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Introduction

Contents
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1.1.1 Two simple evolution equations as example . . . . .. .. ... ... ... 10
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1.2 Controllability methods . . . . . . . .. ... ... ... 000 14
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1.4 Local exponential stabilization of the KdV equation with a Neumann
boundary control . . . . . . . .. L o e e e e e e e e e e e 21
1.4.1 The linearized system is not controllable . . . . . . . ... ... ... ... 22
1.4.2 The nonlinear system is controllable: power series expansion . . . . . .. 22
1.4.3 Quadratic structure and exponential stabilization . . . . . . . ... .. .. 23
1.4.4 Further questions . . . . . . . . . . .. L 26

1.5 Small-time local stabilization of a KdV equation with a Dirichlet
boundary control . . . . . . . . ... o o e e 26
1.5.1 Controllability . . . . . .. . . .. 26
1.5.2 Backstepping and rapid stabilization . . . . . ... ... ... 27
1.5.3 Piecewise backstepping and null controllability . . . . .. ... ... ... 28
1.5.4 Further questions . . . . . . . . . . . . . e 30
1.6 Small-time global stabilization of a viscous Burgers equation . . . . . 30
1.6.1 An interesting problem and our strategy . . . . . . . .. ... ... ... 31
1.6.2 Small-time global approximate stabilization . . . . . . ... ... ... .. 32
1.6.3 Further questions . . . . . . . . .. .. L L L 37

1.1 Basic definitions
Control theory is a subject devoted to the study of systems whose dynamics can be modified by

using suitable controls. The major issues of control theory are controllability problems and stabi-
lization problems [[Li088, Cor(7a]. A major goal of this thesis is to understand global controllability
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1.1. Basic definitions

and stabilization of two equations used in fluid mechanics (PDE models) with nonlinear phenomena,
namely the Korteweg-de Vries equation and the Burgers equation.

The controllability problem consists in looking for controls allowing to move the control system
from a given state to a given desired target. Moreover, does there exist an optimal control [Tr5]?

Another central problem is the stabilization issue, especially the relation between controllability
and stabilization. In controllability problems, the control depends on the initial data, time and the
desired target. Such controls are called open-loop controls. In stabilization problems, the control
does not depend anymore on the initial data. Instead it depends, at each time ¢, on the state at
this time ¢. Such controls are called feedback laws. They are very important since they are much
more robust to perturbations than open-loop controls. A natural example for this is the problem of
balancing an upturned broomstick on the end of one’s finger.

1.1.1 Two simple evolution equations as example

Before stating definitions and results, let us have a look at two simple equations, keeping in mind
that controllability means to move the state to a given target, and that stabilization means to make
the system more stable.

1.1.1.1 The equation © =z

The evolution of & = x is quite clear, as we can directly get the solution. Of course this system
is neither controllable nor stable. We investigate control problems by adding a control term,

t=z+ fxeR (1.1.1)

where f is the control (or feedback law for stabilization problems).
A simple calculation yields the controllability of (1.1.1).
As for the stabilization, we define a feedback law f(z) := —2z and get

T =—x.

The above system is exponentially stable with exponential decay rate 1. Moreover, if we replace
f = —2x by f := —nax with n large enough, we get rapid stabilization (exponential stabilization
with an arbitrary large exponential decay rate).

However, these feedback laws do not lead to finite time stabilization (the state does not go to zero
in finite time). To get stabilization in finite time one may consider either time-varying feedback
laws or nonlinear feedback laws.

Because the term = can be absorbed by the source term f, we consider the stabilization of & = f
from now on.

e Time-varying feedback law
As we can see from the above example, f := —nx is a stationary feedback law which “only” leads
to rapid stabilization. We try to stabilize the system by means of time-varying feedback laws.
An idea is to consider piecewise stationary feedback law, for example,

fi=—2" g forte[l—27"1—2 (D)

With the help of (1.1.2), the state x goes to zero in finite time. By using the same approach we can
even let the state z go to zero in any small time (small-time stabilization).

e A local aspect:
As linear stationary feedback law does not lead to finite time stabilization, what about nonlinear



Chapter 1: Introduction 11

(stationary) feedback laws? If we consider the evolution of

T = —xl/?’,
then we have 3
idx% =z 3dy = —dt, if z > 0.

Formally ) ,
x3(T) =23(0) — 3T/2,
hence, z(T") = 0 if z(0) is small enough.
By considering a feedback law as f := —Axz'/3, we are able to get small-time stabilization of the
system.

e A global aspect:
A way of getting global stabilization is the so called universal bound. For example, we consider

&= —a®,
then we have 1
5dgﬂ =z 3dz =dt, if x> 0.

Hence
o(T) = (2T + z~2(0))~1/2 < (2T) /2,

Combining both local and global aspects, we can construct a nonlinear stationary feedback law
which stabilizes the system in finite time,

fo=—a —z/3.

1.1.1.2 The one dimemsional heat equation

The heat equation is a very good example for the control of PDEs, not only because the Laplace
operator is the simplest and the best operator' but also because it is a goose that laid the golden

€ggs.
Let us consider the following controlled heat equation

Yt — Yo = 0, in [0,T] x (0, 1), (1.1.2)
yx(t,()) =0, yac(tv 1) = u(t)v in [U,T],

with u(t) € R as control. The first controllability result was proved in the 70’s by Fattorini and
Russell | ]: in dimension one, the heat equation with boundary control is controllable. The
multiple dimensional heat equation is also controllable. It was proved by Lebeau and Robbiano
[ , ], where they introduced the Lebeau-Robbiano strategy. At the same time, an al-
ternative method was given by Fursikov and Imanuvilov | ]. This was the first time that global
Carleman estimates were used to prove observability inequalities. They have become one of the
most commonly used methods.

Concerning stabilization issues, the exponential stabilization of the heat equation is well-known.

INalini Anantharaman’s plenary talk at ICM 2018.



1.1. Basic definitions

For simplicity we consider the heat equation with a Dirichlet control

Yt — Yow = 0 in [0, 7] x (0,1), (1.1.4)
y(t,0) =0, y(t, 1) =u(t), in [0,T]. (1.1.5)

If we set u(0) as zero, then Laplace operator and Poincare’s inequality lead to a natural exponential
dissipation of the energy.

We also know a method for rapid stabilization: the backstepping approach as introduced by
Krstic and his co-authors | ]. An excellent book to enter inside this method is | | by
Krstic and Smyshlyaev. In the framework of our heat equation it consists in looking for linear maps
which transform our heat equation into a new heat equation having a stronger dissipation. More
precisely, for every A > 1, there exist a stationary feedback law U (y) and a Volterra transformation
of the secund kind Ly : L?(0,1) — L?(0,1) (which is therefore invertible) such that if y is the
solution of equation (1.1.4) with feedback law Uy (y), then z := Ly satisfies

2t — Zgx + Az =01in [0,T] x (0,1),
z(t,0) =0, z(t,1)=0, in [0,T].

Hence
ly(D)llz2< Cre[[y(0)] 2, vt > 0. (1.1.6)

There are many other important works for rapid stabilization of the heat equation | , ].
However, the small-time stabilization of the one dimensional heat equation remained open until
Coron and Nguyen’s paper | ], where they introduced a piecewise backstepping approach and
pointed out that

O = | LAllILY I e, (1.1.7)

where the constant ¢ is independent of A > 1. One can actually get some intuition from Section
1.1.1.1, where we introduce a piecewise feedback law to achieve finite-time stabilization. We look
for sequences

An — oo and t, — 17,

and a piecewise feedback law
U(tvy) = U>\n (y),t € [tnatn+l)a

such that y(t) tends to 0 thanks to inequality (1.1.7).

1.1.2 Well-posedness, stability, and also controllability, stabilization

Let
z(t) = f(t,z(t)). (1.1.8)

be an evolution equation or a discrete dynamical system. Many important models can be written by
this general form: ODE, evolution PDE (the heat equation, Navier-Stokes equation, Euler equation
ete.).

The most frequently asked questions concerning system (1.1.8) are the following;:

e FEuxistence and uniqueness of solutions: does equation (1.1.8) have solutions? Strong solution,
weak solution, or mild solution? If yes, is the solution unique?

e Regularity: if equation (1.1.8) has solutions, then what is the regularity of these solutions?

e Stability: if equation (1.1.8) has solutions, then will the solutions converge to equilibrium
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points (f(t,z.) = 0). If yes, what is the convergence rate? Asymptotical, exponential, or in
finite time?

Definition 1 (Uniform asymptotic stability). Suppose that 0 is an equilibrium point of system
(1.1.8). One says that 0 is locally asymptotically stable if

(i) (uniform stability) for every € > 0, there exists 0 > 0 such that, for every s € R and for
every T = s,
(@ = f(t,z(t)), |z(s)| <0) = (Ja(7)] <e), (1.1.9)

(ii) (asymptotic decay) there exists a > 0 such that, for every e > 0, there exists M. such
that, for every s € R,

(& = f(t,z(t)), |z(s)| < @) = (Ja(r)| < &,V > s + M.). (1.1.10)

Note that to simplify notations in the above definition, |x| may represent any norm (or topol-
ogy).

e Blow up, soliton, limiting problem, stochastic etc.

Different from the above problems which are based on properties of given solutions, in control theory
we change the dynamics of the solutions thanks to flexible control terms. We add an extra control
term to system (1.1.8), and study

z(t) = f(t, z(t), u(t)), (1.1.11)

with x(t) € H the state and u(t) € U the control.

e Controllability: for any given xg,x1 € H, does there exist a trajectory which connects them
in a suitable sense (the sense of the solution and the sense of controllability)? For example,

Definition 2 (Exact controllability). We say that system (1.1.11) is exact controllable in time
T > 0 if and only if, for any xg € H and x1 € H, there exists a controlt € [0,T] — u(t) € U
such that the solution, x(t), of (1.1.11) with x(0) = xzq satisfies x(T) = 1.

e Stabilization: beyond the study of stability of system (1.1.8), with the help of feedback laws
are we able to stabilize a system which is not stable (Section 1.1.1.1 provides a good example),
or make a system “more stable” (see Section 1.1.1.2)?7 More precisely, by adding a feedback
law U(t, z(t)) we study the stability of the system

&(t) = f(t,2(t), Ut x(t))).

It is equivalent to investigate the stability of
i(t) = f(t,2(t)) with f(t,z(t)) == f(t,z(t), U(t, z(t))).

In control theory we also care about the well-posedness issue, as it ensures the existence of the
objects we investigate. Concerning the well-posedness of control systems, a very classical framework
was built by Jacques-Louis Lions, the so called solution in the transposition sense. An excellent
introduction of this theory is presented by the book of Tucsnak and Weiss | ]. For simplicity
of presentation, we only consider linear control systems to explain the idea.

For T' > 0, we are interested in the linear system

(1.1.12)

& = Az + Bu,Vt € [0, T,
x(0) = xo,



1.2. Controllability methods

where A and B are two operators, which can be bounded or unbounded. Like always we consider
x € H as state and u(t) € U := L*((0,T);U) as control, with H and U two Hilbert spaces.

Let S(t) be the semigroup of continuous linear operators on H generated by A. If g € D(A) and
B € L(U;D(A)), then thanks to Duhamel’s formula, system (1.1.12) with u € L?((0,T);U) has a
unique strong solution in the space C([0,7]; D(A)) N C*([0,T); H)

x(t) = S(t)xo + /Ot S(t — s)Bu(s)ds,Vt € [0,T). (1.1.13)

Furthermore, if zy € H (rather than D(A)) and B € L(U; H), then formula (1.1.13) presents the
unique weak solution. However, what if g € H and B € L(U; D(A*)")? We notice that Bu is not
well-defined for some u € H, thus it seems that the natural solution space C(H) := C([0,T]; H) is
not compatible with operator B. Here we need to consider solutions in the sense of transposition:

(), y)g = (w0, S(t)*y) 1

+ /t(u(s),B*S(t —$)*y)uds, Vy € D(A"),Vt € [0,T]. (1.1.14)
0

Moreover, for any given xzo € H the solution “map” is continuous: U — C(H). Transposition
solutions are widely used in control theory especially for boundary control problems. That is because
under this definition we are able to include solutions whose boundaries are not regular enough. For
example, in Section 1.1.1.2 we study the controllability of the heat equation in L?(0, 1) space where
yz(t, 1) is not well-defined for some elements from L?(0,1).

1.2 Controllability methods

1.2.1 Linear model: Hilbert Uniqueness Method

Exact controllability of a linear system can be proved by observability inequalities and the du-
ality between controllability and observability | ]. The rest of this section is devoted to Hilbert
Uniqueness Method due to Lions | ]. We study the problem of the exact controllability of sys-
tem (1.1.12) in 3 steps.

Step 1. Transform the control problem into an application problem.
As we have seen for the definition of transposition sense solution, for every zo € H we are able to
define a continuous application from U to H

Fao:U — H,
with Fg, (u) = z(T).
Therefore, it suffices to prove that F,,(u) is a surjection.
Step 2. Exact controllability <= Exact controllability from 0.

Definition 3. We say that system (1.1.12) is exact controllable from 0 in time T > 0 if and only if,
for any x1 € H |, there exists a control u(t) € U such that the solution x(t) of (1.1.12) with z(0) =0
satisfies x(T) = x1.

It is obvious that exact controllability implies exact controllability from 0. The converse asser-
tion can be proved by decomposing x(t) into two parts, z(t) = x1(¢) + x2(t), where x; is the solution
of (1.1.12) with z¢ = 0, and x5 is the solution with u = 0.
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Step 3. The duality between controllability and observability.
Our goal is to show that F is surjective. For the image of an operator between two Hilbert spaces,
we first recall the following classical result from functional analysis.

Theorem 1. Let E and F be two Hilbert spaces. Let L : D(L) C E — F be a closed operator with
dense domain. Then L is onto if and only if there exists C > 0 such that
Iflle< CIL (e, V€ F. (1.2.1)

The following theorem is a direct application of Theorem 1.

Theorem 2. System (1.1.12) is

— exact controllable if and only if, there exists a constant Cp > 0 such that

|z|la< Cr|| F 2| g, Vo € H; (1.2.2)

— approzimate controllable if and only if
(Frz =0,z € H) = (¢ =0). (1.2.3)

Inequality (1.2.2) is the so called observability inequality, and property (1.2.3) is the unique
continuation principle.

Different methods were introduced to prove the observability inequalities: multiplier method
[ ], moments theory | ) ], defect measure | ], global Carleman estimates [ ].

1.2.2 Nonlinear model: return method eic.

In many cases one can obtain local controllability of a nonlinear system whose linearized system
around the equilibrium point is controllable, by using standard fixed point arguments. However, this
procedure does not work for many important systems. Consider, for example, the two dimensional
Euler equation

v+ (v-V)v+Vp=0in[0,T] x Q,
dive=01in [0,7] x €,

v(t, -) satisfies some boundary conditions on I' \ T'y,

where T' = 99, and controls act on the boundary T'y C I'. We observe that (7,p) = (0,0) is a
solution. But the linearized system around this equilibrium point is not controllable. Indeed this
linearized system is

22+ Vg=0in[0,T] x Q,
divz=01in [0,T] x £,

z(t, ) satisfies some boundary conditions on I"\ T'g,
and, therefore, the vorticity w := curl v satisfies
wt(t7 .13) = Oa

which shows that this system is not controllable (the vorticity can not be modified whatever is the
control). In this situation the linear part does not lead to the controllability, a natural idea is to
ask whether the nonlinear part could help to get the controllability: we need to develop nonlinear
methods. One of the most commonly used method is the so called “return method” introduced by
Coron [ , |:
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e (Jean-Michel Coron) If the linearized system around an equilibrium point is not controllable,
then consider the control systems around other trajectories which start from the equilibrium point
and end at the same point, such that the linearized system around these trajectories are controllable.

Following the idea of the return method, we are looking for another equilibrium y := V6, with
0 in C>°()) satisfies

AO=0,V0#0, in Q, (1.2.4)
00
e 0, on I'"\ T'y. (1.2.5)

The vorticity of the linearized system around this equilibrium point satisfies
wi + (7 Vw =0,

which is a transport type equation. Conditions (1.2.4)—(1.2.5) ensures that every point x inside §2
can be transported outside of €2 by passing through I'y where the control acts. Therefore, Euler
system is locally controllable around equilibrium . Then we construct a trajectory a(t)Vé satisfying
a(0) =a(T) =0, a(t) = 1Vt € (1/3,2/3). We can prove local controllability around this trajectory.
Due to the pressure term Vp and the scaling invariant, we can further get global controllability of
Euler equation.

In control theory we surprisingly find that many models whose linearized systems are not con-
trollable can be controlled thanks to nonlinear terms, e.g., many ODE models (as the unicycle or the
baby stroller), Navier-Stokes equations with reduced forcing terms (] ] with a new algebraic
method inspired by the works by Gromov | , ]), Navier-Stokes equations with finite di-
mensional controls | , ], Euler equations with boundary control (| ] “return method”),
KdV equations ([ ] “power series expansion”), and Schrodinger equations (| ] with the use
of Nash-Moser method | , , , D.

1.3 Stabilization is different from controllability

1.3.1 Periodic time-varying feedback laws

The stabilization issue is linked with both stability and controllability. It is natural to ask for
the best possible type of stabilization we can achieve given a controllability result. Can we stabilize
a system which is controllable?

For finite dimensional linear stationary systems, it is shown that the invertibility of the control-
lability Gramian (on a finite interval) is equivalent to the pole-shifting property (and also to the
controllability). Concerning stationary feedback laws, it is proved by Coron and Praly in | ]
that every equilibrium which has a controllable linearized system around it can be stabilized in small
time by means of continuous stationary feedback laws. However, as it was proved by Brockett in
[ ] (see also | |, there are control systems which are small-time locally controllable at some
equilibrium such that this equilibrium cannot be asymptotically stabilized by means of continuous
stationary feedback laws. More precisely, Brockett proved the following necessary condition for
asymptotic stabilizability by means of continuous stationary feedback laws.

Theorem 3 (Brockett [ ). A necessary condition for the control system & = f(z,u) to be
locally asymptotically stabilizable at the equilibrium point (zq,0) by a continuous stationary feedback
law vanishing at xo is that the image by f of any neighborhood of (x0,0) is a neighborhood of 0.

Let us point out that there are control system & = f(z,u) which are small-time locally control-
lable at the equilibrium point (xg,0) which does not satisfy the above necessary Brockett condition.
Moreover, it was previously pointed out in [ | that a system which is globally controllable may
not be globally asymptotically stabilizable by means of continuous stationary feedback laws. To
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overcome this obstruction a strategy is to use, instead of continuous stationary feedback laws, con-
tinuous (with respect to the state) time-varying feedback laws. This seems to be the “right” class
of feedback laws for stabilization issues since it is shown by Coron in | ] that, in finite dimen-
sion, many powerful sufficient conditions for small-time local controllability imply the existence of
feedback laws which locally stabilize the system in small time.

Another challenging issue of stabilization problems is that the starting time could be any time,
i.e. see Definition 1 for uniform stability. We seek for periodic time-varying feedback laws, under
which the starting time belong to an interval [0,T) rather than R.

What about nonlinear systems? What about (linear and nonlinear) PDE models? It seems
difficult to get a general theory to the one given in | ] for finite dimensional control system.
In order to build a bridge between controllability and stabilization especially in PDE level, it is
reasonable to consider the following three important cases.

1.3.2 Three important but less studied problems

Concerning stabilization of control systems in infinite dimension (PDE models), the classical
linearization technique works well around equilibrium points. For example, if we are able to construct
a linear feedback law such that the linearized system is asymptotically stable with this feedback law,
one may hope that the same linear feedback law is going to stabilize asymptotically the non linear
system. Sometimes it can be proved by a Lyapunov approach: a Lyapunov function for the closed-
loop linear system is sometimes also a Lyapunov function for the closed-loop nonlinear system. See,
for example, | , ] for 1-D quasilinear hyperbolic systems on an interval. However, since
this technique is based on the perturbation and the linearized system, it is clear that this method
does not work for the following important cases.

(1) Stabilization of nonlinear systems whose linearized system are not asymptotically stabilizable.
Many important models fall in this class. For example, every nonlinear system whose linearized
form is not controllable, which includes Euler equations, Schrédinger equations, Saint-Venant
equations etc.

(2) Small-time local stabilization of linear controllable systems.

Small-time local controllability is well studied (see Section 1.2.1), different methods are intro-
duced for this issue. But results on related small-time stabilization problems are very limited.
As we have seen in Section 1.1.1.2, small-time local stabilization of the one dimensional heat
equation was solved very recently. It is possible that time-varying feedback laws can always
allow to get small-time stabilization for this kind of systems. It might seem strange to seek
a local result for a linear system. That is because of a starting time problem which does not
exist in controllability problems. We refer to Section 1.3.3.4 and Sectionl1.3.3.5 for details on
it.

(3) Small-time global stabilization of nonlinear controllable systems.
Small-time global controllability of nonlinear systems is an interesting and important subject.
Further studies are related to boundary layer problems, such as for Navier-Stokes equations.

This thesis is devoted to the study of stabilization of three typical models where standard linear
perturbation theory can not be applied. More precisely, Chapter 2 deals with a KdV control system
with a Neumann boundary control, which is included in Case (1); Chapter 3—4 deals with small-time
local stabilization of a KdV system with Dirichlet boundary control, which is included in Case (2);
and Chapter 5 handles a typical example for Case (3), the viscous Burgers equation. The problems
we meet for these models are representative. And the methods that we present could be applied to
other models. It helps for the understanding of the links between controllability and time-varying
feedback stabilization.
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1.3.3 Beyond a prior: estimates, several typical problems and our solu-
tions

Well-posedness of closed-loop systems

Well-posedness is a significant issue in the study of PDEs. Control theory consists in studying the
dynamic of the solution, thus we also need to care about well-posedness. Controllability problems are
based on open-loop systems, for which we can normally use regular controls (even smooth controls)
so that several known well-posedness results can be used. For instance, if the initial boundary value
problem is well investigated, then we let the control on the boundary be regular enough such that
there exists a unique solution.

However, stabilization is the action of designing feedback terms to make the origin be more stable.
In other words, we study the closed-loop system

w(t) = f(t, (), U, (1)) = f(t,x(t)), (1.3.1)

which is clearly different from the original one. As soon as a feedback law U (¢, z(t)) is chosen, the
required stability of system (1.3.1) is fulfilled by a prior estimates. It suffices to prove the existence
of solutions to make sure that the feedback law is “well-designed”.

1.3.3.1 Non-Lipschitz feedback laws

Even though f is different from f, classical methods can still be adapted for well-posedness

problems: energy methods, Galerkin iteration, fixed point arguments etc.
However, in many situations we have to construct non-Lipschitz feedback laws. Let us recall Section
1.1.1.1 as example, where we constructed a feedback law —z!'/3 which is not Lipschitz around
0. Generally, a lack of Lipschitz condition may result in non-uniqueness of solutions. From the
definition of stabilization and the engineering point of view this is not a problem. However, from the
mathematical point of view, this prevents the application of powerful Banach fixed point arguments
to show the existence of solutions.

How can we solve equation (1.3.1) when f (or f) are not Lipschitz? We can borrow some
ideas from ODE theory. Actually, there is a strategy introduced by Carathéodory to solve ordinary
differential equations ¢ = f(¢,z) when f is not smooth. Roughly speaking it consists in solving
z = f(t,x(t — h)) where h is a positive time-delay (the solution can be obtained by integration),
and then pass the limit by letting i tend to 0.

We try to adapt this strategy to PDE models. Here we do not put the time-delay on x: it does not
seem to be possible, as in this case we break essential semi-group structures of operators in PDE
theory. Based on the fact that the well-posedness of original system & = f(¢,2) and of open-loop
control system @ = f(t,x,u) are always known (if not, the first purpose of this model is well-
posedness), we study f by regarding it as f(¢,x,U(t, z)). In such a case, we can benefit from known
theories. The idea is to put a time delay on the feedback law: U(t,z(t)) is replaced by U(t, z(t —h)).

Step 1. Carathéodory setting. We say that U(t,z) : R x H — R is a Carathéodory map if it
satisfies the three following properties

VR > 0,3 Cp(R) > 0 such that (|z]|lg < R=|U(t,z)| < Cp(R), Vt€R), (1.3.2)
Va € H, the function t € R+ U(t,z) € R is measurable, (1.3.3)
for almost every ¢ € R, the function € H — U(t,z) € R is continuous. (1.3.4)

Step 2. Time-decay system. Let h > 0. Let us set z(t) := xo,Vt € [0,h]. For t € (h,2h], the
system © = f(t,z,U(t,x(t — h))) is equivalent to the in-homogeneous open-loop system f(t,x, @)
with @ given. Hence we are able to solve x(t) on (h,2h]. Then we continue this procedure to get
solutions on [0, nh].
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Step 3. A priori estimates and pass the limit. This part is standard. Some key points are a
priori estimates and Carathéodory setting.

This method was first introduced in paper [ ] which is also Chapter 2 of this thesis. As
we can see, this method is generic, one can apply it on different problems of well-posedness for
closed-loop systems.

1.3.3.2 (Global solutions: maximal solutions

Focusing on stabilization issues, we need to prove the existence of global solutions (with respect
to time). If there is a unique solution, we can simply call this solution a flow of the system. But when
the solutions are not unique, how can we tell different solutions apart? One way of distinguishing
them is the maximal solution.

Let us suppose that the initial time is s and the initial data is zg. For system

&= f(t,z,U(t,x)), (1.3.5)
and for the Cauchy problem
&= f(t,xz,U(t,x)) with z(s) = zo,t € (s, +00), (1.3.6)
we give the following definitions.

Definition 4. Let I be an interval of R with a nonempty interior. A function x is a solution of
(1.3.5) on I if x € C°(I; H) is such that, for every [Ty, To] C I with —oo < Ty < Ty < +o0, the
restriction of x to [Ty, Ts] x (0, L) is a solution of (1.3.5). A function x is a solution to the Cauchy
problem (1.3.6) if there exists an interval I with a nonempty interior satisfying I N (—oo, s] = {s}
such that x € C°(I; H) is a solution of (1.3.5) on I and satisfies the initial condition x(s) = zg. The
interval I is denoted by D(xz). We say that a solution y to the Cauchy problem (1.3.6) is maximal
if, for every solution y to the Cauchy problem (1.3.6) such that

D(z) C D(y), (1.3.7)
x(t) = y(t) for every t in D(y),
one has
D(z) = D(y). (1.3.9)
This is a general definition (or rather a general idea) of maximal solutions, one can of course
modify spaces according to specific settings. This idea was first introduced in | |, and it is also
used in our paper | | which is Chapter 2 of this thesis.

1.3.3.3 Flow and proper feedback laws

Flow is one of the most important ideas in mathematics and physics, e.g. Anosov flow, heat flow,
Ricci flow. It can be generally regarded as a continuous motion of the state over time. In ODE
theory local existence of flow is always due to Lipschitz-continuous of the vector field. It is difficult
to show that a flow is globally defined, one criterion is that the vector field is compactly supported.
In the PDE setting, for example the Laplace operator generates a flow which is global thanks to
some compactness arguments. We call feedback laws proper if the corresponding closed-loop system
has a global flow.

Definition 5. A periodic feedback law U (t, x) is called proper if, for any s and any xo the Cauchy
problem (1.3.6) has a unique global solution, and this solution is continuous with respect to time,
i.e.w € C%([s,+00); H).
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This generic definition was introduced in paper | ] which is Chapter 5 of this thesis.

Uniform stability

Another important issue of stabilization is uniform stability, as we have seen in Definition 1. Let
us illustrate it with the example in Section 1.1.1.2. Actually, the piecewise feedback law that we
construct in Section 1.1.1.2 is not a good one.

In fact, if the starting time is s = 0, then there exists a constant C' such that

ly(@)l[2< Clly(0)]| 2, Yt € [0, +00).

However, there is a problem if the starting time is not 0. Let s := t,, for instance. Since the feedback
law is defined as Uy, on time interval [t,,t,41), we have

ly(t)] L2 < eV

Y(tn)llL2, Yt € [tn, tngr). (1.3.10)

In such a case, uniform stability is not satisfied, because of the cost term in (1.3.10). The cost term
comes from the fact that |U(t,,y)| ~ e |y|. In order to avoid this problem, an idea is to set a
uniform bound on the feedback law. However, if we set such a bound on the feedback law, then
another problem concerning the well-posedness issue will appear.

Lemma 1 (Lions-Magenes | 1). Let yo € L%. The Cauchy problem (1.1.4)—(1.1.5) with y(0) =
Yo has a unique solution y € C°([0,T]; L?) N L2([0,T]; H') if u € H'/4.

As we can see from the above theorem, we even have a problem upon the existence of solutions
when the control is L.

1.3.3.4 The maximum principle

In | ] Coron and Nguyen find that the maximum principle can solve this problem. They
proved that if |U(t,y)| < \/y, the linear heat equation still has a unique solution in C°([0,T7]; L?).
Their proof relies on some explicit calculations.

In Chapter 5, we improve this result. We find that L>L? N L2L> space is the suitable space for
bounded control terms (trace) instead of CYL? N L2H'! space proposed by Lions-Magenes theory.
We show that the maximum principle leads to solutions to the nonlinear heat equations considered
in this chapter, namely the viscous Burgers equations.

1.3.3.5 Add an integration term

The maximum principle only works for elliptic equations and parabolic equations. If we are
dealing with KdV equations or Schrodinger equations, the maximum principle can no longer be
applied. We think that the technique of “add an integration term” provides a systematic way of
solving such trace problems.

Let us illustrate the idea with a simple example,

.’i?l = I2. (1.3.11)

We want z2 to be C1 (with respect to time) so that the solution z; is C2. But due to some problems
from closed-loop systems and feedback laws, z2 is C° instead of being C'. In other words, we can
only guarantee a C° “input” xo. The idea is to regard xo as a new state term

{tl = (EQ,.’tQ = T3, (1312)

with z3 € C? as input (control, feedback law). An easy integration shows that o € C! and z; € C?.
Of course system (1.3.11) is slightly different from system (1.3.12). However we are able to perform
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such dynamic control techniques in reality.
Let us come back and apply this technique to the heat equation (1.1.4)—(1.1.5),

At e
dt/oy()d 2/0 yo(z)da + 2y(1)y,(1).

Basic energy estimates do not lead to well-posedness if y(1) € L. Lions-Magenes method gives
the well-posedness if y(1) € H'/%. We add an integration term on (1), the system becomes

yt(tJ:) - ymm(tax) =0,
y(t,0) =0,y(t,1) = u(t), (1.3.13)
we(t) = v(t).

Therefore, at least formally, if the input v € L2, then u € H' € H'/*. The energy estimate becomes

1 1
di(/ yQ(x)dx—i—uQ) = —2/ y2(z)dr + 2uy, (1) + 2uv.
t\Jo 0

We replace v by v — y,(1), and consider the system

yt(tvx) - yww(t’x) =0,
y(t,0) =0,y(t,1) = u(t), (1.3.14)
ut(t) = 'U(t) - yz(t7 1)

Now system (1.3.14) is well-posed with a L? control v(t).

In Chapter 4 we find that the “add an integration term” technique is an ideal way to deal with
low regularity trace stabilization problems. And we applied this method for the stabilization of a
KdV equation.

Statement: In the rest of this introduction, we only care about a priori estimates, as the well-
posedness and the uniform stability issues can be solved by the above techniques. Though we keep
the same notations (such as spaces) that are used in Chapter 25 for consistency, readers may simply
regard those norms as ||-|| and focus on ideas.

1.4 Local exponential stabilization of the KdV equation with
a Neumann boundary control

Let L € (0,400). We consider the stabilization of the following control Korteweg-de Vries (KdV)
system

Yt + Yozz T Yo +yya =0 for (t,x) € (s,+00) x (0, L),
y(t,0)=y(t,L) =0 for t € (s,4+00), (1.4.1)
Yo (t, L) = u(t) for t € (s,400),

where s € R and where, at time t € [s, +00), the state is y(, ) € L?(0, L) and the control is u(t) € R.
Following the statement at the end of last section, the solution space that we use throughout this
section is y € C°([0,T]; L?) N L2([0, T]; H'), and we do not state any well-posedness result.
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1.4.1 The linearized system is not controllable

Let us study at first the controllability of the linearized system.

Yt + Yzza T Yo = 0 for (tax) S (87+OO) X (OvL)v

y(t,0) =y, L)=0  for t € (s,+00), (1.4.2)
yo(t, L) = u(t) for ¢ € (s,+00),
Lionel Rosier showed in | ] that for this model L? space can be decomposed by
L?=H& M,
where
H := controllable states,

M := uncontrollable states, and dim M < +oo.

Thus system (1.4.2) is controllable if and only if L ¢ N, where A is called the set of critical lengths,

and is defined by
21 2
N = {Qw\/#; LkeN. (1.4.3)

Moreover, the dimension of M is the number of different pairs of positive integers (I}, k;) satisfying
(1.4.3).
1.4.2 The nonlinear system is controllable: power series expansion

Although the existence of M for the linearized system, KdV system (1.4.1) is still controllable
thanks to the nonlinear term.

Theorem 4. KdV system (1.4.1) is (locally) controllable, if
e (Coron and Crépeau [ ) dim M =1, VT > 0;
e (Cerpa [ ]) dim M =2, for T large enough;
e (Cerpa and Crépeau [ ]) dim M > 2, for T large enough.

Their proofs rely on the “power series method” which will also be used in our stabilization
problem. An heuristic proof, the details of which we omit, suggests to make the following power
series expansion

Y= Eyl + 52y2 + 53y3 + ..,

ui=cul +2u? + 3 + .
It follows that the linearized system (1.4.2) is actually the first order,

Yt + Ytww + Yz =0,
y1(4,0) = y'(t, L) =0, (1.4.4)
ya(t, L) = u'(t),

Rosier | ] tells us that, if y!(¢,0) = 0, y' can not reach the set M \ {0}. A natural idea is to go
further on higher orders to see if y2, which satisfies the following equation, can reach uncontrollable
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space M. The dynamics of y? is given by
V2 (1,0) = 3(t, L) = 0, (1.4.5)
yz(t, L) = u*(t).
If the dimension of M is even, one can get the controllability with the help of y2. If the dimension
of M is odd, one need to consider third order terms. Let us point out that for the moment one can

only prove local controllability in large time when dimension of M is greater than 2: One has the
following open problem

Open problem 1. What about the small-time local controllability when dim M > 2%

To our knowledge, the only global controllability result concerning KdV systems is due to
Chapouly | ], where she used the return method with three scalar controls. Is it possible
to get global controllability with less control terms?

Open problem 2. What about the global controllability of KdV system (1.4.1) in small time.

1.4.3 Quadratic structure and exponential stabilization
1.4.3.1 Known stabilization results

Let us start by introducing some stability results of KdV systems. Let S(t) be the semi-group

generated by the linear operator A := —0, — Op4, with domain D(A) := {y € H?(0,L);y(0) =
y(L) = yo(L) = 0}.
e (Zuazua et al. | ]) Consider system (1.4.2) with u = 0. If yg € H, then there exists
¢ > 0 such that
ISt yollz2< e [lyoll e (1.4.6)
e (Rosier | ]) Consider system (1.4.2) with u = 0. If yo € M, then
1S@)yollz2= llyoll > (1.4.7)

Actually, the trajectory is a rotation in S! x ... x S'.

e (Zuazua et al. | ]) Consider system (1.4.1) with w = 0. If dim M = 0, then there
exists 7 > 0 and ¢ > 0 such that

IS®yollz=< e llyollz2, Yllyoll 2 < -

e (Coron et al. | , ]) Consider system (1.4.1) with v = 0. If dim M =1 or 2,
system (1.4.1) is asymptotically stable. The proofs rely on the center manifold method: there
is a center manifold which is invariant under the action of the nonlinear semi-group, the flows
of elements on this manifold decay polynomially, while the flows of elements outside of this
manifold converge exponentially to this manifold.

Concerning the stabilization of system (1.4.1), the only result | | is the rapid stabilization
for the case when dim M = 0. Their proof relies on a general backstepping type of transformation
and the controllability of system (1.4.1).

1.4.3.2 Our result

What about the stabilization for cases when dim M # 0?7 Under this situation we need to take
care of the uncontrollable part of the linearized system. It is natural to split the system into a
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coupled system (y1,y2) := (Pu(y), Pr(y)), and consider the stabilization of

Y1t + Y1z + Yzxx + PH((yl + y2)(l/1 + y2)w) = 07

yl(t70) = yl(ta L) =0,

ylm(ta L) = u(t,yl + y2)7

y1(0,-) = Pr(yo), (1.4.8)
y2t+y2$ +y2x$m +PM((yl +y2)(yl +y2)z) :07 o
yg(t,O) = yQ(t, L) = 0,

me(ﬁa L) =0,

y2(0,) = Par(yo)-

Let us remark that the control only has influence on y;. That is because for every yo € M,
y2:(L) = 0. For this system, we are able to prove the following local exponential stabilization
result.

Theorem 5. If dim M = 2n with n € N*, then there exist a periodic time-varying feedback law
u(t,y), C >0, A\ >0, and r > 0 such that, for every s € R and for every yo € L?(0,L) such that
lyollzz < r, the system (1.4.1) has at least one solution in C9([s,+00); L2(0, L))NLE .([s, +00); H1(0, L))
and every solution y satisfies

1P (y(£) | 2 +HIPas (50172 < Ce™ ) ([ Prr(yo)ll g+ Par (wo)ll 5 ), vt > s. (1.4.9)

1.4.3.3 Quadratic structure and power series expansion

The stabilization of a class of general ODE coupled systems is studied in [ 1,
&= Ar + Ri(z,y) + Bu, §= Ly+ Q(x,r)+ Ra(z,y), (1.4.10)

where A, B, and L are matrices, @) is a quadratic map, R;, Ry are polynomials and u is the control.
Here we directly consider our coupled KdV system (1.4.8).

If we follow the idea of power series expansion,

y1i=eyl + 2y + 25 + .,
Yo 1= 5y% + €2y§ + €3y§ + ..

wi=eul + %u? 4+ 3ud + ...,

and consider the first order with u! := 0, we will recover linearized system stability results (1.4.6)
and (1.4.7). Our idea is to mix the decay of y; and the conservation of yo by considering second
order terms (y?,y3). The construction of the required feedback law is rather technical, we simply
present some key steps here.

Step 1. A Lyapunov function
We consider the potential Lyapunov function || Pgy||%.+||Papy| 12 and try to stabilize KAV system
by decreasing this function along the flow. The intuition of selecting this function is due to the
quadratic structure.

Step 2. Drop the small terms
Because we have y? ~ y», nonlinear terms (y1y2), and (y3), become small in a local sense. Hence
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it suffices to stabilize the following coupled system,

Y1t + Y1z + Yizzz = 0,

yl(t,O) =y (t, L) =0,

Y1z (t, L) = u(t, y1 + y2) (1.4.11)

Yot + Yoo + Y2eww + Pr(Y1912) =0,

yg(t,O) = yQ(ta L) =0,
ygr(t,L) = O

Step 3. Compare y1(0) and y2(0)

We need to compare projections of the initial state on H and on M.

(i) if ly1(0)]|2.> &*/3||y2(0)]| 2, then the leading term is y;. Inequality (1.4.6) shows that y; has

a strong dissipation, thus there is a weaker dissipation for y.

(i) if |ly1(0)]|2.< e*/3||ly2(0)| 12, then the leading term becomes yo. However, as we know that

y1 is controllable, we are able to create a trajectory of y;(¢) with the same scaling as y;/Q (t)
such that it influences yo. The following steps are mostly devoted to this situation. In order
to simplify the calculation we only focus on the case when |y;(0)] < |y2(0)], hence y;(0) ~ 0.

The other cases need more precise asymptotic calculations.

Step 4. Study on vy
For ease of notations, let us define

TAyHyt"’_yz"'_yzza:

As y; satisfies a linear equation, y1 = S(t)(y1(0)) + 1 =~ §1, with 7 satisfies

Tayr =0,

gl(tvo) = gl(ta L) =0,
?Jm(t, L) = u,

y1(0) =0.

Step 5. Study on ys
If we define a quadratic operator @ by

Qf.9) = Pu(f - go)-

We observe that yo satisfies

0 =Tays + Q(S(#)(41(0)) + 51, S()(51(0)) + 1)

~Tay> + Q(71,91) + o(€?).

Hence, y2(t) = S(t)(y2(0)) + 72(t) + o(£?), where

Step 6. Make |y2(T)| < |y2(0)].

(1.4.12)

(1.4.13)

We observe that the coupled system (1.4.12)—(1.4.13) is controllable, thus it is possible to make

ly2(T)| < |y2(0)| and y1(T) ~ 41 (T) = 0.
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1.4.4 Further questions

In this proof, we mix the natural dissipation of y; and the rotation of y5 to obtain a decay which
is slightly weaker than the natural decay of y;. In fact, as we know that y; is controllable, with the
help of feedback laws y; can decay very fast. Is that possible to get rapid stabilization for this KdV
model instead of an exponential stabilization?

As we can see that our proof relies on second order expansion, and only works for the cases when dim
M = 2n. It is natural to ask if it is possible to get exponential stabilization when dim M = 2n + 1
by using higher order expansions.

It also sounds interesting to study the stability of system (1.4.1) without control, especially for the
case when dim M > 2.

1.5 Small-time local stabilization of a KdV equation with a
Dirichlet boundary control

Let L € (0,+00). We consider the controlled KdV system with Dirichlet boundary controls,

Yt + Yooz + Yo +yy. =0,  for (t,z) € (s,+00) x (0, L),

y(t,0) = af(t), for ¢ € (s, +00), (1.5.1)
y(t, L) = b(t), for t € (s,400),

Yz (t, L) =0, for t € (s,400),

where s € R and where, at time ¢t € [s,+00), the state is y(t,) € L%(0,L) and the controls are
a(t),b(t) € R.
In Chapter 3 we are able to prove the following null controllability result.

Theorem 6. Let b(t) = 0. For any given T > 0, the control system (1.5.1) is locally null controllable
in time T by using backstepping approach with some piecewise continuous controls.

Actually, in Chapter 4 we only proved the null controllability of the linearized system. Then the
Kato smoothing effect allows us to treat the nonlinear term as a perturbation, and to get local null
controllability of the nonlinear system.

Since the backstepping is a typical stabilization tool, we can more or less get small-time stabi-
lization by applying the same feedback law. Indeed if the starting time is 0, then the solution of the
closed-loop system will become 0 at time 7. However, as we have seen in Section 1.3.3.5 that there
is a uniform stability problem for the small-time stabilization problem of the heat equation, the
same problem appears in our case. Luckily, we can use the “add an integrator” technique to solve
this low regularity problem, which combined with Theorem 6 leads to the following stabilization
result.

Theorem 7. Let b(t) = 0. The KdV system (1.5.1) is locally small-time stabilizable. (Remark: due
to the “add an integrator” technique, we actually need to change system (1.5.1) a little.)

1.5.1 Controllability

The local controllability of system (1.5.1) is well studied.

e (Glass and Guerrero | 1) Let a(t) = 0. The linearized KdV system is uncontrollable if
and only if L belongs to a countable critical length set. (Carleman estimates)

e (Rosier | ]) Let b(t) = 0. The linearized KdV system is null controllable, but not exactly
controllable. (Carleman estimates)
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There is a very interesting problem concerning the global controllability of system (1.5.1) with both
a(t) and b(t).

Open problem 3. What about the global controllability of system (1.5.1) with two Dirichlet con-
trols?

One may get some intuitions from similar results for a viscous Burgers system

Yt — Yoo T YYo = 07

y(t,0) = u(t), (1.5.2)
y(t, L) = v(t).
e (Fursikov and Imanuvilov [ 1) Let u(t) = 0 or v(t) = 0. For any T > 0, system (1.5.2) is
locally controllable, thanks to Carleman estimates.
e (Guerrero and Imanuvilov | ]) System (1.5.2) is not globally controllable for any 7' > 0.
It is natural to ask whether we can prove an analogue result of Guerrero-Imanuvilov | ] or not.

However, their proof relies on the Hopf-Core transformation and the maximum principle, both of
them do not hold on our KdV equation.

As a dispersive equation the KdV equation allows to have solitons which do not appear in Burgers
equation, could those solitons lead to the global controllability?

1.5.2 Backstepping and rapid stabilization
For the linearized system of system (1.5.1), it is well-known that its energy is dissipating,
d
—|y(t, - < 0.
(e, )

However, as the decay rate of the energy is bounded, it can not have rapid decay without feedback
laws. If we further consider the energy of

2 + Zpge + 22 + A2 =0 for (t,x) € (s,+00) x (0,L),

z(t,0) =0 for t € (s,400), (15.3)
z(t,L) =0 for t € (s,400),

z:(t, L) =0 for t € (s,400),

then it will decay faster than y,

d
12 2 < =All=(E, )l 2.

Is it possible to pass from y to z so that y decays as fast as z does? The answer is yes, and it is
called the backstepping method.

The main idea of this method is to find a bounded linear invertible transformation
Iy : L — L2,

such that the flow of y (the solution of linearized KdV equation with a precise feedback law) is
mapped into a flow of z.
Therefore,

oyt < eI g 2 Tl 2 (0, )2 (1.5.4)
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More precisely, in | ] the transformation and the feedback law are given by
L
z(z) = M (y(x)) := y(x) —/ kx(z,m)y(r)dr, (1.5.5)
L
ax(t) := / Ex(0,2)y(t, z)dz, (1.5.6)
0

where the kernel k) satisfies a third order partial differential equation

(kx)zzae + (kX)yyy + (Bx)z + (kx)y + Ay =0 in T,

kx(z,L)=0 on [0, L],
kx(z,2) =0 on [0, L], (15.7)
(k\)z(z, ) = %(L —x) on [0, L].

1.5.3 Piecewise backstepping and null controllability

We are now in position to prove the null controllability by backstepping approach. For any
A > 0, thanks to inequality (1.5.4), there exists ¢t such that the solution of (1.5.2) with feedback law
a) satisfies

- 1
ly (&, )22 < 51900, )12, ¥y (0) € L2,

If the value of ||II, || and ||H;1|| are “well controlled” such that the value of # can be as small as
we want (when A tends to +00), then we are able to find a sequence {\,},, such that

an<T<+oo.

n

Hence, we get null controllability in time 7" by using piecewise backstepping control. It only remains
to study the kernel equation (1.5.7), and to prove the well-posedness and “well controlled” estimates.

1.5.3.1 Uniqueness of solutions

Since our estimates on k) are based on a constructed solution, we need to prove the uniqueness
of the solution of (1.5.7). Because equation (1.5.7) is linear, it suffices to prove that 0 is the only
solution h € H3([0, L] x [0, L]) of the equation

hawe + hyyy + ha + hy = 0 in [0, L] x [0, L],
h(z,0) =0 on [0,L
h(z,L) = hy(z,L) = hyy(z,L) =0 on [0,L
h(0,y) = he(0,y) = hpe(0,y) =0 on [0, L

(1.5.8)

We can imagine that h behaves like a wave equation: regard x as ¢ and study (h, hy, hys). In order
to study h, one of the most natural idea is to consider eigenfunctions.

Riesz basis
Let us define
A, : D(A,) c L*(0,L) — L*(0, L),
D(A,) :={f € H*(0,L); f(0) = f(L) = f,(L) =0},
Ayf = —Ffy — fyyy, Vf € D(Ay).
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If the eigenfunctions {¢,(y)}, form a Riesz basis of L?(0, L) space, then the Fourier series decom-
position

h(z,y) = Zgbn(x) “on(y)

easily leads the required uniqueness argument. But it does not seem to be the case.

Theorem 8 (Papanicolaou | ]). Eigenfunctions {pn(y)}n do not form a Riesz basis of L?
space.

Wavelet and completeness
Another idea is to investigate the completeness of eigenfunctions, {1(y), }n, of the adjoint operator
AZ. One can write the equation as

(Ozza + Or — An) (¥n(+), h(z, ')>L2(0,L) =0. (1.5.9)

Since
<1/)n()7 h(oa ')>L2 =0, <7/}n(')a h(Ov ')>L2 = 3m<¢n()7 h(O, ')>L2 =0,
we obtain
<¢n(), h(l‘, ')>L2(0,L) =0, Vze [O, L]. (1.5.10)
If {4, (y)}n is complete in L?(0, L), then h(x,-) is 0. However, we do not know the completeness of
eigenfunctions {¢,, (y)}n.

Gel’fand’s idea: generalized eigenfunctions

o (Gel’fand) In non-self-adjoint cases, it is not always possible to expand a function as the sum of
eigenfunctions. In order to avoid this problem, one uses different generalizations of eigenfunctions:
eigenfunctionals, generalized eigenfunctions etc.

One of the most commonly used generalized eigenfunction space is

UN(()\,;I — L£)™), union for all m; € N, and \; eigenvalues,

where £ denotes the operator, A denotes the kernel.

Theorem 9 (Locker | ). Let L > 0, let a be a constant. For differential operator Lf :=
frzz + afy with boundary conditions

f(0) = f(L) =0,

the generalized eigenfunction space Eg is complete in L*(0, L) space iff B # 0.

Augmented Eigenfunctions (Fokas [ /)
Suppose that ® is a function space defined on the closure of a real interval I with sufficient smooth-
ness and decay conditions, that £ is a linear operator defined on ®. Let v be an oriented contour
in C and let E = {E) : A € v} be a family of functionals. Then the corresponding remainder
functionals R € ® with respect to eigenvalues \ is

R/\(¢) = AnEA(¢) - Ek(ﬁ(b)a V(b € (I>7V)‘ €.

As we can see above, the study of augmented eigenfunctions involves complicated asymptotic cal-
culations. So far, this method is just applied on evolution equations.

Uniqueness: e.a.f. (Naimark [ , /)
Eigenfunctions and associated functions (e.a.f.) is a kind of generalized eigenfunctions which is more
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general than £g but less complicated than augmented eigenfunctions. We find that e.a.f. is complete
and can lead to the uniqueness of solutions.

Theorem 10 (Shkalikov | ). The eigenfunctions and associated functions of the boundary-
value problem generated by an ordinary differential equation with separated boundary conditions

Wy) = A"y = y"™ + pp_a(@)y" 2 + ..+ po(x)y — \"y = 0,
n—1

Ui(y) = > ajuy™(0) =0, with j =1,2,...,1,
k=0

n—1
Ui(y) = Z Biry®(L) =0, with j =1,2,....,n—1,
k=0
form a complete system in L>.

1.5.3.2 Existence of solutions and “well controlled” estimates

The existence of solutions is proved by a successive construction proposed in [ ]. Because
we proved the uniqueness of solutions in the previous section, this constructed solution is the unique
solution. The main difficulty is to give estimates on this solution, which is done in the paper | ]

Lemma 2. Let A > 2, the unique solution ky € C3(T) of (1.5.7) satisfies

kall oy < eAHTVA, (1.5.11)

The proof of this lemma is rather technical, we refer to Chapter 3 for details.

1.5.4 Further questions

We observed that small-time stabilization of the KdV equation and of the heat equation deeply
rely on kernel estimates of eCVA type which are obtained from a “global” point of view. On the
other hand, the proof of controllability of the heat equation by Lebeau and Robbiano was also
based on some e€V> type estimates, though they come from “microlocal” approach. I believe it is
not a coincidence. As we also know that Lebeau-Robbiano strategy is highly related to Carleman
estimates, a very interesting problem is to study the connection between the backstepping approach,
Lebeau-Robbiano strategy, global Carleman estimates (hence small-time controllability), and small-
time (local) stabilization.

1.6 Small-time global stabilization of a viscous Burgers equa-
tion

We consider the stabilization of the following controlled viscous Burgers system

Yt — Yoz T YYz = O‘(t) for (t’ 33) € (57 +OO) X (07 1)3

y(t,0) = B(t) for t € (s,400), (1.6.1)
y(t,1) = for t € (s,+00),

a(t) = a(t) for t € (s,400),

where the state is (y(t,),a(t)) € L?(0,1) x R and the control is (a(t), 3(t), (1)) € R x R x R. The
main result of this section is the following one.
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Figure 1.1: Small-time global stabilization by steps.

Theorem 11 (Coron & Xiang [CX18]). The viscous Burgers system (1.6.1) is small-time globally
stabilizable, i.e., VT > 0, there exists a T—periodic feedback law (o, 3,7) such that (0,0) € L*(0,1) x
R is (uniformly) stable for the closed-loop system and

®(s + 2T, s;90,a0) = 0,Y(yo,a0) € L* x R,Vs € R,
where ® denotes the flow of the closed-loop system.

There is no critical length set for the Burgers equation. Hence we can replace the interval (0, 1)
by (0, L).

1.6.1 An interesting problem and our strategy
Concerning small-time stabilization, there is a very interesting natural problem.

Open problem 4. Build systematic methods to solve the small-time (global) stabilization problem
of many systems which are small-time (global) null controllable.

It is straightforward that a small-time stabilizable system is small-time null controllable: we
simply define the control by the value of the feedback law along the flow. But the converse is much
more difficult. For example, as we have seen in Section 1.1.1.2; the small-time local stabilization of
the one dimensional heat equation was solved very recently. Actually, Section 1.5, the small-time
local stabilization of a KdV equation is also devoted to this subject.

In [CX18], we gave the first small-time global stabilization result based on PDE models. It
provides a strategy to solve the small-time global stabilization problems with two main stages:
global approximate stabilization and small-time local stabilization.

More precisely, for our Burgers equation we stabilize (y, a) by three steps.
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Step 1. Global approximate stabilization of “y — a”
Whatever the initial value (yo, ao) of (y,a) at the beginning of this step is, the value (y1,a1)
of (y,a) at the end of this step satisfies | y1 — a1 |< e . A property that we write as follows

Y(Yo,a0) = (y1,a1) s.t. | y1 — a1 [<e.

Step 2. Global stabilization of “a”

Y(yi,a1) st |y1 — a1 |< e = (y2,a2) s.t. | y2 —as |< 2¢ and ag = 0.

Step 3. Local stabilization of “y”

V(y2,0) s.t. | y2 |< 2e = (0,0).

Following our strategy of global approrimate stabilization and small-time local stabilization, the first
two steps are devoted to global approximate stabilization stage. As the small-time local stabilization
is highly related to Section 1.5, we focus on the first step in this introduction.

1.6.2 Small-time global approximate stabilization

In this stage, we try to construct feedback laws which steer the control system in a small neigh-
borhood of the origin in short time. The idea is to use the nonlinear transportation term yy, to get
global stabilization. Thanks to the two controls on the boundary, y(t,0) = u(t), y(¢, 1) = ua(t), we
do not have any boundary layer difficulties.

Let us consider the two dimensional Navier-Stokes equation in a domain,

v+ (v-V)v—vAv+Vp=0in [0,T] x Q, (1.6.2)
diveo=01n [0,7T] x Q,

with Dirichlet boundary condition v = 0 on 9€). At least formally, when viscosity v — 0, the Navier-
Stokes equation converge to the Euler equation. Mathematically this convergence is known for
manifolds without boundary. However, near the boundary the situation becomes rather complicated:
as the “order” of these two equations are different, we can not put the same boundary conditions.
(Moreover it is not known if this lack of convergence near the boundary can also create a lack of
convergence far away from the boundary.) In order to explain this phenomenon, Prandtl proposed
the idea of studying Prandtl equation [ ]. The convergence to Euler equation and the study of
Prandtl equation are central problems in mathematics (fluid dynamic) and physics, see also | ]

The boundary layer problem naturally appears in control theory: when replacing the Dirichlet
boundary condition “v =0 on 9Q” by the Dirichlet boundary control condition “v = 0 on 9Q\ T'y”
(the control acts on I'y). One of the most outstanding open problems in control theory states as
follows.

Open problem 5 (Jacques-Louis Lions’ problem). Is system (1.6.2)—(1.6.3) with Dirichlet boundary
control condition small-time global controllable?

The difficulty is that on the boundary where there is no control 9 \ Ty, we need to study the
boundary layer. This problem has been studied for decades from different aspects. Recently, there is

a breakthrough made by Coron, Marbach, Sueur and Zhang | , . In | | Navier
slip-with-friction boundary conditions are considered and the global null controllability is obtained.
The Dirichlet boundary control condition is considered in | ] with a domain which is a

rectangle. However in this case the global null controllability is obtained on the extra assumption
that can also use a force which can be arbitrary small but has a support distributed on the full
domain.
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Figure 1.2: Phantom Tracking, picture from [ ]

In order to develop our strategy for stabilizing systems, we also need to face boundary layer
problems.

1.6.2.1 General idea of the phantom tracking method

The phantom tracking method was introduced in | | for asymptotic stabilization of two
dimensional Euler equations. Then it has been adapted to several models, one can refer to the
survey paper | ] on this method. Our goal is to stabilize

X) &= f(z,u)

Step 1. We find that (0,0) is an equilibrium point of system (X). But we do not know how
to stabilize this system, which is quite possible for nonlinear systems, the two dimensional Euler
equation for example.

Step 2. In many situations though we do not know how to stabilize system (X) around (0, 0)
we are able to stabilize the system around (xg, ug) which is another equilibrium point of system (X)

Step 3. Then we find a sequence of stabilizable equilibrium points, (z(7y), (7)), with feedback
laws U, such that

(z(7), u(y)) is an equilibrium point of (X),V~y € (0,1],

0
(@(7),u(v) === 0,
(2(7), u(y)) is asymptotically stable for (X) with feedback law U,.

Step 4. We construct a feedback law UT such that

0 is asymptotically stable for (X) with feedback law U r
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1.6.2.2 A toy model

The phantom tracking method is more a philosophy than an explicit algorithm. In order to
stabilize our Burgers equation we propose a toy model, on which we are able to design the feedback
law and explain the idea. Moreover, the idea can be adapted on the Burgers equation and probably
on some other nonlinear equations. Let us consider the following hyperbolic equation,

ye(t, ) + yyz (t, ) = a(t) + g(¢, x), in [0,7] x T, (1.6.4)

with a scalar control «(t), and an internal control g(t,x) which is supported on [b,c] & T. It
seems that we add many controls, but the system is not small-time globally controllable if a(t) =0
or g(t,z) = 0. We are able to get controllability with less controls, but this is not our goal for
introducing this toy model. Let us consider L? state space for control problems, even though y is
not well-posed in this space.

It is easy to check that the linearized system around 0

ye(t,x) = a(t) + g(t,x), in [0,T] x T, (1.6.5)

is not controllable. Indeed, for the solutions of (1.6.5), y(¢,z1) — y(¢,z2) does not change with
respect to time if x1,20 € T\ [b, c].

The return method tells us that in such a case we can consider the controllability around a
trajectory. For simplicity of presentation, we consider another equilibrium point. Notice that
g = A # 0 is a solution of stationary equation yy, = 0, its linearized system becomes

ye(t,x) + Ay, (t, ) = g(t, z), in [0,T] x T. (1.6.6)

This is equivalent to a transport equation with boundary control term. Following the characteristic
line, the system is controllable if and only if |A| > 1/T. The next step is to construct a trajectory
with |A| big enough,

G(t,z) = [(t)A, with [(0) = {(T) = 0 and I(t) = 1 in [T/3, 27/3].

Thanks to the scalar control term «(t), ¢ is a solution of (1.6.4), thus a trajectory. From this
trajectory going from 0 to 0 one can deduce the small-time global null controllability: see | ].

What about stabilization problems? Of course we can not simply consider the linearized system
(1.6.5). The idea is to stabilize it around some phantom trajectories, which is divided into several
steps.

e Add an observer
What about the linearized system around a trajectory? Let y := z + A, then

2+ Azp + 22, = a+g. (1.6.7)

For a given A if we stabilize z, then y will converge to A (even if the initial state yo = 0). In this
case the uniform stability is not satisfied (see Section 1.3.3).

“stabilization of y” < “stabilization of 2”.

How can we benefit on other equilibrium points and stabilize z instead of y? At least we need
y=0< 2z=0. An idea is to set A = y/2, but we do not know how to control the term A. The
answer is to add a scalar observer, a, which plays the role of A. We consider the coupled system of
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(y,a) € L* X R,
ye(t, @) + yya(t, 2) = a(t) + g(t, ),
ar = at).
Let z := y — a, then
ze+azg + 22, = g, (1.6.8)
ay = Q.

Hence

“stabilization of (y,a)” < “stabilization of (z,a)”.

e Cascade structure and backstepping
How can we stabilize the cascade system of (z,a)? We observe that « controls state a, and state
a further controls z indirectly. What if we regard a as a direct control, and consider the following
system
zt +azg + 22, = g7 (1.6.10)

Let us emphasis that system (1.6.10) is different from system (1.6.7). Because a is a control term
(feedback law) which can be as large as we want so that the nonlinear term zz, can be absorbed by
az,. It suffices to stabilize

2 +azg =g, (1.6.11)

with feedback law a, for which some details will be given in the next step.
The question is that whether

“stabilization of (z,a) with o” < “stabilization of z with a”?

The answer is called backstepping. This method was introduced independently by Byrnes and Isidori
in [ ], Koditschek in | | and Tsinias in | | for the stabilization of cascade systems, for
the stabilization of coupled system (z1,72) € R" x R™ with control term u € R¥,

i1 = fi(z1, z2), (1.6.12)
by = u. (1.6.13)

At first we consider the stabilization of &7 = f(z1,v). Suppose that there exists a feedback law
v(z1) which stabilizes the state x1 with respect to a Lyapunov function V7,

Vi(z1) = flz —1,0(x1)) - VV(21) < 0.
Then we consider the Lyapunov function
Va(z1,22) = Vi(ar) + (22 — v(z1))?,
for system (1.6.12)—(1.6.13). Then, at least formally under a good choice of u, we have
Va(z1,22) = f(21,22) - VV (21) — 2(z2 — v(z1)) - (v (1) f (21, 22) — u) < 0.
Let us illustrate it with an easy example,

T1 = T2,

.’bgzu,



1.6. Small-time global stabilization of a viscous Burgers equation

with z1,22,u € R. Clearly v := —z; is a stabilizing feedback law for system #; = v with the
Lyapunov function V; := x2. Let
Vo = Vi + (22 4 21)%,

then .
Vo = =223 + 2(xy + 22)(u + x4 21).

Let us choose u := —2x1 — 2x5, then

Vo = =2V

Following the idea of backstepping, we know that
“stabilization of (z,a) with o” < “stabilization of z with a”.

e Lyapunov function
It only remains to stabilize the transport equation (1.6.11). We consider at first the case when
a:=1, thus
2+ 2z = g. (1.6.14)

If g := 0, then the energy is conserved. Actually, in any case the energy satisfies

d
—/zzdx:2/zgdm.

From the above equality, we do not know whether the energy will decay as fast as we want. In fact,
we know that the solution follows the characteristic line, thus it could seem better to construct some
weighted energy.

Without loss of generality, we assume that [b, c] := [b, 1]. Let us define a weighted energy as

with some f > 0 to be chosen later. Hence,

4 z2fdx:/2,zgf—|—22fmdx:/
T

fozdx—i-/ 2(29f + zf.)dx
dt Jy [0,5] (b,1)

We define f(x) as e=® on [0,b], and then extend it to T such that f(z) > e~!. Let us denote this
function f by f1. With a good choice of g, we have an exponential decay of the energy,

d

Furthermore, if we define f(z) as e™** on [0,b], then the energy will decay rapidly. But due to
the finite speed of propagation, we are not able to get small-time global approximate stabilization
of system (1.6.14) by using this kind of control. Recently, Zhang [ , ] proved the fi-
nite time stabilization of (1.6.14) with one scalar control, g(t,z) = h(t)2(x) where h(t) is the control.

e Small-time global approximate stabilization
What about small-time global stabilization of (1.6.11)7 A similar calculation on the weighted energy
shows that

4 22 fide = / 2zgf1 + az? frpdr = —/ az’ fidz + / 2(29f1 + az fiz)dz.
dt Jp T [0,] (,1)
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For a good choice of g, we have

d
%V(z) < —aV(2).

With an intuition from the feedback law designed in Section 1.1.1.1, we let a(t) := MV (2(t)) and

get

d
— < — 2
tV(z)\ MV (z)7,

which implies the small-time global approximate stabilization.

1.6.2.3 Burgers equations

The above toy model is an analogue of the viscous Burgers equation that we want to stabilize,
for which some new difficulties appear. The way that we treat these difficulties will not be detailed
here, but can be found in Chapter 5.

1.6.3 Further questions

In order to develop our strategy for small-time stabilization | ], it would be interesting to
investigate the following crucial problems:

e Trace problem from the classical Lions-Magenes method | ].

Backstepping method in higher dimension.

The relation between backstepping, Lebeau-Robbiano strategy, and global Carleman esti-
mates.

e Generalization of “phantom tracking method”.

Boundary layer difficulties.
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2.1 Introduction

Let L € (0,+00). We consider the stabilization of the following controlled Korteweg-de Vries
(KdV) system

Yt + Yozz T Yo +yya =0 for (t,x) € (s,+00) x (0,L),
y(t,0)=y(t,L) =0 for t € (s,4+00), (2.1.1)
Yo (t, L) = u(t) for t € (s,400),

where s € R and where, at time t € [s, +00), the state is y(,-) € L?(0, L) and the control is u(t) € R.

Boussinesq in | ], and Korteweg and de Vries in | ] introduced the KdV equations for
describing the propagation of small amplitude long water waves. For better understanding of KdV,
one can see Whitham’s book | ], in which different mathematical models of water waves are
deduced. These equations have turned out to be good models not only for water waves but also to
describe other physical phenomena. For mathematical studies on these equations, let us mention the
following | , , , ] and the references therein as well as the discovery of solitons
and the inverse scattering method [ , ] to solve these equations. We also refer here to

39
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[ , , | for well-posedness results of initial-boundary-value problems
of our KdV equatlon (2.1.1) or for other equations which are similar to (2.1.1). Finally, let us refer
to | , ] for reviews on recent progresses on the control of various KdV equations.

The controllability research on (2.1.1) began in 1997 when Lionel Rosier showed in | | that
the linearized KdV control system (around 0 in L?(0, L))

Yt + Yoz + Yo = 0 in (OaT) X (Oa L)a
y(t,0)=y(t,L)=0 on (0,L), (2.1.2)
Yo (t, L) = u(t) on (0,7),

is controllable if and only if L ¢ N, where A is called the set of critical lengths and is defined by

2 2
N = {QW\/%; ILke N*}. (2.1.3)

From this controllability result Lionel Rosier, in the same article, deduced that the nonlinear KdV
equations (2.1.1) are locally controllable (around 0 in L?(0, L)) if L ¢ N. His work also shows that
the L?(0,L) space can be decomposed as H & M, where M is the “uncontrollable” part for the
linearized KdV control systems (2.1.2), and H is the “controllable” part. Moreover, M is of finite
dimension, a dimension which is strongly depending on some number theory property of the length
L. More precisely, the dimension of M is the number of different pairs of positive integers (I}, k;)

satisfying
12+ 1k + k2
L =2m\| % (2.1.4)

For each such pair of (I, k;) with I; > k;, we can find two nonzero real valued functions ¢ and ¢}
such that ¢/ := @] + iy} is a solution of

—iw(ly, k! + @7 + 0 =0,

¢’(0) = W( )=0, (2.1.5)

-/

@'(0) = ' (1) =0,

where ¢, ¢} € C°°([0, L]) and w(l;, k;) is defined by

(20 + k;)(l; — kj)(2k; + 1)

li ki) =
OJ(J ]) 3\/§(lj2+l]k_]+kj2)3/2

(2.1.6)
When l > k;, the functions <p1, 902 are linearly independent, but when [; = k; then w(l;, k;) =
and apl, @} are linearly dependent. It is also proved in | | that

M = Span{e}, s, ..., o7, 05 }. (2.1.7)

Multiplying (2.1.2) by ¢/, integrating on (0, L), performing integrations by parts and combining

with (2.1.5), we get
d L . I j
T </0 y(t,z)p (x )d:c> _zw(lj,kj)/o y(t, z)p (x)d,

which shows that M is included in the “uncontrollable” part of (2.1.2). Let us point out that there
exists at most one pair of (I, k;) such that I; = k;. Hence we can classify L € R* in 5 different
cases and therefore divide R into five disjoint subsets of (0, +00), which are defined as follows:
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1. C:=RT\ WN. Then M = {0}.

2. M = {L € N; there exists one and only one ordered pair (;, k;) satisfying (2.1.4) and one
has [; = kj}. Then the dimension of M is 1.

3. Ny = {L € N; there exists one and only one ordered pair (;, k;) satisfying (2.1.4) and one
has [; > kj}. Then the dimension of M is 2.

4. N3 := {L € N; there exist n > 2 different ordered pairs (;, k;) satisfying (2.1.4), and none of
them satisfies [; = kj}. Then the dimension of M is 2n.

5. Ny := {L € N; there exist n > 2 different ordered pairs (I}, k;) satisfying (2.1.4), and one of
them satisfies [; = k; }. Then the dimension of M is 2n — 1.

The five sets C, {N;}}_, are pairwise disjoint and
R* =CUMN UM UN3UN, N =N UNy UN3 UN;.

Additionally, Eduardo Cerpa proved that each of these five sets has infinite number of elements: see
[ , Lemma 2.5]; see also | , Proposition 8.3] for the case of Nj.

Let us point out that L ¢ N is equivalent to M = {0}. Hence, Lionel Rosier solved the (local)
controllability problem of the nonlinear KdV equations for L € C. Later on Jean-Michel Coron
and Emmanuelle Crépeau proved in [ ] the small-time local controllability of nonlinear KdV
equations for the second case L € Ni, by “power series expansion” method, the nonlinear term
Yy, gives this controllability. Later on, in 2007, Eduardo Cerpa proved the local controllability in
large time for the third case L € Ny | ], still by using the “power series expansion” method.
In this case, an expansion to the order 2 is sufficient and the local controllability in small time
remains open. Finally Eduardo Cerpa and Emmanuelle Crépeau in | | concluded the study
by proving the local controllability in large time of (2.1.1) for the two remaining critical cases (for
which dim M > 3). The proof of all these results rely on the “power series expansion” method,

a method introduced in | ]. This method has also been used to prove controllability results
for Schrodinger equations | , , , ] and for rapid asymptotic stability of a
Navier-Stokes control system in [ ]. In this article we use it to get exponential stabilization of

(2.1.1). For studies on the controllability of other KdV control systems problems, let us refer to
[ , , , , , ] and the references therein.

The asymptotic stability of 0 without control (control term equal to 0) has been studied for
years, see, in particular, | , , , , , , , ]
Among which, for example, the local exponential stability for our KdV equation if L ¢ N was
proved in | ]. Let also point out here that in | ], the authors give the existence of
(large) stationary solutions which ensures that the exponential stability result in | | is only
local.

)

Concerning the stabilization by means of feedback laws, the locally exponentially stabilization
with arbitrary decay rate (rapid stabilization) with some linear feedback law was obtained by Ed-
uardo Cerpa and Emmanuelle Crépeau in [ | for the linear KdV equation (2.1.2). For the
nonlinear case, the first rapid stabilization for Korteweg-de Vries equations was obtained in [ ]
by Camille Laurent, Lionel Rosier and Bing-Yu Zhang in the case of localized distributed control
on a periodic domain. In that case the linearized control system, let us write it ¢y = Ay + Bu, is
controllable. These authors used an approach due to Marshall Slemrod [ ] to construct linear
feedback laws leading to the rapid stabilization of ¥ = Ay + Bu and then proved that the same
feedback laws give the rapid stabilization of the nonlinear Korteweg de Vries equation. In the case of
distributed control the operator B is bounded. For boundary control the operator B is unbounded.
The Slemrod approach has been modified to handle this case by Vilmos Komornik in | ] and
by Jose Urquiza in | ]; and | | precisely uses the modification presented in | ]. How-
ever, in contrast with the case of distributed control, it leads to unbounded linear feedback laws
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and one does not know for the moment if these linear feedback laws lead to asymptotic stabilization
for the nonlinear Korteweg de Vries equation. One does not even know if the closed system is well
posed for this nonlinear equation. The first rapid stabilization result in the nonlinear case and
with boundary controls was obtained by Eduardo Cerpa and Jean-Michel Coron in | ]. Their
approach relies on the backstepping method/transformation (see [ | for an excellent starting
point to get inside this method due to Miroslav Krstic and his collaborators). When L ¢ N, by
using a more general transformation and the controllability of (2.1.2) , Jean-Michel Coron and Qi

Lii proved in | ] the rapid stabilization of our KdV control system. Their method can be
applied to many other equations, like Schrodinger equations | ] and Kuramoto-Sivashinsky
equations | ]. When L € N, as mentioned above, the linearized control system (2.1.2) is not

controllable, but the control system (2.1.1) is controllable. Let us recall that for the finite dimen-
sional case, the controllability doesn’t imply the existence of a (continuous) stationary feedback law

which stabilizes (asymptotically, exponentially etc.) the control system, see | , ]. How-
ever the controllability in general implies the existence of (continuous) time-varying feedback laws
which asymptotically (and even in finite time) stabilize the control system; see [ ]. Hence it

is natural to look for time-varying feedback laws u(t, y(¢,-)) such that 0 is (locally) asymptotically
stable for the closed-loop system

Yt + Yezz + Yo T YYz =0 for (t,a?) € (Sa +OO) X (O’L>7

y(t,0) =y, L) =0 for t € (s,400), (2.1.8)
ym(ta L) = u(tay(t7 )) for t € (57 +OO)
Let us also point out that in | ], asin | | by Jean-Michel Coron and Lionel Rosier which

was dealing with finite dimensional control systems, time-varying feedback laws were used in order
to combine two different feedback laws to get rapid global asymptotic stability of the closed loop
system. Let us emphasize that v = 0 leads to (local) asymptotic stability when L € Nj | ] and
LeNy| ]. However, in both cases, the convergence is not exponential. It is then natural to
ask if we can get exponential convergence to 0 with the help of some suitable time-varying feedback
laws u(t, y(t,-)). The aim of this paper is to prove that it is indeed possible in the case where

L is in N3 or in Njs. (2.1.9)

Let us denote by Py : L*(0,L) — H and Py : L?(0,L) — M the orthogonal projection (for the
L?-scalar product) on H and M respectively. Our main result is the following one, where the precise
definition of a solution of (2.1.10) is given in Section 2.2.

Theorem 12. Assume that (2.1.9) holds. Then there exists a periodic time-varying feedback law u,
C >0, A>0 andr > 0 such that, for every s € R and for every |lyol|2 <, the Cauchy problem

Yt T Yoz + Yo + YYe =0 for (t>$) € (8, +OO) X (O,L),

y(t,0) =y(t, L) =0 for t € (s,400),
ye (£, L) = u(t, y(t,-)) for t € (s,400), (2.1.10)
y(s,") = vo for € (0,L),

has at least one solution in C°([s,+00); L*(0,L)) N L? ([s,4+o0); H'(0, L)) and every solution y of

(2.1.10) s defined on [s,+00) and satisfies, for every t € [s,+00),
1Pr (y (D)2 +1 Pas (D)1 72 < Ce ) (11Prr (o)l 2 +IPas (o) 172 ) - (2.1.11)
In order to simplify the notations, in this paper we sometimes simply denote y(¢,-) by y(t), if

there is no misunderstanding, sometimes we also simply denote L?(0,L) (resp. L?*(0,T)) by L%
(resp. L%). Let us explain briefly an important ingredient of our proof of Theorem 12. Taking
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into account the uncontrollability of the linearized system, it is natural to split the KdV system
into a coupled system for (P (y), Par(y)). Then the finite dimensional analogue of our KdV control
system is

& =Ax+ Ri(x,y) + Bu, §=Ly+ Q(z,z)+ Ra(z,y), (2.1.12)

where A, B, and L are matrices, @) is a quadratic map, R;, Ry are polynomials and w is the control.
The state variable x plays the role of Py (y), while y plays the role of Pys(y). The two polynomials
R; and Rs are quadratic and Ro(z,y) vanishes for y = 0. For this ODE system, in many cases
the Brockett condition | ] and the Coron condition | ] for the existence of continuous
stationary stabilizing feedback laws do not hold. However, as shown in [ ], many physical
systems of form (2.1.12) can be exponentially stabilized by means of time-varying feedback laws.
We follow the construction of these time-varying feedback laws given in this article. However, due
to the fact that H is of infinite dimension, many parts of the proof have to be modified compared to
those given in [ ]. In particular we do not know how to use a Lyapunov approach, in contrast
to what is done in [ ]

This article is organized as follows. In Section 2.2, we recall some classical results and definitions
about (2.1.1) and (2.1.2). In Section 2.3, we study the existence and uniqueness of solutions to the
closed-loop system (2.1.10) with time-varying feedback laws « which are not smooth. In Section 2.4,
we construct our time-varying feedback laws. In Section 2.5, we prove two estimates for solutions to
the closed-loop system (2.1.10) (Propositions 4 and 5) which imply Theorem 12. The article ends
with three appendices where proofs of propositions used in the main parts of the article are given.

2.2 Preliminaries

We first recall some results on KdV equations and give the definition of a solution to the Cauchy
problem (2.1.10). Let us start with the nonhomogeneous linear Cauchy problem

Yt + Yozw + Yz =h  in (T1,Ts) x (0, L),
y(tv 0) = y(tvL) = 0 on (T17T2)a

(2.2.1)

Yo (t, L) = h(t) on (Th,T5),

y(Thx) = yo(l’) on (07 L)?
for

—o0 < Ty < Ty < +00, (222)
Yo € L2(07 L)7 (223)
h e LY(T1,Ty; L*(0, L)), (2.2.4)
he LA(T),Ty). (2.2.5)

Let us now give the definition of a solution to (2.2.1).

Definition 6. A solution to the Cauchy problem (2.2.1) is a function y € L*(Ty, Te; L*(0, L)) such
that, for almost every T € [T, T3] the following holds: for every ¢ € C3([Ty, 7] x [0, L)) such that

¢(tv 0) = ¢(t7L) = ¢x(t’0) =0, Vte [Tl,’r]’ (226)
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one has

—/T /OL(¢t+¢z+¢xxz)ydxdt—/T h(t)%(t,L)dt—/T: /OL ohdzdt

T Th

L L
—|—/ y(7,2)p(1, x)dx — / Yo (T, x)dz = 0. (2.2.7)
0 0
For Ty and Ty satisfying (2.2.2), let us define the linear space Br, 1, by
By, 1, == C°([T1, To); L*(0, L)) N L3(Ty, Ty; H' (0, L)). (2.2.8)
This linear space Br, 1, is equipped with the following norm
™, 1/2
9llBz, 2, := max{[ly(@)l| 2 ; t € [T1, T} + (/T ||yl'(t)||2L?Ldt> : (2.2.9)
1
With this norm, B, 7, is a Banach space.
Let A:D(A) C L?(0,L) — L?(0, L) be the linear operator defined by
D(A)= {6 € H}(0, L); 6(0) = 6(L) = 6,(L) = 0}, (2.2.10)
Ap = —dy — paz, Vo € D(A). (2.2.11)

It is known that both A and A* are closed and dissipative (see e.g. | , page 39]), and therefore
A generates a strongly continuous semigroup of contractions S(t), t € [0, +00) on L?(0, L).

In | ], Lionel Rosier using the above properties of A together with multiplier techniques
proved the following existence and uniqueness result for the Cauchy problem (2.2.1).

Lemma 3. The Cauchy problem (2.2.1) has one and only one solution. This solution is in By, T,
and there ezists a constant Co > 0 depending only on Ty — Ty such that
||?JHBT1,T2< Cy (”yoHL%+||h||LQ(T17T2)+|‘E||L1(T1,T2;L2(O7L))) . (2.2.12)
In fact the notion of solution to the Cauchy problem (2.2.1) considered in [ | is a priori
stronger than the one we consider here (it is required to be in C°([T1,Tz]; L*(0, L)). However the
uniqueness of the solution in the sense of Definition 6 still follows from classical arguments; see, for
example, [ , Proof of Theorem 2.37, page 53].
Let us now turn to the nonlinear KdV equation

in (Tl,TQ) X (O,L),

y(t, 0) = y(t, L) =0 on (T17 Tz),
yx(t,L) = H(t) on (T17T2)’ (2213)
y(Th, z) = yo(x) on (0,L).

Inspired by Lemma 3, we adopt the following definition.

Definition 7. A solution to (2.2.13) is a function y € By, 1, which is a solution of (2.2.1) for

h:=H — yy, € L'(Ty,T»; L*(0, L)) and h := H.

Throughout this article we will use similar definitions without giving them precisely. As an

example, it will be the case for system (2.3.15).

In | ], Jean-Michel Coron and Emmanuelle Crépeau proved the following lemma on the
well-posedness of the Cauchy problem (2.2.13) for small initial data.
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Lemma 4. There exist n > 0 and Cs > 0 depending on L and Ty — Ty such that, for every
yo € L2(0, L), every H € L*(Ty,T) and every H € L*(Ty,Te; L?(0, L)) satisfying

Iyollzz +I1H || 2z, 1) HI H L (73 10522 (0,0 < 15 (2.2.14)
the Cauchy problem (2.2.13) has a unique solution and this solution satisfies

19l 52, v, < Cs(llyoll 2 +I1H | 2z ) HIH N L2 (73 5522 0,1 ) - (2.2.15)

2.3 Time-varying feedback laws and well-posedness of the
associated closed-loop system

Throughout this section u denotes a time-varying feedback law: it is a map from R x L?(0, L)
with values into R. We assume that this map is a Carathéodory map, i.e. it satisfies the three
following properties

VR > 0,3 Cp(R) > 0 such that (||y||L2L <R = |u(t,y)| < Cs(R), Vte ]R) , (2.3.1)
Yy € L*(0, L), the function ¢t € R + u(t,y) € R is measurable, (2.3.2)
for almost every ¢ € R, the function y € L?(0, L) ~ u(t,y) € R is continuous. (2.3.3)

In this article we always assume that

Cp(R)>1, VR € [0,400), (2.3.4)
R € [0,+o0) — Cp(R) € R is a non-decreasing function. (2.3.5)

Let s € R and let yo € L?(0,L). We start by giving the definition of a solution to

Yt + Yoze + Yo +yYz =0 for teR, z€(0,L),
y(t,0) =y, L) =0 for t € R, (2.3.6)
Yo (t, L) = u(t, y(t,-)) for ¢ € R,

and to the Cauchy problem

Ye + Yoz + Yo + YYe =0 for t>S,IL‘€(0,L),

y(t,0)=y(t,L)=0 for t > s,
Yo (t, L) = u(t, y(t,-)) for t > s, (2:3.7)
y(s,x) = yo(x) for x € (0,L),

where yo is a given function in L?(0,L) and s is a given real number.

Definition 8. Let I be an interval of R with a nonempty interior. A function y is a solution of
(2.3.6) on I if y € C°(I; L?(0, L)) is such that, for every [Ty, Ts] C I with —oco < Ty < Ty < +00,
the restriction of y to [Ty, Ts] x (0, L) is a solution of (2.2.13) with H := 0, H(t) := u(t, y(t)) and
yo = y(T1). A function y is a solution to the Cauchy problem (2.3.7) if there exists an interval I
with a nonempty interior satisfying I N (—oo, s] = {s} such that y € C°(I; L*(0, L)) is a solution of
(2.3.6) on I and satisfies the initial condition y(s) = yo in L*(0,L). The interval I is denoted by
D(y). We say that a solution y to the Cauchy problem (2.3.7) is mazimal if, for every solution z to
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the Cauchy problem (2.3.7) such that

D(y) C D(z), (2.3.8)
y(t) = z(t) for everyt in D(y),

one has
D(y) = D(z). (2.3.10)

Let us now state our theorems concerning the Cauchy problem (2.3.7).

Theorem 13. Assume that u is a Carathéodory function and that, for every R > 0, there exists
K(R) > 0 such that

(Il < R and |12)z2 < B) = (lu(t,y) = u(t, 2)| < K(R)lly — 2l 2, ¥ ER).  (2:311)
Then, for every s € R and for every yo € L?(0,L), the Cauchy problem (2.3.7) has one and only

one maximal solution y. If D(y) is not equal to [s,+00), there exists T € R such that D(y) = [s,T)
and one has

lim [ly(t)[| 2 = +oo. (2.3.12)
t—7- L
Moreover, if Cp(R) satisfies
+o0
/O (CB(};))QdR = +o0, (2.3.13)
then
D(y) = [s, +00). (2.3.14)

Theorem 14. Assume that u is a Carathéodory function which satisfies condition (2.3.13). Then,
for every s € R and for every yo € L*(0, L), the Cauchy problem (2.3.7) has at least one maximal
solution y such that D(y) = [s,+00).

The proofs of Theorem 13 and Theorem 14 will be given in Appendix 2.7.
We end up this section with the following proposition which gives the expected connection
between the evolution of Py/(y) and Py (y) and the fact that y is a solution to (2.3.6).

Proposition 1. Let u: R x L2(0, L) — R be a Carathéodory feedback law. Let —oco < s < T < +00,
let y € Bsr and let yo € L?(0,L). Let us denote Py (y) (resp. Pav(y)) by y1 (resp. y2). Then y is
a solution to the Cauchy problem (2.3.7) if and only if

Yit + Ytz + Y1lzza + PH((yl + y2)(y1 4+ y2)I) — O,

y1(t,0) = y1(t, L) =0,

Y1z (t, L) = u(t,y1 + o),

yl(o’ ) = PH(yO)a

Yor + Y20 + Yowwee + Par (v +32) (Y1 + y2)2) =0, (2.3.15)
Y2(t,0) = ya(t, L) = 0,

y2x(t; L) =0,

y2(0,-) = P (yo)-

The proof of this proposition is given in Appendix 2.6.
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2.4 Construction of time-varying feedback laws

In this section, we construct feedback laws which will lead to the local exponential stability
stated in Theorem 12. Let us denote by M;j the set of elements in M having a L?-norm equal to 1:

My = {y € M; [yl 2= 1}. (24.1)
Let M7 be the linear space generated by gp{ and @é for every j € {1,2,...,n}:
M = Span{gp{,apg}. (2.4.2)
The construction of our feedback laws relies on the following proposition.

Proposition 2. There exist T > 0 and v € L“([O,T} X Ml;]R) such that the following three
properties hold.

(P1) There exists p1 € (0,1) such that

1S(T)yollZ2(0,0)< P1llvoll720,0),  for every yo € H.

(Py) For every yo € M,
1S(T)yoll72(0.)= 1ol Z2(0,1)-

(Ps) There exists Cy > 0 such that

| v(t,y) —v(t, 2) |< Colly — 2llz2(0,0), Yt €[0,T], Vy,z € My. (2.4.3)
Moreover, there exists 6 > 0 such that, for every z € My, the solution (y1,y2) to the following
equation
Y1t + Y1z + Yizzzs = 07
yl(ta 0) = yl(tv L) =0,
y1z<t7 L) = U(ta Z>7
Yot + Y2z + Y2wax + PM (ylylm) = 07
yQ(ta 0) = y2(t7 L) = 07
y2z(t7 L) = 07
y2(0,2) =0,
satisfy
y1(T) =0 and (y2(T), S(T)z>L2(07L) < —26. (2.4.5)
Proof of Proposition 2. Property (P2) is given in [ ], one can also see (2.4.14) and (2.4.44).

Property (P1) follows from the dissipativity of A and the controllability of (2.1.2) in H (see also
[ ]). Indeed, integrations by parts (and simple density arguments) show that, in the distri-
bution sense in (0, +00),

d
1S ®woll7; = —vz (,0). (2.4.6)

Moreover, as Lionel Rosier proved in | ], for every T' > 0, there exists ¢ > 1 such that, for every
Yo € H7
lyoll72 < ellyz(t, 0) 12201 (2.4.7)
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Integration of identity (2.4.6) on (0,7") and the use of (2.4.7) give

c—1
1S(T)gol 7z < ——lwollis - (2.4.8)

Hence p; := (¢ — 1)/c € (0,1) satisfies the required properties.
Our concern now is to deal with (P3). Let us first recall a result on the controllability of the
linear control system

Yt + Yrxx + Yo = 0 in (O,T) X (0, L),
y(t,0)=y(t,L)=0 on (0,L), (2.4.9)
Yz (t, L) = u(t) on (0,7),

where, at time t € [0,T] the state is y(t,-) € L?(0,L). Our goal is to investigate the cases where
Le N2 U N3, but in order to explain more clearly our construction of v, we first deal with the case

where
/12 +1 x 2+ 22
=2 Clxer s 7r\/77 (2.4.10)

which corresponds to I = 1 and k = 2 in (2.1.3). In that case the uncontrollable subspace M is a
two dimensional vector subspace of L?(0, L) generated by

p1(z) = C (cos (\/52,1@ ~ 3cos (&x) +2cos (\;“ﬁx)) ,
pa() = C (—sin (\/52793) ~ 3sin (jﬁ@ +2sin (\;%:;:)) ,

where C'is a positive constant such that [|¢1z2 = [[¢2|[z2 = 1. They satisfy

27
o1+t e
¢1(0) = ¢1(L) = 0, (2.4.11)
¢1(0) =1 (L) =0,
and
27
L'0/2 + S0/2// - ?3017
02(0) = p2(L) = 0, (2.4.12)
©5(0) = ph(L) =0,
with (see [ D
4417
= : 2.4.13
P 0va1 ( )
For every t > 0, one has
27t
S(t)M C M and S(t) restricted to M is the rotation of angle i7 (2.4.14)
p

if the orientation on M is chosen so that (p1,p2) is a direct basis, a choice which is done from
now on. Moreover the control u has no action on M for the linear control system (2.1.2): for every
initial data yo € M, whatever is u € L?(0,T), the solution y of (2.1.2) with y(0) = yo satisfies
Py (y(t)) = S(t)yo, for every t € [0,+00). Let us denote by H the orthogonal in L?(0,L) of M
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for the L?-scalar product H := M~. This linear space is left invariant by the linear control system
(2.1.2): for every initial data yo € H, whatever is u € L?(0,T), the solution y of (2.1.2) satisfying
y(0) = yo is such that y(¢t) € H, for every ¢t € [0,4+00). Moreover, as it is proved by Lionel Rosier
in | ], the linear control system (2.1.2) is controllable in H in small-time. More precisely, he
proved the following lemma.

Lemma 5. Let T > 0. There exists C' > 0 depending only on T such that, for every yo, y1 € H,
there exists a control u € L*(0,T) satisfying

lull 2. < Clllyoll 2 +llyal 22 ), (2.4.15)

such that the solution y of the Cauchy problem

Yt + Yzzz + Yz =0 in (0,T) x (0, L),
y(t,0) =y, L)=0 on (0,7),
Yo (6, L) = u(t) on (0,7T),
y(0,2) = yo(x) on (0,L),

—~

satisfies y(T,-) = y1.
A key ingredient of our construction of v is the following proposition.

Proposition 3. Let T > 0. For every L € Ny U N3, for every 7 € {1,2,...,n}, there exists
u? € HY(0,T) such that
a(T,")=0 and Py (B(T,-)) #0,

where o and B are the solution of

o+ Qg + gy = 0,
a(t,0) = a(t,L) =0,
ag(t, L) = u/(t),

a(0,2) =0,

Bt + Bz + Brzz + @y =0,
B(t,0) = pB(t, L) =0,

Ba(t, L) =0,

B8(0,z) = 0.

(2.4.16)

Proposition 3 is due to Eduardo Cerpa and Emmanuelle Crépeau if one requires only u to be
in L2(0,T) instead of being in H(0,7T): see [ , Proposition 3.1] and | , Proposition 3.1].
We explain in Appendix 2.8 how to modify the proof of | , Proposition 3.1] (as well as [ ,
Proposition 3.1]) in order to get Proposition 3.

We decompose 8 by 8 = 1 + B2, where 81 := Py (8) and B2 := Py (8). Hence, similarly to
Proposition 1, we get

Bat + Bow + Pazaa + Pr(cag) =0,
Ba(t,0) = Ba(t, L) =0,

Bax(t, L) =0,

B2(0,2) =0,

where B2(T, ) = Py (B(T,+)) # 0. In particular, Py (82(T,-)) = Py (B(T,-)) # 0.

(2.4.17)

Combining (2.4.16) and (2.4.17), we get:
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Corollary 1. For every L € Ny U N3, for every Ty > 0, for every j € {1,2,...,n}, there exists
ul) € L>(0,Ty) such that the solution (y1,y2) to equation (2.4.4) with v(t,z) := u}(t) satisfies

y1(To) =0 and Pyri(y2(To)) # 0. (2.4.18)

Now we come back to the case when (2.4.10) holds. Let us fix Ty > 0 such that

Ty < % (2.4.19)
Let »
== 2.4.20
¢:=7 ( )
Let ug be as in Corollary 1. We denote by
Yi(t) :=y1(t), Ya(t) :=ya2(t), for t € [0, Tp), (2.4.21)
and
Let
Yo =S(q)1 € M, 3= S(2q)¢1 € M, 1pa=5(3q)h1 € M, (2.4.23)
T =3¢ + Tp, (2.4.24)
Ky := [3¢,3q + To), (2.4.25)
Ky :=[2q,2q + To], (2.4.26)
Ky = [g,q + Ty, (2.4.27)
Ky = 1[0,T]. (2.4.28)
Note that (2.4.19) implies that
Ky, K5, K3 and K4 are pairwise disjoint. (2.4.29)

Let us define four functions [0, 7] — R: uy, ug, uz and ug by requiring that, for every i € {1,2, 3,4},

_10 on [0,T]\ K;,
A { up(- — 1) on Kj, (2.4.30)

with
T =3¢, T2 =2q, 73 =¢,74 = 0. (2.4.31)

One can easily verify that, for every ¢ € {1,2,3,4}, the solution of (2.4.4) for v = w; is given
explicitly by

10 on [0,T]\ K;,
yia(t) = { Yi(—7) on K, (2.4.32)
and
0 on [0, 7],
Yin(t) =9 Ya(—7) on K;, (2.4.33)

S(~—Ti—T0)w1 on [Ti+T0,T].
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For z € My, let a1, ag, ag and ay in [0, +00) be such that

=S(T)z = a1yp1 + a2 + azihs + authy, (2.4.34)
arag =0, agay = 0. (2.4.35)
Let us define
v(t, z) == aqur(t) + aua(t) + asus(t) + agug(t). (2.4.36)
We notice that
(af + a3 + a3 +aj)llvif7. =1, (2.4.37)

which, together with (2.4.36), implies that
v € L>®(][0,T] x My;R). (2.4.38)

Moreover, using the above construction (and in particular (2.4.29)), one easily checks that the
solution of (2.4.4) satisfies

y1(t) = aryi1(t) + ay2,1(t) + azys 1 (t) + uyaa(t), for t € (0,77, (2.4.39)
Y2(t) = afy12(t) + a3y22(t) + a3ys2(t) + afyas(t), for t € [0,T). (2.4.40)
In particular
yi(T) =0, (2.4.41)
y2(T) = afthr + ases + a3z + ajyu. (2.4.42)

From (2.4.34), (2.4.37) and (2.4.42), we can find that (2.4.5) holds if § > 0 is small enough. It is
easy to check that the Lipschitz condition (2.4.3) is also satisfied. This completes the construction
of v(t, z) such that (P3) holds and also the proof of Proposition 2 if (2.4.10) holds.

For other values of L € N>, only the values of o1, p2 and p have to be modified. For L € N3, as
mentioned in the introduction, M is now of dimension 2n where n is the number of ordered pairs.
It is proved in | ] that (compare with (2.4.11)—(2.4.14)), by a good choice of order on {7}
one can assume

0<pl<p?<..<p", (2.4.43)

where p’ := 27 /w’. For every t > 0, one has
. , . 2mt
S(t)M? C M7 and S(t) restricted to M’ is the rotation of angle lj (2.4.44)
p

From (2.4.43), (2.4.44) and Corollary 1, one can get the following corollary (see also [ ,
Proposition 3.3]):

Corollary 2. For every L € N3, there exists Ty, > 0 such that, for every j € {1,2, ...,n}, there
ezists up € L>(0,Ty) such that the solution (y1,ys) to equation (2.4.4) with v(t,z) := u)(t) satisfies
yi(Ty) =0 and yo(TL) = 1. (2.4.45)

Let us define
¥l =0, Wb =8@)els vh=S2d)el. v =SB, (2.4.46)

where ¢’ := p’ /4.
Compare with (2.4.22)-(2.4.33), we can find T > T, and closed interval sets {K7}, where
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1€{1,2,3,4} and j € {1,2,...,n}, such that

K] c 0,7, (2.4.47)
{K7} are pairwise disjoint. (2.4.48)

We can also find functions {u!} € L>([0,T];R), with

! (t) supports on K7, (2.4.49)

J

such that when we define the control as u], we get the solution of (2.4.4) satisfies

y{)l(t) supports on K7, (2.4.50)
v, (T) =0, (24.51)
ylo(T) = . (24.52)

Then for z € My, let a{ in [0,400) be such that (where i € {1,2,3,4} and j € {1,2,...,n})

—S(T)z=>_aly], (2.4.53)
2
alad =0, ala} =0, > (af)?=1. (2.4.54)
.3
Let us define o
v(t,z) = alul(t). (2.4.55)
‘7j
Then the solution of (2.4.4) with control defined as v(t, z) satisfies
v (T) =0, (2.4.56)
Yo (T) = (). (2.4.57)
1,7

One can easily verify that condition (2.4.5) holds when 6 > 0 is small enough, and that Lipschitz
condition (2.4.3) also holds. This completes the construction of v(t, z) and the proof of Proposition 2.
O

We are now able to define the periodic time-varying feedback laws u. : R x L%(0, L) — R, which
will lead to the exponential stabilization of (2.1.1). For € > 0, we define u. by

0 if ||y1\/[HL2L: 07
M t S(*t)yM if 0< M g 1
Ue [O,T)XL% (t,y) = 6\/ ||ys( ||tl)/%z( ’ HyMHL% ) 1 ”y HL% ) (2458)
ev(t, HyMIIZz ) if [ly™z2 > 1,

L

with y™ := Py (y), and

t
ue(t,y) == u€|[O,T)XL2L (t — [T}T, y), VteR, Vye L*0,L). (2.4.59)
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2.5 Proof of Theorem 12

Let us first point out that Theorem 12 is a consequence of the following two propositions.

Proposition 4. There exist 1 > 0, 71 > 0 and Cy such that, for every Carathéodory feedback law
u satisfying
lu(t, z)| < evmin{l,\/[|Pm(2)|[z2 }, VEER,Vz € L*(0,L), (2.5.1)

for every s € R and for every mazimal solution y of (2.3.6) defined at time s and satisfying
ly(s)z2 <71, y is well-defined on [s,s +T] and one has

1P )5, ., t I Par W), e < Co(ll P (y(s)) 172 +11Par (y(5)) ] 2 ). (2.5.2)

Proposition 5. For p; as in Proposition 2, let po > p1. There exists €9 € (0, 1) such that, for every
e € (0,e9), there exists r. > 0 such that, for every solution y to (2.3.6) on [0,T], for the feedback
law u := . defined in (2.4.58) and (2.4.59), and satisfying ||y(0)||p2 < r-, one has

1Pr (5 (T)) Iz +ell Par (y(T) | g < p2ll Prr (y(O))1 7 +(1 — 66*) [ Par (5(0) | 2 - (2.5.3)

Indeed, it suffices to choose p2 € (p1,1), € € (0,£0) and u := u. defined in (2.4.58) and (2.4.59).
Then, using the T-periodicity of u with respect to time, Proposition 4 and Proposition 5, one checks
that inequality (2.1.11) holds with A := min {—(In(p2))/(2T), —(In(1 — 6¢2))/(2T)} provided that

C is large enough and that r is small enough. We now prove Proposition 4 and Proposition 5

successively.

Proof of Proposition J. Performing a time-translation if necessary, we may assume without loss of
generality that s = 0. The fact that the maximal solution y is at least defined on [0, 7] follows from
Theorem 14 and (2.5.1). We choose 1 and r; small enough so that

r+eT? <, (2.5.4)
where > 0 is as in Lemma 4. From (2.5.1) and (2.5.4), we have

1y (0)[ £z +llult, y(O)l2.< (2.5.5)

which allows to apply Lemma 4 with H(t) := u(¢,y(t)), H := 0. Then, using (2.5.1) once more, we
get

lylls < Cs(llyoll oz +llut, y(t)ll2)
< Cs(ri+eiy /T Pu(y)llcorz)
1
<O 2TCy + — ,
3(7"1 +e1lCs + 105 ||y||B)
which implies that
lylls< 2C3(r1 +€3TC5). (2.5.6)
In the above inequalities and until the end of the proof of Proposition 5, B := By r.
We have the following lemma, see the proof of | , Proposition 4.1 and (4.14)] or [ ,
page 121].

Lemma 6. Ify € L?(0,T; H*(0,L)), then yy, € L'(0,T;L*(0,L)). Moreover, there exists c4 > 0,
which is independent of T, such that, for every T > 0 and for every y,z € L*(0,T; H'(0,L)), we
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have
1yYe — 222llp1 2 < < T (ylls+z)8)lly — 2lls. (2.5.7)

Let us define Cy := ¢4T4. To simplify the notations, until the end of this section, we write y;
and ys for Py (y) and Py (y) respectively. From (2.5.1), (2.5.6), Lemma 3, Lemma 6 and Proposition
1, we get

lyalls < Calllye' 1z +llult ya + y2)ll oz +11Pa (1 + v2) (1 + v2)2) £122)
< Co(llyg” 122 +erlly/lw2llzz lz.+l(ur + y2) (w1 + y2)all Ly z2)
1
02(||?/(§{||L§+51||y2||21TL2L+C4Hy1 + y2||%%Hi>7 (2.5.8)
and

< Co(llyo" 11z +11Par ((y1 + y2) (v1 + y2)2) 21,22 )
< Co([ly" Iz +1I (w1 + y2) (w1 + y2)ellr r2)
< Co(llyd" Iz +Ciallys + 2l 72 1)

<205 (|lyo” llz2 +CullyallE+Cally2llE)- (2.5.9)

121l

Since M is a finite dimensional subspace of H'(0, L), there exists C5 > 0 such that
[f 0,0y < Cs| fllpz,  for every f € M. (2.5.10)
Hence

lv2lls = ll2llLso n2 +lly2ll L2 a1
< Hy2||L;°L2L+C5\/T||y2||L;>9L2L- (2.5.11)

Since y»(t) is the L2-orthogonal projection on M of y(t), we have
ly2llzse 2 < Yl zser2 < llylls,
which, together with (2.5.6) and (2.5.11), implies that
lyalls< (1 + CsVT)|lylls< 2(1 + CsVT)Cs (r1 + £3TC5). (2.5.12)

Decreasing if necessary r1 and 1, we may assume that

ACHC4(1 + C5VT)Cs(r1 + €3TCs) < (2.5.13)

N | =

From estimation (2.5.9) and condition (2.5.13), we get that

ly2ll5< 4C2(llyo” Iz +Cally i) (2.5.14)
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From (2.5.6), (2.5.8), (2.5.12) and (2.5.14), we deduce that

303 (Ilya' 172 +e3lly2ll 1. r2 +CFllyr + yellz2 1)

303 (Ilyg' 172 +eiT llyell e £z 202 NyllE Iy [ 5+y2115))

<3C3 |y’ ||L2 +3C5 (3T +16CF (1 + C5VT)C3 (r1 + £1TC5)?) |1yl
+24C3CEC3 (r + €1TC3)? | |13

< 3C3Nlyg' (172 +12C5 (3T + 16C3 (1 + CsVT) G (r1 + €1TC5)°) [1yg || 2

11l <
<

+ (120;04 (€27 + 16C2(1 + C5VT)C3(ry + £2TCy)?) + 24C2C2C2(ry + £2TCs) ) 212

(2.5.15)
Again, decreasing if necessary r; and €1, we may assume that
12C3C4 (3T + 16C3 (1 + CsVT) O3 (r1 + e3TC3)°) + 24C3C3C3 (11 + £3TC3)% < % (2.5.16)
From (2.5.15) and (2.5.16), we get
lyill < 6C31lyo" 172 +24C3 (1T + 16CE (1 + CsVT)C3 (11 + £1TC3)*) |y [l 2
<60 Nys' 172 +Ca Il 2
which, combined with (2.5.14), gives the existence of C; > 0 independent of y such that
Iy lE+Hy2lls< C1(llys 172 +lvo" Iz )- (2.5.17)
This completes the proof of Proposition 4. O

Proof of Proposition 5. To simplify the notations, from now on we denote by C' various constants
which vary from place to place but do not depend on ¢ and r.

By Lemma 3 applied with y := y1(t) — S(t)yll, h(t) := u.(t,y(t)) and h = (y1 +92)(y1 + ¥2)a
and by Proposition 4, we have

ly1(t) = St)ys' ls < C(luell L2+ Pr (1 + y2) (y1 + y2)a)ll L1 L2)
C(»SIIszILl 12 Hlys +v2l15)
<O

ellyall +ly 13+ l2113)

1
< Cle+vr)(llys 17 +llwo"llez ) * (2.5.18)
where 7 := [|yo|[ 12 < 7. <1. On ., we impose that
re < e'? (2.5.19)

From (2.5.18) and (2.5.19), we have

ly1(t) = St)ys' 15 < Ce(llyg 172 +lyo 22 ) > (2.5.20)
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Notice that, by Lemma 3, we have

1S®)y5" 5 < Cllyd" Il (2.5.21)
IS®)y N5 < Cllyd Il 2 (2.5.22)

Proceeding as in the proof of (2.5.20), we have

ly2(t) = S)a"ls < CllPar((y1 +y2) (w1 +y2)o)ll s 22
< Cllyr + v2ll3
< O (Ialls+ SO s+ (e 12 +lwd52) *)?
<O((r+ )l 12 +wd Mz ) + ludl 122 )
< C(E 18 N2+l 122 ) (2.5.23)

Let us now study successively the two following cases

2
lyo 122 = €34/ 193"l 2 » (2.5.24)
lyg" M2z < €% \/llwd" I 22 - (2.5.25)

We start with the case where (2.5.24) holds. From (Py), (P2), (2.5.20), (2.5.23) and (2.5.24), we
get the existence of g5 € (0,¢71) such that, for every ¢ € (0,e2),

lya (D172 +elly2(T) 2

1 2
< (Ce(llyg' 1172 +lyo 122 )* +1S(Thys llez)™ +e(C (Mo ez +lve' 172) + I1S(T)yo” Nz )
(p1p2)? |1y 72 +C<*(llyo 172 +llva"llzz ) + Cellyg' 172 +(e + Ce¥)llyo N2

<
< pllyo’ 172 +e(1 = 8%)llyg" |z - (2.5.26)
Let us now study the case where (2.5.25) holds. Let us define

b=y (2.5.27)

Then, from (2.5.20), (2.5.22), (2.5.23) and (2.5.25), we get

ly1 ()l < I1S®vg' 1+Ce(llye 172 +lvo" Iz ) *
Cey/IIbll 2 + Cllyg' Il 2
< Ced \/IIbl e (2.5.28)

ly=(t) = S(1)yo" [|< 5 [1b]l 1, (2.5.29)

which shows that y,(-) is close to S(-)ydf. Let z : [0,7] — L?(0, L) be the solution to the Cauchy

and
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problem

214 + Z1zze + 212 = 0 in (07 T) X (O, L)7
z1(t,0) = z1(¢,L) =0 on (0,7),

b
1(t, L) = v(t,——) o (0,T), (2:5.30)
1] 2
21(0,2) =0 on (0,L).
From (Ps), we know that z;(7T") = 0. Moreover, Lemma 3 tells us that
|21 () ls< Cll(t, W)IILzTé C. (2.5.31)
L2
L
Let us define wy by
wy =y — S(t)yd — 5||bHEQLzl. (2.5.32)
Then w; is the solution to the Cauchy problem
W1t + Wigge + Wig + PH((yl + yZ)(yl + y2)z) = Oa
wl(t,O) = ’Ll)l(t, L) = 0,
wialt, D) = & [ Il (e, S0yt 2y (2:5.33)
lw b = 2 77 - 77 )
L2 N2 ()] 22 LL o] 2
wy(0,z) = 0.
By Lemma 3, we get
w1l s<C||Pr ((y1 + y2) (1 + y2)a) L322
1 S(=t)y2(t) 1 b
+eCl[(ly2 172 v(t, A7) — bl 22 v(t, o))l 22 - (2.5.34)
(o Ol v gl )~ W ) s

Note that (2.5.29) insures that the right hand side of (2.5.34) is of order €2. Indeed, for the first
term of the right-hand side of inequality (2.5.34), we have, using (2.5.19), (2.5.28) and (2.5.29),

Cllyi + v2l%

C|IPu ((y1 +y2)(y1 +y2)a)llLa 2 <
4
< Ces[|bll Lz +C[bl| 2

1 1
< Clbll3, bl

N

1
056\\b||z%. (2.5.35)

For the second term of the right hand side of inequality (2.5.34), by (2.4.14), the Lipschitz condition
(2.4.3) on v and (2.5.29), we get, for every ¢ € [0,T],

b S
Tl T ls
b _ S(it)yQ(t))” )
Wl Tl 14
< OBl Noe®l1 2 (O 3 16 — S(—0ua(O) 3 +1S (=020 My (D)5 0115 )

< Cet ], (2.5.36)
L

[ I8l (ot

< ClollE, I(
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and
S(—t)ya
2t

Combining (2.5.35), (2.5.36) and (2.5.37), we obtain the following estimate on w;

@ 1ol e T D < ooty (2537

1
lwsl|5< Ce*[bll 7 - (2.5.38)

We fix
p3 € (p1, p2). (2.5.39)

Then, by (2.5.32), (P1) as well as the fact that z;(T') = 0, we get
ly1 (D172 < psllys 172 +Ce*[Ib] .z - (2.5.40)

We then come to the estimate of yo. Let 71(t) := S(t)yd! and let 7 : [0,T] — L2(0, L) and
29 :[0,T] = L?(0, L) be the solutions to the Cauchy problems

T2t + T2xzx + T2x + PM(lelz + Tl:vyl) - PM(TITI:E) = 07
Tg(t,O) = Tg(t,L) = 0,

2.5.41
TQx(t7L) = 0, ( )
7—2(0737) =0,
and
2ot + Zogax + 224 + PM(lelm) = O,
t = t,L)=
2(h,0) = 2(t 1) =0, (2.5.42)
22z (t, L) = 0,
20(0,z) = 0.
Lemma 3, Lemma 6, (2.5.25) and (2.5.28) show us that
Im2lls < CllPu (T1y1e + Tayn — Ti7Tia) L322
< Cllmlls(lyalls+ll7lls)
2
< Ced ||b||L2 Iy I 2 » (2.5.43)
and
lz2ll5< |1 ]l3< C. (2.5.44)
From (P3), (2.5.30) and (2.5.42), we get
<22(T)7S(T)b>(Li,Li) < —26[b| 2 - (2.5.45)

Hence

[

IS(T)b+ e bllns 22(T) 1z = (ST + 2]z 22(T), ST+ &bl 13 22(T) 1 4))

Nl

< (1Bl +* 10l12; € — 4022 ol13 )
< |bllzz (1 — 266 + Ce*). (2.5.46)
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Let us define ws : [0,7] — L?(0, L) by
Wo 1= Yo — Ty — 62Hb||L2LZQ — S(t)b. (2.5.47)
Then, from (2.3.15), (2.5.41) and (2.5.42), we get that
wae = Yar — o — €2[|bl| 2 220 — (S(£)D);

= ~ W2y — Wozzx — PM((yl + yg)(yl + yg)x) + Py (lelcc + Tlxyl)
= Py (mima) + 52||b||L2LPM (z1212)

1
= —Waa — Warza — &[0 75 Par (w1210 +wia21) — Pus (wiwia)
— Prr (120 + Y2910 + Y2¥o ) -
Hence, ws is the solution to the Cauchy problem

1
Wat + Wagze + Wor + €||b||z% P (w1210 + wiz21) + Py (wiwig)

+ Put (y1y2e + Y2Y1c + Y2l2z) =0,

wg(t, O) = wg(t, L) = 0, (2548)
’wgw(t, L) = 0,
w2 (0,2) = 0.

From Lemma 3, Lemma 6, Proposition 4, (2.5.19), (2.5.25) and (2.5.38), we get

1
lwalls < CellbllZs 1Py (wi21z + wiwz1) | oyp2 +Cll Pas (wiwia) | 1,22
+ ClIPu (Y1920 + y2y1e + Yoy2u) 11 L2
1 1
Celbll72 €2 [1bll 2 +Ce*l|bll s +C (o' 17 +lwo” 122
Ce®(|b]| 3 - (2.5.49)

3
2

NN

We can now estimate yo(7) from (2.5.43), (2.5.46), (2.5.47) and (2.5.49):
ly2(T)[ 2 = lwa(T) + 72(T) + €2[Ib]l 3 22(T) + S(T)bll 2
1
< bl gz (C® + 1 — 286 + Ce?) + Ceb 181172 Nl Iz - (2.5.50)

Combining(2.5.27), (2.5.39), (2.5.40) and (2.5.50), we get existence of €3 > 0 such that, for every
e € (0,e3], we have

1 (T2 +elly2(T)ll 2
2 1
< pallyb 125 +Ce" b 23+ gnbm (Ce® 41— 20e% + C*) + CR oll 7, 1w 2 ) (25.51)
< pallyl 125 +e(1 — 622) | 113 -

This concludes the proof of Proposition 5. O

Acknowledgments. We thank Jixun Chu, Ludovick Gagnon, Peipei Shang and Shuxia Tang
for useful comments on a preliminary version of this article.
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2.6 Appendix A: Proof of Proposition 1

Proof of Proposition 1. Tt is clear that, if (y1,y2) is a solution to (2.3.15), then y is solution to
(2.3.7). Let us assume that y is a solution to the Cauchy problem (2.3.7). Then, by Definition 7,
for every 7 € [s,T] and for every ¢ € C3([s, 7] x [0, L]) satisfying

o(t,0) = ¢(t, L) = ¢.(t,0) =0, Vtels, 7], (2.6.1)

we have

T L T T L
- " vaow ) ydrdt — Lyt ) oa(t, L)d wdxd
| @t oot rmdzar = [ eyt poste iar+ [ [ opuedua
L L
T T,2)dr — dz = 0. .6.
+/0 y(7,z)o(r, x)dx /0 Yo (s, x)dx =0 (2.6.2)

Let us denote by ¢; and ¢y the projection of ¢ on H and M respectively: ¢1 := Pg(¢),
¢o = Pr(¢). Because M is spanned by ¢J and @3, j € {1,...,n}, which are of class C*> and
satisfy

1(0) = @ (L) = ¢1,(0) = 1, (L) =0,
3(0) = p3(L) = ¢3,(0) = @}, (L) =0,
the functions ¢1, 2 € C3([s, 7] x [0, L]) and satisfy
(bl (tv O) =¢1 (ta L) = ¢1x(t7 O) = Oth € [Sa T]a (263)
@2(t,0) = ¢a(t, L) = ¢2,(t,0) = ¢ (t, L) = 0,Vt € [s,7]. (2.6.4)

Using (2.6.2) for ¢ = ¢ in (2.6.2) together with (2.6.4), we get
T L T L
s 0 s 0
L

L
+/0 y(T,w)qbg(T,a:)dx—/ Yyop2(s,x)dx = 0, (2.6.5)

0

which, combined with the fact that ¢o; + ¢or + dPopee € M, gives
T L T L
s 0 s 0

L L
+/O y2(7'7$)¢2(7',$)d177/0 P (yo)o2(s, x)dx = 0. (2.6.6)

Simple integrations by parts show that ¢1, + 1400 € M+ = H. Since, ¢ and ¢y, are also in H,
we get from (2.6.6) that

—/ST /OL(@ + G0 + baoa)y2dudt + /: /OL O P (yya)dwdt

L L
+/0 ZIQ(T,x)d)(T,x)dx—/O P (yo)o(s, z)dx =0, (2.6.7)

which is exactly the definition of a solution of the second part of the linear KdV system (2.3.15).
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We then combine (2.6.2) and (2.6.7) to get

T L T T L
*/5 /0 (¢t+¢x+¢mx)y1dxdtf/s u(t,y(t,~))¢>Jc(t,L)dt+/5 /0 O P (yy,)dxdt

L L
+/0 y1(7>$)¢(7=$)d$—/0 Py (y0)$(0,z)dx = 0, (2.6.8)

and we get the definition of a solution to the first part of the linear KdV system (2.3.15). This
concludes the proof of Proposition 1. O

2.7 Appendix B: Proofs of Theorem 13 and Theorem 14

Our strategy to prove Theorem 13 is to prove first the existence of a solution for small times and
then to use some a priori estimates to control the L2-norm of the solution with which we can extend
the solution to a longer time, and to continue until the solution blows up. We start by proving the
following lemma.

Lemma 7. Let Cy > 0 be as in Lemma 3 for To—Ty = 1. Assume that u is a Carathéodory function
and that, for every R > 0, there exists K(R) > 0 such that

(lyllz; < R and |23 < R) = (lult,y) - u(t,2)| < K(R)ly - 213, VEER).  (27.1)
Then, for every R € (0,400), there exists a time T(R) > 0 such that, for every s € R and for

every yo € L?(0, L) with lvollz2 < R, the Cauchy problem (2.3.7) has one and only one solution y
on [s,s + T(R)]. Moreover, this solution satisfies

1yl < Or :=3C2R. (2.7.2)

B, s+T(R)

Proof of Lemma 7. Let us first point out that it follows from our choice of Cy and Lemma 3 that,
for every —oo < Ty < Ty < +oo such that 7o — T < 1, for every solution y of problem (2.2.1),
estimation (2.2.12) holds.
Let yo € L?(0, L) be such that
lyollz2 < R. (2.7.3)

Let us define By by

By = {y € Bs,s+T(R); Hy| B.e,s+T(R)< CR}

The set B; is a closed subset of B, ;1 7(r). For every y € Bi, we define W(y) as the solution of

(2.2.1) with h := —yy,, h(t) == u(t,y(t,-)) and yo := yo. Let us prove that, for T(R) small enough,
the smallness being independent of yo provided that it satisfies (2.7.3), we have

\I/(Bl) C B;. (274)
Indeed for y € By, by Lemma 3 and Lemma 6, we have, if T(R) < 1,

1w W)ls < Ca(llyollzz +I1Bll 2+l L o.ri22(0.L)))
Cs (||y0|\L2L+||U(t7 y(t, '))HL?T‘i'H—yyzHLl(s,erT(R);H(o,L)))

<
<
< Co(R+ Cp(Cr)T(R)? + esT(R) 1 |yll)- (2.7.5)

In (2.7.5) and until the end of the proof of Lemma 7, for ease of notation, we simply write ||-||z for
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I8, .srm - From (2.7.5), we get that, if

. R
T(R) < min { <CB(C'R))2’ (9&1é’223)47 1} ’ (2.7.6)

then (2.7.4) holds. From now on, we assume that (2.7.6) holds.

Note that every y € By such that ¥(y) = y is a solution of (2.3.7). In order to use the Banach
fixed point theorem, it remains to estimate || W(y)—V(z)||5. We know that W(y)—¥(z) is the solution

of equation (2.2.1) with T} := s, To = s + T(R), h := —yy. + 2z, h(t) := u(t,y(t,-)) — u(t, z(¢,-))
and yo := 0. Hence, from Lemma 3, Lemma 6 and (2.7.1), we get that

19(y) — ()5 < Callyoll gz + 1Al 2+l L2 072200,
< Co(0+T(R)2K(Cr)|ly — 2lls+caT(R) ||y — 2|5yl s+]|2]15))
< Oslly — 2l|5(T(R)2K(CR) + 24 T(R)TCR),

which shows that, if
1

4 1 2
1204022R) ’ <402K(302R)) } ) (2.7.7)

T(R) < min{(
then,
3
1(y) = )ls< 3 lly - 2l5-

Hence, by the Banach fixed point theorem, there exists y € By such that ¥(y) = y, which is the
solution that we are looking for. We define T'(R) as

. R 2 1 4 1 2
T(R) = mm{(cg(?,ch)) (aar) arean) ’1}' (2.78)

It only remains to prove the uniqueness of the solution to the Cauchy problem (2.3.7) (the above
proof gives only the uniqueness in the set B;). Clearly it suffices to prove that two solutions to
(2.3.6) which are equal at a time 7 are equal in a neighborhood of 7 in [r,+00). This property
follows from the above proof and from the fact that, for every solution y : [r,71] — L?(0, L) of
(2.3.7), then, if T > 0 is small enough (the smallness depending on y),

19115, < 3C2[ly(7)ll2 - (2.7.9)
O

Proceeding similarly as in the above proof of Lemma 7, one can get the following lemma con-
cerning the Cauchy problem (2.2.13).

Lemma 8. Let Cy > 0 be as in Lemma 3 for To—T1 = 1. Given R, M > 0, there exists T (R, M) > 0
such that, for every s € R, for every yo € L*(0,L) with lvoll2 < R, and for every measurable
H:(s,s+T(R,M)) — R such that |H(t)| < M for everyt € (s,s+T(R,M)), the Cauchy problem

Yt + Yoww + Yo + Y% =0  in (s,s + T(R,M)) x (0,L),

y(t,0) =y(t,L) =0 on (s,s+T(R,M)),
y.(t, L) = H(t) on (s,s+T(R,M)), (2.7.10)
y(s,z) = yo(x) on (0,L),

has one and only one solution y on [s,s + T(R, M)]. Moreover, this solution satisfies

||y||3_«;,s+7"(1a,1\/1)< 3C3R. (2.7.11)
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We are now in position to prove Theorem 13.

Proof of Theorem 13. The uniqueness follows from the proof of the uniqueness part of Lemma 7.
Let us give the proof of the existence. Let yo € L%(0,L), let s € R and let Ty := T(llyollz2 ) -
By Lemma 7, there exists a solution y € Bs s47, to the Cauchy problem (2.3.7). Hence, together
with the uniqueness of the solution, we can find a maximal solution y : D(y) — L?(0,L) with
[s,s+Tp] C D(y). By the maximality of the solution y and Lemma 7, there exists 7 € [s 4+ Tp, +00)
such that D(y) = [s,7). Let us assume that 7 < +o0o and that (2.3.12) does not hold. Then there
exists an increasing sequence (t,)nen of real numbers in (s,7) and R € (0, +00) such that

lim t, =, (2.7.12)
n—-+oo
ly(tn)llzz < R, YneN. (2.7.13)
By (2.7.12), there exists ng € N such that
tn, > 7 — T(R)/2. (2.7.14)

From Lemma 7, there is a solution z : [t,,,tn, + T(R)] — L?(0,L) of (2.3.7) for the initial time
s := t,, and the initial data z(t,,) := y(ts,). Let us then define § : [s,t,, + T(R)] — L*(0, L) by

gt) = y(t), Vt € [s,tn,), (2.7.15)
G(t) == 2(t), VtE [tny,tn, + T(R)]. (2.7.16)

Then § is also a solution to the Cauchy problem (2.3.7). By the uniqueness of this solution, we have
y = g on D(y) N D(y). However, from (2.7.14), we have that D(y) & D(g), in contradiction with
the maximality of y.

Finally, we prove that, if C(R) satisfies (2.3.13), then, for the maximal solution y to (2.3.7), we
have D(y) = [s,+00). We argue by contradiction and therefore assume that the maximal solution
y is such that D(y) = [s,7) with 7 < 4o00. Then (2.3.12) holds. Let us estimate [|y(¢)|| 2 when ¢

tends to 7—. We define the energy E : [s,7) — [0, +00) by

L
E(t) = /O ly(t, z)|[>dz. (2.7.17)

Then E € C%([s,7)) and, in the distribution sense, it satisfies

dE

—= <lulty(t, )P < CR(VE). (2.7.18)

(We get such estimate first in the classical sense for regular initial data and regular boundary
conditions y, (¢, L) = ¢(t) with the related compatibility conditions; the general case then follows
from this special case by smoothing the initial data and the boundary conditions, by passing to the
limit, and by using the uniqueness of the solution.) From (2.3.12) and (2.7.18), we get that

1

+oo
= ———dFE < +o0. (2.7.19)
2 /0 C%(VE)
However the left hand side of (2.7.19) is equal to the left hand side of (2.3.13). Hence (2.3.13) and
(2.7.19) are in contradiction. This completes the proof of Theorem 13. O

The proof of Theorem 14 is more difficult. For this proof, we adapt a strategy introduced by
Carathéodory to solve ordinary differential equations § = f(¢,y) when f is not smooth. Roughly
speaking it consists in solving ¢ = f(t,y(t — h)) where h is a positive time-delay and then let h tend
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to 0. Here we do not put the time-delay on y (it does not seem to be possible) but only on the
feedback law: wu(t,y(t)) is replaced by u(t,y(t — h)).

Proof of Theorem 14. Let us define H : [0, +00) — [0, +00) by

@ 1 va o R
H(a) ._/0 WdE—2/O W(ﬂ%. (2.7.20)

From (2.3.13), we know that H is a bijection from [0, +oc0) into [0, +00). We denote by H~! :
[0, +00) — [0, 400) the inverse of this map.

For given yo € L?(0, L) and s € R, let us prove that there exists a solution y defined on [s, +00)
to the Cauchy problem (2.3.7), which also satisfies

l®l320,0)< H' (H (Iy(s)I32 ) + (t = 8)) < +00, ¥t € [s,+00). (2.7.21)
Let n € N*. Let us consider the following Cauchy system on [s, s + 1/n]

Yt + Yzaw + Yo +YYz =0 in (s,s+(1/n)) x (0, L),

y(.0) = y(t. ) = 0 on (s,5+ (1/n)), -~
Ya(t, L) = u(t, yo) on (8784-(1/%))7
y(s,z) = yo(z) on (0,L).

By Theorem 13 applied with the feedback law (¢,y) — u(t,yo) (a measurable bounded feedback law
which now does not depend on y and therefore satisfies (2.3.11)), the Cauchy problem (2.7.22) has
one and only one solution y. Let us now consider the following Cauchy problem on [s + (1/n),s +

(2/n)]
Yt + Yozz + Yz + YYp = 0 in (s+(1/n),s+(2/n)) x (0, L),
y(t,0) = y(t,L) =0 on (s+(1/n),s+(2/n)), (2.7.23)
Yo (t, L) = u(t,y(t — (1/n))) on (s+(1/n),s+ (2/n)), ’
y(s,z) = yo(x) on (0,L).

As for (2.7.22), this Cauchy problem has one and only one solution, that we still denote by y.
We keep going and, by induction on the integer i, define y € C%([s,+00); L%(0, L)) so that, on
[s+ (i/n),s+ ((i +1)/n)], i € N\ {0}, y is the solution to the Cauchy problem

Yt + Yowz + Yo + YYo= 0 in (s+(i/n),s+ ((i +1)/n)) x (0, L),

y(t,0) =y(t, L) =0 on (s+ (i/n),s+ ((i +1)/n)), (2.7.24)
Yo(t, L) = u(t,y(t — (1/n))) n (s+(i/n),s+ ((i +1)/n)),

y(s+ (i/n)) = y(s + (i/n) = 0) on (0, L),

where, in the last equation, we mean that the initial value, i.e. the value at time (s + (i/n)), is the
value at time (s + (i/n)) of the y defined previously on [(s + ((i — 1)/n)), s + (i/n)].
Again, we let, for ¢ € [s, +00),

L
B(t) := /0 ly(t, z)[>dz. (2.7.25)
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Then E € C%([s, +00)) and, in the distribution sense, it satisfies (compare with (2.7.18))

W <t < CHVEG), 1€ (s,5+ (1)), (2.7.26)
dFE

S < Jult,yle — (1/m) < CHVEG = (1m), t € (s+ (ifn), s+ (i +1)/m),i > 0. (27.27)

Let ¢ : [0,+00) — [0,400) be the solution of

90 = 03 (Vo) ols) = E(s). (2.7.28

Using (2.7.26), (2.7.27), (2.7.28) and simple comparaison arguments, one gets that
E(t) < o(t), VtE[s,+o0), (2.7.29)

ie.

Et) < H ' (H(E(s)) + (t—s)), Vt€[s,+00). (2.7.30)

We now want to let n — +o00. In order to show the dependance on n, we write y™ instead of y.
In particular (2.7.30) becomes

" (13200 B (H(lso(s)12) + (= 5)) Ve € [s, +00). (2.7.31)

From Lemma 8, (2.7.31) and the construction of y™, we get that, for every T > s, there exists
M(T) > 0 such that

ly" (|5, - < M(T), VneN. (2.7.32)

Hence, upon extracting a subsequence of (y™), that we still denote by (y™),,, there exists
y € Lis([s,+00); L*(0, L)) N Lic([s, +00); H' (0, L)), (2.7.33)
such that, for every T > s,

y™ — yin L (s, T; L*(0, L)) weak * as n — 400, (2.7.34)
y" —yin L*(s,T; H'(0, L)) weak asn — 4o0. (2.7.35)

Let us define 2" : [s,s + 00) x (0, L) — R and 4™ : [s,+00) — R by

2"(t) == yo, Vt€Es, s+ (1/n)], (2.7.36)
2M(t) == y"(t — (1/n)), YVt e (s+ (1/n),+00), (2.7.37)
Y (t) == u(t, z"), VtE [s,+00). (2.7.38)

Note that y™ is the solution to the Cauchy problem

Yi' Y T Y Ty Y =0 in (s,4+00) x (0, L),

y"(t,0) = y"(t,L) = 0 on (s, +00),
yn(t, L) = y"(t) on (s,+00), (2.7.39)
y"(s,2) = yo(@) on (0,L).

From (2.7.32) and the first line of (2.7.39), we get that

d
VT >0, (dty”> is bounded in L*(s,s+T; H2(0,L)). (2.7.40)
neN
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From (2.7.34), (2.7.35), (2.7.40) and the Aubin-Lions Lemma [Aub63], we get that
y" —y in L?*(s,T;L*(0,L)) as n — 400, VT > s. (2.7.41)

From (2.7.41) we know that, upon extracting a subsequence if necessary, a subsequence still denoted

by (¥")n,
lim_|ly"(t) — y(t)llr2 =0, for almost every ¢ € (s, +00). (2.7.42)

n—-4o0o
Letting n — +o0 in inequality (2.7.30) for y™ and using (2.7.42), we get that

||y(t)||%z(0,L)< H™? (H(Hy0||2LzL) +(t— s)) , for almost every t € (0, +00). (2.7.43)

Note that, for every T > s,

IN

(L/vr)llyollzz +lly™ (- = (1/n)) — y(- = (1/n)) | L2(s+(1/n), 7522(0,1))

Hly(- = (1/n)) =yl L2(s+a/m), 020,00 F W £2(s,54(1/n):L2(0,L))

(L/v)llyollz +11y"™ = yllL2(s. 02 (0,)

+ly(- = (1/n) = y( )2 (s1/m), 13200, FNY (Ol L2 (5,541 /n);L2(0, 1)) -
(2.7.44)

2" — y||L2((s,T);L§)

IN

From (2.7.36), (2.7.37), (2.7.41) and (2.7.44), we get that
2" — vy in L%(s,T; L*(0,L)) as n — 400, VT > s. (2.7.45)

Extracting, if necessary, from the sequence (z"),, a subsequence, a subsequence still denoted (2™),,
and using (2.7.45), we have

lim |[|z"(¢) — y(t)|lz2 = 0, for almost every ¢ € (s, +00). (2.7.46)

n—4oo

From (2.3.1), (2.3.2), (2.3.3), (2.7.32), (2.7.36), (2.7.37) and (2.7.46), extracting a subsequence from
the sequence (™), if necessary, a subsequence still denoted (y"),,, we may assume that

A = A(t) :=u(t,y(t)) in L>(s,T) weak * asn — +oo, VI > s. (2.7.47)
Let us now check that
y is a solution to the Cauchy problem (2.3.7). (2.7.48)
Let 7 € [s,+00) and let ¢ € C3([s, 7] x [0, L]) be such that
o(t,0) = ¢(t, L) = ¢(t,0) =0, Vte [T1,7]. (2.7.49)

From (2.7.39), one has, for every n € N,

T L T T L
- / / (6t + bo + dowa )" ddt — / " ba(t, L)dt + / / gymyrdadt
T, JO T T JO

L L
+ [ vraotr s~ [ onols. s o (2.750)
0 0
Let 7 be such that
Jim ly™(7) = y(7)lzg = 0. (2.7.51)

Let us recall that, by (2.7.42), (2.7.51) holds for almost every 7 € [s, +00). Using (2.7.35), (2.7.41),
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(2.7.47), (2.7.51) and letting n — +o0 in (2.7.50), we get

-/ / (61 + 6o + baneydadt — | wtesnone s [ / " ouyadadt

T
L L
+ [ wnorade~ [ (s, ado = o (2.752)
0 0
This shows that y is a solution to (2.2.1), with T} := s, Ty arbitrary in (s, +00), h = —yy, €

LY([s,T2]; L?(0, L)) and h = u(-,y(-)) € L*(s,T2). Let us emphasize that, by Lemma 3, it also
implies that y € B, r for every T' € (s, +00). This concludes the proof of (2.7.48) and of Theorem 14.
O

2.8 Appendix C: Proof of Proposition 3

Let us first recall that Proposition 3 is due to Eduardo Cerpa if one requires only u to be in
L?(0,T) instead of being in H(0,T) : see | , Proposition 3.1] and | , Proposition 3.1]. In
his proof, Eduardo Cerpa uses Lemma 5, the controllability in H with controls u € L2. Actually, the
only place in Eduardo Cerpa’s proof where the controllability in H is used is in page 887 of | ]
for the construction of ay, where, with the notations of | ] R(yr), S(ya) € H. We notice that
R(yx), S(yx) share more regularity and better boundary conditions. Indeed, one has

Ays +yy +yy =0,
yx(0) = ya(L) = 0,

which implies that
R(yr), S(yr) € H?,

where

H3 .= HNn{w € H3(0,L);w(0) = w(L) = 0}. (2.8.1)

In order to adapt Eduardo Cerpa’s proof in the framework of u € H'(0,T), it is sufficient to prove
the following controllability result in H? with control u € H'(0,T).

Proposition 6. For every yo, y1 € H® and for every T > 0, there exists a control u € H'(0,T)
such that the solution y € B to the Cauchy problem

Yt + Yzaz + Yo = 0,
y(t,0) = y(t, L) =0,
Yo (t, L) = u(t),
y(0,+) = yo,

satisfies y(T,-) = y1.

The proof of Proposition 3 is the same as the one of | , Proposition 3.1], with the only
difference that one uses Proposition 6 instead of Lemma 5.

Proof of Proposition 6. Let us first point out that 0 is not an eigenvalue of the operator A. Indeed
this follows from Property (P), (2.1.5) and (2.1.6). Using Lemma 5 and | , Proposition 10.3.4]
with 8 = 0, it suffices to check that

for every f € H, there exists y € H> such that —ypee — Yo = f. (2.8.2)
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Let f € H. We know that there exists y € H>(0, L) such that

y(0) = y(L) = y.(L) = 0.

Simple integrations by parts, together with (2.4.11), (2.4.12), (2.8.3) and (2.8.4), show that, with
P =1+ i,
L L L or (L
0 =/ fdz =/ (~Yazzz — Yz)pdx =/ Y(Prex + z)dr = i?/ yedz, (2.8.5)
0 0 0 0

which, together with (2.8.4), implies that y € 3. This concludes the proof of (2.8.2) as well as the
proof of Proposition 6 and of Proposition 3.
O
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3.1 Introduction

We consider the null controllability of the following linearized KdV control system,

up(t, ) + Uggr (t, ) + ug(t,2) =0 in (0,400) x (0,L),
u(t,L) =u.(t,L) =0 on (0,+00), (3.1.1)
u(t,0) = k(t) on (0,+00),

where k(t) € R is a scalar control.

In | | Rosier introduced the KdV system with a right boundary Neumann control. One
surprisingly finds that controllability depends on the length of the interval, which never happens for
the linear finite-dimensional system. More precisely, the system is controllable if and only if

2 2
L¢N = {2m/l+l#; z,keN*}. (3.1.2)

This model has been studied for years, in both controllability | , , , , ,
, ] and stabilization [ , , , , .

69



3.1. Introduction

Concerning the system studied in this paper, we use the left boundary Dirichlet control. For system
(3.1.1), Rosier (see | ]) proved that controllability does not depend on the length of the interval.
This system was then further studied in | ) ].

When we study the well-posedness of the control system by using the classical Lions-Magenes
method (see [ 1), a HY/3 regularity on the control (with respect to time) is required. Such a
problem appears for many boundary control systems, the heat equation and the Burgers equation
for example. However, since most control problems are based on evolution models, Sobolev type
controls are less preferred than piecewise continuous controls (or even L? type conditions), especially
for stabilization problems. In [ ], Coron and Cerpa proved rapid stabilization of the system
(3.1.1) by using the backstepping method. But since they used some stationary feedback laws, this
boundary condition problem is avoided. Recently, by using the (piecewise) backstepping approach,
Coron and Nguyen proved the null controllability and semi-global finite time stabilization for a class
of heat equations (see | ). They showed how the use of the maximum principle leads to the
well-posedness of the closed-loop system. Their method turns out to be a potential way to solve
the local (or even semi-global) finite time stabilization problem for systems which can be rapidly
stabilized by means of backstepping methods. At the same time, this method provides a visible way
to get null controllability directly instead of using observability inequalities and the duality between
controllability and observability.

Initially the backstepping is a method to design stabilizing feedback laws in a recursive manner

for systems having a triangular structure. See, for example, | , Section 12.5]. It was first
introduced to deal with finite-dimensional control systems. But it can also be used for control
systems modeled by means of partial differential equations (PDEs) as shown first in | ]. For

linear partial differential equations, a major innovation is due to Krstic and his collaborators. They
observed that, when applied to the classical discretization of these systems, the backstepping leads,
at the PDEs level (as the mesh size tends to 0), to the transformation of the initial system into a
new target system which can be easily stabilized. This transformation is accomplished by means of
a Volterra transform of the second kind. An excellent introduction to this method is presented in
[ ]. Krstic’s innovation has been shown to be very useful for many PDEs control systems as,
in particular, heat equations [ , , ], wave equations | |, hyperbolic systems
[ , , , 11 , Chapter 7], Korteweg de Vries equations | ,
|, and Kuramoto-Sivashinsky equations | , ]. It was observed later on that for some
PDEs more general transforms than Volterra transforms of the second kind have to be considered:
see | , , ). Recently, the backstepping method has been adapted to coupled
systems, for example the Boussinesq system of KdV-KdV type | ]. For the case of finite
dimensional control system and Krstic’s backstepping, see | ].

Krstic’s backstepping requires solving a kernel equation. In the case of the heat equation, the
kernel equation is a wave equation; however, in this paper the kernel equation turns out to be a
third-order equation, which generates new difficulties both for the well-posedness of the closed-loop
system and for important estimation issues.

In this paper, we prove that the method developed by Coron and Nguyen can be used to get the
null controllability of (3.1.1).

Theorem 15. For any given T > 0, the control system (3.1.1) is null controllable in time T by
using some piecewise continuous controls.

Remark 1. Let us recall that the exact controllability of (3.1.1) fails, which is proved in [ ]

Remark 2. We study in detail the well-posedness of the system. The approach and tools introduced
for this study do not rely on precise structures. In particular the control is not given by a stationary
feedback law (compare to [ ) and no mazimum principle is used (compare to [ ]). Hence,
the well-posedness arguments, as well as a priori estimates, and procedure could easily be adapted
to many other partial differential equations.

This paper is organized as follows. Section 3.2 is a preliminary part including the well-posedness



Chapter 3: Null controllability of a KdV equation with a Dirichlet boundary control 71

of the systems and the rapid stabilization obtained in [ ]. In Section 3.3, we design the control
and provide some estimates which will lead to the null controllability. In Section 3.4, we prove
the null controllability. We put some further comments in Section 3.5. It ends with Appendix 3.6
(Proposition 7): the proof of the uniqueness of the solution to the kernel equation, which is essential
to this paper.

3.2 Preliminary

3.2.1 Well-posedness of the control system

We start with the non-homogeneous linear Cauchy problem

Ut + Ugge + Uz = B in (TlaT2) X (OaL)a
ug(t, L) =u(t,L) =0 on (T1,T»),

(3.2.1)

u(t,0) = k(t) on (T1,T),

u(0,2) = up(x) on (0,L),
for

—o0 < Ty < T < +00, (3.2.2)
ug € L*(0, L), (3.2.3)
h e LY(T1,Ty; L*(0, L)), (3.2.4)
k€ LA(Ty,Ty). (3.2.5)

Definition 9. A solution to the Cauchy problem (3.2.1)—(3.2.5) is a function u € C°([T}, Tz]; L?(0, L))
such that, for every T € [T1,Ts] and for every ¢ € C3([Ty, 7] % [0, L]) satisfying

¢(t70) = ¢(t, L) = d)z(tv 0) =0,Vt € [TlaT]v (326)

one has

N /TT /OL(¢t ¥ b+ Guas)udadt — /TT k() B (£, 0)dt — /TT /OL dhdzdt

L L
—|—/0 U(T7$)¢(T,{E)d$—/0 wop(Ty, z)dz = 0. (3.2.7)

The uniqueness of the solution to the Cauchy problem (3.2.1)—(3.2.5) is straightforward, one can
get details from the book by Coron | ]. For the existence of the solution, in | |, Bona,
Sun, and Zhang proved the following result.

Lemma 9. If h € H'Y3(Ty,T5), then the Cauchy problem (3.2.1) has one and only one solution.
This solution is in C°([Ty, Ta); L?(0,L)) N L*(Ty, Te; HY(0,L)). There exists a constant ¢; > 0
depending on (Ty — T1) such that

llullco(ry,m)i2200,0)) + 1wl 2 ¢y, 1o m0 0,2)) + SEPL]HUJC(HI)”L?(Tl,Tz)
xe|0,

<a (||U0||Lz(o,L)+||f€||H1/3(T1,T2)+HB||L1(Tl,Tz;L2(o,L))) : (3.2.8)
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3.2.2 Rapid stabilization of (3.1.1)

We recall some results given in [ ]. Given a positive parameter A > 1, we consider the
following equations in the triangle 7 := {(z,y) : x € [0, L],y € [z, L]},

Kpae + kyyy + ke +hy + A =0  in T,

k(z,L)=0 0,L
(@, L) on [0, L1, (3.2.9)

kE(x,z) =0 on [0, L],

ky(x,2) = %(L —x) on [0, L],

and
loas + Lyyy + 1o +1, — M =0 inT,
l(z,L)=0 0,L
(«,L) on [0, L}, (3.2.10)
l(z,2) =0 on [0, L],
lo(z,x) = 3(L — x) on [0, L].
In | ], it is noted that both (3.2.9) and (3.2.10) have solutions in C3(T). These solutions

are further studied in Section 3.3, where we provide some estimates on ||k||co(7) with respect to .
Actually, the solutions of equation (3.2.9) and of (3.2.10) satisfy the following conditions

kry(z,2) = -3 (3.2.11)
A
lay(z,2) = —3, (3.2.12)

respectively. The Properties (3.2.11) and (3.2.12) can be checked as follows: we perform the change
of variables,
t=y—z, s=x+y, (3.2.13)

and define
G(s,t) :=k(z,y). (3.2.14)

Then equation (3.2.9) of k becomes the following equation of G,

6Gtts + 2Gsss + 2G5 + )\G =0 in 7—07

2L —s) = L,2L
G(s, s)=0 on [L,2L], (3.2.15)
G(s,0)=0 on [0,2L],
Gi(s,0) = %(s —2L) on [0,2L],
where Ty := {(s,t);t € [0, L], s € [t,2L — ¢]}. From (3.2.15), one easily gets
Gis(5,0) = 0 in [0, 2L). (3.2.16)

Hence, Gy (s,0) = G(2L,0). In order to calculate Gy (2L, 0), one observes from (3.2.15) that

Gu(2L,0) = 2G4 (2L, 0) = % (3.2.17)

Direct calculations show that N
koy(@,2) = =Gu(s,0) = 3 (3.2.18)

which concludes (3.2.11). The proof of (3.2.12) is similar.
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Now, let us define a continuous transformation Il : L?(0,L) — L?(0, L) by

L
w(z) = Ty (u(z) = u(x) - / Kz, y)u(y)dy. (3.2.19)

Moreover, its inverse is given by (let us denote by H;l)

L
u(r) =10, N (w(z)) = w(z) —|—/ Iz, y)w(y)dy. (3.2.20)

That is because k(x,y) and I(z,y) are related by the formula
y
la,) = K(w9) = [ K.l ) (3221)

x

Actually, one can define

Yy
Wz,y) := k(z,y) +/ k(z,m)l(n, y)dn. (3.2.22)
Hence one only needs to prove [ = [ to get (3.2.21). Direct calculations show that [ satisfies

~ T~

, (3.2.23)

&
2
I
=
o
=

E:E\‘zz:zgxﬂ
—~
\.R -
r22
: I
o
w|>
—
h
I
E
o e}
= B
=355
&&=

(3.2.24)

Regarding to the Cauchy problem (3.2.24), we have the following proposition (hence I = 1), whose
proof is given in Appendix 3.6.

Proposition 7. The equation (3.2.24) has a unique solution in C3(T). More precisely, this solution
8 ZQ =0.

Remark 3. This proposition is important to this paper. In the following section we construct
precisely a solution to equation (3.2.9)(and of (3.2.10) respectively), the proof of Theorem 15 relies
on some estimates of this solution. Proposition 7 ensures the solution that we construct satisfies
(3.2.21) (hence (3.2.20)).

We find that by using the transformation II, the solution of (3.1.1) with control

L
K(t) = /0 k0, y)u(t, y)dy, (3.2.25)
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is mapped to a solution of the system

Wi+ Wage +wWe + Aw =0 in (0,400) x (0,L),
w(t,L) = w,(t,L) =0 on (0,400), (3.2.26)
w(t,0) =0 on (0,400).

For system (3.2.26), one can easily obtain exponential decay of the solution
llwt, M ez, < e w(0, )| £2(0,1)- (3.2.27)
Hence the solution of (3.1.1) with feedback law (3.2.25) satisfies

lut, ) rz0,0) < I3 p20,0)— 22000 o )l 20,1

<
< e_MHHXI||L2(0,L)—>L2(0,L) [[w (0, )l £2 (0,1
<

e M 20,0y 20,0 1T 220, £2(0,2) 14(0, ) | 220, 1) - (3.2.28)

From now on, we simply denote ||TI;"(|z2(0.z)—z2(0,r) by |[II} "] to simplify the notations.

3.2.3 Well-posedness of system (3.2.26)

For a positive parameter A > 0, we consider the following linear operator Ay : D(A)) C
L?(0,L) — L?(0, L) with

D(Ay) = {f € H*(0,L); f(0) = f(L) = f.(L) = 0}, (3.2.29)
Ay = —fo — fowe — ALV E D(.A)\) (3.2.30)
Similarly, for the case where A = 0 (see [ , page 38-43]), the following properties also hold.
D(A,) is dense in L?(0, L), (3.2.31)
A, is closed, (3.2.32)
Ay and A* are dissipative. (3.2.33)

Hence, A, generates a strongly continuous semigroup of linear operator {Sy(t)}:>0 on L?(0,L).
Furthermore, for every initial data wy € D(Ay), system (3.2.26) has one and only one solution
w(t,z) € C°([0,+00); L(0, L)). This solution also satisfies

w € CH([0, +00); L2(0, L)) N C°([0, +00); D(A»)), (3.2.34)
[we (- 0) [l 20,7 < Nlwoll 20,2, VT > 0, (3.2.35)
lwll£2 0,781 (0,0)) < Crllwoll £2(0,1), Where Cr only depends on T > 0. (3.2.36)

By standard approximation arguments, it follows that when wo € L?(0, L) equation (3.2.26) has
a unique solution w(t, =) € C°([0, +00); L?(0, L)). This solution also satisfies (3.2.35) and (3.2.36).
For more details on the results and proofs of this subsection, one can refer to Coron’s book | ,
page 38-43 and page 374-377]. Although the book only describes the case when A = 0, the general
case A > 0 follows by considering e w.

Remark 4. Inequality (3.2.35) is a hidden inequality. It was first found by Rosier in [ ].
Inequality (3.2.36) is the Kato smoothing effect.
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3.3 Control design

Inspired by the work of Coron and Nguyen in | ], we construct a piecewise control such that
on each piece, the solution of (3.1.1) can be transformed to a solution of (3.2.26). More precisely,
we select

{An}nen, increasing positive numbers that tends to infinity, (3.3.1)
{tn}nen, increasing numbers with ¢ty = 0 that tends to T as n tends to infinity. (3.3.2
First we define

u(0) := up and u(T) := 0. (3.3.3)

Then, for t,, <t < t,41, we successively define
u(t) =TI, 1Sy, (t — )Ty, u(ty), (3.3.4)

L
K(t) = [ ka, (0,9)ult, y)dy, (3.3.5)

0
where S, is the semigroup given in Section 3.2.3.
One has the following lemma, whose proof is given at the end of this section.

Lemma 10. As defined in (3.3.3)(3.3.4), u(t)|s, <t<tn., 95 a solution of (3.2.1) with T\ = t,, Ty =

tni1,h =0, and k(t) given by (3.3.5).

Let us define

n—1
s0 :=0 and s,, := Z Ak (tgy1 — tg) forn > 1, (3.3.6)
k=0

thanks to (3.3.4) and (3.2.28), we get

lut, Ml z2(0,0)< € luoll 2o,y | | (I TN (3.3.7)
k=0
|6(8)] < e luollz(0,) [kx, (0 )l 2o,y [T (ITER TG IT) (3.3.8)
k=0

for ¢ € [tn, tni1).
Hence, if we have a good estimation on kj, it will be possible to get u(t) — 0 when ¢ tends to
T. Actually, we have the following estimates.

Lemma 11. Let A > 2, then (3.2.9) has a unique solution ky € C3(T) (respectively (3.2.10) has a
unique solution Iy € C3(T)). Those solutions also satisfy

(14+L)%2VX (1+L)2\5. (339)

[kllco(m< e and ||Ix|lcomy< e

Proof of Lemma 11. The existence of solution to (3.2.9) is given in | ]. The uniqueness of the
solution is proved in Appendix 3.6. Here we focus on the C° norm estimate (3.3.9).
Take the following change of variable,

t=y—2x, s=x+y (3.3.10)

and define
G(s,t) :=k(z,y). (3.3.11)
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Then we transform (3.2.9) into an integral equation of G(s,t) (see formula (21) in | D,
G(s,t) = f%(QL —t—s)
1 2L—t t T
+s / / / (2Gsss + 2G5 + AG) (n, €)dEdTdn, (3.3.12)
s 0 JO
in 7o :={(s,t);t €10, L],s € [t,2L — ¢]}.

We use a successive approximation to give a solution of the equation (3.3.12). Thanks to Propo-
sition 7, this solution is the unique solution of (3.3.12). Let us take

At

Gl(s,t) :== —E(QL—t—s) (3.3.13)
and define
20—t
G (s / / / (2G™.. +2G™ + AG™) (n, €)dédrdn. (3.3.14)
For instance,
2 L ys 2 A%t g A2 22
G2(s,1) = 108{t (A= N2L+ =) @L—t—s)+ ——[(2L—1)* = s ]}. (3.3.15)

But unfortunately, we can not perform such explicit calculation by hand each time. We try to
estimate G"(s,t) from another way. Notice that if f(s,t) := g(s)h(t), then

/2L // (. &)dedrdn
/ o / / g (n)h(€)dgdrdn
:/SQL o dn/ / h(€)dgdr. (3.:3.16)

Let P be the space of polynomials of one variable on R. We define operator T by

T:PoP-PxP

20—t
)= = / / / (2 + 2* + )Jd) (g - h)(n,&)dEdrdn. (3.3.17)
Equality (3.3.16) shows that (3.3.17) is well defined. In fact
T(g(s)h(t)) = gr(s,t)hr(t), (3.3.18)

where gr(s,t) and hr(t) are given by

L N )
gr(s,t) = g/g (2853 + 2% + AId) (9)(n)dn, (3.3.19)

r(t) == /O /O h(€)dédr. (3.3.20)

()] <t VO<t<L, (3.3.21)

Observe that, if
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then .o .
b (1)) = | /O /O MOEdr| € et for b€ 0.1 (3.3.22)
As for gr(s,t), notice that if g(s) = s™ with m > 3, then
g1(s, 1) :é (2m(m —1)(2L — )2 — 2m(m — 1)s™ 2
L 2@L — gy - ggm 4 ARLZO™T Asmﬂ). (3.3.23)

m—+1 m+1

This inspires us to separate T into the following 6 linear operators {T;}1<ics from PP to PR P.

T : s™h(t) — {é(Qm(m —1)(2L - t)m_Q)hT(t), when m > 3,
0

0, when 0 < m < 2,
—5(2m(m —1)s™ 2)hr(t), whenm >3
Ty : s™h(t) — 6( m(m )s ) T(t), when m ,
0, when 0 < m < 2,

$(2(2L — t)™)hrp(t), whenm >1,
0, when m = 0,

Ts : Smh(t) — {

—3(2s™)hr(t), whenm >1,
0, when m = 0,

T4 : Smh(t) — {

A (2L — )™ *!
Ts5: s"h(t) — g%hrr(t), when m > 0,

)\Sm+1
Ts : s™h(t) —» ——
61 "h() 6m+1

hr(t), when m > 0.
Since T; is linear, we easily find that

T;(0) = 0.
From (3.3.17)—(3.3.29), we know that

6
T=)» T; onPaP.
=1

Hence,

G"t(s,t) = TG"(s,t)

- (iTi)G"(s,t)
_ (iTi)nGl(s,t).

=1

(3.3.24)

(3.3.25)

(3.3.26)

(3.3.27)

(3.3.28)

(3.3.29)

(3.3.30)

(3.3.31)
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By (3.3.13), we get

G(s,1) = —%t(QL _ 6+ %(st) — I(s,1) + T (s, 1), (3.3.32)
where
I(s,t):= —%t(?L —t) and J(s,t) := %(st). (3.3.33)
Let us define
A, = {(ml,acg, )i w € {1,2,3,4,5,61,Y1 < i < n}7V n> 1. (3.3.34)

For any n € N*, for any a = (a(1),a(2),...,a(n)) € A,,, we define the operator
Ty = Tu(m Tan_1)-Ta(1)- (3.3.35)

We define additionally A := {a¢} and Ty, := Id (identity operator on P).
Hence for any n € N, we have

Grl(s,t) = T" (I n J)
= > (TD)+ Y (TaJ). (3.3.36)

a€ch, achA,
Now we use mathematical induction to conclude the following lemma.

Lemma 12. For every A > 2, for every n € N and for every a € A,,, To,I and T,J are of the form
s'h(t). They also satisfy

2n+1
h() < Ly L

6 m(2L+l)”“’ll t € [0, L]. (3.3.37)

n

Proof of Lemma 12. When n =
Lemma 12 holds when n = k >
holds when n =k + 1.

For any n > 1, and for any a := (a(1),a(2),...,a(n + 1)) € Ay41, let us define

o(a) := (a(1),a(2),...,a(n)). (3.3.38)

one can check that Lemma 12 holds. Let us suppose that

0,
0. Then we can check in the rest of the proof that Lemma 12

For any a € Ay, let us define
o(a) := ap. (3.3.39)

Hence for any a := (a(1),a(2),...,a(k + 1)) € Ap11, we have
To = Tatri1) To(a)- (3.3.40)

From the assumption, we know that
Ty = s'h(t). (3.3.41)

If Tya)I = 0, then we conclude the proof.

If Tp(a)! = s'h(t), then we know from (3.3.37) that

< (3)

t2k‘+1
6 TSI

1
2L + 1)1+’Hﬁ, t €0, L]. (3.3.42)

Let us first consider T1. We know that Ty (s'h(t)) = 0 if I < 2. Therefore, it suffices to prove the
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case when [ > 3.
From (3.3.20)—(3.3.22), (3.3.24

~—

, and (3.3.42), we know that

Ty (sth(1)] = [ (10— 1)L — 1)) 1)
o /AN 1t

(a-veL-n)(3)

6 2% + 3)!

2 t2k+3
6
(}\)k+2 $2k+3 )kfl 1

1
(2L + 1)1+k7llil

(3.3.43)

Notice that T;(s'h(t)) can be written as sg(¢). Thus, it can be seen from (3.3.43) that (3.3.37) is
satisfied.
By using the same procedure, we can check that

Sl72

A k+2 t2k+3
Ty (s < (2 — (2L + 1)1+ 3.44
TGO < (5) @) (3.3.44)
A k2 t2k+3 1
1 < (2 o 1+k *
IT3(sth(t))] < (6) R (3.3.45)
A k42 $2k43 s
Ty(s'h(t))| < (= — (2L + 1)1+ 3.4
TN < (5) g @h (3.3.46)
A\ k42 t2k+3
- l < (Z k+2 3.
ITs(s h(ED] < (6) arra CEH D o (3.347)
AN k2 42k+3 s+l
T (s < (2 — (2L + 1)+ ) 3.4
T r O < (5) mraan®+ 0 oo (3.3.48)
Hence, we complete the proof. O

By the same idea of partition and Lemma 12, we can further obtain the following estimate.

Lemma 13. For every A > 2, for every n € N, and for every a € A,,, T,I and T,J are of the form
s'h(t). They also satisfy

n+l $2n
(2n)!

Remark 5. One can get similar estimates for C?-norm or even C™-norm. However, since in this
paper we do not need to use such estimates, this part is omitted. Actually, C*-norm estimates can
be obtained directly by Lemma 12 (as the way of getting Lemma 13), but the C™-norm (with n > 3)
is more complicated. Furthermore, it can be seen from [ | that for the heat equation the kernel
is analytic in the triangle. It is of interest to know if the kernel we obtained in this article is also
analytic.

ouhenl <2(3)

1
(2L + 1)"+3-ll7, te[o,L). (3.3.49)

We come back to the estimate (3.3.36). From Lemma 12, we know that, for every n € N, for
every a € A, for every m € N, and for ¢ € [0, L] we have

14+n 2n+1
A) ( t (2L + 1)+, (3.3.50)

e (re) 0] < (5)

%(T“J) (S’t)‘ < (Q)Hn(;itll)!(% + 1)t (3.3.51)
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These together with (3.3.36) imply that

om 4 )\lJrn t2n+1 i
|asmG” (s,t)| < Tm(2L+ )T (3.3.52)
hence
Z —G" (s,t) is uniformly convergent in 7. (3.3.53)
The same approach shows that the series
+oo am+1
99 —G"(s,t) is uniformly convergent in 7o. (3.3.54)
— t0s
We define
+oo
)= G"(s,1), (3.3.55)
n=1
which is the solution of (3.3.12) (see | , page 1691]). First, we estimate |G| from (3.3.52),
(3.3.53), and (3.3.55):
V(2L + 1A
|G(s,1)| < %ev CLADA " in 7. (3.3.56)
Hence
(1+L)/2L+D)x
IG(s,t)] < St DV i g (3.3.57)

3

It only remains to prove that G(s,t) € C3(Tp). Actually, from (3.3.53) and (3.3.54) we know that
it suffices to prove Gy, Gy, Girr € C°(Tp). We know from (3.2.15) that Gys € C°(Tp). As for Gy
and Gy, thanks to (3.3.12), we get

6G(5,1) = —A(2L — 5 — 2) — / t / " (2Gaes + 2G + AG) (2L — 1, €)dedr
+ / o / (G + 261 +AG) (0, £)dedn,
6G i (s,1) = 2\ + / / ssss + 2G5 + AGs) (2L — t,&)dédT
/ (2Gsss + 2G4 + AG) (2L — £, €)de — / (2Gass + 2G4 + \G) (2L — t, €)dg

0

2L —t
+ / (2G s + 2G4 + AG) (1, t)d,

t
6Gyns(5,1) / / vesss + 2Cuss + AGas) (2L — 1, €)dedr + / (2Gass + 2Gas + AG) (2L — 1, £)de
0

i
— 2(2Gsss + 2G5 + AG) (2L — t,t)dE + 2/ (2Gssss + 2G5 + AGs) (2L — t,€)dE
0

2L —t
n / (2Gasst + 2G st + AGY) (0,8 — (2Gass + 2G5 + AG) (2L — £,1).

The above formulas together with (3.3.53)—(3.3.54) give the continuity of Gy and of Gy;. Hence we
complete the proof of Lemma 11. O

Remark 6. As we can see from [ , | for the heat equation, the L™ -norm of the kernel
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kx is of the form VA, One may naturally ask if the sharp estimate on the L™ -norm of kernel ky

is of the form eC VX for the KdV case, as KdV is of order 8. However, we do not know how to get
such estimates.

At last, it remains to give the proof of Lemma 10.

Proof of Lemma 10. It is equivalent to prove the following statement:

Given ug € L?(0,L), A > 0,s > 0, one has
(S) k(t) = [ kA (0,") (H;ls,\(t)ﬂ,\uo)(-)dy € L2(0,5), and
u(t) == 15 ' S\ (t)II\uo is the solution of (3.2.1) on [0, s] with h=0.

We only need to prove the case where ug € H;lD(A ), since standard approximation methods then
lead to the general case of (S). From Section 3.2.3, we know that

w(t) == Sx(t)Ixug € C°([0, s]; D(Ay)) N C*([0, s]; L*(0, L)), (3.3.58)

which shows that x(t) € C°([0, s]). Direct calculations, based on (3.2.10), show that (similar to page
1690 in [CC13))

L
U = wy + / (ly + lyyy — A (2, 2)w(2)dz

—ly(z, 2)we (z) + Ly (z, v)w(x), (3.3.59)
L
Uy = Wy () +/ lp(z, 2)w(z)dz, (3.3.60)
’ L
Uy = Wae () — Lz (2, 2)w(2) —|—/ Loz (2, 2)w(2)dz, (3.3.61)
Urry = Wrzz — (lmv(xa l‘) + lwy(.’II, x))w(x)
L
—lp(z, 2)we(x) — lpo(z, 2)w(T) +/ lpze (T, 2)w(T)dz, (3.3.62)

all these calculations hold on C°([0, T]; L2(0, L)). From (3.3.59)—(3.3.62) and (3.2.10), we know that

u(t,x) € CH([0,5]; L*(0, L)) N C°([0, s]; H*(0, L)), (3.3.63)

Uy + Uy + Ugze = 0, in L*(0, L), (3.3.64)

u(t, L) = u,(t, L) =0, (3.3.65)

u(t,0) = k(t), (3.3.66)

which show that u satisfies Definition 9. O

Remark 7. In fact, by using (3.2.9) and the hidden inequality (3.2.35), we can also prove that
k(t) € H'(0,s) with its norm controlled by |luol|r2(0,L)-

3.4 Null controllability

Finally, we are able to prove the null controllability (Theorem 15) by constructing a piecewise
continuous bounded control. The construction is explained in Section 3.3. Thanks to Lemma 10
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and (3.3.1)—(3.3.8), we only need to find good sequences {\, }nen and {t, }nen such that:

1 —Sn —1 _
Jim e TT (g s, ) = o, (3.4.1)
k=0
tim_ e~ (0. 2000 [T (IR, ) = 0. (3.42)
n——+oo " ’ P K
and that
u(t)]ocs<r is a solution of (3.2.1) with i = 0, x(t) given by (3.3.5). (3.4.3)

Thanks to Lemma 10, from Definition 9, (3.3.7), (3.3.8), (3.4.1), and (3.4.2), one can easily deduce
that u(t)|ogt<r is the solution of (3.1.1). It remains to prove that (3.4.1)—(3.4.2) hold.
From the definition of ITy and TI; ', (3.2.19)-(3.2.20), we know that

2
1T 20,0)— 22 (0,0) < (14 L||Ex|lco()) < e2(1+L) ﬁ, (3.4.4)
I Y 20,0y 220,09 < (14 Ll llcogry) < 2A+HEVA, (3.4.5)
2
15200, M £2(0,0)< VIllalloo(ry < 2AHDVA, (3.4.6)

where Lemma 11 is used. Hence it suffices to select {\,, }nen and {t, }nen such that

e [ eS0+D*VA — 0, (3.4.7)
k=0
Inspired by the choices given by Coron and Nguyen in | , Proposition 1], we select t,, :=

T —1/n? and A, := 2n8. One easily verifies that (3.4.7) holds, which completes the proof.

Remark 8. To deal with the heat equations (by using backstepping approach), one needs to study
the wave equation instead, which is already well investigated. In this article, we study the KdV
system which has an order of 3. Hence the kernel system (see (3.6.1)) becomes a third order “wave-
like” equation. For this reason, we encountered some difficulties: Lemma 11 for estimation and
Proposition 7 for uniqueness. We believe that the Coron-Nguyen method, as well as the techniques
introduced in this paper, could be used for other systems whose order is greater than 3. As we
know, the backstepping method is well used on the rapid stablization problem of first-order hyperbolic

systems (see [ J).  Unfortunately, as they are of order one, we are not sure if some good
estimates could be obtained for the null controllability or even the finite time stabilization. However,
looking for [ , , |, this might be possible for quasilinear hyperbolic systems.

3.5 Further comments

The above procedure has the following advantages.

e The null controllability is precisely obtained by an explicit piecewise continuous (actually
piecewise H') bounded control instead of some unknown H'/3 control.

e The well-posedness results and the estimates investigated in this paper should allow small-time
stabilization to be proven (instead of rapid stabilization in | D-

e The backstepping approach as used in | ] together with the techniques introduced in this
paper could be applied to more models, as the backstepping method was widely used in the
last 20 years for different models.
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We also want to point out a list of open problems which could be further studied.

e The (global or local) controllability and the (global or local) small-time stabilization of the
nonlinear KdV equations.
Based on the linear result and the Kato smoothing effect, we may expect the local control-
lability by standard perturbation. Actually, as it is shown in [ , ]
that the backstepping method can be directly used to treat the nonhnear case. But as the
main purpose of this paper is to extend the new method found by Coron and Nguyen to more
general models (as we stated in the Introduction), we do not consider nonlinear cases here.
However, since there is only one scalar control on the boundary, the global controllabil-
ity in small time is a real challenge and might be false, as it is the case for the Burg-
ers equations | ]. If there are more controls there are several global controllability re-
sults in small time for the nonlinear KdV equations | ] and for the Burgers equations
[ , , , ]. Note that, using the backstepping ap-
proach, | ] allows to recover the global controllability result of | | obtained by means
of the return method. It would be interesting to see if | | can be adapted to nonlinear
KdV equations.

e In | , ], using a “microlocal” approach and Carleman’s inequalities, Lebeau and
Robbiano proved some eCVA type estimates and then deduced from these estimates the con-
trollability of the heat equation. From a “global” point of view, we also obtain the eCVA type
estimates (Lemma 11), and also get the controllability.

An important and interesting question: is there any connection between the backstepping
method, Lebeau-Robbiano’s strategy, Carleman inequalities, and small-time (local) stabiliza-
tion?

e Let us also recall open problems raised in Remark 5 about the analytic regularity of the kernel
and Remark 6 about sharp kernel estimates. For the sharp L*°-norm (or even C™-norm)
estimates, considering | ], perhaps it would be more natural to consider Gevrey class
regularity instead of the analytic regularity.

Acknowledgments. The author would like to thank Jean-Michel Coron for having attracted
his attention to this problem, for his constant support, and for fruitful discussions. He also thanks
Amaury Hayat, Qi Lii, Peipei Shang, Daniel Wong, Bingyu Zhang, and Christophe Zhang for
discussions on this problem. This work was supported by LIASFMA and ANR Project Finite4SoS
(ANR 15-CE23-0007).

3.6 Appendix: Proof of Proposition 7

In this part, we give the proof of the uniqueness of the solution to equation (3.2.24). As the
function is defined in the triangle T, we extend Iy by 0 in the lower triangle [0, L] x [0, L] \ 7, and
denote by h the extended function. Since on the diagonal z = y, C3(T) function Iy satisfies

lO:E = lOy = lOww = ZOMI = lOyy = 0’

the extended function is H3([0, L] x [0, L]). Moreover, h satisfies

haaz + hyyy + he + hy =0 in [0, L] x [0, L],
h(z,L)=0 on [0,L
h(z,0) = hy(x,0) = hyy(2,0) =0  on [0,L
hL,y) = ha(L,y) = haa(L,y) =0 on[0,L

(3.6.1)
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By simple change of variables, £ = L — x and y = L — y, it suffices to prove that the solution
h € H3([0, L] x [0, L]) of

haez + hyyy + ha +hy =0 in [0, L] x [0, L],
h(z,0) =0 on [0,L
h(z,L) = hy(z,L) = hyy(z,L) =0 on [0,L
h(0,y) = ha(0,4) = hae(0,4) =0 on [0,L

(3.6.2)

is 0.
As (3.6.2) is similar to the wave equation, it is natural to consider eigenfunctions of the operator
(with respect to y variable),

A, : D(A,) C L*(0,L) — L*(0, L), (3.6.3)
D(A,) = {f € H}(0,L); f(0) = f(L) = f,(L) = 0}, (3.6.4)
Ay f = —fy — fyuy, Vf € D(A,). (3.6.5)

If the eigenfunctions, {©, (y)}n, form a Riesz basis of L?(0, L), then the Fourier series decomposition
h(z,y) = én() - only) (3.6.6)

easily infers the uniqueness required. Unfortunately, this operator is a non-self-adjoint operator and
eigenfunctions do not form a Riesz basis, see | ]

Another idea is to investigate the completeness of eigenfunctions, {t(y)n}n», of the adjoint op-
erator Ay,

A% D(AY) € LP(0,L) — L*(0, L), (3.6.7)
D(A;) :={f € H*(0,L); f(0) = f(L) = f,(0) =0}, (3.6.8)
A f = —fy — fyyy,Vf € D(A). (3.6.9)

Actually, suppose that {¢,,(y)}, is an eigenfunction of the adjoint operator Ay, then from (3.6.2)
as well as the boundary conditions of h and v one can deduce that

(Ora + 02 — M) (n (), () 1201 = 0. (3.6.10)
Combine (3.6.10) with the fact that
(@n(-), (0, ) L20,L) = B (¥ () B(0,)) L2(0.1) = Dz (Y (), P(0,)) L2(0,2) = O, (3.6.11)
we obtain
(Yn(-),h(x,))L2(0,L) =0, Va €[0,L]. (3.6.12)

If {4, (y)}n is complete in L2(0, L), then h(x,0) is 0. However, we don’t know the completeness of
the eigenfunctions {1y, (y)}n.

More generally, one could consider eigenfunctionals or even generalized eigenfunctions, following
Gel'fand and the coauthors | , ]. More precisely, in the non-self-adjoint cases it is not
always possible to expand a function as the sum of eigenfunctions. In order to avoid this problem,
one uses different generalisations of eigenfunctions.

For example, the generalisation introduced by Fokas, augmented eigenfunctions, which is itself a
generalisation of Gel'fand’s eigenfunctions (allow the appearance of remainder functionals). This
generalisation turns out to be a powerful tool to investigate the initial-boundary value problem
(IBVP). One can find an almost complete investigation from the papers | , , SF]. In



Chapter 3: Null controllability of a KdV equation with a Dirichlet boundary control

general, let ® be a function space defined on the closure of a real interval I with sufficient smoothness
and decay conditions, £ be a linear operator defined on ®. Let « be an oriented contour in C, and
let E={E, : A € v} be a family of functionals (imagine as a family of eigenfunction when ~ is only
defined on a discrete set). Then the corresponding remainder functionals Ry € ® with respect to
eigenvalues A is

Ri(@) :== A\"Ex(¢) — Ex(LP), Vo € D,V E . (3.6.13)
One is interested in the cases in which one of the following two conditions is satisfied,
/e“zR,\(ng)dA =0, Vpecd Vrel, (3.6.14)
A
or N
e)\n Ri(¢)d\ =0, V¢ € ®,Vzel, (3.6.15)
X

where (3.6.14) (resp. (3.6.15)) is called the type I (resp. type II) condition of augmented eigenfunc-
tions of £ up to the integration along ~.

As we can see above, the study of augmented eigenfunctions involves complicated asymptotic
calculations. In Fokas’ work this method is only used to study the evolution equations based on a
good transform pair, which does not seem to be a good (easy) option to our problem (3.6.2). Instead
of augmented eigenfunctions, Locker | ] also considered the generalized eigenspace g given by

UN(()\J — L)™), union for all m; € N, and \; eigenvalues,

where £ denotes the operator, N denotes the kernel. More precisely, to the linearized KAV operator
he proved the following.

Theorem 16. Let L > 0. For the differential operator Lf := fyrr + af, with boundary conditions

f(0) = f(L) =0, (3.6.16)

the generalized eigenfunction space Eg is complete in L*(0, L) space when B # 0.

Remark 9. When 8 = 0, it does not seem to be known whether generalized eigenfunction space
Eg is complete in L2(0,L). This is one of the reasons that much more complicated augmented
eigenfunctions are introduced (the other reasons are about the regularities and some more general
boundary conditions). Actually, this case can be regarded as a limit of the cases when the coupling
constant 8 approaches 0.

In fact, in [ | Locker only considered the operator Lf := fyz.. One can easily verify with the
same proof that the same result holds when there is an additional f, in the operator.

In order to solve our problem, we use another kind of generalized eigenfunctions, which is more
general than &g but is less general than augmented eigenfunctions, namely eigenfunctions and asso-
ciated functions (e.a.f.). The definition of e.a.f., which is defined on equations with A as parameter,

is rather complicated. One can see | , chapter 1] and | ] for precise description on this
subject.
With eigenfunctions and associated functions, Shkalikov in | ] proved the following theorem.

Theorem 17. The eigenfunctions and associated functions of the boundary-value problem generated
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by an ordinary differential equation with separated boundary conditions

I(y) = Ny =y 4 pr_o(x)y™ 2 + ..+ po(x)y — \"y = 0, (3.6.18)
n—1
Uj(y) = apy™(0) =0, with j =1,2,...,1, (3.6.19)
k=0
n—1
Uj(y) = > Biry™ (L) =0, with j =1,2,...,n—1, (3.6.20)
k=0

form a complete system in the space L?[0, L), where p;(x) are arbitrary summable functions, and
I>n—-1>0.

Applying Theorem 17 to our case (linearised KdV), we get

Corollary 3. For the ordinary differential equation with separated boundary conditions

,u(f) =1(f) - )\Sf = fyyy + fy - )\3f =0, (3.6.21)
Ur(f) = f(0) =0, (3.6.22)
Ua(f) = fy(0) =0, (3.6.23)
Us(f) = f(L) =0, (3.6.24)

the eigenfunctions and associated functions form a complete system in the space L?[0, L.

Finally, we are able to prove Proposition 7.

Proof of Proposition 7. Let us consider the boundary-value problem (3.6.21)—(3.6.24). Let Ag be an
eigenvalue, and let ¢o(y) = ¢(y) an eigenfunction for the eigenvalue \g. The associated functions
associated with the eigenfunction ¢(y) are given by the functions

P1(y), p2(y), -, Pr(Y)-
These functions satisfy (the boundary conditions)
Ui(gi) = Us(p;) =Us(p;) =0, Vi=0,1,..,k, (3.6.25)
and, for A = \g, the following relations

10 10 .
(i) + ﬂaﬂ(%‘—l) ot 5@#(@0) =0, Vi=0,1,...k. (3.6.26)

Now we prove that for all those functions (e.a.f.), we have
(h(x, ), 0:(N 20,0y =0, Vo€ [0,L], Vi=0,1,...k (3.6.27)
At first, for g, as what we have done in (3.6.12), clearly
(h(z. ). eo( iz = 0. Vo€ [0,L). (3.6.28)
For 1, equation (3.6.26) shows that

(©1)yyy + (01)y = A1 = 3\500 = 0. (3.6.29)
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Hence from (3.6.2), (3.6.25), (3.6.28), and (3.6.29) we get

= (0 4 00 + 8y + 0y)h(x,-), ©1(-)) £2(0,1)
= (95 + 0x) (h(z, ), 1(") (x,-), (85 + 3y)e1(-)) L2(0,1)

= (02 + 9u)(h(@, ), 01()) r2(0,0) — (A2, ), =A501(-) — 3AG20(-)) L2(0,1)

= (05 + 0x + X5){h(x. ), 01()) 12(0,1)- (3.6.30)

r2o,L) — (b

€z,

By using the the fact that

(h(0,-); 1)) 20,y = Oz (h(0,-), 1(")) L2(0,1.) = Oz (h(0,-), 1 (")) 2(0,) = O, (3.6.31)

we get
(h(z,-);01(-))220,0) =0, Va €[0,L]. (3.6.32)

Repeating this procedure we get (3.6.27), which combined with Corollary 3 shows that
h(xz,:) =0, Vzel0,L]. (3.6.33)
Hence the proof of Proposition 7 is completed. O

Remark 10. For the y-variable, we only used 3 boundary conditions in the proof to deduce the
uniqueness of the solution h: h(x,L) = hy(x,L) = h(z,0) = 0. This is natural, since once we
consider 4 boundary conditions (for a third order differential operator), the eigenfunctions could
never become a basis.

We may also wonder, if we can get the uniqueness of h by using the other 3 boundary conditions
in y-variable: h(x, L) = hy(x, L) = hyy(x, L) = 02 Unfortunately, Theorem 17 can not be applied for
these 3 boundary conditions: we observe from (3.6.19) and (3.6.20) that there should be boundary
conditions on both side. Hence, it is difficult to get the uniqueness of h by using the Carleman
estimate, see [ , Chapter 4], [ | and [[197], though the Carleman estimate is a standard
way to solve the unique continuation problem.
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4.1 Introduction

We consider the stabilization problem of the Korteweg-de Vries equation

posed on a bounded domain [0, L]. This system requires three boundary conditions including both
left and right end-point (see [ ], the system fails to be well-posed when all boundary conditions
are given at only one end-point), among which the most studied case is

y(t,0), y(t, L), yu(t, L). (4.1.2)

When there is only one control term y,, i.e. y(t,0) = y(¢, L) = 0, the phenomenon becomes quite
mysterious: starting from the linearized KdV equation, Lionel Rosier | ] found that the system
is controllable if and only if the length of the interval satisfies

2 2
L¢N = {mW%; z,keN*}. (4.1.3)

It allows us to decompose the L?(0, L) space into the controllable state and the uncontrollable state
(for the linearized KdV equation). To get the controllability of the KdV equations, “Power Series
Expansion” method was introduced in [ , , ], which turned out to be a classical
example of getting controllability by using nonlinear terms. The stabilization problem is even more
interesting, as we need to investigate a closed-loop system which involves more difficulties (even
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4.1. Introduction

for the well-posedness). Several works [ , , , , | have
been made in this special KdV control system, here we refer | ] Where the authors used the
nonlinear term (and also uncontrollable part) to find a time-varying feedback law which stabilize the
system exponentially. As we can see, in this model we really used the nonlinear term, by “fixing”
the uncontrollable part, to reach the goal of controlling and stabilizing. However, at the same time,
those results are only local, and the exponential decay rate is small (compare to rapid stabilization
or small-time stabilization). To get the same results in global sense, is a challenging and interesting
problem, since one may need to find other techniques for the nonlinear term.

In this paper, we focus on the control acting on y(t,0), with y(¢t,L) = y.(t,L) = 0. This
system has an advantage of being locally controllable, see | , , ] for discussions
on this system. From the stabilization point of view, the final aim should be (local) small-time
stabilization, especially by means of time-varying feedback laws (inspired by | | for the finite
dimensional case). Recently in [ ], Jean-Michel Coron and Hoai-Minh Nguyen made a first
step, they used a piece-wise backstepping control to get the null controllability and the semi-global
small-time stabilization for the heat equation. Here we refer to | , , ] for
the history, explanation and development of backstepping method. As the backsteppmg method has
already been used for a rapid stabilization for this KdV system, one may naturally expect the small-
time stabilization. In the recent paper | ], the author used this technique to give a new proof of
null controllability of the linearized KdV equation. However, when one considers the stabilization
problems, there came a difficulty of lacking regularity on the control (feedback) term y(¢,0). When
we consider the well-posedness of the KAV system, a priori the H'/3 regularity on y(t,0) is needed.
But one can hardly ensure the feedback to be more than C° with respect to time.

A technique called “adding an integrator” solves our (regularity) problem. Usually used to avoid
the offset in the stabilization problem, this technique also has the advantage of gaining regularity.
Indeed, if we “add” another term, a(t), as

y(t,0) = a(t), a(t) = ul(t), (4.1.4)
where u(t) is the control, then we have a(t) € H(0,T) if u(t) € L?(0,T). One can see the paper
of Jean-Michel Coron | ], where this method is used for the stabilization of Euler equations.
This technique has been widely used in different cases, for example one can see | , ]. Let

us also point out that, the controllability and stabilizability of the control system with additional
integral term are related but may be different from the ones of the original control system; see,
in particular [ , Proposition 3.30 and Section 12.5] and | ] for finite dimensional control
systems.

We consider in this paper the following system:

Yt + Yz + Yooz + Yy =0, (4.1.5)

y(t, L) =y, (t, L) =0, (4.1.6)

y(t,0) = a(t), (4.1.7)

ar(t) + Yz (t,0) + %a(t) + %a2(t) = u(t), (4.1.8)

in the interval [0, 1] (we only consider only the case when L = 1 to simplify the notations). We notice
the extra y,4(t,0) term in (4.1.8). It naturally comes from (4.1.7) and helps to ensure the well-
posedness of our new system (see the energy estimate (4.1.10)). As for terms (1/2)a and (1/3)a>
which could be put in the control term, we let them here to make the dissipative nature visible (see
the energy estimate (4.1.10)). It is a control system where the state is (y(x), a), but with only one
control u. Let us set

V= L2(0,1) x R and ||(y, a)|[{:= [[yl|72(0,1) +a”- (4.1.9)
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Then easy calculations show that the “flow” of system (4.1.5)—(4.1.8) satisfies:

D)@l = 20,0}z + 200
= 2(—~Yo = Yowe — YW, Y) 12 + 2010
=a’+ %ag — 42(0)% + 2ay,.(0) + 2a,a
< 2au. (4.1.10)

In order to get the well-posedness of the nonlinear system, we may need some (Kato type) smoothing
effects. We first consider the linearized system of (4.1.5)—(4.1.8). By multiplying zy the linearized
part of (4.1.5), we get the Kato smoothing effect y € L?(0,T; H'(0,1)). This together with (4.1.10)
and some fixed point argument, allows us to get the well-posedness of the nonlinear system (4.1.5)—
(4.1.8) in the transposition sense (with initial data (yo,a0) € V and control u(t) € L'(0,T)), the
solution being in
(C°([0,T; L*(0,1)) N L*(0,T; H'(0,1))) x C°([0, T]; R).

Here, we are not going to reconstruct the whole theory of transposition solutions, which is already
well explained in the book [ ] (one can also see similar cases in [ , ]). Based on
the method introduced in | ] and the estimates given in | ], we are able to stabilize system
(4.1.5)—(4.1.8) in small time. More precisely, for every T' > 0, we construct time-varying feedback
laws U(t;y,a) : R x L?(0,1) x R — R, satisfying properties (P1)—(P5) (see Section 4.3 for details),
which stabilize the system in small time. From now on, let us consider the Cauchy problem of the
closed-loop system (4.1.5)—(4.1.8)

Yt + Yo + Yozz + YYa = 0,

y(t, 1) = ya:(tﬂ 1) =0,

y(t,0) = a(?),

at—|—ym(0)+%a—|—%a2 =u, (4.1.11)
y(s,z) = yo,

a(s) = ap,

u:=U(t;y,a)

with (¢,2) € (s,+00) x (0,1). For this Cauchy problem, from properties (P;)—(P3) we have the
existence and uniqueness of solution in small time. A solution (y1,a1) : [s,71) — V to the
Cauchy problem is maximal, if there is no solution (ya,as) : [s,72) — V such that 72 > 7 and
(y1,01) = (y2,a2) in [s,71]. From the uniqueness of solution, let us denote ®(t,s;yo,ao) with
t € [s,t(8; Y0, a0)] the unique maximal solution with initial data (yo,ag), we call this solution the
flow of the Cauchy system (4.1.11). Properties (P4)—(P5) let every maximal solution to be defined
on [s,+00), i.e. t(8;yo,ap) = +00.
The main purpose of this paper is to prove the following theorem:

Theorem 18. Let T > 0. There exists € > 0 and a time-varying feedback law U(t;y,a) satisfying
properties (P1)—(Ps) such that following properties hold:

(i) (50, a0) = +00, for every (s;y0,a0) € R x V.
(it) @(t + 2T, t;y0,a0) = 0, if [|(yo, ao)|[v< e.
(iii) (Uniform stability property) For ¥§ > 0,3n > 0 such that

(I (o, ao)llv< m) = (12(t,t"s 90, ao) v < 6, ¥¢ > ). (4.1.12)



4.2. Rapid stabilization

This paper is organized as follows. In Section 4.2, we give a stationary feedback law F which can
locally exponentially stabilize the system with decay rate A. Section 4.3 contains the construction
of the time-varying feedback law, which leads to the local small-time stabilization that we will prove
in Section 4.4.

4.2 Rapid stabilization

This section is based on the rapid stabilization of a KdV system proved in | ] and estimates
(Lemma 15) given in | ]. Let us start by considering the linearized system

y(t, 1) =y.(t,1) =0, (4.2.1)
y(t,0) = u(t).
It is proved in | | that for any given positive A, there is a kernel k) defined in the triangle T :

{(x,v) : 2 € (0,1),v € (x,1)} such that if we perform the transformation II, : L?(0,1) — L?(0,1)

2(z) = M (y(@)) = y(z) - / k(2 0)y(v)do, (42.2)

then the solution y of system (4.2.2) with feedback law

1
u(t) == / Ex(0,v)y(t,v)dv (4.2.3)
0
is mapped to the solution z of the system

Zt+zm+zmxx+)\zzoa
2(t,1) = z,(t,1) = 0, (4.2.4)
z(t,0) = 0.

Therefore we have the exponential stabilization:
201220,y < e [12(0) | 20,19, (4.2.5)

hence exponentially decay for the solution y(t,-) thanks to the invertibility of the transformation
11,
As for the kernel, the following result is given in [ |:

Lemma 14.

(1) The kernel ky satisfies equation

kmxm+kvvu+k1+kv+)\k:0 ’LTLT,

k(z,1) =0 in [0,1],
k(z,z) =0 in [0, 1], (42.6)
ky(z,z) = %(1 —I) in [0,1].

(2) The inverse of transformation Iy, H;l, is given by

y(z) =10 (2(2)) = 2(x) —|—/ Ix(z,v)z(v)dv. (4.2.7)
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And the kernel Iy satisfies

lzxa:+lvvv+lm+lv_>\l:0 m T,
l(z,1)=0 in [0, 1],

4.2.8
l(z,2) =0 in [0, 1], ( )
ly(z,2) = %(1 — ) in [0, 1].
Later, in [ ], more information on ky is given:

Lemma 15. The equation (4.2.6) has a unique solution. There exists a constant Cy, which is
independent of A > 1, such that

||k>\HC3(7’)< eclﬁ, and ||l,\||C3(7-)< eclﬁ. (4.2.9)
Remark 11. In [ |, the estimate is only given for the Ct-norm, but one can easily get similar
C3 estimates by using the same method. As stated in [ )], it will be a challenging and interesting

problem to know whether the right hand side of (4.2.9) can be replaced by exp(C\'/3).

Now, we consider the linearized system of (4.1.11):

Yt + Yo + Yoz = 07
y(t, 1) = y(t,1) =0,

(4.2.10)
y(t,0) = a(t),
at + Yz (0) + %a = u.
We look for a transformation Zy with (z,b) = Zx((y, a)) of the form:
=), (4.2.11)
b:=a+ F\(y),
and a feedback law of the form
’U,(t) = K)\(y) + Lya. (4212)
We want (z,b) to satisfy the following target system:
2t + 2o + Zgge + A2 =0,
2(t,1) = z,(¢,1) = 0, (4.2.13)
z(t,0) = b(t),
b + 222(0) + 20+ pb = w,
with p and w to be chosen later.
Actually, performing the same calculation as in [ , page 1690] with (4.2.6), we get
2t + Zg + Zawe + A2 = 0. (4.2.14)
Besides, we have
z(t,1) = y(t,1) =0, (4.2.15)
2a(t,1) = yu (£, 1) + kx(1, )y(t, 1) = 0, (4.2.16)

1
2(t,0) =a 7/0 kx(0,v)y(t,v)dv. (4.2.17)
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Hence, F)\(y) should be
1
Fi(y) = —/ Ex(0,v)y(v)dv. (4.2.18)
0

At last, let us calculate w:
1
w = by + 2,4(0) + §b—|—,ub

= (a+ E\@)e + (0 + 5)(a+ Fr(1)) + 52al0)

- ( /x 1 ka(z, v)y(v)dv)m(O) (4.2.19)

= (at + Yoz (0) + %a) + (Fa(y)), + %FA(y)

1
= ([ Brnel0.00m(0)de = 10.0)0) + o+ Fi(o)

Since
1
(Fx(m)e = — [ kx(0,0)ye(t,v)dv
0
1

:/0 k,\(O,v)(yz(tm)—|—ymm(t7v))dv

1

1
=~ [ B0, 0t o)+ k0.0t o),
0

1 1
i / kA,vm,(Om)y(t,v)dv—kk)\(O,v)ym(tv)‘o
0

1

1
- k'/\,'u(oa U)yx (tv U) ‘0 + k)\,vv (07 U)y(tv U) ‘0

1
=7 / (k)\,v (07 U) + k)\,vvv (07 U))y(t, ’U)d’l}
0
+ k/\fu(oa O)yx (tv 0) - k)\,vv (07 O)Cl, (4220)

from (4.2.10)—(4.2.20) we get

1
1
w=u— / (k)\,v + k/\,vvv + 7k)\
0 2

+ pky + k,\’m) (0, v)y(t,v)dv

— (= kx,2(0,0) + kx,00(0,0) — ) a + kx,(0,0)y,(t, 0)
=u— (= kre(0,0) + kx 00 (0,0) = p)a + kx . (0,0)24(t, 0)

1 1
- / (k)\,u + k)\,vvv + 7]9)\
0 2
A
otk + o + S ) (0,0)y(E v)do,

where we used the fact that

1
22(t,0) — yx(t,0) = —/0 kx,2(0,v)y(v)dv. (4.2.21)
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Hence we define the feedback, u(t) = Kx(y) + Laa, by

K)\(y) = fol (k)\,v + k)\,v'u'u + %k)\
ki + Fixan + 3hine ) (0,0)y(0)dv, (4.2.22)
Lk = _k)ul'(ov 0) + k)\,vv(oa 0) -

which leads to \
w = kx(0,0)25(¢,0) = —gzm(t, 0). (4.2.23)

Let us choose
o= A2 (4.2.24)

From (4.2.13), (4.2.23) and (4.2.24), we get

d
ZN@ BT = =2:(0)* = 22272 =2(A% + \)b* + 2wd

—2X/[(z,b) 1%, (4.2.25)

which leads to the (global) exponential decay with rate A to the target system (4.2.13). In order to
get exponential decay to the system (4.2.10), we need to point that both =y, E;l V-V

= . Yy Iy 0 Yy

=A- a F, 1 a )’
1. z R ! 0 z
b ~-RI 1 b )’

are bounded.

From (4.2.2), (4.2.18), (4.2.22) and Lemma 15, there exists Cy independent of A > 1 such that
following estimates on the norm of operators hold

Ly < eV K| < eV, Ry < eOV, (4.2.26)

M| < eV and [TY] < @V (4.2.27)

Hence

Ea] € 229N and |E5Y] < 2202V, (4.2.28)

Let us consider now the stability of nonlinear system (4.1.11) with feedback law u given by (4.2.12)
and (4.2.22). Suppose that (y,a)(t) is a solution of (4.1.11) with (4.2.12), then (z,b) := Zx(y, a)
satisfies

2t(t, @) + 22 (t, ) + Zowa (t, ) + A2(L, 2)

( (t,2) /lev tv)d)
- (zw(t,x) + / lx,x(x,v)z(t,v)dv>
I

—%/£ k,\w(x,v)(ﬂxlz)z(t,v)dv =1, (4.2.29)

2(t,1) = 0, 25 (,1) = 0, 2(£,0) = b, (4.2.30)
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1 A
b + 224(0) + §b + b+ gz,;(t,o)

———*1 2—1/1k' (O )2(t )d
a v (U, v ,V)av
3 2 Jo A Y

1

_ 1
T3
=J.

1
(FAIT; 'z — ) — 5/0 kx o (0,0) (T 12) % (8, v)do
Hence, together with (4.2.24), the flow (z,b) satisfy

d 2\
@O = =2(0)" = 22]2[72=2(X* + \)p* - — #(0)b

+2(z, 1) 12 + 2bJ
< =22||(z,b)|13-42(z, I) > + 2bJ.

Performing the same calculation as in [ , page 1692], we get
202, 1) 2] + 206 < =Yz D)1

with C3 > 3C5 independent of A > 1.
Hence if the initial state (zo, by) satisfies

120, bo)llv < =Y (iee. [[(yo, ao)lly < e 2%V,

the solution (z,b) has the exponential decay

1(2,0)(t)llv < e~ 2|(20, b0) |-

4.3 Control design

(4.2.31)

(4.2.32)

(4.2.33)

(4.2.34)

(4.2.35)

This section is devoted to the construction of time-varying feedback laws satisfying following

properties.
(P1) The feedback law U is T-periodic with respect to time:

Ut;y,a) = U(T + t;y,a).

(P2) There exists an increasing sequence {t,} of real numbers such that

to =0,
lim ¢, =T,

n—roo

U is of class C in [t,,t,41) x L*(0,1) x R,

(4.3.1)

(4.3.2)
(4.3.3)

(4.3.4)

(P3) The feedback law U vanishes on Rx {0} x {0}. There exists a continuous function M : [0,T) —

[0, 4+00) such that

|U(t;y1,a1) | =|U(t; y2, a2) |
SM()(llyr — yallz2+ | a1 — a2 |),

for Vt € [0,T).
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(Py) For all (t;y,a) € R x L?(0,1) x R, we have
Ut y,a) |< min{1, ( a)v - (43.7)

(Ps) I(y;a)llv=1=U(t;y,a) =0, for V¢ € R.

As what is done in | ], we can find a piecewise continuous feedback law in time [0,T") such that
properties (P2)—(Ps) holds. Once the feedback law on [0,T") is chosen, we can prolong this feedback
law periodically to get a feedback law fulfills (P;)—(Ps). Since the feedback law (4.2.12) given in
Section 4.2 is Lipschitz in V| it is not difficult to design such piecewise feedback laws.

Actually, for each “piece” (on time [t,,,t,+1)), the feedback law given by (K x, (Y)+Lx, a) locally

exponentially stabilizes the system. Hence, if we multiply (K x, (y) + L, a) by a cutoff function

©a, , the obtained feedback law still locally exponentially stabilizes the system. Moreover, with a
good choice of ¢, , this new feedback law can satisfies (P3)—(P5). More precisely, we define

= o, (1. @)lv) (K, (9) + L)) (138)

u(t;y, a) :
tG[tn,tn+1)
where @, := Rt — RT is given by
1, ifzel0,e VA5,
{ 2 —5eC2Vngif x e [emC2VAn /5 2¢7C2V2n /5] One can easily verify that properties
0, ifz e [2e” VA /5 fo0).
(P2)—(Ps) hold for proper choice of {t,}.
The difficult part is to choose {\,} (increasing positive numbers that tend to infinity) and {¢,}
(increasing numbers with to = 0 that tend to T as n tends to infinity), such that Theorem 18 holds.
Let us directly choose
tn =0, '*Oforn<n'*1+[i] (4.3.9)
n - y Ap L 0 - \/T N LO.
2
tp =T —1/n% X\, :=2n8, forn>np:=1+[—=].

VT

In the next section, we can see that such feedback law stabilizes the system in small time.

4.4 Small-time stabilization

The proof of Theorem 18 is divided into three parts:
(1) The solution exists in arbitrary time.
(2) There exists € > 0 such that, (T, 0;yg,a0) = 0, if ||(y0, a0)||v< e.
(3) Uniform stability property, see (4.1.12).

In fact, (1) equals to (i), (3) equals to (iii), and (2)—(3) imply (ii).

Let us start by (1). By classical fixed point argument, for every R > 0, we know the existence
of Tg such that for every initial state ||(y,a)|lv < R, the solution exists on (0,7x). We only need
to verify that the solution will never blow-up. Following the simple calculation in (4.1.10) with the
help of (P4)—(Ps), we can control the V-norm of the solution in arbitrary time. As the time-varying
feedback law is bounded at every time except ¢ = T, we also need to prove that for Vs € [0,T),
following limit

lim ®(¢, s;yo,ao) (4.4.1)

t—T
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exists. This can be proved by using the same method given in | , page 22]. Briefly, by using
the standard Banach fixed point argument, one can find that (for s € [0,7T))

®(t,s;90,a) € C°([s,T); L*(0,1)) N L2(s, T; H'(0,1)). (4.4.2)
Moreover, there exists Cy such that
||q)(tv S5 Yo, a(])||co([s,T);L2(O,1))< CO? (443)

H(D(ta5;y07a0)||L2(s,T;H1(0,1))< Co. (444)

Let us denote by ®(t, s; 4o, ag) the unique solution of the Cauchy problem (4.1.11) with U(t; y, a) = 0.
Direct calculation shows that, Ve > 0, there exists t. € [s,T) such that

1(® = &) (¢, o3, @) 200, < 2V € [t T), VI (3, 0) [y < Co. (1.45)
Since ®(t,t.; D(te, 8390, a0)) € CO([te, T]; L*(0,1)), there exists ¢’ € [t.,T) such that

19 (2, te; @(te, 590, a0)) — BT, te; @(te, 5190, a0)) | L2 (0, < €, (4.4.6)
for Vt € [te 7). Hence, for Vt. < t' < ¢’ < T, we have

[@(', 5590, a0) — ®(t", 5390, a0) | L2(0,1)
=[|®(t', te; D(te, 550, a0)) — P(t", te; P(te, 5190, a0))| L2 (0,1

<||(I)(t/7t€; (I)(tEa S;yO,GO)) - (I)(t/;ts; (I)(tsv 55Y0, aO))HLZ(O,l)

+ [P (", te; D(te, 5550, a0)) — P(t7, te; P(te, 5390, a0))| 20,1

+ | R, te; D(te, 5590, a0)) — B, te; (e, 5590, a0)) || 2(0,1)
e,

which implies (4.4.1).
The next and the most important step is to prove (2). On time [ty, tn41), the feedback w is given
by

[, )llv) (K, (9) + L, ).

We observe that if ¢y, # 1, the exponential decay no longer holds. The idea is to prove that

©x, (

ex Iy, a)®)llv) =1, for t € [ty tnt1)
which is equivalent to have that
(g, @) (®)|lv< e~V /5 for t € [tn, tns1). (4.4.7)

As we have seen in Section 4.2, in order to get exponential stabilization of our nonlinear system
(4.1.11), the following condition on the “initial state”

(g, a)(tn) ||y < €72V (4.4.8)

is sufficient. One can simply verify the following lemma:

Lemma 16. For everyn > 1. For every
(@) (tn) |y < e 49V, (4.4.9)

conditions (4.4.7)—(4.4.8) hold fort € [tn,tnt1).
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If both (4.4.7) and (4.4.9) are fulfilled, the solution (y, a)(t) is controlled by the following estimate:
For t € [0,T — 1/n3], we have ||(y,a)(t)||v< || (yo, ao)|v-
For t € [tpn,tnt1) with n > ng, we have

1(y, @)()[lv /1l (yo, ao)llv

n—1

IT (B lm e twrmoner)

k‘:TLo

n—1 n
5 4
g ( H efck) ) ( H 65CQIC ) .
k:’ﬂo k:’I’LO

In order to ensure the conditions (4.4.7) and (4.4.9), and to get the stabilization to 0 on time T,
we only need to find € > 0 such that

n—1 n
£ ( 1T 66’“5) ( 11 65Czk4> < 4Gt Ca)n’ (4.4.10)

k:ng k::’n(]

<IEnIEL

for all n > ng. Such e obviously exists.

At last, it remains to prove (3), the uniform stability property. On the one hand, observe from
(4.1.10) and (Py4) that, for Yoy > 0, there exists Ty € [0,T) such that

(II(yo, ao)llv < d0/2,t0 € [To,T))
:>(||(I)(t,t0;yo,ao)HV< 507Vt S [thT)) (4411)

On the other hand, from (P3) we can find a M such that
u(t;y,a) < M||(y,a)|lv, for t € [0,Tp], (4.4.12)
which concludes the existence of C' such that
[2(¢, 5390, ao)[[v< Cll(yo, ao)[lv, V0 < s < t < To. (4.4.13)

Estimates (4.4.11) and (4.4.13) together with (2) give the uniform stability property (3), which
completes the proof.

Remark 12. As we have seen, the main idea is to use the “kernel” (linear part), which forces our
results to be local. From the controllability point of view, one can use the return method to get global
control results (even in small time), see [ , , . From local stabilization to some
global result, there still exists a big gap, especially for small time.

Acknowledgments. The author would like to thank Jean-Michel Coron for having attracted
his attention to this problem, for his constant support, and for fruitful discussions. He also thanks
Amaury Hayat, Peipei Shang and Christophe Zhang for discussions on this problem.
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5.1 Introduction

A very classical problem for controllable system is the asymptotic stabilization issue. Stabi-
lization is an action to render a system more stable than it is naturally: with the help of some
well-designed feedback laws the closed-loop system has stability properties that does not have the
system without feedback laws as, for example, asymptotically stability, exponentially stability, or
even better. One of the strongest stabilization property that one may ask is the small-time stabiliza-
tion, which means that for any positive time T there exist feedback laws such that the closed-loop
system is stable and the solutions of the closed-loop system are zero after any interval of time of

101



102 5.1. Introduction

length at least equal to T. (Other definitions are in fact possible; the one given here is the one
directly inspired by the classical small-time local controllability; see, for example, | , Defini-
tion 3.2].) However, due to some special properties of partial differential equations, for example
finite speed of propagation, one can sometimes only achieve finite-time stabilization: there exist a
positive time T and feedback laws such that the closed-loop system is stable and the solutions of
the closed-loop systems are zero after an interval of time of length at least equal to T

Let us first recall some results concerning systems in finite dimension. It was first pointed out in
[ ] that a system which is globally controllable may not be globally asymptotically stabilizable
by means of continuous stationary feedback laws. In | ] a necessary condition for asymptotic
stabilizability by means of continuous stationary feedback laws is established. See also | ]
There are controllable systems which do not satisfy this necessary condition. In order to overcome
this problem two main strategies have been introduced, namely the use of discontinuous stationary
feedback laws and the use of continuous (with respect to the state) time-varying feedback laws.
For the first strategy, let us mention in particular | ] and | ]. Concerning the second
strategy, which was introduced in | ] and | ], it is proved in | ] that many powerful
sufficient conditions for small-time local controllability imply the existence of feedback laws which
stabilize locally the system in small time.

Concerning control systems modelled by means of partial differential equations much less is
known. The classical approach for local results is to first consider the linearized control system
around the equilibrium of interest. If this linear system can be asymptotically stabilized by a
linear feedback law one may expect that the same feedback law is going to stabilize asymptotically
the initial nonlinear control system. This approach has been successfully applied to many control
systems. Let us, for example, mention | , , , , , , 1,
which are dealing with the stabilization of the Navier-Stokes equations of incompressible fluids,
equations which are close to the one we study here, i.e. the viscous Burgers equation. However
this strategy does not work in two important cases, namely the case where the linearized system is
not asymptotically stabilizable and the case where one is looking for a global result. In both cases
one expects that the construction of (globally or locally) asymptotically stabilizing feedback laws
heavily depends on the methods allowing to use the nonlinearity in order to prove the associated
controllability property (global or local controllability). For the local controllability one of this
method is the “power series expansion” method. See in particular | , , ] where an
expansion to the order 2 and 3 is used in order to prove the local controllability of Korteweg-de
Vries equations. This method can be indeed adapted to construct stabilizing feedback laws: see
[ ] for control systems in finite dimension and | ] for a Korteweg-de Vries control system
and | ] for a Navier-Stokes equation.

Concerning the second case (global stabilization), even less is known. It is natural to expect
that the construction of globally asymptotically stabilizable feedback laws depends strongly on
the arguments allowing to prove this controllability. One of these arguments is the use of the
return method together with scaling arguments (and, in some cases, a local controllability result) as
introduced in [ , ]. These arguments have been used to get global controllability results
for

e The Euler equations of incompressible fluids in | , 1,

e The Navier-Stokes equations of incompressible fluids in [ , , , , 1,
e Burgers equations in | , 1,

e The Vlasov-Poisson system in | , ].

In some of these cases the “phantom tracking” method gives a possibility to get global stabilization.
This method was introduced in | ] for the asymptotic stabilization of the Euler systems, then
it has been used in various models [ , ]. One can find a tutorial introduction to this
method in [ |. However, it is not clear how to get finite-time stabilization with this method.
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Concerning the stabilization in small time or even in finite time of partial differential equations
very little is known. Let us mention

e The use of Krstic’s backstepping method [ ] to get stabilization in finite time of linear
hyperbolic systems; see in particular | , , , , 1,

e The small-time stabilization of 1 — D parabolic equations | I,

e The small-time local stabilization of Korteweg-de Vries equations [ ].

In this paper, we give the first small-time global stabilization result in a case where the global
null controllability is achieved by using the return method together with scaling arguments and a
local controllability result. We investigate the Burgers equation

Yt — Yoz + YYe = a(t), y(t,0) = u1(t), y(t, 1) = ua(t), (5.1.1)

where, at time ¢, the state is y(t,) and the controls are a(t) € R, u1(¢) € R, and us(t) € R. The
Burgers equation has been very much studied for its important similarities with the Navier-Stokes
equation as the appearance of boundary layers and the balance between the linear viscous term and
the quadratic transport term.

Let us briefly recall some controllability results on the Burgers control system (5.1.1). When

a = 0 and u; = 0, the small-time local null controllability is proved in | ] . When a = 0, it
is proved in | ] that the small-time global null controllability does not hold. Before and after
this, many related results were given in | , , , ]. In
[ ] the return method and scaling arguments are used as in [ , ] to prove that (5.1.1)
is globally null controllable. The global null controllability in small time also holds if us = 0 as
proved in | ], even if in this case boundary layers appear when applying the return method.
Moreover, it is proved in | ] that the small-time local controllability fails when u; = ug = 0.

This article is dealing with the small-time global stabilization of (5.1.1). To overcome some
regularity issues we add an integration on the control variable a : now a; = «(t) and a(t) is part of
the state. In other words, we consider a dynamical extension of (5.1.1) -see for example | ,
p. 292]- with an extension with a variable of dimension only 1. Dynamical extensions are usually
considered to handle output regulations. It can also be used to handle obstructions to full state
stabilization for nonlinear systems even in finite dimension: see | , Proposition 1]. In this paper,
we therefore consider the following viscous Burgers controlled system:

Yt — Yo + Yz = (t) for (t,z) € (s,+00) x (0,1),

y(t,0) = ui(t) for t € (s,+00), (5.1.2)
y(t, 1) = ua(t) for t € (s,400),

a; = at) for t € (s,+00),

where, at time ¢, the state is (y(t,-),a(t)) € L?(0,1) x R , and the control is (a(t),uy(t),us(t)) €
R x R x R. (We could have considered a; = §(t) where 5(¢) is a new control; however it turns out
that one can just take 5(t) = a(t).)

Before stating our results on stabilization, let us introduce the notion of feedback law, closed-
loop system, proper feedback law, and flow associated to a proper feedback law. A feedback law is
an application F’

. 2
{F.D(F)cRxL(O,l)xR - RxRxR (5.1.3)

(t;y,a) = F(t;y7a) = (A(t§y7a)7 Ul(t;y7a), UQ(t;y7a))'
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The closed-loop system associated to such a feedback law F' is the evolution equation

Yt = Yoz + Yy = Alt;y,a)  for (t,2) € (s,+00) x (0,1),

y(t,0) = U1(t;y,a) for t € (s,400), (5.1.4)
y(t, 1) = Us(t;y,a) for t € (s,400),

a; = A(t; y,a) for t € (s,400).

The feedback law F is called proper if the Cauchy problem associated to the closed-loop system
(5.1.4) is well posed for every s € R and for every initial data (yo,aq) € L%(0,1) x R at time s; see
Definition 13 for the precise definition of a solution to this Cauchy problem and see Definition 14 for
the precise definition of proper. For a proper feedback law, one can define the flow ® : A x (L?(0,1) x
R) — (L%(0,1) x R), with A := {(¢,s); t > s} associated to this feedback law: ®(¢,s;yo,ao) is the
value at ¢ > s of the solution (y,a) to the closed-loop system (5.1.4) which is equal to (yo,aq) at
time s.

Let

V= L2(0,1) x R with ||(y, a)[lv:= [lyll2+lal- (5.1.5)

Our main result is the following small-time global stabilization result.

Theorem 19. Let T > 0. There exists a proper 2T -periodic time-varying feedback law for system
(5.1.2) such that

(i) ®(4T +t,t;y0,a0) =0, Vt € R, Vyo € L?(0,1), Va € R.

(i) (Uniform stability property.) For every § > 0, there exists n > 0 such that

(1o, ao)lv< m) = (| @(t, "5 90, a0)|[v< 6, V' € R, Vte (t',+00)). (5.1.6)
Our strategy to prove Theorem 19 is to decompose the small-time global stabilization into two
stages:

e Stage 1: Global “approximate stabilization”, i.e., the feedback law steers the control system
in a small neighborhood of the origin,

e Stage 2: Small-time local stabilization.

In the remaining part of this introduction, we heuristically describe these two stages (see Fig-
ure 5.1).

5.1.1 Global approximate stabilization

In this part we use the transport term yy, and the “phantom tracking” strategy to get global
approximate stabilization in small time, i.e. to get, for a given € > 0, ||y(t)||r2+]a(t)] < € for ¢
larger than a given time. For this issue, let us perform the following change of variable

z=y—a. (5.1.7)
Then (5.1.2) becomes
2t — Zgx + 222 +a(t)z, =0 for (t,z) € (s,+00) x (0,1),
z(t,0) = w1 (t) — a(t) for ¢ € (s,4+00), (5.1.8)
2(t, 1) = ua(t) — a(t) for t € (s,400), o
a; = a(t) for t € (s,400)
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Stage 1 Stage 2
Phantom Tracking
Y line means the value of ||y|| 2
0
..... line means the value of a
Stabilization of a
t=0 T/2 T T + tn, ot

Figure 5.1: Small-time global stabilization of (y, a).

In this stage, we will always set
Ui(t;y,a) = Us(t;y,a) = a. (5.1.9)

Then the energy (i.e. the square of the L2-norm) is dissipating:

d
Zlzlz=<o. (5.1.10)

As we know, the “transport term” a(t)z, can lead to a small value for ||z(T)||z2. For example
letting a(t) = C|z|| 12, one can expect that ||z(T)| 2< € for T > 0 given, whatever the initial data
is. However |a(t)| can become larger. Thanks to the control of a(t) (see (5.1.8)) and the dissipation
of z (see (5.1.10)), a, as we will see, can be stabilized later on. In order to stabilize z only, we will
try to find suitable feedback laws for system (5.1.8).

Using this strategy, we will get the following theorem, the proof of which is given in Section 5.3.
Theorem 20. Let T > 0,e > 0. There exists
A:Rx L*0,1) xR =R, (t;y,a) — A(t;y,a), (5.1.11)

such that the associated feedback law Fy (see (5.1.3) and (5.1.9)) is proper for system (5.1.2) and
such that the following properties hold, where ®, denotes the flow associated to F1,

(Q1) The feedback law A is T-periodic with respect to time:

A(t;y,a) = A(T + t;y,a), Y(t,y,a) € R x L*(0,1) x R, (5.1.12)

(Q2) There exists a stationary feedback law Ao : L?(0,1) x R = R, (y,a) = Ao(y,a), such that

A(t;y,a) = Aoy, a), Vte€[0,T/2), V(y,a) € D(Ao), (5.1.13)
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(Qs) There exists a stationary feedback law Ay : R = R, a— Aj(a), such that

A(t;y,a) = Aq(a), Y(t;y,a) € [T/2,T) x L*(0,1) x R, (5.1.14)

(Q4) (Local uniform stability property.) For every § > 0, there exists n > 0 such that

(1m0, ao)lv< m) = (I@1(t, 390, a0)[[v< 6, YO<t' <t <T), (5.1.15)

(Qs) For every yo in L*(0,1) and for every ag € R,

B1(T,0: yo, a0) = (y(T),0) with ly(T) | 12(01)< =. (5.1.16)

Theorem 20 is not a stabilization result, since we only get that y(7T') is “close to 0”. For this
reason we name this stage “global approximate stabilization”.

5.1.2 Small-time local stabilization

Thanks to the first stage we now only need to get the small-time local stabilization. Since
we already have ®1(T,0;y0,a0) = (y(T),0) with ||y(T)||z2< &, we can set « = 0. Inspired by
the piecewise backstepping approach introduced in | ], we also set u; = 0. Hence the system
becomes

Y¢ — Yoz + YYs =0 for (t,x) € (s,+00) x (0,1),

y(t,0) =0 for t € (s,400), (5.1.17)
y(t,1) = ua(t) for t € (s,400).
We do not care about a since it does not change. In | ] the authors get small-time semi-global

stabilization for the heat equation. Since we only need small-time local stabilization, the nonlinear
term yy, could naturally be regarded as a small perturbation. However, by classical Lions—-Magenes
method, in order to have a C°([0,T]; L?(0,1)) solution (to the system (5.1.17)), a H'/*(0,T) reg-
ularity of the control term is needed. For the control problem with the open-loop systems, the
regularity condition on the control term is not a big obstacle. But when we consider the closed-loop
system, it is hard to expect our feedback law will lead to a control in H'/ 4(0,T), especially when
the feedback laws are given by some unbounded operators. Actually this problem also appears for
the KdV system [ ], where based on the special structure of KdV (leading to the Kato hidden
regularity of y,.(¢,0)), the “adding an integrator” method (i.e. the control is no longer us but g in
the framework of (5.1.17)) solved this problem. Nevertheless, this idea does not work for our case,
since there is no such hidden regularity.

However, instead of the hidden regularity, we have now the maximum principle. With this
principle we get that a control in C°([0,T]) leads to a solution in C°([0,T]; L?(0,1)). Hence we
get a solution in C°([0,T7]; L?(0,1)) for the closed-loop system. We look for Us : R x L?*(0,1) — R
satisfying the following properties

(P1) The feedback law Us is T-periodic with respect to time:

Ua(tyy) = Ua(T + t;y), (5.1.18)
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(P2) There exists an increasing sequence {t, nen of real numbers such that

to =0, (5.1.19)
lim t, =T, (5.1.20)
n—-+oo
Us is of class O in [ty tny1) x L*(0,1), (5.1.21)

(P3) The feedback law U vanishes on R x {0} and there exists a continuous function M : [0,T) —
[0, +00) such that, for every (t,y1,y2) € [0,T) x L*(0,1) x L*(0,1),

U(ty1) = Ultsy2)| < M) (Ilyr — v2ll22), (5.1.22)
(P4) For every (t,y) € R x L%(0,1), we have

[U(t:y)] < min{l, /|lyl[z=}, (5.1.23)

(Ps) If lyll2(0,1)> 1, then, for every t € R, U(t;y) = 0,

and leading to the small-time local stability for the y variable if the feedback law F' = F3 is defined
by

Fy(t;y,a) = (0,0,Us(t,y)). (5.1.24)
More precisely, one has the following theorem.

Theorem 21. Let T > 0. There exists € > 0 and Uy : R x L*(0,1) — R satisfying properties (Py)-
(Ps), such that the feedback law Fy defined by (5.1.24) is proper and, if the flow for the closed-loop
system is denoted by P,

(i) For every yo € L?(0,1) and for every ag € R,
®2(T, 0550, a0) = (0, a0) if |yol[2< €, (5.1.25)
(i) (Local uniform stability property.) For every § > 0, there exists n > 0 such that

(1o, ao)lv< m) = (1@2(t, 590, a0) lv< 6, YOS <t <T). (5.1.26)

This paper is organized as follows. Section 5.2 is dealing with the well-posedness of various
Cauchy problems and the definition of proper feedback laws. Section 5.3 and Section 5.4 are on
the global approximate stabilization and the small-time local stabilization. Then we define our
time-varying feedback laws in Section 5.5. These feedbacks law lead to Theorem 19, which will be
proved in Section 5.6. In the appendices, we prove some well-posedness results (for both open-loop
systems and closed-loop systems), namely Proposition 9, Proposition 10, Theorem 21, Lemma 18,
Lemma 23, and Lemma 24.

5.2 Well-posedness of the open-loop system (5.1.2) and proper
feedback laws

In this section we briefly review results on the well-posedness of the open-loop system (5.1.2).
Then we establish our new estimates which will be used for the well-posedness of the closed-loop
systems. Finally we define proper feedback laws, i.e. feedback laws such that the closed-loop systems
are well-posed in the context of our notion of solutions to (5.1.2).
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Let us start with the linear Cauchy problem:

(t,2) — You (t, ) = f(t, ) for (t,z) € (t1,t2) x (0,1),

Yt

y(t,0) = B(t) for ¢ € (t1,ts),

y(t,1) =~(t) for t € (t1,12), (5.2.1)
y(tl; ) = Yo-.

We use the following definition of solutions to the Cauchy problem (5.2.1) (solution in a transposition
sense; see | , , D-

Definition 10. Let t; € R and to € R be such that t; < t3. Let yo € H~1(0,1),8 and v €
L2(t1,t2), and f € L'(ty,t2; H71(0,1)). A solution to the Cauchy problem (5.2.1) is a function y
in CO([t1,ta]; H1(0,1)) such that

- <y07u(t1> ')>H*1,Hé + <y(57 -),U(S, ')>H*1,Hé + /ts V(t)um(tv 1)dt
- /t B(t)un(t, 0)dt — /:(f(t,x),u(t,x))Hl,Hédt —0, (522)

for every s € [t1,ta], for every u € L?(t1,t2; H*(0,1)) N H(t1,t2; H3(0,1)) such that
u(t, ) + o (t, ) = 0 in L?((t1,t2) x (0,1)). (5.2.3)

This definition ensures the uniqueness (there exists at most one solution), but is not sufficient
to get the existence of solutions. Concerning this existence of solutions, and therefore the well-
posedness of the Cauchy problem (5.2.1), one has the following proposition.

Proposition 8. Lett; € R and ta € R be given such that t1 < to < t1 + 1.

(1) If f =0, B =~ =0, then, for every yo in H=1(0,1)), the Cauchy problem (5.2.1) has a unique
solution y € CO([ty,t2]; H-1(0,1)). Moreover, when yo € L?(0,1), this solution is in

CO([t1,ta]; L*(0,1)) N LA(ty, to; H(0,1)), (5.2.4)

and satisfies
[Yllcor=< llyollz> and ||yl L2y < llvoll L2 (5.2.5)

(2) If yo = 0,8 =~ =0, and f € L*(t1,t2; L?(0,1)) U L?(t1,to; H-1(0,1)), the Cauchy problem
(5.2.1) has a unique solution y. Moreover

[Yllcor2< [[fllzree and ||yl 2y < [[fllzr 2 (5.2.6)

and there exists Cy > 1 (which is independent of 0 < to —t1 < 1) such that
yllcorznrem < CillfllLzm-1- (5.2.7)

(3) If yo =0, f =0, B, and v € L?(t1,t2), the Cauchy problem (5.2.1) has a unique solution y.
If in addition B and v € H3/*(t1,t3), this solution is also in COH' N L>H?.

In this proposition and in the following, in order to simplify the notations, when there is no
possible misunderstanding on the the time interval, C°L? denotes the space C([t1,t2]; L2(0,1)),
L?L®> denotes the space L%(t1,t2; L?(0,1)) etc.

Properties (1) and (3) follow from classical arguments; see, for example, | , Sections 2.3.1
and 2.7.1], | , ]. Property (2) follows from direct calculations and one can find similar
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results in | ]. Since we want to investigate the well-posedness of closed-loop systems, (3) is
difficult to use. For that reason, we investigate the well-posedness with lower regularities on 8 and
~. For the heat equation, we have the maximum principle:

Lemma 17 (Maximum principle: linear case). Let t; € R and ty € R be given such that t; < ts.
Letyy € HY, B € L?(t1,ta), v € L?(t1,t2), and f € L2(t1,to; H-1). Let y € CO([0,T); H™1) be the
solution of the Cauchy problem

yt(ta ) yaﬁx(taz) = f fO’f’ (t71') € (t1,t2) X (Oa 1)7
y(tv ) ( ) fO?” te (t17t2)7
2.8
y(t,1) = () for t€ (1,2, (28)
y(t1,-) = yo
If
Y0 20,f>0,820, andy =0, (5.2.9)
then
y(t, ) =0, Vt € [t1,to]. (5.2.10)

Thanks to the maximum principle, we get a new version of the well-posedness of system (5.2.1),
the proof of which is given in Appendix 5.7.

Proposition 9. Let t; € R and to € R be given such that t1 < ty. If f = 0,y9 = 0, 8 and
v € L>®(t1,ta), the unique solution y of the Cauchy problem (5.2.1) is in L>(t1,t2; L*(0,1)) N
L2(t1,t2; L>(0,1)) and this solution is also in C°([t1,t2]; L?(0,1)) provided that 3 and ~y are in
C%([t1,ta]). Moreover, for every Ty > 0, and for every n > 0, there exists a constant Cr, ,, > 0 such
that, for every t1 € R and for every to € R such that t1 < to < t1 + Tpy, for every B and for every
v € L*®(t1,t2), and for every t € (t1,1a],

9l Lo (11 65222 00 22 < (1 + O (8 = 00)72) (181l e 1.y F I Lo 11,1 - (5.2.11)
Let us now turn to the nonlinear Cauchy problem

Y ( ) yT’I‘(t l’) + YYz = f for (t,fﬂ) € (t17t2) X (071)a

y(t,0) = B(t) for t € (t1,t2),
y(t, 1) =~(t) for t € (t1,t2), (5:212)
y(ti, ) = Yo.

The idea is to regard, in (5.2.12), —yy, = —(y*)./2 as a force term. Hence we adopt the following
definition.

Definition 11. Let yo € H=1(0,1), B and v € L?(t1,t2), and f € L*(t1,to; H~1(0,1)). A solution
to the Cauchy problem (5.2.12) is a function

y € L% (t1,t2; L2(0,1)) N L2(t1, t2; L>(0,1)) (5.2.13)
which, in the sense of Definition 10, is a solution of (5.2.1) with
f=—(y")z/2+ f €L (t1,t2; H(0,1)). (5.2.14)

Remark 13. Let us point out that it would be better to write in (5.2.12) (y?)./2 instead of yy..
However, for the sake of better readability, we keep yy, instead of (y*)./2 here and in the following.).
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For this nonlinear system, thanks to Proposition 9, the classical well-posedness results, stabil-
ity results, and the maximum principle on the Cauchy problem (5.2.12) can be modified into the
following ones, which are more suitable for the stabilization problem and which are also proved in
Appendix 5.7.

Proposition 10. Let t; € R and to € R be given such that t; < ty. Let yo € L?*(0,1), B and
v € L®(t1,t2). If B and v are piecewise continuous the Cauchy problem (5.2.12) with f = 0 has
one and only one solution. This solution is in CO([t1,ts]; L%(0,1)).

Moreover, for every R >0, 7 >0, and € > 0, there exists T, > 0 such that, for every t; € R
and ty € R such that t1 <ty < t1 +Tg . and for every yo € L?(0,1), B and v € L>®(t1,t3) (not
necessary to be piecewise continuous) such that

1ollz2< R and [|B]| Lo+ [y < 7, (5.2.15)

the Cauchy problem (5.2.12) with f = 0 has one and only one solution and this solution satisfies

Yl oo (t1,2:220,1)) < 2R, (5.2.16)
||y||L2(t1,t2;L°°(o,1))< eR. (5.2.17)

Remark 14. The conditions on B and -y are for the existence of solutions: one can get the unique-
ness of the solution with less regularity on 8 and -y.

Lemma 18 (Maximum principle: nonlinear case). Let t; € R and ty € R be given such that t1 < ts.
Let ygt € L%(0,1), Bt € L>®(ty,t3) be piecewise continuous, and v& € L>®(t1,ty) be piecewise
continuous. Let y* € CO([ty,ta]; H1(0,1)) N CO([t1,t2]; L2(0,1)) N L2(t1,t2; L%°(0,1)) be solutions
to the Cauchy problem

+

yi (t,2) —y(t2) +ytyz =0 for (t,z) € (t1,t2) x (0,1),
+ _
yi(t, 0) = i(t) for t € (t1,t2), (5.2.18)
y=(t, 1) = v=(t) for t € (t1,t2),
yi(tla ) i
If
vo <wi, B <P, andyT <AF, (5.2.19)
then
y~ () <yt(t,-), VteE [t ta]. (5.2.20)

Lemma 19. For every R > 0, r > 0, and 7 > 0, there exists C(R,r,7) > 0 such that, for every
t1 € R and ty € R such that ty < ty < t1+7, and for every yoi € L2(0,1), Bt € L>(t1,t) piecewise
continuous, and v+ € L™ (t1,t2) piecewise continuous such that

lya < R and | 8% Lo 17 | Lo < (5.2.21)
the solution to the Cauchy problem (5.2.12) with f = 0 satisfies
Iy" =y e tmizz )< CR7 1) (lyg = w0 llz2 0,0 HIBT = B Iz +lvT =7 llo=) . (5.2.22)

Let us now come back to system (5.1.2). We start with the definition of a solution to the Cauchy
problem associated to (5.1.2).

Definition 12. Let t; € R and ty € R be given such that t; < ta. Let yo € L?(0,1), ag € R,
a € LY(t1,t2), up and ug € L>®(t1,t2). A solution (y,a) to (5.1.2) with initial data (yo,ao) at time
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t1 is a (y,a) satisfying

y € CO([ty, ta]; L2(0,1)) N L2 (ty, to; L(0, 1)), (5.2.23)
a € C%([t1,ta]), ar = «v in the distribution sense, and a(t,) = ao, (5.2.24)
(5.2.1) holds in the sense of Definition 10, with [ := (—yy.) + a(t), B :=u1, v :=us. (5.2.25)

Remark 15. Let us point out that, with Definition 12, Proposition 10 does not imply the existence
of a solution to the Cauchy problem (5.1.2) since, in Definition 12, uy and us are assumed to be only
in L>=(t1,t2) and not necessarily in C°([t1,ts]). However this proposition implies this existence if
uy and ug are only piecewise continuous. We choose L condition for u; and ug precisely to cover
this case, which will be useful in the framework of the well-posedness of the closed-loop systems that
we are going to consider.

Definition 12 allows to define the notion of solution to the Cauchy problem associated to the
closed-loop system (5.1.4) as follows.

Definition 13. Let s; € R and so € R be given such that s1 < sa. Let

F:[s1,89] x L?(0,1) x R — RxRxR
(t;y,a) —  F(t;y,a) = (A(t;y,a), Ur(t;y,a), Us(t; y, a)).

Let t; € [s1,82], ta € (t1,82], ap € R, and yo € L%(0,1). A solution on [ti,ts] to the Cauchy
problem associated to the the closed-loop system (5.1.4) with initial data (yo,ao) at time t1 is a
couple (y,a) : [t1,t2] = L>(0,1) X R such that

t € (ti,t2) > a(t) := A(t;y(t,-),at)) € L (1, tz), (5.2.26)

t € (t1,t2) — ui(t) :==Us(t;y(t, ), a(t)) € L=(t1,t2), (5.2.27)

t e (t1,t2) = us(t) i= Us(t;y(t, ), a(t)) € Lo(t1, ta), (5.2.28)

(y,a) is a solution (see Definition 12) of (5.1.2) with initial data (yo,ao) at time t;.  (5.2.29)

We can now define feedback laws such that the closed-loop system has a unique solution in the
sense of Definition 12. These feedback laws are called proper and are defined as follows.

Definition 14. Let s; € R and sy € R be given such that s1 < sa. A proper feedback law on [s1, s2]
is an application

F:[s1,89] x L?(0,1) xR — RxRxR
(t;y,a) —  F(ty,a) = (A(t;y,a), Ur(t; y,a), Us(t; y, a))

such that, for everyt, € [s1, s3], for every ty € (t1, s3], for every ag € R, and for every yo € L?(0,1),
there exists a unique solution on [t1, ta] to the Cauchy problem associated to the the closed-loop system
(5.1.4) with initial data (yo,ao) at time t1 (see Definition 153).

A proper feedback law is an application F

F:(—o00,00) x L?(0,1) x R — RxRxR
(t;yaa’) = F(t;y7a) = (A(t;yva’)a Ul(t;y7a)7U2(t;y7a)>

such that, for every s; € R and for every s € R such that s; < so, the feedback law restricted to
[s1,82] x L%(0,1) x R is a proper feedback law on [s1, sa].
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5.3 Global approximate stabilization

Let T > 0 be given. As explained in Section 5.1.1, throughout this section we work with (z,a)
instead of (y, a), where z is defined by (5.1.7). The equation satisfied by (z,a) is

2t — Zgpx + 222 +a(t)z, =0 for (t,x) € (0,T) x (0,1),
t,0) =0 for t € (0,T

z(t,0) or t €(0,T), (5.3.1)

2(t,1) =0 for t € (0,T),

a; = aft) for t € (0,T).
The idea is to use the “transport term” a(t)z,. Following the idea of backstepping (see e.g.] ,
Section 12.5]), we first regard the term a(¢) as a control term: we consider the system

2t — Zgz + 225 +a(t)z, =0 for (t,z) € (0,T) x (0,1),

z(t,0) =0 for t € (0,T), (5.3.2)

2(t,1) =0 for t € (0,T),

where, at time ¢ € [0, 77, the state is z(t,-) € L?(0,1) and the control is a(t) € R. Inequality (5.1.10)
shows that the L?-norm of the state decays whatever is the control. However it does not provide
any information on the decay rate of this L2-norm. In order to get information on this decay rate,
we consider the weighted energy (see e.g. | , Chapter 2], | D

Vi(2) ::/0 e da. (5.3.3)

With a slight abuse of notations, let Vi (¢) := V1(2(¢)). Then, at least if
z € CY[0,T); H1(0,1)) nC°([0,T]; H3(0,1)) and a € C°([0, T)), (5.3.4)

Vi € C1([0,T)) and

= —/O 22e " dx + (2 — (21) Vi(z) — 5/0 e dx. (5.3.5)

In fact, as one easily sees, (5.3.5) holds in the distribution sense in L(0,T) if
z€ HY0,T; H1(0,1)) N L?(0,T; H}(0,1)) and a € L>(0,T). (5.3.6)

From now on we assume that (5.3.6) holds. Since

1/2

1
Izl < 2 (/ zie%lx) , (5.3.7)
0
d

1
SV s —/ 22e %dx + Vi + (1 — a)Vi. (5.3.8)
0

(5.3.5) leads to
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We choose a := (k + 1)V, then

%Vl <V —kVE (5.3.9)

The positive “equilibrium” point (of V7) of the right hand side of (5.3.9) is 1/k. Hence if k large
enough we have
Vi(T) < 2/VE, (5.3.10)

whatever is the initial data as shown by the following lemma.

Lemma 20. Let T > 0. There exists kr € N such that, for every k > kr and for every Vi €
C°([0,T7; [0, +00)) satisfying (5.3.9) in the distribution sense in (0,T),

Vi(T) < 2/VEk. (5.3.11)

Proof of Lemma 20. Tt is easy to observe that, if for some time ¢y € [0,7], Vi(to) < 2/vk, then
Vi(t) < 2/Vk, for every t € [to, T]. So, arguing by contradiction, we may assume that

Vi(t) > 2/VE, Vte[0,T). (5.3.12)
Then L
Vi(t) < 75‘/12(15), (5.3.13)
which implies that
1 1 kT
— + < ——. 5.3.14
AGREAURE o340
From (5.3.12) and (5.3.14), we get
1V
2T < < —, 5.3.15
Vi(t) 2 ( )
which implies that
VET < 1. (5.3.16)
O

5.3.1 Construction of feedback laws
5.3.1.1 Phantom tracking stage

Let us come back to the system (5.3.1). For any T given, we consider the following Lyapunov
function generated from the phantom tracking idea:

Va(z,a) :== Vi(2) + (a — A\V1(2))?, (5.3.17)

with A to be chosen later. The idea is to penalize a # AVj(z); see | ]. Again, with a slight
abuse of notations, we define Va(t) := Va(2(t), a(t)). Then, at least if z is in C*([0,T]; H=1(0,1)) N
C°([0,T]; H}(0,1)) and a € C*([0,T]), Va is of class C' and

d d d
%VQ = avl +2(a — AVi(2))(a — )\£V1)

1
<= [ erane v e a2 2t ) (a-agvi- ).
0
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We choose
4 i 1 3
a .—)\aVl +5 §A(a AV1(2))
' 2 —x 2 [ 3 -z Vi 1 3
=A[=2 [ zieT%dx 4+ (1—a)Vi(z) — 3 [ e dx | + 5 5)\(@ - AV (2))°.  (5.3.18)
0 0

Then, at least if z is in C*([0,T]; H=1(0,1)) N C°([0, T]; H}(0,1)) and o € C°([0,T7)

d
S Ve SV V= AV = Ao = A (2))!
A—1
<V - TVf
A—1
<V — TV22. (5.3.19)

In fact, as one easily sees, (5.3.19) holds in the distribution sense in L!(0,T) if
z€ HY(0,T; H(0,1)) N L3(0,T; Hy(0,1)) and « € L>(0,T). (5.3.20)

Let € > 0. Using Lemma 20 and (5.3.19), one gets the existence of Ao > 1, independent of (z,a)
satisfying (5.3.20), such that, for every A € [Ag, +0),

3
VA—-1

Meanwhile, there exists a constant C. such that |a(T/2)| < C..
We denote this stationary feedback law by Ay, i.e., Ag : L%°(0,1) x R = RU{—o00} is defined by

IVa(T/2)| < <e. (5.3.21)

Ap(y,a) := a with «a given in (5.3.18), where z is defined by (5.1.7), (5.3.22)

with the natural convention that Ag(y,a) = —oc if y ¢ H'(0,1). This convention is justified by the
fact that, by (5.3.7), there exists C > 0

1
‘/ e "dx
0

Remark 16. Let us point out that Ag is an unbounded operator on the state space, which is L?(0,1)x
R. The set where it takes finite value is H*(0,1) x R ¢ L?(0,1) x R. However, as we will see in
Subsection 5.3.2, the feedback law

3 1
< zllp )32 < 5/ 22e % dx + C|| 2|72, Yz € H3(0,1). (5.3.23)
0

F(t;y,a) := (Ao(y,a),a,a), Y(t,y,a) € D(F):=R x H(0,1) x R (5.3.24)

1S proper.

From (5.3.21) we see that V1(7/2) is small thanks to A. However, at the same time, because of
A, a will approach to A\V4(7T'/2). This is bounded by some constant, and unfortunately we can not
expect more precise uniform bounds than the above one. To solve this problem, in the next phase
we construct a (stationary) feedback law which makes a decay to 0, but keeps V; small.

Remark 17. Similar a priori estimates could be obtained for LP-norm cases. Even more, one could
further get L™ type estimates by using the technique introduced in [ , Chapter 4] and [ .
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5.3.1.2 Small-time global stabilization of the variable a

In this section we construct the stationary feedback law A; (see (Qz)). Since L2-norm of z
decays whatever is the control «, we only need to find a feedback law which stabilizes “a”. In this

[1P2)

section, we give a feedback law which stabilizes “a” in small time. For that it suffices to deﬁne Ay
by
Aq(a) := —p(a® + v/]a]) - sgn(a). (5.3.25)

Indeed, with this A;, one can easily verify that there exists pur > 0 such that, whatever is a(7T'/2),
a(T)=0if p > pr and a = A (a).

Remark 18. The feedback law Ay is continuous but not Lipschitz. However, for every t; € R,
for every ty € [t1,+00), and for every ag € R, the ordinary differential equation a; = Ai(a) has a
unique solution on [t1,ta] such that a(t1) = ag.

Remark 19. For our Burgers equation, thanks to the energy dissipation (5.1.10), we do not need
to care of z during the interval of time [T/2,T]. For some other partial differential equations, such
decay phenomenon may not hold. However, the same strategy would also work. Indeed, we can
stabilize a in very small time so that the change of z keeps small.

Remark 20. Another idea to stabilize a in finite time is to design a time-varying feedback law of
the form Ai(a) = —pna for t € [t,,tns1). However, if for every solution of a = Ay(a) on [T/2,T],
one has a(T) = 0 whatever is a(T'/2), this feedback law has to be unbounded on [T/2,T) x (=9,0)
for every § > 0, which is not the case of Ay defined by (5.3.25).

In this section, our feedback law F = Fj is defined by (Q;), (5.1.9), (5.1.14), (5.3.22), and
(5.3.25). Let us point out that it satisfies (Q2)—(Q3).

5.3.2 Well-posedness and properties of the flow

This part is devoted to the properness of the feedback law Fj. From the definition of Fy(t;y,a)
for t € [T/2,T] (see (5.1.9), (5.1.14), and (5.3.25)), it follows from Proposition 10 that Fj is proper
on the interval of time [T'/2,T].

By the T-periodicity of F} it just remains to prove the properness of F; on the interval of time
[0,7/2]. This properness is a consequence of the following lemma, the proof of which is given in
Appendix 5.8

Lemma 21. For every T € (0,+0c0), every zo € L?(0,1), and every ag € R, there exists one and
only one (z,a) satisfying

z € L*(0,T; Hy(0,1)), (5.3.26)

such that (y,a) := (z+a,a) is a solution to (5.1.2) (see Definition 12) with initial data (2o + ag, ao)
at time 0 with

a(t) == Ao(y(t),a(t)), for almost everyt € (0,T), (5.3.27)
B(t) =a(t),y(t) = a(t), Vtel0,T). (5.3.28)

At a first sight it seems that (5.3.26) is too strong compared to what is imposed by (5.2.26) for
the properness of F;. Indeed, (5.2.26) just impose that z € L(0,7; H'(0,1)). However, it follows
from (1) and (2) of Proposition 8 that, if (y,a) is as in Lemma 21 with y € L(0,T; H'(0,1)), then
z:=y—ac L*0,T; H(0,1)).

5.3.3 Proof of Theorem 20

It only remains to give the proof of Properties (Q4) and (Qs) of Theorem 20.
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We first look at (Qs). Let (yo,a0) € L*(0,1) x R. Note that (5.3.20) holds, and therefore (5.3.21)

also holds:
3

A—1
From (5.3.29) one gets the existence of A > 0 independent of (yo,ao) € L?(0,1) x R such that

Va(2(T/2),a(T/2))] <

<e. (5.3.29)

12(T/2)l| 220, +(a(T/2) = AVi(2(T/2)))* < € (5.3.30)

when A > \.
Then the next stage (i.e. the evolution during the interval of time [T/2,T]; see Section 5.3.1.2)
gives
12(T)||£2(0,1)< € and a(T") = 0, (5.3.31)

which concludes the proof of (Q5).

It only remains to prove Property (Q4). If T/2 < ¢t < T, this property clearly holds, since both
||z]| L2 and |a| decay as time is increasing. If 0 < ¢t < T/2, we only need to care about the case where
0 <t <t < T/2 thanks to the first case. Since (5.3.20) holds, (5.3.19) holds in L'(¢/,¢). This
shows that

Vo < Vy on [t/ 1] (5.3.32)

if A is larger than 1. Then, using (5.3.17),
(Vi(2(t) + (a(t) = AVA(2(1)))?) = Va(t)
< TRV = €2 (Vi(a(¢) + (alt') — VA ((£)?), (5.3.33)

which concludes the proof of Property (Q4).

5.4 Small-time local stabilization

The aim of this section is to get the small-time local stabilization (for the y variable). The
small-time local (and even semi-global) stabilization of the heat equation is given in | ]. Here
we follow [ ] and regard yy, term as a small force term (as in | ] for a KdV equation).
Throughout this section we define « := 0 and u; := 0 in (5.1.2), hence it is sufficient to consider

Yt — Yoo + YYz =0 for (t,x) € (s,4+00) x (0,1),
y(t,0) =0 for t € (s,400), (5.4.1)
y(t, 1) = ua(t) for ¢ € (s,400).

We construct a time-varying feedback law satisfying (P1)—(P5) leading to the small-time local sta-
bilization of system (5.4.1).

5.4.1 Local rapid stabilization

At first, let us briefly recall (see [ I, 1 , Chapter 4] or | ) how the backstepping
approach is used to get rapid stabilization for the following heat equation:

Yt — Yoz =0 for (t,z) € (s,+00) x (0,1),
y(t,0)=0 for t € (s,400), (5.4.2)
y(t,1) = ua(t) for t € (s,400).
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Let A > 1 given. Since Volterra type transformations will be considered, let us define
D = {(z,v) € [0,1]%v < a}. (5.4.3)

We define the feedback law by

1
us(t) = Ky = / Ex(1,0)y(t,v)dv, (5.4.4)
0
where the kernel function k) is the unique solution of

kyy —kyy — Ak =0 in D,
k(2,0) = 0 in [0, 1], (5.4.5)
k(z,z) = —2F in [0,1].

Let us perform the following transformation Iy : L?(0,1) — L?(0,1), y ~ 2,

z(z) = \(y(2)) = y(x) — /Ogﬂ E(z, v)y(v)do. (5.4.6)

The kernel function k) is of class C? in D and satisfies the following estimate (see [ , Lemma

1]).
Lemma 22. There exists a constant C1 which is independent of A > 1, such that

rxllos ()< eV, (5.4.7)

Remark 21. In fact [ , Lemma 1] is dealing with the H*-norm (for more general equations).
However, the proof can easily be adapted to get Lemma 22. Moreover in the case of (5.4.2), the
kernel can be expressed in terms of the Bessel function:

L ( Az? — 112))
A2 — v?)

K(xz,v) = —v , (5.4.8)

where Iy is the first order modified Bessel function of the first kind; see [ , (4.38)]. This explicit
formula allows also to prove Lemma 22. Inequality (5.4.7) is related to the estimate given in [ ,
Proposition 1] by Lebeau and Robbiano. See also [ J. With no difficulty, the C?-estimate can
be generalized to C™-estimates, n > 3, and one can prove the analyticity of the solution, which also

follows from (5.4.8). For similar estimates for a Korteweg-de Vries equation, see [ , Lemma 2]
and [ , Lemma 3].

In particular the transformation ITy : L?(0,1) — L2(0,1) is a bounded linear operator. This
operator is also invertible. The inverse transformation, H;l : L2(0,1) — L2(0,1), is given by

y(z) =T, (2(2)) == 2(x) —l—/ Ix(z,v)z(v)dv, (5.4.9)
0
with the kernel [, satisfies
luz —lyw + Al=0 in D,

I(z,0) =0 in [0,1], (5.4.10)

(z,x) = —2F in [0, 1].
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The same estimate as (5.4.7) holds for I,
liallc2 (< €1V (5.4.11)

In fact one can even get better estimates than (5.4.11) (see [ , Corollary 2]). Let us denote
z := Iy by z to simplify the notations. From (5.4.6) and (5.4.9), we know that

3/201ﬁ||

lyll=< e 2|2 and ||z]|p2< e?’/201‘5Hy||Lz7 (5.4.12)

[yl < Nzl +Cllzl L2 and |2 ga < lylla +Cllyll 22 (5.4.13)

Then, following (5.4.2), (5.4.4), and (5.4.6), the solution y of (5.4.2) with (5.4.4), is transformed
(via II,) into a solution of

2t — Zgz + A2 =0 for (t,x) € (s,400) x (0,1),
2(t,0) =0 for t € (s,400), (5.4.14)
z(t,1) =0 for t € (s,400),

from which we get exponential decay of the energy of z with an exponential decay rate at least equal
to 2.

Let us now consider the local rapid stabilization of the Burgers equation (5.4.1). The idea is to
construct a stationary continuous locally supported feedback law which is given by (5.4.4) near the
equilibrium point.

Suppose that y is a solution of (5.4.1) with feedback law (5.4.4), i.e. y is a solution of the Cauchy
problem

Yt = Yaa T YYo =0 for (t,z) € (s,+00) x (0,1),
= f
y(t,0) =0 ) or t € (s,+00), (5.4.15)
y(t,1) = Kxy = [y ka(l,v)y(t,v)dv  for t € (s,+00),
y(oa ) = Yo,
with yo € L?(0,1). Then z := II,(y) satisfies
2t — 2oz + Az =1T for (t,z) € (s,400) x (0,1),
z(t,0) =0 for t € (s,+00), (5.4.16)
z(t,1) =0 for t € (s,400),
2(0,-) = zo,
with
zo = I\ (y), (5.4.17)
x
I:= —H;l(z) (H;l(z))m —|—/ Ex(z,v)(yy.) (v)dv. (5.4.18)
0

For the Cauchy problem (5.4.15) and (5.4.16), we have the following lemma, whose proof is given
in Appendix 5.10.

Lemma 23. Let A > 1, R > 0, and s € R. There exists 0 < TH < 1 such that, for every
yo € L*(0,1) such that
lyollz2< R, (5.4.19)

the Cauchy problem (5.4.15) has one and only one solution. This solution is also in C°([s,s +
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TE]; L2(0,1)) N L2(s,s + T HY(0,1)). Moreover, this solution satisfies
1)l co 22 < 36° VAR, (5.4.20)

By Lemma 23, for any zo € L?(0, 1), there exists T > 0 such that, the Cauchy problem (5.4.16)

has a unique solution on t[s,s + T] and this solution is also in C%([s, s + T); L?(0,1)) N L?(s, s +
T Hg(0,1)).
Since

lw?[F2 2= w2 < NwllZoe 2 w72 Lo < Cllwl|Eop2llwl| e o, (5.4.21)

we know form direct calculations that I € L?(s,s + T: H=1(0, 1)) and that
_ 2 1 [
I = ——((H)\l(z)) )x — 5/ Exo(z,0)y? (v)dv — —y*(z). (5.4.22)
0

Note that, since z € CO([s, s + T]; L(0,1)) N L?(s, s + T; H}(0,1)) and I € L?(s,s +T; H~1(0,1)),

we have
(= ((H;l(z))2)1>H017H71 L E) (5.4.23)

and

d ! -
$||z||%2: —2/0 22(x)dr — 2\||2||32+2(z, I} 2 12 in L'(s,s + T). (5.4.24)

Thanks to (5.4.7), (5.4.22) and (5.4.23), there exists Cy > 1, Cy > 2C; and C3 > (5, independent
of A > 1 and z, such that

_ 2
< lze 22 (T3 (2)) )l 22 +Coe® YA [y 22 |2 12 +Coe® VA [y 22 |2 =
< €%zl 2 (|12 22 +1211%)
<

lzolFa 46> (20122 +I2]82) - (5.4.25)

2|<Zv I>L2,L2\

Here, we used the estimate

3/20.113/2
2ol 2 2030 < Nzl e 2] 22 D2l o < N2 l1322 120327 < e 2 +Cll2 ] G- (5.4.26)
Therefore p
£H2H%2< —2)\||z||2L2+eCB\F’\ (Il 32 +]12)1S2) in LY(s, s +T). (5.4.27)
If the initial energy ||zo||z2 is smaller than e~C2V (this is not a sharp bound), we then have an

exponential decay of the energy

A(t—s) ~
lz(®)||z2< e”" = ||zollLz, Vt€E[s,s+T]. (5.4.28)

Since the energy of z decays, we can continue to use Lemma 23 in order to get that the solution z
of (5.4.16) is in C°([s, s + 2T); L?(0,1)) N L?(s, s + 2T; H}(0,1)), and that

A(t—s)

2() |12 < e T |20l 2y VE € [, 5+ 2T). (5.4.29)

We continue such procedure as time goes to infinity to get that the unique solution z satisfies

z € C%([s, +00); L2(0,1)) N L7 .([s, +00); HE(0,1)), (5.4.30)

loc
()| L2< e”

A(t—s)
2

[z0llz2, Vt € [s, +00). (5.4.31)
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This solves the local rapid stabilization problem. More precisely, we have the following theorem.

Theorem 22. Let A > 1 and s € R. For every yo € L?(0,1) such that

ol 2 < 7202V, (5.4.32)

the Cauchy problem (5.4.15) has one and only one solution.
This solution is also in C°([s,+00); L?(0,1)) N L2 ([s,+00); H*(0,1)). Moreover, this solution sat-
isfies

A(t—s
3C1VA ,— 2

ly(t = s)ll=< e Yol z2- (5.4.33)

However, one also needs the feedback law to be proper. As it will be seen later on, it suffices to
multiply the former feedback law by a suitable cut-off function (see, in particular, Lemma 24).

5.4.2 Construction of feedback laws: piecewise backstepping

Inspired by | ], we construct a piecewise continuous feedback law on [0,T") such that prop-
erties (P2)—(Ps) hold.
Let us choose

2
no =1+ [—], 5.4.34
tn, :=0,\,:=0forne{0,1,...,n9 — 1}, (5.4.35)
tn =T —1/n* N, :=2n8 for n € {ng,no + 1,...}. (5.4.36)

It is tempting to define Uy : (—o00, +00) x L?(0,1) by

Us(t;y) = K, (t,9), n € {no — 1,n0,...}, t € [tn,tns1), y € L*(0,1), (5.4.37)
Us(t+ Tsy) = Us(t;y), t € R, y € L*(0,1). (5.4.38)

However with this definition Us is not locally bounded in a neighborhood of [0,7") x {0}, which is a
drawback for robustness issue with respect to measurement errors. In order to handle this problem,
we introduce a Lipschitz cutoff function ¢y : RT — R¥ :

1, ifazel0,e%VA/5),
pa() = { 2 —5eCsVAz,if x € (e P3VA /5,2 s VA B), (5.4.39)
0, ifze[2e%VA/5 +00),

and replace (5.4.37) by
Us(t,y) = Ka, (t,y), n € {no — 1,n0,...}, t € [tn,tus1), y € L*(0,1), (5.4.40)
where, for A € (1,+00), Ky : L?(0,1) — L?(0,1) is defined by
Ka(y) == exlllyllz2)Kxy, y € L*(0,1). (5.4.41)
From (5.4.7), (5.4.4), (5.4.39), (5.4.40), and (5.4.41), one can easily verify that
Us(t,y)| < min{1,\/|lyllz2}, t € [0, 7], y € L*(0,1). (5.4.42)

In particular (P4) holds.
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5.4.3 Proof of Theorem 21

Let us start this proof by stating a lemma, whose proof is given in Appendix 5.9, giving a
properness result on stationary feedback laws.

Lemma 24. Let M >0 and G : L?>(0,1) — R be a (stationary) feedback law satisfying

IG(y) — G(2)| < Mly — 2|l 20,1y, Yy € L*(0,1), Vz € L*(0,1) and G(0) =0, (5.4.43)
|G(y)| < M, Wy e L*0,1). (5.4.44)

Then, for every y° € L?(0,1) and for every T > 0, the Cauchy problem

ye(t, ) — Yoz (t, ) + yy, =0 for (t,x) € (0,T) x (0,1),

y(t,0) =0 for t € (0,T), (5.4.45)
y(ta 1) - G(y(ta )) Jor t € (OaT)a
y(07 ) = Yo

has a unique solution (in the sense of Definition 13 with A =0 and ap =a =0).

Similar to Lemma 19, we also have the following stability result, whose proof is omitted since it
is quite similar to the proof of Lemma 19.

Lemma 25. Let R > 0, M > 0, and T > 0. There exists Cs(R, M, T) such that, for every
G : L*(0,1) — R a (stationary) feedback law satisfying

|Gly) — G(2)| < M|ly — 2|lz20.1), Yy € L*(0,1), Vz € L*(0,1) and G(0) = 0, (5.4.46)
G(y)| < M, ¥y e L*(0,1), (5.4.47)
for every ygt € L2(0,1) satisfying
5[l 220,1)< R, (5.4.48)
the solutions y* to the Cauchy problem (5.4.45) satisfy

lyt =y ooty t2:0200,1) < Cs (R, M, T lyg = yo l2200,1)- (5.4.49)

Until the end of the proof of Theorem 21 our feedback law F' is defined by A := 0, U; := 0, and
(5.4.38)-(5.4.40). Let us recall that the time-varying feedback law in Section 5.4.2 is piecewisely
(with respect to time) given by the stationary feedback laws (5.4.41), where K is designed in
Section 5.4.1. Let us point out that, for every X\ € [1,+00),

IKx(y)| < 1, Vy € L?(0,1), and Kx(0) =0 (5.4.50)
and there exists M) > 0 such that
IKx(h) = Kaw?)] < Mally' = v llz201), Yyt %) € L*(0,1) x L2(0,1). (5.4.51)

Hence, by Lemma 24, these stationary feedback laws are proper on (—oo,4+00). In particular, the
time-varying feedback law F' is proper on [0, so] for every so € (0,T). Hence, for every (yo,ag) €
L?(0,1) x R and t; € [0,7) we get the existence and the uniqueness of y : [t1,T) — L*(0,1) and
a: [t1,T) — R such that, for every to € (¢;,T) the restriction of (y,a) to [t1,t2] is the solution on
[t1,t2] to the Cauchy problem of the closed-loop system (5.1.4) with initial data (yo,ao) at time ¢;
(in the sense of Definition 13).

In order to get the properness of the feedback law F5 (defined in (5.1.24)), it suffices to show
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that

lim y(t) exists in L*(0,1). (5.4.52)
t—T—

In order to prove (5.4.52), we check that {y(¢)}(t — T~) is a Cauchy sequence in L?(0,1). Let us
point out that
y € L>®(t1,T; L*(0,1)) N L2(t,, T; L>(0,1)). (5.4.53)

Indeed, (5.4.53) follows from the maximum principle (Lemma 18), Proposition 10 (applied with
f=0,8=0,v==1), and (5.4.42). Let

fi==1/2)*)a- (5.4.54)

By (5.4.53) and (5.4.54),
f€L?(t,T; H(0,1)). (5.4.55)

Let to € (t1,T). Let ytj; be the solutions of

W) — Wit)ew = f  for (t,x) € (t2,T) x (0,1),
+
t,O =0 fi te(t ,T s
(v7,)(1,0) or ¢ € (t2,T) (5.4.56)
(yi,)(t,1) = 1 for t € (t2,7),
(yiy) (t2,-) = y(t2)
Let us define wy, := (yt,) (yt,)~. Then
(wi,)t — (Wi )wz =0 for (t,x) € (t2,T) x (0,1),
t,0) =0 for t € (to, T
(e, )(¢,0) or t & (t2,T), (5.4.57)
(we,)(t,1) =2 for t € (t2,T),
(wey)(t2,-) =0
Let € > 0. From Proposition 9, (5.4.54), and (5.4.57), there exists to € (¢1,T) such that
[wey |l co(fts,11:22(0,1)) < €/4- (5.4.58)

Moreover, from the maximum principle in the linear case (see Proposition 17), (5.4.42), (5.4.45),
and (5.4.56), we know that
ye () <y(t) <y (1), VEe [tz ), (5.4.59)

which, together with (5.4.58), implies that
||y:; —ylleo (s, 11522 (0,1) < /4. (5.4.60)
Since y;, is in CO([ta, T]; L?(0,1)), there exists ¢3 € [t2, T) such that
st (8) — vl (T)|| 2 < €/4, Vi € [, T). (5.4.61)

From (5.4.60) and (5.4.61), )
ly(t) —y(t)[|2< &, Vt,t" € [t2, T). (5.4.62)

This implies (5.4.52) and concludes the proof of the properness of the feedback law F.

Now we are ready to prove Theorem 21. Since “a” does not change (see (5.1.24)), it suffices to
only consider y. About property (i), as we saw in Section 5.4.1, ||y(t)|| 2 decays rapidly on [t,, t,+1)
provided that y(t,) is small enough in L?(0,1). Our idea is to set ||y(0)|| 12 sufficiently small so that
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the flow will decay exponentially (in L%(0, 1)) with rate \o/2 on [tg,t1); then at time ¢;, the energy
y(t1) is already small enough to have an exponential decay with rate A\1/2 on [t1,t3). Continuing
this way one may expect that, at the end, y(T) = 0. In order to have an exponential decay with
rate A\, /2 on [ty,t,11), it is sufficient to have

Hy(tn)”L2< 672C3m- (5.4.63)

These exponential decay rates on [t,, t,41) for every n € N can be achieved for ||y(0)]| 2 sufficiently
small if there exists ¢ > 0 such that

n—1
o, [T T T (\H,\k|\H;k1|e_(tk+1_tk”k/2) < e 207" for allm € N. (5.4.64)
k=ng
Hence, it suffices to find ¢ > 0 such that
n—1 5 n . .
c ( H e ® ) ( H 31k > < e72%" holds for every n € N. (5.4.65)
k='fb0 k=7’L0

Such ¢ obviously exist, and one can find similar computations in ]
Actually, the above proof also shows the following lemma.

Lemma 26. Lete > 0. Let 0 < Ty < T. There ezists a constant n > 0 such that
(Iyo, ao)llv< m) = (122(t, ' y0, a0)[v< e, YOSt <t <To). (5.4.66)

The second part, (ii), of Theorem 21 is then a consequence of the following lemma.

Lemma 27. Let ¢ > 0. There exists 0 < Ty < T such that
(llyos ao)llv< €) = (| ®2(t, 590, a0)[[v< 26, VI < <t <T). (5.4.67)

Property (5.4.67) is a consequence of Proposition 10 and (5.4.42). This completes the proof of
Theorem 21.

5.5 Proper feedback laws for system (5.1.2)

Finally, we are now in position to define our proper feedback law F = (A, Uy, Us) for system
(5.1.2). We define a 2T-periodic feedback law which leads to the approximate stabilization in the
first stage ([0,7]) and then “stabilizes” (y,a) to 0 in the second stage ([T,2T)). Our feedback law
F is defined as follows.

Ao(y,a), ifte€0,7/2),
Aty y,a) == { Ai(a), iftel[T/2,T), (5.5.1)
0, if t € [T,2T),

a,  iftel0,T/2),
Ui(t;y,a) := { a, ifte[T/2,T), (5.5.2)
0, ifteT,27),



124 5.6. Small-time global stabilization

a, if t € [0,7/2),
Us(t;y,a) :i= { a, ifte[T/2,T), (5.5.3)
K. (y), ifte[T+t,, T+ tnsr),

where A, and t,, are defined in (5.4.35) and (5.4.36), K is defined in (5.4.41), Ay is defined in
(5.3.22), and A; is defined in (5.3.25).

Thanks to Section 5.3.2 and Section 5.4.3, the feedback law (5.5.2)—(5.5.1) is proper (in the sense
of Definition 14).

5.6 Small-time global stabilization

The small-time global stabilization (Theorem 19) contains two parts, (i) and (iz). Let us first
consider (7). Let us denote by ® the flow associated to the feedback law F. From (5.1.16) and
(5.1.25) we get that

®(2T,0;y,a) = (0,0). (5.6.1)

Let ¢t € [0,2T). Then
(4T, t;y,a) = ®(4T, 2T; ®(2T, t;y,a)) = (0,0), (5.6.2)
which shows that (i) holds. Property (ii) follows directly from (5.1.15), (5.1.26), and (5.6.1). This

completes the proof of Theorem 19.
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5.7 Appendix A: Proofs of Proposition 9, of Proposition 10,
of Lemma 18, and of Lemma 19

This appendix is devoted to the proof of two propositions and of two lemma that we stated in
Section 5.2: Proposition 9, Proposition 10, Lemma 18, and Lemma 19.

Let us start with the proof of Proposition 9. Without loss of generality we may assume that
t; = 0. Let Ty > 0 and let to =T < Tjy. We consider the Cauchy problem

(t,x) — Ypz(t,z) =0 for (¢t,z) € (0,T) x (0,1),

Yt
t,0) =0 for t € (0,T
(t.0) or 1€ (0,7) )
y(t’ 1) = V(t) for ¢ € (OvT),
If v € L>(0,T), then the solution is in C°([0,T]; H~1(0,1)). By the maximum principle (Lemma
17), one knows that y is also in L°°(0,T; L?(0,1)) N L?(0,T; L>(0,1)). Let us now assume that
v € Ct. Then that solution is in C°([0,T]; L?(0,1)) N L?(0,T; H'(0,1)). In order to give estimates

on y in that space, let us define

z:=y—a"y withn € N\ {0,1} to be chosen later. (5.7.2)
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Hence

2 — Zgx = ="y +n(n — 1)a" "2y for (t,x) € (0,T) x (0,1),

t,0)=0 for t € (0,T
2(t,0) or t €(0,7), (5.7.3)
z(t,1) =0 for t € (0,7,
z(0,-) = —a"~(0).
Then, by Proposition 8, we have
Izl corznzzmy < 2C1ll=a"ye +n(n — 12"y 1 2+21y(0)]||2" ]| 22
< 200 (el +207 )N 2™ | L2 +n(n = Dy 2 ll2" 2 2) - (5.7.4)
For y € H'(0,1) such that y(0) = 0, let us define the H(0,1)-norm of y by
||y||H(o 1) Hy‘LHLZ(O 1)- (5.7.5)
By direct calculations, we know that
2" M corznrzim < 12" |2 l1lloo+nllz™ o2 [y 2 (5.7.6)

Let n € (0,1/2). Taking n large enough, we get the existence of C,, > 0, which is independent of
T < Tp and of v, such that

1Yllcorznpzi < nlllvell L +vlleo) + Collyllze- (5.7.7)

Now, suppose that v € L. Let us consider the solution y* of

yi —yf, =0  for (t,z) €(0,T) x (0,1),

£(t,0)=0 for t € (0,T
v or £ € (0,7), 519
y=(t, 1) = tv for t € (0,7,
yi(o’ ) = 07
with v := ||| L= € [0, +00). Thanks to (5.7.7), we have
=l coranpe i < v+ CyTH20 = (n+ CyTH2) |1y e (5.7.9)
By direct computations, there exists C' > 0 such that, for every ¢ € H*(0,1) with ¢(0) = 0,
1/2
Il (0.1)< Cllellago.1) 102 Fato 1) (5.7.10)
Actually, since ¢(0) = 0, we have
©*(x) = 2/ o(s)¢ (s)ds (5.7.11)
0

which leads to inequality (5.7.10). It is also a simple case of Gagliardo—Nirenberg interpolation
inequality. From (5.7.10) one gets that, for every T > 0 and for every ¢ € L>(0,T;L?*(0,1)) N
L?(0,T; H'(0,1)) such that ¢(-,0) =0 € L*(0,T),

1/2 1/2
lellz20,:L (0,1)) < CT1/4H‘PHL/<>°(0,T;L2(0 1) ||90||L/2 0,T3H1(0,1))" (5.7.12)
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Hence we have,

Iyt llcor2< (1 + CuTY?) |1yl e (5.7.13)
Iy |2 < CTY4(n + Cy T |17 Loe (5.7.14)

Since —v < v < +v, by the maximum principle (Lemma 17), we have
y~ <y<y", foraltel0,T], (5.7.15)
which, together with (5.7.13) and (5.7.14), implies that

[yl e r2< 2(n + C, T )|y Lo, (5.7.16)
lyll 2 pee < 2CTY4 (1) + CyTY?)||7]| oo - (5.7.17)

Let us now prove that if vy € C?([0, T) then the solution y is in C°([0, T]; L*(0,1))NL2(0,T; L>=(0, 1)).
Suppose that v € C°([0,77) is given, then there exists

{Yn}nen, a sequence of C*([0,T]) functions which uniformly converges to . (5.7.18)

Let us denote by {yn}nen the sequence of solutions of (5.7.1) with controls given by {7V, }nen.
Thanks to (5.7.18), for any € > 0, there exists N such that when m,n > N, we have

[¥m = nllcoo,r) < € (5.7.19)
Hence, by (5.7.16) and (5.7.17),
1Ym — Ynllr2peonneer2< C(n + CnT1/2)||’Ym = YnllLe- (5.7.20)
Since 7, € C1([0,T]), from Proposition 8 we have y,, € C°([0,T]; L?(0,1)). Hence
lym — ynll 2 Lo r2 < O + CyTY?) 1Y — Yl <, (5.7.21)
which means that {y, }nen is a Cauchy sequence in C°([0, T); L%(0,1)). Hence
y € C°([0,T); L*(0,1)) N L*(0,T; L*°(0,1)). (5.7.22)

Letting also n to infinity in (5.7.16) and (5.7.17) for y,, and ~,, we get again (5.7.16) and (5.7.17).

Let us finally consider the case where v € L>°(0,T"). Then there exists a sequence {7y, }nen+ of
functions in C°([0,T]) such that

vl o 0.0y < 17l L 0.1y, ¥ € N¥, (5.7.23)
lirJrrl Y (t) = v(t) for almost every t € (0,T). (5.7.24)
n—-+0oo
One can, for example, take
1 t
Yn(t) := —/ v(s)ds. (5.7.25)
7 Jmax(0,t—(1/n))

Let us denote by {y, }nen= the sequence of solutions of (5.7.1) with control given by {7y }nen+. Then
{Yn }nen+ is bounded in L2((0,7T) x (0,1)). Then there exists a subsequence of the {y, }nen=, that
one also denotes by {y, nen, and y € L%((0,T) x (0,1) such that

yn — y weakly in L*((0,T) x (0,1)). (5.7.26)

Then one easily checks that y is a solution of (5.7.1) with control given by ~ and that y satisfies
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(5.7.16) and (5.7.17).
All these calculations are based on the assumption 5 = 0. If v = 0 and 8 # 0, similar estimates
hold. By linearity, one then gets Proposition 9.

Remark 22. One can also get the continuity of y : [0,T] — L?(0,1) when ~ is in BV ([0,1]) N
L>(0,T). The idea is to use directly (5.7.7).

Remark 23. Multiplying (5.7.1) by (1 — x)y and integration by parts show that (1 — z)y> € L' L}
if 8=0.

We are now ready to prove Proposition 10 and Lemma 18, the proof is given by 4 steps.
Step 1. Local existence and uniqueness of the solution,
Step 2. Continuity of the solution with respect to the initial data and the boundary conditions,
Step 3. Maximum principle (Lemma 18),
Step 4. Global existence of the solution.
Step 1. Local existence and uniqueness of the solution. In this step we prove the second part

of the statement of Proposition 10. Again, for simplicity we only treat the case where 8 = 0. To
simplify the notations we let ¢t; = 0 and 1" := to, i.e. we consider the Cauchy problem

Ye(t, ) — Yuu (b, ) + yyz (t,2) =0 for (t,z) € (0,T) x (0,1),

y(t,0)=0 for t € (0,T),

y(t, 1) =7(t) for t € (0,T), (5.7.27)
y(07 ) = Yo-

We use the standard Banach fixed point theorem to get the local existence and uniqueness. We
consider the space
X :=L*(0,T;L*(0,1)) N L?(0, T; L>(0,1)) (5.7.28)

with the norm, adapted to deal with (5.2.16) and (5.2.17),

1
lyllx, == IIyHLooLer;IIyIILsz, (5.7.29)

with © > 0 to be chosen later. We denote by X, the space X with the norm |[|-|x,, which is a
Banach space. The choice of the norm ||-||x, is based on the observation that [|y|| 2z~ can be
sufficiently small once we set time small enough.

We consider the following map I' : X, — X,, where I'(y) is the unique solution of

2(t, @) — 2ga(t, ) = — 3 (y?)a(t, 2) for (t,z) € (0,T) x (0,1),

2(t,0) =0 for t € (0,T),

2(t,1) = y(t) for t € (0,7), (5.7-30)
Z(Oa ) = Yo

This map is well defined thanks to Proposition 8, (5.7.16) and (5.7.17). A function y is solution to
(5.7.27) if and only if it is a fixed point of I". The function I'(y) can be decomposed as follows

[(y) = 2" + 22 + 23, (5.7.31)
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where 2!, 22, and z® are the solutions to the following Cauchy problems
2t @) — 2L, (t,2) =0 for (t,z) € (0,T) x (0,1),
! = f T
21 (t,0) =0 or t€(0,T), (5.7.32)
2, 1) =0 for t € (0,7,
Zl(oa ) = %Yo
7 (tw) — 2, (t2) = —5(y°)a(t,x)  for (t,2) € (0,T) x (0,1),
2(¢,0) =0 for t € (0,7,
22( ) or ¢ €(0,T) (5.7.33)
2%(t,1) =0 for ¢t € (0,7,
22(0,-) =0,
7 (tw) — 23, () = for (¢,z) € (0,T) x (0, 1),
3(t,0)=0 for t € (0,7T),
23( ) or t€(0,1) (5.7.34)
23(t,1) = ~(t) for t € (0,T),
ZS(Oa ) =0
From Proposition 8, (5.7.16), and (5.7.17), one gets
Iz lcoL2< llyoll e and [zl L2y < llyollze, (5.7.35)
C C
12%lloo 212 L2 i < Chllyyall L2 -1 < 71||:U2||L2L2< 71||1/HL2L°°||Z/||L°°L2’ (5.7.36)
12%) 2 12< 200 + Co T ) Y 2= (5.7.37)
128|200 < 2CT YA (n + C TY2) |1y L= (5.7.38)
From (5.7.36), (5.7.10), and (5.7.12), we get further
2 | 2 pe < CTY|yol| 2, (5.7.39)
C
122l co =< éIIyHLszHyIILsz, (5.7.40)
C
1221220 < CTY ZH [l s 1y o 2 (5.7.41)
2
Since [lyol|r2< R and ||y||L=< r, let us choose the ball
Br:={y € X : |lyllx, < 2R}. (5.7.42)
Then, from (5.7.29) and (5.7.31)—(5.7.42), one knows that
C
I ()l oo L2 < ||QOHL2+71||/!/HL2L°° lyll L 2 +200 + CyT2) |y L=
< lyollz2+2C1 uR? + 2(n + C, T ?)r, (5.7.43)

and

C
W) z2r= < CT1/4||yo||L2+CT1/471IIyIILzLoc Y]l oe 2 4+2CT 4 (1 + C, TV) 7|
< CTY*||yol| L2 +2CTY*CLuR? + 20T (n + C, T ?)r. (5.7.44)
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Hence
IT(W)llx, < L+ CTY* /)R + 2C (1 + CTY* /) R? + 2(1 + CTY* /) ( + C, T ?)r,  (5.7.45)
and we can successively choose 1, i, and T such that
IT()]lx,.< (3/2)R. (5.7.46)

Hence
F(BR) C Bg. (5747)

Let us now prove that I' is a contraction in Br. We perform similar computations. Let us assume
that
y1 and yo € Bpg. (5.7.48)

Then w :=T'(y1) — I'(y2) is the solution of

wt(tvx) - wMC(tax) = 7% ((y%)m - (y%)z) (tvx) for (tax) € (OaT) X (07 1)7
t,0) =0 for t € (0,7),
w(t,0) or t€(0,1) (5.7.49)
w(t,1) =0 for t € (0,7),
w(0,) =0
Hence, by Proposition 8,
Gy
lwllcorznrzmy < 5 Iy +y2llzrelly — y2ll o2
< CiRullyr — y2llpere- (5.7.50)
Thus
w2 < CLCTY* Rpullyr — w2l e 12 (5.7.51)
When p and T are small enough, we have
IT(y1) = T(y2)llx,, < (1/2)[ly2 — v2llx,.- (5.7.52)

Hence we get the existence of a unique solution in Bg. Let us now prove the uniqueness of solution
in X,,. It suffice to show the uniqueness of solution in X,, for small time. Let ||yo|lL2< R, ||V||pee < 7.
Let y € X,, be a solution to (5.7.27). One can always find 0 < T, < T such that

1yl o 0,72:220,1)) HYll £2(0,70 520 (0,1)) < 2R, (5.7.53)

which implies the uniqueness of the solution in time (0, 7T%).

The above proof gives the local existence and uniqueness of L>®L? N L2L> solution. When
~ € C°, Proposition 9 shows that the solution is also in C°L? N L2L>°.

Step 2. Continuity of the solution with respect to the data yg, 8 and v. More precisely, in this
step, we prove the following lemma.

Lemma 28. For every R >0, r > 0, and € > 0 such that 4eRC1 < 1, there exists 0 < TRT <Tg,
such that, for every t; € R and t2 € R such that t1 < to < t1 + Tfh, for every yOi € L?(0,1), for
every Bt € L>®(ty,t2), and for every v£ € L>®(t1,ta) such that

lyg ll22< R and ||| o+ |7 | e < (5.7.54)
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the solutions y* to the Cauchy problem

yi (tz) —yE (o) +yFyE =0 for (t,z) € (t1,t2) x (0,1),
£(t,0) = pE(t te (t,t
yi( 3 ) Bi( ) fO?” € ( 1 2)7 (5755)
y=(t,1) = ~v=(t) for t € (t1,t2),
yi(tlv ) = y(:)ta
satisfy
Iyt =y oo tmizz o)< 201y — ¥o 2 +18T = B e +lIvT =77 [lo=). (5.7.56)

Proof of Lemma 28. Let us first point out that the existence of y* (on [t;,1]) follows from Step 1
and (5.7.54). We also only treat the case where S = 0 in order to simplify the notations. From Step
1 we also know that

9™ o (611022 (0.1)) < 2R, (5.7.57)
||yi||L2(t17t2;Loo(O,1))< ER. (5758)

Let us denote z := yT — ¢y~ as the solution of

2t 2) = zoa(t,x) = =5 (((WF —y7)y" +yh),) (o) for (t,x) € (0,7) x (0,1),
2(t,0) =0 for t € (0,T), (5.7.59)
2(t,1) =T — 4~ for ¢t € (0,T), o
20,) =y — ¥
Hence by using the same estimates as in Step 1, we get
I2llzoere < Cillz(y* +y Meerz+lyd — o 2+ + CyT ) Iy =7 1
< 26CiR|z2| b p2 Hllyg = vo o2+ + CyT ) IvH =77 |l
<1/2l|zl o2+ llyg = vo 2+ + Cy T2 |Iv* =47 ||z, (5.7.60)
where T := t5 — t;. Hence
2]l ooz < 2llyg = g L2 +2(n + CyT?) v+ =77 ||
2(llyd — vo 2 +lv " =77 llz=), (5.7.61)

by choosing 0 < Tf, , < T, small enough such that n+ C, (Tg,,)/? < 1, which concludes the proof
of Lemma 28. O

Remark 24. We observe from (5.7.61) that
Iyt =y lLer2— 0, (5.7.62)
if
lyg = ¥ 2= 0, 18" = B7||L~— 0, and |y =77 [[=— 0. (5.7.63)

Step 3. Maximum principle: nonlinear case (Lemma 18). Let us first point out that Lemma 18
is a consequence of the following local version of Lemma 18.

Lemma 29 (Local maximum principle: nonlinear case). Let R >0, 7 >0, and e > 0 be given such
that 4eRCy < 1. Let t; € R and t2 € R be given such that t1 <tz <11 +Tg .. Let yOi € L?(0,1),
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BE € L®(t1,t3) be piecewise continuous, and y* € L>®(t1,ts) be piecewise continuous such that
(5.2.19) holds and

ly5 ll22< R and ||| oo +|[7F | Lo < (5.7.64)

Then the solutions y* to the Cauchy problem (5.7.55) satisfy (5.2.20).

Indeed, using this lemma and arguing by contradiction, one easily gets that, under the assump-
tions of Lemma 18,

max{r € [0,T); y~ (¢t,-) <y*(t,-), Vte€[0,7]} =T. (5.7.65)

Proof of Lemma 29. Under the extra assumption that 8 and v are in H/(t1,t,), property (5.2.20)
follows from | , Lemma 1]. The general case follows from this special case by using a density
argument and Lemma 28 (or Remark 24). Indeed, using the fact that 3% and 4% are piecewise
continuous, there are sequences " € HY4(ty,t5) N L®(ty,t2) and v+ € HY4(ty,t5) N L (ty,15)
such that

B"E — BE in L%(ty, t2) and y"F — 4% in L®(t, ta). (5.7.66)

Moreover, using (5.2.19) and (5.7.64), we may also impose that

18" | e+ " F [ < 7 Y €N, (5.7.67)
B < B and 4" <A™, YneN. (5.7.68)
Let y™* be the solutions to the Cauchy problem (5.7.55) for f* := g"* and v* := 4"*. From
[ , Lemma 1]
yn7 (tv ) < yn+(t7 ')7 Vt S [tlatQ]- (5769)
By Lemma 28 and (5.7.66),
19" =y |l r2— 0 and [|y"~ — y~ || r2— 0 as n — +oo. (5.7.70)

Property (5.2.20) follows from (5.7.69) and (5.7.70). This concludes the proof of Lemma 29. O

Step 4. It only remains to prove the global existence of the solution to (5.2.12) with f = 0. Let

B = |||l Lo 0,7) Yl < 0,7) (5.7.71)
1
Rys :=2||yol|L2+4B, rar := B, ey = 8Ciiy and Ty :=TgY (5.7.72)
Note that
lyollz2 < R l|Bl oo 0,1y HlI V| Los 0,1y < e (5.7.73)

By (5.7.73) and the second part of Proposition 10 (Step 1) the solution y of (5.7.27) is defined at
least on [0, min{T, Ths}]. Hence we may assume that 7' > T)y.
Let y* : (0,7+) — L2(0,1) be the (maximal) solution to the Cauchy problems

yti(t,x) — oyt (t,x) + yTyl(t,x) =0 for (t,x) € (0,7+) x (0,1),
£(t,0) =+ for t € (0
yi(’ ) or ¢ € (0,7), (5.7.74)
y*=(t,1) =+B for ¢ € (0,74),
y=(0,) = yo
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As for y, we have 7+ < Tyy. Let 2% : [0, Ths] — L?(0,1) be defined by
=yt FB. (5.7.75)

Then 27 is a solution of

zti(t,x) —zE (t,2) £ BzE(t, o) + 2T 2 (t, ) =0 for (t,x) € (0,Tp) x (0,1),
25 (t,0) =0 for t € (0,Twn), (5.7.76)
2 (t,1) =0 for t € (0,Tn), o
zi(ov ) =%Yo :FBa
from which we get that
d !
o (25)2dx < 0 in D'(0, Th). (5.7.77)
0
Hence
ly™= (& )220, < Iwoll L2 +2B. (5.7.78)
Moreover, thanks to the maximum principle (Lemma 18), we have
y~ <y<y", vtel0,Tyl (5.7.79)
In particular, using (5.7.78),
1y(Tar)llL2< Ras, ly~ (Tar)llp2< Rar, and [ly™ (Tar)l|2< Ras. (5.7.80)

This allows to redo the above procedure with the initial time T; and the initial data y(Tas), vy~ (Ta),
and y*(Ths). Let us emphasize that the initial data for y* at time T is not y(Tas) but y*(Th)
(which is given by the definition of y* on [0,Ty]). In particular y, y~, and y* are defined on
[0, min{T, 2Ty }]. So we may assume that T > 2Th;. Moreover, using once more the maximum
principle,

y~ (1) <yt) <yt (t), Vte[Tu,2Tn]. (5.7.81)

Property (5.7.77) and therefore also (5.7.78) hold on [T, 2Ts]. Together with (5.7.81) this implies
that
ly(2Ta)llz2< Ror, ly™ (2Tr) |2 < Rar, and |ly™ (2T)|| 22 < R (5.7.82)

We keep going and using an induction argument get that, for every integer n > 0, y is defined on
[0, min{nTys, T}]. This concludes the proof of Proposition 10.
At last, Lemma 19 follows directly from Lemma 28 and Step 4.

5.8 Appendix B: Proof of Lemma 21

Let us start the proof of Lemma 21 by proving the following lemma, which deals with the
well-posedness for small time of the Cauchy problem

2t — Zgpx + 222 +a(t)z, =0 for (t,x) € (0,T) x (0,1),

2(t,0) =0 for t € (0,7,

2(t,1) =0 for t € (0,T), (5.8.1)
ar = Ag(z,a) for t € (0,T),

2(0,) =z and a(0) = ao,
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with R
Ao(z,a) = Ap(z + a,a). (5.8.2)

Lemma 30. Let Ag(y,a) be given by (5.3.22). Let R > 0. There exists Tr > 0 such that, for every
(2,a) € L%(0,1) x R such that ||(z,a)|[v< R, there exists one and only one z : [0,Tgr] x (0, L) such
that

z € C°([0,Tg]; L*(0,1)) N L?(0, Tr; H(0,1)), (5.8.3)

a € C°([0,TR), a; = « in the distribution sense, and a(0) = ao,

and such that y := z is a solution on [0, Tg] to the Cauchy problem (5.2.1), in the sense of Definition
10, for f:= —zz, —a(t)zg, B:=0, v:=0, and yo := 2o.

Let us define
W= {(z,a) : z € C°([0,T]; L*(0,1)) N L*(0, T; Hj(0,1)),a € C°([0,T))}. (5.8.5)
We introduce the W,-norm on W by
1z, @)llw, = 2l copanz s +allalico, (5.8.6)

with n < 1. Hence (z, a) is as requested in Lemma 30 if and only if it is a fixed point of A : W — W,
(z,a) = W(z,a) =: (w,b) where w is the unique solution to the Cauchy problem (in the sense of
Definition 10)

Wy — Way = —22p — a(t) 2, for (t,x) € (0,T) x (0,1),

w(t,0) =0 for t € (0,7T), (5.8.7)
w(t,1) =0 for t € (0,T),w(0,-) =z and b(0) = ao
and .
b(t) = ag + /0 Ao(2(r), a(r))dr for t € [0,T]. (5.8.8)

It follows from Proposition 8 that A is well defined. For ||(zg, ao)||lv < R, we try to find a fixed point
of A on }
Br:={(z,a) € W : |(2,a)|lw, < 3R}. (5.8.9)

For every (z,a) € Bg, by Proposition 8 and (5.7.10)—(5.7.12), we have

|wlleorznrzmy < 2l[222 + aze||Lrr2+2] 20| L2
< CT1/4HZ||2COL20L2H3+2T1/2Ha||00||Z||L2Hg+2R
<

2R + 9CR*TY* + 9R?TY/? /. (5.8.10)
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Moreover
[bllco < laol + [ Ao(z, ) 11

1 1
2
<R+ )\H—Q/ 22e dx + (1 —a) Vi(2) — g/ e da||
0 0

i o1
+ Hgl — M- AVi(2))?[| 1
< R+ 22172 gy AT 2] 20 2+ AT lall oo |21 2o L2 4AAT Y 2 2| 2 1 | 2110 12
+T|2) 202 +AT (lall co+-A]l 220 2)°
< R+ 18\R? + 9ATR? 4+ 27TATR? /n + 2TAT*/?2R® + 9T R? + AT(3R/n + 9AR?)3. (5.8.11)

Hence

[(w,b)[|w, < 2R+ 9CR*TY* + 9R*TY? /n + n(R + 18AR?)
+ (INTR? + 27TATR? /n + 27ATY2R® + 9T R* + M\T(3R/n + 9AR?)*).  (5.8.12)
We can successively choose n and T so that the right hand side of (5.8.12) is less or equal than 3R,

leading to
[(w, b)|lw, < 3R, (5.8.13)

which implies that _ ~
A(BR) C Bg. (5.8.14)

It remains to get the contraction property. Suppose that (w;,b;) := A((z;,a;)) with ¢ € {1,2}, then
by using Proposition 8 one gets
w1 —wallcorznrzay < 2[|21(21)2 — 22(22)2 + a1(21)2 — a2(22)a L1 L2
0
<207 (Hzl||COL2mL2H01+||Z2||COL20L2H5) 21 — 22HCOL20L2H(}
+ 272 ay — aslloo || 22l| L2 +2T" % las || col|21 — 22l L2

< (12CRT1/4 £ 12RTY/? /n) (21, 1) — (22, a2) | w, (5.8.15)
and

b1 — balco < || Ao(21,a1) — Ao(22,a2)|| 1
— Vi(22

! _ 2 [t _ Vi(z
<Al [ (- ) etdo - 3 [ - spetaal L AEY,

+ %Aﬂ(al = AVi(21))? = (a2 = Vi(22))* [ i +A (1 = a1) Vi(z1) = (1 = a2) Vi (22)l|
S 12XR|21 — 22| 2y +24ARP T2 |21 — 22 p2py
+T(3R + 6AR)||z1 — 22|l cor2+(27TTR* /)| (21,a1) — (22, a2)||lw,
+ AT ([lar — azllco+Al|z1 — 22]lcorzl|z1 + 22l cor2) - 4(3R/n + A9R?)?
< (12\R + 24AR*TY? 4 3RT + 6ART + 27T R? /n + 36 AT R*(1/n + 6AR)?)
(21, a1) = (22, a2)|lw,- (5.8.16)
Hence one gets the contraction property of the map A on Bg when 7 and T are well chosen, which

implies the existence of a unique solution in Bgr. Then, proceeding as in the proof of uniqueness
part of Proposition 10, we can further get the uniqueness of solution in W,. This completes the
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proof of Lemma 30.

In order to end the proof of Lemma 21, it only remains to prove the existence of the solution
(z,a) for large time. For this existence in large time, it suffices to check that ||z(¢)||r> remains
bounded. This can be done by using the maximum principle for the nonlinear Burgers equation
(Lemma 18) as in the proof of Proposition 10 (Step 4).

5.9 Appendix C: Proof of Lemma 24

This section is devoted to the proof of Lemma 24. Let us start our proof of this lemma with a
proof of the following lemma.

Lemma 31. Let M > 0 and let G : L*(0,1) — R be a (stationary) feedback law satisfying (5.4.43).
Let R >0 and e > 0. There exists T > 0 such that, for every yo € L?(0,1) satisfying

1yollz2< R, (5.9.1)
the Cauchy problem (5.4.45) has a unique solution
y € C°([0,Tg]; L*(0,1)) N L*(0,Tg; L>=(0,1)), (5.9.2)
and moreover this solution satisfies

Hy||CO([07T§];L2(0,1))< 2R, (593)
Yllz2(0.75; L (0,1))< ER- (5.9.4)

This lemma is quite similar to Proposition 10. Therefore we use the same strategy to get the
proof of this lemma. Let us consider the space

Y :=C°([0,T); L*(0,1)) N L*(0,T; L*>(0, 1)) (5.9.5)

and the norm

1
[yllv, := Hy||COL2+;Hy”L2L°°7 (5.9.6)

with 41 > 0 to be chosen later. Then we consider the following map I' : Y, — Y,,, where I'(y) is the
unique solution of

z(t,z) — zm(t z) = —(yyz)(t, x) for (¢t,z) € (0,T) x (0,1),

2(t,0) = for t € (0,7,
2(t,1) = ( ) for t € (0,T), (5.9.7)
2(0,-) =

Again, this map is well defined (one only need to notice the L>L? estimate can be replaced by
CYL? estimate since G(y(t)) is continuous). As in the proof of Proposition10, it suffices to find the
unique fixed point in the following ball

Br={y €Y :|yllv,<2R}. (5.9.8)

From (5.7.31)—(5.7.41) and (5.7.43)—(5.7.44), we get

C
ITW)llcorz < IIyo||L2+71IIyIIL2Lw Y]l Lo L2 4+2(n + C,T*?) |G () | o
< lyoll 2 +2C1 uR? + 4(n + C, TY?) MR, (5.9.9)
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and

C
Tl L2pe < CT1/4||y0||L2+CT1/471||y||L2L<>c lyll Lo £2+20T4(n + C,TV2)(|G(y) | co

< CTY*||yol| L2 +2CTY*CLpuR? + 4CTY*(n + C, TY?)MR. (5.9.10)
With a good choice of n,u and T, T is from Bk to Bf. By using similar estimates (see also the
proofs of (5.7.50) and (5.7.51)), we have

Cy 1/2
IT(1) = L(ye)lloors < 5l +y2llzr=llys — y2ll e 24200 + Cy TG (Y1) — Glyz)lleo
< C1Rullyr — y2llcor2+2(n + CyTV?) M |lyr — yallcor2,

and

C
IT(y1) = T(y2) 2L < CT1/471||y1 + voll2pe Iy — y2llp~r2
+2CT V4 (n + C,T'?)|G(y1) — G(y2) || o
< CTY*CyRyllys — yallcor2+2CTY* (n + Cu T ) M|lyy — y2l|co L2

Hence a good choice of n, u, and T, makes I' a contraction map. This concludes the proof of
Lemma 31.

Remark 25. If we replace C°L? by L=¥L?, we get the local well-posedness in L>°L* N L2L>.

So far, we get the local existence and uniqueness of the solution of (5.4.45). In order to get
the global existence statement of Lemma 24 it suffices to control the L?-norm of y(t). This control
follows from (5.4.44), which leads to (5.7.78) with B := M. This concludes the proof of Lemma 24.

5.10 Appendix D: Proof of Lemma 23

The proof is to consider an equation of z(x) := II)(y(z)) instead of equation (5.4.15) (see
(5.4.16)), this gives the advantage that z(¢,0) = z(¢,1) = 0. The local existence and uniqueness of
the solution z is given by a standard procedure (by considering the nonlinear term I as a force term
and using Banach fixed point theorem).

Proof of Lemma 23. In this proof, the constant C' may change from line to line, but it is independent
of 0 < T <1 and of R. From (5.4.16) and (5.4.18)

I(2) = —yyo + /0 o 0) (v ) (0) s (5.10.1)

We notice that

1/2 3/2 1/2 3/2
()l z2(0.)< Cllyellz2< Cllyll o< llyall o< Clyll i IIyHH/g <Ozl ||ZHH/3» (5.10.2)
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and that

[1(z1) — I(22)|IL20,1) < Cllyr — vallzo<lly1e + y2zll 2 +Cllyr + y2ll o [Y12 — voull L2
< Cllys — vl 2l — y2||H1 Iy + v2ll
1/2 1/2
+ Cllyn + ol 2l + walligs s = w2l

< Cllzy = 2l (Il = 22l +Hlz1 = 22035°) (o1 + 22l g+l + 220122 )

+ Cllzn + 20l (I + 22l iz + 2201757 ) (21 = 22l g+l — 22ll22 )

< Cllzr = 22l 2% 121 = 228 121 + 2l
+Cllz1 + 2115 |21 + 22||1/2||zl 22z (5.10.3)

Regarding the linear Cauchy problem

24 —Zm—i-)\ZZf for (t,z) € (s,s+T) x (0,1),

for ¢ T
“5,0) = or £€ (8,5 4T), (5.10.4)
z(t,1) = for t € (s,s+T),
2(0,-) = zo,
similar to Proposition 8, we have
lzllcor=< llzoll L2+ fllL1 L2, (5.10.5)
2l Lemg < llzollL2 4+ fllrre. (5.10.6)

As normal, let us denote the space C°([s, s+T]; L2(0,1))NL?(s,s+T; H}(0,1)) endowed with norm
[lcorz+lllL2z by H (or Hr if necessary).

For yo with ||yo||L2< R given, we have ||zg|2< 63/201ﬁ||y0||,;z< e3/2C0VAR et us define
Bi={zeH: |z||lu< 332 VAR (5.10.7)
We consider the map I' : H — H, z — w where w is the unique solution of

Wi — Wee + Aw = 1(2) for (t,z) € (s,s+T) x (0,1),

w(t,0) =0 for t € (s,s+T), (5.10.8)
w(t,1) =0 for t e (s,s+ 1), o
w(0, ) = 2.

From (5.4.12), (5.10.5), and (5.10.6), we know that

IT(2) |12 < 262 YAR + 2| 1(2)| 11 22 (5.10.9)
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Hence, for every z € B, by (5.10.2) we have

IT(2) 3 < 26¥/29Y2R 4 2| 1(2)]| 11 2
<2 R+ O I e

X

s,5+T)
1/2 3/2
< 263/2leR + CT1/4||Z||C/0L2 ”Z”L/zH3
< 2632CVAR 4 9CT /43O VAR2, (5.10.10)
For every z; and z5 € B, we have
IT(z1) = T(22)||n < 2| 1(21) — I(22)|| L1125 (5.10.11)

Above estimate together with (5.10.3) give

I(z1) = T(z2) e < Cllza = 2l 120 — 22l s 21 + 22l

+ Cllz1 + 2| 121 + 2l s |

|21 — 22|
< OTY4| 21 = 2ol gzl — Zz||LzH1 21 + 22| L2
1/2
+ CTY 4|21 + 2o gape |21 + 2l s 21 = 22l oy

< T1/43e3/201ﬁRCH21 — 2|3 (5.10.12)

From (5.10.10) and (5.10.12), we get the existence of T which completes the proof. O
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Rapid stabilization of Burgers equations and of Korteweg-de Vries equations

Abstract :

This thesis is devoted to the study of stabilization of partial differential equations by nonlinear feedbacks. We are interested
in the cases where classical linearization and stationary feedback law do not work for stabilization problems, for example KdV
equations and Burgers equations. More precisely, it includes three important cases : stabilization of nonlinear systems whose
linearized systems are not asymptotically stabilizable ; small-time local stabilization of linear controllable systems ; small-time
global stabilization of nonlinear controllable systems. We find a strategy for the small-time global stabilization of the viscous
Burgers equation : small-time global approximate stabilization and small-time local stabilization. Moreover, using a quadratic
structure, we prove that the KdV system is exponentially stabilizable even in the case of critical lengths.

Keywords : controllability, stabilization, nonlinear feedback, Burgers, KdV, partial differential equations, small-
time.

Stabilisation rapide d’équations de Burgers et de Korteweg-de Vries

Résumé :

Cette these est consacrée a ’étude de la stabilisation d’équations aux dérivées partielles par feedbacks non linéaires. Nous nous
intéressons aux cas ou la technique de linéarisation et 'utilisation de feedback stationnaire ne fonctionnent pas pour des problemes
de stabilisation, par exemple des équations de Korteweg-de Vries (KdV) et des équations de Burgers. Plus précisément, nous
traitons trois cas importants : la stabilisation de systémes non linéaires dont les systémes linéarisés ne sont pas stabilisables
asymptotiquement ; la stabilisation locale en temps petit de systemes contrélables linéaires ; la stabilisation globale en temps petit
de systemes controlables non linéaires. En particulier, nous trouvons une stratégie pour la stabilisation globale en temps petit
de I’équation de Burgers visqueuse. Elle repose sur la stabilisation globale approchée en temps petit et sur la stabilisation locale
en temps petit. De plus, nous prouvons que le systeme de KdV méme pour des longueurs critiques est stabilisable de maniere
exponentielle. Nous utilisons pour cela une structure quadratique de la dynamique de la partie dont le linéarisé n’est pas contrélable.
Mot clés : controlabilité, stabilisation, feedback non linéaire, Burgers, KdV, équations aux dérivées partielles,
rapide.
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