B. Aigouy, L. Bivic, and A. , The PCP pathway regulates Baz planar distribution in epithelial cells. Sci Rep, vol.6, p.33420, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428876

R. Benton, D. St-johnston, and . Drosophila, PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells, Cell, vol.115, issue.6, pp.691-704, 2003.

A. J. Blasky, L. Pan, C. B. Moens, and B. Appel, Pard3 regulates contact between neural crest cells and the timing of Schwann cell differentiation but is not essential for neural crest migration or myelination, Dev Dyn, vol.243, issue.12, pp.1511-1534, 2014.

A. Borovina, S. Superina, D. Voskas, and B. Ciruna, Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia, Nat Cell Biol, vol.12, issue.4, pp.407-419, 2010.

C. Boutin, A. M. Goffinet, and F. Tissir, Celsr1-3 cadherins in PCP and brain development, Curr Top Dev Biol, vol.101, pp.161-83, 2012.

J. M. Carvajal-gonzalez, S. Mulero-navarro, and M. Mlodzik, Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity, Bioessays, vol.38, issue.12, pp.1234-1245, 2016.

S. Chen, J. Chen, H. Shi, M. Wei, D. R. Castaneda-castellanos et al., Regulation of microtubule stability and organization by mammalian Par3 in specifying neuronal polarity, Dev Cell, vol.24, issue.1, pp.26-40, 2013.

I. Chuykin, O. Ossipova, and S. Y. Sokol, Par3 interacts with Prickle3 to generate apical PCP complexes in the vertebrate neural plate. Elife, vol.7, p.37881, 2018.

J. Ezan, L. Lasvaux, A. Gezer, A. Novakovic, H. May-simera et al., Primary cilium migration depends on G-protein signalling control of subapical cytoskeleton, Nat Cell Biol, vol.15, issue.9, pp.1107-1122, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862161

R. M. Fame, J. T. Chang, A. Hong, N. A. Aponte-santiago, and H. Sive, Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish. Fluids Barriers CNS, vol.13, p.11, 2016.

M. Fukata, T. Watanabe, J. Noritake, M. Nakagawa, M. Yamaga et al., Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170, Cell, vol.109, issue.7, pp.873-85, 2002.

C. M. Grimsley-myers, C. W. Sipe, G. S. Géléoc, and X. Lu, The small GTPase Rac1 regulates auditory hair cell morphogenesis, J Neurosci, vol.29, issue.50, pp.15859-69, 2009.

B. Guirao, A. Meunier, S. Mortaud, A. Aguilar, J. M. Corsi et al., Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia, Nat Cell Biol, vol.12, issue.4, pp.341-50, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00555153

M. Hashimoto, K. Shinohara, J. Wang, S. Ikeuchi, S. Yoshiba et al., Planar polarization of node cells determines the rotational axis of node cilia, Nat Cell Biol, vol.12, issue.2, pp.170-176, 2010.

P. S. Hegan, E. Ostertag, A. M. Geurts, and M. S. Mooseker, Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells. Cytoskeleton (Hoboken), vol.72, pp.503-519, 2015.

Y. Hirota, A. Meunier, S. Huang, T. Shimozawa, O. Yamada et al., Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II, Development, vol.137, issue.18, pp.3037-3083, 2010.

M. Inaba, Z. G. Venkei, and Y. M. Yamashita, The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline, Elife, vol.4, 2015.

T. Jiang, R. F. Mckinley, M. A. Mcgill, S. Angers, and T. J. Harris, A Par-1-Par-3-Centrosome Cell Polarity Pathway and Its Tuning for Isotropic Cell Adhesion, Curr Biol, vol.25, issue.20, pp.2701-2709, 2015.

C. Jones, V. C. Roper, I. Foucher, D. Qian, B. Banizs et al., Ciliary proteins link basal body polarization to planar cell polarity regulation, Nat Genet, vol.40, issue.1, pp.69-77, 2008.

L. Malt, A. Dailey, Z. Holbrook-rasmussen, J. Zheng, Y. Hogan et al., Par3 is essential for the establishment of planar cell polarity of inner ear hair cells, Proc Natl Acad Sci, vol.116, issue.11, pp.4999-5008, 2019.

L. Lepelletier, J. B. De-monvel, J. Buisson, C. Desdouets, and C. Petit, Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium, Biophys J, vol.105, issue.1, pp.48-58, 2013.

A. Mahuzier, H. M. Gaudé, V. Grampa, I. Anselme, F. Silbermann et al., Dishevelled stabilization by the ciliopathy protein Rpgrip1l is essential for planar cell polarity, J Cell Biol, vol.198, issue.5, pp.927-967, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00762184

A. W. Mathewson, D. G. Berman, and C. B. Moens, Microtubules are required for the maintenance of planar cell polarity in monociliated floorplate cells, Dev Biol, issue.18, pp.30742-30747, 2019.

K. Matsuzawa, H. Akita, T. Watanabe, M. Kakeno, T. Matsui et al., PAR3-aPKC regulates Tiam1 by modulating suppressive internal interactions, Mol Biol Cell, vol.27, issue.9, pp.1511-1534, 2016.

S. G. Megason, In toto imaging of embryogenesis with confocal time-lapse microscopy, Methods Mol Biol, vol.546, pp.317-349, 2009.

A. Meunier and J. Azimzadeh, Multiciliated Cells in Animals, Cold Spring Harb Perspect Biol, vol.8, issue.12, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471943

Z. Mirzadeh, Y. G. Han, M. Soriano-navarro, J. M. García-verdugo, and A. Alvarez-buylla, Cilia organize ependymal planar polarity, J Neurosci, vol.30, issue.7, pp.2600-2610, 2010.

B. Mitchell, J. L. Stubbs, F. Huisman, P. Taborek, C. Yu et al., The PCP pathway instructs the planar orientation of ciliated cells in the Xenopus larval skin, Curr Biol

, Jun, vol.9, issue.11, pp.924-933

M. Montcouquiol, R. A. Rachel, P. J. Lanford, N. G. Copeland, N. A. Jenkins et al., Identification of Vangl2 and Scrb1 as planar polarity genes in mammals, Nature, vol.423, issue.6936, pp.173-180, 2003.

R. Moore, E. Theveneau, S. Pozzi, P. Alexandre, J. Richardson et al., Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion, Development, vol.140, issue.23, pp.4763-75, 2013.

T. Negishi, N. Miyazaki, K. Murata, H. Yasuo, and N. Ueno, Physical association between a novel plasma-membrane structure and centrosome orients cell division. Elife, vol.5, p.16550, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01365297

T. Nishimura, T. Yamaguchi, K. Kato, M. Yoshizawa, Y. Nabeshima et al., AR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1, Nat Cell Biol, vol.7, issue.3, pp.270-277, 2005.

S. Ohata, V. Herranz-pérez, J. Nakatani, A. Boletta, J. M. García-verdugo et al., Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium, J Neurosci, vol.35, issue.31, pp.11153-68, 2015.

F. Pouthas, P. Girard, V. Lecaudey, T. B. Ly, D. Gilmour et al., In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum, J Cell Sci, vol.121, pp.2406-2420, 2008.

S. Redemann, J. Pecreaux, N. W. Goehring, K. Khairy, E. H. Stelzer et al., Membrane invaginations reveal cortical sites that pull on mitotic spindles in onecell C. elegans embryos. PLoS One, vol.5, p.12301, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01497094

A. J. Ross, H. May-simera, E. R. Eichers, K. M. Hill, J. Jagger et al., Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates, Nat Genet, vol.37, issue.10, pp.1135-1175, 2005.

J. Schmoranzer, J. P. Fawcett, M. Segura, S. Tan, R. B. Vallee et al., Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration, Curr Biol, vol.19, issue.13, pp.1065-74, 2009.

D. S. Sepich, M. Usmani, S. Pawlicki, and L. Solnica-krezel, Wnt/PCP signaling controls intracellular position of MTOCs during gastrulation convergence and extension movements, Development, vol.138, issue.3, pp.543-52, 2011.

L. Solnica-krezel, D. L. Stemple, E. Mountcastle-shah, Z. Rangini, S. C. Neuhauss et al., Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish, Development, vol.123, pp.67-80, 1996.

H. Song, J. Hu, W. Chen, G. Elliott, P. Andre et al., Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning, Nature, vol.466, issue.7304, pp.378-82, 2010.

B. Tarchini, C. Jolicoeur, and M. Cayouette, A molecular blueprint at the apical surface establishes planar asymmetry in cochlear hair cells, Dev Cell, vol.27, issue.1, pp.88-102, 2013.

J. Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds et al., TrackMate: An open and extensible platform for single-particle tracking, vol.115, pp.80-90, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01799353

J. B. Wallingford, Planar cell polarity signaling, cilia and polarized ciliary beating, Curr Opin Cell Biol, vol.22, issue.5, pp.597-604, 2010.

X. Wei, Y. Cheng, Y. Luo, X. Shi, S. Nelson et al., The zebrafish Pard3 ortholog is required for separation of the eye fields and retinal lamination, Dev Biol, vol.269, issue.1, pp.286-301, 2004.

T. Wittmann, G. M. Bokoch, and C. M. Waterman-storer, Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1, J Biol Chem, vol.279, issue.7, pp.6196-203, 2004.

M. P. Krahn, D. Egger-adam, and A. Wodarz, PP2A antagonizes phosphorylation of Bazooka by PAR-1 to control apical-basal polarity in dividing embryonic neuroblasts, Dev Cell, vol.16, issue.6, pp.901-909, 2009.

J. Yi, X. Wu, A. H. Chung, J. K. Chen, T. M. Kapoor et al., Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage, J Cell Biol

, , vol.202, pp.779-92

I. G. Macara and S. Mili, Polarity and Differential Inheritance-Universal Attributes of Life?, Cell, vol.135, pp.801-812, 2008.

Q. Schenkelaars, L. Fierro-constain, E. Renard, and C. Borchiellini, Retracing the path of planar cell polarity, BMC Evolutionary Biology, vol.16, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01444062

M. Salinas-saavedra, A. Q. Rock, and M. Q. Martindale, Germ layer-specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm, vol.7, p.36740, 2018.

M. W. Zappaterra and M. K. Lehtinen, The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond, Cellular and Molecular Life Sciences, vol.69, pp.2863-2878, 2012.

K. J. Kemphues, J. R. Priess, D. G. Morton, and N. Cheng, Identification of genes required for cytoplasmic localization in early C. elegans embryos, Cell, vol.52, pp.311-320, 1988.

B. Goldstein and I. G. Macara, The PAR Proteins: Fundamental Players in Animal Cell Polarization, Developmental Cell, vol.13, pp.609-622, 2007.

Y. Tabuse, Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans

E. Munro, J. Nance, and J. R. Priess, Cortical Flows Powered by Asymmetrical Contraction Transport PAR Proteins to Establish and Maintain Anterior-Posterior Polarity in the Early C. elegans Embryo, Developmental Cell, vol.7, pp.413-424, 2004.

F. Motegi and A. Sugimoto,

. Rhogef, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos, Nature Cell Biology, vol.8, pp.978-985, 2006.

N. Jenkins, CYK-4/GAP Provides a Localized Cue to Initiate Anteroposterior Polarity upon Fertilization, Science, vol.313, pp.1298-1301, 2006.

D. J. Dickinson, F. Schwager, L. Pintard, M. Gotta, B. Goldstein et al., Cell Biochemistry Approach Reveals PAR Complex Dynamics during Cell Polarization. Developmental Cell, vol.42, 2017.

F. Motegi, Microtubules induce self-organization of polarized PAR domains in Caenorhabditis elegans zygotes, Nature Cell Biology, vol.13, pp.1361-1367, 2011.

J. Rodriguez, aPKC Cycles between Functionally Distinct PAR Protein Assemblies to Drive Cell Polarity, Developmental Cell, 2017.

Y. Hao, L. Boyd, and G. Seydoux, Stabilization of Cell Polarity by the C. elegans RING Protein PAR-2, Developmental Cell, vol.10, pp.199-208, 2006.

A. Sailer, A. Anneken, Y. Li, S. Lee, and E. Munro, Dynamic Opposition of Clustered Proteins Stabilizes Cortical Polarity in the C. elegans Zygote, Developmental Cell, vol.35, pp.131-142, 2015.

R. Benton and D. St-johnston, Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells, Cell, vol.115, pp.691-704, 2003.

K. Ebnet, The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM), The EMBO Journal, vol.20, pp.3738-3748, 2001.

K. Ebnet, The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity, Journal of Cell Science, vol.116, pp.3879-3891, 2003.

K. Takekuni, Direct Binding of Cell Polarity Protein PAR-3 to Cell-Cell Adhesion Molecule Nectin at Neuroepithelial Cells of Developing Mouse, Journal of Biological Chemistry, vol.278, pp.5497-5500, 2003.

T. Fukuhara, Activation of Cdc42 by trans interactions of the cell adhesion molecules nectins through c-Src and Cdc42-GEF FRG, J Cell Biol, vol.166, pp.393-405, 2004.

S. Yamada and W. J. Nelson, Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion, J Cell Biol, vol.178, pp.517-527, 2007.

T. Yamanaka, Mammalian Lgl Forms a Protein Complex with PAR-6 and aPKC Independently of PAR-3 to Regulate Epithelial Cell Polarity, Current Biology, vol.13, pp.734-743, 2003.

A. Manninen, Epithelial polarity -Generating and integrating signals from the ECM with integrins, Experimental Cell Research, vol.334, pp.337-349, 2015.

E. Morais-de-sá, V. Mirouse, and D. St-johnston, aPKC Phosphorylation of Bazooka Defines the Apical/Lateral Border in Drosophila Epithelial Cells, Cell, vol.141, pp.509-523, 2010.

R. F. Walther and F. Pichaud, Crumbs/DaPKC-Dependent Apical Exclusion of Bazooka Promotes Photoreceptor Polarity Remodeling, Current Biology, vol.20, pp.1065-1074, 2010.

A. Hutterer, J. Betschinger, M. Petronczki, and J. A. Knoblich, Sequential Roles of Cdc42, Par-6, aPKC, and Lgl in the Establishment of Epithelial Polarity during Drosophila Embryogenesis, Developmental Cell, vol.6, pp.845-854, 2004.

T. Jiang, R. F. Mckinley, M. A. Mcgill, S. Angers, and T. J. Harris, A Par-1-Par-3-Centrosome Cell Polarity Pathway and Its Tuning for Isotropic Cell Adhesion, Current Biology, vol.25, pp.2701-2708, 2015.

D. Bilder, M. Schober, and N. Perrimon, Integrated activity of PDZ protein complexes regulates epithelial polarity, Nature Cell Biology, vol.5, pp.53-58, 2003.

G. Tanentzapf and U. Tepass, Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization, Nature Cell Biology, vol.5, pp.46-52, 2003.

X. Chen and I. G. Macara, Par-3 controls tight junction assembly through the Rac exchange factor Tiam1, Nature Cell Biology, vol.7, pp.262-269, 2005.

D. Yamazaki, Wave2 is required for directed cell migration and cardiovascular development, Nature, vol.452, p.456, 2003.

T. J. Harris and M. Peifer, The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila, The Journal of Cell Biology, vol.170, pp.813-823, 2005.

S. M. Ahmed and I. G. Macara, The Par3 polarity protein is an exocyst receptor essential for mammary cell survival, Nature Communications, vol.8, p.14867, 2017.

F. Wirtz-peitz, T. Nishimura, and J. A. Knoblich, Linking Cell Cycle to Asymmetric Division: Aurora-A Phosphorylates the Par Complex to Regulate Numb Localization, Cell, vol.135, pp.161-173, 2008.

Y. Bella??che, The Partner of Inscuteable/Discs-Large Complex Is Required to Establish Planar Polarity during Asymmetric Cell Division in Drosophila, Cell, vol.106, pp.355-366, 2001.

M. Guo, L. Y. Jan, and Y. Jan, Control of Daughter Cell Fates during Asymmetric Division: Interaction of Numb and Notch, p.15

J. Betschinger, K. Mechtler, and J. A. Knoblich, The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl, Nature, vol.422, pp.326-330, 2003.

S. X. Atwood and K. E. Prehoda, aPKC Phosphorylates Miranda to Polarize Fate Determinants during Neuroblast Asymmetric Cell Division, Current Biology, vol.19, pp.723-729, 2009.

C. A. Smith, aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb, The EMBO Journal, vol.26, pp.468-480, 2007.

E. P. Spana and C. Q. Doe, Numb Antagonizes Notch Signaling to Specify Sibling Neuron Cell Fates, Neuron, vol.17, pp.21-26, 1996.

P. Alexandre, A. M. Reugels, D. Barker, E. Blanc, and J. D. Clarke, Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube, Nature Neuroscience, vol.13, pp.673-679, 2010.

O. Ossipova, J. Ezan, and S. Y. Sokol, PAR-1 Phosphorylates Mind Bomb to Promote Vertebrate Neurogenesis, Developmental Cell, vol.17, pp.222-233, 2009.

S. K. Bowman, R. A. Neumüller, M. Novatchkova, Q. Du, and J. A. Knoblich, The Drosophila NuMA Homolog Mud Regulates Spindle Orientation in Asymmetric Cell Division, Developmental Cell, vol.10, pp.731-742, 2006.

S. E. Siegrist and C. Q. Doe, Microtubule-Induced Pins/G?i Cortical Polarity in Drosophila Neuroblasts, Cell, vol.123, pp.1323-1335, 2005.

M. S. Lu and K. E. Prehoda, A NudE/14-3-3 Pathway Coordinates Dynein and the Kinesin Khc73 to Position the Mitotic Spindle, Developmental Cell, vol.26, pp.369-380, 2013.

S. W. Grill, The Distribution of Active Force Generators Controls Mitotic Spindle Position, Science, vol.301, pp.518-521, 2003.

J. Labbé, E. K. Mccarthy, and B. Goldstein, The forces that position a mitotic spindle asymmetrically are tethered until after the time of spindle assembly, The Journal of Cell Biology, vol.167, pp.245-256, 2004.

D. G. Srinivasan, R. M. Fisk, H. Xu, S. Heuvel, and . Van-den, A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans, Genes Dev, vol.17, pp.1225-1239, 2003.

T. Nguyen-ngoc, K. Afshar, and P. Gönczy, Coupling of cortical dynein and G? proteins mediates spindle positioning in Caenorhabditis elegans, Nature Cell Biology, vol.9, pp.1294-1302, 2007.

K. Sugioka, Tumor suppressor APC is an attenuator of spindle-pulling forces during C. elegans asymmetric cell division, Proceedings of the National Academy of Sciences, 2018.

T. Lechler and E. Fuchs, Asymmetric cell divisions promote stratification and differentiation of mammalian skin, Nature, vol.437, pp.275-280, 2005.

S. E. Williams, S. Beronja, H. A. Pasolli, and E. Fuchs, Asymmetric cell divisions promote Notch-dependent epidermal differentiation, Nature, vol.470, pp.353-358, 2011.

S. E. Williams, L. A. Ratliff, M. P. Postiglione, J. A. Knoblich, and E. Fuchs, Par3-mInsc and G?i3 cooperate to promote oriented epidermal cell divisions through LGN, Nature Cell Biology, vol.16, pp.758-769, 2014.

S. Etienne-manneville and A. Hall, Cdc42 regulates GSK-3b and adenomatous polyposis coli to control cell polarity, Nature, vol.421, pp.748-753, 2003.

S. Etienne-manneville, J. Manneville, S. Nicholls, M. A. Ferenczi, and A. Hall, Cdc42 and Par6-PKC? regulate the spatially localized association of Dlg1 and APC to control cell polarization, The Journal of Cell Biology, vol.170, pp.895-901, 2005.

L. E. Dow, The tumour-suppressor Scribble dictates cell polarity during directed epithelial migration: regulation of Rho GTPase recruitment to the leading edge, Oncogene, vol.26, pp.2272-2282, 2007.

D. M. Pegtel, The Par-Tiam1 Complex Controls Persistent Migration by Stabilizing Microtubule-Dependent Front-Rear Polarity, Current Biology, vol.17, pp.1623-1634, 2007.

T. Nishimura and K. Kaibuchi, Numb Controls Integrin Endocytosis for Directional Cell Migration with aPKC and PAR-3, Developmental Cell, vol.13, pp.15-28, 2007.

S. Etienne-manneville, A. Hall, and C. Carmona-fontaine, Integrin-Mediated Activation of Cdc42 Controls Cell Polarity in Migrating Astrocytes through PKC, Nature, vol.10, issue.60, pp.957-961, 2008.

R. Moore, Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion, Development, vol.140, pp.4763-4775, 2013.

J. Schmoranzer, Par3 and Dynein Associate to Regulate Local Microtubule Dynamics and Centrosome Orientation during Migration, Current Biology, vol.19, pp.1065-1074, 2009.

S. Chen, Regulation of Microtubule Stability and Organization by Mammalian Par3 in Specifying Neuronal Polarity, Developmental Cell, vol.24, pp.26-40, 2013.

W. Y. Aw, B. W. Heck, B. Joyce, and D. Devenport, Transient Tissue-Scale Deformation Coordinates Alignment of Planar Cell Polarity Junctions in the Mammalian Skin, Current Biology, vol.26, pp.2090-2100, 2016.

J. Wang, Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway, Nature Genetics, vol.37, pp.980-985, 2005.

J. Wang, Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation, Development, vol.133, pp.1767-1778, 2006.

Y. Wang, The Role of Frizzled3 and Frizzled6 in Neural Tube Closure and in the Planar Polarity of Inner-Ear Sensory Hair Cells, Journal of Neuroscience, vol.26, pp.2147-2156, 2006.

M. Montcouquiol, Asymmetric Localization of Vangl2 and Fz3 Indicate Novel Mechanisms for Planar Cell Polarity in Mammals, Journal of Neuroscience, vol.26, pp.5265-5275, 2006.

M. R. Deans, Asymmetric Distribution of Prickle-Like 2 Reveals an Early Underlying Polarization of Vestibular Sensory Epithelia in the Inner Ear, Journal of Neuroscience, vol.27, pp.3139-3147, 2007.

H. Song, Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning, Nature, vol.466, pp.378-382, 2010.

D. Devenport and E. Fuchs, Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles, Nature Cell Biology, vol.10, pp.1257-1268, 2008.

D. Devenport, D. Oristian, E. Heller, and E. Fuchs, Mitotic internalization of planar cell polarity proteins preserves tissue polarity, Nature Cell Biology, vol.13, pp.893-902, 2011.

F. Tissir, Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus, Nature Neuroscience, vol.13, pp.700-707, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00536331

E. K. Vladar, R. D. Bayly, A. M. Sangoram, M. P. Scott, and J. D. Axelrod, Microtubules Enable the Planar Cell Polarity of Airway Cilia, Current Biology, vol.22, pp.2203-2212, 2012.

W. Chen, Asymmetric Homotypic Interactions of the Atypical Cadherin Flamingo Mediate Intercellular Polarity Signaling, Cell, vol.133, pp.1093-1105, 2008.

H. Strutt and D. Strutt, Differential Stability of Flamingo Protein Complexes Underlies the Establishment of Planar Polarity, Current Biology, vol.18, pp.1555-1564, 2008.

J. Wu and M. Mlodzik, The Frizzled Extracellular Domain Is a Ligand for Van Gogh/Stbm during Nonautonomous Planar Cell Polarity Signaling, Developmental Cell, vol.15, pp.462-469, 2008.

H. Strutt, J. Gamage, and D. Strutt, Robust Asymmetric Localization of Planar Polarity Proteins Is Associated with Organization into Signalosome-like Domains of Variable Stoichiometry, Cell Reports, vol.17, pp.2660-2671, 2016.

H. Strutt, S. J. Warrington, and D. Strutt, Dynamics of Core Planar Polarity Protein Turnover and Stable Assembly into Discrete Membrane Subdomains, Developmental Cell, vol.20, pp.511-525, 2011.

T. Usui, Flamingo, a Seven-Pass Transmembrane Cadherin, Regulates Planar Cell Polarity under the Control of Frizzled, Cell, vol.98, pp.585-595, 1999.

S. J. Warrington, H. Strutt, K. H. Fisher, and D. Strutt, A Dual Function for Prickle in Regulating Frizzled Stability during Feedback-Dependent Amplification of Planar Polarity, Current Biology, 2017.

A. Jenny, Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling, The EMBO Journal, vol.22, pp.4409-4420, 2003.

M. T. Butler and J. Wallingford, Control of vertebrate core planar cell polarity protein localization and dynamics by Prickle 2, Development, vol.142, pp.3429-3439, 2015.

A. Jenny, J. Reynolds-kenneally, G. Das, M. Burnett, and M. Mlodzik, Diego and Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled binding, Nature Cell Biology, vol.7, pp.691-697, 2005.

G. Das, Diego interacts with Prickle and Strabismus/Van Gogh to localize planar cell polarity complexes, Development, vol.131, pp.4467-4476, 2004.

L. K. Kelly, J. Wu, W. A. Yanfeng, and M. Mlodzik, Frizzled-Induced Van Gogh Phosphorylation by CK1? Promotes Asymmetric Localization of Core PCP Factors in Drosophila, Cell Reports, vol.16, pp.344-356, 2016.

S. R. Pfeffer, Rab GTPases: master regulators that establish the secretory and endocytic pathways, Molecular Biology of the Cell, vol.28, pp.712-715, 2017.

G. Mottola, A. Classen, M. Gonzalez-gaitan, S. Eaton, and M. Zerial, A novel function for the Rab5 effector Rabenosyn-5 in planar cell polarity, Development, vol.137, pp.2353-2364, 2010.

A. Classen, K. I. Anderson, E. Marois, and S. Eaton, Hexagonal Packing of Drosophila Wing Epithelial Cells by the Planar Cell Polarity Pathway, Developmental Cell, vol.9, pp.805-817, 2005.

B. Cho, G. Pierre-louis, A. Sagner, S. Eaton, and J. D. Axelrod, Clustering and Negative Feedback by Endocytosis in Planar Cell Polarity Signaling Is Modulated by Ubiquitinylation of Prickle, PLOS Genetics, vol.11, p.1005259, 2015.

A. Yu, Association of Dishevelled with the Clathrin AP-2 Adaptor Is Required for Frizzled Endocytosis and Planar Cell Polarity Signaling, Developmental Cell, vol.12, pp.129-141, 2007.

C. D'souza-schorey and P. Chavrier, ARF proteins: roles in membrane traffic and beyond, Nature Reviews Molecular Cell Biology, vol.7, pp.347-358, 2006.

Y. Guo, G. Zanetti, and R. Schekman, A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network, vol.2, p.160, 2013.

J. M. Carvajal-gonzalez, The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo, Nature Communications, vol.6, 2015.

H. Strutt, Retromer Controls Planar Polarity Protein Levels and Asymmetric Localization at Intercellular Junctions, Current Biology, 2019.

S. Eaton, R. Wepf, and K. Simons, Roles for Rac1 and Cdc42 in planar polarization and hair outgrowth in the wing of Drosophila, Journal of Cell Biology, vol.135, pp.1277-1290, 1996.

M. Hannus, Planar cell polarization requires Widerborst, a B' regulatory subunit of protein phosphatase A

Y. Shimada, S. Yonemura, H. Ohkura, D. Strutt, and T. Uemura, Polarized Transport of Frizzled along the Planar Microtubule Arrays in Drosophila Wing Epithelium, Developmental Cell, vol.10, pp.209-222, 2006.

J. Olofsson, K. A. Sharp, M. Matis, B. Cho, and J. D. Axelrod, Prickle/spiny-legs isoforms control the polarity of the apical microtubule network in planar cell polarity, Development, vol.141, pp.2866-2874, 2014.

M. Matis, D. A. Russler-germain, Q. Hu, C. J. Tomlin, and J. D. Axelrod, Microtubules provide directional information for core PCP function, eLife Sciences, vol.3, p.2893, 2014.

D. S. Sepich, M. Usmani, S. Pawlicki, and L. Solnica-krezel, Wnt/PCP signaling controls intracellular position of MTOCs during gastrulation convergence and extension movements, Development, vol.138, pp.543-552, 2011.

D. Shi, Dynamics of planar cell polarity protein Vangl2 in the mouse oviduct epithelium, Mechanisms of Development, vol.141, pp.78-89, 2016.

A. W. Mathewson, D. G. Berman, and C. B. Moens, Microtubules are required for the maintenance of planar cell polarity in monociliated floorplate cells, Developmental Biology, 2019.

Y. Chien, R. Keller, C. Kintner, and D. R. Shook, Mechanical Strain Determines the Axis of Planar Polarity in Ciliated Epithelia, Current Biology, vol.25, pp.2774-2784, 2015.

M. Narimatsu, Regulation of Planar Cell Polarity by Smurf Ubiquitin Ligases, Cell, vol.137, pp.295-307, 2009.

H. Strutt, E. Searle, V. Thomas-macarthur, R. Brookfield, and D. Strutt, A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins, Development, vol.140, pp.1693-1702, 2013.

H. Strutt, V. Thomas-macarthur, and D. Strutt, Strabismus Promotes Recruitment and Degradation of Farnesylated Prickle in Drosophila melanogaster Planar Polarity Specification, PLoS Genetics, vol.9, p.1003654, 2013.

U. Weber and M. Mlodzik, APC/CFzr/Cdh1-Dependent Regulation of Planar Cell Polarity Establishment via Nek2 Kinase Acting on Dishevelled, Developmental Cell, 2016.

M. Willecke, F. Hamaratoglu, L. Sansores-garcia, C. Tao, and G. Halder, Boundaries of Dachsous Cadherin activity modulate the Hippo signaling pathway to induce cell proliferation, Proceedings of the National Academy of Sciences, vol.105, pp.14897-14902, 2008.

R. Hale, A. L. Brittle, K. H. Fisher, N. A. Monk, and D. Strutt, Cellular interpretation of the long-range gradient of Fourjointed activity in the Drosophila wing, eLife Sciences, vol.4, p.5789, 2015.

A. Brittle, C. Thomas, and D. Strutt, Planar Polarity Specification through Asymmetric Subcellular Localization of Fat and Dachsous, Current Biology, vol.22, pp.907-914, 2012.

T. Ayukawa, Dachsous-Dependent Asymmetric Localization of Spiny-Legs Determines Planar Cell Polarity Orientation in Drosophila, Cell Reports, vol.8, pp.610-621, 2014.

T. Harumoto, Atypical Cadherins Dachsous and Fat Control Dynamics of Noncentrosomal Microtubules in Planar Cell Polarity, Developmental Cell, vol.19, pp.389-401, 2010.

J. Casal, P. A. Lawrence, and G. Struhl, Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity, Development, vol.133, pp.4561-4572, 2006.

S. Saburi, Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease, Nature Genetics, vol.40, pp.1010-1015, 2008.

Y. Mao, Dchs1-Fat4 regulation of polarized cell behaviours during skeletal morphogenesis, Nature Communications, vol.7, p.11469, 2016.

K. M. Loh, R. Van-amerongen, and R. Nusse, Generating Cellular Diversity and Spatial Form: Wnt Signaling and the Evolution of Multicellular Animals, Developmental Cell, vol.38, pp.643-655, 2016.

M. Q. Martindale and A. Hejnol, A Developmental Perspective: Changes in the Position of the Blastopore during Bilaterian Evolution, Developmental Cell, vol.17, pp.162-174, 2009.

E. Stanganello, Filopodia-based Wnt transport during vertebrate tissue patterning, Nature Communications, vol.6, p.5846, 2015.

S. J. Habib, A Localized Wnt Signal Orients Asymmetric Stem Cell Division in Vitro, Science, vol.339, pp.1445-1448, 2013.

C. Heisenberg, Silberblick/Wnt11 mediates convergent extension movements during zebra®sh gastrulation, vol.405, p.6, 2000.

B. Kilian, The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation, Mechanisms of Development, vol.120, pp.467-476, 2003.

D. Qian, Wnt5a functions in planar cell polarity regulation in mice, Developmental Biology, vol.306, pp.121-133, 2007.

M. Hashimoto, Planar polarization of node cells determines the rotational axis of node cilia, Nature Cell Biology, vol.12, pp.170-176, 2010.

K. Minegishi, A Wnt5 Activity Asymmetry and Intercellular Signaling via PCP Proteins Polarize Node Cells for Left-Right Symmetry Breaking, Developmental Cell, vol.40, 2017.

B. Gao, Wnt Signaling Gradients Establish Planar Cell Polarity by Inducing Vangl2 Phosphorylation through Ror2, Developmental Cell, vol.20, pp.163-176, 2011.

C. Chu and S. Y. Sokol, Wnt proteins can direct planar cell polarity in vertebrate ectoderm, vol.5, p.16463, 2016.

J. Wu, A. Roman, J. M. Carvajal-gonzalez, and M. Mlodzik, Wg and Wnt4 provide long-range directional input to planar cell polarity orientation in Drosophila, Nature Cell Biology, vol.15, pp.1045-1055, 2013.

B. Aigouy, Cell Flow Reorients the Axis of Planar Polarity in the Wing Epithelium of Drosophila, Cell, vol.142, pp.773-786, 2010.

F. Bosveld, Mechanical Control of Morphogenesis by Fat/Dachsous/Four-Jointed Planar Cell Polarity Pathway, Science, vol.336, pp.724-727, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02463702

Y. Chien, S. Srinivasan, R. Keller, and C. Kintner, Mechanical Strain Determines Cilia Length, Motility, and Planar Position in the Left-Right Organizer, Developmental Cell, vol.45, 2018.

P. N. Adler, C. Zhu, and D. Stone, Inturned Localizes to the Proximal Side of Wing Cells under the Instruction of Upstream Planar Polarity Proteins, Current Biology, vol.14, pp.2046-2051, 2004.

D. Strutt and S. J. Warrington, Planar polarity genes in the Drosophila wing regulate the localisation of the FH3-domain protein Multiple Wing Hairs to control the site of hair production, Development, vol.135, pp.3103-3111, 2008.

J. Yan, The multiple-wing-hairs Gene Encodes a Novel GBD-FH3 Domain-Containing Protein That Functions Both Prior to and After Wing Hair Initiation, Genetics, vol.180, pp.219-228, 2008.

Q. Lu, D. A. Schafer, and P. N. Adler, The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton, Development, vol.142, pp.2478-2486, 2015.

M. Gho, Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila, vol.393, p.4, 1998.

J. Gomes, M. Corado, and F. Schweisguth, Van Gogh and Frizzled Act Redundantly in the Drosophila Sensory Organ Precursor Cell to Orient Its Asymmetric Division, PLoS ONE, vol.4, p.4485, 2009.

C. Besson, Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells, Current Biology, vol.25, pp.1104-1110, 2015.

F. Schweisguth, Asymmetric cell division in the Drosophila bristle lineage: from the polarization of sensory organ precursor cells to Notch-mediated binary fate decision: Asymmetric cell division in an epithelium, Wiley Interdisciplinary Reviews: Developmental Biology, vol.4, pp.299-309, 2015.

M. Ségalen, The Fz-Dsh Planar Cell Polarity Pathway Induces Oriented Cell Division via Mud/NuMA in Drosophila and Zebrafish, Developmental Cell, vol.19, pp.740-752, 2010.

Y. Bellaiche, The planar cell polarity protein Strabismus promotes Pins anterior localization during asymmetric division of sensory organ precursor cells in Drosophila, Development, vol.131, pp.469-478, 2003.

Y. Mao, Planar polarization of the atypical myosin Dachs orients cell divisions in Drosophila, Genes Dev, vol.25, pp.131-136, 2011.

Y. Gong, C. Mo, and S. E. Fraser, Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation, Nature, vol.430, pp.689-693, 2004.

Y. Li, A. Li, J. Junge, and M. Bronner, Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage, eLife Sciences, vol.6, p.23279, 2017.

M. Matsuyama, S. Aizawa, and A. Shimono, Sfrp Controls Apicobasal Polarity and Oriented Cell Division in Developing Gut Epithelium, PLoS Genetics, vol.5, p.1000427, 2009.

J. B. Wallingford, Dishevelled controls cell polarity during Xenopus gastrulation, Nature, vol.405, pp.81-85, 2000.

C. Yin, M. Kiskowski, P. Pouille, E. Farge, and L. Solnica-krezel, Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation, The Journal of Cell Biology, vol.180, pp.221-232, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-02440915

O. Ossipova, K. Kim, and S. Y. Sokol, Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling, Biology Open, vol.4, pp.722-730, 2015.

J. R. Jessen, Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements, Nature Cell Biology, 2002.

T. Nishimura, H. Honda, and M. Takeichi, Planar Cell Polarity Links Axes of Spatial Dynamics in Neural-Tube Closure, Cell, vol.149, pp.1084-1097, 2012.

A. Shindo and J. B. Wallingford, PCP and Septins Compartmentalize Cortical Actomyosin to Direct Collective Cell Movement, Science, vol.343, pp.649-652, 2014.

O. Ossipova, I. Chuykin, C. Chu, and S. Y. Sokol, Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation, Development, vol.142, pp.99-107, 2015.

A. Shindo, Y. Inoue, M. Kinoshita, and J. B. Wallingford, PCPdependent transcellular regulation of actomyosin oscillation facilitates convergent extension of vertebrate tissue, Developmental Biology, vol.446, pp.159-167, 2019.

O. Ossipova, The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development, Developmental Biology, vol.408, pp.316-327, 2015.

S. S. Lienkamp, Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension, Nature Genetics, vol.44, pp.1382-1387, 2012.

A. I. Lyuksyutova, Anterior-Posterior Guidance of Commissural Axons by Wnt-Frizzled Signaling, Science, vol.302, 1984.

B. Shafer, K. Onishi, C. Lo, G. Colakoglu, and Y. Zou, Vangl2 Promotes Wnt/Planar Cell Polarity-like Signaling by Antagonizing Dvl1-Mediated Feedback Inhibition in Growth Cone Guidance, Developmental Cell, vol.20, pp.177-191, 2011.

K. Onishi, Antagonistic Functions of Dishevelleds Regulate Frizzled3 Endocytosis via Filopodia Tips in Wnt-Mediated Growth Cone Guidance, Journal of Neuroscience, vol.33, pp.19071-19085, 2013.

S. J. Wanner, I. Saeger, S. Guthrie, and V. E. Prince, Facial motor neuron migration advances, Current Opinion in Neurobiology, vol.23, pp.943-950, 2013.

S. Bingham, S. Higashijima, H. Okamoto, and A. Chandrasekhar, The Zebrafish trilobite Gene Is Essential for Tangential Migration of Branchiomotor Neurons, Developmental Biology, vol.242, pp.149-160, 2002.

O. M. Mapp, S. J. Wanner, M. R. Rohrschneider, and V. E. Prince, Prickle1b mediates interpretation of migratory cues during zebrafish facial branchiomotor neuron migration, Developmental Dynamics, vol.239, pp.1596-1608

H. Wada, H. Tanaka, S. Nakayama, M. Iwasaki, and H. Okamoto, Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain, Development, vol.133, pp.4749-4759, 2006.

C. F. Davey, A. W. Mathewson, C. B. Moens, and . Pcp, Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration, PLOS Genetics, vol.12, p.1005934, 2016.

J. M. Carvajal-gonzalez, S. Mulero-navarro, and M. Mlodzik, Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity, BioEssays, vol.38, pp.1234-1245, 2016.

A. Djiane, S. Yogev, and M. Mlodzik, The Apical Determinants aPKC and dPatj Regulate Frizzled-Dependent Planar Cell Polarity in the Drosophila Eye, Cell, vol.121, pp.621-631, 2005.

I. Wasserscheid, U. Thomas, and E. Knust, Isoform-specific interaction of Flamingo/Starry Night with excess Bazooka affects planar cell polarity in the Drosophila wing, Dev. Dyn, vol.236, pp.1064-1071, 2007.

F. Kharfallah, Scribble1 plays an important role in the pathogenesis of neural tube defects through its mediating effect of Par-3 and Vangl1/2 localization, Human Molecular Genetics, 2017.

J. J. Banerjee, Meru couples planar cell polarity with apical-basal polarity during asymmetric cell division, eLife Sciences, vol.6, p.25014, 2017.

B. Aigouy and A. Le-bivic, The PCP pathway regulates Baz planar distribution in epithelial cells, Scientific Reports, vol.6, p.33420, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428876

I. Chuykin, O. Ossipova, and S. Y. Sokol, Par3 interacts with Prickle3 to generate apical PCP complexes in the vertebrate neural plate, eLife, vol.7, p.37881, 2018.

J. Courbard, A. Djiane, J. Wu, and M. Mlodzik, The apical/basal-polarity determinant Scribble cooperates with the PCP core factor Stbm/Vang and functions as one of its effectors, Developmental Biology, vol.333, pp.67-77, 2009.

J. N. Murdoch, Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse, Human Molecular Genetics, vol.12, pp.87-98, 2003.

M. Montcouquiol, Identification of Vangl2 and Scrb1 as planar polarity genes in mammals, vol.423, p.5, 2003.

H. Tao, Mouse prickle1, the homolog of a PCP gene, is essential for epiblast apical-basal polarity, Proceedings of the National Academy of Sciences, vol.106, pp.14426-14431, 2009.

Z. Carvalho-santos, J. Azimzadeh, J. B. Pereira-leal, and M. Bettencourt-dias, Tracing the origins of centrioles, cilia, and flagella, The Journal of Cell Biology, vol.194, pp.165-175, 2011.

L. Ross and B. B. Normark, Evolutionary problems in centrosome and centriole biology, Journal of Evolutionary Biology, vol.28, pp.995-1004, 2015.

P. T. Conduit, A. Wainman, and J. W. Raff, Centrosome function and assembly in animal cells, Nature Reviews Molecular Cell Biology, vol.16, pp.611-624, 2015.

K. F. Sonnen, A. Gabryjonczyk, E. Anselm, Y. Stierhof, and E. A. Nigg, Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication, Journal of Cell Science, vol.126, pp.3223-3233, 2013.

D. Kitagawa, Structural Basis of the 9-Fold Symmetry of Centrioles, Cell, vol.144, pp.364-375, 2011.

C. C. Tang, R. Fu, K. Wu, W. Hsu, and T. K. Tang, CPAP is a cell-cycle regulated protein that controls centriole length, Nature Cell Biology, vol.11, pp.825-831, 2009.

M. Bettencourt-dias and . Q&a, , 2013.

K. Lee and K. Rhee, PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis, The Journal of Cell Biology, vol.195, pp.1093-1101, 2011.

S. Sdelci, Nek9 Phosphorylation of NEDD1/GCP-WD Contributes to Plk1 Control of ?-Tubulin Recruitment to the Mitotic Centrosome, Current Biology, vol.22, pp.1516-1523, 2012.

O. J. Gruss and I. Vernos, The mechanism of spindle assembly: functions of Ran and its target TPX2, The Journal of Cell Biology, vol.166, pp.949-955, 2004.

G. Goshima, M. Mayer, N. Zhang, N. Stuurman, and R. D. Vale, Augmin: a protein complex required for centrosomeindependent microtubule generation within the spindle, The Journal of Cell Biology, vol.181, pp.421-429, 2008.

M. Schuh and J. Ellenberg, Self-Organization of MTOCs Replaces Centrosome Function during Acentrosomal Spindle Assembly in Live Mouse Oocytes, Cell, vol.130, pp.484-498, 2007.

H. Varmark, Asterless Is a Centriolar Protein Required for Centrosome Function and Embryo Development in Drosophila, Current Biology, vol.17, pp.1735-1745, 2007.

R. Basto, Flies without Centrioles. Cell, vol.125, pp.1375-1386, 2006.

J. S. Poulton, J. C. Cuningham, and M. Peifer, Acentrosomal Drosophila Epithelial Cells Exhibit Abnormal Cell Division, Leading to Cell Death and Compensatory Proliferation, Developmental Cell, vol.30, pp.731-745, 2014.

M. Inaba, Z. G. Venkei, and Y. M. Yamashita, The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline, Elife, vol.4, p.4960, 2015.

J. Azimzadeh, M. L. Wong, D. M. Downhour, A. S. Alvarado, and W. F. Marshall, Centrosome Loss in the Evolution of Planarians, Science, vol.335, pp.461-463, 2012.

H. Bazzi and K. V. Anderson, Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo, Proceedings of the National Academy of Sciences, vol.111, pp.1491-1500, 2014.

R. Insolera, H. Bazzi, W. Shao, K. V. Anderson, and S. Shi, Cortical neurogenesis in the absence of centrioles, Nature Neuroscience, vol.17, pp.1528-1535, 2014.

N. Quintyne, Spindle Multipolarity Is Prevented by Centrosomal Clustering, Science, vol.307, pp.124-127, 2005.

R. Basto, Centrosome Amplification Can Initiate Tumorigenesis in Flies, Cell, vol.133, pp.1032-1042, 2008.

M. S. Levine, Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals, Developmental Cell, vol.40, p.5, 2017.

N. J. Ganem, S. A. Godinho, and D. Pellman, A mechanism linking extra centrosomes to chromosomal instability, Nature, vol.460, pp.278-282, 2009.

G. K. Thornton and C. G. Woods, Primary microcephaly: do all roads lead to Rome?, Trends in Genetics, vol.25, pp.501-510, 2009.

M. A. Lancaster, Cerebral organoids model human brain development and microcephaly, Nature, vol.501, pp.373-379, 2013.

J. J. Buchman, Cdk5rap2 Interacts with Pericentrin to Maintain the Neural Progenitor Pool in the Developing Neocortex, Neuron, vol.66, pp.386-402, 2010.

J. Yang, Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet, The Journal of Cell Biology, vol.159, pp.431-440, 2002.

S. Mohan, T. A. Timbers, J. Kennedy, O. E. Blacque, and M. R. Leroux, Striated Rootlet and Nonfilamentous Forms of Rootletin Maintain Ciliary Function, Current Biology, vol.23, pp.2016-2022, 2013.

K. Styczynska-soczka and A. P. Jarman, The Drosophila homologue of Rootletin is required for mechanosensory function and ciliary rootlet formation in chordotonal sensory neurons, Cilia, vol.4, 2015.

H. Hagiwara, A. Kano, T. Aoki, N. Ohwada, and K. Takata, Localization of ?-tubulin to the basal foot associated with the basal body extending a cilium

K. Kunimoto, Coordinated Ciliary Beating Requires Odf2-Mediated Polarization of Basal Bodies via Basal Feet, Cell, vol.148, pp.189-200, 2012.

S. Yoshimura, J. Egerer, E. Fuchs, A. K. Haas, and F. A. Barr, Functional dissection of Rab GTPases involved in primary cilium formation, The Journal of Cell Biology, vol.178, pp.363-369, 2007.

K. G. Kozminski, K. A. Johnson, P. Forscher, and J. L. Rosenbaum, A motility in the eukaryotic flagellum unrelated to flagellar beating, Proceedings of the National Academy of Sciences, vol.90, pp.5519-5523, 1993.

G. J. Pazour, Chlamydomonas IFT 88 and Its Mouse Homologue, Polycystic Kidney Disease Gene Tg 737, Are Required for Assembly of Cilia and Flagella, The Journal of Cell Biology, vol.151, pp.709-718, 2000.

J. Gonçalves and L. Pelletier, The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate, Moleucles and Cells, vol.40, pp.243-253, 2017.

M. V. Nachury and D. U. Mick, Establishing and regulating the composition of cilia for signal transduction, Nature Reviews Molecular Cell Biology, 2019.

E. Houliston, T. Momose, and M. Manuel, Clytia hemisphaerica: a jellyfish cousin joins the laboratory, Trends in Genetics, vol.26, pp.159-167, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00594651

S. L. Tamm and S. Tamm, Development of macrociliary cells in Beroe, vol.16

A. Meunier and J. Azimzadeh, Multiciliated Cells in Animals, Cold Spring Harb Perspect Biol, vol.8, p.28233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471943

K. Mykytyn and C. Askwith, Protein-Coupled Receptor Signaling in Cilia. Cold Spring Harbor Perspectives in Biology a028183, 2017.

J. F. Reiter and M. R. Leroux, Genes and molecular pathways underpinning ciliopathies, Nature Reviews Molecular Cell Biology, vol.18, pp.533-547, 2017.

S. C. Goetz, P. J. Ocbina, and K. V. Anderson, The Primary Cilium as a Hedgehog Signal Transduction Machine, Methods in Cell Biology, vol.94, pp.199-222, 2009.

M. A. Sigg, Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways, Developmental Cell, vol.43, 2017.

G. Jékely and D. Arendt, Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium, BioEssays, vol.28, pp.191-198, 2006.

B. Wickstead, K. Gull, and . Holistic, Kinesin Phylogeny Reveals New Kinesin Families and Predicts Protein Functions, Molecular Biology of the Cell, vol.17, pp.1734-1743, 2006.

B. Wickstead and K. Gull, Dyneins Across Eukaryotes: A, Comparative Genomic Analysis. Traffic, vol.8, pp.1708-1721

B. Delaval, A. Bright, N. D. Lawson, and S. Doxsey, The cilia protein IFT88 is required for spindle orientation in mitosis, Nature Cell Biology, vol.13, pp.461-468, 2011.

C. R. Wood, IFT Proteins Accumulate during Cell Division and Localize to the Cleavage Furrow in Chlamydomonas, PLoS ONE, vol.7, p.30729, 2012.

M. V. Nachury, How do cilia organize signalling cascades?, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.369, pp.20130465-20130465, 2014.

L. Laan, Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters, Cell, vol.148, pp.502-514, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00994472

L. Laan, S. Roth, and M. Dogterom, End-on microtubuledynein interactions and pulling-based positioning of microtubule organizing centers, Cell Cycle, vol.11, pp.3750-3757, 2012.

S. W. Grill, P. G. Nczy, E. H. Stelzer, and A. A. Hyman, Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo, vol.409, p.4, 2001.

L. Su, B. Vogelstein, and K. Kinzler, Association of the APC tumor suppressor protein with catenins, Science, vol.262, pp.1734-1737, 1993.

Y. Wen, EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration, Nature Cell Biology, vol.6, pp.820-830, 2004.

M. Inaba, H. Yuan, V. Salzmann, M. T. Fuller, and Y. M. Yamashita, E-Cadherin Is Required for Centrosome and Spindle Orientation in Drosophila Male Germline Stem Cells, PLoS ONE, vol.5, p.12473, 2010.

M. Schaefer, A. Shevchenko, A. Shevchenko, and J. A. Knoblich, A protein complex containing Inscuteable and the G?binding protein Pins orients asymmetric cell divisions in Drosophila, Current Biology, vol.10, pp.353-362, 2000.

M. Schaefer, M. Petronczki, D. Dorner, M. Forte, and J. A. Knoblich, Heterotrimeric G Proteins Direct Two Modes of Asymmetric Cell Division in the Drosophila Nervous System, Cell, vol.107, pp.183-194, 2001.

F. Yu, X. Morin, Y. Cai, X. Yang, and W. Chia, Analysis of partner of inscuteable, a Novel Player of Drosophila Asymmetric Divisions, Reveals Two Distinct Steps in Inscuteable Apical Localization, Cell, vol.100, pp.399-409, 2000.

G. O. Gudima, I. A. Vorobjev, and Y. S. Chentsov, Centriolar location during blood cell spreading and motion in vitro: an ultrastructural analysis, vol.18

E. R. Gomes, S. Jani, and G. G. Gundersen, Nuclear Movement Regulated by Cdc42, MRCK, Myosin, and Actin Flow Establishes MTOC Polarization in Migrating Cells, Cell, vol.121, pp.451-463, 2005.

H. Higginbotham, T. Tanaka, B. C. Brinkman, and J. Gleeson, GSK3? and PKC? function in centrosome localization and process stabilization during Slit-mediated neuronal repolarization, Molecular and Cellular Neuroscience, vol.32, pp.118-132, 2006.

I. Dupin, E. Camand, and S. Etienne-manneville, Classical cadherins control nucleus and centrosome position and cell polarity, The Journal of Cell Biology, vol.185, pp.779-786, 2009.

J. Manneville, M. Jehanno, and S. Etienne-manneville, Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity, The Journal of Cell Biology, vol.191, pp.585-598, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00542451

D. J. Solecki, L. Model, J. Gaetz, T. M. Kapoor, and M. E. Hatten, Par6? signaling controls glial-guided neuronal migration, Nature Neuroscience, vol.7, pp.1195-1203, 2004.

D. J. Solecki, Myosin II Motors and F-Actin Dynamics Drive the Coordinated Movement of the Centrosome and Soma during CNS Glial-Guided Neuronal Migration, Neuron, vol.63, pp.63-80, 2009.

G. W. Luxton, E. R. Gomes, E. S. Folker, E. Vintinner, and G. G. Gundersen, Linear Arrays of Nuclear Envelope Proteins Harness Retrograde Actin Flow for Nuclear Movement, Science, vol.329, pp.956-959, 2010.

M. De-la-roche, Y. Asano, and G. M. Griffiths, Origins of the cytolytic synapse, Nature Reviews Immunology, vol.16, pp.421-432, 2016.

A. T. Ritter, Actin Depletion Initiates Events Leading to Granule Secretion at the Immunological Synapse, Immunity, vol.42, pp.864-876, 2015.

G. A. Koretzky, F. Abtahian, and M. A. Silverman, SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond, Nature Reviews Immunology, vol.6, pp.67-78, 2006.

E. J. Quann, E. Merino, T. Furuta, and M. Huse, Localized diacylglycerol drives the polarization of the microtubuleorganizing center in T cells, Nature Immunology, vol.10, pp.627-635, 2009.

E. J. Quann, X. Liu, G. Altan-bonnet, and M. Huse, A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells, Nature Immunology, vol.12, pp.647-654, 2011.

X. Liu, T. M. Kapoor, J. K. Chen, and M. Huse, Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II, Proceedings of the National Academy of Sciences, vol.110, pp.11976-11981, 2013.

F. Bertrand, Activation of the Ancestral Polarity Regulator Protein Kinase C at the Immunological Synapse Drives Polarization of Th Cell Secretory Machinery toward APCs, The Journal of Immunology, vol.185, pp.2887-2894, 2010.

J. Lin, K. K. Hou, H. Piwnica-worms, and A. S. Shaw, The Polarity Protein Par1b/EMK/MARK2 Regulates T Cell Receptor-Induced Microtubule-Organizing Center Polarization, The Journal of Immunology, vol.183, pp.1215-1221, 2009.

A. Reversat, Polarity protein Par3 controls B-cell receptor dynamics and antigen extraction at the immune synapse, Molecular biology of the cell, vol.26, pp.1273-1285, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02391191

J. Yi, Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage, The Journal of Cell Biology, vol.202, pp.779-792, 2013.

E. Boisvieux-ulrich, M. Lainé, and D. Sandoz, Cytochalasin D inhibits basal body migration and ciliary elongation in quail oviduct epithelium, Cell and Tissue Research, vol.259, pp.443-454, 1990.

E. Boisvieux-ulrich, M. Laine, and D. Sandoz, In vitro effects of taxol on ciliogenesis in quail oviduct, p.12

E. Boisvieux-ulrich, M. Lainé, and D. Sandoz, In vitro effects of colchicine and nocodazole on ciliogenesis in quail oviduct, Biology of the Cell, vol.67, pp.67-79

H. Hong, J. Kim, and J. Kim, Myosin heavy chain 10 (MYH10) is required for centriole migration during the biogenesis of primary cilia, Biochemical and Biophysical Research Communications, vol.461, pp.180-185, 2015.

J. Pan, Y. You, T. Huang, and S. L. Brody, RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1, Journal of Cell Science, vol.120, pp.1868-1876, 2007.

M. Lemullois, E. Boisvieux-ulrich, M. Laine, B. Chailley, and D. Sandoz, Development and functions of the cytoskeleton during ciliogenesis in metazoa, Biology of the Cell, vol.63, pp.195-208

E. Cohen, S. Binet, and V. Meininger, Ciliogenesis and centriole formation in the mouse embryonic nervous system. An ultrastructural analysis, Biology of the Cell, vol.62, pp.165-169

S. Sorokin, . Formation, . Rudimentary, . By, . Smooth et al., The Journal of Cell Biology, vol.15, pp.363-377, 1962.

X. Zuo, W. Guo, and J. H. Lipschutz, The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro, Molecular biology of the cell, vol.20, pp.2522-2529, 2009.

K. N. Schmidt, Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis, The Journal of Cell Biology, vol.199, pp.1083-1101, 2012.

T. J. Park, B. J. Mitchell, P. B. Abitua, C. Kintner, and J. B. Wallingford, Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells, Nature Genetics, vol.40, pp.871-879, 2008.

A. Pitaval, Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis, The Journal of Cell Biology jcb, p.201610039, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666743

H. L. May-simera, Loss of MACF1 Abolishes Ciliogenesis and Disrupts Apicobasal Polarity Establishment in the Retina, Cell Reports, vol.17, pp.1399-1413, 2016.

K. Sawamoto, New neurons follow the flow of cerebrospinal fluid in the adult brain, Science, vol.311, pp.629-632, 2006.

A. G. Kramer-zucker, Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis, Development, vol.132, pp.1907-1921, 2005.

M. Montcouquiol, Identification of Vangl2 and Scrb1 as planar polarity genes in mammals, vol.423, p.5, 2003.

S. Y. Sokol, Analysis of Dishevelled signalling pathways during Xenopus development, Current Biology, vol.6, pp.1456-1467, 1996.

B. Mitchell, The PCP Pathway Instructs the Planar Orientation of Ciliated Cells in the Xenopus Larval Skin, Current Biology, vol.19, pp.924-929, 2009.

B. Guirao, Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia, Nature Cell Biology, vol.12, pp.341-350, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00555153

C. Boutin, A dual role for planar cell polarity genes in ciliated cells, Proceedings of the National Academy of Sciences, vol.111, pp.3129-3138, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01111176

Y. Hirota, Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II, Development, vol.137, pp.3037-3046, 2010.

C. Gao and Y. Chen, Dishevelled: The hub of Wnt signaling, Cellular Signalling, vol.22, pp.717-727, 2010.

D. Antic, Planar Cell Polarity Enables Posterior Localization of Nodal Cilia and Left-Right Axis Determination during Mouse and Xenopus Embryogenesis, PLoS ONE, vol.5, p.8999, 2010.

A. Borovina, S. Superina, D. Voskas, and B. Ciruna, Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia, Nature Cell Biology, vol.12, pp.407-412, 2010.

J. M. Carvajal-gonzalez, A. Roman, and M. Mlodzik, Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling, Nature Communications, vol.7, p.11135, 2016.

T. Momose, Y. Kraus, and E. Houliston, A conserved function for Strabismus in establishing planar cell polarity in the ciliated ectoderm during cnidarian larval development, Development, vol.139, pp.4374-4382, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02115399

D. Sandoz, Organization and functions of cytoskeleton in metazoan ciliated cells, Biology of the Cell, vol.63, pp.183-193

M. E. Werner, Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells, The Journal of Cell Biology, vol.195, pp.19-26, 2011.

E. Turk, Zeta-Tubulin Is a Member of a Conserved Tubulin Module and Is a Component of the Centriolar Basal Foot in Multiciliated Cells, Current Biology, vol.25, pp.2177-2183, 2015.

S. K. Kim, CLAMP/Spef1 regulates planar cell polarity signaling and asymmetric microtubule accumulation in the Xenopus ciliated epithelia, The Journal of Cell Biology jcb, 2018.

K. M. Jaffe, c21orf59/kurly Controls Both Cilia Motility and Polarization, vol.14, pp.1841-1849, 2016.

J. W. Hammond, D. Cai, and K. J. Verhey, Tubulin modifications and their cellular functions, Current Opinion in Cell Biology, vol.20, pp.71-76, 2008.

J. Ezan, Primary cilium migration depends on G-protein signalling control of subapical cytoskeleton, Nature Cell Biology, vol.15, pp.1107-1115, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862161

B. Tarchini, C. Jolicoeur, and M. Cayouette, A Molecular Blueprint at the Apical Surface Establishes Planar Asymmetry in Cochlear Hair Cells, Developmental Cell, vol.27, pp.88-102, 2013.

K. Hua and R. J. Ferland, Primary cilia proteins: ciliary and extraciliary sites and functions, Cellular and Molecular Life Sciences, 2018.

A. J. Ross, Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates, Nature Genetics, vol.37, pp.1135-1140, 2005.

J. C. Kim, The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression, Nature Genetics, vol.36, pp.462-470, 2004.

J. A. Follit, R. A. Tuft, K. E. Fogarty, and G. J. Pazour, The Intraflagellar Transport Protein IFT20 Is Associated with the Golgi Complex and Is Required for Cilia Assembly?V, Molecular Biology of the Cell, vol.17, p.12, 2006.

H. L. May-simera, Ciliary proteins Bbs8 and Ift20 promote planar cell polarity in the cochlea, Development, vol.142, pp.555-566, 2015.

C. Jones, Ciliary proteins link basal body polarization to planar cell polarity regulation, Nature Genetics, vol.40, pp.69-77, 2008.

C. W. Sipe and X. Lu, Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms, Development, vol.138, pp.3441-3449, 2011.

A. Borovina and B. Ciruna, IFT88 Plays a Cilia-and PCP-Independent Role in Controlling Oriented Cell Divisions during Vertebrate Embryonic Development, Cell Reports, vol.5, pp.37-43, 2013.

M. Tsujikawa and J. Malicki, Intraflagellar Transport Genes Are Essential for Differentiation and Survival of Vertebrate Sensory Neurons, Neuron, vol.42, pp.703-716, 2004.

Z. Mirzadeh, Y. Han, M. Soriano-navarro, J. M. Garcia-verdugo, and A. Alvarez-buylla, Cilia Organize Ependymal Planar Polarity, Journal of Neuroscience, vol.30, pp.2600-2610, 2010.

A. Kodani, M. S. Sirerol-piquer, A. Seol, J. M. Garcia-verdugo, and J. F. Reiter, Kif3a interacts with Dynactin subunit p150 Glued to organize centriole subdistal appendages, The EMBO journal, vol.32, pp.597-607, 2013.

A. Mahuzier, Dishevelled stabilization by the ciliopathy protein Rpgrip1l is essential for planar cell polarity, The Journal of Cell Biology, vol.198, pp.927-940, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00762184

D. Jagger, Alstrom Syndrome protein ALMS1 localizes to basal bodies of cochlear hair cells and regulates ciliumdependent planar cell polarity, Human Molecular Genetics, vol.20, pp.466-481, 2011.

C. Cui, Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome, Disease Models & Mechanisms, vol.4, pp.43-56, 2011.

S. Ohata, Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium, Journal of Neuroscience, vol.35, pp.11153-11168, 2015.

B. Mitchell, R. Jacobs, J. Li, S. Chien, and C. Kintner, A positive feedback mechanism governs the polarity and motion of motile cilia, Nature, vol.447, pp.97-101, 2007.

G. Prulière, J. Cosson, S. Chevalier, C. Sardet, and J. Chenevert, Atypical protein kinase C controls sea urchin ciliogenesis, Molecular biology of the cell, vol.22, pp.2042-2053, 2011.

B. L. Krock and B. D. Perkins, The Par-PrkC polarity complex is required for cilia growth in zebrafish photoreceptors, PloS one, vol.9, p.104661, 2014.

J. Sfakianos, Par3 functions in the biogenesis of the primary cilium in polarized epithelial cells, The Journal of Cell Biology, vol.179, pp.1133-1140, 2007.

E. Bazellières, V. Aksenova, M. Barthélémy-requin, D. Massey-harroche, and A. Le-bivic, Role of the crumbs proteins in ciliogenesis, cell migration and actin organization, Seminars in Cell & Developmental Biology, 2017.

P. N. Adler and J. B. Wallingford, From Planar Cell Polarity to Ciliogenesis and Back: The Curious Tale of the PPE and CPLANE proteins, Trends in Cell Biology, 2017.

H. L. May-simera, Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left-right asymmetry in zebrafish, Developmental Biology, vol.345, pp.215-225, 2010.

B. C. Gibbs, Prickle1 mutation causes planar cell polarity and directional cell migration defects associated with cardiac outflow tract anomalies and other structural birth defects, Biology Open, vol.5, pp.323-335, 2016.

L. P. Sowers, T. Yin, V. B. Mahajan, and A. G. Bassuk, Defective Motile Cilia in Prickle2 -Deficient Mice, Journal of Neurogenetics, vol.28, pp.146-152, 2014.

Y. Xing, Mutational analysis of dishevelled genes in zebrafish reveals distinct functions in embryonic patterning and gastrulation cell movements, PLOS Genetics, vol.14, p.1007551, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01876099

A. Mahuzier, Ependymal cilia beating induces an actin network to protect centrioles against shear stress, Nature Communications, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01822885

J. Jouette, A. Guichet, and S. B. Claret, Dynein-mediated transport and membrane trafficking control PAR3 polarised distribution, vol.8, p.40212, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02110956

R. F. Mckinley and T. J. Harris, Displacement of basolateral Bazooka/PAR-3 by regulated transport and dispersion during epithelial polarization in Drosophila, Molecular Biology of the Cell, vol.23, pp.4465-4471, 2012.

K. Kono, Reconstruction of Par polarity in apolar cells reveals a dynamic process of cortical polarization, 2019.

S. Simões and M. De, Rho-Kinase Directs Bazooka/Par-3

, Planar Polarity during Drosophila Axis Elongation, Developmental Cell, vol.19, pp.377-388, 2010.

J. J. Banerjee, Meru couples planar cell polarity with apical-basal polarity during asymmetric cell division, 2017.

A. Landin-malt, Par3 is essential for the establishment of planar cell polarity of inner ear hair cells, Proceedings of the National Academy of Sciences, 2019.

K. Siletti, B. Tarchini, and A. J. Hudspeth, Daple coordinates organ-wide and cell-intrinsic polarity to pattern inner-ear hair bundles, Proceedings of the National Academy of Sciences 201716522, 2017.

T. J. Harris, Protein clustering for cell polarity: Par-3 as a paradigm, 2017.

B. Cho, G. Pierre-louis, A. Sagner, S. Eaton, and J. D. Axelrod, Clustering and Negative Feedback by Endocytosis in Planar Cell Polarity Signaling Is Modulated by Ubiquitinylation of Prickle, PLOS Genetics, vol.11, p.1005259, 2015.

T. J. Harris and M. Peifer, aPKC Controls Microtubule Organization to Balance Adherens Junction Symmetry and Planar Polarity during Development, Developmental Cell, vol.12, pp.727-738, 2007.

M. Itoh, Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions, The Journal of Cell Biology, vol.154, pp.491-498, 2001.

X. Chen and I. G. Macara, Par-3 controls tight junction assembly through the Rac exchange factor Tiam1, Nature Cell Biology, vol.7, pp.262-269, 2005.

T. Ooshio, Cooperative roles of Par-3 and afadin in the formation of adherens and tight junctions, Journal of Cell Science, vol.120, pp.2352-2365, 2007.

W. Ikeda, Afadin: A Key Molecule Essential for Structural Organization of Cell-Cell Junctions of Polarized Epithelia during Embryogenesis, J Cell Biol, vol.146, pp.1117-1132, 1999.

M. A. Mcgill, R. F. Mckinley, and T. J. Harris, Independent cadherin-catenin and Bazooka clusters interact to assemble adherens junctions, The Journal of Cell Biology, vol.185, pp.787-796, 2009.

T. J. Harris, Adherens Junction Assembly and Function in the Drosophila Embryo, International Review of Cell and Molecular Biology, vol.293, pp.45-83, 2012.

T. J. Harris and M. Peifer, Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila, The Journal of Cell Biology, vol.167, pp.135-147, 2004.

T. J. Harris and M. Peifer, The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila, J Cell Biol, vol.170, pp.813-823, 2005.

S. Redemann, Membrane Invaginations Reveal Cortical Sites that Pull on Mitotic Spindles in One-Cell C. elegans Embryos. PLoS ONE, vol.5, p.12301, 2010.

C. Couwenbergs, Heterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans, J Cell Biol, vol.179, pp.15-22, 2007.

C. Kozlowski, M. Srayko, and F. Nedelec, Cortical Microtubule Contacts Position the Spindle in C. elegans Embryos, Cell, vol.129, pp.499-510, 2007.

T. Negishi, N. Miyazaki, K. Murata, H. Yasuo, and N. Ueno, Physical association between a novel plasma-membrane structure and centrosome orients cell division, vol.5, p.16550, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01365297

M. Simunovic, G. A. Voth, A. Callan-jones, and P. Bassereau, When Physics Takes Over: BAR Proteins and Membrane Curvature, Trends in Cell Biology, vol.25, pp.780-792, 2015.

Y. L. Dorland, The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions, Nature Communications, vol.7, p.12210, 2016.

Y. M. Yamashita, M. Inaba, and M. Buszczak, Specialized Intercellular Communications via Cytonemes and Nanotubes, vol.26, 2018.

M. Inaba, M. Buszczak, and Y. M. Yamashita, Nanotubes mediate niche-stem-cell signalling in the Drosophila testis, Nature, vol.523, pp.329-332, 2015.

I. Antoniades, P. Stylianou, and P. A. Skourides, Making the Connection: Ciliary Adhesion Complexes Anchor Basal Bodies to the Actin Cytoskeleton, Developmental Cell, vol.28, pp.70-80, 2014.

A. Efimov, Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites, Journal of Cell Science, vol.10

H. Hagiwara, T. Aoki, N. Ohwada, and T. Fujimoto, Identification of a 195 Kda protein in the striated rootlet: Its expression in ciliated and ciliogenic cells, Cell Motility and the Cytoskeleton, vol.45, pp.200-210, 2000.

D. K. Clare, Basal foot MTOC organizes pillar MTs required for coordination of beating cilia, Nature Communications, vol.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01104395

J. Sallé, Asymmetric division through a reduction of microtubule centering forces, The Journal of Cell Biology jcb, p.201807102, 2018.

X. Morin and Y. Bellaïche, Mitotic Spindle Orientation in Asymmetric and Symmetric Cell Divisions during Animal Development, Developmental Cell, vol.21, pp.102-119, 2011.

M. Schober, M. Schaefer, and J. A. Knoblich, Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts, Nature, vol.402, pp.548-551, 1999.

A. Akhmanova, S. J. Stehbens, A. S. Yap, and . Touch, Grasp, Deliver and Control: Functional Cross-Talk Between Microtubules and Cell Adhesions, vol.10, pp.268-274, 2009.

A. Chausovsky, A. D. Bershadsky, and G. G. Borisy, Cadherin-mediated regulation of microtubule dynamics, Nature Cell Biology, vol.2, pp.797-804, 2000.

M. Fukata, Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170, Cell, vol.109, pp.873-885, 2002.

Y. Mimori-kiyosue, CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex, The Journal of Cell Biology, vol.168, pp.141-153, 2005.

C. Boutin, A dual role for planar cell polarity genes in ciliated cells SD, Proceedings of the National Academy of Sciences, vol.111, pp.3129-3138, 2014.

V. Costache, Kif2 localizes to a subdomain of cortical endoplasmic reticulum that drives asymmetric spindle position, Nature Communications, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02115657

T. Miyamoto, The Microtubule-Depolymerizing Activity of a Mitotic Kinesin Protein KIF2A Drives Primary Cilia Disassembly Coupled with Cell Proliferation, Cell Reports, vol.10, pp.664-673, 2015.

T. Wittmann, G. M. Bokoch, and C. M. Waterman-storer, Regulation of leading edge microtubule and actin dynamics downstream of Rac1, The Journal of Cell Biology, vol.161, pp.845-851, 2003.

H. R. Dawe, H. Farr, and K. Gull, Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells, Journal of Cell Science, vol.120, pp.7-15, 2006.

M. S. Shutova, Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility, The Journal of Cell Biology jcb, 2017.

F. Wang, Kinetic Mechanism of Non-muscle Myosin IIB: FUNCTIONAL ADAPTATIONS FOR TENSION GENERATION AND MAINTENANCE, Journal of Biological Chemistry, vol.278, pp.27439-27448, 2003.

M. Vicente-manzanares, X. Ma, R. S. Adelstein, and A. R. Horwitz, Non-muscle myosin II takes centre stage in cell adhesion and migration, Nature Reviews Molecular Cell Biology, vol.10, pp.778-790, 2009.

M. Vicente-manzanares, J. Zareno, L. Whitmore, C. K. Choi, and A. F. Horwitz, Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells, The Journal of Cell Biology, vol.176, pp.573-580, 2007.

M. Smutny, Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens, Nature Cell Biology, vol.12, pp.696-702, 2010.

J. Kim, Functional genomic screen for modulators of ciliogenesis and cilium length, Nature, vol.464, pp.1048-1051, 2010.

D. Obino, Actin nucleation at the centrosome controls lymphocyte polarity, Nature Communications, vol.7, p.10969, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01331141

S. Garrido-jimenez, A. Roman, A. Alvarez-barrientos, and J. Gonzalez, Centriole planar polarity assessment in Drosophila wings, Development, vol.145, p.169326, 2018.

F. Farina, The centrosome is an actin-organizing centre, Nature Cell Biology, vol.18, pp.65-75, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01261646

D. Inoue, Actin filaments regulate microtubule growth at the centrosome, The EMBO Journal, vol.0, p.99630
URL : https://hal.archives-ouvertes.fr/hal-02620702

X. Wei, The zebrafish Pard3 ortholog is required for separation of the eye fields and retinal lamination, Developmental Biology, vol.269, pp.286-301, 2004.

P. J. Strzyz, Interkinetic Nuclear Migration Is Centrosome Independent and Ensures Apical Cell Division to Maintain Tissue Integrity, Developmental Cell, vol.32, pp.203-219, 2015.

M. Distel, J. C. Hocking, K. Volkmann, and R. W. Köster, The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo, The Journal of Cell Biology, vol.191, pp.875-890, 2010.