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Abstract

A complex 3D fracture simulation of quasi-brittle material in
quasi-static is still hard to tackle nowadays. Many methods
and models propose partial solutions to this problem. The Thick
Level Set (TLS) model, which uses an approach mixing damage
mechanics and explicit crack representation, provides an easy
fracture initiation, a complex crack growing capability (coa-
lescing or branching) and an accurate tortuous fracture path.
In this thesis we will demonstrate that the implementation of this
model in a parallel 3D context provides an accurate and ver-
satile tool that potentially scales.
Regarding the accuracy, a novel tool called the “double cut
algorithm” has enhanced the existing TLS implementation by
letting pass a straight fully damaged zone in a mesh element
without conditions on its size. This tool also brings a way to opti-
mize the discretization by coarsening the mesh in a crack front
wake. This adaptation reduces the size of the discrete mechan-
ical problem and therefore the effort for the linear algebra res-
olution.
As far as the scaling is concerned, the bottleneck is the linear al-
gebra resolution time and its associated memory consumption.
The parallel solving strategy developed in this thesis to tackle
this problem starts first with a basic approach. Then by switch-
ing to a method close to domain decomposition and later to
a two-scale method, it permits increasing scalability. The other
TLS tasks are also partially parallelized. The principal concern is
to obtain a tool that either runs faster or can treat a more sig-
nificant problem if we provide much more computational units.
Finally, some test cases illustrate the obtained results with a par-
allel 3D implementation.
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Chapter I
Context and objectives

This thesis was written at ”Ecole Centrale de Nantes” at the
Gem Laboratory and is related to the complex 3D fracture sim-
ulation of quasi-brittle material. The term complex implies here
that the simulations can initiate one or more cracks which de-
velop by describing a set of tortuous paths which can coalesce
or branch out
Three categories composed of strong, weak or discrete discon-
tinuity approaches cover such kind of simulations where the
cracks opening must be represented somehow. The first one,
associated with the fracture mechanics is able to reproduce
the crack discontinuous displacement behavior by using an ex-
plicit discretization of the crack. It, therefore, gives a correct
crack path. However, it needs a priori crack initiation and co-
alescing or branching are hard to achieve. The second, asso-
ciated with the damage mechanics, gives an easy crack initi-
ation, branching or coalescing. Nevertheless, it needs a regu-
larization and does not provide an explicit crack path (and the
associated discontinuous displacement). The third one, related
to the discrete element method, uses beam or trust failure to
represent the crack which leads to some mesh dependency.
The recent Thick Level Set model used in this thesis sets a bridge
between these first two discontinuity approaches by mixing a
damage model with an explicit crack representation. Used in
the 2D simulation it already offers a valuable tool in terms of re-
sults quality and computational consumption. In this thesis the
objective is to maintain such quality for a 3D simulation and,
in particular, to get a reasonable simulation computation time.
This chapter develops the fracture simulation context and de-
tails the meaning of what ”maintains such quality” and ”rea-
sonable simulation computation time” mean.
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Figure I.1: General fracture problem

I.1 General context

In many situations the robustness of the objects or constructions that
one manufactures is a security problem. Sometimes, a crack initia-
tion in a structure is not affordable. Satellite, for example, is not ex-
pected during the launching phase to be deteriorated as it cannot
be repaired. Sometimes having a way to predict a crack creation
and its development in a structure helps to design it. For example, to
evaluate the security risk after a blast in an Atomic power plant, one
would try to evaluate the leaks of the contaminated fluid that may
pass through cracks and then define the structure of the wall in accor-
dance. In other cases, the crack path knowledge may help to set the
appropriate reinforcements to avoid these cracks. On the contrary, in
some situations one wants to crack objects. For example, in hydraulic
cracking, people are eager to optimize water injection to obtain the
best-fractured ground. In any case, the cracks and their propagation
are phenomena that one wishes to control.

To control such phenomena, one needs to reproduce the cracks to
be able to act on them. A perfect tool to achieve this goal is numerical
simulation. It reproduces the complex behavior of objects in a low-cost
and accurate way. More precisely we will focus on the quasi-static
failure simulation of quasi-brittle material in 3D structures.
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The general vocabulary and the characteristic lengths usually as-
sociated with a fracture problem are presented in figure I.1. The char-
acteristic lengths, given in this figure, help compare the problem di-
mension together. Characteristic lengths do not represent the exact
dimension but only its order of magnitude. L is associated to object
sizes. In this object, a crack is described by a and B, respectively as-
sociated with its length and its tip width. This crack may develop at a
distance associated with W , from the edge of the object. It may open
(i.e., its lips may separate from each other) under some loading condi-
tions. It may grow, with crack tips advancing in the material (a and/or
B may increase). ρ is associated with the crack path curvature. Finally,
h is associated with the size of the spacial problem discretization (illus-
trated here with a finite element mesh). In this document h will specif-
ically be named ht, hw or ho for respectively mesh size in the crack tip
vicinity, mesh size in the crack wake region or mesh size outside both
regions.

With these conventions, the following chapter introduces the nu-
merical model retained in this work.

I.2 Fracture and damage mechanics

Fracture modeling implies considering the discontinuity in the displace-
ment field, which is introduced by the cracks (lips separate from each
other). The numerical methods to simulate such problems can be clas-
sified into three approaches: strong, weak and discrete discontinuity.
In the strong discontinuity approach, the crack introduces a discon-
tinuous displacement in the solution field explicitly. In the weak one,
the displacements stay continuous but the material strength drops in
a region where the crack is expected to be located. It provides a
crack opening behavior without a clear identification of lips. In the dis-
crete approach, inherited from the Discrete Element method devised
by Cundall and Strack [1979], the failure of the discrete elements, such
as lattices of trusses and beams with Voronoi tessellation (Bolander and
Saito [1998]), is interpreted as a discontinuous phenomenon (a crack).
This last approach is not studied here. However, the two others are the
cement for the model used in this work.

The strong discontinuity approach, based on Griffith [1921] and Ir-
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win [1957] fracture mechanics theory uses the finite element method
with an explicit cracks discretization. In other words, it means that both
crack lips are meshed independently; they may have their own life
because of the allowed discontinuous displacement across the crack.
A fine discretization to capture singularity is also mandatory near the
crack tip. It is possible then to use the assumption of fracture mechan-
ics to compute the crack growth. This assumption is based on the stress
intensity factor computed at the crack tip. The two problems related
to this approach are:

• The size of the crack compared to the dimension of the object
studied is so small (a� L and b� L ) that the mesh size needs to
be adapted around it. When the crack curvature (ρ) is small, the
path also needs a fine discretization. It introduces a considerable
meshing effort (with robustness issues) and gives a rather large
system to solve.

• When a crack grows, the mesh must be almost completely recre-
ated.

Many strategies were used to minimize those issues. Among them
there is the crack box. It corresponds to a strategy where a region
(a box) is assumed to encapsulate the crack during all the simulation.
This zone is finely discretized to capture the crack behavior and is con-
nected somehow to a coarser mesh. It is supposed to reduce the
global problem size and to ease re-meshing by limiting it to the box
region. Samcef (from Siemens [2019]) formerly uses ”glue” to connect
the box to the coarser mesh. Franc3D (from Fracture Analysis Consul-
tants [2019]) creates a box region by extracting a portion of a 3D finite
element model. A re-meshing of this portion with mesh boundary con-
straints is made so that the connection to the model remains identical.

Alternatively, the boundary element method (used in the first
Franc3D version) proposes a more straightforward discretization ap-
proach. Only the crack and the studied object boundary are meshed.
The 3D crack progression is simply associated with a 2D meshing tool.
However, the system matrix is dense with this method. It leads to unac-
ceptable linear algebra computational effort.
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Still chasing for a solution without meshing issues, researchers pro-
pose meshfree methods. In those techniques ( Belytschko et al. [1995],
Bordas et al. [2008]), the use of element-free Galerkin methods gives
among other things, an easy way to propagate a crack by setting
moving particles to follow the crack path.

Nevertheless, the real jump in performance was introduced by the
use of the eXtended Finite Element Method (X-FEM) in Moës et al.
[1999]). The definition of the crack no longer relies on a fine mesh
discretization. The mesh is now of a uniform fixed size, and the level
set tools (J.A. Sethian [1999]) are used to represent crack and place
it where it has to be in the object. Enrichment technique is then used
to describe the discontinuity (crack opening) and the particular strain
field at the crack tip. The crack growth, still based on fracture me-
chanics, is achieved only by moving the level set with the mesh re-
maining fixed. The main drawback is that the crack initiation needs to
be done manually (there must be an existing crack somewhere to start
the computation). Moreover, the crack coalescence or branching is
hard or even impossible to achieve.

The weak discontinuity approach associates, on its side, irreversible
microscopic phenomena such as micro-cracks or micro-voids to the
material rigidity loss. It is done through the use of an internal variable,
which represents a micro-default density. In its scalar form1, called fur-
ther d, it ranges from 0 (sound material) to 1 (completely damaged
material without any rigidity). For instance the free energy density of
linear elastic damage law can be written using Hooke’s law tensor C,
strain tensor ε and d as follows:

ϕ(ε, d) =
1

2
(1− d)ε : C : ε (I.1)

The damage energy release rate Y associated with this potential
(Y = −∂ϕ

∂d ) is then used to settle the evolution laws that are used to
make damage evolving in the studied part. Compared to the strong
discontinuity approach, the damage mechanics provide an easy way
to initiate a crack from a sound situation. It also gives access to a com-
plex path with coalescence or branching. However, this local treat-
ment of the damage induces some spurious localizations with a patho-
logical mesh dependency. To overcome this problem, different models

1only this scalar form will be considered in this work
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were proposed to regularize the damage evolution. They share the in-
troduction of a characteristic length that tunes the averaging process
used for regularization.

Integral-type or gradient-type model families are commonly pro-
posed in the scientific literature to smooth the quantity Y . The former,
the integral-type family, proposes a spatial weighted averaging pro-
cess at the studied material point. It is based on the integration of
some weighted quantity, which is performed over a domain of fixed
sizes. The possible smoothed quantities can be directly Y or the associ-
ated strain as proposed in Pijaudier-Cabot and Bažant [1987], Bažant
and Jirasek [2002]. The latter, the gradient-type family, devised by Peer-
lings et al. [1998], is based on the use of an averaged Y implicit gra-
dient formulation. This regularized Y is obtained from a solving of a
partial differential equation where Y is the source term and where ar-
bitrary null boundary condition is imposed. In terms of the computa-
tional cost, the former adds an extra non-local averaging task for each
integration at Gauss point and the latter adds a resolution of an auxil-
iary Laplacian problem.

Other approaches add to the free energy, a term based on gra-
dient of damage (Frémond and Nedjar [1996], Lorentz and Godard
[2011]) that penalizes the sudden variations of damage.

To conclude this non-exhaustive review, a more recent model as-
similates d to a crack phase-field such as in Karma et al. [2001], Miehe
et al. [2010]. The regularization of d is transformed into a minimization
problem of a diffusive crack topology.

The TLS model has taken the best of both discontinuity approach.
Like in damage mechanics, it uses a damage variable d but it con-
siders its treatment in a configurational mechanics manner. A surface
(front) separates sound from damaged material. The damage evo-
lution is then linked to the front movement. It leads to compute Y

on this front. Furthermore, to again avoid spurious localization on the
front, a regularization such as provided in the integral-type model, per-
forms a Y weighted averages on segments2 originated from front. The
length of the segments is not fixed during time and can evolve from
zero to a maximum length lc. The orientation of these segments is al-

2whatever the dimension of the body



I.3. THESIS OBJECTIVES AND OUTLINES 16

ways aligned with the damage gradient. This weak discontinuity treat-
ment provides to the TLS model, its capacity to initiate a damaged
zone from a sound situation. The damage progression, linked to the
front progression, is made very versatile (tortuous path, merging, fork-
ing, ...). Moreover, the model also adds automatically crack lips in the
damaged zone where d = 1. Using the enrichment techniques from
the strong discontinuity approach, those lips become independent. It
adds to the model a precise discontinuous displacement location that
lacks in damage mechanics. This model is detailed in the dedicated
chapter II.

I.3 Thesis objectives and outlines

The global goal of this thesis is to illustrate the capabilities of the TLS
model in the quasi-static 3D simulation context of quasi-fragile mate-
rials. From an implementation point of view, switching from 2D to 3D
has not been a significant effort.The TLS library created during the work
of Bernard et al. [2012] and incorporated in eXlibris later on, was from
scratch designed to deal with 2D or 3D problems. However, due to 3D
discretization, computation consumption becomes an issue. Behind
this computation consumption, the causes need to be distinguished
from the consequences. The causes are the discretization choices
induced by the model, which can be optimized (which mesh size,
where to adapt, which polynomial order to choose for interpolation
and where to apply it, ... ). The consequences are the resolution
method choice to handle very large system of equations. In this work,
both are addressed (causes in chapters III and IV, consequences in
chapter V).

In both cases, the parallel paradigm needs to be considered. Par-
allelism is nowadays provided by almost all computational hardware.
From a laptop to an enormous cluster computer, it offers a way to re-
duce simulation elapsed time and to overpass memory consumption
issues. This thesis is focused on the scalability of the TLS problem resolu-
tion. The strong scaling will indicate if significant problems are achiev-
able in a reasonable time with the parallelism. And the weak scaling
will indicate if more significant problems can be solved using the par-
allelism.
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The outlines of the thesis are the following:
Chapter II starts by describing the TLS model used in the context of
this thesis. Chapter III introduces an improvement of the description
of this model based on the ”double cut” algorithm. This tool meets
the thesis goal by opening the spatial discretization, treated in chapter
IV, to coarser meshes. The main TLS resolution aspects are treated in
chapter V. Then a set of test cases in chapter VI provides an insight on
results that can be obtained in a quasi-static quasi-fragile 3D simulation
with TLS model using some of the numerical improvements proposed
in this thesis. Finally, chapter VII is the conclusion of what has been
demonstrated. It also describes as a prospect, what remains to be
done to value this work.



Chapter II
The TLS model a bridge
between fracture and
damage

The Thick Level Set model sets a bridge between fracture and
damage mechanics by mixing a damage model with an ex-
plicit crack representation. The former offers complete freedom
on how crack may initiate, where it progresses or forks and how
it coalesces. The latter, using enrichment techniques, adds a
strong discontinuous behavior for the crack opening .
This chapter presents the TLS ingredients:

• φ the signed distance function used, with the help of level
set tools, to split the domain in sound, damaged or fully
damaged region,

• d(φ) the function provided by the user to associate d dam-
age variable to φ,

• lc the characteristic length that is used, such as in other
damage models, to regularize the damage energy re-
lease rate but here, only along the φ gradient segment.
It is also used to automatically place the crack lips when
they do exist, giving support for the enrichment and the
discontinuous behavior.

In this chapter, the governing equations are also provided,
showing that d is used in a rather conventional way, with the
asymmetric constitutive law from Mazars [1986]. Moreover, as
mentioned above, the damage evolution law is regularized to
avoid some spurious damage localization. In the end, the reso-
lution scheme is summarized in the presented staggered algo-
rithm.

18
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This chapter slightly modified in this thesis have been published in Salz-
man et al. [2016]

II.1 The Thick Level Set model components

In the TLS framework, as detailed in Moës et al. [2014], the domain Ω of in-
terest is decomposed into three zones (possibly empty): a zone Ω− in which
damage, d, evolves in a local manner, a localizing zone Ω+ in which the evo-
lution is non-local and, finally, a zone Ωc in which the material is completely
damaged (d = 1). Nevertheless, in this thesis, we consider constitutive dam-
age models without hardening that leads to a damage localization as soon
as the damage starts. So, the damage is always zero in Ω−. This choice is
done in Bernard et al. [2012] and has been used in most of our TLS model
implementation.

The interface between Ω+ and Ω− is denoted Γ0 and it is located by the
iso-zero level set of a signed distance function φ (counted negative in Ω−).
The ”distance function” characteristic is achieved by :

‖∇φ(x)‖ = 1 (II.1)

The damage is then expressed in terms of φ by a scalar function.

d = d(φ(x)) (II.2)

The function d(φ) is a material data that must satisfy a set of requirements,
among which the fact that the damage reaches one, only beyond a dis-
tance lc. The interface between Ω+ and Ωc is thus the iso-lc1 and is denoted
Γc.

The use of a level set is a powerful aspect of the method which offers
support for complicated Γ0, with potential branching and coalescence, as
it will be seen in chapter VI.1. Another powerful aspect is the introduction in
the model of this characteristic length lc which achieves two goals:

• The automated introduction of a crack, considering the iso-lc values of
the level set, as the crack lips. In this thesis a more accurate discretiza-
tion of Γc is proposed in chapter III.

• The introduction of a maximum length over which an averaging of dam-
age is performed.

1 The iso-lc is determined by a −lc offset of φ iso-zero.
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Figure II.1: Model parameters.

Figure II.1a shows the above-defined ingredients. It represents different
situations, using a planar cross-section to see inside Ω+, where:

• A is a damage initializing zone where all points are at a distance less
than lc from Γ0 (in blue) and for which d < 1.

• B is a simple crack represented by Γc (in red). In this case, one crack tip
is located at a distance greater or equal than lc from Γ0 tip. It illustrates
a complex damage growth pattern in front of the crack tip.

• C is illustrating a branching situation where the crack first develops ”hor-
izontally”2 and then moves ”vertically”2 after a change of the loading
conditions.

2in figure perspective
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The damage shape function d(φ) must be

• increasing,

• continuous,

• bounded in [0, 1],

• null outside the damage zone, in Ω− (when φ(x) 6 0),

• equal to 1 in the fully damaged zone Ωc (when φ(x) > lc)

Specific choices of d(φ) have permitted some comparisons with the phase-
field method in Cazes and Moës [2015] or with the cohesive zone model in
Parrilla Gómez et al., 2015. The chosen d(φ) function of four cases in chapter
VI is depicted in figure II.1b.

II.2 Governing equations

As in Bernard et al. [2012] work the asymmetric constitutive law from Mazars
[1986] is used here. This asymmetric behavior is mandatory to avoid damage
growth in the compression direction. In this thesis, however, we do not deal
with contact on the crack faces.

In Ω, the equilibrium and kinematics equations are:




∇.σ = 0 on Ω

σ.~n = ~f on ∂ΩN

ε = 1
2

(
∇~u+ (∇~u)

t
)
on Ω

~u = ~̄u on ∂ΩD

(II.3)

where σ is the Cauchy’s stress tensor, ε the strain tensor, ~f the external loading
on part ∂ΩN of Ω boundary , ~n the outgoing normal vector of the domain,
~̄u the prescribed displacements on part ∂ΩD of Ω boundary and ~u the dis-
placement field. Here, the small strains and displacements are assumed.

The stress and the damage energy release rate Y are derived from the
free energy density as follows:

{
σ = ∂ϕ

∂ε
Y = −∂ϕ∂d

(II.4)

with:

ϕ(ε, d) =
λ

2
(1− αd) tr(ε)2 + µ

3∑

i=1

(1− αid)Λi
2 (II.5)
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where:

• λ and µ are the Lamé elasticity coefficients

• Λi are the eigenvalues of the strain tensor

• αi and α are coefficients introduced to take into account an asymmet-
ric behavior in traction/compression:

– αi = β if Λi < 0

– αi = 1 if Λi > 0

– α = β if tr(ε) < 0

– α = 1 if tr(ε) > 0

• β is a parameter, bounded in [0, 1], to drive the asymmetry.

When β is equal to 1, αi and α terms are always equal to 1 and the free
energy density is then a linear elastic damage potential (see (I.1))

When β < 1, the potential becomes non-quadratic. The damage par-
ticipation to free energy density becomes negligible in compression when β

tends to 0. When β is null, no damage growth is obtained in compression be-
cause, in this case Y = 0. The intermediate β values are allowed to fit the
material properties where irreversible degradation slightly modifies the stiff-
ness in compression.

For the damage evolution law, such as detailed in Bernard et al. [2012],
the local damage growth model:

Y 6 Yc, ḋ > 0, (Y − Yc) ḋ = 0 (II.6)

is regularized into its non-local counterpart:

Ȳ 6 Ȳc (II.7a)

ḋ > 0 (II.7b)
(
Ȳ − Ȳc

)
ḋ = 0 (II.7c)

where Ȳ and Ȳc are the regularized damage energy release rate and the
regularized critical damage energy release rate, respectively.

An averaging operator is introduced to fulfill a non-local estimation of the
energy (critical energy) release rate on the damage front. By construction,
(II.1) with (II.2) impose damage along the φ gradient segment in Ω+ (figure
II.2). Thus, any point of Ω+ may not have their damage value modified without
changing the damage values of all gradient segment points belonging to it. It
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Γc

Γ0

lc

Figure II.2: graphical representation of Ȳ (in 2D for better understand-
ing but all principles also hold in 3D) : In the small dashed line, φ skele-
ton. In the large dashed line, some intermediate iso-values of φ. In blue
Γ0. In red Γc. Cyan segments are aligned with the gradient of φ. Over
these segments, Ȳ is uniform and is the average of the underlying Y
field.

σc

0
√

2×Yc
E

ε

σ

Figure II.3: Abrupt stress/strain local response considered in test cases
VI.1, VI.2, VI.4 and VI.5.

introduces a natural averaging process for all points related by the condition
(II.1). Ȳ (Ȳc) regularizes Y (Yc) by using ∇φ to drive operation as well as a
weighting function to smooth the computed value.

The quantity Yc can be a constant (as in figure II.3) or can depend on
damage; in this last case, it is expressed as Y 0

c h(d) where Y 0
c is a constant

and h(d) a softening function.
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II.3 Staggered algorithm

The TLS solver used for this work is given by algorithm 1 where µi is the load
factor corresponding to load step i.

Algorithm 1 Schematic staggered algorithm scheme.
Starting from ~ui, di, and µi

repeat
Find di+1 such that di+1 = g

(
µi, ~ui

)
(I)

Find (~ui+1, µi+1) such that{
K
(
di+1, ~ui+1

)
~ui+1 = F

(
µi+1

)
(II)

max
k

(
fk
(
µi+1, ~ui+1

))
= 0 (III)

until Complete failure or user given load level

The g operator is related to the damage growth model (II.7). The K and
F operators are related to the structural equilibrium. Finally, the fk operators
are related to the damage criteria (II.7a).

In algorithm 1, (I) (corresponding to (29) in Bernard et al. [2012]) uses an
explicit resolution (as it is based on regularized quantities, the averaging op-
erator resolution3 has to be added to this step). In (II) the solution ~ui+1 is
obtained through a Newton-Raphson algorithm, because of the non-linear
nature of K. The condition (III) is solved with an explicit resolution. Solving (III)
is eased by the fact that ~ui+1 linearly depends on µi+1 (as long as it does not
change sign).

The displacement field ~ui is discretized in space using a classical finite el-
ement approximation as well as a ramped Heaviside enrichment (Bernard
et al. [2012]) to represent the existing cracks. The determination of Γc is greatly
improved compared to Bernard et al. [2012] by the use of the so-called “dou-
ble cut algorithm” detailed in chapter III.

The solution (~ui, di, µi) at any load step is thus in equilibrium (in the finite el-
ement sense) and fully satisfy (II.7a) and (II.7b) even if (II.7c) is slightly violated
(see Bernard et al. [2012] for discussion).

The user does not give the load step. It is part of the solution process.
Only the maximum damage (or φ to be more precise) increase over each
load step is provided. This increase falls within the definition of g. The g op-
erator is needed both to grow the existing damage zone and to initiate the

3Averaging operator computation was not examined in this thesis despite that the
slightly modified version of Bernard et al. [2012], used in chapter VI simulations, adds
two linear system to solve. In Moreau et al. [2015] the introduction of an explicit modal
space replace one linear resolution by a projection. And in Moreau et al. [2017], the
use of Fast Marching techniques remove the other linear resolution. So in this work,
even if this averaging operator resolution does have a computational cost, the use of
those last techniques will hopefully alleviate it.
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new ones4. Regarding the initialization of the staggered scheme, we find the
elastic loading for which the damage occurs first. It gives (~u0, d0 = 0, µ0). If
needed, a non-zero initial damage field may be prescribed.

In algorithm 1, we have revealed an explicit dependence of K on ~ui+1.
Indeed, the asymmetric damage model, introduced in (II.5), yields a non-
linear elastic problem. This dependence of K with respect to ~ui+1 is, in fact,
very limited in space since it affects only Ω+. Thus, the tangent matrix used to
solve structural equilibrium is implemented, to spare CPU time, as two parts.
A fixed part, which is assembled once per load step. And a varying part,
which is reassembled at each Newton-Raphson iteration. The same strategy
is also used for the Newton-Raphson residual vector, where the linear part of
the internal forces is simply obtained by multiplying the fixed tangent matrix
part by ~u. This early optimization does not change, as presented in chapter
V.1, the fact that the non-linear problem resolution is the major computational
bottleneck in 3D. The chapter V will address this problem.

Finally, the finite element mesh requirement for this algorithm in 3D is dis-
cussed in chapter IV.

4In the current implementation, the initiation corresponds to the introduction of a
new damaged location. It is made by merging φ with a level set which is describing a
little sphere encapsulating the new default.



Chapter III
The double cut algorithm
or the art of describing a
complex crack pattern

On the one hand, the level set method allows representing a
curve (2D) or a surface (3D) using an iso-value of a function.
Generally this function, which is discretized as a field on the
studied mesh, is used to identify a possible iso-value position
over all edges. Those points that are also called edge cut
gives, the iso-curve or iso-surface mesh according to an ele-
ment pattern meshing strategy. On the other hand the Thick
Level Set model uses such iso-curve/surface (iso-lc level set ob-
tained from signed distance function φ) to represents the crack
lips. Those lips can be very close compared to the element
size and can cut twice an edge. In this case standard level set
technology is faulty since it provides only one cut per edge.
The new approach presented in this chapter allows cutting an
edge twice. Firstly, a versatile tool, the vector distance func-
tion, that comes from the work of Gomes and Faugeras [2003]
is reused. In this work a signed form of this tool is proposed and
leads to the signed vector distance function concept (abbrevi-
ated to SVDF). It introduces extra information compared to the
standard level set tool. Secondly, adapted to SVDF, a new al-
gorithm, the “double cut” algorithm or DCA, gives a way to cut
an edge twice. Associated with a database of element cut
pattern (which is introduced for computation performance),
this new algorithm allows passing a fully damaged zone in a
mesh element without any condition on its size.
It leads to a crack lips representation quite insensitive to the
mesh size, allowing one to discretize over bigger elements.

26
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This chapter slightly modified in this thesis have been published in Salz-
man et al. [2016]

III.1 Double vs single cut algorithm

Usual treatment of the level set in the context of XFEM starts with the deter-
mination of the iso-zero location. This definition is then used to generate the
integration cells (called sub-element hereafter) embedded in the elements
crossed by the iso-zero. Depending on the type of problem, some or all those
sub-elements are used to integrate the problem using the approximation of
elements crossed by iso-zero. Some additional enrichment aspects may also
be added and depends on this initial treatment. In the TLS framework this
scheme is followed for both Γ0 and Γc. In this chapter we are going to focus
on the iso-lc improvement which represents the crack discontinuity.

From a numerical point of view, if no enrichment is introduced around the
iso-lc, the crack lips will move apart until an element is entirely in the dam-
aged zone (figure III.1a). It allows obtaining the expected discontinuous dis-
placement by having a fully damaged element inside the lips of the crack.
However, depending on the size of the elements, more energy can be dis-
sipated than wanted since the fully damaged zone depends on the mesh
definition.

To avoid this issue, the ramped Heaviside enrichment described in Bernard
et al. [2012], offers a numerical mechanism to introduce the displacement
discontinuity by adding extra degrees of freedom. These latter are added
along the iso-lc of entities, having their support divided into two parts at least
by the fully damaged zone. This condition is directly related to the Γc defini-
tion that depends on the level set representation.

Since the level set is defined by algebraic values at the mesh nodes, all
what can be done with them on an edge is their linear interpolation to find
cuts. It implies that edges can only be cut once by the iso-lc. This restriction
implies that the elements can not be cut in two parts by the fully damaged
zone. In consequence, the enrichment will only occur if at least two elements
are cut by the fully damaged zone (one element per crack lip). It imposes
that the crack zone grows (or shifts) enough to start having a discontinuous
displacement. It can again dissipate more energy than in reality (or can lead
to a wrong crack path) if the mesh size is too big (figure III.1b).

The new approach allows passing over the restriction imposed by the stan-
dard level set method. The vector distance function, coming from the work
of Gomes and Faugeras [2003], is reused and presented in a signed form, the
signed vector distance function, in chapter III.2. It introduces at mesh nodes,
a vector vision instead of a scalar vision of the mathematical function used
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Ωc
Γc

(a) Single cut without discontinuous en-
richment

(b) Single cut with discontinuous enrich-
ment: crack lip can only appear if there
is, at least, one node between them.

(c) Double cut with discontinuous enrich-
ment

Figure III.1: Location of Ωc (orange) depending on the technique used
to construct Γc and enrichment scheme.
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to define the level set. It allows with the new algorithm called the “double
cut” algorithm (DCA hereafter) to cut an edge twice. This allows a fully dam-
aged zone to cut a single element (figure III.1c). This double cut algorithm
first cuts all edges and then splits all elements. It is explained in chapter III.3.1
and III.3.2.

III.2 The Signed Vector Distance Function concept

Given a manifold, a vector distance function (VDF) gives at each surrounding
point a vector pointing out to the closest point on the manifold (Gomes and
Faugeras [2003]). The manifold is also denoted as the VDF iso-zero in what
follows. The manifold of interest in this chapter is Γc.

To keep the domain partitioning available, a sign has to be associated
with vectors (so we use the concept of signed vector distance function
(SVDF) and not only VDF): a node is either in the negative or in the positive
domain delimited by SVDF iso-zero.

In the TLS framework, the SVDF replaces the offset level set for the definition
of the iso-lc. Indeed, the offset level set technology can not find multiple cuts
within an element as depicted in figure III.1c.

In this context no intrinsic evolution of the SVDF is considered as it is the
case in Gomes and Faugeras [2003]. It is only used as an enhanced tool to
represent the Γc manifold, reset at every load step using a new φ definition. It
follows the same sign convention as the level set it replaces (i.e. positive for
fully damaged zone and negative for all other parts of the domain). The SVDF
can be constructed for each mesh node, from the level set that defines the
front, by the following steps, illustrated in Figure III.2:

• Find the closest point (CP) on Γ0 from the node (N).

• Compute the vector
−→
Vcp from N to CP.

• From this vector, construct the vector
−→
Vlc =

sign lc
−→
Vcp∣∣∣∣∣∣−→Vcp

∣∣∣∣∣∣ starting from CP

where sign is 1 if level set sign for N is “-” and -1 if level set sign for N is
“+”.

• Signed vector distance function vector
−−−→
Vsvdf for N is then

−→
Vcp+

−→
Vlc starting

from N and ending at the point called L.

• Signed vector distance function sign for N is “+” if level set sign for N is
“+” and

∣∣∣
∣∣∣−→Vcp

∣∣∣
∣∣∣ > lc. Otherwise, it is “-”.

This procedure is the one used in this thesis. However, we can notice that
a fast marching tool, introduced in eXlibris recently by Nicolas Chevaugeon,
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Γc and SVDF iso-zero

φ iso-zero (i.e. Γ0)

++−

−−−→
Vsvdf

−→
Vcp
−→
Vlc

+−−

N

N

N

CP

CP

CP
L

L

L

Figure III.2: Signed vector distance function construction from the iso-
zero front. Vectors are superposed but to distinguish them in this figure,
they are drawn shifted if needed. It is a flat representation but this
construction must be understood as carried out in 3D space.

gives a way to obtain the SVDF more accurately using φ and its gradients
computed during the marching.

III.3 The Double Cut Algorithm (DCA)

III.3.1 First step of DCA: cut mesh edges

From the SVDF information, one first has to compute the Γc cutting points for
all mesh edges. The conditions for having an edge AB cut, come from a
logical consideration of the position of the edge with respect to the parts of
the domain (table III.1).

The algorithm uses then the following general geometrical predicates:

• Geometrical SVDF iso-zero passes through the ending point L.

• Geometrical SVDF iso-zero tangent plane at point L is orthogonal to−−−→
Vsvdf .

• Geometrical SVDF iso-zero tangent plane at point L corresponding ei-
ther to node A or B of an edge may cut it.
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−−−→
Vsvdf

Geometrical SVDF iso-zero

cutting point location

A B
AB edge

Tangent plane passing by L and ⊥ to
−−−→
Vsvdf

level set interpretation of SVDF

(a) legend

− +

(b) Preferred one cut solution

− +

(c) One cut first alternative

− +

(d) One cut using level set value as last resort

− −

(e) No cut by construction

− −

(f) No cut by wrong order of cutting points

− −

(g) Two cuts

+ +

(h) No cut by table III.1 rule

Figure III.3: Edge cut construction illustrating the cut point determina-
tion. Representation is 2D but it can be extended to 3D.
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Positions of A
and B

+

-

A

B

-

+

+

-

A

B

A

B

-

-

+

-

+

A

B

A

B

A and B are
in the posi-
tive domain
(++)

A and B
are in two
separate
domain
(+-/-+)

A and B
are in the
negative
domain (- -)

Number of cuts 0 1 0 or 2
Illustration of fig-
ure III.3

III.3h III.3b, III.3c,
III.3d

III.3e, III.3f,
III.3g

Table III.1: Possible cut cases for an edge AB.

The algorithm to obtain the discrete SVDF iso-zero points on edges (i.e. Γc

points) is based on these geometrical predicates. Tangent plane intersec-
tion(s) is(are) considered as SVDF iso-zero point(s) under the following condi-
tions illustrated in Figure III.3 (taking also into account the logical considera-
tion of table III.1) :

• one cut cases (+-/-+)

– The cut is first identified with the negative SVDF information (III.3b).
It agrees with the assertion that the quality of the negative SVDF
information is potentially better than the one of the positive SVDF
information (that are closer to skeleton location which is hard to
track).

– If the above fails, the cut is based on the positive SVDF information
(III.3c).

– If the above fails once again, a linear interpolation of the magni-
tude of the SVDF vector taken as level set values is done(III.3d).

• zero or two cut cases (- - )

– If tangent planes do not cut the segment then there is no cut
(III.3e)

– If tangent planes cut the segment twice but the order of cut point
is not ”A, cut from point A, cut from point B, B” then there is no
cut (III.3f). This condition avoids some topological inconsistency
(unwanted intersections) when following the SVDF iso-zero.

– If tangent planes cut the segment twice in the right order (see
above) there are 2 SVDF iso-zero points(III.3g).
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An important aspect to consider in this process is what should be done
when the identified cut point lies close to A or B. First, a definition of
“close” must be given. A cut point is close to an edge node when its abscissa1

s in the edge coordinate system is such that s ∈ [0, εmetric[ or s ∈]1− εmetric, 1]

where εmetric is an arbitrary small number (we choose 10−5 in this work).

With a single cut algorithm, a simple treatment that modifies the level set
is usually enough so that its iso-zero surface passes through the node. Never-
theless, it is no longer possible with the double cut algorithm because there is
no way to identify the crack lips if we merge information at nodes. Thus, the
cut node is placed on an edge node if it is close to it, but it still belongs to the
edge from a topological point of view.

Regarding the double cut position on an edge, a similar proximity con-
sideration must be considered. Do two cutting nodes on edge are close
enough to be considered coincident? Once again the same εmetric is used
to compare the abscissa (in the edge coordinate system ) s1 and s2: if
|s1 − s2| 6 εmetric then both cut points are metrically considered at the same
location ( s1+s2

2 ) and topologically distinct.

Another case is also taken into account during the coincident node treat-
ment. Independently of what might give the above plan cut algorithm, if the
SVDF magnitude at a node divided by the length of the emanating edge is
small (less then εmetric ) then a cut is considered to exist and is located at the
node. To avoid different treatment around a node due to edge length fluc-
tuation, we first compute the mean length of edges connected to a node. It
gives a consistent metric reference across edges to evaluate the magnitude
of the SVDF.

All these overlapping position identification are then used during the con-
struction of the sub-elements for the integration and during the identification
of the enrichment (see annex A and chapter III.4.1 for further details).

III.3.2 second step of DCA: cut mesh elements

Once the edge cut positions and topologies are determined, the construc-
tion of the geometric domain using the following assertions (also available in
2D) can be achieved:

• The convex hull generated by the cut points and positive node-set cor-
responds to a + domain (Ωc in the TLS framework). It is a polytope2

(polyhedron or polygon depending on the case).

1s is dimensionless and varies from 0 (edge node origin location) to 1 (other edge
node location).

2see [Coxeter, 1973, p. 118] for a general definition
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• The subtraction (geometric operation sense) of this + domain to the
original element gives the - domain polytope (Ω+ in the TLS framework).

• The common boundary of the + and - domains gives the SVDF iso-zero
(Γc in the TLS framework).

The element cut pattern cases can be reduced to a small set of unique
cases using the elementary topological rotations and symmetries. Depend-
ing on the way one chooses to implement the cutting algorithm, generation
of the null volume parts (coming from the cut point merged with other nodes)
can be eliminated from the integration or not. It leads to a more significant
number of element cut pattern cases or not.

All those cases are depicted for the 3D case in annex A. This annex also
presents the cutting database introduced to accelerate the DCA computa-
tions. Moreover, it presents a pure geometric illustration of the performance
of the double cut algorithm with SVDF compared to the level set single cut al-
gorithm. Note that the library that provides DCA has also been implemented
in a distributed version, not presented here, but used in chapter V.4.

III.4 Discussion about the new Γc representation

The use of the “double cut” algorithm for the discretization of Γc in the TLS
framework has two impacts:

1. On the way ramped Heaviside enrichment is computed. It will be dis-
cussed in chapter III.4.1

2. On the way φ values are evaluated in the Γc vicinity. Chapter III.4.2
briefly comments on this aspect.

III.4.1 Enrichment impact

The fact that an element can be cut twice by the same iso-lc is of small in-
fluence on the process that finds the dof to be enriched in an element as
described in Bernard et al. [2012]. The general guidance is still to consider for
a given dof its support and to count the unconnected parts from Ω+ created
while splitting it by Ωc (figure III.4).

As soon as there is more than one Ω+ part, the enrichment must be used
to allow the crack opening.

The “double cut algorithm” presented in this work handles with care the
cases where the crack runs close to the nodes (chapter III.3.1 and annex A).
It has an impact on the way Ω+ parts are identified and counted. In figure
III.4, the zoom shows a basic example of Γc passing on a mesh node. In this
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Γc

K
K

K

Figure III.4: Selection of nodes to be enriched by the ramped Heav-
iside. Star nodes are enriched once and the ’sun’ node is enriched
twice. Note that K nodes are not enriched because both cracks lips
run on the boundary of their support.

case, a topological Ω+ part exists but it is of zero measure. Those parts do not
count for the enrichment decision. Subtle impact on Ω+ parts identification
is illustrated in figure III.5. Let’s consider the mesh given in figure III.5a and
A one of its node . In figures III.5c and III.5f, where Γc does not run through
node A, either we have 2 sane parts (III.5c) or 3 sane parts (III.5f) depending
on whether the node A lies outside Ωc or not. In figure III.5d, Γc runs through
node A (from the above), there are two sane parts (such as in figure III.5c).
In figure III.5e, Γc runs through node A (from below) and there are 3 sane
parts (like in figure III.5f). We remind that even though Γc runs through a node,
the information about which edges are cut around the node by Γc (which
enables the tracking of Ω+ part definition) is kept.

III.4.2 φ in Γc neighborhood

The “double cut algorithm” uses a signed vector distance function instead of
an offset level set for Γc construction. As exposed in the previous chapter and
annex A, it gives a suitable Γc discretization. Nevertheless, it introduces some
differences in Γc vicinity, between the φ value and the crack front location.

Figure III.6 shows the issues with an element extracted from a mesh in a 2D
context (with lc = 0.5). Figure III.6a depicts the following. The vertex element
φ values are : 0.48, 0.497, 0.51. The SVDF construction of triangle upper vertex
(based on figure III.2 steps) has discovered the closest point CP on the Γ0

discretization at a distance of 0.499. This value is in contradiction with the 0.51
φ value. It is possible because Γ0 is a discretization of the φ iso-zero that can
induce a difference with the true iso-zero (in dot). The consequence in this
case is that the SVDF sign at this vertex is negative! Consequently, the DCA
uses the ’- -’ rule of table III.1 and there are only cuts at the bottom edge.
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A

(a) mesh

Ωc
Γc

Ω+ part 2
Ω+ part 1

Ω+ part 3

(b) legend

(c) A ∈ Ω+ (d) A ∈ Ω+ and A close Γc

(e) A ∈ Ωc and A close Γc (f) A ∈ Ωc

Figure III.5: Decomposition of the support of a node A (a) into sane Ω+

parts. Two sane Ω+ parts appear in (c) and (d) whereas three sane Ω+

parts appear in (e) and (f). In (d), Γc runs through node A while cut-
ting edges above. In (e), Γc runs through node A while cutting edges
below.

The Γc appears then on it. Now, if considering φ value instead of
∣∣∣
∣∣∣−→Vcp

∣∣∣
∣∣∣ the

upper vertex would have been in Ωc. This problem is treated modifying the
φ value on this vertex (for example, by using neighborhood values) so that it
is not greater than lc as shown in figure III.6d. Note again that the SVDF fast
marching alternative raised in chapter III.2 would suppress such difference
(and would give a better vector orientation).

The other issue (not linked to the SVDF construction) is related to integra-
tion. Figure III.6c presents in green a sub-element introduced to take into
account the Γc presence. As the integration is made at the Gauss point G for
this sub-element, one must know the φ value at this point. There are two ways
to interpolate φ on G :
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0.51

0.48 0.497

-

- -

CP

∣∣∣∣∣∣−→Vcp

∣∣∣∣∣∣ = 0.499

(a) Construction

Γ0

Closest Point

element

sub-element

φ iso-zero

−→
Vcp

Γc

- SVDF sign

−−−→
Vsvdf

(b) Legend

0.51

0.48 0.497
0.4940.49

G

(c) Error

G

0.50.5

0.482

(d) Correction

Figure III.6: Reshaping φ around Γc. III.6a SVDF construction and edges
cut processing, III.6c error on Gauss points G computation correspond-
ing to original φ, III.6d corrections applied to φ . lc = 0.5, 2D
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• geometric linear interpolation of the element level set values

• geometric linear interpolation of the sub-element level set values

Clearly in both cases, using the φ level set will not give a computed value
corresponding to the presence of Γc. For example in figure III.6c, at the Γc

edge nodes locations, φ should be 0.49 and 0.494 from geometric linear in-
terpolation of element level set values.

The idea, to be always consistent with DCA construction, is to consider
that the level set values on Γc nodes are imposed to a lc value. Then, the
computation of φ on G, using the geometric linear interpolation of the sub-
element modified level set values, will be in accordance with the presence
of Γc as shown in figure III.6d.

These two modifications lead to the fact that φ is no longer a distance
function in the vicinity of Γc. It implies that somehow d() function response is
not anymore what we expect in this region (It is locally another d() function).
But the damage is now 1 on Γc and no spurious fully damaged location does
appear anymore.





Chapter IV
Mesh adaptation strategy

Let us recall ht, hw and ho definitions as respectively the mesh
size in the crack tip vicinity, the mesh size in the crack wake
region and the mesh size outside damage band. With the
Thick Level Set model, the discretization requirements are of two
kinds: the accurate capture of the mechanical behavior at the
crack tips (that imposes ht to be roughly equal to lc

5 for a right
approximation of the strain field) and the right discretization of
the crack path (that imposes hw to be between ht and ho de-
pending on the crack wake curvature for a correct integration
computation). ho must only fulfill the general mechanical con-
straint over the domain (such as boundary condition, fillet, hole
, ...).
In a 3D simulation, the lazy option that imposes ht everywhere
or in a rather large defined region, leads to a huge system of
equations that will be hard or impossible to solve on a com-
puter (because of lack of memory or irrelevant computation
time). Some specific computational strategies can help as ex-
posed in chapter V. But adapting the mesh size is almost essen-
tial to reduce the effort of the linear algebra computation.
A first easy adaptation consists of tracking the damaged band
and imposes within it, ht (with hw = ht) and ho elsewhere. It has
been studied in this chapter with an octree, unstructured and
two-scale embedded mesh. This last mesh is related to the two-
scale strategy exposed in chapter V where adaptation is made
at a fine-scale level.
An alternate adaptation strategy that sticks to the TLS require-
ment given above, consists of using hw such that ht < hw ≤ ho.
In particular, the “double cut” (chapter III) algorithm capability
will be advantageously used to fulfill this new requirement in the
octree mesh context.

40
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In the TLS model, Ȳ computed from the strain field, needs to be of excel-
lent quality to provides the right crack progression. As the strain field is singu-
lar in the crack tip vicinity, a suitable discretization in this region is mandatory.
That is the reason why ht must be roughly equal to lc

5 to capture the strain
singularity accurately (Bernard et al. [2012]).

In the crack wake, only a correct material integration and a proper en-
richment do mater. Both are related to ρ and crack complexity. If the crack
curvature is small, the discretization must be rather precise to capture lips ge-
ometry correctly: hw is close or equal to ht. If ρ is large then the crack is almost
straight and hw can be equal to ho. The same holds for branching or merging
scenario where the lips are described with sharp angles.

In the region outside the damaged band, ho needs only to fulfill constraint
imposed by the mechanical problem: local Neumann boundary condition,
holes in the part, fillet ... In this work, ho is used with a constant order of magni-
tude. However, in reality, the mesh size is adapted around the holes, the fillet,
... This adaptation will be considered as a fixed input in this chapter.

The TLS mesh size requirement can then be summarized as ht ≈ lc
5 6 hw 6

ho with hw being a parameter to adapt.

On the one hand, one may implement the TLS model without dynamic
mesh size adaptation. In this case, he will be forced to impose ht everywhere
or in a rather large defined region. Nevertheless, no re-meshing adaptation
nor φ transport has to be done. In 3D, it will lead to a system size difficult or
impossible to solve on a computer ( lack of memory or irrelevant computation
time). However, all simulations of chapter VI have followed this principle. It has
required a specific solving strategy, called active zone (see V.3), to partially
bypass memory issues and time consumption.

On the other hand, if the mesh adaptation tools are available, a good
choice of ho and hw can reduce the size of the system. The next chapter,
proposes a mesh adaptation strategy that tunes hw taking ho (fixed adapta-
tion) has an optimal input.

IV.1 Adapting mesh in damaged band

It corresponds to the simplest but not the most efficient strategy. hw is arbitrar-
ily taken equal to ht. It is simple because it doesn’t require algorithmic efforts
to separate the crack tip vicinity from the crack wake. Only damaged band
localization is requested and φ gives an easy way to do so.
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IV.1.1 Octree context

It is the TLS historical adaptation strategy . It uses eXlibris Octree library that
provides an effortless coarsening/refinement of cells in a cube or arrange-
ment of cubes. The octree implementation uses the Linear octree concept
(Gargantini [1982]). It stores the cell status in a linear array instead of a tree
data structure. The array size is fixed by the maximum refinement level im-
posed by the user. At level 0 only one cell is defined: the original hexahedron
(or set of hexahedron). At Level 1, 8 cells are corresponding to the first cube
split in 8 equal hexahedron. At Level 2 there are 82 cells, and so on.

The library adaptation functionality takes as input a set of quadruplet: a
level set, a level to reach in the octree, an offset from iso-zero of the level
set and the level set side to use for refinement. The octree cells at the ap-
propriate level are activated following those parameters with an imposed 2:1
constraint: a cell at a level leveli can not have a neighboring cell with a level
higher than leveli+1 or lower than leveli−1. It ensures a priori smooth mesh size
transition and only one hanging node on edges or faces (annex C).

The TLS implementation uses this library via an octree/unstructured mesh
conversion tool since all cutting and enrichment features are acting only on
tetrahedrons. The unstructured mesh here, as inherited from an octree mesh,
is mostly a regular mesh turned into simplex. The conversion tool transports
back and forth the level set function from an unstructured mesh to/from an
octree mesh. When passing from an octree to an unstructured mesh, the
hanging nodes are treated either with supplementary linear kinematic equa-
tions or additional connecting elements (annex C). Of course, the level set
function used for the octree adaptation is φ. In Ω+

⋃
Ωc, we impose ht and

enlarge the refined zone using an lc percentage offset.

This offset is essential in this strategy since the adaptation does cost (mesh
creation, octree definition, level set function transfer, ... ). By having this mar-
gin around Γ0, the front can progress during several load steps without the
need to reshape the unstructured mesh. The only constraint is that Γ0 remains
in the refined area. As soon as this condition is not fulfilled anymore, a new
adaptation is required. In the future, the offset has to be tuned. For now, it is
taken all around Γ0 which is unnecessary most of the time. An ”Only where
Γ0 will progress” criteria can tune the offset appropriately and can reduce
the problem size slightly. However, this ”Only where Γ0 will progress” criteria is
complex to tackle because it implies to know where the crack will progress
before computing its progression.

Many simulations, not presented here, did successfully use this adapta-
tion but the octree strategy is only available for parallelepiped shaped ob-
jects. Mentioned by members of the team, to bypass this limitation, a level
set function can be used to define objects embedded in a cube. However, it
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only gives a discrete definition of its boundary (the geometric representation
depends on the maximum octree refined level). It also requires a complex
implementation to deal with an element cut by several level sets. Alterna-
tively, using a mapping from/to a cube to/from a specific shape can work for
a simple object. It has to be tested. In the end, coping with this shape limita-
tion is investigated in the next chapter, transposing the octree refinement on
an unstructured mesh.

IV.1.2 Unstructured context

The same principle as the octree refinement with a 2:1 constraint (see pre-
vious chapter) is used in this unstructured distributed mesh adaptation tool.
Annex D provides the full parallel algorithm 5 and the details of the used re-
fining procedure. This tool takes as input a mesh and a criterion indicating
whether an element should be refined or not. In the context of damaged
band mesh adaptation, this criterion is a function that asks to refine the el-
ement if it is in or partially in Ω+

⋃
Ωc and if its size is greater than ht. As in

the octree context, adding a smart offset in this criterion would be a good
mechanism to reduce the number of adaptation. However, it as not been
investigated yet.

In terms of scalability load balancing is a crucial point (as illustrated in an-
nex D with a dedicated test). If the initial mesh is always distributed so that
each process gets elements to split, the load may be balanced and the scal-
ability will be present. Besides, in this rather crude tool, the splitting history is
not kept. It limits the operations only to the refining from the original mesh:
neither successive adaptation nor coarsening are possible. A future devel-
opment can provide them and will also potentially ameliorate the scalability.
However, for now this implementation provides an experimental adaptation
tool to quickly test the assumptions formulated in this work using the appro-
priate mesh. Furthermore, the next chapter shows, in particular, how this un-
structured adaptation tool has been used in the two-scale context.

IV.1.3 Two-scale context

The two-scale method is presented in chapter V.4 but it is interesting to recall,
in this part, its discretization mechanism. At this point, all we need to consider
for the two-scale method is that it needs to have a fine mesh embedded
into a coarse mesh. A fine mesh element must know in which coarse mesh
element it is embedded. Reciprocally, a coarse mesh element must know all
its embedded fine mesh elements. This two-scale method applied to the TLS
can use the adaptation criterion suggested in this chapter: hw = ht. In fact,
the unstructured adaptation tool of chapter IV.1.2 may be used with a coarse



IV.2. COARSENING MESH IN THE CRACK WAKE 44

element set to create all the attendees described above. The procedure
may be summarized as follows:

1. Selection of the coarse elements that cover the damaged band. It
will be, hereafter, named the C element set. An SVDF description of φ
on coarse mesh is needed for that. Eventually paired with DCA, it will
allow determining if the damaged band crosses a coarse element or
not. Note that a small isolated damaged band can be untraceable by
the DCA. It has to be investigated in the future.

2. Distribution of C using ParMetis weighted partitioning (an element that
covers a more significant part of the damaged band gets higher
weight). It is mandatory for a proper load balancing of the adapta-
tion(as mentioned in annex D.3) as well as of the two-scale resolution
(chapter V.4.3)

3. Use of C to create a new mesh, the SuperPatch, that will correspond to
the fine scale. A connection between the C elements and their equiv-
alent in SuperPatch is also created.

4. Adaption of the SuperPatch using the tool and criteria of chapter IV.1.2.
A transport function has to be added to maintain a connection be-
tween the fine mesh elements newly created and their ancestors in C.

5. Creation of the reverse connection from C to SuperPatch using the con-
nection between the SuperPatch elements and their ancestor in C.

Compare to the adaptation in chapter IV.1.2, the main difference, in this
case, is the presence of two data structures to store the initial and final
(refined) meshes instead of only one transformed mesh . It has two conse-
quences. Firstly, it allows launching a new adaptation from a coarse level
easily: only the fine data structure has to be cleaned. Secondly, it provides
different results since the 2:1 constraint does not propagate in the same way
for the two approaches. In this two-scale context, the SuperPatch is limited
to the C set. Hence, the neighboring elements of C are not impacted by 2:1
constrain as they are in the adaptation of chapter IV.1.2.

IV.2 Coarsening mesh in the crack wake

This strategy proposes ht in the crack tip vicinity, ho outside the damaged
band and hw in the crack wake with: ht 6 hw 6 ho. Three questions have
to be associated with this new approach. The first one, fairly obvious, is
what value should be specified for hw and should it be uniform in the crack
wake? This question is not addressed in this work. Nevertheless, considering
hw ≈ max

(
ht,min

(
ho,

ρ
L

))
should be a good starting point. The second one is
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related to the crack tip vicinity definition itself. Where should vicinity stop and
where does wake start? This question is treated in chapter IV.2.1. The third
one is what tools are mandatory to represent the TLS framework correctly in
the coarsened crack wake? This last question is related to the Γ0 and Γc de-
scription. If we want to keep both of them in the coarsened crack wake, a
standard level set tool is not appropriate. The DCA (chapter III) will let Ωc pass
inside an element. It lets hw grows up to a limit where an edge is cut more
than twice (2 times by Γc and one or two times by Γ0). So with current tools,
we must have hw < lc without further treatment.

IV.2.1 Identifying the crack tip vicinity

A priori, the crack tip vicinity can only be described if the tip is located. The
Γc discretization provides the tip and lips. However, where is the tip on this
curve (in 2D) or surface (in 3D)? For now, no topological information is given
by the tool that creates Γc. Investigation, not presented here, based on graph
manipulation and zoning, gives a bad approximate of the tip localization on
Γc. Besides, the computational effort is important.

Alternatively, since only the crack tip vicinity does matter, why trying to iso-
late the tip accurately? Knowing some points, close to the crack tip, can be
enough. In this work, the enrichment information around Γc are used to find
those points as presented in annex E. A quick analysis based on the current
mesh and the TLS framework location, gives the elements which are close (at
least in contact) to the crack tip. The points sought are then only the centers
of gravity of these selected elements.

Figures IV.1a and IV.2a show, in a 2D context, two situations where point
locations are given by enrichment information around Γc (see annex E for the
steps that select those points). It is then possible to define a tip neighborhood
by: constructing spheres (3D) or circles (2D) using those points as centers
(figures IV.1c and IV.2c); taking their convex hull (see the areas with the white
stripes in figures IV.1d and IV.2d). The sphere (or circle) radius is intended to
be large enough so that the damaged band front is covered. It imposes
a radius at least greater than lc. But reducing the adaptation number, as
in chapter IV.1, is possible by taking a larger radius value. It allows staying
with the same mesh for several times steps as long as Γ0 remains in the refined
zone. Once having those refined regions, it is not difficult to remove them from
the damaged band. Figures IV.1e and IV.2e show the resulting regions where
a coarsening will be done with a hw element size target. The adaptation
tool will ensure that 2:1 constraint is valid. Furthermore, the DCA will permit
the construction of Γc in those mesh size transitions. Finally, figures IV.1f and
IV.2f show the mesh that will not be adapted (excepted marginally to ensure
the 2:1 constraint). Note that this zoning is better than the offset strategy
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(a) Starting point: situation shown in figure E.1d

Mesh Γ0 Γc

Selected element

Element gravity center

Constructed circleZone

(b) Legend

(c) Circles construction (d) Refined zone: ht

(e) coarsening region: hw (f) Outside band and refinement:h0

Figure IV.1: Simple zoning example in 2D

presented in chapter IV.1, even without coarsening. To limit the phases of
adaptation, the additional refined elements are applied only in the vicinity of
the crack tip.

Note that some care is required in the absence of cracks (during the ini-
tiation phase).In this case, no point close to the tip can be located because
there is no tip. The workaround solution is to switch to the damaged band
adaptation presented in chapter IV.1.

Finally, as discussed in annex E, the forking case presented in figure IV.2
shows that the proposed algorithm also identifies a region where the crack
lips are not close to each other, as a tip vicinity. In this specific example, it is



47 CHAPTER IV. MESH ADAPTATION STRATEGY

(a) Starting point: situation shown in figure E.2d

Mesh Γ0 Γc

Selected element

Element gravity center

Constructed circleZone

(b) Legend

(c) Circles construction (d) Refined zone: ht

(e) Coarsening region: hw (f) Outside band and refinement:h0

Figure IV.2: Complex zoning example in 2D

a benefit. It would have certainly been rather complex to coarsen the mesh
in such a region. However, other circumstances, like a small region where lips
are still connected (figure E.3), show the limitations of the proposed identifi-
cation of the crack tip. The use of a more sophistical crack tip localization
may in the future, be more accurate and efficient ( see for example Coupez
[2011] ).

IV.2.2 Experimentation in the octree context

This strategy has only been tested in the octree context. The adaptation tools
presented in chapter IV.1.1 are used with an extra level set. It corresponds to
the convex hull introduced in IV.2.1 and is created simply by taking circle or
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Figure IV.3: TLS simulation in 2D quad tree context with a crack wake
coarsening (damaged field)

Figure IV.4: TLS simulation in 3D octree context with crack wake coars-
ening (damaged field)

sphere level set union. Two simulation results are presented in figure IV.3 and
IV.4.

The first one corresponds to a plate (2D) under a shear loading. The
boundary conditions correspond to tearing the plate in a specific direction
(30 degrees from the vertical figure axis). It leads to a crack path not aligned
with any edges of the mesh. The simulation is started with a seed (little dam-
aged circle) at the plate center since the problem is initially symmetric. Then,
the damaged band grows without an explicit crack. The octree adaptation
imposes ht in the band. When the damage front grows enough, Γc is intro-
duced and the crack tip identification starts. On the first adaptation following
this event, the tips at both ends are too close and the refined zone covers all
the band. Then, later on in the simulation, both tips are far enough so that a
coarsening region appears as depicted in figure IV.3.

The second simulation is a three-points bending test with two initial
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notches at the bottom of the beam. The load is applied at the top cen-
ter of the beam. One notch is centered (just below loading ) and the other
is shifted from the center. In the beginning,both notches, represented by the
TLS framework, are of the same length. The first adaptation covers both. The
two notches start growing and the shifted one stops obviously while the cen-
tered one continues toward the top of the beam. In figure IV.4, the tip of the
centered crack is far enough from the bottom of the beam so that coarsen-
ing occurs.

During those two simulations, slightly modified Γ0 and Γc positions have
been observed in the coarsened regions. It is related to level set transport
during the adaptation and this aspect must be investigated in the future.

The work presented in this chapter is more a proof of concept than a
clean quantitative evaluation. This one has been postponed to focus on the
a priori more profitable solutions studied in chapter V.

IV.2.3 Other experiments

Note that an anisotropic mesh adaptation (Coupez [2011]) has been tested
with the TLS model by other team members. The idea was to replace the
isotropic coarsening in the crack wake by an anisotropic meshing. It was
done with the ICI-lib from ICI-Tech suites (ICI laboratory at ECN). The control
of ρ and more precisely the curvature of Γ0, give a parameter to adapt the
mesh in all regions. At the tip, Γ0 has a high curvature and the elements are
kept isotropic. In the crack wake, Γ0 is more straight and the elements can be
extended in the crack path direction reducing their numbers in this direction.
The tests were encouraging but some level set transport from one library to
the other added numerical issue. It would make sense to investigate this path
again.



Chapter V
Parallel and multi-scale
solving strategy:
distributed TLS approach

We show, in this chapter that in the implementation of the Thick
Level Set model, the computational throughput is mainly linked
to the performance of linear system resolution, as in many finite
element applications. The system creation and the damage
front advance are, respectively, second and third CPU time
consumer.
Two general approaches are commonly used to solve a lin-
ear system: The ”frontal” strategy that takes the problem as it
is and uses direct or iterative solver to obtain a solution. The
second approach corresponds to the ”indirect”. In this case,
this strategy tries upstream manipulations to reduce the prob-
lem size before using a direct or iterative solver. In this chap-
ter, both strategies have been investigated and parallelism has
been chosen to chase High-Performance-Computing with a
high scalability objective.
Regarding the ”indirect” strategy, among all available possible
solutions, two numerical methods have been studied: the do-
main decomposition method with a specific application called
the ”active zone” and the two-scale or GFEMgl computational
framework. The first one reduces the system size using a linear
algebra condensation technique. The second one keeps low
the system sizes by working on a global discretization (relatively
small) which is enriched by some local fine-scale information.
Both have been chosen for their potential scalability.
Even though every thing is not fully stated with solving strategies
proposed in this chapter, positive preliminary results comfort the
numerical and implementation choices.

50
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Load step
Id 2 84

Elapsed time in s 832,4 7304,05
Nb of Newton Raphson iteration 3 12

Task Elapsed time in % of total
System resolution 97,4% 55,8%
System creation 2,1% 43,6%

Damage update 0,5% 0,6%

Table V.1: Chalk (see VI.2) simulation with a sequential profiling on titan
(see J.2)

V.1 Initial profiling and strategies for improvement

Sequential TLS profiling shows that the greatest computational effort is related
to the nonlinear resolution ((II) in algorithm 1). This iterative resolution (Newton-
Raphson) can be split into two main tasks: the system of equation creation
(definition of sparse matrix structure, integration and assembly of tangential
rigidity matrix and right-end side residual vector) and the system of equation
resolution (direct solver factorization and solving at each Newton-Raphson
iteration). The computational performances of these tasks and of the dam-
age updates (solving of equation (II.7) and φ updating) are presented in ta-
ble V.1. They correspond to a chalk test case simulation (chapter VI.2 ) in a
sequential computation context. It is representative of 3D elapsed time con-
sumption. This table gives results for load steps 2 and 84. In both cases, the
damage front advance computation is negligible. At load step 2, the simu-
lation begins and a small damaged zone is only initiated at the chalk edge.
The Newton-Raphson resolution is done in 2 iterations and the linear algebra
resolution is proportionally the most important consumer. The assembly does
not cost much because the non-linear part (damaged band) is small and is
only computed twice. At load step 84, the crack has reached the chalk cen-
ter and the Newton-Raphson resolution is done in 12 iterations. Consequently,
the assembly task is proportionally more important than in step 2. There are
more elements to assemble and this task is done more time. However, the lin-
ear algebra resolution remains the hot spot. Note that this last assertion was
made on the basis of the resolution of linear systems with a direct solver.

To decrease the time consumption, one first solution consists in reducing
the number of Newton-Raphson iterations by ”simplifying” non-linearity. This
point, not investigated here, is related to the asymmetric non-linear poten-
tial(II.5). Smoothing this law at tension/compression switch may ease the non-
linear resolution (team proposal).

Now keeping the same non-linearity,the Newton-Raphson time consump-
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tion can be reduced by modifying the update frequency of the tangent ma-
trix. With the modified Newton-Raphson or other variants, the tangent matrix
factorization is done only a few times (depending on the modification ap-
plied to the original Newton-Raphson algorithm). Then, between these fac-
torizations, only cheap forward and backward substitutions are used to solve
the linear systems. It has been tested in a three-points bending simulation with
an update of the tangent matrix every arbitrary N iterations. It is not present
here but the results were not positive. The nonlinear resolution takes more it-
eration to converge decreasing the benefits given by reducing the number
of factorizations. Nevertheless, it might be interesting to continue digging this
track.

If the nonlinear resolution is not modified, it remains to decrease the com-
putational time of the linear systems resolution. Two modus operandi have
to be considered for that. The former is call ”frontal” since it takes the lin-
ear system as it is and tries to find the fastest algorithm to solve it. The latter
is called ”indirect” because it first tries to reduce the problem size and then
uses an adapted solver to solve the reduced system. The ”frontal” approach
is described in this chapter as the frontal strategy presented in chapter V.2.

For ”indirect” approach, many strategies are available. The domain de-
composition methods are good candidates. As stated in Saad [2003], these
techniques ”revolve around the principle of divide and conquer”. Stepping
in the resolution process very early, they divide the initial problem in a set
of smaller ones. Those smaller problems, called domains, contribute to the
global resolution by providing computed information individually. This do-
main treatment independency gives excellent scalability properties to those
methods. In this thesis, non-overlapping domains are considered (eliminating
Schwarz alternating method which seems complex with enrichment) and a
element-base partitioning is chosen (the vertex or edge-base partitioning are
also eliminated). This last choice is strongly related to the eXlibris tools capa-
bilities in a distributed context. A first basic direct Schur complement reso-
lution with two domains is proposed for the TLS model in Chapter V.3. Then
in chapter V.5, an iterative Schur complement approach is benchmarked
(however not with the TLS model) against the other strategies proposed in this
chapter.

Alternatively, an ”indirect” approach can reduce the problem size by the
use of multi-scaling strategies. The most basic form has been investigated
in previous chapter IV where the mesh adaptation copes with the different
problem scale phenomena. Besides, mentioned in the introductory chap-
ter I.2, a crack box can be seen as a specific scale where the discontinuous
crack behavior is well captured. The rest of the part, embedding the box, cor-
responds to another scale only able to reproduce a overall mechanical be-
havior. Another technique, the multi-model and multi-scale Arlequin frame-
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work (Ben Dhia [1998]), introduces a generic way to superimpose a fine-scale
model to a large-scale model combined at the energy level by coupling op-
erator (often Lagrange Multiplier). The first attempt with this technique pro-
poses to follow the crack evolution with a fine mesh covering it. Then, using
XFEM, in Ben Dhia and Jamond [2010], only the crack tips vicinity is tracked
by a fine-scale problem. At the global level, the enrichment with a Heavi-
side function ensures the discontinuous behavior in the crack wake1. A similar
approach can be applied to the TLS. Despite the complexity linked to the
Arlequin/TLS mixture, it is not clear whether the above proposals would have
had the right scalability property. By nature, the Arlequin system structure is
well suited for the domain decomposition-like solvers. But that implies that the
crack tip vicinity (in 3D it’s a pretty big problem in itself) has to be treated ef-
ficiently (in many domains in parallel) which is not obvious from bibliographic
study. Around the same period Pereira et al. [2011] propose, for the same
kind of simulation, a multi-scaling with the use of enrichment to ”connect”
scales. The associated two-scale (TS) or GFEMgl computational framework
(first introduced in Duarte and Kim [2008]) links a global scale to a set of over-
lapping local (or fine) scale problems ( called patches). This last point offers
a priori good scalability properties (Kim et al. [2011]) despite suffering from
redundancy. This justifies studying how the TLS model can be introduced in
this two-scale framework. Chapter V.4 presents this work.

V.2 Frontal strategy

This strategy may be summed up as choosing the fastest appropriate linear
solver for the TLS non-linear resolution. To make the appropriate choice, the
linear system matrix nature must be analyzed. The tangent matrix is a sparse
symmetric positive definite matrix. This is interesting because it involves the use
of a simpler and faster resolution algorithm compared to an indefinite matrix.
However, the matrix conditioning is not very good due to the ramp Heaviside
enrichment. In this thesis, this last point has contributed to eliminate the itera-
tive solvers based on Krylov subspace from the possible solutions. Those types
of sparse solvers, although they provide good scalability properties, are very
sensitive to the matrix condition number. A vast research field is dedicated
to preconditioning techniques that improve the solved matrix properties and
then the iterative solver performance. A specific work on that aspect would
be necessary to find the best preconditioner for the TLS model. Once done,
other investigation about Newton-Krylov methods would be fruitful to really
gain performance at the non-linear resolution level. Note that the multi-grid
method may also play a role in this kind of solver. Finally, mixing the direct

1Note that in weak discontinuity approach community, the same performance
concerns are also addressed. Moreover, the same mixing approach is proposed in
Giovanardi et al. [2017] with XFEM in the wake and phase-field patch at the crack tip.
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and iterative solvers in Newton-Raphson resolution might give some results
easily (the direct solver computes, at some non-linear iterations, the costly
tangent matrix factorization (eventually to be fast with low precision : MUMPS
BLR) and this factorization is used as a pres-conditioner for all linear resolution
done with iterative solver. It was successfully tested a few years ago at EDF
R&D by Olivier Boiteau (no citation here sorry, we just talked together)).

After eliminating the iterative solver, the direct solver, less sensitive
to poor conditioning is then the key solution. Many libraries are pro-
viding good algorithm for such sparse symmetric defined matrix: Su-
perLu (https://portal.nersc.gov/project/sparse/superlu/), Taucs (https:
//www.tau.ac.il/~stoledo/taucs/), Pardiso (https://www.pardiso-project.
org/), PaStiX (https://gitlab.inria.fr/solverstack/pastix), MUMPS (http:
//mumps-solver.org/), ... The results of table V.1 show that a sequential ap-
proach is not adapted to the kind of problem addressed in this work. So par-
allel versions of those codes are a must. However, different parallel paradigms
are proposed. For example, Pardiso proposes a multi-threaded solution that
implies a computer with lots of unified memory connected to many cores
(even though Pardiso developers switch now to hybrid direct/iterative dis-
tributed resolution). The message passing protocol with or without multi-
threading is, on his side, more hardware flexible ( it can be used indifferently
on a set of personal computers networked together or a cluster intercon-
nected with high bandwidth network or ...). For example our target platforms
(annex J.2) are more adapted (especially Liger) to the message passing pro-
tocol. In this regard, MUMPS, PaStiX or SuperLU are better candidates. They
all propose a version using MPI with multi-threaded or GPUs hybrid computa-
tion. Mumps has been retained for its well-known performance, its large set
of features and its maintainers’ group size (guarantee of longevity).

Now, how is it possible to introduce the MPI parallel solver into the TLS
framework sequential implementation? A first try was to isolate the sequen-
tial code in process 0 and span, with a master/slave paradigm, solver steps
in all processes. It gives quickly a way to scale the linear resolution but it has
a limited action: the system creation becomes the bottleneck. The MUMPS
solver offers a distributed input capability. The next move was therefore to
fully distribute the TLS resolution using an element-based partitioning. It al-
lows the system creation tasks parallelization which well scales (quite ideally if
load is well-balanced). This move has not been achieved yet. Because many
algorithms used in the TLS framework, take time to be adapted to MPI com-
munication (such as the double cut algorithm of chapter III, for example).
Nevertheless, this goal is slowly getting closer.

This strategy though, for the non-linear resolution, is only relying on the
MUMPS scalability to perform. A recent version of this solver proposes multi-
threading capabilities as well as block low rank (BLR) approximation (Amestoy

https://portal.nersc.gov/project/sparse/superlu/
https://www.tau.ac.il/~stoledo/taucs/
https://www.tau.ac.il/~stoledo/taucs/
https://www.pardiso-project.org/
https://www.pardiso-project.org/
https://gitlab.inria.fr/solverstack/pastix
http://mumps-solver.org/
http://mumps-solver.org/
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et al. [2015]): they push both the performance at a high level. A point in figure
H.8c gives insight of those promising feature, with the uniform benchmark test
(with 64 MPI process, elapsed time for MUMPS resolution has been divided
by 3.5 through the multi-threading). However, for sure, BLR must be studied
at some point. Chasing access to higher performance, the condensation
techniques to reduce the problem size have been tested in the next chapter
V.3 with the active zone strategy.

V.3 Active zone strategy

V.3.1 General concept

In the crack wake, the damage evolution is not expected unless the bound-
ary condition does impose drastic modifications or unless another crack joins
from elsewhere. If the damage does not generally change in those regions,
it means that the mechanical properties are locally constant (the lips are at
the same location and d is then unchanged). This said, one can try to isolate
the crack tips to focus the computation effort on these variable zones (called
Active Zones or AZ hereafter). It meets the concern of chapter IV.2: finding
the crack tip vicinity. So naturally, the same enrichment base algorithm 6 (an-
nex E) is used to locate the points in the crack tip vicinity. The simple example
of an artificial TLS framework applied to a 2D mesh is presented in figure V.1.
As the adaptation, a generic envelope is constructed base on a circle (2D)
or a sphere (3D) (figure V.1c) centered on those points (figure V.1a). In figure
V.2, this envelop is presented in a 3D simulation context. Using this envelope,
the elements are separated into two groups :

• the AZ group ( orange elements in figure V.1d which are cut or inside
the AZ envelope)

• the fixed group ( green elements in figure V.1d)

The idea is to construct an AZ group for a certain amount of load steps so
that the damage front may progress into it. As soon as the Γ0 moving part
reaches the AZ boundary, a new active zone has to be considered. However,
during all this progression, information of the fixed zone (φ,d,...) are considered
constant and their computational cost can be optimized.

The larger is the AZ group, the higher is the number of load steps that
benefit from the optimization of the fixed group (but the smaller is this group
and the greater is the computation for the AZ).

In this work, the fixed and AZ groups are considered as two domains where
decomposition techniques are applied. The Schur complement contribution
and the condensed right-hand sides for both domains are computed. Then,
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(a) Starting point: situation shown in figure E.1d

Mesh Γ0 Γc

Selected element

Element gravity center

Constructed circle and enveloppe

AZ element

(b) Legend

(c) Circles construction (d) AZ group

Figure V.1: Simple AZ envelope example in 2D

(a) Begin of the simulation (b) middle of the simulation

(c) end of the simulation

Figure V.2: AZ envelop examples with chalk test simulation of chapter
VI.2: in orange, the AZ envelop embedding crack tip, in blue, Γ0 and
in red, Γc.
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Schur complement reduced linear system is solved. It represents a part of
algorithm 1 resolution II. However, during all the AZ lifetime, the fixed group
is considered constant. So this domain can be condensed only once at AZ
construction. Then fixed domain linearized form, the Schur complement con-
tribution, is simply added to reduced problem at resolution. In this way, the
factorization effort for the fixed group is amortized over many load steps and
non-linear iterations. The AZ domain itself remains non-linear and is subject
to the φ variation. Hence, its condensation is systematic for each Newton-
Raphson iteration during its lifetime. It gives the new stagger algorithm 2
where the ˜ corresponds to the condensed space and G is the expansion
operator (from the condensed to the full domain).

Algorithm 2 Modified staggered algorithm scheme with AZ.
Starting from ~ui, di, and µi

repeat
Find di+1 such that di+1 = g

(
µi, ~ui

)

Eliminate fixed group from problem for any new AZ
Find (~ui+1, µi+1) such that



K̃
(
di+1, ~̃ui+1

)
~̃ui+1 = F̃

(
µi+1

)

~ui+1 = G~̃ui+1

max
k

(
fk
(
µi+1, ~ui+1

))
= 0

until Complete failure or user given load level

In algorithm 2,it is in the application of the g operator that the Γ0 evolution
is checked against the AZ boundary. Any progression, close to this boundary,
launches a new AZ construction. Note also that when a damage initiation
outside the damaged band occurs a small damaged sphere is added to φ

and a new AZ must be created to encapsulate this extra zone.

Like in frontal strategy (chapter V.2) message-passing paradigm is cho-
sen to gain computational performance with parallelism. In the current AZ
strategy, only two domains are used. So parallelism will not be, like in many
domain decomposition methods, related to domains parallel treatment. In-
stead, the parallelism will be employed to reduce the algebraic resolution
cost of both domains and the reduced system. MUMPS is again chosen
since it provides excellent performance for Schur complement creation by
simply adapting its parallel multi-frontal factorization to an incomplete block
factorization. It also nicely gives Schur complement dense matrix in a dis-
tributed cyclic block format compatible with the Scalapack library. It simpli-
fies the manipulation of reduced problem and drives to use the Scalapack
distributed dense solver to resolve it. The load balancing induced by paral-
lelism is treated in this thesis, with a specific partitioning that tries to stick as
much as possible to the AZ concept. It is depicted in annex F.1.
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Note that an extra feature not presented in this thesis has been tested. It
corresponds to the use of a mixed shape function approximation order. One
may want to use a higher-order to solve the problem. With the concept of
focusing the computational effort on crack tip, it is rather natural to restrict
this higher-order to the AZ group. An order 1 for the fixed group is enough as
any way it is only used in a linearized way. Compared to a full higher-order
problem, gains in computational time are expected. Though this requires that
the size of the common frontier between the AZ and the fixed groups is kept
at order 1 (i.e. order transition must be done in the AZ boundary element) to
get the smallest possible size of dense problem.

V.3.2 Feed back

This strategy has been used in many test cases of chapter VI. Note that none
of these simulations uses a mesh adaptation strategy from chapter IV: a fixed
region using ht mesh size covers a priori the crack path. This choice was
guided by the wish to eliminate any mesh adaptation interference in 3D TLS
model validation ( independent damage initiation, no level set transport in-
terference during the adaptation, ...). The AZ strategy itself has also justified
it. The condensation and the mesh adaptation strategy are similar: they con-
centrate the work load in the crack tip vicinity and amortize it over few load
steps. Hence, all optimizations that the mesh adaptation can provide are
only used in the fixed group. The cost of this domain condensation being
amortized over many load steps/Newton-Rapshon iterations, the mesh adap-
tation optimization is less worthwhile.

Not using the mesh adaptation also simplifies the implementation. This
one, like the frontal strategy in chapter V.2, starts from the TLS framework se-
quential implementation. It must be parallelized to integrate the AZ strategy.
A full distributed implementation would be the best. However, for the same
reasons seen in the frontal approach, a mid-term solution has been adopted.
It loads the full mesh in each process. Then, the distributed algorithm is only
introduced for key tasks used in the AZ strategy. All other steps remain se-
quential (but done on each process).

A full description of obtained performance on these test cases is given in
annex I. What has to be retained is first that the enrichment base algorithm 6
(as said in annex E.2) provides excellent to moderate locations for the AZ en-
velope creation. The algorithm is faulted when a not fully detached crack
lips zone exists or when the crack region includes a full element. In both
cases, the AZ group becomes larger than expected and the computation
slows down. The crack tip vicinity localization is to be improved. Nevertheless,
when the AZ envelop is well identified, this strategy gives, as shown in table I.5,
a good time consumption reduction. However, the scalability performances
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are hard to investigate with this mixed sequential/parallel implementation.
What can be said is that, like the frontal strategy, the scaling of nonlinear
resolution depends mostly on MUMPS parallel performance (Scalapack also
comes into play). And if a 3D crack tip becomes very long, the associated AZ
can have a size that is no more appropriate to a direct solver treatment of the
incomplete block factorization. Extending domain decomposition approach,
with the AZ divided into many domains, can allow regaining scalability. How-
ever, more domains imply a larger Schur complement (even larger if the fixed
domain is also split into many domains). The reduced matrix direct resolution
with Scalapack can then become an issue. Switching to an iterative solver for
reduced system resolution would then be a natural solution. Nevertheless, as
evoked in V.2 (even if Schur complement does improve the conditioning ), the
matrix conditioning will impose to find an ad hoc TLS model preconditioner.
All this work has been postponed to try a completely different approach. It
is based on a multi-scaling strategy which should give better scalability. This
new strategy is presented in the next chapter V.4. However, the idea of this AZ
enhanced version (with many domains) as been evaluated indirectly in the
benchmark of chapter V.5.

V.4 Two-scale strategy

Algorithm 3 Scale algorithm scheme: smx maximum number of scale
iterations, ε arbitrary numerical convergence criteria, ~Us solution at
global level and scale iteration s, ~uk∈I

g
e

s set of fine-scale problems solu-
tion at iteration s, Ige set of enriched global mesh entities identification
number.

Starting from the global problem solution ~Us=0

repeat
s← s+ 1
for k ∈ Ige do

Impose fine-scale problem k boundary conditions with ~Us−1
Solve fine-scale problems k to obtain ~uks solution

end for
Compute global enriched problem with ~uk∈I

g
e

s as enrichment
functions to give ~Us solution.

until s ≥ smx or ‖
~Us−~Us−1‖
‖~Us−1‖ < ε

V.4.1 General concept

The two-scale (TS) or GFEMgl computational framework (first introduced in
Duarte and Kim [2008]) uses interdependent mechanical problems for the
simulation. The global level problem treats the entire domain with a finite ele-
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ment discretization which is only able to capture the global phenomena. The
related fine2 level problems capture localized specific behaviors with a fine
discretization. A fine level problem definition corresponds to the region cov-
ered by a coarse entity support that includes the localized specific behaviors
to capture. Consequently, fine level problems overlap.

The local behavior can be of different natures such as welds spot in Li
and Duarte [2018], crack in Pereira et al. [2011], thermo-structural effects in
Plews and Duarte [2015], ... In all cases, the same approach is used for the
interaction between the global problem and the set of fine problems:

1. The global level solution is used to impose the boundary conditions of
the fine level problems.

2. The fine level solutions are used directly or not, as enrichment functions
to enrich the global space using the partition of the unity framework.

The enrichment function construction from the fine level solution is explained
more in detail in chapter V.4.4.

Different algorithms are conceivable using those two interactions. For sim-
ple fixed phenomena, a single loop between the scales provides the global
solution as shown in algorithm 3. For evolving behavior such as crack growth,
a first approach would be to use the algorithm 3 to solve the mechanical
problems at each dissipating load step that makes the crack advances.

But with evolutionary behavior problems, the scale loop can also be
mixed with a general solving process. This is what has been done in Pereira
et al. [2011] where the authors consider that the growth of the cracks is suffi-
ciently small so that the global solution evolves smoothly. It leads to the gen-
eral algorithm 4 where the TS enrichment functions are updated using the
global solution of the previous load step. Intermixing the load steps and the
scale loops is the point that can make the difference compared to other res-
olution strategies. Because, in this case, a part of the resolution process cost
is amortized between load steps.

V.4.2 Integrating the TLS model into the two-scale method

Following the general concept presented in chapter V.4.1, the discontinuous
problems represented by the TLS model will be treated at the fine level in the
two-scale framework. Here, one possible approach would be to focus on
the crack tips only for the TLS computation at the fine scale. Moreover, in
the crack wake, a Heaviside enrichment function at the global level would

2In this thesis most of the time ”fine” is used in place of ”local” original GFEMgl

designation
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Algorithm 4 Scale algorithm integrated into a general growth loop: tmx
maximum number of dissipation load step, CSt crack status at load

step t , ~Ut solution at global level and load step t, ~uk∈I
gt

e
t set of fine-

scale problems solution at load step t, Ig
t

e set of enriched global mesh
entities identification number at load step t. To draw a parallel with TLS
, (†) correspond to step (I) and (‡) more or less to step (II) and (III) of
algorithm 1, and CSt is related to φ level set

Starting with a crack status CSt=0 compute global enriched problem
solution ~Ut=0 with algorithm 3
repeat

t← t+ 1
(†) Compute new crack shape CSt from ~Ut−1 and CSt−1
for k ∈ Igte do

Set or reset fine-scale problem k with CSt
Impose fine-scale problem k boundary condition with ~Ut−1
Solve fine-scale problems k to obtain ~ukt

end for
(‡) Compute global enriched problem with ~uk∈I

gt

e
t to give ~Ut solu-

tion.
until t ≥ tmx or crack stop growing

do the job. This is what has been proposed in Pereira et al. [2011] with the
GFEMgl method and in Ben Dhia and Jamond [2010] and Giovanardi et al.
[2017] with other methods. However, to maintain the TLS model versatility (late
fork in the crack wake, merging, ...) and to respect the crack path during a
simulation ( small ρ ), the whole TLS framework has to be discretized. It does
not imply that in the crack wake there is a need to pass by the TS enrichment
function to obtain a discontinuous displacement at the global level. Using at
the global level, a Ramp Heaviside enrichment function, built on top of the
fine-scale discretization, is cheaper.

The alternative is then to maintain at the fine level an appropriate dis-
cretization for the TLS model in the whole damaged band. And at the global
level, one must use enrichment with the TS function only3 if the patch may
not be treated by a Ramp Heaviside function. Note also that the weak dis-
continuity of the TLS model (damaged material) is taken into account at the
global level: macro elements are integrated using the fine-scale elements so
that Ω−, Ω+ and Ωc are distinguished in these global element stiffnesses.

This solution is illustrated in figure V.3, in a fictitious 2D simulation context.
Figure V.3a presents the global-scale mesh with a damaged band envelop

3Future work may prove that some enrichment overlapping can be mandatory to
get better results. In this case some nodes can be enriched with both TS and ramp
Heaviside function.
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(a) Global-scale problem (b) 4 colored supports out of 24 (c) Support union

(d) Global element dispatching on
4 processes

(e) SuperPatch: refined mesh (f) Enriched node (with support parts)

(g) Local scale problems (2 out of
16)

Neuman
Derichlet
Robin

Visualization of damaged band envelop

Global scale node whose support is colored in the picture

Boundary conditions:

Γ0

Γc

Global scale node enriched by two scale function

Global scale node enriched by ramp Heaviside function

Global scale node with distributed support

Global scale node with local support

Global scale mesh

Fine scale mesh

Process id color

support part 1 color

support part 2 color

(h) Legend

Figure V.3: TLS framework imbrication with the TS method presented in
a fictitious 2D problem context
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known somehow (it could be a mathematical definition at the beginning of
the simulation , or a level set defined in another mesh obtained from a pre-
vious simulation step, ...). It is represented here just for visualization purposes
since it is not defined at this scale.

A first task is to identify the nodes4 that do have their support covering the
damaged band (it is illustrated in figure V.3b with 4 supports of different color).
All nodes and their support covering the damaged band are visible in figure
V.3c. Then, as mentioned above, the fine-scale problems have to be created
for each of them. By recalling that in the TLS model, φ is discretized on nodes
of the mesh, this field should logically be defined at the fine scale within the
TS approach (to provide a correct model description). Now does the φ def-
inition have to be replicated on each patch? And, does each patch must
have its own fine mesh discretization? It looks more handy to have the level
set defined on a unique mesh representing the fine scale. This unique mesh
called the ”SuperPatch” (similar to the master-local domain in Li and Duarte
[2018]) would correspond to the union of fine-scale elements of all patches
if they were all discretized in the same way. This last point (uniform discretiza-
tion) provided by the use of a unique fine-scale mesh is essential for the in-
tegration: a fine-scale element is unique for its covering supports . Hence,
at its Gauss points, all associated enrichment functions are defined (it would
not be the case with a different discretization per patch) when integrating
the matrix at the global level. Using a SuperPatch also simplifies (I) and (III) of
the algorithm 1. Moreover, it allows running only once the cutting algorithm
(in particular, the DCA presented in chapter III). The SuperPatch construction,
by itself, follows the unstructured adaptation strategy of chapter IV.1.3. It is
illustrated in figure V.3e for the simple 2D example where C corresponds to the
colored elements of figure V.3c (i.e. the support union).

Having the SuperPatch, the level set φ is transported on this mesh and Γ0

and Γc are computed ( shown on the same figure V.3e even if they are drawn
far too precisely compared to the non-realistic refined mesh that we see).
Once done, one can analyze the node supports of global mesh, to count,
using the fine-scale definition of Ωc, the number of parts of these supports
divided by the crack. If there is only one part, the TS enrichment is used
(red node in figure V.3f). Otherwise, a ramp Heaviside enrichment function
is chosen (green node in figure V.3f). Figure V.3f visualizes these parts for 3
supports. For the ramp Heaviside, no extra computation is required. However,
for the TS enrichment the enriched function has to be computed for each
patch.

The patches are created by extracting the SuperPatch elements related

4Note that in this thesis, the TLS model integration into the TS method has been
mainly evaluated in the context of first-order approximation for fields. This leads to talk
only of enriched nodes.
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to their support as illustrated in figure V.3g. Regarding the patch boundary
conditions, they come from the global level displacement and strength fields
solutions, which are imposed as Robin boundary conditions5. Here, some
preliminary tests lead to the sole use of loosely imposed displacement by a
penalization. Other global boundary conditions are inherited. The TLS frame-
work is naturally present in the patches since the elements are the SuperPatch
one. In particular, the damage and the ramp Heaviside enrichment (at fine
level, not to be confused with global level enrichment) are already created
in the SuperPatch. The resulting patch displacement solution is then used as
a TS enrichment function at the global level as detailed in chapter V.4.4 and
scale loop can be used.

The scale loop integration with the TLS non-linear resolution (II of algorithm
1) is still under analysis. In a very preliminary work (Salzman et al. [2017]),
the solution of embedding Newton-Raphson loop into a scale loop has been
tested with a sequential TLS/TS framework version. Fine-scale problems were
interpreted as linear problems where the strains used in (II.5) that give trac-
tion/compression states are taken from the global scale. When entering the
scale loop, the previous load step solution is used to compute fine-scale prob-
lems (boundary conditions and strains). Then, the problem at the global scale
is solved (Newton-Raphson iterations) with a fixed TS enrichment function. At
the convergence, the fine-scale problems are again computed with the new
global solution. And the non-linear resolution is launched again. The scale
loop is stopped when the fine-scale updates do not change the non-linear
solution. The test shows that the convergence is slow with this scheme. It
could be improved by solving at fine-scale the non-linearity. Alternatively,
using a completely different approach, the scale loop can be reduced to
only update the TS enrichment functions from the previous load step. It cor-
responds to disregard the error introduced by not looping again after the
Newton-Raphson resolution in the current load step (as proposed in algorithm
4). This is left as a prospect.

Finally, as φ progress, two adaptation criteria should be taken into ac-
count to update the SuperPatch: the conventional element size criterion
(chapter IV.1.2) and the fact that Γ0 passes in a support not activated yet.
In this thesis, the SuperPatch adaptation has not been tested.

V.4.3 Two-scale method in a distributed context

In the TLS approach, the crack tip in 3D may generate a significant amount
of patches that do overlap. This redundancy may be masked only if the
patches represent tiny problems or if their treatment is done in parallel. In Kim
et al. [2011], the authors use a multi-threaded parallelism to compute each

5note that no boundary condition is imposed in Ωc
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patch. However, from the TLS simulations done with an AZ strategy (chapter
V.3), millions of dofs can easily be encountered in the case of long crack
tips. Using only multi-threaded in this context is expected to be limited by
memory issues. So, as in the frontal approach (chapter V.2), the idea is to
distribute the global mesh on processes relying on MPI, to exchange useful
information amongst themselves. In this strategy, an element is only present
in one process. This choice impacts the TS method treatment:

As fine-scale problems are concerned, how do we treat a patch that has
its global elements in more than one process 6?

One possible solution is to consider that this kind of patches are duplicate
somehow on each process. Then, each process computes the same patch
but this is too costly. An intermediate solution is to consider that the patch
is dispatched as its macro element on several processes. However, only one
process holds the full definition of this patch and compute it. The obtained
solution must then be scattered on the other processes related to this patch.
It is complicated, because part of the mesh (or the contribution to the matrix
system from this mesh part) must be duplicated on the process performing the
resolution of the patch. It does not respect the rule ”one element is held only
by one process” and implies many developments in eXlibris. It also introduces
load balance asymmetries by leaving only one process of the patch to do
most of the work.

The other solution is to dispatch the patch as their macro elements and
to assume that the patch problem itself is treated in a distributed manner. It
introduces some complexity in the patch treatment as explained below, but
it offers a double-level of parallelisms. It can be useful in the TLS context. With
the mesh adaptation from chapter IV.1.3, the patches are not of the same
size: only the damaged band is locally refined so a patch entirely inside the
band will be bigger (more dofs) than the one which is partially in the band.
As soon as there are differences, one can arrange the coarse mesh parti-
tioning (dispatching of coarse elements on all available processes) so that
largest patches are treated in parallel and the smallest one in sequential. The
load balancing is then expected to be good. A further argumentation about
this double-level of parallelism, related to the size jump between scales, is
given in the benchmark test analysis (of chapter V.5). However, the greatest
complexity related to this double-level parallelism comes from the fact that
the patch treatment can no longer be done in random order. Two patches
defined on the process 1 and 2 for the first one and 1 and 3 for the second
one, may not be computed at the same time on process 1 (even though it is

6 Illustrated in Figure V.3d with the global mesh of the 2D simple fictitious exam-
ple distributed over 4 processes. In this figure, green and blue nodes correspond to
patches respectively entirely embedded in one process or split across two or more
processes
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possible on process 2 and 3). The patch treatment has to be ordered across
all processes. This sequencing algorithm, quickly presented here, retake the
order proposed in Kim et al. [2011] (”bigger” patch treated first). Besides that,
it imposes sequences where the possible distributed patches are chosen so
that the greatest number of them are computed in the same sequence. If in
a process, no distributed patch can be computed in the current sequence,
a local patch is taken. And if no local patch is available, nothing is done
(which is the worst case).

When all distributed patches are treated, the remaining local patches are
computed independently, following the local ordering rule ”biggest firstly”
(processes are not synchronized anymore). For that, in one process, the nat-
ural sequential computation can be used but a multi-threaded computation
can also be a solution. This last choice would turn this application into a hy-
brid MPI/multi-threaded simulation code. For now, many eXlibris components
(assembly, sparse solver ) are not thread-safe. That is the reason why a hybrid
TS was not implemented but this is not impossible from a conceptual point of
view. In terms of efficiency, it has to be compared with MPI: does the usage
of many threads with few MPI processes (and fewer distributed patches) bet-
ter/same/worse than the usage of only many MPI processes? In any case, it
would give great flexibility to the user. This question is unresolved and left as a
future work prospect.

Apart from the patch processing, one must not forget that the assembly
must also be well distributed. As integrating global elements leads in some
cases to review the associated fine-scale elements, the assembly cost is not
the same across the global-scale elements. Hence, to sum up, the load bal-
ancing and the associated global mesh partitioning is mainly driven by :

• Number of fine-scale elements per global element, used for the integra-
tion.

• Number of enriched vertices per global element.

• Cost of the patch resolution (as said above the ”biggest” patches
should themselves be distributed) which, in general is related to its num-
ber of fine-scale elements.

• Use of the TS or the ramp Heaviside enrichment at the global level.

In this work, the load balancing has not been investigated in detail and this
question is left as a perspective. A simple crude partitioning is used in the
current testing implementation ( based on the number of patches associated
with a global element)

The TS method implementation in the distributed context proposed in this
chapter has been carefully evaluated in chapter V.5 (but in a non TLS con-
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text). It has also been used successfully (giving correct results in parallel) in
various tests not presented here.

V.4.4 Enrichment strategy

Let us consider the standard first order finite element shape functions Ni(~x),
i ∈ Ig = {1, 2, ..., N}, associated with a global node ~xi, with a support given
by the union of all finite elements sharing the node ~xi, in a global mesh dis-
cretization with N nodes. In this chapter, only the TS enrichment function is
retained at the global level. This function that can be in scalar or vector form
is considered here in its vector form to simplify the presentation. Let us call it
~Fk(~x), k ∈ Ige = {1, 2, ..., T}. It is associated with the global node ~xk, it has the
same support as Nk(~x) and Ige represents the T global nodes enriched by the
TS method. Kinematic equation used to describe the global displacement
field is then:

~U(~x) =
∑

i∈Ig
Ni(~x) ~Ui +

∑

k∈Ige

AkNk(~x) ~Fk(~x) (V.1)

At the fine-scale level for a given patch k, we consider the classical first-
order finite element shape functions nj(~x), j ∈ I lk =

{
1, 2, ..., nk

}
, associated

with the fine-scale node ~xj , with a support given by the union of all finite
elements sharing the node ~xj , in the fine mesh discretization with nk nodes.
The TLS scalar ramp Heaviside function associated withe the k patch is called
RHk

r ,r ∈ I lke =
{

1, 2, ..., tk
}

. It is associated with the global node ~xr and has the
same support as nr(~x). I l

k

e represents the tk fine-scale nodes enriched by the
TLS model. Kinematic equation used to describe the fine-scale displacement
field is then:

~uk(~x) =
∑

j∈Ilk
nj(~x) ~ukj +

∑

r∈Ilke

nr(~x)RHk
r (~x) ~akr (V.2)

In scientific publications, many solutions are proposed to create ~Fk(~x) with
the displacement ~uk(~x), solution of the fine-scale problem k. The simplest
solution is to use the fine-scale displacement without further manipulations:

~Fk(~x) = ~uk(~x), k ∈ Ige (V.3)

It is the solution that has been used in chapter V.5 (where all nodes are
enriched). However, when the blending elements7 are present, a more ac-
curate solution is possible. Proposed in Gupta et al. [2015] for 3D fracture

7elements that have a mix of enriched and non-enriched vertices
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simulation with GFEM (similar to XFEM), the Stable GFEM (or SGFEM) method
removes from the enrichment function its projection on linear standard finite
element space. In the TS context, it corresponds to a fine-scale displace-
ment field projection over the global-scale space removal. The enrichment
function becomes:

~Fk(~x) = ~uk(~x)−
∑

p∈Ig
sk

Np(~x)~uk( ~xp), k ∈ Ige (V.4)

where Ig
sk

is the set of the global nodes used to discretize the global node
k support. A test, not presented here, has been done with the problem de-
scribed in annex H. Similarly, as in annex D.3, the plate has been refined in its
center to have some blending elements. It confirms that results with a non-
TLS framework are improved with (V.4). Nevertheless, in this test as well as in
the TS literature, ~uk( ~xp) always exists at ~xp nodes. With the TLS model, it is not
anymore the case. The node ~xp may be in Ωc and as such eliminated from
the fine-scale displacement field. This issue, that can be addressed by taking
~uks( ~xp) = ~Us−1( ~xp) (with s being the currently considered scale loop and s − 1

the previous one, see algorithm 3), remains an open question.

Otherwise, note that ~Fk(~x) as it uses ~uk(~x) is not anymore a dimensionless
quantity such as the Heaviside function values. Depending on the chosen
unities, the tangent matrix can have some terms with very high or low values
compared to other standard non-enriched dofs. The conditioning is then
impacted. A scaling of ~Fk(~x) can be a solution. For (V.4), the scaled enriched
function becomes:

for k ∈ Ige





~Gk(~x) = ~uk(~x)−
∑

p∈Ig
sk

Np(~x)~uk( ~xp)

~Fk(~x) =
~Gk(~x)

max
j∈Ilk

(
max

i∈{1,2,3}

(
~Gk( ~xj).~ei

))
(V.5)

with (~e1, ~e2, ~e3) an orthonormal basis of 3D Cartesian space.

Using the same test that check (V.4), the matrix conditioning has been
improved with this scaling. Discovered later in the literature, a scaling SGFEM
has already been proposed in Sillem et al. [2015] where the authors call it the
scaled SGFEM or sSGFEM. An illustration of this enrichment function is given
in annex G. Note that this scaling factor is a good indicator concerning the
enrichment pertinence. If it is close to zero it means that ~uk(~x) can already be
represented in the global-scale space. Moreover, in this situation, the global
node k must not be enriched to avoid a singular problem (independently
of the fact that dividing by zero for scaling is not possible). It has allowed
switching off enrichment automatically, when using (V.5).
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Introducing the TLS model in the TS method is still a work in progress at
time of writing this thesis. The interaction of the ramp Heaviside enrichment
at a coarse level (not parallelized yet) with the TS enrichment is still subject
to questions. Those two enrichments overlap. It can even be chosen to su-
perimpose them (by forcing the full overlapping). The idea would then be to
remove, not the projection (such as in SGFEM), but a piece-wise linear pro-
jection, to ~uk(~x) so that the contribution of the global-scale ramp Heaviside
enrichment is removed from ~Fk(~x). This idea has been proposed with a dif-
ferent approach (not a piece-wise linear projection but a double Heaviside
function application) in Sanchez-Rivadeneira and Duarte [2019]. Note that
such a method can alleviate the issue pointed above with the problematic
global nodes in Ωc.

V.4.5 Feed back

The first thing to mention is that finding a reference to compare TS enrichment
functions and test ramp Heaviside/TS overlapping is not easy. Using the first-
order frontal approach as a reference is difficult: first, since the SuperPatch is
built on a subset of global elements, the refined mesh can differ in the frontal
and the TS problem; second, with the SGFEM enrichment a second-order
approximation is introduced by this function that first-order reference will not
be able to represent. Moreover, no simple mathematical reference has been
found yet. Nevertheless, many tests (one of them is used as an illustration in
annex G) have been conducted using a symmetric version of II.5 (i.e. β = 1.)
and using a fixed φ (no evolution). These tests permit to check:

• That the TLS ingredients are well introduced in the TS framework using
the SuperPatch.

• That the scale loop does converge to a similar solution to the one of an
equivalent problem treated by a frontal strategy.

• That the choice of the TS enrichment functions does influence this con-
vergence. Finding the right function is an essential point to be able to
progress on this subject.

• That the parallel features proposed in chapter V.4.3 does work.

This last point is illustrated in the next chapter.

V.5 Uniform test case benchmark

This test is an artificial benchmark dedicated to comparing the strategies per-
formance of chapter V. All detailed information for this test case are given in
annex H. It corresponds to a simple plate under a known complex loading
that gives a way to compare scalability of:
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• The frontal strategy (chapter V.2) called ”frontal” in this benchmark.

• Some form of the active zone strategy ( in fact it corresponds to the en-
hanced version with many domains proposed in chapter V.3.2) called
”domain” in this benchmark.

• The TS strategy (chapter V.4) called ”two-scale” in this benchmark.

This plate, more or less refined, has to be seen as a 3D crack tip with a
far simpler strain field without discontinuous displacements. The simulation is
intended to evaluate strategies performances when the crack tips become
spatially very wide. The overall part and the crack wake discretization are
de-facto neglected in this study. Their real impact on the performance de-
pends on the strategy. Let us hereinbelow use the term ”reality” to refer to a
complete TLS simulation.

With the TS strategy, neglecting the part and the crack wake is rather true
because the global level is in charge of them. And normally it is expected to
remain a fast step even if the crack wake global-scale integration is impacted
by the fine-scale discretization. So, in this benchmark, the ”two-scale” results
are rather close to the reality.

Regarding the frontal strategy, adding overall part and re-
fined/coarsened crack wake discretization implies a larger system size to
be solved. So, in this benchmark, the ”frontal” results are optimistic com-
pared to the reality.

For the active zone strategy, what has been tested is the decomposi-
tion of the active zone itself. Each process holds a domain which is con-
densed. The resulting distributed condensed dense system is solved with a
home-made parallel Conjugate Gradient iterative solver, with a Block Ja-
cobi preconditioner. Note that using such iterative resolution is possible in this
benchmark due to the right problem conditioning. In reality, this condition-
ing aspect, as already mentioned, can be an issue for an iterative resolution.
Apart from this point, the Schur complement size (i.e. condensed problem
size) should be increased because of the interface between the AZ group
and the fixed group (corresponding precisely to what has been neglected
in this benchmark). Besides that, the time for the fixed domain condensation
should be added. So, in this benchmark, the ”domain” results are optimistic
compared to the reality.

Note that for the ”domain” approach, fixing only one domain per pro-
cess looks rather unfair: reducing domain sizes is only done by increasing the
number of processes, which can slow down the iterative resolution at some
point. Maybe, a more efficient implementation would have used an inde-
pendent number of domains and processes (i.e a process may handle one
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or more domains). It would have permitted, for example, to have many do-
mains treated in sequential, and obtain an efficiency for a constant domain
number. Due to the complexity of the implementation as well as lack of time,
only the one domain per process solution has been tested. It already gives
some fruitful information.

What we can retain from results given in annex H.3 is the following:

• The TS strategy both for strong scaling and weak scaling has better effi-
ciency than the two other strategies.

• Modifying the active zone, using many domains looks promising be-
cause of an excellent strong scaling efficiency compared to the original
strategy that can be assimilated to the ”frontal” results in this bench-
mark (i.e. MUMPS is used in parallel to factorize matrices, in both cases).
A multi-domains per process strategy may change the observed results
positively.

• The TS strategy even with small problem, still has a good strong scaling
capability.

• The most critical case shows that the TS strategy has a good strong scal-
ing efficiency up to the point where:

– The parallel global-scale resolution slows down the computation.
The resolution scalability corresponds to the performance of the
direct sparse solver. Due to the global level moderate problem
size, using the same distribution for both scales is then not efficient.
Gathering a global level problem matrix on a smaller set of pro-
cesses can provide a way to use more efficiently the direct solver
with hopefully a small computational effort spent in communicat-
ing.

– All the patches are themselves distributed which looks like playing
a role int the performance.

• As expected, the sequential TS strategy is slower than other strategies
even if we can notice that when the fine-scale discretization grows, this
assertion becomes less valid. Up to the point where lack of memory
becomes an issue. And in this case only the TS strategy can obtain a
sequential resolution. The same ascertainment may be done with a
moderate parallelism and small problems: with few processes, a frontal
strategy defeats, in absolute terms, the TS strategy.

• For a given strategy, the energy error which is computed in this bench-
mark is independent of the number of processes used. This evidence
only proves that there is no bug in the implementation.



V.5. UNIFORM TEST CASE BENCHMARK 72

• As expected, the size jump between scales in the TS strategy drives the
computational performance. If the jump is high then the patch problem
size will be large and can reach the computational effort of a global
frontal approach. That is the reason why in Kim et al. [2011], the authors
use a multi-scaled strategy so that the size jump between levels remains
small: A global level has ”small” patches, themselves considered as the
global level of new TS strategies, themselves having ”small” patch ... In
this thesis, we only use one scale level because:

– The distributed context with a distributed patches resolution is ex-
pected to be equivalent to the use of many scale levels if the
biggest patches (i.e. those with a large problem size) are dis-
tributed over more than one process. This equivalence need still
to be proved. However, we can consider that this proof is almost
already given through this benchmark. Using extra scales or using
distributed patches resolution is similar, respectively to the use of
the TS strategy or the use of the frontal strategy. Regarding small
to moderate size problems with few processes it turns in favor of a
frontal solution.

– It simplifies this first testing implementation in a distributed context.
Maintaining local and distributed patch at all scales adds a lot of
extra work to afford the right load balance.

• The amortization of the TS strategy computation over several load-
ing steps has been studied in this benchmark by recovering the time
elapsed by iteration of the scale loop. This quantity is not counting
the factorization step of fine-scale problems resolution that can be the
same between non-linear iterations (chapter V.4.2 ) or load steps (φ
constant in the patch). Considering this measure reveals the poten-
tial of the TS strategy compared to other strategies even for small size
problems.

In conclusion, this benchmark has comforted the idea that using a TS strat-
egy appears as a valuable solution for the TLS 3D simulations targeted by this
thesis.





Chapter VI
Simulation gallery:
confrontation to complex
3D problems

This chapter illustrates the capabilities of the Thick Level Set
model in 3D. However, a full simulation campaign (with con-
vergence rate analysis, lc testing, ... ), already well studied in
2D (Bernard et al. [2012],...), was not carried here in 3D. Only
a few qualitative and quantitative performance of this method
compared to some experiments and other numerical models
are presented.
A first simulation corresponding to a cube with spherical holes,
under traction, starts presenting the TLS model features, such
as the automatic damage initiation or the merging capability.
Then, a twisting chalk simulation gives a first clue to the correct
quality of this method when compared qualitatively to the ex-
periment. After, a more quantitative comparison to experimen-
tations is given by a set of notched beam simulations. With a
different setting of the TLS parameter, those beams are loaded
under three points bending conditions. Next, an L-shape sim-
ulation with modes I+III loading gives a way to compare with
another numerical method qualitatively. Finally, a spiral bevel
pinion gear of a helicopter transmission system, is studied under
a critical loading. It allows some good comparison with tests
and simulations carried out with a more complicated loading.
Note that, most of those simulations have been used to illustrate
the computational performances of the AZ strategy exposed in
chapter V.3.

74
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Figure VI.1: Spherical holes test case (dimensions in mm).

This chapter slightly modified in this thesis have been published in Salz-
man et al. [2016]

All material characteristics and simulation settings are given in annex J.
Annex I gives the computational cost of those tests. Note that most of those
tests use the AZ strategy (chapter V.3) to solve the problem. Moreover, none
of those simulations use the mesh adaptation strategy of chapter IV as ex-
plain in section V.3.2. The DCA (chapter III) is used in all simulations to obtain
Γc.

VI.1 A cube with spherical holes

This test case shows the capabilities of the TLS framework in terms of initiation
and merging of crack. A cube with 4 embedded spherical holes (Figure VI.1
) is in tension with a uniform loading condition applied on 2 faces (perpen-
dicular to y-axis).

The simulation starts with an undamaged model. In the first initial step, a
search is performed to find the location of the maximum damage criterion. A
spherical iso-zero level set is put at this location introducing a small damaged
zone. It is added around the point A (figure VI.1). Then at each step, a search
for an additional location that locally violates the damage criterion (Y 6 Yc),
is done outside the already initialized damaged zone. As the load factor
is still slightly increasing during this part of the simulation, extra local zones
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Figure VI.2: Spherical holes test case: initiation locations at step 4.

Figure VI.3: Spherical holes test case: merging (inside view with only
skin mesh).

are discovered at almost every load step (see Figure VI.2 at step 4) while
propagation is enlarging the initial damaged zone.

The material section between the spherical hole and the cube face is so
thin that its local degradation does not affect the overall stiffness too much.
After 5 steps, the load starts decreasing and at step 10, a crack appears
(i.e. Γc appears). From this point, there is almost no more additional location
violating the damage criterion found during the simulation.
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Figure VI.4: Undocumented test case (one crack diving under the
other): presenting of the correct partial merging of Γ0 fronts but not
Γc fronts.

Figure VI.5: Spherical Holes test case: iso surface after 336 load steps,
Γ0 in blue, Γc in red.

As given in table J.1, we are considering, for the cube example, a dam-
age law without hardening (corresponding to figure II.3). It is clear that the
hardening would first yield to a diffuse damage in the cube before any local-
ization. Hardening was already considered in the TLS framework by Van Der
Meer and Sluys [2015] and Moës et al. [2014].

During the propagation, one can observe the merging capabilities of-
fered by the TLS. Figure VI.3 exhibits the behavior when, after turning around
the first spherical hole, the fronts are joining together. First iso-zeros of both
sides of the front merge (top-right view). As the distance from the hole is
less than lc, the propagation continues with a rather steady location of Γc (
bottom-left view). The propagation continues and the front gets far enough
from the hole (more than lc) which generates a quick coalescence of the Γc

front (bottom-right view). Here, the fronts were colliding in a rather straight-
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Figure VI.6: Chalk test case.

Figure VI.7: Chalk comparison of the final state between simulation
and experiment presented in Bordas et al. [2008] (Reprinted from Bor-
das et al. [2008] Copyright (2007) with permission from Elsevier).

forward manner as both sides are more or less at the same y position (vertical
of picture). Note that the merging of Γ0 fronts does not imply the automatic
merging of Γc fronts. Figure VI.4 illustrates this scenario.

The final crack location is given in figure VI.5 after 386 load steps. The
cube is split into two components.

VI.2 Chalk under torsion

This test case was studied in Bordas et al. [2008] with a meshfree method. A
cylindrical chalk bar is twisted with two opposite torques at its ends. Geome-
try and loading are presented in figure VI.6. The loading is applied along the
tangential direction of the chalk surface. To follow Bordas et al. [2008], the
loading magnitude depends on the angle θ defined in figure VI.6.
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Label L D a S n T
Bc 516 215. 16.125 467.84 1.5 40
Cb 223.2 93. 13.95 202.37 1.5 40

Table VI.1: Three-point bending test of a notched beam (dimension in
mm).

F F
L

D
a
S

nT
Loading block

Figure VI.8: Three-point bending test of a notched beam: generic ge-
ometry and boundary conditions.

As the object is axisymmetric, a defect must be introduced to start at a
defined location. In this work, a simple initial damage is set by a Γ0 small
sphere with a center over the chalk surface at L/2 along the cylinder axis. It
allows reducing the time consumption by using a mesh with a refined slice
where a crack will start and is expected to develop. Figure VI.7 presents the
result of the simulation after 103 load steps, when the chalk is completely split
into two parts.

One can observe a good agreement of the crack shape between the
experiment and the simulation: the development of a helicoid (bottom-left
and middle points of view) is followed by a blunt finish (bottom-right point of
view) where the crack lips shape is straighter.

VI.3 Quantitative comparison : Three-point
bending test of a notched beam

In this chapter, we try to provide some insight into the quantitative quality
of the TLS method by making a comparison with an experimental test. We
choose one of Hoover et al. [2013] campaign which provides data for a size
effect study on a concrete beam under three points bending conditions. The
general beam geometry and loading are depicted in figure VI.8. Two (out of
18) size combinations are chosen from Hoover et al. [2013] campaign : the
Bc and Cb cases (dimensions given in table VI.1).

The force displacement curves given in figure VI.9 show the experimen-
tal response. The CMOD (crack mouth opening displacement) is measured
at the bottom of the beam between two points symmetrically located ac-
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Figure VI.9: Load displacement curves for notched beam case Bc and
Cb.

cording to the notch (and separated by 137 mm and 59mm in the test case,
respectively Bc and Cb.).

The Cohesive Zone Model (CZM) simulations corresponding to the test
case are given in Hoover and Bažant [2014] and are reproduced in figure
VI.9.

The idea is to compare the TLS simulations with these two results sets (ex-
periment and CZM). In order to model properly the concrete behavior, the
brutal softening regime of figure II.3 can not be used. In order to adopt a dif-
ferent softening regime, we consider the work of Parrilla Gómez et al. [2015]
where Yc now depends on d :

Yc(d) = Y 0
c h(d) (VI.1)

where Y 0
c is a constant.

Using Parrilla Gómez et al. [2015], the CZM Hoover and Bažant [2014] pa-
rameters are transformed into TLS parameters ( h(d) and Y 0

c ).

The results given in figure VI.9 show that the TLS simulations are rather close
to the test and CZM simulations. The test peak load is obtained with an error
of 2.5% and 4.5%, for the Bc (top) case and for the Cb (bottom) case, respec-
tively (Note that the CZM simulations do give errors of 1% (Bc) and 4.1%(Cb)
with respect to the test peak load). The last part of the post-peak is in discrep-
ancy with the test. In Parrilla Gómez et al. [2015], the load-CMOD curves on
another test case show a more accurate post-peak region. In Parrilla Gómez
et al. [2017], a full comparison with Hoover et al. [2013] campaign in 2D, have
investigated this aspect and the authors observed better coherence.

In figure VI.10, Γ0 and Γc are presented for points A, B and C. Those points,
shown in figure VI.9, correspond to the curve peak (A), the first appearance
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(a) A (b) A

(c) B (d) B

(e) C (f) C

Figure VI.10: Notched beam case Bc (a,c,e) and Cb (b,d,f) : iso sur-
face at points A B and C of figure VI.9, Γ0 in blue, Γc in red.
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Figure VI.11: L shape: geometry (dimension in mm) and boundary con-
ditions, D face with displacements fixed to 0 in any direction, N face
with displacements imposed along y and z directions.
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Figure VI.12: L shape: force-displacement curves (along Y and Z) with
automatic (a) or forced (b) damage initiation.

of Γc (B) and the end of simulation (C). One can observe that the point B, for
both cases, happens quite late in the process. The damage first develops in
a very long process zone. In VI.10e, we see that Γc appears in a non-uniform
manner. It is related to the lengthy process zone where, on the skeleton of φ,
the damage is almost 1. The transition to a damage equal to 1 with an auto-
matic introduction of Γc discontinuity is then hard to softly achieve because
a large part of the skeleton can vary abruptly. In those simulations, we chose
to slow down the front advance (which gives this non-uniform intermediate
state). However, the new TLS model version introduced in Lé et al. [2018] is
certainly a better solution to this problem and could also have some effects
in the last part of the post-peak curves too.

VI.4 L shape - mode I+III

In Lorentz and Godard [2011], the authors modify the standard L Shape -
mode I test case by introducing an additional lateral imposed displacement.
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(a) TLS with automatic damage initiation (b) TLS with forced damage initiation

(c) Results reprinted from Lorentz and Godard [2011]
Copyright (2010) with permission from Elsevier. Dam-
age distribution with lateral z effort inverted compare
to this paper

Figure VI.13: L shape: TLS results (a and b), gradient method results (c).
TLS results are iso surface at the end of computation, Γ0 in blue, Γc in
red.

Consequently, the mode III is activated and the crack path is slightly modified.
The geometry and loading are presented in figure VI.11. The mesh is refined
around the corner A up to the edge B.

Two types of computations have been conducted: one with an auto-
matic damage initiation and the other one with a forced damage initiation
(along the corner, setting an initial cylindrical φ of radius 1.05× lc). This second
case is needed to improve the comparison with Lorentz and Godard [2011]
results where the authors obtain, at the corner, a rather straight damage dis-
tribution. The force-displacement curves are given in figure VI.12 and the final
situations are presented in figure VI.13.
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Figure VI.14: L shape: displacement field (scaled) at load step 120
(with automatic damage initiation).

Looking at figure VI.12b, one can see that the forced damage initiation
removes the initial steep snap back. The load-displacement curves are similar
in shape to those found in Lorentz and Godard [2011]. A less brutal softening
mechanism such as in Parrilla Gómez et al. [2015] where Yc is a function of d
(or the inclusion of a hardening part), will most likely remove the initial steep
snap back even with an automatic damage initiation.

The comparison in figure VI.13 shows that there is little to no difference be-
tween the final crack shapes between the two damage initiation strategies,
except in the corner vicinity. Compared to Lorentz and Godard [2011], the
crack is twisting the same way but the simulation was conducted further in
this work as compression is considered in the free energy density (II.5) in Ω+.
This test illustrates the interest of an automatic damage initiation which here
allows obtaining a more complex crack path in the corner vicinity.

The displacement field at load step 120 in figure VI.14 illustrates a correct
enrichment and representation of Γc. The opening of the crack faces is evi-
dent.

In conclusion, this simulation shows that the TLS model gives equivalent
results when compared to another numerical tool which uses a damage gra-
dient method.

VI.5 A spiral bevel gear

This test case mimics an industrial study on a spiral bevel pinion gear of a he-
licopter transmission system. It first appeared in a Nasa report (Spievak et al.
[2000]) and was published in Spievak et al. [2001]. Later Ural et al. [2005]
again use this problem with a new computational technique. Those studies
were conducted to help the pinion gear designers by giving them a crack
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(a) Mesh general view (b) Central tooth mesh
view

(c) Applied loading
zone (yellow)

Toe

Heel
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Figure VI.15: Spiral bevel pinion gear: mesh, boundary conditions and
loading.

path coming from the simulation. The purpose of this test case is to show that
the TLS method, with a complex geometry, gives right information about the
crack shape without specific mesh refinement and any initial crack place-
ment.

From Ural et al. [2005], Spievak et al. [2001], an approximate geometry has
been rebuilt from scratch with only three teeth. In this work no fatigue study
with any varying complex loading is done since the testing implementation
only deals with a quasi-static loading. The load location corresponds to the
highest point of a single tooth contact (HPSTC see Spievak et al. [2000]). An
ellipse E on an arbitrary CAD plane P 1 is projected on the tooth to follow the
Hertz contact shape. In figure VI.15c, it appears as a yellow zone where the
mesh over the surface is following its boundary.

1not shown here but roughly located in front of the studied tooth, locally parallel
to its face
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Figure VI.16: Spiral bevel pinion gear at load step 9: in blue Γ0 and the
little red spot is the initial crack location.

Figure VI.17: Spiral bevel pinion gear at load step 246: Iso surfaces Γ0

(blue) and Γc (red).

The loading magnitude F in this zone is computed with the following ex-
pression:

F = Hc.F0

where:

• F0 is the maximum load in this zone

• Hc coefficient is

Hc =

√
1−

(x
a

)2

−
(y
b

)2

where x and y are the projected coordinates of a point in the loading
zone, on plane P with Cartesian coordinates corresponding to the cen-
ter and axes of ellipse E. a and b correspond to the major and minor
radius respectively of the ellipse E.

Figure VI.15d shows, in red, the clamped face (ring at the end of the
long shaft) and the connection sliding pivot (cylinder over the surface of the
smaller shaft). Figures VI.15a and VI.15b show general and focus views of the
mesh. The mesh is overall much finer on the central tooth. The element size in
the refined zone is at least lc

4 . The mesh contains 453 824 nodes.
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(a) TLS : Lateral view (toe on
right)

(b) TLS : Cut view
passing at initia-
tion location

(c) Results reprinted from Ural et al. [2005] Copyright
(2004) with permission from Elsevier

Figure VI.18: Spiral bevel pinion gear at load step 385: comparison with
Ural et al. [2005].

Figure VI.19: Spiral bevel pinion gear at load step 380: displacement
field.

This simulation produces the following results:

• The (automatic) damage initiation is found in the concave part of the
fillet at almost mid-distance (8% shift) from the toe and heel sides (see
VI.15d for sides location). It is where Ural et al. [2005] put the crack. Only
a small damaged zone is put at this location which makes no assump-
tion about the future crack path.

• The first loading step extends this zone, and at the 9th load step a crack
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(Γc) is automatically put. It emanates from the damage initiation loca-
tion (figure VI.16).

• The crack shape is consistent with the experimental results given in Ural
et al. [2005] and reported in figure VI.18.

The general situations after 246 and 380 load steps are depicted respec-
tively with iso-surfaces in figure VI.17 and with the displacement field in figure
VI.19.

Note that in the performed simulation, the chosen length lc is rather large
with respect to the process zone size of the actual material. However, the
chosen material strength and length lc do combine (Yc × lc) to produce the
right order of magnitude for the toughness of the material.
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VII.1 Thesis assessment

The simulation of cracks initiation and propagation in 3D is nowadays still hard
to tackle. On the one hand, the mechanical models have their pros and cons
regarding the accuracy and the features they provide in a such context. So
making the right choice is not simple. On the other hand, computational
consumption remains, most of the time, an issue for 3D simulation. In this thesis,
we have addressed both concerns.

This thesis first demonstrates that the TLS model is well-designed for the
quasi-static simulations of quasi-brittle material in 3D. The presented simula-
tions confirm that the versatility and quality of the model are well-kept in 3D.
The new ”double cut” algorithm added in this work participates in this quality,
giving the right representation of the crack lips without any extra discretiza-
tion cost.

Regarding the computational performance, this thesis again demon-
strates that TLS model is well-designed for 3D simulations since it imposes a
very localized constraint for the problem spatial discretization. It has been
exploited in the mesh adaptation strategies, proposed in this work, to reduce
the problem size and consequently its computational cost. Despite those
efforts, the linear system resolution that arises from the non-linear problem
treated in the TLS algorithm remains a computational bottleneck. Different
strategies have been suggested in this work to overcome this problem. All
of them lead to consider parallelism as a natural remedy. In particular, the
message passing protocol has been adopted for its performance and hard-
ware flexibility. It induces in all those strategies an element-based partition-
ing with a distribution of the problem on all available processes. Among the
three proposed solutions, this thesis shows that the two-scale strategy offers
the best potential in terms of scalability and algorithmic integration within the
TLS solver.

Note also that regarding computational throughput, the ”double cut” al-
gorithm implementation has exhibited excellent performance thanks to its
cutting database. Moreover, a distributed mesh, which implies distributed in-
tegration and assembly, has also greatly contributed to reduce the elapsed
computation time.

VII.2 Perspectives

An obvious perceptive is to finish the TLS integration in the distributed two-
scale method. For that, one will need to determine the right enrichment to
use at the TS global level to obtains the best results convergence. Then, one
will have to optimize the scale loop integration in the staggered algorithm 1.
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All this will be possible only if all components of this algorithm are well paral-
lelized (in particular if the new modal concept proposed in Moreau et al.
[2017] is adopted). Regarding the parallelism, hybrid MPI/multi-threaded
paradigm should be benchmarked. Finally, the scale size jump, load bal-
ancing and SuperPatch update (in particular, the tracking of small isolated
damaged zone will deserve some attention) will have to be addressed. On
top of all previous steps, one may wish to adapt the SuperPatch mesh using
the proposed coarsening strategy of chapter IV.2.

This will meet the mesh adaptation perspectives. On this topic, the crack
tip vicinity identification proposed in this work has to be consolidated. The
tool that provides Γc might give this additional topological information in the
future. The offsetting concept should also be improved. As far as the coars-
ening is concerned, this type of adaptation has been possible, thanks to the
”double cut” algorithm. However, some transport issue has appeared in this
adaptation, and needs to be addressed in the future. Finally the unstruc-
tured mesh adaptation tool created in this work will have to be enhanced to
provide better throughput and more functionalities.

In the end, as far as valorization is concerned, continuing the transfer in
eXlibris of the code developed in this thesis (distributed ”double cut” algo-
rithm version, distributed TS implementation, ...) is expected. If the TLS model
integration in the distributed TS method comes to an end, publishing an arti-
cle on the subject would definitively value the preliminary work proposed in
this thesis.





Chapter VIII
Annexes

94





A
Double cut algorithm
details

96



97 APPENDIX A. DOUBLE CUT ALGORITHM DETAILS

A.1 Element Cutting

Following the scheme given in chapter III.3.2, using Hert and Schirra [2013] for
the convex hull computation and Hachenberger and Kettner [2013] for the
subtractions, one can obtain, in 3D, with tetrahedron element, 17 reference
patterns of element cut as shown in figure A.2. A cut pattern corresponds to a
set of edge cut points and a tetrahedron node sign: it leads to a unique topo-
logical element cut. The 17 patterns do not take into account the specific
metric (single cut are put at the edge middle and double cuts at one-third
and two-thirds of the edge).

We can group the 17 patterns into four different categories:

• Patterns 1 to 3 correspond to a simple cut that one can obtain with a
standard scalar level set.

• Patterns 3, 5, 6 and 9 have potential Γc warped surface (four points
surface) where the choice of diagonal is arbitrary.

• Patterns 11 to 14 give a non-convex negative domain polytope (Ω+)
which has to be subdivided in convex polytopes to generate sub-
element tetrahedrons correctly. It corresponds to the extra blue edges
on some element faces. It describes the sub-cut used to split the poly-
topes into convex ones. See figure A.1a for illustration of pattern 13
where the negative domain polytope is split in 3 convex ones.

• Patterns 15 to 17 are termination patterns. Γc is only present on the
tetrahedron boundary and no positive domain is present. For example
pattern 17 may terminate pattern 6 bottom face of the positive zone.
Those choices are arbitrary.

In table A.1, the number of possible permutations from each pattern is
given. Without close node treatment, a total of 111 permutations has to be
handled. With a close node treatment, some polytopes change and are
not giving anymore null sub-element for the integration. See figure A.1b for
an illustration where one of the negative domain parts reduces to a single
tetrahedron producing 1 instead of 3 tetrahedrons for the integration. This is
interesting when some specific extra computation is made with those sub-
elements (such as some fluid flow in the crack) and when the null volume is
an issue. For this work we could have used those null sub-element. However,
creating a tool to handle double cut algorithm, we chose to be a little more
general from the start, and eliminate null volume sub-elements. It leads to
handle 8399 permutations with the close node treatment. From an imple-
mentation point of view, a natural choice is to use a database to hold all
those patterns. The cutting procedure is then reduced to cut the edges and
query the database with the edge cut pattern as a search key. Database
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(a) Tetrahedron negative domain polytope splitting:
out of initial domain, 3 convex polytopes are created
for pattern 13 of figure A.2

(b) Pattern 5 of figure A.2 with 2 cut nodes from the
same edge collapsing and one cut node for two
edges collapsing on one node of the tetrahedron.

Figure A.1: Convexity and close node treatment illustrations.

gives then the integration cell and the topological relation for the enrichment
identification (number of independent parts of supports).

A.2 Geometrical comparison between single and
double cut algorithms

To illustrate how single and double cut algorithms perform, we consider a
hammer head shark surface ( from Lutz Kettner home page at Max Planck
institute: https://people.mpi-inf.mpg.de/ kettner/proj/obj3d/) which is dis-
cretized with triangles and plunged into unstructured meshes of increasing
number of elements (figure A.3). For each mesh, a level set and a signed
vector distance function are computed from the shark surface. An associ-
ated cutting algorithm is then used. Fins appear sooner with the double cut
algorithm, as expected, since this algorithm detects layers even if they are
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Figure A.2: Tetrahedron topological cut patterns: the red zone corre-
sponds to a positive domain. On each edge, the red segments are
in the positive domain, the blue segments are in the negative domain
and the grey segments are in the iso-lc.
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Number of possible
permutations with or
without close node
treatment

Patterns Without With
1 4 108
2 4 108
3 6 486
4 4 208
5 3 336
6 12 1056
7 6 294
8 4 740
9 6 1488

10 1 545
11 12 1368
12 12 624
13 12 504
14 3 72
15 4 180
16 6 42
17 12 240

Total 111 8399

Table A.1: Number of the possible topological permutation obtained
using elemental topological rotation and symmetry.

embedded inside an element. Less expected, is that, even in a rather sim-
ple zone such as the shark’s body, the use of signed vector distance function
gives better accuracy. Two reasons can be pointed out: a more accurate
cut locations with the SVDF and a possibility of warped iso-contour inside the
elements (patterns 3, 5, 6 and 9).
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Figure A.3: Iso-contours obtained with a single (left) or double (right)
cut algorithm for a hammer head shark shape (reference shape on
the top). Meshes used are more and more refined from top to bottom.
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B.1 Criteria

In this work, the used aspect ratio criterion is :

δ =
max
i=1,6

(lengthedgei)

min
j=1,4

(heightj)

√
2
3

where lengthedgei is the length of the ith edge of the tetrahedron and
heightj is the tetrahedron height from the jth corner. For a regular tetrahedron

of edge length a, the height is a
√

2
3 and then the criterion is 1. The higher this

criterion, the worse the quality of the elements (element is rather flat, having
edges of very different sizes).
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A

C

B

D E

(a) Hanging situation.The edges are shifted for view-
ing purposes but normally they are superimposed
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(b) solution with cinematic constrains (order 1
displacement field example)

(c) Simplex solution with extra center node (d) Simplex solution without center node

Figure C.1: Hanging example in 2D with hanging nodes on edges

C.1 Origin

If a mesh must be adapted, the element splitting process implies adding
nodes in the middle of its edges. It is done independently for each mesh
element. However, mid-nodes are merged for edges common to split ele-
ments. A hanging node appears when in an edge adjacency, there exists,
at least, one element split and one not split. In this case, the mid-node of this
edge is said to be hanging. This node is only related to some mesh elements,
but not to all the adjacency, which leads for example, to a discontinuous dis-
placement field in mechanics. In 2D, only node related to edge are involved
as depicted in figure C.1a. The term hanging edge is then commonly used to
talk about an edge that is facing two edges connected to a hanging node.
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Figure C.2: Hanging situation example in 3D with hanging nodes on
edges and faces

In 3D as presented in figure C.2 faces are also designated as hanging when
the connected faces to its vertex are related to a node in its middle.

C.2 Treatment

To get a continuous field description, the hanging nodes have to be elimi-
nated.

Kinematic linear relation is a solution that can be applied in all contexts
(octree, unstructured, ...). For example, when computing the mechanical
displacement field of figure C.1a in 2D, the use of additional equation, given
in figure C.1b, eliminates the displacements of B and D. This solution has the
following disadvantages: It is costly when elementary matrices are assem-
bled, the final system to solve is densified which increases its resolution cost
and it is less obvious to use with higher-order field.

When using a simplex mesh, two solutions can be used, at least. Both are



107 APPENDIX C. HANGING NODES

using the simple principle of meshing elements that do have hanging edge
or face to connect the hanging nodes with extra elements. The former il-
lustrated in figure C.1c adds a node at the center of the element for that.
Then, a simple loop on edges ( or faces in 3D) creates one triangle (or 2 tetra-
hedrons in 3D) or two triangles (or 8 tetrahedrons in 3D) if a hanging node
is present. The pros are that the meshing algorithm is simple and works per-
fectly well in 3D. The cons are the addition of many elements (compared to
the second solution). Moreover, in an unstructured context, it gives elements
with less interesting aspect ratio. The latter illustrated in figure C.1d uses an
ad hoc meshing adapted to the hanging situation. The pros are that it gives
fewer elements with a better aspect ratio than the first solution. The cons are
that treating all possible cases in 3D is difficult. In Schroeder et al. [2004], they
were forced to use a specific constrained Delaunay procedure to achieve
this ad hoc meshing.
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D.1 General concept

The inputs given by the user to this adaptation tool are a distributed tetra-
hedron mesh, an optional transport function set and a function that returns
true or false if the element given as an argument must be split or not. Split an
element in 3D is the action of:

• Creating nodes on the middle of its edges (if they are not already cre-
ated)

• Replace the tetrahedron by eight smaller tetrahedrons joining original
vertex and mid-edge nodes. The four tetrahedrons at the middle (not
connected to original vertex) can be created in three different ways
depending on the new internal edge choice. An aspect ratio criterion
(see B) is used to select the best solution among the three.

• A set of actions to handle the hanging nodes treatment and their asso-
ciated edges or faces.

The same kind of actions are possible in 2D with triangles. The user provides
the transport function set if he needs to transport information to the newly
created element. For example, an initial mesh coloring can be propagated
to the new refined embedded mesh by such transport function.

In figure D.1, the global idea of the algorithm in a 2D sequential context, is
described with a small example (figure D.1a presents the initial mesh and the
fictitious refinement location). The adaptation is made by successive passes
that split the elements fulfilling the criterion. The first pass selects all initial mesh
elements fulfilling the criterion requirement (in orange in figure D.1b). Then
those elements are split and pass 1 gives the mesh in figure D.1c. The algo-
rithm enters a second pass in figure D.1d with the mesh created from the pass
1. It selects the elements based on the criterion (in orange) and the elements
that need to be split to fulfill the 2:1 constraint (in yellow). These elements
are split and give the mesh in figure D.1e. Same thing in pass 3, selection in
figure D.1f and splitting in figure D.1g. Then, in this example, the pass 4 does
not detect any new element fulfilling the criterion which stops the pass loop.
The adaptation ends, selecting all elements having, at least, one hanging
node (figure D.1h) and uses a particular splitting scheme to obtain the final
unstructured refined mesh (figure D.1i).

D.2 Parallel algorithm

The algorithm 5 as mentioned in D.1 works by successive passes. Compared
to the sequential vision given in figure D.1, several communications have to
be added to propagate the 2:1 constraint and the hanging situation. For
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(a) Initial mesh with refinement lo-
cation

(b) 1st pass select (c) 1st pass: split

(d) 2d pass: select (e) 2d pass: split (f) 3d pass: select

(g) 3d pass: split (h) Removing hanging nodes: se-
lect

(i) Final mesh with refinement lo-
cation

Figure D.1: Unstructured mesh adaptation illustration in 2D sequen-
tial context. Elements are split because they fulfill user criterion ,
2:1 constraint or hanging node treatment . The fictitious refined lo-
cation is represented in pink.



111 APPENDIX D. DISTRIBUTED UNSTRUCTURED MESH ADAPTATION

each pass, or level, a set of element ( S ) is created based on the criterion
(user function) that can have been itself updated by the new mesh definition
from the previous pass. This set is filled with the elements that need to be split

Algorithm 5 Adaptation algorithm.
Starting from a distributed mesh with a set of elements M for each
process
Nbpass = 0
repeat

update criterion against new distributed mesh
Let S ⊂M be the initial ordered set of element verifying criterion
repeat

repeat
Let O ⊂ M \ S be the set of elements that must be split to

respect one level rule if elements of S are split.
S = S ∪ O, O being placed first in S

until O 6= ∅
Let Q ⊂ M \ S be the set of elements that must be split to

respect one level rule if elements of remote S are split. .
communication

S = S ∪ Q, Q being placed first in S
until Q 6= ∅
Split elements of S following S order.
Create Nbc the maximum number of elements refined across all

process . communication
Clean and update distributed mesh andM . communication
Nbpass = Nbpass+ 1

until Nbc 6= 0 and Nbpass < MaxNbPass
Remove hanging node by specific splitting . communication

to respect the 2:1 constraint if element of S are split. Two loops do it. The first
one, local to each process, adds a new element to S via an intermediate
set O filled by inspecting the neighbor of S.The drained elements from O are
added first in S so that elements are treated in reverse order of dependence.
The first split elements are then not concerned by criterion but their treatment
allows splitting those that are concerned, without breaking the 2:1 constrain.
This first loop ends when no more elements are in O. The second loop which
embedded the first one, works at inter-process level. On process boundary,
the elements that are put in S, must inform their adjacent remote element
that they will be split. After the communication, a set Q of new elements to
be split in order to respect 2:1 constraint on process boundary, is created. It is
again drained and added first in S to respect the dependency. This second
loop will end if Q is empty for all processes.

After setting S, the effective splitting is done following S order to re-
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(a) Initial strip (b) Initial ParMetis

Figure D.2: Test mesh dispatching on 8 process. Each color corre-
sponds to a process owning this part of the mesh

spect the dependency. Some communication is mandatory to clean the
newly modified mesh and count Nbc, the maximum number of split elements
among all processes. If Nbc is null, it means that criterion did not identify any
new element to split and this level ends the pass loop. Another test is added
to avoid an infinite loop if the user gives a wrong criterion function: The num-
ber of passes is limited by a MaxNbPass value that may be changed by the
user.

Then, all hanging nodes are removed using a the central node strategy.
The idea is to split the connecting elements (elements that have, at least,
one hanging edge or face) by adding in their center of gravity, a node used
to construct the internal tetrahedrons appropriately connected to each of
their faces. Unfortunately, this is not preserving the mesh quality and a case
by case algorithm (where all cases are optimized so that tetrahedrons can
fill them without the addition of an extra central node ) may give better ele-
ments. In this thesis, we did not push further investigations on this topic (see
also annex C).

The sentence ”update criterion against new distributed mesh” in pass
loop of algorithm 5 means that the user must provide an extra function to
cope with the elements newly created in the mesh. Depending on what is
used by the criterion function of the user a criterion transport can be manda-
tory for newly created elements from a previous pass. Otherwise, the criterion
function can not give the right answer for those elements. It can be a source
of problem if the criterion is not easily transportable.

D.3 Performance

To test the performance of algorithm 5, a parallelepiped is meshed with tetra-
hedrons. It has the same geometry as the case presented in figure H.1. A
uniform refinement would have had no interest. No unbalancing would oc-
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(a) Refined strip (b) Refined ParMetis

Figure D.3: Refined mesh from both dispatching on 8 process. Each
color corresponds to a process owning this part of the mesh

cur. All processes if the mesh was distributed following a ParMetis partition-
ing, would have had roughly the same number of element to splits. No 2:1
constraint would have appeared. A quite perfect scaling would have been
expected. So, the chosen refined zone is a strip passing through the middle
(along the y-axis) of the plate. The user criterion function forces the elements
to be refined 4 times at maximum in the band. With this refinement, the scala-
bility is intuitively less obvious. Some processes can be offloaded (no element
to split) and some others overloaded. It depends on the initial mesh distribu-
tion.

In this test, two different initial distributions are used. Figure D.2 presents
those two distribution in the context of 8 processes. In figure D.2b the ini-
tial mesh is distributed using the conventional ParMetis partitioning. In figure
D.2a, the initial mesh is distributed by a horizontal roughly equal strip (basic
algorithm far from perfect). This last case is expected to give a better load
balancing. The refined zone, perpendicular to those strips, is expected to be
dispatched in all processes.

The obtained results are presented in figure D.3. Figure D.4 presents the
strong scaling results for both initial distributions. The elapsed time curves pre-
sented in figure D.4c show that adding process does reduce the time con-
sumption up to a point where the consumption increase. The striped distri-
bution gives a more regular decrease than the Parmetis distribution. In figure
D.4a and D.4b, the speedup and the efficiency confirm that the Parmetis dis-
tribution gives bad results which is quite natural. The load is not balanced in
this case. We can check this aspect in figure D.4d and D.4e that presents the
initial (before refinement) and final (after refinement) number of elements
per process. The curves in those figures correspond to the averaged value
across all processes. It turns to be the same for both distributions, because
it corresponds to the global numbers of elements divided by the number of
processes. More interesting is this quantity range (minimum and maximum). In
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figure D.4d, the initial min/max zone is close to the curve with the ParMetis dis-
tribution. ParMetis is correctly doing its job by giving a quite uniform dispatch-
ing of elements. For the strip distribution, up to 32 processes, the dispatching
is correct. However, for 64 process, the stripes are incorrectly created (some
process have no element). In figure D.4e, the ParMetis distribution exhibits its
weakness with a large distribution unbalancing of refined element.This imbal-
ance begins immediately upon the use of 2 processes. With 8 processes the
unbalancing grows explaining a complete loss of efficiency at this point. For
the strip distribution, the unbalancing appears later with 32 processes. How-
ever, in fact with 16 processes the stripes are already not perfect. It explains
why the efficiency is maintained up to 40% until 16 processes are used. A bet-
ter strip dispatching based on a ParMetis weighted partitioning may give a
better efficiency.

In conclusion, as shown by those curves, the right strong scaling of algo-
rithm 5 is difficult to obtain. Nevertheless, communication is not an issue. With
512 processes, the elapsed time remains in order of magnitude of the best
obtained values. The intrinsic algorithmic aspects are certainly to be revis-
ited. However, an appropriate initial mesh distribution choice is essential from
a performance point of view for this kind of tool.
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Figure D.4: Plate refinement strong scaling curves
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(a) A mesh with TLS framework (zoomed view)

Mesh Γ0 Γc

Enriched
Not enriched
Element only with nodes not enriched

Element center

(b) Legend

(c) Enriched node identification (d) Points creation

Figure E.1: Simple example of points localization in 2D

E.1 General concept

The damaged band zoning is used in chapter IV.2 and chapter V.3. In both
cases the crack tip vicinity has to be located. Figure E.1 introduces, in a 2D
context, the steps to obtain the coordinates of the points close to a crack
tip. The principle is to use a previously adapted mesh where the TLS compu-
tation has been done (figure E.1a). The nodes, with a support that touches
or intersects Ωc, are classified into two categories. Nodes that have support
separate in two or more parts by Ωc are designated as enriched nodes. The
others, designated as not enriched, are those whose support is not divided
by Ωc (only touched or reduced). This classification is presented in figure E.1c.
The main idea is to consider that at the tips of the crack, it always exists, at
least, one element made only of non-enriched nodes (shown in yellow in fig-
ure E.1d). This property is related to DCA which almost always stops a crack on
an edge (chapter III). When it is not the case, the 3D mesh generally provides
a close location where it is the case. In a simple crack wake, the elements
usually have, at least, one node enriched. So, this classification brings the
appropriate topological information to identify the crack tip. The final step,
presented in E.1d, creates the points at the gravity center of the identified
element. All those steps are summarized in algorithm 6.
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Algorithm 6 Algorithm used to track close crack tip points.
for each element e topologically cut by Γc do

a = 0
for each vertex v of e do

compute v support distinct parts number k
if k = 1 then

a = a+ 1
end if

end for
if a equals e number of vertex then

create and store e gravity center point
end if

end for

(a) A mesh with TLS framework (zoomed view)

Mesh Γ0 Γc

Enriched
Not enriched
Element only with nodes not enriched

Element center

(b) Legend

(c) Enriched node identification (d) Points creation

Figure E.2: Complex example of points localization in 2D

E.2 Limitations

In figure E.2 a more complicated case is presented. It is a forking situation
where Ωc has grown up to the point of fully embedding elements. In this
case, as it can be seen in E.2d, the elements not at the crack tip are marked.
They all do have their nodes not enriched but do not correspond to the tip
location. It can be a limitation or not, depending on which application is
using this algorithm. For the chapter IV.2 coarsening strategy, it is positive since
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(a) A mesh with TLS framework (zoomed view)

Mesh Γ0 Γc

Enriched
Not enriched
Element only with nodes not enriched

Element center

(b) Legend

(c) Enriched node identification (d) Points creation

Figure E.3: Problematic example of points localization in 2D

the refinement must be maintained in such a forking zone. For the chapter
V.3 active zone strategy, there is no need to integrate such a region in the
AZ group. However, that is not a stumbling block. It will just slow down the
resolution.

Figure E.3 illustrates a case with a problem that as been observed during
the simulations. It corresponds to the presence of a zone of not completely
detached crack lips. In this case, the algorithm locates few elements in this
zone (E.3d). Generally, those locks break as the crack progress but it can
take some load steps. During this period, things are not optimal. For chapter
IV.2 strategy, it can alleviate the coarsening itself. It is not perfect and those
connections may (numerically) disappear with larger elements. For chapter
V.3 active zone strategy, it is far from perfect as it slows down the resolution
during all the periods where they are present.
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AZ Fixed zone

NL L L NL

Figure F.1: Partitioning: a 4 processes example in 2D, each color repre-
sents a set of elements treated by a process.

In current AZ implementation, MUMPS is used with its distributed entries
capability and is also tuned to use all processes for Schur matrix block-cyclic
distribution. As MUMPS does its own matrix distribution for the factorization,
all that has to be considered for the load balancing is the distributed matrix
creation. It basically comes down to balancing the assemblies. So, with al-
gorithm 2, four assemblies appear.The AZ and the fixed group are separated
in linear (in Ω−) and nonlinear (in Ω+) elements group. Those four groups of
elements are then partitioned to obtain a appropriate load balancing for the
assembly computations.

A group partitioning is obtained with ParMetis. Figure F.1 depicts the pro-
cess with a 2D example. On the right, the fixed zone is only treated when
a new AZ is computed. The linear and nonlinear assemblies are done sep-
arately, so they need an independent partitioning. On the left, the AZ, here
made by 2 circles around the tips of the oblique crack , is also split into linear
and non-linear independent assemblies. So, an independent partitioning is
also conducted for those two groups. During the load steps, those 2 partition-
ing sets are kept unchanged considering that the re-partitioning costs more
than the possible degradation of the load balancing. When φ evolves some
elements can pass from the linear group to the non-linear group and then,
the partitioning may become less optimal. However, this is expected to be of
sufficient quality during all load steps until the next AZ creation.

A more ad hoc partitioning would be to start from a partitioned Γ0 and
by some coloring algorithm, expand this initial partitioning to the AZ and the
fixed zone. It would give a priori a more equilibrated partitioning during a
load step. It also opens the AZ zone to a natural domain decomposition.
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Figure G.1: SuperPatch mesh (colored per processes id) plunged in a
global-scale mesh.

(a) Γ0 (b) Γc

Figure G.2: Iso-zero and iso-lc surface created in SuperPatch and col-
ored per processes Id.

This chapter is only providing some images to illustrate what has been
introduced in chapter V.4. It corresponds to a three points bending simulation
of a beam. It is using the symmetric version of II.5 (i.e. β = 1.) and a fixed φ (no
evolution). The crack is positioned outside median symmetrical plane of the
beam. This simulation is following the principles of algorithm 3 but the scale
loop is forced to 10 arbitrary iterations. The loop is entered with a global-
scale non enriched simulation as the first boundary condition for the fine-
scale problems. At the global level, only the TS enrichment (the version (V.5))
is used (no ramp Heaviside).

Figure G.1 shows the mesh of each scale: the global-scale mesh (i.e. the
whole beam) and the union of all patches mesh (i.e the SuperPatch). The dis-
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Figure G.3: Node 106 patch mesh colored by processes id in Super-
Patch mesh context.

tribution of the problem on 4 processes is illustrated for the SuperPatch by one
color per process. The distributed DCA is run on this last mesh and provides Γ0

and Γc as presented in figure G.2 where the color represents the process id.

One patch corresponding to the node (106) at the bottom of the beam
is chosen. It is presented in figure G.3, colored by process id (it is a distributed
patch), in the SuperPatch and beam contexts. The damaged field associ-
ated with this patch is presented in figure G.4. Its boundaries are showed in
figure G.5. The process of computation of the TS enrichment function with this
patch is presented in figure G.6 for the beginning and ending of the scale
loop.

Finally, the results at the global scale are presented in figure G.7: G.7a
for the global scale without enrichment used as a boundary condition for
the fine-scale computation at beginning of the scale loop, G.7b for the first
TS enriched displacement field solution of the scale loop, G.7c for the last TS
enriched displacement field solution of the scale loop and G.7d for the simple
TLS displacement solution (frontal strategy also on 4 processes) on almost the
same refined mesh as the TS resolution.
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Figure G.4: Damage field for patch 106.

(a) (b)

Figure G.5: Boundary of patch 106: G.5a with SuperPatch colored per
process id, G.5b from part boundary colored per process id with inter-
process boundary in blue.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure G.6: patch 106 computation at begin (left) and end (right) of
the scale loop: G.6a/G.6b imposed displacement (Robin boundary
conditions), G.6c/G.6d patch displacement field solution, G.6e/G.6f
patch displacement field projection on global-scale approximation,
G.6g/G.6h scaled TS enrichment function (see (V.5)).
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(a)

(b)

(c)

(d)

Figure G.7: Global-scale displacement field solutions.
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H.1 Description

The test case is a 3D plate with the geometry depicted in figure H.1. We can
consider that it represents the tip crack zone in terms of computational ef-
fort (number of dofs). The coarser mesh called level zero or L0 (figure H.2a)
is unstructured, with a maximal aspect ratio of 3.47 (figure H.3). Different re-
fined meshes are used. At each refinement step, all edges are split into two
edges and the tetrahedrons are split accordingly. Each step is called level
and named Lx, where x denotes the level number ranged from 0 (no refine-
ment) to 5 (initial element size is divided by 25, i.e, 32).

The mechanical properties are those of a simple uniform elastic isotropic
material. The approximation order is 1 for all fields.

A B
A

BA

B

L

H

x
T

yy

z

C
C

x

z

C

Figure H.1: Benchmark test: simple plate under volume and surface
loading (see (H.7) ). A, B, and C are the corner points used to fix the
rigid body modes.

H.2 Analytical formula

We want to test a known cubic displacement field with this plate in order to
obtain an accurate error computation (i.e. comparison with an analytic for-
mula). The following −→u (x, y, z) displacements are used as analytic reference:

−→u (x, y, z) =
(ν + 1)(1− 2ν)F

E




(x2(L2 − x
3 ) + 2ν(y2 − z2))

−4νxy

4νxz


 (H.1)

where :

• E is the Young’s modulus

• ν is the Poisson’s ratio
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(a) Initial mesh, level zero or L0: 188 nodes, 595 tetrahedrons

(b) Mesh called level one or L1: 1110 nodes, 4760 tetrahedrons

Figure H.2: Plate meshes

• F is a scalar corresponding to a force

• L is the plate length (figure H.1 )

Dirichlet boundary conditions, imposed in this test case, are compatible
with those fields since the point A is clamped in all direction (−→u (0, 0, 0) =
−→
0 ), the point B is clamped at least in z and y direction(−→u (L, 0, 0).−→ey =
−→u (L, 0, 0).−→ez = 0) and the point C is clamped at least in z direction
(−→u (0, H, 0).−→ez = 0)
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Figure H.3: Coarse mesh for plate with aspect ratio for each element

Considering small displacements, the strain is given by :

εij =
1

2
( ui,j + uj,i) (H.2)

and with the displacement field coming from (H.1), we have:

[ε(x, y, z)] =
(ν + 1)(1− 2ν)Fx

E




(L− x) 0 0

0 −4ν 0

0 0 4ν


 (H.3)

Hooke’s law gives the stress tensor:

σ(x, y, z) = C : ε(x, y, z) (H.4)

where C is the elasticity tensor corresponding to an isotropic material defined
by E and ν.

It results in the following expressions using C and (H.3):

[σ(x, y, z)] = xF




(ν − 1)(x− L) 0 0

0 ν(L− x− 4(1− 2ν)) 0

0 0 ν(L− x+ 4(1− 2ν))




(H.5)
The equilibrium equations are:

{ −→
div σ(x, y, z) +

−→
fv = 0 on Ω

σ(x, y, z).−→n =
−→
fs on ∂Ω

(H.6)
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From (H.6) and (H.5) we obtain the load to impose on the test case that gives
the (H.1) displacement field :





−→
fv =




(1− ν)F (2x− L)

0

0




−→
fs(x=0) =

−→
fs(x=L) =

−→
0

−→
fs(y=H) =




0

xFν(L− x− 4(1− 2ν))

0




−→
fs(y=0) = −−→fs(y=H)

−→
fs(z=T ) =




0

0

xFν(L− x+ 4(1− 2ν))




−→
fs(z=0) = −−→fs(z=T )

(H.7)

The analytic equation (H.3) is used as a reference for the numerical com-
putations of the energy error associated with the different meshes and/or
methods:

error(−→u computed) =

√∫
Ω

(ε(−→u computed)− ε(x, y, z)) : C : (ε(−→u computed)− ε(x, y, z)) dΩ∫
Ω
ε(x, y, z) : C : ε(x, y, z) dΩ

(H.8)

H.3 Results

In this benchmark, the plate (described in annex H.1 using boundary condi-
tiond from equation (H.7)) has to be considered as a fictitious 3D crack tip
with a far simpler strain field. In this context, all the strategies of chapter V
have been compared, with for each of them:

• Only the creation, assembly and resolution of the mechanical problem
system have been monitored.

• The crack wake, and overall part definition have been neglected (it
corresponds to different approximations for each strategy described in
chapter V.5).

• The hybrid parallelism is almost never used in the simulations for a fair
comparison. For example, using Mumps solver in some approaches with
OMP capability and multi-threaded Blas, is unfair compared to none
multi-threaded TS strategy. Moreover, multi-threading would have also
complexify the creation of the curves (how many threads are needed
per MPI process for each strategy, how to consider MKL Blas that adapts
the number of threads when computing speedup,...).
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• For a given number of processes, the coarse mesh is partitioned on
them and splits uniformly up to the target refinement level. This refined
mesh is used in the TS strategy (V.4) for the fine scale level. The same
partitioned refined mesh is used for the comparison of the frontal (V.2)
and active zone (V.3) strategies.

• The simulations have been conducted on the Liger computer (annex
J.2) without interference from any other applications at node level (it is
not completely the case for the network usage).

• For TS strategy, the benchmark follows the simple algorithm 3. Neverthe-
less, instead of a test based on the relative variation of ~Us to stop the
loop, the energy error given by (H.8) is compared to the one obtained
with the frontal strategy or the modified AZ strategy. The loop stops as
soon as TS energy error is less than the one obtain with other strategies.

This test provides a rough estimate of what can be expected from all
strategies if they were finalized. It is made without extra complexity (the mesh,
the mesh partitioning, ... are the same between the strategies). Recalling
the naming convention of chapter V.5, hereafter, ”frontal” will designate the
frontal strategy, ”domain” will designate the modified AZ strategy and ”two-
scale” the TS strategy.

H.3.1 Strong scaling

Figure H.4, H.5, H.6, H.7 and H.8 present strong scaling results respectively for
the final refined level L1,L2,L3,L4 and L5. For each figure we have:

• In (c), the curves of elapsed time for mechanical problem resolution
(in second). It corresponds to an average elapse time across pro-
cesses. For the frontal results, it counts field declaration, system assem-
bly and resolution. For domain results, it counts local domain field dec-
laration and associated system assembly and condensation, precon-
ditioner factorization, iterative resolution of the dense system,and de-
condensation phase. For TS results, it counts patch field creation, patch
boundary condition integration, patch resolution, global enriched field
declaration, global enriched system assembly and resolution, and for
most of the same items their accumulated contribution while looping
on scales.

• In (a), the speedup curves based on the elapsed time (c). For each
approach, the sequential reference time is the one corresponding to its
strategy, except for the domain results based on the frontal computa-
tion (with one process, there is only one domain without any conden-
sation; it is therefore not possible to obtain a result with our implemen-
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tation). The ideal speedup is plotted in black (if we use x processes we
have to be x times faster than with a single process).

• In (b) the curves of strong scaling efficiency. They correspond to the
speedup curves (a) divided by the number of used process and trans-
formed in %. 100% corresponds to an ideal speedup (if we use x pro-
cesses the gain obtained, compared to sequential time, is the maxi-
mum expected).

• In (d), the dofs curves. They show the solved system dimension for all
strategies and their different involved scale. For the frontal, coarse and
TS global enriched results, the dimensions remain constant when the
number of processes changes. With the TS strategy ”per patch” gives
the average size of the fine-scale problems. Due to a uniform refine-
ment, all patches got quite the same size on average and the paral-
lelism does not change the situation. It roughly leads to a constant
size. With the domain results, two curves are given: the first one (”do-
main(Schur)”) indicates the size of the condensed system. The second
one (”per domain”) gives the average size of the domain problems.

• In (f) the information curves about the TS patch number. ”total” gives
the global number of patches for the problem. ”per proc” gives the av-
eraged number of patches treated by a process. ”dist per proc” gives
the averaged number of distributed patches treated by a process.

• In (e), the curves give the ratio between the TS or domain and the
frontal elapsed times for a given number of processes. If this ratio is 1,
the considered strategy has the same performance as the frontal ap-
proach. If lower than 1, it is slower. If greater than 1, it is faster. With
the TS strategy, the ”iter” curves represent the ratio if we only consider
one scale iteration without counting the patch creation. This situation is
expected when TS is used with algorithm 4.

• All the TS results got a ”from x” indication that indicates from which
global level, the method starts. ”x” correspond to Lx. ”from 1”, in L3 fig-
ure H.6, means that the global level corresponds to the mesh L1 (coarser
L0 refined once) and that the fine level is obtained by refining this mesh
twice which provides an equivalent L3 mesh (3=1+2).

• It is hard to ensure that the presented curves are representing a con-
tinuous processing task increase. Take the example when going from
16 to 32 cores. On the one hand (16 tasks), the inter-process messages
are exchanged inside a node (shared memory mechanism) and do not
pass through the network. On the other hand (32 tasks), some messages
are remaining in the node and some are passing through the network
layers since a Liger node is limited to 24 cores. It forces, at least, to use
2 nodes for the computation. A fair comparison, but non-realistic from
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a practical point of view, is to use a distribution with one process per
node. In this context, increase the number of tasks would systematically
raise the network load. No additional simulation has been conducted
to clarify this point.

Of the L5 results, only those that have been successfully executed are
shown in figure H.8. With this kind of problem size (9965229 dofs), memory
becomes an issue. Liger computer permits only 128GB per node. Some ob-
servations show that the frontal strategy needs memory between 1Tb to more
than 3TB (mainly due to the system factorization). For the domain approach,
as only one domain is considered per process, the memory consumption
remains high with few processes. For the TS method, only around 300GB is
needed. It explains why it was impossible to obtain a sequential solution for
any approach1. With the TS method, the smallest possible number of pro-
cesses to be used is 300

127 ∼ 2.37 which corresponds to 4 processes in power
of 2 progression. To obtain a speedup and an efficiency, a perfect scaling
between 1 and 4 processes has been considered. It allows extrapolating the
elapsed time of the sequential computation. And it explains why we have a
perfect strong scaling efficiency with 4 processes. For the other strategies, the
first possible computation starts with 32 processes (1 core per node). Extrap-
olation for the elapsed time of the sequential computation is too hazardous
in this case. The speedup and efficiency are then not provided. For the TS
method, extra speedup and efficiency curves are provided with a name end-
ing by ”ideal global”. They correspond to data where the elapsed time of the
global level problem resolution has been kept constant to its minimal value
(with 128 processes) when minimum has been reached (i.e. for 256, 512 and
984 processes).

As mentioned above, increasing the number of MPI process with the same
network loading is not easy to achieve, especially for these L5 results. The first
curve points, due to memory consumption, imply a rather natural increase
of nodes per computation. However, when reaching 900 cores, the amount
of work per core starts to be dominated by communication. Then the re-
sults, when passing from 984 cores on 41 nodes (41x24) to 1024 cores on 43
nodes, are too much perturbed by the network load increase to be relevant
to compare the methods. This assertion comes from a test, not presented
here, where the same 984 cores are used for the computation on 41, 42 and
43 nodes. A drastic drop in performance is observed. It leads to using a max-
imum of 984 cores on 41 nodes.

1solver out of core capability has not been considered. The speedup, in this case,
would mainly have measured hardware capability instead of the algorithmic perfor-
mance
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Figure H.4: Cubic field, Level 1, strong scaling
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Figure H.5: Cubic field, Level 2, strong scaling.
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Figure H.6: Cubic field, Level 3, strong scaling .
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Figure H.7: Cubic field, Level 4, strong scaling.
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Finally, as the L5 results are concerned, note that a multi-threaded Blas
(with MKL on-demand free strategy) has been tested with 64 MPI processes
(named with ”th”). It explains why in H.8e, the abscissa is given in number of
MPI processes and not in number of cores. With the frontal and domain re-
sults, the Mumps multi-threaded capability has also been used with 4 threads
per MPI process.

H.3.2 Weak scaling

Figure H.9 presents the ”frontal”, ”domain” and ”two-scale” weak scaling re-
sults. Three initial refinement Levels are considered (L1,L2,L3). For each initial
level, two sets of curves are given: one corresponding to the computational
elapsed time in seconds, and one corresponding to the weak scaling. The
abscissa is the problem size in number of dofs. The points on those curves
correspond to different problem sizes maintaining a constant number of dofs
per process. The starting point corresponds to the initial level size treated in
sequential. That is why all the weak scaling curves start at 100% since this scal-
ing is the ratio of elapsed time in sequential divided by the elapsed time in
parallel. For the frontal and domain results, nothing can be changed except
the starting point. For the TS, the global level may change.”two-scale from
X above” curves (with X=1, 2, or 3) represents the problem size obtained by
always starting from a global level X level above it. I.e. for X=1 with L1, the
computed points are:

• L1(3324 dofs) from L0 with 1 process

• L2 (22611) from L1 with 7 processes ( 22611
7 = 3230.14 ∼ 3324)

• L3 (166185) from L2 with 50 processes ( 166185
50 = 3323.7 ∼ 3324)

• L4(1273173) from L3 with 383 processes ( 1273173
383 = 3324.21 ∼ 3324)

The other curves ”two-scale from X” (with X=1 or 2) represent the obtained
problem size by always starting from the same global level X. For example, for
X=1 with L2, the computed points are:

• L2(22611 dofs) from L1 with 1 process

• L3 (166185) from L1 with 7 processes ( 166185
7 = 23740.71 ∼ 22611)

• L4 (1273173) from L1 with 56 processes ( 1273173
56 = 22735, 23 ∼ 22611)



H.3. RESULTS 142

0.1

1

10

100

10000 100000 1× 106

Ti
m

e
in

s

number of dofs

frontal
domain

two-scale from one above

(a) Time L1

0

10

20

30

40

50

60

70

80

90

100

10000 100000 1× 106

W
e

a
k

sc
a

lin
g

e
ffi

c
ie

n
c

y
(%

)

number of dofs

frontal
domain

two-scale from one above

(b) Efficiency L1

1

10

100

1000

10000

100000 1× 106

Ti
m

e
in

s

number of dofs

frontal
domain

two-scale from two above
two-scale from 1

(c) Time L2

0

10

20

30

40

50

60

70

80

90

100

100000 1× 106

W
e

a
k

sc
a

lin
g

e
ffi

c
ie

n
c

y
(%

)

number of dofs

frontal
domain

two-scale from two above
two-scale from 1

(d) Efficiency L2

10

100

1000

10000

1× 106

Ti
m

e
in

s

number of dofs

frontal
domain

two-scale from three above
two-scale from 2

(e) Time L3

0

10

20

30

40

50

60

70

80

90

100

110

1× 106

W
e

a
k

sc
a

lin
g

e
ffi

c
ie

n
c

y
(%

)

number of dofs

frontal
domain

two-scale from three above
two-scale from 2

(f) Efficiency L3

Figure H.9: Cubic field, weak scaling for different starting problem sizes
(L1,L2 and L3).
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H.3.3 Task dispatching

Figure H.10 provides some information about the origin of the computational
costs associated with the ”frontal”, ”domain” and ”two-scale” results for L5
simulation. The elapsed time for each task is accumulated. For each strategy,
the identified task covers different items:

frontal: ”field declaration” represents the dofs numbering (involving commu-
nication), the creation of the local matrix graph and the elimination
of the local Dirichlet boundary conditions. ”integration and assembly”
corresponds to the local elementary integration and the elementary
matrix assembly to the local part of matrix A. ”Resolution” is the parallel
direct sparse solver factorization and the resolution phases.

domain: ”field declaration” represents the domain dofs numbering (no com-
munication involved since the domains are restricted to only one pro-
cess), the Schur dofs numbering (involving communication), the cre-
ation of the domain matrix graph and the elimination of the local Dirich-
let boundary conditions. ”integration and assembly” corresponds to
the local elementary integration and the elementary matrix assembly
to domain matrices. ”Resolution (dense)” is the parallel iterative reso-
lution of the distributed Schur problem. ”Resolution ” is the incomplete
factorization of the direct sparse solver for each domain (creating their
Schur contribution), the block Jacobi preconditioner factorization, the
right-hand side b condensation and the de-condensation of the solu-
tion.

two-scale: ”field declaration” represents the patch dofs numbering, the treatment
of the patch boundary conditions, the integration and assembly (in se-
quential or parallel) of the patches, the sequential or parallel resolution
of the patches using a direct sparse solver, the global level dofs num-
bering (involving communication) and the elimination of the Dirichlet
boundary conditions. ”field declaration update” only covers the patch
boundary conditions integration and the sequential or parallel resolu-
tion of the patches with an already factorized matrix. It is the update
phase of the enrichment functions that happen during the scale loop.
”integration and assembly” corresponds to a local elementary integra-
tion of SuperPatch on coarse elements and an elementary matrix as-
sembly in distributed local part of matrix A. ”Resolution” is the parallel
direct sparse solver factorization and the resolution phases at global
scale.
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Figure H.10: Cubic field, Level 5, Elapse time dispatching
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H.3.4 Computational precision

In figure H.11, the energy error (from (H.8)) is plotted for the frontal strategy
and the theoretical slop is given. The TS curves correspond to the initial error
obtained using a global non-enriched field as boundary conditions for the
patches. These curves give, for the TS resolution, the error of the ”starting
point”. The scale iteration reduces those errors to be less or equal to the
frontal one.
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Test case Elapsed time Number of processes
L shape (VI.4) 6.17h 16
Chalk (VI.2) 5.43h 24

Spherical Holes (VI.1) 9.25h 24
Spiral bevel gear (VI.5) 1.6d (up to step 246) 48

Table I.1: Test elapsed time in hours (h) or days (d) (run on Titan cluster,
see annex J.2)

Item Elapsed time % of total
Total 37.93 100
Mechanical
problem res-
olution Algorithm
1 II

23.68 62.42

TLS update Al-
gorithm 1 I+III

13.12 34.59

AZ creation 0.32 0.84
Other 0.82 2.16

Table I.2: Computation times dispatching, in hours, of the spiral bevel
pinion gear (the 246 first load steps).

In terms of performance in computation time, the state-of-the-art about
the elapsed times for all the test cases of chapter VI is given in Table I.1, ex-
cept for notched beams tests1 (chapter VI.3). Note that the older Spherical
Holes test case was not re-computed with AZ. The elapsed times given in the
table correspond to a pre-AZ version without condensation.

The AZ was very useful for the spiral bevel gear test case where the model
is large (453 824 nodes) from the start. Notably, in the case of the first load
steps, the gain is high thanks to the small AZ envelope. As mentioned in an-
nex E.2, the AZ determination can be problematic in some cases, such as in
this simulation. Instead of obtaining a reduction in the size of the envelope
at the end of the computation as damage front is reaching domain bound-
aries (like in figure V.2 with the chalk example), the AZ is very large due to
several spurious ”close crack tip points” detection. The times given in table I.1
correspond to the computation up to load step 246 (figure VI.17) where the
AZ envelope is almost the one expected. Additional 4.4 days were used to
reach loading step 385. Once more, here, the AZ is not ideal during those last
load steps and future work on crack tip detection will hopefully reduce those
time consumption.

To have an insight on which part of the computation is consuming CPU

1 For this notched beams test the AZ envelop is not well computed. This problem
combined with too small elements size (ht ≈ lc/20), makes irrelevant the usage of the
AZ implementation. Therefore, the elapsed times are not representative.
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Item elapsed time % of total % of task
Mechanical problem
resolution Algorithm 1 II

23.68 62.42 100

System creation (Inte-
gration + assembly)

0.63 1.66 2.65

Algebraic system resolu-
tion

18.68 49.25 78.91

Dof update and results
output

2.21 5.82 9.33

Matrix structure cre-
ation, parallel task,
nonlinear resolution, ...

2.16 5.69 9.11

Table I.3: Detailed computation times in hours for mechanical problem
resolution of the spiral bevel pinion gear(the 246 first load steps).

Item elapsed time % of total % of task
TLS update Algo-
rithm 1 I+III

13.12 34.59 100

Ȳ computation
chapter III.4

5.24 13.8 39.9

Update domain
(Γ0 and Γc creation)

2.72 7.17 20.74

Update φ and
other

5.16 13.61 39.35

Table I.4: Detailed computation times in hours for the TLS update of the
spiral bevel pinion gear ( the 246 first load steps).

time in a rather intensive simulation, the test case of the spiral bevel pinion
gear was profiled. The results for 246 first load steps are given in table I.2, I.3
and I.4.

The first table presents an overall distribution of the computation time. First,
regarding the TLS update task, which is detailed in table I.4, it participates for
34.59 % of the total simulation elapsed time, which is not negligible. The ac-
tual main consumers are the computation of Ȳ and φ update. Both of those
tasks are not well parallelized and correspond to a rather old algorithm. More
recent fast marching techniques used in eXlibris will replace those computa-
tions and in particular, the algebraic system resolution attached to them.

One can note that the new double cut algorithm proposed in this thesis
does not consume much computation time. It is embedded in the update
domain item, which represents only 7.17 % of the total simulation elapsed
time without being parallelized in these tests.

Secondly, regarding the overall time distribution, the efforts of reducing
the mechanical problem resolution via the parallelism and AZ techniques,
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are well justified because the corresponding task remains to be the most im-
portant consumer. As detailed in table I.3, it is mostly penalized by the alge-
braic resolution (78.91 %: factorization, condensation, solving, ...). The ma-
trix creations (elementary creation and assembly), are not greedy in terms
of time consumption despite the use of sub-elements for integration (XFEM
technique). The parallelism associated with a proper load balancing (annex
F.1) kept the consumption low anyway. Remaining sequential computation
such as dof updates will have to be also treated in parallel in the future.

Without AZ With AZ ratio
1 process 113.18 17.82 6.35
48 processes 13.22 5.48 2.41
ratio 8.56 3.25 20.64

Table I.5: Elapsed times computation (in hours) up to 80th load step
for the spiral bevel pinion gear (chapter VI.5). Comparison between
the sequential and parallel versions with or without AZ. The ratio corre-
sponds to a comparison per column, line and diagonal.

To conclude, the AZ performances are again illustrated by the spiral bevel
pinion gear test case which is an intensive simulation. In table I.5, the elapsed
times after 80 load steps are given for different configurations. Upper left re-
sults correspond to a sequential computation with no AZ nor condensation.
It is more or less the implementation of Bernard et al. [2012] in terms of me-
chanical problem resolution. It is somehow the starting point of this work.
On the one hand, the introduction of AZ and condensation (upper right) re-
duces the time consumption by 6.35. It validates by itself the interest of this
technique. On the other hand, applying the parallel computation on an in-
tensive task (lower left) reduces the time consumption by 8.56. Now applying
the parallel computation on the AZ technique (lower right) divides the time
consumption by 3.25. If the CPU time of mechanical problem computation is
extracted from the global time, it is a ratio of 8.08, which is in fact obtained in
this case. It illustrates the right choice of the association of parallel technique
with the dense condensed resolution. We can add that the memory con-
sumption becomes an issue with the condensation if no parallel distribution
of the dense system is made. In parallel, the use of the AZ technique reduces
the time consumption by 2.41, which is less than sequential ratio but still inter-
esting. Compared to a non-AZ sequential version, adding both strategies as
proposed in this work, reduces time consumption by 20.64.
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Material PMMA Chalk PMMA Steel AISI9310 Concrete
Elastic Parameter :

Young Modulus (N/mm2) 25 850 2 000 2 800 206 844 41 240
Poison Ration 0.18 0.18 0.38 0.3 0.174

Numerical approximation :
Order 1 mixed 1/2 1 1 1
Number of nodes 20 809 12 934 92 746 453 824 452 598 (Bc) 171 240(Cb)

Local damage model parameter :
Yc (N/mm2) 0.00095 0.0125 0.06 54.83 Y 0

c .h(d)
traction/compression parameter β 0 0 1 0 0

TLS parameter :
lc (mm) 100. 4 10. 0.7 20.

d(φ)


0 for φ < 0(
φ
lc

)2 (
3− 2 φ

lc

)
for 0 6 φ 6 lc

1 for lc < φ


0 for φ < 0
φ
lc

(
2− φ

lc

)
for 0 6 φ 6 lc

1 for lc < φ

Table J.1: Simulation parameter set.

wwfw1
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Figure J.1: Bilinear cohesive zone softening law in terms of stress versus
opening displacement.

J.1 Material characteristics and parameters

The material characteristics and parameters of the model used in chapter
VI are presented in table J.1. For the test case in VI.3, the critical damage
energy release rate is a function of the damage. This function is built using an
equivalence with a bi-linear cohesive zone model, as stated in Parrilla Gómez
et al. [2015]. The four extra information mandatory to describe Y 0

c h(d) are
coming from the description of the bi-linear softening law given in terms of
stress versus opening displacement (figure J.1). Table J.2 gives the values fit-
ted by Hoover and Bažant [2014] and used in this paper.
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Values
σf 3.92MPa
σk 0.588MPa
w1 25.3µm
wf 94.8µm

Table J.2: Bilinear cohesive zone softening law coefficients from Hoover
and Bažant [2014].

J.2 Simulation condition

Two computers were mainly used for this thesis. They are named Titan and
Liger.

Titan is an AMD based computer made of 5 nodes, with 32 cores ( 4 x
8 cores Opteron 6328 at 3.2MHz) per nodes. These nodes use raid 0 local
hard disk for I/O and between 200 to 380 GB of memory. The network is an
InfiniBand 4x DDR. The software used on this platform are eXlibris (2016), GNU
g++ compiler from GCC 4.8.2 , MVAPICH2 2.0, Mumps 4.10.0, Scalapack 1.8.0,
ParMetis 3.1.1, CGAL 4.2, lapack 3.4.2, openBlas 0.2.11.

Liger is an INTEL based computer made of 252 nodes, with 24 cores (2 x
12 cores Xeon E5-2680v3 at 2.5GHz) per nodes. Thses nodes use Gpfs network
disk for I/O and 128GB of memory. The software used on this platform are
eXlibris (2018), Intel icpc (using GCC 4.9) compiler, Intel MPI, Mumps 5.1.2, Intel
MKL Scalapack, ParMetis 4.0.3, CGAL 4.2, intel MKL lapack, Intel MKL blas. All
Intel software are coming from parallel studio xe 2015 update 3 suites.

The linear system resolutions use mainly Mumps (Amestoy et al. [2001] and
Amestoy et al. [2006]).
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A | C | D | E | G | H | M | P | R | S | T | W | X

A

aspect ratio

Criterion that gives the finite element quality (annex B).

AZ

Active zone: Solving strategy using condensation techniques presented
in chapter V.3.

C

core

Basic computational unit of the CPU: A core can only run one pro-
gram or thread of execution at a time (except with a hardware multi-
threaded core like Intel chipset).

CPU

Central processing unit also called the main processor.

crack tip

Crack location where both lips are connected. It is also called the crack
front since the crack grows from it. It corresponds to points (in 2D) or lines
(in 3D). See figure I.1b .

crack wake

Crack location where both lips are not connected. It is assimilated to
the crack path. See figure I.1b .

CZM

Cohesive Zone Model.

D

DCA

Double Cut Algorithm.

dof

Degree Of Freedom.
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E

efficiency

Measure of the scalability: for the strong scaling, it corresponds to the
ratio of the speedup by the numbers of used cores. For the weak scaling
it corresponds to the ratio of the program execution time ran with one
core by the program execution time ran with N cores (equivalent to the
speedup but in the context of a constant amount of work per process).

eXlibris

Set of C++ libraries providing FEM, XFEM, TLS, linear algebra, cutting al-
gorithm, tensors, .... tools. This thesis relies on those libraries.

G

Γ0

Damage front.
iso-0 level set of the signed distance function φ.

Γc

Crack lips.
iso-lc level set of the signed distance function φ.

GFEM

Generalized Finite Element Method.

H

hanging node

In Quadtree or Octree context, the hanging nodes exist in a cell bound-
ary when they have no counterpart in neighborhood cells due to cell
scale change. See annex C.

ho

Mesh size outside the TLS damage band.

ht

Mesh size in the crack tip vicinity.

hw

Mesh size in the crack wake region.

M

MPI

Message Passing Interface: normalized parallel protocol that uses inde-
pendent process on eventually independent computers which com-
municate by exchanging messages.
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P

patch

In the TS method, we will define a patch of an entity as the independent
fine-scale problem which is embedded into this entity support.

R

ρ

Characteristic length associated with the curvature of a crack path .
See figure I.1b.

S

scalability

The scalability (also referred as the scaling efficiency) indicates how ef-
ficient an application is, when using an increasing number of parallel
processing elements.

SGFEM

Stable Generalized Finite Element Method.

speedup

The speedup of a parallel program can be defined as the ratio of this
program execution time ran with one core by the program execution
time ran with N cores.

sSGFEM

Scaled Stable Generalized Finite Element Method.

strong scaling

The strong scaling of a parallel program can be defined as its scalability
when starting from a given problem size, we increase the numbers of
process used. It represents the application capacity to face a huge
CPU-time consumption.

SuperPatch

In the TS strategy, it corresponds to a mesh that groups all patches fine-
scale elements.

support

The support of an entity is the set of elements over which the approxi-
mation function associated with this entity is non-zero..

SVDF

Signed Vector Distance Function.

T
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thread-safe

A program or a function is thread-safe if, when it is launched in a multi-
threaded environment, it does not do concurrent uncontrolled writing
access to a unique memory location.

TLS

Thick Level Set.

TS

Two-scale or GFEMgl method.

W

weak scaling

The weak scaling of a parallel program can be defined as its scalability
when starting from a given problem size, we increase both the numbers
of process and the problem size so that the amount of work (dofs in
FEM) per computing unit remains constant. It represents the application
capacity to face huge memory consumption.

X

XFEM

Extended Finite Element Method.
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M. Frémond and B. Nedjar. Damage, gradient of damage and principle of
virtual power. International Journal of Solids and Structures, 33(8):1083–
1103, 1996. ISSN 00207683. doi: 10.1016/0020-7683(95)00074-7. 15

I. Gargantini. An effective way to represent quadtrees. Commun. ACM, 25
(12):905–910, Dec. 1982. ISSN 0001-0782. doi: 10.1145/358728.358741. 42

B. Giovanardi, A. Scotti, and L. Formaggia. A hybrid XFEM - Phase field
(Xfield) method for crack propagation in brittle elastic materials. Computer
Methods in Applied Mechanics and Engineering, 320:396–420, 2017. ISSN
00457825. doi: 10.1016/j.cma.2017.03.039. URL http://dx.doi.org/10.1016/
j.cma.2017.03.039. 53, 61

J. Gomes and O. Faugeras. The vector distance functions. International Jour-
nal of Computer Vision, 52:161–187, 2003. 26, 27, 29

http://linkinghub.elsevier.com/retrieve/ pii/S0013794407002536
http://linkinghub.elsevier.com/retrieve/ pii/S0013794407002536
http://dx.doi.org/10.1016/j.jcp.2010.11.041
http://fracanalysis.com
http://fracanalysis.com
http://dx.doi.org/10.1016/j.cma.2017.03.039
http://dx.doi.org/10.1016/j.cma.2017.03.039


169 APPENDIX L. BIBLIOGRAPHY

A. A. Griffith. The Phenomena of Rupture and Flow in Solids. Philosophi-
cal Transactions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 221(582-593):163–198, jan 1921. ISSN 1364-503X. doi:
10.1098/rsta.1921.0006. 12
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A. Salzman, N. Moës, and N. Chevaugeon. On use of the thick level set
method in 3d quasi-static crack simulation of quasi-brittle material. Interna-
tional Journal of Fracture, pages 1–29, 2016. ISSN 1573-2673. doi: 10.1007/
s10704-016-0132-8. URL http://dx.doi.org/10.1007/s10704-016-0132-8. 19,
27, 75
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Titre : Développement de l’approche « Thick Level Set » dans un cadre 3D parallèle 

Mots clés : TLS, fracture, parallèle, two-scale, adaptation de maillage 

Résumé : La simulation en quasi statique de fissures 
complexes en 3D avec des matériaux quasi-fragiles 
est encore difficile à aborder de nos jours. De 
nombreuses méthodes et modèles proposent des 
solutions partielles à ce problème. Le modèle Thick 
Level Set (TLS), utilisant une approche combinant la 
mécanique de l'endommagement et la représentation 
explicite des fissures, permet, dans la simulation, 
l’initiation de fissures et leurs croissances complexes 
(coalescence ou ramification en suivant des chemins 
sinueux). Dans cette thèse, nous montrons que la 
mise en œuvre de ce modèle dans un contexte 3D 
parallèle fournit un outil précis, polyvalent et avec un 
bon potentiel d'adaptabilité au parallélisme. 
En ce qui concerne la précision, un nouvel outil 
appelé « algorithme de double coupe », laisse passer 
une zone complètement endommagée dans un 
élément de maillage sans condition de taille. Cet outil  
a amélioré la mise en œuvre existante de la TLS et 
apporte également un moyen d'optimiser la 
discrétisation en grossissant le maillage dans le 
sillage des fronts de fissure.  Cette adaptation réduit 

la taille du problème mécanique discrétisé et, par 
conséquent, les efforts de résolution du  système 
linéaire algébrique associé.  
 En ce qui concerne l'adaptabilité au parallélisme, le 
goulot d'étranglement est le temps de résolution du 
système algébrique et la consommation de mémoire 
associée. La stratégie développée dans cette thèse, 
pour la résolution parallèle de ces systèmes, 
commence par une approche de base.  Ensuite, pour 
améliorer l'adaptabilité au parallélisme, des 
méthodes liées à la décomposition de domaine et au 
multi-échelle sont investiguées. Le reste des tâches 
de résolution de la TLS sont, quant à elles, 
partiellement parallélisées. La principale 
préoccupation est d'obtenir un outil qui sera 
globalement plus rapide ou capable de traiter des 
problèmes plus importants, si on lui fournit plus 
d'unités de traitement.  
Enfin, certains cas  tests illustrent les résultats 
obtenus avec une implémentation 3D parallèle. 
 

 

Title : Thick Level Set model implementation in 3D parallel context 

Keywords : TLS, fracture, parallel, two-scale, mesh adaptation 

Abstract :    
A complex 3D fracture simulation of  quasi-brittle 
material in quasi-static is still hard to tackle 
nowadays. Many methods and models propose 
partial solutions to this problem. The Thick Level 
Set (TLS) model, which uses an approach mixing 
damage mechanics and explicit crack 
representation, provides an easy fracture initiation, 
a complex crack growing capability (coalescing or 
branching) and an accurate tortuous fracture path. 
In this thesis we will demonstrate that the 
implementation of this model in a parallel 3D 
context provides an accurate and versatile tool that 
potentially scales. 
Regarding the accuracy, a novel tool called the 
“double cut algorithm” has enhanced the existing 
TLS implementation  by letting pass a straight fully 
damaged zone in a mesh element without 
conditions on its size. This tool also brings a way to 
optimize the discretization by coarsening the mesh 
in a crack front wake. 

 

 
 

 
This adaptation reduces the size of the discrete 
mechanical problem and therefore the effort for the 
linear algebra resolution. 
As far as  the scaling is concerned, the bottleneck is 
the linear algebra resolution time and its associated 
memory consumption. The parallel solving strategy 
developed in this thesis to tackle this problem starts 
first with a basic approach. Then by switching to a 
method close to domain decomposition and later to 
a two-scale method, it permits increasing scalability. 
The other TLS tasks are also partially parallelized. 
The principal concern is to obtain a tool that either 
runs faster or can treat a more significant problem if 
we provide much more computational units. 
Finally, some test cases illustrate the obtained 
results with a parallel 3D implementation. 
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