, Preparation of a Nitrogen Oil Compound Fraction by Modified Gel Silica Column Chromatography, pp.5-10

. Acetone/toluene, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., CDCl3) # (ppm) 7.38-7.18 (m, 20H, ArH), 5.93 (dddd, Jb,ct = 17.0 Hz, Jb,cc = 10.5 Hz, Jb,a' = 6.0 Hz, Jb,a = 5.0 Hz, 1H, H-b), 5.35 (dq, Jct,b = 17.0 Hz, Jct,a = Jct,a' = Jgem = 1.5 Hz, vol.1

, Book Reviews / Coming Medical Meetings, Dermatology, vol.137, issue.2, pp.128-128, 1968.

M. S. Balakrishna, R. M. Abhyankar, and J. T. Mague, New bis(phosphines) derived from N,N '-substituted ethylenediamine derivatives. Synthesis and transition metal chemistry of X2PN(R)CH2CH2(R)NPX2 (R = CH2Ph or Ph, X = Ph; R = CH2Ph, X2 = O2C6H4). The crystal and molecular structure of Ph2PN(CH2Ph)CH2CH2(CH2Ph)NPPh2 and cis-[{PtCl2Ph2PN(CH2Ph)CH2CH2(CH2Ph)NPPh2}], Journal of the Chemical Society, Dalton Transactions, vol.74, issue.9, p.1407, 1999.

T. K. Shing and A. S. Perlin, ChemInform Abstract: SYNTHESIS OF BENZYL 2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSIDE AND 1,6-ANHYDRO-2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSE, Chemischer Informationsdienst, vol.15, issue.49, p.1168, 1984.

. O-, methyl-3-O-benzyl--L-ido pyranosyl uronate)-(1-4)-O-(2-azido-3-O-benzyl-2-deoxy

, Preparation of a Nitrogen Oil Compound Fraction by Modified Gel Silica Column Chromatography, pp.5-15

, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., Acetone/Toluene) afforded the desired compound as white solid (77 mg, 96 %) ; 1 H NMR (300 MHz, CDCl3) # (ppm) 7.33 -7.17 (m, 30H, ArH), 5.87 (dddd, Jb,ct = 17.0 Hz, Jb,cc = 10.5 Hz, Jb,a' = 6.0 Hz, Jb,a = 5.0 Hz, 1H, H-b), 5.34 (dd, Jct,b = 17.0 Hz, Jct,a = Jct,a' = Jgem = 1.5 Hz, 1H, H-ct), 5.21 -5.13 (m, 3H, H-cc

. Hz-;-m,-3h, (m, 3H, 3-Hgluc, 6-H), 3.60 -3.52 (m, 2H, 3-Hgluc, 6-H), 3.51 -3.38 (m, 7H, COOMe, 5-Hgluc), 3.35 -3.28 (m, 1H, 2-HA), 3.20 (dd, J = 10.0 Hz, J = 3.5 Hz, 1H, 2-Hgluc), 3.14 (dd, J = 10.0 Hz, J = 3.5 Hz, 1H, 2-Hgluc), 2.04 (s, 3H, CH3 OAc), 2.02 (s, 3H, vol.118

, How to make a 20 mg/mL X-Gluc Stock Solution v1, 69.8 (C-5 B ), 69.4 (C-5 D ), vol.68, 2014.

T. K. Shing and A. S. Perlin, ChemInform Abstract: SYNTHESIS OF BENZYL 2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSIDE AND 1,6-ANHYDRO-2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSE, Chemischer Informationsdienst, vol.15, issue.49, 1984.

K. Seo, ChemInform Abstract: SYNTHESIS OF 1,2,4-TRI-O-ACETYL-6-DEOXY-6-C-(ISOPROPYLPHOSPHINYL)-3,5-DI-O-METHYL-D-GLUCOSEPTANOSE AND 1,2,4-TRI-O-ACETYL-3-O-BENZYL-6-C-(BUTYLPHOSPHINYL)-6-DEOXY-5-O-METHYL-D-GLUCOSEPTANOSE, Chemischer Informationsdienst, vol.15, issue.36, 1984.

, Preparation of a Nitrogen Oil Compound Fraction by Modified Gel Silica Column Chromatography

G. Alfassi, D. M. Rein, and Y. Cohen, Partial cellulose acetylation in 1-ethyl-3-methylimidazolium acetate induced by dichloromethane, Journal of Polymer Science Part A: Polymer Chemistry, vol.56, issue.21, pp.2458-2462, 2018.

H. Nmr, Table 3: NMR data for tamanolide E1, tamanolide E2, calanolide D, inophyllum E at 500 MHz (CDCl3, 300 K)., 300 MHz, CDCl3) # (ppm) 7.43 -7.15 (m, 30H, ArH), 5.97 (dddd, Jb,ct = 17.0 Hz, Jb

J. Hz, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., Hz, Jb,a = 5.0 Hz, 1H, H-b), 5.40 (dd, Jct,b = 17.0 Hz, Jct,a = Jct,a' = Jgem = 1.5 Hz, 1H, H-ct), 5.32 -5

. Hz, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., 9H, OCH2Ph), 4.32 -4.27 (m, 1H, 6-H), 4.24 (dd, Ja,a' = 13.0 Hz, Ja,b = 6.0 Hz, vol.1

, Gaussialuciferase (GLuc), HRMS m/z (ESI) calculated for C77H90N10NaO27S, vol.96, pp.1-1, 2015.

, Preparation of a Nitrogen Oil Compound Fraction by Modified Gel Silica Column Chromatography

, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., Methanol/Dichloromethane + 0.1 % NEt3) afforded the compound as white solid (57 mg, 93 %) ; 1 H NMR (360 MHz, MeOD) # (ppm) 7.48 -7.08 (m, 30H, ArH), 5.98 (dddd, Jb,ct = 17.0 Hz, vol.10

J. Hz, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., Hz, Jb,a = 5.0 Hz, 1H, H-b), 5.33 (dd, Jct,b = 17.5 Hz, Jct,a = Jct,a' = Jgem = 1.5 Hz, 1H, Hct), 5.24 -5.15 (m, 3H, H-cc, 1-Hidu), vol.5

, Gaussialuciferase (GLuc), 99.5 (C-1 idu ), 99.4 (C-1 idu ), 96.5 (C-1 gluc ), 96.1 (C-1 gluc ), vol.114, pp.1-1, 2015.

C. F. Piskorz, S. A. Abbas, and K. L. Matta, Synthetic mucin fragments: Benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-2-deoxy-3-O-?-d-galactopyranosyl-?-d-galactopyranoside and benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-3-O-[6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-?- d-galactopyranosyl]-2-deoxy-?-d-galactopyranoside, Carbohydrate Research, vol.126, issue.1, pp.115-124, 1984.

, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid.

J. Hz, Hz, Jb,a = 5.0 Hz, 1H, H-b), 5.44 -5.36 (m, 2H, H-ct, 1-Hidu), 5.30 -5.19 (m, 4H, H-cc, 1-Hidu, 1-Hgluc), 5.17 (d, J = 3.5 Hz, vol.1, p.1

. Hz, (m, 3H, 4-Hgluc, 5-Hgluc), 3.54 -3.42 (m, 3H, 2-Hgluc, vol.1, p.4

, Gaussialuciferase (GLuc), 100.1 (C-1 gluc ), 98.5 (C-1 gluc ), 98.1 (C-1 idu ), 97.7 (C-1 idu ), vol.96, pp.1-1, 2015.

C. F. Piskorz, S. A. Abbas, and K. L. Matta, Synthetic mucin fragments: Benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-2-deoxy-3-O-?-d-galactopyranosyl-?-d-galactopyranoside and benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-3-O-[6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-?- d-galactopyranosyl]-2-deoxy-?-d-galactopyranoside, Carbohydrate Research, vol.126, issue.1, pp.115-124, 1984.

, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., 60 %). 1 H NMR (400 MHz, D2O) # (ppm) 7.57 -7.232 (m, 30H, ArH), 6.03 (dddd, Jb, vol.6

J. Hz, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., Jb,a = 5.0 Hz, 1H, H-b), 5.52 -5.44 (m, 2H, 1-Hidu), 5.40 (dd, Jcc,b = 17.0 Hz

1. Hz and H. , Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., J =, vol.5, issue.5

. Hz, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., vol.1

. Seontae-yoon, The Creation of Idu, Korea Journal, vol.50, issue.2, pp.97-123, 2010.

M. H. Luntz, IDOXURIDINE (IDU) IN ENGLAND, Archives of Ophthalmology, vol.72, issue.1, pp.148-148, 1964.

, Gaussialuciferase (GLuc), vol.68, pp.1-1, 2015.

Y. Inoue and K. Nagasawa, An improved method for the preparation of crystalline sodium salts of 2-deoxy-2-sulfoamino-d-glucose and methyl 2-deoxy-2-sulfoamino-?-d-glucopyranoside, Carbohydrate Research, vol.69, issue.1, pp.297-300, 1979.

O. Salt,

, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., 35 %). 1 H NMR (400 MHz, D2O) # (ppm) 5.45 (d, J = 3.0 Hz, 1H, 1-Hgluc), 5.42 (d, J = 3.0 Hz, 1H, 1-Hgluc), 5.27 -5.22 (m, 2H, 1-Hidu), 5.16 (d, J = 3.5 Hz, 1H, 1-Hgluc), 5.33 (d, J = 3.0 Hz, 1H, 1-Hgluc, vol.6, p.400

, Gaussialuciferase (GLuc), MHz, D2O) # (ppm) 99.2 (C-1 idu ), 99.1 (C-1 idu ), 97.3 (C-1 gluc ), 96.8 (C-1 gluc, pp.1-1, 2015.

, Gaussialuciferase (GLuc), 75.8 (C-4 gluc ), 75.5 (C-5 idu ), 71.0 (C-3 gluc ), 70.0 (C-a), 69.7 (C-5 idu ), vol.75, pp.1-1, 2015.

T. K. Shing and A. S. Perlin, ChemInform Abstract: SYNTHESIS OF BENZYL 2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSIDE AND 1,6-ANHYDRO-2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSE, Chemischer Informationsdienst, vol.15, issue.49, 1984.

. O-benzyl-%-l--ido-pyranosyl-uronate,

, Preparation of a Nitrogen Oil Compound Fraction by Modified Gel Silica Column Chromatography, pp.5-15

, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., Acetone/Toluene) afforded compound as white solid (86 mg, 86 %) ; 1 H NMR (400 MHz, CDCl3) # (ppm) 7.34 -7.25 (m, 40H, ArH), 5.93 (dddd, Jb,ct = 17.0 Hz, Jb,cc = 10.5 Hz

1. Hz and H. , Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., 5.34 (d, Jct,b = 17.0 Hz, 1H, H-ct), 5.28 -5.22 (m, 4H, H-cc

. Hz-;-m,-6h, 91 -3.79 (m, 10H, 3-Hgluc, 4-Hgluc, 5-Hgluc), 3.75 -3.70 (m, 2H, 4-Hgluc, vol.4, p.3

3. Oac-;-s and . Oac, 98.3 (C-1 idu ), 98.2 (C-1 idu ), 98.2 (C-1 gluc ), 98.1, 97.8 (C-1 gluc ), 97.4 (C-1 gluc ), 96.7 (C-1 gluc, vol.137

R. Minkwitz and R. Bröchler, Über die Reaktionen von (CH3)4N+I-, (CH3)4N+ICl2-, (CH3)4N+ICl4- und (CH3)4N+Cl- mit Trifluormethylhypochlorit CF3OCl / The Reactions of (CH3)4N+I-, ( CH3)4N+ICl2-, (CH3)4N+ICl4- and (CH3)4N+Cl- with Trifluoromethylhypochlorite CF3OCl, Zeitschrift für Naturforschung B, vol.52, issue.3, pp.401-404, 1997.

T. K. Shing and A. S. Perlin, ChemInform Abstract: SYNTHESIS OF BENZYL 2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSIDE AND 1,6-ANHYDRO-2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSE, Chemischer Informationsdienst, vol.15, issue.49, 1984.

, Preparation of a Nitrogen Oil Compound Fraction by Modified Gel Silica Column Chromatography

, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., Methanol/Dichloromethane + 0.1 % NEt3) afforded the compound as white solid (69 mg, 91 %). 1 H NMR (400 MHz, CDCl3) # (ppm) 7.35 -7.14 (m, 40H, ArH), 5.89 (dddd, Jb,ct = 17.0 Hz, vol.10

J. Hz, m, 7H, 5-Hgluc, 6-H), 3.56 -3.50 (m, 3H, 2-Hgluc), 3.49 -3.33 (m, 8H, 2-Hgluc, 4-Hgluc, COOMe) , 3.30 (s, 3H, COOMe), 3.29 (s, 3H, COOMe, Hz, Jb,a = 5.0 Hz, 1H, H-b), 5.30 (d, Jct,b = 17.5 Hz, 1H, H-ct), 5.23 -5.18 (m, 2H, H-cc, 1-Hidu), 5.15 (d, J = 5.0 Hz, 2H, 1-Hidu), 4.91 -4.85 (m, 5H, 1-Hgluc, 5-Hidu), 4.77 -4.72 (m, 4H, 5-Hidu, OCH2Ph), vol.87, pp.67-75

, Gaussialuciferase (GLuc), 67.8 (C-5 idu ), 67.7 (C-5 idu ), 67.1 (C-5 gluc ), 67.0 (C-5gluc), vol.64, pp.1-1, 2015.

C. F. Piskorz, S. A. Abbas, and K. L. Matta, Synthetic mucin fragments: Benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-2-deoxy-3-O-?-d-galactopyranosyl-?-d-galactopyranoside and benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-3-O-[6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-?- d-galactopyranosyl]-2-deoxy-?-d-galactopyranoside, Carbohydrate Research, vol.126, issue.1, pp.115-124, 1984.

H. Jb-;-m,-2h, 1-Hidu), 5.34 (s, 1H, 1-Hgluc), 5.31 -5.25 (m, 3H, H-cc, 1-Hgluc), 5.17 (d, J = 3.0 Hz, 1H, 1-Hgluc), 5.10 (d, J = 11.0 Hz, 1H, OCH2Ph), vol.4

E. L. Nelson, MORE ABOUT IDU, Archives of Ophthalmology, vol.68, issue.2, pp.300-300, 1962.

, Gaussialuciferase (GLuc), vol.57, pp.1-1, 2015.

, British Council news, Learned Publishing, vol.7, issue.1, pp.54-54, 1994.

Y. Inoue and K. Nagasawa, An improved method for the preparation of crystalline sodium salts of 2-deoxy-2-sulfoamino-d-glucose and methyl 2-deoxy-2-sulfoamino-?-d-glucopyranoside, Carbohydrate Research, vol.69, issue.1, pp.297-300, 1979.

. O-sulfonato--d-glucopyranosyl, Efficiency of Packing the Sulfonato-calix[5]arene Bilayer Relative to the Ubiquitous Sulfonato-calix[4]arene Analogue

C. M. Snowden, Compound interest, IEE Review, vol.48, issue.1, pp.15-20, 2002.

. Hz, , vol.1

3. Hz and H. , Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., 13 C NMR from HSQC (400 MHz, D2O) # (ppm) 99

, Figure. The ratio of the concentrations of the main ions in aqueous extracts from the total soil samples ([i] shaft, mg-eq / l) and their fine fraction ([i] <0.1 mm, mg-eq / l)., H NMR (300 MHz, CDCl3) # (ppm) 7.41 -7.21 (m, 50H, ArH), vol.1

J. Hz, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., cc = 10.5 Hz, Jb,a' = 6.0 Hz, Jb,a = 5.0 Hz, 1H, H-b), vol.5

J. Hz and . Jct, 3.59 (q, J =16.5 Hz, 6H, 3-Hgluc, 6-H), 3.48 -3.40 (m, 12H, COOMe), 3.33 (dd, J2,3 = 7.5 Hz, vol.1

C. Benz, 99.0 (C-1 gluc ), 98.2, 98.1 (C-1 idu ), 97.4 (C-1 gluc ), 96.8, 82.7, 78.6, 77.4, 75.9, 75.7 (OCH2Ph), 75.7 (OCH2Ph), 75.6 (OCH2Ph), 75.5 (OCH2Ph), vol.101

Y. Takagi, T. Tsuchiya, and S. Umezawa, Studies on Aminosugars. XXXIII. Syntheses of 4-Azido-2,3,6-tri-O-benzyl-4-deoxy- and 6-Azido-2,3,4-tri-O-benzyl-6-deoxy-?-D-glucopyranosyl Chloride, Bulletin of the Chemical Society of Japan, vol.46, issue.4, pp.1261-1262, 1973.

. O-benzyl-%-l-ido-pyranosyl-uronate,

, Conversion table for cholesterol concentration (mg/100 ml ? mmol/l), The Biology of Cholesterol and Related Steroids, vol.2, p.xiv, 1981.

, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., Acetone/Toluene) afforded the compound as white solid (433 mg, 87 %) ; 1 H NMR (300 MHz, CDCl3) # (ppm) 7.30 -7.21 (m, 50H, ArH), 5.87 (dddd, Jb,ct = 17.0 Hz, Jb,cc = 10.5 Hz, Jb,a' = 6.0 Hz, Jb,a = 5.0 Hz, 1H, H-b), 5.29 (dq, Jct,b = 17.0 Hz, Jct,a = Jct,a' = Jgem = 1.5 Hz, vol.1, p.1

, Gaussialuciferase (GLuc), 98.1 (C-1 idu ), 98.0 (C-1 gluc ), vol.97, pp.1-1, 2015.

T. K. Shing and A. S. Perlin, ChemInform Abstract: SYNTHESIS OF BENZYL 2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSIDE AND 1,6-ANHYDRO-2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSE, Chemischer Informationsdienst, vol.15, issue.49, 1984.

A. Dilhas and D. Bonnaffé, Efficient selective preparation of methyl-1,2,4-tri-O-acetyl-3-O-benzyl-?-l-idopyranuronate from methyl 3-O-benzyl-l-iduronate, Carbohydrate Research, vol.338, issue.7, pp.681-686, 2003.

, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., Methanol/Dichloromethane + 0.1 % NEt3) afforded the compound as an oil (280 mg, 95 %). 1 H NMR (300 MHz, MeOD) # (ppm) 7.94 -7.66 (m, 50H, ArH), 6.46 (dddd, Jb,ct = 17.0 Hz, Jb,cc = 10.5 Hz, Jb,a' = 6.0 Hz, Jb,a = 5.0 Hz, 1H, H-b), 5.93 -5.80 (m, 2H, H-ct, 1-Hidu), 5.78 -5.72 (m, 4H, H-cc, 1-Hidu), 5.60 -5.60 (m, 4H, 1-Hgluc), 5.48 (d, J = 3.0 Hz, 1H, 1-Hgluc), 5.38 (s, 1H, 5-Hidu), 5.35 -5.23 (m, 9H, 5-Hidu, OCH2Ph), 5.22 -5.10 (m, 9H, OCH2Ph, 5-Hidu), 5.10 -4.97 (m, 4H, OCH2Ph

T. Peymann, C. B. Knobler, S. I. Khan, and M. F. Hawthorne, Dodeca(benzyloxy)dodecaboran B12(OCH2Ph)12: ein stabileshypercloso-B12H12-Derivat, Angewandte Chemie, vol.113, issue.9, pp.1713-1715, 2001.

M. H. Luntz, IDOXURIDINE (IDU) IN ENGLAND, Archives of Ophthalmology, vol.72, issue.1, pp.148-148, 1964.

C. F. Piskorz, S. A. Abbas, and K. L. Matta, Synthetic mucin fragments: Benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-2-deoxy-3-O-?-d-galactopyranosyl-?-d-galactopyranoside and benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-3-O-[6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-?- d-galactopyranosyl]-2-deoxy-?-d-galactopyranoside, Carbohydrate Research, vol.126, issue.1, pp.115-124, 1984.

-. ,

, Preparation of a Nitrogen Oil Compound Fraction by Modified Gel Silica Column Chromatography

, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., Methanol/Dichloromethane + 0.1 % NEt3) afforded the compound as an oil (240 mg, 90 %). 1 H NMR (360 MHz, CDCl3 + MeOD) # (ppm) 7.33 -7.09 (m, 50H, ArH), 5.84 (dddd, Jb,ct = 17.0 Hz, Jb

2. Hz, H. , and H. , m, 8H, 3-Hgluc, 5-Hgluc, COOMe), 3.41 -3.30 (m, 8H, 3-Hgluc, 5-Hgluc, COOMe), 2.81 -2.66 (m, 5H, 2-Hgluc, 5.16 -5.10 (m, 4H, 1-Hidu), 4.96 -4.88 (m, 4H, 1-Hgluc), 4.87 -4.78 (m, 6H, 5-Hidu, OCH2Ph), 4.78 -4.74 (m, 3H, 5-Hidu, OCH2Ph, 1-Hgluc), 4.73 -4.66 (m, 2H, OCH2Ph), 4.67 -4.61 (m, 4H, OCH2Ph, vol.1

Y. Nakahara and T. Ogawa, Synthesis of methyl (allyl 2,3-di-O-benzyl-?-d-galactopyranosid)uronate and methyl (2,3-di-O-benzyl-?- and ?-d-galactopyranosyl fluoride)uronate, Carbohydrate Research, vol.173, issue.2, pp.306-315, 1988.

-. ,

. O-benzyl-2-o-sulfonato-%-l-ido-pyranosyl-uronate,

. O-sulfonato--d-glucopyranosyl-tridecasodium and . Salt, Efficiency of Packing the Sulfonato-calix[5]arene Bilayer Relative to the Ubiquitous Sulfonato-calix[4]arene Analogue

E. Nield, R. Stephens, and J. C. Tatlow, 30. Fluorocyclohexanes. Part V. 1H : 4H/2H : 5H-, 1H : 5H/-2H : 4H-, 1H : 2H/4H : 5H-, and 1H : 2H : 4H/5H-octafluorocyclohexane and derived compounds, Journal of the Chemical Society (Resumed), vol.4, p.159, 1959.

#. , Gaussialuciferase (GLuc), 96.8 (C-1 gluc ), 96.7 (C-1 gluc ), 96.3 (C-1 gluc ), 76.8 (C-4 gluc ), 76.4 (C-2 idu ), vol.75, pp.1-1, 2015.

, Books Received, Neurology, vol.62, issue.6, pp.1032-1032, 2004.

D. Crich, M. Li, and P. Jayalath, Dimethylthexylsilyl 2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-?-d-glucopyranoside, dimethylthexylsilyl 3,4,6-tri-O-benzyl-?-d-mannopyranosyl-(1?4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-?-d-glucopyranoside, and dimethylthexylsilyl 2-O-(benzylsulfonyl)-3,4,6-tri-O-benzyl-?-d-mannopyranosyl-(1?4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-?-d-glucopyranoside: synthesis of authentic samples, Carbohydrate Research, vol.344, issue.1, pp.140-144, 2009.

D. Crich, M. Li, and P. Jayalath, Dimethylthexylsilyl 2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-?-d-glucopyranoside, dimethylthexylsilyl 3,4,6-tri-O-benzyl-?-d-mannopyranosyl-(1?4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-?-d-glucopyranoside, and dimethylthexylsilyl 2-O-(benzylsulfonyl)-3,4,6-tri-O-benzyl-?-d-mannopyranosyl-(1?4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-?-d-glucopyranoside: synthesis of authentic samples, Carbohydrate Research, vol.344, issue.1, pp.140-144, 2009.

. Acetone/toluene, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., H NMR (400 MHz, CD3OD) # (ppm) 7.38 -7.08 (m, 10H, ArH), 6.99 (d, J = 8.5 Hz, vol.1

J. Hz, &. Jct, 1. Hz, and H. , Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., 5.13 (dq, Jcc,b = 10.5 Hz, Jcc,a = Jcc,a' = J gem = 1.5 Hz, 1H, H-cc), vol.5

J. &. Hz, J. &. Hz, and . Ja, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., ct =1.5 Hz, vol.1, p.400

;. Mhz and . Pmbn, 4 A ), 102.3 (C-1 B ), 99.5 (C-1 A ), vol.161

, Multistep Analysis of Diol-LC-ESI-HRMS Data Reveals Proanthocyanidin Composition of Complex Plant Extracts (PAComics), HRMS (ESI) m/z calculated for C38H48NO12

D. Crich, M. Li, and P. Jayalath, Dimethylthexylsilyl 2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-?-d-glucopyranoside, dimethylthexylsilyl 3,4,6-tri-O-benzyl-?-d-mannopyranosyl-(1?4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-?-d-glucopyranoside, and dimethylthexylsilyl 2-O-(benzylsulfonyl)-3,4,6-tri-O-benzyl-?-d-mannopyranosyl-(1?4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-?-d-glucopyranoside: synthesis of authentic samples, Carbohydrate Research, vol.344, issue.1, pp.140-144, 2009.

, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., MHz, D2O) ? (ppm)7.38 -7.08 (m, 10 H, Ph), 6.99 (d, J = 8.5 Hz, 2H, Ph-OMe), 6.80 (d, J = 8.5 Hz, 2H, Ph-OMe), 5.88 (ddt, Jb,ct = 17.0 Hz, Jb,cc = 10.5 Hz, Jb,a' = 6.0 Hz, Jb,a = 5.0 Hz, 1H, H-b), 5.25 (dq, Jct,b = 17.0 Hz, Jct,a = Jct

1. Hz and C. , Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1.

1. Hz and C. , Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1.

. Hz, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., 1H, CH2Ph), 4.08 (ddt, Jgem = 13.0 Hz, Ja,b = 5.0 Hz, Ja,cc = Ja,ct =1.5 Hz, vol.1, pp.3-96

, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., vol.1

M. S. Balakrishna, R. M. Abhyankar, and J. T. Mague, New bis(phosphines) derived from N,N '-substituted ethylenediamine derivatives. Synthesis and transition metal chemistry of X2PN(R)CH2CH2(R)NPX2 (R = CH2Ph or Ph, X = Ph; R = CH2Ph, X2 = O2C6H4). The crystal and molecular structure of Ph2PN(CH2Ph)CH2CH2(CH2Ph)NPPh2 and cis-[{PtCl2Ph2PN(CH2Ph)CH2CH2(CH2Ph)NPPh2}], Journal of the Chemical Society, Dalton Transactions, vol.73, issue.9, p.1407, 1999.

, Medical Annotations., The Lancet, vol.101, issue.2596, pp.779-788, 1873.

C. F. Piskorz, S. A. Abbas, and K. L. Matta, Synthetic mucin fragments: Benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-2-deoxy-3-O-?-d-galactopyranosyl-?-d-galactopyranoside and benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-3-O-[6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-?- d-galactopyranosyl]-2-deoxy-?-d-galactopyranoside, Carbohydrate Research, vol.126, issue.1, pp.115-124, 1984.

, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., MHz, D2O) ? (ppm) 7.31 -6.99 (m, 10 H, ArH), 6.96 (d, J = 8.5 Hz, vol.2

2. Hz and . Ph-ome, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., 5.87 (ddt, Jb,ct = 17.0 Hz, Jb,cc = 10.5 Hz, Jb,a' = 6.0 Hz, Jb,a = 5.0 Hz, 1H, H-b), 5.26 (dq, Jct,b = 17.0 Hz, Jct,a = Jct,a' = J gem = 1.5 Hz, 1H, H-ct), 5.16 (dq, Jcc,b = 10.5 Hz, vol.5

R. Minkwitz and R. Bröchler, Über die Reaktionen von (CH3)4N+I-, (CH3)4N+ICl2-, (CH3)4N+ICl4- und (CH3)4N+Cl- mit Trifluormethylhypochlorit CF3OCl / The Reactions of (CH3)4N+I-, ( CH3)4N+ICl2-, (CH3)4N+ICl4- and (CH3)4N+Cl- with Trifluoromethylhypochlorite CF3OCl, Zeitschrift für Naturforschung B, vol.52, issue.3, pp.401-404, 1997.

, Figure 3?figure supplement 2. MS/MS analysis of RIF-1., 890.1981, found 890.1959, calcd. for C38H46NO18S2, vol.90

C. F. Piskorz, S. A. Abbas, and K. L. Matta, Synthetic mucin fragments: Benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-2-deoxy-3-O-?-d-galactopyranosyl-?-d-galactopyranoside and benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-3-O-[6-O-(2-acetamido-2-deoxy-?-d-glucopyranosyl)-?- d-galactopyranosyl]-2-deoxy-?-d-galactopyranoside, Carbohydrate Research, vol.126, issue.1, pp.115-124, 1984.

, Figure 2?figure supplement 2. 1HNMR (300 MHz, D2O) and 13C NMR (75 MHz, D2O/MeOD) spectra of the BBs., MHz, D2O) ? (ppm) 7.35 -7.08 (m, 10 H, ArH), 7.04 (d, J = 8.5 Hz, vol.2

2. Hz and . Ph-ome, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., 5.88 (ddt, Jb,ct = 17.0 Hz, Jb,cc = 10.5 Hz, Jb,a' = 6.0 Hz, Jb,a = 5.0 Hz, 1H, H-b), 5.24 (dq, Jct,b = 17.0 Hz, Jct,a = Jct, vol.1

1. Hz and C. , Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1.

1. Hz, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., 3.92 (ddt, Jgem = 13.0 Hz, Ja' ,b = 5.0 Hz, Ja' ,cc = Ja' ,ct =1.5 Hz, vol.2

Y. Nakahara and T. Ogawa, Synthesis of methyl (allyl 2,3-di-O-benzyl-?-d-galactopyranosid)uronate and methyl (2,3-di-O-benzyl-?- and ?-d-galactopyranosyl fluoride)uronate, Carbohydrate Research, vol.173, issue.2, pp.306-315, 1988.

V. L. Singleton, C. F. Timberlake, and G. C. Whiting, Chromatography of natural phenolic cinnamate derivatives on Sephadex LH-20 and G-25, Journal of Chromatography A, vol.140, issue.1, pp.120-124, 1977.

H. Nmr, Current Awareness in NMR in Biomedicine, NMR in Biomedicine, vol.16, issue.5, pp.289-300, 2003.

. Mhz, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., MeOD) # (ppm) 7.36-7.07 (m, 15H, ArH), 5.90 (dddd, Jb,ct = 17.5 Hz, Jb,cc = 11.0 Hz

J. Hz, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., = 5.5 Hz, 1H, H-b), 5.21 (dq, Jct,b = 17.0 Hz, Jct,a = Jct,a' = Jgem = 1.5 Hz, 1H, H-ct), vol.5

1. Hz and H. , Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., Jcc,b = 10.5 Hz, Jcc,a = Jcc,a' = Jgem = 1.0 Hz, vol.1

. Hz, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., vol.1

D. Deaupere, I. Boutbaiba, G. Demailly, and R. Uzan, ChemInform Abstract: Selective Deprotection of the 2-OH Group in Methyl-2,3-di-O-benzyl-4,6-O-benzylidene-?-D-glucopyranoside by Hydrogen Transfer., ChemInform, vol.20, issue.13, p.627, 1989.

, Preparation of a Nitrogen Oil Compound Fraction by Modified Gel Silica Column Chromatography, vol.97

, Table 3: Mean sustained global warming potentials (Neubauer & Megonigal, 2015) for the GHG fluxes (mmol CO2 eq m?2 day?1) from flooded dykeland soil cores., Compound, vol.105

, Conversion table for cholesterol concentration (mg/100 ml ? mmol/l), The Biology of Cholesterol and Related Steroids, p.xiv, 1981.

, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., H NMR (300 MHz, MeOD) # (ppm) 7.85-7.76 (m, 4H, ArH), 5.94 (dddd, Jb, vol.1

, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., Jgem = 1.5 Hz, 1H, H-ct), 5.17 (dd, Jcc,b = 10.5 Hz, Jcc,a = Jcc,a' = Jgem = 1.5 Hz, vol.1, pp.95-99

, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., Hz, J6',5 = 5.5 Hz, 1H, 6-H'), 4.31 (dd, Jgem = 13.0 Hz, Ja,b = 5.0 Hz, 1H, H-a), 4.02 (dd, Jgem = 13.0 Hz, Ja',b = 5.0 Hz, vol.1, p.3

, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., Carom), vol.1, issue.6

, Predicting the Energy of the Water Exchange Reaction and Free Energy of Solvation for the Uranyl Ion in Aqueous Solution, HRMS (ESI) m/z calculated for C17H18N4O7, vol.113

, Appendix 1?figure 46. 1H NMR spectra of compound 25., vol.1

, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., MHz, D2O) # (ppm) 7.88-7.82 (m, 4H, ArH), 5.94 (dddd, Jb,ct = 17.5 Hz, Jb,cc = 11.0 Hz, Jb,a' = 6.0 Hz, Jb,a = 5.5 Hz, 1H, H-b), 6.04 (dd, Jct,b = 17.0 Hz, Jct,a = Jct

J. Hz and . Jcc, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., 4.11 (dd, Jgem = 13.0 Hz, Ja',b = 5.0 Hz, vol.1

, Figure 5: Six samples through freeze drying to compound with five gradient concentrations (0.0 mg/mL, 0.2 mg/mL, 0.4 mg/mL, 0.6 mg/mL, 0.8 mg/mL, 1.0 mg/mL) , use the ascorbic acid (Vc) as the control., HRMS (ESI) m/z calculated for C17H19N2NaO10S

H. Nmr, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., 300 MHz, D2O) # (ppm) 5.02 (d, J = 2.5 Hz, vol.1

, Multistep Analysis of Diol-LC-ESI-HRMS Data Reveals Proanthocyanidin Composition of Complex Plant Extracts (PAComics), HRMS (ESI) m/z calculated for C19H18N2NaO8S

T. K. Shing and A. S. Perlin, ChemInform Abstract: SYNTHESIS OF BENZYL 2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSIDE AND 1,6-ANHYDRO-2-AZIDO-2-DEOXY-4-O-?-D-GLUCOPYRANOSYL-?-D-GLUCOPYRANOSE, Chemischer Informationsdienst, vol.15, issue.49, 1984.

, Conversion table for cholesterol concentration (mg/100 ml ? mmol/l), The Biology of Cholesterol and Related Steroids, vol.119, p.xiv, 1981.

J. Hz, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., Hz, Jb,a = 5.5 Hz, 1H, H-b), 5.36 (dq, Jct,b = 17.0 Hz, Jct,a = Jct,a' = Jgem = 1.5 Hz, 1H, H-ct), 5.22 (dq, Jcc,b = 10.5 Hz, Jcc,a = Jcc,a' = Jgem = 1.5 Hz, 1H, H-cc), vol.4, p.98

J. &. Hz and =. Hz, Figure 4?figure supplement 1. NMR spectrometry of synthesized G-1., Hz, J = 1, vol.1, p.0

. Hz, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., vol.1

F. Skrubbeltrang, Fred. Fischers Dagbøger 1868-71., Sønderjydske Årbøger, vol.62, issue.1, pp.51-133, 1950.

, Synthesis and Conformational Analysis of 6-C-Methyl-Substituted 2-Acetamido-2-deoxy-b-d-glucopyranosyl Mono- and Disaccharides, HRMS (ESI) m/z calculated for C10H15N3O6, vol.119

, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., 3.73 (s, 3H, COOMe), 3.67 -3.59 (m, 1H, vol.4, pp.85-89

, 52. Königsindische Verteidigung, Hundert preisgekrönte Schachpartien, vol.71, pp.71-73, 1952.

Y. Inoue and K. Nagasawa, An improved method for the preparation of crystalline sodium salts of 2-deoxy-2-sulfoamino-d-glucose and methyl 2-deoxy-2-sulfoamino-?-d-glucopyranoside, Carbohydrate Research, vol.69, issue.1, pp.297-300, 1979.

, Figure 5: Six samples through freeze drying to compound with five gradient concentrations (0.0 mg/mL, 0.2 mg/mL, 0.4 mg/mL, 0.6 mg/mL, 0.8 mg/mL, 1.0 mg/mL) , use the ascorbic acid (Vc) as the control.

?. Me3n and . So3, Figure 5?figure supplement 4. 1H NMR (500 MHz, MeOD; upper panel) and 13C NMR (150 MHz, MeOD; lower panel) of compound 4, 2-((E)-prop-1-en-1-yl)maleic acid., mg, 0,058 mmol, 1.2 eq) was added and the solution was left to stirr for 1 h, vol.1

3. Hz, H. , and ). , Figure 2?figure supplement 2. 1HNMR (300 MHz, D2O) and 13C NMR (75 MHz, D2O/MeOD) spectra of the BBs., C NMR (300 MHz, D2O) # (ppm) 169.7 (C=O), 97.7 (C-1), vol.13

, CORRESPONDENCE, Clinical and Experimental Optometry, vol.35, issue.7, pp.328-328, 1952.

T. Barbeyron, L. Brillet-guéguen, W. Carré, C. Carrière, C. Caron et al., Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity, PLOS ONE, vol.11, issue.10, p.e0164846, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409013

A. J. Obaya, Molecular cloning and initial characterization of three novel human sulfatases, Gene, vol.372, pp.110-117, 2006.

M. Sardiello, I. Annunziata, G. Roma, and A. Ballabio, Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship, Human Molecular Genetics, vol.14, issue.21, pp.3203-3217, 2005.

C. Stein, A. Hille, J. Seidel, S. Rijnbout, A. Waheed et al., Cloning and Expression of Human Steroid-Sulfatase. Membrane Topology, Glycosylation, and Subcellular Distribution in BHK-21 Cells, J. Biol. Chem, vol.264, issue.23, pp.13865-13872, 1989.

C. Peters, B. Schmidt, W. Rommerskirch, K. Rupp, M. Zühlsdorf et al., Phylogenetic Conservation of Arylsulfatases. CDNA Cloning and Expression of Human Arylsulfatase B, J. Biol. Chem, issue.6, pp.3374-3381, 1990.

D. S. Anson, J. A. Taylor, J. Bielicki, G. S. Harper, C. Peters et al., Correction of human mucopolysaccharidosis type-VI fibroblasts with recombinant N-acetylgalactosamine-4-sulphatase, Biochemical Journal, vol.284, issue.3, pp.789-794, 1992.

B. Franco, G. Meroni, G. Parenti, J. Levilliers, L. Bernard et al., A cluster of sulfatase genes on Xp22.3: Mutations in chondrodysplasia punctata (CDPX) and implications for warfarin embryopathy, Cell, vol.81, issue.1, pp.15-25, 1995.

, , pp.90367-90371

A. A. Puca, M. Zollo, M. Repetto, G. Andolfi, A. Guffanti et al., Identification by Shotgun Sequencing, Genomic Organization, and Functional Analysis of a Fourth Arylsulfatase Gene (ARSF) from the Xp22.3 Region, Genomics, vol.42, issue.2, pp.192-199, 1997.

P. Ferrante, S. Messali, G. Meroni, and A. Ballabio, Molecular and biochemical characterisation of a novel sulphatase gene: Arylsulfatase G (ARSG), European Journal of Human Genetics, vol.10, issue.12, pp.813-818, 2002.

B. Kowalewski, W. C. Lamanna, R. Lawrence, M. Damme, S. Stroobants et al., Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice, Proceedings of the National Academy of Sciences, vol.109, issue.26, pp.10310-10315, 2012.

M. Buono and M. P. Cosma, Sulfatase activities towards the regulation of cell metabolism and signaling in mammals, Cellular and Molecular Life Sciences, vol.67, issue.5, pp.769-780, 2009.

O. P. Dhamale, R. Lawrence, E. M. Wiegmann, B. A. Shah, K. Al-mafraji et al., Arylsulfatase K is the Lysosomal 2-Sulfoglucuronate Sulfatase, ACS Chemical Biology, vol.12, issue.2, pp.367-373, 2017.

O. P. Dhamale, R. Lawrence, E. M. Wiegmann, B. A. Shah, K. Al-mafraji et al., Arylsulfatase K is the Lysosomal 2-Sulfoglucuronate Sulfatase, ACS Chemical Biology, vol.12, issue.2, pp.367-373, 2017.

S. Tomatsu, S. Fukuda, M. Masue, K. Sukegawa, T. Fukao et al., Morquio Disease: Isolation, Characterization and Expression of Full-Length CDNA for Human N-Acetylgalactosamine-6-Sulfate Sulfatase, Biochem. Biophys. Res. Commun, vol.181, issue.2, pp.91244-91251, 1991.

H. S. Scott, L. Blanch, X. H. Guo, C. Freeman, A. Orsborn et al., Cloning of the sulphamidase gene and identification of mutations in Sanfilippo A syndrome, Nature Genetics, vol.11, issue.4, pp.465-467, 1995.

C. Freeman and J. J. Hopwood, Glucuronate-2-sulphatase activity in cultured human skin fibroblast homogenates, Biochemical Journal, vol.279, issue.2, pp.399-405, 1991.

J. Bielicki, J. J. Hopwood, L. E. Melville, and S. D. Anson, Recombinant human sulphamidase: expression, amplification, purification and characterization, Biochemical Journal, vol.329, issue.1, pp.145-150, 1998.

M. Morimoto-tomita, K. Uchimura, Z. Werb, S. Hemmerich, and S. D. Rosen, Cloning and Characterization of Two Extracellular Heparin-degrading Endosulfatases in Mice and Humans, Journal of Biological Chemistry, vol.277, issue.51, pp.49175-49185, 2002.

M. Morimoto-tomita, K. Uchimura, Z. Werb, S. Hemmerich, and S. D. Rosen, Cloning and Characterization of Two Extracellular Heparin-degrading Endosulfatases in Mice and Humans, Journal of Biological Chemistry, vol.277, issue.51, pp.49175-49185, 2002.

D. Ghosh, Three-Dimensional Structures of Sulfatases, Meth. Enzymol, vol.400, pp.16-25, 2005.

C. S. Bond, P. R. Clements, S. J. Ashby, C. A. Collyer, S. J. Harrop et al., Structure of a Human Lysosomal Sulfatase. Structure, vol.5, issue.2, pp.185-193, 1997.

G. Diez-roux and A. Ballabio, SULFATASES AND HUMAN DISEASE, Annual Review of Genomics and Human Genetics, vol.6, issue.1, pp.355-379, 2005.

G. Diez-roux and A. Ballabio, SULFATASES AND HUMAN DISEASE, Annual Review of Genomics and Human Genetics, vol.6, issue.1, pp.355-379, 2005.

C. Miech, T. Dierks, T. Selmer, K. Von-figura, and B. Schmidt, Arylsulfatase fromKlebsiella pneumoniaeCarries a Formylglycine Generated from a Serine, Journal of Biological Chemistry, vol.273, issue.9, pp.4835-4837, 1998.

D. H. Ghosh and . Sulfatases, Human sulfatases: A structural perspective to catalysis, Cellular and Molecular Life Sciences, vol.64, issue.15, pp.2013-2022, 2007.

M. Demydchuk, C. H. Hill, A. Zhou, G. Bunkoczi, P. E. Stein et al., Insights into Hunter syndrome from the structure of iduronate-2- sulfatase, 2017.

M. Demydchuk, C. H. Hill, A. Zhou, G. Bunkóczi, P. E. Stein et al., Insights into Hunter syndrome from the structure of iduronate-2-sulfatase, Nature Communications, vol.8, issue.1, p.15786, 2017.

B. Schmidt, T. Selmer, A. Ingendoh, and K. V. Figurat, A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency, Cell, vol.82, issue.2, pp.271-278, 1995.

A. Knaust, B. Schmidt, T. Dierks, R. Von-bülow, and K. Von-figura, Residues Critical for Formylglycine Formation and/or Catalytic Activity of Arylsulfatase A?, Biochemistry, vol.37, issue.40, pp.13941-13946, 1998.

T. Dierks, M. R. Lecca, P. Schlotterhose, B. Schmidt, and K. Von-figura, Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases, The EMBO Journal, vol.18, issue.8, pp.2084-2091, 1999.

S. R. Hanson, M. D. Best, and C. Wong, Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility, Angewandte Chemie International Edition, vol.43, issue.43, pp.5736-5763, 2004.

A. Preusser-kunze, M. Mariappan, B. Schmidt, S. L. Gande, K. Mutenda et al., Molecular Characterization of the Human C?-formylglycine-generating Enzyme, Journal of Biological Chemistry, vol.280, issue.15, pp.14900-14910, 2005.

A. Preusser-kunze, M. Mariappan, B. Schmidt, S. L. Gande, K. Mutenda et al., Molecular Characterization of the Human C?-formylglycine-generating Enzyme, Journal of Biological Chemistry, vol.280, issue.15, pp.14900-14910, 2005.

T. Dierks, B. Schmidt, and K. Von-figura, Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum, Proceedings of the National Academy of Sciences, vol.94, issue.22, pp.11963-11968, 1997.

P. Bojarová and S. J. Williams, Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination, Current Opinion in Chemical Biology, vol.12, issue.5, pp.573-581, 2008.

M. J. Appel, K. K. Meier, J. Lafrance-vanasse, H. Lim, C. Tsai et al., Formylglycine-generating enzyme binds substrate directly at a mononuclear Cu(I) center to initiate O2activation, Proceedings of the National Academy of Sciences, vol.116, issue.12, pp.5370-5375, 2019.

I. Boltes, H. Czapinska, A. Kahnert, R. Von-bülow, T. Dierks et al., 1.3 Å Structure of Arylsulfatase from Pseudomonas aeruginosa Establishes the Catalytic Mechanism of Sulfate Ester Cleavage in the Sulfatase Family, Structure, vol.9, issue.6, pp.483-491, 2001.

A. Waldow, B. Schmidt, T. Dierks, R. Von-bülow, and K. Von-figura, Amino Acid Residues Forming the Active Site of Arylsulfatase A, Journal of Biological Chemistry, vol.274, issue.18, pp.12284-12288, 1999.

K. Figura and . Von, Amino Acid Residues Forming the Active Site of Arylsulfatase A ROLE IN CATALYTIC ACTIVITY AND SUBSTRATE BINDING, J. Biol. Chem, vol.274, issue.18, pp.12284-12288, 1999.

G. Uhlhorn-dierks, T. Kolter, and K. Sandhoff, How Does Nature Cleave Sulfuric Acid Esters? A Novel Posttranslational Modification of Sulfatases, Angewandte Chemie International Edition, vol.37, issue.18, pp.2453-2455, 1998.

S. J. Williams, E. Denehy, and E. H. Krenske, Experimental and Theoretical Insights into the Mechanisms of Sulfate and Sulfamate Ester Hydrolysis and the End Products of Type I Sulfatase Inactivation by Aryl Sulfamates, The Journal of Organic Chemistry, vol.79, issue.5, pp.1995-2005, 2014.

G. Lukatela, N. Krauss, K. Theis, T. Selmer, V. Gieselmann et al., Crystal Structure of Human Arylsulfatase A: The Aldehyde Function and the Metal Ion at the Active Site Suggest a Novel Mechanism for Sulfate Ester Hydrolysis?,?, Biochemistry, vol.37, issue.11, pp.3654-3664, 1998.

W. W. Cleland and A. C. Hengge, Enzymatic Mechanisms of Phosphate and Sulfate Transfer, Chemical Reviews, vol.106, issue.8, pp.3252-3278, 2006.

C. L. Chai, T. W. Hepburn, and G. Lowe, Synthesis of phenyl [(R)16O,17O,18O]sulphate and the stereochemical course of a sulphuryl transfer reaction, Journal of the Chemical Society, Chemical Communications, issue.19, p.1403, 1991.

R. H. Hoff, P. Larsen, and A. C. Hengge, Isotope Effects and Medium Effects on Sulfuryl Transfer Reactions, Journal of the American Chemical Society, vol.123, issue.38, pp.9338-9344, 2001.

G. K. Dhoot, M. K. Gustafsson, X. Ai, W. Sun, D. M. Standiford et al., Regulation of Wnt Signaling and Embryo Patterning by an Extracellular Sulfatase, Science, vol.293, issue.5535, pp.1663-1666, 2001.

T. Ohto, H. Uchida, H. Yamazaki, K. Keino-masu, A. Matsui et al., Identification of a novel nonlysosomal sulphatase expressed in the floor plate, choroid plexus and cartilage, Genes to Cells, vol.7, issue.2, pp.173-185, 2002.

C. Braquart-varnier, C. Danesin, C. Clouscard-martinato, E. Agius, N. Escalas et al., A subtractive approach to characterize genes with regionalized expression in the gliogenic ventral neuroepithelium: identification of chick Sulfatase 1 as a new oligodendrocyte lineage gene, Molecular and Cellular Neuroscience, vol.25, issue.4, pp.612-628, 2004.

S. D. Freeman, W. M. Moore, E. C. Guiral, A. D. Holme, J. E. Turnbull et al., Extracellular regulation of developmental cell signaling by XtSulf1, Developmental Biology, vol.320, issue.2, pp.436-445, 2008.

E. F. Winterbottom and M. E. Pownall, Complementary expression of HSPG 6-O-endosulfatases and 6-O-sulfotransferase in the hindbrain of Xenopus laevis, Gene Expression Patterns, vol.9, issue.3, pp.166-172, 2009.

B. Gorsi, S. Whelan, and S. E. Stringer, Dynamic expression patterns of 6-O endosulfatases during zebrafish development suggest a subfunctionalisation event for sulf2, Developmental Dynamics, vol.239, issue.12, pp.3312-3323, 2010.

K. Fujita, E. Takechi, N. Sakamoto, N. Sumiyoshi, S. Izumi et al., HpSulf, a heparan sulfate 6-O-endosulfatase, is involved in the regulation of VEGF signaling during sea urchin development, Mechanisms of Development, vol.127, issue.3-4, pp.235-245, 2010.

A. Wojcinski, H. Nakato, C. Soula, and B. Glise, DSulfatase-1 fine-tunes Hedgehog patterning activity through a novel regulatory feedback loop, Developmental Biology, vol.358, issue.1, pp.168-180, 2011.

K. Uchimura, M. Morimoto?tomita, and S. D. Rosen, Measuring the Activities of the Sulfs: Two Novel Heparin/Heparan Sulfate Endosulfatases, Methods in Enzymology, pp.243-253, 2006.

, , vol.416, pp.16015-16017, 2006.

R. Tang and S. D. Rosen, Functional Consequences of the Subdomain Organization of the Sulfs, Journal of Biological Chemistry, vol.284, issue.32, pp.21505-21514, 2009.

X. Ai, A. Do, M. Kusche-gullberg, U. Lindahl, K. Lu et al., Substrate Specificity and Domain Functions of Extracellular Heparan Sulfate 6-O-Endosulfatases, QSulf1 and QSulf2, Journal of Biological Chemistry, vol.281, issue.8, pp.4969-4976, 2005.

X. Ai, A. Do, M. Kusche-gullberg, U. Lindahl, K. Lu et al., Substrate Specificity and Domain Functions of Extracellular Heparan Sulfate 6-O-Endosulfatases, QSulf1 and QSulf2, Journal of Biological Chemistry, vol.281, issue.8, pp.4969-4976, 2005.

I. Seffouh, C. Przybylski, A. Seffouh, R. El-masri, R. R. Vivès et al., Mass spectrometry analysis of the human endosulfatase Hsulf-2, Biochemistry and Biophysics Reports, vol.18, p.100617, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02043614

M. Frese, F. Milz, M. Dick, W. C. Lamanna, and T. Dierks, Characterization of the Human Sulfatase Sulf1 and Its High Affinity Heparin/Heparan Sulfate Interaction Domain, Journal of Biological Chemistry, vol.284, issue.41, pp.28033-28044, 2009.

S. Sarrazin, W. C. Lamanna, and J. D. Esko, Heparan Sulfate Proteoglycans, Cold Spring Harbor Perspectives in Biology, vol.3, issue.7, pp.a004952-a004952, 2011.

U. Lindahl, J. Couchman, K. Kimata, J. D. Esko, A. Varki et al., Proteoglycans and Sulfated Glycosaminoglycans, In Essentials of Glycobiology, 2015.

J. M. Whitelock and R. V. Iozzo, Heparan Sulfate: A Complex Polymer Charged with Biological Activity, Chemical Reviews, vol.105, issue.7, pp.2745-2764, 2005.

J. M. Whitelock and R. V. Iozzo, Heparan Sulfate: A Complex Polymer Charged with Biological Activity, Chemical Reviews, vol.105, issue.7, pp.2745-2764, 2005.

K. J. Murphy, C. L. Merry, M. Lyon, J. E. Thompson, I. S. Roberts et al., A New Model for the Domain Structure of Heparan Sulfate Based on the Novel Specificity of K5 Lyase, Journal of Biological Chemistry, vol.279, issue.26, pp.27239-27245, 2004.

K. J. Murphy, C. L. Merry, M. Lyon, J. E. Thompson, I. S. Roberts et al., A New Model for the Domain Structure of Heparan Sulfate Based on the Novel Specificity of K5 Lyase, Journal of Biological Chemistry, vol.279, issue.26, pp.27239-27245, 2004.

J. D. Esko and U. Lindahl, Molecular diversity of heparan sulfate, Journal of Clinical Investigation, vol.108, issue.2, pp.169-173, 2001.

U. Lindahl, M. Kusche-gullberg, and L. Kjellén, Regulated Diversity of Heparan Sulfate, Journal of Biological Chemistry, vol.273, issue.39, pp.24979-24982, 1998.

U. Lindahl, M. Kusche-gullberg, and L. Kjellén, Regulated Diversity of Heparan Sulfate, Journal of Biological Chemistry, vol.273, issue.39, pp.24979-24982, 1998.

J. Li and M. Kusche-gullberg, Heparan Sulfate: Biosynthesis, Structure, and Function, International Review of Cell and Molecular Biology, vol.325, pp.215-273, 2016.

M. Kusche-gullberg and L. Kjellén, Sulfotransferases in glycosaminoglycan biosynthesis, Current Opinion in Structural Biology, vol.13, issue.5, pp.605-611, 2003.

M. Kusche-gullberg, Sulfotransferases in glycosaminoglycan biosynthesis, Current Opinion in Structural Biology, vol.13, issue.5, pp.605-611, 2003.

J. T. Gallagher and . Heparan-sulfate, Heparan sulfate: growth control with a restricted sequence menu, Journal of Clinical Investigation, vol.108, issue.3, pp.357-361, 2001.

M. Maccarana, Y. Sakura, A. Tawada, K. Yoshida, and U. Lindahl, Domain Structure of Heparan Sulfates from Bovine Organs, Journal of Biological Chemistry, vol.271, issue.30, pp.17804-17810, 1996.

J. D. Esko and S. B. Selleck, Order Out of Chaos: Assembly of Ligand Binding Sites in Heparan Sulfate, Annual Review of Biochemistry, vol.71, issue.1, pp.435-471, 2002.

J. D. Esko and S. B. Selleck, Order Out of Chaos: Assembly of Ligand Binding Sites in Heparan Sulfate, Annual Review of Biochemistry, vol.71, issue.1, pp.435-471, 2002.

S. D. Rosen and H. Lemjabbar-alaoui, Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate, Expert Opinion on Therapeutic Targets, vol.14, issue.9, pp.935-949, 2010.

R. R. Vivès, A. Seffouh, and H. Lortat-jacob, Post-Synthetic Regulation of HS Structure: The Yin and Yang of the Sulfs in Cancer, Frontiers in Oncology, vol.3, 2014.

D. Xu and J. D. Esko, Demystifying Heparan Sulfate?Protein Interactions, Annual Review of Biochemistry, vol.83, issue.1, pp.129-157, 2014.

A. Ori, M. C. Wilkinson, and D. G. Fernig, The heparanome and regulation of cell function: structures, functions and challenges, Frontiers in Bioscience, vol.Volume, issue.13, p.4309, 2008.

B. Faller, Y. Mely, D. Gerard, and J. G. Bieth, Heparin-induced conformational change and activation of mucus proteinase inhibitor, Biochemistry, vol.31, issue.35, pp.8285-8290, 1992.

S. T. Olson and I. Björk, Regulation of Thrombin by Antithrombin and Heparin Cofactor II, Thrombin, vol.266, pp.159-217, 1992.

U. Friedrich, A. M. Blom, B. Dahlbäck, and B. O. Villoutreix, Structural and Energetic Characteristics of the Heparin-binding Site in Antithrombotic Protein C, Journal of Biological Chemistry, vol.276, issue.26, pp.24122-24128, 2001.

L. D. Thompson, M. W. Pantoliano, and B. A. Springer, Energetic Characterization of the Basic Fibroblast Growth Factor-Heparin Interaction: Identification of the Heparin Binding Domain, Biochemistry, vol.33, issue.13, pp.3831-3840, 1994.

L. Duchesne, V. Octeau, R. N. Bearon, A. Beckett, I. A. Prior et al., Transport of Fibroblast Growth Factor 2 in the Pericellular Matrix Is Controlled by the Spatial Distribution of Its Binding Sites in Heparan Sulfate, PLoS Biology, vol.10, issue.7, p.e1001361, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00719948

J. R. Bishop, M. Schuksz, and J. D. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology, Nature, vol.446, issue.7139, pp.1030-1037, 2007.

J. R. Bishop, M. Schuksz, and J. D. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology, Nature, vol.446, issue.7139, pp.1030-1037, 2007.

V. Nizet, A. Varki, and M. Aebi, Microbial Lectins: Hemagglutinins, Adhesins, and Toxins

, , 2017.

J. D. Esko, J. H. Prestegard, and R. J. Linhardt, Proteins That Bind Sulfated Glycosaminoglycans

, , 2017.

. Cagno, . Tseligka, . Jones, and . Tapparel, Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias?, Viruses, vol.11, issue.7, p.596, 2019.

. Cagno, . Tseligka, . Jones, and . Tapparel, Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias?, Viruses, vol.11, issue.7, p.596, 2019.

, One Hundred Years of Positional Information, Trends in Genetics, vol.12, issue.9, pp.80019-80028, 1996.

D. Yan and X. Lin, Shaping Morphogen Gradients by Proteoglycans, Cold Spring Harbor Perspectives in Biology, vol.1, issue.3, pp.a002493-a002493, 2009.

Y. Yun, J. E. Won, E. Jeon, S. Lee, W. Kang et al., Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration, Journal of Tissue Engineering, vol.1, issue.1, p.218142, 2010.

A. Ori, P. Free, J. Courty, M. C. Wilkinson, and D. G. Fernig, Identification of Heparin-binding Sites in Proteins by Selective Labeling, Molecular & Cellular Proteomics, vol.8, issue.10, pp.2256-2265, 2009.

H. Rahmoune, H. L. Chen, J. T. Gallagher, P. S. Rudland, and D. G. Fernig, Interaction of Heparan Sulfate from Mammary Cells with Acidic Fibroblast Growth Factor (FGF) and Basic FGF, Journal of Biological Chemistry, vol.273, issue.13, pp.7303-7310, 1998.

H. Rahmoune, H. Chen, J. T. Gallagher, P. S. Rudland, and D. G. Fernig, Interaction of Heparan Sulfate from Mammary Cells with Acidic Fibroblast Growth Factor (FGF) and Basic FGF, Journal of Biological Chemistry, vol.273, issue.13, pp.7303-7310, 1998.

E. H. Pempe, T. C. Burch, C. J. Law, and J. Liu, Substrate specificity of 6-O-endosulfatase (Sulf-2) and its implications in synthesizing anticoagulant heparan sulfate, Glycobiology, vol.22, issue.10, pp.1353-1362, 2012.

W. C. Lamanna, M. Frese, M. Balleininger, and T. Dierks, Sulf Loss Influences N-, 2-O-, and 6-O-Sulfation of Multiple Heparan Sulfate Proteoglycans and Modulates Fibroblast Growth Factor Signaling, Journal of Biological Chemistry, vol.283, issue.41, pp.27724-27735, 2008.

G. O. Staples, X. Shi, and J. Zaia, Glycomics Analysis of Mammalian Heparan Sulfates Modified by the Human Extracellular Sulfatase HSulf2, PLoS ONE, vol.6, issue.2, p.e16689, 2011.

A. Seffouh, F. Milz, C. Przybylski, C. Laguri, A. Oosterhof et al., HSulf sulfatases catalyze processive and oriented 6? O ?desulfation of heparan sulfate that differentially regulates fibroblast growth factor activity, The FASEB Journal, vol.27, issue.6, pp.2431-2439, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00871189

F. Milz, A. Harder, P. Neuhaus, O. Breitkreuz-korff, V. Walhorn et al., Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1830, issue.11, pp.5287-5298, 2013.

F. Milz, A. Harder, P. Neuhaus, O. Breitkreuz-korff, V. Walhorn et al., Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1830, issue.11, pp.5287-5298, 2013.

A. Seffouh, R. El-masri, O. Makshakova, E. Gout, Z. E. Hassoun et al., Expression and purification of recombinant extracellular sulfatase HSulf-2 allows deciphering of enzyme sub-domain coordinated role for the binding and 6-O-desulfation of heparan sulfate, Cellular and Molecular Life Sciences, vol.76, issue.9, pp.1807-1819, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02043605

C. R. Holst, H. Bou-reslan, B. B. Gore, K. Wong, D. Grant et al., Secreted Sulfatases Sulf1 and Sulf2 Have Overlapping yet Essential Roles in Mouse Neonatal Survival, PLoS ONE, vol.2, issue.6, p.e575, 2007.

D. H. Lum, J. Tan, S. D. Rosen, and Z. Werb, Gene Trap Disruption of the Mouse Heparan Sulfate 6-O-Endosulfatase Gene, Sulf2, Molecular and Cellular Biology, vol.27, issue.2, pp.678-688, 2006.

W. C. Lamanna, R. J. Baldwin, M. Padva, I. Kalus, G. Ten dam et al., Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity, Biochemical Journal, vol.400, issue.1, pp.63-73, 2006.

X. Ai, A. Do, O. Lozynska, M. Kusche-gullberg, U. Lindahl et al., QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling, Journal of Cell Biology, vol.162, issue.2, pp.341-351, 2003.

Y. G. Brickman, M. D. Ford, J. T. Gallagher, V. Nurcombe, P. F. Bartlett et al., Structural Modification of Fibroblast Growth Factor-binding Heparan Sulfate at a Determinative Stage of Neural Development, Journal of Biological Chemistry, vol.273, issue.8, pp.4350-4359, 1998.

B. L. Allen and A. C. Rapraeger, Spatial and temporal expression of heparan sulfate in mouse development regulates FGF and FGF receptor assembly, Journal of Cell Biology, vol.163, issue.3, pp.637-648, 2003.

F. Safaiyan, U. Lindahl, and M. Salmivirta, Selective reduction of 6-O-sulfation in heparan sulfate from transformed mammary epithelial cells, European Journal of Biochemistry, vol.252, issue.3, pp.576-582, 1998.

G. C. Jayson, M. Lyon, C. Paraskeva, J. E. Turnbull, J. A. Deakin et al., Heparan Sulfate Undergoes Specific Structural Changes during the Progression from Human Colon Adenoma to Carcinomain Vitro, Journal of Biological Chemistry, vol.273, issue.1, pp.51-57, 1998.

I. B. Bruinsma, L. Te-riet, T. Gevers, G. B. Ten-dam, T. H. Van-kuppevelt et al., Sulfation of heparan sulfate associated with amyloid-? plaques in patients with Alzheimer?s disease, Acta Neuropathologica, vol.119, issue.2, pp.211-220, 2009.

T. Hosono-fukao, S. Ohtake-niimi, H. Hoshino, M. Britschgi, H. Akatsu et al., Heparan Sulfate Subdomains that are Degraded by Sulf Accumulate in Cerebral Amyloid ß Plaques of Alzheimer's Disease, The American Journal of Pathology, vol.180, issue.5, pp.2056-2067, 2012.

A. A. Alhasan, J. Spielhofer, M. Kusche-gullberg, J. A. Kirby, and S. Ali, Role of 6-O-Sulfated Heparan Sulfate in Chronic Renal Fibrosis, Journal of Biological Chemistry, vol.289, issue.29, pp.20295-20306, 2014.

L. Wang, J. R. Brown, A. Varki, and J. D. Esko, Heparin's Anti-Inflammatory Effects Require Glucosamine 6-O-Sulfation and Are Mediated by Blockade of L-and P-Selectins, J Clin Invest, vol.110, issue.1, pp.127-136, 2002.

T. M. Reine, M. Kusche-gullberg, A. Feta, T. Jenssen, and S. O. Kolset, Heparan sulfate expression is affected by inflammatory stimuli in primary human endothelial cells, Glycoconjugate Journal, vol.29, issue.1, pp.67-76, 2011.

T. J. Wijnhoven, J. F. Lensen, A. L. Rops, J. Van-der-vlag, S. O. Kolset et al., Aberrant Heparan Sulfate Profile in the Human Diabetic Kidney Offers New Clues for Therapeutic Glycomimetics, American Journal of Kidney Diseases, vol.48, issue.2, pp.250-261, 2006.

H. C. Hassing, H. Mooij, S. Guo, B. P. Monia, K. Chen et al., Inhibition of hepatic sulfatase-2 In Vivo: A novel strategy to correct diabetic dyslipidemia, Hepatology, vol.55, issue.6, pp.1746-1753, 2012.

J. Lai, J. Chien, J. Staub, R. Avula, E. L. Greene et al., Loss of HSulf-1 Up-regulates Heparin-binding Growth Factor Signaling in Cancer, Journal of Biological Chemistry, vol.278, issue.25, pp.23107-23117, 2003.

H. Lemjabbar-alaoui, A. Van-zante, M. S. Singer, Q. Xue, Y. Wang et al., Sulf-2, a heparan sulfate endosulfatase, promotes human lung carcinogenesis, Oncogene, vol.29, issue.5, pp.635-646, 2009.

P. Tátrai, K. Egedi, Á. Somorácz, T. H. Van-kuppevelt, G. T. Dam et al., Quantitative and Qualitative Alterations of Heparan Sulfate in Fibrogenic Liver Diseases and Hepatocellular Cancer, Journal of Histochemistry & Cytochemistry, vol.58, issue.5, pp.429-441, 2010.

M. S. Singer, J. J. Phillips, H. Lemjabbar-alaoui, Y. Q. Wang, J. Wu et al., SULF2, a heparan sulfate endosulfatase, is present in the blood of healthy individuals and increases in cirrhosis, Clinica Chimica Acta, vol.440, pp.72-78, 2015.

J. Lai, D. S. Sandhu, A. M. Shire, and L. R. Roberts, The Tumor Suppressor Function of Human Sulfatase 1 (SULF1) in Carcinogenesis, Journal of Gastrointestinal Cancer, vol.39, issue.1-4, pp.149-158, 2008.

J. Staub, J. Chien, Y. Pan, X. Qian, K. Narita et al., Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance, Oncogene, vol.26, issue.34, pp.4969-4978, 2007.

J. Staub, J. Chien, Y. Pan, X. Qian, K. Narita et al., Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance, Oncogene, vol.26, issue.34, pp.4969-4978, 2007.

A. Khurana, D. Jung-beom, X. He, S. Kim, R. C. Busby et al., Matrix detachment and proteasomal inhibitors diminish Sulf-2 expression in breast cancer cell lines and mouse xenografts, Clinical & Experimental Metastasis, vol.30, issue.4, pp.407-415, 2013.

A. Khurana, D. Jung-beom, X. He, S. Kim, R. C. Busby et al., Matrix detachment and proteasomal inhibitors diminish Sulf-2 expression in breast cancer cell lines and mouse xenografts, Clinical & Experimental Metastasis, vol.30, issue.4, pp.407-415, 2013.

J. Lai, D. S. Sandhu, C. Yu, T. Han, C. D. Moser et al., Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma, Hepatology, vol.47, issue.4, pp.1211-1222, 2008.

J. Lai, D. S. Sandhu, C. Yu, T. Han, C. D. Moser et al., Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma, Hepatology, vol.47, issue.4, pp.1211-1222, 2008.

R. A. Floyd, H. K. Chandru, T. He, and R. Towner, Anti-Cancer Activity of Nitrones and Observations on Mechanism of Action, Anticancer Agents Med Chem, vol.11, issue.4, pp.373-379, 2011.

X. Zheng, X. Gai, S. Han, C. D. Moser, C. Hu et al., The human sulfatase 2 inhibitor 2,4-disulfonylphenyl-tert-butylnitrone (OKN-007) has an antitumor effect in hepatocellular carcinoma mediated via suppression of TGFB1/SMAD2 and Hedgehog/GLI1 signaling, Genes, Chromosomes and Cancer, vol.52, issue.3, pp.225-236, 2012.

L. M. Khachigian and C. R. Parish, Phosphomannopentaose Sulfate (PI-88): Heparan Sulfate Mimetic with Clinical Potential in Multiple Vascular Pathologies, Cardiovascular Drug Reviews, vol.22, issue.1, pp.1-6, 2006.

V. Ferro, K. Dredge, L. Liu, E. Hammond, I. Bytheway et al., PI-88 and Novel Heparan Sulfate Mimetics Inhibit Angiogenesis, Seminars in Thrombosis and Hemostasis, vol.33, issue.5, pp.557-568, 2007.

K. Raman and B. Kuberan, Chemical Tumor Biology of Heparan Sulfate Proteoglycans, Current Chemical Biology, vol.4, issue.1, pp.20-31, 2010.

M. M. Hossain, T. Hosono-fukao, R. Tang, N. Sugaya, T. H. Van-kuppevelt et al., Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88, Glycobiology, vol.20, issue.2, pp.175-186, 2009.

N. M. Howarth, G. Cooper, A. Purohit, L. Duncan, M. J. Reed et al., Phosphonates and thiophosphonates as sulfate surrogates: synthesis of estrone 3-methylthiophosphonate, a potent inhibitor of estrone sulfatase, Bioorganic & Medicinal Chemistry Letters, vol.3, issue.2, pp.313-318, 1993.

L. Duncan, A. Purohit, N. M. Howarth, B. V. Potter, and M. J. Reed, Inhibition of Estrone Sulfatase Activity by Estrone-3-Methylthiophosphonate: A Potential Therapeutic Agent in Breast Cancer, Cancer Res, vol.53, issue.2, pp.298-303, 1993.

N. M. Howarth, A. Purohit, M. J. Reed, and B. V. Potter, Estrone sulfamates: potent inhibitors of estrone sulfatase with therapeutic potential, Journal of Medicinal Chemistry, vol.37, issue.2, pp.219-221, 1994.

A. Bloch and C. Coutsogeorgopoulos, Inhibition of protein synthesis by 5'-sulfamoyladenosine, Biochemistry, vol.10, issue.24, pp.4394-4398, 1971.

E. Klein, G. H. Burgess, A. Bloch, H. Milgrom, and O. A. Holtermann, THE EFFECTS OF NUCLEOSIDE ANALOGS ON CUTANEOUS NEOPLASMS, Annals of the New York Academy of Sciences, vol.255, issue.1 Chemistry, Bi, pp.216-224, 1975.

W. Elger, S. Schwarz, A. Hedden, G. Reddersen, and B. Schneider, Sulfamates of Various Estrogens Are Prodrugs with Increased Systemic and Reduced Hepatic Estrogenicity at Oral Application. The Journal of Steroid Biochemistry and Molecular Biology, vol.55, pp.214-220, 1995.

M. I. El-gamal, M. H. Semreen, P. A. Foster, and B. V. Potter, Design, synthesis, and biological evaluation of new arylamide derivatives possessing sulfonate or sulfamate moieties as steroid sulfatase enzyme inhibitors, Bioorganic & Medicinal Chemistry, vol.24, issue.12, pp.2762-2767, 2016.

D. Moi, P. A. Foster, L. G. Rimmer, A. Jaffri, A. Deplano et al., Synthesis and in vitro evaluation of piperazinyl-ureido sulfamates as steroid sulfatase inhibitors, European Journal of Medicinal Chemistry, vol.182, p.111614, 2019.

L. W. Woo, A. Purohit, M. J. Reed, and B. V. Potter, Active Site Directed Inhibition of Estrone Sulfatase by Nonsteroidal Coumarin Sulfamates, Journal of Medicinal Chemistry, vol.39, issue.7, pp.1349-1351, 1996.

A. Purohit, L. Fusi, J. Brosens, L. W. Woo, B. V. Potter et al., Inhibition of steroid sulphatase activity in endometriotic implants by 667 COUMATE: a potential new therapy, Human Reproduction, vol.23, issue.2, pp.290-297, 2007.

B. V. Potter and . Sulfation-pathways, SULFATION PATHWAYS: Steroid sulphatase inhibition via aryl sulphamates: clinical progress, mechanism and future prospects, Journal of Molecular Endocrinology, vol.61, issue.2, pp.T233-T252, 2018.

R. C. Coombes, F. Cardoso, N. Isambert, T. Lesimple, P. Soulié et al., A phase I dose escalation study to determine the optimal biological dose of irosustat, an oral steroid sulfatase inhibitor, in postmenopausal women with estrogen receptor-positive breast cancer, Breast Cancer Research and Treatment, vol.140, issue.1, pp.73-82, 2013.

C. Palmieri, R. C. Stein, X. Liu, E. Hudson, H. Nicholas et al., IRIS study: a phase II study of the steroid sulfatase inhibitor Irosustat when added to an aromatase inhibitor in ER-positive breast cancer patients, Breast Cancer Research and Treatment, vol.165, issue.2, pp.343-353, 2017.

S. R. Hanson, L. J. Whalen, and C. Wong, Synthesis and evaluation of general mechanism-based inhibitors of sulfatases based on (difluoro)methyl phenyl sulfate and cyclic phenyl sulfamate motifs, Bioorganic & Medicinal Chemistry, vol.14, issue.24, pp.8386-8395, 2006.

S. R. Hanson, L. J. Whalen, and C. Wong, Synthesis and evaluation of general mechanism-based inhibitors of sulfatases based on (difluoro)methyl phenyl sulfate and cyclic phenyl sulfamate motifs, Bioorganic & Medicinal Chemistry, vol.14, issue.24, pp.8386-8395, 2006.

M. Schelwies, D. Brinson, S. Otsuki, Y. Hong, M. K. Lotz et al., Glucosamine-6-sulfamate Analogues of Heparan Sulfate as Inhibitors of Endosulfatases, ChemBioChem, vol.11, issue.17, pp.2393-2397, 2010.

L. Chiu, N. M. Sabbavarapu, W. Lin, C. Fan, C. Wu et al., Trisaccharide Sulfate and Its Sulfonamide as an Effective Substrate and Inhibitor of Human Endo-O-sulfatase-1, Journal of the American Chemical Society, vol.142, issue.11, pp.5282-5292, 2020.

T. Reuillon, S. F. Alhasan, G. S. Beale, A. Bertoli, A. Brennan et al., Design and synthesis of biphenyl and biphenyl ether inhibitors of sulfatases, Chemical Science, vol.7, issue.4, pp.2821-2826, 2016.

P. Bojarová, E. Denehy, I. Walker, K. Loft, D. P. De-souza et al., Direct Evidence for ArO?S Bond Cleavage upon Inactivation ofPseudomonas aeruginosa Arylsulfatase by Aryl Sulfamates, ChemBioChem, vol.9, issue.4, pp.613-623, 2008.

R. V. Chari, M. L. Miller, and W. C. Widdison, Antibody-Drug Conjugates: An Emerging Concept in Cancer Therapy, Angewandte Chemie International Edition, vol.53, issue.15, pp.3796-3827, 2014.

S. T. Laughlin, J. M. Baskin, S. L. Amacher, and C. R. Bertozzi, In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish, Science, vol.320, issue.5876, pp.664-667, 2008.

C. J. Fee, Size comparison between proteins PEGylated with branched and linear poly(ethylene glycol) molecules, Biotechnology and Bioengineering, vol.98, issue.4, pp.725-731, 2007.

P. Agarwal, B. J. Beahm, P. Shieh, and C. R. Bertozzi, Systemic Fluorescence Imaging of Zebrafish Glycans with Bioorthogonal Chemistry, Angewandte Chemie International Edition, vol.54, issue.39, pp.11504-11510, 2015.

B. Sklarz, Organic chemistry of periodates, Quarterly Reviews, Chemical Society, vol.21, issue.1, p.3, 1967.

R. J. Spears and M. A. Fascione, Site-selective incorporation and ligation of protein aldehydes, Organic & Biomolecular Chemistry, vol.14, issue.32, pp.7622-7638, 2016.

C. B. Barlow, R. D. Guthrie, and A. M. Prior, Periodate oxidation of amino-sugars, Chemical Communications (London), issue.9, p.268, 1966.

L. S. Witus, T. Moore, B. W. Thuronyi, A. P. Esser-kahn, R. A. Scheck et al., Identification of Highly Reactive Sequences For PLP-Mediated Bioconjugation Using a Combinatorial Peptide Library, Journal of the American Chemical Society, vol.132, issue.47, pp.16812-16817, 2010.

L. S. Witus and M. Francis, Site-Specific Protein Bioconjugation via a Pyridoxal 5?-Phosphate-Mediated N-Terminal Transamination Reaction, Current Protocols in Chemical Biology, vol.2, issue.2, pp.125-134, 2010.

J. M. Gilmore, R. A. Scheck, A. P. Esser-kahn, N. S. Joshi, and M. B. Francis, N-Terminal Protein Modification through a Biomimetic Transamination Reaction, Angewandte Chemie International Edition, vol.45, issue.32, pp.5307-5311, 2006.

C. Gauchet, G. R. Labadie, and C. D. Poulter, Regio- and Chemoselective Covalent Immobilization of Proteins through Unnatural Amino Acids, Journal of the American Chemical Society, vol.128, issue.29, pp.9274-9275, 2006.

U. T. Nguyen, J. Cramer, J. Gomis, R. Reents, M. Gutierrez-rodriguez et al., Exploiting the Substrate Tolerance of Farnesyltransferase for Site-Selective Protein Derivatization, ChemBioChem, vol.8, issue.4, pp.408-423, 2007.

M. Rashidian, J. K. Dozier, S. Lenevich, and M. D. Distefano, Selective labeling of polypeptides using protein farnesyltransferase via rapid oxime ligation, Chemical Communications, vol.46, issue.47, p.8998, 2010.

M. Rashidian, J. M. Song, R. E. Pricer, and M. D. Distefano, Chemoenzymatic Reversible Immobilization and Labeling of Proteins without Prior Purification, Journal of the American Chemical Society, vol.134, issue.20, pp.8455-8467, 2012.

D. Schumacher, J. Helma, F. A. Mann, G. Pichler, F. Natale et al., Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase, Angewandte Chemie International Edition, vol.54, issue.46, pp.13787-13791, 2015.

J. S. Rush and C. R. Bertozzi, New Aldehyde Tag Sequences Identified by Screening Formylglycine Generating Enzymesin Vitroandin Vivo, Journal of the American Chemical Society, vol.130, issue.37, pp.12240-12241, 2008.

I. S. Carrico, B. L. Carlson, and C. R. Bertozzi, Introducing genetically encoded aldehydes into proteins, Nature Chemical Biology, vol.3, issue.6, pp.321-322, 2007.

M. J. Appel and C. R. Bertozzi, Formylglycine, a Post-Translationally Generated Residue with Unique Catalytic Capabilities and Biotechnology Applications, ACS Chemical Biology, vol.10, issue.1, pp.72-84, 2014.

T. L. Grove, K. Lee, J. St.-clair, C. Krebs, and S. J. Booker, In Vitro Characterization of AtsB, a Radical SAM Formylglycine-Generating Enzyme That Contains Three [4Fe-4S] Clusters?, Biochemistry, vol.47, issue.28, pp.7523-7538, 2008.

A. Benjdia, S. Subramanian, J. Leprince, H. Vaudry, M. K. Johnson et al., Anaerobic Sulfatase-maturating Enzymes, First Dual Substrate RadicalS-Adenosylmethionine Enzymes, Journal of Biological Chemistry, vol.283, issue.26, pp.17815-17826, 2008.

T. Krüger, S. Weiland, M. Boschanski, P. K. Sinha, G. Falck et al., Conversion of Serine?Type Aldehyde Tags by the Radical SAM Protein AtsB from Methanosarcina mazei, ChemBioChem, vol.20, issue.16, pp.2074-2078, 2019.

T. Krüger, S. Weiland, M. Boschanski, P. K. Sinha, G. Falck et al., Conversion of Serine?Type Aldehyde Tags by the Radical SAM Protein AtsB from Methanosarcina mazei, ChemBioChem, vol.20, issue.16, pp.2074-2078, 2019.

T. Krüger, S. Weiland, G. Falck, M. Gerlach, M. Boschanski et al., Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes, Angewandte Chemie International Edition, vol.57, issue.24, pp.7245-7249, 2018.

D. K. Kölmel and E. T. Kool, Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis, Chemical Reviews, vol.117, issue.15, pp.10358-10376, 2017.

D. K. Kölmel and E. T. Kool, Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis, Chemical Reviews, vol.117, issue.15, pp.10358-10376, 2017.

J. Kalia and R. T. Raines, Hydrolytic Stability of Hydrazones and Oximes, Angewandte Chemie International Edition, vol.47, issue.39, pp.7523-7526, 2008.

P. Agarwal, R. Kudirka, A. E. Albers, R. M. Barfield, G. W. De-hart et al., Hydrazino-Pictet-Spengler Ligation as a Biocompatible Method for the Generation of Stable Protein Conjugates, Bioconjugate Chemistry, vol.24, issue.6, pp.846-851, 2013.

P. Agarwal, J. Weijden, and . Van-der,

E. M. Sletten, D. Rabuka, and C. R. Bertozzi, A Pictet-Spengler Ligation for Protein Chemical Modification, PNAS, vol.2013, issue.1, pp.46-51

N. J. Agard, J. A. Prescher, and C. R. Bertozzi, A Strain-Promoted [3 + 2] Azide?Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems, Journal of the American Chemical Society, vol.126, issue.46, pp.15046-15047, 2004.

X. Ning, R. P. Temming, J. Dommerholt, J. Guo, D. B. Ania et al., Protein Modification by Strain-Promoted Alkyne-Nitrone Cycloaddition, Angewandte Chemie International Edition, vol.49, issue.17, pp.3065-3068, 2010.

M. Colombo, S. Sommaruga, S. Mazzucchelli, L. Polito, P. Verderio et al., Site-Specific Conjugation of ScFvs Antibodies to Nanoparticles by Bioorthogonal Strain-Promoted Alkyne-Nitrone Cycloaddition, Angewandte Chemie International Edition, vol.51, issue.2, pp.496-499, 2011.

P. L. Deangelis, J. Liu, and R. J. Linhardt, Chemoenzymatic synthesis of glycosaminoglycans: Re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains, Glycobiology, vol.23, issue.7, pp.764-777, 2013.

P. L. Deangelis, J. Liu, and R. J. Linhardt, Chemoenzymatic synthesis of glycosaminoglycans: Re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains, Glycobiology, vol.23, issue.7, pp.764-777, 2013.

E. P. Chappell and J. Liu, Use of biosynthetic enzymes in heparin and heparan sulfate synthesis, Bioorganic & Medicinal Chemistry, vol.21, issue.16, pp.4786-4792, 2013.

J. Liu and R. J. Linhardt, Chemoenzymatic synthesis of heparan sulfate and heparin, Nat. Prod. Rep., vol.31, issue.12, pp.1676-1685, 2014.

M. Endo and I. Kakizaki, Synthesis of neoproteoglycans using the transglycosylation reaction as a reverse reaction of endo-glycosidases, Proceedings of the Japan Academy, Series B, vol.88, issue.7, pp.327-344, 2012.

X. Zhang, L. Lin, H. Huang, and R. J. Linhardt, Chemoenzymatic Synthesis of Glycosaminoglycans, Accounts of Chemical Research, vol.53, issue.2, pp.335-346, 2019.

X. Zhang, L. Lin, H. Huang, and R. J. Linhardt, Chemoenzymatic Synthesis of Glycosaminoglycans, Accounts of Chemical Research, vol.53, issue.2, pp.335-346, 2019.

W. Lu, C. Zong, P. Chopra, L. E. Pepi, Y. Xu et al., Controlled Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides, Angewandte Chemie, vol.130, issue.19, pp.5438-5442, 2018.

W. Lu, C. Zong, P. Chopra, L. E. Pepi, Y. Xu et al., Controlled Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides, Angewandte Chemie International Edition, vol.57, issue.19, pp.5340-5344, 2018.

S. U. Hansen, G. J. Miller, M. J. Cliff, G. C. Jayson, and J. M. Gardiner, Making the longest sugars: a chemical synthesis of heparin-related [4]noligosaccharides from 16-mer to 40-mer, Chemical Science, vol.6, issue.11, pp.6158-6164, 2015.

S. U. Hansen, G. J. Miller, G. C. Jayson, and J. M. Gardiner, First Gram-Scale Synthesis of a Heparin-Related Dodecasaccharide, Organic Letters, vol.15, issue.1, pp.88-91, 2012.

S. U. Hansen, G. J. Miller, G. C. Jayson, and J. M. Gardiner, First Gram-Scale Synthesis of a Heparin-Related Dodecasaccharide, Organic Letters, vol.15, issue.1, pp.88-91, 2012.

R. A. Jeanneret, C. E. Dalton, and J. M. Gardiner, Synthesis of Heparan Sulfate- and Dermatan Sulfate-Related Oligosaccharides via Iterative Chemoselective Glycosylation Exploiting Conformationally Disarmed [2.2.2] l-Iduronic Lactone Thioglycosides, The Journal of Organic Chemistry, vol.84, issue.23, pp.15063-15078, 2019.

S. U. Hansen, C. E. Dalton, M. Baráth, G. Kwan, J. Raftery et al., Synthesis of l-Iduronic Acid Derivatives via [3.2.1] and [2.2.2] l-Iduronic Lactones from Bulk Glucose-Derived Cyanohydrin Hydrolysis: A Reversible Conformationally Switched Superdisarmed/Rearmed Lactone Route to Heparin Disaccharides, The Journal of Organic Chemistry, vol.80, issue.8, pp.3777-3789, 2015.

N. J. Pawar, L. Wang, T. Higo, C. Bhattacharya, P. K. Kancharla et al., Expedient Synthesis of Core Disaccharide Building Blocks from Natural Polysaccharides for Heparan Sulfate Oligosaccharide Assembly, Angewandte Chemie International Edition, vol.58, issue.51, pp.18577-18583, 2019.

Z. Zhang, I. R. Ollmann, X. Ye, R. Wischnat, T. Baasov et al., Programmable One-Pot Oligosaccharide Synthesis, Journal of the American Chemical Society, vol.121, issue.4, pp.734-753, 1999.

C. Cheng, Y. Zhou, W. Pan, S. Dey, C. Wu et al., Hierarchical and programmable one-pot synthesis of oligosaccharides, Nature Communications, vol.9, issue.1, pp.1-9, 2018.

S. Dey and C. Wong, Programmable one-pot synthesis of heparin pentasaccharides enabling access to regiodefined sulfate derivatives, Chemical Science, vol.9, issue.32, pp.6685-6691, 2018.

J. Lee, W. A. Greenberg, and C. Wong, Programmable reactivity-based one-pot oligosaccharide synthesis, Nature Protocols, vol.1, issue.6, pp.3143-3152, 2006.

J. Lee, W. A. Greenberg, and C. Wong, Programmable reactivity-based one-pot oligosaccharide synthesis, Nature Protocols, vol.1, issue.6, pp.3143-3152, 2006.

C. Hsu, S. Hung, C. Wu, and C. Wong, Toward Automated Oligosaccharide Synthesis, Angewandte Chemie International Edition, vol.50, issue.50, pp.11872-11923, 2011.

T. Polat and C. Wong, Anomeric Reactivity-Based One-Pot Synthesis of Heparin-Like Oligosaccharides, Journal of the American Chemical Society, vol.129, issue.42, pp.12795-12800, 2007.

T. Polat and C. Wong, Anomeric Reactivity-Based One-Pot Synthesis of Heparin-Like Oligosaccharides, Journal of the American Chemical Society, vol.129, issue.42, pp.12795-12800, 2007.

Y. Hu, Y. Zhong, Z. Chen, C. Chen, Z. Shi et al., Divergent Synthesis of 48 Heparan Sulfate-Based Disaccharides and Probing the Specific Sugar?Fibroblast Growth Factor-1 Interaction, Journal of the American Chemical Society, vol.134, issue.51, pp.20722-20727, 2012.

D. Bonnaffé, Bioactive synthetic heparan sulfate and heparin derivatives: From long fragments mimetics to chimeras, Comptes Rendus Chimie, vol.14, issue.1, pp.59-73, 2011.

S. Sarrazin, D. Bonnaffé, A. Lubineau, and H. Lortat-jacob, Heparan Sulfate Mimicry, Journal of Biological Chemistry, vol.280, issue.45, pp.37558-37564, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00274500

F. Baleux, L. Loureiro-morais, Y. Hersant, P. Clayette, F. Arenzana-seisdedos et al., A synthetic CD4?heparan sulfate glycoconjugate inhibits CCR5 and CXCR4 HIV-1 attachment and entry, Nature Chemical Biology, vol.5, issue.10, pp.743-748, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00415325

D. Hamza, R. Lucas, T. Feizi, W. Chai, D. Bonnaffé et al., First Synthesis of Heparan Sulfate Tetrasaccharides Containing both N-Acetylated and N-Unsubstituted Glucosamine-Search for Putative 10E4 Epitopes, ChemBioChem, vol.7, issue.12, pp.1856-1858, 2006.

O. Gavard, Y. Hersant, J. Alais, V. Duverger, A. Dilhas et al., Efficient Preparation of Three Building Blocks for the Synthesis of Heparan Sulfate Fragments: Towards the Combinatorial Synthesis of Oligosaccharides from Hypervariable Regions, European Journal of Organic Chemistry, vol.2003, issue.18, pp.3603-3620, 2003.

A. Vasella, C. Witzig, and R. G. Husi, Glycosylidene Carbenes. Part 4. Synthesis of Spirocyclopropanes from Acetamidoglycosylidene-Derived Diazirines, Helvetica Chimica Acta, vol.74, issue.6, pp.1362-1372, 1991.

A. Lubineau, O. Gavard, J. Alais, and D. Bonnaffé, New accesses to l-iduronyl synthons, Tetrahedron Letters, vol.41, issue.3, pp.307-311, 2000.

A. Dilhas and D. Bonnaffé, PhBCl2 promoted reductive opening of 2?,4?-O-p-methoxybenzylidene: new regioselective differentiation of position 2? and 4? of ?-l-iduronyl moieties in disaccharide building blocks, Tetrahedron Letters, vol.45, issue.18, pp.3643-3645, 2004.

G. Povie, A. Tran, D. Bonnaffé, J. Habegger, Z. Hu et al., Repairing the Thiol-Ene Coupling Reaction, Angewandte Chemie International Edition, vol.53, issue.15, pp.3894-3898, 2014.

T. Mukaiyama, K. Narasaka, and M. Furusato, Convenient synthesis of 1,4-diketones. Application to the synthesis of dihydrojasmone, Journal of the American Chemical Society, vol.94, issue.24, pp.8641-8642, 1972.

B. Yu and H. Tao, Glycosyl trifluoroacetimidates. Part 1: Preparation and application as new glycosyl donors, Tetrahedron Letters, vol.42, issue.12, pp.2405-2407, 2001.

, , pp.157-162

K. Larsen, C. E. Olsen, and M. S. Motawia, Acid-catalysed rearrangement of glycosyl trichloroacetimidates: a novel route to glycosylamines, Carbohydrate Research, vol.343, issue.2, pp.383-387, 2008.

A. Lubineau, H. Lortat-jacob, O. Gavard, S. Sarrazin, and D. Bonnaffé, Synthesis of Tailor-Made Glycoconjugate Mimetics of Heparan Sulfate That Bind IFN-? in the Nanomolar Range, Chemistry - A European Journal, vol.10, issue.17, pp.4265-4282, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01061440

J. Ø. Duus, C. H. Gotfredsen, and K. Bock, Carbohydrate Structural Determination by NMR Spectroscopy: Modern Methods and Limitations?, Chemical Reviews, vol.100, issue.12, pp.4589-4614, 2000.

M. Sakagami and H. Hamana, A Selective Ring Opening Reaction of 4,6-O-Benzylidene Acetals in Carbohydrates Using Trialkylsilane Derivatives, Tetrahedron Letters, vol.41, issue.29, pp.877-884, 2000.

P. J.-garegg, H. Hultberg, and S. Wallin, A novel, reductive ring-opening of carbohydrate benzylidene acetals, Carbohydrate Research, vol.108, issue.1, pp.97-101, 1982.

, , pp.81894-81901

M. P. Deninno, J. B. Etienne, and K. C. Duplantier, A method for the selective reduction of carbohydrate 4,6-O-benzylidene acetals, Tetrahedron Letters, vol.36, issue.5, pp.669-672, 1995.

R. Appel and G. Berger, Hydrazinsulfonsäure-amide, I. Über das Hydrazodisulfamid, Chemische Berichte, vol.91, issue.6, pp.1339-1341, 1958.

M. Okada, S. Iwashita, and N. Koizumi, Efficient general method for sulfamoylation of a hydroxyl group, Tetrahedron Letters, vol.41, issue.36, pp.7047-7051, 2000.

, , pp.1130-1138

H. Bayley, D. N. Standring, and J. R. Knowles, Propane-1,3-dithiol: A selective reagent for the efficient reduction of alkyl and aryl azides to amines, Tetrahedron Letters, vol.19, issue.39, pp.3633-3634, 1978.

&. Lovri, M. Cepanec, I. Litvi, &. , and M. , Bartolin(i', A.; Vinkovi', V. Scope and Limitations of Sodium and Potassium Trimethylsilanolate as Reagents for Conversion of Esters to Carboxylic Acids, Croatica Chemica Acta, vol.80, issue.1, pp.109-115, 2007.

G. J. Sheng, Y. I. Oh, S. Chang, and L. C. Hsieh-wilson, Tunable Heparan Sulfate Mimetics for Modulating Chemokine Activity, Journal of the American Chemical Society, vol.135, issue.30, pp.10898-10901, 2013.

K. Bürglová, (. Hlavá, and J. , Application of Trimethylsilanolate Alkali Salts in Organic Synthesis, Synthesis, vol.50, issue.06, pp.1199-1208, 2018.

W. R. Sherman and E. F. Stanfield, Measurement of the arylsulphatase of Patella vulgata with 4-methylumbelliferone sulphate, Biochemical Journal, vol.102, issue.3, pp.905-909, 1967.

Z. Mj, H. ;. Ka, N. Mn, T. Kl, and B. , Integration of Hepatic Drug Transporters and Phase II Metabolizing Enzymes: Mechanisms of Hepatic Excretion of Sulfate, Glucuronide, and Glutathione Metabolites, Eur J Pharm Sci, vol.27, issue.5, pp.447-486, 2006.

M. J. Zamek-gliszczynski, K. A. Hoffmaster, K. Nezasa, M. N. Tallman, and K. L. Brouwer, Integration of hepatic drug transporters and phase II metabolizing enzymes: Mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites, European Journal of Pharmaceutical Sciences, vol.27, issue.5, pp.447-486, 2006.

S. T. Olson, I. Björk, and S. C. Bock, Identification of Critical Molecular Interactions Mediating Heparin Activation of Antithrombin: Implications for the Design of Improved Heparin Anticoagulants, Trends in Cardiovascular Medicine, vol.12, issue.5, pp.160-163, 2002.

M. Petitou and C. A. Van-boeckel, A Synthetic Antithrombin III Binding Pentasaccharide Is Now a Drug! What Comes Next?, Angewandte Chemie International Edition, vol.43, issue.24, pp.3118-3133, 2004.

D. Shukla, J. Liu, P. Blaiklock, N. W. Shworak, X. Bai et al., A Novel Role for 3-O-Sulfated Heparan Sulfate in Herpes Simplex Virus 1 Entry, Cell, vol.99, issue.1, pp.80058-80064, 1999.

E. Campaigne, E. E. By, and . Gilbert, Sulfonation and Related Reactions By E. E. Gilbert. Interscience Publishers, Inc., 605 3rd Ave., New York, N. Y., 1965. xi+529pp. 15.5×23.5cm. Price $16.50, Journal of Pharmaceutical Sciences, vol.55, issue.8, p.864, 1966.

E. Campaigne, Sulfonation and Related Reactions By E. E. Gilbert. Interscience Publishers, Inc., 605 3rd Ave., New York, N. Y., 1965. xi+529pp. 15.5×23.5cm. Price $16.50, Journal of Pharmaceutical Sciences, vol.55, issue.8, p.864, 1966.

N. C. Deno and M. S. Newman, Mechanism of Sulfation of Alcohols1,2, Journal of the American Chemical Society, vol.72, issue.9, pp.3852-3856, 1950.

E. E. Gilbert, The Reactions of Sulfur Trioxide, and Its Adducts, with Organic Compounds., Chemical Reviews, vol.62, issue.6, pp.549-589, 1962.

R. A. Al-horani and U. R. Desai, Chemical sulfation of small molecules?advances and challenges, Tetrahedron, vol.66, issue.16, pp.2907-2918, 2010.

R. O. Mumma, Preparation of sulfate esters, Lipids, vol.1, issue.3, pp.221-223, 1966.

C. P. Hoiberg and R. O. Mumma, Preparation of sulfate esters. Reactions of various alcohols, phenols, amines, mercaptans, and oximes with sulfuric acid and dicyclohexylcarbodiimide, Journal of the American Chemical Society, vol.91, issue.15, pp.4273-4278, 1969.

J. P. Dusza, J. P. Joseph, and S. Bernstein, The Preparation of Estradiol-17 Sulfates with Triethylamine-Sulfur Trioxide, Steroids, vol.45, issue.3, pp.90079-90079, 1985.

K. Kitagawa, C. Aida, H. Fujiwara, T. Yagami, S. Futaki et al., Facile Solid-Phase Synthesis of Sulfated Tyrosine-Containing Peptides: Total Synthesis of Human Big Gastrin-II and Cholecystokinin (CCK)-391,2, The Journal of Organic Chemistry, vol.66, issue.1, pp.1-10, 2001.

J. Lee, X. Lu, S. S. Kulkarni, Y. Wen, and S. Hung, Synthesis of Heparin Oligosaccharides, Journal of the American Chemical Society, vol.126, issue.2, pp.476-477, 2004.

J. Lee, X. Lu, S. S. Kulkarni, Y. Wen, and S. Hung, Synthesis of Heparin Oligosaccharides, Journal of the American Chemical Society, vol.126, issue.2, pp.476-477, 2004.

S. E. Tully, R. Mabon, C. I. Gama, S. M. Tsai, X. Liu et al., A Chondroitin Sulfate Small Molecule that Stimulates Neuronal Growth, Journal of the American Chemical Society, vol.126, issue.25, pp.7736-7737, 2004.

T. Young and L. L. Kiessling, A Strategy for the Synthesis of Sulfated Peptides, Angewandte Chemie International Edition, vol.41, issue.18, pp.3449-3451, 2002.

A. E. Sobel, I. J. Drekter, and S. Natelson, Estimation of Water Content of Small Amounts of Proteinaceous Material, Analytical Chemistry, vol.25, issue.11, pp.1756-1756, 1953.

A. E. Sobel and P. E. Spoerri, Steryl Sulfates. I. Preparation and Properties, Journal of the American Chemical Society, vol.63, issue.5, pp.1259-1261, 1941.

J. P. Dusza, J. P. Joseph, and S. Bernstein, Steroid conjugates IV. The preparation of steroid sulfates with triethylamine-sulfur trioxide, Steroids, vol.12, issue.1, pp.49-61, 1968.

J. P. Joseph, J. P. Dusza, E. W. Cantrall, S. Bernstein, . Steroid et al., V.1 The Synthesis of a Suifoglucuronide Derivative of Estriol, Steroids, vol.14, issue.5, pp.80049-80057, 1969.
URL : https://hal.archives-ouvertes.fr/in2p3-00718709

V. B. Krylov, N. E. Ustyuzhanina, A. A. Grachev, and N. E. Nifantiev, Efficient acid-promoted per-O-sulfation of organic polyols, Tetrahedron Letters, vol.49, issue.41, pp.5877-5879, 2008.

J. Kuszmann, G. Medgyes, and S. Boros, Synthesis of 2,5-anhydro-(?-d-glucopyranosyluronate)- and (?-l-idopyranosyluronate)-d-mannitol hexa-O-sulfonate hepta sodium salt, Carbohydrate Research, vol.339, issue.8, pp.1569-1579, 2004.

J. Kuszmann, G. Medgyes, and S. Boros, Synthesis of 2,5-anhydro-(?-d-glucopyranosyluronate)- and (?-l-idopyranosyluronate)-d-mannitol hexa-O-sulfonate hepta sodium salt, Carbohydrate Research, vol.339, issue.8, pp.1569-1579, 2004.

P. Xu, S. Laval, Z. Guo, and B. Yu, Microwave-assisted simultaneous O,N-sulfonation in the synthesis of heparin-like oligosaccharides, Organic Chemistry Frontiers, vol.3, issue.1, pp.103-109, 2016.

S. B. Dulaney, Y. Xu, P. Wang, G. Tiruchinapally, Z. Wang et al., Divergent Synthesis of Heparan Sulfate Oligosaccharides, The Journal of Organic Chemistry, vol.80, issue.24, pp.12265-12279, 2015.

J. L. De-paz, C. Noti, and P. H. Seeberger, Microarrays of Synthetic Heparin Oligosaccharides, Journal of the American Chemical Society, vol.128, issue.9, pp.2766-2767, 2006.

S. Arungundram, K. Al-mafraji, J. Asong, F. E. Leach, I. J. Amster et al., Modular Synthesis of Heparan Sulfate Oligosaccharides for Structure?Activity Relationship Studies, Journal of the American Chemical Society, vol.131, issue.47, pp.17394-17405, 2009.

S. Maza, J. L. De-paz, and P. M. Nieto, Microwave-assisted sulfonation of heparin oligosaccharides, Tetrahedron Letters, vol.52, issue.3, pp.441-443, 2011.

S. Maza, J. L. De-paz, and P. M. Nieto, Microwave-assisted sulfonation of heparin oligosaccharides, Tetrahedron Letters, vol.52, issue.3, pp.441-443, 2011.

K. Nagasawa and Y. Inoue, Solvolytic desulfation of 2-deoxy-2-sulfoamino-D-glucose and D-glucose 6-sulfate, Carbohydrate Research, vol.36, issue.2, pp.265-271, 1974.

, , pp.83047-83052

D. H. Sieh and J. M. Dunham, Determination of active sulfur trioxide in sulfur trioxide-pyridine and sulfur trioxide-trimethylamine complexes, Analytical Chemistry, vol.54, issue.7, pp.1216-1217, 1982.

A. Ogamo, A. Metori, H. Uchiyama, and K. Nagasawa, Reactivity toward chemical sulfation of hydroxyl groups of heparin, Carbohydrate Research, vol.193, pp.165-172, 1989.

D. Rabuka, J. S. Rush, G. W. Dehart, P. Wu, and C. R. Bertozzi, Site-specific chemical protein conjugation using genetically encoded aldehyde tags, Nature Protocols, vol.7, issue.6, pp.1052-1067, 2012.

K. Hoffman and D. Enders, Novel Sulfur Containing Electrophiles in Asymmetric Organocatalysis, 2008.

S. Cheng and S. Yu, Enantioselective synthesis of 3-substituted 1,2-oxazinanes via organocatalytic intramolecular aza-Michael addition, Org. Biomol. Chem., vol.12, issue.43, pp.8607-8610, 2014.

R. Hevey, A. Morland, and C. Ling, A Scalable Approach to Obtaining Orthogonally Protected ?-d-Idopyranosides, The Journal of Organic Chemistry, vol.77, issue.16, pp.6760-6772, 2012.

R. Hevey, A. Morland, and C. Ling, A Scalable Approach to Obtaining Orthogonally Protected ?-d-Idopyranosides, The Journal of Organic Chemistry, vol.77, issue.16, pp.6760-6772, 2012.

S. Ghosh, S. Nishat, and P. R. Andreana, Synthesis of an Aminooxy Derivative of the Tetrasaccharide Repeating Unit of Streptococcus dysgalactiae 2023 Polysaccharide for a PS A1 Conjugate Vaccine, J. Org. Chem, issue.11, pp.4475-4484

S. Ghosh, S. Nishat, and P. R. Andreana, Synthesis of an Aminooxy Derivative of the Tetrasaccharide Repeating Unit ofStreptococcus dysgalactiae2023 Polysaccharide for a PS A1 Conjugate Vaccine, The Journal of Organic Chemistry, vol.81, issue.11, pp.4475-4484, 2016.

S. Ghosh and P. R. Andreana, Synthesis of an Aminooxy Derivative of the Trisaccharide Globotriose Gb3, Journal of Carbohydrate Chemistry, vol.33, issue.7-8, pp.381-394, 2014.

S. Ghosh and P. R. Andreana, Synthesis of an Aminooxy Derivative of the Trisaccharide Globotriose Gb3, Journal of Carbohydrate Chemistry, vol.33, issue.7-8, pp.381-394, 2014.

O. Renaudet and P. Dumy, Expedient synthesis of aminooxylated-carbohydrates for chemoselective access of glycoconjugates, Tetrahedron Letters, vol.42, issue.43, pp.7575-7578, 2001.

A. R. Khomutov, J. J. Vepsäläinen, A. S. Shvetsov, T. Hyvönen, T. A. Keinänen et al., Synthesis of Oxyamine Analogues of Polyamines, Tetrahedron, vol.52, issue.43, pp.836-844, 1996.

Y. Ge, X. Wu, D. Zhang, and L. Hu, 3-Aminoxypropionate-based linker system for cyclization activation in prodrug design, Bioorganic & Medicinal Chemistry Letters, vol.19, issue.3, pp.941-944, 2009.

J. Yin, M. Weisel, Y. Ji, Z. Liu, J. Liu et al., Improved Preparation of a Key Hydroxylamine Intermediate for Relebactam: Rate Enhancement of Benzyl Ether Hydrogenolysis with DABCO, Organic Process Research & Development, vol.22, issue.3, pp.273-277, 2018.

S. Ram and L. D. Spicer, Rapid Debenzylation of N-Benzylamino Derivatives to Amino-Derivatives Using Ammonium Formate as Catalytic Hydrogen Transfer Agent, Tetrahedron Letters, vol.28, issue.5, pp.95769-95770, 1987.

M. Makowski, B. Rzeszotarska, L. Smelka, and Z. Kubica, Synthesis of Peptides with ?,?-Dehydroamino Acids, III. Debenzyloxycarbonylation and Detrifluoroacetylation of Dehydroalanine and Dehydrophenylalanine Peptides, Liebigs Annalen der Chemie, vol.1985, issue.7, pp.1457-1464, 1985.

M. Niemietz, L. Perkams, J. Hoffman, S. Eller, and C. Unverzagt, Selective oxidative debenzylation of mono- and oligosaccharides in the presence of azides, Chemical Communications, vol.47, issue.37, p.10485, 2011.

S. Cao, F. D. Tropper, and R. Roy, Stereoselective Phase Transfer Catalyzed Syntheses of Glycosyloxysuccinimides and Their Transformations into Glycoprobes, Tetrahedron, issue.24, pp.325-328, 1995.

Y. Gong, S. Peyrat, H. Sun, and J. Xie, Synthesis of nucleoside aminooxy acids, Tetrahedron, vol.67, issue.37, pp.7114-7120, 2011.

L. A. Marcaurelle, Y. Shin, S. Goon, and C. R. Bertozzi, Synthesis of Oxime-Linked Mucin Mimics Containing the Tumor-Related TNand Sialyl TNAntigens, Organic Letters, vol.3, issue.23, pp.3691-3694, 2001.

C. Besset, S. Chambert, Y. Queneau, S. Kerverdo, H. Rolland et al., Reactivity of melezitose and raffinose under Mitsunobu reaction conditions, Carbohydrate Research, vol.343, issue.5, pp.929-935, 2008.

D. C. Batesky, M. J. Goldfogel, and D. J. Weix, Removal of Triphenylphosphine Oxide by Precipitation with Zinc Chloride in Polar Solvents, The Journal of Organic Chemistry, vol.82, issue.19, pp.9931-9936, 2017.

B. Astleford and L. O. Weigel, Scope of phthalimido chemistry I. Extension of utility by conversion to the opcb protecting group., Tetrahedron Letters, vol.32, issue.28, pp.3301-3304, 1991.

N. Menges and M. Balci, Catalyst-Free Hydrogenation of Alkenes and Alkynes with Hydrazine in the Presence of Oxygen, Synlett, vol.25, issue.05, pp.671-676, 2014.

M. Haller and G. Boons, Towards a modular approach for heparin synthesis, Journal of the Chemical Society, Perkin Transactions 1, issue.8, pp.814-822, 2001.

Y. Hu, S. Lin, C. Huang, M. M. Zulueta, J. Liu et al., Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host?cell interaction, Nature Chemistry, vol.3, issue.7, pp.557-563, 2011.

L. J. Van-den-bos, J. D. Codée, J. C. Van-der-toorn, T. J. Boltje, J. H. Van-boom et al., Thioglycuronides: Synthesis and Application in the Assembly of Acidic Oligosaccharides, Organic Letters, vol.6, issue.13, pp.2165-2168, 2004.

A. Dilhas, R. Lucas, L. Loureiro-morais, Y. Hersant, and D. Bonnaffé, Mixture Synthesis and ?Charge Tagging? Based Demixing: An Efficient Strategy for the Preparation of Heparan Sulfate Libraries, Journal of Combinatorial Chemistry, vol.10, issue.2, pp.166-169, 2008.

S. N. Bavikar, D. B. Salunke, B. G. Hazra, V. S. Pore, J. Thierry et al., Pd-catalyzed one-pot chemoselective hydrogenation protocol for the preparation of carboxamides directly from azides, Tetrahedron Letters, vol.51, issue.29, pp.3815-3819, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00512099

L. Navidpour, W. Lu, and S. D. Taylor, Synthesis of ?-Fluorosulfonate and ?-Fluorosulfonamide Analogues of a Sulfated Carbohydrate, Organic Letters, vol.8, issue.24, pp.5617-5620, 2006.

Y. Liu, V. Ahmed, B. Hill, and S. D. Taylor, Synthesis of a non-hydrolyzable estrone sulfate analogue bearing the difluoromethanesulfonamide group and its evaluation as a steroid sulfatase inhibitor, Organic & Biomolecular Chemistry, vol.3, issue.18, p.3329, 2005.

Y. Liu, V. Ahmed, B. Hill, and S. D. Taylor, Synthesis of a non-hydrolyzable estrone sulfate analogue bearing the difluoromethanesulfonamide group and its evaluation as a steroid sulfatase inhibitor, Organic & Biomolecular Chemistry, vol.3, issue.18, p.3329, 2005.

J. Lapierre, V. Ahmed, M. Chen, M. Ispahany, J. G. Guillemette et al., The difluoromethylene group as a replacement for the labile oxygen in steroid sulfates: a new approach to steroid sulfatase inhibitors, Bioorganic & Medicinal Chemistry Letters, vol.14, issue.1, pp.151-155, 2004.

H. Rembold and R. R. Schmidt, Synthesis of Kdo--Glycosides of Lipid A Derivatives, Carbohydrate Research, vol.246, issue.1, pp.84029-84035, 1993.

P. Tiwari and A. K. Misra, Synthesis of a Pentasaccharide Repeating Unit of the Extracellular Polysaccharide Produced by Lactobacillus Delbrueckii Subsp. Bulgaricus 291, Journal of Carbohydrate Chemistry, vol.26, issue.4, pp.239-248, 2007.

H. Toshima, H. Sato, and A. Ichihara, Total Synthesis of (2S,3R,5S)-(?)-2,3-Dihydroxytetradecan-5-Olide, a New Biologically Active #-Lactone Produced by Seiridium Unicorne, Tetrahedron, vol.55, issue.9, pp.56-59, 1999.

J. Neumann and J. Thiem, Synthesis of Amino-Bridged Oligosaccharide Mimetics, European Journal of Organic Chemistry, vol.2010, issue.5, pp.900-908, 2010.

J. Neumann and J. Thiem, Synthesis of Amino-Bridged Oligosaccharide Mimetics, European Journal of Organic Chemistry, vol.2010, issue.5, pp.900-908, 2010.