M. Yu, W. D. Mcculloch, Z. Huang, B. B. Trang, J. Lu et al., Solar-powered electrochemical energy storage: an alternative to solar fuels, Journal of Materials Chemistry A, vol.4, issue.8, pp.2766-2782, 2016.

D. Schmidt, M. D. Hager, and U. S. Schubert, Photo-Rechargeable Electric Energy Storage Systems, Advanced Energy Materials, vol.6, issue.1, p.1500369, 2015.

Y. G. Zhu, Q. Liu, Y. Rong, H. Chen, J. Yang et al., Proton enhanced dynamic battery chemistry for aprotic lithium?oxygen batteries, Nature Communications, vol.8, issue.1, p.14308, 2017.

G. Hodes, J. Manassen, and D. G. Cahen, Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes, Nature, vol.261, issue.5559, pp.403-404, 1976.

R. Gaudiana, Third-Generation Photovoltaic Technology ? The Potential for Low-Cost Solar Energy Conversion, The Journal of Physical Chemistry Letters, vol.1, issue.7, pp.1288-1289, 2010.

R. Olivares-amaya, C. Amador-bedolla, J. Hachmann, S. Atahan-evrenk, R. S. Sánchez-carrera et al., Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics, Energy & Environmental Science, vol.4, issue.12, p.4849, 2011.

. Sci, The Structure of Greenhouses, Scientific American, vol.12, issue.304supp, pp.4849-4849, 1881.

J. W. Choi and D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nature Reviews Materials, vol.1, issue.4, p.16013, 2016.

S. Y. Kan, M. Verwaal, and H. Broekhuizen, The use of battery?capacitor combinations in photovoltaic powered products, Journal of Power Sources, vol.162, issue.2, pp.971-974, 2006.

T. L. Gibson and N. A. Kelly, Solar photovoltaic charging of lithium-ion batteries, Journal of Power Sources, vol.195, issue.12, pp.3928-3932, 2010.

J. Xu, Y. Chen, and L. Dai, Efficiently photo-charging lithium-ion battery by perovskite solar cell, Nature Communications, vol.6, issue.1, 2015.

A. Gurung, K. Chen, R. Khan, S. S. Abdulkarim, G. Varnekar et al., Highly Efficient Perovskite Solar Cell Photocharging of Lithium Ion Battery Using DC-DC Booster, Advanced Energy Materials, vol.7, issue.11, p.1602105, 2017.

Q. Li, Y. Liu, S. Guo, and H. Zhou, Solar energy storage in the rechargeable batteries, Nano Today, vol.16, pp.46-60, 2017.

B. Luo, D. Ye, and L. Wang, Recent Progress on Integrated Energy Conversion and Storage Systems, Advanced Science, vol.4, issue.9, p.1700104, 2017.

J. Yum, P. Chen, M. Grätzel, and M. K. Nazeeruddin, Recent Developments in Solid-State Dye-Sensitized Solar Cells, ChemSusChem, vol.1, issue.8-9, pp.699-707, 2008.

P. G. Bomben, J. Borau-garcia, and C. P. Berlinguette, Three is not a crowd: efficient sensitization of TiO2 by a bulky trichromic trisheteroleptic cycloruthenated dye, Chemical Communications, vol.48, issue.45, p.5599, 2012.

M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C Photochem. Rev, vol.4, pp.145-153, 2003.

M. Grätzel, Photoelectrochemical cells, Nature, vol.414, issue.6861, pp.338-344, 2001.

E. Casati, A. Galli, and P. Colonna, Thermal energy storage for solar-powered organic Rankine cycle engines, Solar Energy, vol.96, pp.205-219, 2013.

T. Miyasaka and T. N. Murakami, The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy, Applied Physics Letters, vol.85, issue.17, pp.3932-3934, 2004.

Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang et al., Progress of electrochemical capacitor electrode materials: A review, International Journal of Hydrogen Energy, vol.34, issue.11, pp.4889-4899, 2009.

W. Gu and G. Yushin, Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene, Wiley Interdisciplinary Reviews: Energy and Environment, vol.3, issue.5, pp.424-473, 2013.

T. N. Murakami, N. Kawashima, and T. Miyasaka, A high-voltage dye-sensitized photocapacitor of a three-electrode system, Chemical Communications, vol.3346, issue.26, p.3346, 2005.

Z. Yang, L. Li, Y. Luo, R. He, L. Qiu et al., An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film, J. Mater. Chem. A, vol.1, issue.3, pp.954-958, 2013.

K. Jost, G. Dion, and Y. Gogotsi, Textile energy storage in perspective, Journal of Materials Chemistry A, vol.2, issue.28, p.10776, 2014.

T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren et al., An Integrated ?Energy Wire? for both Photoelectric Conversion and Energy Storage, Angewandte Chemie International Edition, vol.51, issue.48, pp.11977-11980, 2012.

X. Chen, H. Sun, Z. Yang, G. Guan, Z. Zhang et al., A novel ?energy fiber? by coaxially integrating dye-sensitized solar cell and electrochemical capacitor, J. Mater. Chem. A, vol.2, issue.6, pp.1897-1902, 2014.

Z. Yang, J. Deng, H. Sun, J. Ren, S. Pan et al., Self-Powered Energy Fiber: Energy Conversion in the Sheath and Storage in the Core, Advanced Materials, vol.26, issue.41, pp.7038-7042, 2014.

A. Hauch, A. Georg, U. O. Kras?ovec, and B. Orel, Photovoltaically Self-Charging Battery, Journal of The Electrochemical Society, vol.149, issue.9, p.A1208, 2002.

A. Hauch, A. Georg, S. Baumgärtner, U. Opara-kra?ovec, and B. Orel, New photoelectrochromic device, Electrochimica Acta, vol.46, issue.13-14, pp.2131-2136, 2001.

A. Cannavale, M. Manca, F. Malara, L. De-marco, R. Cingolani et al., Highly efficient smart photovoltachromic devices with tailored electrolyte composition, Energy & Environmental Science, vol.4, issue.7, p.2567, 2011.

Y. Saito, S. Uchida, T. Kubo, and H. Segawa, Surface-oxidized tungsten for energy-storable dye-sensitized solar cells, Thin Solid Films, vol.518, issue.11, pp.3033-3036, 2010.

N. F. Yan, G. R. Li, G. L. Pan, and X. P. Gao, TiN Nanotube Arrays as Electrocatalytic Electrode for Solar Storable Rechargeable Battery, Journal of The Electrochemical Society, vol.159, issue.11, pp.A1770-A1774, 2012.

. Soc, , vol.159, pp.1770-1774, 2012.

W. Guo, X. Xue, S. Wang, C. Lin, and Z. L. Wang, An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays, Nano Letters, vol.12, issue.5, pp.2520-2523, 2012.

A. Paolella, C. Faure, G. Bertoni, S. Marras, A. Guerfi et al., Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries, Nature Communications, vol.8, issue.1, p.14643, 2017.

N. N. Dinh, N. T. Oanh, P. D. Long, M. C. Bernard, and A. Hugot-le-goff, Electrochromic properties of TiO2 anatase thin films prepared by a dipping sol?gel method, Thin Solid Films, vol.423, issue.1, pp.70-76, 2003.

N. Özer, Reproducibility of the coloration processes in TiO2 films, Thin Solid Films, vol.214, issue.1, pp.17-24, 1992.

Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker et al., Continuous formation of supported cubic and hexagonal mesoporous films by sol?gel dip-coating, Nature, vol.389, issue.6649, pp.364-368, 1997.

C. Sanchez, L. Rozes, F. Ribot, C. Laberty-robert, D. Grosso et al., ?Chimie douce?: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials, Comptes Rendus Chimie, vol.13, issue.1-2, pp.3-39, 2010.

D. Grosso, F. Cagnol, G. J. Soler-illia, E. L. Crepaldi, H. Amenitsch et al., Fundamentals of Mesostructuring Through Evaporation-Induced Self-Assembly, Advanced Functional Materials, vol.14, issue.4, pp.309-322, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00005435

D. Grosso, C. Boissière, B. Smarsly, T. Brezesinski, N. Pinna et al., Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides, Nature Materials, vol.3, issue.11, pp.787-792, 2004.

N. Krins, J. D. Bass, D. Grosso, C. Henrist, R. Delaigle et al., NbVO5Mesoporous Thin Films by Evaporation Induced Micelles Packing: Pore Size Dependence of the Mechanical Stability upon Thermal Treatment and Li Insertion/Extraction, Chemistry of Materials, vol.23, issue.18, pp.4124-4131, 2011.

S. Hilliard, Water Splitting Photoelectrocatalysis, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01358735

E. Bindini, G. Naudin, M. Faustini, D. Grosso, and C. Boissière, Critical Role of the Atmosphere in Dip-Coating Process, The Journal of Physical Chemistry C, vol.121, issue.27, pp.14572-14580, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01549056

C. Boissiere, D. Grosso, S. Lepoutre, L. Nicole, A. B. Bruneau et al., Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry, Langmuir, vol.21, issue.26, pp.12362-12371, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00022622

P. Löbmann, Characterization of sol?gel thin films by ellipsometric porosimetry, Journal of Sol-Gel Science and Technology, vol.84, issue.1, pp.2-15, 2017.

O. Nguyen, E. Courtin, F. Sauvage, N. Krins, C. Sanchez et al., Shedding light on the light-driven lithium ion de-insertion reaction: towards the design of a photo-rechargeable battery, Journal of Materials Chemistry A, vol.5, issue.12, pp.5927-5933, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01522436

S. Stepanov, Grazing-incidence X-ray diffraction. 3rd Autumn Sch. X-Ray Scatt, Surf. Thin Layers, vol.1, issue.4, 1997.

C. J. Howard, T. M. Sabine, and F. Dickson, Structural and thermal parameters for rutile and anatase, Acta Crystallographica Section B Structural Science, vol.47, issue.4, pp.462-468, 1991.

J. Tauc, R. Grigorovici, and A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, physica status solidi (b), vol.15, issue.2, pp.627-637, 1966.

R. Van-de-krol, A. Goossens, and E. A. Meulenkamp, Electrical and optical properties of TiO2 in accumulation and of lithium titanate Li0.5TiO2, Journal of Applied Physics, vol.90, issue.5, pp.2235-2242, 2001.

, Hydrogenated Anatase TiO2 as Lithium-Ion Battery Anode: SizeReactivity Correlation, Structure and dynamics of lithium in Anatase TiO2: study of interstitial Li-ion intercalation in anatase TiO2 at the atomic level -Wagemaker M. thesis

S. Ardo and G. J. Meyer, Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2semiconductor surfaces, Chem. Soc. Rev., vol.38, issue.1, pp.115-164, 2009.

V. M. Khomenko, K. Langer, H. Rager, and A. Fett, Electronic absorption by Ti 3+ ions and electron delocalization in synthetic blue rutile, Physics and Chemistry of Minerals, vol.25, issue.5, pp.338-346, 1998.

A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri et al., Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles, Journal of the American Chemical Society, vol.134, issue.18, pp.7600-7603, 2012.

B. Enright and D. Fitzmaurice, Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film, The Journal of Physical Chemistry, vol.100, issue.3, pp.1027-1035, 1996.

G. Boschloo and D. Fitzmaurice, Electron Accumulation in Nanostructured TiO[sub 2] (Anatase) Electrodes, Journal of The Electrochemical Society, vol.147, issue.3, p.1117, 2000.

L. Kavan, M. Grätzel, J. Rathouský, and A. Zukalb, Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties, Journal of The Electrochemical Society, vol.143, issue.2, pp.394-400, 1996.

Y. Cao, Y. Chen, X. Sun, Z. Zhang, and T. Mu, Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity, Physical Chemistry Chemical Physics, vol.14, issue.35, p.12252, 2012.

S. Södergren, H. Siegbahn, H. Rensmo, H. Lindström, A. Hagfeldt et al., Lithium Intercalation in Nanoporous Anatase TiO2Studied with XPS, The Journal of Physical Chemistry B, vol.101, issue.16, pp.3087-3090, 1997.

M. Wagemaker, D. Lützenkirchen-hecht, A. A. Van-well, and R. Frahm, Atomic and Electronic Bulk versus Surface Structure: Lithium Intercalation in Anatase TiO2, The Journal of Physical Chemistry B, vol.108, issue.33, pp.12456-12464, 2004.

T. Kang, D. Kim, and K. Kim, Time?Dependent Electrochromism of Nanocrystalline TiO2 Films in Propylene Carbonate Solution of LiClO4, Journal of The Electrochemical Society, vol.145, issue.6, pp.1982-1986, 1998.

L. Vayssieres, C. Persson, and J. Guo, Size effect on the conduction band orbital character of anatase TiO2 nanocrystals, Applied Physics Letters, vol.99, issue.18, p.183101, 2011.

T. Berger, D. Monllor-satoca, M. Jankulovska, T. Lana-villarreal, and R. Gómez, The Electrochemistry of Nanostructured Titanium Dioxide Electrodes, ChemPhysChem, vol.13, issue.12, pp.2824-2875, 2012.

S. Chen and L. Wang, Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution, Chemistry of Materials, vol.24, issue.18, pp.3659-3666, 2012.

M. Kapilashrami, Y. Zhang, Y. Liu, A. Hagfeldt, and J. Guo, Probing the Optical Property and Electronic Structure of TiO2Nanomaterials for Renewable Energy Applications, Chemical Reviews, vol.114, issue.19, pp.9662-9707, 2014.

G. Boschloo and D. Fitzmaurice, Spectroelectrochemical Investigation of Surface States in Nanostructured TiO2Electrodes, The Journal of Physical Chemistry B, vol.103, issue.12, pp.2228-2231, 1999.

J. Bisquert, F. Fabregat-santiago, I. Mora-seró, G. Garcia-belmonte, E. M. Barea et al., A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors, Inorganica Chimica Acta, vol.361, issue.3, pp.684-698, 2008.

G. Betz, H. Tributsch, and R. Marchand, Hydrogen insertion (intercalation) and light induced proton exchange at TiO2(B) -electrodes, Journal of Applied Electrochemistry, vol.14, issue.3, pp.315-322, 1984.

A. Paolella, C. Faure, G. Bertoni, S. Marras, A. Guerfi et al., Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries, Nature Communications, vol.8, issue.1, p.14643, 2017.

S. N. Lou, N. Sharma, D. Goonetilleke, W. H. Saputera, T. M. Leoni et al., An Operando Mechanistic Evaluation of a Solar-Rechargeable Sodium-Ion Intercalation Battery, Advanced Energy Materials, vol.7, issue.19, p.1700545, 2017.

Y. Guo, Y. Hu, and J. Maier, Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries, Chemical Communications, vol.0, issue.26, p.2783, 2006.

M. Wagemaker, D. Lützenkirchen-hecht, A. A. Van-well, and R. Frahm, Atomic and Electronic Bulk versus Surface Structure: Lithium Intercalation in Anatase TiO2, The Journal of Physical Chemistry B, vol.108, issue.33, pp.12456-12464, 2004.

U. Lafont, D. Carta, G. Mountjoy, A. V. Chadwick, and E. M. Kelder, In Situ Structural Changes upon Electrochemical Lithium Insertion in Nanosized Anatase TiO2, The Journal of Physical Chemistry C, vol.114, issue.2, pp.1372-1378, 2009.

R. Van-de-krol, A. Goossens, and J. Schoonman, Spatial Extent of Lithium Intercalation in Anatase TiO2, The Journal of Physical Chemistry B, vol.103, issue.34, pp.7151-7159, 1999.

V. M. Khomenko, K. Langer, H. Rager, and A. Fett, Electronic absorption by Ti 3+ ions and electron delocalization in synthetic blue rutile, Physics and Chemistry of Minerals, vol.25, issue.5, pp.338-346, 1998.

A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri et al., Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles, Journal of the American Chemical Society, vol.134, issue.18, pp.7600-7603, 2012.

V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nature Materials, vol.12, issue.6, pp.518-522, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01159902

H. Usui, O. Miyamoto, T. Nomiyama, Y. Horie, and T. Miyazaki, Photorechargeability of TiO2 film electrodes prepared by pulsed laser deposition, Sol. Energy Mater. Sol. Cells, vol.86, pp.123-134, 2005.

. Pb-peo, Effect of Alloy Composition and Crystal Face of Pt-Skin/Pt100xCox [(111), (100), and (110)] Single Crystal Electrodes on the Oxygen Reduction Reaction Activity, TiO2 mesoporous active material, vol.1

, Figure 3: Schematic drawing based on X-ray photo from cross-section of pike in the 70?90 cm range., Figure, vol.45

O. Nguyen, E. Courtin, F. Sauvage, N. Krins, C. Sanchez et al., Shedding light on the light-driven lithium ion de-insertion reaction: towards the design of a photo-rechargeable battery, Journal of Materials Chemistry A, vol.5, issue.12, pp.5927-5933, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01522436

S. Ardo and G. J. Meyer, Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2semiconductor surfaces, Chem. Soc. Rev., vol.38, issue.1, pp.115-164, 2009.

P. Salvador, Hole diffusion length in n -TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis, J. Appl. Phys, vol.55, pp.2977-2985, 1984.

D. Aurbach, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta, vol.50, pp.247-254, 2004.

K. Xu, Electrolytes and Interphases in Li-Ion Batteries and Beyond, Chem. Rev, vol.114, pp.11503-11618, 2014.

A. V. Plakhotnyk, L. Ernst, and R. Schmutzler, Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O, J. Fluor. Chem, vol.126, pp.27-31, 2005.

S. E. Sloop, J. K. Pugh, S. Wang, J. B. Kerr, and K. Kinoshita, Chemical Reactivity of PF[sub 5] and LiPF[sub 6] in Ethylene Carbonate/Dimethyl Carbonate Solutions, Electrochemical and Solid-State Letters, vol.4, issue.4, p.A42, 2001.

X. Wang, M. Waje, and Y. Yan, CNT-Based Electrodes with High Efficiency for PEMFCs, Electrochemical and Solid-State Letters, vol.8, issue.1, p.A42, 2005.

D. Aurbach, The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into LixMOy Host Materials

. Soc, , vol.147, pp.1322-1331, 2000.

M. Armand, F. Endres, D. R. Macfarlane, H. Ohno, and B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nature Materials, vol.8, issue.8, pp.621-629, 2009.

J. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for Sustainable Energy, pp.171-179, 2010.

G. T. Kim, Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries, J. Power Sources, vol.196, pp.2187-2194, 2011.

G. B. Appetecchi, M. Montanino, and S. Passerini, Ionic Liquid-Based Electrolytes for High Energy, Safer Lithium Batteries, ACS Symposium Series, pp.67-128, 2012.

J. Mun, Y. S. Jung, T. Yim, H. Y. Lee, H. Kim et al., Electrochemical stability of bis(trifluoromethanesulfonyl)imide-based ionic liquids at elevated temperature as a solvent for a titanium oxide bronze electrode, Journal of Power Sources, vol.194, issue.2, pp.1068-1074, 2009.

A. Lewandowski and A. ?widerska-mocek, Ionic liquids as electrolytes for Li-ion batteries?An overview of electrochemical studies, Journal of Power Sources, vol.194, issue.2, pp.601-609, 2009.

S. Kazemiabnavi, Z. Zhang, K. Thornton, and S. Banerjee, Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries, J. Phys. Chem. B, vol.120, pp.5691-5702, 2016.

, Chapter 4 -Photo-induced mechanisms: investigation

G. B. Appetecchi, M. Montanino, and S. Passerini, Ionic liquid-based electrolytes for high-energy lithium batteries, Ion. Liq. Sci. Appl, 2013.

R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.11, issue.4, pp.179-209, 2010.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, Plasmonic Gold Nanocrystals Coupled with Photonic Crystal Seamlessly on TiO2 Nanotube Photoelectrodes for Efficient Visible Light Photoelectrochemical Water Splitting

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, Detecting 20 nm Wide Defects in Large Area Nanopatterns Using Optical Interferometric Microscopy, Nano Letters, vol.13, issue.8, pp.3716-3721, 2013.

Y. Pu, Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting, Nano Lett, vol.13, pp.3817-3823, 2013.

S. Hejazi, N. T. Nguyen, A. Mazare, and P. Schmuki, Aminated TiO 2 nanotubes as a photoelectrochemical water splitting photoanode, Catalysis Today, vol.281, pp.189-197, 2017.

A. Mazare, I. Paramasivam, K. Lee, and P. Schmuki, Improved water-splitting behaviour of flame annealed TiO2 nanotubes, Electrochem. Commun, vol.13, pp.1030-1034, 2011.

Y. Cao, Y. Chen, X. Sun, Z. Zhang, and T. Mu, Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity, Physical Chemistry Chemical Physics, vol.14, issue.35, p.12252, 2012.

S. Cuadrado-prado, M. Domínguez-pérez, E. Rilo, S. García-garabal, L. Segade et al., Experimental measurement of the hygroscopic grade on eight imidazolium based ionic liquids, Fluid Phase Equilibria, vol.278, issue.1-2, pp.36-40, 2009.

F. D. Francesco, N. Calisi, M. Creatini, B. Melai, P. Salvo et al., Water sorption by anhydrous ionic liquids, Green Chemistry, vol.13, issue.7, p.1712, 2011.

J. E. Reid, A. J. Walker, and S. Shimizu, Residual water in ionic liquids: clustered or dissociated?, Physical Chemistry Chemical Physics, vol.17, issue.22, pp.14710-14718, 2015.

L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, vol.350, issue.6263, pp.938-943, 2015.

L. Smith and B. Dunn, Opening the window for aqueous electrolytes, Science, vol.350, issue.6263, pp.918-918, 2015.

L. Suo, F. Han, X. Fan, H. Liu, K. Xu et al., ?Water-in-Salt? electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications, Journal of Materials Chemistry A, vol.4, issue.17, pp.6639-6644, 2016.

T. Berger, D. Monllor-satoca, M. Jankulovska, T. Lana-villarreal, and R. Gómez, The Electrochemistry of Nanostructured Titanium Dioxide Electrodes, ChemPhysChem, vol.13, issue.12, pp.2824-2875, 2012.

Y. Kim, Evidencing Fast, Massive, and Reversible H+ Insertion in Nanostructured TiO2 Electrodes at Neutral pH. Where Do Protons Come From?, J. Phys. Chem. C, vol.121, pp.10325-10335
URL : https://hal.archives-ouvertes.fr/hal-02391896

T. Berger, J. A. Anta, and V. Morales-flórez, Spectroscopic properties of electrochemically populated electronic states in nanostructured TiO2 films: anatase versus rutile, Physical Chemistry Chemical Physics, vol.15, issue.33, p.13790, 2013.

T. Berger, J. A. Anta, and V. Morales-flórez, Electrons in the Band Gap: Spectroscopic Characterization of Anatase TiO2 Nanocrystal Electrodes under Fermi Level Control, The Journal of Physical Chemistry C, vol.116, issue.21, pp.11444-11455, 2012.

F. Fabregat-santiago, E. M. Barea, J. Bisquert, G. K. Mor, K. Shankar et al., High Carrier Density and Capacitance in TiO2Nanotube Arrays Induced by Electrochemical Doping, Journal of the American Chemical Society, vol.130, issue.34, pp.11312-11316, 2008.

B. Chen, J. Hou, and K. Lu, Formation Mechanism of TiO2 Nanotubes and Their Applications in Photoelectrochemical Water Splitting and Supercapacitors, Langmuir, vol.29, issue.19, pp.5911-5919, 2013.

B. H. Meekins and P. V. Kamat, Got TiO2 Nanotubes? Lithium Ion Intercalation Can Boost Their Photoelectrochemical Performance, ACS Nano, vol.3, issue.11, pp.3437-3446, 2009.

H. Bryngelsson, M. Stjerndahl, T. Gustafsson, and K. Edström, How dynamic is the SEI?, Journal of Power Sources, vol.174, issue.2, pp.970-975, 2007.

G. Zampardi, F. La-mantia, and W. Schuhmann, Determination of the formation and range of stability of the SEI on glassy carbon by local electrochemistry, RSC Advances, vol.5, issue.39, pp.31166-31171, 2015.

E. Ventosa, Solid Electrolyte Interphase (SEI) at TiO2 Electrodes in Li-Ion Batteries: Defining Apparent and Effective SEI Based on Evidence from Xray Photoemission Spectroscopy and Scanning Electrochemical Microscopy, ACS Appl

, Contents: (Adv. Mater. Interfaces 14/2017), Advanced Materials Interfaces, vol.4, issue.14, pp.3123-3130, 2017.

C. Han, D. Yang, Y. Yang, B. Jiang, Y. He et al., Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer, Journal of Materials Chemistry A, vol.3, issue.25, pp.13340-13349, 2015.

B. S. Parimalam and B. L. Lucht, Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI, Journal of The Electrochemical Society, vol.165, issue.2, pp.A251-A255, 2018.

C. L. Campion, W. Li, and B. L. Lucht, Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.152, issue.12, p.A2327, 2005.

S. F. Lux, I. T. Lucas, E. Pollak, S. Passerini, M. Winter et al., The mechanism of HF formation in LiPF6 based organic carbonate electrolytes, Electrochemistry Communications, vol.14, issue.1, pp.47-50, 2012.

J. Xu, Y. Ao, D. Fu, and C. Yuan, Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light, Applied Surface Science, vol.254, issue.10, pp.3033-3038, 2008.

D. Ensling, M. Stjerndahl, A. Nytén, T. Gustafsson, and J. O. Thomas, A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes, J. Mater. Chem., vol.19, issue.1, pp.82-88, 2009.

Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama et al., Hydrate-melt electrolytes for high-energy-density aqueous batteries, Nature Energy, vol.1, issue.10, p.16129, 2016.

P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, vol.55, issue.22, pp.6332-6341, 2010.

D. Steiner, A. Auer, E. Portenkirchner, and J. Kunze-liebhäuser, The role of surface films during lithiation of amorphous and anatase TiO2 nanotubes, Journal of Electroanalytical Chemistry, vol.812, pp.166-173, 2018.

M. Z. Atashbar, H. T. Sun, B. Gong, W. Wlodarski, and R. Lamb, XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method, Thin Solid Films, vol.326, issue.1-2, pp.238-244, 1998.

T. K. Sham and M. S. Lazarus, X-ray photoelectron spectroscopy (XPS) studies of clean and hydrated TiO2 (rutile) surfaces, Chemical Physics Letters, vol.68, issue.2-3, pp.426-432, 1979.

S. Södergren, H. Siegbahn, H. Rensmo, H. Lindström, A. Hagfeldt et al., Lithium Intercalation in Nanoporous Anatase TiO2Studied with XPS, The Journal of Physical Chemistry B, vol.101, issue.16, pp.3087-3090, 1997.

S. Wiemers-meyer, M. Winter, and S. Nowak, Mechanistic insights into lithium ion battery electrolyte degradation ? a quantitative NMR study, Physical Chemistry Chemical Physics, vol.18, issue.38, pp.26595-26601, 2016.

I. Nicotera, C. Oliviero, W. A. Henderson, G. B. Appetecchi, and S. Passerini, NMR Investigation of Ionic Liquid?LiX Mixtures: Pyrrolidinium Cations and TFSI-Anions, The Journal of Physical Chemistry B, vol.109, issue.48, pp.22814-22819, 2005.

G. R. Fulmer, A. J. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman et al., NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist, Organometallics, vol.29, issue.9, pp.2176-2179, 2010.

M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, Electrochemical Impedance Spectroscopy, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02880772

S. Bach, J. P. Pereira-ramos, and P. Willman, Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy, Electrochimica Acta, vol.55, issue.17, pp.4952-4959, 2010.

S. Bach, J. P. Pereira-ramos, and P. Willmann, A kinetic study of electrochemical lithium insertion in nanosized rutile ?-MnO2 by impedance spectroscopy, Electrochimica Acta, vol.56, issue.27, pp.10016-10022, 2011.

S. Bach, J. P. Pereira-ramos, and P. Willmann, A kinetic study of electrochemical lithium insertion in nanosized rutile ?-MnO2 by impedance spectroscopy, Electrochimica Acta, vol.56, issue.27, pp.10016-10022, 2011.

C. Ho, I. D. Raistrick, and R. A. Huggins, Application of A?C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films, Journal of The Electrochemical Society, vol.127, issue.2, pp.343-350, 1980.

B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur et al., Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films, Journal of The Electrochemical Society, vol.157, issue.12, p.C452, 2010.

P. Córdoba-torres, T. J. Mesquita, O. Devos, B. Tribollet, V. Roche et al., On the intrinsic coupling between constant-phase element parameters ? and Q in electrochemical impedance spectroscopy, Electrochimica Acta, vol.72, pp.172-178, 2012.

U. Tröltzsch, O. Kanoun, and H. Tränkler, Characterizing aging effects of lithium ion batteries by impedance spectroscopy, Electrochimica Acta, vol.51, issue.8-9, pp.1664-1672, 2006.

A. J. Roberts and R. C. Slade, Effect of specific surface area on capacitance in asymmetric carbon/?-MnO2 supercapacitors, Electrochimica Acta, vol.55, issue.25, pp.7460-7469, 2010.

S. Yoon, J. Jegal, K. C. Roh, and K. Kim, Electrochemical Impedance Spectroscopic Investigation of Sodium Ion Diffusion in MnO2Using a Constant Phase Element Active in Desired Frequency Ranges, Journal of The Electrochemical Society, vol.161, issue.4, pp.H207-H213, 2014.

M. Pfanzelt, P. Kubiak, M. Fleischhammer, and M. Wohlfahrt-mehrens, TiO2 rutile?An alternative anode material for safe lithium-ion batteries, Journal of Power Sources, vol.196, issue.16, pp.6815-6821, 2011.

F. D. Escobar-teran, A new approach towards understanding the ion transfer dynamics in nanostructured carbon-based thin films for energy storage applications
URL : https://hal.archives-ouvertes.fr/tel-01480252

D. A. Buttry and M. D. Ward, Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance, Chemical Reviews, vol.92, issue.6, pp.1355-1379, 1992.

H. Perrot, Piezoelectric Transduction (QCM), Chemical Sensors and Biosensors, pp.71-91, 2013.

L. Rodriguez-pardo, J. F. Rodriguez, C. Gabrielli, H. Perrot, and R. Brendel, Sensitivity, noise, and resolution in QCM sensors in liquid media, IEEE Sensors Journal, vol.5, issue.6, pp.1251-1257, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00077240

G. Sauerbrey, Verwendung von Schwingquarzen zur W?gung d?nner Schichten und zur Mikrow?gung, Zeitschrift f?r Physik, vol.155, issue.2, pp.206-222, 1959.

S. Jakab, S. Picart, B. Tribollet, P. Rousseau, H. Perrot et al., Study of the Dissolution of Thin Films of Cerium Oxide by Using a GaPO4Crystal Microbalance, Analytical Chemistry, vol.81, issue.13, pp.5139-5145, 2009.

M. Hepel, K. Kanige, and S. Bruckenstein, ChemInform Abstract: In situ Underpotential Deposition Study of Lead on Silver Using the Electrochemical Quartz Crystal Microbalance. Direct Evidence for Lead(II) Adsorption Before Spontaneous Charge Transfer., ChemInform, vol.20, issue.44, 1989.

M. Hepel, K. Kanige, and S. Bruckenstein, In situ underpotential deposition study of lead on silver using the electrochemical quartz crystal microbalance, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.266, issue.2, pp.409-421, 1989.

M. Hepel and S. Bruckenstein, Tracking anion expulsion during underpotential deposition of lead at silver using the quartz microbalance, Electrochimica Acta, vol.34, issue.11, pp.1499-1504, 1989.

S. Bruckenstein and S. Swathirajan, Potential dependence of lead and silver underpotential coverages in acetonitrile using a piezoelectric crystal oscillator method, Electrochimica Acta, vol.30, issue.7, pp.851-855, 1985.

G. S. Ostrom and D. A. Buttry, Quartz Crystal Microbalance Studies of Deposition and Dissolution Mechanisms of Electrochromic Films of Diheptylviologen Bromide, J. Electroanal. Chem. Interfacial Electrochem, vol.256, pp.411-431, 1988.

C. R. Arias, C. Debiemme-chouvy, C. Gabrielli, C. Laberty-robert, A. Pailleret et al., New Insights into Pseudocapacitive Charge-Storage Mechanisms in Li-Birnessite Type MnO2 Monitored by Fast Quartz Crystal Microbalance Methods, The Journal of Physical Chemistry C, vol.118, issue.46, pp.26551-26559, 2014.

W. Tsai, P. Taberna, and P. Simon, Electrochemical Quartz Crystal Microbalance (EQCM) Study of Ion Dynamics in Nanoporous Carbons, Journal of the American Chemical Society, vol.136, issue.24, pp.8722-8728, 2014.

W. Tsai, P. Taberna, and P. Simon, Electrochemical Quartz Crystal Microbalance (EQCM) Study of Ion Dynamics in Nanoporous Carbons, Journal of the American Chemical Society, vol.136, issue.24, pp.8722-8728, 2014.

S. Sigalov, M. D. Levi, G. Salitra, D. Aurbach, and J. Maier, EQCM as a unique tool for determination of ionic fluxes in microporous carbons as a function of surface charge distribution, Electrochemistry Communications, vol.12, issue.12, pp.1718-1721, 2010.

J. Agrisuelas, C. Gabrielli, J. J. Garci?a-jaren?o, D. Gime?nez-romero, J. Gregori et al., Usefulness of F(dm/dQ) Function for Elucidating the Ions Role in PB Films, Journal of The Electrochemical Society, vol.154, issue.6, p.F134, 2007.

D. Benito, C. Gabrielli, J. J. Garc??a-jareño, M. Keddam, H. Perrot et al., Study by EQCM on the voltammetric electrogeneration of poly(neutral red). The effect of the pH and the nature of cations and anions on the electrochemistry of the films, Electrochimica Acta, vol.48, issue.27, pp.4039-4048, 2003.

D. Giménez-romero, J. Garc?á-jareño, and F. Vicente, Materiales y Procesos Electródicos (I), Chap. 3, 2002.

D. Giménez-romero, P. R. Bueno, J. J. García-jareño, C. Gabrielli, H. Perrot et al., Mechanism for Interplay between Electron and Ionic Fluxes in KhFek[Fe(CN)6]l·mH2O Compounds, The Journal of Physical Chemistry B, vol.110, issue.6, pp.2715-2722, 2006.

M. D. Levi, G. Salitra, N. Levy, D. Aurbach, and J. Maier, Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage, Nature Materials, vol.8, issue.11, pp.872-875, 2009.

K. Kwon, F. Kong, F. Mclarnon, and J. W. Evans, Characterization of the SEI on a Carbon Film Electrode by Combined EQCM and Spectroscopic Ellipsometry, Journal of The Electrochemical Society, vol.150, issue.2, p.A229, 2003.

J. Li, S. Chen, X. Fan, L. Huang, and S. Sun, Studies of the Interfacial Properties of an Electroplated Sn Thin Film Electrode/Electrolyte Using in Situ MFTIRS and EQCM, Langmuir, vol.23, issue.26, pp.13174-13180, 2007.

V. Pralong, Electrochemical study of nanometer Co3O4, Co, CoSb3 and Sb thin films toward lithium, Solid State Ionics, vol.166, issue.3-4, pp.295-305, 2004.

Z. Yang, M. C. Dixon, R. A. Erck, and L. Trahey, Quantification of the Mass and Viscoelasticity of Interfacial Films on Tin Anodes Using EQCM-D, ACS Applied Materials & Interfaces, vol.7, issue.48, pp.26585-26594, 2015.

Z. Yang, M. C. Dixon, R. A. Erck, and L. Trahey, Quantification of the Mass and Viscoelasticity of Interfacial Films on Tin Anodes Using EQCM-D, ACS Applied Materials & Interfaces, vol.7, issue.48, pp.26585-26594, 2015.

N. Borisenko, A. Ispas, E. Zschippang, Q. Liu, S. Zein-el-abedin et al., In situ STM and EQCM studies of tantalum electrodeposition from TaF5 in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide, Electrochimica Acta, vol.54, issue.5, pp.1519-1528, 2009.

O. Schneider, A. Bund, A. Ispas, N. Borissenko, S. Zein-el-abedin et al., An EQCM Study of the Electropolymerization of Benzene in an Ionic Liquid and Ion Exchange Characteristics of the Resulting Polymer Film, The Journal of Physical Chemistry B, vol.109, issue.15, pp.7159-7168, 2005.

H. Tributsch, Photo-intercalation: Possible application in solar energy devices, Applied Physics, vol.23, issue.1, pp.61-71, 1980.

F. Sauvage, C. Andriamiadamanana, and C. Laberty-robert, Embroidering a Filmsy Photorechargeable Energy Fabric with Wide Weather Adaptability

A. Paolella, C. Faure, G. Bertoni, S. Marras, A. Guerfi et al., Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries, Nature Communications, vol.8, issue.1, p.14643, 2017.

. .. Annex-i--figures, SAE Architecture Analysis and Design Language (AADL) Annex Volume 1: Annex A: ARINC653 Annex, Annex C: Code Generation Annex, Annex E: Error Model Annex, V Annex I.1 -TiO2 (PB-PEO, TiCl4 1M/2M) pore size distribution

, Preface, Public Choice III, pp.xvii-xx, 2003.

R. .. Spectroscopy, Preface, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.1, pp.xxi-xxii, 1966.

. .. Bibliography, S. Wiemers-meyer, M. Winter, and S. Nowak, Mechanistic insights into lithium ion battery electrolyte degradation -a quantitative NMR study, Phys. Chem. Chem. Phys, vol.1, pp.26595-26601, 2016.

C. Boissiere, D. Grosso, S. Lepoutre, L. Nicole, A. B. Bruneau et al., Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry, Langmuir, vol.21, issue.26, pp.12362-12371, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00022622

S. Ardo and G. J. Meyer, Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2semiconductor surfaces, Chem. Soc. Rev., vol.38, issue.1, pp.115-164, 2009.

A. A. Vives, Piezoelectric Transducers and Applications, 2008.