 7, we will explain why the power

consumption of all the devices can be modeled using more flexible models like the

one defined in Equation (5.3).

5.3 Matrix Factorization

In the last decade, Matrix Factorization techniques have been applied to NILM. Let

us first introduce this generic method.

Matrix Factorization refers to the wide ensemble of techniques that can decompose

observation matrix X ∈ RN×T into the product of two matrices S ∈ RN×K and

A ∈ RK×T , called factors. Most of the time the decomposition is qualified as

approximated since:

X ≈ SA, (5.4)

but in some cases the decomposition is qualified as exact and:

X = SA. (5.5)

The factors learning problem is traditionally cast into an optimization problem

where a fit function of the observation X and the factorization SA is minimized. The



5.3. MATRIX FACTORIZATION 99

fit function D is here a function of 2 variables, from RN×K×RN×K to R+. It equals 0

if and only if the 2 variables are equals. It can be a divergence or a distance. Classical

examples are based on the euclidean distance or the Kullback-Leibler divergence for

instance. Moreover, regularizer functions are usually added to enforce particular

characteristics to the factors (sum of vector norms, matrix norms) or to reduce the

number of solutions. Finally, the factors may be constrained to lie in a specific space

such as the space of positive valued matrices, the orthogonal group or the unit ball

defined by a norm. Then, the generic matrix factorization optimization takes the

form of:

Ŝ, Â = argmin
S∈ES ,A∈EA

D(X,SA) + λSRS(S) + λARA(A) (5.6)

where D is a fit function, RS and RA the regularizer functions, λS and λA are the

regularizer parameters, ES and EA are the subspaces of S and A.

Matrix factorization has a long and successful history for solving mathematical

and signal processing problems (image, audio, neuroscience, recommender systems).

Famous techniques such as Principal Component Analysis, Dictionary Learning

[Olshausen and Field, 1997, Aharon et al., 2006, Mairal et al., 2010], Non-negative

Matrix Factorization [Lee and Seung, 2001], Semi Non-negative Matrix Factorization

[Ding et al., 2010] or Independent Component Analysis [Jutten and Herault, 1991,

Hyvärinen and Oja, 2000] lie into this framework.

At that point we would like to make things clear concerning the vocabulary.

Factor S will be designated as the signature matrix and one column of S is often

named a signature. In the literature it may be called a dictionary (one column

being an atoms in this case), a basis (with basis vectors) or finally a mixing matrix.

Oppositely, we call A the activation matrix where each row is an activation. An

activation may also be named a code or a source.

5.3.1 Low Frequency data

[Kolter et al., 2010] were the first to propose the use of matrix factorization techniques

for low frequency power data P, in a supervised way. As seen previously, pattern

recognition or Markovian methods consider the observation data as a one-dimensional

time serie whereas for matrix factorization techniques, the observed data is first

transformed into a matrix. The authors sliced the power time serie into chunk of

data of one week so that one column of the observation matrix corresponds to one

week of power consumption. For a non-negative observation matrix X ∈ RN×T
+ , N

corresponds to the number of sampling point in one week and T corresponds to the
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number of weeks. In a first attempt to adapt matrix factorization to NILM, they

proposed a 2 step supervised learning procedure.

In a first learning step, individual equipment measurements (denoted X(d)) are

used to learn a representation X(d) ≈ S(d)Z(d) where Sd ∈ RN×K
+ and A(d) ∈ RK×T

+

with a sparsity inducing regularization. S(d) contains a set of K basis vectors and is

called the dictionary. A(d) contains K rows of activations. The factors are constrained

to be positive because by nature the power consumption is positive.

Ŝ(d), Â(d) = argmin
S(d)∈RN×K+ ,A(d)∈RK×T+

‖X(d) − S(d)A(d)‖2Fro + λA
∑
t

(‖A(d)
t ‖1) (5.7)

such that ‖S(d)
k ‖2 ≤ 1.

In a second step, the disaggregation step, the learned dictionaries {Ŝd}Dd=1 (with

D the number of different equipments) are used to decompose the total power

measurement X:

Â = argmin
A∈RKD×T+

‖X − [Ŝ(1) . . . Ŝ(D)]A‖2Fro + λA
∑
t

(‖At‖1) (5.8)

In the aim of learning dictionaries {Ŝd}Dd=1 that are best at decomposing signals

from aggregate measurements (and not only from individual measurements), another

intermediate learning step is introduced. Indeed, it uses a training period where

both individual measurements X(d) and the total consumption X are available. The

purpose of this step is to adapt the dictionaries in (5.8) so that the activation factors

(Â) learned on aggregated data equal to the activation factors learned on individual

measurements during the pre-learning step in Equation (5.7).

On top of this discriminative learning step, the authors also proposed a regular-

ization of the energy (sums of power consumption) to match prior information one

might have on the expected energy.

In [Elhamifar and Sastry, 2015], the authors use a smaller slicing window size to

construct the power matrix and added different kinds of regularization (variation of

the activations, correlations of activation) and different constraints on the factors

(binary activation matrix A, unconstrained dictionary S).

Finally, Figure 5.3 illustrates factorization results using a day by day matrix

representation.
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Figure 5.3: Illustration of the dictionary components (bottom) and their respective
activations along the time (top). Each dictionary component is interpreted here as a
typical daily consumption and is associated to on equipment. The activation shows
which day the component is activated and with which intensity. This illustration
comes from [Garćıa et al., 2017].
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5.3.2 High Frequency data

[Lange and Bergés, 2016] designed a matrix factorization technique to deal with

high frequency current measurements (I). This method is based on the a matrix

representation where each column of the observation correspond to the current

measurement during one voltage period (see Chapter 3, Section 2.2.2 for more

details).

They used matrix factorization in an unsupervised setting. The main idea is to

factorize the current matrix so that it can be expressed as the sum of sub-components

representing individual current matrices. These sub-components are afterwards

used to infer devices activity (which device is ON and when). Inspired by FHMM

approaches, the authors chose to use 2-state sub-components (as it is done to model

ON/OFF devices). This choice results in a binary constraint on the activation matrix

A, while the signature matrix S is left unconstrained. The optimization problem

reads:

minimize
S,A

‖X − SA|2Fro (5.9)

subject to A ∈ {0, 1}K×T (5.10)

From an algorithmic point of view such a problem is said combinatorial and no

polynomial time algorithm can solve it. Interestingly, the authors introduced an

additional constraint on the factor S (called signature matrix) so that S = fθ(X)

where f is defined as a neural network with parameters θ. This constraint can be

seen as a mean of casting the binary matrix factorization into a deep neural network

framework and then efficiently optimize Problem (5.9).

Once the factorization is learned and the sub-component defined, a re-aggregation

step is used to infer the activity of the electric devices. A supervised and an

unsupervised approaches are proposed and are beyond the scope of this presentation.

This high frequency matrix factorization approach will be extensively developed

in the following chapter as it constitutes the same research lead as our own. To

conclude with [Lange and Bergés, 2016], we can say that its main drawback is that

the binary constraint may be too strong and too far from the reality of electric

devices current matrices, as developed in Chapter 3, Section 3.2.
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5.4 Deep Learning

In the last decade, augmentation of computing capabilities, access to huge datasets

and a high interest in Deep Learning techniques has led to impressive improvements

in task automation such as in Computer Vision, in Music Information Retrieval or

in Natural Language Processing.

5.4.1 Low Frequency data

As datasets are complicated to acquire in the NILM domain, the first use of Deep

Learning only happened in 2015 with the work of [Kelly and Knottenbelt, 2015a].

The idea is to express NILM as a regression (or denoising) problem:

Pmain(t) = Pi(t) + ε(t) (5.11)

where Pmain(t) is the observed total power consumption, Pi(t) is the power consump-

tion of the targeted device and ε(t) is the remaining consumption. In this scenario,

one neural network is learned for each targeted device. The power estimation is

given by a mapping function f(.; θ) such that:

P̂i(t) = f(Pmain(t); θ) (5.12)

In [Kelly and Knottenbelt, 2015a], the authors tried both Recurrent Neural Net-

works, Long Short Term Memory (LSTM) and Denoising Autoencoders to learn the

mapping f . We can also cite the work of [Bonfigli et al., 2018] on Denoising Autoen-

coders, [Kaselimi et al., 2019] on bidirectional LSTM and [Murray et al., 2019] on

Gated Recurrent Units and Convolution Neural Networks.

We can note that several works [Harell et al., 2019, Martins et al., 2018, Jiang et al., 2019]

have been based on the WaveNet architecture [Oord et al., 2016] which has been

developed to generate audio waveforms. It is principally based on dilated causal

convolutions, gated activations and skip connections. This architecture is known to

model well long term and multi-scale time dependencies.

This kind of approach is called sequence-to-sequence as a sequence is taken as

input and a sequence is returned as an output. In [Zhang et al., 2018], the authors

used a sequence-to-point technique where a sequence of measurement is used to

estimate only the mid-point of the sequence and showed better performance than

sequence-to-sequence methods.

Another approach to Low Frequency NILM using Deep Learning is to use only
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Figure 5.4: Illustration of the use of Deep Learning techniques to solve a NILM
problem. Here, a LSTM unit is used to finally predict appliance’s state (ON or OFF).
This illustration comes from [Kim et al., 2017].

one Neural Network to estimate the consumption of all the devices. This kind

of approached has been developed in [Kim et al., 2017] using a combination of

LSTM and RNN to predict which devices are active or not (see Figure 5.4). In

[Shin et al., 2019], the authors used to Neural Network in parallel: one for estimating

the power consumption of the devices and another to estimate the status of the

devices (on or off); the two branches are finally multiplicated to produce the final

estimate.

Finally we can remark that all but one of previously cited work address the problem

of residential NILM. In [Martins et al., 2018] the authors tackled the problem of

industrial NILM, i.e. estimating the consumption of industrial machine such as big

fans, milling machine in a plant.

5.4.2 Limitations

The principal limitation of applying Deep Learning for NILM is the generalization

power of learned models. Indeed, as the available datasets are limited, it is common

to see a model learned and tested on the same building just choosing different period

of time for each set. When a careful attention is paid to the selection of training

dataset and testing dataset, the number of different buildings in both dataset is very

limited (from a few to tens).
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5.5 Conclusion

We have chosen not to present the recent development on Deep Learning because, to

the best of our knowledge, it is only focusing on low frequency power data. It is also

of less interest for now because we do not dispose of a publicly available dataset big

enough for such methods, especially for high frequency data.

As presented in this literature review, the majority of the approach is devoted to

methods using low frequency data and applied to residential buildings. This can be

explained by the fact that publicly available data are mostly of this kind. The learning

strategy employed is most of the time supervised. This is a particular limitation

of the presented methods because the learning phase is done on a limited number

of training samples and then the generalization power may be low. Eventhough

supervised learning problem are known to be easier to deal with, it is a way more

easy to acquire aggregated data with no ground truth. Another striking point is the

fact that most of the methods uses low frequency power data. However, it is widely

acknowledged that increasing the sampling frequency of data help solving the NILM

software problem.

We have seen that [Lange and Bergés, 2016] have leveraged the power of matrix

factorization in an unsupervised setting to address the NILM software problem in

residential buildings using high frequency current measurements.

Consequently to all these facts, the topic of the next Chapter will be to develop

unsupervised learning methods using high frequency current data to solve the NILM

software problem in big systems such as commercial buildings. We will rely on Matrix

Factorization as our main building block.
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Frequency NILM
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We have just presented the state of the art of NILM solutions and we have

also stated that the specificity of each problem formulation makes it complicated

to understand what is the intrinsic problem. We have seen that the quantity and

quality of available datasets make it difficult or even impossible to adopt a supervised

learning approach.
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In this Chapter, we first formulate the NILM software problem as a generic source

separation problem. We then show how this generic source separation problem can

be transformed into a matrix factorization problem. After having introduced existing

and applicable matrix factorization techniques, we will discuss their limitations.

These limitations will serve as the basis for our own method in Chapter 7.

6.1 Our formulation of the problem

6.1.1 A generalization of the NILM Software Problem

As already explained in the Introduction (Section 1.3), the diversity of applications

and data type makes the problem formulation very heterogeneous in the literature.

In an attempt to generalize the NILM software problem formulation, we propose the

following definition:

Definition 6.1.1 (The General NILM Software Problem). Considering the following

assumptions:

(i) Let Fin be a bi-linear transformation taking a voltage and a current signal as

input and whose output represents the hardware meter process.

(ii) Let Fout be a transformation taking a voltage and a current signal as input and

whose output represents the desired electrical quantity to be monitored.

(iii) Let ipmain(τ) and upmain(τ) bet the current and voltage quantities at the main

breaker of an electrical circuit on the phase line indexed by p (for p in P the

set of phase line indices).

(iv) Let a category (indexed by c) be a set of electric devices (Dc). The sets of all

categories and devices are denoted as C and D.

Then, the generic NILM software problem reads:

From the measurements, ∀p ∈ P:

Fin(ipmain(τ),upmain(τ)), (6.1)

estimate ∀c ∈ C and ∀p ∈ P:

Fout(
∑
d∈Dc

ipd(τ),upmain(τ)), (6.2)
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such that the energy conservation holds for every phase line p ∈ P:

ipmain(τ) =
∑
d∈D

ipd(τ). (6.3)

Definition 6.1.1, contains four important concepts:

(i) The input transformation Fin: it defines precisely the sensing process of the

hardware metering device. It is a function of a current signal and a voltage

signal. For a simple smart meter, this transformation may correspond to the

calculus of real power from current and voltage (see Equation (1.5)). This

transformation needs to be linear in current and voltage so that conservation

equations still hold under the transformation.

(ii) The output transformation Fout: it represents the desired quantity to estimate

and thus is the illustration of the load monitoring application. This transfor-

mation may not be linear. In that case, it will not be possible to establish

a conservation equation using this quantity. An example of such a nonlinear

transformation is the indicator function that returns 1 if a device is switched

on (1[Pmain>0] 6=
∑

d∈D 1[Pd>0]).

(iii) The set of categories C: the notion of device category is essential since one

may be interested in monitoring the power consumption of a group of device

(i.e., all the light bulbs: Card(Dc) > 1) or only one particular device (i.e. an

air handling unit: Card(Dc) = 1).

(iv) The set of devices for each category Dc: it is closely related to the set of

categories and defines the number and the index of each device present in each

category. In a full monitoring approach the sets of device Dc are a partition of

all the device in the electrical circuit (
⋃
c∈C
Dc = D and

⋂
c∈C
Dc = ∅)

6.1.2 From the NILM Software Problem to Matrix Factor-

ization

In the rest of this Chapter, we focus on a special instance of this previously pre-

sented generic NILM software problem, using high frequency current and voltage

measurements. Note that we now consider only one phase line.
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Definition 6.1.2. From the current measurements acquired at the breaker panel of

a building at a high frequency sampling rate (> 50Hz):

imain(τ),umain(τ) (6.4)

Estimate, the real power consumptions of categories of equipments (indexed by

c ∈ C) in the building:

Pc(t) ∀ c ∈ C (6.5)

Such that:

Pmain(t) =
∑
c∈C

Pc(t) (6.6)

In this case, we can see that our input transformation is nothing but the identity

function. Our output transformation corresponds the power calculation function:

Fout(i(τ),u(τ)) = Pmain(t) = 1
T

∫ t+T
t

imain(τ) umain(τ)dτ , with τ the time and T the

voltage period. We also use category indexes to group all the devices with similar

electric or electronic components.

We can now show how to transform this single-channel source separation problem

into a Matrix Factorization problem. We use here the matrix representation defined

in Chapter 2 (Section 2.2.2). To makes things clear, from a unidimensional time

serie i(τ) ∈ RNT , where N is the number of samples during one voltage period and

T is the number of voltage periods in the measurement, we cut slices of size N (one

voltage period) which are then set as the columns of a matrix. The beginning of

a voltage is defined at the time where of the voltage crosses zero from negative to

positive value. Let us denote by Imain ∈ RN×T this current matrix observation. Due

to the pseudo sinusoidal shape of current it is often also referred as the current

waveform matrix.

This transformation being only a reshaping of the current time serie, the current

conservation equation (1.12) still holds. We denote by Ic the unobserved current

matrix of a category of equipments indexed by c:

Imain(n, t) =
∑
c∈C

Ic(n, t) (6.7)

Using this matrix representation for the voltage u, the power calculations are given

by:

Pi(t) =
1

N

∑
n

Ii(n, t) Ui(n, t), ∀i ∈ C ∪ {main} (6.8)
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In Chapter 3, we showed that current matrices of individual equipment or group

of same equipment (such as lights or computers) can be accurately approximated

by low rank matrices. In the following we make the assumption that a rank one

matrix can approximate well the individual current matrices. We recall that a rank

one matrix can be defined as the multiplication between a column vector and a row

vector:

Ic(n, t) ≈ sc(n) a>c (t), ∀c ∈ C, (6.9)

where, sc ∈ RN is called a signature and ac ∈ RT
+ is called an activation.

Merging Equations (6.7) with (6.9) results in a matrix factorization equation:

Imain ≈ S A (6.10)

where S ∈ RN×C is called the signature matrix and its columns contain the signatures

sc for each category. The other factor A ∈ RC×T
+ is called the activation matrix and

its rows correspond to the activation ac of each category.

6.1.3 Learning Strategy

The learning problem defined in this Matrix Factorization framework is then defined

as follows:

Definition 6.1.3 (Learning problem). From the total current Imain and voltage

Umain measurements (in matrix shape), estimate Ŝ and Â, such that:

Imain ≈ ŜÂ (6.11)

P̂c(t) =
1

N

∑
n

Ŝ(n, c)Â(c, t) U(n, t) (6.12)

∑
c

L(Pc(t)‖P̂c(t)) is minimized. (6.13)

where Pc are the true power consumptions per category (often referred as ground

truth) and L is a divergence between the ground truth and the estimation.

A supervised learning strategy would involve an important amount of observa-

tion/ground truth couples: (Ibmain, {Pb
c}c∈C) where b is the index of a building. In

such a setting one uses a training set of couples observation/ground truth to estimate

a mapping function from observation to the outputs by minimizing the loss function

L. In this case the factorization ŜÂ is an intermediate quantity.
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Due to the unavailability of such a training set in our particular application,

supervised learning approach are not possible. Oppositely, an unsupervised learning

approach would try to infer Ŝ and Â without having access to the ground truth (Pc).

Estimating the performance of an unsupervised approach can be accomplished in

two ways. First, one can use a limited size testing set to quantify the estimating

error using the same loss function as in the supervised case. Secondly, one can

theoretically analyze the method and demonstrate conditions under which the

method guarantees estimation of the unknown sources. This includes the notion of

identifiability developed in the following section.

In the following section, we will explore classic matrix factorization techniques

such as Semi Non-negative Matrix Factorization, Sparse Dictionary Learning or

Independent Component Analysis. We will discuss their limitations in the task of

Non Intrusive Load Monitoring. In the rest of the dissertation we denote by X the

observation matrix instead of Imain for generality and simplicity purposes.

6.2 Matrix Factorization for NILM

Matrix Factorization refers to the wide ensemble of techniques that can decompose a

real valued observation matrix X ∈ RN×T into the product of two matrices S ∈ RN×K

and A ∈ RK×T , called factors. Most of the time the decomposition is qualified as

approximated since:

X ≈ SA, (6.14)

but in some cases the decomposition is qualified as exact and:

X = SA. (6.15)

The factors learning problem is traditionally cast into an optimization problem

where a fit function of the observation X and the factorization SA is minimized. The

fit function D is here a function of 2 variables, from RN×K×RN×K to R+. It equals 0

if and only if the 2 variables are equals. It can be a divergence or a distance. Classical

examples are based on the euclidean distance or the Kullback-Leibler divergence for

instance. Moreover, regularizer functions are usually added to enforce particular

characteristics to the factors (sum of vector norms, matrix norms) or to reduce the

number of solutions. Finally, the factors may be constrained to lie in a specific space

such as the space of positive valued matrices, the orthogonal group or the unit ball

defined by a norm. Then, the generic matrix factorization optimization takes the



6.2. MATRIX FACTORIZATION FOR NILM 113

form of:

Ŝ, Â = argmin
S∈ES ,A∈EA

D(X,SA) + λSRS(S) + λARA(A) (6.16)

where D is a fit function, RS and RA the regularizer functions, λS and λA are the

regularizer parameters, ES and EA are the subspaces of S and A.

Matrix factorization has a long and successful history for solving mathematical

and signal processing problems (image, audio, neuroscience, recommender systems).

Famous techniques such as Principal Component Analysis, Dictionary Learning

[Olshausen and Field, 1997, Aharon et al., 2006, Mairal et al., 2010], Non-negative

Matrix Factorization [Lee and Seung, 2001], Semi Non-negative Matrix Factorization

[Ding et al., 2010] or Independent Component Analysis [Jutten and Herault, 1991,

Hyvärinen and Oja, 2000] lie into this framework.

At that point we would like to make things clear concerning the vocabulary.

Factor S will be designated as the signature matrix and one column of S is often

named a signature. In the literature it may be called a dictionary (one column

being an atoms in this case), a basis (with basis vectors) or finally a mixing matrix.

Oppositely, we call A the activation matrix where each row is an activation. An

activation may also be named a code or a source.

We insist on the fact that we interest ourself to the case of real valued observations

and not to the non-negative case. Let us focus on these methods that will be applied

to NILM in the following chapters.

6.2.1 Semi Non-negative Matrix Factorization

[Ding et al., 2010] have introduced Semi Non-negative Matrix Factorization (SNMF).

In SNMF, the observation matrix X is approximated by the matrix product of two

factors: a real valued factor S ∈ RN×K and a nonnegative factor A ∈ RK×T
+ . The

divergence is chosen to be the squared Euclidean distance defined by the Frobenius

matrix norm and there is no regularization function. SNMF can formally be written

down as the following problem:

minimize
S,A

1

2
‖X − SA‖2Fro (6.17)

subject to A ≥ 0.

Identifiability. Such a structure in Matrix Factorization introduce indeterminacies,

i.e. an infinite number factorization respecting the definition (6.17) may exist. The

two classic indeterminacies are the permutation and the scale ambiguities. Indeed,
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let Ŝ and Â be a solution of (6.17). By permuting columns i and j of Ŝ and rows i

and j of Â, the permuted matrices are still solutions of (6.17). Moreover, if we now

multiply column i of S by a non-negative scalar and divide with the same scalar row

i of A, we end up with a new solution. More generally, let P be a K×K permutation

matrix (a matrix with exactly one 1 on every rows and columns), and C a K ×K
diagonal matrix with non-negative entries, then Ã = PCA and S̃ = SC−1P−1 are

also solution of (6.17).

Specifically to SNMF, another kind of indeterminacy exists. Figure 6.1 shows 3

different factorizations that give the same observation. To go further, let us consider

an observation matrix X and a solution (Ŝ = [ŝ1, ŝ2], Â = [â1, â2]
>) of (6.17), one

can find an infinite number of admissible solutions as:

s̃1 = s1 + αs2, s̃2 = s2, (6.18)

ã1 = a1, ã2 = a2 − αa1, (6.19)

0 ≤ α ≤ min
t=1...T

a2(t)

a1(t)
. (6.20)

We can verify that ŜÂ = X̂ = S̃Ã. The condition on α ensures that ã2 ≥ 0.

This is major problem of SNMF, indeed for a same observation, several equivalent

(in terms of fit function) factorization coexists. We will see how this indeterminacy

problem can be resolved under further assumptions on the factors.
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(a) Original factors
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(b) Solution 2
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(c) Solution 3

Figure 6.1: Matrix factorization indeterminacies. The 3 sub-figure are 3 equivalent

solutions (meaning that their product SA are equal to each other). On top, it present

the original factors used for calculating the observation X. The two other sub-figures

show activations and signatures that are mixtures of the original ones, while the

product SA is still the same. Note that the activations are still non-negatives.

After having discussed the identifiability of SNMF, let us investigate now algo-

rithmic approaches to solve it.

Algorithms. In [Ding et al., 2010], the authors use an alternating optimization
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scheme. Indeed, Problem (6.17) is a non-convex non-linear optimization problem.

However, a closer look at it shows that the problem is convex on S and A sepa-

rately. Indeed alternating minimization over S and A will produce a local minimum

[Bertsekas, 1997]. The minimization problem over S is an unconstrained quadratic

optimization problem and has a closed form solution given by: Ŝ = XA>(AA>)−1.

In opposite, minimizing (6.17) with respect to A is a non-negative quadratic optimiza-

tion problem that has no closed form solution. In [Ding et al., 2010], a multiplicative

update rules is demonstrated to reduce the cost function at each iteration. In

[Gillis and Kumar, 2015], they use a block coordinate descent strategy on the rows

of A. They point out that the minimization problem over one row of A while fixing

the others has a closed form solution: the minimization with respect to a row of A is

in fact separable into T scalar optimization. This block coordinate descent on the

rows of A enables a faster convergence rate in practice. It also prevents the algorithm

to be locked at zero due to a zero multiplication in multiplicative updates.

One way to reduce the number of solution to Problem (6.17) is to use regularization

function. The idea is to choose among the infinity of equivalent solutions the one

that minimizes a certain quantity. The regularization defined by the `1 norm of the

activations is widely used. We will develop it in the next section.

6.2.2 Sparse Coding

Sparse Coding (SC) or Sparse Dictionary Learning is a method introduced by

[Olshausen and Field, 1997] in neuroscience. The principle is to learn basis vectors

such that the observations have a sparse representation in such a basis. We recall

that a vector or a matrix is said to be sparse if it has a limited number of non zero

elements. The `1 norm is widely acknowledge to induce sparsity when used as a

regularizing function such as in the well studied Lasso regression [Tibshirani, 1996].

Algorithm. The classic SC optimization formulation reads:

minimize
S,A

1

2
‖X − SA‖2Fro + λ

∑
k,t

|A(k, t)| (6.21)

subject to ‖Sk‖22 ≤ 1, ∀k ∈ J1, KK,

(6.22)
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The constraint on the columns of S is essential for the regularization to operate.

Indeed, without this constraint, multiplying S by a scalar and dividing A by the

same value would artificially decrease the penalization term without changing the

data fitting term or the shape of the solution. [Lee et al., 2007] have proposed an

efficient algorithm to solve Problem (6.21) using an alternating optimization strategy.

Updating S results in a quadratic optimization under quadratic constraints solved

using the dual problem. [Mairal et al., 2010] designed an online algorithm . They

also proposed extensions to constraint A to be positive like in SNMF.

6.2.3 Independent Component Analysis

[Jutten and Herault, 1991] have introduced Independent Component Analysis (ICA).

This subject has been extensively studied in these two books [Comon and Jutten, 2010,

Hyvärinen and Oja, 2000]. ICA can be viewed as a special case of matrix factoriza-

tion. Its main particularity is that in contrary to previously presented techniques,

ICA constraints the factorization to be exact:

X = SA (6.23)

Be careful with the notation as in classic ICA notations, the matrices S and A

are inversed. We denote here by S the signature matrix corresponding to the mixing

matrix in ICA and by A the activation matrix corresponding to the sources in ICA.

The fundamental principle of the ICA model is that the rows of A represent

realizations of statistically independent random variables, also called sources. Unfor-

tunately these sources are unobserved and one has only access to linear mixtures

of the sources X = SA. We usually assume K = N and thus constraint S ∈ RN×N

to be invertible. Thanks to the fact that ICA ensures exact factorization, if T > N

one needs only to estimate S or A and can automatically find the other factor using:

A = S−1X and S = XA† where A† is the Moore-Penrose pseudo inverse of A.

Identifiability. We have previously seen that matrix factorization models suffers

from a number of indeterminacies. An important result in [Comon, 1994] stipulates

that, if the original sources are independent and the density of at most one source is

Gaussian, then, expect from a scale and permutation indeterminacy, the model is

identifiable. This fundamental theorem shows why ICA is able to recover original

sources from a linear mixture. Unfortunately, independence is very complex to

measure in practice and we will see next how ICA algorithms are designed.
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Algorithms. While ICA has a strong literature involving statistics and information

theory, we concentrate here on the optimization formulation of ICA. ICA algorithms

can be viewed either as maximizing the likelihood of a couple model/observation

or maximizing an approximation of the independence of samples via entropy like

measures. [Hyvarinen, 1999] has developed the FastICA algorithm which reduces to

an iterative procedure that finds extremal points (minimizers and maximizers) of a

certain non-linear and non-convex function under orthogonality conditions:

maximize
S

‖Ê{G(S>X)} − E{G(ν)}‖22 (6.24)

subject to X = SA and S>S = I.

where X has been centered and whitened, I is the identity matrix, G is a non

quadratic function, E is the expectation, ν is a multivariate Gaussian variable with

identity covariance matrix and Ê represents the mean (over the columns of a matrix).

FastICA solves Equation (6.24) by finding the fixed points of the first order

optimality conditions using a quasi Newton method. [Bell and Sejnowski, 1995]

developed Infomax to solve the maximum likelihood formulation. Finally, note that

[Ablin et al., 2018] developed a fast (second order) iterative algorithm to solve the

same problem using a preconditioned quasi Newton method.

6.2.4 Discussion on Matrix Factorization

Matrix factorization is a powerful tool for extracting or recovering structure from

observations. It is a wide field of research and we have restricted our introduction to

methods that can be used to solve the NILM software problem.

We have seen that matrix factorizations can be prone to indeterminacies but

regularization and assumptions can help handling it. The concepts of independence

and sparsity are also at the heart of regularization techniques. In the following

section we will detail the limitations of existing method when directly applied to our

NILM problem (Definition 6.1.2).
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6.3 Limitations of existing Matrix Factorization

methods

6.3.1 Semi Non-negative Matrix Factorization

In practice, the activation rows estimated by SNMF exhibit high correlations which

is a non expected property of individual equipment power in buildings. Another

weakness is that the positivity constraints on A is not sufficient to ensure positivity

of the estimated power consumption. As introduced in Equation (6.12) in previous

section, the estimated power consumption given by the matrix factorization can be

rewritten as P̂c(t) = αc(t)Â(c, t) with αc(t) = 1
N

∑
n Ŝ(n, c) U(n, t). One can see

that constraining the entrance of Â to be positive is not sufficient to ensure that

P̂c(t) ≥ 0.

6.3.2 Independent Component Analysis

ICA has important advantages over other Matrix Factorization technique which

mainly include its identifiability and the high rate of convergence of the developed

algorithms. However, the independence hypothesis of the devices consumption is not

reasonable since in big buildings many devices are more likely to consume energy

during the opening hours than during the night for instance. As explained in Chapter

3, a refined assumption is that the power variations (or sometimes called derivatives)

of the devices are independent. It is then usual (see [Feng and Kowalski, 2018]) to

apply ICA to a transformation of the data such that the independence assumption

is fulfilled in this new domain. Another weakness of ICA in our problem resides

in the positivity of estimated consumptions. A Semi Non-negative ICA has been

developed, constraining the sources/activations A to be positive [Plumbley, 2003].

Like SNMF, it suffers from the fact that this positivity constraint is not enough for

ensuring positivity of estimated power consumption.

6.3.3 Sparse Coding

As we have already seen, Sparse Coding is based on `1 norm regularization on the

activation A to promote sparsity. However, this sparsity hypothesis does not hold

at all for our signals. It is obvious that many different equipment are ON at the

same time in a big building. However, as shown in Chapter 3, the power differences

are more sparse, that is to say, only a few devices switched ON or change their
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consumption state at the same instant. As done for, ICA, one can try Sparse Coding

on a transformation of the original data. Unfortunately, Sparse Coding will suffer

from the same positivity problem as ICA and SNMF.

6.4 Conclusion

In this chapter we have defined the NILM Software Problem in a generic framework

that can address all the different formulation found in the literature. We also

showed how to transform the single channel source separation problem into a matrix

factorization problem using the rank one assumption on current matrices. We

have finally reviewed existing Matrix Factorization techniques such as Semi Non-

negative Matrix Factorization, Independent Component Analysis and Sparse Coding.

Eventhough these methods present interesting properties they suffer from limitations

to address the NILM software problem. The main limiting issue is that these methods

can not ensure the positivity of the estimated power while promoting independence

or sparsity in the variations of the estimated power consumptions.

In Chapter 7 we will address these limitations. Although we have seen that ICA

and SNMF have important theoretical limitations for the NILM task, we will use it

as baseline methods in Chapter 7 and 8.
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We have previously seen that our NILM software problem can be transformed

into a Matrix Factorization problem. Unfortunately, existing methods do not directly

apply. Therefore, in this chapter, we develop a new matrix factorization method

to overcome all the limitations of well known techniques such as Semi Nonnegative

Matrix Factorization (SNMF), Independent Component Analysis (ICA) or Sparse
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Coding (SC). This chapter is organized as follows. We first recall the desired property

of the future factorization and propose a new formulation. We then focus on designing

an efficient algorithm to solve this newly formulated problem. Finally, we conduct a

set of experiment to test the intrinsic performance of our algorithm.

Let X be an observed current matrix, its factorization is given by X ≈ SA. Let

U be a voltage matrix. Making the assumption that the voltage signal is purely

periodic, every column of U are equals to a denoted voltage vector u0. In perfect

condition, u0 is simply the sine wave. The estimated power consumption by device

is then given by:

Pk(t) = A(k, t)
1

N

∑
n

S(n, k) u0(n) (7.1)

=
s>k u0

N
ak.

∀t : U(n, t) = u0(n) (7.2)

The desired properties of the estimated power P̂k(t) are:

(i) positivity:

∀k, t : Pk(t) ≥ 0 (7.3)

(ii) variations sparsity:

∀t, for lots of k : ∆ Pk(t) ≈ 0 (7.4)

where ∆ Pk(t) = Pk(t)−Pk(t− 1) are the power variations.

(iii) statistical independence, device per device, of their variations:

∀k, k′ : ∆ Pk ⊥⊥ ∆ Pk′ (7.5)

7.1 Formulation

We extend SNMF, ICA and SC by introducing: (i) a specific regularization and a

positivity constraint over the activation matrix; (ii) linear and quadratic constraints
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on the signature matrix. The IVMF optimization problem is then given by:

minimize
S,A

1

2
‖X − S A ‖2Fro + λG(A) (7.6)

subject to ‖ sk ‖22 ≤ 1, ∀k ∈ J1, KK,

s>k u0 ≥ α0, ∀k ∈ J1, KK,

A ≥ 0,

where G(A) =
∑

k,tG(A(k, t+ 1)−A(k, t)) and G is a non-quadratic scalar function

and λ > 0 is the regularization parameter. To induce sparsity on the variation, we

propose two choices for G:

(i) the absolute value:

Gabs(x) = |x| (7.7)

(ii) a smooth absolute value:

G(x) =
√
x2 + ε−

√
ε (7.8)

where ε is a small positive constant.

Note first that if we take ε = 1, the smooth absolute value is equivalent to the

classic logcosh(x) = log(cosh(x)) function in ICA (both of them being equivalent

to x2

2
near 0). When ε decrease to 0 the limit of the smooth absolute value is the

absolute value. A second remark is that Gabs(x) correspond to the widely used total

variation regularization [Rudin et al., 1992]. Eventhough total variation has been

introduced for denoising [Beck and Teboulle, 2009a] or inducing piecewise constant

shapes [Seichepine et al., 2014], we use it to perform separation of independent

sources which can be neither noisy nor piecewise constant.

The quadratic constraint on the columns of S (sk) enables us to fix the inherent

scaling ambiguity in such factorization problems. As explained for Sparse coding,

the normalization is essential for the regularization to operate. Indeed, without

this constraint, multiplying S by a scalar and dividing A by the same value would

artificially decrease the penalization term without changing the data fitting term or

the shape of the solution.

The linear constraint on sk, on top of the positivity constraint on A, enable us to

ensure the positivity of the power estimation (with u0 being the voltage vector and

α0 a fixed positive parameter). The interpretation of this constraint is that every

signature has to be in the same direction as the voltage signal.
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Proof. If A ≥ 0, s>k u0 ≥ α0 and α0 > 0, then: Pk(t) =
s>k u0

N
ak. ≥ 0

7.2 A full-batch alternating optimization

Let us now derive an efficient algorithm to solve Problem (7.6). Unfortunately the

problem is not convex in both variables S and A. Instead, we propose to use an

alternating minimization strategy where S and A are updated iteratively resulting

in two convex problems [Bertsekas, 1997]. Updating S results in a least squares

problem under quadratic and linear constraints whereas updating A is a least squares

optimization problem with a smooth or non-smooth penalization (depending on the

choice of function G) on variations and a positivity constraint. In this section we will

use optimization tool such as duality, quasi-newton methods or proximal gradient

descents. For more details on these methods, see [Boyd and Vandenberghe, 2004,

Nocedal and Wright, 2006, Parikh and Boyd, 2014].

7.2.1 Updating the signatures

We can see that updating S is equivalent to solving:

minimize
S

‖X − S A ‖2Fro (7.9)

subject to ‖ sk ‖22 ≤ 1, ∀k ∈ J1, KK,

s>k u0 ≥ α0, ∀k ∈ J1, KK,

An illustration of the linear and quadratic constraints is given in Figure 7.1 (each

colored area correspond to a constraint). The two areas correspond to each one of

the constraints. The intersection of the areas is the feasible set of our constrained

problem.
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Figure 7.1: Constraints over the columns of S.

We propose to solve the equivalent dual problem, as done for Sparse Coding in

[Lee et al., 2007]. Note that our problem is different with the addition of a linear

inequality constraint. The convex dual problem is solved using a quasi-Newton

method .

The dual formulation of this problem is given by:

maximize
µ,ν

inf
S
L(S, µ, ν) (7.10)

subject to µ, ν ∈ RK
+

where L(S, µ, ν) = ‖X −S A ‖2Fro +
∑

k µk(‖ sk ‖22− 1) +
∑

k νk(α0− s>k u0) is the

Lagrangian function of problem (7.9) and µ and ν are the dual variables.

The dual function is then given by:

D(µ, ν) = inf
S
L(S, µ, ν) = L(S∗(µ, ν), µ, ν) (7.11)

and ∇SL = 0 leads to: S∗(µ, ν) =

(X A>+
1

2
u0 ν

>)(A A>+M(µ))−1 (7.12)

where M(µ) is the diagonal matrix with µ as diagonal. We used the fact that at

optimum the derivatives of the Lagrangian with respect to S equal 0. Consequently

the derivatives of the dual function are given by:
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∀ k, ∇µkD(µ, ν) = S∗>k (µ, ν) S∗k(µ, ν)− 1 (7.13)

∀ k, ∇νkD(µ, ν) = α− S∗>k (µ, ν) u0 (7.14)

These gradients are then used in L-BFGS-B [Byrd et al., 1995], a quasi-Newton

solver to find optimal values of µ and ν. Finally, the optimal signature matrix S∗ is

obtained using equation 7.12. Note that in practice, S∗ is calculated by solving the

linear system which is more efficient than computing the inverse.

7.2.2 Updating the activations for smooth regularization

In this section we handle the update of matrix A when the regularization function is

smooth (Gsmooth as defined in Equation (7.8)). Optimizing over A while fixing S is

here a non negative least square problem with a smooth non-linear penalization:

minimize
A

1

2
‖X − S A ‖2Fro + λGsmooth(A)

def
= F(A) (7.15)

subject to A ≥ 0

Since it is a smooth and convex problem with box constraints (7.15), we can also

optimize it with L-BFGS-B [Byrd et al., 1995]. The derivatives with respect to every

element of the activation matrix (A) are given by:

∇Ak,t
F(A) = Bk,t + λ(1[t>1]g(∆ Ak,t−1)− 1[t<T ]g(∆ Ak,t)) (7.16)

where B = −S>(X − S A) ∈ RK×T and g(x) = x/
√
x2 + ε.

7.2.3 Updating the activations for non-smooth regulariza-

tion

The main problem with using non-smooth regularization is the fact that the non

differentiability of the function to optimize makes it impossible to use efficient smooth

convex optimization tools such as quasi Newton methods. Instead we use an acceler-

ated proximal gradient method [Parikh and Boyd, 2014, Beck and Teboulle, 2009a].

The optimization problem of interest is the following:
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minimize
A

1

2
‖X − S A ‖2Fro + λGabs(A) (7.17)

subject to A ≥ 0

with Gabs(A) =
∑

k,t |A(k, t+ 1)−A(k, t)|.
In the image processing community, this subproblem is called deblurring with

anisotropic total variation [Beck and Teboulle, 2009a]. One minor difference is that

our total variation regularization is only on one direction (the time t) of the activation

matrix A, whereas in image processing it is calculated on both directions. Eventhough

the total variation regularization is separable in the rows of A, the euclidean data fit

term makes the overall problem not separable in the general case.

Our algorithm to solve this problem is greatly inspired by [Beck and Teboulle, 2009a]

and uses two iterative loops. The full derivation of the algorithm is reserved in

Appendix B for ease of lecture of this Chapter.

7.2.4 IVMF algorithms

The choice of the non-linear function G results in two different algorithms. Our

implementation, in Python, uses Scipy’s wrapper for L-BFGS-B ([Jones et al., 2001,

Byrd et al., 1995]) and our own FISTA implementation [Beck and Teboulle, 2009b].

The alternating optimization algorithm guarantees to decrease iteratively the cost

function but since the problem is not convex in both variables simultaneously, the

reached solution can only be a local optimum [Bertsekas, 1997]. In such a situation,

the solution strongly depends on the initialization of the algorithm, which will be

discussed in Section 7.5. It can finally be noticed that the computational complexity

of one update of S and one update of A are respectively O(NK2) and O(NKT ).

The complexity of the algorithm is thus driven by the update of A (since T � K)

but remains linear in time. We summarize the IVMF algorithm in Algorithm 1.

7.3 Preprocessing

Preprocessing the data is an important concept in signal processing and especially

in blind source separation. The FastICA algorithm [Hyvarinen, 1999], for instance,

works under the white assumptions. Let us recall that X ∈ RN×T where N is the

dimension of the features (or sensors) and T represents the different samples. The
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Algorithm 1: IVMF with alternating minimization

1 input :X, u0, λ, Imax the maximal number of iterations

2 Initialize S(0), A(0), µ(0) and ν(0)

3 for i = 0 to Imax do
/* Smooth A-update, see Section 7.2.2 */

4 A(i+1) = L-BFGS-B(A(i),Gsmooth,∇AGsmooth)
/* Or Non-smooth A-update, see Section 7.2.3 */

5 A(i+1) = FISTA(A(i),Gabs,∇AGabs, proxGabs)
/* S-update, see Section 7.2.1 */

6 µ(i+1), ν(i+1) = L-BFGS-B(µ(i), ν(i),D,∇µk,νkD)
/* Solve the linear system */

7 S(i+1) = (XA(i+1)> + 1
2
u0 ν

(i+1)>)(A(i+1) A(i+1)> + 2M(µ(i+1)))−1

first assumption is the centering: each rows of X has a zero mean. The second

assumption is the whitening: the covariance matrix of X is the identity matrix. It

means that the variance of each row is one and that each row is decorrelated from

an all other rows. This assumption is essential for ICA since independence implies

decorrelation. Ensuring decorrelation of the estimated sources is simple from white

data. It results in the constraint that the unmixing matrix is orthogonal. However,

the centering assumption is non compatible with the nonnegative constraints of

the sources or activations. In methods like Nonnegative ICA, the preprocessing is

reduced to only whitening and the centering step is skipped.

We propose here a new whitening procedure. The data X is transformed so

that the covariance matrix of the variations of the new data (as defined in the

regularization function of IVMF) is the identity matrix.

X̃ = WX (7.18)

such that: Cov
[
X̃D

]
= IN

where D is a sparse T − 1 × T real matrix with non zero values defined by: ∀t ∈
J1, T − 1K, Dt,t = −1 and Dt,t+1 = 1. D is the operator to calculate the variations.

Lemma 7.3.1. If: (i) Cov[XD] = XDD>X> = E∆E>, (ii) W = ∆−
1
2E> and

(iii) X̃ = WX; then: Cov
[
X̃D

]
= IN .

Proof. Using assumptions (i), (ii) and (iii), one can write the covariance matrix of
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X̃D as follows:

Cov
[
X̃D

]
=X̃DD>X̃> (7.19)

=WXDD>X>W> (7.20)

=∆−
1
2E>E∆E>E∆−

1
2 (7.21)

=∆−
1
2 ∆∆−

1
2 (7.22)

=IN (7.23)

7.4 Probabilistic Interpretation

Like ICA, IVMF has a probabilistic interpretation. Indeed, it can be seen as the

Maximum A Posteriori (MAP) estimation of a probabilistic model:

xt = S at +Γt (7.24)

where xt ∈ RN are the observations and S ∈ RN×K and at ∈ RK the random

variables of interest. Γt ∈ RN are independent and identically distributed Gaussian

variables with covariance I (the identity matrix). S is a random matrix whose

columns follow a uniform prior distribution over the closed convex set denoted CS and

defined by the intersection of {sk ∈ RN | ‖ sk ‖22 ≤ 1} and {sk ∈ RN | s>k u0 > α0}. at

are positive random vectors whose joint prior density is proportional to e−λG(A)1{A≥0}

(1 is the indicator function).

The Log-posterior of this model writes down:

L(S,A |X) = log p(X|S A) + log p(S) + log p(A)− log p(X) (7.25)

= −1

2
‖X − S A ‖2Fro − λG(A)− log(1{A≥0})

−
∑
k

log(1{sk∈CS})− cst

The MAP estimators are then given by:

Ŝmap, Âmap = argmax
S,A

L(S,A |X) (7.26)

which is an equivalent problem than the one expressed in Equation (7.6).
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7.5 Experimentations

The goal of this section is to investigate the practical behavior of our algorithm.

We are interested in testing the ability to recover the true factors from an observed

matrix and also in analyzing the rate of convergence of the algorithm. Our algorithm

includes one parameter: the regularization coefficient λ. We will test the influence of

this parameter on the results of the algorithm. In this section we do not address the

linear constraint coefficient α0 as a parameter.

In this section, we simulate data that follows the factorization model: X = S A +Γ,

where A ∈ RK×T
+ is the matrix of positive activations, S ∈ RN×K is the real mixing

matrix named signature and Γ ∈ RN×T is an additive white noise (each entry of Γ is

independent and identically distributed). The simulation of A is as follows: (i) draw

independent and identically distributed Laplace variable corresponding to the each

entry of the variations of A, (ii) [optional] set a certain percentage of these values to

zero to add true sparsity, (iii) cumulate along the time dimension to calculate A,

(iv) add to all elements of A its minimum value along each row to ensure positivity.

The entries of S are simulated independently from a normal distribution and then

adjusted so that the `2-norm of each column equals 1. Γ is also simulated from a

normal distribution. Finally, X is deterministically computed from S, A and Γ.

In a first experiment, we fix the noise variance to 0, set the sparsity to 0.8 (80%

of the variations of A are zero), simulate 100 datasets and then run ICA, SNMF and

IVMF. We repeat this procedure with a sparsity of 0 (meaning that no variation is

forced to be 0). Finally, we set the noise variance to 1. The size of the simulation is

K = N = 4 and T = 50.

For IVMF, we use the whitening preprocessing described in Section 7.3 and

we vary the λ parameter from 0 to 0.1. The ε parameter used in the regularizer

Gsmooth(x) is set to 10−7. For ICA we use FastICA implementation found in the

Python package Scikit-Learn [Pedregosa et al., 2011]. We used the standard logcosh

cost function. We apply it to a transformation of the data that computes the time

variations: X̃(n, t) = X(n, t)−X(n, t− 1). The optimal Sica is then used to recover

the optimal Aica from the original data X with Aica = S−1icaX. For SNMF, we used

our own Python implementation that uses a non-negative least square solver to

update the activation matrix A. This approach appeared to be faster in practice

than the original implementation of [Ding et al., 2010].

To estimate the performance of the algorithms we use the estimation error on A

defined as: EA = ‖A−Â‖2Fro/‖A ‖2Fro, where Â is the estimated matrix. To fix the

multiplicative ambiguity we normalize the output of the different algorithms so that
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the `2-norm of the columns of S equals 1, especially for SNMF and ICA as IVMF

already requires this feature. To fix the permutation ambiguity, we reorder the rows

of Â by using a greedy algorithm to match each row of A with its closest row in Â.

We present this simple greedy algorithm in the Chapter 8.

7.5.1 A first decomposition example

Let us start with a visual inspection of one run on a sparse and noiseless factorization.

For IVMF, we have used the smooth regularizer (Equation (7.8)), the whitening

preprocessing and a regularization parameter λ = 0.01. Figure 7.2 illustrates that

IVMF succeed in estimating the true factors, whereas ICA is a bit worse and SNMF

fails completely. To be more specific, it illustrates the identified drawbacks of ICA

and SNMF. We can see for instance that ICA activations may be negative (on the

third one) and that SNMF activations are too much dependent (it is especially visible

during the first 5 points of the activations: although only ground truth present a

decreasing shape, all the activation estimated by SNMF present a decreasing shape).

In the following sections we continue this exploration in a more quantitative way.
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Figure 7.2: Example of a sparse simulation: the result of IVMF, ICA and SNMF

are presented component by component: each one of the 4 rows of plot in the figure

corresponds to one columns of the signature matrix S and the corresponding row in

the activation matrix A. Each row of the figure is then composed of one heat-map

plot (on the left) for the signature and a classic line chart (on the right). The

heat-map makes the visual comparison between algorithm easy as each row inside

the plot corresponds to a different algorithm.

7.5.2 Identifiability

In this section, we want to quantify the ability of IVMF to recover the true factors,

this concept is called identifiability. For IVMF, we compare here the two different

regularization proposed: the smooth one denoted IVMF lbfgsb and the non smooth

one denoted IVMF fista. Figures 7.3 and 7.4 present the average error over the 100

simulations for the 3 generative procedures described previously (not sparse, sparse,

not sparse and noisy). This particular example first shows that IVMF consistently

outperforms SNMF. IVMF’s performance also improve as λ decreases until an optimal

value. For lower values the performance deteriorates until reaching those of SNMF

when λ ≈ 0. Figure 7.3(a) and 7.4(a) present the result of simulations without

noise and IVMF outperforms ICA for λ values in the range [0.01, 0.05]. We may

explain this by the fact that ICA does not take advantage of the positivity property
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of the signal and also that ICA enforces perfect decorrelation of the sources which in

practice is not the case. We can notice that IVMF performs better on the sparse

example than on the not sparse one. Figure 7.4(b) shows that IVMF is more robust

to additive noise than ICA. For the noisy setting IVMF’s performance seems to be

less sensitive to the choice of the regularization parameter λ. To compare the two

IVMF’s implementation, we can say the global behavior is similar for the two of

them. In the noiseless scenario, the non smooth regularizer seems to have a small

advantage.
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Figure 7.3: Influence of sparsity level, noise and regularization parameters (1/2):

comparison of IVMF, ICA and SNMF. Each plot presents the average error over

100 different scenario as a function of the regularization parameter λ. For ICA and

SNMF, its represented as a constant line because there is no parameter.



134CHAPTER 7. IVMF: INDEPENDENT-VARIATIONSMATRIX FACTORIZATION

0.00 0.02 0.04 0.06 0.08 0.10
0.3

0.4

0.5

0.6
||A

A|
|2 Fr

o/|
|A

||2 Fr
o

IVMF_lbfgsb
IVMF_fista
ICA
SNMF

(a) sparsity = 0%

0.00 0.02 0.04 0.06 0.08 0.10

0.6

0.8

||A
A|

|2 Fr
o/|

|A
||2 Fr

o

IVMF_lbfgsb
IVMF_fista
ICA
SNMF

(b) noise = 1 & sparsity = 0%

Figure 7.4: Influence of sparsity level, noise and regularization parameters (2/2):

comparison of IVMF, ICA and SNMF. Each plot presents the average error over

100 different scenario as a function of the regularization parameter λ. For ICA and

SNMF, it is represented as a constant line because there is no parameter.

7.5.3 Correlation

To understand why IVMF outperforms ICA and SNMF, we propose here to explore

the influence of each method on the correlation of the variations of the estimated

activations, i.e. the correlation between the rows of Â. The metric used in the

following is the the sum of squared non diagonal elements of the correlation matrix of

the variations of activations, formally defined as:
∑

k,k′

(
Corr

[
∆Âk,∆Âk′

]
− δk,k′

)2
.

Recall that we use the FastICA implementation of ICA [Hyvarinen, 1999]. This

algorithm when used with a whitening preprocessing ensures the estimated sources

to be decorrelated. As we have applied ICA to the variations of X, the correlation

of the resulting activations shall be zero. Figure 7.5 shows exactly this property.

On contrary, SNMF impose no particular structure on the correlation of the

activations. As mentioned earlier, SNMF seems to imply a relatively high value of

correlation regarding other methods.

As for IVMF, Figures 7.5(a) and 7.5 show the regularization has the effect of
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reducing the correlation. For sub-figures 7.5(b) and 7.5(c), from λ = 0.1 down to

≈ 0.01, decreasing λ resulting in more decorrelated estimations. This argument

is in favor of IVMF to induce independence. Note however that decorrelation is

not a sufficient condition for independence. [Feng and Kowalski, 2018] showed a

theoretical result reinforcing this idea. Indeed, they showed that under the whitening

preprocessing of data, a square signature matrix S, Sparse Coding solution (with a

specific regularization) tends to FastICA’s solution when the regularization parameter

tends to 0. If we discard the positivity constraint and the linear inequality constraint,

the result also applies to IVMF. This is another argument suggesting that IVMF

can help identifying independent components which are positive. This can also be

linked to the probability interpretation of IVMF as a MAP inference (Section 7.4).
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Figure 7.5: On the correlation of the variations of activations. The metric used is the
the sum of squared non diagonal elements of the correlation matrix of the variations
of activations.
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7.5.4 Convergence rate

In this section we study the convergence rate in practice of IVMF. Figure 7.6 shows

the evolution of the estimates along the algorithm iterations, where one iteration

consists of one update of S and one update of A. Figure 7.6, shows the evolution of

the cost function (minimized by our algorithm) and the evolution of the estimation

error on the activation matrix A. The cost function starts by decreasing sharply on

the first iterations and then the rate slows down until iteration ≈ 13000. During this

period, the error on A however has sharply decreased. After iteration 13000, both

the cost function and the estimation error decrease very slowly.

Figure 7.7 shows the evolution of the solutions at different point of the convergence.

After only 6000 iterations (sub-figure 7.7(a)) the solution is already acceptable

(approximately as good as ICA in sub-figure 7.7(d)). After 13000 iterations (sub-

figure 7.7(b)) the solution is almost perfect (better than ICA). Until iteration 50000,

the solution does not change much to finally achieve perfect separation (sub-figure

7.7(c)). This slow convergence rate near the optimum is a drawback of alternating

minimization.
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7.6 Conclusion

To conclude this chapter, we have have proposed a novel matrix factorization tech-

nique called IVMF. It is formulated as an optimization problem and we have designed

an associated optimization algorithm for the separation of time dependent sources

whose variations exhibit independence or sparsity. The proposed approach extends

SNMF by introducing a physically-inspired regularizer over the variation of the

sources and linear and quadratic constraints on the signature matrix. Note that

we have proposed two different regularizers: one smooth and thus differentiable

everywhere and one non smooth not differentiable on 0. We have also shown that

our approach can achieve independent source separation and outperforms its natural

competitors on toy examples.

In Chapter 8, we will use IVMF to solve NILM problems on three publicly

available datasets. The first one, the main interest of this dissertation, concerns big

systems such as commercial buildings. The last two datasets consist of residential

houses.
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We have just developed a new method called IVMF for addressing the NILM

software problem using high frequency current measurements. IVMF has been

designed for the special case of NILM in big systems such as commercial buildings. We

will therefore analyze the performance of IVMF on a synthetic commercial buildings

dataset called SHED. The lack of real and high frequency data for commercial

buildings forces us to only use synthetic dataset for the evaluation of our method.

However, real and high frequency data are available for residential buildings. We will

then test the performance of IVMF on two other real datasets (REDD, BLUED).

As explained before our unsupervised approach address the only the disaggregation

part of the NILM software problem and not the identification (or classification) of

the electric device. We will then present the procedure to calculate the IVMF

performance in this setting.

139
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8.1 Evaluation Metrics

Evaluating the performance of NILM algorithm is a complicated task due to a lack of

standardization [Pereira and Nunes, 2018]. In this section we present the metric used

to evaluate the performance of our NILM algorithm. We will use the disaggregation

error or power error, defined as:

Epower =
∑
c

‖Pc−P̂c‖22/
∑
c

‖Pc ‖22, (8.1)

where Pc ∈ RT
+ is the ground truth (given by the dataset) and P̂c ∈ RT

+ is the

corresponding estimation.

As explained before, we want to evaluate algorithms that can disaggregate the

total consumption into sub-component representative of individual devices. Thus,

the studied algorithm do not directly identify the label of the subcomponent. To

be able to estimate the disaggregation error we need an identification step before

computing it. In the following we use a greedy identification algorithm. It starts by

finding the couple (Pi, P̂j) that has the lowest distance (‖Pi−P̂j‖22). Indexes i and

j are then discarded from the ground truth indexes and respectively the estimations

indexes and a new couple is identified. We repeat this procedure until all the ground

truth component have been affected to an estimated sub-component. Note that the

association between the ground truth and the estimations components are one to

one, meaning that we do not allow for re-aggregation of several sub-component (by

summing them) to best match a ground truth component. This kind of re-aggregation

have been proposed in [Lange and Bergés, 2016] but from our point of view may

bias too much the result. Indeed, with such a multiple re-aggregation procedure,

algorithm that tends to over disaggregate the consumptions may be privileged.

8.2 Results on public datasets

8.2.1 SHED

In this section, we consider a NILM dataset called SHED introduced in Chapter 4.

This dataset contains simulated current measurements for 8 commercial buildings

and the corresponding individual power consumptions. These simulations have

shown to be realistic for the NILM task (Section 4.3.3). We can also notice that the

simulation process involves a factorization structure of the current data, which is
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more complex. We use a sample of this dataset corresponding to 1 day of current

waveforms averaged at 5 minutes. The number of individual devices or categories

ranges from 5 to 10 depending on the building. In this dataset, the voltage is periodic:

∀ t, U(n, t) = u(n).

The experiment consists in running the ICA, SNMF and IVMF algorithms with

50 different initializations. The number of component is set to K = 10, to make sure

we have more sub-components than the true number of categories in the building.

The dimensions of the problem are thus N = 100, K = 15 and T = 288. For IVMF,

we use the smooth regularization and chose to fix manually the λ parameter to a low

value of 0.01 and α0 to 0. For the number of iterations, we use 5000 global iterations,

200 iterations maximum per signature update, and 10 maximum iterations for the

activation matrix update. ICA is run on the derivatives of the data (Xt−Xt−1) as it

was done in Section 7.5. SNMF is used in the same conditions than IVMF in terms

of number of iteration.

The power error results given in Table 8.1 show that IVMF presents the best

performance on all buildings but one (building 3) where no method seems to perform

well (due to confusions between 2 categories and the presence of important constant

power consumptions, see Appendix A). We can note that, the result for ICA are, on

average, comparable to IVMF for the disaggregation error. This can be interpreted

by the fact that the result of ICA seems to be less sensitive to initialization than

IVMF.

Table 8.1: Performance comparison between ICA, SNMF and IVMF on the NILM
task using the SHED dataset.

Building
ICA SNMF IVMF

Avg. Best Avg. Best Avg. Best

1 0.39 0.19 0.50 0.26 0.26 0.12

2 0.53 0.48 0.67 0.46 0.50 0.39

3 0.52 0.47 0.78 0.41 0.76 0.57

4 0.65 0.48 0.81 0.52 0.70 0.31

5 0.53 0.44 0.77 0.45 0.70 0.43

6 0.68 0.53 0.65 0.46 0.60 0.45

7 0.24 0.20 0.46 0.26 0.38 0.19

8 0.54 0.45 0.67 0.37 0.61 0.32

Avg (resp. Best) refers to the average (resp. minimal) error over 50 different runs of
the algorithm.



142 CHAPTER 8. DISAGGREGATION RESULTS

Although the disaggregation error is interesting to quantify an overall performance,

it lacks of information concerning the desired property of the power estimations,

namely, the positivity, the interpretability of the signature or the ability to separate

small sources. To compare the performance of algorithms on these fundamental

qualitative property, a closer look at the results plots is needed. To do so, we provide

in Figures 8.1 and 8.2 some decomposition examples that illustrate the nice properties

of the power consumptions estimated by IVMF. Figure 8.1(a) illustrates that IVMF

is better to recover activations with sparse variations: SNMF and ICA present small

variations when IVMF present no variation. Figures 8.1(b) and 8.2(a) present an

activation with negative values for ICA whereas IVMF estimates them perfectly. In

Figure 8.2(a), we observe completely negative power consumptions for SNMF. It

is due to the fact that even if the activation is positive the sign of the estimated

power consumption is given by the scalar product of the signature and the voltage

waveform. The positivity of estimated power consumption is ensured in IVMF by

an inequality constraint on the signature as explained in Chapter 7. Figure 8.2(b)

shows that even though ICA and IVMF estimates similar activations the associated

signature can be different. Finally, Figure 8.2(c) shows one category that is not

recovered by ICA.

Further results (Buildings 2 and 6) on the SHED dataset are given in Appendix

C.

(a) Component 4 (b) Component 3

Figure 8.1: IVMF, SNMF and ICA disaggregation results on SHED building 1 (1/2).

Each sub-figure presents the estimation of one component (signature and calculated

power consumption) and the corresponding ground truth.
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(a) Component 2 (b) Component 1

(c) Component 5 (d) Component 6

Figure 8.2: IVMF, SNMF and ICA disaggregation results on SHED building 1 (2/2).

Each sub-figure presents the estimation of one component (signature and calculated

power consumption) and the corresponding ground truth.

8.2.2 REDD

The REDD dataset [Kolter and Johnson, 2011] is made of High Frequency (HF)

mains current measurement and Low Frequency (LF) measurement of individual

equipment or circuit for 2 out of 5 houses (house 3 and house 5). The HF data are

compressed and consists of waveforms representing the current during one voltage

period on 275 points for the 2 current phase lines. Each waveform is considered to

repeat for a certain variable number of period given in the dataset. The LF data are

power readings measured every ≈ 3 seconds.

We have selected one day of data of house 3: 23rd May 2011. The HF data has

been down sampled to 5 minutes, meaning that we now have one waveform of 275

point per 5 minutes. The LF data has also been down sampled by averaging to fit
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to the HF data. We can note that the sum of the LF measurements of individual

equipment almost equal the total power consumption given by the HF data. Figure

8.3 present the small difference. The biggest difference resides in the recurrent spikes

present in the HF data and smoothed in the LF data. Our supposition is that these

spikes come from the refrigerator and are at a too high frequency for being measured

in the LF data.
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Figure 8.3: Total power consumption of the REDD house 3, resampled at 5 minutes.

We have run IVMF, ICA and SNMF have all been run using 10 components

(K = 10). For IVMF we have used the non-smooth regularizer with 5000 global

iterations, 200 iterations maximum per signature update, and 10 maximum iterations

for the activation matrix update. The regularization parameter has been set to

λ = 0.001. Note that we have used the non-smooth regularizer because in practice

it seems to reach sparser results than the smooth regularizer. Residential buildings

consumptions are also known to have sparser variations that commercial buildings

one.

The following figures present the best results over 50 runs for the 3 algorithms. We

present estimated power consumption with their respective signatures and compare

it to the true power consumptions given by the dataset. Figure 8.4 shows the 6

most consuming equipments and the residual (not affected) power consumptions.

The most interesting thing is that on top of having good estimation of the power

consumption, the signature of each component is highly interpretable. For instance,

the estimated signature of the microwave is very characteristics of such equipment.
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Indeed, in Chapter 3 we have showed a very similar microwave waveforms which

have been measured. The two first components have a resistive signature. Each of

them have been estimated on a different phase line (A and B) and corresponds to

the group of washer dryer/dishwasher/bathroom circuit(GFI). Our interpretation

is that the washer dryer is a bi-phased equipment (an equipment plugged on both

phases that consume power on each phase line). The component corresponding to the

refrigerator present a signature characteristics of motor. The last two components

have similar signatures that correspond to electronic power supplied devices.

ICA and SNMF results are given in Figure 8.5 and 8.6 for comparison. Even

if ICA manage to recover two resistive signatures, the associated power estimation

poorly corresponds to the ground truth and can be negative.
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Figure 8.4: IVMF disaggregation of REDD house 3.
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Figure 8.5: ICA disaggregation of REDD house 3.
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Figure 8.6: SNMF disaggregation of REDD house 3.
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8.2.3 BLUED

In this final experiment we apply on IVMF on another high frequency current dataset

called BLUED [Filip, 2011]. The data was collected at a residential building in

Pittsburgh, USA during October 2011 with a sampling frequency of 12kHz. We used

the same data processing as explained in the previous Section 8.2.2. Unfortunately

the BLUED dataset do not include as ground truth the power consumption per

electric device (see Figure 8.7). This is the reason why we just present in Figure 8.8

raw result from IVMF without ground truth comparison. To differentiate from the

previous section, we have run IVMF over one week of data instead one only one day.

It is still interesting to see that the same kind of results are obtained. We can for

instance distinguish a resistive signature, a microwave, electronic fed devices.
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Figure 8.7: Total power consumption of the BLUED, resampled at 5 minutes.
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8.3 Conclusion

We have just seen that our proposed IVMF approach outperforms ICA and SNMF

on the SHED dataset which is a synthetic dataset reproducing the behavior of big

systems such as commercial buildings. The performance has been evaluated using

a global metric (the disaggregation error) and using plots of the estimated power

consumptions. The global metric showed that IVMF achieve better results than

SNMF and ICA. However, the average result of ICA and IVMF are comparable. A

closer look at the results plots, revealed that IVMF present fundamental properties:

(i) it estimates always non-negative power consumptions and (ii) it can estimate

power consumption with sparse variations.

To the best of our knowledge, this is the first time a NILM algorithm achieve

such results on a disaggregation NILM software problem for commercial buildings.

Concerning the observed drawbacks of IVMF, it appears that the result is more

sensitive to the initialization than ICA. TWe could think of using ICA to initialize

IVMF. We can also note that in terms of processing time, ICA is faster than IVMF.

This is mainly due to the fact that ICA ensures perfect reconstruction of the data.

Contrary, we think that the perfect reconstruction constraint in ICA can also be

seen as a major drawback especially when the observed data do not follow exactly

the ICA model.

Finally, we recall that IVMF has been developed to address the limitations of

NILM algorithms focusing on smaller systems such as residential buildings, mainly

due to the assumption of constant power consumption of electric devices. Preliminary

results on residential datasets indicate that IVMF can also be very efficient in this

scenario. Its ability to estimate consumptions with sparse variations seems to be

very useful for residential buildings.
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Conclusion and Perspectives

In this thesis we have addressed the Non Intrusive Load Monitoring problem with a

particular attention to big systems such as commercial buildings using High Frequency

current and voltage measurements. We have defined the NILM problem as a source

separation problem.

In order to address the lack of knowledge, we have proposed an extensive data

analysis on public and private datasets. The first result of our analysis is the low

rank assumption. Indeed we showed that the current matrix of any electric devices

admits a good approximation whose rank is lesser or equal to 5. We then showed

how to construct such approximations using Matrix Factorization techniques. This

factorization analysis conducted to the definition of a new device taxonomy reflecting

the complexity of the source/device.

The second result of our analysis is the design of metrics that can discriminate

between residential and commercial buildings data. We carefully studied the varia-

tions of the power consumption which has been an important quantity in the rest of

our work. Their time correlation and distribution appeared to be very different and

accredited two hypotheses: (i) consumptions in commercial buildings have a stronger

seasonal effect than the one in residential houses and (ii) there is much more activity

in the power variations in commercial buildings than in residential houses.

Motivated by the lack of data for commercial buildings, we have developed a

generative model for synthesizing high frequency current waveforms. Our model is

based on a matrix factorization approach and the low rank assumption. The model

efficiency has been validated with real data using previously mentioned metrics.

Finally, we have proposed a simulation procedure that enables us to learn parameters

on real data and then simulate new synthetic data. To enable algorithms testing

and comparison, a simulated dataset called SHED is released.

In the second part of this thesis, we have developed an unsupervised learning

framework for solving the NILM software problem with the specificity of using

high frequency current and voltage measurements. One of the main difficulties of

153
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this particular problem is the absence of result in the literature. We first showed

how to transform the NILM single-channel source separation problem into a matrix

factorization problem. To do so, we used the rank one hypothesis which states that any

current matrix measured from an electric device has a good enough approximation of

rank one. To leverage our knowledge on the electric sources (positivity, independence

of power variations between devices and a relative sparsity of power variations) we

have proposed IVMF: the Independent-Variations Matrix Factorization.

Finally we have applied IVMF to three different NILM datasets. On the SHED

dataset a synthetic dataset for commercial building containing 8 buildings, IVMF

outperformed 2 competitors (Independent Component Analysis (ICA) and Semi

Non-negative Matrix Factorization (SNMF)). On the REDD dataset, a real dataset

consisting of the total consumption of a full house and of the consumption of

individual equipments, IVMF showed its ability to solve the NILM problem. Without

any adaptation step, IVMF has also been applied on the BLUED dataset showing

similar results. Eventhough IVMF has been developed to operate on commercial

buildings, it shows consistent results on residential buildings. Along with a good

estimation of power consumptions, IVMF has produced easily interpretable results.

We have already shown important advances in the knowledge of the NILM

problem and proposed an efficient algorithm to solve it using high frequency data.

However many challenges are still to be solved. We review here some of the future

work that could be conducted.

Concerning the knowledge on the current sources it would be interesting to

study more precisely the structure of the activations when the approximate rank

is greater than one. In a first attempt we used a Dirichlet distribution to model

the instantaneous share of each activation but this could be extended. Studying the

activations’ correlation structure of devices whose rank is greater than one could help

designing a proper disaggregation method. Another lead to improve knowledge on

devices would be to study at the same time the current and voltage measurements.

Indeed, having a good understanding of the relationship between current and voltage

for each device could help a lot the disaggregation.

One major limitation of IVMF is its ability to estimate only rank one sources.

A first work around would be to add a re-aggregation step after the estimation of

sub-components. This approach consisting of summing sub-components together

has already been investigated in [Lange and Bergés, 2016] but a fully unsupervised

adaptation to IVMF is not straightforward. We have already seen that the correlation

matrix of the estimated activations (and thus power estimates) is almost the identify
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matrix signifying that activations are pairwise decorrelated. However, the activations

can still present pairwise dependence. One way to group the activations could be by

a greedy method based on an estimation of the measure of independence. Another

lead could be to directly incorporate inside IVMF the capability of estimating higher

rank signals. One could for instance use group regularization instead of row wise

regularization [Friedman et al., 2010] based on the study of the correlation structure

of activations for complex devices.

Another limitations of IVMF is that it treats the disaggregation problem as a

batch problem. A major improvement would be to develop an online version of

IVMF to be able to address larger datasets and also to adapt to potential changes

in the behavior of the building. Addressing larger datasets could be done by only

changing the optimization procedure: replacing the activation matrix update with a

stochastic gradient descent approach for instance. However, adapting to changes of

behavior in the building needs to change the model by using group regularization

as expressed before, incorporating voltage measurements or making the signature

matrix depend upon the time.

Finally, a major improvement would be to take advantage of the multiple buildings

training. For now, IVMF is a completely blind method which focuses only on

one building but Deep learning methods in the context of unsupervised learning

have recently made progress. Generative Adversarial Network based methods have

been applied to inverse problems [Lunz et al., 2018] or to audio source separation

[Stoller et al., 2018]. Although this approach needs a lot of data, it only requires

aggregated data.
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A The SHED dataset

(a) Building 1

(b) Building 2

(c) Building 3

Figure A.1: Total and disaggregated power consumptions of buildings 1 to 3 of the

SHED dataset.
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(a) Building 4

(b) Building 5

(c) Building 6

(d) Building 7

(e) Building 8

Figure A.2: Total and disaggregated power consumptions of buildings 4 to 8 of the

SHED dataset.
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(a) Building 1 (b) Building 2

(c) Building 3 (d) Building 4

(e) Building 5 (f) Building 6

(g) Building 7 (h) Building 8

Figure A.3: Randomly chosen current waveforms for buildings 1 to 8 of the SHED

dataset.
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B IVMF: updating the activation matrix with a

non-smooth regularizer.

The main problem with using non-smooth regularization is the fact that the non

differentiability of the function to optimize makes it impossible to use efficient

smooth convex optimization tool such as quasi Newton methods. Instead we use an

accelerated proximal gradient methods. The optimization problem of interest is the

following:

minimize
A

1

2
‖X − S A ‖2Fro + λGabs(A) (2)

subject to A ≥ 0

with Gabs(A) =
∑

k,t |A(k, t+ 1)−A(k, t)|.
In the image processing community, this subproblem is called deblurring with

anisotropic total variation. One minor difference is that our total variation regular-

ization is only on one direction (the time t) of the activation matrix A, whereas in

image processing it is calculated on both directions. Eventhough the total variation

regularization is separable in the rows of A, the euclidean data fit term makes the

overall problem not separable in the general case. We will later discuss the case

where S is an orthogonal matrix.

Our algorithm to solve this problem is greatly inspired by [Beck and Teboulle, 2009a].

It uses the FISTA algorithm which is a gradient based algorithm that can achieve fast

convergence rate where each iterate depends on the previous 2 iterates. Its principle

is to separate the function to minimize into two functions: one differentiable and one

not differentiable. One iteration of FISTA consists in computing the gradient of the

differentiable function and the proximal operator of the non-differentiable one.

The gradient is simply given by:

∇Af(A) = −S>(X − S A) (3)

The Lipschitz constant of the gradient, denoted L(∇Af) and used in FISTA, is

bounded by:

L(∇Af) ≤ ρmax(S
> S) (4)

where ρmax(M) is the maximum eigen value of a matrix M .
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Proof.

‖∇Af(A1)−∇Af(A2)‖Fro =‖ − S>(X − S A1) + S>(X − S A2)‖Fro (5)

=‖S> S ‖Fro‖A1−A2 ‖Fro (6)

≤ρmax(S> S)‖A1−A2 ‖Fro (7)

The proximal operator is defined itself as an optimization problem and unfor-

tunately, in our case, has no closed form solution:

proxλGabs(Y ) = argmin
A∈RK×T

[
1

2
‖A−Y ‖2Fro + λGabs(A) + 1{A≥0}

]
(8)

Since it has no closed form solution, an iterative procedure is needed. This new

problem is separable in the rows of A (ak.), due to the fact that our total variation

is only along the rows of A. Using a matrix notation for the regularization, the

problem reads:

minimize
ak.∈RT

1

2
‖ ak.−yk.‖22 + λ‖D ak. ‖1 + 1{ak.≥0} (9)

where D is a sparse T − 1 × T real matrix with non zero values defined by: ∀t ∈
[1, T − 1], Dt,t = −1 and Dt,t+1 = 1. This vectorial optimization problem is similar

to the fused lasso approximation and can also be viewed as the proximal operator

of the fused lasso regression. An efficient way to calculate it is by solving its dual

problem. The dual formulation enables us to get rid off the absolute value of the

regularization and replace it with box constrained easier to handle. Let us write

down the dual problem. For ease of notation we replace the ak. vector by a and yk.

by y.

We first start by introducing a new variable and its corresponding constraint:

minimize
a∈RT , b∈RT−1

1

2
‖ a−y‖22 + λ‖b‖1 + 1{a≥0} (10)

such that D a = b
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The Lagrangian reads:

D(µ, a, b) =
1

2
‖ a−y‖22 + λ‖b‖1 + 1{a≥0} + µ>(D a−b) (11)

where µ ∈ RT−1 is the dual variable.

The dual function is then defined as follows:

D(µ) = inf
a∈RT , b∈RT−1

D(µ, a, b) (12)

= inf
a∈RT

[
1

2
‖ a−y‖22 + µ>D a +1{a≥0}

]
+ inf

b∈RT−1

[
λ‖b‖1 − µ>b

]
(13)

(14)

Two minimization problems are needed to evaluate D. In the optimization literature,

they are called the Fenchel conjugate functions. The first one, on the variable a can

be factorized to give:

argmin
a∈RT

1

2
‖ a−y‖22 + µ>D a +1{a≥0} = (y −D>µ)+ (15)

where (x)+ = max(x, 0) represents the projection onto the positive orthant.

Proof.

argmin
a∈RT

1

2
‖ a−y‖22 + µ>D a +1{a≥0} (16)

=argmin
a∈RT+

a> a−2y> a +2µ>D a +y>y (17)

=argmin
a∈RT+

‖ a−(y −D>µ)‖22 + ‖y‖22 − ‖y −D>µ‖22 (18)

=argmin
a∈RT+

‖ a−(y −D>µ)‖22 (19)

=(y −D>µ)+ (20)

The second problem, on the variable b is given by:

inf
b∈RT−1

λ‖b‖1 − µ>b = 1{‖µ‖∞≤λ} (21)
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Combining these two results, the dual problem now reads:

maximize
µ

‖(y −D>µ)+ − (y −D>µ)‖22 − ‖y −D>µ‖22 (22)

such that ‖µ‖∞ ≤ λ

It can be written as the following minimization problem:

minimize
µ

‖(y −D>µ)+‖22
def
= f(µ) (23)

such that ‖µ‖∞ ≤ λ

Problem (23) is a convex differentiable problem with box constraints. It has no closed

form solutions and is not twice differentiable. We use FISTA to numerically optimize

this problem. As defined previously, FISTA needs to compute the gradient with

respect to µ, its Lipschitz constant and the proximal operator of the box constraints.

The gradient is given by:

∇µf(µ) = −2D(y −D>µ)+ (24)

The proximal operator of 1{‖‖1≤λ} is simply the orthogonal projection onto the

convex set defined by the infinity norm: the interval [−λ, λ]T−1.

Finally, the Lipschitz constant of the gradient is bounded by:

L(∇µf) ≤ 8 (25)

Proof. Using the fact that, for z ∈ RT :

‖Dz‖22 =
T−1∑
t=1

(zt − zt−1)2 (26)

≤2
T−1∑
t=1

(z2t − z2t−1) (27)

≤4‖zt‖22 (28)

⇒ ‖D‖2 =‖D>‖2 ≤
√

4 (29)
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Then:

‖∇µf(µ1)−∇µf(µ2)‖2 =‖2D(y −D>µ1)+ − 2D(y −D>µ2)+‖2 (30)

≤2‖D‖2‖(y −D>µ1)+ − (y −D>µ2)+‖2 (31)

≤2‖D‖2‖D>(µ1 − µ2)‖2 (32)

≤2‖D‖2‖D>‖2‖µ1 − µ2‖2 (33)

≤8‖µ1 − µ2‖2 (34)

The full iterations are given by Algorithm 2.

Algorithm 2: Updating activations A in the non smooth case

1 input :X, S, A(0), λ, Imax and Jmax, the maximal number of iterations

2 Initialize B(0) = A(0), t(0) = 1, λ̃ = λ/(4ρmax(S
> S)(T − 1))

3 for i = 1 to Imax do

/* Dual Proximal Gradient step, see Equation (24) */

4 Y = A(i−1)− 1
ρmax(S

> S)
∇Af(A(i−1))

5 for k = 1 to K do

/* Can be parallelized using matrix-matrix operations */

6 Initialize µ(0) = ν(0), s(0) = 1, y = y.k

/* Solve K 1D-Prox TV, see (10) */

7 for j = 1 to Jmax do

/* Dual Proximal Gradient step, see Equation (24) */

8 ν(j) = proxλ̃(µ
(j−1) − 1/8∇µD(µ(j−1)))

9 s(j) =
1+

√
1+4s2

(j−1)

2

/* FISTA update */

10 µ(j) = ν(j−1) +
(
s(j−1)−1
s(j)

) (
ν(j) − ν(j−1)

)
/* Update one row of B, Compute Proximal operator from dual

optimal, see (15) */

11 b
(i)
k. =

(
y − µ(Jmax)>D

)
+

12 t(i) =
1+

√
1+4t2

(i−1)

2

/* FISTA update */

13 A(i) = B(i−1) +
(
t(i−1)−1
t(i)

) (
B(i) −B(i−1))



168



C. DISAGGREGATION RESULTS ON THE SHED DATASET 169

C Disaggregation results on the SHED dataset

(a) Component 1 (b) Component 2

(c) Component 3 (d) Component 4

Figure C.1: IVMF, SNMF and ICA disaggregation results on SHED building 2 (1/2).

Each sub-figure presents the estimation of one component (signature and calculated

power consumption) and the corresponding ground truth.



170

(a) Component 5 (b) Component 6

Figure C.2: IVMF, SNMF and ICA disaggregation results on SHED building 2 (2/2).

Each sub-figure presents the estimation of one component (signature and calculated

power consumption) and the corresponding ground truth.

(a) Component 1 (b) Component 2

Figure C.3: IVMF, SNMF and ICA disaggregation results on SHED building 6 (1/2).

Each sub-figure presents the estimation of one component (signature and calculated

power consumption) and the corresponding ground truth.
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(a) Component 3 (b) Component 4

(c) Component 5 (d) Component 6

Figure C.4: IVMF, SNMF and ICA disaggregation results on SHED building 6 (2/2).

Each sub-figure presents the estimation of one component (signature and calculated

power consumption) and the corresponding ground truth.
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ative matrix factorization for time series recovery from a few temporal aggregates.

In Proceedings of the 34th International Conference on Machine Learning-Volume

70, pages 2382–2390. JMLR. org. Page 57.

[Meziane et al., 2017] Meziane, M. N., Hacine-Gharbi, A., Ravier, P., Lamarque, G.,

Le Bunetel, J.-C., and Raingeaud, Y. (2017). Electrical appliances identification

and clustering using novel turn-on transient features. In ICPRAM, pages 647–654.

Page 56.

[Muir and Lopatto, 2004] Muir, A. and Lopatto, J. (2004). Final report on the august

14, 2003 blackout in the united states and canada: causes and recommendations.

Page 22.



182 BIBLIOGRAPHY

[Murray et al., 2017] Murray, D., Stankovic, L., and Stankovic, V. (2017). An

electrical load measurements dataset of united kingdom households from a two-

year longitudinal study. Scientific data, 4:160122. Page 52.

[Murray et al., 2019] Murray, D., Stankovic, L., Stankovic, V., Lulic, S., and Slado-

jevic, S. (2019). Transferability of neural network approaches for low-rate energy

disaggregation. In ICASSP 2019-2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 8330–8334. IEEE. Page 103.

[Nait-Meziane et al., 2016] Nait-Meziane, M., Hacine-Gharbi, A., Ravier, P., Lamar-

que, G., Le Bunetel, J.-C., and Raingeaud, Y. (2016). Hmm-based transient

and steady-state current signals modeling for electrical appliances identification.

In Proceedings of the 5th International Conference on Pattern Recognition Ap-

plications and Methods, pages 670–677. SCITEPRESS-Science and Technology

Publications, Lda. Page 56.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. J. (2006). Numerical opti-

mization 2nd. Springer. Page 124.

[Norford and Mabey, 1992] Norford, L. and Mabey, N. (1992). Non-inlrusive eleclric

load moniloring in commercial buildings leslie k. Norford and Nicholas Mabey

Massachusells Institute of Technology Cambridge, MA. Page 94.

[Norford and Leeb, 1996] Norford, L. K. and Leeb, S. B. (1996). Non-intrusive

electrical load monitoring in commercial buildings based on steady-state and

transient load-detection algorithms. Energy and Buildings, 24(1):51–64. Page 94.

[Ohm, 1827] Ohm, G. S. (1827). Die galvanische Kette, mathematisch bearbeitet.

TH Riemann. Page 44.

[Olshausen and Field, 1997] Olshausen, B. A. and Field, D. J. (1997). Sparse coding

with an overcomplete basis set: A strategy employed by v1? Vision research,

37(23):3311–3325. Pages 99, 113, 116.

[Oord et al., 2016] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O.,

Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet:

A generative model for raw audio. arXiv preprint arXiv:1609.03499. Page 103.

[Oukrich et al., 2017] Oukrich, N., El Moumni, S., Maach, A., et al. (2017). Discrete

wavelet transform and classifiers for appliances recognition. In Proceedings of the



BIBLIOGRAPHY 183

Mediterranean Symposium on Smart City Applications, pages 223–232. Springer.

Page 56.

[Parikh and Boyd, 2014] Parikh, N. and Boyd, S. (2014). Proximal algorithms.

Foundations and Trends in Optimization, 1(3):127–239. Pages 124, 126.

[Parson et al., 2012] Parson, O., Ghosh, S., Weal, M., and Rogers, A. (2012). Non-

intrusive load monitoring using prior models of general appliance types. In

Twenty-Sixth AAAI Conference on Artificial Intelligence. Page 97.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duch-

esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830. Page 130.

[Pereira and Nunes, 2018] Pereira, L. and Nunes, N. (2018). Performance evaluation

in non-intrusive load monitoring: Datasets, metrics, and tools—a review. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6):e1265.

Page 140.

[Picon et al., 2016] Picon, T., Meziane, M. N., Ravier, P., Lamarque, G., Novello, C.,

Bunetel, J.-C. L., and Raingeaud, Y. (2016). Cooll: Controlled on/off loads library,

a public dataset of high-sampled electrical signals for appliance identification.

arXiv preprint arXiv:1611.05803. Pages 52, 58, 65, 77, 81.

[Plumbley, 2003] Plumbley, M. D. (2003). Algorithms for nonnegative independent

component analysis. IEEE Transactions on Neural Networks, 14(3):534–543.

Page 119.

[Powers et al., 1991] Powers, J., Margossian, B., and Smith, B. (1991). Using a

rule-based algorithm to disaggregate end-use load profiles from premise-level data.

IEEE Computer Applications in Power, 4(2):42–47. Page 56.

[Reinhardt et al., 2012] Reinhardt, A., Baumann, P., Burgstahler, D., Hollick, M.,

Chonov, H., Werner, M., and Steinmetz, R. (2012). On the accuracy of appliance

identification based on distributed load metering data. In Sustainable Internet

and ICT for Sustainability (SustainIT), 2012, pages 1–9. IEEE. Pages 52, 78, 81.



184 BIBLIOGRAPHY

[Rudin et al., 1992] Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total

variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-

4):259–268. Page 123.

[Sadeghianpourhamami et al., 2017] Sadeghianpourhamami, N., Ruyssinck, J., De-

schrijver, D., Dhaene, T., and Develder, C. (2017). Comprehensive feature selection

for appliance classification in nilm. Energy and Buildings, 151:98–106. Page 55.

[Seichepine et al., 2014] Seichepine, N., Essid, S., Févotte, C., and Cappe, O. (2014).

Piecewise constant nonnegative matrix factorization. In 2014 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6721–6725.

IEEE. Page 123.

[Shaloudegi et al., 2016] Shaloudegi, K., György, A., Szepesvári, C., and Xu, W.
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Batiments: Analyses, Simulations et Apprentissage Non-supervisé à Base de Factorisation de Matrices.
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Résumé : La prise de conscience des conséquences
du réchauffement climatique a permis de lancer un
mouvement de réduction de l’utilisation d’énergie.
L’électricité utilisée dans les bâtiments représente
une part importante de la consommation d’énergie
et doit donc être utilisée de manière efficace. Pour
cela, il est nécessaire de pouvoir mesurer et suivre
la consommation électrique de chaque appareil au
sein d’un bâtiment. Depuis 30 ans, une méthode
de suivi des consommations électriques, Non In-
trusive Load Monitoring (NILM), propose, à partir
d’un unique compteur mesurant la consommation to-
tale du bâtiment, de déterminer la contribution de
chaque appareil électrique. Cette méthode est basée
sur un algorithme de désagrégation des consomma-
tions électriques et permet de s’affranchir de l’utilisa-
tion d’un compteur de mesure pour chaque appareil
électrique du bâtiment.
Cette thèse aborde les problèmes algorithmiques
que présente le NILM. De manière générale, la
problématique est celle de la séparation de sources.
Les différentes sources à estimer correspondent ici à
la consommation électrique des différents appareils

branchés sur un même réseau. La mesure réalisée,
aussi appelée observation mélangée, correspond à la
somme de toutes les consommations. Ainsi, les prin-
cipales difficultés du NILM sont : (i) la standardisa-
tion de la formulation, (ii) le caractère mal-posé du
problème (perte d’information), (iii) les connaissances
insuffisantes sur les signaux et (iv) l’implémentation
d’un algorithme d’apprentissage. L’objectif principale
de cette thèse est de traiter le NILM dans le cadre des
grands bâtiments (commerciaux, bureaux, industriels)
en utilisant des mesures hautes fréquences du cou-
rant et de la tension. Cependant les maisons indivi-
duelles et leurs propres types d’appareils électriques
ne sont pas exclus de cette étude.
Dans une première partie nous abordons le problème
du manque de connaissance des signaux de consom-
mation électriques, à la fois ceux des grands
bâtiments et ceux des différents appareils utilisés.
Dans une seconde partie, nous abordons le problème
de la séparation de source. Grâce à nos résultats
d’analyse et par manque de données, nous traitons
ce problème à l’aide de techniques d’apprentissage
non-supervisées.

Title : On Solving the Non Intrusive Load Monitoring Problem in Large Buildings: Analyses, Simulations and
Factorization Based Unsupervised Learning.

Keywords : Energy Disaggregation, Unsupervised Learning, Matrix Factorization.

Abstract : With the increasing awareness about
the problem of climate change and the high level of
energy consumption, a need for energy efficiency has
emerged especially for electric power consumptions
in buildings. To spur energy savings, a method cal-
led Non Intrusive Load Monitoring (NILM) has been
introduced thirty years ago. It consists of estimating
individual appliance energy consumptions from the
measurement of the total consumption of the building.
Its main advantage over traditional sub-metering me-
thods is to use a single electric power meter at the
main breaker of the building and then use a disaggre-
gation algorithm to separate the contributions of each
appliance.
The goal of this thesis is to address the algorithmic
challenge offered by NILM. The NILM problem can be
formulated as a source separation problem, where the
sources are the individual electric consumptions and

the mixed observation is simply the sum of individual
consumptions. Its main difficulties are: (i) the standar-
dization of the formulation, (ii) the ill-posedness of the
problem, (iii) the lack of knowledge and (iv) the ma-
chine learning algorithm design. All our contributions
follow from the principal objective that is to solve the
NILM problem for huge systems such as commercial
or industrial buildings using high frequency current
and voltage measurements. However, houses and the
specific equipment found inside these buildings are
not excluded of the study. This thesis is split into two
parts.
In the first part, we tackle the lack of knowledge and
datasets for NILM in commercial buildings. In the se-
cond part, we deal with the NILM software challenges
by exploring unsupervised source separation tech-
niques.

Institut Polytechnique de Paris
91120 Palaiseau, France


