Skip to Main content Skip to Navigation

Multipath and receiver models for assessing the VOR bearing error : application to wind farms

Abstract : The implementation of wind turbines close to VHF Omnidirectional Range (VOR) systems is an important concern for civil aviation. The wind turbines constitute a source of multipath that can yield bearing errors in the azimuth estimated by aircraft receivers. In the literature, the bearing error is computed from the multipath characteristics by means of the analytic expression proposed by Odunaiya and Quinet. In this PhD thesis, we have developed a digital IQ receiver model which can reproduce the response of a VOR receiver when the multipath change in time along a realistic aircraft trajectory. In Chapter 1, the basic principle of the Conventional VOR (CVOR) and Doppler VOR (DVOR) is pre-sented. The multipath phenomenon generated by the wind turbines in the vicinity of VOR stations is detailed by presenting its parameters and some associated modeling methods that exist in the literature. An overview of the VOR receivers is presented by describing the standard structure of a VOR receiver and the signal processing steps to extract the azimuth information. The analytical expressions proposed by Odunaiya and Quinet for the CVOR and DVOR systems are given and illustrated. In Chapter 2, we present our digital IQ receiver model. A time series generator along a realistic aircraft trajectory is presented. A sampling criterion is also proposed to be sure to capture all the multipath variations in space. The digital IQ receiver model is detailed by describing its components. In order to analyze the effect of multipath dynamics on the VOR receiver, an illustration test is given by comparing the receiver model response with the Odunaiya expression. In Chapter 3, the behavior of our digital IQ receiver model is analyzed by comparing with a calibration receiver (R&S EVS300) from two laboratory measurements. The first one is performed in the VHF frequency band for one canonical multipath. The second one is performed using baseband IQ signals in a complex scenario. The measurements results are shown a good agreement between receivers. A CVOR and DVOR analysis are given in Chapter 4. For CVOR, we present a method to determine the validity domain of the static Odunaiya expression for computing the bearing error. For DVOR, we show that the bearing error is sensitive to the type of FM demodulator by developing and validating an alternative expression of the analytic Doppler error which is consistent with our FM demodulator. Finally, we evaluate the analysis of Bredemeyer which indicates that the effect of multipath on the reference signal must be considered in the DVOR error computation. In Chapter 5, we propose a statistical model for the bearing error with which the only parameters are the aircraft and wind turbine positions and the other parameters follow statistical distributions. This model allows to reduce the electromagnetic simulation time. Firstly, we determine the statistical distributions associated with the multipath parameters. Secondly, the statistical distribution associated with the bearing error is deduced. Finally, we perform Monte Carlo simulations to assess the parameters of the statistical distributions.
Complete list of metadatas

Cited literature [83 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Thursday, November 12, 2020 - 12:16:36 PM
Last modification on : Wednesday, January 6, 2021 - 11:23:04 AM


Version validated by the jury (STAR)


  • HAL Id : tel-03001293, version 1


Seif Ben-Hassine. Multipath and receiver models for assessing the VOR bearing error : application to wind farms. Signal and Image processing. Université Paul Sabatier - Toulouse III, 2020. English. ⟨NNT : 2020TOU30047⟩. ⟨tel-03001293⟩



Record views


Files downloads