.. .. Contexte-théorique,

N. .. Hypersurfaces,

L. .. Nurbs,

, Formulation d'un critère de résistance en fatigue dans la méthode SIMP basée sur les NURBS

. .. Exemples-numériques,

, Stratégie de remplissage de la topologie optimale par des structures cellulaires

.. .. Le,

.. .. Résultats,

.. .. Conclusions,

, EXEMPLES NUMÉRIQUES de contrainte, quatreéléments (2 × 2) autour de la force appliquée ontété exclus de la formulation de l'OT

, Comme pour les cas 2D discuté précédemment, l'objectif de cetteétude sur des cas 3D est de regarder l'influence de la contrainte d'optimisation sur la résistance en fatigue sur la topologie optimisée, Un pas de maillage fixeégaleà 4 mm est imposé aux deux modèles EF, utilisant deséléments SOLID186 avec c ref = 1891 Nmm dans le BK1-3D et c ref = 10363.4 Nmm dans le BK2-3D

N. Iso, NF ISO 17296-2 Fabrication additive -Principes généraux -Partie 2 : Vue d'ensemble des catégories de procédés et des matériaux de base, 2005.

, ASTM F2924 Standard Specification for Additive Manufacturing Titanium-6 Alumi-num4 Vanadium with Powder Bed Fusion, ASTM, 2014.

P. Lohmuller, J. Favre, B. Piotrowski, S. Kenzari, and P. Laheurte, Stress concentration and mechanical strength of cubic lattice architectures, Materials, vol.11, issue.7, p.1146, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01943860

, EOS

A. Charles, A. Elkaseer, L. Thijs, V. Hagenmeyer, and S. Scholz, Effect of Process Parameters on the Generated Surface Roughness of Down-Facing Surfaces in Selective Laser Melting, Applied Sciences, vol.9, issue.6, p.1256, 2019.

M. Losertová and V. Kubes, Microstructure and mechanical properties of selective laser melted ti6al4v alloy, Materials Science and Engineering, vol.266, p.12009, 2017.

P. Li, D. H. Warner, A. Fatemi, and N. Phan, Critical assessment of the fatigue performance of additively manufactured Ti-6Al-4V and perspective for future research, International Journal of Fatigue, vol.85, pp.130-143, 2016.

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van-humbeeck, and J. Kruth, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Materialia, vol.58, pp.3303-3312, 2010.

B. Vrancken, L. Thijs, J. Kruth, and J. Van-humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting : Microstructure and mechanical properties, Journal of Alloys and Compounds, vol.541, pp.177-185, 2012.

T. Vilaro, C. Colin, and J. D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti6Al-4V Alloy Processed by Selective Laser Melting, Metallurgical and Materials Transactions A, vol.42, pp.3190-3199, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00624108

G. Kasperovich and J. Hausmann, Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting, Journal of Materials Processing Technology, vol.220, pp.202-214, 2015.

B. Vaysette, N. Saintier, C. Brugger, and M. Elmay, Comportement en fatigue de pièces de Ti-6Al-4V obtenues par SLM et EBM : effet de la rugosité, Ecole Nationale Supérieure des Arts et Métiers ParisTech, 2019.

A. Panesar, M. Abdi, D. Hickman, and I. Ashcroft, Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing, Additive Manufacturing, vol.19, pp.81-94, 2018.

T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian et al., Slm lattice structures : Properties, performance, applications and challenges, Materials & Design, vol.183, pp.108-137, 2019.

M. Leary, M. Mazur, H. Williams, E. Yang, A. Alghamdi et al., Inconel 625 lattice structures manufactured by selective laser melting (slm) : Mechanical properties, deformation and failure modes, Materials & Design, vol.157, pp.179-199, 2018.

. Disponible,

L. Xiao, W. Song, X. Xu, and S. Gao, Process-induced geometric defect sensitivity of ti-6al-4v lattice structures with different mesoscopic topologies fabricated by electron beam melting, Materials Science and Engineering : A, vol.778, p.139092, 2020.

B. Van-hooreweder and J. Kruth, Advanced fatigue analysis of metal lattice structures produced by selective laser melting, CIRP Annals, vol.66, issue.1, pp.221-224, 2017.

. Disponible,

C. De-formanoir, M. Suard, R. Dendievel, G. Martin, and S. Godet, Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching, Additive Manufacturing, vol.11, pp.71-76, 2016.

J. Benabes, Approcheénergétique non locale du calcul de durée de vie de structure en fatigue multiaxiale sous chargement d'amplitude variable : application a une roue de train ferroviaire, Philosophy, 2006.

F. Calignano, Design optimization of supports for overhanging structures in aluminium and titanium alloys by selective laser melting, Materials & Design, vol.64, pp.203-213, 2014.

T. Wohlers and T. Caffrey, Wohlers report 2015 : Additive manufacturing and 3d printing state of the industry annual worldwide progress report. Wohlers Associate, 2015.

A. Cohen, R. Chen, U. Frodis, M. Wu, and C. Folk, Microscale metal additive manufacturing of multi-component medical devices, Rapid Prototyping Journal, vol.16, pp.209-215, 2010.

M. Dalton, J. Blundell, and G. S. Finlayson, Examination of food reward and energy intake under laboratory and free-living conditions in a trait binge eating subtype of obesity, Frontiers in psychology, vol.4, p.757, 2013.

F. P. Melchels, M. Domingos, T. J. Klein, J. Malda, P. J. Bartolo et al., Additive manufacturing of tissues and organs, Progress in Polymer Science, vol.37, pp.1079-1104, 2012.

A. Podshivalov, S. Bronnikov, V. Zuev, T. Jiamrungraksa, and S. Charuchinda, Synthesis and characterization of polyurethane-urea microcapsules containing galangal essential oil : statistical analysis of encapsulation, Journal of Microencapsulation, vol.30, issue.2, pp.198-203, 2013.

M. A. Garcia, M. S. Alvarez, H. Sailem, V. Bousgouni, J. Sero et al., Differential rnai screening provides insights into the rewiring of signalling networks during oxidative stress, Molecular BioSystems, vol.8, pp.2605-2613, 2012.

G. Méjica and A. Lantada, Comparative study of potential pentamodal metamaterials inspired by bravais lattices, Smart Mater. Struct, vol.22, p.5013, 2013.

J. Christensen and F. García, Anisotropic metamaterials for full control of acoustic waves, Phys. Rev. Lett, vol.108, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00810624

Z. Liang and J. Li, Extreme acoustic metamaterial by coiling up space, Phys. Rev. Lett, vol.108, issue.11, 2012.

C. Park, J. Park, S. Lee, Y. Seo, C. Kim et al., Extreme acoustic metamaterial by coiling up space, Phys. Rev. Lett, vol.107, 2011.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham et al., Inhomogenous dielectric metamaterials with space-variant polarizability, Phys. Rev. Lett, vol.98, 2007.

J. Schuller, R. Zia, T. Taubner, and M. Brongersma, Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles, Phys. Rev. Lett, vol.99, 2007.

K. Vynck, D. Felbacq, E. Centeno, A. I. C?buz, D. Cassagne et al., All-dielectric rod-type metamaterials at optical frequencies, Phys. Rev. Lett, vol.102, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00385881

R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, Repulsive casimir force in chiral metamaterials, Phys. Rev. Lett, vol.103, 2009.

N. Fang, D. Xi, and J. Xu, Ultrasonic metamaterials with negative modulus, Nature Mater, vol.5, pp.452-456, 2006.

Y. Kim, J. Hwang, B. Khuyen, B. Tung, K. Kim et al., Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers, Nature Mater, pp.711-717, 2018.

C. Czech, P. Guarneri, N. Thyagaraja, and G. Fadel, Systematic design optimization of the metamaterial shear beam of a nonpneumatic wheel for low rolling resistance, J. Mech. Des, vol.137, p.41404, 2015.

N. Iso/astm, NF ISO/ASTM 52900 Fabrication additive -Principes généraux -Terminologie, 2016.

, NF ISO/ASTM 52915 Standard Specification for additive manufacturing file format (AMF) Version 1.1, 2013.

, NF ISO 17296-4 Fabrication additive -Principes généraux -Partie 4 : Vue d'ensemble deséchanges de données, 2015.

G. Costa, J. Pailhès, and M. Montemurro, Design and Optimisation Methods for Structures produced by means of Additive Layer Manufacturing processes, Ecole Nationale Supérieure des Arts et Métiers ParisTech, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02069224

L. Rännar, A. Glad, and C. Gustafson, Efficient cooling with tool inserts manufactured by electron beam melting, Rapid Prototyping Journal, vol.13, pp.128-135, 2007.

. Disponible,

S. Ford and M. Despeisse, Additive manufacturing and sustainability : an exploratory study of the advantages and challenges, Journal of Cleaner Production, vol.137, pp.1573-1587, 2016.

R. Becker, A. Grzesiak, and A. Henning, Rethink assembly design, Assembly Automation, vol.25, pp.262-266, 2005.

H. Galarraga, D. A. Lados, R. R. Dehoff, M. M. Kirka, and P. Nandwana, Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM), Additive Manufacturing, vol.10, pp.47-57, 2016.

L. Löber, C. Flache, R. Petters, U. Kühn, and J. Eckert, Comparison of different post processing technologies for SLM generated 316l steel parts, Rapid Prototyping Journal, vol.19, pp.173-179, 2013.

B. Vayre, F. Vignat, and F. Villeneuve, Designing for additive manufacturing, Procedia CIRP, vol.3, pp.632-637, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00733693

, Identification on Some Design Key Parameters for Additive Manufacturing : Application on Electron Beam Melting, vol.7, pp.264-269, 2013.

B. P. Conner, G. P. Manogharan, L. M. Martof, A. N. Rodomsky, C. M. Rodomsky et al., Making sense of 3-D printing : Creating a map of additive manufacturing products and services, Additive Manufacturing, issue.1-4, pp.64-76, 2014.

L. S. Bertol, W. K. Junior, F. P. Silva, and C. Aumund-kopp, Medical design : Direct metal laser sintering of Ti-6Al-4V, Materials & Design, vol.31, pp.3982-3988, 2010.

. Disponible,

A. Bandyopadhyay, F. Espana, V. Krishna, S. Bose, Y. Ohgami et al., Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta Biomaterialia, vol.6, pp.1640-1648, 2010.

J. Wooten, C. Uwate, and P. Yavari, Electron Beam Melting Manufacturing of Flight Hardware for the Navy UCAS Program

J. Kruth, B. Vandenbroucke, J. Van-vaerenbergh, and P. Mercelis, Benchmarking of Different SLS/SLM Processes as Rapid Manufacturing Techniques, 2005.

. Bibliographie,

C. R. Deckard, Method and apparatus for producing parts by Selective Sintering, 1989.

J. Kruth, P. Mercelis, J. Van-vaerenbergh, L. Froyen, and M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal, vol.11, issue.1, pp.26-36, 2005.

D. K. Do and P. Li, The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting, Virtual and Physical Prototyping, vol.11, issue.1, pp.41-47, 2016.

P. Li, D. H. Warner, A. Fatemi, and N. Phan, Critical assessment of the fatigue performance of additively manufactured Ti6Al-4V and perspective for future research, International Journal of Fatigue, vol.85, pp.130-143, 2016.

R. Li, J. Liu, Y. Shi, L. Wang, and W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process, International Journal of Advanced Manufacturing Technologies, vol.59, pp.1025-1035, 2012.

B. Song, S. Dong, B. Zhang, H. Liao, and C. Coddet, Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V, Materials & Design, vol.35, pp.120-125, 2012.

B. Spierings, N. Herres, and G. Levy, Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts, Rapid Prototyping Journal, vol.17, pp.195-202, 2011.

M. Svensson, Influence of interstitials on material properties of Ti6Al4V fabricated with Electron Beam Melting (EBM)," dans proceedings of the 22nd Conference and Exposition American Society for Metals, 2011.

B. Song, S. Dong, B. Zhang, H. Liao, and C. Coddet, Effects of processing parameters on BIBLIOGRAPHIE microstructure and mechanical property of selective laser melted Ti6Al4V, Materials & Design, vol.35, pp.120-125, 2012.

D. K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke et al., Process optimization and microstructural analysis for selective laser melting of alsi10mg, Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium, 2011.

H. Gong, K. Rafi, H. Gu, G. D. Ram, T. Starr et al., Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting, Materials & Design, vol.86, pp.545-554, 2015.

T. Kimura and T. Nakamoto, Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting, Materials & Design, vol.89, pp.1294-1301, 2016.

H. R. Ammar, A. M. Samuel, and F. H. Samuel, Effect of casting imperfections on the fatigue life of 319-F and A356-T6 Al-Si casting alloys, Materials Science and Engineering : A, vol.473, issue.2, pp.65-75, 2008.

S. Tammas-williams, H. Zhao, F. Lãl'onard, F. Derguti, I. Todd et al., XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting. Materials Characterization, Materials Science and Engineering : A, vol.102, pp.47-61, 2015.

A. Antonysamy, J. Meyer, and P. Prangnell, Effect of build geometry on the ?-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting, Materials Characterization, vol.84, pp.153-168, 2013.

V. Cain, L. Thjis, J. Van-humbeeck, B. Van-hooreweder, and R. Knutsen, Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting, Additive Manufacturing, vol.5, pp.68-76, 2014.

. Bodycote, HIP

M. Simonelli, Y. Y. Tse, and C. Truck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V, Materials Science and Engineering : A, vol.616, pp.1-11, 2014.

P. Mercelis and J. P. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyping Journal, vol.12, pp.254-265, 2006.

P. Edwards and M. Ramulu, Fatigue performance evaluation of selective laser melting Ti-6Al-4V, Materials Science and Engineering : A, vol.598, pp.327-337, 2014.

. Disponible,

J. Günther, D. Krewerth, T. Lippmann, S. Leuders, T. Tröster et al., Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime, International Journal of Fatigue, vol.94, issue.2, pp.236-245, 2017.

. Disponible,

V. Chastand, A. Tezenas, Y. Cadoret, P. Quaegebeur, W. Maia et al., Fatigue characterization of Titanium Ti-6Al-4V samples produced by Additive Manufacturing, Procedia Structural Integrity, vol.2, pp.3168-3176, 2016.

Y. Combres and C. Champin, Techniques de l'ingénieur Traitements thermiques des aciers, des alliages et des fontes, vol.33, p.24, 2013.

R. R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering : A, vol.213, issue.2, pp.10233-10234, 1996.

Y. Combres, Propriétés du titane et de ses alliages, 1999.

R. K. Nalla, R. O. Ritchie, B. L. Boyce, J. P. Campbell, and J. O. Peters, Influence of microstructure on high-cycle fatigue of ti-6al-4v : Bimodal vs. lamellar structures, Metallurgical and Materials Transactions A, vol.33, pp.899-918, 2002.

A. , Heat Treatment of Titanium Alloy Parts, 2014.

E. Brandl and D. Greitemeier, Microstructure of additive layer manufactured Ti-6Al-4V after exceptional post heat treatments, Materials Letters, vol.81, pp.84-87, 2012.

. Disponible,

S. Bagehorns, Surface finishing of additive manufactured ti-6al-4v -a comparison of electrochemical and mechanical treatments, dans proceedings of the 6th European Conference For Aerospace Sciences, 2015.

D. B. Witkin, D. N. Patel, H. Helvajian, L. Steffeney, and A. Diaz, Surface treatment of powder-bed fusion additive manufactured metals for improved fatigue life, Journal of Materials Engineering and Performance, vol.28, pp.681-692, 2019.

M. Benedetti, M. Cazzolli, V. Fontanari, and M. Leoni, Fatigue limit of ti6al4v alloy produced by selective laser sintering, Structural Integrity Procedia, vol.2, pp.2452-3216, 2016.

. Disponible,

T. M. Mower and M. J. Long, Mechanical behavior of additive manufactured, powder bed laser-fused materials, Materials Science and Engineering : A, vol.651, pp.198-213, 2016.

A. M. Dixon and W. J. Mood, A Method for Obtaining and Analyzing Sensitivity Data, Journal of the American Statistical Association, vol.43, pp.109-126, 1948.

. Disponible,

A. Brand, Données technologiques sur la fatigue, CETIM, vol.384, 1999.

A. Buch, Analytical approach to size and notch-size effects in fatigue of aircraft material specimens, Materials Science and Engineering, vol.15, issue.1, pp.75-85, 1974.

. Disponible, , pp.90032-90041

R. A. Smith and K. J. Miller, Prediction of fatigue regimes in notched components, International Journal of Mechanical Sciences, vol.20, pp.201-206, 1978.

. Disponible, , pp.90082-90088

K. J. Miller, The behaviour of short fatigue cracks and their initiation part I-A review of two recent books, Fatigue& Fracture of Engineering Materials & Structures, vol.10, issue.2, pp.93-113, 1987.

K. J. Miller and K. P. Zachariah, Cumulative damage laws for fatigue crack initiation and stage I propagation, The Journal of Strain Analysis for Engineering Design, vol.12, pp.262-270, 1977.

B. Van-hooreweder, R. Boonen, D. Moens, J. Kruth, and P. Sas, On the determination of fatigue properties of ti6al4v produced by selective laser melting, dans proceedings of AIAA Structures, Structural Dynamics and Materials Conference, 2012.

H. Gong, H. K. Rafi, T. L. Starr, and B. E. Stucker, Effect of defects on fatigue tests of asbuilt ti-6al-4v parts fabricated by selective laser melting, dans proceedings of the 23rd Annual International Solid Freeform Fabrication Symposium, 2012.

H. K. Rafi, N. V. Karthik, H. Gong, T. L. Starr, and B. E. Stucker, Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, Journal of Materials Engineering and Performance, vol.22, pp.3872-3883, 2013.

. Bibliographie,

E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther et al., Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties, Physics Procedia, vol.56, pp.371-378, 2014.

J. Oh, J. G. Lee, N. J. Kim, S. Lee, and E. W. Lee, Effects of thickness on fatigue properties of investment cast ti-6al-4v alloy plates, Journal of Materials Science, vol.39, issue.2, pp.587-591, 2004.

S. Kapfer, T. S. Hyde, K. Mecke, H. C. Arns, and E. G. Schröder-turk, Minimal surface scaffold designs for tissue engineering, Biomaterials, vol.32, pp.6875-6882, 2011.

. Disponible,

, Triply periodic minimal surfaces, scientific graphic project, 2017.

R. S. Kumar and D. L. Mcdowell, Multifunctional design of two-dimensional cellular materials with tailored mesostructure, International Journal of Solids and Structures, vol.46, pp.2871-2885, 2009.

L. E. Murr, S. M. Gaytan, F. Medina, E. Martinez, J. L. Martinez et al., Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting, Materials Science and Engineering : A, vol.527, pp.1861-1868, 2010.

T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian et al., Ultralight metallic microlattices, Journal of Materials Research and Technology, vol.334, pp.962-965, 2011.

K. Lietaert, A. Cutolo, D. Boey, and B. Van-hooreweder, Fatigue life of additively manufactured ti6al4v scaffolds under tension-tension, tension-compression and compressioncompression fatigue load, Scientific Reports, vol.8, pp.49-57, 2018.

. Bibliographie,

C. S. Alsalla and L. Hao, Fracture toughness and tensile strength of 316l stainless steel cellular lattice structures manufactured using the selective laser melting technique, Materials Science and Engineering : A, vol.669, pp.1-6, 2016.

P. Koehnen, C. Haase, J. Bültmann, S. Ziegler, J. H. Schleifenbaum et al., Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel, Materials & Design, vol.145, pp.205-217, 2018.

M. Ashby, The properties of foams and lattices, Philosophical Transactions of the Royal Society, A : Mathematical, Physical & Engineering Sciences, vol.364, pp.15-30, 1838.

H. E. Burton, N. M. Eisenstein, B. M. Lawless, P. Jamshidi, M. A. Segarra et al., The design of additively manufactured lattices to increase the functionality of medical implants, Materials Science and Engineering C, vol.94, pp.901-908, 2019.

I. Maskery, N. T. Aboulkhair, A. O. Aremu, C. J. Tuck, and I. A. Ashcrof, Compressive failure modes and energy absorption in additively manufactured double gyroid lattices, Additive Manufacturing, vol.16, pp.24-29, 2017.

A. A. Zadpoor, Mechanical performance of additively manufactured meta-biomaterials, Acta Biomaterialia, vol.85, p.38, 2018.

S. Amin-yavari, S. M. Ahmadi, R. Wauthle, B. Pouran, J. Schrooten et al., Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials, Journal of the Mechanical Behavior of Biomedical Materials, vol.43, pp.91-100, 2015.

S. Zhao, S. J. Li, W. T. Hou, Y. L. Hao, R. Yang et al., The influence of cell morphology on the compressive fatigue behavior of ti-6al-4v meshes fabricated by electron beam melting, Journal of the Mechanical Behavior of Biomedical Materials, vol.59, pp.251-264, 2016.

J. De-krijger, C. Rans, B. Van-hooreweder, K. Lietaert, B. Pouran et al., Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading, Journal of the Mechanical Behavior of Biomedical Materials, vol.70, pp.7-16, 2017.

N. W. Hrabe, P. Heinl, B. Flinn, C. Köner, and R. K. Bordia, Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V), Journal of Biomedical Materials Research Part B : Applied Biomaterials, vol.99, issue.2, pp.313-320, 2011.

. Disponible,

S. Amin-yavari, R. Wauthlé, J. Van-der-stok, A. Riemslag, M. Janssen et al.,

J. Kruth, H. Schrooten, A. A. Weinans, and . Zadpoor, Fatigue behavior of porous biomaterials manufactured using selective laser melting, Materials Science and Engineering : C, vol.33, pp.4849-4858, 2013.

Y. J. Liu, H. L. Wang, S. J. Li, S. G. Wang, W. J. Wang et al., Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting, Acta Materialia, vol.126, pp.58-66, 2017.

. Disponible,

A. Zargarian, M. Esfahanian, J. Kadkhodapour, and S. Ziaei-rad, Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures

, Materials Science and Engineering : C, vol.60, pp.339-347, 2016.

M. Dallago, V. Fontanari, E. Torresani, M. Leoni, C. Pederzolli et al., Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting, Journal of the Mechanical Behavior of Biomedical Materials, vol.78, pp.381-394, 2018.

. Bibliographie,

M. Speirs, B. Van-hooreweder, J. Van-humbeeck, and J. P. Kruth, Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison, Journal of the Mechanical Behavior of Biomedical Materials, vol.70, pp.53-59, 2017.

S. Liu and H. Y. Du, Investigation on fatigue property of three-dimensional reticulated porous metal foams, Materials Science and Technology, vol.28, issue.5, pp.569-575, 2012.

. Disponible,

K. S. Chan, M. Koike, R. L. Mason, and T. Okabe, Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants, Metallurgical and Materials Transactions A, vol.44, pp.1010-1022, 2013.

S. Yue, R. M. Pillar, and G. C. Weatherly, Fatigue strength of porous coated ti-6al-4v implant alloy, J Biomed Mater Res, vol.18, pp.1043-1058, 1984.

M. Jamshidinia, F. Kong, and R. Kovacevic, The numerical modeling of fatigue properties of a bio-compatible dental implant produced by electron beam melting (ebm)," dans proceedings of the 24th Annual International Solid Freeform Fabrication Symposium, 2013.

P. Terriault and V. Brailovski, Modeling and simulation of large, conformal, porositygraded and lightweight lattice structures made by additive manufacturing, Finite Elements in Analysis and Design, vol.138, pp.1-11, 2018.

R. Hedayati, H. Hosseini-toudeshky, M. Sadighi, M. Mohammadi-aghdam, and A. A. Zadpoor, Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials, International Journal of Fatigue, vol.84, pp.67-79, 2016.

. Disponible,

G. Campoli, M. S. Borleffs, A. Y. , R. Wauthle, H. Weinans et al., Mechanical properties of open-cell metallic biomaterials manufactured using additive BIBLIOGRAPHIE manufacturing, Materials & Design, vol.49, pp.957-965, 2013.

L. Huynh, J. Rotella, and M. D. Sangid, Fatigue behavior of in718 microtrusses produced via additive manufacturing, Materials & Design, vol.105, pp.278-289, 2016.

E. Uhlmann, C. Schmiedel, and J. Wendler, Cfd simulation of the abrasive flow machining process, Procedia CIRP, vol.31, pp.209-214, 2015.

Y. Y. Sun, S. Gulizia, C. H. Oh, D. Fraser, M. Leary et al., The influence of as-built surface conditions on mechanical properties of ti-6al-4v additively manufactured by selective electron beam melting, JOM, vol.68, pp.791-798, 2016.

G. Pyka, A. Burakowski, G. Kerckhofs, M. Moesen, S. Van-bael et al., Surface modification of ti6al4v open porous structures produced by additive manufacturing, Advanced Engineering Materials, vol.14, issue.6, pp.363-370, 2012.

S. Van-bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten et al., Micro-ct-based improvement of geometrical and mechanical controllability of selective laser melted ti6al4v porous structures, Materials Science and Engineering : A, vol.528, pp.7423-7431, 2011.

G. Pyka, G. Kerckhofs, I. Papantoniou, M. Speirs, J. Schrooten et al., Surface roughness and morphology customization of additive manufactured open porous ti6al4v structures, Materials, vol.6, pp.4737-4757, 2013.

G. A. Longhitano, M. A. Larosa, A. L. Munhoz, C. A. Zavaglia, and M. C. Ierardi, Surface finishes for ti-6al-4v alloy produced by direct metal laser sintering, Materials Research, vol.18, pp.838-842, 2015.

L. A. Dobrzanski, A. D. Dobrzanska-danikiewicz, T. G. Gawel, and A. Achtelik-franczak, Selective laser sintering and melting of pristine titanium and titanium ti6al4v alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials, vol.60, 2015.

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster et al., On the mechanical behaviour of titanium alloy tial6v4 manufactured by selective laser melting : fatigue resistance and crack growth performance, International Journal of Fatigue, vol.48, pp.300-307, 2013.

M. W. Wu, J. K. Chen, B. H. Lin, and P. H. Chiang, Improved fatigue endurance ratio of additive manufactured ti-6al-4v lattice by hot isostatic pressing, Materials & Design, vol.134, pp.163-170, 2017.

H. Gough and H. Pollard, The strength of metals under combined alternating stresses, dans proceedings of the Institution of Mechanical Engineers, 1935.

K. D. Van-et and I. V. Papadopoulos, High Cycle Metal Fatigue : From Theory to Applications, 1999.

B. Crossland, Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel, dans proceedings of the International Conference on Fatigue of Metals, 1956.

E. Macha and C. Sonsino, Energy criteria of multiaxial fatigue failure, Fatigue & Fracture of Engineering Materials & Structures, vol.22, pp.1053-1070, 1999.

F. Ellyin, A criterion for fatigue under multiaxial states of stress, Mechanics Research Communications, vol.1, pp.219-224, 1974.

F. Ellyin, K. Golos, and Z. Xia, In-phase and out-of-phase multiaxial fatigue, Journal of Engineering Materials and Technology, vol.113, issue.1, pp.112-118, 1991.

. Bibliographie,

C. Froustey and S. Lasserre, Multiaxial fatigue endurance of 30NCD16 steel, International Journal of Fatigue, vol.11, pp.90436-90438, 1989.

T. Palin-luc and S. Lasserre, An energy based criterion for high cycle multiaxial fatigue, European Journal of Mechanics -A/Solids, vol.17, issue.2, pp.237-251, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01376427

. Disponible, , pp.80084-80087

A. Banvillet, T. Palin-luc, and S. Lasserre, A volumetric energy based high cycle multiaxial fatigue criterion, International Journal of Fatigue, vol.25, pp.755-769, 2003.

,

N. Saintier, T. Palin-luc, J. Benabes, and F. Cocheteux, Non-local energy based fatigue life calculation method under multiaxial variable amplitude loadings, International Journal of Fatigue, vol.54, pp.68-83, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875444

A. Hor, N. Saintier, C. Robert, T. Palin-luc, and F. Morel, Analysis of the multiaxial fatigue strength at the mesoscopic scale using 3d microstructure modeling and extreme value statistics, dans proceedings of the 13th International Conference on Fracture, 2013.

B. Vayssette, N. Saintier, C. Brugger, M. Elmay, and E. Pessard, Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM : Effect on the High Cycle Fatigue life, Procedia Engineering, vol.213, pp.89-97, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02333371

A. F. Jenkinson, The frequency distribution of the annual maxima (or minimum) values of meteorological elements, Quarterly Journal of the Royal Meteorological Society, vol.81, pp.158-171, 1955.

S. Beretta and Y. Murakami, Statistical analysis of defects for fatigue strength prediction and quality control of materials, Fatigue & Fracture of Engineering Materials & Structures, vol.21, pp.1049-1065, 1998.

Y. Murakami and S. Beretta, Small defects and inhomogeneities in fatigue strength : Experiments, models and statistical implications, Extremes, vol.2, pp.123-147, 1999.

H. V. Atkinson, Characterization of inclusions in clean steels : A review including the statistics of extremes methods, Progress in Materials Science, vol.48, issue.5, pp.457-520, 2003.

B. Gerin, E. Pessard, F. Morel, and C. Verdu, A non-local approach to model the combined effects of forging defects and shot-peening on the fatigue strength of a pearlitic steel, Theoretical and Applied Fracture Mechanics, vol.93, pp.19-32, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02295268

T. Persenot, J. Buffiere, E. Maire, R. Dendievel, and G. Martin, Fatigue properties of ebm as-built and chemically etched thin parts, Procedia Structural Integrity, vol.7, pp.158-165, 2017.

C. P. Przybyla and D. L. Mcdowell, Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex ti-6al-4v, International Journal of Plasticity, vol.27, pp.1871-1895, 2011.

M. C. Delfour and J. Zolésio, Shape and geometries. analysis, differential calculus and optimization, Society for Industrial and Applied Mathematics, 2001.

A. Henrot and M. Pierre, Variation et optimisation de formes. Mathématiques & Applications, 2005.

G. Allaire, Conception Optimale des Structures. Mathématiques & Applications, 2007.

N. V. Banichuk, Introduction to optimization of structures. Mathématiques & Applications, 1990.

J. Haslinger and R. Mäkinen, Introduction to shape optimization. Theory, approximation and computation, Society for Industrial and Applied Mathematics, 2003.

M. Montemurro, A. Vincenti, and P. Vannucci, A two-level procedure for the global optimum design of composite modular structures -Application to the design of an aircraft wing. Part 1 : theoretical formulation, Journal of Optimization Theory and Applications, vol.155, issue.1, pp.1-23, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01666666

, A two-level procedure for the global optimum design of composite modular structures -Application to the design of an aircraft wing. Part 2 : numerical aspects and examples, Journal of Optimization Theory and Applications, vol.155, issue.1, pp.24-53, 2012.

. Disponible,

, Design of elastic properties of laminates with minimum number of plies, Mechanics of Composite Materials, vol.162, pp.369-390, 2012.

A. Catapano and M. Montemurro, A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I : Homogenisation of core properties, Composite structures, vol.118, pp.664-676, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063337

/. Doi,

, A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II : the optimisation strategy, Composite structures, vol.118, pp.677-690, 2014.

. Disponible,

M. Montemurro, A. Vincenti, and P. Vannucci, The Automatic Dynamic Penalisation method (ADP) for handling constraints with genetic algorithms, Computer Methods in Applied Mechanics and Engineering, vol.256, pp.70-87, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01667022

M. Montemurro, Y. Koutsawa, S. Belouettar, A. Vincenti, and P. Vannucci, Design of damping properties of hybrid laminates through a global optimization strategy, Composite Structures, vol.94, issue.11, pp.3309-3320, 2012.

M. Montemurro, H. Nasser, Y. Koutsawa, S. Belouettar, A. Vincenti et al., Identification of electromechanical properties of piezoelectric structures through evolutionary BIBLIOGRAPHIE optimisation techniques, International Journal of Solids and Structures, vol.49, pp.1884-1892, 2012.

M. Montemurro, A. Vincenti, Y. Koutsawa, and P. Vannucci, A two-level procedure for the global optimisation of the damping behaviour of composite laminated plates with elastomer patches, Journal of Vibration and Control, vol.21, pp.1778-1800, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00947720

. Disponible,

M. Montemurro, A. Pagani, G. A. Fiordilino, J. Pailhès, and E. Carrera, A general multi-scale two-level optimisation strategy for designing composite stiffened panels, Composite Structures, vol.201, pp.1778-1800, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02354568

/. Doi,

L. Cappelli, M. Montemurro, F. Dau, and L. Guillaumat, Characterisation of composite elastic properties by means of a multi-scale two-level inverse approach, Composite Structures, vol.204, pp.767-777, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02318801

E. Panettieri, A. Catapano, and M. Montemurro, Blending constraints for composite laminates in polar parameters space, Composites Part B : Engineering, vol.168, pp.448-457, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02945353

M. Montemurro, M. I. Izzi, J. El-yagoubi, and D. Fanteria, Least-weight composite plates with unconventional stacking sequences : Design, analysis and experiments, Journal of Composite Materials, vol.53, pp.2209-2227, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02945309

J. Hadamard, Mémoire sur le problème d'analyse relatifà l'équilibre des plaquesélastiques encastrées, 1908.

G. Bertolino, G. Costa, M. Montemurro, N. Perry, and F. Pourroy, A general surface reconstruction method for post-processing of topology optimisation results, dans proceedings of the 2nd International Conference on Simulation for Additive Manufacturing, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02297578

M. P. Bendsøe and O. Sigmund, Topology Optimization. Theory, Methods and Applications, 2004.

O. Sigmund, A 99 line topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, vol.21, pp.120-127, 2001.

M. P. Bendsøe, Optimization of Structural Topology, Shape, and Material, 1995.

J. K. Guest, J. H. Prévost, and T. Belytschko, Achieving minimum length scale in topology optimization using nodal design variables and projection functions, International Journal for Numerical Methods in Engineering, vol.61, issue.2, pp.238-254, 2004.

F. Wang, B. S. Lazarov, and O. Sigmund, On projection methods, convergence and robust formulations in topology optimization, Structural and Multidisciplinary Optimization, vol.43, pp.767-784, 2011.

J. K. Guest, Imposing maximum length scale in topology optimization, Structural and Multidisciplinary Opimization, vol.37, pp.463-473, 2009.

G. Allaire, F. Jouve, and A. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of Computational Physics, vol.194, pp.363-393, 2004.

S. Osher and S. Santosa, Fronts propagating with curvature-dependent speed : Algorithms based on hamilton-jacobi formulations, Journal of Computational Physics, vol.79, pp.12-49, 1988.

N. P. Van-dijk, K. Maute, M. Langelaar, and F. Van-keulen, Level-set methods for structural topology optimization : a review, Structural and Multidisciplinary Optimization, vol.48, pp.437-472, 2013.

J. Goupy, Introduction aux plans d'expériences. Dunod, 5èmeédition, 2013.

O. T. Guide, The MathWorks Inc, 3 Apple Hill Drive, 2011.

G. Costa, M. Montemurro, and J. Pailhès, A 2D topology optimisation algorithm in NURBS framework with geometric constraints, International Journal of Mechanics and Materials in Design, vol.14, pp.669-696, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02354376

, NURBS Hypersurfaces for 3D Topology Optimisation Problems, vol.0, pp.1-20, 2019.

G. Costa, M. Montemurro, J. Pailhès, and N. Perry, Maximum length scale requirement in a topology optimisation method based on NURBS hyper-surfaces, CIRP Annals, vol.68, issue.1, pp.153-156, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02277399

G. Costa, M. Montemurro, and J. Pailhès, Minimum Length Scale Control in a NURBS-based SIMP Method, Computer Methods in Applied Mechanics and Engineering, vol.354, pp.63-989, 2019.

T. Rodriguez, M. Montemurro, P. Le-texier, and J. Pailhès, Structural displacement requirement formulation in a nurbs-based simp topology optimization method, dans proceedings of the 2nd International Conference on Simulation for Additive Manufacturing, 2019.

T. Roiné, G. Costa, M. Montemurro, and J. Pailhès, Formulation of failure criteria for anisotropic parts into the nurbs-based-simp algorithm, dans proceedings of the 2nd International Conference on Simulation for Additive Manufacturing, 2019.

T. Rodriguez, M. Montemurro, P. Le-texier, and J. Pailhès, Integration of structural displacement in nurbs-based simp topology optimization method, dans proceedings of the 8th International Conference on Mechanics and Materials in Design, 2019.

T. Roiné, M. Montemurro, G. Costa, and J. Pailhès, Integration of failure criteria for anisotropic materials into a nurbs-based-simp topology optimisation algorithm, dans proceedings of the 8th International Conference on Mechanics and Materials in Design, 2019.

G. Costa and M. Montemurro, On the formulation of dynamics problems in a nurbs-based topology optimisation algorithm, dans proceedings of the 2nd International Conference on Simulation for Additive Manufacturing, 2019.

, An implicit, geometric method to consider the minimum length scale in topology optimisation, dans proceedings of the 2nd International Conference on Simulation for Additive Manufacturing, 2019.

G. Costa, M. Montemurro, and J. Pailhès, Eigenvalue buckling analysis in topology optimization via a nurbs-framed algorithm, dans proceedings of the 6th European Conference on Computational Mechanics, 2018.

, A nurbs-based topology optimization method including additive manufacturing constraints, dans proceedings of the 7th International Conference on Mechanics and Materials in Design, 2017.

. Iso/astm, ISO/ASTM 52921 Terminologie normalisée pour la fabrication additive -Systèmes de coordonnées et méthodes d'essai -Premièreédition, 2013.

M. Suard, G. Martin, P. Lhuissier, R. Dendievel, F. Vignat et al., Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by Electrin Beam Melting, Additive Manufacturing, vol.8, pp.124-131, 2015.

G. R. Yoder and D. Eylon, On the effect of colony size on fatigue crack growth in Widmanstätten structure ? + ? titanium alloys, Metallurgical Transactions A, vol.10, pp.1808-1810, 1979.

R. S. Kumar and D. L. Mcdowell, Multifunctional design of two-dimensional cellular materials with tailored mesostructure, International Journal of Solids and Structures, vol.46, pp.2871-2885, 2009.

L. E. Murr, E. Martinez, K. N. Amato, S. M. Gaytan, J. Hernandez et al., Fabrication of metal and alloy components by additive manufacturing : Examples of 3d materials science, Journal of Materials Research and Technology, vol.1, pp.42-54, 2012.

L. J. Gibson, M. Ashby, G. S. Schajer, and C. I. Robertson, Mechanics of two-dimensional cellular materials, Proceedings of the Royal Society of London. Series A, vol.382, pp.25-42, 1982.

P. Heinl, L. Müller, C. Körner, R. F. Singer, and F. A. Müller, Cellular ti-6al-4v structures with interconnected macro porosity, Acta Biomaterialia, vol.4, issue.5, pp.1536-1544, 2008.

P. R. Onck, E. W. Andrews, and L. J. Gibson, Size effects in ductile cellular solids. part i : modeling, International Journal of Mechanical Sciences, vol.43, pp.681-699, 2001.

E. Andrews, G. Gioux, P. Onck, and L. Gibson, Size effects in ductile cellular solids. part ii : experimental results, International Journal of Mechanical Sciences, vol.43, pp.43-49, 2001.

V. S. Deshpande, M. Ashby, and N. A. Fleck, Foam topology bending versus stretching dominated architectures, Acta Materialia, vol.49, issue.6, pp.1035-1040, 2001.

. Disponible, , pp.379-386

M. Ashby, T. Evans, N. A. Fleck, J. W. Hutchinson, H. N. Wadley et al., Metal Foams : A Design Guide, 2000.

S. Bremen, W. Meiners, and A. Diatlov, Selective laser melting, Laser Technik Journal, vol.9, pp.33-38, 2012.

H. Altenbach and A. Oechsner, Cellular and Porous Materials in Structures and Processes, 2011.

Y. Shen, S. Mckown, S. Tsopanos, C. J. Sutcliffe, R. A. Mines et al., The mechanical properties of sandwich structures based on metal lattice architectures, Journal of Sandwich Structures & Materials, vol.12, issue.2, pp.159-180, 2009.

O. Cansizoglu, O. Harrysson, D. Cormier, H. West, and T. Mahale, Properties of ti-6al-4v non-stochastic lattice structures fabricated via electron beam melting, Materials Science and Engineering : A, vol.492, issue.2, pp.468-74, 2008.

T. Niendrof, F. Brenne, and M. Schaper, Lattice structures manufactured by slm : on the effect of geometrical dimensions on microstructure evolution during processing, Metallurgical and Materials Transactions B, vol.45, pp.1181-1185, 2014.

S. M. Ahmadi, S. A. Yavari, R. Wauthle, B. Pouran, J. Schrooten et al., Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells : the mechanical and morphological properties, Materials, vol.8, pp.1871-1896, 2015.

L. E. Murr, K. N. Amato, S. J. Li, Y. X. Tian, X. Y. Cheng et al., Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting, Journal of the Mechanical Behavior of Biomedical Materials, vol.4, pp.1396-1411, 2011.

J. Kadkhodapour, H. Montazerian, A. C. Darabi, A. P. Anaraki, S. M. Ahmadi et al., Failure mechanisms of additively manufactured porous biomaterials : effects of porosity and type of unit cell, Journal of the Mechanical Behavior of Biomedical Materials, vol.50, pp.180-191, 2015.

S. L. Campanelli, N. Contuzzi, A. D. Ludovico, F. Caiazzo, F. Cardaropoli et al., Manufacturing and characterization of ti6al4v lattice components manufactured by selective laser melting, Materials, vol.7, issue.6, pp.4803-4822, 2014.

V. Weissmann, J. Wieding, H. Hansmann, N. Laufer, A. Wolf et al., Specific yielding of selective laser-melted ti6al4v open-porous scaffolds as a function of unit cell design and dimensions, Metals, vol.6, issue.7, p.166, 2016.

C. Yan, L. Hao, A. Hussein, and P. Young, Ti-6al-4v triply periodic minimal surface structures for bone implants fabricated via selective laser melting, Journal of the Mechanical Behavior of Biomedical Materials, vol.51, pp.61-73, 2015.

S. M. Ahmadi, G. Campoli, S. A. Yavari, B. Sajadi, R. Wauthlé et al., Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, Journal of the Mechanical Behavior of Biomedical Materials, vol.34, pp.106-115, 2014.

J. Sun, Y. Yang, and D. Wang, Mechanical properties of ti-6al-4v octahedral porous material unit formed by selective laser melting, Advances in Mechanical Engineering, 2012.

. Disponible,

L. Xiao, W. Song, C. Wang, H. Liu, H. Tang et al., Mechanical behavior of open-cell rhombic dodecahedron ti-6al-4v lattice structure, Materials Science and Engineering : A, vol.640, pp.375-384, 2015.

M. Montemurro, A. Catapano, and D. Doroszewski, A multi-scale approach for the simultaneous shape and material optimisation of sandwich panels with cellular core, Composites Part B : Engineering, vol.91, pp.458-472, 2016.

E. Barbero, Finite Element Analysis of Composite Materials Using ANSYS, 2014.

K. Refai, M. Montemurro, C. Brugger, and N. Saintier, Determination of the effective elastic properties of titanium lattice structures, Mechanics of Advanced Materials and Structures, vol.0, pp.1-14, 2019.

A. E. Simone and L. J. Gibson, The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams, Acta Materialia, vol.46, issue.11, pp.3929-3964, 1998.

W. Voigt, Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper, Ann Phys, vol.274, pp.573-87, 1889.

. Bibliographie,

A. Reuss, Berechnung der flie?grenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle, Journal of Applied Mathematics and Mechanics, vol.9, pp.49-58, 1929.

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, vol.11, issue.2, pp.90060-90067, 1963.

R. W. Zimmerman, Hashin-shtrikman bounds on the poisson ratio of a composite material, Mechanics Research Communications, vol.19, pp.563-569, 1992.

R. A. Fisher, The Genetical Theory of Natural Selection, 1930.

J. C. Maxwell, On the calculation of the equilibrium and stiffness of frames, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.27, pp.294-299, 1864.

B. Vayssette, N. Saintier, C. Brugger, M. Elmay, and E. Pessard, Numerical modelling of surface roughness effect on the fatigue behavior of Ti-6Al-4V obtained by additive manufacturing, International Journal of Fatigue, vol.123, pp.180-195, 2019.

Y. M. Xie and G. P. Steven, Evolutionary structural optimization for dynamic problems, Computers Structures, vol.58, pp.235-244, 1996.

B. Hassani and E. Hinton, Homogenization and structural topology optimization : theory, practice and software, 2012.

K. Svanberg, The method of moving asymptotes -a new method for structural optimization, International Journal for Numerical Methods in Engineering, vol.24, issue.2, pp.359-373, 1987.

C. Le, J. Norato, T. Bruns, C. Ha, and D. Tortorelli, Stress-based topology optimization for BIBLIOGRAPHIE continua, Structural and Multidisciplinary Optimization, vol.41, pp.605-620, 2010.

. Disponible,

J. Paris, F. Navarrina, I. Colominas, and M. Casteleiro, Stress constraints sensitivity analysis in structural topology optimization, Computer Methods in Applied Mechanics and Engineering, vol.199, pp.2110-2122, 2010.

S. H. Jeong, S. H. Park, D. Choi, and G. H. Yoon, Topology optimization considering static failure theories for ductile and brittle materials, Computers & Structures, pp.116-132, 2012.

E. Holmberg, B. Torstenfelt, and A. Klarbring, Stress constrained topology optimization, Structural and Multidisciplinary Optimization, vol.48, pp.98-105, 2013.

S. H. Jeong, D. Choi, and G. H. Yoon, Separable stress interpolation scheme for stress-based topology optimization with multiple homogenous materials, Finite Elements in Analysis and Design, vol.82, pp.16-31, 2014.

K. Svanberg and M. Werme, Sequential integer programming methods for stress constrained topology optimization, Structural and Multidisciplinary Optimization, vol.34, pp.277-299, 2007.

G. Allaire and F. Jouve, Minimum stress optimal design with the level set method, vol.32, pp.909-918, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01089075

X. Guo, W. S. Zhang, M. Y. Wang, and P. Wei, Stress-related topology optimization via level set approach, Computer Methods in Applied Mechanics and Engineering, vol.200, pp.3439-3452, 2011.

S. Amstutz and A. A. Novotny, Topological optimization of structures subject to von mises stress constraints, Structural and Multidisciplinary Optimization, vol.41, pp.407-420, 2010.

K. Sherif, W. Witteveen, K. Puchner, and H. Irschik, Efficient topology optimization of large dynamic finite element systems using fatigue, AIAA Journal, vol.48, issue.7, pp.1339-1347, 2010.

S. H. Jeong, D. Choi, and G. H. Yoon, Fatigue and static failure considérations using a topology optimization method, Applied Mathematical Modelling, vol.39, pp.1137-1162, 2015.

M. Collet, M. Bruggi, and P. Duysinx, Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance, Structural and Multidisciplinary Optimization, vol.55, pp.839-855, 2017.

J. Oest and E. Lund, Topology optimization with finite-life fatigue constraints, Structural and Multidisciplinary Optimization, vol.56, pp.1045-1059, 2017.

G. Sved and Z. Ginos, Structural optimization under multiple loading, International Journal of Mechanical Sciences, vol.10, pp.803-805, 1968.

U. Kirsch, On singular topologies in optimum structural design, Structural Optimization, vol.2, pp.133-142, 1990.

G. D. Cheng and X. Guo, ?-relaxed approach in structural topology optimization, Structural optimization, vol.13, pp.258-266, 1997.

P. Duysinx and M. P. Bendsøe, Topology optimization of continuum structures with local stress constraints, International Journal for Numerical Method in Engineering, vol.43, issue.2, pp.1453-1478, 1998.

M. Bruggi and P. Venini, A mixed FEM approach to stress-constrained topology optimization, International Journal for Numerical Methods in Engineering, vol.73, pp.1693-1714, 1998.

. Bibliographie,

G. Kreisselmeier and R. Steinhauser, Systematic control design by optimizing a vector performance index, IFAC Proceedings Volumes, vol.12, pp.113-117, 1979.

. Disponible, , pp.65584-65592

V. K. Verbart, A. Langelaar, and M. , A unified aggregation and relaxation approach for stressconstrained topology optimization, vol.55, pp.663-679, 2017.

T. Rodriguez, M. Montemurro, P. Le-texier, and J. Pailhès, Structural Displacement Requirement in a Topology Optimization Algorithm Based on Isogeometric Entities, Journal of Optimization Theory and Applications, vol.184, pp.250-276, 2020.

L. Piegl and W. Tiller, The NURBS book, 1995.

M. Bendsøe and O. Sigmund, Topology optimization. Theory, methods, and applications, 2004.

K. J. Bathe, Finite Element Procedures, 2006.

M. Bruggi, On an alternative approach to stress constraints relaxation in topology optimization, Structural and Multidisciplinary Optimization, vol.36, pp.125-141, 2008.

G. I. Rozvany, Difficulties in truss topology optimization with stress, local buckling and system stability constraints, Structural optimization, vol.11, pp.213-217, 1996.

R. Yang and C. Chen, Stress-based topology optimization, vol.12, pp.98-105, 1996.

M. E. Ronald, What is an adjoint model ?, Bulletin of the American Meteorological Society, vol.78, issue.11, pp.2577-2592, 1997.

, Optimization Toolbox User's Guide, The MathWorks, Inc., 3 Apple Ill Drive, pp.1760-2098, 2011.

J. Nocedal and S. J. Wright, Numerical Optimization, 2006.