M. Haruta, When Gold Is Not Noble: Catalysis by Nanoparticles, The Chemical Record, vol.3, issue.2, pp.75-87, 2003.

N. Lopez, T. V. Janssens, B. S. Clausen, Y. Xu, M. Mavrikakis et al., On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation, Journal of Catalysis, vol.223, issue.1, pp.232-235, 2004.

T. V. Janssens, B. S. Clausen, B. Hvolbæk, H. Falsig, C. H. Christensen et al., Insights into the reactivity of supported Au nanoparticles: combining theory and experiments, Topics in Catalysis, vol.44, issue.1-2, pp.15-26, 2007.

G. C. Bond and D. T. Thompson, Gold-catalysed oxidation of carbon monoxide, Gold Bulletin, vol.33, issue.2, pp.41-50, 2000.

J. Guzman and B. C. Gates, Catalysis by Supported Gold: Correlation between Catalytic Activity for CO Oxidation and Oxidation States of Gold, Journal of the American Chemical Society, vol.126, issue.9, pp.2672-2673, 2004.

B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J. M. Antonietti et al., Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO, Science, vol.307, issue.5708, pp.403-407, 2005.

H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, and U. Landman, Structural, Electronic, and Impurity-Doping Effects in Nanoscale Chemistry: Supported Gold Nanoclusters, Angewandte Chemie International Edition, vol.42, issue.11, pp.1297-1300, 2003.

T. Minato, T. Susaki, S. Shiraki, H. S. Kato, M. Kawai et al., Investigation of the electronic interaction between TiO2(110) surfaces and Au clusters by PES and STM, Surface Science, vol.566-568, pp.1012-1017, 2004.

D. Widmann, A. Krautsieder, P. Walter, A. Brückner, and R. J. Behm, How Temperature Affects the Mechanism of CO Oxidation on Au/TiO2: A Combined EPR and TAP Reactor Study of the Reactive Removal of TiO2 Surface Lattice Oxygen in Au/TiO2 by CO, ACS Catalysis, vol.6, issue.8, pp.5005-5011, 2016.

A. Y. Klyushin, T. E. Jones, T. Lunkenbein, P. Kube, X. Li et al., Strong Metal Support Interaction as a Key Factor of Au Activation in CO Oxidation, ChemCatChem, vol.10, issue.18, pp.3985-3989, 2018.

S. Tosoni and G. Pacchioni, Oxide?Supported Gold Clusters and Nanoparticles in Catalysis: A Computational Chemistry Perspective, ChemCatChem, vol.11, issue.1, pp.73-89, 2018.

R. M. Finch, N. A. Hodge, G. J. Hutchings, A. Meagher, Q. A. Pankhurst et al., Identification of active phases in Au?Fe catalysts for low-temperature CO oxidation, Physical Chemistry Chemical Physics, vol.1, issue.3, pp.485-489, 1999.

P. Concepción, S. Carrettin, and A. Corma, Stabilization of cationic gold species on Au/CeO2 catalysts under working conditions, Applied Catalysis A: General, vol.307, issue.1, pp.42-45, 2006.

J. C. Frost, Junction effect interactions in methanol synthesis catalysts, Nature, vol.334, issue.6183, pp.577-580, 1988.

D. Widmann and R. J. Behm, Activation of Molecular Oxygen and the Nature of the Active Oxygen Species for CO Oxidation on Oxide Supported Au Catalysts, Accounts of Chemical Research, vol.47, issue.3, pp.740-749, 2014.

Y. Kuwauchi, H. Yoshida, T. Akita, M. Haruta, and S. Takeda, Intrinsic Catalytic Structure of Gold Nanoparticles Supported on TiO2, Angewandte Chemie International Edition, vol.51, issue.31, pp.7729-7733, 2012.

I. X. Green, W. Tang, M. Neurock, and J. T. Yates, Insights into Catalytic Oxidation at the Au/TiO2 Dual Perimeter Sites, Accounts of Chemical Research, vol.47, issue.3, pp.805-815, 2013.

M. Kotobuki, R. Leppelt, D. A. Hansgen, D. Widmann, and R. J. Behm, Reactive oxygen on a Au/TiO2 supported catalyst, Journal of Catalysis, vol.264, issue.1, pp.67-76, 2009.

D. Widmann and R. J. Behm, Active Oxygen on a Au/TiO2 Catalyst: Formation, Stability, and CO Oxidation Activity, Angewandte Chemie International Edition, vol.50, issue.43, pp.10241-10245, 2011.

P. Konova, A. Naydenov, C. V. Venkov, D. Mehandjiev, D. Andreeva et al., Activity and deactivation of Au/TiO2 catalyst in CO oxidation, Journal of Molecular Catalysis A: Chemical, vol.213, issue.2, pp.235-240, 2004.

P. Li, X. Chen, Y. Li, and J. W. Schwank, A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control, Catalysis Today, vol.327, pp.90-115, 2019.

C. Minot, O. A. Syzgantseva, M. Calatayud, Z. Helali, and A. Jedidi, Scaling Reducibility of Metal Oxides, Theor. Chem. Acc, vol.136, pp.1-16, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582563

D. A. Cunningham, W. Vogel, and M. Haruta, Negative Activation Energies in CO Oxidation over an Icosahedral Au/Mg(OH)(2) Catalyst, Catalysis Letters, vol.63, issue.1/2, pp.43-47, 1999.

Y. Wang, D. Widmann, M. Wittmann, F. Lehnert, D. Gu et al., High activity and negative apparent activation energy in low-temperature CO oxidation ? present on Au/Mg(OH)2, absent on Au/TiO2, Catalysis Science & Technology, vol.7, issue.18, pp.4145-4161, 2017.

G. M. Mullen, J. Gong, T. Yan, M. Pan, and C. B. Mullins, The Effects of Adsorbed Water on Gold Catalysis and Surface Chemistry, Topics in Catalysis, vol.56, issue.15-17, pp.1499-1511, 2013.

W. Yan, B. Chen, S. M. Mahurin, V. Schwartz, D. R. Mullins et al., Preparation and Comparison of Supported Gold Nanocatalysts on Anatase, Brookite, Rutile, and P25 Polymorphs of TiO2for Catalytic Oxidation of CO, The Journal of Physical Chemistry B, vol.109, issue.21, pp.10676-10685, 2005.

K. Y. Ho and K. L. Yeung, Properties of TiO2 support and the performance of Au/TiO2 Catalyst for CO oxidation reaction, Gold Bulletin, vol.40, issue.1, pp.15-30, 2007.

F. Moreau and G. C. Bond, Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide, Applied Catalysis A: General, vol.302, issue.1, pp.110-117, 2006.

Z. Zhan, B. Qi, L. Di, D. Duan, and X. Zhang, Effect of TiO 2 Crystal Phase and Preparation Method on the Catalytic Performance of Au/TiO 2 for CO Oxidation, IEEE Trans. Plasma Sci, vol.44, pp.2692-2698, 2016.

S. Chong and T. C. Yang, Parametric Studies of Titania-Supported Gold-Catalyzed Oxidation of Carbon Monoxide, Materials, vol.10, issue.7, p.756, 2017.

K. Zhou, X. Wang, X. Sun, Q. Peng, and Y. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, Journal of Catalysis, vol.229, issue.1, pp.206-212, 2005.

J. I. Kunming, Z. Huili, and L. I. Wencui, Effect of Morphology of the Ceria Support on the Activity of Au / CeO 2 Catalysts for CO Oxidation, Chinese J. Catal, vol.29, pp.1089-1092, 2008.

X. S. Huang, H. Sun, L. C. Wang, Y. M. Liu, K. N. Fan et al., Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation, Applied Catalysis B: Environmental, vol.90, issue.1-2, pp.224-232, 2009.

N. ;. Ta, J. Liu-(jimmy), and W. Shen, Tuning the shape of ceria nanomaterials for catalytic applications, Chinese Journal of Catalysis, vol.34, issue.5, pp.838-850, 2013.

A. Trovarelli and J. Llorca, Ceria Catalysts at Nanoscale: How Do Crystal Shapes Shape Catalysis?, ACS Catalysis, vol.7, issue.7, pp.4716-4735, 2017.

J. Jolivet, De La Solution à l'oxyde : Chimie Aqueuse Des Cations Métalliques, Synthèse de Nanostructures; CNRS, 2015.

H. Dinegar, V. Lamer, and . Theory, Production and Mechanism of Monodispersed Hydrosols, J. Am. Chem. Soc, vol.72, pp.4847-4854, 1950.

M. Haruta and B. Delmon, Preparation of homodisperse solids, Journal de Chimie Physique, vol.83, pp.859-868, 1986.

C. Noguera, B. Fritz, A. Clément, and A. Baronnet, Nucleation, growth and ageing scenarios in closed systems I: A unified mathematical framework for precipitation, condensation and crystallization, Journal of Crystal Growth, vol.297, issue.1, pp.180-186, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133693

C. De?mello?donegá, P. Liljeroth, and D. Vanmaekelbergh, Physicochemical Evaluation of the Hot-Injection Method, a Synthesis Route for Monodisperse Nanocrystals, Small, vol.1, issue.12, pp.1152-1162, 2005.

H. ;. Zhang and J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, Journal of Materials Chemistry, vol.8, issue.9, pp.2073-2076, 1998.

F. Dufour, S. Cassaignon, O. Durupthy, C. Colbeau-justin, and C. Chanéac, Do TiO2 Nanoparticles Really Taste Better When Cooked in a Microwave Oven?, European Journal of Inorganic Chemistry, vol.2012, issue.16, pp.2707-2715, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01468420

P. Belleville, Colloïdes d'oxydes de Fer à Structure Spinelle. Formation En Solution et Propriétés Interfaciales, 1991.

T. W. Hansen, A. T. Delariva, S. R. Challa, and A. K. Datye, Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?, Accounts of Chemical Research, vol.46, issue.8, pp.1720-1730, 2013.

V. N. Richards, N. P. Rath, and W. E. Buhro, Pathway from a Molecular Precursor to Silver Nanoparticles: The Prominent Role of Aggregative Growth, Chemistry of Materials, vol.22, issue.11, pp.3556-3567, 2010.

S. P. Shields, V. N. Richards, and W. E. Buhro, Nucleation Control of Size and Dispersity in Aggregative Nanoparticle Growth. A Study of the Coarsening Kinetics of Thiolate-Capped Gold Nanocrystals, Chemistry of Materials, vol.22, issue.10, pp.3212-3225, 2010.

Y. Guyodo, A. Mostrom, R. Lee-penn, and S. K. Banerjee, From Nanodots to Nanorods: Oriented aggregation and magnetic evolution of nanocrystalline goethite, Geophysical Research Letters, vol.30, issue.10, pp.n/a-n/a, 2003.

M. Niederberger, F. Krumeich, K. Hegetschweiler, and R. Nesper, An Iron Polyolate Complex as a Precursor for the Controlled Synthesis of Monodispersed Iron Oxide Colloids, Chemistry of Materials, vol.14, issue.1, pp.78-82, 2002.

R. L. Penn, Kinetics of Oriented Aggregation, The Journal of Physical Chemistry B, vol.108, issue.34, pp.12707-12712, 2004.

R. L. Penn, J. F. Banfield, R. L. Penn, and J. F. Banfield, Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals, Science, vol.281, issue.5379, pp.969-971, 1998.

A. Pottier, S. Cassaignon, C. Chanéac, F. Villain, E. Tronc et al., Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy, Journal of Materials Chemistry, vol.13, issue.4, pp.877-882, 2003.

H. Li, J. Addai-mensah, J. C. Thomas, and A. R. Gerson, The crystallization mechanism of Al(OH)3 from sodium aluminate solutions, Journal of Crystal Growth, vol.279, issue.3-4, pp.508-520, 2005.

S. Cassaignon, M. Koelsch, and J. P. Jolivet, From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile): Thermohydrolysis and oxidation in aqueous medium, Journal of Physics and Chemistry of Solids, vol.68, issue.5-6, pp.695-700, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00333851

T. X. Sayle, S. C. Parker, and D. C. Sayle, Shape of CeO2 nanoparticles using simulated amorphisation and recrystallisation, Chemical Communications, vol.10, issue.21, p.2438, 2004.

Z. L. Wang and X. Feng, Polyhedral Shapes of CeO2Nanoparticles, The Journal of Physical Chemistry B, vol.107, issue.49, pp.13563-13566, 2003.

O. Durupthy, J. Bill, and F. Aldinger, Bioinspired Synthesis of Crystalline TiO2: Effect of Amino Acids on Nanoparticles Structure and Shape, Crystal Growth & Design, vol.7, issue.12, pp.2696-2704, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02354069

Q. Wu, F. Zhang, P. Xiao, H. Tao, X. Wang et al., Great Influence of Anions for Controllable Synthesis of CeO2 Nanostructures: From Nanorods to Nanocubes, The Journal of Physical Chemistry C, vol.112, issue.44, pp.17076-17080, 2008.

C. Goia, E. Matijevi?, and D. V. Goia, Preparation of Colloidal Bismuth Particles in Polyols, Journal of Materials Research, vol.20, issue.6, pp.1507-1514, 2005.

J. Jolivet, C. Froidefond, A. Pottier, C. Chanéac, S. Cassaignon et al., Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling, J. Mater. Chem., vol.14, issue.21, pp.3281-3288, 2004.

W. T. Yao and S. H. Yu, Recent advances in hydrothermal syntheses of low dimensional nanoarchitectures, International Journal of Nanotechnology, vol.4, issue.1/2, p.129, 2007.

R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera et al., The use of microwave ovens for rapid organic synthesis, Tetrahedron Letters, vol.27, issue.3, pp.279-282, 1986.

J. Schanche, Microwave synthesis solutions from personal chemistry, Molecular Diversity, vol.7, issue.2-4, pp.291-298, 2003.

T. N. Glasnov and C. O. Kappe, Microwave-Assisted Synthesis under Continuous-Flow Conditions, Macromolecular Rapid Communications, vol.28, issue.4, pp.395-410, 2007.

C. O. Kappe and D. Dallinger, Controlled microwave heating in modern organic synthesis: highlights from the 2004?2008 literature, Molecular Diversity, vol.13, issue.2, pp.71-193, 2009.

M. Baghbanzadeh, L. Carbone, P. D. Cozzoli, and C. O. Kappe, Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals, Angewandte Chemie International Edition, vol.50, issue.48, pp.11312-11359, 2011.

C. O. Kappe, My Twenty Years in Microwave Chemistry: From Kitchen Ovens to Microwaves that aren't Microwaves, The Chemical Record, vol.19, issue.1, pp.15-39, 2018.

S. Komarneni and H. Katsuki, Nanophase materials by a novel microwave-hydrothermal process, Pure and Applied Chemistry, vol.74, issue.9, pp.1537-1543, 2002.

Y. J. Zhu and F. Chen, Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase, Chemical Reviews, vol.114, issue.12, pp.6462-6555, 2014.

A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski et al., Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods, Journal of Nanomaterials, vol.2014, pp.1-9, 2014.

D. M. Mingos and D. R. Baghurst, Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry, Chemical Society Reviews, vol.20, issue.1, p.1, 1991.

H. Abe, N. Serpone, M. Abe, S. Horikoshi, and K. Torigoe, Access to Small Size Distributions of Nanoparticles by Microwave-Assisted Synthesis. Formation of Ag Nanoparticles in Aqueous Carboxymethylcellulose Solutions in Batch and Continuous-Flow Reactors, Nanoscale, vol.2, p.1441, 2010.

E. Caponetti, L. Pedone, and R. Massa, Microwave Radiation Effect On The Synthesis Of Cadmium Sulphide Nanoparticles In Water In Oil Microemulsion: A Preliminary Study At Different Frequencies, Materials Research Innovations, vol.8, issue.1, pp.44-47, 2004.

M. Abe, N. Serpone, H. Abe, K. Torigoe, T. Sumi et al., Microwave Frequency Effect in the Formation of Au Nanocolloids in Polar and Non-Polar Solvents, Nanoscale, 1697.

A. Pein, M. Baghbanzadeh, T. Rath, W. Haas, E. Maier et al., Investigation of the Formation of CuInS2Nanoparticles by the Oleylamine Route: Comparison of Microwave-Assisted and Conventional Syntheses, Inorganic Chemistry, vol.50, issue.1, pp.193-200, 2011.

Y. Zhu and F. Chen, Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase, Chemical Reviews, vol.114, issue.12, pp.6462-6555, 2014.

J. A. Darr, J. Zhang, N. M. Makwana, and X. Weng, Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions, Chemical Reviews, vol.117, issue.17, pp.11125-11238, 2017.

K. A. Malinger, A. Maguer, A. Thorel, A. Gaunand, and J. F. Hochepied, Crystallization of anatase nanoparticles from amorphous precipitate by a continuous hydrothermal process, Chemical Engineering Journal, vol.174, issue.1, pp.445-451, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00652983

F. Bondioli, A. Bonamartini-corradi, A. M. Ferrari, and C. Leonelli, Synthesis of Zirconia Nanoparticles in a Continuous-Flow Microwave Reactor, Journal of the American Ceramic Society, vol.91, issue.11, pp.3746-3748, 2008.

A. Bonamartini-corradi, F. Bondioli, A. M. Ferrari, B. Focher, and C. Leonelli, Synthesis of Silica Nanoparticles in a Continuous-Flow Microwave Reactor

R. Zanella, L. Delannoy, and C. Louis, Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition?precipitation with NaOH and urea, Applied Catalysis A: General, vol.291, issue.1-2, pp.62-72, 2005.

J. Hermann, R. A. Distasio, and A. Tkatchenko, First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications, Chemical Reviews, vol.117, issue.6, pp.4714-4758, 2017.

V. Iliev, D. Tomova, L. Bilyarska, and G. Tyuliev, Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid, Journal of Molecular Catalysis A: Chemical, vol.263, issue.1-2, pp.32-38, 2007.

J. Lee and W. Choi, Photocatalytic Reactivity of Surface Platinized TiO2: Substrate Specificity and the Effect of Pt Oxidation State, The Journal of Physical Chemistry B, vol.109, issue.15, pp.7399-7406, 2005.

J. Ohyama, A. Yamamoto, K. Teramura, T. Shishido, and T. Tanaka, Modification of Metal Nanoparticles with TiO2 and Metal?Support Interaction in Photodeposition, ACS Catalysis, vol.1, issue.3, pp.187-192, 2011.

A. A. Ismail, A. Hakki, and D. W. Bahnemann, Mesostructure Au/TiO2 nanocomposites for highly efficient catalytic reduction of p-nitrophenol, Journal of Molecular Catalysis A: Chemical, vol.358, pp.145-151, 2012.

G. R. Andrade, C. C. Nascimento, E. C. Silva-júnior, D. T. Mendes, and I. F. Gimenez, ZnO/Au nanocatalysts for enhanced decolorization of an azo dye under solar, UV-A and dark conditions, Journal of Alloys and Compounds, vol.710, pp.557-566, 2017.

T. Ohno, K. Sarukawa, and M. Matsumura, Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions, New Journal of Chemistry, vol.26, issue.9, pp.1167-1170, 2002.

Q. Wu, F. Zhang, P. Xiao, H. Tao, X. Wang et al., Great Influence of Anions for Controllable Synthesis of CeO2 Nanostructures: From Nanorods to Nanocubes, The Journal of Physical Chemistry C, vol.112, issue.44, pp.17076-17080, 2008.

F. Gao, Q. Lu, and S. Komarneni, Fast Synthesis of Cerium Oxide Nanoparticles and Nanorods, Journal of Nanoscience and Nanotechnology, vol.6, issue.12, pp.3812-3819, 2006.

S. A. Hayes, P. Yu, T. J. O?keefe, M. J. O?keefe, and J. O. Stoffer, The Phase Stability of Cerium Species in Aqueous Systems, Journal of The Electrochemical Society, vol.149, issue.12, p.C623, 2002.

N. ;. Ta, J. Liu-(jimmy), and W. Shen, Tuning the shape of ceria nanomaterials for catalytic applications, Chinese Journal of Catalysis, vol.34, issue.5, pp.838-850, 2013.

H. Kim, M. Kim, and S. Byeon, Ce4+/Ce3+ redox-controlled luminescence ?off/on? switching of highly oriented Ce(OH)2Cl and Tb-doped Ce(OH)2Cl films, Journal of Materials Chemistry C, vol.5, issue.2, pp.444-451, 2017.

L. He, Y. Su, J. Lanhong, and S. Shi, Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: a review, Journal of Rare Earths, vol.33, issue.8, pp.791-799, 2015.

H. X. Mai, L. D. Sun, Y. W. Zhang, R. Si, W. Feng et al., Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes, The Journal of Physical Chemistry B, vol.109, issue.51, pp.24380-24385, 2005.

R. Asahi, Y. Taga, W. Mannstadt, and A. J. Freeman, Electronic and optical properties of anataseTiO2, Physical Review B, vol.61, issue.11, pp.7459-7465, 2000.

D. A. Hanaor and C. C. Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials Science, vol.46, issue.4, pp.855-874, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02308408

H. Zhang and J. F. Banfield, Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2, The Journal of Physical Chemistry B, vol.104, issue.15, pp.3481-3487, 2000.

A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, and J. Jolivet, Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media, Journal of Materials Chemistry, vol.11, issue.4, pp.1116-1121, 2001.

S. Pigeot-rémy, D. Gregori, R. Hazime, A. Hérissan, C. Guillard et al., Size and shape effect on the photocatalytic efficiency of TiO2 brookite, Journal of Materials Science, vol.54, issue.2, pp.1213-1225, 2018.

X. Chen and S. S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chemical Reviews, vol.107, issue.7, pp.2891-2959, 2007.

S. M. Gupta and M. Tripathi, A review on the synthesis of TiO2 nanoparticles by solution route, Open Chemistry, vol.10, issue.2, pp.279-294, 2012.

M. Cargnello, T. R. Gordon, and C. B. Murray, Solution-Phase Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals, Chemical Reviews, vol.114, issue.19, pp.9319-9345, 2014.

S. Sivakumar, P. Krishna-pillai, P. Mukundan, and K. G. Warrier, Sol?gel synthesis of nanosized anatase from titanyl sulfate, Materials Letters, vol.57, issue.2, pp.330-335, 2002.

S. Cassaignon, M. Koelsch, and J. P. Jolivet, From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile): Thermohydrolysis and oxidation in aqueous medium, Journal of Physics and Chemistry of Solids, vol.68, issue.5-6, pp.695-700, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00333851

M. Batzill and U. Diebold, The surface and materials science of tin oxide, Progress in Surface Science, vol.79, issue.2-4, pp.47-154, 2005.

S. Baldassari, S. Komarneni, E. Mariani, and C. Villa, Rapid Microwave-Hydrothermal Synthesis of Anatase Form of Titanium Dioxide, Journal of the American Ceramic Society, vol.88, issue.11, pp.3238-3240, 2005.

F. Dufour, S. Cassaignon, O. Durupthy, C. Colbeau-justin, and C. Chanéac, Do TiO2 Nanoparticles Really Taste Better When Cooked in a Microwave Oven?, European Journal of Inorganic Chemistry, vol.2012, issue.16, pp.2707-2715, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01468420

A. Pottier, S. Cassaignon, C. Chanéac, F. Villain, E. Tronc et al., Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy, Journal of Materials Chemistry, vol.13, issue.4, pp.877-882, 2003.

M. Lazzeri, A. Vittadini, and A. Selloni, Structure and energetics of stoichiometricTiO2anatase surfaces, Physical Review B, vol.63, issue.15, pp.1554091-1554099, 2001.

J. Zou, G. Liu, S. C. Smith, S. Z. Qiao, H. M. Cheng et al., Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets, Nature, vol.453, pp.638-641, 2008.

H. Xu, S. Ouyang, P. Li, T. Kako, and J. Ye, High-Active Anatase TiO2 Nanosheets Exposed with 95% {100} Facets Toward Efficient H2 Evolution and CO2 Photoreduction, ACS Applied Materials & Interfaces, vol.5, issue.4, pp.1348-1354, 2013.

J. Pan, G. Liu, G. Q. Lu, and H. M. Cheng, On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals, Angewandte Chemie International Edition, vol.50, issue.9, pp.2133-2137, 2011.

J. Li, Y. Yu, Q. Chen, J. Li, and D. Xu, Controllable Synthesis of TiO2Single Crystals with Tunable Shapes Using Ammonium-Exchanged Titanate Nanowires as Precursors, Crystal Growth & Design, vol.10, issue.5, pp.2111-2115, 2010.

M. Koelsch and . Nanoparticules-de-tio2, Contrôle Structural, Morphologique, Dimensionnel et Propriétés Électrochimiques, 2004.

R. L. Pecsok and A. N. Fletcher, Hydrolysis of Titanium(III), Inorganic Chemistry, vol.1, issue.1, pp.155-159, 1962.

S. Andersson, B. Collén, U. Kuylenstierna, A. Magnéli, A. Magnéli et al., Phase Analysis Studies on the Titanium-Oxygen System., Acta Chemica Scandinavica, vol.11, pp.1641-1652, 1957.

D. Wan, S. Li, T. Wu, J. M. Xue, Y. Li et al., From Titanium Sesquioxide to Titanium Dioxide: Oxidation-Induced Structural, Phase, and Property Evolution, vol.30, pp.4383-4392, 2018.

M. Onoda, Phase Transitions of Ti3O5, Journal of Solid State Chemistry, vol.136, issue.1, pp.67-73, 1998.

S. Das and V. Jayaraman, Corrigendum to ?SnO2: A comprehensive review on structures and gas sensors? [Prog. Mater. Sci. 66 (2014) 112?255], Progress in Materials Science, vol.67, p.161, 2015.

S. Chai, X. Bai, J. Li, C. Liu, T. Ding et al., Effect of phase interaction on catalytic CO oxidation over the SnO2/Al2O3 model catalyst, Applied Surface Science, vol.402, pp.12-20, 2017.

J. Yu, D. Zhao, X. Xu, X. Wang, and N. Zhang, Study on RuO2/SnO2: Novel and Active Catalysts for CO and CH4Oxidation, ChemCatChem, vol.4, issue.8, pp.1122-1132, 2012.

K. Li, Y. Wang, S. Wang, B. Zhu, S. Zhang et al., A comparative study of CuO/TiO2-SnO2, CuO/TiO2 and CuO/SnO2 catalysts for low-temperature CO oxidation, Journal of Natural Gas Chemistry, vol.18, issue.4, pp.449-452, 2009.

L. H. Qian, K. Wang, H. T. Fang, Y. Li, and X. L. Ma, Au nanoparticles enhance CO oxidation onto SnO2 nanobelt, Materials Chemistry and Physics, vol.103, issue.1, pp.132-136, 2007.

J. Bae, J. Kim, H. Jeong, and H. Lee, CO oxidation on SnO2 surfaces enhanced by metal doping, Catalysis Science & Technology, vol.8, issue.3, pp.782-789, 2018.

Y. Wang, J. Tian, C. Fei, L. Lv, X. Liu et al., Microwave-Assisted Synthesis of SnO2 Nanosheets Photoanodes for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, vol.118, issue.45, pp.25931-25938, 2014.

A. Azam, S. S. Habib, N. A. Salah, and F. Ahmed, Microwave-assisted synthesis of SnO2 nanorods for oxygen gas sensing at room temperature, International Journal of Nanomedicine, p.3875, 2013.

Y. Liu, C. Zheng, W. Wang, C. Yin, and G. Wang, Synthesis and Characterization of Rutile SnO2 Nanorods, Advanced Materials, vol.13, issue.24, p.1883, 2001.

J. Jouhannaud, J. Rossignol, and D. Stuerga, Rapid synthesis of tin (IV) oxide nanoparticles by microwave induced thermohydrolysis, Journal of Solid State Chemistry, vol.181, issue.6, pp.1439-1444, 2008.

J. Zhu, J. Zhu, X. Liao, J. Fang, M. Zhou et al., Rapid synthesis of nanocrystalline SnO2 powders by microwave heating method, Materials Letters, vol.53, issue.1-2, pp.12-19, 2002.

J. Oviedo and M. J. Gillan, Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations, Surface Science, vol.463, issue.2, pp.93-101, 2000.

A. Beltrán, J. Andrés, E. Longo, and E. R. Leite, Thermodynamic argument about SnO2 nanoribbon growth, Applied Physics Letters, vol.83, issue.4, pp.635-637, 2003.

A. Birkel, N. Loges, E. Mugnaioli, R. Branscheid, D. Koll et al., Interaction of Alkaline Metal Cations with Oxidic Surfaces: Effect on the Morphology of SnO2Nanoparticles, Langmuir, vol.26, issue.5, pp.3590-3595, 2010.

S. Das, S. Kar, and S. Chaudhuri, Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process, Journal of Applied Physics, vol.99, issue.11, p.114303, 2006.

T. Gajda, P. Sipos, and H. Gamsjäger, The standard electrode potential of the Sn4+/Sn2+ couple revisited, Monatshefte für Chemie - Chemical Monthly, vol.140, issue.11, pp.1293-1303, 2009.

M. J. Taylor and J. M. Coddington, The constitution of aqueous tin(IV) chloride and bromide solutions and solvent extracts studied by 119Sn NMR and vibrational spectroscopy, Polyhedron, vol.11, issue.12, pp.1531-1544, 1992.

A. Shihada, A. S. Abushamleh, and F. Weller, Crystal Structures and Raman Spectra ofcis-[SnCl4(H2O)2]·2H2O,cis-[SnCl4(H2O)2]·3H2O, [Sn2Cl6(OH)2(H2O)2]·4H2O, and [HL][SnCl5(H2O)]·2.5H2O (L=3-acetyl-5-benzyl-1-phenyl-4, 5-dihydro-1, 2, 4-triazine-6-one oxime, C18H18N4O2), Zeitschrift für anorganische und allgemeine Chemie, vol.630, issue.6, pp.841-847, 2004.

M. Wendorff and C. Röhr, Erdalkalimetallreiche Gallide und Indide, Zeitschrift für anorganische und allgemeine Chemie, vol.630, issue.11, pp.1768-1768, 2004.

K. M. Jensen, M. Christensen, P. Juhas, C. Tyrsted, E. D. Bøjesen et al., Revealing the Mechanisms behind SnO2 Nanoparticle Formation and Growth during Hydrothermal Synthesis: An In Situ Total Scattering Study, Journal of the American Chemical Society, vol.134, issue.15, pp.6785-6792, 2012.

B. L. Caetano, F. Meneau, C. V. Santilli, S. H. Pulcinelli, M. Magnani et al., Mechanisms of SnO2 Nanoparticles Formation and Growth in Acid Ethanol Solution Derived from SAXS and Combined Raman?XAS Time-Resolved Studies, Chemistry of Materials, vol.26, issue.23, pp.6777-6785, 2014.

W. H. Baur, Über die Verfeinerung der Kristallstrukturbestimmung einiger Vertreter des Rutiltyps: TiO2, SnO2, GeO2und MgF2, Acta Crystallographica, vol.9, issue.6, pp.515-520, 1956.

C. Schmidt, Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species, Geochimica et Cosmochimica Acta, vol.220, pp.499-511, 2018.

A. Diéguez, A. Romano-rodr??guez, A. Vilà, and J. R. Morante, The complete Raman spectrum of nanometric SnO2 particles, Journal of Applied Physics, vol.90, issue.3, pp.1550-1557, 2001.

H. A. Brune and W. Zeil, RAMAN-spektroskopische Untersuchungen an Koordinationsverbindungen desSnCl4 der Koordinationszahl 5 und 6, Zeitschrift für Physikalische Chemie, vol.32, issue.5_6, pp.384-400, 1962.

M. Ocana, C. J. Serna, J. Garciaramos, and E. Matijevic, A vibrational study of uniform SnO2 powders of various morphologies, Solid State Ionics, vol.63-65, pp.170-177, 1993.

J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang et al., Study of the Raman spectrum of nanometer SnO2, Journal of Applied Physics, vol.75, issue.3, pp.1835-1836, 1994.

A. De-juan, J. Jaumot, and R. Tauler, Multivariate Curve Resolution (MCR). Solving the mixture analysis problem, Anal. Methods, vol.6, issue.14, pp.4964-4976, 2014.

J. Jaumot, A. De-juan, and R. Tauler, MCR-ALS GUI 2.0: New features and applications, Chemometrics and Intelligent Laboratory Systems, vol.140, pp.1-12, 2015.

J. Shlens, Principal Component Analysis and Factor Analysis, Independent Component Analysis, 2004.

R. Zanella and C. Louis, Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples, Catalysis Today, vol.107-108, pp.768-777, 2005.

R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2, The Journal of Physical Chemistry B, vol.106, issue.31, pp.7634-7642, 2002.

G. R. Bamwenda, S. Tsubota, T. ;. Nakamura, and M. Haruta, The Influence of the Preparation Methods on the Catalytic Activity of Platinum and Gold Supported on TiO 2 for CO Oxidation, Catalysis Letters, vol.44, issue.1/2, pp.83-87, 1997.

M. Haruta, Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications, Gold Bulletin, vol.37, issue.1-2, pp.27-36, 2004.

P. Borghetti, E. Meriggio, G. Rousse, G. Cabailh, R. Lazzari et al., Photoemission Fingerprints for Structural Identification of Titanium Dioxide Surfaces, The Journal of Physical Chemistry Letters, vol.7, issue.16, pp.3223-3228, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01362684

K. Y. Ho and K. L. Yeung, Properties of TiO2 support and the performance of Au/TiO2 Catalyst for CO oxidation reaction, Gold Bulletin, vol.40, issue.1, pp.15-30, 2007.

W. Yan, B. Chen, S. M. Mahurin, V. Schwartz, D. R. Mullins et al., Preparation and Comparison of Supported Gold Nanocatalysts on Anatase, Brookite, Rutile, and P25 Polymorphs of TiO2for Catalytic Oxidation of CO, The Journal of Physical Chemistry B, vol.109, issue.21, pp.10676-10685, 2005.

M. Guisnet, L. C. Pinard, and . Hétérogène, Désactivation et Régénération Des Catalyseurs Catalyse Hétérogène : Désactivation et Régénération Des Catalyseurs. Tech. l'ingénieur, 1265.

G. C. Bond and D. T. Thompson, Catalysis by Gold, Catalysis Reviews, vol.41, issue.3-4, pp.319-388, 1999.

F. Moreau and G. C. Bond, Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide, Applied Catalysis A: General, vol.302, issue.1, pp.110-117, 2006.

Y. Hao, M. Mihaylov, E. Ivanova, K. Hadjiivanov, H. Knozinger et al., CO oxidation catalyzed by gold supported on MgO: Spectroscopic identification of carbonate-like species bonded to gold during catalyst deactivation, Journal of Catalysis, vol.261, issue.2, pp.137-149, 2009.

S. Ichikawa, T. Akita, M. Okumura, M. Haruta, K. Tanaka et al., Electron holographic 3-D nano-analysis of Au/TiO2 catalyst at interface, Journal of Electron Microscopy, vol.52, issue.1, pp.21-26, 2003.

Y. Kuwauchi, H. Yoshida, T. Akita, M. Haruta, and S. Takeda, Intrinsic Catalytic Structure of Gold Nanoparticles Supported on TiO2, Angewandte Chemie International Edition, vol.51, issue.31, pp.7729-7733, 2012.

D. C. Sorescu, W. A. Al-saidi, and K. D. Jordan, CO2 adsorption on TiO2(101) anatase: A dispersion-corrected density functional theory study, The Journal of Chemical Physics, vol.135, issue.12, p.124701, 2011.

D. C. Sorescu, J. Lee, W. A. Al-saidi, and K. D. Jordan, CO2 adsorption on TiO2(110) rutile: Insight from dispersion-corrected density functional theory calculations and scanning tunneling microscopy experiments, The Journal of Chemical Physics, vol.134, issue.10, p.104707, 2011.

J. C. Frost, Junction effect interactions in methanol synthesis catalysts, Nature, vol.334, issue.6183, pp.577-580, 1988.

T. Huyen, T. Chi, N. Dung, H. Kosslick, and N. Liem, Enhanced Photocatalytic Activity of {110}-Faceted TiO2 Rutile Nanorods in the Photodegradation of Hazardous Pharmaceuticals, Nanomaterials, vol.8, issue.5, p.276, 2018.

S. R. Bare, M. C. Kung, H. S. Oh, J. H. Yang, and C. K. Costello, Selective Catalytic Oxidation of CO: Effect of Chloride on Supported Au Catalysts, J. Catal, vol.210, pp.375-386, 2002.

H. H. Kung, M. C. Kung, and C. K. Costello, Supported Au catalysts for low temperature CO oxidation, Journal of Catalysis, vol.216, issue.1-2, pp.425-432, 2003.

A. L. Linsebigler, G. Lu, and J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, vol.95, issue.3, pp.735-758, 1995.

R. Kydd, K. Chiang, J. Scott, and R. Amal, Low energy photosynthesis of gold-titania catalysts, Photochemical & Photobiological Sciences, vol.6, issue.8, p.829, 2007.

S. Arrii, F. Morfin, A. J. Renouprez, and J. L. Rousset, Oxidation of CO on Gold Supported Catalysts Prepared by Laser Vaporization: Direct Evidence of Support Contribution, Journal of the American Chemical Society, vol.126, issue.4, pp.1199-1205, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00007355

K. Wenderich and G. Mul, Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review, Chemical Reviews, vol.116, issue.23, pp.14587-14619, 2016.

V. Iliev, D. Tomova, L. Bilyarska, and G. Tyuliev, Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid, Journal of Molecular Catalysis A: Chemical, vol.263, issue.1-2, pp.32-38, 2007.

F. Dufour, S. Pigeot-remy, O. Durupthy, S. Cassaignon, V. Ruaux et al., Morphological control of TiO2 anatase nanoparticles: What is the good surface property to obtain efficient photocatalysts?, Applied Catalysis B: Environmental, vol.174-175, pp.350-360, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137474

M. Christensen, Technologie de l'ivoire au Paléolithique supérieur: Caractérisation physico-chimique du matériau et analyse fonctionnelle des outils de transformation, Analyse chimique des composés à base de titane, vol.2, 1999.

. .. Protocole,

. Analyse and .. .. Uv-visible,

. Ii-analyse, , vol.254

. .. Principe, L'Etat de droit : émergence d'un principe du droit international (Volume 254)

. .. ]-3+,

X. .. , La spectroscopie d'absorption, vol.3

K. .. Iii-formule, III Ontologies of the Modern -149, Au seuil de la modernité: Proust, Literature and the Arts

V. Luzzati, Sur deux problèmes rélatifs à la diffusion des rayons X aux petits angles: détermination de la distribution des masses et correction du polychromatisme, Acta Crystallographica, vol.10, issue.1, pp.33-34, 1957.

.. .. Ii-modèle-de-beaucage,

.. .. Iii-vieillissement-À-température-ambiante,

. .. Choix-du-q-c,

, Les activités vertes sont plus dynamiques que l?ensemble de l?économie

. .. Iv-cinétique-sans-acide, 275 1) Ajustement par un modèle de Beaucage modifié

.. .. Analyse-par-combinaison-linéaire,

. .. Catalyse, Annexe, vol.5

. .. , Catalyse à température ambiante (Conditions 1)

J. P. Machon, Polyethylenes prepares par catalyse ziegler a haute temperature, European Polymer Journal, vol.12, issue.11, pp.805-811, 1976.

. Ii-activité-catalytique and .. .. De-rotation,

:. .. Références, Un fit multi-pics a été réalisé pour le pic (004) par des fonctions Pseudo-Voigt à cause de la présence des contributions des raies (103) et (112), très proches

. Enfin, Les objectifs de réduction des émissions de polluants atmosphériques ont été atteints, sauf pour le Nox

S. Krämer, Appareils, messager, virus : pour une réhabilitation de la transmission, Appareil, issue.1, 2007.

, Graphique 3.2. La prise en compte de l?égalité des genres est particulièrement élevée dans les secteurs de la santé, de l?eau et de la gouvernance, Les nanoparticules sont ainsi piégées dans de la glace amorphe

, L'impact fiscal par habitant des immigrés peut être relativement élevé dans les pays en développement, 2018.

P. Granger, Méthode simple de résolution des spectres de résonance magnétique nucléaire (RMN), Journal de Chimie Physique, vol.62, pp.594-599, 1965.

O. Foli, Les discours de plainte, un support de l?intégration et de la sociabilité : le cas d?une entreprise bureaucratique, L'organisation à l'épreuve, pp.103-126

, Graphique 4.6. Jusqu?à présent, les réductions d?émission ont été principalement réalisées dans le secteur de l?électricité

. Le,

, Graphique 1.5. Les conditions financières globales ont été fortement touchées dans la zone euro

T. Pour-déterminer-le-ratio, Alicja Kacprzak: « La Terre est bleue comme une orange » : de la comparaison dans le discours littéraire, La phraséologie entre langues et cultures

, Graphique 4.6. L'huile végétale est le principal produit de base utilisé pour produire du biodiesel

. Ainsi, nous avons réalisé

, Atome ou Providence ? La Vie de Timoléon de Plutarque, ou comment faire de l?Histoire avec des atomes, La raison des signes, vol.3, pp.177-219, 2012.

, Graphique 4.11. Un huitième des ménages qui se situent au milieu de la distribution des revenus est surendetté, p.57

F. D. Azara, Chapitre XVI. Notice abrégée de toutes les villes, bourgs, villages, paroisses, soit d?Espagnols, soit d?Indiens, soit de gens de couleur, qui existent dans le gouvernement du Paraguay, Voyages dans l?Amérique méridionale, 1781-1801, pp.259-266

, Chapitre ? Qu'il le dise donc, Israël!, Là montent les tribus, 1999.

J. P. Machon, Polyethylenes prepares par catalyse ziegler a haute temperature, European Polymer Journal, vol.12, issue.11, pp.805-811, 1976.

, Graphique 3.4.7. Importations de viande dans un échantillon de pays d?Asie du Sud-Est, Les échantillons obtenus ne présentent aucune activité à température ambiante

M. Avec and . Au, mol -1 ) la masse molaire de l'or

J. I. Langford and A. J. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, Journal of Applied Crystallography, vol.11, issue.2, pp.102-113, 1978.

A. Pottier, S. Cassaignon, C. Chanéac, F. Villain, E. Tronc et al., Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy, Journal of Materials Chemistry, vol.13, issue.4, pp.877-882, 2003.

A. Gibaud, A. E. Chavez-panduro, T. Beuvier, M. Fernandez-martinez, and D. W. Breiby, Les Rayons X Aux Petits Angles, Rayons X, pp.49-84, 2011.

T. H. Zemb, O. Taché, F. Né, and O. Spalla, Improving sensitivity of a small angle x-ray scattering camera with pinhole collimation using separated optical elements, Review of Scientific Instruments, vol.74, issue.4, pp.2456-2462, 2003.
URL : https://hal.archives-ouvertes.fr/cea-00268837

G. Beaucage, Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering, Journal of Applied Crystallography, vol.28, issue.6, pp.717-728, 1995.

B. Hammouda, Analysis of the Beaucage model, Journal of Applied Crystallography, vol.43, issue.6, pp.1474-1478, 2010.