W. Herrington, B. Lacey, P. Sherliker, J. Armitage, and S. Lewington, Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease, Circ. Res, vol.118, pp.535-546, 2016.

,

E. J. Benjamin, P. Muntner, A. Alonso, M. S. Bittencourt, C. W. Callaway et al., On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee, p.139, 2019.

A. De and L. Biomédecine, , 2017.

R. Saran, B. Robinson, K. C. Abbott, J. Bragg-gresham, X. Chen et al., US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States, Am. J. Kidney Dis, vol.75, pp.6-7, 2020.

,

N. G. Baikoussis, N. A. Papakonstantinou, and E. Apostolakis, Radial artery as graft for coronary artery bypass surgery: Advantages and disadvantages for its usage focused on structural and biological characteristics, J. Cardiol, vol.63, pp.321-328, 2014.

,

N. Chakfé, F. Dieval, F. Thaveau, S. Rinckenbach, O. Hassani et al., Substituts vasculaires, Ann. Chir, vol.129, pp.301-309, 2004.

,

S. Ketenciler, K. Boyac?o?lu, ?. Akdemir, G. Kömürcü, and A. Polat, Autologous Saphenous Vein Panel Graft for Vascular Reconstruction, Ann. Vasc. Surg, vol.53, pp.117-122, 2018.

M. Allon and M. L. Robbin, Increasing arteriovenous fistulas in hemodialysis patients: problems and solutions, Kidney Int, vol.62, pp.1109-1124, 2002.

S. Q. Lew, B. Nguyen, and T. S. Ing, Hemodialysis vascular access construction in the upper extremity: a review, J. Vasc. Access, vol.16, pp.87-92, 2015.

,

P. A. Stone, A. Y. Mousa, J. E. Campbell, and A. F. Aburahma, Dialysis access, Ann. Vasc. Surg, vol.26, pp.747-753, 2012.

N. Mackman, Triggers, targets and treatments for thrombosis, Nature, vol.451, pp.914-918, 2008.

M. S. Lemson, J. H. Tordoir, M. J. Daemen, and P. J. Kitslaar, Intimal hyperplasia in vascular grafts, Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg, vol.19, pp.336-350, 2000.

M. H. Young, G. R. Upchurch, and P. N. Malani, Vascular graft infections, Infect. Dis. Clin. North Am, vol.26, pp.41-56, 2012.

L. Davidovic, D. Vasic, R. Maksimovic, D. Kostic, D. Markovic et al., Aortobifemoral grafting: factors influencing long-term results, Vascular, vol.12, pp.171-178, 2004.

J. Almasri, J. Adusumalli, N. Asi, S. Lakis, M. Alsawas et al., A systematic review and meta-analysis of revascularization outcomes of infrainguinal chronic limb-threatening ischemia, J. Vasc. Surg, vol.68, pp.624-633, 2018.

M. Albers, V. M. Battistella, M. Romiti, A. A. Rodrigues, and C. A. Pereira, Metaanalysis of polytetrafluoroethylene bypass grafts to infrapopliteal arteries, J. Vasc. Surg, vol.37, pp.75332-75341, 2003.

T. S. Huber, J. W. Carter, R. L. Carter, and J. M. Seeger, Patency of autogenous and polytetrafluoroethylene upper extremity arteriovenous hemodialysis accesses: a systematic review, J. Vasc. Surg, vol.38, issue.03, pp.426-435, 2003.

J. Almasri, M. Alsawas, M. Mainou, R. A. Mustafa, Z. Wang et al., Outcomes of vascular access for hemodialysis: A systematic review and metaanalysis, J. Vasc. Surg, vol.64, pp.236-243, 2016.

B. Tschoeke, T. C. Flanagan, S. Koch, M. S. Harwoko, T. Deichmann et al., Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold, Tissue Eng. Part A, vol.15, pp.1909-1918, 2009.

,

M. Deutsch, J. Meinhart, P. Zilla, N. Howanietz, M. Gorlitzer et al., Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts, J. Vasc. Surg, vol.49, pp.352-362, 2009.

T. Sugiura, G. Matsumura, S. Miyamoto, H. Miyachi, C. K. Breuer et al., Tissueengineered Vascular Grafts in Children With Congenital Heart Disease: Intermediate Term Follow-up, Semin. Thorac. Cardiovasc. Surg, vol.30, pp.175-179, 2018.

,

X. Kong, B. Han, H. Li, Y. Liang, K. Shao et al., New biodegradable small-diameter artificial vascular prosthesis: a feasibility study, J. Biomed. Mater. Res. A, vol.100, pp.1494-1504, 2012.

S. Koch, T. C. Flanagan, J. S. Sachweh, F. Tanios, H. Schnoering et al., Fibrinpolylactide-based tissue-engineered vascular graft in the arterial circulation, Biomaterials, vol.31, pp.4731-4739, 2010.

J. H. Lawson, M. H. Glickman, M. Ilzecki, T. Jakimowicz, A. Jaroszynski et al., Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials, The Lancet, vol.387, issue.16, pp.557-559, 2016.

Z. H. Syedain, M. L. Graham, T. B. Dunn, T. O'brien, S. L. Johnson et al., A completely biological "off-the-shelf" arteriovenous graft that recellularizes in baboons, Sci. Transl. Med, vol.9, p.4209, 2017.

,

W. Wystrychowski, T. N. Mcallister, K. Zagalski, N. Dusserre, L. Cierpka et al., First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access, J. Vasc. Surg, vol.60, pp.1353-1357, 2014.

,

S. Amensag, L. Goldberg, K. A. O'malley, D. S. Rush, S. A. Berceli et al., Pilot assessment of a human extracellular matrix-based vascular graft in a rabbit model, J. Vasc. Surg, vol.65, pp.839-847, 2017.

Y. Nakayama, Y. Kaneko, N. Okumura, and T. Terazawa, Initial 3-year results of first human use of an in-body tissue-engineered autologous "Biotube" vascular graft for hemodialysis, J. Vasc. Access, vol.21, pp.110-115, 2020.

,

M. Kubo, Y. Sonoda, R. Muramatsu, and M. Usui, Immunogenicity of human amniotic membrane in experimental xenotransplantation, Invest. Ophthalmol. Vis. Sci, vol.42, pp.1539-1546, 2001.

N. Kjaergaard, M. Hein, L. Hyttel, R. B. Helmig, H. C. Schønheyder et al., Antibacterial properties of human amnion and chorion in vitro, Eur. J. Obstet. Gynecol. Reprod. Biol, vol.94, pp.224-229, 2001.

M. P. Dobreva, P. N. Pereira, J. Deprest, and A. Zwijsen, On the origin of amniotic stem cells: of mice and men, Int. J. Dev. Biol, vol.54, pp.761-777, 2010.

H. Niknejad, H. Peirovi, M. Jorjani, A. Ahmadiani, J. Ghanavi et al., Properties of the amniotic membrane for potential use in tissue engineering, Eur. Cell. Mater, vol.15, pp.88-99, 2008.

C. Singh, C. Wong, and X. Wang, Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries, J. Funct. Biomater, vol.6, pp.500-525, 2015.

R. Mazurek, J. M. Dave, R. R. Chandran, A. Misra, A. Q. Sheikh et al., Vascular Cells in Blood Vessel Wall Development and Disease, pp.323-350, 2017.

M. K. Pugsley and R. Tabrizchi, The vascular system, J. Pharmacol. Toxicol. Methods, vol.44, pp.125-133, 2000.

M. A. Traore and S. C. George, Tissue Engineering the Vascular Tree, Tissue Eng. Part B Rev, vol.23, pp.505-514, 2017.

J. A. Eble and S. Niland, The extracellular matrix of blood vessels, Curr. Pharm. Des, vol.15, pp.1385-1400, 2009.

K. R. Stenmark, M. E. Yeager, K. C. Kasmi, E. Nozik-grayck, E. V. Gerasimovskaya et al., The Adventitia: Essential Regulator of Vascular Wall Structure and Function, Annu. Rev. Physiol, vol.75, pp.23-47, 2013.

,

M. Tennant and J. K. Mcgeachie, BLOOD VESSEL STRUCTURE AND FUNCTION: A BRIEF UPDATE ON RECENT ADVANCES, vol.60, pp.747-753, 1990.

J. Halper, Basic Components of Vascular Connective Tissue and Extracellular Matrix, Adv. Pharmacol, pp.95-127, 2018.

,

P. L. Gross and W. C. Aird, The Endothelium and Thrombosis, Semin. Thromb. Hemost, vol.26, pp.463-478, 2000.

M. Sato and T. Ohashi, Biorheological views of endothelial cell responses to mechanical stimuli, Biorheology, vol.42, pp.421-441, 2005.

J. J. Paszkowiak and A. Dardik, Arterial Wall Shear Stress: Observations from the Bench to the Bedside, Vasc. Endovascular Surg, vol.37, pp.47-57, 2003.

,

, CLASSIFICATION of atherosclerotic lesions; report of a study group, World Health Organ. Tech. Rep. Ser, vol.57, pp.1-20, 1958.

K. Kobiyama and K. Ley, Atherosclerosis, Circ. Res, vol.123, pp.1118-1120, 2018.

G. K. Hansson and A. Hermansson, The immune system in atherosclerosis, Nat. Immunol, vol.12, pp.204-212, 2011.

F. Schaftenaar, V. Frodermann, J. Kuiper, and E. Lutgens, Atherosclerosis: the interplay between lipids and immune cells, Curr. Opin. Lipidol, vol.27, pp.209-215, 2016.

P. Libby, P. M. Ridker, and G. K. Hansson, Progress and challenges in translating the biology of atherosclerosis, Nature, vol.473, pp.317-325, 2011.

A. J. Lusis, Atherosclerosis, vol.407, pp.233-241, 2000.

,

, Evaluation médico-économique des stratégies de prise en charge de l'insuffisance rénale chronique terminale en France, HAS, 2014.

R. T. Krediet, A. C. Abrahams, C. W. De-fijter, M. G. Betjes, W. H. Boer et al., The truth on current peritoneal dialysis: state of the art, Neth. J. Med, vol.75, pp.179-189, 2017.

D. Santoro, F. Benedetto, P. Mondello, N. Pipitò, D. Barillà et al., Vascular access for hemodialysis: current perspectives, Int. J. Nephrol. Renov. Dis, vol.7, pp.281-294, 2014.

R. Hayashi, E. Huang, and A. R. Nissenson, Vascular access for hemodialysis, Nat. Clin. Pract. Nephrol, vol.2, pp.504-513, 2006.

S. Kitamura, Physiological and metabolic effects of grafts in coronary artery bypass surgery, Circ. J. Off. J. Jpn. Circ. Soc, vol.75, pp.766-772, 2011.

S. Chen, Y. Chu, V. C. Wu, F. Tsai, Y. Nan et al., Microenvironment of saphenous vein graft preservation prior to coronary artery bypass grafting, Interact. Cardiovasc. Thorac. Surg, vol.28, pp.71-78, 2019.

J. Chlupác, E. Filová, and L. Bacáková, Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery, Physiol. Res, vol.58, issue.2, pp.119-139, 2009.

D. Shemesh, I. Goldin, J. Hijazi, I. Zaghal, D. Berelowitz et al., A prospective randomized study of heparin-bonded graft (Propaten) versus standard graft in prosthetic arteriovenous access, J. Vasc. Surg, vol.62, pp.115-122, 2015.

H. Dardik, I. M. Ibrahim, and I. Dardik, Modified and unmodified umbilical vein allografts and xenografts as arterial substitutes: morphologic assessment, Surg. Forum, vol.26, pp.286-287, 1975.

C. G. Björck, D. Bergqvist, P. Dougan, C. Esquivel, and B. Nilsson, In vivo evaluation of the acute thrombogenicity of the modified human umbilical vein and autologous artery, J. Vasc. Surg, vol.2, pp.434-442, 1985.

F. Gill, R. Guzman, R. Guidoin, G. Avril, J. Charara et al., An histo-morphological evaluation of ninety surgically excised human umbilical vein grafts, J. Biomed. Mater. Res, vol.23, pp.363-380, 1989.

R. Guidoin, Y. Gagnon, P. E. Roy, M. Marois, K. W. Johnston et al., Pathologic features of surgically excised human umbilical vein grafts, J. Vasc. Surg, vol.3, pp.146-154, 1986.

A. N. Sidawy and B. A. Perler, Rutherford's Vascular Surgery and Endovascular Therapy, 2018.

C. H. Sparks, Autogenous grafts made to order, Ann. Thorac. Surg, vol.8, issue.10, pp.66217-66217, 1969.

R. W. Hallin, Complications with the mandril-grown (Sparks) dacron arterial graft, Am. Surg, vol.41, pp.550-554, 1975.

N. R. Mclean, Gore-tex replacement of a Sparks mandril false aneurysm, Br. J. Clin. Pract, vol.36, p.326, 1982.

J. H. Campbell, J. L. Efendy, and G. R. Campbell, Novel vascular graft grown within recipient's own peritoneal cavity, Circ. Res, vol.85, pp.1173-1178, 1999.

W. J. Geelhoed, K. E. Van-der-bogt, T. C. Rothuizen, F. F. Damanik, J. F. Hamming et al., A novel method for engineering autologous non-thrombogenic in situ tissue-engineered blood vessels for arteriovenous grafting, Biomaterials, vol.229, p.119577, 2020.

,

A. Hatzibaloglou, I. Velissaris, D. Kaitzis, D. Grekas, A. Avdelidou et al., ProCol vascular bioprosthesis for vascular access: midterm results, J. Vasc. Access, vol.5, pp.16-18, 2004.

A. J. Kovalic, D. K. Beattie, and A. H. Davies, Outcome of ProCol, a bovine mesenteric vein graft, in infrainguinal reconstruction, Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg, vol.24, pp.533-534, 2002.

D. M. Pineda, M. J. Dougherty, M. C. Wismer, C. Carroll, S. Tyagi et al., Bovine carotid artery xenografts for hemodialysis access, J. Vasc. Surg, vol.65, pp.1729-1734, 2017.

P. Lindsey, A. Echeverria, M. Cheung, E. Kfoury, C. F. Bechara et al., Lower Extremity Bypass Using Bovine Carotid Artery Graft (Artegraft): An Analysis of 124 Cases with Long-Term Results, World J. Surg, vol.42, pp.295-301, 2018.

,

S. Dimitrievska and L. E. Niklason, Historical Perspective and Future Direction of Blood Vessel Developments, Cold Spring Harb, Perspect. Med, vol.8, 2018.

S. Manduz, N. Katrancioglu, E. Ozker, and K. Dogan, Early thrombosis in bovine mesenteric vein grafts after infrainguinal reconstruction, Int. J. Angiol. Off. Publ. Int. Coll. Angiol. Inc, vol.17, pp.37-39, 2008.

T. Walles, C. Puschmann, A. Haverich, and H. Mertsching, Acellular scaffold implantation--no alternative to tissue engineering, Int. J. Artif. Organs, vol.26, pp.225-234, 2003.

, Rapport d'évaluation des implants de pontage, HAS, 2013.

M. S. Conte, F. B. Pomposelli, D. G. Clair, P. J. Geraghty, J. F. Mckinsey et al., Society for Vascular Surgery, Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication, Society for Vascular Surgery Lower Extremity Guidelines Writing Group, vol.61, pp.2-41, 2015.

A. N. Sidawy, L. M. Spergel, A. Besarab, M. Allon, W. C. Jennings et al., Society for Vascular Surgery, The Society for Vascular Surgery: clinical practice guidelines for the surgical placement and maintenance of arteriovenous hemodialysis access, J. Vasc. Surg, vol.48, pp.2-25, 2008.

C. E. Pereira, M. Albers, M. Romiti, F. C. Brochado-neto, and C. A. Pereira, Meta-analysis of femoropopliteal bypass grafts for lower extremity arterial insufficiency, J. Vasc. Surg, vol.44, pp.510-517, 2006.

M. Sharrock, S. A. Antoniou, and G. A. Antoniou, Vein Versus Prosthetic Graft for Femoropopliteal Bypass Above the Knee: A Systematic Review and Meta-Analysis of Randomized Controlled Trials, Angiology, vol.70, pp.649-661, 2019.

,

S. Roll, J. Müller-nordhorn, T. Keil, H. Scholz, D. Eidt et al., Dacron vs. PTFE as bypass materials in peripheral vascular surgery--systematic review and meta-analysis, BMC Surg, vol.8, p.22, 2008.

H. Takagi, S. Goto, M. Matsui, H. Manabe, and T. Umemoto, A contemporary metaanalysis of Dacron versus polytetrafluoroethylene grafts for femoropopliteal bypass grafting, J. Vasc. Surg, vol.52, pp.232-236, 2010.

L. Xu, J. W. Bauer, and C. A. Siedlecki, Proteins, platelets, and blood coagulation at biomaterial interfaces, Colloids Surf. B Biointerfaces, vol.124, pp.49-68, 2014.

C. F. Scott, Mechanism of the participation of the contact system in the Vroman effect. Review and summary, J. Biomater. Sci. Polym. Ed, vol.2, pp.173-181, 1991.

K. Berger, L. R. Sauvage, A. M. Rao, and S. J. Wood, Healing of arterial prostheses in man: its incompleteness, Ann. Surg, vol.175, pp.118-127, 1972.

C. N. Chesterman, Vascular endothelium, haemostasis and thrombosis, Blood Rev, vol.2, pp.88-94, 1988.

R. H. Samson, R. Morales, D. P. Showalter, M. R. Lepore, and D. G. Nair, Heparin-bonded expanded polytetrafluoroethylene femoropopliteal bypass grafts outperform expanded polytetrafluoroethylene grafts without heparin in a long-term comparison, J. Vasc. Surg, vol.64, pp.638-647, 2016.

M. K. Lazarides, C. Argyriou, G. A. Antoniou, E. Georgakarakos, and G. S. Georgiadis, Lack of evidence for use of heparin-bonded grafts in access surgery: a meta-analysis, Semin. Vasc. Surg, vol.29, pp.192-197, 2016.

M. R. De-vries, K. H. Simons, J. W. Jukema, J. Braun, and P. H. Quax, Vein graft failure: from pathophysiology to clinical outcomes, Nat. Rev. Cardiol, vol.13, pp.451-470, 2016.

C. D. Owens, W. J. Gasper, A. S. Rahman, and M. S. Conte, Vein graft failure, J. Vasc. Surg, vol.61, pp.203-216, 2015.

N. R. Tai, H. J. Salacinski, A. Edwards, G. Hamilton, and A. M. Seifalian, Compliance properties of conduits used in vascular reconstruction, Br. J. Surg, vol.87, pp.1516-1524, 2000.

M. Heise, U. Krüger, R. Rückert, R. Pfitzman, P. Neuhaus et al., Correlation of intimal hyperplasia development and shear stress distribution at the distal end-sideanastomosis, in vitro study using particle image velocimetry, Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg, vol.26, issue.02, pp.567-568, 2003.

V. M. Subbotin, Analysis of arterial intimal hyperplasia: review and hypothesis, Theor. Biol. Med. Model, vol.4, p.41, 2007.

P. A. Stone, M. R. Back, P. A. Armstrong, R. S. Brumberg, S. K. Flaherty et al., Evolving microbiology and treatment of extracavitary prosthetic graft infections, Vasc. Endovascular Surg, vol.42, pp.537-544, 2008.

A. Gharamti and Z. A. Kanafani, Vascular Graft Infections: An update, Infect. Dis. Clin. North Am, vol.32, pp.789-809, 2018.

B. Hasse, L. Husmann, A. Zinkernagel, R. Weber, M. Lachat et al., Vascular graft infections, Swiss Med. Wkly, vol.143, p.13754, 2013.

,

O. Goëau-brissonnière, I. Javerliat, F. Koskas, M. Coggia, and J. Pechère, Rifampinbonded vascular grafts and postoperative infections, Ann. Vasc. Surg, vol.25, pp.134-142, 2011.

I. J. Rychlik, P. Davey, J. Murphy, and M. E. O'donnell, A meta-analysis to compare Dacron versus polytetrafluroethylene grafts for above-knee femoropopliteal artery bypass, J. Vasc. Surg, vol.60, pp.506-515, 2014.

M. Albers, M. Romiti, F. C. Brochado-neto, and C. A. Pereira, Meta-analysis of alternate autologous vein bypass grafts to infrapopliteal arteries, J. Vasc. Surg, vol.42, pp.449-455, 2005.

A. A. Al-jaishi, M. J. Oliver, S. M. Thomas, C. E. Lok, J. C. Zhang et al., Patency rates of the arteriovenous fistula for hemodialysis: a systematic review and meta-analysis, Am. J. Kidney Dis. Off. J. Natl. Kidney Found, vol.63, pp.464-478, 2014.

C. Randon, B. Jacobs, F. De-ryck, H. Beele, and F. Vermassen, Fifteen years of infrapopliteal arterial reconstructions with cryopreserved venous allografts for limb salvage, J. Vasc. Surg, vol.51, pp.869-877, 2010.

M. P. Harlander-locke, P. F. Lawrence, A. Ali, E. Bae, J. Kohn et al., Vascular Low-Frequency Disease Consortium, Cryopreserved venous allograft is an acceptable conduit in patients with current or prior angioaccess graft infection, J. Vasc. Surg, vol.66, pp.1157-1162, 2017.

,

J. Shakarchi, D. Mcgrogan, P. J. Yates, and N. Inston, Use of biosynthetic grafts (Omniflow II) for high infection risk haemodialysis vascular access, J. Vasc. Access, vol.17, pp.151-154, 2016.

M. Herring, A. Gardner, and J. Glover, A single-staged technique for seeding vascular grafts with autogenous endothelium, Surgery, vol.84, pp.498-504, 1978.

R. Langer and J. P. Vacanti, Tissue engineering, Science, vol.260, pp.920-926, 1993.

T. Simon-yarza, I. Bataille, D. Letourneur, and C. Bio, Engineering: Current State of the Art, J Cardiovasc. Transl. Res, vol.10, pp.180-193, 2017.

V. Blitterswijk, Tissue Engineering, 2008.

O. E. Teebken and A. Haverich, Tissue engineering of small diameter vascular grafts, Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg, vol.23, pp.475-485, 2002.

R. T. Tranquillo, The tissue-engineered small-diameter artery, Ann. N. Y. Acad. Sci, vol.961, pp.251-254, 2002.

S. Pashneh-tala, S. Macneil, and F. Claeyssens, The Tissue-Engineered Vascular Graft-Past, Present, and Future, Tissue Eng. Part B Rev, vol.22, pp.68-100, 2016.

J. E. Mcbane, S. Sharifpoor, R. S. Labow, M. Ruel, E. J. Suuronen et al., Tissue engineering a small diameter vessel substitute: engineering constructs with select biomaterials and cells, Curr. Vasc. Pharmacol, vol.10, pp.347-360, 2012.

G. Konig, T. N. Mcallister, N. Dusserre, S. A. Garrido, C. Iyican et al., Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery, Biomaterials, vol.30, pp.1542-1550, 2009.

S. L. Dahl, A. P. Kypson, J. H. Lawson, J. L. Blum, J. T. Strader et al.,

K. G. Dey, L. E. Begelman, and . Niklason, Readily available tissue-engineered vascular grafts, Sci. Transl. Med, vol.3, 2011.

P. Zilla, M. Deutsch, J. Meinhart, R. Puschmann, T. Eberl et al., Clinical in vitro endothelialization of femoropopliteal bypass grafts: an actuarial follow-up over three years, J. Vasc. Surg, vol.19, pp.540-548, 1994.

M. Deutsch, J. Meinhart, T. Fischlein, P. Preiss, and P. Zilla, Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience, Surgery, vol.126, pp.847-855, 1999.

J. G. Meinhart, M. Deutsch, T. Fischlein, N. Howanietz, A. Fröschl et al., Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts, Ann. Thorac. Surg, vol.71, pp.327-331, 2001.

M. Carrabba and P. Madeddu, Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts, Front. Bioeng. Biotechnol, vol.6, p.41, 2018.

N. Thottappillil and P. D. Nair, Scaffolds in vascular regeneration: current status, Vasc. Health Risk Manag, vol.11, pp.79-91, 2015.

T. Shin'oka, Y. Imai, and Y. Ikada, Transplantation of a tissue-engineered pulmonary artery, N. Engl. J. Med, vol.344, pp.532-533, 2001.

T. Shin'oka, G. Matsumura, N. Hibino, Y. Naito, M. Watanabe et al., Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells, J. Thorac. Cardiovasc. Surg, vol.129, pp.1330-1338, 2005.

N. Hibino, E. Mcgillicuddy, G. Matsumura, Y. Ichihara, Y. Naito et al., Late-term results of tissue-engineered vascular grafts in humans, J. Thorac. Cardiovasc. Surg, vol.139, pp.1-2, 2010.

,

T. Shoji and T. Shinoka, Tissue engineered vascular grafts for pediatric cardiac surgery, Transl. Pediatr, vol.7, pp.188-195, 2018.

T. Fukunishi, C. A. Best, T. Sugiura, J. Opfermann, C. S. Ong et al., Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model, J. Thorac. Cardiovasc. Surg, vol.153, pp.924-932, 2017.

C. Best, R. Strouse, K. Hor, V. Pepper, A. Tipton et al., Toward a patient-specific tissue engineered vascular graft, J. Tissue Eng, vol.9, p.2041731418764709, 2018.

A. J. Melchiorri, N. Hibino, T. Yi, Y. U. Lee, T. Sugiura et al., Contrasting biofunctionalization strategies for the enhanced endothelialization of biodegradable vascular grafts, Biomacromolecules, vol.16, pp.437-446, 2015.

X. Jin, X. Geng, L. Jia, Z. Xu, L. Ye et al., Preparation of Small-Diameter Tissue-Engineered Vascular Grafts Electrospun from Heparin End-Capped PCL and Evaluation in a Rabbit Carotid Artery Replacement Model, Macromol. Biosci, vol.19, 2019.

S. Wang, X. M. Mo, B. J. Jiang, C. J. Gao, H. S. Wang et al., Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL) composite nanofibers to improve graft patency, Int. J. Nanomedicine, vol.8, pp.2131-2139, 2013.

P. C. Caracciolo, M. I. Rial-hermida, F. Montini-ballarin, G. A. Abraham, A. Concheiro et al., Surface-modified bioresorbable electrospun scaffolds for improving hemocompatibility of vascular grafts, Mater. Sci. Eng. C Mater. Biol. Appl, vol.75, pp.1115-1127, 2017.

H. Guo, W. Dai, D. Qian, Z. Qin, Y. Lei et al., A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization, Acta Biomater, vol.54, pp.107-116, 2017.

L. V. Antonova, A. M. Seifalian, A. G. Kutikhin, V. V. Sevostyanova, V. G. Matveeva et al., Conjugation with RGD Peptides and Incorporation of Vascular Endothelial Growth Factor Are Equally Efficient for Biofunctionalization of Tissue-Engineered Vascular Grafts, Int. J. Mol. Sci, vol.17, 2016.

R. H. Schmedlen, W. M. Elbjeirami, A. S. Gobin, and J. L. West, Tissue engineered smalldiameter vascular grafts, Clin. Plast. Surg, vol.30, pp.507-517, 2003.

, , pp.69-74

C. B. Weinberg and E. Bell, A blood vessel model constructed from collagen and cultured vascular cells, Science, vol.231, pp.397-400, 1986.

J. Hirai and T. Matsuda, Self-organized, tubular hybrid vascular tissue composed of vascular cells and collagen for low-pressure-loaded venous system, Cell Transplant, vol.4, pp.597-608, 1995.

J. Hirai and T. Matsuda, Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: tissue regeneration process, Cell Transplant, vol.5, pp.93-105, 1996.

X. Li, J. Xu, C. T. Nicolescu, J. T. Marinelli, and J. Tien, Generation, Endothelialization, and Microsurgical Suture Anastomosis of Strong 1-mm-Diameter Collagen Tubes, Tissue Eng. Part A, vol.23, pp.335-344, 2017.

A. Aussel, A. Montembault, S. Malaise, M. P. Foulc, W. Faure et al., In Vitro Mechanical Property Evaluation of Chitosan-Based Hydrogels Intended for Vascular Graft Development, J Cardiovasc. Transl. Res, vol.10, pp.480-488, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01730354

A. Aussel, N. B. Thébaud, X. Bérard, V. Brizzi, S. Delmond et al., Chitosan-based hydrogels for developing a small-diameter vascular graft: in vitro and in vivo evaluation, Biomed. Mater. Bristol Engl, vol.12, p.65003, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01659658

E. C. Filipe, M. Santos, J. Hung, B. S. Lee, N. Yang et al., Rapid Endothelialization of Off-the-Shelf Small Diameter Silk Vascular Grafts, JACC Basic Transl. Sci, vol.3, pp.38-53, 2018.

,

P. Gupta, K. L. Lorentz, D. G. Haskett, E. M. Cunnane, A. K. Ramaswamy et al., Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis, Acta Biomater, vol.105, pp.146-158, 2020.

B. Marelli, A. Alessandrino, S. Farè, G. Freddi, D. Mantovani et al., Compliant electrospun silk fibroin tubes for small vessel bypass grafting, Acta Biomater, vol.6, pp.4019-4026, 2010.

V. Catto, S. Farè, I. Cattaneo, M. Figliuzzi, A. Alessandrino et al., Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility, Mater. Sci. Eng. C Mater. Biol. Appl, vol.54, pp.101-111, 2015.

L. Soffer, X. Wang, X. Zhang, J. Kluge, L. Dorfmann et al., Silkbased electrospun tubular scaffolds for tissue-engineered vascular grafts, J. Biomater. Sci. Polym. Ed, vol.19, pp.653-664, 2008.

S. Enomoto, M. Sumi, K. Kajimoto, Y. Nakazawa, R. Takahashi et al., Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material, J. Vasc. Surg, vol.51, pp.155-164, 2010.

K. Tanaka, D. Fukuda, Y. Higashikuni, Y. Hirata, I. Komuro et al., Biodegradable Extremely-Small-Diameter Vascular Graft Made of Silk Fibroin can be Implanted in Mice, J. Atheroscler. Thromb, 2020.

E. P. Azevedo, R. Retarekar, M. L. Raghavan, and V. Kumar, Mechanical properties of cellulose: chitosan blends for potential use as a coronary artery bypass graft, J. Biomater. Sci. Polym. Ed, vol.24, pp.239-252, 2013.

L. Khait and R. K. Birla, Bypassing the patient: comparison of biocompatible models for the future of vascular tissue engineering, Cell Transplant, vol.21, pp.269-283, 2012.

C. Marcolin, L. Draghi, M. Tanzi, and S. Faré, Electrospun silk fibroin-gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration, J. Mater. Sci. Mater. Med, vol.28, p.80, 2017.

M. J. Byrom, P. G. Bannon, G. H. White, and M. K. Ng, Animal models for the assessment of novel vascular conduits, J. Vasc. Surg, vol.52, pp.176-195, 2010.

,

T. Fukayama, K. Takagi, R. Tanaka, Y. Hatakeyama, D. Aytemiz et al., Biological reaction to small-diameter vascular grafts made of silk fibroin implanted in the abdominal aortae of rats, Ann. Vasc. Surg, vol.29, pp.341-352, 2015.

E. Yu, H. Mi, J. Zhang, J. A. Thomson, and L. Turng, Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach, J. Biomed. Mater. Res. A, vol.106, pp.985-996, 2018.

J. Zhang, H. Huang, R. Ju, K. Chen, S. Li et al., In vivo biocompatibility and hemocompatibility of a polytetrafluoroethylene small diameter vascular graft modified with sulfonated silk fibroin, Am. J. Surg, vol.213, pp.87-93, 2017.

,

B. Tschoeke, T. C. Flanagan, A. Cornelissen, S. Koch, A. Roehl et al., Development of a composite degradable/nondegradable tissue-engineered vascular graft, Artif. Organs, vol.32, pp.800-809, 2008.

M. J. Mcclure, D. G. Simpson, and G. L. Bowlin, Tri-layered vascular grafts composed of polycaprolactone, elastin, collagen, and silk: Optimization of graft properties, J. Mech. Behav. Biomed. Mater, vol.10, pp.48-61, 2012.

P. Kim, A. Yuan, K. Nam, A. Jiao, and D. Kim, Fabrication of poly(ethylene glycol): gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering, Biofabrication, vol.6, p.24112, 2014.

X. Guo, J. Zhu, H. Zhang, Z. You, Y. Morsi et al., Facile preparation of a controlled-release tubular scaffold for blood vessel implantation, J. Colloid Interface Sci, vol.539, pp.351-360, 2019.

Y. Wang, C. He, Y. Feng, Y. Yang, Z. Wei et al., A chitosan modified asymmetric small-diameter vascular graft with anti-thrombotic and anti-bacterial functions for vascular tissue engineering, J. Mater. Chem. B, vol.8, pp.568-577, 2020.

C. Quint, M. Arief, A. Muto, A. Dardik, and L. E. Niklason, Allogeneic human tissueengineered blood vessel, J. Vasc. Surg, vol.55, pp.790-798, 2012.

,

R. D. Kirkton, M. Santiago-maysonet, J. H. Lawson, W. E. Tente, S. L. Dahl et al., Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation, Sci. Transl. Med, vol.11, 2019.

S. Sundaram, J. One, J. Siewert, S. Teodosescu, L. Zhao et al., Tissue-engineered vascular grafts created from human induced pluripotent stem cells, Stem Cells Transl. Med, vol.3, pp.1535-1543, 2014.

L. Gui, B. C. Dash, J. Luo, L. Qin, L. Zhao et al., Implantable tissue-engineered blood vessels from human induced pluripotent stem cells, Biomaterials, vol.102, pp.120-129, 2016.

Z. H. Syedain, L. A. Meier, J. W. Bjork, A. Lee, and R. T. Tranquillo, Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring, Biomaterials, vol.32, pp.714-722, 2011.

Z. H. Syedain, L. A. Meier, M. T. Lahti, S. L. Johnson, and R. T. Tranquillo, Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery, Tissue Eng. Part A, vol.20, pp.1726-1734, 2014.

,

Z. Syedain, J. Reimer, M. Lahti, J. Berry, S. Johnson et al., Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs, Nat. Commun, vol.7, p.12951, 2016.

J. Zhao, L. Liu, J. Wei, D. Ma, W. Geng et al., A novel strategy to engineer small-diameter vascular grafts from marrow-derived mesenchymal stem cells, Artif. Organs, vol.36, pp.93-101, 2012.

K. Vallières, V. Laterreur, M. Y. Tondreau, J. Ruel, L. Germain et al., Human adipose-derived stromal cells for the production of completely autologous selfassembled tissue-engineered vascular substitutes, Acta Biomater, vol.24, pp.209-219, 2015.

J. Bourget, V. Laterreur, R. Gauvin, M. D. Guillemette, C. Miville-godin et al.,

. Germain, Microstructured human fibroblast-derived extracellular matrix scaffold for vascular media fabrication, J. Tissue Eng. Regen. Med, vol.11, pp.2479-2489, 2017.

N. Heureux, N. Dusserre, G. Konig, B. Victor, P. Keire et al., Human tissueengineered blood vessels for adult arterial revascularization, Nat. Med, vol.12, pp.361-365, 2006.

N. L'heureux, S. Pâquet, R. Labbé, L. Germain, and F. A. Auger, A completely biological tissue-engineered human blood vessel, FASEB J, vol.12, pp.47-56, 1998.

T. N. Mcallister, M. Maruszewski, S. A. Garrido, W. Wystrychowski, N. Dusserre et al., Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study, Lancet Lond. Engl, vol.373, pp.60248-60256, 2009.

L. Magnan, G. Labrunie, S. Marais, S. Rey, N. Dusserre et al., Characterization of a Cell-Assembled extracellular Matrix and the effect of the devitalization process, Acta Biomater, vol.82, pp.56-67, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02870985

W. Wystrychowski, L. Cierpka, K. Zagalski, S. Garrido, N. Dusserre et al., Case study: first implantation of a frozen, devitalized tissueengineered vascular graft for urgent hemodialysis access, J. Vasc. Access, vol.12, pp.67-70, 2011.

L. Magnan, G. Labrunie, M. Fénelon, N. Dusserre, M. Foulc et al., Human textiles: A cellsynthesized yarn as a truly "bio" material for tissue engineering applications, Acta Biomater, vol.105, pp.111-120, 2020.

A. Kajbafzadeh, R. Khorramirouz, S. M. Kameli, K. Fendereski, S. S. Daryabari et al., Three-year efficacy and patency follow-up of decellularized human internal mammary artery as a novel vascular graft in animal models, J. Thorac. Cardiovasc. Surg, vol.157, pp.1494-1502, 2019.

,

L. Gui, A. Muto, S. A. Chan, C. K. Breuer, and L. E. Niklason, Development of decellularized human umbilical arteries as small-diameter vascular grafts, Tissue Eng. Part A, vol.15, pp.2665-2676, 2009.

P. Mallis, M. Katsimpoulas, A. Kostakis, D. Dipresa, S. Korossis et al., Vitrified Human Umbilical Arteries as Potential Grafts for Vascular Tissue Engineering, Tissue Eng. Regen. Med, 2020.

K. H. Schneider, P. Aigner, W. Holnthoner, X. Monforte, S. Nürnberger et al., Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts, Acta Biomater, vol.29, pp.125-134, 2016.

,

K. H. Schneider, M. Enayati, C. Grasl, I. Walter, L. Budinsky et al., Acellular vascular matrix grafts from human placenta chorion: Impact of ECM preservation on graft characteristics, protein composition and in vivo performance, Biomaterials, vol.177, pp.14-26, 2018.

S. Ilanlou, M. Khakbiz, G. Amoabediny, and J. Mohammadi, Preclinical studies of acellular extracellular matrices as small-caliber vascular grafts, Tissue Cell, vol.60, pp.25-32, 2019.

S. F. Badylak, G. C. Lantz, A. Coffey, and L. A. Geddes, Small intestinal submucosa as a large diameter vascular graft in the dog, J. Surg. Res, vol.47, pp.74-80, 1989.

M. T. Hinds, R. C. Rowe, Z. Ren, J. Teach, P. Wu et al., Development of a reinforced porcine elastin composite vascular scaffold, J. Biomed. Mater. Res. A, vol.77, pp.458-469, 2006.

J. Jaramillo, K. T. Valencia-rivero, F. J. Cedano-serrano, R. López, N. Sandoval et al., Design and Evaluation of a Structural Reinforced Small Intestinal Submucosa Vascular Graft for Hemodialysis Access in a Porcine Model, ASAIO J. Am. Soc. Artif. Intern. Organs, vol.64, pp.270-277, 1992.

,

Q. Fang, T. Gu, J. Fan, Y. Zhang, Y. Wang et al., Evaluation of a hybrid small caliber vascular graft in a rabbit model, J. Thorac. Cardiovasc. Surg, 2019.

M. T. Koobatian, S. Row, R. J. Smith, C. Koenigsknecht, S. T. Andreadis et al., Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model, Biomaterials, vol.76, pp.344-358, 2016.

,

S. Amensag and P. S. Mcfetridge, Rolling the Human Amnion to Engineer Laminated Vascular Tissues, Tissue Eng. Part C Methods, vol.18, pp.903-912, 2012.

P. Lee, S. Tsai, L. Kuo, C. Hwang, C. Kuo et al., A prototype tissue engineered blood vessel using amniotic membrane as scaffold, Acta Biomater, vol.8, pp.3342-3348, 2012.

H. Peirovi, N. Rezvani, M. Hajinasrollah, S. S. Mohammadi, and H. Niknejad, Implantation of amniotic membrane as a vascular substitute in the external jugular vein of juvenile sheep, J. Vasc. Surg, vol.56, pp.1098-1104, 2012.

J. Günter, P. Wolint, A. Bopp, J. Steiger, E. Cambria et al., Microtissues in Cardiovascular Medicine: Regenerative Potential Based on a 3D Microenvironment, Stem Cells Int, vol.2016, p.9098523, 2016.

J. M. Kelm, V. Lorber, J. G. Snedeker, D. Schmidt, A. Broggini-tenzer et al., A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks, J. Biotechnol, vol.148, pp.46-55, 2010.

C. Norotte, F. S. Marga, L. E. Niklason, and G. Forgacs, Scaffold-free vascular tissue engineering using bioprinting, Biomaterials, vol.30, pp.5910-5917, 2009.

,

M. Itoh, K. Nakayama, R. Noguchi, K. Kamohara, K. Furukawa et al., Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae, PloS One, vol.10, p.136681, 2015.

W. J. Geelhoed, L. Moroni, and J. I. Rotmans, Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo, J Cardiovasc. Transl. Res, vol.10, pp.167-179, 2017.

F. F. Damanik, T. C. Rothuizen, C. Van-blitterswijk, J. I. Rotmans, and L. Moroni, Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix, Sci. Rep, vol.4, 2014.

T. C. Rothuizen, F. F. Damanik, T. Lavrijsen, M. J. Visser, J. F. Hamming et al., Development and evaluation of in vivo tissue engineered blood vessels in a porcine model, Biomaterials, vol.75, pp.82-90, 2016.

,

Y. Nakayama, H. Ishibashi-ueda, and K. Takamizawa, In vivo tissue-engineered smallcaliber arterial graft prosthesis consisting of autologous tissue (biotube), Cell Transplant, vol.13, pp.439-449, 2004.

T. Watanabe, K. Kanda, H. Ishibashi-ueda, H. Yaku, and Y. Nakayama, Autologous smallcaliber "biotube" vascular grafts with argatroban loading: a histomorphological examination after implantation to rabbits, J. Biomed. Mater. Res. B Appl. Biomater, vol.92, pp.236-242, 2010.

T. Watanabe, K. Kanda, M. Yamanami, H. Ishibashi-ueda, H. Yaku et al., Long-term animal implantation study of biotube-autologous small-caliber vascular graft fabricated by in-body tissue architecture, J. Biomed. Mater. Res. B Appl. Biomater, vol.98, pp.120-126, 2011.

M. Furukoshi, T. Moriwaki, and Y. Nakayama, Development of an in vivo tissue-engineered vascular graft with designed wall thickness (biotube type C) based on a novel caged mold, J. Artif. Organs Off. J. Jpn. Soc. Artif. Organs, vol.19, pp.54-61, 2016.

M. Furukoshi, E. Tatsumi, and Y. Nakayama, Application of in-body tissue architectureinduced Biotube vascular grafts for vascular access: Proof of concept in a beagle dog model, J. Vasc. Access, p.1129729819874318, 2019.

M. Yamanami, K. Kanda, T. Kawasaki, D. Kami, T. Watanabe et al., Development of xenogeneic decellularized biotubes for off-the-shelf applications, Artif. Organs, vol.43, pp.773-779, 2019.

A. C. Mamede, M. J. Carvalho, A. M. Abrantes, M. Laranjo, C. J. Maia et al., Amniotic membrane: from structure and functions to clinical applications, Cell Tissue Res, vol.349, pp.447-458, 2012.

S. W. Kauma, T. F. Huff, N. Hayes, and A. Nilkaeo, Placental Fas ligand expression is a mechanism for maternal immune tolerance to the fetus, J. Clin. Endocrinol. Metab, vol.84, pp.2188-2194, 1999.

A. E. King, A. Paltoo, R. W. Kelly, J. Sallenave, A. D. Bocking et al., Expression of natural antimicrobials by human placenta and fetal membranes, Placenta, vol.28, pp.161-169, 2007.

Y. Hao, D. H. Ma, D. G. Hwang, W. S. Kim, and F. Zhang, Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane, Cornea, vol.19, pp.348-352, 2000.

M. Magatti, E. Vertua, S. De-munari, M. Caro, M. Caruso et al., Human amnion favours tissue repair by inducing the M1-to-M2 switch and enhancing M2 macrophage features: Amnion affects both M1 and M2 polarization, J. Tissue Eng. Regen. Med, vol.11, pp.2895-2911, 2017.

Y. Jamilloux, E. Bourdonnay, M. Gerfaud-valentin, B. F. Py, L. Lefeuvre et al., Rev. Med. Interne, vol.39, pp.233-239, 2018.

,

N. J. Koizumi, T. J. Inatomi, C. J. Sotozono, N. J. Fullwood, A. J. Quantock et al., Growth factor mRNA and protein in preserved human amniotic membrane, Curr. Eye Res, vol.20, pp.173-177, 2000.

Z. Grzywocz, E. Pius-sadowska, P. Klos, M. Gryzik, D. Wasilewska et al., Growth factors and their receptors derived from human amniotic cells in vitro, Folia Histochem. Cytobiol, vol.52, pp.163-170, 2014.

H. Niknejad, G. Paeini-vayghan, F. A. Tehrani, M. Khayat-khoei, and H. Peirovi, Side dependent effects of the human amnion on angiogenesis, Placenta, vol.34, pp.340-345, 2013.

S. Tsai, Y. Liu, W. Tang, Z. Zhou, C. Hwang et al., Characterization of porcine arterial endothelial cells cultured on amniotic membrane, a potential matrix for vascular tissue engineering, Biochem. Biophys. Res. Commun, vol.357, pp.984-990, 2007.

,

H. Niknejad, T. Deihim, M. Solati-hashjin, and H. Peirovi, The effects of preservation procedures on amniotic membrane's ability to serve as a substrate for cultivation of endothelial cells, Cryobiology, vol.63, pp.145-151, 2011.

,

H. Oxlund, R. Helmig, J. T. Halaburt, and N. Uldbjerg, Biomechanical analysis of human chorioamniotic membranes, Eur. J. Obstet. Gynecol. Reprod. Biol, vol.34, pp.247-255, 1990.

W. Buerzle and E. Mazza, On the deformation behavior of human amnion, J. Biomech, vol.46, pp.1777-1783, 2013.

M. E. Khwad, B. Stetzer, R. M. Moore, D. Kumar, B. Mercer et al., Term human fetal membranes have a weak zone overlying the lower uterine pole and cervix before onset of labor, Biol. Reprod, vol.72, pp.720-726, 2005.

T. M. Malak and S. C. Bell, Structural characteristics of term human fetal membranes: a novel zone of extreme morphological alteration within the rupture site, Br. J. Obstet. Gynaecol, vol.101, pp.375-386, 1994.

J. Mclaren, T. M. Malak, and S. C. Bell, Structural characteristics of term human fetal membranes prior to labour: identification of an area of altered morphology overlying the cervix, Hum. Reprod. Oxf. Engl, vol.14, pp.237-241, 1999.

P. C. Mcparland, D. J. Taylor, and S. C. Bell, Mapping of zones of altered morphology and chorionic connective tissue cellular phenotype in human fetal membranes (amniochorion and decidua) overlying the lower uterine pole and cervix before labor at term, Am. J. Obstet. Gynecol, vol.189, pp.1481-1488, 2003.

M. L. Oyen, R. F. Cook, and S. E. Calvin, Mechanical failure of human fetal membrane tissues, J. Mater. Sci. Mater. Med, vol.15, pp.651-658, 2004.

,

E. M. Joyce, J. J. Moore, and M. S. Sacks, Biomechanics of the fetal membrane prior to mechanical failure: review and implications, Eur. J. Obstet. Gynecol. Reprod. Biol, p.144

, , pp.121-127, 2009.

A. Mauri, A. E. Ehret, M. Perrini, C. Maake, N. Ochsenbein-kölble et al., Deformation mechanisms of human amnion: Quantitative studies based on second harmonic generation microscopy, J. Biomech, vol.48, pp.1606-1613, 2015.

A. K. Riau, R. W. Beuerman, L. S. Lim, and J. S. Mehta, Preservation, sterilization and deepithelialization of human amniotic membrane for use in ocular surface reconstruction, Biomaterials, vol.31, pp.216-225, 2010.

M. Gholipourmalekabadi, B. Farhadihosseinabadi, M. Faraji, and M. R. Nourani, How preparation and preservation procedures affect the properties of amniotic membrane? How safe are the procedures?, Burns J. Int. Soc. Burn Inj, 2019.

,

P. B. Milan, N. Amini, M. T. Joghataei, L. Ebrahimi, M. Amoupour et al., Decellularized human amniotic membrane: From animal models to clinical trials, Methods San Diego Calif, 2019.

,

S. Wilshaw, J. N. Kearney, J. Fisher, and E. Ingham, Production of an acellular amniotic membrane matrix for use in tissue engineering, Tissue Eng, vol.12, pp.2117-2129, 2006.

R. Sripriya and R. Kumar, Denudation of human amniotic membrane by a novel process and its characterisations for biomedical applications, Prog. Biomater, vol.5, pp.161-172, 2016.

A. J. Shortt, G. A. Secker, R. J. Lomas, S. P. Wilshaw, J. N. Kearney et al., The effect of amniotic membrane preparation method on its ability to serve as a substrate for the ex-vivo expansion of limbal epithelial cells, Biomaterials, vol.30, pp.1056-1065, 2009.

M. Fenelon, D. Maurel, R. Siadous, A. Gremare, S. Delmond et al., Comparison of the impact of preservation methods on amniotic membrane properties for tissue engineering applications, Mater. Sci. Eng. C, vol.104, p.109903, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02870477

F. A. Tehrani, A. Ahmadiani, and H. Niknejad, The effects of preservation procedures on antibacterial property of amniotic membrane, Cryobiology, vol.67, pp.293-298, 2013.

R. Laurent, A. Nallet, L. Obert, L. Nicod, and F. Gindraux, Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank, Cell Tissue Bank, vol.15, pp.267-275, 2014.

M. T. Rodríguez-ares, M. J. López-valladares, R. Touriño, B. Vieites, F. Gude et al., Effects of lyophilization on human amniotic membrane, Acta Ophthalmol. (Copenh.), vol.87, pp.396-403, 2009.

A. Russo, P. Bonci, and P. Bonci, The effects of different preservation processes on the total protein and growth factor content in a new biological product developed from human amniotic membrane, Cell Tissue Bank, vol.13, pp.353-361, 2012.

R. Singh, D. Singh, and A. Singh, Radiation sterilization of tissue allografts: A review, World J. Radiol, vol.8, p.355, 2016.

, Guidelines for industrial radiation sterilization of disposable medical products, 1990.

R. Singh, S. Purohit, M. P. Chacharkar, P. S. Bhandari, and A. S. Bath, Microbiological safety and clinical efficacy of radiation sterilized amniotic membranes for treatment of seconddegree burns, Burns, vol.33, pp.505-510, 2007.

F. Versen-höynck, C. Syring, S. Bachmann, and D. E. Möller, The influence of different preservation and sterilisation steps on the histological properties of amnion allografts--light and scanning electron microscopic studies, Cell Tissue Bank, vol.5, pp.45-56, 2004.

H. Mrázová, J. Koller, K. Kubi?ová, G. Fujeríková, E. Klincová et al., Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization, Cell Tissue Bank, vol.17, pp.255-260, 2016.

S. Mohd, M. I. Ghazali, N. Yusof, S. Sulaiman, S. Ramalingam et al., Quantifying the ultrastructure changes of air-dried and irradiated human amniotic membrane using atomic force microscopy: a preliminary study, Cell Tissue Bank, vol.19, pp.613-622, 2018.

S. S. Hamid, N. K. Zahari, N. Yusof, and A. Hassan, Scanning electron microscopic assessment on surface morphology of preserved human amniotic membrane after gamma sterilisation, Cell Tissue Bank, vol.15, pp.15-24, 2014.

M. G. Baldry, The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid, J. Appl. Bacteriol, vol.54, pp.417-423, 1983.

R. S. Sikka, D. A. Fischer, and M. F. Swiontkowski, Reprocessing single-use devices: an orthopaedic perspective, J. Bone Joint Surg. Am, vol.87, pp.450-457, 2005.

D. Roth, Plastic repair of conjunctival defects with fetal membranes, Arch. Ophtalmol, pp.522-525, 1940.

K. Jirsova and G. L. Jones, Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting-a review, Cell Tissue Bank, vol.18, pp.193-204, 2017.

D. Ilic, L. Vicovac, M. Nikolic, and E. L. Ilic, Human amniotic membrane grafts in therapy of chronic non-healing wounds: Table 1, Br. Med. Bull, vol.117, pp.59-67, 2016.

V. Lo and E. Pope, Amniotic membrane use in dermatology, Int. J. Dermatol, vol.48, pp.935-940, 2009.

W. Li, G. Ma, B. Brazile, N. Li, W. Dai et al., Investigating the Potential of Amnion-Based Scaffolds as a Barrier Membrane for Guided Bone Regeneration, Langmuir ACS J. Surf. Colloids, vol.31, pp.8642-8653, 2015.

M. Fénelon, O. Chassande, J. Kalisky, F. Gindraux, S. Brun et al., Human amniotic membrane for guided bone regeneration of calvarial defects in mice, J. Mater. Sci. Mater. Med, vol.29, p.78, 2018.

M. Fénelon, M. Etchebarne, R. Siadous, A. Grémare, M. Durand et al., Assessment of fresh and preserved amniotic membrane for guided bone regeneration in mice, J. Biomed. Mater. Res. A, 2020.

S. Díaz-prado, M. E. Rendal-vázquez, E. Muiños-lópez, T. Hermida-gómez, M. Rodríguez-cabarcos et al., Potential use of the human amniotic membrane as a scaffold in human articular cartilage repair, Cell Tissue Bank, vol.11, pp.183-195, 2010.

M. Fénelon, S. Catros, and J. C. Fricain, What is the benefit of using amniotic membrane in oral surgery? A comprehensive review of clinical studies, Clin. Oral Investig, vol.22, pp.1881-1891, 2018.

M. Bourgeois, F. Loisel, L. Obert, I. Pluvy, and F. Gindraux, Can the amniotic membrane be used to treat peripheral nerve defects? A review of literature, Hand Surg. Rehabil, vol.38, pp.223-232, 2019.

A. Liberski, N. Ayad, D. Wojciechowska, R. Kot, D. M. Vo et al., Weaving for heart valve tissue engineering, Biotechnol. Adv, vol.35, pp.633-656, 2017.

,

S. Van-rooij, M. E. Sprengers, J. P. Peluso, J. Daams, D. Verbaan et al., A systematic review and meta-analysis of Woven EndoBridge single layer for treatment of intracranial aneurysms, Interv. Neuroradiol. J. Peritherapeutic Neuroradiol. Surg. Proced. Relat. Neurosci, p.1591019920904421, 2020.

,

R. Vaishya, A. K. Agarwal, M. Tiwari, A. Vaish, V. Vijay et al., Medical textiles in orthopedics: An overview, J. Clin. Orthop. Trauma, vol.9, pp.26-33, 2018.

M. Akbari, A. Tamayol, S. Bagherifard, L. Serex, P. Mostafalu et al., Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving, Adv. Healthc. Mater, vol.5, pp.751-766, 2016.

R. M. Rossi, G. Fortunato, S. Nedjari, A. Morel, F. Heim et al., Mechanical properties of medical textiles, Struct. Mech. Text. Fibre Assem, pp.301-340, 2019.

M. Hasegawa and T. Azuma, Mechanical properties of synthetic arterial grafts, J. Biomech, vol.12, pp.90039-90042, 1979.

R. Hajjaji, S. B. Abdessalem, and J. F. Ganghoffer, The influence of textile vascular prosthesis crimping on graft longitudinal elasticity and flexibility, J. Mech. Behav. Biomed. Mater, vol.16, pp.73-80, 2012.

H. Sonoda, K. Takamizawa, Y. Nakayama, H. Yasui, and T. Matsuda, Small-diameter compliant arterial graft prosthesis: Design concept of coaxial double tubular graft and its fabrication, J. Biomed. Mater. Res, vol.55, pp.266-276, 2001.

Y. Chen, X. Ding, Y. Li, M. W. King, J. Gao et al., A bilayer prototype woven vascular prosthesis with improved radial compliance, J. Text. Inst, vol.103, pp.106-111, 2012.

A. B. Voorhees, A. Jaretzki, and A. H. Blakemore, The use of tubes constructed from vinyon "N" cloth in bridging arterial defects, Ann. Surg, vol.135, pp.332-336, 1952.

R. J. Zdrahala, Small caliber vascular grafts. Part I: state of the art, J. Biomater. Appl, vol.10, pp.309-329, 1996.

T. Yokota, H. Ichikawa, G. Matsumiya, T. Kuratani, T. Sakaguchi et al., In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding, J. Thorac. Cardiovasc. Surg, vol.136, pp.900-907, 2008.

,