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Preface
This thesis is the result of the research conducted to pursue a Ph.D. in Computer Science from

the University of Grenoble Alpes. It took place mainly in the ERODS team (Efficient and RObust

Distributed Systems) at Laboratoire d’Informatique de Grenoble (LIG) alongside in AGEIS

team at Grenoble Faculty of Medicine. The Ph.D research activities have been co-supervised

by Prof. Noël De Palma (ERODS) and Nicolas Vuillerme, Ph.D., HDR (AGEIS).

This thesis introduces a novel scalable and component-based deep learning parallelism

platform with a particular application on convolutional neural networks for medical imaging

segmentation. This work led to the following publications:

• Automating CNN Parallelism with Components [67], (2019 IEEE International Confer-

ence on Computational Science and Computational Intelligence (CSCI-ISHI) at: Las

Vegas, Nevada, USA)(DOI: 10.1109/CSCI49370.2019.00179).

• Auto-CNNp: a component-based framework for automating CNN parallelism [66], (IEEE

BigData 2019 PEASH at Los Angeles, CA, USA)(DOI: 10.1109/BigData47090.2019.9006175).

• R2D2: A scalable deep learning toolkit for medical imaging segmentation [65], Software:

Practice and Experience (DOI:10.1002/spe.2878).

• Variability and reproducibility in neural network for medical imaging segmentation

[160], scientific report (DOI: 10.1038/s41598-020-69920-0).

The source code of the software solutions developed throughout this thesis were protected via

a couple of APP (Agency for the Protection of Programs) copyright deposits with the Université

Grenoble Alpes (UGA) as a depositor :

• R2D2 (Rapid & Robust Digital Diagnostic) APP deposit

• Auto-CNNp APP deposit

This thesis has also a potential economic-spin off as it was selected as a laureate of the Out of

Labs researchers competition category of the Linksium incubator.

Grenoble, September 2020 S.G.
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Abstract
Deep neural networks (DNNs) and particularly convolutional neural networks (CNNs) trained

on large datasets are getting great success across a plethora of paramount applications. It has

been providing powerful solutions and revolutionizing medicine, particularly, in the medical

image analysis field. However, deep learning field comes up with multiple challenges: (1)

training Convolutional Neural Networks (CNNs) is a computationally intensive and time-

consuming task (2) introducing parallelism to CNNs in practice is a tedious, repetitive and

error-prone process and (3) there is currently no broad study of the generalizability and the

reproducibility of the CNN parallelism techniques on concrete medical imaging segmentation

applications.

Within this context, the present PhD thesis aims to tackle the aforementioned challenges.

To achieve this goal, we conceived, implemented and validated an all-in-one scalable and

component-based deep learning parallelism platform for medical imaging segmentation.

First, we introduce R2D2, an end-to-end scalable deep learning toolkit for medical imaging

segmentation. R2D2 proposes a set of new distributed versions of widely-used deep learning

architectures (FCN and U-Net) in order to speed up building new distributive deep learning

models and reduce the gap between researchers and talent-intensive deep learning. Next,

this thesis also introduces Auto-CNNp, a component-based software framework to automate

CNN parallelism throughout encapsulating and hiding typical CNNs parallelization routine

tasks within a backbone structure while being extensible for user-specific customization. The

evaluation results of our proposed automated component-based approach are promising. It

shows that a significant speedup in the CNN parallelization task has been achieved to the

detriment of a negligible framework execution time, compared to the manual parallelization

strategy.

The previously introduced couple of software solutions (R2D2 and Auto-CNNp) at our disposal

led us to conduct a thorough and practical analysis of the generalizability of the CNN paral-

lelism techniques to the imaging segmentation applications. Concurrently, we perform an

in-depth literature review aiming to identify the sources of variability and study reproducibility

issues of deep learning training process for particular CNNs training configurations applied for

medical imaging segmentation. We also draw a set of good practices recommendations aim-

ing to alleviate the aforementioned reproducibility issues for medical imaging segmentation

DNNs training process. Finally, we make a number of observations based on a broad analysis
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of the results of the already conducted CNN parallelism experimental study which led us to

propose a guideline and recommendations for scaling up CNNs for segmentation applications.

We succeeded to eliminate the accuracy loss with scale for the U-Net CNN architecture and

alleviate the accuracy degradation for the FCN CNN architecture.

Key words: Deep learning, software engineering, distributed optimization, distributed systems,

high performance computing, medical imaging, semantic segmentation,
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Résumé
Les réseaux neuronaux profonds (DNNs), et plus particulièrement les réseaux neuronaux

convolutifs (CNN) entraînés sur des grandes quantités de données, rencontrent un vif succès

dans une multitude d’applications capitales, et particulièrement en imageries médicales.

Cependant, l’entraînement de réseaux de neurones convolutifs (CNN) (1) est une tâche chro-

nophage. De plus, (2) distribuer l’entraînement des CNNs est un défi ardu en pratique car il

s’agit d’un processus fastidieux, répétitif et sujet aux erreurs. En outre, (3) il n’y a actuellement

aucune étude approfondie sur la généralisation et la reproductibilité des techniques de pa-

rallélisation des CNNs particulièrement sur des applications concrètes de segmentation en

imagerie médicale.

Dans ce contexte, cette thèse vise à relever les défis susmentionnés. Pour cela, nous avons

conçu, implémenté et validé une plateforme d’apprentissage profond à base de composants

qui passe à l’échelle pour la segmentation en imagerie médicale. Au début, on introduit R2D2,

une boîte à outils d’apprentissage profond de bout en bout qui passe à l’échelle. En effet,

R2D2 introduit également un ensemble de nouvelles versions distribuées d’architectures

d’apprentissage profond populaires afin d’accélérer l’entraînement effectif des modèles CNNs

innovants dans des délais raisonnables et réduire l’écart entre les chercheurs et l’apprentissage

en profondeur exigeant des compétences accrues. En outre, cette thèse introduit également

Auto-CNNp, un nouveau framework basé sur les composants logiciels pour automatiser la

parallélisation des CNNs en encapsulant et en cachant les tâches de routine de parallélisation

au sein d’une structure de base tout en gardant la solution logicielle suffisamment flexible et

extensible pour une personnalisation spécifique à l’utilisateur. Les résultats de l’évaluation de

notre approche automatisée basée sur les composants sont prometteurs. Ils montrent qu’une

accélération significative de la tâche de parallélisation CNN a été réalisée au détriment d’un

temps d’exécution du framework négligeable, par rapport au temps nécessaire à la stratégie

de parallélisation manuelle.

Le couple de solutions logicielles précédemment introduites (R2D2 et Auto-CNNp) nous

ont donné les outils appropriés pour effectuer une analyse expérimentale approfondie afin

d’étudier la généralisation des techniques de parallélisation des CNNs vers la tâche de seg-

mentation. Simultanément, nous avons mené une revue de littérature visant à étudier les

sources de la reproductibilité dans l’entraînement des modèles d’apprentissage profond pour

une configuration d’entraînement particulière de segmentation en imagerie médicale. Nous

proposons également quelques recommandations de bonnes pratiques afin d’atténuer ces
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problèmes précités de reproductibilité d’entraînement des DNNs pour la segmentation en

imagerie médicale. Enfin, nous faisons un certain nombre d’observations en nous basant sur

une analyse approfondies des résultats de l’étude expérimentale déjà menée sur le parallélisa-

tion des CNNs, qui nous ont permis de proposer des directives et des recommandations pour

distribuer l’entraînement des CNNs pour une segmentation sans perte de précision.

Mots clefs : Apprentissage Profond, Génie Logiciel, Optimisation Distribuée, Systèmes Distri-

bués, Calcul haute performance ,Imagerie Médicale, Segmentation Sémantique
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1 Introduction

1.1 Context

Deep learning is a subfield of machine learning where machines are able to learn without

being explicitly programmed. Deep learning field relies on a network of artificial neurons

inspired by the human brain. Indeed, it has gained a significant and unprecedented popularity

in recent years. As can be seen in Figure 1.2, the number of citations related to deep learning

topic which have been identified by the Web of Science research tool [44] during the last

decade are increasing at an exponential rate. These recent deep learning breakthroughs have

been achieved thanks to the development of computing power that is available nowadays and

the increased availability of big data. Indeed, deep learning has been outperforming classical

machine learning techniques across a wide range of relevant fields of applications such as

speech recognition [62], video processing [41] and many other domains including medical

image analysis domain [64] and specifically the medical imagining semantic segmentation

applications.

1.1.1 Semantic segmentation in medical imaging

Semantic segmentation of medical imaging involves detecting and contouring boundaries of

regions of interest in medical images like lesions, anatomical structures, or any other mean-

ingful morphological structures [175]. It consists in a pixel level classification of images, (i.e.

by assigning a label to every pixel in every image, we can split input images into semantically

meaningful regions [175]). Semantic segmentation plays a fundamental role in in computer

aided diagnosis [176, 163], clinical studies and medical treatment planning [173]. However,

manual medical image segmentation is not only a tedious, extensive and time consuming task,

but also it has to be performed by medical experts. Recent advances in deep neural networks

[114] (DNNs) and particularly convolutional neural networks [114] (CNNs) come to address

this issue. In fact, CNN-based applications are revolutionizing medicine. They have been

shown to be powerful tools to successfully tackle most common medical images challenges

[173, 64] and in particular medical semantic segmentation tasks [138, 174].

1
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Figure 1.1 – An overview of the main objectives of the PhD thesis alongside with research
questions addressed accordingly in each study.

1.1.2 Problems description & Thesis Goals

Figure 1.1 provides an overview of the main goals of this thesis and outlines the corresponding

research questions tackled in each study with respect to their related chronological order.

1.1.2.1 "How can we build a system which decreases the CNN training time in order to

train CNNs models effectively ?"

It is the first research question we aim to address in this thesis. Indeed, although convolutional

neural networks (CNNs) based medical applications have been providing powerful solutions,

efficiently training of CNNs models is a tedious and challenging task. It is a computationally

intensive process taking long time which represents a significant hindrance to scientific

research progress. In classic CNNs, the model is defined by a huge number of parameters

(i.e., typically in range of millions [107]) and requires a considerable volume of data and long

time (e.g., approximately 21 day to train GoogleNet [86] on ImageNet 1 dataset using a single

GPU), in order to adequately tune these parameters and train the CNN model effectively.

Hence, decreasing the training duration of CNNs throughout scaling up the training process

has become one of the most active areas of research making deep learning converge to high

performance computing (HPC) problems. These observations inspired us to try to address the

aforementioned issue by introducing R2D2, a novel scalable deep learning toolkit dedicated

1http://www.image-net.org/
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for medical imaging segmentation aiming to decrease the training duration and effectively

train CNN models.

1.1.2.2 How can we abstract the complexity of CNN parallelism process and reduce the

gap between skill-intensive deep learning and researchers ?

It is the second research question we intend to study in this thesis. This research question

stems and arises directly as a result of the previous research question (subsubsection 1.1.2.1).

Indeed, introducing parallelism to CNNs is a challenging task in practice. It is a tedious,

repetitive and error-prone process. Moreover, scaling up CNNs training process in practice

requires a considerable practical mastery of both deep learning and distributed optimization

techniques. The aforementioned problems which we stated while building R2D2 led us to

realize the importance and the need for not only automating routine tasks to avoid duplication

of effort while scaling up CNNs training, but also to adopt a component reuse approach while

considering the software extensibility principle. Hence, we intent to introduce also in this

thesis, Auto-CNNp, a component-based framework to automate CNN parallelism.

1.1.2.3 Does the recent CNNs parallelism techniques generalize to the imagining segmen-

tation applications ? What are the sources of variability of CNNs training process

and the reasons behind reproducibility issue for a particular CNNs training set-

ting ?

Unfortunately there is currently (1) no broad study of the generalizability of the last published

works [61, 183, 121, 208, 82] to the CNN parallelism for the segmentation tasks neither (2) a

study of the variability in the deep learning training task. The previously introduced couple of

research questions (subsubsection 1.1.2.1, subsubsection 1.1.2.2) led us to build two software

solutions (R2D2 and Auto-CNNp). The latters led us to go one step further by conducting a

thorough and practical analysis of the generalizability of the CNN parallelism techniques to

the imaging segmentation applications. Concurrently, this thesis aims to analyse and identify

the sources of variability in deep learning training process throughout an in-depth literature

review in order to better understand the challenges and the issues of the reproducibility

for a particular CNNs training configuration applied for medical image segmentation be-

fore proposing a set of good practices recommendations aiming to alleviate the identified

reproducibility issues for medical imagining segmentation DNNs training process.

1.1.2.4 How can we reduce the segmentation accuracy loss in CNNs parallelism ?

Finally, based on a thorough analysis of the results of all the already conducted CNN paral-

lelism experimental study we make a number of findings which led us to propose a guideline

and recommendations for scaling up CNNs for segmentation applications without accuracy

loss.

3
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Figure 1.2 – Deep learning topic citations number evolution per year during the last decade

In summary, in this thesis we propose an ultimate, all-in-one, integrated scalable and component-

based parallelism platform with a particular focus on medical imagining segmentation appli-

cations. We believe that gathering R2D2, Auto-CNNp and our introduced parallelism guideline

can offer an interesting technological platform to address the aforementioned challenges and

reduce the gap between skill-intensive deep learning and researchers for a better understand-

ing of the emerging deep learning field and paradigms.

1.2 Thesis Contributions

The significant contributions of this thesis are fourfold. They can be summarized as follows:

1. Firstly, we introduce R2D2, a scalable deep learning toolkit with the goal to assist health

professionals in the medical imaging analysis field to automatically identify pathologies

with more precision using deep-learning-based approaches throughout an intuitive

end-to-end medical imaging processing pipeline. R2D2 introduces as well a set of a

novel distributed versions of widely-used deep learning architectures in order to speed

up building new cutting-edge deep learning models. Furthermore, R2D2 empowered

us with the suitable tool to perform an thorough and practical experimental analysis to

study the generalization of the CNN parallelism techniques to the segmentation task.

2. Secondly, we introduce Auto-CNNp, a novel component-based software framework to

automate CNN parallelism. Auto-CNNp aims to streamline routine tasks throughout (1)

capturing cumbersome CNNs parallelization tasks within a backbone structure while (2)

keeping the framework flexible enough and extensible for user-specific personalization.

3. We perform an in-depth literature review aiming to identify and study the sources of

4



1.3. Thesis Organisation

variability in deep learning training process with the goal to better understand the

challenges and the issues of the reproducibility of neural networks training task for

medical image segmentation. We also propose some recommendations in order to

alleviate these issues.

4. Finally, based on a broad analysis of the already conducted CNN parallelism experi-

mental studies results, we make a number of observations which enabled us to propose

a guideline with the goal of providing researches with enough information and rec-

ommendations for scaling up CNNs for segmentation applications with a minimum

possible accuracy loss.

1.3 Thesis Organisation

The rest of this thesis is organised as follows:

• Chapter 2 provides state of the art and background information on artificial neural

networks and demystifies distributed deep learning training strategies. Also, this chapter

presents our evaluation environment and case studies. The presented concepts and

approaches are used throughout this manuscript. Our contributions are compared with

their related work in their own chapters.

• Chapter 3 presents the first building block of our proposed platform which we denom-

inate R2D2. The latter is a scalable deep learning toolkit with a particular focus on

medical imaging segmentation. We evaluated R2D2 on a couple of the introduced

medical imagining use cases. Concurrently, in this chapter we conducted an assessment

of the generalization of recent CNN parallelism approaches to the segmentation task.

This chapter looks alike a revised version of an article introducing R2D2 toolkit which is

under review for publication in the Software: Practice and Experience (SPE) journal.

• Chapter 4 introduces Auto-CNNp, our proposed component-based framework for au-

tomating CNN parallelism. We conduct a comprehensive assessment of our proposal

on a couple of medical imaging segmentation case studies. This chapter is very similar

to our accepted for publication articles in the IEEE BigData PEASH’19 workshop and

the IEEE CSCI’2019 international conference.

• Chapter 5.2 studies the variability and reproducibility of CNN parallelism for medical

imagining segmentation applications. A revised version of an article is under review for

publication in an international peer-reviewed journal (Scientific Reports).

• Chapter 6 presents our proposed guideline aiming to help researchers towards bring-

ing CNN parallelism into practice without accuracy loss for imagining segmentation

applications.

• Chapter 7 concludes this thesis and presents some future research directions that we

believe are worth investigating.
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2 State of the Art & Background

This chapter overviews the state of the art and provides the necessary background related

to the next chapters of this thesis. In section 2.1, we introduce deep neural networks key

abstractions with a particular focus on convolutional neural networks (CNNs). We then review

the main approaches for distributed training of deep neural networks in section 2.2. Finally,

we present the evaluation use cases alongside the assessment environment for the different

buildings blocks of our proposed scalable and component-based deep learning parallelism

platform.

2.1 Deep Neural Networks

In this section, we outline the basic concepts in deep artificial neural networks and we explain

the way that these networks operate, before diving in particularly widely-used convolutional

neural networks architectures.

2.1.1 Artificial Neural Networks

As the name suggests, artificial neural networks are inspired by the brain operating mechanism.

Its computation system is analogous to biological networks of neurons. Actually, human brain

is made up of millions of interconnected neurons that exchange electrical impulses through

synapses which enables us to make sense and learn new concepts [109]. How these artificial

neural networks work will be explained in the following.

2.1.1.1 Artificial Neural Networks principles

The core building blocks of artificial neural networks are neurons. Perceptron [162] is one

of the first and simplest artificial neural networks which was proposed by Frank Rosenblatt

in 1957. It is a single layer binary classifier with good performances in classifying linearly

separable problems. Giving that linear classifiers are limited in their complexity to represent

7



2. State of the Art & Background

Figure 2.1 – Neural network architecture

non trivial problems [139], artificial neural networks with layered architecture were introduced

[83] in 1965 [88, 170]. As shown in Figure 2.1, we can recognize three types of layers: the input

layer, the hidden layer, and the output layer. The input layer takes the raw input data. There

are one or more optional hidden layers which are all the layers between the input layer and the

output layer. The neurons in the hidden layers (represented by circles in Figure 2.1) compute

a weighted sums of all of their inputs, add a constant, known as the bias, and feed these sums

through a non linear activation function to the next layer (either a hidden layer or the output

layer if it is the last one).

This forward movement of calculations is done starting from the input layer to the output layer

which is a representation of the output passing by hidden layers. These calculations are known

as forward propagating. Once this forward movement of calculations is finished, the output is

compared with the expected value and we calculate the gradient of the loss function. Next,

the backpropagation optimization method is performed using gradient descent or any other

minimization strategies [116]. The gradient descent is an iterative minimization approach

that uses search directions to find a local minimum of a function (i.e. the loss function during

the backward propagation of errors). The search starts at an arbitrary starting point and then

takes a series of steps towards the minimal downhill, i.e. the direction opposite to the gradient,

and ideally do not stuck in saddle points [115]. The gradient descent optimization strategy has

multiple varieties such as stochastic gradient descent (SGD) [114], AdaGrad [43], RMSProp

[195], AdaDelta [213], and Adam [103].

Several iterations of this process, i.e the forward propagation and the backpropagation, is

repeated on the entire training data, in order to minimize the loss function and adjust DNN

parameters. The final valid settings of parameters is used later for predictions. The mul-

tiple processing layers in the artificial neural networks differ according to the hierarchical

representation levels of the features learned by the neurons at the same layer [214]. In the

image classification task for example, initial hidden layers which are close to the input layer,

recognize low abstraction level features (e.g. edges, motifs and colors). Once we navigate to

8
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deeper layers, high level features like familiar objects (e.g. doors, windows) might be detected

[169, 114, 116]. The neural network architecture introduced in Figure 2.1 is called a fully-

connected neural network because each neuron is connected to every neurons of the previous

layer [113]. Moreover, deeper networks with additional hidden networks can efficiently learn

and capture more complexes patterns. Machine learning methods that learn hierarchical

representations in data using deep artificial neural networks are known as deep learning

[11, 116, 56].

2.1.1.2 Activation Function

Activation function is a crucial feature during the learning phase of artificial neural networks

in order to solve complex nonlinear problems. It’s a scalar-to-scalar function that converts

the inputs of a neuron into an output signal called «unit’s activation level». The latter will

decide if a neuron should be activated or not depending on the relevance of its inputs for the

learning process. Several activation functions exist (e.g. Sigmoid, Tanh [100], ReLu [143]) and

their two main common properties are nonlinearity and differentiability. In fact, giving the

limitations of linear functions, more robust functions are needed to modelize more complex

issues. Hence, non-linear activation functions are used in order to introduce nonlinearity

to models. Moreover, considering that need to calculate the gradient of the loss function

during the backpropagation phase [89], the activation function should be differentiable to

make backpropagation possible. Finally, since during the calculation of weighted sums, we

may come out with numbers in any range, another main reason behind the use of activation

functions is their ability to restrain the amplitude of the outputs by squashing them in a certain

range [100].

2.1.1.3 Regularization

A core issue in machine learning is when a model performs well on training data but it has

poor performances when it faces new inputs (i.e. during test phase for instance). This problem

is known as overfitting [6, 56, 168] and it occurs when the model is too complex and has

too many degrees of freedom that he will be unable to learn by making generalizations of

new concepts. Fortunately, a significant amount of research has been done to come up with

strategies to solve this issue. These strategies are called regularizations techniques [56].

The most widely-used regularization techniques are the L1 and L2 methods and data aug-

mentation and dropout techniques [56]. The L1 and L2 methods [145, 55] penalize high value

network parameters by adding a regularization term in order to simplify the model and make

it less sensitive to overfitting. More details on dropout and data augmentation regularization

approaches will be given below.
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Figure 2.2 – Neural network before (a) and after (b) applying dropout regularization technique
[185].

Figure 2.3 – Left: A neuron with a probability p of presence at training time. Right: A neuron
always present during test phase [185].

Dropout

Dropout is a regularization method for neural networks introduced by Srivastava, et al. [185]

in 2014. It is an efficient technique to prevent complex co-adaptations of neurons on training

data and to reduce the complexity of the network. This leads to a better generalization of the

model and hence prevent overfitting [56]. As shown in Figure 2.2, the dropout regularization

technique randomly omits a set of neurons along with their corresponding activations with

a certain probability (p). A dropout probability of 50% for the hidden layers while keeping

all the input neurons has been proved to perform well on a wide range of tasks [185]. The

dropout method is applied only during the training phase to force our model to learn the same

patterns with different configurations of neurons. Therefore, the model will be less prone to

overfit the training data. It is not applied during test time (i.e. we do not ignore any neurons).

Otherwise, as can be seen in Figure 2.3, the output of each neuron is scaled by the dropout

probability (p) [185].

Data augmentation
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One technique to bypass overfitting consists in perform the training of the model on bigger

training datasets in order to forbid the model from memorization the networks parameters

rather than learning new concepts by generalization. This method is known as the data

augmentation technique [107, 131]. When it is performed on images for CNNs training it

consists in increasing the training dataset by adding new images derived from the original

dataset (i.e. generally by introducing rotations, cropping and distortions to the initial dataset).

Weight decay approach

The weight decay [56, 108] is a widely-used regularisation technique adopted not only to

improve the model generalization and hence prevent it from overfitting, but also to achieve a

faster convergence of the model training process and a better overall performance. Indeed,

the weight decay strategy which is also know as weight regularization technique is an effective

alternative especially in the context where large training datasets are rare and hard to acquire

such as deep-learning-based medical applications [56]. The weight decay strategy aims to

control the growth of the DNNs weights by also adding a regularization term to the loss

function.

2.1.1.4 Terminology

For the reminder of this manuscript, the term ’CNN architecture’ refers to the global structure

of the neural network (i.e., the number, order, size, etc., of each network’s layer). The term

’hyperparameter’ refers to a variable which is required to be defined before the CNN training

task begins. Also, the term ’CNN model’ denotes the output of the training process of a specific

CNN architecture on a particular training dataset and hyperparameters. The word ’epoch’

denotes a single cycle through the full training dataset.

2.1.1.5 Deep Learning architectures

The main deep learning architectures are, restricted Boltzmann machines (RBM) [79], deep

Boltzmann machines (DBMs) [166], deep belief networks (DBNs) [80], autoencoders (AEs)

[200, 201], recurrent neural networks (RNNs) [63], and convolutional neural networks (CNNs)

[107, 116, 102]. Since convolutional neural networks (CNNs) are the most widely-used and

successful architectures in computer vision tasks [179, 191] especially in medical imaging

field [161, 176, 99, 72], the remaining of this thesis, focuses only on deep convolutional neural

networks methods.

2.1.2 Convolutional Neural Networks

As with artificial neural networks, convolutional neural networks (CNNs) are inspired by

nature, in particular, visual cortex structure [84, 36]. They are a powerful multilayer neural
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networks designed to deal with images. Actually, if we use the fully-connected layers network

architecture, described in section 2.1.1.1, to work with images, we will end up with millions of

parameters to tune in order to train our model, to potentially caption patterns in images [113].

A gray scale image for instance, is a 2D matrix. Feeding it as an input to a fully-connected

network will lead to an exploding number of network connections and weights [33, 116].

Hence, training these fully-connected networks models would be impractical even using the

highest performing hardware like GPUs [148, 167]. CNNs address this computational problem

using some pretty basic ideas applied in a clever way. Actually, unlike fully-connected networks

where every neuron is connected to all its predecessors, each neuron in convolutional neural

networks is connected to a local subdivision of the neurons in the underlying layer. This size of

the region formed by this subset of neurons is a CNN hyperparameter [184, 158] known as the

Receptive Field [32]. The limited range of the latter makes CNNs easier to train because they

have much less parameters to tweak than fully-connected networks [107]. Another advantage

of CNNs is their ability to introduce some degree of shift, scale and distortion invariance

[116, 113] to the learning process. In fact, for image classification task for instance, and since

images are a 2D structures, the position of the classified objects in the image can vary a lot.

Training a typical fully-connected network to recognize the spatial configurations of objects

will lead to an increasing number of parameters and training instance. Due to the replication

of parameters and since we need to cover all the combinations and possible variations of

objects positions during the training process [116, 113]. CNNs address this issue by forcing the

extracting of local features by limiting the receptive field of hidden unit to be local [116, 105]

and by sharing the same parameters across all neurons in order to recognize the same pattern.

This concept is known as Parameter Sharing [114].

2.1.2.1 Architecture Overview

The architecture of convolutional neural network can differ according to the types and the

numbers of layers included. In a classic CNN architecture, multiple layers are stacked for a

specific number of times. How CNNs operate and what are their building components will be

further investigated in the following.

Inputs

In CNNs, the initial input layer has the size of the raw input images and holds their pixel values

[107, 111]. It has the following dimensions: width (w), height (h) and depth (d). The depth

of an image is the number of its color channels. A grayscale image, for instance, has 1 color

channel and an RGB image has 3 color channels.

Convolutional Layer
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Figure 2.4 – Convolution operation

The convolutional layer is the main building component of a CNN that does the heaviest

computational workload [2]. Actually, it relies on the mathematical convolution operation

which is a computationally intensive procedure which takes two input functions, f() and g()

for instance, and returns a third one (e.g. h). The convolution operation expresses the extent

of the overlap between the first function (f) as it is slided over the second one (g) [202].

A convolutional layer has several filters (or kernels) of equal size. Filters have smaller dimen-

sions than the input images. As showing in Figure 2.4 filters are small matrices of weights

which are applied to local regions in the input images. The convolution operation in CNNs

consists in lining up these filters and the corresponding input images patches (or receptive

fields). The next step is to multiply each pixel in the receptive field by the corresponding filter

pixel. After that, the filter slides (or convolves) along the input image directions (vertically

and horizontally) computing the dot product. The step size with which it advances is a hy-

perparameter known as the stride. This process is repeated with all the filters for all the input

images, and the output volumes produced by the convolution operations are known as the

feature maps. The convolution operation core objective in CNNs is to extract visual features of

the input volume. In fact, convolution aims to search for every possible match between filters

and receptive fields. This process will make the CNN learn to recognize some local patterns

in input images when the filters get activated every time they identify some type of visual

feature like oriented edges. This explains also the reason behind using multiple filter. Actually,

by different choices of kernels, different visual features can be identified. Finally, the feature

maps are stack along the depth dimension to generate the output volume which constitutes

the input of the following layer in CNN architecture [116, 113, 11, 114, 111].

Nonlinear Layer
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In the same perspective as for the role of activation functions in neural networks, its common

to apply nonlinear layer just after the convolutional layer in CNNs, so as to introduce the

powerful modelisation properties of nonlinear functions to our CNN. Previously, some non-

linear functions like sigmoid [196] and tanh [17] were adopted before Vinod Nair et al. [143]

proposed the ReLU nonlinear activation function. Nowadays, it’s the mainly used method

in the nonlinear layer in CNNs for two main reasons [56]. First, it decreases the training

time while keeping the same model accuracy because it’s computational efficient. Second,

it permits to avoid the gradient vanishing problem during training time. In CNNs, the ReLU

layer changes all the negative values of the input volume to zero. It’s formally described by the

following formula.

f (x) =
0 for x < 0

x for x ≥ 0

Pooling Layer

After introducing non-linearity to the CNN, the next layer is the pooling (or downsampling)

layer. Its main role is to progressively reduce the spatial dimensions of the input feature

maps. Therefore, this permits to decrease the number of the network parameters, which both

reduces the training time and controls overfitting. Downsampling operation is performed

using pooling layer on each feature map separately. It reduces their height and width without

affecting the depth. Different pooling functions might be used in pooling layer such as max

pooling and average pooling. However, the most popular one is the max pooling operation.

As can be seen in Figure 2.5, downsampling is performed with a 2x2 size filter applied with

a stride of 2. With max pooling filter, the pooling layer keeps the pixels with the maximum

values in every input volumes. Whereas, with average pooling filter, it computes the average of

every input volumes [107, 116, 113].

Fully Connected Layer

Similar to regular artificial neural networks already seen in subsubsection 2.1.1.1, neurons

in fully connected layer are connected to all neurons in the previous layer. Fully connected

layer is generally the final layer used to perform classification tasks with CNN. Actually, the

value of each neuron in fully connected layer indicates a classification score for a specific class

[107, 116].
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Figure 2.5 – Pooling operation.

2.1.2.2 Classical CNN architectures:

Throughout this section, we will briefly introduce the commonly used CNNs architectures that

significantly influenced the current state-of-the-art in the field. As we will notice, most of these

architectures share the same general design guidelines fundamentals of stacking repeatedly

almost the same building components (layers). Starting with applying convolutional layer to

the raw input to extract features followed by nonlinear layer to introducing nonlinearity to

the CNN immediately after. The next applied layer is a pooling layer which aims to gradually

reduce the dimensional extents of the input feature maps. The main influential architec-

tures became notorious by winner the ImageNet Large Scale Visual Recognition Competition

(ILSVRC) [164].

LeNet-5

LeNet-5 [116] is the pioneer convolutional neural network architecture which was introduced

by Yann Lecun in 1998. This successful first CNN was used to recognize and classify digits in

the MNIST database [117, 115]. It was designed specifically for postal services to automatically

recognize handwritten digits zip codes.

As can be seen in Figure 2.6, LeNet-5 takes a single channel input image of size 23 x 23,

performs convolution with six 5 x 5 kernels with a stride of one, then applies a 2 x 2 max

pooling subsampling layer. This convolution-subsampling layers sequence is repeated another

time before concluding with two fully connected layers and a final fully connected softmax

classification layer of size 10 to output the result. LeNet-5 has a total of 60 850 parameters

[116].
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Figure 2.6 – LeNet-5 Architecture [116].

Figure 2.7 – AlexNet Architecture [107].

AlexNet

AlexNet [107] was introduced by Alex Krizhevsky et al. in 2012 and represents one of the

major contributing architectures to the recent development of CNNs. This architecture won

the 2012 ImageNet [164] competition by largely dominating the other traditional computer

vision approaches (a top-5 error of 15.3% with 10.8 % points ahead of the runner up). This

major breakthrough draw the attention of the community to the powerful aspect of CNNs,

and hence contributed to the development of better CNNs architecture in the future. Actually,

as illustrated in Figure 2.7, AlexNet architecture is pretty similar to LeNet-5 design. Although,

it is a deeper network with 5 convolutional layers, downsampling layers, dropout layers, and 3

fully connected layers. Moreover, the ReLU [143] activation function was applied to introduce

nonlinearity and the dropout [185, 107] regularization technique was performed to avoid

overfitting. The dataset size was increased through data augmentation technique [153]. Since

AlexNet is a deeper CNN with 60 million parameter, the training has been divided into two

streams and was performed using two GTX 580 GPUs in order to decrease the execution time

of the computationally expensive training process.

GoogLeNet

GoogLeNet [191] was developed by Szegedy et al. in 2014. This CNN introduced by researchers
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Figure 2.8 – Inception module [191].

at google was basically inspired from AlexNet and won the 2014 ILSVRC classification and

detection challenges with a top 5 error rate of 6.7%. GoogLeNet has 22 layers and introduced

a novel concept known as the inception module which has considerably decreased the pa-

rameters number in the network (4 million parameters which are 12 times less number of

parameters than AlexNet).

The inception modules are inspired by the Network-in-Network architecture [125] and are

stacked multiple times on top of each other throughout the network. As can bee seen in Fig-

ure 2.8, the inception module consists to apply a multi-scale parallel sequence of convolutions

before aggregating the results at the end. Actually, applying convolutions at different scales

makes GoogLeNet able to extract multi-scale features as well. The inception module contains

also a 1 x 1 convolutions which are performed in order to reduce the inception module channel

depth and hence save computations. There are multiple follow-up versions of the inception

module [190, 192].

ResNet

The Deep Residual Network (ResNet) is a CNN which was introduced by Kaiming He et al. [75]

from Microsoft Research in 2015. ResNet is an ultra deep CNN (152 layers) which won the

ILSVRC 2015 challenge [164] with a top-5 error rate of 3.57%. Actually, increase the depth of

the network by adding naively more layer will lead to worse results. This phenomena is known

as degradation problem. ResNet architecture moved the depth limits of previously introduced

CNNs even further by introducing residual block which solves the degradation problem [75].

The idea behind a residual block is illustrated in Figure 2.9. In fact, in addition to the classic

calculations path followed by the input of a certain layer, the residual block offers skip connec-

tion which permits to bypass the classic path and pass the information directly to the output
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Figure 2.9 – Residual Block [75].

of the next layer. This process reduces the information loss during the gradient computations

and hence solves the vanishing gradient problem. Moreover, since the information is kept

throughout the calculations, residual blocks offer a resilience to layer deletion.

2.2 Distributed training of deep neural networks

After presenting in section 2.1 an overview of the state-of-the-art in deep neural networks

with a focus on convolutional neural networks, we briefly introduce throughout this section,

some background information on distributed training approaches of deep neural networks.

These methods are mainly divided into three different categories: data, model and hybrid

parallelism techniques.

2.2.1 CNN parallelism approaches

Distributed training approaches of DNNs are mainly divided into three different categories:

model, data and hybrid parallelism techniques.

2.2.1.1 Model Parallelism

Some DNNs models have a considerable size, and hence, they are not adapted to the memory

size of an individual training device (one GPU for instance) [206]. These models require to be

partitioned across all the nodes in the distributed system and every node trains a different

part of the model on the whole training dataset. In Figure 2.10, the blue rectangle stands for

a training node, the light blue circle represents a subset of a DNN model (e.g., a DNN layer)

and the arrow represents a connection between two successive subsets of the same model.

As can be seen, every node performs the training of only a specific subset of the model. This

parallelization schema is known as model parallelism technique [112, 39, 10].

Since the DNN model needs to be split across several nodes, the synchronization of computa-
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Node 1

Node 2

Node 4

Node 3

Figure 2.10 – Model parallelism strategy.

Node 1 Node 2 Node 3

Figure 2.11 – Data parallelism strategy.

tions during the training phase creates a communication overhead which in turn increases

the training runtime. Moreover, ensuring fault tolerance for the distributed system and the

implementation of model parallelism are a challenging tasks in model parallelism approach

[10, 39]. That is why model parallelism is rarely used in practice and will not investigated

further in this document.

2.2.1.2 Data Parallelism

The second distributed training approach of deep neural networks is called Data parallelism

approach. As illustrated in Figure 2.11, all nodes in the distributed system have the same

complete copy of the model. However, the training is done independently on each node using

a different subset of the whole training dataset, at the end of every training iteration, the

results of computations from all the nodes are combined using different synchronization ap-

proaches [112, 39, 10]. These approaches and the differences between them will be discussed

in subsection 2.2.2.
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2.2.1.3 Hybrid Parallelism

It is possible to combine both previously mentioned distributed training approaches (i.e.

model parallelism for every node and data parallelism across nodes [10]). However, data

parallelism has become the most popular [92, 61, 107, 183] distributed training approach for

the following reasons :

• The practical simplicity to introduce data parallelism [10] compared to the model paral-

lelism strategy when the model size fits in the training device’s memory.

• The recent success achieved by the data parallelism method [61, 183] to considerably

increase the minibatch size without significant segmentation accuracy loss.

Therefore, the rest of this background section focuses only on data parallelism approach.

2.2.2 Synchronous vs asynchronous approaches

In recent years, the largest amount of research done to scale up the training of DNNs evolves

around methods that aim to parallelize the computation of the gradient during the gradient

descent optimization method. Researchers has been mainly focused on two approaches that

will be introduced in the following.

2.2.2.1 Synchronous parameters averaging

The synchronous parameters averaging method is the most straightforward and the easiest

approach for data-parallelism. It is an iterative method that consists in the following steps:

First, we initialize the network parameters (i.e. weights and biases) and we propagate the

current version of the parameters to every worker. Next, each worker performs the training

of its local model using a different subset from the current mini-batch of training dataset.

Once the training is completed, every worker shares its locally computed gradients with other

workers directly or indirectly through a central parameter server [122]. Only when all workers

finish their calculations and propagate their gradients successfully, we update the model

with the average of all the parameters received from each worker. After that, the last updated

version of the model is sent to every worker along with their corresponding subset of the

next mini-batch. These steps are repeated while there is still more data to process for each

mini-batch in every iteration of each epoch [42, 10, 215].

Even if scaling up the training of DNNs can significantly reduce the training runtime, some-

times some factors can introduce an overhead. In fact, a slow network will create a bottleneck

and slows the training process [42, 180]. Moreover, a slow device as well will increase the

training runtime, due to the synchronous nature of this approach which forces all workers

to wait for updates from other workers in order to move to next iteration. Furthermore, this
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leads to one crucial question. How often should we average the parameters ? If we average

the network’s parameters after every iteration, the communication overhead will be high

and will submerge the extra time gain we earned from scaling up the training. And if we

average the network’s parameters rarely, the local parameters in every worker can diverge a lot.

Some preface research has been done to find a trade-off between averaging frequency and the

model accuracy . For instance, Hang Su et al. [189] propose an averaging period of 10 to 20

mini-batchs to accelerate the training runtime while keeping a reasonably good results [42, 10].

Another approach to decrease the communication overhead suggests to the mini-batch size

as much as possible to decrease the number of iterations during the training without affecting

the accuracy of the model. Facebook researchers suggest a linear scaling rule for the learning

rate [61] to solve this issue. This rule consists in multiplying the learning rate by the same

factor as the mini-batch size when the latter increases, in order to avoid the accuracy loss

during distributing training of DNNs.

2.2.2.2 Asynchronous Stochastic Gradient Descent

There are two major differences between the synchronous and the asynchronous stochastic

gradient descent (SGD) approaches. Firstly, in contrary to the synchronous method where

workers share the whole parameters with each others after the computation of the gradient,

in asynchronous approach only the updates of the training parameters are shared between

workers [215, 180]. Secondly, in asynchronous stochastic gradient descent the synchronous

update condition is relaxed. In fact, when a worker finishes its computation, it shares its

local parameters updates instantaneously with other workers [61, 42, 10] without being forced

to wait for them to complete their local computations. The straightforward advantage for

this approach is that it increases the throughput of the distributed system [180]. However,

it introduces a new additional problem know as the stale gradient issue [1]. In fact, by the

time a worker completes its local computations of gradient, the global parameters might be

updated many times by other workers who were faster than that worker [1]. An elementary

application of asynchronous SGD leads to a large amount of gradient staleness. For instance,

Gupta et al. [70] demonstrate that the average gradient staleness corresponds in general

to the number of workers which slows considerably the convergence of the DNN [39]. An

amount of research has been done to deal with the gradient staleness issue. Such as, the soft

synchronisation technique proposed by Zhang et al. [216] in 2016, or by limiting the staleness

effect by postponing faster workers. The latter technique was introduced by Ho et al. [81] in

2013. One last difference between the synchronous and the asynchronous SGD approaches

is that the latter is more resilient to machines failure than the synchronous update-based

method [39].

2.2.3 Centralized vs Decentralized stochastic gradient descent

As mentioned before in subsubsection 2.2.2.1, when workers share directly their training

parameters. These latter are aggregated through a central server known as a parameter server
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(PS) [122] and illustrated in Figure 2.12. The parameter server used in this centralized approach

is not required to be a single physical server in practice. In fact, a unique PS architecture

creates a communication congestion [10]. Other alternatives architectures to the unique PS

approach have been proposed, such as the hierarchical parameter servers methods introduced

by Gupta et al. [70] and Yu el al. [212] in 2016. Another alternatives approaches are used

to scale up the training of DNNs consists to get rid of the central parameter servers. For

instance, N Iandola et al. [187] proposed in 2015 a decentralized SGD where a peer to peer

communication is used to share parameter updates between all the nodes. Moreover, this

approach performs multiple compression techniques to the parameter updates vectors (e.g

quantization compression applied to a sparse update vectors) in order to decrease the size

of network communications. However, these compression techniques create an additional

computation overhead on worker nodes. Another decentralized approach known as the Ring

Allreduce architecture [150, 171, 42]. As illustrated in Figure 2.13, it consists in the following

steps: First, each worker node reads its own subset of the current mini-batch. After that, it

computes its gradients, and communicates it to its nearby successor on the ring and get in

turn the calculated gradients from its predecessor neighbor. In a ring that counts N workers,

it takes N-1 communications of gradients between workers, so that every worker receives

the required gradients values to compute the updated model. Finally, The Ring Allreduce

architecture is bandwidth optimal approach compared to the parameter server architecture

as it drastically reduces the communication overhead [53, 171, 42, 10].

As we have seen above, diverse approaches may be adopted in order to parallelize the training

process of DNNs. However, distributed training is not without a cost (e.g. synchronization

and network communications overhead, distributed training infrastructure setup time, DNN

model accuracy loss). In fact, synchronous parameters averaging method achieves better

results regarding the accuracy of the DNN models compared to the asynchronous approach,

particularly, with a short synchronisation period [216] alongside with a fast network intercon-

nects infrastructure (InfiniBand1 for instance). On the other hand, asynchronous method

further decreases the distributed training runtime but at the expense of DNN model accuracy.

Yet, good results may be achieved in practice if gradient staleness issue is properly managed.

2.3 Medical imaging evaluation case studies

2.3.1 CNN architectures for semantic segmentations

2.3.1.1 Fully Convolutional Network CNN architecture

The previously introduced CNN architectures in subsubsection 2.1.2.2 are used for image

classification tasks. However, CNNs are having a great success in multiple other use cases

including the images semantic segmentation task. The fully convolutional network (FCN) [127]

1More informations on the InfiniBand network interconnect can be found at the following link: https://en.
wikipedia.org/wiki/InfiniBand
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Figure 2.12 – Parameter server architecture [122]

CNN
segmentation
architecture

CNN
segmentation
architecture

CNN
segmentation
architecture

CNN
segmentation
architecture

CNN
segmentation
architecture

Gradients

Gradients

Gradients

Gradients

Gradients

Send

Send

Send

Send

Minibatch0_0

Minibatch0_1

Minibatch0_2Minibatch0_3

Minibatch0_4

Send

Receive

Receive

Receive

Receive

Receive
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Figure 2.14 – Fully Convolutional Network for semantic segmentation architecture [175]

is one of the most popular CNN architecture for semantic segmentation 2. It was introduced

by Jonathan Long et al. for image semantic segmentation task. As can be seen in Figure 2.14,

FCN is a convolutional neural network where the last typical fully connected layer is replaced

by an additional convolutional layer which makes the network able to deal with arbitrary-sized

input images [175]. Given that the input image dimensions gets smaller when we get deeper

in the network due to convolution operations. The FCN uses the transposed convolution [50]

technique during the upsampling step so that the output dimensions match the original input

image dimensions. However, this technique causes a loss of spatial information. That is why

the FCN uses skip connections to reduce the information loss during convolution operations

[175, 147].

2.3.1.2 U-Net CNN architecture

Another widely-used3 CNN architecture for semantic segmentation tasks is the U-Net archi-

tecture [161]. It is the second CNN architecture we introduce its distributed version in our

proposed solution. In figure Figure 2.15, each blue box denotes a multi-channel feature map.

The number of channels is represented on top of the box. White boxes denote copied feature

map and the arrows illustrate the diverse operations [161]. U-Net is an encode-decoder style

architecture. The encoder consists of a sequence of convolution, max pooling and ReLU

activation layers which reduce the spatial dimensions of the input volume. On the other

hand, the decoder gradually restores the initial input spatial dimensions through transposed

213927 citations for FCN by the end of January 2020
311291 citations for U-Net by the end of January 2020
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Figure 2.15 – U-Net network architecture [161]

convolution operation [50]. The U-Net architecture might be used in various tasks but it is

initially designed and mainly used for biomedical image segmentation [161].

2.3.2 Brain tumor segmentation use case

The first use case we have chosen in order to evaluate our proposed platform is a brain tumor

segmentation task; It was proposed during the decathlon medical segmentation challenge 4.

Actually, the brain tumor segmentation involves isolating the different tumor tissues in the

brain from healthy ones [87, 219, 60]. It is a crucial and challenging task in medical image

analysis because it plays an influential role in early diagnosis of brain tumors which in turn

enhance treatment planning and raise the survival rate of the patients [87, 60]. Yet, it is a

tedious and time consuming task because it might take hours even if it is manually performed

by expert radiologists [87].

2.3.2.1 Dataset:

The dataset has been provided during decathlon medical segmentation challenge for the brain

tumors segmentation task. It is a mix of two other datasets that have been initially made

publicly available during the «Multimodal Brain Tumor Segmentation Challenge: MICCAI

BRATS [135] 2016 and 2017». It contains multimodal MRI scans (i.e., 4D MRI scans [87]) of

complex and heterogeneously-located brain tumors that were captured using multiple distinct

MRI acquisition protocol [87] from 19 different institutional data contributors [135]. The

4More informations on the decathlon segmentation challenge can be found at the following links: http://
medicaldecathlon.com/ and https://decathlon.grand-challenge.org/
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2D-MRI slice of BRATS training dataset Corresponding brain tumor  ground-truth 
annotation

Figure 2.16 – BRATS MRI scan frame with its corresponding ground truth annotation

BRATS datasets have been initially manually segmented by one to four raters, using the same

annotation protocol. After that, the multimodal brain tumor MRI scans along with all their

corresponding ground truth labels were manually-reexamined and approved by experienced

neurologists [135]. Figure 2.16 shows an example of a brain MRI scan slice containing a tumor

and its related annotated MRI scan slice. The final dataset provided by decathlon and used to

build our model contains in total 750 annotated MRI scans. It was split into two data subsets.

The first partition is a training and validation dataset with 484 annotated MRI scans. The

second subset contains 266 annotated MRI scans dedicated to the testing phase.

2.3.2.2 Pre-processing pipeline:

Since decathlon original dataset involves multimodal MRI scans (4D), it was pre-processed in

order to extract the corresponding 2D images alongside with their annotations for every MRI

scan in the provided dataset. In order to do so, the initial dataset was reduced to T1-weighted

MRI scans (3D) [96]. After that, we extracted 70 2D-MRI slices per MRI scan. Therefore, at the

end of the pre-processing pipeline, the final training and validation dataset counts in total

33 880 2D-MRI images alongside with their related annotations. This contributes to avoid

overfitting without performing data augmentation regularization technique on the training

dataset. Also, the same pre-processing pipeline was applied to the testing dataset which

counts at the end 18 620 annotated 2D-MRI images.

2.3.3 Left atrium segmentation use case

The left atrial segmentation task was provided by the king’s college london university during

the left atrial segmentation challenge (LASC) [197]. As illustrated in Figure 2.17, the left atrium

segmentation consists in isolating the left atrium body from its surrounding organs structures

[197]. It plays a key role during the treatment protocol of patients with atrial fibrillation disease

[197] which is the most frequent cardiac electrical disorder provoked by abnormal electrical

discharges in the left atrium [24]. Besides that, the latter left atrium segmentation task is also
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2D MRI Slice of the input training dataset
(The yellow structure is the target left atrial 

chamber)  

Corresponding left atrium 
ground-truth manual segmentation

Figure 2.17 – Left atrium segmentation training dataset

essential for cardiac biophysical modelling procedure. Nonetheless, the thinness of the atrial

wall tissue makes the left atrium segmentation process a challenging task [197].

2.3.3.1 Dataset:

The dataset has been made publicly available by Philips Technologie GmbH, Hamburg, DE,

and King’s College London during the 2013 LASC challenge 5. Unlike the BRATS datasets,

the left atrium segmentation dataset is a small one with wide quality levels variability as it

only includes 30 mono-modal 3D cardiac MRI scans. This will allow us to further assess the

transferability of the Dist-Training module. The dataset was split such that 20 MRI scans

were provided with their corresponding ground truth annotations for the training and the

validation steps. The remaining 10 MRI scans were supplied as a test set. The ground-truth

masks were initially annotated using automatic model based segmentation. Afterwards, a

manual corrections were performed by human experts [197].

2.3.3.2 Pre-processing pipeline:

The pre-processing workflow of the provided datasets involves the following steps: (1) 70

2D-MRI slices were initially extracted from each 3D cardiac mri scan through the ImgMed-

implemented reshaping operation; (2) A downsampling operation to a size of 512x512 pixels

has been carried on each image in order to fit the memory constraint of the GPU (NVIDIA

GeForce GTX 1080 Ti); (3) In order to break the curse of small datasets and avoid overfitting,

data augmentation technique has been performed on the LASC dataset with rotation, zooming

and translation operations as detailed in Table 2.1. Hence, at the end of the pre-processing

pipeline, the final training and validation dataset counts in total 35 000 2D-MRI images

5The left atrium segementation dataset is available at the following link https://www.cardiacatlas.org/
challenges/left-atrium-segmentation-challenge/
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Table 2.1 – Data augmentation operations parameters of the left atrium dataset

Operations Parameters
Rotation r ot ati on_r ang e ε [−45,45]
Zoom zoom_r ang e ε [0.8,1.2]

Translation
(x + shi f t_r ang e, y = 0), shi f t_r ang e ε [0,25.6]
(x = 0, y + shi f t_r ang e), shi f t_r ang e ε [0,25.6]

alongside with their related annotations.

2.4 Conclusion

In this chapter, we have provided an overview of the required background in order to fit

our contributions within their related context. We have also detailed our medical imaging

segmentation case studies and the corresponding CNN architectures we have adopted for an

in-depth assessment of the main building blocks of our proposed scalable and component-

based CNN parallelism platform. Even though a considerable progress has been made recently,

the deep learning era remains at its beginning with multiple research questions which have

not yet been answered. In the following chapters, we start introducing and detailing separately

our four distinct main contributions.
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Our first contribution consists in introducing R2D2 [65], a scalable deep learning toolkit for

medical imaging segmentation. R2D2 represents the first main building block of our proposed

platform. To the best of our knowledge, R2D2 is the first work that aims to tackle the challenge

of decreasing the training for CNNs in medial imaging by offering a novel distributed versions

of two well-known and widely used CNN segmentation architectures (i.e., FCN and U-Net). We

introduce the design and the core building blocks of R2D2. We further present and analyze its

experimental evaluation results on two different concrete medical imaging segmentation use

cases. R2D2 achieves up to 17.5x and 10.4x speedup than single-node based training of U-Net

and FCN respectively with a negligible, though still unexpected segmentation accuracy loss.

R2D2 offers not only an empirical evidence and further investigates the latest published works

but also it facilitates and significantly reduces the effort required by researchers to quickly

prototype and easily discover cutting-edge CNN configurations and architectures.

3.1 Introduction

As outlined in the Introduction Chapter, building efficient CNN models requires an effective

and tedious training process. Indeed, multiple CNN architectures have to be investigated. Con-

currently, an hyperparameters optimization process [128] has to be performed for every CNN

candidate architecture. The hyperparameters optimization task aims to select the optimal set

of hyperparameters in order to optimize the CNN performance. It involves performing vari-

ous hyperparameters optimization strategies [13] which generally require executing multiple

training runs. Hence, training CNN models is computationally intensive and time consuming

process. For instance training DeepMedic [97] brain tumor segmentation CNN architecture

with a particular set of hyperparameters requires approximately a day using a single NVIDIA

GTX Titan X GPU. Therefore, decreasing the training duration of DNNs is crucial to accelerate

hyper-parameters optimization process. Moreover, it enables researchers to not only build

effective CNNs, but also prototype and explore not yet investigated CNN configurations and

architectures through an iterative and adaptive experimentation approach.
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In order to address this challenge, we propose and evaluate R2D2 (Rapid & Robust Digital Diag-

nostic) a research-dedicated scalable deep learning toolkit for medical imaging segmentation.

Our proposed toolkit introduces (1) a couple of an innovative ready-to-use distributed versions

of two popular CNN segmentation architectures (FCN [127] and U-Net[161]) alongside with

(2) a high-level end-to-end deep learning medical imaging processing pipeline. The latter

aims to reduce the learning curve and overcome talent-intensive deep learning technology

adoption barriers for non-specialists. Furthermore, R2D2 integrates a couple of real-time

visualization components in order to track both (1) system resources and (2) CNN training

metrics evolution during the distributed training process. They offer an extensive overview for

a better understanding and easier debugging of the CNN distributed training task progress.

We achieve up to 97% and 58% scaling efficiency for U-Net and FCN CNNs respectively when

moving from 1 to 18 Nvidia GTX 1080 Ti GPUs without significant, yet still mysterious seg-

mentation accuracy degradation. Indeed, our work constitutes a deep empirical investigation

for the latest published papers [61, 183] and confirms state of the art results of related works

[121, 208, 82]. Furthermore, in order to prove that R2D2 generalizes for a wider variety of

data-sets and tasks, we assess our proposed scalable CNN architectures on two practical medi-

cal imaging segmentation use cases. The first one is a brain tumor segmentation challenge,

and the second use case is a cardiac left atrium segmentation task. This extensive evaluation

provides an in-depth assessments and comparison of the performances of two popular CNN

architectures on a couple of challenging case studies.

The remainder of the Chapter is structured as follows: In Section 3.2, we explore some related

work. In Section 4.2, we present R2D2 and its design, building blocks and architecture. In

Section 3.4, we evaluate our proposed solution, based on two different concrete medical

imaging segmentation case studies. We finally conclude in Section 4.5.

3.2 Related Work

A special effort has been made since a long time to develop medical imaging processing tools

[119]. They can be classified according to the extent, scope and nature of their application

areas. Some generic medical imaging solutions have been around for a while (e.g. (MITK [205],

VTK and ITK [156]). They propose a comprehensive set of common medical imaging tasks

(e.g., registration [129], segmentation, visualization, and reconstruction [16]). Other generic

medical imaging tools yet pathology specialized solutions have been introduced. For instance,

FSL (FMRIB Software Library) [90] and Freesurfer software suite [90] are two popular medical

image analysis tools specialized in neuroimaging. Finally, a suite of task specific solutions

have been proposed (e.g., NiftySeg [25] for segmentation, NiftySim [94] for simulation and

Camino [35] for Diffusion).

The previously mentioned medical imaging tools are neither DNN-based solutions, nor dis-

tributed applications. However, the recent deep learning breakthroughs led to the emergence

of a new set of DNN-based medical image analysis tools. For instance, NiflyNet [54] is an open

30



3.3. R2D2 System Description

source deep-learning-based platform of medical imaging which is built on top of TensorFlow

library. It provides a modular medical imaging processing pipeline alongside with a set of

established pre-trained domain specific models. The deep learning toolkit (DLTK) [151] is

another open source TensorFlow-based medical imaging toolkit implementing baseline ver-

sions classic network architectures. DeepInfer [133] is an additional deep learning toolkit for

image-guided therapy with a focus on the deployment and the reuse of pre-trained models.

Other related medical image analysis tools exist [157, 110, 5]. Furthermore, although medical

imaging DNN-based solutions built on top of Tensorflow (e.g., NiftyNet and DLTK) natively

support the standard built-in Tensorflow parallelization approach, they don’t come up with

an all set, ready-to-use distributed versions of CNN architectures (i.e., they require a large

amount of talent-extensive code modification [171]). Moreover, even if some of them present

some similarities with R2D2 (i.e., NiftyNet deep learning medical imaging pipeline, DeepInfer

and DLTK proposed pre-trained models), to the best of our knowledge, no existing medical

imaging solution offers all the features of R2D2, in particular :

1. The novel and ready-to-use Dist-FCN and Dist-U-Net distributed versions of the

immensely popular FCN and U-Net CNN segmentation architectures respectively.

2. The integrated monitoring platform for system resources supervision and visualization

which offers a deeper insights on, not yet investigated, system resources evolution

patterns during the distributed training of CNNs. The real time monitoring platform

also allows the user to early stop the CNNs training in the case of the divergence of the

latter’s training process. Thus, the early stopping in such situations will avoid the waste

of resources and energy.

The above-mentioned novel features integrated in our proposed toolkit are the main contribu-

tions of our work. That is why, they make R2D2 stand out from the rest of existing solutions in

medical imaging deep-learning-based solutions.

3.3 R2D2 System Description

This section introduces R2D2 our proposed scalable toolkit. First, we provide a global overview

on R2D2 main scope, features, design and system architecture, before diving into the details

of its building blocks and core components.

3.3.1 Scope & Architecture

R2D2 toolkit brings the power of distributed systems to use in medical imaging deep-learning-

based applications, while considering software engineering best practices. Figure 3.1 depicts

the overall scope into which R2D2 operates.
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Figure 3.1 – R2D2 scope

Our proposed toolkit follows an extensible and modular design. As illustrated in Figure 3.2

which provides a high-level overview on our distributed toolkit architecture, R2D2 offers an

end-to-end support for a typical deep learning workflow in medical imaging by introducing

a high-level of abstraction for common components in a regular medical CNNs processing

pipeline.

The end-user might interact with the toolkit through different front-ends. He can either use a

web-based graphical user interface (GUI) or a command line interface (CLI). The toolkit user

has a set of tools at his disposal which are as follows.

• The R2D2 Engine is the entry point for the R2D2 toolkit. It is the main system controller

operating as a key interface between the toolkit user and the available modules.

• The ImgMed Library is a high-level medical imaging pre-processing library which offers

a typical medical imaging pre-processing operations.

• The Dist-Training Module is the core component of R2D2. It contains Dist-FCN and

Dist-U-Net, a novel distributed versions of widely-adopted FCN and U-Net CNN seg-

mentation architectures respectively.

• The SegEval Library is an evaluation library which proposes implementations for a

collection of common empirical evaluation methods [218] for semantic segmentation.

R2D2 includes also a set of pre-trained, pathology specific CNN models for renal cortex, liver

and brain lesion segmentations. These pre-trained models constitute a model zoo and they

might be used to leverage transfer learning approach while building new CNN models. The

transfer learning strategy [149] consists in reusing an already pre-trained models as a starting

point for the training process of new CNN models in order to, potentially, accelerate model

training while improving its performance. Furthermore, it is also possible for the R2D2 user to

publish his newly trained models and enrich the pre-trained models collection. Finally, the

user can use a web-based graphical interface for a real-time monitoring of the system resources

during the distributed training phase. Concurrently, the toolkit user can also visualize the

CNN training metrics evolution.
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Figure 3.2 – System architecture

3.3.2 Core building blocks

3.3.2.1 ImgMed: Medical imaging pre-processing library

We built ImgMed which is a new library dedicated to medical imaging pre-processing workflow.

In fact, the data pre-processing phase is an important and key step in machine learning

development pipeline. It is a challenging task because it not only conditions the effectiveness

of the developed model, but data pre-processing is also a time consuming task as it represents

up to 70% of the whole project time [211]. The ImgMed library intent to tackle this challenge

by proposing an all set high-level medical imaging pre-processing solution.

ImgMed includes, but is not limited to, the following typical medical imaging pre-processing

operations:

• Image format conversion (e.g., from JPG to PNG)

• Image reshaping (e.g., from 3D to 2D)

• Image resizing

• Data augmentation

We have chosen Python as a programming language for ImgMed reference implementation for

its simplicity. The ImgMed library is built upon matplotlib [85], OpenCV [20] and SciPy [95]

libraries.
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An example of an end-to-end medical imaging pre-processing workflow implemented using

ImgMed high-level library is shown in Listing 3.1. We consider a set of N Niftti files as a raw

input dataset. The first step is to reshape the 4D input files to an RJB JPG images. Next,

another image reshaping procedure is performed, followed by a format conversion operation

from JPG to PNG. The final step of the pre-processing workflow example involves resizing the

PNG images to 350x350 pixels (note that the sources and destinations file paths can be tuned

according to the user needs).

1 from R2D2.img import ImgMed
2

3 def preprocessing_workflow(src_0, dist_f):
4 """
5 Input: N 4D NIfTII files in src_0 path
6 Output:N 2D PNG 350*350 images in dest_f path
7 """
8 ImgMed.convert _4DNI_to_RGBJPG(src_0, dest_0,dim)
9 ImgMed.reshape_JPG_to2D(dest_0, dest _1)

10 ImgMed.convert_JPG_to_PNG(dest_1, dest _2):
11 ImgMed.resize_img(dest_2,dest_f,’png ’ ,350 ,350)

Listing 3.1 – Typical medical imaging pre-processing workflow

As it can be noticed, the example in Listing 3.1 not only shows the easiness with which it is

possible to implement a complete and classic pre-processing pipeline with only a few lines

of code, but it also highlights the considerable impact of ImgMed in reducing duplication of

effort during the pre-processing step of medical imaging pipeline.

3.3.2.2 Dist-Training Module

The Dist-Training module is the core component of R2D2 toolkit. It provides a set of

scalable CNN segmentation architectures (Dist-FCN and Dist-U-Net). Yet, above all, in

order to introduce parallelism to FCN and U-Net CNN architectures, a number of choices have

to be made among the various distributed training strategies already introduced in section 4.2.

Our selection criteria of the considered parallelism method are threefold: (1) The distributed

method model accuracy preservation, (2) while taking into account its network bandwidth

optimality (3) and without forgetting to consider the burden of its practical implementation.

In the fist place, we decided to adopt the data parallelism approach for the following reasons :

• In model parallelism, the workload of the partitioning task of a model across multiple

nodes is left to the programmer [120, 71, 10], that makes the effective implementation

of model parallelism method a challenging task unlike the data parallelism one. For

this reason, the model parallelism schema is mainly considered as a final alternative

approach when a model size does not fit in a single node’s memory [71, 39].

• Since the model parallelism approach involves partitioning the model across several
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training agents, and given that the DNN architectures naturally generate a layer in-

terdependencies [10], the synchronization of computations during the training phase

in model parallelism strategy creates a communication overhead which increases the

training runtime [10, 39].

• Considering that the level of scalability of the data parallelism method is naturally deter-

mined by the minibatch hyperparameter size [10], and since recent published works

[61, 3] have succeeded to considerably increase the minibatch size without significant

segmentation accuracy loss, data parallelism has become the most preferred distributed

training approach.

Then, we chose to scale up the training of FCN and U-Net architectures using a synchronous

parallelism approach. Our selection criterion for the latter chosen strategy was the trade-off

between the CNN model accuracy and the training speedup. In fact, synchronous methods

achieve better results regarding the accuracy of the CNN models compared to the asyn-

chronous approaches [10, 71], particularly, with a short synchronization period [216].

The main steps in the selected synchronous distributed data parallelism strategy are as follows

[171]: (1) compute the model updates (gradients of the loss function) using a minibatch on

each training agent (2) compute the average of gradients of all training agents (3) update the

model. Hence, we have to select the parameters updates communication and propagation

schema. Even if both centralized and decentralized parameters updates communication

approaches have advantages and drawbacks, we decided to go for a decentralized Ring-

Allreduce [171, 53] algorithm for the following reasons.

• Since the network bandwidth is classified among the rarest resources in datacenters

[123], and even if the centralized parameter server is one of the popular approaches in

distributed machine learning with better fault tolerance, it suffers from a bandwidth

bottleneck especially with large scale systems [10, 123].

• Although the parameter server congestion issue might be alleviated through some

alternative parameter server infrastructures (e.g., shared parameter server), selecting

the appropriate ratio of parameter servers in these alternative configuration is still a

challenging task [171].

• The Ring-Allreduce algorithm is built on a HPC approach proposed in 2009 by Patarasuk

and Yuan [150]. It is a highly scalable and bandwidth optimal approach as it remarkably

reduces the network communications overhead [171], which perfectly corresponds to

our aforementioned parallelism schema selection criterion.

In summary, we decided to adopt a decentralized synchronous Ring-Allreduce data paral-

lelism strategy in order to bring Dist-FCN and Dist-U-Net into practice.
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We distributed the training of FCN and U-Net CNNs as follows: First and foremost, we in-

troduced data parallelism by deploying the same CNN segmentation architecture on each

training node (i.e, either FCN or U-Net). After that, we sat up the Ring All-reduce algorithm.

The latter steps are as follows: Initially, each worker node reads its own subset of the current

mini-batch. After that, it computes its gradients, and communicates it to its nearby successor

on the ring and get in turn the calculated gradients from its predecessor neighbor. In a ring

that counts N workers, it takes N-1 communications of gradients between workers, so that

every worker receives the required gradients values to compute the updated model. Also, we

ensured the system fault tolerance through a checkpoint/restart schema. Last but not least,

considering that we scaled up the training of FCN and U-Nets CNNs using a data parallelism

schema, we applied the learning rate linear scaling rule which consists in adjusting the learn-

ing rate as a function of the minibatch size [61] in order to distribute the training of our CNNs

without considerable segmentation accuracy loss.

3.3.2.3 SegEval: Segmentation Evaluation Library

Once we have finished the distributed training of our CNN architecture, the next step in a

typical processing pipeline is to evaluate the trained model. To this end, R2D2 provides an

evaluation library which implements a set of common evaluation metrics for both binary and

multi-label semantic segmentation tasks.

We denote ncl εN the number of classes. Also, we denote ni j the number of pixels of class i

predicted to belong to class j and ti =∑
j ni j the total number of pixels of class i . The SegEval

library offers the following widely-adopted evaluation metrics [127].

• The Dice score reports the percentage of overlap between the predicted segmentations

and the ground truth masks: Di ce = 1
ncl

∑
i

2ni i
2ni i+ni j+n j i

• The Pixel Accuracy (PA) is a measure of the percentage of the image pixels that were

correctly classified : PA =
∑

i ni i∑
i ti

• The Mean Accuracy (MA) is the mean of the Pixel Accuracy across the ncl classes: MA =(
1

ncl

)∑
i

ni i
ti

• The Mean Intersection Over Union (mean.IoU) is a measure of the area of overlap di-

vided by the area of union between both predicted and groundtruth images : (mean.IoU)

=

(
1

ncl

)∑
i

ni i
ti+

∑
j n j i−ni i

and the frequency weighted IoU (f.w.IoU):
(∑

k tk

)−1 ∑
i

ti ni i
ti+

∑
j n j i−ni i

3.4 Evaluation

In this section, we conduct a comprehensive evaluation of the Dist-Training module which

is the core building block of our proposed R2D2 toolkit. We first introduce our experimental
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environments. Afterwards, we present the experimental evaluation results of the distributed

CNN architectures (Dist-FCN and Dist-U-Net) on a brain tumor segmentation use case.

Finally, in order to validate the Dist-Training module transferability to other segmentation

use cases, we assess the module on a second medical imaging segmentation task, which

involves locating the heart’s left atrium structure.

3.4.1 Experimental Environments

3.4.1.1 Hardware

We accomplished the distributed training experiments on the Nancy Grid’5000 [8] testbed site.

The experiments were conducted on Grele GPU cluster which contains Dell PowerEdge R730

physical machines where each node is equipped with 2 Nvidia GeForce GTX 1080 Ti GPUs. We

use the Grid’5000 Network File System (NFS) to share the training dataset between all training

agents. The nodes are interconnected using InfiniBand [177] high-speed interconnect.

3.4.1.2 Software

The FCN and U-Net architectures were mutually built on top of google’s Tensor-Flow library.

Furthermore, the U-Net CNN was also implemented using the high-level keras [30] API to

ensure an easier architecture prototyping task. After that, in order to practically implement the

Dist-FCN and Dist-U-Net by introducing the considered synchronous Ring-Allreduce data

parallelism schema, we take advantage of the Horovod [171] based implementation of the Ring-

Allreduce algorithm. The latter is built concurrently on both, Open MPI [49] and NCCL 2.0 1

communication libraries. Moreover, during the experimental evaluation, we simultaneously

make use of the proposed R2D2 module incorporating TICK Stack monitoring platform 2 in

order to collect system metrics data during the distributed training. The collected datasets

are stored in the time series databaseInfluxDB. Also, since the Dist-Training module is

partially built using the TensorFlow library, we leverage the natively integrated TensorBoard

visualization component, in order to enable R2D2 users to have an extensive overview on the

training progress and hence facilitating the debugging of the CNNs training step. Finally, to

consider software reusability, and ensure research reproducibility, the Dist-Trainingmodule

and its runtime components were containerized into a debian 9 stretch-based docker image

without network isolation (i.e., by directly using the host networking driver for an optimal

network performance [45]). Figure 3.3 details the physical architecture of our experimental

environment.

1https://developer.nvidia.com/nccl
2More informations on TICK Stack platform can be found at the following link https://www.influxdata.com/

time-series-platform/
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Figure 3.3 – Distributed training experimental environment architecture

3.4.2 Dist-Training module training time evolution with scalability

In this subsection, we evaluation the Dist-Training module training time evolution while

increasing the number of GPUs. Figure 3.4 and Figure 3.5 illustrate the decrease in the training

time while scaling up the training of Dist-U-Net and Dist-FCN respectively. Multiple runs

have been conducted for each configuration to assess Dist-U-Net and Dist-FCN evaluation

results variability. we run each experimental training configuration between 3 and 5 times and

we consider the average of the measured execution duration as our reference inference results.

The Dist-U-Net reaches 17.5x speedup and 97% scaling efficiency going from 21 hours and

40 minutes for single-GPU based U-Net, to 1 hour and 14 minutes for Dist-U-Net trained on

18 Nvidia GTX 1080 Ti GPUs. In the other side, the Dist-FCN achieves 10.4x speedup and 58%

scaling efficiency reducing the training time from 35 hours and 40 minutes for a single-GPU

based Dist-FCN to 3 hours and 25 minutes for Dist-FCN trained on 18 Nvidia GTX 1080 Ti

GPUs.

The Dist-U-Net and Dist-FCN have been evaluated concurrently on the two previously

introduced rain tumor and left atrium segmentation use cases. Figure 3.4 and Figure 3.5 both

show that the brain tumor segmentation case study training time evolution curve closely

match the left atrium one which establishes the transferability of our proposal. Also, we notice

that the baseline U-Net CNN converges faster than the FCN one in both segmentation case

studies in only 21 hours and 40 minutes. This observation matches and confirms the findings

of Li et al. [121] which highlights that residual connections (similar to the ones that exist in

U-Net architecture) produce a smoother loss function which leads to an easier and faster

convergence.

The disparity of the scaling efficiency and speedup of Dist-FCN and Dist-U-Net is mainly

due to the nature of the experimental setup and the difference in their corresponding im-

plementation strategies. In particular, during the training process of Dist-U-Net, the entire
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Figure 3.4 – Training time evolution with scale for Dist-U-Net

Figure 3.5 – Training time evolution with scale for Dist-FCN

training and validation sets are loaded into the random access memory (RAM) of each train-

ing agent. On the other hand, the Dist-FCN implementation takes advantage of the GPU’s

dedicated memory to iterate through the training and validations datasets in order to load

each minibatch through a Network File System (NFS) which represents a communication over-

head. Furthermore, the Dist-U-Net implementation contains highly optimized operations to

accelerate the distributed validation step.

We assess the testing time of Dist-FCN and Dist-U-Net. Indeed, in order to eliminate the

system routine operations influence in time measures, we run each experimental setup 10

times and we consider the average of the measured execution duration as our reference

inference results. The testing workstation is equipped with an NVIDIA GTX 1080 TI GPU.

The obtained testing times per image are 153 ms and 182 ms for Dist-U-Net and Dist-FCN
respectively.
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3.4.3 Dist-Training segmentation accuracy evolution with scalability

Throughout this subsection, we evaluate the impact of increasing the GPUs number on the

segmentation accuracy. Even though it is common to use a unique segmentation evalua-

tion metric, we consider the entire evaluation metrics provided by the previsouly-introduced

SegEval module in order to comprehensively assess our proposal. Similarly to aforemen-

tioned in subsection 3.4.2, we run each experimental training configuration between 3 and 5

times and we consider the average of the measured metric as our reference inference results.

3.4.3.1 Dist-FCN for brain tumor segmentation

The adopted Dist-FCN architecture for the brain tumor segmentation consists of a total of

16 fully convolutional network layers. It takes the input volume throughout a sequence of

an increasing number (i.e., n=2 for the first two blocks and n=4 for the rest of blocks) of

convolutional layers which are immediately followed by ReLU activation function. At the end,

a max-pooling layer is applied. The sequence n x (convolution + ReLU) is repeated again 4

times before performing upsampling through a transposed convolution upsampling layer

[147] and applying a softmax layer [127, 107] for the pixel-wise classification task. Moreover,

dropout regularization technique [127] was applied during the training phase to avoid over-

fitting. Finally, the network parameters were initialized through Transfer Learning using a

pre-trained VGG-16 model on the ImageNet dataset 3 .

Training Settings:

The training was performed using the mini-batch stochastic gradient descent (SGD) op-

timization algorithm (see subsubsection 2.1.1.1 of chapter 2) with a mini-batch size of 10 (to

fit the GPU memory limit). The training process was done for a total of 120 epochs and a

learning rate of 1e −5 (see subsubsection 2.1.1.4 of chapter 2). All training hyperparameters

were kept unchanged except of the learning rate which was adjusted according to the learning

rate linear scaling rule. In the first place, no learning rate warmup strategy was applied, before

performing a gradual warmup schema afterwards. The gradual warmup schema consists

in applying progressively a low learning rate for the first few epochs in order to overcome

convergence issues at the start of the training, i.e., the DNN loss function starts to diverge after

starting to have a converging trend before [61].

Evaluation:

We considered SegEval integrated evaluation library of R2D2 in order to assess our conducted

3More informations and the download link for the pre-trained VGG-16 model on the ImageNet dataset can be
found at the following link: http://www.vlfeat.org/matconvnet/pretrained/
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Figure 3.6 – Segmentation metrics evolution with scale for Dist-FCN for brain tumor segmen-
tation

experiments. We found that the brain tumor segmentation trained on 18 GPUs without

learning rate warmup strategy reaches 74.22% dice score accuracy, 84.29% Mean IoU and

86.28% mean accuracy which are 4.08% , 2.7% and 3.35% respectively lower than the single

GPU based model. At the same time, the gradual warmup strategy enhance the segmentation

accuracy loss by 3.76%, 2.8% and 3.01% for the dice score, Mean IoU and the mean accuracy

metrics correspondingly. Our practical experiments results show an interesting unexpected

segmentation accuracy loss increasing with the parallelism degree.

3.4.3.2 Dist-U-Net for brain tumor segmentation

Training Settings:

For training, we use the mini-batch SGD optimization algorithm. The training phase was done

with a mini-batch size of 7, during 100 epochs and while using an initial base learning rate of

1e −5.

Evaluation:

Figure 3.7 introduces the brain tumor segmentation accuracy evolution when scaling up

the Dist-U-Net (1) with no warmup phase and (2) while performing a gradual warmup for

the first 5 epochs. As can be seen, the dice score decreased by 0.44% going from 0.890 in 1-GPU

implementation to 0.886 in 18 GPUs in the case of no warmup phase. Similarly, the mean.IoU

and mean accuracy metrics drop with 0.55% and 0.61% respectively. On the other hand, the
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Figure 3.7 – Segmentation metrics evolution with scale for Dist-U-Net for brain tumor seg-
mentation

gradual warmup strategy achieves the same dice score accuracy loss as the no warmup strategy.

Nonetheless, the gradual warmup strategy seems not to be effective at low scalability level as

is does not help the network to converge faster. This statement gives us a hint that a headline

application of the linear scaling rule with gradual warmup is naturally biased since it alter-

nates the hyperparameters tuning process. Finally, no accuracy degradation is reported in

the pixel accuracy and f.w.IoU metrics regardless of the adopted warmup schema. To sum

up, our experiments highlights an unexpected segmentation accuracy degradation with scale,

nevertheless its small value.

3.4.3.3 Dist-FCN for left atrium segmentation

We adopted a 16 layers Dist-FCN CNN architecture similar to aforementioned one in sub-

subsection 3.4.3.1. Similarly, we also leveraged transfer learning approach using pre-trained

VGG-16 model on the ImageNet dataset.

Training Settings:

The training was performed using the mini SGD optimization approach, a mini-batch size of

10, for a total of 120 epochs. We also applied the learning rate linear scaling rule starting with

an initial learning rate of 3e −5.

Evaluation:

Figure 3.8 illustrates the segmentation accuracy metrics evolution when scaling up the

Dist-FCN for left atrium segmentation before and after performing Gradual warmup strategy.
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Figure 3.8 – Segmentation metrics evolution with scale for Dist-FCN for left atrium segmenta-
tion

It illustrates a dice score accuracy and mean accuracy fall of 3.38% and 1.3% accordingly for

a gradual warmup initialization learning rate approach. Yet, with no warmup strategy, the

Dist-FCN acheives better results with 1.21%, 0.86% and 1.46% segmentation accuracy de-

crease for the dice score, mean accuracy and mean.IoU respectively. However, no accuracy

loss is reported for the f.w.IoU and the pixel accuracy metrics. Finally, once again, even if the

linear scaling rule is supposed to eliminate the accuracy loss, our experiments show a quite

surprising accuracy degradation when scaling up the considered GPUs number.

3.4.3.4 Dist-U-Net for left atrium segmentation

Training Settings:

For training, we use the mini-batch SGD optimization algorithm. The training phase was done

with a mini-batch size of 7, during 100 epochs and while using a learning rate of 2e −5.

Evaluation:

As can be seen in Figure 3.9, scaling up the training of Dist-U-Net for left atrium segmentation

to 18 GPUs without gradual learning rate warmup strategy achieves 79.48% dice score accuracy

and 96.41% mean accuracy which are 2.26% and 1.53% respectively lower than the single GPU

Dist-U-Net baseline trained model. However, the gradual warmup approach improves the

accuracy degradation to only 1.34% and 0.31% for the dice score and mean accuracy metric

correspondingly. Yet again, our experimental results reveal a quite unexpected segmentation

accuracy loss when scaling up the CNNs training process. Also, these results show that the PA
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Figure 3.9 – Segmentation metrics evolution with scale for Dist-U-Net for left atrium segmen-
tation

and f.w.IoU metrics are not very relevant for our experiments assessment process. Indeed,

they suffer from a unbalanced variability range due to the disproportional size of every class

in our segmentation case studies (e.g., the disproportional size between the small left atrium

body and large background class size)

3.4.4 Discussion

We evaluated our proposed Dist-FCN and Dist-U-Net training time and segmentation accu-

racy metrics evolution with scale on a couple of challenging medical imaging segmentation

case studies (1) BRATS: a dataset with small targets (tumors) in large MRI images (2) Left

Atrium: a small training set with large variability. The case studies evaluation results led us

to not only assess the segmentation accuracy evolution when scaling up the Dist-FCN and

Dist-U-Net architectures, but also to compare FCN and U-Net performances in a couple

of different segmentation tasks. Actually, the evaluation results showed that the U-Net CNN

architecture achieves a far better performances than the FCN one in the brain tumor segmen-

tation task with 90.23% dice score. Also, the U-Net and FCN CNNs produce a close results

in term of performances for the left atrium segmentation with an advantage of 1.8% in the

dice score for the U-Net architecture. These findings confirm the need to perform multiple

CNNs training runs in order to investigate the best suited CNN architecture for a particular

task alongside with its corresponding optimal hyperparameters set. Hence, the interest of

R2D2 in accelerating the prototyping and the development of cutting-edge CNNs which in

turn is a capital software engineering principal.

The aforementioned empirical evaluation results led us also to perform a deeper experimental

analysis of the generalization of last published works [61, 183, 121, 208, 82] to the segmentation
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task. Actually, the segmentation task is a more complex task compared to the classification

task which was mainly used in the state of the art works to assess the linear scaling rule

and its corresponding warmup schemas [61]. The experimental results showed that there

was no segmentation accuracy loss until 12 GPUs. Starting from that scalability level, the

learning rate scaling rule breaks down. Indeed, even though the observed accuracy loss is

insignificant compared to the remarkable scaling efficiency, it is yet still curiously unexpected

for the investigated segmentation task in particular. On the other hand, these results are

in line with the 1% increase of error rate reported by Krizhevsky [106] when increasing the

minibatch size from 128 to 1024 for classification task. Also, You et al. [208] outline also an

accuracy deterioration of 5.7% by using the linear scaling rule and the warmup schema for

CNNs applied for classification task. Furthermore, Hoffer et al. [82] show that there is still an

accuracy degradation for CIFAR10 4 classification task even while using the linear scaling rule.

Hence, our experiments confirm the results of these works [106, 208, 82] and call into question

the extent of the linear scaling rule to the segmentation task.

3.5 Conclusion

In this Chapter, we proposed and evaluated a scalable deep learning toolkit for medical

imaging segmentation named R2D2. The main goal of R2D2 is to speed-up the research in

the deep-leaning-based medical imaging applications with a particular focus on semantic

segmentation task. We exposed R2D2 concepts and design and detailed its inner buildings

components, while justifying our design and implementation choices. We then evaluated

our scalable toolkit on two distinct concrete medical imaging segmentation case studies to

show the effectiveness of our proposal. The conducted experimental study offers an empirical

evidence and further investigates the latest published works. Indeed, R2D2 achieves up to

17.5x and 10.4x speedup than single-node based training of U-Net and FCN respectively with

a slight, yet nonetheless an unforeseen segmentation accuracy degradation with scale. This

contribution has been published in Software: Practice and Experience journal [65]. The R2D2

source code was the subject an APP deposit.

4https://www.cs.toronto.edu/~kriz/cifar.html
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4 Auto-CNNp: a component-based
framework for automating CNN paral-
lelism
After presenting R2D2, we present in this chapter Auto-CNNp [66, 67], the second building

block of our introduced platform. Auto-CNNp [67] is a novel framework to automate CNNs

training parallelization task. To achieve this goal, Auto-CNNp introduces a key component

which is called CNN-Parallelism-Generator. The latter component encapsulates and hides typ-

ical CNNs parallelization routine tasks while being extensible for user-specific customization.

Our proposed reference implementation provides a high level of abstraction over MPI-based

CNNs parallelization process, despite the CNN-based imaging task and its related architecture

and training dataset. The quantitative and qualitative assessment of our proposal on two case

studies show its (1) effectiveness in accelerating the process of scaling up CNNs training and

(2) its generalization for a wider variety of use cases.

4.1 Introduction

Setting up distributed training of CNNs in practice is a laborious task entailing a significant

degree of experience and expertise in both (1) deep learning and (2) distributed optimization

approaches. Moreover, introducing parallelism to CNNs training is a manual, redundant,

time-consuming and error-prone process. For instance, even though Tensorflow natively

includes a standard built-in parallelization approach1, going distributed using it is a laborious

and challenging task [171]: It requires a large amount of knowledge from the user of a con-

siderable low level abstractions of Tensorflow and a lot of manual code modifications. The

aforementioned problems which we particularly encountered while conducting the practical

experimental study introduced in the previous chapter, led us to realize the importance and

the need for not only automating routine tasks to avoid duplication of effort while scaling up

CNNs training, but also to adopt a component reuse approach while considering the software

extensibility principle.

We leverage this opportunity by introducing Auto-CNNp (Automatic CNN parallelization) [66],

1More information on distributed Tensorflow: https://www.tensorflow.org/guide/distribute_strategy

47

https://www.tensorflow.org/guide/distribute_strategy


4. Auto-CNNp: a component-based framework for automating CNN parallelism

a component-based framework that fully automates scaling up MPI-based CNNs training

task in order to bring talent-intensive distributed deep learning to non-experts users. To

the best of our knowledge, the present work is the first that aims to tackle this issue by

introducing a novel component-based approach. We present the design and the core building

blocks of our proposed framework. The CNN-Parallelism-Generator component aims to

streamline routine tasks throughout (1) capturing cumbersome CNNs parallelization tasks

within a backbone structure while (2) keeping the framework flexible enough and extensible

for user-specific personalization. The user defines the specific framework behavior through

an easy-to-understand configuration file.

Our contribution lies within the proposal of a standard component-based approach to par-

allelize CNNs training regardless of the (1) CNN-based image processing task, (2) its corre-

sponding CNN architecture and (3) training dataset. Furthermore, although our proposed

Auto-CNNp Proof-of-Concept (POC) reference implementation is based on both (1) Ring-

Allreduce parallelism approach and (2) MPI communication protocol, it is indeed possible

to port the framework to additional CNN parallelism and communication approaches as the

framework’s fundamentals remain valid. The evaluation result of our proposed automated

component-based approach are promising. It shows that a significant speedup in the CNN

parallilization task has been achieved to the detriment of a negligible framework execution

time, compared to the manual parallelization strategy.

This chapter is organized as follows: Section 4.2 provides background information on component-

based software engineering and reviews some related work. Section 4.3 describes our ap-

proach to automatize the parallelization of our POC MPI-based CNNs training. We present

the evaluation of our proposal in Section 4.4, and conclude in Section 4.5.

4.2 Component-based software engineering background

In this section, we overview some background on Component-based Software engineering

(CBSE) [78]. CBSE is far from being a recent research area. Indeed, it aims to build software

systems by composition of software components building blocks [154]. It has become a

paramount approach to accelerate the development, deployment, management of large and

complex software systems. The component-based approaches have been adopted in a wide

range of relevant fields of applications, such as e-commerce [47], robotics software [141] and

web applications development [23].

Component-based parallel systems development is a not a novel concept neither. Bramley et al.

[21] introduced a component-based approach to build scientific and engendering applications.

Also, COMDES-II [101] is a framework to develop parallel real-time control applications.

Other parallel systems implementations tools exist. For instance, JaSkel [46] is a Java frame-

work for parallel and grid applications implementation. It shares some common concepts with

Auto-CNNp. Particularly, encapsulating recurring parallelism routines and hiding low-level
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implementation details. Yet, JaSkel is not a component-based system.

The previously cited systems are not DNN-based solutions. However, With the recent growing

interest to deep learning, a lot of distributed deep learning frameworks have emerged (e.g.,

TensorFLow, Horovod2, DL4J3, BigDL4). Nevertherless, to the best of our knowledge, no

existing solution offers all the features of Auto-CNNp. In particular:

• Auto-CNNp adds an additional high level of abstraction over MPI-based CNNs paral-

lelism techniques by fully automating the scaling up process for various CNN-based

image processing task, regardless of its corresponding CNN architecture and training

dataset.

• Our proposal is the first easily extensible component-based deep learning parallelism

framework.

Hence, our proposed framework accelerates the research in the CNN-based field by prototyp-

ing and exploring cutting-edge and not yet investigated CNN configurations and architectures

through an iterative and adaptive experimentation approach.

4.3 System description

This section describes Auto-CNNp our proposed framework. First, we provide a global

overview on Auto-CNNp main scope, design and system architecture, before diving into

the details of its building blocks and core components.

4.3.1 Framework Scope

Figure 4.1 pinpoints the overall scope into which Auto-CNNp operates. Indeed, the operating-

system-level environment deployment on the training nodes is currently out of scope of the

Auto-CNNp framework. We suppose that the training is performed on an all-set, already

deployed distributed system environment (i.e., in the context where the operating system was

already sat up on beforehand using tools like SaltStack 5 or Puppet 6).

Also, we take advantage of a containerization technique to package the distributed deep

learning application with its related default runtime environment (i.e., libraries, binaries

and dependencies). It is indeed within this specific range of execution context where our

proposed framework operates. Particularly, Auto-CNNp provides a backbone for a new way

to automatically configure and customize the specific libraries of a distributed CNN-based

2https://eng.uber.com/horovod/
3https://deeplearning4j.org/
4https://bigdl-project.github.io
5More informations can be found at https://www.saltstack.com/
6More informations can be found at https://puppet.com/
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application runtime environment (i.e., mainly by (1) setting up the configuration of com-

munication libraries and (2) establishing the related deep learning user-specific execution

schema).

Regarding the distributed deep learning application level, and as stated previously in sec-

tion 4.2, multiple CNN parallelism approaches exist. We decided to adopt a decentralized

synchronous Ring-Allreduce data parallelism strategy for the Auto-CNNp reference imple-

mentation for the following reasons:

• Considering that the level of scalability of the data parallelism method is naturally

determined by the minibatch hyperparameter size [10], and since recent published

works [61, 183] have succeeded to considerably increase the minibatch size without

significant segmentation accuracy loss, data parallelism has become the most preferred

distributed training approach.

• We chose a synchronous parallelism approach. Our selection criterion for the latter

chosen strategy is the trade-off between the CNN model accuracy and the training

speedup. In fact, synchronous methods achieve better results regarding the accuracy of

the CNN models compared to the asynchronous approaches [10, 71], particularly, with

a short synchronization period [216].

• The Ring-Allreduce algorithm is built on a HPC approach proposed in 2009 by Patarasuk

and Yuan [150]. It is a highly scalable and bandwidth optimal approach as it remarkably

reduces the network communications overhead [171]. Moreover, Since the network

bandwidth is classified among the rarest resources in datacenters [123], and even if the

centralized parameter server is one of the popular approaches in distributed machine

learning with better fault tolerance, it suffers from a bandwidth bottleneck especially

with large scale systems [10, 123].

Also, we adopted MPI as a communication protocol for the framework reference implemen-

tation. Indeed, MPI communication libraries have achieved remarkable performances in

distributed deep learning applications due to the similar characteristics between distributed

deep learning and HPC applications [10].

Nevertheless, as stated previously, it is possible to port and extend the framework imple-

mentation to support other parallelism approach and communication mechanisms as the

framework’s core principals remain well-founded. However, further modifications should be

applied due to the eventual dependencies between the CNN training parallelism methods

and the adopted communication protocols. These dependencies will be further discussed in

subsection 4.3.5.
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Figure 4.1 – Auto-CNNp operating scope: (1) runtime environment configuration and (2)
user-specific deep learning execution schema definition.

4.3.2 Framework Architecture

As illustrated in Figure 4.2 which shows an overview of the architecture of our proposed system,

Auto-CNNp framework follows a modular design. Its different building blocks are as follows:

• The Engine is the Auto-CNNp controller (i.e., it manages the framework’s control flow).

It is the central access point operating as an orchestrator of the framework’s components

interactions.

• The CNN-Parallelism-Generator is the core component of Auto-CNNp framework. It

aims to simplify the task of scaling up CNNs training by separating typical paralleliza-

tion strategies patterns from task-specific CNN applications. To achieve this goal, the

CNN-Parallelism-Generator component captures common routine tasks (i.e., which are

shared by all MPI-based deep learning distributed training approaches) and enables

users to customize the remaining applications-specific parts.

• The Run & Manage component applies the final execution schema of the framework

once all the training agents are ready for the distributed training. Indeed, the Run

& Manage component is activated by the engine in order to initiate and launch the

distributed training process.

• The Training Config File contains a set of an rules used by the engine to govern the

execution mechanism of the Auto-CNNp framework.

• As its name suggests, the distributed training infrastructure is the execution infras-

tructure for the distributed training of CNNs.

Further details regarding the aforementioned Auto-CNNp core components are given later in

this section.
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Figure 4.2 – Auto-CNNp System Architecture Overview.

4.3.3 Framework Execution Flow

The Auto-CNNp framework is a configuration-driven framework. The framework’s execution

flow steps are the followings.

1. First and foremost, the user provides an XML-based training configuration file

2. The framework’s engine parses the configuration file and extracts the user-specific

application behavior.

3. The CNN-Parallelism-Generator is deployed/updated on all the training nodes. Con-

currently, the run & manage component is only deployed on the training node which

initiates the training.

4. Lastly, when all the training agents are ready, the end-user activates the run & manage

component through the engine in order to start the distributed training.

4.3.4 Component Detail: The Engine

As illustrated in Figure 4.2, the architecture of Auto-CNNp is based around the engine. The

latter implementation has to be fast, to decrease the overhead of the framework to the utmost

possible degree. Its functionalities are fourfold. In particular (1) parsing the configuration file,

(2) based on that, the engine establishes the CNN-Parallelism-Generator final shape (i.e., its

final comprising sub-components and modules). In order to do so, the engine parameterizes,

customizes and loads the CNN-Parallelism-Generator building blocks. Next, the engine de-

ploys/updates the cnn-parallelism-generator on the training nodes. Lasty, it activates the run

& manage component in order to start the distributed training task.
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Figure 4.3 – CNN-Parallelism-Generator Component-Based Architecture.

4.3.5 Component Detail: The CNN-Parallelism-Generator

The CNN-Parallelism-Generator is the paramount component of the Auto-CNNp framework.

It encapsulates and hides reusable CNNs training parallelization patterns to the framework

end users in order to provide a higher level of abstraction. As shown in Figure 4.3, the CNN-

Parallelism-Generator has a linear design following the typical workflow of steps to parallelize

our MPI-based CNNs (presented in greater detail later). It is composed of a tree of hierar-

chically organized building blocks. The different abstractions used in the CNN-Parallelism-

Generator are:

• Components are the building blocks of the CNN-Parallelism-Generator. They are clas-

sified into two categories : either (1) modules or (2) composites components. The

modules do not contain other components while composites components might be

composed of one or several composites components and/or modules Also, compo-

nents are connected by so-called binding connectors. Composite components are

a standalone components which can be reused and replaced without affecting the

framework’s fundamentals.

• Modules are a primitives components. They contains a set of task-related actions
cooperating towards a particular CNNs MPI-based parallelization milestone (e.g., the

parallelism and the model definition). Modules present an intra non-functional depen-

dencies within each others In other words, overwriting modules requires the user to

change/adjust the corresponding related modules within the same component.

• Actions are a standard collective parallelization steps. They may be classified according

to their expandability property into (1) non-extensible actions and (2) extensible
actions. The non-extensible actions constitutes a set of generic functionalities
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which have a unique and static implementation. They are independent from the CNNs

parallelization schema, can be parametrized but cannot be extensible by the user. On the

other hand, the extensible actions can further support extensibility by the frame-

work’s end user in order to expand or override the framework’s supported functionalities.

• Bindings aims to connect components with each other. These connectors regulate

interactions between components by mainly ensuring the transfer and control of data

between them.

As illustrated in Figure 4.3, the CNN-Parallelism-Generator is a composite of two components

(Parallelism Definition and Model definition). The latter are in turn are a composite of a couple

and a single modules respectively.

4.3.5.1 Module Details: Training Environment Definition

As its name suggests, the training environment definition is a primitive module aiming to es-

tablish the global CNNs distributed training ecosystem. In particular, it contains the followings

actions:

• Communication Init is a non-extensible action that initializes the adopted commu-

nication approach. In our POC implementation, it initializes the MPI default supported

protocol.

• Processes Device Placement & Memory Allocation is a non-extensible action which

establishes the custom TensorFlow-based processes device placement strategy on the

training agents alongside with he adopted memory allocation strategy 7.

4.3.5.2 Module Details: Training Strategy Tuning

The training strategy tuning module defines the broad lines of the adopted CNNs training

approach alongside its corresponding hyperparameters and particular customized training

checkpoints. In more details, it contains :

• Distributed Optimizer is an extensible action which establishes the adopted CNN

parallelism strategy. The default supported approach is the Ring-Allreduce algorithm.

However, it is possible to adopt another approach (e.g, Parameter Server) strategy, etc.).

An example of the required modifications to change the parallelism strategy is detailed

in the next section.

• Training Checkpoints is an extensible action. It enables the Framework’s user to set

up the custom TensorFlow-based training checkpoints.

7more informations at https://www.tensorflow.org/guide/using_gpu
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• Hyperparameters Injection is a non-extensible action training hyperparameters. It

specifies the user-specific training hyperparameters.

4.3.5.3 Module Details: Injection Module

The injection module consists of the following three of non-extensible actions :

• The Task Definition is a non-extensible action which determines the CNN-based

image processing task (e.g., segmentation or classification).

• The Architecture and Dataset Injection are non-extensible actions. They enable an

easy loading of the CNN architecture from its corresponding config file alongside with

the training dataset path.

4.3.6 Component Detail: The Training Config File

As stated previously, the training config file defines the control flow of the system. In particular,

it contains:

• The CNN-Parallelism-Generator structure definition and the interaction policy of its

inner modules.

• The CNN description.

• The CNN training hyperparameters [128].

• The training dataset metadata (e.g., the training data file system location path, the

format)

Listing 4.1 shows an example of a training config file of Auto-CNNp for an image segmentation

use case. The config file defines the final shape of the CNN-Parallelism-Generator: (1) The

training runtime environment is customized (e.g., we consider local rank strategy for the

device placement and soft placement as memory allocation approach) (2) We adopt the default

supplied Ring-Allreduce CNN parallelism approach and extend the training checkpoints with a

specific plugin. (3) We define the training, validation and test datasets alongside with the CNN

architecture (through python keras-based CNN description) and the training hyperparameters

that will be loaded/injected into their adequate location in the CNN-Parallelism-Generator

structure.

1 <system_config>

2 <task name="imaging_segmentation">

3 <parallel ism−degree>3</ parallel ism−degree>
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4 <CNN_archi><path>/ archi /U−Net . py</path></CNN_archi>

5 <CNN−Parallel ism−Generator>

6 <module name=" train_env_def ">

7 <action c l a s s =" non_extensible " type=" device_placement ">

8 <value>local_rank</ value>

9 </ action>

10 <action c l a s s =" non_extensible " type="memory_allocation">

11 <value>soft_placement</ value>

12 </ action>

13 </module>

14 <module name=" train_srategy_def ">

15 <action c l a s s =" extensible " type=" d i s t _ s t r a t e g y ">

16 <value>ring_al lreduce</ value>

17 </ action>

18 <action c l a s s =" extensible " type="Tr_Checkpoint">

19 <value name="LRSchedule">

20 <path>/ data / checkpoint / ckpt1 . py</path>

21 </ value>

22 </ action>

23 </module>

24 </CNN−Parallel ism−Generator>

25 <data>

26 < t r a i n ><path>/ data / brain−t r a i n </path></ t r a i n >

27 < v al id ><path>/ data / brain−val idat ion</path></ val i d >

28 < t e s t ><path>/ data / brain−t e s t </path></ t e s t >

29 </ data>

30 <hyperparameters>

31 <property name=" l r ">1e−5</ property>

32 <property name=" optimiser ">SGD</ property>

33 <property name=" l o s s ">dice</ property>

34 <property name=" minibarch_size ">10</ property>

35 <property name=" start_epoch ">0</ property>

36 <property name="end_epoch">120</ property>

37 </hyperparameters>

38 </ task>

39 </ system_config>

Listing 4.1 – Training config file example

4.4 Evaluation

In this section, We first introduce our experimental environments. Afterwards, we conduct a

(1) quantitative and (2) qualitative evaluation of our proposal.
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4.4.1 Experimental Environments

4.4.1.1 Hardware

We accomplished the distributed training experiments on the Nancy Grid’5000 [8] testbed site.

The experiments were conducted on Grele GPU cluster which contains Dell PowerEdge R730

physical machines where each node is equipped with 2 Nvidia GeForce GTX 1080 Ti GPUs.

We use the Grid’5000 Network File System (NFS) to share the training dataset and the CNN-

Parallelism-Generator component between all training agents. The nodes are interconnected

using InfiniBand [177] high-speed interconnect.

4.4.1.2 Software

We have chosen Python as a programming language for Auto-CNNp reference implementation.

Indeed, Auto-CNNp prototype is concurrently built on top of Tensor-Flow and Keras deep

learning libraries. We take advantage also of the Horovod [171] implementation of the Ring-

Allreduce algorithm in order to introduce the latter adopted synchronous data parallelism

approach. In addition, we consider Open MPI [49] implementation of the MPI standard as

a communication library. Also, we use Beautiful Soup python library for the xml config file

parsing. Furthermore, to ensure research reproducibility, the CNN-Parallelism-Generator

component alongside with its runtime environment are containerized into a debian 9 stretch-

based docker8 image. Lastly, we use docker swarm for the container orchestration task.

4.4.1.3 Evaluation case studies

To assess our component-based automatic training parallelism approach, we consider U-Net

[161] and FCN [127] as a baseline CNN architectures applied to tackle the two different medical

imaging use cases the brain tumor segmentation [175] task and the left atrial segmentation

task already presented in section 2.3 of Chapter 2.

4.4.1.4 Quantitative evaluation

We assess the cost benefit trade-off of automating CNNs parallelization task through a quantita-

tive assessment approach. In order to do so, we measure the execution time of the Auto-CNNp

engine for the previsouly mentioned two evaluation case studies tackled by a couple of widely

used CNN architectures (U-Net and FCN). For reliability reasons, we run each experimental

setup 100 times and we consider the average of the measured execution duration as our

reference results. The execution times were measured using the linux /usr/bin/time. The

outputs of the latter command are threefold: (1) real metric stands for the overall execution

time from start to finish of the call, (2) user metric denotes the amount of CPU time spent in

user-mode and (3) sys metric is the CPU time spent in kernel mode by the program.

8More information can be found at https://www.docker.com/
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Figure 4.4 – : Auto-CNNp engine execution time evaluation (a) U-Net CNN architecture and
(b) FCN CNN architecture for brain tumor and cardiac left atrium case studies segmentation
tasks

Figure 4.5 – Training time evolution with scale for U-Net CNN architecture for brain tumor
segmentation task

Figure 4.4 depicts the evaluation results for the framework’s engine execution time. It shows

that the execution times for the four setups are approximately similar which confirms the

generalizability of our proposal. The engine’s real execution time is about 139 ms which is a

negligible time compared to the typical time-consuming CNN training task duration (21 hours

and 40 minutes for U-Net and 35 hours and 40 minutes for FCN for a single Nvidia GTX 1080

GPU based training). The difference between the real execution time and the sum of both of

user and sys times is almost 18 ms. It is due to the fact that the engine is blocked on disk I/O

during the deployment or update step of the CNN-Parallelism-Generator component on all

training agents through the NFS server.

Furthermore, in order to evaluate the framework’s impact on the CNN-based task perfor-

mances, we compare the obtained segmentation accuracy when scaling up CNNs training

manually with the segmentation accuracy we get after using Auto-CNNp. In order to do
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so, we perform the distributed training of U-Net CNN architecture for brain tumor and left

atrium segmentation on 18 GPUs. As shown in Figure 4.5, we achieved 17.5x speed-up than

single-node based training for both segmentation tasks with a segmentation dice score of 0.886

and 0.794 for brain tumor and left atrium segmentation respectively. We achieved exactly

the same results after performing the U-Net CNN parallelization using Auto-CNNp for both

evaluation case studies. Hence, using Auto-CNNp does not impact the performances of the

CNN parallelization process compared to the manual approach.

4.4.1.5 Qualitative evaluation

Auto-CNNp intents to offer a high level of abstraction over MPI-based CNN parallelism by

instrumenting common routines. In order to do so, the framework is driven throughout a

high level training config file. To qualitatively evaluate Auto-CNNp reaches, we investigate the

impact of the framework in reducing the burden of practically scaling up CNNs training.

We consider the Listing 4.1 as a starting training config file. We adopt U-Net CNN architecture

and Ring-Allreduce parallelism strategy to tackle our first evaluation use case which is the brain

tumor segmentation task. After that, we aim to test a different CNN architecture (FCN) to deal

with the same evaluation use case. In order to do so, we only need to change the <CNN_archi>
tag in the config file and its related CNN architecture file. Also, if the framework’s end user

wants to tackle a different segmentation use case using the same initial CNN architecture,

he exclusively needs to change the <data> tag siblings in the config file. All of this shows the

easiness with which the framework’s user can switch from one training dataset use case to

another and/or to test different CNN architectures by minimal code changes.

As mentioned earlier, the adopted Ring-Allreduce algorithm constitutes a POC example for

our proposal implementation. For instance, it is possible to adopt another CNN parallelism

approach. In order to do so, the Distributed Optimizer extensible action needs to be

overwritten alongside with its corresponding Training Strategy tuning module. Also, the

Environment Definition module might require to be replaced since it shares the same CNN-

Parallelism-Generator component as the Training Strategy tuning module. Yet, the Model

Definition component can be reused to generate the new component-based CNN-Parallelism-

Generator. Lastly, the operating-system-level environment might need to be adapted but as

discussed earlier in subsection 4.3.1, it is out of scope of our proposed framework.

4.5 Conclusion

We introduced and evaluated Auto-CNNp, a framework which permits to automate CNNs

distributed training task. Our proposed system offers a high level of abstraction over skill-

intensive distributed deep learning by introducing a component-based approach. The latter

provides a generic tool that encapsulate many common CNNs parallelism patterns while

being flexible sufficiently to be extensible for user-specific customization. The evaluation
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results of Auto-CNNp on a couple of case studies confirm its validity and transferability to

other use cases. Indeed, the quantitative assessment of Auto-CNNp showed an execution

overhead of 139 ms which is insignificant compared to the long CNNs training process du-

ration. Also, the qualitative evaluation of Auto-CNNp highlighted its impact in reducing

the burden of practically scaling up CNNs training while not affecting the CNN paralleliza-

tion process compared to the manual approach. This contribution has been published in

the IEEE International Conference on Computational Science and Computational Intelli-

gence (DOI: 10.1109/CSCI49370.2019.00179) and IEEE BigData 2019 PEASH (DOI: 10.1109/Big-

Data47090.2019.9006175). The Auto-CNNp source code was the subject an APP deposit.
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5 Variability and reproducibility in deep
learning for medical imaging segmen-
tation
In the previous chapter, we introduced Auto-CNNp, our component-based framework aiming

to abstract the complexity of CNN parallelism process. However, in chapter 3, after presenting

R2D2 the first building block of our introduced integrated scalable and component-based

deep learning parallelism platform, the practical experimental study we have conducted to in-

vestigate the generalization of the linear scaling rule to the imaging segmentation applications

have drawn our attention to a number of issues regarding the reproducibility of CNNs training

process for medical image segmentation. Indeed, even though deep learning approach out-

performs classical machine learning methods for medical imaging segmentation, it is yet still

a complex approach and subject to an inherent high range of variability putting into question

the reproducibility of the CNNs process training results. In this chapter, we first enumerate

and study the sources of variability in deep learning training ecosystem before identifying the

main causing issues of CNNs training reproducibility for a particular CNNs training setting.

After that, we perform a literature review which intends to further increase our understanding

of the main challenges and issues of reproducibility, before drawing some good practices

recommendations aiming to alleviate the aforementioned reproducibility issues for medical

imaging segmentation DNNs training process [160].

5.1 Introduction

There are manifold sources of variability of the results of deep learning training process.

The most influential origins of DNNs training process variability are the followings: The

intrinsic variability of the dataset, the stochastic-based optimization process, the different

hyperparameters tuning and regularization processes, the training infrastructure (i.e., type

training node and the training approach) and the CNNs architecture nature itself. Indeed, as

highlighted by the Joelle Pineau’s reproducibility checklist[93] provided during the NeurIPS

2019, a clear description of a machine learning model plays a crucial role for reproducibility

process. And last but not least, the evaluation strategy of the CNNs segmentation results is

another additional variability origin for the disparity of CNNs training process results. Actually,

as aforementioned in chapter 3, there are a plethora of segmentation evaluation metrics [193]
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leading to a numerous possible approaches to compare methods performances.

Hence, a set of research questions related to the variability and reproducibility of DNNs

training process arise: (1) Is there enough information in the literature of medical imaging

segmentation with DNNs enabling us to correctly reproduce the results? (2) In case enough

information has been provided, has the variability aspect of DNNs been considered? (3) Does

the evaluation approach adopted to assess the segmentation performances correctly reflects

variability?

The remainder of the Chapter is structured as follows: In Section 5.2, we deal with the notion

of reproducibility in medical image segmentation. In Section 5.3, we identify and study the

sources of variability in deep learning training process before pinpointing the major causing

issues of DNNs training reproducibility for particular training setting. In Section 5.4, we

conduct a literature review aiming to to better understand and have an overview on the

reproducibility practices and issues in neural networks field for medical image segmentation

applications. We finally conclude in Section 5.6.

5.2 Reproducibility and evaluation of segmentation in medical imag-

ing

Reproducibility is a hot topic which has always aroused a lot of interest in science [144]. Indeed,

multiple articles [7, 188] highlight a potential crisis of reproducibility in science’s different

fields. Also, many scientists have been experiencing failure to reproduce research results [7],

i.e., more than 50% for their own research works in medicine physics and engineering fields

and above than 75% for other researchers works sharing with them the same research areas.

For the reminder of this manuscript, we consider the following definition of reproducibility in-

troduced in the report of the National Academies of Sciences, Engineering, and Medicine[144]:

“reproducibility means obtaining consistent results using the same input data, computational

steps, methods, and conditions of analysis; it is synonymous with computational reproducibil-

ity.” Moreover, the latter report contains also the following recommendation (recommenda-

tion 5-1, page 7 of [144]): “researchers should provide an accurate and appropriate characteri-

zation of relevant uncertainties when they report or publish their research.” We should note

here that the aforementioned sources of uncertainties include the stochastic ones among all

others.

The reproducibility aspect of a research work might be assessed using different policies. One

classic mathematical score to analyse works’s reproducibility is the Intra Class Correlation

(ICC) proposed by Shrout and Fleiss [178] which compares ntra-individual and inter-individual

variabilities degrees. The ICC score value is within an interval of 0 and 1 ,i.e., 0 for poor and 1

for perfect reproducibility respectively. Moreover, the Analysis of the Variance[48] (ANOVA)

approach is another statistical tool generalizing the ICC score which quantifies the interaction

between repeatability and reproducibility. It provides a collection of tools focusing on the
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Figure 5.1 – CNNs training ecosystem origins of variability

variability of the means among groups.

5.3 Variability in the deep learning training process ecosystem

In order to identify the the main causing issues of CNNs training reproducibility crises. We first

broadly examine in subsection 5.3.1 the main general origins of variability in deep learning

training ecosystem before identifying the main reasons behind CNNs reproducibility issues

for a particular CNNs training configuration. Figure 5.1 shows the core inherent sources of

variability in CNNs training process ecosystem. The different steps of a CNNs training process

have been displayed in solid line boxes. They are examined in details in the followings.

5.3.1 Sources of variability in the deep learning training process ecosystem

The deep learning training process ecosystem includes, but not limited to, the following origins

of variability :

5.3.1.1 The dataset as a source of variability

Training a CNNs model for segmentation in particular or any machine learning model gener-

ally requires splitting the global dataset into three parts. The first one consists in a training

dataset used to estimate and fit the model parameters during the training task. It contains

both a raw input dataset and its corresponding labels. The second dataset is a validation

dataset which is used to estimate the model performances during the training phase in order

to tune the training hyperparameters. Furthermore, the validation dataset might be used also

as an indicator for an early-stopping procedure during the training stage in order to avoid
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over-fitting. The last dataset is called a testing dataset. Its main role involves providing an

unbiased evaluation of the final CNNs model performances.

The ratio of every dataset part among the global dataset size depends on the dataset size and

can deeply impact the degree of expected generalization. For instance, if we consider a basic

example where a testing dataset contains one and only one sample, the CNNs performance

evaluation is highly dependant of the selected sample. In the same fashion, selecting a few

samples from the training dataset leads the model to perfectly fit the training dataset which

results to a generalization issue. For this reason, in order to avoid bias in the data selection

procedure, many strategies exist (see subsubsection 2.1.1.3 of chapter 2). Among them, the

cross-validation approach which consists in dividing the dataset in several folds, which will

be assigned to training, validation and testing datasets. Even though the cross validation

approach enables taking the dataset variability into consideration during the training phase,

it is paradoxical also an additional source of variability itself as there are multiple strategies

to put it into practice, e.g., leave-one-out or k-fold. Also, data augmentation is one more

regularisation technique in order to avoid overfitting (chapter 2 subsubsection 2.1.1.3) which

is also used to alleviate the issue of limited datasets size specially in medical imaging field.

However, the data augmentation is also one more source of variability in CNNs training

process since there is no consensus on which transformation to perform and the parameters

of the transformation are generally randomly chosen.

Also, one of the main source of variability in machine learning is originated from the differ-

ence between the observed samples of the dataset and the real distribution of the dataset.

Actually, the fact that each learning iteration of the algorithm is made only on a different

part of the dataset distribution (which is often randomly shuffled and chosen) can affect the

reproducibility and particularly the replication of the results.

Last but no last, the deep-learning-based segmentation applications, in particular, are more

complex to reproduce as it have additional sources of variability like : (1) the medical imaging

modality (MRI, scanner, echography, . . . ) and (2) the studied pathology [198]. Furthermore the

masks of the segmentation in the raw dataset are usually generated manually which results

into some intra- and inter- raters variability.

5.3.1.2 The CNN architecture as a source of variability

As earlier reported in subsection 2.1.2 of Chapter 2, multiple properties have to be taken into

account when it comes to conceive a CNN architecture like, including but not limited to, the

number, the order, the size and the type of layers (e.g., convolutional, pooling, dense, . . . )

which makes the number of potential combination of possible architectures infinite.

In practice, the main strategies adopted for CNNs architectures conception are threefold :

1. The first one consists in considering a widely-used CNN architecture which has prac-
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tically proved good performance in the literature [126],e.g., U-Net architecture. This

method is most frequently adopted for clinical application field. However, even though

it does not guarantee having the best possible candidate architecture for a specific seg-

mentation application, it has the advantage of being cost free for the CNN architecture

design and selection process.

2. Another approach consists in designing the CNN architecture from scratch by man-

ually handcrafting the future candidate architecture without any without any formal

restrictions. It leads to a plethora of possible architectures [126]. However, it is generally

not considered in practice as it does not warranty the best architecture and it remains

limited and mainly used in the research field.

3. The third strategy is called Network Architecture Search (NAS), is involves automatically

creating and designing a CNN architecture [77]. The NAS architecture engineering

policy aims to find and select the design of a machine learning model which performs

best among all other potential candidates architectures for a specific task trained on

a particular dataset. Yet, the NAS is a quite challenging approach because the best

potential candidate architecture search process has the drawback of being time and

resources intensive. For instance, the NAS policy proposed in [221] has tested 20,000

candidate architectures during 4 days using 500 GPUs.

5.3.1.3 The hyperparameters optimization as a source of variability

As previously mentioned, several hyperparameters have to be tuned throughout the hyperpa-

rameters optimization process in order to effectively train a CNN architecture. However, the

hyperparameters optimization procedure is an additional source of variability for the CNNs

training process as there are multiple different strategies to tune these hyperparameters. The

main policies are the followings:

• The manual search approach is the first one. The choices of the hyperparameters is

based on the personal experience and judgement of the developers. The training, evalua-

tion stages are repeated in loop until a satisfactory accuracy is reached. Even though this

hyperparameters tuning policy limits the space exploration size, it does not guarantee

an optimal results since it only a rough approximation of the best hyperparameters set

is expected which is highly dependent on the developer’s experience.

• Another strategy is the Grid Search one where every possible hyperparameters configu-

ration is tested. It has the advantage of optimization the chances to find the optimal

set of hyperparameters but it suffers from a high computation cost correlated with the

hyperparameters number.

• The Random Search is another automatic hyperparameters optimization technique. It

involves selecting the potential candidate hyperparameters randomly from the configu-

ration space. James Bergstra and Yoshua Bengio [14] published a paper in 2012 reports
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that the random search technique is more effective than the manual and the grid search

policies since it provides higher accuracy with less training cycles, for problems with

high dimensionality. However, it suffers from unintuitive results as it is difficult to justify

the choice of hyperparameters.

• The Bayesian optimization [15] is an automated hyperparameters optimization tech-

nique based on an automatic space exploration for the optimal set of hyperparameters

technique which automatically infers a new combination of hyper parameters based on

its previous evaluations. All of this reduces the size of the explored space since it is driven

by previous experiences. The cost of space exploration in Bayesian optimization is lower

thab Grid and Random search approaches. We should note that there are additional

hyperparameters tuning strategies like the automated genetic algorithm [210].

5.3.1.4 The optimization process as a source of variability

DNNs often have millions of parameters, making the optimization process a challenging task

due to extremely high-dimensional search space, compared with classic machine learning

approaches. The problem of a high-dimensional search space is that adding a unique new

dimension dramatically increases the distance between points in this space. which drastically

increases the search space [57]. Moreover, the cost function is generally non convex [57] which

leads to multiple issues:

1. The presence of local minimums and flat regions with the constrain of the high-dimensionality

of the search space.

2. Even though the Stochastic Gradient Descent (SGD) is widely adopted in the DNNs

optimization process, there is no guarantee that the it will converge to the best potential

solution (even a good local optimum) [118]. Nevertheless, recent works may suggest

that perhaps local minimums and flat regions may be less of a challenge than it was

previously believed [31, 37, 58]. Indeed, Choromanska et al. [31], show that almost all

local minimums have very similar function value to the global optimum, and hence

finding a local minimum is good enough. It is important to mention that the latter

results were obtained on classification tasks. However, the crucial convolutional step of

the segmentation is not considered neither in Choromanska et al. [31] nor in Dauphin

et al. [37].

3. The widely-adopted minibatch stochastic gradient descent alongside its varieties are

eager to naturally promote the non-determinism aspect of the DNNs training procedure

due to their intrinsic stochastic nature [118].

As far as we know, a single conference paper [155] addresses the issue of the stochastic op-

timization non-determinism aspect in the context of CNNs applied for medical imaging

segmentation. Indeed, the authors show differences in the obtained results while training
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a CNN model multiple times using the same dataset, even though the outcome assessment

metrics are not statistically distinct.

5.3.1.5 The evaluation process as a source of variability

Right after the training process comes the evaluation phase. It is a crucial process to assess

the segmentation quality of the trained model, yet it is a challenging task. In fact, there is

no consensus on the best set of approaches to consider in order to extensively assess the

trained CNNs model for segmentation applications in particular. There are various metrics

for segmentation quality assessment (e.g., the dice score, Pixel Accuracy, Mean Accuracy etc,.)

previously introduced in subsubsection 3.3.2.3 of Chapter 2. Table 5.1[193]. Table 5.1 shows

additional evaluation metrics like the the true positive rate (TPR) a.k.a. the Sensitivity (Sens.),

the true negative rate (TNR) a.k.a. Specificity (Spef.), and the Average Volume Distance (AVD)

(linked with the Hausdorff distance). Every metric deals with a specific aspect of the segmen-

tation [193]. For example, one metric can correctly reflect the good overlapping between a

mask of segmentation and a gold standard, but not the contours smoothness. Hence, an

adequate segmentation policy which considers the CNNs variability aspect should include

several metrics [198, 193].

5.3.1.6 The training infrastructure as a source of variability

The adopted CNNs training approach and its corresponding training infrastructure are a major

source of CNNs training variability. In fact, there are multiple approaches in order to bring

a CNNs training policy intro practice for both single-based and distributed CNNs training

process. For example, a review of the different deep learning implementations characteristics

in term of the supported platform and DNNs training strategies, programming language, etc.,

can be found in [204]. However, as far as we know, there is no prior work which deals with

CNNs training reproducibility issues regarding the training infrastructure in particular.

Several options exist in term of training nodes infrastructure types [203], (e.g., CPUs, GPUs,

Tensor Processor Unit (TPU)) which is an additional source of CNNs training variability.

Indeed, some technical aspects like the memory precision with different size can affect the

accuracy of the results [69]. Also, some non-deterministic GPU-native operations can lead to

large differences in performance between training runs and thus, non reproducibility of the

outcome results [142].

As previously stated, the DNNs training might be a time consuming procedure. Various CNN

parallelism techniques exist (see chapter 2 section 2.2) aiming to alleviate this issue where

every strategy has its own advantages and drawbacks (see chapter 3 subsubsection 3.3.2.2).

Adopting CNNs parallelism techniques might further increase the variability and the non-

determinism of the training process which impacts the reproducibility of the outcomes. For

instance, during the optimizing phase of the cost function using either a parameters server or
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Metric Equation Range Signification

True Positive Rate (TPR) T P
T P+F N 0-1

Sensitivity

True Negative Rate (TNR) T N
T N+F P 0-1

Specificity

Average Volume Distance (AVD) max
(
dH (M ask,Gr ound Tr uth),dH (Gr ound Tr uth, M ask)

)
≥ 0

Precision

Table 5.1 – Segmentation Metrics. Mask = segmentation mask; Ground Truth = ground truth
mask; TP = true positive, voxels correctly segmented as region of interest; TN = true negative,
voxels correctly segmented as background; FP = false positive, voxels incorrectly segmented
as region of interest; FN = false negative, voxels incorrectly segmented as background. dH

corresponds to the directed Average Hausdorff metric define as dH (A,B) = 1
N

∑
a∈A minb∈B ||a−

b||, where N is the number of pixels/voxels considered.

Ring-Allreduce CNN parallelism techniques, each single work’s partial result will aggregated

with the remaining training nodes own partial results. Merging these computations values

might be done by computing the mean value. Hence, considering a mean value of an already

stochastic process (i.e., supposing that we adopt SGD) further increases the non-determinism

aspect of the CNNs training procedure.

5.3.2 Main causes of deep learning training reproducibility issues for a particular
DNNs training configuration

The previously introduced study which intends to identify and investigate the main origins

of DNNs training process variability constitutes a first mandatory step towards having an

overview of the general variability sources of deep learning training ecosystem. Hence, in

order to have deeper insights about the core causes leading to reproducibility issue for a

particular DNNs training setting, we start by studying which among these aforementioned

variability origins may be fixed during a specific training setting. It is indeed possible to freeze

the considered (1) neural network architecture, (2) selected hyperparameters, and (3) the

output evaluation procedure throughout multiple runs of a particular integral DNNs training

process. Actually, at the end of an hyperparameters optimization procedure, when the final set

of training hyperparameters is selected, it is feasible to freeze to adopted DNNs architecture

(i.e., since it is related to the selected optimal hyperparameters set which conventionally

performed best among all others). It is also possible to consider a unique evaluation procedure

for all training execution iterations (e.g., which should include several assessment metrics as

recommended in subsubsection 5.3.1.5)

Regarding the optimization process, if we are hoping to reduce the degree of the non-determinism

process, the only option we have is to consider a classical gradient descent approach. Yet, it

is never used in practice because it is a cumbersome process requiring to take into account

all the samples in the training dataset before performing a single update of the model’s pa-
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rameters. That is why the minibatch stochastic gradient descent and its related varieties are

commonly adopted in practice (see Figure 5.3) since they only consider a minibatch of several

samples to update the model’s weights and achieve a considerably close accuracy as the classic

gradient decent approach in much less time frame [118]. However, these popular stochastic

optimization approaches are eager to naturally promote the non-determinism aspect of the

DNNs training procedure due to their intrinsic stochastic nature. Furthermore, even though, it

is completely possible to fix the training/validation/test datasets ratios, it is not recommended

practically to omit shuffling the training/validation datasets between successive learning

iterations because it will reduce the datasets variance which leads to issues of generalization

for the trained model which will consequently have more chances to overfit [134].

Regarding the DNNs strategy infrastructure implementation, it is only conceivable to freeze

the software part (e.g., used implementation framework and libraries) alongside the training

agents hardware properties aspect (e.g., the considered GPU reference). However, it is not the

case when a distributed training strategy is adopted due to its intrinsic ability to increase the

non-determinism aspect of DNNs training procedure (see subsubsection 5.3.1.6).

Therefore, if is possible in practice to fix the neural network architecture, selected hyper-

parameters, and the output evaluation procedure throughout multiple runs of a particular

integral DNNs training process without a considerable constraints. Also, to a minimum extent,

it is also feasible to alleviate the non-deterministic property of the DNNs training task by

adopting the same single hardware training agent and the same datasets ratios. Nevertherless,

the stochastic-based optimization approaches with their related training dataset are among

the core causes of reproducibility issues for a particular DNNs training setting due to their

inherent stochastic properties.

5.4 Literature review

In this section, we will first introduce how the literature review was conducted before broadly

introducing its main results.

5.4.1 Methods

As far as we know, there is currently no recognized consensus standard for DNNs reproducibil-

ity and evaluation for medical imaging segmentation applications. Through this literature

review study we aim to investigate commonly-adopted practices for DNNs applied to medical

imaging segmentation field. In order to do so, our introduced literature review is broadly

investigating the followings questions:

1. Has the DNN training process been properly described so that the work can be easily

and correctly reproduced ?

2. Have all DNNs training process variability sources been taken into consideration ?
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3. How the assessment procedure of the outcome models been carried out and the out-

come results been reported ?

Our literature review includes a total of 23 papers presented in the survey article [126]. More

specifically, in the "Tissue/anatomy/lesion/tumor segmentation" survey section. We have

selected the latter survey paper since it is among the most relevant papers that appears

in Google Scholar search results (i.e., using keywords ’medical image segmentation neural

network’ and ’review survey’). 1. The majority of reviewed articles are recent. The oldest one

was published 2014 [68] while the average publication year is 2016. 2

We investigate the potential variability phenomenons introduced by the considered dataset

itself, the optimization strategies and its associated hyperparameters selection selection and

tuning process, by the DNNs training implementation infrastructure, and last but nit least,

the assessment policies. Throughout our proposed review, we look over for the existing of

each inspected studied property, and if so, its corresponding potential value(s) are reported.

Concurrently, considering the dataset variability phenomenon, we explore multiple criteria

including : (1) whether the DNNs have been tested on several datasets or not, (2) public or

private dataset, (3) the number of available data samples, (4) whether the data augmentation

regularization policy has been carried out or no, (5) the ratio of training/validation/testing

datasets and the potential adoption of a cross validation method. As for the optimization

process part, we inspect (1) if the different hyperparameters have been properly reported and

(2) the adopted hyperparameters optimization policy (e.g., manual, random search, etc,) in

case of available information. We also review the DNNs strategy infrastructure implemen-

tation details which a particular attention to the type of used training nodes infrastructures.

Concurrently, we explore whether the DNNs training was conducted in a single-node-based

or a distributed fashion. Finally, for the assessment process, we study the number, type of the

metric and if the variability aspect was taken into consideration.

The assessment of different DNNs output models is performed using the dice score, the true

positive rate (TPR), the true negative rate (TNR) and the Average Volume Distance (AVD). We

consider various metrics since, as previously stated, each metric has its own drawbacks and

advantages and deals with a particular segmentation evaluation aspect [198, 193].

5.4.2 Synthesis of literature review

Our introduced literature review main results are highlighted in Table 5.2, Table 5.3, Table 5.4

and Table 5.5. Indeed, Table 5.2 is mainly dedicated to study the data variability aspect,

Table 5.3 is basically studying the variability due to the evaluation procedure, Table 5.4 investi-

gates DNNs training variability sources from the optimization process angle, and Table 5.5

particularly focuses on multiple DNNs training approach infrastructure implementations.

13107 citations for the paper ’A survey on deep learning in medical image analysis’ by the beginning of May 2020
2Citations statistics of all reviewed articles by December 2019 are (median = 97, min = 20 , max = 1074)
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5.4.2.1 Description of the DNNs training process

In this section, we not only investigate whether or not some methods have been considered,

but rather if they have been properly and clearly described.

We found that that only a couple papers [98, 152] (i.e., 9% of the papers) sufficiently describe

the DNNs training hyperparameters and the considered dataset with the goal to reproduce

their works. On the other hand, a unique paper [172] is missing just one hyperparameter (i.e.,

the minibatch size), but the code source is publicly available and well documented. Figure 5.2

shows the main statistics regarding both the dataset and the optimization process. Also,

Table 5.2 analyses the considered datasets in all reviewed papers. Indeed, all papers properly

introduced datasets and their corresponding sizes while 17% of papers do not mention the

training dataset ratio. Also, only 57% of reviewed papers clearly report whether or not a

validation dataset was adopted, and 35% if a data augmentation regularization technique was

performed.

Table 5.4 is principally dedicated to study the selected hyperparameters for the optimization

process. We found that 17% completely ignore to describe the optimization process. Also, a

unique reviewed paper [68] cites a generic optimization approach name (GDM for Gradient

Based Method) without any additional explanations. Yet, the learning rate hyperparameters

was generally reported with its related initial values (or range of values) expect of four papers.

Three reviewed papers [4, 18, 22] consider AdaDelta as an optimization strategy, yet, none

of them details the learning rate hyperparameters. Also, only a unique paper among them

reports the sensitivity ratio for the DNNs approach assessment. Furthermore, more than half

of reviewed papers (52% of the papers) do not mention the minibatch size, and just 35% among

them clearly precise its value. Furthermore, the dropout method, which is more dedicated for

regularization purpose, is present in 61% of the papers (only 43% precises the dropout ratio)

and 43 % of papers report considering the Stochastic Gradient Descent (SGD) optimization

approach.

Table 5.5, illustrates that 35% of investigated articles do not report at all the DNNs infras-

tructure implementation. Moreover, 26% of the articles do not provide a clear description

such as the kind of considered infrastructure. Furthermore, in case we suppose that a correct

GPU’s description should include at least (1) the name of the constructor, (2) the class and the

memory size, only 30% clearly mention these details. It can also been observed in Table 5.5

that there is no consensus when it comes to report the DNNs training infrastructure.

Even though publicly sharing the source code might be the best way to facilitate the DNNs

training procedure, only 17% of reviewed papers have their source code publicly accessible.
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Figure 5.2 – The left side, resp. the right, of the figure is relative to the description of the dataset,
resp. the optimisation. The description of the training proportion is present in 83% of the
articles. The terms of data augmentation, resp. the validation set, are described in 35%, resp.
57% in the papers. For the optimisation procedure, the name of the optimisation algorithm
are missing in 17.4% of the papers. For the hyper parameters learning rate, drop out and batch
size, their values are available only in 55%, 52.2% and 34.8% respectively. These coefficients
are mentioned in the text without any values in 20%, 8.7% and 13% respectively. Finally, only
9% of the evaluated papers has enough information to be reproducible.
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5.4.2.2 Variability in the deep learning training process ecosystem

Throughout a set of selected reviewed articles, we will broadly study the variability properties

at the dataset, the optimization, the hyperparameters, the DNNs architectures, the implemen-

tations and the infrastructures levels. Some of the mains results of our proposed literature

review are detailed in Figure 5.3.

Dataset Variability

Table 5.3 highlights data variability aspect of the DNNs training process. It shows that beyond

half of reviewed DNNs techniques are evaluated on more than a single dataset using available

public dataset (generally provided during data challenges like BRATS [136]. On the other hand,

30% of the studied papers test their algorithms using only a private dataset.

Furthermore, a limited number of 6 datasets include more than 100 samples, and 4 among

them are coming from the same public one which is BRATS. All of this highlights and confirms

the difficulty to acquire rare large datasets. For this reason, like previously noted, the data

augmentation is a paramount approach for deep-larning-based medical imaging segmenta-

tion. However, 13 % of reviewed articles do not clearly detail if either a data augmentation

technique or a patches strategy are considered, and if so, and how many patches are selected.

Furthermore, even though cross validation strategies permit to alleviate DNNs training vari-

ability originated from the chosen dataset, 52 % of the articles do not perform any cross

validation strategies.

Variability in the optimization

One article [98] presents an original strategy to manage the intrinsic variability of the DNNs

optimization process: It involves merging the results of three CNNs models which leads to

better performances compared to a single model. No other reviewed papers adopt a similar

approach.

Hyperparameters variability

As can be seen in Table 5.4 a unique article [73] clearly explains all the tuning procedure steps

of its hyperparameters using Grid Search strategy. However, another article [140] claimed to

automatically tune its hyperparameters without any clear explanations. In all reviewed articles

in Table 5.4, the main considered strategies are threshold: (1) the SGD with Momentum, the

RMS-prop and the AdaDelta techniques.

The learning rate is one crucial hyperparameter which varies in a significant way from 10−2

to 10−4. For example, a couple of articles [137, 152] conducted an hyperparameters tuning

process while varying the learning rate within a range of values. We can notice that the
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training dataset ratio in Table 5.2 which is another training hyperparameter has a wide range

of variability (from 20 % to 95 % of the dataset total size). Indeed, the training dataset ratio is

highly dependent on the total raw dataset size which pinpoints the high degree of variability

of the training hyperparameters.

Variability in DNNs the architecture

Table 5.3, highlights that the CNNs architectures are undoubtedly the main used type of

architectures of DNNs for segmentation applications. The RNNs are adopted in a couple of

reviewed papers. In total, both CNNs and RNNs architectures represent 91% of all reviewed

DNNs architecture types. We should note that two articles [18, 130] have tested several

different DNNs architectures in their framework, i.e., 5 for [18] and 2 for [130]. Meanwhile,

only a single article [73] followed a grid-search-based strategy for the architecture-related

hyperparameters conception (e.g., kernel, max pooling size for each layer and the number of

layers) in order to determine the optimal final CNNs architecture.

Variability in the infrastructure

Table 5.5, shows that several deep learning implementations have been considered. Particu-

larly, widely-used set of deep learning frameworks include Theano [194], Mat-ConvNet [199],

Caffe [91] and Pylearn2 [59] alongside a single one in-house adopted framework implemen-

tation [22]. 13% of all reviewed articles make use of an additional high-level API (e.g., Keras

[30] or Lasagne [40]) in addition to the aforementioned deep learning framework. GPUs are

by far the widely-adopted training infrastructure as it was considered in all studied papers.

Nevertherless, no article pinpoints adopting a particular DNNs distributed training strategies.

5.4.3 Evaluation of the variability

Almost half reviewed papers consider less than 3 metrics which is in line with the recom-

mended number in [198] (see Table 5.3 and Figure 5.4). Also, only one quarter of papers assess

the metrics variability aspect, e.g., using Standard Deviation for instance. In some cases, this

can be explained by a particular data challenge evaluation platform context. Meanwhile, the

variability is reported using boxplots graphics in the the majority of articles. However, only a

couples of articles report the whole evaluation results for every data challenge participant.

Regarding the adopted segmentation evaluation metrics, the dice score has been considered

in all articles. Yet, there is a large number of other metrics which has been adopted to assess

segmentation in the reviewed works. We have enumerated 22 different names of metric

throughout our literature review. Yet, some of them are synonyms for the same metric, e.g.,

True Positive Rate, Recall and Sensitivity.
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Figure 5.3 – The figure displays 4 different sources of variability. A) there a large variability
in the dataset size. 68.5% of the number of samples of the dataset are less or equal than 50.
B) In general, no cross-validation strategy is considered (more than 50%). C) There are 5
different optimisation algorithms introduced in the different papers. The main approach is
the SGD based on Momentum (SGM(M)). D) 5 different DNNs implementations. The Theano
implementation are used in 42.9% of the considered papers, there is no consensus in the
implementations.

Figure 5.4 – Number of evaluation measures used in each article.
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Paper Training size DA DA term VS term Training dataset ratio CV Strategy
Guo (2014) [68] ≤ 50 Patchs No No Not clearly detailed LOO
de Brebisson (2015) [38] ≤ 50 Patchs No Yes 43% No
Choi (2016) [29] ≤ 50 Patchs No Yes 75% No
Stollenga (2015) [186] ≤ 50 Patchs Yes No 50%, 25% No
Zhang (2015) [217] ≤ 10 Patchs No Yes 87.50% LOO
Andermatt (2016) [4] ≤ 10 Yes Yes No 25% No
Bao (2016) [9] ≤ 10, ≤ 50 Patchs No No 50%, 50% No
Birenbaum (2016) [18] ≤ 10 Patchs Yes Yes 80% LOO
Brosch (2016) [22] ≤ 50, ≤ 50, ≥ 100 Not described No Yes 46%, 95%, 80% No / LOO / No
Chen (2016a) [27] ≤ 10 Not described No No 25% LOO
Ghafoorian (2016b) ≥ 100 Patchs No Yes 90% No
Ghafoorian (2016a) ≥ 100 Patchs No Yes 89% No
Havaei (2016b) [74] ≤ 50, ≥ 100, ≥ 100 Not described No Yes 70% No
Havaei (2016a) [73] ≤ 50, ≥ 100 Patchs Yes Yes 46%, 84% No / 7 FO
Kamnitsas (2017) [98] ≤ 100, ≥ 100, ≤ 50 Patchs Yes Yes 80%, 72%, 44% 5 FO
Kleesiek (2016) [104] ≥ 100,≤ 100 Patchs Yes No 50%, 50% 2 FO / 3 FO
Mansoor (2016) [130] ≥ 100 Patchs No No Not clearly detailed Not clearly detailed
Milletari (2016a) [137] ≤ 100, ≤ 50 Patchs No Yes 82%, 33% No
Moeskops (2016a) [140] ≤ 50, ≤ 50, ≤ 50 Patchs No No 20%; 25% ; 33% LOO / No / No
Nie (2016b) [146] ≤ 10 Patchs No No Not clearly detailed LOO
Pereira (2016) [152] ≤ 50 Patchs Yes Yes 46%, 84% No
Shakeri (2016) [172] ≤ 50, ≤ 50 Patchs Yes Yes 66% , 50% 3 FO / 2 FO
Zhao (2016) [220] ≤ 50 Patchs No No Not clearly detailed Not clearly detailed

Table 5.2 – The table displays for each article the number of training size, the kind of data
augmentation (DA), the presence of the DA term and the validation set (VS) term, the training
size ratio and the cross validation (CV) strategy. In the CV can be Leave One Out (LOO) or k
Fold Out (k FO).
For example, Kamnitsas et al. [98] presents 3 datasets, with training size ≤ 100, ≥ 100 and ≤ 50.
The data augmentation is based on a patch strategy. The training dataset ratio of the 3 datasets
are 80%, 72% and 44%. Finally the authors used 5 Fold Out for the CV strategy.

76



5.4. Literature review

Paper NN Nb DS Dataset type Type of Meas. Nb of Meas. Var. of Meas.
Guo (2014) [68] SAE 1 Private DC 1 Values
de Brebisson (2015) [38] CNN 1 Public DC 1 No
Choi (2016) [29] CNN 2 Public DC, P, R 3 Values, Graph
Stollenga (2015) [186] RNN 2 Public DC, MHD, AVD 3 No
Zhang (2015) [217] CNN 1 Private DC, MHD 2 Values, Graph *
Andermatt (2016) [4] RNN 1 Public DC, MHD, AVD 3 No
Bao (2016) [9] CNN 2 Public DC, VD, SD, TPR, FPR 1 No
Birenbaum (2016) [18] CNN 1 Public DC,Score 2 No
Brosch (2016) [22] CNN 3 2 Public & Private DC, AVD, LTPR, LFPR 4 Graph
Chen (2016a) [27] CNN 1 Public DC, MHD, AVD 3 No
Ghafoorian (2016b) CNN 1 Private DC, AUC 2 Graph
Ghafoorian (2016a) CNN 1 Private DC, AUC 2 Graph
Havaei (2016b) [74] CNN 3 Public DC,VD,SD,TPR,FPR 5 No
Havaei (2016a) [73] CNN 2 Public DC,Sens.,Spe 3 Graph
Kamnitsas (2017) [98] CNN 3 Private &2 Public DC, P, Sens, ASSD, HD 5 Values, Graph
Kleesiek (2016) [104] CNN 4 3 Public & 1 Private DC,Sens.,Spe 3 Values, Graph
Mansoor (2016) [130] SAE 1 Private DC, ALSD 2 Values, Graph
Milletari (2016a) [137] CNN 2 Private DC, MDEC, FR 3 Graph
Moeskops (2016a) [140] CNN 3 Public DC, MSD 2 Values, Graph
Nie (2016b) [146] CNN 1 Private DC 1 Values *
Pereira (2016) [152] CNN 2 Public DC, PPV, Sens 3 Graph
Shakeri (2016) [172] CNN 2 Public & Private DC, HD, CMD 3 Graph
Zhao (2016) [220] CNN 1 Public DC 1 Graph

Table 5.3 – The table displays the different NN models, kind of datasets (number of datasets,
noted Nb DS, and the kind of dataset (public or private) and the kind of evaluation (type,
number and variability of measures). For the type of measures, DC = Dice Coefficient, P =
Prediction, R = Recall, MHD = Modified Hausdorff Distance, AVD = Average Volume Distance,
TPR = True Positive Rate, FPR = False Positive Rate, AUC = Area Under the Curve, Sens. =
Sensitivity, Spe. = Specificity. The variability of the measures corresponds to the presence of
the standard deviations values or displays in a graph. The (*) means that the values for all
subjects are reported.
For example, the article written by Kamnitsas et al. [98] is based on CNN. Their models are
evaluated on 3 datasets where one are private and two public. To evaluate their segmentations,
they used the DC, P., Sens., ASSD and HD metrics (5 different metrics). The variability of the
measures are displayed on a graph and corresponding values are reported in the text.
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Paper Optimization HP Handcrafted Learning rate (V./P.) Batch size (V./P.) Drop out (V./P.)
Guo (2014) [68] GBM Yes No/No No No
de Brebisson (2015) [38] SGD (M) Yes Yes (0.05) /yes Yes / yes No
Choi (2016) [29] SGD (M) Yes Yes (0.001)/yes No /yes Yes/yes
Stollenga (2015) [186] RMS-prop Yes Yes (0.01)/yes No Yes/yes
Zhang (2015) [217] SGD (M) Yes Yes (0.0001)/yes No Yes/yes
Andermatt (2016) [4] AdaDelta Yes omit No Yes/yes
Bao (2016) [9] Not described Yes No No No
Birenbaum (2016) [18] AdaDelta Yes ** omit No Yes/yes
Brosch (2016) [22] AdaDelta Yes Sensitivity ratio Yes/yes No No
Chen (2016a) [27] Not described Yes No No No
Ghafoorian (2016b) RMS-prop Yes No/Yes Yes/yes Yes/yes
Ghafoorian (2016a) RMS-prop Yes No/Yes Yes/yes Yes/yes
Havaei (2016b) [74] SGD (M) Yes Yes (0.001)/yes No No/Yes
Havaei (2016a) [73] SGD (M) No (Grid Search) Yes(0.005)/Yes No/Yes Yes/yes
Kamnitsas (2017) [98] RMS-prop Yes Yes(0.0001)/Yes Yes/Yes Yes/yes
Kleesiek (2016) [104] SGD Yes Yes(0.00001)/Yes Yes/Yes No
Mansoor (2016) [130] SGD (M) Yes ** No Yes/Yes No
Milletari (2016a) [137] SGD (M) Yes Yes (Range Values)/Yes Yes/Yes Yes/yes
Moeskops (2016a) [140] RMS-prop No (not explained) No/Yes No/Yes No/Yes
Nie (2016b) [146] Not described Yes No/Yes No No
Pereira (2016) [152] SGD (M) Yes Yes (Range Values)/yes Yes/yes Yes/yes
Shakeri (2016) [172] SGD (M) Yes Yes(0.01)/yes No Yes/yes
Zhao (2016) [220] Not described Yes No No No

Table 5.4 – The Table displays the kind of optimization, if the hyper parameters (HP) are
handcrafted, the learning rate (the Value (V.) and the presence (P.) of the term), the batch size
(the Value (V.) and the presence (P.) of the term), the drop out regularization (the Value (V.)
and the presence (P.) of the term) and if the code is open source. The (M) in the optimization
column signify that the Momentum algorithm is performed. The ** in the HP Handcrafted
means that several architectures of NNs have been tested.
For example, the article written by Kamnitsas et al. [98] used a RMS-prop strategy for optimi-
sation. The different hyper parameters are handcrafted. The learning rate, the batch size and
the drop out are mentioned in the text, and their corresponding values are given.
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Papers Implementation Infrastructure Open Source
Guo (2014)[68] Not described Not described No
de Brebisson (2015)[38] Theano NVIDIA Tesla K40 GPU-12GB No
Choi (2016)[29] Mat-ConvNet GPU (GTX TITAN) No
Stollenga (2015)[186] Not described NVIDIA GTX TITAN X GPU-12GB No
Zhang (2015)[217] Not described Tesla K20c GPU No
Andermatt (2016)[4] Caffe NVIDIA GTX Titan X GPU-12GB No
Bao (2016)[9] Not described Not described No
Birenbaum (2016)[18] Keras + Theano NVIDIA GeForce GTX 980 Ti GPU No
Brosch (2016)[22] own implementation GeForce GTX 780 No
Chen (2016a)[27] Caffe NVIDIA TITAN X GPU Yes (*)
Ghafoorian (2016b)[52] Theano Not described No
Ghafoorian (2016a)[52] Not described Titan X card No
Havaei (2016b)[74] Keras Nvidia TitanX GPU No
Havaei (2016a)[73] Pylearn2 NVIDIA Titan black card. No
Kamnitsas (2017)[98] Theano NVIDIA GTX Titan X GPU-12GB Yes
Kleesiek (2016)[104] Theano NVIDIA Titan-3GB No
Mansoor (2016)[130] Not described Not described No
Milletari (2016a)[137] Caffe NVIDIA ”Tesla k40” or ”Titan X”-12GB No

Test on Nvidia GTX 980-4GB No
Moeskops (2016a)[140] Not described NVIDIA Tesla K40 GPU (**) No
Nie (2016b)[146] Caffe Not described No
Pereira (2016)[152] Theano + Lasagne GPU NVIDIA GeForce GTX 980 Yes
Shakeri (2016)[172] Mat-ConvNet Described in github Yes
Zhao (2016)[220] Not described Not described No

Table 5.5 – In the second column, the different implementations are described (Theano 3,
Mat-ConvNet 4, Caffe 5, Keras 6, Pylearn2 7 and Lasagne 8). For the infrastructure details, the
materials are described as they are referred in the papers. If the global memory is reported in
the paper, it will be noted. The last column ’Open Source’ shows if the code source is available.
The (*) is the code source is not available but a detailed prototype of the algorithm is provided.
The (**) corresponds when the infrastructure is detailed in the Acknowledgement section. For
example, the article written by Kamnitsas et al. [98] used the Theano implementation on an
infrastructure based on a NVIDIA GTX Titan X GPU-12GB. Their code is released ad Open
source.

79



5. Variability and reproducibility in deep learning for medical imaging segmentation

An	adequate	description	of	the
deep	learning	training

ecosystm

Multiple training runs

2

An effective
segmentation evaluation

system

1

3

Figure 5.5 – Good practices recommendations for reproducibility for DNNs training process
for medical imaging segmentation

5.5 Good practices recommendations for reproducibility for DNNs

training process for medical imaging segmentation

Driven by the introduced literature review, as can be seen in Figure 5.5, our recommended

good practices focus on three main aspects: (1) an adequate description of the deep learning

training ecosystem, (2) reiterating the training process multiple times(4) and an effective

evaluation system of the segmentation outputs performances. Indeed, it is crucial to correctly

describe all aspects of the the deep learning training ecosystem, going from the DNNs model

and its corresponding hyperparameters to the evaluation system, etc. Researcher should

clearly describe the DNNs architecture by including, for instance, a schema giving an overview

on the introduced architecture specially when it is a complex one.

Regarding the dataset aspect, our recommendations are threefold:

• A complete description of the dataset is required, including the type of acquisitions

method (i.e. MRI, scanner, . . . ), the images dimensions and the total sample size. If the

dataset is publicly available, a downloadable link should be provided.

• Concerning the data preprocessing phase, if the case of data augmentation is considered

, the different kinds of transformation must be described and the final number of

samples should be included.

• The ratio of the training / validation / testing datasets should be clearly reported. In
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case no validation set is considered, this choice should be mentioned and well-argued.

For the optimization approach, the chosen algorithm should be clearly referenced alongside

the different adopted hyperparameters values, like the learning rate or the minibatch size,

should be reported. In order to alleviate DNNs variability issues We caused by optimization

process variability [31, 37, 58], we recommend to perform multiple runs for each training

setting while freezing whenever possible variability sources (e.g., fixing the training hyperpa-

rameters, the CNN architecture, the evaluation procedure). Indeed, CNN parallelism policies

alongside recent powerful training infrastructures (e.g. GPUs) have facilitated reiterating

DNNs training process in much shorter time frames. Yet, if several evaluations have been

performed, the number of runs should also be provided. On the other hand, regarding the

hyperparameters tuning process, the adopted selection should be reported, e.g., manual,

grid search. Moreover, the adopted CNNs training approach and its corresponding training

infrastructure should be detailed including technical hardware specifications (e.g., considered

GPU reference, memory size). Last but not least, the containerization of the experimental

environment alongside its specific module and its dependencies and runtime components is

a key good practice helping towards easing the DNNs training reproducibility.

Last but not least, since there is no recognized consensus standard for DNNs evaluation for

medical imaging segmentation applications, three assessment metrics should be considered at

least in order to evaluate the segmentation output performances. Considering that multiples

metrics are correlated [193], the segmentation assessment metrics should be chosen wisely

[198]. These good practices recommendations are in line with [193].

5.6 Conclusion

This chapter aims to emphasize the complexity and the high degree of variability in the deep

learning training ecosystem. In the era of reproducibility crisis [7, 188], in order to be able

to pinpoint the main causing issues of DNNs training reproducibility for a specific training

setting, we broadly investigate the principal sources of variability in the in deep learning

training ecosystem. After that, we conduct a literature review aiming to give us deeper insights

about main reproducibility issues of CNNs for medical imaging segmentation.

An important first step would be to extensively describe the entire deep learning ecosystem

with enough appropriate information to be easily reproduced. Moreover, it is very important

for the researchers to be aware of the variability aspects while building new DNNs models and

whenever possible assess them. Also, particular applications such as segmentation should be

considered with their complete specificities.

This variability might be also seen sometimes as a blessing. For instance, merging the results

of multiples CNNs models might improve the segmentation accuracy bu hiding and alleviating

some abnormalities which leads to more robust solutions in some cases [98].
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Finally, since there is no recognized consensus standard for DNNs reproducibility and evalu-

ation for medical imaging segmentation applications, an interesting future work would be

introducing an in-depth unified methodology including good practices to be followed by

researchers aiming to alleviate reproducibility issues for the segmentation use cases.

This contribution has been published in Scientific Reports peer-reviewed journal [160].
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6 Towards fast and accurate large mini-
batch CNN parallelism for imaging
segmentation applications
We have previously introduced R2D2 and Auto-CNNp, our first contributions and building

blocks of our proposed integrated platform in chapter 3 and chapter 4 respectively. Next, based

on a set of observations we have made while building the aforementioned solutions, two re-

search questions have arisen : (1) "Does the recent CNNs parallelism techniques generalize to

the imaging segmentation applications ?" and (2) "What are the variability sources of the CNNs

training process and the reasons behind reproducibility issues for the same particular training

setup of a CNNs training". We have investigated the generalizability of recent CNN parallelism

techniques to the imaging segmentation applications concurrently in section 3.4 of chapter 3.

Afterward, we conducted, in chapter 5, a literacy review to identify the sources of variability in

the deep learning training process and pinpoint the reasons behind reproducibility issues.

Our observations confirmed also that there is also some way to go before achieving an effective

CNNs training in a distributed fashion with no accuracy loss. Hence, another related research

question has emerged : "How can we reduce the segmentation accuracy loss in the CNNs

parallelism task?". In the current new chapter, we aim to deal with the degradation of the

segmentation accuracy when distributing the CNN training process. In order to do so, we

present our fourth and final contribution which consists of introducing a guideline including

a set of recommendations and directives helping researchers during the decision-making

process of the training phase of CNNs with the goal to achieve CNN parallelism without

segmentation accuracy loss.

6.1 Introduction

It is generally acknowledged that the human decision-making process is a complex procedure

which is subject to several flaws. In fact, it is a naturally limited, faulty, and biased process

[132]. DNNs training task is no exception as it requires a human-based decision-making

process in order to effectively train models either on a single or specially when the training

is performed in a distributed approach. Indeed, a number of decisions and choices had to

be made and several questions commonly arise during a typical DNNs training process. For
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instance, which training hyperparameter has to be selected first and tuned during the DNNs

hyperparameters optimization process? Is there an order for the hyperparameters tuning in

DNNs? Based on a current hyperparameters optimization run results, should we increase or

decrease the value of the selected hyperparameter for the next run? Actually, selecting the

adequate hyperparameters in deep learning is a cumbersome and skill-intensive task which

requires solid understanding of deep learning optimization fundamentals [56] and years of

experience and expertise to acquire. Moreover, additional factors come into play especially

when we adopt a distributed training approach, among them the parallelism degree and the

linear scaling rule coefficients for example.

The study of the results of the practical experiments which have been conducted throughout

this thesis and particularly in chapter 3, subsection 3.4.3 led us to draw several findings, some

of which have not been previously discovered. In particular, the segmentation accuracy loss

that we stated when scaling up the CNNs training starting from 12 GPUs. Accordingly, this

observation led us also to call into question the extent of the learning rate linear scaling rule

to the segmentation task for larger minibatch size/parallelism degree.

Unfortunately, to the best of our knowledge, there is currently no clear methodology aiming

to deal with the segmentation accuracy degradation when the CNNs training is performed

in a distributed fashion. In this chapter, we intend to tackle this challenge by introducing a

novel guideline aiming to alleviate the accuracy loss cost of CNNs parallelism in the context

of segmentation applications. Our proposal aims to increase the chances for the researchers

to select the most adequate choice within the possible alternatives throughout the CNNs

distributed training process. Indeed, our introduced guideline-based approach is mainly built

on GreScale, a novel learning rate hyperparameter scaling rule we introduce. The latter is

a variety of the classic Facebook’s gradual warmup linear scaling approach where we take

advantage of the learning rate decay technique in an innovative way. The scenario-based

assessment results of our proposed guideline on a couple of medical imaging segmentation

case studies are promising. Indeed, following our guideline recommendations, we succeeded

to empirically prove the effectiveness of our proposal by completely eliminating the accuracy

loss for the U-Net CNN architecture on both case studies. On the other hand, even though

our proposed guideline is slightly less effective for the FCN CNN architecture, we succeeded

to alleviate the accuracy loss compared to the Lr linear scaling rule with gradual warmup

strategy.

The remainder of the chapter is structured as follows: In Section 6.2, we explore some back-

ground and related work. In Section 6.3, we present and discuss our proposed guideline

while justifying our recommendations. In Section 6.4, we conduct a scenario-based case

studies assessment of our proposed guideline in order to evaluate its effectiveness. We finally

conclude in Section 6.5.
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6.2 Background & Related work

6.2.1 Learning Rate hyperparameter

The Learning Rate (Lr) is a crucial hyperparameter commonly considered as the most impor-

tant hyperparameter to tune for an effective DNNs models training [56, 12]. Like aforemen-

tioned in subsubsection 2.1.1.1 of chapter 2, training a DNN is an iterative global optimization

problem where an optimization approach is adopted in order to minimize of loss function

with to goal to adjust and find an optimal DNNs parameters configuration. Several optimiza-

tion approaches may be adopted. The Stochastic Gradient Descent (GD) is a widely-adopted

optimization algorithm [19]. For instance, we consider SGD optimization strategy. We denote

L0 the loss function; ∇ the gradient of the loss function; η the learning rate and i the current

iteration. We update the parameters x of a DNN by the following Formula [213, 56]:

xt = xt−1 −η∇Lx (6.1)

As illustrated in Equation 6.1, the learning rate η controls the extent and speed at which the

model learns and trains. The Lr is a positive scalar establishing the step size with which the

weights are updated during the training process [56]. In practice, tuning the Lr is a challenging

task. As can be seen in Equation 6.1, a too high Lr allows the model to train and learn faster at

the expense of achieving a non-optimal final weights and may even diverge [12]. On the other

hand, a too small Lr can lead to a slower learning because the model would need much more

updates before achieving convergence, but it can permit the model to reach more optimal

weights configuration.

Several Lr tuning policies exist for an efficient DNN models training procedure. The constant Lr

strategy is the most straightforward one which is generally considered as the default baseline

approach. It consists in keeping the Lr hyperparameter value unchanged throughout the

whole training process. However, a considerable effort has been made in order to improve the

constant Lr policy and push the limits further by proposing a set of alternative strategies. The

latters are generally incorporating dynamic Lr methods, which aim to adjust and adapt the Lr

rate during the DNNs learning procedure. These various Lr strategies will be investigated in

the following.

6.2.2 Dynamic learning rate policies

There is abundant literature about dynamic Lr strategies. They are generally schedule-based

and/or adaptive Lr policies. The schedule-based approaches adjust the Lr value following

specific schedules during different stages of the training process. For instance, as stated

previously, when the SGD optimization strategy approaches a minimum in the loss function

with inadequate Lr value, the model may start to suffer from instabilities. The learning rate
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decay strategy which is also known as learning rate annealing is one approach which intends

to tackle this problem by decreasing the Lr which, in its turn, slows down the learning process

and hence promotes DNNs training convergence. The Lr decay may be introduced manually

during the learning process or throughout an automatically scheduled fashion. There are

other Lr decay schedule-based policies, such as, e.g., exponential [51, 124], polynomial [34],

staircase [183]. Moreover, the Cyclic Learning Rates (CLRs) approaches [181] are an additional

family of schedule-based Lr adjustment strategies involving changing the Lr value within a

pre-fixed value interval cyclically throughout every predefined LR stage. On the other hand,

adaptive Lr policies supervise and evaluate the performance of the learning strategy and

adapt the Lr value according to it. The most popular ones are AdaGrad [43], RMSProp [195],

AdaDelta [213], and Adam [103]. The main drawback of Lr-based regularization techniques

comes from the correlation between the step-size and the noise during the learning process.

6.2.3 Learning rate linear scaling rule

Even though the previously-mentioned Lr policies are general approaches as they may be

adopted to improve the convergence speed of DNNs learning either for single or distributed

training, there is another set of approaches dealing also with the Lr value but they are rather

specific for CNNs distributed training. However, these approaches bring in another CNNs

training hyperparameter into play which is the minibatch size of the CNNs distributed training.

The linear scaling rule is a straightforward Lr schedule technique which scales the learning

rate with the batch size linearly. It was proposed by Goayl et al. [61] from Facebook. The

main intuition behind the linear scaling policy consists in accelerating the learning process by

performing larger steps thanks to a higher Lr value. The LR linear scaling rule consists in the

following rule:

“Multiply the learning rate by k when the mini-batch size is multiplied by k [61]. ”

Concurrently, Goyal et al. also introduced a couple of warmup schemas that come alongside

with the latter Lr linear scaling rule . The constant warmup schema involves using a low

constant Lr only for the first few epochs of training, whereas the gradual warmup policy

consists in starting the training with a low initial Lr before progressively increasing it to

the target Lr ( η = k * η, k: number of training nodes) throughout the first 5 epochs. After

the warmup stage, training is continued with the classic Lr policy. The warmup phase is

important to alleviate the issue of diverging gradients at the beginning of training due the high

Lr value and unstable DNNs during the first stages of training [61]. Goyal et al. successfully

managed to train ResNet-50 (see chapter 2 subsubsection 2.1.2.2) using ImageNet [165] dataset

with a minibatch size of 8192 on 256 Tesla P100 GPUs in one hour. They used the linear

scaling rule alongside a warmup policy and achieved 90% scaling efficiency with no accuracy

degradation making their approach considered as the "state-of-the art" recipe for CNNs

large batch training. Cho et al. [28] from IBM almost reproduced Facebook’s work but using

a different communication algorithm. They succeeded to train ResNet-50 in 50 minutes
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(1 minutes less than Goyal et al.). However, their approach suffers from 1.3 % accuracy

degradation compared to Facebook’s work.

6.2.4 Layer-wise Adaptive Rate Scaling (LARS)

It has been observed that the Facebook’s Lr linear scaling rule is not effective for mini batches

larger than 8,192 as it breaks down [26, 61] if the previously mentioned minibatch size thresh-

old is exceeded for classification tasks. Indeed, in practice, the DNNs training process leans to

diverge for higher Lr values correlated with a larger minibatch sizes according to the linear

scaling rule which results in a degradation in the validation accuracy [26]. For instance, in-

creasing further the minibatch size of AlexNet to 4K decreases the accuracy to 53.1% from a

baseline of (B=256) of 57.6% [207].

You et al. introduced the Layer Adaptive Learning Rates (LARS) approach [207] which aims to

address the aforementioned issue. It consists in using a different local adaptive Lr value for

each different layer of the DNN based on a trust metric. The latter involves the ratio between

the norm of the layer weights and norm of gradients update. Using LARS technique, You et

al. scaled up the training of ResNet-50 from a minibatch size of8K to 32K in 20 minutes using

2048 KNL. They also succeeded to train AlexNet with a minibatch size of 32k on ImageNet

dataset in 11 minutes using 1024 Skylake CPUs chips [209].

6.2.5 Lr-linear-scaling-based versus adaptive-Lr-based CNN parallelism strategies

It is commonly acknowledged that there is no unique and universal approach that works

best on all contexts and cases. Indeed, a number of works in the literature adopt a mixed-

solution combining and taking advantage of both (1) Lr-linear-scaling- and (2) adaptive-Lr-

based strategies and particularly the Lr decay policy to improve DNNs learning convergence

particularity when the training is performed in a distributed fashion. For instance, Goyal et al.

were inspired by [76] and adopted a fixed schedule Lr annealing approach by decreasing the Lr

by 1/10 at the 30-th, 60-th, and 80-th epochs simultaneously alongside with their introduced

Lr linear scaling rule. Furthermore, Smith et al. [183] tried to investigate the relations between

The Lr and the batch size hyperparameters during DNNs distributed training. They empirically

proved that increasing the batch size has almost the same effect as decaying the learning

rate on test accuracy after similar number of training epochs using (SGD) and a number of

its varieties. Also, increasing the Lr and scaling the batch size accordingly would decrease

the number of parameter updates during the learning process which will result in a better

convergence and shorter DNNs training time.
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6.3 Towards CNN parallelism without segmentation accuracy loss

The previously introduced building blocks of our integrated CNN parallelism platform em-

powered us with the suitable tools to conduct a thorough empirical study of CNN parallelism

approaches with a particular focus on medical imaging segmentation applications. Firstly,

R2D2 toolkit (see chapter 3) and particularly the introduced distributed versions of U-Net

and FCN enabled us to reduce the DNNs research cycle duration by training CNNs in less

training time, which facilitated performing our empirical study by accelerating testing and

exploring novel CNNs parallelism techniques. Furthermore, the real time monitoring platform

integrated in R2D2 led us also to supervise the training process, which made it easier for us to

investigate the sources of the accuracy degradation when the CNNs training is performed in

a distributed fashion. Secondly, the Auto-CNNp component-based framework (see chapter

4) led us to further accelerate setting up a distributed CNNs training process throughout

streamlining CNNs parallelism routine tasks in an easy to use and high-level fashion. All

of this, enabled us first (1) to call into question the extent of the linear scaling rule to the

segmentation task particularly for a high scalability level, before (2) investigating and debug-

ging the sources of the segmentation accuracy loss, with the goal to propose an alternative

approach alleviating the aforementioned issue. This section is organised as follows: We first

enumerate the sources of accuracy degradation in linear-scaling-based Lr policy. Afterwards,

we introduce our novel GreScale Lr scaling rule before detailing our proposed GreScale-based

CNN parallelism guideline.

6.3.1 Sources of segmentation accuracy degradation in linear-scaling-based Lr
CNN parallelism

As previously detailed in section 3.4 of chapter, we investigated the generalization of the Lr

linear scaling rule with a gradual warmup schema to the segmentation task throughout our

in-depth experimental study. We believe that the causes behind the observed segmentation

accuracy degradation with scale are threefold, in particular :

1. It is commonly stated that the image semantic segmentation task is more complex than

the classification one [61]. Indeed, while image classification task involves assigning

classes to the entire set of pixels of images, the segmentation task consists in a pixel-level

classification of images by assigning a label to every pixel in every image.

2. The segmentation accuracy degradation when the CNNs training is done in distributed

fashion might be due to the high Lr value related to linear scaling rule which leads to

instabilities in the trained DNN models. Indeed, while monitoring the CNNs training

process evolution using the R2D2 integrated supervision platform, we observe a corre-

lation between the raise of the accuracy loss and the corresponding increase of the Lr

value during the CNNs training warmup stage. As can be seen in , the CNNs training

loss increased suddenly after the 3rd epoch, even though it was starting to converge
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Figure 6.1 – DNNs training diverging before having started to converge due the increase in the
Lr value during the training gradual warmup phase.

for the first 3 epochs. We believe that our observations provide additional support to

[207, 26, 10, 182] which further substantiate our claim.

3. Even if Goyal et al. argue that the introduced linear scaling policy generalizes well

to the segmentation GPUs, and despite they reported that their approach show good

generalization behavior to the segmentation transfer task they only assess the generality

of the linear scaling rule using Mask R-CNN trained using a maximum of 8 GPUs. We

push the boundaries further by investigating the efficiency and consistency of both (1)

the Lr linear scaling rule alongside (2) the warmup strategy for higher scalability levels

(i.e., as we have reached a total of 18 Nvidia GeForce GTX 1080 Ti GPUs scalability level).

We aim to tackle the previously mentioned challenge by introducing a novel CNNs paral-

lelism guideline specific for segmentation applications and based around a new Lr scaling

policy which we denominate GreScale. Our proposed guideline alongside GreScale Lr scaling

approach will be introduced in the couple following subsections.

6.3.2 GreScale learning rate scaling rule

Since a high Lr value is most likely the core reason causing the the networks to diverge, and

considering that the high Lr value is related to the linear scaling rule and the warmup schema

CNN parallelization recipe, one brute-force and straightforward technique to overcome this

challenge consists in proposing an alternative approach which adjusts and deals directly with

both (1) the Lr high value and (2) the warmup stage duration. Indeed, our GreScale Lr scaling

rule is a novel hybrid approach combining both (1) an adjusted version of the Lr linear scaling

rule with gradual warmup and (2) an adaptive feed-back-adjusted Lr decay strategy. Figure 6.2

outlines our introduced GreScale learning rate scaling rule. It involves three main phases, in

particular :

1. The warmup stage is the first phase of GreScale Lr scaling policy. It directly deals with
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the high Lr value by first decreasing and then tuning the initial learning rate as a first

step. Moreover, it was reported that the DNNs training is unstable during the early

stages of training due to the fact that the network is changing rapidly [61, 207]. Hence, to

stabilize the initial training phase, GreScale replaces the classic static 5-epochs-based

warmup strategy proposed by Goyal et al. [61] by an adaptive variety of warmap phase.

It consists in gradually increasing the warmup duration starting from 5 epochs while

keeping adjusting the warmup period in each training iteration based on the feedback-

based guideline which we be presented in the next section.

2. The stabilization stage comes just in the aftermath of the warmup phase. It is a variety

of the approach adopted by Goyal et al. and Krizhevsky [106] which starts right after

reaching the target Lr of ( η = k * η, k: number of training nodes). Our introduced modi-

fied stabilization stage has some similarities with Goyal et al. and Krizhevsky Lr scaling

policies as it shares with them the same main common objective. The latter consists in

accelerating the learning process by performing larger steps thanks to the high Lr value

(see subsection 6.2.3). However, the main differences between our proposed version of

stabilization stage and the aforementioned Lr scaling policies are twofold : (1) It does not

have a fixed period (i.e,. training epochs number) like Goyal et al. technique particularly.

It rather has a dynamic mutual interdependence duration changing depending on the

previous warmup stage duration (e.g., the stabilization duration will decrease admitting

that the warmup phase duration increases according to the guideline recommendation

for instance). (2) The stabilization stage of our proposal adopts also a smaller and

feed-back-adjusted Lr value throughout the stabilization phase in order to come over

the issue of DNNs training instabilities.

3. The Learning rate decay stage is the third and final phase of our proposed GreScale

Lr scaling policy. Our proposed decay stage has a similar key goal as Goyal et al. fixed

three-staged Lr decay linear schedule (i.e., 30-th, 60-th, and 80-th epochs) which in-

volves accelerating the learning convergence especially at the final stage of training

thanks to the smaller Lr values. However, The GreScale Lr decay phase is instead a

variable adaptive guideline-based policy. Indeed, the Lr decay coefficient is continu-

ously readjusted each training run depending on the performances of the trained model.

Nevertheless, a couple of questions arise: (1) which Lr decay slope should we adopt in

order to efficiently accelerate the CNNs learning process ? (2) Should we increase or

decrease the Lr after each training run ? The subsequently detailed guideline aims to

give answers to these questions.

The default initial durations for each stage are 5 epochs, 4/7 and 3/7 of the total remaining

training duration for the warmup, stabilization and Lr decay stages respectively. As previously

stated, the warmup and stabilization phases have variable interchangeable durations whereas

the Lr decay phase has a fixed one.

Furthermore, even though our introduced GreScale Lr scaling rule seems to have some addi-
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Stabilization

Figure 6.2 – GreScale learning rate scaling rule

tional similarities with some existing approaches, e.g., the hybrid Lr linear scaling annealing

policy introduced by Goyal et al. [61], or the LARS approach .Our proposal stands out from the

state-of-art approaches because:

1. Our proposal is rather specific to CNNs parallelism for segmentation applications

which is, like previously mentioned (1) a more complex task than the classification

one and (2) as far as we know, the CNN parallelism for segmentation has not been yet

exhaustively explored and investigated in the literature. Indeed, like previously outlined

in subsection 6.3.1, we go beyond the 8 GPUs scalability level threshold reported by [61].

2. We adopt a dynamic, adaptive, feed-back adjusted and guideline-based Lr scaling

approach different from the classic Lr linear scaling approach based on both static

(1) warmup period and (2) constant three-staged Lr decay schedule. Indeed, taking

into account the observed inner sources of variability of a CNNs training task (see

chapter 4), we aim to widen the scope of the supported CNNs segmentation architecture

throughout adjusting and fine-tuning the main identified interfering CNNs parallelism

hyperparameters (e.g., the initial Lr, the Lr decay coefficient and the warmup period

particularly) based on the results and feedback of each CNNs training run and following

our guideline recommendations which will be detailed in the followings.

3. Unlike LARS technique where You et al. who assign a different local adaptive Lr value

for each different layer of the CNN depending on a trust ratio (see subsection 6.2.4),

we rather adopt a global, guideline-based and adaptive Lr policy. Indeed, our GreScale

technique assigns instead a dynamic but global and common Lr for all CNNs layers

throughout the learning process.

4. In Adam adaptive Lr policy [103], each parameter in the DNN has an associated specific

adaptive Lr value varying from zero (i.e.no update) to a lambda maximum value repre-

senting an upper limit (i.e., the initial learning rate). Even though the Lr values in Adam

are adapted throughout the training process using exponential annealing for instance,

it is not possible to go beyond the lambda threshold value specially during the last
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training epochs which would require setting a very small Lr in order to avoid the DNN

model from diverging. In contrast to our proposal where it is possible to adapt the Lr

decay coefficient during the final phase of our introduced training protocol according to

the specificities and the results of the training case study and without any restrictions

on the decay coefficient. Moreover, unlike our proposed approach, common adaptive

Lr approaches and Adam Lr policy in particular, are not specific for CNNs parallelism

techniques. Indeed, our proposed approach is rather a multi-stage feed-back adjusted

CNN parallelism specific approach.

6.3.3 Guideline for CNN parallelism for segmentation applications

Figure 6.3 illustrates our proposed CNN parallelism guideline. Diamonds in the figure rep-

resent important decision points in the process. They show a set of key questions needing

answers and helping in the decision-making process in order to achieve a fast and accurate

CNN parallelism for semantic segmentation applications. The grey ovals represents the recom-

mended workflow actions/steps to follow to the researchers. Also, the grey rectangles illustrate

global stages in the guideline. The latters include a set of task-related steps cooperating

towards a particular milestone of the CNNs parallelization guideline.

In addition to the earlier-introduced standard durations for GreScale different stages (see

subsection 6.3.2), our proposed Lr scaling policy comes also with a set of default parameters

setting which represents the recommended initial training configuration set, before starting to

readjust them following up the suggested feed-back-based guideline directives. In particular,

based on our observations during our empirical study, and for an optimal and effective use of

the GreScale Lr scaling policy, we recommend researchers and developers to adopt :

• SGD as a standard optimization algorithm as it is the most common adopted approach.

• A default warmup phase period of 5 epochs (similar to Goyal and al. technique).

• An initial Lr of 1e −5. Indeed, following the recommendations of [159] to adopt a Lr

value less than 1.0 and greater than 1e −6, we decided to select an initial Lr close to the

minimum recommended value in order to alleviate the high Lr value issue during the

distributed CNNs learning process.

Following our introduced methodological flowchart in Figure 6.3, we should adopt in the first

place, the aforementioned default parameters settings of the introduced GreScale method.

Afterwards, if the parallelism degree is less than 12 training nodes (e.g., GPUs), we directly

proceed to the training stage. Otherwise, a GreScale method parameters and training hyper-

parameters tuning phase is required. The latter stage includes five ordered workflow actions

(e.g., decrease the initial learning rate, increase the learning rate decay coefficient, increase

the warmup period, increase the decay phase period and change the optimizer). We start

by applying the first workflow action (i.e., decrease the initial learning rate). After that, we
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Figure 6.3 – Guideline flowchart representing the steps to follow for a fast and accurate CNN
parallelism for semantic segmentation
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move forward to the training phase before moving to the accuracy loss evaluation phase of

the training model. Afterwards, depending on the trained model accuracy performances, we

should either repeat the same parameters tuning flowchart action in case of an improvement

in the accuracy degradation or either move forward to the next action when otherwise. We

highly recommend to gradually change the GreScale parameters setting with a fixed small

steps change during each corresponding workflow action training iteration.

6.4 GreScale & Guideline assessment

We assess our proposed guideline throughout a set of distributed training scenarios of the

previously introduced couple of segmentation case studies in chapter 2 (the brain tumor

segmentation and left atrium segmentation case studies). We executed a battery of tests for

each (1) CNN architecture applied for a particular (2) segmentation case study for (3) multiple

parallelism degree following our introduced guideline. Table 6.1, Table 6.2, Table 6.3 and

Table 6.4 illustrate U-Net parallelization scenario workflow steps on 18, 16, 14 and 12 GPUs

respectively for left atrium segmentation use case. In the same vein, Table 6.5, Table 6.6,

Table 6.7 and Table 6.8 also deeply detail every workflow parallelization step for multiple

parallelism degree going from 12 to 18 GPUs for brain tumor segmentation case study. On

the other hand, Table 6.9 and Table 6.10 present the parallelization scenario steps for FCN

architecture for left atrium segmentation on 18 and 16 GPUs based on our introduced CNN

parallelism guideline.

For instance, considering the parallelization scenario assessment for U-Net CNN architecture

applied to the left atrium segmentation case study on 14 GPUs using our POC parallelism

policy, the researchers starts by applying GreScale method with default parameters setting

before asking if the parallelism degree is superior to 12 GPUs. The first action in the parameters

and training hyperparameters tuning stage involves decreasing the initial Lr value. After going

throughout the training and validation phases and since we did not achieve the baseline model

performances (i.e., model trained on a single GPU), we repeat the same flowchart action for

the next iteration which involves decreasing again the initial Lr value. Once again, since we

did not reach the baseline performances and considering that is an improvement in the model

segmentation performances compared to the previous iteration we repeat once again the

same guideline action for the next iteration which consists in decreasing the initial Lr value.

However, we observe a degradation in the model accuracy levels which leads us to move to the

next flowchart action for the next iteration which consists in increasing the Lr decay coefficient

at this time. We are at the iteration ranked four within our guideline-based parallelization

workflow. After going through the training and validation phases once again, we observe

that we finally reached a model with segmentation accuracy better than our baseline model

segmentation performances. The next training iteration includes the reiteration the training

with the same hyperparameters in order to alleviate the issue of CNN training variability and

confirm the obtained model performances.
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It is important to note that the difference between a couple of successive training phases

performances might be evaluated according to several assessment policies depending on

researchers needs and priorities. It might be for instance an average of a set metrics or a

weighted sum of various segmentation metrics. In our case, since the PA and f.w.IoU metrics

suffer from a unbalanced variability range due to the disproportional size of every class in our

segmentation case studies (e.g., the disproportional size between the small left atrium body

and large background class size), we decided to consider the three remaining segmentation

evaluation metrics ,i.e., dice, MA and mean.IoU, in descending order of priority in order to

assess the segmentation performance evolution between two successive training iterations.

As can be seen in Figure 6.5 and Figure 6.4, our introduced guideline-based GreScale Lr scaling

policy has been always outperforming the baseline model segmentation accuracy perfor-

mances in all training scenarios with U-Net CNN architecture applied for both brain tumor

and left atrium segmentation tasks for all assessed parallelism degrees. Indeed, guideline-

based GreScale Lr scaling strategy outperforms the segmentation performances of the baseline

model by (0.11%,1.60%), (0.37%,1.15%) and (0.15%,0.49%) for the dice, MA and mean.IoU re-

spectively for the left atrium case study and by (0.04%,0.40%), (0.78%,2.69%) and (0.39%,1.89%)

for the dice, MA and mean.IoU respectively for the brain tumor segmentation use case.

However, even if Lr linear scaling rule with no warmup strategy surpasses sometimes our

GreScale guideline based policy model segmentation accuracy performances (e.g., dice score

for 12, 14 and 16 GPUs for left atrium segmentation), it is important to note that our main goal

and priority is to eliminate the segmentation accuracy loss regardless of the CNN parallelism

scenario, which is not the case with other volatile policies depending on an initial fixed

hyperparameters.

Moreover, the battery of distributed training scenarios experiments showed us and confirmed

that it is possible to surpass the baseline performances in most cases when we go distributed

using our introduced guideline or sometimes using other policies (e.g., U-Net for left atrium

segmentation of 12, 14 and 16 GPUs) because a constant Lr value throughout the whole

training process even if it was very well tuned is rarely the best option to consider.

All these observations further confirm that applying Lr linear scaling rule even though with its

corresponding warmup schemas, as it is, suffers from several flaws. Indeed, like aforemen-

tioned, beside the fact that adopting the Lr linear scaling rule might lead the model to diverge

specially for higher parallelism degree [12, 207], adopting a classic fixed Lr rule is not always

the best option to consider since it ignores tuning all remaining different hyperparameters

which come also into play throughout CNN parallelism process. Hence, these findings provide

additional support and insights for the need to rather adopt an adaptive guideline based Lr

scaling policy to not only alleviate the issue of high Lr value with scale but, to confirm also

the fact that CNN parallelization task should not, be confined solely to only tuning Lr value

but it should additionally consider meticulously turning all corresponding CNN parallelism

training hyperparameters throughout a feed-back adjusted guideline allowing us to obtain
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Table 6.1 – Parallelization workflow steps on 18 GPUs of U-Net CNN architecture for left atrium
segmentation

Iteration Action Evaluation metrics
Dice PA MA mean.IoU f.w.IoU

0 Apply default parameters
1 Decrease the initial Lr value 76.02% 99.84% 96.11% 88.93% 99.72%
2 Decrease the initial Lr value 76.09% 99.82% 93.88% 86.62% 99.69%
3 Decrease the initial Lr value 83.74% 99.86% 95.96% 87.96% 99.76%
4 Model validation 82.64% 99.87% 95.37% 89.34% 99.76%

Baseline model performances 81.32% 99.86% 96.11% 89.10% 99.76%

and adaptive parallelism approach that are truly robust comparing to a static Lr linear scaling

rule.

Finally, as can be seen in Figure 6.6, even though our introduced GreScale guideline based

strategy has not succeeded to achieve the baseline model performances with FCN CNN

architecture for left atrium segmentation (Table 6.9 and Table 6.10), it has always enabled

us to overstep the Lr linear scaling rule with gradual warmup even though the no warmup

strategy have achieved in some scenarios better performances which confirms that even if our

introduced guideline is an important step towards fast and accurate CNN parallelism there is

still some way to go before achieving a universal CNN prallelism approach.

A word of caution: despite the fact that our proposed GreScale rule and its corresponding

guideline show very promising results, theses guidelines are cursory, because (1) the deep

learning era remains at its beginning and even if a considerable progress has been made

recently, it still has a black box aspect where multiple research questions have still not yet been

answered, (2) meticulously training a CNN in a distributed fashion is significantly subordinate

to several interdependent intrinsic and extrinsic factors involved in the CNNs learning process,

e.g., the case studies datasets, the hyperparameters, the adopted parallelism approach, etc.

As already indicated, our introduced guideline rather gives suggestions and indications to

developers and researchers in order to increase the odds to roughly select the most adequate

possible alternative, for an optimal and effective use of our novel adaptive GreScale Lr scaling

policy.

96



6.4. GreScale & Guideline assessment

Table 6.2 – Parallelization workflow steps on 16 GPUs of U-Net CNN architecture for left atrium
segmentation

Iteration Action Evaluation metrics
Dice PA MA mean.IoU f.w.IoU

0 Apply default parameters
1 Decrease the initial Lr value 77.89% 99.84% 95.29% 87.37% 99.73%
2 Decrease the initial Lr value 68.44% 99.77% 84.16% 76.88% 99.60%
3 Increase the Lr decay coefficient 81.19% 99.87% 96.43% 89.94% 99.77%
4 Model validation 81.41% 99.87% 96.47% 89.45% 99.69%

Baseline model performances 81.32% 99.86% 96.11% 89.10% 99.76%

Table 6.3 – Parallelization workflow steps on 14 GPUs of U-Net CNN architecture for left atrium
segmentation

Iteration Action Evaluation metrics
Dice PA MA mean.IoU f.w.IoU

0 Apply default parameters
1 Decrease the initial Lr value 80.75% 99.87% 95.24% 88.58v 99.77%
2 Decrease the initial Lr value 80.93% 99.87% 95.74% 89.41% 99.76%
3 Decrease the initial Lr value 77.14% 99.83% 93.57% 85.85% 99.71%
4 Increase the Lr decay coefficient 81.41% 99.87% 96.47% 89.45% 99.77%
5 Model validation 81.55% 99.87% 97.22% 89.54% 99.77%

Baseline model performances 81.32% 99.86% 96.11% 89.10% 99.76%

Table 6.4 – Parallelization workflow steps on 12 GPUs of U-Net CNN architecture for left atrium
segmentation

Iteration Action Evaluation metrics
Dice PA MA mean.IoU f.w.IoU

0 Apply default parameters 80.02% 99.86% 96.20% 89.09% 99.77%
1 Decrease the initial Lr value 79.88% 99.87% 96.59% 89.22% 99.77%
2 Increase the Lr decay coefficient 82.41% 99.87% 95.62% 89.25% 99.77%
3 Model validation 81.89% 99.87% 95.65% 89.41% 99.77%

Baseline model performances 81.32% 99.86% 96.11% 89.10% 99.76%
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Table 6.5 – Parallelization workflow steps on 18 GPUs of U-Net CNN architecture for brain
tumor segmentation

Iteration Action Evaluation metrics
Dice PA MA mean.IoU f.w.IoU

0 Apply default parameters
1 Decrease the initial Lr value 87.63% 99.66% 93.66% 90.93% 99.36%
2 Decrease the initial Lr value 80.85% 99.36% 92.97% 88.03%
3 Increase the Lr decay coefficient 88.18% 99.67% 94.58% 91.58% 99.37%
4 Increase the Lr decay coefficient 89.01% 99.71% 95.01% 92.49% 99.45%
5 Model validation 89.08% 99.70% 95.21% 92.39% 99.43%

Baseline model performances 89.01% 99.70% 94.47% 92% 99.42%

Table 6.6 – Parallelization workflow steps on 16 GPUs of U-Net CNN architecture for brain
tumor segmentation

Iteration Action Evaluation metrics
Dice PA MA mean.IoU f.w.IoU

0 Apply default parameters
1 Decrease the initial Lr value 87.14% 99.68% 94.88% 91.91% 99.38%
2 Decrease the initial Lr value 69.33% 98.93% 85.79% 81.45% 98.02%
3 Increase the Lr decay coefficient 86.25% 99.61% 94.52% 91.37% 99.27%
4 Increase the Lr decay coefficient 69.56% 98.89% 88.05% 80.14% 98.08%
5 Increase the warmup period 88.43% 99.68% 96.89% 93.27% 99.41%
6 Increase the warmup period 88.41% 99.68% 93.83% 91.66% 99.39%
7 Increase the decay phase period 89.43% 99.71% 95.13% 92.52% 99.45%
8 Model validation 89.21% 99.69% 96.31% 93.73% 99.42%

Baseline model performances 89.01% 99.70% 94.47% 92% 99.42%
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6.4. GreScale & Guideline assessment

Table 6.7 – Parallelization workflow steps on 14 GPUs of U-Net CNN architecture for brain
tumor segmentation

Iteration Action Evaluation metrics
Dice PA MA mean.IoU f.w.IoU

0 Apply default parameters
1 Decrease the initial Lr value 88.61% 99.68% 96.28% 93.13% 99.40%
2 Decrease the initial Lr value 88.24% 99.71% 95.14% 92.49% 99.45 %
3 Increase the Lr decay coefficient 87.29% 99.69% 94.43% 91.93% 99.42%
4 Increase the warmup period 89.52% 99.70% 96.70% 94% 99.44%
5 Model validation 89.05% 99.69% 97.08% 93.74% 99.43%

Baseline model performances 89.01% 99.70% 94.47% 92% 99.42%

Table 6.8 – Parallelization workflow steps on 12 GPUs of U-Net CNN architecture for brain
tumor segmentation

Iteration Action Evaluation metrics
Dice PA MA mean.IoU f.w.IoU

0 Apply default parameters 88.24% 99.69% 95.34% 92.82% 99.42%
1 Decrease the initial Lr value 86.25% 99.61% 94.52% 91.37% 99.27%
2 Increase the Lr decay coefficient 88.97% 99.70% 93.99% 91.99% 99.41%
3 Model validation 89.37% 99.70% 95.28% 92.36% 99.43%

Baseline model performances 89.01% 99.70% 94.47% 92% 99.42%

Table 6.9 – Parallelization workflow steps on 18 GPUs of FCN CNN architecture for left atrium
segmentation

Iteration Action Evaluation metrics
Dice PA MA mean.IoU f.w.IoU

0 Apply default parameters
1 Decrease the initial Lr value 77.10% 99.45% 88.90% 85.56% 99.07%
2 Decrease the initial Lr value 76.56% 99.45% 88.76% 85.24% 99.06%
3 Increase the Lr decay coefficient 77.02% 99.44% 88.95% 85.26% 99.05%
4 Increase the Lr decay coefficient 77.47% 99.46% 89.08% 85.77% 99.09%

Baseline model performances 79.32% 99.47% 90.86% 87.55% 99.12%

Table 6.10 – Parallelization workflow steps on 16 GPUs of FCN CNN architecture for left atrium
segmentation

Iteration Action Evaluation metrics
Dice PA MA mean.IoU f.w.IoU

0 Apply default parameters
1 Decrease the initial Lr value 77.28% 99.44% 89.43% 85.46% 99.06%
2 Decrease the initial Lr value 78.01% 99.46% 89.85% 86.28% 99.09%
3 Decrease the initial Lr value 78.34% 99.47% 89.62% 86.31% 99.11%

Baseline model performances 79.32% 99.47% 90.86% 87.55% 99.12%
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Figure 6.4 – Our introduced Guideline based GreScale Lr rule performances compared to
classic Lr scaling polices for U-Net CNN architecture applied to brain tumor segmentation
task
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Figure 6.5 – Our introduced Guideline based GreScale Lr rule performances compared to
classic Lr scaling polices for U-Net CNN architecture applied to left atrium segmentation task
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6. Towards fast and accurate large mini-batch CNN parallelism for imaging
segmentation applications

Figure 6.6 – Our introduced Guideline based GreScale Lr rule performances compared to
classic Lr scaling polices for FCN CNN architecture applied to left atrium segmentation task

6.5 Conclusion

We presented a guideline for the CNNs parallelism process in the context of medical imaging

segmentation applications. Concurrently, we explained our guideline main recommended

steps motivations. We then evaluated our proposal on a couple of scenario-based segmenta-

tion cases studies and provided an empirical evidence of the effectiveness of our proposal. We

believe that our work is an important first step which provides the backbone for a promising

new way towards a fast and accurate CNN parallelism with no accuracy degradation loss.

Our guideline-based Lr scaling strategy has been always outperforming the baseline model

segmentation accuracy performances in all training scenarios with U-Net CNN architecture

tasks for all assessed parallelism degrees. Indeed, it surpasses the segmentation performances

of the baseline model by (0.11%,1.60%), (0.37%,1.15%) and (0.15%,0.49%) for the dice, MA and

mean.IoU respectively for the left atrium case study and by (0.04%,0.40%), (0.78%,2.69%) and

(0.39%,1.89%) for the dice, MA and mean.IoU respectively for the brain tumor segmentation

use case. However, nonetheless our proposed guideline is slightly less effective for the FCN

CNN architecture, we succeeded to alleviate the accuracy loss compared to the Lr linear scaling

rule with gradual warmup strategy.
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7 Conclusion

The deep learning era remains at its beginning and even if a considerable progress has been

made recently, it still has a black box aspect where multiple research questions have still not

yet been answered. In this thesis, we have presented an all-in-one integrated scalable and

component-based CNN parallelism solution with a particular focus on medical imagining

segmentation. The main building blocks of our introduced platform involves the results built

while we were trying to tacked the causally and chronologically related research questions

which have arisen during this Ph.D. thesis project timeline.

Our first study introduces R2D2, a scalable deep learning toolkit for medical imaging seg-

mentation which aims to address the following question: How can we build a system which

decreases the CNN training time in order to train CNNs models effectively ?

We leveraged distributed optimization approaches in order to build R2D2 toolkit and offer

researchers a couple of ready-to-use widely adopted CNNs segmentation architectures. R2D2

also involves an end-to-end processing pipeline gathering the classic deep learning medical

imaging main processing milestones in a higher-level fashion in order to offer researchers

foundations to quickly prototype and easily discover cutting-edge CNN configurations and

architectures. We brought to light R2D2 main concepts and design and detailed its inner build-

ings components, while justifying our design and implementation choices. We then assessed

our scalable toolkit on two distinct concrete medical imaging segmentation case studies to

show its effectiveness. The conducted experimental study offers an empirical evidence and

further investigates the latest published works. Indeed, R2D2 achieves up to 17.5x and 10.4x

speedup than single-node based training of U-Net and FCN respectively with a negligible, yet

nonetheless an unforeseen segmentation accuracy degradation with scale.

Secondly, since we stated that putting distributed deep learning into practice is hard and

still in its inception, we introduced Auto-CNNp, a component-based framework to automate

CNN parallelism which intents to tackle the following research question: How can we abstract

the complexity of CNN parallelism process and reduce the gap between skill-intensive deep

learning and researchers ?

Our proposed Auto-CNNp system goes one step further than classic manual CNN parallelism
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7. Conclusion

strategy by offering a high level of abstraction over skill-intensive distributed deep learning

throughout introducing a novel component-based approach. The latter provides a generic tool

that encapsulate many common CNNs parallelism patterns while being flexible sufficiently to

be extensible for user-specific customization. Indeed, the component-based strategy brings

researchers the main common CNNs parallelism building blocks they need, leaving them

the only responsibility of personalizing and configuring them according to their needs. The

assessment results of Auto-CNNp on a couple of use cases confirm its validity and transfer-

ability to other use cases. Indeed, the quantitative assessment of Auto-CNNp showed an

execution overhead of 139 ms which is insignificant compared to the time-consuming CNNs

training process. Moreover, the qualitative evaluation of Auto-CNNp showed its impact in

reducing and easing the heavy workload of practically distributing CNNs training task while

not affecting the CNN parallelization process compared to the manual approach.

Furthermore, answering the couple of previous research questions empowered us with the

appropriate tools to put also into question the generalizability of recent CNN parallelism

techniques to the imagining segmentation applications. Hence, we conducted thorough

practical analysis of the generalizability of the CNN parallelism techniques to the imaging

segmentation applications. Concurrently, we conducted in-depth literature review aiming

to study the sources of variability in deep learning training process aiming to have deeper

insights about the challenges and the issues of the reproducibility. We also propose a set of

good practices recommendations aiming to alleviate the identified reproducibility issues for

medical imagining segmentation DNNs training process.

Finally, notwithstanding the fact that distributed deep learning strategies are belong the driv-

ing forces behind decreasing the CNNs training process time, our observations confirmed

that there is still some way to go before training CNNs effectively in a distributed fashion

without an accuracy loss cost. However, based on a broad analysis of the results of the already

conducted CNN parallelism experimental studies, we introduce a guideline including a set of

recommendations and directives helping researchers during the decision-making process of

the training phase of CNNs with the goal to achieve CNN parallelism without segmentation

accuracy loss. Our introduced guideline-based Lr scaling policy has been always outper-

forming the baseline model segmentation accuracy performances in all training scenarios

with U-Net CNN architecture tasks. Indeed, it outperforms the segmentation accuracy of

the baseline model by (0.11%,1.60%), (0.37%,1.15%) and (0.15%,0.49%) for the dice, MA and

mean.IoU respectively for the left atrium case study and by (0.04%,0.40%), (0.78%,2.69%) and

(0.39%,1.89%) for the dice, MA and mean.IoU respectively for the brain tumor segmentation

use case. However, nonetheless our proposed guideline is lightly less effective for the FCN

CNN architecture, we succeeded to attenuate the accuracy loss comparing to the classic Lr

linear scaling rule with gradual warmup strategy.

Even though we believe that our work is an important milestone contributing to the democra-

tization and a better understanding of the rising deep learning field, our proposed parallelism

platform is one among the first steps in this area with exciting prospects for future work that
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follow naturally from this thesis. In the light of the results presented in this thesis, needless to

say, many challenges are still not solved yet. Hence, we describe additional research directions

that would be interesting to follow, in particular:

• We aim to broaden the spectrum of supported CNNs in R2D2 by not only implementing

other scalable CNN-based segmentation architectures, but also through supporting a

wider range of medical imaging tasks (e.g., registration, classification). Another promis-

ing area of research is to analyze the collected data during the distributed training,

with the purpose of getting valuable insights and revealing correlations and hidden

patterns within collected datasets. We plan also to shift our distributed training platform

from Grid’5000 testbed towards private cloud solutions in order to further evaluate our

proposed solution scalability on a production ready environment.

• Regarding Auto-CNNp building block, we plan to widen the number of supported CNN-

based tasks by introducing the automated distributed training of other CNN-based

applications (e.g., CNN-based text classification task). Also, we are in the process of

porting Auto-CNNp in order to support additional platforms and libraries (e.g., PyTorch
1). Lastly, we intent to integrate some infrastructure configuration management tools

(e.g., SaltStack or Puppet) to the Auto-CNNp ecosystem.

• Concerning our introduced guideline-base GreScale Lr scaling rule, many challenges

are still not solved yet such as investigating the generalizability and transferability of

our proposal to (1) additional CNN parallelism setups and approaches, and (2) other

CNN-based applications such as classification suffering also from accuracy degradation

with scale. Other interesting futures research direction would be also to study the effec-

tiveness our our proposed guideline on other segmentation applications different from

the medical ones we deal with in this thesis. Also, we plan to evaluate and statistically

study the percentage of adoption of each step of our methodology compared to all other

steps overall. Furthermore, another promising research direction involves introduc-

ing automation to our guideline-based context-aware segmentation CNN-parallelism

decision-making process. This will lead to take-over and improve the error-prone hu-

man decision-making process by an automated, independent and self-supported CNN

distributed training approach for image segmentation applications.

• Despite the fact that our introduced parallelism platform building blocks are practically

independent, the platform end-user might concurrently take advantage of all of them as

they can work seamlessly together for the same purpose. Nevertherless, we believe that

going one step further by adding an extra level of synergy between them is a promising

and interesting research direction. Indeed, one likely optimistic approach consists

in building and including an automatic and self-adaptive decision-making approach

to Auto-CNNp framework based on our introduced CNNs parallelism guideline. For

instance, the end-user will not have to manually fill the training hyperparameters in

1More informations can be found at https://pytorch.org/
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Auto-CNNp training config file. Instead, a higher software layer would take advantage of

the CNNs parallelism guideline in order automate the process of tuning the adapted

training hyperparameters rather than a manual user-centric hyperparameter tuning

approach. Moreover, it would be interesting to homogenize more our proposal by fusing

both Auto-CNNp and R2D2 engines into a unique solution controller.

• Also, as future work, it would be interesting to widen the spectrum of our POC refer-

ence implementation by building and including the main additional CNN parallelism

approaches building blocks to our proposal.

• Furthermore, we believe that further research is needed to design a software solution

which would either (1) give the main steps and recommendations or (2) automate the

change/adjustment of the module CNN-Parallelism-Generator which is Auto-CNNp

key component. For instance, if an end-user aims to change the Auto-CNNp POC

adopted parallelism approach, he actually needs to manually overwrite the Distributed

Optimizer extensible action alongside with its corresponding Training Strategy tun-

ing module and also the Environment Definition module. Instead, adding a software

solution to the stack to automate the aforementioned steps would bring strong added

value to our proposed parallelism platform. Furthermore, pushing the boundaries

further by studying also the required operating-system-level environment adjustment

while switching from one parallelism approach to another would also be a major contri-

bution to the field.

Finally, we should point out that throughout this thesis, we have dealt with a wide variety of

heterogeneous fields such as component-based software engineering, distributed systems,

mathematical optimization approaches, medical imaging and particularly an emerging black

box deep learning domain. Hence, it is also appropriate to emphasize that in a context of

a multi disciplinary project like ours, several other factors come into play in term of scien-

tific competitiveness aspect such as the disproportionate physical and technical available

resources (e.g., number of GPUs, datasets, research funding) and the scientific notoriety com-

paring with GAFA Big Tech companies which have been having increasing interest towards

these emerging fields for the last few years.
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