S. Fiorenzo, . Luigi, G. Maria, I. Anna, A. Ada et al., Bryodin, a ribosome-inactivating protein from the roots of Bryonia dioïca L. (white bryony), Biochem. J, vol.240, pp.659-665, 1986.

E. C. Barker, T. N. Gatbonton-schwager, Y. Han, J. E. Clay, J. J. Letterio et al., Bryonolic Acid: A Large-Scale Isolation and Evaluation of Heme Oxygenase 1 Expression in Activated Macrophages, Journal of Natural Products, vol.73, issue.6, pp.1064-1068, 2010.

L. Cattel, G. Balliano, O. Caputo, and L. Delprino, Biosynthesis of stigmasta-7, E-24(28)-dien-3?-ol and 24?-alkyl sterols in Bryonia dioica, Phytochemistry, vol.19, issue.3, pp.465-466, 1980.

L. Cattel, G. Balliano, and O. Caputo, Stigmasta-7,E-24(28)-dien-3?-ol from Bryonia dioica roots, Phytochemistry, vol.18, issue.5, pp.861-862, 1979.

J. Bruneton, Pharmacognosie, phytochimie des plantes médicinales, 3ème édition, 1999.

M. Krauze-baranowska and W. Cisowski, High-performance liquid chromatographic determination of flavone C-glycosides in some species of the Cucurbitaceae family, Journal of Chromatography A, vol.675, issue.1-2, pp.240-243, 1994.

M. Krauze-baranowska and W. Cisowski, Flavone C-glycosides from Bryonia alba and B. dioica, Phytochemistry, vol.39, issue.3, pp.727-729, 1995.

S. M. Muñoz, S. M. Salvarelli, M. Isabel-saiz, and F. P. Conde, A toxic protein from Bryonia dioica Jacq. fruits: The brydiofin, Biochemical and Biophysical Research Communications, vol.183, issue.3, pp.1011-1018, 1992.

M. Wachinger, R. Samtleben, C. Gerhäuser, H. Wagner, and V. Erfle, Bryodin, a single-chain ribosome-inactivating protein, selectively inhibits the growth of HIV-1-infected cells and reduces HIV-1 production, Research in Experimental Medicine, vol.193, issue.1, pp.1-12, 1993.

L. Floch and E. , Contribution à une étude ethnobotanique de la flore Tunisienne, 2ème partie, 1983.

P. C. Eklund, O. K. Långvik, J. P. Wärnå, T. O. Salmi, S. M. Willför et al., Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans, Organic & Biomolecular Chemistry, vol.3, issue.18, p.3336, 2005.

R. L. Prior, X. Wu, and K. Schaich, Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements, Journal of Agricultural and Food Chemistry, vol.53, issue.10, pp.4290-4302, 2005.

D. Villaño, M. S. Fernández-pachón, A. M. Troncoso, and M. C. García-parrilla, Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro, Analytica Chimica Acta, vol.538, issue.1-2, pp.391-398, 2005.

J. Buenger, H. Ackermann, A. Jentzsch, A. Mehling, I. Pfitzner et al., An interlaboratory comparison of methods used to assess antioxidant potentials1, International Journal of Cosmetic Science, vol.28, issue.2, pp.135-146, 2006.

J. M. Sendra, E. Sentandreu, and J. L. Navarro, Reduction kinetics of the free stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH?) for determination of the antiradical activity of citrus juices, European Food Research and Technology, vol.223, issue.5, pp.615-624, 2006.

L. Monica, G. Roberto, T. Fabiano, C. Jean-daniel, R. Maurizio et al., Study of the DPPH scavenging activity: development of a free software for the correct interpretation of data, Food Chem, vol.114, pp.889-897, 2009.

C. Sánchez-moreno, J. A. Larrauri, and F. Saura-calixto, A procedure to measure the antiradical efficiency of polyphenols, Journal of the Science of Food and Agriculture, vol.76, issue.2, pp.270-276, 1998.

J. Carlos, E. Cristina, S. R. Harry, and J. W. , Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picrylhydrazyl radical, J. Agric. Food Chem, vol.48, pp.648-656, 2000.

P. Goupy, C. Dufour, M. Loonis, and O. Dangles, Quantitative Kinetic Analysis of Hydrogen Transfer Reactions from Dietary Polyphenols to the DPPH Radical, Journal of Agricultural and Food Chemistry, vol.51, issue.3, pp.615-622, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02679060

C. Popovici, S. Ilonka, and T. Bartek, Évaluation de l'activité antioxydante des composés phénoliques par la réactivité avec le radical libre DPPH, Rev. Gen. Indus, vol.4, pp.25-39, 2009.

D. Tholl, Terpene synthases and the regulation, diversity and biological roles of terpene metabolism, Current Opinion in Plant Biology, vol.9, issue.3, pp.297-304, 2006.

P. S. Kakaraparthi, K. V. Srinivas, J. K. Kumar, A. N. Kumar, D. K. Rajput et al., Changes in the essential oil content and composition of palmarosa (Cymbopogon martini) harvested at different stages and short intervals in two different seasons, Industrial Crops and Products, vol.69, pp.348-354, 2015.

H. J. Gijsen, J. B. Wijnberg, C. Van-ravenswaay, and A. De-groot, Rearrangement reactions of aromadendrane derivatives. The synthesis of (+)-maaliol, starting from natural (+)-aromadendrene-IV, Tetrahedron, vol.50, issue.16, pp.4733-4744, 1994.

C. S. Francisco, G. B. Messiano, L. M. Lopes, A. G. Tininis, J. E. De-oliveira et al., Classification of Aristolochia species based on GC?MS and chemometric analyses of essential oils, Phytochemistry, vol.69, issue.1, pp.168-175, 2008.

H. A. Priestap, C. M. Van-baren, P. Di-leo-lira, J. D. Coussio, and A. L. Bandoni, Volatile constituents of Aristolochia argentina, Phytochemistry, vol.63, issue.2, pp.221-225, 2003.

L. Sagrero-nieves, J. P. Bartley, G. B. Espinosa, X. A. Dominguez, and J. S. Verde, Essential oil composition ofAristolochia brevipes Benth., Flavour and Fragrance Journal, vol.12, issue.6, pp.401-403, 1997.

R. Vila, M. Mundina, L. Muschietti, H. A. Priestap, A. L. Bandoni et al., Volatile constituents of leaves, roots and stems from Aristolochia elegans, Phytochemistry, vol.46, issue.6, pp.1127-1129, 1997.

J. D. Pascual-teresa, J. G. Urones, and A. Fernandez, Monoterpene derivatives from the essential oil of Aristolochia longa, Phytochemistry, vol.22, issue.12, pp.2753-2754, 1983.

S. G. Lee, ?-Pinene and myrtenol: complete1H NMR assignment, Magnetic Resonance in Chemistry, vol.40, issue.4, pp.311-312, 2002.

S. Jang, H. H. Cho, Y. H. Cho, J. Park, and H. Jeong, Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin, BMC Cell Biology, vol.11, issue.1, p.25, 2010.

J. Q. Yu, Z. X. Liao, X. Q. Cai, J. C. Lei, and G. L. Zou, Composition, antimicrobial activity and cytotoxicity of essential oils from Aristolochia mollissima, Environmental Toxicology and Pharmacology, vol.23, issue.2, pp.162-167, 2007.

P. M. Shafi, M. K. Rosamma, K. Jamil, and P. S. Reddy, Antibacterial activity of the essential oil from Aristolochia indica, Fitoterapia, vol.73, issue.5, pp.439-441, 2002.

Z. J. Li, G. S. Njateng, W. J. He, H. X. Zhang, J. L. Gu et al., Chemical Composition and Antimicrobial Activity of the Essential Oil from the Edible Aromatic PlantAristolochia delavayi, Chemistry & Biodiversity, vol.10, issue.11, pp.2032-2041, 2013.

B. Teixeira, A. Marques, C. Ramos, I. Batista, C. Serrano et al., European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil, Industrial Crops and Products, vol.36, issue.1, pp.81-87, 2012.

S. Burt, Essential oils: their antibacterial properties and potential applications in foods?a review, International Journal of Food Microbiology, vol.94, issue.3, pp.223-253, 2004.

C. F. Carson and T. V. Riley, Antimicrobial activity of the major components of the essential oil ofMelaleuca alternifolia, Journal of Applied Bacteriology, vol.78, issue.3, pp.264-269, 1995.

S. ?avar, M. Maksimovi?, M. E. ?oli?, A. Jerkovi?-mujki?, and R. Be?ta, Chemical composition and antioxidant and antimicrobial activity of two Satureja essential oils, Food Chemistry, vol.111, issue.3, pp.648-653, 2008.

H. J. Dorman and S. G. Deans, Antimicrobial agents from plants: antibacterial activity of plant volatile oils, Journal of Applied Microbiology, vol.88, issue.2, pp.308-316, 2000.

M. L. Ferreira, I. C. De-pascoli, I. R. Nascimento, J. Zukerman-schpector, and L. M. Lopes, Aporphine and bisaporphine alkaloids from Aristolochia lagesiana var. intermedia, Phytochemistry, vol.71, issue.4, pp.469-478, 2010.

A. Ait-ouazzou, S. Lorán, A. Arakrak, A. Laglaoui, C. Rota et al., Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco, Food Research International, vol.45, issue.1, pp.313-319, 2012.

S. Felice, N. Francesco, A. A. Nelly, B. Maurezio, and H. Werner, Composition and antimicrobial activity of the essential oil of Achillea falcata L, Flav. Fragr. J, vol.20, pp.291-294, 2004.

H. Ghazghazi, C. Aouadhi, and B. Hasnaoui, Activité antimicrobienne d'huile essentielle et d'extraits des feuilles de Rosa canina, pp.179-188, 2013.

C. Somerville, The Twentieth Century Trajectory of Plant Biology, Cell, vol.100, issue.1, pp.13-25, 2000.

J. De-pascual-teresa, J. G. Urones, A. Fernandez, and M. D. Alvarez, Lipid components of Aristolochia longa, Phytochemistry, vol.23, pp.461-462, 1984.

P. Morales, I. C. Ferreira, A. M. Carvalho, M. C. Sánchez-mata, M. Cámara et al., Fatty acids profiles of some Spanish wild vegetables, Food Science and Technology International, vol.18, issue.3, pp.281-290, 2012.

C. I. Vardavas, D. Majchrzak, K. H. Wagner, I. Elmadfa, and A. Kafatos, Lipid concentrations of wild edible greens in Crete, Food Chemistry, vol.99, issue.4, pp.822-834, 2006.

M. Russo, G. C. Galletti, P. Bocchini, and A. Carnacini, Essential Oil Chemical Composition of Wild Populations of Italian Oregano Spice (Origanumvulgaressp.hirtum(Link) Ietswaart): A Preliminary Evaluation of Their Use in Chemotaxonomy by Cluster Analysis. 1. Inflorescences, Journal of Agricultural and Food Chemistry, vol.46, issue.9, pp.3741-3746, 1998.

M. A. Curado, C. B. Oliveira, J. G. Jesus, S. C. Santos, J. C. Seraphin et al., Environmental factors influence on chemical polymorphism of the essential oils of Lychnophora ericoides, Phytochemistry, vol.67, issue.21, pp.2363-2369, 2006.

A. P. Simopoulos, The importance of the ratio of omega-6/omega-3 essential fatty acids, Biomedicine & Pharmacotherapy, vol.56, issue.8, pp.365-379, 2002.

P. Mirmiran, S. Hosseinpour-niazi, Z. Naderi, Z. Bahadoran, M. Sadeghi et al., Association between interaction and ratio of ?-3 and ?-6 polyunsaturated fatty acid and the metabolic syndrome in adults, Nutrition, vol.28, issue.9, pp.856-863, 2012.

. Hmso-uk, Department of Health.Nutritional aspects of cardiovascular disease, 1994.

. London, Report on Health and Social Subjects, vol.45, pp.37-46

N. Koren, S. Simsa-maziel, R. Shahar, B. Schwartz, and E. Monsonego-ornan, Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality, The Journal of Nutritional Biochemistry, vol.25, issue.6, pp.623-633, 2014.

M. Vaara, Agents that increase the permeability of the outer membrane., Microbiological Reviews, vol.56, issue.3, pp.395-411, 1992.

B. Marzouk, . Ben-hadj, M. Ferid, I. Chraief, M. Mastouri et al., Chemical composition and antimicrobial activity of essential oils from Tunisian Mentha pulegium L, J Food Agric. Environ, vol.6, pp.78-82, 2008.

. Salvat, . Antonnacci, . Fortunato, . Suarez, and . Godoy, Screening of some plants from Northern Argentina for their antimicrobial activity, Letters in Applied Microbiology, vol.32, issue.5, pp.293-297, 2001.

L. L. Fauchere and J. L. Avril, Bactériologie Générale et Médicale.Editions Ellipses, 2002.

N. J. Kouadio, N. K. Guessennd, M. W. Kone, B. Moussa, Y. M. Koffi et al., Evaluation de l?activité des feuilles de <i>Mallotus oppositifolius</i> (Geisel.) Müll.-Arg (Euphorbiaceae) sur des bactéries multirésistantes et criblage phytochimique, International Journal of Biological and Chemical Sciences, vol.9, issue.3, p.1252, 2015.

C. J. Zheng, J. S. Yoo, T. G. Lee, H. Y. Cho, Y. H. Kim et al., Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids, FEBS Letters, vol.579, issue.23, pp.5157-5162, 2005.

C. L. Fischer, D. R. Drake, D. V. Dawson, D. R. Blanchette, K. A. Brogden et al., Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria, Antimicrobial Agents and Chemotherapy, vol.56, issue.3, pp.1157-1161, 2011.

D. I. Batovska, I. T. Todorava, I. V. Tsvetkova, and H. M. Najdenski, Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane Remodeling, Pol. J. Microbiol, vol.58, pp.43-47

L. J. Mcgaw, A. K. Jäger, and J. Van-staden, Isolation of antibacterial fatty acids from Schotia brachypetala, Fitoterapia, vol.73, issue.5, pp.431-433, 2002.

F. Dilika, P. D. Bremner, and J. J. Meyer, Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites, Fitoterapia, vol.71, issue.4, pp.450-452, 2000.

R. S. Kalhapure, C. Mocktar, D. R. Sikwal, S. J. Sonawane, M. K. Kathiravan et al., Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles, Colloids and Surfaces B: Biointerfaces, vol.117, pp.303-311, 2014.

J. J. Kabara, D. M. Swieczkowski, A. J. Conley, and J. P. Truant, Fatty Acids and Derivatives as Antimicrobial Agents, Antimicrobial Agents and Chemotherapy, vol.2, issue.1, pp.23-28, 1972.

N. Aligiannis, E. Kalpoutzakis, S. Mitaku, and I. B. Chinou, Composition and Antimicrobial Activity of the Essential Oils of TwoOriganumSpecies, Journal of Agricultural and Food Chemistry, vol.49, issue.9, pp.4168-4170, 2001.

M. Go??biowski, A. Urbanek, A. Oleszczak, M. Dawgul, W. Kamysz et al., The antifungal activity of fatty acids of all stages of Sarcophaga carnaria L. (Diptera: Sarcophagidae), Microbiological Research, vol.169, issue.4, pp.279-286, 2014.

, Insécurité sur le marché du travail liée au chômage, moyenne OCDE, 2018.

V. I. Figure, Figure 1?source data 1. Source Data for UV-Visible Absorption of Ms sGC.

, Intensité de la R-D des entreprises et intensité des ressources naturelles, 2012.

S. C. Flett, L'intensité de certaines bandes d'absorption correspondant aux vibrations des liaisons CH, Journal de Physique et le Radium, vol.15, issue.5, pp.388-390, 1954.

J. Duchesne, Interprétation des bandes harmoniques et des bandes de combinaison du spectre infra-rouge de la molécule de tétrachloréthylène, Physica, vol.8, issue.1, pp.144-148, 1941.

, Les disparités régionales en matière de niveau de vie multidimensionnel sont plus importantes que les disparités concernant le seul revenu, 2018.

, Graphique 14. Les effets estimés des réformes des finances publiques sur le niveau de la production par habitant sur longue période varient considérablement suivant les pays de l'OCDE

L. Inversement and . Coefficients, bi", dont les valeurs estimées sont situées à l'intérieur des limites correspondent à des effets non actifs. Les Figures VII. 2 (a et b) représentent les tracés des effets moyens sur l

V. Le-diagramme-représenté-ici-la-figure, Graphique D1.3. Comparaison entre les pays de la corrélation de la performance en culture scientifique avec le temps total d'apprentissage en sciences et avec le pourcentage du temps total d'apprentissage en sciences consacré au programme normal de scienc

V. Le-diagramme-de-la-figure, Viabilité de la dette, Rapports du groupe de réflexion sur le retard pris dans la réalisation des Objectifs du Millénaire pour le Développement, pp.43-53, 2009.

, Graphique 5.9. L?Organisation mondiale de la santé surpasse les autres partenaires du développement pour ce qui est de l?alignement au niveau des projets, Au niveau de la concentration en DPPH égale à 190 ?M, le test de Student pour les coefficients de la réponse Y2 (Tableau VII

A. Cuni??, De quelques conflits entre l?aspect lexical et l?aspect grammatical et de leur résolution au niveau de la phrase et au niveau du texte, Temps, aspect et classes de mots, pp.201-220, 2011.

, Croissance du PIB (évolution réelle par rapport à l'année précédente, en pourcentage) et évolution de la contribution de la croissance des revenus du travail au PIB, selon le niveau de formation (2000-10), Au niveau de la concentration en DPPH de 50 ?M, les coefficients b3et b5 qui traduisent l'effet du pH et du rapport du tampon sur la réponse Y1 sont considérés non significatifs (Figures VII. 2), 2012.

D. Aymonin, La réponse est 42? ou pour bien mesurer, encore faut-il savoir quelle est la question !, Evaluer en bibliothèque, vol.7, issue.96, p.3, 2020.

A. Cuni??, De quelques conflits entre l?aspect lexical et l?aspect grammatical et de leur résolution au niveau de la phrase et au niveau du texte, Temps, aspect et classes de mots, pp.201-220, 2011.

, Graphique 1.18. Les perspectives se sont assombries pour les espèces menacées et la consommation de matière premières, et les gaz à effet de serre, quoiqu?en baisse, ne diminuent pas suffisamment pour atteindre les objectifs de réduction mondiaux, Le test de Student pour les coefficients b2 et b6, qui traduisent l'effet des facteurs X2 et X6, ne présente pas d'effet sur la réponse Y1 (Tableau VII, vol.7

G. H. Ayres, Evaluation of Accuracy in Photometric Analysis, Analytical Chemistry, vol.21, issue.6, pp.652-657, 1949.

A. Fadda, M. Serra, M. G. Molinu, E. Azara, A. Barberis et al., Reaction time and DPPH concentration influence antioxidant activity and kinetic parameters of bioactive molecules and plant extracts in the reaction with the DPPH radical, Journal of Food Composition and Analysis, vol.35, issue.2, pp.112-119, 2014.

O. P. Sharma and T. K. Bhat, DPPH antioxidant assay revisited, Food Chemistry, vol.113, issue.4, pp.1202-1205, 2009.

J. W. Liaw, S. W. Tsai, H. H. Lin, T. C. Yen, and B. Chen, Wavelength-dependent Faraday?Tyndall effect on laser-induced microbubble in gold colloid, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.113, issue.17, pp.2234-2242, 2012.

B. Ozcelik, J. H. Lee, and D. B. Min, Effects of Light, Oxygen, and pH on the Absorbance of 2,2-Diphenyl-1-picrylhydrazyl, Journal of Food Science, vol.68, issue.2, pp.487-490, 2003.

M. S. Blois, Antioxidant Determinations by the Use of a Stable Free Radical, Nature, vol.181, issue.4617, pp.1199-1200, 1958.

D. Mathieu, J. Nony, and R. Phan-tan-luu, New efficient methodology for research using optimal design (Nemrodw) software, 2000.

K. Ravikumar, S. Krishnan, S. Ramalingam, and K. Balu, Optimization of process variables by the application of response surface methodology for dye removal using a novel adsorbent, Dyes and Pigments, vol.72, issue.1, pp.66-74, 2007.

A. L. Dawidowicz and M. Olszowy, Mechanism change in estimating of antioxidant activity of phenolic compounds, Talanta, vol.97, pp.312-317, 2012.