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A B S T R A C T

A physical process is a sustained phenomenon marked by gradual changes
through a series of states occurring in the physical world. Physicists and
environmental scientists attempt to model these processes in a principled
way through analytic descriptions of the scientist’s prior knowledge of the
underlying processes. Despite the undeniable Deep Learning success, a fully
data-driven approach is not yet ready to challenge the classical approach for
modeling dynamical systems.

We will try to demonstrate in this thesis that knowledge and techniques ac-
cumulated for modeling dynamical systems processes in well-developed fields
such as maths or physics could be useful as a guideline to design efficient learn-
ing systems and conversely, that the ML paradigm could open new directions
for modeling such complex phenomena.

We describe three tasks that are relevant to the study and modeling of Deep
Learning and Dynamical System : Forecasting, hidden state discovery and
unsupervised signal recovery.
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R É S U M É

Un processus physique est un phénomène marqué par des changements
graduels à travers une série d’états successifs se produisant dans le monde
physique. Les physiciens et les climatologues tentent de modéliser ces pro-
cessus d’une manière fondée sur le principe de descriptions analytiques des
connaissances a priori des processus sous-jacents. Malgré le succès indéniable
de l’apprentissage profond, une approche entièrement axée sur les données
n’est pas non plus encore prête à remettre en question l’approche classique de
modélisation des systèmes dynamiques.

Nous tenterons de démontrer dans cette thèse que les connaissances et les
techniques accumulées pour modéliser des processus de systèmes dynamiques
dans des domaines bien développés comme les mathématiques ou la physique,
pourraient servir de guide pour concevoir des systèmes d’apprentissage auto-
matique efficaces et, inversement, que l’apprentissage machine pourrait ouvrir
de nouvelles directions pour la modélisation de phénomènes très complexes.

Nous décrivons trois tâches pertinentes à l’étude et à la modélisation du
lien entre l’apprentissage profond et les systèmes dynamiques : la prévision, la
découverte d’états cachés et la reconstruction de signal non supervisé.
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1
I N T R O D U C T I O N

1.1 Context and Motivation

Machine Learning (ML), under the broader domain of Artificial Intelligence
(AI), has recently gained the attention of the scientific community and of the
private sector due to its newly acquired capability of solving complex problems.
Advances in computer hardware and software allowed techniques that estimate
a huge number of parameters to be exploited in a feasible time frame, contribut-
ing to the expansion of this area of study. At the annual ImageNet classification
challenge held in 2012, traditional techniques have been outperformed by Deep
Learning (DL) method. Given enough training data, deep networks can learn a
meaningful representation of the image together with the classification. Since
then, DL-based models have shown outstanding results in various machine
learning tasks such as object detection, regression, image inpainting or fore-
casting. This opens the field for even more challenging applications involving
complex phenomena, where deep networks can be designed to handle the
modeling of physical processes. These complex problems are tackled by both
academic and industrial actors, both in ML and physical science communities,
which makes this research domain a rich and extremely active field.

With the availability of very large datasets captured via different types of
sensors, the physical modeling paradigm is being challenged by the statistical ML
paradigm, which offers a prior-agnostic approach. However, despite impressive
successes in a variety of domains as demonstrated by the deployment of Deep
Learning methods in fields such as vision, language, speech, etc., the statistical
approach is not yet ready to challenge the physical paradigm for modeling
complex natural phenomena, or at least it has not demonstrated how to. This
is a new challenge for this field and an emerging research direction in the
ML community. We believe that knowledge and techniques accumulated for
modeling physical processes in well-developed fields such as maths or physics
could be useful as a guideline to design efficient learning systems and conversely,
that the ML paradigm could open new directions for modeling such complex
phenomena.

This thesis is motivated by physical processes, and more precisely how
we can incorporate physical prior knowledge to model them. We focus on
specific aspects of physical processes : spatio-temporal forecasting, hidden state

1
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discovery, and observation recovery. All this aspect can also be seen as the study
of the dynamics of the process.

A physical process is a sustained phenomenon marked by gradual changes
through a series of states occurring in the physical world. Physicists and en-
vironmental scientists attempt to model these processes in a principled way
through analytic descriptions of the scientist’s prior knowledge of the under-
lying processes. Conservation laws, physical principles or phenomenological
behaviors can be formalized by using differential equations.

Dynamical systems are a tool of choice to model the evolution of phenomena
occurring in nature. In order to derive a dynamical system describing a real
world physical process, one must first gather measurements of this system.
Then, a set of variables Xt describing the system at a given time t, called the
state. The state is defined as the set of variables (called state variables) so that
the knowledge of these variables at time t0 is sufficient to describe the behavior
of the system for any time t ≥ t0. Together with the knowledge of a function F,
we can consider an evolution equation of the form :

dXt

dt
= F(Xt) (1.1)

Many phenomena studied in physics, computer vision, biology, etc., obey
a general equation of this form. For this reason, an extensive effort has been
put into gaining a better understanding and resolving this equation. However,
for many practical problems, the relationship between the components of the
state is highly non-linear and complex to describe it analytically: finding an
appropriate evolution model F can be a difficult problem.

For many real-world applications, the entire state of the system is often not
fully visible to external sensors or corrupted. The state is said to be partially
observable. e.g., when studying the ocean’s circulation, variables contained in
the system’s state such as surface temperature or salinity are observable through
satellite, while others subsurface variables are not systematically observed. In
other words, the available data are only a projection of the complete state
Xt. This observation process can be modeled with an operator Ht linking the
system’s state Xt to the corresponding observation Yt:

Yt = Ht(Xt). (1.2)

As mentioned before, despite the undeniable Deep Learning success, a fully
data-driven approach is not yet ready to challenge the classical approach for
modeling dynamical systems. We will try to demonstrate in this thesis that
knowledge and techniques accumulated for modeling dynamical systems pro-
cesses in well-developed fields such as maths or physics could be useful as
a guideline to design efficient learning systems and conversely, that the ML
paradigm could open new directions for modeling such complex phenomena.
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We describe in the following section, three tasks that are relevant to the study
and modeling of Deep Learning and Dynamical System : Forecasting, hidden
state discovery and unsupervised signal recovery.

1.2 Tasks

1.2.1 Forecasting

Forecasting is the task of making future prediction based on past data. For a
dynamical system, it consists in finding the function F and the parameters θ

such that:

dXt

dt
= Fθ(Xt), (1.3)

Under the constraint that X is only partially observable. In Chapter 3, we
consider the use of Deep Learning methods for forecasting complex phenomena,
like those occurring in natural physical processes. Using an example application,
namely Sea Surface Temperature Prediction, we show how general background
knowledge gained from the physics, under the form of a Partial Differential
Equation (PDE) could be used as a guideline for designing efficient Deep Learn-
ing models. In this example : Xt = (It, wt) where It is a temperature image
and w the motion vector. In this setting, the temperature It is an input of the
problem, while w is the is unknown. The function H is in this case : H(Xt) = It.
We propose in this chapter a "hybrid" Deep Learning model in order to tackle
this problem.

In order to motivate the approach and to assess its generality, we demonstrate
the existence of a formal link between the solution of a class of differential
equations underlying a large family of physical phenomena and the proposed
model, namely the advection diffusion equation. Experiments and comparison
with series of baselines including a state-of-the-art numerical approach is then
provided.

To the best of our knowledge, this work in one of the first works attempting
to incorporate a PDE directly into a Deep Learning forecasting models. We have
shown the pertinence of such an approach by comparing our approach to other
approaches, and paved the way to a hybrid approach of forecasting systems.

Emmanuel de Bezenac, Arthur Pajot, and Patrick Gallinari (Feb. 2018). “Deep
Learning for Physical Processes: Incorporating Prior Scientific Knowledge”. In:
url: https://openreview.net/forum?id=By4HsfWAZ.

https://openreview.net/forum?id=By4HsfWAZ
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1.2.2 Hidden State Discovery

We consider the problem of learning to model the evolution of physical
processes evolving in space and in time, given only partial observations of the
state. Formally, in this case, the observation operator H is a projection operator.

In Chapter 4, we propose a framework, where the system’s dynamic is
modeled by an unknown dynamical system, and the evolution term is estimated
from the data. Given an initial state, an ODE solver can then be used to compute
any future complete state, allowing retrieving the unobserved part of the state
as well as forecasting future observations. We qualitatively and quantitatively
study the results of our method over simulations of complex data.

Instead of learning a Residual Network (He et al. 2015) or a recurrent model,
we chose to model the forecasting network as a dynamical system. This has
two purposes : ensure the physical plausibility of the model by allowing it to
explicitly handling hidden, but physical, variables (see Section 1.2.2), and thus
improving its performance.

Discovering a hidden state is a crucial problem for physical sciences. When
observing a complex phenomenon, there are often unknown underlying vari-
ables of interest. We show that our method learns to closely reproduce the
unobserved dynamics of the state without direct supervision on the latter when
the true initial state is given as input, and consistently outperform the baselines.

We also show that our method can still be successfully applied when the
initial state is not available and that it produces an interpretable hidden state
even in this case. This led to an arxiv paper :

Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and
Patrick Gallinari (Feb. 2019). “Learning Dynamical Systems from Partial Ob-
servations”. In: arXiv:1902.11136 [physics]. url: http://arxiv.org/abs/1902.
11136

1.2.3 Inverse Problem

Many real world applications require acquiring information about the state
of some physical system from incomplete and inaccurate measurements. For
example, in infrared satellite imagery, one has to deal with the presence of
clouds and a variety of other external factors perturbing the acquisition of tem-
perature maps. This raises questions on how to recover the correct information
and eliminate the contribution of external factors hindering the overall signal
acquisition.

We introduce an observation function F such that we can simulate its mea-
surement by first sampling θ from pΘ and underlying distribution representing

http://arxiv.org/abs/1902.11136
http://arxiv.org/abs/1902.11136
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the factor of corruption, and then computing f (x; θ). In a dynamical system
setting, we can write :

Yt = Ht(Xt) = f (Xt, θ),

with Yt the observation and Xt the state of the system. In Chapter 5, we
address the problem of recovering an underlying signal from lossy, inaccu-
rate observations in an unsupervised setting. Typically, we consider situations
where there is little to no background knowledge on the structure of the un-
derlying signal, no access to signal-measurement pairs, nor even unpaired
signal-measurement data. This is the case in physical system as we only have
access to observation of the system. The only available information is provided
by the observations and the measurement process statistics. By using Generative
Adversarial Network (GAN), a Deep Learning model designed to produce sig-
nals that are indistinguishable from an input signal distribution, we cast the
problem as finding the maximum a posteriori estimate of the signal given each
measurement, and propose a general framework for the reconstruction problem.
We use a formulation of GAN, where the generator takes as input a corrupted
observation in order to produce realistic reconstructions, and add a penalty
term tying the reconstruction to the associated observation. We evaluate our
reconstructions on several image datasets with different types of corruptions.
The proposed approach yields better results than alternative baselines, and com-
parable performance with model variants trained with additional supervision.
This is one of the first works proposing to learn an inverse problem from a
dataset of corrupted signals, without supervision.

We also present, for the special case of inpainting, two natural extensions.
In the first extension, we consider stochastic inpainting. Image completion or

inpainting is generally a complex inverse problem, it is usually under specified
so that there is not a unique solution. Most approaches propose a unique
image reconstruction among all the possible ones. In this chapter, we solve a
more challenging task that consists in learning the distribution of the plausible
reconstructions.

In the second extension, we consider the case of incomplete sequence of
observations. We propose a temporal extension of our model, by augmenting
our Neural Network in order to handle video.

This led to two publications :

Arthur Pajot, Emmanuel de Bezenac, and Patrick Gallinari (Sept. 2018). “Un-
supervised Adversarial Image Reconstruction”. In: url: https://openreview.
net/forum?id=BJg4Z3RqF7 Yuan Yin, Arthur Pajot, Patrick Gallinari, and Em-

https://openreview.net/forum?id=BJg4Z3RqF7
https://openreview.net/forum?id=BJg4Z3RqF7
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manuel de Bézenac (Aug. 2019). “Unsupervised Inpainting for Occluded Sea
Surface Temperature Sequences”. In: Climatinformatics Workshop

1.3 Outline of the thesis

We begin this manuscript by introducing some notions important for our
work in Chapter 2. Without making an exhaustive review, we will explain key
concepts on forecasting, differential equations and adversarial networks. We’ll
then address the three different tasks : the forecasting in Chapter 3, the hidden
state discovery in Chapter 4 and the state reconstruction in Chapter 5. We’ll
then conclude this thesis in Chapter 6 where we’ll introduce some possible
future work.
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In this chapter, we will introduce some notions critical for our work. Without
making an exhaustive review, we will explain key concepts that will allow us to
clarify and highlight the contributions made in this thesis.

First in Section 2.1 we provide a big picture on non-physical spatiotemporal
forecasting. Then in Section 2.2 we will introduce some key concepts about
Partial Differential Equation (PDE) and Neural Networks. Finally, in Section 2.3
we will discuss GAN, image translation and unsupervised Inverse Problem.

2.1 Forecasting

In this section, we briefly introduce the problem of classical time series
forecasting. The Deep Learning community recently attacked the problem of
video prediction. Since this bears some similarities with our problem, we will
briefly explain some core concepts of this field.

7
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Figure 2.1 – Examples of a time serie. Taken from “Time-series Extreme Event
Forecasting with Neural Networks at Uber”.

2.1.1 Time Series Forecasting

2.1.1.1 Classical Time Series

Data collected on the internet, or on the physical world, can often be seen
as a time series: the measurements of a process are often realized at different
times, allowing the monitoring of the process’s evolution.

For instance, in the medical field, the information measured by the elec-
troencephalogram (EEG) or by electrocardiogram, or data representing gene
expression (Aach et al. 2001), or even the growth data of an individual represent
all a time series. Temporal time series are found, in several fields such as
finance, weather forecast, signal and speech processing. Time series models
can be viewed as dynamical models for temporal data.Let us first define some
basic functions of a discrete-time sequence of real-valued random variables
{Yt : t ∈ Dt}. We assume Dt = {0, 1, . . .}, and we refer to {Yt : t = 0, 1, . . .} as
a time series.

Forecasting a time series consists in, given an input {Yt : t ∈ [0 : T]},
predicting the following k values {Yt : t ∈ [T + 1 : T + k]}.

Time series forecasting is often performed by a regression function, which
is a model that receives a sequence of observations and returns a scalar or a
vector of real numbers. The regression function that predicts the value at the
next instant of time t + 1, given a sequence of values in Y0:t is expressed by
Equation 2.1.

Yt+1 = Fθ(Yt−k:t) (2.1)

where k is a parameter of the regression. Modeling a time series consists in
finding the parameters θ parametrizing the function F.
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The classical topic of time series modeling and forecasting has given rise
to an extensive literature. In statistics, classical linear models include many
variations around autoregressive and moving average models. In machine
learning, non-linear extensions of these models based on neural networks have
been proposed as early as the 90s, opening the way to many other non-linear
models including kernel methods (Thissen et al. 2003).

2.1.1.2 Spatio-Temporal Time Series

Relational time series have mainly been studied in the field of spatiotemporal
statistics (Cressie et al. 2015; Wikle et al. 2010). The traditional method first
relied on a descriptive approach using the first- and second-order moments
of the process for modeling the spatiotemporal dependencies. More recently,
dynamic state models, where the current state is conditioned on the past, have
been explored (Cressie et al. 2015). These models have been considered both for
continuous/discrete space and time components. However, the most common
way is to consider a discrete time, leading to the modeling of time series of
spatial processes as we study here. When space is discrete, the model comes
down to a general vectorial autoregressive formulation. These models face a
curse of dimensionality in the case of a large number of sources. Different
strategies have been adopted to solve this problem such as embedding the
spatiotemporal process in a low-dimensional manifold or parameter reduction
(Cressie et al. 2015), leading to model families quite similar to the ones used in
machine learning for modeling dynamic phenomena.

2.1.2 Recurrent Neural Networks

Recently, there has been a growing interest in learning latent representation
through neural networks and deep learning. Dynamical state space models
such as Recurrent Neural Network (RNN), which have been used for time series
forecasting in different contexts since the early nineties (Connor et al. 1994),
have witnessed important successes in different areas for general sequence
modeling problems, leading to breakthroughs in domains like speech (Graves
et al. 2013), language generation (Sutskever et al. n.d.), translation (Cho et al.
2014), and many others.

RNN is a class of artificial neural network where connections between nodes
form a directed graph along a temporal sequence. This allows it to exhibit
temporal dynamic behavior. Unlike feedforward neural networks, RNNs can
use their internal state (memory) to process sequences of inputs.

ht = F(W ∗ xt + U ∗ ht−1) (2.2)
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One can build a deep recurrent neural network by simply stacking units. A
simple recurrent neural network works well only for a short-term memory. It
suffers from a fundamental problem if we have a longer time dependency. As
we go back to the lower layers, gradient often gets smaller, eventually causing
weights to never change at lower layers. This is a problem because we want
our RNNs to forecast long-time series, which involves keeping track of long
sequences of observations.

Long-Short Term Memory (LSTM) are a special kind of RNN, capable of
learning long-term dependencies. They were introduced in (Hochreiter et al.
1997) , and were refined and popularized by many people (Dey et al. 2017).
They work tremendously well on a large variety of problems, and are now
widely used. LSTMs are explicitly designed to avoid the long-term dependency
problem. Their equations are :

it = σ(Wxi ∗ xt + Whi ∗ ht−1 + Wci ◦ Ct−1 + bi)

ft = σ(Wx f ∗ xt + Wh f ∗ ht−1 + Wc f ◦ Ct−1 + b f )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + Wco ◦ Ct + bo)

ht = ot ◦ tanh(Ct)

, (2.3)

Here, i, f , o are the input, forget and output gates, respectively. Note that
they share the exact same equations, with different parameter matrices. Wh is
the recurrent connection at the previous hidden layer and current hidden layer,
Wx is the weight matrix connecting the inputs to the current hidden layer). The
input gate defines how much of the newly computed state for the current input
you want to let through. The forget gate defines how much of the previous
state you want to let through. Finally, The output gate defines how much of
the internal state you want to expose to the external network (higher layers and
the next time step).h is the internal memory of the unit. It is a combination of
the previous memory, multiplied by the forget gate, and the newly computed
hidden state, multiplied by the input gate. Thus, intuitively it is a combination
of how we want to combine previous memory and the new input. ht is the
hidden state, computed by multiplying the memory with the output gate. Not
all of the internal memory may be relevant to the hidden state used by other
units in the network. Intuitively, plain RNNs could be considered a special case
of LSTMs. An LSTM unit is described in Figure 2.2.

2.1.3 Video Prediction

It is only recently that video prediction emerged as a task in the Deep
Learning community. For this task, people are generally interested in predicting
accurately the displacement/ emergence/ disappearing of objects in videos.
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Figure 2.2 – A schematic LSTM system. A is some LSTM cell. Image
taken from : http://colah.github.io/posts/2015-08-Understanding-
LSTMs/

In our application, the goal is clearly different since we are interested into
modeling the whole dynamics behind image changes and not into following a
moving object.

Let us first introduce some methods that perform prediction by comput-
ing optical flow or a similar transformation. Classical methods rely on the
Brightness Constancy Constraint Equation (BCCE) (Equation 2.4), derived from
the observation that surfaces usually persist over time and hence the intensity
value of a small region remains the same despite its position change (Sun et al.
2008).

Our work takes inspiration from recent optical flow methods, applying them
to forecasting future images, as opposed to usual applications where the goal
is motion estimation. The general approach to retrieving motion is to make
assumptions on how elements in the video get displaced in time, transcribe
these hypotheses into equations, and minimize energy functional enforcing
these equations.

I(x, t) = I(x + ∆x, t + ∆t) (2.4)

Optical Flow Estimation (Dosovitskiy et al. 2015) formulate optical flow as
a supervised regression problem, using a Convolutional Neural Network (CNN)
to predict motion. (Ilg et al. 2016) build on this approach and propose to use
an ensemble of these CNN architectures. They assess results on par with state-
of-the-art methods for optical flow, while maintaining a small computational
overhead. The difficulty here is that these methods require a notable quantity
of target data, i.e., optical flow images, while because of the complexity of man-
ually annotating flow images, there are only a few small annotated collections
available. (Dosovitskiy et al. 2015; Ilg et al. 2016) chose to pretrain their model
on a synthetic dataset made of computer animations and their associated motion
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and they show that this information transfers well to real videos. (J. J. Yu et al.
2016) demonstrate that it is possible to predict the optical flow between two
input images in an unsupervised way using a CNN and a Spatial Transformer
Network (Jaderberg et al. 2015).

Video Prediction With Optical Flow Now we briefly describe related work
that tackles the task of video prediction with the help of optical flow. Both
(Patraucean et al. 2015) and (Finn et al. 2016) use some form of motion flow
estimation. For next frame prediction (Patraucean et al. 2015) introduce a Spatial
Transformer Network (STN) module at the hidden layer of a LSTM in order to
estimate a motion field in this latent space. The resulting image is then decoded
in the original image space for prediction. This approach clearly does not allow
introducing prior knowledge on the field vector as this has been done in our
work. (Finn et al. 2016) learn affine transformations on image parts in order to
predict the object displacement and (Van Amersfoort et al. 2017) proposed a
similar model.

Direct Next Frame Prediction Let us now consider models that directly
attempt to predict the next frame without estimating a motion field.

In (Mathieu et al. 2015) the authors, train a convolutional network to generate
future frames given an input sequence. To deal with the inherently blurry
predictions obtained from the standard Mean Squared Error (MSE) loss function
they propose an adversarial training method. It is the first Deep Learning
attempt to directly predict the next frame of a video.

Significant results have been obtained with the Video Pixel Network of
(Kalchbrenner et al. 2016) which is a sophisticated architecture composed of
resolution preserving CNN encoders, LSTM and PixelCNN decoders which form
a conditional Spatio-temporal video autoencoder with differentiable memory.
They reach a high accuracy on moving MNIST and good performance on a
robot video dataset. A drawback is the complexity of the model and the number
of parameters: they must use respectively 20M and 1M training frames on these
two datasets.

The major drawback of LSTM in handling spatiotemporal data is its usage
of full connections in input-to-state and state-to-state transitions in which no
spatial information is encoded. Although the LSTM layer has proven powerful
for handling temporal correlation, it contains too much redundancy for spatial
data. To address this problem, the authors in (X. Shi et al. 2015) propose
ConvLSTM which has convolutional structures in both the input-to-state and
state-to-state transitions. An improvement of ConvLSTM is PredRNN++ (Y.
Wang et al. 2018), which is a very competitive approach in Video Prediction.
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2.2 Modeling Differential Equations

In this section we describe how Machine Learning, and more precisely Neural
Network have been used to model Differential Equations. We first introduce
briefly what Ordinary Differential Equation (ODE) are, as well as their link dy-
namical systems and neural networks. We then describe PDE, their discretization
and Deep Learning attempts to model them.

In their reference book (Cressie et al. 2015) advocate the use of physical
background knowledge to build statistical models. They show how the de-
sign of statistical models can be inspired from partial differential equations
linked to an observed physical phenomenon. They mainly consider autore-
gressive models within a hierarchical Bayesian framework. However those
approaches often focus on local, small scale, phenomena and use Markov Chain
Monte Carlo (MCMC) techniques, so that they cannot take into account large
quantities of data. Another interesting research direction is the use of Neural
Network (NN)s for reducing the complexity of numerical simulations for physi-
cal processes. Generally, in these approaches statistical models are used in place
of a computational demanding component of the numerical simulation process.

2.2.1 Ordinary Differential Equations

In mathematics, an ordinary differential equation (ODE) is a differential
equation containing one or more functions of one independent variable and the
derivatives of those functions.

2.2.1.1 Dynamical System

Let us now focus on the particular case of a dynamical system.

∀t,
dXt

dt
= F(Xt)

This problem can be approached by considering Neural Network {Fθ}, and
looking for parameters θ such that it approach the solution Xθ of:

dXt

dt
= Fθ(Xt) (2.5)

Typically, we can think about neural networks as a series of discrete layers,
each one taking as input a previous state vector hn and to produce a new state
vector hn+1 = F(hn). Here, let us assume that each layer is the same width (i.e.,
hn and hn+1 have the same dimension, for every n). Each hidden state depends
on a neural layer, S, which itself depends on parameters, where t is the layer
depth.
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ht+1 = Fθ(ht)

Residual Neural Networks (ResNet) have achieved state-of-the-art results
in several vision tasks (He et al. 2015; Ledig et al. 2016). The core concept
of ResNet is the idea of "Shortcut Connection" that skip layers by adding the
output of the last layer to the next layer :

ht+1 = ht + Fθ(ht) = ht +
∆t
∆t

Fθ(ht) = ht + ∆tG(ht),

which can be seen as a Euler discretization of an ODE (see Section 2.2.2.2)
with G = Fθ

∆t .

2.2.1.2 Neural ODE

Chen et al. 2018 consider the continuous limit of each discrete layer in
the network. Instead of a discrete number of layers between the input and
output domains, this allows the progression of the hidden states to become the
following differential equation (ODE):

∀t,
dh(t)

dt
= F(t, h(t), θt), (2.6)

where h(t) is the value of the hidden state evaluated for some t, which we
understand as a continuous parametrisation of layer depth. Given an initial
condition h(0), the output from an neural network, can be specified as the
solution to Equation 2.6 as time T.

h(T) = h(0) +
∫ T

t

dh(t)
dt

dt = h(0) +
∫ T

t
F(t, h(t), θt)dt

.
This value can be computed by a black-box differential equation solver, which

evaluates the hidden unit dynamics F or by. An overview of Neural ODE is
shown in Figure 2.3.

An ODE Network (our black box solver) has two main applications : the first
is Normalizing Flow. It is a promising class of generative models that maps
points from a simple distribution to a complex distribution through an invertible
neural network. Likelihood-based training of these models requires restricting
their architectures to allow cheap computation of Jacobian determinants. In
(Grathwohl et al. 2018) the authors propose a continuous-time invertible ODE
generative model which allows unrestricted neural network architectures. The
second one is the learning of Dynamical Systems that we will develop in more
details in Chapter 4.
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Figure 2.3 – Left A Residual Network defined with a fixed number of layers
where the information transforms sequentially with each layer.
Right An ODE Net with continuous layers, the information trans-
forms continuously through the layers. The black circles represent
evaluation location. Figure taken from Chen et al. 2018

2.2.1.3 Adjoint Method

The main difficulty for using a neural network parametrization of an ODE is
backpropagating through the ODE solver. Despite numerical solvers being often
differentiable, making the backpropagation step straightforward, the memory
cost is high and additional numerical errors often occurs. In order to perform
backpropagation the gradient of the loss function with respect to all parameters
must be computed. As different numerical solver may take a varying number of
steps when numerically integrating between two-time points, a general method
for computing the gradient of the loss at each intermediate step is required.

Chen et al. 2018 introduce a solution to this problem using the adjoint sensi-
tivity method which can be used regardless of the choice of the differentiable
ODE solver and with constant memory consumption. This section gives an
overview of how the adjoint sensitivity method for backpropagation works. A
proof of this method is given by Chen et al. in appendix B of their paper (Chen
et al. 2018).
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The adjoint method works by constructing the adjoint state a(t) = dL
dh(t) , where

L is the loss function h(t) is the output after each step taken by the Numerical
Solver which follows the differential equation equation 2.6. It can be shown
that the adjoint state follows the differential equation :

da(t)
dt

= −a(t)
∂F(h(t), t, θ)

∂h(t)
. (2.7)

We can then solve the differential equation equation 2.7 backwards in time,
i.e., from the final output time tN to the starting time t0, similar to regular
backpropagation. Hence we acquire the gradients with respect to the hidden
state at any time as:

dL
dh(t0)

= a(t0) = a(tN) +
∫ t0

tN

da(t)
dt

dt.

and

dL
dh(tn)

= a(tN) +
∫ t0

tN

da(t)
dt

dt = a(tN)−
∫ t0

tN

∂F(h(t), t, θ)

∂h(t)
dt. (2.8)

When using multiple steps in an ODE solver, we can simply integrate back-
wards in time between each time step taken in order to get the gradient at all
the different time steps, i.e., from tN to tN−1, then from tN−1 to tN−2 and so on,
and summing the gradients after each solved step.

2.2.2 Partial Differential Equations

2.2.2.1 PDE

PDE are equations that involve rates of change with respect to continuous
variables. A general form of a PDE is :

F
(

x1, . . . xn; u,
∂u
∂x1

, . . .
∂u
∂xn

;
∂2u

∂x1∂x1
, . . .

∂2u
∂x1∂xn

; . . .
)
= 0. (2.9)

Where u = u(x1, x2, . . . , xn) is the unknown function and F(. . . ) is a given
function.

A simple example is the 1-d heat equation

∂u
∂t
− k

∂2u
∂x2 = 0. (2.10)

Where u = u(x, t).
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2.2.2.2 Numerical Scheme

Discretization is the process of transferring continuous functions, or PDE into
discrete counterparts.

Finite Difference Methods (FDM) are numerical methods for solving differen-
tial equations by approximating them with difference equations, in which finite
differences approximate the derivatives. It consists in approximating the differ-
ential operator by replacing the derivatives in the equation using differential
quotients.

For the sake of simplicity, we shall consider the one-dimensional case only.
The main concept behind any finite difference scheme is related to the definition
of the derivative of a smooth function u at a point x ∈ R. The simplest
approximation of ut = f (u, t) is to discretize the time derivative ut by un+1−un

∆t
and approximate the right and side by f (un, tn). This leads to the forward
explicit Euler scheme.

un+1 = un + ∆t f (un, tn) (2.11)

.
Where ∆t is a fixed step size.

Runge Kuta This method lies on the iteration principle : the first estimation
is used to compute the second, which is more accurate, and so on. The Order-1
Runge Kutta is similar to the forward Euler scheme. The second order is a
composition of the Euler method :

un+1 = un + ∆t f
(

tn +
∆t
2

, un +
∆t
2

f (un, tn)

)
.

This method estimates the derivative in the middle of the integration step :

un+ 1
2
= un +

∆t
2

f (un, tn)

u′n+ 1
2
= f

(
un+ 1

2
, tn +

∆t
2

,
)

and then integrating one more step from this estimation :

un+1 = un + ∆tu′n+ 1
2
.

We can use Runge Kutta of arbitrary order, by considering higher order of
integration steps.
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2.2.3 PDE and Neural Networks

2.2.3.1 Data-Driven Simulation of fluid Dynamic.

An interesting research direction is the use of NNs for reducing the complexity
of numerical simulations for physical processes. Generally, in these approaches,
statistical models are used in place of a computational demanding component
of the numerical simulation process.

For example, in the domain of fluid dynamics, (Tompson et al. 2017) and
(Ladický et al. 2015) propose to use regressors for simulating fluid and smoke
animation. (Ladický et al. 2015) use a random forest to compute particle location
and (Tompson et al. 2017) use a CNN to approximate part of a numerical PDE
scheme. In these approaches, Machine Learning (ML) is only a component of
a numerical simulation scheme whereas we will aim at modeling the whole
physical process via a Deep Learning approach.

2.2.3.2 Data-Driven Discovery of Differential Equations.

In the past, several works have already attempted to learn differential equa-
tions from data, such as e.g., (Crutchfield et al. 1987; Alvarez et al. 2013). More
recently, (Rudy et al. 2017) uses sparse regression on a dictionary of different
terms to recover the underlying PDE. In (Raissi et al. 2017), they propose recover-
ing the coefficients of the differential terms by deriving a Gaussian Process (GP)
kernel from a linearized form of the PDE. (Long et al. 2018) carefully tailor the
neural network architecture, based on the discretization of the different terms
of the underlying PDE. (Raissi 2018) develops a NN framework for learning
PDEs from data. (Fablet et al. 2017) constructs a bilinear network and uses
an architecture similar to finite difference schemes to learn fully observed dy-
namic systems. In those approaches, we often see that the form of the variable
dependency is supposed to be known and that the context is the unrealistic
setting where the state is fully observed. Other approaches were proposed in
case of partially observed fields relying on a combination of data assimilation
and machine learning (Bocquet 2012).

2.3 Inverse Problem

2.3.1 GAN

In this section we describe Generative Adversarial Network (GAN), an ex-
tremely popular generative modeling tool, with applications to computer vision.
A GAN is a generative model allowing producing samples from a distribution,
given a large number of examples.
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Figure 2.4 – The GAN framework pits two adversaries against each other in
a game. Each player is represented by a differentiable function
controlled by a set of parameters. Typically these functions are
implemented as deep neural networks.

The basic idea of GANs is to set up a game between two networks. One of
them is called the generator. The generator creates samples that are intended to
come from the same distribution as the training data. The other network is the
discriminator. The discriminator examines samples to determine whether they
are real or fake. The discriminator learns using traditional supervised learning
techniques, dividing inputs into two classes (real or fake). The generator is
trained to fool the discriminator.

The game plays out in two scenarios. In one scenario, training examples x are
randomly sampled from the training set and used as input for the first player,
the discriminator, represented by the function D. The goal of the discriminator
is to output the probability that its input is real rather than fake. In this first
scenario, the goal of the discriminator is for D(x) to be near 1.

In the second scenario, inputs z to the generator are randomly sampled from
the model’s prior over the latent variables. The discriminator then receives input
G(z), a fake sample created by the generator. In this scenario, both players
participate. The discriminator strives to make D(G(z)) approach 0 while the
generative strive to make the same quantity approach 1. If both models have
sufficient capacity, then the Nash equilibrium of this game corresponds to
the G(z) being drawn from the same distribution as the training data, and
D(x) = 1

2 for all x.
The two players in the game are represented by two functions, each of

which is differentiable both with respect to its inputs and with respect to its
parameters. The discriminator is a function D that takes x as input and uses
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θ(D) as parameters. The generator is defined by a function G that takes z as
input and uses θ(G) as parameters. Both players have cost functions that are
defined in terms of the two players’ parameters. In the original formulation
(Goodfellow et al. 2014) the discriminator wishes to minimize the discriminator
loss : L(D)

(
θ(D), θ(G)

)
and must do so while controlling only θ(D). The

generator wishes to minimize the generator loss : L(G)
(
θ(D), θ(G)

)
and must

do so while controlling only θ(G). Because each player’s loss depends on the
other player’s parameters, but each player cannot control the other player’s
parameters, this scenario is most straightforward to describe as a game rather
than as an optimization problem. The solution to an optimization problem is a
(local) minimum, a point in parameter space where all neighboring points have
greater or equal cost. In this context, a Nash equilibrium is a tuple (θ(D), θ(G))
that is a local minimum of L(D) with respect to θ(D) and a local minimum of
L(G) with respect to θ(G).

The Training Process The training process consists in a simultaneous gradi-
ent descent. On each step, two minibatches are sampled: a minibatch of x values
from the dataset and a minibatch of z values drawn from the model’s prior over
the latent variables. Then two gradient steps are performed simultaneously:
one updating θ(D) to reduce L(D) and one updating θ(G) to reduce L(G). In
both cases, it is possible to use any gradient-based optimization algorithm .

2.3.1.1 Cost functions

Several different cost functions may be used within the GAN’s framework.

Standard GAN Loss In (Goodfellow et al. 2014), the authors introduce the
following loss :

L(D)(θ(D), θ(G)) = Ex∼pdata(x)

[
log(D(x))

]
+ Ez∼pz(z)

[
log(1− D(G(z)))

]
L(G)(θ(D), θ(G)) = Ez∼pz(z)

[
log(D(G(z)))

]
.

(2.12)

Here, the generator loss L(G) is minimized and the discriminator loss L(D) is
maximized.

Least Squares Generative Adversarial Networks When updating the gener-
ator, this loss function will cause the problem of vanishing gradients for the
samples that are on the correct side of the decision boundary, but are still far
from the real data. To remedy this problem, the Least Squares Generative
Adversarial Networks (LSGANs) was proposed (Mao et al. 2017) :
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L(D)(θ(D), θ(G)) =
1
2

Ex∼pdata(x)

[
(D(x)− 1)2]+ 1

2
Ez∼pz(z)

[
D(G(z))2]

L(G)(θ(D), θ(G)) =
1
2

Ez∼pz(z)
[
(D(G(z))− 1)2]. . (2.13)

Here, the generator loss L(G) and the discriminator loss L(D) are minimized.

Hinge GAN An alternative loss, which has gained large success (Zhang et al.
2018; “Large Scale GAN Training for High Fidelity Natural Image Synthesis”
n.d.) is the Hinge Loss :

L(D)(θ(D), θ(G)) = −Ex∼pdata(x)

[
max(0,−1− D(x))]+

Ez∼pz(z)
[
max(0,−1− D(G(z)))

]
L(G)(θ(D), θ(G)) = −Ez∼pz(z)

[
D(G(z))

]
.

(2.14)

Here, the generator loss L(G) and the discriminator loss L(D) are minimized.
There exists several other loss functions for GAN which won’t be discussed here.

2.3.2 Image Translation

Recent works have achieved high quality results in image-to-image translation
(Isola et al. 2016; Zhu et al. 2017a; Almahairi et al. 2018). Image translation
consists in transforming images from a domain X to a domain Y. For example,
inpainting where one wants to transform an incomplete image Y to complete
image X is a special case of image translation.

Pix2Pix We could formulate the problem in a supervised setting where we
have access to images to paired images from both domains. Pix2Pix (Isola et al.
2016) learns in a supervised manner by combining an adversarial loss with a
L1 loss, thus requiring paired data samples. It uses adversarial networks to
help produce perceptually realistic results. It trains a generator G : Y → X and
discriminator D by formulating their objective as an adversarial game. The
discriminator attempts to differentiate between real images from the dataset
and fake samples produced by the generator. X and Y designate the above-
mentioned image domain.

LGAN(G, D) = EY∼p(Y)[log(D(Y))] +EX∼p(X)[log(1− D(G(X)))] (2.15)

To encourage the output of the generator to match the input, they use a `1
loss between the output and the ground truth image.

Limage
1 (G) = EX,Y∼p(X,Y)||X− G(Y)||1 (2.16)
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The final loss function uses the GAN and `1 term, weighted by λ.

G∗ = arg min
G

max
D

LGAN(G, D) + λLimage
1 (G) (2.17)

CycleGAN To alleviate the problem of obtaining data pairs, unpaired image-
to-image translation frameworks (Zhu et al. 2017a; Almahairi et al. 2018) have
been proposed. The principal contribution here is CycleGAN (Zhu et al. 2017a),
which allows image translation by computing a bijection between two domains.

For the mapping function G : X → Y and its discriminator DY, the objective
can be expressed as:

LGAN(G, DY) = EY∼p(:)[log DY(Y)] + EX∼p(X)[log(1− DY(G(X))] (2.18)

where G tries to generate images G(x) that look similar to images from the
domain Y, while DY aims to distinguish between translated samples G(x) and
real samples y. We can write the same objective for the mapping function
F : Y → X and its discriminator. DX

Adversarial losses alone cannot guarantee that the learned function can map
an individual input xi to a desired output yi. To further reduce the space of
possible mapping functions the authors propose a cycle consistency loss.

Lcyc(G, F) = Ex∼p(X)[‖F(G(x))− x‖1] (2.19)

+ Ey∼p(Y)[‖G(F(y))− y‖1]. (2.20)

The full objective is then:

L(G, F, DX , DY) =LGAN(G, DY)

+ LGAN(F, DX) (2.21)
+ λLcyc(G, F), (2.22)

where λ controls the relative importance of the two objectives. Cycle GAN
aims to solve:

G∗, F∗ = arg min
G,F

max
Dx ,DY

L(G, F). (2.23)

Augmented Cycle GAN (Almahairi et al. 2018) and Bicycle GAN (Zhu et
al. 2017b) add stochasticity in the translation process by learning a mapping
between a latent vector and the target domain. All these approaches then rely
on some form of supervision either requiring paired or unpaired datasets.
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2.3.3 Inverse Problem

At the heart of many signal processing tasks is a linear inverse problem,
where the goal is to reconstruct a signal x ∈ Rd from a set of measurements
y ∈ Rm of the form y = Ax + n, where A ∈ Rm×d is the measurement operator
and n ∈ Rm is the noise. For image inpainting, y is an image with masked
regions and A is the linear operation applying a pixelwise mask to the original
image x; for super-resolution, y is a low-resolution image and the operation
A downsamples high resolution images; in compressive sensing, y denotes
compressive measurements and A is the measurement matrix. Similarly, non-
linear inverse problems can be defined by the non-linear measurement function
F, mapping measurement to complete signal x by y = F(x).

A method to solve this problem is to learn a mapping from the domain of
observed signals Y to the domain of signals X. This mapping is the inverse F−1

of the mapping F.

2.3.3.1 Inverse Problem and NN.

In the context of image super resolution (W. Shi et al. 2016, Sønderby et al.
2016, Mardani et al. 2017) attempt to retrieve maximum a posteriori estimates
of the super-resolution image conditioned on an input image. They use a
generative model of the signal trained in an adversarial fashion using samples
from signal distribution to constrain their reconstructions. Their approach is
fully supervised .

Other works attempt to solve ill-posed inverse problems using generative
models (Bora et al. 2017; Asim et al. 2018; Tripathi et al. 2018; Van Veen et al.
2018). The general approach in all these papers consists to first train a GAN
model on the uncorrupted image distribution. Then, given a measurement from
which we wish to reconstruct the signal, the mapping is inverted by finding the
latent input code that generated the uncorrupted image. This requires solving
an optimization problem for each image, which takes several minutes (Van Veen
et al. 2018) on GPU, and requires random restarts to avoid falling a bad local
minimum. Again, the setting is fully supervised with uncorrupted images.

Finally, (Lehtinen et al. 2018) propose a method for denoising images without
direct supervision. They train a network to regress a noisy image to the same
image with a different noise value. Assuming the noise has zero mean, their
network learns to remove the corruption. This setting implicitly assumes access
to the distribution of uncorrupted images in order to generate different noisy
versions of the same image, which is not our case.
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2.3.3.2 Inpainting.

Image completion and inpainting have a long history. Methods developed in
the early 2000 relied either on diffusion, by optimizing an energy function, e.g.,
(Ballester et al. 2000; Bertalmio et al. 2000) or on patch completion, e.g., (Simakov
et al. 2008; Barnes et al. 2009). There is no learning at all involved for these
methods. Hole filling is usually performed by using only local information
from the image itself and not attempting to extract information from other
images. There are some exceptions like (Hays et al. 2007) who made use of
image databases for completing the holes in the target image. More recently,
convolutional neural networks were used for image completion. Contrarily to
the present work, they typically assume some form of supervision for mapping
incomplete images onto reconstructed ones. Recent work usually relies on some
form of adversarial training for obtaining sharp reconstructions. A reference
work here is (Pathak et al. 2016) which uses content encoders in an image
translation approach (Isola et al. 2016) to map masked images onto non-masked
ones. This is one of the first works demonstrating that large holes could be
filled by a learning approach. (Song et al. 2017) extended content encoders by
using a refinement network in which a blurry initial hole-filling result is used
as the input and then iteratively improved. Yu and al. (J. Yu et al. 2018) use a
post-processing step based on contextual attention layers. In (J. Yu et al. 2018)
and (Iizuka et al. 2017) adversarial training is performed at different levels of
the image representation and discriminators are trained both on global -low
frequency- and local -high frequency- features. Non-adversarial approaches
have also been developed like e.g., (G. Liu et al. 2018) Liu et al. who introduce
partial convolutions, where the convolution is masked and renormalized to be
conditioned on valid pixel values only.

2.3.3.3 Unsupervised Inverse Problem

AmbientGAN (Bora et al. 2018) is an adversarial generative model aimed
at generating images by being trained on noisy examples only and making
use of a known stochastic measurement process as we do here. It does not
perform completion but learns the distribution in the reconstruction space.
Several works were later build on this model. MisGAN (Li et al. 2018) tackles
the same problem as AmbientGAN (Bora et al. 2018) in the specific case of
masked images like we do here. They extend the model in (Bora et al. 2018)
by assuming that the mask distribution is unknown when it is supposed to be
known for AmbientGAN. They train two generators, one as in (Bora et al. 2018)
for generating an image, and one for learning the mask distribution. The latter
is trained as a classical GAN since the mask is fully observed. They propose a
conditional variant of this model dedicated to the imputation task requiring the
training of an additional generator. Compared to our approach, they also learn
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from incomplete data and do not rely on any supervision. Their assumption is
even less restrictive than ours since they learn the nature of the noise itself. On
the other hand, their model requires learning a generative model of the data
prior to train a completion generator itself, when we address the problem more
directly by training the imputer on the incomplete observations themselves.
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Chapter abstract

In this chapter, we consider the use of Deep Learning methods for forecasting
complex phenomena, like those occurring in natural physical processes. With
the large amount of data gathered on these phenomena the data intensive
paradigm could begin to challenge more traditional approaches elaborated
over the years in fields like mathematics or physics. Using an example
application, namely Sea Surface Temperature Prediction, we show how
general background knowledge gained from the physics, under the form
of Partial Differential Equation (PDE) could be used as a guideline for
designing efficient Deep Learning models. In order to motivate the approach

27
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and to assess its generality, we demonstrate a formal link between the
solution of a class of differential equations underlying a large family of
physical phenomena and the proposed model. Experiments and comparison
with series of baselines including a state-of-the-art numerical approach is
then provided.
The work in this chapter, made in collaboration with Emmanuel De Bezenac,
has led to the publication of a conference paper:

• Emmanuel de Bezenac, Arthur Pajot, and Patrick Gallinari (Feb.
2018). “Deep Learning for Physical Processes: Incorporating
Prior Scientific Knowledge”. In: url: https://openreview.
net/forum?id=By4HsfWAZ

3.1 Introduction

A physical process is a sustained phenomenon marked by gradual changes
through a series of states occurring in the physical world. Physicists and en-
vironmental scientists attempt to model these processes in a principled way
through analytic descriptions of the scientist’s prior knowledge of the under-
lying processes. Conservation laws, physical principles or phenomenological
behaviors are generally formalized using differential equations. This physical
paradigm has been, and still is the main framework for modeling complex
natural phenomena like e.g., those involved in climate.

With the availability of very large datasets captured via different types of
sensors, this physical modeling paradigm is being challenged by the statistical
Machine Learning (ML) paradigm, which offers a prior-agnostic approach.
However, despite impressive successes in a variety of domains as demonstrated
by the deployment of Deep Learning (DL) methods in fields such as vision,
language, speech, etc., the statistical approach is not yet ready to challenge
the physical paradigm for modeling complex natural phenomena, or at least
it has not demonstrated how to. We believe that knowledge and techniques
accumulated for modeling physical processes in well-developed fields such as
maths or physics could be useful as a guideline to design efficient learning
systems and conversely, that the ML paradigm could open new directions for
modeling such complex phenomena.

In this chapter we try to answer a fundamental question, that rose from those
observations : how general knowledge gained from the physical modeling
paradigm could help designing efficient ML models ?

We tackle these questions by considering a specific physical modeling prob-
lem: forecasting Sea Surface Temperature (SST). SST plays a significant role in
analyzing and assessing the dynamics of weather and other natural systems.
Accurately modeling and predicting such dynamics is critical in various ap-

https://openreview.net/forum?id=By4HsfWAZ
https://openreview.net/forum?id=By4HsfWAZ
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plications such as weather forecasting, or planning of coastal activities. Since
1982, weather satellites have made huge quantities of very high resolution SST
data available (Bernstein 1982). Standard physical methods for forecasting SST
use coupled ocean-atmosphere prediction systems, based on the Navier Stokes
equations. These models rely on multiple physical hypotheses and do not opti-
mally exploit the information available in the data. On the other hand, despite
the availability of large amounts of data, direct applications of ML methods do
not lead to competitive state-of-the-art results, as will be seen in Section 3.4.

We use SST as a typical and representative problem of intermediate complexity.
Our goal is not to offer one more solution to this problem, but to use it as an
illustration for advancing on the challenges mentioned above. The way we
handle this problem is general enough to be transferred to a more general class
of transport problems.

We propose a Deep Neural Netwok model, inspired from general physical
motivations which offers a new approach for solving this family of problems.
We first motivate our approach by introducing in Section 3.2 the solution of a
general class of Partial Differential Equation (PDE) which is a core component of
a large family of transport and propagation phenomena in physics. This general
solution is used as a guideline for introducing a Deep Learning architecture for
SST prediction which is described in Section 3.3. Experiments and comparison
with a series of baselines are introduced in Section 3.4.

The main contributions presented in this chapter are

• An example showing how to incorporate general physical background for
designing a Neural Network (NN) aimed at modeling a relatively complex
prediction task. We believe the approach to be general enough to be used
for a family of transport problems obeying general advection-diffusion
principles.

• Formal links between our model’s prediction and the solution of a general
advection diffusion PDE.

• An unsupervised model for estimating motion fields, given a sequence of
images.

• A proof, on a relatively complex physical modeling problem, that full data
intensive approaches based on deep architectures can be competitive with
state of the art dedicated numerical method.



30 incorporating prior knowledge in forecasting spatio-temporal data

3.2 Physical Motivation

3.2.1 Incorporating the Advection Diffusion Equation

In this section, we introduce, the Advection Diffusion Equation, which is
an example of PDE characterizing flow displacement. Forecasting consists in
predicting future temperature maps using past records. Temperatures are
acquired via satellite imagery. If we focus on a specific area, we can formulate
the problem as prediction of future temperature images of this area using past
images as:

I(x, t) = I(x + ∆x, t + ∆t). (3.1)

Applying a first order Taylor expansion of the time and space in the right-
hand side and moving the resulting terms to the left-hand side of equation
Equation 3.1, we obtain the advection equation, also known as the Brightness
Constancy Constraint Equation (BCCE):

∂I
∂t

+ (w.∇)I = 0, (3.2)

Where ∇ denotes the gradient operator and w the motion vector ∆x
∆t . This

equation describes the temporal evolution of quantity I for displacement w.
Note that this equation is also the basis for many variational methods for Optical
Flow. To retrieve the motion, numerical schemes are applied, and the resulting
system of equations, along with an additional constraint on w is solved for w.
This motion can then be used to forecast the future value of I.

Advection alone is not sufficient to explain the evolution of many physical
processes (including SST). Diffusion corresponds to the movement which spreads
out the quantity I from areas of high concentration to areas of low concentration.
Both advection and diffusion should be considered together. The following
equation describes the transport of quantity I through advection and diffusion:

∂I
∂t

+ (w.∇)I = D∇2 I. (3.3)

∇2 denotes the Laplacian operator and D the diffusion coefficient. Note that
when D→0, we recover the advection Equation 3.2.
This equation describes a large family of physical processes (e.g., fluid dynamics,
heat conduction, wind dynamics, etc.). Let us now state a result, characterizing
the general solutions of Equation 3.3.
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Theorem 3.1. 1 For any initial condition I0 ∈ L1(R2) with I0(±∞) = 0, there exists
a unique global solution I(x, t) to the advection-diffusion equation Equation 3.3:

I(x, t) =
∫

R2
k( x− w, y) I0(y) dy, (3.4)

Where k(u, v) = 1
4πDt e−

1
4Dt‖u−v‖2

is a radial basis function kernel, or alternatively, a 2
dimensional Gaussian probability density with mean u and variance 2Dt.

For this theorem, we make the hypothesis that w is constant locally (around
x) in space and time.

Equation 3.4 provides a principled way to calculate I(x, t) for any time t using
the initial condition I0, provided the motion w and the diffusion coefficient
D are known. It states that quantity I(x, t) can be computed from the initial
condition I0 via a convolution with a Gaussian probability density function. In
other words, if I was used as a initial condition for the evolution of the SST
and the surface’s underlying advecting mechanisms were known, future surface
temperatures could be predicted from previous ones. Unfortunately neither the
initial conditions, the motion vector nor the diffusion coefficient are known.

They have to be estimated from the data. Inspired from the general form of
Equation 3.4, we propose a method, expressed as a Deep Learning architecture
for predicting the SST evolution. This model will learn to predict a motion field
analog to the w in Equation 3.4, which will be used to predict future images.
This method can then be see as a warping of previous acquisitions along motion
w.

3.3 Model

3.3.1 Model Description

The model consists of two main components, as illustrated in Figure 3.1. One
predicts the motion field from a sequence of past input images and the other
warps the last input image using the motion field from the first component, in
order to produce an image forecast. The entire system is trained in an end-to-
end fashion, using only the supervision from the target SST image. By doing so,
we are able to produce an interpretable latent state which corresponds in our
problem to the velocity field advecting the SST.

Let us first introduce some notations. Each SST image It is acquired on a
bounded rectangle of R2, named Ω. We denote It(x) and wt(x) the sea surface
temperature and the two-dimensional motion vector at time t ∈ R at position

1. A proof of this theorem is available in Section 7.2
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SupervisionModel

Warping
Scheme

It�k�1:t

ŵt

Ît+1 It+1

Motion Field

CDNN

Figure 3.1 – Motion is estimated from the input images (It−k−1:t) with a Neural
Network. A warping scheme then displaces the last input image
along this motion estimate to produce the future image. The
error signal is calculated using the target future image It+1, and is
backprogated through the warping scheme to correct the Neural
Network. To produce multiple time-step forecasts, the predicted
image is fed back in the Neural Network in an autoregressive
manner.

x ∈ Ω. It : Ω→ R and wt : Ω→ R2 represent the temperatures and the motion
vector field at time t defined on Ω. When time t and position x are available
from the context, we will drop the subscript t from wt(x) and It(x), along with
x for clarity. Given a sequence of k consecutive SST images {It−k−1, ..., It} (also
denoted as It−k−1:t), our goal is to predict the next image It+1.

As indicated in Section 3.2.1, provided the underlying motion field is known,
one can compute SST forecasts. Let us introduce how the motion field is
estimated in our architecture. We are looking for a vector field w which
when applied to the geometric space Ω renders It close to It+1, i.e. It+1(x) '
It(x + w(x)), ∀x ∈ Ω. During inference, if It+1 were known, we could estimate
w, but It+1 is precisely what we are looking for. Instead, we choose to use a NN
architecture to predict a motion vector for each pixel.

Generally, and this is the case for our problem, we do not have a direct
supervision on the motion vector field, since the target motion is usually not
available. Using the warping scheme introduced below, we will nonetheless be
able to supervise w, based on the discrepancy of the warped version of the It
image and the target image It+1.
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It It+1

x

x − w

w

Figure 3.2 – Warping scheme. To calculate the pixel value for time t + 1 at
position x, we first compute its previous position at time t, i.e.
x−w. We then center a Gaussian in that position in order to obtain
a weight value for each pixel in It based on its distance with x− w,
and compute a weighted average of the pixel values of It. This
corresponds to the diffusion mechanism. This weighted average
will correspond to the new pixel value at x in It+1.

3.3.2 Warping Scheme

Discretizing the solution of the advection-diffusion equation in Section 3.2.1
by replacing the integral with a sum, and setting image It as the initial condition,
we obtain a method to calculate the future image, based on the motion field
estimate ŵ. The latter is used as a warping scheme:

Ît+1(x) = ∑
y∈Ω

k( x− ŵ(x), y) It(y) (3.5)

Where k(x− ŵ, y) = 1
4πD∆t e−

1
4D∆t‖x−ŵ−y‖2

is a radial basis function kernel, as
in Equation 3.4, parameterized by the diffusion coefficient D and the time step
value ∆t between t and t + 1 and ŵ is the estimated value of the vector flow w.
To calculate the temperature for time t + 1 at position x, we compute the scalar
product between k(x − ŵ, .), a Gaussian centered in x − ŵ, and the previous
image It. Simply put, it is a weighted average of the temperatures It, where
the weight values are larger when the pixel’s positions that are closer to x− ŵ.
Informally, x − ŵ corresponds to the pixel’s previous position at time t. See
Figure 3.2.

Equation 3.5 simply says that estimate Ît+1(x) is the result of a convolution
of the whole image It with the kernel k( x − ŵ(x), y) where y describes the
domain Ω of It.
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As seen by the relation with the solution of the advection-diffusion equation,
the proposed warping mechanism is then clearly adapted to the modeling of
phenomena governed by the advection-diffusion equation. Fluid forecasting is
a particular case, but the proposed scheme can be used for any problems in
which advection and diffusion are occurring. Moreover, this warping scheme
is entirely differentiable, allowing backpropagation of the error signal to the
motion field estimating module.

This warping mechanism has been inspired by the model presented in (Jader-
berg et al. 2015), originally designed to be incorporated as a layer in a convolu-
tional neural network architecture in order to gain invariance under geometric
transformations. Using the notations in (Jaderberg et al. 2015), when the inverse
geometric transformation Tθ of the grid generator step is set to Tθ(x) = x− ŵ(x),
and the kernels k( . ; Φx) and k( . ; Φy) in the sampling step are radial basis func-
tion kernels, we recover our warping scheme. The latter can be seen as a specific
case of the Spatial Transformer Network (STN), without the localization step. It
theoretically grounds the use of the STN for Optical Flow in many recent articles
(Patraucean et al. 2015; Finn et al. 2016): in Equation 3.3, when D → 0, we
recover the Brightness Constancy Constraint Equation, used in the latter.

3.3.3 Loss Function

At each iteration, the model aims at forecasting the next observation, given the
previous ones. We evaluate the discrepancy between the warped image Ît+1 and
the target image It+1 using the Charbonnier penalty function ρ(x) = (x + ε)

1
α ,

where ε and α are parameters to be set. Note that with ε = 0 and α = 1
2 , we

recover the `2 loss.
The Charbonnier penalty function is known to reduce the influence of outliers

compared to an l2 norm. It behaved slightly better in preliminary experiments.
We have also tested the Laplacian pyramid loss (Ling et al. 2016), where we
enforce convolutions of all deconvolutional layers to be close to down-sampled
versions of the target image in the Charbonnier penalty sense, but we have
observed an overall decrease in generalization performance.

The proposed neural network model has been designed according to the intu-
ition gained from general background knowledge of a physical phenomenon,
here advection-diffusion equations. Additional prior knowledge – expressed as
partial differential equations, or through constraints – can be easily incorporated
in our model, by adding penalty terms in the loss function. As the displacement
w is explicitly part of our model, one strength of our model is its capacity to
apply some regularization term directly on the motion field. The following
quantities are prior knowledge that could be seen as constraints. In our experi-
ments, we tested the influence of different terms: divergence ∇. wt(x)2 which
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locally control the variation of the motion field, magnitude ‖wt(x)‖2 which
controls the amplitude of the motion field, and smoothness ‖∇wt(x)‖2 which
controls the amplitude of its variation. They are, in our case, hyperparameters
set by cross validation. The loss function can be written as :

Lt = ∑
x∈Ω

ρ( Ît+1(x)− It+1(x))

+ λdiv(∇. wt(x))2 + λmagn ‖wt(x)‖2 + λgrad ‖∇wt(x)‖2 .
(3.6)

3.4 Experiments

In this section we evaluate our model, both quantitatively and qualitatively.
We consider a dataset of medium complexity representing the evolution of the
sea surface temperature. We evaluate our method with respect to its ability to
predict observations and to reproduce the dynamics of the hidden state. For the
first two datasets, we use the full initial condition as input. For the last dataset,
we only have access to a subset of the states and weight propose a variant of
our approach in order to accommodate this situation.

3.4.1 Dataset

Since 1982, high resolution SST data has been made available by the NOAA6
weather satellite (Bernstein 1982). Dealing directly with these data requires a lot
of preprocessing (e.g., some regions are not available due to clouds hindering
temperature acquisition). In order to avoid such complications which are beyond
the scope of this work, we used synthetic but realistic SST data of the Atlantic
Ocean generated by a sophisticated simulation engine: NEMO (Nucleus for
European Modeling of the Ocean) engine Madec 2008. NEMO is a state-of-the-
art modeling framework of ocean-related engines. It is a primitive equation
model adapted to the regional and global ocean circulation problems. Historical
data is accumulated in the model to generate a synthesized estimate of the
states of the system using data reanalysis, a specific data assimilation scheme,
which means that the data does follow the true temperatures. The resulting
dataset is built of daily temperature acquisitions of 481 by 781 pixels, from
2006-12-28 to 2017-04-05 (3734 acquisitions).

We extract 64 by 64 pixel sized sub-regions as indicated in Figure 3.3.
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Figure 3.3 – Sub regions extracted for the dataset. Test regions are regions 17 to
20.

3.4.2 Experimental Setting

We decompose the simulations into training sequences of fixed length, using
4 time steps as input, and 6 time steps for the target sequence. More precisely,
we have It:t+4 as an input of the model. We then estimate It+5 and concatenate
it to the previous input in order to estimate the following images until It+10.
The loss is computed between It+4:t+10 and the estimated Ît+4:t+10. In practice,
the cost functional L is estimated on a minibatch of sequences from the dataset
and optimized using stochastic gradient descent. We use data from years 2006

to 2015 for training and validation (94743 training examples), and years 2016 to
2017 for testing. We withhold 20% of the training data for validation, selected
uniformly at random at the beginning of each experiment. For the tests we
used sub-regions enumerated 17 to 20 in Figure 3.3, where the interactions
between hot and cold waters make the dynamics interesting to study. All the
regions numbered in Figure 3.3, from 2006 to 2015 were used for training 2. Each
sequence of images used for training or for evaluation corresponds to a specific
numbered sub-region. We make the simplifying hypothesis that the data in
a single sub-region contains enough information to forecast the future of the
sub-region. As the forecast is for a small temporal horizon, we can assume that
the influence from outside the region is small enough. The boundary conditions

2. non-numbered regions correspond to land and not sea on the figure
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are set to zero, which means that any pixel dispaced inside of each box, will be
set to zero.

Concerning the constraints on the vector field w (Equation 3.6. the regulariza-
tion coefficients selected via validation are λdiv = 1, λmagn = 0 and λgrad = 0.4.
The diffusion coefficient D was set to 0.45 by cross validation. We also compare
the results with the model without any regularization.

3.4.3 Model Architecture

It�k�1:t
Convolution Deconvolution

64⇥ 64⇥ k

64⇥ 64⇥ 2
64⇥ 32⇥ 32

128⇥ 16⇥ 16
256⇥ 8⇥ 8

512⇥ 4⇥ 4
386⇥ 8⇥ 8

194⇥ 16⇥ 16

98⇥ 32⇥ 32

Skip Connections

ŵt

Figure 3.4 – Architecture of the NN motion estimation component. For the
estimated motion flow ŵt, colors correspond to the flow orientation
and color intensity to the flow intensity

As shown in Figure 3.4, the network that we used during our experiments,
makes use of skip connections (He et al. 2015), allowing fine-grained information
from the first layers to flow through in a more direct manner. We use a
Batch Normalization layer between each convolution, and Leaky ReLU (with
parameter value set to 0.1) non-linearity between convolutions and transposed-
convolutions. We used k = 4 concatenated images It−k−1:t as input for training.
We have selected this architecture experimentally, testing different state-of-the-
art convolution-deconvolution network architectures.

3.4.4 Baselines

We compare our model, which is called Prior Knowledge Network (PKN),
with several baselines. Each model is evaluated with a mean square error metric,
forecasting images on a horizon of 6 (we forecast from It+1 to It+6 and then
average the Mean Squared Error (MSE)). The hyperparameters are tuned using
the validation set. Neural network based models are run on a Titan Xp GPU,
and runtime is given for comparison purpose.
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Our reference model for forecasting is (Béréziat et al. 2015), a numerical
assimilation model which relies on data assimilation. In (Béréziat et al. 2015), the
ocean’s dynamics are modeled using shallow water equations (Vallis 2017) and
the initial conditions, along with other terms, are estimated using complex data
assimilation techniques (Trémolet 2006). This is a state-of-the-art assimilation
model for predicting ocean dynamic, here SST.

The other baselines are :

• An autoregressive convolutional-deconvolutional neural network (ACDNN),
with an architecture similar to the Neural Network module described in
Section 3.4.3, but trained to predict the future image directly, without
explicitly representing the motion vector field. Each past observation is
used as an input channel (the 4 input images used in the experiments
are concatenated), and the output is used as new input for multi-step
forecasting, as described in Section 3.4.2.

• (X. Shi et al. 2015), a recurrent model similar to Long-Short Term Memory
(LSTM), which uses convolutional transitions in the inner LSTM module.
This model is described in Section 2.1.3.

• The model in (Mathieu et al. 2015) which is a multi-scale ACDNN trained
as a Generative Adversarial Network (GAN). This model is described in
Section 2.1.3.

3.4.5 Results.

3.4.6 Quantitative Results

Model Average Score (MSE) Average Time

Numerical model (Béréziat et al. 2015) 1.99 4.8 s
ConvLSTM (X. Shi et al. 2015) 5.76 0.018 s

ACDNN 15.84 0.54 s
GAN Video Generation (Mathieu et al. 2015) 4.73 0.096 s

PKN with regularization 1.42 0.040 s
PKN without regularization 2.01 0.040 s

Table 3.1 – Average score and average time on test data. Average score is calcu-
lated using the mean square error metric (MSE), time is in seconds.

Quantitatively, our model performs well. The MSE score is better than any
of the baselines. The closest neural network baseline is described in (Mathieu
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It It+1 It+3 It+6

Figure 3.5 – From top to bottom: target, our model prediction, our model
flow, numerical assimilation model, ACDNN, ConvLSTM. Data
correspond to daily temperatures from January 17 to January 23,
2017, for regian 19.
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et al. 2015) and regularizes a regression convolution-deconvolution model
with a GAN. The performance is, however, clearly below the proposed model
and it does not allow to easily incorporate prior constraints inspired from
the physics of the phenomenon. ACDNN is a direct predictor of the image
sequence, implemented via a NN module identical to the one used in our
model. Its performance is poor. Clearly, a straightforward use of prediction
models is not adapted to the complexity of the phenomenon. The Convo-
lutional Long-Short Term Memory (ConvLSTM) performs better: as opposed
to the ACDNN, it seems to be able to capture a dynamic, although not very
accurately. Overall, direct prediction models are not able to capture the complex
underlying dynamics and they produce blurry sequences of images. The GAN
explicitly forces the network output to eliminate the blurring effect and then
makes it able to capture short term dynamics. The state-of-the-art numerical
model (Béréziat et al. 2015), performs well and has comparable performance
with PKN, although it incorporates more prior constraints. This shows that
pure ML models, when conceived adequately and when trained with enough
data, can be competitive with state-of-the-art dedicated models. Regularizing
the motion vector w notably increases the performance with respect to the
unregularized model.

As for the running time, the proposed model is extremely fast, being just
above the ConvLSTM model of (X. Shi et al. 2015). The running time of
(Béréziat et al. 2015)’s model is not comparable to the others. It was run on a
CPU (no GPU code) when all the others were run on Titan Xp GPUs. However,
an optimization procedure is required to estimate the motion field, and it is
clearly slower than the straightforward NN predictions. Moreover, in order to
prevent the numerical scheme from diverging, multiple intermediate forecasts
are required.

Besides MSE, we need to analyze the prediction samples qualitatively. Fig-
ure 3.5 shows predictions obtained by the different models. On the top row
of Figure 3.5, the ground truth for a sequence of 4 temperature images corre-
sponding to time t, t + 1, t + 3 and t + 6. The second row corresponds to our
regularized model prediction at times t + 1, t + 3 and t + 6 (time t corresponds
to the last input image, it is repeated on each row). The prediction is close
to the target for t + 1, t + 3 and starts to move away at time t + 6. The third
row shows the motion flow estimated by the model. Each color in the flow
images corresponds to a motion vector (see Figure 3.6). There is clearly a strong
evolving dynamic captured for this sequence. Row 4 is the numerical assimila-
tion model of (Béréziat et al. 2015). It also clearly captures some dynamics and
shows interesting patterns, but it tends to diverge when the prediction horizon
increases. The ACDNN model (row 5) rapidly produces blurry images; it does
not preserve the temperatures and does not seem to capture any dynamics. On
row 6 are plotted the predictions of the ConvLSTM model. Temperature is not
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Figure 3.6

preserved, as it seems to fade away, and although a dynamic is captured, it does
not correspond to the target. Overall, the proposed model seems to forecast
SST quite accurately, while retrieving a coherent motion vector field. Additional
samples are available at Section 3.5.1.

3.4.7 On the Generalization in Space and Time

The ability of the model to adapt to other conditions should be evaluated
on other regions. We present below complementary experiments aimed at
assessing the potential of the proposed model for forecasting SST on sequences
distant in time and space from the ones used for training.

3.4.7.1 Temporal Dimension

In Section 3.4, training has been performed on data from 2006 - 2015 and
testing on the period 2016-2017. In order to provide some indication of the
model behavior on more distant time intervals between train and test data, we
have performed experiments using the same regions (17 to 20) as in Section 3.4,
but using the period 2011 to 2017 for training and period 2006 to 2010 for testing.
Figure 3.7 shows the MSE curve on this test set, each point corresponding to
the mean MSE on predictions performed on 6 days ahead the current date.
The most important conclusion is probably that the MSE error remains in the
same range for all these years. All the yearly error curve shows a clear seasonal
phenomenon with a higher prediction error during summer. A similar behavior
has been observed when exchanging train and test data.
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Figure 3.7 – Evaluation of our model’s accuracy in time on data from 2006 to
2010 using data from 2011 to 2017 for training. Regions 17 to 20

were used for both periods. Each day, we produce daily forecasts
for 6 days ahead and calculate the associated mean square error.
The color of the flow represents the direction of the direction each
of the vector as illustrated in Figure 3.6.

3.4.7.2 Spatial Dimension

In the experiments, the models have been trained and evaluated on selected
regions (numbered 17 to 20 in Figure 3.3), considered as the most interesting
for the observed dynamics.

Test Regions 17 & 18 Test Regions 8 & 9

Model trained on Regions 17 & 18 1.43 1.22

Model trained on Regions 8 & 9 1.90 1.19

Table 3.2 – Evaluation of our model’s spatial generalization ability. We train
our model on two distinct regions and calculate the MSE on both
regions for each trained model.

We describe below some results providing indications on how the model
performs on regions different from the training ones. For these experiments, the
model has been trained on regions 17 and 18 in Figure 3.3 and tested on two
other regions (regions 8 and 9), and vice versa (trained on 8 and 9 and tested
on 17 and 18). The two couples of regions have been selected so as to have
different latitude and longitude coordinates. The underlying physical processes
generating the data are known to be different in these regions: the overall
motion in regions 17 and 18 is greater, and the difference between extreme
temperatures is larger, compared to regions 8 and 9. Experimental conditions
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are similar to the one described in section Section 3.4.2, i.e. 2006-2015 have been
used for training and 2016-1017 for testing.

Results in Table 3.2 show that the model generalizes reasonably well to unseen
data from distant spatial regions, with a slight decrease in performance when
training and test regions do not correspond. The performance loss is 0.47 for
regions (17, 18) which show a strong dynamic, whereas it is only 0.03 for regions
(8, 9) for which the dynamics are more stable. Most notably, MSE performance
depends more on the region itself than on the train/ test conditions. Error is
always higher in regions with strong dynamics (17, 18) than on more stable
regions (8, 9) whatever the train/ test conditions are. Note that to further
improve the results on distant data, it is possible to fine-tune the model using
data from the studied regions.

3.5 Conclusion

By using as an example application a relatively complex problem concerning
ocean dynamics, we proposed a principled way to design Deep Learning models
using inspiration from the physics. The proposed approach can be easily
generalized to a class of problems for which the underlying dynamics follow
advection-diffusion principles. We have compared the proposed approach to
a series of baselines. It is able to reach performance comparable to a state-of-
the-art numerical model and clearly outperform alternative NN models used as
baselines.

3.5.1 Additional Samples
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It It+1 It+3 It+6

Figure 3.8 – Output for the 6 of May to the 9 of May 2016, Output , From top to
bottom: target, our model prediction, our model flow. The color of
the flow represents the direction of each of the vector as illustrated
in Figure 3.6.
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It It+1 It+3 It+6

Figure 3.9 – Output for the 6 of January to the 9 of January 2016. From top to
bottom: target, our model prediction, our model flow. The color of
the flow represents the direction of each of the vector as illustrated
in Figure 3.6.
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Chapter abstract

We consider the problem of learning the dynamics of physical processes
evolving in space and in time, given only partial observations of the state.
We propose a natural data-driven framework, where the system’s dynamics
are modeled by an unknown time-varying differential equation, and the
evolution term is estimated from the data, using a neural network. Given an
initial state, an ODE solver can then be used to compute any future state.
We qualitatively and quantitatively study the results of our method over sim-
ulations of fluid equations. We show that our method not only successfully
forecasts future observations, consistently outperforming classical baselines,
but it also learns to closely reproduce the unobserved dynamics of the state
without direct supervision on the latter when the true initial state is given
as input. We also show that our method can still be successfully applied
when the initial state is not available and that it produces an interpretable
hidden state even in this case.
The work in this chapter was made in collaboration with Emmanuel De
Bezenac and Ibrahim Ayed. It has led to a paper:

47
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• Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Bra-
jard, and Patrick Gallinari (Feb. 2019). “Learning Dynamical Sys-
tems from Partial Observations”. In: arXiv:1902.11136 [physics].
url: http://arxiv.org/abs/1902.11136

4.1 Introduction

Let us consider a dynamical system to describe a real-world physical process.
The state Xt (t ∈ R+ stands for time) of the dynamical system can then be
defined as a vector-valued function on a space x ∈ Ω :

∀t,
dXt

dt
= F(Xt). (4.1)

In this equation, Xt is sufficient to describe the temporal dynamics of the
underlying process. For example, in the incompressible Navier Stokes equations
a state can be the concatenation of the density and velocity fields of the fluid as
those are enough for describing the evolution of the system, while pressure, an
additional variable of interest, can be computed from those variables.

With the availability of very large amounts of data captured via diverse
sensors and recent advances of statistical methods, a new data-driven paradigm
for modeling dynamical systems is emerging, where relations between the states
are no longer handcrafted, but automatically discovered based on the available
observations. This problem can be approached by considering some class of
admissible functions {Fθ}, and looking for a θ such that the solution Xθ of:

dXt

dt
= Fθ(Xt) (4.2)

fits the measured data.
In this chapter, we consider the problem of learning complex spatiotemporal

dynamical systems with neural networks from observation, which are only
partially informative with respect to the full state.

First, we formulate the problem as a continuous-time optimization problem
under the constraints of a Partial Differential Equation (PDE), where the param-
eters of the neural network are viewed as optimized variables. From this, we
then present a natural algorithm for solving the resulting optimization problem,
placing the neural network in an Ordinary Differential Equation solver in order
to produce future predictions. Finally, we successfully apply our method to
three increasingly challenging datasets and show promising results, comparing
our approach to standard baselines.

• We propose a general model, parametrized with neural networks, which
learns a state representation and its dynamics given partial observations.

http://arxiv.org/abs/1902.11136
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• We present experiments on the Navier-Stokes equations exploring the
properties of our model in each setting.

4.2 Methodology

In this section, we present the optimization problem defining our model to
learn partially observed dynamics as well as the training algorithm we used.

4.2.1 Our Approach

4.2.1.1 Continuous State Space Models

We consider space-time dynamics for which X can be written as a function
of (t, x) ∈ R+ ×Ω where t and x are respectively the time and space variables,
Ω ⊂ Rd is the domain over which we study the system. The spatial vector-
valued function Xt contains the quantities of interest describing a studied
physical system at time t.

In a realistic setting, the state is generally only partially observed e.g., when
studying the ocean’s circulation, variables contained in the system’s state such
as temperature or salinity are observable, while others such as velocity or
pressure are not. In other words, the measured data is only a projection of
the complete state Xt. This measurement process is modeled here with a fixed
operator H linking the system’s state Xt to the corresponding observation Yt:

Yt = H(Xt)

In the following, H is supposed to be known, fixed and differentiable. In
most practical cases, this hypothesis is verified as H can usually be represented
as a smooth operator. Let us note that, generally, the measurement process
represents a considerable loss of information compared to the case where X is
available, as the measurements may be sparse and low-dimensional.

Moreover, we assume that X obeys a differential equation of the general form
of equation 4.1, with an initial condition X0. This leads us to the following
continuous state space model:


X0

dXt

dt
= F(Xt)

Yt = H(Xt)

(4.3)
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4.2.1.2 Optimization Problem

Our goal is to learn the differential equation driving the dynamics of a
smooth state function X for which we only have supervision over observations
Y through a fixed operator H. In order to ensure that our dynamical system at
least explains the observations, we define a cost functional of the form:

J (Y, Ỹ) =
∫ T

0
‖Yt − Ỹt‖2dt (4.4)

Here, Y is a spatiotemporal field representing observations of the studied
system, Ỹ is the output of the system, and ‖ · ‖ the L2 norm.

The state Xt is constrained to follow the dynamics described by equation
4.2, starting from an initial condition X0. The optimization problem is now
formulated as :

minimize
θ

EY∈Dataset [J (Y,H(X))]

subject to
dXt

dt
= Fθ(Xt),

X0 = gθ(Y−k, X̆0)

(4.5)

where Fθ is a smooth vector valued function defining the trajectory of X, and
gθ gives us the initial condition X0. In other words, θ parameterizes both the
dynamics through F and the initialization through g. In particular, if a full
initial state is given as input to the system, gθ can be taken as independent from
any parameter and does not need to be learned.

For any θ, we assume that F and g are such that there always exists a solution
to the equation :  X0 = gθ(Y−k, X̆0)

dXt

dt
= Fθ(Xt)

(4.6)

In the following, we will call such a solution Xθ.

4.2.1.3 Adjoint State Method

In order to construct a gradient descent algorithm to solve the problem 4.5,
we need to find the gradient of the cost functional under the given constraints,
i.e. the differential of θ → EYJ (Y,H(Xθ)) (plessix2006review). However, this

implies calculating
∂Xθ

∂θ
, which is often very computationally demanding, as

it implies solving dim(θ) forward equations. The adjoint state method avoids
those costly computations by considering the Lagrangian formulation of the
constrained optimization problem. Adjoint State Method is a technique allowing
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to solve a constraint optimization problem well adapted when the number of
parameters to optimize is large. We introduce below a method for the case of
continuous systems, constrained by an Ordinary Differential Equation (ODE).

Theorem 4.1 (Adjoint State Equation). The gradiend of J w.r.t parameters θ, for a
solution Xθ to the initial value problem discribed in 4.5 can calculated as follows.

∂

∂θ
J (Y,H(Xθ)) = −

∫ T

0

〈
λt, ∂θ Fθ(Xθ

t )
〉

dt− 〈λ0, ∂θgθ〉 (4.7)

where λ is the solution of:

∂tλt = Atλt + Bt (4.8)

solved backwards, starting with λT = 0, and where :

At = −(∂XFθ(Xθ
t ))

?

and

Bt = 2(∂XH(Xθ
t ))

?(H(Xθ
t )−Yt)

where M? denotes the adjoint operator of linear operator M.

Here A is the adjoint of F The proof can be found in Section 7.3. When
training, with this result, for a given value of θ, we can solve the forward
equation 4.2 to find Xθ. Then, λ can be solved backwards as its equation only
depends on Xθ which gives us all necessary elements to calculate the gradient
of J . This gives us the following iterative algorithm to solve the optimization
problem, starting from a random initialization of θ :

1. Solve the forward state equation 4.6 to find Xθ ;

2. Solve the backward adjoint equation 4.8 to find the corresponding λ (see
Theorem 4.1);

3. Update θ in the steepest descent direction using equation 4.7.

From these steps (and taking into account the estimation of the initial state,
further explained in Section 4.3), we now have a general algorithm for training.
At inference, we use the learned gθ? to compute an initial state then simply solve
the forward equation with the learned 1

There are many possible choices regarding the way the different equations
are solved in practice: Those are discussed in Section 4.2.1.4.

1. In particular, it is important to note that no further updates or corrections are made and
no additional observations are needed.
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Algorithm 4.1 Training Procedure

Input: Training samples {(Y−k, X̆0, ), Y+l}.
Guess initial parameters θ

while not converged do
Randomly select sample sequence {(Y−k, X̆0, ), Y+l}
if Initial State is Fully Observed then

X0 ← X̆0
else

X0 ← gθ(Y−k, X̆0)
end if
Solve Forward dXt

dt = Fθ(Xt), X(0) = X0, t ∈ [0, l]

Solve Backward
dλt

dt
= Atλt + Bt, λl = 0, t ∈ [0, l]

Compute gradient ∂J
∂θ (Xθ)

Update θ in the steepest descent direction
end while
Output: Learned parameters θ.

4.2.1.4 Approximate Solutions

While our algorithm seems straightforward, solving the forward and back-
ward equations (4.2, 4.8) generally is not. Typically, they do not yield a closed-
form solution and we must content ourselves with approximate solutions. There
are essentially two different ways to tackle this problem: the differentiate-then-
discretize approach, and the discretize-then-differentiate approach 2.

In a differentiate-then-discretize approach, one directly approximates the for-
ward and backward equations using numerical schemes. Here, the approxi-
mation error to the gradient comes from the discretization error made in the
solver for both the forward and backward equations. This method is used in
the black box solvers presented in (Chen et al. 2018). It has the advantage of
allowing the use of non-differentiable steps in the solver. However, this method
can yield inconsistent gradients of cost functional J , the discretization of the
adjoint equations depends highly on the studied problem and therefore must
be carefully selected and tuned (Carrassi et al. 2018).

In a discretize-then-differentiate approach, a differentiable solver for the forward
equations is used, e.g. using an explicit Euler scheme Xθ

t+δt ≈ Xθ
t + δtFθ(Xθ

t ).
Based on the solver’s sequence of operations for the forward equations, the
backward equations and the gradient can be directly obtained using automatic
differentiation software (Paszke et al. 2017). This algorithm is actually equivalent

2. The differentiate-then-discretize method is often referred to as the continuous adjoint
method, and the discretize-then-differentiate approach as the discrete adjoint method (Sirkes et al.
1997).
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to backpropagation (LeCun et al. 1988) which can be derived as a special case
of it. As the step-size approaches zero, the forward and backward equations
are recovered.

It is important to note that, while the two methods are consistent and both
converge to the equations derived in Theorem 4.1, they do not always yield the
same results as the two approaches proceed differently. In our experiment, the
second one proved more stable and the fact that we were limited to differentiable
solvers experimentally was not an obstacle. This might not always be the case
so the choice must be made after some exploration.

4.2.2 Models

We propose two variants of our models:

Setting 1: Jointly Trained (JT) States In this setting, we choose to fix the
architectures of gθ and Fθ and optimize without additional information. The
dataset used here is thus only composed of observations and is of the form
{(Y(i)
−k+1, ..., Y(i)

0 , ..., Y(i)
T )}. In the following, the states learned in this setting will

be referred to as Jointly Trained states.

Setting 2: Feeding in a Canonical Initial Condition A weak way to impose
some structure over the learnt states is to remove g and prescribe an initial state
with canonical structure 3 Thus, in this setting, the dataset used here is of the
form {X(i)

0 , Y(i)
1 , ..., Y(i)

T )} and the number of needed states is T times less than
the number of observations.

There still are infinitely many possible state representations which produce
accurate forecasts for observations, even when X0 is fed as an input to the
model. However, by correctly parametrising F, we can hope to conserve the
structure of X0 throughout the forecasts.

4.3 Experiments

In this section we evaluate our model, both quantitatively and qualitatively.
We consider two different datasets corresponding to two dynamical systems.
We evaluate our method with respect to its ability to predict observations and
to reproduce the dynamics of the hidden state.

3. This comes at a cost: The algorithm now has to take a full state as input for each sequence
of observations.
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SupervisionModel

Solver

HEstimator

Xt Xt+1

Yt−k−1:t

Ŷt+1 Yt+1

Figure 4.1 – Setting 1 : initial state is estimated from the input observation
Yt−k−1:t and future states are estimated through the forecasting
module. The partial observation Y is computed through the op-
erator H. The error signal is calculated as the Euclidean distance
between Ŷt+1 and the real Yt+1, and is backprogated through the
operator scheme to correct the forecast and estimation module. To
produce multiple time-step forecasts, the predicted observation is
fed back in the model in an autoregressive manner.

4.3.1 Datasets.

Our two datasets are the following:

• The Shallow Water equations are derived from the Navier Stokes equations
when integrating over the depth of the fluid (see supplementary material,
Section 7.1.0.1). These equations are discretized on a spatial 80× 80 grid.
We decompose the simulation into train-validation and test subsets of 600
and 1000 acquisitions images respectively.

• The Navier-Stokes equations (see Section 7.1.0.2) are discretized on a
spatial 64× 64 grid. We use 15000 observations images for the train set and
10000 for the test.

4.3.2 Experimental setting.

In practice, the cost functional J is estimated on a minibatch of sequences
from the dataset and optimized using stochastic gradient descent. For both
datasets, the split between train, validation and test sets is made so that each
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SupervisionModel

Solver

H

Xt Xt+1

Ŷt+1 Yt+1

X0

…

Figure 4.2 – Setting 2 : future state are estimated from the input state (X0). The
partial observation is computed through the operator H. The error
signal is calculated as the Euclidean distance between Ŷt+1 and
the real Yt+1„ and is backprogated through the operator scheme
to correct the forecast module. To produce multiple time-step
forecasts, one simply apply the forecast F module on the estimated
state.
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Figure 4.3 – The discretization of our forward equation : a three steps Euler
scheme.

split only includes sequences generated by different, independently sampled initial
conditions. The two datasets are completely simulated: we then have access to
the true full state to initialize our algorithm X0 in equation 4.5.

4.3.2.1 Implementations

Throughout all the experiments, Fθ is a standard convolutional residual
network (He et al. 2015),, with 2 downsampling layers, 6 residual blocks, and
bilinear up-convolutions instead of transposed convolutions. To discretize
the forward equation 4.2 in time, we use a simple three steps Euler scheme
(see Figure 4.3). For the spatial discretization, we use the standard gridlike
discretization induced by the dataset. The weights of the residual network θ

are initialized using an orthogonal initialization. Our model is trained using
an exponential scheduled sampling scheme with exponential decay, using the
Adam optimizer, with a learning rate set to 1× 10−5. We use the Pytorch deep
learning library (Paszke et al. 2017).
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4.3.2.2 Metrics.

To evaluate our model’s performance we consider the quality of the pre-
dictions, using the renormalized mean-squared error between generated and
ground-truth observations, averaged over the time sequence, and the spatial
coordinates.

1
K

1
|Ω|

K

∑
k=1

∑
x∈Ω

‖H(Xk(x))−Yk(x)‖2

‖Yk(x)‖2
(4.9)

To evaluate the quality of the hidden states, we use cosine similarity between
the model’s hidden state u and the truth hidden state of the system v 4:

1
K

K

∑
k=1

1
|Ω| ∑

x∈Ω

〈u(x), v(x)〉
‖u(x)‖ ‖v(x)‖ (4.10)

For the velocity vector field representation, color represents the angle, and
the intensity the magnitude of the associated vectors (see Figure 3.6).

4.3.2.3 Models and Baselines

We use two different baselines:

• PKN This is the physics-informed deep learning model developed in Chap-
ter 3, where prior physical knowledge is integrated: it uses an advection-
diffusion equation to link the velocity with the observed temperatures, and
uses a neural network to estimate the velocities. The difference with the
Setting 1 model is that there is no forecast in the state space, but an explicit
relation between the state Xt and Yt+1. It does not model the full dynamical
system but makes use of an autoregressive formulation.

• PredRNN (Y. Wang et al. 2018) This is a heavyweight, state-of-the-art
model used for video prediction tasks. It is based on a Spatiotemporal
Long-Short Term Memory (LSTM) that models spatial deformations and
temporal variations simultaneously. As for PKN, it is an auto-regressive
model.

4.3.3 Results.

4.3.3.1 Experiments with Navier Stokes equations

Forecasting Observations. Figure 4.4 shows a sample of the predictions of
our system over the test set for the Navier Stokes equations. The good results it

4. We use the cosine similarity in order to compare with Prior Knowledge Network (PKN):
the norm of its hidden state may not correspond to the ground truth norm.
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Ground Truth

Ours

Ours, Joint Training

Baseline: PKnl

Baseline: PredRNN

Figure 4.4 – Forecasting the Navier Stokes equations 10 time steps ahead with
different models, starting from a given initial condition.

shows are confirmed by the quantitative results in Table 4.1. Our model is able
to predict observations up to a long forecasting horizon (42 time steps), which
means that it generalizes to horizon it has never seen (at is has been train on
sequences of size 6), and thus has managed to learn the dynamical system. Note
that the initial state used at test time has never been seen at training time which
means that the optimization problem was solved correctly without overfitting.
The cost function and supervision are only computed with observation, has
described in our experiments setting. An interesting remark is to observe that
the jointly trained model is slightly less accurate than the one that makes use of
the initial state X0.

Hidden State Discovery. Both our model forecasts a full state Xt and not
only the observations Yt. In order to predict the observations correctly, our
model has to learn to predict future hidden states that contain information of
the true state. By feeding the true initial conditions to our model, we find that
our method is able to learn the true dynamics of the hidden state with a good
accuracy, while never directly enforcing a penalty on the latter. Note that the
only access our method has to full states is through the initial state provided as
input. This result is intriguing: the model should theoretically be able to use a
state encoding that is different from the one given by the initial condition. We
hypothesize that our network’s architecture is biased towards preservation of
the input code.
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Table 4.1 – Relative MSE and cosine similarity scores for our models and
different baselines, at different temporal horizons on the Navier
Stokes equations. As the PredRNN does not explicitly model the
hidden state, we replace the cosine similarity scores for this baseline
with XX.

Model h=5 h=10 h=50

MSE cosine MSE cosine MSE cosine

Setting 2 0.118 0.798 0.180 0.679 0.628 0.483
Setting 1 0.152 0.201 0.243 0.192 0.650 0.183

PKN 0.194 0.243 0.221 0.207 0.752 0.098

PredRNN (Y. Wang et al. 2018) 0.170 XX 0.227 XX 0.719 XX

Comparison with baselines. Visually, as can be seen in Figure 4.4 by looking
at the small features of the observations, our model manages to capture many
details which are important for robust long-term forecasts while the PredRNN
model, which proves to be a strong baseline at the level of observations 5 for
the first few steps, produces less sharp predictions which explains its worse
performance when evaluated on long-term predictions. Other samples for
long-term forecasts of our model can be seen in the appendix for the Navier
Stokes as well as for the Shallow Water equations.

Figure 4.5 and Figure 4.6 show some examples of forecasts obtained with our
model and confirm its accuracy over long-term predictions

In order to explore the properties of our model, we conduct an ablation study,
whose results are reported in Section 4.3.3.3.

4.3.3.2 Experiments with Shallow Water equations

Table 4.2 shows the numerical evaluations for our model. Figures 4.7 and
4.8 show some examples of forecasts obtained with our model and confirm its
accuracy over predictions, both for observations and velocities. Remember that
the supervision is provided at the level of observations only.

Interpolation between data points. Our framework allows us to forecast for
arbitrary times t, which means that if we only have access to samples at times
t, t + k, t + 2k, . . . we can still predict observations at time t, t + 1, t + 2, . . . . This
demonstrates the ability of our model to interpolate. Figure Figure 4.9 shows
a sample of this interpolation mechanism. In this example, the model has

5. It does not produce meaningful hidden states.
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Figure 4.5 – Forecasting the Navier Stokes equations, starting from a given ini-
tial condition (not shown here). We forecast 42 time steps ahead. We
show in this figure 3 different sequences of 42 time stted. Top 2 rows
correspond to the ground truth and the bottom rows correspond
model forecasts. Each sequences is represented as 4 consecutive
rows.

been trained by regressing to the targets every 3 images (materialized on the
figure by the red boxes). The outputs of the model are then compared with
the unseen ground truth states. This shows that our approach allows us to
learn the true evolution of the state. This is an important feature of our method,
similar in this aspect to the claims of (Chen et al. 2018). It is applied here to a
high-dimensional, highly non-linear and partially observed learned dynamical
systems, for which we can interpolate the observations as well as the inferred
hidden state.

4.3.3.3 Ablation Study

In order to better understand how our model works, we test different slightly
modified versions of it on the Navier-Stokes dataset :
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Figure 4.6 – Forecasting the Navier Stokes equations, starting from a given ini-
tial condition (not shown here). We forecast 42 time steps ahead. We
show in this figure 3 different sequences of 42 time stted. Top 2 rows
correspond to the ground truth and the bottom rows correspond
model forecasts. Each sequences is represented as 4 consecutive
rows.

Ours, Projection. Here we change the operator H and make it project to one
dimension of the velocity field instead of on the pressure. We still give X0 as
input. The results, while slightly less good, are quite robust to this change,
considering that we have not changed the hyperparameters of the model.

ResNet. Here we simply use a residual network, with the exact same archi-
tecture as the one used to parameterize our model. In other words, there are
exactly the same number of parameters, layers,... as the Fθ which we learn and
put into the solver. The results are notably less accurate for observations but,
more importantly, this model turns out to be completely unable to forecast
hidden states corresponding to the true ones. This shows that the way our
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Table 4.2 – Relative MSE and cosine similarity scores for our model, at different
temporal horizons on the Shallow Water equations

Model h=5 h=10

MSE cosine MSE cosine

Setting 2 0.1 0.995 0.12 0.992

model is structured around a solver which takes into account the differential
structure of the studied problem is a strong regularizer.

ResNet no skip. This last argument may remind us that a residual network
closely resembles the non-uniform discretization of an ODE. Thus, this should
help it to perform well and explains the relatively good results on observations
for the ResNet and, by getting rid of the skip connections while keeping all
layers untouched, the performance should worsen. This is indeed what happens
in our tests.

Unet. We tried using as Fθ this other classical architecture (Ronneberger et al.
2015), which is often used for regression problems, with roughly the same
number of parameters as in our parameterization. It proved to be weak against
our model.

Table 4.3 – Ablation study for our model, at different temporal horizons on the
Navier Stokes equations

Model h=5 h=10 h=50

MSE cosine MSE cosine MSE cosine
Setting 2 0.118 0.798 0.180 0.679 0.628 0.483

Setting 1 0.191 0.432 0.288 0.620 0.49 0.534
Resnet 0.288 0.604 0.391 0.333 0.73 0.032

Unet 0.659 0.069 0.692 0.028 0.84 0.023

Resnet No Skip 0.615 0.162 0.71 0.060 0.897 -0.04

4.4 Conclusion

We have introduced a general data-driven framework to predict the evolution
of space-time processes, when the system is highly complex and non-linear and
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the state is not fully observed. Assuming the underlying system follows a time-
dependent differential equation, we estimate the unknown evolution term with
a neural network. This is in a natural way to model continuous-time systems.
We propose a learning algorithm for this model. Experiments performed on
two simulated datasets from fluid dynamics show that the proposed method
not only is able to produce high quality forecasts at different horizons, but also
learns with a good accuracy the underlying state space dynamics.
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Figure 4.7 – Forecasting the shallow water equations, starting from a given
initial condition (not shown here). We forecast 42 time steps ahead.
We show in this figure 3 different sequences of 42 time steps.
Top 2 rows correspond to the ground truth and the bottom rows
correspond model forecasts. Each sequence is represented as 4

consecutive rows.
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Figure 4.8 – Forecasting the shallow water equations, starting from a given
initial condition (not shown here). We forecast 42 time steps ahead.
We show in this figure 3 different sequences of 42 time steps.
Top 2 rows correspond to the ground truth and the bottom rows
correspond model forecasts. Each sequence is represented as 4

consecutive rows.

Figure 4.9 – Time interpolations with our approach on the test set. We train our
model by regressing to the targets every 3 images (materialized by
the red boxes). We then compare the outputs of the model with the
unseen ground truth states.
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We address the problem of recovering an underlying signal from lossy, in-
accurate observations in an unsupervised setting. Typically, we consider
situations where there is little to no background knowledge on the structure
of the underlying signal, no access to signal-measurement pairs, nor even
unpaired signal-measurement data. The only available information is pro-
vided by the observations and the measurement process statistics. We cast
the problem as finding the maximum a posteriori estimate of the signal given
each measurement, and propose a general framework for the reconstruction
problem. We use a formulation of generative adversarial networks, where
the generator takes as input a corrupted observation in order to produce
realistic reconstructions, and add a penalty term tying the reconstruction
to the associated observation. We evaluate our reconstructions on several
image datasets with different types of corruptions. The proposed approach
yields better results than alternative baselines, and comparable performance
with model variants trained with additional supervision. Finally, we present
two extension of this work, by considering the special case of unsupervised
inpainting. A first extension considers augmenting the observation space
with a stochastic variable, in order to introduce some stochasticity in the
reconstruction process. A second extension tackles the problem of inpainting
occluded area in spatiotemporal sequences, such as cloud occluded satellite
observations. The work in this chapter, in collaboration with Emmanuel De
Bezenac and Yuan Yin, has led to the publication of a conference paper:

• Arthur Pajot, Emmanuel de Bezenac, and Patrick Gallinari (Sept.
2018). “Unsupervised Adversarial Image Reconstruction”. In:
url: https://openreview.net/forum?id=BJg4Z3RqF7

• Yuan Yin, Arthur Pajot, Patrick Gallinari, and Emmanuel de
Bézenac (Aug. 2019). “Unsupervised Inpainting for Occluded Sea
Surface Temperature Sequences”. In: Climatinformatics Workshop

5.1 Introduction

Many real world applications require acquiring information about the state
of some physical system from incomplete and inaccurate measurements. For
example, in infrared satellite imagery, one has to deal with the presence of
clouds and a variety of other external factors perturbing the acquisition of tem-
perature maps. This raises questions on how to recover the correct information
and eliminate the contribution of external factors hindering the overall signal
acquisition.

In this context, signal recovery does not usually yield a unique solution,
meaning that multiple signal reconstructions could trivially explain the mea-

https://openreview.net/forum?id=BJg4Z3RqF7
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surements. For the above example, different missing temperature values could
accurately explain the observations.

To cope with this indeterminacy, one usually relies on prior information
on the structure of the true signal in order to constrain the reconstruction to
plausible solutions (Stuart 2010). A common approach is to use handcrafted,
analytically tractable priors, as in compressed sensing (Candès et al. 2005; Mota
et al. 2017). This approach is limited to situations for which the underlying
signal structure can be easily described, which are rarely observed in the wild.

Recent developments in generative models parameterized by neural networks
(Goodfellow et al. 2014; Kingma et al. 2013; Dinh et al. 2016) offer a promis-
ing statistical approach to signal recovery, for which priors on the signal are
not handcrafted anymore, but learned from large amounts of data. Despite
exhibiting interesting results (Bora et al. 2017; Asim et al. 2018; Tripathi et al.
2018), these methods all require some form of supervision, either observation
measurement-signal pairs, or at least unpaired samples from observations and
underlying signals. For many practical problems, obtaining these samples is
too expensive and/or impractical, which makes these approaches not suitable
for such situations.

We address the problem of image and video reconstruction in an unsuper-
vised setting, when only corrupted observations are available, together with
some prior information on the nature of the measurement process. The learning
problem is formulated as finding the maximum a posteriori estimate of signals
given their measurements on the training set. We derive a natural objective
for our reconstruction network, composed of a linear combination of an ad-
versarial loss for recovering realistic signals, and a reconstruction loss to tie
the reconstruction to its associated observation (Section 5.2.2). This model is
evaluated and compared to baselines on 3 image datasets, CelebA (Z. Liu et al.
2015), LSUN Bedrooms (F. Yu et al. 2015), Recipe-1M (Marin et al. 2018), where
we experiment with different types of measurement processes corrupting the
images.

We also consider the special case of inpainting. While still a difficult task,
unsupervised inpainting allows us to introduce an operator able to recover
the mask of a given measurement. We then propose a first extension of our
model where the observations are augmented by a stochastic variable, in order
to learn the distribution of plausible reconstruction. We present a second
extension where we consider inpainting video. This is up to our knowledge
the first attempt to solve the problem of unsupervised video completion using
general ML methods. This method is fully data driven and does not use any
hand-defined analytical prior on the spatiotemporal sequence.

Our contributions are:
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• A novel, computationally efficient framework for dealing with large scale
signal recovery in an unsupervised context, applicable to a wide range of
situations,

• A model and a new way of training a deep learning architecture for imple-
menting this framework,

• An extension of this model in a stochastic setting, for unsupervised inpait-
ing.

• An extension where we inpaint sequences of images.

• Extensive evaluations on a number of image datasets with different mea-
surement processes.

5.2 Models

Notations. We use capital letters (e.g. X) for random variables, and lower-case
letters (e.g. x) for their values. pX(x) denotes the distribution (or its density in
the appropriate context) of X evaluated at x.

5.2.1 Problem setting.

Suppose there exists a signal X ∼ pX we wish to acquire, but we only
have access to this signal through lossy, inaccurate measurements Y ∼ pY.
The measurement process is modeled through a stochastic operator F mapping
signals X to their associated observations Y. We will refer to F as the measurement
process, which corrupts the input signal. F is parameterized by a random variable
Θ ∼ pΘ following an underlying distribution pΘ we can sample from, which
represents the factors of corruption. Thus, given a specific signal x, we can
simulate its measurement by first sampling θ from pΘ, and then computing
F(x; θ). Additional sources of uncertainty, e.g., due to unknown factors, can be
modeled using additive i.i.d. Gaussian noise E ∼ N (0, σ2 I), so that the overall
observation model becomes:

Y = F(X; Θ) + E (5.1)

F is assumed to be differentiable w.r.t. its first argument X, and Θ and X to
be independent (denoted X ⊥⊥ Θ). Different instances of F will be considered
(refer to Section 5.6.1.6), like random occlusions, information acquisition from a
sparse subset of the signal, overly smoothing out and corrupting the original
distribution with additive noise, etc. In such cases, the factors of corruption Θ
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might respectively represent the position of the occlusion, the coordinates of
the acquired information, or simply the values of the additive noise.

5.2.2 Approach

Given an observation y, our objective is to find a signal x̂ as close as possible
to the associated true signal x. From a probabilistic viewpoint, it is natural to
formulate the problem as finding the Maximum A Posteriori (MAP) estimate,
which consists in selecting the most probable signal x∗ under the posterior
distribution pX|Y(·|y):

x∗ = arg max
x

log pX|Y(x|y) (5.2)

or equivalently:

x∗ = arg max
x

log pY|X(y|x) + log pX(x), (5.3)

where pY|X(y|x), see as a function of x for a given y, is the likelihood of the
signal x given observation y, and pX(x) is the prior probability evaluated at x.
Therefore, a good reconstruction must be likely to have generated the data, i.e.
yield high likelihood, and look realistic, i.e. yield high probability under the
prior.

In the general case, calculating the likelihood term pY|X(y|x) requires marginal-
izing over the noise parameters Θ and this does not yield an analytic form. As
for the prior pX(x), it is unknown, and we have no access to samples from X
since we are in an unsupervised setting: there is then no direct way to estimate
pX either. In the general case considered here, with no assumption on the form
of the distributions, solving Equation (5.3) is up to our knowledge an open
problem.

In the following sections, we will introduce an approach to deal with the
likelihood term ( Section 5.3.1), and the unknown prior term ( Section 5.3.2) in
order to provide an approximate solution to Equation 5.3 (Section 5.3.3). For
that, we will formulate the problem as learning a mapping G : Y → X that
links each measurement y to its associated MAP estimate x∗ on the training set.
The associated objective is then:

G∗ = arg max
G

EpY

{
log pY|X(y|G(y)) + log pX(G(y))

}
(5.4)

Which is obtained by plugging G(y) = x into equation 5.3 and taking the
expectation with respect to the distribution of observations pY.
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5.3 Method

From Equation 5.4, we see that a valid reconstruction mapping G must yield
high probability for the likelihood and the prior. This will guide the design of
an appropriate objective during the following section, where the reconstruction
mapping G will be implemented using a neural network.

5.3.1 Handling the Likelihood Term

x
<latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit><latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit><latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit><latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit>

y
<latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit><latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit><latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit><latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit>

✓
<latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit><latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit><latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit><latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit>

x̃
<latexit sha1_base64="3fS/bpr+ssmeyt6SN28ZCUbokhc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgm2VNpTNZtIu3WzC7kYsob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5AKro3rfjulldW19Y3yZmVre2d3r7p/0NZJphi2WCISdR9QjYJLbBluBN6nCmkcCOwEo+tpvfOISvNE3plxin5MB5JHnFFjrYee4SLE/GnSr9bcujsTWQavgBoUavarX70wYVmM0jBBte56bmr8nCrDmcBJpZdpTCkb0QF2LUoao/bz2cITcmKdkESJsk8aMnN/T+Q01nocB7YzpmaoF2tT879aNzPRpZ9zmWYGJZt/FGWCmIRMrychV8iMGFugTHG7K2FDqigzNqOKDcFbPHkZ2md1z/Ltea1xVcRRhiM4hlPw4AIacANNaAGDGJ7hFd4c5bw4787HvLXkFDOH8EfO5w9DX5Cy</latexit><latexit sha1_base64="3fS/bpr+ssmeyt6SN28ZCUbokhc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgm2VNpTNZtIu3WzC7kYsob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5AKro3rfjulldW19Y3yZmVre2d3r7p/0NZJphi2WCISdR9QjYJLbBluBN6nCmkcCOwEo+tpvfOISvNE3plxin5MB5JHnFFjrYee4SLE/GnSr9bcujsTWQavgBoUavarX70wYVmM0jBBte56bmr8nCrDmcBJpZdpTCkb0QF2LUoao/bz2cITcmKdkESJsk8aMnN/T+Q01nocB7YzpmaoF2tT879aNzPRpZ9zmWYGJZt/FGWCmIRMrychV8iMGFugTHG7K2FDqigzNqOKDcFbPHkZ2md1z/Ltea1xVcRRhiM4hlPw4AIacANNaAGDGJ7hFd4c5bw4787HvLXkFDOH8EfO5w9DX5Cy</latexit><latexit sha1_base64="3fS/bpr+ssmeyt6SN28ZCUbokhc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgm2VNpTNZtIu3WzC7kYsob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5AKro3rfjulldW19Y3yZmVre2d3r7p/0NZJphi2WCISdR9QjYJLbBluBN6nCmkcCOwEo+tpvfOISvNE3plxin5MB5JHnFFjrYee4SLE/GnSr9bcujsTWQavgBoUavarX70wYVmM0jBBte56bmr8nCrDmcBJpZdpTCkb0QF2LUoao/bz2cITcmKdkESJsk8aMnN/T+Q01nocB7YzpmaoF2tT879aNzPRpZ9zmWYGJZt/FGWCmIRMrychV8iMGFugTHG7K2FDqigzNqOKDcFbPHkZ2md1z/Ltea1xVcRRhiM4hlPw4AIacANNaAGDGJ7hFd4c5bw4787HvLXkFDOH8EfO5w9DX5Cy</latexit><latexit sha1_base64="3fS/bpr+ssmeyt6SN28ZCUbokhc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgm2VNpTNZtIu3WzC7kYsob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5AKro3rfjulldW19Y3yZmVre2d3r7p/0NZJphi2WCISdR9QjYJLbBluBN6nCmkcCOwEo+tpvfOISvNE3plxin5MB5JHnFFjrYee4SLE/GnSr9bcujsTWQavgBoUavarX70wYVmM0jBBte56bmr8nCrDmcBJpZdpTCkb0QF2LUoao/bz2cITcmKdkESJsk8aMnN/T+Q01nocB7YzpmaoF2tT879aNzPRpZ9zmWYGJZt/FGWCmIRMrychV8iMGFugTHG7K2FDqigzNqOKDcFbPHkZ2md1z/Ltea1xVcRRhiM4hlPw4AIacANNaAGDGJ7hFd4c5bw4787HvLXkFDOH8EfO5w9DX5Cy</latexit>

ỹ
<latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit><latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit><latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit><latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit>

G
<latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit>
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MSE

Figure 5.1 – The Figure illustrates the dependencies between the variables con-
sidered for handling the likelihood term when solving (5.4). The
likelihood term in Equation 5.4 can be replaced by the expectation
of 1

2σ2 ‖y− F(G(y); θ)‖2
2 (see Equation 5.10). To compute this expec-

tation, one first simulates an observation y from a signal x using
F(x; θ) , then generates x̃ = G(y) and ỹ = F(x̃; θ), as in the Figure.
This allows us to compute the MSE term in the above expression.

In the general case, evaluating the likelihood pY|X(y|x) in Equation 5.3
requires marginalizing on the unobserved noise variable Θ: pY|X(y|x) =

EpΘ
pY|X,Θ(y|x, θ), which involves computing an intractable integral. Most

probabilistic model for images denoising make assumptions on the structure
of the measurement operator F(., Θ) and on the distribution of Θ in order to
obtain an analytic form for the expectation (Demir et al. 2018; Boyat et al. 2015).
Here, we consider more general measurement operators who do not necessarily
lead to such a simplification and therefore proceed in a different way.
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We outline below, the main steps of the method for handling the likelihood
term pY|X(y|x) in Equation 5.4.

1. As X and Θ are independent, the expectation term EpY
log pY|X(y|G(y)) in

Equation 5.4 can be rewritten as :

EpΘpXpY|X,Θ
log pY|X,Θ(y|G(y), θ) + c1 (5.5)

, with c1 constant w.r.t. G.

For all x, (in particular for G(y)), if X and Θ are independent, the log-
likelihood can be decomposed as:

log pY|X(y|x) = log pY,Θ|X(y, θ|x)− log pΘ|X,Y(θ|x, y)
X⊥⊥Θ
= log pY|X,Θ(y|x, θ) + log pΘ(θ)− log pΘ|Y(θ|y)

(5.6)

Applying the expectation w.r.t to the joint pY,Θ on both sides, we obtain

EpY
log pY|X(y|x) = EpY,Θ

{
log pY|X,Θ(y|x, θ) + log pΘ(θ)− log pY,Θ(θ|y)

}
= EpY,Θ

{
log pY|X,Θ(y|x, θ)

}
+ c1

(5.7)
The terms log pΘ(θ) and log pΘ|Y(θ|y) do not depend on x, hence c1 is a
constant w.r.t. x. Plugging back G(y) in place of x and applying the law of
total probabilities w.r.t. X on the right-hand side, we obtain:

EpY
log pY|X(y|G(y)) = EpΘpXpY|X,Θ

log pY|X,Θ(y|G(y), θ) + c1 (5.8)

2. The general measurement process described in Equation 5.1 induces log pY|X,Θ(y|G(y), θ)
to yield a simple analytic expression:

log p(y|G(y), θ) = − 1
2σ2 ‖y− F(G(y); θ)‖2

2 + c2 (5.9)

with c2 constant.

3. The likelihood term EpY
log pY|X(y|G(y)) can then be replaced in the objec-

tive (5.4) by

−EpΘpXpY|X,Θ

1
2σ2 ‖y− F(G(y); θ)‖2

2 (5.10)
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Equation 5.10 shows that the likelihood term can be evaluated by first sam-
pling a measurement y conditioned on a corruption parameter θ and signal x,
and then constrain G such that ‖y− F(G(y); θ)‖2

2 is close to zero.
Note that in this expression, the same parameter θ is used for simulating

ỹ from x̃ and y from x (see Figure 5.1 and section 5.3.3 for more details).
Unfortunately, this requires first sampling x from the signal distribution pX
which is unknown. In the following sections, we will see how we work around
this problem.

5.3.2 Handling the Prior Term

y
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Discriminator

Figure 5.2 – The figure illustrates the dependencies of the variables used for
dealing with the prior term in Equation 5.4. An observation y is
sampled, and then transformed by the generative network into a
reconstructed signal x̂ = G(y). One then simulates a measurement
ŷ := F(x̂; θ) from this reconstruction. We then enforce the distri-
butions of observations pY and simulated measurements pG

Y to be
similar using an adversarial loss. In order to produce indistinguish-
able distributions, the generator G has to remove the corruption and
recover a sample x̂ from pX.

Maximizing w.r.t. the prior term pX(G(y)) in equation (5.4) is similar to
learning a mapping G such that the distribution induced by G(y), EpY

pX(G(y))
is close to the distribution pX. The prior pX being unknown, the only sources
of information are the lossy measurements y and the known prior pΘ on the
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measurement process. In order to learn an approximation of the true prior pX,
we will use a form of generative adversarial learning, and build on an idea
introduced in the AmbientGAN model by (Bora et al. 2018).

AmbientGAN aims at learning an unconditional generative model G of the
true signal distribution pX, when only lossy measurements y of the signal are
available together with a known stochastic measurement operator F. In Ambi-
entGAN, a generator is trained to produce uncorrupted signal samples from a
latent code so that the generated signals when corrupted are indistinguishable
from the observation measurements. In (Bora et al. 2018), the authors show that
for some families of noise distributions pΘ, the generator’s induced distribution
matches the signal’s true distribution. Note that even if the generation process
of the observations y in AmbientGAN is similar to the one considered in this
paper (see Section 5.2.1), the objective is however different: when the aim of
AmbientGAN is to learn a distribution of the underlying signal by sampling a
latent space, ours is to reconstruct corrupted signals.

In order for G to produce uncorrupted signals, we will use an approach
inspired from AmbientGAN, as illustrated in Figure 5.2. Given an observation
y, one wants to reconstruct a latent signal approximation x̂ = G(y) so that a
corrupted version of this signal ŷ = F(x̂) will have a distribution indistinguish-
able from the one of the observations y. The generator G and a discriminator D
are trained on observations y and generated samples ŷ. The corresponding loss
is the following 1:

Lprior(G) := max
D

EY∼pY ,Ŷ∼pG
Y

{
log D(y) + log

(
1− D(ŷ)

)}
(5.11)

where pG
Y corresponds to the distribution induced by G’s corrupted outputs

(ŷ in Figure 5.2) , i.e. pG
Y (y) := EpΘpG

X

{
p(y|x, θ)

}
and pG

X denotes the marginal
distribution induced by G’s outputs (x̂ in Figure 5.2):

pG
X(x) := EpY

pG
X|Y(x|y) = EpY

δ
(
x− G(y)

)
This penalty enforces the marginal pG

X to be close to the true prior distribution
pX, and thus forces G to map its input measurements onto pX.

5.3.3 Putting everything together

In Section 5.3.1, we have shown that it is possible to maximize the average
log-likelihood term in Equation 5.4, given that we can sample from the unknown
prior distribution pX. In Section 5.3.2, we have shown how it is possible to
enforce the generator to produce samples from pX, without ever having access
to uncorrupted samples. The idea is then to use the distribution induced by the

1. the min term of the adversarial loss will be introduced later, see Equation (5.13)
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<latexit sha1_base64="Vi95YwknFrFzcB5LyqgiYSoMf0U=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjBfsBbSib7aZdutmE3YkQQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3iCRwqDrfjuljc2t7Z3ybmVv/+DwqHp80jFxqhlvs1jGuhdQw6VQvI0CJe8lmtMokLwbTO/m9e4T10bE6hGzhPsRHSsRCkbRWt3BhGKezYbVmlt3FyLr4BVQg0KtYfVrMIpZGnGFTFJj+p6boJ9TjYJJPqsMUsMTyqZ0zPsWFY248fPFujNyYZ0RCWNtn0KycH9P5DQyJosC2xlRnJjV2tz8r9ZPMbzxc6GSFLliy4/CVBKMyfx2MhKaM5SZBcq0sLsSNqGaMrQJVWwI3urJ69C5qnuWH65rzdsijjKcwTlcggcNaMI9tKANDKbwDK/w5iTOi/PufCxbS04xcwp/5Hz+ALHDj8o=</latexit><latexit sha1_base64="Vi95YwknFrFzcB5LyqgiYSoMf0U=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjBfsBbSib7aZdutmE3YkQQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3iCRwqDrfjuljc2t7Z3ybmVv/+DwqHp80jFxqhlvs1jGuhdQw6VQvI0CJe8lmtMokLwbTO/m9e4T10bE6hGzhPsRHSsRCkbRWt3BhGKezYbVmlt3FyLr4BVQg0KtYfVrMIpZGnGFTFJj+p6boJ9TjYJJPqsMUsMTyqZ0zPsWFY248fPFujNyYZ0RCWNtn0KycH9P5DQyJosC2xlRnJjV2tz8r9ZPMbzxc6GSFLliy4/CVBKMyfx2MhKaM5SZBcq0sLsSNqGaMrQJVWwI3urJ69C5qnuWH65rzdsijjKcwTlcggcNaMI9tKANDKbwDK/w5iTOi/PufCxbS04xcwp/5Hz+ALHDj8o=</latexit><latexit sha1_base64="Vi95YwknFrFzcB5LyqgiYSoMf0U=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjBfsBbSib7aZdutmE3YkQQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3iCRwqDrfjuljc2t7Z3ybmVv/+DwqHp80jFxqhlvs1jGuhdQw6VQvI0CJe8lmtMokLwbTO/m9e4T10bE6hGzhPsRHSsRCkbRWt3BhGKezYbVmlt3FyLr4BVQg0KtYfVrMIpZGnGFTFJj+p6boJ9TjYJJPqsMUsMTyqZ0zPsWFY248fPFujNyYZ0RCWNtn0KycH9P5DQyJosC2xlRnJjV2tz8r9ZPMbzxc6GSFLliy4/CVBKMyfx2MhKaM5SZBcq0sLsSNqGaMrQJVWwI3urJ69C5qnuWH65rzdsijjKcwTlcggcNaMI9tKANDKbwDK/w5iTOi/PufCxbS04xcwp/5Hz+ALHDj8o=</latexit><latexit sha1_base64="Vi95YwknFrFzcB5LyqgiYSoMf0U=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjBfsBbSib7aZdutmE3YkQQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3iCRwqDrfjuljc2t7Z3ybmVv/+DwqHp80jFxqhlvs1jGuhdQw6VQvI0CJe8lmtMokLwbTO/m9e4T10bE6hGzhPsRHSsRCkbRWt3BhGKezYbVmlt3FyLr4BVQg0KtYfVrMIpZGnGFTFJj+p6boJ9TjYJJPqsMUsMTyqZ0zPsWFY248fPFujNyYZ0RCWNtn0KycH9P5DQyJosC2xlRnJjV2tz8r9ZPMbzxc6GSFLliy4/CVBKMyfx2MhKaM5SZBcq0sLsSNqGaMrQJVWwI3urJ69C5qnuWH65rzdsijjKcwTlcggcNaMI9tKANDKbwDK/w5iTOi/PufCxbS04xcwp/5Hz+ALHDj8o=</latexit>

✓
<latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit><latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit><latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit><latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit>

x̃
<latexit sha1_base64="3fS/bpr+ssmeyt6SN28ZCUbokhc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgm2VNpTNZtIu3WzC7kYsob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5AKro3rfjulldW19Y3yZmVre2d3r7p/0NZJphi2WCISdR9QjYJLbBluBN6nCmkcCOwEo+tpvfOISvNE3plxin5MB5JHnFFjrYee4SLE/GnSr9bcujsTWQavgBoUavarX70wYVmM0jBBte56bmr8nCrDmcBJpZdpTCkb0QF2LUoao/bz2cITcmKdkESJsk8aMnN/T+Q01nocB7YzpmaoF2tT879aNzPRpZ9zmWYGJZt/FGWCmIRMrychV8iMGFugTHG7K2FDqigzNqOKDcFbPHkZ2md1z/Ltea1xVcRRhiM4hlPw4AIacANNaAGDGJ7hFd4c5bw4787HvLXkFDOH8EfO5w9DX5Cy</latexit><latexit sha1_base64="3fS/bpr+ssmeyt6SN28ZCUbokhc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgm2VNpTNZtIu3WzC7kYsob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5AKro3rfjulldW19Y3yZmVre2d3r7p/0NZJphi2WCISdR9QjYJLbBluBN6nCmkcCOwEo+tpvfOISvNE3plxin5MB5JHnFFjrYee4SLE/GnSr9bcujsTWQavgBoUavarX70wYVmM0jBBte56bmr8nCrDmcBJpZdpTCkb0QF2LUoao/bz2cITcmKdkESJsk8aMnN/T+Q01nocB7YzpmaoF2tT879aNzPRpZ9zmWYGJZt/FGWCmIRMrychV8iMGFugTHG7K2FDqigzNqOKDcFbPHkZ2md1z/Ltea1xVcRRhiM4hlPw4AIacANNaAGDGJ7hFd4c5bw4787HvLXkFDOH8EfO5w9DX5Cy</latexit><latexit sha1_base64="3fS/bpr+ssmeyt6SN28ZCUbokhc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgm2VNpTNZtIu3WzC7kYsob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5AKro3rfjulldW19Y3yZmVre2d3r7p/0NZJphi2WCISdR9QjYJLbBluBN6nCmkcCOwEo+tpvfOISvNE3plxin5MB5JHnFFjrYee4SLE/GnSr9bcujsTWQavgBoUavarX70wYVmM0jBBte56bmr8nCrDmcBJpZdpTCkb0QF2LUoao/bz2cITcmKdkESJsk8aMnN/T+Q01nocB7YzpmaoF2tT879aNzPRpZ9zmWYGJZt/FGWCmIRMrychV8iMGFugTHG7K2FDqigzNqOKDcFbPHkZ2md1z/Ltea1xVcRRhiM4hlPw4AIacANNaAGDGJ7hFd4c5bw4787HvLXkFDOH8EfO5w9DX5Cy</latexit><latexit sha1_base64="3fS/bpr+ssmeyt6SN28ZCUbokhc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgm2VNpTNZtIu3WzC7kYsob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5AKro3rfjulldW19Y3yZmVre2d3r7p/0NZJphi2WCISdR9QjYJLbBluBN6nCmkcCOwEo+tpvfOISvNE3plxin5MB5JHnFFjrYee4SLE/GnSr9bcujsTWQavgBoUavarX70wYVmM0jBBte56bmr8nCrDmcBJpZdpTCkb0QF2LUoao/bz2cITcmKdkESJsk8aMnN/T+Q01nocB7YzpmaoF2tT879aNzPRpZ9zmWYGJZt/FGWCmIRMrychV8iMGFugTHG7K2FDqigzNqOKDcFbPHkZ2md1z/Ltea1xVcRRhiM4hlPw4AIacANNaAGDGJ7hFd4c5bw4787HvLXkFDOH8EfO5w9DX5Cy</latexit>

ỹ
<latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit><latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit><latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit><latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit>

G
<latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit>

F
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Discriminator MSE

Figure 5.3 – General Approach. We wish to train G to recover a plausible
signal from lossy measurements. As is shown in Section 5.2.2, this
requires the reconstructions x̂ := G(y) to have high probability
under the likelihood and the prior. For simplicity, variable E has
been omitted. Prior: we sample a measurement y from the data,
produce a reconstruction x̂, and sample a perturbation parameter θ.
We enforce the simulated measurement ŷ := F(x̂; θ) to be similar to
measurements in the data using an adversarial penalty. Intuitively,
this requires the network to remove the corruption. Likelihood : to
enforce G to produce reconstructions with high likelihood, it is
not possible to add a penalty to constrain the mean square error
(MSE) between y and ŷ to be small. This is because the underlying
perturbation that caused y is unknown, and may be different from
θ. Starting from ŷ we generate a ỹ (see figure 5.3) using the same
θ as the one used for generating ŷ. However, if ŷ is similar to
the measurements in the data, we can use it as a proxy for a
measurement of the data where its associated θ is known. We then
constrain ‖ŷ− ỹ‖2

2 to be small (ỹ = F(G(ŷ)).

generator’s output pG
X as a proxy for pX to compute an approximate value of

the expectation in Equation 5.5. This gives us the following penalty term:

Llikeli(G) := EpΘpG
X ,Ŷ∼pY|X,Θ

‖ŷ− F(G(ŷ); θ)‖2
2 . (5.12)

The full objective is a linear combination of penalties (5.11) and (5.12):
We wish to learn a network that produces reconstructions that (1) are likely

to have generated the data and (2) belong to the set of natural signals, by
only accessing lossy, inaccurate measurements of the signal. To enforce (2), we
sample a measurement y from the data, produce a reconstruction x̂ such that
its simulated measurement ŷ must belong to the data distribution. Intuitively,
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this requires the network to remove the corruption caused by the measurement
process. This is not sufficient to enforce (1). Since the measurement y has been
generated from a θ with the same underlying law pΘ but not necessarily with
the same valuation, we cannot directly minimize the distance between y and
ŷ. However, if (2) is enforced, ŷ is similar to the data, and we can use it as a
substitute for a measurement of the data. We can then produce a reconstruction
x̃ of the signal from ŷ, corrupt this signal again using the same θ that produced
ŷ, and minimize the distance between ŷ and its corrupted reconstruction ỹ. For
clarity, since the role of E is not essential to understanding the method from an
abstract level, it has been omitted.

arg min
G

Lprior(G) + λ · Llikeli(G) (5.13)

As illustrated by the dependencies highlighted in Figure 5.2, in the process of
minimizing Lprior, we sample from the marginal likelihood pG

Y (y) := EpΘpG
X

{
p(y|x, θ)

}
.

The expectancy in the likelihood term Llikeli is precisely computed w.r.t. this
distribution. We can then use the same samples in order to minimize the full
objective (5.13). This gives us the Algorithm 5.1 described below, along with the
dependency structure illustrated in Figure 5.3.

Algorithm 5.1 Training Procedure.
Initialize parameters of the generator G and the discriminator D.
while (G, D) not converged do

Sample {yi}1≤i≤n from data distribution pY
Sample {θi}1≤i≤n from PΘ
Sample {εi}1≤i≤n from PE
Set ŷi to F(G(yi), θi) + εi for 1 ≤ i ≤ n
Update D by ascending:

1
n

n

∑
i=1

log D(yi) + log(1− D(ŷi))

Update G by descending:

1
n

n

∑
i=1

λ · ‖ŷi − F(G(ŷi); θi)‖2
2 + log(1− D(ŷi))

2

end while

5.4 Stochastic Variation

In this section, we propose a variation of our model designed to handle the
stochasticity of the data.
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As mentioned above, image inpainting is usually an ill-posed problem so
that multiple signal reconstructions could explain a corrupted image. Most
approaches propose a unique image reconstruction among all the possible
ones. A more challenging task consists in learning the distribution of the
plausible reconstructions. A common approach to distribution learning consists
in training a neural model to map a latent code taken from an easy-to-sample
distribution, to a target output domain. By sampling the latent space, the image
distribution can then be recovered. The generator performing the mapping is
then supposed to learn to associate latent codes with some representations of
the information missing in the observation.

For simplification’s sake, we only consider the special case where the corrup-
tion is an inpainting corruption (Equation 5.14). This means that the likelihood
handling is much simpler. However we handle the prior term in a similar
fashion.

5.4.1 Setting

Like in Section 5.3, we suppose that there exists a domain of uncorrupted
signals X with distribution pX, but we only have access to incomplete measure-
ments from the domain Y with distribution pY. We replace the corruption process
by a masking process (we try to solve an inpainting probem) modeled through a
stochastic operator F : X → Y mapping signals x to their associated observa-
tions y. We will refer to F as the measurement process. F is parameterized by
mask m ∈ M that we can sample with pM, the mask distribution. Thus, given
signal x, we can simulate the associated observation y by sampling m from pM,
and then calculating:

y = F(x,m) = x�m+ c · m̄ (5.14)

where m ∼ pM is an occlusion mask, generated from a known distribution
with the same size as x and with components in {0, 1}, where 0 holds for a
masked pixel. m̄ denotes the complement of m, � is the element-wise multi-
plication, all the masked pixels are supposed to be reset to a constant c which
could be 0 or 1 depending on the observation process (see Section 5.6.1.6).
Random variables X and M are assumed to be independent and F is assumed
differentiable w.r.t. x. In the following, we will suppose that one can retrieve
the mask m directly from the observation y. This is not very restrictive since in
most situations this is easy to do. We denote T the mask extractor T(y) = m.

Our goal is to learn the distribution of the semantically plausible reconstruc-
tions x for an observation y. Said otherwise, one wants a mapping G which,
given an observation y and a random variable z produces a reconstruction of a
plausible underlying signal x, i.e. x = G(y, z). Since for a given y there are many



5.4 Stochastic Variation 77

possible reconstructions x, one wants different samples z, to lead to different
realizations x. The learned mapping G will associate to a given sample z, some
information not contained in the observation y for generating a full image x.
For example, if the generator is presented with a picture of a face with missing
eyes, G could learn to associate to different z values, different representations
of the color and shape of the eyes, thus generating diverse reconstructions x
for the same observation y. We will adopt throughout this work a conditional
adversarial approach, and G will then act as a generator. The model used for
inference is illustrated in Figure 5.4.
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Figure 5.4 – A corrupted image y is sampled from Y together with a latent z
from Z. The generator G then produces x̃ = G(y, z) a reconstructed
image.

5.4.2 Model

5.4.2.1 Adversarial loss

Since we do not have access to the true images in X, but only to data sampled
from partial observations in Y and to the measurement process F, a natural
adversarial formulation of the problem is the following:

LGAN(G, D) := Ey∼pY

[
log D(y)

]
+ E y∼pYm∼pmz∼pz

[
log
(
1− D(F[G(y, z), m]

)]
(5.15)

In this equation (see also Figure 5.5), D(y) is a binary discriminator trained to
separate observations from generated data, G(y, z) is a reconstruction x̃ of the
underlying signal x, F[G(y, z), m] is the signal ỹ obtained from x̃ when applying
mask m sampled from pm. This mimics the measurement process: ỹ is obtained
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from the generated x̃ in the same way as y is supposed to be obtained from the
real x. Note that m being a stochastic variable, the m samples for y and ỹ will
presumably be different. Given this loss function, training proceeds as usual by
solving:

minGmaxDLGAN(G, D) (5.16)

Equation 5.16 means that one wants to train a generator G so that the fake
observation ỹ = F[G(y, z), m] has a distribution similar to the one of the obser-
vations y. The difference w.r.t. classical conditional GAN formulation is that
since we are here in an unsupervised setting with only partial observations.
Adversarial training is then performed on observations y and on their simulated
reconstructions ỹ instead of on complete images x and x̃.

y
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ỹ
<latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit><latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit><latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit><latexit sha1_base64="TdkkW5fpMZrcad8MXRDzrRqYXlc=">AAAB8HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2QNpTNZtMu3WzC7kQoob/CiwdFvPpzvPlv3LY5aOsLCw/vzLAzb5BKYdB1v53S2vrG5lZ5u7Kzu7d/UD08apsk04y3WCIT3Q2o4VIo3kKBkndTzWkcSN4JxrezeueJayMS9YCTlPsxHSoRCUbRWo99FDLk+WQ6qNbcujsXWQWvgBoUag6qX/0wYVnMFTJJjel5bop+TjUKJvm00s8MTykb0yHvWVQ05sbP5wtPyZl1QhIl2j6FZO7+nshpbMwkDmxnTHFklmsz879aL8Po2s+FSjPkii0+ijJJMCGz60koNGcoJxYo08LuStiIasrQZlSxIXjLJ69C+6LuWb6/rDVuijjKcAKncA4eXEED7qAJLWAQwzO8wpujnRfn3flYtJacYuYY/sj5/AFE5JCz</latexit>

y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>z

<latexit sha1_base64="dZjnh52nrovi2SgVMlzTdOMUa6c=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix68diC/YA2lM120q7dbMLuRqihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveRcWtX5arN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD6euNAA==</latexit>

m
<latexit sha1_base64="hgrbGyfUs1b/Mr5+M32Ck4D9zmA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3a3STsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgkfYMtwI7CQKqQwEPgTj25n/8IRK8zi6N5MEfUmHEQ85o8ZKTdkvV9yqOwdZJV5OKpCj0S9/9QYxSyVGhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFraUQlaj+bHzolZ1YZkDBWtiJD5urviYxKrScysJ2SmpFe9mbif143NeG1n/EoSQ1GbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucP1tuM9Q==</latexit>

G
<latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit>

F
<latexit sha1_base64="ACzl4t/5Du62DNMzihm6aU7YIgY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BQTwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNCtl76JcqV+WqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZu/jM4=</latexit>

Discriminator

Figure 5.5 – Generative model for unsupervised learning of inpainting distri-
butions. The discriminator is trained to differentiate between the
generated ỹ = F(G(y, z), m) and samples y from the observation
dataset Y.

This model holds for any stochastically generated noise or missing value.
It could easily be refined for the inpainting task by focusing the image recon-
struction process on the missing part of the image. In Equation 5.15, the whole
image x̃ is supposed to be reconstructed by the generator G. Since one already
knows y, there is no need to reconstruct it and one could simply plug y for x in
the inpainting process. Let us suppose that one can retrieve the mask m from
the observation y. This is not very restrictive since in most situations, this will
amount at finding the pixels of y which equals to c . The reconstruction process
then becomes:

x̃ = G(y, z)� m̄ + y (5.17)

This ensures that the observed part y remains unchanged in x̃. The loss in
Equation 5.15 now becomes:
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LGAN(G, D) := Ey∼pY

[
log D(y)

]
+ E y∼pYm∼pmz∼pz

[
log
(
1− D(F[G(y, z) + y, m]

)]
.

(5.18)
Figure 5.5 illustrates the corresponding adversarial model.

5.4.2.2 Latent Reconstruction Loss

Although the above model has the potential for learning inpainting distribu-
tions, in practice the generator trivially learns a deterministic mapping from
observations y to reconstructed signals x̃. This has also been described in other
settings, e.g., (Zhu et al. 2017b; Almahairi et al. 2018). We then propose two
complementary losses which help to enforce the dependency on the stochastic
component.

5.4.2.3 Encoding z loss.

A simple way to condition the generator G on the stochastic component z is to
constrain the generator dependent outputs x̃ or ỹ to contain information from z.
This could be implemented by training the model to recover z from the output
ỹ for example. Let us denote z̃ := E(ỹ) this reconstruction with E : Y → Z a
mapping to be learned. This simply amounts at adding the following term to
the loss in Equation 5.18:

Lz(G, E) := E z∼pzy∼pYm∼pm

‖z− E(F[G(y, z) + y), m̄])‖2
2 (5.19)

This loss enforces the generator to use the information generated from the
latent z into the reconstruction of the masked input. However, although this
partially fulfills our goal, this is not sufficient, since as shown in (Almahairi et al.
2018) and (Chu et al. 2017), this auxiliary loss exhibits a "stenography" behavior:
the corresponding model tends to hide information generated by G when using
z as stochastic input, in a visually imperceptible way in the reconstructed image
x. One needs a more direct way of enforcing diversity in the generated images.
In order to alleviate this issue, we propose a second auxiliary loss.

5.4.2.4 Encoding y Loss.

An alternative to the above solution is to condition the z value to a sample y.
Let us start from the model in Figure 5.5 and introduce a latent variable ẑ = E(y)
with E being as before a mapping from Y to Z. Let ẑ and ỹ, the latter being the
output of the model in figure 5.5, be mapped successively to x̂ = G(ỹ, ẑ) and
ŷ = F(x̂) as illustrated in figure 5.6. Let us then constrain ŷ to be close to y via
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ỹ
<latexit sha1_base64="4gpXyml60cA4qrCn8tgtBHxxMvE=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ie0oWw2k3bp7ibsboQQ+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUUWjTmMeqFxANnEloG2Y49BIFRAQcusHkduZ3n0BpFssHkyXgCzKSLGKUGCs9DgzjIeTZdFituXV3DrxKvILUUIHWsPo1CGOaCpCGcqJ133MT4+dEGUY5TCuDVENC6ISMoG+pJAK0n88PnuIzq4Q4ipUtafBc/T2RE6F1JgLbKYgZ62VvJv7n9VMTXfs5k0lqQNLFoijl2MR49j0OmQJqeGYJoYrZWzEdE0WosRlVbAje8surpNOoexf1xv1lrXlTxFFGJ+gUnSMPXaEmukMt1EYUCfSMXtGbo5wX5935WLSWnGLmGP2B8/kDRjCQtw==</latexit>

x̂
<latexit sha1_base64="mabZmWMmUSa6qajBkkBtH11mLPk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//ci1EbF6wEnC/YgOlQgFo2ildm9EMXua9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2e9kIDRnKCeWUKaFvZWwEdWUoU2oZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExiM4Rle4c1JnBfn3flYtBacfOYY/sD5/AGxio/N</latexit>

ŷ
<latexit sha1_base64="MIQRtRNu2AtbSlq9aOk2tkcIifM=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120y7dbMLuRAihP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJ3czvPHFtRKweMUu4H9GREqFgFK3U6Y8p5tl0UKm6NXcOskq8glShQHNQ+eoPY5ZGXCGT1Jie5ybo51SjYJJPy/3U8ISyCR3xnqWKRtz4+fzcKTm3ypCEsbalkMzV3xM5jYzJosB2RhTHZtmbif95vRTDGz8XKkmRK7ZYFKaSYExmv5Oh0JyhzCyhTAt7K2FjqilDm1DZhuAtv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMJjAM7zCm5M4L86787FoXXOKmRP4A+fzB7MPj84=</latexit>

ẑ
<latexit sha1_base64="5G1msSpEBZdMTbn8ddLFxtXL/6k=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpZhN2J0IN/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//ci1EbF6wEnC/YgOlQgFo2ildm9EMXua9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOyVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2e9kIDRnKCeWUKaFvZWwEdWUoU2oZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExiM4Rle4c1JnBfn3flYtBacfOYY/sD5/AG0lI/P</latexit>

my
<latexit sha1_base64="RwW3gVsk7wt5qo7y66mTriRMe04=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBU9mtBT0WvXisaD+gXUs2zbahSXZJssKy9Cd48aCIV3+RN/+NabsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcjPzO09UaRbJB5PG1Bd4JFnICDZWuheP6aBccavuHGiVeDmpQI7moPzVH0YkEVQawrHWPc+NjZ9hZRjhdFrqJ5rGmEzwiPYslVhQ7WfzU6fozCpDFEbKljRorv6eyLDQOhWB7RTYjPWyNxP/83qJCa/8jMk4MVSSxaIw4chEaPY3GjJFieGpJZgoZm9FZIwVJsamU7IheMsvr5J2repdVGt39UrjOo+jCCdwCufgwSU04Baa0AICI3iGV3hzuPPivDsfi9aCk88cwx84nz9n143g</latexit>

G
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Figure 5.6 – Encoding y reconstruction loss. The input masked images y is
encoded into the latent vector ẑ. The generator uses this code to
generate a sample x̂ which is masked with the mask my shall pro-
duce ŷ close to y. The GAN loss process is the process generating
ỹ ∼ pY (as in Figure 5.5).

a Squared Error (MSE in Figure 5.6), and let their distribution be similar via
an adversarial loss (Discriminator in Figure 5.6)). Then G will be forced to use
both ẑ and ỹ. Let us briefly examine why. Thanks to the adversarial losses, ŷ
and y will have the same distribution. However they are different since they are
associated with different samples m. In order to have ŷ close to y, the generator
G will then be forced to use ẑ. Using the above notations (see also Figure 5.6),
the corresponding auxiliary loss is:

Ly(G, D, E) = Ey∼pY

[
log D(y)

]
+ E ỹ∼pY

ẑ∼E(y)

[
log
(
1− D(F[G(ỹ, ẑ) + ỹ), my]

)]
+ E y∼pY

ẑ∼E(y)
‖y− F[G(ỹ, ẑ) + ỹ), my]‖2

2

(5.20)

In this equation, ẑ ∼ E(y) means that ẑ is sampled from the distribution of
Z generated by sampling E(y). my denotes the mask extracted from y (see
Section 5.4.2.1). For simplification, we have omitted in the second and third
expectation terms, samplings needed to generate ỹ.

This auxiliary loss is to be used in conjunction with loss in equation 5.18. The
reconstructed image is, as before, x̃.

5.4.2.5 Putting It All Together

The two auxiliary losses (5.19) and (5.20) represent alternatives for enforcing
the use of z. We have tested the two losses separately, each of them improves
the quality and the diversity of the reconstructed images. We have found out
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that combining them improved further the image quality and diversity over
individual solutions (see Section 5.6.4). This is coherent with the finding of
(Zhu et al. 2017b). The complete objective is then a combination of losses (5.18)
(5.19) and (5.20):

L(G, D, E) = LGAN(G, D) + λzLz(G, E) + λyLy(G, D, E) (5.21)

Where the values of λz, λy are selected on a validation set. We describe the
complete training process in the algorithm Algorithm 5.2.

Algorithm 5.2 Training Procedure.
Require: Initialize parameters of the generator G, the discriminator D and the encoder

E.
while (G, D, E) not converged do

Sample {yi}1≤i≤n from data distribution pY
Sample {m̃i}1≤i≤n from pm
Sample {zi}1≤i≤n from pZ
Compute my

i = T(yi)

Set x̃i ← G(yi, zi)� m̄i + yi for 1 ≤ i ≤ n
Set ỹi ← F(x̃i, m̃i) for 1 ≤ i ≤ n
Set ẑi ← E(ỹi � m̄y) for 1 ≤ i ≤ n
Set z̃i ← E(yi) for 1 ≤ i ≤ n
Set x̂i ← G(ỹi, z̃i)� m̃i + ỹi for 1 ≤ i ≤ n
Set ŷi ← F(x̂i, my

i ) for 1 ≤ i ≤ n
Update D by ascending:

1
n

n

∑
i=1

log D(yi) + log(1− D(ỹi))

Update G and E by descending simultaneously:

1
n

n

∑
i=1

log(1− D(ỹi))

and
1
n

n

∑
i=1

λrecy · ‖ŷi − yi‖2
2 + log(1− D(ŷi))

and
1
n

n

∑
i=1

λrecz · ‖ẑi − zi‖2
2

end while
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5.5 Temporal Variation

In this section, we also consider the case of unsupervised video reconstruction.
We propose a model which can be used on different types of image sequences,
physical or natural videos. We restrain ourselves to the special case of inpainting
or video occlusion.

Our method does not make any assumption on the nature of the image
sequence, it does not require any prior knowledge like most methods used
for physical images do. This is up to our knowledge the first attempt to
solve the problem of unsupervised video completion using general Machine
Learning (ML) methods. This method is fully data driven and does not use any
hand-defined analytical prior on the sequence of images.

5.5.1 Setting

We suppose that there exists an unknown spatiotemporal sequence x ∼
pX,x ∈ RC×T×H×W , where x is a tensor denoting a C-channel sequence com-
posed of T frames of H×W pixels. We denote xt the t-th frame of the sequence
and xt2

t1
the subsequence from the t1-th to the t2-th frame inclusive. With this

notation, x = xT
1 . We do not have access to the original signal x but only to

corrupted observation sequences of this signal y ∼ pY, y ∈ RC×T×H×W . Our
objective is to reconstruct x from the corresponding observation y. For example,
x can be sea surface temperature (Sea Surface Temperature (SST)) at successive
times while image sequence y is SST measurements via IR satellites occluded by
moving clouds. We will suppose that y is obtained from x via a measurement
process modeled through a stochastic operator F as follows:

y = F(x,m) = x�m+ c · m̄ (5.22)

where m ∼ pM is an occlusion mask, generated from a known distribution
with the same size as x and with components in {0, 1}, where 0 holds for
a masked pixel. ~̄m denotes the complement of m, � is the element-wise
multiplication, all the masked pixels are supposed to be reset to a constant c
which could be 0 or 1 depending on the observation process (see Section 5.6).
Random variables X and M are assumed to be independent and F is assumed
differentiable w.r.t. x. In the following, we will suppose that one can retrieve
the mask m directly from the observation y. This is not very restrictive since in
most situations this is easy to do. We denote T the mask extractor T(y) =m.

As in Section 5.2.1, our objective is then to recover the sequence x from the
observations y and the corresponding binary masksm. Adopting a probabilistic
viewpoint, we want to select a reconstruction x∗ which is the most plausible
under the posterior distribution pX|Y(·|y).
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5.5.2 Model

As in the Section 5.2.2, we formulate the problem as finding the most probable
sequence conditioned on observations:

x∗ = arg max
x

log pX|Y(x|y) = arg max
x

log pX(x) + log pY|X(y|x) (5.23)

To tackle these issues, we then again introduce a mapping G : Y 7→ X,
parameterized by a neural network ϕ and associating measurement y to its
estimate x. G will allow us to approximate the underlying distribution of
training sequences.

By plugging G(y) into Equation 5.23, the objective becomes:

G∗ = arg max
G

Ey∼pY
[log pX(G(y))︸ ︷︷ ︸

prior

] + Ey∼pY
[log pY|X(y|G(y))]︸ ︷︷ ︸

likelihood

(5.24)

5.5.3 Prior handling

Let us first handle the prior term in Equation 5.24. We want the distribution
induced from G(y) to be close to pX. In order to do so, we will use an
adversarial approach. We will build on the ideas introduced in Bora et al. 2018;
Pajot et al. 2018 for still images. The process is illustrated in Figure 5.3. For a
given observation y, we want to generate an approximation of the unknown
true sequence x̂ ≡ G(y). The prior pX being unknown, the only available
information source is the observation y and the noise prior pM. For a given
generated signal x̂, we compute a corrupted version of x̂ through the known
mask m̂, ŷ ≡ F(x̂, m̂) with m̂ ∼ pM. We will train G to make the distributions
of y and ŷ indistinguishable. In order to succeed, the generator G will have to
remove the corruption from y and recover a sample x̂ from the distribution pX.
Generator G will then act as an inpainter conditioned on y. This will enforce
the distribution of the reconstructed sequences x̂ to be close to the distribution
of true ones x and maximize the prior term.

A direct application of the adversarial training idea suggests using a dis-
criminator operating directly on the sequences. We found out that using an
additional discriminator on frames worked better than using a unique one
operating on sequences. We then use two discriminators Ds and D f respectively
associated with whole sequences and with individual frames to optimize G. Ds
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separates sequences y and ŷ. D f distinguishes real frames yt from fake ones ŷt.
The loss function used for training G, Ds, and D f is:

min
G
L(G) = max

Ds ,D f
Ey∼pY ,ŷ∼pG

Y
[log Ds(y) + log(1− Ds(ŷ)) +

1
T

T

∑
t=1

log D f (yt)

+ log(1− D f (ŷt))]

(5.25)

with pG
Y(y) ≡ Em∼pM ,x∼pG

X
[pY|X,M(y|x,m)], corresponding to the distribution

of the corrupted sequences ŷ generated via the measurement operator F. pG
X(x)

is the distribution of x̂ induced by G from y, i.e. x̂ = G(y).

5.5.4 Likelihood Handling

Let us now handle the likelihood term in Equation 5.24:

Ey∼pY
[log pY|X(y|G(y))]. (5.26)

This likelihood is maximized when we are able to perfectly reconstruct y from
G(y). One way to ensure this property is to constrain G to directly use y for the
non-occluded area of the reconstructed image G(y). This can be easily achieved
through the following mapping:

G(y) ≡ ϕ(y)� m̄+ y �m (5.27)

where ϕ is an NN responsible for reconstructing the missing part of y,m = T(y)
is the mask retrieved from y. G maps Y to X with the help of mask m to ensure
that the network will only generate values for occluded pixel, while keeping all
the information from y. To summarize, optimizing the prior term amounts at
training ϕ for inputting the missing pixels while optimizing the likelihood term
is simply achieved by copying the non-occluded portion of y.

5.6 Experiments

5.6.1 Model architectures and Datasets

Model selection for unsupervised learning is an open problem. For all three
settings (image deterministic, image stochastic and video), we suppose that a
few full observed samples are available for model selection. We thus selected our
models by evaluating our model on a small subset of our data (our validation
set). The results on Section 5.6.3 are reported on a test set.
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5.6.1.1 Deterministic Image Model

For our reconstruction network G, we use the image to image ResNet archi-
tecture used in (Isola et al. 2016; Zhu et al. 2017b). For the discriminator D,
we used the Patch-GAN architecture (Zhu et al. 2017b; Isola et al. 2016). For
the generator, we have also found that using an image-to-image variant of the
recent Self-Attention GAN architecture (Zhang et al. 2018) stabilized training
and improved overall performance on a number of measurement processes.

As in (Zhang et al. 2018), we use imbalanced learning rates for the gener-
ator and the discriminator (0.0001 and 0.0004, respectively), using the Adam
optimizer ((Kingma et al. 2014)), using β1 = 0 and β2 = 0.9. The weights are
initialized using orthogonal initialization. We set λ = 2, and exponentially
decay the learning rate every 400 iteration, setting the decay factor to 0.995.

5.6.1.2 Stochastic Image Model

All models are trained using Adam (Kingma et al. 2014) with β1 = 0 and
β2 = 0.99. The batch size is set to 128, for all experiments. We only update
the networks every 4 step, artificially setting the batch size to 512. In order to
train the generative networks, we use the non-saturating adversarial hinge loss
(Miyato et al. 2018) (this loss is described in Chapter 2).

The networks used are similar to the ones described in Section 5.6.1.1.

5.6.1.3 Temporal Model

We briefly describe our model architecture and training setting. Our model
utilizes a ResNet-type self-attention network (Zhang et al. 2018) for the generator
G, composed of 3D-ResNet blocks and spatial self-attention layers. Spatial
discriminator Ds is a 2D convolutional NN for binary classification. Temporal
discriminator Dt uses the same structure as Ds but with 3D convolutions.

We apply hinge loss for as in (Zhang et al. 2018). All three networks are
trained using Adam optimizer with a learning rate of 1× 10−4 and (β1, β2) =
(0, 0.999) with batch size 1. All networks are initialized with normal distribu-
tions with a gain of 0.02 and have an architecture similar to the one described
in Section 5.6.1.1.

5.6.1.4 Still Image Dataset

We evaluate our approach using three different image datasets :

CelebA. (Z. Liu et al. 2015). Dataset of celebrities, containing approximately
200 000 samples. As (Bora et al. 2018), the images are center-cropped.
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LSUN Bedrooms (F. Yu et al. 2015). Dataset of bedrooms, containing 3

million samples.

Recipe-1M (Marin et al. 2018). Dataset of cooked meals, containing approx-
imately 600 000 samples.

All the images have been resized to 64× 64 for the standard experiment and
128× 128 for the stochastic experiment. In order to place ourselves in the most
realistic setting possible, every image has been corrupted once, i.e. there is
never multiple occurrences of an image corrupted with different corruption
parameters.

5.6.1.5 Video Dataset

SST The Sea Surface Temperature dataset used for the experiments includes
2 subsets of GLOBAL Sea Physical Analysis and Forecasting Product 3 from E.U.
Copernicus Marine Service Information. This is a monitor system providing
simulated but realistic global ocean SST data, which integrates satellite-derived
and in situ data by assimilation. Our dataset is a part of the hourly mean SST,
the finest timescale we have access to. The data we use is a part of the archive of
analysis integrating real-world data. We retrieved our training-and-validation
set and test set respectively from two different marine regions.

FaceForensics++ (Rössler et al. 2019) This dataset contains 1000 videos of
non-occluded face movements on a static background. It was initially created for
forgery detection. In our case, we extracted the faces from the original unforged
videos with face_recognition 4, thus keeping only the changing component of
the videos. The faces have been cropped and resized to 64×64.

KTH (Schuldt et al. 2004) A human action dataset containing 2391 video
clips of 6 human actions 5. The videos have been recorded with 25 subjects in
different environments. All frames have been resized to 64×64.

BAIR Robot Pushing Dataset (Ebert et al. 2017) This dataset contains
44374 videos recorded by an one-armed robot 6. It pushes objects and changes
movement direction in a stochastic manner. All videos share similar tabletop
with static background. All frames have been resized to 64×64.

3. http://marine.copernicus.eu/services-portfolio/access-to-products/
4. https://github.com/ageitgey/face_recognition
5. http://www.nada.kth.se/cvap/actions/
6. https://sites.google.com/view/sna-visual-mpc

http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024
https://github.com/ageitgey/face_recognition
http://www.nada.kth.se/cvap/actions/
https://sites.google.com/view/sna-visual-mpc
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5.6.1.6 Corruptions

Let us present the different measurement processes F used in the experiments,
also named corruptions:

Remove-Pixel. This measurement process randomly samples a fraction p of
pixels uniformly and sets the associated channel values to 0. All the correspond-
ing channel values are set to 0.

Remove-Pixel-Channel. Instead of setting to 0 a pixel for all channels as
in Remove-Pixel, one samples a pixel coordinate and a channel, and sets the
corresponding value to 0.

Convolve-Noise. Here F(x; θ) := k ∗ x + θ, where ∗ is the convolution oper-
ator and k is a mean filter of size l. For each pixel, noise θ sampled from a
zero-mean Gaussian of variance σ2

C is added to the previous result.

Patch-Band. A horizontal band of height h whose vertical position in the
image is uniformly sampled from the set of possible positions. For each pixel
falling inside the band, its associated value is set to 0. The resulting measure-
ment for pixel at column i and row j can be summarized as:

F(x; θ)i,j :=

{
0, if j ∈ {θ, . . . , θ + h}
xi,j, otherwise

(5.28)

where θ is uniformly sampled from {1, . . . , H− h}, and H is the image height.
In the experiments, h is set to 20.

5.6.1.7 Stochastic Corruption

We used two different masking processes. The first one denoted Patch(n,k)
consists in selecting n patches of size k× k pixels. The top left position of each
patch is uniformly sampled. These patches will correspond to an observation y,
meaning that all the other non-selected pixels are set to 0. A small border of 4
pixels in the image is also excluded in order to keep the background consistent.
The second one denoted Drop Pixel randomly samples a fraction p of pixels
uniformly and the three corresponding channel values are set to 0.

5.6.1.8 Video Corruption

The above datasets provide ground truth videos without corruption. In order
to generate corrupted observation sequences, we simulate different types of
occlusion depending on the nature of the videos. Each corruption process is
defined as a stochastic operator F as in Equation 5.22 with mask distribution
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pM. For a given video one then generates a sequence of random masks, one
mask being then associated to each frame of the sequence. Note that except
for the Remove-Pixel corruption process where two successive corruptions are
independent, for all processes, the generated corruption sequences are time-
dependent: the corruption pattern at time t will depend on the one at time
t− 1.

Cloud This process is specific for the SST dataset. It simulates realistically
video cloud masks on satellite images. Cloud masks are simulated using
Liquid Water Path (LWP) data (measured in g/m2), which characterizes the
total amount of liquid water present in the atmosphere between two points.
The LWP data are generated by PyCLES (Pressel et al. 2015) 7, a large eddy
simulation system. It simulates the evolution of clouds in time based on a
variant of anelastic equations of the atmospheric motion. The binary masks are
then obtained by setting the image pixels to 0 when their LWP value is above
a threshold. This produces realistic cloud coverage of the captured regions,
see Figure 5.16. Pixels occluded by the mask are set to c = 1. Thresholds are
selected in the interval 55 to 80 g/m2 to simulate clouds at different occlusion
rates. Statistics about the occluded area at different thresholds are presented
in Figure 5.20. For simulating occlusion, for each SST image sequence, we
sample randomly a sequence of time coherent masks from the LWP dataset to
be applied to the SST sequence.

Raindrops This process is a simplified model of random raindrops between
subject and camera, taking into account a blurring effect when raindrops leave
traces during exposure. It generates a set of white bars, each with a random
length θl and a constant width w. Bars move down at a random speed θv,
starting from a random initial position θp. All these values are normalized w.r.t
the frame edge length in ]0, 1[. The number of raindrops is pre-defined. Bars
return to the top once completely out of frame. Pixels occluded by the mask are
reset to c = 1. Note that as for Cloud, this is a time-dependent measurement
process, meaning that two successive masks are correlated.

Remove-Pixel This measurement roughly mimics severe damages on vintage
films. It masks randomly a fixed proportion p ∈ ]0, 1[ of pixels at each time
step and reset them to c = 0. Mask for each frame is generated independently
regardless the evolution of time. This is the only time-independent measurement
considered here.

Vertical-Moving-Bar This simple measurement operator generates a vertical
white bar crossing the sequence, very roughly mimicking a fence or any similar

7. https://github.com/pressel/pycles

https://github.com/pressel/pycles
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obstacle. The bar is generated with the following distribution parameters: width
θw, initial position θp, horizontal constant velocity θv. These values are in ]0, 1[
as for Raindrops. The moving direction is chosen randomly. The bar reappears
on the opposite side once it reaches the border. Masked pixels in observation
are reset to c = 1. This is a time-dependent measurement.

5.6.1.9 Evaluation Metrics

We used three complementary quantitative measures.

One could argue that the MSE is not a good metric for our model. Indeed,
if for instance the input lossy measurement of a face is missing its eyes, the
reconstructed eye color does not have any reason to be the same as the original
color and the squared error is mechanically high. However, as we hope to
output the most plausible possibility, the best model should have a low average
MSE.

FID. The Frechet Inception Distance (Heusel et al. 2017) samples recon-
structed examples x̃ and original uncorrupted examples x. The images are
embedded into a feature space (the last layer of InceptionNet) where, the mean
and the covariance of the embedding are estimated. The Frechet distance be-
tween these two statistics is then computed. The score is an indicator of the
visual quality of the generated samples.

MSE or MAE. We compute the Mean Square Error (Mean Squared Error
(MSE)) between the reconstruction and the original uncorrupted image. This is
not a significant measure of the visual quality, but it provides an indicator of
the reconstruction capacity of the models. The Mean Average Error is similar to
the MSE but indicates the absolute deviation from the real data.

Standard Deviation To evaluate the diversity of the reconstructions, we com-
pute the mean standard deviation of the reconstruction, over the mask recon-
structed pixels, for 10 different samples z, over 1000 images. This correlates
with the variation observed visually.

FVD Fréchet Video Distance (FVD, (“Towards Accurate Generative Models of
Video” n.d.)), compare the activation distribution of the generated samples from
pG

X to the real one sampled from pX. These distributions are extracted from
activation layers of NNs, which are pre-trained on video classification tasks.
The two distances are calculated for the whole sequence including occluded
and non-occluded regions.
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5.6.2 Baselines

5.6.2.1 Deterministic Baselines

Conditional AmbientGan. The context is the same as for our model: the
measurement process F is assumed known, there is no access to samples from
the uncorrupted signal distribution pX, but only to their corrupted counterpart
pY.

An unconditional generator G is trained using the AmbientGan framework
(Bora et al. 2018) for each type of measurement process F, in order to produce
samples from pX. The distribution induced by the generator pG

X is an approxi-
mation of pX (at the optimum, both distributions match, i.e. pG

X = pX). Given a
specific measurement y, the reconstruction x̂ is the signal from G that is closest
to y, as in (Bora et al. 2017). To find x̂ = G(ẑ), we search for the latent code ẑ of
G, such that ẑ = arg minz ‖y− G(z)‖2

2 + R(z). R(z) is a regularizing term that
enforces the latent code to stay in G’s input domain. This objective is optimized
using stochastic gradient descent. To train G, we use the same architectures and
hyperparameters as those provided by the authors. Because this approach may
be sensitive to the initial latent code, we reiterate this approach three times and
select the best resulting image.

Unpaired Variant. This is a variant of our deterministic model where we
have access to samples of the signal distribution pX. This means that although
we have no paired samples from pX,Y, we have access to unpaired samples from
pX and pY. This baseline is similar to our model but instead of discriminating
between a measurement from the data y and a simulated measurement ŷ, we
directly discriminate between samples x from the signal distribution and the
output of the reconstruction network x̂.

Paired Variant. This is a variant of our model where we have access to signal
measurement pairs (y, x) from the joint distribution pY,X. Given input measure-
ment y, the reconstruction is obtained by regressing y to the associated signal x
using a MSE loss. In order to avoid blurry samples, we add an adversarial term
in the objective in order to constrain G to produce realistic samples, as in (Isola
et al. 2016). The model is trained using the same architectures as our model,
and the hyperparameters have been found using cross-validation.

Deterministic Measurement Specific Baselines. We also compare our model
to baselines that were designed to remove specific corruptions.

Deep Image Prior (Van Veen et al. 2018). Given an input measurement y, a
generator Gφ parameterized by random parameters φ, and a random latent code
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MSEDiscriminator

Figure 5.7 – Unpaired Variant of our model. As opposed to our deterministic
model, this baseline has access to samples of the signal distribu-
tion pX. This baseline is similar to our model, however, instead of
discriminating between a measurement from the data y and a sim-
ulated measurement ŷ, we directly discriminate between samples
from the signal distribution and the output of the reconstruction
network x̂.

z, the reconstruction Gφ∗(z) is obtained by resolving the following optimization
problem:

φ∗ = arg min
φ

∥∥y− Gφ(z)
∥∥2

2 (5.29)

For measurement processes Patch-Band, Remove-Pixel and Remove-Pixel-
Channel (refer to Section 5.6.1.6), the resulting reconstruction Gφ∗(z) was not
satisfactory: G was consistently regressing to the corrupted values in the
measurement y, which led to unsatisfactory results. Formally, instead of solving
equation 5.29 we resolve the following objective:

arg min
φ

∥∥T(y− Gφ(z); θ)
∥∥2

2 (5.30)

Where T acts as a mask, and eliminates the terms associated with the pixels
from y that have been put to 0. Note that this method corresponds to the
inpainting formulation in (Van Veen et al. 2018). We used the implementation
provided by the authors 8.

Biharmonic Inpainting (Damelin et al. 2018). By considering inpainting as a
smooth surface extension domain, this baseline resolves a biharmonic equation

8. https://dmitryulyanov.github.io/deep_image_prior

https://dmitryulyanov.github.io/deep_image_prior
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<latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit><latexit sha1_base64="TfBfcOTZNZTelVx2SRwUa3YxdLE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9KDHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxrezevsJleaxfDCTBP2IDiUPOaPGWo27frniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvI4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDm/eMyw==</latexit>

F
<latexit sha1_base64="4yvi8gS7bSaqQjUNSml27H5N/t0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRYFMRjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49tZvf2ESvNYPphJgn5Eh5KHnFFjrcZdv1xxq+5cZBW8HCqQq94vf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzRedkjPrDEgYK/ukIXP390RGI60nUWA7I2pGerk2M/+rdVMTXvsZl0lqULLFR2EqiInJ7Goy4AqZERMLlCludyVsRBVlxmZTsiF4yyevQuui6lluXFZqN3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7I+fwBmnOMyg==</latexit><latexit sha1_base64="4yvi8gS7bSaqQjUNSml27H5N/t0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRYFMRjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49tZvf2ESvNYPphJgn5Eh5KHnFFjrcZdv1xxq+5cZBW8HCqQq94vf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzRedkjPrDEgYK/ukIXP390RGI60nUWA7I2pGerk2M/+rdVMTXvsZl0lqULLFR2EqiInJ7Goy4AqZERMLlCludyVsRBVlxmZTsiF4yyevQuui6lluXFZqN3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7I+fwBmnOMyg==</latexit><latexit sha1_base64="4yvi8gS7bSaqQjUNSml27H5N/t0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRYFMRjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49tZvf2ESvNYPphJgn5Eh5KHnFFjrcZdv1xxq+5cZBW8HCqQq94vf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzRedkjPrDEgYK/ukIXP390RGI60nUWA7I2pGerk2M/+rdVMTXvsZl0lqULLFR2EqiInJ7Goy4AqZERMLlCludyVsRBVlxmZTsiF4yyevQuui6lluXFZqN3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7I+fwBmnOMyg==</latexit><latexit sha1_base64="4yvi8gS7bSaqQjUNSml27H5N/t0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRYFMRjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49tZvf2ESvNYPphJgn5Eh5KHnFFjrcZdv1xxq+5cZBW8HCqQq94vf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzRedkjPrDEgYK/ukIXP390RGI60nUWA7I2pGerk2M/+rdVMTXvsZl0lqULLFR2EqiInJ7Goy4AqZERMLlCludyVsRBVlxmZTsiF4yyevQuui6lluXFZqN3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7I+fwBmnOMyg==</latexit>

x
<latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit><latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit><latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit><latexit sha1_base64="IArQpDG4Gw7Ax+5Wri9CZWKD4Bo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1YQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A5juM/A==</latexit>

y
<latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit><latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit><latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit><latexit sha1_base64="kBWpEtbVW3xlz0t9EJbdPDfcZn0=">AAAB6HicbZBNS8NAEIYnftb6VfXoZbEInkoigh6LXjy2YD+gDWWznbRrN5uwuxFC6C/w4kERr/4kb/4bt20O2vrCwsM7M+zMGySCa+O6387a+sbm1nZpp7y7t39wWDk6bus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjerd55QaR7LB5Ml6Ed0JHnIGTXWamaDStWtuXORVfAKqEKhxqDy1R/GLI1QGiao1j3PTYyfU2U4Ezgt91ONCWUTOsKeRUkj1H4+X3RKzq0zJGGs7JOGzN3fEzmNtM6iwHZG1Iz1cm1m/lfrpSa88XMuk9SgZIuPwlQQE5PZ1WTIFTIjMguUKW53JWxMFWXGZlO2IXjLJ69C+7LmWW5eVeu3RRwlOIUzuAAPrqEO99CAFjBAeIZXeHMenRfn3flYtK45xcwJ/JHz+QPnv4z9</latexit> x̂

<latexit sha1_base64="YM+LvH/AI/Nd5oo+ojM2SLm0rcY=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtMu3WzC7kQsoT/CiwdFvPp7vPlv3LQ5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrd5vfPItRGxesBpwv2IjpQIBaNorU5/TDF7mg2qNbfuzkVWwSugBoWag+pXfxizNOIKmaTG9Dw3QT+jGgWTfFbpp4YnlE3oiPcsKhpx42fzdWfkzDpDEsbaPoVk7v6eyGhkzDQKbGdEcWyWa7n5X62XYnjtZ0IlKXLFFh+FqSQYk/x2MhSaM5RTC5RpYXclbEw1ZWgTqtgQvOWTV6F9Ufcs31/WGjdFHGU4gVM4Bw+uoAF30IQWMJjAM7zCm5M4L86787FoLTnFzDH8kfP5A7A+j8k=</latexit><latexit sha1_base64="YM+LvH/AI/Nd5oo+ojM2SLm0rcY=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtMu3WzC7kQsoT/CiwdFvPp7vPlv3LQ5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrd5vfPItRGxesBpwv2IjpQIBaNorU5/TDF7mg2qNbfuzkVWwSugBoWag+pXfxizNOIKmaTG9Dw3QT+jGgWTfFbpp4YnlE3oiPcsKhpx42fzdWfkzDpDEsbaPoVk7v6eyGhkzDQKbGdEcWyWa7n5X62XYnjtZ0IlKXLFFh+FqSQYk/x2MhSaM5RTC5RpYXclbEw1ZWgTqtgQvOWTV6F9Ufcs31/WGjdFHGU4gVM4Bw+uoAF30IQWMJjAM7zCm5M4L86787FoLTnFzDH8kfP5A7A+j8k=</latexit><latexit sha1_base64="YM+LvH/AI/Nd5oo+ojM2SLm0rcY=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtMu3WzC7kQsoT/CiwdFvPp7vPlv3LQ5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrd5vfPItRGxesBpwv2IjpQIBaNorU5/TDF7mg2qNbfuzkVWwSugBoWag+pXfxizNOIKmaTG9Dw3QT+jGgWTfFbpp4YnlE3oiPcsKhpx42fzdWfkzDpDEsbaPoVk7v6eyGhkzDQKbGdEcWyWa7n5X62XYnjtZ0IlKXLFFh+FqSQYk/x2MhSaM5RTC5RpYXclbEw1ZWgTqtgQvOWTV6F9Ufcs31/WGjdFHGU4gVM4Bw+uoAF30IQWMJjAM7zCm5M4L86787FoLTnFzDH8kfP5A7A+j8k=</latexit><latexit sha1_base64="YM+LvH/AI/Nd5oo+ojM2SLm0rcY=">AAAB7nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtMu3WzC7kQsoT/CiwdFvPp7vPlv3LQ5aOsLCw/vzLAzb5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJrd5vfPItRGxesBpwv2IjpQIBaNorU5/TDF7mg2qNbfuzkVWwSugBoWag+pXfxizNOIKmaTG9Dw3QT+jGgWTfFbpp4YnlE3oiPcsKhpx42fzdWfkzDpDEsbaPoVk7v6eyGhkzDQKbGdEcWyWa7n5X62XYnjtZ0IlKXLFFh+FqSQYk/x2MhSaM5RTC5RpYXclbEw1ZWgTqtgQvOWTV6F9Ufcs31/WGjdFHGU4gVM4Bw+uoAF30IQWMJjAM7zCm5M4L86787FoLTnFzDH8kfP5A7A+j8k=</latexit>

✓
<latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit><latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit><latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit><latexit sha1_base64="+2a+YdAkK5gXAKPWKNIZ/6djIOk=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2RdBj0YvHCvYD2qVk07SNzSZLMiuUpf/BiwdFvPp/vPlvTNs9aOsLgYd3ZsjMGyVSWPT9b6+wtr6xuVXcLu3s7u0flA+PmlanhvEG01KbdkQtl0LxBgqUvJ0YTuNI8lY0vp3VW0/cWKHVA04SHsZ0qMRAMIrOanZxxJH2yhW/6s9FViHIoQK56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7DhWNuQ2z+bZTcuacPhlo455CMnd/T2Q0tnYSR64zpjiyy7WZ+V+tk+LgOsyESlLkii0+GqSSoCaz00lfGM5QThxQZoTblbARNZShC6jkQgiWT16F5kU1cHx/Wand5HEU4QRO4RwCuIIa3EEdGsDgEZ7hFd487b14797HorXg5TPH8Efe5w+j+Y8o</latexit>
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MSEDiscriminator

Figure 5.8 – Paired Variant of our model. As opposed to our deterministic
model, this baseline not only has access to samples of the signal dis-
tribution pX, but to signal measurement pairs (y, x) from the joint
distribution pY,X. Given input measurement y, the reconstruction
is obtained by regressing y to the associated signal x. In order to
avoid blurry samples, we add an adversarial term in the objective
in order to enforce G to produce realistic samples, as in (Isola et al.
2016). The model is trained using the same architectures as the
ones from our model.

to obtain a high order approximation of the image. This approximation is then
extended to the missing part of the image. This method assumes access to the θ

associated to the observations in the data (i.e. in this case, the mask).

Total Variation Denoising (Chambolle 2004). This denoising baseline aims to
minimize the total variation of an image i.e the integral of the absolute gradient
of the image. Reducing the total variation of the image removes unwanted
detail, such as white noise artifacts while preserving important details such as
edges and corners.

5.6.2.2 Stochastic Baseline

For this setting, we also compared our model with several baselines. Note that
in order to keep things comparable, all the networks used in the experiments
are the same.

Unpaired Variant. This is a supervised variant of our model where we do not
have access to paired (y, x) samples, but we have access to unpaired samples
from pX and pY. The baseline is similar to our model but instead of discriminat-
ing between a measurement from the data y and a simulated measurement ŷ,
we directly discriminate between samples x from the signal distribution and the
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output of the reconstruction network x̃. This should provide improved results
w.r.t. the unsupervised model developed in the paper.

Paired Variant. Here we have access to corrupted-uncorrupted pairs (y, x)
from the joint distribution pY,X. Given the masked image y, the reconstruction
is obtained by regressing y to the associated complete image x using a MSE loss.
In order to avoid blurry samples, we add an adversarial term in the objective,
which helps G to produce realistic samples, as in (Isola et al. 2016).

MisGAN. This baseline is adapted from (Li et al. 2018). MisGAN (see the
related work section) makes use of three generators; one for learning the data
distribution, one for the mask distribution and one for inputting the data, In
our adaptation, since we suppose the mask distribution known, we replace the
corresponding component in their model with the true corruption process as in
our model.

5.6.2.3 Temporal Baselines

Unsupervised Approaches We use two unsupervised baselines, one adapted
for SST and the other one specific of natural videos. The former is DINEOF
(Alvera Azcarate et al. 2005). This is a state-of-the-art data-driven completion
method in geophysics, and it has been used for SST observations, chlorophyll,
salinity, etc. It is a parameter-free interpolation technique based on empirical
orthogonal function (EOF). It adopts an iterative algorithm that calculates at
each iteration a truncated decomposition of EOF from known pixels, then
replaces the values marked as missing by a reconstruction from calculated EOF.
DINEOF does not make any assumption on the form of missing area and as
such could be used for other domains as well and for different types of complex
occlusion processes. However, DINEOF has been developed for remote sensing
and does not ensure the coherence between different input channels (e.g. for
RGB images).

The other one is Newson et al. 2014, one of the very few methods for unsuper-
vised natural video inpainting. It is representative of patch-based approaches
and it is still today state-of-the-art for many natural video occlusion processes.
It searches for the nearest neighbors of occluded area using an Approximate
Nearest Neighbor (ANN) search. The occluded area is reconstructed by as-
sembling information from these neighbors at multiple scales. The form of
the researched patches is supposed to be rectangular cuboids, e.g. a 5× 5× 5
spatiotemporal tensor, which limits its capability to adapt to more complex
cases like Cloud, Raindrops, Remove-Pixel.

Supervised Approaches There exists several supervised approaches to se-
quence inpainting. In order to evaluate the performance of our unsupervised
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method w.r.t. supervised ones, we compared with two supervised baselines.
As our goal is not to beat state-of-the-art supervised techniques, we used two
supervised adaptations of our model, respectively trained using unpaired and
paired supervision. They are described below.

Unpaired Variant This is a supervised variant of our video model in which
we have access to unpaired samples from pX and pY because we have access to
clean x data, it is then possible to supervise the approximation x̂ = G(y) by
discriminating directly between samples x from the signal distribution and the
output of the reconstruction network x̂. This is similar to the unpaired model
of the deterministic image model. Paired Variant Here we have access to
corrupted-uncorrupted pairs (y,x) from the joint distribution pY,X. Given the
masked image y, the reconstruction is obtained by regressing y to the associated
complete image x using a L1 loss. In order to avoid blurry samples, we add an
adversarial term in the objective, which helps G to produce realistic samples.
This model is similar to the Vid2Vid (T.-C. Wang et al. 2018) model, except
that they rely on optical flow which is not available in our case because of the
masked regions. This is similar to the paired model of the deterministic image
model.

5.6.3 Deterministic Results

We will now present our results. First, we compare quantitatively our model
with non-measurement specific baselines on CelebA. We then present qualita-
tive results with samples from our model and these baselines. Comparisons
with measurement specific baselines are presented in Section 5.8 for the three
datasets.

5.6.3.1 Quantitative Results

We compare our model with the baselines introduced in the previous section.
We report MSE scores between the reconstructed x̂ and the true signal x used
to generate the input y. Table 5.1 shows the MSE computed on the test set,
a randomly selected subset of CelebA comprised of 40000 images. Because
the Conditional AmbientGan model is too computationally expensive, we only
report the MSE on 40 randomly chosen samples of the test set.

Quantitatively, our model performs well. Except for the Conditional Ambi-
entGAN, all the methods are quite similar in terms of MSE. Our unsupervised
model reaches performance similar to its variants trained using additional su-
pervision. We also note that when the aligned signal-observation pairs are not
used (as in our Unpaired Variant), results are comparable – sometimes better –
than when these pairs are used directly (as in our Paired Variant). This suggests
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Table 5.1 – Average MSE of neural network based models on the test set of
CelebA, for different measurement processes. The first two rows
are models trained with no supervision, the last two rows with
additional supervision.

Remove-Pixel Remove-Pixel-Channel Patch-Band Convolve-Noise
Conditional AmbientGan 0.292 0.2829 0.1421 0.0814

Our Deterministic Model 0.0414 0.0409 0.0165 0.0088
Unpaired Variant 0.037 0.0336 0.034 0.0103

Paired Variant 0.0383 0.0401 0.0147 0.0084

that our likelihood term is sufficient to condition the reconstruction on the input
signal.

5.6.3.2 Qualitative Results

We now evaluate the quality of our reconstruction on three different datasets
(Section Section 5.6.1). Figure 5.9 shows reconstructions obtained from different
models on the CelebA dataset. As we can see, the measurement functions we
used, induce a large loss of information, and is difficult to reconstruct, even
for a human. We observe that Conditional AmbientGAN yields visually poor
results, especially for the Remove-Pixel and Remove-Pixel-Channel measure-
ment processes. We hypothesize that this is due to the large Euclidean distance
between the measurements and the associated signals, and the suboptimality of
the generator. Visually, the quality of our model’s reconstructions are coherent
with the quantitative results: they are comparable to its paired and unpaired
counterparts (Section 5.6.2). Figures (5.10), (5.11), (5.12), and (5.13) each show
reconstructions from a given measurement process on different datasets. Our
model is able to produce images with good visual quality while remaining
coherent with the underlying uncorrupted images. In Figures (5.28), (5.29),
(5.30) and (5.31) in Section 5.8, we compare our model with commonly used
inpainting or denoising methods. We can see that contrary to these methods, we
are able to capture semantic information from the dataset. Typically, in Figure
5.31, the model infers missing eyes or noses, without ever having seen them.
Additional samples are available in Section 5.8, refer to Figures (5.32), (5.33),
(5.34), and (5.35).

5.6.4 Stochastic Results

We first provide some examples of the images generated by the model pre-
sented in Section 5.4 for visual inspection and then detail quantitative results
comparing our model to different baselines.
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Measurement Conditional 
AmbientGAN,
Unsupervised

Ours, 
Unsupervised
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Variant, 
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Figure 5.9 – Model reconstructions for different corruption processes, on
CelebA. Each row corresponds to a specific corruption process,
and each column to a particular model.

Figure 5.10 – On the top row, randomly sampled test set measurements from
CelebA corrupted using Patch-Band(h = 20), and below, our
associated reconstructions.

Figure 5.11 – On the top row, randomly sampled test set measurements from
CelebA corrupted using Remove-Pixel(p = 0.95), and below, our
associated reconstructions.
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Figure 5.12 – On the top row, randomly sampled test set measurements from
LSUN corrupted using Patch-Band(h = 20), and below, our associ-
ated reconstructions.

Figure 5.13 – On the top row, randomly sampled test set measurements from
Recipe-1M corrupted using Remove-Pixel (p = 0.9), and below,
our associated reconstructions.

5.6.4.1 Qualitative evaluation

Figure 5.14 and 5.15 provide examples of reconstructions obtained on the
CelebA dataset with our model (Equation 5.21), respectively for the Patch and
for the Drop Pixel corruptions. The results are obtained using the model in
Figure 5.4. For each figure, the top row is the observation y and the rows
below are the associated reconstructions for different samples z ∼ pz. For
these experiments, the settings are respectively Patch(90,10), i.e. 90 patches are
selected from a full image x, each of size 10 pixels to build observation y, all
the other values being set to 0, and Drop Pixel, where 90% of the pixels are
randomly selected and their values on the three channels set to 0.

For each experiment, a specific training was performed for the selected
corruption model, meaning that a training was performed for Figure 5.14 and
another one for Figure 5.15. As can be seen, the reconstruction is not perfect, but
given the large amount of corruption and the unsupervised setting, the model is
able to reconstruct a large part of the information present in the original image,
together with a significant diversity. The latter could be seen by inspecting the
two figures 5.14 and 5.15. For example, the eyes most often come in different
shapes and colors. Both figures exhibit random - not cherry-picked - samples.
The reconstruction quality depends on the noise nature. It is easier for the
DropPixel corruption than for the Patch one which is particularly difficult.



98 unsupervised image reconstruction

Figure 5.14 – On the top row, randomly sampled measurements, from CelebA
corrupted using Patch with n = 90 and k = 10, and below associ-
ated reconstructions, for different latent vector z.

5.6.4.2 Quantitative analysis

Ablation Study In order to analyze the importance of the different model
components, we performed an ablation analysis, by training the model without
any auxiliary loss (equation 5.18), with the Encoding z auxiliary loss (equation
5.19), with the Encoding y auxiliary loss (equation 5.20) and with both losses
used together (equation 5.21). Results are reported in table 5.2 for the CelebA
128× 128 dataset for three corruption processes: Patch(1,32) corresponds to
a single patch of size 32× 32 for the observation y, Patch(90,10) corresponds
to 90 small patches of size 10 pixels for y, Drop Pixel corresponds to 90% of
pixels selected with their three-channel values set to zero. In table 5.2 we
report the values for the three quantitative measures: MSE scores between the
reconstructed x̃ and the true signal x used to generate the input y, Frechet
Inception Distance (FID) and the standard error deviation (see section 5.6.1.9).

Table 5.2 – MSE, FID, and standard deviation on the celebA dataset for three
noises.

One Patch Small Patch Drop Pixel
Encoding z Encoding y FID MSE std. FID MSE std. FID MSE std.

0 X 59.39 0.159 0.0463 20.37 0.062 0.024 69.73 0.130 0.058

X 0 56.38 0.161 0.0408 26.39 0.062 0.024 63.07 0.089 0.074

0 0 53.89 0.149 0.0325 28.42 0.069 0.014 74.82 0.131 0.026

X X 54.55 0.156 0.0645 19.11 0.059 0.035 70.19 0.130 0.109
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Figure 5.15 – On the top row, randomly sampled measurements, from CelebA
corrupted using DropPixel with p = 0.90, and below associated
reconstructions, for different latent vector z.

The three models implementing an auxiliary loss, all improve the diversity
for the three corruption processes (std. column) w.r.t. the simple base model
(Equation 5.18). The model combining the two auxiliary losses is clearly better
than the others for sample diversity. It thus seems better suited for learning
to generate reconstructed image distributions. For the large patch experiment,
all the models exhibit very close performance, while the simp;le base model
without any auxiliary loss performs slightly better. Here diversity comes at the
expense of the reconstruction fidelity as measured by the FID and MSE criteria.
For the multiple patches Patch(90,10) experiments, the models with auxiliary
loss all increase the MSE and FID performance w.r.t. the simple model ( equation
5.18), with the combined auxiliary loss clearly better than the other variants.
For the Drop Pixel experiment, again the proposed methods improve over the
simple model, but here the Encoding z version is better than the others.

Results in Table 5.2 are coherent with the ones reported in (Zhu et al. 2017b).
As the reconstruction performance are of the same magnitude, adding the
Latent Reconstruction losses improve the diversity of the model.
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Table 5.3 – MSE, FID, and standard deviation on the celebA dataset for three
noises and different baselines.

Model One Patch Small Patch Drop Pixel
FID MSE std. FID MSE std. FID MSE std.

Unpaired 46.90 0.129 0.0359 18.55 0.053 0.015 60.28 0.098 0.032

Paired 45.66 0.113 - 18.32 0.044 - 59.38 0.078 -
Misgan 84.63 0.166 0.0322 25.37 0.101 0.014 86.42 0.149 0.027

Our Model 54.55 0.156 0.0645 19.11 0.059 0.035 70.19 0.130 0.109

Comparison with baselines As shown in table 5.3, our unsupervised model
(shown here with the combined auxiliary losses) reaches performance close to
its variants trained using additional supervision. MisGAN shows slightly worse
performance, due to the need to minimize the Generator and the Imputer GAN
Losses. The convergence of this model is also order of magnitude slower than
ours. As before, the proposed model largely increases the diversity compared
to the baselines meaning that it better learns a distribution of the reconstructed
examples. MisGAN also makes use of a stochastic input as our model does but
it is unable to generate examples with a significant diversity.

5.6.5 Temporal Results

Figure 5.16 – SST
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Figure 5.17 – FaceForensics++

Figure 5.18 – KTH

We show here samples from test sets. SST data (5.16) are masked with Cloud,
natural video datasets ( firuges 5.17,5.18,5.19) are masked with Remove-Pixel
and Raindrops. Sequences are accelerated 3 times to make movements more
visible. For each figures, row 1 and 3 correspond to observation y and rows 2
and 4 to their respective reconstruction x̂.
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Figure 5.19 – BAIR

5.6.6 Comparison with Baselines

LWP
(g/m2)

Occluded
Area (%)

FID FVD MAE (°C)

55 79.9± 9.6 32.49 134.40 .1273±.0443

60 69.6±12.8 22.95 79.13 .1047±.0396

65 55.9±15.1 17.75 75.07 .0988±.0378

70 39.5±14.6 8.01 40.76 .0739±.0324

75 24.5±11.5 5.58 30.07 .0698±.0305

80 13.4± 7.8 1.77 9.89 .0497±.0237

All 47.1±11.9 14.76 61.55 .0874±.0347

Figure 5.20 – Results with clouds generated at different LWP thresholds.

Method FID FVD MAE (°C)

Ours 8.01 40.76 .0739±.0324
Alvera Azcarate et al. 2005 27.99 323.61 .1214±.0248

Newson et al. 2014 —* —* —*

Figure 5.21 – Comparison of results with clouds at LWP threshold 70 g/m2.
*Unable to finish.

Results for SST Data Figure 5.20 shows the results for SST data with simu-
lated clouds at different occlusion rates. For most occlusion rates, the generated
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Dataset Method
Raindrops Remove-Pixel Vertical-Moving-Bar

FID FVD MAE FID FVD MAE FID FVD MAE

FF++
Ours 43.72 1574.89 .0834±.0187 93.28 1460.02 .0894±.0137 19.12 493.57 .1304±.0972

(1) 75.93 3424.11 .1208±.0272 110.15 3091.67 .0752±.0161 56.58 5775.25 .3286±.0815

(2) —* —* —* —* —* —* 9.04 316.55 .0494±.0501

KTH
Ours 56.56 2522.81 .0380±.0062 56.16 2639.24 .0429±.0037 39.05 588.94 .0711±.0505

(1) 71.69 6400.44 .0522±.0073 82.45 6660.02 .0403±.0040 34.90 3408.19 .0959±.0402

(2) —* —* —* —* —* —* 11.88 354.01 .0268±.0403

BAIR
Ours 27.33 1194.19 .0821±.0153 53.80 2073.90 .0997±.0087 11.55 496.38 .1619±.0590

(1) 89.87 4456.08 .2345±.0274 140.20 4014.17 .1424±.0103 67.06 7361.77 .5579±.0766

(2) —* —* —* —* —* —* 10.31 340.97 .1082±.0873

Table 5.4 – Results for FaceForensics, KTH, and BAIR. Compared with (1)
(Alvera Azcarate et al. 2005) and (2) (Newson et al. 2014). *Un-
able to finish.

sequences have an Mean Average Error (MAE) under 0.1 °C which is well below
the reference baseline (see Figure 5.20). They also have good FID and FVD
values, which means that they are spatially and temporally realistic (See Fig-
ure 5.16 for examples). For heavily occluded area, our model can realistically
reconstruct the data around the border, while the reconstruction near the center
of the cloud is of lower quality. We compare our results in Figure 5.21 at 70%
occlusion, with DINEOF, the SOTA agnostic method for image reconstruction
in IR images. The error reduction w.r.t. DINEOF is about 40% for MAE. We
have not been able to obtain results for (Newson et al. 2014) in reasonable time
for such complex masks. Note that (Newson et al. 2014) specifically designed
for imputation in natural videos is not adapted for this type of occlusion.

Results for Videos Table 5.4 gathers the results obtained for the three natural
video datasets with artificial measurements (Raindrops, Remove-Pixel, and
Vertical-Moving-Bar). For all measurements, the FID and Frechet Video Distance
(FVD) performance obtained by our model are 20%-50% better than DINEOF.
This means that our model better controls both the spatial and the temporal
generation quality than DINEOF. Globally, we achieve better MAE scores notably
for color videos with few exceptions (performance are close for Remove-Pixel).
As for Newson et al. 2014, the calculation could not be terminated in a reasonable
time for highly complex measurements such as Raindrops, and Remove-Pixel,
which make their search for cuboid patches in non-occluded area extremely
hard. Newson et al. 2014 performs better when the form of the masks is simple
such as the Vertical-Moving-Bars, for which completing patches could be easily
found in neighbor frames. However, the computation time of Newson et al.
2014 is much higher than our model. Note that reduced computation time was
an argument put forward in their publication. For a 30 frames 64×64 video,
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Newson et al. 2014 costs on average 1 minute, versus around 1 second by our
model.

Method FID FVD MAE

Ours, Unsupervised 43.72 1574.89 .0834±.0187

Unpaired, Supervised 20.86 575.08 .0547±.0105
Paired, Supervised 22.17 720.75 .0555±.0108

Figure 5.22 – Comparison with supervised baselines for FaceForensics++ with
Raindrops.

Comparison with Supervised Baselines Figure 5.22 compares our model
with the two supervised (unpaired and paired) variants described in Sec-
tion 5.6.2. Unsurprisingly, the performance of supervised models is far better
than the ones of our unsupervised model. We find out that the access to the
ground truth reduces dramatically the results for all three metrics. By using
supervision, FID is halved and FVD is between two and three times smaller.
The error reduction is smaller with MAE. We also notice that the unpaired
version performs better than the paired one in terms of sequence completion
quality (FVD) as the L1 loss introduces a strong constraint for the reconstruction.
It might be that our task is close to a generation task, and that the L1 loss
constraints too much the generation.

5.6.7 Ablation Study

Method FID FVD MAE (°C)

Ours 8.01 40.76 .0739±.0324
Recurrent variant 13.29 67.37 .0960±.0431

Static variant 35.91 279.78 .1036±.0047

Figure 5.23 – Comparison of results for SST data for ablation study

We also conduct additional experiments in order to quantify the importance
of the temporal component.

In a first series of experiments, we remove the sequence component from
our model, i.e. removing the sequence discriminator Ds and replacing the 3D
generator by a 2D one generating individual frames.

Figure 5.23 shows that our model clearly improves temporal quality by
reducing FVD by a ratio of 7 compared to the model without the temporal
component (denoted Static variant in the table). Note that FID is also clearly
improved by a factor of 4. This gives more evidence that the model is able
to exploit temporal dependency for its image completion task. We provide
samples for this part in Figure 5.27.
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Figure 5.24 – Pajot et al. 2018. Abrupt inter-frame changes degrade temporal
quality

Figure 5.25 – Recurrent variant. Frames on the right are better than those on
the left.

Figure 5.26 – Ours

Figure 5.27 – Samples for ablation study.
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Our model generates a frame at time t, x̂t from a whole sequence of obser-
vations y. In a second series of experiments, we conditioned the generation of
frames x̂t only on past observations. We feed past observations into a convolu-
tional Recurrent Neural Network (RNN) (we used Gated Recurrent Unit (GRU)
in our experiments) and generate the reconstructed frame, still denoted G(y) by
abuse of notation, from the last hidden state of the RNN, which encodes all past
observations. The spatial discriminator operates as before, while the sequence
discriminator operates on past observations only, instead of the full sequence of
observations in our model.

See Section 5.6.2.3 for an illustration and for further description. Results in
Figure 5.23 - Recurrent variant, show that using only past observations makes
the completion less realistic and less accurate, but it still clearly outperforms
the model without time dependency.

5.7 Conclusion

We have proposed a general formulation to recover a signal from lossy
measurements using neural networks, without having access to uncorrupted
signal data. We have formulated the problem as finding a maximum a posteriori
estimate of the signal given its observation, for all observations in the training
set. This gives us a natural objective for our neural network, composed of a
linear combination of an adversarial loss for recovering realistic signals, and
of a reconstruction loss to tie the reconstruction to its associated observation.
Our approach yields results superior to the baselines, while staying competitive
with other model variants that have access to higher forms of supervision.

We have also proposed two variants. One where we present a new formu-
lation for learning the distribution of inpainted images in an unsupervised
setting, where only incomplete observations are available. The problem has
been formulated using a Conditional Generative Adversarial Network setting.
Training relies on the optimization of a criterion combining an adversarial loss
allowing the recovery of sharp realistic signals, and a latent reconstruction loss
allowing to condition the reconstructed image to an incomplete observation. For
the second variant, we tackle the problem of inpainting a sequence of occluded
observations. Our model is augmented with two discriminators classifying
real and generated observation sequences. We show that our model is able
to complete spatiotemporal data without ground truth supervision when we
have a stochastic model of the occlusion process. Our results for SST data and
natural videos show that the recovered sequences are realistic, especially when
the occluded area is highly complex.
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5.8 Additional Samples

Measurement

Deep Image Prior

Cond AG

Biharmonic
Inpaiting

Our Model

Figure 5.28 – Baseline comparison for the CelebA dataset. Corruption is
Remove-Pixel (p = 0.95).

Measurement

Deep Image Prior

Cond AG

Biharmonic
Inpaiting

Our Model

Figure 5.29 – Baseline comparison for the CelebA dataset. Corruption is
Remove-Pixel-Channel (p = 0.95).
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Measurement

Deep Image Prior

TV Denoising

Cond AG

Our Model

Figure 5.30 – Baseline comparison for the CelebA dataset. Corruption is
Convnoise(σC = 0.2, l = 3).

Measurement

Deep Image Prior

Biharmonic
Inpaiting

Cond AG

Our Model

Figure 5.31 – Baseline comparison for the CelebA dataset. Corruption is Patch-
Band(h = 20).
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Figure 5.32 – On the top row, randomly sampled test set images from LSUN. Be-
low, associated couples of corrupted observations and subsequent
reconstructions from our model. From top to bottom, corruptions
are Remove-Pixel-Channel(p = 0.95), Remove-Pixel(p = 0.90),
Patch-Band(h = 20), Convnoise(σC = 0.15, l = 3).
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Figure 5.33 – On the top row, randomly sampled test set images from Recipe. Be-
low, associated couples of corrupted observations and subsequent
reconstructions from our model. From top to bottom, corruptions
are Remove-Pixel-Channel(p = 0.95), Remove-Pixel(p = 0.90),
Patch-Band(h = 20), Convnoise(σC = 0.15, l = 3).
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Figure 5.34 – Additional samples from our model of the LSUN Bedrooms
dataset. From top to bottom, corruptions are Convnoise(σC = 0.15,
l = 3), Patch-Band(h = 20), Remove-Pixel-Channel(p = 0.90) and
Remove-Pixel(p = 0.95).
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Figure 5.35 – Additional sample from our model, on the Recipe dataset. From
top to bottom, corruptions are Convnoise(σC = 0.3, l = 5), Patch-
Band(h = 20), Remove-Pixel-Channel(p = 0.90) and Remove-
Pixel(p = 0.90).
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Figure 5.36 – On the top row, randomly sampled measurements, from the LSUN
dataset corrupted using Patch with n = 90 and k = 10, and below
associated reconstructions, for different latent vector. z

Figure 5.37 – On the top row, randomly sampled measurements, from the
Recipe dataset corrupted using Patch with n = 90 and k = 10, and
below associated reconstructions, for different latent vector. z
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Figure 5.38 – On the top row, randomly sampled measurements, from the
CelebA dataset corrupted using DropPixel with p = 0.90, and
below associated reconstructions from the paired baseline.

Figure 5.39 – On the top row, randomly sampled measurements, from the
CelebA dataset corrupted using DropPixel with p = 0.90, and
below associated reconstructions from the unpaired baseline.
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C O N C L U S I O N

In this thesis, we have presented our contribution for using Machine Learning,
and more specifically Deep Learning, to model dynamical system. Dynamical
system benefit from two paradigms : a physical paradigm which is based
on the knowledge from physicist and domain specialist, and a statistical one,
which is based on data. We tried to explicit both paradigms by building
hybrid dynamical systems.We focused on three tasks : forecasting, hidden state
discovery, and inverse problem solving. In the following we highlight our
contributions, as future work emerging from this thesis.

6.1 Summary of Contributions

Incorporating Prior Knowledge in Forecasting spatiotemporal
data

In Chapter 3, we have shown that using a data-intensive framework offers
a realistic alternative to the more classical physical approaches for modeling
complex natural processes. We believe that using both the statistical and
physical paradigms is essential for efficient modeling of complex physical
phenomena. By using as an example application a problem of intermediate
complexity concerning ocean dynamics, namely SST forecasting, we proposed a
Deep Learning models using inspiration from the physics under the form of
Partial Differential Equation (PDE). By using a solution of the advection-diffusion
equation, our model contains two modules: an estimator that, given some
input SST frame, can estimate the underlying flow and a Gaussian advection
module that advect the last image with the estimated flow. As we explicitly
model the displacement, we propose to add physical regularization, such
as on the divergence or the gradient of the flow, to the loss function. The
proposed approach can be easily generalized to a class of problems for which the
underlying dynamics follow advection-diffusion principles. We have compared
the proposed approach to a series of baselines. It is able to reach performance
comparable to a state-of-the-art numerical model and clearly outperforms
alternative models used as baselines.
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Learning Dynamical Systems from Partial Observations

In Chapter 4, we have introduced a general data-driven framework to predict
the evolution of spatiotemporal processes, when the system is complex and
possibly nonlinear and the state is not fully observed. Assuming the underlying
system follows a time-dependent differential equation, we estimate the unknown
evolution term with a neural network. We argue that this is a natural way to
model continuous-time systems. We propose a learning algorithm for the neural
network, and two models : one where we estimate the initial state variables
from some initial condition and one where we estimate the initial state variables
from the observations. We then place the forecast neural network in an Ordinary
Differential Equation solver in order to produce future predictions. Experiments
performed on two simulated datasets from fluid dynamics and on data from a
sophisticated data simulator used in climate modeling shows that the proposed
method not only is able to produce high quality forecasts at different horizons,
but also learns with a good accuracy the underlying state space dynamics. We
have also proposed an experiment where we interpolate in time a physical
system with our neural network, which shows that the model has learned the
true dynamic.

Unsupervised Image Reconstruction

In Chapter 5 we have proposed a new formulation for learning the distribu-
tion of a signal using lossy measurements in an unsupervised setting, where
only incomplete observations are available. The problem has been formulated
using a Conditional Generative Adversarial Network Generative Adversarial
Network (GAN) setting. Training relies on the optimization of a criterion com-
bining an adversarial loss allowing the recovery of sharp realistic signals, and a
latent reconstruction loss allowing conditioning the reconstructed image to an
incomplete observation.

We have formulated the problem as finding a maximum a posteriori estimate
of the signal given its observation, for all observations in the training set. Our
approach yields results superior to the baselines, while staying competitive with
other model variants that have access to higher forms of supervision.

We have also proposed two variants. One where we present a new formu-
lation for learning the distribution of inpainted images in an unsupervised
setting, where only incomplete observations are available. The problem has
been formulated using a Conditional Generative Adversarial Network setting.
Training relies on the optimization of a criterion combining an adversarial loss
allowing the recovery of sharp realistic signals, and a latent reconstruction loss
allowing conditioning the reconstructed image to an incomplete observation.
For the second one, we have proposed a GAN-based framework to complete par-
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tially observed spatiotemporal data. Our model utilizes a generator to complete
missing pixels in observation sequences with the help of two discriminators
classifying real and generated observation sequences. We show that our model
is able to complete spatiotemporal data without ground truth supervision when
we have a stochastic model of the occlusion process.

6.2 Future Direction

Let us now briefly present extensions and future works that this thesis could
lead to.

Hybrid Forecasting

In Chapter 4 and Chapter 3 we have proposed two forecasting systems. The
first one uses prior knowledge from a PDE to model the evolution of a physical
system, and the second use a continuous-time neural network in order to model
the evolution of a dynamical system.

A natural perspective would be to consider a "hybridization" of the two
approaches. Let us use the example of fluid dynamic. By considering jointly
the evolution of the SST via an advection diffusion equation and the evolution
of the velocity field via and dynamical systems, we can write the following
system. 

∂I
∂t

+ (w.∇)I = D∇2 I.

∂w
∂t

= F(w, I, t).
(6.1)

Solving jointly this system could lead to strong forecasting performance by
merging strong prior knowledge of a process and deep learning expressivity.

Data Assimilation and Inverse Problems

For future work we plan to apply our framework to different corruption pro-
cesses, and evaluate our model’s performance in real-world settings, specifically
for retrieving scientific data from corrupted observation.

Our temporal model could be further tested using non-simulated stochastic
operators with cloud masks extracted from satellite images or cloud data service.

It could be interesting to consider the task of unsupervised object removal.
By mixing together segmentation network and inpainting network, we could
remove unwanted objects from images without ever having access to images
without those objects.
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7.1 Dataset of Section 4.3.1

7.1.0.1 The Shallow Water Equations

The shallow-water model can be written as:

∂u
∂t

= +( f + ζ).v− ∂x(
u2 + v2

2
+ g∗.h) +

τx

ρ0(H + h)
− γ.u + ν∆u

∂v
∂t

= −( f + ζ).u− ∂y(
u2 + v2

2
+ g∗.h) +

τy

ρ0(H + h)
− γ.v + ν∆v (7.1)

∂h
∂t

= −∂x(u(H + h))− ∂y(v(H + h))

where:

• u, v, h are state variables, standing for velocity and mixed layer depth
anomaly)

• ζ is the vorticity.

• g∗ = 0.02 is the reduced gravity

• H = 500m is the mean mixed-layer depth.

• ρ0 is the density of the water set to 1000mg/m3

• γ is the dissipation coefficient set to 2 · 10−7s−1
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• ν is the diffusion coefficient set to 0.72m2/s

• τx is the zonal wind forcing defined in Eq. 7.1.0.1

The zonal wind forcing is defined as:

τx(y) = τ0 sin(2π(y− yc)/Ly

where:

– τ0 is the maximum intensity of the wind stress(in the standard case 0.15m.s−2).

– y is the latitude coordinate

– yc is the center y coordinate of the domain

– Ly is the length of the domain (Ly = 1600km in our case).

Here, the state is composed of the velocity vector and the mixed layer depth:

X =

u
v
h

 and H(X) = h

For our simulations, the spatial differential operators have been discretized
using finite differences on a Arakawa C-grid.

7.1.0.2 The Navier-Stokes Equations

∂u
∂t

+ (u · ∇)u = −∇p
ρ

+ g + ν∇2u

∂ρ

∂t
+ (u · ∇)ρ = 0

∇ · u = 0

(7.2)

where ∇· is the divergence operator, u corresponds to the flow velocity vector,
p to the pressure, and ρ to the density.

The Navier-Stokes equations are not of the form of equation 4.1 as we still
have the pressure variable p as well as the null divergence constraint. However,
the Helmholz-Leray decomposition result states that for any vector field a, there
exists b and c such that :

a = ∇b + c

and
∇ · c = 0

Moreover, this pair is unique up to an additive constant for b. Thus, we can
define a linear operator P by :

P(a) = c
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This operator is a continuous linear projector which is the identity for divergence-
free vector fields and vanishes for those deriving from a potential.

By taking a solution of equation 7.2 and applying P on the first equation, we
have, as u is divergence free from the third equation and as g derives from a
potential :

∂u
∂t

= −P[(u · ∇)u] + νP(∇2u)

where permuting derivation and P is justified by the continuity of the operator 1.
Thus, if u is solution to equation 7.2, it is also a solution of :

∂u
∂t

= −P[(u · ∇)u] + νP(∇2u)

∂ρ

∂t
= −(u · ∇)ρ

which is of the form of equation 4.1.
Conversely, the solution of the above system is such that :

ut =
∫

∂u
∂t

=
∫
−P[(u · ∇)u] + νP(∇2u)

which gives, by exchanging P and the integral 2 :

ut = P

[∫
−(u · ∇)u + ν∇2u

]
so that u is automatically of null divergence by definition of P. The two systems
are thus equivalent.

In conclusion, we have:

X =

(
u
ρ

)
, and H(X) = ρ

Moreover, u is generally a two or three-dimensional spatial field while ρ is a
scalar field.

7.2 Proof of Theorem Theorem 3.1

In the following, bold x and y will denote vectors of R2, while x and y will
correspond to the first and second components of x, respectively. Analogously,
u and v will correspond to the components of w. The 2D Fourier Transformation
F of f : R2 → R is defined as

1. One can use a finite difference approximation to show it for example.
2. To prove this, we can take a sum approximation to the integral and use again the linearity

then the continuity of P.
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F ( f ) =
∫

R2
f (x)e−i<ξ,x>dx

=
∫

R

∫
R

f (x, y)e−ixξ1−iyξ2dxdy
(7.3)

We apply the Fourier Transform F to both sides of Equation 3.3. As conse-
quence of the linearity of the Fourier transform, we can calculate decompose
the Fourier transform of the left hand side in the sum of the transforms of each
term. We have three terms: ∂I

∂t , (w.∇)I and −D∇2 I.

F (∂I
∂t
) =

∫
R2

∂I
∂t

e−i<x,ξ>dx

=
∫

R2

∂

∂t
(Ie−i<x,ξ>)dx

=
∂

∂t

∫
R2

Ie−i<x,ξ>dx

=
∂F (I)

∂t

(7.4)

F ((w.∇)I) =
∫

R2
(w.∇)Ie−i<x,ξ>dx

=
∫

R

∫
R
(u

∂I
∂x

+ v
∂I
∂y

)e−ixξ1−iyξ2dxdy

= u
∫

R
e−iyξ2

∫
R

∂I
∂x

e−ixξ1dxdy + v
∫

R
e−ixξ1

∫
R

∂I
∂y

e−iyξ2dydx

= iξ1u
∫

R
e−iyξ2

∫
R

Ie−ixξ1dxdy + iξ2v
∫

R
e−ixξ1

∫
R

∂I
∂y

e−iyξ2dydx

= iξ1u
∫

R

∫
R

Ie−ixξ1−iyξ2dxdy + iξ2v
∫

R

∫
R

Ie−ixξ1−iyξ2dxdy

= (iξ1u + iξ2v)
∫

R

∫
R

Ie−ixξ1−iyξ2dxdy

= i < ξ, w > F (I)
(7.5)
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F (−D∇2 I) = −
∫

R2
D∇2 Ie−i<x,ξ>dx

= −
∫

R

∫
R

D(
∂2 I
∂x2 +

∂2 I
∂y2 )e

−ixξ1−iyξ2dxdy

= −D
∫

R
e−iyξ2

∫
R

∂2 I
∂x2 e−ixξ1dxdy− D

∫
R

e−ixξ1

∫
R

∂2 I
∂y2 e−iyξ2dydx

= −(iξ1)
2D

∫
R

e−iyξ2

∫
R

Ie−ixξ1dxdy− (iξ2)
2D

∫
R

e−ixξ1

∫
R

Ie−iyξ2dydx

= Dξ2
1

∫
R

e−iyξ2

∫
R

Ie−ixξ1dxdy + Dξ2
2

∫
R

e−ixξ1

∫
R

Ie−iyξ2dydx

= Dξ2
1

∫
R

∫
R

Ie−ixξ1−iyξ2dxdy + Dξ2
2

∫
R

∫
R

Ie−ixξ1−iyξ2dxdy

= D ‖ξ‖2F (I)
(7.6)

Regrouping all three previously calculated terms, we obtain

∂F (I)
∂t

+ (i < ξ , w > +D ‖ξ‖2)F (I) = 0 (7.7)

This is a first order ordinary differential equation of the form f ′(t) + a f (t) =
0, which admits a known solution f (t) = f (0)e−at. Thus, the solution of
Equation 7.7 is

F (I) = F (I)0 e−(i<ξ,w>+D‖ξ‖2)t

= F (I)0 e−i<ξ ,w>te−Dt‖ξ‖2 (7.8)

where F (I)0 denotes the initial condition of the advection diffusion equation
in the frequency domain. In order to obtain a solution of Equation 3.3 in the
spatial domain, we calculate the inverse Fourier Transform F−1 of Equation 7.8.
The multiplication of two functions in the frequency domain is equivalent to
their convolution in the spatial domain, i.e. F ( f ∗ g) = F ( f )F (g). Hence, the
inverse of both terms F (I)0 e−i<ξ ,w>t and e−Dt‖ξ‖2

can be calculated separately:

Multiplication by a complex exponential in the frequency domain is equiv-
alent to a shift in the spatial domain : e−i<ξ ,w>F ( f (x)) = F ( f (x − w)), for
v ∈ R2. Thus, for the first term,

F−1(F (I)0 e−(i<ξ ,w>)t) = I0(x− w) (7.9)

For the second term, we use the fact that the Fourier Transform of a Gaus-

sian function also is a Gaussian function, i.e. F ( 1
2πσ2 e−

1
2σ2 ‖x‖

2
) = e−

1
2 σ2‖ξ‖2

.
Identifying σ2 with 2Dt, we have:
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F−1(e−Dt‖ξ‖2
) =

1
4πDt

e−
1

4Dt‖x‖
2

(7.10)

As has been stated above, the solution is a convolution of both previously
calculated terms:

I(x, t) =
∫

R2

1
4πDt

e−
1

4Dt‖y‖
2
I0(x− w− y)dy

=
∫

R2

1
4πDt

e−
1

4Dt‖x−w−y‖2
I0(y)dy

(7.11)

which concludes the proof.

7.3 Proof of Theorem 4.1

In order to use gradient descent, we must first calculate the gradient of the
cost functional under the constraints, i.e. the differential of θ → EYJ (Y,H(Xθ)).

However, this implies calculating
∂Xθ

∂θ
, which is often very computationally

demanding, as it implies solving dim(θ) forward equations. The adjoint state
method avoids those costly computations by considering the Lagrangian formu-
lation of the constrained optimization problem introduced in equation 4.5, the
Lagrangian being defined as:

L(X, λ, µ, θ) = J (X) +
∫ T

0

〈
λt,

dXt

dt
− Fθ(Xt)

〉
dt

+ 〈µ, X0 − gθ〉
(7.12)

here, the scalar product 〈·, ·〉 is the scalar product associated to the L2 space
over Ω.

As, for any θ, Xθ satisfies the constraints by definition, we can now write:

∀θ, λ, µ, L(Xθ , λ, µ, θ) = J (Y,H(Xθ))

which gives :

∀λ, µ,
∂

∂θ
L(Xθ , λ, µ, θ) =

∂

∂θ
J (Xθ)

Now we have to calculate the differential of L w.r.t. θ and use it to have the
gradient of J . We start by differentiating L. In what follows, all considered
functions are supposed to be twice continuously differentiable in all variables
and we will use the notation ∂uF(u0) to designate the differential of F with
respect to u i.e. the unique linear operator such that:

F(u0 + δu) = F(u0) + ∂uF(u0)δu + o(δu)
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By hypothesis, we consider this operator to be always continuous in our case.
Straightforward calculus gives us:

∂J (Xθ
t )

∂θ
=
∫ T

0
2
〈

∂XH(Xθ
t ) · ∂θXθ

t ,H(Xθ
t )−Yt

〉
dt

Let us fix θ and a variation δθ. Then, we have, by definition:

Xθ+δθ = Xθ
t + ∂θXθ

t · δθ + o(δθ)

and, for any X and any δX:

Fθ(X + δX) = Fθ(X) + ∂XFθ(X) · δX + o(δX)

and:
Fθ+δθ(X) = Fθ(X) + ∂θ Fθ(X) · δθ + o(δθ)

so that:
Fθ+δθ(Xθ+δθ

t ) = Fθ(Xθ+δθ
t ) + ∂θ Fθ(Xθ+δθ

t ) · δθ + o(δθ)

Then, because F is twice continuously differentiable:

∂θ Fθ(Xθ+δθ
t ) = ∂θ Fθ

(
Xθ

t + ∂θXθ
t · δθ + o(δθ)

)
= ∂θ Fθ(Xθ

t ) + ∂X∂θ Fθ(Xθ
t ) · ∂θXθ

t · δθ

+ o(δθ)

and:

Fθ(Xθ+δθ
t ) = Fθ

(
Xθ

t + ∂θXθ
t · δθ + o(δθ)

)
= Fθ(Xθ

t ) + ∂XFθ(Xθ
t ) · ∂θXθ

t · δθ + o(δθ)

Moreover, as all differential operators below are continuous by hypothesis, we
have that:

‖(∂X∂θ Fθ(Xθ
t ) · ∂θXθ

t · δθ) · δθ‖ ≤ ‖∂X∂θ Fθ(Xθ
t )‖ ‖∂θXθ

t ‖ ‖δθ‖2

so that:

Fθ+δθ(Xθ+δθ
t )

= Fθ(Xθ
t ) +

(
∂XFθ(Xθ

t ) · ∂θXθ
t + ∂θ Fθ(Xθ

t )
)
· δθ + o(δθ)

We now have all elements to conclude calculating the derivative of L, with
some more easy calculus:

∂L
∂θ

=
∫ T

0

(
2
〈

∂XH(Xθ
t ) · ∂θXθ

t ,H(Xθ
t )−Yt

〉
+〈

λt, ∂θ∂tXθ
t − ∂XFθ(Xθ

t ) · ∂θXθ
t − ∂θ Fθ(Xθ

t )
〉)

dt

+
〈

µ, ∂θXθ
0 − ∂θgθ

〉
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By the Schwarz theorem, as X is twice continuously differentiable, we have
that ∂θ∂tXθ

t = ∂t∂θXθ
t . Integrating by parts, we get:∫ T

0

〈
λt, ∂θ∂tXθ

t

〉
dt =

〈
λT , ∂θXθ

T

〉
−
〈

λ0, ∂θXθ
0

〉
−
∫ T

0

〈
∂tλt, ∂θXθ

t

〉
dt

Putting all this together and arranging it, we get:

∂L
∂θ

=
∫ T

0

〈
∂θXθ

t , 2∂XH(Xθ
t )

?
(
H(Xθ

t )−Yt

)
−∂tλt − ∂XFθ(Xθ

t )
?λt

〉
dt

−
∫ T

0

〈
λt, ∂θ Fθ(Xθ

t )
〉

dt +
〈

λT , ∂θXθ
T

〉
+
〈

µ− λ0, ∂θXθ
0

〉
− 〈µ, ∂θgθ〉

We can now define:
At = −(∂XFθ(Xθ

t ))
?

and
Bt = 2(∂XH(Xθ

t ))
?(H(Xθ

t )−Yt)

and, recalling that λ can be freely chosen, impose that λ is solution of:

∂tλt = Atλt + Bt

with final condition λT = 0. We also choose µ = λ0 so that, finally, we have:

∂L
∂θ

= −
∫ T

0

〈
λt, ∂θ Fθ(Xθ

t )
〉

dt− 〈λ0, ∂θgθ〉

which concludes the proof.
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