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Résumé détaillé

Ce texte rassemble les travaux effectués au cours de mes trois années de thèse. Le problème auquel
je me suis intéressé concerne l’étude et la modélisation des données extrêmes en grande dimension.
Je résume ici de façon succinte les résultats obtenus.

Variation régulière

Le cadre général de cette thèse est le suivant : on se donne un échantillon de vecteurs aléatoires
indépendants et identiquement distribués (i.i.d.) X1, . . . ,Xn et on souhaite étudier la structure
de dépendence des valeurs extrêmes de cet échantillon. L’idée est alors de considérer un vecteur
aléatoire X de même loi que l’échantillon et de s’intéresser au comportement joint des queues de
dsitributions des marginales de X. Dans ce contexte, de nombreuses questions apparaissent. Quelle
est la probabilité que deux marginales sont simultanément grandes ? Est-il possible que toutes
les coordonnées soient extrêmes en même temps ? À l’inverse, est-il possible que le comportement
extrême de X ne soit dû qu’à une seule des ses marginales ? Plus simplement, parmi ces n vecteurs
de l’échantillon quels seront ceux que l’on considèrera comme extrêmes ?

Une hypothèse classique en Théorie des Valeurs Extrêmes est de supposer que les vecteurs con-
sidérés sont à variation régulière, c’est-à-dire qu’il existe une suite strictement positive (an) vérifiant
an → ∞ quand n → ∞ et une mesure de Radon non-nulle µ définie sur la tribu des boréliens de
Rd+ \ {0} telles que

nP(a−1
n X ∈ ·) v→ µ(·) , n→∞ , (0.0.1)

voir Resnick (1987) et Resnick (2007). La mesure limite µ est appelée mesure exposant. Elle
rassemble une grande partie de l’information concernant le comportement de la queue de X. En
effet, les directions sur lesquelles cette mesure met de la masse correspondent aux directions dans
lesquelles des événements extrêmes sont susceptibles d’apparaître.

On peut montrer que la mesure exposant est homogène au sens suivant: il existe α > 0 tel que

µ(tA) = t−αµ(A) .

pour tout t > 0 et tout borélien A ⊂ Rd+ \ {0}. L’indice α > 0 est appelé l’indice de queue.
L’homogénéité de la mesure exposant a des nombreuses conséquences. En particulier, elle permet de

9



10 RÉSUMÉ DÉTAILLÉ

décomposer cette mesure en une partie radiale et une partie angulaire. En effet, un vecteur aléatoire
X ∈ Rd+ est à variation régulière si et seulement s’il existe un vecteur aléatoire Θ sur la sphère unité
positive Sd−1

+ et une variable aléatoire Y de loi de Pareto de paramètre α tels que

P((t−1|X|,X/|X|) ∈ · | |X| > t)
w→ P((Y,Θ) ∈ ·) , t→∞ . (0.0.2)

Dans ce cas, le vecteur Θ est indépendant de la variable alátoire Y et est appelé vecteur spectral. Sa
loi S(·) = P(Θ ∈ ·) est appelée mesure spectrale. L’Equation (0.0.2) permet de décomposer l’étude
des extrêmes multivariés en deux étapes. La première consiste à inférer l’intensité des extrêmes en
estimant l’indice α > 0 : plus α est petit, plus cette intensité est grande. D’un point de vue théorique,
on est ramené à l’étude de la norme du vecteur X et donc à la théorie des extrêmes univariés. Ce
cadre a déjà été longuement étudié dans les ouvrages de Beirlant et al. (2006), de Haan and Ferreira
(2006), Embrechts et al. (2013) ou Coles (2001). De nombreuses méthodes pour estimer α ont été
proposées, par exemple par Hill (1975) ou Pickands (1975).

Le coeur du problème réside donc dans l’étude de la mesure spectrale S. Cette dernière rassemble
l’information sur la dépendance et la localisation des événements extrêmes : les parties de la sphère
unité sur lesquelles S met de la masse correspondent aux directions dans lesquelles de tels événements
se produisent. Ainsi, la connaissance du support de cette mesure s’avère être un point central de
l’étude des extrêmes multivariés. À cet égard, l’Equation (0.0.2) implique en particulier que

P(X/|X| ∈ · | |X| > t)
w→ P(Θ ∈ ·) , t→∞ . (0.0.3)

À première vue, cette convergence permet d’estimer le vecteur spectral à partir des données X1, . . . ,Xn.
Néanmoins, il est fréquent que Θ se concentre sur des parties de la sphère de dimension d′ � d.
On dit alors que cette mesure est parcimonieuse. Cela signifie qu’avec grande probabilité le vecteur
spectral a plusieurs coordonnées nulles. À l’inverse, le vecteur X modélise des données réelles donc
sa loi ne met pas de masse sur de tels sous-espaces. L’Equation (0.0.3) tombe alors en défaut. Le
phénomène de parcimonie a d’autant plus lieu en grande dimension. Un des objectifs de la théorie
des extrêmes multivariés est alors de modéliser au mieux ce phénomène.

Parcimonie dans les extrêmes

Un des obstacles majeurs à l’utilisation de la convergence (0.0.3) est la différence de support entre
X et Θ. L’idée est alors d’adapter l’approche classique basée sur le concept de variation régulière
en modifiant la composante angulaire X/|X| dans l’Equation (0.0.2). Dans le but d’introduire de la
parcimonie dans le vecteur initial X, on utilise la projection euclidienne sur une sphère `1 (Duchi
et al. (2008), Gafni and Bertsekas (1984), Bertsekas (1999)). Pour z > 0, on consière la sphère
positive Sd−1

+ = {x ∈ Rd+, |x|1 = z}. La projection euclidienne sur cette sphère est alors définie par
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la fonction
πz : Rd+ → Sd−1

+ (z)

v 7→ w = (v − λv,z)+ .

où λv,z ∈ R est l’unique constante vérifiant la relation
∑

1≤i≤d(vi − λv,z)+ = z.
Une illustration de la projection en dimension 2 est donnée en Figure 1. Des nombreux algo-

rithmes calculant cette projection ont été développés par Condat (2016) and Duchi et al. (2008).
Dans ce dernier article, les auteurs proposent un algorithme dont la complexité est linéaire en
moyenne. Ceci justifie l’utilisation de cette projection pour l’étude des extrêmes en grande dimen-
sion. Notons que le choix du seuil z a des conséquences sur la parcimonie du vecteur projeté (voir
Figure 1b). Ce choix fait l’objet d’une étude particulière dans le Chapitre 3.

O e1

e2

1

1

u

π(u)

v

π(v)

O e1

e2

1

1

2

2

u

π1(u)

π2(u)

(a) Deux vecteurs et leur image par π. Les lignes
pointillées séparent l’espace en fonction de l’ensemble

image de la projection : e1, e2, ou l’intérieur du
simplexe.

(b) Influence du choix de z. L’image du vecteur u
est π1(u) = e1 avec z = 1 alors qu’elle devient
π2(u) > 0 avec z = 2. La parcimonie augmente

quand le seuil diminue.

Figure 1: La projection euclidienne sur le simplexe, exemple et influence du choix du seuil.

La susbtitution du vecteur normalisé X/|X| par le vecteur π(X/t) donne lieu à la définition
suivante. On dit qu’un vecteur aléatoire X ∈ Rd+ est à variation régulière parcimonieuse s’il vérifie
la convergence :

P
((
|X|1
t
, π

(
X

t

))
∈ ·
∣∣∣∣ |X|1 > t

)
w→ P((Y,Z) ∈ ·) , t→∞ . (0.0.4)

où Y est une variable aléatoire de loi de Pareto de paramètre α > 0 et Z un vecteur aléatoire sur le
simplexe positif {x ∈ Rd+, x1 + . . .+ xd = 1} (voir Section 2.4 pour plus de détails).

Contrairement à la variation régulière standard, les composantes radiale et angulaire de la limite
dans (0.0.4) ne sont pas indépendantes. Néanmoins, leur structure de dépendance est déterminée
dans la Proposition 2.4.1. Le résultat principal du Chapitre 2 est alors le Théorème 2.4.1 qui,
sous des hypothèses assez faibles, établit l’équivalence entre variation régulière et variation régulière
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parcimonieuse. Ce théorème, ainsi que la Proposition 2.3.2, met également en évidence les relations
entre la loi de Z et celle de Θ.

La notion de variation régulière parcimonieuse permet, via la projection euclidienne sur le sim-
plexe, de travailler avec un vecteur π(X/t) qui comporte un grand nombre de coordonnées nulles.
Cette réduction de la dimension rend alors plus réalisable l’étude de la dépendance des composantes
extrêmes de X via l’estimation du support de Z.

Estimation de la dépendance

Partant de l’Equation (0.0.4), on se propose d’estimer la dépendance des extrêmes multivariés de
X en s’appuyant sur le vecteur angulaire Z. Pour cela, on partitionne la simplexe en fonction de
la nullité des coordonnées d’un vecteur de cet ensemble. Pour β ⊂ {1, . . . , d}, β 6= ∅, on définit le
sous-ensemble Cβ par

Cβ =
{
x ∈ Rd+, x1 + . . .+ xd = 1, xi > 0 pour i ∈ β, xi = 0 pour i /∈ β

}
.

Ces sous-ensembles forment une partition du simplexe. Cette approche rejoint celle développée par
Chautru (2015) qui utilise une partition de la sphère dans un contexte d’analyse en composante
principale. De leurs côtés,Simpson et al. (2019) s’appuient sur la même partition pour étudier la
dépendance sous des hypothèses de variation regulière cachée. Enfin, Goix et al. (2017) utilisent une
partition similaire pour estimer le support de la mesure exposant.

L’interprétation des Cβ en terme de valeurs extrêmes est la suivante : la mesure spectrale met
de la masse sur Cβ si et seulement si des événements extrêmes apparaissent dans la direction β,
autrement dit, si et seulement s’il est probable que les coordonnées dans β soient simultanément
grandes alors que celles dans βc ne le soient pas. Néanmoins, la convergence faible de l’Equation
(0.0.2) tombe en défaut dès lors qu’un Cβ vérifie P(Θ ∈ Cβ) > 0 pour β 6= {1, . . . , d}. Le vecteur
spectral Θ n’apparaît donc pas comme le bon modèle dans ce cadre.

À l’inverse, on établit dans le Chapitre 2 plusieurs résultats concernant le comportement du
vecteur angulaire Z sur les sous-espaces Cβ , notamment la convergence de π(X/t) | |X|1 > t vers
Z sur ces ensembles. L’interprétation des probabilités P(Z ∈ Cβ) en terme de valeurs extrêmes est
assez similaire à celle concernant Θ (voir Proposition 2.3.3 et Théorème 2.3.1). Par ailleurs, les
propriétés de la projection euclidienne sur le simplexe permettent d’étudier l’importance relative
d’une coordonnée (ou d’un groupe de coordonnées) par rapport aux autres via l’étude du support
de Z (voir Section 2.3.1). Le but des Chapitres 2 et 3 est alors de s’intéresser à l’estimation de la
masse mise par la loi de Z sur les sous-espaces Cβ .

Un cas fréquemment étudié en théorie des valeurs extrêmes est celui où la masse de la mesure
spectrale se concentre sur les axes ek = C{k}, pour k = 1, . . . , d. On parle alors d’asymptotique
indépendance (de Haan and Ferreira (2006), Section 6.2). La modélisation et l’étude de vecteurs
asymptotiquement indépendants a fait l’objet de nombreux articles (voir e.g. Ledford and Tawn
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(1996), Heffernan and Tawn (2004), Fougères and Soulier (2010)). Les résultats numériques proposés
en fin de Chapitre 2 illustrent l’avantage de l’utilisation du vecteur Z pour identifier de tels vecteurs.

Dans un contexte statistique, le Chapitre 3 rassemble différents résultats concernant l’étude des
vecteurs aléatoires à variation régulière parcimonieuse. On y établit des résultats de convergence à la
fois pour l’étude d’un seul sous-ensemble Cβ (Proposition 3.3.1 et Théorème 3.3.1), mais également
pour un vecteur qui regroupe plusieurs sous-ensembles Cβ (Théorème 3.4.2). Cette approche motive
l’utilisation d’un modèle multinomial à 2d − 1 paramètres pour estimer les probabilités P(Z ∈ Cβ).

Sélection de modèle

L’estimation des quantités P(Z ∈ Cβ) se fait via l’approximation

P(π(X/t) ∈ Cβ | |X|1 > t) ≈ P(Z ∈ Cβ) ,

pour t "assez grand". Plutôt que de fixer un seuil t, une méthode standard utilisée en théorie des
valeurs extrèmes est de se donner un niveau k = nP(|X| > t) correspondant au nombre de données
parmi X1, . . . ,Xn que l’on considère comme extrêmes et de travailler uniquement sur ces k vecteurs.
La sélection du modèle multinomial développée dans la Section 3.5 se fait alors en reprenant la
méthode de minimisation de la log-vraisemblance pénalisée introduite par Akaike (1973). Pour k
fixé suffisamment grand, les résultats asymptotiques obtenus permettent alors de mettre en évidence
le modèle qui correspond le mieux aux données.

À ce stade, le choix du seuil t, ou de manière équivalente celui du niveau k reste encore à
déterminer. De manière générale, il s’agit de réaliser un compromis entre un choix de k assez grand
dans le but d’utiliser au mieux les données disponibles et un choix plus modéré qui permet de rester
dans le régime extrême. Une revue de la littérature sur ce sujet à été effectuée par Scarrott and
MacDonald (2012). Comme expliqué par Embrechts et al. (2013), on "ne doit pas s’attendre de
voir apparaître un unique choix de t". Une approche standard consiste alors à considérer plusieurs
niveaux k, de calculer les estimateurs considérés pour ces valeurs et de représenter graphiquement
leur évolution en fonction de k.

Dans le but de faire tout de même ressortir une valeur optimale de k, on prolonge la sélection
de modèle effectuée avec les Cβ en ajoutant le choix du niveau k. L’idée est donc de considérer
différents modèles avec différents choix de k et de déterminer le plus approprié. Mais cette approche
implique de comparer des modèles de taille différente, la taille étant en l’occurrence le paramètre k.
Dès lors, il semble naturel de tenir compte des valeurs non-extrêmes et ainsi de traiter l’ensemble
des données. On réalise donc une partition entre données extrêmes et non-extrêmes et le but de
la sélection de modèle est d’identifier celle qui correspond le mieux aux données. Cette étude fait
l’objet de la Section 3.5.

Dans ce contexte, la pénalisation linéaire standard qui minimise le Critère d’Information d’Akaike
(AIC) ne s’applique pas. Notre approche consiste alors à reprendre les calculs effectués dans le cadre
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classique et à les adapter à la sélection jointe des sous-ensembles Cβ et du niveau k. En particulier,
on fait apparaître une pénalisation multiplicative via l’étude de l’optimisation de la divergence de
Kullback-Leibler entre le vrai modèle (inconnu) régissant nos données et le modèle multinomial
théorique.

Notons également que l’influence du seuil dans la parcimonie des vecteurs projetés (voir Figure
1b) rend notre méthode peu coûteuse d’un point de vue algorithmique. En effet, les propriétés
théoriques de la projection développées dans le Lemme 2.2.2 permettent de traiter simultanément
la parcimonie des vecteurs π(X/t) pour tout t > 0. Le temps de calcul est ainsi assez faible et on
peut traiter de manière assez efficace des dimensions de l’ordre de d ∼ 102.

On applique cette méthode sur divers données simulées qui modélisent à la fois des cas de
dépendance extrême et d’asymptotique indépendance. Les résultats numériques obtenus illustrent
la pertinence de l’approche proposée, notamment quand la dimension devient assez grande (de
l’ordre de 102). L’algorithme parvient à identifier les différentes directions de l’espace sur lesquels
les extrêmes se concentrent. La Section 2.5 propose une comparaison de cette procédure avec celle
proposée par Goix et al. (2017). Outre l’absence d’hyper-paramètre, l’approche basée sur la la notion
de variation régulière parcimonieuse semble assez robuste, notamment quand la taille des données
varie.

Indépendance conditionnelle

La variation régulière parcimonieuse est efficace pour étudier des événements extrêmes apparaissant
sur des sous-espaces de dimension bien inférieure à celle de l’espace de départ. Elle permet donc
principalement d’étudier les extrêmes multivariés en grande dimension. En effet, à mesure que la
dimension d augmente, il devient très peu probable d’avoir une structure de dépendance complète
pour la queue de distribution de X, c’est-à-dire d’observer un comportement extrême simultané de
toutes les marginales de X.

En dimension modérée, il se peut que des données vérifient une telle dépendence complète. Dans
ce cas, les modèles parcimonieux proposés jusqu’à présent ne sont plus adaptés. Concernant le seuil
t et la condition |X| > t de l’Equation (0.0.2), il s’agit de trouver un conditionnement adapté qui
tienne compte d’une éventuelle dépendance forte entre les composantes de X. Un choix naturel se
porte sur le minimum des marginales Xk de X. La condition min1≤k≤dXk > t implique en effet
que tous les Xk sont grands simultanément. Le Chapitre 4 développe cette approche en s’appuyant
sur les travaux de Segers et al. (2017). La convergence de l’Equation (0.0.2) est alors remplacée
par une hypothèse de variation régulière sur la variable min1≤k≤dXk, ainsi que par l’hypothèse de
convergence

P
(
X/t ∈ · | min

1≤k≤d
Xk > t

)
w→ P(Y′ ∈ ·) , t→∞ ,

sur l’espace restreint (0,∞)d. Le vecteur aléatoire Y′ est défini comme la limite des excès de X

au-dessus d’un certain seuil, sa loi se rapproche donc de la loi de Pareto multivariée introduite par
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Rootzén and Tajvidi (2006) et étudiée ensuite par Rootzén et al. (2018a), Rootzén et al. (2018b) et
Kiriliouk et al. (2019).

Dans ce contexte, l’idée est alors de définir la notion d’indépendance conditionnelle pour Y′ et de
la mettre en rapport avec celle de X (Proposition 4.5.2). Le concept d’indépendance conditionnelle
permet de développer des modèles graphiques pour les extrêmes. Cette étude est effectuée par
Engelke and Hitz (2020) qui étendent les différentes notions impliquant les modèles graphiques à la
loi de Pareto multivariée. Leur analyse repose sur l’utilisation de lois conditionnelles et s’effectue
sous l’hypothèse que la loi de Pareto multivariée ne met pas de masse sur les sous-espaces de Rd+
de dimension inférieure à d. Le Chapitre 4 propose alors une comparaison de cette approche avec
celle reposant sur les minimum des marginales d’un vecteur aléatoire. On prouve en particulier que
l’utilisation du minimum forme un cadre plus général que celui développé par Engelke and Hitz
(2020).
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18 INTRODUCTION

1.1 Context and objectives

1.1.1 Extreme Value Theory

The study of risk management has been booming in recent years, for instance in the environmental,
industrial, or financial fields. The key issue in this framework is to assess the probability of occurrence
of an exceptional event which may never have been observed. In meteorology, we can look at the
flood risk due to exceptional levels of precipitation. One may also want to estimate the intensity
and duration of a heat wave. Similarly in seismology, it is natural to study the maximum intensity
that a potential earthquake could reach in a given region. In the industrial field, companies want to
estimate as best as possible the probability of incurring heavy financial losses. Similarly, insurance
companies would like to evaluate the amount of reinsurance premiums in order to limit their risk of
bankruptcy.

These different examples illustrate the general idea of Extreme Value Theory (EVT): An event
that occurs regularly (rain, for example) has serious consequences if its intensity is abnormally high.
The aim of EVT is to quantify the frequency of occurrence of these events as well as their intensity.
The main issue lies in studying an event that has occurred only rarely, if ever. There, the first lines
of the famous book of de Haan and Ferreira (2006) are enlightening:

"Approximately 40% of the Netherlands is below sea level. Much of it has to be protected
against the sea by dikes. [...] The government, balancing considerations of cost and
safety, has determined that the dikes should be so high that the probability of a flood
(i.e., the seawater level exceeding the top of the dike) in a given year is 10−4. The
question is then how high the dikes should be built to meet this requirement. Storm
data have been collected for more than 100 years. In this period, at the town of Delfzijl,
in the northeast of the Netherlands, 1877 severe storm surges have been identified. The
collection of high-tide water levels during those storms forms approximately a set of
independent observations, taken under similar conditions (i.e., we may assume that they
are independent and identically distributed). No flood has occurred during these 100
years."

How can we determine the probability of occurrence of a flood and its intensity given that none
has been observed in the last 100 years? How can the available data, which often contain few (if
any) large events, be used to assess the probability of occurrence of an extreme event? These central
questions in EVT are opposed to classical statistic which consists in studying the average trend of a
sample using the usual tools: mean, variance, median, etc. At a multivariate level, a large event is
often the consequence of extreme values jointly in several components. In an environmental context
for instance, the air quality can be explained by several air pollutants like ozone, nitrogen dioxide,
nitrogen oxide, etc. (see Heffernan and Tawn (2004) and Janßen and Wan (2020) for more details).
There, a simultaneous high level of these pollutants leads to deleterious effects on human health.
Therefore, the joint structure of extreme values has to be studied. This means that we have to focus
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on the dependence between the different components which lead to severe events.
From a statistical point of view, three main issues arise in the study of multivariate extremes.

First, the multivariate models proposed so far in the literature are non-parametric. Estimating the
tail dependence boils down to studying a probability measure on the unit sphere. This leads to
the second issue of multivariate EVT: The non-parametric setting is all the more challenging in a
high-dimensional setting. The curse of dimensonality (Bellman (1957)) even arises for moderate
dimensions such as d = 10. Using learning techniques in this context is thus computationally
expensive and do not provide good results. A last key issue in EVT is the number of data points
used to model the extremal behavior of the sample. While it seems natural to consider only the
data which are above a threshold, the choice of this latter is however an unsolved question. This
point is all the more crucial since choosing a few number of data points indirectly increases the
high-dimensional setting.

From a theoretical point of view, given a random variable X, extreme events are characterized
by the tails of the distribution of X. They can thus be studied through two different approaches.
The first one consists in focusing on the highest values of a sample, i.e. the maximum, and to
study its convergence when the sample size increases. The second approach is based on threshold
exceedances: The idea is to study a conditional distribution given that X is above a threshold t

and to investigate its limit when t goes to infinity. The following paragraphs detail these two main
approaches, looking separately at the univariate and the multivariate frameworks.

1.1.1.1 Univariate framework

Our aim is to model the extreme behavior of a random variable X taking values in R. Historically,
EVT started with the study of the maximum of a sample of independent random variablesX1, . . . , Xn

with the same distribution X. This approach was developed in the first half of the twentieth century
with the seminal works of Fréchet (1927), Fisher and Tippett (1928) and Gnedenko (1943). Many
current works rely on this approach in order to develop a general theory for extremes, see Resnick
(1987), Kotz and Nadarajah (2000), Beirlant et al. (2006), Resnick (2007), de Haan and Ferreira
(2006), or Embrechts et al. (2013) for a textbook treatment. Nevertheless the main disadvantage of
this approach lies in the use of a single observation (the largest one).

In order to better use the available data, another method has then been developed by Balkema
and de Haan (1974) and Pickands (1975). It consists in studying the tail of X by focusing on the
distribution of X | X > t for t large enough or even t → ∞. Similarly one can also look at the
distribution of the excess X − t | X > t. For the study of a river’s floods for instance, the idea
consists in setting a threshold t beyond which the water level becomes critical and then studying
the behavior of the water level beyond this threshold, see Pericchi and Rodríguez-Iturbe (1985). A
inventory of the different techniques used in univariate EVT can be found in Gomes and Guillou
(2015).

For case studies based on these two methods, many examples are developed in the book of
Beirlant et al. (2006). In the founding article on peak-over threshold, Balkema and de Haan (1974)
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model residual lifetime at great age. Similarly, Lawless (2011) provides inference procedures in the
context of lifetime data. EVT is also widely used to model life or non-life insurance, for instance
in Beirlant and Teugels (1992), Resnick (1997), or Teugels (1984). Several applications to finance
or insurance have been developed in the monograph of Embrechts et al. (2013). Finally statistic of
extreme events has also been used to model natural phenomena such as maximum wind speed in
Thom (1954), hydrology in Katz et al. (2002), or general meteorological phenomena in Jenkinson
(1955). We refer to Kotz and Nadarajah (2000) for a huge list of applications.

At this point a remark is in order. The study of extremes has been defined as the study of
the tails of the distribution. One can thus also be interested in the behavior of the minimum
mn = min(X1, . . . , Xn) of a sample of n random variables X1, . . . , Xn. But this comes back to the
study of the maximum via the relation min(X1, . . . , Xn) = −max(−X1, . . . ,−Xn). In the same way,
if one wishes to study the distribution of X | X < −t for t > 0, then one can apply the previous
case by setting Y = −X and by studying the opposite of the distribution of Y | Y > t. However,
note that in many fields of application it is the study of the maximum or of X | X > t with t > 0

that is of interest. One of the only examples where the study of extremes concerns large negative
values is the case of financial losses of one (or more) company(ies). But in this case, it is sufficient
to consider these losses in absolute value to come back to the standard positive framework.

1.1.1.2 Multivariate framework

As pointed out by Coles and Tawn (1991), "problems concerning environmental extremes are often
multivariate in character", for instance "wind speed data where maximum hourly gusts, maximum
hourly mean speeds and the dependence between them are relevant to building safety". The first
works addressing multivariate extremes are the articles by Tiago De Oliveira (1958), Sibuya (1960)
and de Haan and Resnick (1977). More recently, Chapter 3 of Kotz and Nadarajah (2000) and
Chapters 8 and 9 of Beirlant et al. (2006) expose the different theoretical results in multivariate
EVT. A main reference on the multivariate framework is also the review of Fougères (2004) and the
references therein.

Assume for instance that we want to study rainfall data in different points of the globe. This
is modeled by a random vector X = (X1, . . . , Xd)

> with values in Rd, where d denotes the number
of stations and Xj denotes the rainfall level at station j. As for the univariate framework, two
approaches coexist. The first one consists in studying the componentwise maximum Mn of a sample
X1, . . . ,Xn with same distribution as X, defined as

Mn := (Mn,1, . . .Mn,d)
> , (1.1.1)

where
Mn,k := max

1≤i≤n
Xi,k , k = 1, . . . , d .

The study of the behavior ofMn,k for k = 1, . . . , d naturally relies on the univariate framework. But
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we also need to study the asymptotic behavior of the dependence structure of Mk
n . Going back to

the example of rainfall data, the idea is to identify a possible correlation between the maxima of
two or several stations. For a survey on this approach, see Kotz and Nadarajah (2000), Chapter 3
or Galambos (1978), Chapter 5.

As in the univariate framework, a second approach consists in setting a threshold t > 0 and
studying the behavior of the vector X | |X| > t when t → ∞, where | · | denotes an arbitrary
norm on Rd. Under some assumptions on X, multivariate Pareto distributions arise as limits of
the threshold exceedances of X. This family of distributions has been introduced by Rootzén and
Tajvidi (2006) and stability properties have been established by Rootzén et al. (2018a). For methods
based on multivariate threshold exceedances, see Smith (1994) and Rootzén et al. (2018b).

A wide variety of applications of multivariate EVT is given by Tawn (1994). A majority of them
addresses environmental issues, such as coastal flooding (Bruun and Tawn (1998)), acid rain (Joe
et al. (1992)), sea-level (De Haan and De Ronde (1998) and Tawn (1992)), or air pollution (Heffernan
and Tawn (2004) and Janßen and Wan (2020)). For an application on financial risk management,
see Longin (2000) who deals with both univariate and multivariate frameworks. The aforementioned
examples mainly concern the bivariate case. More recently, higher dimensional studies have been
led to study rainfall data (De Fondeville and Davison (2016) and Cooley and Thibaud (2019)), fi-
nancial return data (Cooley and Thibaud (2019) and Janßen and Wan (2020)) or anomaly detection
(Goix et al. (2017)). As for the univariate case, we refer to Kotz and Nadarajah (2000) for a list of
applications in the multivariate case.

For the univariate framework as well as for the multivariate one both approaches (maximum of
a sample and threshold exceedances) address the behavior of the tail of a random variable or vector.
The key notion which tackles this issue and manages to combine these approaches is regular variation
(see Bingham et al. (1989) for a general survey on this concept) which provides an elegant and useful
description of the asymptotic tail distribution. While the univariate setting can be modeled in a
parametric framework, the multivariate one is based on a probability measure on the unit sphere.
This non-parametric approach does not easily provide efficient estimators.

1.1.2 Goal of this thesis

The central problem of multivariate EVT lies in modeling and estimating the tail dependence. In this
context, three general (and thus vague) questions arise. Given a data set of n points x1, . . . ,xn ∈ Rd:

(Q1) How can we study the extreme behavior of this data set if d is large?

(Q2) What can we say about the dependence structure of the extremes of this data set?

(Q3) How many data points should we use to have enough information while being in an extreme
setting?
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The question (Q1) raises the point of the curse of dimensionality. As already explained, the study
of multivariate extremes has until recently only been addressed for low-dimensional data, i.e. d ≤ 5.
In order to handle vectors in high dimension, it is necessary to reduce the dimension of the study.
Hence, the question (Q1) falls within the realm of statistical learning which provides methods to
identify some structure in a data set or to classify the data even when d is large. To this end, several
learning techniques have been proposed. Their common idea is to introduce sparsity into the data
(for instance after an appropriate projection) in order to focus on lower-dimensional subspaces.

This is all the more relevant since extreme values are often located in subspaces of smaller
dimension. It is indeed very unlikely that all directions simultaneously contribute to the tail behavior
of the data when d is large. Therefore, addressing question (Q2) requires to identify these subsets.
However, it is not so straightforward to transpose standard learning methods to an extreme context
since these methods often focus on the mean behavior of the data while the extreme one is sometimes
hard to capture. This is why learning for extremes has only been developed very recently, for instance
by Goix et al. (2016) where the major question was to distinguish anomalies from extremal -but not
abnormal- data.

Finally, the question (Q3) is more naturally associated to model selection. If k denotes the
number of extreme points among the data x1, . . . ,xn, then a large k increases the number of data
points used and hence the accuracy of the estimation, while it moves away from the extreme set-
ting. A balanced choice should therefore be done between having enough data while staying in an
extreme framework. Therefore, a standard idea is to define a family of models with different k and
to compute which one best fits the data.

From a theoretical point of view the goal of this thesis is to learn the tail dependence of a
random vector X ∈ Rd. Since we essentially focus on the right tail of X, it is not so restrictive
to assume that X is non-negative. Most current statistical models for extremes suppose regular
variation for X. In this case, the tail dependence of X is summarized by a probability measure on
the unit sphere, called the spectral measure, see Section 1.2 for a review on some existing results
on regularly varying random vectors. Roughly speaking, this measure places mass in a direction
if extreme events are likely to appear in this direction. The main information is then gathered
in the support of this measure. Hence, addressing the question (Q2) boils down to studying the
spectral measure’s support. But estimating this support becomes more and more challenging when
the dimension increases. Therefore, many authors first carried out the bivariate case, for instance
Tawn (1988), Einmahl et al. (1993), Schmidt and Stadtmüller (2006) and Einmahl et al. (1997). For
a review on parametric models in the bivariate case, see Kotz and Nadarajah (2000), Section 3.4. In
moderate dimension, Heffernan and Tawn (2004) introduced a semi-parametric approach to analyze
a five-dimensional air pollution data. The same data set has been used by Sabourin et al. (2013)
and by Sabourin and Naveau (2014) in a Bayesian context. Smith et al. (1990) and subsequently
Tawn (1990) analyze the sea level annual maxima of three sites on the south-east coast of England.

In moderate dimension, it is likely that a large event is due to an extreme behavior of all
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marginals. In this dependent case, the relations between the components can be done through
conditional independence. This has been established by Papastathopoulos and Strokorb (2016) in a
general setting and by Gissibl et al. (2018) for discrete spectral measure. The notion of conditional
independence is closely linked to the one of graphical models which provide useful representation of
the dependence structure between the marginals of a random vector. Engelke and Hitz (2020) extend
these concepts for multivariate extremes in order to study extreme dependent data. In Chapter 4,
we discuss this approach and develop another one based on the minimum of the marginals. This is
a way to address the question (Q2) for dependent extremes.

Nevertheless, when the dimension d is large, it is very unlikely that all directions are simultane-
ously extreme and thus some other dependence structures arise. Until recently, no specific method
has been introduced to tackle this framework and so to address the question (Q1). Our aim is
to use learning techniques to tackle high-dimensional data. The idea is to project the data onto
lower-dimensional subspaces so that some coordinates are put to zero. In this context, only the
most significant directions appear and provide some patterns on which extreme events occur. The
highlighting of these significant directions is done with a specific projection widely studied in learning
theory: the Euclidean projection onto the simplex (Gafni and Bertsekas (1984), Duchi et al. (2008),
Bertsekas (1999)). The main advantage of this approach is the linear-time complexity of the projec-
tion which allows to handle vectors in large dimension (Condat (2016)). This particular approach
to study the angular components of extreme values enjoys many properties and is almost equivalent
to the standard approach of regular variation introduced in Section 1.2. Therefore, it allows to deal
with simultaneously with both questions (Q1) and (Q2): Using the Euclidean projection onto the
simplex leads both to a better understanding of the tail dependence and to dimension reduction. In
this context, we introduce the notion of sparse regular variation (see Chapter 2).

The Euclidean projection onto the simplex provides different results depending on the choice of
the threshold above which the data are extreme or equivalently the choice of a level which corresponds
to the number of extreme values among the data. This encourages to study more deeply the choice of
a potential optimal threshold. As pointed out by Embrechts et al. (2013), one "should never expect
a unique choice of [the threshold] u to appear". However, obtaining an idea of which threshold
or which level should be used can be done with model selection (Massart (1989), Hastie et al.
(2009)). Of course, a model will all the more fits the data if it has a large number of explanatory
parameters. However, it becomes hard to understand when the number of parameters becomes too
large. Therefore, the goal of model selection is to provide a balanced choice of relevant parameters
that explain the data. A widely used technique in this context is the Akaike Information Criterion
(Akaike (1973)).

Regarding the level, that is, the number of threshold exceedances, comparing models with dif-
ferent levels implies a comparison between models with different data size. To circumvent this issue,
it is necessary to also take the non-extreme values into account. The model selection relies then
on the appropriate partition between extreme and non-extreme values. Note that the choice of the
level has an impact on the dependence structure of extreme values. Indeed, the Euclidean projection
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provides different results depending on the sphere on which the vectors are projected. Hence, the
identification of an accurate level has to be done simultaneously with the study of the tail depen-
dence. Therefore, the model selection procedure needs to deal with the whole data set in order to
simultaneously address the questions (Q2) and (Q3). This is the main purpose of Chapter 3 which
develop a statistical framework to answer these questions.

Outline of the Introduction This first chapter gathers all theoretical concepts which are useful
in this thesis. The main one is regular variation which is introduced in Section 1.2. We develop all
tools regarding regularly varying random variables and random vectors and link them to the study of
extreme events. We particularly insist on the multivariate framework for which we define the spectral
measure and the spectral vector. In order to work with high-dimensional data, it is convenient to
reduce the dimension and so to use techniques coming from learning theory. Therefore, Section 1.3
deals with different standard methods to tackle this issue. In particular, we highlight the Euclidean
projection onto the simplex, a particular projection which provides sparse vectors and hence reduce
the dimension of the study. In Section 1.4 we focus on learning techniques in the context of EVT.
A particular attention is paid on the existing methods which are for most of them quite recent. We
introduce the different approaches proposed in the literature and insist on the aspects we will rely
on. Finally, Section 1.5 deals with the main ideas in model selection. We particularly insist on the
estimation of density which will be one of the main point of Chapter 3 and discuss how to deal with
threshold selection for multivariate extremes.

Notations Throughout all the manuscript, we will use the following notations.

Denote in bold-face elements x = (x1, . . . , xd) of Rd. We write x ≤ y, x < y, x ≥ y, etc.
where ≤, <, ≥ refer to the componentwise partial ordering in Rd. More generally, for x ∈ Rd

and y ∈ R, we write x ≤ y if all components xi of x satisfy xi ≤ y. In the same way, x + y is
defined as the vector (x1 + y, . . . xd + y). We also define Rd+ = {x ∈ Rd, x1 ≥ 0, . . . , xd ≥ 0} and
0 = (0, . . . , 0) ∈ Rd. For j = 1, . . . , d, ej denotes the j-th vector of the canonical basis of Rd, which
means that ej = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in position j. For a ∈ R, a+ denotes the positive
part of a, that is a+ = a if a ≥ 0 and a+ = 0 otherwise. If x ∈ Rd and I = {i1, . . . , ir} ⊂ {1, . . . , d},
then xI denotes the vector (xi1 , ..., xir) of Rr. For p ∈ [1,∞], we denote by | · |p the `p-norm in Rd.
We write w→ for the weak convergence, v→ for the vague convergence, and d→ for the convergence in
distribution of random variables.

For a set E, we denote by P(E) its power set: P(E) = {A, A ⊂ E}. We also use the notation
P∗(E) = P(E)\{∅}. If E = {1, . . . , r}, we simply write Pr = P({1, . . . , r}) and P∗r = P({1, . . . , r})\
{∅}. For a finite set E, we denote by #E its cardinality. If #E = r ≥ 1, then #P(E) = 2r. In
particular, #Pr = 2r and #P∗r = 2r − 1. Finally, if F is a subset of a set E, we denote by F c the
complementary of F (in E).
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1.2 Regular variation

The notion of regular variation has been introduced by Karamata (1933) and then used in different
mathematical contexts and particularly in applied probability theory. A main reference on this
subject in the book of Bingham et al. (1989) which gathers several theoretical results. We also refer
to the report of Mikosch (1999) and the thesis of Basrak (2000) for a review of the multivariate
setting. This section develops all useful tools regarding regular variation in the context of EVT. We
start with the univariate setting which emphasizes the key role played by regularly varying random
variables when studying the maximum of a sample or the threshold exceedances. Then, we extend
this framework to random vectors.

1.2.1 The univariate framework

We begin this section with general notions of regularly varying functions and regularly varying
random variables before using them to unify different approaches in univariate EVT.

1.2.1.1 General results

Definition 1.2.1 (Regularly varying function). A positive measurable function f is regularly varying
(at infinity) with index α ∈ R if it is defined on some neighborhood of infinity and if

lim
x→∞

f(tx)

f(x)
= tα , t > 0 . (1.2.1)

If α = 0, then f is said to be slowly varying.

Remark 1.2.1.

1. A regularly varying function f with index α can be written as f(x) = xαL(x) where L is a
slowly varying function.

2. It is sufficient to require that the limit

lim
x→∞

f(tx)

f(x)

exists, is finite, and positive for all t > 0. Then, it satisfies the so-called Cauchy’s functional
equation and is thus a power function. It is even sufficient to suppose that for all t in a set
of positive Lebesgue measure the limit exists, is finite, and positive, see Theorem B.1.3 in
de Haan and Ferreira (2006).

3. It is possible to define regular variation at a point x0 ∈ R. A positive measurable function f
is regularly varying at x0 if the function x 7→ f(x0 − x−1) is regularly varying at infinity.

4. If Equation (1.2.1) holds, then the convergence is actually uniform on all compact sets of
(0,∞), see Bingham et al. (1989), Theorem 1.2.1.
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Example 1.2.1. Functions converging to positive constants (and thus constant functions) are slowly
varying, as well as the family of functions f(x) = logβ(x), β ∈ R. If α ∈ R, the functions x 7→
xα log(x)β are regularly varying with index α.

We now introduce the concept of regularly varying random variable. If X is a random variable
with distribution function F , i.e. F (x) = P(X ≤ x) for x ∈ R, then we denote its survey function
by

F̄ (x) := 1− F (x) = P(X > x) , x ∈ R .

We also write xF := sup{x ∈ R, F (x) < 1} and call this point the right endpoint of F .

Definition 1.2.2 (Non-negative regularly varying random variable). A non-negative random vari-
able X and its distribution F are said to be regularly varying with index α ≥ 0 if F̄ is regularly
varying with index −α.

Unless it is explicitly stated, we always consider regularly varying random variables with infinite
right endpoint xF . In this case, we obtain the following convergence:

lim
x→∞

F̄ (tx)

F̄ (x)
= lim

x→∞

1− F (tx)

1− F (x)
= lim

x→∞

P(X > tx)

P(X > x)
= t−α , t > 0 . (1.2.2)

One should pay attention to the difference of notation between the index of a regularly varying
function and of a regularly varying random variable. In particular, it is clear from (1.2.2) that the
case α < 0 is impossible.

Example 1.2.2 (Pareto distribution). A standard example of a regularly varying distribution is
the Pareto distribution whose distribution function is given by x 7→ 1− (xm/x)ρ for x ≥ xm, where
xm > 0 is the location parameter and ρ > 0 is the shape parameter. We can easily check that this
distribution is regularly varying with index ρ.

Example 1.2.3 (Burr distribution). The Burr distribution is characterized by the distribution
function F (x) = 1− (1 + xc)−k for x > 0 and F (x) = 0 elsewhere, where c > 0 and k > 0 are given
parameters. Then, a short computation gives

F̄ (tx)

F̄ (x)
=

(1 + (tx)c)−k

(1 + xc)−k
→ t−ck , x→∞ ,

for all t > 0. Hence, the Burr distribution is regularly varying with tail index ck.

Extending the notion of regular variation to real random variables requires to take into account
the two tails of the distribution of X. This is the purpose of the following definition.

Definition 1.2.3 (Regularly varying random variable). A real-valued random variable X and its
distribution are regularly varying with index α ≥ 0 if there exist constants p+, p− ≥ 0 satisfying
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p+ + p− = 1 such that

lim
x→∞

P(X > tx)

P(|X| > x)
= p+t

−α and lim
x→∞

P(X < −tx)

P(|X| > x)
= p−t

−α , (1.2.3)

for all t > 0.

In particular this definition implies that the random variable |X| is regularly varying with index
α. Besides we notice that if X is a non-negative random variable, then the notion is consistent with
Definition 1.2.2. It corresponds to the case where p+ = 1− p− = 1.

Example 1.2.4 (Symmetric distributions). If a random variable X has a symmetric distribution,
i.e. X d

= −X, then P(|X| > x) = 2P(X > x) and then X is regularly varying if and only if F̄ is
regularly varying. There we have necessary p+ = p− = 1/2.

For instance, consider a random variable X with a Cauchy distribution given by F (x) = 1/2 +

arctan(x)/π. The density of X is given by f(x) = 1/(π(1 + x2)) which is a symmetric function.
Hence, the random variable X has a symmetric distribution. A Taylor expansion of arctan is given
by

arctan(x) =
π

2
− 1

x
+ o
(1

x

)
, x→∞ ,

which leads to the equivalent F̄ (x) = 1/2− arctan(x)/π ∼ 1/(πx) when x→∞. This implies that

F (tx)

F (x)
→ t−1 , x→∞ ,

for all t > 0. Thus, X is regularly varying with tail index 1 and constants p+ = p− = 1/2.

1.2.1.2 Application to univariate EVT

As explained in Section 1.1, studying the extreme behavior of a random variable X boils down to
focusing on the tails of X. Since the study can be done equivalently on the left or on the right
tail we focus here on the right one. To this end, two similar but different approaches coexist. The
first one deals with max-stable distributions which arise as limits of normalized maxima of an i.i.d.
sample X1, . . . , Xn with generic distribution X. The second one consists in studying the behavior
of X conditioned on the event that X exceeds a high threshold t. Intuitively, these two approaches
are quite natural. Studying an extreme event can be done either by focusing on the behavior of the
highest value, that is the maximum, or by studying only large values, that is values above a high
threshold. We explain in this section that these two approaches are theoretically equivalent and that
they are closely related to the notion of regular variation.

The results discussed here have been developed in the seminal articles of Fréchet (1927), Fisher
and Tippett (1928) and Gnedenko (1943). More recently, one can cite the textbooks of Resnick
(1987), Beirlant et al. (2006), de Haan and Ferreira (2006), Resnick (1987), or Embrechts et al.
(2013) for a survey on the main theoretical results of EVT. Regarding statistical aspects we refer
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to the textbooks of Gumbel (1958), Pickands (1975), Beirlant et al. (1996a), or Coles (2001). The
"Bibliographical Notes" at the end of each chapter of Reiss (1989) provides relevant historical aspects.

We start with a sequence of i.i.d. random variables X1, X2, . . . with generic distribution X. We
denote by F the distribution function of X and by (Mn)n≥1 the sequence of the partial maxima
Mn = max1≤j≤nXj for n ≥ 1. Recall that xF = sup{x ∈ R, F (x) < 1} denotes the right endpoint
of F . The distribution function of Mn corresponds to Fn so that Mn converges in distribution
to a Dirac mass in xF . Thus a normalization is necessary to obtain a non-degenerate limit: We
assume that there exist two real-valued sequences (an)n≥1 and (bn)n≥1, with an > 0, such that
a−1
n (Mn − bn) converges in distribution to a non-degenerate random variable Y , which is equivalent

to the convergence
Fn(anx+ bn)→ H(x) , n→∞ , (1.2.4)

for any continuity point x of H, where H is the distribution function of Y . If such a convergence
holds, then the distribution of Y is unique up to an affine transformation according to the convergence
to types theorem (Theorem A.1.1). In this case, we say that X belongs to the maximum domain
of attraction of Y and we denote this indifferently X ∈ MDA(H) or F ∈ MDA(H). The goal is
then to tackle the three following points: identify the possible limit distributions H, characterize
the convergence in Equation (1.2.4), provide suitable sequences (an) and (bn).

Definition 1.2.4 (Max-stable distribution). A non-degenerate random variable X and its distribu-
tion are said to be max-stable if there exist two real sequences (an)n≥1 and (bn)n≥1, with an > 0,
such that for any sample X1, . . . , Xn of i.i.d. random variables with the same distribution as X, the
following equality in distribution is satisfied for all n ≥ 1:

a−1
n (Mn − bn)

d
= X .

It is clear that any max-stable distribution is in its own domain of attraction. The following
theorem ensures that these are the only possible limits.

Theorem 1.2.1. The class of max–stable distributions coincides with the class of all possible (non-
degenerate) limit distribution for normalized maxima of i.i.d. random variables.

The proof can be found in Embrechts et al. (2013), Theorem 3.2.2, and is based on the convergence
to types theorem (Theorem A.1.1). The last step is then to identify the max-stable distributions. It
is the purpose of the following theorem which is the basis of univariate EVT.

Theorem 1.2.2 (Fisher). The following distribution are, up to an affine transformation, the only
max-stable distributions.

1. The Fréchet distribution with parameter α > 0:

Φα(x) =

0 if x ≤ 0 ,

exp(−x−α) if x > 0 .
(1.2.5)
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Figure 1.1: Densities of the standard max-stable distributions. We choose α = 1 for the Fréchet and
the Weibull distributions.

2. The Weibull distribution with parameter α > 0:

Ψα(x) =

exp(−|x|α) if x < 0 ,

0 if x ≥ 0 .
(1.2.6)

3. The Gumbel distribution:

Λ(x) = exp(− exp(−x)) , x ∈ R . (1.2.7)

The max-stable distributions are also called Extreme Value Distributions since they appear as
the limits of normalized maxima. The densities of these three distributions are represented in Figure
1.1. We can easily check that the three distributions in Theorem 1.2.2 are max-stable.

The three distributions of Theorem 1.2.2 can be summarized into a Generalized Extreme Value
distribution (GEV) whose distribution function is given by

Hξ,µ,σ(x) = exp

(
−
(

1 + ξ
x− µ
σ

)−1/ξ

+

)
, (1.2.8)

for ξ, µ ∈ R, and σ > 0. We shortly denote Hξ = Hξ,0,1 the standard GEV.

Remark 1.2.2. If ξ > 0, then Hξ is a Fréchet distribution with parameter α = 1/ξ. Likewise, if
ξ < 0, then Hξ is a Weibull distribution with parameter α = −1/ξ. Finally, if ξ = 0, then Equation
(1.2.8) is interpreted as the limit when ξ → 0 which gives H0 = exp(− exp(−x)) and corresponds to
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the Gumbel distribution.

Remark 1.2.3. Note that since the distribution function Hξ is continuous on R, the convergence
(1.2.4) holds for all x ∈ R.

According to the convergence to types theorem (Theorem A.1.1), it is always possible to choose
an and bn such that a−1

n (Mn − bn)→ Hξ as n→∞. Thus, the study of univariate EVT boils down
to a parametric family of distributions (Hξ)ξ∈R. Therefore, the shape parameter ξ concentrates a
lot of information regarding the behavior of the extreme values of X. The sign of ξ implies different
behavior for the right endpoint of X. In particular, ξ > 0 means that the underlying distribution is
heavy-tailed. This case is hence naturally used in EVT.

From a statistical point of view, the estimation of ξ is one of the major issues. Several estimators
of ξ have been proposed. If ξ > 0, the most common is the Hill estimator introduced by Hill (1975)
and defined by

ξ̂ =

(
1

k

k∑
j=1

log(X(j))− log(X(k))

)−1

,

where X(1) ≥ . . . ≥ X(n) denotes the order statistics of the i.i.d. sample X1, . . . , Xn, and where
k = kn is an intermediate sequence satisfying k → ∞ and k/n → 0 as n → ∞. Other estimators
addressing all cases have also been proposed, e.g. the Pickands estimator (Pickands (1975)) or the
Dekkers–Einmahl–de Haan estimator (Dekkers et al. (1989)). See Embrechts et al. (2013), Section
6.4.2, for some properties of these estimators.

Going back to the Fréchet case, that is, ξ > 0, we detail here some conditions on the distribution
of X which ensure the convergence to Hξ.

Theorem 1.2.3 (Domain of attraction of a Fréchet distribution). A distribution function F belongs
to the domain of attraction of Φα, α > 0, if and only if the F̄ = 1− F is regularly varying with tail
index −α.

In this case, one can choose an = F←(1 − n−1) or more generally a sequence (an) such that
nF̄ (an)→ 1, and bn = 0. Then, the following convergence holds:

a−1
n Mn → Y ∼ Φα , n→∞ . (1.2.9)

This result implies in particular that every F ∈ MDA(φα) has an infinite right endpoint xF =∞:
The random variable X is not bounded on the right. Therefore, a particular attention should be
paid to this case, since the MDA(φα) contains heavy-tailed distributions. The following proposition
summarizes the results we obtain for the Fréchet maximum domain of attraction.

Proposition 1.2.1. For α > 0, the following assertions are equivalent:

1. F ∈ MDA(φα),

2. F̄ ∈ RV−α,
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3. there exists an > 0 such that a−1
n Mn → Y ∼ Φα when n→∞,

4. there exists an > 0 such that nP(a−1
n X > x) = nF̄ (anx)→ x−α1{x>0} when n→∞,

5. there exists an > 0 such that nP(a−1
n X ∈ ·) v→ να(·), n → ∞, in M+((0,∞)), where

να((x,∞)) = x−α, and whereM+((0,∞)) denotes the space of all Radon measures on (0,∞).

In the last three assertions, a natural choice is an = F←(1− n−1). More generally the convergence
(1.2.9) holds if and only if nP(X > an) → 1. The other choices of an and bn are given by the
convergence to types theorem (and then the limit has the same type as φα).

Proposition 1.2.1 is an extension of Proposition 3.6 in Resnick (2007). Resnick explains that it is
useful to consider the space (0,∞] rather than (0,∞) so that the neighborhoods of ∞ are relatively
compact, but this compactification is not necessary.

Remark 1.2.4. If X is a non-negative random variable, then the assumptions of Proposition 1.2.1
are equivalent to the fact that X is regularly varying with tail index α. The equivalence be-
tween regular variation of a non-negative random variable X and vague convergence of the measure
nP(a−1

n X ∈ ·) will be the starting point of the study of multivariate regular variation.

Example 1.2.5. Every distribution function F which satisfies F̄ (x) ∼ Cx−α, x → ∞, for some
C,α > 0 is in the domain of attraction of Φα. This is the case of the Pareto, Cauchy, and Burr
distributions.

1.2.1.3 Threshold exceedances

We still focus on the Fréchet case. An asymptotic expansion gives the equivalent

1− Φα(x) ∼ x−α , x→∞ .

Intuitively, X belongs to MDA(Φα) if the behavior of the right tail of X is "close" to the behavior
of 1 − φα(x) ∼ x−α. The vague notion of "close" is then quantified by the fact that F̄ is regularly
varying according to Theorem 1.2.3:

lim
t→∞

F̄ (tx)

F̄ (t)
= x−α , x > 0 .

In particular, if x ≥1, then the previous convergence can be rephrased as

P(X > tx | X > t)→ x−α , t→∞ .

This brings us to the other approach to EVT which consists in studying the distribution of X
conditioned on the event that {X > t} when t → ∞. The following theorem due to Pickands,
Balkema and de Haan ensures that this approach is equivalent to the previous one and gives the
limit distribution.



32 INTRODUCTION

Theorem 1.2.4. For ξ ∈ R, the following assertions are equivalent:

1. F ∈ MDA(Hξ).

2. There exists a positive measurable function a(·) such that for 1 + ξx > 0,

lim
t→xF

F̄ (t+ a(t)x)

F̄ (t)
= (1 + ξx)−1/ξ , (1.2.10)

where the right-hand side in interpreted as e−x if ξ = 0.

We define the standard Generalized Pareto Distribution (standard GPD in abbreviated form) Gξ
as the limit of (1.2.10):

Gξ(x) =


1− (1 + ξx)−1/ξ if ξ > 0, x > 0 ,

1− (1 + ξx)−1/ξ if ξ < 0, 0 ≤ x ≤ −1/ξ ,

1− e−x if ξ = 0, x > 0 .

The Generalized Pareto Distribution Gξ,µ,σ is defined by the relation Gξ,µ,σ = Gξ(σ
−1(x − µ)), for

µ ∈ R and σ > 0. This family of distributions satisfies the relation

1−Gξ,µ,σ(x) = − log(Hξ,µ,σ) , (1.2.11)

where Hξ,µ,σ is the GEV distribution (see Equation (1.2.8)). Equation (1.2.10) can be rephrased in
terms of conditional probability as follows:

lim
t→xF

P
(
X − t
a(t)

> x

∣∣∣∣X > t

)
= 1−Gξ(x) , (1.2.12)

for the x defined in (1.2.10).
The Peaks over Threshold (PoT) method (Leadbetter (1991)) uses this convergence as an ap-

proximation for a threshold t > 0 "high enough". Then, as soon as an estimator â of a is obtained, it
is possible to estimate the limit 1−Gξ(x) with the available data. Regarding the question (Q3), the
main problem relies here in the notion of "high enough": What is the "best" choice for t? As pointed
out by Embrechts et al. (2013), "the reader should never expect a unique choice of t to appear". The
authors "recommend using plots, to reinforce judgement and common sense and compare resulting
estimates across a variety of t–values".

1.2.2 Multivariate regular variation

The goal is now to extend the concepts introduced in Section 1.2.1 to a multivariate framework. We
thus consider a random vector X = (X1, . . . , Xd)

> ∈ Rd. According to Theorem 1.2.3 there is a
close connection between regular variation and study of the maximum of a sample. We restrict the



1.2. REGULAR VARIATION 33

study to the non-negative case, i.e. for X ∈ Rd+, which already provides a wide theory of regularly
varying random vectors.

1.2.2.1 From univariate to multivariate extremes

We start with the univariate case developed previously. This means that d = 1 and X ∈ R+.
Following Proposition 1.2.1 and Remark 1.2.4, we have equivalence of

1. X is regularly varying (at infinity) with tail index α > 0,

2. there exists an → ∞ such that nP(a−1
n X ∈ ·) v→ να(·), n → ∞, in M+((0,∞)), where

να((x,∞)) = x−α.

Our aim is to use this characterization to define multivariate regular variation in a similar way,
i.e. with vague convergence. We consider a sequence of i.i.d. random vectors X1,X2, . . . on Rd+ with
generic distribution X and denote by Mn the componentwise maximum:

Mn := ( max
1≤j≤n

Xj,1, . . . , max
1≤j≤n

Xj,d)
T , n ≥ 1 . (1.2.13)

Following the ideas of the univariate case, we focus on the convergence of the vector a−1
n Mn when

n→∞ for a real-valued sequence (an) satisfying an > 0. To this end, we fix x ∈ Rd+ \{0} and write

P(a−1
n Mn ≤ x) = P(∀k = 1, . . . , n, a−1

n Xk ≤ x)

= P(a−1
n X ≤ x)n

=
(

1− nP(a−1
n X ∈ [0,x]c)

n

)n
, (1.2.14)

where [0,x]c = Rd+ \ [0,x], and where all inequalities are meant componentwise. Then, the following
assertions are equivalent.

1. The normalized componentwise maximum a−1
n Mn converges to a limit distribution Y ∼ H

when n→∞.

2. For every continuity point x ∈ Rd+ of H,

P(a−1
n Mn ≤ x)→ H(x) , n→∞ .

3. For every continuity point x ∈ Rd+ of H,

nP(a−1
n X ∈ [0,x]c)→ − log(H(x)) , n→∞ , (1.2.15)

If H(x) = 0, then the right-hand side is interpreted as ∞.
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Equation (1.2.15) can be rewritten in the following way: for any continuity point x of H,

µn([0,x]c) := nP(a−1
n X ∈ [0,x]c)→ − log(H(x)) =: µ([0,x]c) , n→∞ . (1.2.16)

This convergence must be seen as the convergence of two measures, µn and µ, on the sets [0,x]c.
By Dynkin’s theorem (Theorem A.2.1), µn and µ can be uniquely extended to measures on Rd+\{0}.
Then, the convergence (1.2.16) suffices to prove that µn converges vaguely to µ, see Resnick (2007),
Lemma 6.1.

1.2.2.2 Regularly varying random vectors

The considerations of the previous subsection lead to the following definition.

Definition 1.2.5 (Regularly varying random vector). Let X ∈ Rd+ be a non-negative random vector.
Assume that there exists a positive sequence (an) such that an → ∞ when n → ∞. The vector
X and its distribution are said regularly varying if there exists a non-zero Radon measure µ on the
Borel σ-field of Rd+ \ {0} such that

nP(a−1
n X ∈ ·) v→ µ(·) , n→∞ . (1.2.17)

The limit measure µ is called the tail measure of the regularly varying vector X.

We already explained in Section 1.2.2.1 that the convergence in Equation (1.2.17) is closely
related to the convergence of the componentwise maximum Mn. In particularly if X ∈ Rd+ is a
regularly varying random vector, then

lim
n→∞

P(a−1
n Mn ≤ x)→ exp(−µ([0,x]c)) =: H(x) , (1.2.18)

for all continuity point x of the limit H (see Equation (1.2.14)). The distribution of H is called
multivariate Fréchet distribution.

Example 1.2.6 (Independent marginals). Assume that the marginals Xi of the vector X are inde-
pendent, identically distributed, and regularly varying with the same tail index α > 0. Choose an
such that nP(X1 > an)→ 1. Following Proposition 1.2.1, we obtain that

P(a−1
n Mn ≤ x) =

d∏
i=1

P(a−1
n Mn,i ≤ xi)→ exp(−(x−α1 + . . .+ x−αd )) , n→∞ ,

for all xk > 0. Thus, Equation (1.2.18) implies that the tail measure µ satisfies µ([0,x]c) = x−α1 +

. . .+ x−αd , for all xk > 0. This example will be developed further in Section 1.2.3.

Recall that the univariate case highlights a tail index α which characterizes the tail behavior of
the random variable X ∈ R. This index appears in particular in the limit measure να in Proposition
1.2.1. It is then natural that such an index also appears in the multivariate setting.
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The tail measure µ satisfies the following key property: for all Borel sets A ⊂ Rd+ \ {0} and for
all t > 0,

µ(tA) = t−αµ(A) . (1.2.19)

Intuitively, it means that the mass the measure µ places on the set A decreases like a power function
as this set is translated toward infinity. In this case, the index α is called the tail index and we say
that the random vector X is regularly varying with limit measure µ and tail index α.

Consequences of the homogeneity property The homogeneity property has plenty of conse-
quences.

First, recall from Equation (1.2.18) that µ([0,x]c) = − logH(x) for all continuity point x of H.
In particular since for x > 0 large enough H(x) is positive it implies that the quantity µ([0,x]c) is
finite. Hence, by the homogeneity property, for all t > 0 the quantity µ([0, tx]c) = t−αµ([0,x]c) is
finite. We say that the measure µ is finite for sets bounded away from zero.

Now consider the infinity norm in Rd. Then, the set {x ∈ Rd+, |x|∞ > t} = ([0, t]d)c is a
µ-continuity set. Indeed, its boundary corresponds to the set {x ∈ Rd+, |x|∞ = t} which satisfies

µ({x ∈ Rd+, |x|∞ = t}) = lim
ε→0

[
µ
(
{x ∈ Rd+, |x|∞ > (1− ε)t}

)
− µ

(
{x ∈ Rd+, |x|∞ > (1 + ε)t}

)]
= lim

ε→0

[
(1− ε)−α − (1 + ε)−α

]
µ
(
{x ∈ Rd+, |x|∞ > t}

)
= 0 ,

where we used that µ({x ∈ Rd+, |x|∞ > t}) = µ(([0, t]d)c) is finite thanks to the previous point.
Therefore, for all t > 0, the homogeneity property implies that

nP(|X|∞ > ant) = nP(a−1
n |X|∞ ∈ ([0, t]d)c)→ µ(([0, t]d)c) = t−αµ([0,1]c) , t→∞ ,

Following Proposition 1.2.1, we obtain that |X|∞ is regularly varying with tail index α. In particular
the choice t = 1 leads to the convergence

nP(|X|∞ > an) = nP(a−1
n X ∈ [0,1]c)→ µ([0,1]c) .

It is sometimes convenient to choose a sequence (an) such that µ([0,1]c) = 1 for reasons explained
later.

Subsequently since all norms are equivalent in Rd a short computation provides that |X| is
regularly varying for every norm | · |. Similarly as for the infinity norm, as soon as a norm | · | is
fixed it seems natural to choose an such that nP(|X| > an)→ 1.

Finally the homogeneity property implies the max-stability property of the multivariate Fréchet
distribution. Recall that in the univariate case a Fréchet-distributed random variable Y with tail
index α > 0 satisfies the equality n−1/αMn

d
= Y for all n ≥ 1. This can be easily extended to

the multivariate setting. Indeed, for x ∈ Rd+ \ {0}, the homogeneity property with A = [0,x]c and
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t = n−1/α implies that
µ([0,x]c) = nµ([0, n1/αx]c) .

Taking the exponential of the opposite of both members leads then to

H(x) = exp(−µ([0, n1/αx]c))n .

Therefore, if Y follows a multivariate Fréchet distribution H, we obtain that

P(n−1/αMn ≤ x) = P(n−1/αY ≤ x)n = exp(−µ([0, n1/αx]c))n = H(x) .

Hence, we obtain the max-stability property

n−1/αMn
d
= Y , n ≥ 1 .

1.2.2.3 Equivalent formulation of regular variation

As in the univariate case, several characterizations of regular variation can be given. In particular,
we would like to have one which brings out threshold exceedances. With this in mind, we would like
to decompose the convergence in (1.2.17) into a radial convergence and and angular one. Hence, fix
a norm | · | in Rd and denote by Sd−1 = {x ∈ Rd, |x| = 1} its unit sphere. Denote also by Sd−1

+

the intersection of this unit sphere with the positive orthant: Sd−1
+ = Sd−1 ∩ Rd+. Following Basrak

(2000), Theorem 2.1.8, we define the set Vr, A by

Vr, A = {x ∈ Rd+, |x| > r,x/|x| ∈ A} .

for r > 0 and A ⊂ Sd−1
+ (see Figure 1.2). Then, the regular variation property µn → µ applied on

the sets Vr,A gives
lim
n→∞

nP(|X| > anr, X/|X| ∈ A) = µ(Vr,A) , (1.2.20)

as soon as the set Vr,A is a µ-continuity set. The sets Vr,A provide a useful characterization of regular
variation in terms of polar coordinates. Indeed, Equation (1.2.20) may be seen as the combination of
two convergences, a radial one via the term |X| > anr, and an angular one via the term X/|X| ∈ A.

Note that the homogeneity property implies that µ(Vr,A) = r−αµ(V1,A). It encourages to consider
µ(V1,A) as a measure on the positive unit sphere Sd−1

+ evaluated in A. In particular, with r = 1 and
A = Sd−1

+ we obtain that
nP(|X| > an)→ µ(V1, Sd−1

+
) , n→∞ .

As already explained, it is sometimes convenient to choose an sequence (an) such that µ(V1, Sd−1
+

) = 1,

or equivalently nP(|X| > an)→ 1. In this case, the measure S(·) defined on the Borel σ-sets of Sd−1
+

by S(A) = µ(V1, A) is a probability measure. Otherwise, we obtain a finite measure on Sd−1
+ with

total mass µ({x ∈ Rd+, |x| > 1}).
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Figure 1.2: Illustration of the sets Vr, A.

To avoid dividing each terms involving the measure S by µ({x ∈ Rd+, |x| > 1}), we assume once
and for all that nP(|X| > an)→ 1 when n→∞ where | · | is a fixed norm. This allows one to deal
with a probability measure on the positive unit sphere Sd−1

+ . Under this assumption, it is possible
to divide the left-hand side of Equation (1.2.20) by nP(|X| > an) without changing the limit in the
right-hand side. For r ≥ 1 this leads to the convergence

P(|X| > ran, X/|X| ∈ A | |X| > an) =
nP(|X| > ran, X/|X| ∈ A)

nP(|X| > an)
→ µ(Vr, A) = r−αS(A) ,

when n→∞.

Remark 1.2.5. Another way to define the set Vr,A is to consider the transformation

T : Rd+ \ {0} → (0,∞)× Sd−1
+

v 7→ (r,θ) = (|v|,v/|v|) ,

and to set Vr,A = T−1((r,∞)×A). Then, for A ⊂ Rd+ and r > 0 we have the relation

r−αS(A) = µ(Vr,A) = µ
(
T−1 [(r,∞)×B]

)
. (1.2.21)

This is the device developed in Beirlant et al. (2006) who even consider two different norms, one for
the radial part and another for the angular part.

It can be shown that the convergence of µn(Vr,A) → µ(Vr,A) is sufficient to characterize the
vague convergence of measures. This leads to the following proposition which is an adapted version
of Theorem 6.1 in Resnick (2007).

Proposition 1.2.2. Let X ∈ Rd+ be a non-negative random vector. Consider a positive sequence
(an) such that nP(|X| > an)→ 1 as n→∞. Then, the following assumptions are equivalent.

1. X is regularly varying with tail measure µ and tail index α.
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2. The following vague convergence holds:

P(a−1
n X ∈ ·)

P(|X| > an)

v→ µ(·) , n→∞ .

3. There exist α > 0 and a random vector Θ ∈ Sd−1
+ such that for all r > 0,

nP(|X| > anr, X/|X| ∈ ·) w→ r−αP(Θ ∈ ·) , n→∞ .

4. There exists a random vector Θ ∈ Sd−1
+ independent of a Pareto(α) random variable Y such

that
P((|X|/an,X/|X|) ∈ · | |X| > an)

w→ P((Y,Θ) ∈ ·) , n→∞ . (1.2.22)

5. |X| is regularly varying with tail index α (in the sense of real-valued random variables) and
there exist α > 0 and a random vector Θ ∈ Sd−1

+ such that

P(X/|X| ∈ · | |X| > an)
w→ P(Θ ∈ ·) , n→∞ .

In this case, the random vector Θ is called the spectral vector and its distribution S(·) = P(Θ ∈ ·)
is called the spectral measure. Equation (1.2.21) highlights the tenuous link between the spectral
measure and the tail measure. Both measures have the same interpretation in terms of extreme
values: They both places mass in directions where large events occur. The main difference is that
the spectral measure is a probability measure whereas the tail measure is not. Therefore, it is
sometimes more convenient to work with the first one.

Proposition (1.2.2) provides useful characterizations of regular variation in terms of radial and
angular convergences. The point 3 allows one to look separately to the radial part |X| and the
angular one X/|X|. Moreover, the last two convergences deal with the conditional distribution
of X/|X| | |X| > an. In terms of extremes, this allows one to study the angular behavior of X

conditioned on the event that X is extreme.
A final step to characterize multivariate regularly varying random vectors in Rd+ consists in

replacing the sequential versions of convergence in 1.2.2 in a continuous form. This is the purpose
of the following proposition.

Proposition 1.2.3. Let X ∈ Rd+ be a non-negative random vector. The following assumptions are
equivalent.

1. X is regularly varying with tail measure µ and tail index α > 0.

2. The following vague convergence holds

P(x−1X ∈ ·)
P(|X| > x)

v→ µ(·) , x→∞ , . (1.2.23)
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3. There exists a random vector Θ ∈ Sd−1
+ independent of a Pareto(α) random variable Y such

that
P((x−1|X|,X/|X|) ∈ · | |X| > x)

w→ P((Y,Θ) ∈ ·) , x→∞ . (1.2.24)

Equation (1.2.24) is the key convergence on which this thesis relies. Indeed, it provides a un-
derstandable and useful theoretical framework to study the dependence structure of extreme events,
and hence to address the question (Q2). Equation (1.2.24) highlights the behavior of extreme events
of X via the conditioning |X| > t. Moreover, it gives a decomposition of the tail measure in a radial
part and an angular part. The radial component can be modeled through a random variable with a
Pareto(α) distribution whereas the angular one is characterized by the spectral measure S. More-
over, both radial and angular parts are independent. From a statistical point of view, the study of
the radial part boils down to the estimation of the tail index α. Therefore, it comes down to the
univariate case. Our major efforts must thus be focused on the study of the spectral measure. It is a
challenging issue since this measure is non-parametric and also since the dimension of the study can
be very large. The central point of this thesis is then to provide tools to estimate this measure in
high dimension. Moreover, the estimation based on Equation (1.2.24) or on Equation (1.2.22) both
rely on the fact that the convergences become approximation as soon as the threshold (t or an) are
chosen "large enough". A particular attention should be paid on this choice which is closely related
to the question (Q3).

In this context, a first major step us to study the support of the spectral measure. Indeed,
starting for instance from Equation (1.2.24), we can notice that the spectral vector Θ is the limit
vector of the angular component X/|X| | |X| > x for x large enough. Therefore, the subspaces of
the unit sphere where the spectral measure places mass correspond to the ones where extreme events
generated by X appear. This is why most of the actual works in multivariate extremes concerns the
estimation of the support of S.

In a recent work Lehtomaa and Resnick (2019) address the estimation of this support by using
a bijective application to map the simplex Sd−1

+ to the d − 1 dimensional space [0, 1]d−1 in order
to partition this image space into a grid of equally sized rectangles. Consistency results using the
Haussdorf distance are established, and a particular attention is paid to the notion of asymptotic
independence. In this approach, the authors assume that the marginals are tail equivalent, which
means that they consider rank transformed data, but they explain that "it is not clear what effect
such a transform applied to finite samples has on support estimation".

Other approaches based on statistical learning are developed in Section 1.4. Most of them
partition the unit sphere into subsets on which the behavior of X can be easily interpreted.

1.2.2.4 Some results on the spectral measure

Going back to Remark 1.2.5, Equation (1.2.21) can be rephrased as

αr−(α+1)drS(dθ) = µ ◦ T−1(dr, dθ) .
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Hence, we obtain that∫
Rd+\{0}

f(x) dµ(x) =

∫ ∞
0

∫
Sd−1
+

f(rθ)αr−(α+1)dr dS(dθ) , (1.2.25)

for all non-negative function f : Rd+ \ {0} → R. On the other hand, the definition of the spectral
measure S via the relation S(A) = µ(V1, A) implies that∫

Sd−1
+

f(θ) dS(θ) =

∫
|x|>1

f(x/|x|) dµ(x) ,

for all non-negative function f : Sd+ → R.
In particular, for x > 0, Equation (1.2.25) leads to

µ([0,x]c) = µ
({

u ∈ Rd+, max
1≤i≤d

ui
xi
> 1
})

=

∫
Sd−1
+

∫ ∞
0
1
{
rθ ∈ Rd+, max

1≤i≤d

θi
xi
>

1

r

}
dr dS(θ)

=

∫
Sd−1
+

max
1≤i≤d

( θi
xi

)α
dS(θ)

= E
[

max
1≤i≤d

( θi
xi

)α]
.

Therefore, we can express the multivariate Fréchet distribution in terms of the spectral measure or
of the spectral vector:

H(x) = exp
(
− E

[
max
1≤i≤d

(Θi

xi

)α])
= exp

(
−
∫
Sd−1
+

max
1≤i≤d

( θi
xi

)α
dS(θ)

)
, (1.2.26)

for all x > 0.
All these results make the connections between the spectral measure S, the tail measure µ,

and the multivariate Fréchet distribution H. The two first ones are more related to an approach
based on regular variation and threshold exceedances while the third one rather concerns a max-
stable approach. In what follows, more emphasis will be placed on the spectral measure and on its
support.

1.2.3 Examples of limit distributions, asymptotic independence

We develop in this section several examples for which we compute the associated quantities µ, Θ,
and H. The general idea is to start with a regularly varying random vector X ∈ Rd+ whose marginals
satisfy some dependence properties and to study the consequences on the limit measures µ and S
as well as on the multivariate Fréchet distribution H.

Example 1.2.7. For the first example, we consider a random vector X = (X, 0, . . . , 0)> ∈ Rd+
where X is a regularly varying random variable. We fix a sequence (an) such that nP(|X|∞ > an) =
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nP(X > an)→ 1 when n→∞, and we consider A2, . . . , Ad ⊂ R+. Then, for all x > 0, we have the
convergence

nP(a−1
n X ∈ (x,∞)×A2 × . . .×Ad) = nP(X > anx)1{0 ∈ A2 ∩ . . . ∩Ad}

→ x−α1{0 ∈ A2 ∩ . . . ∩Ad} , n→∞ .

Hence, the tail measure is given by the relation

µ
(
(x,∞)×A2 × . . .×Ad

)
= x−α1{0 ∈ A2 ∩ . . . ∩Ad} .

Then, we obtain that H(x) = exp(−x−α1 ) for all x1 > 0 and that the spectral measure is a Dirac
mass on the first unit vector e1 = (1, 0, . . . , 0)>.

Example 1.2.7 provides models where only one coordinate contribute to the extreme behavior
of the data. It also shows that the limit measure can concentrate on very small subspaces of Rd+.
Actually, such situations are both interpretable in terms of extremes and easily calculable, so that
they are widely studied.

Example 1.2.8 (Continuation of Example 1.2.6). We develop here an explicit example for which
all previous quantities are calculable. We consider a random vector X ∈ Rd+ with independent
marginals X1, . . . , Xd which are all regularly varying with the same tail index α > 0. Recall that in
Example 1.2.6 we chose a sequence (ãn) such that

nP(X1 > ãnx)→ x−α , n→∞ .

Now, in order to be consistent with the previous section, we consider the infinity norm | · |∞, and
choose a sequence (an) such that

nP(|X|∞ > an)→ 1 , n→∞ .

Then, some short calculations lead to

nP(|X|∞ > an) = n[1− P(|X|∞ ≤ an)]

= n[1− P(X1 ≤ an)d]

= n[1− (1− P(X1 > an))d]

∼ ndP(X1 > an) , n→∞ .

Hence, we obtain that nP(X1 > an) → 1/d when n → ∞. With this normalization sequence, we
obtain that

P(a−1
n Mn,1 ≤ x)→ exp

(
− x−α

d

)
, n→∞ ,

for x > 0, see Proposition 1.2.1. Then, the independence of the marginals leads to the following
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convergence:

P(a−1
n Mn ≤ x) =

d∏
i=1

P(a−1
n Mn,i ≤ xi)→ exp(−(x−α1 + . . .+ x−αd )/d) = H(x) , n→∞ , (1.2.27)

for all x > 0. Thus, X is regularly varying with tail index α and a tail measure µ satisfying

µ([0,x]c) = − logH(x) = (x−α1 + . . .+ x−αd )/d , x > 0 .

Finally, following Equation (1.2.26), we obtain that

dS =
1

d
(δe1 + . . .+ δed) ,

where ek denotes the vector of Rd with a one in position k and zeros elsewhere.

Regarding the max-stable distribution H, we observe that it factorizes as

H(x) = exp(−(x−α1 + . . .+ x−αd )) =
d∏
i=1

exp(−x−αi ) .

This means that the multivariate Fréchet distribution is equal to the product of its marginals. In this
case, we say that the distribution of H has the property of asymptotic independence (see de Haan
and Ferreira (2006), Section 6.2). As mentioned in Example 1.2.8, it is equivalent to say that the
spectral measure only places mass on the axes, i.e. on the vectors ek.

This situation models data for which extreme events are likely to appear only because one
coordinate is large. It has been widely studied since it provides models which are interpretable
regarding extreme values and for which all calculations can be done. There is an abundant literature
on the subject, see e.g. Ledford and Tawn (1996), Heffernan and Tawn (2004), or Fougères and
Soulier (2010).

Example 1.2.9 (Equal marginals). Assume that X has equal components, i.e. X = X(1, . . . , 1)T

with X ≥ 0. In this case, we obtain the following equality

P(a−1
n Mn ≤ x) = P(a−1

n M1
n(1, . . . , 1)T ≤ x) = P(a−1

n M1
n ≤ min

i=1,...,d
xi) , x ∈ Rd+ .

Assume now that X is regularly varying, or equivalently that there exists α > 0 such that X ∈
MDA(Φα). Then, if we choose an such that nP(|X|∞ > an) = nP(X > an) → 1 when n → ∞, we
obtain the following convergence:

P(a−1
n Mn ≤ x) = P(a−1

n M1
n ≤ min

i=1,...,d
xi)→ Φ

(
min

i=1,...,d
xi

)
= exp

(
− min
i=1,...,d

x−αi

)
, n→∞ ,

for x > 0. Hence, the tail measure µ satisfies µ([0,x]c) = mini=1,...,d x
−α
i . Finally, Equation (1.2.26)
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implies that the spectral measure is a Dirac mass in 1/|1|. Indeed, in this case we easily verify that

µ([0,x]c) = min
i=1,...,d

x−αi = max
i=1,...,d

( 1

xi

)α
=

∫
Sd−1
+

max
1≤i≤d

( θi
xi

)
dS(θ) ,

when dS = δ1/|1|.

These different examples provide understandable models for multivariate extremes. Choosing
which model is the most accurate for the given data is then a major point to tackle. Before choosing
an optimal model, we need to learn the structure of the data and to highlight to trends, especially
for the dependence structure of multivariate extremes. This is all the most necessary when the
dimension d is large. To this end, we use techniques developed in the learning community to deal
with high-dimensional data.

1.3 High-dimensional learning: some techniques

In multivariate statistics, the difference between the finite sample size and the large dimensional
space on which the probability measures are defined is referred to as the curse of dimensonality. This
expression was coined by Bellman (1957) in the context of dynamic programming. In a statistical
framework, this issue rises large variance for standard estimators (see Massart (1989), Donoho (2000)
or Verleysen (2003)). In extreme value analysis, the estimation becomes all the more difficult since
it is based on the largest observations of the sample which reduces the number of data points used.
This is why estimating the spectral measure has mostly only been studied in the bivariate case
(Einmahl et al. (1993), Einmahl et al. (1997), Einmahl et al. (2001), Einmahl and Segers (2009)).

In order to cope with high-dimensional data and thus to address the question (Q1), the goal is
to provide methods with lead to dimension reduction. Three main techniques are introduced here.
The first one consists in grouping together data points that have similar behavior. The second one is
Principal Component Analysis which classify the data in terms of their variance. Finally, we expose
procedures which introduce sparsity in the parameters one wants to estimate.

1.3.1 Clustering methods

A natural approach when dealing with data is to aggregate them into groups (also called clusters)
of variables with the same behavior. This does not naturally leads to dimension reduction but it
often happens that variables which belong to the same cluster are likely to take values in a lower
dimensional space than Rd. In this case, the clustering approach boils down to the study of each
group of variables separately. Each of these groups is included in Rd′ with hopefully d′ � d.

One of the most standard clustering techniques is the k-means procedure. The term k-means
was first introduced by MacQueen (1967) but some ideas were already developed before, see Hans-
Hermann (2008) for an historical review. The goal of the procedure is to identify clusters such that
the distance of an observation to the closest cluster center is minimized. More precisely, given n
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data points x1, . . . ,xn in Rd and a number k of clusters, the k-means algorithm partitions the data
points into k sets C1, . . . , Ck such that the quantity

n∑
k=1

∑
x∈Ci

‖x−mi‖2 (1.3.1)

is minimal, where mi = 1
#Ci

∑
x∈Ci x is the center of the cluster Ci. MacQueen (1967) proposed

an algorithm sometimes called "naive" since some faster versions of the algorithm have then been
proposed, see for instance Pelleg and Moore (1999). Some alternative approaches close to the k-
means procedures have then be developed where the Euclidean distance is replaced by a distance
function d : Rd×Rd → [0,∞), or more generally a dissimilarity function (Gan et al. (2007), Chapter
6).

When the observations x1, . . . ,xn take values on the unit sphere Sd−1, a natural way to evaluate
the distance between two points is in terms of angular dissimilarity. To this end, the distance
function d is defined as

d(x,y) = 1− cos(x,y) = 1− 〈x,y〉
|x||y|

,

where 〈·, ·〉 denotes a scalar product on Rd associated to the unit sphere Sd−1. This procedure
developed by Dhillon and Modha (2001) seems appropriate for the study of the spectral measure
which has mass on the unit sphere Sd−1

+ . It is for instance used by Chautru (2015) and Janßen and
Wan (2020), see Section 1.4 for more details on these approaches.

1.3.2 Principal Components Analysis

In order to study dependence between components, a natural way to proceed is to consider the
covariance matrix of the data, or its estimate. Several methods relying on linear transformations of
the sample covariance matrix have been proposed. The most standard on is Principal Components
Analysis (PCA), a statistical procedure which transforms a data matrix X with possibly correlated
variables to another matrix with linearly uncorrelated components (Anderson (1963), Jolliffe (1986)).
It relies on orthogonal transformations and highlights the components with high variances. It is
widely used in explanatory data analysis and model prediction. Hastie et al. (2009) develop the
ideas of PCA in a statistical learning framework and introduce the notion of sparse PCA (see
Section 14.5 there).

More generally, PCA allows to identify linear subspaces on which a measure is concentrated.
In this context, several theoretical results have been established regarding the reconstruction error
(Blanchard et al. (2007), Koltchinskii and Giné (2000)) or the approximation error for the eigenspaces
of the covariance matrix (Zwald and Blanchard (2006)). Some assumptions are required on the
moments of the underlying distribution of the data.

Since PCA projects the data onto a subspace with equal of fewer dimension that the original one,
it is a useful tool when dealing with high-dimensional data. Therefore, the transposition of standard
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PCA to an extreme setting should reduce the dimension and highlight patterns into the extreme
values of a data set. However, some precautions must be taken in such a context for mainly two
reasons. The first one is that PCA focuses on the covariance matrix which summarizes the general
dependence of the data. There exists no natural transposition of the covariance matrix in EVT since
it is difficult to summarize the behavior of extreme events through linear transformations. The other
main issue is that the assumptions required to obtain theoretical guarantees of PCA often fail in a
context of EVT. In particular, since EVT highlights heavy tails, the distribution studied often do
not have finite moments. We refer to Section 1.4.1 for a review of the existing methods which adapt
PCA to an extreme setting.

Whereas clustering methods and PCA highlight some trends of the data, there is unfortunately
no guarantees that a variables of the same group belong to a low-dimensional subset of Rd. Hence, it
seems natural to force some coordinates of the data points to be equal to zero. This is the approach
developed in the following sections.

1.3.3 The LASSO procedure

In order to reduce the dimension it is necessary to introduce sparsity in the considered models. A
vector v ∈ Rd is all the more sparse if it contains a few number of nonzero coordinates, that is, if
|v|0 is low1. In a statistical framework, the notion of sparsity is crucial since it brings out the most
relevant parameters in the model. From a computational point of view, it makes the algorithms
faster. The main approach in this context is to fit the best sparse model to the data we want to
explain. This is mainly done by introducing a penalization on the number of parameters in the
estimation procedure. For a review on statistical methods with sparsity see the monographs of
Hastie et al. (2015) and Giraud (2014).

We take the example of linear regression in which we observe n outcome variables y1, . . . , yn

and d explanatory variables xi = (xi,1, . . . xi,d)
>. The goal is then to predict the outcome from the

predictors. The linear regression model is given by

yi = β0 +
d∑
j=1

xi,jβj + εi , 1 ≤ i ≤ n , (1.3.2)

where β0, β = (β1, . . . , βd)
> are unknown parameters and εi is an error term. Setting y =

(y1, . . . , yn)>, X = (xi,j)1≤i≤n, 1≤j≤d, and ε = (ε1, . . . , εn)>, we can rewrite Equation (1.3.2) in
a matrix form:

y = β01 + Xβ + e ,

where 1 = (1, . . . , 1)> ∈ Rn .

Then, the method of least squares provides estimates of the parameters by minimizing the func-

1Recall that | · |0 denotes the "`0-norm" given by |v|0 = #{k = 1, . . . , d, vk > 0}.
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tion
n∑
i=1

(
yi − β0 −

d∑
j=1

xi,jβj

)2
= |y − β01 + Xβ|22 . (1.3.3)

The ordinary least squares estimates β̂j from Equation (1.3.3) are almost always different from
zero. If the dimension p is large, it leads to a high-dimensional vector of estimates which is not
easy to interpret. If p > n, minimizing (1.3.3) even leads to an infinite number of solutions. The
idea introduced by Tibshirani (1996) is to penalized the number of nonzero parameters with a
`1-regularized regression. There, the minimization problem becomes

minimize
β0,β1,...,βd

n∑
i=1

(
yi − β0 −

d∑
j=1

xi,jβj

)2
subject to |β|1 ≤ t , (1.3.4)

or equivalently,
minimize
β0,β1...,βd

|y − β01 + Xβ|22 subject to |β|1 ≤ t , (1.3.5)

where t is a tuning user-specified parameter. This technique is called Least Absolute Shrinkage and
Selection Operator or LASSO in an abbreviated form.

Remark 1.3.1. As explained in Hastie et al. (2015), this approach relies on the specificity of the
`1-norm. For q < 1, the optimization problem (1.3.4) with |β|q instead of |β|1 is not convex while
for q > 1 it does not provide sparse estimates. Therefore, the choice of the `1-norm combines both
computational convenience (the problem is convex) and statistical interpretations (the number of
non-zero parameters is low). When q = 2, the optimization problem becomes

minimize
β0,...,βd

n∑
i=1

(
yi − β0 −

d∑
j=1

xi,jβj

)2
subject to |β|2 ≤ t ,

which corresponds to Ridge regression introduced by Hoerl and Kennard (1970). In this case, the
procedure shrinks the coefficients but does not set any of them to 0.

In terms of Lagrangian, Equation (1.3.4) can be rephrased as follows:

minimize
β0,...,βd

n∑
i=1

(
yi − β0 −

d∑
j=1

xi,jβj

)2
+ η
(
|β|1 − t

)
, (1.3.6)

where η ∈ R is a Lagrange multiplier. The solutions to Equation (1.3.4) are shown to be

β∗j = sign(β̂j)(β̂j − η)+ ,

where η is the parameter of the Lagrangian problem (1.3.6) and β̂j corresponds to the estimator of
βj in the ordinary least squares problem (1.3.3).
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1.3.4 Euclidean projection onto the `1-ball

An extension of Equation (1.3.5) is given by the following optimization problem. For a vector v ∈ Rd

consider the following minimization:

minimize
w∈Rd

1

2
|w − v|22 subject to |w|1 ≤ t . (1.3.7)

This problem has been widely studied in learning theory, see e.g. Duchi et al. (2008), Kyrillidis
et al. (2013), or Liu and Ye (2009). It corresponds to the Euclidean projection of the vector v

onto the `1-ball of radius z. As explained in Duchi et al. (2008), Section 4, if ‖v‖1 ≤ z, then the
solution of Equation (1.3.7) is w = v. It is therefore sufficient to assume that the vector v satisfies
‖v‖1 > z and in this case the solution is on the `1-sphere {x ∈ Rd, |x|1 = t}. Hence, the constraint
|w|1 ≤ t in Equation (1.3.7) can be replaced by the equality constraint |w|1 = t. Moreover, the
projected vector w satisfies viwi ≥ 0 for all i = 1, . . . , d, see Duchi et al. (2008), Lemma 3. Due to
symmetry considerations, we can thus restrict our study to non-negative vectors v ∈ Rd+. There,
the minimization problem (1.3.7) becomes

minimize
w∈Rd

1

2
‖w − v‖22 subject to

d∑
i=1

wi = t, wi ≥ 0 . (1.3.8)

Given a vector v and a threshold t, many algorithms which compute the optimal solution w

have been proposed. The main one was the one introduced by Gafni and Bertsekas (1984) and
Bertsekas (1999), and then rediscovered by Crammer and Singer (2002) in the context of support-
vector machines and by Hazan (2006) in the context of online convex programming. This algorithm
starts with the sorting of the coordinates of the vector v which requires O(n log(n)) time. Then,
based on the sorted vector, the projection can be calculated in exactly linear time. Hence, the
complexity of this algorithm is O(n log(n)). Several refinements of this procedure have then been
proposed. Duchi et al. (2008) use the randomized median finding algorithm introduced by Cormen
et al. (2001) to build an efficient algorithm which computes the projected vector w in expected linear
time. Other algorithms have been proposed, see Condat (2016) for a review of the existing methods.

The number of articles dealing with the Euclidean projection onto the simplex has increased
significantly in the recent years. In learning theory, this approach is for instance used in portfolio
optimization (see Brodie et al. (2009)) and in imaging problems, such as segmentation (see Lellmann
et al. (2009)) and multispectral unmixing (see Bioucas-Dias et al. (2012)). The main goal in this
fields is to introduce sparsity in the data in order to reduce the dimension. The purpose of Chapter
2 is to develop a similar idea for extreme values. The sparsity is crucial since it allows to work
on lower-dimensional subspaces. In this context, the linear complexity of the algorithm developed
by Duchi et al. (2008) in order to handle high-dimensional data will be a crucial point. Besides,
the number of null-coordinates for a projected vector is deeply linked to the choice of the sphere
considered, that is, to t. Therefore, sparsity and choice of a threshold t are two issues that can be
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tackled simultaneously. This is the main idea of Section 3.5 in which we address both questions
(Q1) and (Q3).

In terms of extreme values, the first two methods (clustering and PCA) have been recently used
to study multivariate extremes. The goal of the following section is to make a literature review
regarding both approaches.

1.4 Learning for extremes

The study of extreme events in high dimension is a challenging issue particularly because we focus
only on the largest values and thus reduce the size of the data used. Therefore, it is necessary
to provide accurate methods which highlight the main trend in the tail dependence structure. To
this end, the knowledge of the spectral measure is crucial since it gathers almost all information
regarding dependence between extreme events. The inference of the spectral measure is an issue
that has been widely studied in a low-dimensional framework but the high-dimensional setting has
been addressed only recently. To the best of our knowledge, the first work which deals with the
estimation of a high-dimensional spectral measure is the one by Chautru (2015). This article tackles
the problem of exhibiting groups (hopefully of lower size) of asymptotically dependent variables.
The approach is divided into two steps, the first one to circumvent the issue of high dimension, the
second one to cluster the data. More precisely, the first step relies on the Principal Nested Spheres
(PNS) technique developed by Jung et al. (2012) and consists of an iterative projection of the data
on smaller sub-spheres. This approach is close to PCA. In the second step, the projected data are
classified through a spherical k-means procedure Dhillon et al. (2002). Subsequently, both ideas, i.e.
matrix analysis close to PCA and a clustering techniques, have then been studied by other authors.

1.4.1 Principal Component Analysis

As already explained in Section 1.3.2, adapting PCA to the study of extreme events requires some
precautions since EVT does not provide a linear framework to apply matrix transformation. This
explains why this approach has only been tackled very recently.

Cooley and Thibaud (2019) summarize the tail dependence structure via a matrix of pairwise
tail dependence metrics which has similarity with the covariance matrix. Unfortunately, PCA relies
on linear algebra techniques, while non-negative regularly varying random vectors are part of Rd+.
To tackle this issue, the authors define a bijective transformation which maps R+ to R as well as a
vector space structure on Rd+ based on this transformation, which preserves regular variation. The
eigendecomposition of the matrix of pairwise tail dependence metrics allows then interpretation of
the dependence via the eigenbasis. However, this work is restricted to pairwise summaries and does
not provide information on larger groups of variables.

Subsequently, Sabourin and Drees (2019) focus on the study of the support of the tail measure
µ (see Section 1.2.2.2). They assume that the vector space spanned by this support has dimension
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p < d and the main goal is then to find this linear subspace, which encourages the use of PCA.
However, since the data may not satisfy some finite moment assumptions the authors work with
re-scaled data on which they establish consistency results. A common choice for the scaling function
is to divide the vectors by their norms, which boils down to a study of unit vectors. In this context
the authors obtain finite sample bounds on the reconstruction error.

1.4.2 Clustering approaches for extremes

One of the challenging issues of multivariate EVT being the high-dimensional setting, some clustering
approaches have been recently used to reduce the dimension. The general idea of the proposed
method is to determine which subsets of variables can take their largest values simultaneously while
the others are of smaller order. A naive use of the data X to study the spectral vector Θ does not
lead to efficient results. This is why some techniques have been introduced so that a clustering of
the data corresponds to groups of components with tail dependence.

One of the first approach proposed in this regard is the one by Goix et al. (2016) who focus on
the subsets Rβ,∞ defined by

Rβ,∞ =
{
x ≥ 0, |x|∞ ≥ 1, xi > 0 for i ∈ β, xi = 0 for i /∈ β

}
, (1.4.1)

for β ⊂ {1, . . . , d} and ε > 0. The quantity µ(Rβ) is then approximated by µ(Rεβ(1)), where the
"truncated cones" Rεβ are defined as

Rεβ,∞ =
{

v ≥ 0, |v|∞ ≥ 1, vi > ε|v|∞ for i ∈ β, vi ≤ ε|v|∞ for i /∈ β
}
, (1.4.2)

The authors choose the infinity norm and base their work on the approximation µ(Rεβ,∞) ≈ µ(Rβ)

for ε small enough without giving theoretical guarantees. An algorithm called DAMEX (for De-
tecting Anomaly with Multivariate EXtremes) with complexity O(dn log(n)) is provided, where n
corresponds to the number of data points.

Subsequently, Goix et al. (2017) slightly modify the previous approach by defining "ε-thickened
rectangles" in the following way:

R
′ε
β,∞ =

{
v ≥ 0, |v|∞ ≥ 1, vi > ε for i ∈ β, vi ≤ ε for i /∈ β

}
. (1.4.3)

The authors propose to estimate the quantity µ(Rβ) by

µn(R
′ε
β,∞) =

1

k

n∑
j=1

1{V̂j ∈ (n/k)Rεβ(2)} ,

where k = kn satisfies k → ∞, k/n → 0 when n → ∞, and Vj is the empirical standardized
variable of Xj . Theoretical guarantees of this method are given via finite-sample error bounds. An
application of the DAMEX algorithm (with the rectangles instead of the cones) to anomaly detection
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provides good results. However, no precision is given on the choice of the hyperparameter ε and of
the level k.

The sparse representation provided by Goix et al. (2017) may lead to a very large number of
subsets Rβ,∞. The idea proposed by Chiapino and Sabourin (2016) is then to relax the condition
"vi ≤ ε for i /∈ β" in Equation (1.4.3). There, the authors provide an incremental-type algorithm
(CLustering Extreme Features, CLEF) to group together components which may be large together.
This algorithm is based on the DAMEX algorithm and also requires an hyperparameter κmin which
must be "chosen in ’stability regions’ of relevant summaries of the output" the authors specify.
Several variants of the CLEF algorithm have then been proposed by Chiapino et al. (2019). These
approaches differ in the stopping criteria which are based on asymptotic results of the coefficient of
tail dependence.

Always in the idea of classifying extreme events, Janßen and Wan (2020) propose an approach
based on k-means clustering. The authors adapt the spherical k-means algorithm to the extremal
setting and construct a non-parametric estimator for the theoretical cluster centers. A consistency
result is provided, as well as numerical experiments on data examples. A major point not addressed
in this article is the choice of k which is a priori unknown.

In order to group together components that are likely to be simultaneously extreme, Simpson
et al. (2019) focus on hidden regular variation, a concept introduced by Resnick (2002). The au-
thors provide a set of parameters (τβ(δ))β⊂{1,...,d}, depending on a parameter δ ∈ [0, 1], and which
characterizes hidden regular variation on the family of cones

Eβ = {x ∈ [0,∞]d \ {0}, xj ∈ (0,∞] for j ∈ β, xj = 0 for j /∈ β} .

The family (τβ(δ))β⊂{1,...,d} reveals whether the measure µ places mass on the cone Eβ . The authors
assume that there exists a δ∗ < 1 such that τβ(δ∗) = 1 for all β such that µ(Eβ) > 0, and τβ(δ∗) < 1

for all β such that µ(Eβ) = 0. The goal is then to estimate the parameters τβ(δ) in order to classify
the cones Eβ .

These different approaches show a general method for the study of multivariate extremes. The
idea is to identify some interpretable subsets of Sd−1

+ (respectively Rd + \{0}) on which the spectral
measure (respectively the tail measure) places mass. In this context, the idea developed in this thesis
in to consider the `1-norm and to focus on the study of the angular components of multivariate
extremes through a Euclidean projection onto the simplex. This method leads to sparse projected
vectors which is a key point in order to work in high dimension. With this new approach called
sparse regular variation, we lose the independence between the angular and the radial components
(see Equation(1.2.24)) and there is no notion of homogeneity anymore. However, we highlight the
dependence which arises between the radial and the angular components (Proposition 2.4.1) and
we prove that under mild assumptions sparse regular variation and standard regular variation are
equivalent notions (see Theorem 2.4.1).



1.5. MODEL SELECTION 51

Regarding the positive unit sphere Sd−1
+ which contains the support of the spectral measure, an

idea similar to the one of Simpson et al. (2019) and Goix et al. (2017) is to consider the following
subsets

Cβ =
{
x ∈ Sd+, xi > 0 for i ∈ β, xi = 0 for i /∈ β

}
. (1.4.4)

for β ∈ P∗d . By construction, the subsets Cβ form a partition of the positive unit sphere Sd−1
+ .

Regarding the question (Q1), this partition allows to deal with high-dimensional data. Indeed, for
β ∈ P∗d with cardinality b, the subset Cβ can be seen as part of the sphere Sb−1

+ . Therefore, as soon
as b is moderate compared to d, the use of Cβ reduces the dimension of the study. The idea is then
to provide methods to learn on which of these subsets the spectral measure puts mass. This is the
idea developed in Chapter 2 and Chapter 3.

All the approaches developed in this section rely on asymptotic results of multivariate random
vectors (see Proposition 1.2.2 and Proposition 1.2.3). However, in a statistical context we only have
a finite data set at our disposal. Therefore, the convergences that appear in the aforementioned
propositions become approximation. In particular, Equation (1.2.24) can be used to study the
behavior of the spectral vector Θ as soon as the threshold t is "large enough". This is way a
particular attention should be paid on the choice of this threshold t, or equivalently on the number
of data considered to be extreme (see the question (Q3)). One way to deal with this issue is to use
model selection to identify for which threshold t the approximation is the more accurate.

1.5 Model selection

We develop in this section some classical aspects of model selection. As pointed out by Birgé and
Massart (2001), "choosing a proper parameter set is a difficult task in many estimation problems.
[...] Both excessively complicated or oversimplified models should be avoided. The dilemma of the
choice between many possible models, of one which is adequate for the situation at hand, depending
on both the unknown complexity of the true parameter to be estimated and the known amount of
noise or number of observations, is often a nightmare for the statistician."

The first part of this section is devoted to the general setting of model selection. We particularly
insist on the context of density estimation, which will be used in Chapter 3. Then, we develop the
notion of penalization which enables not to choose a too large model. In this context, we discuss
the existing works regarding model selection for extremes and expose how the general theory can be
used for selecting an optimal threshold.

1.5.1 General framework

We start with the general framework of model selection introduced for instance by Massart (2007).
Consider i.i.d. random variables ξ1, . . . , ξn (which can be random variables, random vectors, or
random processes) with unknown distribution and assume that this distribution depends on some
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quantity s ∈ S. The general goal in statistics is then to infer on the unknown parameter s based on
the sample ξ1, . . . , ξn. Regarding model selection, the idea is to consider a subset S of S (called a
model) and to provide an estimator of s in S which is the closest among all parameters in S. This
first step is already not so easy since it often appears that no natural choice of S arises. While this
choice should be done so that the true parameter s is close to S, taking a too large subset S does
not provide good results (Bahadur (1958), Birgé and Massart (1993)).

Example 1.5.1 (Density estimation). For instance, consider ξ1, . . . , ξn with a common unknown
density s with respect to a given measure µ. In this case, the set S corresponds to the set of all
probability densities with respect to µ. If µ is the counting measure on N, then S denotes all discrete
probability distributions.

Consider now an empirical criterion γn based on the observations ξ1, . . . , ξn such that

s = arg min
t∈S

E[γn(t)] .

In this case, we say that γn is an empirical contrast. Then, a minimum contrast estimator ŝ of s is
a minimizer of γn over S. In order to prove that an empirical criterion is an empirical contrast, it is
often convenient to show that the associated loss function

l(s, t) = E[γn(t)]− E[γn(s)]

is non-negative for all t ∈ S.

Example 1.5.2 (Continuation of Example 1.5.1). Coming back to the example of density estimation,
a standard choice is

γn(t) = − log(t) ,

for t ∈ S (t is a function!). We obtain the maximum likelihood criterion. The associated loss function
is then given by the Kullback-Leibler divergence K(s, t):

l(s, t) = K(s, t) . (1.5.1)

The Kullback-Leibler divergence computes the distance between two distributions P andQ (Kullback
and Leibler (1951)). If P has density p and Q density q with respect to a measure µ, then the
divergence is given by

K(p, q) =

∫
p log

(p
q

)
dµ .

Regarding our context, we can rephrase the loss function in the following way:

l(s, t) = K(s, t) = Eξ∼s
[

log
(s(ξ)
t(ξ)

)]
.
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Since the distribution s is fixed (but unknown), the goal is to minimize the quantity

−Eξ∼s[log t(ξ)] ,

among all t ∈ S.

1.5.2 Penalization

We consider now a finite collection of models (Sm)m∈M and an empirical contrast γn. For each of
this model, we can compute a minimum contrast estimator ŝm and the goal is to select the "best"
of theses estimators. We would like to choose this estimator by minimizing the risk E[l(s, ŝm)] but
this quantity depends on the parameter s and is thus unknown. The main idea to circumvent this
issue is to consider a penalization pen :M→ R+ and to minimize overM the penalized quantity

γn(ŝm) + pen(m) . (1.5.2)

This leads to an optimal parameter m̂ and then a selected model Sm̂ and a selected estimator ŝm̂.

In the context of penalized log-likelihood with density estimation (see Example 1.5.1), this ap-
proach has been widely studied. The main one consists in choosing a penalization equal to Dm/n,
where Dm is the number of parameters of the model Sm (Akaike (1973)). This method leads to good
empirical results whereas no theoretical guarantees have been provided so far.

Roughly speaking, the penalization in Akaike (1973), called Akaike Information Criterion (AIC)
allows not to consider models with too many parameters. Indeed, models with a high number of
parameters necessarily lead to good estimations but can not be well interpreted. On the other hand,
choosing to few parameter provides models that are too far from the true one. This implies that
a balanced choice should therefore be done. A good compromise is to penalize the minimization
criterion with the number of parameters. Hurvich and Tsai (1989) propose to slightly modify the AIC
criterion by taking adding a penalization based on the sample size n and the number of parameters
Dm. This leads to the AICc criterion which is used for small sample. Other penalization criterion in
density estimation have been provided, for instance by Beran (1977) where the minimization relies
on the Hellinger distance. We refer to Massart (2007), Chapter 7, for an overview of the different
techniques density estimation via model selection.

Regarding density estimation, several results related to the Kullback-Leibler divergence have been
established. Since this divergence is not symmetric, a main issue is to study what happens where
we choose l(s, t) or l(t, s) is Equation (1.5.1). This has been for instance analyzed by Seghouane
and Bekara (2004) which shows that the standard approach that is proposed here may better reflect
the error due to overfitting, while the opposite one may better reflect the error due to underfitting.
Subsequently, Seghouane and Amari (2007) focus on a way to symmetrize the divergence between
the true model and the approximating candidate model. The symmetrization procedure is done with
operations like average, geometric, and harmonic means.
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1.5.3 Model selection in EVT

In the multivariate setting, Kiriliouk et al. (2019) use Akaike information to compare the different
multivariate Pareto models. Subsequently, Engelke and Hitz (2020) use this approach to propose
model selection for extremal graph structures. In spatial extremes, Ribatet (2013) focus on model
selection for max-stable process. Alternatives to AIC is used, such as Takeuchi’s information criterion
or Bayesian information criterion.

Regarding the question (Q3), that is, the choice of the threshold u in (1.2.24), several works have
been done for marginal threshold selection, see for instance Caeiro and Gomes (2015) or the review
of Scarrott and MacDonald (2012). On the other hand, rather few articles focus on dependence
model. We can cite the work of Lee et al. (2015) who deal with Bayesian threshold selection based
on measure of surprise.

One way to deal with the choice of the threshold is to reverse the problem and to rather focus
on k = kn = nP(|X| > u) which defines a level, i.e. the number of exceedances. Selecting an
appropriate k means obtaining a balanced choice between having enough data and remaining in the
extremal framework. To this end, it seems natural to consider models with different levels k and to
choose the most accurate one. But such an approach leads to a comparison of models with different
sizes. Indeed, each model concerns only the k largest values of the original data set of size n. Hence,
it seems natural to take the non-extreme values into account and to deal with the whole data set.
In this case, a partition between extreme and non-extreme values is done and the model selection
should provide which partition is the most appropriate to the data. This approach is tackled in
Chapter 3.

In this context, the natural additive penalization given in Equation (1.5.2) does not apply.
Indeed, the model selection is done on a parameter k which counts the number of data in a given
subgroup (actually the extreme values). Since this parameter is expressed as a proportion of the
data size, the standard procedure are not helpful. We need to adapt Akaike’s method to our context,
which leads to a multiplicative penalization (see Chapter 3).

This approach is all the more justified by some particular properties of the projection π which
highlight the impact of the threshold t regarding the sparsity of the projected vectors (Lemma 2.2.2).
These results motivates the joint study of the threshold with the sparse structure of extreme values.
Moreover, they allow to compute the projected vectors for any given threshold t, which reduces
the computational cost of our approach. We apply for instance our method on large sample of
dimension d = 102 and obtain good results with a low computing time. Regarding our question
(Q1), the numerical examples proposed are promising in order to tackle the large dimension.

1.6 Outline of the thesis

This thesis is devoted to modeling and estimating dependence for high-dimensional extremes. Its
goal is to tackle the estimation of the tail dependence of a regularly varying random vector X

in Rd+ by addressing the two issues already mentioned in the previous paragraphs: the curse of
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dimensionality and the choice of the threshold. To deal with this point, the idea is to divide the
study of extremes in Rd+ into the lower dimensional subspaces Cβ defined in Equation (1.4.1). Since
standard regular variation fails to capture the behavior of the spectral measure on these susbsets, we
propose a method based on the Euclidean projection onto the simplex for which several algorithms
are known (see the review of Condat (2016)). These procedures have the key property to have
an expected linear complexity which is a crucial point in order to deal with high-dimensional data.
Moreover, this projection manages to reduce the dimension by introducing sparsity in the considered
vectors. These considerations lead to the definition of sparse regular variation and are the purpose
of Chapter 2. In the end of this chapter, we provide numerical evidence of our theoretical findings
and compare our method with a recent one developed by Goix et al. (2017). This latter requires a
hyperparameter ε in order to introduce sparsity while this is done directly by the projection in our
setting.

The theoretical context of sparsely regularly varying random vectors being defined, the second
step is to develop a statistical framework to study the tail dependence. The idea is to provide a
learning approach to identify on which subspaces Cβ extreme events appear. Since the number
of Cβ is relatively high, we use model selection to highlight only the most relevant ones. We use
the ideas developed in Section 1.5 by focusing on the Kullback-Leibler divergence minimization
of multinomial models. This optimization takes into account the choice of an optimal threshold
above which the data are considered as extreme. Chapter 3 ends with some examples on simulated
data that model both asymptotic independence and extreme dependence. These numerical results
illustrate the relevance of our proposed approach, especially when the dimension is large (of the
order of 102). The algorithm succeeds in identifying the different directions of the space on which
extreme events are concentrated. . The results we obtain show that the approach based on the
notion of sparse regular variation seems quite robust, especially when the size of the data varies.

The dependence structure of multivariate extremes being analyzed, some other aspects as con-
ditional independence can be investigated. This is done is Chapter 4 which consists in a discussion
on the article of Engelke and Hitz (2020). In this paper, the authors introduce the notion of condi-
tional independence for threshold exceedances. We discuss the assumptions made in this article and
provide another approach to define conditional independence for a multivariate Pareto distribution.
This approach relies on the minimum of the marginals of a regularly varying random vector for
which some results are established. It provides accurate models for strong extremal dependence. In
this context, no sparsity can be introduced so that sparse regular variation is not helpful. Therefore,
the approach developed in this chapter is a good complement to the one introduced in Chapter 2
and 3.
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Chapter 2

Sparse regular variation

Abstract

Regular variation provides a convenient theoretical framework to study large events. In the multivariate set-
ting, the dependence structure of the positive extremes is characterized by a measure - the spectral measure
- defined on the positive orthant of the unit sphere. This measure gathers information on the localization
of extreme events and is often sparse since severe events do not simultaneously occur in all directions. Un-
fortunately, it is defined through weak convergence which does not provide a natural way to capture this
sparsity structure. In this chapter, we introduce the notion of sparse regular variation which allows to better
learn the dependence structure of extreme events. This concept is based on the Euclidean projection onto
the simplex for which efficient algorithms are known. We show several results for sparsely regularly varying
random vectors and prove that under mild assumptions sparse regular variation and regular variation are
two equivalent notions. Finally, we provide numerical evidence of our theoretical findings and compare our
method with a recent one developed by Goix et al. (2017).

Keywords— Euclidean projection onto the simplex, high dimension, multivariate extremes, regular vari-

ation, sparse regular variation, spectral measure

Regarding our questions

(Q1) This chapter introduces the concept of sparse regular variation which allows to study the
dependence structure of extreme events on lower-dimensional subspaces. One of the main
results concerns the behavior of a regularly varying random vector X on the subsets Cβ defined
in (1.4.1).

(Q2) Theorem 2.4.1 states that under mild assumption sparse regular variation is equivalent to
standard regular variation. Therefore, the dependence structure of extreme values can be
studied with this new concept, for which several theoretical results are given.

(Q3) Regarding the threshold, the study is conducted with the condition |X|1 > t. The `1-norm
is used in order to apply the Euclidean projection onto the simplex. We do not discuss the

57



58 SPARSE REGULAR VARIATION

selection of the threshold in this chapter.
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2.1 Introduction

Estimating the dependence structure of extreme events has proven to be a major issue in many
applications. The standard framework in multivariate Extreme Value Theory (EVT) is based on
the concept of regularly varying random vectors (see Section 1.2.2.2). Regular variation has first
been defined in terms of vague convergence on the compactified space [−∞,∞]d and several char-
acterizations have subsequently been established, see e.g. Resnick (1987), Resnick (2007), Beirlant
et al. (2006), or Embrechts et al. (2013). Hult and Lindskog (2006) extend the notion of regular
variation on a general (possibly infinite dimensional) metric space. They introduce the concept of
M0-convergence of Borel measures which is based on bounded continuous test functions with support
bounded away from the origin.

In this chapter, we use Resnick’s setting and define multivariate regular variation through the
convergence of the radial and polar coordinates of a random vector (see Resnick (1987), Proposition
5.17 and Corollary 5.18, or Resnick (2007), Theorem 6.1). A random vector X ∈ Rd+ is said to be
regularly varying with tail index α > 0 and spectral measure S on the positive orthant Sd−1

+ of the
unit sphere if

P (|X| > tx,X/|X| ∈ B | |X| > t)→ x−αS(B) , t→∞ , (2.1.1)
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for all x > 0 and for all continuity set B ∈ Sd−1
+ of S. This convergence (2.1.1) can be interpreted

as follows: The limit of the radial component |X|/t has a Pareto distribution with parameter α > 0,
while the angular component X/|X| has limit measure S. Moreover, both components of the limit
are independent. The measure S, called the spectral measure, summarizes the tail dependence of the
regularly varying random vector X. Note that the choice of the norm in (2.1.1) is arbitrary. Actually,
it is even possible to choose two different norms for the radial and angular parts (see Beirlant et al.
(2006), Section 8.2.3).

Based on convergence (2.1.1), several non-parametric estimation techniques have been proposed
to estimate S. In the bivariate case, some useful representations of the spectral measure has been
introduced by Einmahl et al. (1993), Einmahl et al. (1997), Einmahl et al. (2001) and Einmahl and
Segers (2009). In Einmahl et al. (1997), the authors replace the tails of the marginals by fitted Pareto
tails in order to estimate S by an empirical measure. The latter is consistent and asymptotically
normal under suitable assumptions. Einmahl and Segers (2009) focus on the choice of the `p-norm,
for p ∈ [1,∞], in order to construct an estimator of the spectral measure which satisfies moment
constraints. Inference on the spectral measure has also been studied in a Bayesian framework, for
instance by Guillotte et al. (2011). In this chapter, the authors use censored likelihood methods
in the context of infinite dimensional spectral measures. Parametric approaches have also been
introduced to tackle the study of extremes in moderate (d ≤ 10) dimensions, for instance by Coles
and Tawn (1991) and Sabourin et al. (2013).

In higher dimensions, mixtures of Dirichlet distributions are often used to model the spectral
densities. Boldi and Davison (2007) show that under some conditions these distributions are weakly
dense in the set of spectral measures. They propose both frequentist and Bayesian inferences based
on EM algorithms and MCMC simulations. Subsequently, Sabourin and Naveau (2014) introduce a
re-parametrization of the Bayesian Dirichlet mixture model.

More recently, the study of the spectral measure’s support has become an active topic of research.
Indeed, this support gathers information on the dependence structure of extreme values: The sub-
spaces on which the spectral measure puts mass correspond to these where extreme events occur.
Thus, estimating the spectral measure is a major issue in multivariate EVT but it is a challenging
problem, especially in high dimensions. Unfortunately, the complete support’s estimation is often
difficult to capture, so that a main goal in the tail dependence’s study is rather to identify clusters
of components which are likely to be extreme together. This approach has firstly been introduced
by Chautru (2015) who uses a clustering technique to exhibit groups of variables with asymptotic
dependence. In the same way, Janßen and Wan (2020) use spherical k-means in order to find clusters
with the same extremal behavior.

Recently, two approaches based on Principal Component Analysis (PCA) for high-dimensional
extremes have been developed. Cooley and Thibaud (2019) define a vector space on the positive
orthant Rd+ in order to conciliate both PCA and regular variation. They summarize the tail depen-
dence through a matrix of pairwise tail dependence metrics and apply some usual decomposition
on this matrix. They illustrate their approach with simulations on Swiss rainfall data and financial
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return data. In a recent work, Sabourin and Drees (2019) assume that the spectral measure concen-
trates on Sp−1

+ with p < d, and assume that the parameter p is known. The aim of their chapter is
to identify this support with an empirical risk minimization’s technique.

Some more algorithmic approaches have also been recently introduced. Goix et al. (2017) con-
sider ε-thickened rectangles to estimate the directions on which the spectral measure concentrates.
This estimation is based on a tolerance parameter ε > 0 and brings out a sparse representation
of the dependence structure. It leads to an algorithm called DAMEX (for Detecting Anomalies
among Multivariate EXtremes) of complexity O(dn log n), where n corresponds to the number of
data points. Subsequently, Chiapino and Sabourin (2016) propose another algorithm (CLEF for
CLustering Extremal Features) to group together subsets that are likely to be simultaneously ex-
treme. A O(dn log n) complexity has also been reached by Simpson et al. (2019) who base their
method on hidden regular variation. They introduce a set of parameters (τC)C⊂{1,...,d} which de-
scribe to what extent the feature C gathers extreme values. Most of these approaches are based on
the rank transform and try to identify groups of asymptotically dependent extremes.

In a recent work, Lehtomaa and Resnick (2019) analyze tail dependence with application to
risk management. They study the support of the spectral measure by using a grid estimator. The
simplex is firstly mapped to the space [0, 1]d−1 before being partitioned in equally sized rectangles.
The estimation of the support is based on a standard estimator of the spectral measure, see Resnick
(2007), Section 9.2.2. The second step is then to build an asymptotically normal test statistic to
validate the support estimate.

The main issue in the study of the spectral measure is that the self-normalized extreme X/|X| |
|X| > t that appears in (2.1.1) is inefficient to estimate S in subspaces of dimension smaller than
d−1, while these types of subsets often concentrate large events. Indeed, in many situations it is very
unlikely that a lot of coordinates are simultaneously extreme. In other words, extreme events occur
in few directions i1, . . . , ir ∈ {1, . . . , d}, with r � d. In this case, the spectral measure puts mass
on Vect(ei1 , . . . , eir) ∩ Sd−1

+ , where e1, . . . , ed denote the vectors of the canonical basis of Rd. We
say then that the spectral measure is sparse. Unfortunately, as soon as r < d, the weak convergence
(2.1.1) does not hold for subspaces like Vect(ei1 , . . . , eir)∩Sd−1

+ , since they are not continuity sets for
S. This is why the difficulty to identify the possible sparsity of S is at the core of the multivariate
extremes’ study.

Since the self-normalized vector X/|X| fails to identify the regions on which the spectral measure
puts mass, our aim is to introduce another way of projecting onto the unit sphere. This new
projection should take the sparsity of the spectral measure into account by introducing some sparsity
in the vector X. In other words, as the limit measure S in (2.1.1) is likely to be sparse, we need to
replace X/|X| by a unit vector based on X which is also likely to be sparse. To this end, we use
the Euclidean projection of X/t onto the simplex {x ∈ Rd+, x1 + . . .+ xd = 1}. This projection has
been widely studied in learning theory (see e.g. Duchi et al. (2008), Kyrillidis et al. (2013), or Liu
and Ye (2009)). Many different efficient algorithms have been proposed, for instance by Duchi et al.
(2008) and Condat (2016).
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Based on this projection, we define the concept of sparse regular variation for which the self-
normalized vector X/|X| is replaced by π(X/t), where π denotes the Euclidean projection onto the
simplex. The limit measure obtained after this substitution is slightly different from the spectral
measure S. We study this new angular limit and show that it better captures the possible sparsity
structure of the extremes. Besides, we prove that under mild conditions both concepts of regular
variation are equivalent and we give the relation between both limit measures.

Outline The structure of this chapter is as follows. Section 2.2 gathers all theoretical results useful
in this chapter. Firstly, we introduce the multivariate EVT framework. We detail why the knowledge
of the subspaces on which the spectral measure puts mass is a main issue for the study of extreme
events and explain which difficulties appear in this context. Secondly, we introduce the Euclidean
projection onto the simplex and list several results which are of constant use for our study. Section
2.3 is dedicated to the study of this projection in a regular variation context. We focus on the
angular part of the limit after substituting the usual projected vector X/|X| in (2.1.1) by a vector
based on the Euclidean projection onto the simplex. We also provide some interpretations of this
new angular vector and discuss to what extent this way of projecting allows us to better capture the
sparsity structure of the extremes. The concept of sparsely regularly varying random vector is then
introduced in Section 2.4. We establish the equivalence, under mild conditions, between this notion
and the standard regular variation’s concept. Finally, we illustrate in Section 2.5 the performance
of our method on simulated data and compare it with the approach of Goix et al. (2017).

2.2 Theoretical background

2.2.1 Regular variation and spectral measure

We consider a non-negative random vector X = (X1, . . . , Xd) and our goal is to assess its tail
structure. It is customary in EVT to assume that the random vector X is regularly varying: There
exist a random vector Θ on Sd−1

+ and a non-degenerate random variable Y such that the following
limit holds:

P
((
|X|
t
,

X

|X|

)
∈ ·
∣∣∣∣ |X| > t

)
w→ P((Y,Θ) ∈ ·) , t→∞ . (2.2.1)

In this case, there exists α > 0 such that Y follows a Pareto distribution with parameter α. Moreover,
the radial limit Y is independent of the angular limit Θ. The random vector Θ is called the spectral
vector and its distribution S(·) := P(Θ ∈ ·) is called the spectral measure.

Equation (2.2.1) brings out the two quantities which characterize the regular variation property
of X. On the one hand, the tail index α highlights the intensity of the extremes: The smaller this
index is, the larger the extremes are. On the other hand, the spectral vector Θ informs on their
localization and their dependence structure: The spectral measure puts mass in a direction of Sd−1

+

if and only if extreme events appear in this direction. Hence, estimating the spectral measure is a
crucial (but challenging) problem in multivariate EVT.
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In arbitrary dimensions, several authors recently focus on the estimation of the spectral measure’s
support. The main purpose is to detect features that are likely to be extreme together. In other
words, we would like to identify some specific subsets of Sd−1

+ on which the spectral measure puts
mass. To this end, it is convenient to partition the positive unit sphere Sd−1

+ in the following way.
For β ∈ P∗d , we define the subsets

Cβ =
{
x ∈ Sd+, xi > 0 for i ∈ β, xi = 0 for i /∈ β

}
, (2.2.2)

This approach can be related to the one developed by Goix et al. (2017) (see Remark 2.3.1 and
Section 2.5). Note that, by construction, the subsets Cβ are pairwise disjoint and form a partition
of Sd−1

+ :
Sd−1

+ =
⊔
β∈P∗d

Cβ ,

where
⊔

denotes a disjoint union. An illustration of these subsets in dimension 3 are given in Figure
2.1.
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Figure 2.1: The subsets Cβ in dimension 3 for to the `1-norm. In red, the subsets C{1}, C{2}, and
C{3}. In blue, the subsets C{1,2}, C{1,3}, and C{2,3}. The shaded part corresponds to the interior of
the simplex, that is, the subset C{1,2,3}.

This partition is helpful to study the extremal structure of X. Indeed, for β ∈ P∗d , the inequality
P(Θ ∈ Cβ) > 0 means that it is likely to observe simultaneously large values in the directions i ∈ β
and small values in the directions i ∈ βc. Then, identifying the subsets Cβ which concentrate the
mass of the spectral measure allows us to bring out clusters of coordinates which can be simulta-
neously large. Hence, the main first step of the spectral measure’s estimation consists in classifying
the 2d − 1 probabilities P(Θ ∈ Cβ) depending on their nullity or not. Note that if P(Θ ∈ Cβ) > 0,
for β 6= {1, . . . , d}, it means that some coordinates of Θ are equal to zero with positive probability.
In this case, we say that the spectral vector (and hence the spectral measure) is sparse.

Remark 2.2.1. In EVT, the notion of sparsity can be defined in two different ways. The first
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one concerns the number of subsets Cβ which gather the mass of the spectral measure. "Sparse"
means then that this number is much smaller than 2d − 1. This is for instance the device of Goix
et al. (2017). The second notion deals with the number of 0 in the spectral vector Θ. In this case,
"sparse" means that with high probability |Θ|0 � d, where | · |0 denotes the `0-norm of Θ, that
is, |Θ|0 = #{i = 1, . . . , d, θi 6= 0}. In all this thesis we refer to this second notion. Our aim is to
provide a suitable model for extremes which takes this possible sparsity into account.

A standard example of sparsity is the one where the spectral measure only puts mass on the
axis: P(Θ ∈ t1≤j≤d {ej}) = P(Θ ∈ t1≤j≤dC{j}) = 1. This means that there is never more than
one direction which contributes to the extremal behavior of the data. In this case, we say that
the extremes are asymptotically independent (see Section 1.2.3). This concept has been studied by
many authors, for instance Ledford and Tawn (1996) or Ramos and Ledford (2009).

Even in cases of asymptotic dependence the mass of the spectral measure often only spreads on
low-dimensional subsets Cβ , that is, for β such that #β � d. This is all the more true in high
dimension. Indeed, when d is large, it is very unlikely that all coordinates are extreme together.
Regarding the spectral vector, this means that P(Θ ∈ C{1,...,d}) = 0. In such cases, it is then
interesting to identify the larger groups of variables β ∈ P∗d such that P(Θ ∈ Cβ) > 0. This
motivates the notion of maximal subset.

Definition 2.2.1 (Maximal subset for Θ). Let β ∈ P∗d . We say that a subset Cβ is maximal for Θ

if
P(Θ ∈ Cβ) > 0 and P(Θ ∈ Cβ′) = 0 , for all β′ ) β . (2.2.3)

In terms of extreme values, the notion of maximality can be rephrased in the following way.
Firstly, P(Θ ∈ Cβ) > 0 means that the coordinates of β may be extreme together. Secondly,
the condition P(Θ ∈ Cβ′) = 0, for all β′ ) β, means that β is not included in a larger group of
coordinates β′ such that the coordinates of β′ may be simultaneously extreme.

Remark 2.2.2. A straightforward but useful consequence of Definition 2.2.1 is that each subset Cβ
such that P(Θ ∈ Cβ) > 0 is included in a maximal subset of Θ. Indeed, if there exists no β′ ) β,
such that P(Θ ∈ Cβ′) = 0, then Cβ is a maximal subset itself. If not, it means that there exists
β′ ) β, such that P(Θ ∈ Cβ′) > 0. If Cβ′ is not maximal, then we repeat this procedure with
β′. Since the length of the β’s is finite, the procedure stops and provides γ ∈ P∗d such that β ⊂ γ,
P(Θ ∈ Cγ) > 0 and P(Θ ∈ Cγ′) = 0, for all γ′ ) γ.

Why the support’s estimation is difficult While the interpretation of the subspaces Cβ is
rather intuitive, it is quite difficult to estimate the probabilities P(Θ ∈ Cβ). A natural estimator
of the spectral vector Θ is based the second component of convergence (2.2.1). Indeed, the polar
component of X satisfies

P (X/|X| ∈ · | |X| > t)
d→ P(Θ ∈ ·) , t→∞ . (2.2.4)
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This means that the spectral vector Θ can be approximated by the self-normalized extreme X/|X| |
|X| > t, for t large enough. Unfortunately, the supports of Θ and X/|X| often drastically differ.
Indeed, since X could model real-world data, the components of X are almost surely positive. In
other words, except for degenerate cases, the random vector X/|X| concentrates on the central
subspace C{1,...,d}. Equivalently, if β 6= {1, . . . , d}, then P(X/|X| ∈ Cβ) = 0. This arises while the
probability P(Θ ∈ Cβ) is often positive for some β 6= {1, . . . , d}.

This means that Equation (2.2.4) is not helpful to study the support of the spectral vector Θ.
The self-normalized extreme X/|X| | |X| > t does not inform on the behavior of Θ on the Cβ ’s.
This kind of problems arises since the spectral measure may put mass on subspaces included in
the boundary of the unit sphere Sd−1

+ (in our case the Cβ ’s, for β 6= {1, . . . , d}), whereas the data
generally do not concentrate on such subspaces. Our goal is thus to circumvent this problem by
using another projection. This projection has to capture the dependence structure of extremes by
taking into account the potential sparsity of the spectral measure. The solution we propose in this
chapter is to replace the quantity X/|X| by the Euclidean projection onto the simplex of X/t. To
this end, we have to adapt Equation (2.2.1).

From now until the end of this chapter, | · | denotes the `1-norm and Sd−1
+ denotes the simplex

in dimension d:
Sd−1

+ := {x ∈ Rd+, x1 + . . .+ xd = 1} .

In particular, the subsets Cβ defined in (2.2.2) are now associated to the `1-norm. More generally
Sd−1

+ (z) := {x ∈ Rd+, x1 + . . .+ xd = z} for z > 0.

2.2.2 The Euclidean projection onto the simplex

In this subsection, we introduce the Euclidean projection onto the simplex. For more details, see
Duchi et al. (2008) and the references therein.

Let z > 0 and v ∈ Rd+. We consider the following optimization problem:

minimize
w

1

2
|w − v|22 s.t. |w|1 = z . (2.2.5)

Since v ≥ 0, the minimization problem (2.2.5) is equivalent to

minimize
w

1

2
|w − v|22 s.t.

d∑
i=1

wi = z , wi ≥ 0 .

(see Duchi et al. (2008), Lemma 3). The Lagrangian of this problem and the complementary slackness
KKT condition imply that this problem has a unique solution w ∈ Rd+ which satisfies wi = (vi −
λv,z)+ for λv,z ∈ R. The constant λv,z is defined by the relation

∑
1≤i≤d(vi − λv,z)+ = z.
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Based on these considerations, we define the application πz which maps v to w:

πz : Rd+ → Sd−1
+ (z)

v 7→ w = (v − λv,z)+ .

This application is called the projection onto the positive sphere Sd−1
+ (z). An algorithm which

computes πz(v) for v ∈ Rd+ and z > 0 is given in Duchi et al. (2008). It is based on a median-
search procedure whose expected time complexity is O(d). Unfortunately, this approach is not very
intuitive and introduces many variables. Hence, we include it in Section 2.8 and detail here a more
understandable version of this algorithm with complexity O(d log(d)). Algorithm 1 emphasizes the
number of positive coordinates ρ of the projected vector πz(v):

ρ = max

{
j ∈ {1, . . . , d}, µj −

1

j

( j∑
r=1

µj − z
)
> 0

}
, (2.2.6)

where µ1 ≥ . . . , µd denote the order coordinates of v, see Duchi et al. (2008), Lemma 2. The integer
ρ corresponds to the `0-norm of πz(v) and thus informs on the sparsity of this projected vector. It
will therefore be crucial in what follows.

Data: A vector v ∈ Rd+ and a scalar z > 0

Result: The projected vector w = π(v)

Sort v in µ : µ1 ≥ . . . ≥ µd;
Find ρ = max

{
j ∈ {1, . . . , n}, µj − 1

j

(∑j
r=1 µj − z

)
> 0
}
;

Define η = 1
ρ (
∑ρ

r=1 µj − z);
Define w s.t. wi = max(vi − η, 0).

Algorithm 1: Euclidean projection onto the simplex.

Remark 2.2.3. The expected linear complexity with respect to the dimension d is essential. Indeed,
multivariate extremes have already been studied in low dimensions, especially in two dimensions (for
instance in Einmahl et al. (2001) or Einmahl and Segers (2009)). But when the dimension increases,
the study of large events becomes a difficult issue. The recent algorithmic approaches developed by
Simpson et al. (2019) or Goix et al. (2017) reach a complexity O(dn log(n)), where n denotes the
number of data points. Based on Algorithm 3, we manage to reach a complexity O(dn).

Remark 2.2.4. Algorithm 1 highlights the quantity η = η(z) which is decreasing when z increases.
Therefore, when z is large, η is small and wi = max(vi − η, 0) is more likely to be positive. This
means that the projected vector w is sparser when z is large (see also Lemma 2.2.2). This relation
between the parameter z and the sparsity structure of w = πz(v) will be a crucial point regarding
the choice of a threshold for the extremes.

Note that the projection satisfies the relation πz(v) = zπ1(v/z) for all v ∈ Rd+ and z > 0. This
is why we mainly focus on the projection π1 onto the simplex Sd−1

+ . In this case, we shortly denote
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π for π1 and λv for λv,1:
π : Rd+ → Sd−1

+

v 7→ (v − λv)+ .

An illustration of π for d = 2 is given in Figure 2.2.

O e1
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1
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π(u) v

π(v)

Figure 2.2: The Euclidean projection onto the simplex S1
+.

We list below some straightforward results on the projection.

P1. The projection preserves the order of the coordinates: If vσ(1) ≥ . . . ≥ vσ(d) for a permutation
σ, then π(v)σ(1) ≥ . . . ≥ π(v)σ(d) for the same permutation.

P2. If π(v)j > 0, then vj > 0. Equivalently, vj = 0 implies π(v)j = 0.

P3. The projection π is continuous, as every projection on a convex closed set in a Hilbert space.

The last property will be useful in what follows since π is used to tackle the weak convergence’s issue
in the spectral measure’s definition (2.2.1). The idea is indeed to substitute the quantity X/|X| in
(2.2.1) for | · | = | · |1 by π(X/t) and to manage to get same convergence results. A natural way to
do this relies on the continuous mapping theorem.

We end this section with two important properties satisfied by the projection.

Lemma 2.2.1. If 0 < z ≤ z′, then πz ◦ πz′ = πz.

This means that projecting onto a sphere and then onto a smaller one is the same as directly
projecting onto the smaller sphere. This lemma will be useful to prove some technical results
gathering the projection π and regular variation.

Finally, in order to study the sparsity structure of extreme events, we are interested in computing
probabilities like P(Θ ∈ Cβ) and P(Θβc = 0), for β ∈ P∗d . To this end, next lemma will be helpful.
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Lemma 2.2.2. Let v ∈ Rd+ and β ∈ P∗d . The following equivalences hold:

π(v)βc = 0 if and only if 1 ≤ min
i∈βc

d∑
k=1

(vk − vi)+ , (2.2.7)

and

π(v) ∈ Cβ if and only if

{
maxi∈β

∑
j∈β(vj − vi) < 1 ,

mini∈βc
∑

j∈β(vj − vi) ≥ 1 .
(2.2.8)

If π(v) > 0 (that is, if β = {1, . . . , d}), then π(v) has necessary the following form (see Algorithm
1):

π(v) = v − 1

d

( d∑
k=1

vk − 1

)
= v − |v| − 1

d
.

Thus, for x ≥ 0, we have the following characterization:

π(v) > x if and only if v > x +
|v| − 1

d
. (2.2.9)

This equivalence will be of constant use in the proofs.

Remark 2.2.5. Note that the projection π is not homogeneous. Recall that a function f is said to
be homogeneous if there exists q > 0 such that for all t > 0, f(tx) = tqf(x). If f is a continous and
homogeneous function and X is a regularly random vector in Rd+ with tail index α > 0, then the
random vector f(X) is regularly varying with tail index α/q (see Jessen and Mikosch (2006)). Such
a result cannot be used for the Euclidean projection onto the simplex.

The theoretical framework being defined, we now want to use the projection π in a regular
variation context. This is the purpose of next section.

2.3 Spectral measure and projection

The aim of this section is twofold. In the first part, we use the Euclidean projection onto the simplex
to introduce a new convergence based on (2.2.1). This new convergence brings out an angular limit
vector which differs from the spectral vector. Some results on this limit and its relation with the
spectral vector are introduced. Secondly, we establish sparsity results for this new vector. Finally,
we develop a model with a discrete spectral vector Θ and study how it affects the vector Z.

2.3.1 Regular variation and projection

From now on, and until the end of Section 2.3, we consider a regularly varying random vector X on
Rd+:

P
((
|X|
t
,

X

|X|

)
∈ ·
∣∣∣∣ |X| > t

)
w→ P((Y,Θ) ∈ ·) , t→∞ . (2.3.1)
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In this case, we know that there exists α > 0 such that Y follows a Pareto(α) distribution and
also that the limits Y and Θ are independent. We emphasized in Subsection 2.2.1 that convergence
(2.3.1) is not helpful to capture the possible sparsity structure of the spectral vector Θ. Our idea
is to substitute the self-normalized extremes X/|X| by another vector on the simplex which better
highlights this sparsity.

Here is an intuitive idea to see how the Euclidean projection can solve this kind of issue. As
explained in Section 2.2.1, for β ∈ P∗d , the quantity P(X/|X| ∈ Cβ | |X| > t) is always equal
to 0 (except for degenerate cases), whereas P(Θ ∈ Cβ) could be positive. This arises since for
t > 0, the sets {x ∈ Rd+, |x| > 1, x/|x| ∈ Cβ} have zero Lebesgue measure for β 6= {1, . . . , d},
and real-world data do not concentrate on such subspaces. Our idea is to replace these subsets by
closer ones, but with positive Lebesgue measure. Based on the projection π, we use the subsets
{x ∈ Rd+, |x| > 1, π(x/t) ∈ Cβ}.

Example 2.3.1. Let us take the example of the two-dimensional case illustrated in Figure 2.2.
Here, estimating for instance the probability P(Θ ∈ C{2}) = P(Θ1 = 0) with the set of zero
Lebesgue measure {x, x/|x| ∈ C{2}} seems unachievable. Our idea here is to rather use the set
{x, π(x) ∈ C{2}} = {x, x2 ≥ x1 + 1} which has positive Lebesgue measure. In a sense, the
projection allows us to give more weight to the subsets Cβ , for β 6= {1, . . . , d}.

Remark 2.3.1. The idea of substituting the subspaces {x ∈ Rd+, |x| > 1, x/|x| ∈ Cβ} which have
zero Lebesgue measure by closer subspaces with positive Lebesgue measure has already been used
in the literature. For instance, Goix et al. (2017) define ε-thickened rectangles Rεβ , defined by

Rεβ =
{
x ∈ Rd+, |x|∞ > 1, xi > ε for i ∈ β, xi ≤ ε for i /∈ β

}
,

for β ∈ P∗d and ε > 0. Unfortunately, these considerations are based on a hyperparameter ε > 0

which has to be tuned in practice. One of the advantages of the projection π is that it is does not
need any hyperparameter. A more detailed comparison of these two methods will be discussed in
Section 2.5.

With this in mind, we substitute the usual projection X/|X| by π(X/t). The first step is to see
how this affects the spectral vector. The continuity of the projection π implies that

P
((
|X|
t
, π

(
X

t

))
∈ ·
∣∣∣∣ |X| > t

)
w→ P((Y, π(YΘ)) ∈ ·) , t→∞ . (2.3.2)

The limit of the angular component is now π(YΘ). In particular, we lose independence between
the radial component Y and the angular component π(YΘ) of the limit. The dependence relation
between both components will be detailed in Proposition 2.4.1.

Following Equation (2.3.2), we set Z = π(YΘ) ∈ Sd−1
+ . The aim of this section is to study

to what extent the new angular limit Z differs from the spectral vector Θ and how it helps to
study the tail dependence of X. A first crucial point is that convergence (2.3.2) holds for Borel sets
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A ∈ Sd−1
+ which satisfy P(YΘ ∈ ∂π−1(A)) = 0. Next proposition states that the subsets Cβ and

Vect(ej , j ∈ β), β ∈ P∗d , satisfy this condition.

Proposition 2.3.1. Let X be a regularly varying random vector in Rd+ with spectral vector Θ and
tail index α > 0. Set Z = π(YΘ), where Y is a Pareto(α)-distributed random variable independent
of Θ. For any β ∈ P∗d , the following convergences hold:

P(π(X/t) ∈ Cβ | |X| > t)→ P(Z ∈ Cβ) , t→∞ , (2.3.3)

P(π(X/t)βc = 0 | |X| > t)→ P(Zβc = 0) , t→∞ . (2.3.4)

Both convergences imply that the sparsity structure of Z can be studied through the projected
vector π(X/t). We insist on the fact that for β 6= {1, . . . , d}, the convergences (2.3.3) and (2.3.4) do
not hold if we replace Z by Θ and π(X/t) by X/|X|. From a statistical point of view, Proposition
2.3.1 is helpful since it allows us to estimate the sparse behavior of Z based on the one of X. This
will be used on numerical results in Section 2.5 and developed in a statistical framework in Chapter
3.

A first interpretation of Z At first glance, using the vector Z instead of Θ in order to capture
the tail dependence of X seems less interpretable. Nevertheless, some properties of the projection
make this new vector more understandable, in particular its interpretation regarding X.

The first property deals with the extreme behavior of a component with respect to the others.
For j = 1, . . . , d, we apply Equation (2.2.8) of Lemma 2.2.2 with β = {j} and obtain the following
equivalences:

π(X/t) ∈ C{j} ⇐⇒ min
i 6=j

(Xj/t−Xi/t) ≥ 1 ⇐⇒ Xj ≥ max
i 6=j

Xi + t , t > 0.

Then, applying Proposition 2.3.1 to the subset C{j} leads to the convergence

P
(
Xj ≥ max

i 6=j
Xi + t | |X| > t

)
= P

(
π(X/t) ∈ C{j} | |X| > t

)
→ P(Z ∈ C{j}) = P(Zj = 1) ,

when t→∞. At a non-asymptotic level, this means that for t "high enough", we have the approxi-
mation

P
(
Xj ≥ max

i 6=j
Xi + t | |X| > t

)
≈ P(Zj = 1) .

This means that Z concentrates on the j-th axis if the j-th coordinate of X is much larger than the
others, that is, if extreme values appear in this direction.

More generally, if we fix β ∈ P∗d with length r = #β, then Equation (2.2.7) of Lemma 2.2.2 leads
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to the following equivalences:

π(X/t)βc = 0 ⇐⇒ 1 ≤ min
i∈βc

d∑
k=1

(Xk/t−Xi/t)+ ⇐⇒ t ≤
d∑

k=1

(Xk −max
i∈βc

Xi)+

⇐⇒ t ≤
∑
k∈β

(Xk −max
i∈βc

Xi)+ ⇐⇒ t ≤
d∑
k∈β

Xk − rmax
i∈βc

Xi ,

where the positive part can be withdrawn since the projection keeps the order of the coordinates
(see the property P1, Subsection 2.2.2). All in all, we obtain the equivalence

π(X/t)βc = 0 ⇐⇒ r−1
∑
k∈β

Xk ≥ max
i∈βc

Xi + t .

Then, following Proposition 2.3.1, we obtain

P
(
r−1

∑
k∈β

Xk ≥ max
i∈βc

Xi + t | |X| > t
)

= P
(
π(X/t)βc = 0 | |X| > t

)
→ P(Zβc = 0) , t→∞ ,

and it leads to the following approximation:

P
(
r−1

∑
k∈β

Xk ≥ max
i∈βc

Xi + t | |X| > t
)
≈ P(Zβc = 0) ,

for t "high enough". This can be interpreted in the following way: The vector Z does not concentrate
on the directions j ∈ βc if the average value of Xj for j ∈ β is much larger than all the components
of X on βc. In other words, there is an important gap between the average value of the marginals
on β and the value of the marginals on βc.

2.3.2 The distribution of Z

The new angular vector Z being defined, the aim is now to explicit some links between Θ and Z.
To this end, we define the function GZ by

GZ(x) = P(Z > x) = P(Z1 > x1, . . . , Zd > xd) , x ∈ Rd . (2.3.5)

The function GZ characterizes the distribution of Z. However, note that there is no simple relation
between GZ and the cumulative distribution function of Z as soon as d ≥ 2. Since Z ∈ Sd−1

+ , we
only focus on GZ(x) for x in Rd+ such that

∑
j xj < 1, this means for x ∈ B(0, 1)∩Rd+, where B(0, 1)

denotes the (open) unit ball for the `1-norm. Thus, we write

GZ(x) = P(Z ∈ Ax) ,
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where the sets Ax are defined by

Ax = {u ∈ Sd−1
+ , x1 < u1, . . . , xd < ud} . (2.3.6)

Since the family A = {Ax, x ∈ B(0, 1)∩Rd+} generates the Borel σ-algebra of the simplex Sd−1
+ , the

distribution of Z is completely characterized by GZ(x) for x ∈ B(0, 1) ∩ Rd+.
Following Equation (2.2.9), we can express the condition Z > x in terms of Θ.

Proposition 2.3.2. Let X be a regularly varying random vector of Rd+ with tail index α > 0

and spectral vector Θ. For x ∈ B(0, 1) ∩ Rd+, such that for all j = 1, . . . , d, xj 6= 1/d, define
J+ = {j, xj > 1/d} and J− = {j, xj < 1/d}. Then, we have

GZ(x) = E

[(
1 ∧ min

j∈J+

(
Θj − 1/d

xj − 1/d

)α
+

−max
j∈J−

(
Θj − 1/d

xj − 1/d

)α
+

)
+

]
, (2.3.7)

with GZ defined in (2.3.5).

Proposition 2.3.2 gives an interesting relation between the distribution of Z and the one of Θ.
Unfortunately, its complexity makes it difficult to use. But specific choices for x will give some useful
results.

A convenient particular case is the one where x satisfies x < 1/d. There, we obtain

GZ(x) = E
[
1− max

1≤j≤d

(
1/d−Θj

1/d− xj

)α]
.

In particular, for x = 0, we get

GZ(0) = 1− E
[

max
1≤j≤d

(1− dΘj)
α

]
. (2.3.8)

Thus, the probability for Z to have a null component is

P(∃j = 1, . . . , d , Zj = 0) = E
[

max
1≤j≤d

(1− dΘj)
α

]
. (2.3.9)

This quantity is null if and only if for all j = 1, . . . , d, Θj = 1/d a.s. and is equal to 1 if and only
if min1≤j≤d Θj = 0 a.s. As expected, the new angular vector Z is more likely to be sparse. In
particular, all usual spectral models on Θ that are not supported on the axis are not suitable for Z.
The goal of the next subsection is to study more into details the sparsity structure of Z.

2.3.3 Sparsity structure of Z

Since the projection is introduced in order to better capture the sparsity structure of the extremes,
we give here different results of sparsity for the angular component Z = π(YΘ). The general aim
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is thus to compute probabilities like P(Z ∈ Cβ) or P(Zβc = 0), for β ∈ P∗d , in order to generalize
Equation (2.3.9).

Proposition 2.3.3. Let X be a regularly varying random vector of Rd+ with spectral vector Θ and
tail index α > 0. Set Z = π(YΘ), where Y is a Pareto(α)-distributed random variable independent
of Θ. For any β ∈ P∗d , we have

P(Zβc = 0) = E

[
min
j∈βc

( d∑
k=1

(Θk −Θj)+

)α]
, (2.3.10)

and

P(Z ∈ Cβ) = E

(min
j∈βc

(∑
k∈β

(Θk −Θj)+

)α
−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
+

 . (2.3.11)

If we consider the case where β = {1, . . . , d}, then we obtain the probability that all coor-
dinates are positive. This has already been computed in (2.3.8). It is equal to GZ(0) = 1 −
E [max1≤j≤d(1− dΘj)

α].
Another particular case of Proposition 2.3.3 is the one where β corresponds to a single coordinate

j0. In this case, since Z belongs to the simplex, both probabilities P(Zβc = 0) and P(Z ∈ Cβ) are
equal. Their common value corresponds to the probability that Z concentrates on the j0-th axis,
which is equal to

P(Zj0 = 1) = E
[
min
j 6=j0

(Θj0 −Θj)
α
+

]
. (2.3.12)

Then, Equation (2.3.12) can be developed in the following way:

P(Zj0 = 1) = E
[
min
j 6=j0

(Θj0 −Θj)
α
+1{Θj0=1}

]
+ E

[
min
j 6=j0

(Θj0 −Θj)
α
+1{Θj0<1}

]
= P(Θj0 = 1) + E

[
min
j 6=j0

(Θj0 −Θj)
α
+1Θj0<1

]
≥ P(Θj0 = 1) .

This shows again that the vector Z is more likely to be sparse than the spectral vector Θ.

Remark 2.3.2. Following Equation (2.3.10), we write

P(Zβc = 0) ≥ E
[

min
j∈βc

( d∑
k=1

(Θk −Θj)+

)α
1{Θβc=0}

]
= E

[( d∑
k=1

Θk

)α
1{Θβc=0}

]
= P(Θβc = 0) .

(2.3.13)
This can also be seen as a direct consequence of Property P2, see Subsection 2.2.2. This property
also gives

P(Zβ > 0) ≤ P(Θβ > 0) . (2.3.14)

This inequality will be useful in some proofs.
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Our goal is now to compare the probabilities P(Θ ∈ Cβ) and P(Z ∈ Cβ), for β ∈ P∗d . Based on
Proposition 2.3.3, we state a first inequality between these two quantities.

Corollary 2.3.1. We use the same notations as in Proposition 2.3.3. For β ∈ P∗d , if P(Θ ∈ Cβ) > 0,
then P(Z ∈ Cβ) > 0.

Corollary 2.3.1 implies that we do not lose any information on the support of the spectral measure
by studying Z instead of Θ. But it is possible that the distribution of Z puts some mass on a subset
Cβ while the one of Θ does not. Nevertheless, if the overestimation is not too large, Z gives a reduce
numbers of directions (regarding the total number 2d−1) in which extreme events could appear. So
the use of Z provides some trends in the dependence structure of X.

Example 2.3.2. We detail here an example which shows that the converse implication of Corollary
2.3.1 does not hold. We consider a spectral vector Θ in S1

+ with a first component Θ1 uniformly
distributed (and hence Θ2 = 1−Θ1 is also uniformly distributed). On the one hand, the probability
that Θ belongs to an axis is equal to

P(Θ ∈ C{1} = 0) = P(Θ2 = 0) = 0 .

On the other hand, following Lemma 2.2.2, the probability that Z belongs to an axis is equal to

P(Z ∈ C{1}) = P(YΘ1 − YΘ2 ≥ 1) = P(2Θ1 − 1 ≥ 1/Y ) .

If we assume that α = 1 in order to simplify the calculations, then 1/Y is uniformly distributed,
and thus, by independence of Θ and Y , we obtain

P(Z ∈ C{1}) =

∫ 1

0
P(2Θ1 − 1 ≥ u)du =

∫ 1

0
P
(

Θ1 ≥
u+ 1

2

)
du =

∫ 1

0

1− u
2

du =
1

4
.

Example 2.3.2 shows that it is possible to find some β such that P(Z ∈ Cβ) > 0 and P(Θ ∈
Cβ) = 0. In order to have a partial converse result, and similarly to Definition 2.3.1, we introduce
the notion of maximal subset for Z.

Definition 2.3.1 (Maximal subset for Z). Let β ∈ P∗d . We say that a subset Cβ is maximal for Z

if
P(Z ∈ Cβ) > 0 and P(Z ∈ Cβ′) = 0 , for all β′ ) β . (2.3.15)

Next Theorem states that maximal subsets for Θ and Z are equivalent notions.

Theorem 2.3.1. We use the same notations as in Proposition 2.3.3 and fix β ∈ P∗d . Then, Cβ is a
maximal subset for Θ if and only if Cβ is a maximal subset for Z.

Example 2.3.2 shows it may exists β ∈ P∗d such that P(Z ∈ Cβ) > 0 and P(Θ ∈ Cβ) = 0. In this
case, Theorem 2.3.1 states that the subset Cβ is not maximal for Z since it is not maximal for Θ.
Following Remark 2.2.2, we consider a maximal subset γ for Z such that β ⊂ γ. Then, Theorem
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2.3.1 states that P(Θ ∈ Cγ) > 0. This means that even β does not gather itself coordinates on which
extreme values simultaneously occur, there exists a superset of β which actually contains extremes.
Thus, β still gives information on the study of large events.

2.3.4 A discrete model for the spectral measure

We introduce here a known discrete model on Θ and compute the corresponding distribution of Z.

Asymptotic independence and complete dependence We first study two particular cases in
multivariate EVT which have already been studied in Section 1.2.3. The first one is the complete
dependence’s case, which is defined by the relation P(∀i = 1, . . . , d, Θi = 1/d) = 1. Equivalently,
the spectral measure is a Dirac mass at (1/d, . . . , 1/d). In terms of extremes, it means that all
coordinates simultaneously contribute to large events. Note that if u = r(1/d, . . . , 1/d) ∈ Rd+, r ≥ 1,
the projected vector π(u) corresponds to the self-normalization: π(u) = (1/d, . . . , 1/d) = u/|u|.
This implies that in case of complete dependence, Z = Θ = (1/d, . . . , 1/d) a.s.

Another standard case is the asymptotic independence’s one, which appears when Θ only con-
centrates on the axis. It means that P(Θ ∈ t1≤k≤d ek) = 1. Note that this case has already
been partially discussed in Section 2.2. As for the complete dependence’s case, we want to express
asymptotic independence in terms of Z. To this end, we write

P(∃1 ≤ i ≤ d, Zi = 1) = P(∃1 ≤ i ≤ d, ∀j 6= i, Zj = 0)

= P (∃1 ≤ i ≤ d, ∀j 6= i, 1 ≤ Y (Θi −Θj)+)

= P
(
∃1 ≤ i ≤ d, Y −α ≤ min

j 6=i
(Θi −Θj)

α
+

)
= P

(
Y −α ≤ max

1≤i≤d
min
j 6=i

(Θi −Θj)
α
+

)
=

∫ 1

0
P
(
u ≤ max

1≤i≤d
min
j 6=i

(Θi −Θj)
α
+

)
du

= E
[

max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+

]
.

Thus, since max1≤i≤d minj 6=i(Θi −Θj)
α
+ ≤ 1, we have the equivalence

P(∃1 ≤ i ≤ d, Zi = 1) = 1 if and only if P
(

max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+ = 1

)
= 1 .

This last probability can be rewritten as follows:

P
(

max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+ = 1

)
= P

(
∃1 ≤ i ≤ d, min

j 6=i
(Θi −Θj)+ = 1

)
= P

(
∃1 ≤ i ≤ d, Θi = 1

)
.

This proves the equivalence between P(∃1 ≤ i ≤ d, Zi = 1) = 1 and P (∃1 ≤ i ≤ d, Θi = 1) = 1.
Based on this result and Proposition 2.3.1, it is thus possible to test asymptotic independence by
studying π(X/t). This justifies afterwards the choice of the projection π to study the extremal
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dependence structure.

All in all, these two standard cases of multivariate EVT can be studied through the distribution
of Z. We do not lose any information by studying Z instead of Θ in the asymptotically independent
and completely dependent settings.

A discrete model We now extend the previous examples to a general discrete model. If β ∈ P∗d ,
we denote by e(β) the vector with 1 in position i if i ∈ β and 0 otherwise. Note that for all β ∈ P∗d ,
the vector e(β)/#β belongs to the simplex Sd−1

+ .
We consider the following class of discrete distributions on the simplex:∑

β∈P∗d

p(β) δe(β)/#β , (2.3.16)

where (p(β))β is a 2d − 1 vector with non-negative components summing to 1. This is the device
developed in Segers (2012). Note that this class of distributions includes the previous cases, with
respectively p({1, . . . , d}) = 1 for complete dependence, and p({j}) = 1/d, for all j = 1, . . . , d, for
asymptotic independence.

The family of distributions (2.3.16) is stable after multiplying by a positive random variable and
projecting onto the simplex with π. Hence, if Θ has a distribution of type (2.3.16), then Z = Θ a.s.
This shows that (2.3.16) forms an accurate model for the angular vector Z. Indeed, it is stable for
the transformation Θ 7→ Z. Besides, the distributions of this class have sparse supports. Finally,
they put mass on some particular points of the simplex on which extremes values often concentrate
in practice.

2.4 Sparse regular variation

We consider in this section a random vector X in Rd+. In Section 2.3, we assumed that X was
regularly varying. In this case, convergence (2.3.2) holds and allows us to study the properties of
Z = π(YΘ). Our aim is now to establish a converse result. Thus, we do not assume anymore that
X is regularly varying. We only start from convergence (2.3.2) which encourages to introduce the
following definition.

Definition 2.4.1 (Sparse regular variation). A random vector X on Rd+ is sparsely regularly varying
if there exist a random vector Z defined on the simplex Sd−1

+ and a non-degenerate random variable
Y such that

P
((
|X|
t
, π

(
X

t

))
∈ ·
∣∣∣∣ |X| > t

)
w→ P((Y,Z) ∈ ·) , t→∞ . (2.4.1)

In this case, the general theory of regular variation states that there exists α > 0 such that Y
is Pareto(α)-distributed. With this definition in mind, we can rephrase the ideas of the beginning
of Section 2.3, and particularly Equation (2.3.2), in the following way: Regular variation with limit
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(Y,Θ) implies sparse regular variation with limit (Y, π(YΘ)).

From now on, we consider a sparsely regularly varying random vector X. Recall that we defined
the function GZ by GZ(x) = P(Z > x) for x ∈ B(0, 1) ∩ Rd+. However, note that for the moment
we can not write GZ(x) = P(π(YΘ) > x) since the existence of Θ is not guaranteed. Our aim then
is twofold. The first goal is to study the dependence between the radial limit Y and the angular
limit Z in (2.4.1). Secondly, we prove that under some assumptions on GZ the vector X is regularly
varying.

Proposition 2.4.1. Let X be a sparsely regularly varying random vector on Rd+. Then, for all r ≥ 1,

Z | Y > r
d
= π(rZ) . (2.4.2)

As already mentioned in Subsection 2.3.1, we do not have independence between the angular
component Z and the radial one Y . However, the dependence between Z and Y is completely
determined by Equation (2.4.2) and will be helpful in the proof of Theorem 2.4.1.

Our aim is now to prove that, under some conditions, if X is a sparsely regularly varying vector,
then X is regularly varying. Note that if convergence (2.4.1) holds, then |X| is regularly varying.
So we need to focus on the convergence of the angular component, that is, of the self-normalized
extreme X/|X| | |X| > t when t → ∞. This idea is thus to provide a result which characterizes
regular variation for a vector X when |X| is already regularly varying. This is the purpose of next
lemma.

Lemma 2.4.1. Let X be a random vector on Rd+ and α > 0. The following assumptions are
equivalent.

1. X is regularly varying with tail index α.

2. |X| is regularly varying with tail index α and there exists a finite measure l on Sd−1
+ such that

lim
ε→0

lim inf
t→∞

ε−1P
(
|X|
t
∈ (1, 1 + ε],

X

|X|
∈ A

∣∣∣∣ |X| > t

)
= l(A) , (2.4.3)

and
lim
ε→0

lim sup
t→∞

ε−1P
(
|X|
t
∈ (1, 1 + ε],

X

|X|
∈ A

∣∣∣∣ |X| > t

)
= l(A) , (2.4.4)

for all continuity set A ∈ B(Sd−1
+ ) of l.

In this case, l(A) = αP(Θ ∈ A), where Θ is the spectral vector of X.

Remark 2.4.1. The assertion 2 of Lemma 2.4.1 can be weakened by taking A in a family of Borel
sets that generates B(Sd−1

+ ). In what follows, we will consider the family A = {Ax, x ∈ B(0, 1)∩Rd+},
where the Ax are defined in (2.3.6).
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Remark 2.4.2. In Lemma 2.4.1, | · | denotes any norm of Rd, but in what follows we will use this
lemma for the `1-norm.

We now prove that under mild assumptions on GZ, a random vector X which satisfies (2.4.1) is
regularly varying. We denote by λ the Lebesgue measure on the positive unit sphere B(0, 1) ∩ Rd+.
The assumptions on GZ are the following ones:

(A1) The function GZ is differentiable for λ-almost every x ∈ B(0, 1) ∩ Rd+.

(A2) P(Z ∈ ∂Ax) = 0 for λ-almost every x ∈ B(0, 1) ∩ Rd+.

Let us denote by Z(GZ) the set of vectors x in B(0, 1)∩Rd+ which satisfy (A1) and (A2). Then,
the family AZ(GZ) := {Ax,x ∈ Z(GZ)} generates the Borel sets of Sd−1

+ . If there is no confusion,
we will simply write Z for Z(GZ) and AZ for AZ(GZ).

Theorem 2.4.1. Let X be a sparsely regularly varying random vector on Rd+. Assume that GZ(·) =

P(Z > ·) satisfies (A1) and (A2). Then X is regularly varying with spectral vector Θ which satisfies

P(Θ ∈ Ax) = P(Z ∈ Ax) + α−1dGZ(x)(x− 1/d) , (2.4.5)

for all x ∈ Z.

This shows under mild assumptions the equivalence of regular variation and sparse regular vari-
ation. Moreover, the distribution of Z completely characterizes the one of Θ. Equation (2.4.5)
completes the result (2.3.7) obtained in Proposition 2.3.2.

Let us summarize the results we obtained. Proposition 2.3.2 characterizes the distribution of
Z = π(YΘ) when X is regularly varying with spectral vector Θ. Conversely, suppose that X is a
sparsely regularly varying random vector. Then Theorem 2.4.1 states that X is regularly varying
with a spectral vector Θ which satisfies Equation (2.4.5). This ensures that Z = π(YΘ), where Y
is a Pareto(α)-distributed random variable independent of Θ. In other words, we have an almost
complete equivalence between the usual regular variation’s concept and sparse regular variation.

2.5 Numerical results

This section is devoted to a statistical illustration of sparse regular variation. The idea is to highlight
how our approach manages to detect the tail dependence’s sparsity. In the first subsection, we
provide a method in order to approximate the probabilities P(Z ∈ Cβ), β ∈ P∗d , and we introduce
the approach developed by Goix et al. (2017). The second subsection is dedicated to numerical
results. A more general statistical framework will be developed in Chapter 3.

2.5.1 The framework

We consider an i.i.d. sequence of regularly varying random vectors X1, . . . ,Xn with generic dis-
tribution X, and with tail index α and spectral vector Θ ∈ Sd−1

+ . We set Z = π(YΘ), where Y
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follows a Pareto(α) distribution independent of Θ. Our aim is to capture the features β ∈ P∗d in
which the extreme values of X occur. Recall that these directions are characterized by the fact that
P(Θ ∈ Cβ) > 0, and therefore, by Corollary 2.3.1, P(Z ∈ Cβ) > 0. Thanks to Proposition 2.3.1, the
latter probability is defined through the limit

P(Z ∈ Cβ) = lim
t→∞

P(π(X/t) ∈ Cβ | |X| > t) = lim
t→∞

P(π(X/t) ∈ Cβ, |X| > t)

P(|X| > t)
. (2.5.1)

The goal is then to approximate this probability with the sample X1, . . . ,Xn. For t > 0, and β ∈ P∗d ,
we define the quantity

T̂n(t, β) =

∑n
j=1 1{π(Xj/t) ∈ Cβ, |Xj | > t}∑n

j=1 1{|Xj | > t}
, (2.5.2)

which corresponds to the proportion of data Xj whose projected vector π(Xj/t) belongs to Cβ

among the data whose `1-norm is above t. Intuitively, the larger the variable T̂n(t, β), the more
likely the feature β concentrates extreme values.

The Law of Large Numbers ensures that

lim
n→∞

T̂n(t, β) =
P(π(X/t) ∈ Cβ, |X| > t)

P(|X| > t)
, a.s. (2.5.3)

Hence, Equations (2.5.3) and (2.5.1) lead to the following approximation:

T̂n(t, β) ≈
P(π(X/t) ∈ Cβ, |X| > t)

P(|X| > t)
≈ P(Z ∈ Cβ) , (2.5.4)

where the first approximation holds for n large, and the second one for t large. With this approx-
imation, we can classify the subsets Cβ depending on the nullity or not of the associated quantity
T̂n(t, β).

The approach proposed by Goix et al. (2017) In order to detect anomalies among multivariate
extremes, Goix et al. (2017) propose a similar approach by using the `∞-norm. They define the ε-
thickened rectangles by

Rεβ := {x ∈ Rd+, |x|∞ > 1, xj > ε for all j ∈ β, xj ≤ ε for all j ∈ βc} ,

for β ∈ P∗d (see Remark 2.3.1). In order to go back to the `∞ positive unit sphere Sd−1
+,∞, we define

Cεβ,∞ := {x/|x|∞, x ∈ Rεβ} , and Cβ,∞ :=
{
x ∈ Sd+,∞, xi > 0 for i ∈ β, xi = 0 for i /∈ β

}
.

Denoting by Θ∞ the spectral vector with respect to the `∞-norm, the convergence

P(Θ∞ ∈ Cεβ,∞)→ P(Θ∞ ∈ Cβ,∞) , ε→ 0 ,
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proved in Goix et al. (2017) ensures that P(Θ∞ ∈ Cεβ,∞) approximates the quantity P(Θ∞ ∈ Cβ,∞).
Similarly to Equation (2.5.2), we define the quantity

T̂ εn(t, β) =

∑n
j=1 1{Xj/|Xj |∞ ∈ Cεβ,∞, |Xj |∞ > t}∑n

j=1 1{|Xj |∞ > t}
, (2.5.5)

and the Law of Large Numbers ensures that, for ε > 0 and t > 0 fixed,

lim
n→∞

T̂ εn(t, β) =
P(X/|X|∞ ∈ Cεβ,∞, |X|∞ > t)

P(|X|∞ > t)
= P(X/|X|∞ ∈ Cεβ,∞ | |X|∞ > t) , a.s. (2.5.6)

Hence, the estimation of P(Θ∞ ∈ Cβ) is based on the following sequence of approximations:

T̂ εn(t, β) ≈
P(X/|X|∞ ∈ Cεβ,∞, |X|∞ > t)

P(|X|∞ > t)
≈ P(Θ∞ ∈ Cεβ,∞) ≈ P(Θ∞ ∈ Cβ,∞) , (2.5.7)

where the first approximation holds for n, the second one for t large, and the last one for ε close
to zero. All these considerations lead to an algorithm, called DAMEX, introduced in Goix et al.
(2017), Section 4.2.

Remark 2.5.1 (On the choice of the norm). We already mentioned that the spectral vector can
be defined for any norm in Rd. The choice of the `1-norm in this chapter is deeply linked to the
use of the projection π. On the other hand, Goix et al. (2017) choose the `∞-norm. After some
calculations, we observe that both spectral vectors Θ and Θ∞ satisfy the relation

P(Θ ∈ B) =
E[|Θ∞|α1{Θ∞/|Θ∞|∈B}]

E[|Θ∞|α]
,

for all B ∈ Sd−1
+ . In particular,

P(Θ ∈ Cβ) =
E[|Θ∞|α1{Θ∞/|Θ∞|∈Cβ}]

E[|Θ∞|α]
.

Since Θ∞/|Θ∞| ∈ Cβ if and only if Θ∞ ∈ Cβ,∞, we obtain the equivalence

P(Θ ∈ Cβ) > 0 if and only if P(Θ∞ ∈ Cβ,∞) > 0 .

In other words, the choice of the norm has no impact on the directions in which extremes gather.

Remark 2.5.2. At the end of our procedure, we obtain groups of directions β such that T̂n(t, β) > 0.
Since we deal with non-asymptotic data, many T̂n(t, β) have small values while the theoretical
quantities P(Z ∈ Cβ) are null. We follow the idea of Goix et al. (2017), Remark 4, to deal with this
issue. We define a threshold value under which the empirical quantities T̂n(t, β) are set to 0. We use
a threshold of the form p/#B, where B = {β, T̂n(t, β) > 0} and where the hyperparameter p ≥ 0 is
fixed by the user. Of course, it is possible to set p to 0 and then we select all subsets Cβ such that
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T̂n(t, β) > 0. In this case, the number of selected Cβ is still much smaller than the total number
2d − 1. We do not detail more the choice of p and defer this issue to future work.

Taking this hyperparameter p into account, we are now able to introduce the algorithm used to
study the dependence structure of sparsely regularly varying random vectors.

Data: X1, . . . ,Xn ∈ Rd+, t > 0, p ≥ 0

Result: A list C of subsets Cβ
Compute π(Xj/t), j = 1, . . . , n;
Assign to each π(Xj/t) the subsets Cβ it belongs to;
Compute T̂n(t, β);
Set to 0 the T̂n(t, β) below the threshold discussed in Remark 2.5.2;
Define C = {Cβ, T̂n(t, β) > 0}.

Algorithm 2: Extremal dependence structure of sparsely regularly varying random vectors.

2.5.2 Experimental results

We consider two different cases for the numerical results. For each case, we generate datasets of size
n ∈ {104, 5 · 104, 105} and we compute the quantities T̂n(t, β) and T̂ εn(t, β), for β ∈ P∗d . We repeat
this procedure over N = 100 simulations. Note that there are two different types of errors which
could arise. The first one corresponds to the occurrence of a feature β while it should not appear
theoretically. The second one corresponds to the absence of a feature β while it should appear
theoretically. The results correspond then to the average number of errors among the N = 100

simulations. The code can be found at https://github.com/meyernicolas/phd_thesis/blob/

master/chap_2.

The purpose of these experiments is twofold. The first idea is to study Algorithm 2 and to see if it
manages to detect the sparsity structure of the extremal data. The second goal of these simulations
is to highlight some evidence in favor of our method compared to the DAMEX algorithm, which
is based on a hyperparameter ε. The results will show that there exists no natural choice for this
hyperparameter. In other words, it may happen that for a fixed simulation study, there exists a
specific hyperparameter ε0 for which the DAMEX algorithm leads to better results that our approach.
But as soon as we use different simulated data, this specific ε0 is no longer appropriate.

Remark 2.5.3 (Choice of the parameters). It is common in EVT to define a level of exceedances
k = nP(|X > t) and to rather work with k instead of t. For our simulations, we choose k =

√
n,

following Goix et al. (2017), who also suggest choosing ε of order k−1/4, that is, of order n−1/8. This
choice of ε is based on theoretical results (Goix et al. (2017), Theorem 1), but the authors then
advise to rather choose ε = 0.01, which gives better results on their simulations. In order to have
a very large scale of comparison, we use different ε ∈ {0.01, 0.1, 0.5, 1, 5, 10}. Finally, we consider
p = 0.3 which is larger than the value chosen in Goix et al. (2017) but leads to better results for
both methods.

https://github.com/meyernicolas/phd_thesis/blob/master/chap_2
https://github.com/meyernicolas/phd_thesis/blob/master/chap_2
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Asymptotic independence We consider i.i.d. vectors X1, . . . ,Xn ∈ R40 with all marginals
independent and Pareto(1)-distributed. This leads to asymptotic independence, which has already
been discussed in Subsection 2.3.4. Equivalently, P(Θ ∈ Cβ) = 1/d for β such that #β = 1 (and
therefore P(Θ ∈ Cβ) = 0 elsewhere). In other words, the spectral measure concentrates on the axis.
Our aim is thus to recover these 40 directions among the 240 − 1 ≈ 1012 subsets Cβ .

Table 2.1 shows the average number of errors among the 100 experiments. For the Euclidean
projection, the number of errors is quite low in compared to the total number of subsets Cβ , especially
when n increases. As expected, the angular vector Z is helpful to detect asymptotic independence
since it is likely to concentrate on the axis.

For the DAMEX algorithm, a large ε leads theoretically to more mass assigned on the axis. The
asymptotic independent case should therefore gives better results for large ε. It is the case for our
numerical results which become better when ε increases. This algorithm also gives better results
than the one we propose for ε ≥ 5. However, some results seems difficult to interpret. Firstly, for
n = 104, a choice of ε = 0.01 leads to better results than ε = 0.1 or ε = 0.5. Secondly, for ε < 0.5,
the number of errors increases with n.

Euclidean DAMEX DAMEX DAMEX DAMEX DAMEX DAMEX
projection ε = 0.01 ε = 0.1 ε = 0.5 ε = 1 ε = 5 ε = 10

n1 = 104 15.04 41 136.43 64.97 37.39 10.41 6.51
n2 = 5 · 104 1.36 264 196.54 64.33 33.27 1.05 0.98
n3 = 105 0.47 356 221.30 64.81 0.99 0.39 0.53

Table 2.1: Average number of errors in an asymptotically independent case (d = 40).

A dependent case We now consider a dependent case where extremes do not appear on the axis.
In order to include dependence we start from a regularly varying random variable V ∈ R+ with
tail index α > 0. Then, for r ≥ 2, we consider r − 1 independent variables P1, . . . , Pr−1 ∈ R+,
independent of X, such that Pj is regularly varying with tail index α′ > α. Finally, we consider the
vector V ∈ Rr+ whose components are defined as follows:

V1 = V and Vj+1 = ajV + Pj , for j = 1, . . . , r − 1 , (2.5.8)

where a1, . . . , ar−1 are positive constants. In this case, the random vector X is regularly varying
with tail index α and a spectral vector Θ which concentrates on the interior of Sr−1

+ , that is, on the
subset C{1,...,r}.

For our simulations, we consider two vectors V1,V2 ∈ R10
+ defined as in (2.5.8), with α = 1,

α′ = 2, and aj ∈ {0.1, 10}. This choice of aj implies that the vector Vi, i = 1, 2, does not concentrate
too much in the center of the subset C{1,...,10} but rather near the axis. Finally, we define the vector
X ∈ R20

+ as the concatenation of V1 and V2. In this dependent case, the mass of the spectral
measure associated to X concentrates on both subsets C{1,...,10} and C{11,...,20}. Our aim is then to
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recover these two subsets among the 220 ≈ 106 subsets Cβ , based on i.i.d. vectors X1, . . . ,Xn with
the same distribution as X.

Table 2.2 shows the average number of errors among the 100 experiments. As for the previous
case, the Euclidean projection leads to a quite low number of errors compared to the total number
of subsets Cβ . This means that the vector Z mainly concentrates on the desired subsets C{1,...,10}

and C{11,...,20}. Besides, the number of errors slightly decreases when n increases.

Regarding the DAMEX algorithm, it is more difficult to interpret the results. For n = 104, the
choice of ε = 0.01 seems very efficient but the number of errors then drastically increases with n.
Contrary to the previous example, large values of ε do not appear suitable here, even if they provide
more stable results than in the asymptotic independent case. It seems that the best compromise for
the different values of n is ε = 1. Besides, on this type of data, the Euclidean projection provides
better results than the DAMEX algorithm for all different choice of ε we make.

Euclidean DAMEX DAMEX DAMEX DAMEX DAMEX DAMEX
projection ε = 0.01 ε = 0.1 ε = 0.5 ε = 1 ε = 5 ε = 10

n1 = 104 5.02 3.00 22.26 5.27 4.20 8.75 7.52
n2 = 5 · 104 4.48 68.05 9.95 8.32 6.02 8.39 7.10
n3 = 105 4.18 47.42 8.21 7.11 5.81 7.82 6.88

Table 2.2: Average number of errors in a dependent case (d = 20).

These simulations show that there is no easy way to find an optimal value for ε. Large ε provide
good results in the asymptotic independent case, even slightly better that the ones obtained with
the Euclidean projection. On the contrary, in the dependent case we propose, the DAMEX seems
less efficient, and it is not obvious which value of ε should be chosen.

2.6 Conclusion

In this chapter, we introduce the notion of sparsely regularly varying random vectors in order to
tackle the issues that arise with the standard notion of regular variation in a high dimensional
setting. The idea to replace the self-normalized vector X/|X| by the projected one π(X/t) allows us
to better capture the sparsity structure of the tail dependence. Our main result is the equivalence
between sparse regular variation and regular variation under some mild assumptions.

The benefits of this new way of projecting are multiple. The first one is the sparser structure of
the new angular vector Z compared to the one of Θ, which implies that the new vector Z seems more
suitable to study extremes in high dimensions. Besides, contrary to the standard regular variation’s
framework, the sparsity of Z can be directly captured by studying π(X/t), as stated in Proposition
2.3.1. This means that the projection π manages to circumvent to issue of the weak convergence
in the definition of regularly varying random vectors. Finally, the results of Proposition 2.3.2 and
Theorem 2.4.1 state that under some assumptions, there is a bijection between the spectral vector
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Θ and the new angular vector Z.

Practically speaking, the advantages of the projection π are twofold. Firstly, the Euclidean pro-
jection onto the simplex does not introduce any extra parameter. The introduction of ε-thickened
rectangles in Goix et al. (2017) leads to the choice of a suitable ε. The numerical results introduced
in Section 2.5 provide empirical evidence that there is no optimal ε. Secondly, the algorithm which
computes the projection π takes linear time. Hence, the study of extreme events with π can be
done in reasonable time in high dimension. More generally, the numerical results provide some good
results for our approach and encourage to further develop the statistical study of sparsely regularly
varying random vectors.

Based on Theorem 2.4.1, we can now focus on the behavior of the vector Z rather than on the one
of Θ. Relying on the theoretical results established in this chapter, we now propose on estimation
procedure to learn the dependence structure of a regularly varying random vector X. This is the
purpose of Chapter 3 which tackles the estimation of the quantities P(Z ∈ Cβ) and the choice of the
threshold t, or equivalently of the level k.

2.7 Proofs

Proof of Lemma 2.2.1. We use the relation πz(v) = zπ(v/z) to simplify the problem:

∀ 0 < z ≤ z′, ∀v ∈ Rd+, πz(πz′(v)) = πz(v)

⇐⇒ ∀ 0 < z ≤ z′, ∀v ∈ Rd+, zπ(z−1πz′(v)) = zπ(v/z)

⇐⇒ ∀ 0 < z ≤ z′, ∀v ∈ Rd+, π(z′z−1π(v/z′)) = π(v/z)

⇐⇒ ∀ a ≥ 1, ∀u ∈ Rd+, π(aπ(u)) = π(au) .

So we need to prove this last equality. Let a ≥ 1 and u ∈ Rd+. We divide the proof into three steps.
Recall that an expression of ρ is given in (2.2.6).

STEP 1: We prove that ρau ≤ ρu.

Fix j ∈ {1, . . . , d} such that π(au)j > 0. This means that

auj −
1

j

( j∑
r=1

au(r) − 1

)
> 0 .

and thus,

uj −
1

j

j∑
r=1

u(r) +
1

ja
> 0 .
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Since a ≥ 1, we obtain

uj −
1

j

j∑
r=1

u(r) +
1

j
> 0 ,

which means that π(u)j > 0. This proves that ρau ≤ ρu.

STEP 2: We prove that ρaπ(u) = ρau.

We recall that the definition of π(u) is given by π(u)k = (uk−λu) for 1 ≤ k ≤ ρu and π(u)k = 0

for ρu < k ≤ d.
- We first prove that ρau ≤ ρaπ(u). Fix j ∈ {1, . . . , d} such that π(au)j > 0. Then

auj −
1

j

( j∑
r=1

au(r) − 1

)
> 0 .

Since π(au)j > 0, we have j ≤ ρau, and with STEP 1 we obtain j ≤ ρau ≤ ρu. So for all r ≤ j ≤ ρu,
π(u)r = (ur − λu). Thus,

a(π(u)j − λu)− 1

j

( j∑
r=1

a(π(u)(r) − λu)− 1

)
> 0 ,

which gives

aπ(u)j −
1

j

( j∑
r=1

aπ(u)(r) − 1

)
> 0 .

This means that π(aπ(u))j > 0. Hence, ρau ≤ ρaπ(u).

- We now prove that ρaπ(u) ≤ ρau. Fix j ∈ {1, . . . , d} such that π(au)j = 0. Then

auj −
1

j

( j∑
r=1

au(r) − 1

)
≤ 0 .

If j ≤ ρu, then for all r ≤ j, ur = π(u)r + λu, so that

a(π(u)j + λu)− 1

j

( j∑
r=1

a(π(u)(r) + λu)− 1

)
≤ 0 ,

and finally

aπ(u)j −
1

j

( j∑
r=1

aπ(u)(r) − 1

)
≤ 0 ,

which means that π(aπ(u))j = 0.

If j > ρu, then π(u)j = 0, so aπ(u)j = 0, and finally π(aπ(u))j = 0. Hence, ρaπ(u) ≤ ρau.
All in all, we proved that if j ∈ {1, . . . , d}, then π(au)j > 0 if and only if π(aπ(u))j > 0, which

concludes STEP 2.
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STEP 3: We prove that π(au) = π(aπ(u)).

With STEP 2, we know that ρ := ρaπ(u) = ρau. This proves that for j > ρ, π(au)j and π(aπ(u))j

are both null. Moreover, by definition of the projection π, if j ≤ ρ,

π(au)j = auj −
1

ρ

( ρ∑
r=1

au(r) − 1

)
.

Since ρ ≤ ρu (with STEP 1), we use that for all r ≤ ρ, π(u)(r) = u(r) − λu. Thus, we obtain

π(au) = a(π(u)j − λu)− 1

ρ

( ρ∑
r=1

a(π(u)(r) − λu)− 1

)
= auj −

1

ρ

( ρ∑
r=1

au(r) − 1

)
= π(aπ(u))j ,

which concludes the proof.

Proof of Lemma 2.2.2. Let v ∈ Rd+. We sort v in µ such that µ1 ≥ . . . ≥ µd. Firstly, note that
if two coordinates of v are equal, then the corresponding coordinates of π(v) are equal too. Thus,
they are both null or both positive. So the way these two coordinates are ordered in µ does not
matter.

Let us prove the equivalence (2.2.7) For i ∈ βc, let j ∈ {1, . . . , d} such that µj = vi, and let
γc ⊂ {1, . . . , d} be the subset of such j. By definition of ρv, the projected vector π(v) satisfies
π(v)βc = 0 if and only if for all j ∈ γc, j > ρv, which means

µj −
1

j

( j∑
k=1

µk − 1

)
≤ 0 . (2.7.1)

Note that j =
∑d

k=1 1vk≥vi and
∑j

k=1 µk =
∑d

k=1 vk1vk≥vi , so that condition (2.7.1) can be
rephrased as

vi −
1∑d

k=1 1vk≥vi

( d∑
k=1

vk1vk≥vi − 1

)
≤ 0 .

This inequality is equivalent to

1 ≤
d∑

k=1

(vk − vi)+ ,

which proves (2.2.7).

For (2.2.8), set r = |β| ≥ 1 (note that β = ∅ is not possible). Then, the condition π(v) ∈ Cβ
imply that ρv = r. Thus, we obtain

∀i ∈ β, vi = π(v)i +
1

r

(∑
j∈β

vj − 1

)
and ∀i ∈ βc, vi ≤

1

r

(∑
j∈β

vj − 1

)
.
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On the one hand, since π(v)i > 0 for i ∈ β, the first equality is equivalent to

max
i∈β

∑
j∈β

(vj − vi) < 1 .

On the other hand, the second equality is equivalent to

min
i∈βc

∑
j∈β

(vj − vi) ≥ 1 .

Proof of Proposition 2.3.1. We only prove (2.3.3). The proof of (2.3.4) is similar.

Let β ∈ P∗d . Following Lemma 2.2.2, we have the equivalence

π(YΘ) ∈ Cβ if and only if

{
maxi∈β

∑
j∈β(Θj −Θi) < 1/Y ,

mini∈βc
∑

j∈β(Θj −Θi) ≥ 1/Y .

Hence, (2.3.3) is equivalent to

P
(
(|X|/t,X/|X|) ∈ Dβ | |X| > t

)
→ P((Y,Θ) ∈ Dβ) , (2.7.2)

with

Dβ =
{

(r, θ) ∈ (1,∞)× Sd−1
+ , ∀i ∈ β,

d∑
j∈β

(θj − θi) < 1/r, and ∀i ∈ βc,
d∑
j∈β

(θj − θi) ≥ 1/r
}
.

This convergence holds if P((Y,Θ) ∈ ∂Dβ) = 0.

The boundary ∂Dβ of Dβ is included in the union of the subsets

⋃
i∈β

∂
{

(r, θ) ∈ (1,∞)× Sd−1
+ ,

d∑
j∈β

(θj − θi) < 1/r
}
,

and ⋃
i∈βc

∂
{

(r, θ) ∈ (1,∞)× Sd−1
+ ,

d∑
j∈β

(θj − θi) ≥ 1/r
}
,

and for all i = 1, . . . , d, we have the equality

∂
{

(r, θ) ∈ (1,∞)× Sd−1
+ ,

d∑
j∈β

(θj − θi) < 1/r
}

=
{

(r, θ) ∈ (1,∞)× Sd−1
+ ,

d∑
j∈β

(θj − θi) = 1/r
}
,
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and similarly

∂
{

(r, θ) ∈ (1,∞)× Sd−1
+ ,

d∑
j∈β

(θj − θi) ≥ 1/r
}

=
{

(r, θ) ∈ (1,∞)× Sd−1
+ ,

d∑
j∈β

(θj − θi) = 1/r
}
.

This implies that

P((Y,Θ) ∈ ∂Dβ) ≤
∑
i∈β

P
(∑
j∈β

(Θj −Θi) = Y −1

)
+
∑
i∈βc

P
(∑
j∈β

(Θj −Θi) = Y −1

)
,

and all these probabilities are null since Y is a continous random variable independent of Θ. Hence,
we proved that P((Y,Θ) ∈ ∂Dβ) = 0 which implies that convergence (2.7.2) holds and then conver-
gence (2.3.3) holds as well.

Proof of Proposition 2.3.2. Fix x ∈ B(0, 1) ∩ Rd+, with xj 6= 1/d for all j = 1, . . . , d. We use (2.2.9)
and the independence of Θ and Y to write

GZ(x) = P(Z > x) = P(π(YΘ) > x) =

∫ ∞
1

P(yΘ− (y − 1)/d > x) d(−y−α) .

Set J+ = {j, xj > 1/d} and J− = {j, xj < 1/d}. Then, for j ∈ J+, the condition yΘj−(y−1)/d > xj

becomes [(Θj − 1/d)/(xj − 1/d)]+ > 1/y. Similarly, for j ∈ J−, the condition yΘj − (y − 1)/d > xj

becomes [(Θj − 1/d)/(xj − 1/d)]+ < 1/y. So we can rewrite the previous integral as

GZ(x) = P(π(YΘ) > x) =

∫ ∞
1

P(yΘ− (y − 1)/d > x) d(−y−α)

=

∫ ∞
1

P

({
∀j ∈ J+, y

−α <

(
Θj − 1/d

xj − 1/d

)α
+

}⋂{
∀j ∈ J−, y−α >

(
Θj − 1/d

xj − 1/d

)α
+

})
d(−y−α) .

Thus, by the change of variable u = y−α, we obtain

GZ(x) =

∫ 1

0
P

({
∀j ∈ J+, u <

(
Θj − 1/d

xj − 1/d

)α
+

}⋂{
∀j ∈ J−, u >

(
Θj − 1/d

xj − 1/d

)α
+

})
du

=

∫ 1

0
P
(

max
j∈J−

(
Θj − 1/d

xj − 1/d

)α
+

< u < min
j∈J+

(
Θj − 1/d

xj − 1/d

)α
+

)
du

= E

[(
1 ∧ min

j∈J+

(
Θj − 1/d

xj − 1/d

)α
+

−max
j∈J−

(
Θj − 1/d

xj − 1/d

)α
+

)
+

]
.

Proof of Proposition 2.3.3. We fix β ∈ P∗d and use Lemma 2.2.2. The probability that Zβc is null is
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equal to

P(Zβc = 0) = P
(

1 ≤ min
j∈βc

d∑
k=1

(YΘk − YΘj)+

)

= P
(
Y −α ≤ min

j∈βc

( d∑
k=1

(Θk −Θj)+

)α)

=

∫ 1

0
P
(
u ≤ min

j∈βc

( d∑
k=1

(Θk −Θj)+

)α)
du

= E

[
min
j∈βc

( d∑
k=1

(Θk −Θj)+

)α]
,

which proves (2.3.10).

For Equation (2.3.11), we use Lemma 2.2.2, so that the probability that Z is concentrated on
Cβ is equal to

P(Z ∈ Cβ) = P
(

max
j∈β

∑
k∈β

(YΘk − YΘj) < 1, min
j∈βc

∑
k∈β

(YΘk − YΘj) ≥ 1

)

= P
((

max
j∈β

∑
k∈β

(Θk −Θj)+

)α
< Y −α, min

j∈βc

(∑
k∈β

(Θk −Θj)+

)α
≥ Y −α

)

=

∫ 1

0
P
(

max
j∈β

(∑
k∈β

(Θk −Θj)+

)α
< u ≤ min

j∈βc

(∑
k∈β

(Θk −Θj)+

)α)
du

= E

(min
j∈βc

(∑
k∈β

(Θk −Θj)+

)α
−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
+

 .
This concludes the proof of the proposition.

Proof of Corollary 2.3.1. The proof of Corollary 2.3.1 is based on the following lemma, whose result
will also be used in other proofs.

Lemma 2.7.1. Let β ∈ P∗d . Then we have the inequality

P(Θ ∈ Cβ) ≤ P
(

max
j∈β

∑
k∈β

(Θk −Θj)+ < 1
)
. (2.7.3)

Proof of Lemma 2.7.1. While Lemma 2.7.1 is stated and used in this way, we rather prove the
following inequality:

P
(

max
j∈β

∑
k∈β

(Θk −Θj)+ = 1
)
≤ P(Θ /∈ Cβ) .
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The first probability can be rephrased as follows:

P
(

max
j∈β

∑
k∈β

(Θk −Θj)+ = 1
)

= P
(∑
k∈β

(Θk −min
j∈β

Θj) = 1
)

= P
(∑
k∈β

Θk = 1 + #βmin
j∈β

Θj

)
.

But since Θ ∈ Sd−1
+ , the equality

∑
k∈β Θk = 1 + #βminj∈β Θj holds only if there exists k ∈ β such

that Θk = 0. Thus, we obtain the inequality

P
(

max
j∈β

∑
k∈β

(Θk −Θj)+ = 1
)
≤ P(∃k ∈ β ,Θk = 0) ≤ P(Θ /∈ Cβ) ,

which concludes the proof.

We now prove Corollary 2.3.1. We fix β ∈ P∗d and assume that P(Θ ∈ Cβ) > 0. Then, starting
from Equation (2.3.11), we write

P(Z ∈ Cβ) ≥ E

[(
min
j∈βc

(∑
k∈β

(Θk −Θj)+

)α
−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
+

1Θ∈Cβ

]

= E

[((∑
k∈β

Θk

)α
−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
+

1Θ∈Cβ

]

= E

[(
1−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
1Θ∈Cβ

]

= E

[(
1−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
| Θ ∈ Cβ

]
P(Θ ∈ Cβ) .

The expectation is positive by Lemma 2.7.1 and the probability P(Θ ∈ Cβ) is positive by assumption.
This shows that P(Z ∈ Cβ) > 0.

Proof of Theorem 2.3.1. We separatly prove both implications.
We first consider β ∈ P∗d such that Cβ is a maximal subset for Θ:

P(Θ ∈ Cβ) > 0 and P(Θ ∈ Cβ′) = 0, for β′ ) β .

By Corollary 2.3.1, we already know that P(Z ∈ Cβ) > 0. Besides, if β′ ) β, then Equation (2.3.14)
gives

P(Z ∈ Cβ′) ≤ P(Zβ′ > 0) ≤ P(Θβ′ > 0) .

and this last probability equals zero since Cβ is a maximal subset for Θ. This proves that Cβ is a
maximal subset for Z.

We now consider β ∈ P∗d such that Cβ is a maximal subset for Z:

P(Z ∈ Cβ) > 0 and P(Z ∈ Cβ′) = 0, for β′ ) β .
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First note that, for β′ ) β, P(Θ ∈ Cβ′) = 0. If not, Corollary 2.3.1 implies that P(Z ∈ Cβ′) > 0,
which contradicts the maximality of Cβ for Z.

Secondly, Equation (2.3.11) of Proposition 2.3.3 gives

P(Z ∈ Cβ) = E

(min
j∈βc

(∑
k∈β

(Θk −Θj)+

)α
−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
+


= E

(min
j∈βc

(∑
k∈β

(Θk −Θj)+

)α
−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
+

1Θ∈Cβ


+ E

(min
j∈βc

(∑
k∈β

(Θk −Θj)+

)α
−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
+

1Θ/∈Cβ


= (A) + (B) .

(2.7.4)

The first term (A) has already been calculated in the proof of Corollary 2.3.1. It is equal to

(A) = E

1−max
j∈β

(∑
k∈β

(Θk −Θj)+

)α
| Θ ∈ Cβ

P
(
Θ ∈ Cβ

)
.

For the second term (B), note that the assumption Θ /∈ Cβ implies that there exists l ∈ β such that
Θl = 0, or that there exists r ∈ βc such that Θr > 0. We then decompose (B) into two terms:

E

(min
j∈βc

(∑
k∈β

(Θk −Θj)+

)α
−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
+

1Θ/∈Cβ


≤ E

(min
j∈βc

(∑
k∈β

(Θk −Θj)+

)α
−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
+

1∃l∈β,Θl=0


+ E

(min
j∈βc

(∑
k∈β

(Θk −Θj)+

)α
−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α)
+

1∃β′)β,Θ∈Cβ′

 .
The first expectation is equal to

E

(min
j∈βc

(∑
k∈β

(Θk −Θj)+

)α
−
(∑
k∈β

(Θk)+

)α)
+

1∃l∈β,Θl=0

 ,
and is thus zero. The second expectation is smaller than P(∃β′ ) β, Θ ∈ Cβ′) which is zero. Indeed,
if P(∃β′ ) β, Θ ∈ Cβ′) > 0, then by Corollary 2.3.1, we also have P(∃β′ ) β, Z ∈ Cβ′) > 0, which
contradicts the maximality of Cβ for Z. All in all, this proves that (B) = 0.
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Going back to Equation (2.7.4), we have proved that

P(Z ∈ Cβ) = (A) = E
[
1−max

j∈β

(∑
k∈β

(Θk −Θj)+

)α
| Θ ∈ Cβ

]
P(Θ ∈ Cβ) .

By Lemma 2.7.1, we know that the expectation is positive. Hence, the assumption P(Z ∈ Cβ) > 0

implies that P(Θ ∈ Cβ) > 0, which proves that Cβ is a maximal subset of Θ.

Proof of Proposition 2.4.1. Fix r ≥ 1 and A ∈ B(Sd−1
+ ). For t > 0, the following sequence of

equalities holds:

P
(
π(X/t) ∈ A, |X|/t > r | |X| > t

)
= P

(
π(X/t) ∈ A, |X|/t > r

) 1

P(|X| > t)

= P
(
π(X/t) ∈ A | |X|/t > r

)P(|X| > tr)

P(|X| > t)

= P
(
π
(
rX/(tr)

)
∈ A | |X| > tr

)
P(|X| > tr | |X| > t)

= P
(
rπ1/r

(
X

tr

)
∈ A

∣∣∣∣ |X| > tr

)
P(|X| > tr | |X| > t)

= P
(
rπ1/r

(
π

(
X

tr

))
∈ A

∣∣∣∣ |X| > tr

)
P(|X| > tr | |X| > t) ,

where last equality results from Lemma 2.2.1. Now, when t → ∞, assumption (2.4.1) and the
continuity of π1/r and π give

P(Z ∈ A, Y > r) = P
(
rπ1/r (Z) ∈ A

)
P(Y > r) .

Finally, we conclude the proof with Lemma 2.2.1:

P(Z ∈ A | Y > r) = P(π(rZ) ∈ A) .

Proof of Lemma 2.4.1. We first prove that 1 implies 2: assume that X is regularly varying with
index α. Then |X| is regularly varying with the same index. Denote by Θ the spectral vector of X

and consider a random variable Y which follows a Pareto(α) distribution and is independent of Θ.
For A ∈ B(Sd−1

+ ) such that P(Θ ∈ ∂A) = 0, and ε > 0, we have

ε−1 lim
t→∞

P
(
|X|
t
∈ (1, 1 + ε],

X

|X|
∈ A

∣∣∣∣ |X| > t

)
= ε−1P(Y ∈ (1, 1 + ε],Θ ∈ A)

= ε−1P(Y ≤ 1 + ε)P(Θ ∈ A)

= ε−1(1− (1 + ε)−α)P(Θ ∈ A) .

This last quantity converges to αP(Θ ∈ A) when ε → 0, which proves that X satisfies (2.4.3) and



92 SPARSE REGULAR VARIATION

(2.4.4) with l(·) = αP(Θ ∈ ·).
We now prove that 2 implies 1. Fix ε > 0, u > 1, and A ∈ B(Sd−1

+ ) such that l(∂A) = 0. Denote
by l+ε (A) the limsup in (2.4.3) when t → ∞, and by l−ε (A) the liminf in (2.4.4) when t → ∞. For
u ≥ 1, we decompose the interval (u,∞) as follows:

(u,∞) =

∞⊔
k=0

(
u(1 + ε)k, u(1 + ε)k+1

]
.

Then for t > 0,

P
(
|X|
t

> u,
X

|X|
∈ A

∣∣∣∣ |X| > t

)
=
∞∑
k=0

P
(

|X|
tu(1 + ε)k

∈ (1, 1 + ε],
X

|X|
∈ A

∣∣∣∣ |X| > t

)

=

∞∑
k=0

P
(

|X|
tu(1+ε)k

∈ (1, 1 + ε], X
|X| ∈ A

)
P(|X| > t)

= ε

∞∑
k=0

ε−1P
(

|X|
tu(1 + ε)k

∈ (1, 1 + ε],
X

|X|
∈ A

∣∣∣∣ |X|
u(1 + ε)k

> t

) P
(
|X|

u(1+ε)k
> t
)

P(|X| > t)
.

Since |X| is regularly varying with tail index α, the limit of the right part of the sum can be computed
as follows:

P
(
|X|

u(1+ε)k
> t
)

P(|X| > t)
= P

(
|X| > tu(1 + ε)k | |X| > t

)
→
(
u(1 + ε)k

)−α
, t→∞ . (2.7.5)

Besides, we know by (2.4.3) that

lim inf
t→∞

ε−1P
(

|X|
tu(1 + ε)k

∈ (1, 1 + ε],
X

|X|
∈ A

∣∣∣∣ |X|
u(1 + ε)k

> t

)
= l−ε (A) . (2.7.6)

We now gather (2.7.5) and (2.7.6) and use Fatou’s lemma to conclude:

lim inf
t→∞

P
(
|X|
t
> u,

X

|X|
∈ A

∣∣∣∣ |X| > t

)

≥ ε
∞∑
k=0

lim inf
t→∞

ε−1P
(

|X|
tu(1 + ε)k

∈ (1, 1 + ε],
X

|X|
∈ A

∣∣∣∣ |X|
u(1 + ε)k

> t

) P
(
|X|

u(1+ε)k
> t
)

P(|X| > t)

= ε

∞∑
k=0

l−ε (A)
(
u(1 + ε)k

)−α
= u−αl−ε (A)

ε

1− (1 + ε)−α
,

and this last quantity converges to u−αl(A)α−1 when ε→ 0.
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In the same way, we know by (2.4.4) that

lim sup
t→∞

ε−1P
(

|X|
tu(1 + ε)k

∈ (1, 1 + ε],
X

|X|
∈ A

∣∣∣∣ |X|
u(1 + ε)k

> t

)
= l+ε (A) . (2.7.7)

Thus, Equations (2.7.5) and (2.7.7) and Fatou’s lemma allow us to write

lim sup
t→∞

P
(
|X|
t
> u,

X

|X|
∈ A

∣∣∣∣ |X| > t

)

≤ ε
∞∑
k=0

lim sup
t→∞

ε−1P
(

|X|
tu(1 + ε)k

∈ (1, 1 + ε],
X

|X|
∈ A

∣∣∣∣ |X|
u(1 + ε)k

> t

) P
(
|X|

u(1+ε)k
> t
)

P(|X| > t)

= ε
∞∑
k=0

l+ε (A)
(
u(1 + ε)k

)−α
= u−αl+ε (A)

ε

1− (1 + ε)−α
,

and this last quantity converges to u−αl(A)α−1 when ε→ 0.

This proves that

P
(
|X|
t
> u,

X

|X|
∈ A

∣∣∣∣ |X| > t

)
→ u−αl(A)α−1 , t→∞ ,

for all u > 1 and all A ∈ B(Sd−1
+ ) such that l(∂A) = 0. Thus, the random vector X is regularly

varying with tail index α and spectral vector Θ defined by P(Θ ∈ ·) = α−1l(·).

Proof of Theorem 2.4.1. The proof is based on Lemma 2.4.1. Firstly, note that if (2.4.1) holds,
then |X| is regularly varying with tail index α. Hence, the main part of the proof is to show that
convergences (2.4.3) and (2.4.4) hold for all A = Ax, x ∈ Z, where the Ax are defined in (2.3.6).
We divide our proof into two steps.

Before dealing with these two steps, we make a brief remark which will be of constant use. For
ε > 0 and x > 0, we have the following equivalence:

π((1 + ε)Z) > x ⇐⇒ Z >
x + ε/d

1 + ε
. (2.7.8)

This is a consequence of Equation (2.2.9) and the fact that Z belongs to the simplex.

Let us move to the proof. We fix x ∈ Z and ε > 0. The first step consists in proving that

ε−1P
(
|X|
t
∈ (1, 1 + ε], π

(
X

t

)
∈ Ax

∣∣∣∣ |X| > t

)
converges when t→∞, ε→ 0. Following Equation (2.4.1) and assumption (A2), we know that this
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quantity converges to ε−1P(Y ∈ (1, 1 + ε], Z ∈ Ax) when t→∞. Then, Proposition 2.4.1 gives

P(Y ∈ (1, 1 + ε],Z ∈ Ax) = P(Z ∈ Ax)− P(Z ∈ Ax | Y > 1 + ε)P(Y > 1 + ε)

= P(Z ∈ Ax)− P(π((1 + ε)Z) ∈ Ax)(1 + ε)−α

=
[
1− (1 + ε)−α

]
P(Z ∈ Ax)

+ [P(Z ∈ Ax)− P(π((1 + ε)Z) ∈ Ax)] (1 + ε)−α .

(2.7.9)

The first term divided by ε converges to αP(Z ∈ Ax) when ε → 0. We use (2.7.8) to compute the
second term:

P(Z ∈ Ax)− P(π((1 + ε)Z) ∈ Ax) = P(Z > x)− P
(

Z >
x + ε/d

1 + ε

)
= GZ(x)−GZ

(
x +

ε

1 + ε
(1/d− x)

)
.

Since x is a differentiability point of GZ, we obtain

ε−1P(Y ∈ (1, 1 + ε], Z ∈ Ax) = αP(Z ∈ Ax) +
1

1 + ε
dGZ(x)(x− 1/d) + o(1) ,

when ε→ 0. This means that

ε−1P
(
|X|
t
∈ (1, 1 + ε], π

(
X

t

)
∈ Ax

∣∣∣∣ |X| > t

)
converges to αP(Z ∈ Ax) + dGZ(x)(x− 1/d) when t→∞, ε→ 0.

For the second step, we define

(?) := ε−1

[
P
(
|X|
t
∈ (1, 1 + ε],

X

|X|
∈ Ax

∣∣∣∣ |X| > t

)
− P

(
|X|
t
∈ (1, 1 + ε], π

(
X

t

)
∈ Ax

∣∣∣∣ |X| > t

)]
,

and the goal is to prove that limε→0 lim supt→∞(?) = limε→0 lim inft→∞(?) = 0.

We first deal with the lim sup. Assume that |X|/t ∈ (1, 1 + ε]. Then (|X|/t − 1 − ε)/d ≤ 0.
Thus, if xj < Xj/|X|, then xj + (|X|/t− 1− ε)/d < Xj/|X| < Xj/t. This implies that xj − ε/d <
Xj/|X| − (|X|/t − 1)/d. The left member is positive for ε > 0 small enough, so we proved that if
xj < Xj/|X|, then xj − ε/d < π(X/t).

These considerations imply that

(?) ≤ ε−1

[
P
(
|X|
t
∈ (1, 1 + ε], π

(
X

t

)
∈ Ax−ε/d

∣∣ |X| > t
)
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−P
(
|X|
t
∈ (1, 1 + ε], π

(
X

t

)
∈ Ax

∣∣∣∣ |X| > t

)]
,

and thus

lim sup
t→∞

(?) ≤ ε−1[P
(
Y ∈ (1, 1 + ε],Z ∈ Ax−ε/d

)
− P (Y ∈ (1, 1 + ε],Z ∈ Ax)] =: ε−1[P1(ε)− P2(ε)] .

We use Proposition 2.4.1 and Equation (2.7.8) to compute (1) and (2). For (1), we have the following
equalities:

P(Y ∈ (1, 1 + ε],Z ∈ Ax−ε/d) = P(Z ∈ Ax−ε/d)− P(Z ∈ Ax−ε/d | Y > 1 + ε)P(Y > 1 + ε)

= P(Z > x− ε/d)− P(π((1 + ε)Z) > x− ε/d)(1 + ε)−α

= P(Z > x− ε/d)− P(Z > x/(1 + ε))(1 + ε)−α

= GZ(x− ε/d)[1− (1 + ε)−α] + [GZ(x− ε/d)

−GZ(x− εx/(1 + ε))](1 + ε)−α

The first term is equal to G(x)αε+ o(ε) when ε→ 0, whereas the second one is equal to

GZ(x−ε/d)−GZ(x)+GZ(x)−GZ(x−εx/(1+ε)) = dGZ(x)(−ε/d)−dGZ(x)(−εx/(d(1+ε)))+o(ε) ,

when ε → 0. This proves that ε−1P1(ε) converges to αGZ(x) + dGZ(x)(x − 1/d) when ε → 0. For
P2(ε), we refer to (2.7.9) in which we proved that ε−1P2(ε) converges to αGZ(x) + dGZ(x)(x− 1/d)

when ε→ 0. All in all we proved that ε−1[P1(ε)− P2(ε)]→ 0, when ε→ 0.

We similarly proceed for the lim inf. Assume that |X|/t ∈ (1, 1+ε]. Thus, if π(X/t)j > xj(1+ε),
then Xj/t − (|X|/t − 1)/d > xj(1 + ε), and therefore Xj/t > xj(1 + ε). Finally we obtain that
Xj/|X| > xj . So we proved that if π(X/t)j > xj(1 + ε), then Xj/|X| > xj . These considerations
give the following inequality:

(?) ≥ ε−1

[
P
(
|X|
t
∈ (1, 1 + ε), π

(
X

t

)
∈ A(1+ε)x

∣∣ |X| > t
)

−P
(
|X|
t
∈ (1, 1 + ε), π

(
X

t

)
∈ Ax

∣∣∣∣ |X| > t

)]
,

and thus

lim inf
t→∞

(?) ≥ ε−1[P
(
Y ∈ (1, 1 + ε),Z ∈ A(1+ε)x

)
− P (Y ∈ (1, 1 + ε),Z ∈ Ax)] =: ε−1[P3(ε)− P4(ε)] .

We use again Proposition 2.4.1 and Equation (2.7.8) to compute P3(ε):

P(Y ∈ (1, 1 + ε],Z ∈ Ax−ε/d) = P(Z ∈ A(1+ε)x)− P(Z ∈ A(1+ε)x | Y > 1 + ε)P(Y > 1 + ε)

= P(Z > (1 + ε)x)− P(π((1 + ε)Z) > (1 + ε)x)(1 + ε)−α
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= P(Z > (1 + ε)x)− P(Z > x + ε/((1 + ε)d))(1 + ε)−α

= GZ((1 + ε)x)[1− (1 + ε)−α]

+ [GZ((1 + ε)x)−GZ(x + ε/(d(1 + ε)))](1 + ε)−α

= GZ((1 + ε)x)αε+ [dGZ(x)(ε(x− 1/d)/(1 + ε))] + o(ε) ,

when ε→ 0. The first term is equal to GZ(x)αε+ o(ε), when ε→ 0, whereas the second one is equal
to

GZ((1 + ε)x)−GZ(x) +GZ(x)−GZ(x + ε/(d(1 + ε))) = dGZ(x)(ε(x− 1/d)) + o(ε), ε→ 0 .

This proves that P3(ε) converges to αGZ(x)+dGZ(x)(x−1/d) when ε→ 0. Note that P4(ε) = P2(ε),
so that P4(ε) converges to αGZ(x) + dGZ(x)(x − 1/d) when ε → 0. All in all we proved that
ε−1[P3(ε)− P4(ε)]→ 0, when ε→ 0.

Gathering all these results together, we can write

ε−1[P3(ε)− P4(ε)] ≤ lim inf
t→∞

(?) ≤ lim sup
t→∞

(?) ≤ ε−1[P1(ε)− P2(ε)] .

Since ε−1[P1(ε)−P2(ε)] and ε−1[P3(ε)−P4(ε)] converge to 0 as ε→ 0, we proved that limε→0 lim inft→∞(?) =

limε→0 lim supt→∞(?) = 0.

To conclude the proof, we write

ε−1P
(
|X|
t
∈ (1, 1 + ε],

X

|X|
∈ Ax

∣∣∣∣ |X| > t

)
= (?) + ε−1P

(
|X|
t
∈ (1, 1 + ε], π

(
X

t

)
∈ Ax

∣∣∣∣ |X| > t

)
,

and both steps lead to

lim
ε→0

lim inf
t→∞

ε−1P
(
|X|
t
∈ (1, 1 + ε],

X

|X|
∈ Ax

∣∣∣∣ |X| > t

)
= αGZ(x) + dGZ(x)(x− 1/d) ,

and

lim
ε→0

lim sup
t→∞

ε−1P
(
|X|
t
∈ (1, 1 + ε],

X

|X|
∈ Ax

∣∣∣∣ |X| > t

)
= αGZ(x) + dGZ(x)(x− 1/d) .

Since |X| is regularly varying with tail index α, we apply Lemma 2.4.1 to conclude that X is
regularly varying with tail index α and with spectral vector Θ satisfying P(Θ ∈ Ax) = P(Z ∈
Ax) + α−1dGZ(x)(x− 1/d).
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2.8 Appendix

We introduce here the linear-time algorithm given in Duchi et al. (2008). It is based on a random
selection of the coordinates.

Data: A vector v ∈ Rd+ and a scalar z > 0

Result: The projected vector w = π(v)

Initialize U = {1, . . . , d}, s = 0, ρ = 0;
while U 6= ∅ do

Pick k ∈ U at random;
Partition U : G = {j ∈ U, vj ≥ vk} and L = {j ∈ U, vj < vk};
Calculate ∆ρ = |G|, ∆s =

∑
j∈G vj ;

if (s+ ∆s)− (ρ+ ∆ρ)vk < z then
s = s+ ∆s;
ρ = ρ+ ∆ρ;
U ← L;

else
U ← G \ {k};

end

end
Set η = (s− z)/ρ.;
Define w s.t. wi = vi − η.

Algorithm 3: Linear time projection onto the positive sphere Sd−1
+ (z).
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Chapter 3

Tail inference for high-dimensional data

Abstract

In this chapter, we transpose the framework developed in Chapter 2 in a statistical context to study the
dependence structure of extreme events. This approach relies on the Euclidean projection onto the simplex
which exhibits the sparsity of the spectral measure and reduces the dimension of the extremes’ study. Given
a data set, we provide an algorithmic approach to tackle two questions: On which directions do extremes
appear and which threshold is the most accurate the separate the data into an extreme category and a non-
extreme one. Theses issues are addressed with multinomial model selection. Finally, we apply our method
on numerical experiments to illustrate the relevance of our setting.

Keywords— dimension reduction, Euclidean projection onto the simplex, model selection, regular vari-

ation, sparse regular variation, tail inference

Regarding our questions

(Q1) In this chapter, we use the setting developed previously to tackle high-dimensional data. We
mostly focus on the subsets Cβ . The model selection we propose manages to tackle these 2d−1

subsets in a very convenient fashion.

(Q2) The issue of determining on which directions extremes appear is addressed with a multinomial
model. We identify the most relevant features through a model selection approach.

(Q3) The same model selection allows us to identify an optimal level k. This selection is made
with a Kullback-Leibler minimization. From an algorithmic point of view, we use the impact
of the threshold on the sparsity structure of the projected vectors to obtain a efficient algorithm.
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3.1 Introduction

In many applications, identifying the tail structure of the data is useful to evaluate the risk and
predict future large events. Severe events are indeed often a consequence of the simultaneous extreme
behavior of several factors. In financial quantitative risk management, we are willing to detect the
probability that several firms make together huge losses. In the climate field, it is important to
identify areas which can be impacted simultaneously by a severe event (for instance a heavy rainfall,
a heat wave, or a flood). In an oceanographic context, the sea-level process can be explained
by several factors like the tidal level, the mean-sea level, or the surge level (see Tawn (1992)).
Therefore, high sea-levels are often due to the simultaneous occurrence of extreme values among
these components.
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These applications fit into the context of EVT which provides models to study large events and
to assess the tail structure of a given distribution (see e.g. Resnick (1987), de Haan and Ferreira
(2006), Resnick (2007), or Embrechts et al. (2013)). In the multivariate setting, EVT focuses on
the intensity and the dependence structure of large events (see for instance Beirlant et al. (2006),
Chapter 8). From a theoretical point of view, the study of extreme events is closely related to regular
variation.

3.1.1 Regular variation

For a random vector X in Rd+, the purpose of EVT is to assess the tail structure of X. As explained
in Chapter 1, it is customary in this case to assume that X is regularly varying: There exist a
positive sequence (an), an →∞ as n→∞, and a non-null Radon measure µ on Rd+ \ {0} such that

nP
(
a−1
n X ∈ ·

) v→ µ(·) , n→∞ , (3.1.1)

where v→ denotes vague convergence in M+(Rd+ \ {0}), the space of non-null Radon measures on
Rd+ \ {0} (see Section 1.2.2.2). The limit measure µ is called the tail measure and satisfies the
homogeneity property µ(tA) = t−αµ(A) for any set A ⊂ Rd+ \ {0} and any t > 0. The parameter
α > 0 is called the tail index.

It is often more convenient to use a polar representation for µ in order to separately study the
radial part and the angular part of X. We use the device of Beirlant et al. (2006), Chapter 8, in
which regular variation is characterized in terms of polar coordinates (see also Resnick (1986)). A
non-negative random vector X is regularly varying if there exist a parameter α > 0 and a finite
measure S on the positive unit sphere Sd−1

+ such that

P
(
|X| > rt,X/|X| ∈ B | |X| > t

)
→ r−αS(B) , t→∞ , (3.1.2)

for any S-continuity set B of Sd−1
+ and any r > 0 (see also Proposition 1.2.3). Equivalently, it

means that there exist a random vector Θ on Sd−1
+ and a Pareto(α)-distributed random variable Y

independent of Θ such that

P
((
|X|
t
,

X

|X|

)
∈ ·
∣∣∣∣ |X| > t

)
w→ P((Y,Θ) ∈ ·) , t→∞ . (3.1.3)

The random variable Y is the limit of the radial component |X|/t and thus models the intensity of
extreme events. It is characterized by the tail index α. The smaller α is, the larger the extremes could
be. On the other , the vector Θ, called the spectral vector, and its distribution S, the spectral measure,
are associated to the angular component of X and thus describe the behavior in space of large events:
The subspaces of the positive unit sphere on which the spectral vector concentrates correspond to
the directions where large events occur. Therefore, the knowledge of the spectral measure’s support
is a crucial but challenging topic of multivariate EVT, especially in high dimensions.



102 TAIL INFERENCE FOR HIGH-DIMENSIONAL DATA

From a statistical point of view, studying multivariate extremes consists in estimating the param-
eter α and the spectral measure. The former estimation is parametric and has been widely studied,
for instance by Hill (1975), Smith (1987) or Beirlant et al. (1996b). On the contrary, providing help-
ful estimators of the spectral measure is a challenging problem even more in high dimensions. Until
recently, useful representations of the spectral measure have only been introduced in the bivariate
case, see e.g. Einmahl et al. (1993), Einmahl et al. (1997), Einmahl et al. (2001) and Einmahl and
Segers (2009). Parametric approaches have also been introduced to tackle the study of extremes in
moderate dimensions (d ≤ 10), for instance by Coles and Tawn (1991) and Sabourin et al. (2013).

In higher dimensions, it is common that large events only appear on specific directions. In other
words, there are many parts of the unit sphere on which the spectral measure does not place mass. In
this case, we say that this measure (or equivalently, the spectral vector Θ) is sparse. Equivalently,
it means that the probability P(|Θ|0 � d) is close to 11. Thus, identifying the low-dimensional
subspaces on which the spectral measure concentrates leads to dimension reduction. In this context,
Lehtomaa and Resnick (2019) maps the unit sphere to the d− 1 dimensional space [0, 1]d−1 in order
to partition it in equally sized rectangles. The study of the spectral measure’s support is thus done
with grid estimators.

3.1.2 Estimation of the spectral measure

Since the complete support’s estimation is often difficult to capture, a main objective in the study
of the tail dependence is rather to identify the directions on which the spectral measure puts mass.
Different techniques have been recently proposed. A first type of approaches highlights the use of
Principal Component Analysis (PCA) in an extremal setting (Cooley and Thibaud (2019), Sabourin
and Drees (2019)). In high dimensions, several authors recently focus on the directions in the data
that are likely to be extreme together. This clustering approach for multivariate EVT has firstly
been introduced by Chautru (2015) who uses spherical data analysis to capture the dependence
structure of the data. In this context, it is convenient to partition the space {x ∈ Rd+, |x| > 1}
or the positive unit sphere Sd−1

+ in terms of the nullity of the coordinates (see Section 1.4.2). For
β ∈ P∗d , the subspaces Rβ and Cβ are defined as follows:

Rβ =
{
x ∈ Rd+, |x| > 1, xi > 0 for i ∈ β, xi = 0 for i /∈ β

}
. (3.1.4)

and
Cβ =

{
x ∈ Sd+, xi > 0 for i ∈ β, xi = 0 for i /∈ β

}
. (3.1.5)

The subsets Rβ (respectively Cβ) are pairwise disjoint and form a partition of {x ∈ Rd+, |x| > 1}
(respectively Sd−1

+ ):

{x ∈ Rd+, |x| > 1} =
⊔
β∈P∗d

Rβ and Sd−1
+ =

⊔
β∈P∗d

Cβ ,

1| · |0 denotes the `0-norm, that is, the number of non-null coordinates of a vector.



3.1. INTRODUCTION 103

where
⊔

denotes a disjoint union. An illustration of these subsets in dimension 3 are given in Figure
3.1.
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(a) The subspaces Rβ in dimension 3 for the `1-norm.
In red the one-dimensional cones spanned by e1, e2,

and e3. In shaded blue the two-dimensional cones. For
readability purposes, the full subspace

{|x| > 1, ∀i ∈ {1, 2, 3}, xi > 0} is not represented.

(b) The subspaces Cβ in dimension 3 for to the
`1-norm. In red the points e1, e2, and e3. In blue the

lines of the simplex’s edges. The shaded part
correspond to the interior of the simplex.

Figure 3.1: The subspaces Rβ and Cβ in dimension 3 for the `1-norm.

Regarding the regularly varying random vector X, both partitions defined by the subsets Rβ
and Cβ highlight its extremal structure. Indeed, for a fixed β in P∗d , the inequality P(Θ ∈ Cβ) > 0

means that it is likely to observe simultaneously large values in the directions β and small values in
the directions βc. Detecting these features allows one to bring out clusters of coordinates which can
be large together. Hence, the main goal of the spectral measure’s estimation consists in classifying
the 2d − 1 probabilities P(Θ ∈ Cβ) depending on their nullity or not.

With this in mind, several ideas have been developed on this topic. Goix et al. (2017) focus on
the tail measure µ and estimate the mass this measure puts on the subsets Rβ . This estimation is
based on a hyperparameter ε > 0 and brings out a sparse representation of the dependence structure.
An algorithm called DAMEX (for Detecting Anomalies among Multivariate EXtremes) is proposed
and reaches a complexity O(dn log n), where n corresponds to number of data points. Based on this
method, Chiapino and Sabourin (2016) provide another algorithm, (CLEF for CLustering Extremal
Features) in order to gather the features that are likely to be extreme simultaneously. Simpson et al.
(2019) base their method on the concept of hidden regular variation, introduced by Resnick (2002).
They introduce a set of parameters (τβ)β∈P∗d which describe the extremal behavior of the data on
the subsets (Cβ)β∈P∗d . An algorithm of complexity O(dn log n) is also provided.

All these approaches rely on the classical definition of regular variation which does not provide
a natural estimator for the spectral measure. Indeed, assume for instance that a subset Cβ with
β 6= {1, . . . , d} satisfies P(Θ ∈ Cβ) > 0. In this case, Cβ it is not a S-continuity set since P(Θ ∈
∂Cβ) = P(Θ ∈ Cβ) > 0 and then convergence (3.1.3) fails. From an empirical point of view, this
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example can be rephrased in the following way. On the one hand, it is likely that µ puts mass on
some subspaces Rβ , β 6= {1, . . . , d}, which are of zero Lebesgue measure. On the other hand, the
vector X does not concentrate on such subspaces since it models real-world data.

In order to circumvent this issue and to take the potential sparse structure of the spectral measure
into account, we use the ideas developed in Chapter 2. The self-normalization which appears in the
second component of Equation (3.1.3) is replaced by the Euclidean projection onto the simplex,
which has been studied by Duchi et al. (2008), Kyrillidis et al. (2013), or Liu and Ye (2009) among
others. This substitution leads then to a angular vector which differs from the spectral vector Θ.
With this new concept called sparse regular variation, the sparsity structure of extreme events can
be more easily captured.

The purpose of this chapter is to use the theoretical results introduced by Meyer and Winten-
berger (2019) in order to provide a useful inference method of the extremal dependence structure.
These theoretical results lead to natural estimators for sparsely regularly varying random vectors
for which consistency and asymptotic normality are proven. The identification of the subspaces Cβ
on which extremes gather is done through model selection.

3.1.3 Choice of the threshold via model selection

From a non-asymptotic point of view, Equation (3.1.3) becomes an approximation when the threshold
t is "high enough". In a statistical context, if X1, . . . ,Xn are i.i.d. regularly varying random vectors
satisfying Equation (3.1.3), then choosing an optimal threshold is equivalent to choosing a number
k of data which will be considered to be extreme. Of course, the less data you keep the more you are
in an extreme context. On the other hand, it is still needed to keep a substantial number of data to
correctly learn their structure. This balanced choice is a major problem in EVT and no theoretical
result has been obtained yet in a multivariate setting.

Several authors point out that the choice of an appropriate threshold above which Equation
(3.1.3) is accurate is a challenging task in practice (see for instance Rootzén and Tajvidi (2006)).
This choice has been tackled by Abdous and Ghoudi (2005) who propose an automatic selection
technique in the bivariate case which is based on a double kernel technique (see Devroye (1989)). A
more abundant literature deals with marginals threshold selection (see Caeiro and Gomes (2015) for
a review). In a multivariate framework, threshold selection for dependence models has been studied
by Lee et al. (2015) who apply Bayesian selection, and by Kiriliouk et al. (2019) who use stability
properties of the multivariate Pareto distribution.

A general idea is to use model selection (see Section 1.5) to highlight which threshold provides
the better estimation (Massart (1989)). For practical reasons, it is often more convenient to focus
on the number of exceedances rather on the threshold. There, the selection consists in choosing
the appropriate number of data which are considered to be extreme. In this chapter, we provide
a selection procedure based on Akaike Information Criterion (AIC) (Akaike (1973)). The AIC
procedure is based on a the minimization of a penalized maximum likelihood and holds for a constant
sample size. To this end, this method has to be adapted in order to use it in a extreme setting. It
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is indeed necessary to include the non-extreme values in the models and to separate them into an
"extreme" group and a "non-extreme" one. This separation into two groups is actually based on a
different choice of the level k. The idea is then to apply an AIC criterion which highlights the k for
which the separation is optimal. This method does not provided a generic choice of k for all data
sets but suggests an ad hoc selection based on a penalized maximum likelihood minimization.

3.1.4 Outline

The structure of this chapter is as follows. The theoretical background used in this chapter is
introduced in Section 3.2. We deal with the notions of regular variation and sparse regular variation
and detail how the new projection affects the convergence (3.1.3). We also discuss some convergence
results and explain why this approach is useful to capture the sparse structure of large events. In
Section 3.3, we apply our theoretical results on a sample X1, . . . ,Xn in order to introduce convenient
estimators for the estimation of the proportion of extreme values in a given subspace A of the positive
unit sphere. Consistency and asymptotic normality are proven at a univariate level. In Section 3.4,
we restrict the study to the Cβ and we extend the convergence results at a multivariate level. Section
3.5 is devoted to the selection of the more significant subspaces Cβ and to the choice of an optimal
level k. Finally, Section 3.6 deals with some simulations which provide numerical evidence of our
theoretical findings.

3.2 Sparse regular variation

3.2.1 Regular variation and spectral measure

We consider a regularly varying random vector X ∈ Rd+:

nP
(
a−1
n X ∈ ·

) v→ µ(·) , n→∞ , (3.2.1)

where µ is a non-null Radon measure on Rd+ \ {0}.

Remark 3.2.1. As discussed in Resnick (2007), convergence (3.1.1) may be seen as standard regular
variation in contrast with the nonstandard one: There exists a non-negative Radon measure µ̃ on
Rd+ \ {0} such that

nP ((Xi/an,i)1≤i≤d ∈ ·)
v→ µ̃(·) , n→∞ ,

where the sequences (an,i)n are satisfying nP(Xi > an,i) → 1 as n → ∞. Actually the standard
regular variation (3.1.1) is more general since it allows the tail measure to be sparse. In our context,
a measure is said to be sparse if it places mass on some lower-dimensional subspaces of Rd+. On
the other hand, in the non-standard case the condition satisfied by the (an,i) implies that µ̃({x ∈
Rd+, xi > 1}) = 1 for all i = 1, . . . , d. This means that the measure µ̃ concentrates in all directions.
There, the study of extreme values begins with a modification of the marginals, called rank transform,
which gives the same distribution to all components (see Resnick (1987), Proposition 5.10). If Fi



106 TAIL INFERENCE FOR HIGH-DIMENSIONAL DATA

denotes the distribution of the marginal Xi, then a natural transformation consists in considering
the vector (1/(1− Fi(Xi)))1≤i≤d whose marginals are Pareto(1)-distributed. In this chapter, we do
not consider any transformation of the marginals and we only focus on standard regular variation
defined by (3.1.1). This means that we assume that the tail measure µ is likely to be sparse.

Following Proposition 1.2.3, the convergence in Equation (3.2.1) is equivalent to the existence
of a random vector Θ, the spectral vector, on Sd−1

+ and a Pareto(α)-distributed random variable Y
independent of Θ such that

P
((
|X|
t
,

X

|X|

)
∈ ·
∣∣∣∣ |X| > t

)
w→ P((Y,Θ) ∈ ·) , t→∞ . (3.2.2)

According to Remark 3.2.1, it is likely that the tail measure has a sparse structure, i.e. that
it places mass on low-dimensional subspaces. Regarding the spectral vector Θ defined in Equation
(3.2.2), it means that it is likely that only few components of this vector are non-null. To this end,
we focus on the behavior of Θ on the subsets Cβ defined in (3.1.5). The advantage of these subsets
is that they are interpretable in terms of extreme dependence while they reduce the dimension. The
main goal is then to identify the subspaces on which the distribution of Θ places mass, i.e. the ones
which satisfy P(Θ ∈ Cβ) > 0. To this end, we define the set

S(Θ) = {β ∈ P∗d , P(Θ ∈ Cβ) > 0} . (3.2.3)

Following the ideas of Section 2.2.1, the estimation of the probabilities P(Θ ∈ Cβ) can not be
easily addressed based on the self-normalized vector X/|X|. Indeed, as soon as the marginals of
X are non-degenerate, the probabilities P(X/|X| ∈ Cβ) are equal to zero for all β 6= {1, . . . , d}.
Since the standard regular variation framework is too restrictive to infer the support of the spectral
measure, the idea is to introduce sparsity into the vector X. We address this issue with the ideas
introduced in Chapter 2 in which the self-normalized vector X/|X| is replaced by π(X/t), where
π denotes the Euclidean projection onto the simplex. This leads to the notion of sparse regular
variation. The purpose of this section is to summarize the theoretical results obtained in Chapter 2
in order to use them in a statistical setting.

From now on and in all this chapter, | · | denotes `1-norm and Sd−1
+ the simplex:

Sd−1
+ = {x ∈ Rd+, x1 + . . .+ xd = 1} .

More generally, we write Sd−1
+ (z) = {x ∈ Rd+, x1 + . . .+ xd = z} for z > 0.

3.2.2 The Euclidean projection onto the simplex

The useful tools regarding the Euclidean projection onto the simplex has been introduced in Section
2.2.2. Recall that for z > 0, the Euclidean projection πz onto the positive sphere Sd−1

+ (z) is defined
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with the function
πz : Rd+ → Sd−1

+ (z)

v 7→ w = (v − λv,z)+ ,

where λv,z ∈ R is the only constant satisfying the relation
∑

1≤i≤d(vi − λv,z)+ = z. Algorithm 3
provides a way to compute this projection in an expected time complexity of O(d). This allows to
deal with high-dimensional data without any complexity constraints.

If z = 1 we shortly denote π for π1. The projection satisfies the relation

πz(v) = zπ(v/z) , (3.2.4)

for all v ∈ Rd+ and z > 0. This is why we mainly focus on the projection π onto the simplex Sd−1
+ .

Equation (3.2.4) will be useful regarding extreme values. Indeed, the parameter z will play the role
of the threshold and an optimal choice of z is addressed in Section 3.5 (see also Remark 3.2.2).

An illustration of π in the bivariate case is given in Figure 3.2. It highlights the fundamental
difference between π and the self-normalization on the subspaces Cβ . For the latter, the subspaces
{|x| > 1, x/|x| ∈ Cβ} = Rβ are of zero Lebesgue measure, as soon as β 6= {1, . . . , d}. On the
contrary, this is not true for the subspaces {|x| > 1, π(x) ∈ Cβ}. For instance in dimension 2, the
subspaces of {x ∈ Rd+, |x| > 1} in which the vectors are projected on the axis e1 or e2 correspond
to the purple shaded areas of Figure 3.2b. This means that the issue that arises with the weak
convergence vanishes with the projection π.

O e1

e2

1

1

u

π(u)

v

π(v)

w

π(w)

O e1

e2

1

1

(a) Three vectors and their image by π. The dotted lines
partitions the subspaces depending on the localization of

the projected vectors: e1, e2, or the interior of the
simplex.

(b) The preimages of the subcones Cβ by π. In purple
π−1(C{1}) and π−1(C{12}), and in blue π−1(C{1,2}).

Figure 3.2: Euclidean projection onto the simplex S1
+.

Some results on the projection We list here some properties of the projection πz that have
been established in Chapter 2. All of them will be useful in the statistical setting developed in the
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following sections.

P1. The projection preserves the order of the coordinates: If vσ(1) ≥ . . . ≥ vσ(d) for a permutation
σ, then π(v)σ(1) ≥ . . . ≥ π(v)σ(d) for the same permutation.

P2. If π(v)j > 0, then vj > 0. Equivalently, vj = 0 implies π(v)j = 0.

P3. The projection π is continuous, as every projection on a convex, closed set in a Hilbert space.

P4. For v ∈ Rd+, we have the following equivalence:

π(v) ∈ Cβ if and only if

{
maxi∈β

∑
j∈β(vj − vi) < 1 ,

mini∈βc
∑

j∈β(vj − vi) ≥ 1 .
(3.2.5)

Remark 3.2.2 (Choice of the threshold). Another main aspect of the projection π that will be
used in Section 3.5 is the choice of the threshold z. This choice is indeed closely linked to the sparse
structure of extreme values. For a vector v ∈ Rd+ with `1-norm |v|, the number of null coordinates
of the projected vector πz(v) strongly depends on the choice of z. If z is close to |v|, then πz(v) has
almost only non-null coordinates (as soon as v itself as non-null coordinates). But if z � |v|, then
πz(v) tends to be sparse. The impact of the threshold z on the sparsity of the projected vectors is
illustrated in Figure 3.3. From a statistical point of view, we consider a sample of n i.i.d. sparsely
regularly varying random vectors. In order to focus on extreme values we have to select only the
vectors with the largest norms, that is, vectors whose norm is above a certain threshold. For a
large threshold z, only extreme data are selected but many vectors are close to this threshold. This
implies that these vectors are projected on subsets Cβ with large β’s which means that they do not
tend to be very sparse. On the other hand, if we select a low threshold, then we move away from
the extreme regime. In this case, the largest vectors are projected on subsets Cβ with small β’s, i.e.
they are very sparse. Hence, we have to make a balanced choice in order to keep the sparse structure
of the data while staying in the extreme regime. This choice will be done based on a model selection
discussed in Section 3.5.

3.2.3 Sparse regular variation

The substitution of the self-normalized X/|X| by π(X/t) is at the core of Chapter 2. Recall that
a random vector X on Rd+ is sparsely regularly varying if there exist a random vector Z defined on
the simplex Sd−1

+ and a non-degenerate random variable Y such that

P
((
|X|
t
, π

(
X

t

))
∈ ·
∣∣∣∣ |X| > t

)
w→ P((Y,Z) ∈ ·) , t→∞ . (3.2.6)

In this case, there exists α > 0 such that the random variable Y is Pareto(α)-distributed. The
limit vector Z must be seen as the angular limit obtained after replacing the self-normalization by π.
By continuity of π, standard regular variation with tail index α and spectral vector Θ implies sparse
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O e1

e2

1

1

2

2

u

π1(u)

π2(u)

Figure 3.3: Consequence of the choice of the threshold on the sparsity. The image of the vector u is
π1(u) = (0, 1) with the threshold z = 1 while it is π2(u) > 0 with the threshold z = 2. The sparsity
increases when the threshold decreases.

regular variation with tail index α and angular limit Z = π(YΘ), where Y is a Pareto(α)-distributed
random variable independent of Θ. We have proved in Chapter 2 that under mild assumptions the
converse implication holds (see Theorem 2.4.1).

Regarding the subsets Cβ , some useful properties for the limit vector Z which are not satisfied
by the vector Θ have been established. We summarize these main results are gathered in the next
proposition. The proof can be found in Section 2.3.

Proposition 3.2.1. Let X be a regularly varying random vector of Rd+ with spectral vector Θ and
tail index α > 0. Set Z = π(YΘ), where Y denotes a Pareto(α) random variable independent of Θ.

1. If A is a Borel subset of Sd−1
+ satisfying P(YΘ ∈ ∂π−1(A)) = 0, then

P(π(X/t) ∈ A | |X| > t)→ P(Z ∈ A), t→∞ . (3.2.7)

In particular, for β ∈ P∗d , the following convergence holds:

P(π(X/t) ∈ Cβ | |X| > t)→ P(Z ∈ Cβ), t→∞ . (3.2.8)

2. For β ∈ P∗d , if P(Θ ∈ Cβ) > 0, then P(Z ∈ Cβ) > 0.

3. Recall that a subset Cβ is maximal for Z if

P(Z ∈ Cβ) > 0 and P(Z ∈ Cβ′) = 0, for all β′ ) β ,

see Definition 2.3.1. For β ∈ P∗d , the subset Cβ is maximal for Θ if and only if it is maximal
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for Z.

Remark 3.2.3. Note that the first convergence of Proposition 3.2.1 is a general result than the one
stated in Chapter 2 (in which we only deals with the subsets Cβ and another type of subsets) but
the generalization is straightforward.

From theoretical results... Let us briefly discuss these results. In order to capture the sparse
tail dependence structure of extreme events, we consider the projected vector π(X/t) instead of
X/|X|. Equation (2.3.3) ensures that the angular component π(X/t) approximates well the angular
vector Z on the subspaces Cβ . Of course, the behavior of Z on Cβ has to be related to the one of Θ

on these same subsets. This issue is addressed by the last two results which ensures that

1. the distribution of Z puts mass on Cβ if the distribution of Θ does,

2. the notion of maximal subsets coincide for Θ and Z.

Therefore, assessing the tail dependence of a regularly varying vector X ∈ Rd+ can be done through
the study of the behavior of the unit vector π(X/t) | |X| > t on the subsets Cβ which approximates
well the quantity P(Z ∈ Cβ).

...to a statistical approach Our goal is to infer the support of the distribution of Z with the
estimation of the probabilities P(Z ∈ Cβ), for β ∈ P∗d . Let us denote by p(β) these quantities. We
are willing to decide which of these probabilities are positive. Similarly to the set S(Θ) defined in
(3.2.3), we define the set S(Z) ⊂ P∗d as follows:

S(Z) = {β ∈ P∗d , P(Z ∈ Cβ) > 0} = {β ∈ P∗d , p(β) > 0} , (3.2.9)

and we denote by s∗ its cardinality. In other words, S(Z) gathers all features β on which the angular
vector Z places mass. The main goal of this chapter is to build a statistical approach to decide which
β belong to S(Z). This method first relies on asymptotic results obtained for estimators of p(β).
Then, the idea it to used model selection to identify not only the most relevant features β but also
an optimal threshold for which Equation (3.2.8) approximately holds.

3.3 Asymptotic results

3.3.1 Statistical framework

From now on we consider a sequence of i.i.d. regularly varying random vectors X,X1,X2, . . . with
tail index α and spectral vector Θ. We also consider a Pareto(α)-distributed random variable Y
independent of Θ and we set Z = π(YΘ). With these notations, we have the following weak
convergence:

P (π(X/t) ∈ · | |X| > t)
w→ P(Z ∈ ·) , t→∞ . (3.3.1)
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Our aim is to infer the behavior of the angular vector Z with the sample (Xn)n∈N. To this end we
focus on the probabilities p(β) = P(Z ∈ Cβ) for β ∈ P∗d since they emphasize the extremal joint
behavior of the components of X (see Subsection 3.1.2). Our aim is to classify which ones belong to
S(Z) and which ones do not.

Classical approach for extremes The classical assumption to provide a statistical approach in
EVT is to consider a positive sequence (un)n∈N, un →∞, which plays the role of the threshold t in
Equation (3.3.1) (see Beirlant et al. (2006), Section 9.4.1). This means that for n ∈ N, the quantity
un must be seen as the threshold above which the data X1, . . . ,Xn are extreme. It is customary in
EVT to define a level k = kn = nP(|X| > un) and to assume that kn →∞ when n→∞. Note that
the assumption un → ∞ implies that kn/n = P(|X| > un) → 0. So kn tends to infinity at a slower
rate than n. A natural unbiased estimator for kn is k̂ = k̂n =

∑n
j=1 1|Xj |>un which corresponds to

the number of exceedances above the threshold un i.e. the number of extreme values. Thus, the
assumption kn → ∞ means that we focus on more and more extreme observations as the sample
size increases. The estimator k̂n satisfies the following convergence properties:

k̂n/kn → 1 a.s. and
√
kn

(
k̂n/kn − 1

)
d→ N , n→∞ , (3.3.2)

where N is a standard normal random variable. Another similar approach is to define a level k
which corresponds to the number of exceedances, and to assume that k → ∞ and k/n → 0, when
n → ∞. In this case, we consider un = |X|(k), which corresponds to the k-th largest vector with
respect to the `1-norm.

In order to identify the set S(Z) defined in (3.2.9), we need to provide suitable estimators for
the quantities p(β) = P(Z ∈ Cβ). Following Equation (3.2.8), we know that the aforementioned
probabilities appear as the limits of the pre-asymptotic quantities P(π(X/un) ∈ Cβ | |X| > un).
The key issue is then to decide based on the sample X1, . . . ,Xn whether p(β) is positive or null.

We adopt here a couple of notations which will be of constant use in what follows. For a Borel
subset A of Sd−1

+ , we set

p(A) = P(Z ∈ A) ,

pn(A) = P(π(X/un) ∈ A | |X| > un) ,

Tn(A) =

n∑
j=1

1{π(Xj/un) ∈ A, |Xj | > un} .

The random variable Tn(A) corresponds to the data which are projected in the subset A among
the extreme values.For sake of simplicity we keep our previous notations regarding Cβ and write
p(β) = p(Cβ) and similarly pn(β) = pn(Cβ) and Tn(β) = Tn(Cβ). The expectation of Tn(A) is
equal to E

[
Tn(A)

]
= knpn(A). Besides, the first point of Proposition 3.2.1 implies that, under a

regularity assumption on A, the probability pn(A) converges to p(A). This encourages to estimate
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the probability p(A) through a classical bias-variance decomposition:

Tn(A)

kn
− p(A) =

[
Tn(A)

kn
− pn(A)

]
+
[
pn(A)− p(A)

]
. (3.3.3)

The first term is addressed in the following sections. For the second one, Equation (3.2.7) ensures
that it vanishes at infinity. However, it is common to assume a stronger condition like

√
kn(pn(A)−

p(A))→ 0 as n→∞. This will be discussed more in detail in what follows.

Estimation of S(Z) Going back to the subsets Cβ , the decomposition in Equation (3.3.3) high-
lights the fact that the study of p(β) will be conducted through the analysis of the pre-asymptotic
probabilities pn(β). In particular, we would like to define a similar set as S(Z) but for pn(β). In
order to avoid that such a set depends on n, we replace the natural condition pn(β) > 0 for all n ≥ 1

by the stronger one knpn(β)→∞. This leads to the following subset of features:

Rk(Z) = {β ∈ P∗d , knpn(β)→∞ when n→∞} . (3.3.4)

We denote by r∗ the cardinality of Rk(Z). This definition implies two straightforward consequences.
The first one is that for all feature β ∈ Rk(Z), the probability pn(β) is positive for n large enough.
Second, we have the following inclusion: S(Z) ⊂ Rk(Z). In particular, the cardinalities of these sets
satisfy the inequality s∗ ≤ r∗.

Outline of the statistical study The rest of this section is devoted to asymptotic results for
the estimator Tn(A) under some assumptions on the Borel set A ⊂ Sd−1

+ . A law of large numbers
ensures the convergence of Tn(A)/kn to p(A) as n increases (Proposition 3.3.1). Then a central
limit theorem is established in order to exhibit a limit distribution for the previous estimators when
p(A) /∈ {0, 1} (Theorem 3.3.1). This latter convergence holds under an assumption of convergence
of the bias pn(A)− p(A) and brings out a rate of convergence of order

√
kn. Regarding the features

β, the purpose of Section 3.4 is then to extend these results at a multivariate level by considering
all subsets Cβ simultaneously.

3.3.2 A univariate approach

We start our statistical study with a proposition which establishes the consistency of the estimator
Tn(A) for a Borel subset A ⊂ Sd−1

+ . This result is proved for both pre-asymptotic probability pn(A)

and asymptotic one p(A). For this latter, a regularity assumption on the Borel set A is needed.

Proposition 3.3.1. We consider a sequence of i.i.d. regularly varying random vectors X,X1,X2, . . .

with tail index α and spectral vector Θ, a Pareto(α)-distributed random variable Y independent of Θ

and we set Z = π(YΘ). We consider a threshold un →∞ and assume that kn = nP(|X| > un)→∞.
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1. For all Borel set A ⊂ Sd−1
+ , the following convergence in probability holds:

Tn(A)

kn
− pn(A)→ 0 , n→∞ . (3.3.5)

2. For all Borel set A ⊂ Sd−1
+ such that P(YΘ ∈ ∂π−1(A)) = 0 the following convergence in

probability holds:
Tn(A)

kn
→ p(A) , n→∞ . (3.3.6)

In particular, the convergence in Equation (3.3.6) holds for the subsets A = Cβ and ensures that
it is possible to estimate p(β) with Tn(β)/kn. If p(β) = 0, that is, if Z does not place mass on
the subset Cβ , then Tn(β)/kn becomes smaller and smaller as n increases. Actually, as soon as the
dimension d is large, a lot of Tn(β)’s are even equal to 0 since the level kn is far below the number
of subsets 2d − 1.

Remark 3.3.1. Under the assumption that knpn(A)→∞, we can extend the convergence in (3.3.5)
to the following convergence in probability

Tn(A)

knpn(A)
→ 1 , n→∞ .

In particular, this convergence holds for all Cβ such that β ∈ Rk(Z).

We now establish asymptotic normality for Tn(A).

Theorem 3.3.1. We consider a sequence of i.i.d. regularly varying random vectors X,X1,X2, . . .

with tail index α and spectral vector Θ, a Pareto(α)-distributed random variable Y independent of Θ

and we set Z = π(YΘ). We consider a threshold un →∞ and assume that kn = nP(|X| > un)→∞.
Finally, we fix a Borel set A ∈ Sd−1

+ .

1. If knpn(A)→∞, then

√
kn
Tn(A)/kn − pn(A)√

pn(A)

d→ N (0, 1) , n→∞ . (3.3.7)

2. If P(YΘ ∈ ∂π−1(A)) = 0 and p(A) > 0, then

√
kn
Tn(A)/kn − pn(A)√

p(A)

d→ N (0, 1) , n→∞ . (3.3.8)

3. if P(YΘ ∈ ∂π−1(A)) = 0 and p(A) > 0, and if we assume that√
kn(pn(A)− p(A))→ 0 , n→∞ , (3.3.9)
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then √
kn
Tn(A)/kn − p(A)√

p(A)

d→ N (0, 1) , n→∞ . (3.3.10)

Theorem 3.3.1 ensures that Tn(A)/kn is asymptotically normal as soon as knpn(A) → ∞. This
assumption implies that pn(A) is positive for n large enough. It is for instance true as soon as
p(A) > 0. From convergence (3.3.7) to convergence (3.3.8), the denominator

√
pn(A) has been

replaced by
√
p(A). This requires that pn(A)→ p(A) > 0 which justifies the regularity assumption.

Regarding the subsets Cβ , the convergences (3.3.8) and (3.3.10) only hold for the features β such
that p(β) > 0, that is, for β ∈ S(Z). On the contrary, the convergence (3.3.7) holds for the features
β such that knpn(β)→∞, that is, for β ∈ Rk(Z).

The results obtained in Proposition 3.3.1 and in Theorem 3.3.1 highlight the asymptotic behavior
of Tn(A) when A ⊂ Sd−1

+ is a fixed Borel set. Regarding the subsets Cβ , these results allow the
features β to be studied individually. The next step is to establish results which address the question
of the joint estimation of the probabilities p(β).

Remark 3.3.2. If we consider r features β1, . . . , βr and if we assume that knpn(Cβj ) → ∞ for all
j = 1, . . . , r, then we obtaint that knpn(∪jCβj ) → ∞. Thus Theorem 3.3.1 yields to the following
convergence √

kn
Tn(∪jCβj )/kn − pn(∪jCβj )√

pn(∪jCβj )
d→ N (0, 1) , n→∞ ,

which can be rephrased as follows

√
kn

∑r
j=1 Tn(Cβj )/kn −

∑r
j=1 pn(Cβj )√∑r

j=1 pn(Cβj )

d→ N (0, 1) , n→∞ ,

This convergence will be useful in Section 3.5.

3.4 General results at a multivariate level

We move on to the multivariate setting. There, we only focus on the subsets A = Cβ , β ∈ P∗d , for
which we study the behavior of X and Z. Our main goal is identify the set of features S(Z) defined
in (3.2.9), i.e. to distinguish the positive probabilities p(β) from the null ones. In a nutshell, the
idea is to define a cutoff on the Tn(β) to identify the features β which belong to S(Z). To this end,
we consider the set

Ŝn(Z) =
{
β ∈ P∗d , Tn(β) > 0

}
, (3.4.1)

and denote by ŝn its cardinality.
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3.4.1 Estimation of the set S(Z)

Some properties of the empirical set Ŝn(Z) are developed here. First, for all β ∈ S(Z), pn(β) →
p(β) > 0 when n→∞, which implies that pn(β) is positive for n large enough. The corresponding
result for Tn(β) is a consequence of the following lemma.

Lemma 3.4.1. For β ∈ P∗d , we have the following equivalent

log(P(Tn(β) = 0)) ∼ −knpn(β) , n→∞ .

If β ∈ Rk(Z), then −knpn(β)→ −∞ and thus Lemma 3.4.1 implies that P(Tn(β) = 0)→ 0 when
n → ∞. This proves that for all β ∈ Rk(Z) the observations Tn(β) are positive with probability
converging to 1. In particular, this remark is true for all β ∈ S(Z). In this case, it means that if the
vector Z places some mass in the direction β, then at least one extreme observation appears in this
direction.

A consequence of Lemma 3.4.1 is that

P
(
Rk(Z) ⊂ Ŝn(Z)

)
= 1− P

(
∃β ∈ Rk(Z), β /∈ Ŝn(Z)

)
≥ 1−

∑
β∈Rk(Z)

P(Tn(β) = 0)→ 1 ,

when n→∞. Consequently, since S(Z) ⊂ Rk(Z), we also have the following convergence

P
(
S(Z) ⊂ Ŝn(Z)

)
→ 1 , n→∞ .

It is not so easy to obtain the converse inclusion between Rk(Z) and Ŝn(Z). However, if β /∈ S(Z),
then p(β) = 0. In this case, Lemma 3.4.1 implies that P(Tn(β) = 0)→ 1 if and only if knpn(β)→ 0.
If this latter convergence holds for all β ∈ S(Z)c, then we obtain that

P
(
S(Z)c ⊂ Ŝn(Z)c

)
= 1− P

(
∃β ∈ S(Z)c, β ∈ Ŝn(Z)

)
≥ 1−

∑
β∈S(Z)c

P(Tn(β) > 0)→ 1 ,

when n→∞. We gather these results in the following proposition.

Proposition 3.4.1.

1. With probability converging to 1, we have the inclusions

S(Z) ⊂ Rk(Z) ⊂ Ŝn(Z) .

2. If for all β ∈ S(Z)c,
knpn(β)→ 0 , n→∞ , (3.4.2)

then with probability converging to 1, Ŝn(Z) ⊂ S(Z).

A consequence of the first point of Proposition 3.4.1 is that the cardinality of the sets S(Z),
Rk(Z), and Ŝn(Z) are satisfying the inequality s∗ ≤ r∗ ≤ ŝn with probability converging to 1.
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Regarding the second point, the assumption in (3.4.2) is quite strong compared to the one given in
Equation (3.3.9) and implies in particular that S(Z) = Rk(Z). The numerical results introduced in
Section 3.6 show that this assumption is not satisfied on simulated data. This is why, unless stated
otherwise, we do not assume that 3.4.2 holds.

At this point, the statistical setting is the following one. For a fixed n large enough, we have a
collection of features β such that Tn(β) > 0 and the following inclusions are satisfied:

S(Z) ⊂ Rk(Z) ⊂ {β ∈ P∗d , pn(β) > 0} a.s.= Ŝn(Z) , (3.4.3)

where the last equality results from Equation (3.3.5) in Proposition 3.3.1. These inclusions highlight
the fact that the observations tend to overestimate the number of relevant directions β. Therefore,
the goal is to decide which ones are indeed in S(Z). In other words, we need to build a statistical
method which brings out a cutoff dividing the empirical set Ŝn(Z) into two subsets: a first one
corresponding to the features β which belongs to S(Z) and a second one which contains the features
β which appear because of a possible bias between the probabilities arising from the non-asymptotic
sample and the ones representing the theoretical asymptotic framework. In this context, it is cus-
tomary to use either a concentration inequality or model selection. We develop the first aspect in
the following section. However, since it does not provide relevant results on numerical examples, we
prefer to focus on model selection which is the purpose of Section 3.5.

3.4.2 A concentration result

We first establish a non-asymptotic result for a fixed number of data n. The idea is to control the
difference Tn(β)/kn−pn(β) for β in a fixed subset B ⊂ P∗d . Hence, we establish a concentration result
which holds uniformly on B. This result emphasizes the dependence of the difference Tn(β)/kn −
pn(β) on the level kn and on the number of cones b = #B.

Theorem 3.4.1. We consider a sequence of i.i.d. regularly varying random vectors X,X1,X2, . . .

with tail index α and spectral vector Θ, a Pareto(α)-distributed random variable Y independent of Θ

and we set Z = π(YΘ). We consider a threshold un →∞ and assume that kn = nP(|X| > un)→∞.
For a non-empty subset B ⊂ P∗d of cardinal b = #B ∈ {1, . . . , 2d − 1} we define

cn(B) = max
β∈B

pn(β) (3.4.4)

Then, for all δ > 0, the following inequality holds:

P

(
max
β∈B

∣∣∣∣Tn(β)

kn
− pn(β)

∣∣∣∣ > f(δ, n, b)

)
≤ 2e−δ , (3.4.5)

with

f(δ, n,B) =
√

2
√
cn(B)

√
log(b) + δ

kn
+

log(b) + δ

3kn
. (3.4.6)
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Theorem 3.4.1 highlights a rate of convergence of order
√
kn which has already been established in

Theorem 3.3.1. While this result is useful in order to work at a non-asymptotic level, it turns out that
it does not highlight a natural method to identify S(Z). Besides, our tries on numerical simulations
do not yield to relevant results. This is why we will rather turn to multivariate convergence results
in order to apply model selection.

3.4.3 Ordering the β’s

In order to study the common behavior of the components Tn(β) we need to glue them together and
to build a vector of R2d−1. Note that this can not be easily addressed since there is no specific order
on P∗d . Therefore, we need to fix an order between the β’s, i.e. to define a bijection

σ : {1, . . . , 2d − 1} → P∗d .

The idea is to choose an order σ which takes into account the values of p(β). However, such an
order can only be introduced for β ∈ S(Z) since the other ones are all equal to zero. Therefore, the
bijection σ is defined in two steps. First, we consider the s∗ = #S(Z) first values. In order to define
them without any ambiguity, we make the following assumption on p.

Assumption 3.4.1. For all β, β′ ∈ S(Z), p(β) 6= p(β′).

Under Assumption 3.4.1, we define σ(j) for j = 1, . . . , s∗ by considering the probabilities in S(Z)

in the decreasing order, that is

σ(1) = arg max
β∈P∗d

p(β) = arg max
β∈S(Z)

p(β) ,

σ(2) = arg max
β∈P∗d\σ(1)

p(β) = arg max
β∈S(Z)\σ(1)

p(β) , (3.4.7)

...

σ(s∗) = arg max
β∈P∗d\{σ(1),...,σ(s∗−1)}

p(β) = arg max
β∈S(Z)\{σ(1),...,σ(s∗−1)}

p(β) .

Then, we need to define σ(j) for j = s∗ + 1, . . . , 2d − 1. Since the remaining values of p(β) are
null, no natural order appears here. Therefore, we fix an arbitrary order once and for all, i.e. we
define distinct images σ(j) ∈ P∗d \ {σ(1), . . . , σ(s∗)} for all j = s∗ + 1, . . . , 2d − 1. This order being
now fixed for the rest of the chapter, all vectors of R2d−1 whose components are indexed by P∗d will
be written based on this order. Moreover, we simplify the notations by setting βj = σ(j) for all
j = 1, . . . , 2d − 1.

With these considerations we define the vector p ∈ R2d−1 whose components are associated to
the order defined in (3.4.7), i.e. pj = p(βj) = p(σ(j)). By construction, the vector p satisfies

p1 = p(β1) ≥ . . . ≥ ps∗ = p(βs∗) > ps∗+1 = . . . = p2d−1 = 0 .
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In particular, the aforementioned order is also taken into account for the set S(Z) so that pS(Z) =

p{1,...,s∗}. Finally, we use the same order to define the vectors Tn and pn, whose components are
given by

Tn, j = Tn(βj) and pn, j := pn(βj), j = 1, . . . , 2d − 1 . (3.4.8)

Contrary to the components of the vector p, the ones of the vectors Tn and pn are not necessary
ordered in a decreasing order. However, this is asymptotically true, as stated in the following section.

3.4.4 Multivariate convergence

We discuss some convergence results for the random vector Tn. With the order defined below, the
components Tn, j , pn, j , and pj of the vectors Tn, pn, and p are all the three associated to the same
subset Cβ . Therefore, the consistency of Tn is a straightforward extension of Proposition 3.3.1:

Tn

kn
− pn → 0 , n→∞ , in probability , (3.4.9)

and
Tn

kn
− p→ 0 , n→∞ , in probability . (3.4.10)

For r ≥ 1, we consider the subset Ordr = {x ∈ Rr, x1 ≥ . . . ≥ xr} whose boundary is given
by ∂Ordr = {x ∈ Rr, ∃j 6= k, xj = xk}. On the one hand, the definition of the vector p ensures
that p ∈ Ord2d−1. On the other hand, Assumption 3.4.1 ensures that p{1,...,s∗} /∈ ∂Ords∗ . Since
Tn/kn → p in probability, it follows from the Portmanteau theorem and Equation (3.4.10) that

P(Tn, {1,...,s∗} ∈ Ords∗) = P(k−1
n Tn, {1,...,s∗} ∈ Ords∗)→ P(p{1,...,s∗} ∈ Ords∗) = 1 , n→∞ .

Hence, if we fix δ > 0, then there exists n0 such that for all n ≥ n0

P(Tn, {1,...,s∗} ∈ Ords∗) ≥ 1− δ . (3.4.11)

In other words, if n is large, then the vector Tn, {1,...,s∗} have its components ordered in the decreas-
ing order with high probability.

In order to apply a model selection we need to obtain an asymptotic distribution for the vector
Tn. The idea is to extend the results obtained in Theorem 3.3.1. Recall that the convergence
(3.3.7) in Theorem 3.3.1 holds only for subsets A such that knpn(A) → ∞. Therefore, in order
to obtain a multivariate convergence for the subsets Cβ it is necessary to restrict ourselves to the
features β ∈ Rk(Z), where Rk(Z) is defined in (3.3.4). Consequently, the restricted vectors pRk(Z),
pn,Rk(Z), and Tn,Rk(Z) of Rr∗ are considered.

Theorem 3.4.2. We consider a sequence of i.i.d. regularly varying random vectors X,X1,X2, . . .

with tail index α and spectral vector Θ, a Pareto(α)-distributed random variable Y independent of Θ
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and we set Z = π(YΘ). We consider a threshold un →∞ and assume that kn = nP(|X| > un)→∞.

1. The following weak convergence on Rk(Z) holds:

√
kn Diag(pn,Rk(Z))

−1/2

(
Tn,Rk(Z)

kn
− pn,Rk(Z)

)
d→ N (0, Idr∗) , n→∞ . (3.4.12)

2. The following weak convergence on S(Z) holds:

√
kn Diag(pS(Z))

−1/2

(
Tn,S(Z)

kn
− pn,S(Z)

)
d→ N (0, Ids∗) , n→∞ . (3.4.13)

3. Moreover, if we assume that

∀β ∈ S(Z) ,
√
kn(pn(β)− p(β))→ 0 , n→∞ , (3.4.14)

then the following weak convergence on S(Z) holds:

√
kn Diag(pS(Z))

−1/2

(
Tn,S(Z)

kn
− pS(Z)

)
d→ N (0, Ids∗) , n→∞ . (3.4.15)

The multivariate convergence in (3.4.12) (respectively in (3.4.13) and in (3.4.15)) is the extension
of the univariate convergence in (3.3.7) (respectively in (3.3.8) and in (3.3.10). Similarly, the bias
assumption in (3.4.14) corresponds to the assumption in (3.3.9).

From Equation (3.4.12) we obtain that the vector

Un =
√
kn Diag(pn,Rk(Z))

−1/2

(
Tn,Rk(Z)

kn
− pn,Rk(Z)

)
satisfies the convergence

U>n ·Un = kn

(
Tn,Rk(Z)

kn
−pn,Rk(Z)

)>
Diag(pRk(Z))

−1

(
Tn,Rk(Z)

kn
−pn,Rk(Z)

)
d→ χ2(r∗) , (3.4.16)

when n→∞ and where χ2(r∗) denotes a chi-squared distribution with r∗ degrees of freedom. This
convergence can be rephrased as follows:

kn

r∗∑
j=1

(Tn,Rk(Z)/kn − pn,Rk(Z))
2

pn,Rk(Z)

d→ χ2(r∗) , n→∞ . (3.4.17)

Remark 3.4.1. If we fix s < r∗, then the subsets Cβs+1 , . . . , Cβr∗ satisfy the property

r∗∑
j=s+1

Tn, j = Tn(∪r∗j=s+1Cβj ) ,



120 TAIL INFERENCE FOR HIGH-DIMENSIONAL DATA

see Remark 3.3.2. Hence, the vector

Un(s) =
√
kn

(
Tn, 1/kn − pn, 1√

pn, j
, . . . ,

Tn, s/kn − pn, s√
pn, s

,

∑r∗

j=s+1

(
Tn, s/kn − pn, s

)∑r∗

j=s+1
√
pn, s

)>
converges in distribution to a random vector of Rs+1 with distribution N (0, Ids+1). Then, similarly
to Equation (3.4.16), we have the convergence

Un(s)> ·Un(s)
d→ χ2(s+ 1) , n→∞ . (3.4.18)

This convergence will be central in order to provide a suitable procedure for model selection, the
key point of the method being to identify s∗.

3.5 Model selection

Based on the asymptotic results established in Section 3.4, we provide a model selection which
addresses two issues. The first one concerns the identification of the set S(Z) and the second one is
the choice of an optimal level kn. As already mentioned in Remark 3.2.2, the choice of the threshold
un has a direct impact on the result given by the Euclidean projection onto the simplex. Therefore,
the identification of S(Z) and the choice of an optimal level kn are issues deeply related and which
should therefore be addressed simultaneously.

3.5.1 Generalities

In all what follows we assume that n is large enough. Thus, it seems natural to assume that the
inclusions in Proposition 3.4.1 holds, i.e. that there exists no feature β in S(Z) which does not
belong to Ŝn(Z). Reciprocally, Assumption 3.4.2 may not hold which means that some observations
could appear in a direction β on which the distribution of Z does not place mass. In this case, it
seems reasonable to assume that the quantity Tn(β) associated to this direction is not very large.
Since all the work is now done at a non-asymptotic level, the strict inclusion mainly arises because
of a possible bias which appears on the observations. All in all, the sequence of inclusions in (3.4.3)
implies that we make the following assumptions on the observations:

– If a feature β does not appear in Ŝn(Z) we conclude that the distribution of Z does not place
mass in this direction.

– If a feature β satisfies Tn(β)� 0, then we infer that Z concentrates on the associated subset
Cβ .

– If a feature β satisfies Tn(β) ≈ 0, then it is likely that this direction appears in Ŝn(Z) only
because of the bias which arises due to the non-asymptotic setting. There, we assume that the
distribution of Z does not place mass in this direction.
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The core of the study is now to provide a suitable procedure which classify the directions β which
appear in the last two cases.

3.5.2 A multinomial model

Our goal is to identify which probabilistic model fits the best the data. To this end, we use Akaike
Information Criterion (see Section 1.5) in order to highlight the number of relevant directions β
on which extreme values appear. Subsequently, we use a similar approach to highlight an optimal
level kn. In order to tackle this latter issue it is necessary to consider all observations X1, . . . ,Xn

and not only the extreme ones. This is why an extra-category is created to gather the non-extreme
observations. This category is defined as

Tn, 2d :=
n∑
j=1

1{|Xj | ≤ u} = n−
∑
β∈P∗d

Tn(β) .

Finding an optimal level kn boils down to identifying the size of this extra-category. At this stage
we have 2d different categories, the first 2d− 1 corresponding to the components of the vector Tn in
the order explained in Section 3.4.3, and the last one denoted by Tn, 2d . We add this non-extreme
category Tn, 2d at the end of the vector Tn to build the vector T′n = (Tn, 1, . . . , Tn, 2d−1, Tn, 2d)

> ∈ R2d .
In what follows the apostrophe will be associated to the whole data set i.e. including the non-extreme
category.

For n ≥ 1, the vector T′n follows a multinomial distribution with size n and probability vector
p′n ∈ R2d where p′n is defined as

p′n = (qnpn, 1, . . . , qnpn, 2d−1, 1− qn)>, (3.5.1)

with qn = P(|X| > un). We use the following notation: T′n ∼M(n,p′n). Similarly, for a fixed level
k = kn the vector Tn satisfies the relation Tn, 1 + . . . + Tn, 2d−1 = k. Therefore, its distribution is
multinomial with size k and probability vector pn: Tn ∼ M(k,pn). The two steps of our model
selection are then the following ones. First, we identify the optimal proportion of extremes and
choose the associated level k. Second, for this k we work with the vector Tn and we would like to
identify the set S(Z). From a theoretical point of view, it is easier to first study the Tn for a fixed
(but unknown) level k and then to add the choice of an optimal level. In terms of model selection
we define two family of models, one for the observation Tn when the level k is fixed and one for the
whole observation T′n.

Recall from Equation (3.4.11) that for n large enough, the probability P(Tn, 1 ≥ Tn, 2 ≥ . . . ≥
Tn, s∗) is close to 1. From now on we fix a n large enough and work conditionally on this event. This
order encourages the use of the following families of models.

First for a fixed level k, we consider a multinomial model denoted by M(k; p̃), where the param-
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eter p̃ is defined as

p̃ = (

2d−1 components︷ ︸︸ ︷
p̃1, . . . , p̃s, p̃, . . . , p̃︸ ︷︷ ︸

r−s

, 0, . . . , 0) ,

with p̃1 ≥ . . . ≥ p̃s, p̃ ∈ (0, 1) satisfying the constraint

p̃1 + . . .+ p̃s + (r − s)p̃ = 1 . (3.5.2)

Such a model is entirely characterized by the parameters p̃1, . . . , p̃s, p̃ and r. The model M(k; p̃)

highlights the s relevant features β which gather the mass of the distribution of Z. The parameter
p̃ models the bias and should thus be considered as small and converging to zero when n increases.
It emphasizes the idea that among the directions β which contain at least one observation some
of them indeed belong to the support of Z while others only appear because of a bias. The first
s features correspond to the most relevant ones: It is likely to observe extreme on the associated
subsets.

We also consider a multinomial model denoted by M′(n; p̃) where the parameter p̃′ is defined as

p̃′ = (

2d terms︷ ︸︸ ︷
q̃′p̃′1, . . . , q̃

′p̃′s′ , q̃
′p̃′, . . . , q̃′p̃′︸ ︷︷ ︸

r′−s′

, 0, . . . , 0, 1− q̃′) ,

with p̃′1 ≥ . . . ≥ p̃′s′ , p̃′, q̃′ ∈ (0, 1) are satisfying the same constraint (3.5.2). Such a model is entirely
characterized by the parameters p̃′1, . . . , p̃′s′ , p̃

′, q̃′ and r′. The model M′(n; p̃′) is the extension of the
first one when all the data are considered. The parameter q̃′ models the theoretical proportion of
extreme values taken among the data.

3.5.3 Estimation of the parameters

The estimation of the parameters for a multinomial model has already been widely studied. There-
fore, the purpose of this section is to introduce the likelihood of the aforementioned models and the
associated estimators with our notations.

For the model M′(n; p̃′) For x ∈ S2d−1
+ (n) the likelihood of the model M′(n; p̃′) is given by

LM′(n;p̃′)(p̃
′; x) =

n!∏2d

i=1 xi!

s′∏
i=1

(q̃′p̃′i)
xi

r′∏
i=s′+1

(p̃′q̃′)xi(1− q̃′)x2d1{∀j=r′+1,...,2d−1, xj=0} .

For x such that xj = 0 for all j = r′ + 1, . . . , 2d − 1 the log-likelihood evaluated in x is equal to

logLM′(n;p̃′)(p̃
′; x) = log(n!)−

2d∑
i=1

log(xi!) +
s′∑
i=1

xi log(q̃′p̃′i) +
( 2d−1∑
i=s′+1

xi

)
log(p̃′q̃′)



3.5. MODEL SELECTION 123

+ x2d log(1− q̃′) . (3.5.3)

The optimization of this log-likelihood under the constraint (3.5.2) leads, with our notations, to the
following estimators:

̂̃q′ = ∑2d−1
i=1 xi
n

, ̂̃p′q̃′ = ∑2d−1
i=s′+1 xi

(r′ − s′)n
, ̂̃q′p̃′j =

xj
n
, 1 ≤ j ≤ s′ .

Note that the condition xj = 0 for all j = r′ + 1, . . . , 2d − 1 can be rewritten as

r′ ≥ #{j = 1, . . . , 2d − 1, xj > 0} ,

so that the log-likelihood logLM′(n;p̃′)(p̃
′; x) is maximum for r̂′ = #{j = 1, . . . , 2d − 1, xj > 0}. All

in all, these considerations lead to the following maximum likelihood estimators:

r̂′ = #{j = 1, . . . , 2d − 1, Tn, j > 0} = ŝn , (3.5.4)

̂̃q′ = ∑n
i=1 Tn, i
n

=
n− Tn, 2d

n
, (3.5.5)

̂̃p′ = ∑2d−1
i=s′+1 Tn, i

(ŝn − s′)
∑2d−1

i=1 Tn, i
=

∑2d−1
i=s′+1 Tn, i

(ŝn − s′)(n− Tn, 2d)
, (3.5.6)

̂̃p′j =
T̃n, j∑2d−1
i=1 Tn, i

=
Tn, j

n− Tn, 2d
, 1 ≤ j ≤ s′ . (3.5.7)

For the model M(k; p̃) We fix k ≤ n and consider the model M(k; p̃). For x ∈ S2d−2
+ (k) the

likelihood of this model is given by

LM(k;p̃)(p̃; x) =
k!∏2d−1

i=1 xi!

s∏
i=1

(p̃i)
xi

r∏
i=s+1

(p̃)xi1{∀j=r+1,...,2d−1, xj=0} .

Then, for x such that xj = 0 for all j = r+ 1, . . . , 2d− 1 the log-likelihood evaluated in x is equal to

logLM(k;p̃)(p̃; x) = log(k!)−
2d−1∑
i=1

log(xi!) +

s∑
i=1

xi log(p̃i) +
( 2d−1∑
i=s+1

xi

)
log(p̃) , (3.5.8)

and the maximum likelihood estimators evaluated in Tn are defined as follows:

r̂ = ŝn ,

̂̃p =

∑ŝn
i=s+1 Tn, i

(ŝn − s)k
=

∑2d−1
i=s+1 Tn, i

(ŝn − s)k
,

̂̃pj =
Tn, j
k

, 1 ≤ j ≤ s .
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3.5.4 An AIC approach for the model M(k)

In this section we fix k ≤ n and consider the associated random vector Tn. The unknown distribution
of this vector is denoted by Pk. We consider the model M(k; p̃) and we work conditionally on the
event that r = ŝn. There, we recall that p̂1, . . . , p̂s, p̂ denote the maximum likelihood estimators:

̂̃p = arg max
p̃1+...+p̃s+(r−s)p̃=1

LM(k;p̃)(p̃; Tn) . (3.5.9)

We also define the parameter p̃∗ = (p̃∗1 + p̃∗, . . . , p̃∗s + p∗, p̃∗)> ∈ Rs+1 as the optimum of the
expectation of the log-likelihood:

p̃∗ = arg max
p̃1+...+p̃s+(r−s)p̃=1

E
[
LM(k; p̃)(p̃; Tn)

]
. (3.5.10)

A similar computation as for the estimators ̂̃p gives the relations

∀j = 1, . . . , s , p̃∗j = pn, j , and p̃∗ =

∑r
i=1 pn, i
r − s

.

For all j = 1, . . . 2d − 1, we define

mj = min
( ̂̃pj , p̃∗j) = min

(Tn, j
k
, pn, j

)
and Mj = max

( ̂̃pj , p̃∗j) = max
(Tn, j

k
, pn, j

)
.

Assumption 3.5.1. For all j = 1, . . . , 2d − 1,

pn, j
m2
j

∣∣∣∣M2
j

m2
j

− 1

∣∣∣∣→ 0 , and
1

m2
j

∣∣∣∣Tn, jk − pn, j
∣∣∣∣→ 0 , n→∞ .

Note that this assumption is automatically satisfied for j ≤ s∗ since in this case mj and Mj

converge to pj > 0.

Our aim is to identify which model M(k, p̃) best fits the observations Tn. Following the criterion
introduced by Akaike (1973), we choose the model which minimizes the Kullback-Leibler divergence

KL
(
Pk

∥∥∥M(k; p̃)
)

= E

[
log

(
LP(Tn)

LM(k;p̃)(p̃; Tn)

)]
= E

[
logLP(Tn)

]
− E

[
logLM(k;p̃)(p̃; Tn)

]
,

(3.5.11)
which must be seen as a function of p̃. In particular, the first term is constant with respect to the
parameter p̃. Regarding the second term, Equation (3.5.8) entails that

E
[

logLM(k;p̃)(p̃; Tn)
]

= log(k!)− E
[ 2d−1∑
i=1

log(Ti!)

]
+ k

s∑
i=1

pn, i log(p̃i) + k

( 2d−1∑
i=s+1

pn,i

)
log(p̃) .

(3.5.12)

We will use several time the following result known as "Cauchy’s Mean-Value Theorem" (Hille
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(1964)).

Lemma 3.5.1. Let f and g be two continuous functions on the closed interval [a, b], a < b, and
differentiable on the open interval (a, b). Then there exists some c ∈ (a, b) such that

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c) .

Following Lemma 3.5.1, we obtain an Taylor expansion for

−E
[

logLM(k;p̃)(p̃; Tn)
]∣∣∣

p̃=̂̃p .
Lemma 3.5.2. There exists c1 ∈ (0, 1) such that

KL
(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=̂̃p = KL
(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=p̃∗
(3.5.13)

1

2
(̂̃p− p̃∗)>

∂2

∂p̃2
E
[
− logLM(k;p̃)(Tn)

]∣∣∣
c1 ̂̃p+(1−c1)p̃∗

(̂̃p− p̃∗) . (3.5.14)

Note that since the quantity p̃∗ is deterministic, the first term of the right-hand side can be
written as follows

KL
(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=p̃∗
= E

[
logLP(Tn)

]
− E

[
logLM(k;p̃)(p̃

∗; Tn)
]
.

The idea is then to provide an Taylor expansion of logLM(k;p̃)(p̃
∗; Tn) around the point ̂̃p. This is

the purpose of the following lemma.

Lemma 3.5.3. There exists c2 ∈ (0, 1) such that

− logLM(k;p̃)(p̃
∗; Tn) = − logLM(k;p̃)(̂̃p; Tn)

− 1

2
(p̃∗ − ̂̃p)>

∂2

∂p̃2
logLM(k;p̃)(c2p̃

∗ + (1− c2)̂̃p; Tn)(p̃∗ − ̂̃p) . (3.5.15)

Now, taking the expectation with respect to ̂̃p in Equations (3.5.13) and (3.5.3), and combining
both equations, we obtain the following expression for the expectation of the divergence with respect
to ̂̃p:
E
[
KL

(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=̂̃p
]

(3.5.16)

= E
[

logLPk(Tn)
]
− E

[
logLM(k;p̃)(̂̃p; Tn)

]
+ E

[
(̂̃p− p̃∗)>

∂2

∂p̃2
E
[
− logLM(k;p̃)(p̃; Tn)

]∣∣∣
c1 ̂̃p+(1−c1)p̃∗

(̂̃p− p̃∗)︸ ︷︷ ︸
(?)

]

+
1

2
E
[
(̂̃p− p̃∗)>

[
− ∂2

∂p̃2
logLM(k;p̃)(p̃; Tn)

∣∣∣
c2p̃∗+(1−c2)̂̃p
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+
∂2

∂p̃2
E
[

logLM(k;p̃)(p̃; Tn)
]∣∣∣
c1 ̂̃p+(1−c1)p̃∗

]
(̂̃p− p̃∗)

]
.

The last two steps consist in dealing with the last term of the right-hand side in Equation (3.5.16)
and with the term (?). For the first one, we prove that it converges to zero.

Lemma 3.5.4. Under Assumption 3.5.1, the following convergences in probability holds:

sup
(c,c′)∈(0,1)2

∣∣∣∣k−1

(
∂2 logLM(k;p̃)

∂p̃2
(p̃; Tn)

∣∣∣
ĉ̃p+(1−c)p̃∗

− E
[∂2 logLM(k;p̃)

∂p̃2
(p̃; Tn)

]∣∣∣
c′ ̂̃p+(1−c′)p̃∗

)∣∣∣∣
∞
→ 0 ,

when n→∞ and where | · |∞ denotes the infinity norm.

Since
√
kDiag(pn, {1,...,s})

−1/2(̂̃p− p̃∗) converges to a Gaussian distribution thanks to Theorem
3.4.2, the last term in the right-hand side of Equation (3.5.16) converges to zero when n→∞.

Moving on to the term (?), we prove that it converges in distribution to a chi-square-distributed
random variable with s+ 1 degrees of freedom.

Lemma 3.5.5. For all c ∈ (0, 1), the following weak convergence holds:

(̂̃p− p̃∗)>
∂2

∂p̃2
E
[
− logLM(k;p̃)

]∣∣∣
ĉ̃p+(1−c)p̃∗

(̂̃p− p̃∗)
d→ χ(s+ 1) , n→∞ .

Based on Lemma 3.5.4 and Lemma 3.5.5, Equation (3.5.16) entails, for n large enough, the
following approximation:

E
[
KL

(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=̂̃p
]
≈ E

[
logLPk(Tn)

]
− E

[
logLM(k;p̃)(̂̃p; Tn)

]
+ E[χ2(s+ 1)]

≈ E
[

logLPk(Tn)
]
− E

[
logLM(k;p̃)(̂̃p; Tn)

]
+ (s+ 1) .

Therefore, for a given level k, the idea is to choose the parameter s which minimizes the quantity

− logLM(k;p̃)(̂̃p; Tn) + (s+ 1) .

The last theoretical step of our study is to include the choice of k in our procedure. This is the
purpose of the following section.

3.5.5 From the extreme values to the whole dataset

The choice of s∗ has been done for a fixed level k and by considering the model M(k, p̃). The last
step, which should practically speaking be done first, is to provide an accurate method to select an
optimal level k. To this end, we need to work on the whole data set in order to have a fixed number
of data. Therefore, we focus on the model M(n, p̃′). We denote by Pn the true distribution of T′n.

We start by writing down the Kullback-Leibler divergence between Pn and M′(n, p̃′) and de-
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compose it as follows

KL
(
Pn

∥∥∥M(n; p̃′)
)

= E

[
log

(
LPn(T′n)

LM′(n;p̃′)(p̃′; T′n)

)]
= E

[
logLPn(T′n)

]
− E

[
logLM′(n;p̃′)(p̃

′; T′n)
]
.

(3.5.17)
We focus on the second term of the right-hand side. We decompose the log-likelihood logLM′(n;p̃′)

defined in Equation (3.5.3) as follows

logLM′(n;p̃′)(p̃
′; T′n) = log((n− T ′n, 2d)!)−

2d−1∑
j=1

log(T ′n, j !) +
s′∑
j=1

T ′n, j log(p̃′j) + log(p̃′)
2d−1∑
j=s′+1

T ′n, j

+ log
( n!

(n− T ′
n, 2d

)!

)
− log(T ′n, 2d !) + (n− T ′n, 2d) log(q̃′) + T ′n, 2d log(1− q̃′)

= logLM(n−T ′
n, 2d

;p̃)(p̃; Tn) + φ(n, q̃′, T ′n, 2d) ,

where

φ(n, q̃′, T ′n, 2d) = log

(
n!

(n− T ′
n, 2d

)!

)
− log(T ′n, 2d !) + (n− T ′n, 2d) log(q̃′) + T ′n, 2d log(1− q̃′) .

Hence, after evaluating the expression in (3.5.17) in ̂̃p′ and taking the expectation, we obtain that

E
[
KL

(
Pn

∥∥∥M′(n; p̃′)
)∣∣∣ ̂̃p′] = E

[
logLPn(T′n)

]
+ E

[
E
[
− logLM(n−T ′

n, 2d
;p̃)(p̃; Tn) | T ′n, 2d

]∣∣∣̂̃p
]

(3.5.18)

− E
[
E
[
φ(n, q̃′, T ′n, 2d)

]∣∣∣ ̂̃p′
]
.

The first term of the right-hand side is a constant. For the second term, we remark that the log
terms

−E
[

log((n− T ′n, 2d)!)−
2d−1∑
j=1

log(T ′n, j !)
]

are constant. The idea is then to condition the remainder with respect to T ′
n, 2d

= n− k in order to
apply the results of the previous section. To this end, we use the approximation T ′n, j ≈ pn, j(n−T ′n, 2d)
which holds when (n−T ′

n, 2d
) is large. Indeed, a similar result as in Proposition 3.3.1 can be obtained

for the vector T′n:

T ′n, j
nqn

− pn j → 0 , and
n− T ′

n, 2d

nqn
→ 1 , n→∞ , in probability ,
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as soon as nqn →∞. By combining these two convergences, we obtain that

T ′n, j
n− T ′

n, 2d
− pn, j → 0 , n→∞ , in probability ,

which justifies our approximation. Thus, after removing the log terms, we consider the quantity

E
[
− logLM(n−T ′

n, 2d
;p̃)(p̃; Tn) + log((n− T ′n, 2d)!)−

2d−1∑
j=1

log(T ′n, j !) | T ′n, 2d
]

≈ (n− T ′n, 2d)
( s′∑
j=1

pn, j log(p̃′j) + log(p̃′)
2d−1∑
j=s′+1

pn, j

)

≈
n− T ′

n, 2d

k

(
k

s′∑
j=1

pn, j log(p̃′j) + k log(p̃′)
2d−1∑
j=s′+1

pn, j

)

≈
n− T ′

n, 2d

k

(
E
[
− logLM(k;p̃)(p̃; Tn)

]
+ log(k!)− E

[ 2d−1∑
j=1

log(T ′n, j !) | T ′n, 2d = n− k
])

,

from (3.5.12) since Tn is given T ′
n, 2d

= n− k implicitly in the model M(k; p̃). This entails that

E
[
− logLM(n−T ′

n, 2d
;p̃)(p̃; Tn) + log((n− T ′n, 2d)!)−

2d−1∑
j=1

log(T ′n, j !) | T ′n, 2d
]∣∣∣̂̃p

≈
n− T ′

n, 2d

k

(
E
[
− logLM(k;p̃)(p̃; Tn)

]∣∣∣̂̃p + log(k!)− E
[ 2d−1∑
j=1

log(T ′n, j !) | T ′n, 2d = n− k
])

.

Using the preceding result, for k large enough we obtain the following unbiased approximation
of the second term in (3.5.18):

E
[
E
[
− logLM(n−T ′

n, 2d
;p̃)(p̃; Tn) + log((n− T ′n, 2d)!)−

2d−1∑
j=1

log(T ′n, j !) | T ′n, 2d
]∣∣∣̂̃p
]

≈ n(1− qn)

k

(
E
[
E
[
− logLM(k;p̃)(p̃; Tn)

]∣∣∣̂̃p
]

+ log(k!)− E
[
E
[ 2d−1∑
j=1

log(T ′n, j !) | T ′n, 2d = n− k
]])

.

For the third term in Equation (3.5.18), we have

E
[
φ(n, q̃′, T ′n, 2d)

]∣∣∣ ̂̃p′ = E
[

log

(
n!

(n− T ′
n, 2d

)!

)
− log(T ′n, 2d !)

]
+ E

[
(n− T ′n, 2d) log(q̃′) + T ′n, 2d log(1− q̃′)

]∣∣∣ ̂̃q′
= E

[
log

(
n!

(n− T ′
n, 2d

)!

)
− log(T ′n, 2d !)

]
+ nqn log(k/n) + n(1− qn) log(1− k/n) ,

as ̂̃q′ = k/n.
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All in all, the Kullback-Leibler divergence in (3.5.18) satisfies the relation

E
[
KL

(
Pn

∥∥∥M(n; p̃′)
)∣∣∣ ̂̃p′] ≈ E

[
logLPn(T′n)

]
+
n(1− qn)

k

(
E
[
−logLM′(k;p̃)(̂̃p; Tn)

]
+(s+1)

)
+Rn, k ,

(3.5.19)
where Rn, k is defined as

Rn, k = E
[
− log((n− T ′n, 2d)!) +

2d−1∑
j=1

log(T ′n, j !)
]
− E

[
log

(
n!

(n− T ′
n, 2d

)!

)
− log(T ′n, 2d !)

]
− nqn log(k/n)

− n(1− qn) log(1− k/n) +
n(1− qn)

k

(
log(k!)− E

[
E
[ 2d−1∑
j=1

log(T ′n, j !) | T ′n, 2d = n− k
]])

.

The second term of the right-hand side in Equation (3.5.19) is of order log(k!)/k ∼ log(k) by
Stirling’s approximation. After withdrawing the terms of Rn, k which are constant with respect to
k, we obtain that

Rn, k ∝
n(1− qn)

k

(
log(k!)− E

[
E
[ 2d−1∑
j=1

log(T ′n,j !) | T ′n, 2d = n− k
]])

−
(
nqn log(k/n) + n(1− qn) log(1− k/n)

)
.

For the first term, we use the approximation T ′n,j ≈ kpn, j and Stirling’s approximation log(n!) ∼
n log(n)− n which entails that

log(k!)− E
[
E
[ 2d−1∑
j=1

log(T ′n,j !) | T ′n, 2d = n− k
]]
≈ k log(k)− k −

2d−1∑
j=1

(
kpn, j log(kpn, j)− kpn, j

)

≈ k log(k)−
2d−1∑
j=1

kpn, j log(k)−
2d−1∑
j=1

kpn, j log(pn, j)

≈ −k
2d−1∑
j=1

pn, j log(pn, j)

where we use that the pn, j add up to 1. Thus, after multiplying this approximation by the ratio
(1 − qn)/k, we can conclude that this terms are asymptotically constant. Finally, we assume that
the real proportion of extreme values are small, which implies that nqn log(k/n) can be neglected.
The only term remaining is then Rn, k ∼ −n(1− qn) log(1− k/n).

All in all, we proved that

E
[
KL

(
Pn

∥∥∥M′(n; p̃′)
)∣∣∣ ̂̃p′] ∝ 1

k

(
E
[
− logLM(k;p̃)(̂̃p; Tn)

]
+ (s+ 1)−

)
.
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Practically speaking, we choose the parameters k and s which minimizes the quantity

1

k

(
− logLM(k;p̃)(̂̃p; Tn) + (s+ 1)− k log(1− k/n)

)
. (3.5.20)

where ̂̃p denotes the estimator of the maximum likelihood of the model M(k; p̃) when the level k is
fixed.

3.6 Numerical results

We continue in this section the numerical study introduced in Section 2.5. We provide different
examples to highlight the relevance of our findings. In particular, the results given in this chapter
allows to tackle the two hyperparameter which appear in Algorithm 2. This leads to the following
procedure to study dependence for extreme events. The code can be found at https://github.

com/meyernicolas/phd_thesis/blob/master/chap_3.

Data: X1, . . . ,Xn ∈ Rd+
Result: A list S(Z) of directions β and an optimal level k
Compute π(Xj/t), j = 1, . . . , n for different t;
Assign to each π(Xj/t) the subsets Cβ it belongs to;
Compute Tn;
Compute the values of k and s which minimize the AIC Criterion given in Equation (3.5.20);
Define S(Z) = {β, Tn, j(β) > 0 for j = 1, . . . , s}.

Algorithm 4: Tail inference for high-dimensional data.

Remark 3.6.1. In order to prove that our procedure to identify k is robust, it may be interesting
to still minimize the Kullback-Leibler divergence for different k and to write down which s = s(k)

minimizes the divergence. Indeed, as already mentioned, even if our procedure leads to the choice
of a unique k, it seems natural that all this approach is not too sensitive to this choice. In other
words, if k varies slightly around its optimal value, we should not observe huge variations of s. This
is why we add the plot k 7→ s(k). Idealistically, we should observe a constant value of s around the
optimal value of k.

We generate data sets of size n ∈ {4 · 103, 7 · 103, ·104} and apply Algorithm 4. We repeat this
procedure over N = 100 simulations. The results corresponds to the average number of the two
types of errors among the N simulations. Recall that these two types are: the selection of a feature
β while the distribution of Z does not place mass in this direction (Type 1), and the absence of a
feature β while this direction should appear theoretically (Type 2). Regarding the dimension, we
choose a larger d than in Chapter 2. On the contrary, compared to the examples in Section 2.5, we
chose here lower values of n. As we will see, even for a low number of data, we obtain very promising
results.

https://github.com/meyernicolas/phd_thesis/blob/master/chap_3
https://github.com/meyernicolas/phd_thesis/blob/master/chap_3
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An independent case We slightly change the first example of 2.5 and consider i.i.d. vectors
X1, . . . ,Xn ∈ R100. The first dext = 30 marginals of the Xj follow a Pareto(1) distribution while the
last ones follow an Exponential(1) distribution. The idea of this choice is to force some coordinates
to not contribute to the global extremal behavior of X. In terms of the spectral measure, is is
straightforward to see that it places mass on the axes ej for j = 1, . . . , dext. Then, we obtain that
P(Z ∈ Cβ) > 0 if and only if Cβ = C{j} = ej , for j = 1, . . . , dext.

Table 3.1 summarizes the different outcomes of our algorithm. The first two columns detail the
average errors of both types. The third one gives the average value of s. Recall that the theoretical
value s∗ = 30. Finally, the last two columns provides the average values of the level k and the
associated threshold u.

There are only very few errors of Type 1, regardless of n. This means that our procedure does
not overestimate the number of β’s. On the other hand, the errors of Type 2 are more represented,
especially when n is not very large. There, the number of relevant features is underestimated.
However, this issue gradually disappears when n increases. In particular, both average errors for
n = n3 = 104 are very close to 0. Regarding the level k, it increases as expected with n. Besides,
we notice that the ratio k/n becomes smaller when n increases. This fits with the standard EVT
(and hence with our framework) in which it is customary to assume that k →∞ and k/n→ 0 when
n→∞.

Errors of Errors of Average Average value of Average value of
Type 1 Type 2 value of s the level k the threshold u

n1 = 4 · 103 0.13 7.12 22.95 257 890
n2 = 7 · 103 0.16 1.15 28.94 343 905
n3 = 104 0.13 0.45 29.64 390 1058

Table 3.1: Average number of errors in an independent case (d = 100).

Following Remark 3.6.1, we illustrate on an example the choice of k and s. We keep the same
example with n = n3 = 104. There, we plot in Figure 3.4 the variations of the quantity in
Equation (3.5.20), that is, up to some constant, an estimator of the Kullback-Leibler divergence
KL(Pn‖M′(n, p̃′)). On this simulation, the minimum in reached for an optimal value of k = 350.
We notice that the plot of this estimator is quite sharp.

We plot in Figure 3.5 the variations of the choice of s regarding k. For a large range of k, the
value of s chosen by the algorithm remains constant. This means that a slight variation in the choice
of k does not affect the optimal value of s.

A dependent case We consider a random vector X ∈ R100 whose marginals are defined as fol-
lows. The first dindep = 10 are independent Pareto(1)-distributed. Then, we consider a bivariate
dependence for the ddep1 = 5 couples of marginals (Xj , Xj+1), with Xj following a Pareto(1) dis-
tribution and Xj+1 = Xj + Ej where Ej follows an Exponential(1) distribution independent of Xj .
In others words, we have a strong dependence between the extremes of Xj and the ones of Xj+1.
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Figure 3.4: Evolution of the minimizer of KL(n) in an independent case.

Figure 3.5: Evolution of the optimal value of s in an independent case.

Similarly, we consider a three-dimensional dependence for the next ddep2 = 5 triplets of marginals.
We consider a marginal Xj with a Pareto(1) distribution, a marginal Xj+1 = Xj + Ej where Ej
follows a Exponential(1) distribution independent of Xj , and a marginal Xj+2 = Xj + Ej+1 where
Ej+1 follows a Exponential(1) distribution independent of Xj and Ej . The last marginals are all
independent and with an Exponential(1) distribution.
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Let us summarize this example. The vector X satisfies

Xj ∼ Pareto(1) , j = 1, . . . , 10 ,

(Xj , Xj + Ej) ∼ (Pareto(1), Xj + Exp(1)) , k = 11, 13, 15, 17, 19 ,

(Xj , Xj + Ej , Xj + Ej+1) ∼ (Pareto(1), Xj + Exp(1), Xj + Exp(1)) , j = 20, 23, 26, 29, 32 ,

Xj ∼ Exp(1) , j = 36, . . . , 100 .

This implies that the spectral vector, and also the angular vector Z, places mass on the following
subsets:

C{k} = ek , for k = 1, . . . , 10 ,

C{k,k+1} , for k = 11, 13, 15, 17, 19 ,

C{k,k+1,k+2} , for k = 20, 23, 26, 29, 32 .

Our goal is then to identify the dindep = 10 one-dimensional subsets, the ddep1 = 5 two-dimensional
subsets, and the ddep2 = 5 three-dimensional subsets. Thus in this example s∗ = 20.

Table 3.2 summarizes the two types of errors averaged over the N simulations, as well as the
average number of relevant features s, the average level k and the associated average threshold u.
The errors of Type 2 decreases when n increases, which makes sense: With only few data, our
procedure fails to identify all relevant directions, but this issue vanishes when n becomes large. For
the errors of Type 1, it seems that their number slightly increases with n. If n is large, it is possible
to capture a direction that should not be taken into account. However, the average error is negligible
regarding the total number of possible directions, that is, 2d − 1 ∼ 1030. In this example, we also
observe that the chosen k increases with n, while the ratio k/n tends to decrease.

Errors of Errors of Average Average value of Average value of
Type 1 Type 2 value of s the level k the threshold u

n1 = 4 · 103 0.05 5.29 14.75 170 1368
n2 = 7 · 103 0.09 1.66 18.42 262 1313
n3 = 104 0.25 0.82 19.42 304 1504

Table 3.2: Average number of errors in a dependent case (d = 100).

As for the independent case, and following Remark 3.6.1, we illustrate on an example the choice
of k and s for this dependent case with n = n3 = 104. There, we plot in Figure 3.6 the variations of
the quantity in Equation (3.5.20), that is, up to some constant, an estimator of the Kullback-Leibler
divergence KL(Pn‖M′(n, p̃′)). This simulation leads to a choice of k = 250 and provides a very
sharp graph. Figure 3.7 shows that the optimal value of s remains constant around k = 250. As for
the previous case, we conclude that a slight variation of k does not impact the choice of s.
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Figure 3.6: Evolution of the minimizer of KL(n) in a dependent case.

Figure 3.7: Evolution of the optimal value of s in a dependent case.

3.7 Conclusion

This chapter develops a statistical framework based on the theoretical results obtained in Chapter
2. We provide a procedure whose main goals are to identify the features which gather extreme
events and to exhibit a optimal level which corresponds to the number of extreme values among the
observed sample. The different asymptotic results given in Proposition 3.3.1, Theorem 3.3.1 and
Theorem 3.4.2 entail that the proposed estimators are accurate to deal with our problem.
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The model selection proposed in Section 3.5 manages to tackle simultaneously two aforementioned
major concerns in multivariate EVT. Regarding the dependence structure, our method highlights
it with the identification of the most relevant subsets Cβ . This selection is done with an AIC-type
minimization whose penalization allows to reduce the number of selected subsets. Regarding the
choice of an appropriate level k, which has been the subject of much attention in the literature, no
theoretical-based procedure has been provided yet. Following the philosophical mantra of EVT, "let
the tail speak for itself", we provide an ad hoc estimation procedure in which the data partitions
itself into two categories, an extreme one and non-extreme one.

Regarding the numerical simulations, our algorithm provides promising results for independent
cases but also for dependent cases. In particular, we manage to deal with high-dimensional data,
at least compared to the examples given in the EVT literature so far. Besides, the large number of
possible subsets Cβ , that is, 230−1 ∼ 1030, does not lead to any computational issue. The outcomes
we obtain are all the more remarkable since we do not use large data sets, and even for moderate
values of n the empirical subsets which appear are close to the theoretical ones. For the choice of
k, the main asset of our algorithm is the global consideration of the level and the subsets Cβ . This
is supported by the Euclidean projection which provides a balance choice between a interpretable
sparsity and a sufficiently large threshold.

All in all, the notion of sparse regular variation introduced in Chapter 2 appears to have inter-
esting statistical properties. It manages to tackles simultaneously the questions (Q1), (Q2), and
(Q3) given in Chapter 1. This is why further researches should be conducted in this direction. The
use of Theorem 3.4.1 may be a point to tackle.

As expected, the proposed method provides good results when the dimension d is large. Para-
doxically, it does not seem to be effective for small values of d. Indeed, some numerical results not
exposed here show that in this case our algorithm does not manage to capture the theoretical subsets
Cβ very well. A high variability appears in the choice of s when k varies and the procedure often
chooses the largest k as the optimal one. This issue arises mainly since there is no guarantee that
the tail dependence is sparse if d is moderate (say d ∼ 10). In other words, it becomes likely that
all directions are simultaneously large and hence that the most relevant subset (and maybe the only
one) is C{1,...,d}. In this case, other methods should be applied. This is the purpose of Chapter 4.

3.8 Proofs

Proof of Proposition 3.3.1. We use the Weak Law of Large Number for triangular array (see for
instance Feller (1971)). For a Borel set A ⊂ Sd−1

+ we set Yj, n = k−1
n 1{π(Xj/un) ∈ A, |Xj | > un}.

Then, in order to obtain the convergence in probability

n∑
j=1

(Yj, n − E[Yj, n])→ 0 , n→∞ ,
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it suffices to show that supn,j E[Y 2
j, n] <∞. Starting from the relation

E[Y 2
j, n] =

P(π(Xj/un) ∈ A, |Xj | > un)

k2
n

=
pn(A)

nkn
,

we obtain that supn,j E[Y 2
j, n] ≤ k−1

n . Since kn →∞, this implies the convergence in probability

Tn(A)

kn
− pn(A)→ 0 , n→∞ . (3.8.1)

Finally, the convergence in Equation (3.3.6) is just a consequence of Equations (3.3.5) and (3.2.7).

Proof of Theorem 3.3.1. For a Borel set A of Sd−1
+ , we define

Vj, n = σ−1
n

(
1{π(Xj/un) ∈ A, |Xj | > un} −

kn
n
pn(A)

)
,

where
σ2
n = nP(π(X/un) ∈ A, |X| > un)[1− P(π(X/un) ∈ A, |X| > un)] .

The variable Vj, n satisfies the relations E[Vj,n] = 0 and Var(Vj,n) = 1/n. Then, in order to prove
the convergence ∑n

j=1(Vj, n − E[Vj, n])√∑n
j=1 Var(Vj, n)

d→ N (0, 1) , n→∞ ,

it suffices to show that Lindeberg’s condition holds:

n∑
j=1

E
[
V 2
j, n1{Vj, n>ε}

]
= nE

[
V 2

1, n1{V1, n>ε}

]
→ 0 , n→∞ , (3.8.2)

for all ε > 0. Thus, fix ε > 0. On the one hand, the variance σ2
n is equivalent to (knpn(A))2 which

converges to ∞ by assumption. On the other hand, |1{π(Xj/un) ∈ A, |Xj | > un} − kn
n pn(A)| is

always bounded by 1. Hence, for n large enough, the inequality V1, n ≤ ε is always satisfied. This
proves that the condition in (3.8.2) holds and then implies that∑n

j=1(Vj, n − E[Vj, n])√∑n
j=1 Var(Vj, n)

=
Tn(A)− knpn(A)

σn

d→ N (0, 1) , n→∞ .

Finally, Slutsky’s theorem allows to replace σn by
√
knpn(A), which yields to the following conver-

gence √
kn
Tn(A)/kn − pn(A)√

pn(A)

d→ N (0, 1) , n→∞ .

For the convergence (3.3.8), the regularity assumption implies that pn(A) → p(A) > 0 when
n→∞. Therefore, an application of Slutsky’s theorem allows to conclude.
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In order to prove (3.3.10), we decompose the previous ratio in the following way:

√
kn
Tn(A)/kn − p(A)√

pn(A)
=
√
kn
Tn(A)/kn − pn(A)√

pn(A)
+
√
kn
pn(A)− p(A)√

pn(A)
.

It is then sufficient to show that the second term goes to 0 as n → ∞. This is true thanks to the
bias assumption (3.3.9) and since the denominator

√
pn(A) converges to a positive limit.

Proof of Theorem 3.4.1. We consider x > 0 and λ > 0 and define, for β ∈ B,

Vn(β) =
Tn(β)

kn
− pn(β) .

Chernoff’s inequality entails

P
(

sup
β∈B

Vn(β) > x
)
≤ e−λxE

[
eλ supβ∈B Vn(β)

]
.

Our aim is to bound the quantity E[eλ supβ Vn(β)]. To this end, we bound the supremum on β by a
sum:

E
[
eλ supβ∈B Vn(β)

]
= E

[
sup
β∈B

eλVn(β)
]
≤ E

[∑
β∈B

eλVn(β)
]

=
∑
β∈B

E
[
eλVn(β)

]
.

Since Vn(β) can be rewritten as

Vn(β) =
1

kn

n∑
j=1

[
1{π(Xj/un) ∈ Cβ, |Xj | > un} − P(π(X/un) ∈ Cβ, |Xj | > un)

]
,

and since the Xj ’s are i.i.d., we obtain that E
[
eλVn(β)

]
can be expressed as

E
[

exp

(
λ

kn

n∑
j=1

[
1{π(Xj/un) ∈ Cβ, |Xj | > un} − P(π(Xj/un) ∈ Cβ, |Xj | > un)

])]

= E
[

exp

(
λ

kn

[
1{π(X/un) ∈ Cβ, |X| > un} − P(π(X/un) ∈ Cβ, |X| > un)

])]n
.

The goal is now to bound this last expectation. We use Bernstein’s inequality (see Lemma A.3.1)
for λ < kn:

E
[

exp

(
λ

kn

[
1{π(X/un) ∈ Cβ, |X| > un} − P(π(X/un) ∈ Cβ, |X| > un)

])]n
≤ exp

[
n
λ2P(π(X/un) ∈ Cβ, |X| > un)

[
1− P(π(X/un) ∈ Cβ, |X| > un)

]
2k2

n

(
1− λ

3kn

) ]

≤ exp

[
kn

λ2pn(β)

2k2
n

(
1− λ

3kn

)]
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= exp

(
λ2pn(β)

2(kn − λ/3)

)
.

Gathering all inequalities together, we obtain that

P
(

max
β∈B

Vn(β) > x
)
≤ e−λx

∑
β∈B

exp

(
λ2pn(β)

2(kn − λ/3)

)
. (3.8.3)

After replacing Vn(β) by −Vn(β), a similar inequality can be obtained:

P
(

max
β∈B
−Vn(β) > x

)
≤ e−λx

∑
β∈B

exp

(
λ2pn(β)

2(kn − λ/3)

)
. (3.8.4)

Then, we decompose the probability P(maxβ∈B |Vn(β)| > x) as follows

P
(

max
β∈R
|Vn(β)| > x

)
= P

(
max
β∈B

Vn(β) > x or max
β∈R
−Vn(β) > x

)
≤ P

(
max
β∈B

Vn(β) > x

)
+ P

(
max
β∈B
−Vn(β) > x

)
,

and Equations (3.8.3) and (3.8.4) entail that

P
(

max
β∈R
|Vn(β)| > x

)
≤ 2e−λx max

β∈R
exp

(
λ2pn(β)

2(kn − λ/3)

)
≤ 2 exp

(
log(b)− λx+

λ2cn(B)

2(kn − λ/3)

)
,

(3.8.5)
where b denotes the cardinality of B ⊂ P∗d and cn(B) = maxβ∈B pn(β).

The last step is to optimize the previous quantity with respect to λ. We set ϕ(λ) = −λx +

λ2cn(B)/(kn − λ) and we study this function for λ ∈ (0, 3kn). The derivative of ϕ satisfies

ϕ′(λ) = −x+ cn(B)
(kn − λ/3)λ+ λ2/6

(kn − λ/3)2
.

The equation ϕ′(λ) = 0 has two solutions:

λ± = 3kn ±
3kn√
2x

3cn(B) + 1
,

and only λ− belongs to the interval (0, 3kn). Thus, the minimum of the function ϕ in (0, 3kn) is

ϕ(λ−) = −9

2
kncn(B)

(√
2x

3cn(B)
+ 1− 1

)2

.
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Hence, δ satisfies

δ =
9

2
kncn(B)

(√
2x

3cn(B)
+ 1− 1

)2

− log(b) ,

if and only if x satisfies

x =
3cn(B)

2

[(√
2

3

√
log(b) + δ

kncn(B)
+ 1

)2

− 1

]
=
√

2
√
cn(B)

√
log(r) + δ

kn
+

log(b) + δ

3kn
=: f(δ, n,B) .

This leads to the desired inequality: for all δ > 0,

P

(
max
β∈B

∣∣∣∣Tn(Cβ)

kn
− pn(Cβ)

∣∣∣∣ > f(δ, n,B)

)
≤ 2e−δ .

Proof of Lemma 3.4.1. Recall that Tn(β) =
∑n

j=1 1{π(Xj/un) ∈ Cβ, |Xj | > un} where the Xj ’s
are i.i.d. This implies that

P(Tn(β) = 0) = P(∀j = 1, . . . , n, π(Xj/un) /∈ Cβ or |Xj | ≤ un)

= [1− P(π(X/un) ∈ Cβ , |X| ≤ un)]n

= exp
(
n log[1− P(π(X/un) ∈ Cβ , |X| > un)]

)
.

Hence, since P(π(X/un) ∈ Cβ , |X| > un)→ 0, we obtain the Taylor expansion

log[1− P(π(X/un) ∈ Cβ , |X| > un)] ∼ −P(π(X/un) ∈ Cβ , |X| > un) , n→∞ .

Finally, we write nP(π(X/un) ∈ Cβ , |X| > un) = knP(π(X/un) ∈ Cβ | |X| > un) which gives the
desired result.

Proof of Theorem 3.4.2. We consider the vector Vn,Rk(Z) ∈ Rr∗ whose components are

Vn, β =
1√

knpn(β)

(
1{π(X/un) ∈ Cβ, |X| > un} −

kn
n
pn(β)

)
.

This vector has null expectation. We denote by Σn ∈ Mr∗(R) its covariance matrix. First, the
diagonal entries correspond to the variance of a Bernoulli distribution, i.e.

Σn(β, β) =
1

knpn(β)
P(π(X/un) ∈ Cβ, |X| > un)[1− P(π(X/un) ∈ Cβ, |X| > un)] =

1

n
− kn
n2
pn(β) .
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Second, the non-diagonal entries can be computed as follows:

Σn(β, β′) = E
[
Vn, βVn, β′

]
=

1√
knpn(β)

1√
knpn(β′)

(
E
[
1{π(X/un) ∈ Cβ, |X| > un}1{π(X/un) ∈ Cβ′ , |X| > un}

]
− kn

n
pn(β)E

[
1{π(X/un) ∈ Cβ′ , |X| > un}

]
− kn

n
pn(β′)E

[
1{π(X/un) ∈ Cβ, |X| > un}

]
+
k2
n

n2
pn(β)pn(β′)

)
= − 1

kn
√
pn(β)pn(β′)

k2
n

n2
pn(β)pn(β′)

= −kn
n2

√
pn(β)pn(β′) .

Hence, the covariance matrix Σn can be written as

Σn =
1

n
Idr∗ −

kn
n2

√
pn,Rk(Z) ·

√
pn,Rk(Z)

> ,

where the square root is meant componentwise. In particular, nΣn → Idr∗ when n→∞.

Consider now a triangular array Vn, 1, . . . ,Vn, n with the same distribution as Vn,Rk(Z). We
prove that this triangular array satisfies Lindeberg’s condition:

n∑
j=1

E
[

1

kn
max
β

1

pn(β)

∣∣∣1{π(Xj/un) ∈ Cβ, |Xj | > un} −
kn
n
pn(β)

∣∣∣21{maxβ |Vn, j, β |>ε}

]
→ 0 , n→∞ ,

for all ε > 0, or equivalently that

E
[
n

kn
max
β

1

pn(β)

∣∣∣1{π(X/un) ∈ Cβ, |X| > un} −
kn
n
pn(β)

∣∣∣21{maxβ |Vn, β |>ε}

]
→ 0 , n→∞ .

(3.8.6)
Fix ε > 0. Recall that Rk(Z) gathers all features β such that knpn(β)→∞. Thus, there exists n0

such that for all n ≥ n0,

max
β∈Rk(Z)

∣∣∣1{π(X/un) ∈ Cβ, |X| > un} −
kn
n
pn(β)

∣∣∣ ≤ εkn min
β∈Rk(Z)

pn(β) ,

since the term on the left-hand side is always bounded by 1. This implies that for n large enough,
the inequality maxβ |Vn, β| > ε is never satisfied. Hence, Lindeberg’s condition in (3.8.6) holds and
yields to the following convergence

n∑
j=1

Vn, j
d→ N (0, Idr∗) , n→∞ .
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This convergence can be rephrased as

√
kn Diag(pn,Rk(Z))

−1/2

(
Tn,Rk(Z)

kn
− pn,Rk(Z)

)
d→ N (0, Idr∗) , n→∞ ,

which proves (3.4.12).

To obtain the convergence in (3.4.13), it suffices to restrict the previous convergence to the
coordinates β ∈ S(Z) and to notice that

Diag(pn,S(Z))
1/2 Diag(pS(Z))

−1/2 → Ids∗ , n→∞ .

Finally, to prove (3.4.15) it suffices to show that
√
kn Diag(pS(Z))

−1/2(pn,S(Z) − pS(Z)) → 0

which is true under assumption (3.4.14).

Proof of Lemma 3.5.2. Let f be the function defined as f(t) = h(t̂̃p + (1− t)p̃∗) for t ∈ [0, 1], where
h is defined as

h(p̃) = KL
(
Pk

∥∥∥M(k; p̃)
)

+
∂

∂p̃
KL

(
Pk

∥∥∥M(k; p̃)
)

(̂̃p− p̃) .

Some short calculations give the following relations:

f(1) = h(̂̃p) = KL
(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=̂̃p ,
f(0) = h(p̃∗) = KL

(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=p̃∗
+

∂

∂p̃
KL

(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=p̃∗
(̂̃p− p̃∗)

= KL
(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=p̃∗
− ∂

∂p̃
E
[

logLM(k;p̃)(p̃; Tn)
]∣∣∣

p̃=p̃∗︸ ︷︷ ︸
=0 by definition of p̃∗

(̂̃p− p̃∗)

= KL
(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=p̃∗
,

f ′(t) =
∂h

∂p̃
(t̂̃p + (1− t)p̃∗)(̂̃p− p̃∗)

= (̂̃p− [t̂̃p + (1− t)p̃∗])> ∂2

∂p̃2
KL

(
Pk

∥∥∥M(k; p̃)
)∣∣∣
t̂̃p+(1−t)p̃∗

(̂̃p− p̃∗)

= (1− t)(̂̃p− p̃∗)>
∂2

∂p̃2
E
[
− logLM(k;p̃)(p̃; Tn)

]∣∣∣
t̂̃p+(1−t)p̃∗

(̂̃p− p̃∗) .

We apply Lemma 3.5.1 to the function f and g : t 7→ (t − 1)2. There exists c1 ∈ (0, 1) such that
(f(1)− f(0))g′(c1) = (g(1)− g(0))f ′(c1), i.e.(
KL

(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=̂̃p −KL
(
Pk

∥∥∥M(k; p̃)
)∣∣∣

p̃=p̃∗

)
2(c1 − 1)

= (1− c1)(̂̃p− p̃∗)>
∂2

∂p̃2
E
[

logLM(k;p̃)(Tn)
]∣∣∣
c1 ̂̃p+(1−c1)p̃∗

(̂̃p− p̃∗) .

Simplifying by 2(1− c1) 6= 0 gives the desired result.
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Proof of Lemma 3.5.3. Consider f(t) = h(tp̃∗ + (1− t)̂̃p), for t ∈ [0, 1] where h is defined as

h(p̃) = logLM(k;p̃)(p̃; Tn) +
∂

∂p̃
logLM(k;p̃)(p̃; Tn)(p̃∗ − p̃) .

Some short calculations give the following relations:

f(1) = h(p̃∗) = logLM(k;p̃)(p̃
∗; Tn) ,

f(0) = h(̂̃p) = logLM(k;p̃)(̂̃p; Tn) +
∂

∂p̃
logLM(k;p̃)(̂̃p; Tn)︸ ︷︷ ︸

=0 by definition of ̂̃p
(p̃∗ − ̂̃p) ,

f ′(t) =
∂h

∂p̃
(tp̃∗ + (1− t)t̂̃p)(p̃∗ − ̂̃p)

= (p̃∗ − [tp̃∗ + (1− t)̂̃p])>
∂2

∂p̃2
logLM(k;p̃)(tp̃

∗ + (1− t)̂̃p; Tn)(p̃∗ − ̂̃p)

= (1− t)(p̃∗ − ̂̃p)>
∂2

∂p̃2
logLM(k;p̃)(tp̃

∗ + (1− t)̂̃p; Tn)(p̃∗ − ̂̃p) .

We apply Lemma 3.5.1 to the function f and g : t 7→ (t − 1)2. There exists c2 ∈ (0, 1) such that
f(1)− f(0))g′(c2) = (g(1)− g(0))f ′(c2), i.e.(

logLM(k;p̃)(p̃
∗; Tn)− logLM(k;p̃)(̂̃p; Tn)

)
2(c2 − 1)

= −(1− c2)(p̃∗ − ̂̃p)>
∂2

∂p̃2
logLM(k;p̃)(c2p̃

∗ + (1− c2)̂̃p; Tn)(p̃∗ − ̂̃p) .

By simplifying by 2(c2 − 1) 6= 0 leads to the desired result.

For the two following Lemmas, we define the functions ψj and ψ as follows:

ψj(c) = c ̂̃pj + (1− c)p̃∗j = c
Tn, j
k

+ (1− c)pn, j , j = 1, . . . , s ,

and

ψ(c) = ĉ̃p+ (1− c)p̃∗ =
1

r − s

r∑
j=s+1

ψj(c) .

Remark 3.3.1 yields to the following convergence in probability:

ψj(c)

pn, j
→ 1 , n→∞ . (3.8.7)

Besides, the functions ψj and ψ satisfy the relations

inf
c∈(0,1)

ψj(c) = ̂̃pj ∧ p̃∗j = mj and sup
c∈(0,1)

ψj(c) = ̂̃pj ∨ p̃∗j = Mj , j = 1, . . . , s

inf
c∈(0,1)

ψ(c) = ̂̃p ∧ p̃∗ =: m and sup
c∈(0,1)

ψ(c) = ̂̃p ∨ p̃∗ =: M .
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Proof of Lemma 3.5.4. We differentiate twice the expression in Equation (3.5.8) with respect to the
vector p̃. This leads to the following Hessian matrix:

− ∂2

∂p̃2
logLM(k;p̃)(p̃; Tn) =



Tn, 1
p̃21

0 0 . . . 0

0
Tn, 2
p̃22

0 . . . 0

...
. . .

...
...

. . .
...

0 0 . . . 0
∑r
j=s+1 Tn, j

p̃2


.

Then, our goal is to prove that

∀j = 1, . . . , s , sup
(c,c′)∈(0,1)2

∣∣∣∣ Tn, j
kψj(c)2

− pn, j
ψj(c′)2

∣∣∣∣→ 0 , (3.8.8)

and sup
(c,c′)∈(0,1)2

∣∣∣∣
∑r

j=s+1 Tn, j

(r − s)kψ(c)2
−
∑r

j=s+1 pn, j

(r − s)ψ(c′)2

∣∣∣∣→ 0 . (3.8.9)

Regarding (3.8.8), we write∣∣∣∣ Tn,j
kψj(c)2

− pn, j
ψj(c′)2

∣∣∣∣ ≤ 1

ψj(c)2

∣∣∣∣Tn, jk − pn, j
∣∣∣∣+ pn, j

∣∣∣∣ 1

ψj(c)2
− 1

ψj(c′)2

∣∣∣∣
≤ 1

m2
j

∣∣∣∣Tn, jk − pn, j
∣∣∣∣+

pn, j
ψj(c)2ψj(c′)2

∣∣∣∣ψj(c′)2 − ψj(c)2

∣∣∣∣
≤ 1

m2
j

∣∣∣∣Tn, jk − pn, j
∣∣∣∣+

pn, j
m4
j

∣∣∣∣M2
j −m2

j

∣∣∣∣ ,
and thus we obtain that

sup
(c,c′)∈(0,1)2

∣∣∣∣ Tn, j
kψj(c)2

− pn, j
ψj(c′)2

∣∣∣∣ ≤ 1

m2
j

∣∣∣∣Tn, jk − pn, j
∣∣∣∣+

pn, j
m4
j

∣∣∣∣M2
j −m2

j

∣∣∣∣→ 0 , n→∞ ,

where the convergence of both terms results from Assumption 3.5.1.

We move on to the term (3.8.9). For all c ∈ (0, 1) we have the following inequalities∣∣∣∣
∑r

j=s+1 Tn, j

k(r − s)ψ(c)2
−
∑r

j=s+1 pn, j

(r − s)ψ(c′)2

∣∣∣∣ ≤ 1

ψ(c)2

∣∣∣∣
∑r

j=s+1 Tn, j

k
−

r∑
j=s+1

pn, j

∣∣∣∣+

∑r
j=s+1 pn, j

ψ(c)2ψ(c′)2

∣∣∣ψ(c′)2 − ψ(c)2
∣∣∣

≤ 1

(
∑r

j=s+1mj)2

r∑
j=s+1

∣∣∣Tn, j
k
− pn, j

∣∣∣+

∑r
j=s+1 pn, j

(
∑r

j=s+1mj)4

∣∣∣( r∑
j=s+1

Mj

)2
−
( r∑
j=s+1

mj

)2∣∣∣ ,
which converges to zero thanks to Assumption 3.5.1.
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Proof of Lemma 3.5.5. We start with Equation (3.5.8) and take the expectation of both sides:

E[− logLM(k;p̃)(p̃; Tn)] = − log(k!) +
2d−1∑
j=1

E[log(Tj !)]−
s∑
j=1

kpn, j log(p̃j)−
( r∑
j=s+1

kpn, j

)
log(p̃) .

Then, differentiating twice this expression with respect to the vector p̃ leads to the following Hessian
matrix:

∂2

∂p̃2
E[− logLM(k;p̃)(p̃; Tn)] =



kpn, 1
p̃21

0 0 . . . 0

0
kpn, 2
p̃22

0 . . . 0

...
. . .

...
...

. . .
...

0 0 . . . 0
∑r
j=s+1 kpn, j

p̃2


.

Then, for c ∈ (0, 1), we write

(̂̃p− p̃∗)>
∂2

∂p̃2
E
[
− logLM(k;p̃)(p̃; Tn)

]∣∣
ĉ̃p+(1−c)p̃∗(

̂̃p− p̃∗)

=
s∑
j=1

k( ̂̃pj − p̃∗j )2pn, j

ψj(c)2
+

∑r
j=s+1 k(̂̃p− p̃∗)2pn, j

ψ(c)2
(3.8.10)

=

s∑
j=1

k(Tn, j/k − pn, j)2

pn, j

p2
n, j

ψj(c)2
+ k

(
∑r

j=s+1 Tn, j/k − pn, j)2∑r
j=s+1 pn, j

∑r
j=s+1 pn, j

(r − s)2ψ(c)2
.

(3.8.11)

Following Equation (3.8.7), we know that ψj(c)/pn, j and
∑r

j=s+1 pn, j/[(r − s)ψ(c)] converge to 1

when n→∞, and thus Equation (3.4.18) and Slutsky’s theorem yield to the following convergence:

(̂̃p− p̃∗)>
∂2

∂p̃2
E
[
− logLM(k;p̃)(p̃; Tn)

]∣∣
ĉ̃p+(1−c)p̃∗(

̂̃p− p̃∗)
d→ χ2(s+ 1) , n→∞ .



Chapter 4

Regular variation and conditional
independence

Abstract

The multivariate Pareto distribution Y defined in terms of threshold exceedances (Rootzén and Tajvidi
(2006)) summarizes the tail behavior of a regularly varying random vector. Since this vector does not take
values in a product space, there is no natural way to introduce a concept of independence for its marginals.
In a recent paper, Engelke and Hitz (2020) introduce an approach to define conditional independence for
a multivariate Pareto distribution by restricting the support of Y. This chapter consists in a discussion of
this article. We analyze their different assumptions which lead us to develop another approach based on
the minimum of the marginals of a regularly varying random vector. In this context, we establish some
interpretable results for conditional independence regarding extreme values and compare our approach with
the one of Engelke and Hitz (2020).

Keywords— multivariate extremes, multivariate Pareto distribution, regular variation, tail measure,

threshold exceedances

Regarding our questions

(Q1) This chapter tackles the question of the dependence structure in EVT with a different angle
as the two previous one. Indeed, we focus here only on extremal dependent data, that is,
data for which it is likely that all marginals are simultaneously extreme. In this context,
no tools regarding dimension reduction are provided since extreme events do not appear on
lower-dimensional subsets.

(Q2) Our approach relies on the minimum of the marginals of a regularly varying random vector X.
We study the behavior of the vector X conditioned on the event that this minimum is large.
There, we explore how conditional independence can be transpose to this setting.

(Q3) The regular variation assumption does not rely on a norm as it was the case until now. Here
we replace the standard setting by a pseudo-norm, in our case the minimum of the marginals
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and study the effect of this approach on the limit vector. The threshold condition used here is
then min1≤j≤dXj > t. We discuss the consequences of this choice only at a theoretical level.
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4.1 Introduction

It is customary in Extreme Value Theory (EVT) to study the tail behavior of a random vector
X ∈ Rd+ through its threshold exceedances X | |X| > t. After a proper normalization this condi-
tional distribution converges under some assumptions to a vector Y which summarizes the extreme
structure of X. When the chosen norm corresponds to the infinity norm the distribution of Y is
called multivariate Pareto distribution (Rootzén and Tajvidi (2006)). Several results on this family
of distributions have been established (Rootzén et al. (2018a), Kiriliouk et al. (2019)). In this con-
text, the study of the tail behavior of X needs to properly take into account the dependence between
the marginals X1, . . . , Xd. In particular, if all marginals are independent, it leads to asymptotic in-
dependence: The distribution of Y only places mass on the axes (see Section 1.2.3, and also De Haan
and De Ronde (1998), Marshall and Olkin (1983), Ledford and Tawn (1996)). Conversely, asymp-
totic dependence arises when several marginals of X are likely to be simultaneously extreme (Coles
et al. (1999)).

The notion of independence in EVT is therefore deeply linked to the dependence structure of the
original vector X. Regarding the limit vector Y, its marginals are often strongly dependent in both
asymptotic independence and asymptotic dependence cases. Moreover, studying the dependence
structure of the marginals Y1, . . . , Yd is not straightforward since Y does not take values in a product
space. In a recent paper, Engelke and Hitz (2020) introduce a concept of conditional independence
to multivariate Pareto distributions under some assumptions on the support of Y. It enables then
to develop a theory of graphical models for extremes. Standard results on this topic like the pairwise
Markov property or the Hammersley-Clifford theorem are transposed to the extreme case.
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The aim of this chapter is twofold. The first step consists in a study of the approach developed
by Engelke and Hitz (2020). A particular attention is paid to the assumption made on the limit
vector Y. This assumption is discussed in a context of regularly varying random vectors and leads
to slightly different approach based on the minimum of the marginals of X.

Outline General results on regular variation, conditional independence and graphical models are
gathered in Section 4.2. Section 4.3 introduces the approach of Engelke and Hitz (2020) to study
conditional independence for the marginals of a multivariate Pareto distribution. We particularly
discuss the assumptions made on the limit vector Y. This discussion highlights the central role played
by the minimum of the marginals of a regularly varying random vector. In Section 4.4 we gather
several results to characterize regular variation via the minimum of the marginals. Finally, Section
4.5 details the other approach of conditional independence for multivariate Pareto distributions.

4.2 Theoretical background

4.2.1 Regular variation

Let E = [0,∞)d \ {0}. We consider a regularly varying random vector X ∈ E : There exists an →∞
and a non-zero Radon measure on the Borel σ-field of E such that for any µ-continuity set A we
have

nP(a−1
n X ∈ A)→ µ(A) , n→∞ . (4.2.1)

In this case, there exist α > 0 such that the limit measure µ is homogeneous with index −α, i.e.
µ(tA) = t−αµ(A) for any t > 0 and any Borel set A ⊂ E (see Section 1.2.2.2).

The homogeneity property of µ implies that for u > 0 the complementary of the product set
[0, u]d in E is a µ-continuity set. Indeed, the boundary of this set is equal to {x ∈ E , |x|∞ = u}.
Thus, following Equation (4.2.1) we write

µ
(
{x ∈ E , |x|∞ = u}

)
= lim

ε→0

[
µ
(
{x ∈ E , |x|∞ ≥ (1− ε)u}

)
− µ

(
{x ∈ E , |x|∞ ≥ (1 + ε)u}

)]
= lim

ε→0

[
(1− ε)−α − (1 + ε)−α

]
µ
(
{x ∈ E , |x|∞ ≥ u}

)
= 0 ,

which gives the desired result.

Remark 4.2.1. With u = 1 we obtain the convergence

nP(|X|∞ > an) = nP(a−1
n X ∈ [0,1]c)→ µ([0,1]c) , n→∞ .

As explained in Section 1.2.2.2, it is sometimes convenient to choose a sequence (an) such that
nP(|X|∞ > an)→ 1 when n→∞ so that µ([0,1]c) = 1.
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Actually, we can extend the previous property to sets of the form [0, z]c for z > 0. Indeed, if
z > 0, then the boundary of the set [0, z]c corresponds to the union ∪dj=1Aj(z) where the sets Aj(z)

are defined as

Aj(z) =

j−1∏
l=1

[0, zl]× {zj} ×
d∏

l=j+1

[0, zl] , j = 1, . . . , d .

For j ∈ {1, . . . , d}, the set Aj(z) is included in the set {x ∈ E , xj = zj}. Therefore, using the
homogeneity property of µ leads to the inequality

µ(Aj(z)) ≤ µ({x ∈ E , xj = zj})

= lim
ε→0

[
µ
(
{x ∈ E , xj ≥ (1− ε)zj}

)
− µ

(
{x ∈ E , xj ≥ (1 + ε)zj}

)]
= lim

ε→0

[
(1− ε)−α − (1 + ε)−α

]
µ
(
{x ∈ E , xj ≥ zj}

)
= 0 ,

since µ
(
{x ∈ E , xj ≥ zj}

)
is finite, see Section 1.2.2.2. We then conclude that µ(∂[0, z]c) ≤

µ(A1(z)) + . . .+ µ(Ad(z)) = 0 which proves that [0, z]c is a µ-continuity set. In particular it means
that

nP(a−1
n X ∈ [0, z]c)→ µ([0, z]c) , n→∞ ,

for all z > 0.
We rephrase the convergence in Equation (4.2.1) in terms of threshold exceedances. To this end,

consider z > 0 and observe that

P(a−1
n X ∈ [0, z] | |X|∞ > an) =

P(a−1
n X ∈ [0, z], |X|∞ > an)

P(|X|∞ > an)

=
P(a−1

n X ∈ [0, z] ∩ [0,1]c)

P(a−1
n X ∈ [0,1]c)

=
nP(a−1

n X ∈ [0, z ∧ 1]c \ [0, z]c)

nP(a−1
n X ∈ [0,1]c)

.

Since the sets [0,1]c, [0, z]c, and [0, z ∧ 1]c are µ-continuity sets, we obtain the convergence

lim
n→∞

P(a−1
n X ∈ [0, z] | |X|∞ > an) =

µ([0, z ∧ 1]c)− µ([0, z]c)

µ([0,1]c)
, n→∞ . (4.2.2)

It is possible to obtain a continuous version of this convergence replacing an → ∞ by u → ∞ (see
Resnick (1987), Theorem 6.1). This leads then to the definition of the limit distribution of the
threshold exceedances of X:

P(Y ≤ z) = lim
u→∞

P(u−1X ≤ z | |X|∞ > u) , z > 0 . (4.2.3)

The distribution of Y is called multivariate Pareto distribution (Rootzén and Tajvidi (2006)).
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Remark 4.2.2. Since the family of sets {[0, z], z > 0} generates the σ-algebra of (0,∞)d, the
previous convergence can be extended to any Borel set A of (0,∞)d. In particular, with the µ-
continuity set At = {x ∈ E , |x|∞ = t}, for t ≥ 1, we obtain that

P(Y ∈ At) = lim
n→∞

P(a−1
n X ∈ At | |X|∞ > an) = lim

n→∞

nP(a−1
n X ∈ At)

nP(a−1
n X ∈ A1)

=
µ(At)

µ(A1)
= t−α ,

by the homogeneity property of µ. This proves that P(|Y|∞ > t) = t−α, which means that the |Y|∞
follows a Pareto(α) distribution.

Remark 4.2.3. If we assume that µ([0,1]c) = 1 (see Remark 4.2.1), then combining Equa-
tions(4.2.2) and (4.2.3) leads to the relation

P(Y ∈ [0, z]c) = µ([0, z]c) ,

for all z ∈ [1,∞)d.

It is possible to extend the convergence in Equation (4.2.3) to the whole set E . To this end, it
suffices to prove that this convergence holds for all z ∈ E . We then conclude by using the fact that
the family of sets {[0, z], z ∈ E} generates the σ-algebra of E . Consider a vector z ∈ E with at least
one null coordinate, say zk = 0. If P(Y ∈ ∂[0, z]) = 0, then P(Y ∈ [0, z]) = 0. As soon as X has
non-degenerate marginals (which we assume), we obtain the inequality P(u−1X ∈ [0, z]) ≤ P(Xk =

0) = 0. Hence, Equation (4.2.3) holds for this z. All in all, we obtain the following convergence in
distribution in E :

X/u | |X|∞ > u
d→ Y , u→∞ . (4.2.4)

Equation (4.2.4) has a natural interpretation in terms of extreme values since it defines a multi-
variate Pareto distribution as the limit of a regularly varying random vector X conditioned on the
event that at least one component of X exceeds a high threshold. Several properties of this family of
distributions have been established by Rootzén et al. (2018a) and Kiriliouk et al. (2019). Different
models for this kind of distribution have been provided by Rootzén et al. (2018b). The choice of the
infinity norm in (4.2.4) implies that the vector Y belongs to the space

L = {x ∈ Rd+, |x|∞ > 1} = {x ∈ Rd+, ∃k = 1, . . . , d, xk > 1} = Rd+ \ [0, 1]d . (4.2.5)

since L = [0,1]c is a µ-continuity set and P(X/u ∈ L | |X|∞ > u) = 1.

4.2.2 Independence and conditional independence

Conditional independence is an extension of independence to conditional probabilities and distribu-
tions. It highlights the fact that two independent events can be dependent as soon as a third event
occurs. Given three random variables X, Y , and Z with support X , Y, and Z, we say that X is
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independent of Y given Z, and we write X ⊥ Y | Z, if

P(X ∈ A, Y ∈ B | Z ∈ C) = P(X ∈ A | Z ∈ C)P(Y ∈ B | Z ∈ C) , (4.2.6)

for all sets A ⊂ X , B ⊂ Y, and C ⊂ Z such that P(Z ∈ C) > 0. If Z is deterministic, then Equation
(4.2.6) boils down to standard independence between X and Y .

Example 4.2.1. Consider a triplet of random variables (X,Y, Z) with a joint distribution p(X,Y, Z)

which factorizes as
p(X,Y, Z) = p(X | Z)p(Y | Z)p(Z) .

This factorization implies that p(X,Y | Z) = p(X | Z)p(Y | Z). Therefore, the random variables X
and Y are conditionally independent given Z. On the contrary, the joint distribution of (X,Y ) is
given by

p(X,Y ) =
∑
z

p(X,Y, Z = z) =
∑
z

p(X | Z = z)p(Y | Z = z)p(Z = z) ,

which does not factorize in general into the product p(X)p(Y ). Hence the random variables X and
Y are in general not independent.

Conditional independence is often used in a multivariate framework to study the dependence
structure of the marginals of a random vector. Let X be a random vector taking values in a
Cartesian product E = E1 × . . .×Ed ⊂ Rd and consider a partition AtB tC of {1, . . . , d}. Then,
in a lot of situations, we are willing to study the conditional independence of XA and XC given XB.
If we assume that X has a positive and continuous density fX on E, then XA ⊥ XC | XB if and
only if the density factorizes as

fX(x)fX, B(xB) = fX, A∪B(xA∪B)fX, B∪C(xB∪C) , x ∈ E . (4.2.7)

In particular if B = ∅ it boils down to standard independence of XA and XC .

Note that as for standard independence, conditional independence requires distributions sup-
ported on product spaces.

Graphical Models In the context of graphical models, conditional independence of the marginals
of a random vector in Rd can be represented via a graph whose set of vertices is V = {1, . . . , d}.
Indeed, for an undirected graph G = (E, V ) with vertices V = {1, . . . , d} and a set of edges E ⊂
V × V , the idea behind graphical models is to associate to each vertice k ∈ V a random variable
Xk taking values in Xk ⊂ R and to build the vector X = (X1, . . . , Xd)

> ∈ X =
∏d
k=1Xk. If X

admits a positive and continuous density fX on X , then it is possible to characterize conditional
independence through the pairwise Markov property relative to G:

∀(i, j) /∈ E , Xi ⊥ Xj | X\{i,j} . (4.2.8)
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A random vector X is then called probabilistic graphical model on the graph G if its distribution
satisfies the pairwise Markov property. Hence, the conditional dependence structure of a probabilis-
tic graphical model can be easily visualized through the associated graph. Note that conditional
independence also arises with directed graphs. This is for instance the case in Bayesian Network
Theory in which the dependence relations rely on the concepts of parents variables (see for instance
the monograph of Jensen et al. (1996)).

Example 4.2.2 (Continuation of Example 4.2.1). The vector X ∈ R3 with marginals X, Y , and Z
defined in Example 4.2.1 is a probabilistic graphical model on the graph G given in Figure 4.1.

Y

Z

X

Figure 4.1: A undirected graph G with three vertices.

Example 4.2.3. Consider the graph G′ given in Figure 4.2. The random vector X with marginals
Xj is a probabilistic graphical model on G′ if

X1 ⊥ X3 | X{2,4} and X2 ⊥ X4 | X{1,3} .

X1 X2

X3X4

Figure 4.2: A undirected graph G′ with four vertices.

Recently, graphical representations of probabilistic relations has been studied in a statistical
framework (Dawid (1979) and Dawid (1980)). The monograph of Lauritzen (1996) gathers all useful
results on graphical models and a particular attention is paid to conditional independence. One of
the advantages of graphical models and conditional independence is their interpretability in terms
of probabilistic structure. Indeed, these models often lead to sparse pattern in multivariate random
vectors as explained in Wainwright and Jordan (2008).
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4.3 Conditional independence according to Engelke and Hitz (2020)

We consider a vector Y with a multivariate Pareto distribution as defined in Equation (4.2.4). The
choice of the infinity norm and the condition {|X|∞ > u} lead to a natural interpretation of Y in
terms of the extreme behavior of X (at least one of the components of X is large). However, this
choice has the drawback to provide a limit Y which belongs to a subset that is not a product space
(see Figure 4.3a). In order to exhibit a product space we rewrite the set L introduced in Equation
(4.2.5) as the union L = ∪dk=1Lk with

Lk = {x ∈ E , xk > 1} , k = 1, . . . , d .

For a fixed k ∈ {1, . . . , d} the subset Lk is a product set. Moreover, if we condition the limit vector
Y on the event that {Yk > 1}, then we obtain a conditional vector Yk = Y | Yk > 1 whose support
is included in Lk (see Figure 4.3).

A particular attention should be paid on the condition {Yk > 1}. Indeed, since Y ∈ E there
exists k ∈ {1, . . . , d} such that P(Yk > 1) > 0. But for the moment there is no guarantee that the
inequality P(Yk > 1) > 0 holds for all k. To tackle this issue (and also to avoid other technical
difficulties), Engelke and Hitz (2020) assume that the limit distribution Y does not place any mass
on lower-dimensional faces of E . It is equivalent to assume that

P
(
Y ∈ Ẽ

)
= 1 , (4.3.1)

where Ẽ = (0,∞)d. Regarding the subsets Cβ defined in (1.4.4), it means that the only subset
on which Y places mass is the central one C{1,...,d}. In particular, this assumption implies that
the distribution Y is a model for asymptotic extremal dependence. Under assumption (4.3.1), we
have the equality P(Yk > 0) = 1. By homogeneity of the underlying measure µ, this leads to the
inequality P(Yk > 1) > 0. Hence, the conditional vector Yk is now well defined for all k = 1, . . . , d.

Remark 4.3.1. The models studied in this framework are used for data with a strong tail depen-
dence between the components. This differs from the approach used in Chapter 2 and Chapter 3
in which we assumed that large events appear due to the extreme behavior of only few coordinates.
Hence, sparse regular variation is not helpful in this framework.

Remark 4.3.2. Under assumption (4.3.1), we obtain that the convergence

P(Y ≤ z) = lim
u→∞

P(u−1X ≤ z | |X|∞ > u) , (4.3.2)

which appears in Equation (4.2.3) holds for all z ∈ E . If X has non-degenerate marginals, then the
converse is true. Indeed, if we consider a vector z ∈ E with zk = 0, then Equation (4.3.2) implies
that

0 = P(Xk = 0 | |X|∞ > u) ≥ P(u−1X ≤ z | |X|∞ > u)→ P(Y ≤ z) , u→∞ .
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Hence, P(Y ≤ z) = 0 for all z ∈ E such that zk = 0. This implies that P(Yk = 0) = 0. Since this
holds for any k = 1, . . . , d, it follows that Y does not place any mass on lower-dimensional subspaces,
hence (4.3.1) holds.
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Figure 4.3: A data set and the supports of the different vectors Y, Y1, Y2. The shaded areas
correspond to (a) the support of Y, (b) the support of Y1 and (c) the support of Y2.

If Y admits a density fY on L, then the density of Yk is given by

fk(y) =
fY(y)∫

Lk fY(y) dy
, y ∈ Lk . (4.3.3)

Note that the existence of a density for Y also requires to assume that (4.3.1) holds.
In this context, Engelke and Hitz (2020) define a notion of conditional independence for extremes

as follows. Consider A,B,C ⊂ {1, . . . , d} non-empty disjoint subsets whose union is {1, . . . , d}.
Then, YA is said to be conditionally independent of YC given YB if

∀k = 1, . . . , d , Yk
A ⊥ Yk

C | Yk
B . (4.3.4)

If such a condition holds, they denote it by Yk
A ⊥e Yk

C | Yk
B. In terms of the density fkY of Yk,

Equation (4.3.4) is equivalent to the factorization

∀k = 1, . . . , d, fkY(y)fkY, B(yB) = fkY, A∪B(yA∪B)fkY, B∪C(yY, B∪C) , y ∈ Lk .

Actually it sufficies to check that the condition in (4.3.4) holds for one k ∈ B (see Engelke and Hitz
(2020) Proposition 1).

Graphical models In the context of graphical models, Engelke and Hitz (2020) adapt the pairwise
Markov property given in (4.2.8) to the definition given by (4.3.4). The multivariate Pareto distri-
bution satisfies the pairwise Markov property relative to a graph G = (V,E) with V = {1, . . . , d}
if

∀(i, j) /∈ E, Yi ⊥e Yj | Y{i,j} .
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If such a property holds, the vector Y is called an extremal graphical model with respect to the
graph G. Several characterizations of extremal graphical models are established by Engelke and
Hitz (2020). The general idea is that the standard results in the theory of graphical models and
conditional independence can be transposed to the extremal case. We do not insist more on the
concept of graphical models and rather focus on an another approach to build a similar notion of
conditional independence for Y.

4.4 Regular variation via the minimum of the marginals

4.4.1 Considering the minimum

In all this section we consider a random vector X ∈ E . If X is regularly varying with multivariate
Pareto distribution Y (see Equation (4.2.4)), then the assumption (4.3.1) on Y done by Engelke
and Hitz (2020) can be reformulated in terms of the minimum of the marginals of Y:

P
(

min
1≤k≤d

Yk > 0
)

= P
(
Y ∈ Ẽ

)
= 1 . (4.4.1)

With Equation (4.4.1) we introduce two aspects which are of constant use in what follows.
The first one is the use of the function min : Rd+ → [0,∞). Indeed, the probability P(min1≤k≤d Yk >

0) encourages to characterize regularly varying random vectors via the minimum of their marginals.
The goal is then to replace |X|∞ in (4.2.4) by min1≤k≤dXk. This approach requires some precautions
since min is not a norm even it satisfies some homogeneity properties. Besides, conditioning on the
event that {min1≤k≤dXk > u} needs to place ourselves in an appropriate subspace. Indeed, just as
we have to restrict the study of regular variation to the space Rd+ \ {0} when we use a arbitrary
norm | · |, it is necessary to remove the sets on which the function min vanishes, that is, the axes. A
regular variation property which involves the minimum of the marginals must therefore be define on
the restricted subspace Ẽ = (0,∞)d. This leads to the second key aspects that appears with (4.4.1):
The set Ẽ = (0,∞)d is a product space which enables to consider conditional independence on this
set.

Recall that the vector Y can be expressed as the limit of the excedeences of X in a sequential
form as in Equation (4.2.2) or in a continuous form as in Equation (4.2.4). Equivalently, the regular
variation property (4.2.1) based on a sequence (an) can be expressed in a continuous fashion. A
random vector X ∈ E is regularly varying with tail index α > 0 if there exists a regularly varying
function R with index −α and a non-null Radon measure µ on the Borel σ-field of E such that for
any µ-continuity set A we have

1

R(u)
P(u−1X ∈ A)→ µ(A) , u→∞ , (4.4.2)

see Hult and Lindskog (2006), Theorem 3.1 for more details. A standard choice for the regularly
varying function is R(u) = P(|X| > u). The idea is now to extend the standard notion of regular
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variation which relies on a fixed norm to the minimum of the marginals or more generally to a
norm-like function called modulus ρ. Starting from Equation (4.4.2), the central point is to prove
that it is possible to replace R(u) = P(|X| > u) by R′(u) = P(ρ(X) > u). This issue is addressed
by Segers et al. (2017), Lemma 3.1. The function ρ : Rd+ → [0,∞) has to satisfy some properties
closed to the one satisfied by a norm (see in Segers et al. (2017), Definition 2.2). It is the case of
the minimum of the components min : Ẽ → (0,∞) which leads to the following characterization (see
Segers et al. (2017), Proposition 3.1). A random vector X is regularly varying on the space Ẽ if and
only if there exists a random vector Y′ such that

min
1≤k≤d

Xk is regularly varying and
(
u−1X | min

1≤k≤d
Xk > u

) d→ Y′ , u→∞ . (4.4.3)

In this case, there exists a non-null Radon measure µ′ on the Borel σ-field of Ẽ such that for any
µ′-continuity set A we have

1

P(min1≤k≤dXk > u)
P(u−1X ∈ A)→ µ′(A) , u→∞ .

As already explained, removing the axes and hence restricting the regular variation condition of X to
the space Ẽ is necessary to capture the asymptotic behavior of X through the events {min1≤k≤dXk >

u}. Regarding the vector X, we already mentioned that the definition of Y in Equation (4.2.4)
has a natural interpretation in terms of threshold exceedances. A multivariate Pareto distribution
corresponds to the distribution of X conditioned on the event that at least one marginal is large.
On the other hand, the random vector Y′ defined in (4.4.3) correspond to the distribution of X

conditioned on the event that all marginals are simultaneously large. Although this approach seems
more restrictive (all marginals have to be simultaneously large), it is actually not the case under the
additional assumption (4.4.1). A detailed comparison of both approaches is provided at the end of
this section.

A short computation shows that the support of Y′ is included in

{
x ∈ E , min

1≤k≤d
xk > 1

}
= (1,∞)d =

⋂
1≤k≤d

Lk .

Indeed, the boundary of the set (1,∞)d in Ẽ corresponds to the set {x ∈ Ẽ , min1≤k≤d xk = 1}.
Then, a short calculation gives that

P(Y′ ∈ ∂(1,∞)d) = P
(

min
1≤k≤d

Y ′k = 1
)

= lim
ε→0

[
P
(

min
1≤k≤d

Y ′k ≥ 1− ε
)
− P

(
min

1≤k≤d
Y ′k ≥ 1 + ε

)]
= lim

ε→0

[
(1− ε)−α − (1 + ε)−α

]
P
(

min
1≤k≤d

Y ′k ≥ 1
)

= 0 ,
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where for the third equality we have also used the homogeneity of the minimum. Then, following
Portmanteau Theorem we can conclude that

P(Y′ ∈ (1,∞)d) = lim
u→∞

P(u−1X ∈ (1,∞)d | min
1≤k≤d

Xk > u) = lim
u→∞

1 = 1 .

A illustration of the set (1,∞)d is given in Figure 4.4b.

1

1

••••
•

•
•
•
••
•••••
•• •
•

•

•
••

• •
•

•

•

•

Y2

Y1

1

1

••••
•

•
•
•
••
•••••
•• •
•

•

•
••

• •
•

•

•

•

Y ′2

Y ′1

(a) (b)

Figure 4.4: A data set and the supports of Y and Y′. The shaded areas correspond to (a) the
support of Y and (b) the support of Y′.

4.4.2 Comparison of both approaches

Let us recap the different approaches we have introduced. For X ∈ E , we say that X is regularly
varying on E if there exists a random vector Y such that distribution of exceedances converges
weakly:

u−1X | |X|∞ > u
d→ Y , u→∞ . (RV)

Engelke and Hitz (2020) add to this convergence an assumption on the support of the limit vector
Y:

P(Y ∈ Ẽ) = 1 . (E-H)

On the other hand, we place ourselves in the context of a random vector X which is regularly varying
on Ẽ , which corresponds to

min
1≤k≤d

Xk is regularly varying , (Min-1)

and (
u−1X | min

1≤k≤d
Xk > u

) d→ Y′ , u→∞ . (Min-2)

Proposition 4.4.1. Assume that (RV) and (E-H) hold. Then (Min-1) and (Min-2) hold.

Proof. For u > 0, we write

P
(

min
1≤k≤d

Xk > u
)

= P(u−1X ∈ (1,∞)d) = P(u−1X ∈ (1,∞)d | |X|∞ > u)P(|X|∞ > u) ,
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which implies that

P
(

min1≤k≤dXk > tu
)

P
(

min1≤k≤dXk > u
) =

P(u−1X ∈ (t,∞)d | |X|∞ > u)

P(u−1X ∈ (1,∞)d | |X|∞ > u)
.

Since P(Y ∈ ∂(1,∞)d) = 0, this ratio converges to P(Y ∈ (t,∞)d)/P(Y ∈ (1,∞)d) = t−α. Hence
the minimum of the marginals is regularly varying with tail index α which proves (Min-1).

We now prove (Min-2). For z ∈ Ẽ we write

P
(
X/u ≤ z | min

1≤k≤d
Xk > u

)
=

P
(
X/u ≤ z, min1≤k≤dXk > u

)
P
(

min1≤k≤dXk > u
)

=
P
(
X/u ≤ z, min1≤k≤dXk > u | |X|∞ > u

)
P
(

min1≤k≤dXk > u | |X|∞ > u
)

=
P
(
X/u ∈ [0, z] ∩ (1,∞)d | |X|∞ > u

)
P
(
X/u ∈ (1,∞)d | |X|∞ > u

) .

Following (RV), we obtain

lim
u→∞

P
(
X/u ≤ z | min

1≤k≤d
Xk > u

)
=

P(Y ∈ [0, z] ∩ (1,∞)d)

P(Y ∈ (1,∞)d)
= P(Y ∈ [0, z] | Y ∈ (1,∞)d) . (4.4.4)

Hence the limit vector Y′ corresponds to the vector Y conditioned on the event that {Y ∈ (1,∞)d} =

{min1≤k≤d Yk > 1}. Therefore, condition (Min-2) holds with Y′ = Y | Y ∈ Ẽ .

Proposition 4.4.1 states that the framework of (4.4.3) includes the one of Engelke and Hitz
(2020). In particular, Equation (4.4.4) implies that if Y admits a density fY, then Y′ admits a
density fY′ on Ẽ satisfying the relation

fY′(y) =
fY(y)

P(Y > 1)
, y ∈ (1,∞)d . (4.4.5)

Conversely, the conditions (Min-1) and (Min-2) are more general than the setting of Engelke and
Hitz (2020), i.e. (RV) and (E-H). Indeed, assume for instance that X is regularly varying on E with
independent marginals. On the one hand, the limit vector Y has a distribution which only places
mass on the axes (see Section 1.2.3). Therefore, assumption (4.3.1) does not hold in this case. On
the other hand, regarding the minimum of the marginals, their independence implies that for x > 0,

P
(

min1≤k≤dXk > xt
)

P
(

min1≤k≤dXk > t
) =

P
(
∀k = 1, . . . , d, Xk > xt

)
P
(
∀k = 1, . . . , d, Xk > t

) =
d∏

k=1

P
(
Xk > xt

)
P
(
Xk > t

) → d∏
k=1

x−αkk ,

when t→∞ and where αk > 0 denotes the tail index of the regularly varying random variable Xk.
This proves that the minimum is regularly varying with tail index α1 + . . . + αd, hence (Min-1) is
true. In particular if all marginals have the same tail index α (for instance after a rank transform),
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then the tail index of the minimum is dα (see Jessen and Mikosch (2006), Section 5.4 for more
details).

Moreover, the independence of the marginals of X implies that for all z > 0,

P
(
X/u > z | min

1≤k≤d
Xk > u

)
=

P
(
X/u > 1 ∨ z

)
P
(
X/u > 1

) =

∏d
k=1 P

(
Xk/u > 1 ∨ zk

)∏d
k=1 P

(
Xk/u > 1

) ,

which converges to
∏d
k=1(1∨zk)−αk when u→∞. Since the family of sets {[z,∞), z > 0} generates

the convergence in Ẽ it proves (Min-2).

These considerations imply that the conditions (Min-1) and (Min-2) are more general than the
framework of Engelke and Hitz (2020). Based on the setting of Equation (4.4.3), we introduce a new
definition of conditional independence for multivariate Pareto distributions.

4.5 Another notion of conditional independence

In this section we consider a random vector X ∈ E which satisfies (4.4.3). The limit vector Y′

is defined on the product space (1,∞)d so that it is possible to define a notion of conditional
independence for Y′ by

Y′A ⊥ Y′C | Y′B , (4.5.1)

for three non-empty disjoint subsets A,B,C ⊂ {1, . . . , d} whose union is {1, . . . , d}.
If Y′ admits a positive and continuous density fY′ it is equivalent to say that the density fY′

factorizes as

fY′(y)fY′, B(yB) = fY′, A∪B(yA∪B)fY′, B∪C(yB∪C), y ∈ (1,∞)d . (4.5.2)

Proposition 4.5.1. Consider a random vector X satisfying (RV) and (E-H) and assume that the
limit vector Y admits a density fY on L. Consider three non-empty disjoint subsets A,B,C ⊂
{1, . . . , d} whose union is {1, . . . , d}. If YA ⊥e YC | YB, then Y′A ⊥ Y′C | Y′B.

Proof. Recall that if Y satisfies (E-H) then by Proposition 4.4.1 the vector Y′ exists and the density
of Y′ is given by (4.4.5).

From the definition of conditional independence for multivariate Pareto distributions, the relation
YA ⊥e YC | YB is equivalent to

∀k = 1, . . . , d, fkY(y)fkY, B(yB) = fkY, A∪B(yA∪B)fkY, B∪C(yY, B∪C), y ∈ Lk .

With Equation (4.3.3) it follows that for all y ∈ (1,∞)d

fY(y)fY, B(yB) = fY, A∪B(yA∪B)fY, B∪C(yY, B∪C) .
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We then conclude by using the relation between the density fY and fY′ which leads to (4.5.2).
Hence, we have proved that Y′A ⊥ Y′C | Y′B.

This proves once again that the notion of conditional independence for Y′ is an extension of the
one regarding Y.

Regarding the original vector X, the study of Y′ instead of Y provides two advantages. First,
the vector Y′ models the extreme behavior of X when all its marginals are simultaneously large. It
therefore provides accurate models for extremal dependent data. Note that if the strong condition
that all marginals are extreme together is not satisfied, then (4.4.3), and thus (4.4.1), is very unlikely.

The second advantage is that conditional independence of Y′ can be interpreted in terms of X,
as stated in the following proposition.

Proposition 4.5.2. Consider a random vector X satisfying (Min-1) and (Min-2). Let A,B,C ⊂
{1, . . . , d} be three non-empty disjoint subsets whose union is {1, . . . , d}. If XA ⊥ XC | XB, then
Y′A ⊥ Y′C | Y′B.

Proof. Denote by a (respectively b and c) the number of elements of A (respectively B and C). We
consider a subset EA (respectively EB and EC) of (1,∞)a (respectively (1,∞)b and (1,∞)c). The
conditional independence of XA and XC given XB implies that

P
(
x−1X ∈ EA × EB × (1,∞)c

)
= P

(
x−1XA∪B ∈ EA × EB

)
P
(
x−1XB∪C ∈ EB × (1,∞)c

)
, (4.5.3)

and

P
(
x−1X ∈ (1,∞)a × EB × EC

)
= P

(
x−1XA∪B ∈ (1,∞)a × EB

)
P
(
x−1XB∪C ∈ EB × EC

)
. (4.5.4)

Multiplying each side of Equations (4.5.3) and (4.5.4) together, and using again the conditional
independence of XA and XC given XB gives the following equality:

P
(
x−1X ∈ EA × EB × (1,∞)c

)
P
(
x−1X ∈ (1,∞)a × EB × EC

)
(4.5.5)

= P
(
x−1X ∈ EA × EB × EC

)
P
(
x−1X ∈ (1,∞)a × EB × (1,∞)c

)
.

Then, dividing both sides of Equation (4.5.5) by P(min X > x)2 and letting x → ∞ lead to the
desired result:

P
(
Y′A∪B ∈ EA × EB

)
P
(
Y′B∪C ∈ EB × EC

)
= P

(
Y′ ∈ EA × EB × EC

)
P
(
Y′B ∈ EB

)
,

which proves that Y′A is conditionally independent of Y′C given Y′B.

If B = ∅, then we obtain independence of XA and XC and therefore of Y′A and Y′C . In this
case, if Y exists, then its support is included in E \ Ẽ . There, (4.4.3) is satisfied but not (4.4.1).
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4.6 Conclusion

Essentially, conditional independence allows a better understanding of the dependence structure of
the marginals of a random vectors while it has a natural representation through graphical models.
Although it has been widely studied in different contexts, this concept has received little attention
in multivariate EVT so far. It is therefore a challenging issue to tackle conditional independence for
a multivariate Pareto distribution because of the structure of its support.

Based on the conditional distribution, Engelke and Hitz (2020) adapt conditional independence,
graphical models, and tree structures to extreme events. The authors show that the latter concepts
naturally arise with the expected properties when the distribution studied is the multivariate Pareto
distribution Y conditioned on the event that at least one marginal exceeds 1. This approach requires
to assume that Y does not place any mass on lower dimensional subspaces. Hence, this restrict our
study to extremal dependent data.

In this context, our approach consists in studying extreme values via the minimum of the
marginals instead of the infinity norm, see Equation (4.4.3). This approach is possible thanks
to different results on the minimum of the marginals of regularly varying random vectors (Jessen
and Mikosch (2006), Segers et al. (2017)). In particular, we proved that our setting includes the one
of Engelke and Hitz (2020), see Proposition 4.4.1.

We also proved that in terms of conditional independence our approach has a direct link with the
original regularly varying random vector X. However, no relation with the associated max-stable
distribution has been established yet. This may be a starting point for future work which could also
tackle extremal tree structure, as stated in Engelke and Hitz (2020).



Appendix A

A.1 Convergence to Types

For two random variables X and Y taking values in a general measurable space, we say that X and
Y are of the same type if there exist constant a > 0 and b ∈ R such that

X = aY + b .

In other words, X and Y have the same distribution up to a location and a scale parameter.
The following result is widely used in EVT. It ensures the unique limit distribution for the

normalized maximum and gives the possible normalization sequences. A proof can be found in
Resnick (1987), p. 7.

Theorem A.1.1 (Convergence to types theorem). Let (Xn) be a sequence of random variables, X
and Y be two random variables, and an > 0, a′n > 0, bn, b′n be constants. Suppose that

Xn − bn
an

d→ X .

Then the relation
Xn − b′n
a′n

d→ Y

holds if and only if

an/a
′
n → a ≥ 0 , and (bn − b′n)/a′n → b ∈ R , n→∞ .

In this case, Y = aX + b, and a, b are the unique constants for which this holds.
Moreover, X is non-degenerate if and only if a > 0 and in this case, X and Y are of the same

type.

A.2 Dynkin’s Theorem

Consider a measurable space (E, E). In many cases, we are willing to study some properties of
the subsets in E by focusing only on some particular subsets. Dynkin’s theorem ensures that is it
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possible to do so as soon as the subsets studied satisfy some stability properties. We recall here two
notions of measure theory.

1. A subset T ⊂ E is called a Π-system if T is closed under finite intersection, i.e. if A,B ∈ T ,
then A ∩B ∈ T .

2. A subset L ⊂ E is called a λ-system if

• E ∈ L,

• if A,B ∈ L with A ⊂ B, then B \A ∈ L,

• if (An) is a sequence of sets in L with An ⊂ An+1, then lim
n→∞

↑ An ∈ L.

Finally, for E ′ ⊂ E , denote by σ(E ′) the smallest σ-algebra generated by E ′.

Theorem A.2.1 (Dynkin). If T is a Π-system and L a λ-system satisfying T ⊂ L, then σ(T ) ⊂ L.

A proof of this theorem can be found in Kallenberg (2006). In practice, the following corollary
is often used.

Corollary A.2.1. If two measures are equal on a Π-system which generates the σ-algebra, then they
are equal on the σ-algebra.

A.3 Bernstein’s inequality

The proof of Theorem 3.4.1 relies on Bernstein’s inequality. This inequality is widely used in con-
centration theory and several different versions have been established. We state here the one used
in the proof of Theorem 3.4.1.

Lemma A.3.1 (Bernstein’s inequality). If X is a random variable such that µ = E[X] is finite and
for all j ≥ 2, E[|X − µ|j ] ≤ Var(X) <∞, then for all λ ∈ (−1, 1), the following inequality holds:

E
[
eλ(X−µ)

]
≤ exp

(
λ2 Var(X)

2(1− λ/3)

)
. (A.3.1)

Proof. For λ ∈ (−1, 1) we write

eλ(X−µ) = 1 + λ(X − µ) + λ2
∞∑
j=2

λj−2 (X − µ)j

j!
.

Then, the Monotone Convergence Theorem entails

E
[
e(λ(X−µ)

]
= 1 + λ2

∞∑
j=2

λj−2E
[
(X − µ)j

]
j!

.
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Finally, we use the assumption on the moments of X, and the inequalities j! ≥ 2 · 3j−2, for j ≥ 2,
and ex ≥ 1 + x, and obtain that

E
[
eλ(X−µ)

]
≤ 1 + λ2

∞∑
j=2

λj−2

2 · 3j−2
Var(X) = 1 +

λ2 Var(X)

2(1− λ/3)
≤ exp

(
λ2 Var(X)

2(1− λ/3)

)
.
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The Indian Journal of Statistics, 20(3-4):207–210.

5. Balkema, A. A. and de Haan, L. (1974). Residual life time at great age. The Annals of
Probability, 2(5):792–804.

6. Basrak, B. (2000). The sample autocorrelation function of non-linear time series. PhD thesis,
University of Groningen.

7. Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. L. (2006). Statistics of Extremes:
Theory and Applications. John Wiley & Sons Ltd., Chichester.

8. Beirlant, J. and Teugels, J. L. (1992). Modeling large claims in non-life insurance. Insurance:
Mathematics and Economics, 11(1):17–29.

9. Beirlant, J., Teugels, J. L., and Vynckier, P. (1996a). Practical Analysis of Extreme Values.
Leuven University Press, Leuven.

10. Beirlant, J., Vynckier, P., and Teugels, J. L. (1996b). Excess functions and estimation of the
extreme-value index. Bernoulli, 2(4):293–318.

11. Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton, USA.

12. Beran, R. (1977). Minimum Hellinger distance estimates for parametric models. The Annals
of Statistics, 5(3):445–463.

165



166 BIBLIOGRAPHY

13. Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific, Belmont, second edition.

14. Bingham, N. H., Goldie, C. M., and Teugels, J. L. (1989). Regular variation. Cambridge
University Press, Cambridge.

15. Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., and Chanussot,
J. (2012). Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-
based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Re-
mote Sensing, 5(2):354–379.

16. Birgé, L. and Massart, P. (1993). Rates of convergence for minimum contrast estimators.
Probability Theory and Related Fields, 97(1-2):113–150.

17. Birgé, L. and Massart, P. (2001). Gaussian model selection. Journal of the European Math-
ematical Society, 3(3):203–268.

18. Blanchard, G., Bousquet, O., and Zwald, L. (2007). Statistical properties of kernel principal
component analysis. Machine Learning, 66(2-3):259–294.

19. Boldi, M.-O. and Davison, A. (2007). A mixture model for multivariate extremes. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):217–229.

20. Brodie, J., Daubechies, I., De Mol, C., Giannone, D., and Loris, I. (2009). Sparse and stable
Markowitz portfolios. Proceedings of the National Academy of Sciences, 106(30):12,267–
12,272.

21. Bruun, J. T. and Tawn, J. A. (1998). Comparison of approaches for estimating the probability
of coastal flooding. Journal of the Royal Statistical Society: Series C (Applied Statistics),
47(3):405–423.

22. Caeiro, F. and Gomes, M. I. (2015). Threshold selection in extreme value analysis. Extreme
Value Modeling and Risk Analysis: Methods and Applications, pages 69–86.

23. Chautru, E. (2015). Dimension reduction in multivariate extreme value analysis. Electronic
Journal of Statistics, 9(1):383–418.

24. Chiapino, M. and Sabourin, A. (2016). Feature clustering for extreme events analysis, with
application to extreme stream-flow data. In International Workshop on New Frontiers in
Mining Complex Patterns, pages 132–147. Springer.

25. Chiapino, M., Sabourin, A., and Segers, J. (2019). Identifying groups of variables with the
potential of being large simultaneously. Extremes, 22(2):193–222.

26. Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, New-
York.



BIBLIOGRAPHY 167

27. Coles, S., Heffernan, J., and Tawn, J. (1999). Dependence measures for extreme value anal-
yses. Extremes, 2(4):339–365.

28. Coles, S. G. and Tawn, J. A. (1991). Modelling extreme multivariate events. Journal of the
Royal Statistical Society: Series B (Methodological), 53(2):377–392.

29. Condat, L. (2016). Fast projection onto the simplex and the `1 ball. Mathematical Program-
ming, 158(1):575–585.

30. Cooley, D. and Thibaud, E. (2019). Decompositions of dependence for high-dimensional
extremes. Biometrika, 106(3):587–604.

31. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to algo-
rithms. MIT press, Cambrige.

32. Crammer, K. and Singer, Y. (2002). On the learnability and design of output codes for
multiclass problems. Machine learning, 47(2-3):201–233.

33. Dawid, A. P. (1979). Conditional independence in statistical theory (with discussion). Journal
of the Royal Statistical Society: Series B (Methodological), 41(1):1–31.

34. Dawid, A. P. (1980). Conditional independence for statistical operations. The Annals of
Statistics, 8(3):598–617.

35. De Fondeville, R. and Davison, A. (2016). High-dimensional peaks-over-threshold inference.
Biometrika, 105(3):575–592.

36. De Haan, L. and De Ronde, J. (1998). Sea and wind: multivariate extremes at work. Extremes,
1(1):7–45.

37. de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer Series
in Operations Research and Financial Engineering. Springer, New-York.

38. de Haan, L. and Resnick, S. I. (1977). Limit theory for multivariate sample extremes.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 40(4):317–337.

39. Dekkers, A. L., Einmahl, J. H., De Haan, L., et al. (1989). A moment estimator for the index
of an extreme-value distribution. The Annals of Statistics, 17(4):1833–1855.

40. Devroye, L. (1989). The double kernel method in density estimation. Annales de l’Institut
Poincaré, section B, 25(4):533–580.

41. Dhillon, I. S., Guan, Y., and Kogan, J. (2002). Iterative clustering of high dimensional text
data augmented by local search. In Proceedings of the 2002 IEEE International Conference
on Data Mining, pages 131–138.



168 BIBLIOGRAPHY

42. Dhillon, I. S. and Modha, D. S. (2001). Concept decompositions for large sparse text data
using clustering. Machine learning, 42(1-2):143–175.

43. Donoho, D. L. (2000). High-dimensional data analysis: The curses and blessings of dimen-
sionality. In AMS Conference on Mathematical Challenges of the 21st Century, pages 1–32.

44. Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient projections onto
the l 1-ball for learning in high dimensions. In Proceedings of the 25th Annual International
Conference on Machine learning, pages 272–279.

45. Einmahl, J. H., De Haan, L., Piterbarg, V. I., et al. (2001). Nonparametric estimation of the
spectral measure of an extreme value distribution. The Annals of Statistics, 29(5):1401–1423.

46. Einmahl, J. H., de Haan, L., and Sinha, A. K. (1997). Estimating the spectral measure of
an extreme value distribution. Stochastic Processes and their Applications, 70(2):143–171.

47. Einmahl, J. H., Dehaan, L., and Huang, X. (1993). Estimating a multidimensional extreme-
value distribution. Journal of Multivariate Analysis, 47(1):35–47.

48. Einmahl, J. H. and Segers, J. (2009). Maximum empirical likelihood estimation of the spectral
measure of an extreme-value distribution. The Annals of Statistics, 37(5B):2953–2989.

49. Embrechts, P., Klüppelberg, C., and Mikosch, T. (2013). Modelling Extremal Events for
Insurance and Finance. Springer, Berlin.

50. Engelke, S. and Hitz, A. S. (2020). Graphical models for extremes. arXiv:1812.01734.

51. Feller, W. (1971). An Introduction to Probability Theory and Its Applications, volume II.
Wiley, New-York, second edition.

52. Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution
of the largest or smallest member of a sample. Mathematical Proceedings of the Cambridge
Philosophical Society, 24(2):180–190.

53. Fougères, A.-L. (2004). Multivariate extremes. In Extreme Values in Finance, Telecommu-
nications, and the Environment, pages 373–388. Chapman and Hall.

54. Fougères, A.-L. and Soulier, P. (2010). Limit conditional distributions for bivariate vectors
with polar representation. Stochastic models, 26(1):54–77.

55. Fréchet, M. (1927). Sur la loi de probabilité de l’écart maximum. Annales de la Société
Polonaise de Mathématique, 6(1):93–116.

56. Gafni, E. M. and Bertsekas, D. P. (1984). Two-metric projection methods for constrained
optimization. SIAM Journal on Control and Optimization, 22(6):936–964.



BIBLIOGRAPHY 169

57. Galambos, J. (1978). The asymptotic theory of extreme order statistics. Kreiger, Malabar.

58. Gan, G., Ma, C., and Wu, J. (2007). Data clustering: theory, algorithms, and applications,
volume 20. Society for Industrial and Applied Mathematics (SIAM), Philadelphia.

59. Giraud, C. (2014). Introduction to high-dimensional statistics. Chapman and Hall, Boca
Raton.

60. Gissibl, N., Klüppelberg, C., et al. (2018). Max-linear models on directed acyclic graphs.
Bernoulli, 24(4A):2693–2720.

61. Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d’une série aléatoire.
Annals of mathematics, 44(3):423–453.

62. Goix, N., Sabourin, A., and Clémençon, S. (2016). Sparse representation of multivariate
extremes with applications to anomaly ranking. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 51, pages 75–83.

63. Goix, N., Sabourin, A., and Clémençon, S. (2017). Sparse representation of multivariate
extremes with applications to anomaly detection. Journal of Multivariate Analysis, 161:12–
31.

64. Gomes, M. I. and Guillou, A. (2015). Extreme value theory and statistics of univariate
extremes: a review. International statistical review, 83(2):263–292.

65. Guillotte, S., Perron, F., and Segers, J. (2011). Non-parametric Bayesian inference on bi-
variate extremes. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(3):377–406.

66. Gumbel, E. J. (1958). Statistics of Extremes. Columbia University Press, New-York.

67. Hans-Hermann, B. (2008). Origins and extensions of the k-means algorithm in cluster anal-
ysis. Journal Électronique d’Histoire des Probabilités et de la Statistique, 4(2).

68. Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, New-York.

69. Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning with Sparsity: the
Lasso and Generalizations. Chapman and Hall/CRC, Boca Raton.

70. Hazan, E. (2006). Approximate convex optimization by online game playing. arXiv:
0610.00119.

71. Heffernan, J. E. and Tawn, J. A. (2004). A conditional approach for multivariate extreme
values (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 66(3):497–546.



170 BIBLIOGRAPHY

72. Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution.
The Annals of Statistics, 3(5):1163–1174.

73. Hille, E. (1964). Analysis, volume 1. Blaisdell, New-York.

74. Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthog-
onal problems. Technometrics, 12(1):55–67.

75. Hult, H. and Lindskog, F. (2006). Regular variation for measures on metric spaces. Publica-
tions de l’Institut Mathématique, 80(94):121–140.

76. Hurvich, C. M. and Tsai, C.-L. (1989). Regression and time series model selection in small
samples. Biometrika, 76(2):297–307.

77. Janßen, A. and Wan, P. (2020). k-means clustering for extremes. Electronic Journal of
Statistics, 14(1):1211–1233.

78. Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum)
values of meteorological elements. Quarterly Journal of the Royal Meteorological Society,
81(348):158–171.

79. Jensen, F. V. et al. (1996). An introduction to Bayesian networks, volume 210. Springer,
Berlin.

80. Jessen, A. H. and Mikosch, T. (2006). Regularly varying functions. Publications de l’institut
Mathématique, 80(94):171–192.

81. Joe, H., Smith, R. L., and Weissman, I. (1992). Bivariate threshold methods for extremes.
Journal of the Royal Statistical Society: Series B (Methodological), 54(1):171–183.

82. Jolliffe, I. T. (1986). Principal components in regression analysis. In Principal component
analysis, pages 129–155. Springer, New-York.

83. Jung, S., Dryden, I. L., and Marron, J. (2012). Analysis of principal nested spheres.
Biometrika, 99(3):551–568.

84. Kallenberg, O. (2006). Foundations of modern probability. Springer, New-York.

85. Karamata, J. (1933). Sur un mode de croissance régulière. théorèmes fondamentaux. Bulletin
de la Société Mathématique de France, 61:55–62.

86. Katz, R. W., Parlange, M. B., and Naveau, P. (2002). Statistics of extremes in hydrology.
Advances in water resources, 25(8-12):1287–1304.

87. Kiriliouk, A., Rootzén, H., Segers, J., and Wadsworth, J. L. (2019). Peaks over thresholds
modeling with multivariate generalized Pareto distributions. Technometrics, 61(1):123–135.



BIBLIOGRAPHY 171

88. Koltchinskii, V. and Giné, E. (2000). Random matrix approximation of spectra of integral
operators. Bernoulli, 6(1):113–167.

89. Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions. Theory and Applications.
Imperial College Press, London.

90. Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86.

91. Kyrillidis, A., Becker, S., Cevher, V., and Koch, C. (2013). Sparse projections onto the
simplex. In Proceedings of the 30th Annual International Conference on Machine Learning,
pages 235–243.

92. Lauritzen, S. L. (1996). Graphical models. Clarendon Press, Oxford.

93. Lawless, J. F. (2011). Statistical models and methods for lifetime data. John Wiley & Sons,
Hoboken, second edition.

94. Leadbetter, M. R. (1991). On a basis for ‘Peaks over Threshold’ modeling. Statistics &
Probability Letters, 12(4):357–362.

95. Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in multivariate
extreme values. Biometrika, 83(1):169–187.

96. Lee, J., Fan, Y., and Sisson, S. A. (2015). Bayesian threshold selection for extremal models
using measures of surprise. Computational Statistics & Data Analysis, 85:84–99.

97. Lehtomaa, J. and Resnick, S. (2019). Asymptotic independence and support detection tech-
niques for heavy-tailed multivariate data. arXiv: 1904.00917.

98. Lellmann, J., Kappes, J., Yuan, J., Becker, F., and Schnörr, C. (2009). Convex multi-class
image labeling by simplex-constrained total variation. In International Conference on Scale
Space and Variational Methods in Computer Vision, pages 150–162.

99. Liu, J. and Ye, J. (2009). Efficient euclidean projections in linear time. In Proceedings of the
26th Annual International Conference on Machine Learning, pages 657–664.

100. Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach.
Journal of Banking & Finance, 24(7):1097–1130.

101. MacQueen, J. (1967). Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, pages 281–297.

102. Marshall, A. W. and Olkin, I. (1983). Domains of attraction of multivariate extreme value
distributions. The Annals of Probability, 11(1):168–177.



172 BIBLIOGRAPHY

103. Massart, P. (1989). Strong approximation for multivariate empirical and related processes,
via KMT constructions. The Annals of Probability, 17(1):266–291.

104. Massart, P. (2007). Concentration inequalities and model selection. Springer, Berlin.

105. Meyer, N. and Wintenberger, O. (2019). Sparse regular variation. arXiv:1907.00686.

106. Mikosch, T. (1999). Regular variation, subexponentiality and their applications in probability
theory. In EURANDOM report, volume 99. Eindhoven University of Technology.

107. Papastathopoulos, I. and Strokorb, K. (2016). Conditional independence among max-stable
laws. Statistics & Probability Letters, 108:9–15.

108. Pelleg, D. and Moore, A. (1999). Accelerating exact k-means algorithms with geometric
reasoning. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 277–281.

109. Pericchi, L. R. and Rodríguez-Iturbe, I. (1985). On the statistical analysis of floods. In A
celebration of statistics, pages 511–541. Springer, New-York.

110. Pickands, J. I. (1975). Statistical inference using extreme order statistics. The Annals of
Statistics, 3(1):119–131.

111. Ramos, A. and Ledford, A. (2009). A new class of models for bivariate joint tails. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 71(1):219–241.

112. Reiss, R.-D. (1989). Approximate distributions of order statistics: with applications to non-
parametric statistics. Springer, New-York.

113. Resnick, S. I. (1986). Point processes, regular variation and weak convergence. Advances in
Applied Probability, 18(1):66–138.

114. Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Springer,
New-York.

115. Resnick, S. I. (1997). Discussion of the Danish data on large fire insurance losses. ASTIN
Bulletin, 27(1):139–151.

116. Resnick, S. I. (2002). Hidden regular variation, second order regular variation and asymptotic
independence. Extremes, 5(4):303–336.

117. Resnick, S. I. (2007). Heavy-Tail Phenomena. Probabilistic and Statistical Modeling. Springer,
New-York.

118. Ribatet, M. (2013). Spatial extremes: Max-stable processes at work. Journal de la Société
Française de Statistique, 154(2):156–177.



BIBLIOGRAPHY 173

119. Rootzén, H., Segers, J., and Wadsworth, J. L. (2018a). Multivariate generalized Pareto
distributions: Parametrizations, representations, and properties. Journal of Multivariate
Analysis, 165:117–131.

120. Rootzén, H., Segers, J., and Wadsworth, J. L. (2018b). Multivariate peaks over thresholds
models. Extremes, 21(1):115–145.

121. Rootzén, H. and Tajvidi, N. (2006). Multivariate generalized Pareto distributions. Bernoulli,
12(5):917–930.

122. Sabourin, A. and Drees, H. (2019). Principal component analysis for multivariate extremes.
arXiv:1906.11043.

123. Sabourin, A. and Naveau, P. (2014). Bayesian Dirichlet mixture model for multivariate
extremes: A re-parametrization. Computational Statistics & Data Analysis, 71:542–567.

124. Sabourin, A., Naveau, P., and Fougeres, A.-L. (2013). Bayesian model averaging for multi-
variate extremes. Extremes, 16(3):325–350.

125. Scarrott, C. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal, 10(1):33–60.

126. Schmidt, R. and Stadtmüller, U. (2006). Non-parametric estimation of tail dependence.
Scandinavian Journal of Statistics, 33(2):307–335.

127. Segers, J. (2012). Max-stable models for multivariate extremes. Revstat Statistical Journal,
10(1):61–82.

128. Segers, J., Zhao, Y., and Meinguet, T. (2017). Polar decomposition of regularly varying time
series in star-shaped metric spaces. Extremes, 20(3):539–566.

129. Seghouane, A.-K. and Amari, S.-I. (2007). The AIC criterion and symmetrizing the Kullback–
Leibler divergence. IEEE Transactions on Neural Networks, 18(1):97–106.

130. Seghouane, A.-K. and Bekara, M. (2004). A small sample model selection criterion based on
kullback’s symmetric divergence. IEEE transactions on signal processing, 52(12):3314–3323.

131. Sibuya, M. (1960). Bivariate extreme statistics I. Annals of the Institute of Statistical Math-
ematics, 11(2):195–210.

132. Simpson, E., Wadsworth, J., and Tawn, J. (2019). Determining the dependence structure of
multivariate extremes. arXiv:1809.01606.

133. Smith, R. L. (1987). Estimating tails of probability distributions. The Annals of Statistics,
15(3):1174–1207.



174 BIBLIOGRAPHY

134. Smith, R. L. (1994). Multivariate threshold methods. In Extreme Value Theory and Appli-
cations, pages 225–248. Springer, New-York.

135. Smith, R. L., Tawn, J. A., and Yuen, H. K. (1990). Statistics of multivariate extremes.
International Statistical Review / Revue Internationale de Statistique, 58(1):47–58.

136. Tawn, J. A. (1988). Bivariate extreme value theory: Models and estimation. Biometrika,
75(3):397–415.

137. Tawn, J. A. (1990). Modelling multivariate extreme value distributions. Biometrika,
77(2):245–253.

138. Tawn, J. A. (1992). Estimating probabilities of extreme sea-levels. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 41(1):77–93.

139. Tawn, J. A. (1994). Applications of multivariate extremes. In Extreme value theory and
applications, pages 249–268. Springer, New-York.

140. Teugels, J. L. (1984). Extreme values in insurance mathematics. In Statistical Extremes and
Applications, pages 253–259. Springer, Dordrecht.

141. Thom, H. (1954). Frequency of maximum wind speed. In Proceedings of the American Society
of Civil Engineers, volume 80, pages 104–114.

142. Tiago De Oliveira, J. (1958). Extremal distributions. Rev. Fac. Cienc. Lisboa Ser. A, 7:215–
227.

143. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288.

144. Verleysen, M. (2003). Learning high-dimensional data. In Limitations and Future Trends in
Neural Computation, pages 141–162. IOS Press.

145. Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and
variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305.

146. Zwald, L. and Blanchard, G. (2006). On the convergence of eigenspaces in kernel principal
component analysis. In Advances in Neural Information Processing Systems, pages 1649–
1656.



175

Résumé

L’étude de la dépendance des événements extrêmes a été jusqu’à présent essentiellement traiéte
en petite dimension. Le but de cette thèse est de développer une approche statistique permettant
d’apprendre la structure de dépendance des extrêmes dans un contexte de grande dimension. Le
premier chapitre rassemble les résultats principaux concernant la théorie des valeurs extrêmes multi-
variées. Les différents outils nécessaires aux chapitres suivants sont présentés, notamment le concept
de vecteurs aléatoires à variation régulière, mais également les notions d’apprentissage statistique,
de statistique en grande dimension et de sélection de modèles. Le deuxième chapitre est un travail
conjoint avec Olivier Wintenberger. Il expose le concept de variation régulière parcimonieuse, définie
via la projection euclidienne sur le simplexe, et qui étend la notion standard de variation régulière.
Cette approche introduit de la parcimonie dans l’étude des extrêmes multivariés et réduit ainsi la
dimension. Le troisième chapitre est un travail en cours avec Olivier Wintenberger sur une approche
statistique des vecteurs aléatoires à variation régulière parcimonieuse. L’idé de ce chapitre est de
proposer une méthode qui permet d’identifier les sous-ensembles de Rd sur lesquels les valeurs ex-
trêmes se concentrent. Basée sur la sélection de modèles multinomiaux, cette méthode de détection
des extrêmes permet également d’identifier de manière ad hoc le seuil optimal au-delà duquel les
données sont considérées comme extrêmes. Au niveau des simulations, nous fournissons des preuves
numériques de nos résultats théoriques et nous illustrons notre approche sur quelques exemples basés
sur des données réelles. Enfin, le quatrième chapitre propose une discussion de l’article de Engelke
and Hitz (2020) dans lequel les auteurs définissent une notion d’indépendance conditionnelle pour
une loi de Pareto multivariée. On étend leur approache en s’appuyant sur l’étude du minimum des
marginales d’un vecteur aléatoire à variation régulière.

Mots-clés— Extrêmes multivariés, mesure spectrale, projection euclidienne sur le simplexe, sélection

de modèle, statistique en grande dimension, variation régulière, variation régulière parcimonieuse
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Abstract

Studying the dependence of extreme events has so far only been dealt in low dimension. The
aim of this thesis is to develop a statistical approach to learn the dependence structure of extremes
in a high-dimensional setting. The first chapter brings together the main results concerning multi-
variate extreme value theory. The different tools needed in the following chapters are introduced,
notably the concept of regularly varying random vectors, but also the notions of statistical learning,
high-dimensional statistics and model selection. The second chapter is a joint work with Olivier
Wintenberger. It outlines the concept of sparse regular variation defined via the Euclidean projec-
tion onto the simplex and which extends the standard notion of regular variation. This approach
introduces sparsity into the study of multivariate extremes and thus reduces the dimension. The
third chapter presents a work in progress with Olivier Wintenberger on a statistical approach of
sparsely regularly varying random vectors. The idea of this chapter is to bring out a method which
allows us to identify the subsets of Rd on which extremes concentrate. Based on a multinomial model
selection, this method of extremes’ detection also provides a way to identify the optimal threshold
above which the data are considered to be extreme. In simulations, we provide numerical evidence
of our theoretical findings and illustrate our approach on some data-driven examples. Finally, the
fourth chapter discusses the article by Engelke and Hitz (2020) in which the authors define a notion
of conditional independence for a multivariate Pareto distribution. We extend their approach with
the study of the minimum of the marginals of a regularly varying random vector.

Keywords— Euclidean projection onto the simplex, high-dimensional statistics, model selection, multi-

variate extremes, regular variation, sparse regular variation, spectral measure


	Résumé détaillé
	Introduction
	Context and objectives
	Extreme Value Theory
	Goal of this thesis

	Regular variation
	The univariate framework
	Multivariate regular variation
	Examples of limit distributions, asymptotic independence

	High-dimensional learning: some techniques
	Clustering methods
	Principal Components Analysis
	The LASSO procedure
	Euclidean projection onto the 1-ball

	Learning for extremes
	Principal Component Analysis
	Clustering approaches for extremes

	Model selection
	General framework
	Penalization
	Model selection in EVT

	Outline of the thesis

	Sparse regular variation
	Introduction
	Theoretical background
	Regular variation and spectral measure
	The Euclidean projection onto the simplex

	Spectral measure and projection
	Regular variation and projection
	The distribution of Z
	Sparsity structure of Z
	A discrete model for the spectral measure

	Sparse regular variation
	Numerical results
	The framework
	Experimental results

	Conclusion
	Proofs
	Appendix

	Tail inference for high-dimensional data
	Introduction
	Regular variation
	Estimation of the spectral measure
	Choice of the threshold via model selection
	Outline

	Sparse regular variation
	Regular variation and spectral measure
	The Euclidean projection onto the simplex
	Sparse regular variation

	Asymptotic results
	Statistical framework
	A univariate approach

	General results at a multivariate level
	Estimation of the set S(Z)
	A concentration result
	Ordering the 's
	Multivariate convergence

	Model selection
	Generalities
	A multinomial model
	Estimation of the parameters
	An AIC approach for the model M(k)
	From the extreme values to the whole dataset

	Numerical results
	Conclusion
	Proofs

	Regular variation and conditional independence
	Introduction
	Theoretical background
	Regular variation
	Independence and conditional independence

	Conditional independence according to Engelke and Hitz
	Regular variation via the minimum of the marginals
	Considering the minimum
	Comparison of both approaches

	Another notion of conditional independence
	Conclusion

	Appendix
	Convergence to Types
	Dynkin's Theorem
	Bernstein's inequality


