
HAL Id: tel-02976702
https://theses.hal.science/tel-02976702

Submitted on 23 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sensitivity analysis with dependent random variables :
Estimation of the Shapley effects for unknown input

distribution and linear Gaussian models
Baptiste Broto

To cite this version:
Baptiste Broto. Sensitivity analysis with dependent random variables : Estimation of the Shapley
effects for unknown input distribution and linear Gaussian models. Statistics [math.ST]. Université
Paris-Saclay, 2020. English. �NNT : 2020UPASS119�. �tel-02976702�

https://theses.hal.science/tel-02976702
https://hal.archives-ouvertes.fr






Remerciements

Je remercie tout d’abord chaleureusement mes trois encadrants : Marine Depecker,
Jean-Marc Martinez et François Bachoc. Un grand merci à Marine pour avoir
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fut annulé à cause du Covid-19). Merci à Bertrand Iooss pour sa relecture du
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Je pense tout d’abord aux membres de SID qui m’ont permis de travailler dans une
ambiance si chaleureuse, Camille, Edwin, Etienne, Hung, Nono, Oudom, Sandra,
Shivani, Vincent... Je n’oublie pas les autres doctorants que j’ai cotoyé pendant
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Introduction

Introduction to sensitivity analysis

Mathematical models are useful tools to the understanding of complex phenom-
ena. A large number of data-driven models have been proposed, ranging from
linear models to more and more complicated models, such as random forests and
neural networks. The increase of the size of training data and the performance
of computers enable the handling of black-box models, that require the tuning of
many parameters. These kinds of models are widely used in modern engineering
and their precision is confirmed in data science challenges. Since important deci-
sions are increasingly delegated to mathematical models (such as driving different
means of transport), the question of the reliability of these models arises naturally
[RSG16]. It turns out that, the more a model is complex, the less it is inherently
easy to interpret, and so to trust.

linear regressions
decision trees

k-nearest neighbours
random forests

support vector machines
neural networks

Accuracy

In
te
rp
re
ta
b
il
it
y

To increase the reliability of mathematical models, [Sam41] suggests: ”In or-
der for the analysis to be useful it must provide information concerning the way
in which our equilibrium quantities will change as a result of changes in the pa-
rameters”. Andrea Saltelli defines in [Sal02b] sensitivity analysis as ” the study
of how uncertainty in the output of a model (numerical or otherwise) can be ap-
portioned to different sources of uncertainty in the model input”. A sensitivity
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Introduction

analysis enables to distinguish the input variables that have a large impact on the
output uncertainty, and the less impacting input variables.

Sensitivity analysis is also an important tool for the use of computer codes, that
simulate a physical quantity of interest. Since the inputs of the computer codes
are uncertain physical quantities, sensitivity analysis explain how the uncertainties
of the inputs impact the output of the computer code. This knowledge improves
the understanding of the physical phenomenon and helps to prioritize efforts on
the accuracy of the inputs.

Sensitivity analysis methods can be divided into two groups: local and global.

Local methods consist in the study of the impact of small variations of the
inputs around one (of several) nominal value(s) of interest. They are the first
sensitivity analysis methods suggested in the literature and rely on the partial
derivatives of the model [Har90, Hel93]. Different methods are discussed in [BP16].
However, local sensitivity analysis is no longer relevant for non linear models when
considering ”large variations” of the inputs, or when the model input is uncertain.

To overcome the disadvantages of the local approach, global sensitivity analysis
considers the variation of the inputs on their whole set of definition (see [IL15] for
a review of this topic). Global sensitivity analysis improves the interpretability of
the model in the following ways:

• We know if the variation of a specific input variable can lead to an important
variation of the output or not.

• The non-influential input variables can be fixed to a nominal value to simplify
the model.

We can gather global sensitivity methods in two classes: the screening methods
and the probabilistic sensitivity methods.

Screening methods use a design of experiments to give a qualitative importance
of the inputs. These techniques are particularly used for models with a large
number of inputs since they are computationally very cheap. The first aim is
to identify the least important inputs to reduce the dimension. For example, in
Morris screening method [Mor91], we compute the mean of the squared variations
of the model changing only one parameter at a time (this method is also called
”One-at-a-time”).

Finally, in probabilistic sensitivity analysis, the inputs are assumed to be ran-
dom variables. For example, the input distribution can model the uncertainty on
the inputs. That makes the output a random variable, with some output distribu-
tion representing its uncertainty. Hence, the variations of the inputs are not chosen
arbitrarily as in local sensitivity analysis, but are defined by the input distribution.

2
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The probabilistic sensitivity analysis methods are more accurate, and most of
them aim to associate to each input variable (or each group of input variables) an
index that quantify its impact on the output. These indices are called ”sensitivity
indices”.

The first suggested sensitivity indices are defined for linear regression [SM90,
Hel93]. Then, several researchers [Sob93, IH90, Wag95] defined similar sensitivity
indices almost simultaneously but in different fields. These sensitivity indices are
now called ”Sobol indices”. They are based on the analysis of variance. Although
they remain very popular, other sensitivity indices have been proposed in the
literature since then (see for example [PBS13, Bor07, Cha13, FKR16, LSA+15]),
and we can find in [BHP16] a general framework for defining sensitivity indices
based on variances, on densities, or on distributions. These sensitivity indices
are very useful in many applications, for example in physics or in the industry.
However, many of them suffer from a lack of interpretation when the input variables
are dependent.

Recently, Owen defined new sensitivity indices in [Owe14] called ”Shapley ef-
fects” that have beneficial properties and that are easy to interpret, even in the
dependent case. The main advantages of these sensitivity indices compared to the
Sobol indices (and their variants) are: they remain positive, their sum is equal to
one and there is exactly one index for each input (there are no indices for groups
of variables). The Shapley effects are based on the notion of ”Shapley value”, that
originates from game theory in [Sha53]. The Shapley value has been widely studied
([CBSV16], [FWJ08]) and applied in different fields (see for example [MvLG+08]
or [HI03]). However, only few articles focus on the Shapley effects in sensitivity
analysis (see [Owe14, SNS16, OP17, IP19, BEDC19]). Song et al. suggested an
algorithm to estimate the Shapley effects in [SNS16] that is implemented in the R
package ”sensitivity”. However, this algorithm requires to be able to generate
with the conditional distribution of the input vector.

In this context, the estimation of the Shapley effects has not been enough
developed to enable a broad framework of application in the industry. The aim
this thesis is to expand this estimation to make the Shapley effects easier to use
in the industry and in particular for the ”Commissariat à l’énergie atomique et
aux énergies alternatives” (CEA). The example of data from CEA in the field of
nuclear safety will be treated.

Contributions of the thesis

For real data, the independence assumption of the input variables is not realistic,
and so we focus on the computation of the Shapley effects. The contribution is

3
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twofold.

First, we focus in the general setting. We suggest new estimators of the Shapley
effects in the same framework as the one suggested in [SNS16] with lower variances.
Then we extend these estimators to the case where we only observe an i.i.d. sample
on the inputs and we obtain rates of convergence for them.

Secondly, we focus on the Shapley effects in the linear Gaussian framework.
We suggest an algorithm to compute them when the parameters (input covariance
matrix and regression coefficients) are known. Then, we improve the efficiency of
the algorithm in high dimension when the covariance matrix is block-diagonal. We
give another algorithm to estimate the Shapley effects when the parameters are
unknown, particularly in high dimension. We also give guaranties when using the
Gaussian linear framework while the model is not linear but the covariance matrix
converges to 0.

During the PhD, we also worked on a different topic, namely on kernels defined
on the symmetric group. Illustrated by numerical applications, our work on kernels
on the symmetric group and on partial ranking enables to handle complex data.

We provide families of kernels and we prove their positive definiteness to use
them as covariance functions for Gaussian processes. Based on the works of
[Bac14], we prove asymptotic results on the maximum likelihood estimator. We
also implemented our kernels to solve optimization problems defined on the sym-
metric group using the expected improvement strategy. We provide an application
to the search of the best Latin Hypercube Design.

We also extend our kernels on partial ranking, with numerical simplifications in
some cases. We compare these kernels with a state-of-the-art algorithm on numer-
ical applications, which reveals that our suggested kernels seem to be significantly
more efficient.

Organization of the manuscript

The manuscript is organized into three parts.

Part I, contains Chapter 1 on the state-of-the-art of sensitivity analysis and
the Shapley effects. First, we define the Sobol indices for independent inputs and
we give some estimators. We then give a generalisation of the Sobol indices when
the inputs are dependent with a list of other sensitivity indices. Finally, we give
the definition of the Shapley effects and the already existing algorithm to estimate
them.

4
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Part II, containing Chapter 2, is dedicated to the improvement of the estima-
tion of the Shapley effects in the general case. It is based on [BBD20]. We reduce
the variance of the estimates of the Shapley effects and extend them when we only
observe an i.i.d. sample of the inputs.

Part III focuses on the Shapley effects in the linear Gaussian framework.
In Chapter 3, we provide an algorithm to compute the Shapley effects using

the covariance matrix and the vector of the linear model. It comes from a part of
[BBDM19].

Chapter 4 highlights the problem of computing the Shapley effects in the Gaus-
sian linear framework when the number of input variables is large. We give the-
oretical results on sensitivity indices in a general setting, when the inputs form
independent groups of variables. Then we derive an algorithm that computes the
Shapley effects in the high-dimensional Gaussian linear framework with a block-
diagonal covariance matrix. Chapter 4 is based on the rest of [BBDM19].

In Chapter 5, from [BBCM20], we estimate the Shapley effects in the Gaussian
linear setting with a block-diagonal covariance matrix when the parameters are
unknown, with a focus on the high-dimensional framework.

In Chapter 6, we aim to approximate a general setting by a Gaussian linear
model, when the uncertainties are small, to estimate the Shapley effects using our
previous algorithm. Firstly, we focus on the linear approximation of the function
and the corresponding Shapley effects, under the Gaussian assumption. Secondly,
we study the asymptotic behaviour of the empirical mean of the non Gaussian
inputs to approximate it by a Gaussian vector with a covariance matrix that goes
to 0. This chapter is based on [BBDM20].

The proofs are given in the appendix. Chapter V in the appendix contains our
independent work from [BBGL20] on kernels defined on the symmetric group.
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Chapter 1:
Sensitivity analysis and Shapley effects

Chapter 2:
General estimation of the Shapley effects

Chapter 3:
The Shapley effects in the

linear Gaussian framework

Chapter 4:
Shapley effects and Sobol
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Chapter 1

Sensitivity analysis and Shapley
effects

Let (Ω,A,P) be a probability space, X =
∏p

i=1 Xi be endowed by the product
σ-algebra E = ⊗p

i=1Ei and X be a random variable from Ω to X with distribution
PX .
If u⊂[1 : p] = {1, 2, · · · , p}, we define xu := (xi)i∈u, Xu :=

∏
i∈uXi and |u| the

cardinality of u.

To simplify the notation, let L2 := L2(X ,R,PX) be the Hilbert space of the
set of squared integrable functions. For orthogonal linear subspaces V1 and V2, we
will write V1 ⊥ V2. If V is a subspace of L2, let V ⊥ be the orthogonal complement

of V . We will use the symbol ”
⊕

” for the direct sum in L2 and ”
⊥⊕
” for the

orthogonal direct sum in L2.

Finally, let f ∈ L2 and Y = f(X). We call X the ”input variables” and Y the
”output variable”. In practice, the random vector X correspond to the uncertain
inputs, the function f to the model and the random variable Y to the uncertain
output. This setting will be valid throughout the entire manuscript (except for
Chapter V in the appendix).

The aim of the sensitivity indices is to quantify the impact of a variable Xi (or
of a group of variables Xu) on the output variable Y .

A Sobol indices for independent inputs

In Section A, we assume that the random variables (Xi)i∈[1:p] are independent.

9
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A.1 Definition of the Sobol indices

When the input variables are independent, the variance decomposition into Sobol
indices comes from the unique writing of the function f into f(x) =

∑
u⊂[1:p] fu(xu)

where the fu are not correlated and satisfy further technical conditions. A way to
describe this decomposition is defining the subspaces (H0

u)u⊂[1:p] of L
2 on which we

will project the function f onto. Here, we begin to define the subspaces Hu (which
are easy to interpret) and the related closed Sobol indices. Then we deduce the
more complicated subspaces H0

u of the Hoeffding decomposition and the related
Sobol indices.

A.1.i) Closed Sobol indices

If u is a subset of [1 : p], the first way to assess the impact of the group of variable
Xu on f(X) is to project find the closest function of Xu from f(X). Let σ(Xu) be
the σ-algebra generated by Xu. If a random variable Z is measurable with respect
to σ(Xu), we will write Z ∈ σ(Xu).

Definition 1. For all u ⊂ [1 : p], let Hu be the closed linear subset of L2 defined
by:

Hu := {hu ∈ L2 | hu(X) ∈ σ(Xu)}.

The space Hu is the set of function hu such that hu(X) is a function of Xu.
Hence, the projection of f on Hu gives the best approximation (in L2) of f which is
a function a Xu. This projection is x 7−→ E(Y |Xu = xu). Now, taking the variance
and dividing by Var(Y ), we obtain some sensitivity index called the closed Sobol
index (see [IP19]).

Definition 2 (Closed Sobol indices). For all u ⊂ [1 : p], the quantity Sclu , defined
by

Sclu :=
Var(E(Y |Xu))

Var(Y )
(1.1)

is called the ”closed Sobol index” of the group of variables Xu, where we write, by
convention E(Y |X∅) = E(Y ).

We remark the Scl∅ = 0, Scl[1:p] = 1 and, for all u ⊂ [1 : p], Sclu ∈ [0, 1]. The Sobol

index Sclu can easily be interpreted as the part of the impact of Xu on the variance
of Y . However, the sum over u ⊂ [1 : p] of the closed Sobol indices is not equal to
1 in general, which is an issue for interpretation. In order to define indices which
sum is one, we now introduce new linear subspaces of L2 on which we will project
onto.

10
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A.1.ii) Hoeffding decomposition

Definition 3. Let H0
∅ be the space of functions that are constant PX almost ev-

erywhere.
For all u ⊂ [1 : p], u 6= ∅, we write:

H0
u := {hu ∈ Hu, ∀v  u, E(hu(Xu)|Xv) = 0}. (1.2)

Abusing notation, for hu ∈ Hu, we write indifferently hu(Xu) or hu(X).

These linear subspace have interesting immediate properties.

Lemma 1. For all u ⊂ [1 : p], the linear subspaces Hu and H0
u are closed in L2,

and

∀u 6= v, H0
u ⊥ H0

v . (1.3)

The closeness of H0
u comes from the fact that it is the kernel of a continuous

linear map. Thus, we can define the orthogonal projection PH0
u
on H0

u. The next
proposition now gives an explicit formula of this projection, and shows that L2 is
actually the orthogonal direct sum of the linear subspaces H0

u, for u ⊂ [1 : p].

Proposition 1. For all g ∈ L2 and for all u ⊂ [1 : p],

PH0
u
(g)(X) =

∑

v⊂u
(−1)|u|−|v|E(g(X)|Xv). (1.4)

Moreover,

∀u ⊂ [1 : p], Hu =
⊥⊕

v⊂u
H0
v . (1.5)

In particular,

L2 =
⊥⊕

u⊂[1:p]

H0
u. (1.6)

We can find the proof of Proposition 1 in [Vaa98]. This proposition ensures
that there exists an unique decomposition f =

∑
u⊂[1:p] fu, called ”the Hoeffding

decomposition of f” such that fu ∈ H0
u for all u ⊂ [1 : p], where

fu(X) =
∑

v⊂u
(−1)|u|−|v|E(f(X)|Xv). (1.7)

11
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A.1.iii) Sobol indices

Since the functions (fu)u⊂[1:p] of the Hoeffding decomposition are orthogonal, we
have

Var(f(X)) =
∑

u⊂[1:p]

Var(fu(Xu)).

Hence, the decomposition of the function f matches with a decomposition of the
variance of f(X). Now, dividing the previous equation by Var(Y ), we obtain

∑

u⊂[1:p]

Var(fu(Xu))

Var(Y )
= 1.

So, the quantity Var(fu(Xu))/Var(Y ) can be interpreted as the part of the variance
of f(X) from the interaction of the group of variable Xu.

Definition 4 (Sobol indices, independent case). For all u ⊂ [1 : p], the quantity
Su defined by

Su :=
Var(fu(Xu))

Var(Y )

is called the ”Sobol index” of the group of variables Xu.

Since the sum of the Sobol indices is equal to one and they are in [0, 1], we
interpret them as the following:

• if u = {i}, Si := S{i} quantifies the impact of the input variable Xi;

• if u = {i1, · · · , ik}, Su quantifies the impact of the interaction between the
input variables Xi1 , · · · , Xik .

A.1.iv) Comparison of the closed Sobol indices with the Sobol indices

By Equation (1.5), we can easily write the closed Sobol indices using Sobol indices.

Proposition 2. For all u ⊂ [1 : p], we have

Sclu =
∑

v⊂u
Sv.

Thus,

Su = Sclu −
∑

v u

Sv.

12
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Proposition 2 strengthens the idea that the closed Sobol index Sclu represents
the whole impact of the group of variable Xu, and that the Sobol index Su only
represents the impact of the interactions between the variables (Xi)i∈u that are
not expressed by subsets of variables (Xi)i∈v for v ( u.

Example 1. If X1, · · · , Xp are zero-mean independent variables with variance 1,
and if

f(X) =
∑

u⊂[1:p]

au
∏

i∈u
Xi,

then, for all ∅  u ⊂ [1 : p]

Su =
a2u∑

∅ v⊂[1:p]

a2v
, Sclu =

∑
∅ v⊂u

a2v
∑

∅ v⊂[1:p]

a2v
.

Conversely, we can write the Sobol indices with the closed Sobol indices (sim-
ilarly than the projection of f on the (H0

u)u⊂[1:p] with the projection of f on the
(Hu)u⊂[1:p], see Equation (1.7)).

Proposition 3. For all u ⊂ [1 : p], we have

Su =
∑

v⊂u
(−1)|u|−|v|Sclu . (1.8)

A.1.v) First order Sobol indices and total Sobol indices

When u = {i}, Si = Scli is called the i-th Sobol index of order one. It measures
the influence of Xi on Y without its interactions with other variables. In some
cases, the i-th Sobol index is not sufficient to assess the impact of Xi on Y (see
Section B.1.iii)). In order to measure the impact of Xi with all its interactions,
[HS96] introduced the total Sobol indices, defined, for all i ∈ [1 : p] by:

STi :=
∑

u∈[1:p],
i∈u

Su,

and one can easily see that

STi = 1− Scl−i =
E(Var(Y |X−i))

Var(Y )
, (1.9)

where we write −i = [1 : p] \ {i}.

13
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Remark 1. The sum of the Sobol indices of order one can be strictly less than 1,
since we do not take into account all the Sobol indices of higher order. The sum
of the total Sobol indices can be strictly larger than 1, since the Sobol indices of
higher order are counted several times. Indeed,

p∑

i=1

STi =

p∑

i=1

∑

u∈[1:p],
i∈u

Su =
∑

u⊂[1:p]

|u|Su ≥
∑

u⊂[1:p]

Su = 1. (1.10)

A.2 Estimation of the Sobol indices

The estimation of the sensitivity indices is an important subject in global sensi-
tivity analysis. The estimation of the Sobol indices has been studied in different
frameworks:

• We only observe a sample (X(n), f(X(n)))n∈[1:N ];

• We observe a sample (X(n))n∈[1:N ] and we have the computer code of f (that
is to say, we are able to compute f(x) for any input x);

• We know the distributions of the inputs and we have the computer code of
f .

Moreover, some estimators require a large number of evaluations of f and so a
computationally cheap computer code of f , whereas some researches focus on the
estimation with a costly computer code of f .

A.2.i) Pick-and-Freeze estimators of the Sobol indices

The quantities the most difficult to estimate in the Sobol indices and the closed
Sobol indices are the Var(E(Y |Xu)), for u ⊂ [1 : p], and in particular E(E(Y |Xu)

2).
In general, the estimation of the function xu 7−→ E(Y |Xu = xu) is a difficult non-
parametric problem. Hence, to estimate the quantity E(E(Y |Xu)

2) easily, the
”Pick-and-Freeze” estimators have been introduced in [HS96]. Since then, they
have been widely used and studied by mathematicians. The idea of the Pick-and-
Freeze estimator is based on the following proposition, that arises from Fubini
Theorem. For x(1), x(2) ∈ X and for ∅  u  [1 : p], we let (x

(1)
u , x

(2)
−u) be the

element v ∈ X such that vu = x
(1)
u and v−u = x

(2)
−u, and we let f(x

(1)
u , x

(2)
−u) := f(v).

We use this notation throughout the manuscript.

Proposition 4 ([HS96], [JKLR+14]). For ∅  u  [1 : p], let X and X ′ be
independent with distribution PX . Let Xu := (Xu, X

′
−u). Then :

E(E(Y |Xu)
2) = E(f(X)f(Xu)). (1.11)

14
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This proposition enables us to write a double expectation as a single expec-
tation, that we can estimation by Monte-Carlo. If we observe an i.i.d. sample
(X(n))n∈[1:2N ] of X, we can create an i.i.d. sample (X(n), X

(n)
u , X

(n+N)
−u )n∈[1:N ] of

(X,Xu). Then, we can estimate E(f(X)f(Xu)) by

1

N

N∑

n=1

f(X(n))f(X(n)
u , X

(n+N)
−u )

a.s.−→
N→+∞

E(f(X)f(Xu)).

Based on this idea, many different versions of Pick-and-Freeze estimators have
been suggested. We can find a list of such estimators in the R package sensitivity
[IAP20] and in [BBD+16]. For example, in [BBD+16], Martinez estimator enables
to write the Sobol index Sclu as the correlation coefficient ρ(f(X), f(Xu)) and to
obtain asymptotic confidence intervals using Fisher transformation. There also ex-
ist many theoretical results on concentration inequalities, asymptotic distribution,
and efficiency of Pick-and-Freeze estimators (see for example [GJK+16, GJKL14,
JKLR+14]).

To estimate a Sobol index Su, we have to estimate the 2|u| − 1 closed Sobol
indices (Sclv )∅ v u and to use Equation (1.8). Remark that the estimation of the
total Sobol index STi only requires the estimation of Scl−i, using Equation (1.9).

Remark 2. Notice that the Pick-and-Freeze estimators require to have the com-
puter of code of f . If the computer code of f is not available, or if it is too costly,
one can use a metamodel of f (for example using Gaussian process [SWNW03]).
Then, the estimation error of the Pick-and-Freeze estimators comes from the meta-
model error and the sampling error, as it is detailed in [JNP14].

To conclude, Pick-and-Freeze estimators are consistent estimators of the Sobol
indices and easy to compute. Many versions are already implemented and their
efficiency have been proven theoretically. Moreover, they can be used in any
general framework and they only require a sample of X and the computer code of
f (or a metamodel).

A.2.ii) Other estimators of the Sobol indices

When the input distribution is known, one can estimate the Sobol indices by dif-
ferent estimators that can be more efficient than the Pick-and-Freeze estimators.
Many estimators use an orthonormal basis of L2 that matches with the subspaces
H0
u defined in Section A.1.ii). Then, it is easy to write the Hoeffding decomposition

of f (and thus the Sobol indices) with the coordinates of f into this orthonormal
basis. To estimate the Sobol indices, the sums over the infinite orthonormal basis
are remplaced by sums over the first elements of the orthonormal basis, and each
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coordinate of f is estimated.

The polynomial chaos estimators (see [BS10b, CLMM09]) are based on a poly-
nomial orthonormal basis of L2. These estimators are implemented in the Scilab
package NISP [BM10]. For all i ∈∈ [1 : p], we define (ψi)n∈N a polynomial or-
thonormal basis of L2(R,R,PXi

). Hence, a polynomial orthonormal basis of L2 is
given by (ψn1,··· ,np)n1,··· ,np∈Np , where ψn1,··· ,np(x) := ψ1

n1
(x1) · · ·ψpnp

(xp). From this
orthonormal basis, one can easily extract an orthonormal basis of Hu and thus of
H0
u.

The FAST estimators [CFS+73] are based of the Fourier orthonormal basis
of L2. They are implemented in the R package sensitivity. To estimate the
coordinates of f in the Fourier Basis, the multidimensional integrals are estimated
by one-dimensional integrals using the function x∗ : R −→ [−1, 1]p defined for all
i ∈ [1 : p] by

x∗i (s) = Gi(sin(ωis)),

where (Gi)i∈[1:p] are particular functions and (ωi)i∈[1:p] is a set of incommensurate
frequencies (see [CFS+73, STC99] for details).

There exists a large number of other estimators of the Sobol indices and many
of them have similarities with the FAST algorithm. One can cite for example the
extended FAST [STC99], random balance designs [TGM06], the works of [Sal02a],
of [TGKM07] and of [Pli10]. Note that the estimator suggested is [Pli10] only
requires a sample of the inputs-outputs.

B Sensitivity indices for dependent inputs

B.1 Sobol indices for dependent inputs

B.1.i) Closed Sobol indices and Sobol indices

When the input variables are dependent, the Hoeffding decomposition of f does
not hold. Hence, we can not define the Sobol indices by Definition 4 anymore.
However, Definition 2 of the closed Sobol indices does not require the independence
of the inputs. Moreover, we have seen in Proposition 3 how to compute the Sobol
indices from the closed Sobol indices in the independent case. Thus, we can extend
the definition of the Sobol indices in the dependent case as the following:

Definition 5 (Sobol indices, dependent case). For all u ⊂ [1 : p], let

Su =
∑

v⊂u
(−1)|u|−|v|Sclu , (1.12)
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be the Sobol index of Xu.

The advantage of the Sobol indices compared to the closed Sobol indices is
that their sum is equal to one (because it is equal to Scl[1:p]). However, as the
Hoeffding decomposition does not hold, the Sobol indices Su are no longer equal
to a ratio of variances, that guarantees the non-negativity of the Sobol indices in
the independent case. Thus, when |u| ≥ 2, we can get negative Sobol indices.

Example 2. Let X1 and X2 be standard normal random variables with correlation
ρ > 0, and let Y = X1 +X2. We have Var(Y ) = 2(1 + ρ). Then,

E(Y |X1) = X1 + ρX1,

and

S1 = S2 =
(1 + ρ)2

2(1 + ρ)
=

1 + ρ

2
.

Now,
S{1,2} = 1− S1 − S2 = −ρ < 0.

To conclude, when the inputs are dependent, the closed Sobol indices are still
available but their sum is not equal to one (as in the independent case). We also
can extend the Sobol indices but they are no longer non-negative for order larger
than 2. In both cases, there are thus interpretation issues with these indices.

B.1.ii) Estimation

When the inputs are dependent, Proposition 4 does not hold and the Pick-and-
Freeze estimators given in Section A.2.i) do not converge to the Sobol indices.
Hence, different articles focus on the estimation of Sobol indices with dependent
inputs.

[GDA16] suggests estimators of the Sobol indices for dependent inputs based
on the Pick-and-Freeze estimators. The idea is to transform the inputs variables
into two independent groups of variables to use Proposition 4. However, this input
transformation requires the conditional cumulative functions of the inputs (which
is rarely available), and [GDA16] does not provide convergence results.

The authors of [VG13] suggest a consistent estimator, with rates of conver-
gence, of the first-order Sobol indices for continuous inputs variables, when we
only observe an i.i.d. sample and when the input variables can be dependent.

The idea is to write Var(E(Y |Xi)) as a function T (fXi,Y ) of the density fXi,Y

of (Xi, Y ). Then, they estimate fXi,Y by f̂Xi,Y (for example, in their numerical

17



CHAPTER 1. SENSITIVITY ANALYSIS AND SHAPLEY EFFECTS

application, they use a kernel density estimator). Finally, using a Taylor expansion
of

F : u −→ T
(
ufXi,Y + (1− u)f̂Xi,Y

)

they compute the bias of T (f̂Xi,Y ). This bias is decomposed into two parts: a lin-

ear function of the density (which is estimated replacing fXi,Y by f̂Xi,Y and using
a Monte-Carlo estimation) and a more complicated term, denoted θ. They give an
efficient estimator of θ to deduce an efficient estimator of T (fXi,Y ) = Var(E(Y |Xi)).
However, one of the limitation of the method suggested in [VG13] is that the es-
timator requires an estimator of the density fXi,Y .

B.1.iii) Limits of the Sobol indices

When the input variables are dependent, the Sobol indices can be defined as in
Section B.1.i). However, the interpretation of high-order indices is difficult since
they can take negative values.

A first idea is to focus only on the first-order Sobol indices, which remain in
[0, 1]. However, these first-order indices do not always allow to know the influence
of the inputs. For example, in many cases, some of these indices Si are equal to
0 even if the output Y depends on the input Xi. [PBS13] gives a setting when
first-order Sobol indices are equal to 0.

Proposition 5 ([PBS13]). If there exists i0 ∈ [1 : p], I ⊂ [1 : p], J ⊂ [1 : p] such
that

1. [1 : p] = I ⊔ J ⊔ {i0},

2. f(x) = a(xI)g(xi0) + b(xJ),

3. Xi0, XI and XJ are independent,

4. E(g(Xi0)) = 0,

then ∀i ∈ I, Si = 0.

This proposition generalizes the case of the Ishigami model, defined by

f(x1, x2, x3) = sin(x1) + a sin2(x2) + b x43 sin(x1) = (1 + b x43) sin(x1) + a sin2(x2),

with the inputs variables (Xi)i∈[1:3] are i.i.d. with distribution U([−π, π]). In this
example, we obtain S3 = 0 whereas [PBS13] shows that the probability density
function of Y is different from the probability density function of Y conditionally
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to X3 = x3. Hence, the first order Sobol index S3 does not give enough information
on the impact of X3 on Y , and one could use the total Sobol index ST3 which is
strictly positive.

Another way to deal with dependent inputs is to group together the inputs
variables into independent groups, and to consider each group as an input variable
[JLD06]. However, this method only provides information of the groups of vari-
ables, without detail on the impact of each variable.

Hence, with dependent inputs, one needs to define new sensitivity indices, as
it will be done in the rest of Section B.

B.2 Generalized Sobol indices

B.2.i) Definition of the generalized Sobol indices

The generalized Sobol indices are introduced in [Cha13] and are based on the works
of [Sto92]. A generalized Hoeffding decomposition is suggested, from which one
can deduce the generalized Sobol indices.

For all i ∈ [1 : p], let µi be a σ-finite measure on (Xi, Ei) and we define
µ =

⊗p
i=1 µi. Assume that PX is absolutely continuous with respect to µ and let

pX be its density. If u ⊂ [1 : p], we define µu =
⊗

i∈u µi and pXu be the marginal
density of Xu with respect to µu. Moreover, we make the following assumption:

Assumption 1. We have

∃M ∈]0, 1[, ∀u ⊂ [1 : p], pX ≥MpXupX−u . (1.13)

Remark 3. In order that Assumption 1 holds, it suffices that ∃M1 > 0, ∃M2 > 0
such that M1 ≤ pX ≤M2.

Let us now define the linear subspaces on which we will project onto. For all
u ⊂ [1 : p], let:

H0
u := {hu ∈ Hu, 〈hu, hv〉 = 0, ∀v  u, ∀hv ∈ Hv} = Hu ∩

⋂

v u

H⊥
v (1.14)

Remark 4. These subspaces are closed. Indeed, H0
u is closed as the intersection

of Hu (which is closed) with an intersection of orthogonal complements.

Remark 5. The definition of H0
u defined in Equation (1.14) generalizes the defi-

nition given in Equation (1.2) for independent input variables.
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Remark 6. In [Cha13], the subspace H0
u is defined by Hu∩

⋂
v u(H

0
u)

⊥. However,
in order to prove Theorem 1, it seems that one needs to define H0

u by Equation
(1.14).

We now give the central theorem of [Cha13] to define the generalized Hoeffding
decomposition.

Theorem 1 ([Cha13]). Under Assumption 1, for all g ∈ L2, there exists an unique
decomposition

g =
∑

u⊂[1:p]

gu (1.15)

such that ∀u ⊂ [1 : p], gu ∈ H0
u. In other words:

L2 =
⊕

u⊂[1:p]

H0
u. (1.16)

As in the independent case, the linear space L2 is the direct sum of the linear
subspaces H0

u, for u ⊂ [1 : p]. However, these subspaces are no longer orthog-
onal with dependent inputs. Moreover, we do not have explicit formula for the
projection of a function g ∈ L2 onto these subspaces.

Definition 6. Let (fu)u⊂[1:p] be the component of f on H0
u defined by Equation

(1.14). That is,

f =
∑

u⊂[1:p]

fu,

where fu ∈ H0
u for all u ⊂ [1 : p]. In the particular case where the inputs are

independent, fu is defined by Equation (1.7).

Remark 7. Theorem 1 requires Assumption 1. However, it is mentioned in [OP17]
that this assumption is strong. Actually, if there exists u ⊂ [1 : p] and (Ru, R−u) ∈
Eu × E−u such that PX(Ru × R−u) = 0, PXu(Ru) > 0 and PX−u(R−u) > 0, then
Assumption 1 does not hold (for example, when X has the uniform distribution on
the triangle {(x1, x2) ∈ [0, 1]2, x1 ≤ x2} or the distribution pδ(1,0) + (1− p)δ(0,1)).

Remark 8. Using Theorem 1, we now can prove that, for all u ⊂ [1 : p], H0
u =

Hu ∩
⋂
v(u(H

0
v )

⊥, as defined by [Cha13].

As in the independent case, we derive the generalized Sobol indices from the
generalized Hoeffding decomposition.

Definition 7 ([Cha13]). Under Assumption 1, for all u ⊂ [1 : p], we define Sgenu ,
the generalized Sobol index of Xu, by:

Sgenu :=

Var(fu(Xu)) +
∑

v,s.t. u∩v/∈{u,v}
cov(fu(Xu), fv(Xv))

Var(Y )
(1.17)
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Definition 7 of the generalized Sobol indices Sgenu is another extension of the
Sobol indices for dependent inputs, different from the one given in Definition 5.
Indeed, when the inputs are independent, we have ∀u 6= v, cov(fu(Xu), fv(Xv)) =
0.

[Cha13] suggests to decompose the sensitivity index Sgenu into two terms:

• Var(fu(Xu))/Var(Y ) ∈ [0, 1] corresponding to the direct contribution of Xu

on the variance of Y ,

•
∑

v,s.t. u∩v/∈{u,v}
cov(fu(Xu), fv(Xv))/Var(Y ) corresponding to the contribution

of Y from the dependence of Xi on the other variables.

Even in the dependent case, we have the following proposition:

Proposition 6 ([Cha13]). We have:

∑

u⊂[1:p]

Sgenu = 1. (1.18)

Example 3. Let X1 and X2 be standard normal random variables with correlation
ρ > 0, and let Y = X1 + X2. We have Var(Y ) = 2(1 + ρ). Remark that f∅ =
0, f1(X1) = X1, f2(X2) = X2, f{1,2}(X) = 0 is the unique generalized Hoeffding
decomposition of f . Indeed, we have in this case, f∅ ∈ H0

∅ , fi ∈ H0
i , f

0
{1,2} ∈ H0

{1,2}
and f = f∅ + f1 + f2 + f{1,2}. Then, we have





Sg1 = Var(X1)+cov(X1,X2)
Var(Y )

= 1
2

Sg2 = Var(X2)+cov(X1,X2)
Var(Y )

= 1
2

Sg{1,2} = 0,

which seems more intuitive than the Sobol indices given in Section B.1.i) (see Ex-
ample 2).

Example 4. Now assume that Y = X1+X2 and X has the distribution N
(
0,

(
2 α
α 1

))
.

Then, for all α ∈]−
√
2,−1[, we have Var(X2) + cov(X1, X2) < 0 and S2 < 0.

To conclude, the generalized Sobol indices given in [Cha13] can have advantages
on the generalization of the Sobol indices for dependent inputs defined in Section
B.1.i), as it is highlighted in Example 3. However, the interpretation of these
Sobol indices is still problematic because they can take negative values, including
the first order generalized Sobol indices (see Example 4).
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B.2.ii) Estimation of the generalized Sobol indices

An estimator of the generalized Sobol indices has been suggested in [Cha13] and
[CCGP15].

The main problem to estimate these sensitivity indices comes from the fact
that they rely on an unknown decomposition (fu)u⊂[1:p] of f . Moreover, to sim-
plify computations, we assume that, for |u| > d, we have fu = 0, and we choose
for example d = 2 (but this can be generalized for any d ∈ [3 : p]). The idea is
to approximate the subspaces (H0

u)|u|≤2 by finite dimensional subspaces (H0,L
u )|u|≤2.

For all i ∈ [1 : p], let (ψil)l∈N an orthonormal basis of L2(Xi, Ei,PXi
) such that

ψi0(xi) = 1 for all xi ∈ Xi. Then for all (i, j) ∈ [1 : p], (φil ⊗ ψjl′)(l,l′)∈N2 is an
orthonormal basis of

L2(Xi, Ei,PXi
)⊗ L2(Xj, Ej,PXj

) = L2(Xi ×Xj, Ei ⊗ Ej,PXi
⊗ PXj

).

Moreover, thanks to Assumption 1, we have

L2(Xi ×Xj, Ei ⊗ Ej,PX{i,j}
) ⊂ L2(Xi ×Xj, Ei ⊗ Ej,PXi

⊗ PXj
).

Hence, any element of H{i,j} = L2(Ei×Ej, Ei⊗Ej,PX{i,j}
) is the limit (in L2(Xi×

Xj, Ei ⊗ Ej,PXi
⊗ PXj

)) of linear combinations of (φil ⊗ ψjl′)(l,l′)∈N2 .
Then, for a fixed L ∈ N∗, we approximate H{i,j} by HL

{i,j} the linear span of

(φil⊗ψjl′)(l,l′)∈[0,L]2 and Hi by H
L
i the linear span of (ψil)l∈[0:L], and we let HL

∅ = H∅
be the subset of the constant functions. Thanks to Assumption 1, (φil⊗ψjl′)(l,l′)∈[0,L]2
is linearly independent in L2(Xi ×Xj, Ei ⊗ Ej,PX{i,j}

).

Then, for all |u| ≤ 2, to approximate H0
u, we define

HL,0
u := {hu ∈ HL

u , ∀v  u, ∀hv ∈ H0,L
v , 〈hu, hv〉 = 0}.

We need to define an orthonormal basis (φul )l∈Lu of the finite spaces (HL,0
u )|u|≤2 in

L2(Xi × Xj, Ei ⊗ Ej,PX{i,j}
). For u = ∅, let L∅ = {0} and φ0

∅ = 1. For u = {i}, let
L{i} = [1 : L] and for all l ∈ [1 : L], let φil = ψil . For u = {i, j}, let Lu = [1 : L]2 and

remark that (ψili⊗ψ
j
lj
)(li,lj)∈[1:L]2 is orthonormal in L2(Xi×Xj, Ei⊗Ej,PXi

⊗PXj
) but

is not orthonormal in L2(Xi × Xj, Ei ⊗ Ej,PX{i,j}
). Thus, for any (li, lj) ∈ [1 : L]2,

we define

φi,jli,lj = ψili ⊗ ψjlj +
L∑

k=1

λik,li,ljψ
i
k +

L∑

k=1

λjk,li,ljψ
j
k + Cli,lj

for some constants (λik,li,lj , λ
j
k,li,lj

, Cli,lj)(li,lj ,k)∈[1:L]3 that make (φi,jli,lj)(li,lj)∈[0:L]2 or-

thonormal (see [Cha13] for more details on these constants). These constants
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are estimated using the empirical distribution of PX{i,j}
with an i.i.d. sample

(X(l))l∈[1:n1]. We obtain estimates (φ̂i,jli,lj)(li,lj)∈[0:L]2 of (φi,jli,lj)(li,lj)∈[0:L]2 . One can

find in [CCGP15] theoretical results on the rate of convergence of these estimates.
Then, if (X(l), Y (l))l∈[1:n2] is a new i.i.d. sample of (X, Y ), we estimate f by

f̂ :=
∑

|u|≤2

∑

lu∈Lu

β̂uluφ̂
u
lu,n1

,

with

(β̂ulu)u,lu = argmin
(βu

lu
)u,lu

1

n2

n2∑

l=1


Y (l) −

∑

|u|≤d

∑

lu∈Lu

βuluφ̂
u
lu,n1

(X(l))


+ λ pen

(
(βluu )u,lu

)
,

and where λJ
(
(βluu )u,lu

)
is a penalisation term. An algorithm has been suggested

in [CCGP15] to estimate these (β̂ulu)u,lu with theoretical results.

Now that the generalized Hoeffding decomposition is estimated, the gener-
alized Sobol indices are estimated by Monte-Carlo in the following way. Let
(X(l), Y (l))l∈[1:n3] be another i.i.d. sample of (X, Y ) and let

V̂ar(Y ) =
1

n3 − 1

n3∑

l=1

(Y (l) − Y )2,

V̂ar(fu(X)) =
1

n3 − 1

n3∑

l=1

f̂u(X
(l))2, 1 ≤ |u| ≤ 2,

ĉov(fu(Xu), fv(Xv)) =
1

n3 − 1

n3∑

l=1

f̂u(X
(l))f̂v(X

(l)), u 6= v, 1 ≤ |u|, |v| ≤ 2.

Then, we use Definition 7 to obtain estimates of the generalized Sobol indices.
These estimators of the generalized Sobol indices have been implemented in

[CCGP15] with numerical experiments.

B.3 The δ-indices

The δ-indices have been introduced in [Bor07] and quantify the impact of the
observation of an input variable on the density function of the output.

Definition 8 (First-order δ-indices [Bor07]). Assume that, for all i ⊂ [1 : p],
the distribution of Y conditionally to Xi exists and is absolutely continuous with
respect to the Lebesgue measure on R. Let

δi :=
1

2
E

(∫
|fY (y)− fY |Xi

(y)|dy
)

(1.19)
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be the ”moment independent sensitivity indicator of parameter Xi with respect to
output Y ”.

Remark that the coefficient 1/2 enables to bound δi by 1.

[PBS13] noticed that δi depends on the total variation distance between PY
and PY |Xi

. Thus, one can extend the definition of the δ-indices to the case where
the distribution of Y conditionally to Xi exists and to groups of variables Xu.

Definition 9 (δ-indices [PBS13]). Assume that, for all u ⊂ [1 : p], the distribution
of Y conditionally to Xu exists. Let B be the set of Borel sets of R. Let

δu := E

(
sup
B∈B

|PY (B)− PY |Xu(B)|
)

(1.20)

be the δ-index of the group of variable Xu.

As the closed Sobol indices, the δ-indices satisfy the following properties:

Properties 1 ([Bor07]). • ∀u, δu ∈ [0, 1];

• Y ⊥⊥Xu =⇒ δu = 0;

• u ⊂ v =⇒ δu ≤ δv;

• δ∅ = 0;

• δ[1:p] = 1.

The authors of [PBS13] studied these global sensitivity indices and proved that,
δu = 0 if, and only if, Y is independent on Xu.

Moreover, they give an estimator of the first order indices δi in the case where
the inputs are continuous.

First, they divide the input space Xi into a partition P = (Cm)m∈[1:M ]. Thus,
they can approximate the expectation on Xi in Equation (1.19) by

δPi =
1

2

M∑

m=1

∫

R

|fY (y)− fY |Xi∈Cm(y)|dy P(Xi ∈ Cm)

Secondly, they estimate fY and fY |Xi∈Cm with kernel-density estimators, with band-

widths α and αm respectively. They obtain an estimator δ̂i that only requires an
i.i.d. sample (X(l), Y (l))l∈[1:n] and they give theoretical guaranties.
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B.4 Full Sobol indices and independent Sobol indices

The idea of the full Sobol indices and independent Sobol indices, introduced in
[MTA15], is to transform the dependent input variables into independent input
variables and to compute the related Sobol indices. Moreover, [MTA15] suggests
different ways to transform the dependent input variables into independent input
variables. Each manner provides different Sobol indices, such as the full Sobol
indices and the independent Sobol indices.

Assume that X is a continuous random vector of Rp. For all i ∈ [1 : p], let U i be
the Rosenblatt transformation Ti [Ros52] ofX

i := (Xi, Xi+1, · · · , Xp, X1, · · · , Xi−1),
which is uniformly distributed on [0, 1]p. That is, U i

1 = FXi
1
(X i

1) = FXi
(Xi) and,

for all k ∈ [2 : p],
U i
k = FXi

k|Xi
[1:k−1]

(X i
k),

where F is the cumulative distribution function.
Now, let T−1 : [0, 1]p −→ Rp defined by (T−1

i (u))1 = F−1
Xi

1
(u1) and, for all

k ∈ [2 : p],
(T−1

i (u))k = F−1

Xi
k|Xi

[1:k−1]
=(T−1

i (u))[1:k−1]
(uk),

where F−1 is the generalized inverse distribution function. Remark that, almost
everywhere, X i = T−1(U i). Thus, there exists gi : [0, 1]

p −→ R such that, almost
everywhere, Y = gi(U

i). Now, Y is a function of the independent input variables
(U i

1, · · · , U i
p), and thus we can define its Sobol indices (Siu)u⊂[1:p] and the total

Sobol indices (ST ij )j∈[1:p] as in Section A.1.
If we want to assess the impact of the variable Xi with all its dependencies on

the other variables, we define the ”full Sobol indices” as:

Sfulli := Si1, ST fulli := ST i1.

See [MTA15, BEDC19] for an interpretation of Sfulli .

Remark 9. We have, Sfulli = Scli = Si where the definitions of S
cl
i and Si are given

in Section B.1.i). Indeed, using that U i
1 = FXi

(Xi) and then that Xi = F−1
Xi

(U i
1),

we have: Var(E(Y |Xi)) ≥ Var(E(Y |U i
1)) ≥ Var(E(Y |Xi)).

Now, if we want to asses the impact of the variable Xi without its dependencies
on the other variables, we define the ”independent Sobol indices” as:

Sindi := Si+1
p , ST indi := ST i+1

p .

See [BEDC19] for an estimation procedure of these indices.
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To conclude, [MTA15] defines two Sobol indices when the input variables are
dependent. The full Sobol indices take into account the dependencies on the other
variables. The independent Sobol indices do not take into account the depen-
dencies on the other variables. A particularity of these indices is that, for each
input variable, there exist 4 indices that measure different quantities. However,
these various choices of sensitivity indices can become a problem when we seek for
simplicity.

C Shapley effects

C.1 Definition and properties

C.1.i) Shapley value

The Shapley effects, which are suggested in [Owe14], are based on a concept derived
from game theory, called ”Shapley value” [Sha53]. The Shapley value enables to
asses, in a team game, the part of the winnings due to a particular player. This
concept will lead to define the part of the variance of Y due to a particular input
Xi. We consider a set of p player, numbered from 1 to p, playing a game. Let
c : P([1 : p]) −→ R be such that c(∅) = 0 and representing the score attained by
the subsets of players playing the game.

Definition 10 (Shapley value [Sha53]). The Shapley value of the player i with
respect to c is defined by

φi =
1

p

∑

u⊂−i

(
p− 1
|u|

)−1

(c(u ∪ {i})− c(u)), (1.21)

where −i := [1 : p] \ {i}.
The Shapley value φi is a convex combination of (c(u∪{i})− c(u))u⊂−i. Thus,

it represents some average over u ⊂ −i of the incremental score of including player
i in set u. The coefficients of the convex combination only depend on |u| and their
sum over the subsets of cardinal k is still equal to 1/p, for k = 0, · · · , p− 1.

At the end of [Sha53], Shapley noticed that the Shapley value can be written
in the following way.

Let Sp be the set of permutations of [1 : p]. An element σ ∈ Sp is a bijective
function from [1 : p] to [1 : p]. An element σ ∈ Sp represents an order of the p
players, where σ(i) is the rank of the player i. Then, let Ti(σ) be the set of players
preceding i in the order σ, that is

Ti(σ) := {j ∈ [1 : p] | σ(j) ∈ [1 : σ(i)− 1]}.
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Example 5. If p = 5, σ(1) = 3, σ(2) = 5, σ(3) = 4, σ(4) = 2, σ(5) = 1,
which can also be written as the cycle σ = (1 3 4 2 5) or, writing players ranked
by preference (as in [FKS03] for example), σ = (5; 4; 1; 3; 2), we have T1(σ) =
{5, 4}, T2(σ) = {5, 4, 1, 3}, T3(σ) = {5, 4, 1}, T4(σ) = {5}, T5(σ) = ∅.

Then,

φi =
1

p!

∑

σ∈Sp

(c(Ti(σ) ∪ {i})− c(Ti(σ))). (1.22)

Hence, the Shapley value φ can be computed by two different ways: using Equation
(1.21) or using Equation (1.22).

The Shapley values satisfy the following properties:

Properties 2. We have:

•

∑p
i=1 φi = c((1 : p]);

• c(u ∪ {i}) = c(u ∪ {j}) ∀u ⊂ [1 : p] \ {i, j} =⇒ φi = φj;

• c(u ∪ {i}) = c(u) ∀u ⊂ −i =⇒ φi = 0;

• (φi)i∈[1:p] is linear with respect to c.

C.1.ii) Shapley effects

In [Owe14], Owen suggests to use the Shapley value with the score function c(u) =
Sclu to obtain sensitivity indices.

Definition 11 (Shapley effects [Owe14]). For all i ∈ [1 : p], we define ηi, the
Shapley effect of Xi as:

ηi =
1

p

∑

u⊂−i

(
p− 1
|u|

)−1

(Sclu∪{i} − Sclu ).

Remark 10. In [Owe14], Owen uses the score function c(u) = Var(E(Y |Xu)). In
Definition 11, we divide by the variance to normalize the Shapley values.

The Shapley effects are linear combinations of the closed Sobol indices (and
thus of the Sobol indices defined in Definition 5). An interesting particularity of
the Shapley effects is that there exists only one index per input variable, which
evaluates the impact of the variable taken alone and of all its interactions with the
other input variables on the output.

Remark that different convex combinations of (c(u ∪ {i}) − c(u))u⊂−i in Def-
inition 10 can lead to the first Sobol index Si or the total Sobol index STi when
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using the score function u :−→ Sclu .

[SNS16] noticed that, using the law of total variance, the score function u −→
E(Var(Y |X−u)) also leads to the Shapley effects. Thus, for all u ⊂ [1 : p], we
define:

Vu := Var(E(Y |Xu)) (1.23)

and

Eu := E(Var(Y |X−u)). (1.24)

We let by convention E(Y |X∅) = E(Y ) and Var(Y |X∅) = Var(Y ). We define the
”conditional elements” (Wu)u⊂[1:p] as being either (Vu)u⊂[1:p] or (Eu)u⊂[1:p]. Then,
for all i ∈ [1 : p], the Shapley effect ηi is equal to:

ηi :=
1

pVar(Y )

∑

u⊂−i

(
p− 1
|u|

)−1

(Wu∪{i} −Wu). (1.25)

C.1.iii) Properties of the Shapley effects

The Shapley effects have interesting properties, derived from the properties of the
closed Sobol indices and the Shapley values.

Properties 3. We have:

• ∀i ∈ [1 : p], ηi ∈ [0, 1];

•

∑p
i=1 ηi = 1;

• Xi⊥⊥(Y,X−i) =⇒ ηi = 0.

Thus, even when the inputs are dependent, all the Shapley effects are positive
and their sum is equal to one. Both properties are not satisfied with the sensitivity
indices given in the previous sections with dependent inputs.

Proposition 7 ([Owe14]). When the input variables are independent, we have,
for all i ∈ [1 : p],

ηi =
∑

u∈−i

Su∪{i}
|u ∪ {i}| .

Hence, we have in this case

Si ≤ ηi ≤ STi.
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The previous proposition shows that, in the independent case, the Shapley
effect ηi is between the Sobol index Si (which the sum over i is in general less
than 1) and STi (which the sum over i is in general larger than 1). [IP19] provides
on numerical experiments the values of ηi, Si and STi. We can remark on these
experiments that, even for dependent cases, the Shapley effect ηi is still between
min(Si, STi) and max(Si, STi), even if STi is smaller than Si. Hence the Shapley
effect ηi appears to be a trade-off between the Sobol index Si and the total Sobol
index STi.

C.1.iv) Gaussian linear framework

Theorem 2 ([OP17]). If f : x 7−→ β0+β
Tx and if X ∼ N (µ,Σ), with Σ ∈ S++

p (R)
(where S++

p (R) is the set of the symmetric positive definite matrices of size p× p),
then, for all i ∈ [1 : p]:

ηi =
1

pVar(Y )

∑

u∈−i

(
p− 1
|u|

)−1 cov(Xi, X
T
−uβ−u|Xu)

Var(Xj|Xu)
.

Thus, in the linear Gaussian framework, [OP17] gives another expression of
the Shapley effects. To prove this result, [OP17] uses Equation (1.25) where the
conditional elements are equal to (Eu)u⊂[1:p]. Then, for all subset u ⊂ [1 : p], we
have

Eu = Var(βTuXu|X−u) = βTu (Σu,u − Σu,−uΣ
−1
−u,−uΣ−u,u)βu, (1.26)

where βu := (βi)i∈u and Σu,v := (Σi,j)i∈u,j∈v. These conditional variances are
constant so they are equal to their expectation.

As in [IP19], we can use Equation (1.26) to compute numerically the Shapley
effects in the linear Gaussian framework.

Remark 11. If the matrix Σ is not invertible, there exist subsets u such that Σu,u

is not invertible. However, Equation (1.26) still holds if we replace Σ−1
u,u by the

generalized inverse (for symmetric matrices) of Σu,u.

Remark 12. One can show a similar result than Equation (1.26) when X follows
an asymmetric Laplace distribution ALp(m,Σ). However, the conditional vari-
ances are not constant in this case and their expectations must be estimated, for
instance by Monte-Carlo.

Remark 13. Equation (1.26) can be used to compute closed Sobol indices or Sobol
indices, using that

Sclu = 1− E(Var(Y |Xu))

Var(Y )
, Su = −

∑

v⊂u
(−1)|u|−|v|E(Var(Y |Xv))

Var(Y )
. (1.27)
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The value of the Shapley effects in the Gaussian linear framework are equal to
the LMG measures of variable importance (the first definition is given in [LMG80]
but is also has been defined in [Bud93]). This measure of importance is the average
over all the subset of input variables of the improvement of the R2 when adding
the variable Xi to the multiple regression, divided by the variance of the whole
regression.

C.2 Estimation of the Shapley effects

An algorithm is suggested in [SNS16] to estimate the Shapley effects. This algo-
rithm uses the form given in Equation (1.22) for the Shapley values. We have

ηi =
1

p!

∑

σ∈Sp

(ETi(σ)∪{i} − ETi(σ)) =
1

p!

∑

π∈Sp

(ETi(π−1)∪{i} − ETi(π−1)),

where π−1 is the inverse function of π. Then, writing Pi(σ) := Ti(σ
−1), that is

Pi(σ) = {j ∈ [1 : p] | σ−1(j) ∈ [1 : σ−1(i)− 1]} = {σ(j) | j ∈ [1 : σ−1(i)− 1]},
we have:

ηi =
1

p!

∑

σ∈Sp

(EPi(σ)∪{i} − EPi(σ)). (1.28)

Since the number of permutations is p!, the sum over σ ∈ Sp is no longer tractable
for large values of p. Thus, on could estimate ηi by

η̂i =
1

M

M∑

m=1

(EPi(σm)∪{i} − EPi(σm)), (1.29)

where M ∈ N∗ is a parameter and (σm)m∈[1:M ] are i.i.d. with distribution U(Sp).
Remark 14. We have seen that, to compute the Shapley effects, one can use two
different ways: summing over the subsets (as in Equation (1.25)) or summing
over permutations (as in Equation (1.28) for example). The advantage of the sum
over the permutations is that the summands have the same coefficient, and it can
be estimated by Monte-Carlo as in Equation (1.29), generating permutations with
uniform distribution.

Hence, a first algorithm would be to make a loop over i ∈ [1 : p], a loop over
m ∈ [1 :M ], and to estimate EPi(σm)∪{i} and EPi(σm).

However, the authors of [SNS16] use a trick to divide the computation cost by
2. They notice that for 1 ≤ i < p, for any permutation σ ∈ Sp, we have

Pσ(i+1)(σ) = Pσ(i)(σ) ∪ {σ(i)}. (1.30)
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Remark 15. In [SNS16], the definition of Pi(σ) is not explicitly written, but the
authors of [SNS16] provide the interpretation of Pi. They say that Pi(σ) is the set
of players that precede player i in σ, which was in fact our interpretation of Ti(σ).
This is due to the interpretation of a permutation. In general (see for example
[Dia88, JV17, KB10]) and in this manuscript, i denotes a player (or an item) and
σ(i) denotes his rank. In [SNS16], i denotes a rank and σ(i) denotes the player
with rank i.

We know that we give the same definition of Pi(σ) as the authors of [SNS16]
because they use Equation (1.30) which is satisfied by P but not by T .

Notice that T satisfies a similar equation as Equation (1.30): for 1 ≤ i < p
and for any σ ∈ Sp, we have

Tσ−1(i)(σ) ∪ {σ−1(i)} = Tσ−1(i+1)(σ).

Hence, [SNS16] provides the following algorithm:

Algorithm 1 ([SNS16])

(1) Choose M, NV , N0 and NI ; set η̂i = 0 for i = 1, 2, · · · , p
(2) For l = 1, 2, · · · , NV

(I) Sample X(l) with distribution X

(II) Evaluate Y (l) = f(X(l))

(3) Calculate Y = N−1
V

∑NV
l=1 Y

(l) and V̂ar(Y ) = (NV − 1)−1
∑NV

l=1(Y
(l)−Y )2

(4) For m = 1, · · · ,M

(I) Generate σm uniformly on Sp
(II) Set prevC = 0

(III) For j = 1, 2, · · · , p
(A) If j = p, ÊPσm(j)(σm)∪{σm(j)} = V̂ar(Y )

(B) Else

(i) For l = 1, 2, · · · , N0

(a) Sample X
(l)
−Pσm(j+1)(σm) with distribution X−Pσm(j+1)(σm)

(b) For h = 1, 2, · · · , NI

(1) Sample X
(l,h)
Pσm(j+1)(σm) with distribution XPσm(j+1)(σm) condition-

ally to X−Pσm(j+1)(σm) = X
(l)
−Pσm(j+1)(σm)

(2) Evaluate Y (l,h) = f
(
X

(l,h)
Pσm(j+1)(σm), X

(l)
−Pσm(j+1)(σm)

)
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(c) Calculate Y
(l)

= N−1
I

∑NI
h=1 Y

(l,h)

(d) Calculate V̂ar
(
Y
∣∣∣X(l)

−Pσm(j+1)(σm)

)
= (NI − 1)−1

∑NO
h=1(Y

(l,h) −
Y

(l)
)2

(ii) Calculate ÊPσm(j+1)(σm) = N−1
O

∑NO
l=1 V̂ar

(
Y
∣∣∣X(l)

−Pσm(j+1)(σm)

)

(C) Calculate ∆̂σm(j) = ÊPσm(j+1)(σm) − prevC

(D) Update η̂σm(j) = η̂σm(j) + ∆̂σm(j)

(E) Set prevC = ÊPσm(j+1)(σm)

(5) η̂i = η̂i/p for i = 1, 2, · · · , p

Algorithm 1 has been implemented in the R package sensitivity as the func-
tion ”shapleyPermRand”.

The authors of [SNS16] suggest to take NO = 1, NI = 3 and M as large as
possible, with theoretical arguments. They also suggest, when p is small, to let the
complete sum over the permutations instead of estimate it by Monte-Carlo (that
is to say, using Equation (1.28) instead of Equation (1.29)). The corresponding R
function is called ”shapleyPermEx”.

Notice that Algorithm 1 requires to be able to sample with the conditional dis-
tributions of the inputs in Step (4) (III) (B) (i) (b) (1), which is a very restrictive
condition. [IP19] provides numerical experiments when the inputs are Gaussian,
and when the parameters of the Gaussian distribution are known, which is almost
the only case where it is feasible to sample with the conditional distributions for
dependent input variables.

Remark that in Step (2) (II) and in Step (4) (III) (B) (i) (b) (2), Algorithm 1
needs to evaluate f at new points. When the computational code of f is expensive,
[IP19] suggests to replace f by a metamodel (as in Section A.2.i)), and they make
numerical experiments with Gaussian processes.

[SNS16] provides an upper-bound to the variance of the estimates of the Shap-
ley effects provided by Algorithm 1 if EPσm(j+1)(σm) in Step (4) (III) (ii) were known.
Finally, to get confidence intervals of this estimator, [IP19] suggests to use the Cen-
tral Limit Theorem and [BEDC19] suggest to use a bootstrap method.

To conclude, [SNS16] suggests an algorithm to estimate the Shapley effects.

32



CHAPTER 1. SENSITIVITY ANALYSIS AND SHAPLEY EFFECTS

However, the setting of this algorithm is very restrictive since it requires to be
able to sample with the conditional distributions on the inputs. Moreover, no
theoretical result is provided on Algorithm 1 in [SNS16]. Algorithm 1 will be
studied in details in Chapter 2.
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Part II

Estimation of the Shapley effects
in the general framework
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Chapter 2

General estimation of the Shapley
effects

A Introduction

In this chapter, we aim at extending the works of [SNS16] on the estimation of
the Shapley effects (see Algorithm 1 in Chapter 1). We divide this estimation
into two parts. The first part is the estimation of quantities that we call the
”conditional elements”, on which the Shapley effects depend. The second part
consists in aggregating the estimates of the conditional elements in order to obtain
estimates of the Shapley effects. We call this part the W -aggregation procedure.
We refer to Sections B and C for more details on these two parts.

First, we focus on the estimation of the conditional elements with two different
estimators: the double Monte-Carlo estimator (used in Algorithm 1 suggested by
[SNS16]) and the Pick-and-Freeze estimator (see Chapter 1 Section A.2.i) for the
independent case) that we extend to the case where the inputs are dependent.
We present the two estimators when it is possible to sample from the conditional
distributions of the input vector. Then we suggest a newW -aggregation procedure,
based on the subsets of [1 : p], to estimate all the Shapley effects (for all the input
variables) at the same time. We choose the best parameters to minimize the sum
of the variances of all the Shapley effects estimators. The algorithm of [SNS16]
uses a W -aggregation procedure based on permutations of [1 : p]. We study
this W -aggregation procedure and explain how it minimizes the variance of the
estimates of the Shapley effects. Our suggestedW -aggregation procedure provides
an improved accuracy, compared to theW -aggregation procedure in [SNS16], using
all the estimates of the conditional elements for all the estimates of the Shapley
effects. The comparison between the two W -aggregation procedures is illustrated
with numerical experiments. These experiments also show that the double Monte-
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Carlo estimator provides better results than the Pick-and-Freeze estimator.
Then, we extend the estimators of the conditional elements (the double Monte-

Carlo estimator and the Pick-and-Freeze estimator) to the case where we only
observe an i.i.d. sample from the input variables. The extension relies on nearest-
neighbour techniques, which are widely used for many non-parametric estimation
problems [BS19, BSY19]. To the best of our knowledge, the estimators we suggest
are the first that do not require exact samples from the conditional distributions of
the input variables. One of our main results is the consistency of these estimators
under some mild assumptions, and their rate of convergence under additional reg-
ularity assumptions. We then give the consistency of the estimators of the Shapley
effects with the two W -aggregation procedures and using the double Monte-Carlo
estimator or the Pick-and-Freeze estimator. We observe, in numerical experiments,
that the estimators of the Shapley effects have a similar accuracy as when it is
possible to sample from the conditional distributions. We also apply one of these
estimators on meteorological data, more specifically on the output of three dif-
ferent metamodels predicting the ozone concentration in function of nine input
variables (with some categorical variables and some continuous variables). This
application enables to study the influence of the inputs variables on black-box
machine learning procedures.

This chapter is organized as follows. In the rest of Section A, we recall some
notation with two different ways to write the Shapley effects. In Section B, we
assume that the input distribution is known and we present the two methods to
estimate the conditional elements. In Section C, we suggest a new W -aggregation
procedure and we study the W -aggregation procedure used by the algorithm of
[SNS16]. In Section D, we summarize the four estimators of the Shapley effects,
give their consistency and we illustrate them with numerical applications. In Sec-
tion E, we assume that the input distribution is unknown and that we just observe
a sample of the input vector. We give consistent estimators of the conditional
elements and thus consistent estimators of the Shapley effects in this case, and
we illustrate this with numerical experiments. In Section F, we apply one of our
estimators to a real data set. We conclude in Section G.

Recall that X = (X1, ..., Xp) is the input random vector on the input domain
X = X1 × ...× Xp with distribution PX and Y = f(X), with f ∈ L2. Recall that
for all u ⊂ [1 : p], we define:

Vu := Var(E(Y |Xu)), (2.1)

Eu := E(Var(Y |X−u)), (2.2)

and the conditional elements (Wu)u⊂[1:p] are either (Vu)u⊂[1:p] or (Eu)u⊂[1:p]. For all
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i ∈ [1 : p], recall that the Shapley effect ηi is defined by:

ηi :=
1

pVar(Y )

∑

u⊂−i

(
p− 1
|u|

)−1

(Wu∪{i} −Wu), (2.3)

Remark 16. The quantities W∅ and W[1:p] are equal to 0 and Var(Y ) respectively.
The variance of Y is easy to estimate, so we assume without loss of generality that
we know the theoretical value Var(Y ).

We can notice that the Shapley effects are a sum over the subsets u ⊂ −i. We
have seen in Chapter 1 Section C.2 another classical way to compute the Shapley
effects, summing over the permutations of [1 : p]. Recall that, for i ∈ [1 : p] and
σ ∈ Sp, we let Pi(σ) := {σ(j)| j ∈ [1 : σ−1(i)− 1]}.

Proposition 8. [Equation (11) in [SNS16], Section 4.1] We have

ηi =
1

p!Var(Y )

∑

σ∈Sp

(WPi(σ)∪{i} −WPi(σ))). (2.4)

Our aim is to estimate the Shapley effects. We have seen two different ways to
compute the Shapley effects, given by Equation (2.3) (with a sum over the subsets)
and Equation (2.4) (with a sum over the permutations). These two equations will
correspond to two different W -aggregation procedures of the Shapley effects.

B Estimation of the conditional elements

We explain now how to estimate these (Wu)∅ u [1:p] in a restricted setting (recall
that W∅ = 0 and W[1:p] = Var(Y ) are known). The restricted setting is the
following: as in [SNS16], we will assume that for any ∅  u  [1 : p] and xu ∈ Xu,
it is feasible to generate an i.i.d. sample from the distribution of X−u conditionally
to Xu = xu. Moreover, we assume that we have access to the computer code of f .

To estimate Wu, we suggest two different estimators. The first one consists
in a double Monte-Carlo procedure to estimate Eu, and it is the estimator used
in the algorithm of [SNS16]. The other one is the well-known Pick-and-Freeze
estimator (see [HS96] for the first definition, [GJKL14, GJK+16] for theoretical
studies) for Vu, that we extend to the case where the input variables (Xi)i∈[1:p] are
not independent.

Finally, we assume that each evaluation of f is costly, so we define the cost of
each estimator Ŵu as the number of evaluations of f .
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B.1 Double Monte-Carlo

A first way to estimate Eu = E(Var(Y |X−u)) is using double Monte-Carlo: a first
Monte-Carlo step of size NI for the conditional variance, another one of size Nu

for the expectation. Thus, the estimator of Eu suggested in [SNS16] is

Êknown
u,MC :=

1

Nu

Nu∑

n=1

1

NI − 1

NI∑

k=1

(
f(X

(n)
−u , X

(n,k)
u )− f(X

(n)
−u )
)2
, (2.5)

where for n = 1, ..., Nu, f(X
(n)
−u ) := N−1

I

∑NI

k=1 f(X
(n)
−u , X

(n,k)
u ), (X

(n)
−u )n∈[1:Nu] is an

i.i.d. sample with the distribution of X−u and (X
(n,k)
u )k∈[1:NI ] conditionally to X

(n)
−u

is i.i.d. with the distribution of Xu conditionally to X−u = X
(n)
−u . In Equation

(2.5), the exponent ”known” means that the distribution of X is known, that is,
we are able to sample with the conditional distribution.

For all n ∈ [1 : Nu], the computation of

1

NI − 1

NI∑

k=1

(
f(X

(n)
−u , X

(n,k)
u )− f(X

(n)
−u )
)2

requires the values of
(
f(X

(n)
−u , X

(n,k)
u )

)
k∈[1:NI ]

. We will take NI = 3, as suggested

in [SNS16]. Thus, the double Monte-Carlo estimator given in Equation (2.5) has
a cost (number of evaluations of f) of 3Nu.

Remark 17. The estimator of Equation (2.5) is an unbiased estimator of Eu =
E(Var(Y |X−u)).

B.2 Pick-and-freeze

We now provide a second estimator of Wu: the Pick-and-Freeze estimator for Vu.
We have

Vu = Var(E(Y |Xu)) = E(E(Y |Xu)
2)− E(Y )2.

Remark that E(Y ) is easy to estimate so we assume without loss of generality
that we know the value of E(Y ) (for the numerical applications, we will take
the empirical mean). It remains to estimate E(E(Y |Xu)

2), which seems to be
complicated. We prove the following proposition that enables to simplify the
formulation of this quantity.

Proposition 9. Let X = (Xu, X−u) and Xu = (Xu, X
′
−u) of distribution PX such

that, a.s. P(X−u,X′
−u)|Xu=xu = PX−u|Xu=xu ⊗ PX−u|Xu=xu. We have

E(E(Y |Xu)
2) = E(f(X)f(Xu)). (2.6)
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Remark that Proposition 9 enables to write a double expectation as one single
expectation, that we estimate by a simple Monte-Carlo. Thus, we suggest the
Pick-and-Freeze estimator, for ∅  u  [1 : p],

V̂ known
u,PF :=

1

Nu

Nu∑

n=1

f
(
X(n)
u , X

(n,1)
−u

)
f
(
X(n)
u , X

(n,2)
−u

)
− E(Y )2, (2.7)

where (X
(n)
u )n∈[1:Nu] is an i.i.d. sample with the distribution of Xu and where

X
(n,1)
−u and X

(n,2)
−u conditionally to X

(n)
u are independent with the distribution of

X−u conditionally to Xu = X
(n)
u . This estimator has a cost of 2Nu.

C W -aggregation procedures

As we can see in Equation (2.3) or in Equation (2.4), the Shapley effects are
functions of the conditional elements (Wu)u⊂[1:p]. In Section B, we have seen how
to estimate these conditional elements when it is possible to sample from the
conditional distributions of the input vector. In this section, we assume that
we have estimators (Ŵu)u⊂[1:p]. From Remark 16, we let Ŵ∅ = W∅ = 0 and

Ŵ[1:p] = W[1:p] = Var(Y ). We also add the following assumption that will be
needed for the theoretical results that we will prove.

Assumption 2. For all ∅  u  [1 : p], Ŵu is computed with a cost κNu by Ŵu =
1
Nu

∑Nu

n=1 Ŵ
(n)
u where the (Ŵ

(n)
u )n∈[1:Nu] are independent and identically distributed.

The (Ŵu)u⊂[1:p] are independent. The integer κ ∈ N∗ is the number of evaluations

of the computer code f (i.e. the cost) for each Ŵ
(n)
u .

Assumption 2 means that we estimate the (Wu)∅ u [1:p] by Monte-Carlo, inde-
pendently and with different costs (κNu)∅ u [1:p]. The accuracy Nu corresponds to

computing Nu independent and identically distributed estimators Ŵ
(1)
u , ..., Ŵ

(Nu)
u

that are averaged. We have seen in Section B two estimators that satisfy Assump-
tion 2: the double Monte-Carlo estimator (with κ = 3) and the Pick-and-Freeze
estimator (with κ = 2).

We call ”W -aggregation procedure” an algorithm that estimates the Shapley
effects from the estimates (Ŵu)∅ u [1:p] and that selects the values of the accuracies
(Nu)∅ u [1:p]. We first suggest a new W -aggregation procedure. Then we obtain a
theoretical insight on the W -aggregation procedure of [SNS16].

C.1 The subset procedure

In this section, we suggest a new W -aggregation procedure for the Shapley effects.
This procedure consists in computing once for all the estimates Ŵu for all u ⊂ [1 :
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p], and to store them. Then, we use these estimates to estimate all the Shapley
effects.

C.1.i) The W -aggregation procedure

We suggest to estimate the Shapley effects (ηi)i∈[1:p] by using the following W -
aggregation procedure:

1. For all u ⊂ [1 : p], compute Ŵu.

2. For all i ∈ [1 : p], estimate ηi by

η̂i :=
1

pVar(Y )

∑

u⊂−i

(
p− 1
|u|

)−1

(Ŵu∪{i} − Ŵu). (2.8)

Procedure (subset W -aggregation procedure)

We can note that each estimate Ŵu is used for all the estimates (η̂i)i∈[1:p]. It
remains to choose the values of the accuracies (Nu)∅ u [1:p].

C.1.ii) Choice of the accuracy of each Ŵu

In this section, we explain how to choose the values of the accuracies (Nu)∅ u [1:p].
In the following proposition, we give the best choice of the accuracies (Nu)∅ u [1:p]
to minimize

∑p
i=1 Var(η̂i) for a fixed total cost κ

∑
∅ u [1:p]Nu.

Proposition 10. Let a total cost Ntot ∈ N be fixed. Under Assumption 2, if the
Shapley effects are estimated with the subset W -aggregation procedure, the solu-
tion of the relaxed program (i.e. the problem without the constraint of letting the
(Nu)∅ u [1:p] be integers)

min
(Nu)∅ u [1:p]∈(0,+∞)2

p−2

p∑

i=1

Var(η̂i) subject to κ
∑

∅ u [1:p]
Nu = Ntot (2.9)

is (N∗
u)∅ u [1:p] with for all ∅  u  [1 : p]

N∗
u =

Ntot

κ

√
(p− |u|)!|u|!(p− |u| − 1)!(|u| − 1)!Var(Ŵ

(1)
u )

∑
∅ v [1:p]

√
(p− |v|)!|v|!(p− |v| − 1)!(|v| − 1)!Var(Ŵ

(1)
v )

.
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Usually, we do not know the values of Var(Ŵ
(1)
u ) for ∅  u  [1 : p], but we

need them to compute the value of N∗
u . In practice, we will assume that these

values are equal in order to compute N∗
u . Furthermore, the sum over the subsets

v such that ∅  v  [1 : p] can be too costly to compute. Hence, we make the
following approximations in practice:

N∗
u ≈

Ntot

κ

(
p
|u|

)− 1
2
(

p
|u| − 1

)− 1
2

∑
∅ v [1:p]

(
p
|v|

)− 1
2
(

p
|v| − 1

)− 1
2

≈
Ntot

κ

(
p
|u|

)−1

∑
∅ v [1:p]

(
p
|v|

)−1 =
Ntot

κ

(
p
|u|

)−1

p− 1
.

(2.10)
Hence, when implementing the subset W -aggregation procedure, we will choose
N∗
u as

N∗
u := Round

(
Ntotκ

−1

(
p
|u|

)−1

(p− 1)−1

)
(2.11)

for ∅  u  [1 : p], where Round is the nearest integer function. In this way, for a
fixed total cost, we take the accuracies (Nu)∅ u [1:p] near the optimal choice that
minimizes

∑p
i=1 Var(η̂i). Hence, the parameter Ntot is now the only parameter

left to choose. In practice, this parameter is often imposed as a global budget
constraint.

Remark 18. With the approximation discussed above, the real total cost κ
∑

∅ u [1:p]Nu

can be different from the Ntot chosen (because of the approximations and the choice
of the closest integer). In this case, we suggest to adapt the value of Ntot in order
to make the total cost κ

∑
∅ u [1:p]N

∗
u take the desired value.

Remark 19. In order to compute the (N∗
u)∅ u [1:p] in practice, we assume that

the values of Var(Ŵ
(1)
u ), for ∅  u  [1 : p], are equal. We can see on unreported

numerical experiments that this choice of Nu gives much better results than if we
choose the same value of Nu for all ∅  u  [1 : p]. However, it seems difficult

to obtain theoretical results on the values of Var(Ŵ
(1)
u ), as they depend on the

conditional distributions of X in a complicated way.
Hence, this assumption is more a convenient heuristic to compute the best

accuracies (N∗
u)∅ u [1:p] than a real property satisfied in many cases. Proposition

10 and the heuristic in Equation (2.10) justify the choice of (N∗
u)∅ u [1:p] given in

Equation (2.11), and we make this choice even if the assumption of equal values

of the (Var(Ŵ
(1)
u ))∅ u [1:p] is not satisfied.

Remark 20. By Equation (2.11), if |u| is close to 0 or p and if |v| is close to p/2,
the value of N∗

u is larger than the value of N∗
v . Hence, the estimate of Wu is more
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accurate than the estimate of Wv. This is not surprising since, in the computation
of the Shapley effects given by Equation (2.3), the coefficient associated with the
quantity Wu is larger than the one associated with Wv (hence, the estimate of Wv

does not need to be as accurate as the estimate of Wu).

C.1.iii) Consistency

A straightforward consequence of the subset W -aggregation procedure and Equa-
tion (2.8) is that the consistency of (Ŵu)u⊂[1:p] implies the consistency of (η̂i)i∈[1:p]
(Assumption 2 is not necessary).

Proposition 11. Assume that for all ∅  u  [1 : p], we have estimators Ŵu

that converge to Wu in probability (resp. almost surely) when Nu goes to +∞,

where κNu is the cost of Ŵu. If we use the subset W -aggregation procedure with
the choice of (N∗

u)∅ u [1:p] given by Equation (2.11), the estimators of the Shapley
effects converge to the Shapley effects in probability (resp. almost surely) when Ntot

goes to +∞ (where Ntot is the total cost of the subset W -aggregation procedure).

C.2 The random-permutation procedure

In this section, we present and study the ”random-permutation W -aggregation
procedure” suggested in [SNS16].

C.2.i) The W -aggregation procedure

The W -aggregation procedure of the algorithm of [SNS16] is based on Equation
(2.4). Because of the equation, one could estimate ηi by

η̂i =
1

p!Var(Y )

∑

σ∈Sp

(
ŴPi(σ)∪{i} − ŴPi(σ)

)
, (2.12)

for i ∈ [1 : p]. In Equation (2.12), informally, (Ŵu)∅ u [1:p] are estimators. How-
ever, as the number of permutations is p!, there are too many summands and
[SNS16] suggests to replace the sum over all the p! permutations by the sum
over M (M < p!) random uniformly distributed permutations. Thus, for a fixed
i ∈ [1 : p], the estimator of ηi suggested in [SNS16] is

η̂i =
1

MVar(Y )

M∑

m=1

(
ŴPi(σm)∪{i}(m)− ŴPi(σm)(m)

)
, (2.13)

where (σm)m∈[1:M ] are independent and uniformly distributed on Sp. If m,m′ ∈
[1 :M ] with m 6= m′ and Pi(σm) = Pi(σm′) =: u, [SNS16] estimates twice the same
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Wu. To formalize these different estimations, we write Ŵu(m) the estimation of
Wu at step m in Equation (2.13).

Finally, [SNS16] reduces the computation cost using the following idea. The
authors of [SNS16] notice that for 1 ≤ i < p, for any permutation σ ∈ Sp and
for i ∈ [1 : p], we have Pσ(i+1)(σ) = Pσ(i)(σ) ∪ {σ(i)}. Thus, the algorithm of

[SNS16] uses every estimate ŴPσm(i)(σm)∪{σm(i)}(m) for η̂σm(i) (as an estimator of
WPσm(i)(σm)∪{σm(i)}) and for η̂σm(i+1) (as an estimator of WPσm(i+1)(σm)). With this
improvement, the number of estimations of Wu (for ∅  u  [1 : p]) is divided by
two when estimating all the Shapley effects η1, ..., ηp.

1. Let η̂1 = ... = η̂p = 0.

2. For all m = 1, 2, ...,M

(a) Generate σm uniformly distributed on Sp.
(b) Let prevC = 0.

(c) For all i = 1, 2, ..., p

i. Let u = Pσm(i)(σm).

ii. Compute Ŵu∪{σm(i)}(m).

iii. Compute ∆̂ = Ŵu∪{σm(i)}(m)− prevC.

iv. Update η̂σm(i) = η̂σm(i) + ∆̂.

v. Set prevC = ŴPσm(i+1)(σm).

3. Let η̂i = η̂i/(Var(Y )M) for all i = 1, ..., p.

Procedure (random-permutation W -aggregation procedure)

Remark 21. Recall that in the subset W -aggregation procedure, each estimation
of Wu was used for the estimation of all the (ηi)i∈[1:p] (and not only for two of
them). Thus the subset W -aggregation procedure seems to be more efficient.

Remark 22. When the number of inputs p is small, [SNS16] suggests to take
all the permutations of [1 : p] instead of choosing random permutations in Step
2a of the random-permutation W -aggregation procedure. However, this algorithm
requires small values of p and the total cost is a multiple of p! (so there are very re-
stricted possible values). Furthermore, this method still remains very costly due to
the computation of (p−1)! conditional variances. For example, in the linear Gaus-
sian framework with p = 10 (where the computation of the conditional elements is
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immediate) it spends more than ten minutes computing the Shapley effects. Hence,
the algorithm with all the permutations is not explicitly detailed in [SNS16].

C.2.ii) Choice of the accuracy of each Ŵu

As in Section C.1.ii), we suggest a choice of the accuracies (Nu)∅ u [1:p].
In order to avoid a random total cost, we require for all ∅  u  [1 : p] that

the accuracy Nu of the
(
Ŵu(m)

)
m
depends only on |u|, and we write N|u| := Nu.

In this case, the total cost of the random-permutation W -aggregation procedure
is equal to Ntot = κM

∑p−1
k=1Nk. Moreover, we assume that the total cost Ntot =

κM
∑p−1

k=1Nk is proportional to (p−1), and thus can be written Ntot = κMNO(p−
1) for some fixedNO ∈ N∗. As the permutations (σm)m∈[1:M ] are random, we choose
to minimize E

[∑p
i=1 Var

(
η̂i| (σm)m∈[1:M ]

)]
.

To compute the optimal values of (Nu)∅ u [1:p], we introduce the following
assumption.

Assumption 3. For all ∅  u  [1 : p] and all m ∈ [1 : M ], Ŵu(m) is computed

with a cost κN|u| by Ŵu(m) = 1
N|u|

∑N|u|

n=1 Ŵ
(n)
u (m) where the (Ŵ

(n)
u (m))n∈[1:Nu] are

independent and identically distributed. The (Ŵu(m))∅ u [1:p], m∈[1:M ] are indepen-
dent.

When it is possible to sample from the conditional distributions of the input
vector, we can generate i.i.d. double Monte-Carlo estimators (Êu,MC(m))m∈[1:M ]

or Pick-and-Freeze estimators (V̂u,PF (m))m∈[1:M ]. Hence, they satisfy Assumption
3 by taking Nu = N|u| for all ∅  u  [1 : p].

Proposition 12. Assume that we estimate the Shapley effects with the random-
permutation W -aggregation procedure under Assumption 2 and that the variances
(Var(Ŵ

(1)
u (1)))∅ u [1:p] are equal. Then, the solution of the problem

min
(Nk)k∈[1:p−1]∈(0,+∞)p−1

E

[
p∑

i=1

Var
(
η̂i| (σm)m∈[1:M ]

)
]

subject to κM

p−1∑

k=1

Nk = κMNO(p−1)

is (N∗∗
k )k∈[1:p−1] with for all k ∈ [1 : p− 1],

N∗∗
k = NO.

Hence, from now on, with the random permutation W -aggregation procedure,
we will choose the accuracy Nu = NO for all subset u.

Remark 23. As in Remark 19, we assume in Proposition 12 that the variances
(Var(Ŵ

(1)
u (1)))∅ u [1:p] are equal. This assumption is not easy to check, but is

required technically to prove Proposition 12.
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Remark 24. With the exact-permutation W -aggregation procedure (see Remark
22), N∗

k = NOp! is the solution of the problem
∑p

i=1 Var (η̂i) subject to
∑p−1

k=1Nk =
p!NO(p− 1).

There are now two parameters to choose: the number of permutations M and
the accuracy NO of the estimations of the (Wu)∅ u [1:p]. Typically, their product
MNO is imposed by budget constraints.

C.2.iii) Choice of NO

We have seen that for all ∅  u  [1 : p], we choose Nu = N∗∗
|u| = NO. In this

section, we explain why we should choose NO = 1 under Assumption 2 and M as
large as possible.

Proposition 13 generalizes the result given in [SNS16], Appendix B. Its proof
is given in the supplementary material, which is much simpler than the arguments
in [SNS16].

Assumption 4. Assumption 3 holds and for all ∅  u  [1 : p], we have

E(Ŵ
(1)
u (1)) = Wu.

Assumption 4 ensures that the estimators have a zero bias. Recall that the
double Monte-Carlo estimator and the Pick-and-Freeze estimator have a zero bias.
Hence, they satisfy Assumption 4 by generating i.i.d. (Ŵu(m))m∈[1:M ] and by
taking Nu = N|u| for all ∅  u  [1 : p].

Proposition 13. Let i ∈ [1 : p] be fixed. Under Assumption 4, in order to
minimize, over NO and M , the variance of η̂i with a fixed cost κMNO × (p− 1) =
κC × (p− 1) (for some C ∈ N∗), we have to choose NO = 1 and M = C.

From now on, we assume that Nu = NO = 1 when we use the random-
permutation W -aggregation procedure and we will let M , the number of random
permutations, go to infinity. Then, the total cost Ntot of the random-permutation
W -aggregation procedure is equal toNtot = κM(p−1), for estimating the p Shapley

effects η1, . . . , ηp. Hence, under Assumption 3 or Assumption 4, Ŵu(m) = Ŵ
(1)
u (m)

and has now a cost κ.

C.2.iv) Consistency

We give here two sufficient conditions for the consistency of the estimators of the
Shapley effects given by the random-permutation W -aggregation procedure. We
introduce a general assumption.
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Assumption 5. For all u such that ∅  u  [1 : p],
(
Ŵu(m)

)
m∈[1:M ]

have a cost

κ (since we chose Nu = 1) and are identically distributed with a distribution that

depends on an integer N such that E
(
Ŵu(1)

)
−→

N→+∞
Wu. Moreover, for all u such

that ∅  u  [1 : p], we have

1

M2

M∑

m,m′=1

cov
(
Ŵu(m), Ŵu(m

′)
)

−→
N,M→+∞

0.

Assumption 5 is more general than Assumption 4. Indeed, it enables the esti-
mators to have a bias and a covariance which go to zero. This assumption will be
useful to prove the consistency results in Section E.2. Remark that in Assump-

tion 5, for all ∅  u  [1 : p], each estimate
(
Ŵu(m)

)
m∈[1:M ]

has a cost κ, as in

Assumption 4 since we fixed Nu = NO = 1.

Proposition 14. Assume that we estimate the Shapley effects using the random-
permutation W -aggregation procedure. Let Ntot = κM(p − 1) be the total cost of
the random-permutation W -aggregation procedure.

1. Under Assumption 4, the estimates of the Shapley effects converge to the
Shapley effects in probability when Ntot goes to +∞.

2. Under Assumption 5, the estimates of the Shapley effects converge to the
Shapley effects in probability when Ntot and N go to +∞.

D Estimators of the Shapley effects

D.1 Four consistent estimators of the Shapley effects

Recall that in Section B, we have seen two estimators of the (Wu)∅ u [1:p]: double
Monte-Carlo (used in the algorithm of [SNS16]) and Pick-and-Freeze. In Sec-
tion C, we have studied two W -aggregation procedures for the Shapley effects
using estimators of the (Wu)∅ u [1:p]: the subset W -aggregation procedure and the
random-permutationW -aggregation procedure (used in the algorithm of [SNS16]).
To sum up, four estimators of the Shapley effects are available:

• subset W -aggregation procedure with double Monte-Carlo;

• subset W -aggregation procedure with Pick-and-Freeze;

• random-permutation W -aggregation procedure with double Monte-Carlo,
which is the already existing algorithm of [SNS16];
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• random-permutation W -aggregation procedure with Pick-and-Freeze.

With the random-permutation W -aggregation procedure, we have seen that we
need different estimators (Ŵu(m))m∈[1:M ] of the same Wu. In this case, we choose
i.i.d. realizations of the estimator ofWu. Moreover, we have seen in Section C.2.iii)
that when we use the random-permutation W -aggregation procedure, we choose
Nu = NO = 1.

By Propositions 11 and 14, all these four estimators are consistent when the
global budget Ntot goes to +∞. Indeed, by Proposition 11, the consistency of
the (Ŵu)∅ u [1:p] is sufficient for the consistency with the subset procedure and by

Proposition 14, unbiased and i.i.d. estimators (Ŵu(m))m∈[1:M ] for all ∅  u  [1 :
p] provide the consistency with the random-permutation procedure.

D.2 Numerical comparison of the different algorithms

In this section, we carry out numerical experiments on the different algorithms in
the restricted framework (where the exact conditional samples are available).

To compare these estimators, we use the linear Gaussian framework: X = Rp,
X ∼ N (µ,Σ) and Y =

∑p
i=1 βiXi. In this case, the theoretical values are easily

computable (see [OP17, IP19, BBDM19]). We choose p = 10, βi = 1 for all
i ∈ [1 : p] and Σ = ATA where A is a p × p matrix which components are
realisations of p2 i.i.d. Gaussian variables with zero mean and unit variance. To
compare these different estimators, we fix a total cost (number of evaluations of
f) of Ntot = 54000. We compute 1000 realizations of each estimator.

In Figure 2.1, we plot the theoretical values of the Shapley effects together with
the boxplots of the 1000 realizations of each estimator.

In Figure 2.2, we plot the sum over i ∈ [1 : p] of the quadratic risks:
∑p

i=1 E ((η̂i − ηi)
2)

(estimated with 1000 realizations) of each estimator.
We can see that the subset W -aggregation procedure gives better results than

the random-permutation W -aggregation procedure, and that the double Monte-
Carlo estimator is better than the Pick-and-Freeze estimator.

Remark 25. It appears that double Monte-Carlo is numerically more efficient
than Pick-and-Freeze for estimating the Shapley effects. Indeed, if we focus only
on the estimation of one Wu for a fixed ∅  u  [1 : p], we can see numerically
that the Pick-and-Freeze estimator has a larger variance than the double Monte-
Carlo estimator. This finding appears to be difficult to confirm theoretically in
the general case. Nevertheless, we can obtain such a theoretical confirmation in
a simple, specific example. Let X ∼ N (0, I2), Y = X1 + X2. Remark that, in

this example, the variances of Ŵ
(1)
u , ∅  u  [1 : p], are equal. In this case, and

for u = {1}, we can easily get Var(V̂ known
u,PF ) = 40

9
Var(Êknown

u,MC ) for the same cost
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Figure 2.1: Estimation of the Shapley effects in the linear Gaussian framework. In
black (s*) we show the theoretical values, in red (ss MC) the estimates from the
subset W -aggregation procedure with the double Monte-Carlo estimator, in green
(ss PF) the estimates from the subsetW -aggregation procedure with the Pick-and-
Freeze estimator, in blue (spr MC) the estimates from the random-permutation
W -aggregation procedure with the double Monte-Carlo estimator and in yellow
(spr PF) the estimates from the random-permutation W -aggregation procedure
with the Pick-and-Freeze estimator.

(number of evaluations of f), and choosing NI = 3 for the double Monte-Carlo
estimator. This could be surprising since [JKLR+14] proved that some Pick-and-
Freeze estimator is asymptotically efficient in the independent case. However,
this result and our finding are not contradictory for two reasons: the authors of
[JKLR+14] estimate the variance of Y so their result does not apply here and the
double Monte-Carlo estimator is based on different observations from the Pick-
and-Freeze estimator.

To conclude, we improved the already existing algorithm of [SNS16] (random-
permutationW -aggregation procedure with double Monte-Carlo) by the estimator
given by the subset W -aggregation procedure with double Monte-Carlo.
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Figure 2.2: Sum over i ∈ [1 : p] of the estimated quadratic risks of the four
estimators of the Shapley effects in the linear Gaussian framework.

E Extension when we observe an i.i.d. sample

In Section D, we have considered a restricted framework: we assumed that for
all ∅  u  [1 : p] and all xu ∈ Xu, we could generate an i.i.d. sample from
the distribution of X−u conditionally to Xu = xu. However, in many cases, we
can not generate this sample, as we only observe an i.i.d. sample of X. In this
section, we assume that we only observe an i.i.d. sample (X(n))nin[1:N ] of X and
that we have access to the computer code f . We extend the double Monte-Carlo
and Pick-and-Freeze estimators in this general case and show their consistency
and rates of convergence. We then give the consistency of the implied estima-
tors of the Shapley effects (obtained from the W -aggregation procedures studied
previously). To the best of our knowledge, these suggested estimators are the
first estimators of Shapley effects in this general framework. We conclude giving
numerical experiments.

We choose a very general framework to prove the consistency of the estimators.
This framework is given in the following assumption.

Assumption 6. For all i ∈ [1 : p], (Xi, di) is a Polish space with metric di and
X = (X1, ..., Xp) has a density fX with respect to a finite measure µ =

⊗p
i=1 µi

which is bounded and PX-almost everywhere continuous.

This assumption is really general. Actually, it enables to have some continuous
variables (with the Euclidean distance), some categorical variables in countable
ordered or unordered sets and some variables in separable Hilbert spaces (for
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example L2(Rd), for some d ∈ N∗). The fact that X has a continuous density
fX with respect to a finite measure µ =

⊗
µi means that the distribution of X

is smooth. Assumption 6 is satisfied in many realistic cases. The assumption of a
bounded density which is PX-almost everywhere continuous may be less realistic
in some cases but is needed in the proofs. It would be interesting to alleviate it in
a future work.

To prove rates of convergence, we will need the following stronger assumption.

Assumption 7. The function f is C1, X is compact in Rp, X has a density fX
with respect to the Lebesgue measure λp on X such that λp-a.s. on X , we have
0 < Cinf ≤ fX ≤ Csup < +∞. Furthermore, fX is Lipschitz continuous on X .

Assumption 7 is more restrictive than Assumption 6. It requires all the input
variables to be continuous and real-valued. Moreover, their values are restricted to
a compact set where the density is lower-bounded. Assumption 7 will be satisfied
in some realistic cases (for instance with uniform or truncated Gaussian input
random variables). Nevertheless, there also exist realistic cases where the input
density is not lower-bounded (for instance with triangular input random variables).
We remark that the assumption of a lower-bounded density is common in the field
of non-parametric statistics [Gho01]. Here, it enables us to control the order of
magnitude of conditional densities.

E.1 Estimators of the conditional elements

As far as we know, only [VG13] suggests a consistent estimator of Wu when we
only observe an i.i.d. sample and when the input variables can be dependent, but
only for Vu with |u| = 1. The estimator suggested in [VG13] is asymptotically
efficient but the fact that u has to be a singleton prevents us to use this estimator
for the Shapley effects (because we have to estimateWu for all ∅  u  [1 : p]). We
can find another estimator of the (Vu)u⊂[1:p] in [Pli10] (but no theoretical results
on the convergence are given). Finally, note that [PBS13] provides an estimator
of different sensitivity indices, with convergence proofs.

In this section we introduce two consistent estimators of (Wu)∅ u [1:p] when
we observe only an i.i.d. sample of X, and which are easy to implement. These
two estimators follow the principle of the double Monte-Carlo and Pick-and-Freeze
estimators, but replacing exact samples from the conditional distributions
by approximate ones based on nearest-neighbours methods.

To that end, we have to introduce some additional notation. Let N ∈ N and
(X(n))n∈[1:N ] be an i.i.d. sample of X. If ∅  v ( [1 : p], let us write kvN(l, n) for

the index such that X
(kvN (l,n))
v is the (or one of the) n-th closest element to X

(l)
v in

(X
(i)
v )i∈[1:N ], and such that (kvN(l, n))n∈[1:NI ] are two by two distinct.
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The index kvN(l, n) could be not uniquely defined if there exist different ob-

servations X
(i)
v at equal distance from X

(l)
v . In this case, we will choose kvN(l, n)

uniformly over the indices of these observations, with the following independence
assumption.

Assumption 8. Conditionally to (X
(n)
v )n∈[1:N ], k

v
N(l, i) is randomly and uniformly

chosen over the indices of all the i-th nearest neighbours of X
(l)
v in (X

(n)
v )n∈[1:N ]

and the (kvN(l, i))i[1:NI ] are two by two distinct. Furthermore, conditionally to

(X
(n)
v )n∈[1:N ], for all l ∈ [1 : N ], the random vector (kN(l, i))i∈[1:NI ] is indepen-

dent on all the other random variables.

To summarize the idea of Assumption 8, we can say that the nearest neighbours
of X

(l)
v are chosen uniformly among the possible choices and independently on the

other variables. Assumption 8 actually only formalizes the random choice of the
nearest neighbours where there can be equalities of the distances and this choice
is easy to implement in practice.

When Xv is absolutely continuous with respect to the Lebesgue measure, dis-
tance equalities can not happen and kvN(l, n) is uniquely defined. Thus, Assump-
tion 8 trivially holds in this case. Assumption 8 is thus specific to the case where
some input variables are not continuous.

E.1.i) Double Monte-Carlo

We write (s(l))l∈[1:Nu] a sample of uniformly distributed integers in [1 : N ] (with or
without replacement) independent of the other random variables. Then, we define
two slightly different versions of the double Monte-Carlo estimator by

Êmix
u,MC =

1

Nu

Nu∑

l=1

Êmix
u,s(l),MC , (2.14)

and

Êknn
u,MC =

1

Nu

Nu∑

l=1

Êknn
u,s(l),MC , (2.15)

with

Êmix
u,s(l),MC =

1

NI − 1

NI∑

i=1

[
f
(
X

(s(l))
−u , X

(k−u
N (s(l),i))

u

)
− 1

NI

NI∑

h=1

f
(
X

(s(l))
−u , X

(k−u
N (s(l),h))

u

)]2

(2.16)
and

Êknn
u,s(l),MC =

1

NI − 1

NI∑

i=1

[
f
(
X(k−u

N (s(l),i))
)
− 1

NI

NI∑

h=1

f
(
X(k−u

N (s(l),h))
)]2

. (2.17)
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The double Monte-Carlo estimator has two sums: one of size NI for the condi-
tional variance, one other of size Nu for the expectation. The integer NI is also the
number of nearest neighbours and it is a fixed parameter to choose. For example,
we can choose NI = 3 (as in the case where the conditional samples are available).

Remark 26. If we observe the sample (X(n))n∈[1:N ] and if the values of (f(X(n)))n∈[1:N ]

have to be assessed, the cost of the estimators Êmix
u,MC and Êknn

u,MC remains the num-

ber of evaluations of f (which is NINu). If we observe the sample (X(n), f(X(n)))n∈[1:N ],

the estimator Êknn
u,MC does not require evaluations of f but the cost remains pro-

portional to Nu (for the search of the nearest neighbours and for the elementary
operations).

Remark 27. The integer N is the size of the sample of X (that enables us to esti-
mate implicitly its conditional distributions through the nearest neighbours) and the

integer Nu is the accuracy of the estimator Êu,MC from the estimated distribution
of X. Of course, it would be intuitive to take Nu = N and (s(l))l∈[1:N ] = (l)l∈[1:N ],
but this framework would not be general enough for the subset W -aggregation pro-
cedure (in which the accuracy Nu of Êu,MC depends on u) and for the proof of
the consistency when using the random-permutation W -aggregation procedure in
Section E.2. Furthermore, we may typically have to take Nu smaller than N .

Remark that we give two versions of the double Monte-Carlo estimator. The
”mix” version seems more accurate but requires to call the computer code of f
at new inputs. For the ”knn” version, it is sufficient to have an i.i.d. sample
(X(n), f(X(n)))n∈[1:N ].

Now that we defined these two versions of the double Monte-Carlo estimator
for an unknown input distribution, we give the consistency of these estimators in
Theorem 3. We let Êu,MC be given by Equation (2.14) or Equation (2.15). In the
asymptotic results below, NI is fixed and N and Nu go to infinity.

Theorem 3. Assume that Assumption 6 holds and Assumption 8 holds for v =
−u. If f is bounded, then Êu,MC converges to Eu in probability when N and Nu

go to +∞.

Furthermore, with additional regularity assumptions, we can give the rate of
convergence of these estimators in Theorem 4 and Corollary1.

Theorem 4. Under Assumption 7, for all ε > 0, ε′ > 0, there exist fixed constants
C

(1)
sup(ε′) and C

(2)
sup such that

P
(∣∣∣Êu,MC − Eu

∣∣∣ > ε
)
≤ 1

ε2

(
C

(1)
sup(ε′)

N
1

p−|u|
−ε′ +

C
(2)
sup

Nu

)
. (2.18)
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Corollary 1. Under Assumption 7, choosing Nu ≥ CN1/(p−|u|) for some fixed
0 < C < +∞, we have for all δ > 0,

∣∣∣Êu,MC − Eu

∣∣∣ = op

(
1

N
1

2(p−|u|)
−δ

)
.

We remark that for |u| = p − 1, we nearly obtain a parametric rate of con-

vergence N
1
2 . The rate of convergence decreases when |u| decreases which can be

interpreted by the fact that we estimate non-parametrically the function x−u 7→
Var(f(X)|X−u = x−u). The estimation problem is higher-dimensional when |u|
decreases.

E.1.ii) Pick-and-Freeze

We now give similar results for the Pick-and-Freeze estimators. The number NI

of nearest neighbours that we need for the Pick-and-Freeze estimators is equal to
2. Assume that E(Y ) is known and let (s(l))l∈[1:Nu] be as in Section E.1.i). Then,
we define two slightly different versions of the Pick-and-Freeze estimator by

V̂ mix
u,PF =

1

Nu

Nu∑

l=1

V̂ mix
u,s(l),PF , (2.19)

and

V̂ knn
u,PF =

1

Nu

Nu∑

l=1

V̂ knn
u,s(l),PF , (2.20)

with

V̂ mix
u,s(l),PF = f

(
(X(kuN (s(l),1))

)
f
(
X

(kuN (s(l),1))
u , X

(kuN (s(l),2))
−u

)
− E(Y )2 (2.21)

and
V̂ knn
u,s(l),PF = f(X(kuN (s(l),1)))f(X(kuN (s(l),2)))− E(Y )2. (2.22)

As for the double Monte-Carlo estimators, we give the consistency of the Pick-
and-Freeze estimators in Theorem 5 and the rate of convergence in Theorem 6 and
in Corollary2. We let V̂u,PF be given by Equation (2.19) or Equation (2.20).

Theorem 5. Assume that Assumption 6 holds and Assumption 8 holds for v = u
and NI = 2. If f is bounded, then V̂u,PF converges to Vu in probability when N
and Nu go to +∞.

Theorem 6. Under Assumption 7, if |u| = 1, for all ε > 0, ε′ > 0,

P
(∣∣∣V̂u,PF − Vu

∣∣∣ > ε
)
≤ 1

ε2

(
C

(1)
sup(ε′)

N1−ε′ +
C

(2)
sup

Nu

)
, (2.23)
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and if |u| > 1, for all ε > 0,

P
(∣∣∣V̂u,PF − Vu

∣∣∣ > ε
)
≤ C

(3)
sup

ε2

(
1

N
1
|u|

+
1

Nu

)
, (2.24)

with fixed constants C
(1)
sup(ε′) < +∞, C

(2)
sup < +∞ and C

(3)
sup < +∞.

Corollary 2. Under Assumption 7, choosing Nu ≥ CN1/|u| for some fixed 0 <
C < +∞, we have

1. for all u such that |u| = 1, for all δ > 0,

∣∣∣V̂u,PF − Vu

∣∣∣ = op

(
1

N
1
2
−δ

)
.

2. for all u such that |u| > 1,

∣∣∣V̂u,PF − Vu

∣∣∣ = Op

(
1

N
1

2|u|

)
.

The interpretation of the rates of convergence is the same as for the double
Monte-Carlo estimators.

E.2 Consistency of the Shapley effect estimators

Now that we have constructed estimators of Wu with an unknown input distribu-
tion, we can obtain estimators of the Shapley effects using the subset and random-
permutation W -aggregation procedures. Note that for each W -aggregation pro-
cedure, we need to choose the accuracy Nu of the (Ŵu)∅ u [1:p]. Although As-

sumption 2 does not hold with the estimators Êu,MC and V̂u,PF (the summands
of these estimators are not independent), we keep choosing Nu = NO = 1 for
the random-permutation W -aggregation procedure and Nu as the closest integer

to Ntotκ
−1

(
p
|u|

)−1

(p − 1)−1 with the subset W -aggregation procedure. To unify

notation, let NI = 2 when the estimators of the conditional elements (Wu)∅ u [1:p]
are the Pick-and-freeze estimators (in this way, NI is the number of nearest neigh-
bours). With the double Monte-Carlo estimators, let NI be a fixed integer (for
example NI = 3).

Finally, recall that for the random-permutation W -aggregation procedure, we
need different estimators (Ŵu(m))m∈[1:M ] = (Ŵu(m)(1))m∈[1:M ] of Wu, with the no-

tation of Assumption 3. In this case, we choose i.i.d. realizations of Ŵu condition-

ally to (X(n))n∈[1:N ]. That is (Ŵu(m))m∈[1:M ] =
(
Ŵu,s(m)

)
m∈[1:M ]

, where Ŵu,s(m) is
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defined by either Equation (2.16), Equation (2.17), Equation (2.21) or Equation
(2.22), and (s(m))m∈[1:M ] are independent and uniformly distributed on [1 : N ].
This enables to have different estimators with a small covariance using the same
sample (X(n))n∈[1:N ]. Indeed, to prove the consistency in Proposition 15 of the
Shapley effects estimator with the random-permutation procedure, we show that
Assumption 5 is satisfied.

Proposition 15. Assume that Assumption 6 holds and Assumption 8 holds for
all subset u, ∅  u  [1 : p]. If f is bounded, then the estimators of the Shapley
effects defined by the random-permutation W -aggregation procedure or the subset
W -aggregation procedure combined with Ŵu = Êu,MC (resp. Ŵu = V̂u,PF ) converge
to the Shapley effects in probability when N and Ntot go to +∞.

Remark 28. The Sobol indices are functions of the (Wu)u⊂[1:p]. Indeed, we can de-
fine the Sobol index of a group of variables Xu by either Su as in [Cha13, BBDM19]
or Sclu as in [IP19], where

Su :=
1

Var(Y )

∑

v⊂u
(−1)|u|−|v|Vv, Sclu :=

Vu
Var(Y )

,

and where we note that Vu = Var(Y )−E−u by the law of total variance. Thus, we
get consistent estimators of the Sobol indices in the general setting of Assumption
6. Note that the sum over u ⊂ [1 : p] of the Sobol indices Sclu is not equal to 1, and
when the inputs are dependent, the Sobol index Su can take negatives values.

E.3 Numerical experiments

In this section, we compute numerically the estimators of the Shapley effects with
an unknown input distribution. As in Section D.2, we choose the linear Gaussian
framework to compute the theoretical values of the Shapley effects.

We now have 8 consistent estimators given by:

• 2 different W -aggregation procedures: subset or random-permutation;

• 2 different estimators of Wu: double Monte-Carlo or Pick-and-Freeze;

• 2 slightly different versions of the estimators of Wu: ”mix” or ”knn”.

We take the same parameters as in Section D.2. The size N of the observed
sample (X(n))n∈[1:N ] is 10000. In Figure 2.3, we plot the theoretical values of the
Shapley effects, together with the boxplots of the 200 realizations of each estimator,
and with a total cost Ntot = 54000 (we assume here that f is a costly computer
code and that for all estimators, the cost is the number of evaluations of f). With
these parameters, each realization requires around 6 minutes and 30 seconds to be
computed on a personal computer.
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Figure 2.3: Estimation of the Shapley effects in the linear Gaussian framework
when we only observe a sample of X. In black (s*) we show the theoretical re-
sults, in red the estimates from the subset W -aggregation procedure with the dou-
ble Monte-Carlo estimator (ss MC mix and ss MC knn), in green the estimates
from the subset W -aggregation procedure with the Pick-and-Freeze estimator
(ss PF mix and ss PF knn), in blue the estimates from the random-permutation
W -aggregation procedure with the double Monte-Carlo estimator (spr MC mix
and spr MC knn) and in yellow the estimates from the random-permutation
W -aggregation procedure with the Pick-and-Freeze estimator (spr PF mix and
spr PF knn).

Remark 29. In the linear Gaussian framework, the function f is not bounded
and the assumptions of Proposition 15 do not hold. We can thus not guarantee
the consistency of the Shapley effects estimators. However, this framework enables
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Figure 2.4: Sum over i of the estimated quadratic risks of the eight estimators
of the Shapley effects in the linear Gaussian framework when we only observe a
sample of X.

to compute the theoretical Shapley effects and we can see numerically that the
estimators seem to be consistent.

We show the sums over i ∈ [1 : p] of their quadratic risks (estimated with 200
realizations) in Figure 2.4. As in Section D.2, the subset W -aggregation proce-
dure is better than the random-permutation W -aggregation procedure and double
Monte-Carlo is better than Pick-and-Freeze. Furthermore, there are no signifi-
cant differences between the version ”mix” and the version ”knn”. Recall that,
in order to compute the estimators with the ”mix” version, we need to call the
computer code of f at new inputs whereas ”knn” only needs an i.i.d. sample
(X(n), f(X(n)))n∈[1:N ].

We now compare the sums over i ∈ [1 : p] of the estimated quadratic risks
of the estimators from the subset W -aggregation procedure with double Monte-
Carlo when we know the distribution of X (results of Section D.2) and when we
just observe a sample of size 10000 (previous results of this section). These values
are equal to 5.9 10−3 when we know the distribution ofX, to 6.6 10−3 when we only
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observe the sample with Êmix
u,MC and to 7.4 10−3 when we only observe the sample

with Êknn
u,MC . Thus, in this linear Gaussian example in dimension 10, replacing the

knowledge of X by a sample of size 10000 does not seem to deteriorate significantly
our estimates of the Shapley effects.

F Application to real data

In this section, we apply the estimator of the Shapley effects given by the subsetW -
aggregation procedure and the double Monte-Carlo estimator Êknn

u,MC in Equation
(2.15) to a real data set. We use the ”depSeuil.dat” data, available at
http://www.math.univ-toulouse.fr/~besse/Wikistat/data from [BMM+07].
This data set contains 10 variables with 1041 sample observations. The variables
are:

• JOUR: type of day (holiday: 1, no holiday: 0);

• O3obs: observed ozone concentration;

• MOCAGE: ozone concentration predicted by a fluid mechanics model;

• TEMPE: temperature predicted by the official meteorology service of France;

• RMH2O: humidity ratio;

• NO2: nitrogen dioxide concentration;

• NO: nitrogen oxide concentration;

• STATION: site of observation (5 different sites);

• VentMOD: wind force;

• VentANG: wind direction.

Here, we focus on the ozone concentration O3obs in function of the nine other
variables. Hence, let Ỹ be the random variable of the ozone concentration and
let X be the random vector containing the nine other random variables. Using
the estimator Êknn

∅,MC of E∅ = E(Var(Ỹ |X)) given by Equation (2.15), with NI = 3

and N∅ = 1000, we estimate the value of Var(E(Ỹ |X))/Var(Ỹ ) to 0.57, whereas
it would be equal to 1 if Ỹ was a function of X. Thus, it seems that the ozone
concentration is not a function of the nine other random variables.

The theory and methodology of this article holds when Ỹ is a deterministic
function of X. Hence, we create metamodels of the ozone concentration in function
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of X, and we write Y the output of the metamodel. In this case, Y is indeed a
deterministic function of X and we can compute the Shapley effects, which now
quantify the impact of the inputs on the metamodel prediction. In practice, we
replace the output column by the fitted values given by the metamodel.

To study the impact of the metamodel on the Shapley effects, we estimate the
Shapley effects corresponding to three metamodels:

• XGBoost, from the R package xgboost, with optimized parameter by cross-
validation;

• generalized linear model (GLM);

• Random Forest, from the R package randomForest, which optimizes auto-
matically the parameters by out-of-bag.

Remark 30. We estimate the value of Var(E(Y |X))/Var(Y ) to 0.90, 0.93 and
0.90 (see Table 2.1) where Y denotes the output of each of the three metamod-
els XGBoost, GLM and Random Forest respectively. In contrast, the estimated
value of Var(E(Ỹ |X))/Var(Ỹ ) is 0.57 when Ỹ denotes the original observed ozone
concentrations. This shows that the predicted values are different from the initial
values of the ozone concentration. Moreover, this shows that the metamodels do
not overfit the data, since the estimated values of Var(E(Y |X))/Var(Y ) are close
to 1. Indeed, that means that the fitted values of the ozone concentration are much
more explained by X and have been smoothed by the metamodels. The values of
Var(E(Y |X))/Var(Y ) = 1−E(Var(Y |X))/Var(Y ) are estimated using the estima-

tor Êknn
∅,MC defined by Equations (2.15) and (2.17) with u = ∅ (that is, the nearest

neighbours are chosen with all inputs). Remark that Êknn
∅,MC is essentially a sum of

square differences between the images of nearest neighbours through the metamodel.
This estimator converges to 0 when the number of observations N goes to +∞ but
it is strictly positive for fixed N when there are continuous inputs. However, if
Êknn

∅,MC > 0 significantly, then there exist nearest neighbours such that their images
through the metamodel are far from each other, and thus the metamodel is not
smooth. Hence, if there is overfitting with the metamodel, the metamodel function
will not be smooth, and this can be detected by high values of Êknn

∅,MC and thus by
estimated values of Var(E(Y |X))/Var(Y ) significantly smaller than one.

In order to assess the quality of the three metamodels, we also give on Table 2.1
the values of the coefficient of determination R2 and the estimate of Var(E(Ỹ |Y ))/
Var(E(Ỹ |X)). Remark that, if Ỹ = f ∗(X) + ε, with ε⊥⊥X and with E(ε) = 0,
and if the metamodel is equal to f ∗, then E(Ỹ |X = x) = E(f ∗(x) + ε) is equal
to E(Ỹ |Y = f ∗(x)). Thus, composing by X and taking the variance, we have
Var(E(Ỹ |Y ))/Var(E(Ỹ |X)) = 1. This shows that values of Var(E(Ỹ |Y ))/Var(E(Ỹ |X))
close to one indicate that the metamodel function is close to f ⋆ and thus indicate
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XGBoost GLM Random Forest

Var(E(Y |X))/Var(Y ) 0.90 0.93 0.90

Var(E(Ỹ |Y ))/Var(E(Ỹ |X)) 1.23 0.99 1.05

R2 0.69 0.54 0.62

Table 2.1: Estimates of three features for the three metamodels.
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Figure 2.5: Estimation of the Shapley effects for three metamodels: XGBoost,
GLM and Random Forest.

a high quality of the metamodel. Hence, one may expect that since the estimated
values of Var(E(Ỹ |Y ))/Var(E(Ỹ |X)) are close to one for the three metamodels in
our case (see Table 2.1), then these metamodels are of high quality.

For each metamodel, we estimate the Shapley effects with the subset W -
aggregation procedure and the double Monte-Carlo estimator Êknn

u,MC , with NI = 3
and Ntot = 50000 (but the real cost is actually 40176, see Remark 18). For each
metamodel, the computation time of all the Shapley effects on a personal computer
is around 5 minutes. The results are presented in Figure 2.5.

We remark that the three metamodels yield similar Shapley effects. This is
reassuring, since observing different behaviours of the metamodels would be a sign
of inaccuracy for some of them. Only two variables have a significant impact on
the ozone concentration: the predicted ozone concentration (MOCAGE) and the
predicted temperature (TEMPE). This comforts the results of [BMM+07] as they
use regression trees whose two most important variables are the predicted ozone

62



CHAPTER 2. GENERAL ESTIMATION OF THE SHAPLEY EFFECTS

concentration and the predicted temperature. All the other variables have a much
smaller impact. The Shapley effect of the predicted temperature is larger than the
one of the predicted ozone concentration. It could be from the better accuracy of
the predicted temperature (given by the official meteorology service of France) than
the predicted ozone concentration (given by a fluid mechanics model). Finally, we
remark that the type of the day (holiday or not) has no impact on the ozone
concentration. The corresponding Shapley effect is even estimated by a slightly
negative value for the GLM, which stems from the small error estimation.

To conclude, the Shapley effect estimator given by the subset W -aggregation
procedure and the double Monte-Carlo estimator Êknn

u,MC enables us to estimate
the Shapley effects on real data. The estimator only requires a data frame of the
inputs-output and handles heterogeneous data, with some categorical inputs and
some continuous inputs. Here, the estimator was applied to a metamodel output.
This illustrates the interest of the Shapley effects (and of sensitivity analysis) to
understand and interpret the predictions of complex black-box machine learning
procedures [RSG16, BGLR18].

This estimator has been implemented in the R package sensitivity as the
function ”shapleySubsetMc”.

G Conclusion

In this chapter, we focused on the estimation of the Shapley effects. We ex-
plained that this estimation is divided into two parts: the estimation of the condi-
tional elements (Wu)∅ u [1:p] and the W -aggregation procedure. We suggested the
new subset W -aggregation procedure and we explained how the already existing
random-permutationW -aggregation procedure of [SNS16] minimizes the variance.
However, the subset W -aggregation procedure is more efficient by using all the
estimates of the conditional elements for each Shapley effect estimation. We high-
lighted this efficiency by numerical experiments. In a second part, we suggested
various estimators of (Wu)∅ u [1:p] when the input distribution is unknown and
when we only observe an i.i.d. sample of the input variables. We proved their con-
sistency and gave the rates of convergence. Then, we used these new estimators
to estimate the Shapley effects with consistency. We illustrated the efficiency of
these estimators with numerical experiments and we tested one estimator on real
heterogeneous data.
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Part III

The Shapley effects using the
Gaussian linear framework
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Chapter 3

The Shapley effects in the
Gaussian linear framework

In this chapter, we focus on the computation of the Shapley effects in the Gaussian
linear framework for two reasons.

Firstly, [OP17] and [IP19] show that the Shapley effects can be explicitly com-
puted in this framework. It is very convenient when we know the difficulties to
estimate the Shapley effects in the general framework (see Chapter 2). Indeed,
in Chapter 2 Section E.3, with 10 input variables, we needed around 6.5 minutes
to provide quite accurate estimates of the Shapley effects using a sample of size
10000. We will see that, in the Gaussian linear framework with 10 inputs variables,
the computation of the Shapley effects is instantaneous.

Secondly, the Gaussian linear framework is widely used to model physical phe-
nomena (see for example [KHF+06, HT11, Ros04]). Indeed, uncertainties are often
modelled as Gaussian variables and an unknown function is commonly estimated
by its linear approximation. Our collaboration with CEA/DES/ISAS/DM2S, and
in particular with Pietro Mosca and Laura Clouvel, helped us to be aware about
some needs in research on nuclear safety. Moreover, as explained in Section 4
of [BBCM20], sensitivity analysis is an important tool in the field of calculation
codes, e.g. in nuclear safety, evaluating the impact of the input uncertainties to
the uncertainty on the output of a computer code, in order to prioritize efforts for
uncertainty reduction. Since the international libraries [McL05, JEF13, JEN11] on
real data from the field of nuclear safety provide the average and covariance matrix
of the input variables, it is natural to model them with the Gaussian distribution.
Moreover, [Clo19] highlights linear relations between some physical quantities.

In Section A, we suggest an algorithm to compute the Shapley effects in the
Gaussian linear framework. In Section B, we give numerical experiments with
an industrial application showed in [MCL+17]. Finally, in Section C, we give a
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conclusion with an introduction to the rest of Part III. Remark that, in this short
chapter, no theoretical result is provide, and it can be seen as an introduction to
Part III.

In this chapter, we assume that X ∼ N (µ,Σ), with Σ ∈ S++
p (R), and that

f : x 7−→ β0 + βTx, for a fixed β0 ∈ R and a fixed vector β ∈ Rp. We can assume
without loss of generality that µ = 0 and β0 = 0, since the Shapley effects do not
depend on these parameters.

A Algorithm

Recall that, in the Gaussian linear framework, the Shapley effects can be computed
using

ηi :=
1

pVar(Y )

∑

u⊂−i

(
p− 1

|u|

)−1 (
Eu∪{i} − Eu

)
. (3.1)

and that, for all subset u ⊂ [1 : p], we have

Eu = Var(βTuXu|X−u) = βTu (Σu,u − Σu,−uΣ
−1
−u,−uΣ−u,u)βu, (3.2)

One issue remains though, namely computing numerically the sum in Equation
(3.1). Indeed, we have to sum over all the subsets of [1 : p] which do not contain
i. We also have to group the subsets u and u ∪ {i}. For this purpose, we suggest
to use the following bijective map:

h :
P([1 : p]) −→ [0 : 2p − 1]

u 7−→ ∑
i∈u 2

i−1.

We remark that:

u ⊂ −i⇐⇒
⌊
h(u)

2i−1

⌋
≡ 0 mod 2.

Finally, we can see that if u ⊂ −i, then h(u ∪ {i}) = h(u) + h({i}).
Based on this map and Equations (3.1) and (3.2), we suggest an algorithm that

we call ”LG-Indices” (for Linear Gaussian). This algorithm computes the Shapley
effects in the linear Gaussian framework.
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Algorithm 2 (LG-Indices)

Inputs: β, Σ.

1. Let Var(Y ) = βTΣβ and let Var(Y |X) = 0.

2. (Compute the conditional variances) For j = 0, · · · , 2p − 1, do the
following:

(a) Compute u = h−1(j).

(b) Compute Eu := Var(Y |X−u) using Equation (3.2).

3. (Compute the Shapley effects) For i = 1, · · · , p, do the following:

(a) Initialize η = (0, · · · , 0) ∈ Rp .
(b) For k = 0, ..., 2p − 1, do the following:

i. If
⌊

k
2i−1

⌋
≡ 0 mod 2, let u = h−1(k) and u ∪ {i} = h−1(k +

2i−1). Then update :

ηi = ηi +

(
p− 1

|u|

)−1 (
Eu∪{i} − Eu

)
. (3.3)

(c) Let ηi = ηi/(pVar(Y )).

Outputs η.

This algorithm has been implemented in the URANIE platform of CEA DEN
and we will see in Section C.1 that an improvement of this algorithm has been
implemented in the R package sensitivity.

B Numerical experiments

B.1 Application on generated data

To position our work with respect to the state of art, we compare the algorithm
”LG-Indices” with the existing algorithms designed to compute the Shapley ef-
fects for global sensitivity analysis suggested in [SNS16]. However, as we focus
on the linear Gaussian framework, for a fair comparison, we adapt the algorithm
suggested in [SNS16] to this particular framework replacing the estimations of
(E(Var(Y |X−u)))u⊂[1:p] by their theoretical values given by Equation (3.2). Hence,
using the terms of Chapter 2, we compare the algorithm ”LG-Indices” with the
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random-permutation W -aggregation procedure (see Section C.2 of Chapter 2) and
with the exact-permutation W -aggregation procedure (see Remark 22 in Section
C.2 of Chapter 2) where the conditional elements are computed by Equation
(3.2). We call these two algorithms ”random-permutation Algorithm” and ”exact-
permutation Algorithm”.

Let us consider a simulated toy example. We generate β by a N (0, Ip) random
variable and Σ by writing Σ = AAT , where the coefficients of A are generated
independently with a standard normal distribution.

First, we compare ”LG-Indices” with exact-permutations Algorithm. Both
provide the exact Shapley values but with different computational times. Table
3.1 provides the computation times in seconds for different values of p, the number
of input variables.

p = 6 p = 7 p = 8 p = 9 p = 10

exact-permutations 0.11 0.78 7.31 77.6 925

LG-Indices 0.004 0.008 0.018 0.039 0.086

Table 3.1: Computational time (in seconds) for exact-permutations Algorithm and
LG-Indices for different values of p.

We remark that ”LG-indices” is much faster than exact-permutations Algo-
rithm.

We can also compare ”LG-Indices” with random-permutations Algorithm. For
the latter, we chooseM , the number of permutations generated in random-permutations
Algorithm, so that the computational time is the same as LG-Indices. Yet, while
our algorithm gives the exact Shapley effects, the random-permutations Algorithm
provides an estimation of them. Hence, the performance of the latter algorithm is
evaluated by computing the coefficients of variation in %, for different values of p.
We give in Table 3.2 the average of the p coefficients of variations. We recall that
the coefficient of variation corresponds to the ratio of the standard deviation over
the mean value. We see that the random-permutation Algorithm has quite large
coefficients of variation when we choose M so that the computational time is the
same as our algorithm. However, this variation decreases with the number of in-
puts p. We can explain that by saying that the computational time of LG-Indices
is exponential with p. So, we can see that the precision of random-permutations
Algorithm increases with M .
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p = 3 p = 4 p = 5 p = 6 p = 7

M chosen 10 12 18 30 50

mean of coefficients of variation 31% 26% 22% 18% 13%

Table 3.2: Mean of the coefficients of variation of Shapley effects estimated by
random-permutations Algorithm for the same computational time as LG-Indices.

B.2 Application on nuclear data

We present here an industrial application related to safety studies of pressurized
water reactors (PWR) detailed in [Clo19] (Chapter V, Section 3.2.2). Here, the
quantity of interest Y is the neutron fluence in a hot spot used to monitor the
effects of irradiation on the vessel of a PWR. The quality of radiation damage
prediction depends in part on the fast neutron flux. The objective is to identify
the parameters which could, with a better knowledge, reduce the uncertainty of
the fast neutron flux.

Here, we focus on the propagation of the uncertainty of the released power
of 235U from 24 different locations in the PWR (see Figure V.17 of [Clo19] for
the names of the different locations). As mentioned above, the Gaussian linear
framework is a favorable setting.

We present in Figure 3.1 the Shapley effects computed by Algorithm 2 on a
linear model of the neutron fluence in function of the released power of 235U from
24 different locations. As pointed out by [Clo19], the peripheral locations (A9,
A8) that are closest to the hot spot, are those with the highest Shapley effects.
Here, the Shapley effects in dimension 24 have been computed in 8 hours.

C Conclusion and preamble to the other chap-

ters of Part III

We have seen that the Gaussian linear framework is very convenient to compute
the Shapley effects. We gave an algorithm that compute the exact values of the
Shapley effects. Hence, in the rest of Part III, we develop these works on the
Gaussian linear framework.

Chapter 4 deals with the computation cost when the number of input variables
p is larger than 30, using block-diagonal structures of the covariance matrix. The
setting of Chapter 4 is wider than the Gaussian linear framework with block-
diagonal covariances but concludes by giving Algorithm 3, with an improvement
of Algorithm 2 in this particular setting. We give an industrial application on real
data from the field of nuclear safety that can only be treated by Algorithm 3.
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Chapter 4

Shapley effects and Sobol indices
for independent groups of
variables

A A high-dimensional problem

Despite the analytical formula from Equation (1.26), the computational cost of
the Shapley effects in the Gaussian linear framework remains an issue when the
number of input variables p is too large. Based on an implementation in the
R software, Algorithm 2 provides almost instantaneous results for p ≤ 15, but
becomes impracticable for p ≥ 30. Indeed, we have to compute and to store 2p

values, namely the (Eu)u⊂[1:p], and this can be a significant issue.

Fortunately, when p is large, it can frequently be the case that there are inde-
pendent groups of random variables. That is, after a permutation of the variables,
the covariance matrix Σ is a block-diagonal matrix. We show that, in this case,
this high dimensional computational problem boils down to a collection of lower
dimensional problems.

In the following, we give theoretical results in the general case, and not only
for Gaussian linear models. Then, we focus on these results in the particular case
of the Gaussian linear models.
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B Sensitivity indices with independent groups of

variables

B.1 Notations for the independent groups for general mod-
els

Let B = {B1, ..., BK} be a partition of [1 : p] such that the groups of random
variables (XBj

)j∈[1:K] are independent. Let Aj := XBj
. Let us write

Y = f(X1, ..., Xp) = g(A1, ..., AK).

Is w ⊂ [1 : K], we define
V g
w := Var(E(Y |Aw)).

As the inputs (A1, ...AK) are independent, the Hoeffding decomposition (see Propo-
sition 1 of Chapter 1) of g is given by:

g(A) =
∑

w⊂[1:K]

gw(Aw). (4.1)

Similarly to Definition 4 and Equation (1.8) in Chapter 1, the Sobol indices of g
are given by

Sgw :=
Var(gw(Aw))

Var(Y )
=

1

Var(Y )

∑

z⊂w
(−1)|w|−|z|V g

z . (4.2)

Remark 31. As the inputs (A1, ..., AK) are independent, the Sobol index Sgw of
g is the variance of gw divided by Var(Y ) and so is non-negative. Moreover, we
can estimate it without trouble because the quantities (V g

z )z⊂w are easy to estimate
(using the Pick-and-Freeze estimators for example).

We also define
V g,w
u := Var(E(gw(Aw)|Xu)).

Writing Bw :=
⋃
j∈w Bj, we have V g,w

u = V g,w
u∩Bw

. If u ⊂ Bw, let S
g,w
u be the Sobol

index of Xu on gw:

Sg,wu :=
1

Var(gw(Aw))

∑

v⊂u
(−1)|u|−|v|V g,w

v .

Equivalently, if i ∈ Bw, let η
g,w
i be the Shapley effect of Xi on gw:

ηg,wi =
1

|Bw|Var(gw(Aw))
∑

u⊂Bw\{i}

(
|Bw| − 1

|u|

)−1

(V g,w
u∪i − V g,w

u ). (4.3)

Finally, for all i ∈ [1 : p], let j(i) ∈ [1 : K] be the index such that i ∈ Bj(i).
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B.2 Main results for general models

We will study the Sobol indices and the Shapley effects in the case of block-
independent variables. First, we show a proposition about the (Vu)u⊂[1:p].

Proposition 16. For all u ⊂ [1 : p], we have:

Vu =
∑

w⊂[1:K]

V g,w
u∩Bw

. (4.4)

Dividing by the variance of Y , we can deduce directly an identical decomposi-
tion for the closed Sobol indices defined by Equation (1.1).
We then provide a consequence of Proposition 16 on Sobol indices:

Proposition 17. For all u ⊂ [1 : p], we have:

Su =
∑

w⊂[1:K],
s.t. u⊂Bw

SgwS
g,w
u . (4.5)

Proposition 17 improves the interpretation of the Sobol indices. It states that
the Sobol indices for the output Y are linear combinations of the Sobol indices
when considering the outputs gw(Aw) and that the weighting coefficients are the
Sgw.

This proposition can be beneficial for the estimation of the Sobol indices. We
could estimate the coefficients Sgw by Pick-and-Freeze. If many of them are close
to 0, the corresponding Sobol indices Sg,wu are irrelevant for the total output Y ,
and it is unnecessary to estimate them.

We also provide a consequence of Proposition 16 on Shapley effects:

Proposition 18. For all i ∈ [1 : p], we have

ηi =
∑

w⊂[1:K],
s.t. j(i)∈w

Sgwη
g,w
i . (4.6)

As for the Sobol indices, Proposition 18 provides the computation of the Shap-
ley effects for the output Y by summing the Shapley effects when considering the
outputs gw(Aw) and multiplying them by the coefficient Sgw.

B.3 Main results for block-additive models

B.3.i) Theoretical results

In the following, we detail the consequences of Propositions 17 and 18 to the
particular case of a block-additive model:

Y =
K∑

j=1

gj(Aj), (4.7)
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i.e. when the functions (gw)w⊂[1:K] of the Hoeffding decomposition are equal to 0
except for w equal to a singleton.

Corollary 3. If the model is block-additive, for all u such that u 6⊂ Bj for all j,
we have Su = 0.

This corollary states that the majority of Sobol indices for block additive mod-
els a equal to zero. It remains only

∑K
j=1 2

Bj − 1 unknown non-zero Sobol indices
instead of 2p − 1.

Corollary 4. For block-additive models, we have

ηi = Sgj(i)η
g,j(i)
i . (4.8)

For example, if we apply this corollary in the case where Xi is the only variable
in its group, then we have ηi = Si.
To compute the Shapley effect ηi in block additive models, the previous corollary
reduces the sum from all the subsets of [1 : p] \ {i} to all the subset of Bj(i) \ {i}.
Then, the computational gain is the same as in Corollary 3.

C Linear Gaussian framework with independent

groups of variables

C.1 Algorithm ”LG-GroupsIndices”

As we explained in Section A, the computation of the Shapley effects in the Gaus-
sian linear framework appears impracticable when the dimension p is large. How-
ever, when there are independent groups of variables, Corollaries 3 and 4 show
that this high dimensional computational problem boils down to a collection of
lower dimensional problems.

In this framework, we have seen in Corollaries 3 and 4 that we only have to
calculate the

∑k
j=1 2

|Bj | values {Var(Y |Xu), u ⊂ Bj, j ∈ [1 : K]} instead of all
the 2p values {Var(Y |Xu), u ⊂ [1 : p]}. We detail this idea in the algorithm
”LG-GroupsIndices”.

Algorithm 3 (LG-GroupsIndices)

Inputs: β, Σ.

1. By Breath-First-Search (BFS), let B1, ..., BK be the independent
groups of variables.

76



CHAPTER 4. SHAPLEY EFFECTS AND SOBOL INDICES FOR
INDEPENDENT GROUPS OF VARIABLES

2. Let η be a vector of size p.

3. For j = 1, ..., K, do the following:

(a) Let η̃ ∈ R|Bj | be the output of the algorithm LG-Indices with
the inputs βBj

and ΣBj ,Bj
.

(b) Let

ηBj
=
βTBj

ΣBj ,Bj
βBj

βTΣβT
η̃.

Ouputs: η.

This algorithm has been implemented in the R package sensitivity as the
function ”ShapleyLinearGaussian”.

The complexity of the computation of the Shapley effects is O(K2m), where K
denotes the number of groups and m denotes the size of the maximal group. Note
that the complexity of BFS is O(pm2).
To find the independent groups of variables by BFS (see for example [Ski98], section
5.7.1), one can for example use the function ”graph from adjacency matrix” of the
R package igraph[CN06].

C.2 Numerical experiments

With independent groups of inputs, to the best of our knowledge, LG-GroupsIndices
is the only algorithm which can compute the exact Shapley effects for large values
of p (the number of inputs). Indeed, random-permutations Algorithm can han-
dle large values of p but always computes estimations of Shapley effects. On the
other hand, LG-Indices computes exact Shapley effects but becomes too costly for
p ≥ 20 (the computation time is exponential in p).

First, we compare the computation time of LG-Indices and LG-GroupsIndices
for low values of p on a toy simulated example as in Section B of Chapter 3. We
generate K independent groups of m variables (with the same size). We give these
results in Table 4.1.

Now, we compare LG-GroupsIndices with random-permutations Algorithm as
in Section B of Chapter 3: we chooseM so that the computational time is the same
and we give the average c of the p coefficients of variation of random-permutations
Algorithm in Table 4.2.

Here, the mean of the coefficients of variation remains quite large (around 35%)
when we chose K = m. However, when we choose K larger (resp. lower) than m,
this variation increases (resp. decreases).
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K = 3 K = 4 K = 4 K = 5

m = 3 m = 3 m = 4 m = 4

LG-Indices 0.04 0.47 8.45 168.03

LG-GroupsIndices 0.002 0.003 0.004 0.007

Table 4.1: Computation time (in seconds) for LG-Indices and LG-GroupsIndices
for different values of K and m.

K = 3 K = 4 K = 5 K = 6 K = 10 K = 5

m = 3 m = 4 m = 5 m = 6 m = 5 m = 10

M chosen 7 8 9 10 5 98

c 34% 38% 34% 36% 40% 12%

Table 4.2: Mean of the coefficients of variation c of Shapley effects estimated
by random-permutations Algorithm for the same computational time as LG-
GroupsIndices.

C.3 Application on nuclear data

We could apply Algorithm 3 to nuclear data thanks to our collaboration with
Laura Clouvel, from CEA/DES/ISAS/DM2S/SERMA.

In this application, the output is the neutron flux Y which is a quantity of
interest in safety nuclear reactor studies. For example, it can be calculated to
evaluate the vessel neutron irradiation which is in fact one of the limiting factors
for pressurized water reactor (PWR) lifetime (see Chapter 3 Section B.2).

As in the previous nuclear application, the cross sections are the inputs X of
our model. The values of the cross sections and their uncertainties are provided
by international libraries as the American Library ENDF/B-VII [McL05], the Eu-
ropean library JEFF-3 [JEF13], and the Japan Library JENDL-4 [JEN11]. Using
the standardized format, each cross section is defined for an isotope iso of the
target nuclei, an energy level E of the target nuclei and a reaction number mt (see
[McL05] for more information on mt numbers).

We assume that if (iso,mt) 6= (iso′,mt′), then, X(iso,mt,E) ⊥⊥X(iso′,mt′,E′) for any
E,E ′. Thus, the covariance Σ is block-diagonal, where each block corresponds to
a value of (iso,mt). Here, we have 292 input variables divided in 50 groups of
size between 2 and 18. Using reference data, [Clo19] has shown that the pertur-
bation of the cross sections of the 56Fe, 1H, 16O isotopes are linearly related to the
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Figure 4.1: Shapley effects of all the cross sections.

perturbation of the flux:

Y =
∑

j∈{(iso,mt,E)}
βjXj. (4.9)

Thus, the Shapley effects are easily computable using Algorithm 3. We show the
values of the Shapley effects in Figure 4.1.

We can remark that almost all the Shapley effects are close to 0. Now, we plot
all the Shapley effects that are larger than 1% on Figure 4.2 with the names of
the corresponding cross sections. For example, ”Fe56 S4 950050” means the cross
section for the isotope 56Fe, the reaction scattering 4 and a level of energy larger
than 950050eV (and smaller than 1353400eV ).

We remark than only 23 cross sections have a Shapley effect larger than 1%.
The latter are associated with the lower energies (around 1 to 6 MeV ). Moreover,
they all come from three different groups of (iso,mt): (56Fe, scattering 4), (56Fe,
scattering 2) and (1H, scattering 2).

We can notice that all the Shapley effects of the cross sections from (1H, scatter-
ing 2) are close, and that comes from the fact that the correlations between these
different levels of energy are close to 1 in this group. We can find in [BBCM20] a
physical interpretation of these Shapley effects which is insightful and consistent
with the available expert knowledge.
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Figure 4.2: Shapley effects larger than 1%.

D Conclusion

In Chapter 4, we gave new theoretical results about the variance-based sensitiv-
ity indices for independent groups of inputs. These results drastically reduce the
computational cost of these indices when the model is block-additive. Then, we
applied these results to the linear Gaussian framework and we suggested an algo-
rithm that computes efficiently the Shapley effects for a block diagonal covariance
matrix. Numerical experiments on Shapley effects computations highlight this
efficiency and the benefit compared to existing methods.
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Chapter 5

Estimation of the Shapley effects
in the Gaussian linear framework
with unknown parameters

A Introduction

In Chapter 4, we have seen Algorithm 3 which computes the Shapley effects in the
Gaussian linear framework for large values of p when the block-diagonal covariance
matrix Σ and the linear model β are available. However, in many cases, these
parameters are unknown, and we only observe a sample of the inputs-output. In
this setting, the Shapley effects need to be estimated, replacing the true vector β by
its estimation and the theoretical covariance matrix Σ by an estimated covariance
matrix.

There exists a fair amount of work on high-dimensional covariance matrix es-
timation. Many researchers took an interest in the empirical covariance matrix in
high dimension [MP67, Wac78, Sil85, BS10a]. For particular covariance matrices,
different estimators than the empirical covariance matrix can be preferred. For
some well-conditioned families of covariance matrices, [BL08] suggests a banded
version of the empirical covariance matrix, and several works address the problem
of estimating a sparse covariance matrix [HLPL06, LF09, EK08].

However, in general, given a high-dimensional covariance matrix, we have seen
that the computation cost of the corresponding Shapley effects using Algorithm 2
or Algorithm 3 grows exponentially with the dimension. The only setting where
a procedure to compute the Shapley effects with a non-exponential cost is the
setting of block-diagonal matrices, using Algorithm 3. Hence, in high dimension,
block-diagonal covariance matrices are a very favorable setting for the estimation
of the Shapley effects. Thus, we focus on the estimation of high-dimensional block-
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diagonal covariance matrices. In contrast, we remark that the above methods are
not relevant for the estimation of the Shapley effects, since they do not provide
block-diagonal matrices.

In our framework, we assume that the true covariance matrix is block-diagonal
and we want to estimate this matrix with a similar structure to compute the
deduced Shapley effects. Some works address the block-diagonal estimation of
covariance matrices. [PDLL18] gives a numerical procedure to estimate such co-
variance matrices and [HSNP15] suggests a test to verify the independence of the
blocks. A block-diagonal estimator of the covariance matrix is proposed in [DG18].
The authors of [DG18] choose a more general framework, without assuming that
the true covariance matrix is block-diagonal. They obtain the estimated block-
diagonal structure by thresholding the empirical correlation matrix. They also
give theoretical guaranties by bounding the average of the squared Hellinger dis-
tance between the estimated probability density function and the true one. This
bound depends on the dimension p and the sample size n. When p/n converges
to some constant y ∈]0, 1[, this bound is larger than 1 and is no longer relevant as
the Hellinger distance is always smaller than 1.

Here, we focus on the high dimension setting, when p/n converges to some
constant y ∈]0, 1[, and when the true covariance matrix is assumed to be block-
diagonal. We give different estimators of the block-diagonal structure and we
show that their complexity is small. Then, we provide new asymptotic results
for these estimators. Under mild conditions, we show that the estimators of the
block structure are equal to the true block structure, with probability converging to
one. Furthermore, the square Frobenius distance between the estimated covariance
matrices and the true one, normalized by p, converges to zero at rate 1/n. Thus,
our work complements the one of [DG18]. We also study the fixed-dimensional
setting, where we show that one of our suggested estimators is asymptotically
efficient.

From the estimated block-diagonal covariance matrices, we deduce estimators
of the Shapley effects in the high dimensional linear Gaussian framework, with
reduced computational cost. We recall that in high dimension, the computation
of the Shapley effects requires that the corresponding covariance matrix be block-
diagonal. We show that the relative estimation error of these estimators goes to
zero at the parametric rate 1/n1/2, up to a logarithm factor, even if the linear
model is estimated from noisy observations.

Our convergence results are confirmed by numerical experiments.We also apply
our algorithm to semi-generated data from nuclear applications.
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B Estimation of block-diagonal covariance ma-

trices

B.1 Problem and notation

We assume that we observe (X(l))l∈[1:n], an i.i.d. sample with distribution N (µ,Σ),
where µ ∈ Rp and Σ are not known. We assume that Σ = (σij)i,j∈[1:p] ∈ S++

p (R)
and has a block-diagonal decomposition. To be more precise on this block-diagonal
decomposition, we need to introduce some notation.

Let us write Pp the set of all the partitions of [1 : p]. We endow the set
Pp with the following partial order. If B,B′ ∈ Pp, we say that B is finer than
B′, and we write B ≤ B′, if for all A ∈ B′, there exists A1, ..., Ai ∈ B such
that A =

⊔i
j=1Aj. We also compare the elements of a partition B ∈ Pp with

their smallest element; that enables us to talk about ”the k-th element” of B. If
B ∈ Pp and a1, ..., ai ∈ [1 : p], we write (a1, ..., ai) ∈ B if there exists A ∈ B such
that {a1, ..., ai} ⊂ A (in other words, if a1, ..., ai are in the same group of B). If
Γ ∈ S++

p (R) with Γ = (γij)i,j∈[1:p] and if B ∈ Pp, we define ΓB by

(ΓB)i,j =

{
γij if (i, j) ∈ B

0 otherwise.

Let us define

S++
p (R, B) := {Γ ∈ S++

p (R) | Γ = ΓB, and ∀B′ < B, Γ 6= ΓB′},

where we defineB′ < B ifB′ ≤ B and ifB′ 6= B. Thus S++
p (R) =

⊔
B∈Pp

S++
p (R, B)

and for all Γ ∈ S++
p (R), we can define an unique B(Γ) ∈ Pp such that Γ ∈

S++
p (R, B(Γ)). Here, we assume that Σ ∈ S++

p (R, B∗), i.e. B∗ is the finest decom-
position of Σ, i.e. B(Σ) = B∗. We say that Σ has a block-diagonal decomposition
B∗.

We also write

Xn :=
1

n

n∑

l=1

X(l),

and

Sn :=
1

n

n∑

l=1

(X(l) −Xn)(X
(l) −Xn)

T ,

which are the empirical estimators of µ and Σ. To simplify notation, we write
X for Xn and S for Sn (the dependency on n is implicit). We know that, for
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all Γ ∈ S++
p (R), X maximizes the likelihood LΓ,m(X

(1), ..., X(n)) over the mean
parameter m, where

LΓ,m(X
(1), ..., X(n)) :=

1

(2π)
n
2 |Γ| 12

exp

(
−1

2

n∑

l=1

(X(l) −m)TΓ−1(X(l) −m)

)
,

and |Γ| is the determinant of Γ. Thus, for all Γ ∈ S++
p (R), we define

lΓ := −2

p
log
(
LΓ,X(X

(1), ..., X(n))
)
− n

p
log(2π) =

1

p

(
log |Γ|+ Tr(Γ−1S)

)
.

As we assume that the true covariance matrix is block-diagonal, we consider a
block-diagonal promoting penalization of the form

pen(Γ) := pen(B(Γ)) :=
K∑

k=1

p2k,

if B(Γ) = {B1, ..., BK} and |Bk| = pk for all k ∈ [1 : K]. We consider the penalized
log-likelihood criterion

Φ :
S++
p (R) −→ R

Γ 7−→ lΓ + κ pen(Γ),

where κ ≥ 0. In this work, we suggest to estimate Σ by the minimizer of Φ, for
some choice of penalisation κ. First, we show in Proposition 19 that a minimizer
of Φ can only be a block-diagonal decomposition of S.

Proposition 19. If Γ is a minimizer of Φ, then, there exists B ∈ Pp such that
Γ = SB.

Hence, the minimization problem on S++
p (R) becomes a minimization problem

on the finite set {SB, B ∈ Pp}. So, we define Ψ(B) := Φ(SB) and we suggest to
estimate B∗ by

B̂tot := argmin
B∈Pp

Ψ(B), (5.1)

as the minimum structure of the penalized log-likelihood. In Section B, we study
theoretically this estimator of B∗. However, it is unimplementable in high dimen-
sion since the number of partitions B ∈ Pp is too large. Hence, we will also define
other estimators less costly, and study them theoretically.
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B.2 Convergence in high dimension

B.2.i) Assumptions

In Section B.2, we assume that p and n go to infinity. The true covariance matrix
Σ is not constant and depends on n (or p). Nevertheless, to simplify notation, we
do not write the dependency on n. In all Section B.2, we choose a penalisation
coefficient κ = 1

pnδ for a fixed δ ∈]1/2, 1[.
We also add the following assumptions on Σ along Section B.2.

Condition 1. p/n −→ y ∈]0, 1[.
Condition 2. There exist λinf > 0 and λsup < +∞ such that, for all n, the
eigenvalues of Σ are in [λinf , λsup].

Condition 3. There exists m ∈ N∗ such that for all n, all the blocks of Σ are
smaller than m, i.e. ∀A ∈ B∗, we have |A| ≤ m.

For a q × q matrix M = (mij)(i,j)∈[1:q]2 , we let ‖M‖max = max(i,j)∈[1:q]2 |mij|.
Condition 4. There exists a > 0 such that for all n and for all B < B∗, we have
‖ΣB − Σ‖max ≥ an−1/4.

These four mild assumptions are discussed in Section B.2.iv). However, we also
focus on the case when Condition 4 does not hold. We will provide similar results,
both when assuming Conditions 1 to 4, and when only Conditions 1, 2 and 3 hold.

B.2.ii) Convergence of B̂tot and reduction of the cost

Now that we have defined our estimator B̂tot of the true decomposition B∗ in
Equation (5.1) and we have added assumptions in Section B.2.i), we give the con-

vergence of B̂tot in Proposition 20. Although B̂tot is not computable in practice, its
convergence remains interesting to strengthen the choice of the penalized likelihood
criterion and will be useful to prove the convergence of more practical estimators.
In Section B.2, all the limits statements are given as n, p→ +∞.

Proposition 20. Under Conditions 1 to 4 and for a fixed δ ∈]1/2, 1[, we have

P
(
B̂tot = B∗

)
−→ 1.

Hence, under Conditions 1 to 4, the estimator B̂tot is equal to the true de-
composition B∗ with probability which goes to one. When Condition 4 does not
hold, we can not state such a convergence result but we get a weaker result in
Proposition 21. In this case, we need to define B(α) as the partition given by
thresholding Σ by n−α. In other words, B(α) is the smallest (or finest) partition
B such that ‖ΣB − Σ‖max ≤ n−α.
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Proposition 21. Under Conditions 1, 2 and 3, for all α1 < δ/2 and α2 > δ/2,
we have

P
(
B(α1) 6> B̂tot ≤ B(α2)

)
−→ 1,

where B(α1) 6> B̂tot means ”the partition B(α1) is not strictly greater (in the sense

given in Section B.1) than B̂tot”.

Thus, we defined a consistent estimator of B∗ that theoretically solves our
problem of the lack of knowledge of the true decomposition B∗. However, com-
puting B̂tot is very costly in practice. Indeed, the number of partitions of [1 : p]
(the Bell number) is exponential in p. As in [DG18], we suggest to restrict our
estimates of B∗ to the partitions given by thresholding the empirical correlation
matrix Ĉ := (Ĉij)i,j∈[1:p] where Ĉij := sij/

√
siisjj, with S = (sij)(i,j)∈[1:p]2 . If

λ ∈ [0, 1], let Bλ be the finest partition of the thresholded empirical correlation

matrix Ĉλ := (Ĉij1|Ĉi,j |>λ)i,j≤p. In other words, Bλ := B(Ĉλ). For some value

λ ∈ [0, 1], Bλ can be found by ”Breath-First-Search” (BFS) [Lee61]. Furthermore,
we do not need to compute Bλ for all λ ∈ [0, 1] and we suggest in the following
three different choices of grids for λ.

First, we suggest the grid AĈ := {|Ĉij| | 1 ≤ i < j ≤ p} and we define the

estimator B̂Ĉ := argmin
Bλ | λ∈A

Ĉ

Ψ(B). This grid is the finest one because that gives

all the partitions {Bλ| λ ∈]0, 1[}. Almost surely, the coefficients (Ĉij)i<j are all
different. Thus, when we increase the threshold to the next value of AĈ , we only
remove two symmetric coefficients from the empirical correlation matrix.

Proposition 22. The computational complexity of B̂Ĉ is O(p4).

Using the rate of convergence of the estimated covariances and by Condition
4, we then suggest the estimator B̂λ := Bn−1/3 , the partition of the empirical
correlation matrix thresholded by n−1/3. With this threshold, we can not find
all the partitions given by thresholded correlation matrix, but we only have to
threshold by only one value.

Proposition 23. The computational complexity of B̂λ is O(p2).

One can see that reducing the grid of thresholds to one value reduces the
complexity of the estimator of B∗. Finally, we suggest a third grid, in the case
where the maximal size of the groups m is known.

Let As := {s/p, (s+ 1)/p, ..., (p− 1)/p, 1}, where s is the smallest integer such
that all the groups of Bs/p have a cardinal smaller than m. The deduced estimator

is B̂s := argmin
Bλ | λ∈As

Ψ(B). So, this grid is the set {l/p | l ∈ [1 : p]} restricted to the

thresholds that give fine enough partition (with groups of size smaller than m).
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Proposition 24. The computational complexity of B̂s is O(p
2).

One can see that the complexity of this estimator is as small as the complexity
of the previous estimator B̂λ. Furthermore, it ensures that the estimated blocks
are not too large, which was not the case with the previous estimator. However,
the computation of B̂s requires the knowledge of m while the other estimators do
not.

Now that we have defined new estimators of B∗, we give their convergence in
the following proposition.

Proposition 25. Let B̂ be either B̂tot, B̂Ĉ , B̂λ or B̂s indifferently. Under Con-
ditions 1 to 4 and for a fixed δ ∈]1/2, 1[, we have

P
(
B̂ = B∗

)
−→ 1.

When Condition 4 is not satisfied, we do not study the convergence of the
previous estimators. In this case, we suggest to estimate B∗ by Bn−δ/2 , which is
the partition given by the empirical correlation matrix thresholded by n−δ/2. The
complexity of this estimator is O(p2), as for the previous estimator B̂λ = Bn−1/3 .
We show the convergence of this estimator in Proposition 26.

Proposition 26. Under Conditions 1, 2 and 3, if α1 < δ/2 and α2 > δ/2,

P (B(α1) ≤ Bn−δ/2 ≤ B(α2)) −→ 1.

As Condition 4 is not satisfied, the true partition B∗ is again not reached by
this estimator. Nevertheless, we get stronger results for the practical estimator
Bn−δ/2 than for the theoretical estimator B̂tot when Condition 4 is not verified.
Indeed, the condition ”to be larger or equal than” is stronger that ”not to be
smaller than”.

B.2.iii) Convergence of the estimator of the covariance matrix

We have seen in Propositions 25 and 26 how to estimate the decomposition B∗

by B̂. Now to estimate the covariance matrix Σ, it suffices to impose the block-
diagonal decomposition B̂ to the empirical covariance matrix SB̂. We show in
Proposition 27 that the resulting block-diagonal matrix estimator SB̂ reaches the
optimal rate of convergence under Conditions 1 to 4.
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Proposition 27. Let ‖ · ‖F be the Frobenius norm defined by ‖Γ‖2F :=
∑p

i,j=1 γ
2
ij.

Let B̂ be either B̂tot, B̂Ĉ , B̂λ or B̂s. Under Conditions 1 to 4 and for a fixed
δ ∈]1/2, 1[, we have

1

p
‖SB∗ − Σ‖2F = Op(1/n)

and
1

p
‖SB̂ − Σ‖2F = Op(1/n).

Moreover, it is the best rate that we can have because

1

p
‖SB∗ − Σ‖2F 6= op(1/n).

Thus, we see that the quantity 1
p
‖SB̂ − Σ‖2F decreases to 0 in probability with

rate 1/n, which is the same rate as SB∗ if we know the true decomposition B∗.
Thus, the lack of knowledge of B∗ does not deteriorate the convergence of our
estimator.

Now that we have given the rate of convergence of our estimator SB̂, we com-
pare it with that of the empirical estimator S in the next proposition.

Proposition 28. Under Conditions 1 and 2, the rate of the empirical covariance
is

1

p
‖S − Σ‖2F = Op(p/n).

and we have

E

(
1

p
‖S − Σ‖2F

)
≥ λ2infp

2n
.

So, we know that 1
p
‖S − Σ‖2F is lower-bounded in average and is bounded in

probability. Thus, the rate of convergence of our suggested estimator SB̂ is better
than the empirical covariance matrix S.

If Condition 4 does not hold, the rate of convergence is given in the following
proposition.

Proposition 29. Under Conditions 1, 2 and 3, for all δ ∈]0, 1[ and for all ε > 0,
we have

1

p
‖SB

n−δ/2
− Σ‖2F = op

(
1

nδ−ε

)
.

We remark that, for δ close to 1, this rate of convergence almost reaches the
optimal rate of SB∗ , whereas the partition estimator Bn−δ/2 does not reach the true
decomposition B∗. That comes from the fact that the elements σij of Σ such that
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the indices (i, j) are not in the estimated partition Bn−δ/2 are small (with high
probability). Hence, estimating these values by 0 does not increase so much the
error 1

p
‖SB

n−δ/2
− Σ‖2F .

Theoretical guaranties for a block-diagonal estimator of the covariance matrix
are also provided in [DG18]. Their framework is more general, with a true co-
variance matrix which is not necessarily block-diagonal. They bound the average
of the square Hellinger distance between the true normal density and the density
with the block-diagonal estimated covariance matrix. However, when p/n does
not go to 0, their theoretical results becom uninformative. Indeed, they give an
upper-bound which is larger than one, while the square Hellinger distance remains
always smaller than 1.

B.2.iv) Discussion about the assumptions

For the previous results, we needed to make four assumptions on Σ (Conditions 1
to 4, given in Section B.2.i)).

Condition 1 provides a standard setting for high-dimensional problems, in par-
ticular for estimation of covariance matrices [MP67, Sil85]. Studying an higher
dimensional setting where p/n −→ +∞ would be interesting in future work.

Condition 2 is needed to bound the operator norm of Σ and Σ−1 and the eigen-
values of the empirical covariance matrix (with high probability). It also enables
to bound the diagonal terms of Σ, which allow to derive the rate of convergence of
each component of the empirical covariance matrix (using in particular Bernstein’s
inequality, see the proofs for more details).

Condition 3 states that the blocks of the true decomposition have a maximal
size. It implies that the number of non-zero terms of Σ is O(p).

Condition 4 requires that a finer block decomposition ΣB is not too close to
the true Σ. This condition is needed to not confuse B∗ with a finer decomposition.
However, Condition 4 seems to be less mild than the others. That is why we also
focus on the case when Condition 4 is not satisfied.

Nevertheless, even Condition 4 is not so restrictive. Indeed, we suggest in
Proposition 30 a reasonable example where Σ is randomly generated and where a
condition similar to Condition 4 holds.

Proposition 30. Let L ∈ N and ε > 0. Assume that for all p, Σ is generated in
the following way:

• Let B∗ be a partition of [1 : p] such that all its elements have a cardinal
between 10 and m ≥ 10. Let K be the number of groups (the cardinal of B∗).
For all k ∈ [1 : K], let pk be the cardinal of the ”k-th element” of B∗.
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• For all k ∈ [1 : K], let (U
(l)
i )i∈[1:pk], l∈[1:L] be i.i.d. with distribution U([−1, 1]).

Let U ∈ ML,pk(R) such that the coefficient (l, i) is U
(l)
i . Let ΣB∗

k
= UTU +

εIpk , where ΣB∗
k
is the sub-matrix of Σ indexed by the elements of B∗

k.

• Let σij = 0 for all (i, j) /∈ B∗.

Then, Conditions 2 and 3 are verified and the following slightly modified version
of Condition 4 is satisfied for all a > 0:

P
(
∃B < B∗, ‖ΣB − Σ‖max < an− 1

4

)
−→ 0.

Thus, if p/n −→ y ∈]0, 1[, the conclusions of Propositions 20, 25 and 27 remain
true when the probabilities are defined with respect to Σ and X which distribution
conditionally to Σ is N (µ,Σ).

B.2.v) Numerical applications

We present here numerical applications of the previous results with simulated data.
We generate a covariance matrix Σ as in Proposition 30 with blocks of random
size distributed uniformly on [10 : 15], with L = 5 and ε = 0.2. We assume here
that we know that the maximal size of the block is m = 15, so we can use the
estimator B̂ = B̂s given in Proposition 25 to reduce the complexity to O(p2) and
to prevent the blocks from being too large.

We plot in Figure 5.1 the Frobenius norm of the error of the empirical covariance
matrix S and the Frobenius norm of the error of the suggested estimator SB̂, with

n = N p for different values of N . We can remark that the error of S is in
√
K

(where K is the number of groups) whereas the error of SB̂ stays bounded as in
Proposition 27. For K = 100, the Frobenius error of SB̂ on Figure 5.1 is about 10
times smaller than the one of S.

B.3 Convergence and efficiency in fixed dimension

In this section, p and Σ are fixed and n goes to +∞. We choose a different
penalisation κ = 1

pnδ with δ ∈]0, 1/2[ (instead of δ ∈]1/2, 1[ in the previous setting).
This framework enables to study the efficiency of estimators of Σ. Contrary to the
high-dimensional setting of Section B.2, we do not assume particular condition in
addition to the ones given in Section B.1.

We first give the convergence of B̂tot defined in Equation (5.1) in the next
proposition.

Proposition 31. We have

P
(
B̂tot = B∗

)
−→ 1.
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Figure 5.1: Frobenius error of the empirical covariance matrix S in red and the
suggested estimator SB̂ in green, in function of the number of groups K. The scale

of the x-axis is in
√
K.

Corollary 5. Let B̂Ĉ := argmin
Bλ | λ∈A

Ĉ

Ψ(B), where AĈ := {|Ĉij| | 1 ≤ i < j ≤ p} as in

Proposition 25. Then

P
(
B̂Ĉ = B∗

)
−→ 1.

In the rest of Section B.3, we write B̂ for B̂tot or B̂Ĉ . The aim of this framework
is to show that the suggested estimator SB̂ is asymptotically efficient as if the true
decomposition B∗ were known.

As the parameter Σ is in the set S++
p (R) or even S++

p (R, B∗), which are not

open subsets of Rp
2
, the classical Cramér-Rao bound is no longer a lower-bound for

the estimation error. Furthermore, as B∗ is not known, the number of parameters
of SB̂ is not constant. That is why the classical Cramér-Rao bound is not relevant
in our setting. We remark that applying this classical Cramér-Rao bound to a
subset of the matrix estimator does not solve this problem.

A specific Cramér-Rao bound is suggested in [SN98] for parameters and es-
timators which satisfy continuously differentiable constraints. We shall consider
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linear constraints here. We let θ ∈ Rd be the parameter, that is assumed to be
restricted to a linear subspace V of dimension q in Rd. In this case, if U ∈ Md,q(R)
is a matrix whose columns are the elements of an orthonormal basis of V and if
J is the Fisher Information Matrix (FIM) of θ in the non-constraint case, [SN98]

states that for unbiased estimator θ̂ ∈ V , we have

E
[
(θ̂ − θ)(θ̂ − θ)T

]
≥ U(UTJU)−1UT , (5.2)

where ≤ is the partial order on the symmetric positive semi-definite matrices.
In our setting, remark that S++

p (R) is an open subset of the linear subspace
Sp(R) of symmetric matrices and S++

p (R, B∗) is an open subset of the linear sub-

space Sp(R, B∗) := {Γ ∈ Sp(R), ΓB∗ = Γ}. We let vec(Σ) be the column vec-
torization of Σ. Hence, the parameter is vec(Σ) and there are p(p − 1)/2 linear
constraints arising from the symmetry and p(p− 1)/2−∑K

k=1 pk(pk − 1)/2 linear
constraints arising from the block structure B∗.

So, the Cramér-Rao bound of Equation (5.2) is adapted to our framework, by
considering the parameter vec(Σ) ∈ Rp2 , and we say that an estimator is efficient
if it reaches the Cramér-Rao bound (5.2) (meaning that there is an equality in this
equation), where the constraints (symmetry only or symmetry and block structure)
will be stated explicitly.

Proposition 32 states that, in general, the empirical covariance matrix is ef-
ficient with this Cramér-Rao bound. This supports this choice of Cramér-Rao
Bound, since in fixed dimension, one would expect that the empirical matrix is
the most appropriate estimator.

If the empirical covariance matrix did not reach the Cramér-Rao Bound, we
could not hope that SB̂ would be efficient in the model where B∗ was known, and
this Cramér-Rao bound would not be well tuned to our problem.

Proposition 32. If µ is known, the empirical estimator S is an efficient estimator
of Σ in the model {N (µ,Σ), Σ ∈ S++

p (R)}.

Remark 32. In Proposition 32, we assume that µ is known to reach the Cramér-
Rao bound for fixed n (and not only asymptotically). This will be the same in
Proposition 33.

Now, we deduce the efficiency of SB∗ when B∗ is known.

Proposition 33. If µ and B∗ are known, SB∗ is an efficient estimator of Σ in the
model {N (0,Σ), Σ ∈ S++

p (R, B∗)}.

Finally, Proposition 34 states the asymptotic efficiency of our estimator SB̂
(even for unknown µ)
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Proposition 34.

√
n(vec(SB̂)− vec(Σ))

L−→
n→+∞

N (0,CR(Σ, B∗)),

where CR(Σ, B∗) is the Cramér-Rao bound of vec(Σ) in the model {N (0,Σ), Σ ∈
S++
p (R, B∗)}.

The explicit expression of the p2 × p2 matrix CR(Σ, B∗) can be found in the
appendix where Propositions 32, 33 and 34 are proved.

C Application to the estimation of the Shapley

effects

In this section, we apply the block-diagonal estimation of the covariance matrix Σ
to estimate the Shapley effects in high dimension and for Gaussian linear models.
In Section C.1, we address the problem of estimating the Shapley effects when the
covariance matrix Σ and the vector β are estimated. We derive the convergence
of the estimators of the Shapley effects from the results of Section B.

C.1 Estimation of the Shapley effects with noisy observa-
tions

We assume that we just observe a sample (X(l), Ỹ (l))l∈[1:n] where Ỹ = (Ỹ (l))l∈[1:n]
are noisy observations:

Ỹ (l) = β0 + βTX(l) + ε(l),

for l ∈ [1 : n] where (ε(l))l∈[1:n] are i.i.d. with distribution N (0, σ2
n) and where

σn ≤ Csup is unknown, where Csup is a fixed finite constant.

Remark that the computation of the Shapley effects requires the parameters β
and Σ (see Algorithm 3). Here, as we do not know the parameters β and Σ, we will
estimate them and replace the true parameters by their estimation in Algorithm
3.

First, we estimate (β0 β
T )T as usual by

(
β̂0

β̂

)
:= (ATA)−1AT Ỹ ,

where A ∈ Mn,p+1(R) is defined by Al,i+1 := X
(l)
i and Al,1 = 1, and where n > p.
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C.2 Estimation of the Shapley effects in high-dimension

At first glance, we could estimate Σ by the empirical covariance matrix S and
replace it in Algorithm 3. However, B∗ is not known and we can not find it us-
ing BFS with the empirical covariance matrix S (which usually has the simple
structure {[1 : p]} with probability one). Thus, we can not use any particular
block-diagonal structure and Algorithm 3 would only apply Algorithm 2. How-
ever, as we have seen, the complexity of this computation would be exponential in
p and it would be no longer tractable for p ≥ 30. Furthermore, in high dimension,
the Frobenius error between S and Σ does not go to 0 (see Proposition 27). Thus,
using the empirical covariance matrix could yield estimators of the Shapley effects
that do not converge.

For that reason, to estimate η = (ηi)i∈[1:p], we suggest to estimate B∗ by B̂
(defined in Section B.2.ii)) and Σ by SB̂ and to replace them in Algorithm 3. We
write η̂ = (η̂i)i∈[1:p] the estimator of the Shapley effects obtained replacing Σ by

SB̂ and β by β̂ in Algorithm 3. We use our previous results on the estimation of
the covariance matrix to obtain the convergence rate of η̂.

We focus on the high dimensional case, when p and n go to +∞. In this case,
β and Σ are not fixed but depend on n (or p). As in Section B.2, we choose

κ = 1
pnδ with δ ∈]1/2, 1[ to compute B̂. To prevent problematic cases, we also add

an assumption on the vector β.

Condition 5. There exist βinf > 0 and βsup < +∞ such that for all n and for all
j ≤ p, we have βinf ≤ |βj| ≤ βsup.

Proposition 35. Under Conditions 1 to 5 and if δ ∈]1/2, 1[, then for all γ > 1/2,
we have

p∑

i=1

|η̂i − ηi| = op

(
log(n)γ√

n

)
.

Recall that
∑p

i=1 ηi = 1. Thus, to quantify the error estimation, the value of∑p
i=1 |η̂i − ηi| is a relative error. Proposition 35 states that this relative error goes

to zero at the parametric rate 1/n1/2, up to a logarithm factor.
We have seen in Section C.1 of Chapter 4 that, once we have the block-diagonal

covariance matrix, the computation of the Shapley effects has the complexity
O(K2m) which is equal to O(n) under Condition 3. In Section B.2, we gave

four different choices of B̂, with four different complexities, all larger than O(n).
Thus, the complexity of the whole estimation of the Shapley effects (including the

estimation of Σ) is the same as the complexity of B̂ (see Section B.2.ii)).

When Condition 4 is not satisfied, we still have the convergence of the relative
error, with almost the same rate.
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Proposition 36. Under Conditions 1, 2, 3 and 5, for all δ ∈]0, 1[, choosing the
partition Bn−δ/2 and for all ε > 0, we have

p∑

i=1

|η̂i − ηi| = op

(
1

n−(δ−ε)/2

)
.

Remark 33. When the dimension p is fixed, the rate of convergence is Op(1/
√
n),

as if we estimated Σ by the empirical covariance matrix. Moreover, we have seen
in Proposition 34 that the computation of SB̂ enables to reach asymptotically the
Cramér-Rao bound of [SN98] as if B∗ were known. We then deduce the asymptotic
efficiency of η̂. If β is known, we define g : Σ 7→ η(β,Σ), let CR(η, B∗) :=
Dg(Σ)CR(Σ, B∗)Dg(Σ) be the Cramér-Rao bound of η in the model {N (µ,Σ), Σ ∈
S++
p (R, B∗)}. Thus,

√
n(η̂ − η)

L−→
n→+∞

N (0,CR(η, B∗)).

C.3 Numerical application

We have seen in Proposition 30 a way to generate Σ which verifies Conditions 1
to 3 and some slightly modified version of Condition 4. So, with this choice of Σ,
we derive in Proposition 37 the convergence of the Shapley effects estimation.

Proposition 37. Under Condition 5, if Σ is generated as in Proposition 30, then,
for all γ > 1/2,

p∑

i=1

|η̂i − ηi| = op

(
log(n)γ√

n

)
,

where the probabilities are defined with respect to Σ and X, which distribution
conditionally to Σ is N (µ,Σ).

We now present a numerical application of Proposition 37. The matrix Σ
is generated by Proposition 30 as in Section B.2.v), with blocks of random size
distributed uniformly on [10, 15], L = 5 and ε = 0.2. For all p, the vector β
is generated with distribution U([1, 2]p), so that Condition 5 is satisfied. As in
Section B.2.v), we assume that we know that the maximal size of the block is

m = 15, so we can use the estimator B̂ = B̂s given in Proposition 25. As the
computation of the Shapley effects is exponential in the maximal block size, the
estimator B̂s is preferred. The complexity of the estimation of the Shapley effects
is then in O(p2).

We plot in Figure 5.2 the sum of the Shapley effects estimation error
∑p

i=1 |η̂i − ηi|,
with n = N p for different values of N . We can remark that the sum of the errors
seems to be of order 1/

√
K, which is confirmed by Proposition 37.
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Figure 5.2: Sum of errors of the Shapley effects estimations in function of the
number of groups K. The scale of the x-axis is in

√
K.

D Application on real data

In this section, we consider the same nuclear data as in Chapter 4 Section C.3.
Recall that the output Y models the neutron flux and the inputs are the cross-
sections. Here, there are 292 inputs divided into 50 groups of size between 2 and
18. The covariance matrix Σ and the vector β are available. However, in order to
assess the efficiency of our suggested estimation procedures of the Shapley effects,
we now assume that the true covariance matrix Σ is unknown and that we observe
an i.i.d. sample (X(l))l∈[1:n] with distribution N (µ,Σ) (with µ unknown). We
assume that the maximal group size is known to be smaller or equal to 20 and
that the vector β is known. Then, we estimate the block-diagonal structure by the
block-diagonal structure B̂ that maximizes the penalized likelihood Φ among all
the block-diagonal structures obtained by thresholding the empirical correlation
matrix from its largest value to the smallest value such that the maximal size of the
blocks is smaller or equal to 20. Thus, our estimator B̂ is a mix of the estimators
B̂Ĉ and B̂s detailed in Section B.2.ii).

We plot the Frobenius error of the estimated covariance matrix and the sum
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Figure 5.3: Errors of the estimated covariance matrix and the corresponding Shap-
ley effects for different values of n

p
.

of the absolute values of the errors of the estimated Shapley effects for different
values of y = p/n in Figure 5.3, where p = 292.

We can remark that the errors decrease globally when the value of n
p
increases.

The larger value of the sum of the errors of the estimated Shapley effects for n/
p = 50 is due to the randomness of the estimated Shapley effects. Note that, even
when n = 2p, the sum of the errors of the Shapley effects is less than 0.05 (recall
that, in comparison, the sum of the Shapley effects is 1). We plot in Figure 5.4
the estimated Shapley effects that are larger than 1% with n/p = 2. Remark that
these estimated values are similar to the true ones displayed in Figure 4.2 and the
physical interpretation is the same.

In conclusion, we implemented an estimator of the block-diagonal covariance
matrix originating from nuclear data when we only observe an i.i.d. sample of the
inputs. Then, the derived estimated Shapley effects are shown to be very close
to the true Shapley effects, that quantify the impact of the uncertainties of cross
sections on the uncertainty on the neutron flux. When the sample size n is equal
to 2p, the physical conclusions are the same as when the true covariance matrix is
known.
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Figure 5.4: Shapley effects that are larger that 1% estimated with n/p = 2.

E Conclusion

In this chapter, we suggested an estimator of a block-diagonal covariance matrix
for Gaussian data. We proved that in high dimension, this estimator converges to
the same block-diagonal structure with complexity in O(p2). For fixed dimension,
we also proved the asymptotic efficiency of this estimator, that performs asymp-
totically as well as as if the true block-diagonal structure were known. Then,
we deduced convergent estimators of the Shapley effects in high dimension for
Gaussian linear models. These estimators are still available for thousands input
variables, as long as the maximal block is not too large. Moreover, we proved the
convergence of the Shapley effects estimators when the observations of the output
are noisy and so the parameter β is estimated. Finally, we applied these estimator
on real nuclear data.

In future works, it would be interesting to treat the higher dimension setting
when p/n goes to +∞.
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Chapter 6

Linear Gaussian approximation
for the Shapley effects

We have seen in Chapter 3 that in the linear Gaussian framework, we can easily
compute the Shapley effects as long as the number of inputs is not too large using
Algorithm 2. Hence, one could legitimately wonder if the values of the Shapley
effects given by Algorithm 2 are relevant when we are close to the linear Gaussian
framework. The aim of this chapter is to use the values of the Shapley effects in
the linear Gaussian framework as estimates of the Shapley effects in more general
settings.

In Section A, we show how the approximation of the true model by a linear
function impacts the Shapley effects when the inputs form a Gaussian vector with
a covariance matrix converging to 0. In Section B, we prove that, when the inputs
are given by an empirical mean, if we want to compute the Shapley effects, we can
assume asymptotically that the input vector is a Gaussian vector with a covariance
matrix converging to 0. Hence using the results of Section A, the Shapley effects
of the Gaussian linear framework give a good estimate of the true ones.

If Z is a random vector in Rp and g is a function from Rp to R such that
E(g(Z)2) < +∞ and Var(g(Z)) > 0, let η(Z, g) ∈ Rp be the vector containing all
the Shapley effects with input vector Z and model g.

A Approximation of a model by a linear model

A.1 Introduction and notation

To model uncertain physical values, it can be convenient to consider them as a
Gaussian vector. For example, the international libraries [McL05, JEF13, JEN11]
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on real data from the field of nuclear safety provide the average and covariance
matrix of the input variables, so it is natural to model them with the Gaussian
distribution. Hence, to quantify the impact of the uncertainties of the physical
inputs of a model on a quantity of interest, it is commonly the case to estimate
the Shapley effects of Gaussian inputs. The model f is in general non-linear and
the estimation procedures dedicated to non-linear models [SNS16, BBD20] are
typically computationally costly, with an accuracy that can be sensitive to the
specific situation. Nevertheless, when the uncertainty on the inputs become small,
the input vector converges to its mean µ, and a linear approximation of the model
at µ seems more and more appropriate.

To formalize this idea, let X{n} ∼ N (µ{n},Σ{n}) be the input vector, with a
sequence of mean vectors (µ{n}) and a sequence of covariance matrices (Σ{n}). The
index n can represent for instance the number of measures of an uncertain input,
in which case the covariance matrix Σ{n} will decrease with n.

Assumption 9. The covariance matrix Σ{n} decreases to 0 such that the eigenval-
ues of a{n}Σ{n} are lower-bounded and upper-bounded in R∗

+, with a
{n} −→

n→+∞
+∞.

Moreover, µ{n} −→
n→+∞

µ, where µ is a fixed vector.

In Assumption 1, the condition on the eigenvalues of a{n}Σ{n} means that the
correlation matrix obtained from Σ{n} can not get close to a singular matrix. This
condition is necessary in our proofs.

If j ∈ N and if f is Cj at µ{n}, we will write f
{n}
j (x) = 1

j!
Djf(µ{n})(x − µ{n})

(where Dj(µ{n})(z) is the image of (z, z, · · · , z) ∈ (Rp)j through the multilinear
function Djf(µ{n}), which gathers all the partial derivatives of order j of f at

µ{n}) and R{n}
j (x) = f(x) −∑j

l=0 f
{n}
l (x) the remainder of the j-th order Taylor

approximation of f at µ{n}. In particular, f
{n}
1 (x) = Df(µ{n})(x − µ{n}), where

Df = D1f . We identify the linear function Df(µ{n}) with the corresponding
row gradient vector of size 1 × p and the bilinear function D2f(µ{n}) with the
corresponding Hessian matrix of size p× p. We also write f1(x) = Df(µ)(x− µ).

Finally, we assume that the function f is subpolynomial, that is, there exist
k ∈ N and C > 0 such that,

∀x ∈ Rp, |f(x)| ≤ C(1 + ‖x‖k).

A.2 Theoretical results

A.2.i) First-order Taylor polynomial

First, we study the asymptotic difference between the Shapley effects given by the
true model f and the ones given by the first-order Taylor polynomial of f at µ{n}.
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Remark that adding a constant to the function does not affect the values of the
Shapley effects. Thus, the Shapley effects η(X{n}, f(µ{n}) + f

{n}
1 ) given by the

first-order Taylor polynomial of f at µ{n} are equal to η(X{n}, f {n}
1 ). In the next

proposition, we show that approximating the true Shapley effects of the non-linear
f by the Shapley effects of the linear approximation f

{n}
1 yields a vanishing error

of order 1/a{n} as n→ ∞.

Proposition 38. Assume that X{n} ∼ N (µ{n},Σ{n}), Assumption 9 holds and f
is subpolynomial and C3 on a neighbourhood of µ and Df(µ) 6= 0. Then,

‖η(X{n}, f)− η(X{n}, f {n}
1 )‖ = O

(
1

a{n}

)
.

We remark that, when f is a computer model, it can be the case that the gra-
dient vector is available. First, the computer model can already provide them, by
means of the Adjoint Sensitivity Method [Cac03]. Second, automatic differentia-
tion methods can be used on the source file of the code and yield a differentiated
code [HP04].

Remark 34. The rate O(1/a{n}) is the best rate that we can reach under the as-

sumptions of Proposition 38. Indeed, letting X{n} = (X
{n}
1 , X

{n}
2 ) ∼ N (0, 1

a{n} I2)

and Y {n} = f(X{n}) = X
{n}
1 +X

{n}2
2 , we have η1(X

{n}, f {n}
1 ) = 1 and η2(X

{n}, f {n}
1 ) =

0. Moreover, η1(X
{n}, f) = a{n}

a{n}+2
and η2(X

{n}, f) = 2
a{n}+2

. Thus, the rate of the

difference between η(X{n}, f) and η(X{n}, f {n}
1 ) is exactly 1/a{n}.

In Proposition 38, we bound the difference between the Shapley effects given
by f and the ones given by the first-order Taylor polynomial of f . Moreover, when
the matrix a{n}Σ{n} converges, Proposition 39 shows that the Shapley effects given
by the Taylor polynomial converge.

Proposition 39. Assume that X{n} ∼ N (µ{n},Σ{n}), Assumption 9 holds, f is
C1 on a neighbourhood of µ, Df(µ) 6= 0 and a{n}Σ{n} −→

n→+∞
Σ ∈ S++

p (R). Then,

if X∗ ∼ N (µ,Σ),

‖η(X{n}, f {n}
1 )− η(X∗, f1)‖ = O(‖µ{n} − µ‖) +O(‖a{n}Σ{n} − Σ‖).

Proposition 38 shows that replacing f by its first-order Taylor polynomial f
{n}
1

does not impact significantly the Shapley effects when the input variances are
small. Thus, the knowledge of f

{n}
1 would enable us to use the explicit expression

of the Gaussian linear case, and for instance the function ”ShapleyLinearGaus-
sian” of the package sensitivity, to estimate the true Shapley effects η(X{n}, f).

However, in practice, the first-order Taylor polynomial f
{n}
1 is not always available,

except for instance in situations described above. Thus, one may be interested in
replacing the true first-order Taylor polynomial f

{n}
1 by an approximation. We

will study two such approximations given by finite difference and linear regression.
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A.2.ii) Finite difference approximation

For h = (h1, · · · , hp) ∈ (R∗
+)

p and writing (e1, · · · , ep) the canonical basis of Rp,
let

D̂hf(x) :=

(
f (x+ e1h1)− f (x− e1h1)

2h1
, · · · , f (x+ ephp)− f (x− ephp)

2hp

)
,

(6.1)
be the approximation of the differential of f at x with the steps h1, · · · , hp. If
(h{n})n is a sequence of (R∗

+)
p converging to 0, let

f̃
{n}
1,h{n}(x) := f̃

{n}
1,h{n},µ{n}(x) := D̂h{n}f(µ{n})(x− µ{n})

be the approximation of the first-order Taylor polynomial of f − f(µ{n}) at µ{n}

with the steps h1, · · · , hp. The next proposition ensures that the Shapley effects
computed from the true Taylor polynomial and the approximated one are close,
for small steps.

Proposition 40. Under the assumptions of Proposition 38, we have

‖η(X{n}, f {n}
1 )− η(X{n}, f̃ {n}

1,h{n})‖ = O
(
‖h{n}‖2

)
.

Then, the next corollary extends Propositions 38 and 39 to the approximated
Taylor polynomial based on finite differences.

Corollary 6. Under the assumptions of Proposition 38, and if ‖h{n}‖ ≤ Csup√
a{n}

(for example, choosing h
{n}
i :=

√
Var(X

{n}
i ), the standard deviation of X

{n}
i ), we

have

‖η(X{n}, f)− η(X{n}, f̃ {n}
1,h{n})‖ = O(

1

a{n}
).

Moreover, if a{n}Σ{n} −→
n→+∞

Σ, then, letting X∗ ∼ N (µ,Σ),

‖η(X{n}, f̃ {n}
1,h{n})− η(X∗, f1)‖ = O(‖µ{n} − µ‖) +O(‖a{n}Σ{n} −Σ‖) +O

(
1

a{n}

)
.

A.2.iii) Linear regression

For n ∈ N and N ∈ N∗, let (X{n}(l))l∈[1:N ] be an i.i.d. sample of X{n} of size N and
assume that we compute the image of f at each sample point, obtaining the vector
Y {n}. Then, we can approximate f with a linear regression, by least squares. In
this case, we estimate the coefficients of the linear regression by the vector:

(
β̂
{n}
0

β̂{n}

)
=
(
A{n}TA{n})−1

A{n}TY {n},
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where A{n} ∈ MN,p+1(R) is such that, for all j ∈ [1 : N ], the j-th line of A{n} is
(1 X{n}(j)T ). The function f is then approximated by

f̂
{n}(N)
lin : x 7−→ β̂

{n}
0 + β̂{n}Tx.

Remark that the linear function f̂
{n}(N)
lin is random and so, the deduced Shapley

effects η(X{n}, f̂ {n}(N)
lin ) are random variables. The next proposition and corollary

correspond to Proposition 40 and Corollary 6, for the linear regression approxima-
tion of f .

Proposition 41. Under Assumption 9, if f is C2 on a neighbourhood of µ with
Df(µ) 6= 0, there exist Cinf > 0, C

(1)
sup < +∞ and C

(2)
sup < +∞ such that, with

probability at least 1− C
(1)
sup exp(−CinfN), we have

‖η(X{n}, f {n}
1 )− η(X{n}, f̂ {n}(N)

lin )‖ ≤ C(2)
sup

1√
a{n}

.

Corollary 7. Under the assumptions of Proposition 38, there exist Cinf > 0,
C

(1)
sup < +∞ and C

(2)
sup < +∞ such that, with probability at least 1−C(1)

sup exp(−CinfN),
we have

‖η(X{n}, f)− η(X{n}, f̂ {n}(N)
lin )‖ ≤ C(2)

sup

1√
a{n}

.

Moreover, if a{n}Σ{n} −→
n→+∞

Σ, then, letting X∗ ∼ N (µ,Σ), there exists C
(3)
sup <

+∞ such that, with probability at least 1− C
(1)
sup exp(−CinfN),

‖η(X{n}, f̂ {n}(N)
lin )− η(X∗, f1)‖ ≤ C(3)

sup

(
‖µ{n} − µ‖+ ‖a{n}Σ{n} − Σ‖+ 1√

a{n}

)
.

A.3 Numerical experiments

In this section, we compute the Shapley effects of the true function f and the ones
obtained from the three previous linear approximations to illustrate the previous
theoretical results. Let p = 4 and

f(x) = cos(x1)x2 + sin(x2) + 2 cos(x3)x1 − sin(x4).

This function is 1-Lipschitz continuous and C∞ on R4. We choose Σ{n} = 1
n2Σ

(that is, a{n} = n2), where Σ is defined by:

Σ = ATA, A =




−2 −1 0 1

2 −2 −1 0

1 2 −2 −1

0 1 2 −2


 .
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sition 39 hold. Hence, the values of the true Shapley effects η(X{n}, f) converge,
as we can see on Figure 6.1.

The computation time for each estimate of the Shapley effects is around 5
seconds using ”shapleyPermRand”, 1.9×10−3 using the linear approximation f

{n}
1

or f̃
{n}
1,h{n} and 2.4× 10−3 using the linear approximation f̂

{n}(N)
lin . Remark that this

time difference can become more accentuated if the function f is a costly computer
code.

B Approximation of the empirical mean by a

Gaussian vector

B.1 Theoretical results

Here, we extend the results of Section A to the case where the distribution of the
input (that we now write X̂{n}) is close to a Gaussian distribution X{n}. We focus
on the setting where the input vector is an empirical mean

X̂{n} =
1

n

n∑

l=1

U (l),

where (U (l))l∈[1:n] is an i.i.d. sample of a random vector U in Rp such that
E(‖U‖2) < +∞ and Var(U) 6= 0. Let µ := E(U) and Σ be the covariance matrix

of U . Remark that, as is Section A, the input vector X̂{n} is a random vector
converging to its mean, and its covariance matrix Σ{n} is equal to 1

n
Σ.

Contrary to Section A, X̂{n} is not Gaussian, but, thanks to the central limit
theorem, its distribution is close to N (µ, 1

n
Σ). Hence, we would like to esti-

mate the Shapley effects η(X̂{n}, f) by η(X∗, Df(µ)), where X∗ ∼ N (0,Σ), since
η(X∗, Df(µ)) can be computed using the explicit expression of the Gaussian lin-
ear case, and for instance the function ”ShapleyLinearGaussian” of the package
sensitivity.

Proposition 42. Assume that f is C3 on a neighbourhood of µ with Df(µ) 6= 0
and that f is subpolynomial, that is there exist k ∈ N∗ and C > 0 such that for all
x ∈ Rp, we have |f(x)| ≤ C(1+‖x‖k). If E(‖U‖4k) < +∞ and if U has a bounded
probability density function, then

η(X̂{n}, f) −→
n→+∞

η(X∗, Df(µ)).

Proposition 42 justifies that η(X∗, Df(µ)) is a good approximation of η(X̂{n}, f).
Furthermore, if µ, Σ and Df(µ) are unknown, the following corollary shows that
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they can be replaced by approximations. Let (U{l}′)l∈[1:n′] and (U{l}′′)l∈[1:n′′] be
independent of (U{l})l∈[1:n], composed of i.i.d. copies of U and with n′ = n′(n) and
n′′ = n′′(n) such that n′, n′′ → ∞ when n → ∞. We can estimate µ (resp. Σ) by

the empirical mean X̂{n′}′ of (U{l}′)l∈[1:n′] (resp. the empirical covariance matrix

Σ̂{n′′}′′ of (U{l}′′)l∈[1:n′′]), and we can estimate Df by a finite difference approxima-
tion. The next corollary guarantees that the error stemming from these additional
estimations goes to 0 as n→ ∞.

Corollary 8. Assume that the assumptions of Proposition 42 hold and that (h{n})n∈N
is a sequence of (R∗

+)
p converging to 0. Let X∗n be a random vector with distribu-

tion N (µ, Σ̂{n′′}′′) conditionally to Σ̂{n′′}′′. Then

∥∥∥η(X̂{n}, f)− η(X∗n, f̃ {n}
1,h{n},X̂{n′}′

)
∥∥∥ a.s.−→
n→+∞

0,

where f̃
{n}
1,h{n},X̂{n′}′

is the linear approximation of f at X̂{n′}′ obtained from Equation

(6.1) by replacing µ{n} by X̂{n′}′.

Remark 35. If µ, Σ or Df is known, the previous corollary holds replacing
X̂{n′}′, Σ̂{n′′}′′ or f̃ {n}

1,h{n},X̂{n′}′
by µ,Σ or Df(X̂{n′}′) respectively.

Remark 36. The notation η(X∗n, f̃ {n}
1,h{n},X̂{n′}′

) is to be understood condition-

ally to Σ̂{n′′}′′, X̂{n′}′. That is, conditionally to Σ̂{n′′}′′, X̂{n′}′, the Shapley effects
η(X∗n, f̃ {n}

1,h{n},X̂{n′}′
) are defined with the fixed linear function f̃

{n}
1,h{n},X̂{n′}′

and the

Gaussian distribution for X∗n.

B.2 Application to the impact of individual estimation er-
rors

Let us show an example of application of the results of Section B.1. Let U be a
continuous random vector of Rp, with a bounded density and with an unknown
mean µ. Assume that we observe an i.i.d. sample (U (l))l∈[1:n] of U and that
we focus on the estimation of a parameter θ = f(µ), where f is C3. This pa-

rameter is estimated by f(X̂{n}) (which is asymptotically efficient by the delta-

method), where X̂{n} is the empirical mean of (U (l))l∈[1:n]. The estimation error

of each variable X̂
{n}
i (for i = 1, · · · , p) propagates through f . To quantify the

part of the estimation error of Y = f(X̂{n}) caused by the individual estima-

tion errors of each X̂
{n}
i (for i = 1, · · · , p), one can estimate the Shapley effects

η(X̂{n}, f) = η(X̂{n} − µ, f(· + µ) − f(µ)) which assess the impact of individual
errors on the global error. To that end, Proposition 42 and Corollary 8 state that
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the Shapley effects can be estimated using a Gaussian linear approximation, with
an error that vanishes as n increases.

For example, let f = ‖ · ‖2 and p = 5. In this case, the derivative Df is known
and no finite difference approximation is required. To generate U with a bounded
density and with dependencies, we define A1 ∼ U([5, 10]), A2 ∼ N (0, 4), A3 with
a symmetric triangular distribution T (−1, 8), A4 ∼ 5Beta(1, 2) and A5 ∼ Exp(1).
Then, we define 




U1 = A1 + 2A2 − 0.5A3

U2 = A2 + 2A1 − 0.5A5

U3 = A3 + 2A2 − 0.5A5

U4 = A4 + 2A1 − 0.5A2

U5 = A5 + 2A3 − 0.5A4.

Since the mean µ and the covariance matrix Σ are unknown, we need to estimate
them (as in Corollary 8). Using the notation of Section B.1, we choose n =
n′ = n′′ and (U (l)′)l∈[1:n′] = (U (l)′′)l∈[1:n′] (that is, we estimate the empirical mean
and the empirical covariance matrix with the same sample). We estimate the

Shapley effects η(X̂{n}, f) by η(X∗n, Df(X̂{n}′)), where X∗n is a random vector

with distribution N (µ, Σ̂{n}′′) conditionally to Σ̂{n}′′. By Corollary 8 and Remark

35, the difference between η(X̂{n}, f) and η(X∗n, Df(X̂{n}′)) converges to 0 almost
surely when n goes to +∞.

Here, we compute 1000 estimates of µ and Σ and we compute the 1000 corre-
sponding Shapley effects of the Gaussian linear approximation η(X∗n, Df(X̂{n}′)).
To compare with these estimates, we also compute 1000 estimates given by the
function ”shapleySubsetMC” suggested in [BBD20], with parameters Ntot = 1000,

Ni = 3 and with an i.i.d. sample of X̂{n} with size 1000. We plot the results on
Figure 6.2.

We observe that the estimates of the Shapley effects given by ”shapleySub-
setMC” and the Gaussian linear approximation are rather similar, even for n =
100. However, the variance of the estimates given by the Gaussian linear ap-
proximation is smaller than the one of the general estimates given by ”shapley-
SubsetMC”. Moreover, each Gaussian linear estimation requires only a sample
of (U (l)′)l∈[1:n] (to compute X̂{n}′ and Σ̂{n}′′) and takes around 0.007 second on
a personal computer, whereas each general estimation with ”shapleySubsetMC”
requires here 1000 samples of (U (l)′)l∈[1:n] and takes around 11 seconds. Remark
that this time difference can become more accentuated if the function f is a costly
computer code. Finally, the estimator of the Shapley effects given by the linear
approximation converges almost surely when n goes to +∞, whereas the estimator
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Figure 6.2: Boxplots of the estimates of the Shapley effects given by the gen-
eral estimation function ”shapleySubsetMC” (in red) and by the Gaussian linear
approximation (in black).

of the Shapley effects given by ”shapleySubsetMC” is only shown to converge in
probability when the sample size and Ntot go to +∞ (see [BBD20]).

To conclude, we have provided a framework where the theoretical results of
Section B.1 can be applied. We have illustrated this framework with numeri-
cal experiments on generated data. We have showed that, in this framework, to
estimate the Shapley effects, the Gaussian linear approximation provides an esti-
mator much faster and much more accurate than the general estimator given by
”shapleySubsetMC”.

108



CHAPTER 6. LINEAR GAUSSIAN APPROXIMATION FOR THE SHAPLEY
EFFECTS

C Conclusion

In this chapter, we worked on the Gaussian linear framework approximation to
estimate the Shapley effects, in order to take advantage of the simplicity brought
by this framework. First, we focused on the case where the inputs are Gaussian
variables converging to their means. This setting is motivated, in particular, by
the case of uncertainties on physical quantities that are reduced by taking more
and more measurements. We showed that, to estimate the Shapley effects, one
can replace the true model f by three possible linear approximations: the exact
Taylor polynomial approximation, a finite difference approximation and a linear
regression. We gave the rate of convergence of the difference between the Shapley
effects of the linear approximations and the Shapley effects of the true model.
These results are illustrated by a simulated application that highlights the accuracy
of the approximations. Then, we focused on the case where the inputs are given by
an empirical mean. In this case, we proved that the instinctive idea to replace the
empirical mean by a Gaussian vector and the true model by a linear approximation
around the mean indeed gives good approximations of the Shapley effects. We
highlighted the benefits of these estimators on numerical experiments.

Several questions remain open to future work. In particular, it would be valu-
able to obtain more insight on the choice between the general estimator of the
Shapley effects for non-linear models and the estimators based on Gaussian linear
approximations. Quantitative criteria for this choice, based for instance on the
magnitude of the input uncertainties or on the number of input samples that are
available, would be beneficial. Regarding the results on the impact of individual
estimation errors in Section B.2, it would be interesting to obtain extensions to
estimators of quantities of interest that are not only empirical means, for instance
general M-estimators.
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Chapter 7

Conclusion and perspectives

In this thesis, we developed the tools of sensitivity analysis for real data. Since the
assumption of independent inputs rarely holds with industrial data, we focused on
the Shapley effects, that keep interesting properties with dependent inputs.

General estimation of the Shapley effects

First, we focused on the estimation of the conditional elements. In the dependent
case, [SNS16] estimated them by double Monte-Carlo, whereas in the indepen-
dent case, the Pick-and-Freeze estimator was the most widespread estimator in
the literature. Hence, we extended the Pick-and-Freeze estimator to the depen-
dent case and we compared it to the double Monte-Carlo estimator in numerical
experiments, to the latter’s advantage.

We also improved the already existing algorithm [SNS16] to estimate the Shap-
ley indices, suggesting to estimate once every conditional element for all the Shap-
ley effects. We also detailed which part of the total budget should be allocated to
the estimation of each conditional element in order to minimize the total variance.
We proved the convergence of our suggested estimator and of the one suggested in
[SNS16]. We emphasized the accuracy of our estimator with numerical experiments
on simulated data.

In order to make the estimation of the Shapley effects possible in more practi-
cal cases, we extended these estimators to the case where we only observe an i.i.d.
sample of the inputs, with either the computer code of f or the corresponding i.i.d.
sample of the output. We proved the convergence under some mild assumptions
that include heterogeneous data. We also provided rates of convergence of the esti-
mators of the conditional elements for real continuous inputs when the probability
density function of the inputs vector is upper-bounded and lower-bounded on its
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support. We implemented one of our suggested estimator of the Shapley effects
on the R package sensitivity.

Numerical experiments seem to indicate that, to estimate the conditional ele-
ments (that is, more or less the Sobol indices), the double Monte-Carlo estimator
is more accurate than the Pick-and-Freeze estimator. However, we could not prove
such results theoretically and a particular study on the comparison of these esti-
mators could be done is future works.

On the convergence result of the Shapley effects estimators where we only
observe and i.i.d. sample of the inputs, it could be interesting to alleviate the
assumption of the bound of the model f and of the density fX . However, the as-
sumption of the continuous density fX seems to be indispensable to prove Lemma 5
of Chapter I in the appendix. The alleviation of the assumption of the upper-bound
and the lower-bound of the density for the rate of convergence of the estimators of
the conditional elements could be the subject of future works. Finally, it could be
interesting to provide the optimal allocation of the total budget to the estimation
of the conditional elements to minimize the total variance of the Shapley effects
estimation when we only observe an i.i.d. sample of the real continuous inputs,
using the rates of convergence.

Study of the linear Gaussian framework

We implemented a function to compute the Shapley effects in the linear Gaussian
framework which has been integrated in the URANIE platform of CEA DES. We
suggested solutions to compute the Shapley effects for large values of p (the number
of inputs), when the covariance matrix is block-diagonal. That made possible
applications on nuclear safety where one frequently has a large number of inputs
but the physical measures enable to compute only covariances between variables
of the same group, and the different groups are thus assumed to be independent.

Then, we focused on the estimation of the Shapley effects when the parameters
of the block-diagonal linear Gaussian framework are unknown. When the number
of inputs p is fixed, we suggested an estimator which is asymptotically efficient
when the sample-size n goes to +∞. To model cases with a large number of
inputs, we assumed that p goes to +∞ at the same rate as n. We provided
different estimators of the Shapley effects which have a computational cost in
O(p2). We proved that, under some conditions, the relative error goes to 0 at
the parametric rate, up to a logarithm factor. We also bound the relative error
under milder assumptions. We applied one of these estimators to semi-generated
data. We remarked on this example that the values of the Shapley effects when the
parameters are estimated with n = 2p are almost the same as when the parameters
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are known.
Finally, we worked on estimation of the Shapley effects replacing a non linear

Gaussian setting by the linear Gaussian framework. We gave the rate of conver-
gence of the difference of the Shapley effects corresponding to the true model f and
a linear approximation of f when the input vector is Gaussian with a covariance
matrix converging to 0. This assumption enables to include physical applications
where the uncertain inputs are modeled by a Gaussian vector with a small covari-
ance matrix. In this case, the Shapley effects can be estimated by using the linear
Gaussian framework instead of a costly approximate algorithm. We also proved
the convergence of the estimation of the Shapley effects when the input vector
is an empirical mean by the Shapley effects corresponding to a Gaussian linear
framework.

In future works, it would be interesting to extend the works on the estimation of
the Shapley effects in the ”almost linear Gaussian framework”. In particular, one
could try to study the block-diagonal linear Gaussian approximation for general
frameworks in high dimension.
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Appendix I

Proofs of Chapter 2

A Proofs for the double Monte-Carlo and Pick-

and-Freeze estimators: Theorems 3, 4, 5 and

6

To unify notation, let us write

Φmix
MC : (x(1), ..., x(NI)) 7−→ 1

NI − 1

NI∑

k=1

(
f(x

(1)
−u, x

(k)
u )− 1

NI

NI∑

l=1

f(x
(1)
−u, x

(l)
u )

)2

,

Φknn
MC : (x(1), ..., x(NI)) 7−→ 1

NI − 1

NI∑

k=1

(
f(x(k))− 1

NI

NI∑

l=1

f(x(l))

)2

,

Φmix
PF : (x(1), x(2)) 7−→ f(x(1))f(x(1)u , x

(2)
−u)− E(Y )2,

Φknn
PF : (x(1), x(2)) 7−→ f(x(1))f(x(2))− E(Y )2.

Remark that all these four functions are bounded as f is bounded. When we do
not write the exponent mix or knn of Φ or of the estimators, it means that we
refer to both of them (mix and knn). We write the proofs only for Êu,MC . For the

estimators V̂u,PF , it suffices to replace ΦMC by ΦPF , −u by u (and vice-versa), Eu
by Vu, Var(Y |X−u) by E(Y |Xu)

2−E(Y )2 and NI by 2. Hence, we shall only write

the complete proofs for Theorems 3 and 4. To simplify notation, we will write Êu
for Êu,MC , Êu,l for Êu,l,MC and Φ for ΦMC . NI is a fixed integer. We also write
kN(l, i) := k−uN (l, i), and the dependence on −u is implicit.
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A.1 Proof of consistency: Theorems 3 and 5

Recall that for all i ∈ [1 : p], (Xi, di) is a Polish space. Then, for all v ⊂ [1 : p],
Xv :=

∏
i∈v Xi is a Polish space for the distance dv := maxi∈v di. We will write

Bv(xv, r) the open ball in Xv of radius r and center xv. We also let µv :=
⊗

i∈v µi.
Recall that the choice of the NI-nearest neighbours could be not unique. In this
case, conditionally to (X

(n)
−u )n≤N , the (kN(l, i))l∈[1:N ],i∈[1:NI ] are random variables

that we choose in the following way. Conditionally to (X
(n)
−u )n≤N , we choose kN(l, i)

uniformly over all the indices of the i-th nearest neighbours of X
(l)
−u, such that the

(kN(l, i))i≤NI
are two by two distinct and independent of all the other random

variables conditionally to (X
(n)
−u )n≤N .

In particular, as we want to prove asymptotic results, we assume (without loss
of generality) that we have an infinite i.i.d. sample (X(n))n∈N∗ , and we assume

that for all N ∈ N∗, conditionally to (X
(n)
−u )n≤N ,

(kN(l, i))i≤NI
⊥⊥ σ

(
(X(n)

u )n≤N , (X
(n))n>N , (kN ′(l′, i′))(N ′,l′) 6=(N,l), i′∈[1:NI ]

)
.

Hence, for all N ∈ N∗ and l ∈ [1 : N ], conditionally to (X
(n)
−u )n∈N, we have

(kN(l, i))i≤NI
⊥⊥ σ

(
(X(n)

u )n∈N, (kN ′(l′, i′))(N ′,l′) 6=(N,l), i′∈[1:NI ]

)
.

To simplify notation, let us write kN(i) := kN(1, i) (the index of one i-th

neighbour of X
(1)
−u) and k

′
N(i) := kN(2, i) (the index of one i-th neighbour of X

(2)
−u).

Remark that X
(kN (i))
−u does not depend on kN(i). Let k := (kN(i))i≤NI ,N∈N∗ and

kN := (kN(i))i≤NI
. We will use the letter h for the realizations of the variable k.

To begin with, let us recall two well-known results that we will use in the
following.

Lemma 2. Let A be a real random variable. If H is independent of σ(σ(A),G),
then

E(A|σ(G,H)) = E(A|G).
Lemma 3. Let A,B be random variables. For all measurable φ,

L(φ(A,B)|A = a) = L(φ(a,B)|A = a)

and if B is independent of A, then

L(φ(A,B)|A = a) = L(φ(a,B)).

Now, to prove Theorem 3, we need to prove several intermediate results.

Lemma 4. For all l ∈ N∗,

X
(kN (l))
−u

a.s.−→
N→+∞

X
(1)
−u. (I.1)
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Proof. First, let us show that for all ε > 0, P(d−u(X
(1)
−u, X

(2)
−u) < ε) > 0. Indeed, as

X−u is a Polish space, its support has measure 1. Thus

P(d−u(X
(1)
−u, X

(2)
−u) < ε) =

∫

X 2
−u

1d−u(x−u,x′−u)<ε
dPX−u ⊗ PX−u(x−u, x

′
−u)

=

∫

X−u

PX−u(B−u(x−u, ε))dPX−u(x−u)

=

∫

supp(X−u)

PX−u(B−u(x−u, ε))dPX−u(x−u)

> 0,

because if x−u ∈ supp(X−u), thenB−u(x−u, ε) 6⊂ supp(X−u)c and PX−u(B−u(x−u, ε)) >
0.

Next, remark that

X
(kN (l))
−u

a.s.−→
N→+∞

X
(1)
−u ⇐⇒ X

(kN (2))
−u

a.s.−→
N→+∞

X
(1)
−u,

and,

P

({
X

(kN (2))
−u −→

N→+∞
X

(1)
−u

}c)
= P

(⋃

k≥1

⋂

n≥2

d−u(X
(n)
−u , X

(1)
−u) ≥

1

k

)

≤
∑

k≥1

P

(⋂

n≥2

d−u(X
(n)
−u , X

(1)
−u) ≥

1

k

)

=
∑

k≥1

lim
N→+∞

P

(
d−u(X

(2)
−u, X

(1)
−u) ≥

1

k

)N

=
∑

k≥1

lim
N→+∞

[
1− P

(
d−u(X

(2)
−u, X

(1)
−u) <

1

k

)]N

=
∑

k≥1

0

= 0.

Lemma 5. There exists a version of

L(Xu|X−u = ·) : (X−u, d−u) −→ (M1(Xu), T (weak))

which is continuous PX−u-a.e., where M1(Xu) is the set of probability measures on
Xu and T (weak) is the topology of weak convergence.
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Proof. We assumed that there exists a version of fX which is bounded and PX-a.e.
continuous. Let

fX−u(x−u) :=

∫

Xu

fX(xu, x−u)dµu(xu),

which is bounded by µu(Xu)‖fX‖∞ and is a PX−u-a.e. continuous (thanks to the
dominated converging Theorem) version of the density of X−u with respect to
µ−u. Let x−u ∈ X−u such that fX−u(x−u) ≤ ‖fX−u‖∞, fX−u(x−u) > 0 and such
that fX−u is continuous at x−u. We have that

fXu|X−u=x−u(xu) :=
fX(xu, x−u)

fX−u(x−u)

is a version of the density of Xu conditionally to X−u = x−u (defined for almost

all x−u). Let (x
(n)
−u) be a sequence converging to x−u. There exists n0 such that

for all n ≥ n0, fX−u(x
(n)
−u) > 0. Thus, by continuity of f which respect to x−u and

of fX−u , we have fXu|X−u=x−u(xu) = limn→+∞ f
Xu|X−u=x

(n)
−u
(xu) for almost all xu.

Then, using the dominated converging Theorem,

L(Xu|X−u = x
(n)
−u)

weakly−→
N→+∞

L(Xu|X−u = x−u).

Remark 37. The assumption ”X = (Xu, X−u) has a bounded density fX with
respect to a finite measure µ =

⊗p
i=1 µi, which is continuous PX-a.e.” is only used

in the proof of Lemma 5. It would be interesting in future work to prove 5 with a
weaker assumption.

Remark 38. There exists a different proof of Lemma 5 if we assume that µ is
regular. Theorem 8.1 of [Tju74] ensures that the conditional distribution in the
sense of Tjur is defined for all x−u such that fX−u > 0 (and not only for almost
all x−u) and the continuity of fXu|X−u=x−u(xu) with respect to x−u comes from
Theorem 22.1 of [Tju74].

Remark 39. To avoid confusion, we can now define L(Xu|X−u = x−u) as the

probability measure of density f(·,x−u)
fX−u

(x−u)
, which is defined for all (and not ”almost

all”) x−u in {fX−u > 0}.

Proposition 43. If

L(Xu|X−u = .) : (X−u, d−u) −→ (M1(Xu), T (weak))
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is continuous (where T (weak) is the topology of weak convergence) almost every-

where, then, for almost all
(
(x

(n)
−u)n,h

)
, we have

E
(
Êu,1

∣∣∣(X(n)
−u )n = (x

(n)
−u)n,k = h

)
−→

N→+∞
Var(Y |X−u = x

(1)
−u) (I.2)

and,
E(Êu,1) −→

N→+∞
Eu. (I.3)

Proof. Let Z = (Z1, ...,ZNI
) : (Ω,A) → (XNI , E⊗NI ) measurable, where E is the

σ-algebra on X , such that for almost all
(
(x

(n)
−u)n,h

)
, we have

L
(
Z|(X(n)

−u )n = (x
(n)
−u)n,k = h

)
=

NI⊗

i=1

L(X(1)|X(1)
−u = x

(1)
−u).

It suffices to show that, for almost all
(
(x

(n)
−u)n,h

)
,

(X(kN (i)))i≤NI

L
|(X

(n)
−u )n=(x

(n)
−u)n,k=h

−→
N→+∞

Z. (I.4)

Indeed, if Equation (I.4) is true, then, using that Φ is bounded,

E
(
Êu,1

∣∣∣(X(n)
−u )n = (x

(n)
−u)n,k = h)

= E
[
Φ
(
(X(kN (i)))i≤NI

) ∣∣∣(X(n)
−u )n = (x

(n)
−u)n,k = h

]

−→
N→+∞

E(Φ(Z)
∣∣∣(X(n)

−u )n = (x
(n)
−u)n,k = h)

= Var(Y |X−u = x
(1)
−u),

by definition of Z and of Φ. Thus, we have Equation I.2. Furthermore, using

dominated convergence theorem, integrating on
(
(x

(n)
−u)n,h

)
, we obtain Equation

I.3.
Thus, it remains to show that conditionally to (X

(n)
−u )n = (x

(n)
−u)n,k = h, the

random vector (X(kN (i)))i≤NI
converges in distribution to Z. We prove this con-

vergence step by step.

Lemma 6. For almost all (x
(n)
−u)n,

L((X(n)
u )n|(X(n)

−u )n = (x
(n)
−u)n) =

⊗

n≥1

L(Xu|X−u = x
(n)
−u).
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Proof. Let (X̃
(n)
−u )n : Ω → X N

−u be an i.i.d. sequence of distribution L(X−u). Then,

we let (X̃
(n)
u )n : Ω → X N

u be a sequence with conditional distribution

L((X̃(n)
u )n|(X̃(n)

−u )n = (x
(n)
−u)n) =

⊗

n≥1

L(Xu|X−u = x
(n)
−u).

We just have to prove that (X̃(n))n is an i.i.d. sample of distribution L(X).
Each X̃(n) has a distribution L(X) because for all bounded measurable φ,

E(φ(X̃(n))) =

∫

Ω

φ(X̃(n)(ω))dP(ω)

=

∫

Xu×X−u

φ(xu, x−u)dP(X̃u,X̃−u)
(xu, x−u)

=

∫

X−u

(∫

Xu

φ(xu, x−u)dPXu|X−u=x−u(xu)

)
dPX−u(x−u)

=

∫

X
φ(x)dPX(x).

Moreover, (X̃(n))n are independent because if n 6= m, then, for all bounded Borel
functions φ1 and φ2, we have:

E(φ1(X̃
(n))φ2(X̃

(m)))

=

∫

X 2
u×X 2

−u

φ1(x
(n)
u , x

(n)
−u)φ2(x

(m)
u , x

(m)
−u )dP(X̃

(n)
u ,X̃

(m)
u ,X̃

(n)
−u ,X̃

(m)
−u )

(x(n)u , x(m)
u , x

(n)
−u, x

(m)
−u )

=

∫

X 2
−u

(∫

X 2
u

φ1(x
(n)
u , x

(n)
−u)φ2(x

(m)
u , x

(m)
−u )

dP
(X̃

(n)
u ,X̃

(m)
u )|(X̃(n)

−u ,X̃
(m)
−u )=(x

(n)
−u,x

(m)
−u )

(x(n)u , x(m)
u )

)
dP

(X̃
(n)
−u ,X̃

(m)
−u )

(x
(n)
−u, x

(m)
−u )

=

∫

X 2
−u

(∫

X 2
u

φ1(x
(n)
u , x

(n)
−u)φ2(x

(m)
u , x

(m)
−u )

dP
Xu|X−u=x

(n)
−u

⊗ P
Xu|X−u=x

(m)
−u

(x(n)u , x(m)
u )

)
dP⊗2

X−u
(x

(n)
−u, x

(m)
−u )

=

∫

X 2
−u

(∫

Xu

φ1(x
(n)
u , x

(n)
−u)dPXu|X−u=x

(n)
−u
(x(n)u )

)

(∫

Xu

φ2(x
(m)
u , x

(m)
−u )dPXu|X−u=x

(m)
−u

(x(m)
u )

)
dP⊗2

X−u
(x

(n)
−u, x

(m)
−u )

=

∫

X−u

(∫

Xu

φ1(x
(n)
u , x

(n)
−u)dPX̃u|X̃−u=x

(n)
−u
(x(n)u )

)
dPX̃−u

(x
(n)
−u)
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(∫

Xu

φ2(x
(m)
u , x

(m)
−u )dPX̃u|X̃−u=x

(m)
−u

(x(m)
u )

)
dPX̃−u

(x
(m)
−u )

= E(φ1(X̃
(n)))E(φ2(X̃

(m))).

The above calculation can be extended to finite products of more than two terms.
That concludes the proof of Lemma 6.

Lemma 7. For almost all
(
(x

(n)
−u)n,h

)
, we have:

L
(
(X(kN (i))

u )i≤NI
|(X(n)

−u )n = (x
(n)
−u)n,k = h

)
=

NI⊗

i=1

L
(
Xu|X−u = x

(hN (i))
−u

)
.

Proof. For all bounded Borel function φ,

E
(
φ((X(kN (i))

u )i≤NI
)|(X(n)

−u )n = (x
(n)
−u)n,k = h

)

= E
(
φ
(
(X(kN (i))

u )i≤NI
)
)∣∣ (X(n)

−u )n = (x
(n)
−u)n, (kN ′(i))i≤NI ,N ′∈N∗ = (hN ′(i))i≤NI ,N ′∈N∗

)

= E
(
φ
(
(X(kN (i))

u )i≤NI

)∣∣ (X(n)
−u )n = (x

(n)
−u)n, (kN(i))i≤NI

= (hN(i))i≤NI

)

= E
(
φ
(
(X(hN (i))

u )i≤NI

)
|(X(n)

−u )n = (x
(n)
−u)n

)
,

using Lemmas 2 and 3 conditionally to (X
(n)
−u )n = (x

(n)
−u)n. Then,

E
(
φ
(
(X(hN (i))

u )i≤NI

)
|(X(n)

−u )n = (x
(n)
−u)n

)

=

∫

XNI
u

φ(x(1)u , ..., x(NI)
u )dP

(X
(hN (i))
u )i≤NI

|(X(n)
−u )n=(x

(n)
−u)n

(x(1)u , ..., x(NI)
u )

=

∫

XNI
u

φ(x(1)u , ..., x(NI)
u )d

NI⊗

i=1

P
Xu|X−u=x

(hN (i))
−u

(x(1)u , ..., x(NI)
u ).

That concludes the proof of Lemma 7.

Recall that X
(kN (i)))
−u −→

N→+∞
X

(1)
−u P-a.e., thus, for almost all

(
(x

(n)
−u)n,h

)
,

x
(hN (i))
−u −→

N→+∞
x
(1)
−u.

Thus, using the continuity of the conditional distribution given by Lemma 5, for

almost all
(
(x

(n)
−u)n,h

)
, we have,

L(Xu|X−u = x
(hN (i))
−u )

weakly−→
N→+∞

L(Xu|X−u = x
(1)
−u).
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Thus, for almost all
(
(x

(n)
−u)n,h

)
,

NI⊗

i=1

L(Xu|X−u = x
(hN (i))
−u )

weakly−→
N→+∞

NI⊗

i=1

L(Xu|X−u = x
(1)
−u) = L(Zu|X(1)

−u = x
(1)
−u).

So, using Lemma 7, for almost all
(
(x

(n)
−u)n,h

)
,

L
(
(X(kN (i))

u )i≤NI
|(X(n)

−u )n = (x
(n)
−u)n,k = h

)
weakly−→
N→+∞

L(Zu|X(1)
−u = x

(1)
−u).

So, for almost all
(
(x

(n)
−u)n,h

)
,

L
(
(X(kN (i))

u )i≤NI
|(X(n)

−u )n = (x
(n)
−u)n,k = h

)
weakly−→
N→+∞

L
(
Zu|(X(n)

−u )n = (x
(n)
−u)n,k = h

)
.

Using Slutsky lemma, for almost all
(
(x

(n)
−u)n,h

)
,

L
(
(X(kN (i)))i≤NI

|(X(n)
−u )n = (x

(n)
−u)n,k = h

)
weakly−→
N→+∞

L
(
Z|(X(n)

−u )n = (x
(n)
−u)n,k = h

)
,

that concludes the proof of Proposition 43.

Lemma 8. The value of Var(Êu,1,MC) is bounded by 128‖f‖4∞.

Proof. As f is bounded, Φ is bounded by 1
NI−1

∑NI

k=1(2‖f‖∞)2 = NI

NI−1
4‖f‖2∞ ≤

8‖f‖2∞ so Var(Êu,1) is bounded by 2‖Φ‖2∞ ≤ 128‖f‖4∞.

Proposition 44. We have

cov(Êu,1, Êu,2) −→
N→+∞

0.

Proof. We use the law of total covariance

cov(Êu,1, Êu,2) = E
(
cov

(
Êu,1, Êu,2|X(1)

−u, X
(2)
−u

))
+cov

(
E(Êu,1|X(1)

−u, X
(2)
−u),E(Êu,2|X(1)

−u, X
(2)
−u)
)
.

(I.5)
We will show that both terms go to 0 as N goes to +∞. Let us compute the
second term. Using Proposition 43,

cov
(
E(Êu,1|X(1)

−u, X
(2)
−u),E(Êu,2|X(1)

−u, X
(2)
−u)
)

= E
(
E(Êu,1|X(1)

−u, X
(2)
−u)E(Êu,2|X(1)

−u, X
(2)
−u)
)
− E(Êu,1)E(Êu,2)
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−→
N→+∞

E
(
Var(Y |X−u = X

(1)
−u)Var(Y |X−u = X

(2)
−u)
)
− E2

u

= 0.

It remains to prove that E
(
cov

(
Êu,1, Êu,2|X(1)

−u, X
(2)
−u

))
goes to 0. By dominated

convergence theorem, it suffices to show that for almost all (x
(1)
−u, x

(2)
−u),

cov
(
Êu,1, Êu,2|X(1)

−u = x
(1)
−u, X

(2)
−u = x

(2)
−u

)
−→

N→+∞
0. (I.6)

From now on, we aim to proving Equation (I.6).

First, we want to prove Equation (I.6) for x
(1)
−u 6= x

(2)
−u. Using dominated con-

vergence theorem and Proposition 43, it will suffice to show that (conditionally to

X
(1)
−u = x

(1)
−u, X

(2)
−u = x

(2)
−u), for almost all ((x

(n)
−u)n≥3,h,h

′),

E
(
Êu,1, Êu,2|(X(n)

−u )n = (x
(n)
−u)n,k = h,k′ = h′

)
−→

N→+∞
Var

(
Y |X−u = x

(1)
−u

)
Var

(
Y |X−u = x

(2)
−u

)
.

Let

A :=

{(
(x

(n)
−u)n,h,h

′
)
| xhN (N1)

−u −→
N→+∞

x
(1)
−u, x

h′N (N1)
−u −→

N→+∞
x
(2)
−u

}
.

The set A has probability 1 thanks to Lemma 4. Let
(
(x

(n)
−u)n,h,h

′
)
∈ A be such

that x
(1)
−u 6= x

(2)
−u and let δ := d−u(x

(1)
−u, x

(2)
−u)/2. There exists N1 such that for all

N ≥ N1,

d−u
(
x
(1)
−u, x

(hN (NI))
−u

)
<
δ

2
, d−u

(
x
(2)
−u, x

(h′N (NI))
−u

)
<
δ

2
.

Thus, for all N ≥ N1,

E(Êu,1Êu,2|(X(n)
−u )n = (x

(n)
−u)n,k = h,k′ = h′)

= E
[
Φ
(
(XkN (i))i≤NI

)
Φ
(
(Xk′N (i))i≤NI

)∣∣∣ (X(n)
−u )n = (x

(n)
−u)n,k = h,k′ = h′

]

= E
[
Φ
(
(XkN (i))i≤NI

)
Φ
(
(Xk′N (i))i≤NI

)∣∣∣ (X(n)
−u )n = (x

(n)
−u)n,kN = hN ,k

′
N = h′

N

]

= E
[
Φ
(
(XhN (i))i≤NI

)
Φ
(
(Xk′N (i))i≤NI

)∣∣∣ (X(n)
−u )n = (x

(n)
−u)n,k

′
N = h′

N

]

= E
[
Φ
(
(XhN (i))i≤NI

)
Φ
(
(Xh′N (i))i≤NI

)∣∣∣ (X(n)
−u )n = (x

(n)
−u)n

]

= E
[
Φ
(
(x

hN (i)
−u )i≤NI

, (XhN (i)
u )i≤NI

)
Φ
(
(x

h′N (i)
−u )i≤NI

, (X
h′N (i)
u )i≤NI

)∣∣∣ (X(n)
−u )n = (x

(n)
−u)n

]

= E
[
Φ
(
(x

hN (i)
−u )i≤NI

, (XhN (i)
u )i≤NI

)∣∣∣ (X(n)
−u )n = (x

(n)
−u)n

]

E
[
Φ
(
(x

h′N (i)
−u )i≤NI

, (X
h′N (i)
u )i≤NI

)∣∣∣ (X(n)
−u )n = (x

(n)
−u)n

]
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= E
[
Êu,1

∣∣∣ (X(n)
−u )n = (x

(n)
−u)n,k = h

]
E
[
Êu,2

∣∣∣ (X(n)
−u )n = (x

(n)
−u)n,k

′ = h′
]

−→
N→+∞

Var
[
Y |X−u = x

(1)
−u

]
Var

[
Y |X−u = x

(2)
−u

]
,

thanks to Proposition 43.

Assume now that X
(1)
−u = X

(2)
−u = x−u. We can assume without lost of generality

that P(X−u = x−u) > 0 because if we write H := {x−u| P(X−u = x−u) = 0}, we
have P(X

(1)
−u = X

(2)
−u ∈ H) = 0. We have to show that

E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u

)
− Var(Y |X−u = x−u)

2 −→
N→+∞

0.

Let ε > 0.

Let MN the number of observations which are equal to x−u,

MN := #{n ≤ N : X
(n)
−u = x−u},

and let HN be the number of nearest neighbours (up to NI-nearest) shared by X
(1)
−u

and X
(2)
−u,

HN := # [{kN(i) : i ≤ NI} ∩ {k′N(i) : i ≤ NI}] .

If Mn = m ≥ 2NI , X
(1)
−u = x−u = X

(2)
−u, then the NI-nearest neighbours kN of X

(1)
−u

and k′
N of X

(2)
−u are independent and are samples of uniformly distributed variables

on the same set of cardinal m, without replacement. Thus,

P(HN = 0|MN = m,X
(1)
−u = X

(2)
−u = x−u)

=

(
m−NI

NI

)

(
m

NI

)

=
(m− 2NI + 1)(m− 2NI + 2)...(m−NI)

(m−NI + 1)(m−NI + 2)...m
−→

m→+∞
1.

Thus, there exists m1 such that

αm1 := P(HN = 0|MN ≥ m1, X
(1)
−u = X

(2)
−u = x−u) > 1− ε

5‖Φ‖2∞
. (I.7)

124



APPENDIX I. PROOFS OF CHAPTER 2

So,

E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u

)

= E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN < m1

)
P(MN < m1|X(1)

−u = X
(2)
−u = x−u)

+E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1

)
P(MN ≥ m1|X(1)

−u = X
(2)
−u = x−u).

Let

βN := E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN < m1

)
P(MN < m1|X(1)

−u = X
(2)
−u = x−u).

Conditionally toX
(1)
−u = X

(2)
−u = x−u, we know thatMN−2 ∼ B (N − 2,P(X−u = x−u)),

the binomial distribution. Thus, there exists N1 such that for all N ≥ N1,

P
(
MN < m1|X(1)

−u = X
(2)
−u = x−u

)
<

ε

5max(1, ‖Φ‖2∞)
, (I.8)

and so, for all N ≥ N1, βN < ε/5. Furthermore

E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1

)

= E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN = 0

)

×P(HN = 0|X(1)
−u = X

(2)
−u = x−u,MN ≥ m1)

+E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN ≥ 1

)

×P(HN ≥ 1|X(1)
−u = X

(2)
−u = x−u,MN ≥ m1).

Let
γN := P

(
MN ≥ m1|X(1)

−u = X
(2)
−u = x−u

)
.

Moreover, conditionally to X
(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0 implies that

Êu,1 ⊥⊥ Êu,2 thanks to Lemma 9.

Lemma 9. Conditionally to X
(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0, the vec-

tor
(
(X(kN (i)))i≤NI

, (X(k′N (i)))i≤NI

)
is composed of 2NI i.i.d. random variables of

distribution X conditionally to X−u = x−u.

Proof. We know that, conditionally to X
(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0, the

vector
(
(X

(kN (i))
−u )i≤NI

, (X
(k′N (i))
−u )i≤NI

)
is constant equal to (x−u)i≤2NI

. It suffices

to show that, conditionally to X
(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0, the

vector
(
(X

(kN (i))
u )i≤NI

, (X
(k′N (i))
u )i≤NI

)
is composed of 2NI i.i.d. random variables

125



APPENDIX I. PROOFS OF CHAPTER 2

of distribution X conditionally to X−u = x−u. Let ((x
(n)
−u)n,hN ,h

′
N) such that

X
(1)
−u = X

(2)
−u = x−u,MN ≥ m1 and HN = 0. As MN ≥ m1 ≥ NI , for all i ≤ NI , we

have x
(kN (i))
−u = x−u = x

(k′N (i))
−u . As HN = 0, then, for all i and j smaller than NI ,

hN(i) 6= h′N(j). Thus, we have for any bounded Borel function φ,

E
(
φ
[
(X(kN (i))

u )i≤NI
, (X

(k′N (i))
u )i≤NI

]∣∣∣ (X(n)
−u )n = (x

(n)
−u)n,kN = hN ,k

′
N = h′

N

)

= E
(
φ
[
(X(hN (i))

u )i≤NI
, (X

(k′N (i))
u )i≤NI

]∣∣∣ (X(n)
−u )n = (x

(n)
−u)n,k

′
N = h′

N

)

= E
(
φ
[
(X(hN (i))

u )i≤NI
, (X

(h′N (i))
u )i≤NI

]∣∣∣ (X(n)
−u )n = (x

(n)
−u)n,

)

= E

(
φ
[
(X(hN (i))

u )i≤NI
, (X

(h′N (i))
u )i≤NI

] ∣∣∣∣(X
(hN (i))
−u )i≤NI

= (x−u)i≤NI
,

(X
(h′N (i))
−u )i≤NI

= (x−u)i≤NI

)

= E
(
φ
[
(X(i)

u )i≤NI
, (X(i+NI)

u )i≤NI

]∣∣ (X(i)
−u)i≤2NI

= (x−u)i≤2NI

)
.

Thus,

E
(
φ
[
(X(kN (i))

u )i≤NI
, (X

(k′N (i))
u )i≤NI

]∣∣∣X(1)
−u = X

(2)
−u = x−u,MN ≥ m1, HN = 0

)

= E

{
E

(
φ
[
(X(kN (i))

u )i≤NI
, (X

(k′N (i))
u )i≤NI

] ∣∣∣∣X
(1)
−u = X

(2)
−u = x−u,

MN ≥ m1, HN = 0, (X
(n)
−u )n,k,k

′
)}

= E
{
E
(
φ
[
(X(i)

u )i≤NI
, (X(i+NI)

u )i≤NI

]∣∣ (X(i)
−u)i≤2NI

= (x−u)i≤2NI

)}

= E
(
φ
[
(X(i)

u )i≤NI
, (X(i+NI)

u )i≤NI

]∣∣ (X(i)
−u)i≤2NI

= (x−u)i≤2NI

)
,

that concludes the proof of Lemma 9.

Thus

E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN = 0

)

= E
(
Êu,1|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN = 0

)2

and so, using Proposition 43, there exists N2 such that for all N ≥ N2,

∣∣∣E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN = 0

)
− Var(Y |X−u = x−u)

2
∣∣∣ < ε

5
.

(I.9)
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Thus, for all N ≥ max(N1, N2),
∣∣∣E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u

)
− Var(Y |X−u = x−u)

2
∣∣∣

≤ |βN |+
∣∣∣γNE

(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN ≥ 1

)
(1− αm1)

∣∣∣

+
∣∣∣γNαm1E

(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN = 0

)
− Var(Y |X−u = x−u)

2
∣∣∣ .

The upper-bound is a sum of three terms. The first one is bounded by ε/5 using
Equation I.8 and the second one is bounded by ε/5 using Equation I.7. For the
last one, we use that, for all C ∈ R,

γNαm1C = (γNαm1 − 1)C + C.

Thus,
∣∣∣E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u

)
− Var(Y |X−u = x−u)

2
∣∣∣

≤ ε

5
+
ε

5
+ |γNαm1 − 1| ‖Φ‖2∞

+
∣∣∣E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u,MN ≥ m1, HN = 0

)
− Var(Y |X−u = x−u)

2
∣∣∣

≤ 3ε

5
+ (|γN − 1|αN + |αN − 1|) ‖Φ‖2∞ using Equation I.9

≤ ε,

using Equation I.8 and Equation I.7. Finally, we proved that

E
(
Êu,1Êu,2|X(1)

−u = X
(2)
−u = x−u

)
− Var(Y |X−u = x−u)

2 −→
N→+∞

0.

Hence, Equation (I.6) is proved and the proof of Proposition 44 is concluded.

Proposition 45. We have

Êu − E
(
Êu,1

)
P−→

N→+∞,
Nu→+∞

0. (I.10)

Proof. Let ε > 0. By Chebyshev’s inequality,

P
(∣∣∣Êu − E

(
Êu

)∣∣∣ > ε
)
≤ Var(Êu)

ε2
. (I.11)

If (s(l))l≤Nu is a sample of uniformly distributed variables on [1 : N ] with replace-
ment, we remark that for all i 6= j,

cov
(
Êu,s(i), Êu,s(j)

)

127



APPENDIX I. PROOFS OF CHAPTER 2

= E(Êu,s(i)Êu,s(j))− E(Êu,s(i))E(Êu,s(j))

= E(Êu,s(i)Êu,s(j)|s(i) 6= s(j))P(s(i) 6= s(j))

+E(Êu,s(i)Êu,s(j)|s(i) = s(j))P(s(i) = s(j))− E(Êu,s(i))E(Êu,s(j))

=
[
E(Êu,s(i)Êu,s(j)|s(i) 6= s(j))− E(Êu,1)E(Êu,2)

]
P(s(i) 6= s(j))

+
[
E(Êu,s(i)Êu,s(i)|s(i) = s(j))− E(Êu,1)

2
]
P(s(i) = s(j))

=
[
E(Êu,1Êu,2|s(i) = 1, s(j) = 2)− E(Êu,1)E(Êu,2)

]
P(s(i) 6= s(j))

+
[
E(Êu,1Êu,1|s(i) = s(j) = 1)− E(Êu,1)

2
]
P(s(i) = s(j))

= cov
(
Êu,1, Êu,2

)
P(s(i) 6= s(j)) + Var

(
Êu,1

)
P(s(i) = s(j)),

thus

Var(Êu) =
1

N2
u

Nu∑

i,j=1

cov
(
Êu,s(i), Êu,s(j)

)

=
1

N2
u

Nu∑

i 6=j=1

cov
(
Êu,1, Êu,2

)
P(s(i) 6= s(j))

+
1

N2
u

Nu∑

i 6=j=1

Var
(
Êu,1

)
P(s(i) = s(j)) +

1

N2
u

Nu∑

i=1

Var
(
Êu,s(i)

)

≤ 1

N2
u

Nu∑

i 6=j=1

∣∣∣cov
(
Êu,1, Êu,2

)∣∣∣

+
1

N2
u

Nu∑

i 6=j=1

Var
(
Êu,1

) 1

N
+

1

N2
u

Nu∑

i=1

Var
(
Êu,1

)

≤
∣∣∣cov

(
Êu,1, Êu,2

)∣∣∣+Var
(
Êu,1

)( 1

N
+

1

Nu

)
.

If (s(l))l≤Nu is a sample of uniformly distributed variables on [1 : N ] without
replacement, we have

Var(Êu) =
1

N2
u

Nu∑

i,j=1

cov
(
Êu,s(i), Êu,s(j)

)

=
1

N2
u

Nu∑

i 6=j=1

cov
(
Êu,s(i), Êu,s(j)

)
+

1

N2
u

Nu∑

i=1

Var
(
Êu,s(i)

)
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=
Nu − 1

Nu

cov
(
Êu,1, Êu,2

)
+

1

Nu

Var
(
Êu,1

)
.

In both cases (with or without replacement), thanks to Proposition 44, we have

P
(∣∣∣Êu − E

(
Êu

)∣∣∣ > ε
)

−→
N→+∞,
Nu→+∞

0.

Now, to prove Theorem 3, we only have to use Proposition 43 (which can be
applied thanks to Lemma 5) and Proposition 45.

A.2 Proof for rate of convergence: Theorems 4 and 6

We want to prove Theorems 4 and 6 about the rate of convergence of the double
Monte-Carlo and Pick-and-Freeze estimators. We have to add some notation. We
will write Csup for a generic non-negative finite constant (depending only on u,
f and the distribution of X). The actual value of Csup is of no interest and can
change in the same sequence of equations. Similarly, we will write Cinf a generic
strictly positive constant. We will write Csup(ε) for a generic non-negative finite
constant depending only on ε, u, f and the distribution of X.

Recall that for all i, Xi is a compact subset of R and that f is C1. Moreover
recall thatX has a probability density fX with respect to λp (the Lebesgue measure
on Rp) such that λp-a.e., we have 0 < Cinf ≤ fX ≤ Csup, and such that fX is
Lipschitz continuous.

Note that with these assumptions, Φ is C1 on the compact set X and so Lips-
chitz continuous. For all n, we will write d for the euclidean distance on Rn (for
any value of n) and B(x, r) for the open ball of radius r and center x in Rn. We
also let S(x, r) be the sphere of center x and radius r.

Remark that

P
(
d(X

(1)
−u, X

(2)
−u) = d(X

(1)
−u, X

(3)
−u)
)

=

∫

X 2
−u

P
(
d(x

(1)
−u, x

(2)
−u) = d(x

(1)
−u, X

(3)
−u)
)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u)

≤ Csup

∫

X 2
−u

λ|−u|
(
S(x(1)−u, d(x

(1)
−u, x

(2)
−u))

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u)

= 0,

because the Lebesgue measure of the sphere S(x(1)−u, d(x
(1)
−u, x

(2)
−u)) is zero. Thus,

almost everywhere, for all l and all i 6= j,

d
(
X

(l)
−u, X

(i)
−u

)
6= d

(
X

(l)
−u, X

(j)
−u

)
.
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Thus, the indices of the nearest neighbours (kN(l, i))l,i are constant random vari-

ables conditionally to (X
(n)
−u )n or to (X

(n)
−u )n≤N . In particular, for all N and l,

kN(l, 1) = l. Thanks to Doob-Dynkin lemma, we can write, abusing notation,

kN(l, i)(ω) = kN(l, i)[(X
(n)
−u (ω))n] = kN(l, i)[(X

(n)
−u (ω))n≤N ]. To simplify nota-

tion, let us write kN(i) := kN(1, i) (the index of one i-th neighbour of X
(1)
−u) and

k′N(i) := kN(2, i) (the index of one i-th neighbour of X
(2)
−u).

Remark 40. We can prove the rate of convergence in a more general framework
than the Euclidean space with the Lebesgue measure. It suffices to have a compact
set X with a dominating finite measure µ =

⊗
µi such that for µi-almost all

xi ∈ Xi and for all δ > 0,

Cinfδ ≤ µi(B(xi, δ)) = µi(B(xi, δ)) ≤ Csupδ.

We prove Theorems 4 and 6 step by step.

Lemma 10. Assume that (ai)i and (bi)i are sequences such that for all i, |ai| ≤M ,
|bi| ≤M and |ai − bi| ≤ ε. Then, for all N ∈ N∗

∣∣∣∣∣
N∏

i=1

ai −
N∏

i=1

bi

∣∣∣∣∣ ≤ NMN−1ε.

Proof. By induction.

Lemma 11. If for all i ≤ N , d(x
(i)
−u,y

(i)
−u) < ε, then, for all (a

(i)
−u)i≤NI

∈ XNI
−u ,

∣∣∣E
[
Φ
(
(a

(i)
−u)i≤NI

, (X
(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (x
(i)
−u)i≤NI

]

− E
[
Φ
(
(a

(i)
−u)i≤NI

, (X
(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (y
(i)
−u)i≤NI

]∣∣∣ ≤ Csupε.

Proof.

∣∣∣E
[
Φ
(
(a

(i)
−u)i≤NI

, (X(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (x
(i)
−u)i≤NI

]

− E
[
Φ
(
(a

(i)
−u)i≤NI

, (X(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (y
(i)
−u)i≤NI

]∣∣∣

=

∣∣∣∣
∫

XNI
u

Φ((a
(i)
−u)i≤NI

, (x(i)u )i≤NI
)
(
f
(X

(i)
u )i≤NI

|(X(i)
−u)i≤NI

=(x
(i)
−u)i≤NI

((x(i)u )i≤NI
)

−f
(X

(i)
u )i≤NI

|(X(i)
−u)i≤NI

=(y
(i)
−u)i≤NI

((x(i)u )i≤k)
)
d((x(i)u )i≤NI

)
∣∣∣

≤ Csup

∫

XNI
u

∣∣∣∣∣
NI∏

i=1

f
Xu|X−u=x

(i)
−u
(x(i)u )−

NI∏

i=1

f
Xu|X−u=y

(i)
−u
(x(i)u )

∣∣∣∣∣ d((x
(i)
u )i≤NI

).
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We know that,
∣∣fXu|X−u=x−u(xu)− fXu|X−u=y−u(xu)

∣∣

≤
∣∣∣∣∣

fX(xu, x−u)∫
Xu
fX(x′u, x−u)d(x

′
u)

− fX(xu,y−u)∫
Xu
fX(x′u,y−u)d(x′u)

∣∣∣∣∣

≤ 1∫
Xu
fX(x′u, x−u)d(x

′
u)

|fX(xu, x−u)− fX(xu,y−u)|

+fX(xu,y−u)

∣∣∣∣∣
1∫

Xu
fX(x′u, x−u)d(x

′
u)

− 1∫
Xu
fX(x′u,y−u)d(x′u)

∣∣∣∣∣
≤ Csup |fX(xu, x−u)− fX(xu,y−u)|+ Csup |fX(xu, x−u)− fX(xu,y−u)|
≤ Csupd(x−u,y−u).

Thus, for all i ∈ [1 : Ni] and for all x
(i)
u ,

∣∣∣f
Xu|X−u=x

(i)
−u
(x(i)u )− f

Xu|X−u=y
(i)
−u
(x(i)u )

∣∣∣ ≤ Csupε.

Thus, using Lemma 10,
∣∣∣E
[
Φ
(
(a

(i)
−u)i≤NI

, (X(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (x
(i)
−u)i≤NI

]

− E
[
Φ
(
(a

(i)
−u)i≤NI

, (X(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (y
(i)
−u)i≤NI

]∣∣∣ ≤ Csupε.

Lemma 12. If for all i, d(x
(i)
−u,y

(i)
−u) < ε, then

∣∣∣E
[
Φ
(
(x

(i)
−u)i≤NI

, (X
(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (x
(i)
−u)i≤NI

]

− E
[
Φ
(
(y

(i)
−u)i≤NI

, (X
(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (y
(i)
−u)i≤NI

]∣∣∣ ≤ Csupε.

Proof.
∣∣∣E
[
Φ
(
(x

(i)
−u)i≤NI

, (X(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (x
(i)
−u)i≤NI

]

− E
[
Φ
(
(y

(i)
−u)i≤NI

, (X(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (y
(i)
−u)i≤NI

]∣∣∣

≤
∣∣∣E
[
Φ
(
(x

(i)
−u)i≤NI

, (X(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (x
(i)
−u)i≤NI

]

− E
[
Φ
(
(x

(i)
−u)i≤NI

, (X(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (y
(i)
−u)i≤NI

]∣∣∣

+
∣∣∣E
[
Φ
(
(x

(i)
−u)i≤NI

, (X(i)
u )i≤NI

)
− Φ

(
(y

(i)
−u)i≤NI

, (X(i)
u )i≤NI

)
|(X(i)

−u)i≤NI
= (y

(i)
−u)i≤NI

]∣∣∣
≤ Csupε+ Csupε,

using Lemma 11 and using that Φ is Lipschitz continuous on X .
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Lemma 13. There exists Csup < +∞ such that for all a > 0,

P
(
d
(
X

(1)
−u, X

(kN (NI))
−u

)
≥ a
∣∣∣X(1)

−u

)
≤ CsupN

NI (1− Cinfa
|−u|)N−NI . (I.12)

Proof. Let K(a) := #{n ∈ [2 : N ], d(X
(1)
−u, X

(n)
−u ) < a}. Conditionally to X

(1)
−u,

K(a) ∼ B(N − 1, p(a,X
(1)
−u)), writing p(a,X

(1)
−u) := P(d(X

(1)
−u, X

(2)
−u) < a|X(1)

−u).
Thus,

P
(
d
(
X

(1)
−u, X

(kN (NI))
−u

)
≥ a
∣∣∣X(1)

−u

)

= P
(
K(a) ≤ NI − 1|X(1)

−u

)

=

NI−1∑

k=0

(
N − 1

k

)
p(a,X

(1)
−u)

k(1− p(a,X
(1)
−u))

N−1−k

≤ NI

(
N − 1

NI − 1

)
(1− p(a,X

(1)
−u))

N−NI

≤ CsupN
NI (1− p(a,X

(1)
−u))

N−NI .

We know that

p(a,X
(1)
−u) =

∫

B(X
(1)
−u,a)

fX−u(x−u)dx−u

≥ Cinfλ|−u|
(
B(X

(1)
−u, a)

)

≥ Cinfa
|−u|.

Thus

P
(
d
(
X

(1)
−u, X

(kN (NI))
−u

)
≥ a
∣∣∣X(1)

−u

)
≤ CsupN

NI (1− Cinfa
|−u|)N−NI . (I.13)

Remark 41. For the estimators V̂u,PF , we choose only one nearest neighbour dif-

ferent from X
(1)
u in V̂u,1,PF , which is X

(kN (2))
u . Thus, in the previous computation,

we do not have the NNI . Remark that this is also true for Êu,MC taking NI = 2.

Lemma 14. For all ε > 0, there exists Csup(ε) such that

E
(
d
(
X

(1)
−u, X

(kN (NI))
−u

))
≤ Csup(ε)

N
1

p−|u|
−ε , (I.14)

and for all x
(1)
−u,

E
(
d
(
X

(1)
−u, X

(kN (NI))
−u

)∣∣∣X(1)
−u = x

(1)
−u

)
≤ Csup(ε)

N
1

p−|u|
−ε . (I.15)
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Proof. Using Lemma 13, we have

E
(
(N −NI)

1
|−u|

−εd
(
X

(1)
−u, X

(kN (NI))
−u

)∣∣∣X(1)
−u

)

=

∫ +∞

0

P
(
(N −NI)

1
|−u|

−εd
(
X

(1)
−u, X

(kN (NI))
−u

)
> t
∣∣∣X(1)

−u

)
dt

≤ 1 +

∫ +∞

1

P
(
d
(
X

(1)
−u, X

(kN (NI))
−u

)
> t(N −NI)

− 1
|−u|

+ε
∣∣∣X(1)

−u

)
dt

= 1 +
1

| − u|

∫ +∞

1

s
1

|−u|
−1
P
(
d
(
X

(1)
−u, X

(kN (NI))
−u

)
> s

1
|−u| (N −NI)

− 1
|−u|

+ε
∣∣∣X(1)

−u

)
ds

≤ 1 +
1

| − u|

∫ +∞

1

CsupN
NI (1− Cinfs(N −NI)

|−u|ε−1)N−NIds,

and

(1− Cinfs(N −NI)
|−u|ε−1)N−NI = exp

[
(N −NI) ln

(
1− Cinfs(N −NI)

|−u|ε−1
)]

≤ exp
[
(N −NI)

(
−Cinfs(N −NI)

|−u|ε−1
)]

= exp(−Cinfs(N −NI)
|−u|ε).

Thus,

E
(
(N −NI)

1
|−u|

−εd
(
X

(1)
−u, X

(kN (NI))
−u

)∣∣∣X(1)
−u

)

≤ 1 + Csup

∫ +∞

1

NNI exp(−Cinfs(N −NI)
|−u|ε)ds

≤ 1 + Csup

[
NNI exp(−Cinf

1

2
(N −NI)

|−u|ε)

] ∫ +∞

1

exp(−Cinf
s

2
(N −NI)

|−u|ε)ds

≤ 1 + Csup(ε).

Indeed, the valuesNNI exp(−Cinf
1
2
(N−NI)

|−u|ε and
∫ +∞
1

exp(−Cinf
s
2
(N−NI)

|−u|ε)ds
go to 0 when N do +∞. Thus

E
(
d
(
X

(1)
−u, X

(kN (NI))
−u

)∣∣∣X(1)
−u

)
≤ 1 + Csup(ε)

(N −NI)
1

p−|u|
−ε ≤ Csup(ε)

N
1

p−|u|
−ε .

That concludes the proof of Lemma 14.

Remark 42. For the estimators V̂u,PF , we do not have the NNI . Thus, we can
choose ε = 0 up to Proposition 46.

Proposition 46. For all ε > 0, there exists Csup(ε) such that

∣∣∣E
(
Êu

)
− Eu

∣∣∣ ≤ Csup(ε)

N
1

p−|u|
−ε (I.16)
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and for almost all x
(1)
−u,

∣∣∣E
(
Êu,1|X(1)

−u = x
(1)
−u

)
− Var(Y |X−u = x

(1)
−u)
∣∣∣ ≤ Csup(ε)

N
1

p−|u|
−ε . (I.17)

Proof. For almost all (x
(n)
−u)n, using the definition of the random variable Z (in the

proof of Proposition 43) and using Lemma 7,
∣∣∣∣E
(
Φ

(
(X

(kN (i)[(X
(n)
−u )n])

−u )i≤NI
, (X

(kN (i)[(X
(n)
−u )n])

u )i≤NI

)∣∣∣∣ (X
(n)
−u )n = (x

(n)
−u)n

)

−E
(
Φ (Z)|X(1)

−u = x
(1)
−u

) ∣∣∣∣

=

∣∣∣∣E
(
Φ

(
(x

(kN (i)[(x
(n)
−u)n])

−u )i≤NI
, (X(i)

u )i≤NI

)∣∣∣∣ (X
(i)
−u)i≤NI

= (x
(kN (i)[(x

(n)
−u)n])

−u )i≤NI

)

−E
(
Φ
(
(x

(1)
−u)i≤NI

, (X(i)
u )i≤NI

)∣∣∣ (X(i)
−u)i≤NI

= (x
(1)
−u)i≤NI

) ∣∣∣∣

≤ Csupd

(
x
(kN (NI)[(x

(n)
−u)n])

−u , x
(1)
−u

)
,

thanks to Lemma 12. Thus, using Lemma 14, for all ε > 0,
∣∣∣E
(
Êu,1|X(1)

−u = x
(1)
−u

)
− Var(Y |X−u = x

(1)
−u)
∣∣∣ ≤ CsupE

(
d
(
X

(1)
−u, X

(kN (NI))
−u

)∣∣∣X(1)
−u = x

(1)
−u

)

≤ Csup
Csup(ε)

N
1

p−|u|
−ε .

In the following, to simplify notation, we may write ”X
(1,2)
−u = x

(1,2)
−u ” for ”X

(1)
−u =

x
(1)
−u and X

(2)
−u = x

(2)
−u”.

Lemma 15. For almost all (x
(1)
−u, x

(2)
−u) and for all a ≥ 0, we have

P
(
d(x

(1)
−u, X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
≤ P

(
d(x

(1)
−u, X

(kN−1(NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u

)
,

and thus, integrating a on R+,

E
(
d
(
X

(kN (NI))
−u , X

(1)
−u

)∣∣∣X(1,2)
−u = x

(1,2)
−u

)
≤ E

(
d
(
X

(kN−1(NI))
−u , X

(1)
−u

)∣∣∣X(1)
−u = x

(1)
−u

)
.

Proof. Let gN(i) be the index of the i-th nearest neighbour ofX
(1)
−u in (X

(n)
−u )n∈[1:N ]\{2}.

For almost all (x
(1)
−u, x

(2)
−u), we have

P
(
d(x

(1)
−u, X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
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= P
(
d(x

(1)
−u, X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u, x

(2)
−u) > d(x

(1)
−u, X

(gN (NI))
−u )

)

P
(
d(x

(1)
−u, x

(2)
−u) > d(x

(1)
−u, X

(gN (NI))
−u )

∣∣∣X(1,2)
−u = x

(1,2)
−u

)

+P
(
d(x

(1)
−u, X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u, x

(2)
−u) ≤ d(x

(1)
−u, X

(gN (NI))
−u )

)

P
(
d(x

(1)
−u, x

(2)
−u) ≤ d(x

(1)
−u, X

(gN (NI))
−u )

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
.

Moreover, conditionally to X
(1,2)
−u = x

(1,2)
−u , if d(x

(1)
−u, x

(2)
−u) > d(x

(1)
−u, X

(gN (NI))
−u ), then

the NI-nearest neighbours of X
(1)
−u do not change if we do not take into account

X
(2)
−u. Thus

P
(
d(x

(1)
−u, X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u, x

(2)
−u) > d(x

(1)
−u, X

(gN (NI))
−u )

)

= P
(
d(x

(1)
−u, X

(gN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u, x

(2)
−u) > d(x

(1)
−u, X

(gN (NI))
−u )

)

= P
(
d(x

(1)
−u, X

(gN (NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u, d(x

(1)
−u, x

(2)
−u) > d(x

(1)
−u, X

(gN (NI))
−u )

)
.

Similarly, conditionally to X
(1,2)
−u = x

(1,2)
−u , if d(x

(1)
−u, x

(2)
−u) ≤ d(x

(1)
−u, X

(gN (NI))
−u , then

x
(2)
−u is one of the NI-nearest neighbours of X

(1)
−u. Thus

P
(
d(x

(1)
−u, X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u, x

(2)
−u) ≤ d(x

(1)
−u, X

(gN (NI))
−u )

)

≤ P
(
d(x

(1)
−u, X

(gN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u , d(x

(1)
−u, x

(2)
−u) ≤ d(x

(1)
−u, X

(gN (NI))
−u )

)

= P
(
d(x

(1)
−u, X

(gN (NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u, d(x

(1)
−u, x

(2)
−u) ≤ d(x

(1)
−u, X

(gN (NI))
−u )

)
.

Finally,

P
(
d(x

(1)
−u, X

(kN (NI))
−u ) ≥ a

∣∣∣X(1,2)
−u = x

(1,2)
−u

)

≤ P
(
d(x

(1)
−u, X

(gN (NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u, d(x

(1)
−u, x

(2)
−u) > d(x

(1)
−u, X

(gN (NI))
−u )

)

P
(
d(x

(1)
−u, x

(2)
−u) > d(x

(1)
−u, X

(gN (NI))
−u )

∣∣∣X(1)
−u = x

(1)
−u

)

+P
(
d(x

(1)
−u, X

(gN (NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u, d(x

(1)
−u, x

(2)
−u) ≤ d(x

(1)
−u, X

(gN (NI))
−u )

)

P
(
d(x

(1)
−u, x

(2)
−u) ≤ d(x

(1)
−u, X

(gN (NI))
−u )

∣∣∣X(1)
−u = x

(1)
−u

)

= P
(
d(x

(1)
−u, X

(gN (NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u

)

= P
(
d(x

(1)
−u, X

(kN−1(NI))
−u ) ≥ a

∣∣∣X(1)
−u = x

(1)
−u

)
,

and we proved Lemma 15.
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Proposition 47. For all ε > 0, there exists Csup(ε) such that

∣∣∣cov(Êu,1, Êu,2)
∣∣∣ ≤ Csup(ε)

N
1

p−|u|
−ε . (I.18)

Proof. We use the law of total covariance,

cov(Ê1, Ê2) = E
[
cov

(
Ê1, Ê2

∣∣∣X(1)
−u, X

(2)
−u

)]
+cov

[
E
(
Êu,1|X(1)

−u, X
(2)
−u

)
,E
(
Êu,2|X(1)

−u, X
(2)
−u

)]
.

(I.19)
Part 1: First, we will bound the second term of Equation I.19. Thanks to Lemma
12, we have

∣∣∣E
(
Êu,1|X(1)

−u = x
(1)
−u, X

(2)
−u = x

(2)
−u

)
− Var

(
Y |X−u = x

(1)
−u)
)∣∣∣

≤ E
{∣∣∣E

[
Φ
(
(X(kN (i)))i≤NI

)∣∣X(1)
−u = x

(1)
−u, X

(2)
−u = x

(2)
−u, (X

(n)
−u )n≥3

]
− Var

(
Y |X−u = x

(1)
−u)
)∣∣∣
}

≤ CsupE
(
d
(
X

(1)
−u, X

(kN (NI))
−u

)∣∣∣X(1)
−u = x

(1)
−u, X

(2)
−u = x

(2)
−u

)
using Lemma 12,

≤ CsupE
(
d
(
X

(1)
−u, X

(kN−1(NI))
−u

)∣∣∣X(1)
−u = x

(1)
−u

)
using Lemma 15,

≤ Csup(ε)

(N − 1)
1

p−|u|
−ε using Lemma 14,

≤ Csup(ε)

N
1

p−|u|
−ε .

Similarly,

∣∣∣E
(
Êu,2|X(1)

−u = x
(1)
−u, X

(2)
−u = x

(2)
−u

)
− Var

(
Y |X−u = x

(2)
−u)
)∣∣∣ ≤ Csup(ε)

N
1

p−|u|
−ε .

Thus, using that Φ is bounded,

∣∣∣E
(
Êu,1|X(1)

−u = x
(1)
−u, X

(2)
−u = x

(2)
−u

)
E
(
Êu,2|X(1)

−u = x
(1)
−u, X

(2)
−u = x

(2)
−u

)

−Var
(
Y |X−u = x

(1)
−u)
)
Var

(
Y |X−u = x

(2)
−u)
)∣∣∣ ≤ Csup(ε)

N
1

p−|u|
−ε
.

Moreover, using Proposition 46, we have

∣∣∣E
(
Êu,1|X(1)

−u = x
(1)
−u

)
E
(
Êu,2|X(2)

−u = x
(2)
−u

)

−Var
(
Y |X−u = x

(1)
−u)
)
Var

(
Y |X−u = x

(2)
−u)
)∣∣∣ ≤ Csup(ε)

N
1

p−|u|
−ε
.
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Thus,
∣∣∣E
(
Êu,1|X(1)

−u = x
(1)
−u, X

(2)
−u = x

(2)
−u

)
E
(
Êu,2|X(1)

−u = x
(1)
−u, X

(2)
−u = x

(2)
−u

)

−E
(
Êu,1|X(1)

−u = x
(1)
−u

)
E
(
Êu,2|X(2)

−u = x
(2)
−u

)∣∣∣ ≤ Csup(ε)

N
1

p−|u|
−ε
.

Finally,
∣∣∣cov

[
E
(
Êu,1|X(1)

−u, X
(2)
−u

)
,E
(
Êu,2|X(1)

−u, X
(2)
−u

)]∣∣∣

=
∣∣∣E
[
E
(
Êu,1|X(1)

−u, X
(2)
−u

)
E
(
Êu,2|X(1)

−u, X
(2)
−u

)]
− E

[
E
(
Êu,1|X(1)

−u

)
E
(
Êu,2|X(2)

−u

)]∣∣∣

≤ E
[∣∣∣E

(
Êu,1|X(1)

−u, X
(2)
−u

)
E
(
Êu,2|X(1)

−u, X
(2)
−u

)
− E

(
Êu,1|X(1)

−u

)
E
(
Êu,2|X(2)

−u

)∣∣∣
]

≤ Csup(ε)

N
1

p−|u|
−ε .

Remark 43. In this Part 1, we can choose ε = 0 for the estimators V̂u,PF or for

Êu,MC if we take NI = 2.

Part 2: Let ε > 0. We will bound the first term of Equation (I.19):

E
[
cov

(
Ê1, Ê2

∣∣∣X(1)
−u, X

(2)
−u

)]
.

We want to prove that
∣∣∣∣∣

∫

X 2
−u

E
(
Êu,1Êu,2|X(1,2)

−u = x
(1,2)
−u

)
− E(Êu,1|X(1,2)

−u = x
(1,2)
−u )E(Êu,2|X(1,2)

−u = x
(1,2)
−u )

dP⊗2
X−u

(x
(1)
−u, x

(2)
−u)

∣∣∣∣∣ ≤
Csup(ε)

N1−ε .

Let us write

l(x
(1)
−u, x

(2)
−u) := min

(
d(x

(1)
−u, x

(2)
−u)/2,

1

N
1

|−u|
−δ

)

where δ = ε/(4| − u|), and

G(x
(1)
−u, x

(2)
−u) :=

{
(x

(n)
−u)n∈[3:N ]| d(x

(1)
−u, x

(kN (NI)[(x
(n)
−u)n≤N ])

−u ) < l(x
(1)
−u, x

(2)
−u),

d(x
(2)
−u, x

(k′N (NI)[(x
(n)
−u)n≤N ])

−u ) < l(x
(1)
−u, x

(2)
−u)

}
.

Part 2.A: We prove the following lemmas.
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Lemma 16. For all ε > 0, there exists Csup(ε) such that,

∫

X 2
−u

P
(
d(X

(1)
−u, X

(kN−1(NI))
−u ) ≥ d(x

(1)
−u, x

(2)
−u)/2

∣∣∣X(1)
−u = x

(1)
−u

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u) ≤

Csup(ε)

N1−ε .

(I.20)

Proof. We divide X 2
−u in F1 := {(x(1)−u, x

(2)
−u) ∈ X 2

−u, d(x
(1)
−u, x

(2)
−u) < (N−NI−1)

−1+ε
|−u| }

and F2 := {(x(1)−u, x
(2)
−u) ∈ X 2

−u, d(x
(1)
−u, x

(2)
−u) ≥ (N −NI − 1)

−1+ε
|−u| }.

∫

F1

P
(
d(X

(1)
−u, X

(kN−1(NI))
−u ) ≥ d(x

(1)
−u, x

(2)
−u)/2

∣∣∣X(1)
−u = x

(1)
−u

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u)

≤ Csupλ
⊗2
|−u|(F1)

≤ Csup

∫

X−u

λ|−u|
(
B
[
x−u, (N −NI − 1)

−1+ε
|−u|

])
dx−u

≤ Csup

∫

X−u

(N −NI − 1)
−1+ε
|−u|

|−u|dx−u

≤ Csup(N −NI − 1)−1+ε

≤ Csup

N1−ε .

Furthermore, using Lemma 13, we have

∫

F2

P
(
d(X

(1)
−u, X

(kN−1(NI))
−u ) ≥ d(x

(1)
−u, x

(2)
−u)/2

∣∣∣X(1)
−u = x

(1)
−u

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u)

≤
∫

F2

Csup(N − 1)NI (1− Cinfd(x
(1)
−u, x

(2)
−u)

|−u|)N−1−NIdP⊗2
X−u

(x
(1)
−u, x

(2)
−u)

≤λ|−u|(X−u)
2Csup(N − 1)NI (1− Cinf(N −NI − 1)

−1+ε
|−u|

|−u|)N−1−NI

≤Csup(N − 1)NI (1− Cinf(N −NI − 1)−1+ε)N−1−NI

≤Csup(N − 1)NI exp
[
(N − 1−NI) ln

(
1− Cinf(N −NI − 1)−1+ε

)]

≤Csup(N − 1)NI exp [−Cinf(N −NI − 1)ε + o((N −NI − 1)ε)]

≤Csup(ε)

N1−ε .

Remark 44. In Lemma 16, we need ε > 0 even for the Pick-and-Freeze estima-
tors. That explains the rate of convergence when |u| = 1 for the Pick-and-Freeze
estimators.
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Lemma 17. For all ε > 0, there exists Csup(ε) such that,
∫

X 2
−u

P
⊗(N−2)
X−u

(G(x
(1)
−u, x

(2)
−u)

c)dP⊗2
X−u

(x
(1)
−u, x

(2)
−u) ≤

Csup(ε)

N1−ε . (I.21)

Proof. Using Lemma 13, we have

P
(
d(X

(kN−1(NI))
−u , x

(1)
−u) ≥ N− 1

|−u|
+δ|X(1)

−u

)
≤ Csup(N−1)NI (1−CinfN

−1+δ|−u|)N−1−NI ,

so

P
(
d(X

(kN−1(NI))
−u , x

(1)
−u) ≥ N− 1

|−u|
+δ|X(1)

−u

)
≤ Csup(ε)

N
. (I.22)

Thus, we have
∫

X 2
−u

P
⊗(N−2)
X−u

(G(x
(1)
−u, x

(2)
−u)

c)dP⊗2
X−u

(x
(1)
−u, x

(2)
−u)

≤
∫

X 2
−u

P
(
d(X

(1)
−u, X

(kN (NI))
−u ) ≥ d(x

(1)
−u, x

(2)
−u)/2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u)

+

∫

X 2
−u

P
(
d(X

(2)
−u, X

(k′N (NI))
−u ) ≥ d(x

(1)
−u, x

(2)
−u)/2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u)

+

∫

X 2
−u

P
(
d(X

(1)
−u, X

(kN (NI))
−u ) ≥ N− 1

|−u|
+δ
∣∣∣X(1,2)

−u = x
(1,2)
−u

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u)

+

∫

X 2
−u

P
(
d(X

(2)
−u, X

(k′N (NI))
−u ) ≥ N− 1

|−u|
+δ
∣∣∣X(1,2)

−u = x
(1,2)
−u

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u)

≤
∫

X 2
−u

P
(
d(X

(1)
−u, X

(kN−1(NI))
−u ) ≥ d(x

(1)
−u, x

(2)
−u)/2

∣∣∣X(1)
−u = x

(1)
−u

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u)

+

∫

X 2
−u

P
(
d(X

(2)
−u, X

(k′N−1(NI))

−u ) ≥ d(x
(1)
−u, x

(2)
−u)/2

∣∣∣X(2)
−u = x

(2)
−u

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u)

+

∫

X 2
−u

P
(
d(X

(1)
−u, X

(kN−1(NI))
−u ) ≥ N− 1

|−u|
+δ
∣∣∣X(1)

−u = x
(1)
−u

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u)

+

∫

X 2
−u

P
(
d(X

(2)
−u, X

(k′N−1(NI))

−u ) ≥ N− 1
|−u|

+δ
∣∣∣X(2)

−u = x
(2)
−u

)
dP⊗2

X−u
(x

(1)
−u, x

(2)
−u),

and we conclude the proof of Lemma 17 using Lemma 16 and Equation I.22.

For i = 1, 2, let Bi be the ball of center x
(i)
−u and of radius l(x

(1)
−u, x

(2)
−u), let pi

be the probability of Bi and Ni be the number of observations (X
(n)
−u )n∈[3:N ] in the

ball Bi. Remark that

pi ≤
Csup

N1−δ|−u| .

We have the two following lemmas.
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Lemma 18. Conditionally to X
(1,2)
−u = x

(1,2)
−u , the random variable Ni is binomial

B(N − 2, pi).

Conditionally to X
(1,2)
−u = x

(1,2)
−u , Nj = nj, the random variable Ni is binomial

B(N − 2− nj, pi(1− pj)
−1).

Proof. For the first assertion, we use that the (X
(n)
−u )n are i.i.d. For the second

assertion, we compute P(Ni = ni|X(1,2)
−u = x

(1,2)
−u , Nj = nj) with Bayes’ theorem.

Lemma 19. If Ni = ni, let X
(Mi)
−u be the random vector composed of the ni ob-

servations in Bi of (X
(n)
−u )n∈[3:N ] and Mi ∈ [3 : N ]ni the vector containing the

corresponding indices. We have:

L
(
X(M1), X(M2)|X(1,2)

−u = x
(1,2)
−u , N1 = n1, N2 = n2

)

= L
(
X(M1)|X(1,2)

−u = x
(1,2)
−u , N1 = n1

)
⊗ L

(
X(M2)|X(1,2)

−u = x
(1,2)
−u , N2 = n2

)
.

Proof. For any bounded Borel functions φ1, φ2, we have

E
(
φ1(X

(M1))φ2(X
(M2))|X(1,2)

−u = x
(1,2)
−u , N1 = n1, N2 = n2

)

=
E
(
φ1(X

(M1))φ2(X
(M2))1N1=n11N2=n2 |X(1,2)

−u = x
(1,2)
−u

)

P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u )

.

Let

P([3 : N ], n1) := {(k1, · · · , kn1) ∈ [3 : N ]n1 : ki < kj for i, j ∈ [1 : n1], i < j}

be the set of all possible two-by-two distinct elements in [3 : N ]. To simplify
notation, we also consider an element of P([3 : N ], n1) with the subset of [3 : N ]
that contains its indices. We have

E
(
φ1(X

(M1))φ2(X
(M2))1N1=n11N2=n2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)

=
∑

m1∈P([3:N ],n1)

∑

m2∈P([3:N ]\m1,n2)

E
(
φ1(X

(m1))φ2(X
(m2))1

X
(m1)
−u ∈Bn1

1
1
X

(m2)
−u ∈Bn2

2

×
∏

i∈[3:N ]\(m1∪m2)

1
X

(i)
−u /∈B1∪B2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)

Now, using the independence of (X(n))n and summing over m1 and m2, we have,
for any value of m1 ∈ P([3 : N ], n1) and m2 ∈ P([3 : N ], n2),

E
(
φ1(X

(M1))φ2(X
(M2))|X(1,2)

−u = x
(1,2)
−u , N1 = n1, N2 = n2

)
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=

(
N − 2

n1

)(
N − 2− n1

n2

)
(1− p1 − p2)

N−2−n1−n2

E
(
φ1(X

(m1))1
X

(m1)
−u ∈Bn1

1

∣∣∣X(1,2)
−u = x

(1,2)
−u

)
E
(
φ2(X

(m2))1
X

(m2)
−u ∈Bn2

2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)

(
N − 2

n1

)(
N − 2− n1

n2

)
pn1
1 p

n2
2 (1− p1 − p2)N−2−n1−n2

=
E
(
φ1(X

(m1))1
X

(m1)
−u ∈Bn1

1

∣∣∣X(1,2)
−u = x

(1,2)
−u

)

pn1
1

E
(
φ2(X

(m2))1
X

(m2)
−u ∈Bn2

2

∣∣∣X(1,2)
−u = x

(1,2)
−u

)

pn2
2

=

E

(
φ1(X

(m1))1
X

(m1)
−u ∈Bn1

1

∏
i∈[3:N ]\m1

1
X

(i)
−u /∈B1

∣∣∣∣∣X
(1,2)
−u = x

(1,2)
−u

)

pn1
1 (1− p1)n1

E

(
φ2(X

(m2))1
X

(m2)
−u ∈Bn2

2

∏
i∈[3:N ]\m2

1
X

(i)
−u /∈B2

∣∣∣∣∣X
(1,2)
−u = x

(1,2)
−u

)

pn2
2 (1− p2)n2

= E
(
φ1(X

(M1))
∣∣∣X(1,2)

−u = x
(1,2)
−u , N1 = n1

)
E
(
φ2(X

(M2))
∣∣∣X(1,2)

−u = x
(1,2)
−u , N2 = n2

)
.

That concludes the proof of Lemma 19.

Part 2.B: We aim to proving that
∣∣∣∣∣

∫

X 2
−u

E
(
Êu,1Êu,2|X(1,2)

−u = x
(1,2)
−u

)
− E(Êu,1|X(1,2)

−u = x
(1,2)
−u )E(Êu,2|X(1,2)

−u = x
(1,2)
−u )

dP⊗2
X−u

(x
(1)
−u, x

(2)
−u)

∣∣∣∣∣ ≤
Csup(ε)

N1−ε .

To simplify notation, let X(kN ) := (X(kN (i)))i≤NI
and X(k′

N ) := (X(k′N (i)))i≤NI
. We

have

E
(
Φ(X(kN ))Φ(X(k′

N ))|X(1,2)
−u = x

(1,2)
−u

)

=
N−2∑

n1,n2=0

E
(
Φ(X(kN ))|N1 = n1, X

(1,2)
−u = x

(1,2)
−u

)
E
(
Φ(X(k′

N ))|N2 = n2, X
(1,2)
−u = x

(1,2)
−u

)

×P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u ).

On the other hand, we have

E
(
Φ(X(kN ))|X(1,2)

−u = x
(1,2)
−u

)
E
(
Φ(X(k′

N ))|X(1,2)
−u = x

(1,2)
−u

)
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=
N−2∑

n1,n2=0

E
(
Φ(X(kN ))|N1 = n1, X

(1,2)
−u = x

(1,2)
−u

)
E
(
Φ(X(k′

N ))|N2 = n2, X
(1,2)
−u = x

(1,2)
−u

)

×P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u ).

Thus, using that Φ is bounded and using Lemma 17, it suffices to show that

∑N−2
n1,n2=NI−1

∣∣P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u )

−P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣ ≤ Csup(ε)

N1−ε .

Let KN := ⌊Nα⌋, where α = ε/3. We divide the previous sum into two sums:

A(x
(1)
−u, x

(2)
−u) :=

∑KN

n1,n2=NI−2

∣∣P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u )

−P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣,

B(x
(1)
−u, x

(2)
−u) :=

N−2∑

n1,n2=NI−1,
s.t. n1>KN or n2>KN

∣∣P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u )

−P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣.

Let us bound these two terms.
First, we have

A(x
(1)
−u, x

(2)
−u) =

∑KN

n1,n2=NI−1 P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|N1 = n1, X

(1,2)
−u = x

(1,2)
−u )

×
∣∣∣∣∣1−

P(N2 = n2|X(1,2)
−u = x

(1,2)
−u )

P(N2 = n2|N1 = n1, X
(1,2)
−u = x

(1,2)
−u )

∣∣∣∣∣ .

Thus, it suffices to bound
∣∣∣∣∣1−

P(N2 = n2|X(1,2)
−u = x

(1,2)
−u )

P(N2 = n2|N1 = n1, X
(1,2)
−u = x

(1,2)
−u )

∣∣∣∣∣ ≤
Csup(ε)

N1−ε .

Thus, it suffices to show
∣∣∣∣∣log

(
P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

P(N2 = n2|N1 = n1, X
(1,2)
−u = x

(1,2)
−u )

)∣∣∣∣∣ ≤
Csup(ε)

N1−ε .

To simplify notation, let T = N − 2. Thanks to Lemma 18, we have,

log

(
P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

P(N2 = n2|N1 = n1, X
(1,2)
−u = x

(1,2)
−u )

)
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= log

(
T (T − 1)...(T − n1 + 1)

(T − n2)(T − n2 − 1)...(T − n2 − n1 + 1)

(1− p1)
T−n1(1− p2)

T−n2

(1− p1 − p2)T−n1−n2

)

= log

(
1(1− 1

T
)...(1− n1 − 1

T
)

)
− log

(
(1− n2

T
)(1− n2 + 1

T
)...(1− n2 + n1 − 1

T
)

)

(T − n1) log(1− p1) + (T − n2) log(1− p2)− (T − n1 − n2) log(1− p1 − p2)

= −n1(n1 − 1)

2T
+ n1O(

n2
1

T 2
) +

n1(n1 + 2n2 − 1)

2T
+ n1O(

(n1 + n2)
2

T 2
)

−(T − n2)p2 + (T − n2)O(p
2
2)− (T − n1)p1 + (T − n1)O(p

2
1)

+(T − n1 − n2)(p1 + p2) + (T − n1 − n2)O((p1 + p2)
2)

=
n1n2

T
+O(

n3
1

T
) +O(

n1(n1 + n2)
2

T 2
)− n2p1 − n1p2

+(T − n2)O(p
2
1) + (T − n1)O(p

2
2) + (T − n1 − n2)O((p1 + p2)

2).

We know that

KNpi ≤
Csup

N1−δ|−u|−α ≤ Csup

N1−ε .

So, for all n1 ≤ KN and all n2 ≤ KN ,

∣∣∣∣∣log
(

P(N2 = n2|X(1,2)
−u = x

(1,2)
−u )

P(N2 = n2|N1 = n1, X
(1,2)
−u = x

(1,2)
−u )

)∣∣∣∣∣ ≤
Csup(ε)

N1−ε .

Thus, we have shown that we have

A(x
(1)
−u, x

(2)
−u) ≤

Csup

N1−ε .

Now, let us bound B(x
(1)
−u, x

(2)
−u). Remark that {(n1, n2) ∈ [NI − 1 : N − 2]| n1 >

KN or n2 > KN} is a subset of

([KN + 1 : N − 2]× [NI − 1 : N − 2]) ∪ ([NI − 1 : N − 2]× [KN + 1 : N − 2]) .

Thus, it suffices to bound

∑N−2
n1=KN+1

∑N−2
n2=NI−1

∣∣P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u )

−P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣

=
N−2∑

n1=KN+1

P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )

N−2∑

n2=NI−1

∣∣P(N2 = n2|N1 = n1, X
(1,2)
−u = x

(1,2)
−u )− P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣.
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Thus, it suffices to bound

N−2∑

n1=KN+1

P(N1 = n1|X(1,2)
−u = x

(1,2)
−u ).

Let T := N − 2. We know that N1 has a binomial distribution with parameters T
and p1. Thus,

E(N1) = p1T ≤ CsupN
δ|−u| ≤ CsupN

ε
4 .

Thus, there exists Nε such that for N ≥ Nε, we have that, E(N1) ≤ KT +1. Thus,
for N large enough and for all n1 > KT and, we have

P(N1 = n1|X(1,2)
−u = x

(1,2)
−u ) ≤ P(N1 = KT + 1|X(1,2)

−u = x
(1,2)
−u ).

Thus, for N ≥ Nε,

N−2∑

n1=KN+1

P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )

≤ (T −KT )P(N1 = KT + 1|X(1,2)
−u = x

(1,2)
−u )

= (T −KT )
T !

(T −KT − 1)!(KT + 1)!
pKT+1
1 (1− p1)

T−KT+1

≤ (T −KT )
T !

(T −KT − 1)!(KT + 1)!
pKT+1
1

≤ Csup

(T −KT )
√
2πT

(
T
e

)T ( Csup

T 1−δ|−u|

)KT+1

√
2π(KT + 1)

(
KT+1
e

)(KT+1)√
2π(T −KT − 1)

(
T−KT−1

e

)(T−KT−1)

≤ Csup

(T −KT )
√
TT TCKT+1

sup√
(KT + 1)(T −KT − 1)(KT + 1)KT+1(T −KT − 1)T−KT−1T (1−δ|−u|)(KT+1)

≤ Csup(T −KT )
KT+ 3

2
−T (KT + 1)−KT− 3

2T T−
1
2
+δ|−u|(KT+1)−KTCKT+1

sup .

Using the Taylor expansion of x 7→ log(1− x) at 0, we can see that

(T −KT )
−TT T ≤ Csup exp(KT ) ≤ CKT

sup .

Moreover, we have

(KT + 1)T 1−δ|−u| ≥ T
ε
3T 1− ε

4 = T 1+ ε
12 ,

and so

(T −KT )
KT (KT + 1)−KTT−KT (1−δ|−u|)CKT

sup ≤ exp

(
KT log

[
Csup

T −KT

T 1+ ε
12

])
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≤ Csup(ε)e
−KT .

Thus, we have

N−2∑

n1=KN+1

P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )

≤ Csup(ε)e
−KT (T −KT )

3
2 (KT + 1)−

3
2T− 1

2
+δ|−u|

≤ Csup(ε)

T

≤ Csup(ε)

N
.

Finally, we have

A(x
(1)
−u, x

(2)
−u) ≤

Csup

N1−ε , and B(x
(1)
−u, x

(2)
−u) ≤

Csup(ε)

N
.

Thus
∑N

n1,n2=NI

∣∣P(N1 = n1, N2 = n2|X(1,2)
−u = x

(1,2)
−u )

−P(N1 = n1|X(1,2)
−u = x

(1,2)
−u )P(N2 = n2|X(1,2)

−u = x
(1,2)
−u )

∣∣ ≤ Csup(ε)

N1−ε .

So, we have proved Proposition 47.

We conclude by the proof of Theorem 4.

Proof.

P
(∣∣∣Êu − Eu

∣∣∣ > ε
)

≤ P
(∣∣∣Êu − E(Êu)

∣∣∣ > ε

2

)
+ P

(∣∣∣E(Êu)− Eu

∣∣∣ > ε

2

)
.

Then, we use the proof of Proposition 45. If (s(l))l≤Nu is a sample of uniformly
distributed variables on [1 : N ] with replacement, then for all ε > 0,

P
(∣∣∣Êu − E(Êu)

∣∣∣ > ε

2

)
≤ 4

ε2

(∣∣∣cov
(
Êu,1, Êu,2

)∣∣∣+Var
(
Êu,1

)( 1

N
+

1

Nu

))

≤ 1

ε2

(
Csup(ε

′)

N
1

p−|u|
−ε′ +

Csup

Nu

)
,

for all ε′ > 0, thanks to Proposition 47. If (s(l))l≤Nu is a sample of uniformly
distributed variables on [1 : N ] without replacement, then for all ε > 0,

P
(∣∣∣Êu − E(Êu)

∣∣∣ > ε

2

)
≤ 4

ε2

(
Nu − 1

Nu

cov
(
Êu,1, Êu,2

)
+

1

Nu

Var
(
Êu,1

))
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≤ 1

ε2

(
Csup(ε

′)

N
1

p−|u|
−ε′ +

Csup

Nu

)
,

for all ε′ > 0, thanks to Proposition 47. Moreover, for all ε > 0,

P
(∣∣∣Êu − Eu

∣∣∣ > ε

2

)
≤ 2

ε

∣∣∣E(Êu)− Eu

∣∣∣

≤ Csup(ε
′)

εN
1

p−|u|
−ε′ ,

for all ε′ > 0, thanks to Proposition 46. Finally, for all ε > 0, ε′ > 0, we have

P
(∣∣∣Êu − Eu

∣∣∣ > ε
)
≤ 1

ε2

(
Csup(ε

′)

N
1

p−|u|
−ε′ +

Csup

Nu

)
.

That concludes the proof.

B Other proofs

Proof of Proposition 9

Proof.

E(f(X)f(Xu))

= E(E(f(X)f(Xu)|Xu))

= E

(∫

X 2
−u

f(Xu, x−u)f(Xu, x
′
−u)dPX−u|Xu ⊗ PX−u|Xu(x−u, x

′
−u)

)

= E

(∫

X−u

f(Xu, x−u)dPX−u|Xu(x−u)

∫

X−u

f(Xu, x
′
−u)dPX−u|Xu(x

′
−u)

)

= E
(
E(f(X)|Xu)

2
)
.

That concludes the proof of Proposition 9.

Proof of Proposition 10

Proof. Let

Ai,u :=





−1
p

(
p− 1

|u|

)−1

if i /∈ u

1
p

(
p− 1

|u| − 1

)−1

if i ∈ u.
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Under Assumption 2, we have

Var(Y )2
p∑

i=1

Var(η̂i) =

p∑

i=1

∑

∅ u [1:p]
A2
i,uVar(Ŵu)

=
∑

∅ u [1:p]
Var(Ŵu)

p∑

i=1

A2
i,u

=
∑

∅ u [1:p]

Var(Ŵ
(1)
u )

Nu

p∑

i=1

A2
i,u.

Moreover,

p∑

i=1

A2
i,u =

∑

i∈−u

1

p2

(
p− 1

|u|

)−2

+
∑

i∈u

1

p2

(
p− 1

|u| − 1

)−2

=
1

p!2
(
(p− |u|)|u|!2(p− |u| − 1)!2 + |u|(|u| − 1)!2(p− |u|)!2

)

=
(p− |u|)!|u|!

p!2
(p− |u| − 1)!(|u| − 1)!(|u|+ p− |u|)

=
(p− |u|)!|u|!

p!

(p− |u| − 1)!(|u| − 1)!

(p− 1)!

=: C(|u|, p).
Thus, we want to minimize

∑

∅ u [1:p]

Var(Ŵ
(1)
u )

Nu

C(|u|, p)

subject to ∑

∅ u [1:p]
Nu =

Ntot

κ
.

Let U = (R∗
+)

2p−2. If x ∈ U , we index the components of x by the subsets
∅  u  [1 : p] and we write x = (xu)∅ u [1:p]. Let h be the C1 function on U

defined by h(x) =
∑

∅ u [1:p]
C(|u|,p)Var(Ŵ (1)

u )
xu

, let g be the C1 function on U defined

by g(x) = (
∑

∅ u [1:p] xu) − Ntot/κ and let A = g−1({0}). Using the method of
Lagrange multipliers, if h|A has a local minimum in a, there exists c such that
Dh(a) = cDg(a), i.e. ∇h(a) = ∇g(a) i.e.

a =
Ntot

κ
∑

∅ v [1:p]

√
C(|v|, p)Var(Ŵ (1)

v )

(√
C(|u|, p)Var(Ŵ (1)

u )

)

∅ u [1:p]
.
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Moreover, note that h is strictly convex and the set A is convex, thus h|A is strictly
convex. Thus a is the strict global minimum point of h|A.

Proof of Proposition 12

Proof. Let us write V := Var(Ŵ
(1)
u ) that does not depend on u by assumption. To

simplify notation, let N0 = Np = +∞. In this way, we have, for all u ⊂ [1 : p],

Var(Ŵu(m)) = V/N|u|.
We have

Var ( η̂i| (σm)m≤M) =
1

p2Var(Y )2

∑

u⊂−i

1

M2

M∑

m=1

[
Var

(
Ŵu∪{i}(m)

)
+Var

(
Ŵu(m)

)]
1Pi(σm)=u

=
V

p2Var(Y )2

∑

u⊂−i

1

M2

M∑

m=1

[
1

N|u∪{i}|
+

1

Nu

]
1Pi(σm)=u.

Thus,

E [Var ( η̂i| (σm)m≤M)] =
V

p2Var(Y )2

∑

u⊂−i

1

M2

M∑

m=1

[
1

N|u∪{i}|
+

1

Nu

]
P(Pi(σm) = u)

=
V

p2Var(Y )2

∑

u⊂−i

1

M2

M∑

m=1

1

p

(
p− 1

|u|

)−1 [
1

N|u∪{i}|
+

1

N|u|

]

=
V

p2Var(Y )2

∑

u⊂[1:p]

ai,u
1

N|u|
,

where

ai,u :=





1
p

(
p− 1

|u|

)−1

if i /∈ u

(
p− 1

|u| − 1

)−1

if i ∈ u.

Remark that
∑p

i=1 ai,u = 2

(
p

|u|

)−1

. Then,

E

[
p∑

i=1

Var ( η̂i| (σm)m≤M)

]
=

p∑

i=1

V

p2Var(Y )2

∑

u⊂[1:p]

ai,u
1

N|u|

=
V

p2Var(Y )2

∑

u⊂[1:p]

1

N|u|

p∑

i=1

ai,u
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=
2V

p2Var(Y )2

∑

u⊂[1:p]

1

N|u|

(
p

|u|

)−1

=
2V

p2Var(Y )2

p−1∑

k=1

1

Nk

We get the relaxed problem

min
(Nk)k∈[1:p−1]

2V

p2Var(Y )2

p−1∑

k=1

1

Nk

subject toM
∑p−1

k=1Nk =MNO(p−1). Let U = (R∗
+)

p−1. Let h be the C1 function

on U defined by h(x) = 2V
p2Var(Y )2

∑p−1
k=1

1
xk
, g be the C1 function on U defined by

g(x) = M
∑p−1

k=1 xk −MNO(p − 1). Finally, let A = g−1({0}). Using the method
of Lagrange multipliers, if h|A has a local minimum in a, there exists c such that
Dh(a) = cDg(a), i.e. ∇h(a) = ∇g(a) i.e. ∀u, − 1

a2u
= c′ i.e. au = c′′. To sum up,

if h|A has a local minimum, it is in a defined by

au = NOMpu.

Moreover, note that h is strictly convex and the set A is convex, thus h|A is strictly
convex. Thus a is the strict global minimum point of h|A. Thus, a is the global
minimum on the constraint problem (where the inputs are integers).

Proof of Proposition 13 This proof totally arises from the appendix of
[SNS16]. The computations are the same.

Proof. Under Assumption 4, we have

Var(η̂i) =
1

MVar(Y )2

(
Var

(
ŴPi(σ1)∪{i}

)
+Var

(
ŴPi(σ1)

))

=
1

MVar(Y )2

(
Var(E(ŴPi(σ1)∪{i}|σ1)) + E(Var(ŴPi(σ1)∪{i}|σ1))

+Var(E(ŴPi(σ1)|σ1)) + E(Var(ŴPi(σ1)|σ1))
)

=
1

CVar(Y )2

(
NOVar(WPi(σ1)∪{i}) +NOVar(WPi(σ1))

+E(Var(Ŵ
(1)
Pi(σ1)∪{i}|σ1)) + E(Var(Ŵ

(1)
Pi(σ1)

|σ1))
)
.

Thus, the minimum is with NO = 1.
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Proof of Proposition 14

Proof. We only prove the second item. The first one is easier and uses the same
idea. Let i ∈ [1 : p]. Remark that

η̂i =
1

MVar(Y )

M∑

m=1

(
ŴPi(σm)∪{i}(m)− ŴPi(σm)(m)

)

=
1

pVar(Y )

∑

u⊂−i

(
p− 1

|u|

)−1 (
W̃u∪{i},i − W̃u,i

)

with

W̃u,i :=

(
p− 1

|u|

)
p

M

∑

m| Pi(σm)=u

Ŵu(m) and W̃u∪{i},i :=

(
p− 1

|u|

)
p

M

∑

m| Pi(σm)=u

Ŵu∪{i}(m),

where we sum over all the integers m ∈ [1 : M ] such that Pi(σm) = u. Thus, for
all u,

W̃u,i ∼
(

p− 1

|u \ {i}|

)
p

M
Ñu,i,MŴ

Ñu,i,M
u ,

where

Ŵ Ñu,i,M
u :=

1

Ñu,i,M

Ñu,i,M∑

k=1

Ŵu(k),

and Ñu,i,M = Ñu∪{i},i,M ∼ B(M, |u|!(p−1−|u|)!
p!

) (the binomial distribution). Now,

remark thatM goes to +∞ when Ntot goes to +∞ (recall that Ntot = κM(p−1)).
Hence, (

p− 1

|u \ {i}|

)
p

M
Ñu,i,M

P−→
Ntot→+∞

1.

It suffices to show that for all u ⊂ [1 : p], the estimator ω 7→ Ŵ
Ñu,i,M (ω)
u (ω)

converges to Wu in probability when N and Ntot go to +∞ and we could conclude
by

η̂i =
1

pVar(Y )

∑

u⊂−i

(
p− 1

|u|

)−1 (
W̃u∪{i},i − W̃u,i

)

P−→
Ntot→+∞
N→+∞

1

pVar(Y )

∑

u⊂−i

(
p− 1

|u|

)−1 (
Wu∪{i} −Wu

)

= ηi.
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Let ε > 0 and δ > 0. Using the assumptions and Chebyshev’s inequality, we
have that (ŴNO

u )NO,N is consistent, thus there exists NO1 and N1 such that for all
NO ≥ NO1 and all N ≥ N1,

P
(∣∣∣ŴNO

u −Wu

∣∣∣ > δ
)
<
ε

2
.

Moreover,

P(Ñu,M ≤ NO1) −→
M→+∞

0.

Thus, there exists M1 such that for all M ≥M1,

P(Ñu,M ≤ NO1) <
ε

2
.

Thus, there exists Ntot1 such that for all Ntot ≥ Ntot1,

P(Ñu,M ≤ NO1) <
ε

2
.

Finally, for all Ntot ≥ Ntot1 and N ≥ N1, we have

P
(∣∣∣Ŵ Ñu,M

u −Wu

∣∣∣ > δ
)

≤ P
(∣∣∣Ŵ Ñu,M

u −Wu

∣∣∣ > δ, Ñu,M ≥ NO1

)
+ P(Ñu,M ≤ NO1)

< ε.

That proves that the estimator ω 7→ Ŵ
Ñu,i,M (ω)
u (ω) converges to Wu in probability

when N and Ntot go to +∞.

Proof of Corollary 1 and Corollary 2
We do the proof for Corollary 1. The proof of Corollary 2 uses the same idea.

Proof. Let δ > 0. Thanks to Theorem 4, with ε′ = δ, we have

P
(
N

1
2(p−|u|)

−δ
∣∣∣Êu,MC − Eu

∣∣∣ > ε
)

≤ Csup(δ)N
1

p−|u|
−2δ

ε2N
1

p−|u|
−δ −→

N→+∞
0.

That concludes the proof of Corollary 1.

Proof of Proposition 15

Proof. If we use the subset W -aggregation procedure, we just have to use the
consistency of Ŵu from Theorems 3 and 5 and to use Proposition 11.

If we use the subsetW -aggregation procedure, the consistency of the estimators
of the Shapley effects comes from the second part of Proposition 14. We just have
to verify Assumption 5. Let Ŵu(m) of Proposition 14 be Êu,s(m),MC or V̂u,s(m),PF
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defined in Section E.1, where (s(m))m are independent and uniformly distributed
on [1 : N ]. Then, following the end of the proof of Theorems 3 and 5, we obtain

1

M2

M∑

m,m′=1

cov
(
Ŵu(m), Ŵu(m

′)
)

−→
N,M→+∞

0,

and, by Proposition 43, we have

E
(
Ŵu(1)

)
= E

(
Ŵ (1)
u

)
−→

N→+∞
Wu.

Thus, Assumption 5 holds.
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Proofs of Chapter 4

Proof of Proposition 16:
We use the Hoeffding decomposition of g:

Vu = Var(E(Y |Xu))

= Var


 ∑

w⊂[1:K]

E(gw(Aw)|Xu∩Bw)




=
∑

w⊂[1:K]

Var [E(gw(Aw)|Xu∩Bw)]

=
∑

w⊂[1:K]

V g,w
u∩Bw

.

Proof of Proposition 17:
We have

Su =
1

Var(Y )

∑

v⊂u
(−1)|u|−|v|Vv

=
1

Var(Y )

∑

v⊂u
(−1)|u|−|v|

∑

w⊂[1:K]

V g,w
v∩Bw

=
1

Var(Y )

∑

w⊂[1:K]

∑

v⊂u
(−1)|u|−|v|V g,w

v∩Bw

=
1

Var(Y )

∑

w⊂[1:K]

∑

v1⊂u∩Bw

V g,w
v1

∑

v2⊂−Bw,
s.t.v1∪v2⊂u

(−1)|u|−|v1|−|v2|.
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One can remark that, if u \Bw 6= ∅,

∑

v2⊂−Bw,
s.t.v1∪v2⊂u

(−1)|u|−|v1|−|v2| = (−1)|u|−|v1|
|u\Bw|∑

n=0

(
|u \Bw|

n

)
(−1)n = 0.

Thus,

Su =
1

Var(Y )

∑

w⊂[1:K],
s.t. u⊂Bw

∑

v1⊂u
(−1)|u|−|v1|V g,w

v1

=
∑

w⊂[1:K],
s.t. u⊂Bw

Var(gw(Aw))

Var(Y )
Sg,wu .

Proof of Proposition 18:

ηi =
1

pVar(Y )

∑

u⊂−i

(
p− 1

|u|

)−1

(Vu∪{i} − Vu)

=
1

pVar(Y )

∑

u⊂−i

(
p− 1

|u|

)−1 ∑

w⊂[1:K]

(V g,w
(u∪i)∩Bw

− V g,w
u∩Bw

)

=
1

pVar(Y )

∑

w⊂[1:K],
s.t. j(i)∈w

∑

u⊂−i

(
p− 1

|u|

)−1

(V g,w
(u∪i)∩Bw

− V g,w
u∩Bw

)

=
1

pVar(Y )

∑

w⊂[1:K],
s.t. j(i)∈w

∑

u⊂Bw\{i}


 ∑

v⊂−Bw

(
p− 1

|u ∪ v|

)−1

 (V g,w

u∪i − V g,w
u )

=
1

pVar(Y )

∑

w⊂[1:K],
s.t. j(i)∈w

∑

u⊂Bw\{i}



p−|Bw|∑

j=0

(
p− |Bw|

j

)(
p− 1

|u|+ j

)−1

 (V g,w

u∪i − V g,w
u ).

It remains to prove the following equation:

1

p

p−|Bw|∑

j=0

(
p− |Bw|

j

)(
p− 1

|u|+ j

)−1

=
1

|Bw|

(
|Bw| − 1

|u|

)−1

. (II.1)
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In the interest of simplifying notation, until the end of the proof, we will write
u (resp. c) instead of |u| (resp. |Bw|). We can verify that Equation (II.1) is
equivalent to the following equations:

1

p

p−c∑

j=0

(p− c)!

j!(p− c− j)!

(u+ j)!(p− 1− u− j)!

(p− 1)!
=

1

c

u!(c− 1− u)!

(c− 1)!

⇐⇒
p−c∑

j=0

(
u+ j

u

)(
p− 1− u− j

c− u− 1

)
=

(
p

c

)
. (II.2)

We will show Equation (II.2). Now, we can remark that we have:

xc

(1− x)c+1
= x

xu

(1− x)u+1

xc−u−1

(1− x)c−u
. (II.3)

Giving their power series, we have:

x

(∑

k≥0

(
k

u

)
xk

)(∑

k′≥0

(
k′

c− u− 1

)
xk

′

)
=
∑

k′′≥0

(
k′′

c

)
xk

′′

. (II.4)

We have the equality of the coefficient of xp. Then:
(
p

c

)
=

∑

k+k′=p−1

(
k

u

)(
k′

c− u− 1

)
=

p−1∑

k=u

(
k

u

)(
p− 1− k

c− u− 1

)
=

p−1−u∑

j=0

(
u+ j

u

)(
p− 1− u− j

c− u− 1

)

=

p−c∑

j=0

(
u+ j

u

)(
p− 1− u− j

c− u− 1

)
.

For the last equality, we remark that if j > p− c, then p− 1−u− j < c−u− 1 so
the last terms of the sum are equal to zero. We have proven Equation (II.2). To
conclude, we have

ηi =
1

pVar(Y )

∑

w⊂[1:K],
s.t. j(i)∈w

∑

u⊂Bw\{i}



p−|Bw|∑

j=0

(
p− |Bw|

j

)(
p− 1

|u|+ j

)−1

 (Vu∪{i} − Vu)

=
∑

w⊂[1:K],
s.t. j(i)∈w

Sgw
1

|Bw|Var(gw(Aw))
∑

u⊂Bw\{i}

(
|Bw| − 1

|u|

)−1

(V g,w
u∪i − V g,w

u )

=
∑

w⊂[1:K],
s.t. j(i)∈w

Sgwη
g,w
i .
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Proofs of Chapter 5

Notation
We will write Csup for a generic non-negative finite constant (depending only

on λinf , λsup and m in Conditions 2 and 3). The actual value of Csup is of no
interest and can change in the same sequence of equations. Similarly, we will write
Cinf for a generic strictly positive constant.

If B,B′ ∈ Pp, and (i, j) ∈ [1 : p]2, we will write (i, j) ∈ B \B′ if (i, j) ∈ B and
(i, j) /∈ B′, that is, if i and j are in the same group with the partition B and are
in different groups with the partition B′.

If B,B′ ∈ Pp, we define B ∩B′ as the maximal partition B′′ such that B′′ ≤ B
and B′′ ≤ B′.

If Γ ∈ Mp(R) (the set of the matrices of dimension p× p), and if u, v ⊂ [1 : p],
we define Γu,v := (Γi,j)i∈u,j∈v and Γu := Γu,u.

Recall that vec : Mp(R) → Rp
2
is defined by (vec(M))p(j−1)+i :=Mi,j.

If Γ ∈ Sp(R) (the set of the symmetric positive definite matrices) and i ∈ [1 : p],
let φi(M) be the i-th largest eigenvalue of M . We also write λmax(M) (resp.
λmin(M)) for the largest (resp. smallest) eigenvalue of M .

We define Σ̂ := 1
n−1

∑l
l=1(X

(l)−X)(X(l)−X)T = n
n−1

S, the unbiased empirical

estimator of Σ. Let (σ̂ij)i,j≤p be the coefficients of Σ̂ and (sij)i,j≤p be the coefficients
of S.

Recall that when Condition 4 does not hold, we need to define B(α) as the
partition given by thresholding Σ by n−α. We also define K(α) := |B(α)| and
write B(α) = {B1(α), B2(α), ...BK(α)(α)}.

Proof of Proposition 19

Proof. Let us write

S++
p (R, B) :=

⊔

B′≤B
S++
p (R, B′) = {Γ ∈ S++

p , Γ = ΓB},
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which is the closure of S++
p (R, B) in S++

p (R).

First, let us show that, for all B, SB is the minimum of Γ 7→ lΓ on S++
p (R, B).

If ΓB ∈ S++
p (R, B), we have

p (lΓB
− lSB

) = − log(|Γ−1
B |) + Tr(Γ−1

B S) + log(|S−1
B |)− Tr(S−1

B S)

= − log
(∣∣Γ−1

B SB
∣∣)+ Tr

(
Γ−1
B SB

)
− p

=

p∑

i=1

{
− log

(
φi

[
Γ
−1/2
B SBΓ

−1/2
B

])
+ φi

(
Γ
−1/2
B SBΓ

−1/2
B

)
− 1
}
.

The function f : R∗
+ → R defined by f(t) := − log(t)+t−1 has an unique minimum

at 1. Thus, the function g : S++
p → R defined by g(M) :=

∑p
i=1 − log (φi [M ]) +

φi (M)− 1 has an unique minimum at Ip. Thus ΓB ∈ S++
p (R, B) 7→ lΓB

− lSB
has

an unique minimum at ΓB = SB.
Now, the penalisation term is constant on each S++

p (R, B). Thus Φ has a global
minimum (not necessary unique) at SB, for some B ∈ Pp.

Notation for Section B.2
Here and in all the proofs of Section B.2, we assume Conditions 1 to 3 of Section
B.2.i).

In the following, we introduce some notation.
We know that

n∑

k=1

(X(k) −X)(X(k) −X)T ∼ W(n− 1,Σ),

where W(n−1,Σ) is the Wishart distribution with parameter n−1 and Σ [GN99].
Thus, if we write (M (k))k i.i.d. with distribution N (0,Σ), we have

Σ̂ :=
1

n− 1

n∑

k=1

(X(k) −X)(X(k) −X)T ∼ 1

n− 1

n−1∑

k=1

M (k)M (k)T .

Lemma 20. For all Cinf > 0,

P
(
λmax(S) > λsup(1 +

√
y)2 + Cinf

)
−→ 0,

P
(
λmax(S) < λinf(1 +

√
y)2 − Cinf

)
−→ 0,

P
(
λmin(S) < λinf(1−

√
y)2 − Cinf

)
−→ 0,

and
P
(
λmin(S) > λsup(1−

√
y)2 + Cinf

)
−→ 0.

Moreover, that holds also for Σ̂ instead of S.
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Proof. Let (A(k))k i.i.d. with distribution N (0, Ip). Using the result in [Sil85]
which states that

λmax

(
1

n− 1

n−1∑

k=1

A(k)A(k)T

)
a.s.−→

n→+∞
(1 +

√
y)2,

we have,

λmax(S) =
n

n− 1
λmax

(
1

n− 1

n−1∑

k=1

M (k)M (k)T

)

≤ n

n− 1
λsupλmax

(
1

n− 1

n−1∑

k=1

A(k)A(k)T

)

= λsup(1 +
√
y)2 + op(1),

and

λmax(S) ≥
n

n− 1
λinfλmax

(
1

n− 1

n−1∑

k=1

A(k)A(k)T

)
= λinf(1 +

√
y)2 + op(1).

Thus,
λinf(1 +

√
y)2 + op(1) ≤ λmax(S) ≤ λsup(1 +

√
y)2 + op(1).

The proof is the same for λmin.

We also verify the assumptions of Bernstein’s inequality (see for example The-
orem 2.8.1 in [Ver18]). For all i, j, k, let

Z
(k)
ij :=M

(k)
i M

(k)
j − σij. (III.1)

The random-variables (Z
(k)
ij )k are independent, mean zero, sub-exponential and

we have ‖Z(k)
ik ‖ψ1 ≤ ‖Mi‖ψ2‖Mj‖ψ2 ≤ Csup

√
σiiσjj ≤ Csup, where ‖.‖ψ1 is the sub-

exponential norm (for example, see Definition 2.7.5 in [Ver18]). So, we can use

Bernstein’s inequality with (Z
(k)
ij )k: there exists Cinf such that, for all ε > 0 and

n ∈ N,

max
i,j∈[1:p]

P

(∣∣∣∣∣
n∑

k=1

Z
(k)
ij

∣∣∣∣∣ ≥ nε

)
≤ 2 exp

(
−Cinfnmin(ε, ε2)

)
.

Proof of Proposition 20

In this proof, we assume that Conditions 1 to 4 are satisfied. We first show
several Lemmas.
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Lemma 21. For all symmetric positive definite Γ and for all B ∈ Pp, if we write
∆ = Γ− ΓB, we have:

• v 7→ λmin(ΓB + v∆) decreases and so minv∈[0,1] λmin(ΓB + v∆) = λmin(Γ).

• v 7→ λmax(ΓB + v∆) increases and so maxv∈[0,1] λmax(ΓB + v∆) = λmax(Γ).

Proof. Let us show that v 7→ λmax(ΓB + v∆) increases (the proof if the same for
λmin).

For all v ∈ [0, 1], let Γv = ΓB + v∆, λv = λmax(Γv) and ev an unit eigenvector
of Γv associated to λv. Let v, v

′ ∈ [0, 1], v < v′. Thus

λv′ = max
u, ‖u‖=1

uT (ΓB + v′∆)u ≥ eTv (ΓB + v′∆)ev = λv + (v − v′)eTv∆ev.

If we show that eTv∆ev ≥ 0, we proved that v 7→ λv increases. First, assume that
v = 0. If we write Bk the group of the largest eigenvalue of ΓB, then (e0)i is equal
to zero for all i /∈ Bk, so (eT0∆)j is equal to zero for all j ∈ Bk, and so eT0∆e0 is
equal to zero.

Assume now that v > 0 and let us show that eTv∆ev ≥ 0 by contradiction.
Assume that eTv∆ev < 0. Then

eTv (ΓB + v∆)ev < eTv ΓBev ≤ eT0 ΓBe0.

Furthermore, we have seen that eT0∆e0 = 0. Thus, we have

eTv (ΓB + v∆)ev < eT0 (ΓB + v∆)e0,

that is in contradiction with ev ∈ argmaxu, ‖u‖=1 u
T (ΓB + v∆)u.

In the following, let ∆B,B′ := SB − SB′ for all B,B′ ∈ Pp.

Lemma 22. For all B ∈ Pp, we have

lSB∩B∗ − lSB
≤ 1

2λmin(S)

1

p
‖∆B,B∩B∗‖2F . (III.2)

Moreover, for all B < B∗, we have

lSB
− lSB∗ ≥ 1

2λmax(SB∗)

1

p
‖∆B∗,B‖2F . (III.3)

Proof. First, we prove Equation (III.2). Doing the Taylor expansion of

t 7→ log ◦ det (SB∩B∗ + t∆B,B∩B∗)
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and using the integral form of the remainder (as Equation (9) of [RBLZ08] or in
[LF09]), we have

p (lSB∩B∗ − lSB
)

= log(|SB∩B∗ |)− log(|SB|)

= −Tr(SB∩B∗∆B,B∩B∗) + vec(∆B,B∩B∗)T

[∫ 1

0

(SB∩B∗ + v∆B,B∩B∗)−1

⊗(SB∩B∗ + v∆B,B∩B∗)−1(1− v)dv

]
vec(∆B,B∩B∗),

where ⊗ is the Kronecker product. The trace is equal to zero. Now,

p (lSB∩B∗ − lSB
) ≤ 1/2 max

0≤v≤1
λ2max[(SB∩B∗ + v∆B,B∩B∗)−1]‖ vec(∆B,B∩B∗)‖2

= 1/2 max
0≤v≤1

λ−2
min(SB∩B∗ + v∆B,B∩B∗)‖ vec(∆B,B∩B∗)‖2

=
1

2minv(λmin(SB∩B∗ + v∆B,B∩B∗))2
‖ vec(∆B,B∩B∗)‖2

=
1

2λmin(SB)2
‖ vec(∆B,B∩B∗)‖2

≤ 1

2λmin(S)2
‖ vec(∆B,B∩B∗)‖2,

using Lemma 21 for the two last steps.
Now, we prove Equation (III.3) similarly. We have, using Lemma 21,

p (lSB
− lSB∗ ) = −Tr(SB∆B∗,B) + vec(∆B∗,B)

T

[∫ 1

0

(SB + v∆B∗,B)
−1

⊗(SB + v∆B∗,B)
−1(1− v)dv

]
vec(∆B∗,B)

≥ 1/2 min
0≤v≤1

λ2min[(SB + v∆B∗,B)
−1]‖ vec(∆B∗,B)‖2

= 1/2 min
0≤v≤1

λ−2
max(SB + v∆B∗,B)‖ vec(∆B∗,B)‖2

=
1

2maxv(λmax(SB + v∆B∗,B))2
‖ vec(∆B∗,B)‖2

=
1

2λmax(SB)2
‖ vec(∆B∗,B)‖2

≥ 1

2λmax(S)2
‖ vec(∆B∗,B)‖2.
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Lemma 23.

P

(
max
B 6≤B∗

Φ(B ∩B∗)− Φ(B) ≥ 0

)
−→ 0.

Proof. Using Lemma 22, we have

P

(
max
B 6≤B∗

Φ(B ∩ B∗)− Φ(B) ≥ 0

)

≤ P

(
max
B 6≤B∗

[
lSB∩B∗ − lSB

− 1

pnδ
(pen(B)− pen(B ∩ B∗))

]
≥ 0

)

≤ P

(
max
B 6≤B∗

[
1

2λmin(S)2
‖∆B,B∩B∗‖2F − 1

nδ
(pen(B)− pen(B ∩ B∗))

]
≥ 0

)

≤ P

(
λmin(S) ≤

1

2
λinf(1−

√
y)2
)

+P

(
max
B 6≤B∗

[
1

(1−√
y)4λ2inf

‖∆B,B∩B∗‖2F − 1

nδ
(pen(B)− pen(B ∩ B∗))

]
≥ 0

)
.

We show that the two terms go to 0. The first term goes to 0 with Lemma 20.
For the second term, we have

P

(
max
B 6≤B∗

[
1

(1−√
y)4λ2inf

‖∆B,B∩B∗‖2F − 1

nδ
(pen(B)− pen(B ∩ B∗))

]
≥ 0

)

= P


max
B 6≤B∗


 ∑

(i,j)∈B\B∗

{
1

(1−√
y)4λ2inf

s2ij −
1

nδ

}
 ≥ 0




≤ P

(
∃(i, j) /∈ B∗,

1

(1−√
y)4λ2inf

s2ij −
1

nδ
≥ 0

)

≤ P

(
∃(i, j) /∈ B∗,

2

(1−√
y)4λ2inf

σ̂2
ij −

1

nδ
≥ 0

)

≤ p2 max
(i,j)/∈B∗

P

(
2

(1−√
y)4λ2inf

σ̂2
ij −

1

nδ
≥ 0

)

≤ p2 max
(i,j)/∈B∗

P

( √
2

(1−√
y)2λinf

|σ̂ij| ≥
1

nδ/2

)

≤ p2 max
(i,j)/∈B∗

P

(∣∣∣∣∣
n−1∑

k=1

Z
(k)
ij

∣∣∣∣∣ ≥
(1−√

y)2√
2

λinfn
1−δ/2

)

≤ 2p2 exp
(
−Cinfn

1−δ) −→ 0,

using Bernstein’s inequality, where Z
(k)
ij is defined in Equation (III.1). That con-

cludes the proof.
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Lemma 24.

P

(
max
B<B∗

Φ(B∗)− Φ(B) ≥ 0

)
−→ 0.

Proof. Using Lemma 22, we have

P

(
max
B<B∗

Φ(B∗)− Φ(B) ≥ 0

)

≤ P

(
min
B<B∗

[
lSB

− lSB∗ −
1

pnδ
(pen(B∗)− pen(B))

]
≤ 0

)

≤ P

(
min
B<B∗

[
1

2λmax(SB∗)2
‖∆B∗,B‖2F − 1

nδ
(pen(B∗)− pen(B))

]
≤ 0

)

≤ P

(
λmax(SB) ≤

λinf(1 +
√
y)2

2

)

+P

(
min
B<B∗

[
1

(1 +
√
y)4λ2inf

‖∆B∗,B‖2F − 1

nδ
(pen(B∗)− pen(B))

]
≤ 0

)
.

The first term goes to 0 with Lemma 20. The second term is

P


∃B < B∗,

∑

(i,j)∈B∗\B

[
1

(1 +
√
y)4λ2inf

s2i,j − n−δ
]
≤ 0




≤ P


∃B < B∗,

∑

(i,j)∈B∗\B

[
1

λ2inf
s2i,j − n−δ

]
≤ 0




≤ P


∃k ∈ [1 : K], ∅  B1  B∗

k,
∑

i∈B1, j∈B∗
k\B1

[
1

λ2inf
s2ij − n−δ

]
≤ 0




≤ p2m max
k∈[1:K],
∅ B1 B∗

k

P


 ∑

i∈B1, j∈B∗
k\B1

[
1

λ2inf
s2ij − n−δ

]
≤ 0




≤ p2m max
k∈[1:K],
∅ B1 B∗

k

P


 ∑

i∈B1, j∈B∗
k\B1

[
1

2λ2inf
σ̂2
ij − n−δ

]
≤ 0


 .

Now, for all k ∈ [1;K] and for all ∅  B1  B∗
k, let (i

∗, j∗) ∈ argmaxi∈B1,j∈B∗
k\B1

|σij|
(with an implicit dependence on k and B1). Remark that

1

2λ2inf
σ̂2
i∗j∗ ≥ m2n−δ =⇒

∑

i∈B1, j∈B∗
k\B1

(
1

2λ2inf
σ̂2
ij − n−δ

)
≥ 0.
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Thus,

P


∃B < B∗,

∑

(i,j)∈B∗\B

[
1

λ2inf
s2i,j − n−δ

]
≤ 0




≤ p2m max
k∈[1:K],
∅ B1 B∗

k

P

(
1

2λ2inf
σ̂2
i∗j∗ ≤ m2n−δ

)

= p2m max
k∈[1:K],
∅ B1 B∗

k

P
(
|σ̂i∗j∗ | ≤

√
2λinfmn

−δ/2
)

≤ p2m max
k∈[1:K],
∅ B1 B∗

k

P
(
|σ̂i∗j∗ − σi∗j∗ | ≥ |σi∗j∗ | −

√
2λinfmn

−δ/2
)

= p2m max
k∈[1:K],
∅ B1 B∗

k

P

(∣∣∣∣∣
n−1∑

k=1

Z
(k)
i∗j∗

∣∣∣∣∣ ≥ n
[
|σi∗j∗ | −

√
2λinfmn

−δ/2
])

= p2mP



∣∣∣∣∣
n−1∑

k=1

Z
(k)
i∗j∗

∣∣∣∣∣ ≥ n min
k∈[1:K],
∅ B1 B∗

k

[
|σi∗j∗ | −

√
2λinfmn

−δ/2
]

 .

Now, by Condition 4, we know that min k∈[1:K],
∅ B1 B∗

k

|σi∗j∗ | ≥ an−1/4, so, for n large

enough,

min
k∈[1:K],
∅ B1 B∗

k

[
|σi∗j∗ | −

√
2λinfmn

−δ/2
]
≥ Cinf(n

−1/4 − n−δ/2) ≥ Cinf(δ)n
−1/4.

Thus, by Bernstein’s inequality, for n large enough,

P


∃B < B∗,

∑

(i,j)∈B∗\B

[
1

(1−√
y)2λ2inf

s2i,j − n−δ
]
≤ 0




≤ p2m+1 exp
(
−Cinf(δ)n

1/2
)
−→ 0.

Now, we can prove Proposition 20.

Proof. We have

P

(
max
B 6=B∗

Φ(B∗)− Φ(B) ≥ 0

)
≤ P

(
max
B<B∗

Φ(B∗)− Φ(B) ≥ 0

)
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+P

(
max
B>B∗

Φ(B∗)− Φ(B) ≥ 0

)

+P

(
max

B 6≤B∗, B 6≥B∗
Φ(B∗)− Φ(B) ≥ 0

)
.

The two first terms go to 0 tanks to Lemmas 23 and 24. For the last term, we
have

P

(
max

B 6≤B∗, B 6≥B∗
Φ(B∗)− Φ(B) ≥ 0

)

= P

(
max

B 6≤B∗, B 6≥B∗
Φ(B∗)− Φ(B ∩ B∗) + Φ(B ∩ B∗)− Φ(B) ≥ 0

)

≤ P

(
max

B 6≤B∗, B 6≥B∗
Φ(B∗)− Φ(B ∩ B∗) ≥ 0

)

+P

(
max

B 6≤B∗, B 6≥B∗
Φ(B ∩ B∗)− Φ(B) ≥ 0

)

≤ P

(
max
B′<B∗

Φ(B∗)− Φ(B′) ≥ 0

)

+P

(
max
B 6≤B∗

Φ(B ∩B∗)− Φ(B) ≥ 0

)
.

These two last terms go to 0 thanks to Lemmas 23 and 24.

Proofs of Proposition 21
In this proof, we assume that Conditions 1 to 3 hold.

Lemma 25. For all B ∈ Pp, we have

lSB∩B(α2)
− lSB

≤ 1

2λmin(S)

1

p
‖∆B,B∩B(α2)‖2F . (III.4)

Moreover, for all B < B(α2), we have

lSB
− lSB(α2)

≥ 1

2λmax(SB(α2))

1

p
‖∆B(α2),B‖2F . (III.5)

Proof. Same proof as Lemma 22 replacing B∗ by B(α2).

Lemma 26. If α2 > δ/2, then,

P

(
max

B 6≤B(α2)
Φ(B ∩ B(α2))− Φ(B) ≥ 0

)
−→ 0.
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Proof. Following the proof of Lemma 23 (and using Lemma 25), it is enough to
prove that the following term goes to 0:

P

(
max

B 6≤B(α2)

[
1

(1−√
y)4λ2inf

‖∆B,B∩B(α2)‖2F − 1

nδ
(pen(B)− pen(B ∩ B(α2)))

]
≥ 0

)

= P


 max
B 6≤B(α2)


 ∑

(i,j)∈B\B(α2)

{
1

(1−√
y)4λ2inf

s2ij −
1

nδ

}
 ≥ 0




≤ P

(
∃(i, j) /∈ B(α2),

1

(1−√
y)4λ2inf

s2ij −
1

nδ
≥ 0

)

≤ P

(
∃(i, j) /∈ B(α2),

2

(1−√
y)4λ2inf

σ̂2
ij −

1

nδ
≥ 0

)

≤ p2 max
(i,j)/∈B(α2)

P

(
2

(1−√
y)4λ2inf

σ̂2
ij −

1

nδ
≥ 0

)

≤ p2 max
(i,j)/∈B(α2)

P

( √
2

(1−√
y)2λinf

|σ̂ij| ≥
1

nδ/2

)

≤ p2 max
(i,j)/∈B(α2)

P

( √
2

(1−√
y)2λinf

|σ̂ij − σij| ≥
1

nδ/2
−

√
2

(1−√
y)2λinf

n−α2

)

≤ 2p2 exp
(
−Cinfn

1−δ) −→ 0,

using again Bernstein’s inequality. That concludes the proof.

Lemma 27. If α1 < δ/2, then,

P

(
max

B<B(α1)
Φ(B(α1))− Φ(B) ≥ 0

)
−→ 0.

Proof. Following the proof of Lemma 24, it suffices to prove that

p2mP



∣∣∣∣∣
n−1∑

k=1

Z
(k)
i∗j∗

∣∣∣∣∣ ≥ n min
k∈[1:K(α1)],
∅ B1 Bk(α1)

[
|σi∗j∗ | −

√
2λinfmn

−δ/2
]

 −→ 0.

Now, by definition of B(α1), we know that min k∈[1:K(α1)],
∅ B1 Bk(α1)

|σi∗j∗ | ≥ n−α1 , so, for n

large enough,

min
k∈[1:K(α1)],
∅ B1 Bk(α1)

[
|σi∗j∗ | −

√
2λinfmn

−δ/2
]
≥ Cinf(n

−α1 − n−δ/2) ≥ Cinf(α1, δ)n
−α1 .
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Thus, by Bernstein’s inequality, for n large enough,

P


∃B < B(α1),

∑

(i,j)∈B(α1)\B

[
1

(1−√
y)2λ2inf

s2i,j − n−δ
]
≤ 0




≤ p2m+1 exp
(
−Cinf(α1, δ)n

1−2α1
)
−→ 0.

We can now prove Proposition 21.

Proof. We have

P
({
B(α1) 6> B̂tot ≤ B(α2)

}c)

= P

(
min

B<B(α1) or B 6≤B(α2)
Φ(B) ≤ min

B 6<B(α1) and B≤B(α2)
Φ(B)

)

≤ P

(
min

B<B(α1)
Φ(B) ≤ min

B 6<B(α1) and B≤B(α2)
Φ(B)

)

+P

(
min

B 6≤B(α2) s.t. B∩B(α2) 6<B(α1)
Φ(B) ≤ min

B 6<B(α1) and B≤B(α2)
Φ(B)

)

+P

(
min

B 6≤B(α2) s.t. B∩B(α2)<B(α1)
Φ(B) ≤ min

B 6<B(α1) and B≤B(α2)
Φ(B)

)
.

First,

P

(
min

B<B(α1)
Φ(B) ≤ min

B 6<B(α1) and B≤B(α2)
Φ(B)

)

≤ P

(
min

B<B(α1)
Φ(B)− Φ(B(α1)) ≤ 0

)
−→ 0,

from Lemma 27. Secondly,

P

(
min

B 6≤B(α2) s.t. B∩B(α2) 6<B(α1)
Φ(B) ≤ min

B 6<B(α1) and B≤B(α2)
Φ(B)

)

≤ P

(
min

B 6≤B(α2) s.t. B∩B(α2) 6<B(α1)
Φ(B)− Φ(B ∩ B(α2)) ≤ 0

)
−→ 0,

from Lemma 26. Finally,

P

(
min

B 6≤B(α2) s.t. B∩B(α2)<B(α1)
Φ(B) ≤ min

B 6<B(α1) and B≤B(α2)
Φ(B)

)
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≤ P

(
min

B 6≤B(α2) s.t. B∩B(α2)<B(α1)
Φ(B) ≤ Φ(B(α1))

)

≤ P

(
min

B 6≤B(α2) s.t. B∩B(α2)<B(α1)
Φ(B)− Φ(B ∩ B(α2))

+Φ(B ∩ B(α2))− Φ(B(α1) ≤ 0

)

≤ P

(
min

B 6≤B(α2) s.t. B∩B(α2)<B(α1)
Φ(B)− Φ(B ∩ B(α2)) ≤ 0

)

+P

(
min

B 6≤B(α2) s.t. B∩B(α2)<B(α1)
Φ(B ∩ B(α2))− Φ(B(α1) ≤ 0

)

≤ P

(
min

B 6≤B(α2)
Φ(B)− Φ(B ∩ B(α2)) ≤ 0

)

+P

(
min

B<B(α1)
Φ(B)− Φ(B(α1) ≤ 0

)

−→ 0,

from Lemmas 26 and 27.

Proofs of Propositions 22, 23 and 24

Proof. In the three cases, the computation of B̂ requires carrying out the BFS
algorithm for Bλ and the computation of a determinant for Ψ(Bλ). Recall that if
G = (V,E) is a graph (where V is the set of vertices and E the set of edges), the
complexity of the BFS algorithm is O(|V | + |E|). Recall that, if M is a squared
matrix of size p, the complexity of det(M) is O(p3) using the LU decomposition.

Now, we compute the complexity of the three estimators B̂Ĉ , B̂A and B̂s.

• For all λ ∈ AĈ , the complexity of Bλ is O(p2), and the cardinal of AĈ is
O(p2). Thus, the complexity of the computation of {Bλ | λ ∈ AĈ} is O(p4).

Now, for all λ ∈ AĈ , the complexity of Ψ(Bλ) is O(p
3) and the cardinal of

{Bλ | λ ∈ AĈ} is O(p) (because the function λ 7→ Bλ decreases). Thus, the
complexity of the evaluations {Ψ(B), B ∈ {Bλ | λ ∈ AĈ}} is O(p4)

So the complexity of B̂Ĉ is O(p4).

• For the threshold n−1/3, the complexity of Bn−1/3 is O(p2).

So the complexity of B̂λ is O(p2).

• One can divide the computation of B̂s into two steps.
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For the first step, as we do not know the value of s, we have to compute
Bl/p from l = p to l = s− 1, verifying each time if the maximal size of group
is smaller than m or not. First, for each value of l from p decreasing to s,
the complexity of the BFS algorithm to Bl/p is O(p × m2) = O(p), thus,
the complexity of all these partitions is O(p2). Then, for l = s − 1, the
complexity of B(s−1)/p is O(p

2). So, the complexity of this first step is O(p2).

In the second step, we have to evaluate Ψ(Bl/p) for all l ∈ [s : p]. The
complexity of each evaluation is O(pm3) = O(p), and the the number of
evaluations is O(p). Thus, the complexity of this second step is O(p2).

Proof of Proposition 25

To prove the convergence of B̂ in the three cases, we need the three following
Lemmas.

Lemma 28. For all sequence (λn)n such that for all n, λn ∈ [n−1/3, an−1/4/
3λsup(1 +

√
y)2] (we assume that n is large enough and that subset is not empty),

we have
P(Bλ = B∗) −→ 1.

Proof. Step 1: Bλ ≤ B∗ with probability which goes to 1.

P (Bλ 6≤ B∗)

= P
(
∃(i, j) /∈ B∗, |Ĉij| ≥ λ

)

≤ P

(
∃(i, j) /∈ B∗, |σ̂ij| ≥ λ

λinf(1−√
y)2

2

)
+ P

(
∃i ≤ p, σ̂ii < λinf

(1−√
y)2

2

)

≤ p2 max
(i,j)/∈B∗

P

(
|σ̂ij| ≥ λ

λinf(1−√
y)2

2

)
+ P

(
λmin(Σ̂) < λinf

(1−√
y)2

2

)

≤ p2 max
(i,j)/∈B∗

P

(
|σ̂ij| ≥

λinf(1−√
y)2

2
n−1/3

)
+ o(1)

≤ 2p2 exp
(
−Cinfn

1/3
)
+ o(1) −→ 0,

using Lemma 20 and Bernstein’s inequality.
Step 2: Bλ ≥ B∗ with probability which goes to 1.

For all k ∈ [1 : K], and all ∅  B1  B∗
k, let B2 := B∗

k \ B1 and (i∗, j∗) :=
argmax(i,j)∈B1×B2

|σij|, where the dependency on k and B1 is implicit. Thanks to

Condition 4, we have |σi∗j∗ | ≥ an−1/4. Then, using Lemma 20,

P (Bλ 6≥ B∗)
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= P

(
∃k ∈ [1 : K], ∃ ∅  B1  B∗

k, max
(i,j)∈B1×B2

|Ĉij| < λ

)

≤ P

(
∃k ∈ [1 : K], ∃ ∅  B1  B∗

k, max
(i,j)∈B1×B2

|σ̂ij| < 2λλsup(1 +
√
y)2
)

+P
(
∃i ≤ p, σ̂ii ≥ 2λsup(1 +

√
y)2
)

≤ P

(
∃k ∈ [1 : K], ∃ ∅  B1  B∗

k, |σ̂i∗j∗ | <
2

3
an−1/4

)

+P
(
λmax(Σ̂) ≥ 2λsup(1 +

√
y)2
)

≤ P

(
∃k ∈ [1 : K], ∃ ∅  B1  B∗

k, |σ̂i∗j∗ − σi∗j∗ | >
1

3
an−1/4

)
+ o(1)

≤ P

(
∃(i, j) ∈ [1 : p]2, |σ̂ij − σij| >

1

3
an−1/4

)
+ o(1)

≤ p2 max
(i,j)

P

(
|σ̂ij − σij| >

1

3
an−1/4

)
+ o(1)

≤ 2p2 exp
(
−Cinfn

1/2
)
+ o(1) −→ 0,

by Bernstein’s inequality.

Lemma 29. Let c > 0. Let Ã := {a0, a1, ..., aL} such that a0 = 0, aL = 1, 0 <
al+1 − al < c/

√
p for all l ∈ [0 : L− 1]. Then,

P
(
B∗ ∈

{
Bλ, λ ∈ Ã

})
−→ 1.

Proof. Thanks to Lemma 28, it suffices to show that, for n large enough, there
exists l ∈ [0 : L] such that al ∈ [n−1/3, an−1/4/3λsup(1 +

√
y)2]. By contradiction,

let us assume that there does not exist such l. Let j ∈ [0 : L] such that aj < n−1/3

and aj+1 > an−1/4/3λsup. Thus, we have

√
p (aj+1 − aj) >

√
p

(
an−1/4

3λsup(1 +
√
y)2

− n−1/3

)

≥ Cinfn
1/4 −→ +∞,

which is in contradiction with the definition of Ã.

Lemma 30. We have,

P (B∗ ∈ {Bλ, λ ∈ As}) −→ 1.
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Proof. Let Pp(m) be the set of the partitions of [1 : p] such that all their elements
have cardinal smaller than m. By assumption (Condition 3), B∗ ∈ Pp(m). Let
G := {l/p| l ∈ [0, p]}. Thus G verifies the assumption of Ã in Lemma 29, so

P (B∗ ∈ {Bλ, λ ∈ G}) −→ 1.

Thus
P (B∗ ∈ {Bλ, λ ∈ G} ∩ Pp(m)) −→ 1.

To conclude, it suffices to prove that {Bλ, λ ∈ Gs} ∩ Pp(m) = {Bλ, λ ∈ As}.

We have immediately {Bλ, λ ∈ As} ⊂ {Bλ, λ ∈ G}∩Pp(m). We have to prove
the other inclusion. Assume that B ∈ {Bλ, λ ∈ G} ∩ Pp(m). We know that there
exists λ = l/p ∈ G such that B = Bλ. As Bl/p ∈ Pp(m), we know by definition of
s that l ≥ s and thus λ ∈ A.

Now, we prove Proposition 25.

Proof. • Using Lemma 28, Proposition 20, and the fact that {Bλ | λ ∈ AĈ} =

{Bλ | λ ∈ [0, 1[}, we have P
(
B̂Ĉ = B∗

)
−→ 1.

• Using Lemma 28 and Proposition 20, we have P
(
B̂λ = B∗

)
−→ 1.

• Using Lemma 30 and Proposition 20, we have P
(
B̂s = B∗

)
−→ 1.

Proof of Proposition 26

Proof. We follow the proof of Lemma 28.
Step 1: Bn−δ/2 ≤ B(α2) with probability which goes to 1.

P (Bn−δ/2 6≤ B(α2))

= P
(
∃(i, j) /∈ B(α2), |Ĉij| ≥ n−δ/2

)

≤ P

(
∃(i, j) /∈ B(α2), |σ̂ij| ≥ n−δλinf(1−

√
y)2

2

)
+ P

(
∃i ≤ p, σ̂ii < λinf

(1−√
y)2

2

)

≤ p2 max
(i,j)/∈B(α2)

P

(
|σ̂ij| ≥ n−δ/2λinf(1−

√
y)2

2

)
+ P

(
λmin(Σ̂) < λinf

(1−√
y)2

2

)

≤ p2 max
(i,j)/∈B(α2)

P

(
|σ̂ij − σij| ≥ n−δ/2λinf(1−

√
y)2

2
− n−α2

)
+ o(1)
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≤ 2p2 exp
(
−Cinf(δ, α2)n

1−δ)+ o(1) −→ 0,

using Lemma 20 and Bernstein’s inequality.

Step 2: Bn−δ/2 ≥ B(α1) with probability which goes to 1.

For all k ∈ [1 : K(α1)], and all ∅  B1  Bk(α1), let B2 := Bk(α1) \ B1 and
(i∗, j∗) := argmax(i,j)∈B1×B2

|σij|, where the dependency on k and B1 is implicit.
Then, using Lemma 20,

P (Bn−δ/2 6≥ B(α1))

= P

(
∃k ∈ [1 : K(α1)], ∃ ∅  B1  Bk(α1), max

(i,j)∈B1×B2

|Ĉij| < n−α1

)

≤ P
(
∃k ∈ [1 : K(α1)], ∃ ∅  B1  Bk(α1), |σ̂i∗j∗ | < 2λsup(1 +

√
y)2n−α1

)

+P
(
∃i ≤ p, σ̂ii ≥ 2λsup(1 +

√
y)2
)

≤ P
(
∃k ∈ [1 : K(α1)], ∃ ∅  B1  Bk(α1), |σ̂i∗j∗ | < 2λsup(1 +

√
y)2n−α1

)

+P
(
λmax(Σ̂) ≥ 2λsup(1 +

√
y)2
)

≤ P
(
∃k ∈ [1 : K], ∃ ∅  B1  B∗

k, |σ̂i∗j∗ − σi∗j∗ | > n−α1 − 2λsup(1 +
√
y)2n−δ/2)+ o(1)

≤ P
(
∃(i, j) ∈ [1 : p]2, |σ̂ij − σij| > n−α1 − 2λsup(1 +

√
y)2n−δ/2)+ o(1)

≤ p2 max
(i,j)

P
(
|σ̂ij − σij| > n−α1 − 2λsup(1 +

√
y)2n−δ/2)+ o(1)

≤ 2p2 exp
(
−Cinf(δ, α1)n

1−2α1
)
+ o(1) −→ 0,

by Bernstein’s inequality.

Proof of Proposition 27

Proof. First, we prove the results for Σ̂B∗ . We have, using again the notation
M ∼ N (0,Σ),

E

(
n

p
‖Σ̂B∗ − Σ‖2F

)
≤ n m2 max

(i,j)∈B∗
E
[
(σ̂ij − σij)

2
]

= n m2 max
(i,j)∈B∗

Var (σ̂ij)

≤ m2 n

n− 1
max

(i,j)∈B∗
Var (MiMj)

≤ 2m2 max
(i,j)∈B∗

(
σiiσjj + 2σ2

ij

)
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≤ 6m2λ2sup.

By Markov’s inequality, that proves

1

p
‖Σ̂B∗ − Σ‖2F = Op(1/n).

Now, we want to prove that

1

p
‖Σ̂B∗ − Σ‖2F 6= op(1/n).

First, we have

E

(
n

p
‖Σ̂B∗ − Σ‖2F

)
≥ n min

i∈[1:p]
E
[
(σ̂ii − σii)

2
]

= n min
i∈[1:p]

Var (σ̂ii)

≥ n

n− 1
Var(M2

ii)

≥ min
i∈[1:p]

2σ2
ii

≥ 2λ2inf .

Now, the variance is

Var

(
1

p
‖Σ̂B∗ − Σ‖2F

)
=

K∑

k=1

Var

(
1

p
‖Σ̂B∗

k
− ΣB∗

k
‖2F
)

≤ p max
k∈[1:K]

Var

(
1

p
‖Σ̂B∗

k
− ΣB∗

k
‖2F
)
.

Now,

Var

(
1

p
‖Σ̂B∗

k
− ΣB∗

k
‖2F
)

=
1

p2
Var


 ∑

i,j∈B∗
k

(σ̂ij − σij)
2


 .

Remark that if A1, ..., Ad are random variables, we have

Var

(
d∑

i=1

Ai

)
=

d∑

i,j=1

cov(Ai, Aj)

≤
d∑

i,j=1

√
Var(Ai)

√
Var(Aj)

=

(
d∑

i=1

√
Var(Ai)

)2
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≤ d

d∑

i=1

Var(Ai).

Thus

Var

(
1

p
‖Σ̂B∗

k
− ΣB∗

k
‖2F
)

≤ m4

p2
max
i,j∈B∗

k

Var
(
(σ̂ij − σij)

2
)
.

Let i, j ∈ B∗
k for some k. We want to upper-bound Var ((σ̂ij − σij)

2). Let us define

ak := X
(k)
i X

(k)
j − σij. We know that

(σ̂ij − σij)
2 =

(
1

n

n∑

k=1

ak

)2

=
1

n2

n∑

k=1

a2k +
1

n2

∑

k 6=k′
akak′ .

So, using the independence of a1, ..., an, we obtain

Var
(
(σ̂ij − σij)

2
)

=
1

n4

n∑

k1,k2=1

cov
(
a2k1 , a

2
k2

)
+ 2

1

n4

n∑

k1,k2,k′2=1,
k2 6=k′2

cov
(
a2k1 , ak2ak′2

)

+
1

n4

n∑

k1,k′1,k2,k
′
2=1,

k1 6=k′1, k2 6=k′2

cov
(
ak1ak′1 , ak2ak′2

)

=
1

n3
cov

(
a21, a

2
1

)
+ 4

n− 1

n3
cov

(
a21, a1a2

)

+2
n− 1

n3
cov (a1a2, a1a2) ,

where we observed that cov(a1a2, a1, a3) = 0. Now, by Isserlis’ theorem and
using the fact that σij is upper-bounded by λsup, we have cov (a21, a

2
1) ≤ Csup,

cov (a21, a1a2) ≤ Csup and cov (a1a2, a1a2) ≤ Csup (and these bounds do not depend
on k, i, j). So

Var
(
σ̂2
ij

)
≤ Csup

n2
.

Thus,

Var

(
1

p
‖Σ̂B∗

k
− ΣB∗

k
‖2F
)

≤ Csup

p2n2
,

and

Var

(
1

p
‖Σ̂B∗ − Σ‖2F

)
≤ Csup

p n2
.
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Thus, by Chebyshev’s inequality

P

(
1

p
‖Σ̂B∗ − Σ‖2F <

λ2inf
n

)

≤ P

(∣∣∣∣
1

p
‖Σ̂B∗ − Σ‖2F − E

[
1

p
‖Σ̂B∗ − Σ‖2F

]∣∣∣∣ >
λ2inf
n

)

≤
Var

(
1
p
‖Σ̂B∗ − Σ‖2F

)
n2

λ4inf

≤ Csup

p
−→ 0.

So, we proved that 1
p
‖Σ̂B∗ − Σ‖2F is not an op(1/n).

Now, we show that the same results hold for SB∗ proving that 1
p
‖SB∗ −Σ‖2F −

1
p
‖Σ̂B∗ − Σ‖2F = op(1/n). We have

∣∣∣∣
1

p
‖SB∗ − Σ‖2F − 1

p
‖Σ̂B∗ − Σ‖2F

∣∣∣∣

=

∣∣∣∣∣∣
1

p

∑

(i,j)∈B∗

2σijσ̂ij
1

n
− σ̂2

ij

2n− 1

n2

∣∣∣∣∣∣

≤ m2

n
max

(i,j)∈B∗

∣∣∣∣2σijσ̂ij −
2n− 1

n
σ̂2
ij

∣∣∣∣

≤ m2

n
max

(i,j)∈B∗

(
2|σ̂ij||σ̂ij − σij|+ |σ̂2

ij|/n
)
.

Yet, by Bernstein’s inequality,

max
(i,j)∈B∗

|σ̂ij| = Op(1),

max
(i,j)∈B∗

|σ̂ij − σij| = op(1),

and
max

(i,j)∈B∗
σ̂2
ij = Op(1).

That proves
1

p
‖SB∗ − Σ‖2F − 1

p
‖Σ̂B∗ − Σ‖2F = op(1/n).

Now, on the one hand, we have

1

p
‖SB∗ − Σ‖2F = Op(1/n),
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and by Proposition 25,
1

p
‖SB̂ − Σ‖2F = Op(1/n).

On the other hand,
1

p
‖SB∗ − Σ‖2F 6= op(1/n).

Proof of Proposition 28

Proof. It suffices to prove that

λ2inf
2

≤ E

(
n

p2
‖S − Σ‖2F

)
≤ Csup. (III.6)

First,

E

(
n

p2
‖S − Σ‖2F

)
≤ n max

(i,j)∈[1:p]2
E
[
(sij − σij)

2
]

= n max
(i,j)∈[1:p]2

Var (sij) +
σ2
ij

n

=
n− 1

n
max

(i,j)∈[1:p]2
Var (MiMj) +

σ2
ij

n

≤ max
(i,j)∈[1:p]2

(
σiiσjj + σ2

ij +
σ2
ij

n

)

≤ 3λ2sup.

Secondly,

E

(
n

p2
‖S − Σ‖2F

)
≥ n min

(i,j)∈[1:p]2
E
[
(sij − σij)

2
]

≥ n min
(i,j)∈[1:p]2

Var (sij)

=
n− 1

n
min

(i,j)∈[1:p]2

(
σiiσjj + σ2

ij

)

≥ 1

2
λ2inf .

Proof of Proposition 29
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Proof. We follow the proof of Proposition 27. Let δ ∈]1/2, 1[, ε > 0, and α1 := δ/
2− ε/4.

We have

max
B(α1)≤B≤B∗

E

(
nδ−ε

p
‖Σ̂B − Σ‖2F

)

= max
B(α1)≤B≤B∗

nδ−ε

p

K∑

k=1



∑

i,j∈B∗
k ,

(i,j)∈B

E
(
(σ̂ij − σij)

2
)
+
∑

i,j∈B∗
k ,

(i,j)∈B

σ2
ij




≤ nδ−εm2

(
max

(i,j)∈B∗
E
(
σ̂ij − σij)

2
)
+ max

B(α1)≤B≤B∗
max

(i,j)∈B∗\B
σ2
ij

)

≤ nδ−εm2

(
O

(
1

n

)
+ n−2α1

)
−→ 0.

Thus,

max
B(α1)≤B≤B∗

1

p
‖Σ̂B − Σ‖2F = op

(
1

nδ−ε

)
,

and thus

max
B(α1)≤B≤B∗

1

p
‖SB − Σ‖2F = op

(
1

nδ−ε

)
.

We conclude using Proposition 26 and using that B(α2) ≤ B∗.

Proof of Proposition 30

Proof. The eigenvalues of Σ are lower-bounded by ε and upper-bounded by mL,
so Σ verifies Condition 2. Condition 3 is verified by construction. It remains to
prove the slightly modified Condition 4 given in Proposition 30. Let a > 0.

P
(
∃B < B∗, ‖ΣB − Σ‖max < an−1/4

)

= P

(
∃k, max

i,j∈B∗
k , i 6=j

|σij| < an−1/4

)

≤ pP

(
max

i,j∈[1:10], i 6=j
|

L∑

l=1

U
(l)
i U

(l)
j | ≤ an−1/4

)
,

using an union bound and the fact that all the blocks have a size larger that 10.

Then, by independence of
(∑L

l=1 U
(l)
2k−1U

(l)
2k

)
k≤5

, we have

P
(
∃B < B∗, ‖ΣB − Σ‖max < an−1/4

)
≤ pP

(
|

L∑

l=1

U
(l)
1 U

(l)
2 | ≤ an−1/4

)5
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Let Ui := (U
(l)
i )l≤L ∈ RL for i = 1, 2. Then, U1 and U2 are independent and

uniformly distributed on [−1, 1]L. Thus

P

(
|

L∑

l=1

U
(l)
1 U

(l)
2 | ≤ an−1/4

)
= E

[
P
(
|〈U1, U2〉| ≤ an−1/4

∣∣U2

)]

Let u2 ∈ [−1, 1]L \ {0}. The set {u1 ∈ [−1, 1]L| |〈u1, u2〉| ≤ an−1/4} is a subset of
{∑L

l=1 xiei| − an−1/4‖u2‖ ≤ x1 ≤ an−1/4‖u2‖, |xl| ≤
√
L ∀l} where e1 = u2/‖u2‖

and (e1, ..., eL) is an orthonormal basis of RL. The Lebesgue measure of this subset
is (2

√
L)L−12an−1/4‖u2‖. Furthermore, (conditionally to U2 = u2) the probability

density function of U1 on this set is either 0 or 2−L. So, for all u2 ∈ [−1, 1]L \ {0},

P
(
|〈U1, U2〉| ≤ an−1/4

∣∣U2 = u2
)
≤ (2

√
L)L−12an−1/4‖u2‖2−L ≤

√
L
L−1

an−1/4.

Thus

P

(
|

L∑

l=1

U
(l)
1 U

(l)
2 | ≤ an−1/4

)
≤

√
L
L−1

an−1/4.

Then

P
(
∃B < B∗, ‖ΣB − Σ‖max < an−1/4

)
≤ p(

√
L
L−1

an−1/4)5 −→ 0.

Hence, it remains to prove that the conclusion of Proposition 20 holds. That
will imply the same for Propositions 25 and 27. Let a > 0 and E := {Γ ∈
S++
p (R, B∗)| ∀B < B∗, ‖ΣB − Σ‖max ≥ an−1/4}, where the generation of B∗ is

defined in Proposition 30. We have

P
(
B̂tot 6= B∗

)
≤ P (Σ /∈ E) + P

(
B̂tot 6= B∗| Σ ∈ E

)

≤ o(1) +

∫

E

P
(
B̂tot 6= B∗| Σ = Γ

)
dPΣ(Γ).

Yet, for all Σ ∈ E, P
(
B̂tot 6= B∗| Σ = Γ

)
−→ 0 thanks to Proposition 20 (even in

Condition 4 is not verified, the proof is still valid since the covariance matrix is in
E). We conclude by dominated convergence theorem.

Notation for the proofs of Section B.3
For all i, j ∈ [1 : p], let ei ∈ Rp be such that all coefficients are zero except the

i-th one which is equal to 1, and let eij ∈ Mp(R) be such that all coefficients are
zero except the (i, j)-th one which is equal to 1. Let γij be the (i, j)-th coefficient
of Σ−1. Finally, as we use matrices M of size p2 × p2, and vectors v of size p2, we
define vij := v(j−1)p+i and Mij,kl :=M(j−1)p+i,(l−1)p+k.
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Proof of Proposition 31
We see that, for all B ∈ Pp, lSB

= log(|SB|)/p + n−1
n

converges almost surely
to log(|ΣB|)/p + 1. The following Lemma gives a central limit theorem for this
convergence.

Lemma 31. For all B ∈ Pp, we have

√
n(log |SB| − log |ΣB|) L−→

n→+∞
N (0, 2Tr(Σ−1

B ΣΣ−1
B Σ)/p), (III.7)

with 2Tr(Σ−1
B ΣΣ−1

B Σ)/p ≤ 2p. In particular

√
n(log |S| − log |Σ|) L−→

n→+∞
N (0, 2).

Proof. Let Z(k) = M (k)M (k)T , where M (k) = (M
(k)
i )i≤p ∈ Rp. We know that

E(Z) = Σ and cov(Zi,j, Zk,l) = E(XiXjXkXl)− σijσkl = σijσkl + σikσjl + σilσjk −
σijσkl = σikσjl + σilσjk. Let Γ ∈ Mp2,p2 , be such that Γij,kl := σikσjl + σilσjk =
cov(Zi,j, Zk,l). Using the central limit Theorem,

√
n− 1

(
vec(Σ̂B)− vec(ΣB)

)
)

L−→
n→+∞

N (0,ΓB),

and by Slutsky Lemma,

√
n (vec(SB)− vec(ΣB))

L−→
n→+∞

N (0,ΓB), (III.8)

where (ΓB)ij,kl = Γij,kl if (i, j) ∈ B and (k, l) ∈ B and (ΓB)ij,kl = 0 otherwise.
Let us apply the Delta-method to (III.8) with the function log ◦ det ◦mat,

where mat = Rp
2 → Mp(R) is the inverse function of vec. If we write L the

Jacobian matrix of log ◦ det ◦mat, we have:

√
n(log |SB| − log |ΣB|) L−→

n→+∞
N (0, L(vec(ΣB))ΓBL(vec(ΣB))

T ).

Let us compute the linear map L(vec(ΣB)) : R
p2 → R, that we identify with its

matrix. Let us recall that, for the dot product 〈A,B〉 := Tr(ATB), the gradient
of log ◦ det on A is A−1. Thus, if v ∈ Rp2 , we have

L(vec(ΣB))(v) = D(log ◦ det)(mat(vec(ΣB)) ◦Dmat(vec(ΣB))(v)

= 〈∇(log ◦ det)(ΣB), Dmat(vec(Σ))(v)〉,
= 〈Σ−1

B ,Σ〉
= Tr(Σ−1

B mat(v))

= vec(Σ−1
B )Tv.
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So L(vec(ΣB)) = vec(Σ−1
B )T , then

√
n(log |SB| − log |ΣB|) L−→

n→+∞
N (0, vec(Σ−1

B )TΓB vec(Σ−1
B )).

Now,

vec(Σ−1
B )TΓB vec(Σ−1

B )

=
∑

i,j,k,l

(ΣB)
−1
i,j (σikσjl + σilσjk)(ΣB)

−1
k,l

=
∑

i,j,k,l

(ΣB)
−1
i,j σikσjl(ΣB)

−1
k,l +

∑

i,j,k,l

(ΣB)
−1
i,j σilσjk(ΣB)

−1
k,l

= 2Tr(Σ−1
B ΣΣ−1

B Σ)

= 2Tr
[(

Σ
− 1

2
B ΣΣ

− 1
2

B

)(
Σ

− 1
2

B ΣΣ
− 1

2
B

)]

≤ 2Tr
(
Σ

− 1
2

B ΣΣ
− 1

2
B

)2

= 2Tr(Σ−1
B Σ)2

= 2p2.

Indeed, as A := Σ
− 1

2
B ΣΣ

− 1
2

B is symmetric positive definite, we have Tr(AA) ≤
Tr(A)2.

Lemma 32. For all Γ ∈ S++
p (R) and for all B ∈ Pp such that Γ 6= ΓB, we have

det(ΓB) > det(Γ).

Proof. First, let us prove it for |B| = K = 2. We have B = {I, J}.
det(Γ) = det(ΓI,I) det(ΓJ,J − ΓJ,IΓ

−1
I,IΓI,J).

Now, det(ΓB) = det(ΓI,I) det(ΓJ,J). Thus, it suffices to show that det(ΓJ,J) >
det(ΓJ,J − ΓJ,IΓ

−1
I,IΓI,J). We then write A1 := ΓJ,J − ΓJ,IΓ

−1
I,IΓI,J which is sym-

metric positive definite (Schur’s complement), and A2 = ΓJ,IΓ
−1
I,IΓI,J which is also

symmetric positive definite. Then, we have

det(A1 + A2) = det(A1) det(Ip + A
− 1

2
1 A2A

− 1
2

1 ) > det(A1),

because det(Ip + A
− 1

2
1 A2A

− 1
2

1 ) =
∏p

i=1(1 + φi(A
− 1

2
1 A2A

− 1
2

1 )).
Now, we prove the lemma for any value of |B| = K. Let Γ ∈ S++

p (R) and

B ∈ Pp such that Γ 6= ΓB. Let B
(j) := {⋃j

i=1Bi,
⋃K
i=j+1Bi} for all j ∈ [1 : K − 1].

We now define (Γ(j))j∈[1,K] with the recurrence relation Γ(j+1) = Γ
(j)

B(j) and with

Γ(1) = Γ, we then have ΓB = ΓK . Thus

det(ΓB) = det(Γ(K)) ≥ det(Γ(K−1)) ≥ ... ≥ det(Γ(1)) = det(Γ).
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Furthermore, as Γ 6= ΓB, there exists j such that Γ
(j)

B(j) 6= Γ(j). Thus, at least one
of the previous inequality is strict, and so det(ΓB) > det(Γ).

Using Lemmas 31 and 32, we can prove Proposition 31.

Proof. It suffices to show that, for all B 6= B∗,

P(B̂tot = B) −→
n→+∞

0.

We split the proof into two steps: for B 6≥ B∗ and for B > B∗.

Step 1: B 6≥ B∗.
Let h := min{log(|ΣB|)− log(|Σ|)| B 6≥ B∗} = min{log(|ΣB|)− log(|Σ|), B < B∗},
since ΣB = ΣB∩B∗ . Thanks to Lemma 32, we know that h > 0.

Let B 6≥ B∗. Using the convergence in probability of lS′
B
, we know that P(lSB

<
log |ΣB|/p+ 1− h/3) −→

n→+∞
0 and P(lSB∗ > log |Σ|/p+ 1 + h/3) −→

n→+∞
0.

Now, we know that for n > (3p/h)1/δ, the term of penalisation satisfies κ pen(B∗) <
h/3. Thus,

P(B̂tot = B) −→
n→+∞

0.

Step 2: B > B∗.
Let B > B∗. We know that

√
n (Ψ(B)−Ψ(B∗))

=
√
n (lSB

+ κ pen(B)− lSB∗ − κ pen(B∗))

=
√
nκ(pen(B)− pen(B∗)) +

√
n(lSB

− lΣB
)−√

n(lSB∗ − lΣB∗ ),

since ΣB = ΣB∗ for B > B∗. Let an be equal to
√
nκ(pen(B) − pen(B∗)) (which

converges to +∞), bn to be equal to
√
n(lSB

− lΣB
) (which converges to a zero

mean normal distribution) and cn to be equal to
√
n(lSB∗ − lΣB∗ ) (which converges

to a zero mean normal distribution). We have

P
[√
n (Ψ(B)−Ψ(B∗)) > 0

]
= P(bn − cn < −an)
≤ P(bn ≤ −an/2 or cn ≥ an/2)

≤ P(bn ≤ −an/2) + P(cn ≥ an/2) −→
n→+∞

0.

Thus, P(B̂tot = B) −→
n→+∞

0.

Proof of Proposition 32
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Proof. We follow the notation of [SN98].
An othonormal basis of Sp(R) is { 1√

2
(eij + eji)| i < j} ∪ {eii| i ≤ p} with

the following total order on {(i, j) ∈ [1 : p]2| i ≤ j}: we write (i, j) ≤ (i′, j′) if
j < j′ or if j = j and i ≤ i′. We define U ∈ Mp2,p(p+1)/2(R) as the matrix which
columns are the vectorizations of the components of this basis of vec(Sp(R)). Thus
Uij,kl =

1√
2
(1(i,j)=(k,l) + 1(i,j)=(l,k)), for all k < l and Uij,kk = 1(i,j)=(k,k).

Thus, U(UTJU)−1UT is the Cramér-Rao bound, where J is the standard Fisher
information matrix in the model {N (µ,Σ), Σ ∈ Mp(R)}. As the sample is i.i.d,
it suffices to prove if with n = 1. In the rest of the proof, we compute the Cramér-
Rao bound, and we show that this bound is equal to E

(
(S − Σ)(S − Σ)T

)
. We

split the proof into several Lemmas.

Lemma 33. Recall that Σ−1 = (γij)i,j≤p. Let A = (Amn,m′n′)m≤n,m′≤n′ ∈ Mp(p+1)/2(R)
defined by

Amn,m′n′ =





1
2
(γmm′γnn′ + γmn′γnm′) if m < n and m′ < n′

1√
2
γmm′γnn′ if either m = n or m′ = n′

1
2
γ2mm′ if m = n and m′ = n′,

Then, A = UTJU .

Proof. Deriving twice the log-likelihood with respect to σij and σkl (for i, j, k, l ∈
[1 : p]) and taking the expectation, we get

Jij,kl =
1

2
Tr
(
Σ−1eie

T
j Σ

−1eke
T
l

)

=
1

2
γliγjk.

Thus, for all m < n, m′ < n′, we have

(UTJU)mn,m′n′ =

p∑

i,j,k,l=1

Uij,mnJij,klUkl,m′n′

=

p∑

i,j,k,l=1

1√
2
(1(i,j)=(m,n) + 1(i,j)=(n,m))Jij,kl

1√
2
(1(k,l)=(m′,n′) + 1(k,l)=(n′,m′))

=
1

2
(Jmn,m′n′ + Jmn,n′m′ + Jnm,m′n′ + Jnm,n′m′)

=
1

2
(γmm′γnn′ + γmn′γnm′).

Now, if m′ < n′, we have

(UTJU)mm,m′n′ =

p∑

i,j,k,l=1

Uij,mmJij,klUkl,m′n′
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=

p∑

i,j,k,l=1

1(i,j)=(m,m)Jij,kl
1√
2
(1(k,l)=(m′,n′) + 1(k,l)=(n′,m′))

=
1√
2
(Jmm,m′n′ + Jmm,n′m′)

=
1√
2
γmm′γmn′ .

If m < n, we have

(UTJU)mn,m′m′ =

p∑

i,j,k,l=1

Uij,mnJij,klUkl,m′m′

=

p∑

i,j,k,l=1

1√
2
(1(i,j)=(m,n) + 1(i,j)=(n,m))Jij,kl1(k,l)=(m′,m′)

=
1√
2
(Jmn,m′m′ + Jnm,m′m′)

=
1√
2
γmm′γnm′ .

Finally,

(UTJU)mm,m′m′ =

p∑

i,j,k,l=1

Uij,mmJij,klUkl,m′m′

=

p∑

i,j,k,l=1

1(i,j)=(m,m)Jij,kl1(k,l)=(m′,m′)

= Jmm,m′m′

=
1

2
γ2mm′ .

Lemma 34. Let B = (Bmn,m′n′)m≤n,m′≤n′ ∈ Mp(p+1)/2(R) defined by

Bmn,m′n′ =





2(σmm′σnn′ + σmn′σnm′) if m < n and m′ < n′

2
√
2σmm′σnn′ if either m = n or m′ = n′

2σ2
mm′ if m = n and m′ = n′,

then, B = A−1. Moreover (UBUT )ij,i′j′ = σii′σjj′ +σij′σji′ for all i, j, i
′, j′ ∈ [1 : p].
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Proof. We compute the product A B. First of all, let m < n and m′ < n′. We
have

(A B)mn,m′n′ =
∑

i≤j
Amn,ijBij,m′n′

=
∑

i<j

Amn,ijBij,m′n′ +
∑

i=j

Amn,ijBij,m′n′

=
∑

i<j

(γmiγnj + γmjγni) (σim′σjn′ + σin′σjm′)

+2
∑

i=j

γmiγnjσim′σjn′

= I1 + I2,

with

I1 =
∑

i<j

γmiγnjσim′σjn′ +
∑

i<j

γmjγniσin′σjm′ +
∑

i=j

γmiγnjσim′σjn′ ,

and
I2 =

∑

i<j

γmjγniσim′σjn′ +
∑

i<j

γmiγnjσin′σjm′ +
∑

i=j

γmjγniσim′σjn′ .

We then have

I1 =
∑

i<j

γmiγnjσim′σjn′ +
∑

j<i

γmiγnjσjn′σim′ +
∑

i=j

γimγjnσim′σjn′

=
∑

i,j

γmiγnjσim′σjn′

=
∑

i

γmiσim′

∑

j

γnjσjn′

= 1(m,n)=(m′,n′).

Similarly,

I2 =
∑

i<j

γmjγniσim′σjn′ +
∑

j<i

γmjγniσjn′σim′ +
∑

i=j

γmjγniσim′σjn′

=
∑

i,j

γmjγniσim′σjn′

=
∑

i

γniσim′

∑

j

γmjσjn′

= 1(n,m)=(m′,n′)
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= 0.

Now, if m′ < n′

(A B)mm,m′n′ =
∑

i≤j
Amm,ijBij,m′n′

=
∑

i<j

Amm,ijBij,m′n′ +
∑

i=j

Amm,ijBij,m′n′

=
√
2
∑

i<j

γmiγmj (σim′σjn′ + σin′σjm′)

+
√
2
∑

i=j

γmiγmjσim′σjn′

=
√
2
∑

i,j

γmiγmjσim′σjn′

=
√
2
∑

i

γmiσim′

∑

j

γmjσjn′

=
√
21(m,m)=(m′,n′)

= 0.

If m < n, then

(A B)mn,m′m′ =
∑

i≤j
Amn,ijBij,m′m′

=
∑

i<j

Amn,ijBij,m′m′ +
∑

i=j

Amn,ijBij,m′m′

=
√
2
∑

i<j

(γmiγnj + γmjγni) σim′σjm′

+
√
2
∑

i=j

γmiγnjσim′σjm′

=
√
2
∑

i,j

γmiγnjσim′σjm′

=
√
2
∑

i

γmiσim′

∑

j

γnjσjn′

=
√
21(m,n)=(m′,m′)

= 0.

Finally,

(A B)mm,m′m′ =
∑

i≤j
Amm,ijBij,m′m′
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=
∑

i<j

Amm,ijBij,m′m′ +
∑

i=j

Amm,ijBij,m′m′

= 2
∑

i<j

γmiγmjσim′σjm′

+
∑

i=j

γmiγmjσim′σjm′

=
∑

i,j

γmiγmjσim′σjm′

= 1m=m′ .

We proved that B = A−1. Let us show that (UTBU)ij,i′j′ = σii′σjj′ + σij′σji′ for
all i, j, i′, j′. First of all, assume i 6= j and i′ 6= j′. Assume for example i < j and
i′ < j′. Then we have

(UBUT )ij,i′j′

=
∑

m≤n,m′≤n′

Uij,mnBmn,m′n′Ui′j′,m′n′

=
∑

m≤n,m′≤n′

1√
2
(1(m,n)=(i,j) + 1(m,n)=(j,i))Bmn,m′n′

1√
2
(1(m′,n′)=(i′,j′) + 1(m′,n′)=(j′,i′))

=
1

2
Bij,i′j′

= σii′σjj′ + σij′σji′ .

We apply the same method for i < j and i′ > j′, for i > j and i′ < j′, and for
i > j and i′ > j′. Then, let i = j and i′ 6= j′, for example i′ < j′. We have

(UBUT )ii,i′j′

=
∑

m≤n,m′≤n′

Uii,mnBmn,m′n′Ui′j′,m′n′

=
∑

m≤n,m′≤n′

1(m,n)=(i,i)Bmn,m′n′
1√
2
(1(m′,n′)=(i′,j′) + 1(m′,n′)=(j′,i′))

=
1√
2
Bii,i′j′

= σii′σij′ + σij′σii′ .

The other cases are similar.

We thus have the component of the Cramér-Rao bound:

[
U(UTJU)−1UT

]
ij,i′j′

= σii′σjj′ + σij′σji′ .
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This matrix is equal to E
(
(vec(S)− vec(Σ))(vec(S)− vec(Σ))T

)
for n = 1 and

when the mean µ is known.

Proof of Proposition 33

Proof. An orthonormal basis of Sp(R, B
∗) is { 1√

2
(eij + eji)| i < j, (i, j) ∈ B∗} ∪

{eii| i ≤ p} with the following total order on {(i, j) ∈ [1 : p]2| i ≤ j, (i, j) ∈ B∗}:
we write (i, j) ≤ (i′, j′) if j < j′ or if j = j and i ≤ i′. Thus, we define U as the
matrix which the columns are the vectorizations of the components of this basis of
Sp(R, B

∗). We have Uij,kl =
1√
2
(1(i,j)=(k,l)+1(i,j)=(l,k)), for all k < l with (k, l) ∈ B∗

and Uij,kk = 1(i,j)=(kk).
Thus, U(UTJU)−1UT is the Cramér-Rao bound. As the sample is i.i.d, it

suffices to prove the proposition with n = 1.

Lemma 35. Let A = (Amn,m′n′)(m,n), (m′,n′)∈B∗, m≤n, m′≤n′ defined by

Amn,m′n′ =





1
2
(γmm′γnn′ + γmn′γnm′) if m < n and m′ < n′

1√
2
γmm′γnn′ if either m = n or m′ = n′

1
2
γ2mm′ if m = n and m′ = n′,

Then, A = UTJU .

Proof. The proof is similar to the proof of Lemma 33, except that the values of
m,n,m′ and n′ are more constraint. First of all

Jij,kl =
1

2
Tr
(
Σ−1eie

T
j Σ

−1eke
T
l

)

=
1

2
γilγjk.

Now, if (m,n) ∈ B∗, (m′, n′) ∈ B∗, m < n, m′ < n′,

(UTJU)mn,m′n′ =

p∑

i,j,k,l=1

Uij,mnJij,klUkl,m′n′

=

p∑

i,j,k,l=1

1√
2
(1(i,j)=(m,n) + 1(i,j)=(n,m))Jij,kl

1√
2
(1(k,l)=(m′,n′) + 1(k,l)=(n′,m′))

=
1

2
(Jmn,m′n′ + Jmn,n′m′ + Jnm,m′n′ + Jnm,n′m′)

=
1

2
(γmm′γnn′ + γmn′γnm′).
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If m′ < n′ and (m′, n′) ∈ B∗,

(UTJU)mm,m′n′ =

p∑

i,j,k,l=1

Uij,mmJij,klUkl,m′n′

=

p∑

i,j,k,l=1

1(i,j)=(m,m)Jij,kl
1√
2
(1(k,l)=(m′,n′) + 1(k,l)=(n′,m′))

=
1√
2
(Jmm,m′n′ + Jmm,n′m′)

=
1√
2
γmm′γmn′ .

If m < n and (m,n) ∈ B∗, we have

(UTJU)mn,m′m′ =

p∑

i,j,k,l=1

Uij,mnJij,klUkl,m′m′

=

p∑

i,j,k,l=1

1√
2
(1(i,j)=(m,n) + 1(i,j)=(n,m))Jij,kl1(k,l)=(m′,m′)

=
1√
2
(Jmn,m′m′ + Jnm,m′m′)

=
1√
2
γmm′γnm′ .

Finally,

(UTJU)mm,m′m′ =

p∑

i,j,k,l=1

Uij,mmJij,klUkl,m′m′

=

p∑

i,j,k,l=1

1(i,j)=(m,m)Jij,kl1(k,l)=(m′,m′)

= Jmm,m′m′

=
1

2
γ2mm′ .

Lemma 36. Let B = (Bmn,m′n′)m≤n,m′≤n′, (m,n)∈B∗,(m′,n′)∈B∗ defined by

Bmn,m′n′ =





2(σmm′σnn′ + σmn′σnm′) if m < n and m′ < n′

2
√
2σmm′σnn′ if either m = n or m′ = n′

2σ2
mm′ if m = n and m′ = n′,
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then, B = A−1. Moreover (UBUT )ij,i′j′ = σii′σjj′ + σij′σji′ for all (i, j, i′, j′) ∈ B∗

and (UBUT )ij,i′j′ = 0 for all (i, j, i′, j′) /∈ B∗. Recall that we write (i, j, i′, j′) ∈ B∗

if there exists A ∈ B∗ such that {i, j, i′, j′} ⊂ A.

Proof. We introduce the following notation: if l ∈ B∗
k, let [l]k to be the index of l

in B∗
k.

Step 1: Let us prove that B = A−1.

We compute the product AB. Assume that m,n ∈ B∗
k with m ≤ n and

m′, n′ ∈ B∗
k′ with m

′ ≤ n′ and k 6= k′. We then have

(A B)mn,m′n′ =
∑

(a,b)∈B∗, a≤b
Amn,abBab,m′n′

=
∑

a,b∈B∗
k , a≤b

Amn,abBab,m′n′ +
∑

a,b∈B∗
k′
, a≤b

Amn,abBab,m′n′

=
∑

a,b∈B∗
k , a≤b

Amn,ab0 +
∑

a,b∈B∗
k′
, a≤b

0Bab,m′n′

= 0,

using that Bab,m′n′ = 0 if a, b ∈ B∗
k and m′, n′ ∈ B∗

k′ because Σ is block-diagonal,
and using that Amn,a,b = 0 if m,n ∈ B∗

k and a, b ∈ B∗
k′ because Σ−1 is block-

diagonal. Assume that m,n,m′, n′ ∈ B∗
k with m ≤ n and m′ ≤ n′. We have,

(A B)mn,m′n′ =
∑

(a,b)∈B∗, a≤b
Amn,abBab,m′n′

=
(
AB∗

k
BB∗

k

)
[m]k[n]k,[m′]k[n′]k

= 1([m]k,[n]k)=([m′]k,[n′]k)

= 1(m,n)=(m′,n′),

thanks to Lemma 34 applied to the matrix ΣB∗
k
. We proved that B = A−1.

Step 2.A : We show that (UBUT )ij,i′j′ = σii′σjj′+σij′σji′ for all (i, j, i
′, j′) ∈ B∗.

Assume that (i, j, i′, j′) ∈ B∗. First, assume that i 6= j and i′ 6= j′. Assume for
example that i < j and i′ < j′ (the other cases are similar). We then have

(UBUT )ij,i′j′

=
∑

(m,n)∈B∗,m≤n,
(m′,n′)∈B∗,m′≤n′

Uij,mnBmn,m′n′Ui′j′,m′n′
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=
∑

(m,n)∈B∗,m≤n,
(m′,n′)∈B∗,m′≤n′

1√
2
(1(m,n)=(i,j) + 1(m,n)=(j,i))Bmn,m′n′

1√
2
(1(m′,n′)=(i′,j′) + 1(m′,n′)=(j′,i′))

=
1

2
Bij,i′j′

= σii′σjj′ + σij′σji′ .

Let us take the case where (i, j, i′, j′) ∈ B∗ with either i = j, or i′ = j′. For
example i = j and i′ < j′. We then have

(UTBU)ii,i′j′

=
∑

(m,n)∈B∗,m≤n,
(m′,n′)∈B∗,m′≤n′

Umn,iiBmn,m′n′Um′n′,i′j′

=
∑

(m,n)∈B∗,m≤n,
(m′,n′)∈B∗,m′≤n′

1(m,n)=(i,i)Bmn,m′n′
1√
2
(1(m′,n′)=(i′,j′) + 1(m′,n′)=(j′,i′))

=
1√
2
Bii,i′j′

= σii′σij′ + σij′σii′ .

It is the same for i = j and i′ > j′, then for i 6= j and i′ = j′. We also can prove
the equality similarly when i = i′ and j = j′.

Step 2.B: Let us prove that (UBUT )ij,i′j′ = 0 for all (i, j, i′, j′) /∈ B∗.

Assume that (i, j, i′, j′) /∈ B∗. If (i, j) /∈ B∗, or if (i′, j′) /∈ B∗, we have

(UBUT )ij,i′j′

=
∑

(m,n)∈B∗,m≤n,
(m′,n′)∈B∗,m′≤n′

Uij,mnBmn,m′n′Ui′j′,m′n′

=
∑

(m,n)∈B∗,m≤n,
(m′,n′)∈B∗,m′≤n′

1√
2
(1(m,n)=(i,j) + 1(m,n)=(j,i))Bmn,m′n′

1√
2
(1(m′,n′)=(i′,j′) + 1(m′,n′)=(j′,i′))

= 0,

because if (i, j) /∈ B∗, the term (1(m,n)=(i,j) + 1(m,n)=(j,i)) is equal to 0. Similarly,
if (i′, j′) /∈ B∗, the term (1(m′,n′)=(i′,j′) + 1(m′,n′)=(j′,i′)) is equal to 0.

It remains the case where i, j ∈ B∗
k and i′, j′ ∈ B∗

k′ with k 6= k′. Then,
(UTBU)ij,i′j′ = σii′σjj′ + σij′σji′ = 0.
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To conlude the proof, we remark that, if (i, j, i′, j′) ∈ B∗, then

cov((SB∗)ij, (SB∗)i′j′) = cov(XiXj, Xi′Xj′) = σii′σjj′ + σij′σji′ .

Now, assume that (i, j, i′, j′) /∈ B∗. If (i, j) /∈ B∗ or if (i′, j′) /∈ B∗, then
cov((SB∗)ij, (SB∗)i′j′) = 0 because one of the two terms is zero. Assume that
i, j ∈ B∗

k and i′, j′ ∈ B∗
k′ with k 6= k′. Then

cov((SB∗)ij, (SB∗)i′j′) = cov(XiXj, Xi′Xj′) = σii′σjj′ + σij′σji′ = 0.

Thus, the covariance matrix of vec(SB∗) is equal to the Cramér-Rao bound.

Proof of Proposition 34

Proof. Using the central limit Theorem and Proposion 33, we have

√
n− 1(vec(Σ̂B∗)− vec(Σ))

L−→
n→+∞

N (0, CR).

Then, by Proposition 31, we have

√
n− 1(vec(Σ̂B̂)− vec(Σ))

L−→
n→+∞

N (0, CR),

and by Slutsky,
√
n(vec(SB̂)− vec(Σ))

L−→
n→+∞

N (0, CR).

Proof of Proposition 35

Lemma 37. Under Conditions 1 to 4, for all γ > 1/2

‖SB∗ − Σ‖2 = op

(
log(n)γ√

n

)
,

where ‖.‖2 is the operator norm, and it is equal to λmax(.) on the set of the sym-
metric positive semi-definite matrices.
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Proof.

P

(
‖SB∗ − Σ‖2 >

ε log(n)γ√
n

)

= P

(
∃k ∈ [1 : K], ‖SB∗

k
− ΣB∗

k
‖2 >

ε log(n)γ√
n

)

≤ K max
k∈[1:K]

P

(
‖SB∗

k
− ΣB∗

k
‖2 >

ε log(n)γ√
n

)

≤ K max
k∈[1:K]

P

(
m max

i,j∈B∗
k

|sij − σij| >
ε log(n)γ√

n

)

≤ K max
k∈[1:K]

P

(
max
i,j∈B∗

k

|sij − σ̂ij|+ |σ̂ij − σij| >
ε log(n)γ

m
√
n

)

≤ Km2 max
k∈[1:K]

max
i,j∈B∗

k

P

(
|sij − σ̂ij|+ |σ̂ij − σij| >

ε log(n)γ

m
√
n

)
.

Now, on the one hand,

Km2 max
k∈[1:K]

max
i,j∈B∗

k

P

(
|σ̂ij − σij| >

ε log(n)γ

2m
√
n

)

≤ 2Km2 exp

(
−Cinfn

ε2 log(n)2γ

4m2n

)
−→ 0,

by Bernstein’s inequality. On the other hand,

Km2 max
k∈[1:K]

max
i,j∈B∗

k

P

(
|sij − σ̂ij| >

ε log(n)γ

2m
√
n

)

= Km2 max
k∈[1:K]

max
i,j∈B∗

k

P

(
|σ̂ij| > n

ε log(n)γ

2m
√
n

)
−→ 0,

by Bernstein’s inequality.

Lemma 38. Under Conditions 1 to 5, for all γ > 1
2
,

max
i∈[1:p]

|β̂i − βi| = op

(
log(n)γ√

n

)
.

Proof. We know that β̂ − β ∼ N
(
0, σ2

n[(A
TA)−1]−1,−1

)
. To simplify notation,

let Q := 1
n
ATA. Remark that Q1,1 = 1, Q−1,1 = 1

n

∑n
k=1X

(k) and Q−1,−1 =
1
n

∑n
k=1X

(k)X(k)T . Now, we know that

[Q−1]−1,−1 =
(
Q−1,−1 −Q−1,1Q

−1
1,1Q1,−1

)−1

192



APPENDIX III. PROOFS OF CHAPTER 5

=


 1

n

n∑

k=1

X(k)X(k)T −
[
1

n

n∑

k=1

X(k)

][
1

n

n∑

k=1

X(k)

]T


−1

= S−1.

Thus, β̂ − β ∼ N
(
0, σ

2

n
S−1

)
.

Now, by Lemma 20,

P

(
λmax(S

−1) ≥ 2

(1−√
y)2λinf

)
= o(1).

Let ε > 0 and γ > 1
2
. We have,

P

(
max
i∈[1:p]

|β̂i − βi| >
ε log(n)γ

n
1
2

)

≤ P

(
max
i∈[1:p]

|β̂i − βi| >
ε log(n)γ

n
1
2

, λmax(S
−1) <

2

(1−√
y)2λinf

)
+ o(1)

≤ o(1) + p max
i∈[1:p]

P

(
|β̂i − βi| >

ε log(n)γ

n
1
2

, λmax(S
−1) <

2

(1−√
y)2λinf

)

≤ o(1) + p max
i∈[1:p]

P

(
n

1
2 |β̂i − βi|

σn
√

(S−1)i,i
>

ε log(n)γ

σn
√

(S−1)i,i
, λmax(S

−1) <
2

(1−√
y)2λinf

)

≤ o(1) + p max
i∈[1:p]

P

(
n

1
2 |β̂i − βi|

σn
√

(S−1)i,i
>

(1−√
y)
√
λinfε log(n)

γ

σn
√
2

)

≤ o(1) + p exp
(
−Cinf log(n)

2γ
)

−→
n→+∞

0.

Lemma 39. Under Conditions 1 to 5, for all γ > 1/2,
∣∣∣∣

p

β̂TSB∗ β̂
− p

βTΣβ

∣∣∣∣ = op

(
log(n)γ√

n

)
.

Proof. We have

1

p

∣∣∣β̂TSB∗ β̂ − βTΣβ
∣∣∣

≤ 1

p

∣∣∣β̂TSB∗ β̂ − βTSB∗β
∣∣∣+ 1

p

∣∣βT (SB∗ − Σ)β
∣∣

≤ ‖β̂‖2 + ‖β‖2√
p

‖SB∗‖2
‖β̂ − β‖2√

p
+

‖β‖22
p

‖SB∗ − Σ‖2
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= op

(
log(n)γ√

n

)
,

by Lemmas 38 and 37. Now, with probability which goes to one 1, by Lemmas 20
and 38, we have β̂TSB∗ β̂/p ≥ λinf(1−√

y)2β2
inf/2. Moreover, βTΣβ/p ≥ λinfβ

2
inf ≥

λinf(1−√
y)2β2

inf/2. Thus, with probability which goes to one 1, we have

∣∣∣∣
p

βTSB∗β
− p

βTΣβ

∣∣∣∣ ≤
4

λ2inf(1−
√
y)4β4

inf

∣∣∣∣
βTSB∗β

p
− βTΣβ

p

∣∣∣∣ = op

(
log(n)γ√

n

)
.

We can now prove Proposition 35

Proof. Let η̃i be the estimator of ηi obtained replacing Σ by SB∗ and β by β̂ in
Algorithm 3. For all ε > 0 and γ > 1/2, we have

P

(
p∑

i=1

|η̂i − ηi| >
ε log(n)γ√

n

)

≤ P

(
p∑

i=1

|η̃i − ηi| >
ε log(n)γ√

n

)
+ P(B̂ 6= B∗)

≤ P

(
p max
i∈[1:p]

|η̃i − ηi| >
ε log(n)γ√

n

)
+ P(B̂ 6= B∗).

The term P(B̂ = B∗) goes to 0 from Proposition 20. It remains to prove that

P

(
p max
i∈[1:p]

|η̃i − ηi| >
ε log(n)γ√

n

)
−→ 0. (III.9)

For all k ∈ [1 : K] and all u ⊂ B∗
k, let us write

V k
u := βTB∗

k−u
(
ΣB∗

k−u,B∗
k−u − ΣB∗

k−u,uΣ
−1
u,uΣu,B∗

k−u
)
βB∗

k−u

Ṽ k
u := β̂TB∗

k−u
(
SB∗

k−u,B∗
k−u − SB∗

k−u,uS
−1
u,uSu,B∗

k−u
)
β̂B∗

k−u

V := βTΣβ

Ṽ := β̂TSB∗ β̂

αu :=
V k
u

V

α̃u :=
Ṽ k
u

Ṽ
.
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Let, for all C ⊂ [1 : p], C 6= ∅,

L ((au)u∈C ;C) :=


 1

|C|
∑

u⊂C−i

(
|C| − 1

|u|

)−1

[au+i − au]



i∈C

.

We then have (ηi)i∈B∗
k
= L

(
(αu)u∈B∗

k
;B∗

k

)
et (η̃i)i∈B∗

k
= L

(
(α̃u)u∈B∗

k
;B∗

k

)
.

As L(.;C) is linear, it is Lipschitz continuous from (R2|C|
, ‖.‖∞) to (R|C|, ‖.‖∞),

with constant l|C| (we can show that l|C| = 2). Let l := maxj∈[1:m] lj < +∞ (we
have in fact l = 2). We then have,

p max
i∈[1:p]

|η̃i − ηi| ≤ p l max
k∈[1:K]

max
u⊂B∗

k

|α̃u − αu| .

It suffices to show that

p max
k∈[1:K]

max
u⊂B∗

k

|α̃u − αu| = op

(
log(n)γ√

n

)
.

Now,

p |α̃u − αu| ≤
∣∣∣∣∣
pṼ k

u

Ṽ
− pV k

u

Ṽ

∣∣∣∣∣+
∣∣∣∣
pV k

u

Ṽ
− pV k

u

V

∣∣∣∣

≤ p

Ṽ

∣∣∣Ṽ k
u − V k

u

∣∣∣+ V k
u

∣∣∣∣
p

Ṽ
− p

V

∣∣∣∣ .

The term maxk∈[1:K] maxu⊂B∗
k
V k
u is bounded from Conditions 2 and 5 and∣∣∣ p

Ṽ
− p

V

∣∣∣ = op(log(n)
γ/
√
n) thanks to Lemma 39. The term p

Ṽ
is bounded in

probability using Lemma 39, Conditions 2 and 5. Thus, it suffices to show that

maxk∈[1:K] maxu⊂B∗
k

∣∣∣Ṽ k
u − V k

u

∣∣∣ = op(log(n)
γ/
√
n). We will use that the operator

norm of a sub-matrix is smaller than the operator norm of the whole matrix.
For all k ∈ [1 : K] and u ⊂ B∗

k, we have

∣∣∣Ṽ k
u − V k

u

∣∣∣

≤
∣∣∣β̂TB∗

k−u
(
SB∗

k−u,B∗
k−u − SB∗

k−u,uS
−1
u,uSu,B∗

k−u
)
β̂B∗

k−u

−βTB∗
k−u
(
SB∗

k−u,B∗
k−u − SB∗

k−u,uS
−1
u,uSu,B∗

k−u
)
βB∗

k−u

∣∣∣

+
∣∣∣βTB∗

k−u
(
SB∗

k−u,B∗
k−u − SB∗

k−u,uS
−1
u,uSu,B∗

k−u
)
βB∗

k−u

−βTB∗
k−u
(
ΣB∗

k−u,B∗
k−u − ΣB∗

k−u,uΣ
−1
u,uΣu,B∗

k−u
)
βB∗

k−u

∣∣∣
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≤ ‖β̂B∗
k−u − βTB∗

k−u‖2‖SB∗
k−u,B∗

k−u − SB∗
k−u,uS

−1
u,uSu,B∗

k−u‖2
(
‖β̂B∗

k−u‖2 + ‖βB∗
k−u‖2

)

+mβ2
sup‖SB∗

k−u − ΣB∗
k−u‖2 +mβ2

sup‖SB∗
k−u,uS

−1
u,uSu,B∗

k−u − ΣB∗
k−u,uΣ

−1
u,uΣu,B∗

k−u‖2.

Thus, we obtain a sum a three terms, and we have to prove that each term is
op(log(n)

γ/
√
n). The first term is op(log(n)

γ/
√
n) thanks to Lemmas 20 and 38.

For the second term, ‖SB∗
k−u − ΣB∗

k−u‖2 ≤ ‖SB∗
k
− ΣB∗

k
‖2 so is op(log(n)

γ/
√
n)

from Lemma 37.
Finally, for the third term,

‖SB∗
k−u,uS

−1
u,uSu,B∗

k−u − ΣB∗
k−u,uΣ

−1
u,uΣu,B∗

k−u‖2
≤ ‖SB∗

k−u,uS
−1
u,u

(
Su,B∗

k−u − Σu,B∗
k−u
)
‖2

+‖SB∗
k−u,u

(
S−1
u,u − Σ−1

u,u

)
Σu,B∗

k−u‖2
+‖
(
SB∗

k−u,u − ΣB∗
k−u,u

)
Σ−1
u,uΣu,B∗

k−u‖2
≤ ‖SB∗

k
‖2‖S−1

B∗
k
‖2‖SB∗

k
− ΣB∗

k
‖2 + ‖SB∗

k
‖2‖S−1

B∗
k
− Σ−1

B∗
k
‖2‖ΣB∗

k
‖2 + ‖SB∗

k
− ΣB∗

k
‖2‖Σ−1

B∗
k
‖2‖ΣB∗

k
‖2

≤ ‖S‖2‖S−1‖2‖S − Σ‖2 + ‖S‖2‖S−1 − Σ−1‖2‖Σ‖2 + ‖S − Σ‖2‖Σ−1‖2‖Σ‖2,

which do not depend on k and u. Finally, remark that ‖Σ‖2 and ‖Σ−1‖2 are
bounded from Condition 2, that ‖S‖2 are ‖S−1‖2 bounded in probability from
Lemma 20, that ‖S − Σ‖2 = op(log(n)

γ/
√
n) from Lemma 37 and Proposition 20

and that

‖S−1 − Σ−1‖2 ≤ ‖Σ−1‖2‖S−1‖2‖S − Σ‖2 = op(log(n)
γ/
√
n).

Thus, we proved that

p max
k∈[1:K]

max
u⊂B∗

k

|α̃u − αu| = op(log(n)
γ/
√
n).

Proof of Proposition 36

Lemma 40. Under Conditions 1, 2 and 3, for all penalization coefficient δ ∈]0, 1[
and for all ε > 0,

max
B(α1)≤B≤B∗

‖SB − Σ‖2 = op

(
1

n(δ−ε)/2

)
,

where ‖.‖2 is the operator norm, and it is equal to λmax(.) on the set of the sym-
metric positive semi-definite matrices.
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Proof. Let α1 := δ/2− ε/4.

P

(
max

B(α1)≤B≤B∗
‖SB − Σ‖2 >

ǫ

n(δ−ε)/2

)

= P

(
∃k ∈ [1 : K], max

B(α1)≤B≤B∗
‖(SB)B∗

k
− ΣB∗

k
‖2 >

ǫ

n(δ−ε)/2

)

≤ K max
k∈[1:K]

P

(
max

B(α1)≤B≤B∗
‖(SB)B∗

k
− ΣB∗

k
‖2 >

ǫ

n(δ−ε)/2

)

≤ K max
k∈[1:K]

P

(
m max

B(α1)≤B≤B∗
max
i,j∈B∗

k

|(SB)i,j − σij| >
ǫ

n(δ−ε)/2

)

≤ K max
k∈[1:K]

P

(
m max

i,j∈B∗
k

|sij − σij|+mn−α1 >
ǫ

n(δ−ε)/2

)

≤ K max
k∈[1:K]

P

(
m max

i,j∈B∗
k

|sij − σij| > Cinf(ε, δ, ǫ)n
−(δ−ε)/2

)
,

that goes to 0 following the proof of 37.

Lemma 41. Under Conditions 1, 2, 3 and 5, for all penalization coefficient δ ∈
]0, 1[ and for all ε > 0,

∣∣∣∣
p

β̂TSB∗ β̂
− p

βTΣβ

∣∣∣∣ = op

(
1

n(δ−ε)/2

)
.

Proof. The proof is similar to the proof of Lemma 39.

We now can prove Proposition 36.

Proof. For all B ∈ Pp, we define η̃(B)i as the estimator of ηi obtained replacing

B∗ by B, Σ by SB and β by β̂ in Algorithm 3. We also define η̂i := η̃(Bn−δ/2)i.

P

(
p∑

i=1

|η̂i − ηi| >
ǫ

n−(δ−ε)/2

)

≤ P

(
max

B(α1)≤B≤B∗

p∑

i=1

|η̃(B)i − ηi| >
ǫ

n−(δ−ε)/2

)
+ P({B(α1) ≤ Bn−δ/2 ≤ B∗}c)

≤ P

(
p max
B(α1)≤B≤B∗

max
i∈[1:p]

|η̃(B)i − ηi| >
ǫ

n−(δ−ε)/2

)
+ P({B(α1) ≤ Bn−δ/2 ≤ B∗}c).

By Proposition 26, P({B(α1) ≤ Bn−δ/2 ≤ B∗}c) −→ 0.
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Finally, we prove that

P

(
p max
B(α1)≤B≤B∗

max
i∈[1:p]

|η̃(B)i − ηi| >
ǫ

n−(δ−ε)/2

)
−→ 0,

following the proof of Proposition 35.

Proof of Proposition 37

Proof. Remark that Σ verifies Conditions 1 to 3. Let a > 0. Let Σ̌ := Σ if
∀B < B∗, ‖ΣB − Σ‖max ≥ an−1/4 and Σ̌ = Ip otherwise. Let η̌ and ˇ̂η be defined
as η and η̂ in Proposition 35 but replacing Σ by Σ̌. As Σ̌ verify the Conditions 1
to 3 and the slightly modified Condition 4 given in Proposition 30, conditionally
to Σ̌

p∑

i=1

∣∣ˇ̂ηi − η̌i
∣∣ = op

(
log(n)γ√

n

)
.

Thus, for all ε > 0,

P

(
p∑

i=1

∣∣ˇ̂ηi − η̌i
∣∣ > ε log(n)γ√

n

∣∣∣∣∣ Σ̌
)

−→ 0,

so, by dominated convergence theorem,

p∑

i=1

∣∣ˇ̂ηi − η̌i
∣∣ = op

(
log(n)γ√

n

)
,

unconditionally to Σ̌.
We conclude saying that Σ̌ = Σ with probability which converges to 1 from

Proposition 30, so ˇ̂η = η̂ and η̌ = η with probability which converges to 1.
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Appendix IV

Proofs of Chapter 6

In the chapter, we will write Csup for a generic non-negative finite constant. The
actual value of Csup is of no interest and can change in the same sequence of
equations. Similarly, we will write Cinf for a generic strictly positive constant.
Moreover, for all u ⊂ [1 : p], if Z is a random vector in Rp and g is a function from
Rp to R such that E(g(Z)2) < +∞ and Var(g(Z)) > 0, let Sclu (Z, g) be the closed
Sobol index for the input vector Z and the model g, defined by:

Sclu (Z, g) =
Var(E(g(Z)|Zu))

Var(g(Z))
.

A Proofs of Section A

Proof of Proposition 38
We divide the proof into several lemmas. We assume that the assumptions of

Proposition 38 hold throughout this proof.
Let ε ∈]0, 1[ be such that f is C3 on B(µ, ε) and such that, for all x ∈ B(µ, ε),

we have Df(x) 6= 0. Since µ{n} converges to µ, there exists N ∈ N such that, for
all n ≥ N , µ{n} ∈ B(µ, ε/2). In the following, we assume that n is larger than N .

Lemma 42. For all x ∈ B(µ{n}, ε/2), we have

|R{n}
1 (x)| ≤ C1‖x− µ{n}‖2, |R{n}

2 (x)| ≤ C ′
1‖x− µ{n}‖3

and for all x /∈ B(µ{n}, ε/2),

|R{n}
1 (x)| ≤ C2‖x− µ{n}‖k, |R{n}

2 (x)| ≤ C ′
2‖x− µ{n}‖k,

where C1, C
′
1, C2 and C ′

2 are positive constants that do not depend on n.
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Proof. Using Taylor’s theorem, for all x ∈ B(µ{n}, ε
2
), there exist θ2(n, x), θ3(n, x) ∈

]0, 1[ such that

f(x) = f
{n}
0 + f

{n}
1 (x) +

1

2
D2f(µ{n} + θ2(n, x)(x− µ{n}))(x− µ{n})

= f
{n}
0 + f

{n}
1 (x) + f

{n}
2 (x)

+
1

6
D3f(µ{n} + θ3(n, x)(x− µ{n}))(x− µ{n}).

Let C1 = 1
2
maxx∈B(µ,ε) ‖D2f(x)‖ and C ′

1 = 1
6
maxx∈B(µ,ε) ‖D3f(x)‖, where ‖ · ‖

also means the operator norm of a multilinear form. Thus, for all x ∈ B(µ, ε
2
),

|R{n}
1 (x)| ≤ C1‖x− µ{n}‖2, |R{n}

2 (x)| ≤ C ′
1‖x− µ{n}‖3.

Moreover, f is subpolynomial, so ∃k ≥ 3, and C < +∞ such that, ∀x ∈ Rp,

|f(x)| ≤ C(1 + ‖x‖k).

Hence, taking C ′ = C(2‖µ‖+ 2)k, we have

|f(x)| ≤ C(1 + 2k‖x− µ{n}‖k + 2k‖µ{n}‖k) ≤ C ′(1 + ‖x− µ{n}‖k).

Hence, taking C ′′ := C ′ +maxy∈B(µ,ε) ‖Df(y)‖, we have

|R{n}
1 (x)| ≤ |f(x)|+ max

y∈B(µ,ε)
‖Df(y)‖‖x− µ{n}‖ ≤ C ′′(1 + ‖x− µ{n}‖k).

Now, taking C2 := C ′′ (1 + (2
ε
)k
)
, we have, for all x /∈ B(µ{n}, ε/2),

|R{n}
1 (x)| ≤ C ′′ + C ′′‖x− µ{n}‖k ≤ C2‖x− µ{n}‖k.

Similarly, there exists C ′
2 < +∞ such that

|R{n}
2 (x)| ≤ C ′

2‖x− µ{n}‖k.

Lemma 43. We have

cov(E(f
{n}
1 (X{n})|X{n}

u ), f
{n}
2 (X{n})|X{n}

u )) = 0.

Proof. Let n ∈ N. To simplify notation, let A = X{n}−µ{n}, β ∈ Rp be the vector
of the linear application Df(µ{n}) and Γ ∈ Mp(R) be symmetric the matrix of the
quadratic form 1

2
D2f(µ{n}). Then,

cov(E(f
{n}
1 (X{n})|X{n}

u ),E(f
{n}
2 (X{n})|X{n}

u ))
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= cov(E(βTA)|Au),E(ATΓA|Au))
= E

([
βTuAu + βT−uE(A−u|Au)

] [
ATuΓu,uAu + 2ATuΓu,−uE(A−u|Au) + E(AT−uΓ−u,−uA−u|Au)

])

= E
([
βTuAu + βT−uE(A−u|Au)

]
E(AT−uΓ−u,−uA−u|Au)

)

since all the other terms are linear combinations of expectations of products of
three zero-mean Gaussian variables. Indeed, the coefficients of E(A−u|Au) are
linear combinations of the coefficients of Au. Now,

E
(
βTuAu × E(AT−uΓ−u,−uA−u|Au)

)
= E

(
E(βTuAu × AT−uΓ−u,−uA−u|Au)

)

= E(βTuAu × AT−uΓ−u,−uA−u)

= 0.

Similarly, the term E
(
β−uE(A−u|Au)E(AT−uΓ−u,−uA−u|Au)

)
is equal to 0.

Lemma 44. There exists Csup < +∞ such that, for all u ⊂ [1 : p],

Var(E(
√
a{n}R{n}

1 (X{n})|X{n}
u )) ≤ Csup

a{n}
,

and

∣∣∣cov(E(
√
a{n}f {n}

1 (X{n})|X{n}
u ),E(

√
a{n}R{n}

1 (X{n})|X{n}
u ))

∣∣∣ ≤ Csup

a{n}
.

Proof. Using Lemma 42, we have,

E(|
√
a{n}R{n}

1 (X{n})|2) = E(|
√
a{n}R{n}

1 (X{n})|21‖Xn‖< ε
2
) + E(|

√
a{n}R{n}

1 (X{n})|21‖Xn‖≥ ε
2
)

≤ C2
1

a{n}
E(‖

√
a{n}(X{n} − µ{n})‖4)

+
C2

2

a{n}(k−1)
E(‖

√
a{n}(X{n} − µ{n})‖2k)

≤ Csup

a{n}
,

since a{n}Σ{n} is bounded. Hence,

Var(
√
a{n}R{n}

1 (X{n})) ≤ Csup

a{n}
.

Moreover, for all u ⊂ [1 : p],

0 ≤ Var(E(a{n}R{n}
1 (X{n})|X{n}

u )) ≤ Var(a{n}R{n}
1 (X{n})) ≤ Csup

a{n}
.
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For all u ⊂ [1 : p],

cov(E(
√
a{n}f {n}

1 (X{n})|X{n}
u ),E(

√
a{n}R{n}

1 (X{n})|X{n}
u ))

= cov(E(
√
a{n}f {n}

1 (X{n})|X{n}
u ),E(

√
a{n}f {n}

2 (X{n})|X{n}
u ))

+cov(E(
√
a{n}f {n}

1 (X{n})|X{n}
u ),E(

√
a{n}R{n}

2 (X{n})|X{n}
u ))

= cov(E(
√
a{n}f {n}

1 (X{n})|X{n}
u ),E(

√
a{n}R{n}

2 (X{n})|X{n}
u )),

using Lemma 43. Now, by Cauchy-Schwarz inequality,
∣∣∣cov(E(

√
a{n}f {n}

1 (X{n})|X{n}
u ),E(

√
a{n}R{n}

2 (X{n})|X{n}
u ))

∣∣∣

≤
√
Var(

√
a{n}f {n}

1 (X{n})|X{n}
u )

√
Var(

√
a{n}R{n}

2 (X{n})|X{n}
u )

≤
√
Var(

√
a{n}f {n}

1 (X{n}))

√
Var(

√
a{n}R{n}

2 (X{n})).

Now, by Lemma 42, we have,

E(|
√
a{n}R{n}

2 (X{n})|2)
= E(|

√
a{n}R{n}

2 (X{n})|21‖Xn‖≤ ε
2
) + E(|

√
a{n}R{n}

2 (X{n})|21‖Xn‖≥ ε
2
)

≤ C2
1

a{n}2
E(‖

√
a{n}(X{n} − µ{n})‖6)

+
C2

2

a{n}(k−1)
E(‖

√
a{n}(X{n} − µ{n})‖k×2)

≤ Csup

a{n}2
.

Furthermore,

Var(
√
a{n}f {n}

1 (X{n})) ≤ max
x∈B(µ{n},ε/2)

‖Df(x)‖E
(
‖
√
a{n}(X{n} − µ{n})‖

)

≤ Csup.

Finally,

∣∣∣cov(E(
√
a{n}f {n}

1 (X{n})|X{n}
u ),E(

√
a{n}R{n}

1 (X{n})|X{n}
u ))

∣∣∣ ≤ Csup

a{n}
,

that concludes the proof of Lemma 44.

Lemma 45. For all u ⊂ [1 : p],

Sclu (X
{n}, f) = Sclu (X

{n}, f {n}
1 ) +O

(
1

a{n}

)
.
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Proof. We have

f(X{n}) = f(µ{n}) + f
{n}
1 (X{n}) +R

{n}
1 (X{n}).

For all u ⊂ [1 : p], we have

E(f(X{n})|X{n}
u ) = f(µ{n}) + E(f

{n}
1 (X{n})|X{n}

u ) + E(R
{n}
1 (X{n})|X{n}

u ),

so,

a{n}Var(E(f(X{n})|X{n}
u ))

= Var(E(
√
a{n}f {n}

1 (X{n})|X{n}
u )) + Var(E(

√
a{n}R{n}

1 (X{n})|X{n}
u ))

+2cov(E(
√
a{n}f {n}

1 (X{n})|X{n}
u ),E(

√
a{n}R{n}

1 (X{n})|X{n}
u ))

= Var(E(
√
a{n}f {n}

1 (X{n})|X{n}
u )) +O(

1

a{n}
),

by Lemma 44. Hence, for u = [1 : p], we have

a{n}Var(f(X{n})) = Var(
√
a{n}f {n}

1 (X{n})) +O(
1

a{n}
).

Thus, for all u ⊂ [1 : p],

Sclu (X
{n}, f) =

Var(E(f(X{n})|X{n}
u ))

Var(f(X{n}))

=
a{n}Var(E(f(X{n})|X{n}

u ))

a{n}Var(f(X{n}))

=
Var(E(

√
a{n}f {n}

1 (X{n})|X{n}
u )) +O( 1

a{n} )

Var(
√
a{n}f {n}

1 (X{n})) +O( 1
a{n} )

=
Var(

√
a{n}f {n}

1 (X{n})|X{n}
u )

Var(
√
a{n}f {n}

1 (X{n}))
+O(

1

a{n}
)

= Sclu (X
{n}, f {n}

1 ) +O

(
1

a{n}

)
,

where we used that,

Var(
√
a{n}f {n}

1 (X{n})) = Df(µ{n})(a{n}Σ{n})Df(µ{n})T

≥ λmin(a
{n}Σ{n}) inf

x∈B(µ,ε/2)
‖Df(x)‖2

≥ Cinf .
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Now we have proved the convergence of the closed Sobol indices, we can prove
Proposition 38 easily.

Proof. By Lemma 45 and applying the linearity of the Shapley effects with respect
to the Sobol indices, we have

η(X{n}, f) = η(X{n}, f {n}
1 ) +O(

1

a{n}
).

Proof of Remark 34

Proof. Let X{n} = (X
{n}
1 , X

{n}
2 ) ∼ N (0, 1

a{n} I2) and Y {n} = f(X{n}) = X
{n}
1 +

X
{n}2
2 , we have f

{n}
1 (X{n}) = X

{n}
1 andR

{n}
1 (X{n}) = X

{n}2
2 . Thus, η1(X

{n}, f {n}
1 ) =

1 and η2(X
{n}, f {n}

1 ) = 0. Now, let us compute the Shapley effects η(X{n}, f). We
have

Var(f(X{n})) = Var(X
{n}
1 ) + Var(X

{n}2
2 )

= Var(X
{n}
1 ) + E(X

{n}4
2 )− E(X

{n}2
2 )2

=
1

a{n}
+

3

a{n}2
− 1

a{n}2

=
a{n} + 2

a{n}2
.

Moreover,

Var(E(f(X{n})|X{n}
1 )) = Var(X

{n}
1 +

1

a{n}
) = Var(X

{n}
1 ) =

1

a{n}

and

Var(E(f(X{n})|X{n}
2 )) = Var(X

{n}2
2 ) = E(X

{n}4
2 )− E(X

{n}2
2 )2 =

3− 1

a{n}2
=

2

a{n}2
.

Hence,

η1(X
{n}, f) =

a{n}2

(a{n} + 2)2

(
1

a{n}
+
a{n} + 2

a{n}2
− 2

a{n}2

)
=

a{n}

a{n} + 2
,

and

η2(X
{n}, f) =

2

a{n} + 2
.
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Proof of Proposition 39
As in the proof of Proposition 38, we first prove the convergence for the closed

Sobol indices. To simplify notation, let Γ{n} := a{n}Σ{n}.

Lemma 46. Under the assumptions of Proposition 39, for all u ⊂ [1 : p], we have

Sclu (f
{n}
1 (X{n})) = Sclu (f1(X

∗)) +O(‖µ{n} − µ‖) +O(‖Γ{n} − Σ‖).

Proof. We have

Var(
√
a{n}f {n}

1 (X{n}))− Var(f1(X
∗))

= Df(µ{n})Γ{n}Df(µ{n})T −Df(µ)ΣDf(µ)T

= Df(µ{n})Γ{n} [Df(µ{n})T −Df(µ)T
]
+Df(µ{n})

[
Γ{n} − Σ

]
Df(µ)T

[
Df(µ{n})−Df(µ)

]
ΣDf(µ)T

= O(‖Df(µ{n})−Df(µ)‖) +O(‖Γ{n} − Σ‖)
= O(‖µ{n} − µ‖) +O(‖Γ{n} − Σ‖),

using that Df is Lipschitz continuous on a neighbourhood of µ (thanks to the
continuity of D2f).

Moreover, for all ∅  u  [1 : p], we have

Var(E(
√
a{n}f {n}

1 (X{n})|X{n}
u ))− Var(E(f1(X

∗)|X∗
u))

= Var(
√
a{n}f {n}

1 (X{n}))− E(Var(
√
a{n}f1(X

{n})|X{n}
−u ))− Var(f1(X

∗)) + E(Var(f1(X
∗)|X∗

u))

= Df(µ{n})Γ{n}Df(µ{n})T −Df(µ{n})u(Γ
{n}
u,u − Γ

{n}
u,−uΓ

{n}−1
−u,−uΓ

{n}
−u,u)Df(µ

{n})Tu

−Df(µ)ΣDf(µ)T −Df(µ)u(Σu,u − Σu,−uΣ
−1
−u,−uΣ−u,u)Df(µ)

T
u

= O(‖µ{n} − µ‖) +O(‖Γ{n} − Σ‖),

proceeding as previously and using the fact that the operator norm of a submatrix
is smaller than the operator norm of the whole matrix.

Hence,

Sclu (X
{n}, f {n}

1 ) = Sclu (X
∗, f1) +O(‖µ{n} − µ‖) +O(‖Γ{n} − Σ‖).

Now, we can easily prove Proposition 39.

Proof. By Lemma 46 and applying the linearity of the Shapley effects with respect
to the Sobol indices, we have

η(f
{n}
1 (X{n})) = η(f1(X

∗)) +O(‖µ{n} − µ‖) +O(‖Γ{n} − Σ‖).
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Proof of Proposition 40
Under the assumption of Proposition 40, let ε > 0 be such that f is C3 on

B(µ, ε) and such that, for all x ∈ B(µ, ε), we haveDf(x) 6= 0. Since µ{n} converges
to µ, there exists N ∈ N such that, for all n ≥ N , µ{n} ∈ B(µ, ε/2). In the
following, we assume that n is larger than N .

Lemma 47. For all x ∈ B(µ, ε
2
) and h ∈ (R∗

+)
p such that ‖h‖ ≤ ε

2
, we have

‖D̂hf(x)−Df(x)‖ ≤ 1

6
max
i∈[1:p]

max
y∈B(µ,ε)

|∂3i f(y)|‖h‖2

Proof. Let x ∈ B(µ, ε
2
) and h ∈ (R∗

+)
p such that ‖h‖ ≤ ε

2
. For all i ∈ [1 : p], using

Taylor’s theorem, there exist θ+x,h,i, θ
−
x,h,i ∈]0, 1[ such that

f (x+ eihi)− f (x− eihi)

2hi
= ∂if(x) +

h2i
12

(
∂3i f(x+ θ+x,h,ih) + ∂3i f(x− θ−x,h,ih)

)
.

Hence,

‖D̂hf(x)−Df(x)‖ ≤
p∑

i=1

∣∣∣
[
D̂hf(x)−Df(x)

]
i

∣∣∣

≤ 1

6
max
i∈[1:p]

max
y∈B(µ,ε)

|∂3i f(y)|
p∑

i=1

h2i

=
1

6
max
i∈[1:p]

max
y∈B(µ,ε)

|∂3i f(y)|‖h‖2.

Lemma 48. For all linear functions l1 and l2 from Rp to R, we have

∣∣Var(E(l1(X{n})|X{n}
u )− Var(E(l2(X

{n})|X{n}
u )

∣∣ ≤ Csup

a{n}
‖l1 − l2‖.

Proof. For all u ⊂ [1 : p], let φ
{n}
u : R|u| −→ Rp be defined by

φ{n}
u (xu) =

(
xu

µ
{n}
−u + Γ

{n}
−u,uΓ

{n}−1
u,u (xu − µ

{n}
u )

)

and φ
{n}
[1:p] = idRp .

Let u ⊂ [1 : p]. Then

E(X{n}|X{n}
u ) = φ{n}

u (X{n}
u ).
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Now, for all linear function l : Rp −→ R, we have

E(l(X{n})|X{n}
u ) = l

(
E(X{n}|X{n}

u )
)
= l(φ{n}

u (X{n}
u )),

so, identifying a linear function from Rp to R with its matrix of size 1×p, we have

Var
(
E(l(X{n})|X{n}

u )
)
= lφ{n}

u

Γ
{n}
u,u

a{n}
φ{n}T
u lT .

Hence, for l = l1 and l = l2, one can show that,

∣∣Var(E(l1(X{n})|X{n}
u ))− Var(E(l2(X

{n})|X{n}
u ))

∣∣ ≤ Csup

a{n}
‖l1 − l2‖.

Now, we can prove Proposition 40.

Proof. By Lemmas 47 and 48, we have, for all u ⊂ [1 : p],

Var(E(
√
a{n}f {n}

1 (X{n})|X{n}
u )− Var(E(

√
a{n}f̃ {n}

1,h{n}(X
{n})|X{n}

u ) = O
(
‖h{n}‖2

)
.

Thus,
Sclu (X

{n}, f {n}
1 )− Sclu (X

{n}, f̃ {n}
1,h{n}) = O

(
‖h{n}‖2

)
,

so
η(X{n}, f {n}

1 )− η(X{n}, f̃ {n}
1,h{n}) = O

(
‖h{n}‖2

)
.

Proof of Proposition 41
Under the assumption of Proposition 40, let ε > 0 be such that f is C3 on

B(µ, ε) and such that, for all x ∈ B(µ, ε), we haveDf(x) 6= 0. Since µ{n} converges
to µ, there exists N ∈ N such that, for all n ≥ N , µ{n} ∈ B(µ, ε/2). In the
following, we assume that n is larger than N .

Lemma 49. There exists Csup such that, with probability at least 1−2p2 exp(−CinfN)−
4p exp(−CinfN

2),
∥∥∥
(
A{n}TA{n})−1

A{n}T
∥∥∥ ≤ Csup

√
a{n}√
N

.

Proof.

∥∥∥
(
A{n}TA{n})−1

A{n}T
∥∥∥
2

= λmax

[(
A{n}TA{n})−1

]

=
a{n}

N
λmax

[(
a{n}

N
A{n}TA{n}

)−1
]
.
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Now, by the strong law of large numbers, we have almost surely

a{n}

N
A{n}TA{n}−(a{n}−1)

(
1

µ{n}

)(
1

µ{n}

)T

−→
N→+∞

M
{n}
1 :=

(
1 µ{n}T

µ{n} Γ{n} + µ{n}µ{n}T

)
.

Let M
{n}
2 :=

(
1 µ{n}T

µ{n} λinfIp + µ{n}µ{n}T

)
and M2 :=

(
1 µT

µ λinfIp + µµT

)
, where

λinf > 0 is a lower-bound of the eigenvalues of (Γ{n})n. We can see that

M
{n}
1 ≥M

{n}
2 −→

n→+∞
M2.

Now,
det(M2) = det(1) det

(
[λinfIp + µµT ]− µ1−1µT

)
= λpinf > 0.

Hence, writing λ′inf > 0 the smallest eigenvalue ofM2, we have that the eigenvalues

of M
{n}
1 are lower-bounded by λ′inf/2 for n large enough.

Similarly, letM
{n}
3 :=

(
1 µ{n}T

µ{n} λsupIp + µ{n}µ{n}T

)
andM3 :=

(
1 µT

µ λsupIp + µµT

)
,

where λsup > 0 is an upper-bound of the eigenvalues of (Γ{n})n. Writing λ′sup < +∞
the largest eigenvalue of M3, we have that the eigenvalues of M

{n}
1 are upper-

bounded by 2λ′sup for n large enough.

Now, since the eigenvalues of (M
{n}
1 )n are lower-bounded and upper-bounded,

there exists α > 0 such that, for all n ∈ N (large enough), ∀M ∈ Sp(R),

‖M −M
{n}
1 ‖ ≤ α =⇒ |λmin(M)− λmin(M

{n}
1 )| ≤ λ′inf

4
.

Now, by Bernstein inequality,

P



∥∥∥∥∥∥
a{n}

N
A{n}TA{n} − (a{n} − 1)

(
1

µ{n}

)(
1

µ{n}

)T

−M
{n}
1

∥∥∥∥∥∥
≤ α




≥ 1− 2p2 exp(−CinfN)− 2× 2p exp(−CinfN
2)

≥ 1− Csup exp(−CinfN),

where the term 2p2 exp(−CinfN) bounds the difference of the submatrices of index
[2 : p+1]× [2 : p+1] and the term 2× 2p exp(−CinfN

2) bounds the differences of
the submatrices of index {1} × [2 : p+ 1] and [2 : p+ 1]× {1}.

Hence, with probability at least 1− Csup exp(−CinfN), we have

λmin


a

{n}

N
A{n}TA{n} − (a{n} − 1)

(
1

µ{n}

)(
1

µ{n}

)T

 ≥ λ′inf

4
,
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and so

λmin

(
a{n}

N
A{n}TA{n}

)
≥ λ′inf

4
.

Lemma 50. With probability at least 1− Csup exp(−CinfN), we have

∥∥∥β̂{n} −∇f(µ{n})
∥∥∥ ≤ Csup

1√
a{n}

.

Proof. Let Z{n} ∼ N (0,Γ{n}). Then ‖X{n}−µ{n}‖ ≤ ε
2
with probability P(‖Z{n}‖ ≤

a{n}ε
2

) −→
n→+∞

1. Let Ω
{n}
N := {ω ∈ Ω | ∀j ∈ [1 : N ], ‖X{n}(j)(ω)−µ{n}‖ ≤ ε

2
}. Hence,

P(Ω
{n}
N ) ≥ 1− 2N exp

(
−Cinfa

{n}) −→
n→+∞

1.

On B(µ{n}, ε
2
), we have f = f(µ{n}) + f

{n}
1 + R

{n}
1 . Hence, on Ω

{n}
N , for all

j ∈ [1 : N ],

f(X{n}(j)) = f(µ{n}) + f
{n}
1 (X{n}(j)) +R

{n}
1 (X{n}(j)).

Thus,

β̂{n} =
(
A{n}TA{n})−1

A{n}T
(
f(µ{n}) + f

{n}
1 (X{n}(j)) +R

{n}
1 (X{n}(j))

)

j∈[1:N ]

.

Since f(µ{n}) + f
{n}
1 is a linear function with gradient vector ∇f(µ{n}) and with

value at zero f(µ{n})−Df(µ{n})µ{n}, we have,

(
A{n}TA{n})−1

A{n}T (f(µ{n})+f {n}
1 (X{n}(j)))j∈[1:N ] =

(
f(µ{n})−Df(µ{n})µ{n}

∇f(µ{n})

)
.

Hence, it remains to see if

(
A{n}TA{n})−1

A{n}T (R{n}
1 (X{n}(j)))j∈[1:N ]

is small enough. By Lemma 42, we have on Ω
{n}
N ,

‖(R{n}
1 (X{n}(j)))j∈[1:N ]‖2 =

N∑

j=1

R
{n}
1 (X{n}(j))2

≤ Csup

N∑

j=1

‖X{n}(j) − µ{n}‖4
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≤ Csup

a{n}2

N∑

j=1

‖
√
a{n}(X{n}(j) − µ{n})‖4.

Hence, on Ω
{n}
N ,

‖(R{n}
1 (X{n}(j)))j∈[1:N ]‖ ≤ Csup

√
N

a{n}
.

Thus,
∥∥∥
(
A{n}TA{n})−1

A{n}T (R{n}
1 (X{n}(j)))j∈[1:N ]

∥∥∥

≤
∥∥∥
(
A{n}TA{n})−1

A{n}T
∥∥∥
∥∥∥(R{n}

1 (X{n}(j)))j∈[1:N ]

∥∥∥

≤ Csup
1√
a{n}

,

with probability at least 1− Csup exp(−CinfN).

Now, it is easy to prove Proposition 41.

Proof. By Lemma 48 for l1 = β̂{n}T and l2 = Df(µ{n}), and by Lemma 50 we
have, with probability at least 1− Csup exp(−CinfN),

∣∣∣Var(E(
√
a{n}Df(µ{n})X{n}|X{n}

u ))− Var(E(
√
a{n}β̂{n}TX{n}|X{n}

u ))
∣∣∣

≤ Csup‖Df(µ{n})− β̂{n}T‖
≤ Csup

1√
a{n}

,

where the conditional expectations and the variances are conditional to (X{n}(j))j∈[1:N ].
Thus, with probability at least 1 − Csup exp(−CinfN), there exists Cinf > 0 such

that, for n large enough ‖β̂{n}T‖ ≥ Cinf , thus Var(
√
a{n}β̂{n}TX{n}) is lower-

bounded. Hence, with probability at least 1− Csup exp(−CinfN),
∣∣∣Sclu (X{n}, f {n}

1 )− Sclu (X
{n}, β̂{n}T )

∣∣∣ ≤ Csup
1√
a{n}

,

and so ∥∥∥η(X{n}, f {n}
1 )− η(X{n}, β̂{n}T )

∥∥∥ ≤ Csup
1√
a{n}

.

B Proof of Proposition 42

In this section, we prove Proposition 42 in Subsections B.1 to B.6 and we prove
Corollary 8 in Subsection B.7.
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B.1 Introduction to the proof of Proposition 42

Recall that (U (l))l∈[1:n] is an i.i.d. sample of U with E(U) = µ and Var(U) = Σ
and

X̂{n} =
1

n

n∑

l=1

U (l).

Let X{n} ∼ N (µ, 1
n
Σ). By Proposition 38, we have

η
(
X{n}, f

)
= η

(
X{n}, Df(µ)

)
+O

(
1

a{n}

)
= η (X∗, Df(µ)) +O

(
1

a{n}

)
.

Hence, it remains to prove that
∥∥∥η
(
X̂{n}, f

)
− η

(
X{n}, f

)∥∥∥ −→
n→+∞

0,

that is, writing fn :=
√
n
(
f
(

·√
n
+ µ
)
− f(µ)

)
and X̃{n} :=

√
n(X̂{n} − µ), that

∥∥∥η
(
X̃{n}, fn

)
− η (X∗, fn)

∥∥∥ −→
n→+∞

0.

In Section B.2, we give some lemmas of fn. Then, defining

Eu,n,K(Z) := E
(
E
[
fn(Z)

2
1‖Z‖∞≤K

∣∣Zu
]2)

,

Eu,n(Z) := E
(
E
[
fn(Z)

2
∣∣Zu
]2)

,

we prove in Section B.3 that supn |Eu,n,K(X̃{n})−Eu,n(X̃{n})| converges to 0 when
K → +∞. In particular, for U ∼ N (µ,Σ), the result holds for X̃{n} = X∗.

Hence, for any ε > 0, choosing K such that |Eu,n,K(X̃{n})−Eu,n(X̃
{n})| < ε/3

and |Eu,n,K(X∗)− Eu,n(X
∗)| < ε/3, we show in Section B.4 that

|Eu,n,K(X∗)− Eu,n,K(X̃
{n})| −→

n→+∞
0.

In Section B.5, we conclude the proof that
∣∣∣Var(E(fn(X̃{n})|X̃{n}

u ))− Var(E(fn(X
∗)|X∗

u))
∣∣∣ −→
n→+∞

0.

In Section B.6, we conclude the proof that
∥∥∥η
(
X̃{n}, fn

)
− η (X∗, fn)

∥∥∥ −→
n→+∞

0.

The key of the proof is that the probability density function of X̃{n} converges
uniformly to the one of X∗ by local limit theorem (see [She71] or Theorem 19.1 of
[BR86]).
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B.2 Part 1

Lemma 51. There exists Csup < +∞ such that, for all x ∈ Rp,

|fn(x)| ≤ Csup

(
‖x‖1‖x‖≤√

n +
‖x‖k
√
n
k−1

1‖x‖>√
n)

)
,

where we recall that k ∈ N∗ is such that for all x ∈ Rp, we have |f(x)| ≤ C(1 +
‖x‖k).

Proof. For all x ∈ Rp, we have
∣∣∣∣f
(
x√
n
+ µ

)
− f (µ)

∣∣∣∣ ≤
∣∣∣∣f
(
x√
n
+ µ

)∣∣∣∣+ |f (µ)|

≤ Csup

(
1 +

∥∥∥∥
x√
n
+ µ

∥∥∥∥
k
)

+ |f (µ) |

≤ Csup

(
1 +

∥∥∥∥
x√
n

∥∥∥∥
k
)
.

Thus, for all ‖x‖ ≥ √
n, we have

|fn(x)| ≤ Csup
‖x‖k
√
n
k−1

.

If ‖x‖ ≤ √
n, we have

∣∣∣∣f
(
x√
n
+ µ

)
− f (µ)

∣∣∣∣ ≤ max
‖y‖≤1+‖µ‖

‖Df(y)‖
∥∥∥∥
x√
n
+ µ− µ

∥∥∥∥

≤ Csup

∥∥∥∥
x√
n

∥∥∥∥ ,

and thus,
|fn(x)| ≤ Csup‖x‖.

In particular,

|fn(x)| ≤ Csup(‖x‖+ ‖x‖k), fn(x)
2 ≤ Csup(‖x‖2 + ‖x‖2k)

Lemma 52. For i = 1, 2, we have

E(fn(X̃
{n})2i) ≤ Csup.
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Proof. We have

E(fn(X̃
{n})2i) ≤ Csup

(
E(‖X̃{n}‖2ik) + E(‖X̃{n}‖2i)

)

≤ Csup

(
E(‖X̃{n}‖2ik2ik) + E(‖X̃{n}‖2i2i)

)
.

Now, by Rosenthal inequality [Ros70], we have

E(|X̃j|2ik) =
1

nik
E



(

n∑

l=1

U
(l)
j − µj

)2ik



≤ Csup

nik
max

(
nE([U

(1)
j − µj]

2ik),
[
nE([U

(1)
j − µj]

2)
]ik)

≤ Csup.

Lemma 53. For all v ⊂ [1 : p], v 6= ∅ and for i = 1, 2, we have

sup
n

E
(
fn(X̃

{n})i1
X̃

{n}
v /∈[−K,K]|v|

)
−→

K→+∞
0.

Proof. We have

E
(
fn(X̃

{n})i1
X̃

{n}
v /∈[−K,K]|v|

)

≤
√

E
(
fn(X̃{n})2i

)√
P(X̃

{n}
v /∈ [−K,K]|v|).

By Lemma 52, supn

√
E
(
fn(X̃{n})2i

)
is bounded.

Now, since (X̃
{n}
v )n converges in distribution, it is a tight sequence, hence

sup
n
P
(
X̃{n}
v /∈ [−K,K]|v|

)
≤ sup

n
P(‖X̃{n}

v ‖ ≥ K) −→
K→+∞

0.

Lemma 54. The sequence (fn)n converges pointwise to Df(µ).

Proof. For all x ∈ R,

f

(
x√
n
+ µ

)
− f(µ) = Df (µ)

x√
n
+O

(∥∥∥∥
x√
n

∥∥∥∥
2
)
,

so,

fn(x) = Df (µ) x+O

(‖x‖2√
n

)
.
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B.3 Part 2

We want to prove that, for all u ⊂ [1 : p], u 6= ∅, we have

sup
n

|Eu,n,K(X̃{n})− Eu,n(X̃
{n})| −→

K→+∞
0.

We will prove this result for ∅  u  [1 : p], since it is easier for u = [1 : p] (see
Remark 45).

We have∣∣∣∣∣

∫

R|u|

(∫

R|−u|

fn(x)dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

)2

dP
X̃

{n}
u

(xu)

−
∫

[−K,K]|u|

(∫

[−K,K]|−u|

fn(x)dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

)2

dP
X̃

{n}
u

(xu)

∣∣∣∣∣

≤
∫

([−K,K]|u|)c

(∫

R|−u|

fn(x)dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

)2

dP
X̃

{n}
u

(xu)

+

∫

[−K,K]|u|

∣∣∣∣∣

(∫

R|−u|

fn(x)dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

)2

−
(∫

[−K,K]|−u|

fn(x)dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

)2
∣∣∣∣∣dPX̃{n}

u
(xu).

We have to bound the two summands of the previous upper-bound.
The first term converges to 0 by Lemma 53. Let us bound the second term.

By mean-value inequality with the square function, we have

∫

[−K,K]|u|

∣∣∣∣∣

(∫

R|−u|

fn(x)dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

)2

−
(∫

[−K,K]|−u|

fn(x)dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

)2
∣∣∣∣∣dPX̃{n}

u
(xu)

≤ 2

∫

[−K,K]|u|

(∫

R|−u|

|fn(x)|dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

)

∣∣∣∣
∫

R|−u|

1x−u /∈[−K,K]|−u|fn(x)dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

∣∣∣∣ dPX̃{n}
u

(xu)

≤ 2

∫

[−K,K]|u|

(∫

R|−u|

|fn(x)|dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

)

×
(∫

R|−u|

1x−u /∈[−K,K]|−u| |fn(x)|dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

)
dP

X̃
{n}
u

(xu)
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≤ 2

√
E(E(|fn(X̃{n})| |X̃{n}

u )2)

×
√∫

R|u|

(∫

R|−u|

1x−u /∈[−K,K]|−u| |fn(x)|dPX̃{n}
−u |X̃{n}

u =xu
(x−u)

)2

dP
X̃

{n}
u

(xu).

Now, E(E(|fn(X̃{n})| |X̃{n}
u )2) ≤ E(fn(X̃

{n})2) which is bounded by Lemma 52
and the other term converges to 0 uniformly on n by Lemma 53.

Remark 45. In the case where u = [1 : p], it is much simpler, since

E(fn(X̃
{n})2)− E(fn(X̃

{n})21X̃{n}∈[−K,K]p) = E(fn(X̃
{n})21X̃{n} /∈[−K,K]p),

which converges to 0 uniformly on n when K → +∞ by Lemma 53.

B.4 Part 3

Let K ∈ R∗
+ and u ⊂ [1 : p] such that u 6= ∅. We want to prove that

|Eu,n,K(X∗)− Eu,n,K(X̃
{n})| −→

n→+∞
0.

The case u = [1 : p] is much easier (see Remark 46), hence, assume that ∅  
u  [1 : p]. Since K is fixed, the probability density function fX∗ of X∗ is lower-
bounded by a > 0 on [−K,K]p. Let εn := max∅ u⊂[1:p] supx∈Rp |fX∗(x)−fX̃{n}(x)|.
Using local limit theorem (see Theorem 19.1 of [BR86] or [She71]), εn −→

n→+∞
0. We

assume that n is large enough such that εn ≤ a
2
. Let b < +∞ be the maximum of

fX∗ .
We have

|Eu,n,K(X∗)− Eu,n,K(X̃
{n})|

≤
∫

[−K,K]|u|

∣∣∣∣∣

(∫

[−K,K]|−u|

fn(x)
fX∗(x)

fX∗
u
(xu)

dx−u

)2

−
(∫

[−K,K]|−u|

fn(x)
fX̃{n}(x)

f
X̃

{n}
u

(xu)
dx−u

)2 ∣∣∣∣∣fX∗
u
(xu)dxu

+

∫

[−K,K]|u|

(∫

[−K,K]|−u|

fn(x)
fX̃{n}(x)

f
X̃

{n}
u

(xu)
dx−u

)2

|fX∗
u
(xu)− f

X̃
{n}
u

(xu)|dxu.

Hence, we have to prove the convergence of the two summands in the previous
upper-bound. For the second term, it suffices to remark that

|fX∗
u
(xu)− f

X̃
{n}
u

(xu)| ≤ εn ≤ 2εn
a
f
X̃

{n}
u

(xu).
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Hence, the second term is smaller than 2εn
a
E(fn(X̃

{n})2) that converges to 0. It
remains to prove that the first term converges to 0. By mean-value inequality, we
have

∫

[−K,K]|u|

∣∣∣∣∣

(∫

[−K,K]|−u|

fn(x)
fX∗(x)

fX∗
u
(xu)

dx−u

)2

−
(∫

[−K,K]|−u|

fn(x)
fX̃{n}(x)

f
X̃

{n}
u

(xu)
dx−u

)2 ∣∣∣∣∣fX∗
u
(xu)dxu

≤ 2

∫

[−K,K]|u|

(∫

[−K,K]|−u|

|fn(x)|max

(
fX∗(x)

fX∗
u
(xu)

,
fX̃{n}(x)

f
X̃

{n}
u

(xu)

)
dx−u

)

×
(∫

[−K,K]|−u|

|fn(x)|
∣∣∣∣∣
fX∗(x)

fX∗
u
(xu)

− fX̃{n}(x)

f
X̃

{n}
u

(xu)

∣∣∣∣∣ dx−u
)
fX∗

u
(xu)dxu.

Now,

∣∣∣∣∣
fX∗(x)

fX∗
u
(xu)

− fX̃{n}(x)

f
X̃

{n}
u

(xu)

∣∣∣∣∣ ≤ |fX∗(x)− fX̃{n}(x)|
fX∗

u
(xu)

+ fX̃{n}(x)

∣∣∣∣∣
1

fX∗
u
(xu)

− 1

f
X̃

{n}
u

(xu)

∣∣∣∣∣

≤ |fX∗(x)− fX̃{n}(x)|
fX∗

u
(xu)

+ fX̃{n}(x)
4

a2

∣∣∣fX∗
u
(xu)− f

X̃
{n}
u

(xu)
∣∣∣

≤ εn
fX∗

u
(xu)

+ fX̃{n}(x)
4

a2
εn

≤ εn
fX∗

u
(xu)

+ fX∗(x)
8

a2
εn

≤ εn
a

fX∗(x)

fX∗
u
(xu)

+
8b

a2
εn
fX∗(x)

fX∗
u
(xu)

≤ Csupεn
fX∗(x)

fX∗
u
(xu)

.

Hence, for n large enough such that Csupεn ≤ 1, we have

∫

[−K,K]|u|

∣∣∣∣∣

(∫

[−K,K]|−u|

fn(x)
fX∗(x)

fX∗
u
(xu)

dx−u

)2

−
(∫

[−K,K]|−u|

fn(x)
fX̃{n}(x)

f
X̃

{n}
u

(xu)
dx−u

)2 ∣∣∣∣∣fX∗
u
(xu)dxu

≤ 2

∫

[−K,K]|u|

(∫

[−K,K]|−u|

|fn(x)|2
fX∗(x)

fX∗
u
(xu)

dx−u

)
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×
(∫

[−K,K]|−u|

|fn(x)|Csupεn
fX∗(x)

fX∗
u
(xu)

dx−u

)
fX∗

u
(xu)dxu

≤ CsupεnE(fn(X
∗)2),

that converges to 0.

Remark 46. If u = [1 : p], it suffices to remark that

|fX∗(x)− fX̃{n}(x)| ≤ εn ≤ εn
a
fX∗(x).

Thus,

|Eu,n,K(X∗)− Eu,n,K(X̃
{n})|

≤
∫

[−K,K]p
fn(x)

2|fX∗(x)− fX̃{n}(x)|dx

≤ εn
a
E(fn(X

∗)2)

≤ Csupεn.

B.5 Part 4

Let us prove that
E(fn(X̃

{n}))− E(fn(X
∗)) −→ 0

By lemma 53, we have

sup
n

∣∣∣E(fn(X̃{n})− E(fn(X̃
{n})1X̃{n}∈[−K,K]p)

∣∣∣ −→
K→∞

0

Let ε > 0 and let K such that

sup
n

∣∣∣E(fn(X̃{n})− E(fn(X̃
{n})1X̃{n}∈[−K,K]p)

∣∣∣ < ε

3

and
sup
n

∣∣E(fn(X∗)− E(fn(X
∗)1X∗∈[−K,K]p)

∣∣ < ε

3
.

By local limit theorem, we have
∣∣∣E(fn(X̃{n})1X̃{n}∈[−K,K]p)− E(fn(X

∗)1X∗∈[−K,K]p)
∣∣∣ −→
n→+∞

0.

Thus, for all u ⊂ [1 : p], we have

Var(E(fn(X̃
{n})|X̃{n}

u ))− Var(E(fn(X
∗)|X∗

u)) −→
n→+∞

0.
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B.6 Conclusion

To prove the convergence of the Shapley effects, it suffices to prove the Var(fn(X
∗))

is lower-bounded. Hence, we show that Var(fn(X
∗)) converges to Var(Df(µ)X∗).

Let i = 1, 2 and let ε > 0. By Lemma 53, let K such that

sup
n

E(fn(X
∗)i1X∗ /∈[−K,K]p) ≤

ε

3
, E([Df(µ)X∗]i1X∗ /∈[−K,K]p) ≤

ε

3
.

By Lemmas 51 and 54 and by dominated convergence theorem, we have :

E(fn(X
∗)i1X∗∈[−K,K]p) −→

n→+∞
E([Df(µ)X∗]i1X∗∈[−K,K]p).

Hence, Var(fn(X
∗)) converges to Var(Df(µ)X∗). Thus, for all u ⊂ [1 : p]

Sclu (X̃
{n}, fn)− Su(X

∗, fn) −→
n→+∞

0.

Hence, ∥∥∥η(X̃{n}, fn)− η(X, fn)
∥∥∥ −→
n→+∞

0.

B.7 Proof of Corollary 8

Since X̂{n′}′ a.s−→
n→+∞

µ and Σ̂{n′′}′ a.s−→
n→+∞

Σ, it suffices to prove that, if (x{n})n con-

verges to µ, and (Σ{n})n converges to Σ, we have
∥∥∥η(X̂{n}, f)− η(X∗n, f̃ {n}

1,h{n},x{n})
∥∥∥ −→
n→+∞

0,

where X∗n is a random vector with distribution N (µ,Σ{n}). Let (x{n})n and
(Σ{n})n be such sequences. Recall that

∥∥∥η(X̃{n}, fn)− η(X∗, fn)
∥∥∥ −→
n→+∞

0,

where X∗ ∼ N (0,Σ), that is
∥∥∥η
(
X̂{n}, f

)
− η

(
X{n}, f

)∥∥∥ −→
n→+∞

0,

where X{n} ∼ N (µ, 1
n
Σ). Hence, we have to prove that

∥∥∥η(X{n}, f)− η(X∗n, f̃ {n}
1,h{n},x{n})

∥∥∥ −→
n→+∞

0.

By Propositions 38 and Proposition 39, remark that η(X{n}, f) converges to η(X∗, f1).
Moreover,

η(X∗n, f̃ {n}
1,h{n},x{n}) = η(X∗n + x{n} − µ{n}, f̃ {n}

1,h{n},x{n}) −→
n→+∞

η(X∗, f1),

by Corollary 6, that concludes the proof.

218



Appendix V

Gaussian field on the symmetric
group: prediction and learning

In the framework of the supervised learning of a real function defined on an abstract
space X , the so called Kriging method stands on a real Gaussian field defined on
X . The Euclidean case is well known and has been widely studied. In this work,
we explore the less classical case where X is the non commutative finite group of
permutations. In this framework, we propose and study an harmonic analysis of
the covariance operators that allows us to put into action the full machinery of
Gaussian processes learning. We also consider our framework in the case of partial
rankings.

A Introduction

The problem of ranking a set of items is a fundamental task in today’s data
driven world. Analysing observations which are not quantitative variables but
rankings has been often studied in social sciences. It has also become a popular
problem in statistical learning thanks to the generalization of the use of automatic
recommendation systems. Rankings are labels that model an order over a finite
set EN := {1, . . . , N}. Hence, an observation is a set of preferences between these
N points. It is thus a one to one relation σ acting from EN onto EN . In other
words, σ lies in the finite symmetric group SN of all permutations of EN . More
precisely, assume that we have a finite set X = {x1, · · · , xN} and we have to order
the elements of X. A ranking on X is a statement of the form

xi1 ≻ xi2 ≻ · · · ≻ xiN , (V.1)

where all the ij, j = 1 · · · , N are different. We can associate to this ranking
the permutation σ defined by σ(ik) = k. Reversely, to a permutation σ, we can
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associate the following ranking

xσ−1(1) ≻ xσ−1(2) ≻ · · · ≻ xσ−1(N). (V.2)

We refer to the works of Douglas E. Critchlow (see for example [CFV91, Cri92,
CF93]) for an introduction to rankings, together with various results.

Our aim is to predict outputs corresponding to permutations inputs. For in-
stance, the permutation input can correspond to an ordering of tasks, in applica-
tions. In a workflow management system, there may be a large number of tasks
that may be done in different orders but are all necessary to achieve the goal.
Workflow prediction or optimization problems currently occur in fields such as
grid computing [YBT05], and logistics [Chr16].

Another example of application is given by the maintenance of machines in a
supply line. Machines in a supply line need to be tuned or monitored in order to
optimize the production of a good. The machines can be tuned in different orders,
each corresponding to a permutation and these choices have an impact on the
quality of the production of the goods, measured by a quantitative variable Y , for
instance the amount of defects in the produced goods. Hence, the objective of the
model will thus be to forecast the outcome of a specific order for the maintenance
of the machines in order to optimize the production.

Another interesting case of output corresponding to a permutation input is of
the form maxx∈X f(σ, x), where f is a function both acting on the permutation
σ and on some external variable x. This output corresponds to a worst case for
the performance or the cost given by the permutation σ. Classical examples of
this kind of output are the max distance criterion for Latin Hypercube Designs
[MBC79, SWNW03] and the robust deviation for a tour in the robust traveling
salesman problem [MBMG07]. In Section C.4, we discuss and address the example
of the max distance criterion.

In this work, we will be in the framework of Gaussian processes indexed by SN .
Actually, Gaussian process models rely on the definition of a covariance function
that characterizes the correlations between values of the process at different obser-
vation points. As the notion of similarity between data points is crucial, i.e. close
location inputs are likely to have similar target values, covariance functions (sym-
metric positive definite kernels) are the key ingredient in using Gaussian processes
for prediction. Indeed, the covariance operator contains nearness or similarity in-
formations. In order to obtain a satisfying model one needs to choose a covariance
function (i.e. a symmetric positive definite kernel) that respects the structure of
the index space of the dataset.

A large number of applications gave rise to recent researches on ranking includ-
ing ranking aggregation [KCS17], clustering rankings (see [CGJ11]) or kernels on
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rankings for supervised learning. Constructing kernels over the set of permutations
has been studied following several different ways. In [Kon08], Kondor provides
results about kernels in non-commutative finite groups and constructs diffusion
kernels (which are positive definite) on SN . These diffusion kernels are based on a
discrete notion of neighbourhood. Notice that the kernels considered therein are
quite different from those considered in this work. Furthermore, the diffusion ker-
nels are not in general covariance functions because of their tricky dependency on
permutations. The recent reference [JV17] proves that the Kendall and Mallow’s
kernels are positive definite. Further, [MRW+16] extends this study characteriz-
ing both the feature spaces and the spectral properties associated with these two
kernels. A real data set [Bru12] on rankings is studied in [MRW+16]. The authors
used a kernel regression to predict the age of a participant with his/her order of
preference of six sources of news regarding scientific developments: TV, radio,
newspapers and magazines, scientific magazines, the internet, school/university.

There are applications where not all of the items in (V.1) are ranked. Rather, a
partial ranking is given (see for example the ”sushi” dataset available at
http://www.kamishima.net or movie datasets). The books [Cri12] and [Mar14]
provide metrics on partial rankings and the papers [KB10] and [JV17] provide
kernels on partial rankings and deal with the complexity reduction of their com-
putation.

The goal in this work is threefold: first we define Gaussian processes indexed by
SN by providing a wide class of covariance kernels. We generalize previous results
on the Mallow’s kernel (see [JV17]). Second, we consider the Kriging models (see
for instance [Ste99]) that consist in inferring the values of a Gaussian random field
given observations at a finite set of observation points. Here, the observations
points are permutations. We study the asymptotic properties of the maximum
likelihood estimator of the parameters of the covariance function. We also prove
the asymptotic accuracy of the Kriging prediction under the estimated covariance
parameters. Further, we provide simulations that illustrate the very good perfor-
mances of the proposed kernels. Finally, we provide an application to Gaussian
process based optimization of Latin Hypercube Designs. Last, we show that the
Gaussian process framework may be adapted to the cases of learning with partially
observed rankings. We define a class of covariance kernels on partial rankings, for
which we show how to reduce the computation complexity. In simulations, we
show that our suggested kernels yield more efficient Gaussian process predictions
than the kernels given in [JV17].

The work falls into the following parts. In Section B, we recall some facts on
SN and provide some covariance kernels on this set. Asymptotic results on the
estimation of the covariance function are presented in Section C. Section C also
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contains an application to the optimization of Latin Hypercube Designs. Section
D provides new covariance kernels for partial rankings with a comparison with the
ones given in [JV17] in a numerical experiment. Section E concludes this chapter.
The proofs are all postponed to Section F.

B Covariance model for rankings

Recall that we define SN as the set of all permutations on EN := {1, . . . , N}. An
element σ of SN is a bijection from EN to EN . We aim at constructing kernels,
or covariance functions, on SN . We will base these kernels on the three following
distances on SN (see [Dia88]). For any permutations π and σ of SN ,

• The Kendall’s tau distance is defined by

dτ (π, σ) :=
∑

i,j=1,...,N
i<j

(
1σ(i)>σ(j), π(i)<π(j) + 1σ(i)<σ(j), π(i)>π(j)

)
. (V.3)

This distance counts the number of pairs on which the permutations disagree
in ranking.

• The Hamming distance is defined by

dH(π, σ) :=
N∑

i=1

1π(i) 6=σ(i). (V.4)

• The Spearman’s footrule distance is defined by

dS(π, σ) :=
N∑

i=1

|π(i)− σ(i)|. (V.5)

These three distances are right-invariant. That is, for all π, σ, τ ∈ SN , d(π, σ) =
d(πτ, στ). Other right-invariant distances are discussed in [Dia88].

We aim at defining a Gaussian process indexed by permutations. Notice that,
generally speaking, using the abstract Kolmogorov construction (see for example
[DCD12] Chapter 0), the law of a Gaussian random process (Yx)x∈E indexed by
an abstract set E is entirely characterized by its mean and covariance functions

M : x 7→ E(Yx)

and
K : (x, y) 7→ Cov(Yx, Yy).
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Of course, here the framework is much simpler as SN is finite (|SN | = N !), and
the Gaussian distribution is obviously completely determined by its mean and
covariance matrix. Hence, if we assume that the process is centered, we only have
to build a covariance function on SN . First, we recall the definition of a positive
definite kernel on an abstract space E. A symmetric map K : E × E → R is
called a positive definite kernel if for all n ∈ N and for all (x1, · · · , xn) ∈ En, the
matrix (K(xi, xj))i,j is positive semi-definite. In this work, we say that K is a
strictly positive definite kernel if K is symmetric and, for all n ∈ N and for all
(x1, · · · , xn) ∈ En such that xi 6= xj if i 6= j, the matrix (K(xi, xj))i,j is positive
definite.

These notions are particularly interesting for SN (and any finite set). Indeed,
if K is a strictly positive definite kernel, then for any function f : SN → R, there
exists (aσ)σ∈SN

such that

f =
∑

σ∈SN

aσK(., σ), (V.6)

and K is of course an universal kernel (see [MXZ06]).

Remark 47. Since SN is a finite discrete space, remark that the Reproducible
Kernel Hilbert Space (RKHS) of a kernel K is defined by the set of the functions
of the form (V.6), and the universality of the kernel K is equivalent to the equality
of its RKHS with the set of the functions from SN to R. This is, in turn, equivalent
to the fact that K is strictly positive definite.

We now provide two different parametric families of covariance kernels. The
members of these families have the general form

Kθ1,θ2(σ, σ
′) := θ2 exp (−θ1d(σ, σ′)) , (θ1, θ2 > 0), (V.7)

and

Kθ1,θ2,θ3(σ, σ
′) := θ2 exp

(
−θ1d(σ, σ′)θ3

)
, (θ1, θ2 > 0, θ3 ∈ [0, 1]). (V.8)

Here, d is one of the three distances defined in (V.3), (V.4) and (V.5). More
precisely, for the Kendall’s (resp. Hamming’s and Spearman’s footrule) distance
let Kτ

θ1,θ2(,θ3)
(resp. KH

θ1,θ2(,θ3)
, KS

θ1,θ2(,θ3)
) be the corresponding covariance function.

For concision, sometimes we will write Kθ1,θ2(,θ3) (resp. d) for one of these three
kernels (resp. distances).

We show in the next proposition that Kθ1,θ2 is strictly positive definite.

Proposition 48. For all θ1 > 0 and θ2 > 0, Kτ
θ1,θ2

, KH
θ1,θ2

, KS
θ1,θ2

are strictly
positive definite kernels on SN .
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Remark 48. In [MRW+16], the strict positive definiteness of the Mallow’s kernel,
corresponding to Kτ

θ1,θ2
, is also shown. Our proof of Proposition 48 seems more

direct than the one given in [MRW+16].

We also have a similar result for Kθ1,θ2,θ3 .

Proposition 49. For all θ1 > 0, θ2 ≥ 0 and θ3 ∈ [0, 1], the maps Kτ
θ1,θ2,θ3

, KH
θ1,θ2,θ3

,
KS
θ1,θ2,θ3

are positive definite kernels on SN .

Propositions 48 and 49 enable to define Gaussian processes indexed by permu-
tations.

Remark 49. The authors of [AMR17] define strictly positive definite kernels on
graphs with Euclidean edges with two different metrics: the geodesic metric and the
”resistance metric”. The kernels are obtained by applying completely monotonous
functions to these metrics (distances). They provide different classes of such func-
tions: the power exponential functions (which are considered in our work, see
(V.8)), the Matérn functions (with a smoothness parameter 0 < ν ≤ 1/2), the
generalized Cauchy functions and the Dagum functions. One can show that Propo-
sition 49 remains valid for all these kernels, by remarking as in [AMR17] that
these kernels are based on completely monotonous functions. Some of the proofs
of [AMR17] are based on techniques similar to the proof of Proposition 49, using
Schoenberg’s theorems.

We remark that the finite set of permutations SN is a graph, when two permu-
tations σ1 and σ2 are connected if there exists a transposition π such that σ1 = σ2π.
Hence, it is natural to ask if the results of [AMR17] can imply or extend some of
the results in this work. The answer however appears to be negative. Indeed, the
distances considered in [AMR17] are the geodesic or the ”resistance” distances,
hence the distances in (V.3), (V.4) and (V.5) do not fall into this category.

One could also consider the set of the permutations as a fully connected weighted
graph, where the weight of the edge between σ1 and σ2 is d(σ1, σ2) and where d is
dτ or dH or dS. Nevertheless, also with this graph, the results of [AMR17] do
not apply, since the graphs addressed by this reference have a particular structure
(finite sequential 1-sum of Euclidean cycles and trees).

We finally remark that [AMR17] constructs covariance functions not only on
finite graphs, but between connected vertices. In contrast, the covariance functions
constructed here are defined only on the finite set SN .
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C Gaussian fields on the symmetric group

C.1 Maximum likelihood

Let us consider a Gaussian process Y indexed by σ ∈ SN , with zero mean and
covariance function K∗. In a parametric setting, a classical assumption is that the
covariance function K∗ belongs to some parametric set of the form

{Kθ ; θ ∈ Θ}, (V.9)

where Θ ⊂ Rp is given and for all θ ∈ Θ, Kθ is a covariance function. The
parameter θ is generally called the covariance parameter. In this framework, K∗ =
Kθ∗ for some parameter θ∗ ∈ Θ.

The parameter θ∗ is estimated from noisy observations of the values of the
Gaussian process at several inputs. Namely, to the observation point σi, we as-
sociate the observation Y (σi) + εi, for i = 1, . . . , n, where (εi)i is an indepen-
dent Gaussian white noise. Let us consider a sample of random permutations
Σ = (σ1, σ2, · · · , σn) ∈ SN . Assume that we observe Σ and a random vector
y = (y1, y2, · · · , yn)T defined by, for i ≤ N ,

yi = Y (σi) + εi. (V.10)

Here, Y is a Gaussian process indexed by SN and independent of Σ. We assume
that Y is centered with covariance function Kθ∗1 ,θ

∗
2
(see (V.7) in Section B) and

that (εi)i≤n ∼ N (0, θ∗3In). Y is the unknown process to predict and ε is an additive
white noise. Notice that θ3 denotes here the variance of the nugget effect while it
is a power in Section B (see (V.8)). We keep the same name in order to use the
compact notation θ for the parameter of the model. The Gaussian process Y is
stationary in the sense that for all σ1, · · · , σn ∈ SN and for all τ ∈ SN , the finite-
dimensional distribution of Y at σ1, · · · , σn is the same as the finite-dimensional
distribution at σ1τ, · · · , σnτ .

Several techniques have been proposed for constructing an estimator
θ̂ = θ̂(σ1, y1, · · · , σn, yn) of θ∗ := (θ∗1, θ

∗
2, θ

∗
3): maximum likelihood estimation

[Whi82], restricted maximum likelihood [CL93], leave-one-out estimation [Cre92,
Bac13], leave-one-out log probability [SK01]... Here, we shall focus on the max-
imum likelihood method. It is widely used in practice and has received a lot
of theoretical attention. Assume that Θ ⊂ ∏3

i=1[θi,min, θi,max] for some given
0 < θi,min ≤ θi,max < ∞ (i = 1, 2, 3). The maximum likelihood estimator is
defined as

θ̂ML = θ̂n ∈ argmin
θ∈Θ

Lθ (V.11)

with

Lθ :=
1

n
ln(detRθ) +

1

n
yTR−1

θ y, (V.12)
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where Rθ = [Kθ1,θ2(σi, σj) + θ31i=j]1≤i,j≤n is invertible for θ ∈ Θ since θ3 > 0.

C.2 Asymptotic results

When considering the asymptotic behaviour of the maximum likelihood estima-
tor, two different frameworks can be studied: fixed domain and increasing domain
asymptotics [Ste99]. Under increasing-domain asymptotics, as n → ∞, the ob-
servation points σ1, · · · , σn are such that mini 6=j d(σi, σj) is lower bounded and
d(σi, σj) becomes large with |i− j|, (thus we can not keep N fixed as n → +∞).
Under fixed-domain asymptotics, the sequence (or triangular array) of observation
points (σ1, · · · , σn, · · · ) is dense in a fixed bounded subset. For a Gaussian field on
Rd, under increasing-domain asymptotics, the true covariance parameter θ∗ can be
estimated consistently by maximum likelihood. Furthermore, the maximum likeli-
hood estimator is asymptotically normal [MM84, CL93, CL96, Bac14]. Moreover,

prediction performed using the estimated covariance parameter θ̂n is asymptoti-
cally as good as the one computed with θ∗ as pointed out in [Bac14]. Finally, note
that in the symmetric group, the fixed-domain framework can not be considered
(contrary to the input space Rd) since SN is a finite space.

We will consider hereafter the increasing-domain framework. We thus consider
a number of observations n that goes to infinity. Hence, the size N of the per-
mutations can not be fixed, as pointed out above. We thus let the size of the
permutations be a function of n, that we write Nn, with Nn → ∞ as n → ∞.
To summarize, we consider a sequence of Gaussian processes Yn on SNn , with

Nn −→
n→+∞

+∞ and where we consider a triangular array (σ
(n)
i )i≤n ⊂ SNn of ob-

servation points. However, for the sake of simplicity, we only write Y and (σi)i≤n
and the dependency on n is implicit. We observe values of the Gaussian process
on the permutations Σ = (σ1, · · · , σn), that are assumed to fulfill the following
assumptions:

Condition 1: For d = dτ or d = dH or d = dS, there exists β > 0 such that
∀i, j, d(σi, σj) ≥ |i− j|β.

Condition 2: For d = dτ or d = dH or d = dS, there exists c > 0 such that
∀i, d(σi, σi+1) ≤ c.

Here, we recall that dτ , dH and dS are defined in Section B. Notice that β and
c are assumed to be independent on n.

These conditions are natural under increasing-domain asymptotics. Indeed,
Condition 1 provides asymptotic independence for pairs of observations with asymp-
totically distant indices. It allows to show that the variance of Lθ and of its gradient
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converges to 0. Condition 2 ensures the asymptotic discrimination of the covari-
ance parameters (see Lemma 58 in Section F). These conditions can be ensured
with particular choices of sampling schemes for (σ1, · · · , σn) (using the distances
previously discussed).

As an example consider the following setting. We fix k ∈ N. For n ∈ N, i ∈
[1 : n], we choose σ

(n)
i = σi = τici ∈ Sk+n (we have Nn = k + n) with τi ∈

Sk × id[k+1:n+k] := {σ ∈ Sn+k| σ|[k+1:n+k] = id} a random permutation such that
(τi)i are independent (we do not make further assumptions on the law of τi). Let
ci = (i + k i + k − 1 · · · 1) the cycle defined by ci(1) = i + k, ci(j) = j − 1
if 1 < j ≤ i + k and ci(j) = j if j > i + k. Then, σi is a permutation such that
σi(1) = i+ k, σi(j) is a random variable in [2 : k] if 1 < j ≤ k+ 1, σi(j) = j − 1 if
k+1 < j ≤ i+ k and σi(j) = j if j > i+ k. A straightforward computation shows
that the Conditions 1 and 2 are satisfied with β = 1 and c = 1 + k(k − 1)/2 for
the Kendall’s tau distance, c = 2+ k for the Hamming distance, c = 2+ k2 for the
Spearman’s footrule distance. Indeed, the three distances in Sk are upper-bounded
by k(k − 1)/2, k and k2 respectively.

The following theorems give both the consistency and the asymptotic normality
of the estimator when the number of observations increases.

Theorem 7. Let θ̂ML be defined as in (V.11), where the distance d used to define
the set {Kθ ; θ ∈ Θ} is dτ , dH or dS. Assume that Conditions 1 and 2 hold with
the same choice of the distance d. Then,

θ̂ML
P−→

n→+∞
θ∗. (V.13)

Theorem 8. Under the assumptions of Theorem 7, let MML be the 3× 3 matrix
defined by

(MML)i,j =
1

2n
Tr

(
R−1
θ∗
∂Rθ∗

∂θi
R−1
θ∗
∂Rθ∗

∂θj

)
. (V.14)

Then √
nM

1
2
ML

(
θ̂ML − θ∗

)
L−→

n→+∞
N (0, I3). (V.15)

Furthermore,

0 < lim inf
n→∞

λmin(MML) ≤ lim sup
n→∞

λmax(MML) < +∞, (V.16)

where λmin(MML) (resp. λmax(MML)) is the smallest (resp. largest) eigenvalue of
MML.

Given the maximum likelihood estimator θ̂ML, the value Y (σn), for any input
σn ∈ SNn , can be forecasted by plugging the estimated parameter in the conditional
expectation expression for Gaussian processes. Hence Y (σn) is predicted by

Ŷθ̂ML
(σn) = rT

θ̂ML
(σn)R

−1

θ̂ML
y (V.17)
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with

rθ̂ML
(σn) =



Kθ̂ML

(σn, σ1)
...

Kθ̂ML
(σn, σn)


 .

We point out that Ŷθ̂ML
(σn) is the conditional expectation of Y (σn) given y1, · · · , yn,

when assuming that Y is a centered Gaussian process with covariance function
Kθ̂ML

.
The following theorem shows that the forecast with the estimated parameter

behaves asymptotically as if the true covariance parameter were known.

Theorem 9. Under the assumptions of Theorem 7, for any fixed sequence (σn)n∈N,
with σn ∈ SNn for n ∈ N, we have

∣∣∣Ŷθ̂ML
(σn)− Ŷθ∗(σn)

∣∣∣ P−→
n→+∞

0. (V.18)

Remark 50. Theorem 9 does not imply that

max
σ∈SNn

∣∣∣Ŷθ̂ML
(σ)− Ŷθ∗(σ)

∣∣∣ P−→
n→+∞

0. (V.19)

Indeed, letting σn ∈ argmax
σ∈SNn

∣∣∣Ŷθ̂ML
(σ)− Ŷθ∗(σ)

∣∣∣ , (V.19) is equivalent to

∣∣∣Ŷθ̂ML
(σn)− Ŷθ∗(σn)

∣∣∣ P−→
n→+∞

0,

but where σn is random. Here, Theorem 9 does not imply (V.19) as it holds for
deterministic sequences (σn)n∈N. It would be interesting, in future work, to extend
Theorem 9 to show (V.19).

The proofs of Theorems 7, 8 and 9 are given in Section F (Sections F.2.ii),
F.2.iii) and F.2.iv) respectively). They are based on lemmas stated and proved in
Section F.2.i). In [Bac14] and [BGLV17], similar results for maximum likelihood
are given for Gaussian fields indexed on Rd and on the set of all probability mea-
sures on R (see also [BSG+19]). At the beginning of Section F.2, we also discuss
the similarities and differences between the proofs of Theorems 7, 8 and 9 and
these given in [Bac14] and [BGLV17].

C.3 Numerical experiments

As an illustration of Theorem 7, we provide a numerical illustration showing that
the maximum likelihood is consistent. We generated the observations as discussed
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Figure V.1: Monte Carlo estimates of P(‖θ̂n − θ∗‖ > 0.5) for different values of n,
the number of observations, with θ∗ = (0.1, 0.8, 0.3) and Kendall’s tau distance,
the Hamming distance and the Spearman’s footrule distance from left to right.

in Section C with k = 3. We recall thatNn = k+n and σi = τi(i+k i+k−1 · · · 1) ∈
Sk+n where τi ∈ Sk × id[k+1:k+n] is a random permutation.

For each value of n, we estimate the probability P(‖θ̂n−θ∗‖ > ε) using a Monte-
Carlo method and a sample of 1000 values of 1‖θ̂n−θ∗‖>ε. Figure V.1 depicts these

estimates for ε = 0.5, θ∗ = (0.1, 0.8, 0.3) and Θ = [0.02, 2]× [0.3, 2]× [0.1, 1].

In Figure V.2, we display the density of the coordinates of the maximum likeli-
hood estimator for different values of n ranging from 20, 60 to 150. These densities
have been estimated with a sample of 1000 values of the maximum likelihood es-
timator. We observe that the densities can be far from the true parameter for
n = 20 or n = 60 but are quite close to it for n = 150. Further, we see that for
n = 150, the Kendall’s tau distance seems to give better estimates for θ∗3. However,
the computation time of the distance matrix is much longer with the Kendall’s tau
distance than with the other distances.

In Figure V.3, for a given σn, we display estimates of the probability that the
deviation between the prediction of Y (σn) given in (V.17) with the parameter θ̂n
and the prediction of Y (σn) with the parameter θ∗ exceeds 0.3. Indeed, Theorem
9 ensures us that this probability converges to 0 as n→ +∞.

C.4 Application to the optimization of Latin Hypercube
Designs

We consider here an application of Proposition 49 to find an optimal Latin Hyper-
cube Design (LHD). A LHD is a design of experiments (Xj)j≤N ∈ [0, 1]d where,
for each component i ∈ [1 : d], the projections of X1, ..., XN on the component i
are equispaced in [0, 1] (see [MBC79]). We will thus consider that each component
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Figure V.3: Monte Carlo estimates of P
(∣∣∣Ŷθ̂n(σn)− Ŷθ∗(σn)

∣∣∣ > 0.3
)
for different

values of n, the number of observations, with θ∗ = (0.1, 0.8, 0.3), σn = (1 4 6) ∈
Sn+3, and the Kendall’s tau distance, the Hamming distance and the Spearman’s
footrule distance from left to right.

of one Xj is equal to k/(N − 1) for some k ∈ [0 : N − 1]. We also remark that
we can always permute the variables so that the first component of Xj is equal to
(j − 1)/(N − 1). So, for each LHD (Xj)j≤N , there exist σ2, ..., σd ∈ SN such that
for all j ∈ [1 : N ], we have

Xj =

(
j − 1

N − 1
,
σ2(j)− 1

N − 1
, · · · , σd(j)− 1

N − 1

)
.

Hence, there is a bijection between the set of LHD with N points and the set Sd−1
N .

Now, if (Xj)j≤N is a LHD, we can define its measure of space filling quality as

f((Xj)j≤N) = sup
x∈[0,1]d

min
j∈[1:N ]

‖x−Xj‖,

that is the largest distance of a point of [0, 1]d to (Xj)j≤N . We remark that LHDs
minimizing f are called minimax [SWNW03]. Our aim is to find a minimax LHD
(X∗

j )j≤N . However, given a LHD (Xj)j≤N , its quality f((Xj)j≤N) is not an obvious
quantity and its computation is expensive.

To estimate this quantity, we suggest to generate Ntot random points (xl)l≤Ntot

uniformly on [0, 1]d, to compute their distance to the LHD and to take the max-
imum value. This estimation is costly (because of the large number Ntot) and
noisy (because of the randomness of the points (xl)l≤Ntot). Thus, we suggest to
use a Gaussian process model on f and to apply the Expected Improvement (EI)
strategy [JSW98]. Nevertheless, remark that f is a positive function, whereas
a Gaussian process realization can take negative values. In this case, different
options are possible: firstly, we can ignore the information of the inequality con-
straint; secondly, we can use Gaussian process under inequality constraints (see
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[BLLLo19]); thirdly, we can use a transformation of the function to remove the
inequality constraint. We choose here the third strategy and we model log(f)
by a Gaussian process realization. We remark that log(f) can take positive and
negative values.

We thus assume that the unknown function log(f) to minimize is a realization
of a Gaussian process. We have to find a positive definite kernel on Sd−1

N . Thanks
to Proposition 49, we have three positive definite kernels on SN , thus on Sd−1

N

(taking the tensor product of these kernels). Thus, we apply the EI strategy
with these three kernels to find the best LHD with Nmax calls to the function f .
The Nmax/2 first LHDs are generated uniformly on Sd−1

N and the other ones are
generated sequentially by following the EI strategy.

More precisely, for i ∈ [Nmax/2 : Nmax − 1], let us explain how to choose the

i + 1-th observation, when we have observed the vectors (σ
(k)
j )j∈[2:d],k∈[1:i] and the

associated observations
[
log
(
f
(
(σ

(k)
j )j∈[2:d]

))]
k∈[1:i]

(we remark that f can be de-

fined equivalently as a function f(σ2, . . . , σd) of d−2 permutations or as a function
f((Xj)j≤N) of a LHD). We model log(f) by a realization of a Gaussian process Z,

with a conditional mean written Ẑi(σ2, · · · , σd) and a conditional variance written
ŝ2i (σ2, · · · , σd), given

{Z((σ(k)
j )j=2,...,d) = log(f((σ

(k)
j )j=2,...,d))}k=1,...,i. (V.20)

Then, we let
(σ

(i+1)
2 , · · · , σ(i+1)

d ) ∈ argmax
σ2,··· ,σd∈SN

EI(σ2, · · · , σd),

where
EI(σ2, · · · , σd) = Ei (max (Mi − Z(σ2, · · · , σd), 0)) ,

whereMi = mink∈[1:i] log(f(σ
(k)
2 , · · · , σ(k)

d )), and Ei is the expectation conditionally
to the observations (V.20). We have an explicit expression of EI,

EI = (Mi − Ẑi)Φ

(
Mi − Ẑi

ŝi

)
+ ŝiφ

(
Mi − Ẑi

ŝi

)
,

where φ and Φ are the standard normal density and distribution functions. To
choose (σ

(i+1)
2 , · · · , σ(i+1)

d ), we thus solve an optimization problem for EI, which
has a very small cost compared to evaluating f , since the computation of EI is
instantaneous. We thus choose the set of permutations that maximizes EI over
2000 sets of uniformly distributed permutations.

We refer to [JSW98] for more details on EI. The parameters of the covariance
functions are estimated by maximum likelihood at each step.
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Figure V.4: Minimal quality of LHD found by the five methods.

We run an experiment where we compare the performances of the 5 following
methods:

• Random sampling, to generate Nmax LHDs of the form {(X(i)
j )j≤N ; i ≤

Nmax} by generating σ2, ..., σd uniformly and independently;

• Simulated annealing, choosing that two LHDs (σj)2≤j≤d and (σ′
j)2≤j≤d are

neighbours if there exist transpositions τ2, ..., τd such that for all j ∈ [2 : d],
we have σ′

j = σjτj;

• EI with Kendall distance;

• EI with Hamming distance;

• EI with Spearman distance.

For each method, the performance indicator is mini=1,...,Nmax f((X
(i)
j )j≤N). Here,

we take d = 3, N = 15, Nmax = 200 and Ntot = 27× 106.
We can see in Figure V.4 that the best LHDs are found by EI, particularly with

the Spearman distance. The simulated annealing is slightly better than random
sampling.

We display in Figure V.5 the distributions of the qualities {f((X(i)
j )j≤N); i ≤

Nmax} for the five methods. We can notice that the simulated annealing does not
explore the set of all the LHDs and does not find the best minimum. EI performs
minimisation and exploration to find better minima. We can then provide the best
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but the elements of Xj cannot be ordered. Given a partial ranking R, we consider
the following subset of SN

ER := {σ ∈ SN : σ(i1) < σ(i2) < · · · < σ(im)

for any choice of (xi1 , · · · , xim) ∈ X1 × · · · ×Xm } . (V.22)

In the statistical literature, there is a natural way to extend a positive definite
kernel K on SN to the set of partial rankings (see [KB10], [JV17]). To do so, one
considers for R and R′ two partial rankings the following averaged kernel

K(R,R′) :=
1

|ER||ER′ |
∑

σ∈ER

∑

σ′∈ER′

K(σ, σ′). (V.23)

Here, |ER| denotes the cardinal of the set ER. Notice that, if K is a positive
definite kernel on permutations, then K is also a positive definite kernel [Hau99].
Indeed, if R1, · · · , Rn are partial rankings and if (a1, · · · , an) 6= 0, then

n∑

i,j=1

aiajK(Ri, Rj) =
∑

σ,σ′∈SN

bσbσ′K(σ, σ′), (V.24)

where we set
bσ :=

∑

i, σ∈Ri

ai
|ERi

| . (V.25)

Observe that the computation of K is very costly. Indeed, we have to sum over
|ER||ER′ | permutations. Several works aim to reduce the computation cost of this
kernel (see [KB10, LM08, LRGG19]). However, its efficient computation remains
an issue.

In the following, we provide another way to extend the kernels Kθ1,θ2,θ3 to
partial rankings. We will provide computational simplifications for this extension.
First, define the measure of dissimilarity davg on partial rankings as the mean of
distances d(σ, σ′) (σ ∈ ER, σ

′ ∈ ER′). That is

davg(R,R
′) :=

1

|ER||ER′ |
∑

σ∈ER

∑

σ∈ER′

d(σ, σ′). (V.26)

Since davg(R,R) 6= 0 in general, we need to define dpartial as follows

dpartial(R,R
′) := davg(R,R

′)− 1

2
davg(R,R)−

1

2
davg(R

′, R′). (V.27)

Proposition 50. d
1
2

partial
is a pseudometric on partial rankings (i.e. it satisfies

the positivity, the symmetry, the triangular inequality and is equal to 0 on the
diagonal {(R,R), R is a partial ranking}).
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We remark that other metrics on partial rankings are defined in [Cri12], in
particular the Hausdorff metrics and the fixed vector metrics (based on the group
representation of SN). These two metrics are different from the one defined in
(V.27). Our suggested metric dpartial will enable us to define positive definite

kernels in Proposition 51. In future work, it would be interesting to study the
construction of positive definite kernels based on the Hausdorff and fixed vector
metrics.

We further define

Kθ1,θ2,θ3(R,R
′) := θ2 exp(−θ1dpartial(R,R′)θ3). (V.28)

The next proposition warrants that this last function is in fact a covariance kernel,
which will later enable to define Gaussian processes on partial rankings.

Proposition 51. Kθ1,θ2,θ3 is a positive definite kernel for the Kendall’s tau dis-
tance, the Hamming distance and the Spearman’s footrule distance.

D.2 Kernel computation in partial ranking

At a first glance, the computation of the kernel Kθ1,θ2,θ3(R,R
′) on partial rankings

may still appear very costly due to the evaluation of dpartial. Indeed, we have

to sum |ER||ER′ | elements for davg(R,R
′), |ER|2 elements for davg(R,R) and

|ER′ |2 elements for davg(R
′, R′). However, this computation problem can be quite

simplified. As we will show in this subsection, the mean of the distances is much
easier to compute than the mean of exponential of distances. We write dτ,avg
(resp. dH,avg and dS,avg) for the average distance in (V.26) when the distance on
the permutations is dτ (resp. dH and dS).
To begin with, let us consider the case of top-k partial rankings. A top-k partial
ranking (or a top-k list) is a partial ranking of the form

xi1 ≻ xi2 ≻ · · · ≻ xik ≻ Xrest, (V.29)

where Xrest := X \ {xi1 , · · · , xik}. It can be seen as the ”highest rankings”. In
order to alleviate the notations, let just write I = (i1, · · · , ik) for this top-k partial
ranking. The following proposition shows that the computation cost to evaluate
davg (and so the kernel values) might be reduced when the partial rankings are
in fact top-k partial rankings. Before stating this proposition let us define some
more mathematical objects. Let I := (i1, · · · , ik) and I ′ := (i′1, · · · , i′k) be two
top-k partial rankings. Let

{j1, · · · , jp} := {i1, · · · , ik} ∩ {i′1, · · · , i′k}
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where j1 < j2 < · · · < jp and p is an integer no larger than k. Let, for l = 1, · · · p,
cjl (resp. c

′
jl
) denotes the rank of jl in I (resp. in I ′). Further, let r := k − p and

define Ĩ (resp. Ĩ ′) as the complementary set of {j1, · · · , jp} in {i1, · · · , ik} (resp.
in {i′1, · · · , i′k}). Writing these two sets in ascending order, we may finally define
for j = 1, · · · , r, uj (resp. u′j) as the rank in I (resp I ′) of the j-th element of Ĩ

(resp. Ĩ ′).

Example 6. Assume that n = 7, I = (3, 2, 1, 4, 5) and I ′ = (3, 5, 1, 6, 2). We
have (j1, j2, j3, j4) = (1, 2, 3, 5) (the items ranked by I and I ′, in increasing order).
Thus, cj1 = 3, cj2 = 2, cj3 = 1, cj4 = 5 and c′j1 = 3, c′j2 = 5, c′j3 = 1, c′j4 = 2.
Further, u1 = 4 and u′1 = 4.

Proposition 52. Let I and I ′ be two top k-partial rankings. Set N ′ := N − k− 1
and m := N − |I ∪ I ′|. Then,

dτ,avg(I, I
′) =

∑

1≤l<l′≤p
1(cjl<cjl′

,c′jl
>c′jl′

) or (cjl>cjl′
,c′jl

<c′jl′
) + r(2k + 1− r)

−
r∑

j=1

(uj + u′j) + r2 +

(
N − k

2

)
− 1

2

(
m

2

)
,

dH,avg(I, I
′) =

p∑

l=1

1cjl 6=c′jl
+m

N − k − 1

N − k
+ 2r,

dS,avg(I, I
′) =

p∑

l=1

|cjl − c′jl |+ r(N + k + 1)−
r∑

j=1

(uj + u′j)

+mN ′ − mN ′(2N ′ + 1)

3(N ′ + 1)
.

Notice that the sequences (cjl), (c
′
jl
) and (uj), (u

′
j) are easily computable and

so davg(I, I
′) too. Let us discuss an easy example to handle the computation of

the previous sequences.

Example 7. Assume that n = 7, I = (3, 2, 1, 4, 5) and I ′ = (3, 5, 1, 6, 2). Proposi-
tion 52 leads to

dτ,avg(I, I
′) = 6, dS,avg(I, I

′) = 4.5, dS,avg(I, I
′) = 11.5.

To compute the pseudometric dpartial defined in (V.27), we also need to compute

dτ,avg on the diagonal {(I, I)| I is a top-k partial ranking}. The following corollary
gives these computations.
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Corollary 9. Let I be a top-k partial ranking. Then,

dτ,avg(I, I) =
1

2

(
N − k

2

)
,

dH,avg(I, I) = N − k − 1,

dS,avg(I, I) = (N − k)(N − k − 1) +
(N − k − 1)(2N − 2k − 1)

3
.

Remark 51. Similar results as Proposition 52 are stated in Sections III.B and
III.C of [Cri12] for the Hausdorff metrics and the fixed vector metrics respectively.

In the case of the Hamming distance, we may step ahead and provide a simpler
computational formula for the average distance between two partial rankings when-
ever their associated partitions share the same number of members (see Proposition
53 below). More precisely let R1 and R2 be two partial rankings such that

Ri = X i
1 ≻ · · · ≻ X i

k, i = 1, 2, (V.30)

assume also that for j = 1, · · · , k, |X1
j | = |X2

j | and denote by γj this integer.

Obviously, N =
∑k

j=1 γj so that γ := (γj)j is an integer partition of n. Further,
when 1 = γ1 = γ2 = · · · = γk−1 and γk = N − k + 1 one is in the top-(k − 1)
partial ranking case. For j = 1, · · · , k, let Γj be the set of all integers lying in[∑j−1

l=1 γl + 1,
∑j

l=1 γl

]
. Set further,

Sγ := SΓ1 × SΓ2 × · · · × SΓk
,

where SΓi
is the set of permutations on Γi. Notice that Sγ is nothing more than the

subgroup of Sn letting invariant the sets Γj (j = 1, · · · , k). So that, for i = 1, 2,
we can write ERi

as a right coset Ri = Sγπi for some πi ∈ ERi
. With these extra

notations and definitions, we are now able to compute dH,avg(R1, R2).

Proposition 53. In the previous setting, we have

dH,avg(R1, R2) = |{i, Γ(π1(i)) 6= Γ(π2(i))}|+
k∑

j=1

γj
N
(γj − 1), (V.31)

where, for 1 ≤ l ≤ N , Γ(l) is the integer j such that l ∈ Γj.

Note that in (V.31), the term |{i, Γ(π1(i)) 6= Γ(π2(i))}| counts the number of
item i ∈ [1 : N ] that are ranked differently in R1 and R2.
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kernel Kτ
θ1,θ2,θ3

KH
θ1,θ2,θ3

KS
θ1,θ2,θ3

Kθ1

rate 0.902 0.904 0.912 0.928

R2 0.887 0.996 0.996 0.070

Table V.1: Rate of test points that are in the 90% confidence interval and coeffi-
cient of determination for the four kernels.

D.3 Numerical experiments

We have proposed in Section D.1 a new kernel Kθ1,θ2,θ3 defined by (V.28) on partial
rankings. We show in Section D.2 that in several cases (for example with top-k
partial rankings), we can reduce drastically the computation of this kernel. An-
other direction is given in [JV17] by considering the averaged Kendall kernel and
reducing the computation of this kernel on top-k partial rankings. This kernel is
available on the R package kernrank. We write K the averaged Kendall kernel,
and we define Kθ1 := θ1K.

In this section, we compare our new kernel Kθ1,θ2,θ3 with the averaged Kendall
kernel Kθ1 in a numerical experiment where an objective function indexed by top-
k partial rankings is predicted, by Kriging. We take N = 10 and for simplicity,
we take the same value k = 4 for all the top-k partial rankings. For a top-
k partial ranking I = (i1, i2, i3, i4), the objective function to predict is f(I) :=
2i1 + i2 − i3 − 2i4. We make 500 noisy observations (yi)i≤500 with yi = f(Ii) + εi,
where (Ii)i≤500 are i.i.d. uniformly distributed top-k partial rankings and (εi)i≤500

are i.i.d. N (0, λ2), with λ = 1
2
. As in Section C, we estimate (θ, λ) by maximum

likelihood. Then, we compute the predictions (ŷ′i)i≤500 of y′ = (y′i)i≤500, with y′

the observations corresponding to 500 other test points (I ′i)i≤500, that are i.i.d.
uniform top-k partial rankings.

For the four kernels (our kernel Kθ1,θ2,θ3 with the 3 distances and the averaged
Kendall kernel Kθ1), we provide the rate of test points that are in the 90% confi-
dence interval together with the coefficient of determination R2 of the predictions
of the test points. Recall that

R2 := 1−
1

500

∑500
i=1 (y

′
i − ŷ′i)

2

1
500

∑500
i=1

(
y′i − y′

)2 ,

where y′ is the average of y′. The results are provided in Table V.1.
The rate of test points that are in the 90% confidence interval is close to 90%

for the four kernels. We can deduce that the parameters (θ, λ) are well estimated
by maximum likelihood, even for the averaged Kendall kernel Kθ1 .

However, we can see that the coefficient of determination of the averaged
Kendall kernel Kθ1 is close to 0. The predictions given by the averaged Kendall

239



APPENDIX V. GAUSSIAN FIELD ON THE SYMMETRIC GROUP:
PREDICTION AND LEARNING

kernel Kθ1 are nearly as bad as predicting with the empirical mean. In the opposite
way the coefficient of determination of our kernels is larger than 0.9 for the Kendall
distance, and larger than 0.99 for the Hamming distance and the Spearman dis-
tance. That means that the prediction given by our kernels are much better than
the empirical mean.

To conclude, we provide a class of positive definite kernels Kθ1,θ2,θ3 which seems
to be significantly more efficient than the averaged Kendall kernel Kθ1 , in the case
of Gaussian process models on partial rankings.

E Conclusion

In this work, we provide a Gaussian process model for permutations. Following
the recent works of [JV17] and [MRW+16], we propose kernels to model the co-
variance of such processes and show the relevance of such choices. Based on the
three distances on the set of permutations, Kendall’s tau, Hamming distance and
Spearman’s footrule distance, we obtain parametric families of relevant covariance
models. To show the practical efficiency of these parametric families, we apply
them to the optimization of Latin Hypercube Designs. In this framework, we
prove under some assumptions on the set of observations, that the parameters of
the model can be estimated and the process can be forecasted using linear com-
binations of the observations, with asymptotic efficiency. Such results enable to
extend the well-known properties of Kriging methods to the case where the process
is indexed by ranks and tackle a large variety of problems. We remark that our
asymptotic setting corresponds to the increasing domain asymptotic framework for
Gaussian processes on the Euclidean space. It would be interesting to extend our
results to more general sets of permutations under designs that do not necessarily
satisfy Conditions 1 and 2.

We also show that the Gaussian process framework can be extended to the
case of partially observed ranks. This corresponds to many practical cases. We
provide new kernels on partial rankings, together with results that significantly
simplify their computation. We show the efficiency of these kernels in simulations.
We leave a specific asymptotic study of Gaussian processes indexed by partial
rankings open for further research.

As highlighted in [Mar14], data consisting of rankings arise from many different
fields. Our suggested kernels on total rankings and partial rankings could lead to
different applications to real ranking data. We treated the case of regression in
Sections C.3 and D.3. In Section C.4, we used these kernels for an optimization
problem. One could also use our suggested kernels in classification, as it is done
in [JV17], in [MRW+16] or in [KB10], and also using Gaussian process based
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classification [RW06] with ranking inputs.
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F Proofs

F.1 Proofs for Sections B and D

Proof of Proposition 48

Proof. We show that Kθ1,θ2 is a strictly positive definite kernel on Sn. It suffices
to prove that, if ν > 0, the map K defined by

K(σ, σ′) := e−νd(σ,σ
′) (V.32)

is a strictly positive definite kernel.
Case of the Kendall’s tau distance. It has been shown in Theorem 5 of

[MRW+16] that K is a strictly positive definite kernel on SN for the Kendall’s tau
distance. Nevertheless, we provide here an other shorter and easier proof. The
idea is to write K(σ1, σ2) as M(Φ(σ1),Φ(σ2)), for an application Φ defined below,
for a function M defined below and for σ1, σ2 ∈ SN . We will then show that M is
strictly positive definite and which will imply that K also is.

Let

Φ :
SN −→ {0, 1}N(N−1)

2

σ 7−→ (1σ(i)<σ(j))1≤i<j≤N .

Further, define

M :
{0, 1}N(N−1)

2 × {0, 1}N(N−1)
2 −→ R

((ai,j)i,j, (bi,j)i,j) 7−→ exp
(
−ν∑i<j |ai,j − bi,j|

)
.

Remark that for all σ, σ′, we have

K(σ, σ′) =M(Φ(σ),Φ(σ′)).

Now, assume that M is a strictly positive definite kernel. Let n ∈ N and let
σ1, · · · , σn ∈ SN such that σi 6= σj if i 6= j. As Φ is injective, we have Φ(σi) 6=
Φ(σj) if i 6= j, and so (K(σi, σj))1≤i,j≤n = (M(Φ(σi),Φ(σj)))1≤i,j≤n is a symmetric
positive definite matrix. Thus, K is a strictly positive definite kernel.

It remains to prove that M is a strictly positive kernel. For all k ∈ N∗, we
index the elements of {0, 1}k using the following bijective map

Nk :
{0, 1}k −→ [1 : 2k]

(ai)i≤k 7−→ 1 +
∑k

i=1 ai2
i−1.

With this indexation, we let M̃ be the square matrix of size 2
N(N−1)

2 defined by

M̃i,j :=M(N−1
N(N−1)

2

(i), N−1
N(N−1)

2

(j)).
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By induction on k, we show that the 2k × 2k matrix M (k) defined by

M
(k)
i,j := exp

(
−ν

k∑

l=1

|N−1
k (i)l −N

(−1)
k (j)l|

)
, (i, j ∈ [1 : 2k]),

is the Kronecker product of k matrices Aν defined by

Aν :=

(
1 e−ν

e−ν 1

)
, (ν > 0).

This is obvious for k = 1. Assume that this is true for some k. Thus, for all i ≤ 2k

and j ≤ 2k, we have

(Aν ⊗M (k))i,j = 1M
(k)
i,j

= exp

(
−ν

k∑

l=1

|N−1
k (i)l −N

(−1)
k (j)l|

)

= exp

(
−ν

k+1∑

l=1

|N−1
k+1(i)l −N

(−1)
k+1 (j)l|

)

= M
(k+1)
i,j .

With the same computation, we have

(Aν ⊗M (k))i+2k,j+2k =M
(k+1)

i+2k,j+2k
.

We also have

(Aν ⊗M (k))i+2k,j = e−νM (k)
i,j

= exp

(
−ν
[
1 +

k∑

l=1

|N−1
k (i)l −N

(−1)
k (j)l|

])

= exp

(
−ν

k+1∑

l=1

|N−1
k+1(i)l −N

(−1)
k+1 (j)l|

)

= M
(k+1)

i+2k,j
,

and with the same computation,

(Aν ⊗M (k))i,j+2k =M
(k+1)

i,j+2k
.

So we conclude the induction. Using this result with k = N(N−1)
2

, we have that the

matrix M̃ is the Kronecker product of positive definite matrices, thus it is positive
definite and so, M is a strictly positive definite kernel.
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Remark 52. We could have showed that M is a positive definite kernel using Ex-
ample 21.5.1 and Property 21.5.8 of [RKSF13] (it is a straightforward consequence
of these example and property). However, these example an property do not prove
the strict positive definiteness of M .

Case of the other distances. For the Hamming distance and the Spear-
man’s footrule distance, we show that the kernel K is strictly positive definite
on the set F of the functions from [1 : N ] to [1 : N ]. Indeed, if ”for all n ∈ N
and all f1, · · · , fn ∈ F such that fi 6= fj if i 6= j, (K(fi, fj))1≤i,j≤n is a symmetric
positive definite matrix”, then ”for all n ∈ N and all σ1, · · · , σn ∈ SN ⊂ F such
that σi 6= σj if i 6= j, (K(σi, σj))1≤i,j≤n is a symmetric positive definite matrix”.
Now, to prove the strict positive definiteness of K on F , it suffices to index the ele-
ments of F by f1, · · · , fNN and to prove that the matrix M̃ := (K(fi, fj))1≤i,j≤NN

is symmetric positive definite. We index the elements of F using the following
bijective map

JN :
F −→ [1 : NN ]

f 7−→ 1 +
∑N

i=1N
i(f(i)− 1).

Thus, it suffices to show that the NN ×NN matrices M̃ defined by

M̃i,j := K
(
J−1
N (i), J−1

N (j)
)
,

are positive definite matrices for these three distances. Straightforward computa-
tions show that

• For the Hamming distance, M̃ is the Kronecker product of N matrices, all
equal to (exp(−ν1i 6=j))i,j∈[1:N ].

• For the Spearman Footrule distance, M̃ is the Kronecker product of N ma-
trices, all equal to (exp(−ν|i− j|))i,j∈[1:N ].

In all cases, M̃ is a Kronecker product of positive definite matrices thus is also a
positive definite matrix.

Lemma 55. For all the three distances, there exist constants dN ∈ N∗, CN ∈ R
and a function Φ : SN → RdN such that d(σ, σ′) = CN − 〈Φ(σ),Φ(σ′)〉. Here 〈·, ·〉
denotes the standard scalar product on RdN .

Proof. •
N(N−1)

4
− dτ (σ, σ

′) = 1
2

∑
i<j 1σ(i)<σ(j), σ′(i)<σ′(j) + 1σ(i)>σ(j), σ′(i)>σ′(j) −

1
2

∑
i<j 1σ(i)<σ(j), σ′(i)>σ′(j)+1σ(i)>σ(j), σ′(i)<σ′(j) = 〈Φ(σ),Φ(σ′)〉 where Φ(σ) ∈

R
N(N−1)

2 is defined by Φ(σ)i,j :=
1√
2
(1σ(i)>σ(j)−1σ(i)<σ(j)), for all 1 ≤ i < j ≤

N .
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• N − dH(σ, σ
′) =

∑N
i=1 1σ(i)=σ(j) = 〈Φ(σ),Φ(σ′)〉 where Φ(σ) ∈ MN(R) is

defined by Φ(σ) := (1σ(i)=j)i,j,

• N2−dS(σ, σ′) =
∑N

i=1 min(σ(i), σ′(i))+N−max(σ(i), σ′(i)) = 〈Φ(σ),Φ(σ′)〉
where Φ(σ) ∈ MN(R)

2 is defined by

Φ(σ)i,j,1 :=

{
1 if j ≤ σ(i)

0 otherwise,
Φ(σ)i,j,2 :=

{
0 if j < σ(i)

1 otherwise.

Proof of Proposition 49

Proof. Let us prove that d is a definite negative kernel, that is, for all c1, ..., ck ∈ R
such that

∑k
i=1 ci = 0, we have

∑k
i,j=1 cicjd(σi, σj) ≤ 0. Let c1, ..., ck ∈ R such

that
∑k

i=1 ci = 0 and let σ1, ..., σk ∈ SN . We have

k∑

i,j=1

cicjd(σi, σj) = CN

k∑

i,j=1

cicj −
k∑

i,j=1

cicj〈Φ(σi),Φ(σj)〉 ≤ 0,

as CN
∑k

i,j=1 cicj = CN

(∑N
i=1 ci

)2
is equal to 0. So, d is a negative definite kernel.

Hence dθ3 is a definite negative kernel for all θ3 ∈ [0, 1] (see for example Property
21.5.9 in [RKSF13]). The function F : t 7→ θ2 exp(−θ1t) is completely monotone,
thus, using Schoenberg’s theorem (see [BCR84] for the definitions of these notions
and Schoenberg’s theorem), Kθ1,θ2,θ3 is a positive definite kernel.

Proof of Proposition 50

Proof. Let us write, with the notation of Lemma 55,

Φavg : R 7−→ 1

|ER|
∑

σ∈ER

Φ(σ). (V.33)

Then,

CN − davg(R,R
′) = CN − 1

|E||E ′|
∑

σ∈ER

∑

σ∈ER′

d(σ, σ′)

=
1

|ER||ER′ |
∑

σ∈ER

∑

σ∈ER′

CN − d(σ, σ′)

=
1

|ER||ER′ |
∑

σ∈ER

∑

σ∈ER′

〈Φ(σ),Φ(σ′)〉
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= 〈Φavg(R),Φavg(R′)〉.

Thus,

dpartial(R,R
′) = davg(R,R

′)− 1

2
davg(R,R)−

1

2
davg(R

′, R′)

=
1

2

[(
CN − davg(R,R)

)
+
(
CN − davg(R

′, R′)
)
− 2

(
CN − davg(R,R

′)
)]

=
1

2

(
‖Φavg(R)‖2 + ‖Φavg(R′)‖2 − 2〈Φavg(R),Φavg(R′)〉

)

= ‖Φavg(R)− Φavg(R
′)‖2.

Proof of Proposition 51

Proof. Let us prove that dpartial is a definite negative kernel. We define

Davg(R,R
′) := Φavg(R)

TΦavg(R
′). (V.34)

Let (c1, ..., ck) ∈ Rk such that
∑k

i=1 ci = 0. We have

k∑

i,j=1

cicjdpartial(Ri, Rj) =
k∑

i,j=1

cicj

[
davg(Ri, Rj)−

1

2
davg(Ri, Ri)−

1

2
davg(Rj, Rj)

]

=
k∑

i,j=1

cicjdavg(Ri, Rj)−
1

2

k∑

i=1

cidavg(Ri, Ri)
k∑

j=1

cj

−1

2

k∑

j=1

cjdavg(Rj, Rj)
k∑

i=1

ci

=
k∑

i,j=1

cicjdavg(Ri, Rj)

=
k∑

i,j=1

cicj
[
CN −Davg(Ri, Rj)

]

= −
k∑

i,j=1

cicjDavg(Ri, Rj)

≤ 0.

So, dpartial is a definite negative kernel, and we may conclude as in the proof of

Proposition 49.
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Proof of Proposition 52

Proof. Assume that σ (resp. σ′) is a uniform random variable of EI (resp. EI′).
We have to compute E(d(σ, σ′)) = davg(I, I

′) for the three distances: Kendall’s
tau, Hamming and Spearman’s footrule.

First, we compute E(dτ (σ, σ
′)). Following the proof of Lemma 3.1 of [FKS03],

we have
E(dτ (σ, σ

′)) =
∑

a<b

E(Ka,b(σ, σ
′)),

with
Ka,b(σ, σ

′) = 1(σ(a)<σ(b),σ′(a)>σ′(b)) or (σ(a)>σ(b),σ′(a)<σ′(b)).

We now compute E(Ka,b(σ, σ
′)) for (a, b) in different cases. Let us write J :=

{j1, · · · , jp} and we keep the notation I (resp. I ′) for the set {i1, ..., ik} (resp.
{i′1, ..., i′k}). In this way, we have I = J ⊔ Ĩ and I ′ = J ⊔ Ĩ ′.

1. Consider the case where a and b are in J . There exists l and l′ ∈ [1 : p] such
that a = jl and b = jl′ . Then

Ka,b(σ, σ
′) = 1(cjl<cjl′

,c′jl
>c′jl′

) or (cjl>cjl′
,c′jl

<c′jl′
).

Thus, the total contribution of the pairs in this case is
∑

1≤l<l′≤p
1(cjl<cjl′

,c′jl
>c′jl′

) or (cjl>cjl′
,c′jl

<c′jl′
).

2. Consider the case where a and b both appear in one top-k partial ranking
(say I) and exactly one of i or j, say i appear in the other top-k partial
ranking. Let us call P2 the set of (a, b) such that a < b and (a, b) is in this
case. We have

∑

(a,b)∈P2

Ka,b(σ, σ
′) =

∑

a∈J,
b∈Ĩ

Ka,b(σ, σ
′) +

∑

a∈J,
b∈Ĩ′

Ka,b(σ, σ
′)

Let us compute the first sum. Recall that Ĩ = {iu1 , ..., iur}.
∑

a∈J,
b∈Ĩ

Ka,b(σ, σ
′) =

∑

b∈Ĩ

∑

a∈J
Ka,b(σ, σ

′)

=
∑

b∈Ĩ

#{a ∈ J, σ(a) > σ(b)}

=
r∑

l=1

#{a ∈ J, σ(a) > σ(iul)}
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We order u1, · · · , ur such that u1 < · · · < ur. Let l ∈ [1 : r]. Remark that
σ(iul) = ul. We have #{a ∈ I, σ(a) > ul} = k − ul and #{a ∈ Ĩ , σ(a) >
ul} = r − l, thus #{a ∈ J, σ(a) > ul} = k − ul − r + l. Then,

∑

a∈J,
b∈Ĩ

Ka,b(σ, σ
′) = r

(
k +

1− r

2

)
−

r∑

l=1

ul.

Likewise, we have

∑

a∈J,
b∈Ĩ′

Ka,b(σ, σ
′) = r

(
k +

1− r

2

)
−

r∑

l=1

u′l. (V.35)

Finally, the total contribution of the pairs in this case is

r(2k + 1− r)−
r∑

j=1

(uj + u′j).

3. Consider the case where a, but not b, appears in one top-k partial ranking
(say I), and b, but not a, appears in the other top-k partial ranking (I ′).
Then Ka,b(σ, σ

′) = 1 and the total contribution of these pairs is r2.

4. Consider the case where a and b do not appear in the same top-k partial
ranking (say I). It is the only case whereKa,b(σ, σ

′) is a non constant random
variable. First, we show that in this case, E(Ka,b(σ, σ

′)) = 1/2. Assume for
example that I does not contain a and b. Let (a b) be the transposition
which exchanges a and b and does not change the other elements. We have

{π ∈ EI , π(a) < π(b)} = (a b){π ∈ EI , π(a) > π(b)}.

Thus, there are as many π ∈ EI such that π(a) < π(b) as there are π ∈ EI
such that π(a) > π(b). That proves that E(Ka,b(σ, σ

′)) = 1/2.

Then, the total distribution of the pairs in this case is

1

2

[(
|Ic|
2

)
+

(
|I ′c|
2

)
−
(
|Ic ∩ I ′c|

2

)]
=

(
N − k

2

)
− 1

2

(
m

2

)
.

That concludes the computation for the Kendall’s tau distance.
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To compute E(dH(σ, σ
′)), it suffices to see that

E(dH(σ, σ
′)) = E

(
n∑

i=1

1σ(i) 6=σ′(i)

)

=

p∑

l=1

1cjl 6=c′jl
+ E

( ∑

i 6=I∪I′
1σ(i) 6=σ′(i)

)

+E

(
r∑

j=1

1uj 6=σ′(iuj )

)
+ E

(
r∑

j=1

1σ(iu′
j
) 6=u′j

)

=

p∑

l=1

1cjl 6=c′jl
+m

N − k − 1

N − k
+ 2r.

Finally, let compute E(dS(σ, σ
′)). First, we define

• Ac :=
∑p

j=1 |cj − c′j|

• Au(σ
′) :=

∑r
j=1 |uj − σ′(iuj)|

• Au′(σ) :=
∑r

j=1 |σ(i′u′j)− u′j|

• R(σ, σ′) :=
∑

i 6=I∪I′ |σ(i)− σ′(i)|.

We have

E(dS(σ, σ
′)) = E(Ac) + E(Au(σ

′)) + E(Au′(σ)) + E(R(σ, σ′)).

It remains to compute all the expectations appearing here.

1. E(Ac) = Ac.

2. E(Au(σ
′)) =

∑r
j=1 E(|uj − σ′(iuj)|). If σ′ is uniform on EI′ , then σ′(iuj) is

uniform on [k + 1 : N ] so:

E(|uj − σ′(iuj)|) = E(σ′(iuj)− uj) =
N + k + 1

2
− uj.

Finally,

E(Au(σ
′)) = r

N + k + 1

2
−

r∑

j=1

uj. (V.36)

3. E(Au′(σ)) = rN+k+1
2

−∑r
j=1 u

′
j.
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4. E(R(σ, σ′)) =
∑

i 6=I∪I′ E(|σ(i) − σ′(i)|). σ(i) and σ′(i) are independent uni-
form random variables on [k + 1 : N ].

E(|σ(i)− σ′(i)|) =
N−k−1∑

j=1

jP(|σ(i)− σ′(i)| = j)

=
N−k−1∑

j=1

j2
N − k − j

(N − k)2
.

Then

E(R(σ, σ′)) =
2m

(N ′ + 1)2

N ′∑

j=1

j(N ′ + 1− j)

=
2m

(N ′ + 1)2

(
N ′(N ′ + 1)2

2
− N ′(N ′ + 1)(2N ′ + 1)

6

)

= mN ′ − mN ′(2N ′ + 1)

3(N ′ + 1)
.

That concludes the proof of Proposition 52.

Proof of Proposition 53

Proof. We define

aγj (σ, σ
′) := |{i ∈ [1 : N ], σ(i) ∈ Γj, σ

′(i) ∈ Γj, σ(i) 6= σ′(i)}|,
bγj,l(σ, σ

′) := |{i ∈ [1 : N ], σ(i) ∈ Γj, σ
′(i) ∈ Γl, j 6= l}|.

Now, assume that σ, σ′ ∼ U(Sγ) and σj, σ′
j ∼ U(Sγj). We have

E (dH(σ, σ
′)) = E

(
k∑

j,l=1

bγj,l(σπ1, σ
′π2) +

k∑

j=1

aγj (σπ1, σ
′π2)

)

=
k∑

j,l=1

bγj,l(π1, π2) +
k∑

j=1

|{i, π1(i), π2(i) ∈ Γj}|
γj − 1

γj

= |{i, Γ(π1(i)) 6= Γ(π2(i))}|+
k∑

j=1

γj
n
(γj − 1).
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F.2 Proofs for Section C

In the following, let us write ‖.‖ for the operator norm (for a linear mapping of
Rn with the Euclidean norm) of a squared matrix of size n, ‖.‖F for its Frobenius
norm defined by ‖M‖2F :=

∑n
i,j=1m

2
ij for M = (mij)1≤i,j≤n ∈ Mn(R), and let us

define the norm | · | by |M |2 := 1
n
‖M‖2F . We remark that, when M is a symmetric

positive definite matrix, ‖M‖ is its largest eigenvalue. In this case, we may also
write ‖M‖ = λmax(M), where λmax(M) has been defined in Section C.2 and is the
largest value ofM . For a vector u of Rd, for d ∈ R, recall that ‖u‖ is the Euclidean
norm of u.

The proofs of Theorems 7, 8 and 9 are given in Section F.2.ii), F.2.iii) and
F.2.iv) respectively. These proofs are based on Lemmas 56 to 59, that are stated
and proved in Section F.2.i). The proofs of these lemmas are new. Then, having
at hand the lemmas, the proof of the theorems follows [BGLV17]. We write all the
proofs to be self-contained.

F.2.i) Lemmas

The following Lemmas are useful for the proofs of Theorems 7, 8 and 9.

Lemma 56. The eigenvalues of Rθ are lower-bounded by θ3,min > 0 uniformly in
n, θ and Σ.

Proof. Rθ is the sum of a symmetric positive matrix and θ3In. Thus, the eigenval-
ues are lower-bounded by θ3,min.

Lemma 57. For all α = (α1, α2, α3) ∈ N3, with |α| = α1 + α2 + α3 and with

∂θα = ∂θα1
1 ∂θ

α2
2 ∂θ

α3
3 , the eigenvalues of ∂|α|Rθ

∂θα
are upper-bounded uniformly in n,

θ and Σ.

Proof. It is easy to prove when α1 = α2 = 0. Indeed:

1. If α3 = 0, then λmax (Rθ) ≤ λmax ((Kθ1,θ2(σi, σj))i,j)+θ3,max and we show that
λmax (Kθ1,θ2(σi, σj)i,j) is uniformly bounded using Gershgorin circle theorem
([Ger31]).

2. If α3 = 1, then ∂|α|Rθ

∂θα
= In.

3. If α3 > 1, then ∂|α|Rθ

∂θα
= 0.

Then, we suppose that (α1, α2) 6= (0, 0). Thus,

∂|α|Rθ

∂θα
=
∂|α| (Kθ1,θ2(σi, σj)i,j)

∂θα
.
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It does not depend on α3 so we can assume that α ∈ N2. We have
∣∣∣∣
∂|α|Kθ1,θ2(σ, σ

′)

∂θα

∣∣∣∣ ≤ max(1, θ2,max)d(σ, σ
′)α1e−θ1,mind(σ,σ

′). (V.37)

We conclude using Gershgorin circle theorem [Ger31].

Lemma 58. Uniformly in Σ,

∀α > 0, lim inf
n→+∞

inf
‖θ−θ∗‖≥α

1

n

n∑

i,j=1

(Rθ,i,j −Rθ∗,i,j)
2 > 0. (V.38)

Proof. Let N be the norm on R3 defined by

N(x) := max(4cθ2,max|x1|, 2|x2|, |x3|), (V.39)

with c as in Condition 2. Let α > 0. We want to find a positive lower-bound over
θ ∈ Θ \ BN(θ

∗, α), where BN(θ
∗, α) is the ball with the norm N of center θ∗ and

radius α, of
1

n

n∑

i,j=1

(Rθ,i,j −Rθ∗,i,j)
2. (V.40)

Let θ ∈ Θ \BN(θ
∗, α).

1. Consider the case where |θ1 − θ∗1| ≥ α/(4cθ2,max). Let kα ∈ N be the first
integer such that

kβα ≥ 4cθ2,max
2 + ln(θ2,max)− ln(θ2,min)

α
. (V.41)

Then, for all i ∈ N∗,
∣∣∣∣
(θ∗1 − θ1)d(σi, σi+kα) + ln(θ2)− ln(θ∗2)

2

∣∣∣∣ ≥ 1.

For all n ≥ kα,

1

n

n∑

i,j=1

(Rθ,i,j −Rθ∗,i,j)
2

≥ 1

n

n−kα∑

i=1

(Rθ,i,i+kα −Rθ∗,i,i+kα)
2

≥ 1

n

n−kα∑

i=1

e−2θ1,maxckα+2 ln(θ2,min)4 sinh2

(
(θ∗1 − θ1)d(σi, σi+kα) + ln(θ2)− ln(θ∗2)

2

)

≥ C1,α
n− kα
n

,

where we write C1,α = e−2θ1,maxckα+2 ln(θ2,min)4 sinh2(1).
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2. Consider the case where |θ1 − θ∗1| ≤ α/(4cθ2,max).

(a) If |θ2 − θ∗2| ≥ α/2, we have

|θ1 − θ∗1|
2

d(σi, σi+1) <
α

8θ2,max

=
α

4θ2,max

− α

8θ2,max

≤ | ln(θ∗2)− ln(θ2)|
2

− α

8θ2,max

.

Thus,

∣∣∣∣
(θ∗1 − θ1)d(σi, σi+1) + ln(θ2)− ln(θ∗2)

2

∣∣∣∣ ≥
α

8θ2,max

, (V.42)

and we have

1

n

n∑

i,j=1

(Rθ,i,j −Rθ∗,i,j)
2

≥ 1

n

n−1∑

i=1

(Rθ,i,i+1 −Rθ∗,i,i+1)
2

≥ 1

n

n−1∑

i=1

e−2θ1,maxc+2 ln(θ2,min)4 sinh2

(
α

8θ2,max

)

= C2,α
n− 1

n
,

where we write C2,α := e−2θ1,maxc+2 ln(θ2,min)4 sinh2
(

α
8θ2,max

)
.

(b) If |θ2 − θ∗2| < α/2, we have |θ3 − θ∗3| ≥ α. Thus,

1

n

n∑

i,j=1

(Rθ,i,j −Rθ∗,i,j)
2

≥ 1

n

n∑

i=1

(Rθ,i,i −Rθ∗,i,i)
2

=
1

n

n∑

i=1

(θ2 + θ3 − θ∗2 − θ∗3)
2

≥ α2

4
.
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Finally, if we write

Cα := min

(
C1,α, C2,α,

α2

2

)
, (V.43)

we have

inf
N(θ−θ∗)≥α

1

n

n∑

i,j=1

(Rθ,i,j −Rθ∗,i,j)
2 ≥ n− kα

n
Cα. (V.44)

To conclude, by equivalence of norms in R3, there exists h > 0 such that ‖.‖2 ≤
hN(.), thus

lim inf
n→+∞

inf
‖θ−θ∗‖≥α

1

n

n∑

i,j=1

(Rθ,i,j −Rθ∗,i,j)
2 ≥ Cα/h > 0. (V.45)

Lemma 59. ∀(λ1, λ2, λ3) 6= (0, 0, 0), uniformly in σ,

lim inf
n→+∞

1

n

n∑

i,j=1

(
3∑

k=1

λi
∂

∂θk
Rθ∗,i,j

)2

> 0. (V.46)

Proof. We have

∂

∂θ1
Rθ∗,i,j = −θ∗2d(σi, σj)e−θ

∗
1d(σi,σj),

∂

∂θ2
Rθ∗,i,j = e−θ

∗
1d(σi,σj),

∂

∂θ3
Rθ∗,i,j = 1i=j.

Let (λ1, λ2, λ3) 6= (0, 0, 0). We have

1

n

n∑

i,j=1

(
3∑

k=1

λk
∂

∂θk
Rθ∗,i,j

)2

=
1

n

n∑

i 6=j=1

(
2∑

k=1

λk
∂

∂θk
Rθ∗,i,j

)2

+ (λ2 + λ3)
2

=
1

n

n∑

i 6=j=1

e−2θ∗1d(σi,σj) (λ2 − λ1θ
∗
2d(σi, σj))

2 + (λ2 + λ3)
2.

If λ1 6= 0, then for conditions 1 and 2, we can find ǫ > 0, τ > 0, k ∈ Z so that for
|i − j| = k, we have (λ2 − λ1d(σi, σj))

2 ≥ ǫ and e−2θ∗1d(σi,σj) ≥ τ . This concludes
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the proof in the case λ1 6= 0. The proof in the case λ1 = 0 can then be obtained
by considering the pairs (j, j + 1) in the above display.

With these lemmas we are ready to prove the main asymptotic results.

F.2.ii) Proof of Theorem 7

Proof. Step 1: It suffices to prove that, uniformly in Σ where we recall that Σ =
(σ1, · · · , σn) ∈ SNn ,

P

(
sup
θ∈Θ

|(Lθ − Lθ∗)− (E(Lθ|Σ)− E(Lθ∗ |Σ))| ≥ ǫ

∣∣∣∣Σ
)

→n→∞ 0, (V.47)

and that there exists a > 0 such that

E(Lθ|Σ)− E(Lθ∗ |Σ) ≥ a
1

n

n∑

i,j=1

(Kθ(σi, σj)−Kθ∗(σi, σj))
2. (V.48)

Indeed, by contradiction, assume that we have (V.47), (V.48) but not the consis-
tency of the maximum likelihood estimator. We will use a subsequence argument
and thus we explicit here the dependence on n of the likelihood function (resp. the

estimated parameter) writing it Ln,θ (resp. θ̂ML). Then,

∃ǫ > 0, ∃α > 0, ∀n ∈ N, ∃mn ≥ n, P(‖θ̂mn − θ∗‖ ≥ ǫ) ≥ α. (V.49)

Thus, with probability at least α, we have, for all n:
‖θ̂mn − θ∗‖ ≥ ǫ thus inf‖θ−θ∗‖≥ǫ Lmn,θ ≤ Lmn,θ̂mn

.

However, by definition of θ̂mn , we have Lmn,θ̂mn
≤ Lmn,θ∗ .

Thus: inf‖θ−θ∗‖≥ǫ Lmn,θ ≤ Lmn,θ∗ .
Finally, with probability at least α:

0 ≥ inf
‖θ−θ∗‖≥ǫ

(Lmn,θ − Lmn,θ∗)

≥ inf
‖θ−θ∗‖≥ǫ

E (Lmn,θ − Lmn,θ∗ |Σ)

− sup
‖θ−θ∗‖≥ǫ

|(Lmn,θ − Lmn,θ∗)− (E(Lmn,θ − Lmn,θ∗ |Σ)|

≥ inf
‖θ−θ∗‖≥ǫ

a|Rθ −Rθ∗ |2 − sup
‖θ−θ∗‖≥ǫ

|(Lmn,θ − Lmn,θ∗)− (E(Lmn,θ − Lmn,θ∗ |Σ)| ,

using (V.48), which is contradicted using (V.47) and recalling Lemma 58. In the
above display, we recall that the norm | · | for matrices is defined at the beginning
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of Section F.2. It remains to prove (V.47) and (V.48).

Step 2: We prove (V.47).
For all σ ∈ (SNn)

n satisfying Conditions 1 and 2, recalling that ‖ · ‖2F and ‖ · ‖ are
defined at the beginning of Section F.2,

Var(Lθ|Σ = σ) = Var

(
1

n
det(Rθ) +

1

n
yTR−1

θ y|Σ = σ

)

=
2

n2
Tr(Rθ∗R

−1
θ Rθ∗R

−1
θ )

=
2

n2

∥∥∥R
1
2
θ∗R

−1
θ∗ R

1
2
θ∗

∥∥∥
2

F
.

The previous display holds true because, with R
1
2
θ∗ , the unique matrix square root

of Rθ∗ , we have

Tr(Rθ∗R
−1
θ Rθ∗R

−1
θ ) = Tr

[(
R

1
2
θ∗R

−1
θ∗ R

1
2
θ∗

)T (
R

1
2
θ∗R

−1
θ∗ R

1
2
θ∗

)]
=
∥∥∥R

1
2
θ∗R

−1
θ∗ R

1
2
θ∗

∥∥∥
2

F
.

Then, we have the relation ‖AB‖2F ≤ ‖A‖2‖B‖2F . Thus, we have

Var(Lθ|Σ = σ) ≤ 2

n2

∥∥∥R
1
2
θ∗R

−1
θ∗ R

1
2
θ∗

∥∥∥
2

F

≤ 2

n2

∥∥∥R
1
2
θ∗

∥∥∥
2 ∥∥R−1

θ∗

∥∥2
F

∥∥∥R
1
2
θ∗

∥∥∥
2

≤ 2

n2
‖R

1
2
θ∗‖4n‖R−1

θ ‖2

≤ 2

n
‖Rθ∗‖2‖R−1

θ ‖2.

Hence, we have

Var(Lθ|Σ = σ) ≤ C

n
,

where C > 0 is some constant independent on n, θ and Σ, using Lemmas 56 and
57 (Lemmas 56 to 59 are stated and proved in Section F.2.i)). Thus, for all σ,

Var(Lθ|Σ = σ) = E
(
(Lθ − E(Lθ|Σ = σ))2|Σ = σ

)
≤ C

n
,

so

E
(
(Lθ − E(Lθ|Σ = σ))2

)
≤ C

n
,

thus Lθ − E(Lθ|Σ) = oP(1). Let us write z := R
− 1

2
θ y. For i ∈ {1, 2, 3},

sup
θ∈Θ

∣∣∣∣
∂Lθ
∂θi

∣∣∣∣ = sup
θ∈Θ

1

n

(
Tr

(
R−1
θ

∂Rθ

∂θi

)
+ zTR

1
2
θ∗R

−1
θ

∂Rθ

∂θi
R−1
θ R

1
2
θ∗z

)
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≤ sup
θ∈Θ

(
max

(
‖R−1

θ ‖
∥∥∥∥
∂Rθ

∂θi

∥∥∥∥ , ‖Rθ∗‖‖R−2
θ ‖

∥∥∥∥
∂Rθ

∂θi

∥∥∥∥
))(

1 +
1

n
‖z‖2

)
.

Here, we have used zTAz ≤ ‖z‖2‖A‖ for a symmetric positive definite matrix A
, the fact that ‖AB‖ ≤ ‖A‖‖B‖ for matrices A and B, and the fact that, by
Cauchy-Schwarz,

Tr(AB) ≤ ‖A‖F‖B‖F ≤ n‖A‖‖B‖.

Hence, supθ∈Θ

∣∣∣∂Lθ

∂θi

∣∣∣ is bounded in probability conditionally to Σ = σ, uniformly

in σ. Indeed z ∼ N (0, In) thus 1/n ‖z‖2 is bounded in probability, conditionally
to Σ and uniformly in Σ.

Then supi∈[1:3],θ∈Θ

∣∣∣∂Lθ

∂θi

∣∣∣ is bounded in probability.

Thanks to the pointwise convergence and the boundedness of the derivatives, we
have

sup
θ∈Θ

|Lθ − E(Lθ)| =: r1, (V.50)

where r1 depends on Σ and, for all ε > 0, P(|r1| > ε) −→
n→+∞

0 uniformly in Σ.

Hence,
sup
θ∈Θ

|Lθ − E(Lθ|Σ)|+ |Lθ∗ − E(Lθ∗ |Σ)| =: r2,

where r2 depends on Σ and, for all ε > 0, P(|r2| > ε) −→
n→+∞

0 uniformly in Σ.

Now, let us write Dθ,θ∗ := E(Lθ|Σ)− E(Lθ∗ |Σ). Thanks to (V.50),

sup
θ∈Θ

|Lθ − Lθ∗ −Dθ,θ∗ | ≤ sup
θ

|Lθ − E(Lθ|Σ)|+ |Lθ∗ − E(Lθ∗ |Σ)|. (V.51)

Thus
sup
θ∈Θ

|Lθ − Lθ∗ −Dθ,θ∗ | =: r3,

where r3 depends on Σ and, for all ε > 0, P(|r3| > ε) −→
n→+∞

0 uniformly in Σ.

Step 3: We prove (V.48).
We have

E(yTRθy|Σ) = E(Tr(yTRθy)|Σ) = E(Tr(Rθyy
T )|Σ)) = Tr(RθE(y

Ty)).

Thus

E(Lθ|Σ) =
1

n
ln(det(Rθ)) +

1

n
Tr(R−1

θ Rθ∗), (V.52)

Let us write φ1(M), · · · , φn(M) the eigenvalues of a symmetric n × n matrix M .
We have

Dθ,θ∗ =
1

n
ln(det(Rθ)) +

1

n
Tr(R−1

θ Rθ∗)−
1

n
ln(det(Rθ∗))− 1
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=
1

n

(
− ln

(
(det(R−1

θ ) det(Rθ∗)
)
+ Tr(R−1

θ Rθ∗)− 1
)

=
1

n

(
− ln

(
(det(R

1
2
θ∗R

−1
θ R

1
2
θ∗)
)
+ Tr(R

1
2
θ∗R

−1
θ R

1
2
θ∗)− 1

)

=
1

n

n∑

i=1

(
− ln

[
φi

(
R

1
2
θ∗R

−1
θ R

1
2
θ∗

)]
+ φi

(
R

1
2
θ∗R

−1
θ R

1
2
θ∗

)
− 1
)
.

Thanks to Lemmas 57 and 58, the eigenvalues of Rθ and R−1
θ are uniformly

bounded in θ and Σ. Thus, there exist a > 0 and b > 0 such that for all σ,
n and θ, we have

∀i, a < φi

(
R

1
2
θ∗RθR

1
2
θ∗

)
< b.

Let us define f(t) := − ln(t) + t− 1. The function f is minimal in 1 and f ′(1) = 0
and f ′′(1) = 1. So there exists A > 0 such that for all t ∈ [a, b], f(t) ≥ A(t− 1)2.
Finally:

Dθ,θ∗ ≥ A

n

n∑

i=1

(
1− φi(R

1
2
θ∗R

−1
θ R

1
2
θ∗)
)2

=
A

n
Tr

[(
In −R

1
2
θ∗R

−1
θ R

1
2
θ∗

)2]

=
A

n
Tr

[(
R

− 1
2

θ (Rθ −Rθ∗)R
− 1

2
θ

)2]

=
A

n

∥∥∥R− 1
2

θ (Rθ −Rθ∗)R
− 1

2
θ

∥∥∥
2

F
,

where we have used Tr(AAT ) = ‖A‖2F for a square matrix A. Furthermore, with
λmin(A) the smallest eigenvalue of a symmetric matrix A, for any squared matrix
B, we have ‖AB‖2F ≥ λ2min(A)‖B‖2. This yields

Dθ,θ∗ ≥ A

n
‖Rθ −Rθ∗‖2F λ2min

(
R

− 1
2

θ

)
λ2min

(
R

− 1
2

θ

)

≥ a|Rθ −Rθ∗ |2,
by Lemma 56, writing a = Aθ−2

3,max, and recalling that |A|2 = 1
n
‖A‖2F for a matrix

A.

F.2.iii) Proof of Theorem 8

Proof. First, we prove (V.16). For all (λ1, λ2, λ3) ∈ R3 such that ‖(λ1, λ2, λ3)‖ = 1,
we have

3∑

i,j=1

λiλj(MML)i,j =
1

2n
Tr

(
R−1
θ∗

(
3∑

i=1

λi
∂Rθ∗

∂θi

)
R−1
θ∗

(
3∑

j=1

λj
∂Rθ∗

∂θj

))
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=
1

2n
Tr

(
R

− 1
2

θ∗

(
3∑

i=1

λi
∂Rθ∗

∂θi

)
R

− 1
2

θ∗ R
− 1

2
θ∗

(
3∑

j=1

λj
∂Rθ∗

∂θj

)
R

− 1
2

θ∗

)

=
1

2n

∥∥∥∥∥R
− 1

2
θ∗

(
3∑

i=1

λi
∂Rθ∗

∂θi

)
R

− 1
2

θ∗

∥∥∥∥∥

2

F

,

where we have used Tr(AAT ) = ‖A‖2F for a square matrix A. Furthermore, using
‖AB‖2F ≥ λ2min(A)‖B‖2 when A is symmetric, we obtain

3∑

i,j=1

λiλj(MML)i,j ≥ 1

2n
λ2min

(
R

− 1
2

θ∗

)∥∥∥∥∥

(
3∑

i=1

λi
∂Rθ∗

∂θi

)∥∥∥∥∥

2

F

λ2min

(
R

− 1
2

θ∗

)

=
1

2θ23,max

∣∣∣∣∣

(
3∑

i=1

λi
∂Rθ∗

∂θi

)∣∣∣∣∣

2

,

using Lemma 56 and where we recall that 1
n
‖ · ‖2F = | · |, see the beginning of

Section F.2. Hence, from Lemma 59, there exists Cmin > 0 such that

lim inf
n→∞

λmin(MML) ≥ Cmin. (V.53)

Moreover, we have, using similar manipulations of norms on matrices above, and
using |Tr(AB)| ≤ ‖A‖F‖B‖F from Cauchy-Schwarz,

|(MML)i,j| =

∣∣∣∣
1

2n
Tr

(
R−1
θ∗
∂Rθ∗

∂θi
R−1
θ∗
∂Rθ∗

∂θj

)∣∣∣∣

≤ 1

2n

∥∥∥∥R−1
θ∗
∂Rθ∗

∂θi

∥∥∥∥
F

∥∥∥∥R−1
θ∗
∂Rθ∗

∂θj

∥∥∥∥
F

≤ 1

2

∥∥∥∥R−1
θ∗
∂Rθ∗

∂θi

∥∥∥∥
∥∥∥∥R−1

θ∗
∂Rθ∗

∂θj

∥∥∥∥

≤ 1

2
‖R−1

θ∗ ‖2
∥∥∥∥
∂Rθ∗

∂θi

∥∥∥∥
∥∥∥∥
∂Rθ∗

∂θj

∥∥∥∥
≤ Cmax,

for some Cmax < ∞, from Lemmas 56 and 57. Using Gershgorin circle theorem
[Ger31], we obtain

lim sup
n→∞

λmax(MML) < +∞, (V.54)

that concludes the proof of (V.16).

By contradiction, let us now assume that

√
nM

1
2
ML

(
θ̂ML − θ∗

)
✚
✚
✚✚L−→

n→+∞
N (0, I3). (V.55)
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Then, there exists a bounded measurable function g : R3 → R, ξ > 0 such that,
up to extracting a subsequence, we have:

∣∣∣E
[
g
(√

nM
1
2
ML(θ̂ML − θ∗

)]
− E(g(U))

∣∣∣ ≥ ξ, (V.56)

with U ∼ N (0, I3). The rest of the proof consists in contradicting (V.56).
As 0 < Cmin ≤ λmin(MML) ≤ λmax(MML) ≤ Cmax, up to extracting another

subsequence, we can assume that:

MML −→
n→∞

M∞, (V.57)

with λmin(M∞) > 0.

We have:

∂

∂θi
Lθ =

1

n

(
Tr

(
R−1
θ

∂Rθ

∂θi

)
− yTR−1

θ

∂Rθ

∂θi
R−1
θ y

)
. (V.58)

Let λ = (λ1 λ2 λ3)
T ∈ R3. For a fixed σ, denoting

∑3
k=1 λkR

− 1
2

θ∗
∂Rθ∗

∂θk
R

− 1
2

θ∗ = P TDP

with P TP = In and D diagonal, zσ = PR
− 1

2
θ∗ y (which is a vector of i.i.d. standard

Gaussian variables, conditionally to Σ = σ), we have, letting φ1(A), · · · , φn(A) be
the eigenvalues of a n× n symmetric matrix A,

3∑

k=1

λk
√
n
∂

∂θk
Lθ∗ =

1√
n

[
Tr

(
3∑

k=1

λkR
−1
θ∗
∂Rθ∗

∂θk

)
−

n∑

i=1

φi

(
3∑

k=1

λkR
− 1

2
θ∗
∂Rθ∗

∂θk
R

− 1
2

θ∗

)
z2σ,i

]

=
1√
n

[
n∑

i=1

φi

(
3∑

k=1

λkR
− 1

2
θ∗
∂Rθ∗

∂θk
R

− 1
2

θ∗

)
(1− z2σ,i)

]
.

Hence, we have

Var

(
3∑

k=1

λk
√
n
∂

∂θk
Lθ∗

∣∣∣∣∣Σ
)

=
2

n

n∑

i=1

φ2
i

(
3∑

k=1

λkR
− 1

2
θ∗
∂Rθ∗

∂θk
R

− 1
2

θ∗

)

=
2

n

3∑

k,l=1

λkλlTr

(
∂Rθ∗

∂θk
R−1
θ∗
∂Rθ∗

∂θl
R−1
θ∗

)

= λT (4MML)λ −→
n→∞

λT (4M∞)λ.

Hence, for almost every σ, we can apply the Lindeberg-Feller criterion to the vari-
ables
1√
n
φi

(∑3
k=1 λkR

− 1
2

θ∗
∂Rθ∗

∂θk
R

− 1
2

θ∗

)
(1 − z2σ,i) to show that, conditionally to Σ = σ,
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√
n ∂
∂θ
Lθ∗ converges in distribution to N (0, 4M∞).

Then, using the dominated convergence theorem on Σ, we show that:

E

(
exp

(
i

3∑

k=1

λk
√
n
∂

∂θk
Lθ∗

))
−→
n→∞

exp

(
−1

2
λT (4M∞)λ

)
. (V.59)

Finally,
√
n
∂

∂θ
Lθ∗

L−→
n→∞

N (0, 4M∞). (V.60)

Let us now compute

∂2

∂θi∂θj
Lθ∗ =

1

n
Tr

(
−R−1

θ∗
∂Rθ∗

∂θi
R−1
θ∗
∂Rθ∗

∂θj
+R−1

θ∗
∂2Rθ∗

∂θi∂θj

)

+
1

n
yT
(
2R−1

θ∗
∂Rθ∗

∂θi
R−1
θ∗
∂Rθ∗

∂θj
R−1
θ∗ −R−1

θ∗
∂2Rθ∗

∂θi∂θj
R−1
θ∗

)
y.

Thus, we have,

E

(
∂2

∂θi∂θj
Lθ∗

)
−→
n→+∞

(2M∞)i,j, (V.61)

and, using Lemmas 56 and 57, and proceeding similarly as in the proof of Theorem
7,

Var

(
∂2

∂θi∂θj
Lθ∗

∣∣∣∣Σ
)

−→
n→+∞

0. (V.62)

Hence, a.s.
∂2

∂θi∂θj
Lθ∗

P|Σ−→
n→+∞

2(M∞)i,j. (V.63)

Moreover, ∂3

∂θi∂θj∂θk
Lθ can be written as

1

n
Tr(Aθ) +

1

n
yTBθy, (V.64)

whereAθ andBθ are sums and products of the matricesR−1
θ or ∂

|β|

∂θβ
with β ∈ [0 : 3]3.

Hence, from Lemmas 56 and 57, we have

sup
θ∈Θ

∥∥∥∥
∂3

∂θi∂θj∂θk
Lθ

∥∥∥∥ = OP|Σ(1). (V.65)

We know that, for k ∈ {1, 2, 3}, from a Taylor expansion,

0 =
∂

∂θk
Lθ̂ML

=
∂

∂θk
Lθ∗ +

(
∂

∂θ

∂

∂θk
Lθ∗

)T
(θ̂ML − θ∗) + rk
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with some random rk, such that

|rk| ≤ C sup
θ∈Θ,i,j

∣∣∣∣
∂3Lθ

∂θi∂θj∂θk

∣∣∣∣ ‖θ̂ML − θ∗‖2,

where C is a finite constant that come from the equivalence of norms for 3 × 3
matrices. Hence, from (V.65), rk = oP|Σ(|θ̂ML − θ∗|). We then have, with ∂2

∂θ2
Lθ∗

the 3× 3 Hessian matrix of Lθ at θ
∗,

− ∂

∂θ
Lθ∗ =

[(
∂2

∂θ2
Lθ∗

)T
+ oP|Σ(1)

](
θ̂ML − θ∗

)
,

an so
(
θ̂ML − θ∗

)
= −

[(
∂

∂θ

∂

∂θ
Lθ∗

)T
+ oP|Σ(1)

]−1
∂

∂θk
Lθ∗ . (V.66)

Hence, using Slutsky lemma, (V.63) and (V.60), a.s.

√
n
(
θ̂ML − θ∗

) L|Σ−→
n→+∞

N
(
0, (2M∞)−1(4M∞)(2M∞)−1

)
= N

(
0,M−1

∞
)
. (V.67)

Moreover, using (V.57), we have

√
nM

1
2
ML

(
θ̂ML − θ∗

) L|Σ−→
n→+∞

N (0, I3). (V.68)

Hence, using dominated convergence theorem on Σ, we have

√
nM

1
2
ML

(
θ̂ML − θ∗

)
L−→

n→+∞
N (0, I3). (V.69)

To conclude, we have found a subsequence such that, after extracting,

∣∣∣E
[
g
(√

nM
1
2
ML(θ̂ML − θ∗

)]
− E(g(U))

∣∣∣ −→
n→+∞

0, (V.70)

which is in contradiction with (V.56).

F.2.iv) Proof of Theorem 9

Proof. Let σn ∈ SNn . We have:

∣∣∣Ŷθ̂ML
(σn)− Ŷθ∗(σn)

∣∣∣ ≤ sup
θ∈Θ

∥∥∥∥
∂

∂θ
Ŷθ(σn)

∥∥∥∥
∥∥∥θ̂ML − θ∗

∥∥∥ . (V.71)
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From Theorem 7, it is enough to show that, for i ∈ {1, 2, 3}
∣∣∣∣sup
θ∈Θ

∂

∂θi
Ŷθ(σn)

∣∣∣∣ = OP(1). (V.72)

From a version of Sobolev embedding theorem (W 1,4(Θ) →֒ L∞(Θ), see Theorem
4.12, part I, case A in [AF03]), there exists a finite constant AΘ depending only
on Θ such that

sup
θ∈Θ

∣∣∣∣
∂

∂θi
Ŷθ(σn)

∣∣∣∣ ≤ AΘ

∫

Θ

∣∣∣∣
∂

∂θi
Ŷθ(σn)

∣∣∣∣
4

dθ + AΘ

3∑

j=1

∫

Θ

∣∣∣∣
∂2

∂θj∂θi
Ŷθ(σn)

∣∣∣∣
4

dθ.

The rest of the proof consists in showing that these integrals are bounded in
probability. We have to compute the derivatives of

Ŷθ(σn) = rTθ (σn)R
−1
θ y

with respect to θ. Thus, we can write these first and second derivatives as weighted
sums of wTθ (σn)Wθy, where wθ(σn) is of the form rθ(σn) or

∂
∂θi
rθ(σn) of

∂2

∂θjθi
rθ(σn)

and Wθ is product of the matrices R−1
θ , ∂

∂θi
Rθ and

∂2

∂θjθi
Rθ. It is sufficient to show

that ∫

Θ

∣∣wTθ (σn)Wθy
∣∣4 dθ = OP(1). (V.73)

From Fubini-Tonelli Theorem (see [Bil13]), we have

E

(∫

Θ

∣∣wTθ (σn)Wθy
∣∣4 dθ

∣∣∣∣Σ
)

=

∫

Θ

E
(∣∣wTθ (σn)Wθy

∣∣4
∣∣∣Σ
)
dθ.

There exists a constant c so that for X a centred Gaussian random variable

E
(
|X|4

)
= cVar(X)2,

hence

E

(∫

Θ

∣∣wTθ (σn)Wθy
∣∣4 dθ|Σ

)
= c

∫

Θ

Var
(
wTθ (σn)Wθy|Σ

)2
dθ

= c

∫

Θ

(
wTθ (σn)WθR

∗
θWθ(σn)wθ(σn)

)2
dθ.

From Lemma 57, there exists B <∞ such that, a.s.

sup
θ∈Θ

‖WθRθ∗Wθ‖ < B.
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Thus

E

(∫

Θ

∣∣wTθ (σn)Wθy
∣∣4 dθ

∣∣∣∣Σ
)

≤ B2c

∫

Θ

‖wTθ (σn)‖2dθ. (V.74)

Finally, for some α ∈ [0 : 2]3 such that |α| ≤ 2, we have

sup
θ∈Θ

‖wTθ (σn)‖2 = sup
θ

n∑

i=1

(
∂|α|

∂θα
Kθ(σn, σi)

)2

.

Thus, it suffices to bound this term. Using the proof of Lemma 57, there exists
A < +∞, a > 0 such that

sup
θ

(
∂|α|

∂θα
Kθ(σn, σi)

)2

≤ A exp (−ad(σn, σi)) .

Yet, choosing i∗ ∈ [1 : n] such that d(σn, σi∗) ≤ d(σn, σi) for all i ∈ [1 : n], we have

d(σn, σi) ≥
1

2
d(σi, σi∗).

Thus, we have

sup
θ

n∑

i=1

(
∂|α|

∂θα
Kθ(σn, σi)

)2

≤ A

n∑

i=1

exp
(
−a
2
d(σi, σi∗)

)

≤ A

n∑

i=1

exp
(
−a
2
|i− i∗|β

)

≤ 2A
+∞∑

i=0

exp
(
−a
2
iβ
)

≤ C.

That concludes the proof.
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List of Symbols

List of Symbols from Part I

X random vector modeling the inputs 9

PX Distribution of the random variable X 9

⊂ Include or equal 9

[1 : p] Set of integers from 1 to p 9

xu (xi)i∈u 9

|u| Cardinality of u 9

L2 Set of squared integrable functions from
(X , E ,PX) to R 9

Y random variable modeling the output 9

f function in L2 of the mapping between the inputs
and the output 9

σ(Xu) σ-algebra generated by Xu 10

Hu Linear subspace of functions hu ∈ L2 such that
hu(X) is σ(Xu)-measurable 10

Sclu Closed Sobol index of the group of variable Xu 10

H0
u Linear subspace of L2 of the (generalized) Hoeffd-

ing decomposition 11

fu Component of the (generalized) Hoeffding decom-
position of f 11

Su Sobol index of the group of variables Xu 12

STi Total Sobol index of the variable Xi 13
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List of Symbols from Part II

(x
(1)
u , x

(2)
−u) Vector of X such that the i-th component is x

(1)
i

if i ∈ u and x
(2)
i otherwise 14

Sgenu Generalized Sobol index of the group of variables
Xu 20

δu δ-index of the group of variables Xu 24

Sfulli Full Sobol index of the variable Xi 25

ST fulli Full total Sobol index of the variable Xi 25

Sindi Independent Sobol index of the variable Xi 25

ST indi Independent total Sobol index of the variable Xi

25

φi Shapley value of player i 26

Sp Set of permutations of [1 : p] 26

Ti(σ) Set of players preceding σ in order σ 26

ηi Shapley effect of the variable Xi 27

Vu Var(E(Y |Xu)) 28

Eu E(Var(Y |X−u)) 28

(Wu)u⊂[1:p] Either (Vu)u⊂[1:p] or (Eu)u⊂[1:p] 28

S++
p (R) Set of symmetric positive definite matrices of size

p× p with real coefficients 29

Σu,v Sub-matrix (Σi,j)i∈u,j∈v of Σ 29

Pi(σ) Ti(σ
−1) 30

List of Symbols from Part II

Êknown
u,MC Double Monte-Carlo estimator of Eu when the

input distribution is known 39

V̂ known
u,PF Pick-and-Freeze estimator of Vu when the input

distribution is known 40

(X(n))nin[1:N ] Observed i.i.d. sample of the input vector 50

fX Probability density function of X with respect to
a finite measure µ 51

kvN(l, n) Index such that X
(kvN (l,n))
v is the (or one of the) n-

th closest element to X
(l)
v in (X

(i)
v )i∈[1:N ], and such

that (kvN(l, n))n∈[1:NI ] are two by two distinct 52
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List of Symbols from Part III

Êmix
u,MC ”Mix” version of the double Monte-Carlo estima-

tor of Eu when the input distribution is unknown
53

Êknn
u,MC ”Knn” version of the double Monte-Carlo estima-

tor of Eu when the input distribution is unknown
53

Êu,MC Double Monte-Carlo estimator of Eu when the
input distribution is unknown (”mix” or ”knn”
version) 54

V̂ mix
u,PF ”Mix” version of the Pick-and-Freeze estimator of

Vu when the input distribution is unknown 55

V̂ knn
u,PF ”Knn” version of the Pick-and-Freeze estimator

of Vu when the input distribution is unknown 55

V̂u,PF Pick-and-Freeze estimator of Eu when the input
distribution is unknown (”mix” or ”knn” version)
55

List of Symbols from Part III

µ Mean of the Gaussian input vector X 68

Σ Covariance matrix of the Gaussian input vector
X 68

β Vector containing the coefficients of the linear
function f 68

K Number of independent groups of input variables
73

V g
w Var(E(Y |Aw)) 74
gw Component of the Hoeffding decomposition of g

corresponding to the variable Aw 74

Sgw Sobol index of the groups of variables Aw 74

V g,w
u Var(E(gw(Aw)|Xu)) 74

Sg,wu Shapley effect of the variable Xu for the function
gw 74

ηg,wi Shapley effect of the variable Xi for the function
gw 74

j(i) Index of the group of i, that is i ∈ Bj(i) 74

m Maximal size of group of input variables 77
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List of Symbols from Part III

y Limit of p/n in ]0, 1[ 82

(X(l))l∈[1:n] Observed i.i.d. sample of the input vector 82

Pp Set of partitions of [1 : p] 83

ΓB block-diagonal matrix with the same coefficients
as Γ in the block-diagonal structure B and with
zero coefficients out of the block-diagonal struc-
ture B 83

S++
p (R, B) Set of the symmetric positive definite matrices

whose block-diagonal structure is B 83

B(Γ) Block-diagonal structure of Γ 83

B∗ Block-diagonal structure of Σ 83

X Empirical estimator of µ 83

S Empirical estimator of Σ 83

lΓ Log-likelihood in Γ and X 84

pen Block-diagonal promoting penalization function
84

Φ Penalized log-likelihood function from S++
p (R) 84

κ Penalization coefficient 84

Ψ Penalized log-likelihood function from Pp 84
B̂tot Estimator of B∗ that reaches the minimum of Ψ

84

‖M‖max Norm max of M 85

B(α) Partition given by thresholding Σ by n−α 85

Ĉij Coefficient of the empirical correlation matrix 86

Bλ Partition given by thresholding the empirical cor-
relation matrix by λ 86

B̂Ĉ Argument of the minimum of Ψ over all the par-
titions given by thresholding the empirical corre-
lation matrix 86

B̂λ Partition given by thresholding the empirical cor-
relation matrix by n−1/3 86

B̂s Argument of the minimum of Ψ over the parti-
tions given by thresholding the empirical correla-
tion by (k/p)k∈[1:p] with a maximal size of group
smaller or equal than m 86

‖ · ‖F Frobenius norm 87
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List of Symbols of the article on permutations

Ỹ Vector of noisy observations 93

η(Z, g) vector containing all the Shapley effects with in-
put vector Z and model g 99

X{n} Gaussian vector with parameter µ{n} and Σ{n}

100

f
{n}
1 (x) Image of x− µ{n} through the differential of f at

µ{n} 100

f̃
{n}
1,h{n}(x) Image of x − µ{n} through a finite difference ap-

proximation of the differential of f at µ{n} 102

f̂
{n}(N)
lin Linear regression of f with a sample of X{n} of

size N 102

X̂{n} Empirical mean of an i.i.d. sample (U (l))l∈[1:n] 105

List of Symbols of the article on permutations

EN Set of integers from 1 to N 219

SN Set of permutations of EN 219

dτ Kendall’s tau distance 222

dH Hamming distance 222

dS Spearman’s footrule distance 222

Kθ1,θ2 Family of strictly positive definite kernels on SN
223

Kθ1,θ2,θ3 Family of positive definite kernels on SN 223

Y Gaussian process on SN 224

θ̂ML Maximum likelihood estimator of θ∗ 225

Lθ Log-likelihood 225

Rθ Covariance matrix of the observations 225

Ŷθ̂ML
Prediction of Y by plugging the estimated param-
eter in the conditional expectation expression for
Gaussian processes 227

ER Subset of SN corresponding to the partial ranking
R 234

davg Measure of dissimilarity between partial rankings
235

dpartial Pseudometric on partial rankings 235

Kθ1,θ2,θ3 Positive definite kernel on partial rankings 236
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[HP04] Laurent Hascoët and Valérie Pascual. Tapenade 2.1 user’s guide. 2004.

[HS96] Toshimitsu Homma and Andrea Saltelli. Importance measures in
global sensitivity analysis of nonlinear models. Reliability Engineering
and System Safety, 52(1):1–17, 1996.

[HSNP15] Masashi Hyodo, Nobumichi Shutoh, Takahiro Nishiyama, and Tat-
jana Pavlenko. Testing block-diagonal covariance structure for high-
dimensional data. Statistica Neerlandica, 69(4):460–482, 2015.

[HT11] Hugo Hammer and H̊akon Tjelmeland. Approximate forward-
backward algorithm for a switching linear Gaussian model. Com-
putational Statistics & Data Analysis, 55(1):154–167, January 2011.

[IAP20] Bertrand Iooss, Janon Alexandre, and Gilles Pujol. sensitivity: Global
Sensitivity Analysis of Model Outputs, February 2020.

[IH90] Ronald L Iman and Stephen C Hora. A robust measure of uncer-
tainty importance for use in fault tree system analysis. Risk analysis,
10(3):401–406, 1990.
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[LRGG19] Maria Lomeĺı, Mark Rowland, Arthur Gretton, and Zoubin Ghahra-
mani. Antithetic and Monte Carlo kernel estimators for partial rank-
ings. Statistics and Computing, 29(5):1127–1147, September 2019.
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Appendix VII

Résumé en français

L’analyse de sensibilité est un outil important qui permet d’analyser des modèles
mathématiques et des codes de calculs. Elle révèle les variables d’entrées les plus
influentes sur la variable de sortie, en leur affectant une valeur appelée ”indice de
sensibilité”. Dans ce cadre, les effets de Shapley, récemment définis par Owen,
permettent de gérer des variables d’entrées dépendantes. Cependant, l’estimation
de ces indices n’est proposée dans l’état de l’art que dans deux cadres très parti-
culiers : lorsque la loi du vecteur d’entrée est connue ou lorsque les entrées sont
gaussiennes et le modèle est linéaire. Cette thèse se divise en deux parties, corre-
spondantes à ces deux cadres d’estimation.

Dans la première partie, nous nous intéressons à l’estimation des effets de
Shapley lorsque la loi du vecteur d’entrée est connue. L’estimateur proposé dans
l’état de l’art demande de pouvoir générer des échantillons selon les lois condi-
tionnelles de la distribution du vecteur d’entrée. Nous proposons une nouvelle
méthode d’estimation plus efficace et les paramètres optimaux sont calculés dans
un cadre théorique. Ensuite, nous élargissons le cadre d’application de ces esti-
mateurs lorsque nous ne pouvons pas générer selon les lois conditionnelles mais
lorsqu’un échantillon du vecteur d’entrée est disponible. Nous proposons une
méthode d’estimation basée sur une méthode de plus proches voisins permettant
de remplacer la connaissance des lois conditionnelles. Nous montrons la conver-
gence de ces nouveaux estimateurs et des applications numériques sont réalisées
sur des données simulées et des données réelles. Un des estimateurs, qui prend en
compte des variables catégorielles et réelles (continues ou non), a été implémenté
dans le package sensitivity sous la fonction ”shapleySubsetMC”.

La deuxième partie porte sur les effets de Shapley dans le cadre linéaire. A l’aide
de l’état de l’art, nous proposons un algorithme permettant de calculer les valeurs
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théoriques des effets de Shapley dans ce cadre lorsque les paramètres sont connus.
Cependant, nous soulignons les problèmes de calculs liés à la grande dimension.
Nous proposons alors des solutions lorsque la matrice de covariance du vecteur
d’entrée est diagonale par blocs et en déduisons un algorithme implémenté dans le
package sensitivity sous la fonction ”shapleyLinearGaussian”. Cet algorithme
est ensuite testé sur des données réelles provenant de la sûreté nucléaire.

Nous poursuivons les travaux sur le cadre linéaire gaussien, avec une matrice
de covariance diagonale par blocs lorsque les paramètres sont inconnus. Nous
traitons le cas où la dimension du vecteur d’entrée est fixé ainsi que celui où
la dimension du vecteur d’entrée converge vers l’infini, à la même vitesse que le
nombre d’observations. Nous proposons des estimateurs diagonaux par blocs de la
matrice de covariance et nous en déduisons des estimateurs des effets de Shapley
dont l’erreur totale converge vers 0 et fournissons des vitesses de convergence. Un
de ces estimateurs a été implémenté dans le package sensitivity sous la fonction
”shapleyBlockEstimation”. Nous appliquons cet estimateur des effets de Shapley
à des données semi-réelles.

Enfin nous nous intéressons aux cadres proches du cadre linéaire gaussien. Dans
un premier temps nous traitons le cas où le vecteur d’entrée est gaussien avec une
matrice de covariance convergeant vers 0 et le modèle n’est pas linéaire. Nous
prouvons que la différence entre les effets de Shapley correspondant au modèle
non linéaire et les effets de Shapley correspondant à une approximation linéaire
du modèle converge vers 0. Nous fournissons, pour chaque approximation linéaire
une vitesse de convergence. Dans un deuxième temps, nous supposons que le
vecteur d’entrée est une moyenne empirique (pas nécessairement gaussienne). Nous
montrons que, lorsque la taille de l’échantillon permettant de calculer la moyenne
empirique tend vers l’infini, les effets de Shapley convergent vers des effets de
Shapley provevant du cadre linéaire gaussien. Nous proposons enfin un cadre
pratique où le vecteur d’entrée est une moyenne empirique et où les effets de
Shapley fournissent des informations importantes.
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