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M. Alain HARAUX Examinateur
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disponible pour répondre à mes questions et m’apporter son aide précieuse.
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Introduction en Français

1 Introduction générale

Ce travail de thèse est constitué de nouvelles applications de la théorie des systèmes
dynamiques coopératifs à l’étude de modèles en Biologie. Les systèmes dynamiques
monotones (qui comprennent les systèmes coopératifs et compétitifs) ont étés na-
turellement introduits par des modèles, en particulier dans les dynamiques de pop-
ulations (Lotka-Volterra, Kolmogoroff)[89, 62, 61, 92, 70]. Dès les années 1920-30,
les mathématiciens commencent à construire les approches théoriques (M. Muller
1927 [75], E. Kamke 1932 [49], J. Kingman 1961 [52]). Mais c’est avec l’école des
systèmes dynamiques de Berkeley et les travaux de Hirsch (ensembles limites, conver-
gence presque partout, stabilité structurelle, closing lemma) [36, 38, 40, 39, 41, 42]
et Smale (exemple de dynamique compétitive avec n’importe quel type d’attracteur)
[78, 79] qu’ils connaissent un développement spectaculaire. Il faut y ajouter des
références aux travaux de Hiroshi Matano [66, 67] et de Hal L. Smith [43, 81, 82, 83]
qui étendent aux systèmes dynamiques sur les espaces de Banach et établissent des
théorèmes de type Perron-Frobenius. Le livre de Josef Hofbauer et Karl Sigmund est
aussi une référence importante du sujet qui fait le lien entre la théorie des Jeux et les
dynamiques de populations ou dynamiques de l’évolution [44]. En France, il y a eu
des contributions dans les applications aux modèles en Biologie (travaux de Jean-Luc
Gouzé, L. Mailleret et V. Lemesle [31, 32, 33, 63, 34, 57, 64, 65, 77]).

Deux domaines d’application sont concernés par cette thèse. Le premier s’inscrit
dans une série de travaux initiés par les physiologistes Agnès Aubert et Robert Costa-
lat, Luc Pellerin et Pierre Magistretti concernant la dynamique des lactates en lien
avec le métabolisme énergétique cérébral [4, 5]. Le deuxième concerne l’étude de
modèles de population d’insectes avec un effet marquant de seuil saisonnier en rela-
tion avec des travaux développés à l’UPMC par Benôıt Perthame et Martin Strugarek.

1.1 Dynamiques des Lactates

Un premier modèle réduit d’une dynamique compartimentalisée couplant l’hémo-
dynamique et le métabolisme énergétique cérébral (cf.[4]) fût introduit par [5]. Il

9



10 1. Introduction générale

s’agit d’une dynamique à deux variables x, décrivant la concentration en lactate ex-
tracellulaire et y représentant la concentration en lactate capillaire avec un mécanisme
de cotransport à travers la barrière hemato-encéphalique. Le modèle permet de re-
produire avec une exactitude remarquable des données expérimentales obtenues par
Hu et Wilson [46]. Dans la thèse de Marion Lahutte et la série de travaux qui l’a ac-
compagnée [54, 56, 18], on a complétement caractérisé la nature du point stationnaire
du système et montré analytiquement par des méthode d’asymptotique des systèmes
lents-rapides l’existence d’une déplétion initiale du lactate en présence d’une stimu-
lation. On a aussi établit l’existence d’un domaine de viabilité. Dans deux autres
articles, on a proposé l’étude d’une extension naturelle de ce modèle comprenant
deux compartiments intracellulaires distincts, un représentant un neurone et l’autre
un astrocyte en plus du compartiment extracellulaire (aussi appelé interstitiel) et du
compartiment capillaire. Dans ces articles, on avait pas encore réussi à déterminer la
nature du point stationnaire mais on avait démontré son unicité.

Dans cette thèse, on a commencé par observer que ce système (et même une
extension de ce système à N neurones et A astrocytes) est un système coopératif.
On a pu alors appliquer les techniques dévelopées par Hal L. Smith et démontrer (en
toutes dimensions) que l’unique point stationnaire est asymptotiquement stable. On a
pu même obtenir des estimations sur le bassin d’attraction. Il faut bien remarquer que
dans cette direction de travail, nous n’avons plus besoin de considérer l’asymptotique
des systèmes lent-rapide. Ces résultats consistuent le chapitre 2 du document. Ils ont
fait l’objet d’un premier article, en collaboration avec Jean-Pierre Françoise accepté
dans Discrete and Continuous Dynamical Systems.

Dans la suite, nous avons considéré une variante du système réduit de dimension 2
dans laquelle on considère une dynamique différentiable par morceaux qui présente un
saut lorsque la variable x ou la variable y dépasse un certain seuil. Ce type de systèmes
dynamiques à saut est très étudié dans les applications. Une référence générale pour ce
sujet est par exemple le livre [9]. Ce sujet est aussi très bien développé dans le groupe
de systèmes dynamiques de l’Université de Shanghai Jiao Tong (SJTU). Cet article a
été fait en collaboration avec Dongmei Xiao, Jiang Yu et Jean-Pierre Françoise. Cette
modélisation permet d’introduire une autorégulation induite par un rétro-contrôle
des concentrations en lactactes extracellulaire (interstitiel) et capillaire sur le flot
sanguin capillaire. On découvre de nouveaux phénomènes dynamiques. On discute
en particulier la présence de régimes avec deux points stationnaires (bistabilité), d’un
segment attractif, de point stationnaire à la frontière de discontinuité et d’un pseudo-
loop. Ces résultats forment l’ensemble du chapitre 3. Ils ont donné lieu à un article
accepté dans QTDS (Qualitative Theory of Dynamical Systems) en 2018.

A. Gasull et J. Torregrosa sont beaucoup contribué à l’analyse qualitative des
systèmes plans dynamiques linéaire par morceaux dans [11, 68, 15, 12, 29]. M.
Desroches a aussi contribué à l’étude des solutions canards dans les systèmes dy-
namiques linéaire par morceaux dans [19, 25, 24, 21, 20].
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1.2 Dynamiques avec un effet marquant de seuil saisonnier

Dans le dernier chapitre, on considère, en contraste avec les chapitres précédents,
un système dynamique forcé (ou autrement dit non-autonome):

ẋ = f(t, x), x ∈ Rn, t ∈ R.

Ce système dynamique modélise une population dont l’environnement varie pério-
diquement dans le temps. En particulier il y a au cours de l’année, deux saisons
différentes. Une est “favorable” et l’autre est “défavorable”. Dans sa dépendance
en x, le système dynamique est supposé monotone avec des non-linéarités concaves.
Nous considérons la question suivante. Supposons que la période T est fixée. A quelle
condition existe-t-il une durée critique “maximale” pour la saison défavorable? Par
durée critique “maximale”, nous entendons un seuil tel que si la durée de la saison
défavorable excède ce seuil, les populations ne peuvent pas survivre et elles tendent à
l’extinction. Tandis que si la durée de la saison défavorable est inférieure à ce seuil, les
solutions du système dynamique tendent vers une unique solution stable et positive.
S’il existe un tel seuil, nous dirons que le système possède la propriété SSTP (Sharp
Seasonal Threshold Property). Nous démontrons l’existence de conditions suffisantes
pour qu’un système ait la propriété SSTP.

On suppose que F (t, x) est monotone et concave (en x). De tels systèmes ont des
propriétés de contraction bien connues lorsque F est continue [37, 52, 80, 48]. On
étend ces résultats aux cas des dynamiques continues par morceaux. Cette extension
est motivée par les applications. On suppose que F (t, 0) ≡ 0. Le problème de
l’existence d’un seuil maximal se réduit à l’ étude de la valeur propre de module
maximal de la linéarisation de F (t, x) à x = 0. Cette valeur propre est égale au rayon
spectral de l’application de Poincaré que l’on calcule ici pour un système continu
par morceaux. L’importance de la valeur propre de Perron-Frobenius pour quantifier
les effets de saisonalité a été reconnue au moins dans trois champs d’application des
mathématiques pour la biologie: les rythmes circadiens, les moissons en agro-écologie
et l’épidémiologie [7, 6, 14, 16, 30, 85, 88, 91].

En dimension 1, Dongmei Xiao a démontré la propriété SSTP pour l’équation
logistique avec moissons, où les deux saisons distinctes correspondent aux moissons
(saison “défavorable”) et aux périodes de jachères-semailles (saison “favorable”). Nos
résultats étendent en partie les résultats de Dongmei Xiao à une dimension quelconque
pour des systèmes monotones et concaves [85, 88].

Nous appliquons notre théorème à l’exemple d’une dynamique de population
d’insectes (moustiques) avec un stade juvénile exposé à une compétition quadratique
et un stade adulte. Cette dynamique est sujette à un forçage périodique saisonnier.
En particulier, dans les pays tempérés, les moustiques sont très rares en hiver et
connaissent une croissance explosive après les premiers épisodes pluvieux de la saison
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chaude.

Le chapitre 4 a fait l’objet d’un article de Hongjun Ji et Martin Strugarek publié
au Bulletin des Sciences Mathématiques 147 (2018) 58–82 [47].

2 Principaux résultats

2.1 Modèle du métabolisme du lactate du cerveau en haut
dimension

Au chapitre 2, nous nous conçentrons sur un système coopératif non linéaire de
dimension d = N + A + 2, qui est un système de modélisation de la concentration
cinétique du lactate cérébral, avec N compartiments neurones, A compartiments as-
trocytaires, un compartiment interstitiel et un compartiment capillaire. Considérons
aussi ce système dynamique avec les termes de forçage Ji > 0, i = 0, 1, . . . , N +A, et
le terme d’entrée F > 0 et tous les paramètres C,Cn, Da, Ea > 0 avec n ∈ {1, . . . , N},
a ∈ {1, . . . , A}:

dx

dt
= J0 +

N∑
n=1

Cn(
un

kn + un
− x

k + x
) +

A∑
a=1

Da(
va

kN+a + va
− x

k + x
)

−C(
x

k + x
− y

k′ + y
),

du1

dt
= J1 − C1(

u1

kn1 + u1

− x

k + x
),

...
duN
dt

= JN − CN(
uN

knN + uN
− x

k + x
),

dv1

dt
= JN+1 −D1(

v1

ka1 + v1

− x

k + x
)− E1(

v1

ka1 + v1

− y

k′ + y
),

...
dvA
dt

= JN+A −DA(
vA

kaA + vA
− x

k + x
)− EA(

vA
kaA + vA

− y

k′ + y
),

dy

dt
= F (L− y) + C(

x

k + x
− y

k′ + y
) +

A∑
a=1

Ea(
va

kaa + va
− y

k′ + y
).

(2.1)

Pour N = A = 1, ce système cöıncide avec le système de dimension 4 considéré
dans [54, 55]. Il peut être considéré comme un modèle de cinétique du lactate
cérébral avec des co-transports (intracellulaire-extracellulaire) à travers N mem-
branes de neurones et (intracellulaire-extracellulaire) à travers les membranes des
astrocytes et croisement direct (intracellulaire-capillaire) d’astrocyte à capillaire. La
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variable x représente la concentration extracellulaire. Les variables un, n = 1, . . . , N
représentent la concentration intracellulaire à l’intérieur des neurones. Les variables
va, a = 1, . . . , A représentent la concentration intracellulaire dans les astrocytes.
La variable y représente la concentration dans le capillaire. Par commodité, nous
désignons par W l’ensemble des variables W = (x, un, va, y) ∈ Rd, d = N + A+ 2.

Pour notre système (2.1), nous avons trois résultats principaux:

Theorem 2.1 Le système (2.1) admet un point stationnaire unique noté s∗.

Theorem 2.2 Le point stationnaire du système (2.1) est asymptotiquement sta-
ble.

Theorem 2.3 Si le point stationnaire s∗ ∈ int(Rd
+), alors le système (2.1) n’a

pas de solution périodique dans Rd
+.

Nous discutons aussi des conditions de la positivité du point stationnaire de notre
système dans ce chapitre. Supposons que les conditions de positivité pour l’unique
point stationnaire sont satisfaites. Alors dans ce cas, le bassin d’attraction du point
fixe fournit un ensemble positivement invariant d’intérieur non vide des solutions qui
sont bornées et positives. Nous donnons un calcul explicite pour le cas d = 4. Voir
plus de détails dans chapitre 2.

2.2 Modèle du métabolisme du lactate du cerveau avec système
continu par morceaux

Dans le chapitre 3, nous étudions une dynamique différentiable par morceaux qui
est inspirée par le système compartimental du métabolisme cérébral du chapitre 2.
Le système continu par morceaux permet l’introduction d’une autorégulation induite
par un retour des concentrations de lactate extracellulaire ou capillaire sur le flux
sanguin capillaire.

Dans [56], le domaine physiologique a été discuté en termes de limites sur les
concentrations de lactate x et y. Il est naturel de pousser plus loin cette étude avec
l’introduction d’une autorégulation du système par les deux concentrations (x ou y)
sur le flux sanguin capillaire F . Ceci est discuté dans ce chapitre où l’autorégulation
sur F est représentée par une variation continue par morceaux telle que

F (x, y) =

{
F+, quand (x, y) ∈ Ω+,

F−, quand (x, y) ∈ Ω−.

Nous supposons que F+ et F− sont des nombres réels positifs distincts et Ω+∪Ω− =
R2

+, Ω+ ∩ Ω− = ∅. Nous notons le système VF :
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dx

dt
= J − T (

x

k + x
− y

k′ + y
),

dy

dt
= F (x, y)(L− y) + T (

x

k + x
− y

k′ + y
).

(2.2)

Pour ce système continu par morceaux (2.2), nous donnons ici quelques théorèmes
concernant des nouveaux phénomènes dynamiques.

Theorem 2.4 Supposons que F+ > F− et F (x, y) suit (3.3.1), supposons que
L+ J

F+ < h ≤ L+ J
F−

, alors le système continu par morceaux (2.2) admet deux points
d’équilibre s+ et s− dans R2

+. De plus, il existe deux domaines invariants disjoints
A+ et A− qui sont séparés par une courbe de frontière dans R2

+; toutes les orbites du
système (3.1.2) dans A+ (resp. A− ) tendent à s+ (resp. s−). En d’autres termes,
A+ (resp. A−) est le bassin d’attraction du nœud d’attraction s+ (resp. s−).

Theorem 2.5 Supposons que F− > F+ et F (x, y) suit (3.3.1), et supposons en
outre que L+ J

F−
< h ≤ L+ J

F+ , alors le système continu par morceaux (2.2) admet
une section glissante sur la ligne y = h, qui est un ensemble attractant. Dans ce cas,
s+ et s− sont des points de pseudo-équilibre et le système n’a pas d’orbites périodiques
dans R2

+.

Theorem 2.6 Supposons que F+ > F− et F (x, y) suit (3.4.1), alors le système
continu par morceaux (2.2) admet deux points d’équilibre s+ et s− dans R2

+ si x+ <
h 6 x−.
De plus, il existe deux domaines invariants disjoints A+ et A− qui sont séparés par
une courbe limite dans R2

+; toutes les orbites du système (2.2) dans A+ (resp. A−)
tendent à s+ (resp. s−). En d’autres termes, le domaine invariant A+ (resp. A−)
est le bassin d’attraction du nœud d’attraction s+ (resp. s−).

Theorem 2.7 Supposons que F− > F+ et F (x, y) est la fonction continue par
morceaux donnée par (3.4.1), alors

(i) le système continu par morceaux (2.2) n’a aucun equilibre dans R2
+ pour x− <

h < x+, et un unique frontière point d’équilibre c sur x = h.

(ii) les segments (x = h) \ c sont des sections de sciage. A l’intérieur du pseudo-
loop, il existe un ensemble de ω-limite qui est donné soit par le point d’équilibre
limite c, soit par un cycle limite attractif.

Dans ce chapitre, nous avons introduit une autorégulation dans le système Neuron-
Astrocyte-Capillary qui est précédemment étudié comme une réduction mathématique
d’un modèle de cinétique du lactate du cerveau compartimenté. Cette autorégulation
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semble naturelle et peut être considérée comme un processus de rétroaction induit par
les astrocytes vers le capillaire lorsque la concentration extra-cellulaire (ou capillaire)
du lactate est au-delà des limites de viabilité.

L’outil mathématique qui semble le plus adapté à ce contexte est l’analyse quali-
tative des systèmes dynamiques continus par morceaux(PWS).

Notre étude a mis au jour plusieurs nouveaux phénomènes qui n’étaient pas
présents dans le modèle EDO.

Avec les conditions de Théorème 4.4 et 4.6, le PWS admet une bistabilité avec
deux nœuds d’attraction. Les deux bassins d’attraction sont séparés par une courbe
de frontière que nous pouvons déterminer explicitement.

Avec les conditions de Théorèm 4.5, il existe un ensemble attractant qui est une
section glissante.

Avec les conditions de Théorèm 4.7, le système affiche un pseudo-loop. A l’intérieur
de ce pseudo-loop, il y a une application de Poincaré associée à une section de sciage.
L’analyse qualitative permet de montrer l’existence d’un frontière point d’équilibre. Il
y a deux possibilités pour l’ensemble ω-limite des orbites à l’intérieur du pseudo-loop:
soit un cycle limite ou soit un frontière point d’équilibre qui est alors asymptotique-
ment stable.

2.3 Propriété de seuil saisonnier pour les systèmes dynamiques
monotones avec des non-linéarités concaves

Le chapitre 4 est une contribution théorique à l’étude de dynamiques saisonnières.

Nous étudions les systèmes dynamiques différentiels issus des équations différentielles
positives non linéaires périodiques de la forme

dx

dt
= F (t, x), (2.3)

où F est monotone et concave (en x). Ces systèmes présentent des propriétés de
contraction bien connues lorsque F est continu (voir [46], [80], [48]). Nous étendons
dans le théorème 4.3.1 ces propriétés à des non-linéarités qui ne sont continues que par
morceaux en temps. Cette extension est motivée par l’étude des systèmes saisonniers
typiques dans la dynamique des populations.

Nous notons θ ∈ [0, 1] la proportion de l’année passée en saison défavorable.
Ensuite, nous disons que le temps t appartient à une saison défavorable (ou favorable)
si nT ≤ t < (n + θ)T (resp. Si (n + θ)T ≤ t < (n + 1)T ) pour certains n ∈ Z+. En
d’autres termes, nous étudions les solutions pour:
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dX

dt
= G(πθ(t), X), πθ(t) =

{
πU if t

T
− b t

T
c ∈ [0, θ),

πF if t
T
− b t

T
c ∈ [θ, 1),

(2.4)

pour certains G : P × RN → RN , avec πU , πF ∈ P où P est l’espace des paramètres.
Nous sommes à la recherche de conditions garantissant qu’une propriété de seuil
saisonnier forte est vérifiée, c’est-à-dire:

∃θ∗ ∈ [0, 1] tel que


si θ < θ∗, ∃ ! q : R+ → RN , T -périodique, q � 0 et

∀X0 ∈ RN
+\{0}, X tend vers q,

si θ > θ∗,∀X0 ∈ RN
+ , X tend ves 0.

(SSTP)

Sur le plan écologique, la durée respective des saisons sèches et humides est cruciale
pour la durabilité de la population de diverses espèces. La propriété (SSTP) signifie
que si la saison défavorable est plus longue que θ∗T alors la population s’effondre et si
elle est plus courte alors les densités de population auront tendance à être périodiques.

Dans un premier temps, nous généralisons un résultat de Smith [80] sur les non-
linéarités concaves et coopératives à un système qui est continu (en temps) par
morceaux.

Theorem 2.8 Soit F : Rt ×RN
x → RN T -périodique et continu par morceaux en

t et telle que pour tout t ∈ R+, F (t, ·) ∈ C1(RN ,RN). Supposons que F vérifie les
hypothèses (P), (M), (C) et (I), de sorte que le système différentiel associé (4.1.1)
soit positif, monotone et concave avec linéarisation en 0 irréductible. Soit λ ∈ R le
multiplicateur de Floquet de module maximal de (4.1.3).

Si λ ≤ 1 alors toute solution non-négative de (4.1.1) converge vers 0. Autrement,

(i) soit chaque solution non-négative de (4.1.1) vérifie lim
t→∞

x(t) =∞,

(ii) soit (4.1.1) possède une unique T -périodique solution (non nulle) q(t).

Dans le cas (ii), q � 0 et lim
t→∞

(x(t)− q(t)) = 0 pour chaque solution non-négative de

(4.1.1).

Deuxièmement, nous donnons des conditions assez générales pour les systèmes en
toute dimension d’espace N ∈ Z>0 pour satisfaire SSTP voir Théorème 4.3.2.

Finalement, nous présentons dans le Théorème 4.3.3 une application au système
(4.1.2) de dimension 2, pour lequel nous pouvons montrer la propriété de seuil (SSTP)
pour une large gamme de paramètres. Nous entendons par là que la durée relative des
deux saisons est un paramètre critique: si elle est supérieure à ce seuil, la population
disparâıt, et si elle est inférieure, alors la dynamique converge vers un profil périodique
unique.
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2.4 Perspectives de développements de ce travail

• Il semble naturel de considérer le système de dimension 4 plutôt que le système
de dimension 2 parce qu’il distingue les neurones des astrocytes. Maintenant
que nous savons qu’il est coopératif et qu’il possède un unique point station-
naire stable, nous pouvons testé les conditions pour l’existence de la navette
du Lactate découverte par L. Pellerin et P. Magistretti [5]. Le lecteur pourra
aussi se reporter au livre “l’homme glial” récemment publié par Y. Agid et P.
Magistretti [2] pour comprendre l’importance du couplage neurone-astrocyte
pour le métabolisme cérébral.

• Le modèle à deux variables a connu récemment un dévelopement important
dans le domaine des systèmes d’ EDP de réaction-diffusion [73, 35, 72, 71]. Il
est possible que le résultat de coopérativité obtenu dans le chapitre 3 puisse
donner un nouvel éclairage sur le système perturbé par une faible diffusion
considéré dans ces travaux. Une perspective intéressante serait d’étudier une
perturbation par une faible diffusion du système de dimension 4.

• On peut remarquer que l’article de Dongmei Xiao [88] étudie aussi la récolte
maximale par rapport à une notion de développement durable. Il serait intéressant
d’approfondir cet aspect avec les outils que nous avons introduits pour dimen-
sion quelconque de chapitre 4.

• Le résultat de SSTP peut être mis en perspective avec des problèmes de contrôle
associés aux techniques de lutte anti-vectorielle modélisées (notamment par
l’étude des propriétés du cycle limite périodique), et son extension à d’autres
types de non-linéarités doit être étudiée (par exemple, alternance saisonnière
de dynamiques bistable et monostable d’extinction).
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Introduction in English

3 General introduction

This thesis work consists of new applications of the theory of cooperative dy-
namical systems to the study of models in Biology. Monotone dynamical systems
(which include cooperative and competitive systems) have naturally been introduced
by models, especially in population dynamics (Lotka-Volterra, Kolmogoroff)[89, 62,
61, 92, 70]. As early as the 1920s-1930s, mathematicians began to build theoretical
approaches (M. Muller 1927 [75], E. Kamke 1932 [49], J. Kingman 1961 [52]). But it is
with Berkeley’s school of dynamic systems and Hirsch’s work (boundary sets, conver-
gence almost everywhere, structural stability, closing lemma) [36, 38, 40, 39, 41, 42]
and Smale (example of competitive dynamics with any type of attractor) [78, 79]
that they are experiencing spectacular development. We must add references to
the work of Hiroshi Matano [66, 67] and Hal L. Smith [43, 81, 82, 83], which ex-
tend to dynamic systems on Banach spaces and establish Perron-Frobenius theo-
rems. The book by Josef Hofbauer and Karl Sigmund is also an important reference
in the subject that links the theory of the Games to the dynamics of populations
or dynamics of evolution [44]. In France, there have been contributions in applica-
tions to models in Biology (work of Jean-Luc Gouzé, L. Mailleret and V. Lemesle
[31, 32, 33, 63, 34, 57, 64, 65, 77]).

Two fields of application are concerned in this thesis. The first is part of a series
of works initiated by physiologists Agnès Aubert et Robert Costalat, Luc Pellerin and
Pierre Magistretti concerning the dynamics of lactates in connection with cerebral
energetic metabolism [4, 5]. The second concerns the study of insect population
models with a significant seasonal threshold effect in relation to work developed at
UPMC by Benôıt Perthame and Martin Strugarek.

3.1 Lactate dynamics

A first model of compartmentalized dynamics coupling hemodynamics and cere-
bral energy metabolism (see [4]) was introduced by [5]. This is a two-variable dynamic
x, standing for the extracellular lactate concentration and y representing the capil-

19
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lary lactate concentration with a cotransport through the brain-blood boundary. The
model reproduces with remarkable accuracy the experimental data obtained by Hu
and Wilson [46]. In the thesis of Marion Lahutte and the series of works, see in
[54, 56, 18], they have completely characterized the nature of the stationary point
of the system and shown analytically the existence of an initial lactate depletion by
asymptotic methods of slow-fast systems in the presence of a stimulation. They have
also established the existence of a domain of viability. In two other articles, it has
been proposed to study a natural extension of this model comprising two distinct
intracellular compartments, one representing a neuron and the other an astrocyte in
addition to the extracellular compartment (also called interstitial) and the capillary
compartment. In these articles, they had not yet been able to determine the nature
of the stationary point, but they had demonstrated its unicity.

In this thesis, we began by observing that the system (and even an extension of
this system to N neurons and A astrocytes) is a cooperative system. It was then
possible to apply the techniques developed by Hal L. Smith and demonstrate (in all
dimensions) that the single stationary point is asymptotically stable. It has even
been possible to obtain estimates of the basin of attraction. It should be noted that
in this direction of work, we no longer need to consider the asymptotic of slow-fast
systems. These results consist of chapter 2 of this thesis. They are the subject of
the first article, in collaboration with Jean-Pierre Françoise accepted in Discrete and
Continuous Dynamical Systems.

In the following, we study a piecewise smooth dynamical system inspired by a pre-
vious reduced system modeling compartimentalized brain metabolism in dimension
2. We consider a piecewise differentiable dynamic that has a jump when the variable
x or the variable y exceeds a certain threshold. This type of dynamical systems is
very much studied in applications. A general reference for this topic is for example
the book [9]. This subject is also very well developed in the group of dynamic sys-
tems of Shanghai Jiao Tong University (SJTU). This article was done in collaboration
with Dongmei Xiao, Jiang Yu and Jean-Pierre Françoise. This model makes it pos-
sible to introduce a auto-regulation induced by a retro-control of the concentrations
of extracellular (interstitial) and capillary lactates on the capillary blood flow. We
are discovering new dynamic phenomena. In particular, we discuss the presence of
regimes with two stationary points (bistability), an attractive segment, a stationary
point at the discontinuity boundary, and a pseudo-loop.These results form the whole
of Chapter 2. They gave rise to an article accepted in QTDS (Qualitative Theory of
Dynamical Systems) in 2018.

A. Gasull and J. Torregrosa have contributed much to the qualitative analysis of
piecewise linear planar differential systems [11, 68, 15, 12, 29]. M. Desroches also
contributed to the study of piecewise linear dynamical systems on canard solutions
[19, 25, 24, 21, 20].
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3.2 Dynamic with a sharp effect of seasonal threshold

In the last chapter, we consider, in contrast with the preceding chapters, a forced
dynamical system (or in other words non-autonomous):

ẋ = f(t, x), x ∈ Rn, t ∈ R.

The dynamical system describes a population model whose environment varies
periodically over time. We assume that there are two different seasons during a
period, in which one is “favorable” and the other one is “unfavorable”. The system is
supposed to be monotone with concave nonlinearities. We will consider the following
question. Suppose that the period T is fixed. In what condition is there a critical
duration “maximum” for the unfavorable season? By critical duration “maximum”,
we mean that above some threshold, the population cannot sustain and extincts,
while below this threshold, the system converges to a unique periodic and positive
solution. We term this a “sharp seasonal threshold property” (SSTP, for short). We
demonstrate the existence of sufficient conditions for systems in any dimension to
satisfy SSTP property.

We assume that F (t, x) is monotone and concave (in x). Such systems have well-
known contraction properties when F is continuous [37, 52, 80, 48]. We extend these
results to the case of continuous piecewise dynamics. This extension is motivated
by applications. We assume that F (t, 0) ≡ 0. The problem of the existence of a
maximal threshold is reduced to the study of the maximal value of the module of the
linearization of F (t, x) for x = 0. This eigenvalue is equal to the spectral radius of the
Poincaré application which is computed here for a continuous piecewise system. The
importance of this Perron-Frobenius eigenvalue for quantifying the effects of season-
ality has been acknowledged continuously in mathematical biology in at least three
application fields: circadian rhythms (in particular in connection with cell division
and tumor growth), harvesting and epidemiology [7, 6, 14, 16, 30, 85, 88, 91].

In dimension 1, Dongmei Xiao has demonstrated the SSTP property for the lo-
gistic equation with harvesting, where the two distinct seasons correspond to the
harvests (“unfavorable” season) and growing periods (“favorable” season). Our re-
sults extend a part of the results of Dongmei Xiao to any dimension for monotone
and concave systems [85, 88].

We apply our theorem to the example of a population dynamics of insects (for
example mosquitoes) with a juvenile stage exposed to a quadratic competition and
a adult stage. This dynamic is subject to a seasonal periodic forcing. In particular,
in temperate countries, mosquitoes are very rare in winter and grow explosively after
the first rainy episodes of the hot season.

Chapter 4 was the subject of an article by Hongjun Ji and Martin Strugarek
published in the Bulletin of Mathematical Sciences 147 (2018) 58–82 [47].
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4 Main results

4.1 Model of Brain Lactate Metabolism in high dimension

In chapter 2, We focus on a cooperative non linear system of dimension d =
N + A + 2, which is a system modeling brain lactate kinetics, with N neuron com-
partments, A astrocyte compartments, one interstitial compartment and one capilary
compartment.

Let us consider a dynamical system equipped with forcing terms Ji > 0, i =
0, 1, . . . , N + A, and input F > 0 and all parameters C,Cn, Da, Ea > 0 with n ∈
{1, . . . , N}, a ∈ {1, . . . , A}:

dx

dt
= J0 +

N∑
n=1

Cn(
un

kn + un
− x

k + x
) +

A∑
a=1

Da(
va

kN+a + va
− x

k + x
)

−C(
x

k + x
− y

k′ + y
),

du1

dt
= J1 − C1(

u1

kn1 + u1

− x

k + x
),

...
duN
dt

= JN − CN(
uN

knN + uN
− x

k + x
),

dv1

dt
= JN+1 −D1(

v1

ka1 + v1

− x

k + x
)− E1(

v1

ka1 + v1

− y

k′ + y
),

...
dvA
dt

= JN+A −DA(
vA

kaA + vA
− x

k + x
)− EA(

vA
kaA + vA

− y

k′ + y
),

dy

dt
= F (L− y) + C(

x

k + x
− y

k′ + y
) +

A∑
a=1

Ea(
va

kaa + va
− y

k′ + y
).

(4.1)

For N = A = 1, this system coincides with the 4-dimensional system considered
in [54, 55]. It can be considered as a model of brain lactate kinetics with co-transports
(intracellular-extracellular) through the N neuron membranes and (intracellular-
extracellular) through the astrocytes membranes and direct crossing (intracellular-
capillary) from astrocyte to capillary. Variable x stands for the extracellular concen-
tration. Variables un, n = 1, . . . , N stand for the intracellular concentration inside
neurons. Variables va, a = 1, . . . , A represent the intracellular concentration in as-
trocytes. Variable y represents the concentration in capillary. For convenience, we
denote as W the set of variables W = (x, un, va, y) ∈ Rd, d = N + A+ 2.

For our system (4.1), we have three main results as following:

Theorem 4.1 The system (4.1) displays a unique stationary point denoted as s∗.
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Theorem 4.2 The stationary point of system (4.1) is asymptotically stable.

Theorem 4.3 If the stationary point s∗ ∈ int(Rd
+), then the system (4.1) has no

periodic solution in Rd
+.

We discuss also the conditions for the positivity of the stationary point of our
system. Assume that the positivity conditions for the unique stationary point are
fullfilled. Then in that case, the basin of attraction of the stationary point provides
a positive invariant set of non-empty interior of solutions which are bounded and
positive. We give an explicit computation for the case d = 4, although it is not easy
to proceed. See more detail in chapitre 2.

4.2 Model of Brain Lactate Metabolism with piecewise sys-
tem

In chapter 3, we study a piecewise smooth dynamical system inspired by a previ-
ous reduced system modeling compartimentalized brain metabolism. The piecewise
system allows the introduction of an autoregulation induced by a feedback of the
extracellular or capillary Lactate concentrations on the Capillary Blood Flow. New
dynamical phenomena are uncovered and we discuss existence and nature of two
equilibrium points, attractive segment, boundary equilibrium and periodic orbits de-
pending of the Capillary Blood Flow.

In [56], the physiological domain was discussed in terms of bounds on the Lactate
concentrations x and y. It is natural to push further this study with the introduction
of a kind of autoregulation of the system induced by a feedback of the two concentra-
tions (x or y) on the Capillary Blood Flow F . This is discussed in chapter 3 where
the autoregulation is represented by a piecewise variation of F such as

F (x, y) =

{
F+, when (x, y) ∈ Ω+,

F−, when (x, y) ∈ Ω−.

We suppose that F+ and F− are different positive real numbers and Ω+ ∪Ω− = R2
+,

Ω+ ∩ Ω− = ∅. We further denote the system VF :

dx

dt
= J − T (

x

k + x
− y

k′ + y
),

dy

dt
= F (x, y)(L− y) + T (

x

k + x
− y

k′ + y
).

(4.2)

For this piecewise system (4.2), we give here some Theorems concerned with new
dynamical phenomena.
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Theorem 4.4 Suppose F+ > F− and F (x, y) follows (3.3.1), assume that L +
J
F+ < h ≤ L + J

F−
, then the piecewise system (4.2) displays two equilibrium points

s+ and s− in R2
+. In addition, there exist two non intersecting invariant domains

A+ and A− which are separated by a boundary curve in R2
+; all the orbits of system

(3.1.2) in A+ (A− respectively) tend to s+ (s− respectively). In other words, A+ (A−
respectively) is the basin of attraction of the attracting node s+ (s− respectively).

Theorem 4.5 Suppose F− > F+ and F (x, y) follows (3.3.1), and assume fur-
thermore that L+ J

F−
< h ≤ L+ J

F+ , then the piecewise system (4.2) displays a sliding
section on line y = h, which is a attracting set. In this case, s+ and s− are pseudo
equilibrium points and the system has no periodic orbits in R2

+.

Theorem 4.6 Suppose F+ > F− and F (x, y) follows (3.4.1), then the piecewise
system (4.2) displays two equilibrium points s+ and s− in R2

+ if x+ < h 6 x−.
In addition, there exist two non intersecting invariant domains A+ and A− which
are separated by a boundary curve in R2

+; all the orbits of system (4.2) in A+ (A−,
respectively) tend to s+ ( s−, respectively ). In other words, the invariant domains
A+ and A− are the basins of attraction of, respectively, the attracting nodes s+ and
s−.

Theorem 4.7 Suppose F− > F+ and F (x, y) is the piecewise function given by
(3.4.1), then

(i) the piecewise system (4.2) has no equilibrium in R2
+ for x− < h < x+, and a

unique boundary equilibrium c on x = h.

(ii) the segments (x = h)\c are sawing sections. Inside the pseudo-loop, there exists
a ω-limit set given either by the boundary equilibrium point c or by an attractive
limit cycle.

In this chapter, we have introduced an autoregulation in the Neuron-Astrocyte-
Capillary system preceedingly studied as a mathematical reduction of a comparti-
mentalized Brain Lactate kinetics Model. This autoregulation looks natural and can
be thought as a feedback process induced by the Astrocytes to the Capillary when the
extra-cellular (or the Capillary) Lactate concentration is beyond the viability limits.

The mathematical tool which looks the most adapted for this context is the qual-
itative analysis of Piecewise Smooth Dynamical Systems (PWS).

Our study uncovered several new phenomenon which were not present in the ODE
model.

Within the conditions of Theorem 4.4 and 4.6 the PWS displays a bistability with
two attracting nodes. The two basins of attraction are separated by a boundary that
we can explicitely determine.
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With the conditions of Theorem 4.5, there exists an attracting set which is a
sliding section.

With the conditions of Theorem 4.7, the system displays a pseudo-loop. Inside this
pseudo-loop, there is a Poincaré map associated to a sawing section. The qualitative
analysis allows to show the existence of a boundary equilibrium. There are two
possibilities for the ω-limit set of the orbits inside the pseudo-loop: either a limit
cycle or the boundary equilibrium which is then an attractive focus.

4.3 Sharp seasonal threshold property for cooperative pop-
ulation dynamics with concave nonlinearities

Chapter 4 is a theoretical contribution to the study of seasonal dynamics.

We study differential dynamical systems arising from nonlinear periodic positive
differential equations of the form

dx

dt
= F (t, x), (4.3)

where F is monotone and concave (in x). These systems exhibit well-known contrac-
tion properties when F is continuous (see [46], [80], [48]). We extend in Theorem
4.3.1 these properties to non-linearities that are only piecewise-continuous in time.
This extension is motivated by the study of typical seasonal systems in population
dynamics.

We denote by θ ∈ [0, 1] the proportion of the year spent in unfavorable season.
Then, we convene that time t belongs to an unfavorable (resp. a favorable) season if
nT ≤ t < (n + θ)T (resp. if (n + θ)T ≤ t < (n + 1)T ) for some n ∈ Z+. In other
words, we study the solutions to:

dX

dt
= G(πθ(t), X), πθ(t) =

{
πU if t

T
− b t

T
c ∈ [0, θ),

πF if t
T
− b t

T
c ∈ [θ, 1),

(4.4)

for some G : P × RN → RN , with πU , πF ∈ P where P is the parameter space. We
are looking for conditions ensuring that a sharp seasonal threshold property holds,
that is:

∃θ∗ ∈ [0, 1] such that


if θ < θ∗,∃!q : R+ → RN , T -periodic, q � 0 and

∀X0 ∈ RN
+\{0}, X converges to q,

if θ > θ∗,∀X0 ∈ RN
+ , X converges to 0.

(SSTP)
Ecologically, the respective duration of dry and wet seasons is crucial for population
sustainability in various species. The property (SSTP) means that if the dry season is
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longer than θ∗T then the population collapses and if it is shorter then the population
densities will tend to be periodic.

Firstly, we generalize a result by Smith [80] about continuous concave and coop-
erative nonlinearities to piecewise-continuous (in time) nonlinearities.

Theorem 4.8 Let F : Rt × RN
x → RN be T -periodic and piecewise-continuous

in t and such that for all t ∈ R+, F (t, ·) ∈ C1(RN ,RN). Assume that F satisfies
assumptions (P), (M), (C) and (I), so that the associated differential system (4.1.1)
is positive, monotone and concave with irreducible linearization at 0. Let λ ∈ R
denote the Floquet multiplier with maximal modulus of (4.1.3).

If λ ≤ 1 then every non-negative solution of (4.1.1) converges to 0. Otherwise,

(i) either every non-negative solution of (4.1.1) satisfies lim
t→∞

x(t) =∞,

(ii) or (4.1.1) possesses a unique (nonzero) T -periodic solution q(t).

In case (ii), q � 0 and lim
t→∞

(x(t)−q(t)) = 0 for every non-negative solution of (4.1.1).

Secondly, we give the fairly general sufficient conditions for systems in any space
dimension N ∈ Z>0 to satisfy (SSTP) see Theorem 4.3.2.

Finally, we present Theorem 4.3.3 an application to the two-dimensional system
(4.1.2), for which we are able to show the threshold property (SSTP) for a wide range
of parameters. By this we mean that the relative duration of the two seasons is a
critical parameter: if it is above some threshold then the population extincts, and if
it is a below then the dynamics converges toward a unique periodic profile.

4.4 Perspectives of developments of this work

• It seems natural to consider the 4-dimensional system rather than the 2-dimen-
sional system because it distinguishes neurons from astrocytes. Now that we
know that it is cooperative and that has a single stable stationary point, we can
test the conditions for the existence of the lactate shuttle found by Pellerin and
P. Magistretti [5]. The reader will also be able to refer to the book “l’homme
glial” recently published by Y. Agid and P. Magistretti [2] to understand the
importance of neurone-astrocyte coupling for brain metabolism.

• The two-variable model of lactate has recently undergone a significant devel-
opment in the field of PDE Reaction-Diffusion systems [73, 35, 72, 71]. It is
possible that the result of cooperation obtained in chapter 3 may give a new
light on the system disturbed by a weak diffusion considered in these works.
An interesting perspective would be to study a disturbance by a weak diffusion
of the system of dimension 4.
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• It can be seen that Dongmei Xiao’s article [88] also investigates the maximum
harvest in relation to a notion of sustainable development. It would be inter-
esting to deepen this aspect with the tools that we introduced in any dimension
for the system of chapter 4.

• The result of SSTP may be put in perspective with control problems associated
with vector control methods. In particular, the study of the periodic limit cycle
may prove useful. The extension to other types of nonlinearities should also
be discussed, with a particular emphasis on the seasonal alternation of bistable
and (extinction) monostable dynamics.
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Chapter 1

Notations and Background
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1.2.2 Model for cooperative population dynamics . . . . . . . . . 44

1.1 Notations

1.1.1 Basic definition in Matrix Analysis

Throughout this thesis, R denotes the field of real numbers, Mn(R) denotes the
space of n × n matrices with real entries. Rn is the space of column vectors of size
n with real entries. For x ∈ Rn and i = 1, · · · , n, xi denotes the ith coordinate of
x. For A ∈ Mn(R), aij denotes the (i, j)th entry of A. AT represents the transpose
matrix of A and A−1 is the inverse matrix of A. Also, for x ∈ Rn, D = diag(x) is
the n × n diagonal matrix in which dii = xi. I refers to identity matrix of proper
dimensions. We use 0 to refer to a vector or matrix of appropriate dimensions with
all entries equal to zero.

29
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We define:
R+ := {x ∈ R : x ≥ 0},

and
Rn

+ := {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n},

Rn
+ is called the positive orthant of Rn.

int(Rn
+) := {x ∈ Rn : xi > 0, 1 ≤ i ≤ n}.

For a closed subset Ω of Rn
+ the boundary of Ω is defined as:

bd(Ω) := Ω\int(Ω).

Definition 1.1.1 Let A and B be two n× n matrices, we denote:

A� B ⇐⇒ aij > bij for all i,j ∈ {1, . . . , n},
A > B ⇐⇒ aij ≥ bij for all i,j ∈ {1, . . . , n} and A 6= B,

A ≥ B ⇐⇒ aij ≥ bij for all i,j ∈ {1, . . . , n}.

In particular we define A a positive matrix if A ≥ 0, strictly positive if A > 0 and
strongly positive if A� 0. Clearly: A� 0 =⇒ A > 0 =⇒ A ≥ 0.

A real n× n matrix M = (mij) is Metzler if its off-diagonal entries are nonneg-
ative.

Clearly the positive matrices are Metzler matrices. Moreover, a strong link exists
between the positive matrices and the Metzler matrices. Indeed, if M is a Metzler
matrix, then:

∃ c ∈ R+ and ∃P ≥ 0, P = M + cI.

Definition 1.1.2 A Matrix A is said to be reducible when there exists a permu-
tation matrix P such that

P TAP =

(
X Y
0 Z

)
,

where X and Z are both square matrices.

In other terms, a matrix A is irreducible if and only if it is not equivalent to a
block upper triangular matrix by permutations of row and columns.

Definition 1.1.3 The graph of a n×n matrix A denoted by G(A) is the directed
graph on n nodes {N1, N2, . . . , Nn}, in which there is a directed edge leading from Ni
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to Nj if and only if aij 6= 0.
The graph G(A) is said strongly connected if for each pair of nodes (Ni, Nj), there
is a sequence of directed edges leading from Ni to Nj, where i, j ∈ {1, . . . , n}.

Proposition 1.1.1 ([69]) A is an irreducible matrix if and only if its graph is
strongly connected.

Remark 1.1.1 If a matrix A� 0 , then A is irreducible.

Lemma 1.1.1 ([45]) Let A ∈ Mn(R) nonnegative and irreducible, if A has a
positive left eigenvector and there exists a vector x > 0 such that Ax ≥ ρ(A)x, then
Ax = ρ(A)x.

Proof. let y as a positive left eigenvector (i.e.yTA=λyT ). Since yT (A − λI) = 0 is
same as (A− λI)Ty = 0 (i.e. (AT − λI)y = 0). Hence ATy = λy, we know y � 0, so
we obtain λ = ρ(AT ) = ρ(A) write as yTA = ρ(A)yT , so yTAx = ρ(A)yTx, ∀x ≥ 0.
On the other hand, by the condition there exista a x, such thatAx ≥ ρ(A)x, so
yTAx ≥ ρ(A)yTx. We can conclude Ax = ρ(A)x.

Lemma 1.1.2 Let A ∈Mn(R) nonnegative, then A is irreducible if only if AT or
In+ A is irreducible.

Definition 1.1.4 Given a n×n matrix, the spectral radius of A, denoted by ρ(A)
is: ρ(A):=max{|λ| : λ ∈ σ(A)} where σ(A) is the set of all eigenvalues (spectrum) of
the matrix A.

Definition 1.1.5 Given a n × n matrix, the spectral abscissa of A denoted by
µ(A) is: µ(A):=max{Re(λ) : λ ∈ σ(A)}.

A matrix A is called Hurwitz, if µ(A) < 0.

Definition 1.1.6 (Dominant Eigenvalue and Eigenvector)

λF is dominant or Frobenius eigenvalue of A if and only if Re(λF ) = µ(A). Eigen-
vectors corresponding to dominant eigenvalues are called the dominant or Frobenius
eigenvectors of A.

Theorem 1.1.1 (Perron-Frobenius [83]) Let A ∈ Mn(R) is an nonnegative
matrix, i.e. A > 0, then ρ(A) is an eigenvalue of A and there is a corresponding
eigenvector v > 0.
In addition, if A is irreducible then:
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i): ρ(A) > 0 and there is a corresponding eigenvector v � 0;
ii): ρ(A) is a simple eigenvalue of A , and if u > 0 is eigenvector of A then there is
a real number s > 0 such that u=sv;
iii): ρ(A) increases when any entry of A increases;
iv): if A� 0, then |λ| < ρ(A) for all other eigenvalue of A.

Remark 1.1.2 There are many version of proof for Perron-Frobenius theorem,
and we can see Berman and Plemmons (1979) [8] for a proof.

Theorem 1.1.2 (Smith [83]) Let A ∈ Mn(R) be a matrix Metzler, then µ(A)
is an eigenvalue of A and there is a corresponding eigenvector v > 0. Moreover
Re(λ) < µ(A) for all other eigenvalue of A.
In addition, if A is irreducible then:
i): µ(A) is an algebraically simple eigenvalue of A;
ii): v � 0 and any eigenvector w > 0 of A is a positive multiple of v;
iii): If B is a matrix satisfying B > A, then µ(B) > µ(A);
iv): If µ(A) < 0, then −A−1 � 0.

1.1.2 Basic definition of Dynamical Systems

Now we recall some basic definitions and results concerning dynamical systems.
The systems we deal with in this subsection are autonomous continuous-time nonlin-
ear systems of the form: {

ẋ = f(x),

x(0) = x0,
(1.1.1)

where f : Ω 7→ Rn is a nonlinear vector field on a subset Ω of Rn and x0 ∈ Ω is
called the initial condition.

The forward solution (sometimes referred to as solution) or trajectory of (1.1.1)
with initial condition x0 at t = 0 is denoted by x(t, x0) and is defined on the maximal
forward interval of existence Tmax :=

[
0, Tmax(x0)

)
[51]. Hereafter, if we do not

explicitly specify the maximal forward interval of existence for an initial condition
x0, we always assume Tmax :=

[
0,+∞

)
.

For some x0 ∈ Ω, x(t, x0) is said to be decreasing, if for all t ≥ 0 and s > 0 with
t+ s ∈ Tmax, we have:

x(t+ s, x0) < x(t, x0).

Also, x(t, x0) is said to be non-increasing, if

x(t+ s, x0) ≤ x(t, x0).
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Increasing and non-decreasing trajectories are defined in the obvious manner.

A set U ⊂ Ω is forward invariant or positive invariant for system (1.1.1) if and
only if ∀x0 ∈ Ω, x(t, x0) ∈ Ω for all t ∈ Tmax.

A point p is an omega limit point of x0 if there exists an increasing sequence of
time instances {tk}, with tk → +∞ when k → +∞ , such that lim

tk→+∞
x(tk, x0). The

set of all the omega limit points of x0 is called its omega limit set and is represented
by ω(x0). Note that omega limit set of x0 can be empty, for example if the solution
starting from x0 diverges.

If Tmax = +∞, then the set O(x0) := {x(t, x0)| t ∈ R+} is the forward orbit of
the forward solution x(t, x0). O(x) is said to be a T-periodic orbit for some positive
real number T > 0 if x(T, x0) = x0. In that case, x(T, x0) = x(t+T, x0) for all t ≥ 0,
so O(x0) = {x(t, x0)| 0 ≤ t ≤ T} [83].

If the model (1.1.1) is to be a useful mathematical representation of a dynamical
system, then it should have two important properties. The solution for every initial
condition of interest should exist, and it should be unique. To state the condition
for existence and uniqueness of the solution of system (1.1.1), we need to define the
Lipschitz condition.

Definition 1.1.7 (Lipschitz Condition) Let Ω ⊂ Rn and let f : Ω 7→ Rn be a
nonlinear vector field. We say f is locally Lipschitz in a closed subset U of Ω, if there
exists a positive real L such that

‖f(x)− f(y)‖ ≤ L‖x− y‖

for all x, y ∈ U where ‖·‖ represents any p-norm.

The Lipschitz property is weaker than continuous differentiability, as stated in
the next lemma which is Lemma 3.2 in [51].

Lemma 1.1.3 If f(a) and ∂f
∂x

(a) are continuous in a subset U of Ω, then f is
locally Lipschitz in U .

The following theorem, states condition for existence and uniqueness of the solu-
tions of (1.1.1) (Theorem 3.2 in [51]).

Theorem 1.1.3 (Local Existence and Uniqueness). Let Ω ⊂ Rn and let f : Ω 7→
Rn be a nonlinear vector field. Let f be continuous and Lipschitz in B = {x ∈
Ω|‖x− x0‖ ≤ r} for some real r with r > 0. Then there exists some δ > 0 such that
system (1.1.1) with x(0) = x0 has a unique solution over [0, δ].

We now extend the concept of irreducibility to nonlinear dynamical systems. Fol-
lowing [1], system (1.1.1) is irreducible in Rn

+, if
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• For all a ∈ int(Rn), ∂f
∂x

(a) is irreducible,

• For all a ∈ bd(Rn)\0, either ∂f
∂x

(a) > 0 or fi(a) > 0 for all i such that ai = 0.

1.1.3 Stability

We next recall various fundamental stability concepts but before formally stating
definitions of stability, we should define the concept of equilibrium of a system.

Definition 1.1.8 (Equilibrium Point) Let Ω ⊂ Rn and let f : Ω 7→ Rn be a
nonlinear vector field. Any point x∗ ∈ Ω that satisfies f(x∗) = 0 is an equilibrium
point of the system (1.1.1).

Now we are ready to define different concepts of stability.

Definition 1.1.9 Let f : Ω 7→ Rn be a vector field on an open subset Ω ⊂ Rn. Let
the system (1.1.1) have an equilibrium at p in a positive invariant and closed subset
U of Ω. We consider U to be the state space of the system (1.1.1). Then we say that
the equilibrium point p is

• stable, f for each ε > 0, there is δ = δ(ε) > 0 such that

‖x0 − p‖ < δ =⇒ ‖x(t, x0)− p‖ < ε, t > 0;

• unstable, if it is not stable;

• asymptotically stable if it is stable and there exists a neighbourhood N of p such
that

x0 ∈ N =⇒ lim
t→∞

x(t, x0) = p.

The set
A(p) := {x0 ∈ U |x(t, x0)→ p, as t→∞}

is the domain of attraction or region of attraction of p. If A(p) = U , then we say p
is globally asymptotically stable (GAS for short).

1.1.4 Monotone Dynamical Systems

Monotone methods have been applied since at least the 1920s [75], [49], but not
until the work of M. W. Hirsch in the 1980s was the potential of monotonicity widely
appreciated in dynamical systems theory (see [39] and references therein). We start
with the definition of monotone systems.
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Definition 1.1.10 (Monotonicity) Suppose Ω ⊂ Rn is a forward invariant set
for system (1.1.1). The system (1.1.1) is monotone in Ω if and only if ∀x0, y0 ∈ Ω
with x0 ≤ y0 ,it holds that x(t, x) ≤ x(t, y) for all t.

There is another property which is closely related to monotonicity.

Definition 1.1.11 (Strong Monotonicity) Suppose Ω ⊂ Rn is a forward invariant
set for system (1.1.1). The system (1.1.1) is strongly monotone in Ω if and only if
∀x0, y0 ∈ Ω with x0 ≤ y0, it holds that x(t, x)� x(t, y) for all t.

Definition 1.1.12 (Kamke Condition)

The vector field f: Ω 7→ Rn on an open subset Ω of Rn is said to be of type K or
to satisfy Kamke Condition, if for each i, fi(a) ≤ fi(b) for any two points a and b in
Ω satisfying a ≤ b and ai = bi.

The following Proposition, which is a restatement of Proposition 3.1.1 in [82],
links Kamke condition with monotonicity.

Proposition 1.1.2 Let f be type K in an open subset Ω of Rn. Then system
(1.1.1) is monotone.

Another concept that we will use repeatedly in this manuscript, and is closely tied
with monotonicity, is the concept of cooperativity. A cooperative system is defined
as follows.

Definition 1.1.13 (Cooperative System) Consider a dynamic system of Rn, which
is continuous-time nonlinear systems of the form:

ẋ = f(t, x). (1.1.2)

System (1.1.2) is called cooperative, if only if function f(t, x) satisfy:

∀i 6= j, ∀t ≥ 0, ∀x ∈ Rn, ∂fi
∂xj

(t, x) ≥ 0.

In other words, Df(·) Jacobien of system (1.1.2) is Metzler matrix for all t and
all point x.

It can be proved that every cooperative system defined on a suitable set satisfies
Kamke condition, hence, is monotone. The following remark, which is Remark 3.1.1
in [82], describes this relation.

Theorem 1.1.4 (Kamke) Let x(t) and y(t) be solutions of

ẋ = F (t, x)
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and
ẋ = G(t, x)

respectively, where both systems are assumed to have the uniqueness property for
initial value problems. Assume both x(t) and t(t) belong to a domain D ⊂ Rn for
[t0, t1] in which one of the two systems is cooperative and

F (t, z) ≤ G(t, z) (t, z) ∈ [t0, t1]×D.

If x(t0) ≤ y(t0) then x(t1) ≤ y(t1). If F = G and x(t0) < y(t0), then x(t1) < y(t1).

The above result may be found in [17] or [53]; the last assertion may be obtained
from the first assertion and the fact that, by uniqueness, the solution operator is a
homeomorphism.

Remark 1.1.3 A subset Ω of Rn is said to be p-convex if αx+ (1− α)y ∈ Ω for
all α ∈ [0, 1] whenever x, y ∈ Ω and x ≤ y. Obviously, if Ω is convex, then it is also
p-convex. Let Ω be a p-convex subset of Rn and let f : Ω 7→ Rn be cooperative, which
means we have

∂fi
∂xj

(a) ≥ 0, i 6= j, ∀a ∈ Ω. (1.1.3)

Then the fundamental theorem of calculus, implies that f satisfies the Kamke condi-
tion in Ω. In fact, if a ≤ b and ai = bi, we have

fi(b)− fi(a) =

∫ 1

0

∑
i 6=j

∂fi
∂xj

(a+ r(b− a))(bj − aj)dr ≥ 0

by (1.1.3).

Monotonicity is a powerful property and provides a range of different mathemati-
cal tools that will help us in the following chapters. One of the properties of monotone
systems that we will repeatedly use is the following lemma which is a restatement of
Proposition 3.2.1 in [82].

Lemma 1.1.4 Let Ω be an open subset of Rn and let f: Ω 7→ Rn be a cooperative
vector field. Assume there exists a vector x such that f(x)� 0 (resp.f(x)� 0). Then
the trajectory x(t, x) of system (1.1.1) is decreasing (resp. increasing) for t ≥ 0. In
the case of f(x) ≤ 0 (resp.f(x) ≥ 0), the trajectory will be non-increasing (resp.
non-decreasing).

1.1.5 Positive Systems

A system is called positive, if starting from any initial condition in the positive
orthant Rn

+, the trajectory of the system remains in the positive orthant. The formal
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definition of a positive system is as follows.

Definition 1.1.14 (Positive system) Consider a dynamic system of Rn, which is
continuous-time nonlinear systems of the form:{

ẋ = f(t, x),

x(0) = x0,
(1.1.4)

where f(·) is a fonction ∈ C1.

System (1.1.4) is called positive, if

x(t, x0) ≥ 0 ∀t ≥ 0, x0 ≥ 0. (1.1.5)

In other words, if Rn
+ is an invariant set for the system (1.1.4), then the system

is positive.

Theorem 1.1.5 Consider a cooperative autonome dynamic system:

ẋ = f(x),

this system is positive il only if f(0) ≥ 0.

Theorem 1.1.6 The dynamic system (1.1.4) is positive, if only if:

∀i ∈ 1, 2, . . . , n,

ẋi = fi(x1 ≥ 0, . . . , xi = 0, . . . , xn ≥ 0) ≥ 0. (1.1.6)

Remark 1.1.4 In particular, a linear autonomous (time-invariant) system is
monotone, if and only if it is positive.

1.1.6 Piecewise-smooth ODEs

In this subsection, we recall some definitions concerning Piecewise-smooth ODEs,
which are from the book [9].

Definition 1.1.15 (Piecewise-smooth flow) A piecewise-smooth flow is given by
a finite set of ODEs

ẋ = fi(x, µ), for x ∈ Si,

where ∪iSi = Ω ⊂ Rn and each Si has a non-empty interior. The intersection∑
ij := Si ∩ Sj is either an R(n−1)-dimensional manifold included in the boundaries
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∂Sj and ∂Si, or is the empty set. Each vector field fi is smooth in both the state x
and the parameter µ, and defines a smooth flow φi(x, t) within any open set U ⊃ Si.
In particular, each flow φi is well defined on both sides of the boundary ∂Sj.

A non-empty border between two regions Σij will be called a discontinuity set,
discontinuity boundary or, sometimes, a switching manifold. We suppose that
each piece of Σij is of codimension-one, i.e., is an (n−1)-dimensional smooth manifold
(something locally diffeomorphic to Rn−1) embedded within the n-dimensional phase
space. Moreover, we demand that each such Σij is itself piecewise-smooth. That is,
it is composed of finitely many pieces that are as smooth as the flow.

Note that Definition 1.1.15 does not uniquely specify a rule for the evolution of
the dynamics within a discontinuity set. One possibility is to assign each Σij as
belonging to a single region Si only. That is, Fi rather than Fj applies on Σij. In
fact, such notions make little difference except in the case where the flow becomes
confined to the boundary (Filippov trajectories). Before we get to that case, let us
first consider what might happen to the flow of the piecewise-smooth ODE as we
cross a discontinuity boundary Σij.

Definition 1.1.16 The degree of smoothness at a point x0 in a switching set Σij

of a piecewise-smooth ODE is the highest order r such the Taylor series expansions
of φi(x0, t) and φj(x0, t) with respect to t, evaluated at t = 0, agree up to terms of
O(tr−1). That is, the first non-zero partial derivative with respect to t of the difference
[φi(x0, t)− φj(x0, t)]|t=0 is of order r.

Remark 1.1.5 This definition almost agrees with the usual definition of smooth
functions, thinking of the flow at a point as being a function of t. Thus, if we say that
a piecewise-smooth flow has degree of smoothness r across a discontinuity boundary,
then it is Cr−1 but not Cr. The vector field is one degree less smooth (because it is by
definition the time derivative of the flow). Thus for a flow with degree of smoothness
r according to the definition, the vector field will be Cr−2 but not Cr−1.

Now, consider an ODE local to a single discontinuity set Σij that can be written

ẋ =

{
F1(x, µ), if x ∈ S1,

F2(x, µ), if x ∈ S2,

where F1 generates a flow φ1, F2 generates a flow φ2. We have

∂φi(x, t)

∂t

∣∣
t=0

= Fi(x),

∂2φi(x, t)

∂t2
∣∣
t=0

=
∂Fi
∂t

=
∂Fi
∂φ1

∂φi
∂t

= Fi,xFi(x),
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where a second subscript x means partial differentiation with respect to x. Similarly

∂3φi(x, t)

∂t3
∣∣
t=0

= Fi,xxF
2
i + F 2

i,xFi,

etc. So, if F1 and F2 differ in an mth partial derivative with respect to the state x, we
find that the flows φ1 and φ2 differ in their (m + 1)st partial derivative with respect
to t.

Therefore, if F1(x) 6= F2(x) at a point x ∈ Σ12, then we have degree of smoothness
one there. Systems with degree one are said to be of Filippov type.

Alternatively if F1(x) = F2(x) but there is a difference in the Jacobian derivatives
F1,x 6= F2,x at x, then the degree of smoothness is said to be 2. A difference in
the second-derivative tensor F1,xx 6= F2,xx gives smoothness of degree three, etc.
Systems with smoothness of degree two or higher may be called piecewise-smooth
continuous systems.

Definition 1.1.17 A discontinuity boundary Σij is said to be uniformly discon-
tinuous in some domain D if the degree of smoothness of the system is the same for
all points x ∈ Σij ∩D . We say that the discontinuity is uniform with degree m
if the first non-zero partial derivative of Fi − Fj evaluated on Σij is of order m− 1.
Furthermore, the degree of smoothness is one if Fi(x)− Fj(x) 6= 0 for x ∈ Σij ∩D.

In fact, the assumption of uniform discontinuity imposes a great restriction on the
form that Fi − Fj can take. Consider a general piecewise-smooth continuous system
with a single boundary Σ that can be written as the zero set of a smooth function H

ẋ =

{
F1(x), H(x) > 0,

F2(x), H(x) < 0,
(1.1.7)

where F1(x) = F2(x) if H(x) = 0. Suppose that the flow is uniformly discontinuous
with degree m as in Definition 1.1.17.

The case of systems with uniform degree of smoothness one must be treated with
great care since we have to allow the possibility of sliding motion. In order to define
sliding, it is useful to think of a system (1.1.7) local to a discontinuity boundary
between two regions defined by the zero set of a smooth function H(x) = 0, see
Fig.1.1.

Definition 1.1.18 The sliding region of the discontinuity set of a system of the
form (1.1.7) with uniform degree of smoothness one is given by that portion of the
boundary of H(x) for which

(HxF1) · (HxF2) < 0.
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That is, HxF1 (the component of F1 normal to H) has the opposite sign to HxF2.
Thus, the boundary is simultaneously attracting (or repelling) from both sides.

Figure 1.1: A typical discontinuity boundary of a two-dimensional Filippov system
showing the behavior of the vector fields on both sides. Bold and dashed regions
represent (a) attracting and (b) repelling sliding motion, respectively. Dotted lines
indicate three individual trajectory segments.

Note that the case of most interest is when the sliding region is attracting since,
as is clear from Fig.1.1, repelling sliding motion cannot be reached by following the
system flow forward in time. However, attracting sliding motion can be reached in
finite time. Henceforth, sliding will always be taken to mean ‘attracting sliding’ unless
otherwise stated.
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1.2 Background of biological Model

1.2.1 Model of concentration of brain lactate (neurosciences)

Our first model concerned with chapters 2 and 3 is inspired by the analysis of brain
lactate metabolism developed in (Aubert-Costalat 2005; Aubert et al. 2005 [4, 5]). In
this model the two state variables are the intracapillary lactate concentration LACc
and the intracellular lactate concentration LACi. The model includes the following
elements see Fig.1.2.

Figure 1.2: A comprehensive schematic representation of the flux exchanges, see [18].

The more detailed information are as following:

• intracellular lactate concentration LACi and pH, cell volume being Vi;

• cell lactate production J1;

• flux of lactate diffusion from cells to capillaries J2;

• flux J3, which is the sum of: (1) lactate consumption by the metabolism, tak-
ing into account both the conversion lactate-pyruvate catalysed by lactate de-
hydrogenase and subsequent consumption of pyruvate by mitochondria, and a
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possible consumption of lactate by remaining neurons (astrocyte-neuron lac-
tate shuttle, as proposed by Pellerin-Magistretti 1994 [5], (2) lactate diffusion
towards neighbouring regions; the diffusion term will be small with respect to
lactate consumption by the metabolism.

• capillary lactate concentration (LACc) and pH, capillary volume being Vc;

• arterial lactate concentration LACa;

• cerebral blood flow (CBF);

• flux Jcap, which is the difference between lactate input to capillaries and output
from capillaries, namely Jcap = CBF · LACa − CBF · LACv, where LACv is
the venous lactate concentration.

Furthermore, volumes and blood flow values are expressed per unit tissue volume.
As a consequence, Vc and Vi are dimensionless parameters, and the capillary blood
flow CBF is expressed in s−1. Thus the following mass balance equations can readily
be obtained:

Vi
dLACi
dt

= J1 − J2 − J3,

Vc
dLACc
dt

= Jcap + J2.

We change to notations better adapted to the mathematical analysis. After some
transformations [55, 56, 18, 54], for example the ε is come from the operation of Vc

Vi
,

we thus obtain the fast-slow system if ε is supposed very little:

dx

dt
= J − T (

x

k + x
− y

k′ + y
), T, k, k′, J > 0,

ε
dy

dt
= F (L− y)− T (

y

k′ + y
− x

k + x
), ε, F, L > 0.

In this first paragraph, we consider F, L, k, k0 as fixed and J, T as parameters. We
discuss the existence and nature of the stationary point as well as eventual existence
of periodic orbits. But we also decide that the system makes only sense in a fixed
rectangle that we call the viable phase space:

V = {(x, y), 0 ≤ x ≤M, 0 ≤ y ≤ N}.

This is motivated by the fact that the variables x and y must be positive as they
represent concentrations and cannot assume very large values. We say that if an
orbit leaves the domain V it is not viable. Our interpretation is that the biological
viability of the system is no longer ensured, e.g. cell necrosis occurs.
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Figure 1.3: Model of comportment was proposed by Aubert and al, PNAS 2007 [5].
Introduction for the exchange of lactate, glucose, and oxygen.

After the research of biologists Aubert and Costalat, see Fig.1.3, we further dis-
cuss a natural extension of the system where the intracellular compartment splits
into neurons and astrocytes and which includes transports through cell membranes.
Following the choice made in [4], a direct transport from capillary to intracellular
astrocytes is included. The input F (t) is kept and we add to the forcing J0(t, x, u, v),
still applied to the intracellular compartment, two other independent forcing terms
J1(t, x, u, v) and J2(t, x, u, v) (resp.) responsible for the intracellular lactate dynamics
inside the neurons (resp.) astrocytes.

A more general ODE’s model for brain lactate kinetics, where the intracellular
compartment splits into neuron and astrocyte, was considered in [54, 55]. It displays

dx

dt
= J0 + T1(− x

k + x
+

u

kn + u
) + T2(− x

k + x
+

v

ka + v
)− T (

x

k + x
− y

k′ + y
),

du

dt
= J1 − T1(− x

k + x
+

u

kn + u
),

dv

dt
= J2 − T2(− x

k + x
+

v

ka + v
)− Ta(

v

ka + v
− y

k′ + y
),

ε
dy

dt
= F (L− y) + T (

x

k + x
− y

k′ + y
).+ Ta(

v

ka + v
− y

k′ + y
).
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1.2.2 Model for cooperative population dynamics

Our second model concerned with chapter 4 is a study of population dynamics of
some insects, which is focused on the stage-structured biological population under a
environment which varies periodically in time. The reason of studying this kind of
problem is from the research of Martin Strugarek see in [76, 84] where they focused on
the study of Wolbachia invasion to control the population of mosquitoes in order to
reduce mosquito-borne disease transmission. Some more details for this study could
be found in [22, 58, 60, 13, 90].

In fact, mosquito as a kind of insect is the vector of many diseases, like malaria,
dengue, West Nile virus, etc. Mosquito-borne diseases (primarily malaria and dengue)
are a heavy burden for public health in many countries, in particular in tropical areas.
This is why so many scientists want to control the population of mosquitoes.

For this purpose, it is essential to understand mosquito population dynamics.
Mosquito life includes four stages: egg, larva, pupa, and adult. Each of these stages
can be easily recognized by their special appearance. The duration of the whole cycle,
from egg laying to an adult mosquito, varies between 7 and 20 days, depending on
the ambient temperature of the swamp and the mosquito species involved [27, 23].

Some mathematicians developed a few dynamical systems (as mentioned above)
which include the immature mosquito stage. This stage is more sensitive to climate
change and resource [10, 26, 59, 86, 87], which may help us understand mosquitoes
from the point of view in mathematics. Our reference model is a simplistic description
of the population dynamics of some insects, with a juvenile stage exposed to quadratic
competition and an adult stage.

dJ

dt
= bA− J(h+ dJ + cJJ),

dA

dt
= hJ − dAA,

(1.2.1)

where dY (Y ∈ {J,A}) stands for the (linear) death rate, b is the birth rate, h
is the hatching rate and the parameter cJ tunes the only non-linearity: quadratic
competition (=density-dependent death rate) among juveniles. This term effectively
limits the total population size, as we will prove below. We use it to represent
resource limitation both for breeding sites availability and for nutrient availability
during growth. In principle, the parameters may depend on time:

∀t ∈ R, π(t) := (b, h, dJ , cJ , dA) ∈ R5
+.

The starting questions is: what are the effects of taking into account different
seasons in the previous population dynamics? First we try to describe as precisely
as possible the case when there are only two seasons, one being favorable and the



Chapter 1: Notations and Background 45

other one unfavorable. From the basic model below, we consider a non autonomous
periodic vector field, which is a general form,

dx

dt
= f(t, x),

f(t, x) = f(t+ T, x),

which represents a population whose environment varies periodically in time, ex-
hibiting two “seasons”. One is favorable and the other unfavorable. We address the
question—Under which conditions there exists a critical duration for the unfavorable
season?
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2.1 Introduction

Our aim in this chapter is to study properties of a generalized dynamical system
modeling brain lactate kinetics, with N neuron compartments and A astrocyte com-
partments. In particular, we prove the uniqueness of the stationary point and its
asymptotic stability. Furthermore, we check that the system is positive and cooper-
ative.

47
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The system of ODE’s

dx

dt
= J − T (

x

k + x
− y

k′ + y
), T, k, k′, J > 0,

ε
dy

dt
= F (L− y)− T (

y

k′ + y
− x

k + x
), ε, F, L > 0,

(2.1.1)

where ε is a small parameter, was proposed and studied as a model for brain lactate
kinetics (see [18, 54, 55, 56]). In this context, x = x(t) and y = y(t) correspond to the
lactate concentrations in an interstitial (i.e., extra-cellular) domain and in a capillary
domain, respectively. Furthermore, the nonlinear term T ( x

k+x
− y

k′+y
) stands for a co-

transport through the brain-blood boundary (see [50]). Finally, J and F are forcing
and input terms, respectively, assumed frozen. The model has a unique stationary
point which is asymptotically stable. Recently, in [72, 35], a PDE’s system obtained
by adding diffusion of lactate was introduced. The authors proved existence and
uniqueneness of nonnegative solutions and obtained linear stability results. A more
general ODE’s model for brain lactate kinetics, where the intracellular compartment
splits into neuron and astrocyte, was considered in [54, 55]. It displays

dx

dt
= J0 + T1(− x

k + x
+

u

kn + u
) + T2(− x

k + x
+

v

ka + v
)− T (

x

k + x
− y

k′ + y
),

du

dt
= J1 − T1(− x

k + x
+

u

kn + u
),

dv

dt
= J2 − T2(− x

k + x
+

v

ka + v
)− Ta(

v

ka + v
− y

k′ + y
),

ε
dy

dt
= F (L− y) + T (

x

k + x
− y

k′ + y
) + Ta(

v

ka + v
− y

k′ + y
),

(2.1.2)
where all the constants are nonnegative. It also includes transports through cell
membranes and a direct transport from capillary to intracellular astrocyte. It was
proved in [54, 55] that this 4-dimensional system displays a unique stationary point
but its nature was left open. The stability of the unique stationary point is an
important issue as it relates with therapeutic protocols developped in the references
[54, 55]. Another important issue is the boundedness of the lactate concentrations
related with the viability domain (cf. [54, 55]). We can in fact consider a natural
extension of this system into a more general N +A+ 2 system. For this generalized
system, we prove both unicity and asymptotic stability of the stationary point. In
this article we do not consider fast-slow limits and absorb ε in the parameters.
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2.2 Extension to N neuron compartments and A

astrocyte compartments

2.2.1 Introduction of the system and its positivity

Let us consider a dynamical system equipped with forcing terms Ji > 0, i =
0, 1, . . . , N + A, and input F > 0 and all parameters C,Cn, Da, Ea > 0 with n ∈
{1, . . . , N}, a ∈ {1, . . . , A}:

dx

dt
= J0 +

N∑
n=1

Cn(
un

kn + un
− x

k + x
) +

A∑
a=1

Da(
va

kN+a + va
− x

k + x
)

−C(
x

k + x
− y

k′ + y
),

du1

dt
= J1 − C1(

u1

kn1 + u1

− x

k + x
),

...
duN
dt

= JN − CN(
uN

knN + uN
− x

k + x
),

dv1

dt
= JN+1 −D1(

v1

ka1 + v1

− x

k + x
)− E1(

v1

ka1 + v1

− y

k′ + y
),

...
dvA
dt

= JN+A −DA(
vA

kaA + vA
− x

k + x
)− EA(

vA
kaA + vA

− y

k′ + y
),

dy

dt
= F (L− y) + C(

x

k + x
− y

k′ + y
) +

A∑
a=1

Ea(
va

kaa + va
− y

k′ + y
).

(2.2.1)

For N = A = 1, this system coincides with the 4-dimensional system considered in
([54, 55]). It can be considered as a model of brain lactate kinetics with co-transports
(intracellular-extracellular) through the N neuron membranes and (intracellular-
extracellular) through the astrocytes membranes and direct crossing (intracellular-
capillary) from astrocyte to capillary. Variable x stands for the extracellular concen-
tration. Variables un, n = 1, . . . , N stand for the intracellular concentration inside
neurons. Variables va, a = 1, . . . , A represent the intracellular concentration in as-
trocytes. Variable y represents the concentration in capillary. For convenience, we
denote as W the set of variables W = (x, un, va, y) ∈ Rd, d = N + A+ 2.

Recall that an autonomous continuous dynamical system associated with a vector
field:

dWi

dt
= fi(W ), i = 1, . . . , d
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is said to be positive if and only if: ∀i ∈ 1, . . . , d

Ẇi = fi(W1 ≥ 0, . . . ,Wi = 0, . . . ,Wd ≥ 0) ≥ 0.

It is easy to check that the vector field defined by system (2.2.1) is positive. The geo-
metrical meaning of this property is that the flow of the vector field can be restricted
to the convex set Ω = Rd

+.

2.2.2 Uniqueness of the stationary point

Theorem 2.2.1 The system (2.2.1) displays a unique stationary point denoted
as s∗.

Proof. The equations for finding a stationary point yield:

0 = J0 +
N∑
n=1

Cn( un
knn+un

− x
x+k

) +
A∑
a=1

Da(
va

kaa+va
− x

x+k
)− C( x

k+x
− y

k′+y
),

0 = J1 − C1( u1
kn1+u1

− x
x+k

),
...

0 = Jn − Cn( un
knn+un

− x
x+k

),
...

0 = JN − CN( uN
knN+uN

− x
x+k

),

0 = JN+1 −D1( v1
ka1+v1

− x
x+k

)− E1( v1
ka1+v1

− y
k′+y

),
...

0 = JN+a −Da(
va

kaa+va
− x

x+k
)− Ea( va

kaa+va
− y

k′+y
),

...
0 = JN+A −DA( va

kaA+vA
− x

x+k
)− EA( vA

kaA+vA
− y

k′+y
),

0 = F (L− y) + C( x
k+x
− y

k′+y
) +

A∑
a=1

Ea(
va

kaa+va
− y

k′+y
).

(2.2.2)

Consider the following change of variable:

X =
x

k + x
, Y =

y

k′ + y
, Un =

un
knn + un

, Va =
va

kaa + va
, (2.2.3)

for n ∈ {1, . . . , N} and a ∈ {1, . . . , A}. So we can write the system in a matrix
equation:

Ms = b, (2.2.4)

where M ∈ Rd×d displays:
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s =



U1
...
UN
V1
...
VA
X
Y


∈ Rd, b =



J1
...
JN
JN+1

...
JN+A

J0

F (L− y)


∈ Rd.

After summing up the d equations, this yields:

y = y∗ = L+
J0 + J1 + · · ·+ JN+A

F
. (2.2.5)

So we have a unique solution for y. In this case we can reduce equation (2.2.4) into
a new matrix equation of dimension d− 1 denoted:

M ′s′ = b′, (2.2.6)

where

M ′ =



C1

. . .

CN

0
−C1

...
−CN

0
D1 + E1

. . .

DA + EA

−D1
...
−DA

−C1 . . . −CN −D1 . . . −DA

N∑
n=1

Cn +
A∑
a=1

Da + C


,

s′ =



U1
...
UN
V1
...
VA
X


∈ Rd−1, b′ =



J1
...
JN

JN+1 + E1
y∗

k′+y∗

...

JN+A + EA
y∗

k′+y∗

J0 + Cy∗


∈ Rd−1.

We can write a block decomposition of the matrix M ′ as follows:

M ′ =

(
M1 M2

M3 M4

)
,
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so

M1 =



C1

. . .

CN

0

0
D1 + E1

. . .

DA + EA


∈ R(d−2)×(d−2),

M2 =
(
−C1 . . . −CN −D1 · · · −DA

)T ∈ R(d−2)×1,

M3 =
(
−C1 . . . −CN −D1 · · · −DA

)
∈ R1×(d−2),

M4 =
N∑
n=1

Cn +
A∑
a=1

Da + C ∈ R.

As M1 is an invertible square matrix, we can write:

det(M ′) = det

(
M1 M2

M3 M4

)
= det(M1) det(M4 −M3M1

−1M2).

The determinant of M1 writes det(M1) =
N∏
n=1

Cn
A∏
a=1

(Da + Ea) > 0.

Direct computation of the Matrix (M4 −M3M1
−1M2), which is a real number,

yields:

det(M4 −M3M1
−1M2) =

N∑
n=1

Cn +
A∑
a=1

Da + C − (
N∑
n=1

Cn +
A∑
a=1

Da
2

(Da + Ea)
)

=
A∑
a=1

Da + C −
A∑
a=1

Da
2

(Da + Ea)

=
A∑
a=1

Da(1−
Da

2

Da + Ea
) + C

=
A∑
a=1

DaEa
Da + Ea

+ C > 0.

Computation yields det(M ′) 6= 0 and the equation (2.2.6) displays a unique solution
s′ which is as s′ = M ′−1b′. With the change of variable (2.2.3), there is a unique
solution for system (4.4.6) denoted as s′′:

s′′ = (x∗, u∗1, · · · , u∗N , v∗1, · · · , v∗A).
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This proves the uniqueness of the stationary point s∗ = (s′′, y∗) of system (2.2.1).

In the next subsection, we discuss the positivity of this stationary point.

2.2.3 Conditions for the positivity of the stationary point

The stationary point s∗ = (s′′, y∗) does not belong necessarily to Rd
+ as it was

observed already for the 2-dimensional system in [54, 18]. Following the notations of
equation (2.1.1), the stationary point belongs to R2

+ if and only if:

T > J [1 +
1

k′
(L+

J

F
)]. (2.2.7)

Proof. Similar explicit conditions can be given for the 4-dimensional system as shown
in [54, 55]. In any dimension d, even if these conditions are not easily obtained
explicitly, they read, with vector e = (1, 1, ..1), 0 ≤M ′−1b′ ≤ e.

2.3 Asymptotic stability of the stationary point,

cooperative dynamics and boundedness

2.3.1 Asymptotic stability of the stationary point

We compute the Jacobian matrix of the vector field (2.2.1):
JF =


−(
N∑
n=1

Cn +
A∑
a=1

Da + C)
k

(x + k)2
C1

kn1
(u1 + kn1)2

. . . CN
knN

(uN + knN )2
D1

ka1
(v1 + ka1)2

. . . DA
kaA

(vA + kaA)
2

C
k′

(y + k′)2

C1
k

(x + k)2
−C1

kn1
(u1 + kn1)2

... . . .

CN
k

(x + k)2
−CN

knN
(uN + knN )2

D1
k

(x + k)2
−(D1 + E1)

ka1
(v1 + ka1)2

E1
k′

(y + k′)2
... . . . ...

DA
k

(x + k)2
−(DA + EA)

kaA
(vA + kaA)

2
EA

k′

(y + k′)2

C
k

(x + k)2
E1

ka1
(v1 + ka1)2

. . . EA
kaA

(vA + kaA)
2

−F − (C +
A∑
a=1

Ea)
k′

(y + k′)2



Denote J0 the Jacobian matrix JF for the input F = 0. All off-diagonal elements
of the matrix JF (and of J0) are nonnegative. So we could use the theorem due to
Hal.L. Smith which applies to the Metzler matrices.

We now prove the following theorem:

Theorem 2.3.1 The stationary point of system (2.2.1) is asymptotically stable.
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boundedness

Proof. As we can see, there are no zero elements at the first row and the first column
in matrix JF (and J0). This means that in the graph associated to the matrix, there
is a sequence of directed edges leading from Ni to Nj for all i, j ∈ (1, 2..., d). Hence,
G(JF ) is strongly connected, so JF (and J0) is an irreducible matrix. Note that the
strictly positive vector w ∈ Rd:

w =
((x+ k)2

k
,
(u1 + kn1)2

kn1

, · · · , (uN + knN)2

knN
,
(v1 + ka1)2

ka1

, · · ·

· · · , (vA + kaA)2

kaA
,
(y + k′)2

k′

)T
,

(2.3.1)

solves J0w = 0.
By (ii) in theorem (1.1.2), the vector w is necessarily proportional to the positive
eigenvector v which corresponds to the spectral abscissa. Hence, we obtain that
µ(J0) = 0.
By (iii) in theorem (1.1.2), µ(JF ) < µ(J0) = 0.

This shows that all the real parts of eigenvalues of the Jacobian matrix JF are
negative, which means that the stationary point of system (2.2.1) is asymptotically
stable.

2.3.2 Problem of boundedness

Proposition 2.3.1 Given a continuous dynamical system defined on the convex
set Ω = Rd

+ which displays the Kamke property and two points x0 and y0 in Ω so that
x0 ≤ y0, then if the solutions φt(x0) and φt(y0) (φt is the flow at time t of the vector
field) are defined then φt(x0) ≤ φt(y0).

Such tools are useful to discuss the other important issue of boundedness of the
lactate concentrations in relation with the viability domain (cf.[18, 54, 55, 56]).

Consider first the reduced 2-dimensional system. Assume that the condition T >
J [1 + 1

k′
(L + J

F
)] is not fullfilled. The domain Ω is invariant by the positive flow.

Consider any initial point x0 in Ω and assume that the closure of its orbit is contained
in a compact set. Consider its ω limit set ω(x0). By the Poincaré-Bendixson theorem
it is either a stationary point, a periodic orbit or a polycyle (union of stationary point
connected by heteroclinic connexions). All these cases are ruled out by the fact that
the system does not display a stationary point inside the domain Ω. This shows that
there is no bounded orbit inside the domain.

Consider now the d-dimensional system which distinguishes the neuron and astro-
cyte compartments. Assume that the positivity conditions for the unique stationary
point are fullfilled. Then in that case, the basin of attraction of the stationary point
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provides a positive invariant set of non-empty interior of solutions which are bounded
and positive. Although it is not easy to proceed with explicit computations and we
focus on the case d = 4.

Theorem 2.3.2 There is a non-empty set of entries (J0, J1, J2, L, F ) so that the
system (2.1.2) displays a full open set of solutions which are positive and bounded.

Proof. It is enough to check that there are conditions on the entries so that the system
(2.1.2) displays a positive stationary point. This yields:

x∗ =

k
(
Ta(J0 + J1) + T2(J0 + J1 + J2) + (TT2 + TTa + T2Ta)

y∗

k′ + y∗
)

−Ta(J0 + J1)− T2(J0 + J1 + J2) + (TT2 + TTa + T2Ta)
k′

k′ + y∗

,

u∗ =

kn
(J1

T1

+
Ta(J0 + J1) + T2(J0 + J1 + J2)

TT2 + TTa + T2Ta
+

y∗

k′ + y∗
)

1−
(J1

T1

+
Ta(J0 + J1) + T2(J0 + J1 + J2)

TT2 + TTa + T2Ta
+

y∗

k′ + y∗
) ,

v∗ =

ka
(
TJ2 + T2(J0 + J1 + J2) + (TT2 + TTa + T2Ta)

y∗

k′ + y∗
)

−TJ2 − T2(J0 + J1 + J2) + (TT2 + TTa + T2Ta)
k′

k′ + y∗

,

y∗ = L+
J0 + J1 + J2

F
.

(2.3.2)

Note that, for instance in the limit where J = (J0, J1, J2) = O(η) is small, then
y∗ = L

k′+L
+O(η) and we check that the other coordinates are also positive.

2.3.3 Sufficient condition for non periodic solution

Theorem 2.3.3 If the stationary point s∗ ∈ int(Rd
+), then the system (2.2.1) has

no periodic solution in Rd
+.

Proof. Denote

s∗ = (x∗, u∗1, · · · , u∗N , v∗1, · · · , v∗A, y∗) := (x∗, u∗, v∗, y∗),

where u∗ ∈ RN and v∗ ∈ RA.

For all t ≥ 0, Φ(t, s0) denotes the solution of system for problem of the initial
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value s0 ∈ Rd
+. Since ∀t ≥ 0, Φ(t, s0) ≥ 0, then

d

dt
‖Φ(t, s0)‖1 =

dx

dt
+

N∑
n=1

dun
dt

+
A∑
a=1

dva
dt

+
dy

dt
=

N+A∑
i=1

Ji + F (L− y(t)).

Let s1 ≥ s0 and s1 ≥ s∗, then ∀t ≥ 0, Φ(t, s1) ≥ Φ(t, s∗) = s∗ because the system is
cooperative. In particular, y1(t) ≥ y∗, hence

d

dt
‖Φ(t, s1)‖1 ≤ 0.

In addition by cooperativeness, we have also 0 ≤ Φ(t, s0) ≤ Φ(t, s1), hence

‖Φ(t, s0)‖1 ≤ ‖Φ(t, s1)‖1 ≤ s1,

hence Φ(t, s0) is uniformly bounded in Rd
+ for all t ≥ 0.

Second, suppose there exists a non constant T -periodic solution Sper(t), Xper :=
{Sper(t) | t ∈ [0, T ]}. Xper is obviously an invariant set for all t ≥ 0, i.e. Φt(Xper) =
Xper. There exists two values such that xmin ≤ Xper ≤ xmax, where xmin := sup{x ∈
Rd

+ | ∀t, x ≤ Xper(t)} and xmax := min{x ∈ Rd
+ | ∀t, x ≥ Xper(t)}, such that xmin <

xmax (since Xper contains at least two distinct points). By monotonicity, Φt(xmin) ≤
Xper, which implies Φt(xmin) ≤ xmin by maximality of xmin, hence Φt(xmin) decreases
and is bounded. So it must tend to an equilibrium point in Rd

+. For Φt(xmax) increases
and is bounded, it must tend to another equilibrium point for the same reason. This is
a contradiction to our assumption that s∗ is a unique positive equilibrium point.
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2.4 Remarks and Perspectives

1- A natural question (for instance for the 4-dimensional system) is whether the
conditions on the non-existence of stationary point inside the domain Ω implies that
there is no bounded positive solutions.

2- There is a non-autonomous version of the Brain Lactate Dynamics for which
the entries J(t) and the forcing term F (t) are time dependent. Further studies on
the cooperative nature of these dynamics will be developed.

3- It should be interesting to analyse the reaction-diffusion PDE system obtained
by adding diffusion to the 4-dimensional system (2.1.2) from the viewpoint of coop-
erative systems.
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3.1 Introduction

In this chapter, we study a piecewise smooth dynamical system inspired by a
previous reduced system modeling compartimentalized brain metabolism. The piece-
wise system allows the introduction of an autoregulation induced by a feedback of
the extracellular or capillary Lactate concentrations on the Capillary Blood Flow.
New dynamical phenomena are uncovered and we discuss existence and nature of
two equilibrium points, attractive segment, boundary equilibrium and periodic orbits
depending of the Capillary Blood Flow.
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The nonlinear system of ODEs defined as follows:

dx

dt
= J − T (

x

k + x
− y

k′ + y
) T, k, k′, J > 0,

dy

dt
= F (L− y) + T (

x

k + x
− y

k′ + y
) F, L > 0,

(3.1.1)

where (x, y) ∈ R2
+ was first proposed and studied as a model for coupled en-

ergy metabolism between Neuron-Astrocyte and Capillary by [Costalat, Francoise,
Guillevin, Lahutte-Auboin] (see [18, 54, 55, 56]). In this context, x = x(t) and
y = y(t) correspond to the Lactate concentrations in an interstitial (i.e. extra-
cellular) domain and in a Capillary domain, respectively. Furthermore, the nonlinear
term T ( x

k+x
− y

k′+y
) stands for a co-transport through the Brain-Blood Boundary (see

[50]). The forcing term J represents the lactate flux in the intracellular domain.
Furthermore the input F stands for the Capillary Blood Flow through capillaries
from arterial to venous, and L represents arterial lactate. In these previous articles,
different time scales were considered on the evolution of the two variables and the
asymptotics of fast-slow dynamical systems was used (see also a more recent refer-
ence [73]). Here, our results are independent of this scaling. Recently, in [72, 35], a
PDE’s system obtained by adding diffusion of lactate was introduced. The authors
proved existence and uniqueness of nonnegative solutions and obtained linear sta-
bility results. In system (3.1.1) the forcing term J and input terms F are assumed
frozen.

In [56], the physiological domain was discussed in terms of bounds on the Lactate
concentrations x and y. It is natural to push further this study with the introduction
of a kind of autoregulation of the system induced by a feedback (for instance of
Astrocytes on the Capillary) of the two concentrations (x or y) on the Capillary Blood
Flow F . This is discussed in this article where the autoregulation is represented by
a piecewise variation of F such as

F (x, y) =

{
F+, when (x, y) ∈ Ω+,

F−, when (x, y) ∈ Ω−.

We suppose that F+ and F− are different positive real numbers and Ω+ ∪Ω− = R2
+,

Ω+ ∩ Ω− = ∅. We further denote the system VF :

dx

dt
= J − T (

x

k + x
− y

k′ + y
),

dy

dt
= F (x, y)(L− y) + T (

x

k + x
− y

k′ + y
).

(3.1.2)

If Ω+ = R2
+ and Ω− = ∅ (i.e. F = F+ everywhere), we denote system (3.1.2) as

VF+ . If Ω− = R2
+ and Ω+ = ∅ (i.e. F = F− everywhere), we denote system (3.1.2)
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as VF− . System VF+ and system VF− are the two special cases of system (3.1.2)
and they have same topological properties of trajectories as system (3.1.2). From a
modeling point of view, the relevance of considering a piecewise constant function is
a first step/approximation to analyze more general inputs considered in experimental
protocols (Hu and Wilson [46]).

The chapter is organized as follows: we discuss two different choices of domains
in (3.3.1) and (3.4.1). In section 3.2, we give some general properties of system
(3.1.1) which are common to systems VF± . In sections 3.3 and 3.4, we show our
main theorems from a point of view of dynamics. Usual terminology adopted in
the field of Piecewise Smooth Dynamical Systems (PWS) are used here (including
Pseudo Equilibrium, Sliding Section, Sawing Section, Boundary Equilibrium). See
for instance the textbook [9].

3.2 Qualitative analysis of system (3.1.1)

In this section, we study dynamics of system (3.1.1) in R2
+ for a given constant F

[56, 18, 28]. In particular, we investigate the existence of some orbits of systems VF±
in R2

+ for given two constants F+ and F−, respectively. This will help us to study
global dynamics of the piecewise system (3.1.2) in R2

+.

Proposition 3.2.1 System (3.1.1) is cooperative in R2
+ and all solutions of sys-

tem (3.1.1) are positive if the initial points are in the interior of the first quadrant
R2

+.

Proof. Let
f1 := J − T ( x

k+x
− y

k′+y
),

f2 := F (L− y) + T ( x
k+x
− y

k′+y
).

Then the Jacobian matrix A of the vector field of system (3.1.1) is

A =

(
− Tk

(x+k)2
Tk′

(y+k′)2

Tk
(x+k)2

−F − Tk′

(y+k′)2

)
.

Since the off-diagonal entries of matrix A are nonnegative. Such a matrix is called a
Metzler matrix. A vector field such that its Jacobian matrix is a Metzler matrix is
said to be cooperative (see [83]). Note that system VF is defined in R2

+ and satisfies
the following condition: ∀(x, y) ∈ bd(R2

+): f1(0, y) ≥ 0 and f2(x, 0) ≥ 0. Hence
system VF is positive.

Lemma 3.2.1 System (3.1.1) has at most an equilibrium point in R2
+ denoted

s0(x0, y0) if and only if T > J [1+ 1
k′

(L+ J
F

)], where x0 = k( J
T

+ y0

k′+y0
)/(1−( J

T
+ y0

k′+y0
))
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and y0 = L + J
F

. And the unique equilibrium s0(x0, y0) of system (3.1.1) is a global
asymptotically stable node in R2

+ if T > J [1 + 1
k′

(L + J
F

)], otherwise, all orbits of
system (3.1.1) are positively unbounded in R2

+.

Proof. The existence of equilibrium points of system (3.1.1) in R2
+ is given by non-

negative solutions of f1 = 0 and f2 = 0. An elementary computation yields that
equations f1 = 0 and f2 = 0 have at most one solution (x0, y0), and both x0 > 0 and
y0 > 0 if and only if T > J [1 + 1

k′
(L+ J

F
)], where

x0 =
k( J

T
+ y0

k′+y0
)

1− ( J
T

+ y0

k′+y0
)
, y0 = L+

J

F
.

Consider the Jacobian matrix of system (3.1.1) at equilibrium point s0(x0, y0),
denoted by

A|s0 =

−
Tk

(x0 + k)2

Tk′

(y0 + k′)2

Tk

(x0 + k)2
−F − Tk′

(y0 + k′)2

 .

It is easy to check that the matrix A|s0 has two real distinct eigenvalues λ1 and λ2

which satisfy
λ1 + λ2 = − Tk

(x0+k)2
− F − Tk′

(y0+k′)2
< 0,

λ1λ2 = FTk
(x0+k)2

> 0,

δ = [F + Tk
(x0+k)2

+ Tk′

(y0+k′)2
]2 − 4F Tk

(x0+k)2
> 0.

Hence, the unique equilibrium point s0(x0, y0) of system (3.1.1) is a locally stable
node.

Note that the divergence of system (3.1.1) is

− Tk

(x+ k)2
− F − Tk′

(y + k′)2
< 0, ∀(x, y) ∈ R2

+.

By Bendixson’s criterion, we know that system (3.1.1) has no limit cycle in R2
+ for

any positive parameters F .

To prove that the unique equilibrium point s0(x0, y0) of system (3.1.1) is globally
stable in R2

+, we only need to prove that all solutions of system (3.1.1) are bounded
in R2

+.

Given a sufficiently large positive number M ,M > x0, we construct a trapezoidal
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area ΩM (see Fig.3.1) surrounded by four line segments:

`1 = {(x, y)|x = 0, 0 ≤ y ≤M + y0},
`2 = {(x, y)|x = M, 0 ≤ y ≤ y0},
`3 = {(x, y)|0 ≤ x ≤M, y = 0},
`4 = {(x, y)|0 ≤ x ≤M, y = −(x−M) + y0}.

Figure 3.1: The convex set ΩM

Clearly, the restriction of the vector field (3.1.1) on the boundary of ΩM is
d(`1)
dt
|(3.1.1) > 0, d(`3)

dt
|(3.1.1) > 0, furthermore,

d(`2)

dt
|(3.1.1) = J − T (

M

k +M
− y

k′ + y
) ≤ J − T (

M

k +M
− y0

k′ + y0
) < 0,

d(`4)

dt
|(3.1.1) = F (L− y) + T (

x

k + x
− y

k′ + y
) +

(
J − T (

x

k + x
− y

k′ + y
)

)
= J + F (L− y) ≤ J + F (L− y0) = 0.

Thus, ΩM is a positively invariant subset of the system (3.1.1) in R2
+, and all solutions

of system (3.1.1) in R2
+ enter the convex set ΩM as t tends to +∞ as system (3.1.1)

has a unique equilibrium point in R2
+.
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On the other hand, if system (3.1.1) has no equilibrium points in R2
+, then all

solutions of system (3.1.1) are unbounded as t tends to +∞ since the direction of
vector field of system (3.1.1) on the positive x-axis (y-axis) is from down (left, resp.)
to up (right, resp.) and system (3.1.1) has no closed orbits in R2

+.

Below, Fig.3.2 is a preliminary sketch of orbits of system (3.1.1) when s0 ∈ R2
+.

Figure 3.2: Orbits of system (3.1.1) when s0 ∈ R2
+

Lemma 3.2.2 When the system (3.1.1) has a unique equilibrium point s0 ∈ R2
+,

there exist two characteristic directions at s0, denoted v1 and v2, where

v1 =
(

1
2a

(F + b− a)− 1
2a

√
(F + b− a)2 + 4ab, 1

)
,

v2 =
(

1
2a

(F + b− a) + 1
2a

√
(F + b− a)2 + 4ab, 1

)
,

(3.2.1)

with a = Tk
(x0+k)2

and b = Tk′

(y0+k′)2
. In addition, all the orbits tend to s0 along charac-

teristic direction v2 except two orbits along characteristic direction v1.

Proof. Define

A|s0 =

−
Tk

(x0 + k)2

Tk′

(y0 + k′)2

Tk

(x0 + k)2
−F − Tk′

(y0 + k′)2

 :=

(
−a b
a −F − b

)
,
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where a = Tk
(x0+k)2

and b = Tk′

(y0+k′)2
. Hence

λ1 = −1

2
(a+ b+ F )− 1

2

√
(a+ b+ F )2 − 4aF ,

λ2 = −1

2
(a+ b+ F ) +

1

2

√
(a+ b+ F )2 − 4aF ,

and
v1 =

(
1
2a

(F + b− a)− 1
2a

√
(F + b− a)2 + 4ab, 1

)
,

v2 =
(

1
2a

(F + b− a) + 1
2a

√
(F + b− a)2 + 4ab, 1

)
.

Clearly, we have:

1
2a

(F + b− a)− 1
2a

√
(F + b− a)2 + 4ab < 0,

1
2a

(F + b− a) + 1
2a

√
(F + b− a)2 + 4ab > 0.

Furthermore, |λ1| > |λ2|, this implies that v2 is the strong characteristic direction.
As s0 is a globally asymptotically stable after Lemma 3.2.1, then we can conclude
that all the orbits tends to s0 along characteristic direction v2 except two orbits along
characteristic direction v1.

In the following we consider two systems VF+ and VF− . From Lemma 3.2.1,
we know that system VF+ (or system VF−) has a unique equilibrium at s+(x+, y+)
(s−(x−, y−), resp.) in R2

+ if T > J [1 + 1
k′

(L + J
F+ )] (T > J [1 + 1

k′
(L + J

F−
)], resp.),

where

x± =
k( J

T
+ y±

k′+y±
)

1− ( J
T

+ y±

k′+y±
)
,

y± = L+
J

F±
.

(3.2.2)

We consider the following problem of the initial value

dx

dt
= J − T (

x

k + x
− y

k′ + y
),

dy

dt
= F+(L− y) + T (

x

k + x
− y

k′ + y
),

x(0) = x−, y(0) = y−.

(3.2.3)

Then there exists a unique orbit ϕ+(t; s−) of system (3.2.3) passing through the
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point s−. If T > J [1 + 1
k′

(L+ J
F+ )], then

lim
t→+∞

ϕ+(t; s−) = s+

by Lemma 3.2.1. Similarly, we can consider the problem of system VF− with the initial
values x(0) = x+, y(0) = y+, which has a unique orbit ϕ−(t; s+) passing through the
point s+. If T > J [1 + 1

k′
(L+ J

F−
)], then

lim
t→+∞

ϕ−(t; s+) = s−.

The following proposition gives the tangential direction of the orbit ϕ+(t; s−)
(ϕ−(t; s+)) at the point s− (s+, resp.), which is important to qualitative analysis of
system (3.1.2).

Proposition 3.2.2 (i) The tangential direction of orbit ϕ+(t; s−) at the point s−

is d1 = (0, J(F−−F+)
F−

), which is vertical.

(ii) The tangential direction of orbit ϕ−(t; s+) at the point s+ is d2 = (0, J(F+−F−)
F−

),
which is vertical.

Proof. We substitute s− into system VF+ and obtain

dx

dt
= J − T (

x−

k + x−
− y−

k′ + y−
),

dy

dt
= F+(L− y−) + T (

x−

k + x−
− y−

k′ + y−
).

Notice that T ( x−

k+x−
− y−

k′+y−
) = J and y− = L + J

F−
by the expression of s−. An

elementary computation yields that

dx

dt
= 0,

dy

dt
=
J(F− − F+)

F−
.

This leads to the conclusion (i). Using the similar arguments, we can obtain the
conclusion (ii).

From Lemma 3.2.1 and the expressions (3.2.2), we can obtain the following relative
position of points s+ and s− in R2

+.

In the following, we only discuss the cases where the orbits are bounded in R2.
Therefore, the conditions T > J [1+ 1

k′
(L+ J

F±
)] always hold in the next two sections.
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3.3 Global dynamics of system (3.1.2) when F de-

pends on the lactate concentration of Capil-

lary domain

In this section we consider that the piecewise input function F (x, y) depends only
on y, the concentration inside the Capillary domain , and F follows:

F (x, y) =

{
F+, y < h,

F−, y ≥ h.
(3.3.1)

Here h is a positive threshold and the Capillary blood flow F changes between
F+ and F−. So Ω+ = R+ × [0, h) and Ω− = R+ × [h,+∞). We call Ω+ ∩ Ω− =
{(x, y)|x ≥ 0, y = h} the separator line.

Theorem 3.3.1 Suppose F+ > F− (F− > F+, respectively) and F (x, y) follows
(3.3.1), then the piecewise system (3.1.2) displays one equilibrium point in R2

+ if
h 6 L+ J

F+ or h > L+ J
F−

.

(i) When h 6 L+ J
F+ (h 6 L+ J

F−
, respectively), s− (s+, respectively) is the unique

globally stable equilibrium point of the piecewise system (3.1.2).

(ii) When h > L+ J
F−

(h > L+ J
F+ , respectively), s+ (s−, respectively) is the unique

globally stable equilibrium point of the piecewise system (3.1.2).

Proof. For h 6 L+ J
F+ , we know that the orbits of the piecewise system in Ω+ tend

to the equilibrium points s+ but s+ is in Ω−. On the other hand, the orbits in Ω−

tend to the point s−. Therefore, all orbits in R2
+ tend to s−. Combining Proposition

3.2.2 and Lemma 3.3.2, we draw a rough phase portrait where the piecewise system
has one equilibrium point for F+ > F− and T > J [1 + 1

k′
(L+ J

F±
)]. Fig.3.3(a) is the

case when h 6 L+ J
F+ and Fig.3.3(b) is the case when h > L+ J

F−
.

For the case when h > L+ J
F+ , using the the same arguments for statement (ii),

we finish the proof.
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of Capillary domain

(a) The case when h 6 L + J
F+ and F+ > F− (b) The case when h > L + J

F− and F+ > F−

Figure 3.3: Piecewise system (3.1.2) has one globally asymptotically stable equilib-
rium point in R2

+

Lemma 3.3.1 For system VF±, there exists a unique tangent point c± with the

separator line y = h, denoted by c± = ( kβ±

1−β± , h), where β± = h
k′+h
− F±(L−h)

T
. In

addition, if h ∈ (h±1 , h
±
2 ), where h±1 = −1

2
(k′ − L − T

F±
) + 1

2

√
(k′ − L− T

F±
)2 + 4Lk′

and h±2 = −1
2
(k′ − L) + 1

2

√
(k′ − L)2 + 4(Lk′ + Tk′

F±
), then c± ∈ R2

+.

Proof. Compute

F+(L− h) + T (
x

k + x
− h

k′ + h
) = 0, (3.3.2)

we obtain

x =
k(F

+(L−h)
T

+ h
k′+h

)

1− (F
+(L−h)
T

+ h
k′+h

)
:=

kβ+

1− β+
,

which is the abscissa of tangent point with separator line y = h for subsystem with
F = F+. The abscissa of the tangent point c+ is positive if and only if 0 < β+ < 1.
That requires

0 <
h

k′ + h
+
F+(L− h)

T
< 1,

which equivalent to: {
h2 + (k′ − L− T

F+ )h− Lk′ < 0,

h2 + (k′ − L)h− Lk′ − Tk′

F+ > 0.

A straightforward calculation further shows that

η+
1 < h < η+

2 ,
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where η+
1 = min{h+

1 , h
+
2 } and η+

2 = max{h+
1 , h

+
2 } with

h+
1 =

1

2
(k′ − L− T

F+
) +

1

2

√
(k′ − L− T

F+
)2 + 4Lk′,

and

h+
2 = −1

2
(k′ − L) +

1

2

√
(k′ − L)2 + 4(Lk′ +

Tk′

F+
).

Hence, for h ∈ (η+
1 , η

+
2 ), then c+ ∈ R2

+. Similar calculus for system VF− , we can find
η−1 and η−2 .

Theorem 3.3.2 Suppose F+ > F− and F (x, y) follows (3.3.1), Assume that
L + J

F+ < h 6 L + J
F−

, then the piecewise system (3.1.2) displays two equilibrium
points s+ and s− in R2

+. In addition, there exist two non intersecting invariant
domains A+ and A− which are separated by a boundary curve in R2

+; all the orbits
of system (3.1.2) in A+ (A− respectively) tend to s+ (s− respectively). In other
words, A+ (A− respectively) is the basin of attraction of the attracting node s+ (s−

respectively).

Proof. By lemma 3.2.1 and 3.2.2, under the conditions F+ > F− and L+ J
F+ < h 6

L + J
F−

, there exist two equilibrium points s+ and s− in R2
+ such that s+ � s− .

By lemma 3.3.1, there is a tangent point c− ∈ R2
+ if y+ = L + J

F+ < h 6 h+
2 see

Fig.3.4(a) and the tangent point c+ /∈ R2
+ if h+

2 < h 6 y− = L + J
F−

see Fig.3.4(b).
In Fig.3.4, A− is the region above the boundary curve in R2

+ and A+ is the region
under the boundary curve in R2

+. It is clear that s+ ∈ A+ and s− ∈ A−.

Furthermore, s+ and s− are both stable node in each domain by lemma 3.2.1.
Hence, A+ and A− are the two invariant regions. Finally, if y+ < h 6 h+

2 , c− and c+

are on the boundary line and c− is on the left side of c+. If h+
2 < h 6 y−, then c− is

on the boundary line and c+ does not exist. So there are two types of boundary curve
as showed in Fig.3.4. In case y+ < h 6 h+

2 , the boundary is a union of a segment
of the tangent solution to c−, the segment c− < x < c+ on the line y = h, and a
segment of the tangent solution to c+. In case h+

2 < h 6 y−, the boundary is a union
of a segment of the tangent solution to c− and of the semi-line c− < x < +∞ on the
line y = h.
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of Capillary domain

(a) The case y+ < h 6 h+
2 (b) The case h+

2 < h 6 y−

Figure 3.4: Basins of attraction separated by the boundary curve

Lemma 3.3.2 (i) If F+ > F− > 0 and T > J [1+ 1
k′

(L+ J
F−

)], then 0� s+ �
s−, i.e. 0 < x+ < x− and 0 < y+ < y−.

(ii) If F− > F+ > 0 and T > J [1 + 1
k′

(L+ J
F+ )], then 0� s− � s+, i.e. 0 < x− <

x+ and 0 < y− < y+.

In xy-plane we draw the orbits ϕ+(t; s−) and ϕ−(t; s+) depending on Lemma
3.2.2. There would be a loop which links the points s+ and s− by ϕ±, that we call
pseudo-loop since it is not an orbit of system VF for any constant F . However, this
pseudo-loop play an important role on qualitative analysis of system (3.1.2). There
exist two types of pseudo-loop according to the relative values of F− and F+. Fig.3.5
provides two examples of pseudo-loop for F− > F+ and F+ > F−.

(a) Pseudo loop when F− > F+ (b) Pseudo loop when F+ > F−

Figure 3.5: Two examples of pseudo-loop
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Theorem 3.3.3 Suppose F− > F+ and F (x, y) follows (3.3.1), and assume fur-
thermore that L + J

F−
< h ≤ L + J

F+ , then the piecewise system (3.1.2) displays a
sliding section on line y = h, which is a attracting set. In this case, s+ and s− are
pseudo equilibrium points and the system has no periodic orbits in R2

+.

Proof. First, noticing from Lemma 3.3.2 that s+, s− are located at the different side
of the separator line y = h for L+ J

F−
< h ≤ L+ J

F+ , we claim that the pseudo-loop
transversally intersect y = h. Otherwise, ϕ+(t; s−) or ϕ−(t; s+) has to be double
tangent to y = h, which is a contradiction with Lemma 3.3.1. Hence, the tangent
points c± of the vector fields VF± on y = h are outside of the pseudo-loop. Moreover,
c+ is at the left side of ϕ+(t; s−), while c− is at the right side of ϕ−(t; s+). In fact,
observing the stable node s+ = (x+, y+), we can deduce from (3.2.1) that ẏ|s+ = 0
and there is a unique point c+ near s+ on y = h = y+− ε, where ε is a small positive
number, such that ẏ|c+ = 0. Obviously, c+ is at the left side of ϕ+(t; s−). Then we
get a tangent-point curve of c+ for L + J

F−
< h ≤ L + J

F+ , which does not intersect
ϕ+(t; s−). Similarly, it can be checked for c−.

Next, by a simple qualitative analysis, we obtain that there is a sliding section
[c+, c−] on y = h, which is an attractor set of the piecewise system (3.1.2).

Finally, if there is a piecewise periodic orbit of (3.1.2), then it has to go around
the section [c+, c−] and the pseudo-loop, but it is impossible because ϕ−(t; s+) tends
to a infinity singular point as t→ −∞. See following Fig.3.6:

3.4 Global dynamics of system (3.1.2) when F de-

pends on the lactate concentration of the in-

terstitial domain

We consider in this section the input function F (x, y) depends only on the con-
centration of the interstitial domain x. Here h is a real positive value and F follows

F (x, y) =

{
F+, x < h,

F−, x ≥ h.
(3.4.1)

Here Ω+ = [0, h) × R+ and Ω− = [h,+∞) × R+. So {(x, y)|x = h, y ≥ 0} is the
separator line in this section.

Theorem 3.4.1 Suppose F+ > F− (F− > F+, respectively) and F (x, y) follows
(3.4.1), then the piecewise system (3.1.2) has one equilibrium point in R2

+ if h 6 x+

or h > x−. In addition,
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of the interstitial domain

Figure 3.6: Piecewise system (3.1.2) has non equilibrium point but an attracting set
in R2

+ with F− > F+

(i) When h 6 x+ (h 6 x−, respectively), s− (s+, respectively) is the unique globally
stable equilibrium point of the piecewise system (3.1.2).

(ii) When h > x− (h > x+, respectively), s+ (s−, respectively) is the unique globally
stable equilibrium point of the piecewise system (3.1.2).

In both cases, the equilibrium point is an attractive node.

Proof. The proof follows the lines of the proof of Theorem 3.3.1.

Lemma 3.4.1 System VF± displays a same unique tangent point c = (h, k
′α

1−α)

with the separator line x = h for h > 0, where α = h
k+h
− J

T
. In addition, if

h ∈ (max{η, 0},+∞) with η = Jk
J−T , then c ∈ R2

+.

Proof. The equation

J − T (
h

k + h
− y

k′ + y
) = 0,

yields

y =
k′( h

k+h
− J

T
)

1− ( h
k+h
− J

T
)
,
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which is the ordinate of tangent point c with separator line x = h of both systems
VF± . The condition 0 < α < 1, which is equivalent to:

0 <
h

k + h
− J

T
< 1,

and is necessary and sufficient to the ordinate of the tangent point is positive. A
straightforward calculation shows that

η < h < +∞,

where

η =
Jk

J − T
.

And we have also h > 0. So we can conclude that for h ∈ (max{h3, 0},+∞), then
c ∈ R2

+.

Theorem 3.4.2 Suppose F+ > F− and F (x, y) follows (3.4.1), then the piece-
wise system (3.1.2) displays two equilibrium points s+ and s− in R2

+ if x+ < h 6 x−.
In addition, there exist two non intersecting invariant domains A+ and A− which
are separated by a boundary curve in R2

+; all the orbits of system (3.1.2) in A+ (A−,
respectively) tend to s+ ( s−, respectively ). In other words, the invariant domains
A+ and A− are the basins of attraction of, respectively, the attracting nodes s+ and
s−.

Proof. By lemma 3.3.2, since F+ > F−, we have s+ � s−. Under the conditions
x+ < h 6 x− and T > J [1 + 1

k′
(L + J

F±
)] , the equilibrium points s+ and s− are

located at the different side of the separator line x = h. By Lemma 3.4.1, there
exists a unique tangent point c for both the right and left subsystem, which is a point
located at the boundary curve (the red curve in Fig.3.7). In Fig.3.7, A− is the region
above the boundary curve in R2

+ and A+ is the region under the boundary curve
in R2

+. Hence, A+ and A− are two basins of attraction separated by the boundary
curve.
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Figure 3.7: F (x, y) is a piecewise function follows (3.4.1) with F+ > F−

Theorem 3.4.3 Suppose F− > F+ and F (x, y) is the piecewise function given
by (3.4.1), then

(i) the piecewise system (3.1.2) has no equilibrium in R2
+ for x− < h < x+, and a

unique boundary equilibrium c on x = h.

(ii) the segments (x = h)\c are sawing sections. Inside the pseudo-loop, there exists
a ω-limit set given either by the boundary equilibrium point c or by an attractive
limit cycle.

Proof. First, under the conditions T > J [1+ 1
k′

(L+ J
F±

)], F− > F+ and x− < h ≤ x+,
we know that there are two pseudo-equilibria s+ and s− which are located at the
different side of the separator line x = h and s− � s+. We claim that the pseudo-
loop transversally intersect x = h. Otherwise, ϕ+(t; s−) or ϕ−(t; s+) would be double
tangent to x = h, which is a contradiction with Lemma 3.4.1. Furthermore, the
unique tangent point c of the vector fields VF± on x = h is inside the pseudo-loop. In
fact, observing the stable node s+ = (x+, y+), we can deduce from the characteristic
directions (3.2.1) that ẋ|s+ = 0 and there is a unique point (x, c(x)) near s+ on
x = x+ − ε, where ε is a small positive number, such that ẋ|(x,c(x)) = 0. Obviously,
c(x) is below the curve ϕ+(t; s−). Similarly, there is a unique point (x, c(x)) near s−

on x = x−+ ε, 0 < ε� 1, such that ẋ|(x,c(x)) = 0. Clearly, (x, c(x)) is above the curve
ϕ−(t; s+), see Fig.3.8. Then we get a tangent-point curve (x, c(x)) for x− < x ≤ x+,
which can not intersect the pseudo-loop. Hence c = (h, c(h)) is a unique boundary
equilibrium.

Second, noticing that c is the unique tangent point of the vector fields VF± on
x = h, it follows that VF+|x=h and VF− |x=h have the same component of x-axis. So
{x = h} \ c are sawing sections. Noticing the nodes s+ and s−, we can construct
a Poincaré map on x = h inside the pseudo-loop. Specially, the orbit starting from
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intersecting point p0 of x = h and ϕ− has to go through point q0 on x = h following
the vector field VF− , then it arrives at p1 on x = h following the vector field VF+ ,
as shown in Fig.3.8. By a simple qualitative analysis, we obtain a series of points
pn, n ∈ N, which is increasing on x = h and upper bounded. Hence there is a limit
point p∗ of pn. If p∗ = c, then c is a stable boundary focus. If p∗ 6= c, then there is a
stable limit cycle around c.

Figure 3.8: The piecewise system (3.1.2) displays a Poincaré mapping associated to
the sawing section {x = h} \ h surrounding the unique boundary equilibrium point c
inside the pseudo-loop.

Finally, it follows from Lemma 3.2.1 that the pseudo-nodes s+ and s− are globally
stable, which implies that any orbit of (3.1.2) shall go through the separating line
x = h, then tend to c or a limit cycle as t→∞.
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of the interstitial domain

Figure 3.9: Two orbits connecting the pseudo equilibrium points s+ and s− with the
boundary equilibrium

Theorem 3.4.4 With the condition of theorem (3.4.3), the piecewise system (3.1.2)
has no periodic solution in R2

+

Proof. We suppose there is a periodic solution in R2
+ referred as Γ . We denote the

part on the right side of the separator line {(x, y)|x = h, y ≥ 0} as Γ+ and the part on
the left side of the separator line as Γ−. We denote also Γh the part of the separator
line which is inside the Γ, which represents go from bottom to top. −Γh means go
from top to bottom. The domain which is surrounded by Γ+ and Γh is called D+ and
the domain which is surrounded by Γ− and Γh is called D−, see Fig.3.10.

In piecewise system, we denote f+ = (f+
1 , f

+
2 ) (resp. f− = (f−1 , f

−
2 )) as the vector

field on the right-hand side (resp. left-hand side) of the separator line. By Green’s
formula, we have ∫∫

D+

(
∂f+

1

∂x
+
∂f+

2

∂y
)dxdy

=

∫
Γ+∪Γh

f+
1 dy − f+

2 dx

=

∫
Γ+

f+
1 dy − f+

2 dx+

∫
Γh

f+
1 dy − f+

2 dx

=

∫
Γ+

f+
1 f

+
2 dt− f+

2 f
+
1 dt+

∫
Γh

f+
1 dy − f+

2 dx

=

∫
Γh

f+
1 dy − f+

2 dx,

(3.4.2)
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Figure 3.10: Suppose there exists a periodic solution Γ which contain Γ+ and Γ−

and ∫∫
D−

(
∂f−1
∂x

+
∂f−2
∂y

)dxdy

=

∫
Γ+∪−Γh

f−1 dy − f−2 dx

=

∫
Γ+

f−1 dy − f−2 dx+

∫
−Γh

f−1 dy − f−2 dx

=

∫
Γ+

f−1 f
−
2 dt− f−2 f−1 dt+

∫
−Γh

f−1 dy − f−2 dx

=

∫
−Γh

f−1 dy − f−2 dx.

(3.4.3)

As dx = 0 on Γh and f+
1 = f−1 , so∫

Γh

f+
1 dy − f+

2 dx+

∫
−Γh

f−1 dy − f−2 dx =

∫
Γh

f+
1 dy −

∫
Γh

f−1 dy = 0, (3.4.4)

which is contradict with∫∫
D+

(
∂f+

1

∂x
+
∂f+

2

∂y
)dxdy +

∫∫
D−

(
∂f−1
∂x

+
∂f−2
∂y

)dxdy < 0. (3.4.5)

So there is no periodic solution in R2
+.
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3.4.1 An example of numerical simulation

Here we give an example of numerical simulations in the case F− > F+ and
F (x, y) is the piecewise function which follows (3.4.1) (see Fig.3.11). We take F+ = 1,
F− = 10, T = 10, J = F = L = k = k′ = ε = 1 and h = 2; hence the separator
line is x = 2 and also the condition T > J [1 + 1

k′
(L + J

F±
)] is satisfied. In Fig.3.11

(a), we draw one orbit which begins with the initial point s− = (1.658, 1.1) and in
Fig.3.11 (b), we draw two orbits which begin with the two different intersection points
between the pseudo-loop and the separator line x = 2.

1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05
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1.1

1.2
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1.4

1.5

1.6

y

(a) One orbit with initial point s−

1.97 1.975 1.98 1.985 1.99 1.995 2 2.005 2.01

x

1

1.1

1.2

1.3

1.4

1.5

1.6

y

(b) Two orbits with two different initial points

Figure 3.11: Numerical simulation of orbits for F− > F+ and F (x, y) follows (3.4.1)

3.5 Conclusions

In this article, we have introduced an autoregulation in the Neuron-Astrocyte-
Capillary system preceedingly studied as a mathematical reduction of a compartimen-
talized Brain Lactate kinetics Model (cf. [4, 5, 18, 54, 56, 55]). This autoregulation
looks natural and can be thought as a feedback process induced by the Astrocytes
to the Capillary when the extra-cellular (or the Capillary) Lactate concentration is
beyond the viability limits (cf [56, 54]).

The mathematical tool which looks the most adapted for this context is the qual-
itative analysis of Piecewise Smooth Dynamical Systems (PWS).

Our study uncovered several new phenomenon which were not present in the ODE
model.

Within the conditions of Theorem 3.3.2 and 3.4.2 the PWS displays a bistability
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with two attracting nodes. The two basins of attraction are separated by a boundary
that we can explicitely determine.

With the conditions of Theorem 3.3.3, there exists an attracting set which is a
sliding section.

With the conditions of Theorem 3.4.3, the system displays a pseudo-loop. Inside
this pseudo-loop, there is a Poincaré map associated to a sawing section. The qual-
itative analysis allows to show the existence of a boundary equilibrium. There are
two possibilities for the ω-limit set of the orbits inside the pseudo-loop: either a limit
cycle or the boundary equilibrium which is then an attractive focus.
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able. For monotone differential models with concave nonlinearities, we address the
following question: the system’s period being fixed, under what conditions does there
exist a critical duration for the unfavorable season? By “critical duration” we mean
that above some threshold, the population cannot sustain and extincts, while below
this threshold, the system converges to a unique periodic and positive solution. We
term this a “sharp seasonal threshold property” (SSTP, for short).

We study differential dynamical systems arising from nonlinear periodic positive
differential equations of the form

dx

dt
= F (t, x), (4.1.1)

where F is monotone and concave (in x). These systems exhibit well-known contrac-
tion properties when F is continuous (see [46], [80], [48]). We extend in Theorem
4.3.1 these properties to non-linearities that are only piecewise-continuous in time.
This extension is motivated by the study of typical seasonal systems in population
dynamics.

We denote by θ ∈ [0, 1] the proportion of the year spent in unfavorable season.
Then, we convene that time t belongs to an unfavorable (resp. a favorable) season if
nT ≤ t < (n + θ)T (resp. if (n + θ)T ≤ t < (n + 1)T ) for some n ∈ Z+. In other
words, we study the solutions to:

dX

dt
= G(πθ(t), X), πθ(t) =

{
πU if t

T
− b t

T
c ∈ [0, θ),

πF if t
T
− b t

T
c ∈ [θ, 1),

(4.1.2)

for some G : P × RN → RN , with πU , πF ∈ P where P is the parameter space. We
are looking for conditions ensuring that a sharp seasonal threshold property holds,
that is:

∃θ∗ ∈ [0, 1] such that


if θ < θ∗,∃ ! q : R+ → RN , T -periodic, q � 0 and

∀X0 ∈ RN
+\{0}, X converges to q,

if θ > θ∗,∀X0 ∈ RN
+ , X converges to 0.

(SSTP)
Ecologically, the respective duration of dry and wet seasons is crucial for population
sustainability in various species. The property (SSTP) means that if the dry season is
longer than θ∗T then the population collapses and if it is shorter then the population
densities will tend to be periodic.

Assume that F (t, 0) ≡ 0. Thanks to the contraction properties of concave non-
linearities, the whole problem reduces to the study of the Floquet eigenvalue with
maximum modulus of the linearization of (4.1.1) at X = 0:

dz

dt
= DxF (t, 0)z. (4.1.3)
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In fact, this eigenvalue is equal to the spectral radius of the Poincaré application
for (4.1.3), which we compute here for piecewise-autonomous systems.

Our proof uses the Perron-Frobenius theorem and relies on the Perron eigenvalue
and (left and right) eigenvectors. The importance of this eigenvalue for quantifying
the effects of seasonality has been acknowledged continuously in mathematical biology
in at least three application fields: circadian rhythms (in particular in connection with
cell division and tumor growth), harvesting and epidemiology.

It was noted in [16] that Floquet eigenvalue with maximum modulus of (4.1.3)
is always larger that the Perron eigenvalue of some averaged (over a period) matrix
F defined from the entries of DxF (t, 0). There has been a continued interest in this
eigenvalue for linear models of cell division since and we refer to [30] in particular
for a detailed study of the monotonicity of the Perron eigenvalue with respect to
parameters of a structured model for cell division. In a stochastic framework for
growth and fragmentation, [14] establishes a similar monotonicity property. In this
context, the Perron eigenvalue is seen as the cell growth rate, and this is why its
dependence in the model parameters is important. Here, we connect the eigenvalue
monotonicity with a non-extinction condition to derive the (SSTP). We emphasize
that our Theorem 4.3.2 gives some sufficient conditions for the monotonicity of the
Perron eigenvalue, in the case when there are only two different seasons.

In dimension 1, for the logistic equation with harvesting, Xiao has shown in [88]
a sharp threshold property, where the two different “seasons” correspond to one
harvesting period (“unfavorable season”) and one rest period (“favorable season”).
Contrary to the case of cell division, the model treated there is non-linear, though
1-dimensional. Our results extend a part of those of [88] to n-dimensional concave
monotone systems. Note that the cited article also studies the maximal sustainable
yield, which can be seen as an objective function of the periodic solution q. On
this topic, [74, Section 5] studies a structured problem of adaptive dynamics with
concave nonlinearity and periodic forcing to show a similar effect as in [88] (there,
for population size): in both cases, time fluctuations can improve an objective value.

For applications in epidemiology, where seasonality often has dramatic effects, we
refer to [7] and [6] for the computation of case reproduction numbers with seasonal
forcing.

The organization of the paper is as follows. The motivating model is detailed
in Section 4.2, where we also define some notations. In Section 4.3 we state our
results: first Theorem 4.3.1 an extension to piecewise-continuous nonlinearities of the
well-known results on monotone concave nonlinearities, then Theorem 4.3.2 fairly
general sufficient conditions for systems in any space dimension N ∈ Z>0 to satisfy
(SSTP), and finally Theorem 4.3.3 an application to the two-dimensional system
(4.1.2), for which we are able to show the threshold property (SSTP) for a wide
range of parameters. The proofs are detailed in Section 4.4, while extensions and
possible research directions are gathered in Section 4.5.
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4.2 Context and motivation

Our reference model is a simplistic description of the population dynamics of some
insects, with a juvenile stage exposed to quadratic competition and an adult stage.
Let J(t), A(t) represent the populations of juveniles and adults at time t, respectively.
A very simple dynamic is defined by

dJ

dt
= bA− J(h+ dJ + cJJ),

dA

dt
= hJ − dAA,

(4.2.1)

where dY (Y ∈ {J,A}) stands for the (linear) death rate, b is the birth rate, h
is the hatching rate and the parameter cJ tunes the only non-linearity: quadratic
competition (=density-dependent death rate) among juveniles. This term effectively
limits the total population size, as we will prove below. We use it to represent
resource limitation both for breeding sites availability and for nutrient availability
during growth. In principle, the parameters may depend on time:

∀t ∈ R, π(t) := (b, h, dJ , cJ , dA) ∈ R5
+. (4.2.2)

For convenience, we rewrite the right-hand side of (4.2.1) as G(π,X) with X =
(J,A) ∈ R2, and G : R5

+ × R2 → R2.

In the tempered areas where mosquito populations are established, dramatic sea-
sonal variations in population abundance are usually observed. Namely, there is
explosive growth in summer after rain events, whereas mosquitoes are very scarce in
winter. This phenomenon is possible thanks to dormant (or ”quiescent” or ”refuge”)
phases in the mosquito’s life-cycle. These seasonal variations imply that the nat-
ural environment (temperature, rainfall, humidity etc.) is very important for the
mosquito.

We propose to study population dynamics in simple models such as (4.2.1) under
periodic seasonal forcing. As a rough approximation, we set up (4.2.1) with periodic
piecewise-constant coefficients of period T = 1 year, each one possibly taking two
different values over one period. Thus, the year is divided into unfavorable and
favorable seasons, defined by parameter values πU , πF ∈ R5

+ such that(−dFJ + dUJ bF − dFA − (bU − dUA)

hF − hU −dFA + dUA

)
> 0. (4.2.3)

The four scalar inequalities of condition (4.2.3) deserve a biological justification. It
implies that during the favorable season, the hatching rate is larger than during the
unfavorable season, while death rates (for juveniles, and adults) are smaller. These
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assumptions rely on the facts that breeding sites availability and quality is much
higher in good season (whence higher hatching rate and birth rate and lower juvenile
competition), while the temperature increase can be expected to extend the life-span
of both adults and juveniles. The first component in (4.2.3) implies that the growth
coefficients b−dA are ordered: bF−dFA > bU−dUA. This is true in particular if bF > bU ,
but holds in more generality.

We emphasize that the systems under study are excessively simple because, in
mathematical terms, they are cooperative with concave nonlinearity, and as such
they have strong asymptotic convergence properties.

Notations. For X, Y two real finite-dimensional vector spaces embedded in Rd

(d ≥ 1), we denote by L(X, Y ) the space of linear applications from X to Y , with
the convention L(X) = L(X,X). We denote the adjoint of A ∈ L(X, Y ) by A∗ ∈
L(Y,X), defined by

∀(v, w) ∈ X × Y, 〈Av,w〉 = 〈v, A∗w〉,

where 〈·, ·〉 denoted the euclidean scalar product in Rd. For x ∈ R, the notation bxc
stands for the largest integer n ∈ Z such that n ≤ x.

Let F : Rt×RN
x → RN be piecewise continuous in t and continuously differentiable

in x. The system (4.1.1) is cooperative if its Jacobian matrix is Metzler:

∀(t, x) ∈ R+ × RN
+ , i 6= j =⇒ ∂Fi

∂xj
(t, x) ≥ 0, (M)

It is positive (i.e., RN
+ is an invariant set) if

∀t ∈ R+, ∀1 ≤ i ≤ N, ∀x ≥ 0, xi = 0 =⇒ Fi(t, x) ≥ 0. (P)

Under condition (M), (4.1.1) is positive if ∀t ∈ R+, F (t, 0) ≥ 0. We say that (4.1.1)
defines a concave dynamics on RN

+ if

∀0� x� y, DxF (t, x) ≥ DxF (t, y), (C)

and that (4.1.3) is irreducible if

∀t ∈ R+, DxF (t, 0) is irreducible in MN(R). (I)



86 4.3. Results

4.3 Results

4.3.1 General results

In order to study the asymptotic behavior of (4.1.2), we generalize a result by
Smith [80] (refined by Jiang in [48]) about continuous concave and cooperative non-
linearities to piecewise-continuous (in time) nonlinearities.

Theorem 4.3.1 Let F : Rt × RN
x → RN be T -periodic and piecewise-continuous

in t and such that for all t ∈ R+, F (t, ·) ∈ C1(RN ,RN). Assume that F satisfies
assumptions (P), (M), (C) and (I), so that the associated differential system (4.1.1)
is positive, monotone and concave with irreducible linearization at 0. Let λ ∈ R
denote the Floquet multiplier with maximal modulus of (4.1.3).

If λ ≤ 1 then every non-negative solution of (4.1.1) converges to 0. Otherwise,

(i) either every non-negative solution of (4.1.1) satisfies lim
t→∞

x(t) =∞,

(ii) or (4.1.1) possesses a unique (nonzero) T -periodic solution q(t).

In case (ii), q � 0 and lim
t→∞

(x(t)−q(t)) = 0 for every non-negative solution of (4.1.1).

The proof of Theorem 4.3.1 follows closely the lines of [80] and [48].

An illuminating example when Theorem 4.3.1 applies is for T -periodic piecewise
autonomous differential systems, where for all x ∈ RN , F (·, x) is a piecewise-constant
function. Namely, we assume that there exists K ∈ Z>0 and functions (F k)1≤k≤K :
RN

+ → RN
+ such that:

F (t, x) = F k(x) if
t

T
−
⌊ t
T

⌋
∈ [θk−1, θk), (4.3.1)

where (θk)0≤k≤K ∈ [0, 1]K+1 is a non-decreasing family such that θ0 = 0 and θK = 1.
To verify the hypotheses of Theorem 4.3.1, we need to assume that for all 1 ≤ k ≤ K,
F k is continuously differentiable, monotone, concave and satisfies F k(0) = 0; and in
addition that DF k(0) is irreducible for all 1 ≤ k ≤ K.

The main advantage of piecewise-constant non-linearities is that for such dynamics
(and almost only for these dynamics), the Floquet multiplier with maximal modulus
λ can be computed explicitly as the following spectral radius:

λ = ρ
(
e(θK−θK−1)T ·DFK(0) · · · e(θ1−θ0)T ·DF 1(0)

)
. (4.3.2)

In the case K = 2, with θ := θ1, the Perron-Frobenius theorem applies to

M(θ) := e(1−θ)T ·DF 2(0)eθT ·DF
1(0),
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which is positive since DF k(0) are (irreducible) Metzler matrix by (M) (and (I)).
Therefore there exists unique vectors V (θ), V∗(θ)� 0 with ‖V (θ)‖ = 1 and 〈V (θ), V∗(θ)〉 =
1, and a unique positive number ρ(θ) such that

M(θ)V (θ) = ρ(θ)V (θ), M(θ)∗V∗(θ) = ρ(θ)V∗(θ). (4.3.3)

In this setting, assume without loss of generality that µ(DF 2(0)) ≥ µ(DF 1(0)), and
denote S := DF 1(0)−DF 2(0). We consider two specific cases:

(A) DF 1(0) and DF 2(0) have the same principal right or left eigenvector;

(B) for all θ ∈ [0, 1], one of the following holds:

(B-1) ∃P ∈ GLN(R), PS < 0 and (P−1)∗V∗(θ) > 0;

(B-2) ∃P ∈ GLN(R), SP < 0 and P−1V (θ) > 0;

(B-3) ∃P,Q ∈MN(R), S < P ∗Q and PV∗(θ) = −QV (θ).

Theorem 4.3.2 Let F of the form (4.3.1) with K = 2 satisfy the assumptions of
Theorem 4.3.1. Assume that the forward orbits of (4.1.1) are bounded. Then under
(A) or (B), (SSTP) holds.

Remark 4.3.1 In addition, condition (B − 1) (resp. (B − 2)) is equivalent to

S∗V∗(θ) < 0 (resp. SV (θ) < 0),

and if condition (A) holds then V (θ) ≡ V or V∗(θ) ≡ V∗, where V (resp. V∗) is the
right (resp. left) principal eigenvector of DF i(0), i ∈ {1, 2}.

Proof. We apply Theorem 4.3.1 and check that the value of λ (determining if case
(i) or (ii) occurs) is a decreasing function of θ under assumptions (A) or (B). The
forward-boundedness of orbits rules out the case x→ +∞, thus leading to the result.
More details in Section 4.4.2.

Remark 4.3.2 In the case DF 2(0) > DF 1(0), we note that conditions (B − 1)
and (B−2) are obviously satisfied with P = I (identity matrix), and condition (B−3)
is obviously satisfied with P = Q = 0.

Remark 4.3.3 As will be seen below, in practical situations it is sometimes easier
to check condition (B − 1) rather than computing S∗V∗(θ).
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4.3.2 Application to a two-dimensional model of insect pop-
ulation dynamics

We can now specify Theorem 4.3.2 to the two-dimensional (N = 2) case of (4.2.1).
First we describe the general properties of this system

Proposition 4.3.1 For system (4.2.1) written as Ẋ = G(π(t), X) =: F (t,X),
where π is defined by (4.2.2), assume that π(t) � 0, there exists c, C ∈ R∗+ such
that πi(t) ≥ c for i ∈ {4, 5} and π(t) ≤ C1. Then, it is positive, forward-bounded,
cooperative and concave.

Then, we give the dynamics of the non-seasonal (=autonomous) system (4.2.1) with
π(t) ≡ π = (b, h, dJ , cJ , dA). We define the basic offspring number:

R0 = R(π) :=
bh

dA(h+ dJ)
. (4.3.4)

Proposition 4.3.2 If R0 ≤ 1, then (4.2.1) has no positive steady state and the
trivial equilibrium is a global attractor. If R0 > 1 then (4.2.1) has exactly one positive

steady state S∗1 = (R0 − 1)
(
h+dJ
cJ

, h(h+dJ )
cJdA

)
, which is a global attractor in R2

+\{0}.

The proofs of Proposition 4.3.2 and Proposition 4.3.1 are to be found in Section 4.4.3.

We finally state the sharp seasonal threshold property for (4.1.2):

Theorem 4.3.3 For (4.1.2) under assumption (4.2.3), if R0(πU) < 1 < R0(πF )
and bU + dUJ > dUA (where πU = (bU , hU , dUJ , c

U
J , d

U
A)) then (SSTP) holds with θ∗ ∈

(0, 1).

Proof. We check assumption (B − 1) with

P =

(
1 1
0 1

)
, (P−1)∗ =

(
1 0
−1 1

)
.

More details in Section 4.4.4.

Remark 4.3.4 If instead of (4.2.3) we assume the stronger condition(
−(hF + dFJ ) + hU + dUJ bF − bU

hF − hU −dFA + dUA

)
> 0, (4.3.5)

then assumption (B − 1) (or (B − 2)) of Theorem 4.3.2 applies with P = I and no
further computations are needed.



Chapter 4: Sharp seasonal threshold property for cooperative population dynamics
with concave nonlinearities 89

We emphasize that (4.2.3) is more biologically relevant than (4.3.5). The latter
requires that the increase of the hatching rate between favorable and unfavorable sea-
son does more than compensate the decrease of juvenile death rate, which is highly
debatable. This justifies the technical computations of Section 4.4.4.

Note that in any case, no assumptions are made on cUJ and cFJ , since the behavior
is only determined by the linearization at 0.

4.4 Proofs

4.4.1 Proof of Theorem 4.3.1

We consider the following T -periodic piecewise-autonomous differential equation

dx

dt
= F (t, x), (4.4.1)

where for all x ∈ RN , F (·, x) is a piecewise-constant function. We assume that there
is a family of functions (F k)k : RN

+ → RN
+ such that:

F (t, x) = F k(x) if
t

T
−
⌊ t
T

⌋
∈ [θk−1, θk)

where (θi)0≤i≤N ∈ [0, 1]N+1 is a non-decreasing family such that θ0 = 0 and θN = 1.
For x ∈ R, the notation bxc stands for the largest integer n ∈ Z such that n ≤ x.

We assume that for all 1 ≤ k ≤ K, F k : RN
+ → RN

+ is continuously differentiable,
monotone (that is, if x � y then F k(x) � F k(y)), concave (that is, if x � y then
DF k(x)� DF k(y)) and satisfies F k(0) = 0.

Following the lines of [80] and [48], to prove Theorem 4.3.1 we split into four
assertions the various hypotheses of [80, Theorem 2.1], to check that they hold for
the Poincare map for (4.4.1). We begin with:

Lemma 4.4.1 If x(t) is a solution of (4.4.1) with x(t0) ≥ 0, then x(t) can be
extended to [t0,+∞] and x(t) ≥ 0 for t ≥ t0.

Proof. Let t ≥ 0. For all y ≥ 0, by concavity of all F k (1 ≤ k ≤ K), we have
DxF (t, y) ≤ DxF (t, 0). Hence for all t ≥ 0 and x ≥ 0,

F (t, x) = F (t, 0) +
( ∫ 1

0

DxF (t, sx)ds
)
x

≤ F (t, 0) +DxF (t, 0)x since x ≥ 0.
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Let y be the solution to the affine differential equation y′ = F (t, 0) +DxF (t, 0)y,
y(t0) = x(t0). From Kamke’s theorem, we deduce that x(t) ≤ y(t) on the maximal
interval of existence [t0, w) of x(t). Since y(t) is defined for all t ≥ t0, it follows that
w = +∞.

The standard positivity property (P) implies x(t) ≥ 0 for t ≥ t0.

Then, as an immediate consequence of monotonicity and Kamke’s theorem:

Lemma 4.4.2 If x(t) and y(t) are solutions of (4.4.1) with 0 ≤ y(t0) � x(t0),
then y(t)� x(t) for t > t0.

For all s ∈ R and x0 ∈ RN , we denote by t 7→ φ(t; s, x0) the solution of (4.4.1)
which satisfies x(s) = x0. In particular, φ(s; s, x) = x. For all 1 ≤ k ≤ K, we also
introduce t 7→ φk(t; s, x0) as the solution to

dx

dt
= F k(x), x(s) = x0.

By regularity of F k, each φk(θkT, θk−1T, ·) is a C1 function.

With these notations it follows from Lemmas 4.4.1 and 4.4.2 that the Poincare
map

P (x) := φ(T ; 0, x) = φK
(
θKT ; θK−1T, φ

K−1
(
· · ·φ1(θ1T ; 0, x)

))
, x ≥ 0 (4.4.2)

is well defined as a C1 map P : RN
+ → RN

+ because it is a composition of functions
of class C1. In order to apply [80, Theorem 2.1], we must verify that the differential
DP satisfies:

DP (0)� 0 and DP (x) ≥ 0 if x� 0, (M0)

DP (y) < DP (x) if 0� x� y. (C0)

Introducing the notations, for x ∈ RN

φ̃k(x) := φk
(
θkT ; θk−1T, φ̃

k−1(x)
)
∈ RN for 1 ≤ k ≤ K, φ̃0(x) := x,

φ̂k(x) :=
∂φk

∂x
(θkT ; θk−1T, x) ∈ RN×N ,

we can compute

DP (x) =
∂φ

∂x
(T ; 0, x) =

K∏
k=1

φ̂k ◦ φ̃k−1(x). (4.4.3)

We write Φ(t, x) := ∂φ
∂x

(t; 0, x), so that DP = Φ(T, ·). By construction, Φ(t, x) is
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the fundamental matrix for the variational equation

X ′ = DxF (t, φ(t; 0, x))X, X(0) = I (4.4.4)

where I is the N ×N identity matrix. Lemma 4.4.3 below is a direct consequence of
(M)

Lemma 4.4.3 If x� 0, then Φ(t, x) > 0 for t > 0. In addition, Φ(t, 0)� 0 for
t > 0.

Proof. Let T > 0 and x ∈ RN . LetM = MT,x ∈ (0,+∞) such thatDxF (t, φ(t; 0, x))+
MI ≥ 0 for all t ∈ [0, T ]. As long as Φ(t, x) ≥ 0 on [0, T ] we have on this interval
d
dt

Φ(t, x) ≥ −MΦ(t, x), hence Φ(t, x) ≥ e−MtI > 0.

Then, Φ(t, 0) solves (4.1.3) with Φ(0, 0) = I. Since DxF (t, 0) is an irreducible (by
(I)) Metzler matrix, Φ(t, 0)� 0 for t > 0.

Applying Lemma 4.4.3 with t = T yields (M0). It remains only to verify (C0), which
is the object of the next lemma

Lemma 4.4.4 If 0� x� y, then DP (x) > DP (y).

Proof. We write Z(t, x) = DxF (t, φ(t; 0, x)) for short. If 0 � x � y, from Lemma
4.4.2, we have φ(t; 0, x) � φ(t; 0, y) for all t ≥ 0. By (C), we deduce that Z(t, x) >
Z(t, y). Hence

Φ′(t, x) = Z(t, x)Φ(t, x)

≥ Z(t, y)Φ(t, x),

since Φ(t, x) ≥ 0 by Lemma 4.4.3. Therefore, it follows from Kamke’s theorem that
Φ(t, x) ≥ Φ(t, y).

Then, we follow ([3], lemma l) by letting Y (t) = Φ(t, x)− Φ(t, y). Y (t) satisfies

Y ′(t) = Z(t, x)Y (t) + [Z(t, x)− Z(t, y)]Φ(t, y), Y (0) = 0.

Using the fundamental matrix Φ we get

Y (T ) =

∫ T

0

Φ(T, x)Φ(s, x)−1[Z(s, x)− Z(s, y)]Φ(s, y)ds

Now, Z(t, s) ≡ Φ(t, x)Φ(s, x)−1 > 0 for t > s since it is the fundamental matrix at
t = s of z′ = Z(t, x)z (exactly as in Lemma 4.4.3). Since Φ(s, y) > 0 for 0 < s ≤ T
and Z(s, x)−Z(s, y)� 0 for 0 ≤ s ≤ T , it follows that Y (T ) > 0. This is the desired
conclusion.
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We have verified all assumptions and can apply [80, Theorem 2.1] and Theorem
4.3.1 follows immediately on noting that λ = ρ(DP (0)) = ρ(Φ(T, 0)) is the charac-
teristic multiplier of (4.1.3) of maximum modulus.

4.4.2 Proof of Theorem 4.3.2

When there are only two dynamics within a period, that is when K = 2, we notice
that the alternative (i)− (ii) from Theorem 4.3.1 is uniquely determined by the sign
of the real function:

θ 7→ ρ
(
e(1−θ)T ·DF 2(0)eθT ·DF

1(0)
)
− 1.

We notice that

Lemma 4.4.5 The function ρ : [0, 1]→ R is C1 and satisfies

ρ′(θ) = Tρ(θ)〈(DF 1(0)−DF 2(0))V (θ), V∗(θ)〉. (4.4.5)

Proof. By Perron-Frobenius theorem, ρ(θ) is the maximal root of the characteristic
polynomial of M(θ), whose entries are analytic functions of θ. In particular, it is C1.

The principal eigenvector of norm 1 of M(θ), that is V (θ), depends smoothly of θ,
as can be seen by uniqueness for all θ. Then, V∗(θ) also depends smoothly of θ since
the same argument applies to M∗(θ) and V∗(θ) is equal to the principal eigenvector
Y∗(θ) of M∗(θ) divided by 〈V (θ), Y∗(θ)〉 > 0, which is a smooth function of θ.

Let us write Mi := DF i(0) for i ∈ {1, 2}. We differentiate the identity ρ(θ) =
〈M(θ)V (θ), V∗(θ)〉 to obtain

ρ′(θ) = 〈M(θ)V ′(θ), V∗(θ)〉+ 〈M ′(θ)V (θ), V∗(θ)〉+ 〈M(θ)V (θ), V ′∗(θ)〉,

= ρ(θ)
(
〈V ′(θ), V∗(θ)〉+ T

(
〈V (θ),M∗

1V∗(θ)〉 − 〈M2V (θ), V∗(θ)〉
)

+ 〈V (θ), V ′∗(θ)〉
)
,

= Tρ(θ)〈(M1 −M2)V (θ), V∗(θ)〉,

since M ′(θ) = Te(1−θ)TM2
(
M1 −M2

)
eθTM1 and 〈V (θ), V∗(θ)〉 ≡ 1.

Applying Theorem 4.3.1 with the assumption that the forward orbits are bounded,
we are left with either global asymptotic stability of 0 is λ ≤ 1, or the global stability
of the unique positive periodic solution, if λ > 1. Using formula (4.3.2), we obtain
(SSTP) with ρ(θ∗) = 1 (or θ∗ = 0 if ρ(0) > 1, and θ∗ = 1 if ρ(1) ≤ 1) if ρ is a
decreasing function of θ.
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It remains to prove that any of the conditions (A) or (B) implies that ρ is de-
creasing. Under assumption (B − 1), with S = DF 1(0)−DF 2(0) we get by Lemma
4.4.5

ρ′(θ)

Tρ(θ)
= 〈SV (θ), V∗(θ)〉 = 〈PSV (θ), (P−1)∗V∗(θ)〉 < 0,

since PS < 0, V (θ) � 0 and (P−1)∗V∗(θ) > 0 by assumption. Note that this
condition is equivalent to S∗V∗(θ) < 0. Reasoning by density of GLN(R) inMN(R),
we assume that S is invertible and check that if S∗V∗ < 0 then P = −S−1 satisfies
the assumption, and conversely if PS = Q < 0, upon writing (P−1)∗ = (Q−1)∗S∗ we
get (Q−1)∗S∗V∗ > 0, and by multiplication by Q∗ < 0 this implies S∗V∗ < 0. The
argument is symmetrical for assumption (B − 2) and is omitted here.

Under assumption (B − 3) we get by Lemma 4.4.5

ρ′(θ)

Tρ(θ)
= 〈SV (θ), V∗(θ)〉 < 〈P∗(θ)Q(θ)V (θ), V∗(θ)〉 = −‖Q(θ)V (θ)‖2 ≤ 0,

since V (θ), V∗(θ)� 0 (for the inequality), and PV∗ = −QV (for the equality).

Finally, under assumption (A) we get that V (θ) ≡ V and V∗(θ) ≡ V∗ where V
(resp. V∗) is the principal eigenvector (resp. left principal eigenvector) of DF 1(0)
(which is the same as the one of DF 2(0)). In this case,

ρ′(θ)

Tρ(θ)
= 〈SV, V∗〉 = µ(DF 1(0))− µ(DF 2(0)),

whence the result.

4.4.3 Proofs of Proposition 4.3.1 and Proposition 4.3.2

Recall that by definition,

∀X ∈ R2, F (t,X) = G(π(t), X) :=

(
π1X2 − (π2 + π3 + π4X1)X1

π2X1 − π5X2

)
.

We first proceed to the proof of Proposition 4.3.1. If Xi = 0 for some i ∈ {1, 2},
then since π(t) ≥ 0, Fi(t,X) ≥ 0. Therefore the system is positive.

We recall the notation π = (b, h, dJ , cJ , dA). We have:

DXF =

(
−h− dJ − 2cJJ b

h −dA

)
.

Thus, DXF is a Metzler matrix, so (4.2.1) is monotone cooperative.
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To check the concavity property, let X � Y . We simply compute

DXF (t,X)−DXF (t, Y ) =

(
2cJ(Y1 −X1) 0

0 0

)
> 0.

Then, we proceed to the proof of Proposition 4.3.2. Calculating the equations of
nullclines

bA− hJ − dJJ − cJJ2 = 0,
hJ − dAA = 0,

immediately yields all steady states as:

S∗0 = (0, 0), S∗1 = (
bh

dJ
− h− dJ)

( 1

cJ
,
h

cJdA

)
.

Then, the sign of both components of S∗1 is equal to the sign of R0 − 1, whence the
result.

The stability and local behavior of solutions is detailed in

Proposition 4.4.1 If R0 ≤ 1 the unique equilibrium point S∗0 = (0, 0) is either
a stable node (when R0 < 1) or a singular point of superior order and of attracting
type (when R0 = 1), in which case all the orbits in the neighborhood of the S∗0 tend
to S∗0 along direction θ1 := arctan h+dJ

b
.

If R0 > 1, the equilibrium point S∗0 = (0, 0) is of saddle type, and the direction of

unstable manifold is
h+dJ−dA+

√
(h+dJ−dA)2+4bh

2b
. The equilibrium point S∗1 is a stable

node.

Proof. We divide the proof into three parts, depending on the sign of R0 − 1.

When R0 = 1. Then (4.2.1) becomes

dJ

dt
= − bh

dA
J + bA− cJJ2,

dA

dt
= hA− dAA.

(4.4.6)

The determinant of its Jacobian matrix is∣∣∣∣− bh
dA

b

h −dA

∣∣∣∣ = 0.

Hence, the equilibrium point S∗0 of system (4.4.6) is an isolated critical point of higher
order.

Obviously, system (4.4.6) is analytic in a neighborhood of the origin. By Theorem
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3.10 on page 79 of [91], any orbit of (4.4.6) tending to the origin must tend to it
spirally or along a fixed direction, which depends on the characteristic equation of
system (4.4.6). First of all, we introduce the polar coordinates J = r cos δ, A = r sin δ,
where δ ∈ [0, π

2
], r ∈ R+ and we get the relation{

ṙ = r−1(JJ̇ + AȦ) = rm[R(δ) + o(1)],

δ̇ = r−2(JȦ− AJ̇) = rm−1[G(δ) + o(1)].

This yields{
ṙ = r(− bh

dA
cos2 δ + b cos δ sin δ + h cos δ sin δ − dA sin2 δ − cJr cos3 δ),

δ̇ = h cos2 δ − dA cos δ sin δ + (h+ dJ) cos δ sin δ − b sin2 δ + cJr cos2 δ sin δ.

Then the characteristic equation of system (4.4.6) takes the form

G(δ) = h cos2 δ − dA cos δ sin δ + (h+ dJ) cos δ sin δ − b sin2 δ = 0, (4.4.7)

and we have

R(δ) = − bh
dA

cos2 δ + b cos δ sin δ + h cos δ sin δ − dA sin2 δ.

After equation (4.4.7), we get

(
h+ dJ
b

cos δ − sin δ)(dA cos δ + b sin δ) = 0. (4.4.8)

Thus {
tan δ1 = h+dJ

b
,

tan δ2 = −dA
b
.

Clearly, G(δ) = 0 has two real roots which we denote by δ1 and δ2. By the results
in section 2 of [91], we know that neither the case no orbit of system (4.4.6) can tend
to the critical point S∗0 spirally nor the singular case (if G(δ) ≡ 0).

The orbits of the system tend to the origin along a characteristic direction δi,
given by solutions of the equation (4.4.7). Since the system is positive we need to
consider δ ∈ [0, π

2
], so δ1 = arctan h+dJ

b
is in first orthant and the orbits of the system

approach the origin along the direction δ = δJ .

When R0 > 1. We now write the Jacobian matrix Jac of the system

Jac :=

(
−h− dJ − 2cJE b

h −dA

)
,
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and consider Jac0 and Jac1 are the Jacobian matrices respectively at equilibrium
point S∗0 and S∗1 . At S0

∗,

Jac0 =

(
−h− dJ b

h −dJ

)
,

whose eigenvalues read

λ1 = −(h+dJ+dA)+
√

∆
2

,

λ2 = −(h+dJ+dA)−
√

∆
2

,

where ∆ := (h+dJ +dA)2−4[(h+dJ)dA−hb] > 0 (since (h+dJ)dA−hb < 0). Then

λ1 + λ2 = −(h+ dJ + dA) < 0,
λ1λ2 = (h+ dJ)dA − hb < 0,

so that one eigenvalue is positive and the another one is negative: S∗0 is a saddle
point.

To find the direction of the stable manifold or unstable manifold at S∗0 , we write

Ȧ

J̇
=
dA

dt
=

hJ − dAA
−hJ − dJJ + bA− cJJ2

=
h− A

J

−h− dJ + bA
J
− cJJ

.

Consider (J,A) tending to S∗0 and let k := A
J

. Then k is a solution to

k =
h− dAk

−h− dJ + bk
,

which leads to two solutions (k1, k2) ∈ R∗+ × R∗− given by

h+ dJ − dA ±
√

(h+ dJ − dA)2 + 4bh

2b
.

Hence, the boundary lines are A = k1J and A = k2J and by unstable manifold
theorem we know that k1 is the direction of unstable manifold at (0, 0)

Then, at equilibrium point S∗1 ,

Jac1 =

(
h+ dJ − 2bh

dA
b

h −dA

)
,

whose eigenvalues λ1, λ2 are real and satisfy

λ1 + λ2 = h+ dJ − 2bh
dA
− dA < 0,

λ1λ2 = −dA(h+ dJ) + bh > 0.

This implies that the two eigenvalues are real and negative, hence S∗1 is a stable node.
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Finally, if R0 < 1. Then at equilibrium point S∗0

Jac0 =

(
−h− dJ b

h −dA

)
.

Because (h+ dJ)dA − hb > 0, the eigenvalues are such that

λ1 + λ2 = −(h+ dJ + dA) < 0,
λ1λ2 = (h+ dJ)dA − hb > 0,

with also the discriminant (−h− dJ + dA)2 + 4bh > 0, hence they are both negative
and the equilibrium point S∗0 is a stable node.

Remark 4.4.1 In particular when h = 0 (no hatching), and the trivial equilib-
rium point S∗0 is a stable node.

We now prove that all the orbits of (4.2.1) are forward bounded.

Lemma 4.4.6 Let

τ ∗ := sup
t≥0

h(t)

dA(t)
, J∗ := sup

t≥0

b(t)τ ∗ − h(t)− dJ(t)

cJ(t)
.

Under the assumptions of Proposition 4.3.1, τ ∗ and J∗ are finite. For all X0 ∈ R2
+

and all real number L ≥ max(0, J∗) such that X0 ∈ ΩL := [0, L]×[0, τ ∗L], the solution
X(t) of (4.2.1) with initial data X0 belongs to ΩM .

Proof. Under the assumptions of Proposition 4.3.1, cJ ≥ c > 0 and dA ≥ c while all
parameters are smaller than C > 0, hence J∗ and ρ∗ are finite.

For L > 0 we define the area rectangle ΩL surrounded by four line segments `i
with outward normal vector νi:

`1 = {(J,A)|J = 0, 0 ≤ A ≤ τ ∗L)}, ν1 = (−1, 0),

`2 = {(J,A)|J = L, 0 ≤ A ≤ τ ∗L)}, ν2 = (1, 0),

`3 = {(J,A)|0 ≤ J ≤ L,A = 0}, ν3 = (0,−1),

`4 = {(J,A)|0 ≤ J ≤ L,A = τ ∗L}, ν4 = (0, 1).

To prove that ΩL is positively invariant, since the system is positive, we only need to
show that the scalar products of dX

dt
and νi on `i for i ∈ {2, 4} are non-positive:

ν4 ·G(π,X) = hJ − dAτ ∗L ≤ 0 since J ≤ L and dAτ
∗ ≥ h,

ν2 ·G(π,X) = bA− hL− dJL− cJL2.



98 4.4. Proofs

Since A < τ ∗L, ν2 ·G(π,X) ≤ 0 on `2 as soon as bτ ∗ − h− dJ − cJL ≤ 0, that is

L ≥ bτ ∗ − h− dJ
cJ

.

Upon taking L ≥ J∗ this inequality is satisfied. For L large enough such that X0 ∈
ΩL, we have proved that for all t > 0, the solution X(t) of (4.2.1) belongs to ΩL.

The Dulac (divergence) criterion ensures that the system has no limit cycle, since:

div(F ) = −(h+ dJ + cJJ + dA) < 0.

This concludes the proof.

4.4.4 Proof of Theorem 4.3.3

Theorem 4.3.3 is a consequence of Theorem 4.3.2, condition (B − 1). To check
this condition, we apply the following result (specific to the dimension N = 2) to the
positive matrix M(θ):

Lemma 4.4.7 Let S ∈ M2(R) be a positive matrix, and assume vector W =
(w1, w2)� 0 satisfies S∗W = µW for some µ > 0 (i.e. W is the principal eigenvector
of S∗). Then, w2 > w1 if and only if

s11 + s21 < s12 + s22, (4.4.9)

Where s11, s21, s12 and s22 are the elements of matrix S.

Proof. We write SW = µW as{
s11w1 + s21w2 = µw1,

s12w1 + s22w2 = µw2,
⇐⇒

{
s11 + s21

w2

w1
= µ,

s12
w1

w2
+ s22 = µ.

If 0 < w1 < w2, since S � 0 we deduce that s11 + s21 < ρ < s12 + s22.

Conversely, if s11 + s21 < s12 + s22, subtracting the previous equalities we obtain

µ(1− w2

w1

) = s11 − s12 +
w2

w1

(s21 − s22) < (s22 − s21)(1− w2

w1

).

By contradiction, we assume that w2 < w1. Then µ < s22 − s21. Injecting this
inequality into the previous equality we obtain

s12 +
w2

w1

s22 < (s22 − s21)
w2

w1

,
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whence s12 < −w2

w1
s21, which contradicts S > 0. Hence w2 > w1.

Lemma 4.4.7 is satisfied by M(θ), so that condition (B − 1) holds with P =(
1 1
0 1

)
. Indeed, (P−1)∗ =

(
1 0
−1 1

)
and (P−1)∗V∗ > 0 with V∗ � 0 if and only if

[V∗]2 > [V∗]1, hence by (4.2.3) we have P
(
DF 2(0)−DF 1(0)

)
< 0.

The remaining of the proof is devoted to checking that M12(θ)+M22(θ)−M11(θ)−
M21(θ) > 0. To this aim, we diagonalize

DF 1(0) =

(
−hU − dUJ bU

hU −dUA

)
and DF 2(0) =

(
−hF − dFJ bF

hF −dFA

)
by

DF 1(0) = PU

(
λ+
U 0
0 λ−U

)
P−1
U , DF 2(0) = PF

(
λ+
F 0
0 λ−F

)
P−1
F ,

where for ] ∈ {U, F},

P] =

(
1 1
x+
] x−]

)
, P−1

] =
1

x−] − x
+
]

(
x−] −1

−x+
] 1

)
and

λ±] = −1

2
(h] + d]J + d]A)± 1

2

√
(h] + d]J − d

]
A)2 + 4h]b],

x±] =
λ±] + h] + d]J

b]
,

=
1

2b]
(h] + d]J − d

]
A)± 1

2b]

√
(h] + d]J − d

]
A)2 + 4h]b].

The condition of Lemma 4.4.7 will follow from:

Lemma 4.4.8 For ] ∈ {U, F}, we have x−] < 0 < x+
] and 1 + x−] > 0.

Proof. The first inequalities follow directly from the above expression of x±] . Then,

we compute 1 + x−] =
2b]+h]+d]J−d

]
A−
√

(h]+d]J−d
]
A)2+4h]b]

2b]
. We have

(2b] + h] + d]J − d
]
A)2 = 4(b])2 + 4b](h] + d]J − d

]
A) + (h] + d]J − d

]
A)2

> (h] + d]J − d
]
A)2 + 4h]b]

since b] + d]J − d
]
A > 0 (explicit assumption in Proposition 4.3.2 for ] = U , and from

R(πF ) > 1 for ] = F ). It implies 1 + x−] > 0.
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Thanks to the above diagonalization, we can write M = M(θ) = (mij)1≤i,j≤2 as

m11 = (β+x−F − β−x
+
F )(γ+x−U − γ−x

+
U) + (−β+ + β−)(x+

Ux
−
Uγ

+ − x+
Ux
−
Uγ
−),

m12 = (β+x−F − β−x
+
F )(−γ+ + γ−) + (−β+ + β−)(−x+

Uγ
+ + x−Uγ

−),

m21 = (x+
Fx
−
Fβ

+ − x+
Fx
−
Fβ
−)(γ+x−U − γ−x

+
U) + (−x+

Fβ
+ + x−Fβ

−)(x+
Ux
−
Uγ

+ − x+
Ux
−
Uγ
−),

m22 = (x+
Fx
−
Fβ

+ − x+
Fx
−
Fβ
−)(−γ+ + γ−) + (−x+

Fβ
+ + x−Fβ

−)(−x+
Uγ

+ + x−Uγ
−),

where

β+ := eλ
+
F (1−θ)T , β− := eλ

−
F (1−θ)T ,

γ+ := eλ
+
UθT , γ− := eλ

−
U θT ,

α :=
bUbF√(

(hU + dUJ − dUA)2 + 4hUbU
)(

(hF + dFJ − dFA)2 + 4hF bF
) .

Proving m11 +m21 < m12 +m22 therefore amounts to checking

β+γ+(x−F − x
+
U)(1 + x+

F )(1 + x−U) + β+γ−(x−U − x
−
F )(1 + x+

F )(1 + x+
U)

+ β−γ+(x+
U − x

+
F )(1 + x−U)(1 + x−F ) + β−γ−(x+

F − x
−
U)(1 + x−F )(1 + x+

U) < 0.
(4.4.10)

We introduce Ψ : R2
+ → R as

Ψ(β, γ) := βγ(x−F − x
+
U)(1 + x+

F )(1 + x−U) + β(x−U − x
−
F )(1 + x+

F )(1 + x+
U)

+ γ(x+
U − x

+
F )(1 + x−U)(1 + x−F ) + (x+

F − x
−
U)(1 + x−F )(1 + x+

U),

so that (4.4.10) is equivalent to Ψ(β
+

β−
, γ

+

γ−
) < 0. First, it is easily checked that

Ψ(1, 1) = 0, β+ > β− and γ+ > γ−. Then, by Lemma 4.4.8, x−F < 0 < x+
U and

1 + x[] > 0 for ] ∈ {U, F} and [ ∈ {+,−}. Hence for β > 1, we have

∂Ψ(β, γ)

∂γ
= β(x−F − x

+
U)(1 + x+

F )(1 + x−U) + (x+
U − x

+
F )(1 + x−U)(1 + x−F )

< (x−F − x
+
U)(1 + x+

F )(1 + x−U) + (x+
U − x

+
F )(1 + x−U)(1 + x−F )

= (x−F − x
+
F )(1 + x−U)(1 + x+

U).

Symmetrically, for γ > 1 we have

∂Ψ(β, γ)

∂β
= γ(x−F − x

+
U)(1 + x+

F )(1 + x−U) + (x−U − x
−
F )(1 + x+

F )(1 + x+
U)

< (x−F − x
+
U)(1 + x+

F )(1 + x−U) + (x−U − x
−
F )(1 + x+

F )(1 + x+
U)

= (x−U − x
+
U)(1 + x−F )(1 + x+

F ).
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Applying Lemma 4.4.8 again, we deduce that if β, γ > 1 then

∂Ψ

∂γ
,
∂Ψ

∂β
< 0.

In particular Ψ(β
+

β−
, γ

+

γ−
) < 0, and this concludes the proof.

4.4.5 An example of numerical simulation

Here we give an example of numerical simulations for our reference model 4.2.1,
We suppose that:
In favorable season, the death rate of juveniles dFJ is 0.5; the death rate of adults dFA
is 0.4; the birth rate bF is 10; the hatching rate hF is 1.

In unfavorable season, the death rate of juveniles dUJ is 0.8; the death rate of
adults dUA is 0.4; the birth rate bU is 0.5; the hatching rate hU is 0.2.

The following Fig.4.1 shows ρ(θ), the maximal root of the characteristic polyno-
mial of M(θ), decreases with respect to θ ∈ [0, 1] and it show that ρ(0) > 1 and
ρ(1) < 1
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Figure 4.1: A numerical simulation with two seasons

4.5 Discussion and extensions

Geometric viewpoint. We denote by Υ× Υ∗ the graph of υ := (V, V∗) : [0, 1]→
(R∗+)2N . Then we define r(θ) := ρ′(θ)

Tρ(θ)
= 〈SV (θ), V∗(θ)〉. Denoting by ψS : RN×RN →
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R the bilinear form (V,W ) 7→ 〈AV,W 〉, we get r = ψS ◦ υ. Let XS := {ψS < 0}, it
is an open and radial subset of R2N (if Y ∈ XS and λ > 0, then λY ∈ XS). ρ(M) is
decreasing if and only if r is decreasing, which is equivalent to Υ×Υ∗ ⊂ XS. Up to
changing S into −S, assumption (4.5.1) amounts to υ(0), υ(1) ∈ XS.

The case (A) implies that Υ × Υ∗ is a singleton, in which case (4.5.1) simply
rewrites (µ2 − µ1)2 > 0.

Practical computations in higher dimension. Theorem 4.3.2 suggests 4 differ-
ent sufficient conditions on DF 1(0) and DF 2(0) to obtain (SSTP). Apart from the
trivial situations when DF 1(0)−DF 2(0) has a sign or when the two matrices share
the same principal eigenvector, how applicable are these conditions when N > 2 If
DF i(0) is diagonalizable for i ∈ {1, 2}, which we write

DF i(0) = P−1
i diag((λ

(k)
i )1≤k≤N)Pi,

then we can compute

Mi,j(θ) =
N∑

j′,j′′=1

P−1
1 (i, j′)Q(j′, j′′)P2(j′′, j)eT

(
θλ

(j′)
1 +(1−θ)λ(j

′′)
2

)
,

where Q(j′, j′′) =
∑N

k=1 P1(j′, k)P−1
2 (k, j′′). For any matrix Γ = (γ(i, j))1≤i,j≤N ∈

GLN(R) such that ΓM(θ) > 0, we obtain ΓV (θ) > 0 (where V (θ) is the principal
eigenvector of M(θ)). Then, a sufficient condition for (SSTP) is given by (DF 2(0)−
DF 1(0))Γ−1 < 0. Symmetrically, if M(θ)Γ > 0 then a sufficient condition is given by
Γ−1(DF 2(0)−DF 1(0)) < 0.

In order to get better conditions than the obvious ones, we require that Γ 6≥ 0.
We note that

[
ΓM(θ)

]
i,j

=
N∑

k,j′,j′′=1

γ(i, k)P−1
1 (k, j′)P2(j′′, j)Q(j′, j′′)eT

(
θλ

(j′)
1 +(1−θ)λ(j

′′)
2

)
.

Log-convexity of the spectral radius. A celebrated result of Kingman [52] as-
serts that if the entries of a nonnegative matrix are log convex functions of a variable
then so is the spectral radius of the matrix. If this property applies to the positive
matrix M(θ), θ 7→ ρ(M(θ)) is log-convex. In this case, it is monotone (yielding
(SSTP)) provided that the derivatives at 0 and 1 have the same sign, that is:(

µ2 − 〈DF 1(0)V 2, V 2
∗ 〉
)(
〈DF 2(0)V 1, V 1

∗ 〉 − µ1

)
> 0, (4.5.1)

where µi = µ(DF i(0)), and V i (resp. V i
∗ ) is the principal eigenvector of DF i(0) (resp.

of DF i(0)∗) with V i, V i
∗ � 0 and 〈V i, V i〉 = 1 = 〈V i, V i

∗ 〉.
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When DF i(0) are diagonalizable (i ∈ {1, 2}), the above formula shows that

Mi,j(θ) =
N2∑
n=1

αn(i, j)eβn(i,j)θ

for some α, β. In cases when Mi,j can be proved to be a log-convex function of θ,
(SSTP) holds under assumption (4.5.1).

Computation of the second-order derivative. A more general condition for
(SSTP) than the monotonicity of ρ would be that ρ is either concave or convex (or
log-concave, or log-convex). To formulate this condition we compute the second-order
derivative of log(ρ) from (4.4.5) as

d

dθ

(
log(ρ(θ))

)
= r′(θ) = 〈SV ′(θ), V∗(θ)〉︸ ︷︷ ︸

=:R1

+ 〈SV (θ), V ′∗(θ)〉︸ ︷︷ ︸
=:R2

,

where
S = DF 1(0)−DF 2(0). (4.5.2)

Differentiating with respect to θ the eigenvector equations for V (θ) and V∗(θ) along
with their normalizations 〈V (θ), V (θ)〉 = 1 and 〈V (θ), V∗(θ)〉 = 1 yields:

(M(θ)− ρ(θ)I)V ′(θ) = (ρ′(θ)I −M ′(θ))V (θ),

(M∗(θ)− ρ(θ)I)V ′∗(θ) = (ρ′(θ)I − (M∗)′(θ))V∗(θ),

〈V (θ), V ′(θ)〉 = 0 = 〈V ′(θ), V∗(θ)〉+ 〈V (θ), V ′∗(θ)〉.

Dropping the argument θ, we note that V ′, V ′∗ are well-defined from these linear
equations since Im(M − ρI) = (V∗R)⊥ (and symmetrically Im(M∗ − ρI) = (V R)⊥)
and the scalar product conditions give uniqueness. We introduce the notation H :=
(V R)⊥ (resp. H∗ := (V∗R)⊥) for the hyperplane with normal vector V (resp. V∗). We
also introduce the Perron projection operator Π := V∗V

∗ ∈ L(RN), and its adjoint
Π∗ = V V∗

∗.

In particular, M−ρI ∈ L(H,H∗) is an invertible linear application, whose inverse
is denoted Mr ∈ L(H∗, H), and we have

V ′ = Mr

(
(ρ′I −M ′)V

)
.

Symmetrically, M∗ − ρI ∈ L(H) is invertible (since V∗ 6∈ H), its inverse is denoted
M∗

a ∈ L(H) and
V ′∗ = M∗

a

(
(ρ′I −M ′

∗)V∗
)
− 〈V∗, V ′〉V∗.

Using the notationMi = DF i(0) (i ∈ {1, 2}), from the definitionM(θ) = eT (1−θ)M2eTθM1
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we also have:

M ′ = T (MM1 −M2M), (4.5.3)

(M∗)′ = T
(
(M1)∗M∗ −M∗(M2)∗

)
. (4.5.4)

In order to compute the two terms in r′, we note two preliminary identities. First,
using (4.5.3) and (4.4.5) we get

1

T
(ρ′I −M ′)V = ρ(Π∗ − I)SV − (M − ρI)M1V, (4.5.5)

where both terms in the right-hand side belong to H∗. Symmetrically, using (4.5.4)
and (4.4.5) we get

1

T
(ρ′I − (M∗)′)V∗ = (M∗ − ρI)M∗

2V∗ + ρ(Π− I)S∗V∗, (4.5.6)

where both terms in the right-hand side belong to H.

Then, using (4.5.5), Mr ∈ L(H∗, H) and Mr ◦ (M − ρI) = IH we can compute

R1 =
〈
Mr

(
(ρ′I −M ′)V

)
, S∗V∗

〉
,

= Tρ
〈
Mr(Π

∗ − I)SV, S∗V∗
〉
− T 〈M1V, S

∗V∗〉.

Symmetrically, using (4.5.6), M∗
a ∈ L(H) and M∗

a ◦ (M∗ − ρI) = IH we obtain

R2 = 〈SV,M∗
a

(
(ρ′I −M ′

∗)V∗
)
− 〈V∗, V ′〉V∗〉,

= Tρ
〈
SV,M∗

a (Π− I)S∗V∗
〉

+ T 〈SV,M∗
2V∗〉 − 〈SV, V∗〉〈V∗, V ′〉.

Using (4.5.5) with Mr ∈ L(H∗, H) and (M − ρI) ◦Mr = IH we also get

〈V∗, V ′〉 = 〈V∗,Mr

(
(ρ′I −M ′)V

)
〉,

= Tρ
〈
V∗,Mr(Π

∗ − I)SV
〉
− T 〈V∗,M1V 〉.

Gathering R1 and R2 we obtain

r′

T
=

r1︷ ︸︸ ︷(
〈SV, V∗〉

)2
+
〈
(M2S − SM1)V, V∗

〉
+

ρ
〈
Mr(Π

∗ − I)SV, (S∗ − 〈SV, V∗〉I)V∗
〉︸ ︷︷ ︸

r2

+ ρ
〈
M∗

a (Π− I)S∗V∗, SV
〉︸ ︷︷ ︸

r3

.

We notice that

r2 = ρ
〈
Mr(Π

∗ − I)SV, (I − Π)S∗V∗
〉

= ρ
〈
SV, (I − Π)M∗

r (Π− I)S∗V∗
〉
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and
r3 = ρ

〈
SV,M∗

a (Π− I)S∗V∗
〉
,

so r2 = r3, since (M∗−ρI)◦M∗
a = IH , (M∗−ρI)◦M∗

r = IH and (M∗−ρI)◦ΠM∗
r = 0

Finally ρ′′ = T 2ρr2 + Tρr′ whence

ρ′′

T 2ρ
= 2
(
〈SV, V∗〉

)2
+
〈
(M2S − SM1)V, V∗

〉
+ 2ρ

〈
M∗

a (Π− I)S∗V∗, SV
〉
. (4.5.7)

In principle, the identity (4.5.7) could be used to derive (SSTP) under more
general conditions on M1 = DF 1(0),M2 = DF 2(0) than those given in Theorem
4.3.2. However, we do not explore such conditions in the present article.

Time scaling. Until now we have considered that the period T > 0 was fixed.
Letting T go to 0 or +∞ yields interesting limits. For an irreducible Metzler matrix
U ,

e−Tµ(U)eTU −−−−→
T→+∞

V V ∗∗

where V is the principal eigenvector of U and V∗ is the principal eigenvector of U∗,
normalized by V ∗∗ V = 1. From this fact, we have

e−T (θµ(DF 1(0))+(1−θ)µ(DF 2(0))M(θ) −−−−→
T→+∞

V (0)V∗(0)∗V (1)V∗(1)∗,

from which we deduce that

1

T
log(ρ(θ)) ∼T→+∞ θµ(DF 1(0)) + (1− θ)µ(DF 2(0)).

In fact, we even get the next term in the asymptotic development:

log(ρ(θ))−T
(
θµ(DF 1(0))+(1−θ)µ(DF 2(0))

)
−log

(
V∗(0)∗V (1)V∗(1)∗V (0)

)
= oT→∞(1).

Therefore, for T large enough, ρ is close to be monotone, and even close to be equal
to the exponential interpolation of Tµ(DF 1(0)) and Tµ(DF 2(0)).

Meanwhile, limT→0 ρ(θ) ≡ 1.

Optimization problems. For a general two-seasonal model defined by a monotone
and concave map G : P × RN → RN and πU , πF ∈ P , a natural question is the
optimization of the spectral radius when the favorable and unfavorable seasons can
be split throughout the year. Let M] := T ·DG(π], 0) (with ] ∈ {U, F}). For K ∈ Z+,
we define:

ρMU ,MF
(θ,K) = max

(σ,σ′)∈ϕK(θ)
ρ(MMU ,MF

(σ, σ′)), (4.5.8)
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ρ
MU ,MF

(θ,K) = min
(σ,σ′)∈ϕK(θ)

ρ(MMU ,MF
(σ, σ′)), (4.5.9)

where

ϕK(θ) :=
{(

(θk)k, (θ
′
k)k
)
∈ [0, 1]2K ,

K∑
k=1

θk = θ,
K∑
k=1

θ′k = 1− θ
}

is compact and for (σ, σ′) ∈ ϕK(θ) and M1,M2 ∈MN(R),

MM1,M2(σ, σ
′) := eθ

′
KM2eθKM1 · · · eθ′1M2eθ1M1 .

Note that by Gelfand’s formula,

ρ(M(σ, σ′)) ≤
∏
k

ρ(eθ
′
kM2)ρ(eθkM1) = eθµ1+(1−θ)µ2 ,

where µi = µ(Mi).

Remark 4.5.1 In the specific case when MU and MF are irreducible Metzler
matrices with the same principal eigenvector (that is, condition (A)) , ρ(M(σ, σ′))
does not depend on (σ, σ′) ∈ SK(θ) and does even not depend on K ∈ Z+: we have

∀K ∈ Z+,∀θ ∈ [0, 1], ρMU ,MF
(θ,K) = e

(
θµU+(1−θ)µF

)
= ρ

MU ,MF
(θ,K),

with µ] = µ(M]).

In this case, assuming µF > 0 > µU we recover Theorem 4.3.3 with

θ∗ =
µF

µF − µU
.
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optimization of systems, pages 1152–1163. Springer, 1988.
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Résumé

Ce travail de thèse est constitué de nouvelles applications de la théorie des systèmes dynamiques coopératifs à l’étude
de modèles en Biologie. Un premier modèle réduit d’une dynamique compartimentalisée couplant l’hémodynamique et le
métabolisme énergétique cérébral. Nous avons proposé l’étude d’une extension naturelle de ce modèle comprenant deux
compartiments intracellulaires distincts, l’un représentant un neurone et l’autre un astrocyte en plus du compartiment
extracellulaire (aussi appelé interstitiel) et du compartiment capillaire. Nous avons commencé par observer que ce système
(et même une extension de ce système à N neurones et A astrocytes) est un système coopératif. On a pu alors appliquer
les techniques dévelopées par Hal L. Smith et démontrer (en toutes dimensions) que l’unique point stationnaire est
asymptotiquement stable. Dans la suite, nous avons considéré une variante du système réduit de dimension 2 dans
laquelle on considère une dynamique différentiable par morceaux qui présente un saut lorsque la variable x ou la variable
y dépasse un certain seuil. Ce système par morceaux permet l’introduction d’une autorégulation induite par un retour des
concentrations de lactate extracellulaire ou capillaire sur le flux sanguin capillaire. De nouveaux phénomènes dynamiques
sont découverts et nous discutons de l’existence et de la nature de deux points d’équilibre, d’un segment attractif, d’un
équilibre frontalier et d’orbites périodiques en fonction du flux sanguin capillaire. Dans le dernier chapitre, on considère,
en contraste avec les chapitres précédents, un système dynamique forcé. Ce système dynamique modélise une population
dont l’environnement varie périodiquement dans le temps. Nous appliquons notre théorème à l’exemple d’une dynamique
de population d’insectes (moustiques) avec un stade juvénile exposé à une compétition quadratique et un stade adulte.
Cette dynamique est sujette à un forçage périodique saisonnier. En particulier, dans les pays tempérés, les moustiques
sont très rares en hiver et connaissent une croissance explosive après les premiers épisodes pluvieux de la saison chaude.
Mots-clés: Systèmes dynamiques coopératifs; systèmes continus par morceaux; analyse qualitative; métabolisme du
lactate du cerveau; dynamique de populations; saisonnalité

Abstract

This thesis work consists of new applications of the theory of cooperative dynamical systems to the study of models
in Biology. A first model of compartmentalized dynamics coupling hemodynamics and cerebral energy metabolism. It
has been proposed to study a natural extension of this model comprising two distinct intracellular compartments, one
representing a neuron and the other an astrocyte in addition to the extracellular compartment (also called interstitial)
and the capillary compartment. We began by observing that this system (even an extension of this system to N neurons
and A astrocytes) is a cooperative system. It was then possible to apply the techniques developed by Hal L. Smith
and demonstrate (in all dimensions) that the single stationary point is asymptotically stable. In the following, we
have considered a variant of the reduced system of dimension 2 in which we consider a piecewise differentiable dynamic
that has a jump when the variable x or the variable y exceeds a certain threshold. This piecewise system allows the
introduction of an autoregulation induced by a feedback of the extracellular or capillary Lactate concentrations on the
Capillary Blood Flow. New dynamical phenomena are uncovered and we discuss existence and nature of two equilibrium
points, attractive segment, boundary equilibrium and periodic orbits depending of the Capillary Blood Flow. In the last
chapter, we consider, in contrast with the preceding chapters, a forced dynamical system. This dynamical system models
a population whose environment varies periodically over time. We apply our theorem to the example of a population
dynamics of insects (for example mosquitoes) with a juvenile stage exposed to a quadratic competition and an adult
stage. These dynamics are subject to a seasonal periodic forcing. In particular, in temperate countries, mosquitoes are
very rare in winter and grow explosively after the first rainy episodes of the hot season.
Keywords: Cooperative dynamical systems; piecewise smooth system; qualitative analysis; brain lactate metabolism;
population dynamics; seasonality
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